|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "import xarray as xr\n", |
| 10 | + "import pystac_client\n", |
| 11 | + "import planetary_computer\n", |
| 12 | + "\n", |
| 13 | + "from dask.distributed import Client, LocalCluster" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "cluster = LocalCluster(n_workers=4, threads_per_worker=1)\n", |
| 23 | + "client = Client(cluster)\n", |
| 24 | + "client" |
| 25 | + ] |
| 26 | + }, |
| 27 | + { |
| 28 | + "cell_type": "code", |
| 29 | + "execution_count": null, |
| 30 | + "metadata": {}, |
| 31 | + "outputs": [], |
| 32 | + "source": [ |
| 33 | + "path = 'gs://gcp-public-data-arco-era5/ar/1959-2022-6h-1440x721.zarr'\n", |
| 34 | + "era5_ds = xr.open_dataset(path, engine='zarr').chunk('auto')\n", |
| 35 | + "era5_temperature = era5_ds['2m_temperature']\n", |
| 36 | + "era5_precipitation = era5_ds['total_precipitation_6hr']" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": null, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "era5_precipitation" |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "catalog = pystac_client.Client.open(\n", |
| 55 | + " \"https://planetarycomputer.microsoft.com/api/stac/v1/\",\n", |
| 56 | + " modifier=planetary_computer.sign_inplace,\n", |
| 57 | + ")\n", |
| 58 | + "collection = catalog.get_collection(\"cil-gdpcir-cc-by\")\n", |
| 59 | + "\n", |
| 60 | + "summary = collection.summaries.to_dict()\n", |
| 61 | + "available_keys = list(summary.keys())\n", |
| 62 | + "print(available_keys)" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "markdown", |
| 67 | + "metadata": {}, |
| 68 | + "source": [ |
| 69 | + "## What physical variables are stored in the dataset?" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": null, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "summary['cmip6:variable']" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "cell_type": "markdown", |
| 83 | + "metadata": {}, |
| 84 | + "source": [ |
| 85 | + "## What GCMs are used in the dataset?" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "cell_type": "code", |
| 90 | + "execution_count": null, |
| 91 | + "metadata": {}, |
| 92 | + "outputs": [], |
| 93 | + "source": [ |
| 94 | + "summary['cmip6:source_id']" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "markdown", |
| 99 | + "metadata": {}, |
| 100 | + "source": [ |
| 101 | + "## What are the SSPs in the dataset?" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "summary['cmip6:experiment_id']" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "markdown", |
| 115 | + "metadata": {}, |
| 116 | + "source": [ |
| 117 | + "## How do we use this information to actually get the data?" |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "search = catalog.search(\n", |
| 127 | + " collections=['cil-gdpcir-cc-by'],\n", |
| 128 | + " query={'cmip6:experiment_id': {'eq': 'historical'}}\n", |
| 129 | + ")\n", |
| 130 | + "historic_data = search.item_collection()\n", |
| 131 | + "historic_data" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": null, |
| 137 | + "metadata": {}, |
| 138 | + "outputs": [], |
| 139 | + "source": [ |
| 140 | + "search = catalog.search(\n", |
| 141 | + " collections=['cil-gdpcir-cc-by'],\n", |
| 142 | + " query={'cmip6:source_id': {'eq': 'GFDL-ESM4'}}\n", |
| 143 | + ")\n", |
| 144 | + "gfdl_data = search.item_collection()\n", |
| 145 | + "gfdl_data" |
| 146 | + ] |
| 147 | + }, |
| 148 | + { |
| 149 | + "cell_type": "code", |
| 150 | + "execution_count": null, |
| 151 | + "metadata": {}, |
| 152 | + "outputs": [], |
| 153 | + "source": [] |
| 154 | + } |
| 155 | + ], |
| 156 | + "metadata": { |
| 157 | + "kernelspec": { |
| 158 | + "display_name": "init", |
| 159 | + "language": "python", |
| 160 | + "name": "python3" |
| 161 | + }, |
| 162 | + "language_info": { |
| 163 | + "codemirror_mode": { |
| 164 | + "name": "ipython", |
| 165 | + "version": 3 |
| 166 | + }, |
| 167 | + "file_extension": ".py", |
| 168 | + "mimetype": "text/x-python", |
| 169 | + "name": "python", |
| 170 | + "nbconvert_exporter": "python", |
| 171 | + "pygments_lexer": "ipython3", |
| 172 | + "version": "3.10.13" |
| 173 | + } |
| 174 | + }, |
| 175 | + "nbformat": 4, |
| 176 | + "nbformat_minor": 2 |
| 177 | +} |
0 commit comments