|
| 1 | +/* |
| 2 | + * Licensed to the Apache Software Foundation (ASF) under one or more |
| 3 | + * contributor license agreements. See the NOTICE file distributed with |
| 4 | + * this work for additional information regarding copyright ownership. |
| 5 | + * The ASF licenses this file to You under the Apache License, Version 2.0 |
| 6 | + * (the "License"); you may not use this file except in compliance with |
| 7 | + * the License. You may obtain a copy of the License at |
| 8 | + * |
| 9 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | + * |
| 11 | + * Unless required by applicable law or agreed to in writing, software |
| 12 | + * distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | + * See the License for the specific language governing permissions and |
| 15 | + * limitations under the License. |
| 16 | + */ |
| 17 | + |
| 18 | +package org.apache.spark.scheduler |
| 19 | + |
| 20 | +import scala.concurrent.duration._ |
| 21 | + |
| 22 | +import org.scalatest.concurrent.Eventually.{eventually, interval, timeout} |
| 23 | + |
| 24 | +import org.apache.spark.{LocalSparkContext, SparkContext, SparkFunSuite, TestUtils} |
| 25 | +import org.apache.spark.LocalSparkContext.withSpark |
| 26 | +import org.apache.spark.internal.config.{DYN_ALLOCATION_ENABLED, DYN_ALLOCATION_EXECUTOR_IDLE_TIMEOUT, DYN_ALLOCATION_INITIAL_EXECUTORS, DYN_ALLOCATION_SHUFFLE_TRACKING_ENABLED} |
| 27 | +import org.apache.spark.internal.config.Worker.WORKER_DECOMMISSION_ENABLED |
| 28 | +import org.apache.spark.launcher.SparkLauncher.{EXECUTOR_MEMORY, SPARK_MASTER} |
| 29 | +import org.apache.spark.scheduler.cluster.StandaloneSchedulerBackend |
| 30 | + |
| 31 | +/** This test suite aims to test worker decommission with various configurations. */ |
| 32 | +class WorkerDecommissionExtendedSuite extends SparkFunSuite with LocalSparkContext { |
| 33 | + private val conf = new org.apache.spark.SparkConf() |
| 34 | + .setAppName(getClass.getName) |
| 35 | + .set(SPARK_MASTER, "local-cluster[20,1,512]") |
| 36 | + .set(EXECUTOR_MEMORY, "512m") |
| 37 | + .set(DYN_ALLOCATION_ENABLED, true) |
| 38 | + .set(DYN_ALLOCATION_SHUFFLE_TRACKING_ENABLED, true) |
| 39 | + .set(DYN_ALLOCATION_INITIAL_EXECUTORS, 20) |
| 40 | + .set(WORKER_DECOMMISSION_ENABLED, true) |
| 41 | + |
| 42 | + test("Worker decommission and executor idle timeout") { |
| 43 | + sc = new SparkContext(conf.set(DYN_ALLOCATION_EXECUTOR_IDLE_TIMEOUT.key, "10s")) |
| 44 | + withSpark(sc) { sc => |
| 45 | + TestUtils.waitUntilExecutorsUp(sc, 20, 60000) |
| 46 | + val rdd1 = sc.parallelize(1 to 10, 2) |
| 47 | + val rdd2 = rdd1.map(x => (1, x)) |
| 48 | + val rdd3 = rdd2.reduceByKey(_ + _) |
| 49 | + val rdd4 = rdd3.sortByKey() |
| 50 | + assert(rdd4.count() === 1) |
| 51 | + eventually(timeout(20.seconds), interval(1.seconds)) { |
| 52 | + assert(sc.getExecutorIds().length < 5) |
| 53 | + } |
| 54 | + } |
| 55 | + } |
| 56 | + |
| 57 | + test("Decommission 19 executors from 20 executors in total") { |
| 58 | + sc = new SparkContext(conf) |
| 59 | + withSpark(sc) { sc => |
| 60 | + TestUtils.waitUntilExecutorsUp(sc, 20, 60000) |
| 61 | + val rdd1 = sc.parallelize(1 to 100000, 200) |
| 62 | + val rdd2 = rdd1.map(x => (x % 100, x)) |
| 63 | + val rdd3 = rdd2.reduceByKey(_ + _) |
| 64 | + assert(rdd3.count() === 100) |
| 65 | + |
| 66 | + val sched = sc.schedulerBackend.asInstanceOf[StandaloneSchedulerBackend] |
| 67 | + sc.getExecutorIds().tail.foreach { id => |
| 68 | + sched.decommissionExecutor(id) |
| 69 | + assert(rdd3.sortByKey().collect().length === 100) |
| 70 | + } |
| 71 | + } |
| 72 | + } |
| 73 | +} |
0 commit comments