Skip to content

Commit 8733a5e

Browse files
Create Must_Read_Papers.md
1 parent 45f3e9f commit 8733a5e

File tree

1 file changed

+136
-0
lines changed

1 file changed

+136
-0
lines changed

Must_Read_Papers.md

Lines changed: 136 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,136 @@
1+
# Must Read Deep Learning Papers
2+
3+
# Table of Content
4+
* [The Classics](#the-classics)
5+
* [General Understanding](#general-understanding)
6+
* [Optimization / Training Techniques](#optimization--training-techniques)
7+
* [Unsupervised / Generative Models](#unsupervised--generative-models)
8+
* [Convolutional Network Models](#convolutional-neural-network-models)
9+
* [Image Segmentation / Object Detection](#image-segmentation--object-detection)
10+
* [Image / Video / Etc](#image--video--etc)
11+
* [Natural Language Processing / RNNs](#natural-language-processing--rnns)
12+
* [Speech / Other Domain](#speech--other-domain)
13+
* [Reinforcement Learning / Robotics](#reinforcement-learning--robotics)
14+
15+
## The Classics
16+
17+
- **A fast learning algorithm for deep belief nets**. Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. (2006) [[pdf]](http://www.cs.toronto.edu/~hinton/absps/ncfast.pdf)
18+
- **Reducing the dimensionality of data with neural networks**. Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. (2006) [[pdf]](http://www.cs.toronto.edu/~hinton/science.pdf)
19+
20+
## General Understanding
21+
- **Distilling the knowledge in a neural network** (2015), G. Hinton et al. [[pdf]](http://arxiv.org/pdf/1503.02531)
22+
- **Deep neural networks are easily fooled: High confidence predictions for unrecognizable images** (2015), A. Nguyen et al. [[pdf]](http://arxiv.org/pdf/1412.1897)
23+
- **How transferable are features in deep neural networks?** (2014), J. Yosinski et al. [[pdf]](http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf)
24+
- **CNN features off-the-Shelf: An astounding baseline for recognition** (2014), A. Razavian et al. [[pdf]](http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf)
25+
- **Learning and transferring mid-Level image representations using convolutional neural networks** (2014), M. Oquab et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Oquab_Learning_and_Transferring_2014_CVPR_paper.pdf)
26+
- **Visualizing and understanding convolutional networks** (2014), M. Zeiler and R. Fergus [[pdf]](http://arxiv.org/pdf/1311.2901)
27+
- **Decaf: A deep convolutional activation feature for generic visual recognition** (2014), J. Donahue et al. [[pdf]](http://arxiv.org/pdf/1310.1531)
28+
29+
30+
## Optimization / Training Techniques
31+
- **Training very deep networks** (2015), R. Srivastava et al. [[pdf]](http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf)
32+
- **Batch normalization: Accelerating deep network training by reducing internal covariate shift** (2015), S. Loffe and C. Szegedy [[pdf]](http://arxiv.org/pdf/1502.03167)
33+
- **Delving deep into rectifiers: Surpassing human-level performance on imagenet classification** (2015), K. He et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)
34+
- **Dropout: A simple way to prevent neural networks from overfitting** (2014), N. Srivastava et al. [[pdf]](http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf)
35+
- **Adam: A method for stochastic optimization** (2014), D. Kingma and J. Ba [[pdf]](http://arxiv.org/pdf/1412.6980)
36+
- **Improving neural networks by preventing co-adaptation of feature detectors** (2012), G. Hinton et al. [[pdf]](http://arxiv.org/pdf/1207.0580.pdf)
37+
- **Random search for hyper-parameter optimization** (2012) J. Bergstra and Y. Bengio [[pdf]](http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a)
38+
39+
40+
## Unsupervised / Generative Models
41+
- **Pixel recurrent neural networks** (2016), A. Oord et al. [[pdf]](http://arxiv.org/pdf/1601.06759v2.pdf)
42+
- **Improved techniques for training GANs** (2016), T. Salimans et al. [[pdf]](http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf)
43+
- **Unsupervised representation learning with deep convolutional generative adversarial networks** (2015), A. Radford et al. [[pdf]](https://arxiv.org/pdf/1511.06434v2)
44+
- **DRAW: A recurrent neural network for image generation** (2015), K. Gregor et al. [[pdf]](http://arxiv.org/pdf/1502.04623)
45+
- **Generative adversarial nets** (2014), I. Goodfellow et al. [[pdf]](http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf)
46+
- **Auto-encoding variational Bayes** (2013), D. Kingma and M. Welling [[pdf]](http://arxiv.org/pdf/1312.6114)
47+
- **Building high-level features using large scale unsupervised learning** (2013), Q. Le et al. [[pdf]](http://arxiv.org/pdf/1112.6209)
48+
49+
## Convolutional Neural Network Models
50+
- **Rethinking the inception architecture for computer vision** (2016), C. Szegedy et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf)
51+
- **Inception-v4, inception-resnet and the impact of residual connections on learning** (2016), C. Szegedy et al. [[pdf]](http://arxiv.org/pdf/1602.07261)
52+
- **Identity Mappings in Deep Residual Networks** (2016), K. He et al. [[pdf]](https://arxiv.org/pdf/1603.05027v2.pdf)
53+
- **Deep residual learning for image recognition** (2016), K. He et al. [[pdf]](http://arxiv.org/pdf/1512.03385)
54+
- **Spatial transformer network** (2015), M. Jaderberg et al., [[pdf]](http://papers.nips.cc/paper/5854-spatial-transformer-networks.pdf)
55+
- **Going deeper with convolutions** (2015), C. Szegedy et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf)
56+
- **Very deep convolutional networks for large-scale image recognition** (2014), K. Simonyan and A. Zisserman [[pdf]](http://arxiv.org/pdf/1409.1556)
57+
- **Return of the devil in the details: delving deep into convolutional nets** (2014), K. Chatfield et al. [[pdf]](http://arxiv.org/pdf/1405.3531)
58+
- **OverFeat: Integrated recognition, localization and detection using convolutional networks** (2013), P. Sermanet et al. [[pdf]](http://arxiv.org/pdf/1312.6229)
59+
- **Maxout networks** (2013), I. Goodfellow et al. [[pdf]](http://arxiv.org/pdf/1302.4389v4)
60+
- **Network in network** (2013), M. Lin et al. [[pdf]](http://arxiv.org/pdf/1312.4400)
61+
- **ImageNet classification with deep convolutional neural networks** (2012), A. Krizhevsky et al. [[pdf]](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
62+
63+
## Image: Segmentation / Object Detection
64+
- **You only look once: Unified, real-time object detection** (2016), J. Redmon et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf)
65+
- **Fully convolutional networks for semantic segmentation** (2015), J. Long et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf)
66+
- **Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks** (2015), S. Ren et al. [[pdf]](http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf)
67+
- **Fast R-CNN** (2015), R. Girshick [[pdf]](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf)
68+
- **Rich feature hierarchies for accurate object detection and semantic segmentation** (2014), R. Girshick et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf)
69+
- **Spatial pyramid pooling in deep convolutional networks for visual recognition** (2014), K. He et al. [[pdf]](http://arxiv.org/pdf/1406.4729)
70+
- **Semantic image segmentation with deep convolutional nets and fully connected CRFs**, L. Chen et al. [[pdf]](https://arxiv.org/pdf/1412.7062)
71+
- **Learning hierarchical features for scene labeling** (2013), C. Farabet et al. [[pdf]](https://hal-enpc.archives-ouvertes.fr/docs/00/74/20/77/PDF/farabet-pami-13.pdf)
72+
- **Learning to segment object candidates.** Pinheiro, P.O., Collobert, R., Dollar, P. In: NIPS. 2015. [[pdf]](https://arxiv.org/pdf/1506.06204v2.pdf)
73+
- **Instance-aware semantic segmentation via multi-task network cascades**. Dai, J., He, K., Sun, J. In CVPR. 2016 [[pdf]](https://arxiv.org/pdf/1512.04412v1.pdf)
74+
- **Instance-sensitive Fully Convolutional Networks**. Dai, J., He, K., Sun, J. (2016). [[pdf]](https://arxiv.org/pdf/1603.08678v1.pdf)
75+
76+
## Image / Video / Etc
77+
- **Image Super-Resolution Using Deep Convolutional Networks** (2016), C. Dong et al. [[pdf]](https://arxiv.org/pdf/1501.00092v3.pdf)
78+
- **A neural algorithm of artistic style** (2015), L. Gatys et al. [[pdf]](https://arxiv.org/pdf/1508.06576)
79+
- **Deep visual-semantic alignments for generating image descriptions** (2015), A. Karpathy and L. Fei-Fei [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf)
80+
- **Show, attend and tell: Neural image caption generation with visual attention** (2015), K. Xu et al. [[pdf]](http://arxiv.org/pdf/1502.03044)
81+
- **Show and tell: A neural image caption generator** (2015), O. Vinyals et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vinyals_Show_and_Tell_2015_CVPR_paper.pdf)
82+
- **Long-term recurrent convolutional networks for visual recognition and description** (2015), J. Donahue et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf)
83+
- **VQA: Visual question answering** (2015), S. Antol et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Antol_VQA_Visual_Question_ICCV_2015_paper.pdf)
84+
- **DeepFace: Closing the gap to human-level performance in face verification** (2014), Y. Taigman et al. [[pdf]](http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf):
85+
- **Large-scale video classification with convolutional neural networks** (2014), A. Karpathy et al. [[pdf]](http://vision.stanford.edu/pdf/karpathy14.pdf)
86+
- **Two-stream convolutional networks for action recognition in videos** (2014), K. Simonyan et al. [[pdf]](http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf)
87+
- **3D convolutional neural networks for human action recognition** (2013), S. Ji et al. [[pdf]](http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_JiXYY10.pdf)
88+
89+
90+
## Natural Language Processing / RNNs
91+
- **Neural Architectures for Named Entity Recognition** (2016), G. Lample et al. [[pdf]](http://aclweb.org/anthology/N/N16/N16-1030.pdf)
92+
- **Exploring the limits of language modeling** (2016), R. Jozefowicz et al. [[pdf]](http://arxiv.org/pdf/1602.02410)
93+
- **Teaching machines to read and comprehend** (2015), K. Hermann et al. [[pdf]](http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf)
94+
- **Effective approaches to attention-based neural machine translation** (2015), M. Luong et al. [[pdf]](https://arxiv.org/pdf/1508.04025)
95+
- **Conditional random fields as recurrent neural networks** (2015), S. Zheng and S. Jayasumana. [[pdf]](http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Conditional_Random_Fields_ICCV_2015_paper.pdf)
96+
- **Memory networks** (2014), J. Weston et al. [[pdf]](https://arxiv.org/pdf/1410.3916)
97+
- **Neural turing machines** (2014), A. Graves et al. [[pdf]](https://arxiv.org/pdf/1410.5401)
98+
- **Neural machine translation by jointly learning to align and translate** (2014), D. Bahdanau et al. [[pdf]](http://arxiv.org/pdf/1409.0473)
99+
- **Sequence to sequence learning with neural networks** (2014), I. Sutskever et al. [[pdf]](http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf)
100+
- **Learning phrase representations using RNN encoder-decoder for statistical machine translation** (2014), K. Cho et al. [[pdf]](http://arxiv.org/pdf/1406.1078)
101+
- **A convolutional neural network for modeling sentences** (2014), N. Kalchbrenner et al. [[pdf]](http://arxiv.org/pdf/1404.2188v1)
102+
- **Convolutional neural networks for sentence classification** (2014), Y. Kim [[pdf]](http://arxiv.org/pdf/1408.5882)
103+
- **Glove: Global vectors for word representation** (2014), J. Pennington et al. [[pdf]](http://anthology.aclweb.org/D/D14/D14-1162.pdf)
104+
- **Distributed representations of sentences and documents** (2014), Q. Le and T. Mikolov [[pdf]](http://arxiv.org/pdf/1405.4053)
105+
- **Distributed representations of words and phrases and their compositionality** (2013), T. Mikolov et al. [[pdf]](http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf)
106+
- **Efficient estimation of word representations in vector space** (2013), T. Mikolov et al. [[pdf]](http://arxiv.org/pdf/1301.3781)
107+
- **Recursive deep models for semantic compositionality over a sentiment treebank** (2013), R. Socher et al. [[pdf]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.1327&rep=rep1&type=pdf)
108+
- **Generating sequences with recurrent neural networks** (2013), A. Graves. [[pdf]](https://arxiv.org/pdf/1308.0850)
109+
110+
111+
## Speech / Other Domain
112+
- **End-to-end attention-based large vocabulary speech recognition** (2016), D. Bahdanau et al. [[pdf]](https://arxiv.org/pdf/1508.04395)
113+
- **Deep speech 2: End-to-end speech recognition in English and Mandarin** (2015), D. Amodei et al. [[pdf]](https://arxiv.org/pdf/1512.02595)
114+
- **Speech recognition with deep recurrent neural networks** (2013), A. Graves [[pdf]](http://arxiv.org/pdf/1303.5778.pdf)
115+
- **Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups** (2012), G. Hinton et al. [[pdf]](http://www.cs.toronto.edu/~asamir/papers/SPM_DNN_12.pdf)
116+
- **Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition** (2012) G. Dahl et al. [[pdf]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.337.7548&rep=rep1&type=pdf)
117+
- **Acoustic modeling using deep belief networks** (2012), A. Mohamed et al. [[pdf]](http://www.cs.toronto.edu/~asamir/papers/speechDBN_jrnl.pdf)
118+
119+
120+
## Reinforcement Learning / Robotics
121+
- **End-to-end training of deep visuomotor policies** (2016), S. Levine et al. [[pdf]](http://www.jmlr.org/papers/volume17/15-522/source/15-522.pdf)
122+
- **Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection** (2016), S. Levine et al. [[pdf]](https://arxiv.org/pdf/1603.02199)
123+
- **Asynchronous methods for deep reinforcement learning** (2016), V. Mnih et al. [[pdf]](http://www.jmlr.org/proceedings/papers/v48/mniha16.pdf)
124+
- **Deep Reinforcement Learning with Double Q-Learning** (2016), H. Hasselt et al. [[pdf]](https://arxiv.org/pdf/1509.06461.pdf )
125+
- **Mastering the game of Go with deep neural networks and tree search** (2016), D. Silver et al. [[pdf]](http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html)
126+
- **Continuous control with deep reinforcement learning** (2015), T. Lillicrap et al. [[pdf]](https://arxiv.org/pdf/1509.02971)
127+
- **Human-level control through deep reinforcement learning** (2015), V. Mnih et al. [[pdf]](http://www.davidqiu.com:8888/research/nature14236.pdf)
128+
- **Deep learning for detecting robotic grasps** (2015), I. Lenz et al. [[pdf]](http://www.cs.cornell.edu/~asaxena/papers/lenz_lee_saxena_deep_learning_grasping_ijrr2014.pdf)
129+
- **Playing atari with deep reinforcement learning** (2013), V. Mnih et al. [[pdf]](http://arxiv.org/pdf/1312.5602.pdf))
130+
- **Evolving large-scale neural networks for vision-based reinforcement learning** Koutník, Jan, et al. ACM, 2013. [[pdf]](http://repository.supsi.ch/4550/1/koutnik2013gecco.pdf)
131+
- **Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours** Pinto, Lerrel, and Abhinav Gupta. (2015). [[pdf]](http://arxiv.org/pdf/1509.06825)
132+
- **Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning** Zhu, Yuke, et al. (2016). [[pdf]](https://arxiv.org/pdf/1609.05143)
133+
- **Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search** Yahya, Ali, et al. (2016). [[pdf]](https://arxiv.org/pdf/1610.00673)
134+
- **Deep Reinforcement Learning for Robotic Manipulation**. Gu, Shixiang, et al. (2016). [[pdf]](https://arxiv.org/pdf/1610.00633)
135+
- **Sim-to-Real Robot Learning from Pixels with Progressive Nets**. A Rusu, M Vecerik, Thomas Rothörl, N Heess, R Pascanu, R Hadsell (2016). [[pdf]](https://arxiv.org/pdf/1610.04286.pdf)
136+
- **Learning to navigate in complex environments**. Mirowski, Piotr, et al. (2016). [[pdf]](https://arxiv.org/pdf/1611.03673)

0 commit comments

Comments
 (0)