|
| 1 | +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> |
| 2 | +<html> |
| 3 | +<head> |
| 4 | + <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| 5 | + <meta http-equiv="Content-Style-Type" content="text/css"> |
| 6 | + <title></title> |
| 7 | + <meta name="Generator" content="Cocoa HTML Writer"> |
| 8 | + <meta name="CocoaVersion" content="2113.6"> |
| 9 | + <style type="text/css"> |
| 10 | + p.p1 {margin: 0.0px 0.0px 12.0px 0.0px; font: 21.3px Times; color: #000000; -webkit-text-stroke: #000000} |
| 11 | + p.p2 {margin: 0.0px 0.0px 12.0px 0.0px; font: 18.7px 'Times New Roman'; color: #000000; -webkit-text-stroke: #000000} |
| 12 | + p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 16.0px 'Times New Roman'; color: #000000; -webkit-text-stroke: #000000} |
| 13 | + p.p4 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.7px 'Times New Roman'; color: #000000; -webkit-text-stroke: #000000} |
| 14 | + li.li4 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.7px 'Times New Roman'; color: #000000; -webkit-text-stroke: #000000} |
| 15 | + span.s1 {font-kerning: none} |
| 16 | + span.s2 {font: 14.7px Times; font-kerning: none} |
| 17 | + span.s3 {font: 14.7px Times} |
| 18 | + span.s4 {font: 12.0px Times; font-kerning: none} |
| 19 | + ul.ul1 {list-style-type: none} |
| 20 | + </style> |
| 21 | +</head> |
| 22 | +<body> |
| 23 | +<p class="p1"><span class="s1"><b>Four years of scientific computing using FreeFEM in the field of computational biomedical engineering<span class="Apple-converted-space"> </span></b></span></p> |
| 24 | +<p class="p2"><span class="s1">Mojtaba Barzegari, Laura Lafuente-Gracia, Liesbet Geris<span class="Apple-converted-space"> </span></span></p> |
| 25 | +<p class="p3"><span class="s1">Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium<span class="Apple-converted-space"> </span></span></p> |
| 26 | +<p class="p4"><span class="s1">Over the past four years, the open-source finite element solver FreeFEM has been extensively used in the computational biomechanics research unit (http://www.biomech.ulg.ac.be/) for a wide range of simulations and modeling studies in the field of computational biomedical engineering and </span><span class="s2"><i>in silico </i></span><span class="s1">medicine. FreeFEM integration with a couple of powerful scientific computing tools and libraries, such as PETSc, HPDDM, Mmg (and ParMmg), Tetgen, METIS (and ParMETIS), SCOTCH, etc., allowed us to take advantage of this open-source domain-specific language efficiently in the development of multiple types of computational models. This benefit has been boosted by the available features to work with various mesh formats, allowing us to use FreeFEM codes in different stages of our modeling workflows.<span class="Apple-converted-space"> </span></span></p> |
| 27 | +<p class="p4"><span class="s1">In this talk, a brief overview of the following carried out research works, with FreeFEM being part of the modeling workflow, will be presented:<span class="Apple-converted-space"> </span></span></p> |
| 28 | +<ul class="ul1"> |
| 29 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">Computational modeling of the biodegradation process of metallic biomaterials, developed by deriving a system of time-dependent reaction-diffusion-convection PDEs coupled with Navier- Stokes equations for hydrodynamics conditions and a level-set formalism for tracking the morphological changes. </span><span class="s4"><br> |
| 30 | +</span></li> |
| 31 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">BioDeg, an open-source software written in FreeFEM, Python, and C++ for simulating the degradation behavior of medical devices, built on top of the biodegradation model with a cross- platform user interface developed using Qt. </span><span class="s4"><br> |
| 32 | +</span></li> |
| 33 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">Tissue growth models, in which the growth of newly formed tissue in various processes were modeled using moving boundary approaches and interface tracking methods, implemented using both the phase-field and level-set methods in 2D and 3D. </span><span class="s4"><br> |
| 34 | +</span></li> |
| 35 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">Bone fracture healing models, where a system of non-linear taxis-diffusion-reaction PDEs describing the spatiotemporal evolution of biochemical factors, cells, and tissues was derived and coupled with discrete representation of blood vessels for simulating bone regeneration. </span><span class="s4"><br> |
| 36 | +</span></li> |
| 37 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">Pancreatic cells viability, a time-dependent reaction-diffusion model to investigate whether groups of cells can survive in various conditions prior to transplantation. </span><span class="s4"><br> |
| 38 | +</span></li> |
| 39 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">Geometry construction and mesh generation for various open-porous tissue engineering scaffolds created based on TPMS lattice infills. </span><span class="s4"><br> |
| 40 | +</span></li> |
| 41 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">Integrating topology optimization approaches with biodegradation models to simulate the mechanical integrity of infilled structures for medical applications. </span><span class="s4"><br> |
| 42 | +</span></li> |
| 43 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">Building a structural analysis component for open-source software TFMLab, a traction-force microscopy code to compute active cellular forces. </span><span class="s4"><br> |
| 44 | +</span></li> |
| 45 | + <li class="li4"><span class="s3"></span><span class="s1"></span><span class="s2"> </span><span class="s1">A case study demonstrating HPC approaches: modeling the degradation behavior of a stiffness- optimized patient-specific porous implant, leading to a computational model with 46M elements simulated using 2K CPU cores, with scaling tests being performed on MPI sizes of 2K-8K. </span><span class="s4"><br> |
| 46 | +</span></li> |
| 47 | +</ul> |
| 48 | +</body> |
| 49 | +</html> |
0 commit comments