You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: .github/workflows/greetings.yml
+3-2Lines changed: 3 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -18,8 +18,9 @@ jobs:
18
18
pr-message: |
19
19
👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv8 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
20
20
21
-
- ✅ Verify your PR is **up-to-date** with `ultralytics/ultralytics` `main` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge master` locally.
21
+
- ✅ Verify your PR is **up-to-date** with `ultralytics/ultralytics` `main` branch. If your PR is behind you can update your code by clicking the 'Update branch' button or by running `git pull` and `git merge main` locally.
22
22
- ✅ Verify all YOLOv8 Continuous Integration (CI) **checks are passing**.
23
+
- ✅ Update YOLOv8 [Docs](https://docs.ultralytics.com) for any new or updated features.
23
24
- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ — Bruce Lee
24
25
25
26
See our [Contributing Guide](https://github.com/ultralytics/ultralytics/blob/main/CONTRIBUTING.md) for details and let us know if you have any questions!
@@ -33,7 +34,7 @@ jobs:
33
34
34
35
## Install
35
36
36
-
Pip install the `ultralytics` package including all [requirements.txt](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.7**](https://www.python.org/) environment with [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
37
+
Pip install the `ultralytics` package including all [requirements](https://github.com/ultralytics/ultralytics/blob/main/requirements.txt) in a [**Python>=3.7**](https://www.python.org/) environment with [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
@@ -105,28 +105,11 @@ success = model.export(format="onnx") # export the model to ONNX format
105
105
Ultralytics [release](https://github.com/ultralytics/assets/releases). See
106
106
YOLOv8 [Python Docs](https://docs.ultralytics.com/usage/python) for more examples.
107
107
108
-
#### Model Architectures
109
-
110
-
⭐ **NEW** YOLOv5u anchor free models are now available.
111
-
112
-
All supported model architectures can be found in the [Models](./ultralytics/models/) section.
113
-
114
-
#### Known Issues / TODOs
115
-
116
-
We are still working on several parts of YOLOv8! We aim to have these completed soon to bring the YOLOv8 feature set up
117
-
to par with YOLOv5, including export and inference to all the same formats. We are also writing a YOLOv8 paper which we
118
-
will submit to [arxiv.org](https://arxiv.org) once complete.
119
-
120
-
-[x] TensorFlow exports
121
-
-[x] DDP resume
122
-
-[ ][arxiv.org](https://arxiv.org) paper
123
-
124
108
</details>
125
109
126
110
## <divalign="center">Models</div>
127
111
128
-
All YOLOv8 pretrained models are available here. Detection and Segmentation models are pretrained on the COCO dataset,
129
-
while Classification models are pretrained on the ImageNet dataset.
112
+
All YOLOv8 pretrained models are available here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
130
113
131
114
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
132
115
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
@@ -147,7 +130,7 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
147
130
<br>Reproduce by `yolo val detect data=coco.yaml device=0`
148
131
-**Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
149
132
instance.
150
-
<br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0/cpu`
133
+
<br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
151
134
152
135
</details>
153
136
@@ -167,7 +150,7 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
167
150
<br>Reproduce by `yolo val segment data=coco.yaml device=0`
168
151
-**Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
169
152
instance.
170
-
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0/cpu`
153
+
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
171
154
172
155
</details>
173
156
@@ -187,7 +170,7 @@ See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usag
187
170
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
188
171
-**Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
189
172
instance.
190
-
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0/cpu`
173
+
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml).
YOLOv8 Detect models are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml).
YOLOv8 Segment models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml).
0 commit comments