@@ -1001,7 +1001,7 @@ $H_a$ | $H_0$ | Type II error |
10011001
10021002* ** $\alpha$** = Type I error rate
10031003 * probability of *** rejecting*** the null hypothesis when the hypothesis is *** correct***
1004- * $\alpha$ = 0.5 $\rightarrow$ standard for hypothesis testing
1004+ * $\alpha$ = 0.05 $\rightarrow$ standard for hypothesis testing
10051005 * *** Note** : as Type I error rate increases, Type II error rate decreases and vice versa *
10061006
10071007* for large samples (large n), use the ** Z Test** for $H_0:\mu = \mu_0$
@@ -1014,7 +1014,7 @@ $H_a$ | $H_0$ | Type II error |
10141014 * $H_1: TS \leq Z_ {\alpha}$ OR $-Z_ {1 - \alpha}$
10151015 * $H_2: |TS| \geq Z_ {1 - \alpha / 2}$
10161016 * $H_3: TS \geq Z_ {1 - \alpha}$
1017- * *** Note** : In case of $\alpha$ = 0.5 (most common), $Z_ {1-\alpha}$ = 1.645 (95 percentile) *
1017+ * *** Note** : In case of $\alpha$ = 0.05 (most common), $Z_ {1-\alpha}$ = 1.645 (95 percentile) *
10181018 * $\alpha$ = low, so that when $H_0$ is rejected, original model $\rightarrow$ wrong or made an error (low probability)
10191019
10201020* For small samples (small n), use the ** T Test** for $H_0:\mu = \mu_0$
@@ -1027,7 +1027,7 @@ $H_a$ | $H_0$ | Type II error |
10271027 * $H_1: TS \leq T_ {\alpha}$ OR $-T_ {1 - \alpha}$
10281028 * $H_2: |TS| \geq T_ {1 - \alpha / 2}$
10291029 * $H_3: TS \geq T_ {1 - \alpha}$
1030- * *** Note** : In case of $\alpha$ = 0.5 (most common), $T_ {1-\alpha}$ = ` qt(.95, df = n-1) ` *
1030+ * *** Note** : In case of $\alpha$ = 0.05 (most common), $T_ {1-\alpha}$ = ` qt(.95, df = n-1) ` *
10311031 * R commands for T test:
10321032 * ` t.test(vector1 - vector2) `
10331033 * ` t.test(vector1, vector2, paired = TRUE) `
@@ -1042,7 +1042,7 @@ $H_a$ | $H_0$ | Type II error |
10421042
10431043* ** two-sided tests** $\rightarrow$ $H_a: \mu \neq \mu_0$
10441044 * reject $H_0$ only if test statistic is too larger/small
1045- * for $\alpha$ = 0.5 , split equally to 2.5% for upper and 2.5% for lower tails
1045+ * for $\alpha$ = 0.05 , split equally to 2.5% for upper and 2.5% for lower tails
10461046 * equivalent to $|TS| \geq T_ {1 - \alpha / 2}$
10471047 * example: for T test, ` qt(.975, df) ` and ` qt(.025, df) `
10481048 * *** Note** : failing to reject one-sided test = fail to reject two-sided*
0 commit comments