|
| 1 | + |
| 2 | +#include <iostream> |
| 3 | +#include <opencv2/core.hpp> |
| 4 | +#include <opencv2/highgui.hpp> |
| 5 | +#include <opencv2/imgproc.hpp> |
| 6 | + |
| 7 | + |
| 8 | +/////////////////////////////////////////////////////////////////// |
| 9 | +// GUIDEDFILTER_COLOR O(1) time implementation of guided filter using a color image as the guidance. |
| 10 | +// |
| 11 | +// -guidance image : I(should be a color(RGB) image) |
| 12 | +// -filtering input image : p(should be a gray - scale / single channel image) |
| 13 | +// -local window radius : r |
| 14 | +// -regularization parameter : eps |
| 15 | +/////////////////////////////////////////////////////////////////// |
| 16 | +cv::Mat GuidedFilter_Color(cv::Mat& I, cv::Mat& p, int r, double eps ){ |
| 17 | + int wsize = 2 * r + 1; |
| 18 | + //鑒앴잚謹瘻뻣 |
| 19 | + I.convertTo(I, CV_64F, 1.0 / 255.0); |
| 20 | + p.convertTo(p, CV_64F, 1.0 / 255.0); |
| 21 | + |
| 22 | + //多돔暠繫돛롸잼 |
| 23 | + if (I.channels() == 1){ |
| 24 | + std::cout<<"I should be a color(RGB) image "<<std::endl; |
| 25 | + } |
| 26 | + std::vector<cv::Mat> rgb; |
| 27 | + cv::split(I, rgb); |
| 28 | + |
| 29 | + //meanI=fmean(I) |
| 30 | + cv::Mat mean_I_r, mean_I_g, mean_I_b; |
| 31 | + cv::boxFilter(rgb[0], mean_I_b, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 32 | + cv::boxFilter(rgb[1], mean_I_g, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 33 | + cv::boxFilter(rgb[2], mean_I_r, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 34 | + |
| 35 | + //meanP=fmean(P) |
| 36 | + cv::Mat mean_p; |
| 37 | + cv::boxFilter(p, mean_p, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 38 | + |
| 39 | + //corrI=fmean(I.*I) |
| 40 | + cv::Mat mean_II_rr, mean_II_rg, mean_II_rb, mean_II_gb, mean_II_gg, mean_II_bb; |
| 41 | + cv::boxFilter(rgb[2].mul(rgb[2]), mean_II_rr, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 42 | + cv::boxFilter(rgb[2].mul(rgb[1]), mean_II_rg, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 43 | + cv::boxFilter(rgb[2].mul(rgb[0]), mean_II_rb, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 44 | + cv::boxFilter(rgb[1].mul(rgb[0]), mean_II_gb, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 45 | + cv::boxFilter(rgb[1].mul(rgb[1]), mean_II_gg, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 46 | + cv::boxFilter(rgb[0].mul(rgb[0]), mean_II_bb, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 47 | + |
| 48 | + //corrIp=fmean(I.*p) |
| 49 | + cv::Mat mean_Ip_r, mean_Ip_g, mean_Ip_b; |
| 50 | + mean_Ip_b = rgb[0].mul(p); |
| 51 | + mean_Ip_g = rgb[1].mul(p); |
| 52 | + mean_Ip_r = rgb[2].mul(p); |
| 53 | + cv::boxFilter(mean_Ip_b, mean_Ip_b, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 54 | + cv::boxFilter(mean_Ip_g, mean_Ip_g, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 55 | + cv::boxFilter(mean_Ip_r, mean_Ip_r, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 56 | + |
| 57 | + //covIp=corrIp-meanI.*meanp |
| 58 | + cv::Mat cov_Ip_r, cov_Ip_g, cov_Ip_b; |
| 59 | + cv::subtract(mean_Ip_r, mean_I_r.mul(mean_p), cov_Ip_r); |
| 60 | + cv::subtract(mean_Ip_g, mean_I_g.mul(mean_p), cov_Ip_g); |
| 61 | + cv::subtract(mean_Ip_b, mean_I_b.mul(mean_p), cov_Ip_b); |
| 62 | + |
| 63 | + //varI=corrI-meanI.*meanI |
| 64 | + //variance of I in each local patch : the matrix Sigma in Eqn(14). |
| 65 | + //Note the variance in each local patch is a 3x3 symmetric matrix : |
| 66 | + // rr, rg, rb |
| 67 | + // Sigma = rg, gg, gb |
| 68 | + // rb, gb, bb |
| 69 | + cv::Mat var_I_rr, var_I_rg, var_I_rb, var_I_gb, var_I_gg, var_I_bb; |
| 70 | + cv::subtract(mean_II_rr, mean_I_r.mul(mean_I_r), var_I_rr); |
| 71 | + cv::subtract(mean_II_rg, mean_I_r.mul(mean_I_g), var_I_rg); |
| 72 | + cv::subtract(mean_II_rb, mean_I_r.mul(mean_I_b), var_I_rb); |
| 73 | + cv::subtract(mean_II_gb, mean_I_g.mul(mean_I_b), var_I_gb); |
| 74 | + cv::subtract(mean_II_gg, mean_I_g.mul(mean_I_g), var_I_gg); |
| 75 | + cv::subtract(mean_II_bb, mean_I_b.mul(mean_I_b), var_I_bb); |
| 76 | + |
| 77 | + //a=conIp./(varI+eps) |
| 78 | + int cols = p.cols; |
| 79 | + int rows = p.rows; |
| 80 | + cv::Mat Mat_a = cv::Mat::zeros(rows, cols,CV_64FC3); |
| 81 | + std::vector<cv::Mat> a; |
| 82 | + cv::split(Mat_a, a); |
| 83 | + double rr, rg, rb, gg, gb, bb; |
| 84 | + for (int i = 0; i < rows; ++i){ |
| 85 | + for (int j = 0; j < cols; ++j){ |
| 86 | + rr = var_I_rr.at<double>(i, j); rg = var_I_rg.at<double>(i, j); rb = var_I_rb.at<double>(i, j); |
| 87 | + gg = var_I_gg.at<double>(i, j); gb = var_I_gb.at<double>(i, j); |
| 88 | + bb = var_I_bb.at<double>(i, j); |
| 89 | + cv::Mat sigma = (cv::Mat_<double>(3, 3) << rr, rg, rb, |
| 90 | + rg, gg, gb, |
| 91 | + rb, gb, bb); |
| 92 | + cv::Mat cov_Ip = (cv::Mat_<double>(1, 3) << cov_Ip_r.at<double>(i, j), cov_Ip_g.at<double>(i, j), cov_Ip_b.at<double>(i, j)); |
| 93 | + cv::Mat eye = cv::Mat::eye(3, 3, CV_64FC1); |
| 94 | + sigma = sigma + eps*eye; |
| 95 | + cv::Mat sigma_inv = sigma.inv();//헹쾀앤黎 |
| 96 | + cv::Mat tmp = cov_Ip*sigma_inv; |
| 97 | + a[2].at<double>(i, j) = tmp.at<double>(0, 0);//r |
| 98 | + a[1].at<double>(i, j) = tmp.at<double>(0, 1);//g |
| 99 | + a[0].at<double>(i, j) = tmp.at<double>(0, 2);//b |
| 100 | + } |
| 101 | + } |
| 102 | + |
| 103 | + //b=meanp-a.*meanI |
| 104 | + cv::Mat b = mean_p - a[0].mul(mean_I_b) - a[1].mul(mean_I_g) - a[2].mul(mean_I_r); |
| 105 | + |
| 106 | + //meana=fmean(a) |
| 107 | + //meanb=fmean(b) |
| 108 | + cv::Mat mean_a_r, mean_a_g, mean_a_b, mean_b; |
| 109 | + cv::boxFilter(a[0], mean_a_b, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 110 | + cv::boxFilter(a[1], mean_a_g, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 111 | + cv::boxFilter(a[2], mean_a_r, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 112 | + cv::boxFilter(b, mean_b, -1, cv::Size(wsize, wsize), cv::Point(-1, -1), true, cv::BORDER_REFLECT);//분綾쫀꺼 |
| 113 | + |
| 114 | + //q=meana.*I+meanb |
| 115 | + cv::Mat q = mean_a_r.mul(rgb[2]) + mean_a_g.mul(rgb[1]) + mean_a_b.mul(rgb[0]) + mean_b; |
| 116 | + |
| 117 | + //鑒앴잚謹瘻뻣 |
| 118 | + I.convertTo(I, CV_8UC3, 255); |
| 119 | + p.convertTo(p, CV_8U, 255); |
| 120 | + q.convertTo(q, CV_8U, 255); |
| 121 | + |
| 122 | + return q; |
| 123 | +} |
| 124 | + |
| 125 | +int main(){ |
| 126 | + cv::Mat I = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\woman.jpg"); |
| 127 | + cv::Mat P = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\woman.jpg"); |
| 128 | + if (I.empty() || P.empty()){ |
| 129 | + return -1; |
| 130 | + } |
| 131 | + if (P.channels() > 1) |
| 132 | + cv::cvtColor(P, P, CV_RGB2GRAY); |
| 133 | + |
| 134 | + //菱긍GuidedFilter꿎桿 |
| 135 | + double t2 = (double)cv::getTickCount(); //꿎珂쇌 |
| 136 | + cv::Mat q; |
| 137 | + q = GuidedFilter_Color(I, P, 9, 0.1*0.1); |
| 138 | + t2 = (double)cv::getTickCount() - t2; |
| 139 | + double time2 = (t2 *1000.) / ((double)cv::getTickFrequency()); |
| 140 | + std::cout << "MyGuidedFilter_process=" << time2 << " ms. " << std::endl << std::endl; |
| 141 | + |
| 142 | + cv::namedWindow("GuidedImg", CV_WINDOW_NORMAL); |
| 143 | + cv::imshow("GuidedImg", I); |
| 144 | + cv::namedWindow("src", CV_WINDOW_NORMAL); |
| 145 | + cv::imshow("src", P); |
| 146 | + cv::namedWindow("GuidedFilter", CV_WINDOW_NORMAL); |
| 147 | + cv::imshow("GuidedFilter", q); |
| 148 | + cv::waitKey(0); |
| 149 | + |
| 150 | +} |
0 commit comments