diff --git a/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb b/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb index 3ee81d43..851a101b 100644 --- a/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb +++ b/Chapter2_MorePyMC/Ch2_MorePyMC_TFP.ipynb @@ -1,4317 +1,4302 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "phBEJ8iLIAwF" - }, - "source": [ - "# Probabilistic Programming and Bayesian Methods for Hackers Chapter 2\n", - "\n", - "\n", - " \n", - " \n", - "
\n", - " Run in Google Colab\n", - " \n", - " View source on GitHub\n", - "
\n", - "
\n", - "
\n", - "
\n", - "\n", - "Original content ([this Jupyter notebook](https://nbviewer.jupyter.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC2.ipynb)) created by Cam Davidson-Pilon ([`@Cmrn_DP`](https://twitter.com/Cmrn_DP))\n", - "\n", - "Ported to [Tensorflow Probability](https://www.tensorflow.org/probability/) by Matthew McAteer ([`@MatthewMcAteer0`](https://twitter.com/MatthewMcAteer0)), with help from Bryan Seybold, Mike Shwe ([`@mikeshwe`](https://twitter.com/mikeshwe)), Josh Dillon, and the rest of the TFP team at Google ([`tfprobability@tensorflow.org`](mailto:tfprobability@tensorflow.org)).\n", - "\n", - "Welcome to Bayesian Methods for Hackers. The full Github repository is available at [github/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers). The other chapters can be found on the project's [homepage](https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/). We hope you enjoy the book, and we encourage any contributions!\n", - "___\n", - "### Table of Contents\n", - "\n", - "- Dependencies & Prerequisites\n", - "- A little more on TFP\n", - " - TFP Variables\n", - " - Initializing Stochastic Variables\n", - " - Deterministic variables\n", - " - Combining with Tensorflow Core\n", - " - Including observations in the Model\n", - "- Modeling approaches\n", - " - Same story; different ending\n", - " - Example: Bayesian A/B testing\n", - " - A Simple Case\n", - " - Execute the TF graph to sample from the posterior\n", - " - A and B together\n", - " - Execute the TF graph to sample from the posterior\n", - "- An algorithm for human deceit\n", - " - The Binomial Distribution\n", - " - Example: Cheating among students\n", - " - Execute the TF graph to sample from the posterior\n", - " - Alternative TFP Model\n", - " - Execute the TF graph to sample from the posterior\n", - " - More TFP Tricks\n", - " - Example: Challenger Space Shuttle Disaster\n", - " - Normal Distributions\n", - " - Execute the TF graph to sample from the posterior\n", - " - What about the day of the Challenger disaster?\n", - " - Is our model appropriate?\n", - " - Execute the TF graph to sample from the posterior\n", - " - Exercises\n", - " - References\n", - "___\n", - "\n", - "This chapter introduces more TFP syntax and variables and ways to think about how to model a system from a Bayesian perspective. It also contains tips and data visualization techniques for assessing goodness-of-fit for your Bayesian model." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "AIIO6GhdH89m" - }, - "source": [ - "### Dependencies & Prerequisites\n", - "\n", - "
\n", - " Tensorflow Probability is part of the colab default runtime, so you don't need to install Tensorflow or Tensorflow Probability if you're running this in the colab. \n", - "
\n", - " If you're running this notebook in Jupyter on your own machine (and you have already installed Tensorflow), you can use the following\n", - "
\n", - " \n", - "Again, if you are running this in a Colab, Tensorflow and TFP are already installed\n", - "
" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "jFKYjxy1IAwG" - }, - "outputs": [], - "source": [ - "#@title Imports and Global Variables (run this cell first) { display-mode: \"form\" }\n", - "\"\"\"\n", - "The book uses a custom matplotlibrc file, which provides the unique styles for\n", - "matplotlib plots. If executing this book, and you wish to use the book's\n", - "styling, provided are two options:\n", - " 1. Overwrite your own matplotlibrc file with the rc-file provided in the\n", - " book's styles/ dir. See http://matplotlib.org/users/customizing.html\n", - " 2. Also in the styles is bmh_matplotlibrc.json file. This can be used to\n", - " update the styles in only this notebook. Try running the following code:\n", - "\n", - " import json\n", - " s = json.load(open(\"../styles/bmh_matplotlibrc.json\"))\n", - " matplotlib.rcParams.update(s)\n", - "\"\"\"\n", - "!pip3 install -q wget\n", - "from __future__ import absolute_import, division, print_function\n", - "#@markdown This sets the warning status (default is `ignore`, since this notebook runs correctly)\n", - "warning_status = \"ignore\" #@param [\"ignore\", \"always\", \"module\", \"once\", \"default\", \"error\"]\n", - "import warnings\n", - "warnings.filterwarnings(warning_status)\n", - "with warnings.catch_warnings():\n", - " warnings.filterwarnings(warning_status, category=DeprecationWarning)\n", - " warnings.filterwarnings(warning_status, category=UserWarning)\n", - "\n", - "import numpy as np\n", - "import os\n", - "#@markdown This sets the styles of the plotting (default is styled like plots from [FiveThirtyeight.com](https://fivethirtyeight.com/))\n", - "matplotlib_style = 'fivethirtyeight' #@param ['fivethirtyeight', 'bmh', 'ggplot', 'seaborn', 'default', 'Solarize_Light2', 'classic', 'dark_background', 'seaborn-colorblind', 'seaborn-notebook']\n", - "import matplotlib.pyplot as plt; plt.style.use(matplotlib_style)\n", - "import matplotlib.axes as axes;\n", - "from matplotlib.patches import Ellipse\n", - "%matplotlib inline\n", - "import seaborn as sns; sns.set_context('notebook')\n", - "from IPython.core.pylabtools import figsize\n", - "#@markdown This sets the resolution of the plot outputs (`retina` is the highest resolution)\n", - "notebook_screen_res = 'retina' #@param ['retina', 'png', 'jpeg', 'svg', 'pdf']\n", - "%config InlineBackend.figure_format = notebook_screen_res\n", - "\n", - "import tensorflow as tf\n", - "tfe = tf.contrib.eager\n", - "\n", - "# Eager Execution\n", - "#@markdown Check the box below if you want to use [Eager Execution](https://www.tensorflow.org/guide/eager)\n", - "#@markdown Eager execution provides An intuitive interface, Easier debugging, and a control flow comparable to Numpy. You can read more about it on the [Google AI Blog](https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html)\n", - "use_tf_eager = False #@param {type:\"boolean\"}\n", - "\n", - "# Use try/except so we can easily re-execute the whole notebook.\n", - "if use_tf_eager:\n", - " try:\n", - " tf.enable_eager_execution()\n", - " except:\n", - " pass\n", - "\n", - "import tensorflow_probability as tfp\n", - "tfd = tfp.distributions\n", - "tfb = tfp.bijectors\n", - "\n", - " \n", - "def evaluate(tensors):\n", - " \"\"\"Evaluates Tensor or EagerTensor to Numpy `ndarray`s.\n", - " Args:\n", - " tensors: Object of `Tensor` or EagerTensor`s; can be `list`, `tuple`,\n", - " `namedtuple` or combinations thereof.\n", - "\n", - " Returns:\n", - " ndarrays: Object with same structure as `tensors` except with `Tensor` or\n", - " `EagerTensor`s replaced by Numpy `ndarray`s.\n", - " \"\"\"\n", - " if tf.executing_eagerly():\n", - " return tf.contrib.framework.nest.pack_sequence_as(\n", - " tensors,\n", - " [t.numpy() if tf.contrib.framework.is_tensor(t) else t\n", - " for t in tf.contrib.framework.nest.flatten(tensors)])\n", - " return sess.run(tensors)\n", - "\n", - "class _TFColor(object):\n", - " \"\"\"Enum of colors used in TF docs.\"\"\"\n", - " red = '#F15854'\n", - " blue = '#5DA5DA'\n", - " orange = '#FAA43A'\n", - " green = '#60BD68'\n", - " pink = '#F17CB0'\n", - " brown = '#B2912F'\n", - " purple = '#B276B2'\n", - " yellow = '#DECF3F'\n", - " gray = '#4D4D4D'\n", - " def __getitem__(self, i):\n", - " return [\n", - " self.red,\n", - " self.orange,\n", - " self.green,\n", - " self.blue,\n", - " self.pink,\n", - " self.brown,\n", - " self.purple,\n", - " self.yellow,\n", - " self.gray,\n", - " ][i % 9]\n", - "TFColor = _TFColor()\n", - "\n", - "def session_options(enable_gpu_ram_resizing=True, enable_xla=True):\n", - " \"\"\"\n", - " Allowing the notebook to make use of GPUs if they're available.\n", - " \n", - " XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear \n", - " algebra that optimizes TensorFlow computations.\n", - " \"\"\"\n", - " config = tf.ConfigProto()\n", - " config.log_device_placement = True\n", - " if enable_gpu_ram_resizing:\n", - " # `allow_growth=True` makes it possible to connect multiple colabs to your\n", - " # GPU. Otherwise the colab malloc's all GPU ram.\n", - " config.gpu_options.allow_growth = True\n", - " if enable_xla:\n", - " # Enable on XLA. https://www.tensorflow.org/performance/xla/.\n", - " config.graph_options.optimizer_options.global_jit_level = (\n", - " tf.OptimizerOptions.ON_1)\n", - " return config\n", - "\n", - "\n", - "def reset_sess(config=None):\n", - " \"\"\"\n", - " Convenience function to create the TF graph & session or reset them.\n", - " \"\"\"\n", - " if config is None:\n", - " config = session_options()\n", - " global sess\n", - " tf.reset_default_graph()\n", - " try:\n", - " sess.close()\n", - " except:\n", - " pass\n", - " sess = tf.InteractiveSession(config=config)\n", - "\n", - "reset_sess()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "24368dz9IAwM" - }, - "source": [ - "## A little more on TensorFlow and TensorFlow Probability\n", - "\n", - "To explain TensorFlow Probability, it's worth going into the various methods of working with Tensorflow tensors. Here, we introduce the notion of Tensorflow graphs and how we can use certain coding patterns to make our tensor-processing workflows much faster and more elegant. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "tOj8bjBmNuxm" - }, - "source": [ - "### TensorFlow Graph and Eager Modes\n", - "\n", - "TFP accomplishes most of its heavy lifting via the main `tensorflow` library. The `tensorflow` library also contains many of the familiar computational elements of NumPy and uses similar notation. While NumPy directly executes computations (e.g. when you run `a + b`), `tensorflow` in graph mode instead builds up a \"compute graph\" that tracks that you want to perform the `+` operation on the elements `a` and `b`. Only when you evaluate a `tensorflow` expression does the computation take place--`tensorflow` is lazy evaluated. The benefit of using Tensorflow over NumPy is that the graph enables mathematical optimizations (e.g. simplifications), gradient calculations via automatic differentiation, compiling the entire graph to C to run at machine speed, and also compiling it to run on a GPU or TPU. \n", - "\n", - "Fundamentally, TensorFlow uses [graphs](https://www.tensorflow.org/guide/graphs) for computation, wherein the graphs represent computation as dependencies among individual operations. In the programming paradigm for Tensorflow graphs, we first define the dataflow graph, and then create a TensorFlow session to run parts of the graph. A Tensorflow [`tf.Session()`](https://www.tensorflow.org/api_docs/python/tf/Session) object runs the graph to get the variables we want to model. In the example below, we are using a global session object `sess`, which we created above in the \"Imports and Global Variables\" section. \n", - "\n", - "To avoid the sometimes confusing aspects of lazy evaluation, Tensorflow's eager mode does immediate evaluation of results to give an even more similar feel to working with NumPy. With Tensorflow [eager](https://www.tensorflow.org/guide/eager) mode, you can evaluate operations immediately, without explicitly building graphs: operations return concrete values instead of constructing a computational graph to run later. If we're in eager mode, we are presented with tensors that can be converted to numpy array equivalents immediately. Eager mode makes it easy to get started with TensorFlow and debug models.\n", - "\n", - "\n", - "TFP is essentially:\n", - "\n", - "* a collection of tensorflow symbolic expressions for various probability distributions that are combined into one big compute graph, and\n", - "* a collection of inference algorithms that use that graph to compute probabilities and gradients.\n", - "\n", - "For practical purposes, what this means is that in order to build certain models we sometimes have to use core Tensorflow. This simple example for Poisson sampling is how we might work with both graph and eager modes:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "CmiGas0kXiEw", - "outputId": "6ecefef8-ec11-4048-e840-15c875565a8f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Value of sample from data generator: 1.0\n" - ] - } - ], - "source": [ - "parameter = tfd.Exponential(rate=1., name=\"poisson_param\").sample()\n", - "data_generator = tfd.Poisson(parameter, name=\"data_generator\")\n", - "data_generator_samples = data_generator.sample()\n", - "\n", - "if tf.executing_eagerly():\n", - " data_gen_samps_ = tf.contrib.framework.nest.pack_sequence_as(\n", - " data_generator_samples,\n", - " [t.numpy() if tf.contrib.framework.is_tensor(t) else t\n", - " for t in tf.contrib.framework.nest.flatten(data_generator_samples)])\n", - "else:\n", - " data_gen_samps_ = sess.run(data_generator_samples)\n", - " \n", - "print(\"Value of sample from data generator:\", data_gen_samps_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "9kArT4GTIAwT" - }, - "source": [ - "In graph mode, Tensorflow will automatically assign any variables to a graph; they can then be evaluated in a session or made available in eager mode. If you try to define a variable when the session is already closed or in a finalized state, you will get an error. In the \"Imports and Global Variables\" section, we defined a particular type of session, called [`InteractiveSession`](https:///www.tensorflow.org/api_docs/python/tf/InteractiveSession). \n", - "This defnition of a global `InteractiveSession` allows us to access our session variables interactively via a shell or notebook." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "4IEk40NbIAwX" - }, - "source": [ - "Using the pattern of a global session, we can incrementally build a graph and run subsets of it to get the results.\n", - "\n", - "Eager execution further simplifies our code, eliminating the need to call session functions explicitly. In fact, if you try to run graph mode semantics in eager mode, you will get an error message like this:\n", - "\n", - "```\n", - "AttributeError: Tensor.graph is meaningless when eager execution is enabled.\n", - "```\n", - "\n", - "As mentioned in the previous chapter, we have a nifty tool that allows us to create code that's usable in both graph mode and eager mode. The custom `evaluate()` function allows us to evaluate tensors whether we are operating in TF graph or eager mode. The function looks like the following:\n", - "\n", - "```python\n", - "\n", - "def evaluate(tensors):\n", - " if tf.executing_eagerly():\n", - " return tf.contrib.framework.nest.pack_sequence_as(\n", - " tensors,\n", - " [t.numpy() if tf.contrib.framework.is_tensor(t) else t\n", - " for t in tf.contrib.framework.nest.flatten(tensors)])\n", - " with tf.Session() as sess:\n", - " return sess.run(tensors)\n", - "\n", - "```\n", - "\n", - "Each of the tensors corresponds to a NumPy-like output. To distinguish the tensors from their NumPy-like counterparts, we will use the convention of appending an underscore to the version of the tensor that one can use NumPy-like arrays on. In other words, the output of `evaluate()` gets named as `variable` + `_` = `variable_` . Now, we can do our Poisson sampling using both the `evaluate()` function and this new convention for naming Python variables in TFP." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "Bk-vyPB9IAwX", - "outputId": "2b934b1e-c0a5-4b92-e6d2-a959b281c354" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Sample from exponential distribution before evaluation: Tensor(\"poisson_param_1/sample/Reshape:0\", shape=(), dtype=float32)\n", - "Evaluated sample from exponential distribution: 1.2240193\n" - ] - } - ], - "source": [ - "# Defining our Assumptions\n", - "parameter = tfd.Exponential(rate=1., name=\"poisson_param\").sample()\n", - "\n", - "# Converting our TF to Numpy\n", - "[ parameter_ ] = evaluate([ parameter ])\n", - "\n", - "print(\"Sample from exponential distribution before evaluation: \", parameter)\n", - "print(\"Evaluated sample from exponential distribution: \", parameter_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "ZlGWIiPLIAwo" - }, - "source": [ - "More generally, we can use our `evaluate()` function to convert between the Tensfflow `tensor` data type and one that we can run operations on:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "1tzQmnsFIAwp", - "outputId": "c7c87627-826f-445d-e000-843894eecc16" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "'parameter_' evaluated Tensor : 0.18858196\n", - "'data_generator_' sample evaluated Tensor : 1.0\n" - ] - } - ], - "source": [ - "[ \n", - " parameter_,\n", - " data_generator_sample_,\n", - "] = evaluate([ \n", - " parameter, \n", - " data_generator.sample(),\n", - "])\n", - "\n", - "print(\"'parameter_' evaluated Tensor :\", parameter_)\n", - "print(\"'data_generator_' sample evaluated Tensor :\", data_generator_sample_)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "m0PLxpCIc--r" - }, - "source": [ - "\n", - "A general rule of thumb for programming in TensorFlow is that if you need to do any array-like calculations that would require NumPy functions, you should use their equivalents in TensorFlow. This practice is necessary because NumPy can produce only constant values but TensorFlow tensors are a dynamic part of the computation graph. If you mix and match these the wrong way, you will typically get an error about incompatible types." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "wqkS8vztNoyh" - }, - "source": [ - "### TFP Distributions\n", - "\n", - "Let's look into how [`tfp.distributions`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions) work.\n", - "\n", - "TFP uses distribution subclasses to represent *stochastic*, random variables. A variable is stochastic when the following is true: even if you knew all the values of the variable's parameters and components, it would still be random. Included in this category are instances of classes [`Poisson`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Poisson), [`Uniform`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Uniform), and [`Exponential`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Exponential).\n", - "\n", - "You can draw random samples from a stochastic variable. When you draw samples, those samples become [`tensorflow.Tensors`](https://www.tensorflow.org/api_docs/python/tf/Tensor) that behave deterministically from that point on. A quick mental check to determine if something is *deterministic* is: *If I knew all of the inputs for creating the variable `foo`, I could calculate the value of `foo`.* You can add, subtract, and otherwise manipulate the tensors in a variety of ways discussed below. These operations are almost always deterministic.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "NdKiqWtWIAwy" - }, - "source": [ - "#### Initializing a Distribution\n", - "\n", - "Initializing a stochastic, or random, variable requires a few class-specific parameters that describe the Distribution's shape, such as the location and scale. For example:\n", - "\n", - "```python\n", - "some_distribution = tfd.Uniform(0., 4.)\n", - "```\n", - "\n", - "initializes a stochastic, or random, [`Uniform`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Uniform) distribution with the lower bound at 0 and upper bound at 4. Calling `sample()` on the distribution returns a tensor that will behave deterministically from that point on:\n", - "\n", - "```python\n", - "sampled_tensor = some_distribution.sample()\n", - "```\n", - "\n", - "The next example demonstrates what we mean when we say that distributions are stochastic but tensors are deterministic:\n", - "\n", - "```\n", - "derived_tensor_1 = 1 + sampled_tensor\n", - "derived_tensor_2 = 1 + sampled_tensor # equal to 1\n", - "\n", - "derived_tensor_3 = 1 + some_distribution.sample()\n", - "derived_tensor_4 = 1 + some_distribution.sample() # different from 3\n", - "```\n", - "\n", - "The first two lines produce the same value because they refer to the same sampled tensor. The last two lines likely produce different values because they refer to independent samples drawn from the same distribution.\n", - "\n", - "To define a multiviariate distribution, just pass in arguments with the shape you want the output to be when creating the distribution. For example:\n", - "\n", - "```python\n", - "betas = tfd.Uniform([0., 0.], [1., 1.])\n", - "```\n", - "\n", - "Creates a Distribution with batch_shape (2,). Now, when you call betas.sample(),\n", - "two values will be returned instead of one. You can read more about TFP shape semantics in the [TFP docs](https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/jupyter_notebooks/Understanding_TensorFlow_Distributions_Shapes.ipynb), but most uses in this book should be self-explanatory." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "UPt9k8YrIAwz" - }, - "source": [ - "#### Deterministic variables\n", - "\n", - "We can create a deterministic distribution similarly to how we create a stochastic distribution. We simply call up the [`Deterministic`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Deterministic) class from Tensorflow Distributions and pass in the deterministic value that we desire\n", - "```python\n", - "deterministic_variable = tfd.Deterministic(name=\"deterministic_variable\", loc=some_function_of_variables)\n", - "```\n", - "\n", - "Calling `tfd.Deterministic` is useful for creating distributions that always have the same value. However, the much more common pattern for working with deterministic variables in TFP is to create a tensor or sample from a distribution:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "feDM_HX6IAw0" - }, - "outputs": [], - "source": [ - "lambda_1 = tfd.Exponential(rate=1., name=\"lambda_1\") #stochastic variable\n", - "lambda_2 = tfd.Exponential(rate=1., name=\"lambda_2\") #stochastic variable\n", - "tau = tfd.Uniform(name=\"tau\", low=0., high=10.) #stochastic variable\n", - "\n", - "# deterministic variable since we are getting results of lambda's after sampling \n", - "new_deterministic_variable = tfd.Deterministic(name=\"deterministic_variable\", \n", - " loc=(lambda_1.sample() + lambda_2.sample()))\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "cRzLJmAJIAw3" - }, - "source": [ - "The use of the deterministic variable was seen in the previous chapter's text-message example. Recall the model for $\\lambda$ looked like: \n", - "\n", - "$$\n", - "\\lambda = \n", - "\\begin{cases}\\lambda_1 & \\text{if } t \\lt \\tau \\cr\n", - "\\lambda_2 & \\text{if } t \\ge \\tau\n", - "\\end{cases}\n", - "$$\n", - "\n", - "And in TFP code:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "IXdTQeqrIAw3", - "outputId": "6ab97e74-6a36-4b27-fe7f-c1d4e6ea30be" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "5 samples from our deterministic lambda model: \n", - " [0.24760574 0.24760574 0.15390001 0.15390001 0.15390001]\n" - ] - } - ], - "source": [ - "n_data_points = 5 # in CH1 we had ~70 data points\n", - "idx = np.arange(n_data_points)\n", - "\n", - "lambda_deterministic = tfd.Deterministic(tf.gather([lambda_1.sample(), lambda_2.sample()],\n", - " indices=tf.to_int32(\n", - " tau.sample() >= idx)))\n", - "[lambda_deterministic_] = evaluate([lambda_deterministic.sample()])\n", - "\n", - "print(\"{} samples from our deterministic lambda model: \\n\".format(n_data_points), lambda_deterministic_ )" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "EFgJwLATIAw8" - }, - "source": [ - "Clearly, if $\\tau, \\lambda_1$ and $\\lambda_2$ are known, then $\\lambda$ is known completely, hence it is a deterministic variable. We use indexing here to switch from $\\lambda_1$ to $\\lambda_2$ at the appropriate time. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "IMNdtRTtIAxB" - }, - "source": [ - "### Including observations in the model\n", - "\n", - "At this point, it may not look like it, but we have fully specified our priors. For example, we can ask and answer questions like \"What does my prior distribution of $\\lambda_1$ look like?\" \n", - "\n", - "To do this, we will sample from the distribution. The method `.sample()` has a very simple role: get data points from the given distribution. We can then evaluate the resulting tensor to get a NumPy array-like object. " - ] + "name": "Ch2_MorePyMC_TFP.ipynb", + "version": "0.3.2", + "provenance": [], + "collapsed_sections": [], + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "accelerator": "GPU" }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 336 - }, - "colab_type": "code", - "id": "VNdQVTSFIAxC", - "outputId": "c73c52bd-11cf-4d81-946d-f947eb9c0d59" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmoAAAJ+CAYAAACzTF9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X+QZXdZ5/HPmIGEGMgP+bkBklDE\nJ7sQRdRFIkrAqqiLq7DIomskCatLMFAbg1gIRrAkgGW0AlEEBRLEBRRZjAgoW8qA8sMUAgFX/DoI\nMSQgm6BJIIEQYPaPe5ruNN0z3X275+mZeb2qpk7uPfee+/TcnCrod77n7NizZ08AAAAAAADY/76h\newAAAAAAAIBDlVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoA\nAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAA\nAJoINQAAAAAAAE2EGgAAAAAAgCY7uwcAAACAparqdUl+LMkNSf4syXljjJt7pwIAgK0h1AAAALDd\n3DvJLUnunuTMJJ9P8tTWiQAAYIvs2LNnT/cMAABwwKmqvf0P6VuTXJvkL5NcMsYY6zz22UkuS/LO\nMcbpG51xK600Y/fcq31+91zbZYa9qap7J3lpkkcnOSrJm8cYj2ueaWeS1yX50STXjDFO6JwHAAC2\ninvUAADAfP4gyYuX/HlJkj9PckSSc5N8qKqesM5j/v10rD/axDn3h02bu6peuI8YtqWfv1F7mbt9\ntn14UZLHJbk9s6D07t5xkjHGl5O8fHp4/6q6a+c8AACwVVz6DAAA5nPJGON9y5+sqjsneUGSZyR5\nTVX9zRjjmrUccIxxZZIrN3fMrbfJc39n8+dv1Ipzb5PZ9uZh0/bpY4zXt05yRx9Z8s8PTvLerkEA\nAGCrWFEDAABbYIzxpSQ/n9kvmg9P8uTeiQ4cVbUjyXd0z7FeB+rck7tM239pnWKZMcZnkvzr9PDB\nnbMAAMBWsaIGAAC2yBjjq1X1riSnJnnIwvNL7lfyliQ/m+QVmf2C/6Ixxgv2dj+TqjotyflJvjvJ\nPTK7H84/JHlDkpeOMb6w1s/Z1/zTqqCfT/KTSU5IcnOSv07y3FVev7e5HzId6xFJ7pXki0muS/Kn\nma1K+tT0usuTnLXkfQuXEXtUkhP39vOs5T4wVXV4kguT/Nck98/shvXvSvJLY4yPLHnd86af89Vj\njLNXOM4d9u9t7jHGrs36TqfXLxzrLUl+JLO/17Omn+f2JO9LcuG0imevls+d5B1Vldzx3kPzzLfu\nf++WHev0JMdND4UaAAAOSlbUAADA1rpx2h6xyv7XJzkyyeVJPrq3A1XVz2QWSp6Q5Ookv5fkHUke\nmOTiJO+sqqPm/Zxl7/mVJPdL8ieZ3V/l3pmFgDX/0ryqvmd6z48l+fg0wxsz+/8jz0zyvqq6//Ty\nt2f2S/4FC/f+uXYTfp4kuSLJT03zXJ7k+iSPTfLuqponBKx17juY8ztNktcmuSDJ3yT5w8xWn5yR\n5C+r6sQ1zv3iJJ+bHr8xS+6lswnzbfR7WohqL1vylFADAMBByYoaAADYWg+ctlevsO/hSd6Z5PFj\njJVuQP81VfWgzH6BniSPHWNcsWTfsUn+KrP7ozwvyc9t9HOWHPM/ZXZz+S8kefgY46ol+85bMsta\nPCezy7+dO8ZYuDn8wqXCXpzk6Zmt2LhgjPHaqnpPknOSZIxx/pLXP2KjP8/ktCR/m+SBY4zPT8fc\nmVmE+sEkv5rkMes43tfsbe7VzPmdJskjk4wkJ48xbpzed2Rm93H5lmmWFVc/LZ07yWur6rFJ7prk\nN8cYuzZpvo1+Twt+IUkl2ZNkR4QaAAAOUlbUAADAFqmq+yX54enhFSu85Lgkv77GX2Kfm9l/aPXH\nS39hniRjjH/LLIYkyZOn+LDRz1nw36bt7y+NNNPn/VbueJP3fTlp2r5n2XH2ZDb3aUletI7jbeTn\nSZI7ZRaDPr9khi8n+eXp4RlVdfQ6jzmPeb7TJDkqyXkLkWZ6362ZVsNkFms659vo95SaXX/tWZlF\nmoXv555Vdff1HgsAALY7oQYAADZZVd2tqn4gs3t03CXJ28YYb1vhpbdltvphLb532r51lf1/kdkv\ntY9Ncsocn7PgO6btu1bZ//Z1HGtM20ur6uQ77Bjjc2OM944x/t86jreRnydJ/m2MsdL73p/kS5lF\nif25amOe7zSZ/T2sdB+aT03beaPTZsy3ke8pmV3y7PAkr0py6ZLnT13+wqo6qqp+uareWlXXV9We\nqnrWBj8XAAD2O6EGAADm897pF8Nf+5PkpiRvy+yX/q/O7P4eK7lhjPHVNX7OwqqUT6y0c1ol8tnp\n4f2X7V7P5yw4ftpet8r+f17HsX42s3jwyCT/WFVXVdVvVNUZVXWndc6VbOznSVb/u/tKks9MD++z\ngeNu1DzfaZJct8pqla9M23n//968823oe6qqs5Ocntl38swxxr9mMT6tFNLunuSXMos4H1zv5wEA\nQDf3qAEAgPn8QZJ/WfbcF5Jck+TtY4x/2st7P7+XfcsdueTYq/nitL3LHJ+z/PO+uMr+29Z6oDHG\nP1XVt2QWbH48s0tyLTy+vqp+ZYxx6d6OscxGfp4kuWUv+xZ+ziM2eOyNmOc7TZLbN3ecrzPvfOv+\nnqZLm108PTx/usRaMrvU3r/LyqHm00mOH2N8qqpOzCphCQAAtiuhBgAA5nPJGON9++Fzbklytyz+\n8nwlC/s2GjKW+uJ0vMP38VlrMsb4bJJfTPKLVfXAJGckeWJml9d6SVUdNsa4ZI5512JvEWZh361r\nPNZGVgItt7+/0/XqmO/iJN+U2eUCX7/k+Q8n+f6sEGrGGLdlccUNAAAccFz6DAAADgwfn7YPWGln\nVR2d2c3bk81ZUfDpaXvvVfavOMdajDE+NsZ46RjjkUmeMj39tI0ebx1WujxXqmpnFi95du20Xbhk\n12GrHOvETZhnf3+n67Vf56uq05OclVkgeuqy3R+Ztg+a93MAAGC7EWoAAODAsGva/tAq+39g2n4q\nye5N+LwPTdtHLN9RVTuWfN5eVdWxVfWEqlrt9a+dtsevtHP6rM1yr6r61hWef1hmVxu4Lcn/nZ77\n3LT9ulBVVYdnthJoVWuce9e03V/f6XrtmrZbPt/0d/qy6eEvjTGW3wPpw9P26Kq63zyfBQAA241Q\nAwAAB4bfyiwk/FBV/cjSHVV17yQXTQ9fssoN5tfrDdP2SVV18rJ9z8jaV9TcK7P7+PxeVZ2ywv4n\nTtsPLXnuc0v++YQ1fs5afCnJJVX1tfupVNWdkvzy9PCKMcbCfWwWVnCcPl2qbeH1hyX5tSRHr3D8\n9c69v7/T9dqf8/1Ckkryt0levML+jyb58vTPK92nBgAADljuUQMAAAeAMcbHqupnkvxukjdV1buS\n/GNmKz6+N7Nw8OYkv75JH/mGJOcmOT3J+6vqLUluSvLQJKcmeUGS561h7n+oqhcmeXaSD1fVrswu\nk/UNSf59ktMyu9TVM5a857NVdXVmlxd7V1X9XZIrMosG89g1bT9WVf9nOt6jkzwwyWcziwUL3pFZ\nrDk1s5//bUluzGyF0TcleX6SX132s6449xjj5SsN0/Cdrsv+mq+qKsmzknwlyU+PMb6ywixfqqqR\n2aXPHpzkbfN8JgAAbCdW1AAAwAFijPGqJN+d5I1JvjnJ2Um+J8lVSZ6c5HFjjC+veoD1fdZXM7vk\n1QuT3JDk8Ul+NMm/ZBZXrlzHsZ6T5L8k+bMk/yHJk5L8ZJJ7JvmdJN82xnjPsrc9KcnfZ7Yi56FJ\nbp/jx1nw5SQ/kuTVmQWXs5Icm1mUevgYY+GeLJliwRlJXpNZ0PnRJD+c5ANJviur37x+XXPvz+90\nI/bTfC9LcniSS8YYH9zL6xZWOVlRAwDAQWXHnj0dK+gBAABgc1XViZmt2PqFMcaLmscBAIA1saIG\nAAAAAACgiXvUAAAAcECrqqclOWb6kySPqqqF/7976Rjjpp7JAABg31z6DAAAgANaVV2d5IRVdp80\nxrh6vw0DAADrJNQAAAAAAAA0cY8aAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQZGf3\nAFvhpptu2tM9AwAAAAAAcHA7+uijd8x7DCtqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAA\nAABAE6EGAAAAAACgiVADh4jdu3dn9+7d3WPAtuB8gEXOB5hxLsAi5wMscj7AIucDbB2hBgAAAAAA\noIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkIN\nAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAA\nAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQR\nagAAAAAAAJoINQAAAAAAAE12dg+wPx1z2XXdI3zNjecc3z0CAAAAAADQzIoaAAAAAACAJkINAAAA\nAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABN\nhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAA\nAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAA\naCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVAD\nAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAA\nAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2E\nGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAA\nAAAAmgg1AAAAAAAATXZuxkGq6rgkz03y2CT3SXJDkrcmuXCM8ek1vP/MJOcm+dYkd05yTZI/TfL8\nMcZnN2NGAAAAAACA7WbuFTVVdZcku5I8Nckbk5yd5OVJnpjk3VV17D7e/4Ikr0lypyTPzizY7Ery\n9CTvq6q7zTsjAAAAAADAdrQZK2rOT3JqkvPGGC9deLKqrkrypiQXJrlgpTdOK3GemeTqJN87xrht\n2nVZVd2Q5FlJzkny4k2YEwAAAAAAYFvZjHvUPCnJLUleuez5K5Jcm+TMqtqxynvvn1ksunJJpFnw\nrml74ibMCAAAAAAAsO3MFWqmy5KdkuQDy0PLGGNPkiuT3CPJSasc4hNJbkty8gr7Tpy2fzfPjAAA\nAAAAANvVvJc+O2HaXrvK/mum7QOSfHz5zjHGTVX1K0meX1WXJrkkyeeS/Mckz0nyoST/a84Zt6Xd\nu3d3j8Ahyr97sMj5AIucDzDjXIBFzgdY5HyARc4HDlUnn7zSepPNMe+lz+46bW9dZf8ty173dcYY\nFyX56SQ/leRjST6T5M1JPpjk0WOML845IwAAAAAAwLY074qauVXVU5O8JMnbk7wuyfVJHpbk55O8\ntap+cIxxY+OIW2Ir6xusZOG/dvDvHjgfYCnnA8w4F2CR8wEWOR9gkfMBts68oebmafuNq+w/atnr\n7qCqKrNI8xdjjMcs2fXnVXVVkj9O8uzMog0AAAAAAMBBZd5Ln30iyZ4k911l/8I9bFa7cOGjM4tF\n/3uFfW+bjv2oeQYEAAAAAADYruYKNWOMW5J8OMlDq+qIpfuq6rAkpyX55BjjmlUOsbAS54gV9h2e\nZMcq+wAAAAAAAA54866oSZJXJjkyyVOWPX9mknsmecXCE1V1SlWdtOQ175m2T6yqHcve/4RlrwEA\nAAAAADiozHuPmiR5WZKfSHJxVZ2Q5P1JHpTkgiQfSXLxktd+NMlIckqSjDHeU1VvyCzK/HVV/WGS\n65N8Z5LzknwmyUWbMCMAAAAAAMC2M/eKmjHG7UnOSHJpkscnuTzJWZmtpDl9jHHrPg7x40mentml\nzi6a3v+4JK9K8u17uWwaAAAAAADAAW0zVtRkjHFzZitoLtjH65Zf3ixjjK8k+c3pDwAAAAAAwCFj\nM+5RAwAAAAAAwAYINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESo\nAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAA\nAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAm\nO7sHOFQdc9l13SOs6MZzju8eAQAAAAAADhlW1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAA\nAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAA\nmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQA\nAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAA\nANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOh\nBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAA\nAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACa\nCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAA\nAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA\n0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EG\nAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNdnYPwPZy\nzGXXdY+wohvPOb57BAAAAAAA2HRW1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZC\nDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAA\nAAAATYQaAAAAAACAJjs34yBVdVyS5yZ5bJL7JLkhyVuTXDjG+PQa3n94kmclOTPJ/ab3vyXJc8YY\nN2zGjAAAAAAAANvN3CtqquouSXYleWqSNyY5O8nLkzwxybur6th9vH9nZlHmF5P8aZKfSvJHSf57\nkndW1Z3nnREAAAAAAGA72owVNecnOTXJeWOMly48WVVXJXlTkguTXLCX95+b5PuSnDXG+L3pud+v\nqhuSPDnJw5L81SbMCQAAAAAAsK1sxj1qnpTkliSvXPb8FUmuTXJmVe3Yy/vPS7I7yWuWPjnGeP4Y\n4wFjDJEGAAAAAAA4KM0VaqrqbklOSfKBMcZtS/eNMfYkuTLJPZKctMr77zu9/+3T61NVR+wj7AAA\nAAAAABwU5l1Rc8K0vXaV/ddM2wessv+UaftPVfU/q+rqJF9I8oWq+uOqeuCc8wEAAAAAAGxb896j\n5q7T9tZV9t+y7HXLHTdtz0py5yQXJflMZveseVqSh1fVQ8YYn55zTg5wu3fv7h7hoOHvEhY5H2CR\n8wFmnAuwyPkAi5wPsMj5wKHq5JNP3rJjzxtq5nXnaXuvJA8eY3x2evwnVfWZzMLNM5L8XMdwAAAA\nAAAAW2neUHPztP3GVfYftex1y31+2v7Jkkiz4JWZhZrTNzwdB42trJWHioX/2sHfJTgfYCnnA8w4\nF2CR8wEWOR9gkfMBts6896j5RJI9Se67yv6Fe9isth7u6ml72Ar7bpiOfbeNDgcAAAAAALCdzRVq\nxhi3JPlwkodW1RFL91XVYUlOS/LJMcY1qxzi75PclOQhK+y7X5IdSa6dZ0YAAAAAAIDtat4VNcns\nEmVHJnnKsufPTHLPJK9YeKKqTqmqkxYejzG+lOS1Sb69qv7zsvc/bdq+eRNmBAAAAAAA2HbmvUdN\nkrwsyU8kubiqTkjy/iQPSnJBko8kuXjJaz+aZCQ5Zclzz03y/UneUFUvyuxyaI9O8pNJPjQdHwAA\nAAAA4KAz94qaMcbtSc5IcmmSxye5PMlZma2kOX2Mces+3n99ku9K8uok/yPJ7yR5ZJLfmN7/hXln\nBAAAAAAA2I42Y0VNxhg3Z7aC5oJ9vG7HKs9fn9ml05ZfPg0AAAAAAOCgtRn3qAEAAAAAAGADhBoA\nAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAA\nAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLU\nAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAA\nAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAT\noQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAA\nAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAA\nmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAk53dA8BaHHPZdd0jrOjGc47vHgEAAAAAgAOYFTUA\nAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAA\nADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESo\nAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAA\nAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAm\nQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAA\nAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAA\nNBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgB\nAAAAAABoItQAAAAAAAA02dk9ABzIjrnsuu4RVnTjOcd3jwAAAAAAwBpYUQMAAAAAANBEqAEAAAAA\nAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQ\nAwAAAAAA0GTnZhykqo5L8twkj01ynyQ3JHlrkgvHGJ9e57GOSHJVkm9O8qgxxq7NmBEAAAAAAGC7\nmXtFTVXdJcmuJE9N8sYkZyd5eZInJnl3VR27zkNemFmkAQAAAAAAOKhtxoqa85OcmuS8McZLF56s\nqquSvCmz8HLBWg5UVacmeWaSDyb5tk2YDQAAAAAAYNvajHvUPCnJLUleuez5K5Jcm+TMqtqxr4NU\n1Tck+d0k/5zZihwAAAAAAICD2lyhpqruluSUJB8YY9y2dN8YY0+SK5PcI8lJazjc05I8LMm5SW7b\nx2sBAAAAAAAOePNe+uyEaXvtKvuvmbYPSPLx1Q5SVfdLclGS14wx/qKqzp5zLjik7d69e0P74FDj\nfIBFzgeYcS7AIucDLHI+wCLnA4eqk08+ecuOPe+lz+46bW9dZf8ty163mt9O8qUkz5hzHgAAAAAA\ngAPGvCtq5lZVP5bkMUmePMa4vnseOBisVHcX/muHrSy/cKBwPsAi5wPMOBdgkfMBFjkfYJHzAbbO\nvCtqbp6237jK/qOWve4Oquq4JC9O8s4xxmVzzgIAAAAAAHBAmXdFzSeS7Ely31X2L9zDZrULF/5a\nkmOSPK+qlh7j2Gl7j+n568cYt805KwAAAAAAwLYy14qaMcYtST6c5KFVdcTSfVV1WJLTknxyjHHN\nKof4viR3TvKOJJ9c8uc3pv1/OD1++DxzAgAAAAAAbEebcY+aVyZ5SZKnZHYZswVnJrlnkucuPFFV\npyS5bYzxiempJyc5coVjfl+S85M8O8lHpj8AAAAAAAAHlc0INS9L8hNJLq6qE5K8P8mDklyQWWC5\neMlrP5pkJDklScYYf7nSAavq7tM/vneMsWsTZgQAAAAAANh25rr0WZKMMW5PckaSS5M8PsnlSc5K\n8ookp48xbp33MwAAAAAAAA5Gm7GiJmOMmzNbQXPBPl63Y43Huzyz4AMAAAAAAHDQmntFDQAAAAAA\nABsj1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQ\nAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAA\nAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABN\nhBoAAAAAAIAmQg0AAAAAAEAXVidDAAAXbklEQVQToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi\n1AAAAAAAADTZ2T0AsPmOuey6FZ49crb565X27R83nnN822cDAAAAAGxHVtQAAAAAAAA0EWoAAAAA\nAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi\n1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAA\nAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABA\nE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoA\nAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAA\nAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQJOd3QMAh45jLruue4Svc+M5x3ePAAAAAAAcwqyo\nAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAA\nAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAm\nQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAA\nAAAAAE2EGgAAAAAAgCY7uwcA6HTMZdd1j7CiG885vnsEAAAAAGA/sKIGAAAAAACgiVADAAAAAADQ\nRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYA\nAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAA/7+9+w/2rKzvA/5e2Rh+CKzUn10SslrygTjQiEk0\n/kgJ0/ijiQnRmNrKCJjOKGIiEKONLYGqMZmJWmsANUoWbCSZ2IpWg9a2BgS1IhJBo34kAcNCbJTW\nDQoRsd3+cb539rq5d5F7797n7r2v1wzzzJ7nnONn1jlw73mfz/MAAAAAMIigBgAAAAAAYBBBDQAA\nAAAAwCCbV+ImVXVEkvOSnJzkkUnuSHJFknO7+8vfxfVPnl3/Y0kOTLIjyX9O8uru/sZK1AgAAAAA\nALDWLLujpqoOSnJlkjMyhSunJXlrkn+e5KNV9eD7uP55Sa5O8n2ZwpozktyY5OVJPlRVun4AAAAA\nAIB1aSU6as5KclySM7v7ormDVXVDksuTnJvknIUurKrvTfLmTB00j+/uv51N/X5VXZ6pQ+fpmbpz\nAAAAAAAA1pWV6FZ5fpK7kly8x/H3JrktySlVtWmRax+R5N1JfmteSDNnLpw5fgVqBAAAAAAAWHOW\n1VFTVYclOSbJ1d19z/y57t5VVdcmeVaSbUlu3vP67v6rTEulLeTw2XjncmoEAAAAAABYq5a79NlR\ns/G2ReZvnY2PygJBzWKq6oFJXpDk7iTvWXJ1APupm266aXQJG4K/Z9jN8wATzwLs5nmA3TwPsJvn\ngY3q6KOP3mf3Xm5Qc+hsvHuR+bv2OO8+VdUDkrwtybFJfrW7/3rp5QEAAAAAAKxdyw1qVlRVHZTk\nsiQnJ7mwu98wuCSAIfZlQs/ur3/8PYPnAeZ4FmA3zwPs5nmA3TwPsO88YJnXz+0fc8gi8w/a47xF\nVdVDk3w4U0jz6u5+yTJrAwAAAAAAWNOW21FzS5JdSY5cZH5uD5u9LlxYVQ9PcnWSbUlO7+5LllkX\nAAAAAADAmresjpruvivJjUlOqKoD589V1QFJnphkR3ffutg9quqwJB9M8v1JflZIAwAAAAAAbBTL\nXfosSS5OcnCSF+5x/JQkD0vy9rkDVXVMVW3b47z/kOSHk/yL7v7ACtQDAAAAAACwX1ju0mdJ8pYk\nz0vyuqo6Ksl1SR6T5Jwkn0nyunnnfj5JJzkmSarq+CSnJvlckgOq6hcWuP9Xu/uqFagTYL+xZfvt\no0tY0M7Tt44uAQAAAADWlWUHNd19b1U9Ncn5SZ6d5CVJvpKpk+a87r57L5efkGRTkh9K8q5Fzrkq\nyYnLrRMAAAAAAGCtWYmOmnT3nZk6aM65j/M27fHnS5JcshI1AAAAAAAA7G9WYo8aAAAAAAAAlkBQ\nAwAAAAAAMIigBgAAAAAAYBBBDQAAAAAAwCCCGgAAAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAA\nAAAAAAwiqAEAAAAAABhEUAMAAAAAADCIoAYAAAAAAGCQzaMLAGD/sWX77aNLWNDO07eOLgEAAAAA\nlkRHDQAAAAAAwCCCGgAAAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAAAAAAAAwiqAEAAAAAABhE\nUAMAAAAAADCIoAYAAAAAAGAQQQ0AAAAAAMAgghoAAAAAAIBBBDUAAAAAAACDCGoAAAAAAAAGEdQA\nAAAAAAAMIqgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAA\nAAAAg2weXQAALNeW7bffzysOnoZr7u9198/O07fu0/sDAAAAsP/TUQMAAAAAADCIoAYAAAAAAGAQ\nQQ0AAAAAAMAgghoAAAAAAIBBBDUAAAAAAACDCGoAAAAAAAAGEdQAAAAAAAAMIqgBAAAAAAAYRFAD\nAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAAAAAAgwhqAAAAAAAABhHUAAAA\nAAAADCKoAQAAAAAAGERQAwAAAAAAMMjm0QUAwHq1Zfvto0tY0M7Tt44uAQAAAIAZHTUAAAAAAACD\nCGoAAAAAAAAGEdQAAAAAAAAMIqgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIJtH\nFwAArK4t228fXcKCdp6+dXQJAAAAAKtORw0AAAAAAMAgghoAAAAAAIBBBDUAAAAAAACDCGoAAAAA\nAAAGEdQAAAAAAAAMIqgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACA\nQTaPLgAAIEm2bL99dAkL2nn61tElAAAAAOuYjhoAAAAAAIBBdNQAAOzFWuz00eUDAAAA64eOGgAA\nAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAAAAAAAAyyeXQBAADcP1u2376Cdzt4Gq5Z/j13nr51\n2fcAAACAjUZHDQAAAAAAwCCCGgAAAAAAgEEENQAAAAAAAIPYowYAgBWxsnvnrBx75wAAALCW6agB\nAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAAAAAAgwhqAAAA\nAAAABtk8ugAAANiXtmy/fXQJC9p5+tbRJQAAALAG6KgBAAAAAAAYREcNAAAMoNMHAACAREcNAAAA\nAADAMIIaAAAAAACAQQQ1AAAAAAAAgwhqAAAAAAAABtk8ugAAAGDt2LL99tElLGjn6VtHlwAAALBP\n6KgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEHvUAAAAa96+3zvn4Gm45v7979g7BwAAWC5BDQAA\nwBLt+wBpadZigLRW/67WqrX4/yEAAPvGigQ1VXVEkvOSnJzkkUnuSHJFknO7+8vfxfVPTHJukick\nOSjJF5O8LckF3b1rJWoEAADYKIQiAACw/1h2UFNVByW5MskxSS5Icl2So5O8LMlJVfW47v7aXq4/\nKckHkuxIcn6S/5Pk55K8Kcmjk5y13BoBAABgfzI2bFt8KUCdPgAAK28lOmrOSnJckjO7+6K5g1V1\nQ5LLM3XKnLOX6y9K8s0kT5nXffMfq+o9SX6lqrZ39w0rUCcAAAAAAMCa8oAVuMfzk9yV5OI9jr83\nyW1JTqmqTQtdWFWPT1JJ/niBJdIuSLIpySkrUCMAAAAAAMCas6yOmqo6LNOSZ1d39z3z57p7V1Vd\nm+RZSbYluXmBW/zYbPz4AnOfmI2PX06N82nRBgAAAOC7dfTRR48uAdYMzwPsO8vtqDlqNt62yPyt\ns/FRi8z/wGLXd/fXk+zcy7UAAAAAAAD7teUGNYfOxrsXmb9rj/OWcv1i1wIAAAAAAOzXVmKPGgAA\nAAAAAJZguUHNnbPxkEXmH7THeUu5frFrAQAAAAAA9mvLDWpuSbIryZGLzM/tYXPTIvM3z8a/d31V\nHZ7k8L1cCwAAAAAAsF/bvJyLu/uuqroxyQlVdWB3f3NurqoOSPLEJDu6+9ZFbvGx2fikJBfvMfeU\n2XjN/a3r8MMP33R/rwEAAAAAAFhtK7FHzcVJDk7ywj2On5LkYUnePnegqo6pqm1zf+7uTye5Pslz\nqurIeedtSnJ2knuTXLoCNQIAAAAAAKw5y+qomXlLkucleV1VHZXkuiSPSXJOks8ked28cz+fpJMc\nM+/Yi5P8aZKPVNUbk+xM8twkJyU5t7v/cgVqBAAAAAAAWHOW3VHT3fcmeWqS303y7CSXJDk1UyfN\nid19931c/4kkP5HkC0leleStSR6R5AXd/Zrl1gcAAAAAALBWbdq1a9foGgAAAAAAADakldijBgAA\nAAAAgCUQ1AAAAAAAAAwiqAEAAAAAABhEUAMAAAAAADCIoAYAAAAAAGAQQQ0AAAAAAMAgghoAAAAA\nAIBBNo8uYF+oqiOSnJfk5CSPTHJHkiuSnNvdXx5ZG4xQVQ9M8pokL0vyke4+cWxFsPqq6qFJfiPJ\nzyd5eJKdSa5J8uruvn5kbTBCVR2X5OVJnpzkHya5M8nHkry2uz8xsjYYqapeleTcJJd292mDy4FV\nU1WXJDl1L6ec3d1vXKVyYLiqekaSf53khCTfTvJnSV7T3R8eWhisoqra9V2ctq27v7Sva4G1oqoe\nk+SVSU5K8pBM75c+luR3uvuapd533QU1VXVQkiuTHJPkgiTXJTk60wvqk6rqcd39tXEVwuqqqkpy\nWZIfTLJpcDkwRFU9LMmnkvyDJG9OckOmZ+JXkjytqp7U3X82sERYVVX140n+e6YfKC9MsiPJsUle\nkuQZVXVid39sYIkwxOyXrleMrgMGe3GSry5w/NOrXQiMUlUvSHJxko8keWmSQ5OcneSDVfXU7r5y\nYHmwmp6zl7nfSnJ4Fv5vBqxLVfXYTB/9fitT9vDFJN+X5MwkV1XVyd39vqXce90FNUnOSnJckjO7\n+6K5g1V1Q5LLM30dd86g2mBVVdWDk1yf5KYkP5LkC2MrgmFek+TIJM/u7nfPHayqTyZ5T5JfT/KL\ng2qDEd6SKbx/0vyv36rq2kw/L70iyc+NKQ3GqKoHJHlbkj9P8tjB5cBIH/BlNBtZVT0iyZsyfdTy\ntO7+f7Pj70vy8SQ/nekDYVj3uvs/LXS8qk5O8o+SnNbdd61uVTDUv01ycJKf7+4PzR2sqncn+XyS\nVyVZUlCzHveoeX6SuzJ9+TDfe5PcluSUqtJVwEbxwCTvSPKE7u7RxcBAf53kDzO9gJ7vg0l2JTl+\n1SuCQWYvoy9N8tIFXsT9t9n4/ataFKwNZyT58Uyd+ABsXKcmOSTJ+XMhTZJ0983d/fDu/rVxpcF4\nVXVokt9NcnV3Xzq6Hlhlj56NV88/2N1fSPKVJD+w1Buvq46aqjos05JnV3f3PfPnunvX7CvRZyXZ\nluTmASXCquruv8n00gE2tO4+f5GpQzN1Fdy5etXAWLMXDm9YZPqY2XjjKpUDa0JVHZlp+Y4/6O4P\nTyvHwsZWVQcm+XZ3f3t0LbDKfirJ1zN1z6SqDkiyec/3TLCBnZtpj8t/NroQGODzSf5xpuX0b5g7\nWFWHJ9mS5Nql3ni9ddQcNRtvW2T+1tn4qFWoBYC170Wz8Z1Dq4CBqmpLVR1ZVc/N1IF8S5Lzx1YF\nq+7CJPfGEsmQJGdW1S1J/i7JPVX1P6vKyzg2kmOS/GWSH66qq5Lck+SbVfXZ2c9LsGHN9n89M8k7\nuvszo+uBAX4zydeSvKOqnlxVD6mq45Jsz7Riy7lLvfF6C2oOnY13LzJ/1x7nAbBBVdUzkvxGkk8l\nefPgcmCkryXZkeSyJP81yY929y1jS4LVU1W/kORnk/xad9sMF5KnJXltpn04/k2So5O83wtqNpAj\nMn0V/SdJPprk5CS/PDv2h1X1SwNrg9FenuTATC+rYcPp7s9mWi75gEzLn30104oUj8+0r9mVS733\negtqAOA+VdXzM3UOfCnJM7v7W2MrgqF+MsnPZAoun5Hkuqr6kbElweqoqi2Z1li/KtNXcLCRvT7J\n0zMF9m/r7iu6+7eTPCXJt5O8frbPGax3D8y0x8Cvdvcru/v93X1BpmfhniSvnS2HBhtKVT040/L6\n7+/uvxhdD4xQ0xrJV2QK78/O9Dv0qUnuSPK+qvqppd57Xe1Rk917DByyyPyD9jgPgA2mqs5N8qok\n1yX56e7+yuCSYKh5X/z8SVX9QZLrk1xWVcfM30AX1qnfyfTl9Iu6e9foYmCk2RI2f28Zm+7+XFVd\nmWnfjmOT/Pkqlwar7RtJvjfJH80/2N23VNWfZgo0j03y2QG1wUj/MsnBSS4dXQgM9PYkW5McO38l\niqp6V5K/SLK9qrZ1973398br7WuYWzKtBXfkIvNze9jctDrlALCWVNUbM4U0/yXJPxHSwHfq7i8l\n+R+Zlrl59NhqYN+qqp9I8ktJLkryjdleTUdW1dzvEgfP/vzgcVXCmvE3s/GwoVXA6vhSFn9fNvf7\ng2eBjeg5mbrKPjC6EBihqg5J8qQk1++5XHh3/12SKzOFOD+4lPuvq6Cmu+/KtCbcCVV14Py5WVvq\nE5Ps6O5bR9QHwDizTpqXZlra5lndvdh+ZrCuVdWxVbWjqn5/kVO2zMb11nkNezopyaYkZ2Xap2n+\nP8n0MmJHkn8/pDpYRVV1WFU9r6qevtgps3HHIvOwnnw80/JnP7TA3NwHwLetXjkwXlU9KNN71Y/P\nXkjDRnRQpt8fDlxk/sA9xvtlXQU1MxdnasN74R7HT0nysEztSQBsIFX1k0n+XZLLk/yr7v6/g0uC\nkW7K9IPjc6pq2/yJqnp0pi+EvprkiwNqg9V0WZJnLvJPMnWXPTOCGjaGbyW5MMklVfWQ+RNV9U+T\n/GiSa7vby2k2gktm43lVtWnuYFUdn2mfmht9AMwGdHyS74kl/9jAuvuOTL9PH19V3xHmV9URmT4E\nuzNLfE427dq1vpZirqrvSXJ1ksdl2hj0uiSPSXJOpr/IJ/iKmo1i9i+N+f/ieFeSzyU5b96xKzwT\nrHdV9akkj03ykuxermBPngU2jKp6bpJ3JvnfmV7M3ZxkW6Zn5KFJXtDdNlZnw6qqXUku7e7TRtcC\nq6WqTs30gvqWJG9J8r8y/fx0RpJvJjmxuz89rEBYRVX1piS/nOT9Sf44UyfN2Zn2Pn7avD3+YEOo\nqtMyrU7xsu5+/eByYJiqemamj4D/NskFmT5wfEimFVy2Zdr78q1Lufe6W9Kiu++tqqcmOT/Js7P7\npdzbk5znJRwbzC/mO0OZZApu3jXvz9syrcEL69kJs/HCvZzjWWDD6O4/qqq/SvKKTD8rbcn05c8n\nk7yhuz80sj4AVl93X1pVtyb59SSvTHJIprDmnUl+s7tvHlkfrLKXZvrI8UVJfi/TvhwfTXJ+d39y\nZGEwyNyefV8fWgUM1t3vq6onZ/pd+oxMz8bXMzWLvLi7P7jUe6+7jhoAAAAAAID9xXrcowYAAAAA\nAGC/IKgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAAAAAA\ngwhqAAAAAAAABhHUAAAAAAAADCKoAQAAAAAAGERQAwAAAAAAMIigBgAAAAAAYBBBDQAAAAAAwCCC\nGgAAAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAAAAAAAAzy/wH5UqVfRR0vZAAAAABJRU5ErkJg\ngg==\n", - "text/plain": [ - "" + "cells": [ + { + "metadata": { + "id": "phBEJ8iLIAwF", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "# Probabilistic Programming and Bayesian Methods for Hackers Chapter 2\n", + "\n", + "\n", + " \n", + " \n", + "
\n", + " Run in Google Colab\n", + " \n", + " View source on GitHub\n", + "
\n", + "
\n", + "
\n", + "
\n", + "\n", + "Original content ([this Jupyter notebook](https://nbviewer.jupyter.org/github/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/blob/master/Chapter2_MorePyMC/Ch2_MorePyMC_PyMC2.ipynb)) created by Cam Davidson-Pilon ([`@Cmrn_DP`](https://twitter.com/Cmrn_DP))\n", + "\n", + "Ported to [Tensorflow Probability](https://www.tensorflow.org/probability/) by Matthew McAteer ([`@MatthewMcAteer0`](https://twitter.com/MatthewMcAteer0)), with help from Bryan Seybold, Mike Shwe ([`@mikeshwe`](https://twitter.com/mikeshwe)), Josh Dillon, and the rest of the TFP team at Google ([`tfprobability@tensorflow.org`](mailto:tfprobability@tensorflow.org)).\n", + "\n", + "Welcome to Bayesian Methods for Hackers. The full Github repository is available at [github/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers](https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers). The other chapters can be found on the project's [homepage](https://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/). We hope you enjoy the book, and we encourage any contributions!\n", + "___\n", + "\n", + "### Table of Contents\n", + "\n", + "- Dependencies & Prerequisites\n", + "- A little more on TFP\n", + " - TFP Variables\n", + " - Initializing Stochastic Variables\n", + " - Deterministic variables\n", + " - Combining with Tensorflow Core\n", + " - Including observations in the Model\n", + "- Modeling approaches\n", + " - Same story; different ending\n", + " - Example: Bayesian A/B testing\n", + " - A Simple Case\n", + " - Execute the TF graph to sample from the posterior\n", + " - A and B together\n", + " - Execute the TF graph to sample from the posterior\n", + "- An algorithm for human deceit\n", + " - The Binomial Distribution\n", + " - Example: Cheating among students\n", + " - Execute the TF graph to sample from the posterior\n", + " - Alternative TFP Model\n", + " - Execute the TF graph to sample from the posterior\n", + " - More TFP Tricks\n", + " - Example: Challenger Space Shuttle Disaster\n", + " - Normal Distributions\n", + " - Execute the TF graph to sample from the posterior\n", + " - What about the day of the Challenger disaster?\n", + " - Is our model appropriate?\n", + " - Execute the TF graph to sample from the posterior\n", + " - Exercises\n", + " - References\n", + "___\n", + "\n", + "This chapter introduces more TFP syntax and variables and ways to think about how to model a system from a Bayesian perspective. It also contains tips and data visualization techniques for assessing goodness-of-fit for your Bayesian model." ] - }, - "metadata": { - "image/png": { - "height": 319, - "width": 821 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "# Define our observed samples\n", - "lambda_1 = tfd.Exponential(rate=1., name=\"lambda_1\")\n", - "samples = lambda_1.sample(sample_shape=20000)\n", - " \n", - "# Execute graph, convert TF to NumPy\n", - "[ samples_ ] = evaluate([ samples ])\n", - "\n", - "# Visualize our stepwise prior distribution\n", - "plt.figure(figsize(12.5, 5))\n", - "plt.hist(samples_, bins=70, normed=True, histtype=\"stepfilled\")\n", - "plt.title(r\"Prior distribution for $\\lambda_1$\")\n", - "plt.xlim(0, 8);" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "9nOs9Gq3IAxH" - }, - "source": [ - "To frame this in the notation of the first chapter, though this is a slight abuse of notation, we have specified $P(A)$. Our next goal is to include data/evidence/observations $X$ into our model. \n", - "\n", - "Sometimes we may want to match a property of our distribution to a property of observed data. To do so, we get the parameters for our distribution fom the data itself. In this example, the Poisson rate (average number of events) is explicitly set to one over the average of the data:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 136 - }, - "colab_type": "code", - "id": "qtHXSR6QIAxH", - "outputId": "cad9361a-f6ee-4750-8e24-b46656babcb1" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "two predetermined data points: [10. 5.]\n", - "\n", - " mean of our data: 7.5\n", - "\n", - " random sample from poisson distribution \n", - " with the mean as the poisson's rate: \n", - " 1.0\n" - ] - } - ], - "source": [ - "data = tf.constant([10., 5.], dtype=tf.float32)\n", - "poisson = tfd.Poisson(rate=1./tf.reduce_mean(data))\n", - "\n", - "\n", - "# Execute graph\n", - "[ data_, poisson_sample_, ] = evaluate([ data, poisson.sample() ])\n", - "\n", - "print(\"two predetermined data points: \", data_)\n", - "print(\"\\n mean of our data: \", np.mean(data_))\n", - "\n", - "\n", - "print(\"\\n random sample from poisson distribution \\n with the mean as the poisson's rate: \\n\", poisson_sample_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "8oxo5VcbIAxP" - }, - "source": [ - "## Modeling approaches\n", - "\n", - "A good starting thought to Bayesian modeling is to think about *how your data might have been generated*. Position yourself in an omniscient position, and try to imagine how *you* would recreate the dataset. \n", - "\n", - "In the last chapter we investigated text message data. We begin by asking how our observations may have been generated:\n", - "\n", - "1. We started by thinking \"what is the best random variable to describe this count data?\" A Poisson random variable is a good candidate because it can represent count data. So we model the number of sms's received as sampled from a Poisson distribution.\n", - "\n", - "2. Next, we think, \"Ok, assuming sms's are Poisson-distributed, what do I need for the Poisson distribution?\" Well, the Poisson distribution has a parameter $\\lambda$. \n", - "\n", - "3. Do we know $\\lambda$? No. In fact, we have a suspicion that there are *two* $\\lambda$ values, one for the earlier behaviour and one for the later behaviour. We don't know when the behaviour switches though, but call the switchpoint $\\tau$.\n", - "\n", - "4. What is a good distribution for the two $\\lambda$s? The exponential is good, as it assigns probabilities to positive real numbers. Well the exponential distribution has a parameter too, call it $\\alpha$.\n", - "\n", - "5. Do we know what the parameter $\\alpha$ might be? No. At this point, we could continue and assign a distribution to $\\alpha$, but it's better to stop once we reach a set level of ignorance: whereas we have a prior belief about $\\lambda$, (\"it probably changes over time\", \"it's likely between 10 and 30\", etc.), we don't really have any strong beliefs about $\\alpha$. So it's best to stop here. \n", - "\n", - " What is a good value for $\\alpha$ then? We think that the $\\lambda$s are between 10-30, so if we set $\\alpha$ really low (which corresponds to larger probability on high values) we are not reflecting our prior well. Similar, a too-high alpha misses our prior belief as well. A good idea for $\\alpha$ as to reflect our belief is to set the value so that the mean of $\\lambda$, given $\\alpha$, is equal to our observed mean. This was shown in the last chapter.\n", - "\n", - "6. We have no expert opinion of when $\\tau$ might have occurred. So we will suppose $\\tau$ is from a discrete uniform distribution over the entire timespan.\n", - "\n", - "\n", - "Below we give a graphical visualization of this, where arrows denote `parent-child` relationships. (provided by the [Daft Python library](http://daft-pgm.org/) )\n", - "\n", - "\n", - "\n", - "\n", - "TFP and other probabilistic programming languages have been designed to tell these data-generation *stories*. More generally, B. Cronin writes [2]:\n", - "\n", - "> Probabilistic programming will unlock narrative explanations of data, one of the holy grails of business analytics and the unsung hero of scientific persuasion. People think in terms of stories - thus the unreasonable power of the anecdote to drive decision-making, well-founded or not. But existing analytics largely fails to provide this kind of story; instead, numbers seemingly appear out of thin air, with little of the causal context that humans prefer when weighing their options." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "3RJEK_yjIAxR" - }, - "source": [ - "### Same story; different ending.\n", - "\n", - "Interestingly, we can create *new datasets* by retelling the story.\n", - "For example, if we reverse the above steps, we can simulate a possible realization of the dataset.\n", - "\n", - "1\\. Specify when the user's behaviour switches by sampling from $\\text{DiscreteUniform}(0, 80)$:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "Ma56S7r1IAxS", - "outputId": "68ec7a14-3090-472f-dfcf-0bf6445a233c" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Value of Tau (randomly taken from DiscreteUniform(0, 80)): 48\n" - ] - } - ], - "source": [ - "tau = tf.random_uniform(shape=[1], minval=0, maxval=80, dtype=tf.int32)[0]\n", - "\n", - "[ tau_ ] = evaluate([ tau ])\n", - "\n", - "print(\"Value of Tau (randomly taken from DiscreteUniform(0, 80)):\", tau_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Xt_6sYG6IAxW" - }, - "source": [ - "2\\. Draw $\\lambda_1$ and $\\lambda_2$ from a $\\text{Gamma}(\\alpha)$ distribution:\n", - "\n", - "Note: A gamma distribution is a generalization of the exponential distribution. A gamma distribution with shape parameter $α = 1$ and scale parameter $β$ is an exponential ($β$) distribution. Here, we use a gamma distribution to have more flexibility than we would have had were we to model with an exponential. Rather than returning values between $0$ and $1$, we can return values much larger than $1$ (i.e., the kinds of numbers one would expect to show up in a daily SMS count)." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "l2QX3nEbofZr", - "outputId": "1c78f1b5-4847-49b0-a9a6-2155285e5d03" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Lambda 1 (randomly taken from Gamma(α) distribution): 50.1973\n", - "Lambda 2 (randomly taken from Gamma(α) distribution): 26.417625\n" - ] - } - ], - "source": [ - "alpha = 1./8.\n", - "\n", - "lambdas = tfd.Gamma(concentration=1/alpha, rate=0.3).sample(sample_shape=[2]) \n", - "[ lambda_1_, lambda_2_ ] = evaluate( lambdas )\n", - "print(\"Lambda 1 (randomly taken from Gamma(α) distribution): \", lambda_1_)\n", - "print(\"Lambda 2 (randomly taken from Gamma(α) distribution): \", lambda_2_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "uIoKaO4bIAxb" - }, - "source": [ - "3\\. For days before $\\tau$, represent the user's received SMS count by sampling from $\\text{Poi}(\\lambda_1)$, and sample from $\\text{Poi}(\\lambda_2)$ for days after $\\tau$. For example:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 119 - }, - "colab_type": "code", - "id": "6xxOtwxvpk_P", - "outputId": "83a9c98c-df27-411a-b9b2-c59e1f33765f" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Artificial day-by-day user SMS count created by sampling: \n", - " [64. 48. 41. 37. 60. 47. 53. 53. 59. 58. 55. 56. 76. 55. 42. 44. 51. 44.\n", - " 54. 35. 43. 51. 41. 58. 49. 51. 42. 64. 49. 60. 51. 51. 50. 60. 48. 49.\n", - " 43. 56. 56. 51. 48. 55. 44. 53. 49. 54. 47. 52. 23. 27. 27. 23. 33. 25.\n", - " 22. 22. 28. 23. 22. 23. 29. 24. 21. 27. 24. 33. 21. 22. 20. 27. 32. 20.\n", - " 20. 27. 28. 29. 30. 33. 22. 20.]\n" - ] - } - ], - "source": [ - "data = tf.concat([tfd.Poisson(rate=lambda_1_).sample(sample_shape=tau_),\n", - " tfd.Poisson(rate=lambda_2_).sample(sample_shape= (80 - tau_))], axis=0)\n", - "days_range = tf.range(80)\n", - "[ data_, days_range_ ] = evaluate([ data, days_range ])\n", - "print(\"Artificial day-by-day user SMS count created by sampling: \\n\", data_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "5PWuas1oIAxg" - }, - "source": [ - "4\\. Plot the artificial dataset:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 348 - }, - "colab_type": "code", - "id": "vrGXdyZyIAxh", - "outputId": "e4987d94-1fa3-44c3-c7f5-edd18c727c01" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABocAAAKXCAYAAABAG5P7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYXVW9N/BvSITQEkIJVQnNJVUp\nF5EXKVIEwQJYEAsgRRCxXBVUovDKhXsRC4oiLxIJKh1pgsFcCKCUC0rzorAICIKIlHshCZ1A3j/O\nmclkMpNkMifMJOfzeZ48O2fvtdf6nX3ODkO+WWsPmTFjRgAAAAAAAGgPiw10AQAAAAAAALx+hEMA\nAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMA\nAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMA\nAMA8K6UcXkqZ0fx1wgIc57rmGPt3279KKeXiUsozpZTppZRLmvvHN9sf248xt2/28VB/am/2dWyz\nr/H97WtB9AcAALQ34RAAANAXB3f5/X6llKH96ayU8u+llBk9HLooyQ+S/KXb/v9IsmeSV5KcmeTG\n5v6Jzfb/1Y9y/t7s42f96GOhUEr5x8IWNJVSzm1FcAcAACTDBroAAABg4VBK2TLJW5Pcl2Raks2T\n7J7k8n50+y897ay1/qiX9m9vbo+otZ7Xpf05Sc7pRx2ptd6f5Av96WNhUEpZI8mqA13HfOjxuwIA\nAPSdmUMAAMC86pg1dGHzV5IcNL+dlVKGJNmij6ct2dz+c37HZeELWUopyydZZ6DrAACARYWZQwAA\nwFyVUpZNsk/z5dlpzBw6Icl7Simr1lof6+Gc/dNY+u3KJF9MckYaYdDxSd6cZL8ubTuWltuh1npd\nKeW6JNslOaDWOr65BFpn+yTXllKS5Ppa6/Zdjv/fWuux3erYIMlXkrwrySpJpia5ttn2z13abd/c\n/7da65hufazVpY83JRmaRkB1XZLja6339XLp5lnzGh+T5INpzOz5nyRXJxk7l/O2TfLZJO9IMjrJ\nq0keSmNG17/XWqd0adt1Cb/9Sin7pdv77Ut/zfaLJdk/jeu/cZJlkzyVxgyznyf5Wa11Rrdzlkjy\nmSQfSbJBkjck+UeSq5pj/L1L2+vS+C4kyZpd3sNatdaH5nRtAACAnpk5BAAAzIuPJlkmyS211nua\nf3k/MY2Q5IB5OP+8JEslGZ/knua5Z3Y5/oPmr7/PdmZDxzOFpjVf/6r5+qI5DVpKeX+S25J8Isnd\naTxP6E9JPpTkrlLKu+dWeCllkyR3JDksjaDk7CS/SDIlySeT3NZsM99KKW9I8p9JvpRkZJIL0ghj\n3pbkD2mEWj2dt38aAdUHkzyQxvu7OMlySY5KclMpZZkup/wgyS3N39+Tbs9Ymo/+kuRHScalseTg\n1Ul+msazoN6WRiDY9XNO8/zrk3wvybpJfpPk/CQvpREY3V1K2azLKRel8Xknjc+/47sytadrAgAA\nzJ2ZQwAAwLzoWFJuXJd945LsmuRTpZR/7z47pIt3pBEG7N21TSnlpjSDpVrrHJ/10/FMoVLKB9KY\nmfKjWut1czqnlLJikrOSLJFkt1rrb7scOyCN4OPcUsrqtdYX5tDV0WkENpcl2avW+lqzjyFphF2f\nTGM21HvnVM9cHJzG85QeT7JFt5kz307yrz28v8XSmL01JMmXaq3f63JsqSS3pzEr59NJvps0rnMp\n5djmWLd2ve7z018pZdUkhyZ5Jsn6tdZ/djln5TRCov1KKd+rtf6peeg7zfFvTLJHrfWZLuP/W5Kv\npfFZb1RrnV5r/VEp5e4keyf537l9VwAAgLkzcwgAAJijUsrb0lgO7vk0ZgB1uDyN5cPWSbLDHLpY\nPsl35xAeLSj7pRHqTOwaDCVJrfXMNAKrmsZSaHPyiySfT/LNjmCo2ceMNGbJJMk7+1nrvs3tD7sG\nQ01j01hirrslkhyZ5MuZNbRLrfX5JL/sY23z09+YNMKkv3YNhprnPJ7kPUk2SWOJuZRSVkjyqWaT\nAzqCoWb719II4u5PUpLsNI91AwAAfWTmEAAAMDeHNLcX1lo7lnVLrfXlUsov0nie0EFJJvVy/ktJ\nbl6wJfaoI7D6fU8Ha63bz0sntdYr5nD40eZ25LyXNavmjJlNmy9/18P4Lzefu/PhbvtfyMzApt+1\nzWd/DySZnmTTUsrX0wi3nu3SZ/dnMb0zjecLTa61Tu6hhhmllAlJjkjj87tqXmoHAAD6RjgEAAD0\nqrmc2MeaL8f10OSMNMKhPUspo2qtT/fQ5qmuM25eR2Oa20fn1GheNJ9ddFCSjZKslGTp/vbZxag0\nnseU9F7r33qpa4k0lnXbO8nazdoW79ZsyLwW0tf+aq1PlFI+l+TUNJbWO7qU8vs0nj10Za31nm7n\njmluly2lnNxLGW9rbteb17oBAIC+EQ4BAABz8pEkI5q/P66U0lOb6UmGJ/lEkh/2cPzZHva9HoY3\nt6/0p5NSyklpLLWWNGbKXJrk6SSvpnFtDuhP/5kZDCXJi720eamHupZIck2S/5NkRpJb0whlOpZq\n2yDJzvNaxPz2V2v9SSnl9jSu0bu7/DqplHJzksNrrXc0my/T3K6SxlJ9czJiLscBAID5JBwCAADm\n5OAuv99uLm0PTM/h0EB5rrkdNb8dlFLempnB0AG11vHdjq+d/odDXQOhJXpps1QP+w5NI8iZkmS7\nWutd3Wr7VPoQDvWnv1rrLUk+VEp5Q5Ktk+yWxoyzdyT5XSll/eazlDqCwptrrVv3oTYAAKCFhEMA\nAECPSikbpfGX+9OTrFFrfbyXdiOSPJZkk1LKlrXWW1/HMufkr0k2SbJ6P/roCMTu7h4MNa3dj747\n/G+Sl9NYvm2VJA/N4zgdtf2ie5Azn7X1u79a6ytJrk9yfSnlW0kuT7Jjkv2T/FuS+5tN39TH2gAA\ngBZabKALAAAABq2OWUMTeguGkqTWOjXJJc2XB83PQKWUeX4uTh9c29z2ONullHJzKWV6KeUTc+ij\n4x/U9fQspSQ5rEt/8/Ueaq2vJvnv5stteqhzySTb96W25rOiPtl82Vtd3ff3ub9SyoallMNKKbMF\ncLXW59NYgi+ZGdDdmMYSeauXUnqcOVRKeWcpZYtSSk//v7ogvicAANB2hEMAAMBsSikdzxBKkjPn\n4ZTxze0+pZSl53GYaV1+v+Y8ntMXv0wj6Ni8lHJI1wOllL2SvL1Zw+Vz6OOe5nbTUspqXc4f1pwZ\ns0qS15q739iPWi9sbj9XSlmpyzhDkpyYnpeV66ht11LK0C7njEpyQWbOQFqj23kd1737NZ+f/j6e\n5NQkP2guKZcu570hyZ7Nl3cmSa316cz8rpxcSlm+2zmbJ7ksyS1pPOOoe80rNcMyAACgHywrBwAA\n9OSDaTyr56kkV8xD+0lJHkkjIPlIkp/N7YRa6/+UUh5KMiaN59LcneSyWuv/m7+SZ+v/f0spn0zy\nqyT/r5SyT5KaZN00ljqbnuSgWuuUOXQzMY1g421J7iilXJnGP7LbIY1ZLNsmuTKNIOPSUsqVtdZv\nzEe5P0qyX5L1k9xdSpmQxgybbZKMTvKDJF/p4ZzDk/xLkrtKKTcmWT7JLkn+mEZw89cka5dSfp3k\nwlrrz5vHkmS7UspNzXE+Pj/9JflOkt2T7J3kkVLKdUn+J8nI5rV5YxpBz/gudX8lyVuTbJVkcinl\nt0mmpvG57JDG9f1GrfXuLufcl0ZAtGySO0spDyY5tdY6p2APAADohZlDAABATzqWlDu7+RyZOaq1\nvpbk582XfVla7pNJ/pJk5SSbJZnrWH1Ra72i2e/ZSUqSA9MIei5N8o5a66/mcv6rSfZIcm6SoUn2\nTfLONGa3vL3W+lCSI5I8kGTDNIKV+anzuTTClFPTeP7Qvknel0YwtWWSB3s455E0gptr0wjY9k3y\n5iTHJ9mt1vpwkqPSCPjeleZMoVrr9UlOaO7fNMlqSabPT3+11v9JI8D6RpJHk+yU5JDmNXs0yZeS\nbF9rfalL3dPSWCbvC0kmN9semGSjNGZx7Vxr/bdu73VakgOa12GtZtuX5+3qAgAA3Q2ZMWPGQNcA\nAAAAAADA68TMIQAAAAAAgDYiHAIAAAAAAGgjwiEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIc\nAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgjwwa6gIXRlClTZgx0DQAAAAAAwKJt5MiRQxZEv2YO\nAQAAAAAAtBHhEAAAAAAAQBsRDgEAAAAAALQR4RAAAAAAAEAbEQ4BAAAAAAC0EeEQ0BKTJ0/O5MmT\nB7oMGHDuBZjJ/QAzuR9gJvcDNLgXYCb3A7z+hEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4\nBAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4\nBAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAMeltu\nuWUOPfTQlvd76KGHZptttml5v/Pq9NNPz5ZbbpnbbrttwGror4738N///d8DXcrrbkF9Lxe0YQNd\nAAAAAADAYDJyueUGuoQ5mvLMMwNdAi200047ZZ111snaa6890KXQRoRDAAAAAAAwQNZee23BEK87\ny8oBAAAAAAC0ETOHAAAAAADazKGHHprbb789t9566yz7n3rqqbznPe/JZpttltNOOy1JMmPGjFxx\nxRW55JJL8sgjj+TFF1/MSiutlG222SYHHXRQRowY0Xn+q6++mnPPPTe/+c1v8vDDD+cNb3hD1lln\nnXzwgx/Mrrvu2tnutttuy2GHHZZPf/rTmTp1aq688spsscUW+Y//+I+51v7QQw/l5JNPzl133ZVX\nX301G2ywQT73uc9lgw02mKXd5MmTM27cuNx+++159tlns8IKK2TrrbfOgQcemNGjR8/W7yuvvJJT\nTz01EydOzDPPPJPVVlstBx544Cx1J8ktt9ySs88+O3/5y1/ywgsvZPTo0dl8883z6U9/OiuttFKS\n5JhjjsmECRNyxhlnZJNNNpnl/Jdeeim77rprRowYkUsvvTQ//elPc8YZZ+QnP/lJNt988852N998\nc37xi1/k3nvvzUsvvZQVV1wx73znO3PQQQdluS5LH2655ZazfF4dJk6cmLFjx+aggw7KIYcckqTx\nud9111256KKLcuyxx+bee+/N+PHjs8466/R6vZ977rmMGzcu1157bZ544omMGjUqu+66a/bff/8s\ns8wys7W/9NJLc8455+TRRx/NyJEj8573vCef+cxnsthiM+eq/O1vf8v48eNzyy235Omnn86oUaNS\nSsnBBx88y+fY9XuyxRZb5Mc//nHuu+++JMlb3/rWHHnkkVl99dVnqfXUU0/NpEmT8uyzz2adddbJ\nYYcdln/+8585/vjj881vfjN77LFHZ/u+fEcmTpyY8ePH5+GHH84yyyyT7bbbLkcccUSv122wEw4B\nAAAAANCrn//85/nxj3+crbbaKocffniWWGKJ3Hvvvbnoooty55135qyzzsqQIUMyY8aMHH300bnu\nuuuy6667Zt99983zzz+fiRMn5pvf/GYeffTRHHjggbP0/ec//zkPPfRQ9tlnn7z1rW+day3Tpk3L\nF7/4xWyzzTbZcccd88gjj+T888/P4YcfnnPPPTerrLJKkuTuu+/OYYcdltGjR+fjH/94Vlxxxdx/\n//351a9+lRtvvDHjx4/Piiuu2NnvkCFDctxxx+XFF1/Mpz/96Tz//PP52c9+lmOOOSbrr79+1lxz\nzSTJjTfemC996UsZM2ZMDjnkkIwYMSKTJ0/OBRdckFtvvTXnnXdellpqqeyyyy6ZMGFCrr322tnC\noZtvvjnPPfdcPvShD2XIkCE9vs8rrrgixx13XMaMGZMDDjggo0aNyj333JNf/epXueWWW/Lzn/88\nSy65ZJ8+x65OOumkbLzxxtl7772zwgor9NrulVdeyWGHHZaHHnoo++67b9Zcc83ce++9Ofvss3PH\nHXfktNNOyxve8IbO9pdffnlqrdl7772z5JJL5sILL8zPf/7zrLHGGvnABz6QJHniiSdy8MEH57XX\nXsvHPvaxrLrqqnnyySdz/vnn56CDDsoZZ5wxW9B3//3354ILLsiee+6Z973vfbnrrrty2WWX5aij\njsovf/nLznbf+MY3csMNN2TbbbfNNttsk8cffzxjx47NlltuOdt768t35Prrr8/YsWOz2mqrdX7u\nt956a4466qj5/gwGmnAIAAAAAIBe/fa3v83SSy+d73//+xk6dGiSZLfddst6662XSZMm5fHHH88q\nq6yS3//+95k0aVKOOOKIfOITn+g8f++9987BBx+ccePGZc8998zyyy/feezmm2/Od7/73ay00kpZ\nb7315lrL5MmTM3bs2Lzvfe/r3Lf66qvn+OOPzwUXXJDPfe5zSZITTzwxyy23XMaNGzfLLJtNN900\nX/rSl3LWWWflS1/6Uuf+l156KcOHD8+3vvWtzn3LL798xo4dm6uvvroz1HrooYey8cYbZ+zYsZ2B\n0a677prFFlssZ511Vq6//vrstttuefvb356RI0fm2muvzec///lZ3sM111zTeV5PXnzxxZx88skZ\nNWpUzjjjjCy77LJJkj322COrrLJKTjnllFxwwQXZb7/95nq9evLqq69m9OjRnddqTi6++OLce++9\ns8y42W233bLEEktk/PjxmTRpUt797nd3tv/zn/+c8ePHZ/HFF0+SvOMd78h73/veTJw4sTMc+utf\n/5p1110373//+2c5d911183nP//5XHzxxbOFQ5MmTcq4ceOy0UYbdV6LRx99NH/84x/z6KOPZvXV\nV8+9996bG264IZtuumm+853vdJ675ZZb5tBDD53tvfXlO3LGGWdk6NCh+cEPftD5uX/gAx/Icccd\nN9drOFh55hAAAAAAAL0aNmxYXnjhhUyePHmW/XvssUe+973vdc7W+c///M8kyY477php06Z1/nr+\n+eez/fbbZ/r06bnrrrtm6WODDTboXIptXgwfPjy77bbbLPt23HHHDBkyJH/84x+TJA8//HBqrdl6\n660zdOjQWWp529velhEjRuS2226bre999tlnltfrrrtukuTJJ5/s3Pexj30sP/3pT7PmmmtmxowZ\nefbZZzNt2rTOpc3+8Y9/dF6zHXfcMf/4xz9yzz33dJ7/0ksv5YYbbkgpJWuvvXaP7/GOO+7I1KlT\ns/POO3cGQx3e+973JkluuOGGuV+sOXjXu941T+0mTpyYYcOGZeedd55l/7777pszzjgjW2yxxSz7\n99prr85gKElWWmmljBw5Mk899VTnvq222iqnnnpqZzD0wgsvZNq0aZ3fo8cee2y2OjbZZJPOYKhD\nR4DU0XfHZ9o1cEoaYU/32Vt9+Y5MmTIltda85S1v6QyGOuy9996z1bqwMHMIWCQcceUT/Tr/lN1n\nX2cWAAAAgOSAAw7I17/+9RxwwAHZYoststVWW+Xtb397Z3jS4cEHH0ySzhkiPXn88cdneb3aaqv1\nqZY3velNsyxjliTLLLNMRo4cmX/+85+z1HHJJZfkkksu6bGfGTNmzLbvjW984yyvhw8fnqQR6HSY\nPn16zjrrrPz2t7/No48+mldeeWWWc1599dXO3++yyy65+OKLc+2112b99ddPMnNJud5mDSWN2UlJ\nenwO0HLLLZeRI0fmkUce6fX8eTGv1/2vf/1rVlxxxSyxxBKz1dF1tk2HNdZYY7Z9w4cPn+UaJo0g\n8dxzz80DDzyQF154YZZjXa/hnPrtCKGmT5+eZGYw11PbjTfeeJZgsi/fkY5+u38/kmTMmDE9nrsw\nEA4BAAAAANCrHXbYIWeccUbOPvvs3HzzzbnllluSNGbWfPnLX85mm22WJHn++eczZMiQ/OhHP8pi\ni/W8aFX3UGKppZbqUy29tV9iiSUyderUzjqSZPfdd+9cCq27np710z106slxxx2XCRMmZKONNsqR\nRx6ZVVZZJcOGDcsf//jHjBs3bpa2m266aVZeeeVMmjQpn/nMZ5I0lpQbOnTobLNbuuqovyOc6m6J\nJZbItGnT5lrrnMzrdX/xxRdnWQZwbublGl522WU5/vjjs/LKK+fggw/OWmutleHDh2fq1Km9PsOn\n62ykOdWa9Hzdll566Vle9+U7Mqd+u4dmCxPhEAAAAAAASTLbDI8OG264YU444YRMnz49f/rTn3LN\nNdfkkksuyec+97mcd955WWONNbLUUktlxowZWWeddfoUKPRFx1/U97S/4y/vO4KP4cOHZ/PNN2/Z\n2E899VSuuuqqvOlNb8qpp546S1jwt7/9bbb2Q4YMyc4775xf/vKXeeCBB7LGGmvkhhtuyBZbbJEV\nV1yx13E66u8+o6bDiy++OE/hTm+fZV8sv/zy/Q6iujv77LMzdOjQ/OhHP5plmbaermFfdARIL7/8\n8mzHnnvuuVle9+U70hEA9XQ9e/uMFgaeOQQAAAAA0GaGDWvMG+j+F+kPP/zwXM/bbLPN8pWvfCWf\n//zn8/LLL3c+/6bjGTrdnyuUJNOmTetc/qs/HnnkkdmWHZs2bVqmTJnS+dyfOdWRJE8//fR8jf3Y\nY49lxowZ2WSTTWabRXLHHXf0eE7HDKHrrrtunpaUS5K11lorSXL//ffPduypp57K1KlTZ1nObOjQ\noT0GInP7LOfFqquumilTpszyzKCk8RyeK664InfffXef+/zHP/6R0aNHz/b8nt6u4bzqeHZVx/KC\nXXWvsy/fkVVXXTXJzOXlunrggQfmr9hBQDgEAAAAANBmVlhhhSTJPffc07lvxowZufDCC2dp98QT\nT+SjH/1oTjvttNn66Fiqq2MpsZ122ilJct555+W1116bpd9vfvOb2WOPPfLss8/2q+7nnnsuV199\n9Sz7Jk6cmCTZYostkjSeDfPmN785999/f2699dZZ2t59993ZbbfdctZZZ/V57I7ZUI899tgs+2+9\n9db813/9V5LZZ5eUUjJmzJjcfPPNuf766zN8+PDssMMOcxxns802y6hRo3L11Vd3LpXXoeP5OO96\n17s696244op58MEHZ5lV9eyzz+aKK67o4zuc3bbbbpsZM2bk17/+9Sz7L7/88nzrW9+ar9k+yy+/\nfJ555plZ6n388cdzwQUXJJn/GU+bbLJJksz2/bjjjjvypz/9aZZ9ffmOjBo1KmuttVb+/Oc/zxY8\n9fa8ooWBZeUAAAAAANrM9ttvnwkTJuRb3/pWPvrRj2bYsGG55pprMmLEiAwdOrSz3ejRo7PKKqvk\nzDPPzGOPPZbNN988iy++eB5++OGcf/75WWGFFbLjjjsmaQQJ22+/fa677rocfvjhec973pPp06dn\n4sSJue222/KpT30qyyyzTL/qfvOb35yf/OQnueeee7LuuuvmoYceyvnnn58RI0bkwx/+cGe7I488\nMocffniOOuqofPSjH80b3/jGPPjgg7nooouy/PLLz3X2Tk9WW221bLjhhrntttvyne98JxtuuGFq\nrZkwYUKOOeaY/Ou//muuvfbarLvuutlpp506Q7Nddtkl48aNy9/+9rdsu+22c10SbvHFF8+Xv/zl\njB07Noccckje//73Z5lllsndd9+dyy67LBtttFE+8IEPdLbfbrvtcsEFF+QrX/lKdtlllzz77LO5\n+OKL8y//8i+56qqr+vw+u/rwhz+cq666KqeffnqeeeaZrL/++rnvvvty/vnnZ6ONNprjs5N6s9NO\nO+WXv/xljjrqqLz73e/Ok08+mfPPPz9f/OIXc/LJJ+e+++7Lr371q2yzzTZ96nfzzTfP+uuvn5tu\nuinf+MY3suWWW+axxx7LpZdeml122WW2a9GX78j++++fY445Jp/97Gez5557Zumll86tt96aqVOn\nztPzkAYj4RAAAAAAQJvZYYcd8tWvfjXnn39+fvCDH2TkyJHZZZddcthhh2XSpEmztD3xxBPzi1/8\nIldffXV+97vf5cUXX8zo0aOz44475sADD8xyyy3X2faEE07Iueeem9/85jf59re/naSxhNfRRx+d\n97///f2ue5VVVsnhhx+e73//+7nsssvy6quvZuONN84XvvCFWZ7js8kmm+RnP/tZxo0bl4suuijT\npk3LqFGjsu222+aQQw7Jyiuv3OexhwwZkhNOOCHf+c53ctVVV+Wqq67KW9/61px66qlZZ511suee\ne2bChAn58Y9/nO23336WcOj000/PlClTsttuu83TWDvvvHNGjBiR8ePH5/TTT8/LL7+cVVZZJfvt\nt1/233//zr6T5PDDD89iiy2W66+/Pt/+9rez2mqr5WMf+1jGjBnT73Bo+PDhOe200/LTn/40kyZN\nyoUXXphRo0blIx/5SA466KDO5Qn74pBDDsnLL7+c6667LieeeGLWWWedfPWrX822226bF154IT/8\n4Q9z6qmndi6vN6+GDBmS7373u/n+97+fG2+8MTfccEPe8pa35MQTT8xtt92WJFlssZmLqfXlO7Lb\nbrvl5ZdfzjnnnJNTTz01yy67bLbZZpt8/etfz1577dXnazAYDJkxY8ZA17DQmTJliosG3UyePDlJ\nst566w3I+Edc+US/zj9l99EtqoR2N9D3Agwm7geYyf0AM7kfoMG9ADO5H1jQTj755Jxzzjk5+eST\ns/XWWw90OX0ycuTIIQuiX88cAgAAAAAAFmovvvhixo4dm+OOO26W/S+99FKuueaaDBs2LBtssMEA\nVTf4WFYOAAAAAABYqA0fPjxJ8utf/zpTpkzJ9ttvnxdffDGXX355Hn/88XziE5+YZQnEdiccAgAA\nAAAAFnrHHnts1l133UyYMCEnnXRSXnvttYwZMyZHHnlk9t5774Eub1ARDgEAAAAAAAu9YcOGZf/9\n98/+++8/0KUMep45BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAAAABtRDgEAAAAAADQ\nRoRDAAAAAAAAbUQ4BAAAAAAfPuDbAAAgAElEQVQA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAA\nAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAA\nAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAA\nAABtRDgEAAAAAADQRoYNdAHzo5QyYx6arVVrfajZfskkX0uyT5I1k0xNMinJN2qt9y2oOgEAAAAA\nAAabhTIcSvKhORz79yQjkzyZJKWUIUkuS7JTkjOT/N8kqyX5cpKbSylb1lofWLDlAgAAAAAADA4L\nZThUa72op/2llA8kWTfJ/rXW55q790myc5KTaq1Hdml7TZI/JjkpyV4LtmIAAAAAAIDBYZF55lAp\nZdkkpyT5fa31rC6HPtnc/rBr+1rr7UluSrJHKWW516dKAAAAAACAgbXIhENJvpHGcnGHd9u/ZZJH\naq1/7+GcW5K8IclmC7g2AAAAAACAQWGhXFauu1LK6DRCoZ/XWv+7y/5lkyyfpPZy6sPN7dpJJvW3\njsmTJ/e3C1joDdx9MLJfZ7t/aTXfKZjJ/QAzuR9gJvcDNLgXYCb3A+1svfXWe13HW1RmDh2ZZHiS\n47vtX7a5fb6X857r1g4AAAAAAGCRttDPHCqljEpyWJIraq33D2Qtr3eyB4NJx7/sGLD74L4n+nW6\n+5dWGfB7AQYR9wPM5H6AmdwP0OBegJncD/D6WxRmDu2bZKkkZ/VwbGpzu3Qv5y7TrR0AAAAAAMAi\nbVEIhz6U5KUkE7ofqLU+m+TJJGv0cu6aza3FLAEAAAAAgLawUIdDpZRlkmyd5OZa6wu9NLspyRql\nlDf1cOydSV5IcvsCKhEAAAAAAGBQWajDoSSbJHlDkrvn0GZcc/vFrjtLKdsl2TzJec0ZRgAAAAAA\nAIu8YQNdQD+9ubl9qLcGtdZfl1IuTvKFUsqIJJPSWE7uy0n+nuTrC7pIAAAAAACAwWJhD4dGNbfT\n5tLuo0m+muTjST6R5OkkVyQ5utb6zwVXHgAAAAAAwOCyUIdDtdbvJ/n+PLR7Ocm3mr8AAAAAAADa\n1sL+zCEAAAAAAAD6QDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoYNdAGLkiOufGK2fafsPnoAKgEABlJPPxP0hZ8fAAAAgAXJ\nzCEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIcAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgj\nwiEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIcAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgj\nwiEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIcAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgj\nwiEAAAAAAIA2IhwCAAAAAABoI8MGuoD+KKXsluSrSTZLMj3JHUn+rdY6qVu7JZN8Lck+SdZMMjXJ\npCTfqLXe97oWDQAAAAAAMIAW2plDpZRPJflN8+XnkxybZO0kV5VStu/SbkiSy5KMTfL7JJ9K8u0k\n2ye5uZSyzutWNAAAAAAAwABbKGcOlVJWSfLDJFcneXet9bXm/l8nuTnJ7kmuazbfJ8nOSU6qtR7Z\npY9rkvwxyUlJ9nrdigcAAAAAABhAC2U4lGS/JEsnObYjGEqSWutfk6zcre0nm9sfdt1Za729lHJT\nkj1KKcvVWp9ZkAUDAAAAAAAMBgvrsnI7J5mWxiyhlFKGllKW6KXtlkkeqbX+vYdjtyR5QxrPLAIA\nAAAAAFjkLawzh96S5IEkbyulfD/J/0kytJTy5yT/Vms9L0lKKcsmWT5J7aWfh5vbtZNMWhCFTp48\neUF0C4PWwH3nR/brbPcqreY71e78mdTVovZ+oD/cDzCT+wEa3Aswk/uBdrbeeuu9ruMtrOHQ8kle\nSXJlkjPTeG7QmCRfTXJuKWXpWuu4JMs22z/fSz/PNbfL9nKc+fTD+/r3l2Kfe/OUFlUCAHTXn/9O\nt/N/o/18AwAAwKJiYQ2HFk8jDPpYrfWcjp2llCuT3JPkhFLK+IEpbVavd9o3aNz3RL9Ob9vrthDr\n+JcdA/bZ+c4xSAz4vcDgMNj/TOpHfX2pbZG7Hwb758qgtsjdD9AP7gdocC/ATO4HeP0trM8cejbJ\ni0nO67qz1vpgkmuTjE6yfpKpzUNL99LPMs3t1F6OAwAAAAAALFIW1nDoofRee8c/6RxRa302yZNJ\n1uil7ZrNrcUsAQAAAACAtrCwhkM3p7G03AY9HOsIfP7e3N6UZI1Sypt6aPvOJC8kub3lFQIAAAAA\nAAxC8/XMoVLKq/0Yc0attb/POhqf5NAkx5RSPlxrndGsa5M0Ap8/1VofbrYdl+T9Sb7Y/JVm2+2S\nbJ7kzOYMIwAAAAAAgEXe/IY0Q+bzvClJXp7PczvVWm8ppZyS5Igkl5dSLkhjxtAXk0xP8vkubX9d\nSrk4yRdKKSOSTGq2/XIas4u+3t96AAAAAAAAFhbzFQ7VWmdZjq6UMjTJT5Osn+Tfk9yS5H/SWLZu\ndJKtkxyZ5C9JPtWPerv6fLO/Q5OcnuSlJDcmObbW+odubT+a5KtJPp7kE0meTnJFkqNrrf9sUT3Q\nEkdc+cTcG/XilN1Ht7ASAAAAAAAWRf1d3q3D15K8Pcnbaq2vdDv29yQXlFIuT3JHkm82f/VLcym5\n05q/5tb25STfav4CAAAAAABoW4vNvck82S/JVT0EQ51qrS8mmZBk3xaNCQAAAAAAQB+1KhxaI43n\nCc3N00lWb9GYAAAAAAAA9FGrwqH/SbJXKWXx3hqUUoYleX8aAREAAAAAAAADoFXPHPpVkiOS/KGU\nclqSP6URAs1IslySjZIckmTTJKe3aEwAAAAAAAD6qFXh0NFJNkmyXZIf9dJmSJLbk3y9RWMCAAAA\nAADQRy0Jh2qtzybZoZSyRxpLx22YZIU0AqFnktyb5DdJLqy1vtqKMYG5O+LKJ/p1/im7j25RJcDC\nyp8jAAAAAIueVs0cSpLUWq9IckUr+wQAAAAAAKB1WhoOJUkpZfEk6ydZOcmdtdb+/ZNjAAAAAAAA\nWmaxVnVUShldSjkzyf+m8WyhCUm26nL82lLKVr2dDwAAAAAAwILXknColLJ8kpuS7JdkRpI7ux1f\nK8nWSSaWUjZsxZgAAAAAAAD0XatmDh2dZO0kJyRZMcneSYZ0HKy1PphkuySLJzmqRWMCAAAAAADQ\nR60Kh96XZFKtdWyt9aU0Zg/Notb6X0kuTrJDi8YEAAAAAACgj1oVDq2e5MZ5aPfnJKNbNCYAAAAA\nAAB91Kpw6JUkS89Du1FJnmvRmAAAAAAAAPRRq8KhO5PsVUpZsrcGpZQVkuyb5E8tGhMAAAAAAIA+\nalU4dHqSMUl+X0rZLcmqzf1Ll4bDk/whycrNtgAAAAAAAAyAYa3opNZ6dinlHUk+k+SK5u4ZSX7Z\npdmQJKfWWs9pxZgAAAAAAAD0XatmDqXW+tkkuya5OMmjaTyH6OUkDye5MMm7m20AAAAAAAAYIC2Z\nOdSh1joxycRW9gksmo648ol+nX/K7qNbVAkAsCC1+r/5/enPzw8AAAANLQmHSin3pbGE3Nm11gda\n0ScAAAAAAACt16pl5dZNckyS+0opN5ZSDiulLN+ivgEAAAAAAGiRVoVDGyU5PsnkJO9I8qMkj5VS\nLi2lfLCUskSLxgEAAAAAAKAfWhIO1Vr/Umv9Zq31LUneluQ/kjyc5H1Jzk/yz1LKT0sp27diPAAA\nAAAAAOZPq2YOdaq1/qnWenStdb0kmyf5dpL/TXJgkmtKKQ+1ekwAAAAAAADmTcvDoa5qrXfUWr+W\nZOMkRyd5NskbF+SYAAAAAAAA9G7Yguq4lLJ8kj2TfDDJdkk6njv0uwU1JrBgHXHlE3M4OrKxua/n\nNqfsPrr1BS0gc36fc7cwvVcAYPDqz88kfh4BAADmpKXhUCllpSR7ZWYgNDTJkCR3Jjknybm11kdb\nOSYAAAAAAADzriXhUCnl8DQCoW3SWKpuSJIHkpyb5Jxa672tGAcAAAAAAID+adXMoVOa238muSCN\nQOjWFvUNAAAAAABAi7QqHBqfxrJxk2qtr7WoTwAAAAAAAFqsJeFQrfVTregHAAAAAACABWu+wqFS\nys+SnFdrndjl9byaUWs9cH7GBQAAAAAAoH/md+bQ/knuTjKxy+t5NSOJcAiAOTriyif6df4pu49u\nUSUAwMKkPz9D+PkBAIB2Mb/h0A5JHuj2GgAAAAAAgEFuvsKhWuv1c3oNAAAAAADA4DS/M4d6VUpZ\nPMn6SVZOcmettX/rAgEAAAAAANAyi7Wqo1LK6FLKmUn+N8ntSSYk2arL8WtLKVv1dj4AAAAAAAAL\nXkvCoVLK8kluSrJfkhlJ7ux2fK0kWyeZWErZsBVjAgAAAAAA0Hetmjl0dJK1k5yQZMUkeycZ0nGw\n1vpgku2SLJ7kqBaNCQAAAAAAQB+16plD70syqdY6NklKKTO6N6i1/lcp5eIkO7RoTJgvR1zZv8dg\nnbL76AXaHwAADHb9+RnYz78AADDwWjVzaPUkN85Duz8n8X8CAAAAAAAAA6RV4dArSZaeh3ajkjzX\nojEBAAAAAADoo1aFQ3cm2auUsmRvDUopKyTZN8mfWjQmAAAAAAAAfdSqcOj0JGOS/L6UsluSVZv7\nly4Nhyf5Q5KVm20BAAAAAAAYAMNa0Umt9exSyjuSfCbJFc3dM5L8skuzIUlOrbWe04oxAQAAAAAA\n6LuWhENJUmv9bCnl8iQHJ3l7ktFpBET/THJLknG11v9s1XgAAACwMBm53HL9On/KM8+0qBIAANpd\ny8KhJKm1TkwysZV9AgAAAAAA0DqteuZQkqSUslop5c097N+xlDKmlWMBAAAAAADQdy0Lh0opRyb5\nW5KP9HD4s0nuK6V8uVXjAQAAAAAA0HctCYdKKXsk+Y8kTyW5v4cmlyd5NMmJpZQPtWJMAAAAAAAA\n+q5VM4e+nuThJBvUWs/tfrDWemaSt6Uxs+gLLRoTAAAAAACAPmpVOPTWJOfWWp/urUGtdUqS85pt\nAQAAAAAAGADDWtTPq0men4d2ryR5rUVjAtBPR1z5RL/OP2X30S2qpL35HOaP6zY4zPlzGNnY3Nd7\nm+6fQ38+V58pfeXPEQAAoF21Khy6O8l7kxzXW4NSypJJPpSk9newUsr4JPvNockXa60ndxn3a0n2\nSbJmkqlJJiX5Rq31vv7WAgAAAAAAsDBpVTj00yTjSin/meR7Se5K8nSSJZKslGSHJIcnKUk+06Ix\n0+zryR7235kkpZQhSS5LslOSM5P83ySrJflykptLKVvWWh9oYT0AAAAAAACDWkvCoVrrmaWUdyQ5\nKMm7emk2JMk5tdb/14oxmybUWh+aw/F9kuyc5KRa65EdO0sp1yT5Y5KTkuzVwnoAAAAAAAAGtcVa\n1VGt9ZAk70vy6ySPpfEcoleS/D3JpUk+UGv9eKvGm0efbG5/2HVnrfX2JDcl2aOUstzrXBMAAAAA\nAMCAadWyckmSWusVSa5oZZ/zopQyPMn0Wuv0boe2TPJIrfXvPZx2S5L/k2SzNJ5BBAAAAAAAsMhr\naTjUoZQyMsnKSf5Ra312QYzRdHgp5YNJxiR5rZTyhyTfqrX+ppSybJLlk9Rezn24uV07CzAcmjx5\n8oLqepAb2a+zF+x1a3Vtg6c/tbWqv8H8/W21wfxeB3NtrR5/ML9Xtc2fwVxbsqj+eT6Yr1sy8H8u\nDZzB/B15/T/T1+u/D4P5fmjn2rbo5/mL2p8ji9r7gfnlXoCZ3A+0s/XWW+91Ha9l4VApZckkR6ax\nlNuY5u49k1zePH5mkn+rtT7QqjGTvDvJCUkeTbJJkq8kuaKUsm+S3zXbPN/Luc81t8u2sB4AAAaJ\nH97Xv7/4/9ybp7SoEgAAABhcWhIONYOh65NsnmRIkieTrNjl+NpJ9kvy7lLK22utj/RzyO8mOTfJ\ndbXWl5r7flNKuTzJnc3j/9LPMVri9U77Bo37nujX6Qv0urW6tkHUn9pa1N9g/v622mB+r4O5tjno\n+FdOfRp/ML9Xtc2fwVxbssj+eT6Ya+uxv3YxiD6HgfxMX+//PixUf4602mCurZ8Ge33zar7uB1gE\nuRdgJvcDvP4Wa1E/X0ljhvzZSd6Y5O1phERJklrrX5N8MMnoJF/r72C11v+utf62SzDUsf8vSa5L\nslqSlZq7l+6lm2Wa26n9rQcAAAAAAGBh0apw6MNJ/lBr/WSt9dEkM7o3qLVenOSKJLu2aMzePN7c\nLpXGDKY1emm3ZnNrIUsAAAAAAKBttCocWivJ1fPQ7rY0ZvXMt1LKiFLKx0opvYVMpbl9JMlNSdYo\npbyph3bvTPJCktv7Uw8AAAAAAMDCpFXh0Gvz2NeSSV7u51gvJ/lxkvGllBW7Hiil7JTGs4ZurbX+\nPcm45qEvdmu3XRrPRzqv1vpsP+sBAAAAAABYaAxrUT/3JNmjlHJ0rfW1/8/enUdbltb1/X9X08w0\nzWQbDEMAmyei6BJQwAFwQEMaVFAcImCI+QXQNAIBQRRB4pCIItDgjIpD1BghCE2MCqIYSANpBJfI\n063I0BIsAggyCTT1++Oe1mtRVV23zq66p+q8Xmvdtevs/Zzv93tv3VtV8Oln7yMtGGNcp3pg9cZ1\nGs05PzLG+I7qF6pXjzF+snpn9bnVI6r3VQ9brX3RGOP51aPGGDesXtbO7eQeW11RPXGdWQAAAAAA\nAE43S4VDv1Q9s/qtMcbjqg+tzh8aY1y7+vLqe6vbVs9Yt9mc83ljjLdV39VOwHP9dgKiX6l+YM75\n5l3Lv6l6QvWg6sHVe9t59tF3zznfue4sAMDxu/Digyf83osuOG/BSU4v63zdaru/dtvC9winM9+/\nAABw6i0VDj2nnQDoftV9qiurQ9WvtnMruaoD1cXVTyzRcM75+9XvH8e6j1ZPXX0AAAAAAABstUWe\nObS6ldzXVA+vLm0nCDpQXa/6ePWadm719lVHu+0cAAAAAAAAJ99SO4eacx6qfrr66THGNaubtrN7\n6N1zzo8v1QcAAAAAAIATt0g4NMb4yep/zDlfWDXn/Fg7zwACAAAAAABggyxyW7nqgdVnLlQLAAAA\nAACAk2SpcOg3qgeOMa67UD0AAAAAAABOgqWeOfTM6juq148xfqt6XfWe6sojLZ5z/s5CfU87F158\n8ITfe9EF5y04CQAA+2WdfxOWfxduqmP/vp67c7js6Gv8vgIAAKfKUuHQn1aHqgPVo49j/TUW6gsA\nAAAAAMAeLBUO/WE74RAAAAAAAAAbbJFwaM55ryXqAAAAAAAAcHKdtd8DAAAAAAAAcOoIhwAAAAAA\nALbIUs8cgpPqwosPnvB7L7rgvAUnAQAAtsU6/zuk/G8RAAA2l51DAAAAAAAAW0Q4BAAAAAAAsEWE\nQwAAAAAAAFtEOAQAAAAAALBFzl6q0BjjltUD55xP33XuVtX3V3eq3l79wJzzj5bqCQAAAAAAwN4s\nsnNojHGb6jXVD44xDqzOXa96efXN1R2qr6x+d4zxOUv0BAAAAAAAYO+Wuq3c46ubVg+fcx5anfvW\n6p9Vv1mdW31p9dHqsQv1BAAAAAAAYI+WCofuXT1/zvkLu859bXVl9eg559/OOV/eTlB0j4V6AgAA\nAAAAsEdLhUM3r95w1YvVLeXuXr12zvlXu9b9efVPFuoJAAAAAADAHi0VDn2iuvau1/eqrln9zmHr\nrl19eKGeAAAAAAAA7NFS4dBfVF+26/W3VYeqFx227vOqvwoAAAAAAIB9cfZCdZ5fPXmM8cp2njP0\nBdVr5pyvrRpjnFX9f9VXVD+2UE8AAAAAAAD2aKlw6IfbCYTuvXp9RfXgXddH9RPVW6unLdQTAAAA\nAACAPVokHJpzfrj6yjHG+dWNq9fPOf9u15I3VT9aPXPOeXCJngAAAAAAAOzdUjuHqppzXn6U84eq\nxy3ZCwAAAAAAgL1bJBwaY9x+D8sPVR+s3jnn/MQS/QEAAAAAADg+S+0celM7oc9efHiM8dvVdx1t\nxxEAAAAAAADLOmuhOpdWb6g+Xh2oPlEdrP66unJ17mPV21Yf766uVz2getUY47YLzQEAAAAAAMAx\nLBUO3a26bPXx1dUN55w3n3N+WnVO9VXt7C568ZzzNnPO86qbV8+sblI9caE5AAAAAAAAOIalbiv3\npOou1efMOT+w+8Kc8++qF48x/rD64zHGnHM+e87519WjxxifU917oTkAAAAAAAA4hqXCoQdXv3x4\nMLTbnPP9Y4xfqR5ePXvXpT+ovmChOQDOeBdefPCE33vRBectOMkn2+TZAGCbrfN3dPl7GgAAzjRL\n3Vbu5tU1jmPddarbHHbuJtV7F5oDAAAAAACAY1gqHPqr6kFjjJsdbcEY46pnD71v17nbVw+q3rjQ\nHAAAAAAAABzDUreV+8XqKdUbxxi/VL2uek91qLpR9Vnt3Hrun1Y/WTXG+BfVC6prVRctNAcAAAAA\nAADHsFQ49IPVp7ezC+jR7YRCux1YHV9efdfq1++pPlE9bs753xeaAwAAAAAAgGNYJByac368esgY\n40er+1V3qG7aTij0vury6nfmnC/f9bbXVTefc75/iRkAAAAAAAC4ekvtHKpqzvn66vXHufZj1ceW\n7A8AAAAAAMCxLRoOjTHuOue8ZNfra1TfUt2penv1s3POdy/ZEwBOtQsvPniMq+fuHC47+pqLLjhv\n2YEAFnbsP+eOzZ9xAAAAm2+RcGiMcf3qd6rPrs7Zdekl1Zf3D88cesQY4/PmnO9aoi8AAAAAAAB7\nc9ZCdR5b3b36b2OMA1VjjAdU967+rPrq6qnVLavvXKgnAAAAAAAAe7TUbeW+tvqjOedDd517UHWo\nesic89LqRWOMz60uqB63UF8AAAAAAAD2YKmdQ7eqfv+qF2OMs6ovrf58FQxd5dLq1gv1BAAAAAAA\nYI+WCoeuU31s1+vPq27YznOIdruynd1EAAAAAAAA7IOlbiv3juqzd73+5nZCoJcctu721cGFegKc\nFi68eL0/9i664LyFJgGOxc8qAAAAsC2WCod+r3roGOOH2tkd9IjqinbtHBpj3LG6f/X8hXoCAAAA\nAACwR0uFQ/+xum/1+NXrj1XfPue8smqMMar/szr/jIV6AgAAAAAAsEeLPHNozvn26jOrh1VPqO46\n53zxriVvqV5f3X/O+bolegIAAAAAALB3S+0cas753upnjnLt76rPW6oXAAAAAAAAJ2aRnUMAAAAA\nAACcHhbbOTTG+Obq66tPr65THTjK0kNzztst1RcAAAAAAIDjt0g4NMZ4fPWDHT0Q4iS48OKDa73/\nogvOW2gSADbJOn8/+LsBAAAA4My31M6hh1cfqL65+oM5598uVPe4jTGeWj2pet6c81/vOn9W9ajq\nodX51Ueq/1U9Zc75mlM9JwAAAAAAwH5a6plDN6+eO+d88T4FQ59ZPf4ol3+6+tHqsurftRMgjeoP\nxxh3PzUTAgAAAAAAbIaldg69vfrwQrX2ZLUz6GeqP60+97Brd6++tfqNOefX7zr//HbCoudUdzp1\n0wIAAAAAAOyvpXYO/Xx1/zHGdRaqtxePqO5ePfYI1x6yOj5z98k5519VL6g+d7XrCAAAAAAAYCss\ntXPoh6pbVK8cY/xoO7t43nO0xXPOty3RdIxxi1XvX55zvmyMcfiSz6+urF59hLdf0s4zku66mhcA\nAAAAAOCMt1Q4dN3qOtVnVb94NWsPLdj3OdXHqscc5fo/qw7OOT92hGtXBVS3XWiWI7r88ssPO3Pu\nRtQ6cr0lLT3bJn/dNqee2Zaqt8mzrVdvu2db0uZ83ZauZ7al6m3ybOvVM9tS9TZ5tvXqmW0z6plt\n/2sdqd5d1qp2sv99c+qdaZ8PnCg/C/AP/Dywzc4///xT2m+pkObZ1bdUf1f9SfW37YRAJ80Y4+uq\nr6q+dc75rqMsO6d671GufXDXGgAAAAAAgK2wVDh032pWXzDn/JuFah7VGONG1UXVH7TzvKON9Ulp\n32UHN6LWEestaenZNvnrtkH1zLZQvU2ebc16Wz3bkjbo67Z0PbMtVG+TZ1uzntkWqrfJs61Zz2yb\nUc9s+1/riPXWdKr/a9KT5ar/KvxM+XzgRPlZgH/g5wFOvbMWqnPd6jdORTC08rTqJtXD55zH2qH0\n/ur6R7l2g11rAAAAAAAAtsJSO4de17o3Yz5OY4x7VN9aPbP6wBjjFoctud7q3AerN1d3HmNca875\n0cPW3Xp1dCNLAAAAAABgayy1c+gJ1YPHGF+2UL1j+dLqQPWo6u2HfVQ9cPXrH6te2c7neLcj1Pni\n1fF/ncxhAQAAAAAANslSO4c+q/rF6iVjjP9TvaF6z1HWHppzfvcavf5L9dqjXHtR9dLqGf1DWPTI\n6tHVH161aIxxfnW/6vfnnH+xxiwAAAAAAACnlaXCoZ+sDrWzo+duHXmnzlUOVSccDs05L6suO9K1\nMUbVFXPOF+8692PVY8YYL6ieX92sekz14erCE50DAAAAAADgdLRUOPTUdkKfTfTY6i+rh1U/U32o\nenn1PXPON+7jXAAAADzxEQQAACAASURBVAAAAKfcIuHQnPMpS9RZ15zzwBHOHaqevfoAAAAAAADY\namft9wAAAAAAAACcOkvdVu4fGWPcrp3nAt1/zvlbJ6MHAAAAAAAAe3cydw590i3eAAAAAAAA2F9u\nKwcAAAAAALBFhEMAAAAAAABbRDgEAAAAAACwRU5WOPTX1UOrS09SfQAAAAAAAE7A2UsUGWPco/qL\nOedfVc05P1A97wjr7l/dZM753CX6AgAAAAAAsDdL7Rz6/eobjmPdvar/vFBPAAAAAAAA9uiEdw6N\nMW5Y3Wj18kB14zHGrY7xlptVX1Jd70R7AgAAAAAAsJ51biv36OrJ1aHVxxNXH8dyoHrZGj0BAAAA\nAABYwzrh0E9Ub6ruXj2yenP19mOs/0j1p9XT1ugJAAAAAADAGk44HJpzHqx+vfr1McYjqx+fcz59\nsck45S68+OAJv/eiC85bcBIAAAAAAOBkOWuhOrepfuZ4Fo4xrr9QTwAAAAAAAPZoqXDoadU1r27R\nGOOe1RsW6gkAAAAAAMAeLRUOfV31p2OMrz7SxTHGdcYYz6heWt1qoZ4AAAAAAADs0VLh0OOq61fP\nH2M8b4xx7lUXxhh3q/64emT1xuqLFuoJAAAAAADAHi0SDs05f7S6Q/XC6sHVn4wx7jfG+E/VK9rZ\nLfQ91Z3mnJcs0RMAAAAAAIC9O3upQnPOK6oHjDEuqC6q/vvq0surh805/3ypXgAAAAAAAJyYxcKh\nXT5QfbQ6sHr94dUHAAAAAAAA+2ypZw41xrjpGOPnq5dVN66+uXpWdZ/qjWOMb1+qFwAAAAAAACdm\nkXBojPHQ6k3Vt1S/Vd1xzvmrc85HVfeq3lU9a4zxR2OMz1iiJwAAAAAAAHu31M6h51bXqL5lznn/\nOefBqy7MOV9R3bH68eru1aUL9QQAAAAAAGCPlgqH/mc7u4V+6UgX55wfnnNeWH1Z9Y6FegIAAAAA\nALBHZy9RZM55n+Nc9/Ixxh2X6AkAAAAAAMDeLRIOXWWMcaD6oupO1adWvzznfOPq2rlzzvfNOT+0\nZE8AOB4XXnzw6hcdw0UXnLfQJAAAAACwv5a6rVxjjHtUl1cvr36senz16atr167ePMa4cKl+AAAA\nAAAA7N0i4dAY4w7Vb1e3rV5W/cRhS25avad6xhjjXy7REwAAAAAAgL1baufQ91TXrL5iznnv6oer\nA1ddnHO+o/rC6t2V3UMAAAAAAAD7ZKlw6J7Vf51z/t7RFsw5D1a/UX3eQj0BAAAAAADYo6XCoZtV\nf3Yc666ozlmoJwAAAAAAAHu0VDj0N9WtjmPdp7fz7CEAAAAAAAD2wVLh0Currx9j3P5oC8YYd63+\n1WotAAAAAAAA++Dsher85+q+1avHGD9VvWN1/m5jjJtXX1599ercDy/UEwAAAAAAgD1aJByac/7v\nMcaDqp+tHlcdWl16/Op4oPpA9bA55yVL9AQAAAAAAGDvlto51Jzz18cYv9POrePuWp3XTkj0zuqS\n6r/OOT1vCAAAAAAAYB8tFg5VzTnfWz1n9fFJxhifUV1zzvmGJfsCAAAAAABwfM5aosgY48oxxmOO\nY+m3Vxcv0RMAAAAAAIC9WyQcaueZQsc0xjhQ3a76lIV6AgAAAAAAsEcnfFu5McZ3VN+x69QTxxj/\n/hhvuXF1w+pNJ9oTAAAAYB0XXnxwrfdfdMF5C00CnCp+7uH04Gf11FrnmUOvqj6juuvq9U1WH0fz\nd9XrqgvX6AkAAAAAAMAaTjgcmnO+unp11RjjE9Vj55xPX2owAAAAAAAAlrfOzqHdHtoqKAIAAAAA\nAGBzLRIOzTmft0QdAAAAAAAATq6z9nsAAAAAAAAATh3hEAAAAAAAwBZZ6plDAAAAAABwRBdefPAY\nV8/dOVx29DUXXXDesgPBlrNzCAAAAAAAYIucUDg0xvi0McYNd72+1RjjBsuNBQAAAAAAwMlwojuH\n/qz6tl2v/7L6d+uPAwAAAAAAwMl0ouHQdarb73p9YIFZAAAAAAAAOMnOPsH3/Vn1LWOMO1fvXp17\nxBjjvsfx3kNzzi87wb4AAAAAAACs4UTDoW+r/mt1x9XrQ9XtVh9X59AJ9gQAAAAAAGBNJxQOzTlf\nOca4ZXVedd3qzdUPVD+74GzHNMa4Y/Wd1RdVn1a9v3pl9YNzzkt2rbtu9V3VN1a3Xq17WfWkOedl\np2peAAAAAACATXCiO4eacx6q/rpqjPEH1RvmnG9darBjGWPcvfq96m+q51Rvrz6j+vfVfcYY91oF\nWAeqF1ZfXv189X3tBEmPrV41xvj8OedfnIqZAQAAAAAANsEJh0O7zTm/ZPfrMca1qhtXn6jeO+f8\n+BJ9dvnJ6kD1hXPOt+zq++rqBdXjq69uZ7fQvaunzTm/c9e6l1avrZ5WPWDh2QAAAAAAADbWIuFQ\n1Rjj2tV/qP5VNaqzVpc+PsZ4ffVz1U+tdhyt0+es6nnV3+4OhlZ+d3W81er4kNXxWbsXzTkvHWO8\nsrrvGONGc86/WWcmAAAAAACA08Ui4dAY4/rV71d3bmdHz5XVe9sJiM6p7rK69lVjjPvNOa880V5z\nzk9UTz/K5X++Or5hdfz86u1zziuOsPaS6gurO7XzDCIAAAAAAIAz3lI7h/5DOwHQb1U/VF065/xY\n/f0t5u5afU/1ldW3VRct1Lcxxo2qG1RfVP1I9ZfVU8YY51Q3qeZR3vq21fG2ncRw6PLLLz/szLkb\nUWvpembbjHpmW6reJs+2Xj2zLVVvk2dbr57Zlqq3ybOtV89sS9Xb5NnWq2e2zahntv2vdaR6d1mr\n2pHmO73t3+ez9PccrMf31Kng534z+H3g6mz398j5559/SvstFQ59XfW/55xfc/iFOedHq1eMMe7T\nznN+HtyC4VA7O5SqDlU/X33nnPPdY4xPW53/0FHe98HV8ZwFZwEAAAAAgK3wrMtOPNB55O3ft+Ak\n7NVS4dBtu5rAZ875iTHGS6uHLdTzKl9SXb/63HZ2JX3pGOOB1TsW7nNCPintu+zgRtRaup7ZNqOe\n2Raqt8mzrVnPbAvV2+TZ1qxntoXqbfJsa9Yz20L1Nnm2NeuZbTPqmW3/ax2x3ppO9X9NerJc9V/1\n7tvns2G/r2yvff9Z2CZ+7jeD34cz0xn8b68z3VLh0IF2du5cnY8s2LOqOefLV7+8eIzxy9Wl1X/p\nH3bsX/8ob73B6vj+JecBAAAAAADYZGctVOct1T2PY9092nkm0Ekx53xL9dLq/OpTq3dVtzjK8luv\njqf3jQgBAAAAAAD2YKlw6AXV3cYYzx1jfFIYM8a45RjjudUXVb+5TqMxxmeMMd4+xvi5oyy50ep4\ndvXK6hZjjFsdYd0XVx9uZ6cRAAAAAADAVlgqHPrh6k3VQ6u3jjHeOsZ4zRjjtWOMt7Wzs+ih1Z+s\n1q7j8uo61QPHGLfZfWGMcbvqC9vZMXRZ9dzVpUcftu6e1Z2rX5tzfmDNeQAAAAAAAE4bizz/Z875\n/jHG3avvr765uuXq4yrvbieo+Y9zzg+u2evjY4wLq1+pLhljPKd6c3Wb6t9X162+fc55ZfWiMcbz\nq0eNMW5Yvayd28k9trqieuI6swAAAAAAAJxuFgmHaicgqh5ZPXK1g+dTqkPVwTnnos8ZmnP+2hjj\nrdXj2wmEblS9v3pN9fQ55+/sWv5N1ROqB1UPrt5bvbj67jnnO5ecCwAAAACucuHFB49x9dydw2VH\nX3PRBectOxCw9Y7959LV8+fSmWOxcGi3OedfVH9xMmrv6vGq6muOY91Hq6euPgAAAAAAALbaUs8c\nAgAAAAAA4DQgHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALXL2EkXGGA+pXjPn\n/LOrWffvqpvPOb9vib4AAAAAnHwXXnxwrfdfdMF5C00CsF38+cvJstTOoV+o7nMc6z6revRCPQEA\nAAAAANijE945NMa4VfXPdp263RjjHsd4y82q+1bXONGeAAAAAAAArGed28o9tHpydWj18fDVx7Ec\nqJ6/Rk8AAAAAAADWsE449EPVb1d3r55evbb602Os/8jq+s+t0RMAAAAAAIA1nHA4NOf8aHVJdckY\n4+nVr805n77YZAAAAAAAACxunZ1Df2/OedYSdQAAAAAAADi5FgmHrjLGuFH16dV123m+0BHNOf9w\nyb4AAADAibvw4oNrvf+iC87bQ71zdw6XHXnN4bWA08PSf46wGdb5fd3m31M/D5wOFgmHxhjnVr9Q\n3a9jhEIrh5bqCwAAAAAAwN4sFdI8rfrq6uPVn1bvaycEAgAAAAAAYIMsFQ7dt7qiutuc8x0L1QQA\nAAAAAGBhZy1U5ybVfxEMAQAAAAAAbLalwqG/qj64UC0AAAAAAABOkqXCoV+rvnaMcc2F6gEAAAAA\nAHASLBUOfV/19uqFY4zPWqgmAAAAAAAACzt7oTovXx3vUr1+jPHR6r1HWXtozvlPF+oLAAAAAADA\nHiwVDt3tsNfXrv7JUdYeWqgnAAAAAAAAe7RUOHSbheoAAAAAAABwEi0SDs0537pEHQAAAAAAAE6u\ns/Z7AAAAAAAAAE6dRXYOjTHesYflh+ac/3SJvgAAAAD75cKLD671/osuOG+hSQAA9mapZw79k4Xq\nAAAAAAAAcBItFQ7d5hjXPrW6c/Wo6hfnnD+wUE8AAAAAAAD2aJFwaM751mNcfmv16jHGf6v+eIxx\ncM75M0v0BQAAAAAAYG/OOlWN5pzvqv5b9chT1RMAAAAAAIB/7JSFQyvvqW57insCAAAAAACwcqrD\noXtXHzvFPQEAAAAAAFhZ5JlDY4zvvZolN6q+svrn1f9coicAAAAAbJMLLz641vsvuuC8hSY5+db5\nXE+nzxNgvywSDlVPqQ5VB65m3Turxy7UEwAAAAAAgD1aKhz6vmNcO1R9pHpz9T/mnB9cqCcAAAAA\nAAB7tEg4NOc8VjgEAAAAAADAhlhq59DfG2McqG5b3az6RPWuOedblu4DAAAAAADA3i0WDo0xPqX6\ngeobqhscdu3d1c9VT51zfmipngAAAAAAAOzNWUsUGWPcrHpV9W+rc6orqtdVr6/e0c4uosdVrxhj\nXG+JngAAAAAAAOzdUjuHntDOreSeXf3gnPOduy+OMW5ZPbn6N9Vjqu9fqC8AAABspQsvPnjC773o\ngvMWnOTkWufzrNPrc90mm/z963sOgG2wVDh0v+p355yPPNLFOefbq387xrh99fUJhwAAAAAAAPbF\nIreVq25ZXXIc6/6out1CPQEAAAAAANijpcKhK6vjeZbQWdWhhXoCAAAAAACwR0uFQ5dV9x5jHLXe\nGOMa1Ves1gIAAAAAALAPlgqHfr26Y/U/xhhfMMb4+2cZjTGuOcb44uol1edUv7JQTwAAAAAAAPbo\n7KtfclyeUf3L6t7Vl1dXjjHeVx2oblhdY/Xr362euVBPAAAAAAAA9miRcGjO+dExxpdXj6weUn1m\nddPV5Y9Xr6t+tvrpOecnlugJAAAAcCa58OKDa73/ogvOW6ze4bU22dJfNziVfP/CybMtfw+eqKV2\nDjXn/Hj19OrpY4xrVTepDlXvmXN+bKk+AAAAAAAAnLjFwqGqMca1qxvPOd9ZvXPX+TtWfz7n/PCS\n/QAAAAAAANibs5YqNMb4hnYCoW89wuWnVv93jPHApfoBAAAAAACwd4uEQ2OML6x+tbp29d4jLLlk\ndfzVMcaXLtETAAAAAACAvVtq59BTqv9Xfdac88cPvzjn/E/VZ1fvrp6wUE8AAAAAAAD2aKlw6K7V\nL80533y0BXPOt1W/sloLAAAAAADAPjh7oTpntbMr6Oq8t7rGEg3HGJ9SfW91/+pTq7+p/qj6j3PO\nSw9be93qu6pvrG5dvb96WfWkOedlS8wDAAAAAKeTCy8+eMLvveiC8xac5PSyztettvtrB2yOpXYO\nXV4d81lCY4yzqvtWR91ddLzGGOdVl1bfWv366vhT1ZdVfzTG+Nxdaw9UL6y+p3pF9W+qH67uVb1q\njHG7decBAAAAAAA4XSy1c+iXqh8ZY/xc9SNzzjdedWGMcc3qS6rHVHepvnuBft9f3aL62jnn83f1\nek3139vZJfT1q9PfWN27etqc8zt3rX1p9drqadUDFpgJAAAAAABg4y0VDj2znQDmX1ffMsb4WPW+\n6trVOas1B6qXVz+6QL93VL9aveCw879dHao+e9e5h6yOz9q9cM556RjjldV9xxg3mnP+zQJzAQAA\nAAAAbLRFbis357yy+pfVI6s/aSd0+pTqhtWV1R9Xj6q+Ys75sQX6PWXO+a/mnIcOu3ROOyHU+3ed\n+/zq7XPOK45Q6pLqmtWd1p0JAAAAAADgdLDUzqFWQc2zq2ePMa5V3az6RPXuJQKh4/Tw1fFXqsYY\n51Q3qeZR1r9tdbxt9bKTMdDll19+2JlzN6LW0vXMthn1zLZUvU2ebb16Zluq3ibPtl49sy1Vb5Nn\nW6+e2Zaqt8mzrVfPbJtRz2z7X+tI9e6yVrXT63M9U2f75HqbPNt69cy2VL1Nnm29emZbqt7Ssy1t\nk38fNtkmf49sTr3Ta7aT7/zzzz+l/RYLh3abc360nVu/nTJjjPtU31v9n+onVqevuqXdh47ytg8e\ntg4AAAAA4LT0rMvW+z/XH3n79y00ycm3zud6+Oe5TV83TsyZ+D1yUsKhU22M8ZDqZ6u3VPdbhVMb\n4ZPSvssObkStpeuZbTPqmW2heps825r1zLZQvU2ebc16Zluo3ibPtmY9sy1Ub5NnW7Oe2Tajntn2\nv9YR663ptPpcz9DZPqneJs+2Zj2zLVRvk2dbs57ZFqq3ybOtWc9sC9Xb5NnWrLfVs22ARZ45tJ/G\nGE+qnle9vvqiOef/3XX5qmcPXf8ob7/BYesAAAAAAADOaKd1ODTGeEb11Oq3qnvOOf9RfDfn/ED1\nruoWRylx69XxdLphJQAAAAAAwAk7bcOh1Y6h76h+vnrAnPNozxV6ZXWLMcatjnDti6sPV5eenCkB\nAAAAAAA2y2kZDo0xvqT6vuoF1b+dc155jOXPXR0ffViNe1Z3rn5ttcMIAAAAAADgjHf2fg9wgn5k\ndfy96gFjjCOtecmc80NzzheNMZ5fPWqMccPqZe3cTu6x1RXVE0/FwAAAAAAAAJvgdA2H7rQ6PucY\na25TvWX162+qnlA9qHpw9d7qxdV3zznfeZJmBAAAAAAA2DinZTg05zywx/UfrZ66+gAAAAAAANha\np+UzhwAAAAAAADgxwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CJn7/cA6xhj\nXKv6/uqx1R/OOe91hDXXrb6r+sbq1tX7q5dVT5pzXnbqpgUAAAAAANh/p+3OoTHGqF5VPaI6cJQ1\nB6oXVt9TvaL6N9UPV/eqXjXGuN0pGRYAAAAAAGBDnJY7h8YYN64urS6v7lK96ShLv7G6d/W0Oed3\n7nr/S6vXVk+rHnBypwUAAAAAANgcp+vOoWtVv1jdbc45j7HuIavjs3afnHNeWr2yuu8Y40YnZ0QA\nAAAAAIDNc1ruHJpz/nU7t5O7Op9fvX3OecURrl1SfWF1p3aeQQQAAAAAAHDGOy3DoeMxxjinukl1\ntJ1Fb1sdb9tJDIcuv/zyw86cuxG1lq5nts2oZ7al6m3ybOvVM9tS9TZ5tvXqmW2peps823r1zLZU\nvU2ebb16ZtuMembb/1pHqneXtaqdXp/rmTrbJ9fb5NnWq2e2pept8mzr1TPbUvU2ebb16pltqXqb\nPNt69bZ7tk92/vnnr9Vjr07X28odj3NWxw8d5foHD1sHAAAAAABwxjtjdw5tik9K+y47uBG1lq5n\nts2oZ7aF6m3ybGvWM9tC9TZ5tjXrmW2heps825r1zLZQvU2ebc16ZtuMembb/1pHrLem0+pzPUNn\n+6R6mzzbmvXMtlC9TZ5tzXpmW6jeJs+2Zj2zLVRvk2dbs95Wz7YBzuSdQ+9fHa9/lOs3OGwdAAAA\nAADAGe+MDYfmnB+o3lXd4ihLbr06Xv3N/gAAAAAAAM4QZ2w4tPLK6hZjjFsd4doXVx+uLj21IwEA\nAAAAAOyfMz0ceu7q+OjdJ8cY96zuXP3aaocRAAAAAADAVjh7vwc4EWOMO1R3OOz0p4wxvm7X65fM\nOV80xnh+9agxxg2rl7VzO7nHVldUTzwlAwMAAAAAAGyI0zIcqr6+evJh5+5Q/cau17ep3lJ9U/WE\n6kHVg6v3Vi+uvnvO+c6TPikAAAAAAMAGOS3DoTnnU6qnHOfaj1ZPXX0AAAAAAABstTP9mUMAAAAA\nAADsIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC1y9n4PcCqMMW5SPbn6murm\n1f+rXlI9ac75f/dzNgAAAAAAgFPpjN85NMa4bvXy6hHVb1b/uvqp6huq/zXGuPG+DQcAAAAAAHCK\nbcPOoUdVd6y+fc7541edHGO8vnpB9aTqMfs0GwAAAAAAwCl1xu8cqh5SfbB67mHnX1hdUT1ojHHg\nlE8FAAAAAACwDw4cOnRov2c4acYYN6zeV71iznmPI1z/zeoB1e3mnG8+3rrve9/7ztwvGgAAAAAA\nsBHOPffck7K55UzfOXTr1fGKo1x/2+p421MwCwAAAAAAwL4708Ohc1bHDx3l+gcPWwcAAAAAAHBG\nO9PDIQAAAAAAAHY508Oh96+O1z/K9Rsctg4AAAAAAOCMdqaHQ39ZHapucZTrVz2T6PJTMw4AAAAA\nAMD+OnDo0KH9nuGkGmP8cXV+ddM550d2nb9G9Y7q7+act9qv+QAAAAAAAE6lM33nUNVzq+tVDzvs\n/IOq86qfPeUTAQAAAAAA7JNt2Dl0zeoV1Z2ri6rXVp9ZPaad28ndbc75of2bEAAAAAAA4NQ548Oh\nqjHGDaunVF9b3bw6WL2gevKc8z37OBoAAAAAAMAptRXhEAAAAAAAADu24ZlDAAAAAAAArAiHAAAA\nAAAAtohwCAAAAAAAYIsIhwAAAAAAALaIcAgAAAAAAGCLCIcAAAAAAAC2iHAIAAAAAABgi5y93wOc\njsYYN6meXH1NdfP+//buO07Oqlzg+C+UEEokdJQaRR+QC0ov0kRpCtIEQRSi6JWmgDcgRQQRUC9F\nFAGlCOEioCAiJXhpAkroKILIQwsSlKrUUIW9f5x39GWYDZubzG6Y9/f9fPgc9pwz75zd7LMz8z6n\nwJPAeOCgzHxkKMcmdVNEDAcOA8YC12bmeh36zA7sD2wHLAE8C1xFiY97Bm+0UndExALAN4AtgYWA\np4HfAd/KzNva+hoP6nkRsRywL7AW8C7K7/kE4IjMvLHWz3hQo0TEocBBwLjMHFOrnwnYC/gc8F7g\nJeA64JDMvHkIhipNVxFxOrDTFLrsnZnHVn19bVDPi4hNgP2AFYF/Ar8HDsvMq9r6GQ/qWRHRN4Bu\nozPzwaq/8aCeFxHLAgcA6wPzU+4vTQCOzMzf1fp1LR6G9fUNJDbVUv1j3AgsDfwQuIXyoW4s8ASw\nUmY+NXQjlLojIgI4C3gfMBdwTXtyKCKGAf8LfBQ4jfKH6l2U+JgFWDUz7x/EYUvTVUQsCNwKzAec\nCNxOiYmvUH7HP5SZv6/6Gg/qeRGxBnAF5U3s8cAkYBlgD2AEsF5mTjAe1DTVB73bgOG8OTl0CrAz\ncD7wK2BuYE9gEWD9zLx+0AcsTUe15NBulM/I7f6Qmff52qAmiIjPA6cC1wLjgJHA3pTf9Q0z8+qq\nn/GgnhYRn5xCz2mHKAAAEhJJREFU87cp74dGZ+Zk40FNEBErUCYav0LJMdwDLAbsDiwMbJGZF3U7\nHlw5NPX2ApYDds/ME1qVEXE78EvK7MCvDtHYpK6IiHkoNzjuBVYG7u6n63bABpQM9761x19JSaQe\nCWzV3dFKXXUYsCiwdWae36qMiJuBCygzObatqo0HNcGPgGGUxOiDrcqIuInyvuhrwOYYD2qQamXQ\nycCfgBXa2tagJIbOzcxta/XnUz4QHk+ZWS71gkvrrw0d+NqgnhYRCwM/oEyk2SgzX6/qLwKuBz4O\nXF11Nx7U0zLzvE71EbEFsBQwJjMnV9XGg5rg68AcwJaZeVmrsvpc8GfgUOAiuhwPnjk09XYEJlNm\nftT9CngY+EyV0ZN6yXDgDGD1zMwp9NuxKn9Qr6y22poAbBoRo7ozRGlQ/A04m3LTu+7XQB+wfK3O\neFBPq26AjwP27HDz7/KqXLwqjQc1ya7AGpTZfO1asfD9emVm/pXy2rJCtepIagJfG9TrdgLmpGwb\n+nqrMjMfyMyFMnOfWl/jQY0TESOB44DfZua4WpPxoCZ4T1X+tl6ZmXcDjwNLVlVdjQeTQ1MhIt5B\n2U7utsx8ud6WmX3ATcACwOghGJ7UNZn5WGbumpkvvUXXVYFJmflwh7YbgVlxNqzexjLzkMz8dPU3\nv24kZfXEs7U640E9LTNfz8xjMvPkDs1LV+Ufq9J4UCNExKKUrVHObD9LorIq8Brlc0O71hldq3Vp\neNKQiIgREdFp1xJfG9TrNgCeo6wSIiJmjojZ+ulrPKiJDqJsj7V7W73xoCb4c1W+r14ZEXMDo4A7\nq6quxoPJoamzRFV2+scAeKgq3z0IY5FmKNWMj3kxPtRMu1TlT8F4UDNFxKiIWDQitqOsqJ4IHGI8\nqGGOB16l/22mlwQez8xXO7QZC+o1u0fEROBF4OWIuCEiPga+V1JjLA3cD3wwIq4BXgZeiog7q/dL\ngPGgZqrO890dOCMz76jVGw9qisOBp4AzImKtiJg/IpajnCvUBxw0GPFgcmjqjKzKF/ppn9zWT2oS\n40ONFBGbAN8AbgVOrKqNBzXRU8Ak4CzKgZmrZOZEjAc1RHXQ8ieAfTLziX66jcRYUHNsBBxBOVfl\nQOC9wMXVTXFfG9QE81Jmf18CXAdsAXy5qjs7Inau+hkPaqJ9gRGUG+R1xoMaITPvpGxFPTNla7kn\nKDtvrEY5p+5qBiEeOi3tliRJAxAROwKnAA8Cm2XmK0M7ImlIfZiyr/4KwG7A+hGxDeWsLqmnVft8\nHwdcQ5ntJzXZ0ZQzGq+ubcc+PiIuBP5Qta8yVIOTBtFwyorRHTLzrFZlRFxC2U7oiIg4fWiGJg2d\niJiHckbjxZl531CPRxoKERHAeGA2YG/gbmBB4L+AiyJia+BP3R6HyaGp0zpLYs5+2udq6yc1ifGh\nRomIg4BDgVuAj2fm47Vm40GNU81sArgkIs4EbqOsIlq5qjce1MuOpMwQ36XDuXR1z2IsqMdV2wPd\n0aH+roi4mnIOywJVtfGgXvY85abfOfXKzJwYEb8BNgaWoUw0A+NBzfFpYA5gXIc2P0urKU4BFgGW\nqXbcACAizgXuo0w4W6aq7lo8uK3c1JlI2fNv0X7aW2cS3Ts4w5FmHJn5PGUJpPGhnhcRx1ISQxcC\n67YlhowHNV5mPghcSdlCaCGMB/WwiFgH2Bk4AXi+Ontr0Yho/c7PUX09D/AAsGBEDO9wKWNBTfBY\nVc6Brw3qfQ/S/3231ueHd/jZQQ20DeUMrkvbG4wHNUFEzAl8CLitnhgCyMwXgaspiaPF6XI8mBya\nCpk5mbL334oRMaLeFhEzA2sCkzLzoU6PlxpgArBoRCzeoW1tymG0tw3ukKTpq1oxtCdlFsdWmdnf\n3q/Gg3paRCwTEZMi4if9dBlVlbNgPKi3rQ8MA/ainLtV/w/KDZBJwPcosTATsHqH66xdldd1c7BS\nN0XEOyJih4jYuL8uVTkJXxvU+66nbC33/g5trRt6rUPGjQc1QkTMRbl/en11E7wT40G9bnbK54cR\n/bSPqJVdjQeTQ1PvVMospy+11X+Gsi/gKYM+ImnGcWpV7l2vjIh1gZWAc6pZINLbUkR8GPgm8Evg\nC5n52hS6Gw/qdfdS3qxuExGj6w0R8R7KTKgngHswHtTbzgI26+c/KKvoNqMkh06j7ETQHgvvrfr8\nJjPvH5xhS13xCnA8cHpEzF9viIiPUs4auikzH8bXBvW+06vy4IgY1qqMiOUpN/T+WJtcbDyoKZYH\nZgXunEIf40E9LTOfpHyeXj4i3jCBICLmpUw+e5YSJ12Nh2F9fVPaElvtImJW4LeUH/5xlLMmlgW+\nSvlHXX0Ks8ilt6XqD1X9j9W5wF3AwbW68Zn5QkT8AtgK+AlwFWVG1FhgMrBKZj46OKOWpr+IuBVY\nAdiDf28F0W5863XAeFCvi4jtgJ8Cf6fcDHwAGE2JkQWAz2fmaVVf40GNExF9wLjMHFOrO5ry2eEC\n4Hxg/urrkcCHMrPrB89K3RQRO1Fuik8EfgQ8Snn/tCvwErBeZv6h6utrg3paRPwA+DJwMfBzyu/4\n3pRzIjaqndloPKgRImIMZbLM2Mw8egr9jAf1tIjYjDLx+Bngh5RJlfNTdqoZTTnL9MdV367FwyzT\n8D00Uma+GhEbAocAW/PvG4SnAAebGFKP2pY3JoKgJIvOrX09mrKn8vbAfpTVdJ8FnqK8ET7QF2/1\ngBWr8vgp9GnFAhgP6nGZeU5E/AX4GuU90SjKDKebgWMy87Jad+NBKsZSbpp/CTgZeIGyr/jXM/Ou\nIRyXNF1k5riIeAjYHziAcojyo5TJBIdn5gO17r42qNftSZlYuQtwEuWcleuAQzLz5ra+xoOaYJ6q\nfO4t+hkP6mmZeVFErEX5LL0rJTaeoyxE2S0zf13r3rV4cOWQJEmSJEmSJElSg3jmkCRJkiRJkiRJ\nUoOYHJIkSZIkSZIkSWoQk0OSJEmSJEmSJEkNYnJIkiRJkiRJkiSpQUwOSZIkSZIkSZIkNYjJIUmS\nJEmSJEmSpAYxOSRJkiRJkiRJktQgJockSZIkSZIkSZIaxOSQJEmSJEmSJElSg5gckiRJkiRJkiRJ\nahCTQ5IkSZIkSZIkSQ0yy1APQJIkSZL+vyKiD/hLZi451GMZiIhYHLgJeAxYMzMnv0X/B4ElgNGZ\n+WC3xzdQEXEKMAbYLDMvHeLhSJIkSZpKJockSZIkDamIOAQ4eGoek5nDqv/dB3hmeo+pGyJiFuAX\nwEhgrbdKDM3gdgdWA86OiOUz86GhHpAkSZKkgTM5JEmSJGmoXQY831YXwBeAB4AT+3tgZh7VxXFN\nb/sBKwP7ZOZ9Qz2YaZGZL0fEzsANwKnABkM8JEmSJElTYVhfX99Qj0GSJEmS3iAiNgYuBa7JzPWG\neDjTLCIWBu4DngKWysyXB/i4B5kBt5VriYhzgU8Cm2bmJUM9HkmSJEkD48ohSZIkSW9b7WcORcSS\nwETgRmAj4GhgM2Au4HZgbGZOiIh1gUOBFYHXgcuBr2Tm39quPy9lxc/mwJLAi8CfgJOAMzJzoLPt\n9gDmBA5vTwxFxHDgQOCzwCKU84jOAw6awve9JrAvsDowXzWu24HjMvPntX73AksBq2TmLR2u8yng\nHOD8zNy6qhsD7AwsB8wBPA7cChyTmde0XeJ7lOTQvoDJIUmSJOltYqahHoAkSZIkdcn5lFU3xwG/\nBtYAxkfEpsCFwD3AMZSt67YG/qf+4IhYELiZcq7RQ8B3gHHA4sDpwAkDGUREDAN2rL78RYcuJwHf\nAIYBRwFnA2tXYxzW3jkiNgKuAT4CXEA5r+lsypZ1P4uI3Wrdx1XlmH6G96mqPKO69v7AacCiwCnA\nIcB4YB3giupn9y+ZOYGSjFunSsxJkiRJehswOSRJkiSpF60EPApsmJmHVatifg7MTUnQbJaZX8zM\ngymrbx4B1o+I+WvXOBZ4N/D1zNwgMw/OzD2B9wN3A7tExIcHMJZlgcWAhzPznnpDRCwP7ERZLbRy\nZh6YmV8DVgWeoSSi2h1A2QXic5m5S2YekZlfArat2g+uElJQkj6vA9tHxGxtzz0S2AR4kpIAAvgy\n8DKwUmaOra79n9XP6DXKOVDtLq3KTQbws5AkSZI0AzA5JEmSJKkXzQJ8q23bt+taZWZe26qstnm7\nofryPQARMTcl2fIYZcUQtf7PAYdXX+7IW1ulKq/t0PaJqjwzM/9ee44+4Jv9XG8ssCVwUVv9eOCf\nwILAQtV1HgKuAuatPVfL5sAI4JzMfLWqmwfoq67zL5mZwFyZuUWH8dxWlSv3M15JkiRJMxjPHJIk\nSZLUi14Gsq3uuaq8s0P/VtuIqlwZmBm4H1gsItr7t84mWnEAY3lnVU7q0LZsVd7eoe0OyllCs9cr\nM/NmynZ3RMQclDOHZq6anwbmr30fULbA+yhla7lza/WtlUb17fQuppwhNCEijgLGZ+bj1fO+IWFU\n0/pZvKufdkmSJEkzGJNDkiRJknrR022rhqCsiAH4R4f+rbbWdmwLVuWalDN1+rPQAMYyX1U+OYW2\np9obMvP1iHiKtuRQRMwHHEY5J2mBATz/+cCzwEYR8c7MfCQiRgEbAXdn5k21vmMo28dtQzl7iIi4\nk7JK6cTM7JTgan1f83dokyRJkjQDMjkkSZIkSW/WShbdDBwxhX6vDOBac1fl0x3aWsmo9kRWyxu2\nAo+I2YFrKCuO/ggcSVmR9FLV5TRgVP0xmfliRPwM+CLwmeoxWwDDeeOqITJzMrBdROxP2XZuY2Ad\nYH9gr4j4ZGaO541a39coJEmSJL0tmBySJEmSpDd7tCr7MvOCabzWs1U5d4e2fhMrETEz5ayguk9Q\nEkN3AKtn5ou1/jMBs/YzhtMpyaHtKMmhT1MSUmd26pyZE4FjgWMjYiSwJ/At4CRg0bbure/rmX6e\nW5IkSdIMZqa37iJJkiRJjfN74FXgAxHxpu3SImL2iFhkgNdqbbvWaQu4u6vyPzq0rURZ3VM3uiqv\nrCeGKmsDc3YaQGZOAO4BVoyIdYGPANdk5kP1fhGxWLVtXf2xz2XmYZSfySIRsSBv1Pq+nuj03JIk\nSZJmPCaHJEmSJKlNZj4DnAfMBhzSoct3gIcj4vMDuFxrFVKnZFJri7bPRsS/VhZVq4AO6tD/r1W5\nbL0yIkYD3+ff5ynN0+Gxp1flaZTPgme0XWNT4CHg+IgY1tY2DyUxNZk3b4/3zqp8pMNzSpIkSZoB\nua2cJEmSJHX2VWB1YPeI+ABwOSVZtAGwCnA9cM4ArnNLVa7T3pCZ10fEhZTt4m6OiHOq5/gI8AJl\n+7jlag+5hLISaYOIuIByJtLilO3iDgTWB7akbAd3Vmb+uPbYM4DDKEmeFyjJr7pLgSuATwEREZdR\nEkELU84oGgUckJnt5yytWJW3vvWPQpIkSdKMwJVDkiRJktRBZj5KSQIdCSwIHEBJGM0OHAxskJkv\nDOBSd1BW/CweEUt1aN++eo4RwH7ADsCNwKbAS21j+gclcXQ5ZRu5fSlb0o3JzB8C3wTuAlarHl9/\n7F8pyR+ACzLzubb214CPAWMpW+rtTDlnaAfK9ndbZ+a3O4x/46oc36FNkiRJ0gxoWF9f31CPQZIk\nSZJ6WkQcAewP7JeZ3x3CcRwD7E1JbF3xVv0HcL3VgBuA32Xm2tN6PUmSJEmDw5VDkiRJktR9x1G2\nctstIoYPxQAiYk5gJ+Ae4MrpdNm9q/K/p9P1JEmSJA0Ck0OSJEmS1GWZ+QjwXcr5QHsM0TC+B8wL\nHJWZ07yFRESsDGwLXJWZF03r9SRJkiQNHreVkyRJkqRBEBGzAtcDSwMfzMz7BuE5lwc+DmwIrAf8\nhrKl3GvTeN3hwC3AEsDymfmXaRyqJEmSpEHkyiFJkiRJGgSZ+SqwFfA8cF61zVu3LQscDnwQOBnY\nfFoTQ5UTgPcD25sYkiRJkt5+XDkkSZIkSZIkSZLUIK4ckiRJkiRJkiRJahCTQ5IkSZIkSZIkSQ1i\nckiSJEmSJEmSJKlBTA5JkiRJkiRJkiQ1iMkhSZIkSZIkSZKkBjE5JEmSJEmSJEmS1CAmhyRJkiRJ\nkiRJkhrE5JAkSZIkSZIkSVKDmBySJEmSJEmSJElqEJNDkiRJkiRJkiRJDWJySJIkSZIkSZIkqUFM\nDkmSJEmSJEmSJDWIySFJkiRJkiRJkqQG+T+yI0LPxtnl/gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "AIIO6GhdH89m", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Dependencies & Prerequisites\n", + "\n", + "
\n", + " Tensorflow Probability is part of the colab default runtime, so you don't need to install Tensorflow or Tensorflow Probability if you're running this in the colab. \n", + "
\n", + " If you're running this notebook in Jupyter on your own machine (and you have already installed Tensorflow), you can use the following\n", + "
\n", + "
    \n", + "
  • For the most recent nightly installation: pip3 install -q tfp-nightly
  • \n", + "
  • For the most recent stable TFP release: pip3 install -q --upgrade tensorflow-probability
  • \n", + "
  • For the most recent stable GPU-connected version of TFP: pip3 install -q --upgrade tensorflow-probability-gpu
  • \n", + "
  • For the most recent nightly GPU-connected version of TFP: pip3 install -q tfp-nightly-gpu
  • \n", + "
\n", + "Again, if you are running this in a Colab, Tensorflow and TFP are already installed\n", + "
" ] - }, - "metadata": { - "image/png": { - "height": 331, - "width": 835 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.bar(days_range_, data_, color=TFColor[3])\n", - "plt.bar(tau_ - 1, data_[tau_ - 1], color=\"r\", label=\"user behaviour changed\")\n", - "plt.xlabel(\"Time (days)\")\n", - "plt.ylabel(\"count of text-msgs received\")\n", - "plt.title(\"Artificial dataset\")\n", - "plt.xlim(0, 80)\n", - "plt.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "ulb46iQIIAxn" - }, - "source": [ - "It is okay that our fictional dataset does not look like our observed dataset: the probability is incredibly small it indeed would. TFP's engine is designed to find good parameters, $\\lambda_i, \\tau$, that maximize this probability. \n", - "\n", - "\n", - "The ability to generate an artificial dataset is an interesting side effect of our modeling, and we will see that this ability is a very important method of Bayesian inference. We produce a few more datasets below:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 319 - }, - "colab_type": "code", - "id": "vrLFYvVzIAxp", - "outputId": "1feb58e1-242f-433f-8cd4-035a588ae7ea" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmoAAAJdCAYAAAAydCjoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuQpVV5L+Df4HhBLo0oeAmKmsAy\n5dFzkIRoEkvLgnhyMCVeyhCPUZOcUx4kCFho1IRoiDF/UMkxEI0ppQArxlQlwRgumotIvOBhNCNq\nEn1n4qVgvIGJDBEFNfT5Y++uaZvuYWb27r325Xmqur6q9a397Xd377Uv/a53rS3Ly8sBAAAAAABg\n8g7qHQAAAAAAAMCikqgBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA\n6ESiBgAAAAAAoBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhka+8ARrV79+7l3jEAAAAAAADz\nbWlpactmXFdFDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHQiUQMAAAAAANCJRA0AAAAAAEAnEjUw\nZ3bu3JmdO3f2DgOmgvEAexgPsIfxAAPGAuxhPMAexgNMnkQNAAAAAABAJxI1AAAAAAAAnWztHcC8\nOOvqW0a6/cWnHj2mSAAAAAAAgFmhogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6kagBAAAAAADo\nZGvvAAAm6ayrbxnp9hefevSYIgEAAAAAUFEDAAAAAADQjUQNAAAAAABAJxI1AAAAAAAAnYy8R01r\n7bIkL9lLl3Or6s3DvgcneW2S05Mcm+T2JNcmOb+qdowaCwB7jLIfj714AAAAAGAyRk7UrPLyJLeu\n035jkrTWtiR5b5KTk1ya5LeSPCLJeUk+1lo7qao+P8Z4AAAAAAAApto4EzXvq6ov7eX86UlOSXJh\nVb16pbG19oEkn0hyYZLnjjEeAAAAAACAqTbJPWpePDxetLqxqrYnuT7Js1prR0wwHgAAAAAAgK7G\nnqhprT2gtbZepc5JSW6uql3rnLshyX2TPGnc8QAAAAAAAEyrcS59dmZr7flJHp3k7tbax5NcUFXX\ntNYOS3JkktrgtjcNj49Ncu04gtm5c+c4LrMflka69eTjZd55Tm1kkcbqgT/W2Xqc927eHg+MwniA\nPYwHGDAWYA/jAfYwHlhkxx133ETvb5yJmmcmeVOSLyd5YpJXJbmqtfbCJB8a9vn2Bre9Y3g8bIzx\nADAmF+0YLcH1iuN3jykS2H+evwAAAJtrlO9dvnPBeBI1v5fk3Umuq6q7hm3XtNb+OsmNw/M/Pob7\n2S+Tznhlxy0j3Xzi8TK3VmY7eE5tYJHG6giP9R6Pc0Z/b8YDSWb2+TtuxgPsYTzAgLEAexgPsMcB\njYdx/g8CFtDIiZqq+kySz6zT/i+tteuSnJLkqGHzIRtc5tDh8fZR44FxOevq0f6xd/GpR48pEgBg\nrVHep71HAwCw6Pb+eXpYHbOX5IvP1DBeB23y9b8+PD4wya1Jjtmg37HDo4UPAQAAAACAhTFSRU1r\n7fAkP5fk36rq/et1GR5vTnJ9kme31h5VVTet6ffUJN9Jsn2UeJg9qlYAYHzMigMA2JjPSgBMq1Er\nar6b5C1JLmutPWT1idbayRnsTbOtqnYluWR46tw1/Z6W5MQkf1ZV3xoxHgAAAAAAgJkxUkVNVd3Z\nWjs7yWVJtrXW3pbka0lOSHJGkt1JXjbse2Vr7Yok5wwrca7NYMmz85LsSvK6UWIBmDQVYQAAAADA\nqEbeo6aqLk/yjCT/mkGy5ZIkz0/yriRPqqobV3X/hSSvz2Cps0uTnJ3kqiQ/WVVfGzUWAAAAAACA\nWTJSRc2Kqvpgkg/uQ7/vJrlg+MOEmPXPpI3ynPN8A6bd0hFHjHT73bfdNqZIgEnxeRqgH98vAVgE\nI1fUAAAAAAAAcGDGUlEDsFnMYJ1PZsUB08R7DQAAAD2pqAEAAAAAAOhERQ37zUx4gPng9RwAAJh1\nvtcA80BFDQAAAAAAQCcqagCmhD0SYA+z4gAAAIBFoaIGAAAAAACgExU1U8pMYu7Nxs+RpcFhx8bP\nIc8RmIxFqpJapMcKAACwL3xPAvaVihoAAAAAAIBOVNQAZngAwBh5XwUAAGB/qKgBAAAAAADoREUN\nADNt7zPX7dkEAMwelXnTwd8BoI9Fev1dpMfK3knUMFe8uAEAzCaf4w7cKL+7Rf69AQDAtLD0GQAA\nAAAAQCcqagBgRphtPn/8TWHzjLI05maPLWMfgM3mvQZgtqioAQAAAAAA6ERFDQAAAEnMwD5Qfm/T\nwd8BAJhVKmoAAAAAAAA6UVEDAMC6RpmZbFYywHxStTId/B2mwzj/Dv6mwLTxujRZKmoAAAAAAAA6\nUVEDEyILDQDMG1VXAKzluy+zbJqfv9McGzA6FTUAAAAAAACdzG1Fzdoss6wxAAAAK8xMBgCYHNX4\ne6eiBgAAAAAAoJO5ragBgANhdi0AjI+ZkwBAbz6PMAtU1AAAAAAAAHSiogYAgE2nWg0YldcR2Dxm\nmwNAXypqAAAAAAAAOlnYihqzsQAAWDQ+A8Ni2njsLw0OOzZ+bdjscb8olRxefwGAvVFRAwAAAAAA\n0IlEDQAAAAAAQCcSNQAAAAAAAJ0s7B41AAAwCxZl/wYAYHr5PAKwuVTUAAAAAAAAdKKiBgAAAACY\niFGqcxIVOsB8UlEDAAAAAADQiYoaAAAAAACYcfaTml0qagAAAAAAADqRqAEAAAAAAOhEogYAAAAA\nAKATe9QAAAAAAAAzYZS9eJLp3I9HRQ0AAAAAAEAnEjUAAAAAAACdSNQAAAAAAAB0IlEDAAAAAADQ\nydbeAQAAAAAAwLSbx03smQ4qagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoA\nAAAAAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAA\nAAAAoBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAA\nAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAA\noBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6\nkagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAAoBOJ\nGgAAAAAAgE62TvoOW2tHJnl9ktOSPDzJN5Jck+T8qvrqpOMBAAAAAADoZaIVNa21g5Ncl+SMJH+Z\n5KVJ/jjJzyf5aGvtQZOMBwAAAAAAoKdJV9Sck+QJSc6sqreuNLbWPpXkPUnOT/LKCccEAAAAAADQ\nxZbl5eWJ3Vlr7bNJHpnkwVV116r2LUluSnL/JA+tqn0Oavfu3ZN7AAAAAAAAwEJaWlrashnXndjS\nZ621w5M8Lsn21UmaJBkmZrYlOSrJYyYVEwAAAAAAQE+T3KPm2OFx1wbnbxoeHzuBWAAAAAAAALqb\nZKLmsOHx2xucv2NNPwAAAAAAgLk2yUQNAAAAAAAAq0wyUXP78HjIBucPXdMPAAAAAABgrm2d4H19\nMclykmM2OL+yh83O/bno0tLSllGCAgAAAAAA6GXL8vLyxO6stXZjkuOSPLiq7lzVfp8kX0lyV1U9\namIBAQAAAAAAdDTpPWouSfLAJC9b0/6iJEcneceE4wEAAAAAAOhm0hU1903y4SQnJrk4ySeSPD7J\nKzNY8uzJVfXtiQUEAAAAAADQ0UQTNUnSWjs8yRuSPC/Jw5PckuQ9SV5fVf8+0WAAAAAAAAA6mnii\nBgAAAAAAgIFJ71EDAAAAAADAkEQNAAAAAABAJxI1AAAAAAAAnUjUAAAAAAAAdCJRAwAAAAAA0IlE\nDQAAAAAAQCcSNQAAAAAAAJ1s7R3AqFprRyZ5fZLTkjw8yTeSXJPk/Kr6as/YYDO11u6X5I1Jzkvy\noap6+jp9Dk7y2iSnJzk2ye1Jrs1gfOyYXLSwOVprRyX5zSTPSfLQJLcl+UiS366q7Wv6Gg/Mtdba\nE5K8OslPJ3lEBs/x65O8qapuWNXPWGDhtNYuSHJ+ksur6qWr2g9Kck6SX0pyXJI7k3w0yRuq6uMd\nQoWxaq1dluQle+lyblW9edjX+wNzr7X2s0lek+RJSb6f5JNJ3lhV167pZzwwt1pry/vQ7TFV9aVh\nf+OBudZae3yS1yV5RpKHZPC/peuTXFhVH1nVb1PHwpbl5X0Zm9Np+Mu5Icnjkvxhkk9k8AXrvCS3\nJjmxqr7ZL0LYHK21luRPkxyf5NAk/7A2UdNa25Lkb5KcnOTSDF44HpHB+Nia5KSq+vwEw4axaq0d\nneQfkzw4yR8l+VQGY+IVGTzHf6qqPjnsazww11prT0ny9xl8oHxLkpuT/GiSX03ygCRPr6rrjQUW\n0fCL1/Yk98s9EzXvSPIrSa5I8t4kS0nOTvJDSZ5RVR+beMAwRqsSNS/P4DvyWjdW1b96f2ARtNZ+\nOcklST6U5PIkhyU5N4Pn+s9U1XXDfsYDc6219vy9nP7dDD4PPaaq7jAemHettRMymPD73QzyCzuS\nPDLJmUkeluS0qrpyEmNh1itqzknyhCRnVtVbVxpba59K8p4MZs29slNssClaaw/K4J8NO5P8WJLP\nbdD19CSnZJD9ffWq238gg6TmhUmeu7nRwqZ6Y5Jjkjyvqq5YaWytfTzJX2Uwy+EFw2bjgXn3tiRb\nMkhQfmmlsbW2LYPPRL+W5NkxFlgww4qZtyf55yQnrDn3lAySNH9eVS9Y1X5FBl/Q3pLBjGuYB+9b\n/f6wDu8PzLXW2sOSXJTBxJZnVtXdw/Yrk3wsyalJrht2Nx6Ya1X1F+u1t9ZOS/IjSV5aVXcMm40H\n5t1vJHlgkudU1d+uNA6/E3w2yQVJrswExsKs71Hz4iR3ZDAjYrX3JtmV5EXDbBfMk/sleWeSJ1dV\n7aXfi4fHi1Y3DpeDuj7Js1prR2xOiDARX0ny7gz+Cb3a+5MsJ3niqjbjgbk1/Ef05UnOXuefcH83\nPD5qeDQWWDRnJHlKBjPd1loZD3+wurGqvpzBe8sJw2ocWATeH5h3L0lySAZLW9690lhVX6iqh1bV\nq1b1NR5YOK21w5JcnOTDVXX5qlPGA/Puh4fHD69urKrPJbklyaOHTZs+FmY2UdNaOzyDJc+2V9Vd\nq89V1XKSbUmOSvKYDuHBpqmqr1fVGVV15710PSnJzVW1a51zNyS5b8wSZYZV1Ruq6oXD1/zVDsug\nsuD2VW3GA3Orqu6uqt+vqrevc/pxw+Onh0djgYXRWjsmg+U7/mTt3gNDJyX5zwy+N6y1sq/TT2xS\neNBFa+0BrbX1Vtbw/sC8OyXJf2RQPZPW2n1aa/ffoK/xwCI6P4NlnM5c0248MO8+Ozwev7qxtbaU\n5Igk/zRs2vSxMLN71Aw3zP30tm3rfa8CAAAAAAAYn6WlpR9Ywau1dnaSNyf531X1jgO97sxW1GQw\nYxoAAAAAAKCHlT2dRspXzHKiBgAAAAAAYKbNcqLm9nvvAgAAAAAAsCkOHR5HylfMcqLmi0lmc4Md\nAAAAAABg1h07PO4c5SIzm6ipqjuSfLp3HAAAAAAAwEJ6apLvJNk+ykVmNlEzdEnvAGDa7Ny5Mzt3\njpTAhblhPMAexgPsYTzAgLEAexgPsIfxAPumtfa0JCcm+bOq+tYo19o6npC6eVuSi3oHAQAAAAAA\nzLfW2iVJrs1gybPzkuxK8rpRrzvTiZqq+t7u3bt7hwEAAAAAAGzgrKtvOeDbXnzq0WOMZGRPTfKL\nSb6Z5Kokv15VXxv1ojOdqAEAAAAAAJiEqjp+M64rUQMAADBBo8wmTKZuRiEAADCig3oHAAAAAAAA\nsKgkagAAAAAAADqx9BkAAADAGpYphM1hbAHck4oaAAAAAACATlTUAAAAAADAhKkwY4WKGgAAAAAA\ngE4kagAAAAAAADqx9BkAACwISysAAABMHxU1AAAAAAAAnaioAQAAulPtAwDTa5T3ae/RAPdOogYA\nAAAAgLkk0cgssPQZAAAAAABAJypqAAAAAGA/WbYTgHFRUQMAAAAAANCJihoAAACSmB3OvfMcAQAY\nP4kaAAAAgBkiYQabY9xja5HG6iiPdZYeJ9NhHseWpc8AAAAAAAA6UVEDAABjNI+zuwA2ixnYAAAS\nNQAALDiJFQAAAHqy9BkAAAAAAEAnKmoAAIC5s/dKqaXBYcf6fVRJ0ZtKP2bZNG3GbiwwTxbpvWGa\nH+s0x8ZsU1EDAAAAAADQiYoaAAAApp4ZrAD7zmsmwGwZOVHTWrssyUv20uXcqnrzsO/BSV6b5PQk\nxya5Pcm1Sc6vqh2jxgIAAAAsJv+YBgBm1Tgral6e5NZ12m9MktbaliTvTXJykkuT/FaSRyQ5L8nH\nWmsnVdXnxxgPAAAAAADAVBtnouZ9VfWlvZw/PckpSS6sqlevNLbWPpDkE0kuTPLcMcYDAABsIhs8\nc288RwAAZpNK1cma5B41Lx4eL1rdWFXbW2vXJ3lWa+2IqrptgjEBAAAAbCr/7AKmzd5fl5YGhx0b\n9/G6BON10Lgv2Fp7QGttvQTQSUlurqpd65y7Icl9kzxp3PEAAAAAAABMq3FW1JzZWnt+kkcnubu1\n9vEkF1TVNa21w5IcmaQ2uO1Nw+Njk1w7xpgAAADmmuXFuDcbP0fMmAYAmAbjTNQ8M8mbknw5yROT\nvCrJVa21Fyb50LDPtze47R3D42HjCmbnzp3juhTMJGMA9jAeYA/jYT1LI936nr/TcV9vnKbnsW7+\n722csY3bND/WRYptmi3S32E+Y7vn9aY5tnGbnsd6II9z/27j7zDpa61/vXGant/bPa83zbGNdj2x\njfN64zQ9j7XH7+24444b6T721zgSNb+X5N1Jrququ4Zt17TW/jrJjcPzPz6G+wEAAICxuGjHaF/w\nX3H87jFFAgDAohs5UVNVn0nymXXa/6W1dl2SU5IcNWw+ZIPLHDo83j5qPCsmnfGCabGSETYGwHiA\n1eZtPIx1qae9LPmzL+7xOx339cZpih7rpv/exhjb2DcBn+LHKrYDu57nSJ/rTXNs97jeNMc2blP0\nWPfncR7QZyV/h4lfa93rjdMU/d7ucb1pjm3E64ltfNeb1+9JM/U6coAO2uTrf314fGCSW5Mcs0G/\nY4fHWapFBwAAAAAAGMlIFTWttcOT/FySf6uq96/XZXi8Ocn1SZ7dWntUVd20pt9Tk3wnyfZR4gEA\ngHljo3gAGI+9v6cOl0Pcyyxt76sAbJZRlz77bpK3JLmztfZfquobKydaaydnsDfNtqra1Vq7JMmz\nk5w7/Fnp97QkJya5tKq+NWI8AAAAAMCCMKkFmAcjJWqq6s7W2tlJLkuyrbX2tiRfS3JCkjOS7E7y\nsmHfK1trVyQ5Z1iJc20GS56dl2RXkteNEgsAAAAAAMCsGbWiJlV1eWvtpiSvzSDZckgGyZp3Jfmd\nqvrCqu6/kOQ1SV6U5BeTfDPJVUl+vaq+NmosAAAAAOwfFQkA0NfIiZokqaoPJvngPvT7bpILhj8A\nAAAAAAAL7aDeAQAAAAAAACyqsVTUAAAAAAAHZpTl5xJL0AHMOhU1AAAAAAAAnUjUAAAAAAAAdCJR\nAwAAAAAA0IlEDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHQiUQMAAAAAANDJ1t4BwKI46+pbRrr9\nxacePaZIAAAAAACYFipqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAAoBOJGgAAAAAAgE4kagAAAAAA\nADqRqAEAAAAAAOhka+8AAJh+Z119y0i3v/jUo8cUCQAAAADMF4kagDk1SnJFYgUAAAAAJsPSZwAA\nAAAAAJ2oqAEARmZ5PAAAAIADo6IGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6GRr\n7wAAYBR738R+aXDYsXEfm9gDAAAA0JNEDQATt/fkyt5JrAAAAAAwTyx9BgAAAAAA0MnCVtSMMps7\nMaN7Wvm7cm88R2APlU3zZ5qXAlw64oiRbr/7ttvGFAkAAABMFxU1AAAAAAAAncxtRc3aGaVm/o6P\nGdhMkgoYAAAAAGCezW2iBth3406GSObBgETjfPJ3BQAAAMbJ0mcAAAAAAACdSNQAAAAAAAB0Yumz\nKWXpqP4sbQMwH6b59XyaYwMAAAAmQ0UNAAAAAABAJxI1AAAAAAAAnUjUAAAAAAAAdGKPGphRG+9r\nsDQ47Nh43wN7GoyHvSWYNM85AAAAgPkjUQMwJfwTfjr4OwAAAAAwSZY+AwAAAAAA6ERFDQAA6xql\nwkx1GQAAAOwbiRq6ssQQAAAAAACLzNJnAAAAAAAAnaioWQCqVgAAAAAAYDqpqAEAAAAAAOhERQ0A\nMHVsYg8AAAAsChU1AAAAAAAAnUjUAAAAAAAAdGLpszEZZYmWxDItAAAAAACwiFTUAAAAAAAAdCJR\nAwAAAAAA0IlEDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHQiUQMAAAAAANCJRA0AAAAAAEAnEjUA\nAAAAAACdSNQAAAAAAAB0IlEDAAAAAADQiUQNAAAAAABAJxI1AAAAAAAAnUjUAAAAAAAAdCJRAwAA\nAAAA0IlEDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHSyddJ32Fo7Msnrk5yW5OFJvpHkmiTnV9VX\nJx0PAAAAAABALxOtqGmtHZzkuiRnJPnLJC9N8sdJfj7JR1trD5pkPAAAAAAAAD1NuqLmnCRPSHJm\nVb11pbG19qkk70lyfpJXTjgmAAAAAACALrYsLy9P7M5aa59N8sgkD66qu1a1b0lyU5L7J3loVe1z\nULt3757cAwAAAAAAABbS0tLSls247sSWPmutHZ7kcUm2r07SJMkwMbMtyVFJHjOpmAAAAAAAAHqa\n5B41xw6PuzY4f9Pw+NgJxAIAAAAAANDdJBM1hw2P397g/B1r+gEAAAAAAMy1SSZqAAAAAAAAWGWS\niZrbh8dDNjh/6Jp+AAAAAAAAc23rBO/ri0mWkxyzwfmVPWx27s9Fl5aWtowSFAAAAAAAQC9blpeX\nJ3ZnrbUbkxyX5MFVdeeq9vsk+UqSu6rqURMLCAAAAAAAoKNJ71FzSZIHJnnZmvYXJTk6yTsmHA8A\nAAAAAEA3k66ouW+SDyc5McnFST6R5PFJXpnBkmdPrqpvTywgAAAAAACAjiaaqEmS1trhSd6Q5HlJ\nHp7kliTvSfL6qvr3iQYDAAAAAADQ0cQTNQAAAAAAAAxMeo8aAAAAAAAAhiRqAAAAAAAAOpGoAQAA\nAAAA6ESiBgAAAAAAoBOJGgAAAAAAgE4kagAAAAAAADrZ2juAUbXWjkzy+iSnJXl4km8kuSbJ+VX1\n1Z6xwWZqrd0vyRuTnJfkQ1X19HX6HJzktUlOT3JsktuTXJvB+NgxuWhhc7TWjkrym0mek+ShSW5L\n8pEkv11V29f0NR6Ya621JyR5dZKfTvKIDJ7j1yd5U1XdsKqfscDCaa1dkOT8JJdX1UtXtR+U5Jwk\nv5TkuCR3JvlokjdU1cc7hApj1Vq7LMlL9tLl3Kp687Cv9wfmXmvtZ5O8JsmTknw/ySeTvLGqrl3T\nz3hgbrXWlveh22Oq6kvD/sYDc6219vgkr0vyjCQPyeB/S9cnubCqPrKq36aOhS3Ly/syNqfT8Jdz\nQ5LHJfnDJJ/I4AvWeUluTXJiVX2zX4SwOVprLcmfJjk+yaFJ/mFtoqa1tiXJ3yQ5OcmlGbxwPCKD\n8bE1yUlV9fkJhg1j1Vo7Osk/Jnlwkj9K8qkMxsQrMniO/1RVfXLY13hgrrXWnpLk7zP4QPmWJDcn\n+dEkv5rkAUmeXlXXGwssouEXr+1J7pd7JmrekeRXklyR5L1JlpKcneSHkjyjqj428YBhjFYlal6e\nwXfktW6sqn/1/sAiaK39cpJLknwoyeVJDktybgbP9Z+pquuG/YwH5lpr7fl7Of27GXweekxV3WE8\nMO9aaydkMOH3uxnkF3YkeWSSM5M8LMlpVXXlJMbCrFfUnJPkCUnOrKq3rjS21j6V5D0ZzJp7ZafY\nYFO01h6UwT8bdib5sSSf26Dr6UlOySD7++pVt/9ABknNC5M8d3OjhU31xiTHJHleVV2x0tha+3iS\nv8pglsMLhs3GA/PubUm2ZJCg/NJKY2ttWwafiX4tybNjLLBghhUzb0/yz0lOWHPuKRkkaf68ql6w\nqv2KDL6gvSWDGdcwD963+v1hHd4fmGuttYcluSiDiS3PrKq7h+1XJvlYklOTXDfsbjww16rqL9Zr\nb62dluRHkry0qu4YNhsPzLvfSPLAJM+pqr9daRx+J/hskguSXJkJjIVZ36PmxUnuyGBGxGrvTbIr\nyYuG2S6YJ/dL8s4kT66q2ku/Fw+PF61uHC4HdX2SZ7XWjticEGEivpLk3Rn8E3q19ydZTvLEVW3G\nA3Nr+I/oy5Ocvc4/4f5ueHzU8GgssGjOSPKUDGa6rbUyHv5gdWNVfTmD95YThtU4sAi8PzDvXpLk\nkAyWtrx7pbGqvlBVD62qV63qazywcFprhyW5OMmHq+ryVaeMB+bdDw+PH17dWFWfS3JLkkcPmzZ9\nLMxsoqa1dngGS55tr6q7Vp+rquUk25IcleQxHcKDTVNVX6+qM6rqznvpelKSm6tq1zrnbkhy35gl\nygyrqjdU1QuHr/mrHZZBZcHtq9qMB+ZWVd1dVb9fVW9f5/TjhsdPD4/GAgujtXZMBst3/MnavQeG\nTkrynxl8b1hrZV+nn9ik8KCL1toDWmvrrazh/YF5d0qS/8igeiattfu01u6/QV/jgUV0fgbLOJ25\npt14YN59dng8fnVja20pyRFJ/mnYtOljYWYTNRls2JMMKmfWc9Pw+NgJxAJTZTgT4sgYHyym/zM8\nvisxHlg8rbUjWmvHtNZOz6DK+ItJ3mAssIDekuR72Xgp5EcnuaWqvrfOOeOBeXNma+2LSb6T5K7W\n2v9rrf2PxGclFsbjknw+yX+ImD8pAAAgAElEQVRrrf1DkruS3Nla+6fhZ6YkxgOLabj/65lJ3llV\nn1nVbjywCH4nyTeTvLO19tOttYe01p6QwT40y0nOn9RY2LK8vHYi8mxorf1kko9u27beBDgAAAAA\nAIDxWVpa+oGtVlpr/yuDfTFfWVX/90CvO8sVNQAAAAAAADNtlhM1t997FwAAAAAAgE1x6PA4Ur5i\nlhM1X8xgnTgAAAAAAIBJO3Z43DnKRbaOGkVr7bIkL9lLl3Or6s3DvgcneW2S0zN4ALcnuTbJ+VW1\nY3/ut6ruaK19Osl/PZC4AQAAAAAARvDUJN9Jsn2Ui4ycqFnl5UluXaf9xiRprW1J8t4kJye5NMlv\nJXlEkvOSfKy1dlJVfX4/7/OSJBcdcMQAAAAAAAD7qbX2tCQnJrm0qr41yrXGmah5X1V9aS/nT09y\nSpILq+rVK42ttQ8k+USSC5M8dz/v822RqIEfsHPnoMruuOOO6xwJ9Gc8wB7GA+xhPMCAsQB7GA+w\nh/EAG2utXZLBKmHHZlCEsivJ60a97iT3qHnx8PgDiZWq2p7k+iTPaq0dsT8XrKrvjSk2AAAAAACA\nvXlqBiuGnZ3kqiQ/WVVfG/Wi46yoSZK01h6Q5PtV9f01p05KcnNV7VrnZjck+akkT8ogGwUAMBZn\nXX3LSLe/+NSjxxQJAAAAMMuq6vjNuO44EzVnttaen+TRSe5urX08yQVVdU1r7bAkRyapDW570/D4\n2IwpUbNSogeLyhiAPYyHRbc00q3n7fkzb48HRmE8wICxAHsYD7CH8cAim/TSf+NM1DwzyZuSfDnJ\nE5O8KslVrbUXJvnQsM+3N7jtHcPjYWOMh6GLdoz2D6pXHL97TJEAAAAAAACrjSNR83tJ3p3kuqq6\na9h2TWvtr5PcODz/42O4n/1is6tVdoy25Ivf5Wyx4RvsYTyQxPvgkPEAexgPMGAswB7GA+xhPMDk\njZyoqarPJPnMOu3/0lq7LskpSY4aNh+ywWUOHR5vHzUeAAAAAACAWTHOpc/W8/Xh8YFJbk1yzAb9\njh0eLXwIMCajbKBu83QAAAAAmIyDRrlxa+3w1tr/bK399426DI83J7k+yTGttUet0++pSb6TZPso\n8QAAAAAAAMySkRI1Sb6b5C1JLmutPWT1idbayRnsTbOtqnYluWR46tw1/Z6W5MQkf1ZV3xoxHgAA\nAAAAgJkx0tJnVXVna+3sJJcl2dZae1uSryU5IckZSXYnedmw75WttSuSnNNaOzzJtRkseXZekl1J\nXjdKLAAAAAAAALNm5D1qqury1tpNSV6bQbLlkAySNe9K8jtV9YVV3X8hyWuSvCjJLyb5ZpKrkvx6\nVX1t1FgAYJ6Nsu9QYu8hAAAAgGk0cqImSarqg0k+uA/9vpvkguEPAAAAAADAQhtLogYOlNnhAAAA\nAAAssoN6BwAAAAAAALCoJGoAAAAAAAA6kagBAAAAAADoRKIGAAAAAACgk629AwAAgP111tW3HPBt\nLz716DFGAgAAAKNRUQMAAAAAANCJihqYkFFm/iabO/t3mmMDNo+KBNgc3leBUXkdAQBYLCpqAAAA\nAAAAOlFRA4zdOGfpm004HfwdgHnmNQ6gHxW+AAAqagAAAAAAALpRUQMAADDDVCQAAMBsU1EDAAAA\nAADQiUQNAAAAAABAJ5Y+AxaKDaNhcxhbAAAAAAdGRQ0AAAAAAEAnKmrYb9O8WakZ3bB49j7ulwaH\nHRv3Me6n0zS/10wz4wEAAABmj4oaAAAAAACATlTUADBxqiVg8ah6BQAAmB2+w02WihoAAAAAAIBO\n5raiZm3GTwYPGLdxzywwU2H++Jsy61S/AQAAwOZTUQMAAAAAANDJ3FbU3Bsz4QEAAH6Q7zUAABvz\nWYnNoqIGAAAAAACgE4kaAAAAAACAThZ26TOYdRuXWi4NDjs2LsVUZglw4JS6A8wHr+cAsBhGec/3\nfs+kqKgBAAAAAADoREUNAABMsaUjjjjg2+6+7bYxRgIAk2cmPACLQEUNAAAAAABAJypqAAA6sT8C\nAADML5/3mTRViLNLRQ0AAAAAAEAnKmoAAIC5s/fZhEuDw471+5hNCCwaM7APzCJVS4zzObJIv7dF\n4nUERqOiBgAAAAAAoBMVNVNKFhqgD7O7AID95fMDAACjUFEDAAAAAADQiUQNAAAAAABAJ5Y+AwAA\nurN01HyypDPAvvE+yL3xHIH5pqIGAAAAAACgExU1AAAAAMy9vVckLA0OOzbuoyJhOqneBOaBihoA\nAAAAAIBOVNQAAADAHNt4tvl8VRDYvwH2MB64NyrMYLqoqAEAAAAAAOhERQ1swOwTAIC9syY8LJ5F\n+p60SI8VgD6817BCRQ0AAAAAAEAnEjUAAAAAAACdSNQAAAAAAAB0IlEDAAAAAADQydbeAQAAAAAA\n9GZjd5gN8zhWVdQAAAAAAAB0oqIGAAAWxDzOPJsEvzdg2nhdAuaZ17j5NMrfdRH+pipqAAAAAAAA\nOlFRAwAAMEFmiQIAAKupqAEAAAAAAOhERQ0AAAAAY6FqEAD2n4oaAAAAAACATlTUAAAAAGwiVSYA\nwN6oqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6kagBAAAAAADoRKIGAAAAAACg\nk629AwAAAIB7c9bVt4x0+4tPPXpMkQAAwHipqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoA\nAAAAAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAA\nAAAAoBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAA\nAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAA\noBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6\nkagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6GTrpO+wtXZkktcn\nOS3Jw5N8I8k1Sc6vqq9OOh4AAAAAAIBeJlpR01o7OMl1Sc5I8pdJXprkj5P8fJKPttYeNMl4AAAA\nAAAAepp0Rc05SZ6Q5MyqeutKY2vtU0nek+T8JK+ccEwAAAAAAABdbFleXp7YnbXWPpvkkUkeXFV3\nrWrfkuSmJPdP8tCq2uegdu/ePbkHAAAAAPz/9u4+2tpzvhP49yEi8vbES+KlKaKNH2NYEyqlGGpR\n7agRtCZVRWtmaaQaMaFo06Sq+oelo0mjOpISq8UabVRD6IuItxhBxEvxS5BMkiqhRUgktJ75477P\nyu5xzpPIOWffz9n781nrrGs9133tfa5nn/3b977v3/UCALCUdu7cuWMrnnduS59V1YFJ7pXkwtkk\nTZKMiZkLkhyc5LB59QkAAAAAAGBK89yj5m5jeeU6xy8fy3vMoS8AAAAAAACTm2ei5oCxvHad49es\nagcAAAAAALDQ5pmoAQAAAAAAYMY8EzVXj+V+6xzff1U7AAAAAACAhbbXHH/XpUl2JTl0neMre9hc\n8oM86c6dO3dspFMAAAAAAABT2bFr1665/bKquijJ4Ulu393XzdTfMskXk1zf3XedW4cAAAAAAAAm\nNO89as5Ism+SZ62qf2qSQ5KcPuf+AAAAAAAATGbeM2puleR9SR6Q5NQkH0lynyTPy7Dk2YO6+9q5\ndQgAAAAAAGBCc03UJElVHZjk5CRPSnLnJFcleUuSk7r7X+baGQAAAAAAgAnNPVEDAAAAAADAYN57\n1AAAAAAAADCSqAEAAAAAAJiIRA0AAAAAAMBEJGoAAAAAAAAmIlEDAAAAAAAwEYkaAAAAAACAiew1\ndQc2qqpul+SkJEcluXOSryY5J8mJ3f1PU/YNtlJV7Z3kpUlOSPLe7n7EGm1uk+RFSY5OcrckVyc5\nN0N8XDy/3sLWqKqDk/x2kickuWOSryd5f5Lf7e4LV7UVDyy0qrpvkhckeWiSu2R4j5+f5GXd/aGZ\ndmKBpVNVL0lyYpIzu/sZM/W3SPLcJL+c5PAk1yX5QJKTu/vDE3QVNlVVvS7J03fT5PjufuXY1vmB\nhVdVP5PkhUnun+Rfk3wsyUu7+9xV7cQDC6uqdt2EZod192Vje/HAQquq+yR5cZJHJrlDhntL5yd5\neXe/f6bdlsbCjl27bkps7pnGF+dDSe6V5I+SfCTDBdYJSb6S5AHd/bXpeghbo6oqyRuS3DPJ/kne\nszpRU1U7kvxNkkcleW2GD467ZIiPvZIc2d2fn2O3YVNV1SFJPprk9kn+OMnHM8TEr2d4jz+kuz82\nthUPLLSqenCSv8/whfK0JFckuXeSX0uyT5JHdPf5YoFlNF54XZhk73x/oub0JM9MclaStybZmeS4\nJD+U5JHd/cG5dxg20Uyi5tkZrpFXu6i7P+f8wDKoql9JckaS9yY5M8kBSY7P8F7/qe4+b2wnHlho\nVfVzuzn8+xm+Dx3W3deIBxZdVR2RYcDvdzLkFy5O8sNJjk1ypyRHdffZ84iF7T6j5rlJ7pvk2O5+\n1UplVX08yVsyjJp73kR9gy1RVbfNcLPhkiQ/luSz6zQ9OsmjM2R/XzDz+HdlSGq+PMkTt7a3sKVe\nmuTQJE/q7rNWKqvqw0n+KsMohyeP1eKBRffqJDsyJCgvW6msqgsyfCf6jSSPj1hgyYwzZl6T5B+S\nHLHq2IMzJGne3N1Pnqk/K8MF2mkZRlzDInjH7PlhDc4PLLSqulOSUzIMbHlMd39vrD87yQeTPDbJ\neWNz8cBC6+6/WKu+qo5K8qNJntHd14zV4oFF91tJ9k3yhO7+25XK8ZrgM0lekuTszCEWtvseNU9L\nck2GERGz3prkyiRPHbNdsEj2TvL6JA/q7t5Nu6eN5SmzleNyUOcn+dmqOmhrughz8cUkb8xwE3rW\nO5PsSnK/mTrxwMIab0SfmeS4NW7C/d1Y3nUsxQLL5pgkD84w0m21lXj4w9nK7v7HDOeWI8bZOLAM\nnB9YdE9Psl+GpS2/t1LZ3V/o7jt29/Nn2ooHlk5VHZDk1CTv6+4zZw6JBxbdj4zl+2Yru/uzSa5K\ncvexastjYdsmaqrqwAxLnl3Y3dfPHuvuXUkuSHJwksMm6B5sme7+cncf093X3UjTI5Nc0d1XrnHs\nQ0luFaNE2ca6++Tufsr4mT/rgAwzC66eqRMPLKzu/l53/0F3v2aNw/cay0+MpVhgaVTVoRmW7/iz\n1XsPjI5M8m8ZrhtWW9nX6ce3qHswiarap6rWWlnD+YFF9+gk38wweyZVdcuquvU6bcUDy+jEDMs4\nHbuqXjyw6D4zlvecrayqnUkOSvKpsWrLY2Hb7lEzbpj7iQsuWOu6CgAAAAAAYPPs3Lnz363gVVXH\nJXllkv/R3aff3OfdtjNqMoyYBgAAAAAAmMLKnk4bylds50QNAAAAAADAtradEzVX33gTAAAAAACA\nLbH/WG4oX7GdEzWXJtmeG+wAAAAAAADb3d3G8pKNPMm2TdR09zVJPjF1PwAAAAAAgKX0sCTfTnLh\nRp5k2yZqRmdM3QHY01xyySW55JINJXBhYYgHuIF4gBuIBxiIBbiBeIAbiAe4aarq4UkekORN3f2t\njTzXXpvTpcm8OskpU3cCAAAAAABYbFV1RpJzMyx5dkKSK5O8eKPPu61n1HT3d6fuAwAAAAAAsBQe\nluS1SY5L8rYkP9HdX9rok273GTUAALDQnvP2q272Y0997CGb2BMAAIDl1t333Irn3dYzagAAAAAA\nALYziRoAAAAAAICJSNQAAAAAAABMxB41AAAA7PE2sl9TYs8mAAD2XGbUAAAAAAAATESiBgAAAAAA\nYCISNQAAAAAAABORqAEAAAAAAJiIRA0AAAAAAMBEJGoAAAAAAAAmstfUHQAAYHM85+1X7ebozqG4\neP02pz72kM3tEAAAAHCjzKgBAAAAAACYyIZn1FTV65I8fTdNju/uV45tb5PkRUmOTnK3JFcnOTfJ\nid198Ub7AgAAAAAAsJ1s5tJnz07ylTXqL0qSqtqR5K1JHpXktUl+J8ldkpyQ5INVdWR3f34T+wMA\nAAAAALBH28xEzTu6+7LdHD86yaOTvLy7X7BSWVXvSvKRJC9P8sRN7A8AsBu7389k9+xlAgAAALA5\n5rlHzdPG8pTZyu6+MMn5SX62qg6aY38AAAAAAAAmtemJmqrap6rWmqlzZJIruvvKNY59KMmtktx/\ns/sDAAAAAACwp9rMpc+OraqfS3L3JN+rqg8neUl3n1NVByS5XZJe57GXj+U9kpy7GZ255JJLNuNp\nYNsSA3AD8bCenTf7kV7TPdXN/5sm/q57LrG6Vbw+243PuK3itYEbiAe4gXhgmR1++OFz/X2bmah5\nTJKXJfnHJPdL8vwkb6uqpyR579jm2nUee81YHrCJ/QHYVk65eGM3H379nt/YpJ4AAFtps8/5G3k+\n3x8AAGB6m5GoeUWSNyY5r7uvH+vOqaq/TnLRePyBm/B7fiDzznjBnmJltIMY2IYuvvkbuyf+5msR\nDzdiA+85r+keyufIYhKrm27y88Nmx+qyvEd8xm26yWMB9iDiAW4gHmD+Npyo6e5PJvnkGvWfrqrz\nkjw6ycFj9X7rPM3+Y3n1RvvD9vKct2/sYuvUxx6yST0BgJvGuQsAAADYTLfY4uf/8ljum+QrSQ5d\np93dxtLChwAAAAAAwNLY0IyaqjowyeOS/HN3v3OtJmN5RZLzkzy+qu7a3ZevavewJN9OcuFG+gPs\nGTYy2txIc6ZmtsTNs9mvm88Rboz3CAAAAItio0uffSfJaUmuq6r/2N1fXTlQVY/KsDfNBd19ZVWd\nkeTxSY4ff1baPTzJA5K8tru/tcH+AABsGxKDAAAAwIYSNd19XVUdl+R1SS6oqlcn+VKSI5Ick+Qb\nSZ41tj27qs5K8txxJs65GZY8OyHJlUlevJG+AAAAAAAAbDcbnVGT7j6zqi5P8qIMyZb9MiRr/jzJ\n73X3F2aa/0KSFyZ5apJfSvK1JG9L8pvd/aWN9gVgnpZpJPwy/V8BgM1jmUIAALhxG07UJEl3vzvJ\nu29Cu+8kecn4AwAAAAAAsNQ2JVGzHRkdDgAAe449+fv5ntw3AABg+7vF1B0AAAAAAABYVks7o2aZ\nGAG4mNb/u+4ciovX/7v7m8L25PMctobYWky7/7vu/vuSvykAADBPZtQAAAAAAABMxIyaTWIkJgAA\nezrfWQEAAPY8ZtQAAAAAAABMxIwaAAAAlo4ZZgAA7CnMqAEAAAAAAJiIGTWA0YTAQvMZd/Nt5LVb\n5tcNWD7ONQAAbIQZNQAAAAAAABMxo2YPZQQrAMD2ZGQ9sFE7DzpoQ4//xte/vkk9AQBgHhY2UbP6\nAtkFL2xPm32za5lunkn4Tm+Z3m9wY8QDAAAArM3SZwAAAAAAABNZ2Bk1sFFmcsDWMdsHAABgObk/\nAvD9zKgBAAAAAACYiEQNAAAAAADARCRqAAAAAAAAJmKPGn5ge/LeEtY5BQCAm8/3aQAAmD8zagAA\nAAAAACYiUQMAAAAAADARiRoAAAAAAICJ2KMGgG1t92vp7xyKi9dvYy19AAAAAKZkRg0AAAAAAMBE\nJGoAAAAAAAAmIlEDAAAAAAAwEXvUAAAAADfJ7vcHvHH2BwQANmoRv49I1AAAAACwKRbx5hkAbDVL\nnwEAAAAAAEzEjBoAAOBm2cioaSOmAbgpnGuYJzPCgKmYUQMAAAAAADARiRoAAAAAAICJSNQAAAAA\nAABMxB41AAAAACy83e8/snMoLl6/jf1HAG4+e47tnhk1AAAAAAAAEzGjBgAAAGCJGeUM7Ek28pmU\n+FxiezKjBgAAAAAAYCJm1AAAAACTMJMDgO3EbB+2ihk1AAAAAAAAEzGjBgAAAGCVzRw1bQQ2ALA7\nZtQAAAAAAABMxIwaAAAAAGBd9pMC2FoSNQAAAAAwIcvjMW+7f8/tHIqL12/jPQeby9JnAAAAAAAA\nEzGjBgAAAAAWyDLN0LEsG9xAPGxfZtQAAAAAAABMxIwaAAAAWGDrj661B8F2tUyzJfZk/g5wAzM5\nFo/PuPkyowYAAAAAAGAiZtQAAAAAAGyyzZyRYHYDLDYzagAAAAAAACZiRg0AAAAAAAtpT94/x0wp\nVphRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACY\nyF5TdwAAAABgo57z9qs29PhTH3vIJvUEAOAHY0YNAAAAAADARCRqAAAAAAAAJiJRAwAAAAAAMBGJ\nGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACYiEQNAAAAAADARCRq\nAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagB\nAAAAAACYiEQNAAAAAADARCRqAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYA\nAAAAAGAie837F1bV7ZKclOSoJHdO8tUk5yQ5sbv/ad79AQAAAAAAmMpcZ9RU1W2SnJfkmCR/meQZ\nSf4kyX9L8oGquu08+wMAAAAAADClec+oeW6S+yY5trtftVJZVR9P8pYkJyZ53pz7BAAAAAAAMIkd\nu3btmtsvq6rPJPnhJLfv7utn6nckuTzJrZPcsbtvcqe+8Y1vzO8/AAAAAAAALKWdO3fu2IrnndvS\nZ1V1YJJ7JblwNkmTJGNi5oIkByc5bF59AgAAAAAAmNI896i521heuc7xy8fyHnPoCwAAAAAAwOTm\nmag5YCyvXef4NavaAQAAAAAALLR5JmoAAAAAAACYMc9EzdVjud86x/df1Q4AAAAAAGCh7TXH33Vp\nkl1JDl3n+MoeNpf8IE+6c+fOHRvpFAAAAAAAwFR27Nq1a26/rKouSnJ4ktt393Uz9bdM8sUk13f3\nXefWIQAAAAAAgAnNe4+aM5Lsm+RZq+qfmuSQJKfPuT8AAAAAAACTmfeMmlsleV+SByQ5NclHktwn\nyfMyLHn2oO6+dm4dAgAAAAAAmNBcEzVJUlUHJjk5yZOS3DnJVUnekuSk7v6XuXYGAAAAAABgQnNP\n1AAAAAAAADCY9x41AAAAAAAAjCRqAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExE\nogYAAAAAAGAie03dgY2qqtslOSnJUUnunOSrSc5JcmJ3/9OUfYOtVFV7J3lpkhOSvLe7H7FGm9sk\neVGSo5PcLcnVSc7NEB8Xz6+3sDWq6uAkv53kCUnumOTrSd6f5He7+8JVbcUDC62q7pvkBUkemuQu\nGd7j5yd5WXd/aKadWGDpVNVLkpyY5MzufsZM/S2SPDfJLyc5PMl1ST6Q5OTu/vAEXYVNVVWvS/L0\n3TQ5vrtfObZ1fmDhVdXPJHlhkvsn+dckH0vy0u4+d1U78cDCqqpdN6HZYd192dhePLDQquo+SV6c\n5JFJ7pDh3tL5SV7e3e+fabelsbBj166bEpt7pvHF+VCSeyX5oyQfyXCBdUKSryR5QHd/bboewtao\nqkryhiT3TLJ/kvesTtRU1Y4kf5PkUUlem+GD4y4Z4mOvJEd29+fn2G3YVFV1SJKPJrl9kj9O8vEM\nMfHrGd7jD+nuj41txQMLraoenOTvM3yhPC3JFUnuneTXkuyT5BHdfb5YYBmNF14XJtk735+oOT3J\nM5OcleStSXYmOS7JDyV5ZHd/cO4dhk00k6h5doZr5NUu6u7POT+wDKrqV5KckeS9Sc5MckCS4zO8\n13+qu88b24kHFlpV/dxuDv9+hu9Dh3X3NeKBRVdVR2QY8PudDPmFi5P8cJJjk9wpyVHdffY8YmG7\nz6h5bpL7Jjm2u1+1UllVH0/ylgyj5p43Ud9gS1TVbTPcbLgkyY8l+ew6TY9O8ugM2d8XzDz+XRmS\nmi9P8sSt7S1sqZcmOTTJk7r7rJXKqvpwkr/KMMrhyWO1eGDRvTrJjgwJystWKqvqggzfiX4jyeMj\nFlgy44yZ1yT5hyRHrDr24AxJmjd395Nn6s/KcIF2WoYR17AI3jF7fliD8wMLrarulOSUDANbHtPd\n3xvrz07ywSSPTXLe2Fw8sNC6+y/Wqq+qo5L8aJJndPc1Y7V4YNH9VpJ9kzyhu/92pXK8JvhMkpck\nOTtziIXtvkfN05Jck2FExKy3JrkyyVPHbBcskr2TvD7Jg7q7d9PuaWN5ymzluBzU+Ul+tqoO2pou\nwlx8MckbM9yEnvXOJLuS3G+mTjywsMYb0WcmOW6Nm3B/N5Z3HUuxwLI5JsmDM4x0W20lHv5wtrK7\n/zHDueWIcTYOLAPnBxbd05Psl2Fpy++tVHb3F7r7jt39/Jm24oGlU1UHJDk1yfu6+8yZQ+KBRfcj\nY/m+2cru/mySq5Lcfaza8ljYtomaqjoww5JnF3b39bPHuntXkguSHJzksAm6B1umu7/c3cd093U3\n0vTIJFd095VrHPtQklvFKFG2se4+ubufMn7mzzogw8yCq2fqxAMLq7u/191/0N2vWePwvcbyE2Mp\nFlgaVXVohuU7/mz13gOjI5P8W4brhtVW9nX68S3qHkyiqvapqrVW1nB+YNE9Osk3M8yeSVXdsqpu\nvU5b8cAyOjHDMk7HrqoXDyy6z4zlPWcrq2pnkoOSfGqs2vJY2LaJmgwb9iTDzJm1XD6W95hDX2CP\nMo6EuF3EB8vpV8fyzxPxwPKpqoOq6tCqOjrDLONLk5wsFlhCpyX5btZfCvnuSa7q7u+ucUw8sGiO\nrapLk3w7yfVV9X+r6r8kviuxNO6V5PNJ/lNVvSfJ9Umuq6pPjd+ZkogHltO4/+uxSV7f3Z+cqRcP\nLIPfS/K1JK+vqodW1dNjtEcAAAaiSURBVB2q6r4Z9qHZleTEecXCdk7UHDCW165z/JpV7WCZiA+W\nUlX9TJLfTvLRJH88VosHls3XklyR5A0ZNjt8YHdfGrHAEhk3yf2vSZ7f3WttoJ4M73XxwLJ4TJKX\nZdiH4zeTHJ7kbeMNaucHlsHtMoyMfnuSDyQ5Kslzxro3VtUzx3bigWX0giT7ZLhhPUs8sPC6+1MZ\nlkq+ZYblz76SYUWKH8+wp9l5mVMsrDXlGQC2nap6WpLTk1yW5HHd/Z1pewST+ckMa7AfkeTZSR5Z\nVT+fYV8nWHjj2tCnJnlPhpFwsMxekWFPv/Nmlgw/p6r+OslF4/EHTtU5mKO9M8yk/MXufsNKZVW9\nPcOyNy+rqtdN0zWYTlXdNsOefm/r7s9N3R+Yt6qqJOckuXWS45N8NskhSf5nkrOr6klJ/mEefdnO\niZqVvQf2W+f4/qvawTIRHyyVqjoxyUuSfCTJY7v7qpnD4oGlMo74SZK3V9WfJbkww+yaHxvrxQKL\n7uUZRk7/6hr7mM26OuKBBTcuYfPJNeo/XVXnZdi34+CxWjywyL6V4Sbcm2Yru/vSqnp3kp9Ocu8M\ng74S8cDyeEqSfZOcucYx19Isg9OT/FCSe48rUSRJqurNST6XYeDXvcfqLY2F7bz02aUZ1ok7dJ3j\nK3vYXDKf7sCeo7u/lWGqnvhg4VXVKzMkaf46ycNXJWnEA0utuy9L8q4MS9zcMWKBBVdV/znJM5O8\nKsm3xv2aDq2qlff9vuO/b5vkC0kOqaq913gq8cAy+PJY7hvnBxbfZVn/HtjK9cOBrh1YQj+fYc+m\nd6w+IB5YdFW1X5KHJLlwNkmTJN397STnZUji3DVziIVtm6jp7msyrBd3/6raZ/ZYVd0yyU8kuaK7\nL1/r8bAEzk9yaFXddY1jD8uwkeiF8+0SbK5xJs1xGUY4PLG711svVDywsKrq3lV1RVX96TpNDhrL\nvSIWWHyPTLIjyXMz7NU0+5MMNyOuSPK/MsTDLZI8aI3nedhYfmArOwtbqaoOrKpfrKqfXq/JWF4R\n5wcW3wczLH/2H9Y4tnKDbWWTaPHAUqiq/TPcP/3geFN6LeKBRXabDNcO+6xzfJ+ZcstjYdsmakZn\nZBj986xV9U/NsJbc6XPvEew5zhjL42crq+rhSR6Q5E3j6AjYlqrqJ5P8TpK3JPnv3f1vu2kuHlhk\nl2T44vjzVXXY7IGq+pEMI4S+kuTiiAUW3xuSPG6dn2SYYfa4DIma12aYob86Hg4f27y7uz8/n27D\nlvhOktOSvK6q7jB7oKoelWFvmgu6+8o4P7D4XjeWJ1XVjpXKqrpfhhtsn5gZ6CseWBb3S3KrJJ/a\nTRvxwMLq7q9muJ6+X1X9u0R+Vd0uwyCwqzPEyJbHwo5du3a3bPOerapuleR9GV6MUzPsTXCfJM/L\n8CI/aDejq2FbGj84Zj883pzk00lOmqk7p7uvraq/TPLEJH+a5NwMI4VOSHJNkgd295fm02vYfFX1\n0Qybpf9abliuYLVzVs4D4oFFVlVHJ/nzJP+c4abcF5IcliE+Dk7yK9392rGtWGApVdWuJGd29zNm\n6l6R4drhr5KcleQO478PSPKQ7p7LxqGwVarq6RluUF+a5NVJvpTh+9MxSa5L8ojuvmhs6/zAQquq\nU5I8J8nbkvyfDO/x4zPsLfCYmX3+xANLoaqekWHgygnd/YrdtBMPLKyqelyGAcDfSPJHGQY43iHD\n6i2HZdj38k/GtlsaC3tt5MFT6+7vVtVPJTk5yZNyw82605OcJEnDgnpy/n1SJhkSN2+e+fdhGdbg\n/YUkL8wwy+yXknwtw5fS33QiZQHcfyxP202blVhIxAMLrLvfVFX/L8lvZPg+dFCGkT8fTvIH3f23\nM83FAtzghAw3sJ+V5DVJrs2wFvVvdfenJ+wXbIruPrOqLk/yoiQvzrAJ7pcyJPd/r7u/MNPc+YFF\nd1yGQY6/muR/Z9iX4wNJTu7uD69qKx5YBrcdy2/eSDvxwMLq7rOr6qEZrqWPyRAX38wwIeTZ3f3O\nmeZbGgvbekYNAAAAAADAdrbd96gBAAAAAADYtiRqAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI\n1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACYiEQNAAAAAADARCRqAAAAAAAAJiJR\nAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACYiEQN\nAAAAAADARP4/9OuGu0mbRRQAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "jFKYjxy1IAwG", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#@title Imports and Global Variables (run this cell first) { display-mode: \"form\" }\n", + "\"\"\"\n", + "The book uses a custom matplotlibrc file, which provides the unique styles for\n", + "matplotlib plots. If executing this book, and you wish to use the book's\n", + "styling, provided are two options:\n", + " 1. Overwrite your own matplotlibrc file with the rc-file provided in the\n", + " book's styles/ dir. See http://matplotlib.org/users/customizing.html\n", + " 2. Also in the styles is bmh_matplotlibrc.json file. This can be used to\n", + " update the styles in only this notebook. Try running the following code:\n", + "\n", + " import json\n", + " s = json.load(open(\"../styles/bmh_matplotlibrc.json\"))\n", + " matplotlib.rcParams.update(s)\n", + "\"\"\"\n", + "!pip3 install -q wget\n", + "from __future__ import absolute_import, division, print_function\n", + "#@markdown This sets the warning status (default is `ignore`, since this notebook runs correctly)\n", + "warning_status = \"ignore\" #@param [\"ignore\", \"always\", \"module\", \"once\", \"default\", \"error\"]\n", + "import warnings\n", + "warnings.filterwarnings(warning_status)\n", + "with warnings.catch_warnings():\n", + " warnings.filterwarnings(warning_status, category=DeprecationWarning)\n", + " warnings.filterwarnings(warning_status, category=UserWarning)\n", + "\n", + "import numpy as np\n", + "import os\n", + "#@markdown This sets the styles of the plotting (default is styled like plots from [FiveThirtyeight.com](https://fivethirtyeight.com/))\n", + "matplotlib_style = 'fivethirtyeight' #@param ['fivethirtyeight', 'bmh', 'ggplot', 'seaborn', 'default', 'Solarize_Light2', 'classic', 'dark_background', 'seaborn-colorblind', 'seaborn-notebook']\n", + "import matplotlib.pyplot as plt; plt.style.use(matplotlib_style)\n", + "import matplotlib.axes as axes;\n", + "from matplotlib.patches import Ellipse\n", + "%matplotlib inline\n", + "import seaborn as sns; sns.set_context('notebook')\n", + "from IPython.core.pylabtools import figsize\n", + "#@markdown This sets the resolution of the plot outputs (`retina` is the highest resolution)\n", + "notebook_screen_res = 'retina' #@param ['retina', 'png', 'jpeg', 'svg', 'pdf']\n", + "%config InlineBackend.figure_format = notebook_screen_res\n", + "\n", + "import tensorflow as tf\n", + "tfe = tf.contrib.eager\n", + "\n", + "# Eager Execution\n", + "#@markdown Check the box below if you want to use [Eager Execution](https://www.tensorflow.org/guide/eager)\n", + "#@markdown Eager execution provides An intuitive interface, Easier debugging, and a control flow comparable to Numpy. You can read more about it on the [Google AI Blog](https://ai.googleblog.com/2017/10/eager-execution-imperative-define-by.html)\n", + "use_tf_eager = False #@param {type:\"boolean\"}\n", + "\n", + "# Use try/except so we can easily re-execute the whole notebook.\n", + "if use_tf_eager:\n", + " try:\n", + " tf.enable_eager_execution()\n", + " except:\n", + " pass\n", + "\n", + "import tensorflow_probability as tfp\n", + "tfd = tfp.distributions\n", + "tfb = tfp.bijectors\n", + "\n", + " \n", + "def evaluate(tensors):\n", + " \"\"\"Evaluates Tensor or EagerTensor to Numpy `ndarray`s.\n", + " Args:\n", + " tensors: Object of `Tensor` or EagerTensor`s; can be `list`, `tuple`,\n", + " `namedtuple` or combinations thereof.\n", + "\n", + " Returns:\n", + " ndarrays: Object with same structure as `tensors` except with `Tensor` or\n", + " `EagerTensor`s replaced by Numpy `ndarray`s.\n", + " \"\"\"\n", + " if tf.executing_eagerly():\n", + " return tf.contrib.framework.nest.pack_sequence_as(\n", + " tensors,\n", + " [t.numpy() if tf.contrib.framework.is_tensor(t) else t\n", + " for t in tf.contrib.framework.nest.flatten(tensors)])\n", + " return sess.run(tensors)\n", + "\n", + "class _TFColor(object):\n", + " \"\"\"Enum of colors used in TF docs.\"\"\"\n", + " red = '#F15854'\n", + " blue = '#5DA5DA'\n", + " orange = '#FAA43A'\n", + " green = '#60BD68'\n", + " pink = '#F17CB0'\n", + " brown = '#B2912F'\n", + " purple = '#B276B2'\n", + " yellow = '#DECF3F'\n", + " gray = '#4D4D4D'\n", + " def __getitem__(self, i):\n", + " return [\n", + " self.red,\n", + " self.orange,\n", + " self.green,\n", + " self.blue,\n", + " self.pink,\n", + " self.brown,\n", + " self.purple,\n", + " self.yellow,\n", + " self.gray,\n", + " ][i % 9]\n", + "TFColor = _TFColor()\n", + "\n", + "def session_options(enable_gpu_ram_resizing=True, enable_xla=True):\n", + " \"\"\"\n", + " Allowing the notebook to make use of GPUs if they're available.\n", + " \n", + " XLA (Accelerated Linear Algebra) is a domain-specific compiler for linear \n", + " algebra that optimizes TensorFlow computations.\n", + " \"\"\"\n", + " config = tf.ConfigProto()\n", + " config.log_device_placement = True\n", + " if enable_gpu_ram_resizing:\n", + " # `allow_growth=True` makes it possible to connect multiple colabs to your\n", + " # GPU. Otherwise the colab malloc's all GPU ram.\n", + " config.gpu_options.allow_growth = True\n", + " if enable_xla:\n", + " # Enable on XLA. https://www.tensorflow.org/performance/xla/.\n", + " config.graph_options.optimizer_options.global_jit_level = (\n", + " tf.OptimizerOptions.ON_1)\n", + " return config\n", + "\n", + "\n", + "def reset_sess(config=None):\n", + " \"\"\"\n", + " Convenience function to create the TF graph & session or reset them.\n", + " \"\"\"\n", + " if config is None:\n", + " config = session_options()\n", + " global sess\n", + " tf.reset_default_graph()\n", + " try:\n", + " sess.close()\n", + " except:\n", + " pass\n", + " sess = tf.InteractiveSession(config=config)\n", + "\n", + "reset_sess()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "24368dz9IAwM", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## A little more on TensorFlow and TensorFlow Probability\n", + "\n", + "To explain TensorFlow Probability, it's worth going into the various methods of working with Tensorflow tensors. Here, we introduce the notion of Tensorflow graphs and how we can use certain coding patterns to make our tensor-processing workflows much faster and more elegant. " ] - }, - "metadata": { - "image/png": { - "height": 302, - "width": 821 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "def plot_artificial_sms_dataset(): \n", - " tau = tf.random_uniform(shape=[1], \n", - " minval=0, \n", - " maxval=80,\n", - " dtype=tf.int32)[0]\n", - " alpha = 1./8.\n", - " lambdas = tfd.Gamma(concentration=1/alpha, rate=0.3).sample(sample_shape=[2]) \n", - " [ lambda_1_, lambda_2_ ] = evaluate( lambdas )\n", - " data = tf.concat([tfd.Poisson(rate=lambda_1_).sample(sample_shape=tau),\n", - " tfd.Poisson(rate=lambda_2_).sample(sample_shape= (80 - tau))], axis=0)\n", - " days_range = tf.range(80)\n", - " \n", - " [ \n", - " tau_,\n", - " data_,\n", - " days_range_,\n", - " ] = evaluate([ \n", - " tau,\n", - " data,\n", - " days_range,\n", - " ])\n", - " \n", - " plt.bar(days_range_, data_, color=TFColor[3])\n", - " plt.bar(tau_ - 1, data_[tau_ - 1], color=\"r\", label=\"user behaviour changed\")\n", - " plt.xlim(0, 80);\n", - "\n", - "\n", - "plt.figure(figsize(12.5, 5))\n", - "plt.title(\"More example of artificial datasets\")\n", - "for i in range(4):\n", - " plt.subplot(4, 1, i+1)\n", - " plot_artificial_sms_dataset()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "V8QMiJXOIAxv" - }, - "source": [ - "Later we will see how we use this to make predictions and test the appropriateness of our models." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "2lU8C4C-IAxw" - }, - "source": [ - "### Example: Bayesian A/B testing\n", - "\n", - "A/B testing is a statistical design pattern for determining the difference of effectiveness between two different treatments. For example, a pharmaceutical company is interested in the effectiveness of drug A vs drug B. The company will test drug A on some fraction of their trials, and drug B on the other fraction (this fraction is often 1/2, but we will relax this assumption). After performing enough trials, the in-house statisticians sift through the data to determine which drug yielded better results. \n", - "\n", - "Similarly, front-end web developers are interested in which design of their website yields more sales or some other metric of interest. They will route some fraction of visitors to site A, and the other fraction to site B, and record if the visit yielded a sale or not. The data is recorded (in real-time), and analyzed afterwards. \n", - "\n", - "Often, the post-experiment analysis is done using something called a hypothesis test like *difference of means test* or *difference of proportions test*. This involves often misunderstood quantities like a \"Z-score\" and even more confusing \"p-values\" (please don't ask). If you have taken a statistics course, you have probably been taught this technique (though not necessarily *learned* this technique). And if you were like me, you may have felt uncomfortable with their derivation -- good: the Bayesian approach to this problem is much more natural. \n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "AFcmkQEyDgyK" - }, - "source": [ - "### A Simple Case\n", - "\n", - "As this is a hacker book, we'll continue with the web-dev example. For the moment, we will focus on the analysis of site A only. Assume that there is some true $0 \\lt p_A \\lt 1$ probability that users who, upon shown site A, eventually purchase from the site. This is the true effectiveness of site A. Currently, this quantity is unknown to us. \n", - "\n", - "Suppose site A was shown to $N$ people, and $n$ people purchased from the site. One might conclude hastily that $p_A = \\frac{n}{N}$. Unfortunately, the *observed frequency* $\\frac{n}{N}$ does not necessarily equal $p_A$ -- there is a difference between the *observed frequency* and the *true frequency* of an event. The true frequency can be interpreted as the probability of an event occurring. For example, the true frequency of rolling a 1 on a 6-sided die is $\\frac{1}{6}$. Knowing the true frequency of events like:\n", - "\n", - "- fraction of users who make purchases, \n", - "- frequency of social attributes, \n", - "- percent of internet users with cats etc. \n", - "\n", - "are common requests we ask of Nature. Unfortunately, often Nature hides the true frequency from us and we must *infer* it from observed data.\n", - "\n", - "The *observed frequency* is then the frequency we observe: say rolling the die 100 times you may observe 20 rolls of 1. The observed frequency, 0.2, differs from the true frequency, $\\frac{1}{6}$. We can use Bayesian statistics to infer probable values of the true frequency using an appropriate prior and observed data.\n", - "\n", - "\n", - "With respect to our A/B example, we are interested in using what we know, $N$ (the total trials administered) and $n$ (the number of conversions), to estimate what $p_A$, the true frequency of buyers, might be. \n", - "\n", - "To setup a Bayesian model, we need to assign prior distributions to our unknown quantities. *A priori*, what do we think $p_A$ might be? For this example, we have no strong conviction about $p_A$, so for now, let's assume $p_A$ is uniform over [0,1]:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "blTLKyo2IAxy" - }, - "outputs": [], - "source": [ - "reset_sess()\n", - "\n", - "# The parameters are the bounds of the Uniform.\n", - "p = tfd.Uniform(low=0., high=1., name='p')\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "f0XLF9h3IAx2" - }, - "source": [ - "Had we had stronger beliefs, we could have expressed them in the prior above.\n", - "\n", - "For this example, consider $p_A = 0.05$, and $N = 1500$ users shown site A, and we will simulate whether the user made a purchase or not. To simulate this from $N$ trials, we will use a *Bernoulli* distribution: if $X\\ \\sim \\text{Ber}(p)$, then $X$ is 1 with probability $p$ and 0 with probability $1 - p$. Of course, in practice we do not know $p_A$, but we will use it here to simulate the data. We can assume then that we can use the following generative model:\n", - "\n", - "$$\\begin{align*}\n", - "p &\\sim \\text{Uniform}[\\text{low}=0,\\text{high}=1) \\\\\n", - "X\\ &\\sim \\text{Bernoulli}(\\text{prob}=p) \\\\\n", - "\\text{for } i &= 1\\ldots N:\\text{# Users} \\\\\n", - " X_i\\ &\\sim \\text{Bernoulli}(p_i)\n", - "\\end{align*}$$" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 68 - }, - "colab_type": "code", - "id": "riLrk5KTIAx4", - "outputId": "6c8cf3ef-cdef-4340-f941-9f6ea1c7454e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Array of 1500 Occurences: [0 0 0 ... 0 0 0]\n", - "(Remember: Python treats True == 1, and False == 0)\n", - "Sum of (True == 1) Occurences: 76\n" - ] - } - ], - "source": [ - "reset_sess()\n", - "\n", - "#set constants\n", - "prob_true = 0.05 # remember, this is unknown.\n", - "N = 1500\n", - "\n", - "# sample N Bernoulli random variables from Ber(0.05).\n", - "# each random variable has a 0.05 chance of being a 1.\n", - "# this is the data-generation step\n", - "\n", - "occurrences = tfd.Bernoulli(probs=prob_true).sample(sample_shape=N, seed=6.45)\n", - "\n", - "[ \n", - " occurrences_,\n", - " occurrences_sum_,\n", - " occurrences_mean_,\n", - "] = evaluate([ \n", - " occurrences, \n", - " tf.reduce_sum(occurrences),\n", - " tf.reduce_mean(tf.to_float(occurrences))\n", - "])\n", - "\n", - "print(\"Array of {} Occurences:\".format(N), occurrences_) \n", - "print(\"(Remember: Python treats True == 1, and False == 0)\")\n", - "print(\"Sum of (True == 1) Occurences:\", occurrences_sum_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "UpJrMifMIAx7" - }, - "source": [ - "The observed frequency is:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "trjtemdNIAx7", - "outputId": "d528af9d-8d7c-49bc-c191-ca58fca5b6bb" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "What is the observed frequency in Group A? 0.0507\n", - "Does this equal the true frequency? False\n" - ] - } - ], - "source": [ - "# Occurrences.mean is equal to n/N.\n", - "print(\"What is the observed frequency in Group A? %.4f\" % occurrences_mean_)\n", - "print(\"Does this equal the true frequency? %s\" % (occurrences_mean_ == prob_true))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Gue-SRTYIAyA" - }, - "source": [ - "We combine our Bernoulli distribution and our observed occurrences into a log probability function based on the two." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "Ct9o0w7lGaZb" - }, - "outputs": [], - "source": [ - "def joint_log_prob(occurrences, prob_A):\n", - " \"\"\"\n", - " Joint log probability optimization function.\n", - " \n", - " Args:\n", - " occurrences: An array of binary values (0 & 1), representing \n", - " the observed frequency\n", - " prob_A: scalar estimate of the probability of a 1 appearing \n", - " Returns: \n", - " Joint log probability optimization function.\n", - " \"\"\" \n", - " \n", - " rv_prob_A = tfd.Uniform(low=0., high=1.)\n", - " \n", - " rv_occurrences = tfd.Bernoulli(probs=prob_A)\n", - " \n", - " return (\n", - " rv_prob_A.log_prob(prob_A)\n", - " + tf.reduce_sum(rv_occurrences.log_prob(occurrences))\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "UN7Mh5U-uFye" - }, - "source": [ - "The goal of probabilistic inference is to find model parameters that may explain\n", - "data you have observed. TFP performs probabilistic inference by evaluating the\n", - "model parameters using a `joint_log_prob` function. The arguments to `joint_log_prob` are data and model parameters—for the model defined in the `joint_log_prob` function itself. The function returns the log of the joint probability that the model parameterized as such generated the observed data per the input arguments.\n", - "\n", - "All `joint_log_prob` functions have a common structure:\n", - "\n", - "1. The function takes a set of **inputs** to evaluate. Each input is either an\n", - "observed value or a model parameter.\n", - "\n", - "1. The `joint_log_prob` function uses probability distributions to define a **model** for evaluating the inputs. These distributions measure the likelihood of the input values. (By convention, the distribution that measures the likelihood of the variable `foo` will be named `rv_foo` to note that it is a random variable.) We use two types of distributions in `joint_log_prob` functions:\n", - "\n", - " a. **Prior distributions** measure the likelihood of input values.\n", - "A prior distribution never depends on an input value each prior distribution measures the\n", - "likelihood of a single input value. Each unknown variable—one that has not been\n", - "observed directly—needs a corresponding prior. Beliefs about which values could\n", - "be reasonable determine the prior distribution. Choosing a prior can be tricky,\n", - "so we will cover it in depth in Chapter 6.\n", - "\n", - " b. **Conditional distributions** measure the likelihood of an input value given\n", - "other input values. Typically, the conditional\n", - "distributions return the likelihood of observed data given the current guess of parameters in the model, p(observed_data | model_parameters).\n", - "\n", - "1. Finally, we calculate and return the **joint log probability** of the inputs.\n", - "The joint log probability is the sum of the log probabilities from all of the\n", - "prior and conditional distributions. (We take the sum of log probabilities\n", - "instead of multiplying the probabilities directly for reasons of numerical\n", - "stability: floating point numbers in computers cannot represent the very small\n", - "values necessary to calculate the joint log probability unless they are in \n", - "log space.) The sum of probabilities is actually an unnormalized density; although the total sum of probabilities over all possible inputs might not sum to one, the sum of probabilities is proportional to the true probability density. This proportional distribution is sufficient to estimate the distribution of likely inputs.\n", - "\n", - "Let's map these terms onto the code above. In this example, the input values\n", - "are the observed values in `occurrences` and the unknown value for `prob_A`. The `joint_log_prob` takes the current guess for `prob_A`\n", - "and answers, how likely is the data if `prob_A` is the probability of\n", - "`occurrences`. The answer depends on two distributions:\n", - "1. The prior distribution, `rv_prob_A`, indicates how likely the current value of `prob_A` is by itself.\n", - "2. The conditional distribution, `rv_occurrences`, indicates the likelihood of `occurrences` if `prob_A` were the probability for the Bernoulli distribution.\n", - "\n", - "The sum of the log of these probabilities is the\n", - "joint log probability. \n", - "\n", - "The `joint_log_prob` is particularly useful in conjunction with the [`tfp.mcmc`](https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc)\n", - "module. Markov chain Monte Carlo (MCMC) algorithms proceed by making educated guesses about the unknown\n", - "input values and\n", - "computing what the likelihood of this set of arguments is. (We’ll talk about how it makes those guesses in Chapter 3.) By repeating this process\n", - "many times, MCMC builds a distribution of likely parameters. Constructing this\n", - "distribution is the goal of probabilistic inference." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "rzm3amOgDAGg" - }, - "source": [ - "Then we run our inference algorithm:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "g9XHX0h8IAyB" - }, - "outputs": [], - "source": [ - "number_of_steps = 48000 #@param {type:\"slider\", min:2000, max:50000, step:100}\n", - "#@markdown (Default is 18000).\n", - "burnin = 25000 #@param {type:\"slider\", min:0, max:30000, step:100}\n", - "#@markdown (Default is 1000).\n", - "leapfrog_steps=2 #@param {type:\"slider\", min:1, max:9, step:1}\n", - "#@markdown (Default is 6).\n", - "\n", - "# Set the chain's start state.\n", - "initial_chain_state = [\n", - " tf.reduce_mean(tf.to_float(occurrences)) \n", - " * tf.ones([], dtype=tf.float32, name=\"init_prob_A\")\n", - "]\n", - "\n", - "# Since HMC operates over unconstrained space, we need to transform the\n", - "# samples so they live in real-space.\n", - "unconstraining_bijectors = [\n", - " tfp.bijectors.Identity() # Maps R to R. \n", - "]\n", - "\n", - "# Define a closure over our joint_log_prob.\n", - "# The closure makes it so the HMC doesn't try to change the `occurrences` but\n", - "# instead determines the distributions of other parameters that might generate\n", - "# the `occurrences` we observed.\n", - "unnormalized_posterior_log_prob = lambda *args: joint_log_prob(occurrences, *args)\n", - "\n", - "# Initialize the step_size. (It will be automatically adapted.)\n", - "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", - " step_size = tf.get_variable(\n", - " name='step_size',\n", - " initializer=tf.constant(0.5, dtype=tf.float32),\n", - " trainable=False,\n", - " use_resource=True\n", - " )\n", - "\n", - "# Defining the HMC\n", - "hmc = tfp.mcmc.TransformedTransitionKernel(\n", - " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", - " target_log_prob_fn=unnormalized_posterior_log_prob,\n", - " num_leapfrog_steps=leapfrog_steps,\n", - " step_size=step_size,\n", - " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", - " state_gradients_are_stopped=True),\n", - " bijector=unconstraining_bijectors)\n", - "\n", - "# Sampling from the chain.\n", - "[\n", - " posterior_prob_A\n", - "], kernel_results = tfp.mcmc.sample_chain(\n", - " num_results=number_of_steps,\n", - " num_burnin_steps=burnin,\n", - " current_state=initial_chain_state,\n", - " kernel=hmc)\n", - "\n", - "# Initialize any created variables.\n", - "init_g = tf.global_variables_initializer()\n", - "init_l = tf.local_variables_initializer()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "yUVnbqhDVfAx" - }, - "source": [ - "#### Execute the TF graph to sample from the posterior" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "Q3By4GWdEtQN", - "outputId": "b40ec87c-cb5e-49c1-e6ff-44ecd1dc7cf3" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "acceptance rate: 0.6088958333333333\n" - ] - } - ], - "source": [ - "evaluate(init_g)\n", - "evaluate(init_l)\n", - "[\n", - " posterior_prob_A_,\n", - " kernel_results_,\n", - "] = evaluate([\n", - " posterior_prob_A,\n", - " kernel_results,\n", - "])\n", - "\n", - " \n", - "print(\"acceptance rate: {}\".format(\n", - " kernel_results_.inner_results.is_accepted.mean()))\n", - "\n", - "burned_prob_A_trace_ = posterior_prob_A_[burnin:]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "MQUWTY7-LgGv" - }, - "source": [ - "We plot the posterior distribution of the unknown $p_A$ below:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 280 - }, - "colab_type": "code", - "id": "w_P52-CRFJPs", - "outputId": "bbf9109c-d7a8-47e4-814c-bf27aa79afe0" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABl8AAAIPCAYAAAD96MhoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYHWWdL/BvJIogEEAUHBQyYHxl\nZMeEJeACKnLRK3BFAUFURgbFGdyvsowIo8696LiwzJVhV5DFwTsXkdFRFAVEA6iIyktEMBAV2RdZ\nA7l/1Dmhk3SH7nMqfZLO5/M8eep01Vtv/arOe6o79Tvv+06aP39+AAAAAAAAaMczBh0AAAAAAADA\nRCL5AgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBFki8AAAAAAAAtknwBAAAAAABo\nkeQLAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBF\nki8AAAAAAAAtknwBAAAAAABo0eRBBwAALJ9KKfOXsPmhJLcluTTJF2qtdXyiGpxSyjuSnJ7kslrr\nqwYbzfBGinHQsQ93/EHHtKzE0LZSynpJTkqyc5LVklxUa91zsFEtPUPew4trrW8YcDgrnJHa27La\nDifiZ36iWNptZll870sphyY5ofPjZ2qthw8yHgBg7PR8AQD6dV6SLw7596Uk307y7CSHJPl5KWXv\nQQRWSvnM0ySJ2vTrNOf/9XE6Xptaib2P6z3wazdC7AOPayn45yR7Jnk8zYPGKwYbTjvG+bM+Zst6\nfEvRSO1toO1wCe/HRPzMTxRLu80M+94P+LP77iGvDyylrDSgOACAHun5AgD06wu11qsWXVlKeVaS\nTyf5UJKvlFJ+UmudM86xTR+vA9Vaf5rkp+N1vDa1GHtP13sZuXaLxb6MxNW2bTvLv6+1njvQSNo1\nbp/1Hi3r8S0tI7W3QbfDYd+PCfqZnyiWaptZwns/kM9uKWVGki2S3JjkgSTbJNk9yf8bRDwAQG8k\nXwCApaLW+lgp5aNJXpdksyTvSnL0eB2/lDIpycvH63gruuX5ei/Psfdglc7yT2PdsZTy1SRvS/Kp\nJKcl+Z9JdkmyfpJHk/woycdrrde3E+qo41qm379lPb6lbKT21nM77NcK/n4sz8a9zQy4rXR7vVyQ\np5IvfxvJFwBYrkyaP39F7P0OAPRryDAc2w/X82VIuROSHJrkP2qteyyybYck708yM8nz0swVc0Oa\nhw0n1VofXqT8lkk+mmTHJOsmeSTJ3CTfTNMD5w+dcmckOXCYcF5da/3BkPq2SvLBJK/s1PdgkuuS\nnFJrPXuRY78jnbkjknwgySlpHsp8qtb66SWNF9/DeS7xWMOc19B9n9W5Rgck2TDJ/UkuT/KJNA9v\nRj3nS1vXu5drN3Rdkl2THJXkLUk2SPKXJD9M8o+11l8OiffoznmeWWt9xzDXZrHtS4o9ydThrsuQ\n+kb9vi5yDd6U5roe2Dmfx5NcleSozrevR220MSzhPEc9v0Ep5fokL0vyf5K8I83Qgo+kGcr4WZ1i\n9yeZMV7zPI2x7f33NJ/3dybZKMljaa77kbXWWcPUPer7Q0vxDffZODpjbNNtxt9rfUs479+nuS8t\natF7z5hjL6Vsn+azsFOSdZLcmeSSJJ/s9rocw/txWa31VaWU7yd5VZJP1FqPGeG4RyY5NsmltdZd\nej2Hfu4RPV6vUd3fey2/JGO8d56RHu9dY4l5mPd+pOP2/HfEaJVSVk/yhzRz2/xNmuTL75PMT/Ki\nWusfe6kXABh/5nwBAJa2ezvLZw9dWUp5b5qkwN5JbklyVpLvJ3lxks8muayUstqQ8julefi0T5Lf\nJTkjyb+n+XvmI0muKqVs0Cn+nTQPUbq689HcNqS+/ZL8JMn+nfVndurfNslXSylndL71Opxzk6za\nieE3Szr5sZ5nP8caUv7YJC9K8w3ZrydZL825bTqK/btxt3q9+zifJPmPNN/4vaqz3x1J9khyRSll\n1Oc0grHEvkCf7+s5aR7W/STJ+UnuTtND7NJSytTRBj7GGL7TOa8HOj//e8Ywt0UpZeUkpfPjIWke\nBO6a5r1cLcl+aZJia6TpGTNexvL+nZLmQeysJF9Jck+a6/79UspfDy3Y5/2h1/h6+WwMq8X4e61v\npPZ22gjrF7TDXmLvfBZ+lCbB9uPOceak6XH561LKFkPiGsvnvfvw/M0jbE+St3aWZ/VzDosY9T2i\nx+s1lvv7mMsvSQ/3zp7uXS3EvLT/jliSfdPcV39Sa/1NrfW2TjwrpUkeAwDLCcOOAQBL24s7y1u6\nK0opL0vzECNJ9qi1/seQbWuleYg2Pc0wZR/ubDoiycpJDqm1fnlI+Umduv4+zTdpP1hrPaeUcmU6\nDylqre8fGlDnQeupaR5k7FNrPW/ItpLmIceBSb6X5iHtUNun6Y3xP2qtS+xC3ON59nSsTp3/Lc2E\nxA+n6ZH0iyHbDh0Sy2i0dr17PZ+OHZJck+TFtdYHOzFMTpNY2i3J/0ozDn5PlhR7KWXH4fbp8319\nZZKaZFqt9d7OPqumeWC8eSeOTzxd3GONodZ6TpJzSil7JFk9yQlDv709Cpvmqf87/CbJzFrrPZ2f\nH0/ytVLKS5P8Y5LdSikr1VqfGEP9PRlj27shyd/UWu9MklLKGmnmeCid/f+xs76f+0M/8Y31szGs\nNuPvtb6na29LWD/mY5VSNknzWXg0Tbv8+ZB9Ppnmff1amvd+tO9H19eTnJBks1JKWbRHVynlb9J8\nNh5K82C/jes/6ntEH8ca9f29x/LD6uXe2ce9q6+Yl/LfEU+nO+TYqUPWnZrk9UneVUr5TL/3CQBg\nfOj5AgAsNaWUF6X5JnLS9F7oOiTNg9z/O/ThS5J0Huge0fnxXZ0H7UnS/Wb6lYuUn98pv0OSfx5l\naH+fpifO14Y+MOnUV5Mc2fnx0GH2XTvJ50b54KOX8+z1WEnT+yBJvjo08dI53olJfrn4LiNq83p3\njfV8kuSZaRI8Dw6JYV6ST3Z+fF0pZcoY4+hXP+/rakkO7T5U7ezzUJ76Fvfm4xBDL7YY8vqgIYmX\nob7VWa6aZvidZclaSf6um3hJklrr/Um6n/9pQ8r2c3/oVS+fjZG0Hf94Xo9ejvXeNJ+FrwxNvHT8\nc5r73j2llOGGO1uizue02673HqbIPp3l/x1yj+r3eo3lHtHrscZ6f2/r98F43reWxu+woZbK56I0\nQ6W9PE1C79whm/5fmqH0Nk4zLCYAsByQfAEAWldKWaOU8vo0Y9evkuSSWuslQ4q8orP81mI7N76X\nZmzztZK8tLOu+43j40spQx+Uptb6QK31x7XWP48yxJ2f5vgXd5YzSinPWWTbo2m+gTwavZxnr8dK\nnpoY+IcjbP/OGOpq83p3jfV8kuSeWutw+1ydZs6OyRnDcGot6ed9fTRNb4tFdeceGG0iqd+2NVZb\ndpZXjPB+JMnQeQiGTSKUUqaWUh4tpcwvpWzUQlyjdVut9fph1nev+/OHrOvn/tCrXj4bI2k7/vG8\nHr0cq/sg+keLFq61Plxr3bzWOrPW+vseYzqnsxxu6LHukGNDezb0e73Gco/o9Vhjvb+39ftgPO9b\nS+N32FBL63NxcGd5Qa21O9Raaq2P5al29rdjqA8AGCDDjgEA/fpxM8LGsOanGQN9pG/d3jzcTrXW\nB0spd6WZNHmDJNenmYx6mzRDstxYSrkuzYOa/0zy/Vrr42OIeWpnuXcpZcYIZR5P0+ti4zST53bd\nWWt9cpTH6eU8hxrLsZJk/c5y7gjbx/Lwsc3r3TXW80lGvnZPlFJuTzO3zQt6iKUf/byvc0fo3dAd\nomu0X47qt22NVTf58o0llFm7s5yfZl6e4XwqzUPkqWmSZr/rM67RGqntP9pZrjRk3dTOspf7Q696\n+WyMZGpn2Vb8bdfX9rG6+4x03+vXN5Pcn2SLUsq0WuvsZMFE6y9J8qck/zWkfDeeXq/XWO4RvR5r\nrPf3tn4fjOd9a2n8DhtqamfZ2ueiM7zc2zo/njpMkVPSnNeepZS1RuiBCAAsQyRfAIB+nZfm4dNQ\nD6eZ7Pg7tdabhtln1SHlRvJIZ7lKktRabyqlbJ7mwcO+aYZe6f58Rynl2Frr8aOMuTuZ7x6jKLvG\nIj8/OGyp4Y35PPs41tDjPTLC9kdHWL+Ylq9311jPJ2kmcR9J9zyf3UO9/ejnfe33gV8bMfSiO9TR\ntUso0+159avO0HALKaVsnaanwM5p5jfZLM1QOuNhLPPP9HN/6FUvn42RtB3/eF6PXo7V/fy39dla\nSK31kVLKv6eZ+2PvJJ/ubOr2ejmnLjy/Ub/Xayzn0dOxxnp/b/H3wbjdt5bS77Chlsbn4q1Dyh47\nwhdb5qVp8wck+dIo6wUABkTyBQDo1xdqrVeNcZ+/pHnAsOoSynS3DZ3r464046gfWUp5cZLXpXlY\n8YokX+pM8v2FURz/wTRDt+xaax3LUFxj1dN59uGRTn0rP82xRqXF692PJSVWutseGmVdz+wzlq7x\nfl8HGkNnYunuUEd3LaHo/+gsRxqG538lOb/W+sNSyh8y/sPFjdZ43R/aMFybbjv+8bwevRyr+1lY\na6lFlZydJvny5iyefFl0MvVl/XolGfv9vaXfB+N671zKv8OWxvv87iGvX/k0ZQ+K5AsALPPM+QIA\nDEJ3qKFh53zoTKDeHcJopOFJfltrPanW+sokf9dZ/b5RHv+3neUGoyzfq77Pc4y6c26sN8L2nufY\n6PN692PY96gzGXN3uLHbOsvusE0rLb5HkqeGienXeL+vg45hiyGv1xnheJulebA5L8mXh9n+ujQP\nE4/qrPp1mp4vy6Lxuj+MRi9tuu34x/N69HKs7mdh/SWW6s/309xftyqlbNQZZmpqkutrrT9fpOyy\nfr0WM9b7ex+/DwZ271wKv8NafZ9LKZsm2T7NPXS9Wuuk4f6lSfg8lGTzJQx3BgAsIyRfAIBB+EFn\n+YYRtr++s/xDktmllLVKKXuXUl4/QvnuhMjDPnwrpUxaZNWlneVbRii/SinlraWU545wvNH6QWc5\nqvPs81hJ0n0IuOOiGzrXYKTrt2jZtq93P9YtpWwxzPpt0/TifjTJrzrrupMTL5Z8KqWsnKcmex7R\nKGP/QWc5Xu/roGPYcsjr1y26sZSySpr5CZ6R5LRa6+8W2T4pTa+XU4cMQ/ibJC8ppbTVG2nosfq1\n1O4PPcTXS5tuO/7xul/2eqzvd5bDtc1nlFLmllLmlVJ2Gmb7qN6Pznw853Z+3C1ND5gkOaulc+jV\nmI811vt7v78PFvGDznKp3rdajrlb59L+O6Lb6+WSWuvtIxWqtd6fp+be+ttR1g0ADIjkCwAwCCem\neWj+hlLKm4ZuKKWsl2ZS7iT5Umfi4XXTzC1zVinlpcPU1x3+Zeg3kB8Y8nrDRcr/a5ox519bSjlg\nkeNPTnJCmgdtJ436jIY31vPs1wWd5dtLKdMW2fahjL7nS9vXux+PJflC5wF/kqTzwP6TnR//o9ba\nnRfml53lqzpDzHTLr5TkuDw1dNaixhr7eL+vg46hm/y6L8k/lFL27yZNSinbp3mgOj1NQuWDw+z/\ntiQlyTFD1v0mzZBZi7WvUspZpZQbSinvXnTbCNpue23fH/qJr5c23Xb843W/7PVY/yfNPCl7lFJ2\nW6S+w5L8VZJbklzZWdfr+3F2Z7lrmuTBk3nqIX6/59CrXo411vt7L78PRjJe9622Yh6XvyNKKd05\nXJLk9Kcrn+SMznKfUspzRlEeABgQc74AAOOu1vrbUsp7k/xbkm+UUn6Y5MY03+5+RZoHihcl+Vyn\n/A2llM8kOTzJdaWUH6QZkuQZSTZJskOaseQ/NOQYd5VSbkkzNMwPSynXp3lQ/+Va682llIPSfGv5\nrFLKe5L8IsnqSV6V5tuwtwytbzzOswUXJDkkzTlcXUq5OM0D863TDPH06SRHjyLuVq93n+f0g87y\nt6WU/0rz4G7nJC9OM//Ix4eU/X6ah9WbpTn/S5Lcm6Yn0HOT/FOaHhiLnu+wsXeOtZgBvK+DjqHb\n8+WwJJ9NM8fFaaWUeXlqUuwbkuw2JBGWZEHvjH9K0zafMySB0H2ouVmeSjB0bZAmWTOqb4y33fba\nvj/0Gd+Y2/RSiH9c7pe9HqvWemMp5e/TPAy/qJTy7SS3pplcffs0c3O8vdb6RKd8T+9HrfWaUkpN\nk3x5VpLv1lrntnEOverxeo3p/t7L74MlxDsu9622Yh7HvyPenGbOojuTfHMU5S9N08ZflCaRdNoo\n9gEABkDPFwBgIGqtpyWZmeTfk7wkyTuS7JTm4cW7kuxZa503pPwRSfZK8p9J/ibJ29N8U/T5SU5O\nslWt9cos7O1p5pZYN00C4vEh9X0tycuTfDXNA4yDkuyZ5uHHMZ36bkufxnqefR7ryTTfyP5MmvP4\nH2ke6vwpzcOmn46hrlavdx/mJXlTkjPTPHA+MM1DqguSbD90iKvOw9XXpUkOPJrm3P97kmuTbJdm\nKJuRjCn28XxfBxlDaeZgmNr58T+HHO++JJPSJAYOT7J1rfX3w1RxaJpvjL89zTBC3X/dSco3XcLh\nx9J+Wm17S+H+0FN8vbbptuMfr/tlr8fqJE52SvPg/uWdfaameTC+dYv3qrPTJF6Sp9pwK+fQqx6v\n15ju7z3+Phgp3nG5d7YY83j8HdHt5Xd2rfVp22Lnd313yDtDjwHAMmzS/PlLayQEAABgeVZKeUWS\ny5LcXmtdbN6Rp9l3zSQ3pZmf4D+HKXJSkp/UWt84zL7XJDm+1nrGmIMGAABYBhh2DAAAGEl3yLHr\netj3Y0lWTvLRWuvdi24spRyWZjitRdc/r7P+Fz0cEwAAYJlg2DEAAGAkW3SWY0qElFJemOQfkvzb\ncImXjpuSbFBKWX2R9R9LckOt9WdjihQAAGAZoucLAAAwkl57vhyT5v8a/7KEMjelmTdm0yQ/7q6s\ntfY9ETkAAMCgmfMFAABYTCllcpIH0wwdtmWt1TBgAAAAoyT5AgAAAAAA0CJzvgAAAAAAALRI8gUA\nAAAAAKBFki8AAAAAAAAtmjzoAPp13333mbQGAAAAAABYqqZMmTJptGX1fAEAAAAAAGiR5AsAAAAA\nAECLJF8AAAAAAABaJPkCAAAAAADQIskXAAAAAACAFkm+wDJu9uzZmT179qDDgFZoz0w02jQTifbM\nRKI9M9Fo00wk2jMTjTbNSCRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUA\nAAAAAKBFki8AAAAAAAAtknwBAAAAAABokeQLAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAA\nAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBFki8AAAAAAAAtknwBAAAAAABokeQLAAAAAABAiyRfAABg\nBbf77rtn+vTpmT59enbfffdBhwMAABPacccdlx133DG11qV6nE9+8pOZMWNG/vCHPyzV4wzSySef\nnJkzZ+YXv/jFoENZjOQLAAAAAACtO/XUUyf0g/9efPvb384FF1yQf/iHf0gpZdDhLPfe/e53Z7PN\nNsvhhx+e+++/f9DhLETyBQAAAACAVs2dOzdf/vKX88c//nHQoSwzHnrooXz2s5/Npptumre85S2D\nDmdCmDRpUj7+8Y/n7rvvzvHHHz/ocBYi+QIAAAAAQKt+/etfDzqEZc4FF1yQ++67LwcddNCgQ5lQ\nNtxww+y222656KKLcuuttw46nAUkXwAAAAAAaM0hhxySI444Iknynve8Z8G8I905SH7729/msMMO\nyyte8YpcfvnlC/aZMWPGYnXdeeedmTFjRg455JCF1t9777357Gc/mze96U3ZYYcd8trXvjYf/vCH\nc/311486zuuuuy4zZszIcccdl29/+9t597vfnVe/+tWZOXNm3vGOd+Tqq6/u4yos7Mknn8y5556b\nqVOnZubMmQttG8u5d6/h7bffnjPPPDN77rlnZs6cmd133z0nnXRSnnjiiSXGMX/+/Bx++OGZMWNG\nvvnNb/ZU55///Od8+tOfzhvf+MbssMMOec1rXpP3v//9+dnPfragzO6775799ttvseO/9a1vzYwZ\nMxa8713f+c53MmPGjFxyySU9neMee+yRJ598Mt/4xjeWeP7jSfIFAAAAAIDWHHzwwdlll12SNHNy\nfOYzn8naa6+9YPtJJ52UddZZJ0cccUQ22mijMdd///3356CDDsq3vvWtvOY1r8mRRx6Z/fffPzfe\neGP+7u/+LrNmzRpVPTfccEOSZNasWTn66KMzZcqU7LXXXtlqq63y61//Oh/4wAfypz/9aczxDefG\nG2/MXXfdle22266V+k466aRceuml2XffffOhD30oa621Vs4444xccMEFS9zv+OOPz3e/+90ceuih\necMb3jDmOu+88868853vzCWXXJKdd945hx9+eA444IDccsstee9735sf//jHSZIZM2bkpptuWmge\nlrvuuis333xzVl111YUSNUlyzTXXZNKkSdl22217OseXvexlWW211XLVVVeN/iIuZZMHHQAAADBY\na6+9dtZZZ50FrwEAWHp23333MZVfZZVV8vWvf32x9RdeeGFOPfXUMdW133775W1ve9ti6w844IDc\nfffdSZKLL754THUOZ+utt17Qa2TrrbfONttss9D2xx9/PEcddVTP9Z966qmZO3duTjnllGy66aYL\n1u+2227ZZ5998vnPfz7nnHPO09ZTa02S3HHHHfnXf/3XbLnllgu2ffazn83555+f8847L4cddljP\nsXZ1E0LTp0/vu64kuemmm3L66afnmc98ZpJk++23zx577JFLL700++yzz7D7XHjhhfnqV7+afffd\nNwceeGBPdZ5yyim54447cuyxx2bXXXddsO+uu+6avffeO5///Oez/fbbZ9ttt83FF1+cX/ziF9lp\np52SJNdee21WWmml7LLLLsMmX6ZNm7bQ/0fGco4rrbRStt566/zoRz/KPffck7XWWmtM13NpkHwB\nAIAV3Fe+8pXMnj07STJt2rQBRwMAMLFdccUVYyq/2mqrDbt+7ty5Y65rxx13HHb9rFmzWuvhMRo7\n77xzX/t/97vfzdSpU7PhhhvmgQceWLB+lVVWyVZbbZUf/ehHuf/++7PGGmsssZ5uz5cPf/jDCyVe\nkuRNb3pTzj///Nx88819xdp12223JUk22GCDVurbe++9FyQlkuQFL3hB1lprrdx1113Dlr/yyitz\n3HHH5fWvf33e//7391znD37wg6yxxhp5zWtes9C+6623XqZPn57LL788t912W6ZPn55JkyblZz/7\n2YLky9VXX50Xv/jF2WabbXLJJZfkkUceybOf/ezceeedmTNnTt7+9rf3dY4bbLBB5s+fn9tuu03y\nBQAAAACAFctf/dVf9bzvgw8+mDvuuCN33HHHgqHNhvOnP/1picmXxx57LDfffHPWXXfd7Lbbbott\nnzJlSpJk3rx5i227+eabc8ABB2TDDTfM0UcfPaq477333oXq7dcLX/jCxdatvPLKw8Zba80nP/nJ\nbLLJJvnHf/zHTJo0qac6H3jggdx9993ZfPPNs9JKKy1WdsMNN8zll1+eOXPmZIcddsjGG2+cn//8\n5wu2X3PNNdlhhx2y1VZbZd68eQvm3On2kho65NhYzzHJgoRL91oPmuQLAAAAAMA4WXSy9aezyiqr\nDLt+/fXXH3NdI/W6mD59+oJhx8bDqquu2vO+f/nLX5I0PbY/+MEPjlju6RI8v/3tbzNv3rxst912\necYzFp8a/Y9//GOSZN11111s2+c+97nst99++epXv5p58+Zl8uSnf8zejXuknkxj9axnPWvUZY85\n5pg89NBDufnmm3P77bdn/fXX76nOhx56KMnIbXLllVdOkjz88MNJmmTKeeedl0ceeSQPPPBA5syZ\nk0MPPTQveMELsu666+baa6/NjBkzcu2112aVVVZZrPfRWM4xSVZfffUkT13rQZN8AQAAAAAYJ23M\nqZIke+21V/baa69W6vrKV77SSj1Lw6OPPrrQz895znOSND1SFp1LZiy687284AUvGHZ7d0i37bbb\nbqH13//+9/Pkk0/mgAMOyBlnnJHbbrstU6dOfdrjdeN+8MEHs+aaa44qxkXPvVebbLJJ9t1333z0\nox/NUUcdlZNPPnlUCaNFdZNm3STMorpJl265GTNm5Oyzz851112Xu+++O5MmTcpWW22VJNliiy0W\nzPtyzTXXZOutt15oiLFedIeg617rQVs8pQcAAAAAAOOomwx47LHHFlo/Z86chX5ebbXV8vznPz9z\n5swZtrfOaIec6s738uCDDy627b777ss3vvGNrLvuunnFK16xYP0jjzySL37xiznssMOy+uqr53nP\ne15+//vfj+p43YTLfffdt9i20Z57r4488sjstNNOeec735nrr78+J598ck/1rL766llnnXVyyy23\n5Iknnlhse3d+nL/+679Okmy11VZ51rOelZ///Oe5+uqrs9FGGy24DltuuWV+9atfZe7cubn11lsX\nS3L14p577kmSUSe3ljbJFwAAWMGdffbZOfnkk3PyySfn7LPPHnQ4AABMAN05QRZNKIzkuc99bpLk\nN7/5zYJ18+fPzwUXXLBY2V122SVPPPFEzjvvvIXW33///dl///1z2GGHPe3xusmX733vewt6bCRN\nr46jjjoq9913Xz74wQ8uGEorSc4666xsscUWKaUkSTbaaKNRJ1+685fceuuti20by7n3413velc2\n3XTTnHXWWbnmmmt6qmOXXXbJAw88kP/6r/9aaP2cOXNyzTXXZJNNNsl6662XJHn2s5+dzTffPNdf\nf/2C3i1dW221VR577LF87WtfS7L4fC+9uPXWWzNp0qQRh1Ubb4YdAwCAFdw555yzYFiFmTNn5m1v\ne9uAIwIAYHnXnXPltNNOy+9+97unnZ/mVa96VS655JIcc8wx2XfffTN58uR873vfyxprrLHY5O7v\nete78sMf/jBnnHFG7r777my99da5++67c+GFF+auu+7KEUccscRjzZs3LzfddFOmTZuWBx98MPvt\nt1922mmnPP744/nhD3+YO+553/abAAAgAElEQVS4I4ceemhe/epXL9jnD3/4Q84///yFvqy00UYb\n5dprrx3V9Xj5y1+eJJk1a1Z23HHHns+9H5MnT86xxx6b/fffP5/4xCdy9tlnZ8qUKWOq46CDDspl\nl12WT33qU5k9e3Y22mij3H777bnwwguz0kor5SMf+chC5bfddtucdtppefjhhxcMOZY0126NNdbI\nN7/5zay33nqjGrptSZ544olce+212XjjjbP22mv3VVdb9HwBAAAAAKBVO++8c3bcccfccMMNOfPM\nM592OLBXv/rV+djHPpbJkyfni1/8Yk455ZRMmzYtRx999GJlp0yZktNOOy1vfvOb89Of/jTHHnts\nTjvttLzwhS/MiSeemO23336Jx/rd736Xxx57LJtttlmOP/74bLDBBrnoootyySWXZOrUqfnSl76U\nAw88cKF9Pv/5z+f+++/PHnvske233z7bb799zjvvvNx6662ZP3/+016PUkrWXnvtXHXVVX2de7/W\nX3/9fOhDH8qf//znfOpTnxrz/muuuWZOO+20vP71r8+3v/3t/NM//VPOPffcbLrppjn11FOz6aab\nLlR+xowZC3oWDU2+TJo0KVtssUUeeuihVnq9/OpXv8oDDzzQyvBlbZk0moaxLLvvvvuW7xOApzF7\n9uwkybRp0wYcCfRPe2ai0aaZKHbfffeFer60NQksDIr7MxONNs1Eoj2zLLjoooty7LHH5uMf/3j2\n3HPPpy1/1VVX5cgjj8wJJ5yw0KTwt9xySz7+8Y/n85///NP27EmSM888MyeeeGK+8IUvZIcddujr\nHFjYsccem4svvjjnn39+Nthgg6V2nClTpkwabVk9XwAAAAAAWGF053vpzt2yJPPmzcu//Mu/ZL/9\n9stLX/rSbLzxxgv+dXts3HLLLaM67t57750pU6bk1FNP7Tl2Fvf73/8+3/rWt/LGN75xqSZexkry\nBQAAAACAFUatNSuttFI23njjpy177rnn5p577slb3/rWxbatttpqWXPNNfP73/9+VMddddVV8+EP\nfzi//OUvc/755485bhY3f/78fOYzn8laa62V973vfYMOZyGTBx0AAAAAAACMhyeffDKzZ8/Ohhtu\nmJVXXvlpy++///7Zf//9R9x+4oknjun4u+66a6677rp86UtfypZbbpmXvOQlY9qfhf3bv/1bfvnL\nX+akk07KlClTBh3OQiRfAAAAAABYITzjGc/IZZddNtAYPvKRj+QjH/nIQGOYKA4++OAcfPDBgw5j\nWIYdAwAAAAAAaJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWTR50AAAAwGAd\ndNBBefnLX54k2WKLLQYcDQAAwPJP8gUAAFZwe+21VzbbbLMkybRp0wYcDQAAwPLPsGMAAAAAAAAt\nknwBAAAAAABokeQLAAAAAABAiyRfAAAAAAAAWjR50AEAAACD9eY3vzlXXnllkmSHHXbI17/+9QFH\nBAAAsHyTfAEAgBXcww8/nIceemjBawAAAPpj2DEAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIv\nAAAAAAAALZJ8AQAAAAAAaJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANCiyW1UUkp5WZLDk+yc\nZJ0k9ya5MslxtdbLh5RbJcnHk+yTZMMk9ye5NMlRtdYb24gFAAAAAABgkPru+VJK2SrJT5P8tySn\nJHlXks8neXmSy0opb+yUm5TkP5IcmeRHnXL/O8mrkvy4lLJxv7EAAAAAAAAMWhs9X45MsmqSPWut\n3+muLKVcmOQ3SY5JclGa3i6vTdMb5qNDyn0vydVJjkuyVwvxAAAAAAAADEwbc750e6z8aOjKWusN\nSf6cZGpn1ds7yy8tUu7aNEOUvaGUsmYL8QAAAGNw8cUXZ9asWZk1a1YuvvjiQYcDAACw3Guj58tv\nkmyR5CVJftFdWUqZkmTNNEOSJcmMJLfWWm8bpo6fJJmZZOs0c8D0bfbs2W1UA8sMbZqJRHtmotGm\nmUi0ZyYS7ZmJRptmItGemWi06Yll2rRpfdfRRvLlU0l2TXJWKeXQJDckeUGSTyaZn+SoUsrqSdZO\nUkeoY05nuVFaSr4AAAAAAAAMQt/Jl1rr9aWU7ZP8exYeeuwPSXattV5WSvmrzrqHRqjmL53l6v3G\n09VGZgqWBd2suTbNRKA9M9Fo00wk2jMTifbMRKNNM5Foz0w02jQj6XvOl1JKSfKtNEOMfSDJbkkO\nTHJnkotKKa/t9xgAAAAAAADLizaGHTslyfpJNqm13txdWUq5IMlvk5yeZJPO6ueMUMdqneX9LcQD\nAACMwSWXXJLrrrsuSbL55ptnt912G3BEAAAAy7e+ki+llOckmZnkqqGJlySptT5cSvlBkv2SbJDk\njiQvHKGqDTtLsxIBAMA4O+GEE3LFFVckSWbOnCn5AgAA0Kd+hx1bJcmkJM8eYfuzhyyvTPLCUsoG\nw5TbKcnDSa7tMx4AAAAAAICB6iv5Umu9M01vlc1LKX8zdFspZe0kO6cZSuz6JKd2Nn1gkXKvTLJN\nknNrrQ/2Ew8AAAAAAMCgtTHny4eSfCPJj0opJyS5Mck6SQ5LsmaSQ2qtjya5qJRyYZL3l1LWSHJp\nmuHGPpzktiSHtxALAAAAAADAQPWdfKm1XlRK2THJ/0zyniRrJXkgydVJ3ltr/c8hxfdN8rEk+yc5\nIMk9Sb6Z5Iha65/6jQUAAAAAAGDQ2uj5klrrVUn2HEW5x5Ic0/kHAAAAAAAw4fQ15wsAAAAAAAAL\nk3wBAAAAAABokeQLAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZNHnQAAADAYO25\n557ZcMMNkyRbb731gKMBAABY/km+AADACu5v//ZvM3v27CTJtGnTBhwNAADA8s+wYwAAAAAAAC2S\nfAEAAAAAAGiR5AsAAAAAAECLJF8AAAAAAABaNHnQAQAAAIN18MEH56qrrkqSbLfddjn55JMHHBEA\nAMDyTfIFAABWcHPnzs2cOXOSJC960YsGHA0AAMDyz7BjAAAAAAAALZJ8AQAAAAAAaJHkCwAAAAAA\nQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAA\nLZJ8AQAAAAAAaJHkCwAAAAAAQIsmDzoAAABgsM4666zUWpMkpZQBRwMAALD8k3wBAIAV3HOf+9w8\n73nPW/AaAACA/hh2DAAAAAAAoEWSLwAAAAAAAC2SfAEAAAAAAGiROV8AAGAF95Of/CTXX399kuTu\nu+/OtttuO+CIAAAAlm+SLwAAsII75phjcsUVVyRJZs6cmYsvvnjAEQEAACzfDDsGAAAAAADQIskX\nAAAAAACAFkm+AAAAAAAAtEjyBQAAAAAAoEWSLwAAAAAAAC2SfAEAAAAAAGiR5AsAAAAAAECLJF8A\nAAAAAABaJPkCAAAAAADQIskXAAAAAACAFkm+AAAAAAAAtGjyoAMAAAAG65WvfGVWW221JMk222wz\n4GgAAACWf5IvAACwgvvoRz+a2bNnJ0mmTZs24GgAAACWf4YdAwAAAAAAaJHkCwAAAAAAQIskXwAA\nAAAAAFok+QIAAAAAANCiyYMOAAAAGKyPfexj+elPf5okmTFjRv75n/95wBEBAAAs3yRfAABgBffL\nX/4y1157bZJklVVWGXA0AAAAyz/DjgEAAAAAALRI8gUAAAAAAKBFhh0DAAAGas3T5w46hKXu3neu\nP+gQAACAcST5AgAAy7BxSUz86bEFL6/402MrRDIEAABgaTLsGAAAAAAAQIskXwAAAAAAAFok+QIA\nAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAALZo86AAAAIABe8snkkcf\nal6vvOpgYwEAAJgAJF8AAGBF9/y/HnQEE96ap88ddAhL3b3vXH/QIQAAwDLDsGMAAAAAAAAtknwB\nAAAAAABokeQLAAAAAABAi8z5AgAAK7o/35w8+lDzeuVVzQEDAADQJ8kXAABY0Z3/yeSmWc3rjacn\n7ztjoOEAAAAs7ww7BgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBFki8AAAAAAAAt\nmjzoAAAAoFdrnj530CEAAADAYvR8AQAAAAAAaJHkCwAAAAAAQItaG3aslLJbko8l2TrJvCQ/S/JP\ntdZLFym3SpKPJ9knyYZJ7k9yaZKjaq03thUPAAAAAADAILTS86WU8q4k3+r8eFiSo5NslOQ/Symv\nGlJuUpL/SHJkkh8leVeS/53kVUl+XErZuI14AAAAAAAABqXvni+llPWSfCnJd5PsWmt9srP+oiQ/\nTrJ7kh90iu+T5LVJjqu1fnRIHd9LcnWS45Ls1W9MAAAAAAAAg9LGsGMHJnlOkqO7iZckqbX+Lsm6\ni5R9e2f5paEra63XllKuTPKGUsqatdZ7W4gLAAAYjfXL8K8BAADoyaT58+f3VUEp5btJZiRZs9b6\nZCllpSSTa62PDlP2riR/qbVuMMy2zyX5YJJdFp0nZknuu+++YU9g9uzZo60CAIDl1PTLVx10CEDH\nrB0fGnQIAADQimnTpg27fsqUKZNGW0cbc768NMlNSbYspVyW5NEkj5RSri+l7NMtVEpZPcnaSW4b\noZ45neVGLcQEAAAAAAAwEG0MO7Z2kseTXJzk9DTztkxN8rEkXyulPKfWemqS1TvlR/o61F86y9VH\n2D4mI2WmYHnT7cWlTTMRaM9MNNr0MuDyuYOOAOhYlu6F7s9MNNo0E4n2zESjTTOSNpIvz0qTbHlb\nrfWc7spSysVJfpPk06WUM1o4DgAAAAAAwDKvjWHHHkzySJJzh66std6c5PtJnp9kkyT3dzY9Z4R6\nVuss7x9hOwAAAAAAwDKvjZ4vt6RJrgznz53lGrXWB0spdyR54QhlN+wsZ7cQEwAAMFrf+dfk9t81\nr9fdKHndewYbDwAAwHKujZ4vP04z9NjfDLOtm1C5rbO8MskLSykbDFN2pyQPJ7m2hZgAAIDRuvEn\nybXfav7d+JNBRwMAALDcayP5ckZn+YlSyqTuylLK5mkSKtfVWud0Vp/aWX5gaAWllFcm2SbJubXW\nB1uICQAAAAAAYCD6Hnas1vqTUsrxSf4+yf8rpZyfpsfLB5LMS3LYkLIXlVIuTPL+UsoaSS7tlP1w\nmt4xh/cbDwAAAAAAwCC1MedL0iRYfp3kkCQnJ3k0yRVJjq61zlqk7L5JPpZk/yQHJLknyTeTHFFr\n/VNL8QAAAAAAAAxEK8mXWuv8JP+n8+/pyj6W5JjOPwAAAAAAgAmljTlfAAAAAAAA6JB8AQAAAAAA\naJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWTR50AAAAACz/1jx97qBDGGLV\nZnF5uzHd+871W60PAICJS/IFAABWdLsflvzl3ub1c9YcbCwAAAATgOQLAACs6P56q0FHAAAAMKGY\n8wUAAAAAAKBFki8AAAAAAAAtknwBAAAAAABokTlfAABgRffgPckTjzevV3pmstpag40HAABgOSf5\nAgAAK7ozPpDcNKt5vfH05H1nDDQcAACA5Z1hxwAAAAAAAFok+QIAAAAAANAiw44BAExQa54+d9Ah\nAAAAwApJzxcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAALZJ8AQAAAAAAaJHkCwAA\nAAAAQIskXwAAAAAAAFok+QIAAAAAANCiyYMOAAAAGLA1102et+FTrwEAAOiL5AsAAKzo9v9fg44A\nAABgQjHsGAAAAAAAQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWTR50AAAAwIBd/rXkrlub\n1899UbLjvoONBwAAYDkn+QIAACu6n387uWlW83rj6ZIvAAAAfTLsGAAAAAAAQIskXwAAAAAAAFok\n+QIAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAALZJ8AQAAAAAAaJHk\nCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANCiyYMOAAAAGLBXHZhs/d+a12s8b7CxAAAATACSLwAA\nsKLb9NWDjgAAAGBCMewYAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZNHnQAAADA\ngJ3wjuSmWc3rjacn7ztjkNEAAAAs9/R8AQAAAAAAaJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAA\nANAiyRcAAAAAAIAWTR50AAAAALA8WPP0uYMOYam7953rDzoEAIAJQfIFAFhh9f8QbdVmcfnEfxgH\nAAAAjJ5hxwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0aPKgAwAAAAbsmSsnK6/6\n1GsAAAD6IvkCAAArur/78qAjAAAAmFAMOwYAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAA\nAACgRZMHHQAAADBgP7skuff25vWa6yZb7TbYeAAAAJZzki8AALCiu+K85KZZzeuNp0u+AAAA9Mmw\nYwAAAAAAAC2SfAEAAAAAAGiR5AsAAAAAAECLJF8AAAAAAABaJPkCAAAAAADQIskXAAAAAACAFkm+\nAAAAAAAAtGjy0qi0lHJMkqOSnFlrfceQ9c9I8v4k70wyLckjSa5IcnStddbSiAUAAAAAAGA8td7z\npZTysiT/c4TNJyf5XJIbkxycJkFTkvywlLJ927EAAAAAAACMt1Z7vnR6tvxbkl8l2WqRbdsnOSjJ\nBbXWtwxZf2GaZMyJSbZuMx4AAAAAAIDx1nbPl/ck2T7Jh4fZ9vbO8otDV9Za5yb5RpKtOr1mAAAA\nAAAAllut9XwppbwwyWeSfLXWemkpZdEiM5I8keSnw+z+kyRvS7Jtml4zAADAeJnxpuTF05vXa//V\nYGMBAACYANocduzEJI8n+eAI26cm+XOt9fFhts3pLDdqK5jZs2e3VRUsE7RpJhLtmWXHqoMOAJYN\nM/YcdATAMsLfacs27w8TifbMRKNNTyzTpk3ru45Wki+llDcn+e9JDqq13jFCsdWT3DPCtr8MKQMA\nAAAAALDc6jv5UkpZM8nxSS5LcnrfEbWkjcwULAu6WXNtmolAe2aZc/ncQUcAAMsUf6ctm/wdzUSi\nPTPRaNOM5Bkt1HFckrWTHFJrnb+Ecvcnec4I21YbUgYAAAAAAGC51VfPl1LKK5IclOSLSR4spbxw\nkSKrdtb9JcnvkmxTSnlWrfWxRcpt2FkaGA8AAAAAAFiu9Tvs2M5JJiV5f+ffovbu/DszyZVJpifZ\nLskPFym3U2d5RZ/xAAAAY3X6Ycktv2heT90ieecXBxsP/P/27j5akrK+E/h3cBAHeRlRQHZQRCQP\nrjFGERXRFUw86KoxvkTNhmgmeiRGV4WjJiYiSlyz6roSX9fXwbMxbjw5gpE1u1EUldUECAsxvjwg\nQmQGFBQGlcHBldk/qq60l3tn5t77TFdP9+dzzj1Vt7q6+nc5v3mo7m/XUwAAsJtbafjyV0kuXuSx\nTyU5L8mZSa7pt70sySkZCV9KKUcmeWqSz9dar1xhPQAAwFLdcnPywxvuWAcAAGBFVhS+1FovT3L5\nQo+VUpJkY6313JFtb09yainl7CSfSHKvJKcmuTXJf1xJLQAAAAAAAJNgpVe+LNUrk1yV5OQkH0iy\nJcn5SV5ba/36mGsBAAAAAABobpeFL7XWVQts25bkXf0PAAAAAADA1Nlj6AIAAAAAAACmifAFAAAA\nAACgIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAAGhK+AAAAAAAANCR8AQAAAAAA\naGj10AUAAAADe9F7k9tv79b38P0sAACAlRK+AADArLvrmqErAAAAmCq+1gYAAAAAANCQ8AUAAAAA\nAKAh4QsAAAAAAEBD7vkCAACzrn4l+fEPuvV97pmUY4etBwAAYDcnfAEAgFn3mfclV17UrR9xjPAF\nAABghUw7BgAAAAAA0JDwBQAAAAAAoCHhCwAAAAAAQEPCFwAAAAAAgIaELwAAAAAAAA2tHroAAGAy\nrd2waegSAAAAAHZLrnwBAAAAAABoSPgCAAAAAADQkPAFAAAAAACgIeELAAAAAABAQ8IXAAAAAACA\nhlYPXQAAADCwBz0uOfCwbv2g+w1aCgAAwDQQvgAAwKw7Yf3QFQAAAEwV044BAAAAAAA0JHwBAAAA\nAABoSPgCAAAAAADQkPAFAAAAAACgodVDFwAAAAzsr09PNn69Wz/03ybPecOw9QCDWbth09Al7HKb\n168bugQAYAYIXwAAYNbd8K93hC973X3YWgAAAKaAaccAAAAAAAAaEr4AAAAAAAA0JHwBAAAAAABo\nSPgCAAAAAADQkPAFAAAAAACgIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAAGhK+\nAAAAAAAANCR8AQAAAAAAaGj10AUAAAAD+50/T366tVvfc69hawEAAJgCwhcAAJh19zhk6AoAAACm\nimnHAAAAAAAAGhK+AAAAAAAANCR8AQAAAAAAaMg9XwAAYNZt+kZy64+69TX7JuseOGw9AAAAuznh\nCwAAzLqz35xceVG3fsQxyUvPGrQcAACA3Z1pxwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGhI+AIA\nAAAAANCQ8AUAAAAAAKAh4QsAAAAAAEBDwhcAAAAAAICGhC8AAAAAAAANCV8AAAAAAAAaEr4AAAAA\nAAA0JHwBAAAAAABoaPXQBQAAAAO730OSvfbu1g85cthaAAAApoDwBQAAZt1TThm6AgAAgKli2jEA\nAAAAAICGhC8AAAAAAAANCV8AAAAAAAAaEr4AAAAAAAA0tHroAgAAgIGd+/bkuiu69UOOTJ5yyrD1\nAOxCazdsGrqEZdi7W1ywc7VvXr9uF9YCAOwM4QsAAMy6qy9LrryoW9+6ZdhaAAAApoBpxwAAAAAA\nABoSvgAAAAAAADQkfAEAAAAAAGhI+AIAAAAAANCQ8AUAAAAAAKCh1UMXAAC7o7UbNg1dAgAAAAAT\nqkn4Uko5MMnrkjw9ycFJNie5IMmf1VovmbfvmiSvSfLcJIcl+WGSzyU5rdZ6eYt6AAAAAAAAhrLi\nacdKKQcluSTJC5L8db98X5JfS3JBKeWhI/uuSvLJJK9N8qUkv5/kLUmOT/KVUsoRK60HAAAAAABg\nSC2ufHljkkOTPLPW+om5jaWUi5Kck+4ql2f3m5+b5AlJ3lprffXIvucluTjJW5M8o0FNAAAAAAAA\ng1jxlS9Jrk3ysSRnz9v+v5JsS/IrI9ue1y/fMbpjPzXZl5M8pZSytkFNAAAAAAAAg1jxlS+11tcv\n8tC+SValu6fLnEckuabWunGB/f8xyXFJHpbuHjAAAAAAAAC7nRbTji3mD/rlR5OklLJvkgOS1EX2\n/06/vH8ahC9XXHHFSg8BE0VPM02mo5/3HroAgHae/kfJrT/q1tfsO2wtAKzYdJxvM+30KdNGT0+X\nI488csXH2CXhSynlSUlel+Sfkry33zz3Lm7LIk+7Zd5+AADAOKx74NAVAAAATJXm4Usp5XlJPpjk\n6iRPrbXe1vo1dkaLZAomwVxqrqeZBlPVzxdsGroCAABY0FScbzO1pup9IURPs7g9Wh6slHJako8k\nuSzJY2qt1408PHfvl7sv8vR95u0HAAAAAACw22kWvpRSzkxyRpK/TfK4Wuv1o4/XWn+c5IYkhy5y\niMP6pcnxAAAAAACA3VaT8KW/4uXlSTYkeUatdbH7unw5yaGllPsu8Nhjk9ya5JIWNQEAADvppuuS\n66/ufm66bkd7AwAAsAMrvudLKeWEJG9IcnaSF9Zab9/O7h9K8rQkp/Q/c8d4XJKjk2zor5ABAADG\n5aOvSa68qFs/4pjkpWcNWg4AAMDubsXhS5L/0i8/m+QZpZSF9vl0rXVLrfVTpZRPJHlFKWW/JJ9L\nN93YK5NsTPInDeoBAAAAAAAYTIvw5WH98t3b2efwJFf367+d5I+TnJTkd5PclOTcJH9aa/1ug3oA\nAAAAAAAGs+Lwpda6aon735bkjP4HAAAAAABgquwxdAEAAAAAAADTRPgCAAAAAADQkPAFAAAAAACg\nIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAAGhK+AAAAAAAANLR66AIAAICBHXhY\nsvWWO9YBAABYEeELAADMuue8YegKAAAApoppxwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGhI+AIA\nAAAAANDQ6qELAAAABvb5Dcn1V3frB90vOWH9kNUAAADs9oQvAAAw6772heTKi7r1I44RvgAAAKyQ\n8AUAAABgiqzdsGnoEna5zevXDV0CAGyXe74AAAAAAAA0JHwBAAAAAABoSPgCAAAAAADQkPAFAAAA\nAACgodVDFwDA9Fn8Bp97d4sLpv8GoAAAAADMLle+AAAAAAAANCR8AQAAAAAAaEj4AgAAAAAA0JDw\nBQAAAAAAoCHhCwAAAAAAQEOrhy4AAAAY2BNOTo59Vre+zz2HrQUAAGAKCF8AAGDWlWOHrgAAAGCq\nmHYMAAAAAACgIeELAAAAAABAQ8IXAAAAAACAhtzzBQAAZt1ttya3396t77FHctc1w9YDAACwmxO+\nAADArHv/i5MrL+rWjzgmeelZg5YDAACwuzPtGAAAAAAAQEPCFwAAAAAAgIaELwAAAAAAAA0JXwAA\nAAAAABpaPXQBAAAAALAUazdsGrqEXW7z+nVDlwDACrjyBQAAAAAAoCHhCwAAAAAAQEPCFwAAAAAA\ngIaELwAAAAAAAA0JXwAAAAAAABoSvgAAAAAAADS0eugCAACAgd19/2S/A+9YBwAAYEWELwAAMOvW\n/8XQFQAAAEwV044BAKj0TtUAABBSSURBVAAAAAA0JHwBAAAAAABoSPgCAAAAAADQkPAFAAAAAACg\nodVDFwAAAAzswrOTG6/t1g/4N8kjnj5sPQBA1m7YNHQJu8je3eKCTdm8ft2wpQDsQsIXAACYdRd+\nMrnyom79iGOELwAAACtk2jEAAAAAAICGXPkCMGbTe+k4AAAAAJC48gUAAAAAAKAp4QsAAAAAAEBD\nwhcAAAAAAICGhC8AAAAAAAANCV8AAAAAAAAaEr4AAAAAAAA0JHwBAAAAAABoSPgCAAAAAADQkPAF\nAAAAAACgodVDFwAAAAzsuOckDzq+W1978KClAAAATAPhCwAAzLqHPmnoCgAAAKaKaccAAAAAAAAa\ncuULMFHWbtg0dAkAAADAGMzCZwCb168bugRgIK58AQAAAAAAaEj4AgAAAAAA0JBpxwAAYNa97+Tk\nqku69cMflpz8vmHrAQAA2M0JXwAAYNb9dGuydcsd6wAANOG+NjC7TDsGAAAAAADQkPAFAAAAAACg\nIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADa0e9wuWUg5IcnqS30xySJLvJ/l0ktNqrdeNux7Y\nnazdsGnoEgAAAAAA2IGxhi+llDVJzk9yVJJ3Jbk4yZFJXpnk8aWUo2utN42zJgAAAAAAlmcWviy8\nef26oUtgNzTuK19ekeTBSV5Sa33P3MZSymVJzk5yWpJTx1wTAAAAAABAM6u2bds2thcrpXwjyX2S\n3LPWunVk+6ok30myV5KDa607XdTNN988vj8AAAAAAACYSfvvv/+qnd13j11ZyKhSyn7pphu7ZDR4\nSZI+bLkwyYFJDh9XTQAAAAAAAK2NLXxJcli/3LjI49/pl/cfQy0AAAAAAAC7xDjDl3375ZZFHr9l\n3n4AAAAAAAC7nXGGLwAAAAAAAFNvnOHLD/vl3Rd5fJ95+wEAAAAAAOx2Vo/xta5Ksi3JoYs8PndP\nmCuWctD9999/1UqKAgAAAAAAaGnVtm3bxvZipZRLkxyZ5J611p+MbL9LkmuTbK213ndsBQEAAAAA\nADQ27nu+fCjJ3klOnrf9pCQHJfngmOsBAAAAAABoatxXvuyZ5EtJjk7yziQXJ3lQklPTTTf2qFrr\nlrEVBAAAAAAA0NhYw5ckKaXsl+T1SZ6Z5JAk1yc5O8nptdYbx1oMAAAAAABAY2MPXwAAAAAAAKbZ\nuO/5AgAAAAAAMNWELwAAAAAAAA0JXwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGhI+AIAAAAAANDQ\n6iFfvJRyQJLTk/xmkkOSfD/Jp5OcVmu9biee/+gkpyV5VJI1SS5P8oEk76q1bpu375OTvCzJQ5Ic\nkOS6JP87yetrrdfO2/c+Sc5IcmKSeyW5Nsknkryh1nrzcv9ept8k9nQp5fwkj9vOyz691nrOTv6J\nzJBx9vO8561K8vl0fbu+1npWy7qYTZPYz6WUs5I8fzsve0qt9cwd1cZsGldPl1KuTnLYdg710Frr\npSP7O49mySaxn51Ds1xjfk+4R5KXJnlRkgckuTnJeUleW2v99rx9jc8syyT2tDGa5RpHP5dSjk/3\nHnB7/rXWer+R4xqjp9Rg4UspZU2S85McleRdSS5OcmSSVyZ5fCnl6FrrTdt5/uOT/F2Sa5K8PsmN\nSZ6W5B1JjkjyipF9X57kzP413pjklnSD9AuTPLGU8qu11hv7fQ9O8pUk+yV5e5Ka5GHpPuR+TCnl\nuFrrT5v8R2CqTGpPj/itRV76wqX8ncyGcfbzAl6YRU6kV1oXs2lS+3nEHya5YYHtly6wDYbo6RvS\n9elCrho5rvNolmxS+3mEc2h22gD9vCHJ8/rlm5P8UpJTk5xQSnlwrfX7/XGNzyzLpPb0CGM0O22M\n/fy1LN6b+yR5X7/P3HGN0VNsyCtfXpHkwUleUmt9z9zGUsplSc5OlyKeup3nvyfJT5I8diSZ/O+l\nlHOSvKyUsqHWelnfwG9NclmS42qtt/X7biilbE7y8nTfOn17v/2MJOuSPLnW+ul+21+VUjb2+7w4\n3T8qmG9SezpJUmv9mxX/hcySsfTz/CeVUu6d5C1J/m+Sh+6CuphNk9rPc/6u1nr1Ev4eGHdPb9nJ\n8wjn0SzHpPZzEufQLNnY+rmU8pR0H1KfXms9Y+S1apL/nOTxST7ebzY+s1yT2tNJjNEs2Vj6udZ6\nQ5IFe7OUcmaSbUlOGdlsjJ5iQ97z5Xnpvq3/oXnbP5lkY5KT+qk67qSU8sgkJcnHF7gk7F1JViU5\nqf99z3T/eF418iH1nM/0y/v2x90zyXOTfGuk2ed8IMltSX53x38aM2riehpWYFz9PN87k9ye5E2t\n62KmTWo/w3IN1dOLch7NCkxcP8MKjLOfX5Lkh+m+mPdztda/rLUeWmv9eH9c4zMrMXE9DSsw6DlH\nKeXodNPqvbXWenm/zRg95QYJX0op+6W7xOuSWuvW0cf6+fEuTHJgksMXOcQj+uVXFnjsH/vlI/vj\nbay1vrnW+pkF9j2qX/7zyO/7LXTcWustSf4lya+WUvZapC5m1AT39EK1runnUYUFjbOf573ubyR5\nVpJXp5t3tXVdzKBJ7edFar1bKWXQ+/Ex+Ybq6ZHX33uRN6XOo1myCe7nhfZ1Ds12jbOfSyl3SXJC\nki/VWm/tt9213z6f8ZllmeCeXqhWYzTbNfQ5R+89STblF7+cZ4yeckMNTHM3Ody4yOPf6Zf3X+Tx\n+y32/Frrj5JsXui5pZTVpZS1pZQHlFJela7ZP5vkL3d03JG6Vie5zyKPM7smtadH9/2zUsp3k2xJ\nsrWU8tlSyqMWqYfZNvZ+LqXsm+TdSb6Y5MO7qC5m06T286iXlFKuSnJruvH5H0op/34nnsdsGuKc\nY00p5R2llJvSfVtwSynlnFLKUSP7LHrckbqcRzPfpPbzzzmHZgnG2c+HJ9kryRWllP9QSvlGkq3p\nevS8/tvVOzzuSF3GZxYyqT39c8ZolmCQz+3m9NPqPSLJ6+YCxh0dd6QuY/RubKjwZd9+uWWRx2+Z\nt99ynr/Qcx+T5KYkVyQ5Pcnrkjxx5KZFK62L2TWpPT3q+CSvSvLUdPOlPjrJF0opj1nkNZldQ/Tz\nnyc5KMnJ/bdOdkVdzKZJ7edRJ6YLz5+c5E/T3fTx3FLKc3fiucyeIXr6oHRvDE9O8vQk70/ylCT/\nUEr5pUZ1MZsmtZ9HHR/n0OyccfbzAf3y8eluSv7edD36piTHJfliKeXBjepidk1qT486PsZods5Q\nn9vNOT3JVbnzl6WN0VNu1qa2uDTdZYz36JdnJDmxlPLsWutOTQkCE2ZnevrV6Qbpz418CHhuKeWL\nSf4+3Xyqx463bLhDKeXYdDeQe2Ot9ZtD1wMrscR+fluSjyU5f+TS90+XUv423fj+tlLKx2utt++6\nimGHnp/kZ7XWC0a2nVNK+Wq6eajfkOS3B6kMlm4p/ewcmkl21375gCQPqbV+q//93FLKN5N8NN0H\nfc8aojhYhqX2tDGa3UYp5cQkD09yaq31Z0PXw3gNFb78sF/efZHH95m333Kef6fn1lo3Jzm///Xs\nUsp5Sc5Jl6q/oEFdzK5J7enUWi9c6IC11s+UUq5I8shSyj611h8v8trMnrH1cynlrkk+mORb2fFN\nyY3RLMek9nNqrV9N8tUFtn+9lHJ+kickeWCSr+3oWMyUsZ5z1Fq/sMh+H07yziS/3qguZtOk9rNz\naJZjnP0813cXjHxIPedj6c5Hjm9UF7NrUnvaGM1yDPK5Xe+FSf5fuhCxdV1MuKGmHbsqybYkhy7y\n+Nw8fFcs8vi3++Wdnl9K2T/J/tt57s/VWj+Z7ia4T9zRcUfq2po75gGEOZPa0zvyvSSr4vJFftE4\n+/mP0n24/LokB5ZSDi2lHJruRndJco9+294N6mI2TWo/78j3+uV+O7Evs2VSzjluT3fOMdejzqNZ\njknt5x1xDs1CxtnPV/fLO92MvL8K4IYYn1m5Se3pHTFGs5BBzjlKKWvSTS/95Vrr9Us57khdxujd\n2CDhS631liT/nORhpZS7jT5WSrlLujkar6m1LtZYX+6Xxy3w2GP75QX98Z5fSvleKeX35+9YStkj\n3WA8dwVQTfKDhY5bSlmb5JeTXLjI/TSYYZPa06WUe/f7P3qBfVelu6/ArenebEKS8fZzkl9Ld2L8\nP5JcM/Lz8f7x/9r//uwGdTGDJrWfSyn7lVJ+p5SyWFhe+uU1i/1tzKYxn3Pcv5TyglLKL8/fsZSy\nT5J1ueONoPNolmxS+9k5NMsxzn7uZ0D4ZpIHlVJ+YUaTUsqeSQ7JHTdvNj6zLJPa08ZolmPM7wtH\n/bska5J8brHSYoyeakNd+ZIkH0qyd7obHY46Kd1NED84t6GUclQp5fC532utlya5JMlv9d8ondtv\nVZJTkvw0yUf6zZf1x3tpP2CPek6SvZL8n/64P+ufd3gp5Wnz9n15ug+0PxhY2MT1dLpvjXw4yfvn\n/88l3bRkByf5lEGcBYyrn1+T7uaI83/+pH/8zP73zy61Lhgxif18W5J3JzmrlHKv0aJKKb+e5Jh0\nJ9kbA3c2rp4+uD/W2/vHR/1xurDxE/1xnUezXBPXz3EOzfKNq5+TZEOSe6e719yok5PsmeRT/XGN\nz6zExPV0jNEs3zj7ec7R/fJfFirIGD39Vm3btm3He+0C/YfGX0rXhO9McnGSByU5Nd1lWo+qtW7p\n992WpNZajxp5/iOTfD7Jd9N9mLE5yXOTPCnJabXWN47s++4kf5juQ+uPJLkx3Y2OXpTuw49H9/Ou\np5RyjyQXpRvw35YugTy2f/55SU4cuZkX/NwE9/TpSV7f77sh3TyRxyVZn+TaJMf6cI/5xtnPi7z+\n8f3z19daz1pOXTBngvv5+UnOSncJ/H/rj//QdG84f5Lk+P4kH37BmM85NiT5vSRfTHcV19YkJ6a7\n4e1Xkzym1jp33yPn0SzZBPezc2iWbMz9fLckX0j3PvAvklya7ssbL07Xow+fm+LG+MxyTXBPG6NZ\nsiHeF5ZSzkry/HT9+0+L1GWMnmKDhS9JUkrZL91g+cx0lxBen+TsJKfXWm8c2e9ODd9vf3iSM9Jd\nGrZXkm8keWetdcMCr3VSkj9I8uB0Kef30l3y9Z9qrXXevvdO8sZ0c/LdM92UHx/r9711xX84U2uC\ne/qZ6f5n8iv9cTem+9bIm2qt3wssYJz9vMBrH58FPqxeSl0waoL7+YR0V8w8It1NFr+b5O/TjeXf\nDixiXD3dT8Pwe0lekuSodFfOX5Xkb5K8pdb6o3n7O49mySa4n51Ds2Rjfk+4T5LTkjw73dR5P0jy\nP9N9CHjdvH2NzyzLBPe0MZolG/f7wlLKJ5P8RpJSa718O3UZo6fUoOELAAAAAADAtBnyni8AAAAA\nAABTR/gCAAAAAADQkPAFAAAAAACgIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAA\nGhK+AAAAAAAANCR8AQAAAAAAaEj4AgAAAAAA0JDwBQAAAAAAoCHhCwAAAAAAQEPCFwAAAAAAgIaE\nLwAAAAAAAA0JXwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGjo/wNd+yV9e4WmKwAAAABJRU5ErkJg\ngg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "tOj8bjBmNuxm", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### TensorFlow Graph and Eager Modes\n", + "\n", + "TFP accomplishes most of its heavy lifting via the main `tensorflow` library. The `tensorflow` library also contains many of the familiar computational elements of NumPy and uses similar notation. While NumPy directly executes computations (e.g. when you run `a + b`), `tensorflow` in graph mode instead builds up a \"compute graph\" that tracks that you want to perform the `+` operation on the elements `a` and `b`. Only when you evaluate a `tensorflow` expression does the computation take place--`tensorflow` is lazy evaluated. The benefit of using Tensorflow over NumPy is that the graph enables mathematical optimizations (e.g. simplifications), gradient calculations via automatic differentiation, compiling the entire graph to C to run at machine speed, and also compiling it to run on a GPU or TPU. \n", + "\n", + "Fundamentally, TensorFlow uses [graphs](https://www.tensorflow.org/guide/graphs) for computation, wherein the graphs represent computation as dependencies among individual operations. In the programming paradigm for Tensorflow graphs, we first define the dataflow graph, and then create a TensorFlow session to run parts of the graph. A Tensorflow [`tf.Session()`](https://www.tensorflow.org/api_docs/python/tf/Session) object runs the graph to get the variables we want to model. In the example below, we are using a global session object `sess`, which we created above in the \"Imports and Global Variables\" section. \n", + "\n", + "To avoid the sometimes confusing aspects of lazy evaluation, Tensorflow's eager mode does immediate evaluation of results to give an even more similar feel to working with NumPy. With Tensorflow [eager](https://www.tensorflow.org/guide/eager) mode, you can evaluate operations immediately, without explicitly building graphs: operations return concrete values instead of constructing a computational graph to run later. If we're in eager mode, we are presented with tensors that can be converted to numpy array equivalents immediately. Eager mode makes it easy to get started with TensorFlow and debug models.\n", + "\n", + "\n", + "TFP is essentially:\n", + "\n", + "* a collection of tensorflow symbolic expressions for various probability distributions that are combined into one big compute graph, and\n", + "* a collection of inference algorithms that use that graph to compute probabilities and gradients.\n", + "\n", + "For practical purposes, what this means is that in order to build certain models we sometimes have to use core Tensorflow. This simple example for Poisson sampling is how we might work with both graph and eager modes:" + ] + }, + { + "metadata": { + "id": "CmiGas0kXiEw", + "colab_type": "code", + "outputId": "6ecefef8-ec11-4048-e840-15c875565a8f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "parameter = tfd.Exponential(rate=1., name=\"poisson_param\").sample()\n", + "data_generator = tfd.Poisson(parameter, name=\"data_generator\")\n", + "data_generator_samples = data_generator.sample()\n", + "\n", + "if tf.executing_eagerly():\n", + " data_gen_samps_ = tf.contrib.framework.nest.pack_sequence_as(\n", + " data_generator_samples,\n", + " [t.numpy() if tf.contrib.framework.is_tensor(t) else t\n", + " for t in tf.contrib.framework.nest.flatten(data_generator_samples)])\n", + "else:\n", + " data_gen_samps_ = sess.run(data_generator_samples)\n", + " \n", + "print(\"Value of sample from data generator:\", data_gen_samps_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Value of sample from data generator: 1.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "9kArT4GTIAwT", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In graph mode, Tensorflow will automatically assign any variables to a graph; they can then be evaluated in a session or made available in eager mode. If you try to define a variable when the session is already closed or in a finalized state, you will get an error. In the \"Imports and Global Variables\" section, we defined a particular type of session, called [`InteractiveSession`](https:///www.tensorflow.org/api_docs/python/tf/InteractiveSession). \n", + "This defnition of a global `InteractiveSession` allows us to access our session variables interactively via a shell or notebook." + ] + }, + { + "metadata": { + "id": "4IEk40NbIAwX", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Using the pattern of a global session, we can incrementally build a graph and run subsets of it to get the results.\n", + "\n", + "Eager execution further simplifies our code, eliminating the need to call session functions explicitly. In fact, if you try to run graph mode semantics in eager mode, you will get an error message like this:\n", + "\n", + "```\n", + "AttributeError: Tensor.graph is meaningless when eager execution is enabled.\n", + "```\n", + "\n", + "As mentioned in the previous chapter, we have a nifty tool that allows us to create code that's usable in both graph mode and eager mode. The custom `evaluate()` function allows us to evaluate tensors whether we are operating in TF graph or eager mode. The function looks like the following:\n", + "\n", + "```python\n", + "\n", + "def evaluate(tensors):\n", + " if tf.executing_eagerly():\n", + " return tf.contrib.framework.nest.pack_sequence_as(\n", + " tensors,\n", + " [t.numpy() if tf.contrib.framework.is_tensor(t) else t\n", + " for t in tf.contrib.framework.nest.flatten(tensors)])\n", + " with tf.Session() as sess:\n", + " return sess.run(tensors)\n", + "\n", + "```\n", + "\n", + "Each of the tensors corresponds to a NumPy-like output. To distinguish the tensors from their NumPy-like counterparts, we will use the convention of appending an underscore to the version of the tensor that one can use NumPy-like arrays on. In other words, the output of `evaluate()` gets named as `variable` + `_` = `variable_` . Now, we can do our Poisson sampling using both the `evaluate()` function and this new convention for naming Python variables in TFP." + ] + }, + { + "metadata": { + "id": "Bk-vyPB9IAwX", + "colab_type": "code", + "outputId": "2b934b1e-c0a5-4b92-e6d2-a959b281c354", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "# Defining our Assumptions\n", + "parameter = tfd.Exponential(rate=1., name=\"poisson_param\").sample()\n", + "\n", + "# Converting our TF to Numpy\n", + "[ parameter_ ] = evaluate([ parameter ])\n", + "\n", + "print(\"Sample from exponential distribution before evaluation: \", parameter)\n", + "print(\"Evaluated sample from exponential distribution: \", parameter_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Sample from exponential distribution before evaluation: Tensor(\"poisson_param_1/sample/Reshape:0\", shape=(), dtype=float32)\n", + "Evaluated sample from exponential distribution: 1.2240193\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "ZlGWIiPLIAwo", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "More generally, we can use our `evaluate()` function to convert between the Tensfflow `tensor` data type and one that we can run operations on:" + ] + }, + { + "metadata": { + "id": "1tzQmnsFIAwp", + "colab_type": "code", + "outputId": "c7c87627-826f-445d-e000-843894eecc16", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "[ \n", + " parameter_,\n", + " data_generator_sample_,\n", + "] = evaluate([ \n", + " parameter, \n", + " data_generator.sample(),\n", + "])\n", + "\n", + "print(\"'parameter_' evaluated Tensor :\", parameter_)\n", + "print(\"'data_generator_' sample evaluated Tensor :\", data_generator_sample_)\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "'parameter_' evaluated Tensor : 0.18858196\n", + "'data_generator_' sample evaluated Tensor : 1.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "m0PLxpCIc--r", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "A general rule of thumb for programming in TensorFlow is that if you need to do any array-like calculations that would require NumPy functions, you should use their equivalents in TensorFlow. This practice is necessary because NumPy can produce only constant values but TensorFlow tensors are a dynamic part of the computation graph. If you mix and match these the wrong way, you will typically get an error about incompatible types." + ] + }, + { + "metadata": { + "id": "wqkS8vztNoyh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### TFP Distributions\n", + "\n", + "Let's look into how [`tfp.distributions`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions) work.\n", + "\n", + "TFP uses distribution subclasses to represent *stochastic*, random variables. A variable is stochastic when the following is true: even if you knew all the values of the variable's parameters and components, it would still be random. Included in this category are instances of classes [`Poisson`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Poisson), [`Uniform`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Uniform), and [`Exponential`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Exponential).\n", + "\n", + "You can draw random samples from a stochastic variable. When you draw samples, those samples become [`tensorflow.Tensors`](https://www.tensorflow.org/api_docs/python/tf/Tensor) that behave deterministically from that point on. A quick mental check to determine if something is *deterministic* is: *If I knew all of the inputs for creating the variable `foo`, I could calculate the value of `foo`.* You can add, subtract, and otherwise manipulate the tensors in a variety of ways discussed below. These operations are almost always deterministic.\n" + ] + }, + { + "metadata": { + "id": "NdKiqWtWIAwy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Initializing a Distribution\n", + "\n", + "Initializing a stochastic, or random, variable requires a few class-specific parameters that describe the Distribution's shape, such as the location and scale. For example:\n", + "\n", + "```python\n", + "some_distribution = tfd.Uniform(0., 4.)\n", + "```\n", + "\n", + "initializes a stochastic, or random, [`Uniform`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Uniform) distribution with the lower bound at 0 and upper bound at 4. Calling `sample()` on the distribution returns a tensor that will behave deterministically from that point on:\n", + "\n", + "```python\n", + "sampled_tensor = some_distribution.sample()\n", + "```\n", + "\n", + "The next example demonstrates what we mean when we say that distributions are stochastic but tensors are deterministic:\n", + "\n", + "```\n", + "derived_tensor_1 = 1 + sampled_tensor\n", + "derived_tensor_2 = 1 + sampled_tensor # equal to 1\n", + "\n", + "derived_tensor_3 = 1 + some_distribution.sample()\n", + "derived_tensor_4 = 1 + some_distribution.sample() # different from 3\n", + "```\n", + "\n", + "The first two lines produce the same value because they refer to the same sampled tensor. The last two lines likely produce different values because they refer to independent samples drawn from the same distribution.\n", + "\n", + "To define a multiviariate distribution, just pass in arguments with the shape you want the output to be when creating the distribution. For example:\n", + "\n", + "```python\n", + "betas = tfd.Uniform([0., 0.], [1., 1.])\n", + "```\n", + "\n", + "Creates a Distribution with batch_shape (2,). Now, when you call betas.sample(),\n", + "two values will be returned instead of one. You can read more about TFP shape semantics in the [TFP docs](https://github.com/tensorflow/probability/blob/master/tensorflow_probability/examples/jupyter_notebooks/Understanding_TensorFlow_Distributions_Shapes.ipynb), but most uses in this book should be self-explanatory." + ] + }, + { + "metadata": { + "id": "UPt9k8YrIAwz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Deterministic variables\n", + "\n", + "We can create a deterministic distribution similarly to how we create a stochastic distribution. We simply call up the [`Deterministic`](https://www.tensorflow.org/probability/api_docs/python/tfp/distributions/Deterministic) class from Tensorflow Distributions and pass in the deterministic value that we desire\n", + "```python\n", + "deterministic_variable = tfd.Deterministic(name=\"deterministic_variable\", loc=some_function_of_variables)\n", + "```\n", + "\n", + "Calling `tfd.Deterministic` is useful for creating distributions that always have the same value. However, the much more common pattern for working with deterministic variables in TFP is to create a tensor or sample from a distribution:" + ] + }, + { + "metadata": { + "id": "feDM_HX6IAw0", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "lambda_1 = tfd.Exponential(rate=1., name=\"lambda_1\") #stochastic variable\n", + "lambda_2 = tfd.Exponential(rate=1., name=\"lambda_2\") #stochastic variable\n", + "tau = tfd.Uniform(name=\"tau\", low=0., high=10.) #stochastic variable\n", + "\n", + "# deterministic variable since we are getting results of lambda's after sampling \n", + "new_deterministic_variable = tfd.Deterministic(name=\"deterministic_variable\", \n", + " loc=(lambda_1.sample() + lambda_2.sample()))\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "cRzLJmAJIAw3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The use of the deterministic variable was seen in the previous chapter's text-message example. Recall the model for $\\lambda$ looked like: \n", + "\n", + "$$\n", + "\\lambda = \n", + "\\begin{cases}\\lambda_1 & \\text{if } t \\lt \\tau \\cr\n", + "\\lambda_2 & \\text{if } t \\ge \\tau\n", + "\\end{cases}\n", + "$$\n", + "\n", + "And in TFP code:" + ] + }, + { + "metadata": { + "id": "IXdTQeqrIAw3", + "colab_type": "code", + "outputId": "6ab97e74-6a36-4b27-fe7f-c1d4e6ea30be", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "n_data_points = 5 # in CH1 we had ~70 data points\n", + "idx = np.arange(n_data_points)\n", + "\n", + "lambda_deterministic = tfd.Deterministic(tf.gather([lambda_1.sample(), lambda_2.sample()],\n", + " indices=tf.to_int32(\n", + " tau.sample() >= idx)))\n", + "[lambda_deterministic_] = evaluate([lambda_deterministic.sample()])\n", + "\n", + "print(\"{} samples from our deterministic lambda model: \\n\".format(n_data_points), lambda_deterministic_ )" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "5 samples from our deterministic lambda model: \n", + " [0.24760574 0.24760574 0.15390001 0.15390001 0.15390001]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "EFgJwLATIAw8", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Clearly, if $\\tau, \\lambda_1$ and $\\lambda_2$ are known, then $\\lambda$ is known completely, hence it is a deterministic variable. We use indexing here to switch from $\\lambda_1$ to $\\lambda_2$ at the appropriate time. " + ] + }, + { + "metadata": { + "id": "IMNdtRTtIAxB", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Including observations in the model\n", + "\n", + "At this point, it may not look like it, but we have fully specified our priors. For example, we can ask and answer questions like \"What does my prior distribution of $\\lambda_1$ look like?\" \n", + "\n", + "To do this, we will sample from the distribution. The method `.sample()` has a very simple role: get data points from the given distribution. We can then evaluate the resulting tensor to get a NumPy array-like object. " + ] + }, + { + "metadata": { + "id": "VNdQVTSFIAxC", + "colab_type": "code", + "outputId": "c73c52bd-11cf-4d81-946d-f947eb9c0d59", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 336 + } + }, + "cell_type": "code", + "source": [ + "# Define our observed samples\n", + "lambda_1 = tfd.Exponential(rate=1., name=\"lambda_1\")\n", + "samples = lambda_1.sample(sample_shape=20000)\n", + " \n", + "# Execute graph, convert TF to NumPy\n", + "[ samples_ ] = evaluate([ samples ])\n", + "\n", + "# Visualize our stepwise prior distribution\n", + "plt.figure(figsize(12.5, 5))\n", + "plt.hist(samples_, bins=70, normed=True, histtype=\"stepfilled\")\n", + "plt.title(r\"Prior distribution for $\\lambda_1$\")\n", + "plt.xlim(0, 8);" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmoAAAJ+CAYAAACzTF9wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X+QZXdZ5/HPmIGEGMgP+bkBklDE\nJ7sQRdRFIkrAqqiLq7DIomskCatLMFAbg1gIRrAkgGW0AlEEBRLEBRRZjAgoW8qA8sMUAgFX/DoI\nMSQgm6BJIIEQYPaPe5ruNN0z3X275+mZeb2qpk7uPfee+/TcnCrod77n7NizZ08AAAAAAADY/76h\newAAAAAAAIBDlVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoA\nAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAA\nAJoINQAAAAAAAE2EGgAAAAAAgCY7uwcAAACAparqdUl+LMkNSf4syXljjJt7pwIAgK0h1AAAALDd\n3DvJLUnunuTMJJ9P8tTWiQAAYIvs2LNnT/cMAABwwKmqvf0P6VuTXJvkL5NcMsYY6zz22UkuS/LO\nMcbpG51xK600Y/fcq31+91zbZYa9qap7J3lpkkcnOSrJm8cYj2ueaWeS1yX50STXjDFO6JwHAAC2\ninvUAADAfP4gyYuX/HlJkj9PckSSc5N8qKqesM5j/v10rD/axDn3h02bu6peuI8YtqWfv1F7mbt9\ntn14UZLHJbk9s6D07t5xkjHGl5O8fHp4/6q6a+c8AACwVVz6DAAA5nPJGON9y5+sqjsneUGSZyR5\nTVX9zRjjmrUccIxxZZIrN3fMrbfJc39n8+dv1Ipzb5PZ9uZh0/bpY4zXt05yRx9Z8s8PTvLerkEA\nAGCrWFEDAABbYIzxpSQ/n9kvmg9P8uTeiQ4cVbUjyXd0z7FeB+rck7tM239pnWKZMcZnkvzr9PDB\nnbMAAMBWsaIGAAC2yBjjq1X1riSnJnnIwvNL7lfyliQ/m+QVmf2C/6Ixxgv2dj+TqjotyflJvjvJ\nPTK7H84/JHlDkpeOMb6w1s/Z1/zTqqCfT/KTSU5IcnOSv07y3FVev7e5HzId6xFJ7pXki0muS/Kn\nma1K+tT0usuTnLXkfQuXEXtUkhP39vOs5T4wVXV4kguT/Nck98/shvXvSvJLY4yPLHnd86af89Vj\njLNXOM4d9u9t7jHGrs36TqfXLxzrLUl+JLO/17Omn+f2JO9LcuG0imevls+d5B1Vldzx3kPzzLfu\nf++WHev0JMdND4UaAAAOSlbUAADA1rpx2h6xyv7XJzkyyeVJPrq3A1XVz2QWSp6Q5Ookv5fkHUke\nmOTiJO+sqqPm/Zxl7/mVJPdL8ieZ3V/l3pmFgDX/0ryqvmd6z48l+fg0wxsz+/8jz0zyvqq6//Ty\nt2f2S/4FC/f+uXYTfp4kuSLJT03zXJ7k+iSPTfLuqponBKx17juY8ztNktcmuSDJ3yT5w8xWn5yR\n5C+r6sQ1zv3iJJ+bHr8xS+6lswnzbfR7WohqL1vylFADAMBByYoaAADYWg+ctlevsO/hSd6Z5PFj\njJVuQP81VfWgzH6BniSPHWNcsWTfsUn+KrP7ozwvyc9t9HOWHPM/ZXZz+S8kefgY46ol+85bMsta\nPCezy7+dO8ZYuDn8wqXCXpzk6Zmt2LhgjPHaqnpPknOSZIxx/pLXP2KjP8/ktCR/m+SBY4zPT8fc\nmVmE+sEkv5rkMes43tfsbe7VzPmdJskjk4wkJ48xbpzed2Rm93H5lmmWFVc/LZ07yWur6rFJ7prk\nN8cYuzZpvo1+Twt+IUkl2ZNkR4QaAAAOUlbUAADAFqmq+yX54enhFSu85Lgkv77GX2Kfm9l/aPXH\nS39hniRjjH/LLIYkyZOn+LDRz1nw36bt7y+NNNPn/VbueJP3fTlp2r5n2XH2ZDb3aUletI7jbeTn\nSZI7ZRaDPr9khi8n+eXp4RlVdfQ6jzmPeb7TJDkqyXkLkWZ6362ZVsNkFms659vo95SaXX/tWZlF\nmoXv555Vdff1HgsAALY7oQYAADZZVd2tqn4gs3t03CXJ28YYb1vhpbdltvphLb532r51lf1/kdkv\ntY9Ncsocn7PgO6btu1bZ//Z1HGtM20ur6uQ77Bjjc2OM944x/t86jreRnydJ/m2MsdL73p/kS5lF\nif25amOe7zSZ/T2sdB+aT03beaPTZsy3ke8pmV3y7PAkr0py6ZLnT13+wqo6qqp+uareWlXXV9We\nqnrWBj8XAAD2O6EGAADm897pF8Nf+5PkpiRvy+yX/q/O7P4eK7lhjPHVNX7OwqqUT6y0c1ol8tnp\n4f2X7V7P5yw4ftpet8r+f17HsX42s3jwyCT/WFVXVdVvVNUZVXWndc6VbOznSVb/u/tKks9MD++z\ngeNu1DzfaZJct8pqla9M23n//968823oe6qqs5Ocntl38swxxr9mMT6tFNLunuSXMos4H1zv5wEA\nQDf3qAEAgPn8QZJ/WfbcF5Jck+TtY4x/2st7P7+XfcsdueTYq/nitL3LHJ+z/PO+uMr+29Z6oDHG\nP1XVt2QWbH48s0tyLTy+vqp+ZYxx6d6OscxGfp4kuWUv+xZ+ziM2eOyNmOc7TZLbN3ecrzPvfOv+\nnqZLm108PTx/usRaMrvU3r/LyqHm00mOH2N8qqpOzCphCQAAtiuhBgAA5nPJGON9++Fzbklytyz+\n8nwlC/s2GjKW+uJ0vMP38VlrMsb4bJJfTPKLVfXAJGckeWJml9d6SVUdNsa4ZI5512JvEWZh361r\nPNZGVgItt7+/0/XqmO/iJN+U2eUCX7/k+Q8n+f6sEGrGGLdlccUNAAAccFz6DAAADgwfn7YPWGln\nVR2d2c3bk81ZUfDpaXvvVfavOMdajDE+NsZ46RjjkUmeMj39tI0ebx1WujxXqmpnFi95du20Xbhk\n12GrHOvETZhnf3+n67Vf56uq05OclVkgeuqy3R+Ztg+a93MAAGC7EWoAAODAsGva/tAq+39g2n4q\nye5N+LwPTdtHLN9RVTuWfN5eVdWxVfWEqlrt9a+dtsevtHP6rM1yr6r61hWef1hmVxu4Lcn/nZ77\n3LT9ulBVVYdnthJoVWuce9e03V/f6XrtmrZbPt/0d/qy6eEvjTGW3wPpw9P26Kq63zyfBQAA241Q\nAwAAB4bfyiwk/FBV/cjSHVV17yQXTQ9fssoN5tfrDdP2SVV18rJ9z8jaV9TcK7P7+PxeVZ2ywv4n\nTtsPLXnuc0v++YQ1fs5afCnJJVX1tfupVNWdkvzy9PCKMcbCfWwWVnCcPl2qbeH1hyX5tSRHr3D8\n9c69v7/T9dqf8/1Ckkryt0levML+jyb58vTPK92nBgAADljuUQMAAAeAMcbHqupnkvxukjdV1buS\n/GNmKz6+N7Nw8OYkv75JH/mGJOcmOT3J+6vqLUluSvLQJKcmeUGS561h7n+oqhcmeXaSD1fVrswu\nk/UNSf59ktMyu9TVM5a857NVdXVmlxd7V1X9XZIrMosG89g1bT9WVf9nOt6jkzwwyWcziwUL3pFZ\nrDk1s5//bUluzGyF0TcleX6SX132s6449xjj5SsN0/Cdrsv+mq+qKsmzknwlyU+PMb6ywixfqqqR\n2aXPHpzkbfN8JgAAbCdW1AAAwAFijPGqJN+d5I1JvjnJ2Um+J8lVSZ6c5HFjjC+veoD1fdZXM7vk\n1QuT3JDk8Ul+NMm/ZBZXrlzHsZ6T5L8k+bMk/yHJk5L8ZJJ7JvmdJN82xnjPsrc9KcnfZ7Yi56FJ\nbp/jx1nw5SQ/kuTVmQWXs5Icm1mUevgYY+GeLJliwRlJXpNZ0PnRJD+c5ANJviur37x+XXPvz+90\nI/bTfC9LcniSS8YYH9zL6xZWOVlRAwDAQWXHnj0dK+gBAABgc1XViZmt2PqFMcaLmscBAIA1saIG\nAAAAAACgiXvUAAAAcECrqqclOWb6kySPqqqF/7976Rjjpp7JAABg31z6DAAAgANaVV2d5IRVdp80\nxrh6vw0DAADrJNQAAAAAAAA0cY8aAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQZGf3\nAFvhpptu2tM9AwAAAAAAcHA7+uijd8x7DCtqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAA\nAABAE6EGAAAAAACgiVADh4jdu3dn9+7d3WPAtuB8gEXOB5hxLsAi5wMscj7AIucDbB2hBgAAAAAA\noIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkIN\nAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAA\nAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQR\nagAAAAAAAJoINQAAAAAAAE12dg+wPx1z2XXdI3zNjecc3z0CAAAAAADQzIoaAAAAAACAJkINAAAA\nAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABN\nhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAA\nAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAA\naCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVAD\nAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAA\nAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2E\nGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAA\nAAAAmgg1AAAAAAAATXZuxkGq6rgkz03y2CT3SXJDkrcmuXCM8ek1vP/MJOcm+dYkd05yTZI/TfL8\nMcZnN2NGAAAAAACA7WbuFTVVdZcku5I8Nckbk5yd5OVJnpjk3VV17D7e/4Ikr0lypyTPzizY7Ery\n9CTvq6q7zTsjAAAAAADAdrQZK2rOT3JqkvPGGC9deLKqrkrypiQXJrlgpTdOK3GemeTqJN87xrht\n2nVZVd2Q5FlJzkny4k2YEwAAAAAAYFvZjHvUPCnJLUleuez5K5Jcm+TMqtqxynvvn1ksunJJpFnw\nrml74ibMCAAAAAAAsO3MFWqmy5KdkuQDy0PLGGNPkiuT3CPJSasc4hNJbkty8gr7Tpy2fzfPjAAA\nAAAAANvVvJc+O2HaXrvK/mum7QOSfHz5zjHGTVX1K0meX1WXJrkkyeeS/Mckz0nyoST/a84Zt6Xd\nu3d3j8Ahyr97sMj5AIucDzDjXIBFzgdY5HyARc4HDlUnn7zSepPNMe+lz+46bW9dZf8ty173dcYY\nFyX56SQ/leRjST6T5M1JPpjk0WOML845IwAAAAAAwLY074qauVXVU5O8JMnbk7wuyfVJHpbk55O8\ntap+cIxxY+OIW2Ir6xusZOG/dvDvHjgfYCnnA8w4F2CR8wEWOR9gkfMBts68oebmafuNq+w/atnr\n7qCqKrNI8xdjjMcs2fXnVXVVkj9O8uzMog0AAAAAAMBBZd5Ln30iyZ4k911l/8I9bFa7cOGjM4tF\n/3uFfW+bjv2oeQYEAAAAAADYruYKNWOMW5J8OMlDq+qIpfuq6rAkpyX55BjjmlUOsbAS54gV9h2e\nZMcq+wAAAAAAAA54866oSZJXJjkyyVOWPX9mknsmecXCE1V1SlWdtOQ175m2T6yqHcve/4RlrwEA\nAAAAADiozHuPmiR5WZKfSHJxVZ2Q5P1JHpTkgiQfSXLxktd+NMlIckqSjDHeU1VvyCzK/HVV/WGS\n65N8Z5LzknwmyUWbMCMAAAAAAMC2M/eKmjHG7UnOSHJpkscnuTzJWZmtpDl9jHHrPg7x40mentml\nzi6a3v+4JK9K8u17uWwaAAAAAADAAW0zVtRkjHFzZitoLtjH65Zf3ixjjK8k+c3pDwAAAAAAwCFj\nM+5RAwAAAAAAwAYINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESo\nAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAA\nAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAm\nO7sHOFQdc9l13SOs6MZzju8eAQAAAAAADhlW1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAA\nAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAA\nmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQA\nAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAA\nANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOh\nBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAA\nAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACa\nCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAA\nAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA\n0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EG\nAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNdnYPwPZy\nzGXXdY+wohvPOb57BAAAAAAA2HRW1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZC\nDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAA\nAAAATYQaAAAAAACAJjs34yBVdVyS5yZ5bJL7JLkhyVuTXDjG+PQa3n94kmclOTPJ/ab3vyXJc8YY\nN2zGjAAAAAAAANvN3CtqquouSXYleWqSNyY5O8nLkzwxybur6th9vH9nZlHmF5P8aZKfSvJHSf57\nkndW1Z3nnREAAAAAAGA72owVNecnOTXJeWOMly48WVVXJXlTkguTXLCX95+b5PuSnDXG+L3pud+v\nqhuSPDnJw5L81SbMCQAAAAAAsK1sxj1qnpTkliSvXPb8FUmuTXJmVe3Yy/vPS7I7yWuWPjnGeP4Y\n4wFjDJEGAAAAAAA4KM0VaqrqbklOSfKBMcZtS/eNMfYkuTLJPZKctMr77zu9/+3T61NVR+wj7AAA\nAAAAABwU5l1Rc8K0vXaV/ddM2wessv+UaftPVfU/q+rqJF9I8oWq+uOqeuCc8wEAAAAAAGxb896j\n5q7T9tZV9t+y7HXLHTdtz0py5yQXJflMZveseVqSh1fVQ8YYn55zTg5wu3fv7h7hoOHvEhY5H2CR\n8wFmnAuwyPkAi5wPsMj5wKHq5JNP3rJjzxtq5nXnaXuvJA8eY3x2evwnVfWZzMLNM5L8XMdwAAAA\nAAAAW2neUHPztP3GVfYftex1y31+2v7Jkkiz4JWZhZrTNzwdB42trJWHioX/2sHfJTgfYCnnA8w4\nF2CR8wEWOR9gkfMBts6896j5RJI9Se67yv6Fe9isth7u6ml72Ar7bpiOfbeNDgcAAAAAALCdzRVq\nxhi3JPlwkodW1RFL91XVYUlOS/LJMcY1qxzi75PclOQhK+y7X5IdSa6dZ0YAAAAAAIDtat4VNcns\nEmVHJnnKsufPTHLPJK9YeKKqTqmqkxYejzG+lOS1Sb69qv7zsvc/bdq+eRNmBAAAAAAA2HbmvUdN\nkrwsyU8kubiqTkjy/iQPSnJBko8kuXjJaz+aZCQ5Zclzz03y/UneUFUvyuxyaI9O8pNJPjQdHwAA\nAAAA4KAz94qaMcbtSc5IcmmSxye5PMlZma2kOX2Mces+3n99ku9K8uok/yPJ7yR5ZJLfmN7/hXln\nBAAAAAAA2I42Y0VNxhg3Z7aC5oJ9vG7HKs9fn9ml05ZfPg0AAAAAAOCgtRn3qAEAAAAAAGADhBoA\nAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAA\nAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLU\nAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAA\nAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAT\noQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAA\nAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAA\nmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAk53dA8BaHHPZdd0jrOjGc47vHgEAAAAAgAOYFTUA\nAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAA\nADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESo\nAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAA\nAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAm\nQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAA\nAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAA\nNBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAAAACgiVADAAAAAADQRKgB\nAAAAAABoItQAAAAAAAA02dk9ABzIjrnsuu4RVnTjOcd3jwAAAAAAwBpYUQMAAAAAANBEqAEAAAAA\nAGgi1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQ\nAwAAAAAA0GTnZhykqo5L8twkj01ynyQ3JHlrkgvHGJ9e57GOSHJVkm9O8qgxxq7NmBEAAAAAAGC7\nmXtFTVXdJcmuJE9N8sYkZyd5eZInJnl3VR27zkNemFmkAQAAAAAAOKhtxoqa85OcmuS8McZLF56s\nqquSvCmz8HLBWg5UVacmeWaSDyb5tk2YDQAAAAAAYNvajHvUPCnJLUleuez5K5Jcm+TMqtqxr4NU\n1Tck+d0k/5zZihwAAAAAAICD2lyhpqruluSUJB8YY9y2dN8YY0+SK5PcI8lJazjc05I8LMm5SW7b\nx2sBAAAAAAAOePNe+uyEaXvtKvuvmbYPSPLx1Q5SVfdLclGS14wx/qKqzp5zLjik7d69e0P74FDj\nfIBFzgeYcS7AIucDLHI+wCLnA4eqk08+ecuOPe+lz+46bW9dZf8ty163mt9O8qUkz5hzHgAAAAAA\ngAPGvCtq5lZVP5bkMUmePMa4vnseOBisVHcX/muHrSy/cKBwPsAi5wPMOBdgkfMBFjkfYJHzAbbO\nvCtqbp6237jK/qOWve4Oquq4JC9O8s4xxmVzzgIAAAAAAHBAmXdFzSeS7Ely31X2L9zDZrULF/5a\nkmOSPK+qlh7j2Gl7j+n568cYt805KwAAAAAAwLYy14qaMcYtST6c5KFVdcTSfVV1WJLTknxyjHHN\nKof4viR3TvKOJJ9c8uc3pv1/OD1++DxzAgAAAAAAbEebcY+aVyZ5SZKnZHYZswVnJrlnkucuPFFV\npyS5bYzxiempJyc5coVjfl+S85M8O8lHpj8AAAAAAAAHlc0INS9L8hNJLq6qE5K8P8mDklyQWWC5\neMlrP5pkJDklScYYf7nSAavq7tM/vneMsWsTZgQAAAAAANh25rr0WZKMMW5PckaSS5M8PsnlSc5K\n8ookp48xbp33MwAAAAAAAA5Gm7GiJmOMmzNbQXPBPl63Y43Huzyz4AMAAAAAAHDQmntFDQAAAAAA\nABsj1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQ\nAwAAAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAA\nAABAE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABN\nhBoAAAAAAIAmQg0AAAAAAEAXVidDAAAXbklEQVQToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi\n1AAAAAAAADTZ2T0AsPmOuey6FZ49crb565X27R83nnN822cDAAAAAGxHVtQAAAAAAAA0EWoAAAAA\nAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi\n1AAAAAAAADQRagAAAAAAAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQBOhBgAAAAAAoIlQAwAA\nAAAA0ESoAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABA\nE6EGAAAAAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoA\nAAAAAIAmQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAA\nAJoINQAAAAAAAE2EGgAAAAAAgCZCDQAAAAAAQJOd3QMAh45jLruue4Svc+M5x3ePAAAAAAAcwqyo\nAQAAAAAAaCLUAAAAAAAANBFqAAAAAAAAmgg1AAAAAAAATYQaAAAAAACAJkINAAAAAABAE6EGAAAA\nAACgiVADAAAAAADQRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAm\nQg0AAAAAAEAToQYAAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAAAAAAADQRagAAAAAAAJoINQAA\nAAAAAE2EGgAAAAAAgCY7uwcA6HTMZdd1j7CiG885vnsEAAAAAGA/sKIGAAAAAACgiVADAAAAAADQ\nRKgBAAAAAABoItQAAAAAAAA0EWoAAAAAAACaCDUAAAAAAABNhBoAAAAAAIAmQg0AAAAAAEAToQYA\nAAAAAKCJUAMAAAAAANBEqAEAAAAAAGgi1AAA/7+9+w/2rKzvA/5e2Rh+CKzUn10SslrygTjQiEk0\n/kgJ0/ijiQnRmNrKCJjOKGIiEKONLYGqMZmJWmsANUoWbCSZ2IpWg9a2BgS1IhJBo34kAcNCbJTW\nDQoRsd3+cb539rq5d5F7797n7r2v1wzzzJ7nnONn1jlw73mfz/MAAAAAMIigBgAAAAAAYBBBDQAA\nAAAAwCCbV+ImVXVEkvOSnJzkkUnuSHJFknO7+8vfxfVPnl3/Y0kOTLIjyX9O8uru/sZK1AgAAAAA\nALDWLLujpqoOSnJlkjMyhSunJXlrkn+e5KNV9eD7uP55Sa5O8n2ZwpozktyY5OVJPlRVun4AAAAA\nAIB1aSU6as5KclySM7v7ormDVXVDksuTnJvknIUurKrvTfLmTB00j+/uv51N/X5VXZ6pQ+fpmbpz\nAAAAAAAA1pWV6FZ5fpK7kly8x/H3JrktySlVtWmRax+R5N1JfmteSDNnLpw5fgVqBAAAAAAAWHOW\n1VFTVYclOSbJ1d19z/y57t5VVdcmeVaSbUlu3vP67v6rTEulLeTw2XjncmoEAAAAAABYq5a79NlR\ns/G2ReZvnY2PygJBzWKq6oFJXpDk7iTvWXJ1APupm266aXQJG4K/Z9jN8wATzwLs5nmA3TwPsJvn\ngY3q6KOP3mf3Xm5Qc+hsvHuR+bv2OO8+VdUDkrwtybFJfrW7/3rp5QEAAAAAAKxdyw1qVlRVHZTk\nsiQnJ7mwu98wuCSAIfZlQs/ur3/8PYPnAeZ4FmA3zwPs5nmA3TwPsO88YJnXz+0fc8gi8w/a47xF\nVdVDk3w4U0jz6u5+yTJrAwAAAAAAWNOW21FzS5JdSY5cZH5uD5u9LlxYVQ9PcnWSbUlO7+5LllkX\nAAAAAADAmresjpruvivJjUlOqKoD589V1QFJnphkR3ffutg9quqwJB9M8v1JflZIAwAAAAAAbBTL\nXfosSS5OcnCSF+5x/JQkD0vy9rkDVXVMVW3b47z/kOSHk/yL7v7ACtQDAAAAAACwX1ju0mdJ8pYk\nz0vyuqo6Ksl1SR6T5Jwkn0nyunnnfj5JJzkmSarq+CSnJvlckgOq6hcWuP9Xu/uqFagTYL+xZfvt\no0tY0M7Tt44uAQAAAADWlWUHNd19b1U9Ncn5SZ6d5CVJvpKpk+a87r57L5efkGRTkh9K8q5Fzrkq\nyYnLrRMAAAAAAGCtWYmOmnT3nZk6aM65j/M27fHnS5JcshI1AAAAAAAA7G9WYo8aAAAAAAAAlkBQ\nAwAAAAAAMIigBgAAAAAAYBBBDQAAAAAAwCCCGgAAAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAA\nAAAAAAwiqAEAAAAAABhEUAMAAAAAADCIoAYAAAAAAGCQzaMLAGD/sWX77aNLWNDO07eOLgEAAAAA\nlkRHDQAAAAAAwCCCGgAAAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAAAAAAAAwiqAEAAAAAABhE\nUAMAAAAAADCIoAYAAAAAAGAQQQ0AAAAAAMAgghoAAAAAAIBBBDUAAAAAAACDCGoAAAAAAAAGEdQA\nAAAAAAAMIqgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAA\nAAAAg2weXQAALNeW7bffzysOnoZr7u9198/O07fu0/sDAAAAsP/TUQMAAAAAADCIoAYAAAAAAGAQ\nQQ0AAAAAAMAgghoAAAAAAIBBBDUAAAAAAACDCGoAAAAAAAAGEdQAAAAAAAAMIqgBAAAAAAAYRFAD\nAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAAAAAAgwhqAAAAAAAABhHUAAAA\nAAAADCKoAQAAAAAAGERQAwAAAAAAMMjm0QUAwHq1Zfvto0tY0M7Tt44uAQAAAIAZHTUAAAAAAACD\nCGoAAAAAAAAGEdQAAAAAAAAMIqgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIJtH\nFwAArK4t228fXcKCdp6+dXQJAAAAAKtORw0AAAAAAMAgghoAAAAAAIBBBDUAAAAAAACDCGoAAAAA\nAAAGEdQAAAAAAAAMIqgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACA\nQTaPLgAAIEm2bL99dAkL2nn61tElAAAAAOuYjhoAAAAAAIBBdNQAAOzFWuz00eUDAAAA64eOGgAA\nAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAAAAAAAAyyeXQBAADcP1u2376Cdzt4Gq5Z/j13nr51\n2fcAAACAjUZHDQAAAAAAwCCCGgAAAAAAgEEENQAAAAAAAIPYowYAgBWxsnvnrBx75wAAALCW6agB\nAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAAAAAAgwhqAAAA\nAAAABtk8ugAAANiXtmy/fXQJC9p5+tbRJQAAALAG6KgBAAAAAAAYREcNAAAMoNMHAACAREcNAAAA\nAADAMIIaAAAAAACAQQQ1AAAAAAAAgwhqAAAAAAAABtk8ugAAAGDt2LL99tElLGjn6VtHlwAAALBP\n6KgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEHvUAAAAa96+3zvn4Gm45v7979g7BwAAWC5BDQAA\nwBLt+wBpadZigLRW/67WqrX4/yEAAPvGigQ1VXVEkvOSnJzkkUnuSHJFknO7+8vfxfVPTHJukick\nOSjJF5O8LckF3b1rJWoEAADYKIQiAACw/1h2UFNVByW5MskxSS5Icl2So5O8LMlJVfW47v7aXq4/\nKckHkuxIcn6S/5Pk55K8Kcmjk5y13BoBAABgfzI2bFt8KUCdPgAAK28lOmrOSnJckjO7+6K5g1V1\nQ5LLM3XKnLOX6y9K8s0kT5nXffMfq+o9SX6lqrZ39w0rUCcAAAAAAMCa8oAVuMfzk9yV5OI9jr83\nyW1JTqmqTQtdWFWPT1JJ/niBJdIuSLIpySkrUCMAAAAAAMCas6yOmqo6LNOSZ1d39z3z57p7V1Vd\nm+RZSbYluXmBW/zYbPz4AnOfmI2PX06N82nRBgAAAOC7dfTRR48uAdYMzwPsO8vtqDlqNt62yPyt\ns/FRi8z/wGLXd/fXk+zcy7UAAAAAAAD7teUGNYfOxrsXmb9rj/OWcv1i1wIAAAAAAOzXVmKPGgAA\nAAAAAJZguUHNnbPxkEXmH7THeUu5frFrAQAAAAAA9mvLDWpuSbIryZGLzM/tYXPTIvM3z8a/d31V\nHZ7k8L1cCwAAAAAAsF/bvJyLu/uuqroxyQlVdWB3f3NurqoOSPLEJDu6+9ZFbvGx2fikJBfvMfeU\n2XjN/a3r8MMP33R/rwEAAAAAAFhtK7FHzcVJDk7ywj2On5LkYUnePnegqo6pqm1zf+7uTye5Pslz\nqurIeedtSnJ2knuTXLoCNQIAAAAAAKw5y+qomXlLkucleV1VHZXkuiSPSXJOks8ked28cz+fpJMc\nM+/Yi5P8aZKPVNUbk+xM8twkJyU5t7v/cgVqBAAAAAAAWHOW3VHT3fcmeWqS303y7CSXJDk1UyfN\nid19931c/4kkP5HkC0leleStSR6R5AXd/Zrl1gcAAAAAALBWbdq1a9foGgAAAAAAADakldijBgAA\nAAAAgCUQ1AAAAAAAAAwiqAEAAAAAABhEUAMAAAAAADCIoAYAAAAAAGAQQQ0AAAAAAMAgghoAAAAA\nAIBBNo8uYF+oqiOSnJfk5CSPTHJHkiuSnNvdXx5ZG4xQVQ9M8pokL0vyke4+cWxFsPqq6qFJfiPJ\nzyd5eJKdSa5J8uruvn5kbTBCVR2X5OVJnpzkHya5M8nHkry2uz8xsjYYqapeleTcJJd292mDy4FV\nU1WXJDl1L6ec3d1vXKVyYLiqekaSf53khCTfTvJnSV7T3R8eWhisoqra9V2ctq27v7Sva4G1oqoe\nk+SVSU5K8pBM75c+luR3uvuapd533QU1VXVQkiuTHJPkgiTXJTk60wvqk6rqcd39tXEVwuqqqkpy\nWZIfTLJpcDkwRFU9LMmnkvyDJG9OckOmZ+JXkjytqp7U3X82sERYVVX140n+e6YfKC9MsiPJsUle\nkuQZVXVid39sYIkwxOyXrleMrgMGe3GSry5w/NOrXQiMUlUvSHJxko8keWmSQ5OcneSDVfXU7r5y\nYHmwmp6zl7nfSnJ4Fv5vBqxLVfXYTB/9fitT9vDFJN+X5MwkV1XVyd39vqXce90FNUnOSnJckjO7\n+6K5g1V1Q5LLM30dd86g2mBVVdWDk1yf5KYkP5LkC2MrgmFek+TIJM/u7nfPHayqTyZ5T5JfT/KL\ng2qDEd6SKbx/0vyv36rq2kw/L70iyc+NKQ3GqKoHJHlbkj9P8tjB5cBIH/BlNBtZVT0iyZsyfdTy\ntO7+f7Pj70vy8SQ/nekDYVj3uvs/LXS8qk5O8o+SnNbdd61uVTDUv01ycJKf7+4PzR2sqncn+XyS\nVyVZUlCzHveoeX6SuzJ9+TDfe5PcluSUqtJVwEbxwCTvSPKE7u7RxcBAf53kDzO9gJ7vg0l2JTl+\n1SuCQWYvoy9N8tIFXsT9t9n4/ataFKwNZyT58Uyd+ABsXKcmOSTJ+XMhTZJ0983d/fDu/rVxpcF4\nVXVokt9NcnV3Xzq6Hlhlj56NV88/2N1fSPKVJD+w1Buvq46aqjos05JnV3f3PfPnunvX7CvRZyXZ\nluTmASXCquruv8n00gE2tO4+f5GpQzN1Fdy5etXAWLMXDm9YZPqY2XjjKpUDa0JVHZlp+Y4/6O4P\nTyvHwsZWVQcm+XZ3f3t0LbDKfirJ1zN1z6SqDkiyec/3TLCBnZtpj8t/NroQGODzSf5xpuX0b5g7\nWFWHJ9mS5Nql3ni9ddQcNRtvW2T+1tn4qFWoBYC170Wz8Z1Dq4CBqmpLVR1ZVc/N1IF8S5Lzx1YF\nq+7CJPfGEsmQJGdW1S1J/i7JPVX1P6vKyzg2kmOS/GWSH66qq5Lck+SbVfXZ2c9LsGHN9n89M8k7\nuvszo+uBAX4zydeSvKOqnlxVD6mq45Jsz7Riy7lLvfF6C2oOnY13LzJ/1x7nAbBBVdUzkvxGkk8l\nefPgcmCkryXZkeSyJP81yY929y1jS4LVU1W/kORnk/xad9sMF5KnJXltpn04/k2So5O83wtqNpAj\nMn0V/SdJPprk5CS/PDv2h1X1SwNrg9FenuTATC+rYcPp7s9mWi75gEzLn30104oUj8+0r9mVS733\negtqAOA+VdXzM3UOfCnJM7v7W2MrgqF+MsnPZAoun5Hkuqr6kbElweqoqi2Z1li/KtNXcLCRvT7J\n0zMF9m/r7iu6+7eTPCXJt5O8frbPGax3D8y0x8Cvdvcru/v93X1BpmfhniSvnS2HBhtKVT040/L6\n7+/uvxhdD4xQ0xrJV2QK78/O9Dv0qUnuSPK+qvqppd57Xe1Rk917DByyyPyD9jgPgA2mqs5N8qok\n1yX56e7+yuCSYKh5X/z8SVX9QZLrk1xWVcfM30AX1qnfyfTl9Iu6e9foYmCk2RI2f28Zm+7+XFVd\nmWnfjmOT/Pkqlwar7RtJvjfJH80/2N23VNWfZgo0j03y2QG1wUj/MsnBSS4dXQgM9PYkW5McO38l\niqp6V5K/SLK9qrZ1973398br7WuYWzKtBXfkIvNze9jctDrlALCWVNUbM4U0/yXJPxHSwHfq7i8l\n+R+Zlrl59NhqYN+qqp9I8ktJLkryjdleTUdW1dzvEgfP/vzgcVXCmvE3s/GwoVXA6vhSFn9fNvf7\ng2eBjeg5mbrKPjC6EBihqg5J8qQk1++5XHh3/12SKzOFOD+4lPuvq6Cmu+/KtCbcCVV14Py5WVvq\nE5Ps6O5bR9QHwDizTpqXZlra5lndvdh+ZrCuVdWxVbWjqn5/kVO2zMb11nkNezopyaYkZ2Xap2n+\nP8n0MmJHkn8/pDpYRVV1WFU9r6qevtgps3HHIvOwnnw80/JnP7TA3NwHwLetXjkwXlU9KNN71Y/P\nXkjDRnRQpt8fDlxk/sA9xvtlXQU1MxdnasN74R7HT0nysEztSQBsIFX1k0n+XZLLk/yr7v6/g0uC\nkW7K9IPjc6pq2/yJqnp0pi+EvprkiwNqg9V0WZJnLvJPMnWXPTOCGjaGbyW5MMklVfWQ+RNV9U+T\n/GiSa7vby2k2gktm43lVtWnuYFUdn2mfmht9AMwGdHyS74kl/9jAuvuOTL9PH19V3xHmV9URmT4E\nuzNLfE427dq1vpZirqrvSXJ1ksdl2hj0uiSPSXJOpr/IJ/iKmo1i9i+N+f/ieFeSzyU5b96xKzwT\nrHdV9akkj03ykuxermBPngU2jKp6bpJ3JvnfmV7M3ZxkW6Zn5KFJXtDdNlZnw6qqXUku7e7TRtcC\nq6WqTs30gvqWJG9J8r8y/fx0RpJvJjmxuz89rEBYRVX1piS/nOT9Sf44UyfN2Zn2Pn7avD3+YEOo\nqtMyrU7xsu5+/eByYJiqemamj4D/NskFmT5wfEimFVy2Zdr78q1Lufe6W9Kiu++tqqcmOT/Js7P7\npdzbk5znJRwbzC/mO0OZZApu3jXvz9syrcEL69kJs/HCvZzjWWDD6O4/qqq/SvKKTD8rbcn05c8n\nk7yhuz80sj4AVl93X1pVtyb59SSvTHJIprDmnUl+s7tvHlkfrLKXZvrI8UVJfi/TvhwfTXJ+d39y\nZGEwyNyefV8fWgUM1t3vq6onZ/pd+oxMz8bXMzWLvLi7P7jUe6+7jhoAAAAAAID9xXrcowYAAAAA\nAGC/IKgBAAAAAAAYRFADAAAAAAAwiKAGAAAAAABgEEENAAAAAADAIIIaAAAAAACAQQQ1AAAAAAAA\ngwhqAAAAAAAABhHUAAAAAAAADCKoAQAAAAAAGERQAwAAAAAAMIigBgAAAAAAYBBBDQAAAAAAwCCC\nGgAAAAAAgEEENQAAAAAAAIMIagAAAAAAAAYR1AAAAAAAAAzy/wH5UqVfRR0vZAAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 821, + "height": 319 + } + } + } + ] + }, + { + "metadata": { + "id": "9nOs9Gq3IAxH", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "To frame this in the notation of the first chapter, though this is a slight abuse of notation, we have specified $P(A)$. Our next goal is to include data/evidence/observations $X$ into our model. \n", + "\n", + "Sometimes we may want to match a property of our distribution to a property of observed data. To do so, we get the parameters for our distribution fom the data itself. In this example, the Poisson rate (average number of events) is explicitly set to one over the average of the data:" + ] + }, + { + "metadata": { + "id": "qtHXSR6QIAxH", + "colab_type": "code", + "outputId": "cad9361a-f6ee-4750-8e24-b46656babcb1", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 136 + } + }, + "cell_type": "code", + "source": [ + "data = tf.constant([10., 5.], dtype=tf.float32)\n", + "poisson = tfd.Poisson(rate=1./tf.reduce_mean(data))\n", + "\n", + "\n", + "# Execute graph\n", + "[ data_, poisson_sample_, ] = evaluate([ data, poisson.sample() ])\n", + "\n", + "print(\"two predetermined data points: \", data_)\n", + "print(\"\\n mean of our data: \", np.mean(data_))\n", + "\n", + "\n", + "print(\"\\n random sample from poisson distribution \\n with the mean as the poisson's rate: \\n\", poisson_sample_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "two predetermined data points: [10. 5.]\n", + "\n", + " mean of our data: 7.5\n", + "\n", + " random sample from poisson distribution \n", + " with the mean as the poisson's rate: \n", + " 1.0\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "8oxo5VcbIAxP", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Modeling approaches\n", + "\n", + "A good starting thought to Bayesian modeling is to think about *how your data might have been generated*. Position yourself in an omniscient position, and try to imagine how *you* would recreate the dataset. \n", + "\n", + "In the last chapter we investigated text message data. We begin by asking how our observations may have been generated:\n", + "\n", + "1. We started by thinking \"what is the best random variable to describe this count data?\" A Poisson random variable is a good candidate because it can represent count data. So we model the number of sms's received as sampled from a Poisson distribution.\n", + "\n", + "2. Next, we think, \"Ok, assuming sms's are Poisson-distributed, what do I need for the Poisson distribution?\" Well, the Poisson distribution has a parameter $\\lambda$. \n", + "\n", + "3. Do we know $\\lambda$? No. In fact, we have a suspicion that there are *two* $\\lambda$ values, one for the earlier behaviour and one for the later behaviour. We don't know when the behaviour switches though, but call the switchpoint $\\tau$.\n", + "\n", + "4. What is a good distribution for the two $\\lambda$s? The exponential is good, as it assigns probabilities to positive real numbers. Well the exponential distribution has a parameter too, call it $\\alpha$.\n", + "\n", + "5. Do we know what the parameter $\\alpha$ might be? No. At this point, we could continue and assign a distribution to $\\alpha$, but it's better to stop once we reach a set level of ignorance: whereas we have a prior belief about $\\lambda$, (\"it probably changes over time\", \"it's likely between 10 and 30\", etc.), we don't really have any strong beliefs about $\\alpha$. So it's best to stop here. \n", + "\n", + " What is a good value for $\\alpha$ then? We think that the $\\lambda$s are between 10-30, so if we set $\\alpha$ really low (which corresponds to larger probability on high values) we are not reflecting our prior well. Similar, a too-high alpha misses our prior belief as well. A good idea for $\\alpha$ as to reflect our belief is to set the value so that the mean of $\\lambda$, given $\\alpha$, is equal to our observed mean. This was shown in the last chapter.\n", + "\n", + "6. We have no expert opinion of when $\\tau$ might have occurred. So we will suppose $\\tau$ is from a discrete uniform distribution over the entire timespan.\n", + "\n", + "\n", + "Below we give a graphical visualization of this, where arrows denote `parent-child` relationships. (provided by the [Daft Python library](http://daft-pgm.org/) )\n", + "\n", + "\n", + "\n", + "\n", + "TFP and other probabilistic programming languages have been designed to tell these data-generation *stories*. More generally, B. Cronin writes [2]:\n", + "\n", + "> Probabilistic programming will unlock narrative explanations of data, one of the holy grails of business analytics and the unsung hero of scientific persuasion. People think in terms of stories - thus the unreasonable power of the anecdote to drive decision-making, well-founded or not. But existing analytics largely fails to provide this kind of story; instead, numbers seemingly appear out of thin air, with little of the causal context that humans prefer when weighing their options." + ] + }, + { + "metadata": { + "id": "3RJEK_yjIAxR", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Same story; different ending.\n", + "\n", + "Interestingly, we can create *new datasets* by retelling the story.\n", + "For example, if we reverse the above steps, we can simulate a possible realization of the dataset.\n", + "\n", + "1\\. Specify when the user's behaviour switches by sampling from $\\text{DiscreteUniform}(0, 80)$:" + ] + }, + { + "metadata": { + "id": "Ma56S7r1IAxS", + "colab_type": "code", + "outputId": "68ec7a14-3090-472f-dfcf-0bf6445a233c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "tau = tf.random_uniform(shape=[1], minval=0, maxval=80, dtype=tf.int32)[0]\n", + "\n", + "[ tau_ ] = evaluate([ tau ])\n", + "\n", + "print(\"Value of Tau (randomly taken from DiscreteUniform(0, 80)):\", tau_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Value of Tau (randomly taken from DiscreteUniform(0, 80)): 48\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Xt_6sYG6IAxW", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "2\\. Draw $\\lambda_1$ and $\\lambda_2$ from a $\\text{Gamma}(\\alpha)$ distribution:\n", + "\n", + "Note: A gamma distribution is a generalization of the exponential distribution. A gamma distribution with shape parameter $α = 1$ and scale parameter $β$ is an exponential ($β$) distribution. Here, we use a gamma distribution to have more flexibility than we would have had were we to model with an exponential. Rather than returning values between $0$ and $1$, we can return values much larger than $1$ (i.e., the kinds of numbers one would expect to show up in a daily SMS count)." + ] + }, + { + "metadata": { + "id": "l2QX3nEbofZr", + "colab_type": "code", + "outputId": "1c78f1b5-4847-49b0-a9a6-2155285e5d03", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "alpha = 1./8.\n", + "\n", + "lambdas = tfd.Gamma(concentration=1/alpha, rate=0.3).sample(sample_shape=[2]) \n", + "[ lambda_1_, lambda_2_ ] = evaluate( lambdas )\n", + "print(\"Lambda 1 (randomly taken from Gamma(α) distribution): \", lambda_1_)\n", + "print(\"Lambda 2 (randomly taken from Gamma(α) distribution): \", lambda_2_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Lambda 1 (randomly taken from Gamma(α) distribution): 50.1973\n", + "Lambda 2 (randomly taken from Gamma(α) distribution): 26.417625\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "uIoKaO4bIAxb", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "3\\. For days before $\\tau$, represent the user's received SMS count by sampling from $\\text{Poi}(\\lambda_1)$, and sample from $\\text{Poi}(\\lambda_2)$ for days after $\\tau$. For example:" + ] + }, + { + "metadata": { + "id": "6xxOtwxvpk_P", + "colab_type": "code", + "outputId": "83a9c98c-df27-411a-b9b2-c59e1f33765f", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 119 + } + }, + "cell_type": "code", + "source": [ + "data = tf.concat([tfd.Poisson(rate=lambda_1_).sample(sample_shape=tau_),\n", + " tfd.Poisson(rate=lambda_2_).sample(sample_shape= (80 - tau_))], axis=0)\n", + "days_range = tf.range(80)\n", + "[ data_, days_range_ ] = evaluate([ data, days_range ])\n", + "print(\"Artificial day-by-day user SMS count created by sampling: \\n\", data_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Artificial day-by-day user SMS count created by sampling: \n", + " [64. 48. 41. 37. 60. 47. 53. 53. 59. 58. 55. 56. 76. 55. 42. 44. 51. 44.\n", + " 54. 35. 43. 51. 41. 58. 49. 51. 42. 64. 49. 60. 51. 51. 50. 60. 48. 49.\n", + " 43. 56. 56. 51. 48. 55. 44. 53. 49. 54. 47. 52. 23. 27. 27. 23. 33. 25.\n", + " 22. 22. 28. 23. 22. 23. 29. 24. 21. 27. 24. 33. 21. 22. 20. 27. 32. 20.\n", + " 20. 27. 28. 29. 30. 33. 22. 20.]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "5PWuas1oIAxg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "4\\. Plot the artificial dataset:" + ] + }, + { + "metadata": { + "id": "vrGXdyZyIAxh", + "colab_type": "code", + "outputId": "e4987d94-1fa3-44c3-c7f5-edd18c727c01", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 348 + } + }, + "cell_type": "code", + "source": [ + "plt.bar(days_range_, data_, color=TFColor[3])\n", + "plt.bar(tau_ - 1, data_[tau_ - 1], color=\"r\", label=\"user behaviour changed\")\n", + "plt.xlabel(\"Time (days)\")\n", + "plt.ylabel(\"count of text-msgs received\")\n", + "plt.title(\"Artificial dataset\")\n", + "plt.xlim(0, 80)\n", + "plt.legend();" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABocAAAKXCAYAAABAG5P7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XeYXVW9N/BvSITQEkIJVQnNJVUp\nF5EXKVIEwQJYEAsgRRCxXBVUovDKhXsRC4oiLxIJKh1pgsFcCKCUC0rzorAICIKIlHshCZ1A3j/O\nmclkMpNkMifMJOfzeZ48O2fvtdf6nX3ODkO+WWsPmTFjRgAAAAAAAGgPiw10AQAAAAAAALx+hEMA\nAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMA\nAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMA\nAMA8K6UcXkqZ0fx1wgIc57rmGPt3279KKeXiUsozpZTppZRLmvvHN9sf248xt2/28VB/am/2dWyz\nr/H97WtB9AcAALQ34RAAANAXB3f5/X6llKH96ayU8u+llBk9HLooyQ+S/KXb/v9IsmeSV5KcmeTG\n5v6Jzfb/1Y9y/t7s42f96GOhUEr5x8IWNJVSzm1FcAcAACTDBroAAABg4VBK2TLJW5Pcl2Raks2T\n7J7k8n50+y897ay1/qiX9m9vbo+otZ7Xpf05Sc7pRx2ptd6f5Av96WNhUEpZI8mqA13HfOjxuwIA\nAPSdmUMAAMC86pg1dGHzV5IcNL+dlVKGJNmij6ct2dz+c37HZeELWUopyydZZ6DrAACARYWZQwAA\nwFyVUpZNsk/z5dlpzBw6Icl7Simr1lof6+Gc/dNY+u3KJF9MckYaYdDxSd6cZL8ubTuWltuh1npd\nKeW6JNslOaDWOr65BFpn+yTXllKS5Ppa6/Zdjv/fWuux3erYIMlXkrwrySpJpia5ttn2z13abd/c\n/7da65hufazVpY83JRmaRkB1XZLja6339XLp5lnzGh+T5INpzOz5nyRXJxk7l/O2TfLZJO9IMjrJ\nq0keSmNG17/XWqd0adt1Cb/9Sin7pdv77Ut/zfaLJdk/jeu/cZJlkzyVxgyznyf5Wa11Rrdzlkjy\nmSQfSbJBkjck+UeSq5pj/L1L2+vS+C4kyZpd3sNatdaH5nRtAACAnpk5BAAAzIuPJlkmyS211nua\nf3k/MY2Q5IB5OP+8JEslGZ/knua5Z3Y5/oPmr7/PdmZDxzOFpjVf/6r5+qI5DVpKeX+S25J8Isnd\naTxP6E9JPpTkrlLKu+dWeCllkyR3JDksjaDk7CS/SDIlySeT3NZsM99KKW9I8p9JvpRkZJIL0ghj\n3pbkD2mEWj2dt38aAdUHkzyQxvu7OMlySY5KclMpZZkup/wgyS3N39+Tbs9Ymo/+kuRHScalseTg\n1Ul+msazoN6WRiDY9XNO8/zrk3wvybpJfpPk/CQvpREY3V1K2azLKRel8Xknjc+/47sytadrAgAA\nzJ2ZQwAAwLzoWFJuXJd945LsmuRTpZR/7z47pIt3pBEG7N21TSnlpjSDpVrrHJ/10/FMoVLKB9KY\nmfKjWut1czqnlLJikrOSLJFkt1rrb7scOyCN4OPcUsrqtdYX5tDV0WkENpcl2avW+lqzjyFphF2f\nTGM21HvnVM9cHJzG85QeT7JFt5kz307yrz28v8XSmL01JMmXaq3f63JsqSS3pzEr59NJvps0rnMp\n5djmWLd2ve7z018pZdUkhyZ5Jsn6tdZ/djln5TRCov1KKd+rtf6peeg7zfFvTLJHrfWZLuP/W5Kv\npfFZb1RrnV5r/VEp5e4keyf537l9VwAAgLkzcwgAAJijUsrb0lgO7vk0ZgB1uDyN5cPWSbLDHLpY\nPsl35xAeLSj7pRHqTOwaDCVJrfXMNAKrmsZSaHPyiySfT/LNjmCo2ceMNGbJJMk7+1nrvs3tD7sG\nQ01j01hirrslkhyZ5MuZNbRLrfX5JL/sY23z09+YNMKkv3YNhprnPJ7kPUk2SWOJuZRSVkjyqWaT\nAzqCoWb719II4u5PUpLsNI91AwAAfWTmEAAAMDeHNLcX1lo7lnVLrfXlUsov0nie0EFJJvVy/ktJ\nbl6wJfaoI7D6fU8Ha63bz0sntdYr5nD40eZ25LyXNavmjJlNmy9/18P4Lzefu/PhbvtfyMzApt+1\nzWd/DySZnmTTUsrX0wi3nu3SZ/dnMb0zjecLTa61Tu6hhhmllAlJjkjj87tqXmoHAAD6RjgEAAD0\nqrmc2MeaL8f10OSMNMKhPUspo2qtT/fQ5qmuM25eR2Oa20fn1GheNJ9ddFCSjZKslGTp/vbZxag0\nnseU9F7r33qpa4k0lnXbO8nazdoW79ZsyLwW0tf+aq1PlFI+l+TUNJbWO7qU8vs0nj10Za31nm7n\njmluly2lnNxLGW9rbteb17oBAIC+EQ4BAABz8pEkI5q/P66U0lOb6UmGJ/lEkh/2cPzZHva9HoY3\nt6/0p5NSyklpLLWWNGbKXJrk6SSvpnFtDuhP/5kZDCXJi720eamHupZIck2S/5NkRpJb0whlOpZq\n2yDJzvNaxPz2V2v9SSnl9jSu0bu7/DqplHJzksNrrXc0my/T3K6SxlJ9czJiLscBAID5JBwCAADm\n5OAuv99uLm0PTM/h0EB5rrkdNb8dlFLempnB0AG11vHdjq+d/odDXQOhJXpps1QP+w5NI8iZkmS7\nWutd3Wr7VPoQDvWnv1rrLUk+VEp5Q5Ktk+yWxoyzdyT5XSll/eazlDqCwptrrVv3oTYAAKCFhEMA\nAECPSikbpfGX+9OTrFFrfbyXdiOSPJZkk1LKlrXWW1/HMufkr0k2SbJ6P/roCMTu7h4MNa3dj747\n/G+Sl9NYvm2VJA/N4zgdtf2ie5Azn7X1u79a6ytJrk9yfSnlW0kuT7Jjkv2T/FuS+5tN39TH2gAA\ngBZabKALAAAABq2OWUMTeguGkqTWOjXJJc2XB83PQKWUeX4uTh9c29z2ONullHJzKWV6KeUTc+ij\n4x/U9fQspSQ5rEt/8/Ueaq2vJvnv5stteqhzySTb96W25rOiPtl82Vtd3ff3ub9SyoallMNKKbMF\ncLXW59NYgi+ZGdDdmMYSeauXUnqcOVRKeWcpZYtSSk//v7ogvicAANB2hEMAAMBsSikdzxBKkjPn\n4ZTxze0+pZSl53GYaV1+v+Y8ntMXv0wj6Ni8lHJI1wOllL2SvL1Zw+Vz6OOe5nbTUspqXc4f1pwZ\ns0qS15q739iPWi9sbj9XSlmpyzhDkpyYnpeV66ht11LK0C7njEpyQWbOQFqj23kd1737NZ+f/j6e\n5NQkP2guKZcu570hyZ7Nl3cmSa316cz8rpxcSlm+2zmbJ7ksyS1pPOOoe80rNcMyAACgHywrBwAA\n9OSDaTyr56kkV8xD+0lJHkkjIPlIkp/N7YRa6/+UUh5KMiaN59LcneSyWuv/m7+SZ+v/f0spn0zy\nqyT/r5SyT5KaZN00ljqbnuSgWuuUOXQzMY1g421J7iilXJnGP7LbIY1ZLNsmuTKNIOPSUsqVtdZv\nzEe5P0qyX5L1k9xdSpmQxgybbZKMTvKDJF/p4ZzDk/xLkrtKKTcmWT7JLkn+mEZw89cka5dSfp3k\nwlrrz5vHkmS7UspNzXE+Pj/9JflOkt2T7J3kkVLKdUn+J8nI5rV5YxpBz/gudX8lyVuTbJVkcinl\nt0mmpvG57JDG9f1GrfXuLufcl0ZAtGySO0spDyY5tdY6p2APAADohZlDAABATzqWlDu7+RyZOaq1\nvpbk582XfVla7pNJ/pJk5SSbJZnrWH1Ra72i2e/ZSUqSA9MIei5N8o5a66/mcv6rSfZIcm6SoUn2\nTfLONGa3vL3W+lCSI5I8kGTDNIKV+anzuTTClFPTeP7Qvknel0YwtWWSB3s455E0gptr0wjY9k3y\n5iTHJ9mt1vpwkqPSCPjeleZMoVrr9UlOaO7fNMlqSabPT3+11v9JI8D6RpJHk+yU5JDmNXs0yZeS\nbF9rfalL3dPSWCbvC0kmN9semGSjNGZx7Vxr/bdu73VakgOa12GtZtuX5+3qAgAA3Q2ZMWPGQNcA\nAAAAAADA68TMIQAAAAAAgDYiHAIAAAAAAGgjwiEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIc\nAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgjwwa6gIXRlClTZgx0DQAAAAAAwKJt5MiRQxZEv2YO\nAQAAAAAAtBHhEAAAAAAAQBsRDgEAAAAAALQR4RAAAAAAAEAbEQ4BAAAAAAC0EeEQ0BKTJ0/O5MmT\nB7oMGHDuBZjJ/QAzuR9gJvcDNLgXYCb3A7z+hEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4\nBAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4\nBAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAMeltu\nuWUOPfTQlvd76KGHZptttml5v/Pq9NNPz5ZbbpnbbrttwGror4738N///d8DXcrrbkF9Lxe0YQNd\nAAAAAADAYDJyueUGuoQ5mvLMMwNdAi200047ZZ111snaa6890KXQRoRDAAAAAAAwQNZee23BEK87\ny8oBAAAAAAC0ETOHAAAAAADazKGHHprbb789t9566yz7n3rqqbznPe/JZpttltNOOy1JMmPGjFxx\nxRW55JJL8sgjj+TFF1/MSiutlG222SYHHXRQRowY0Xn+q6++mnPPPTe/+c1v8vDDD+cNb3hD1lln\nnXzwgx/Mrrvu2tnutttuy2GHHZZPf/rTmTp1aq688spsscUW+Y//+I+51v7QQw/l5JNPzl133ZVX\nX301G2ywQT73uc9lgw02mKXd5MmTM27cuNx+++159tlns8IKK2TrrbfOgQcemNGjR8/W7yuvvJJT\nTz01EydOzDPPPJPVVlstBx544Cx1J8ktt9ySs88+O3/5y1/ywgsvZPTo0dl8883z6U9/OiuttFKS\n5JhjjsmECRNyxhlnZJNNNpnl/Jdeeim77rprRowYkUsvvTQ//elPc8YZZ+QnP/lJNt988852N998\nc37xi1/k3nvvzUsvvZQVV1wx73znO3PQQQdluS5LH2655ZazfF4dJk6cmLFjx+aggw7KIYcckqTx\nud9111256KKLcuyxx+bee+/N+PHjs8466/R6vZ977rmMGzcu1157bZ544omMGjUqu+66a/bff/8s\ns8wys7W/9NJLc8455+TRRx/NyJEj8573vCef+cxnsthiM+eq/O1vf8v48eNzyy235Omnn86oUaNS\nSsnBBx88y+fY9XuyxRZb5Mc//nHuu+++JMlb3/rWHHnkkVl99dVnqfXUU0/NpEmT8uyzz2adddbJ\nYYcdln/+8585/vjj881vfjN77LFHZ/u+fEcmTpyY8ePH5+GHH84yyyyT7bbbLkcccUSv122wEw4B\nAAAAANCrn//85/nxj3+crbbaKocffniWWGKJ3Hvvvbnoooty55135qyzzsqQIUMyY8aMHH300bnu\nuuuy6667Zt99983zzz+fiRMn5pvf/GYeffTRHHjggbP0/ec//zkPPfRQ9tlnn7z1rW+day3Tpk3L\nF7/4xWyzzTbZcccd88gjj+T888/P4YcfnnPPPTerrLJKkuTuu+/OYYcdltGjR+fjH/94Vlxxxdx/\n//351a9+lRtvvDHjx4/Piiuu2NnvkCFDctxxx+XFF1/Mpz/96Tz//PP52c9+lmOOOSbrr79+1lxz\nzSTJjTfemC996UsZM2ZMDjnkkIwYMSKTJ0/OBRdckFtvvTXnnXdellpqqeyyyy6ZMGFCrr322tnC\noZtvvjnPPfdcPvShD2XIkCE9vs8rrrgixx13XMaMGZMDDjggo0aNyj333JNf/epXueWWW/Lzn/88\nSy65ZJ8+x65OOumkbLzxxtl7772zwgor9NrulVdeyWGHHZaHHnoo++67b9Zcc83ce++9Ofvss3PH\nHXfktNNOyxve8IbO9pdffnlqrdl7772z5JJL5sILL8zPf/7zrLHGGvnABz6QJHniiSdy8MEH57XX\nXsvHPvaxrLrqqnnyySdz/vnn56CDDsoZZ5wxW9B3//3354ILLsiee+6Z973vfbnrrrty2WWX5aij\njsovf/nLznbf+MY3csMNN2TbbbfNNttsk8cffzxjx47NlltuOdt768t35Prrr8/YsWOz2mqrdX7u\nt956a4466qj5/gwGmnAIAAAAAIBe/fa3v83SSy+d73//+xk6dGiSZLfddst6662XSZMm5fHHH88q\nq6yS3//+95k0aVKOOOKIfOITn+g8f++9987BBx+ccePGZc8998zyyy/feezmm2/Od7/73ay00kpZ\nb7315lrL5MmTM3bs2Lzvfe/r3Lf66qvn+OOPzwUXXJDPfe5zSZITTzwxyy23XMaNGzfLLJtNN900\nX/rSl3LWWWflS1/6Uuf+l156KcOHD8+3vvWtzn3LL798xo4dm6uvvroz1HrooYey8cYbZ+zYsZ2B\n0a677prFFlssZ511Vq6//vrstttuefvb356RI0fm2muvzec///lZ3sM111zTeV5PXnzxxZx88skZ\nNWpUzjjjjCy77LJJkj322COrrLJKTjnllFxwwQXZb7/95nq9evLqq69m9OjRnddqTi6++OLce++9\ns8y42W233bLEEktk/PjxmTRpUt797nd3tv/zn/+c8ePHZ/HFF0+SvOMd78h73/veTJw4sTMc+utf\n/5p1110373//+2c5d911183nP//5XHzxxbOFQ5MmTcq4ceOy0UYbdV6LRx99NH/84x/z6KOPZvXV\nV8+9996bG264IZtuumm+853vdJ675ZZb5tBDD53tvfXlO3LGGWdk6NCh+cEPftD5uX/gAx/Icccd\nN9drOFh55hAAAAAAAL0aNmxYXnjhhUyePHmW/XvssUe+973vdc7W+c///M8kyY477php06Z1/nr+\n+eez/fbbZ/r06bnrrrtm6WODDTboXIptXgwfPjy77bbbLPt23HHHDBkyJH/84x+TJA8//HBqrdl6\n660zdOjQWWp529velhEjRuS2226bre999tlnltfrrrtukuTJJ5/s3Pexj30sP/3pT7PmmmtmxowZ\nefbZZzNt2rTOpc3+8Y9/dF6zHXfcMf/4xz9yzz33dJ7/0ksv5YYbbkgpJWuvvXaP7/GOO+7I1KlT\ns/POO3cGQx3e+973JkluuOGGuV+sOXjXu941T+0mTpyYYcOGZeedd55l/7777pszzjgjW2yxxSz7\n99prr85gKElWWmmljBw5Mk899VTnvq222iqnnnpqZzD0wgsvZNq0aZ3fo8cee2y2OjbZZJPOYKhD\nR4DU0XfHZ9o1cEoaYU/32Vt9+Y5MmTIltda85S1v6QyGOuy9996z1bqwMHMIWCQcceUT/Tr/lN1n\nX2cWAAAAgOSAAw7I17/+9RxwwAHZYoststVWW+Xtb397Z3jS4cEHH0ySzhkiPXn88cdneb3aaqv1\nqZY3velNsyxjliTLLLNMRo4cmX/+85+z1HHJJZfkkksu6bGfGTNmzLbvjW984yyvhw8fnqQR6HSY\nPn16zjrrrPz2t7/No48+mldeeWWWc1599dXO3++yyy65+OKLc+2112b99ddPMnNJud5mDSWN2UlJ\nenwO0HLLLZeRI0fmkUce6fX8eTGv1/2vf/1rVlxxxSyxxBKz1dF1tk2HNdZYY7Z9w4cPn+UaJo0g\n8dxzz80DDzyQF154YZZjXa/hnPrtCKGmT5+eZGYw11PbjTfeeJZgsi/fkY5+u38/kmTMmDE9nrsw\nEA4BAAAAANCrHXbYIWeccUbOPvvs3HzzzbnllluSNGbWfPnLX85mm22WJHn++eczZMiQ/OhHP8pi\ni/W8aFX3UGKppZbqUy29tV9iiSUyderUzjqSZPfdd+9cCq27np710z106slxxx2XCRMmZKONNsqR\nRx6ZVVZZJcOGDcsf//jHjBs3bpa2m266aVZeeeVMmjQpn/nMZ5I0lpQbOnTobLNbuuqovyOc6m6J\nJZbItGnT5lrrnMzrdX/xxRdnWQZwbublGl522WU5/vjjs/LKK+fggw/OWmutleHDh2fq1Km9PsOn\n62ykOdWa9Hzdll566Vle9+U7Mqd+u4dmCxPhEAAAAAAASTLbDI8OG264YU444YRMnz49f/rTn3LN\nNdfkkksuyec+97mcd955WWONNbLUUktlxowZWWeddfoUKPRFx1/U97S/4y/vO4KP4cOHZ/PNN2/Z\n2E899VSuuuqqvOlNb8qpp546S1jwt7/9bbb2Q4YMyc4775xf/vKXeeCBB7LGGmvkhhtuyBZbbJEV\nV1yx13E66u8+o6bDiy++OE/hTm+fZV8sv/zy/Q6iujv77LMzdOjQ/OhHP5plmbaermFfdARIL7/8\n8mzHnnvuuVle9+U70hEA9XQ9e/uMFgaeOQQAAAAA0GaGDWvMG+j+F+kPP/zwXM/bbLPN8pWvfCWf\n//zn8/LLL3c+/6bjGTrdnyuUJNOmTetc/qs/HnnkkdmWHZs2bVqmTJnS+dyfOdWRJE8//fR8jf3Y\nY49lxowZ2WSTTWabRXLHHXf0eE7HDKHrrrtunpaUS5K11lorSXL//ffPduypp57K1KlTZ1nObOjQ\noT0GInP7LOfFqquumilTpszyzKCk8RyeK664InfffXef+/zHP/6R0aNHz/b8nt6u4bzqeHZVx/KC\nXXWvsy/fkVVXXTXJzOXlunrggQfmr9hBQDgEAAAAANBmVlhhhSTJPffc07lvxowZufDCC2dp98QT\nT+SjH/1oTjvttNn66Fiqq2MpsZ122ilJct555+W1116bpd9vfvOb2WOPPfLss8/2q+7nnnsuV199\n9Sz7Jk6cmCTZYostkjSeDfPmN785999/f2699dZZ2t59993ZbbfdctZZZ/V57I7ZUI899tgs+2+9\n9db813/9V5LZZ5eUUjJmzJjcfPPNuf766zN8+PDssMMOcxxns802y6hRo3L11Vd3LpXXoeP5OO96\n17s696244op58MEHZ5lV9eyzz+aKK67o4zuc3bbbbpsZM2bk17/+9Sz7L7/88nzrW9+ar9k+yy+/\nfJ555plZ6n388cdzwQUXJJn/GU+bbLJJksz2/bjjjjvypz/9aZZ9ffmOjBo1KmuttVb+/Oc/zxY8\n9fa8ooWBZeUAAAAAANrM9ttvnwkTJuRb3/pWPvrRj2bYsGG55pprMmLEiAwdOrSz3ejRo7PKKqvk\nzDPPzGOPPZbNN988iy++eB5++OGcf/75WWGFFbLjjjsmaQQJ22+/fa677rocfvjhec973pPp06dn\n4sSJue222/KpT30qyyyzTL/qfvOb35yf/OQnueeee7LuuuvmoYceyvnnn58RI0bkwx/+cGe7I488\nMocffniOOuqofPSjH80b3/jGPPjgg7nooouy/PLLz3X2Tk9WW221bLjhhrntttvyne98JxtuuGFq\nrZkwYUKOOeaY/Ou//muuvfbarLvuutlpp506Q7Nddtkl48aNy9/+9rdsu+22c10SbvHFF8+Xv/zl\njB07Noccckje//73Z5lllsndd9+dyy67LBtttFE+8IEPdLbfbrvtcsEFF+QrX/lKdtlllzz77LO5\n+OKL8y//8i+56qqr+vw+u/rwhz+cq666KqeffnqeeeaZrL/++rnvvvty/vnnZ6ONNprjs5N6s9NO\nO+WXv/xljjrqqLz73e/Ok08+mfPPPz9f/OIXc/LJJ+e+++7Lr371q2yzzTZ96nfzzTfP+uuvn5tu\nuinf+MY3suWWW+axxx7LpZdeml122WW2a9GX78j++++fY445Jp/97Gez5557Zumll86tt96aqVOn\nztPzkAYj4RAAAAAAQJvZYYcd8tWvfjXnn39+fvCDH2TkyJHZZZddcthhh2XSpEmztD3xxBPzi1/8\nIldffXV+97vf5cUXX8zo0aOz44475sADD8xyyy3X2faEE07Iueeem9/85jf59re/naSxhNfRRx+d\n97///f2ue5VVVsnhhx+e73//+7nsssvy6quvZuONN84XvvCFWZ7js8kmm+RnP/tZxo0bl4suuijT\npk3LqFGjsu222+aQQw7Jyiuv3OexhwwZkhNOOCHf+c53ctVVV+Wqq67KW9/61px66qlZZ511suee\ne2bChAn58Y9/nO23336WcOj000/PlClTsttuu83TWDvvvHNGjBiR8ePH5/TTT8/LL7+cVVZZJfvt\nt1/233//zr6T5PDDD89iiy2W66+/Pt/+9rez2mqr5WMf+1jGjBnT73Bo+PDhOe200/LTn/40kyZN\nyoUXXphRo0blIx/5SA466KDO5Qn74pBDDsnLL7+c6667LieeeGLWWWedfPWrX822226bF154IT/8\n4Q9z6qmndi6vN6+GDBmS7373u/n+97+fG2+8MTfccEPe8pa35MQTT8xtt92WJFlssZmLqfXlO7Lb\nbrvl5ZdfzjnnnJNTTz01yy67bLbZZpt8/etfz1577dXnazAYDJkxY8ZA17DQmTJliosG3UyePDlJ\nst566w3I+Edc+US/zj9l99EtqoR2N9D3Agwm7geYyf0AM7kfoMG9ADO5H1jQTj755Jxzzjk5+eST\ns/XWWw90OX0ycuTIIQuiX88cAgAAAAAAFmovvvhixo4dm+OOO26W/S+99FKuueaaDBs2LBtssMEA\nVTf4WFYOAAAAAABYqA0fPjxJ8utf/zpTpkzJ9ttvnxdffDGXX355Hn/88XziE5+YZQnEdiccAgAA\nAAAAFnrHHnts1l133UyYMCEnnXRSXnvttYwZMyZHHnlk9t5774Eub1ARDgEAAAAAAAu9YcOGZf/9\n98/+++8/0KUMep45BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAAAABtRDgEAAAAAADQ\nRoRDAAAAAAAAbUQ4BAAAAAAfPuDbAAAgAElEQVQA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAA\nAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAA\nAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAAANBGhEMAAAAA\nAABtRDgEAAAAAADQRoYNdAHzo5QyYx6arVVrfajZfskkX0uyT5I1k0xNMinJN2qt9y2oOgEAAAAA\nAAabhTIcSvKhORz79yQjkzyZJKWUIUkuS7JTkjOT/N8kqyX5cpKbSylb1lofWLDlAgAAAAAADA4L\nZThUa72op/2llA8kWTfJ/rXW55q790myc5KTaq1Hdml7TZI/JjkpyV4LtmIAAAAAAIDBYZF55lAp\nZdkkpyT5fa31rC6HPtnc/rBr+1rr7UluSrJHKWW516dKAAAAAACAgbXIhENJvpHGcnGHd9u/ZZJH\naq1/7+GcW5K8IclmC7g2AAAAAACAQWGhXFauu1LK6DRCoZ/XWv+7y/5lkyyfpPZy6sPN7dpJJvW3\njsmTJ/e3C1joDdx9MLJfZ7t/aTXfKZjJ/QAzuR9gJvcDNLgXYCb3A+1svfXWe13HW1RmDh2ZZHiS\n47vtX7a5fb6X857r1g4AAAAAAGCRttDPHCqljEpyWJIraq33D2Qtr3eyB4NJx7/sGLD74L4n+nW6\n+5dWGfB7AQYR9wPM5H6AmdwP0OBegJncD/D6WxRmDu2bZKkkZ/VwbGpzu3Qv5y7TrR0AAAAAAMAi\nbVEIhz6U5KUkE7ofqLU+m+TJJGv0cu6aza3FLAEAAAAAgLawUIdDpZRlkmyd5OZa6wu9NLspyRql\nlDf1cOydSV5IcvsCKhEAAAAAAGBQWajDoSSbJHlDkrvn0GZcc/vFrjtLKdsl2TzJec0ZRgAAAAAA\nAIu8YQNdQD+9ubl9qLcGtdZfl1IuTvKFUsqIJJPSWE7uy0n+nuTrC7pIAAAAAACAwWJhD4dGNbfT\n5tLuo0m+muTjST6R5OkkVyQ5utb6zwVXHgAAAAAAwOCyUIdDtdbvJ/n+PLR7Ocm3mr8AAAAAAADa\n1sL+zCEAAAAAAAD6QDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoRDAAAAAAAAbUQ4BAAAAAAA0EaEQwAAAAAAAG1EOAQAAAAA\nANBGhEMAAAAAAABtRDgEAAAAAADQRoYNdAGLkiOufGK2fafsPnoAKgEABlJPPxP0hZ8fAAAAgAXJ\nzCEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIcAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgj\nwiEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIcAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgj\nwiEAAAAAAIA2IhwCAAAAAABoI8IhAAAAAACANiIcAgAAAAAAaCPCIQAAAAAAgDYiHAIAAAAAAGgj\nwiEAAAAAAIA2IhwCAAAAAABoI8MGuoD+KKXsluSrSTZLMj3JHUn+rdY6qVu7JZN8Lck+SdZMMjXJ\npCTfqLXe97oWDQAAAAAAMIAW2plDpZRPJflN8+XnkxybZO0kV5VStu/SbkiSy5KMTfL7JJ9K8u0k\n2ye5uZSyzutWNAAAAAAAwABbKGcOlVJWSfLDJFcneXet9bXm/l8nuTnJ7kmuazbfJ8nOSU6qtR7Z\npY9rkvwxyUlJ9nrdigcAAAAAABhAC2U4lGS/JEsnObYjGEqSWutfk6zcre0nm9sfdt1Za729lHJT\nkj1KKcvVWp9ZkAUDAAAAAAAMBgvrsnI7J5mWxiyhlFKGllKW6KXtlkkeqbX+vYdjtyR5QxrPLAIA\nAAAAAFjkLawzh96S5IEkbyulfD/J/0kytJTy5yT/Vms9L0lKKcsmWT5J7aWfh5vbtZNMWhCFTp48\neUF0C4PWwH3nR/brbPcqreY71e78mdTVovZ+oD/cDzCT+wEa3Aswk/uBdrbeeuu9ruMtrOHQ8kle\nSXJlkjPTeG7QmCRfTXJuKWXpWuu4JMs22z/fSz/PNbfL9nKc+fTD+/r3l2Kfe/OUFlUCAHTXn/9O\nt/N/o/18AwAAwKJiYQ2HFk8jDPpYrfWcjp2llCuT3JPkhFLK+IEpbVavd9o3aNz3RL9Ob9vrthDr\n+JcdA/bZ+c4xSAz4vcDgMNj/TOpHfX2pbZG7Hwb758qgtsjdD9AP7gdocC/ATO4HeP0trM8cejbJ\ni0nO67qz1vpgkmuTjE6yfpKpzUNL99LPMs3t1F6OAwAAAAAALFIW1nDoofRee8c/6RxRa302yZNJ\n1uil7ZrNrcUsAQAAAACAtrCwhkM3p7G03AY9HOsIfP7e3N6UZI1Sypt6aPvOJC8kub3lFQIAAAAA\nAAxC8/XMoVLKq/0Yc0attb/POhqf5NAkx5RSPlxrndGsa5M0Ap8/1VofbrYdl+T9Sb7Y/JVm2+2S\nbJ7kzOYMIwAAAAAAgEXe/IY0Q+bzvClJXp7PczvVWm8ppZyS5Igkl5dSLkhjxtAXk0xP8vkubX9d\nSrk4yRdKKSOSTGq2/XIas4u+3t96AAAAAAAAFhbzFQ7VWmdZjq6UMjTJT5Osn+Tfk9yS5H/SWLZu\ndJKtkxyZ5C9JPtWPerv6fLO/Q5OcnuSlJDcmObbW+odubT+a5KtJPp7kE0meTnJFkqNrrf9sUT3Q\nEkdc+cTcG/XilN1Ht7ASAAAAAAAWRf1d3q3D15K8Pcnbaq2vdDv29yQXlFIuT3JHkm82f/VLcym5\n05q/5tb25STfav4CAAAAAABoW4vNvck82S/JVT0EQ51qrS8mmZBk3xaNCQAAAAAAQB+1KhxaI43n\nCc3N00lWb9GYAAAAAAAA9FGrwqH/SbJXKWXx3hqUUoYleX8aAREAAAAAAAADoFXPHPpVkiOS/KGU\nclqSP6URAs1IslySjZIckmTTJKe3aEwAAAAAAAD6qFXh0NFJNkmyXZIf9dJmSJLbk3y9RWMCAAAA\nAADQRy0Jh2qtzybZoZSyRxpLx22YZIU0AqFnktyb5DdJLqy1vtqKMYG5O+LKJ/p1/im7j25RJcDC\nyp8jAAAAAIueVs0cSpLUWq9IckUr+wQAAAAAAKB1WhoOJUkpZfEk6ydZOcmdtdb+/ZNjAAAAAAAA\nWmaxVnVUShldSjkzyf+m8WyhCUm26nL82lLKVr2dDwAAAAAAwILXknColLJ8kpuS7JdkRpI7ux1f\nK8nWSSaWUjZsxZgAAAAAAAD0XatmDh2dZO0kJyRZMcneSYZ0HKy1PphkuySLJzmqRWMCAAAAAADQ\nR60Kh96XZFKtdWyt9aU0Zg/Notb6X0kuTrJDi8YEAAAAAACgj1oVDq2e5MZ5aPfnJKNbNCYAAAAA\nAAB91Kpw6JUkS89Du1FJnmvRmAAAAAAAAPRRq8KhO5PsVUpZsrcGpZQVkuyb5E8tGhMAAAAAAIA+\nalU4dHqSMUl+X0rZLcmqzf1Ll4bDk/whycrNtgAAAAAAAAyAYa3opNZ6dinlHUk+k+SK5u4ZSX7Z\npdmQJKfWWs9pxZgAAAAAAAD0XatmDqXW+tkkuya5OMmjaTyH6OUkDye5MMm7m20AAAAAAAAYIC2Z\nOdSh1joxycRW9gksmo648ol+nX/K7qNbVAkAsCC1+r/5/enPzw8AAAANLQmHSin3pbGE3Nm11gda\n0ScAAAAAAACt16pl5dZNckyS+0opN5ZSDiulLN+ivgEAAAAAAGiRVoVDGyU5PsnkJO9I8qMkj5VS\nLi2lfLCUskSLxgEAAAAAAKAfWhIO1Vr/Umv9Zq31LUneluQ/kjyc5H1Jzk/yz1LKT0sp27diPAAA\nAAAAAOZPq2YOdaq1/qnWenStdb0kmyf5dpL/TXJgkmtKKQ+1ekwAAAAAAADmTcvDoa5qrXfUWr+W\nZOMkRyd5NskbF+SYAAAAAAAA9G7Yguq4lLJ8kj2TfDDJdkk6njv0uwU1JrBgHXHlE3M4OrKxua/n\nNqfsPrr1BS0gc36fc7cwvVcAYPDqz88kfh4BAADmpKXhUCllpSR7ZWYgNDTJkCR3Jjknybm11kdb\nOSYAAAAAAADzriXhUCnl8DQCoW3SWKpuSJIHkpyb5Jxa672tGAcAAAAAAID+adXMoVOa238muSCN\nQOjWFvUNAAAAAABAi7QqHBqfxrJxk2qtr7WoTwAAAAAAAFqsJeFQrfVTregHAAAAAACABWu+wqFS\nys+SnFdrndjl9byaUWs9cH7GBQAAAAAAoH/md+bQ/knuTjKxy+t5NSOJcAiAOTriyif6df4pu49u\nUSUAwMKkPz9D+PkBAIB2Mb/h0A5JHuj2GgAAAAAAgEFuvsKhWuv1c3oNAAAAAADA4DS/M4d6VUpZ\nPMn6SVZOcmettX/rAgEAAAAAANAyi7Wqo1LK6FLKmUn+N8ntSSYk2arL8WtLKVv1dj4AAAAAAAAL\nXkvCoVLK8kluSrJfkhlJ7ux2fK0kWyeZWErZsBVjAgAAAAAA0Hetmjl0dJK1k5yQZMUkeycZ0nGw\n1vpgku2SLJ7kqBaNCQAAAAAAQB+16plD70syqdY6NklKKTO6N6i1/lcp5eIkO7RoTJgvR1zZv8dg\nnbL76AXaHwAADHb9+RnYz78AADDwWjVzaPUkN85Duz8n8X8CAAAAAAAAA6RV4dArSZaeh3ajkjzX\nojEBAAAAAADoo1aFQ3cm2auUsmRvDUopKyTZN8mfWjQmAAAAAAAAfdSqcOj0JGOS/L6UsluSVZv7\nly4Nhyf5Q5KVm20BAAAAAAAYAMNa0Umt9exSyjuSfCbJFc3dM5L8skuzIUlOrbWe04oxAQAAAAAA\n6LuWhENJUmv9bCnl8iQHJ3l7ktFpBET/THJLknG11v9s1XgAAACwMBm53HL9On/KM8+0qBIAANpd\ny8KhJKm1TkwysZV9AgAAAAAA0DqteuZQkqSUslop5c097N+xlDKmlWMBAAAAAADQdy0Lh0opRyb5\nW5KP9HD4s0nuK6V8uVXjAQAAAAAA0HctCYdKKXsk+Y8kTyW5v4cmlyd5NMmJpZQPtWJMAAAAAAAA\n+q5VM4e+nuThJBvUWs/tfrDWemaSt6Uxs+gLLRoTAAAAAACAPmpVOPTWJOfWWp/urUGtdUqS85pt\nAQAAAAAAGADDWtTPq0men4d2ryR5rUVjAtBPR1z5RL/OP2X30S2qpL35HOaP6zY4zPlzGNnY3Nd7\nm+6fQ38+V58pfeXPEQAAoF21Khy6O8l7kxzXW4NSypJJPpSk9newUsr4JPvNockXa60ndxn3a0n2\nSbJmkqlJJiX5Rq31vv7WAgAAAAAAsDBpVTj00yTjSin/meR7Se5K8nSSJZKslGSHJIcnKUk+06Ix\n0+zryR7235kkpZQhSS5LslOSM5P83ySrJflykptLKVvWWh9oYT0AAAAAAACDWkvCoVrrmaWUdyQ5\nKMm7emk2JMk5tdb/14oxmybUWh+aw/F9kuyc5KRa65EdO0sp1yT5Y5KTkuzVwnoAAAAAAAAGtcVa\n1VGt9ZAk70vy6ySPpfEcoleS/D3JpUk+UGv9eKvGm0efbG5/2HVnrfX2JDcl2aOUstzrXBMAAAAA\nAMCAadWyckmSWusVSa5oZZ/zopQyPMn0Wuv0boe2TPJIrfXvPZx2S5L/k2SzNJ5BBAAAAAAAsMhr\naTjUoZQyMsnKSf5Ra312QYzRdHgp5YNJxiR5rZTyhyTfqrX+ppSybJLlk9Rezn24uV07CzAcmjx5\n8oLqepAb2a+zF+x1a3Vtg6c/tbWqv8H8/W21wfxeB3NtrR5/ML9Xtc2fwVxbsqj+eT6Yr1sy8H8u\nDZzB/B15/T/T1+u/D4P5fmjn2rbo5/mL2p8ji9r7gfnlXoCZ3A+0s/XWW+91Ha9l4VApZckkR6ax\nlNuY5u49k1zePH5mkn+rtT7QqjGTvDvJCUkeTbJJkq8kuaKUsm+S3zXbPN/Luc81t8u2sB4AAAaJ\nH97Xv7/4/9ybp7SoEgAAABhcWhIONYOh65NsnmRIkieTrNjl+NpJ9kvy7lLK22utj/RzyO8mOTfJ\ndbXWl5r7flNKuTzJnc3j/9LPMVri9U77Bo37nujX6Qv0urW6tkHUn9pa1N9g/v622mB+r4O5tjno\n+FdOfRp/ML9Xtc2fwVxbssj+eT6Ya+uxv3YxiD6HgfxMX+//PixUf4602mCurZ8Ge33zar7uB1gE\nuRdgJvcDvP4Wa1E/X0ljhvzZSd6Y5O1phERJklrrX5N8MMnoJF/r72C11v+utf62SzDUsf8vSa5L\nslqSlZq7l+6lm2Wa26n9rQcAAAAAAGBh0apw6MNJ/lBr/WSt9dEkM7o3qLVenOSKJLu2aMzePN7c\nLpXGDKY1emm3ZnNrIUsAAAAAAKBttCocWivJ1fPQ7rY0ZvXMt1LKiFLKx0opvYVMpbl9JMlNSdYo\npbyph3bvTPJCktv7Uw8AAAAAAMDCpFXh0Gvz2NeSSV7u51gvJ/lxkvGllBW7Hiil7JTGs4ZurbX+\nPcm45qEvdmu3XRrPRzqv1vpsP+sBAAAAAABYaAxrUT/3JNmjlHJ0rfW1/8/enUdbltb1/X9X08w0\nzWQbDEMAmyei6BJQwAFwQEMaVFAcImCI+QXQNAIBQRRB4pCIItDgjIpD1BghCE2MCqIYSANpBJfI\n063I0BIsAggyCTT1++Oe1mtRVV23zq66p+q8Xmvdtevs/Zzv93tv3VtV8Oln7yMtGGNcp3pg9cZ1\nGs05PzLG+I7qF6pXjzF+snpn9bnVI6r3VQ9brX3RGOP51aPGGDesXtbO7eQeW11RPXGdWQAAAAAA\nAE43S4VDv1Q9s/qtMcbjqg+tzh8aY1y7+vLqe6vbVs9Yt9mc83ljjLdV39VOwHP9dgKiX6l+YM75\n5l3Lv6l6QvWg6sHVe9t59tF3zznfue4sAMDxu/Digyf83osuOG/BSU4v63zdaru/dtvC9winM9+/\nAABw6i0VDj2nnQDoftV9qiurQ9WvtnMruaoD1cXVTyzRcM75+9XvH8e6j1ZPXX0AAAAAAABstUWe\nObS6ldzXVA+vLm0nCDpQXa/6ePWadm719lVHu+0cAAAAAAAAJ99SO4eacx6qfrr66THGNaubtrN7\n6N1zzo8v1QcAAAAAAIATt0g4NMb4yep/zDlfWDXn/Fg7zwACAAAAAABggyxyW7nqgdVnLlQLAAAA\nAACAk2SpcOg3qgeOMa67UD0AAAAAAABOgqWeOfTM6juq148xfqt6XfWe6sojLZ5z/s5CfU87F158\n8ITfe9EF5y04CQAA+2WdfxOWfxduqmP/vp67c7js6Gv8vgIAAKfKUuHQn1aHqgPVo49j/TUW6gsA\nAAAAAMAeLBUO/WE74RAAAAAAAAAbbJFwaM55ryXqAAAAAAAAcHKdtd8DAAAAAAAAcOoIhwAAAAAA\nALbIUs8cgpPqwosPnvB7L7rgvAUnAQAAtsU6/zuk/G8RAAA2l51DAAAAAAAAW0Q4BAAAAAAAsEWE\nQwAAAAAAAFtEOAQAAAAAALBFzl6q0BjjltUD55xP33XuVtX3V3eq3l79wJzzj5bqCQAAAAAAwN4s\nsnNojHGb6jXVD44xDqzOXa96efXN1R2qr6x+d4zxOUv0BAAAAAAAYO+Wuq3c46ubVg+fcx5anfvW\n6p9Vv1mdW31p9dHqsQv1BAAAAAAAYI+WCofuXT1/zvkLu859bXVl9eg559/OOV/eTlB0j4V6AgAA\nAAAAsEdLhUM3r95w1YvVLeXuXr12zvlXu9b9efVPFuoJAAAAAADAHi0VDn2iuvau1/eqrln9zmHr\nrl19eKGeAAAAAAAA7NFS4dBfVF+26/W3VYeqFx227vOqvwoAAAAAAIB9cfZCdZ5fPXmM8cp2njP0\nBdVr5pyvrRpjnFX9f9VXVD+2UE8AAAAAAAD2aKlw6IfbCYTuvXp9RfXgXddH9RPVW6unLdQTAAAA\nAACAPVokHJpzfrj6yjHG+dWNq9fPOf9u15I3VT9aPXPOeXCJngAAAAAAAOzdUjuHqppzXn6U84eq\nxy3ZCwAAAAAAgL1bJBwaY9x+D8sPVR+s3jnn/MQS/QEAAAAAADg+S+0celM7oc9efHiM8dvVdx1t\nxxEAAAAAAADLOmuhOpdWb6g+Xh2oPlEdrP66unJ17mPV21Yf766uVz2getUY47YLzQEAAAAAAMAx\nLBUO3a26bPXx1dUN55w3n3N+WnVO9VXt7C568ZzzNnPO86qbV8+sblI9caE5AAAAAAAAOIalbiv3\npOou1efMOT+w+8Kc8++qF48x/rD64zHGnHM+e87519WjxxifU917oTkAAAAAAAA4hqXCoQdXv3x4\nMLTbnPP9Y4xfqR5ePXvXpT+ovmChOQDOeBdefPCE33vRBectOMkn2+TZAGCbrfN3dPl7GgAAzjRL\n3Vbu5tU1jmPddarbHHbuJtV7F5oDAAAAAACAY1gqHPqr6kFjjJsdbcEY46pnD71v17nbVw+q3rjQ\nHAAAAAAAABzDUreV+8XqKdUbxxi/VL2uek91qLpR9Vnt3Hrun1Y/WTXG+BfVC6prVRctNAcAAAAA\nAADHsFQ49IPVp7ezC+jR7YRCux1YHV9efdfq1++pPlE9bs753xeaAwAAAAAAgGNYJByac368esgY\n40er+1V3qG7aTij0vury6nfmnC/f9bbXVTefc75/iRkAAAAAAAC4ekvtHKpqzvn66vXHufZj1ceW\n7A8AAAAAAMCxLRoOjTHuOue8ZNfra1TfUt2penv1s3POdy/ZEwBOtQsvPniMq+fuHC47+pqLLjhv\n2YEAFnbsP+eOzZ9xAAAAm2+RcGiMcf3qd6rPrs7Zdekl1Zf3D88cesQY4/PmnO9aoi8AAAAAAAB7\nc9ZCdR5b3b36b2OMA1VjjAdU967+rPrq6qnVLavvXKgnAAAAAAAAe7TUbeW+tvqjOedDd517UHWo\nesic89LqRWOMz60uqB63UF8AAAAAAAD2YKmdQ7eqfv+qF2OMs6ovrf58FQxd5dLq1gv1BAAAAAAA\nYI+WCoeuU31s1+vPq27YznOIdruynd1EAAAAAAAA7IOlbiv3juqzd73+5nZCoJcctu721cGFegKc\nFi68eL0/9i664LyFJgGOxc8qAAAAsC2WCod+r3roGOOH2tkd9IjqinbtHBpj3LG6f/X8hXoCAAAA\nAACwR0uFQ/+xum/1+NXrj1XfPue8smqMMar/szr/jIV6AgAAAAAAsEeLPHNozvn26jOrh1VPqO46\n53zxriVvqV5f3X/O+bolegIAAAAAALB3S+0cas753upnjnLt76rPW6oXAAAAAAAAJ2aRnUMAAAAA\nAACcHhbbOTTG+Obq66tPr65THTjK0kNzztst1RcAAAAAAIDjt0g4NMZ4fPWDHT0Q4iS48OKDa73/\nogvOW2gSADbJOn8/+LsBAAAA4My31M6hh1cfqL65+oM5598uVPe4jTGeWj2pet6c81/vOn9W9ajq\nodX51Ueq/1U9Zc75mlM9JwAAAAAAwH5a6plDN6+eO+d88T4FQ59ZPf4ol3+6+tHqsurftRMgjeoP\nxxh3PzUTAgAAAAAAbIaldg69vfrwQrX2ZLUz6GeqP60+97Brd6++tfqNOefX7zr//HbCoudUdzp1\n0wIAAAAAAOyvpXYO/Xx1/zHGdRaqtxePqO5ePfYI1x6yOj5z98k5519VL6g+d7XrCAAAAAAAYCss\ntXPoh6pbVK8cY/xoO7t43nO0xXPOty3RdIxxi1XvX55zvmyMcfiSz6+urF59hLdf0s4zku66mhcA\nAAAAAOCMt1Q4dN3qOtVnVb94NWsPLdj3OdXHqscc5fo/qw7OOT92hGtXBVS3XWiWI7r88ssPO3Pu\nRtQ6cr0lLT3bJn/dNqee2Zaqt8mzrVdvu2db0uZ83ZauZ7al6m3ybOvVM9tS9TZ5tvXqmW0z6plt\n/2sdqd5d1qp2sv99c+qdaZ8PnCg/C/AP/Dywzc4///xT2m+pkObZ1bdUf1f9SfW37YRAJ80Y4+uq\nr6q+dc75rqMsO6d671GufXDXGgAAAAAAgK2wVDh032pWXzDn/JuFah7VGONG1UXVH7TzvKON9Ulp\n32UHN6LWEestaenZNvnrtkH1zLZQvU2ebc16Wz3bkjbo67Z0PbMtVG+TZ1uzntkWqrfJs61Zz2yb\nUc9s+1/riPXWdKr/a9KT5ar/KvxM+XzgRPlZgH/g5wFOvbMWqnPd6jdORTC08rTqJtXD55zH2qH0\n/ur6R7l2g11rAAAAAAAAtsJSO4de17o3Yz5OY4x7VN9aPbP6wBjjFoctud7q3AerN1d3HmNca875\n0cPW3Xp1dCNLAAAAAABgayy1c+gJ1YPHGF+2UL1j+dLqQPWo6u2HfVQ9cPXrH6te2c7neLcj1Pni\n1fF/ncxhAQAAAAAANslSO4c+q/rF6iVjjP9TvaF6z1HWHppzfvcavf5L9dqjXHtR9dLqGf1DWPTI\n6tHVH161aIxxfnW/6vfnnH+xxiwAAAAAAACnlaXCoZ+sDrWzo+duHXmnzlUOVSccDs05L6suO9K1\nMUbVFXPOF+8692PVY8YYL6ieX92sekz14erCE50DAAAAAADgdLRUOPTUdkKfTfTY6i+rh1U/U32o\nenn1PXPON+7jXAAAADzxEQQAACAASURBVAAAAKfcIuHQnPMpS9RZ15zzwBHOHaqevfoAAAAAAADY\namft9wAAAAAAAACcOkvdVu4fGWPcrp3nAt1/zvlbJ6MHAAAAAAAAe3cydw590i3eAAAAAAAA2F9u\nKwcAAAAAALBFhEMAAAAAAABbRDgEAAAAAACwRU5WOPTX1UOrS09SfQAAAAAAAE7A2UsUGWPco/qL\nOedfVc05P1A97wjr7l/dZM753CX6AgAAAAAAsDdL7Rz6/eobjmPdvar/vFBPAAAAAAAA9uiEdw6N\nMW5Y3Wj18kB14zHGrY7xlptVX1Jd70R7AgAAAAAAsJ51biv36OrJ1aHVxxNXH8dyoHrZGj0BAAAA\nAABYwzrh0E9Ub6ruXj2yenP19mOs/0j1p9XT1ugJAAAAAADAGk44HJpzHqx+vfr1McYjqx+fcz59\nsck45S68+OAJv/eiC85bcBIAAAAAAOBkOWuhOrepfuZ4Fo4xrr9QTwAAAAAAAPZoqXDoadU1r27R\nGOOe1RsW6gkAAAAAAMAeLRUOfV31p2OMrz7SxTHGdcYYz6heWt1qoZ4AAAAAAADs0VLh0OOq61fP\nH2M8b4xx7lUXxhh3q/64emT1xuqLFuoJAAAAAADAHi0SDs05f7S6Q/XC6sHVn4wx7jfG+E/VK9rZ\nLfQ91Z3mnJcs0RMAAAAAAIC9O3upQnPOK6oHjDEuqC6q/vvq0surh805/3ypXgAAAAAAAJyYxcKh\nXT5QfbQ6sHr94dUHAAAAAAAA+2ypZw41xrjpGOPnq5dVN66+uXpWdZ/qjWOMb1+qFwAAAAAAACdm\nkXBojPHQ6k3Vt1S/Vd1xzvmrc85HVfeq3lU9a4zxR2OMz1iiJwAAAAAAAHu31M6h51bXqL5lznn/\nOefBqy7MOV9R3bH68eru1aUL9QQAAAAAAGCPlgqH/mc7u4V+6UgX55wfnnNeWH1Z9Y6FegIAAAAA\nALBHZy9RZM55n+Nc9/Ixxh2X6AkAAAAAAMDeLRIOXWWMcaD6oupO1adWvzznfOPq2rlzzvfNOT+0\nZE8AOB4XXnzw6hcdw0UXnLfQJAAAAACwv5a6rVxjjHtUl1cvr36senz16atr167ePMa4cKl+AAAA\nAAAA7N0i4dAY4w7Vb1e3rV5W/cRhS25avad6xhjjXy7REwAAAAAAgL1baufQ91TXrL5iznnv6oer\nA1ddnHO+o/rC6t2V3UMAAAAAAAD7ZKlw6J7Vf51z/t7RFsw5D1a/UX3eQj0BAAAAAADYo6XCoZtV\nf3Yc666ozlmoJwAAAAAAAHu0VDj0N9WtjmPdp7fz7CEAAAAAAAD2wVLh0Currx9j3P5oC8YYd63+\n1WotAAAAAAAA++Dsher85+q+1avHGD9VvWN1/m5jjJtXX1599ercDy/UEwAAAAAAgD1aJByac/7v\nMcaDqp+tHlcdWl16/Op4oPpA9bA55yVL9AQAAAAAAGDvlto51Jzz18cYv9POrePuWp3XTkj0zuqS\n6r/OOT1vCAAAAAAAYB8tFg5VzTnfWz1n9fFJxhifUV1zzvmGJfsCAAAAAABwfM5aosgY48oxxmOO\nY+m3Vxcv0RMAAAAAAIC9WyQcaueZQsc0xjhQ3a76lIV6AgAAAAAAsEcnfFu5McZ3VN+x69QTxxj/\n/hhvuXF1w+pNJ9oTAAAAYB0XXnxwrfdfdMF5C00CnCp+7uH04Gf11FrnmUOvqj6juuvq9U1WH0fz\nd9XrqgvX6AkAAAAAAMAaTjgcmnO+unp11RjjE9Vj55xPX2owAAAAAAAAlrfOzqHdHtoqKAIAAAAA\nAGBzLRIOzTmft0QdAAAAAAAATq6z9nsAAAAAAAAATh3hEAAAAAAAwBZZ6plDAAAAAABwRBdefPAY\nV8/dOVx29DUXXXDesgPBlrNzCAAAAAAAYIucUDg0xvi0McYNd72+1RjjBsuNBQAAAAAAwMlwojuH\n/qz6tl2v/7L6d+uPAwAAAAAAwMl0ouHQdarb73p9YIFZAAAAAAAAOMnOPsH3/Vn1LWOMO1fvXp17\nxBjjvsfx3kNzzi87wb4AAAAAAACs4UTDoW+r/mt1x9XrQ9XtVh9X59AJ9gQAAAAAAGBNJxQOzTlf\nOca4ZXVedd3qzdUPVD+74GzHNMa4Y/Wd1RdVn1a9v3pl9YNzzkt2rbtu9V3VN1a3Xq17WfWkOedl\np2peAAAAAACATXCiO4eacx6q/rpqjPEH1RvmnG9darBjGWPcvfq96m+q51Rvrz6j+vfVfcYY91oF\nWAeqF1ZfXv189X3tBEmPrV41xvj8OedfnIqZAQAAAAAANsEJh0O7zTm/ZPfrMca1qhtXn6jeO+f8\n+BJ9dvnJ6kD1hXPOt+zq++rqBdXjq69uZ7fQvaunzTm/c9e6l1avrZ5WPWDh2QAAAAAAADbWIuFQ\n1Rjj2tV/qP5VNaqzVpc+PsZ4ffVz1U+tdhyt0+es6nnV3+4OhlZ+d3W81er4kNXxWbsXzTkvHWO8\nsrrvGONGc86/WWcmAAAAAACA08Ui4dAY4/rV71d3bmdHz5XVe9sJiM6p7rK69lVjjPvNOa880V5z\nzk9UTz/K5X++Or5hdfz86u1zziuOsPaS6gurO7XzDCIAAAAAAIAz3lI7h/5DOwHQb1U/VF065/xY\n/f0t5u5afU/1ldW3VRct1Lcxxo2qG1RfVP1I9ZfVU8YY51Q3qeZR3vq21fG2ncRw6PLLLz/szLkb\nUWvpembbjHpmW6reJs+2Xj2zLVVvk2dbr57Zlqq3ybOtV89sS9Xb5NnWq2e2zahntv2vdaR6d1mr\n2pHmO73t3+ez9PccrMf31Kng534z+H3g6mz398j5559/SvstFQ59XfW/55xfc/iFOedHq1eMMe7T\nznN+HtyC4VA7O5SqDlU/X33nnPPdY4xPW53/0FHe98HV8ZwFZwEAAAAAgK3wrMtOPNB55O3ft+Ak\n7NVS4dBtu5rAZ875iTHGS6uHLdTzKl9SXb/63HZ2JX3pGOOB1TsW7nNCPintu+zgRtRaup7ZNqOe\n2Raqt8mzrVnPbAvV2+TZ1qxntoXqbfJsa9Yz20L1Nnm2NeuZbTPqmW3/ax2x3ppO9X9NerJc9V/1\n7tvns2G/r2yvff9Z2CZ+7jeD34cz0xn8b68z3VLh0IF2du5cnY8s2LOqOefLV7+8eIzxy9Wl1X/p\nH3bsX/8ob73B6vj+JecBAAAAAADYZGctVOct1T2PY9092nkm0Ekx53xL9dLq/OpTq3dVtzjK8luv\njqf3jQgBAAAAAAD2YKlw6AXV3cYYzx1jfFIYM8a45RjjudUXVb+5TqMxxmeMMd4+xvi5oyy50ep4\ndvXK6hZjjFsdYd0XVx9uZ6cRAAAAAADAVlgqHPrh6k3VQ6u3jjHeOsZ4zRjjtWOMt7Wzs+ih1Z+s\n1q7j8uo61QPHGLfZfWGMcbvqC9vZMXRZ9dzVpUcftu6e1Z2rX5tzfmDNeQAAAAAAAE4bizz/Z875\n/jHG3avvr765uuXq4yrvbieo+Y9zzg+u2evjY4wLq1+pLhljPKd6c3Wb6t9X162+fc55ZfWiMcbz\nq0eNMW5Yvayd28k9trqieuI6swAAAAAAAJxuFgmHaicgqh5ZPXK1g+dTqkPVwTnnos8ZmnP+2hjj\nrdXj2wmEblS9v3pN9fQ55+/sWv5N1ROqB1UPrt5bvbj67jnnO5ecCwAAAACucuHFB49x9dydw2VH\nX3PRBectOxCw9Y7959LV8+fSmWOxcGi3OedfVH9xMmrv6vGq6muOY91Hq6euPgAAAAAAALbaUs8c\nAgAAAAAA4DQgHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALXL2EkXGGA+pXjPn\n/LOrWffvqpvPOb9vib4AAAAAnHwXXnxwrfdfdMF5C00CsF38+cvJstTOoV+o7nMc6z6revRCPQEA\nAAAAANijE945NMa4VfXPdp263RjjHsd4y82q+1bXONGeAAAAAAAArGed28o9tHpydWj18fDVx7Ec\nqJ6/Rk8AAAAAAADWsE449EPVb1d3r55evbb602Os/8jq+s+t0RMAAAAAAIA1nHA4NOf8aHVJdckY\n4+nVr805n77YZAAAAAAAACxunZ1Df2/OedYSdQAAAAAAADi5FgmHrjLGuFH16dV123m+0BHNOf9w\nyb4AAADAibvw4oNrvf+iC87bQ71zdw6XHXnN4bWA08PSf46wGdb5fd3m31M/D5wOFgmHxhjnVr9Q\n3a9jhEIrh5bqCwAAAAAAwN4sFdI8rfrq6uPVn1bvaycEAgAAAAAAYIMsFQ7dt7qiutuc8x0L1QQA\nAAAAAGBhZy1U5ybVfxEMAQAAAAAAbLalwqG/qj64UC0AAAAAAABOkqXCoV+rvnaMcc2F6gEAAAAA\nAHASLBUOfV/19uqFY4zPWqgmAAAAAAAACzt7oTovXx3vUr1+jPHR6r1HWXtozvlPF+oLAAAAAADA\nHiwVDt3tsNfXrv7JUdYeWqgnAAAAAAAAe7RUOHSbheoAAAAAAABwEi0SDs0537pEHQAAAAAAAE6u\ns/Z7AAAAAAAAAE6dRXYOjTHesYflh+ac/3SJvgAAAAD75cKLD671/osuOG+hSQAA9mapZw79k4Xq\nAAAAAAAAcBItFQ7d5hjXPrW6c/Wo6hfnnD+wUE8AAAAAAAD2aJFwaM751mNcfmv16jHGf6v+eIxx\ncM75M0v0BQAAAAAAYG/OOlWN5pzvqv5b9chT1RMAAAAAAIB/7JSFQyvvqW57insCAAAAAACwcqrD\noXtXHzvFPQEAAAAAAFhZ5JlDY4zvvZolN6q+svrn1f9coicAAAAAbJMLLz641vsvuuC8hSY5+db5\nXE+nzxNgvywSDlVPqQ5VB65m3Turxy7UEwAAAAAAgD1aKhz6vmNcO1R9pHpz9T/mnB9cqCcAAAAA\nAAB7tEg4NOc8VjgEAAAAAADAhlhq59DfG2McqG5b3az6RPWuOedblu4DAAAAAADA3i0WDo0xPqX6\ngeobqhscdu3d1c9VT51zfmipngAAAAAAAOzNWUsUGWPcrHpV9W+rc6orqtdVr6/e0c4uosdVrxhj\nXG+JngAAAAAAAOzdUjuHntDOreSeXf3gnPOduy+OMW5ZPbn6N9Vjqu9fqC8AAABspQsvPnjC773o\ngvMWnOTkWufzrNPrc90mm/z963sOgG2wVDh0v+p355yPPNLFOefbq387xrh99fUJhwAAAAAAAPbF\nIreVq25ZXXIc6/6out1CPQEAAAAAANijpcKhK6vjeZbQWdWhhXoCAAAAAACwR0uFQ5dV9x5jHLXe\nGOMa1Ves1gIAAAAAALAPlgqHfr26Y/U/xhhfMMb4+2cZjTGuOcb44uol1edUv7JQTwAAAAAAAPbo\n7KtfclyeUf3L6t7Vl1dXjjHeVx2oblhdY/Xr362euVBPAAAAAAAA9miRcGjO+dExxpdXj6weUn1m\nddPV5Y9Xr6t+tvrpOecnlugJAAAAcCa58OKDa73/ogvOW6ze4bU22dJfNziVfP/CybMtfw+eqKV2\nDjXn/Hj19OrpY4xrVTepDlXvmXN+bKk+AAAAAAAAnLjFwqGqMca1qxvPOd9ZvXPX+TtWfz7n/PCS\n/QAAAAAAANibs5YqNMb4hnYCoW89wuWnVv93jPHApfoBAAAAAACwd4uEQ2OML6x+tbp29d4jLLlk\ndfzVMcaXLtETAAAAAACAvVtq59BTqv9Xfdac88cPvzjn/E/VZ1fvrp6wUE8AAAAAAAD2aKlw6K7V\nL80533y0BXPOt1W/sloLAAAAAADAPjh7oTpntbMr6Oq8t7rGEg3HGJ9SfW91/+pTq7+p/qj6j3PO\nSw9be93qu6pvrG5dvb96WfWkOedlS8wDAAAAAKeTCy8+eMLvveiC8xac5PSyztettvtrB2yOpXYO\nXV4d81lCY4yzqvtWR91ddLzGGOdVl1bfWv366vhT1ZdVfzTG+Nxdaw9UL6y+p3pF9W+qH67uVb1q\njHG7decBAAAAAAA4XSy1c+iXqh8ZY/xc9SNzzjdedWGMcc3qS6rHVHepvnuBft9f3aL62jnn83f1\nek3139vZJfT1q9PfWN27etqc8zt3rX1p9drqadUDFpgJAAAAAABg4y0VDj2znQDmX1ffMsb4WPW+\n6trVOas1B6qXVz+6QL93VL9aveCw879dHao+e9e5h6yOz9q9cM556RjjldV9xxg3mnP+zQJzAQAA\nAAAAbLRFbis357yy+pfVI6s/aSd0+pTqhtWV1R9Xj6q+Ys75sQX6PWXO+a/mnIcOu3ROOyHU+3ed\n+/zq7XPOK45Q6pLqmtWd1p0JAAAAAADgdLDUzqFWQc2zq2ePMa5V3az6RPXuJQKh4/Tw1fFXqsYY\n51Q3qeZR1r9tdbxt9bKTMdDll19+2JlzN6LW0vXMthn1zLZUvU2ebb16Zluq3ibPtl49sy1Vb5Nn\nW6+e2Zaqt8mzrVfPbJtRz2z7X+tI9e6yVrXT63M9U2f75HqbPNt69cy2VL1Nnm29emZbqt7Ssy1t\nk38fNtkmf49sTr3Ta7aT7/zzzz+l/RYLh3abc360nVu/nTJjjPtU31v9n+onVqevuqXdh47ytg8e\ntg4AAAAA4LT0rMvW+z/XH3n79y00ycm3zud6+Oe5TV83TsyZ+D1yUsKhU22M8ZDqZ6u3VPdbhVMb\n4ZPSvssObkStpeuZbTPqmW2heps825r1zLZQvU2ebc16Zluo3ibPtmY9sy1Ub5NnW7Oe2Tajntn2\nv9YR663ptPpcz9DZPqneJs+2Zj2zLVRvk2dbs57ZFqq3ybOtWc9sC9Xb5NnWrLfVs22ARZ45tJ/G\nGE+qnle9vvqiOef/3XX5qmcPXf8ob7/BYesAAAAAAADOaKd1ODTGeEb11Oq3qnvOOf9RfDfn/ED1\nruoWRylx69XxdLphJQAAAAAAwAk7bcOh1Y6h76h+vnrAnPNozxV6ZXWLMcatjnDti6sPV5eenCkB\nAAAAAAA2y2kZDo0xvqT6vuoF1b+dc155jOXPXR0ffViNe1Z3rn5ttcMIAAAAAADgjHf2fg9wgn5k\ndfy96gFjjCOtecmc80NzzheNMZ5fPWqMccPqZe3cTu6x1RXVE0/FwAAAAAAAAJvgdA2H7rQ6PucY\na25TvWX162+qnlA9qHpw9d7qxdV3zznfeZJmBAAAAAAA2DinZTg05zywx/UfrZ66+gAAAAAAANha\np+UzhwAAAAAAADgxwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAA\ngC0iHAIAAAAAANgiwiEAAAAAAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CJn7/cA6xhj\nXKv6/uqx1R/OOe91hDXXrb6r+sbq1tX7q5dVT5pzXnbqpgUAAAAAANh/p+3OoTHGqF5VPaI6cJQ1\nB6oXVt9TvaL6N9UPV/eqXjXGuN0pGRYAAAAAAGBDnJY7h8YYN64urS6v7lK96ShLv7G6d/W0Oed3\n7nr/S6vXVk+rHnBypwUAAAAAANgcp+vOoWtVv1jdbc45j7HuIavjs3afnHNeWr2yuu8Y40YnZ0QA\nAAAAAIDNc1ruHJpz/nU7t5O7Op9fvX3OecURrl1SfWF1p3aeQQQAAAAAAHDGOy3DoeMxxjinukl1\ntJ1Fb1sdb9tJDIcuv/zyw86cuxG1lq5nts2oZ7al6m3ybOvVM9tS9TZ5tvXqmW2peps823r1zLZU\nvU2ebb16ZtuMembb/1pHqneXtaqdXp/rmTrbJ9fb5NnWq2e2pept8mzr1TPbUvU2ebb16pltqXqb\nPNt69bZ7tk92/vnnr9Vjr07X28odj3NWxw8d5foHD1sHAAAAAABwxjtjdw5tik9K+y47uBG1lq5n\nts2oZ7aF6m3ybGvWM9tC9TZ5tjXrmW2heps825r1zLZQvU2ebc16ZtuMembb/1pHrLem0+pzPUNn\n+6R6mzzbmvXMtlC9TZ5tzXpmW6jeJs+2Zj2zLVRvk2dbs95Wz7YBzuSdQ+9fHa9/lOs3OGwdAAAA\nAADAGe+MDYfmnB+o3lXd4ihLbr06Xv3N/gAAAAAAAM4QZ2w4tPLK6hZjjFsd4doXVx+uLj21IwEA\nAAAAAOyfMz0ceu7q+OjdJ8cY96zuXP3aaocRAAAAAADAVjh7vwc4EWOMO1R3OOz0p4wxvm7X65fM\nOV80xnh+9agxxg2rl7VzO7nHVldUTzwlAwMAAAAAAGyI0zIcqr6+evJh5+5Q/cau17ep3lJ9U/WE\n6kHVg6v3Vi+uvnvO+c6TPikAAAAAAMAGOS3DoTnnU6qnHOfaj1ZPXX0AAAAAAABstTP9mUMAAAAA\nAADsIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC0iHAIAAAAAANgiwiEAAAAA\nAIAtIhwCAAAAAADYIsIhAAAAAACALSIcAgAAAAAA2CLCIQAAAAAAgC1y9n4PcCqMMW5SPbn6murm\n1f+rXlI9ac75f/dzNgAAAAAAgFPpjN85NMa4bvXy6hHVb1b/uvqp6huq/zXGuPG+DQcAAAAAAHCK\nbcPOoUdVd6y+fc7541edHGO8vnpB9aTqMfs0GwAAAAAAwCl1xu8cqh5SfbB67mHnX1hdUT1ojHHg\nlE8FAAAAAACwDw4cOnRov2c4acYYN6zeV71iznmPI1z/zeoB1e3mnG8+3rrve9/7ztwvGgAAAAAA\nsBHOPffck7K55UzfOXTr1fGKo1x/2+p421MwCwAAAAAAwL4708Ohc1bHDx3l+gcPWwcAAAAAAHBG\nO9PDIQAAAAAAAHY508Oh96+O1z/K9Rsctg4AAAAAAOCMdqaHQ39ZHapucZTrVz2T6PJTMw4AAAAA\nAMD+OnDo0KH9nuGkGmP8cXV+ddM550d2nb9G9Y7q7+act9qv+QAAAAAAAE6lM33nUNVzq+tVDzvs\n/IOq86qfPeUTAQAAAAAA7JNt2Dl0zeoV1Z2ri6rXVp9ZPaad28ndbc75of2bEAAAAAAA4NQ548Oh\nqjHGDaunVF9b3bw6WL2gevKc8z37OBoAAAAAAMAptRXhEAAAAAAAADu24ZlDAAAAAAAArAiHAAAA\nAAAAtohwCAAAAAAAYIsIhwAAAAAAALaIcAgAAAAAAGCLCIcAAAAAAAC2iHAIAAAAAABgi5y93wOc\njsYYN6meXH1NdfP+//buO07Oqlzg+C+UEEokdJQaRR+QC0ov0kRpCtIEQRSi6JWmgDcgRQQRUC9F\nFAGlCOEioCAiJXhpAkroKILIQwsSlKrUUIW9f5x39GWYDZubzG6Y9/f9fPgc9pwz75zd7LMz8z6n\nwJPAeOCgzHxkKMcmdVNEDAcOA8YC12bmeh36zA7sD2wHLAE8C1xFiY97Bm+0UndExALAN4AtgYWA\np4HfAd/KzNva+hoP6nkRsRywL7AW8C7K7/kE4IjMvLHWz3hQo0TEocBBwLjMHFOrnwnYC/gc8F7g\nJeA64JDMvHkIhipNVxFxOrDTFLrsnZnHVn19bVDPi4hNgP2AFYF/Ar8HDsvMq9r6GQ/qWRHRN4Bu\nozPzwaq/8aCeFxHLAgcA6wPzU+4vTQCOzMzf1fp1LR6G9fUNJDbVUv1j3AgsDfwQuIXyoW4s8ASw\nUmY+NXQjlLojIgI4C3gfMBdwTXtyKCKGAf8LfBQ4jfKH6l2U+JgFWDUz7x/EYUvTVUQsCNwKzAec\nCNxOiYmvUH7HP5SZv6/6Gg/qeRGxBnAF5U3s8cAkYBlgD2AEsF5mTjAe1DTVB73bgOG8OTl0CrAz\ncD7wK2BuYE9gEWD9zLx+0AcsTUe15NBulM/I7f6Qmff52qAmiIjPA6cC1wLjgJHA3pTf9Q0z8+qq\nn/GgnhYRn5xCz2mHKAAAEhJJREFU87cp74dGZ+Zk40FNEBErUCYav0LJMdwDLAbsDiwMbJGZF3U7\nHlw5NPX2ApYDds/ME1qVEXE78EvK7MCvDtHYpK6IiHkoNzjuBVYG7u6n63bABpQM9761x19JSaQe\nCWzV3dFKXXUYsCiwdWae36qMiJuBCygzObatqo0HNcGPgGGUxOiDrcqIuInyvuhrwOYYD2qQamXQ\nycCfgBXa2tagJIbOzcxta/XnUz4QHk+ZWS71gkvrrw0d+NqgnhYRCwM/oEyk2SgzX6/qLwKuBz4O\nXF11Nx7U0zLzvE71EbEFsBQwJjMnV9XGg5rg68AcwJaZeVmrsvpc8GfgUOAiuhwPnjk09XYEJlNm\nftT9CngY+EyV0ZN6yXDgDGD1zMwp9NuxKn9Qr6y22poAbBoRo7ozRGlQ/A04m3LTu+7XQB+wfK3O\neFBPq26AjwP27HDz7/KqXLwqjQc1ya7AGpTZfO1asfD9emVm/pXy2rJCtepIagJfG9TrdgLmpGwb\n+nqrMjMfyMyFMnOfWl/jQY0TESOB44DfZua4WpPxoCZ4T1X+tl6ZmXcDjwNLVlVdjQeTQ1MhIt5B\n2U7utsx8ud6WmX3ATcACwOghGJ7UNZn5WGbumpkvvUXXVYFJmflwh7YbgVlxNqzexjLzkMz8dPU3\nv24kZfXEs7U640E9LTNfz8xjMvPkDs1LV+Ufq9J4UCNExKKUrVHObD9LorIq8Brlc0O71hldq3Vp\neNKQiIgREdFp1xJfG9TrNgCeo6wSIiJmjojZ+ulrPKiJDqJsj7V7W73xoCb4c1W+r14ZEXMDo4A7\nq6quxoPJoamzRFV2+scAeKgq3z0IY5FmKNWMj3kxPtRMu1TlT8F4UDNFxKiIWDQitqOsqJ4IHGI8\nqGGOB16l/22mlwQez8xXO7QZC+o1u0fEROBF4OWIuCEiPga+V1JjLA3cD3wwIq4BXgZeiog7q/dL\ngPGgZqrO890dOCMz76jVGw9qisOBp4AzImKtiJg/IpajnCvUBxw0GPFgcmjqjKzKF/ppn9zWT2oS\n40ONFBGbAN8AbgVOrKqNBzXRU8Ak4CzKgZmrZOZEjAc1RHXQ8ieAfTLziX66jcRYUHNsBBxBOVfl\nQOC9wMXVTXFfG9QE81Jmf18CXAdsAXy5qjs7Inau+hkPaqJ9gRGUG+R1xoMaITPvpGxFPTNla7kn\nKDtvrEY5p+5qBiEeOi3tliRJAxAROwKnAA8Cm2XmK0M7ImlIfZiyr/4KwG7A+hGxDeWsLqmnVft8\nHwdcQ5ntJzXZ0ZQzGq+ubcc+PiIuBP5Qta8yVIOTBtFwyorRHTLzrFZlRFxC2U7oiIg4fWiGJg2d\niJiHckbjxZl531CPRxoKERHAeGA2YG/gbmBB4L+AiyJia+BP3R6HyaGp0zpLYs5+2udq6yc1ifGh\nRomIg4BDgVuAj2fm47Vm40GNU81sArgkIs4EbqOsIlq5qjce1MuOpMwQ36XDuXR1z2IsqMdV2wPd\n0aH+roi4mnIOywJVtfGgXvY85abfOfXKzJwYEb8BNgaWoUw0A+NBzfFpYA5gXIc2P0urKU4BFgGW\nqXbcACAizgXuo0w4W6aq7lo8uK3c1JlI2fNv0X7aW2cS3Ts4w5FmHJn5PGUJpPGhnhcRx1ISQxcC\n67YlhowHNV5mPghcSdlCaCGMB/WwiFgH2Bk4AXi+Ontr0Yho/c7PUX09D/AAsGBEDO9wKWNBTfBY\nVc6Brw3qfQ/S/3231ueHd/jZQQ20DeUMrkvbG4wHNUFEzAl8CLitnhgCyMwXgaspiaPF6XI8mBya\nCpk5mbL334oRMaLeFhEzA2sCkzLzoU6PlxpgArBoRCzeoW1tymG0tw3ukKTpq1oxtCdlFsdWmdnf\n3q/Gg3paRCwTEZMi4if9dBlVlbNgPKi3rQ8MA/ainLtV/w/KDZBJwPcosTATsHqH66xdldd1c7BS\nN0XEOyJih4jYuL8uVTkJXxvU+66nbC33/g5trRt6rUPGjQc1QkTMRbl/en11E7wT40G9bnbK54cR\n/bSPqJVdjQeTQ1PvVMospy+11X+Gsi/gKYM+ImnGcWpV7l2vjIh1gZWAc6pZINLbUkR8GPgm8Evg\nC5n52hS6Gw/qdfdS3qxuExGj6w0R8R7KTKgngHswHtTbzgI26+c/KKvoNqMkh06j7ETQHgvvrfr8\nJjPvH5xhS13xCnA8cHpEzF9viIiPUs4auikzH8bXBvW+06vy4IgY1qqMiOUpN/T+WJtcbDyoKZYH\nZgXunEIf40E9LTOfpHyeXj4i3jCBICLmpUw+e5YSJ12Nh2F9fVPaElvtImJW4LeUH/5xlLMmlgW+\nSvlHXX0Ks8ilt6XqD1X9j9W5wF3AwbW68Zn5QkT8AtgK+AlwFWVG1FhgMrBKZj46OKOWpr+IuBVY\nAdiDf28F0W5863XAeFCvi4jtgJ8Cf6fcDHwAGE2JkQWAz2fmaVVf40GNExF9wLjMHFOrO5ry2eEC\n4Hxg/urrkcCHMrPrB89K3RQRO1Fuik8EfgQ8Snn/tCvwErBeZv6h6utrg3paRPwA+DJwMfBzyu/4\n3pRzIjaqndloPKgRImIMZbLM2Mw8egr9jAf1tIjYjDLx+Bngh5RJlfNTdqoZTTnL9MdV367FwyzT\n8D00Uma+GhEbAocAW/PvG4SnAAebGFKP2pY3JoKgJIvOrX09mrKn8vbAfpTVdJ8FnqK8ET7QF2/1\ngBWr8vgp9GnFAhgP6nGZeU5E/AX4GuU90SjKDKebgWMy87Jad+NBKsZSbpp/CTgZeIGyr/jXM/Ou\nIRyXNF1k5riIeAjYHziAcojyo5TJBIdn5gO17r42qNftSZlYuQtwEuWcleuAQzLz5ra+xoOaYJ6q\nfO4t+hkP6mmZeVFErEX5LL0rJTaeoyxE2S0zf13r3rV4cOWQJEmSJEmSJElSg3jmkCRJkiRJkiRJ\nUoOYHJIkSZIkSZIkSWoQk0OSJEmSJEmSJEkNYnJIkiRJkiRJkiSpQUwOSZIkSZIkSZIkNYjJIUmS\nJEmSJEmSpAYxOSRJkiRJkiRJktQgJockSZIkSZIkSZIaxOSQJEmSJEmSJElSg5gckiRJkiRJkiRJ\nahCTQ5IkSZIkSZIkSQ0yy1APQJIkSZL+vyKiD/hLZi451GMZiIhYHLgJeAxYMzMnv0X/B4ElgNGZ\n+WC3xzdQEXEKMAbYLDMvHeLhSJIkSZpKJockSZIkDamIOAQ4eGoek5nDqv/dB3hmeo+pGyJiFuAX\nwEhgrbdKDM3gdgdWA86OiOUz86GhHpAkSZKkgTM5JEmSJGmoXQY831YXwBeAB4AT+3tgZh7VxXFN\nb/sBKwP7ZOZ9Qz2YaZGZL0fEzsANwKnABkM8JEmSJElTYVhfX99Qj0GSJEmS3iAiNgYuBa7JzPWG\neDjTLCIWBu4DngKWysyXB/i4B5kBt5VriYhzgU8Cm2bmJUM9HkmSJEkD48ohSZIkSW9b7WcORcSS\nwETgRmAj4GhgM2Au4HZgbGZOiIh1gUOBFYHXgcuBr2Tm39quPy9lxc/mwJLAi8CfgJOAMzJzoLPt\n9gDmBA5vTwxFxHDgQOCzwCKU84jOAw6awve9JrAvsDowXzWu24HjMvPntX73AksBq2TmLR2u8yng\nHOD8zNy6qhsD7AwsB8wBPA7cChyTmde0XeJ7lOTQvoDJIUmSJOltYqahHoAkSZIkdcn5lFU3xwG/\nBtYAxkfEpsCFwD3AMZSt67YG/qf+4IhYELiZcq7RQ8B3gHHA4sDpwAkDGUREDAN2rL78RYcuJwHf\nAIYBRwFnA2tXYxzW3jkiNgKuAT4CXEA5r+lsypZ1P4uI3Wrdx1XlmH6G96mqPKO69v7AacCiwCnA\nIcB4YB3giupn9y+ZOYGSjFunSsxJkiRJehswOSRJkiSpF60EPApsmJmHVatifg7MTUnQbJaZX8zM\ngymrbx4B1o+I+WvXOBZ4N/D1zNwgMw/OzD2B9wN3A7tExIcHMJZlgcWAhzPznnpDRCwP7ERZLbRy\nZh6YmV8DVgWeoSSi2h1A2QXic5m5S2YekZlfArat2g+uElJQkj6vA9tHxGxtzz0S2AR4kpIAAvgy\n8DKwUmaOra79n9XP6DXKOVDtLq3KTQbws5AkSZI0AzA5JEmSJKkXzQJ8q23bt+taZWZe26qstnm7\nofryPQARMTcl2fIYZcUQtf7PAYdXX+7IW1ulKq/t0PaJqjwzM/9ee44+4Jv9XG8ssCVwUVv9eOCf\nwILAQtV1HgKuAuatPVfL5sAI4JzMfLWqmwfoq67zL5mZwFyZuUWH8dxWlSv3M15JkiRJMxjPHJIk\nSZLUi14Gsq3uuaq8s0P/VtuIqlwZmBm4H1gsItr7t84mWnEAY3lnVU7q0LZsVd7eoe0OyllCs9cr\nM/NmynZ3RMQclDOHZq6anwbmr30fULbA+yhla7lza/WtlUb17fQuppwhNCEijgLGZ+bj1fO+IWFU\n0/pZvKufdkmSJEkzGJNDkiRJknrR022rhqCsiAH4R4f+rbbWdmwLVuWalDN1+rPQAMYyX1U+OYW2\np9obMvP1iHiKtuRQRMwHHEY5J2mBATz/+cCzwEYR8c7MfCQiRgEbAXdn5k21vmMo28dtQzl7iIi4\nk7JK6cTM7JTgan1f83dokyRJkjQDMjkkSZIkSW/WShbdDBwxhX6vDOBac1fl0x3aWsmo9kRWyxu2\nAo+I2YFrKCuO/ggcSVmR9FLV5TRgVP0xmfliRPwM+CLwmeoxWwDDeeOqITJzMrBdROxP2XZuY2Ad\nYH9gr4j4ZGaO541a39coJEmSJL0tmBySJEmSpDd7tCr7MvOCabzWs1U5d4e2fhMrETEz5ayguk9Q\nEkN3AKtn5ou1/jMBs/YzhtMpyaHtKMmhT1MSUmd26pyZE4FjgWMjYiSwJ/At4CRg0bbure/rmX6e\nW5IkSdIMZqa37iJJkiRJjfN74FXgAxHxpu3SImL2iFhkgNdqbbvWaQu4u6vyPzq0rURZ3VM3uiqv\nrCeGKmsDc3YaQGZOAO4BVoyIdYGPANdk5kP1fhGxWLVtXf2xz2XmYZSfySIRsSBv1Pq+nuj03JIk\nSZJmPCaHJEmSJKlNZj4DnAfMBhzSoct3gIcj4vMDuFxrFVKnZFJri7bPRsS/VhZVq4AO6tD/r1W5\nbL0yIkYD3+ff5ynN0+Gxp1flaZTPgme0XWNT4CHg+IgY1tY2DyUxNZk3b4/3zqp8pMNzSpIkSZoB\nua2cJEmSJHX2VWB1YPeI+ABwOSVZtAGwCnA9cM4ArnNLVa7T3pCZ10fEhZTt4m6OiHOq5/gI8AJl\n+7jlag+5hLISaYOIuIByJtLilO3iDgTWB7akbAd3Vmb+uPbYM4DDKEmeFyjJr7pLgSuATwEREZdR\nEkELU84oGgUckJnt5yytWJW3vvWPQpIkSdKMwJVDkiRJktRBZj5KSQIdCSwIHEBJGM0OHAxskJkv\nDOBSd1BW/CweEUt1aN++eo4RwH7ADsCNwKbAS21j+gclcXQ5ZRu5fSlb0o3JzB8C3wTuAlarHl9/\n7F8pyR+ACzLzubb214CPAWMpW+rtTDlnaAfK9ndbZ+a3O4x/46oc36FNkiRJ0gxoWF9f31CPQZIk\nSZJ6WkQcAewP7JeZ3x3CcRwD7E1JbF3xVv0HcL3VgBuA32Xm2tN6PUmSJEmDw5VDkiRJktR9x1G2\nctstIoYPxQAiYk5gJ+Ae4MrpdNm9q/K/p9P1JEmSJA0Ck0OSJEmS1GWZ+QjwXcr5QHsM0TC+B8wL\nHJWZ07yFRESsDGwLXJWZF03r9SRJkiQNHreVkyRJkqRBEBGzAtcDSwMfzMz7BuE5lwc+DmwIrAf8\nhrKl3GvTeN3hwC3AEsDymfmXaRyqJEmSpEHkyiFJkiRJGgSZ+SqwFfA8cF61zVu3LQscDnwQOBnY\nfFoTQ5UTgPcD25sYkiRJkt5+XDkkSZIkSZIkSZLUIK4ckiRJkiRJkiRJahCTQ5IkSZIkSZIkSQ1i\nckiSJEmSJEmSJKlBTA5JkiRJkiRJkiQ1iMkhSZIkSZIkSZKkBjE5JEmSJEmSJEmS1CAmhyRJkiRJ\nkiRJkhrE5JAkSZIkSZIkSVKDmBySJEmSJEmSJElqEJNDkiRJkiRJkiRJDWJySJIkSZIkSZIkqUFM\nDkmSJEmSJEmSJDWIySFJkiRJkiRJkqQG+T+yI0LPxtnl/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 835, + "height": 331 + } + } + } + ] + }, + { + "metadata": { + "id": "ulb46iQIIAxn", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "It is okay that our fictional dataset does not look like our observed dataset: the probability is incredibly small it indeed would. TFP's engine is designed to find good parameters, $\\lambda_i, \\tau$, that maximize this probability. \n", + "\n", + "\n", + "The ability to generate an artificial dataset is an interesting side effect of our modeling, and we will see that this ability is a very important method of Bayesian inference. We produce a few more datasets below:" + ] + }, + { + "metadata": { + "id": "vrLFYvVzIAxp", + "colab_type": "code", + "outputId": "1feb58e1-242f-433f-8cd4-035a588ae7ea", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 319 + } + }, + "cell_type": "code", + "source": [ + "def plot_artificial_sms_dataset(): \n", + " tau = tf.random_uniform(shape=[1], \n", + " minval=0, \n", + " maxval=80,\n", + " dtype=tf.int32)[0]\n", + " alpha = 1./8.\n", + " lambdas = tfd.Gamma(concentration=1/alpha, rate=0.3).sample(sample_shape=[2]) \n", + " [ lambda_1_, lambda_2_ ] = evaluate( lambdas )\n", + " data = tf.concat([tfd.Poisson(rate=lambda_1_).sample(sample_shape=tau),\n", + " tfd.Poisson(rate=lambda_2_).sample(sample_shape= (80 - tau))], axis=0)\n", + " days_range = tf.range(80)\n", + " \n", + " [ \n", + " tau_,\n", + " data_,\n", + " days_range_,\n", + " ] = evaluate([ \n", + " tau,\n", + " data,\n", + " days_range,\n", + " ])\n", + " \n", + " plt.bar(days_range_, data_, color=TFColor[3])\n", + " plt.bar(tau_ - 1, data_[tau_ - 1], color=\"r\", label=\"user behaviour changed\")\n", + " plt.xlim(0, 80);\n", + "\n", + "\n", + "plt.figure(figsize(12.5, 5))\n", + "plt.title(\"More example of artificial datasets\")\n", + "for i in range(4):\n", + " plt.subplot(4, 1, i+1)\n", + " plot_artificial_sms_dataset()\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmoAAAJdCAYAAAAydCjoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuQpVV5L+Df4HhBLo0oeAmKmsAy\n5dFzkIRoEkvLgnhyMCVeyhCPUZOcUx4kCFho1IRoiDF/UMkxEI0ppQArxlQlwRgumotIvOBhNCNq\nEn1n4qVgvIGJDBEFNfT5Y++uaZvuYWb27r325Xmqur6q9a397Xd377Uv/a53rS3Ly8sBAAAAAABg\n8g7qHQAAAAAAAMCikqgBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA\n6ESiBgAAAAAAoBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhka+8ARrV79+7l3jEAAAAAAADz\nbWlpactmXFdFDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHQiUQMAAAAAANCJRA0AAAAAAEAnEjUw\nZ3bu3JmdO3f2DgOmgvEAexgPsIfxAAPGAuxhPMAexgNMnkQNAAAAAABAJxI1AAAAAAAAnWztHcC8\nOOvqW0a6/cWnHj2mSAAAAAAAgFmhogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6kagBAAAAAADo\nZGvvAAAm6ayrbxnp9hefevSYIgEAAAAAUFEDAAAAAADQjUQNAAAAAABAJxI1AAAAAAAAnYy8R01r\n7bIkL9lLl3Or6s3DvgcneW2S05Mcm+T2JNcmOb+qdowaCwB7jLIfj714AAAAAGAyRk7UrPLyJLeu\n035jkrTWtiR5b5KTk1ya5LeSPCLJeUk+1lo7qao+P8Z4AAAAAAAApto4EzXvq6ov7eX86UlOSXJh\nVb16pbG19oEkn0hyYZLnjjEeAAAAAACAqTbJPWpePDxetLqxqrYnuT7Js1prR0wwHgAAAAAAgK7G\nnqhprT2gtbZepc5JSW6uql3rnLshyX2TPGnc8QAAAAAAAEyrcS59dmZr7flJHp3k7tbax5NcUFXX\ntNYOS3JkktrgtjcNj49Ncu04gtm5c+c4LrMflka69eTjZd55Tm1kkcbqgT/W2Xqc927eHg+MwniA\nPYwHGDAWYA/jAfYwHlhkxx133ETvb5yJmmcmeVOSLyd5YpJXJbmqtfbCJB8a9vn2Bre9Y3g8bIzx\nADAmF+0YLcH1iuN3jykS2H+evwAAAJtrlO9dvnPBeBI1v5fk3Umuq6q7hm3XtNb+OsmNw/M/Pob7\n2S+Tznhlxy0j3Xzi8TK3VmY7eE5tYJHG6giP9R6Pc0Z/b8YDSWb2+TtuxgPsYTzAgLEAexgPsMcB\njYdx/g8CFtDIiZqq+kySz6zT/i+tteuSnJLkqGHzIRtc5tDh8fZR44FxOevq0f6xd/GpR48pEgBg\nrVHep71HAwCw6Pb+eXpYHbOX5IvP1DBeB23y9b8+PD4wya1Jjtmg37HDo4UPAQAAAACAhTFSRU1r\n7fAkP5fk36rq/et1GR5vTnJ9kme31h5VVTet6ffUJN9Jsn2UeJg9qlYAYHzMigMA2JjPSgBMq1Er\nar6b5C1JLmutPWT1idbayRnsTbOtqnYluWR46tw1/Z6W5MQkf1ZV3xoxHgAAAAAAgJkxUkVNVd3Z\nWjs7yWVJtrXW3pbka0lOSHJGkt1JXjbse2Vr7Yok5wwrca7NYMmz85LsSvK6UWIBmDQVYQAAAADA\nqEbeo6aqLk/yjCT/mkGy5ZIkz0/yriRPqqobV3X/hSSvz2Cps0uTnJ3kqiQ/WVVfGzUWAAAAAACA\nWTJSRc2Kqvpgkg/uQ7/vJrlg+MOEmPXPpI3ynPN8A6bd0hFHjHT73bfdNqZIgEnxeRqgH98vAVgE\nI1fUAAAAAAAAcGDGUlEDsFnMYJ1PZsUB08R7DQAAAD2pqAEAAAAAAOhERQ37zUx4gPng9RwAAJh1\nvtcA80BFDQAAAAAAQCcqagCmhD0SYA+z4gAAAIBFoaIGAAAAAACgExU1U8pMYu7Nxs+RpcFhx8bP\nIc8RmIxFqpJapMcKAACwL3xPAvaVihoAAAAAAIBOVNQAZngAwBh5XwUAAGB/qKgBAAAAAADoREUN\nADNt7zPX7dkEAMwelXnTwd8BoI9Fev1dpMfK3knUMFe8uAEAzCaf4w7cKL+7Rf69AQDAtLD0GQAA\nAAAAQCcqagBgRphtPn/8TWHzjLI05maPLWMfgM3mvQZgtqioAQAAAAAA6ERFDQAAAEnMwD5Qfm/T\nwd8BAJhVKmoAAAAAAAA6UVEDAMC6RpmZbFYywHxStTId/B2mwzj/Dv6mwLTxujRZKmoAAAAAAAA6\nUVEDEyILDQDMG1VXAKzluy+zbJqfv9McGzA6FTUAAAAAAACdzG1Fzdoss6wxAAAAK8xMBgCYHNX4\ne6eiBgAAAAAAoJO5ragBgANhdi0AjI+ZkwBAbz6PMAtU1AAAAAAAAHSiogYAgE2nWg0YldcR2Dxm\nmwNAXypqAAAAAAAAOlnYihqzsQAAWDQ+A8Ni2njsLw0OOzZ+bdjscb8olRxefwGAvVFRAwAAAAAA\n0IlEDQAAAAAAQCcSNQAAAAAAAJ0s7B41AAAwCxZl/wYAYHr5PAKwuVTUAAAAAAAAdKKiBgAAAACY\niFGqcxIVOsB8UlEDAAAAAADQiYoaAAAAAACYcfaTml0qagAAAAAAADqRqAEAAAAAAOhEogYAAAAA\nAKATe9QAAAAAAAAzYZS9eJLp3I9HRQ0AAAAAAEAnEjUAAAAAAACdSNQAAAAAAAB0IlEDAAAAAADQ\nydbeAQAAAAAAwLSbx03smQ4qagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoA\nAAAAAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAA\nAAAAoBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAA\nAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAA\noBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6\nkagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAAoBOJ\nGgAAAAAAgE62TvoOW2tHJnl9ktOSPDzJN5Jck+T8qvrqpOMBAAAAAADoZaIVNa21g5Ncl+SMJH+Z\n5KVJ/jjJzyf5aGvtQZOMBwAAAAAAoKdJV9Sck+QJSc6sqreuNLbWPpXkPUnOT/LKCccEAAAAAADQ\nxZbl5eWJ3Vlr7bNJHpnkwVV116r2LUluSnL/JA+tqn0Oavfu3ZN7AAAAAAAAwEJaWlrashnXndjS\nZ621w5M8Lsn21UmaJBkmZrYlOSrJYyYVEwAAAAAAQE+T3KPm2OFx1wbnbxoeHzuBWAAAAAAAALqb\nZKLmsOHx2xucv2NNPwAAAAAAgLk2yUQNAAAAAAAAq0wyUXP78HjIBucPXdMPAAAAAABgrm2d4H19\nMclykmM2OL+yh83O/bno0tLSllGCAgAAAAAA6GXL8vLyxO6stXZjkuOSPLiq7lzVfp8kX0lyV1U9\namIBAQAAAAAAdDTpPWouSfLAJC9b0/6iJEcneceE4wEAAAAAAOhm0hU1903y4SQnJrk4ySeSPD7J\nKzNY8uzJVfXtiQUEAAAAAADQ0UQTNUnSWjs8yRuSPC/Jw5PckuQ9SV5fVf8+0WAAAAAAAAA6mnii\nBgAAAAAAgIFJ71EDAAAAAADAkEQNAAAAAABAJxI1AAAAAAAAnUjUAAAAAAAAdCJRAwAAAAAA0IlE\nDQAAAAAAQCcSNQAAAAAAAJ1s7R3AqFprRyZ5fZLTkjw8yTeSXJPk/Kr6as/YYDO11u6X5I1Jzkvy\noap6+jp9Dk7y2iSnJzk2ye1Jrs1gfOyYXLSwOVprRyX5zSTPSfLQJLcl+UiS366q7Wv6Gg/Mtdba\nE5K8OslPJ3lEBs/x65O8qapuWNXPWGDhtNYuSHJ+ksur6qWr2g9Kck6SX0pyXJI7k3w0yRuq6uMd\nQoWxaq1dluQle+lyblW9edjX+wNzr7X2s0lek+RJSb6f5JNJ3lhV167pZzwwt1pry/vQ7TFV9aVh\nf+OBudZae3yS1yV5RpKHZPC/peuTXFhVH1nVb1PHwpbl5X0Zm9Np+Mu5Icnjkvxhkk9k8AXrvCS3\nJjmxqr7ZL0LYHK21luRPkxyf5NAk/7A2UdNa25Lkb5KcnOTSDF44HpHB+Nia5KSq+vwEw4axaq0d\nneQfkzw4yR8l+VQGY+IVGTzHf6qqPjnsazww11prT0ny9xl8oHxLkpuT/GiSX03ygCRPr6rrjQUW\n0fCL1/Yk98s9EzXvSPIrSa5I8t4kS0nOTvJDSZ5RVR+beMAwRqsSNS/P4DvyWjdW1b96f2ARtNZ+\nOcklST6U5PIkhyU5N4Pn+s9U1XXDfsYDc6219vy9nP7dDD4PPaaq7jAemHettRMymPD73QzyCzuS\nPDLJmUkeluS0qrpyEmNh1itqzknyhCRnVtVbVxpba59K8p4MZs29slNssClaaw/K4J8NO5P8WJLP\nbdD19CSnZJD9ffWq238gg6TmhUmeu7nRwqZ6Y5Jjkjyvqq5YaWytfTzJX2Uwy+EFw2bjgXn3tiRb\nMkhQfmmlsbW2LYPPRL+W5NkxFlgww4qZtyf55yQnrDn3lAySNH9eVS9Y1X5FBl/Q3pLBjGuYB+9b\n/f6wDu8PzLXW2sOSXJTBxJZnVtXdw/Yrk3wsyalJrht2Nx6Ya1X1F+u1t9ZOS/IjSV5aVXcMm40H\n5t1vJHlgkudU1d+uNA6/E3w2yQVJrswExsKs71Hz4iR3ZDAjYrX3JtmV5EXDbBfMk/sleWeSJ1dV\n7aXfi4fHi1Y3DpeDuj7Js1prR2xOiDARX0ny7gz+Cb3a+5MsJ3niqjbjgbk1/Ef05UnOXuefcH83\nPD5qeDQWWDRnJHlKBjPd1loZD3+wurGqvpzBe8sJw2ocWATeH5h3L0lySAZLW9690lhVX6iqh1bV\nq1b1NR5YOK21w5JcnOTDVXX5qlPGA/Puh4fHD69urKrPJbklyaOHTZs+FmY2UdNaOzyDJc+2V9Vd\nq89V1XKSbUmOSvKYDuHBpqmqr1fVGVV15710PSnJzVW1a51zNyS5b8wSZYZV1Ruq6oXD1/zVDsug\nsuD2VW3GA3Orqu6uqt+vqrevc/pxw+Onh0djgYXRWjsmg+U7/mTt3gNDJyX5zwy+N6y1sq/TT2xS\neNBFa+0BrbX1Vtbw/sC8OyXJf2RQPZPW2n1aa/ffoK/xwCI6P4NlnM5c0248MO8+Ozwev7qxtbaU\n5Igk/zRs2vSxMLN71Aw3zP30tm3rfa8CAAAAAAAYn6WlpR9Ywau1dnaSNyf531X1jgO97sxW1GQw\nYxoAAAAAAKCHlT2dRspXzHKiBgAAAAAAYKbNcqLm9nvvAgAAAAAAsCkOHR5HylfMcqLmi0lmc4Md\nAAAAAABg1h07PO4c5SIzm6ipqjuSfLp3HAAAAAAAwEJ6apLvJNk+ykVmNlEzdEnvAGDa7Ny5Mzt3\njpTAhblhPMAexgPsYTzAgLEAexgPsIfxAPumtfa0JCcm+bOq+tYo19o6npC6eVuSi3oHAQAAAAAA\nzLfW2iVJrs1gybPzkuxK8rpRrzvTiZqq+t7u3bt7hwEAAAAAAGzgrKtvOeDbXnzq0WOMZGRPTfKL\nSb6Z5Kokv15VXxv1ojOdqAEAAAAAAJiEqjp+M64rUQMAADBBo8wmTKZuRiEAADCig3oHAAAAAAAA\nsKgkagAAAAAAADqx9BkAAADAGpYphM1hbAHck4oaAAAAAACATlTUAAAAAADAhKkwY4WKGgAAAAAA\ngE4kagAAAAAAADqx9BkAACwISysAAABMHxU1AAAAAAAAnaioAQAAulPtAwDTa5T3ae/RAPdOogYA\nAAAAgLkk0cgssPQZAAAAAABAJypqAAAAAGA/WbYTgHFRUQMAAAAAANCJihoAAACSmB3OvfMcAQAY\nP4kaAAAAgBkiYQabY9xja5HG6iiPdZYeJ9NhHseWpc8AAAAAAAA6UVEDAABjNI+zuwA2ixnYAAAS\nNQAALDiJFQAAAHqy9BkAAAAAAEAnKmoAAIC5s/dKqaXBYcf6fVRJ0ZtKP2bZNG3GbiwwTxbpvWGa\nH+s0x8ZsU1EDAAAAAADQiYoaAAAApp4ZrAD7zmsmwGwZOVHTWrssyUv20uXcqnrzsO/BSV6b5PQk\nxya5Pcm1Sc6vqh2jxgIAAAAsJv+YBgBm1Tgral6e5NZ12m9MktbaliTvTXJykkuT/FaSRyQ5L8nH\nWmsnVdXnxxgPAAAAAADAVBtnouZ9VfWlvZw/PckpSS6sqlevNLbWPpDkE0kuTPLcMcYDAABsIhs8\nc288RwAAZpNK1cma5B41Lx4eL1rdWFXbW2vXJ3lWa+2IqrptgjEBAAAAbCr/7AKmzd5fl5YGhx0b\n9/G6BON10Lgv2Fp7QGttvQTQSUlurqpd65y7Icl9kzxp3PEAAAAAAABMq3FW1JzZWnt+kkcnubu1\n9vEkF1TVNa21w5IcmaQ2uO1Nw+Njk1w7xpgAAADmmuXFuDcbP0fMmAYAmAbjTNQ8M8mbknw5yROT\nvCrJVa21Fyb50LDPtze47R3D42HjCmbnzp3juhTMJGMA9jAeYA/jYT1LI936nr/TcV9vnKbnsW7+\n722csY3bND/WRYptmi3S32E+Y7vn9aY5tnGbnsd6II9z/27j7zDpa61/vXGant/bPa83zbGNdj2x\njfN64zQ9j7XH7+24444b6T721zgSNb+X5N1Jrququ4Zt17TW/jrJjcPzPz6G+wEAAICxuGjHaF/w\nX3H87jFFAgDAohs5UVNVn0nymXXa/6W1dl2SU5IcNWw+ZIPLHDo83j5qPCsmnfGCabGSETYGwHiA\n1eZtPIx1qae9LPmzL+7xOx339cZpih7rpv/exhjb2DcBn+LHKrYDu57nSJ/rTXNs97jeNMc2blP0\nWPfncR7QZyV/h4lfa93rjdMU/d7ucb1pjm3E64ltfNeb1+9JM/U6coAO2uTrf314fGCSW5Mcs0G/\nY4fHWapFBwAAAAAAGMlIFTWttcOT/FySf6uq96/XZXi8Ocn1SZ7dWntUVd20pt9Tk3wnyfZR4gEA\ngHljo3gAGI+9v6cOl0Pcyyxt76sAbJZRlz77bpK3JLmztfZfquobKydaaydnsDfNtqra1Vq7JMmz\nk5w7/Fnp97QkJya5tKq+NWI8AAAAAMCCMKkFmAcjJWqq6s7W2tlJLkuyrbX2tiRfS3JCkjOS7E7y\nsmHfK1trVyQ5Z1iJc20GS56dl2RXkteNEgsAAAAAAMCsGbWiJlV1eWvtpiSvzSDZckgGyZp3Jfmd\nqvrCqu6/kOQ1SV6U5BeTfDPJVUl+vaq+NmosAAAAAOwfFQkA0NfIiZokqaoPJvngPvT7bpILhj8A\nAAAAAAAL7aDeAQAAAAAAACyqsVTUAAAAAAAHZpTl5xJL0AHMOhU1AAAAAAAAnUjUAAAAAAAAdCJR\nAwAAAAAA0IlEDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHQiUQMAAAAAANDJ1t4BwKI46+pbRrr9\nxacePaZIAAAAAACYFipqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAAoBOJGgAAAAAAgE4kagAAAAAA\nADqRqAEAAAAAAOhka+8AAJh+Z119y0i3v/jUo8cUCQAAAADMF4kagDk1SnJFYgUAAAAAJsPSZwAA\nAAAAAJ2oqAEARmZ5PAAAAIADo6IGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6GRr\n7wAAYBR738R+aXDYsXEfm9gDAAAA0JNEDQATt/fkyt5JrAAAAAAwTyx9BgAAAAAA0MnCVtSMMps7\nMaN7Wvm7cm88R2APlU3zZ5qXAlw64oiRbr/7ttvGFAkAAABMFxU1AAAAAAAAncxtRc3aGaVm/o6P\nGdhMkgoYAAAAAGCezW2iBth3406GSObBgETjfPJ3BQAAAMbJ0mcAAAAAAACdSNQAAAAAAAB0Yumz\nKWXpqP4sbQMwH6b59XyaYwMAAAAmQ0UNAAAAAABAJxI1AAAAAAAAnUjUAAAAAAAAdGKPGphRG+9r\nsDQ47Nh43wN7GoyHvSWYNM85AAAAgPkjUQMwJfwTfjr4OwAAAAAwSZY+AwAAAAAA6ERFDQAA6xql\nwkx1GQAAAOwbiRq6ssQQAAAAAACLzNJnAAAAAAAAnaioWQCqVgAAAAAAYDqpqAEAAAAAAOhERQ0A\nMHVsYg8AAAAsChU1AAAAAAAAnUjUAAAAAAAAdGLpszEZZYmWxDItAAAAAACwiFTUAAAAAAAAdCJR\nAwAAAAAA0IlEDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHQiUQMAAAAAANCJRA0AAAAAAEAnEjUA\nAAAAAACdSNQAAAAAAAB0IlEDAAAAAADQiUQNAAAAAABAJxI1AAAAAAAAnUjUAAAAAAAAdCJRAwAA\nAAAA0IlEDQAAAAAAQCcSNQAAAAAAAJ1I1AAAAAAAAHSyddJ32Fo7Msnrk5yW5OFJvpHkmiTnV9VX\nJx0PAAAAAABALxOtqGmtHZzkuiRnJPnLJC9N8sdJfj7JR1trD5pkPAAAAAAAAD1NuqLmnCRPSHJm\nVb11pbG19qkk70lyfpJXTjgmAAAAAACALrYsLy9P7M5aa59N8sgkD66qu1a1b0lyU5L7J3loVe1z\nULt3757cAwAAAAAAABbS0tLSls247sSWPmutHZ7kcUm2r07SJMkwMbMtyVFJHjOpmAAAAAAAAHqa\n5B41xw6PuzY4f9Pw+NgJxAIAAAAAANDdJBM1hw2P397g/B1r+gEAAAAAAMy1SSZqAAAAAAAAWGWS\niZrbh8dDNjh/6Jp+AAAAAAAAc23rBO/ri0mWkxyzwfmVPWx27s9Fl5aWtowSFAAAAAAAQC9blpeX\nJ3ZnrbUbkxyX5MFVdeeq9vsk+UqSu6rqURMLCAAAAAAAoKNJ71FzSZIHJnnZmvYXJTk6yTsmHA8A\nAAAAAEA3k66ouW+SDyc5McnFST6R5PFJXpnBkmdPrqpvTywgAAAAAACAjiaaqEmS1trhSd6Q5HlJ\nHp7kliTvSfL6qvr3iQYDAAAAAADQ0cQTNQAAAAAAAAxMeo8aAAAAAAAAhiRqAAAAAAAAOpGoAQAA\nAAAA6ESiBgAAAAAAoBOJGgAAAAAAgE4kagAAAAAAADrZ2juAUbXWjkzy+iSnJXl4km8kuSbJ+VX1\n1Z6xwWZqrd0vyRuTnJfkQ1X19HX6HJzktUlOT3JsktuTXJvB+NgxuWhhc7TWjkrym0mek+ShSW5L\n8pEkv11V29f0NR6Ya621JyR5dZKfTvKIDJ7j1yd5U1XdsKqfscDCaa1dkOT8JJdX1UtXtR+U5Jwk\nv5TkuCR3JvlokjdU1cc7hApj1Vq7LMlL9tLl3Kp687Cv9wfmXmvtZ5O8JsmTknw/ySeTvLGqrl3T\nz3hgbrXWlveh22Oq6kvD/sYDc6219vgkr0vyjCQPyeB/S9cnubCqPrKq36aOhS3Ly/syNqfT8Jdz\nQ5LHJfnDJJ/I4AvWeUluTXJiVX2zX4SwOVprLcmfJjk+yaFJ/mFtoqa1tiXJ3yQ5OcmlGbxwPCKD\n8bE1yUlV9fkJhg1j1Vo7Osk/Jnlwkj9K8qkMxsQrMniO/1RVfXLY13hgrrXWnpLk7zP4QPmWJDcn\n+dEkv5rkAUmeXlXXGwssouEXr+1J7pd7JmrekeRXklyR5L1JlpKcneSHkjyjqj428YBhjFYlal6e\nwXfktW6sqn/1/sAiaK39cpJLknwoyeVJDktybgbP9Z+pquuG/YwH5lpr7fl7Of27GXweekxV3WE8\nMO9aaydkMOH3uxnkF3YkeWSSM5M8LMlpVXXlJMbCrFfUnJPkCUnOrKq3rjS21j6V5D0ZzJp7ZafY\nYFO01h6UwT8bdib5sSSf26Dr6UlOySD7++pVt/9ABknNC5M8d3OjhU31xiTHJHleVV2x0tha+3iS\nv8pglsMLhs3GA/PubUm2ZJCg/NJKY2ttWwafiX4tybNjLLBghhUzb0/yz0lOWHPuKRkkaf68ql6w\nqv2KDL6gvSWDGdcwD963+v1hHd4fmGuttYcluSiDiS3PrKq7h+1XJvlYklOTXDfsbjww16rqL9Zr\nb62dluRHkry0qu4YNhsPzLvfSPLAJM+pqr9daRx+J/hskguSXJkJjIVZ36PmxUnuyGBGxGrvTbIr\nyYuG2S6YJ/dL8s4kT66q2ku/Fw+PF61uHC4HdX2SZ7XWjticEGEivpLk3Rn8E3q19ydZTvLEVW3G\nA3Nr+I/oy5Ocvc4/4f5ueHzU8GgssGjOSPKUDGa6rbUyHv5gdWNVfTmD95YThtU4sAi8PzDvXpLk\nkAyWtrx7pbGqvlBVD62qV63qazywcFprhyW5OMmHq+ryVaeMB+bdDw+PH17dWFWfS3JLkkcPmzZ9\nLMxsoqa1dngGS55tr6q7Vp+rquUk25IcleQxHcKDTVNVX6+qM6rqznvpelKSm6tq1zrnbkhy35gl\nygyrqjdU1QuHr/mrHZZBZcHtq9qMB+ZWVd1dVb9fVW9f5/TjhsdPD4/GAgujtXZMBst3/MnavQeG\nTkrynxl8b1hrZV+nn9ik8KCL1toDWmvrrazh/YF5d0qS/8igeiattfu01u6/QV/jgUV0fgbLOJ25\npt14YN59dng8fnVja20pyRFJ/mnYtOljYWYTNRls2JMMKmfWc9Pw+NgJxAJTZTgT4sgYHyym/zM8\nvisxHlg8rbUjWmvHtNZOz6DK+ItJ3mAssIDekuR72Xgp5EcnuaWqvrfOOeOBeXNma+2LSb6T5K7W\n2v9rrf2PxGclFsbjknw+yX+ImD8pAAAgAElEQVRrrf1DkruS3Nla+6fhZ6YkxgOLabj/65lJ3llV\nn1nVbjywCH4nyTeTvLO19tOttYe01p6QwT40y0nOn9RY2LK8vHYi8mxorf1kko9u27beBDgAAAAA\nAIDxWVpa+oGtVlpr/yuDfTFfWVX/90CvO8sVNQAAAAAAADNtlhM1t997FwAAAAAAgE1x6PA4Ur5i\nlhM1X8xgnTgAAAAAAIBJO3Z43DnKRbaOGkVr7bIkL9lLl3Or6s3DvgcneW2S0zN4ALcnuTbJ+VW1\nY3/ut6ruaK19Osl/PZC4AQAAAAAARvDUJN9Jsn2Ui4ycqFnl5UluXaf9xiRprW1J8t4kJye5NMlv\nJXlEkvOSfKy1dlJVfX4/7/OSJBcdcMQAAAAAAAD7qbX2tCQnJrm0qr41yrXGmah5X1V9aS/nT09y\nSpILq+rVK42ttQ8k+USSC5M8dz/v822RqIEfsHPnoMruuOOO6xwJ9Gc8wB7GA+xhPMCAsQB7GA+w\nh/EAG2utXZLBKmHHZlCEsivJ60a97iT3qHnx8PgDiZWq2p7k+iTPaq0dsT8XrKrvjSk2AAAAAACA\nvXlqBiuGnZ3kqiQ/WVVfG/Wi46yoSZK01h6Q5PtV9f01p05KcnNV7VrnZjck+akkT8ogGwUAMBZn\nXX3LSLe/+NSjxxQJAAAAMMuq6vjNuO44EzVnttaen+TRSe5urX08yQVVdU1r7bAkRyapDW570/D4\n2IwpUbNSogeLyhiAPYyHRbc00q3n7fkzb48HRmE8wICxAHsYD7CH8cAim/TSf+NM1DwzyZuSfDnJ\nE5O8KslVrbUXJvnQsM+3N7jtHcPjYWOMh6GLdoz2D6pXHL97TJEAAAAAAACrjSNR83tJ3p3kuqq6\na9h2TWvtr5PcODz/42O4n/1is6tVdoy25Ivf5Wyx4RvsYTyQxPvgkPEAexgPMGAswB7GA+xhPMDk\njZyoqarPJPnMOu3/0lq7LskpSY4aNh+ywWUOHR5vHzUeAAAAAACAWTHOpc/W8/Xh8YFJbk1yzAb9\njh0eLXwIMCajbKBu83QAAAAAmIyDRrlxa+3w1tr/bK399426DI83J7k+yTGttUet0++pSb6TZPso\n8QAAAAAAAMySkRI1Sb6b5C1JLmutPWT1idbayRnsTbOtqnYluWR46tw1/Z6W5MQkf1ZV3xoxHgAA\nAAAAgJkx0tJnVXVna+3sJJcl2dZae1uSryU5IckZSXYnedmw75WttSuSnNNaOzzJtRkseXZekl1J\nXjdKLAAAAAAAALNm5D1qqury1tpNSV6bQbLlkAySNe9K8jtV9YVV3X8hyWuSvCjJLyb5ZpKrkvx6\nVX1t1FgAYJ6Nsu9QYu8hAAAAgGk0cqImSarqg0k+uA/9vpvkguEPAAAAAADAQhtLogYOlNnhAAAA\nAAAssoN6BwAAAAAAALCoJGoAAAAAAAA6kagBAAAAAADoRKIGAAAAAACgk629AwAAgP111tW3HPBt\nLz716DFGAgAAAKNRUQMAAAAAANCJihqYkFFm/iabO/t3mmMDNo+KBNgc3leBUXkdAQBYLCpqAAAA\nAAAAOlFRA4zdOGfpm004HfwdgHnmNQ6gHxW+AAAqagAAAAAAALpRUQMAADDDVCQAAMBsU1EDAAAA\nAADQiUQNAAAAAABAJ5Y+AxaKDaNhcxhbAAAAAAdGRQ0AAAAAAEAnKmrYb9O8WakZ3bB49j7ulwaH\nHRv3Me6n0zS/10wz4wEAAABmj4oaAAAAAACATlTUADBxqiVg8ah6BQAAmB2+w02WihoAAAAAAIBO\n5raiZm3GTwYPGLdxzywwU2H++Jsy61S/AQAAwOZTUQMAAAAAANDJ3FbU3Bsz4QEAAH6Q7zUAABvz\nWYnNoqIGAAAAAACgE4kaAAAAAACAThZ26TOYdRuXWi4NDjs2LsVUZglw4JS6A8wHr+cAsBhGec/3\nfs+kqKgBAAAAAADoREUNAABMsaUjjjjg2+6+7bYxRgIAk2cmPACLQEUNAAAAAABAJypqAAA6sT8C\nAADML5/3mTRViLNLRQ0AAAAAAEAnKmoAAIC5s/fZhEuDw471+5hNCCwaM7APzCJVS4zzObJIv7dF\n4nUERqOiBgAAAAAAoBMVNVNKFhqgD7O7AID95fMDAACjUFEDAAAAAADQiUQNAAAAAABAJ5Y+AwAA\nurN01HyypDPAvvE+yL3xHIH5pqIGAAAAAACgExU1AAAAAMy9vVckLA0OOzbuoyJhOqneBOaBihoA\nAAAAAIBOVNQAAADAHNt4tvl8VRDYvwH2MB64NyrMYLqoqAEAAAAAAOhERQ1swOwTAIC9syY8LJ5F\n+p60SI8VgD6817BCRQ0AAAAAAEAnEjUAAAAAAACdSNQAAAAAAAB0IlEDAAAAAADQydbeAQAAAAAA\n9GZjd5gN8zhWVdQAAAAAAAB0oqIGAAAWxDzOPJsEvzdg2nhdAuaZ17j5NMrfdRH+pipqAAAAAAAA\nOlFRAwAAMEFmiQIAAKupqAEAAAAAAOhERQ0AAAAAY6FqEAD2n4oaAAAAAACATlTUAAAAAGwiVSYA\nwN6oqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6kagBAAAAAADoRKIGAAAAAACg\nk629AwAAAIB7c9bVt4x0+4tPPXpMkQAAwHipqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoA\nAAAAAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAA\nAAAAoBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAA\nAAA6kagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6ESiBgAAAAAA\noBOJGgAAAAAAgE4kagAAAAAAADqRqAEAAAAAAOhEogYAAAAAAKATiRoAAAAAAIBOJGoAAAAAAAA6\nkagBAAAAAADoRKIGAAAAAACgE4kaAAAAAACATiRqAAAAAAAAOpGoAQAAAAAA6GTrpO+wtXZkktcn\nOS3Jw5N8I8k1Sc6vqq9OOh4AAAAAAIBeJlpR01o7OMl1Sc5I8pdJXprkj5P8fJKPttYeNMl4AAAA\nAAAAepp0Rc05SZ6Q5MyqeutKY2vtU0nek+T8JK+ccEwAAAAAAABdbFleXp7YnbXWPpvkkUkeXFV3\nrWrfkuSmJPdP8tCq2uegdu/ePbkHAAAAAPz/9u4+2tpzvhP49yEi8vbES+KlKaKNH2NYEyqlGGpR\n7agRtCZVRWtmaaQaMaFo06Sq+oelo0mjOpISq8UabVRD6IuItxhBxEvxS5BMkiqhRUgktJ75477P\nyu5xzpPIOWffz9n781nrrGs9133tfa5nn/3b977v3/UCALCUdu7cuWMrnnduS59V1YFJ7pXkwtkk\nTZKMiZkLkhyc5LB59QkAAAAAAGBK89yj5m5jeeU6xy8fy3vMoS8AAAAAAACTm2ei5oCxvHad49es\nagcAAAAAALDQ5pmoAQAAAAAAYMY8EzVXj+V+6xzff1U7AAAAAACAhbbXHH/XpUl2JTl0neMre9hc\n8oM86c6dO3dspFMAAAAAAABT2bFr1665/bKquijJ4Ulu393XzdTfMskXk1zf3XedW4cAAAAAAAAm\nNO89as5Ism+SZ62qf2qSQ5KcPuf+AAAAAAAATGbeM2puleR9SR6Q5NQkH0lynyTPy7Dk2YO6+9q5\ndQgAAAAAAGBCc03UJElVHZjk5CRPSnLnJFcleUuSk7r7X+baGQAAAAAAgAnNPVEDAAAAAADAYN57\n1AAAAAAAADCSqAEAAAAAAJiIRA0AAAAAAMBEJGoAAAAAAAAmIlEDAAAAAAAwEYkaAAAAAACAiew1\ndQc2qqpul+SkJEcluXOSryY5J8mJ3f1PU/YNtlJV7Z3kpUlOSPLe7n7EGm1uk+RFSY5OcrckVyc5\nN0N8XDy/3sLWqKqDk/x2kickuWOSryd5f5Lf7e4LV7UVDyy0qrpvkhckeWiSu2R4j5+f5GXd/aGZ\ndmKBpVNVL0lyYpIzu/sZM/W3SPLcJL+c5PAk1yX5QJKTu/vDE3QVNlVVvS7J03fT5PjufuXY1vmB\nhVdVP5PkhUnun+Rfk3wsyUu7+9xV7cQDC6uqdt2EZod192Vje/HAQquq+yR5cZJHJrlDhntL5yd5\neXe/f6bdlsbCjl27bkps7pnGF+dDSe6V5I+SfCTDBdYJSb6S5AHd/bXpeghbo6oqyRuS3DPJ/kne\nszpRU1U7kvxNkkcleW2GD467ZIiPvZIc2d2fn2O3YVNV1SFJPprk9kn+OMnHM8TEr2d4jz+kuz82\nthUPLLSqenCSv8/whfK0JFckuXeSX0uyT5JHdPf5YoFlNF54XZhk73x/oub0JM9MclaStybZmeS4\nJD+U5JHd/cG5dxg20Uyi5tkZrpFXu6i7P+f8wDKoql9JckaS9yY5M8kBSY7P8F7/qe4+b2wnHlho\nVfVzuzn8+xm+Dx3W3deIBxZdVR2RYcDvdzLkFy5O8sNJjk1ypyRHdffZ84iF7T6j5rlJ7pvk2O5+\n1UplVX08yVsyjJp73kR9gy1RVbfNcLPhkiQ/luSz6zQ9OsmjM2R/XzDz+HdlSGq+PMkTt7a3sKVe\nmuTQJE/q7rNWKqvqw0n+KsMohyeP1eKBRffqJDsyJCgvW6msqgsyfCf6jSSPj1hgyYwzZl6T5B+S\nHLHq2IMzJGne3N1Pnqk/K8MF2mkZRlzDInjH7PlhDc4PLLSqulOSUzIMbHlMd39vrD87yQeTPDbJ\neWNz8cBC6+6/WKu+qo5K8qNJntHd14zV4oFF91tJ9k3yhO7+25XK8ZrgM0lekuTszCEWtvseNU9L\nck2GERGz3prkyiRPHbNdsEj2TvL6JA/q7t5Nu6eN5SmzleNyUOcn+dmqOmhrughz8cUkb8xwE3rW\nO5PsSnK/mTrxwMIab0SfmeS4NW7C/d1Y3nUsxQLL5pgkD84w0m21lXj4w9nK7v7HDOeWI8bZOLAM\nnB9YdE9Psl+GpS2/t1LZ3V/o7jt29/Nn2ooHlk5VHZDk1CTv6+4zZw6JBxbdj4zl+2Yru/uzSa5K\ncvexastjYdsmaqrqwAxLnl3Y3dfPHuvuXUkuSHJwksMm6B5sme7+cncf093X3UjTI5Nc0d1XrnHs\nQ0luFaNE2ca6++Tufsr4mT/rgAwzC66eqRMPLKzu/l53/0F3v2aNw/cay0+MpVhgaVTVoRmW7/iz\n1XsPjI5M8m8ZrhtWW9nX6ce3qHswiarap6rWWlnD+YFF9+gk38wweyZVdcuquvU6bcUDy+jEDMs4\nHbuqXjyw6D4zlvecrayqnUkOSvKpsWrLY2Hb7lEzbpj7iQsuWOu6CgAAAAAAYPPs3Lnz363gVVXH\nJXllkv/R3aff3OfdtjNqMoyYBgAAAAAAmMLKnk4bylds50QNAAAAAADAtradEzVX33gTAAAAAACA\nLbH/WG4oX7GdEzWXJtmeG+wAAAAAAADb3d3G8pKNPMm2TdR09zVJPjF1PwAAAAAAgKX0sCTfTnLh\nRp5k2yZqRmdM3QHY01xyySW55JINJXBhYYgHuIF4gBuIBxiIBbiBeIAbiAe4aarq4UkekORN3f2t\njTzXXpvTpcm8OskpU3cCAAAAAABYbFV1RpJzMyx5dkKSK5O8eKPPu61n1HT3d6fuAwAAAAAAsBQe\nluS1SY5L8rYkP9HdX9rok273GTUAALDQnvP2q272Y0997CGb2BMAAIDl1t333Irn3dYzagAAAAAA\nALYziRoAAAAAAICJSNQAAAAAAABMxB41AAAA7PE2sl9TYs8mAAD2XGbUAAAAAAAATESiBgAAAAAA\nYCISNQAAAAAAABORqAEAAAAAAJiIRA0AAAAAAMBEJGoAAAAAAAAmstfUHQAAYHM85+1X7ebozqG4\neP02pz72kM3tEAAAAHCjzKgBAAAAAACYyIZn1FTV65I8fTdNju/uV45tb5PkRUmOTnK3JFcnOTfJ\nid198Ub7AgAAAAAAsJ1s5tJnz07ylTXqL0qSqtqR5K1JHpXktUl+J8ldkpyQ5INVdWR3f34T+wMA\nAAAAALBH28xEzTu6+7LdHD86yaOTvLy7X7BSWVXvSvKRJC9P8sRN7A8AsBu7389k9+xlAgAAALA5\n5rlHzdPG8pTZyu6+MMn5SX62qg6aY38AAAAAAAAmtemJmqrap6rWmqlzZJIruvvKNY59KMmtktx/\ns/sDAAAAAACwp9rMpc+OraqfS3L3JN+rqg8neUl3n1NVByS5XZJe57GXj+U9kpy7GZ255JJLNuNp\nYNsSA3AD8bCenTf7kV7TPdXN/5sm/q57LrG6Vbw+243PuK3itYEbiAe4gXhgmR1++OFz/X2bmah5\nTJKXJfnHJPdL8vwkb6uqpyR579jm2nUee81YHrCJ/QHYVk65eGM3H379nt/YpJ4AAFtps8/5G3k+\n3x8AAGB6m5GoeUWSNyY5r7uvH+vOqaq/TnLRePyBm/B7fiDzznjBnmJltIMY2IYuvvkbuyf+5msR\nDzdiA+85r+keyufIYhKrm27y88Nmx+qyvEd8xm26yWMB9iDiAW4gHmD+Npyo6e5PJvnkGvWfrqrz\nkjw6ycFj9X7rPM3+Y3n1RvvD9vKct2/sYuvUxx6yST0BgJvGuQsAAADYTLfY4uf/8ljum+QrSQ5d\np93dxtLChwAAAAAAwNLY0IyaqjowyeOS/HN3v3OtJmN5RZLzkzy+qu7a3ZevavewJN9OcuFG+gPs\nGTYy2txIc6ZmtsTNs9mvm88Rboz3CAAAAItio0uffSfJaUmuq6r/2N1fXTlQVY/KsDfNBd19ZVWd\nkeTxSY4ff1baPTzJA5K8tru/tcH+AABsGxKDAAAAwIYSNd19XVUdl+R1SS6oqlcn+VKSI5Ick+Qb\nSZ41tj27qs5K8txxJs65GZY8OyHJlUlevJG+AAAAAAAAbDcbnVGT7j6zqi5P8qIMyZb9MiRr/jzJ\n73X3F2aa/0KSFyZ5apJfSvK1JG9L8pvd/aWN9gVgnpZpJPwy/V8BgM1jmUIAALhxG07UJEl3vzvJ\nu29Cu+8kecn4AwAAAAAAsNQ2JVGzHRkdDgAAe449+fv5ntw3AABg+7vF1B0AAAAAAABYVks7o2aZ\nGAG4mNb/u+4ciovX/7v7m8L25PMctobYWky7/7vu/vuSvykAADBPZtQAAAAAAABMxIyaTWIkJgAA\nezrfWQEAAPY8ZtQAAAAAAABMxIwaAAAAlo4ZZgAA7CnMqAEAAAAAAJiIGTWA0YTAQvMZd/Nt5LVb\n5tcNWD7ONQAAbIQZNQAAAAAAABMxo2YPZQQrAMD2ZGQ9sFE7DzpoQ4//xte/vkk9AQBgHhY2UbP6\nAtkFL2xPm32za5lunkn4Tm+Z3m9wY8QDAAAArM3SZwAAAAAAABNZ2Bk1sFFmcsDWMdsHAABgObk/\nAvD9zKgBAAAAAACYiEQNAAAAAADARCRqAAAAAAAAJmKPGn5ge/LeEtY5BQCAm8/3aQAAmD8zagAA\nAAAAACYiUQMAAAAAADARiRoAAAAAAICJ2KMGgG1t92vp7xyKi9dvYy19AAAAAKZkRg0AAAAAAMBE\nJGoAAAAAAAAmIlEDAAAAAAAwEXvUAAAAADfJ7vcHvHH2BwQANmoRv49I1AAAAACwKRbx5hkAbDVL\nnwEAAAAAAEzEjBoAAOBm2cioaSOmAbgpnGuYJzPCgKmYUQMAAAAAADARiRoAAAAAAICJSNQAAAAA\nAABMxB41AAAAACy83e8/snMoLl6/jf1HAG4+e47tnhk1AAAAAAAAEzGjBgAAAGCJGeUM7Ek28pmU\n+FxiezKjBgAAAAAAYCJm1AAAAACTMJMDgO3EbB+2ihk1AAAAAAAAEzGjBgAAAGCVzRw1bQQ2ALA7\nZtQAAAAAAABMxIwaAAAAAGBd9pMC2FoSNQAAAAAwIcvjMW+7f8/tHIqL12/jPQeby9JnAAAAAAAA\nEzGjBgAAAAAWyDLN0LEsG9xAPGxfZtQAAAAAAABMxIwaAAAAWGDrj661B8F2tUyzJfZk/g5wAzM5\nFo/PuPkyowYAAAAAAGAiZtQAAAAAAGyyzZyRYHYDLDYzagAAAAAAACZiRg0AAAAAAAtpT94/x0wp\nVphRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACY\nyF5TdwAAAABgo57z9qs29PhTH3vIJvUEAOAHY0YNAAAAAADARCRqAAAAAAAAJiJRAwAAAAAAMBGJ\nGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACYiEQNAAAAAADARCRq\nAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagB\nAAAAAACYiEQNAAAAAADARCRqAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYA\nAAAAAGAie837F1bV7ZKclOSoJHdO8tUk5yQ5sbv/ad79AQAAAAAAmMpcZ9RU1W2SnJfkmCR/meQZ\nSf4kyX9L8oGquu08+wMAAAAAADClec+oeW6S+yY5trtftVJZVR9P8pYkJyZ53pz7BAAAAAAAMIkd\nu3btmtsvq6rPJPnhJLfv7utn6nckuTzJrZPcsbtvcqe+8Y1vzO8/AAAAAAAALKWdO3fu2IrnndvS\nZ1V1YJJ7JblwNkmTJGNi5oIkByc5bF59AgAAAAAAmNI896i521heuc7xy8fyHnPoCwAAAAAAwOTm\nmag5YCyvXef4NavaAQAAAAAALLR5JmoAAAAAAACYMc9EzdVjud86x/df1Q4AAAAAAGCh7TXH33Vp\nkl1JDl3n+MoeNpf8IE+6c+fOHRvpFAAAAAAAwFR27Nq1a26/rKouSnJ4ktt393Uz9bdM8sUk13f3\nXefWIQAAAAAAgAnNe4+aM5Lsm+RZq+qfmuSQJKfPuT8AAAAAAACTmfeMmlsleV+SByQ5NclHktwn\nyfMyLHn2oO6+dm4dAgAAAAAAmNBcEzVJUlUHJjk5yZOS3DnJVUnekuSk7v6XuXYGAAAAAABgQnNP\n1AAAAAAAADCY9x41AAAAAAAAjCRqAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExE\nogYAAAAAAGAie03dgY2qqtslOSnJUUnunOSrSc5JcmJ3/9OUfYOtVFV7J3lpkhOSvLe7H7FGm9sk\neVGSo5PcLcnVSc7NEB8Xz6+3sDWq6uAkv53kCUnumOTrSd6f5He7+8JVbcUDC62q7pvkBUkemuQu\nGd7j5yd5WXd/aKadWGDpVNVLkpyY5MzufsZM/S2SPDfJLyc5PMl1ST6Q5OTu/vAEXYVNVVWvS/L0\n3TQ5vrtfObZ1fmDhVdXPJHlhkvsn+dckH0vy0u4+d1U78cDCqqpdN6HZYd192dhePLDQquo+SV6c\n5JFJ7pDh3tL5SV7e3e+fabelsbBj166bEpt7pvHF+VCSeyX5oyQfyXCBdUKSryR5QHd/bboewtao\nqkryhiT3TLJ/kvesTtRU1Y4kf5PkUUlem+GD4y4Z4mOvJEd29+fn2G3YVFV1SJKPJrl9kj9O8vEM\nMfHrGd7jD+nuj41txQMLraoenOTvM3yhPC3JFUnuneTXkuyT5BHdfb5YYBmNF14XJtk735+oOT3J\nM5OcleStSXYmOS7JDyV5ZHd/cO4dhk00k6h5doZr5NUu6u7POT+wDKrqV5KckeS9Sc5MckCS4zO8\n13+qu88b24kHFlpV/dxuDv9+hu9Dh3X3NeKBRVdVR2QY8PudDPmFi5P8cJJjk9wpyVHdffY8YmG7\nz6h5bpL7Jjm2u1+1UllVH0/ylgyj5p43Ud9gS1TVbTPcbLgkyY8l+ew6TY9O8ugM2d8XzDz+XRmS\nmi9P8sSt7S1sqZcmOTTJk7r7rJXKqvpwkr/KMMrhyWO1eGDRvTrJjgwJystWKqvqggzfiX4jyeMj\nFlgy44yZ1yT5hyRHrDr24AxJmjd395Nn6s/KcIF2WoYR17AI3jF7fliD8wMLrarulOSUDANbHtPd\n3xvrz07ywSSPTXLe2Fw8sNC6+y/Wqq+qo5L8aJJndPc1Y7V4YNH9VpJ9kzyhu/92pXK8JvhMkpck\nOTtziIXtvkfN05Jck2FExKy3JrkyyVPHbBcskr2TvD7Jg7q7d9PuaWN5ymzluBzU+Ul+tqoO2pou\nwlx8MckbM9yEnvXOJLuS3G+mTjywsMYb0WcmOW6Nm3B/N5Z3HUuxwLI5JsmDM4x0W20lHv5wtrK7\n/zHDueWIcTYOLAPnBxbd05Psl2Fpy++tVHb3F7r7jt39/Jm24oGlU1UHJDk1yfu6+8yZQ+KBRfcj\nY/m+2cru/mySq5Lcfaza8ljYtomaqjoww5JnF3b39bPHuntXkguSHJzksAm6B1umu7/c3cd093U3\n0vTIJFd095VrHPtQklvFKFG2se4+ubufMn7mzzogw8yCq2fqxAMLq7u/191/0N2vWePwvcbyE2Mp\nFlgaVXVohuU7/mz13gOjI5P8W4brhtVW9nX68S3qHkyiqvapqrVW1nB+YNE9Osk3M8yeSVXdsqpu\nvU5b8cAyOjHDMk7HrqoXDyy6z4zlPWcrq2pnkoOSfGqs2vJY2LaJmgwb9iTDzJm1XD6W95hDX2CP\nMo6EuF3EB8vpV8fyzxPxwPKpqoOq6tCqOjrDLONLk5wsFlhCpyX5btZfCvnuSa7q7u+ucUw8sGiO\nrapLk3w7yfVV9X+r6r8kviuxNO6V5PNJ/lNVvSfJ9Umuq6pPjd+ZkogHltO4/+uxSV7f3Z+cqRcP\nLIPfS/K1JK+vqodW1dNjtEcAAAaiSURBVB2q6r4Z9qHZleTEecXCdk7UHDCW165z/JpV7WCZiA+W\nUlX9TJLfTvLRJH88VosHls3XklyR5A0ZNjt8YHdfGrHAEhk3yf2vSZ7f3WttoJ4M73XxwLJ4TJKX\nZdiH4zeTHJ7kbeMNaucHlsHtMoyMfnuSDyQ5Kslzxro3VtUzx3bigWX0giT7ZLhhPUs8sPC6+1MZ\nlkq+ZYblz76SYUWKH8+wp9l5mVMsrDXlGQC2nap6WpLTk1yW5HHd/Z1pewST+ckMa7AfkeTZSR5Z\nVT+fYV8nWHjj2tCnJnlPhpFwsMxekWFPv/Nmlgw/p6r+OslF4/EHTtU5mKO9M8yk/MXufsNKZVW9\nPcOyNy+rqtdN0zWYTlXdNsOefm/r7s9N3R+Yt6qqJOckuXWS45N8NskhSf5nkrOr6klJ/mEefdnO\niZqVvQf2W+f4/qvawTIRHyyVqjoxyUuSfCTJY7v7qpnD4oGlMo74SZK3V9WfJbkww+yaHxvrxQKL\n7uUZRk7/6hr7mM26OuKBBTcuYfPJNeo/XVXnZdi34+CxWjywyL6V4Sbcm2Yru/vSqnp3kp9Ocu8M\ng74S8cDyeEqSfZOcucYx19Isg9OT/FCSe48rUSRJqurNST6XYeDXvcfqLY2F7bz02aUZ1ok7dJ3j\nK3vYXDKf7sCeo7u/lWGqnvhg4VXVKzMkaf46ycNXJWnEA0utuy9L8q4MS9zcMWKBBVdV/znJM5O8\nKsm3xv2aDq2qlff9vuO/b5vkC0kOqaq913gq8cAy+PJY7hvnBxbfZVn/HtjK9cOBrh1YQj+fYc+m\nd6w+IB5YdFW1X5KHJLlwNkmTJN397STnZUji3DVziIVtm6jp7msyrBd3/6raZ/ZYVd0yyU8kuaK7\nL1/r8bAEzk9yaFXddY1jD8uwkeiF8+0SbK5xJs1xGUY4PLG711svVDywsKrq3lV1RVX96TpNDhrL\nvSIWWHyPTLIjyXMz7NU0+5MMNyOuSPK/MsTDLZI8aI3nedhYfmArOwtbqaoOrKpfrKqfXq/JWF4R\n5wcW3wczLH/2H9Y4tnKDbWWTaPHAUqiq/TPcP/3geFN6LeKBRXabDNcO+6xzfJ+ZcstjYdsmakZn\nZBj986xV9U/NsJbc6XPvEew5zhjL42crq+rhSR6Q5E3j6AjYlqrqJ5P8TpK3JPnv3f1vu2kuHlhk\nl2T44vjzVXXY7IGq+pEMI4S+kuTiiAUW3xuSPG6dn2SYYfa4DIma12aYob86Hg4f27y7uz8/n27D\nlvhOktOSvK6q7jB7oKoelWFvmgu6+8o4P7D4XjeWJ1XVjpXKqrpfhhtsn5gZ6CseWBb3S3KrJJ/a\nTRvxwMLq7q9muJ6+X1X9u0R+Vd0uwyCwqzPEyJbHwo5du3a3bPOerapuleR9GV6MUzPsTXCfJM/L\n8CI/aDejq2FbGj84Zj883pzk00lOmqk7p7uvraq/TPLEJH+a5NwMI4VOSHJNkgd295fm02vYfFX1\n0Qybpf9abliuYLVzVs4D4oFFVlVHJ/nzJP+c4abcF5IcliE+Dk7yK9392rGtWGApVdWuJGd29zNm\n6l6R4drhr5KcleQO478PSPKQ7p7LxqGwVarq6RluUF+a5NVJvpTh+9MxSa5L8ojuvmhs6/zAQquq\nU5I8J8nbkvyfDO/x4zPsLfCYmX3+xANLoaqekWHgygnd/YrdtBMPLKyqelyGAcDfSPJHGQY43iHD\n6i2HZdj38k/GtlsaC3tt5MFT6+7vVtVPJTk5yZNyw82605OcJEnDgnpy/n1SJhkSN2+e+fdhGdbg\n/YUkL8wwy+yXknwtw5fS33QiZQHcfyxP202blVhIxAMLrLvfVFX/L8lvZPg+dFCGkT8fTvIH3f23\nM83FAtzghAw3sJ+V5DVJrs2wFvVvdfenJ+wXbIruPrOqLk/yoiQvzrAJ7pcyJPd/r7u/MNPc+YFF\nd1yGQY6/muR/Z9iX4wNJTu7uD69qKx5YBrcdy2/eSDvxwMLq7rOr6qEZrqWPyRAX38wwIeTZ3f3O\nmeZbGgvbekYNAAAAAADAdrbd96gBAAAAAADYtiRqAAAAAAAAJiJRAwAAAAAAMBGJGgAAAAAAgIlI\n1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACYiEQNAAAAAADARCRqAAAAAAAAJiJR\nAwAAAAAAMBGJGgAAAAAAgIlI1AAAAAAAAExEogYAAAAAAGAiEjUAAAAAAAATkagBAAAAAACYiEQN\nAAAAAADARP4/9OuGu0mbRRQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 821, + "height": 302 + } + } + } + ] + }, + { + "metadata": { + "id": "V8QMiJXOIAxv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Later we will see how we use this to make predictions and test the appropriateness of our models." + ] + }, + { + "metadata": { + "id": "2lU8C4C-IAxw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Example: Bayesian A/B testing\n", + "\n", + "A/B testing is a statistical design pattern for determining the difference of effectiveness between two different treatments. For example, a pharmaceutical company is interested in the effectiveness of drug A vs drug B. The company will test drug A on some fraction of their trials, and drug B on the other fraction (this fraction is often 1/2, but we will relax this assumption). After performing enough trials, the in-house statisticians sift through the data to determine which drug yielded better results. \n", + "\n", + "Similarly, front-end web developers are interested in which design of their website yields more sales or some other metric of interest. They will route some fraction of visitors to site A, and the other fraction to site B, and record if the visit yielded a sale or not. The data is recorded (in real-time), and analyzed afterwards. \n", + "\n", + "Often, the post-experiment analysis is done using something called a hypothesis test like *difference of means test* or *difference of proportions test*. This involves often misunderstood quantities like a \"Z-score\" and even more confusing \"p-values\" (please don't ask). If you have taken a statistics course, you have probably been taught this technique (though not necessarily *learned* this technique). And if you were like me, you may have felt uncomfortable with their derivation -- good: the Bayesian approach to this problem is much more natural. \n" + ] + }, + { + "metadata": { + "id": "AFcmkQEyDgyK", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### A Simple Case\n", + "\n", + "As this is a hacker book, we'll continue with the web-dev example. For the moment, we will focus on the analysis of site A only. Assume that there is some true $0 \\lt p_A \\lt 1$ probability that users who, upon shown site A, eventually purchase from the site. This is the true effectiveness of site A. Currently, this quantity is unknown to us. \n", + "\n", + "Suppose site A was shown to $N$ people, and $n$ people purchased from the site. One might conclude hastily that $p_A = \\frac{n}{N}$. Unfortunately, the *observed frequency* $\\frac{n}{N}$ does not necessarily equal $p_A$ -- there is a difference between the *observed frequency* and the *true frequency* of an event. The true frequency can be interpreted as the probability of an event occurring. For example, the true frequency of rolling a 1 on a 6-sided die is $\\frac{1}{6}$. Knowing the true frequency of events like:\n", + "\n", + "- fraction of users who make purchases, \n", + "- frequency of social attributes, \n", + "- percent of internet users with cats etc. \n", + "\n", + "are common requests we ask of Nature. Unfortunately, often Nature hides the true frequency from us and we must *infer* it from observed data.\n", + "\n", + "The *observed frequency* is then the frequency we observe: say rolling the die 100 times you may observe 20 rolls of 1. The observed frequency, 0.2, differs from the true frequency, $\\frac{1}{6}$. We can use Bayesian statistics to infer probable values of the true frequency using an appropriate prior and observed data.\n", + "\n", + "\n", + "With respect to our A/B example, we are interested in using what we know, $N$ (the total trials administered) and $n$ (the number of conversions), to estimate what $p_A$, the true frequency of buyers, might be. \n", + "\n", + "To setup a Bayesian model, we need to assign prior distributions to our unknown quantities. *A priori*, what do we think $p_A$ might be? For this example, we have no strong conviction about $p_A$, so for now, let's assume $p_A$ is uniform over $[0,1]$:" + ] + }, + { + "metadata": { + "id": "blTLKyo2IAxy", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "reset_sess()\n", + "\n", + "# The parameters are the bounds of the Uniform.\n", + "p = tfd.Uniform(low=0., high=1., name='p')\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "f0XLF9h3IAx2", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Had we had stronger beliefs, we could have expressed them in the prior above.\n", + "\n", + "For this example, consider $p_A = 0.05$, and $N = 1500$ users shown site A, and we will simulate whether the user made a purchase or not. To simulate this from $N$ trials, we will use a *Bernoulli* distribution: if $X\\ \\sim \\text{Ber}(p)$, then $X$ is 1 with probability $p$ and 0 with probability $1 - p$. Of course, in practice we do not know $p_A$, but we will use it here to simulate the data. We can assume then that we can use the following generative model:\n", + "\n", + "$$\\begin{align*}\n", + "p &\\sim \\text{Uniform}[\\text{low}=0,\\text{high}=1) \\\\\n", + "X\\ &\\sim \\text{Bernoulli}(\\text{prob}=p) \\\\\n", + "\\text{for } i &= 1\\ldots N:\\text{# Users} \\\\\n", + " X_i\\ &\\sim \\text{Bernoulli}(p_i)\n", + "\\end{align*}$$" + ] + }, + { + "metadata": { + "id": "riLrk5KTIAx4", + "colab_type": "code", + "outputId": "6c8cf3ef-cdef-4340-f941-9f6ea1c7454e", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + } + }, + "cell_type": "code", + "source": [ + "reset_sess()\n", + "\n", + "#set constants\n", + "prob_true = 0.05 # remember, this is unknown.\n", + "N = 1500\n", + "\n", + "# sample N Bernoulli random variables from Ber(0.05).\n", + "# each random variable has a 0.05 chance of being a 1.\n", + "# this is the data-generation step\n", + "\n", + "occurrences = tfd.Bernoulli(probs=prob_true).sample(sample_shape=N, seed=6.45)\n", + "\n", + "[ \n", + " occurrences_,\n", + " occurrences_sum_,\n", + " occurrences_mean_,\n", + "] = evaluate([ \n", + " occurrences, \n", + " tf.reduce_sum(occurrences),\n", + " tf.reduce_mean(tf.to_float(occurrences))\n", + "])\n", + "\n", + "print(\"Array of {} Occurences:\".format(N), occurrences_) \n", + "print(\"(Remember: Python treats True == 1, and False == 0)\")\n", + "print(\"Sum of (True == 1) Occurences:\", occurrences_sum_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Array of 1500 Occurences: [0 0 0 ... 0 0 0]\n", + "(Remember: Python treats True == 1, and False == 0)\n", + "Sum of (True == 1) Occurences: 76\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "UpJrMifMIAx7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The observed frequency is:" + ] + }, + { + "metadata": { + "id": "trjtemdNIAx7", + "colab_type": "code", + "outputId": "d528af9d-8d7c-49bc-c191-ca58fca5b6bb", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "# Occurrences.mean is equal to n/N.\n", + "print(\"What is the observed frequency in Group A? %.4f\" % occurrences_mean_)\n", + "print(\"Does this equal the true frequency? %s\" % (occurrences_mean_ == prob_true))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "What is the observed frequency in Group A? 0.0507\n", + "Does this equal the true frequency? False\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Gue-SRTYIAyA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We combine our Bernoulli distribution and our observed occurrences into a log probability function based on the two." + ] + }, + { + "metadata": { + "id": "Ct9o0w7lGaZb", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def joint_log_prob(occurrences, prob_A):\n", + " \"\"\"\n", + " Joint log probability optimization function.\n", + " \n", + " Args:\n", + " occurrences: An array of binary values (0 & 1), representing \n", + " the observed frequency\n", + " prob_A: scalar estimate of the probability of a 1 appearing \n", + " Returns: \n", + " Joint log probability optimization function.\n", + " \"\"\" \n", + " \n", + " rv_prob_A = tfd.Uniform(low=0., high=1.)\n", + " \n", + " rv_occurrences = tfd.Bernoulli(probs=prob_A)\n", + " \n", + " return (\n", + " rv_prob_A.log_prob(prob_A)\n", + " + tf.reduce_sum(rv_occurrences.log_prob(occurrences))\n", + " )" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "UN7Mh5U-uFye", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The goal of probabilistic inference is to find model parameters that may explain\n", + "data you have observed. TFP performs probabilistic inference by evaluating the\n", + "model parameters using a `joint_log_prob` function. The arguments to `joint_log_prob` are data and model parameters—for the model defined in the `joint_log_prob` function itself. The function returns the log of the joint probability that the model parameterized as such generated the observed data per the input arguments.\n", + "\n", + "All `joint_log_prob` functions have a common structure:\n", + "\n", + "1. The function takes a set of **inputs** to evaluate. Each input is either an\n", + "observed value or a model parameter.\n", + "\n", + "1. The `joint_log_prob` function uses probability distributions to define a **model** for evaluating the inputs. These distributions measure the likelihood of the input values. (By convention, the distribution that measures the likelihood of the variable `foo` will be named `rv_foo` to note that it is a random variable.) We use two types of distributions in `joint_log_prob` functions:\n", + "\n", + " a. **Prior distributions** measure the likelihood of input values.\n", + "A prior distribution never depends on an input value each prior distribution measures the\n", + "likelihood of a single input value. Each unknown variable—one that has not been\n", + "observed directly—needs a corresponding prior. Beliefs about which values could\n", + "be reasonable determine the prior distribution. Choosing a prior can be tricky,\n", + "so we will cover it in depth in Chapter 6.\n", + "\n", + " b. **Conditional distributions** measure the likelihood of an input value given\n", + "other input values. Typically, the conditional\n", + "distributions return the likelihood of observed data given the current guess of parameters in the model, p(observed_data | model_parameters).\n", + "\n", + "1. Finally, we calculate and return the **joint log probability** of the inputs.\n", + "The joint log probability is the sum of the log probabilities from all of the\n", + "prior and conditional distributions. (We take the sum of log probabilities\n", + "instead of multiplying the probabilities directly for reasons of numerical\n", + "stability: floating point numbers in computers cannot represent the very small\n", + "values necessary to calculate the joint log probability unless they are in \n", + "log space.) The sum of probabilities is actually an unnormalized density; although the total sum of probabilities over all possible inputs might not sum to one, the sum of probabilities is proportional to the true probability density. This proportional distribution is sufficient to estimate the distribution of likely inputs.\n", + "\n", + "Let's map these terms onto the code above. In this example, the input values\n", + "are the observed values in `occurrences` and the unknown value for `prob_A`. The `joint_log_prob` takes the current guess for `prob_A`\n", + "and answers, how likely is the data if `prob_A` is the probability of\n", + "`occurrences`. The answer depends on two distributions:\n", + "1. The prior distribution, `rv_prob_A`, indicates how likely the current value of `prob_A` is by itself.\n", + "2. The conditional distribution, `rv_occurrences`, indicates the likelihood of `occurrences` if `prob_A` were the probability for the Bernoulli distribution.\n", + "\n", + "The sum of the log of these probabilities is the\n", + "joint log probability. \n", + "\n", + "The `joint_log_prob` is particularly useful in conjunction with the [`tfp.mcmc`](https://www.tensorflow.org/probability/api_docs/python/tfp/mcmc)\n", + "module. Markov chain Monte Carlo (MCMC) algorithms proceed by making educated guesses about the unknown\n", + "input values and\n", + "computing what the likelihood of this set of arguments is. (We’ll talk about how it makes those guesses in Chapter 3.) By repeating this process\n", + "many times, MCMC builds a distribution of likely parameters. Constructing this\n", + "distribution is the goal of probabilistic inference." + ] + }, + { + "metadata": { + "id": "rzm3amOgDAGg", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Then we run our inference algorithm:" + ] + }, + { + "metadata": { + "id": "g9XHX0h8IAyB", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "number_of_steps = 48000 #@param {type:\"slider\", min:2000, max:50000, step:100}\n", + "#@markdown (Default is 18000).\n", + "burnin = 25000 #@param {type:\"slider\", min:0, max:30000, step:100}\n", + "#@markdown (Default is 1000).\n", + "leapfrog_steps=2 #@param {type:\"slider\", min:1, max:9, step:1}\n", + "#@markdown (Default is 6).\n", + "\n", + "# Set the chain's start state.\n", + "initial_chain_state = [\n", + " tf.reduce_mean(tf.to_float(occurrences)) \n", + " * tf.ones([], dtype=tf.float32, name=\"init_prob_A\")\n", + "]\n", + "\n", + "# Since HMC operates over unconstrained space, we need to transform the\n", + "# samples so they live in real-space.\n", + "unconstraining_bijectors = [\n", + " tfp.bijectors.Identity() # Maps R to R. \n", + "]\n", + "\n", + "# Define a closure over our joint_log_prob.\n", + "# The closure makes it so the HMC doesn't try to change the `occurrences` but\n", + "# instead determines the distributions of other parameters that might generate\n", + "# the `occurrences` we observed.\n", + "unnormalized_posterior_log_prob = lambda *args: joint_log_prob(occurrences, *args)\n", + "\n", + "# Initialize the step_size. (It will be automatically adapted.)\n", + "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", + " step_size = tf.get_variable(\n", + " name='step_size',\n", + " initializer=tf.constant(0.5, dtype=tf.float32),\n", + " trainable=False,\n", + " use_resource=True\n", + " )\n", + "\n", + "# Defining the HMC\n", + "hmc = tfp.mcmc.TransformedTransitionKernel(\n", + " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", + " target_log_prob_fn=unnormalized_posterior_log_prob,\n", + " num_leapfrog_steps=leapfrog_steps,\n", + " step_size=step_size,\n", + " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", + " state_gradients_are_stopped=True),\n", + " bijector=unconstraining_bijectors)\n", + "\n", + "# Sampling from the chain.\n", + "[\n", + " posterior_prob_A\n", + "], kernel_results = tfp.mcmc.sample_chain(\n", + " num_results=number_of_steps,\n", + " num_burnin_steps=burnin,\n", + " current_state=initial_chain_state,\n", + " kernel=hmc)\n", + "\n", + "# Initialize any created variables.\n", + "init_g = tf.global_variables_initializer()\n", + "init_l = tf.local_variables_initializer()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "yUVnbqhDVfAx", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Execute the TF graph to sample from the posterior" + ] + }, + { + "metadata": { + "id": "Q3By4GWdEtQN", + "colab_type": "code", + "outputId": "b40ec87c-cb5e-49c1-e6ff-44ecd1dc7cf3", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "evaluate(init_g)\n", + "evaluate(init_l)\n", + "[\n", + " posterior_prob_A_,\n", + " kernel_results_,\n", + "] = evaluate([\n", + " posterior_prob_A,\n", + " kernel_results,\n", + "])\n", + "\n", + " \n", + "print(\"acceptance rate: {}\".format(\n", + " kernel_results_.inner_results.is_accepted.mean()))\n", + "\n", + "burned_prob_A_trace_ = posterior_prob_A_[burnin:]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "acceptance rate: 0.6088958333333333\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "MQUWTY7-LgGv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We plot the posterior distribution of the unknown $p_A$ below:" + ] + }, + { + "metadata": { + "id": "w_P52-CRFJPs", + "colab_type": "code", + "outputId": "bbf9109c-d7a8-47e4-814c-bf27aa79afe0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 280 + } + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 4))\n", + "plt.title(\"Posterior distribution of $p_A$, the true effectiveness of site A\")\n", + "plt.vlines(prob_true, 0, 90, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", + "plt.hist(burned_prob_A_trace_, bins=25, histtype=\"stepfilled\", normed=True)\n", + "plt.legend();" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABl8AAAIPCAYAAAD96MhoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYHWWdL/BvJIogEEAUHBQyYHxl\nZMeEJeACKnLRK3BFAUFURgbFGdyvsowIo8696LiwzJVhV5DFwTsXkdFRFAVEA6iIyktEMBAV2RdZ\nA7l/1Dmhk3SH7nMqfZLO5/M8eep01Vtv/arOe6o79Tvv+06aP39+AAAAAAAAaMczBh0AAAAAAADA\nRCL5AgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBFki8AAAAAAAAtknwBAAAAAABo\nkeQLAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBF\nki8AAAAAAAAtknwBAAAAAABo0eRBBwAALJ9KKfOXsPmhJLcluTTJF2qtdXyiGpxSyjuSnJ7kslrr\nqwYbzfBGinHQsQ93/EHHtKzE0LZSynpJTkqyc5LVklxUa91zsFEtPUPew4trrW8YcDgrnJHa27La\nDifiZ36iWNptZll870sphyY5ofPjZ2qthw8yHgBg7PR8AQD6dV6SLw7596Uk307y7CSHJPl5KWXv\nQQRWSvnM0ySJ2vTrNOf/9XE6Xptaib2P6z3wazdC7AOPayn45yR7Jnk8zYPGKwYbTjvG+bM+Zst6\nfEvRSO1toO1wCe/HRPzMTxRLu80M+94P+LP77iGvDyylrDSgOACAHun5AgD06wu11qsWXVlKeVaS\nTyf5UJKvlFJ+UmudM86xTR+vA9Vaf5rkp+N1vDa1GHtP13sZuXaLxb6MxNW2bTvLv6+1njvQSNo1\nbp/1Hi3r8S0tI7W3QbfDYd+PCfqZnyiWaptZwns/kM9uKWVGki2S3JjkgSTbJNk9yf8bRDwAQG8k\nXwCApaLW+lgp5aNJXpdksyTvSnL0eB2/lDIpycvH63gruuX5ei/Psfdglc7yT2PdsZTy1SRvS/Kp\nJKcl+Z9JdkmyfpJHk/woycdrrde3E+qo41qm379lPb6lbKT21nM77NcK/n4sz8a9zQy4rXR7vVyQ\np5IvfxvJFwBYrkyaP39F7P0OAPRryDAc2w/X82VIuROSHJrkP2qteyyybYck708yM8nz0swVc0Oa\nhw0n1VofXqT8lkk+mmTHJOsmeSTJ3CTfTNMD5w+dcmckOXCYcF5da/3BkPq2SvLBJK/s1PdgkuuS\nnFJrPXuRY78jnbkjknwgySlpHsp8qtb66SWNF9/DeS7xWMOc19B9n9W5Rgck2TDJ/UkuT/KJNA9v\nRj3nS1vXu5drN3Rdkl2THJXkLUk2SPKXJD9M8o+11l8OiffoznmeWWt9xzDXZrHtS4o9ydThrsuQ\n+kb9vi5yDd6U5roe2Dmfx5NcleSozrevR220MSzhPEc9v0Ep5fokL0vyf5K8I83Qgo+kGcr4WZ1i\n9yeZMV7zPI2x7f33NJ/3dybZKMljaa77kbXWWcPUPer7Q0vxDffZODpjbNNtxt9rfUs479+nuS8t\natF7z5hjL6Vsn+azsFOSdZLcmeSSJJ/s9rocw/txWa31VaWU7yd5VZJP1FqPGeG4RyY5NsmltdZd\nej2Hfu4RPV6vUd3fey2/JGO8d56RHu9dY4l5mPd+pOP2/HfEaJVSVk/yhzRz2/xNmuTL75PMT/Ki\nWusfe6kXABh/5nwBAJa2ezvLZw9dWUp5b5qkwN5JbklyVpLvJ3lxks8muayUstqQ8julefi0T5Lf\nJTkjyb+n+XvmI0muKqVs0Cn+nTQPUbq689HcNqS+/ZL8JMn+nfVndurfNslXSylndL71Opxzk6za\nieE3Szr5sZ5nP8caUv7YJC9K8w3ZrydZL825bTqK/btxt3q9+zifJPmPNN/4vaqz3x1J9khyRSll\n1Oc0grHEvkCf7+s5aR7W/STJ+UnuTtND7NJSytTRBj7GGL7TOa8HOj//e8Ywt0UpZeUkpfPjIWke\nBO6a5r1cLcl+aZJia6TpGTNexvL+nZLmQeysJF9Jck+a6/79UspfDy3Y5/2h1/h6+WwMq8X4e61v\npPZ22gjrF7TDXmLvfBZ+lCbB9uPOceak6XH561LKFkPiGsvnvfvw/M0jbE+St3aWZ/VzDosY9T2i\nx+s1lvv7mMsvSQ/3zp7uXS3EvLT/jliSfdPcV39Sa/1NrfW2TjwrpUkeAwDLCcOOAQBL24s7y1u6\nK0opL0vzECNJ9qi1/seQbWuleYg2Pc0wZR/ubDoiycpJDqm1fnlI+Umduv4+zTdpP1hrPaeUcmU6\nDylqre8fGlDnQeupaR5k7FNrPW/ItpLmIceBSb6X5iHtUNun6Y3xP2qtS+xC3ON59nSsTp3/Lc2E\nxA+n6ZH0iyHbDh0Sy2i0dr17PZ+OHZJck+TFtdYHOzFMTpNY2i3J/0ozDn5PlhR7KWXH4fbp8319\nZZKaZFqt9d7OPqumeWC8eSeOTzxd3GONodZ6TpJzSil7JFk9yQlDv709Cpvmqf87/CbJzFrrPZ2f\nH0/ytVLKS5P8Y5LdSikr1VqfGEP9PRlj27shyd/UWu9MklLKGmnmeCid/f+xs76f+0M/8Y31szGs\nNuPvtb6na29LWD/mY5VSNknzWXg0Tbv8+ZB9Ppnmff1amvd+tO9H19eTnJBks1JKWbRHVynlb9J8\nNh5K82C/jes/6ntEH8ca9f29x/LD6uXe2ce9q6+Yl/LfEU+nO+TYqUPWnZrk9UneVUr5TL/3CQBg\nfOj5AgAsNaWUF6X5JnLS9F7oOiTNg9z/O/ThS5J0Huge0fnxXZ0H7UnS/Wb6lYuUn98pv0OSfx5l\naH+fpifO14Y+MOnUV5Mc2fnx0GH2XTvJ50b54KOX8+z1WEnT+yBJvjo08dI53olJfrn4LiNq83p3\njfV8kuSZaRI8Dw6JYV6ST3Z+fF0pZcoY4+hXP+/rakkO7T5U7ezzUJ76Fvfm4xBDL7YY8vqgIYmX\nob7VWa6aZvidZclaSf6um3hJklrr/Um6n/9pQ8r2c3/oVS+fjZG0Hf94Xo9ejvXeNJ+FrwxNvHT8\nc5r73j2llOGGO1uizue02673HqbIPp3l/x1yj+r3eo3lHtHrscZ6f2/r98F43reWxu+woZbK56I0\nQ6W9PE1C79whm/5fmqH0Nk4zLCYAsByQfAEAWldKWaOU8vo0Y9evkuSSWuslQ4q8orP81mI7N76X\nZmzztZK8tLOu+43j40spQx+Uptb6QK31x7XWP48yxJ2f5vgXd5YzSinPWWTbo2m+gTwavZxnr8dK\nnpoY+IcjbP/OGOpq83p3jfV8kuSeWutw+1ydZs6OyRnDcGot6ed9fTRNb4tFdeceGG0iqd+2NVZb\ndpZXjPB+JMnQeQiGTSKUUqaWUh4tpcwvpWzUQlyjdVut9fph1nev+/OHrOvn/tCrXj4bI2k7/vG8\nHr0cq/sg+keLFq61Plxr3bzWOrPW+vseYzqnsxxu6LHukGNDezb0e73Gco/o9Vhjvb+39ftgPO9b\nS+N32FBL63NxcGd5Qa21O9Raaq2P5al29rdjqA8AGCDDjgEA/fpxM8LGsOanGQN9pG/d3jzcTrXW\nB0spd6WZNHmDJNenmYx6mzRDstxYSrkuzYOa/0zy/Vrr42OIeWpnuXcpZcYIZR5P0+ti4zST53bd\nWWt9cpTH6eU8hxrLsZJk/c5y7gjbx/Lwsc3r3TXW80lGvnZPlFJuTzO3zQt6iKUf/byvc0fo3dAd\nomu0X47qt22NVTf58o0llFm7s5yfZl6e4XwqzUPkqWmSZr/rM67RGqntP9pZrjRk3dTOspf7Q696\n+WyMZGpn2Vb8bdfX9rG6+4x03+vXN5Pcn2SLUsq0WuvsZMFE6y9J8qck/zWkfDeeXq/XWO4RvR5r\nrPf3tn4fjOd9a2n8DhtqamfZ2ueiM7zc2zo/njpMkVPSnNeepZS1RuiBCAAsQyRfAIB+nZfm4dNQ\nD6eZ7Pg7tdabhtln1SHlRvJIZ7lKktRabyqlbJ7mwcO+aYZe6f58Rynl2Frr8aOMuTuZ7x6jKLvG\nIj8/OGyp4Y35PPs41tDjPTLC9kdHWL+Ylq9311jPJ2kmcR9J9zyf3UO9/ejnfe33gV8bMfSiO9TR\ntUso0+159avO0HALKaVsnaanwM5p5jfZLM1QOuNhLPPP9HN/6FUvn42RtB3/eF6PXo7V/fy39dla\nSK31kVLKv6eZ+2PvJJ/ubOr2ejmnLjy/Ub/Xayzn0dOxxnp/b/H3wbjdt5bS77Chlsbn4q1Dyh47\nwhdb5qVp8wck+dIo6wUABkTyBQDo1xdqrVeNcZ+/pHnAsOoSynS3DZ3r464046gfWUp5cZLXpXlY\n8YokX+pM8v2FURz/wTRDt+xaax3LUFxj1dN59uGRTn0rP82xRqXF692PJSVWutseGmVdz+wzlq7x\nfl8HGkNnYunuUEd3LaHo/+gsRxqG538lOb/W+sNSyh8y/sPFjdZ43R/aMFybbjv+8bwevRyr+1lY\na6lFlZydJvny5iyefFl0MvVl/XolGfv9vaXfB+N671zKv8OWxvv87iGvX/k0ZQ+K5AsALPPM+QIA\nDEJ3qKFh53zoTKDeHcJopOFJfltrPanW+sokf9dZ/b5RHv+3neUGoyzfq77Pc4y6c26sN8L2nufY\n6PN692PY96gzGXN3uLHbOsvusE0rLb5HkqeGienXeL+vg45hiyGv1xnheJulebA5L8mXh9n+ujQP\nE4/qrPp1mp4vy6Lxuj+MRi9tuu34x/N69HKs7mdh/SWW6s/309xftyqlbNQZZmpqkutrrT9fpOyy\nfr0WM9b7ex+/DwZ271wKv8NafZ9LKZsm2T7NPXS9Wuuk4f6lSfg8lGTzJQx3BgAsIyRfAIBB+EFn\n+YYRtr++s/xDktmllLVKKXuXUl4/QvnuhMjDPnwrpUxaZNWlneVbRii/SinlraWU545wvNH6QWc5\nqvPs81hJ0n0IuOOiGzrXYKTrt2jZtq93P9YtpWwxzPpt0/TifjTJrzrrupMTL5Z8KqWsnKcmex7R\nKGP/QWc5Xu/roGPYcsjr1y26sZSySpr5CZ6R5LRa6+8W2T4pTa+XU4cMQ/ibJC8ppbTVG2nosfq1\n1O4PPcTXS5tuO/7xul/2eqzvd5bDtc1nlFLmllLmlVJ2Gmb7qN6Pznw853Z+3C1ND5gkOaulc+jV\nmI811vt7v78PFvGDznKp3rdajrlb59L+O6Lb6+WSWuvtIxWqtd6fp+be+ttR1g0ADIjkCwAwCCem\neWj+hlLKm4ZuKKWsl2ZS7iT5Umfi4XXTzC1zVinlpcPU1x3+Zeg3kB8Y8nrDRcr/a5ox519bSjlg\nkeNPTnJCmgdtJ436jIY31vPs1wWd5dtLKdMW2fahjL7nS9vXux+PJflC5wF/kqTzwP6TnR//o9ba\nnRfml53lqzpDzHTLr5TkuDw1dNaixhr7eL+vg46hm/y6L8k/lFL27yZNSinbp3mgOj1NQuWDw+z/\ntiQlyTFD1v0mzZBZi7WvUspZpZQbSinvXnTbCNpue23fH/qJr5c23Xb843W/7PVY/yfNPCl7lFJ2\nW6S+w5L8VZJbklzZWdfr+3F2Z7lrmuTBk3nqIX6/59CrXo411vt7L78PRjJe9622Yh6XvyNKKd05\nXJLk9Kcrn+SMznKfUspzRlEeABgQc74AAOOu1vrbUsp7k/xbkm+UUn6Y5MY03+5+RZoHihcl+Vyn\n/A2llM8kOTzJdaWUH6QZkuQZSTZJskOaseQ/NOQYd5VSbkkzNMwPSynXp3lQ/+Va682llIPSfGv5\nrFLKe5L8IsnqSV6V5tuwtwytbzzOswUXJDkkzTlcXUq5OM0D863TDPH06SRHjyLuVq93n+f0g87y\nt6WU/0rz4G7nJC9OM//Ix4eU/X6ah9WbpTn/S5Lcm6Yn0HOT/FOaHhiLnu+wsXeOtZgBvK+DjqHb\n8+WwJJ9NM8fFaaWUeXlqUuwbkuw2JBGWZEHvjH9K0zafMySB0H2ouVmeSjB0bZAmWTOqb4y33fba\nvj/0Gd+Y2/RSiH9c7pe9HqvWemMp5e/TPAy/qJTy7SS3pplcffs0c3O8vdb6RKd8T+9HrfWaUkpN\nk3x5VpLv1lrntnEOverxeo3p/t7L74MlxDsu9622Yh7HvyPenGbOojuTfHMU5S9N08ZflCaRdNoo\n9gEABkDPFwBgIGqtpyWZmeTfk7wkyTuS7JTm4cW7kuxZa503pPwRSfZK8p9J/ibJ29N8U/T5SU5O\nslWt9cos7O1p5pZYN00C4vEh9X0tycuTfDXNA4yDkuyZ5uHHMZ36bkufxnqefR7ryTTfyP5MmvP4\nH2ke6vwpzcOmn46hrlavdx/mJXlTkjPTPHA+MM1DqguSbD90iKvOw9XXpUkOPJrm3P97kmuTbJdm\nKJuRjCn28XxfBxlDaeZgmNr58T+HHO++JJPSJAYOT7J1rfX3w1RxaJpvjL89zTBC3X/dSco3XcLh\nx9J+Wm17S+H+0FN8vbbptuMfr/tlr8fqJE52SvPg/uWdfaameTC+dYv3qrPTJF6Sp9pwK+fQqx6v\n15ju7z3+Phgp3nG5d7YY83j8HdHt5Xd2rfVp22Lnd313yDtDjwHAMmzS/PlLayQEAABgeVZKeUWS\ny5LcXmtdbN6Rp9l3zSQ3pZmf4D+HKXJSkp/UWt84zL7XJDm+1nrGmIMGAABYBhh2DAAAGEl3yLHr\netj3Y0lWTvLRWuvdi24spRyWZjitRdc/r7P+Fz0cEwAAYJlg2DEAAGAkW3SWY0qElFJemOQfkvzb\ncImXjpuSbFBKWX2R9R9LckOt9WdjihQAAGAZoucLAAAwkl57vhyT5v8a/7KEMjelmTdm0yQ/7q6s\ntfY9ETkAAMCgmfMFAABYTCllcpIH0wwdtmWt1TBgAAAAoyT5AgAAAAAA0CJzvgAAAAAAALRI8gUA\nAAAAAKBFki8AAAAAAAAtmjzoAPp13333mbQGAAAAAABYqqZMmTJptGX1fAEAAAAAAGiR5AsAAAAA\nAECLJF8AAAAAAABaJPkCAAAAAADQIskXAAAAAACAFkm+wDJu9uzZmT179qDDgFZoz0w02jQTifbM\nRKI9M9Fo00wk2jMTjTbNSCRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUA\nAAAAAKBFki8AAAAAAAAtknwBAAAAAABokeQLAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAA\nAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBFki8AAAAAAAAtknwBAAAAAABokeQLAAAAAABAiyRfAABg\nBbf77rtn+vTpmT59enbfffdBhwMAABPacccdlx133DG11qV6nE9+8pOZMWNG/vCHPyzV4wzSySef\nnJkzZ+YXv/jFoENZjOQLAAAAAACtO/XUUyf0g/9efPvb384FF1yQf/iHf0gpZdDhLPfe/e53Z7PN\nNsvhhx+e+++/f9DhLETyBQAAAACAVs2dOzdf/vKX88c//nHQoSwzHnrooXz2s5/Npptumre85S2D\nDmdCmDRpUj7+8Y/n7rvvzvHHHz/ocBYi+QIAAAAAQKt+/etfDzqEZc4FF1yQ++67LwcddNCgQ5lQ\nNtxww+y222656KKLcuuttw46nAUkXwAAAAAAaM0hhxySI444Iknynve8Z8G8I905SH7729/msMMO\nyyte8YpcfvnlC/aZMWPGYnXdeeedmTFjRg455JCF1t9777357Gc/mze96U3ZYYcd8trXvjYf/vCH\nc/311486zuuuuy4zZszIcccdl29/+9t597vfnVe/+tWZOXNm3vGOd+Tqq6/u4yos7Mknn8y5556b\nqVOnZubMmQttG8u5d6/h7bffnjPPPDN77rlnZs6cmd133z0nnXRSnnjiiSXGMX/+/Bx++OGZMWNG\nvvnNb/ZU55///Od8+tOfzhvf+MbssMMOec1rXpP3v//9+dnPfragzO6775799ttvseO/9a1vzYwZ\nMxa8713f+c53MmPGjFxyySU9neMee+yRJ598Mt/4xjeWeP7jSfIFAAAAAIDWHHzwwdlll12SNHNy\nfOYzn8naa6+9YPtJJ52UddZZJ0cccUQ22mijMdd///3356CDDsq3vvWtvOY1r8mRRx6Z/fffPzfe\neGP+7u/+LrNmzRpVPTfccEOSZNasWTn66KMzZcqU7LXXXtlqq63y61//Oh/4wAfypz/9aczxDefG\nG2/MXXfdle22266V+k466aRceuml2XffffOhD30oa621Vs4444xccMEFS9zv+OOPz3e/+90ceuih\necMb3jDmOu+88868853vzCWXXJKdd945hx9+eA444IDccsstee9735sf//jHSZIZM2bkpptuWmge\nlrvuuis333xzVl111YUSNUlyzTXXZNKkSdl22217OseXvexlWW211XLVVVeN/iIuZZMHHQAAADBY\na6+9dtZZZ50FrwEAWHp23333MZVfZZVV8vWvf32x9RdeeGFOPfXUMdW133775W1ve9ti6w844IDc\nfffdSZKLL754THUOZ+utt17Qa2TrrbfONttss9D2xx9/PEcddVTP9Z966qmZO3duTjnllGy66aYL\n1u+2227ZZ5998vnPfz7nnHPO09ZTa02S3HHHHfnXf/3XbLnllgu2ffazn83555+f8847L4cddljP\nsXZ1E0LTp0/vu64kuemmm3L66afnmc98ZpJk++23zx577JFLL700++yzz7D7XHjhhfnqV7+afffd\nNwceeGBPdZ5yyim54447cuyxx2bXXXddsO+uu+6avffeO5///Oez/fbbZ9ttt83FF1+cX/ziF9lp\np52SJNdee21WWmml7LLLLsMmX6ZNm7bQ/0fGco4rrbRStt566/zoRz/KPffck7XWWmtM13NpkHwB\nAIAV3Fe+8pXMnj07STJt2rQBRwMAMLFdccUVYyq/2mqrDbt+7ty5Y65rxx13HHb9rFmzWuvhMRo7\n77xzX/t/97vfzdSpU7PhhhvmgQceWLB+lVVWyVZbbZUf/ehHuf/++7PGGmsssZ5uz5cPf/jDCyVe\nkuRNb3pTzj///Nx88819xdp12223JUk22GCDVurbe++9FyQlkuQFL3hB1lprrdx1113Dlr/yyitz\n3HHH5fWvf33e//7391znD37wg6yxxhp5zWtes9C+6623XqZPn57LL788t912W6ZPn55JkyblZz/7\n2YLky9VXX50Xv/jF2WabbXLJJZfkkUceybOf/ezceeedmTNnTt7+9rf3dY4bbLBB5s+fn9tuu03y\nBQAAAACAFctf/dVf9bzvgw8+mDvuuCN33HHHgqHNhvOnP/1picmXxx57LDfffHPWXXfd7Lbbbott\nnzJlSpJk3rx5i227+eabc8ABB2TDDTfM0UcfPaq477333oXq7dcLX/jCxdatvPLKw8Zba80nP/nJ\nbLLJJvnHf/zHTJo0qac6H3jggdx9993ZfPPNs9JKKy1WdsMNN8zll1+eOXPmZIcddsjGG2+cn//8\n5wu2X3PNNdlhhx2y1VZbZd68eQvm3On2kho65NhYzzHJgoRL91oPmuQLAAAAAMA4WXSy9aezyiqr\nDLt+/fXXH3NdI/W6mD59+oJhx8bDqquu2vO+f/nLX5I0PbY/+MEPjlju6RI8v/3tbzNv3rxst912\necYzFp8a/Y9//GOSZN11111s2+c+97nst99++epXv5p58+Zl8uSnf8zejXuknkxj9axnPWvUZY85\n5pg89NBDufnmm3P77bdn/fXX76nOhx56KMnIbXLllVdOkjz88MNJmmTKeeedl0ceeSQPPPBA5syZ\nk0MPPTQveMELsu666+baa6/NjBkzcu2112aVVVZZrPfRWM4xSVZfffUkT13rQZN8AQAAAAAYJ23M\nqZIke+21V/baa69W6vrKV77SSj1Lw6OPPrrQz895znOSND1SFp1LZiy687284AUvGHZ7d0i37bbb\nbqH13//+9/Pkk0/mgAMOyBlnnJHbbrstU6dOfdrjdeN+8MEHs+aaa44qxkXPvVebbLJJ9t1333z0\nox/NUUcdlZNPPnlUCaNFdZNm3STMorpJl265GTNm5Oyzz851112Xu+++O5MmTcpWW22VJNliiy0W\nzPtyzTXXZOutt15oiLFedIeg617rQVs8pQcAAAAAAOOomwx47LHHFlo/Z86chX5ebbXV8vznPz9z\n5swZtrfOaIec6s738uCDDy627b777ss3vvGNrLvuunnFK16xYP0jjzySL37xiznssMOy+uqr53nP\ne15+//vfj+p43YTLfffdt9i20Z57r4488sjstNNOeec735nrr78+J598ck/1rL766llnnXVyyy23\n5Iknnlhse3d+nL/+679Okmy11VZ51rOelZ///Oe5+uqrs9FGGy24DltuuWV+9atfZe7cubn11lsX\nS3L14p577kmSUSe3ljbJFwAAWMGdffbZOfnkk3PyySfn7LPPHnQ4AABMAN05QRZNKIzkuc99bpLk\nN7/5zYJ18+fPzwUXXLBY2V122SVPPPFEzjvvvIXW33///dl///1z2GGHPe3xusmX733vewt6bCRN\nr46jjjoq9913Xz74wQ8uGEorSc4666xsscUWKaUkSTbaaKNRJ1+685fceuuti20by7n3413velc2\n3XTTnHXWWbnmmmt6qmOXXXbJAw88kP/6r/9aaP2cOXNyzTXXZJNNNsl6662XJHn2s5+dzTffPNdf\nf/2C3i1dW221VR577LF87WtfS7L4fC+9uPXWWzNp0qQRh1Ubb4YdAwCAFdw555yzYFiFmTNn5m1v\ne9uAIwIAYHnXnXPltNNOy+9+97unnZ/mVa96VS655JIcc8wx2XfffTN58uR873vfyxprrLHY5O7v\nete78sMf/jBnnHFG7r777my99da5++67c+GFF+auu+7KEUccscRjzZs3LzfddFOmTZuWBx98MPvt\nt1922mmnPP744/nhD3+YO+553/abAAAgAElEQVS4I4ceemhe/epXL9jnD3/4Q84///yFvqy00UYb\n5dprrx3V9Xj5y1+eJJk1a1Z23HHHns+9H5MnT86xxx6b/fffP5/4xCdy9tlnZ8qUKWOq46CDDspl\nl12WT33qU5k9e3Y22mij3H777bnwwguz0kor5SMf+chC5bfddtucdtppefjhhxcMOZY0126NNdbI\nN7/5zay33nqjGrptSZ544olce+212XjjjbP22mv3VVdb9HwBAAAAAKBVO++8c3bcccfccMMNOfPM\nM592OLBXv/rV+djHPpbJkyfni1/8Yk455ZRMmzYtRx999GJlp0yZktNOOy1vfvOb89Of/jTHHnts\nTjvttLzwhS/MiSeemO23336Jx/rd736Xxx57LJtttlmOP/74bLDBBrnoootyySWXZOrUqfnSl76U\nAw88cKF9Pv/5z+f+++/PHnvske233z7bb799zjvvvNx6662ZP3/+016PUkrWXnvtXHXVVX2de7/W\nX3/9fOhDH8qf//znfOpTnxrz/muuuWZOO+20vP71r8+3v/3t/NM//VPOPffcbLrppjn11FOz6aab\nLlR+xowZC3oWDU2+TJo0KVtssUUeeuihVnq9/OpXv8oDDzzQyvBlbZk0moaxLLvvvvuW7xOApzF7\n9uwkybRp0wYcCfRPe2ai0aaZKHbfffeFer60NQksDIr7MxONNs1Eoj2zLLjoooty7LHH5uMf/3j2\n3HPPpy1/1VVX5cgjj8wJJ5yw0KTwt9xySz7+8Y/n85///NP27EmSM888MyeeeGK+8IUvZIcddujr\nHFjYsccem4svvjjnn39+Nthgg6V2nClTpkwabVk9XwAAAAAAWGF053vpzt2yJPPmzcu//Mu/ZL/9\n9stLX/rSbLzxxgv+dXts3HLLLaM67t57750pU6bk1FNP7Tl2Fvf73/8+3/rWt/LGN75xqSZexkry\nBQAAAACAFUatNSuttFI23njjpy177rnn5p577slb3/rWxbatttpqWXPNNfP73/9+VMddddVV8+EP\nfzi//OUvc/755485bhY3f/78fOYzn8laa62V973vfYMOZyGTBx0AAAAAAACMhyeffDKzZ8/Ohhtu\nmJVXXvlpy++///7Zf//9R9x+4oknjun4u+66a6677rp86UtfypZbbpmXvOQlY9qfhf3bv/1bfvnL\nX+akk07KlClTBh3OQiRfAAAAAABYITzjGc/IZZddNtAYPvKRj+QjH/nIQGOYKA4++OAcfPDBgw5j\nWIYdAwAAAAAAaJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWTR50AAAAwGAd\ndNBBefnLX54k2WKLLQYcDQAAwPJP8gUAAFZwe+21VzbbbLMkybRp0wYcDQAAwPLPsGMAAAAAAAAt\nknwBAAAAAABokeQLAAAAAABAiyRfAAAAAAAAWjR50AEAAACD9eY3vzlXXnllkmSHHXbI17/+9QFH\nBAAAsHyTfAEAgBXcww8/nIceemjBawAAAPpj2DEAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIv\nAAAAAAAALZJ8AQAAAAAAaJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANCiyW1UUkp5WZLDk+yc\nZJ0k9ya5MslxtdbLh5RbJcnHk+yTZMMk9ye5NMlRtdYb24gFAAAAAABgkPru+VJK2SrJT5P8tySn\nJHlXks8neXmSy0opb+yUm5TkP5IcmeRHnXL/O8mrkvy4lLJxv7EAAAAAAAAMWhs9X45MsmqSPWut\n3+muLKVcmOQ3SY5JclGa3i6vTdMb5qNDyn0vydVJjkuyVwvxAAAAAAAADEwbc750e6z8aOjKWusN\nSf6cZGpn1ds7yy8tUu7aNEOUvaGUsmYL8QAAAGNw8cUXZ9asWZk1a1YuvvjiQYcDAACw3Guj58tv\nkmyR5CVJftFdWUqZkmTNNEOSJcmMJLfWWm8bpo6fJJmZZOs0c8D0bfbs2W1UA8sMbZqJRHtmotGm\nmUi0ZyYS7ZmJRptmItGemWi06Yll2rRpfdfRRvLlU0l2TXJWKeXQJDckeUGSTyaZn+SoUsrqSdZO\nUkeoY05nuVFaSr4AAAAAAAAMQt/Jl1rr9aWU7ZP8exYeeuwPSXattV5WSvmrzrqHRqjmL53l6v3G\n09VGZgqWBd2suTbNRKA9M9Fo00wk2jMTifbMRKNNM5Foz0w02jQj6XvOl1JKSfKtNEOMfSDJbkkO\nTHJnkotKKa/t9xgAAAAAAADLizaGHTslyfpJNqm13txdWUq5IMlvk5yeZJPO6ueMUMdqneX9LcQD\nAACMwSWXXJLrrrsuSbL55ptnt912G3BEAAAAy7e+ki+llOckmZnkqqGJlySptT5cSvlBkv2SbJDk\njiQvHKGqDTtLsxIBAMA4O+GEE3LFFVckSWbOnCn5AgAA0Kd+hx1bJcmkJM8eYfuzhyyvTPLCUsoG\nw5TbKcnDSa7tMx4AAAAAAICB6iv5Umu9M01vlc1LKX8zdFspZe0kO6cZSuz6JKd2Nn1gkXKvTLJN\nknNrrQ/2Ew8AAAAAAMCgtTHny4eSfCPJj0opJyS5Mck6SQ5LsmaSQ2qtjya5qJRyYZL3l1LWSHJp\nmuHGPpzktiSHtxALAAAAAADAQPWdfKm1XlRK2THJ/0zyniRrJXkgydVJ3ltr/c8hxfdN8rEk+yc5\nIMk9Sb6Z5Iha65/6jQUAAAAAAGDQ2uj5klrrVUn2HEW5x5Ic0/kHAAAAAAAw4fQ15wsAAAAAAAAL\nk3wBAAAAAABokeQLAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZNHnQAAADAYO25\n557ZcMMNkyRbb731gKMBAABY/km+AADACu5v//ZvM3v27CTJtGnTBhwNAADA8s+wYwAAAAAAAC2S\nfAEAAAAAAGiR5AsAAAAAAECLJF8AAAAAAABaNHnQAQAAAIN18MEH56qrrkqSbLfddjn55JMHHBEA\nAMDyTfIFAABWcHPnzs2cOXOSJC960YsGHA0AAMDyz7BjAAAAAAAALZJ8AQAAAAAAaJHkCwAAAAAA\nQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAA\nLZJ8AQAAAAAAaJHkCwAAAAAAQIsmDzoAAABgsM4666zUWpMkpZQBRwMAALD8k3wBAIAV3HOf+9w8\n73nPW/AaAACA/hh2DAAAAAAAoEWSLwAAAAAAAC2SfAEAAAAAAGiROV8AAGAF95Of/CTXX399kuTu\nu+/OtttuO+CIAAAAlm+SLwAAsII75phjcsUVVyRJZs6cmYsvvnjAEQEAACzfDDsGAAAAAADQIskX\nAAAAAACAFkm+AAAAAAAAtEjyBQAAAAAAoEWSLwAAAAAAAC2SfAEAAAAAAGiR5AsAAAAAAECLJF8A\nAAAAAABaJPkCAAAAAADQIskXAAAAAACAFkm+AAAAAAAAtGjyoAMAAAAG65WvfGVWW221JMk222wz\n4GgAAACWf5IvAACwgvvoRz+a2bNnJ0mmTZs24GgAAACWf4YdAwAAAAAAaJHkCwAAAAAAQIskXwAA\nAAAAAFok+QIAAAAAANCiyYMOAAAAGKyPfexj+elPf5okmTFjRv75n/95wBEBAAAs3yRfAABgBffL\nX/4y1157bZJklVVWGXA0AAAAyz/DjgEAAAAAALRI8gUAAAAAAKBFhh0DAAAGas3T5w46hKXu3neu\nP+gQAACAcST5AgAAy7BxSUz86bEFL6/402MrRDIEAABgaTLsGAAAAAAAQIskXwAAAAAAAFok+QIA\nAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAALZo86AAAAIABe8snkkcf\nal6vvOpgYwEAAJgAJF8AAGBF9/y/HnQEE96ap88ddAhL3b3vXH/QIQAAwDLDsGMAAAAAAAAtknwB\nAAAAAABokeQLAAAAAABAi8z5AgAAK7o/35w8+lDzeuVVzQEDAADQJ8kXAABY0Z3/yeSmWc3rjacn\n7ztjoOEAAAAs7ww7BgAAAAAA0CLJFwAAAAAAgBZJvgAAAAAAALRI8gUAAAAAAKBFki8AAAAAAAAt\nmjzoAAAAoFdrnj530CEAAADAYvR8AQAAAAAAaJHkCwAAAAAAQItaG3aslLJbko8l2TrJvCQ/S/JP\ntdZLFym3SpKPJ9knyYZJ7k9yaZKjaq03thUPAAAAAADAILTS86WU8q4k3+r8eFiSo5NslOQ/Symv\nGlJuUpL/SHJkkh8leVeS/53kVUl+XErZuI14AAAAAAAABqXvni+llPWSfCnJd5PsWmt9srP+oiQ/\nTrJ7kh90iu+T5LVJjqu1fnRIHd9LcnWS45Ls1W9MAAAAAAAAg9LGsGMHJnlOkqO7iZckqbX+Lsm6\ni5R9e2f5paEra63XllKuTPKGUsqatdZ7W4gLAAAYjfXL8K8BAADoyaT58+f3VUEp5btJZiRZs9b6\nZCllpSSTa62PDlP2riR/qbVuMMy2zyX5YJJdFp0nZknuu+++YU9g9uzZo60CAIDl1PTLVx10CEDH\nrB0fGnQIAADQimnTpg27fsqUKZNGW0cbc768NMlNSbYspVyW5NEkj5RSri+l7NMtVEpZPcnaSW4b\noZ45neVGLcQEAAAAAAAwEG0MO7Z2kseTXJzk9DTztkxN8rEkXyulPKfWemqS1TvlR/o61F86y9VH\n2D4mI2WmYHnT7cWlTTMRaM9MNNr0MuDyuYOOAOhYlu6F7s9MNNo0E4n2zESjTTOSNpIvz0qTbHlb\nrfWc7spSysVJfpPk06WUM1o4DgAAAAAAwDKvjWHHHkzySJJzh66std6c5PtJnp9kkyT3dzY9Z4R6\nVuss7x9hOwAAAAAAwDKvjZ4vt6RJrgznz53lGrXWB0spdyR54QhlN+wsZ7cQEwAAMFrf+dfk9t81\nr9fdKHndewYbDwAAwHKujZ4vP04z9NjfDLOtm1C5rbO8MskLSykbDFN2pyQPJ7m2hZgAAIDRuvEn\nybXfav7d+JNBRwMAALDcayP5ckZn+YlSyqTuylLK5mkSKtfVWud0Vp/aWX5gaAWllFcm2SbJubXW\nB1uICQAAAAAAYCD6Hnas1vqTUsrxSf4+yf8rpZyfpsfLB5LMS3LYkLIXlVIuTPL+UsoaSS7tlP1w\nmt4xh/cbDwAAAAAAwCC1MedL0iRYfp3kkCQnJ3k0yRVJjq61zlqk7L5JPpZk/yQHJLknyTeTHFFr\n/VNL8QAAAAAAAAxEK8mXWuv8JP+n8+/pyj6W5JjOPwAAAAAAgAmljTlfAAAAAAAA6JB8AQAAAAAA\naJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWTR50AAAAACz/1jx97qBDGGLV\nZnF5uzHd+871W60PAICJS/IFAABWdLsflvzl3ub1c9YcbCwAAAATgOQLAACs6P56q0FHAAAAMKGY\n8wUAAAAAAKBFki8AAAAAAAAtknwBAAAAAABokTlfAABgRffgPckTjzevV3pmstpag40HAABgOSf5\nAgAAK7ozPpDcNKt5vfH05H1nDDQcAACA5Z1hxwAAAAAAAFok+QIAAAAAANAiw44BAExQa54+d9Ah\nAAAAwApJzxcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAALZJ8AQAAAAAAaJHkCwAA\nAAAAQIskXwAAAAAAAFok+QIAAAAAANCiyYMOAAAAGLA1102et+FTrwEAAOiL5AsAAKzo9v9fg44A\nAABgQjHsGAAAAAAAQIskXwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWTR50AAAAwIBd/rXkrlub\n1899UbLjvoONBwAAYDkn+QIAACu6n387uWlW83rj6ZIvAAAAfTLsGAAAAAAAQIskXwAAAAAAAFok\n+QIAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAAAACgRZIvAAAAAAAALZJ8AQAAAAAAaJHk\nCwAAAAAAQIskXwAAAAAAAFok+QIAAAAAANCiyYMOAAAAGLBXHZhs/d+a12s8b7CxAAAATACSLwAA\nsKLb9NWDjgAAAGBCMewYAAAAAABAiyRfAAAAAAAAWiT5AgAAAAAA0CLJFwAAAAAAgBZNHnQAAADA\ngJ3wjuSmWc3rjacn7ztjkNEAAAAs9/R8AQAAAAAAaJHkCwAAAAAAQIskXwAAAAAAAFok+QIAAAAA\nANAiyRcAAAAAAIAWTR50AAAAALA8WPP0uYMOYam7953rDzoEAIAJQfIFAFhh9f8QbdVmcfnEfxgH\nAAAAjJ5hxwAAAAAAAFok+QIAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0aPKgAwAAAAbsmSsnK6/6\n1GsAAAD6IvkCAAArur/78qAjAAAAmFAMOwYAAAAAANAiyRcAAAAAAIAWSb4AAAAAAAC0SPIFAAAA\nAACgRZMHHQAAADBgP7skuff25vWa6yZb7TbYeAAAAJZzki8AALCiu+K85KZZzeuNp0u+AAAA9Mmw\nYwAAAAAAAC2SfAEAAAAAAGiR5AsAAAAAAECLJF8AAAAAAABaJPkCAAAAAADQIskXAAAAAACAFkm+\nAAAAAAAAtGjy0qi0lHJMkqOSnFlrfceQ9c9I8v4k70wyLckjSa5IcnStddbSiAUAAAAAAGA8td7z\npZTysiT/c4TNJyf5XJIbkxycJkFTkvywlLJ927EAAAAAAACMt1Z7vnR6tvxbkl8l2WqRbdsnOSjJ\nBbXWtwxZf2GaZMyJSbZuMx4AAAAAAIDx1nbPl/ck2T7Jh4fZ9vbO8otDV9Za5yb5RpKtOr1mAAAA\nAAAAllut9XwppbwwyWeSfLXWemkpZdEiM5I8keSnw+z+kyRvS7Jtml4zAADAeJnxpuTF05vXa//V\nYGMBAACYANocduzEJI8n+eAI26cm+XOt9fFhts3pLDdqK5jZs2e3VRUsE7RpJhLtmWXHqoMOAJYN\nM/YcdATAMsLfacs27w8TifbMRKNNTyzTpk3ru45Wki+llDcn+e9JDqq13jFCsdWT3DPCtr8MKQMA\nAAAAALDc6jv5UkpZM8nxSS5LcnrfEbWkjcwULAu6WXNtmolAe2aZc/ncQUcAAMsUf6ctm/wdzUSi\nPTPRaNOM5Bkt1HFckrWTHFJrnb+Ecvcnec4I21YbUgYAAAAAAGC51VfPl1LKK5IclOSLSR4spbxw\nkSKrdtb9JcnvkmxTSnlWrfWxRcpt2FkaGA8AAAAAAFiu9Tvs2M5JJiV5f+ffovbu/DszyZVJpifZ\nLskPFym3U2d5RZ/xAAAAY3X6Ycktv2heT90ieecXBxsP/P/27j5akrK+E/h3cBAHeRlRQHZQRCQP\nrjFGERXRFUw86KoxvkTNhmgmeiRGV4WjJiYiSlyz6roSX9fXwbMxbjw5gpE1u1EUldUECAsxvjwg\nQmQGFBQGlcHBldk/qq60l3tn5t77TFdP9+dzzj1Vt7q6+nc5v3mo7m/XUwAAsJtbafjyV0kuXuSx\nTyU5L8mZSa7pt70sySkZCV9KKUcmeWqSz9dar1xhPQAAwFLdcnPywxvuWAcAAGBFVhS+1FovT3L5\nQo+VUpJkY6313JFtb09yainl7CSfSHKvJKcmuTXJf1xJLQAAAAAAAJNgpVe+LNUrk1yV5OQkH0iy\nJcn5SV5ba/36mGsBAAAAAABobpeFL7XWVQts25bkXf0PAAAAAADA1Nlj6AIAAAAAAACmifAFAAAA\nAACgIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAAGhK+AAAAAAAANCR8AQAAAAAA\naGj10AUAAAADe9F7k9tv79b38P0sAACAlRK+AADArLvrmqErAAAAmCq+1gYAAAAAANCQ8AUAAAAA\nAKAh4QsAAAAAAEBD7vkCAACzrn4l+fEPuvV97pmUY4etBwAAYDcnfAEAgFn3mfclV17UrR9xjPAF\nAABghUw7BgAAAAAA0JDwBQAAAAAAoCHhCwAAAAAAQEPCFwAAAAAAgIaELwAAAAAAAA2tHroAAGAy\nrd2waegSAAAAAHZLrnwBAAAAAABoSPgCAAAAAADQkPAFAAAAAACgIeELAAAAAABAQ8IXAAAAAACA\nhlYPXQAAADCwBz0uOfCwbv2g+w1aCgAAwDQQvgAAwKw7Yf3QFQAAAEwV044BAAAAAAA0JHwBAAAA\nAABoSPgCAAAAAADQkPAFAAAAAACgodVDFwAAAAzsr09PNn69Wz/03ybPecOw9QCDWbth09Al7HKb\n168bugQAYAYIXwAAYNbd8K93hC973X3YWgAAAKaAaccAAAAAAAAaEr4AAAAAAAA0JHwBAAAAAABo\nSPgCAAAAAADQkPAFAAAAAACgIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAAGhK+\nAAAAAAAANCR8AQAAAAAAaGj10AUAAAAD+50/T366tVvfc69hawEAAJgCwhcAAJh19zhk6AoAAACm\nimnHAAAAAAAAGhK+AAAAAAAANCR8AQAAAAAAaMg9XwAAYNZt+kZy64+69TX7JuseOGw9AAAAuznh\nCwAAzLqz35xceVG3fsQxyUvPGrQcAACA3Z1pxwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGhI+AIA\nAAAAANCQ8AUAAAAAAKAh4QsAAAAAAEBDwhcAAAAAAICGhC8AAAAAAAANCV8AAAAAAAAaEr4AAAAA\nAAA0JHwBAAAAAABoaPXQBQAAAAO730OSvfbu1g85cthaAAAApoDwBQAAZt1TThm6AgAAgKli2jEA\nAAAAAICGhC8AAAAAAAANCV8AAAAAAAAaEr4AAAAAAAA0tHroAgAAgIGd+/bkuiu69UOOTJ5yyrD1\nAOxCazdsGrqEZdi7W1ywc7VvXr9uF9YCAOwM4QsAAMy6qy9LrryoW9+6ZdhaAAAApoBpxwAAAAAA\nABoSvgAAAAAAADQkfAEAAAAAAGhI+AIAAAAAANCQ8AUAAAAAAKCh1UMXAAC7o7UbNg1dAgAAAAAT\nqkn4Uko5MMnrkjw9ycFJNie5IMmf1VovmbfvmiSvSfLcJIcl+WGSzyU5rdZ6eYt6AAAAAAAAhrLi\nacdKKQcluSTJC5L8db98X5JfS3JBKeWhI/uuSvLJJK9N8qUkv5/kLUmOT/KVUsoRK60HAAAAAABg\nSC2ufHljkkOTPLPW+om5jaWUi5Kck+4ql2f3m5+b5AlJ3lprffXIvucluTjJW5M8o0FNAAAAAAAA\ng1jxlS9Jrk3ysSRnz9v+v5JsS/IrI9ue1y/fMbpjPzXZl5M8pZSytkFNAAAAAAAAg1jxlS+11tcv\n8tC+SValu6fLnEckuabWunGB/f8xyXFJHpbuHjAAAAAAAAC7nRbTji3mD/rlR5OklLJvkgOS1EX2\n/06/vH8ahC9XXHHFSg8BE0VPM02mo5/3HroAgHae/kfJrT/q1tfsO2wtAKzYdJxvM+30KdNGT0+X\nI488csXH2CXhSynlSUlel+Sfkry33zz3Lm7LIk+7Zd5+AADAOKx74NAVAAAATJXm4Usp5XlJPpjk\n6iRPrbXe1vo1dkaLZAomwVxqrqeZBlPVzxdsGroCAABY0FScbzO1pup9IURPs7g9Wh6slHJako8k\nuSzJY2qt1408PHfvl7sv8vR95u0HAAAAAACw22kWvpRSzkxyRpK/TfK4Wuv1o4/XWn+c5IYkhy5y\niMP6pcnxAAAAAACA3VaT8KW/4uXlSTYkeUatdbH7unw5yaGllPsu8Nhjk9ya5JIWNQEAADvppuuS\n66/ufm66bkd7AwAAsAMrvudLKeWEJG9IcnaSF9Zab9/O7h9K8rQkp/Q/c8d4XJKjk2zor5ABAADG\n5aOvSa68qFs/4pjkpWcNWg4AAMDubsXhS5L/0i8/m+QZpZSF9vl0rXVLrfVTpZRPJHlFKWW/JJ9L\nN93YK5NsTPInDeoBAAAAAAAYTIvw5WH98t3b2efwJFf367+d5I+TnJTkd5PclOTcJH9aa/1ug3oA\nAAAAAAAGs+Lwpda6aon735bkjP4HAAAAAABgquwxdAEAAAAAAADTRPgCAAAAAADQkPAFAAAAAACg\nIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAAGhK+AAAAAAAANLR66AIAAICBHXhY\nsvWWO9YBAABYEeELAADMuue8YegKAAAApoppxwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGhI+AIA\nAAAAANDQ6qELAAAABvb5Dcn1V3frB90vOWH9kNUAAADs9oQvAAAw6772heTKi7r1I44RvgAAAKyQ\n8AUAAABgiqzdsGnoEna5zevXDV0CAGyXe74AAAAAAAA0JHwBAAAAAABoSPgCAAAAAADQkPAFAAAA\nAACgodVDFwDA9Fn8Bp97d4sLpv8GoAAAAADMLle+AAAAAAAANCR8AQAAAAAAaEj4AgAAAAAA0JDw\nBQAAAAAAoCHhCwAAAAAAQEOrhy4AAAAY2BNOTo59Vre+zz2HrQUAAGAKCF8AAGDWlWOHrgAAAGCq\nmHYMAAAAAACgIeELAAAAAABAQ8IXAAAAAACAhtzzBQAAZt1ttya3396t77FHctc1w9YDAACwmxO+\nAADArHv/i5MrL+rWjzgmeelZg5YDAACwuzPtGAAAAAAAQEPCFwAAAAAAgIaELwAAAAAAAA0JXwAA\nAAAAABpaPXQBAAAAALAUazdsGrqEXW7z+nVDlwDACrjyBQAAAAAAoCHhCwAAAAAAQEPCFwAAAAAA\ngIaELwAAAAAAAA0JXwAAAAAAABoSvgAAAAAAADS0eugCAACAgd19/2S/A+9YBwAAYEWELwAAMOvW\n/8XQFQAAAEwV044BAKj0TtUAABBSSURBVAAAAAA0JHwBAAAAAABoSPgCAAAAAADQkPAFAAAAAACg\nodVDFwAAAAzswrOTG6/t1g/4N8kjnj5sPQBA1m7YNHQJu8je3eKCTdm8ft2wpQDsQsIXAACYdRd+\nMrnyom79iGOELwAAACtk2jEAAAAAAICGXPkCMGbTe+k4AAAAAJC48gUAAAAAAKAp4QsAAAAAAEBD\nwhcAAAAAAICGhC8AAAAAAAANCV8AAAAAAAAaEr4AAAAAAAA0JHwBAAAAAABoSPgCAAAAAADQkPAF\nAAAAAACgodVDFwAAAAzsuOckDzq+W1978KClAAAATAPhCwAAzLqHPmnoCgAAAKaKaccAAAAAAAAa\ncuULMFHWbtg0dAkAAADAGMzCZwCb168bugRgIK58AQAAAAAAaEj4AgAAAAAA0JBpxwAAYNa97+Tk\nqku69cMflpz8vmHrAQAA2M0JXwAAYNb9dGuydcsd6wAANOG+NjC7TDsGAAAAAADQkPAFAAAAAACg\nIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADa0e9wuWUg5IcnqS30xySJLvJ/l0ktNqrdeNux7Y\nnazdsGnoEgAAAAAA2IGxhi+llDVJzk9yVJJ3Jbk4yZFJXpnk8aWUo2utN42zJgAAAAAAlmcWviy8\nef26oUtgNzTuK19ekeTBSV5Sa33P3MZSymVJzk5yWpJTx1wTAAAAAABAM6u2bds2thcrpXwjyX2S\n3LPWunVk+6ok30myV5KDa607XdTNN988vj8AAAAAAACYSfvvv/+qnd13j11ZyKhSyn7pphu7ZDR4\nSZI+bLkwyYFJDh9XTQAAAAAAAK2NLXxJcli/3LjI49/pl/cfQy0AAAAAAAC7xDjDl3375ZZFHr9l\n3n4AAAAAAAC7nXGGLwAAAAAAAFNvnOHLD/vl3Rd5fJ95+wEAAAAAAOx2Vo/xta5Ksi3JoYs8PndP\nmCuWctD9999/1UqKAgAAAAAAaGnVtm3bxvZipZRLkxyZ5J611p+MbL9LkmuTbK213ndsBQEAAAAA\nADQ27nu+fCjJ3klOnrf9pCQHJfngmOsBAAAAAABoatxXvuyZ5EtJjk7yziQXJ3lQklPTTTf2qFrr\nlrEVBAAAAAAA0NhYw5ckKaXsl+T1SZ6Z5JAk1yc5O8nptdYbx1oMAAAAAABAY2MPXwAAAAAAAKbZ\nuO/5AgAAAAAAMNWELwAAAAAAAA0JXwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGhI+AIAAAAAANDQ\n6iFfvJRyQJLTk/xmkkOSfD/Jp5OcVmu9biee/+gkpyV5VJI1SS5P8oEk76q1bpu375OTvCzJQ5Ic\nkOS6JP87yetrrdfO2/c+Sc5IcmKSeyW5Nsknkryh1nrzcv9ept8k9nQp5fwkj9vOyz691nrOTv6J\nzJBx9vO8561K8vl0fbu+1npWy7qYTZPYz6WUs5I8fzsve0qt9cwd1cZsGldPl1KuTnLYdg710Frr\npSP7O49mySaxn51Ds1xjfk+4R5KXJnlRkgckuTnJeUleW2v99rx9jc8syyT2tDGa5RpHP5dSjk/3\nHnB7/rXWer+R4xqjp9Rg4UspZU2S85McleRdSS5OcmSSVyZ5fCnl6FrrTdt5/uOT/F2Sa5K8PsmN\nSZ6W5B1JjkjyipF9X57kzP413pjklnSD9AuTPLGU8qu11hv7fQ9O8pUk+yV5e5Ka5GHpPuR+TCnl\nuFrrT5v8R2CqTGpPj/itRV76wqX8ncyGcfbzAl6YRU6kV1oXs2lS+3nEHya5YYHtly6wDYbo6RvS\n9elCrho5rvNolmxS+3mEc2h22gD9vCHJ8/rlm5P8UpJTk5xQSnlwrfX7/XGNzyzLpPb0CGM0O22M\n/fy1LN6b+yR5X7/P3HGN0VNsyCtfXpHkwUleUmt9z9zGUsplSc5OlyKeup3nvyfJT5I8diSZ/O+l\nlHOSvKyUsqHWelnfwG9NclmS42qtt/X7biilbE7y8nTfOn17v/2MJOuSPLnW+ul+21+VUjb2+7w4\n3T8qmG9SezpJUmv9mxX/hcySsfTz/CeVUu6d5C1J/m+Sh+6CuphNk9rPc/6u1nr1Ev4eGHdPb9nJ\n8wjn0SzHpPZzEufQLNnY+rmU8pR0H1KfXms9Y+S1apL/nOTxST7ebzY+s1yT2tNJjNEs2Vj6udZ6\nQ5IFe7OUcmaSbUlOGdlsjJ5iQ97z5Xnpvq3/oXnbP5lkY5KT+qk67qSU8sgkJcnHF7gk7F1JViU5\nqf99z3T/eF418iH1nM/0y/v2x90zyXOTfGuk2ed8IMltSX53x38aM2riehpWYFz9PN87k9ye5E2t\n62KmTWo/w3IN1dOLch7NCkxcP8MKjLOfX5Lkh+m+mPdztda/rLUeWmv9eH9c4zMrMXE9DSsw6DlH\nKeXodNPqvbXWenm/zRg95QYJX0op+6W7xOuSWuvW0cf6+fEuTHJgksMXOcQj+uVXFnjsH/vlI/vj\nbay1vrnW+pkF9j2qX/7zyO/7LXTcWustSf4lya+WUvZapC5m1AT39EK1runnUYUFjbOf573ubyR5\nVpJXp5t3tXVdzKBJ7edFar1bKWXQ+/Ex+Ybq6ZHX33uRN6XOo1myCe7nhfZ1Ds12jbOfSyl3SXJC\nki/VWm/tt9213z6f8ZllmeCeXqhWYzTbNfQ5R+89STblF7+cZ4yeckMNTHM3Ody4yOPf6Zf3X+Tx\n+y32/Frrj5JsXui5pZTVpZS1pZQHlFJela7ZP5vkL3d03JG6Vie5zyKPM7smtadH9/2zUsp3k2xJ\nsrWU8tlSyqMWqYfZNvZ+LqXsm+TdSb6Y5MO7qC5m06T286iXlFKuSnJruvH5H0op/34nnsdsGuKc\nY00p5R2llJvSfVtwSynlnFLKUSP7LHrckbqcRzPfpPbzzzmHZgnG2c+HJ9kryRWllP9QSvlGkq3p\nevS8/tvVOzzuSF3GZxYyqT39c8ZolmCQz+3m9NPqPSLJ6+YCxh0dd6QuY/RubKjwZd9+uWWRx2+Z\nt99ynr/Qcx+T5KYkVyQ5Pcnrkjxx5KZFK62L2TWpPT3q+CSvSvLUdPOlPjrJF0opj1nkNZldQ/Tz\nnyc5KMnJ/bdOdkVdzKZJ7edRJ6YLz5+c5E/T3fTx3FLKc3fiucyeIXr6oHRvDE9O8vQk70/ylCT/\nUEr5pUZ1MZsmtZ9HHR/n0OyccfbzAf3y8eluSv7edD36piTHJfliKeXBjepidk1qT486PsZods5Q\nn9vNOT3JVbnzl6WN0VNu1qa2uDTdZYz36JdnJDmxlPLsWutOTQkCE2ZnevrV6Qbpz418CHhuKeWL\nSf4+3Xyqx463bLhDKeXYdDeQe2Ot9ZtD1wMrscR+fluSjyU5f+TS90+XUv423fj+tlLKx2utt++6\nimGHnp/kZ7XWC0a2nVNK+Wq6eajfkOS3B6kMlm4p/ewcmkl21375gCQPqbV+q//93FLKN5N8NN0H\nfc8aojhYhqX2tDGa3UYp5cQkD09yaq31Z0PXw3gNFb78sF/efZHH95m333Kef6fn1lo3Jzm///Xs\nUsp5Sc5Jl6q/oEFdzK5J7enUWi9c6IC11s+UUq5I8shSyj611h8v8trMnrH1cynlrkk+mORb2fFN\nyY3RLMek9nNqrV9N8tUFtn+9lHJ+kickeWCSr+3oWMyUsZ5z1Fq/sMh+H07yziS/3qguZtOk9rNz\naJZjnP0813cXjHxIPedj6c5Hjm9UF7NrUnvaGM1yDPK5Xe+FSf5fuhCxdV1MuKGmHbsqybYkhy7y\n+Nw8fFcs8vi3++Wdnl9K2T/J/tt57s/VWj+Z7ia4T9zRcUfq2po75gGEOZPa0zvyvSSr4vJFftE4\n+/mP0n24/LokB5ZSDi2lHJruRndJco9+294N6mI2TWo/78j3+uV+O7Evs2VSzjluT3fOMdejzqNZ\njknt5x1xDs1CxtnPV/fLO92MvL8K4IYYn1m5Se3pHTFGs5BBzjlKKWvSTS/95Vrr9Us57khdxujd\n2CDhS631liT/nORhpZS7jT5WSrlLujkar6m1LtZYX+6Xxy3w2GP75QX98Z5fSvleKeX35+9YStkj\n3WA8dwVQTfKDhY5bSlmb5JeTXLjI/TSYYZPa06WUe/f7P3qBfVelu6/ArenebEKS8fZzkl9Ld2L8\nP5JcM/Lz8f7x/9r//uwGdTGDJrWfSyn7lVJ+p5SyWFhe+uU1i/1tzKYxn3Pcv5TyglLKL8/fsZSy\nT5J1ueONoPNolmxS+9k5NMsxzn7uZ0D4ZpIHlVJ+YUaTUsqeSQ7JHTdvNj6zLJPa08ZolmPM7wtH\n/bska5J8brHSYoyeakNd+ZIkH0qyd7obHY46Kd1NED84t6GUclQp5fC532utlya5JMlv9d8ondtv\nVZJTkvw0yUf6zZf1x3tpP2CPek6SvZL8n/64P+ufd3gp5Wnz9n15ug+0PxhY2MT1dLpvjXw4yfvn\n/88l3bRkByf5lEGcBYyrn1+T7uaI83/+pH/8zP73zy61Lhgxif18W5J3JzmrlHKv0aJKKb+e5Jh0\nJ9kbA3c2rp4+uD/W2/vHR/1xurDxE/1xnUezXBPXz3EOzfKNq5+TZEOSe6e719yok5PsmeRT/XGN\nz6zExPV0jNEs3zj7ec7R/fJfFirIGD39Vm3btm3He+0C/YfGX0rXhO9McnGSByU5Nd1lWo+qtW7p\n992WpNZajxp5/iOTfD7Jd9N9mLE5yXOTPCnJabXWN47s++4kf5juQ+uPJLkx3Y2OXpTuw49H9/Ou\np5RyjyQXpRvw35YugTy2f/55SU4cuZkX/NwE9/TpSV7f77sh3TyRxyVZn+TaJMf6cI/5xtnPi7z+\n8f3z19daz1pOXTBngvv5+UnOSncJ/H/rj//QdG84f5Lk+P4kH37BmM85NiT5vSRfTHcV19YkJ6a7\n4e1Xkzym1jp33yPn0SzZBPezc2iWbMz9fLckX0j3PvAvklya7ssbL07Xow+fm+LG+MxyTXBPG6NZ\nsiHeF5ZSzkry/HT9+0+L1GWMnmKDhS9JUkrZL91g+cx0lxBen+TsJKfXWm8c2e9ODd9vf3iSM9Jd\nGrZXkm8keWetdcMCr3VSkj9I8uB0Kef30l3y9Z9qrXXevvdO8sZ0c/LdM92UHx/r9711xX84U2uC\ne/qZ6f5n8iv9cTem+9bIm2qt3wssYJz9vMBrH58FPqxeSl0waoL7+YR0V8w8It1NFr+b5O/TjeXf\nDixiXD3dT8Pwe0lekuSodFfOX5Xkb5K8pdb6o3n7O49mySa4n51Ds2Rjfk+4T5LTkjw73dR5P0jy\nP9N9CHjdvH2NzyzLBPe0MZolG/f7wlLKJ5P8RpJSa718O3UZo6fUoOELAAAAAADAtBnyni8AAAAA\nAABTR/gCAAAAAADQkPAFAAAAAACgIeELAAAAAABAQ8IXAAAAAACAhoQvAAAAAAAADQlfAAAAAAAA\nGhK+AAAAAAAANCR8AQAAAAAAaEj4AgAAAAAA0JDwBQAAAAAAoCHhCwAAAAAAQEPCFwAAAAAAgIaE\nLwAAAAAAAA0JXwAAAAAAABoSvgAAAAAAADQkfAEAAAAAAGjo/wNd+yV9e4WmKwAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 815, + "height": 263 + } + } + } + ] + }, + { + "metadata": { + "id": "LdLJ2iriIAyI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Our posterior distribution puts most weight near the true value of $p_A$, but also some weights in the tails. This is a measure of how uncertain we should be, given our observations. Try changing the number of observations, `N`, and observe how the posterior distribution changes.\n", + "\n", + "### *A* and *B* Together\n", + "\n", + "A similar anaylsis can be done for site B's response data to determine the analogous $p_B$. But what we are really interested in is the *difference* between $p_A$ and $p_B$. Let's infer $p_A$, $p_B$, *and* $\\text{delta} = p_A - p_B$, all at once. We can do this using TFP's deterministic variables. (We'll assume for this exercise that $p_B = 0.04$, so $\\text{delta} = 0.01$, $N_B = 750$ (signifcantly less than $N_A$) and we will simulate site B's data like we did for site A's data ). Our model now looks like the following:\n", + "\n", + "$$\\begin{align*}\n", + "p_A &\\sim \\text{Uniform}[\\text{low}=0,\\text{high}=1) \\\\\n", + "p_B &\\sim \\text{Uniform}[\\text{low}=0,\\text{high}=1) \\\\\n", + "X\\ &\\sim \\text{Bernoulli}(\\text{prob}=p) \\\\\n", + "\\text{for } i &= 1\\ldots N: \\\\\n", + " X_i\\ &\\sim \\text{Bernoulli}(p_i)\n", + "\\end{align*}$$" + ] + }, + { + "metadata": { + "id": "yPDLHl6RIAyJ", + "colab_type": "code", + "outputId": "f04783fe-3111-41b5-cfb9-7166b6f4827d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 85 + } + }, + "cell_type": "code", + "source": [ + "reset_sess()\n", + "\n", + "#these two quantities are unknown to us.\n", + "true_prob_A_ = 0.05\n", + "true_prob_B_ = 0.04\n", + "\n", + "#notice the unequal sample sizes -- no problem in Bayesian analysis.\n", + "N_A_ = 1500\n", + "N_B_ = 750\n", + "\n", + "#generate some observations\n", + "observations_A = tfd.Bernoulli(name=\"obs_A\", \n", + " probs=true_prob_A_).sample(sample_shape=N_A_, seed=6.45)\n", + "observations_B = tfd.Bernoulli(name=\"obs_B\", \n", + " probs=true_prob_B_).sample(sample_shape=N_B_, seed=6.45)\n", + "[ \n", + " observations_A_,\n", + " observations_B_,\n", + "] = evaluate([ \n", + " observations_A, \n", + " observations_B, \n", + "])\n", + "\n", + "print(\"Obs from Site A: \", observations_A_[:30], \"...\")\n", + "print(\"Observed Prob_A: \", np.mean(observations_A_), \"...\")\n", + "print(\"Obs from Site B: \", observations_B_[:30], \"...\")\n", + "print(\"Observed Prob_B: \", np.mean(observations_B_))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Obs from Site A: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ...\n", + "Observed Prob_A: 0.050666666666666665 ...\n", + "Obs from Site B: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ...\n", + "Observed Prob_B: 0.04\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "LDzYsDVgMgsz", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Below we run inference over the new model:" + ] + }, + { + "metadata": { + "id": "7ghHBEdXYtxV", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def delta(prob_A, prob_B):\n", + " \"\"\"\n", + " Defining the deterministic delta function. This is our unknown of interest.\n", + " \n", + " Args:\n", + " prob_A: scalar estimate of the probability of a 1 appearing in \n", + " observation set A\n", + " prob_B: scalar estimate of the probability of a 1 appearing in \n", + " observation set B\n", + " Returns: \n", + " Difference between prob_A and prob_B\n", + " \"\"\"\n", + " return prob_A - prob_B\n", + "\n", + " \n", + "def double_joint_log_prob(observations_A_, observations_B_, \n", + " prob_A, prob_B):\n", + " \"\"\"\n", + " Joint log probability optimization function.\n", + " \n", + " Args:\n", + " observations_A: An array of binary values representing the set of \n", + " observations for site A\n", + " observations_B: An array of binary values representing the set of \n", + " observations for site B \n", + " prob_A: scalar estimate of the probability of a 1 appearing in \n", + " observation set A\n", + " prob_B: scalar estimate of the probability of a 1 appearing in \n", + " observation set B \n", + " Returns: \n", + " Joint log probability optimization function.\n", + " \"\"\"\n", + " tfd = tfp.distributions\n", + " \n", + " rv_prob_A = tfd.Uniform(low=0., high=1.)\n", + " rv_prob_B = tfd.Uniform(low=0., high=1.)\n", + " \n", + " rv_obs_A = tfd.Bernoulli(probs=prob_A)\n", + " rv_obs_B = tfd.Bernoulli(probs=prob_B)\n", + " \n", + " return (\n", + " rv_prob_A.log_prob(prob_A)\n", + " + rv_prob_B.log_prob(prob_B)\n", + " + tf.reduce_sum(rv_obs_A.log_prob(observations_A_))\n", + " + tf.reduce_sum(rv_obs_B.log_prob(observations_B_))\n", + " )\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "h0TDeF3IIAyQ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "number_of_steps = 37200 #@param {type:\"slider\", min:2000, max:50000, step:100}\n", + "#@markdown (Default is 18000).\n", + "burnin = 1000 #@param {type:\"slider\", min:0, max:30000, step:100}\n", + "#@markdown (Default is 1000).\n", + "leapfrog_steps=3 #@param {type:\"slider\", min:1, max:9, step:1}\n", + "#@markdown (Default is 6).\n", + "\n", + "\n", + "# Set the chain's start state.\n", + "initial_chain_state = [ \n", + " tf.reduce_mean(tf.to_float(observations_A)) * tf.ones([], dtype=tf.float32, name=\"init_prob_A\"),\n", + " tf.reduce_mean(tf.to_float(observations_B)) * tf.ones([], dtype=tf.float32, name=\"init_prob_B\")\n", + "]\n", + "\n", + "# Since HMC operates over unconstrained space, we need to transform the\n", + "# samples so they live in real-space.\n", + "unconstraining_bijectors = [\n", + " tfp.bijectors.Identity(), # Maps R to R.\n", + " tfp.bijectors.Identity() # Maps R to R.\n", + "]\n", + "\n", + "# Define a closure over our joint_log_prob.\n", + "unnormalized_posterior_log_prob = lambda *args: double_joint_log_prob(observations_A_, observations_B_, *args)\n", + "\n", + "# Initialize the step_size. (It will be automatically adapted.)\n", + "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", + " step_size = tf.get_variable(\n", + " name='step_size',\n", + " initializer=tf.constant(0.5, dtype=tf.float32),\n", + " trainable=False,\n", + " use_resource=True\n", + " )\n", + "\n", + "# Defining the HMC\n", + "hmc=tfp.mcmc.TransformedTransitionKernel(\n", + " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", + " target_log_prob_fn=unnormalized_posterior_log_prob,\n", + " num_leapfrog_steps=3,\n", + " step_size=step_size,\n", + " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", + " state_gradients_are_stopped=True),\n", + " bijector=unconstraining_bijectors)\n", + "\n", + "# Sample from the chain.\n", + "[\n", + " posterior_prob_A,\n", + " posterior_prob_B\n", + "], kernel_results = tfp.mcmc.sample_chain(\n", + " num_results=number_of_steps,\n", + " num_burnin_steps=burnin,\n", + " current_state=initial_chain_state,\n", + " kernel=hmc)\n", + "\n", + "# Initialize any created variables.\n", + "init_g = tf.global_variables_initializer()\n", + "init_l = tf.local_variables_initializer()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "beUUmGMbdrRr", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Execute the TF graph to sample from the posterior" + ] + }, + { + "metadata": { + "id": "HTYITb9fdqIe", + "colab_type": "code", + "outputId": "8bcb70ee-4c1c-4347-b0b8-6bdb6e6d2aa6", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "evaluate(init_g)\n", + "evaluate(init_l)\n", + "[\n", + " posterior_prob_A_,\n", + " posterior_prob_B_,\n", + " kernel_results_\n", + "] = evaluate([\n", + " posterior_prob_A,\n", + " posterior_prob_B,\n", + " kernel_results\n", + "])\n", + " \n", + "print(\"acceptance rate: {}\".format(\n", + " kernel_results_.inner_results.is_accepted.mean()))\n", + "\n", + "burned_prob_A_trace_ = posterior_prob_A_[burnin:]\n", + "burned_prob_B_trace_ = posterior_prob_B_[burnin:]\n", + "burned_delta_trace_ = (posterior_prob_A_ - posterior_prob_B_)[burnin:]\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "acceptance rate: 0.6161\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "YaD67cOkIAyT", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Below we plot the posterior distributions for the three unknowns: " + ] + }, + { + "metadata": { + "id": "PpBXqVKELHRO", + "colab_type": "code", + "outputId": "2296d675-b1c4-409b-e314-c5e4d8b53321", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 742 + } + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 12.5))\n", + "\n", + "#histogram of posteriors\n", + "\n", + "ax = plt.subplot(311)\n", + "\n", + "plt.xlim(0, .1)\n", + "plt.hist(burned_prob_A_trace_, histtype='stepfilled', bins=25, alpha=0.85,\n", + " label=\"posterior of $p_A$\", color=TFColor[0], normed=True)\n", + "plt.vlines(true_prob_A_, 0, 80, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", + "plt.legend(loc=\"upper right\")\n", + "plt.title(\"Posterior distributions of $p_A$, $p_B$, and delta unknowns\")\n", + "\n", + "ax = plt.subplot(312)\n", + "\n", + "plt.xlim(0, .1)\n", + "plt.hist(burned_prob_B_trace_, histtype='stepfilled', bins=25, alpha=0.85,\n", + " label=\"posterior of $p_B$\", color=TFColor[2], normed=True)\n", + "plt.vlines(true_prob_B_, 0, 80, linestyle=\"--\", label=\"true $p_B$ (unknown)\")\n", + "plt.legend(loc=\"upper right\")\n", + "\n", + "ax = plt.subplot(313)\n", + "plt.hist(burned_delta_trace_, histtype='stepfilled', bins=30, alpha=0.85,\n", + " label=\"posterior of delta\", color=TFColor[6], normed=True)\n", + "plt.vlines(true_prob_A_ - true_prob_B_, 0, 60, linestyle=\"--\",\n", + " label=\"true delta (unknown)\")\n", + "plt.vlines(0, 0, 60, color=\"black\", alpha=0.2)\n", + "plt.legend(loc=\"upper right\");" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABnIAAAWrCAYAAAAAYS1+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYVMW5gPEXEFkEUcSAooIoVoga\nBMOo4BJBRWK8iIkbAZd43XODGjRBJIrGmOtuNHolYDAuUYyYRBFxBcFdcF8KVAgCapAdEQGZ+8fp\nHntWpqebmWZ4f8/Dc5hz6tT5zjk9hdbXVdWguLgYSZIkSZIkSZIkFZ6GdR2AJEmSJEmSJEmSKmYi\nR5IkSZIkSZIkqUCZyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5IkSZIk\nSZIkqUCZyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5IkSZIkSZIkqUCZ\nyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5IkSZIkSZIkqUCZyJEkSZIk\nSZIkSSpQW9R1AJIkSdURQiiu4vAqYB7wDHBTjDHWTlR1J4RwKvAXYEqM8Yd1G03FKouxrmOv6Pp1\nHVOhxFDXQgjtgNuA3kAL4JEY44C6jUq1Kd+/B/msb3P5Hd1c7lOSJGlT4ogcSZK0qXkAuDnjzx+B\nSUBT4GzgjRDCcXURWAjh6g0knPLpPZL7/3stXS+f8hJ7Ds+7zp9dJbHXeVwF4A/AAGAtSUfy83Ub\njrRhtdz2S5IkaTPkiBxJkrSpuSnG+FLZnSGELYHfA78C7g4hvBxjnFvLsfWorQvFGF8BXqmt6+VT\nHmOv0fMukGdXLvYCiauu7Zfa/k+M8f46jUSqvlpr+yVJkrR5MpEjSZLqhRjjmhDCxcARwN7Az4HL\na+v6IYQGwA9q63qbu035eW/KsdeCZqntZ9meGEK4B/gZcBVwJ/BroA/QHvgamAoMizG+k59Q61d8\nqhl/nyVJklQbTORIkqR6I8a4PoTwHEkiZ5+yx0MIPYHzgV7A9iRr63wAPAjcFmP8qkz5fYCLgQOB\ntsBqYD7wKMnIoAWpcmOBUzLOS0+xc2iMcXLG/m7AhcAhqfpWAm8Bo2OM95a59qkkU0tNAC4ARpN0\nFl4VY/x9VWsY1OA+q7xW2edY5twtU89oMNABWA5MAy6r4pwKY8/X887l2aXqawKMAI4HdgG+BJ4D\nfhtjfDuj3OWp+7wrxnhqBfWUO15V7EDHDcRV7fda5hn0J3mup6TuZy3wEjAiNQoo8xrVegfVVd2Y\nyz4X4NkQApU9i0qkf+e3A94lmW5xNcl00q2AHwMHhxCK6mgdrYKOL5WQOJnkd3mfVEyrSKb8uwsY\nFWNcX+acU6nZ5yzrdmMDsdeovmza5ErOH8sG2v6aPNcqrnc52bc5p1KDd1RFDF1J2sMWwM9ijPfn\neo0s2on5wI7AXjHGd8vU8SfgXGAx0CbGWFzm+GvAvpRua7OON99tpCRJUnW5Ro4kSapvlqa2TTN3\nhhDOJenYOw6YA/wVeBbYHbgOmBJCaJFR/iCSzpwTgY+BscBDJP/9dBHwUghhl1TxJ0g6hdLS6/fM\ny6hvIPAyMCi1/65U/fsB94QQxqY6/CpyP9A8FcP7Vd18tveZy7Uyyl8J7Az8i2R9l3Yk97ZXNc5P\nx53X553D/QD8E/jvVDxjgYXAMcDzIYRq31Mlsom9RI7v9T6SzuqXgXEkHZ1HAM+EEDpmXCObd7BB\nWcb8BMlzWJH6+SGyWC8olXwLqR/PBv4N9CV59y2AgSQJua1JRsTUqkKPL2UMyTvvSTI66M/AUyTJ\nh9tTx6pSrc9ZSl7ajVzqy7FNTqvO73OuzzWfsnlH5YQQdgYeI/mcVjb9YVbXyLKdeDK1PbiC6/YB\n1gOtge+XucY2QDeS9qXsulvVjjffbaQkSVI2HJEjSZLqm91T2znpHSGEPUk61wCOiTH+M+PYtiSd\naz1IpmIbmjo0HGgCnB1jvCOjfINUXf9D8g3iC2OM94UQXgBOA4gxnp8ZUAhhV5LOvEbAiTHGBzKO\nBZLOwFOAp4G7y9zPAcAU4Cdlv2FcVg3vs0bXStX5I5KF6b8CDogxvplx7LyMWKojb8+7pveT0hOY\nDuweY1yZimELks7hfsD/AkdlcV+lVBV7COHAis7J8b0eAkSgc4xxaeqc5sCLJJ2dp/HtqIVqv4MN\n3We2MccY7wPuCyEcA7QEbs0czVYNe/Ht/9u8D/SKMS5J/bwW+FsI4bvAb4F+IYRGMcZvsqg/VwUd\nX+rapwHFwEExxukZx7oAbwCDQwg3Zx7LUO3PWZ7bjRrVl2ObXKIabX+uzzWfsmkLygkhtAImkoyI\nuSzGeFuu16hB25Z+L4eQJMHSZXckSZQ+BvwI+CFQ8jkgSfw0BJ6NMa5NjfaryTPJWxspSZKULUfk\nSJKkeiP1beH/Sv34z4xDZ5N0ov4js6MIINWZOjz1489TnfYAu6a2L5QpX5wq3xP4QzVD+x+SEUJ/\ny+wwTNUXgUtTP55XwbmtgeurmYioyX3W9FqQjCIAuCez8zR1vT8Bb5c/pVL5fN5p2d4PQGOSZNHK\njBjWASNTPx6R6tCsTbm81xbAeelOytQ5q/h2pEvmN9fz+Q5y/Sxmq2vG30/PSJJkeiy1bU4yJVJt\nKvT4VgGnA+eWTSjEGN8n6VAHOKiS87P5nOWz3ahpfbm0ydnI9bnmUzbvqJTU1HX/APYEbokxXpGn\na2TbTjxJkhQrOyKnd2o7lmSqsx+WOX5oavt4jvFujH+nJEmSqsUROZIkaZMXQtiapAPlGpLF0ifG\nGCdmFEl3+jxW9tyUp0k6h7YFvgu8Q/It3T2AW0IIZ8QYZ6ULxxhXkHxjt7rSnUyVXX9CalsUQtgq\nxvhlxrGvs7hWTe4zUzbXgm8X+H6ukuNPUMFaRZXI5/NOy/Z+AJbEGCs65zVgDbAlyeiKstPzbEy5\nvNevgYrWpUiv45CZlMrnO8j1s5it9Ofs+UreH8CnGX+vMLmXmkopkrzn3WKMH+cYV17iCyH0IZmO\nK9NKYBZJsnKD67lUJcY4F7iziiLzU9vKkpjZfM7y2W7UtL5c2uRqy8Nzzads3lGJ1GiTsSTJkXuB\nIXm8RlbtRIzxnRDCG0C3EELnjDYq/T6nkEx9dlAIoUFGEj+dyJmUY7wb498pSZKkajGRI0mSNjUv\nZkyLUlYxyToHZb9Fnf4W7eyKTooxrgwhLALakCx2/A5wAcnCyIcAM0MIb5F0Kj1OanqWLGLumNoe\nF0IoqqTMWpLRILuRLLad9kWs5kLY1Ow+M2VzLYD2qe38So7/O4u68vm807K9H6j82X0TQvicZA2O\nHWoQSy5yea/zKxmRlJ62K3OEfj7fQa6fxWylO+ofrqJM69S2mGTdo4pcRdKJ25EkYZfvRE5N40uP\n6PkV8B+gAckUV+cBd4cQPooxvpRLgCGEdiSfgcNJfre3I5l6LFNla8Zk8znLZ7tR0/o6prY1aZOz\nkuNzzads3lGmPwAnkSQxTt3ACMdsr1GTduIJkvVuDiFJZEKSqHkvxvifEMJzJEmnvYG3QgjbkYys\n+bCCxGy28W6Mf6ckSZKqxUSOJEna1DwAfFZm31fAXOCJGONHFZzTPKNcZVants0AYowfhRC+T9Jx\ncxJJR1D654UhhCtjjLdUM+b0Qs3HVKPs1mV+XllhqYplfZ85XCvzeqsrOf51dSvK8/NOy/Z+IFlw\nvjLp+2xag3pzkct7rXbHYp7fQa6fxWylp0CaUUWZ9MiNd1PT5ZUSQugOnEDy7f4pJB3B/8pDbPmI\nryvJNF03Z66dE0L4kGQaqB+QjESokRDCbiSjzNqSvJcpwCd8+/twBNCliiqy6cDOW7uRQ325tMnV\nlofnmk81STL0IElaQLIGzY+o+nci22vUpJ14Avg1yWie0SGETiSJufSaPemRWT8kScAdQpIoKzut\nWtbxbqR/pyRJkqrFRI4kSdrU3FSDb55/SdIZ17yKMuljmWujLCJZK+HSEMLuJJ1uJ5B0IP0xtSD5\nTdW4/kqSKVr6xhifyDL2bNToPnOwOlVfkw1cq1ry+LxzUVWSJn1sVTXrapxjLGm19l7z+A5qLebU\nwvXpKZAWVVH0J6ltZdM4/S8wLsb4XAhhAcmInJzlKb6uwBuZSZyUdqnt+zWPEIDrSJIN00naqVJx\nhhD+Sv4SDnltN2pYX221ybX5XCF/bU5ac5LEyePADcCdIYSuMcbKRj9lqybtxPMkbXA6wZSeVm1y\navsiSYLmh8AfqXxatRopkH+nJEnSZqiy4dOSJEn1SXo6lU4VHUwtXp+e1qiyKV4+jDHeFmM8BDgr\ntfsX1bz+h6ntLtUsX1M532eW0mt6tKvkeIVxVEeOzzsXFb6j1ELb6SnV5qW26Wnbyk6TlNYxTzHV\n9nsFcn4HtRlz14y/t6nkenuTdLiuA+6o4PgRJB3DI1K73iMZkZMPOcUXQmhM0tn/XgihTerP7iGE\n/wZ+D/wtxvh0jjGmO8WvLptsSKnx73IF8t1u1KS+2mqT8/1ca6vNSXsLOCrGeCPwIMm0cPeGECq7\nfraybidijF+TjLrZJbWm1aEk0xFOTh1fRZI4Ozi1vs+hJOubPZunmEvU4b9TkiRpM2QiR5IkbQ4m\np7Y/ruT4kantAmBWCGHbEMJxIYQjKyl/X2rbvqKDqc6jTM+ktsdXUr5ZCOGE1Fz+uZic2lbrPnO8\nFsAbqe2BZQ+knkFlz69s2Xw/71y0DSF0rWD/fiSj2b8G3k3tW5HalutADiE04duFvCtVzdgnp7Yb\n7b3m+g4qMDm1rY3PYuZC9keUPRhCaAaMIfl/nzvLrpORegf/C4zJmJrxfWCPVBIlVznFB3wX2BL4\nb5K1cxaSPLP/A/43xjgwDzGmZ2pYUkF8XYGeqR/z8buWl3Yjx/o2Sptcwe9zvp9rzm1OlpZkTPN3\nJsl6Q4eQjEjJh8mpbbbtRHoUVa9UPO/FGDPXlXqOJOl0IPA9YFqMsappMzdoI7SRkiRJWTGRI0mS\nNgd/IumA/3EIoX/mgdRC1FelfvxjauHjtiRr8fw1hPDdCuo7IbV9I2Pfioy/dyhT/naSNQAODyEM\nLnP9LYBbgfv5do7/msr2PnP1YGp7cgihc5ljv6L63zbP9/POxRrgplTnOlAyImJk6sd/ZnQIvp3a\n/jA1xU66fCPgWr6dTqusbGOvjfdak3dQldr8LKYTb8uAX4YQBqUTMCGEA0g6i3uQJGcurOD8n5Gs\n/3FFxr73SaapKvcsQgh/DSF8EEI4o5biS59/BnB46s9AkjVxRoYQDs9DjOmp2Up1qIcQvkeyBs8L\nqV07V7O+quSr3cilvny2yVX9Puf7uda0zclZjHEpye/KN8CIEEI+kkY1bSfSiZyTSBInk8vUm14n\nZyhJkiwf06rlu42UJEnKimvkSJKkei/G+GEI4Vzgz8DDIYTngJkk32o+mKTz6xHg+lT5D0IIVwOX\nAG+FECaTTOvSkGSKo54kc/v/KuMai0IIc0imtnkuhPAOSaf/HTHG2SGE04G/knQCnQO8CbQkmce/\nPTAns77auM88eBA4m+QeXgshTCDprO5OMi3V74HLqxF3Xp93jvc0ObX9MITwJEknY29gd5L1TYZl\nlH2WpGN1b5L7nwgsJfkW+HbA70hGepS93wpjp5JF3mvjvdbkHWygvtr8LKZHvAwhWZPkbpK1PNbx\n7QLpHwD9yn4rPzWK4Xckn+WtMjrH053ze/Nt53naLiSJn+qO1qhxfCldSabUui81bVQ69seBz4Hz\ngSdzjPF/gYeAC1IjRWaSJEB6A1eTPINewM9CCMUko5deqKyyDchLu5FLfflskzfQFuX7udaozcmX\nGOPzIYQrSBLb94ZkvZzFOdRXo3YixvhuCGE+0C+1a3KZqqeR/M6kE2iP1zTGjGvmtY2UJEnKliNy\nJEnSZiHGeCdJh9lDwB7AqcBBJJ13PwcGZEwhQ4xxOHAsSQfQ94CTgcHAd4BRQLcKOtxOJllboy1J\nJ+LajPr+BvwAuIfk29enAwOAL0hGAnSLMc4jR9neZ47XSneUXU1yHz8Bfgp8RtKp9UoWdeX1eedg\nHdAfuIukc/QUYFuSzuIDMqe9Si08fwRJx/zXJPf+X8AMYH+S6YAqk1XstfFea/gO6jTm1BoaHVM/\nPp5xvWUk38R/m6TjtXuM8d8VVHEeySiKk0mmbkr/uTt1fK8qLr/Bz1se4oMkkfPvzCQOQIxxCck0\nazvlEmOqrvEk7+Rtks/98UBT4KQY42+Bh0mmjlpD8vvRsjr1VnKtvLUbudSX5za5wt/nfD/XHNuc\nfLmKZMTLTsBfcq0sh3biSZL+jGJgSpk6l5Gs79MQ+DTG+FaucabqzWsbKUmSlI0GxcX5mFVDkiRJ\nkmpXanqnKcDnMcbKFruv7NxtgI9IOtMr+sb+bcDLMcajKzh3OnBLjHHsxoovo47PgOkxxqPK7G8K\nrASejjH2rWmMkiRJkgqfU6tJkiRJ2lSlpy2ryTfufwM0AS6uaHqoEMIQkimsyu7fPrX/zY0cHyGE\ntiSjPN6r4PBQoBHJSIZcYpQkSZJU4EzkSJIkSdpUdU1ts0pYhBB2An4J3FHFGh8fAb1CCC1jjJkL\n2v8G+CDG+PrGiq+C89uEEAal/t4aOBQ4BpgA3FnBednEKEmSJKnAmciRJEmStKmq6YiXK0j+X+iG\nKsp8RLKOzV7Ai+mdMcZsFjPPaUQO3yZyTk39gWQ6tXdJ1ve5I7VuSilZxihJkiSpwLlGjiRJkqRN\nTghhC5KkRhNgnxhjQU0jVujxSZIkSdp0mMiRJEmSJEmSJEkqUA3rOgBJkiRJkiRJkiRVzESOJEmS\nJEmSJElSgTKRI0mSJEmSJEmSVKC2qOsAcrVs2TIX+ZEkSZIkSZIkSRtVq1atGtTFdR2RI0mSJEmS\nJEmSVKBM5EiSJEmSJEmSJBUoEzmSJEmSJEmSJEkFykSOJEmSJEmSJElSgTKRI0mSJEmSJEmSVKBM\n5EjSJmDWrFnMmjWrrsOQpI3CNk5SfWYbJ6m+s52TpI3PRI4kSZIkSZIkSVKBMpEjSZIkSZIkSZJU\noEzkSJIkSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIkSZIkSVKBMpEjSZIkSZIkSZJUoEzkSJIk\nSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIkSZIkSVKB2iIflYQQ9gQuAXoDbYClwAvAtTHGaRnl\nmgHDgBOBDsBy4BlgRIxxZj5ikSRJkiRJkiRJqi9yHpETQugGvAL8CBgN/By4EfgBMCWEcHSqXAPg\nn8ClwNRUuWuAHwIvhhB2yzUWSZIkSZIkSZKk+iQfI3IuBZoDA2KMT6R3hhDGA+8DVwCPkIzCOZxk\nlM7FGeWeBl4DrgWOzUM8kiRJkiRJkiRJ9UI+1shJj6SZmrkzxvgB8B+gY2rXyantH8uUm0EyDduP\nQwjb5CEeSZIkSZIkSZKkeiEfiZz3U9s9MneGEFoB2wDvpHYVAZ/EGOdVUMfLQGOgex7ikSRJkiRJ\nkiRJqhfyMbXaVUBf4K8hhPOAD4AdgJFAMTAihNASaA3ESuqYm9p2Ap7JQ0zMmjUrH9VIUkGxbZNU\nn9nGSarPbOMk1Xe2c5Lqk86dO9d1CKXkPCInxvgOcADQiGR6tYXAW8B+QN8Y42SgZar4qkqq+TK1\nbVnJcUmSJEnK2VlnnUWPHj3o0aMHZ511Vl2HI0mSJEkblPOInBBCAB4DmgAXkIzI+Q7wK+CREMJP\ngHdzvU62Ci1jJkm5SH+zybZNUn1kG6fa1KxZs1J/93Onjc02TlJ9ZzunzdHIkSOZMGEC//jHP9hx\nxx3rOpxyHn30Uf70pz+xdOlSzjnnHE4++eQNn6SClo+p1UYD7YEuMcbZ6Z0hhAeBD4G/AF1Su7eq\npI4Wqe3yPMQjSZIkSZIkSYXpsuF1HUHVRl5V1xHkzZgxY+jXr1/eky3HHXccBx54IK1bt85rvfmw\nbNky/vCHP7D11lvzm9/8hi5dumz4JBW8nKZWCyFsBfQCZmQmcQBijF8Bk0mSPLuQTLm2UyVVdUht\nnUxTkiRJkiRJkpST+fPnc8cdd/Dpp5/mve7vfe979OnTh6ZNm+a97lzNnTuXNWvWcOSRR9K/f3/2\n2GOPug5JeZDrGjnNgAZAZZ/YphnbF4CdQgi7VFDuIOArYEaO8UiSJEmSJEmSNnPvvfdeXYdQJ9as\nWQNQkEkm1VxOiZwY4xcko2i+H0L4XuaxEEJroDfJdGnvAGNShy4oU+4QYF/g/hjjylzikSRJkiRJ\nkiTVvZEjR1JUVMTMmTP5v//7P/7rv/6LXr16MWDAAO69916Ki4tLlf/Pf/7D73//e44++mh69uzJ\nYYcdxvnnn8/rr79eqty6deu47777GDRoEL179+aQQw7hhBNOYNSoUSVJjLPPPpvhw5Mp7M455xyK\niopYsGABAEuXLuW6666jf//+9OzZk8MPP5yhQ4fyzjvvVBj/hx9+yJAhQzj44IOZNm1aqWPpOrO9\nh6rqrkx16j777LM555xzABg9ejRFRUWMGjWqynrfeustioqKuPbaa5k0aRJnnHEGhx56KL169eLU\nU0/ltddeq/J81Y58rJHzK+BhYGoI4VZgJtAGGAJsA5wdY/waeCSEMB44P4SwNfAMyZRqQ4F5wCV5\niEWSJEmSJEmSVCBuueUW1q5dy8knn0zjxo0ZP348N998M8XFxQwaNAiAL774gtNOO43ly5dz7LHH\n0rlzZxYtWsTDDz/Mueeeyw033MABBxwAwHXXXcf48eM54ogjOOGEE2jUqBEzZsxgzJgxfPjhh1xz\nzTWceeaZPPjggzz99NOcccYZdOrUidatW7N8+XJOP/10lixZwoABA9htt91YuHAhDz30EGeddRY3\n3XQTPXr0KBX/bbfdRps2bRg+fDidOnWq9D6zuYeNVfeZZ57J9OnT+fOf/0yfPn047LDD2HXXXat8\nPx988AEAr776KuPHj6dXr14ce+yxxBh55ZVXuOCCC3jwwQdp165dlfVo48o5kRNjfCSEcCDwa+Ac\nYFtgBfAacG6M8fGM4icBvwEGAYOBJcCjwPAY42e5xiJJkiRJkiRJKhxffPEFd999N1tskXRF9+nT\nh/79+3PXXXcxcOBAGjZsyOjRo1m4cCFXXnklffv2LTm3b9++HHfccdx4440lSZBJkybRqVMnfve7\n35WU+9GPfsTOO+/Mu+++y1dffUX37t1LRpJ0796dfffdF4Dbb7+d+fPnM3r0aPbaa6+S8/v168eJ\nJ57IjTfeyH333Vcq/rVr1zJixIgN3mc297Cx6u7evXvJSKddd92VPn36bLDuGCMACxcu5Pbbb2ef\nffYpOXbdddcxbtw4HnjgAYYMGbLBurTx5GNEDjHGl4AB1Si3Brgi9UeSJEmSJEmSVI8dffTRJUkc\ngBYtWtCjRw+eeeYZPv74Y3bffXcmT57M1ltvzWGHHVbq3Hbt2tGjRw+mTZvGvHnz2GmnnWjUqBEL\nFy5kwYIF7LjjjiVlTznllA3G8tRTT9GxY0c6dOjAihUrSvY3a9aMbt26MXXqVJYvX87WW29dcqx3\n797Vus9s7qE26q6u9IicoUOHlkriAPTv359x48Yxe/bsrOtVfuW0Ro4kSZIkbUomTJjA0qVLWbp0\nKRMmTKjrcCRJkuq9iqYMa9OmDQCffvopK1asYPHixXTs2JFGjRqVK9uhQwcA5s6dC8AZZ5zBihUr\nOP7447nooot48MEH+eSTTzYYx8qVK1m4cCEff/wxffr0Kfdn6tSpAHz2WemJozKTRZXJ9h5qo+7q\nWLNmDbNnz6Zt27b069ev3PFWrVoBybpEFZk9ezYHHnggP/vZz7K+trKTlxE5kiRJkiRJkiSV1bx5\n83L7ttpqKyCZWmzVqlVAMiqmIk2aNAHgq6++AuCEE06gY8eO3H///bz00ktMmTIFgK5du/LrX/+a\n3XffvcJ6vvzySwA6d+7MhRdeWGm8ZZMrFcVfVrb3UBt1V8eHH37IunXr2H///WnYsPyYj08//RSA\ntm3bVnj+9ddfz8CBA7nnnntYu3YtjRs3zjoGVY+JHEmSJEmSJEnSRrF69epy+1auXAnANttsU5LM\nSCcsykonKDKTHvvttx/77bcfq1ev5vXXX+fxxx/n8ccf59xzz+Whhx6iZcuW5epJJ4/WrVtXsmZO\nvtTkHgqh7vT6ODvssEOFx59//nkA9t9//3LHnn32WdavX8/gwYMZO3Yss2fPZo899sg6BlWPU6tJ\nkiRJkiRJkjaKitZXWbBgAZBMsdayZUvatGnDnDlz+Oabbyo9f9dddy13rGnTphxwwAGMHDmSE088\nkaVLlzJjxowK42jRogXf+c53mDt3LosXLy53fOnSpVndV6Zc7qEu606vj5NOrGVatmwZDz/8MG3b\ntuXggw8udWz16tXcfPPNDBkyhJYtW7L99tuXJIW0cZjIkSRJkiRJkiRtFI899lipBMSyZcuYPn06\nbdq0YeeddwagT58+rFixgieffLLUuXPnzmX69Ol06dKFdu3a8f777/OTn/yEf/zjH+Wukx5xs+WW\nWwKUrCezZs2akjJ9+vThm2++4YEHHih17vLlyxk0aBBDhgyp8X1W9x4Kqe50Iufpp58uNTXbqlWr\nGDFiBMuWLePCCy8smb4t7a9//Stdu3YlhAAk6yDNnDkz6+ur+pxaTZIkSdJmY+LEiXz++ecAlS7q\nKkmSpPzZaqut+MUvfkHv3r1p3Lgxf//731m9ejW//OUvadCgAQCnn346U6ZM4aqrrmLWrFl06tSJ\nzz//nPHjx9OoUSMuuugiIFnfpkmTJlxzzTXMmjWLLl260KhRI2bNmsW4cePo1KlTybRp6bVu7rzz\nTj7++GN69erFz3/+c5577jnGjh3L4sWL6d69O4sXL2b8+PEsWrSI4cOH1/g+q3sPhVL3unXr+Oij\nj+jcuTMrV65k4MCBHHTQQaxdu5bnnnuOhQsXct5553HooYeWOm/BggWMGzeOe++9t2Rfp06deP/9\n92t8f9owEzmSJEmSNhu33noOFtLlAAAgAElEQVRryVzfvXr1MpEjSZK0kZ111lm8+uqr3HPPPXzx\nxRe0a9eOoUOH8tOf/rSkzDbbbMOdd97JHXfcwaRJk1i0aBEtW7ake/funH766XTu3BmALbbYglGj\nRnHnnXcyZcoUHn30UdatW0e7du346U9/ymmnnVYyIqd37948+eSTvPrqq/z73/9mzz33pGPHjtx5\n552MHj2aadOmMWHCBJo1a8Zee+3F8OHD6d69e43vs7r3UCh1f/zxx6xZs4a9996bgQMHcv311/PI\nI49QXFzMnnvuyYgRIypcG+fGG29k+fLlHHPMMSX7iouLad68OcXFxSXJOeVXg+Li4rqOISfLli3b\ntG9Akqph1qxZADn9oy9Jhco2TrXpqKOOKpXImTBhQh1HpPrONk5SfWc7p8qMHDmSCRMmMGbMGPbe\ne++6DkdlPPLII1x55ZUMGzaMAQMGVOucl156iUsvvZRbb72Vxo0bl+yfM2cOw4YN4+GHH6Z9+/Yb\nK+SC0KpVqzrJVDkiR5IkSZIkSZKkzUh6fZz0Ojcbsm7dOm644QYGDhzId7/73VLH2rZtC0CMsd4n\ncupKw7oOQJIkSZIkSZIk1Z4YI40aNWK33XarVvn777+fJUuWcMIJJ5Q71qJFC7bbbjtmzpyZ7zCV\n4ogcSZIkSZIkSZI2E+vXr2fWrFl06NCBJk2aVOucQYMGMWjQoEqPT5w4MV/hqQImciRJkiRJkiRJ\neXXZZZdx2WWX1XUYqkDDhg2ZMmVKXYehLDi1miRJkiRJkiRJUoFyRI4kSZKk+uWy4ZUfmzO79N+r\nKrshI6+q+bmSJEmSVE2OyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5Ik\nSZIkSZIkqUBtUdcBSJIkSVJtGdB5d/b5zvYA7NqqVR1HI0mSJEkbZiJHkiRJ0mbjv7vuXdchSJIk\nSVJWnFpNkiRJkiRJkiSpQJnIkSRJkiRJkiRJKlAmciRJkiRJkiRJkgqUiRxJkiRJkiRJkqQCtUVd\nByBJkiRJteXMx59k+uefA7Bv27aMOvLwOo5IkiRJkqrmiBxJkiRJm435K1fy0dJlfLR0GfNXrqzr\ncCRJkrQZuvbaaznwwAOJMW7U64wcOZKioiIWLFiwUa9Tl0aNGkWvXr1488036zqUjcpEjiRJkiRJ\nkiQp78aMGVOvkwg1MWnSJB588EF++ctfEkKo63A2eWeccQZ77703l1xyCcuXL6/rcDYaEzmSJEmS\nJEmSpLyaP38+d9xxB59++mldh1IwVq1axXXXXcdee+3F8ccfX9fh1AsNGjRg2LBhLF68mFtuuaWu\nw9loXCNHkiRJUu24bHhdRyBJkqRa8t5779V1CAXnwQcfZNmyZVx++eV1HUq90qFDB/r168cjjzzC\nySefzM4771zXIeWdI3IkSZIkSZIkSXlz9tlnM3x48iWec845p2SdlvSaLR9++CFDhgzh4IMPZtq0\naSXnFBUVlavriy++oKioiLPPPrvU/qVLl3LdddfRv39/evbsyeGHH87QoUN55513qh3nW2+9RVFR\nEddeey2TJk3ijDPO4NBDD6VXr16ceuqpvPbaazk8hdLWr1/P/fffT8eOHenVq1epY9nce/oZfv75\n59x1110MGDCAXr16cdRRR3HbbbfxzTffVBlHcXExl1xyCUVFRTz66KM1qvM///kPv//97zn66KPp\n2bMnhx12GOeffz6vv/56SZmjjjqKgQMHlrv+CSecQFFRUcl7T3viiScoKipi4sSJNbrHY445hvXr\n1/Pwww9Xef+bKhM5kiRJkiRJkqS8OfPMM+nTpw+QrGFy9dVX07p165Ljt912G23atGH48OF06tQp\n6/qXL1/O6aefzmOPPcZhhx3GpZdeyqBBg5g5cyZnnXUWr776arXq+eCDDwB49dVXufzyy2nVqhXH\nHnss3bp147333uOCCy7gs88+yzq+isycOZNFixax//7756W+2267jWeeeYaTTjqJX/3qV2y77baM\nHTuWBx98sMrzbrnlFp566inOO+88fvzjH2dd5xdffMFpp53GxIkT6d27N5dccgmDBw9mzpw5nHvu\nubz44osAFBUV8dFHH5Vat2bRokXMnj2b5s2bl0r6AEyfPp0GDRqw33771ege99xzT1q0aMFLL71U\n/Ye4CXFqNUmSJEmSJEmqJUcddVRW5Zs1a8bf//73cvvHjx/PmDFjsqpr4MCB/OxnPyu3f/DgwSxe\nvBiACRMmZFVnRbp3714ymqV79+7su+++pY6vXbuWESNG1Lj+MWPGMH/+fEaPHs1ee+1Vsr9fv36c\neOKJ3Hjjjdx3330brCfGCMDChQu5/fbb2WeffUqOXXfddYwbN44HHniAIUOG1DjWtHRyqUePHjnX\nBfDRRx/xl7/8hcaNGwNwwAEHcMwxx/DMM89w4oknVnjO+PHjueeeezjppJM45ZRTalTn6NGjWbhw\nIVdeeSV9+/YtObdv374cd9xx3HjjjRxwwAHst99+TJgwgTfffJODDjoIgBkzZtCoUSP69OlTYSKn\nc+fOpRJ+2dxjo0aN6N69O1OnTmXJkiVsu+22WT3PQmciR5IkSZIkSZJqyfPPP59V+RYtWlS4f/78\n+VnXdeCBB1a4/9VXX83byJPq6N27d07nP/XUU3Ts2JEOHTqwYsWKkv3NmjWjW7duTJ06leXLl7P1\n1ltXWU96RM7QoUNLJXEA+vfvz7hx45g9e3ZOsabNmzcPgF122SUv9R133HElCQ6AHXbYgW233ZZF\nixZVWP6FF17g2muv5cgjj+T888+vcZ2TJ09m66235rDDDit1brt27ejRowfTpk1j3rx59OjRgwYN\nGvD666+XJHJee+01dt99d/bdd18mTpzI6tWradq0KV988QVz587l5JNPzuked9llF4qLi5k3b56J\nnLJCCMXVKLZrjHFOqnwzYBhwItABWA48A4yIMc7MNR5JkiRJkiRJUuHacccda3zuypUrWbhwIQsX\nLiyZvq0in332WZWJnDVr1jB79mzatm1Lv379yh1v1aoVAOvWrSt3bPbs2QwePJgOHTpw7733Vivu\npUuXlqo3VzvttFO5fU2aNKkw3hgjI0eOpEuXLvz2t7+lQYMGNapzxYoVLF68mO9///s0atSoXNkO\nHTowbdo05s6dS8+ePdltt9144403So5Pnz6dnj170q1bN9atW1eyRlF69FbmtGrZ3iNQkrxJP+v6\nJB8jco6r4tjVQCtgIUAIoQHwT+Aw4C/ASGBHYCjwYgihKMb4UR5ikiRJkiRJkqSCU3ah+w1p1qxZ\nhfvbt2+fdV2VjQbp0aNHydRqtaF58+Y1PvfLL78EoHPnzlx44YWVlttQsujDDz9k3bp17L///jRs\nWH4p+U8//RSAtm3bljt2/fXXM3DgQO655x7Wrl1batTIhuKubIRVtrbccstql73iiitYtWoVs2fP\n5vPPP6d9+/Y1qnPVqlVA5Z/JJk2aAPDVV18BSWLmgQceYPXq1axYsYK5c+dy3nnnscMOO9C2bVtm\nzJhBUVERM2bMoFmzZuVGRWVzjwAtW7YEvn3W9UnOiZwYY/kJGoEQwjHA7sCpMcb0kzsROBy4NsZ4\ncUbZp4HXgGuBY3ONSZIkSZIkSZIKUT7WoAE49thjOfbY/HSl3n333XmpZ2P4+uuvS/281VZbAclI\nmbJr72QjvT7ODjvsUOHx9LR1+++/f6n9zz77LOvXr2fw4MGMHTuW2bNns8cee2zweum4V65cyTbb\nbFOtGMvee0116dKFk046iYsvvpgRI0YwatQottgi+9RAOgGXTuiUlU7gpMsVFRVx77338tZbb7F4\n8WIaNGhAt27dAOjatWvJOjnTp0+ne/fu1UqIVSU9zV76Wdcn5VONeRBCaAncAkyNMd6VcSg9yd0f\nM8vHGGcALwA/DiFU71MsSZIkSZIkSaoX0omFNWvWlNo/d+7cUj+3aNGC73znO8ydO7fCUUTVnVYr\nvT7OypUryx1btmwZDz/8MG3btuXggw8u2b969WpuvvlmhgwZQsuWLdl+++1LEkIbkk7eLFu2rNyx\n6t57TV166aUcdNBBnHbaabzzzjuMGjWqRvW0bNmSNm3aMGfOHL755ptyx9PrCe26664AdOvWjS23\n3JI33niD1157jU6dOpU8h3322Yd3332X+fPn88knn5RLmNXEkiVLAKqdKNuU5GNqtYqMIJky7Udl\n9hcBn8QY51VwzstAL6A7yZo5OZk1a1auVUhSwbFtk1Sf2cbVfx3XrK3rEBhz+GGsXZ/8T2fjho1Y\nm0NMc/zMKgu2cZLqO9s5lZVOqMyePbtkrZrly5cD8Mknn9C0adNS5dPTaD3xxBOEEAAoLi5m7Nix\nQDLaI/0523fffZk4cSK33347xx9/fEkdX375Jb/+9a/Zeeed+fWvf11lfG+++SYAkyZN4tBDDy2J\nJ52sWbZsGaeddlqpZMpDDz1Ep06daNiwIbNmzaJt27a88sorfPe7393g80jX//LLL5dL2GRz71U9\nw7Vrk/+2LVt2zpw5fPnllxx88MFMnjyZu+66i/bt2/O9730v6zr33XdfJk2axN13311qar/PPvus\nJFmzYsWKktExnTt35pVXXuGzzz6ja9euJfW0bt2aNWvWcPvttwPQrl27Gt1jpg8++IAGDRrw9ddf\n59wmde7cOafz8y3viZwQwneA84C/xhjfztjfEmgNVJaiTP9GdCIPiRxJkiRJKmu7Zk03XEiSJEk5\n23777QH45z//yfz588utf1LWD37wA6ZNm8Ydd9xBv379aNSoEa+88gpbbbVVuTVsjjnmGKZPn86/\n/vUvli1bRpcuXVi2bBlPP/00y5cv58gjj6zyWt988w2ffPIJu+yyC1999RXDhg2je/furFu3junT\np7NkyRJOOOEEevToUXLOwoULmTRpEldffXXJvp133pmPP/64Ws9jzz33BODdd98tmV6sJveei0aN\nGnHeeecxbNgwbrvtNv7whz9kvWbPgAEDeO211xg9ejRz585lp512YtGiRTz11FM0atSIU045pVT5\nvfbai3/84x98/fXXdOnSpWT/TjvtRIsWLXjuuefYbrvtNrim0YasX7+e9957j5122olWrVrlVFch\n2hgjci4GmgJXldnfMrWteAI9+LJMuZwUWsZMknKR/haBbZuk+sg2bjOyZW5zXhcaP7OqDts4SfWd\n7Zwqs8suu/D222/z6quv8vnnn3PIIYeUjMzZeeedy31mOnfuTNOmTXnggQf429/+RqtWrTjiiCM4\n55xzOPjgg2nWrFmpc+6++25Gjx7NtGnTmDZtGs2aNWOvvfZi5MiRdO/evcrYZs6cydq1a/nBD37A\nwIEDuf7665k6dSrFxcXsueeeDB48uNxUX6NGjeLLL7/kggsuKNlXXFxM8+bN2X333WnQoEGV19xt\nt9244YYb+OCDD3K696qeYXqNmbJlO3bsWJIo6dy5MxdffDFXXHEFf/vb37jmmmuyqhOSZ3/HHXfw\n4osvMnHiRFq2bEn37t05/fTTy53/ox/9iAceeACAfv36sd1225Uc69atG1OnTqVv376lzss2HoC3\n3nqLVatWceyxx9bL9qhBcXFx3ioLIWwLzAOeijH2L3NsR2A+8HSM8bAKzv1v4M/AhTHGG6t7zWXL\nluXvBiSpQPkfxpLqM9u4zchlw+s6gvwaWfa7a1J5tnGS6jvbOW2KHnnkEa688kqGDRvGgAEDNlj+\npZde4tJLL+XWW28tSSRAMmXZsGHDePjhh2nfvv0G67nrrrv405/+xE033UTPnj1zugeVduWVVzJh\nwgTGjRvHLrvsstGu06pVq6ozdhtJvkfkDASaA3dVcGx5artVJee2KFNOkiRJkgpXbSWmTBhJkiTl\n1QcffABQsh5NVdatW8cNN9zAwIEDy62F07ZtWwBijNVK5Bx33HHcc889jBkzxkROHv373//mscce\n4+ijj96oSZy6lL8J9hLHAV8DE8seiDGuBBYCO1VybofU1pXRJEmSJG0ULy/4lIkfz2bix7N5ecGn\ndR2OJEmS6kCMkUaNGrHbbrttsOz9999fsmZOWS1atGC77bZj5syZ1bpu8+bNGTp0KG+//Tbjxo3L\nOm6VV1xczNVXX822227LL37xi7oOZ6PJ24icEEILoCfwfIzxq0qKvQD0DyHsEmOcW+bYQcBXwIx8\nxSRJkiRJma544SWen78AgF7td2TCTzc8lYYkSZLqj/Xr1zNr1iw6dOhAkyZNNlh+0KBBDBo0qNLj\nEyeWG9NQpb59+/LWW2/xxz/+kX322Yc99tgjq/NV2p///GfefvttbrvtNlq1alXX4Ww0+Zxa7ftA\nY+CdKsqMAfoDF6T+ABBCOATYF/hLauSOJEmSJEmSJEl51bBhQ6ZMmVKnMVx00UVcdNFFdRpDfXHm\nmWdy5pln1nUYG10+Eznp1OGcygrEGB8JIYwHzg8hbA08QzKl2lBgHnBJHuORJEmSJEmSJEnapOUz\nkbNtartiA+VOAn4DDAIGA0uAR4HhMcbP8hiPJEmSJEmSJEnSJi1viZwY443AjdUotwa4IvVHkiRJ\nkiRJkiRJlWhY1wFIkiRJkiRJkiSpYiZyJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmS\nJKlAmciRJEmSJEmSJEkqUCZyJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAK1RV0HIEmSJEm15ZCdd2KH\nrbYCYI/W29ZxNJIkSZK0YSZyJEmSJG02Lt6vR12HIEmSJElZcWo1SZIkSZIkSZKkAmUiR5IkSZIk\nSZIkqUCZyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIK1BZ1HYAkSZIk1ZbfTJnK2wu/AGDv7dvwh0MO\nquOIJEmSJKlqJnIkSZIkbTbeXvgFz89fUNdhSJIkSVK1ObWaJEmSJEmSJElSgTKRI0mSJEmSJEmS\nVKBM5EiSJEmSJEmSJBUoEzmSJEmSJEmSJEkFykSOJEmSJEmSJElSgTKRI0mSJEmSJEmSVKBM5EiS\nJEmSJEmSJBUoEzmSJEmSJEmSJEkFykSOJEmSJEmSJElSgTKRI0mSJEmSJEmSVKBM5EiSJEmSJEmS\nJBWoLeo6AEmSJEmqLTf1+SFfrlkLwFZbNq7jaKrpsuEb/xojr9r415AkSZJUIyZyJEmSJG02Om+7\nbV2HIEmSJElZcWo1SZIkSZIkSZKkAmUiR5IkSZIkSZIkqUCZyJEkSZIkSZIkSSpQrpEjSZIkabMx\na8kSvlyzFoCttmzsmjmSJEmSCl7eEjkhhH7Ab4DuwDrgdeB3McZnypRrBgwDTgQ6AMuBZ4ARMcaZ\n+YpHkiRJkso6/+nJPD9/AQC92u/IhJ8OqOOIJEmSJKlqeZlaLYTwc+Cx1I9DgMuBTsDjIYQfZpRr\nAPwTuBSYCvwcuAb4IfBiCGG3fMQjSZIkSZIkSZJUH+Q8IieE0A74I/AU0DfGuD61/xHgReAoYHKq\n+InA4cC1McaLM+p4GngNuBY4NteYJEmSJEmSJEmS6oN8TK12CrAVcHk6iQMQY/wYaFum7Mmp7R8z\nd8YYZ4QQXgB+HELYJsa4NA9xSZIkSZIkSZIkbdLyMbXa4cAKktE3hBAahRCaVFK2CPgkxjivgmMv\nA41J1tiRJEmSJEmSJEna7OVjRM53gY+AfUIINwK9gEYhhHeB38UY7wcIIbQEWgOxknrmpradgGdy\nDWrWrFm5ViFJBce2TVJ9ZhtX/3Vcs7auQ6C4uLjU39cWQEyFYI6/fxudbZyk+s52TlJ90rlz57oO\noZR8jMhpDWwDTACeB44B/ie1728hhNNT5VqmtqsqqefLMuUkSZIkSZIkSZI2a/kYkbMl0BH4WYzx\nvvTOEMIE4H3g9yGEsXm4TlYKLWMmSblIf7PJtk1SfWQbtxnZsnFdR0CDBg1K/b1xAcRUCPz923hs\n4yTVd7ZzkrTx5WNEzkpgNXB/5s4Y42zgWeA7QBdgeerQVpXU0yK1XV7JcUmSJEmSJEmSpM1KPhI5\nc6qo5z+p7dYxxpXAQmCnSsp2SG2dUFOSJEmSJEmSJIn8TK32ItAV+B7wTplj6eTMvNT2BaB/CGGX\nGOPcMmUPAr4CZuQhJkmSJEnZuGx4XUcgSZIkSapAPkbkjE1tLwshlEw4HUL4Pkly5q2MpM2Y1PaC\nzApCCIcA+wL3p0buSJIkSZIkSZIkbfZyHpETY3w5hHAL8D/Av0II40hG4lwArAOGZJR9JIQwHjg/\nhLA18Eyq7FCSUTuX5BqPJEmSJFVm7+3bVPh3SZIkSSpU+ZhaDZJkzXvA2cAo4GvgeeDyGOOrZcqe\nBPwGGAQMBpYAjwLDY4yf5SkeSZIkSSrnD4ccVNchSJIkSVJW8pLIiTEWA/+X+rOhsmuAK1J/JEmS\nJEmSJEmSVIl8rJEjSZIkSZIkSZKkjcBEjiRJkiRJkiRJUoEykSNJkiRJkiRJklSg8rJGjiRJkiRt\nCq55+VVmLl4CwB6tt+Xi/XrUcUSSJEmSVDVH5EiSJEnabEz5ZB5/nzmLv8+cxZRP5tV1OJIkSZK0\nQSZyJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmSJKlAmciRJEmSJEmSJEkqUCZyJEmS\nJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmSJKlAmciRJEmSJEmSJEkqUCZyJEmSJEmSJEmS\nCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmSJKlAbVHXAUiSJElSbfltz/1ZvHo1AK2bNq3jaCRJkiRp\nw0zkSJIkSdps7LfjDnUdgiRJkiRlxanVJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmS\nJKlAuUaOJEmSpM3Goq++Ys036wHYslFDtmvWrI4jkiRJkqSqmciRJEmStNk4ecLjPD9/AQC92u/I\nhJ8OqOOIJEmSJKlqTq0mSZIkSZIkSZJUoEzkSJIkSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIk\nSZIkSVKBMpEjSZIkSZIkSZJUoEzkSJIkSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIkSZIkSVKB\nMpEjSZIkSZIkSZJUoEzkSJIkSZIkSZIkFagtcq0ghDAWOKWKIhfEGG9KlW0GDANOBDoAy4FngBEx\nxpm5xiJJkiRJkiRJklSf5JzIyXAusLCC/W8AhBAaAP8EDgP+AowEdgSGAi+GEIpijB/lMR5JkiRJ\nKqV9ixbstk2rkr9LkiRJUqHLZyJnYoxxThXHTwQOB66NMV6c3hlCeBp4DbgWODaP8UiSpP9n797D\n7Krq+/G/AwlySQKm0CJELpG4BC8tQVIhKPciVkSoVFTk8cpF2wKWeos0QsH6EyoqKnLJF61KrdSg\ngrb6LYgKWBDjXVkElUKCfAkKiVwkweb3xzlDJ+PM5HLOnLOZeb2eZ551svfae392mCzOzPustQFY\ny8UvPLTfJQAAAGyQbgY563J8u/3Q4I211sWllBuTvLiUsk2t9YEe1gQAAMCC+b25zpnn9OY6AAAw\njnQ9yCmlbJ7ksVrrY0N2zU1yV6116TCH3ZRkXpI5aT0zp2NLlizpxmkAGsXYBoxnxrj+2mXV6n6X\nwARwxwT+d26MA8Y74xwwnsyePbvfJaxlky6e682llF8keSTJo6WU/yqlvChJSinTksxIMlyIkyR3\ntttZXawHAAAAAADgCa2bM3IOS/KeJMuSPCfJ3yW5upTyyiTfaPd5eIRjH2q307pVTNMSM4BODHyy\nydgGjEfGuIbYbEq/K2ACmIj/zo1xwHhnnAMYe90Icv4pyb8kua7W+mh725dLKV9M8r32/r27cB0A\nAICOXPr9H+YXK1YkSXbdeuu84Y+f3eeKAAAARtdxkFNr/WGSHw6z/SellOuSHJpku/bmrUY4zdR2\nu7LTegAAAEZy5ZLbc8Oyu5Mk83bcQZADAAA0XjefkTOc/9dut0yyPMnMEfrt3G49FQ0AAAAAAKCt\noyCnlDK9lPKqUsoLR+rSbu9KcmOSmaWUnYbp9/wkjyRZ3Ek9AAAAAAAA40mnM3JWJflIko+XUrYd\nvKOUckhaz8a5uda6NMnC9q7ThvTbP8leST5Ta32ww3oAAAAAAADGjY6ekVNr/W0p5ZQkH09ycynl\nY0nuSbJnkpOTrEhyYrvvVaWURUlOLaVMT3JtWkuqnZ5kaZJ3dlILAAAAAADAeNPxM3JqrZ9IclCS\n29MKYxYmeVmSTyeZU2v93qDur0iyIK2l1C5LckqSq5PsW2u9p9NaAAAAAAAAxpOOZuQMqLV+LcnX\n1qPfqiRntb8AAAAAAAAYRcczcgAAAAAAABgbghwAAAAAAICGEuQAAAAAAAA0lCAHAAAAAACgoQQ5\nAAAAAAAADTW53wUAAAD0yl/N+ZMcU56eJPmjrbbsczUAAADrJsgBAAAmjMNn7drvEgAAADaIpdUA\nAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANNTkfhcAAADQK3/+b1fmhmV3J0nm7bhD\nvvSyo/pcEQAAwOjMyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACA\nhhLkAAAAAAAANNTkfhcAAACMYsH8flcAAABAH5mRAwAAAAAA0FCCHAAAAAAAgIYS5AAAAAAAADSU\nIAcAAAAAAKChJve7AAAAgF7ZYvLkTJ0y5fHXAAAATecnFwAAYML4t5ce0e8SAAAANoil1QAAAAAA\nABpKkAMAAAAAANBQghwAAAAAAICGEuQAAAAAAAA01OR+FwAAANAri25bkmUPPpgk2XHq1Bz99Nl9\nrggAAGB0ghwAAGDCWPiDH+WGZXcnSebtuIMgBwAAaDxLqwEAAAAAADTUmMzIKaWcleSMJJ+otb5m\n0PZNkpya5LVJZif5bQudW8IAACAASURBVJIbkry71vrtsagFAAAAAADgiarrM3JKKc9M8rYRdl+c\n5J+S3JbkhLTCnpLkG6WUfbpdCwAAAAAAwBNZV2fktGfcXJLkx0n2HLJvnySvT3JFrfUvB21flFaw\n85Ekc7pZDwAAAAAAwBNZt2fknJxknySnD7Pv+Hb7wcEba63LklyZZM/2bB4AAAAAAADSxSCnlDIz\nyT8m+VSt9dphusxN8rskNw+z76Z2+6fdqgcAAAAAAOCJrptLq30kyeokbxlh/y5J7q21rh5m353t\ndla3ilmyZEm3TgXQGMY2YDwzxg1vl1XDvX1mY61Zs2at16v9/fbUHRP437kxDhjvjHPAeDJ79ux+\nl7CWrgQ5pZSXJXlJktfXWpeP0G1akvtH2PfQoD4AAAAAAACkC0FOKWWbJBck+XqSyzquqEualpgB\ndGLgk03GNmA8Msatw2ZT+l3BuDJp0qS1Xk/x99tTE/HfuTEOGO+McwBjrxvPyDk3yYwkJ9Va14zS\nb2WSrUbYN3VQHwAAAAAAANLhjJxSyguSvD7JB5M8WEqZOaTLlu1tDyX5eZK9Simb1VpXDem3c7u1\nmCYAAAAAAEBbp0urHZRkUpJT219DHdP++kSSG5PsneR5Sb4xpN/z2+0NHdYDAAAwolfu8YzsN3PH\nJMlO0z2iEwAAaL5Og5zLk9wywr6rklyT5ANJ7mpv+5skp2VQkFNKmZ3kiCRfq7X+rMN6AAAARvSq\nPXbvdwkT24L5vbnOmef05joAANADHQU5tdbbktw23L5SSpIsrbVePWjb+UneUkq5MsmiJNsmeUuS\nR5L8dSe1AAAAAAAAjDedzsjZUKcn+UWSE5NckuThJNcleVet9Sc9rgUAAAAAAKDRxizIqbVOGmbb\nmiQfbn8BAAAAAAAwik36XQAAAAAAAADD6/XSagAAAH3z6qv/Pd++554kyd7bb59PvvjwPlcEAAAw\nOkEOAAAwYfz6t7/NPQ89/PhrAACAprO0GgAAAAAAQEMJcgAAAAAAABpKkAMAAAAAANBQghwAAAAA\nAICGEuQAAAAAAAA0lCAHAAAAAACgoQQ5AAAAAAAADSXIAQAAAAAAaChBDgAAAAAAQEMJcgAAAAAA\nABpKkAMAAAAAANBQk/tdAAAAQK9cceSL87s1a5Ikm06a1OdqAAAA1k2QAwAATBhbTpnS7xIAAAA2\niKXVAAAAAAAAGkqQAwAAAAAA0FCCHAAAAAAAgIbyjBwAAGDCuO7Ou7L84UeSJNttuUUO2Ompfa4I\nAABgdIIcAABgwjj35ltyw7K7kyTzdtxBkAMAADSepdUAAAAAAAAaSpADAAAAAADQUIIcAAAAAACA\nhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAa\nSpADAAAAAADQUIIcAAAAAACAhprc7wIAAAB65YW77pLdnrxNkmS3bbbpbzEAAADroStBTinl2Une\nmmS/JDskWZnkxiTvqbXeNKjfFknekeTYJDu3+12b5Ixa623dqAUAAGAkf73Xnv0uAQAAYIN0vLRa\nKWWfJP+V5KAklyR5Q7s9MMk3Syn7tvtNSvKFJO9K8s0kr0vyviQHJPlWKeVpndYCAAAAAAAwnnRj\nRs7HkkxKMq/WesfAxlLKzUmuTPK2JEemNQvn0CTn1lrfOqjfNUluSXJukqO7UA8AAAAAAMC40NGM\nnFLKJkk+keSUwSFO2/9ttzu12+Pb7YcGd6q1Lk5rGbYXl1IsUg0AAAAAANDW0YycWuv/JHn/CLuf\n0W5/0G7nJrmr1rp0mL43JZmXZE5az8wBAAAAAACY8LqxtNrj2jNqpibZL8l5SX6R5N2llGlJZiSp\nIxx6Z7udlS4FOUuWLOnGaQAaxdgGjGfGuOHtsmp1v0sYV95y3Tfy/eX3JUn+eLtt8/4DXtDnihgL\ndzRwPDHGAeOdcQ4YT2bPnt3vEtbS1SAnyf3tdk2Sy5K8tdb6q1LKDu3tD49w3EPtdlqX6wEAAHjc\nz1asyA/uawU5Uzeb0udqAAAA1q3bQc6BSbZKsmeSNyU5qJRyTJK7u3yddWpaYgbQiYFPNhnbgPHI\nGLcOwoaumjRp0lqvp/j7HZeaNJ4Y44DxzjgHMPa6GuTUWq9rv/xSKeVTSRYnuTzJc9vbtxrh0Knt\ndmU36wEAAAAAAHgi22SsTlxrvSPJNUlmJ/mjJMuTzByh+87t1mKaAAAAAAAAbR3NyCml7J7kq0n+\nb631dcN02WbQdW5McmQpZada651D+j0/ySNpzeABAACAjbdg/thf48xzxv4aAACQzmfkLEmyeZJj\nSim7Dt5RSnlaknlpzcS5LcnC9q7ThvTbP8leST5Ta32ww3oAAAAAAADGjY5m5NRaHyul/HWSTye5\nqZTykSQ/T7Jrkr9KskWSN9daf5fkqlLKoiSnllKmJ7k2rSXVTk+yNMk7O6kFAAAAAABgvOkoyEmS\nWutnSin/neRtaYU32yRZmeTbSd5fa/3qoO6vSPL2JMcleXWS+5NcnWR+rfWeTmsBAICe6cXSTQAA\nAEx4HQc5SVJr/VaSl65Hv1VJzmp/AQAAAAAAMIpOn5EDAAAAAADAGBHkAAAAAAAANJQgBwAAAAAA\noKG68owcAACAJ4KLDjskv33sd0mSzSdv2udqAAAA1k2QAwAATBgzp03rdwkAAAAbxNJqAAAAAAAA\nDSXIAQAAAAAAaChBDgAAAAAAQEN5Rg4AADBh/GD58qx4dFWSZOsnbZbnbLddnysCAAAYnSAHAACY\nMN7x9etzw7K7kyTzdtwhX3rZUX2uCAAAYHSWVgMAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpAD\nAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4A\nAAAAAEBDCXIAAAAAAAAaanK/CwAAAOiVuU/ZPlM32yxJsscfzOhzNQAAAOsmyAEAACaMBfP26XcJ\nAAAAG8TSagAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaanK/CwAAAOiVM2/4Vn7y\nq18nSfb4gxlZMG+fPlcEAAAwOkEOAAAwYdz8y3tyw7K7kyQPrlrV52oAAADWzdJqAAAAAAAADSXI\nAQAAAAAAaChBDgAAAAAAQEN15Rk5pZTtkvx9kqOS/FGSB5Jcn+Qfaq2Lh/TdIsk7khybZOckK5Nc\nm+SMWutt3agHAAAAAABgPOh4Rk4p5Q+TLE7y+iT/2m4vSnJwkutLKXsO6jspyReSvCvJN5O8Lsn7\nkhyQ5FullKd1Wg8AAAAAAMB40Y0ZOWcnmZnkL2qtiwY2llK+neTzac2++cv25mOTHJrk3FrrWwf1\nvSbJLUnOTXJ0F2oCAAAAAAB4wuvGM3LuTvIvSa4csv0/kqxJ8pxB245vtx8a3LG9/NqNSV5cStmm\nCzUBAAAAAAA84XU8I6fW+u4Rdk1LMimtZ+AMmJvkrlrr0mH635RkXpI5aT0zBwAANs6C+f2uAAAA\nALqiG0urjeSkdvvpJCmlTEsyI0kdof+d7XZWuhDkLFmypNNTADSOsQ0Yz7o5xu2yanXXzsX4smbN\nmrVer/a9wka6YwPHLO/jgPHOOAeMJ7Nnz+53CWvpxtJqv6eUcniSv0/ynSQXtjdPa7cPj3DYQ0P6\nAQAAAAAATGhdn5FTSjk+yaVJ7khyRK11VbevsT6alpgBdGLgk03GNmA8GpMxbrMp3TsX48qkSZPW\nej3F9wobafanPr5e/QZmfW3099qZ52zccQA94udVgLHX1SCnlHJGkrOS3JLkz2ut9w7aPfCsnK1G\nOHzqkH4AAABd9Y/775cVj7Y+a7b1kzbrczUAAADr1rUgp5TygSSnJPliklfUWtdaQq3W+mApZXmS\nmSOcYud2a0FNAABgTDxnu+36XQIAAMAG6cozctozcU5JclmSo4eGOIPcmGRmKWWnYfY9P8kjSRZ3\noyYAAAAAAIAnuo6DnFLKgUnOTHJlkjfUWn83SveF7fa0IefYP8leST5Ta32w05oAAAAAAADGg24s\nrXZeu/3PJEeXUobr8+Va68O11qtKKYuSnFpKmZ7k2rSWVDs9ydIk7+xCPQAAAAAAAONCN4KcOe32\nI6P02TXJHe3Xr0jy9iTHJXl1kvuTXJ1kfq31ni7UAwAAMKylv/lNfvtYaxGBzSdvmpnTpvW5IgAA\ngNF1HOTUWidtYP9VSc5qfwEAAPTMiV/5z9yw7O4kybwdd8iXXnZUnysCAAAYXcfPyAEAAAAAAGBs\nCHIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0l\nyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUJP7XQAAAECv7PbkbfLg6tWPvwYA\nAGg6QQ4AADBhfPDgA/tdAgAAwAaxtBoAAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACA\nhprc7wIAAAB65YLvfDe3P/BAkmS3bbbJX++1Z58rAgAAGJ0gBwAAmDD+4xd35IZldydJ5u24gyAH\nAABoPEurAQAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAA\nAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA01ud8FAAAA\n9MrfzX1uXvPwI0mS7bbcos/VAAAArJsgBwAAmDAO2Omp/S4BAABgg1haDQAAAAAAoKG6NiOnlLJZ\nkrOTnJ7kG7XWA4bps0WSdyQ5NsnOSVYmuTbJGbXW27pVCwAAAAAAwHjQlSCnlFKSXJ7k6UkmjdBn\nUpIvJDkkyWVJzkyyQ1rBz7dKKXNrrT/rRj0AAAAwLiyY35vrnHlOb64DAMAG6zjIKaU8OcniJEuS\nPDfJrSN0PTbJoUnOrbW+ddDx1yS5Jcm5SY7utB4AAICRPLx6dX63Zk2SZNNJk7LllCl9rggAAGB0\n3XhGzmZJ/jnJ82qtdZR+x7fbDw3eWGtdnOTGJC8upWzThXoAAACGdcwXrs5TL7wkT73wkhzzhav7\nXQ4AAMA6dTwjp9b6/5KcvB5d5ya5q9a6dJh9NyWZl2ROWs/MAQAAAAAAmPC68oycdSmlTEsyI8lI\nM3bubLez0qUgZ8mSJd04DUCjGNuA8aybY9wuq1Z37VyML2vay6oNvF7te4Ueafr32h3eZwId8vMq\nMJ7Mnj273yWspSdBTpJp7fbhEfY/NKQfAADj0C7/55J+lwAAAABPKL0KcnquaYkZQCcGPtlkbAOe\n8Db7/QfLD3xKfcow+6DbJk2atNZr33eMtSfKGOd9JrCx/LwKMPY26dF1VrbbrUbYP3VIPwAAAAAA\ngAmvJ0FOrfXBJMuTzByhy87t1mKaAAAAAAAAbb2akZMkNyaZWUrZaZh9z0/ySJLFPawHAAAAAACg\n0XoZ5Cxst6cN3lhK2T/JXkk+0565AwAAAAAAQJLJnZ6glLJHkj2GbN6ulPKyQX/+cq31qlLKoiSn\nllKmJ7k2rSXVTk+yNMk7O60FAAAAAABgPOk4yEnyl0kWDNm2R5IrBv151yR3JHlFkrcnOS7Jq5Pc\nn+TqJPNrrfd0oRYAAAAAAIBxo+Mgp9b67iTvXs++q5Kc1f4CAAAAAABgFN2YkQMAAPCEMGPzzbP9\nVls+/hoAAKDpBDkAAMCE8ckXH97vEgAAADbIJv0uAAAAAAAAgOEJcgAAAAAAABpKkAMAAAAAANBQ\nghwAAAAAAICGmtzvAgAAAHrl0z/5ae5c+ZskyU7Tp+VVe+ze54oAAABGJ8gBAAAmjMt/cmtuWHZ3\nkmTejjsIcgAAgMaztBoAAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUJ6RAwBAsmB+vysAAAAAhmFG\nDgAAAAAAQEMJcgAAAAAAABrK0moAAAAw0fViic0zzxn7awAAjENm5AAAAAAAADSUIAcAAAAAAKCh\nBDkAAAAAAAANJcgBAAAAAABoqMn9LgAAAKBXXv+cZ+WFs3ZJkuw4dWp/iwEAAFgPghwAAGDCOPrp\ns/tdAgAAwAaxtBoAAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhprc7wIAAAB65WWf\nvyr/dfcvkyTP2+Ep+beXHtHnigAAAEYnyAEAACaMRx57LA+uXv34a6CHFszvzXXOPKc31wEA6BFL\nqwEAAAAAADSUGTkAAE3Xq08wAwAAAI1jRg4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAA\nAACAhprc6wuWUmYkWZDkpUmekuS+JF9Ockat9Ze9rgcAAAAAAKCpehrklFK2SHJdkmck+XCSW5LM\nTnJ6koNKKXvVWu/vZU0AAADAOLJgfm+uc+Y5vbkOADDhTVqzZk3PLlZKeUeS9yR5c631o4O2vzTJ\nlUnOr7W+ZUPOuWLFit7dAAAAAAAAMCFtvfXWk/px3V4/I+f4JA8lWThk+xeSLE1yXCmlL38RAAAA\nAAAATdOzIKeUMj2tJdUW11ofHbyv1romyc1Jtkuya69qAgAAAAAAaLJezsjZud0uHWH/ne12Vg9q\nAQAAAAAAaLxeBjnT2u3DI+x/aEg/AAAAAACACa3Xz8gBAAAAAABgPU3u4bVWttutRtg/dUi/9bL1\n1ltP2uiKAAAAAAAAGqyXM3J+kWRNkpkj7B94hs6S3pQDAAAAAADQbJPWrFnTs4uVUr6XZHaSP6i1\n/nbQ9k2T3J3k0VrrTj0rCAAAAAAAoMF6/YychUm2THLikO3HJfnDJJf2uB4AAAAAAIDG6vWMnClJ\nvplkryQXJLklyTOTvCWtJdWeV2t9uGcFAQAAAAAANFhPg5wkKaVMT/LuJH+R5ClJ7k1yZZIFtdZf\n97QYAAAAAACABut5kAMAAAAAAMD66fUzcgAAAAAAAFhPghwAAAAAAICGEuQAAAAAAAA0lCAHAAAA\nAACgoQQ5AAAAAAAADSXIAQAAAAAAaKjJ/S5gQCllRpIFSV6a5ClJ7kvy5SRn1Fp/uR7H75vkjCTP\nS7JFktuSXJLkw7XWNUP67pHkrCT7J5me5L+TfCrJe2utq7p1TwADejzGPTv/O8ZNTfLLJP+e5O9r\nrfd2654ABvRyjBty3KQkX0trvHttrfXjnd0JwPB6/F5ukyR/leSEJLslWZHkmiTvqrX+vFv3BDCg\nx2Pcnyc5JcneSbZK6+fVryY5u9b63926J4ABnY5x7XPsluTytMauEX/2HMvcoREzckopWyS5LsnJ\nST6X5DVJLkry8iQ3lFKevI7jD0rrh/jZSd6d5I1p/U/jQ0nOH9L3mUm+lWS/JOcleV2Sr7eP+2xX\nbghgkB6PcfsnWZzW/1je1+57TVq/CLixlDK1O3cF0NLLMW4Yb0jrDTLAmOnDOHdZkg8mubnd9+Ik\nR7avtW2n9wMwWI9/Xj0hydVJdkpydlrv5T6X5Lgkt5RSdu7OXQG0dDrGtc/x2iTfTbL7OvqNae7Q\nlBk5pyZ5dpI311o/OrCxlPL9JFemleq/ZZTjP5rkt0mePyhF+2Qp5fNJ/qaUclmt9fvt7e9P6xPq\n+9Vaf9je9ulSykNJTimlvKTW+sWu3RlAb8e4i9t95w36NNMnSikr2nUc3z4fQLf0cox7XCll+7QC\n6+8m2bMrdwIwvJ6Nc6WUF6f1fm1BrfWsQdeqSd6b5KD4ACLQXT0Z49qzDc9J8pu0fid3X7vvP7fH\nuI+1azmti/cG0NEY1w6gL0pyQZIftV+PZExzh0bMyEnrjepDSRYO2f6FJEuTHNdeOuP3lFL+NElJ\n8tlhpkJ9OMmktJL9lFKekuTQJNcO+ssc3DdJXr2xNwEwgl6NcdOSXJ/k3GGmpH+53T5nY28CYAQ9\nGeOGcUGS/0nyno2sG2B99XKce3OSlUnOHdyx1vqpWuvMWqsQB+i2Xo1x05Nsm+Sng0KcAd9ot7ts\nzA0AjGKjx7hBjqq1/k2SEZdG60Xu0Pcgp5QyPckzkiyutT46eF97Hc2bk2yXZNcRTjG33X5rmH03\ntds/bbfPTet/Ir/Xt9Z6e5JfD+oL0LFejnG11t/UWl8/+NObg2zdblduQPkAo+rx+7jB131Jkpcl\neWta6xsDjIlejnOllE2THJjkm7XWR9rbNmtvB+i6Hv+8+kCSe5LsXErZbEjfXdrtjzakfoDRdGGM\nS6314lrr59fjcmOeO/Q9yEkysP7l0hH239luZ42wf5eRjq+1/ibJA4OOHbHvoGs9tZTSlCXngCe+\nXo5xozkpyZok/7IefQHWV8/HuPbsw4+k9cnN/7MBtQJsjF6Oc7smeVKSJaWUV5ZSfprk0SSPllKu\nKaXstYG1A6xLr9/LvTWtX5p+qpSyeyllu1LKAWk9S+LOtGZcA3RLp2PchthlPa7VUe7QhCBnWrt9\neIT9Dw3ptzHHT9uAvqNdC2BD9XKMG1Yp5ewkByf5cK31u6P1BdhA/Rjj/jHJHyY5sf0pKoCx1Mtx\nbka7PSjJ/5fkwiRHpLWE5Lwk3yilPHs9agZYXz19L1dr/WSSI9NafugnSe5N8rUkK9J6xs6961c2\nwHrpZRYw5tcy8wRgnGo/TPKCJG9Ka+3P0R5QCdB4pZR9kpyc5Oxa6639rgegywaWGtotyR+3l+FI\nkqtLKbcm+XSSBWktLQnwhFNKeWmSTyX5YZJL0vrk+jOTvDPJV0spf1ZrvXOUUwBMWE0Icgae17DV\nCPunDum3Mcev3IC+SfKbEfYDbKhejnGPK6VsldYyakckuSzJCbXWx9ZZLcCG6dkY115L/dIkt6f1\n6XSAXujle7kH2+31g0KcAf+S1hh4wIiVAmy4Xr6Xm5Hk40nuSGv2zcDPp18tpXwtyXfTWmLtL9en\ncID10OkYNxbX2ujcoQlLq/0irec2zBxh/8BadktG2P/zdvt7x5dStk7rAd9L1tV30LV+4ZedQBf1\ncowb2L5Vkq+mFeKcUWt9nXENGCO9HOPelmT3JH+fZLtSysxSysy01llPkie3t225YbcAMKpejnN3\ntNtNh/ZtLyW5PMn0dVYMsP56Ocb9afvPXxz682mt9XtJ7k5y4HpXDrBunY5xG2LMc4e+Bzm11oeS\n/CDJnFLK5oP3lVI2TbJvkrtGmVp5Y7udN8y+57fb69vtzUkeG65vKeVZSbYZ1BegYz0e49J+aNrn\nkuyT5A211rM7KB9gVD0e4w5OMinJZ5LcNejrs+3972//2ac4ga7p5ThXa30gya1Jnjn0QbillClJ\nnpKRH6ALsMF6/F5u4FPqmw/Td2D7SPsANlgXxrgNMea5Q9+DnLaFSbZMcuKQ7cel9TDbSwc2lFKe\nUUrZdeDP7dR+cZJj2p/KHOg3KclpSVYn+US7731JvpjkgFLKnkOu9bft9tIAdFdPxri2+UkOS/K3\ntdaFXb4PgOH0aox7R1ozDYd+vbO9/wPtP/9nt24MoK2X7+UuS7J9Ws8DG+zEJFOSXNXpzQAM0asx\n7qYk/5PkpcP8QvWgJDPyv8EQQLds9Bi3IXqROzThGTlJ8rEkr0pyXill5yS3pPWws7ek9QC08wb1\n/WmSmuQZg7a9KcnXknyjlPKBJA8kOTbJQWktK/SzQX3/LskLknyllHJeWlM3X9i+/sJa6ze6f3vA\nBNeTMa6U8kdpLT10b5KlpZThHoT7UK3137t4bwA9GeNqrd8a7uKllIFnSny/1np1t24KYJBe/rz6\noSR/keQD7V8kfC/J3mkFO3clOafrdwdMdL16L3dXKeWf0vq93C2llI8nWZbW0rmnJXkorQ/uAHRT\nR2NcKeXw/O+MwucOtIN+Dl1ea/16+/WY5g6T1qxZ08nxXVNKmZ7k3Wm9aX1KWr+IvDLJglrrrwf1\nW5Ok1lqfMeT45yY5K60pUU9K6y/+glrrZcNca3Zab4APSjItyc/SSuc+UGv9XddvDpjwejHGlVIO\nSOsN9Gj+u9a6S4e3A7CWXr6PG+baB6Q19r221vrxLtwOwO/p8c+rU5OckdZSkTsm+VWSL6X1C9Ff\ndv3mgAmvx2Pcq5KclOQ5aX1K/t603sudXWu9tes3B0x4nYxxpZQ78r/P0hnO12utBwzqP2a5Q2OC\nHAAAAAAAANbWlGfkAAAAAAAAMIQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBD\nCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0l\nyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQg\nBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIc\nAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIA\nAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEA\nAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAA\nAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaanK/C+jUihUr1vS7BgAA\nAAAAYHzbeuutJ/XjumbkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAA\nAEBDCXIAngCWLFmSJUuW9LsMgDFhjAPGM2McMN4Z5wDGniAHAAAAAACgoQQ5AAAAAAAADSXIAQAA\nAAAAaChBDgAA4smhwwAAIABJREFUAAAAQEMJcgAAAAAAABpKkAMAAAAAANBQghwAAAAAAICGEuQA\nAAAAAAA0lCAHAAAAAACgoQQ5AAAAAAAADTW5GycppTwzyTuTHJRk2yQPJLkxybm11usH9dsiyTuS\nHJtk5yQrk1yb5Ixa623dqAUAAAAAAGC86HhGTillzyQ3J3lRkkuTvC7J+Umem+TrpZQj2v0mJflC\nkncl+Wa73/uSHJDkW6WUp3VaCwAAAAAAwHjSjRk570qyZZKjaq1fHdhYSlmU5KdJzkpyVVqzcA5N\na5bOWwf1uybJLUnOTXJ0F+oBAAAAAAAYF7rxjJyBmTTfHLyx1nprknuT7NLedHy7/dCQfovTWobt\nxaWUbbpQDwAAAAAAwLjQjRk5P03yx0menuT7AxtLKVsn2SatZdeSZG6Su2qtS4c5x01J5iWZk9Yz\nczq2ZMmSbpwGoFGMbcB4ZowDxjNjHDDeGeeA8WT27Nn9LmEt3QhyzklyWJJ/LqW8OcmtSZ6S5Mwk\na5KcUUqZlmRGkjrCOe5st7PSpSAHAIDmO/HEE7N48eIkyZw5c3LRRRf1uSIAAABolo6DnFrrj0op\n+yT5XNZeXu3uJIfVWr9eStmhve3hEU7zULud1mk9A5qWmAF0YuCTTcY2YLzZYost1nptnAPGG+/j\ngPHOOAcw9joOckopJcmXkzwpyWlpzcj5wyR/m+SqUspfJPlxp9cBAAAAAHiiO+dH5/W7hFHNf9bp\n/S6h8c4888x86Utfyuc///nssMMO6z6gx66++up85CMfyQMPPJCTTz45xx9//LoPotG6sbTapUl2\nTLJ7rfUXAxtLKVckuT3JZUl2b2/eaoRzTG23K7tQDwAAAAAAE9zChQtz+OGHdz1sOeaYY7Lffvtl\nxowZXT1vN6xYsSLvfe97M3369Lz97W/P7rvvvu6DaLxNOjm4lLJVknlJFg8OcZKk1vpIkuvSCnl2\nSrI8ycwRTrVzu/VUNAAAAAAAOrJs2bJcdNFF+eUvf9n1c++xxx45+OCDs/nmm3f93J268847s2rV\nqrzwhS/MkUcemac//en9Loku6CjISbJFkklJRvqO3XxQe2OSmaWUnYbp9/wkjyRZ3GE9AAAAAABM\ncD/5yU/6XUJfrFq1KkkaGTKx8ToKcmqt96U1i+Y5pZQ9Bu8rpcxIclBay6X9KMnC9q7ThvTbP8le\nST5Ta32wk3oAAAAAAOi/M888M3Pnzs1tt92Wj33sY3nJS16SefPm5aijjsqnP/3prFmzZq3+9957\nb97znvfkiCOOyL777ptDDjkkp556ar773e+u1e+xxx7L5ZdfnuOOOy4HHXRQ9t9//7z85S/PxRdf\n/HiIcdJJJ2X+/PlJkpNPPjlz587N3XffnSR54IEHct555+XII4/Mvvvum0MPPTSnn356fvSjHw1b\n/+23355TTjklL3jBC3L99devtW/gnBt6D6OdeyTrc+6TTjopJ598cpLk0ksvzdy5c3PxxRePet4f\n/OAHmTt3bs4999x85StfyRvf+MYceOCBmTdvXl7zmtfklltuGfV4eqMbz8j52yRXJvlmKeXDSW5L\nsm2SU5Jsk+SkWuujSa4qpSxKcmopZXqSa9NaUu30JEuTvLMLtQAAAAAA0BAXXHBBVq9eneOPPz5T\npkzJokWL8sEPfjBr1qzJcccdlyS577778trXvjYrV67M0UcfndmzZ+dXv/pVrrzyyrzpTW/K+9//\n/uyzzz5JkvPOOy+LFi3Kn/3Zn+XlL395Nt100yxevDgLFy7M7bffnve973054YQTcsUVV+Saa67J\nG9/4xsyaNSszZszIypUr8/rXvz73339/jjrqqDztaU/L8uXL87nPfS4nnnhiPvCBD2Tvvfdeq/6P\nfvSj2XbbbTN//vzMmjVrxPvckHsYq3OfcMIJ+c53vpNLLrkkBx98cA455JDsuuuuo/73ufXWW5Mk\n3/72t7No0aLMmzcvRx99dGqtufnmm3PaaafliiuuyPbbbz/qeRhbHQc5tdarSin7JXlbkpOTPDnJ\nb5LckuRNtdb/GNT9FUnenuS4JK9Ocn+Sq5PMr7Xe02ktAAAAAAA0x3333ZdPfvKTmTy59avogw8+\nOEceeWQ+8YlP5JWvfGU22WSTXHrppVm+fHn+4R/+IYcddtjjxx522GE55phjcv755z8egnzlK1/J\nrFmzcvbZZz/e70UvelGe+tSn5sc//nEeeeSRzJkz5/GZJHPmzMlee+2VJLnwwguzbNmyXHrppXnW\ns571+PGHH354jj322Jx//vm5/PLL16p/9erVOeOMM9Z5nxtyD2N17jlz5jw+02nXXXfNwQcfvM5z\n11qTJMuXL8+FF16YP/mTP3l833nnnZfPfvaz+dd//deccsop6zwXY6cbM3JSa/2vJEetR79VSc5q\nfwEAAAAAMI4dccQRj4c4STJ16tTsvffeufbaa/Pzn/88u+22W6677rpMnz49hxxyyFrHbr/99tl7\n771z/fXXZ+nSpZk5c+b/z969x/k53vnjf0UyJZKIU0U1EpVO77VoSYhDikUtltZh0bAtiy0l3dI+\nUm2orUPb7QM9Vy2L8m1369BGizi02KqgDglFcZu2YZIoDSFHkUTy+2MOv0wyQ5L5pJ87k+fz8ZjH\nPbmv674+7/uTyT3Da67rSu/evTNjxoy8+OKL2Wqrrdr7nnDCCe9Yy1133ZVtttkmQ4cOzZw5c9rP\n9+3bNzvvvHPuu+++zJ49OxtttFF723777bdS97kq9/C3GHtltc3IGTt2bIcQJ0kOO+yw3HDDDZky\nZcoqj0tt1STIAQCA1TFhwoQ0NTUlSRobG+tcDQAAUGudLRm2+eabJ0n+8pe/ZNCgQZk5c2Y++MEP\npnfv3iv0HTp0aCZOnJjm5uYMHjw4n/rUp/LNb34zxxxzTPbYY4+MHDkyu+++e7beeuu3rWPu3LmZ\nMWNGZsyY8bYzVV566aUOQc6yYVFX5syZs0r38LcYe2UsXLgwU6ZMyaBBg3LwwQev0D5w4MAkLfsS\nLev000/vsHfOgAEDsuOOO2bcuHEZNGjQKtXAyhHkAAAAAACwRmy44YYrnOvXr1+SlqXF5s+fn6Rl\nVkxn1l9//STJG2+8kST5+Mc/nm222SbXXXddfve73+Xee+9NknzoQx/KF7/4xbz//e/vdJx58+Yl\nafkFss9//vNd1rt8uNJZ/ctb1Xv4W4y9Mv74xz9m8eLF2X333bPeeuut0P6Xv/wlSVYIZ8qyzOmn\nn55DDz00S5cuzQsvvJCzzz47l112Wc4777xVroN3JsgBAAAAAGCNWLBgwQrn5s6dmyTZeOON28OM\ntsBieW0BxbKhx2677ZbddtstCxYsyGOPPZY77rgjd9xxR04//fT8/Oc/z4ABA1YYpy08Wrx4cfue\nObWyOvdQhbHb9sd5z3ve02n7/fffnyTZfffd289NmzYtc+bMyfDhw9tnVr373e/OsGHDOv27pjZW\njNkAAAAAAKAGOttf5cUXX0zSssTagAEDsvnmm+f555/PW2+91eX173vf+1Zo22CDDbLHHnvk/PPP\nz+jRo/P6669n8uTJndbRv3//bLHFFmlubs7MmTNXaH/99ddX6b6W1Z17qOfYbfvjtAVry5o1a1Zu\nuummDBo0KHvvvXf7+WeeeSa9e/fOBz7wgSQtwdgdd9yRp59+OkcdddQq18DKEeQAAAAAALBG3Hbb\nbR0CiFmzZmXSpEnZfPPN2/e12X///TNnzpz8+te/7nBtc3NzJk2alO222y5bbrllnnnmmfzzP/9z\nfvGLX6zwOm0zbt71rnclSft+MgsXLmzvs//+++ett97K9ddf3+Ha2bNn5xOf+ETOOOOM1b7Plb2H\nKo3dFuTcfffdHZZmmz9/fs4999zMmjUrn//859uXb2u7ZsmSJTnwwAOzzz775MMf/nAuueSSXHTR\nRdlll11W6/54Z5ZWAwCgbm6//fY88cQTSZIPfvCDnW6wCQAArL369euXz3zmM9lvv/3S0NCQn/3s\nZ1mwYEE++9nPplevXkmSk08+Offee2++9rWvpampKdtuu21efvnljB8/Pr17984XvvCFJC3726y/\n/vq56KKL0tTUlO222y69e/dOU1NTbrjhhmy77bbty6a17XVz9dVX589//nNGjRqVk046Kb/97W9z\nzTXXZObMmRk+fHhmzpyZ8ePH59VXX80555yz2ve5svdQlbEXL16cP/3pT2lsbMzcuXNz3HHHZa+9\n9sqiRYvy29/+NjNmzMiYMWOy7777driuLMvsu+++GTNmTJKWYO6KK67I17/+9dxwww0dQh9qR5AD\nAEDd/OAHP2hfd3nUqFGCHAAAerxzdhhb7xL+pk499dQ88sgj+clPfpJXXnklW265ZcaOHdthGa6N\nN944V199dS6//PLceeedefXVVzNgwIAMHz48J598chobG5Mkffr0yRVXXJGrr7469957b2699dYs\nXrw4W265ZY466qiceOKJ7TNy9ttvv/z617/OI488khdeeCHbb799ttlmm1x99dW58sorM3HixEyY\nMCF9+/bNDjvskHPOOSfDhw9f7ftc2Xuoyth//vOfs3Dhwuy444457rjj8s1vfjO33HJLli5dmu23\n3z7nnntuh71x2jz77LM56aST2mdTbb311jnhhBNy2mmnZcqUKfm7v/u71b5PutZr6dKl9a6hW2bN\nmrV23wDASmhqakqSbn3TB6iiQw45pEOQM2HChDpXBFBbfo4DejrPObpy/vnnZ8KECbnqqquy4447\n1rsclnPLLbfkwgsvzLhx43LEEUes1DXTp0/PEUcckcsuu6x95lOS3HzzzfnqV7+aW265JYMGDVpT\nJVfCwIEDe9Xjdc3IAQAAAACAdUjb/jhFUazyNZtttlleeeWVvPnmm3nyySdz6aWX5qCDDurxIU49\nCXIAAAAAAGAdUpZlevfunWHDhq30NW1BzjHHHJMk6d+/fwYPHpxTTz01H/vYx9ZInbQQ5AAAAAAA\nwDpiyZIlaWpqytChQ7P++uuv9HVjxozJmDFj1mBldEWQAwAAAABATX3lK1/JV77ylXqXQSfWW2+9\n3HvvvfUug1WwXr0LAAAAAAAAoHOCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCiBDkAAAAAAAAV\nJcgBAAAAAACoqD71LgAAgHXXEUcckaFDhyZJhg8fXudqAAAAoHoEOQAA1M2//du/pampKUnS2NhY\n52oAAACgeiytBgAAAAAAUFGCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCi+tS7AAAA1l2nnHJK\nfve73yVJdt9991xxxRV1rggAAACqxYwcAADqZvr06Wlubk5zc3OmT59e73IAAADWuIsvvjgf/vCH\nU5blGn2d888/PyNHjsyLL764Rl+nnq644oqMGjUqv//97+tdyholyAEAAAAAoOauuuqqHh0irI47\n77wzN954Yz772c+mKIp6l7PW+9SnPpUdd9wxZ599dmbPnl3vctYYQQ4AAAAAADU1ffr0XH755fnL\nX/5S71IqY/78+bnkkkuyww475Jhjjql3OT1Cr169Mm7cuMycOTPf//73613OGiPIAQAAAACgpp5+\n+ul6l1A5N954Y2bNmpWTTz653qX0KEOHDs3BBx+cW265JVOnTq13OWuEIAcAAAAAgJr59Kc/nXPO\nOSdJctppp7Xv09K2Z8sf//jHnHHGGdl7770zceLE9mtGjhy5wlivvPJKRo4cmU9/+tMdzr/++uu5\n5JJLcthhh2XPPffMAQcckLFjx+app55a6TqfeOKJjBw5MhdffHHuvPPOfOpTn8q+++6bUaNG5V//\n9V/z6KOPduNd6GjJkiW57rrrss0222TUqFEd2lbl3tvew5dffjnXXnttjjjiiIwaNSqHHHJIfvjD\nH+att9562zqWLl2as88+OyNHjsytt966WmP+9a9/zde//vV89KMfzZ577pmPfOQjOfPMM/PYY4+1\n9znkkENy3HHHrfD6H//4xzNy5Mj2v/c2v/rVrzJy5Mjcfvvtq1XT4YcfniVLluSmm2562/tfW/Wp\ndwEAAAAAAOuKQw45ZJX69+3bNz/72c9WOD9+/PhcddVVqzTWcccdl3/5l39Z4fwnP/nJzJw5M0ky\nYcKEVRqzM6ecckpuvPHG3H333fnUpz6VbbfdNptuuml7+w9/+MNsvvnmOeecc7Ltttuu8vizZ8/O\nySefnNdeey1HHHFEhg0blhkzZuTnP/95Tj311HznO9/Jrrvu+o7jPPvss0mSRx55JOPHj8+oUaNy\n5JFHpizLPPzww/nc5z6XG2+8MVtuueUq17i85557Lq+++moOOOCAbo+VtLyHzz//fI499tj06dMn\n48ePzzXXXJNNN900o0eP7vK673//+7nrrrsyZsyYHHrooas85iuvvJITTzwxs2fPzpFHHpnGxsa8\n+uqruemmm3L66afnW9/6VvbYY4+MHDkyt912W2bPnp2NNtooSfLqq69mypQp2XDDDfPYY4/lwx/+\ncPtrT5o0Kb169cpuu+22Wve5/fbbp3///vnd736Xz372s91+f6tGkAMAAAAA8Ddy//33r1L//v37\nd3p++vTpqzzWsv/jfFmPPPJIXnrppVUa6+0MHz68fTbL8OHDM2LEiA7tixYtyrnnnrva41911VWZ\nPn16rrzyyuywww7t5w8++OCMHj063/72t/O///u/7zhOWZZJkhkzZuSyyy7LTjvt1N52ySWX5IYb\nbsj111+fM844Y7VrbfPII48kyUoFTCvjT3/6U370ox+loaEhSbLHHnvk8MMPzz333NNlkDN+/Pj8\n5Cc/ybHHHpsTTjhhtca88sorM2PGjFx44YU58MAD26898MADc/TRR+fb3/529thjj+y2226ZMGFC\nfv/732evvfZKkkyePDm9e/fO/vvv32H2TtIS5DQ2NnYI/FblPnv37p3hw4fnvvvuy2uvvZZNNtlk\nld7Pqut2kFMUxdKV6Pa+siyfb+3fN8m4JKOTDE0yO8k9Sc4ty/K57tYDAAAAAEB17bffft26/q67\n7so222yToUOHZs6cOe3n+/btm5133jn33Xdfh5kgXWmbkTN27NgOIU6SHHbYYbnhhhsyZcqUbtXa\nZtq0aUmSIUOG1GS8o48+uj3cSJL3vOc92WSTTfLqq6922v+BBx7IxRdfnIMOOihnnnnmao/5m9/8\nJhtttFE+8pGPdLh2yy23zK677pqJEydm2rRp2XXXXdOrV6889thj7UHOo48+mve///0ZMWJEbr/9\n9ixYsCAbbLBBXnnllTQ3N+f444/v1n0OGTIkS5cuzbRp0wQ5nTj6bdr+M8nAJDOSpCiKXkl+meQj\nSX6U5PwkWyUZm+TBoihGlmX5pxrUBAAAAABQOcvvj/JO+vbt2+n59773vas8Vlchwq677tq+tNrf\nwlZbbbXa186dOzczZszIjBkzsv/++3fZ76WXXnrbIGfhwoWZMmVKBg0alIMPPniF9oEDByZJFi9e\n3H7u9NNP77BvzoABA7Ljjjtm3LhxGTRo0NvW/frrr3cYt7sGDx68wrn111+/Q71tyrLM+eefn+22\n2y7/8R//kV69eq3WmHPmzMnMmTPzwQ9+ML17916h79ChQzNx4sQ0Nzdnzz33zLBhw/L444+3t0+a\nNCl77rlndt555yxevLh9j6K293T5ZdVW9T7bwpu297on6XaQU5bligs0JimK4vAk70/yr2VZzms9\nPTrJAUkuLsvyrGX63p3k0SQXJzmyuzUBAAAAAFRRLfagSZIjjzwyRx5Zm/+V+uMf/7gm46ysDTfc\ncLWvnTev5X81NzY25vOf/3yX/d4pLPrjH/+YxYsXZ/fdd8966623Qvtf/vKXJOkQ0JRlmdNPPz2H\nHnpoli5dmhdeeCFnn312Lrvsspx33nkrVXdXS+Wtqne9610r3feCCy7I/PnzM2XKlLz88st573vf\nu1pjzp8/P0nX4eL666+fJHnjjTeStAQz119/fRYsWJA5c+akubk5Y8aMyXve854MGjQokydPzsiR\nIzN58uT07dt3hVlRq3qfAwYMSPL/v9c9yRrZI6coigFJvp/kvrIsr12mqW1u1PeW7V+W5eSiKB5I\ncmhRFBuXZdnzIjMAAAAAAFbJm2++2eHP/fr1S9IyU2b5vXdWRdv+OO95z3s6bW/bf2j33XdP0rI0\n2pw5czJ8+PBsvvnmSZJ3v/vdGTZsWBYsWPCOr9dW99y5c7PxxhuvVI3L3/vq2m677XLsscfmrLPO\nyrnnnpsrrrgiffqsejTQFsC1BTrLawtw2vqNHDky//M//5MnnngiM2fOTK9evbLzzjsnST70oQ+1\n75MzadKkDB8+vMMSaqujbZm9tve6J1kxaqyNc9OyZNqY5c6PTDK1LMtpnVzzUJKGJMPXUE0AAAAA\nAFRQW7CwcOHCDuebm5s7/Ll///7ZYost0tzc3OlycCu7rFbb/jhz585doW3WrFm56aabMmjQoOy9\n995JkmeeeSa9e/fOBz7wgSQtQdIdd9yRp59+OkcdddQ7vl5beDNr1qwV2lb23lfXl7/85ey11145\n8cQT89RTT+WKK65YrXEGDBiQzTffPM8//3zeeuutFdrb9hN63/velyTZeeed8653vSuPP/54Hn30\n0Wy77bbt78NOO+2UP/zhD5k+fXqmTp3aHph1x2uvvZYkKx2UrU1qPiOnKIot0hLg/L+yLJ9c5vyA\nJJsmKbu4tO2rctsk93S3jqampu4OAVA5nm1AT3Peeedl0aJFSZKGhgbPOaDH8nwDejrPOZbXFqhM\nmTKlfa+a2bNnJ0mmTp2aDTbYoEP/tiW0fvWrX6UoiiTJ0qVLc8011yRpme3R9nU2YsSI3H777bns\nsstyzDHHtI8xb968fPGLX8zWW2+dL37xi29b3+9///skyZ133pl99923vZ4FCxbku9/9bmbNmpUT\nTzyxPUx58MEHs2TJkhxwwAFJWkKXfv365YwzzsjAgQPf8d9A2/gPPfTQCoHNqtz7272Hbf9ttXzf\n559/PvPmzcvee++d3/zmN7n22mvz3ve+N3//93+/ymOOGDEid955Z3784x932KPppZdeag9r5syZ\n0z47prGxMQ8//HBeeumlfOhDH2ofZ9NNN83ChQtz2WWXJUm23HLLDu/hqtTU5tlnn02vXr3y5ptv\ndvuZ1NjY2K3ra21NLK12VpINknxtufMDWo+dz7tK5i3XDwCAHq4n/qYUAADQsuxYkvzyl7/M9OnT\nO93/ZFm77LJLJk6cmMsvvzwHH3xwevfunYcffjj9+vVbYQ+bww8/PJMmTcrNN9+cWbNmZbvttsus\nWbNy9913Z/bs2TnooIPe9rXeeuutTJ06NUOGDMkbb7yRcePGZfjw4Vm8eHEmTZqU1157LR//+Mez\n6667tl/z/PPPZ5dddsno0aOTtMzk+fnPf56rrroqF1100Tvu5bL99tsnSf7whz+0Ly+2OvfeHb17\n986YMWMybty4/PCHP8w3vvGNVd6z54gjjsijjz6aK6+8Ms3NzRk8eHBeffXV3HXXXendu3dOOOGE\nDv132GGH/OIXv8ibb76Z7bbbrv384MGD079///z2t7/NZptt9o57Gr2TJUuW5Omnn87gwYMzcODA\nbo1VRTUNcoqi2CTJaUluLcvyj7Uce1VVLTED6I623yLwbAN6Is84oCfzjAN6Os85ujJkyJA8+eST\neeSRR/Lyyy9nn332aZ+Zs/XWW6/wNdPY2JgNNtgg119/fX76059m4MCB+cd//Mecdtpp2XvvvdO3\nb98O1/z4xz/OlVdemYkTJ2bixInp27dvdthhh5x//vkZPvztd+947rnnsmjRouyyyy457rjj8s1v\nfjP33Xdfli5dmu233z6f/OQnV1jqq7m5OSeddFL22muv9nNbbLFFTjvttPTu3fsd/w0MGzYs3/rW\nt/Lss892697f7j1s22Nm+b7bbLNNe1DS2NiYs846KxdccEF++tOf5qKLLlqlMZOW9/7yyy/Pgw8+\nmNtvvz0DBgzI8OHDc/LJJ69w/T/90z/l+uuvT5IcfPDB2Wyzzdrbdt5559x333058MADV7huVWt6\n4oknMn/+/Bx55JE98nnUa+nSpTUbrCiKMUl+kOSfy7Icv1xb/yRzkvyuLMs9Orn2zCTfTvJvZVle\ntbKvOWvWrNrdAEBF+cEY6Mk844CezDMO6Ok851gb3XLLLbnwwgszbty4HHHEEe/Yf/r06TniiCNy\n2WWXZcSIEe3nb7755nz1q1/NLbfckkGDBr3jONdee20uvfTSfOc738mee+7ZrXugowsvvDATJkzI\nDTfckCFDhqyx1xk4cGCvNTb426jdvKwWRyd5M8ntyzeUZTk3yYwkg7u4dmjr0YKaAAAAAACsEc8+\n+2yStO9Hs7L9N9tss7zyyiuZPn167rjjjlx66aU56KCDVirESZKjjz46AwcOzFVXrfQ8BlbCCy+8\nkNtuuy0f/ehH12iIU081W1qtdcbNnknuL8vyjS66PZDksKIohpRl2bxc215J3kgyuVY1AQBQbQ89\n9FCeeuqpJMnMmTOz22671bkiAACgpyvLMr17986wYcNWqn9bkHPMMcckSfr375/Bgwfn1FNPzcc+\n9rGVft0NN9wwY8eOzbnnnpsbbrihfTxW39KlS/Of//mf2WSTTfKZz3ym3uWsMbXcI+eDSRqSPPU2\nfa5KcliSz7V+JEmKotgnyYgkP2qduQMAwDrgggsuyP33358kGTVqVCZMmFDnigAAgJ5syZIlaWpq\nytChQ7P++uuv1DVjxozJmDFjavL6Bx54YJ544ol873vfy0477ZQPfOADNRl3XfXf//3fefLJJ/PD\nH/4wAwcOrHc5a0wtg5y2r7jnu+pQluUtRVGMT3JmURQbJbknLUuqjU0yLcnZNawHAAAAAADarbfe\nern33nvSyPlGAAAgAElEQVTrWsMXvvCFfOELX6hrDT3FKaecklNOOaXeZaxxtQxyNmk9znmHfscm\n+VKSTyT5ZJLXktya5JyyLF+qYT0AAAAAAABrtZoFOWVZfjvJt1ei38IkF7R+AAAAAAAA0IX16l0A\nAAAAAAAAnRPkAAAAAAAAVJQgBwAAAAAAoKIEOQAAAAAAABUlyAEAAAAAAKgoQQ4AAAAAAEBFCXIA\nAAAAAAAqSpADAAAAAABQUX3qXQAAAOuuffbZJ/3790+SjBgxos7VAAAAQPUIcgAAqJuzzjorTU1N\nSZLGxsY6VwMAAADVY2k1AAAAAACAihLkAAAAAAAAVJQgBwAAAAAAoKIEOQAAAAAAABXVp94FAACw\n7vrSl76Uhx9+OEkycuTIfOMb36hzRQAAAFAtghwAAOrmySefzOTJk5Mkffv2rXM1AAAAUD2WVgMA\nAAAAAKgoQQ4AAAAAAEBFCXIAAAAAAAAqSpADAAAAAABQUYIcAAAAAACAihLkAAAAAAAAVJQgBwAA\nAAAAoKIEOQAAAAAAABUlyAEAAAAAAKgoQQ4AAAAAAEBFCXIAAAAAAAAqqk+9CwAAYN31ne98J888\n80ySZLvttqtzNQAAAFA9ghwAAOqmsbGx088BAACAFpZWAwAAAAAAqChBDgAAAAAAQEUJcgAAAAAA\nACrKHjkAANRNU1NTnnnmmfY/2ycHAAAAOqpZkFMUxcFJvpRkeJLFSR5L8tWyLO9Zrl/fJOOSjE4y\nNMnsJPckObcsy+dqVQ8AANV35pln5v7770+SjBo1KhMmTKhzRQAAAFAtNVlarSiKk5Lc1vrHM5Kc\nl2TbJHcURfEPy/TrleSXSb6c5L4kJyW5KMk/JHmwKIphtagHAAAAAACgJ+j2jJyiKLZM8r0kdyU5\nsCzLJa3nb0nyYJJDkvymtfvoJAckubgsy7OWGePuJI8muTjJkd2tCQAAAAAAoCeoxdJqJyTpl+S8\nthAnScqy/HOSQcv1Pb71+L1lT5ZlObkoigeSHFoUxcZlWb5eg7oAAAAAAADWarUIcg5IMicts29S\nFEXvJH3Ksnyzk74jk0wty3JaJ20PJRmVlj127umkfZU0NTV1dwiAyvFsA3qaN954o8PnnnNAT+X5\nBvR0nnNAT9LY2FjvEjqoxR45f5fkT0l2Kori3iRvJllQFMVTRVGMbutUFMWAJJsm6SzESZLm1uO2\nNagJAAAAAABgrVeLGTmbJlmUZEKSH6Vln5ttknwpyU+LouhXluVVSQa09p/fxTjzWo8DumhfJVVL\nzAC6o+03mzzbgJ6mb9++HT73nAN6Gj/HAT2d5xzAmleLIOddaQlu/qUsy/9tO1kUxYQkzyT5elEU\n19TgdQAAAAAAANYptVhabW6SBUmuW/ZkWZZTkvxfki2SbJdkdmtTvy7G6d96nN1FOwAAAAAAwDql\nFkHO828zzl9bjxuVZTk3yYwkg7voO7T1aGc0AAAAAACA1CbIeTAty6v9fSdtbeHMtNbjA0kGF0Ux\npJO+eyV5I8nkGtQEAAAAAACw1qtFkHNN6/ErRVH0ajtZFMUH0xLOPFGWZXPr6ataj59bdoCiKPZJ\nMiLJda0zdwAAAAAAANZ5fbo7QFmWDxVF8f0k/57k5qIobkjLTJzPJVmc5Ixl+t5SFMX4JGcWRbFR\nknta+45Ny6yds7tbDwAAa48dd9wxb7zxRvvnAAAAQEfdDnJanZHk6SSfTnJFkjeT3J/kvLIsH1mu\n77FJvpTkE0k+meS1JLcmOacsy5dqVA8AAGuBb3zjG2lqatkisbGxsc7VAAAAQPXUJMgpy3Jpkv9q\n/XinvguTXND6AQAAAAAAQBdqsUcOAAAAAAAAa4AgBwAAAAAAoKIEOQAAAAAAABVVkz1yAABgdVx0\n0UWZNGlSkmTEiBE566yz6lwRAAAAVIsgBwCAurn33ntz//33J0nmzp0ryAEAAIDlWFoNAAAAAACg\nogQ5AAAAAAAAFSXIAQAAAAAAqChBDgAAAAAAQEUJcgAAAAAAACpKkAMAAAAAAFBRghwAAAAAAICK\nEuQAAAAAAABUlCAHAAAAAACgogQ5AAAAAAAAFdWn3gUAALBu+NpTl6xwrnne1A6fd9ZnTTpnh7F/\n09cDAACAVSXIAQCgbvY6dd/MnTk3SdJ/0/51rgYAAACqR5ADAEDdvHfHrbNo0aIkSUNDQ52rAQAA\ngOqxRw4AAAAAAEBFCXIAAAAAAAAqSpADAAAAAABQUfbIAQCgbua/Pj9vvrEgSbJ+3w2y4cYb1rki\nAAAAqBZBDgAAdXPzl3+WqY83J0m23mlIRv/g+DpXBAAAANViaTUAAAAAAICKEuQAAAAAAABUlCAH\nAAAAAACgogQ5AAAAAAAAFdWn3gUAAFBbX3vqknqXAAAAANSIGTkAAAAAAAAVJcgBAAAAAACoKEEO\nAAAAAABARQlyAAAAAAAAKqpPdwcoiuKaJCe8TZfPlWX5nda+fZOMSzI6ydAks5Pck+Tcsiyf624t\nAAAAAAAAPUm3g5xlnJ5kRifnH0+Soih6Jfllko8k+VGS85NslWRskgeLohhZluWfalgPAAAAAADA\nWq2WQc7tZVk+/zbto5MckOTisizPajtZFMXdSR5NcnGSI2tYDwAAFdd/i42y8eBN2j8HAAAAOqpl\nkPNOjm89fm/Zk2VZTi6K4oEkhxZFsXFZlq//DWsCAKCODv2Pw7No0aIkSUNDQ52rAQAAgOqpeZBT\nFMUGSRaXZbl4uaaRSaaWZTmtk8seSjIqyfC07JkDAABr3NeeuqTeJXTqnB3G1rsEAAAAKqKWQc6Y\noiiOSrJNkiVFUTyS5IKyLG8rimJAkk2TlF1c29x63DY1CnKamppqMQxApXi2ASujbYbL2mZtrXtN\n8LyHnse/a6Cn85wDepLGxsZ6l9DBejUc68AkX09ySJJzkjQmubUoitFJBrT2md/FtfNajwO6aAcA\nAAAAAFjn1GJGzjeT/DTJb8qyfLP13G1FUdyc5PHW9l1r8DqrpGqJGUB3tP1mk2cbsDIanlq79pqx\nR86KPO+h5/BzHNDTec4BrHndDnLKsnwyyZOdnH+6KIrfJDkgybtbT/frYpj+rcfZ3a0HAIC1x2Pj\nH83Mqa8mSTbderPsfOQuda4IAAAAqqWWe+R05uXW44ZJZiQZ3EW/oa1Hi2kCAKxDynueztTHW7ZL\n3HqnIYIcAAAAWE639sgpimKjoij+pSiKg7rq0nqcmuSBJIOLohjSSb+9kryRZHJ36gEAAAAAAOhJ\nuhXkJFmY5NIk1xRFsfmyDUVRfCQte+M8XJbltCRXtTZ9brl++yQZkeS6sizndrMeAAAAAACAHqNb\nS6uVZbmgKIozklyT5OGiKP4ryUtJdk5yWpJZSU5t7XtLURTjk5xZFMVGSe5Jy5JqY5NMS3J2d2oB\nAAAAAADoabo7IydlWV6bZL8kf0xLGHNVkqOS/E+S4WVZPr5M92OTfCUtS6n9KMkZSW5NsmdZli91\ntxYAAAAAAICepFszctqUZfl/Sf5vJfotTHJB6wcAAAAAAABvo9szcgAAAAAAAFgzajIjBwBgXfS1\npy6pdwkAAABAD2dGDgAAAAAAQEUJcgAAAAAAACpKkAMAAAAAAFBRghwAAAAAAICK6lPvAgAAWHft\nMnr3fGC/7ZIkG20xsM7VAAAAQPUIcgAAqJv3f/gDWbRoUZKkoaGhztUAAABA9VhaDQAAAAAAoKIE\nOQAAAAAAABUlyAEAAAAAAKgoQQ4AAAAAAEBF9al3AQAArLuu+8z/y9THm5MkW+80JKN/cHydKwIA\nAIBqMSMHAAAAAACgogQ5AAAAAAAAFSXIAQAAAAAAqChBDgAAAAAAQEUJcgAAAAAAACpKkAMAAAAA\nAFBRghwAAAAAAICKEuQAAAAAAABUlCAHAAAAAACgogQ5AAAAAAAAFSXIAQAAAAAAqKg+9S4AAIB1\nV5/1G9LQ913tnwMAAAAdCXIAAKibo755bBYtWpQkaWgQ5AAAAMDyLK0GAAAAAABQUYIcAAAAAACA\nihLkAAAAAAAAVJQ9cgAAoGK+9tQl9S6hU+fsMLbeJQAAAKxzBDkAANTNs3f/Ia+/9HqSZOMtN87f\n7b99nSsCAACAahHkAABQN4/fNClTH29Okmy90xBBDgAAACzHHjkAAAAAAAAVtUZm5BRFcUGSc5Nc\nW5blvy5zfr0kZyY5MUljkgVJ7k9yXlmWj6yJWgAAAAAAANZWNZ+RUxTF9km+2EXzFUm+meS5JKek\nJewpkvy2KIo9al0LAAAAAADA2qymM3JaZ9z8d5I/JNl5ubY9kpyc5MayLI9Z5vz4tAQ7lyYZXst6\nAAAAAAAA1ma1npFzWpI9koztpO341uN3lz1ZluX0JDcl2bl1Ng8AAAAAAACpYZBTFMXgJP+Z5Cdl\nWd7TSZeRSd5K8nAnbQ+1HnerVT0AAAAAAABru1ourXZpkkVJPt9F+zZJ/lqW5aJO2ppbj9vWqpim\npqZaDQVQGZ5tUC2LFnX2Yw2rYsnSpR0+955Wm+9DsPr8+wF6Os85oCdpbGysdwkd1CTIKYriqCQf\nS3JyWZYzuug2IMlrXbTNW6YPAAAAAAAAqUGQUxTFxkm+n+TeJD/qdkU1UrXEDKA72n6zybMNqqXh\nqYZ6l7DWW69Xrw6fNzR4T6vM9yFYdX6OA3o6zzmANa8We+RcnGTTJJ8uy3Lp2/SbnaRfF239l+kD\nAAAAAABAujkjpyiKvZOcnOS7SeYWRTF4uS4btp6bl+TPSUYURfGusiwXLtdvaOvRYpoAAAAAAACt\nuru02n5JeiU5s/VjeUe3flyb5IEkuybZPclvl+u3V+vx/m7WAwDAWmSHf/pQtvrQ1kmSTd+7aZ2r\nAQAAgOrpbpDzv0ke7aLtliR3J/lOkqmt5z6b5HNZJsgpiqIxyUeT/F9Zln/qZj0AAKxFdvinD2XR\nokVJYn8cAAAA6ES3gpyyLJ9L8lxnbUVRJMm0sixvXebct5N8viiKm5KMT7J5ks8neSPJv3enFgAA\nAAAAgJ6muzNyVtXYJFOSnJrkv5PMT/KbJF8uy/Lpv3EtAAAAAAAAlbbGgpyyLHt1cm5pkh+0fgAA\nAAAAAPA21qt3AQAAAAAAAHTub720GgAAtPvFOT/Li09NS5JstcPgHP61o+pcEQAAAFSLIAcAgLpZ\nMGt+5r06t/1zAAAAoCNLqwEAAAAAAFSUIAcAAAAAAKCiBDkAAAAAAAAVJcgBAAAAAACoKEEOAAAA\nAABARQlyAAAAAAAAKkqQAwAAAAAAUFGCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCiBDkAAAAA\nAAAV1afeBQAAsO7650uOzcI330ySvGv99etcDQAAAFSPIAcAgLpp2KAh6d36eUNDfYsBAACACrK0\nGgAAAAAAQEUJcgAAAAAAACpKkAMAAAAAAFBR9sgBAKBunn/kz5nzypwkyYDNB2SbXbetc0W8na89\ndUm9S1jBOTuMrXcJAAAAa5QgBwCAuvndtRMz9fHmJMnWOw0R5AAAAMByLK0GAAAAAABQUYIcAAAA\nAACAihLkAAAAAAAAVJQ9cgCAtUIVN1kHAAAAWNPMyAEAAAAAAKgoQQ4AAAAAAEBFCXIAAAAAAAAq\nSpADAAAAAABQUYIcAAAAAACAihLkAAAAAAAAVJQgBwAAAAAAoKL61LsAAADWXdvu2ZiB790kSbLZ\n0M3rXA0AAABUT02CnKIodkxyVpIPJ9kqyewkDyT5elmWDy3Tr2+ScUlGJxna2u+eJOeWZflcLWoB\nAGDtMfK4PbJo0aIkSUNDQ52rAQAAgOrp9tJqRVHskeR3SfZL8t9J/q31uG+S+4qi2LO1X68kv0zy\n5ST3JTkpyUVJ/iHJg0VRDOtuLQAAAAAAAD1JLWbk/FeSXklGlWX5fNvJoigeTnJTki8mOSwts3AO\nSHJxWZZnLdPv7iSPJrk4yZE1qAcAAAAAAKBH6NaMnKIo1ktybZIzlg1xWv269Tik9Xh86/F7y3Yq\ny3JyWpZhO7Qoio27Uw8AAAAAAEBP0q0ZOWVZLknyrS6a/671+ETrcWSSqWVZTuuk70NJRiUZnpY9\nc7qtqampFsMAVIpnG+uytn1U6Ln8HbM6fG9kbeFrFejpPOeAnqSxsbHeJXRQi6XV2rXOqOmf5MNJ\nLkkyJcl5RVEMSLJpkrKLS5tbj9umRkEOAADVd9cld+Svz72UJNniA1vmI2MPqnNFAAAAUC01DXKS\nvNZ6XJrkR0nOKsvy1aIotmo9P7+L6+a1HgfUqpCqJWYA3dH2m02ebazLGp5qqHcJrAGzpr+Wvza9\nnCRZv9/6aWjw98yq8b2RqvNzHNDTec4BrHm1DnL2TdIvyc5JTk+yX1EURyd5scavAwAAAAAA0OPV\nNMgpy/I3rZ9OKIriJ0kmJ/nfJLu0nu/XxaX9W4+za1kPAAAAAADA2my9NTVwWZbPJ7k7SWOSQUlm\nJBncRfehrUe7ogEAAAAAALTqVpBTFMV2RVFMLYri6i66bNx67JPkgSSDi6IY0km/vZK8kZYZPAAA\nAAAAAKT7M3KakmyQ5OiiKN63bENRFMOSjErLTJznklzV2vS55frtk2REkuvKspzbzXoAAAAAAAB6\njG7tkVOW5eKiKP49yf8keagoikuT/DnJ+5J8JknfJGPKsnwryS1FUYxPcmZRFBsluSctS6qNTTIt\nydndqQUAAAAAAKCn6VaQkyRlWV5XFMULSb6YlvBm4ySzkzyS5FtlWf5qme7HJvlSkk8k+WSS15Lc\nmuScsixf6m4tAAAAAAAAPUm3g5wkKcvywSSHr0S/hUkuaP0AAAAAAADgbXR3jxwAAAAAAADWEEEO\nAAAAAABARQlyAAAAAAAAKqome+QAAMDq+KdzD8uCeQuSJBv026DO1QAAAED1CHIAAKibjQYNTN9F\nGyZJGhoa6lwNAAAAVI+l1QAAAAAAACpKkAMAAAAAAFBRghwAAAAAAICKskcOAAB183LTS5n3+rwk\nSb+N+2VQ45Z1rggAAACqRZADAEDd/N93f5WpjzcnSbbeaUhG/+D4OlcEAAAA1WJpNQAAAAAAgIoS\n5AAAAAAAAFSUIAcAAAAAAKCiBDkAAAAAAAAVJcgBAAAAAACoKEEOAAAAAABARQlyAAAAAAAAKkqQ\nAwAAAAAAUFGCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCi+tS7AAAA1l1b7TA4ffo2JEm2GDao\nztUAAABA9QhyAACom70/vV8WLVqUJGloaKhzNQAAAFA9llYDAAAAAACoKEEOAAAAAABARQlyAAAA\nAAAAKkqQAwAAAAAAUFF96l0AAFAtX3vqknqXwDrkt/91T/76p5eTJFsMG5S9P71fnSsCAACAahHk\nAABQNy8+NS1TH29Okix+Y1GdqwEAAIDqEeQAAABrrarOIjxnh7H1LgEAAOgh7JEDAAAAAABQUYIc\nAAAAAACAiqrJ0mpFUbw7yX8kOSLJoCSvJ5mY5MKyLCcv17dvknFJRicZmmR2knuSnFuW5XO1qAcA\nAAAAAKAn6PaMnKIotkgyOcnJSa5vPV6eZP8kE4ui2HmZvr2S/DLJl5Pcl+SkJBcl+YckDxZFMay7\n9QAAAAAAAPQUtZiR89Ukg5P8c1mW49tOFkXxSJJfpGX2zTGtp0cnOSDJxWVZnrVM37uTPJrk4iRH\n1qAmAAAAAACAtV4t9sh5MclPk9y03Pk7kixN8sFlzh3fevzesh1bl197IMmhRVFsXIOaAAAAAAAA\n1nrdnpFTluV5XTQNSNIrLXvgtBmZZGpZltM66f9QklFJhqdlzxwAAAAAAIB1Wi2WVuvKp1uP/5Mk\nRVEMSLJpkrKL/s2tx21TgyCnqampu0MAVI5nG38LixYtqncJrEOWLF3a4XNff/QUvmezPF8TQE/n\nOQf0JI2NjfUuoYNaLK22gqIoDk7yH0kmJbms9fSA1uP8Li6bt1w/AAAAAACAdVrNZ+QURXF8kiuT\nPJ/ko2VZLqz1a6yMqiVmAN3R9ptNnm38LTQ81VDvEliHrNerV4fPGxp8/dEz+J5NGz/HAT2d5xzA\nmlfTIKcoinOTXJDk0SSHlGX512Wa2/bK6dfF5f2X6wcAQA+37xn/mHmvt0zM7rdxVz8mAgAAwLqr\nZkFOURTfSXJGkpuTHFuWZYcl1MqynFsUxYwkg7sYYmjr0YKaAADriEGNW7bvi2M2DgAAAKyoJnvk\ntM7EOSPJj5IcuXyIs4wHkgwuimJIJ217JXkjyeRa1AQAAAAAALC263aQUxTFvknOT3JTkn8ry/Kt\nt+l+Vevxc8uNsU+SEUmuK8tybndrAgAAAAAA6AlqsbTaJa3Hu5IcWRRFZ31uK8tyflmWtxRFMT7J\nmUVRbJTknrQsqTY2ybQkZ9egHgAAAAAAgB6hFkHO8NbjpW/T531Jnm/9/NgkX0ryiSSfTPJakluT\nnFOW5Us1qAcAgLXE7JdnZcG8BUmSDfptkI0GDaxzRQAAAFAt3Q5yyrLstYr9Fya5oPUDAIB12G0X\n/jJTH29Okmy905CM/sHxda4IAAAAqqXbe+QAAAAAAACwZghyAAAAAAAAKkqQAwAAAAAA8P+xd+9x\nOtf5/8cfwyA5RRKpHFKfklJkCJWoLZ0cYjc6KJEO22k72WhLm3a/qo1YW5YSKkq2LG0nYktKjdL6\nqc8iRVQogzEOg/n9cV3X7IyZwYxxXZc87rfb3K6Zz+f9eX9en2tcH9fMc97vd5IyyJEkSZIkSZIk\nSUpSBjmSJEmSJEmSJElJyiBHkiRJkiRJkiQpSRnkSJIkSZIkSZIkJSmDHEmSJEmSJEmSpCRlkCNJ\nkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGOJEmSJEmSJElSkkpNdAGSJEk6eFU/5nC2btqa+7kkSZIk\nScrPIEeSJEkJc8F9F5OdnQ1AuXLlElyNJEmSJEnJx6nVJEmSJEmSJEmSkpRBjiRJkiRJkiRJUpJy\najVJkiRJKmWDFz6e6BIKNaDJ3YkuQZIkSVIxOSJHkiRJkiRJkiQpSTkiR5IkSQkz78W5/PTtWgAO\nr1eTtJ5nJrgiSZIkSZKSi0GOJEmSEubrDxez4vPlABxz2rEGOZIkSZIk7cKp1SRJkiRJkiRJkpKU\nQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJkiRJScogR5IkSZIkSZIkKUkZ5EiSJEmS\nJEmSJCUpgxxJkiRJkiRJkqQkZZAjSZIkSZIkSZKUpAxyJEmSJEmSJEmSklRqoguQJOlgNXjh44ku\nQZIkSZIkSUnOETmSJEmSJEmSJElJyhE5kiRJSphWvdpy8sUbAahSs0qCq5EkSZIkKfkY5EiSJClh\n6rdoSHZ2NgDlypVLcDWSJEmSJCUfp1aTJEmSJEmSJElKUqU2IicIgvLAI8DdwL/DMGxXSJuKwO+B\nK4B6wAZgJvBAGIb/La1aJEmSJEmSJEmSfglKZUROEAQBMBe4CUgpok0K8DowEHgf6A0MAdoBc4Mg\nOK40apEkSZIkSZIkSfql2OcROUEQVAfmA4uBM4Cvimh6BXA+8FgYhvfmOX4G8CnwGNB1X+uRJEnS\ngSN7Szbbtm6NfFEByh3iOjmSJEmSJOVVGiNyygPjgFZhGIa7aXdN9PGpvBvDMJwPfAhcEgTBYaVQ\njyRJkg4Qr979EiMvHsrIi4fy6t0vJbocSZIkSZKSzj6PyAnD8EciU6rtSRqwIgzD7wrZ9zHQBmhG\nZM2cfbZ48eLS6EaSkor3tl+W7OzsRJcgJdzOnJx8n/u6kPYv30skjs+9pF8673OSfkmOP/74RJeQ\nT6mskbMnQRBUAWoAhYU4AMujjw3jUY8kSZIkSZIkSdKBYJ9H5OylKtHHrCL2b9ql3T5LtsRMkvZF\n7C+bvLf9spRb6FogUpmUlHyflyvn60Lan3wvEX++j5P0S+d9TpL2v7iMyJEkSZIkSZIkSVLxxSvI\n2RB9rFTE/sq7tJMkSZIkSZIkSTroxSXICcMwE1gDHF1Ek3rRR1dFkyRJkiRJkiRJiorn1GofAkcH\nQXBsIfvOAjYD8+NYjyRJkiRJkiRJUlKLZ5AzJvp4Z96NQRCcAzQHJkZH7kiSJEmSJEmSJAlI3dcO\ngiBoDDTeZfMRQRB0y/P1G2EY/jMIginAHUEQVAVmEplS7W7gO+D+fa1FkiRJklS0wQsfT3QJBQxo\ncneiS5AkSZKS2j4HOcCvgQd32dYYeCXP1w2Ab4AeQH/gKuBqYB0wDRgQhuEPpVCLJEmSJEmSJEnS\nL8Y+BzlhGD4EPLSXbbcBD0c/JEmSJEmSJEmStBulMSJHkiRJKpFDqh1KpcMr534uSZIkSZLyM8iR\nJElSwnQe3I3s7GwAypUrl+BqJEmSJElKPmUSXYAkSZIkSZIkSZIKZ5AjSZIkSZIkSZKUpAxyJEmS\nJEmSJEmSkpRBjiRJkiRJkiRJUpJKTXQBkiRJOngtfGMBP6/8GYAadWvQ5KKmCa5IkiRJkqTkYpAj\nSZKkhFn4xgJWfL4cgGNOO9YgRzoIDV74eKJLKNSAJncnugRJkiQJcGo1SZIkSZIkSZKkpGWQI0mS\nJEmSJEmSlKQMciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUqmJLkCSpHgYvPDx\nRJcgSZIkSZIkFZsjciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJ\nkiRJScogR5IkSZIkSZIkKUmlJroASZIkHbxO69Kc+mceB8BhtQ9LcDWSJEmSJCUfgxxJkiQlzIkd\nTiY7OxuAcuXKJbgaSZIkSZKSj1OrSZIkSZIkSZIkJSmDHEmSJEmSJEmSpCTl1GqSJEmSJO1i8MLH\nS6Wf3OkjF+779JEDmty9z31IkiTpwGOQI0kqVaX1Sw9JkiRJkiRJBjmSJElKoMl3vcR3X6wA4OhT\nj/MyK+0AACAASURBVKHbEz0SXJEkSZIkScnFIEeSJEkJs31rNtmbt+V+LkmSJEmS8iuT6AIkSZIk\nSZIkSZJUOIMcSZIkSZIkSZKkJGWQI0mSJEmSJEmSlKQMciRJkiRJkiRJkpJUaqILkCRJkiRJB67B\nCx9PdAmFGtDk7kSXIEmSVCriHuQEQVADeBDoDNQB1gJvAA+EYfh9vOuRJEmSJEmSJElKVnENcoIg\nqAjMAk4ERgCfAscDdwPtgyBoHobhunjWJEmSJEnSgSBZR75IkiRp/4r3iJw7gFOAW8IwHBnbGATB\nAuAfwAPA7+JckyRJkiRJkiRJUlJKycnJidvJgiD4EjgGODwMw615tqcAy4EKwJFhGO51UevXr4/f\nBUiSJEmSJEmSpINStWrVUhJx3jLxOlEQBFWJTKk2P2+IAxANbuYBRwAN4lWTJEmSJEmSJElSMotb\nkAPUiz5+V8T+5dHHhnGoRZIkSZIkSZIkKenFM8ipEn3MKmL/pl3aSZIkSZIkSZIkHdTiGeRIkiRJ\nkiRJkiSpGOIZ5GyIPlYqYn/lXdpJkiRJkiRJkiQd1FLjeK5lQA5wdBH7Y2voLC5Op9WqVUvZl6Ik\nSZIkSZIkSZKSVUpOTk7cThYEwefA8cDhYRhuybO9LLAK2BqG4bFxK0iSJEmSJEmSJCmJxXuNnDHA\noUC/XbZfBdQCRse5HkmSJEmSJEmSpKQV7xE55YD3gebAcOBT4GTgd0SmVGsVhmFW3AqSJEmSJEmS\nJElKYnENcgCCIKgKPARcDtQBVgP/AB4Mw/DnuBYjSZIkSZIkSZKUxOIe5EiSJEmSJEmSJGnvxHuN\nHEmSJEmSJEmSJO0lgxxJkiRJkiRJkqQkZZAjSZIkSZIkSZKUpAxyJEmSJEmSJEmSkpRBjiRJkiRJ\nkiRJUpIyyJEkSZIkSZIkSUpSBjmSJEmSJEmSJElJKjXRBcQEQVADeBDoDNQB1gJvAA+EYfj9Xhzf\nGngAaAVUBP4L/B0YEYZhzi5tGwMPA+cAVYFvgQnAn8Mw3FZa1yRJMXG+x53C/+5xlYHvgX8BfwjD\ncHVpXZMkxcTzHrfLcSnAe0Tud9eFYTh2365EkgoX5/dyZYDfAjcAjYD1wAxgYBiGX5fWNUlSTJzv\ncRcDtwMtgEpEfl59G3gkDMNvS+uaJClmX+9x0T4aAS8SuXcV+bPn/swdkmJEThAEFYFZwE3Aq8C1\nwDPAb4A5QRBU38Px7Yn8EH888BDQl8h/Gk8BT+7S9mRgLtAWeBzoDcyOHvdyqVyQJOUR53vcOcB8\nIv+xDIm2nUHkFwEfBkFQuXSuSpIi4nmPK0QfIm+QJWm/ScB97jlgGDAv2nYU0Cl6rpr7ej2SlFec\nf169AZgGHAs8QuS93KvAVcCnQRDUK52rkqSIfb3HRfu4DvgMOGkP7fZr7pAsI3LuAE4BbgnDcGRs\nYxAEC4B/EEn1f7eb40cCW4Cz8qRo44MgeA24LQiC58IwXBDd/hcif6HeNgzD/0S3vRAEwSbg9iAI\nLgvDcGqpXZkkxfceNyratk2ev2Z6PgiC9dE6ron2J0mlJZ73uFxBENQmElh/BpxeKlciSYWL230u\nCIJLiLxfezAMw4fznCsE/gy0xz9AlFS64nKPi442HAxsJPI7ubXRtuOi97ino7XcWYrXJkn7dI+L\nBtDPAMOBhdHPi7Jfc4ekGJFD5I3qJmDMLttfB74DropOnVFAEAQtgQB4uZChUCOAFCLJPkEQ1AHO\nB2bmeTLztgW4uqQXIUlFiNc9rgrwAfBYIUPS34g+nlrSi5CkIsTlHleI4cBO4NES1i1Jeyue97lb\ngA3AY3kbhmE4IQzDo8MwNMSRVNridY+rCtQEvswT4sT8O/pYvyQXIEm7UeJ7XB5dwjC8DShyarR4\n5A4JD3KCIKgKnAjMD8Nwa9590Xk05wFHAA2K6CIt+ji3kH0fRx9bRh/PIPKfSIG2YRguAX7O01aS\n9lk873FhGG4Mw/D6vH+9mUe16OOGYpQvSbsV5/dxec97GdANuJfI/MaStF/E8z4XBEFZ4Fzg/TAM\nN0e3lY9ul6RSF+efVzOAH4B6QRCU36Vt/ejjwuLUL0m7Uwr3OMIwHBWG4Wt7cbr9njskPMgBYvNf\nflfE/uXRx4ZF7K9f1PFhGG4EMvIcW2TbPOc6JgiCZJlyTtKBL573uN25EcgBXtqLtpK0t+J+j4uO\nPvwrkb/cfLYYtUpSScTzPtcAqAAsDoKgZxAEXwJbga1BEMwIgqB5MWuXpD2J93u5e4n80nRCEAQn\nBUFwRBAE7YisJbGcyIhrSSot+3qPK476e3GufcodkiHIqRJ9zCpi/6Zd2pXk+CrFaLu7c0lSccXz\nHleoIAgeAToAI8Iw/Gx3bSWpmBJxj/sTUAvoF/0rKknan+J5n6sRfWwP/B/wN+BSIlNItgH+HQTB\nKXtRsyTtrbi+lwvDcDzQicj0Q4uA1cB7wHoia+ys3ruyJWmvxDML2O/ncuSJJP1CRReTHA7cTGTu\nz90tUClJSS8IgjOBm4BHwjD8KtH1SFIpi0011AhoGp2GA2BaEARfAS8ADxKZWlKSDjhBEHQGJgD/\nAf5O5C/XTwbuB94OguBXYRgu300XknTQSoYgJ7ZeQ6Ui9lfepV1Jjt9QjLYAG4vYL0nFFc97XK4g\nCCoRmUbtUuA54IYwDLfvsVpJKp643eOic6mPBpYQ+et0SYqHeL6Xy4w+fpAnxIl5icg9sF2RlUpS\n8cXzvVwNYCzwDZHRN7GfT98OguA94DMiU6z9em8Kl6S9sK/3uP1xrhLnDskwtdoyIus2HF3E/thc\ndouL2P919LHA8UEQVCOywPfiPbXNc65l/rJTUimK5z0utr0S8DaREOeBMAx7e1+TtJ/E8x53H3AS\n8AfgiCAIjg6C4Ggi86wDVI9uO7R4lyBJuxXP+9w30ceyu7aNTiW5Bqi6x4olae/F8x7XMvr11F1/\nPg3D8HNgFXDuXlcuSXu2r/e44tjvuUPCg5wwDDcBXwDNgiA4JO++IAjKAq2BFbsZWvlh9LFNIfvO\nij5+EH2cB2wvrG0QBE2Aw/K0laR9Fud7HNFF014FzgT6hGH4yD6UL0m7Fed7XAcgBZgIrMjz8XJ0\n/1+iX/tXnJJKTTzvc2EYZgBfASfvuhBuEATlgDoUvYCuJBVbnN/Lxf5K/ZBC2sa2F7VPkoqtFO5x\nxbHfc4eEBzlRY4BDgX67bL+KyGK2o2MbgiA4MQiCBrGvo6n9fKB79K8yY+1SgDuBbOD5aNu1wFSg\nXRAEp+9yrruij6ORpNIVl3tc1ADgAuCuMAzHlPJ1SFJh4nWP+z2RkYa7ftwf3T80+vW7pXVhkhQV\nz/dyzwG1iawHllc/oBzwz329GEnaRbzucR8DO4HOhfxCtT1Qg/8FQ5JUWkp8jyuOeOQOybBGDsDT\nwJXA40EQ1AM+JbLY2e+ILID2eJ62XwIhcGKebTcD7wH/DoJgKJABXAG0JzKt0NI8be8BzgbeCoLg\ncSJDNy+Mnn9MGIb/Lv3Lk3SQi8s9LgiCI4lMPbQa+C4IgsIWwt0UhuG/SvHaJCku97gwDOcWdvIg\nCGJrSiwIw3BaaV2UJOURz59XnwIuB4ZGf5HwOdCCSLCzAhhc6lcn6WAXr/dyK4IgeILI7+U+DYJg\nLLCSyNS5dwKbiPzhjiSVpn26xwVB0JH/jSg8I/aY5+fQNWEYzo5+vl9zh5ScnJx9Ob7UBEFQFXiI\nyJvWOkR+EfkP4MEwDH/O0y4HCMMwPHGX488AHiYyJKoCkSd+eBiGzxVyruOJvAFuD1QBlhJJ54aG\nYbij1C9O0kEvHve4IAjaEXkDvTvfhmFYfx8vR5Lyief7uELO3Y7Ive+6MAzHlsLlSFIBcf55tTLw\nAJGpIusCPwHTifxC9PtSvzhJB7043+OuBG4ETiXyV/KribyXeyQMw69K/eIkHfT25R4XBME3/G8t\nncLMDsOwXZ72+y13SJogR5IkSZIkSZIkSfklyxo5kiRJkiRJkiRJ2oVBjiRJkiRJkiRJUpIyyJEk\nSZIkSZIkSUpSBjmSJEmSJEmSJElJyiBHkiRJkiRJkiQpSRnkSJIkSZIkSZIkJSmDHEmSJEmSJEmS\npCRlkCNJkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGOJEmSJEmSJElSkjLIkSRJkiRJkiRJSlIGOZIk\nSZIkSZIkSUnKIEeSJEmSJEmSJClJGeRIkiRJkiRJkiQlKYMcSZIkSZIkSZKkJGWQI0mSJEmSJEmS\nlKQMciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJkiRJScogR5Ik\nSZIkSZIkKUkZ5EiSJEmSJEmSJCUpgxxJkiRJkiRJkqQkZZAjSZIkSZIkSZKUpAxyJEmSJEmSJEmS\nkpRBjiRJkiRJkiRJUpIyyJEkSZIkSZIkSUpSBjmSJEmSJEmSJElJyiBHkiRJkiRJkiQpSRnkSJIk\nSZIkSZIkJSmDHEmSJEmSJEmSpCRlkCNJkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGOJEmSJEmSJElS\nkjLIkSRJkiRJkiRJSlIGOZIkSZIkSZIkSUnKIEeSJEmSJEmSJClJGeRIkiRJkiRJkiQlKYMcSZIk\nSZIkSZKkJGWQI0mSJEmSJEmSlKQMciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElK\nUgY5kiRJkiRJkiRJScogR5IkSZIkSZIkKUkZ5EiSJEmSJEmSJCWp1EQXsK/Wr1+fk+gaJEmSJEmS\nJEnSL1u1atVSEnFeR+RIkiRJkiRJkiQlKYMcSZIkSZIkSZKkJGWQI0mSJEmSJEmSlKQMciRJkiRJ\nkiRJkpKUQY4kSZIkSZIkSVKSMsiRfgEWL17M4sWLE12GdMDxtSOVnK8fqeR8/Ugl5+tHKjlfP1LJ\n+fpRohnkSJIkSZIkSZIkJSmDHEmSJEmSJEmSpCRlkCNJkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGO\nJEmSJEmSJElSkjLIkSRJkiRJkiRJSlIGOZIkSZIkSZIkSUnKIEeSJEmSJEmSJClJGeRIkiRJkiRJ\nkiQlqdTS6igIgo5Af6AZsB34DHgkDMOZu7SrCPweuAKoB2wAZgIPhGH439KqR5IkSZIkSZIk6UBX\nKiNygiDoDbwR/fJ24CGgIfBmEATt8rRLAV4HBgLvA72BIUA7YG4QBMeVRj2SJEmSJEmSJEm/BPs8\nIicIgtrAU8C7wAVhGO6Mbv8nMBe4GJgVbX4FcD7wWBiG9+bpYwbwKfAY0HVfa5IkSZIkSZIkSfol\nKI2p1XoBlYCHYiEOQBiGXwNH7tL2mujjU3k3hmE4PwiCD4FLgiA4LAzDjFKoS5IkSZIkSZIk6YBW\nGlOrnQ9sJDL6hiAIygZBUKGItmnAijAMvytk38dAOSJr7EiSJEmSJEmSJB30UnJycvapgyAIvgPW\nANcDTwJtgLLA/wMeCcNwYrRdFWADMDcMw9aF9HM7MBToG4bh6L09//r16wu9gMWLFxfzSiRJkiRJ\nkiRJ0sHu+OOPL3R7tWrVUuJcClA6U6vVALKB6cBzRNa5qQ/0B14KgqBSGIZjgCrR9llF9LMp+lil\niP2SJElKAt9++y1ZWZG3dIceeij16tVLcEXSgaNfv37Mnz8fgGbNmvHMM88kuCJJkrQnq/+1OtEl\n7FatjrUSXULSu/322wEYNmxYgispaOfOnUyYMIHZs2ezY8cO7r//fk444YRi9bFmzRruuOMOzjrr\nLG688cZi1/Dqq68yZcoUBgwYQOPGjYt9vPa/0ghyyhMJbq4Mw/DF2MYgCKYDXwKPBkEwthTOUyxF\nJWbSL1FsBJr/7qXi8bUjlUxKSgqLFi0CoH79+jRq1CjBFUkHjooVK+b73P+DpOLx/ZtUcr5+Si5j\nRnIv5/1L+Z6+//777Nixg3bt2pV63wMHDgRK/lztz9fPnDlzeOutt2jatCldunQhLS2NmjVrFquP\nSpUqAVC1atUS1VijRg0Ajj766Nzjly5dyrx58+jRo0ex+1PpK401cjKBLcDEvBvDMFwGvAfUAk4i\nMq0aQKUi+qkcfdxQxH5JkiRJkiRJ0i9QbFTK/tC6dWtaty6w2kdSWLJkCQC9evXioosuKnaIs7/M\nmDGDiRMn7rmh4qI0gpxvdtNPbNxh1TAMM4mspXN0EW1jc3K4uI0kSZIkSZIkHSR27txJGIaJLiMh\ntm7dCuQfuZ0MYrMwKDmUxtRqc4GmQGNg4S77YuHMd9HHD4FOQRAcG4bh8l3angVsBuaXQk2SJEmS\nJEmSpL0waNAgpk+fzoQJE5g5cyZvvPEGP/30E7Vq1aJbt2707NmTlJT/rfG+YcMGnn32WWbPns3q\n1aspX748QRDQo0cPzjnnnHx9z5o1i0mTJrFs2TIyMzOpUaMGLVu25Prrr6d27dpMmzaNhx9+GIDp\n06czffp0+vTpww033ADAqlWrGD16NB999BEZGRlUrVqVM844gz59+lC/fv0C1/Diiy8yfPhwPvvs\nMx599FHatm1Lp06dAHj99ddz22/dupXx48fzzjvvsGrVKsqWLUuDBg3o3LlzbnuA9PR0brrpJrp1\n60adOnV44YUXOO200/jzn/+82+d07ty5jB8/nq+++oqtW7dSs2ZNzjrrLPr06cNhhx0GQFpaWm77\nm266CYC//e1vNG/evMh+J02axMsvv8wPP/xA9erV6dixI5dcckmhbTMyMhg9ejTvv/8+a9asoVKl\nSjRt2pRrr72WJk2aFHrMqlWr6Ny5c+7XaWlpNGvWjKeffhqIrJk6duxYPv74Y9atW0f16tUJgoC+\nffu6vs5+VBpBzljgRuDBIAh+HYZhDkAQBKcSCWe+yBPajAE6AXdGP4i2PQdoDjwXHbkjSZIkSZIk\nSYqj4cOHk52dzTXXXEO5cuWYMmUKw4YNIycnh6uuugqALVu20K9fP5YtW0anTp04+eSTyczMZNq0\nadxzzz3cf//9uUHAO++8w4ABA2jSpAl9+vShcuXKfPvtt0ycOJGPPvqISZMm0bx5c+69916GDBlC\n8+bN6datGw0aNABg5cqVXHfddZQtW5auXbtSt25dvvvuO1555RXmzJnD6NGjOe644/Jdw8iRI6lZ\nsyYDBgygYcOGhV7nzp07ueuuu5g3bx6/+tWv6NGjB9u2bWPGjBkMHjyYVatW5QYrMUuXLmX+/Pn8\n9re/5cgjj9zt8zht2jT++Mc/Ur9+fa677jqqV6/Ol19+yauvvsrHH3/MuHHjqFixIn/605949913\nmTFjBn379qVhw4ZF1gyREOeJJ57g+OOP59ZbbyU1NZXZs2cXOnpmw4YNXH/99axbt44uXbpw3HHH\nsWbNGl599VX69evH0KFDadGiRYHjatSowZ/+9CeGDBkCwL333kv16tUBWL16NX379mXnzp1ceeWV\n1KlThzVr1jBp0iT69OnD6NGjDXP2k30OcsIw/DgIguHArcDUIAheJjIS505gO3B7nrb/DIJgCnBH\nEARVgZnRtncTGbVz/77WI0mSJEmSJEkqvrVr1zJ+/HhSUyO/Nu7QoQOdOnXi+eefp2fPnpQpU4ZJ\nkyaxdOlSbr75Zq699trcYy+77DK6d+/O8OHD6dixIxUqVOCtt94C4C9/+UvuKBSAU089lYkTJ/Lt\nt99y0kkn5a5fU7t2bTp06JDbbtiwYWRnZ/Pss89y9NH/W7GjXbt29OrVi7/97W88/vjj+a4hOzub\nBx54YLfXOWPGDObNm0eXLl34/e9/n7u9a9eu9OrVi3HjxnH55ZdTq1at3H1ffPEFU6ZMoU6dOrvt\ne8uWLQwdOpTq1aszevRoqlSpAsAll1xC7dq1GT58OC+//DK9evWiQ4cOLF26FIBmzZrtdiTOjh07\nePbZZ6lcuTIjR46kWrVqAFx++eX89re/LdB+zJgxrFy5ktGjR+cbfdOxY0euuOIKnnzySV588cUC\nxx1yyCF06NCBp556CiDf9+Prr7+mUaNGdOrUiQsuuCB3e6NGjbj99tuZMmWKQc5+Uhpr5EAkrLkJ\nOAYYRSSY+QhoG4bhrF3a9gAeJDJa57nosdOA1mEY/lBK9UiSJEmSJEmSiuHSSy/NDXEAKleuTIsW\nLVi/fj1ff/01ALNnzyYlJYUuXbrkO7Zy5cq0b9+ejRs3smDBAgDKli0LwOeff56v7ZlnnsmwYcM4\n6aSTiqxly5YtfPDBBzRt2pRq1aqxcePG3I86derQsGFD0tPTCxzXvn37PV7nrFmzgEhwk1dqaioX\nXXQRO3bsYO7cufn2NWzYcI8hDsBnn33Ghg0bOP/883NDnJhLL70UgA8++GCP/exqyZIlrFu3jlat\nWuWGOECh3wuAd999l/r161OvXr18z13FihU5/fTTWbJkCRs2bChWDa1atWLkyJG5Ic7mzZvZuHEj\ntWvXBuD7778v9nVp75TG1GpEp1N7Ovqxp7bbgIejH5IkSZIkSZKkJFDYtF41a9YEIr+kb9SoEd98\n8w01a9bMFybE1KsXWTJ9+fLlpKWlcdVVVzF37lzuu+8+Tj31VM4880zS0tI4+eST8625U5jly5ez\nfft2Pvzww3yjQnaVmZlJ5cqVc78+6qij9nid33zzTZHXe+yxx+aeP68jjjhij/3m7XvXKd8ADjvs\nMKpVq8aKFSv2qq+8Vq5cCcAxxxxTYF9sKrqYzMxM1qxZw5o1a3b73P3www9UrVq1WHW88847vPTS\nSyxdupTNmzfn27djx45i9aW9VypBjiRJkiRJkiTpwHbooYcW2FapUiUgMmUZREZhxNZM2VWFChWA\nyGgagFNOOYVx48YxYcIEZs+ezYIFC3j66ac56qijuP322zn33HOLrCUrKwuIjALp1atXke3Kly+/\nx2vY1ebNm0lNTaVcuXJ7vIaYQw45ZI/9wv/qLqp9hQoV2Lhx4171lVesnsL6jdUcs2nTJgCOP/54\nfve73xXZ596EXnm9/vrrDB48mCOPPJK+ffvSoEEDDjnkEDZs2MB9991XrL5UPAY5kiRJkhQn06dP\nZ/HixUDkB2tJkqRksmt4AZHRHUDuGjcVK1YsMBJj1+Pzhin169dn4MCB3H///Xz55ZfMmjWLyZMn\n079/f55++mlOP/30QvuK9VGmTJndrh1TEhUrVmT79u1kZ2cXCHMKu4biiB23u+eoJH3Hwppt27YV\n2BcLj2Ji4dv27dtL9bl74YUXKFu2LCNGjMgdfQXw7bfflto5VLjSWiNHkiRJkiRJknQAW7ZsWYFt\nq1atAv43xVqDBg1Yu3YtGRkZBdrG1tGpX79+gX1lypTh5JNP5pZbbmHQoEHk5OTw3nvvFVnLscce\nS2pqKosWLWL79u0F9q9bt26vrqkwsanIlixZUmBf7Dko7Br2te+1a9eyYcOGEvUdW58nNsVaXrHn\nPaZy5crUqlWL5cuX8/PPPxdoX9j3bm+sWrWKWrVq5QtxILIukPYvgxxJkiRJkiRJEm+88Ua+dU7W\nr19Peno6NWvWzF2bJbbmypQpU/Idm5GRwcyZM6lZsyannnoqW7ZsoXfv3jz00EMFzhMbMRKbFq1s\n2bJA/tEmhxxyCG3btiUjI4Np06blO37lypV06tSJP//5zyW6zqKuYdu2bUyfPp0KFSrQpk2bEvXd\nrFkzqlevzrvvvsuGDRvy7fvHP/4BQPv27Yvd7wknnEDlypX56KOPcqdOA9i5cyevv/56gfYdOnRg\nx44dTJo0Kd/2DRs2cNVVV3H77bfv9nxlypRh69at+bbVqFGDjIyMfCO3fvzxR15++WWAAu1Vepxa\nTZIkSZIkSZJEpUqV+O1vf0v79u0pV64ckydPZsuWLdx2222kpKQA0K1bN958803+/ve/s3btWho3\nbkxGRgZTp04lMzOTRx99lNTUVFJTUznxxBOZPHkymZmZtGnThkMPPZTvv/+eyZMnU7FiRS699FIA\nDj/8cCpUqMDcuXMZO3YsxxxzDB06dOC2227j888/Z8iQIXz77bcEQcCqVat45ZVXKFOmDF26dCnR\ndbZr1442bdrw+uuvs23bNpo3b05WVhZvv/0233zzDXfddVfuVHLFVb58ee6++24GDhzIDTfcQKdO\nnahcuTILFy7k9ddfp0mTJnTu3LnY/aampnLllVfyzDPPcMstt9CxY0fKli3L7NmzC103p3fv3vz7\n3/9m7Nix/PzzzzRr1oyff/6ZKVOm8NNPPzFgwIDdnu+oo47ik08+4cknn6R27dr06NGD8847jwkT\nJnDfffdxwQUXsGbNGiZNmsSdd97J0KFD+e9//8urr75K27ZtOfLII4t9jSqaQY4kSZIkSZIkFaHF\njS0SXULc9OvXj08++YQJEyawdu1aateuzd133023bt1y25QvX56RI0cyevRo3nvvPV577TUqVqxI\nkyZN6N+/P82aNctte88991CvXj3eeOMNRowYQVZWFjVq1OD000+nd+/euVN0paamcscdd/D0008z\nZswYunTpQocOHTj66KN57rnnGD16NG+99RYTJ06kSpUqNGvWjOuvv77Eaw6mpKQwZMgQxo0bx5tv\nvsm7775L+fLlOeGEExgyZAjt2rXbp+fx/PPPp2rVqowdO5ZRo0axbds2ateuTa9evbj22msLrMuz\nt3r37k1qair/+Mc/GDZsGDVq1OBXv/oVvXr14vzzz8/Xtlq1ajz77LOMHj2aDz74gOnTp+d+nwYM\nGJDv+1SYfv365YZujRo1okePHtxwww1s27aNWbNm8X//938cd9xx9O/fn7PPPpvNmzfz1FNPMXLk\nSBo0aGCQU8pScnJyEl3DPlm/fv2BfQFSKXDBXKlkfO1IJbNkyRIWLVoEQOPGjWnUqFGCK5IOHP/6\n17/44osvADj11FPp2LFjgiuSDiy+f5NKztePdmfQoEFMnz6dMWPGcMoppyS6nKTj60cx1apVYqkB\nbwAAIABJREFUS0nEeR2RI0mSJElxMmLECObMmQNAmzZtDHIkSZIk7VGZRBcgSZIkSZIkSZKkwhnk\nSJIkSZIkSZIkJSmDHEmSJEmSJEk6iD344IPMmzfP9XGkJGWQI0mSJEmSJEmSlKQMciRJkiRJkiRJ\nkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJkiRJScogR5IkSZIkSZIkKUkZ5EiS\nJEmSJEmSJCUpgxxJkiRJkiRJkqQklZroAiRJkiTpYNGlSxfq1asHQLNmzRJcjSRJkqQDgSNyJEmS\nJClO+vTpw5133smdd95Jnz59El2OJEnSAa9Tp0506tSpRMemp6eTlpbGqFGjSrmq3XvhhRdo2bIl\nc+bM2a/nGTRoEGlpaaxatWq/nieRBg0aRIcOHVi+fHmiS9mvDHIkSZIkSZIk6SA3ZsyYX/Qv/PdW\nVlYWo0aNYuPGjful/88//5zhw4fTs2dP2rRps1/OcTDp378/1atXp3///mRnZye6nP3GIEeSJEmS\nJEmSDmIrV67kmWee4fvvv090KQm3aNEiRo8evV+CnJ07d/KnP/2JWrVqcfPNN5d6/wejChUqcN99\n97FkyRLGjx+f6HL2G4McSZIkSZIkSTqILVq0KNElJI39+VzMmDGDZcuWcc0111CuXLn9dp6DTYsW\nLWjevDnjx48nMzMz0eXsFwY5kiRJkiRJknSQuvHGGxkwYAAAN910U+6aKqtWrSItLY1HHnmEN954\ng0svvZRrr70WgFGjRpGWlkZ6enqB/rp3705aWlqB7VOnTuXaa6/lrLPO4pxzzuHqq69m0qRJ7Ny5\nc6/qnDdvHtdddx1nnXUW5513HgMGDGDt2rWFtt2xYwcTJkygZ8+etG3blnPPPZc+ffrw5ptv7vYc\nnTp1YsSIEQB07tw533Vs2rSJv/3tb1x++eW0adOG8847j969e/P222/vVf0QWRunSpUqXHbZZfm2\np6WlceONNxZo//bbbxdYw+fGG2/kzDPPJDs7m6eeeopLLrmE1q1b06lTJ1588cU91pCTk8P9999P\nWloa06ZNA/63ls6PP/7I888/T5cuXWjTpg0XX3wxI0eOZMeOHfn62LBhA0OHDs1td+6553LjjTcy\ne/bs3DYPPPAALVu2JCMjI9+xQ4YMIS0tjaeeeirf9rVr1+b+e4PI96Jr165kZmYyePBgLrzwQlq3\nbs2vf/3rQr+PnTp1YtOmTXv8Hh+oUhNdgCRJkiQdLG644QY++ugjAFq1ahX3hXUlSVLxXXzxxcVq\nX7FiRSZPnlxg+5QpUxgzZkyx+urZsydXXnllge1XX301P//8MwDTp08vVp+7uuGGG3jllVeYMWMG\nffv2pWHDhtSoUSO3/9WrVzNq1Ch69+5NzZo1S3SOoUOH8uKLL3L22WfTpUsXtm/fzgcffMATTzzB\n4sWLGThw4G6PX7RoEXfeeSeVKlXi2muv5YgjjmDhwoXceuutZGdn5xvdkpOTw4ABA5g1axYXXngh\nPXv2JCsri7fffps//OEPrFy5kuuvv77Q89x3332MHz+e9PR07r33XqpXr56777HHHmPp0qVcfvnl\nnHLKKWzatInp06czcOBA1q1bx29+85vdXkNGRgZffvklZ599NuXLly/Gs1e4QYMGsW7dOnr37k12\ndjYvvfQSQ4cOpW7dupxzzjlFHjd8+HDeffddbrnlFi655JJ8+0aOHMk333xDjx49SE1NZcqUKYwd\nO5YaNWpwxRVXALBlyxb69evHsmXL6NSpEyeffDKZmZlMmzaNe+65h/vvv5/OnTvTsmVL3nrrLT7/\n/HPatWuXe4709HQOPfRQPvvss3znjoWCrVq1yt22c+dO7rzzTg4//HBuvvlm1q9fz4QJE3jooYeo\nX78+J554Ym7bli1bkpKSwkcffUS3bt1K/LwmK4McSZIkSYqTlStXsnz5cgCOOeaYBFcjSZL2xpw5\nc4rVvnLlyoVuX7lyZbH7atu2baHbP/nkE3744Ydi9VWUZs2a8emnn+Z+3rx583z7P/74Y0aNGkXT\npk1L1P9///tfXnzxRbp168a9996bu/3yyy+nf//+TJ06le7duxMEQZF9jB07luzsbAYPHkyLFi0A\nuOyyyxgzZgzPPPMMderUyW37/vvvM3PmTG699VauvvrqfOfr27cvY8aMoUuXLtSoUaPAeVq3bs07\n77yT+/lRRx0FwLp166hYsSI9e/bktttuy21/wQUXcOGFFzJp0qQ9BjmffvopOTk5ufXvix07drBp\n0yZGjBhBSkoKACeccAL9+vVj5syZRQY5U6ZMYcKECfTo0YNevXoV2L906VKee+653GDszDPPpHPn\nzsycOTM3yJk0aRJLly7l5ptvzh2hBZHvR/fu3Rk+fDgdO3bMHc2UN8hZu3Yty5Yto3Pnzvzzn/8k\nKyuLQw89FID58+dTpkyZfKOgVq1aRevWrfP9uzn88MN56KGHmD17dr4gp3r16jRq1Ij09HR27NhB\n2bJli/u0JjWnVpMkSZIkSZIkFapmzZolDnEA3n33XQDOO+88Nm7cmO+jffv2AIVO0ZbXJ598Qo0a\nNQqEIF27di3QNhbEdOjQId+5srKyaNeuHdu3b2fBggXFuobq1atz33335YY4W7duZePGjeTk5HDE\nEUfw/fff77GP7777Dii9P+bp0aNHbogD0LhxYwB++umnQtt/+OGHPPbYY1x44YXccccdhbbp3r17\nvtFNderUoXr16vn6nD17NikpKXTp0iXfsZUrV6Z9+/Zs3LiRBQsWUKtWLRo0aJBv5E0srPn1r3/N\njh07+OKLL3L3paen07hxY6pWrZqv3549e+b7OnadhU2rd8wxx7Bp0ybWrVtX6PUdyByRI0mSJEmS\nJElFaNOmTbHaV6xYsdDtdevWLXZfxx57bKHbW7RokTv12f6Wd7RLSSxbtgyg0DVgYnY3uigjI4NN\nmzbRqFGjAvuqV69OtWrVCj1f586di+zzxx9/3G3NhVm2bBlPP/00CxYsYMOGDcU+PrZWzGGHHVbs\nYwtz9NFH5/u6QoUKAGzfvr1A2zAMGTRoECeddBJ/+MMf8gVAu+sz1m/ePr/55htq1qxZ4HkHqFev\nHgDLly8nLS2NtLQ0Jk+enDvyJj09neOOO45GjRpRp04dPvvsM1q1asWaNWtYvnx5gSnvypYtW+Df\nX2xausKuMzbKav369SWeBjBZGeRIkiRJkiRJUhH2dQ2amK5duxY6gqQkxo8fXyr97I3Y1FcllZWV\nBcAjjzzC4YcfXmib3f3SfevWrQAccsghhe6PBRh5z5eSksKIESMoU6bwCaliU6btrRUrVjBo0CDK\nlClD9+7dadq0ae4Ueg899NBeBUObNm0Cip56r7iKs87Oww8/TFZWFsuWLePHH3+kbt26Je5z8+bN\n+dYOyiv2vdiyZQsAaWlpTJo0iS+++IJWrVrx6aef0rp1awBOO+005s+fDxS+Pg5EgpziTJEWe24z\nMzP3+pgDhUGOJEmSJEmSJKlUxIKXmFgQVLduXU4++eRi9xcLB3btN2bz5s35wpFDDz2UnJwcjjvu\nuELXwSmJd955h+zsbAYOHMhll12Wb19hI0MKU6lSJaB4IUNR11xcJ510Ej169ODee+/lgQceYNSo\nUaSmliwaqFixIps3by50XyzAiX3PmzdvTmpqKp999hkNGzZkxYoVNGvWDIgEOTNmzGDr1q3Mnz+f\nypUrl+jfR16x57a0wrJk4ho5kiRJkiRJkqS9FgsBtm3blm/7li1bWL16db5tDRs2BCh0XZqsrKw9\nhhXVqlWjYsWKrFq1qsC+1atXs3Hjxr0+38aNG/c6eMlrzZo1AAXW6Fm+fHmRa9LsKjal2vr16wvs\nK1u2bIHnMtZ/aRg4cCBnnXUW1113HQsXLmTUqFEl7qtBgwasXbs2d6q4vL7++msA6tevD0QCnSZN\nmrBgwQLS09NJSUnh9NNPByJBzrZt21i4cCHz58/njDPOKHG4FBNbG6ewad8OdAY5kiRJkiRJknQQ\ni01fVViYUJjYVGhffvllvu2vvPIKO3fuzLetQ4cOALz66qu5IzZihg8fzgUXXMB3331X5Lliv/xf\nvXo1X3zxRb59r732WoH25513HgATJ07MV0tOTg5/+MMfuOSSS3Y7KiY2HVve5yIWDHz//fe527Zu\n3coTTzxBlSpVAApc265i68+sWLGiwL6aNWuybNmyfH1kZmYybdq03fZZXL1796ZJkyaMGzcudzqz\n4op9P6dMmZJve0ZGBjNnzqRmzZqceuqpudtbtmzJokWLmDdvHg0aNMgNtOrXr89hhx3GzJkzWb58\nOS1btizhVf3PihUrqFSpUpFTvx3InFpNkiRJkiRJkg5isTVjnn32Wb7++mvatGmz2/VSWrVqRYUK\nFXLX6jnyyCP54osvSE9Pp0mTJixcuDC37QknnMAVV1zBxIkT6du3L126dCE1NZU5c+bw3nvv0bFj\nx9yQoyjXXHMNH330Ef3796d79+4cfvjh/Oc//2HhwoUcddRR5OTk5LY9++yzadeuHbNmzeKWW27h\noosuYvv27bz99tukp6fTu3fv3U69FXsuhg8fzumnn07Hjh1p1aoV77//PoMHD+bqq69m+/btTJ06\nlVNOOYWqVavy1ltv8cwzz3DBBRdw4oknFtrvGWecQUpKCp988gndu3fPt++cc87h5Zdf5p577uFX\nv/oVmZmZTJkyhRYtWvDmm2/u9rkpjtTUVP74xz9y1VVX8eCDD/LCCy8Ue/RKt27dePPNN/n73//O\n2rVrady4MRkZGUydOpXMzEweffTRfCNr0tLSeOaZZ3jvvfe46KKLcrenpKTQtGnT3DWodl0fp7gy\nMjJYvHgxbdu2Lda6OgcKR+RIkiRJkiRJ0kGsffv2tG3blq+++ornn3++0Gmz8qpVqxbDhg2jYcOG\njB8/nieffJL169fz17/+lYoVKxZo/7vf/Y4BAwZQtmxZnnzySYYMGcLy5cu59dZbeeCBB/ZYX7Nm\nzRgyZAg1a9ZkzJgxPPXUU2RmZjJs2LBCg4hHH32UW2+9lYyMDIYMGcJf/vIXsrKyGDBgADfeeONu\nz9W1a1eaNm3KRx99xIsvvsiWLVs47bTTuO6660hJSeGJJ55g4sSJnH/++dx1111ceeWV1K1bl8mT\nJzNv3rwi+z3ssMM46aSTSE9PLzDy6ZZbbuGKK65g+fLlDBkyhNdee40rr7ySrl277vG5Ka66dety\n1113sXr1agYPHlzs48uXL8/IkSP5zW9+w5w5c3j00Ud57rnnqFOnDn/9618599xz87Vv3LgxVapU\nISsrK3datZjTTjuNrKwsjjnmGOrWrbtP1/Xxxx+Tk5Ozz4FQskrJm1YeiNavX39gX4BUChYvXgzA\n8ccfn+BKpAOLrx2pZJYsWcKiRYuAyJvyRo0aJbgi6cBx8cUXM2fOHADatGmT+xeIkvaO79+kkvP1\nI5Vcab1+3n77bQYOHMi9995Lt27dSqM0Rd1000189dVXTJ06NXe6u/2hWrVqKfut891wRI4kSZIk\nSZIkSfvZeeedR4MGDRg3bhzZ2dmJLucX45NPPiE9PZ2rr756v4Y4iWSQI0mSJEmSJEnSflamTBl+\n//vfs3r1akaOHJnocn4Rtm7dypAhQ2jUqBFXX311osvZb1L33ESSJEmSVBrGjRtHGIYA/H/27j5K\nsqq+F/63ydCCMIAIqCziADJ3K+okAoMvqBATg/cmmoSI4gVJAj4R9BrBIL6FgFyjJEg0Gs34wkWf\naGLiCkRBEzWg0QBCm1EHL2QzKgNOiIoPbzqAjTrPH3UGe8ZuZrq75pxT3Z/PWr129Tm7Tv3OmtpT\n1fWtvU8ppeNqAABo2y/+4i/mFa94Rd7xjnfksMMOyxFHHNF1SSPtvPPOy+23356LLrooO+64Y9fl\nbDeCHAAAgJY8/OEPz9577/3AbQAAFp/jjz8+xx9/fNdlLAhnn3121yW0wtJqAAAAAAAAPSXIAQAA\nAAAA6ClBDgAAAAAAQE+5Rg4AAEBLrrnmmnzta19Lktx+++158pOf3HFFAABA3wlyAAAAWnLuuefm\nyiuvTJIcccQR+cQnPtFxRQAAQN9ZWg0AAAAAAKCnBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABA\nTy2Z7wFKKR9I8jsP0uX0Wuvbm747J3ldkuOSLEtyd5IrkpxVa71xvrUAAAAAAAAsJPMOcqZ4WZLb\nptn+lSQppYwl+ViSX0lyUZI3Jtk3yRlJri6lHF5r/cYQ6wEAAAAAABhpwwxy/qnWuu5B9h+X5NlJ\nzq+1nrlpYynl8iRfSnJ+kmOGWA8AAAAAAMBIa/MaOSc27Tumbqy1rk5yVZJfL6Xs0WI9AAAAAAAA\nvTbMGTlJklLKTkl+VGv90Ra7Dk/yrVrr+mnudk2SI5IcksE1c+Zt7dq1wzgMjBTPe5gbYwdm5+ab\nb37g9rp167Jx48YOq4HRcu+9925222sQzI2xA3Nn/MDcGT+Lx/Lly7suYTPDnJHz8lLKTUnuTfLD\nUsoXSyn/I0lKKUuT7JlkuhAnSW5p2gOHWA8AAAAAAMBIG+aMnKOTvDnJfyZZkeTVSS4rpfzPJJ9v\n+twzw303NO3SYRXTt8QMtqdN3wbwvIfZMXZgbsbGxnL99dcnSfbff/8cdNBBHVcEo2PnnXfe7LbX\nIJgd799g7owfmDvjh64NI8i5IMnfJvlcrfWHzbZPllI+nuQrzf6VQ3gcAACAkXbkkUdm1113TZIc\neuihHVcDAACMgnkHObXW65JcN83260spn0vy7CR7N5t3meEwuzbt3fOtBwAAoK/OPPNM3+gEAABm\nZZjXyJnOd5r2oUluS7LfDP2WNa2rRQEAAAAAADTmFeSUUnYrpRxfSnnOTF2a9ltJrkqyXynl0dP0\ne0aSe5Osnk89AAAAAAAAC8l8Z+RMJnlXkg+UUvaauqOU8isZXBvn2lrr+iQXNrtO36LfkUkOTfKR\nWusP5lkPAAAAAADAgjGva+TUWu8rpbwyyQeSXFtKWZXk20melOTUJHcleWnT99JSysVJTiul7Jbk\nigyWVDsjyfokr59PLQAAAAAAAAvNvIKcJKm1frCUckuS12UQxuySQZjz4SR/Umv95pTuL0ry2iQn\nJHlxkjuSXJbkDbXWb8+3FgAAgD577Wtfm2uvvTZJcvjhh+e8887ruCIAAKDv5h3kJEmt9bNJPrsN\n/SaTnNv8AAAALCrXXXddVq8eXBp055137rgaAABgFMz3GjkAAAAAAABsJ4IcAAAAAACAnhLkAAAA\nAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOgpQQ4AAAAAAEBPCXIAAAAAAAB6SpADAAAA\nAADQU4IcAAAAAACAnhLkAAAAAAAA9NSSrgsAAABYLN7+9rfnhhtuSJI87nGP67gaAABgFAhyAAAA\nWrJ8+fJpbwMAAMzE0moAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABAT7lGDgAAQEvWrl2bG2644YHf\nXScHAADYGkEOAABAS0477bRceeWVSZIjjjgin/jEJzquCAAA6DtLqwEAAAAAAPSUIAcAAAAAAKCn\nBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABATy3pugAAAIC2Taya6ORxv3/r9ze7PZc6Vp6ycpgl\nAQAAPWdGDgAAAAAAQE8JcgAAAAAAAHpKkAMAAAAAANBTghwAAAAAAICeEuQAAAAAAAD01JKuCwAA\nAFgsHrPvY7Jx48YHbgMAAGyNIAcAAKAlL3vuyzI5OZkkGR8f77gaAABgFFhaDQAAAAAAoKcEOQAA\nAAAAAD0lyAEAAAAAAOgpQQ4AAAAAAEBPLem6AAAAgMXiQ5d/KOu+vS5Jsv8j988Jv3xCtwUBAAC9\nJ8gBAABoyZe//uWsuWlNkuSOH9whyAEAALZKkAMAADBCJlZNdF3CvKw8ZWXXJQAAwEhxjRwAAAAA\nAICeEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA6KklXRcAAACMnolVE12XAAAA\nsCiYkQMAAAAAANBTghwAAAAAAICesrQaAAAArRnlZflWnrKy6xIAAFiEzMgBAAAAAADoqe0yI6eU\ncm6Ss5J8sNb6u1O275DktCS/l2R5kvuSXJnknFrr6H4tCwAAYBuc9JyTcvtdtydJ9tx9z46rAQAA\nRsHQg5xSyuOTvGaG3e9NcnKSi5Ocn2T3JK9M8vlSyrNqrVcPux4AAIC+ePyyx2dycjJJMj4+3nE1\nAADAKBhqkNPMuHlfkv+b5Elb7HtqBiHOR2utL5iy/eIkNyZ5V5JDhlkPAAAAAADAKBv2NXJOTfLU\nJGdMs+/Epv2LqRtrrf+Z5JIkT2pm8wAAAAAAAJAhBjmllP2SvCXJh2qtV0zT5fAkP05y7TT7rmna\nJw+rHgAAAAAAgFE3zKXV3pXk/iSvmmH//km+W2u9f5p9tzTtgcMqZu3atcM6FIwMz3uYG2MHZufm\nm29+4Pa6deuycePGDquhK5uu88Ls3LXhrvzoxz9Kkiz5uSXZfZfdO66I2fCeoT/8W8DcGT8wd8bP\n4rF8+fKuS9jMUIKcUsrzkzwvycm11ttm6LY0yR0z7NswpQ8AAMCC9Ja/e0uuW3ddkuSJ+z8x5510\nXscVAQAAfTfvIKeUskeSdyb51yQXzbuiIelbYgbb06ZvA3jew+wYOzA3Y2Njuf7665Mk+++/fw46\n6KCOK6ILd15+Z9cljKSxsbHNbo+Pj3dYDbPlPUP3vH+DuTN+YO6MH7o2jGvknJ9kzySn1FofbF2N\nu5PsMsO+Xaf0AQAAAAAAIPOckVNKeWaSk5P8RZIflFL226LLQ5ttG5J8M8mhpZTxWuuWC2ova1qL\nDAIAAAAAADTmOyPnWUnGkpyW5Ftb/CTJsc3ttyW5qnm8p0xznGc07ZXzrAcAAAAAAGDBmO81cv4m\nyZdm2HdpksuTvD0/DXb+IMnpST6/qVMpZXmS5yb5bK31G/OsBwAAAAAAYMGYV5BTa70xyY3T7Sul\nJMn6WutlU7a9LcmrSimXJLk4yV5JXpXk3iSvmE8tAAAAAAAAC818Z+TM1hlJbkry0iTvS3JPks8l\n+aNa6/Ut1wIAAAAAANBr2y3IqbWOTbNtY5K/bH4AAAAAAAB4EDt0XQAAAAAAAADTE+QAAAAAAAD0\nlCAHAAAAAACgp7bbNXIAAADY3N677519H77vA7cBAAC2RpADAADQktce99pMTk4mScbHxzuuBgAA\nGAWWVgMAAAAAAOgpM3IAAKAjE6smui4BAACAnjMjBwAAAAAAoKcEOQAAAAAAAD1laTUAAICWfPzq\nj2f9beuTJPvtvV+e99TndVwRAADQd4IcAACAlvzrmn/NmpvWJElWHLBCkAMAAGyVpdUAAAAAAAB6\nSpADAAAAAADQU4IcAAAAAACAnhLkAAAAAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOgp\nQQ4AAAAAAEBPCXIAAAAAAAB6SpADAAAAAADQU4IcAAAAAACAnlrSdQEAAACLxfOf8fw884nPTJLs\ns8c+HVcDAACMAkEOAABAS5568FMzOTmZJBkfH++4GgAAYBRYWg0AAAAAAKCnBDkAAAAAAAA9JcgB\nAAAAAADoKUEOAAAAAABATy3pugAAAIDF4g/f84dZc9OaJMmKA1bkgpde0HFFzMbEqomuS5iXlaes\n7LoEAADmwIwcAAAAAACAnhLkAAAAAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOgpQQ4A\nAAAAAEBPCXIAAAAAAAB6SpADAAAAAADQU4IcAAAAAACAnhLkAAAAAAAA9JQgBwAAAAAAoKeWdF0A\nAADAYvGQHR+Sncd3fuA2AADA1ghyAAAAWvLmk96cycnJJMn4+HjH1QAAAKPA0moAAAAAAAA9JcgB\nAAAAAADoKUEOAAAAAABATwlyAAAAAAAAempJ1wUAAAAsFp/76ufy7du/nSR55J6PzFG/cFS3BQEA\nAL0nyAEAAGjJpV+8NGtuWpMkWXHACkEOAACwVZZWAwAAAAAA6KmhzMgppTwxyZlJnp5k3yR3J7kq\nyZtrrddM6bdzktclOS7JsqbfFUnOqrXeOIxaAAAAAAAAFop5z8gppTw1yReTPCvJ+5K8pGl/KckX\nSilPa/qNJflYkj9K8oUkJyX5syRHJbm6lPKY+dYCAAAAAACwkAxjRs6qJGNJjqi1rtu0sZRybZJL\nkrwmyW9kMAvn2UnOr7WeOaXf5Um+lOT8JMcMoR4AAAAAAIAFYV4zckopOyT5YJJXTg1xGp9p2kc3\n7YlN+46pnWqtqzNYhu3XSyl7zKceAAAAAACAhWReM3JqrT9J8ucz7H5s065p2sOTfKvWun6avtck\nOSLJIRlcM2fe1q5dO4zDwEjxvIe5MXZgdm6++eYHbq9bty4bN27ssJrRNjk52XUJtGzqeNm4caPn\nAK1aSO95FtK5QNuMH5g742fxWL58edclbGYYS6s9oJlRs2uSpyd5a5KbkpxTSlmaZM8kdYa73tK0\nB2ZIQQ4AAAAAAMCoG2qQk+SOpt2Y5KIkZ9Za/79Syr7N9ntmuN+Gpl06rEL6lpjB9rTp2wCe9zA7\nxg7MzdjYWK6//vokyf7775+DDjqos1omVk109tjDMD4+3nUJtGxsbGyz254DtGkhvOfx/g3mzviB\nuTN+6Nqwg5xfSrJLkicleVmSZ5VSjk1y65AfBwAAAAAAYMEbapBTa/1cc/MTpZQPJVmd5G+SHNZs\n32WGu+7atHcPsx4AAAAAAIBRtsP2OnCtdV2Sy5MsT/KIJLcl2W+G7sua1tWiAAAAAAAAGvOakVNK\neVySTyf5TK31pGm67DHlca5K8hullEfXWm/Zot8zktybwQweAACABelXD/3VPGHZE5JS3xMLAAAc\nUUlEQVQk++6171Z6AwAAzH9ptbVJdkpybCnlf9dab9q0o5TymCRHZDAT58YkFyb5jSSnNz+b+h2Z\n5NAkF9VafzDPegAAAHrr6MOOzuTkZJJkfHy842oAAIBRMK8gp9b6o1LKK5J8OMk1pZR3JflmkgOS\n/K8kOyd5ea31x0kuLaVcnOS0UspuSa7IYEm1M5KsT/L6+dQCAAAAAACw0Mx3Rk5qrR8ppdyc5DUZ\nhDd7JLk7yUSSP6+1fnpK9xcleW2SE5K8OMkdSS5L8oZa67fnWwsAAAAAAMBCMu8gJ0lqrVcn+c1t\n6DeZ5NzmBwAAAAAAgAexQ9cFAAAAAAAAML2hzMgBAABg697412/M9bdcnyQ5+NEH5+wXn91xRQAA\nQN8JcgAAAFpy9z135/bv3/7AbQAAgK2xtBoAAAAAAEBPCXIAAAAAAAB6SpADAAAAAADQU4IcAAAA\nAACAnlrSdQEAAADA9jexaqLrEuZs5Skruy4BAKAzZuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAA\nPSXIAQAAAAAA6ClBDgAAAAAAQE8JcgAAAAAAAHpqSdcFAAAALBZ/8nt/kvt+eF+SZKeH7NRxNQAA\nwCgQ5AAAALRkp/GdskOzMML4+HjH1QAAAKPA0moAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABAT7lG\nDgAAQEtWr12d7931vSTJXrvvlUOWH9JxRQAAQN8JcgAAAFry4Ss+nDU3rUmSrDhghSAHAADYKkur\nAQAAAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD3lGjkAAIvcxKqJWfVff9v63LXhriTJdV+9Lnfsfcf2\nKAsAAACIGTkAAAAAAAC9JcgBAAAAAADoKUEOAAAAAABATwlyAAAAAAAAekqQAwAAAAAA0FOCHAAA\nAAAAgJ4S5AAAAAAAAPTUkq4LAAAAWCye8rin5FF7PipJsuwRyzquBgAAGAWCHAAAgJYc+8xjMzk5\nmSQZHx/vuBoAAGAUWFoNAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA6ClBDgAAAAAAQE8t6boAAACA\nxeJtF78t9Vs1SVJ+vuT0Y07vuCIAAKDvBDkAAAAtWX/b+nzjv76RJNllp106rgYAABgFllYDAAAA\nAADoKUEOAAAAAABATwlyAAAAAAAAekqQAwAAAAAA0FOCHAAAAAAAgJ5a0nUBAAAAAA9mYtVEkmRy\ncjJJcufld3ZZzqytPGVl1yUAACPMjBwAAAAAAICeMiMHAGAINn1TGAAAAGCYhhLklFL2TvLHSX4r\nySOS3Jnk35L871rr6i367pzkdUmOS7Isyd1JrkhyVq31xmHUAwAAAAAAsBDMe2m1Uso+SVYnOTnJ\n3zXte5L8cpJ/K6U8aUrfsSQfS/JHSb6Q5KQkf5bkqCRXl1IeM996AAAAAAAAFophzMh5U5L9kvx2\nrfXiTRtLKRNJ/jGD2TcvaDYfl+TZSc6vtZ45pe/lSb6U5PwkxwyhJgAAAAAAgJE3jCDn1iR/m+SS\nLbb/c5KNSVZM2XZi075jasda6+pSylVJfr2Usket9c4h1AUAANArr3nha7Lhng1Jkl0eukvH1QAA\nAKNg3kFOrfWcGXYtTTKWwTVwNjk8ybdqreun6X9NkiOSHJLBNXMAAAAWlH322CeTD51MkoyPj3dc\nDQAAMAqGMSNnJqc07YeTpJSyNMmeSeoM/W9p2gMzhCBn7dq18z0EjBzPe5gbY4dhmJyc7LqE1tx/\n//2b3V5M5w7DZOzA3I3a+PF+kz7xfIS5M34Wj+XLl3ddwmZ22B4HLaX89yR/nOTfk/xVs3lp094z\nw902bNEPAAAAAABgURv6jJxSyolJ3p9kXZLn1lo7+ZpM3xIz2J42fRvA8x5mx9hhmO68fPFc4m/H\nHXdMJn962/JQMDubZhIYOzB7ozp+vN+kD/z9A3Nn/NC1oQY5pZSzkpyb5EtJfq3W+t0puzddK2em\nK3ruukU/AACABeXrt349d35/EPzusXSPHLTvQR1XBAAA9N3QgpxSytuTvDLJx5O8qNa62RJqtdYf\nlFJuS7LfDIdY1rQWGgQAABakv7r0r7LmpjVJkhUHrMgFL72g44oAAIC+G8o1cpqZOK9MclGSY7YM\ncaa4Ksl+pZRHT7PvGUnuTbJ6GDUBAAAAAACMunkHOaWUX0ryxiSXJHlJrfXHD9L9wqY9fYtjHJnk\n0CQfqbX+YL41AQAAAAAALATDWFrtrU37L0mOKaVM1+eTtdZ7aq2XllIuTnJaKWW3JFdksKTaGUnW\nJ3n9EOoBAAAAAABYEIYR5BzStO96kD4HJFnX3H5RktcmOSHJi5PckeSyJG+otX57CPUAAAAAAAAs\nCPMOcmqtY7PsP5nk3OYHAAAAAACAGcz7GjkAAAAAAABsH4IcAAAAAACAnhLkAAAAAAAA9JQgBwAA\nAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOipJV0XAAAAsFgcvOzg7LTjTkmSA/c9sONqAACAUSDIAQAA\naMnJzzk5k5OTSZLx8fGOqwEAAEaBpdUAAAAAAAB6SpADAAAAAADQU4IcAAAAAACAnhLkAAAAAAAA\n9NSSrgsAAABYLC785wvzzVu/mSQ5cN8Dc/JzTu64IgAAoO8EOQAAAC25/ubrs+amNUmS++6/r+Nq\nAACAUWBpNQAAAAAAgJ4S5AAAAAAAAPSUIAcAAAAAAKCnBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAA\nAABATwlyAAAAAAAAempJ1wUAAAAALGQTqya6LmHOVp6ysusSAGDRMyMHAAAAAACgpwQ5AAAAAAAA\nPSXIAQAAAAAA6CnXyAEAAGjJqc89NXd+/84kyR5L9+i4GgAAYBQIcgAAAFpy0L4HZXJyMkkyPj7e\ncTUAAMAosLQaAAAAAABATwlyAAAAAAAAekqQAwAAAAAA0FOukQMAANCS79753Wy4Z0OSZJeH7pJ9\n9tin44oAAIC+E+QAAAC05E//7k+z5qY1SZIVB6zIBS+9oOOKAACAvrO0GgAAAAAAQE8JcgAAAAAA\nAHpKkAMAAAAAANBTghwAAAAAAICeEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA\n6ClBDgAAAAAAQE8t6boAAIAkmVg10XUJAAAAAL1jRg4AAAAAAEBPmZEDAADQkv323i8b7tvwwG0A\nAICtEeQAAAC05PRjTs/k5GSSZHx8vONqAACAUWBpNQAAAAAAgJ4S5AAAAAAAAPSUIAcAAAAAAKCn\nhnaNnFLKeJI3JTkjyedrrUdN02fnJK9LclySZUnuTnJFkrNqrTcOqxYAAAAAAICFYChBTimlJPmb\nJP8tydgMfcaSfCzJryS5KMkbk+ybQfBzdSnl8FrrN4ZRDwAAQB999PMfzc3fuTlJsuwRy3LsM4/t\nuCIAAKDv5h3klFIelmR1krVJDkvyHzN0PS7Js5OcX2s9c8r9L0/ypSTnJzlmvvUAAAD01Rdv+GLW\n3LQmSbLigBWCHAAAYKuGcY2c8ST/b5Kn1Frrg/Q7sWnfMXVjrXV1kquS/HopZY8h1AMAAAAAALAg\nzHtGTq31O0lO3Yauhyf5Vq11/TT7rklyRJJDMrhmDgAAAAAAwKI3lGvkbE0pZWmSPZPMNGPnlqY9\nMEMKctauXTuMw8BI8byHuTF2+mFycrLrEthG999//2a3/dvBttu4ceNmt40fmBtjpz3eKy88/k1h\n7oyfxWP58uVdl7CZYSytti2WNu09M+zfsEU/AAAAAACARa+VGTld6FtiBtvTpm8DeN7D7CzEsTOx\naqLrEuZsfHy86xLYRjvuuGMy+dPb/u1g242NjW122/iB2dk0E8fYac9Ceq+82C3Ev3+gLcYPXWtr\nRs7dTbvLDPt33aIfAAAAAADAotdKkFNr/UGS25LsN0OXZU1rkUEAAAAAAIBGWzNykuSqJPuVUh49\nzb5nJLk3yeoW6wEAAAAAAOi1NoOcC5v29KkbSylHJjk0yUeamTsAAAAAAAAkWTLfA5RSDk5y8Bab\n9y6lPH/K75+stV5aSrk4yWmllN2SXJHBkmpnJFmf5PXzrQUAAAAAAGAhmXeQk+QFSc7eYtvBST46\n5fcDkqxL8qIkr01yQpIXJ7kjyWVJ3lBr/fYQagEAAABgSCZWTXRdwpytPGVl1yUAwFDMO8iptZ6T\n5Jxt7DuZ5NzmBwAAYFE5/lnH5+i7jk6S7LX7Xh1XAwAAjIJhzMgBAABgGxyy/JBMTk4mScbHxzuu\nBgAAGAU7dF0AAAAAAAAA0xPkAAAAAAAA9JQgBwAAAAAAoKdcIwcAAKAl903el/t+eF+S5Cf5SXYa\n36njigAAgL4T5AAAALTkDRe9IWtuWpMkWXHAilzw0gs6rggAAOg7S6sBAAAAAAD0lCAHAAAAAACg\npwQ5AAAAAAAAPSXIAQAAAAAA6ClBDgAAAAAAQE8JcgAAAAAAAHpKkAMAAAAAANBTghwAAAAAAICe\nEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPbWk6wIAAAAWi90eulv2XLrnA7cBAAC2RpADAADQ\nkrNffHYmJyeTJOPj4x1XAwAAjAJLqwEAAAAAAPSUIAcAAAAAAKCnBDkAAAAAAAA95Ro5AAAAACw4\nE6smui5hXlaesrLrEgDoCUEOAEwx6n/sAdBvn/rSp3Lr925Nkuy71745+rCjO64IAADoO0EOAABA\nSz7975/OmpvWJElWHLBCkAMAAGyVa+QAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA\n6KklXRcAAAAAAGxuYtXEUI83OTmZJLnz8juHetzprDxl5XZ/DIDFxIwcAAAAAACAnhLkAAAAAAAA\n9JSl1QAYumEvAbC9tLm0AAAAAADMhRk5AAAAAAAAPSXIAQAAAAAA6ClBDgAAAAAAQE+5Rg4AAEBL\nnvuU52blf1uZJHnkno/suBoAAGAUCHIAemhi1UTXJQAA28FRv3BUJicnkyTj4+MdVwMAAIwCS6sB\nAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA6KklXRcAAACwWLz+/7w+X1v3tSTJE/Z/\nQt580ps7rggAAOg7QQ4AAEBLfnj/D3Pv5L0P3AYAANgaS6sBAAAAAAD0lCAHAAAAAACgpyytBgAA\nAAAMzcSqia5LmJeVp6zsugSAzQhygAVr1N84AgAAAABYWg0AAAAAAKCnWp+RU0rZM8nZSX4zyaOS\nfC/JJ5OcVWv9r7brAQAAAAAA6KtWZ+SUUnZO8rkkpyb5hyS/m+Q9SV6Y5MpSysParAcAAAAAAKDP\n2p6Rc1qSJyZ5ea313Zs2llK+muSSJGcleVXLNQEAAAAAJBnta+6uPGVl1yUA28HYxo0bW3uwUsoN\nSX4+ycNrrT+csn0syS1JHpLkEbXWbS7qrrvuau8EAAAAAACARWn33Xcf6+JxW1tarZSyW5LHJlk9\nNcRJkia4uTbJ3kkOaKsmAAAAAACAPmvzGjnLmnb9DPtvadoDW6gFAAAAAACg99oMcpY27T0z7N+w\nRT8AAAAAAIBFrc0gBwAAAAAAgFloM8i5u2l3mWH/rlv0AwAAAAAAWNSWtPhYNyXZmGS/GfZvuobO\n2tkcdPfddx+bT1EAAAAAAAB9NbZx48bWHqyU8pUky5M8vNZ635TtP5fk1iQ/rLU+urWCAAAAAAAA\neqzta+RcmOShSV66xfYTkuyT5P0t1wMAAAAAANBbbc/I2THJF5IcmuSdSb6U5PFJXpXBkmpPqbXe\n01pBAAAAAAAAPdZqkJMkpZTdkpyT5LeTPCrJd5NckuTsWuvtrRYDAAAAAADQY60HOQAAAAAAAGyb\ntq+RAwAAAAAAwDYS5AAAAAAAAPSUIAcAAAAAAKCnBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABA\nTy3pugBgeqWUpyU5K8lTkuyc5MYk70vyl7XWjdtw/x2SnJbk95IsT3JfkiuTnFNrnZim74lN/5Jk\nY5Ibkrw3yXu35fGgT9ocP1Puc3SSDyR5ZJIDaq3r5n0isJ2VUvZMcnaS30zyqCTfS/LJJGfVWv9r\nG+6/zWOtlHJwknOTHJlktyQ3J/lQkvNqrZPDOidoQ5tjp+n/iAxeY56T5I211nOGciLQgZZfe56Y\nn7727Jrkv5L8U5I/rrV+d1jnBG1pefz8WpI/SPILSfbMYPx8KoO/iW4d1jlBW9p+/zblfmNJPpvB\na9Hv1Vo/ML8zYbEyIwd6qJTyrAz+k1+e5Jwk/08GLxDvSPK2bTzMe5Nc0Nzv9zN4sSlJPl9KeeoW\nfVcluSjJdzJ4o/bqDP5/WJXkLfM4FWhd2+OnlPKQUsrbMvhQYNchnAK0opSyc5LPJTk1yT8k+d0k\n70nywiRXllIetpX7b/NYK6U8PsnVSZ6e5K1JTkryr839/n4oJwQtaXPsNP1/Lcl1GYwfGGktv/Yc\nmWR1kpVJ/qzpe3kG7+2uKqV438ZIaXn8vDLJZRkEOG9K8tLmvi9J8sXmA3EYGW2/f9vCSzIIcWBe\nzMiBfnp3BjMAnjHlWwF/XUr5xyR/UEq5qNb61Znu3HzQfHKSj9ZaXzBl+8UZvNC8K8khzbanZfAC\ndGmt9XlT+n4gyX8keVUp5S211ruGeYKwHbU2fhoXJfmNDN6cPTPJ7wzzZGA7Oi3JE5O8vNb67k0b\nSylfTXJJBgHmqx7k/rMZa3+eQdD59Frrdc22D5dSNiR5ZSnlebXWjw/tzGD7am3sNLM9L8sg8Pxw\nko8N+2SgZW2+9ry36XtErfXmZtsHSyl3NXWc2BwPRkUr46eZBXp+kq9mMH42zZy+qJRyZ5JXZvA3\nz7Z+SQ76oM3XnweUUh6ZwZcJvpzkSUM5ExYtM3KgZ0opT87gm/9/P83Uzr9MMpbkhK0c5sSm/Yup\nG2ut/5nBC9STmm9HJ8kuSf42gzdqU/tuSPL5JDsmedwsTwM60cH4SZJbk6ystf6fORcO3TgxyYYk\nF26x/WNJ1ic5oVkG4GfMZqyVUh6V5NlJrpgS4kztmyQvnutJQAdaGTuNnZKcWmt9YZK7h1A7dK2t\n156lSf4tyflTQpxNPtm0K+Z6EtCRtl5/dszgQ+1XT7P87Wea9tFzOgPoTpvv36Z6Z5KfJHnzHOuG\nBwhyoH8Ob9qrp9l3TdM+eRuO8eMk127tGLXWz9Ra/2et9QvT9N29aX1wwKhodfwkSa31jFrr9bMp\nErpWStktyWOTrK61/nDqvmZ952uT7J3kgBkOMZuxdlgGf9z8TN9a69eT3J6tj0vohZbHTmqtH6u1\nrppX0dATbY6fWuv3a60n11rPnaavv3EYOS2Pn/W11j+ttX5mmr6Pbdo1sygfOtX2+7cpj/u8JM9P\ncmYG1+OBeRHkQP/s37Trt9xRa/1+kjuTHLgNx/hurfX+afbd0rQPeoxSymMy+Ab1l5PcsJXHg77Y\nv2k7HT8wApY17c+MlcbWnuv7z3T/acbajH2nPNbPl1Is+csoaHPswELTl/FzSpKNGaxKAKOik/FT\nSllSStmjlHJQKeXVGcwq+JckH9rGuqEPWh8/zczQd2Ww0o3VOxgKfzBDC0opW1vKKUlurbVekWRp\n8/s9M/TbMKXPTJYmueNB7r+pz7SaCxde3Pz68uYbCtCJURs/MCK2ZaxM7TeX+y+dRd9N/WYae9AX\nbY4dWGg6Hz+llDcl+eUk76y1fvnB+kLPdDV+np7BBd439fnjJG+ttf545lKhd7oYP29Jsk+SZ9da\nN5ZStqVOeFCCHGjHX29Dn08luWJ7F7I1pZT9k/xzksckeXGtdbqpo9CmkRk/AAD0TyllhwyuU/Cy\nDK6H8GAXtAZ+6itJfinJw5r23CRHl1JeUGu1VBRMo5Ty1CSnJnlTrfU/uq6HhUOQA+142Db02bSM\n06a1mneZod+u2fp6zndv5f5TH+cBpZTDklyWwTcJjqm1XrqVx4E2jMT4gRGzLWNlar+53P/uWfRN\nku/PsB/6pM2xAwtNJ+OnlLJLBsuoPTfJRUl+v9b6o61WC/3Syfiptd6Z5HPNr5eUUi5P8o9J/jTJ\nyQ9SL/RJa+OnlDKe5P1Jvp7BUoQwNIIcaEHz5mdbfbNp99tyRyll9wwuzrl6G45xaCllvNY6ucW+\nTWuDrt3i2E/PYFbD95M8s9b677OoGbabURg/MIJuyuD6AD8zVhpbe67PZqzN2HfKY93kQzVGRJtj\nBxaa1sdPE+J8OsnTkpxVa33TLGuGvujF60+t9WOllO8lec7W+kKPtDl+XpPkcUlelGTvKUuq7d20\nDyul7Jfk9lrrTEu1wbR26LoA4Gdc1bRHTLPvGU37b9twjB2SPOVBjnHlpg2llCcmuTTJd5M8TYjD\nCGt9/MAoqrVuSLImySGllJ2m7iul/FwGH3h9q9Z6y3T3z+zG2rVJfjRd31LKE5Lska2PS+iFlscO\nLChtj59SypIk/5DkqUleIsRhlLU5fkopv1NK+U4p5aQtOzbLFC6NL4YzQlp+/fnlJGNJPpLkW1N+\n/r7Z/+fN7y+Y/Zmw2AlyoGdqrV/JIMk/tknpkySllLEkp2ewhNQHp2zfvZTy2FLKnlMOc1EG3zY4\nfeqxSynLM1hS4LO11m802x6SwQvKT5L8Sq31m4ER1fb4gRF3YZKHJnnpFttPyODCnO/ftKEZJwds\n+n02Y61ZP/3jSY4qpTxpi8f6w6Z9f2B0tDJ2YIFqc/y8IcnRSf6w1nrhkM8DutDW+Plqc7z/VUrZ\ncYvHemGSh8QX2xg9bY2f12XwucGWP69v9r+9+f1fhnViLB4SdOinlyX5bJLPl1LenuTOJMcleVYG\nSwJM/RD5tzL44Pl1Sc5LklrrV0spb0vyqlLKJUkuTrJXBhf1vDfJK6bc//eTPDbJR5M8aZoP2ZLk\n+lrr9UM8P9ieWhs/pZSHJvkfU463aUr2fy+l3NbcNn7oq1VJjk/y1lLKsiRfSvL4DJ7r1yV565S+\nNySpGbxebDKbsfbqJM9M8qlSyluT3JrBkhzHJ7mw1vr54Z8ebDetjZ1SypH56VIcj2/ag0spz29u\nb6i1/tMQzw22t1bGTynlERksb/PdJOunjJmpjB9GTSvjp9b6lVLKu5v+E6WUDya5PclhGXx+8IMk\nZ2+vk4TtpK3xc/V0D15K+UFz86u11suGdVIsLmbkQA/VWq/J4AOv/0hybpL3JHlkkpNmsSTAGRl8\n4HxQkvclOSvJRAZLp/3fKf0ObdpjMwhzpvsx5ZOR0fL42Sebj5Wjmu3vjvFDz9Va70/yq0nemeS3\nk3wgye9k8G20o7a2ZvNsxloz2/NpGVws98wMvhF3SAZjbctvxUGvtTl2krwxP309OafZNvU921/N\n+4SgRS2On8cl2TmD92p/n+n/xjF+GCktv3d7eZIXZxDanNM8xm8l+bskh9VarxvWeUEbWn7/BtvF\n2MaNG7uuAQAAAAAAgGmYkQMAAAAAANBTghwAAAAAAICeEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAA\n/P/t2bEAAAAAwCB/62nsKI0AAIApkQMAAAAAADAlcgAAAAAAAKZEDgAAAAAAwJTIAQAAAAAAmBI5\nAAAAAAAAUyIHAAAAAABgSuQAAAAAAABMiRwAAAAAAIApkQMAAAAAADAlcgAAAAAAAKZEDgAAAAAA\nwJTIAQAAAAAAmArvDGrfquGMrAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 825, + "height": 725 + } + } + } + ] + }, + { + "metadata": { + "id": "Hn-G0eFwIAyh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Notice that as a result of `N_B < N_A`, i.e. we have less data from site B, our posterior distribution of $p_B$ is fatter, implying we are less certain about the true value of $p_B$ than we are of $p_A$. \n", + "\n", + "With respect to the posterior distribution of $\\text{delta}$, we can see that the majority of the distribution is above $\\text{delta}=0$, implying there site A's response is likely better than site B's response. The probability this inference is incorrect is easily computable:" + ] + }, + { + "metadata": { + "id": "nZxDurxyIAyh", + "colab_type": "code", + "outputId": "7cb41824-d97a-4b53-e12b-169d009251e7", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + } + }, + "cell_type": "code", + "source": [ + "# Count the number of samples less than 0, i.e. the area under the curve\n", + "# before 0, represent the probability that site A is worse than site B.\n", + "print(\"Probability site A is WORSE than site B: %.3f\" % \\\n", + " np.mean(burned_delta_trace_ < 0))\n", + "\n", + "print(\"Probability site A is BETTER than site B: %.3f\" % \\\n", + " np.mean(burned_delta_trace_ > 0))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Probability site A is WORSE than site B: 0.145\n", + "Probability site A is BETTER than site B: 0.855\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Q8cAEzbUIAyl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "If this probability is too high for comfortable decision-making, we can perform more trials on site B (as site B has less samples to begin with, each additional data point for site B contributes more inferential \"power\" than each additional data point for site A). \n", + "\n", + "Try playing with the parameters `true_prob_A`, `true_prob_B`, `N_A`, and `N_B`, to see what the posterior of $\\text{delta}$ looks like. Notice in all this, the difference in sample sizes between site A and site B was never mentioned: it naturally fits into Bayesian analysis.\n", + "\n", + "I hope the readers feel this style of A/B testing is more natural than hypothesis testing, which has probably confused more than helped practitioners. Later in this book, we will see two extensions of this model: the first to help dynamically adjust for bad sites, and the second will improve the speed of this computation by reducing the analysis to a single equation. " + ] + }, + { + "metadata": { + "id": "f-jxOi70IAyl", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## An algorithm for human deceit\n", + "\n", + "Social data has an additional layer of interest as people are not always honest with responses, which adds a further complication into inference. For example, simply asking individuals \"Have you ever cheated on a test?\" will surely contain some rate of dishonesty. What you can say for certain is that the true rate is less than your observed rate (assuming individuals lie *only* about *not cheating*; I cannot imagine one who would admit \"Yes\" to cheating when in fact they hadn't cheated). \n", + "\n", + "To present an elegant solution to circumventing this dishonesty problem, and to demonstrate Bayesian modeling, we first need to introduce the binomial distribution.\n" + ] + }, + { + "metadata": { + "id": "qzCqZqzBDpMa", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## The Binomial Distribution\n", + "\n", + "The binomial distribution is one of the most popular distributions, mostly because of its simplicity and usefulness. Unlike the other distributions we have encountered thus far in the book, the binomial distribution has 2 parameters: $N$, a positive integer representing $N$ trials or number of instances of potential events, and $p$, the probability of an event occurring in a single trial. Like the Poisson distribution, it is a discrete distribution, but unlike the Poisson distribution, it only weighs integers from $0$ to $N$. The mass distribution looks like:\n", + "\n", + "$$P( X = k ) = {{N}\\choose{k}} p^k(1-p)^{N-k}$$\n", + "\n", + "If $X$ is a binomial random variable with parameters $p$ and $N$, denoted $X \\sim \\text{Bin}(N,p)$, then $X$ is the number of events that occurred in the $N$ trials (obviously $0 \\le X \\le N$). The larger $p$ is (while still remaining between 0 and 1), the more events are likely to occur. The expected value of a binomial is equal to $Np$. Below we plot the mass probability distribution for varying parameters. " + ] + }, + { + "metadata": { + "id": "9I53Ta3maWgJ", + "colab_type": "code", + "outputId": "e097f79a-2032-4e1a-949a-2b26a1004a78", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 294 + } + }, + "cell_type": "code", + "source": [ + "k_values = tf.range(start=0, limit=(N + 1), dtype=tf.float32)\n", + "random_var_probs_1 = tfd.Binomial(total_count=10., probs=.4).prob(k_values)\n", + "random_var_probs_2 = tfd.Binomial(total_count=10., probs=.9).prob(k_values)\n", + "\n", + "# Execute graph\n", + "[\n", + " k_values_,\n", + " random_var_probs_1_,\n", + " random_var_probs_2_,\n", + "] = evaluate([\n", + " k_values,\n", + " random_var_probs_1,\n", + " random_var_probs_2,\n", + "])\n", + "\n", + "# Display results\n", + "plt.figure(figsize=(12.5, 4))\n", + "colors = [TFColor[3], TFColor[0]] \n", + "\n", + "plt.bar(k_values_ - 0.5, random_var_probs_1_, color=colors[0],\n", + " edgecolor=colors[0],\n", + " alpha=0.6,\n", + " label=\"$N$: %d, $p$: %.1f\" % (10., .4),\n", + " linewidth=3)\n", + "plt.bar(k_values_ - 0.5, random_var_probs_2_, color=colors[1],\n", + " edgecolor=colors[1],\n", + " alpha=0.6,\n", + " label=\"$N$: %d, $p$: %.1f\" % (10., .9),\n", + " linewidth=3)\n", + "\n", + "plt.legend(loc=\"upper left\")\n", + "plt.xlim(0, 10.5)\n", + "plt.xlabel(\"$k$\")\n", + "plt.ylabel(\"$P(X = k)$\")\n", + "plt.title(\"Probability mass distributions of binomial random variables\");" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABo4AAAIqCAYAAAAaWriaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XncVVW9+PHPAyjgBIIC4oADuADT\n1PSGmimapuFsmNe5UtIc0fKndrlapjdv2hUytQRzCEPRK2Y5goplKWqDeLHF7AQoJIKAMj6/P9Y+\nD4fDOc94ngk+79fL137O3mvvtfa0Dq7vWWtVVFZWIkmSJEmSJEmSJLVp7gJIkiRJkiRJkiSpZTBw\nJEmSJEmSJEmSJMDAkSRJkiRJkiRJkjIGjiRJkiRJkiRJkgQYOJIkSZIkSZIkSVLGwJEkSZIkSZIk\nSZIAA0eSJEmSJEmSJEnKGDiSJEmSJEmSJEkSYOBIkiRJkiRJkiRJGQNHkiRJkiRJkiRJAgwcSZIk\nSZIkSZIkKWPgSJIkSZIkSZIkSYCBI0mSJEmSJEmSJGXaNXcBJEmSGlMIobKazcuA94DngFtjjLGJ\ny7RLjHF2I+ZzKPA88HaMcec67Dcb6AUMjDG+kK27DrgWuDfGeE62bmdgFkCMsaJMxVYZhBBeAA4B\nvhljvCdbdw7wa2BijPHQZijTdbTQZ6jYM7+xCSFcBZwPbE+qG/vHGN+vJv09wNnAD2OM19Uyj0Op\nR53UUpXzfIq9HxsK36/6KWf9WN/6v6n+vSJJkloeA0eSJGlj8SAwL+9zBbAj8AVSY+k5IYSzYoxj\nm6NwLczdQBdSUK06i4HhxTaEEOYAz2xoDaCt3BTS/ZrekIOEEL4KPEXdG4FfzvKf1JD8GyKE8Fvg\ngCKN/LV95jdIWQDkv4BK4Pek67C8EbJ6j/QMfNQIx24OG9r5qGUp+R0rSZLU2AwcSZKkjcWtMcaX\nC1eGEDYFbgSuAO4PIbwSY3ynyUvXgsQYf1TLdB8BlxWuDyHsAGxX7nKpYWKMkyhP0Gb/eub/FCng\n1JyKlr22z/wG7IvZ8pkY43GNlUmMcTpF6ozWakM7H7Uspb5jJUmSmoJzHEmSpI1ajHEFcCUwGWgP\nfKt5S7RBqFdgQa1Gq7y/IYQuwG7NXY4WqmO2nFdtKkmSJEkbBXscSZKkjV6McU0I4UVgT2Dv3Pq8\nOQH+AAwFRgL7ATfEGG/MS3cg6VfBBwHbkuYH+ScwFrg9xvhpqbxDCMcC3wM+D2ya7Xd7jHFkkbRb\nApcCJwC7kxp7FwKvAf8TY3y2mnzaZGX8JqnxfAXwKvCjGOMfC9LOphbzURSbf6FgTqmzQwhnA28D\nDwBXA0/HGI8qcbwvAX8kDc+zXYxxWTV5X0eaD+SHwK+Am4AjgE7AbNI1/Hl23leSAoI7AR8D44Dv\nxRiXFBxzU9KwhacAewBbZmX5B3BnjPHBIuXoDvw/4GjSNasA5gIvAcNjjK8VpN8VuAo4DNgBWAXM\nAcaTesVNLXXORfLuDfw4O9ZWwLukZ+76EunPocgcF9lzdQXpuepN+n+ED4DXgV/EGCcU7J/zfAgB\nsjlu8u7JL4D7gdtJ1/HbMcbRtZnDJcvjQqBvtuoN4KcxxnEF6WZTzTNauD1vzieAXoXzdlR3vBDC\nIOACUsBsa+ATUqD5N8A9McZVeWl3Jr0TS2OMW4QQvk66tv1J7/dbwC0xxtEFeWwKXAR8Izv3jsCH\nwJvAXTHGR4pdr1JqWyflzdGTk3tnq65NLfPbgfQsHgFsk5X9d8B/xhj/lZcul986cwLlXf/9gdWk\n93oA0Jn0XD9AqqtWFuRbAZxOqtf2Jr2zH5Oe3VExxocL0ufyn5iV9dps/+2ABcCjwP+LMS4LIZxI\nelf3yMr0InBF/jta3RxHIYRdgO+T3s+dgLakwNwLpO+QWr/rxdT0vmVp6lSn1ff5zfb9Aum+HQh0\nAGYC9wI/q+E86vN+vQ3sQnrGv0N6dhYBz5Du0fwQwiHAdcC+pDptEune1tjrMoQwMzv+2THG+0qk\nGQl8G7g7xvjtbF29rzfpPR0JfA14NcZ4ZHVzHIUQupHuzdGk7/RNgfmk757/jjG+Ws35tQeGZeXc\nKcv/RdL7Ormm65N3nBOBIaR7txXpHXoJ+FmM8S9F0pft+0+SJDU+exxJkiQlH2fLDiW2jwE2A+4h\nNZ4BEEL4LvAnYDApYHEfqSGxN3AzMDGEsEWJY54G/C+wBBhNalDcG7grhPCf+QlDCJsDfyYFBXYE\nHiM1Mk0mNRw9E0KorrfUHcB/Av9HasybAXwFeC6EcHg1+9XVcOCV7O+3ss93Z/8BHJE1MhfzjWz5\nYHVBowJbkBqBdycFhF4hNbyPyK7HXcAlpEaxx0kNk98Bfpl/kBBCW1KAcDjwOeBpUkDqL8DBwJgQ\nwo8K9tmGFHwbSmpYfpB0beeQGqP/lM0HlEu/O6lB+zzSnCi/AX5Laii9AHglhLBPbU46a4B7mXTN\nPsnyfQk4G3iCWv47P2tAfJHUAN2J9Dz+GpgKHAs8m/dc5eZI+iT7/Ej2uXAIyA7ZcRYBo0gN/7Up\ny9Wkxu93SQ3hfyU1Qj+aF8yor4ez8kIq//Dsv8U1lOkm0pw/XyW9O/eQnokvkJ6tcdmzU2zf75Lu\n8VzSs/EmsA/wmxDC4ILkjwK3kBrAf096t/9GCnY9nAUJaqWOdVJujp7Cd7bGa5Ona7b//lnZx5AC\nX9/N8tqstmUnBeb/SHoWHyE1KO8C/Adwa8F5VpACSvcDB5DexXtI1+0wYGwI4Y5q8rqf9J4+S3r3\nu5GCd3eGEM4k3btZpGfnU+AY4KksOFCtEMJeWTkuINUNo7P8FgFnAa9nacqh6PtWnzqt4Bxq/fyG\nEL5IeuYGkZ6pe0nBkqtZN9hcmEe93y/SnFxXkeq9x4DNgTOBR0IIhwFPkr7XHyYFwg8lfU9uU6o8\neR7Ill8vUe5NgBOzj/dl6xp0vUmB14NJ13pCdYULIfQk1Y9XkgI2D5K+Y9/JyvznEMKR1RziMeBc\nUt19DyngdALwUgjhc9XlnVeG20jP3WGk9z/374qvk777zi1IX7bvP0mS1DTscSRJkpT0zpazi2w7\ngBScODnGWNWjJoSwB2snrj4hxvhY3ratSQ2g+5N+9fy9Ise9Gjg0xvhS3n6nkxpUfhBCGBVjfD/b\ndBapMeptYN9s7oPcPt8mNTTfHEK4v/BX+UBP4HAgxBg/yPapIAVPzmNtQ1eDxRgvyxq5vwhMijFW\nzc8QQphIagg/izSvFHnb2rC2ke6eOmT5HeCOGOOVece6ldQz66fA+0DfGOPibNuxpJ4Qg0MIQ2KM\nS7PdjiQF0j4B9s7vaZEF1sYDV4cQbo8x5obzOpcUxBsTY/z3gvM5mdRgeSOpARHgclIPip/EGK8u\nSH8FqVF/GHBSLc77J6QG++eBo7IhF8ka6Z8kBVxq40RSsPJPpN42+b/uH0B6hm/MnqtJwKQQwgmk\nX9LfVqJH2onA/fn3vpYuAfaJMca8MvyA1KB6SwjhwRjjZ3U8JgAxxttCCG8CJwMf1aZsWcPrlcBn\npPf0lbxtO5EaS3O9JW4r2L09KdjxbzHGN/L2+xXpnbuI1Psnd52/Bkwnnf+SvPS9SQGRq0MIt8UY\nF9RQ5jrVSbk5ekq9s7X0HeBO4NJc/RhST7zXSb0uLiS9i7Xx38B383t55NWJ3wohfC+vB+d5wKmk\n3k0HZeeS22dvUkDh/BDCH2KMvy/I5wukhvd+uWcqe64fBf6dVF9+Mcb4ZratJxBJQaxDSMGm6vyA\nFPx6DDgpxrgmO04FqX47C7iBFJxtqFLvW33qtJxaP7+Zn5MCWL8h9dLJne82pGduvR8LNPD96kYK\n5PXLfRdmQYe/kgVpgGPzektuSfqRRa/set1VWJ4Co0n38MgQwla57488RwJdSN/HL+atq+/13pTU\nA26vGOPH1OxSYHtS3fDl/HoxhHA96d7dQupFXehA0rvZO1fXhBDakb4Xjyb13h1UXeYhhFNJ7/V8\n0r2bkrftWFJA6RchhOdjjDOyTeX8/pMkSU3AHkeSJGmjF0LYEchNCP9YkSRdSMPzVBasP5/0Q5xx\n+Q20ADHGhaSGJ0gNnsV+sPNAftAo2280aUipTUm/AM55ldSAdmF+0Cjza2AlqTfNHkXy2QQYlgsa\nZflUknogVQJ7ZA3OjW1UtjynyLZDgR7A1Bjjn+twzJWkxqZ8D2XLLsB1BY1+fyA1VG4C9MlbP5s0\n5M75hcNzZY2PM0j3ekDepl2y5XrlzYYW+xLr/mK9ZHpSY//BwMVFtq0j632We17/Ixc0yvJdRgrA\nlPqVfqFcmSblB42yY71MCpoeTOo1UVtbkxoB62pEftAo81NST4qupMb8ppS7F3fkN2oDxBjfIQXv\nIAVOCrUjDVX4RsH6+7Nlfm+T3D14o3D4xCwY8mVScG9RLcrc0DqpPpaShgCrqh+zuubn2cdT6nCs\nl4oMDfYgaWjNDqSehTm5+3NDftAoy//vpN4eUPz+bAF8vyAQ+TipbmgHPJILGmXHm0PqOQLF69hC\n95Ma9/8zF0TJjlPJ2qDFwbU4Tm2Uet9mU/c6LafWz28W3Nyf9F1yVcH5LiD1CipWHzXk/epIGrrw\no7x9/gZMyz6+nAsaZds+IQ1jB7W4fzHGt0g9xtqztq7Nl+sdOzrvuZ9N/a/3JqSetrUJGkH6ccBF\npGH5CoPpud60nwshdC6R1+X5dU1W9/8w+3hkCKFTDfnnfqhxTX7QKDvW46ReWJuSgow5Zfn+kyRJ\nTcceR5IkaaMVQtiK9Ovb/yY1RD0ZY3yySNLlrG00zPflbPlEiSwmkBrTtiYNn/ZmwfZS+/05S181\n31JMc+W8VixxTHM0zSXNVVCqwWe9vGKM80IIs4Bds7z+r8S+5fIwqTG5TwjhSzHGP+VtyzXE3VPH\nY74RY1xesO6DvL/Xmb8pu1YLSL+A3ypv/VvkDUFYxPukeSTyr28uyPH9EMKbMcb8uWIoDApm6Y8E\nbgghvB9j/Gte2lWkXj+1sSepQXMFa4cYy8/3HyGED0m/yq9J7hy+FUJ4CXgsxlgVJIoFczTV0vQY\n43v12K/YM7oihPA6aTikvUmBv0aX9QzJNeyXek/HZ8s9SvRK+GPhDqRhDKH4czQohHAecF/+Mx3r\nMOcIDa+T6uOFWHwet1wD8Z4hhLb5z1U11rtmMcZV2fO8A9l1CyF0YW0vyeruz2Wk4Geh1aReF/n5\nrM6rG4rdu1y9slWRbYVlLuzhlC/Xi7SmxvnaKvq+1bNOy1fb53e/bDkzru0hm+9Z0jNXNUdPmd6v\nYnMVfUD6QUCD7l/mAdLQfF8n9aQCqob3PD77mAukleN6P19i/Xqynp4vVJNPTifWDsObszAWmX+I\n9O+LFaSAz+dIPfbWk717uX+blLp3fyDNKzgwv9iU5/tPkiQ1EQNHkiRpY/GXEEKpbZWk8fkvLLF9\nQf6vqPPkfkE7q9hOMcYlIYR/kSaL34n1G2lnlsgv1/CzXf7KbPilS0kNod1Jw74Uqiiy7qMYY6ne\nCu+TAkfbldheNjHGT0MIvyX1ivgmWUNR1vPhZGAN2XwRdVAsQJHfQF1saK/c9nV634cQdiPNV3QI\n6Xp0Yf3rmf/5DtJwSQNJc0W9S2qYfwZ4osg1/xEpALInaY6TaaTG0WeAp0s0vhezfbacV01j/NvU\nLnA0jtRAehppTpn5IYQJpMbe38cYP6xlmfLVZx+o4/vQyLZmbQNv0febtcNaVpCCDVMKtheb2yl3\nv6qeoxjjX0MIPyH1zPgV8NMQwgusvQdv16HcDa2T6qOm+9aedD2rHWYvU2o+rMJ3due8bTXdn64h\nhM3iuvOmlXp3cutqXW+UEkI4njSc5eeAbUlz8DSGku9bPeq0fLV6fllbHxULGhFjXJYF5LbNW12O\n96u6ur/B9480/85NwFdDCFtmvZYgDSu5FfBqjPGf+Ts08HrXqd4MIRxCmkfsC6RrWywgViyvUnXD\n6hDCB6ThV6ura3fKO+7VIYRi71Huuye/V2+5vv8kSVITMXAkSZI2Fg8ChfMKfEqaTPqZvHH4i1lS\nYn1u0vfqGjxyw8h0LLJtaZF1+ft0yK0IIZxIOodNgH+RAhQfkn4hDOnXvVuWOF6pfIrm1chGkQJH\np4QQLolpjqGvkIYie6rEL9ars6q6jUWGFywqm2fmGdI1/IT0a+45rL0+X2dtA2nu2J+GEI4iDb13\nHrBv9vc5wPIQwijSPDKfZukXZPlcAJxNGjKpT/b5k2xuph/WomdG7rmrbr6fwl5YRWU9sM4kDdF4\nIakH3qnZf6tDCGOBi2KM/6rN8TKl3pea1Pp9aAKb5f1d6v3Ov/7F3u/CucZKijFeHUJ4ntTofCip\nR8PxwG0hhKdI8/6UamDP19A6qT5qum9Q+3tX22uWO8+V1bwvhfcnP3BUbb1B+jFBvYUQfsraee1m\nkAK0C0nBi61IgfNyKfq+1adOK1DXe1GX+qjB71fh0JoFGnT/suO/n83LN5A0F9UD2aZc79j789OX\n4XrXut4MIVwEjCAFcN4nDV23gLXP9aXV7N7Qfw9skff3RdWXdJ1eveX6/pMkSU3EwJEkSdpY3JrN\n2VJOS0kNI5tVkya3rVijUKnGmdz6ZQAhhE1Ik89vAowELihsNAshnETpwFF1jUDr5NXYYoyvhRDe\nIM2RcTypMa6+w9SV0x2k6/cEMLigdwIhhH0p0uiXzS/0K+BX2UTwR5AmXz+e9Gvw7cmbqyqbV+Kn\npF4l25OG7hkMfJU0V9NWpOG1qpNr3GtfTZrqnsnCc1hDmhfqoWz4xsNI83oMJgWQdg8h7F+i1105\ndaD4c1ifZ3STBpYlv3G11LXMX1/fYFmVGOMzwDMhhI6kHguDgH8HjgJeDCH0K5wDqYiG1kn1UVM9\nBuWvX3L3Z5MQQrsSQYSy3p/aCiF8nrVBo2/GGO8p2L4r5Q0clVKvOq0e6lMfNfn7VU+jSYGjrwMP\nZPPLHUsK0IwpSNsk1zuEsC1wCylodC1wff4PJEIIbag+cNTQfw/k7kUl0LHIULEllen7T5IkNZHa\ndtOWJEnS+nJDNO1abGM2wXSX7GOx3gI7lTjujtkyNxRPP9YO/XJVkaDRZqSh60rZJktTm7yawshs\neWrWSH4S6df445qwDFWyYEluzob/LGzwyxS9x/lijAtijL+NMZ5CmgB9GXB8CGGHEunfjzH+Osb4\nNVKQoBI4Pxu6rzpzs2X3bK6QYnYpsb5aMcbFMcZxMcZvkYJ7c0g9qQ6sz/HqqLbvA6RhDQHaFibO\n5iDp0ZCCxBgXkp5JKH3vc+tXU3qItfrk/WmM8akY48WkeYgmk4bqOqH6PYGG10n1UdN9W8raa1ku\ns1jbq6Sm+zO3Lo3bZXBItnyzMGiUqbEuaahy1Wm1lKuPir5zBc8c0LzvVx09QuotdXT2HTqIFNB6\nKsY4P5eoia/3AaR5iBYBNxTpVVtTPkXf1+x7JzdEXXX/HpjJ2jmrdqwmXbUa8P0nSZKaiIEjSZKk\n+nshWx5TYvtR2XIOMK3I9q+W2O9L2TI3eXuuIWUNqbGo0LdJDUlQfE6DClJPmHVkAY2dC/Iqp1JB\njdGkxrijgLNIvzIe08SNu/nyG6rWa+AOIRzL2l+KV2Tr2oUQjgohfLvYAWOMf2PtROnbhxA2CyEc\nH0I4pUT6p4CPSL/a71pDed8kNaZ2IM1vUVjeAaQ5RGoUQhgYQri4WAAqGxotN4l6sV/Kl7q/9bXe\n+xBC6ADsl33Mf0Zz840Ua6z+CtX/f05tyz0xW9b0fk8q0VBcKyGE/UMIlxYL7sYYF5CGv4La9VZ4\nIVvWt06qj4FZr8hCuXrsb7UdMrK2YowfA//IPtZ0ri+UM+9ayNUnpYJlF+T+qCbwW64yFC1HsTqt\nAf6eLfuEEIrNq3Z0if2a5P1qiOw5e4JU1+Z6HsH6c/E15fXO5bW4xLBuF+T9XSyv7lmvuEJfzI69\nHPi/UpnHGBcDr2Ufi36fhRD6hBCOzOpvyvz9J0mSmoiBI0mSpPr7BamR5ZhsIvQqIYQewA3ZxxEl\nGk7PDiGs0/AfQvgW0JvUW+WxbPU0UqCgDWli7vz0J5KGRcpN0l3sF8ArgBtDCF3z9qsAfpx9nFTD\nHE91lWvU71VsY4zxI+BR0nBi/52t/nUZ86+TrDy5icnXacQMIXyJdJ9zDWW567uG1HNqZAjh5MJj\nhhD6A58jPR//JAX2xgD3hhAOKpL+cFKD2RxgfuH2gvJ+DDybfbwuhFDV6yaEsAXwP6yd+6omN5Lm\nyhhapEw9Wdv4/4+8TdXe33qqBK4IIRT2lLqGNKfG+6xtaIbUCwfgnILz3wm4Oa+M+XLrts16utXk\nf7JynRdC+Lf8DSGEAHw/+zi8FseqzuXArcB/FQYSsp4MuQb0vxfuWERD66T66AxcX5BXT9bOf/LA\nenuUx8+y5VUhhN0K8j+QNO9bJen5bkq5gPE+2XXIlaldCOFHpGBnrsdcvXtsVKeedVp983qTdM5t\ngB8W5NWd9D1TrD5qqveroUZny2NIwe1FwOP5CZryerP2+dohhLB3/oYQwvmk+iL3HVLq3wO35teB\nWeA3d+8ey+YerE7u3buiMAiVDaU3BniatUMylu37T5IkNR27AUuSJNVTjHF6COG7wF3AoyGEF4Gp\npIbBLwOdSA1Mt5Q4xA3An0MIT5OG4tmNNOY/wNVZbwNijJ+EEG4HLgbGhhAeI/2q+Quk4MRJpKFe\n+gI/CSEcQJovIGcW8BIwNYTwFKnh60Dg86T5KS5p6LUokGsgOySE8GdSQ/YZMcb389KMIs2fsxXw\nfzHGV8tchrq6iXSf/ieE8BVSoGIP0nU6n9SDZz9SQ9n2pIazC4CxwMMhhNdIwYzPSEMBHU769fRl\nMcZFACGEy4DbSfPVvAREUkCwN2l4q1XAJbWcS+j/kYI6g4DJ2bPXkdSwOY3US6XUL/nzXUpq4Lsl\n6z31GmkOix6knjtbkeYH+2fePq+RnrsRIYRvALNijN+tRV7VWUGax2tyCOFJUiPs54GDSI3sFxcM\n0fgL0vw/XwH+HkJ4mXT+x5CGPNyBdA/yTSUFj7bM9pkF3B5j/F2xAsUYXwwh/BC4DvhTCOE54G3S\n/T2U1Avhjhjjgw07df4jO89LgOOyZ2MRqSH1MGBb4NEY49M1HagMdVJ9/Bw4M4RwNKmHWm5Iry7A\nJNYOTVlWMcb7QwiHAecA/wghPE8aNm030vvUljS0Z7nntqvJM6Qg397A30IIfyAFVQaSeoB8GfgD\n0B8YF0L4Q4xxWKmDNUB96rT69vq8jHRO52c/hngtO/7R2folpPe5ShO+Xw31e9L7+E1SnT4yxvhZ\nkXRNcr1jjG+FEB4nzbX0YvbvgeWkOiRXb/+I9COTkSGECTHG/F5IL2TL6SGEZ7N9DyN9D/0LuLoW\nZRiTBcQuBCaFEJ4h/RumB+nfMJsDT5G9+zHGj8v8/SdJkpqAPY4kSZIaIMZ4N6nB5hFgd1Ij5sGk\nHhrfAk4sMXE7pOFuBpMaWM8gNSi+BpwWYyz8lfz3SQ1T80hznRwDzAYOijE+AfwE+HN2rKNY9995\nq0kNVz8hNWaeQxqi7kng4BjjK/U49ZJijBNJPVkWAPsAPUmNQvkmZOUHuKec+dfTrcCVwAzS9TuJ\nNDfLV2OMI4FfkRrCNiE12LWPMT5OahS8m3TdBwPnkc75CeDwGGPVr+VjjL8kNeqNJfXWOZ3UGNmb\n9GvsATHGR2pT2BjjG6Tn7jHS/FbfJAWS7iMFj2o1tFOMcRLwb6TG/3akZ2tIdqyXgK/HGAt7I/0H\n6f61I823sd48Q/WwOsZ4Iyl4sgtwNulZfRE4Ksb4aEG5/0JqGP1zlv70LP31pPduPTHGT0jXaVa2\nz+eooWdWjPGHpMbvZ0iB2m8B+5MaX08qQ8CMrLffF0nv5xLSeX2HNLzk/wHnkp6t2h6vIXVSfXxA\nKv8/gONJAeElpIbxI2KMK8uYV6Fvke79JNI5f5PUWP87YGCM8aZGzLuobPiwY4Dfkt6N00jX/zHg\nizHG2aQfAczIyrp/IxWlznVafTOKMT5DCtSOBwLpPnye9J11FiUCJE3xfjVUNoTqI6y9PveXSNpk\n15t0TX+ZHf8bpLriZeDfYoyvk4I/k0nfM4cU7LuK9J7eS6rnzyYFtcYCB8QYZ1ILMcaLgBOB50hz\n+g0hBUdfJ30PHpP/7pfz+0+SJDWNisrKsg43LUmSJNUoGxpnFqlXxY653lWSJEmSJKl52eNIkiRJ\nzeGbpMnCf2PQSJIkSZKklsPAkSRJkppUNqH3zaRhwn7SzMWRJEmSJEl52jV3ASRJkrRxCCHcBnQj\nza+wKXBhNr+LJEmSJElqIQwcSZIkqal8mzQxeARujDGObubySJIkSZKkAhWVlZXNXQZJkiRJkiRJ\nkiS1AM5xJEmSJEmSJEmSJMDAkSRJkiRJkiRJkjIGjiRJkiRJkiRJkgRAu+YuwMZs0aJFTjAlSZIk\nSZIkSZIaVadOnSpqm9YeR5IkSZIkSZIkSQIMHEmSJEmSJEmSJClj4EiSJEmSJEmSJEnABjDHUQih\nC3AtcAKwHbAAeAIYFmOcW8djdQD+AewODIwxvlCwfUfgR8BXgW2AOcD/Aj+MMS5q2JlIkiRJkiRJ\nkiQ1r1bd4yiE0BF4AbgAeAQ4B/gl8A3gpRDC1nU85DBS0KhYXt2BvwAnA3dleT0MXAQ8G0LYpM4n\nIEmSJEmSJEmS1IK09h5HlwF7AhfGGG/PrQwh/AN4lBQIurw2Bwoh7Al8H/gbsE+RJD8CtgcGxRif\nyNY9EEJ4D/gfUvBqRD3PQ5JavGnTpgHQp0+fZi6JJBVnPSWppbOektQaWFdJaumspxpfq+5xBJwF\nLAVGFax/DHgPOCOEUFHTQUIIbUi9iN4m9Vgq3L4JcCowPS9olHMXsAI4s86llyRJkiRJkiRJakFa\nbeAohLAV0Bf4a4xxef62GGMlMAnYFtilFoe7CPgicD6wvMj2vsBWpKHq1hFjXAq8CewdQmhfl3OQ\nJEmSJEmSJElqSVrzUHW9suV7Jba/ky13BWaWOkgIYUfgBuD+GOOEEMI5RZLtXIu89gV2BKaXLnLt\n5LraSVJLZB0lqaWznpLU0llQ5dpMAAAgAElEQVRPSWoNrKsktXTWU8WVYwi/VtvjCNgyWy4rsX1p\nQbpS7iANNXdFE+QlSZIkSZIkSZLUYrXmHkcNFkI4FRgEfCvGOL+5y5PjpF6SWiInHpTU0llPSWrp\nrKcktQbWVZJaOuupxteaexwtzpabl9i+RUG6dYQQugDDgYkxxl83Zl6SJEmSJEmSJEmtQWvucTQL\nqAR2KLE9NwdSqYEOfwp0Bq4LIeQfY+tsuW22fj5r50iqLq/lrJ1XSZIkSZIkSZIkqdVptT2OYoxL\ngTeAfUMIHfK3hRDaAgcC78YYSwVzDgc2BZ4H3s3772fZ9oeyzwcAEfgXcFDhQUIInYHPAZNijCsb\neFqSJEmSJEmSJEnNptUGjjKjgM2A7xSsPwPoBozMrQgh9A0h7JKX5lvAsUX+uzXbfk32eXKMcTVw\nL7BLCOH4grwuJfXcGokkSZIkSZIkSVIr1pqHqgO4EzgduDmE0At4DdgDuByYDNycl/YtUs+hvgAx\nxueKHTCEsE32519ijC/kbfoxcDwwOoRwS3asA4DvAs8C95fnlCRJkiRJkiRJkppHq+5xlA0NdyTw\nc+Bk4B7gbFLvn0NjjMvKmNdC4EvAGGBIltfXgP8Cjo8xVpYrL0mSJEmSJEmSpObQ2nscEWNcTOph\ndHkN6Spqebx7SEGhYtvmAefWrYSSJEmSJEmSJEmtQ6vucSRJkiRJkiRJkqTyafU9jgRjJi9u7iLU\ny6l7btXcRZAkSZIkSVJDjL6vuUug5nD6Wc1dAkmNyB5HkiRJkiRJkiRJAgwcSZIkSZIkSZIkKeNQ\ndRuY6R+tbO4iVKt3l03KeryLL76YV155BYB7772Xfv36rZfmxhtvZNy4cdx0000MHDiwXvmsXLmS\nO+64g9GjR7PPPvtw5513Fk23aNEiRo4cycSJE1mwYAGdO3fmwAMP5Pzzz2ebbbapV95Nodzl/uUv\nf8moUaMYNGgQ1157bSOUWJIkSZIktTjTpjZ3CdSY+uze3CWQ1EQMHKlVe+utt6r+Hj9+fNHAUS5N\nsW218fbbbzNs2DDeeecdKisrS6b77LPPuOCCC5g9ezaDBw+mX79+vPvuu4wePZrXXnuN++67j622\nannzOpW73DNmzOC++xzfWJIkSZIkSZJaI4eqU6v1/vvvs3jxYvr168e2227LhAkT1kuzYsUKZsyY\nQZcuXejRo0ed81i8eDFnnnkmq1ev5t5776027ZgxY5g+fTqXX345Q4cO5aijjuK8887juuuuY86c\nOYwaNarO+TeFcpZ7zZo13Hjjjey6666NWGJJkiRJkiRJUmOxx9EGrNzDwtVXYw2fN2XKFAD69+9P\n27Zteeihh5gyZQr9+/evSjNt2jRWrVpF3759AZgzZw4nnHACAwYMYMSIETXmsXLlSr72ta8xdOhQ\n2rdvX23aJ554go4dO3Lcccets/6QQw6hW7duPPXUU1x22WVUVFTU9VR54403OPfccxk8eDB77bUX\nDz/8MNOnT2fFihX06dOHiy66iP32268qfV3Os5zlfuSRR5g8eTK/+MUvuPDCC+t8npIkSZIkaQPh\nsGYbBocflDZK9jhSq5U/BN3hhx8OpOHqSqWpj65du3LVVVfVGDRasmQJs2fPJoTApptuus62iooK\n9thjDxYuXMicOXPqVY5//vOfALz66qtcd911dOrUiZNOOol99tmHKVOmMHToUObNm1fn45az3B98\n8AG33347Rx99NPvvv3+dyyJJkiRJkiRJan72OFKrlR8U2m233aqGq7vkkkuKpgHo0aMHEyZMoF27\n8j76uaBNt27dim7v3r07kIbX23777et8/BgjAPPnz+eOO+5g7733rtp2880389BDD/Hggw9y6aWX\nArU/z3KW+6c//Slt27blsssuq91JSZIkSZIkSZJaHHscqVWqrKwkxkj79u3ZZZddaNOmDQMHDmTu\n3Lm8+eabVekKA0dt2rRhyy23pGPHjmUtz7JlywDo0KFD0e25/JYuXVqv4+d6HH3ve99bJ2gEcPzx\nxwMwa9asqnW1Pc9ylXvChAm8+OKLXHLJJWy99dbVppUkSZIkSZIktVwGjtQqvfPOOyxZsoQ+ffpU\n9aopHK7us88+Y9asWWyzzTZsu+22zVbWhlqxYgWzZs2ie/fuHH300ett79SpEwCrVq1q6qIB8Mkn\nn3DzzTez7777cuyxxzZLGSRJkiRJkiRJ5WHgSK1SsbmLPv/5z7PNNtvw3HPPUVlZydSpU1m9enW9\n5zeqi8033xxIwapiPv3003XS1cX06dNZtWoVAwYMoE2b9V/ZuXPnAmuHlauLcpR7xIgRLF68mKuu\nuoqKioo6l0GSJEmSJEmS1HIYOFKrVCxwlBuubt68eUyePLlomsbSs2dPKioq+OCDD4puzwV3dtpp\npzofOze/0XbbbVd0+0svvQTAgAED6nzshpb7r3/9K7/73e84+eST6dixIx988EHVf5ACUh988AGL\nFy+uc9kkSZIkSZIkSU2vXXMXQKqPUkGhww8/nLFjxzJ+/HgWLVpUNE1j6NixI7179ybGyPLly2nf\nvn3VttWrVzN58mS6d+9Ojx496nzs3PxGS5YsWW/bokWLePTRR+nevTtf/vKXm7zcr732GpWVlYwZ\nM4YxY8ast33ChAlMmDCBQYMGce2119a5fJIkSZIkSZKkpmXgaAM2/aOVzV2ERrFmzRqmTp1Khw4d\n2HnnndfZtvfee9O1a1eee+45NttsM2DdwNGaNWtYunQp7dq1o2PHjmUt13HHHcctt9zCo48+yqmn\nnlq1/sknn+Sjjz5iyJAhVetWrVrFe++9R8eOHWscYi4XOJowYQLnnXdeVbmXLVvGsGHDWLRoEddc\nc806QZ+6nGdDyv3Vr361ZGDuiiuuYP/99+fUU0+t1zB6kiRJkiRJkqSmZ+BIrc7s2bNZtmwZe+21\nF23btl1nW5s2bTjssMMYO3YskOb96dKlS9X2efPmccIJJzBgwABGjBhRY14zZ85k1qxZ66xbuHAh\nEyZMqPp80EEH0aFDB04++WSefvpphg8fzty5c+nXrx8zZ87kt7/9Lb179+aMM86o2ufDDz/klFNO\nqbEcq1atYsaMGfTp04clS5Zw2mmncfDBB7Ny5UpefPFF5s+fz4UXXsjAgQPX2a8u59mQcvfq1Yte\nvXqVPHa3bt04+OCDq81fkiRJkiRJktRyGDhSq1PT3EW54eqqS1Nb48ePZ+TIkeusmzVrFldffXXV\n53HjxtGzZ0/atWvHiBEjuOuuu3j++ecZO3YsXbp04bjjjmPIkCF06NBhveO3aVP9NGMzZ85kxYoV\n7Lnnnpx22mnccsstPP7441RWVrLHHnswbNiwes1tlK8+5ZYkSZIkSZIkbZgqKisrm7sMG61FixaV\n5eKPmby4HIdpcqfuuVVzF6FZjRs3jtdff53rr7++ZJrHH3+c66+/nquvvpoTTzyxCUsnrW/atGkA\n9OnTp5lLIknFWU9JaumspyS1BnWuq0bfl7fz1LV/99m9jKVSsyl1T08/q+nLImX8N1X9dOrUqaK2\naavv7iCp0bz88sv079+/2jS5+Y1CCE1RJEmSJEmSJEnSRs7AkdQMli9fTu/evTn22GOrTRdjpG3b\ntuy2225NVDJJkiRJkiRJ0sbMOY42ABv7kG+tUfv27Tn33HOrTbNmzRqmTZtGr169aN++fROVTJIk\nSZIkSZK0MTNwJLVQbdq0YeLEic1dDEmSJEmSJEnSRsSh6iRJkiRJkiRJkgQYOJIkSZIkSZIkSVLG\nwJEkSZIkSZIkSZIAA0eSJEmSJEmSJEnKGDiSJEmSJEmSJEkSYOBIkiRJkiRJkiRJGQNHkiRJkiRJ\nkiRJAgwcSZIkSZIkSZIkKWPgSJIkSZIkSZIkSYCBI0mSJEmSJEmSJGXaNXcBVAaj72vuEtTP6Wc1\ndwkkSZIkSZIkSVIeexxJkiRJkiRJkiQJMHAkSZIkSZIkSZKkjEPVbWimTW3uElSvz+5lPdzFF1/M\nK6+8AsC9995Lv3791ktz4403Mm7cOG666SYGDhxYr3xWrlzJHXfcwejRo9lnn3248847i6ZbtGgR\nI0eOZOLEiSxYsIDOnTtz4IEHcv7557PNNtvUK++m0NByv/3224waNYpJkybxySefsO2223LUUUfx\nzW9+k/bt2zfBGUiSJEmSJEmSysHAkVq1t956q+rv8ePHFw0c5dIU21Ybb7/9NsOGDeOdd96hsrKy\nZLrPPvuMCy64gNmzZzN48GD69evHu+++y+jRo3nttde477772GqrrepVhsbU0HJPnz6d8847jxUr\nVnDKKafQu3dv3njjDe6++27eeustbr31VioqKprwjCRJkiRJkiRJ9WXgSK3W+++/z+LFi+nXrx8L\nFixgwoQJXHzxxeukWbFiBTNmzKBLly706NGjznksXryYM888kx133JF7772XwYMHl0w7ZswYpk+f\nzpVXXsnXv/71qvV9+vThyiuvZNSoUQwdOrTOZWhsDS338OHDWbp06To9ugYNGkTXrl0ZOXIk48eP\n54gjjmj085AkSZIkSZIkNVyrDxyFELoA1wInANsBC4AngGExxrk17FsBnA4MAfoDWwDvAo8B18cY\nF+WlnQ30quZw+8QY/17vE2kMZR4Wrt4aafi8KVOmANC/f3/atm3LQw89xJQpU+jfv//arKdNY9Wq\nVfTt2xeAOXPmcMIJJzBgwABGjBhRYx4rV67ka1/7GkOHDq1xyLUnnniCjh07ctxxx62z/pBDDqFb\nt2489dRTXHbZZfXqffPGG29w7rnnMnjwYPbaay8efvhhpk+fzooVK+jTpw8XXXQR++23X1X6upxn\nQ8q9YsUKXn/9dXr06LHeMICnn346999/P08++aSBI0mSJEmSJElqJdo0dwEaIoTQEXgBuAB4BDgH\n+CXwDeClEMLWNRziZ8D9wHLgB8BFwJvAFcALIYRNCtLPBwaX+G9Wg09IdZI/BN3hhx8OpOHqSqWp\nj65du3LVVVfVGDRasmQJs2fPJoTApptuus62iooK9thjDxYuXMicOXPqVY5//vOfALz66qtcd911\ndOrUiZNOOol99tmHKVOmMHToUObNm1fn4za03B9//DGrVq2iZ8+e623bfPPN2X777asCfJIkSZIk\nSZKklq+19zi6DNgTuDDGeHtuZQjhH8CjwDDg8mI7hhD2yfZ/IsY4KG/TyBDCOOB44JjsODnLYowP\nl/cUVF/5QaHddtuNbbfdlgkTJnDJJZcUTQPQo0cPJkyYQLt25X30c0Gbbt26Fd3evXt3IA2vt/32\n29f5+DFGAObPn88dd9zB3nvvXbXt5ptv5qGHHuLBBx/k0ksvBWp/ng0t9+abbw7AwoULi+7fvn17\nPvroI5YvX15j8E2SJEmSJEmS1PxadY8j4CxgKTCqYP1jwHvAGdlwdMUsB64Briuy7dlsuVMZyqhG\nUFlZSYyR9u3bs8suu9CmTRsGDhzI3LlzefPNN6vSFQaO2rRpw5ZbbknHjh3LWp5ly5YB0KFDh6Lb\nc/ktXbq0XsfP9Tj63ve+t07QCOD4448HYNastZ3eanueDS335ptvTu/evZk9ezYzZsxYZ9vs2bOZ\nOjUNU/jpp59WWw5JkiRJkiRJUsvQanschRC2AvoCf4wxLs/fFmOsDCFMAk4CdgFmFu4fY5wClBpD\nq2+2fKOa/DcDPo0xVtaj+NWaNm1andJ3W1Q1FRMdV6yo+vvTvPXNqVSZPqzjeeabO3cuS5YsoXfv\n3lUBkxACAGPHjqV9+/asWLGCmTNn0rlzZz7++GM+/vjjeueX79NPP13vHr377rsALF68uOj9++ij\nj6rKXdf7u3LlSmbOnEnXrl3p3bv3evvnjl0q7+qUo9xHHXUUt912G5dddhnnnXcePXr0YMaMGTzw\nwAN06dKF+fPn88477zB//vw6lU0tV12fM0lqatZTklo66ylJrUFt66qW3i6lhmmMdr3a6PbsU416\nfLU8Hx5xVJ338d9UxfXp06fBx2i1gSOgV7Z8r8T2d7LlrhQJHOULIWwKbA5sB5wJXAjcG2N8viBp\nxxDCiCxNZ+CzEMLTwFUxxn/W/RRUXzNnplu66667Vq3bfffd6dy5M5MmTeL0009n9uzZrFmzZp00\njSXXM2f58uVFt+fW16en07vvvsvq1avZc889adNm/U6CuYBM165d63zscpT7gAMO4JNPPuHBBx/k\nxz/+MZB6Ig0ePJgYIwsXLnSYOkmSJEmSJElqJVpz4GjLbLmsxPalBemqcxrw6+zvBcCQGOPIIum6\nATsD3wFWAANJQaZDQwj/FmOcWou8alTniOCkv6z9+8MPqv7ctFOnchSn4UqUqVMDIp+///3vARgw\nYMA61+uII45g7NixfPbZZyxZsgSA/fbbryxR1pyOHTuud7wddtiBiooKli1bVjSv3FBtBxxwAD16\n9KhTfrmh9/r27Vv02M8+m0ZWPPLII+t8nuUqd58+fTj33HOZMWMGbdu2Zdddd2WTTTbhrLPOYued\nd67qDabWLfcrjnK+T5JUTtZTklo66ylJrUGd66qW3i6lhmmEdr1ayX+utFGoyzPlv6kaX2sOHJXT\nU8BhwLbA0cCvQghHAmfHGHOTs5wNrI4x/ilvv3EhhMnAXcAPgX9vwjJv1ArnLso5/PDDGTt2LOPH\nj2dR1n22ME1j6NixI7179ybGyPLly9fpYbN69WomT55M9+7d6xw0grXzG+UCYfkWLVrEo48+Svfu\n3fnyl7/crOVu3749/fv3r/q8YMECpk6dyje+8Y06l0uSJEmSJEkCYFpZfquvlqjP7s1dApXQmgNH\ni7Pl5iW2b1GQrqQY4zxgXvbxoRDC34FbgcnA9VmaiSV2vxv4OfCVWpS5aW2gleqaNWuYOnUqHTp0\nYOedd15n2957703Xrl157rnn2GyzzYB1A0dr1qxh6dKltGvXrl7DxlXnuOOO45ZbbuHRRx/l1FNP\nrVr/5JNP8tFHHzFkyJCqdatWreK9996jY8eOdO/evdrj5gJHEyZM4Lzzzqsq97Jlyxg2bBiLFi3i\nmmuuWSfoU5fzbGi5b731Vh577DF+/etfr3M/7rjjDioqKjjxxBOrzV+SJEmSJEmS1HK05sDRLKAS\n2KHE9twcSPWZIWskKXB0FFngqJQY45oQwgLSMHZqArNnz2bZsmXstddetG3bdp1tbdq04bDDDmPs\n2LEAdO/enS5dulRtnzdvHieccAIDBgxgxIgRNeY1c+ZMZs2atc66hQsXMmHChKrPBx10EB06dODk\nk0/m6aefZvjw4cydO5d+/foxc+ZMfvvb39K7d2/OOOOMqn0+/PBDTjnllBrLsWrVKmbMmEGfPn1Y\nsmQJp512GgcffDArV67kxRdfZP78+Vx44YUMHDhwnf3qcp4NLXfuel988cWceuqpdO7cmeeff54X\nX3yRCy64YL3gniRJkiRJkiSp5Wq1gaMY49IQwhvAviGEDjHGz3LbQghtgQOBd2OM7xTbP4TwA2Ao\n8I0Y44SCzZ2zZbss7a6k+YxeiTG+WXCcLYDtgRllOC3VQqlh6nJyw9VVl6a2xo8fz8iR6053NWvW\nLK6++uqqz+PGjaNnz560a9eOESNGcNddd/H8888zduxYunTpwnHHHceQIUPo0KHDesdv06ZNtfnP\nnDmTFStWsOeee3Laaadxyy238Pjjj1NZWckee+zBsGHDGDBgQIPOsT7lzrfXXnsxfPhwRo0axd13\n383KlSvZbbfduOGGGzjiiCMaVDZJkiRJkiSpikObtX4b6ChZG5pWGzjKjAJGAN8BhuetP4PUA+ja\n3IoQQl9geYwx133kTaArcBlQGDg6K1u+lC27k3ohjQ8hHBljrMxLexVQAfxvg8+mHDaCynPQoEEM\nGjSo5PZ9992XSZMmFd3Ws2fPktuKGTJkyDpDtdVkiy22YOjQoQwdOrTadD179uSaa67h9ddfrzZd\njBGAEAI77bQTw4cPrzZ9/vHrcp51KXex4+63337st99+tc5PkiRJkiRJktQytfbA0Z3A6cDNIYRe\nwGvAHsDlpPmJbs5L+xYQgb7Z598BvweOCSFMBMYCS4FDSIGjubn9Y4x/CSHcA5wDvBBCeAhYDnwV\n+HqW1w2NdZLaML388st8/vOfrzZNbn6jEEJTFEmSJEmSJEmStJGrfpysFi7GuBI4Evg5cDJwD3A2\nqXfQoTHGZdXsWwmcAFwKbA7cBPySFDi6E9gvxjgnb5dzs/+2BH4K3AZ8DvgxcFCMcXE5z00btuXL\nl9O7d2+OPfbYatPFGGnbti277bZbE5VMkiRJkiRJkrQxa+09jsgCNpdn/1WXrqLIutWkoe5G1CKf\n1aSh8UbVr6SN6PSzak6jFqV9+/ace+651aZZs2YN06ZNo1evXrRv376JSiZJkiRJkiRJ2pi1+sCR\ntKFq06YNEydObO5iSJIkSZIkSZI2Iq16qDpJkiRJkiRJkiSVj4EjSZIkSZIkSZIkAQaOJEmSJEmS\nJEmSlDFwJEmSJEmSJEmSJMDAkSRJkiRJkiRJkjIGjiRJkiRJkiRJkgQYOJIkSZIkSZIkSVLGwJEk\nSZIkSZIkSZIAA0eSJEmSJEmSJEnKGDiSJEmSJEmSJEkSYOBIkiRJkiRJkiRJGQNHkiRJkiRJkiRJ\nAgwcSZIkSZIkSZIkKWPgSJIkSZIkSZIkSYCBI0mSJEmSJEmSJGUMHEmSJEmSJEmSJAkwcCRJkiRJ\nkiRJkqSMgSNJkiRJkiRJkiQBBo4kSZIkSZIkSZKUMXAkSZIkSZIkSZIkwMCRJEmSJEmSJEmSMgaO\nJEmSJEmSJEmSBBg4kiRJkiRJkiRJUsbAkSRJkiRJkiRJkgADR5IkSZIkSZIkScoYOJIkSZIkSZIk\nSRJg4EiSJEmSJEmSJEkZA0eSJEmSJEmSJEkCDBxJkiRJkiRJkiQpY+BIkiRJkiRJkiRJgIEjSZIk\nSZIkSZIkZQwcSZIkSZIkSZIkCTBwJEmSJEmSJEmSpIyBI0mSJEmSJEmSJAEGjiRJkiRJkiRJkpQx\ncCRJkiRJkiRJkiTAwJEkSZIkSZIkSZIy7Zq7AA0VQugCXAucAGwHLACeAIbFGOfWsG8FcDowBOgP\nbAG8CzwGXB9jXFSQvj/wI+AQYCvgbeA3wE9ijCvKeFqSJEmSJEmSJElNrlX3OAohdAReAC4AHgHO\nAX4JfAN4KYSwdQ2H+BlwP7Ac+AFwEfAmcAXwQghhk7y89gD+AnwJuBn4FjARuA54qEynJEmSJEmS\nJEmS1Gxae4+jy4A9gQtjjLfnVoYQ/gE8CgwDLi+2Ywhhn2z/J2KMg/I2jQwhjAOOB47JjgMpyLQF\n8KUY4+Rs3egQwlLg0hDCcTHG35Xv1CRJkiRJkiRJkppWq+5xBJwFLAVGFax/DHgPOCMbjq6Y5cA1\npB5DhZ7NljsBhBC2A44AnssLGuXcli3PrFPJJUmSJEmSJEmSWphW2+MohLAV0Bf4Y4xxef62GGNl\nCGEScBKwCzCzcP8Y4xRgSonD982Wb2TL/YAK0lB1hceZHkL4CPhifc5DkiRJkiRJkiSppWi1gSOg\nV7Z8r8T2d7LlrhQJHOULIWwKbA5sR+o5dCFwb4zx+SzJzrXIa+8QQrsY46qai169adOmNfQQktRo\nrKMktXTWU5JaOuspSa1BbeuqbosWVf3dccWKqr8/zVuv1qvUPf2wkb/LfK42XOV8pvw3VXF9+vRp\n8DFac+Boy2y5rMT2pQXpqnMa8Ovs7wXAkBjjyHrmtbAW+UmSJEmSJEmSJLU4rTlwVE5PAYcB2wJH\nA78KIRwJnB1j/LSpC1OOiKAklVvuVxzWUZJaKuspSS2d9ZSk1qDOddWkvJkdPvyg6s9NO3UqZ7HU\nXErc006N/V3mc7XhKsMz5b+pGl9rDhwtzpabl9i+RUG6kmKM84B52ceHQgh/B24FJgPX1yGvT2rK\nS5IkSZIkSZIkqaVq09wFaIBZQCWwQ4ntuTmQ6jPQYW6YuqOyZW6OpOrymlWO+Y0kSZIkSZIkSZKa\nS6sNHMUYlwJvAPuGEDrkbwshtAUOBN6NMb5TbP8Qwg9CCAtCCIcX2dw5W+Z6ZE0CVgEHFTnO57L0\nf6rXiUiSJEmSJEmSJLUQrTZwlBkFbAZ8p2D9GUA31vYcIoTQN4SwS16aN4GuwGVFjntWtnwJIMa4\nAPgdcGgIYZ+CtFdky5FIkiRJkiRJkiS1Yq15jiOAO4HTgZtDCL2A14A9gMtJ8xPdnJf2LSACfbPP\nvwN+DxwTQpgIjAWWwv9n797jPb0K+t5/BgIkXDI0HoKUS7gNKwKxElEooAZeFu15WcWiFkrkYj2l\nBas0IvV4Tgz11p6aWgWKoMTGKhwOtdx6DtbeDEq5pIEDpBUXA4mGFA4JFyeYhCSEOX/s30x2N7Mn\nM7N/e/b8hvf79fq9nmc/z1rPWr/8ntfK3vP9rfX0ba0FR5/aUP8nqm+tfm+McXH1ydaWsntOdcmc\n8w+24w0CAAAAAAAcLys942jOeVv19OqV1TOrS6vntTb757w5502Hqbu/ekb1Y9W9qv+jem1rwdFr\nqsfPOT+5rvxVrS1/d1n1stZmO51bvbSvnPEEAAAAAACwclZ9xlFzzhtam2F0wZ2U23WIY7dXr1i8\njqStvdUPHEM3AQAAAAAATngrPeMIAAAAAACA5REcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmO\nAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAA\nAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAA\nWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAc\nAQAAAAAAUAmOAAAAAN4vvkMAACAASURBVAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmO\nAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAA\nAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWDhlpzuwVWOMM6qLqmdUD6g+\nU72junDO+akjqP+URf1vrk6tPlH96+pn55x/vq7cn1RnHeZSj5tzfvDY3gUAAAAAAMDOW+ngaIxx\nWnVZdXb1quqKak/10uppY4xvnHN+/jD1n1P9djVbC49uqL6reln1LWOMp8w5v7yuyvXViza53NVb\nezcAwJ1545U37HQXOM6edc7pO90FAAAA+Kqy0sFR9ZLqnOrFc85XHzg4xvhQ9ZbqwuqCQ1UcY9yj\n+tXWZhg9Yc65b3HqN8YYb2ltBtN3tjZ76YCb5py/s/R3AQAAAAAAcAJY9WccPbe6sbpkw/G3VddW\n548xdm1S92urN1f/aF1odMCBsOjrl9VRAAAAAACAE93KzjgaY5ze2hJ1fzjnvGX9uTnn/jHG5dVf\nrx5WXbWx/pzzT6vnb3L53YvtpuvhjDHuWd0859x/9L0/vL179y77kgBLY4xiJ+3bd+rB/f9+88r+\nGsOdeOBpXzq4v3fvp4+6vnEKONEZp4BVcKRj1Zn77vg+9mm33npw/+Z9G7+nzSra7DO9bpv/X+a+\nOnkt857yO9Wh7dmzZ8vXWOUZR2ctttducv6axfbhR3PRMcbdqx+qbqreuuH0aWOMV4wxPt/aTKeb\nxhhvHWOcfTRtAAAAAAAAnIhW+au691lsb9rk/I0byt2pMcZdql+vvq768TnnJzcUObN6aPXC6tbq\nqdWLq/PGGN885/zokbZ1OMtIBAGW7cC3OIxR7KT3f/GOycDX337bDvaE7bR7970O7u/Z8+Ajrmec\nAk50xilgFRz1WHX5e+7Yv+6O2eJ33737EIVZOZt8pru3+/9l7quT1xLuKb9Tbb9VDo6WaoxxWvWG\n6hnVP59z/tKGIs+rbp9zvmvdsbeOMa5sLWz6h9Wzj0tnAYD/wSPPuNtOd4Et+tjnBIEAAABwIljl\n4OjAV47vtcn5e28ot6kxxv2qt1dPrH52zvnTG8vMOd+5SfXfqF5ZffudtQMAAAAAAHAiW+VnHF1d\n7a8etMn5A89AOuwTssYY96/+c/X46gWHCo0OZ8755eoz1elHUw8AAAAAAOBEs7LB0ZzzxurD1blj\njFPXnxtj3LV6UvWJOec1m11jjHF69W+rh1TfPee8dJNyDx9j/K0xxmMPce7e1QOrTdsBAAAAAABY\nBSsbHC1cUt2zeuGG4+dXZ1avO3BgjHH2GONhG8r9SvUN1bPnnL97mHbuv7jWPxtj7Npw7ierXdWb\nj777AAAAAAAAJ45VfsZR1Wuq51QXjzHOqq6oHlNdUF1ZXbyu7EeqWZ1dNcb4+up51R9Vdx1jfN8h\nrn/9nPOdc873jDEurZ5fXTbGeFN1S/Ud1fct2vr5pb87AAAAAACA42ilg6M5521jjKdXL6+eWf1I\ndV1rs4MumnPedJjq57Y2U+jR1b/apMw7q/MW+z9cvat6cfWLrc3Wurr6ueqfzDm/sJX3AgAAAAAA\nsNNWOjiqmnPe0NoMowvupNyuDT9fWl16FO3c3trSeJccdScBAAAAAABWwKo/4wgAAAAAAIAlWfqM\nozHG11RPrR5X3b+6b/X51paQ+0B12Zzzs8tuFwAAAAAAgK1ZSnA0xjil+v7qRdVfbu3ZQbsOUXR/\ntX+M8e7q1dXvzDm/tIw+AAAAAAAAsDVbDo7GGD9Y/UL1F1sLiz5dvaf6o+pz1Q3V6dXXVI9uLVh6\nSvXk6p+MMX5qzvnbW+0HAAAAAAAAW7Ol4GiM8b7q8a2FRf+0+s055387gnqPrZ5f/c3qN8cYPzLn\nfOJW+gIAAAAAAMDWbHXG0YOrH61+bc5525FWmnP+1+qlY4z/tXph9VNb7AcAAAAAAABbtNXg6BFz\nzpuPtfIibHrVGOOSLfYDAAAAAACALbrLVipvDI3GGF+zjOsAAAAAAABw/G0pODqE1y/5egAAAAAA\nABwnyw6Onj7G+N+PpOAY4/5LbhsAAAAAAIAtWHZw9I7qojHGUw9XaIzxddV7l9w2AAAAAAAAW7Ds\n4Oi51f9XvX6M8bWHKjDGeEr1ruohS24bAAAAAACALVhqcDTn/Fz17Op+1f85xvgfrj/G+L7q31Wn\nVy9aZtsAAAAAAABszbJnHDXnfFf109W3VT9/4PgY4+9Xb6y+XH3vnPO1y24bAAAAAACAY3fKdlx0\nzvmPxhjnVT8xxnh39dTqJdWnq++ac75/O9oFAAAAAADg2G0pOBpjfKJ6X3VFdXl1xZzzhsXp86sP\nVm9ubWbTrP7qnPNPttImAAAAAAAA22OrM44eWP31xWt/tX+Msbf6L60FSa9qbbm6P6y+Z875Z1ts\nDwAAAAAAgG2y1eDoa6rHb3iNxes5izL7q/+p+qdjjP+3+kD1wTnnTVtsGwAAAAAAgCXaUnA05/x8\n9e8Xr6rGGPfrK8Okr1u8nr8o9uUxxkfnnI/ZSvsAAAAAAAAsz1ZnHH2FOef11e8uXlWNMR7QV4ZJ\nZy+7bQAAAAAAAI7d0oOjQ5lzfqr6N4tXVWOMBx+PtgEAAAAAADgyd9mphuecn9iptgEAAAAAAPhK\nOxYcAQAAAAAAcGIRHAEAAAAAAFAJjgAAAAAAAFg4Zac7AMDJ641X3rDTXeA4e9Y5p+90FwAAAADY\ngm2ZcTTGeMgY44x1P58xxnjIdrQFAAAAAADAcmzXUnVXV7+47ud/Wl21TW0BAAAAAACwBNu1VN2u\nxWvjMQC+Sn3sc7ftdBfYJo8842473QUAAAAAlmS7ZhwBAAAAAACwYgRHAAAAAAAAVNu3VB0AbMrS\nZqvP0oMAAAAAJyczjgAAAAAAAKgERwAAAAAAACwIjgAAAAAAAKgERwAAAAAAACwIjgAAAAAAAKgE\nRwAAAAAAACycstMd2KoxxhnVRdUzqgdUn6neUV045/zUEdR/yqL+N1enVp+o/nX1s3POP99Q9tHV\nz1TfVp1e/Wn129U/nnPeuqz3BAAAAAAAsBNWesbRGOO06rLq77YW9jy/em31N6r/PMb4C3dS/znV\nH1YPbi08+rvVh6uXVf9ujHGXdWUfU72nekp1cfVD1Turl1dvWt67AgAAAAAA2BnbNePoN6t3rfv5\nXZsV3KKXVOdUL55zvvrAwTHGh6q3VBdWFxyq4hjjHtWvtjbD6Alzzn2LU78xxnhLazOYvrO12UtV\nv1Tdu3rKnPPKxbHXjzFurH5sjPHdc863L/XdAQCwrd545Q073QWOs2edc/pOdwEAAOCEti0zjuac\nL5hz/sa6ny+Zc75gG5p6bnVjdcmG42+rrq3OH2Ps2qTu11Zvrv7RutDogANh0ddXjTEeUP2V6j+t\nC40OeNVi+4NH330AAAAAAIATx8ouVTfGOL06u/rAnPOW9efmnPury6v7VQ87VP0555/OOZ8/5/zV\nQ5zevdge+Arq46tdrS1Vt/E6H6s+Vz3hWN4HAAAAAADAiWK7lqo7Hs5abK/d5Pw1i+3Dq6uO9KJj\njLu39vyim6q3Lg4/9Aja+oYxxilzzi8daVub2bt371YvAbBtjmaM2rfv1IP7t956yrrjNy21Txx/\nm32ee/d+elvbdU+dvJZ5Tx3rOPXfb17lX405nAeedsev6Ns9TsGR8DcfsAqOdKw6c98dC/mcduut\nB/dv3rdxgR9W0Waf6XXb/P8y99XJa5n3lN+pDm3Pnj1bvsbKzjiq7rPYbvYvRTduKHenxhh3qX69\n+rrqwjnnJ7erLQAAAAAAgBONr1UujDFOq95QPaP653POX9qpviwjEQRYtgPf4jiaMer9X7zjofPX\n337bwf3du++1vI6xIzb7PPfsefC2tuueOnkt455a5jjFyeV4jlNwOMcyTgEcb0c9Vl2+7skO190x\ns/fuu3cfojArZ5PPdPd2/7/MfXXyWsI95Xeq7bfKwdGBv/I3+5eie28ot6kxxv2qt1dPrH52zvnT\nx9jWF+6sLQAATnyPPONuO90FtuhjnxMEAgAAHIstLVU3xnjIsjpyDK6u9lcP2uT8gWcgHXahwzHG\n/av/XD2+esEhQqO64xlJh2vr6mU83wgAAAAAAGCnbHXG0XvHGN815/zAUnpzFOacN44xPlydO8Y4\ndc75xQPnxhh3rZ5UfWLOec1m1xhjnF792+oh1XfPOX93k6KXV1+qnnyIazy2um/1b475zQAAAAAc\nD6//lzvdA3bCc5670z0AYIVsacZR9bXVZWOMv7aMzhyDS6p7Vi/ccPz86szqdQcOjDHOHmM8bEO5\nX6m+oXr2YUKj5pyfaW0pu/PGGI/bcPrHF9vXBQAAAAAAsMK2OuPo5YvXm8cYF8w5X3kklRYBzj+Y\nc/6dLbb/muo51cVjjLOqK6rHVBdUV1YXryv7kWpWZy/68PXV86o/qu46xvi+Q1z/+jnnOxf7P1F9\na/V7Y4yLq09W37lo/5I55x9s8b0AAAAAAADsqC0FR3POnxljfLy1mT+/PMZ4xJzzJZuVH2M8pvpf\nqx+o7lptKTiac942xnh6a+HVM6sfqa5rbfbPRXPOmw5T/dxqV/Xo6l9tUuad1XmLtq4aYzyp+vnq\nZdV9qo9XL61+eSvvAwAAAOC42/vRne4B22nPo3a6BwCsqK3OOGrO+foxxjXVW6u/t5j58zfnnDcf\nKDPG+Kbqf6u+q7Xl8W6uXr3Vthft39DaDKML7qTcrg0/X1pdepRt7W0t9AIAAAAAADjpbDk4qppz\n/uEY44nVO6rvae25R9/d2rJxP1U9tbXZPTe0Fhj9sznn9ctoGwAAAAAAgOVYSnBUa7NxxhhPaG3m\n0VOqq6pTWwuMPlv9SvXKOee+ZbUJAAAAwBJY1uzkYPlBAJZgacHRGGNX9R3VX1gcOq3aX72x+uE7\ned4QAAAAAAAAO2zLwdEY427VC6qXVQ9rbYbRVdX7qmdXf736v6s3bLUtAAAAAAAAts9dtlJ5jHFB\ndXX1q9XDqz+qfrB61JzzOdXfq+5a/dYY46e22FcAAAAAAAC20VZnHF282P6X6hfmnG9bf3LO+c/H\nGNe0NtvoZ8cYD6v+zpzz9i22CwAAAAAAwJJtacZRdVn19DnnEzaGRgfMOf9N9dTq+uqHqv9njHHv\nLbYLAAAAAADAkm0pOJpzPm3O+R+OoNwV1ROrWT29+sMxxl/cStsAAAAAAAAs11ZnHB2xOeefVH+5\nemf1l6r3Hq+2AQAAAAAAuHPHLTiqmnPua23G0RuqBx7PtgEAAAAAADi8U453g3PO26rzxxhXH++2\nAQAAAAAA2NyWZhyNMX5hjLH7WOrOOS9cXGP3GOMXttIPAAAAAAAAtm6rS9X9g+qqMcZFY4yHHE3F\nMcZDxhgvr66qXrbFfgAAAAAAALBFW12q7snVK6qLqgvHGJdV/7F6T/WR6rNzzi+NMU6pvqZ6dPWX\nq2+vvrW14Ory6ke32A8AAAAAAAC2aEvB0ZzzvdU3jzH+ZvWS6mnVU9eXGWPcUt1j3aFdi+17q1+Z\nc/5fW+kDAAAAAAAAy7HVGUdVzTnfUL1hjPH46hnVedU3VPesTl0Uu7H6QPX71VvnnB9cRtsAAAAA\nAAAsx1KCowPmnFdUVxz4eYxxz2p39WdzzpuX2RYAAAAAAADLtZTgaPEMo0e1tgzdn8w5b6yac95U\n3bSMNgAAAAAAANhed9nqBcYYL6k+U11Zfbj63BjjbWOMR2312gAAAAAAABw/WwqOxhjfX/1SdXpr\ns412VXer/lr17jHGY7fcQwAAAAAAAI6Lrc44+nuL7W9Vj6keWn1ndVl1RnXpFq8PAAAAAADAcbLV\nZxz9peqj1fPnnPsXx66p/t0Y4x3Vd4wxnjjnfO8W2wEAAAAAAGCbbXXG0X2q968Ljdb72daWrvvW\nLbYBAAAAAADAcbDV4Kjqlk2O/7fF9sFLaAMAAAAAAIBttozg6JDmnDcsdu+5XW0AAAAAAACwPFt9\nxlHV48YYL6g+VP23OefGGUi7ltAGAAAAAAAA22wZwdHXV69b7N8+xthbfXjxAgAAAAAAYEVsNTj6\noercxesvVfeqvm7x+oFqf/XcMcaTq/eve31g3VJ2AAAAAAAAnAC2FBzNOS+tLq0aY+yqRncESedW\n31Ddt9qzeP2NA3XHGB+fcz5qK+0DAAAAAACwPMtYqq6qOef+6o8XrzccOD7GeHj/Y5j0uOp+1SOW\n1TYAAAAAAABbt7TgaDNzzquqq6rfOXBsjPGg1kIkAAAAAAAAThDbHhwdypzz2uranWgbAAAAAACA\nQ7vLTncAAAAAAACAE4PgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAA\ngKpO2ekObNUY44zqouoZ1QOqz1TvqC6cc37qCK/xyOoN1TdVL5hzXnqIMn9SnXWYyzxuzvnBo+k7\nAAAAAADAiWSlg6MxxmnVZdXZ1auqK6o91Uurp40xvnHO+fk7ucYLqlccYZPXVy/a5NzVR3gNAAAA\nAACAE9JKB0fVS6pzqhfPOV994OAY40PVW6oLqws2qzzG+NvVa6tXVv91sX84N805f2ernQYAAAAA\nADgRrfozjp5b3VhdsuH426prq/PHGLvu5BrfO+f80erWbegfAAAAAADAyljZ4GiMcXprS9R9YM55\ny/pzc8791eXV/aqHbXaNOeevzTnfeozt3/MIQikAAAAAAICVscpL1Z212F67yflrFtuHV1ctqc3T\nxhivqH6wum/1xTHG71U/Oef84yW10d69e5d1KYClO5oxat++Uw/u33rrKeuO37TUPnH8bfZ57t37\n6W1t1z118lrmPWWconZunIIj4W8+dtKZ+/Yd3D/t1jsWX7l53XFW12af6XXHMO4c6Vjlnjq5LfOe\nOhruq5PXToxTX2327Nmz5Wus7Iyj6j6L7WZ/1d+4odwynFk9tHph9b3Vr1XfVb13jPGoJbYDAAAA\nAABw3K3yjKPj7XnV7XPOd6079tYxxpXVr1f/sHr2MhpaRiIIsGwHvsVxNGPU+794w8H962+/7eD+\n7t33Wl7H2BGbfZ579jx4W9t1T528lnFPGadYb6fGKTicYxmnYOkuf88d+9fdMQvz7rt370BnWLpN\nPtPdRzHuHPVY5Z46uS3hnjom7quT106MUxy1VQ6ODvyVv9lf9ffeUG5L5pzv3OTUb1SvrL59Ge0A\nAAAAAADslFVequ7qan/1oE3OH3gG0rYudDjn/HL1mer07WwHAAAAAABgu61scDTnvLH6cHXuGOPU\n9efGGHetnlR9Ys55zVbbGmM8fIzxt8YYjz3EuXtXD6y23A4AAAAAAMBOWtngaOGS6p7VCzccP786\ns3rdgQNjjLPHGA87xnbuv7jWPxtj7Npw7ierXdWbj/HaAAAAAAAAJ4RVfsZR1Wuq51QXjzHOqq6o\nHlNdUF1ZXbyu7EeqWZ194MAY4692xzOSHn9gO8b488X+9XPOd8453zPGuLR6fnXZGONN1S3Vd1Tf\nt2jr55f+7gAAAAAAAI6jlQ6O5py3jTGeXr28emb1I9V1rc0OumjOedOdXOJXu+NZSAe8ePGqemd1\n3mL/h6t3Lc79Ymuzta6ufq76J3POL2zlvQAAAAAAAOy0lQ6OquacN7Q2w+iCOym3cYm55pwPPYp2\nbm9tabxLjrKLAAAAAAAAK2HVn3EEAAAAAADAkgiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARH\nAAAAAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAA\nAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAAAAAA\nLAiOAAAAAAAAqARHAAAAAAAALJyy0x0ATgxvvPKGne4CO+BZ55y+010AAAAAAE4gZhwBAAAAAABQ\nCY4AAAAAAABYsFQd8BU+9rnbdroLbKNHnnG3ne4CAAAAAHCCMuMIAAAAAACASnAEAAAAAADAgqXq\ngMOyrNnJwfKDAAAAAMCRMOMIAAAAAACASnAEAAAAAADAguAIAAAAAACAyjOOAAAAluaNV96w013g\nOHvWOafvdBcAAGCpzDgCAAAAAACgEhwBAAAAAACwYKk6AACAbfCxz922011gmzzyjLvtdBcAAGDb\nmHEEAAAAAABAJTgCAAAAAABgwVJ1AAAA28zSZqvP0oMAAHy1MOMIAAAAAACASnAEAAAAAADAguAI\nAAAAAACA6iR4xtEY44zqouoZ1QOqz1TvqC6cc37qCK/xyOoN1TdVL5hzXrpJuUdXP1N9W3V69afV\nb1f/eM5569beCQAAAAAAwM5a6eBojHFadVl1dvWq6opqT/XS6mljjG+cc37+Tq7xguoVR9DWY6p3\nVzdXF1fXVudVL6/ObS24AgAAAAAAWFkrHRxVL6nOqV4853z1gYNjjA9Vb6kurC7YrPIY429Xr61e\nWf3Xxf5mfqm6d/WUOeeVi2OvH2PcWP3YGOO755xv38qbAQAAAAAA2Emr/oyj51Y3VpdsOP621mYE\nnT/G2HUn1/jeOeePVpsuNTfGeED1V6r/tC40OuBVi+0PHnGvAQAAAAAATkArGxyNMU5vbYm6D8w5\nb1l/bs65v7q8ul/1sM2uMef8tTnnW4+gucdXu6r3HOIaH6s+Vz3hyHsPAAAAAABw4lnlperOWmyv\n3eT8NYvtw6urttjWQ4+grW8YY5wy5/zSFttq7969W70EHLV9+049uH/rraesO37TTnSHJdvsM927\n99NHfa2jGaPcVyevZd5TR8M9dfIyTrFsximWbafGKVi2M/ftO7h/2q13LL5y87rjrK7NPtPrjmHc\nOdKxyj11clvmPXU03Fcnr50Yp77a7NmzZ8vXWNkZR9V9FtvN/gK7cUO5VWkLAAAAAABgR6zyjKOT\n1jISQTha7//iDQf3r7/9toP7u3ffaye6w5Jt9pnu2fPgI77GgW9xHM0Y5b46eS3jnjoW7qmTl3GK\nZTNOsWw7NU7B0l2+bhX+6+6YMXf33bt3oDMs3Saf6e6jGHeOeqxyT53clnBPHRP31clrJ8Ypjtoq\nzzg68BfZZn+B3XtDuePR1heW0BYAAAAAAMCOWOXg6Opqf/WgTc4feAbSMhY6PPCMpMO1dfUynm8E\nAAAAAACwU1Y2OJpz3lh9uDp3jHHq+nNjjLtWT6o+Mee8ZgnNXV59qXryxhNjjMdW963etYR2AAAA\nAAAAdszKBkcLl1T3rF644fj51ZnV6w4cGGOcPcZ42LE0Muf8TPX26rwxxuM2nP7xxfZ1AQAAAAAA\nrLBTdroDW/Sa6jnVxWOMs6orqsdUF1RXVhevK/uRalZnHzgwxvir3fHcoscf2I4x/nyxf/2c852L\n/Z+ovrX6vTHGxdUnq+9ctH/JnPMPlvzeAAAAAAAAjquVDo7mnLeNMZ5evbx6ZvUj1XWtzf65aM55\n051c4le741lIB7x48ap6Z3Xeoq2rxhhPqn6+ell1n+rj1UurX97qewEAAAAAANhpKx0cVc05b2ht\nhtEFd1Ju1yGOPfQo29pb/cDR1AEAAAAAAFgVq/6MIwAAAAAAAJZEcAQAAAAAAEAlOAIAAAAAAGBB\ncAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQA\nAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAA\nAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAl\nOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIA\nAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGDhlJ3uAAAAALCJ1//Lne4B\nx9tznrvTPQAAvsqZcQQAAAAAAEAlOAIAAAAAAGDBUnUAAACwCvZ+dKd7wHbZ86id7gEAwEFmHAEA\nAAAAAFCdBDOOxhhnVBdVz6geUH2mekd14ZzzU0dQ/0nVhdUTq9Oqj1a/Xr1qzrl/Xbk/qc46zKUe\nN+f84LG9CwAAAAAAgJ230sHRGOO06rLq7OpV1RXVnuql1dPGGN845/z8Yeo/rfrd6hPVy6vPVd9T\nvaJ6RPWSDVWur160yeWuPtb3AQAAAEfF0marz9KDAMAJaqWDo9aCnXOqF885X33g4BjjQ9VbWptJ\ndMFh6r+6+mL1LetmJ/3WGOOt1Y+OMf7FnPND68rfNOf8naW+AwAAAAAAgBPEqj/j6LnVjdUlG46/\nrbq2On+MsetQFccYT6hG9aZDLGn3qmpXdf5yuwsAAAAAAHDiWtngaIxxemtL1H1gznnL+nOLZxNd\nXt2vetgml/jmxfY9hzj3vsX2CYdp/56bhVIAAAAAAACraJWXqjtrsb12k/PXLLYPr646xPmHblZ/\nzvmFMcafLequd9oY4xXVD1b3rb44xvi96ifnnH98FH0/rL179y7rUnDE9u079eD+rbeesu74TTvR\nHZZss890795PH/W1jmaMcl+dvJZ5Tx0N99TJyzjFshmnWLadGqfO3Lfv4P5pt956cP/mdcdZTZt9\nntdt878JuKdObsu8r450rHJPndyMVSzbToxTX2327Nmz5Wus7Iyj6j6L7WZ/gd24odyx1N9Y98zW\nAqcXVt9b/Vr1XdV7xxieTAoAAAAAAKy0VZ5xdLw9r7p9zvmudcfeOsa4svr16h9Wz15GQ8tIBOFo\nvf+LNxzcv/72yJU9ZQAAEpZJREFU2w7u7959r53oDku22We6Z8+Dj/gaB77FcTRjlPvq5LWMe+pY\nuKdOXsYpls04xbLt1DjV5etWV7/ujtlNd9+9+8ivwYlpk89z93b/m4B76uS2hPvqqMcq99TJzVjF\nsu3EOMVRW+Xg6MBfZJv9BXbvDeWOpf7BunPOd25S7jeqV1bfvsl5AAAAAACAlbDKS9VdXe2vHrTJ\n+QPPQNpsocMDzz36ivpjjN3V7sPUPWjO+eXqM9Xpd1YWAAAAAADgRLaywdGc88bqw9W5Y4xT158b\nY9y1elL1iTnnNZtc4t2L7ZMPce5bFtt3La738DHG3xpjPHZjwTHGvasHVpu1AwAAAAAAsBJWeam6\nqkuqV1QvrH5l3fHzqzOriw4cGGOcXd0y57y6as75wTHGB6rvH2P89Jzz2kW5XdXfr26rfnNR/f7V\n66r/MMZ4+pxz/7q2frLaVb15G94fAAAAX8U+/tlbD+7f74tfPrh//brjrKbNPs9H7ERnAADWWfXg\n6DXVc6qLxxhnVVdUj6kuqK6sLl5X9iPVrM5ed+xF1e9XfzDG+OXqz6pnVU+rLpxzfrxqzvmeMcal\n1fOry8YYb6puqb6j+r5FWz+/PW8RAAAAAADg+FjZpeqq5py3VU+vXlk9s7q0el5rs4POm3PedCf1\n31d9a/XH1c9Ur62+tvqhOefPbSj+w4vXfapfrF5VPbb6uerJc84blvOuAAAAAAAAdsaqzzhqEdhc\nsHgdrtyuTY5fUf3PR9DO7a0tjXfJMXRz6d54pZzqq9Gzzjl9p7sAAADskFu/fMeq6ftu+fJhSrIK\ndn95/50XAgDYASs94wgAAAAAAIDlERwBAAAAAABQnQRL1VEf+9xtO90FttEjz7jbTncBAAA4wey+\nh++BAgCwPfymCQAAAAAAQCU4AgAAAAAAYMFSdScZy5qdHCw/CAAAAADATjDjCAAAAAAAgEpwBAAA\nAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAA\nwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILg\nCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAA\nAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwMIpO90BAACAk8U3/f6bDu4/6pYvH9zffQ/f\n2Vt1m36e5/zwDvQGjt3HP3vrwf37ffGO+/r6dcdZXZt9po/Yic4AsLL89QIAAAAAAEAlOAIAAAAA\nAGDBUnUAAADb4CHXX31w/+532bWDPWEZdn95/8H9fQ+y6BMnh1vX39frlmNkda0fqwDgWJlxBAAA\nAAAAQCU4AgAAAAAAYMFSdQAAANvs+r/48J3uAlu0+9qP73QXYFvtvofvFgMAa/xWAAAAAAAAQCU4\nAgAAAAAAYGHll6obY5xRXVQ9o3pA9ZnqHdWFc85PHUH9J1UXVk+sTqs+Wv169ao55/4NZR9d/Uz1\nbdXp1Z9Wv1394znnrct6TwAAAAAAADthpYOjMcZp1WXV2dWrqiuqPdVLq6eNMb5xzvn5w9R/WvW7\n1Seql1efq76nekX1iOol68o+pnp3dXN1cXVtdd6i3rmtBVcAAKyQb/r9Nx3cf9QtXz647zkPq2/T\nz/OcH96B3gDAyevjn73ju9T3++Id//+9/rO+Y30y2OwzfcROdAY4blY6OGot2DmnevGc89UHDo4x\nPlS9pbWZRBccpv6rqy9W37JudtJvjTHeWv3oGONfzDk/tDj+S9W9q6fMOa9cHHv9GOPG6sfGGN89\n53z70t4ZAPAV/CP/ycs/8gMAAAcIJE9ewsjVsGv//v13XuoENcb4SPXg6mvmnLesO76ruqa6R3X/\njUvOLco8oXpv9bo55/+y4dy3V/++unjO+RNjjAdU/736j3POv7Kh7COrvdXvzDm//2j6v2/fvtX9\njw8AAAAAAKyE3bt37zrSsiv79dwxxumtLVH3gfWhUdUiKLq8ul/1sE0u8c2L7XsOce59i+0TFtvH\nV7sOVXbO+bHWlrh7wsZzAAAAAAAAq2Rlg6PqrMX22k3OX7PYPnyT8w/drP6c8wvVn62ru2nZdW09\neIyx6kv/AQAAAAAAX8VWOTi6z2J70ybnb9xQ7ljq3+coyh6uLQAAAAAAgBPeKgdHAAAAAAAALNEq\nB0c3LLb32uT8vTeUO5b6NxxF2aovbHIeAAAAAADghLfKz+S5utpfPWiT8weegbR3k/NXLbZfUX+M\nsbvaXX3gzsqua+vqOeeXDtfhjXbv3r3raMoDAAAAAABsp5WdcTTnvLH6cHXuGOPU9efGGHetnlR9\nYs55zSaXePdi++RDnPuWxfZdi+3l1ZcOVXaM8djqvuvKAgAAAAAArKSVDY4WLqnuWb1ww/HzqzOr\n1x04MMY4e4zxsAM/zzk/2NqMou8fYzxoXbld1d+vbqt+c1H2M9Xbq/PGGI/b0NaPL7avCwAAAAAA\nYIWt8lJ1Va+pnlNdPMY4q7qiekx1QXVldfG6sh+pZnX2umMvqn6/+oMxxi9Xf1Y9q3padeGc8+Pr\nyv5E9a3V740xLq4+WX3nov1L5px/sPy3BwAAAAAAcPys9IyjOedt1dOrV1bPrC6tntfa7J/z5pw3\n3Un997UWBv1x9TPVa6uvrX5ozvlzG8pe1dryd5dVL2ttttO51Uv7yhlPAAAAAAAAK2fX/v37d7oP\nAAAAAAAAnABWesYRAAAAAAAAyyM4AgAAAAAAoBIcAQAAAAAAsCA4AgAAAAAAoBIcAQDA/9/encb4\ndhZ0HP9eKMgurVBAKggmPAiByKKiltUAVqhCUayKSMBEqpCyCiKlFVAT+wLCZtAiti6ghM1ibRSw\nSIEApQKpwkOjECBFNkFoWQS5vjj/KdPbe6tCOmcy9/NJJufOc84kvxeTuTPn9ywAAADAhuIIAAAA\nAACAqo5YO8DhboxxVHVq9ZDqFtVnqnOqU+acn1gzG8AY46bVs6qHVjerPl+dXz1nznnhmtkADmWM\n8ezqlOrMOeejVo4DUNUY47jq6dVdq69X/1Q9d8755lWDAWyMMe5YPaO6X3WTlr//3l6dPuc8f81s\nwOFnjHHt6rnVU6p/nHPe5yDPXLf6zerE6tbVF6o3t7xb/9DOpd17rDha0eYb+7zqpOrV1aOql1Y/\nV71tjHHkauGAw94Y4+jqwuox1V9uri+tfrw6f4xxlxXjARzU5oXH09bOAbDdGOPRLRMEq06uTqtu\nW507xrjPSrEALrf5++5d1U9WZ1SPrp5X3b16yxjj+BXjAYeZMcao3tHy3nzfIZ7ZV72+emb11paf\nW79f3ad6xxjj+3Yk7B5lxdG6nlDdqfr1OedLtgbHGO+rXtsyU/ZJK2UDeG51TPWwOedrtgbHGO+u\nXtcyo+PhK2UDuJIxxjWqP6r+uVJuA7vCGOPm1QuqN1YPnHN+YzN+dssLkQe1TCgEWNMzq+tVD51z\n/t3W4BjjNdUHqmdXZ6+UDTiMbBZTXFhd3FJef/AQj55Y3b9lVeRvbPv6N1UXVKdXJ1y9afcuK47W\n9cjqsuplB4y/vvp49YhNcwqwhkuqV7QU2dudW+2v7rzjiQCu2knVj7RsZQCwW/xydf3qtK3SqGrO\n+W9zzpvNOZ+6XjSAy23NzH/r9sE55werT1Xfu9OBgMPWtauzqnvMOedVPPfIzfUF2wc3Ryu8vXrw\nGOPGV0/EvU9xtJIxxo2q21cXzjm/uv3enHN/y/Lgm1a3WSEeQHPO0+acv7D5mbTdDVuWCX9hhVgA\nBzXGOKb6verPnBcC7DL3r77YsrqoMcY1xxjfsW4kgCv5wOZ6u+2DY4zvrG5cXbTjiYDD0pzzk3PO\nk+acX/lfHv2h6mNzzo8f5N47q2u1nC3Jt0BxtJ5bb64H+8au+ujmetsdyALw//HYzfXPV00BcEUv\nrr6WbX6B3ef21b9WPzDGeEv11eorY4yLxhgnrhsN4HK/U32uOmuMcewY4yZjjDtVL2/ZceKUVdMB\nbDPGuGF1VN6tX20UR+u54eb6pUPcv+yA5wBWN8Y4rnpW9Z7qD1aOA1DVGONnqp+qnjrn/PTaeQAO\ncFTLbP2/qd5WPaR6/GbsFWOMx6yYDaCqOedFLVv+XrNlu7pPV++vfrjlfLbz1ksHcCXerV/NFEcA\n/J+MMR7ZcgbbR6rj55z/tW4igNrsWf3C6i0tM2IBdptrt5wN8uQ55zPmnG+Yc76oumfL6qPfHWNc\nc82AAGOMUZ3TUmo/sTqu5Yy2z1RnjzHuv2I8AHaY4mg9W2eDXP8Q929wwHMAqxljnFKdWb2vOnbO\n+YmVIwFsOb1lNv9jD3ImG8BucGn1leqV2wfnnB+u/qE6uvr+FXIBbHdGdcvqnnPO5885z51znlXd\no+WctpePMa61akKAb/Ju/WqmOFrPh1v2iD3mEPe3zkC6eGfiABzcGOP51bOrv67uPef81MqRAKoa\nY9yrekz1kurSMcYxWx+bR663+fzI9VIC9JEO/bf31u9VN9qZKABXNsa4fvVj1YWbUvtyc84vV+e1\nlEq32/l0AFc257y0ZUtN79avJoqjlcw5L2vZK/auY4zrbL+32abgR6uPzTk/erCvB9gJm5VGJ7ds\n/3TCnPNQe8cCrOF+1b7qCdXHDvio+tnNv5+3SjqAxTtatqu7w0Hubb3UONTBzgA74botv1Nd5xD3\nr3PAFWA3eHt1zBjjVge5d8/qy9WFOxtp71Acretl1fWqXz1g/BEt2xWcseOJADbGGPetfrt6bfUr\nc87/XjkSwIH+ojr+EB9Vb9r8W3EErOlPNtdTxxj7tgbHGHdueanxfhMGgTXNOT/TMiv/zmOMK5Tc\nY4yjWibrfKG6aIV4AIfyss31idsHxxj3ru5WvXKzMolvwb79+20Fv5bN3rBvbflGfmF1QXXH6kkt\n/2Hfw+x+YC1jjPdUd6ke1ze3UTnQOX5OAbvRGGN/deac81FrZwEYY7ygenz1huqvWlYaPbFl//0H\nzjnPWy8dQI0xjm+ZNPif1YuqD1U3admB4jYt50m+dL2EwOFiU2BvL7FfVf1Ldeq2sXPmnF8aY7y6\nOqH64+rNLb9jPaW6rPrBOee/70zqveeItQMczuacXxtjPKA6rXpY33w5e0Z1qpexwMruurm++Cqe\nuU3Lvv0AABzayS0vPB5b/WH11ept1WlzznevGQygas559hjj2Opp1UnVkdUXWyY5/9qc89w18wGH\nlYd3xZKoliLpVds+33of9fPV01t28Pql6nMtE3V+S2n07bHiCAAAAAAAgMoZRwAAAAAAAGwojgAA\nAAAAAKgURwAAAAAAAGwojgAAAAAAAKgURwAAAAAAAGwojgAAAAAAAKgURwAAAAAAAGwojgAAAAAA\nAKgURwAAAAAAAGwojgAAAAAAAKgURwAAAAAAAGwcsXYAAAAArtoY46jqs9Ulc85brp0HAADYu6w4\nAgAA2P3uvrm+a9UUAADAnqc4AgAA2P22iqN3r5oCAADY8xRHAAAAu58VRwAAwI5wxhEAAMDud/dq\nf3XB9sExxndVZ1YPqv6++sU556d3Ph4AALBXWHEEAACwi40xjq6+p7p4zvn5bePHVu+tjqtOq35C\naQQAAHy7rDgCAADY3a5wvtEYY1/19Oo51WerB84537hSNgAAYI9RHAEAAOxul59vtFl99KfVA6q3\nVifOOS9ZLRkAALDnKI4AAAB2t63i6AYtW9PdvDq9esac8+urpQIAAPakffv37187AwAAAIcwxrik\nusXm029UJ8w5X79iJAAAYA+7xtoBAAAAOLgxxne3lEYfrM5v+RvuvquGAgAA9jTFEQAAwO61tU3d\nO6ufrmZ18hjjyetFAgAA9jLFEQAAwO61VRxdOOf8j+q46pPV6WOMh68XCwAA2KsURwAAALvX5cVR\n1Zzzw9WDqy9XZ40x7rVWMAAAYG9SHAEAAOxed6u+Ub13a2DOeUF1YnVE9boxxh1WygYAAOxBiiMA\nAIBdaIxxq+ro6uI556Xb7805z64eVx1Z/e0Y4xYrRAQAAPagffv37187AwAAAAAAALuAFUcAAAAA\nAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABU\niiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMA\nAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2/gfsU3tlC/U3fAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 839, + "height": 277 + } + } + } + ] + }, + { + "metadata": { + "id": "xT-q-ZI0IAys", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The special case when $N = 1$ corresponds to the Bernoulli distribution. There is another connection between Bernoulli and Binomial random variables. If we have $X_1, X_2, ... , X_N$ Bernoulli random variables with the same $p$, then $Z = X_1 + X_2 + ... + X_N \\sim \\text{Binomial}(N, p )$.\n", + "\n", + "The expected value of a Bernoulli random variable is $p$. This can be seen by noting the more general Binomial random variable has expected value $Np$ and setting $N=1$." + ] + }, + { + "metadata": { + "id": "9HmW-50PIAyv", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Example: Cheating among students\n", + "\n", + "We will use the binomial distribution to determine the frequency of students cheating during an exam. If we let $N$ be the total number of students who took the exam, and assuming each student is interviewed post-exam (answering without consequence), we will receive integer $X$ \"Yes I did cheat\" answers. We then find the posterior distribution of $p$, given $N$, some specified prior on $p$, and observed data $X$. \n", + "\n", + "This is a completely absurd model. No student, even with a free-pass against punishment, would admit to cheating. What we need is a better *algorithm* to ask students if they had cheated. Ideally the algorithm should encourage individuals to be honest while preserving privacy. The following proposed algorithm is a solution I greatly admire for its ingenuity and effectiveness:\n", + "\n", + "> In the interview process for each student, the student flips a coin, hidden from the interviewer. The student agrees to answer honestly if the coin comes up heads. Otherwise, if the coin comes up tails, the student (secretly) flips the coin again, and answers \"Yes, I did cheat\" if the coin flip lands heads, and \"No, I did not cheat\", if the coin flip lands tails. This way, the interviewer does not know if a \"Yes\" was the result of a guilty plea, or a Heads on a second coin toss. Thus privacy is preserved and the researchers receive honest answers. \n", + "\n", + "I call this the Privacy Algorithm. One could of course argue that the interviewers are still receiving false data since some *Yes*'s are not confessions but instead randomness, but an alternative perspective is that the researchers are discarding approximately half of their original dataset since half of the responses will be noise. But they have gained a systematic data generation process that can be modeled. Furthermore, they do not have to incorporate (perhaps somewhat naively) the possibility of deceitful answers. We can use TFP to dig through this noisy model, and find a posterior distribution for the true frequency of liars. " + ] + }, + { + "metadata": { + "id": "gPcqaqxMIAyw", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Suppose 100 students are being surveyed for cheating, and we wish to find $p$, the proportion of cheaters. There are a few ways we can model this in TFP. I'll demonstrate the most explicit way, and later show a simplified version. Both versions arrive at the same inference. In our data-generation model, we sample $p$, the true proportion of cheaters, from a prior. Since we are quite ignorant about $p$, we will assign it a $\\text{Uniform}(0,1)$ prior." + ] + }, + { + "metadata": { + "id": "LIg-xs2LIAyw", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "reset_sess()\n", + "\n", + "N = 100\n", + "p = tfd.Uniform(name=\"freq_cheating\", low=0., high=1.)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "7L0nMGmrIAy0", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Again, thinking of our data-generation model, we assign Bernoulli random variables to the 100 students: 1 implies they cheated and 0 implies they did not. " + ] + }, + { + "metadata": { + "id": "aXxhrJdtIAy0", + "colab_type": "code", + "outputId": "57d6feb0-f99d-460e-ea0f-c6ea67392c16", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + } + }, + "cell_type": "code", + "source": [ + "N = 100\n", + "reset_sess()\n", + "p = tfd.Uniform(name=\"freq_cheating\", low=0., high=1.)\n", + "true_answers = tfd.Bernoulli(name=\"truths\", \n", + " probs=p.sample()).sample(sample_shape=N, \n", + " seed=5)\n", + "# Execute graph\n", + "[\n", + " true_answers_,\n", + "] = evaluate([\n", + " true_answers,\n", + "])\n", + "\n", + "print(true_answers_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", + " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "vNB9WGYcIAy4", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "If we carry out the algorithm, the next step that occurs is the first coin-flip each student makes. This can be modeled again by sampling 100 Bernoulli random variables with $p=1/2$: denote a 1 as a *Heads* and 0 a *Tails*." + ] + }, + { + "metadata": { + "id": "68t8O39EIAy4", + "colab_type": "code", + "outputId": "8c2114dd-6c5b-4db6-a10d-23c73c0ede87", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + } + }, + "cell_type": "code", + "source": [ + "N = 100\n", + "first_coin_flips = tfd.Bernoulli(name=\"first_flips\", \n", + " probs=0.5).sample(sample_shape=N, \n", + " seed=5)\n", + "# Execute graph\n", + "[\n", + " first_coin_flips_,\n", + "] = evaluate([\n", + " first_coin_flips,\n", + "])\n", + "\n", + "print(first_coin_flips_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1\n", + " 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0\n", + " 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "8-ZnScpWIAzA", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Although *not everyone* flips a second time, we can still model the possible realization of second coin-flips:" + ] + }, + { + "metadata": { + "id": "acP-4TAfIAzB", + "colab_type": "code", + "outputId": "f4c3e132-3dee-4eb9-afd7-6c22fd128b37", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 68 + } + }, + "cell_type": "code", + "source": [ + "N = 100\n", + "second_coin_flips = tfd.Bernoulli(name=\"second_flips\", \n", + " probs=0.5).sample(sample_shape=N, \n", + " seed=5)\n", + "# Execute graph\n", + "[\n", + " second_coin_flips_,\n", + "] = evaluate([\n", + " second_coin_flips,\n", + "])\n", + "\n", + "print(second_coin_flips_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "[1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1\n", + " 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0\n", + " 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1]\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "uiVbAjoTIAzI", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Using these variables, we can return a possible realization of the *observed proportion* of \"Yes\" responses. " + ] + }, + { + "metadata": { + "id": "BJxN0jmBIAzJ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def observed_proportion_calc(t_a = true_answers, \n", + " fc = first_coin_flips,\n", + " sc = second_coin_flips):\n", + " \"\"\"\n", + " Unnormalized log posterior distribution function\n", + " \n", + " Args:\n", + " t_a: array of binary variables representing the true answers\n", + " fc: array of binary variables representing the simulated first flips \n", + " sc: array of binary variables representing the simulated second flips\n", + " Returns: \n", + " Observed proportion of coin flips\n", + " Closure over: N\n", + " \"\"\"\n", + " observed = fc * t_a + (1 - fc) * sc\n", + " observed_proportion = tf.to_float(tf.reduce_sum(observed)) / tf.to_float(N)\n", + " \n", + " return tf.to_float(observed_proportion)\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "OoIWHbsNIAzL", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The line `fc*t_a + (1-fc)*sc` contains the heart of the Privacy algorithm. Elements in this array are 1 *if and only if* i) the first toss is heads and the student cheated or ii) the first toss is tails, and the second is heads, and are 0 else. Finally, the last line sums this vector and divides by `float(N)`, producing a proportion. " + ] + }, + { + "metadata": { + "id": "ma5VwRSNIAzM", + "colab_type": "code", + "outputId": "92449808-a8fe-4bd4-973b-73e22bb27eb5", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "observed_proportion_val = observed_proportion_calc(t_a=true_answers_,\n", + " fc=first_coin_flips_,\n", + " sc=second_coin_flips_)\n", + "# Execute graph\n", + "[\n", + " observed_proportion_val_,\n", + "] = evaluate([\n", + " observed_proportion_val,\n", + "])\n", + "\n", + "print(observed_proportion_val_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "0.01\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "HNoBM39rIAzQ", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Next we need a dataset. After performing our coin-flipped interviews the researchers received 35 \"Yes\" responses. To put this into a relative perspective, if there truly were no cheaters, we should expect to see on average 1/4 of all responses being a \"Yes\" (half chance of having first coin land Tails, and another half chance of having second coin land Heads), so about 25 responses in a cheat-free world. On the other hand, if *all students cheated*, we should expected to see approximately 3/4 of all responses be \"Yes\". \n", + "\n", + "The researchers observe a Binomial random variable, with `N = 100` and `total_yes = 35`: " + ] + }, + { + "metadata": { + "id": "SLcH6ZPsIAzR", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "total_count = 100\n", + "total_yes = 35" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "-kWZd1ygofav", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def coin_joint_log_prob(total_yes, total_count, lies_prob):\n", + " \"\"\"\n", + " Joint log probability optimization function.\n", + " \n", + " Args:\n", + " headsflips: Integer for total number of observed heads flips\n", + " N: Integer for number of total observation\n", + " lies_prob: Test probability of a heads flip (1) for a Binomial distribution\n", + " Returns: \n", + " Joint log probability optimization function.\n", + " \"\"\"\n", + " \n", + " rv_lies_prob = tfd.Uniform(name=\"rv_lies_prob\",low=0., high=1.)\n", + "\n", + " cheated = tfd.Bernoulli(probs=tf.to_float(lies_prob)).sample(total_count)\n", + " first_flips = tfd.Bernoulli(probs=0.5).sample(total_count)\n", + " second_flips = tfd.Bernoulli(probs=0.5).sample(total_count)\n", + " observed_probability = tf.reduce_sum(tf.to_float(\n", + " cheated * first_flips + (1 - first_flips) * second_flips)) / total_count\n", + "\n", + " rv_yeses = tfd.Binomial(name=\"rv_yeses\",\n", + " total_count=float(total_count),\n", + " probs=observed_probability)\n", + " \n", + " return (\n", + " rv_lies_prob.log_prob(lies_prob)\n", + " + tf.reduce_sum(rv_yeses.log_prob(tf.to_float(total_yes)))\n", + " )" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "QZC4TITlIAzV", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Below we add all the variables of interest to our Metropolis-Hastings sampler and run our black-box algorithm over the model. It's important to note that we're using a Metropolis-Hastings MCMC instead of a Hamiltonian since we're sampling inside." + ] + }, + { + "metadata": { + "id": "Awl3GmgjIAzV", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "burnin = 15000\n", + "num_of_steps = 40000\n", + "total_count=100\n", + "\n", + "# Set the chain's start state.\n", + "initial_chain_state = [\n", + " 0.4 * tf.ones([], dtype=tf.float32, name=\"init_prob\")\n", + "]\n", + "\n", + "# Define a closure over our joint_log_prob.\n", + "unnormalized_posterior_log_prob = lambda *args: coin_joint_log_prob(total_yes, total_count, *args)\n", + "\n", + "# Defining the Metropolis-Hastings\n", + "# We use a Metropolis-Hastings method here instead of Hamiltonian method\n", + "# because the coin flips in the above example are non-differentiable and cannot\n", + "# bue used with HMC.\n", + "metropolis=tfp.mcmc.RandomWalkMetropolis(\n", + " target_log_prob_fn=unnormalized_posterior_log_prob,\n", + " seed=54)\n", + "\n", + "# Sample from the chain.\n", + "[\n", + " posterior_p\n", + "], kernel_results = tfp.mcmc.sample_chain(\n", + " num_results=num_of_steps,\n", + " num_burnin_steps=burnin,\n", + " current_state=initial_chain_state,\n", + " kernel=metropolis,\n", + " parallel_iterations=1,\n", + " name='Metropolis-Hastings_coin-flips')" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "Lq0OtJDCufOu", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "##### Executing the TF graph to sample from the posterior" + ] + }, + { + "metadata": { + "id": "x--bCsBrr91E", + "colab_type": "code", + "outputId": "cfab9154-992d-418d-ba2e-d16f1cae1e65", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "# Content Warning: This cell can take up to 5 minutes in Graph Mode\n", + "[\n", + " posterior_p_,\n", + " kernel_results_\n", + "] = evaluate([\n", + " posterior_p,\n", + " kernel_results,\n", + "])\n", + " \n", + "print(\"acceptance rate: {}\".format(\n", + " kernel_results_.is_accepted.mean()))\n", + "# print(\"prob_p trace: \", posterior_p_)\n", + "# print(\"prob_p burned trace: \", posterior_p_[burnin:])\n", + "burned_cheating_freq_samples_ = posterior_p_[burnin:]" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "acceptance rate: 0.105625\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "QhCgk98ynq5s", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "And finally we can plot the results." + ] + }, + { + "metadata": { + "id": "JoKNmLpxB1yt", + "colab_type": "code", + "outputId": "b793d81e-288a-4d80-8a37-f34f19e50aab", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + } + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 6))\n", + "p_trace_ = burned_cheating_freq_samples_\n", + "plt.hist(p_trace_, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30, \n", + " label=\"posterior distribution\", color=TFColor[3])\n", + "plt.vlines([.1, .40], [0, 0], [5, 5], alpha=0.3)\n", + "plt.xlim(0, 1)\n", + "plt.legend();" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmEAAALKCAYAAADK9/XkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuYlnWB//EPMKIgCqF5QHFBl73X\ns2KNIawLmv20TRHNXL08bJqnrMy2PGTm4qEura1YtwVLJUnSzENuZCap43o2ddVy+z1NpoZiPxVs\nVDxwkN8fMLOMDIjM83WY4fW6Lq4Znud+vvf3uZ/xmXHefO+71+LFiwMAAAAAAEB99e7qCQAAAAAA\nAPREIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABDV09gY60tLQs7uo5AAAAAAAAPdvAgQN7lRzfShgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBiALtLc3Jzm5uaungZA\nEd7jgJ7MexzQk3mPA6gvEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAA\nAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAA\nEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAgG5p/PjxGT9+fFdPIw899FAaGxvzve99\nr+22E088MY2Nje/J/t9+HGbMmJHGxsbMmDHjPdn/xIkT09jYmNmzZ78n++tOGrp6AgAAAAAAXeG8\npjldPYWVOnvsRl09hbq48847s2jRoowdO7buY59++ul1H7Nejj/++Lz00kur9dhHHnkkzzzzTD72\nsY+t0vbv5XHoaG6HHHJIxowZk8GDB79n8+guRBgAAAAAAIq58sorM2TIkCIRZo899qj7mPUycuTI\n1X7sT3/60/z5z39e5QjzXh6Hjua23XbbZbvttnvP5tCdOB0ZAAAAAABFvPXWW6nVal09jW7nd7/7\nXVdPYYXW5LmtiUQYAAAAAIAeqvVaHb///e8zZcqUHHDAARk9enQmTJiQ6dOnZ/Hixe22f/nll/Od\n73wnEyZMyOjRozNu3LiceOKJueOOO5Ybu6mpKSeddFL23XffjBkzJgcccEAuuOCC/PnPf06y5Lok\nH/rQh/Laa6/l5z//+XLXTJk9e3bOPffcfPSjH80ee+yRfffdN1/5ylfy1FNPdfgc/vCHP+SUU07J\nnnvumbvuuitJx9eEefPNN3PppZfm0EMPzd/93d9l7Nix+eQnP5kbb7yx3Xat13G57LLL8sMf/jD7\n7rtvzjjjjJUez0WLFuV73/te23E86KCDcuWVVy53HJOOrwnz8MMP59RTT80//MM/ZMyYMfnYxz6W\ns846K0888US7OT355JN5+OGH09jYmIkTJ67WcWj1s5/9LP/4j/+YMWPGZN99982FF16YefPmtd2/\nsuvHfO5zn2u71suqzO3t14S5+eabc+yxx2bs2LEZM2ZMDjnkkEyePDmvv/56u+0aGxtz8skn5/nn\nn8+ZZ56ZffbZJ6NHj85RRx2V++67b6WvyZrO6cgAAAAAAHq4iy++OAsWLMhRRx2VddZZJ9dff30m\nTZqUxYsX54gjjkiSvPHGGznhhBPy5JNPZvz48dl+++3z6quvZsaMGfnSl76UL3/5yznwwAOTJDNn\nzsxZZ52VHXbYIZ/61KcyYMCAPP3007n66qtz33335cc//nF22223nHbaabnooouy22675eMf/3iG\nDx+eJHn22WfzyU9+Mn369MlBBx2ULbbYIs8880x+8pOf5O67786ll16abbbZpt1z+I//+I9svPHG\nOeuss7L11lt3+Dzfeuut/PM//3MeeOCBfOQjH8lhhx2W+fPn59Zbb80FF1yQ2bNn56STTmr3mMcf\nfzyzZ8/OZz7zmWy66aYrPY7/9m//lquuuiojR47MUUcdlQULFmTmzJm599573/E1eOyxx3LyySdn\nq622ypFHHplBgwblueeey09+8pMcf/zxmT59erbeeut8/etfz5lnnpnhw4fn+OOPz+abb/6uj0Or\nW2+9te36LQMHDszdd9+d6667Li+88EK++c1vvuOcl7Uqc1vWZZddlksuuSQ77LBDTjjhhPTv3z+P\nPPJIpk6dmkceeSSTJ09O797/u07k9ddfz0knnZRdd901p5xySmbPnp3p06fntNNOy/XXX5+NN974\nXc13TSHCAAAAAAD0cC+++GJ++MMfpqFhya+E995774wfPz5XXHFFDj/88PTu3Ts//vGP88QTT+TT\nn/50/umf/qntsQcccEAOOeSQXHzxxdlvv/2y7rrr5pe//GWS5Fvf+lYGDRrUtu1OO+2Uq6++Ok8/\n/XS23XbbtmuVbLbZZtl7773btps0aVIWLFiQyy+/PFtuuWXb7WPHjs3RRx+dyZMnLxcJFixYkLPP\nPnulz/PWW2/NAw88kAkTJuTMM89su/2ggw7K0UcfnWnTpuXggw/OJpts0nbfvffem+uvv36lQSFJ\n/vKXv+Saa67JlltumYsvvjjrrLNOkuTggw/OkUceudLHJkvC1aJFi3LOOee0u37KmDFjMmnSpDz5\n5JMZNWpU23F63/ve1+6YvZvj0Oo3v/lNrr322rbXaPz48TnhhBPyX//1X3niiSeWC10rs+x8VjS3\nVs8//3xbSLvkkkvajtX48ePTr1+/XHvttbn11luzzz77tD3mt7/9bT772c+2O5Z9+vTJJZdcknvu\nuScHHHDAKs91TdLp05FVVfWDqqoWr+TP5+sxUQAAAAAAVs/+++/fFmCSZMCAAfngBz+YlpaW/PGP\nf0yS3HHHHenVq1cmTJjQ7rEDBgzIXnvtlVdeeSWPPvpokiW/HE+SRx55pN22o0aNyqRJk7Ltttuu\ncC5vvPFG7rrrruy8884ZOHBgXnnllbY/m2++ebbeeus89NBDyz1ur732esfn2dTUlGRJdFlWQ0ND\nPvrRj2bRokXLrVrZbrvt3jHAJMl///d/Z9GiRRk3blxbVEiSvn37trtI/Yq0HrPWY9hqxIgR+fd/\n//eMGjXqHcdIVu04tBo3bly7SNarV6+2eNLRMa6XO++8M4sWLcr+++/f7lglS74Wk7SdSq1Vnz59\ncuihh7a7rTVWvfjii8XmWlo9V8J8OskLHdz+SAe3AQAAAADwHunotFWtp3d67rnn8td//dd56qmn\nsvHGG2fgwIHLbftXf/VXSZI//elPaWxszBFHHJF77703p59+enbaaaeMGjUqjY2N2X777dOrV6+V\nzuVPf/pTFi5cmHvuuWelqyleffXVDBgwoO3vQ4YMecfn2Xo9mY6e71ZbbdW2/2WtyrhJ2q53MnTo\n0OXuGzZs2Ds+/uCDD84vfvGLfPvb385NN92UPfbYI42Njdl5553bBbJ3sqrzTdLhSpctttgiSdqu\n3VPC008/vcL9L/u1tKxNNtkkffv2bXdb698XLlxYYprviXpGmF/UarWn6jgeAAAAAAB10L9//+Vu\nW3/99ZMsOb1VsuSaHO973/s6fPy6666bZMkqliTZcccdM23atFx55ZW544478uijj2bKlCkZMmRI\nTjnllIwbN26Fc3nttdeSJB/60Idy9NFHr3C7t/9CvqPn8Havv/56Ghoallt90dFzeDfjLvu49dZb\nb4Vjr8zQoUMzbdq0TJ8+PbfddlumTp2aqVOnZvDgwTnuuONy8MEHr9I8VnW+K9q2da5vvvnmKo/z\nbrW+xv369Vvh/l9//fV2t7/99e4pXBMGAAAAAKCHe3t4SJasNEnSdrqqfv36LfeL8bc/ftlf6g8b\nNixf+cpX8uUvfzm/+93v0tTUlGuvvTZnnHFGpkyZkl133bXDsVrH6N27d3bbbbfVf1Id6NevXxYu\nXJgFCxYsF2I6eg7vRms8mD9//nL3rei4vd2mm26aL3zhC/nCF76Q5ubm3Hnnnbnmmmty4YUXpn//\n/tlvv/1Wa24r0tHr3nrbqoSj1Q01rce4NcYsq/VYre7r0N10+powb1dV1XpVVYk7AAAAAABriCef\nfHK521pPr9V6WrLhw4fnxRdfzF/+8pfltm29bkxHp93q3bt3tt9++5x88smZOHFiFi9enNtvv32F\nc9lqq63S0NCQ//mf/+nwNFMvvfTSKj2njgwfPjxJ8oc//GG5+1qPwaqcOqwjm222WZLk2WefXe6+\nJ5544l2PN2LEiBxzzDG5+OKLkyS33Xbbas1rZVpPz7asZ555Jsn/npas9VRoHcWlWbNmrdZ+W1+H\njo5L6+vQuk1PV89YcnJVVR9PMizJW1VV/TrJubVa7aZ67aC5ubleQwGsMby3AT2Z9zigJ/MeB/Rk\na8t73Pz5A955oy5Uj9fh5ZdfTpLccMMN2WWXXdK795J/l//qq6/mwQcfzKBBg/LGG2+kubk5O++8\nc37zm9/k+9//fg488MC2MV555ZXMnDkzgwYNSv/+/fP444/n/PPPz5AhQ3LiiSe2219rQJk3b16a\nm5szZ86cJMmcOXPaPZ9ddtklDz74YC6//PJ2py57/vnnc8YZZ2TMmDE55phj2j2HWbNmLXcqsNZT\nqbWOvd122+WWW27J1KlTc9xxx7Xb7oYbbsg666yTzTffPM3NzW0xoqWlZZWO9cCBA9OrV6/MnDkz\n48aNS58+fZIsiRc33nhjkmTu3LltY7Wu+Gj9+ze+8Y0sXLgwp59+etvrkCQvvLDkUutvvvlm27a9\nevVabl7v5ji0Xu/llltuyUc+8pG2U88tXrw4M2bMSJK8//3vT3Nzc9vKmPvuuy877rhj25j3339/\nXnzxxSRLYs68efPecW6t22255ZZpaGjItddem5EjR7a75s0VV1yRJKmqqt0Y8+fPX+51aH2Nlj2u\nq2vEiBGdevzqqmeE+T9Jvpbk2SQ7JflSkhlVVR1eq9WuruN+oO4effTRtLS0JFnyZrrzzjt38YwA\noPvyfRUAANY8/fr1y9e+9rU0NjZmnXXWycyZM/Pmm2/msMMOS69evZIkH/7wh3PXXXfluuuuy0sv\nvZRtttkmr7zySpqamvLaa6/lc5/7XPr06ZM+ffpk+PDh+dWvfpV58+Zl1113zXrrrZcXXnghv/rV\nr7Luuutmzz33TLLk/wn69u2bxx57LDfeeGM222yz7L777jn88MNTq9UyderUzJ49O8OGDcsLL7yQ\nmTNnplevXtlrr71W63l+4AMfyC677JKmpqYsWLAg2223Xd54443cc889mT17do488shssMEGqzX2\noEGD8vd///dpamrKRRddlMbGxsyfPz/33ntvNt100zz33HMrffy2226bq666KhdccEF23333DBgw\nIC0tLbntttvSp0+f7L333m3bbrLJJnnqqady3XXXZaONNsrYsWNXa87Dhg3LxIkTs+eee6Z///55\n6KGH0tzcnFGjRmXzzTdPsiRObLjhhrnzzjuzwQYbZIsttsisWbNy9913Z6eddspjjz3WbsxVmdug\nQYNyyCGH5Kqrrsr555+fPfbYIw0NDXn88cdz33335YMf/OAKT1fX09QjwvxrkquSNNVqtdYTxN1U\nVdV/Jnkkyb9WVXVNrVZ7q7M76qpSRc83d+7ctho8ePBgX2u8J1rrva83oKeZO3duW4QZOnSo9zmg\nx/FzHNCTrW3vcX2fndPVU1iperwOG264YZLk85//fH7961/nZz/7WV588cVsttlm+eIXv5hPfOIT\n7ba//PLLc+mll+b2229PU1NT+vXrlx122CFf/epXM3LkyLbtLrjgguy888656aabcs011+S1117L\n4MGD84EPfCDHHHNMtt5667ZtTz311EyZMiU33nhjJkyYkBEjRmTEiBGZNm1aLr300tx///355S9/\nmQ022CAjR47Mscce2+65tz6Hjv7/ovW6L8ve/t3vfjfTpk3LzTffnAceeCB9+/bN3/zN3+Siiy5q\nFwxaV28MHDhwlY/1+eefnylTpuSWW27JtGnTsummm+bAAw/M6NGjc/jhh7f73WLrRelb/37qqadm\n2223zfXXX5+f/vSnefXVV7Phhhtmxx13zLnnnpuddtqpbT9f/OIXc+GFF2bGjBkZPXp0jjvuuHd1\nHGq1WpLkiCOOSEtLS370ox/l2WefzYABA3LooYfm5JNPbreaZvLkyZk0aVLuuOOOLFq0KDvuuGMm\nT56cq666Ko899liGDRuWIUOGvOPclt3u1FNPzfbbb5+rr74611xzTd56660MHTo0n/3sZ3PYYYe1\nWx2TJH379l3uebW+Rt35d7a9Fi9eXGzwqqpuSbJPkh1qtdrjq/q4lpaWcpOCDtx///2ZO3dukiX/\nQe++++5dPCPWBmvbD7bA2uP+++/Pb3/72yTJDjvs4Psq0OP4OQ7oybzH9TwTJ07Mz3/+81x22WXt\nTjUFLDFw4MBeJcfv/c6bdMr/W/pxw8L7AQAAAAAAWKN06nRkVVVtmGT/JHNqtdrNHW2y9OOszuwH\nAAAAAACgu+nsSpj5Sb6b5AdVVW287B1VVX04yQeTPFCr1Z7p5H4AAAAAAAC6lU6thKnVam9UVXVK\nkh8keaCqqilJ/pxk1yQnJWlJckJnJwkAAAAAwLt3zjnn5JxzzunqacBaq9PXhKnValck2SvJH5J8\nOcllST6eZHqSkbVa7ZHO7gMAAAAAAKC76dRKmFa1Wu32JLfXYywAAAAAAICeoNMrYQAAAAAAAFie\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFBAkQhTVdW5VVUtrqrqByXGBwAAAAAAWNPVPcJUVbV9ktPrPS4AAAAAAEB3UtcIU1VV7yTfT/J4\nPccFAAAAAADobuq9EuakJKOSfLHO4wIAAAAAAHQrdYswVVVtmeTrSa6s1Wq31WtcAAAAAACA7qie\nK2G+m2RBki/UcUwAAAAAAIBuqaEeg1RV9fEkByQ5tlarvVCPMTvS3NxcamjWcrNmzUpLS0uSZN68\neRk8eHAXz4i1ifc2oKeZNWtWu899XwV6Kj/HAT2Z9zigpxkxYkSX7LfTK2GqqhqU5OIkdySZ2ukZ\nAQAAAAAA9AD1WAnzjSSDk5xYq9UW12G8FeqqUkXPN3fu3Ky//vpJksGDB/ta4z3R+q+KfL0BPc3c\nuXPbVpgOHTrU+xzQ4/g5DujJvMcB1FenIkxVVXsmOTbJpCSvVlW15ds26b/0tnm1Wu2lzuwLAAAA\nAACgO+ns6cj2StIryeeTzHrbnyQ5ZOnn3+7kfgAAAAAAALqVzp6O7EdJHlzBfT9LcmuS7+R/owwA\nAAAAAMBaoVMRplar/T7J7zu6r6qqJHmmVqvN6Mw+AAAAAAAAuqPOno4MAAAAAACADnT2dGQrVKvV\nepUaGwAAAAAAYE1nJQwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABDV09AaB+zmua09VTSJKcPXajrp4CAAAAAECXsxIGAAAAAACgABEGAAAAAACg\nABEGAAAAAACgABEGAAAAAACgABEGAAAAAACggIaungBAT3Ze05wV3jd//oAkSd9nV7xNvZw9dqPi\n+wAAAAAA2rMSBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAA\nAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAA\noICGrp4AQCnnNc3p6ikAAAAAAGsxK2EAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAK\nEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEA\nAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKaKjHIFVV7ZjktCRjkgxJ8nKSe5J8rVar3V+PfQAAAAAA\nAHQnnV4JU1XVqCT3JdkryfeTfGrpx3FJ7qyqao/O7gMAAAAAAKC7qcdKmClJeiUZXavVnmq9saqq\nB5LckOT0JOPrsB8AAAAAAIBuo1MRpqqq3kmuSPLKsgFmqZlLP27VmX0AAAAAAAB0R52KMLVa7a0k\n31rB3X+79ONjndkHAAAAAABAd1SP05G1qapqUJIBScYk+WaSJ5P8Sz33AQAAAAAA0B3UNcIkeWnp\nx8VJpiY5rVarzanX4M3NzfUaCtqZNWtWWlpakiTz5s3L4MGDu3hGq2f+/AFdPYUka85/q2vK8Xgn\n8+fPL76PNeU1AdYOs2bNavd5d/2+CvBO/IwF9GTe44CeZsSIEV2y3951Hm9cko8l+WqS/ZI8WFXV\nB+q8DwAAAAAAgDVeXVfC1Gq1pqWf/ryqqiuTPJzkR1VV/e3S68d0SleVKnq+uXPnZv3110+SDB48\nuNt+rfV9tm4LzzplTTl+a8rxWJHWFTB9+/Ytvq815TUB1g5z585tW2E6dOhQ70FAj9P6r8O9vwE9\nkfc4gPqq90qYNrVa7akktyYZkWSbUvsBAAAAAABYE3VqJUxVVdsmuSXJzFqtdkwHmwyqx34AAAAA\nAAC6m86uhGlOsl6SQ6qqGr7sHVVVbZNkdJIXkvy+k/sBAAAAAADoVjq1QqVWqy2squqzSaYnub+q\nqu8m+WOS4Uk+k6RfkpNrtdqiTs8UAAAAAACgG+n0acJqtdrVVVU9neT0LAkvg5K8nOTXSb5Vq9Vu\n6ew+AAAAAAAAupu6XKulVqvdm+TAeowFAAAAAADQE3T2mjAAAAAAAAB0QIQBAAAAAAAooC6nIwNY\n1nlNc7p6CrzNmvKanD12o66eAgAAAAC8Z0QYANY6ohQAAAAA7wWnIwMAAAAAAChAhAEAAAAAAChA\nhAEAAAAAAChAhAEAAAAAAChGY0oTAAAbW0lEQVRAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChA\nhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEA\nAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAACigoasnAMDa47ymOV09BQAA\nAAB4z1gJAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAA\nUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAI\nAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAA\nAAAAUIAIAwAAAAAAUIAIAwAAAAAAUEBDV08AANZW5zXN6eop5OyxG3X1FAAAAAB6LCthAAAAAAAA\nChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBh\nAAAAAAAAChBhAAAAAAAAChBhAAAAAAAACmjo6glAZ5zXNKcu4zz7f1vyxsuvJEnW27BPbnn93Y17\n9tiN6jIPAAAAAAB6DithAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAA\nChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAACmjo\n6glAT3Be05yungIAAAAAAGsYK2EAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEA\nAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAA\nAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAK\nEGEAAAAAAAAKaOjqCdB9ndc0p6unAAAAAAAAaywrYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQ\nYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAA\nAAAAAApo6OoJAABd57ymOV09hSTJ2WM36uopAAAAANSdlTAAAAAAAAAFiDAAAAAAAAAFiDAAAAAA\nAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAF\niDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFNNRjkKqq3p/kq0kmJNk0yV+S3JXkvFqt9nA99gEA\nAAAAANCddHolTFVVmyR5OMmxSX689OMlSfZOcldVVbt2dh8AAAAAAADdTT1WwpyfZMskB9dqtetb\nb6yq6tdJfprkzCSfqMN+AAAAAAAAuo16XBNmdpKrktzwtttvTrI4yU512AcAAAAAAEC30umVMLVa\n7V9WcNcGSXolebmz+wAAAAAAAOhu6nE6shU5cenH6fUasLm5uV5DUQfz5w/o6inUzcIFC7Nw4cK2\nz+fPn9/FM2Jt4usNfI/vaWbNmtXu88GDB3fhbADK8f0L6Mm8xwE9zYgRI7pkv/U4HdlyqqraL8lX\nkzyUZHKJfQAAAAAAAKzJ6r4Spqqqo5JcmuSpJPvXarW6/RPvripVdKzvs3O6egp107BOQxoaGto+\n79u3bxfPiLVB6woYX2/ge3xPM3fu3LS0tCRJhg4d6vUFepzWfx3u/Q3oibzHAdRXXVfCVFV1dpIr\nkjyaZEytVnuunuMDAAAAAAB0F3VbCVNV1XeSnJLkP5McVqvVXqvX2AAAAAAAAN1NXVbCLF0Bc0qS\nqUkOEmAAAAAAAIC1XadXwlRVNS7JxCQ3JPlUrVZ7q9OzAgAAAAAA6ObqcTqyby79+KskB1VV1dE2\nN1kdAwAAAAAArE3qEWFGLv343ZVsMzzJU3XYFwAAAAAAQLfQ6QhTq9V61WMiAAAAAAAAPUnvrp4A\nAAAAAABATyTCAAAAAAAAFCDCAAAAAAAAFNDpa8IAAHTWeU1zunoKSZKzx27U1VMAAAAAehArYQAA\nAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAA\nAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAD4/+3d\ne4yld13H8c/a6dJCaW3XFppwx/KrRVAu0oqCS0m8BFGUe6hcKgq1oFiQEHBsdYqaSJSbIEIBqWJC\nhXLRok2QoeUiSGqLRvlZgVIKpLZDWKQtbJusf5wzzXSY2cs8z3fOzvb1SjbPznnmOefbTfPLmXmf\n53kAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAA\nCogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIA\nAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAA\nAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAER\nBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAA\nAACAAnOzHmArWVhcmvUISZL5nTtmPQIAAAAAALAPzoQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAK\niDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBgbtYDAAAcLBYWl2Y9\nQpJkfueOWY8AAAAAjMCZMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAA\nUECEAQAAAAAAKCDCAAAAAAAAFJib9QAAABycFhaXNnTcVz+/K9/+xpFJkn+9dVcuvWVjz5Mk8zt3\nbPhYAAAAmDVnwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAA\nAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACszNegAAAO5oYXFp1iMAAAAA\nI3AmDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogw\nAAAAAAAABUQYAAAAAACAAiIMAAAAAABAgblZD8CBW1hcmvUIAAAAAADAPjgTBgAAAAAAoIAIAwAA\nAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABA\nAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgA\nAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAA\nAArMjfVErbXtSc5P8rIkl/Xed4713AAAAAAAAFvNKBGmtdaSvDvJg5JsG+M5AQAAAAAAtrLBlyNr\nrR2b5IokhyV55OCJAAAAAAAADgFj3BNme5J3JTmt995HeD4AAAAAAIAtb/DlyHrv1yc5a4RZAAAA\nAAAADhmj3BNms1x99dUzff3du4+a6etT57Zbb8ttt912+993794944m4M/H/G3Coue3W2+7w9yHr\n3Kzf/wHsjTUKOJRZ44BDzUknnTST1x3jcmQAAAAAAACssqXOhJlVqVq2/atLM3196swdPpe5ubnb\n/759+/YZT8SdwfInw/3/Bhxq5g6fu8Pfh6xzs37/B7CW5U+HW6OAQ5E1DmBczoQBAAAAAAAosKXO\nhAEA4M5lYfHgOBN5fueOWY8AAADAFuRMGAAAAAAAgAIiDAAAAAAAQIHBlyNrrZ2S5JRVDx/fWnvK\niq8v6b3fPPS1AAAAAAAAtoox7gnztCTnrnrslCQXrfj6/kmuGeG1AAAAAAAAtoTBEab3fl6S8wZP\nAgAAAAAAcAgZ40yYTbOwuDTrEQAAAAAAAPbL9816AAAAAAAAgEORCAMAAAAAAFBAhAEAAAAAACgg\nwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAA\nAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABA\nAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgA\nAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAA\nAAqIMAAAAAAAAAVEGAAAAAAAgAJzsx4AAADYPwuLS7MeIUkyv3PHrEcAAADYEpwJAwAAAAAAUECE\nAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAgblZDwAA\nAAe7hcWlWY8AAADAFuRMGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAA\nKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgD\nAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAA\nAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAArMzXoAAABga1lY\nXJr1CEmS+Z07Zj0CAADAXjkTBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAA\nAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAo\nIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMA\nAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAJzsx4AAACA\nYRYWl2Y9QpJkfueOWY8AAAAHFWfCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAnOz\nHgAAAGAjDpab0QMAAKzHmTAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAA\nAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAArMzXoAAAAADg0Li0uzHiFJMr9zx6xHAACAJM6E\nAQAAAAAAKCHCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAgbkxnqS1\ndlySc5M8KcmJSW5MckmS+d7718d4DQAAAAAAgK1k8JkwrbUjkywmOSvJe5M8N8lbkjw9ySdaa8cO\nfQ0AAAAAAICtZowzYV6S5CFJzu69v2n5wdbaVUkuTjKf5JwRXgcAAAD2aWFxqfT5d+8+Kkmy/at7\nf535nTtK5wAA4OA3xj1hnp3kpiQXrHr8A0muS3JGa23bCK8DAAAAAACwZWzbs2fPhg9urR2dZFeS\ny3vvj11j/3uT/HKSB/bev7i/z7tr166NDwUAAAAAALAfjjnmmNKTSIaeCXPf6fa6dfZfO90+YODr\nAAAAAAAAbClDI8zdp9ub19l/06rvAwAAAAAAuFMY454wAAAAAAAArDI0wnxrur3bOvuPWvV9AAAA\nAAAAdwpDI8yXkuxJcq919i/fM+bqga8DAAAAAACwpWzbs2fPoCdorV2Z5KQkO3rv31nx+GFJvpbk\nu733+wx6EQAAAAAAgC1mjHvCXJDkrklesOrxM5KckORtI7wGAAAAAADAljLGmTCHJ7k8ySOSvCHJ\nZ5M8OMk5mVyG7LTe+80D5wQAAAAAANhSBkeYJGmtHZ3kvCRPTnJikv9NcnGSc3vv3xj8AgAAAAAA\nAFvMKBEGAAAAAACAOxrjnjAAAAAAAACsIsIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAA\nAIACIgwAAAAAAEABEQYAAAAAAKDA3CxetLV2XJJzkzwpyYlJbkxySZL53vvX9+P4RyeZT3JakiOT\n/HeStyZ5Y+99T9XcAPtjhDXuJ6fHPyrJEUm+kuS9SRZ679+umhtgfwxd41Y91xFJrkryoCSP670v\njjstwIEZ4X3cXZK8IskZSe49Pf4fkryq935j1dwA+2OENe6MJC9M8iNJtie5NsnfJzm/975UNTfA\n/mqtbU9yfpKXJbms977zAI4taw6bfiZMa+3IJItJzsrkl4rPTfKWJE9P8onW2rH7OP70JB9NclKS\n85L8Wib/IK9P8mdFYwPslxHWuGcluTyTH9rPnT7P55K8PMmlrTVnMAIzM3SNW8N8JgEGYOZGeB83\nl0lw+d1Mfin5/CR/l+RXk3xs+ksBgJkYYY37wyQXJjk8ySsziTGLSV6c5F9aa0cXjQ6wX1prLcmn\nMlnnth3gsaXNYRZnwrwkyUOSnN17f9Pyg621q5JcnMkP4+fs5fg3JflOksesqPQXttben+Q3W2vv\n6L1fVTM6wD5teI2bfnLyzZmc+XJq733XdNfbW2sXZ/JppZ/N5JNKALMw9H3c7VprD0nyO0n+LcnD\nxh8V4IANXeNemOTxSZ7Te3/X9LG/bq3dmOTMJKdm8mEbgFkY8rPqcZm8b7smyWN779+d7nrHdI17\nRZLnJXld2fQAezENyVckuTrJI5N8/gCforQ5zOIT1c9OclOSC1Y9/oEk1yU5o7W2ZqlqrZ2apCV5\nzxqnSb4xk8J1xrjjAhyQDa9xSe6Z5H1J/mhFgFm2HF4eOtagABswZI273fSsvrcm+XImn8AEOBgM\nXePOzuQH/wtXPth7P7/3/oDeuwADzNKQNe4+mXyQ+zMrAsyyy6bb+400J8BGbE/yriSn9d77gRy4\nGc1hUyPM9NTEk5NcsXrRnl5X7TNJjk9y/3We4lHT7afW2Pfp6fbUEUYFOGBD17je+5d778/tvb95\njd3HTLffGnFkgP02wvu4lV6UyXu2FyZZ/YM8wKYbusa11u41Pf7S5WuGt9aO2J8wDVBthPdxX8rk\nPdtJa+y733T7H6MMC7ABvffre+9n9d6/s4HDy5vDZp8Jc9/p9rp19l873T5gnf33W+/43vv/Jfnm\nXo4FqDZ0jVvT9PrhZya5Ocn7NzYawGCjrHGttXsneXWSC3vvHxlpNoChhq5xJ0+3X2it/VZr7Zok\ntyS5pbX2/tbaD44yJcDGDFrjpldqWEjysNbaG1prD2ytndBa+/kkr0pyZZK/GXNggE10v+m2rDls\ndoS5+3R78zr7b1r1fRs5fr1jAaoNXeO+x4pL9vxQkvne+9c2Ph7AIGOtcW9OsjvJS8cYCmAkQ9e4\n46bb5yR5QSax+RczueTiEzO56fWJI8wJsBGD38f13l+dyY2qn5/kf5Jcn+RDmdzf7/QNfvoc4GBQ\n3hzmhhwMQJ3W2pFJ3p3kSUn+vPf+pzMeCWCQ1tozkjwhyZm99xtmPQ/AiLZPt/dI8sO996Xp1x9s\nrV2fSZR5aZKXzWI4gKFaa2cleX2SS5P8bZIbMrk8z8uTXNJa+7ne+zdnOCLAQWuzI8zyvQzuts7+\no1Z930aOd78EYFaGrnG3a60dn+SDSU5LstB7/73h4wEMMmiNa60dl+R1ST7We3/HyLMBDDX0fdy3\np9sPrggwyy7IJMLs3PB0AMMMfR/XMgkwH+m9P2HFrn9qrV2VyWWzX5lJkAHYasqbw2ZHmC8l2ZPk\nXuvsX75G5dXr7P/idPs9x7fWjsnkxtVXDBkQYICha1ySpLV2jySXZ3JTxOf13t851oAAAwxd4/4k\nyfcnOW96A+tlx063x08fv2H1DWMBNsHQNe6a6fawNfbdOH3uozc6HMBAQ9e40zP5HeL71tj34elz\nP27IgAAzVN4cNvWeML33m5J8LsnDW2tHrNzXWjssyaOTfKX3fu1axyf55HT7E2vse8x0+/ExZgU4\nUCOscWmtHZ3kH5PcJ8kvCDDAwWKENe7xmVyu56NJvrLiz/KlFt8z/frHx58eYO9GWOP+M8muJD+6\nxr57J9mW9W+IDVBqhDVu+dPhR6yx7y6ZrHFr7QPYCsqbw6ZGmKkLktw1k5sVrnRGkhOSvG35gdba\nya21+y9/3Xu/MpPq9NSVn6BsrW1L8ttJbk3yV3WjA+zThte4qddl8sP7M3vvH64cFGADhqxxZ2Zy\nc+rVf1473f/K6df/XjI5wL4N+Vl1dyb38ntEa+2Jq45/0XT7odEnBth/Q97HLf+C8unT38Gt9NRV\n3wNwUJtFc9jsy5ElyV8keVaS17TW7pvks0kenOScTH7ofs2K7/2vJD3JySse+41MPkF5WWvttUm+\nmeQZmZwaOd97/0L5fwHA+ja8xrXWHprkOZl8kvKw1tpT1nj+G3rvH6sbH2CvNrzG9d7/ea0nbK39\nwPSvn+q9L9aMDbBfhv6sem6Sn0lyUWvtjzO5RNnpSX4lyZXT5weYlSHv4z7ZWrsok+Dy8dbae5Lc\nkOTHkpyd5PpM7n0FMBOttVOSnLLq4eNX/W7tkt77zZlBc9j0M2F677cm+ekkb0jy5CTvzOSXjm9L\nsnP6D7G34z+d5LFJPp/kD5K8Jck9k5zZez+/bnKAfRu4xj08k9O4T0ly0Tp/fr9qdoB9Gfo+DuBg\nNsLPqjckOS2TT0r+epK/TPJTmVx2cWfv/Zay4QH2YYT3cc9M8uJMLj/26unxv5Tk7UkesbfLbgNs\ngqfljr8/S77392snrHdwdXPYtmfPnqHPAQAAAAAAwCqzuCcMAAAAAADAIU+EAQAAAAAAKCDCAAAA\nAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQ\nQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYA\nAAAAAKCACAMAAAAAAFDg/wH6risW4PuB+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 816, + "height": 357 + } + } + } + ] + }, + { + "metadata": { + "id": "tqDMt8xyIAzd", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "With regards to the above plot, we are still pretty uncertain about what the true frequency of cheaters might be, but we have narrowed it down to a range between 0.1 to 0.4 (marked by the solid lines). This is pretty good, as *a priori* we had no idea how many students might have cheated (hence the uniform distribution for our prior). On the other hand, it is also pretty bad since there is a .3 length window the true value most likely lives in. Have we even gained anything, or are we still too uncertain about the true frequency? \n", + "\n", + "I would argue, yes, we have discovered something. It is implausible, according to our posterior, that there are *no cheaters*, i.e. the posterior assigns low probability to $p=0$. Since we started with an uniform prior, treating all values of $p$ as equally plausible, but the data ruled out $p=0$ as a possibility, we can be confident that there were cheaters. \n", + "\n", + "This kind of algorithm can be used to gather private information from users and be *reasonably* confident that the data, though noisy, is truthful. \n", + "\n" + ] + }, + { + "metadata": { + "id": "Y0bK5tMAIAze", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Alternative TFP Model\n", + "\n", + "Given a value for $p$ (which from our god-like position we know), we can find the probability the student will answer yes: \n", + "$$\n", + "\\begin{align}\n", + "P(\\text{\"Yes\"}) &= P( \\text{Heads on first coin} )P( \\text{cheater} ) + P( \\text{Tails on first coin} )P( \\text{Heads on second coin} ) \\\\\n", + "&= \\frac{1}{2}p + \\frac{1}{2}\\frac{1}{2}\\\\\n", + "&= \\frac{p}{2} + \\frac{1}{4}\n", + "\\end{align}\n", + "$$\n", + "Thus, knowing $p$ we know the probability a student will respond \"Yes\". In TFP, we can create a deterministic function to evaluate the probability of responding \"Yes\", given $p$:" + ] + }, + { + "metadata": { + "id": "wBps82qhIAzf", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "reset_sess()\n", + "\n", + "p_new = tfd.Uniform(name=\"new_freq_cheating\", \n", + " low=0., \n", + " high=1.)\n", + "p_new_skewed = tfd.Deterministic(name=\"p_skewed\", \n", + " loc=(0.5 * p_new.sample(seed=0.5) + 0.25)).sample(seed=0.5)" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "m_kgk64TIAzh", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "I could have typed `p_skewed = 0.5 * p + 0.25` instead for a one-liner, as the elementary operations of addition and scalar multiplication will implicitly create a deterministic variable, but I wanted to make the determinism explicit for clarity's sake. \n", + "\n", + "If we know the probability of respondents saying \"Yes\", which is `p_skewed`, and we have $N=100$ students, the number of \"Yes\" responses is a binomial random variable with parameters `N` and `p_skewed`.\n", + "\n", + "This is where we include our observed 35 \"Yes\" responses out of a total of 100 which are passed to the `joint_log_prob`." + ] + }, + { + "metadata": { + "id": "GJ2jFKI7ofa9", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "N = 100.\n", + "total_yes = 35.\n", + "\n", + "def alt_joint_log_prob(yes_responses, N, prob_cheating):\n", + " \"\"\"\n", + " Alternative joint log probability optimization function.\n", + " \n", + " Args:\n", + " yes_responses: Integer for total number of affirmative responses\n", + " N: Integer for number of total observation\n", + " prob_cheating: Test probability of a student actually cheating\n", + " Returns: \n", + " Joint log probability optimization function.\n", + " \"\"\"\n", + " tfd = tfp.distributions\n", + " \n", + " rv_prob = tfd.Uniform(name=\"rv_new_freq_cheating\", low=0., high=1.)\n", + " prob_skewed = 0.5 * prob_cheating + 0.25\n", + " rv_yes_responses = tfd.Binomial(name=\"rv_yes_responses\",\n", + " total_count=tf.to_float(N), \n", + " probs=prob_skewed)\n", + "\n", + " return (\n", + " rv_prob.log_prob(prob_cheating)\n", + " + tf.reduce_sum(rv_yes_responses.log_prob(tf.to_float(yes_responses)))\n", + " )" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "0clIAcyHIAzj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "\n", + "Below we add all the variables of interest to our HMC component-defining cell and run our black-box algorithm over the model. " + ] + }, + { + "metadata": { + "id": "C5QLZ17e5u6t", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "number_of_steps = 25000\n", + "burnin = 2500\n", + "\n", + "# Set the chain's start state.\n", + "initial_chain_state = [\n", + " 0.2 * tf.ones([], dtype=tf.float32, name=\"init_skewed_p\")\n", + "]\n", + "\n", + "# Since HMC operates over unconstrained space, we need to transform the\n", + "# samples so they live in real-space.\n", + "unconstraining_bijectors = [\n", + " tfp.bijectors.Sigmoid(), # Maps [0,1] to R.\n", + "]\n", + "\n", + "# Define a closure over our joint_log_prob.\n", + "# unnormalized_posterior_log_prob = lambda *args: alt_joint_log_prob(headsflips, total_yes, N, *args)\n", + "unnormalized_posterior_log_prob = lambda *args: alt_joint_log_prob(total_yes, N, *args)\n", + "\n", + "# Initialize the step_size. (It will be automatically adapted.)\n", + "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", + " step_size = tf.get_variable(\n", + " name='skewed_step_size',\n", + " initializer=tf.constant(0.5, dtype=tf.float32),\n", + " trainable=False,\n", + " use_resource=True\n", + " ) \n", + "\n", + "# Defining the HMC\n", + "hmc=tfp.mcmc.TransformedTransitionKernel(\n", + " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", + " target_log_prob_fn=unnormalized_posterior_log_prob,\n", + " num_leapfrog_steps=2,\n", + " step_size=step_size,\n", + " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", + " state_gradients_are_stopped=True),\n", + " bijector=unconstraining_bijectors)\n", + "\n", + "# Sample from the chain.\n", + "[\n", + " posterior_skewed_p\n", + "], kernel_results = tfp.mcmc.sample_chain(\n", + " num_results=number_of_steps,\n", + " num_burnin_steps=burnin,\n", + " current_state=initial_chain_state,\n", + " kernel=hmc)\n", + "\n", + "# Initialize any created variables.\n", + "# This prevents a FailedPreconditionError\n", + "init_g = tf.global_variables_initializer()\n", + "init_l = tf.local_variables_initializer()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "eJYLS8EysHqj", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Execute the TF graph to sample from the posterior" + ] + }, + { + "metadata": { + "id": "ALvEN1yQkTIx", + "colab_type": "code", + "outputId": "2bedf661-d0d3-45d2-fbba-c1ca8c85bb6b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "# This cell may take 5 minutes in Graph Mode\n", + "evaluate(init_g)\n", + "evaluate(init_l)\n", + "[\n", + " posterior_skewed_p_,\n", + " kernel_results_\n", + "] = evaluate([\n", + " posterior_skewed_p,\n", + " kernel_results\n", + "])\n", + "\n", + " \n", + "print(\"acceptance rate: {}\".format(\n", + " kernel_results_.inner_results.is_accepted.mean()))\n", + "# print(\"final step size: {}\".format(\n", + "# kernel_results_.inner_results.extra.step_size_assign[-100:].mean()))\n", + "\n", + "# print(\"p_skewed trace: \", posterior_skewed_p_)\n", + "# print(\"p_skewed burned trace: \", posterior_skewed_p_[burnin:])\n", + "freq_cheating_samples_ = posterior_skewed_p_[burnin:]\n" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "acceptance rate: 0.6052\n" + ], + "name": "stdout" + } + ] + }, + { + "metadata": { + "id": "Ye0uC_c-xrWf", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Now we can plot our results" + ] + }, + { + "metadata": { + "id": "_P5Z_uySgi-S", + "colab_type": "code", + "outputId": "0b085693-c710-449f-c25a-730abbde9a92", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 374 + } + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 6))\n", + "p_trace_ = freq_cheating_samples_\n", + "plt.hist(p_trace_, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30, \n", + " label=\"posterior distribution\", color=TFColor[3])\n", + "plt.vlines([.1, .40], [0, 0], [5, 5], alpha=0.2)\n", + "plt.xlim(0, 1)\n", + "plt.legend();" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmEAAALKCAYAAADK9/XkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuY1mWB//HPwIjCjkJqnnVBZb8r\nnrGmENYFrX7apnjIXL08bJqnrMy2PGTmKlqX1lau24KlkqRp5iF/kZmkjuvZ1DVb7XoaTEjFfiqr\nKKIOIL8/YGYZGRCd52aY4fW6Lq6B53Df9/N9uJ7h4j3399uwaNGiAAAAAAAAUF/9enoBAAAAAAAA\nfZEIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAI\nAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUEBjTy+gK3PmzFnU02sAAAAAAAD6tsGDBzeUHN9OGAAA\nAAAAgAJEGAAAAAAAgAJEGAAAAAAAgAJEGAAAAAAAgAJEGAAAAAAAgAJEGIAe0tramtbW1p5eBkAR\nPuOAvsxnHNCX+YwDqC8RBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAA\noAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAAR\nBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAACAXmn8+PEZP358Ty8jDz/8cJqbm/ODH/yg\n47YTTjghzc3Nq2T+tx+HqVOnprm5OVOnTl0l859zzjlpbm7OrFmzVsl8vUljTy8AAAAAAKAnTGiZ\n3dNLWKGzxm7Q00uoi7vuuisLFy7M2LFj6z72aaedVvcx6+W4447LSy+99J6e++ijj+aZZ57JJz7x\niZV6/Ko8Dl2t7eCDD86YMWOy/vrrr7J19BYiDAAAAAAAxVx55ZXZbLPNikSY3Xffve5j1svIkSPf\n83N//vOf5y9/+ctKR5hVeRy6WtuIESMyYsSIVbaG3sTpyAAAAAAAKOKtt95KrVbr6WX0On/4wx96\negnLtTqvbXUkwgAAAAAA9FHt1+r44x//mEmTJmW//fbL6NGjc8ABB+Sqq67KokWLOj3+lVdeyfe+\n970ccMABGT16dMaNG5cTTjghd9555zJjt7S05MQTT8zee++dMWPGZL/99sv555+fv/zlL0kWX5fk\nwx/+cObNm5df/vKXy1wzZdasWTn33HPz8Y9/PLvvvnv23nvvfO1rX8uMGTO6fA3Tp0/PySefnD32\n2CN33313kq6vCfPmm2/m0ksvzSGHHJK/+7u/y9ixY/PpT386N910U6fHtV/H5bLLLsuPf/zj7L33\n3jn99NNXeDwXLlyYH/zgBx3H8cADD8yVV165zHFMur4mzCOPPJJTTjkl//AP/5AxY8bkE5/4RM48\n88w8+eSTndb01FNP5ZFHHklzc3POOeec93Qc2v3iF7/IP/7jP2bMmDHZe++9c8EFF+S1117ruH9F\n14/5whe+0HGtl5VZ29uvCXPLLbfkmGOOydixYzNmzJgcfPDBmThxYl5//fVOj2tubs5JJ52U559/\nPmeccUY++tGPZvTo0TnyyCNz//33r/A9Wd05HRkAAAAAQB938cUXZ/78+TnyyCOz1lpr5YYbbshF\nF12URYsW5fDDD0+SvPHGGzn++OPz1FNPZfz48dl+++0zd+7cTJ06NV/5ylfy1a9+Nfvvv3+SZNq0\naTnzzDOzww475DOf+Uyampoyc+bMXHPNNbn//vvz05/+NLvttltOPfXUXHjhhdltt93yyU9+MsOG\nDUuSPPvss/n0pz+d/v3758ADD8zmm2+eZ555Jj/72c9yzz335NJLL80222zT6TX8x3/8RzbccMOc\neeaZ2Xrrrbt8nW+99Vb++Z//OQ8++GA+9rGP5dBDD01bW1tuu+22nH/++Zk1a1ZOPPHETs95/PHH\nM2vWrHzuc5/LxhtvvMLj+G//9m+5+uqrM3LkyBx55JGZP39+pk2blvvuu+8d34PHHnssJ510Urba\naqscccQRGTJkSJ577rn87Gc/y3HHHZerrroqW2+9db75zW/mjDPOyLBhw3Lcccdl0003fdfHod1t\nt93Wcf2WwYMH55577sn111+fF154Id/+9rffcc1LW5m1Le2yyy7LJZdckh122CHHH398Bg0alEcf\nfTSTJ0/Oo48+mokTJ6Zfv//dJ/L666/nxBNPzK677pqTTz45s2bNylVXXZVTTz01N9xwQzbccMN3\ntd7VhQgDAAAAANDHvfjii/nxj3+cxsbF/yW81157Zfz48bniiity2GGHpV+/fvnpT3+aJ598Mp/9\n7GfzT//0Tx3P3W+//XLwwQfn4osvzj777JO11147v/71r5Mk3/nOdzJkyJCOx+6000655pprMnPm\nzGy33XYd1yrZZJNNstdee3U87qKLLsr8+fNz+eWXZ4sttui4fezYsTnqqKMyceLEZSLB/Pnzc9ZZ\nZ63wdd5222158MEHc8ABB+SMM87ouP3AAw/MUUcdlSlTpuSggw7KRhtt1HHffffdlxtuuGGFQSFJ\nXn755Vx77bXZYostcvHFF2ettdZKkhx00EE54ogjVvjcZHG4WrhwYc4+++xO108ZM2ZMLrroojz1\n1FMZNWpUx3F63/ve1+mYvZvj0O73v/99rrvuuo73aPz48Tn++OPzn//5n3nyySeXCV0rsvR6lre2\nds8//3xHSLvkkks6jtX48eMzcODAXHfddbntttvy0Y9+tOM5//3f/53Pf/7znY5l//79c8kll+Te\ne+/Nfvvtt9JrXZ10+3RkVVX9qKqqRSv49cV6LBQAAAAAgPdm33337QgwSdLU1JQPfvCDmTNnTv70\npz8lSe688840NDTkgAMO6PTcpqam7Lnnnnn11Vfzu9/9Lsni/xxPkkcffbTTY0eNGpWLLroo2223\n3XLX8sYbb+Tuu+/OzjvvnMGDB+fVV1/t+LXppptm6623zsMPP7zM8/bcc893fJ0tLS1JFkeXpTU2\nNubjH/94Fi5cuMyulREjRrxjgEmS//qv/8rChQszbty4jqiQJAMGDOh0kfrlaT9m7cew3fDhw/Pv\n//7vGTVq1DuOkazccWg3bty4TpGsoaGhI550dYzr5a677srChQuz7777djpWyeK/i0k6TqXWrn//\n/jnkkEM63dYeq1588cViay2tnjthPpvkhS5uf7SL2wAAAAAAWEW6Om1V++mdnnvuuWy77baZMWNG\nNtxwwwwePHiZx/71X/91kuTPf/5zmpubc/jhh+e+++7Laaedlp122imjRo1Kc3Nztt9++zQ0NKxw\nLX/+85+zYMGC3HvvvSvcTTF37tw0NTV1/HmzzTZ7x9fZfj2Zrl7vVltt1TH/0lZm3CQd1zvZcsst\nl7lv6NCh7/j8gw46KL/61a/y3e9+NzfffHN23333NDc3Z+edd+4UyN7Jyq43SZc7XTbffPMk6bh2\nTwkzZ85c7vxL/11a2kYbbZQBAwZ0uq39zwsWLCixzFWinhHmV7VabUYdxwMAAAAAoA4GDRq0zG1/\n9Vd/lWTx6a2SxdfkeN/73tfl89dee+0ki3exJMmOO+6YKVOm5Morr8ydd96Z3/3ud5k0aVI222yz\nnHzyyRk3btxy1zJv3rwkyYc//OEcddRRy33c2/9DvqvX8Havv/56Ghsbl9l90dVreDfjLv28ddZZ\nZ7ljr8iWW26ZKVOm5Kqrrsrtt9+eyZMnZ/LkyVl//fVz7LHH5qCDDlqpdazsepf32Pa1vvnmmys9\nzrvV/h4PHDhwufO//vrrnW5/+/vdV7gmDAAAAABAH/f28JAs3mmSpON0VQMHDlzmP8bf/vyl/1N/\n6NCh+drXvpavfvWr+cMf/pCWlpZcd911Of300zNp0qTsuuuuXY7VPka/fv2y2267vfcX1YWBAwdm\nwYIFmT9//jIhpqvX8G60x4O2trZl7lvecXu7jTfeOF/60pfypS99Ka2trbnrrrty7bXX5oILLsig\nQYOyzz77vKe1LU9X73v7bSsTjt5rqGk/xu0xZmntx+q9vg+9TbevCfN2VVWtU1WVuAMAAAAAsJp4\n6qmnlrmt/fRa7aclGzZsWF588cW8/PLLyzy2/boxXZ12q1+/ftl+++1z0kkn5ZxzzsmiRYtyxx13\nLHctW221VRobG/PEE090eZqpl156aaVeU1eGDRuWJJk+ffoy97Ufg5U5dVhXNtlkkyTJs88+u8x9\nTz755Lseb/jw4Tn66KNz8cUXJ0luv/3297SuFWk/PdvSnnnmmST/e1qy9lOhdRWXnn766fc0b/v7\n0NVxaX8f2h/T19UzlpxUVdUnkwxN8lZVVb9Ncm6tVru5XhO0trbWayiA1YbPNqAv8xkH9GU+44C+\nbE35jGtra3rnB/WgerwPr7zySpLkxhtvzC677JJ+/Rb/XP7cuXPz0EMPZciQIXnjjTfS2tqanXfe\nOb///e/zwx/+MPvvv3/HGK+++mqmTZuWIUOGZNCgQXn88cdz3nnnZbPNNssJJ5zQab72gPLaa6+l\ntbU1s2fPTpLMnj270+vZZZdd8tBDD+Xyyy/vdOqy559/PqeffnrGjBmTo48+utNrePrpp5c5FVj7\nqdTaxx4xYkRuvfXWTJ48Occee2ynx914441Za621summm6a1tbUjRsyZM2eljvXgwYPT0NCQadOm\nZdy4cenfv3+SxfHipptuSpL8z//8T8dY7Ts+2v/8rW99KwsWLMhpp53W8T4kyQsvLL7U+ptvvtnx\n2IaGhmXW9W6OQ/v1Xm699dZ87GMf6zj13KJFizJ16tQkyfvf//60trZ27Iy5//77s+OOO3aM+cAD\nD+TFF19MsjjmvPbaa++4tvbHbbHFFmlsbMx1112XkSNHdrrmzRVXXJEkqaqq0xhtbW3LvA/t79HS\nx/W9Gj58eLee/17VM8L8nyTfSPJskp2SfCXJ1KqqDqvVatfUcR6ou5kzZ3ZsjRs0aFDHxaEAgHfP\n91UAAFj9DBw4MN/4xjfS3NyctdZaK9OmTcubb76ZQw89NA0NDUmSj3zkI7n77rtz/fXX56WXXso2\n22yTV199NS0tLZk3b16+8IUvpH///unfv3+GDRuW3/zmN3nttdey6667Zp111skLL7yQ3/zmN1l7\n7bWzxx57JFkcLgYMGJDHHnssN910UzbZZJN86EMfymGHHZZarZbJkydn1qxZGTp0aF544YVMmzYt\nDQ0N2XPPPd/T6/zABz6QXXbZJS0tLZk/f35GjBiRN954I/fee29mzZqVI444Iuuuu+57GnvIkCH5\n+7//+7S0tOTCCy9Mc3Nz2tract9992XjjTfOc889t8Lnb7fddrn66qtz/vnn50Mf+lCampoyZ86c\n3H777enfv3/22muvjsdutNFGmTFjRq6//vpssMEGGTt27Hta89ChQ3POOedkjz32yKBBg/Lwww+n\ntbU1o0aNyqabbppkcZxYb731ctddd2XdddfN5ptvnqeffjr33HNPdtpppzz22GOdxlyZtQ0ZMiQH\nH3xwrr766px33nnZfffd09jYmMcffzz3339/PvjBDy73dHV9TT0izL8muTpJS61Waz9B3M1VVf3f\nJI8m+deqqq6t1WpvdXeinipV9H0NDQ0d58BsamrKtttu28MrYk3QXu99tgF9TUNDQ5544okki//B\n7/sq0Nf4dxzQl61pn3EDnp3d00tYoXq8D+utt16S5Itf/GJ++9vf5he/+EVefPHFbLLJJvnyl7+c\nT33qU50ef/nll+fSSy/NHXfckZaWlgwcODA77LBDvv71r2fkyJEdjzv//POz88475+abb861116b\nefPmZf31188HPvCBHH300dl66607HnvKKadk0qRJuemmm3LAAQdk+PDhGT58eKZMmZJLL700Dzzw\nQH79619n3XXXzciRI3PMMcd0eu3tr2HLLbdc5pi0X/dl6du///3vZ8qUKbnlllvy4IMPZsCAAfmb\nv/mbXHjhhZ2CQfvujcGDB6/0sT7vvPMyadKk3HrrrZkyZUo23njj7L///hk9enQOO+ywrL/++h1j\ntV+Uvv3Pp5xySrbbbrvccMMN+fnPf565c+dmvfXWy4477phzzz03O+20U8c8X/7yl3PBBRdk6tSp\nGT16dI499th3dRxqtVqS5PDDD8+cOXPyk5/8JM8++2yamppyyCGH5KSTTuq0m2bixIm56KKLcued\nd2bhwoXZcccdM3HixFx99dV57LHHMnTo0Gy22WbvuLalH3fKKadk++23zzXXXJNrr702b731Vrbc\ncst8/vOfz6GHHtppd0ySDBgwYJnX1f4eLX1ce5uGRYsWFRu8qqpbk3w0yQ61Wu3xlX3enDlzyi0K\nujB9+nQRhlVuTfuHLbDmmD59ekeEGTFihO+rQJ/j33FAX+Yzru8555xz8stf/jKXXXZZp1NNAYsN\nHjy4oeT4/d75Id3y/5Z8Xa/wPAAAAAAAAKuVbp2OrKqq9ZLsm2R2rVa7pauHLPn6dHfmAQAAAAAA\n6G26uxOmLcn3k/yoqqoNl76jqqqPJPlgkgdrtdoz3ZwHAAAAAACgV+nWTpharfZGVVUnJ/lRkger\nqpqU5C9Jdk1yYpI5SY7v7iIBAAAAAHj3zj777Jx99tk9vQxYY3X7mjC1Wu2KJHsmmZ7kq0kuS/LJ\nJFclGVmr1R7t7hwAAAAAAAC9Tbd2wrSr1Wp3JLmjHmMBAAAAAAD0Bd3eCQMAAAAAAMCyRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACGnt6\nAQCsnAkts1f5nGeN3WCVzwkAAAAAfYWdMAAAAAAAAAWIMAAAAAAAAAWIMAAAAAAAAAWIMAAAAAAA\nAAWIMAAAAAAAAAWIMAAAAAAAAAU09vQCAHqbCS2z6zJOW1tTkmTAs/UZDwAAAABYvdgJAwAAAAAA\nUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAI\nAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUECRCFNV1blVVS2qqupHJcYHAAAAAABY\n3dU9wlRVtX2S0+o9LgAAAAAAQG9S1whTVVW/JD9M8ng9xwUAAAAAAOhtGus83olJRiXZK8ltdR4b\ngFVsQsvsHpn3rLEb9Mi8AAAAAFBPddsJU1XVFkm+meTKWq12e73GBQAAAAAA6I3qeTqy7yeZn+RL\ndRwTAAAAAACgV6rL6ciqqvpkkv2SHFOr1V6ox5hdaW1tLTU0a7iZM2dm3rx5SZJBgwZl0aJFPbwi\nVmdtbU11Hq+truP1BT7voXebOXNmx+9nzJjh+yrQZ/k3C9CX+YwD+prhw4f3yLzd3glTVdWQJBcn\nuTPJ5G6vCAAAAAAAoA+ox06YbyVZP8kJtVqt6I859lSpou9raGjI3LlzkyRNTU3Zdttte3hFrM4G\nPFufi9W374AZMGBAXcbrS3zeQ+/W0NCQJ554IkkydOhQ31eBPqf9p8P9mwXoi3zGAdRXtyJMVVV7\nJDkmyUVJ5lZVtcXbHjJoyW2v1Wq1l7ozFwAAAAAAQG/S3dOR7ZmkIckXkzz9tl9JcvCS33+3m/MA\nAAAAAAD0Kt09HdlPkjy0nPt+keS2JN/L/0YZAAAAAACANUK3IkytVvtjkj92dV9VVUnyTK1Wm9qd\nOQAAAAAAAHqj7p6ODAAAAAAAgC5093Rky1Wr1RpKjQ0AAAAAALC6sxMGAAAAAACgABEGAAAAAACg\nABEGAAAAAACgABEGAAAAAACggMaeXgDQd0xomb3K5zxr7AarfE4AAAAAgJVhJwwAAAAAAEABdsIA\nvVpP7L4BAAAAAFgZdsIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU\nIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU0NjT\nCwCAt5vQMnuVz3nW2A1W+ZwAAAAA9G12wgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAA\nABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQg\nwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAA\nAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAA\nABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQg\nwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAA\nAAAAABTQ2NMLAOpvQsvsnl4CAAAAAMAaz04YAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACA\nAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAhp7egEAsDqY0DK7R+Y9a+wG\nPTIvAAAAAOXZCQMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFBAY08vAPq6CS2ze3oJAAAAAAD0ADthAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBh\nAAAAAAAAChBhAAAAAAAACmisxyBVVe2Y5NQkY5JsluSVJPcm+UatVnugHnMAAAAAAAD0Jt3eCVNV\n1agk9yfZM8kPk3xmyddxSe6qqmr37s4BAAAAAADQ29RjJ8ykJA1JRtdqtRntN1ZV9WCSG5OclmR8\nHeYBAAAAAADoNboVYaqq6pfkiiSvLh1glpi25OtW3ZkDAAAAAACgN+pWhKnVam8l+c5y7v7bJV8f\n684cAAAAAAAAvVE9TkfWoaqqIUmakoxJ8u0kTyX5l3rOAQAAAAAA0BvUNcIkeWnJ10VJJic5tVar\nza7X4K2trfUaCjqZOXNm5s2blyQZNGhQFi1aVLex29qa6jYWfVNbW1tPL4Ee5HsbfdHMmTM7fj9j\nxoy6fl8FWJ34Pg70ZT7jgL5m+PDhPTJvvzqPNy7JJ5J8Pck+SR6qquoDdZ4DAAAAAABgtddQ6icT\nq6oamuSRJC8m+dsl149ZKXPmzPHjkqxS06dPz9y5c5MkTU1N2Xbbbes29oSWum0Go49p3wEzYMCA\nHl4JPemssRv09BKg7qZPn54nnngiSTJixIi6fl8FWB20/3R4T/00JUBJPuOANc3gwYMbSo5f750w\nHWq12owktyUZnmSbUvMAAAAAAACsjrp1TZiqqrZLcmuSabVa7eguHjKkHvMAAAAAAAD0Nt3dCdOa\nZJ0kB1dVNWzpO6qq2ibJ6CQvJPljN+cBAAAAAADoVbq1Q6VWqy2oqurzSa5K8kBVVd9P8qckw5J8\nLsnAJCfVarWF3V4pAAAAAABAL9Lt04TVarVrqqqameS0LA4vQ5K8kuS3Sb5Tq9Vu7e4cAAAAAAAA\nvU1drtVSq9XuS7J/PcYCAACg2zHHAAAbZElEQVQAAADoC7p7TRgAAAAAAAC6IMIAAAAAAAAUIMIA\nAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAA\nAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU\nIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIA\nAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAA\nAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU\nIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU0NjTCwCANdmEltmrfM6zxm6wyucE\nAAAAWBPZCQMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFBAY08vAFaV\nCS2zl3vf/zz7cua/PjdJstbABVn/meU/FgAAAAAAVoadMAAAAAAAAAWIMAAAAAAAAAWIMAAAAAAA\nAAWIMAAAAAAAAAU09vQCAIBVa0LL7B6Z96yxG/TIvAAAAAA9xU4YAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACA\nAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACA\nAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAhrrMUhVVe9P8vUkByTZOMnLSe5OMqFWqz1SjzkAAAAAAAB6k27vhKmqaqMkjyQ5JslP\nl3y9JMleSe6uqmrX7s4BAAAAAADQ29RjJ8x5SbZIclCtVruh/caqqn6b5OdJzkjyqTrMAwAAAAAA\n0GvU45ows5JcneTGt91+S5JFSXaqwxwAAAAAAAC9Srd3wtRqtX9Zzl3rJmlI8kp35wAAAAAAAOht\n6nE6suU5YcnXq+o1YGtra72GYg3U1ta03Pvmz2/L/AULlvyhLW1tbatoVRB/31hj+D6+5pg5c2bH\n72fMmJFFixb14GoAyvG9DejLfMYBfc3w4cN7ZN56nI5sGVVV7ZPk60keTjKxxBwAAAAAAACrs7rv\nhKmq6sgklyaZkWTfWq1Wtx/x7qlSRf1NaJm9yuccMGD596211oBkQVvH7wes6MFQJ+07YPx9Y03h\n+/iao6GhIU888USSZOjQodl22217eEUA9dX+0+G+twF9kc84gPqq606YqqrOSnJFkt8lGVOr1Z6r\n5/gAAAAAAAC9Rd12wlRV9b0kJyf5v0kOrdVq8+o1NgAAAAAAQG9Tl50wS3bAnJxkcpIDBRgAAAAA\nAGBN1+2dMFVVjUtyTpIbk3ymVqu91e1VAQAAAAAA9HL1OB3Zt5d8/U2SA6uq6uoxN9sdAwAAAAAA\nrEnqEWFGLvn6/RU8ZliSGXWYCwAAAAAAoFfodoSp1WoN9VgIAAAAAABAX9KvpxcAAAAAAADQF4kw\nAAAAAAAABYgwAAAAAAAABYgwAAAAAAAABTT29AIAgDXDhJbZq3zOs8ZusMrnBAAAAGhnJwwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIsz/b+/eYzS76zqOfzbdri2X1nZtoQmXBVp+tQjK\nRVpRcCmJlyCKcg8rl4pCLSgWJAQcW92iJhLlJohQQKqYUKFctCgJMrRchJDaoqn8rMC2FEhtl7RA\nF9iSjH88zzTDMLPdnXO+88xsX69kc3aeM+ecXzfNL+d53s85BwAAAAAAoIAIAwAAAAAAUECEAQAA\nAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACg\ngAgDAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwA\nAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAA\nAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBh\nAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAA\nAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCA\nCAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAA\nAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACmyd9QCYrd3z\ne2c9BAAAAAAAOCy5EgYAAAAAAKCACAMAAAAAAFDA7cgAgMPWLG67Obdz+7ofEwAAANiYXAkDAAAA\nAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEAB\nEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAA\nAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAA\nCogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACgwNZZDwAA4HCye37vTI47t3P7TI4L\nAAAArM6VMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAA\nKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACgwNax\ndtRa25bkgiQvTXJZ733nWPsGAAAAAADYbEaJMK21luRdSR6YZMsY+wQAAAAAANjMBt+OrLV2XJIr\nkhyR5BGDRwQAAAAAAHAYGOOZMNuSvDPJGb33PsL+AAAAAAAANr3BtyPrvd+Q5OwRxgIAAAAAAHDY\nGOWZMOvlmmuumfUQDjv7999t1kPYEG67bX9u+973pj/sz/79+2c7IO5U/P8GjGEjnSdde+21t/99\nz549WVhYmOFoAOpspLkXYGzmOOBwc8opp8zkuGPcjgwAAAAAAIBlNtWVMLMqVYezbV/ZO+shbAhH\nHrkt+d7+2/++bdu2GY+IO4PFK2D8/waMYSOdJ23ZsiVXX311kmTHjh05+eSTZzwigHEtfjt8I829\nAGMxxwGMa1NFmMPd7nlBBAAAAAAADhduRwYAAAAAAFBAhAEAAAAAACggwgAAAAAAABQY/EyY1tpp\nSU5b9vIJrbUnL/n50t77vqHHAgAAAAAA2CwGR5gkT01y3rLXTkty8ZKf75dkzwjHAgAAAAAA2BQG\nR5je+/lJzh88EgAAAAAAgMOIZ8IAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwA\nAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAA\nAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBh\nAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAA\nAAAoIMIAAAAAAAAU2DrrAWxEu+f3znoIAAAAAADAJudKGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAA\noIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACmyd9QAAABhu9/zedT/m3M7t635M\nAAAA2ExcCQMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAA\ngAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogw\nAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIAAAAA\nAAAUEGEAAAAAAAAKiDAAAAAAAAAFts56AAAAbE675/eu+PrXv3Jz9n3zLkmSj37z5hx//cq/t1Zz\nO7ePuj8AAACo4koYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQYOusB3AoVnv4KwAA\nAAAAwEbjShgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAA\nABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECE\nAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABbbOegAAAHAods/vXfdjzu3cvu7HBAAA\nYPNzJQwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqI\nMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUGDrrAcAAAAb3e75vTM5\n7tzO7TM5LgAAAONwJQwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFDAM2EAAGCDmsWzaDyHBgAAYDyu\nhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAA\nAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACA\nAiIMAAAAAABAAREGAAAAAACgwNYxdtJaOz7JeUmemOSkJDcluTTJXO/9a2McAwAAqLd7fu9Mjju3\nc/tMjgsAAFBp8JUwrbWjk8wnOTvJe5I8J8mbkzwtySdaa8cNPQYAAAAAAMBmM8aVMC9O8uAk5/Te\n37j4YmvtqiSXJJlLcu4IxwEAAAAAANg0xngmzLOS3JrkwmWvvz/J9Ul2tda2jHAcAAAAAACATWPL\nwsLCmjdurR2T5JYkl/feH7PC+vck+bUkD+i9f/Fg93vLLbesfVAAAAAAAAAH4dhjjy29iGTolTD3\nnS6vX2X9ddPl/QceBwAAAAAAYFMZGmHuPl3uW2X9rct+DwAAAAAA4E5hjGfCAAAAAAAAsMzQCPON\n6fKuq6y/27LfAwAAAAAAuFMYGmG+lGQhyb1WWb/4zJhrBh4HAAAAAABgU9mysLAwaAettSuTnJJk\ne+/9O0tePyLJV5N8t/d+n0EHAQAAAAAA2GTGeCbMhUnukuT5y17fleTEJG8d4RgAAAAAAACbyhhX\nwhyZ5PIkD0/y+iSfTfKgJOdmchuyM3rv+waOEwAAAAAAYFMZHGGSpLV2TJLzkzwpyUlJ/i/JJUnO\n671/ffABAAAAAAAANplRIgwAAAAAAADfb4xnwgAAAAAAALCMCAMAAAAAAFBAhAEAAAAAACggwgAA\nAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAJbZ3HQ1trxSc5L8sQkJyW5KcmlSeZ67187\niO0flWQuyRlJjk7yP0nekuQNvfeFqnEDHIwR5rifmW7/yCRHJflykvck2d17/1bVuAEOxtA5btm+\njkpyVZIHJnls731+3NECHJoRzuN+KMnLk+xKcu/p9v+c5JW995uqxg1wMEaY43YleUGSH0+yLcl1\nSf4pyQW9971V4wY4WK21bUkuSPLSJJf13ncewrZlzWHdr4RprR2dZD7J2Zl8qPicJG9O8rQkn2it\nHXcH25+Z5KNJTklyfpLfzOQf5HVJ/rJo2AAHZYQ57plJLs/kTft50/18LsnLkny4teYKRmBmhs5x\nK5jLJMAAzNwI53FbMwkuf5DJh5LPS/KPSX4jycemHwoAzMQIc9yfJLkoyZFJXpFJjJlP8qIk/95a\nO6Zo6AAHpbXWknwqk3luyyFuW9ocZnElzIuTPDjJOb33Ny6+2Fq7KsklmbwZP/cA278xyXeSPHpJ\npb+otfa+JL/TWnt77/2qmqED3KE1z3HTb06+KZMrX07vvd8yXfW21tolmXxb6Rcy+aYSwCwMPY+7\nXWvtwUl+P8l/JHno+EMFOGRD57gXJHlckmf33t85fe3vWms3JTkryemZfNkGYBaGvFc9PpPztj1J\nHtN7/+501dunc9zLkzw3yWvLRg9wANOQfEWSa5I8IsnnD3EXpc1hFt+oflaSW5NcuOz19ye5Psmu\n1tqKpaq1dnqSluTdK1wm+YZMCteucYcLcEjWPMcluWeS9yb50yUBZtFieHnIWAMFWIMhc9ztplf1\nvSXJtZl8AxNgIxg6x52TyRv/i5a+2Hu/oPd+/967AAPM0pA57j6ZfJH7M0sCzKLLpssdI40TYC22\nJXlnkjN67/1QNlyP5rCuEWZ6aeKpSa5YPmlP76v2mSQnJLnfKrt45HT5qRXWfXq6PH2EoQIcsqFz\nXO/92t77c3rvb1ph9bHT5TdGHDLAQRvhPG6pF2ZyzvaCJMvfyAOsu6FzXGvtXtPtP7x4z/DW2lEH\nE6YBqo1wHvelTM7ZTllh3Y7p8r9GGSzAGvTeb+i9n917/84aNi9vDut9Jcx9p8vrV1l/3XR5/1XW\n71ht+977N5PcfIBtAaoNneNWNL1/+FlJ9iV539qGBjDYKHNca+3eSV6V5KLe+0dGGhvAUEPnuFOn\nyy+01n63tbYnybeTfLu19r7W2smjjBJgbQbNcdM7NexO8tDW2utbaw9orZ3YWvulJK9McmWSvx9z\nwADraMd0WdYc1jvC3H263LfK+luX/d5atl9tW4BqQ+e4H7Dklj0/mmSu9/7VtQ8PYJCx5rg3Jdmf\n5CVjDApgJEPnuOOny2cneX4msflXMrnl4hMyeej1SSOME2AtBp/H9d5flcmDqp+X5H+T3JDkg5k8\n3+/MNX77HGAjKG8OW4dsDECd1trRSd6V5IlJ/qr3/hczHhLAIK21pyd5fJKzeu83zno8ACPaNl3e\nI8mP9d73Tn/+QGvthkyizEuSvHQWgwMYqrV2dpLXJflwkn9IcmMmt+d5WZJLW2u/2Hu/eYZDBNiw\n1jvCLD7L4K6rrL/bst9by/aelwDMytA57nattROSfCDJGUl2997/cPjwAAYZNMe11o5P8tokH+u9\nv33ksQEMNfQ87lvT5QeWBJhFF2YSYXaueXQAwww9j2uZBJiP9N4fv2TVv7bWrsrkttmvyCTIAGw2\n5c1hvSPMl5IsJLnXKusX71F5zSrrvzhd/sD2rbVjM3lw9RVDBggwwNA5LknSWrtHksszeSjic3vv\n7xhrgAADDJ3j/jzJDyc5f/oA60XHTZcnTF+/cfkDYwHWwdA5bs90ecQK626a7vuYtQ4OYKChc9yZ\nmXyG+N4V1n1ouu/HDhkgwAyVN4d1fSZM7/3WJJ9L8rDW2lFL17XWjkjyqCRf7r1ft9L2ST45Xf70\nCusePV1+fIyxAhyqEea4tNaOSfIvSe6T5JcFGGCjGGGOe1wmt+v5aJIvL/mzeKvFd09//qnxRw9w\nYCPMcVcnuSXJT6yw7t5JtmT1B2IDlBphjlv8dvhRK6z7oUzmuJXWAWwG5c1hXSPM1IVJ7pLJwwqX\n2pXkxCRvXXyhtXZqa+1+iz/33q/MpDo9Zek3KFtrW5L8XpLbkvxt3dAB7tCa57ip12by5v0ZvfcP\nVQ4UYA2GzHFnZfJw6uV/XjNd/4rpz/9ZMnKAOzbkver+TJ7l9/DW2hOWbf/C6fKDo48Y4OANOY9b\n/IDyadPP4JZ6yrLfAdjQZtEc1vt2ZEny10memeTVrbX7JvlskgclOTeTN92vXvK7/52kJzl1yWu/\nnck3KC9rrb0myc1Jnp7JpZFzvfcvlP8XAKxuzXNca+0hSZ6dyTcpj2itPXmF/d/Ye/9Y3fABDmjN\nc1zv/d9W2mFr7Uemf/1U732+ZtgAB2Xoe9Xzkvx8kotba3+WyS3Kzkzy60munO4fYFaGnMd9srV2\ncSbB5eOttXcnuTHJTyY5J8kNmTz7CmAmWmunJTlt2csnLPts7dLe+77MoDms+5Uwvffbkvxcktcn\neVKSd2TyoeNbk+yc/kMcaPtPJ3lMks8n+eMkb05yzyRn9d4vqBs5wB0bOMc9LJPLuE9LcvEqf/6o\nauwAd2ToeRzARjbCe9Ubk5yRyTclfyvJ3yT52Uxuu7iz9/7tssED3IERzuOekeRFmdx+7FXT7X81\nyduSPPxAt90GWAdPzfd/fpb84OdrJ662cXVz2LKwsDB0HwAAAAAAACwzi2fCAAAAAAAAHPZEGAAA\nAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAA\nCogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIA\nAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAF/h8Z7yrTZ7YKGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 816, + "height": 357 + } + } + } + ] + }, + { + "metadata": { + "id": "Lxt6fSRvIAzy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The remainder of this chapter examines some practical examples of TFP and TFP modeling:" + ] + }, + { + "metadata": { + "id": "KMoiodMmIAzy", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Example: Challenger Space Shuttle Disaster \n", + "\n", + "On January 28, 1986, the twenty-fifth flight of the U.S. space shuttle program ended in disaster when one of the rocket boosters of the Shuttle Challenger exploded shortly after lift-off, killing all seven crew members. The presidential commission on the accident concluded that it was caused by the failure of an O-ring in a field joint on the rocket booster, and that this failure was due to a faulty design that made the O-ring unacceptably sensitive to a number of factors including outside temperature. Of the previous 24 flights, data were available on failures of O-rings on 23, (one was lost at sea), and these data were discussed on the evening preceding the Challenger launch, but unfortunately only the data corresponding to the 7 flights on which there was a damage incident were considered important and these were thought to show no obvious trend. The data are shown below (see [1]):\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "metadata": { + "id": "tlPZvBWkg5g-", + "colab_type": "code", + "outputId": "c1d98c8c-e923-468b-85ff-c70e8628ee70", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 34 + } + }, + "cell_type": "code", + "source": [ + "reset_sess()\n", + "\n", + "import wget\n", + "url = 'https://raw.githubusercontent.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter2_MorePyMC/data/challenger_data.csv'\n", + "filename = wget.download(url)\n", + "filename" + ], + "execution_count": 2, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "'challenger_data.csv'" + ] + }, + "metadata": { + "tags": [] + }, + "execution_count": 2 + } + ] + }, + { + "metadata": { + "id": "BNOqG_9zIAzz", + "colab_type": "code", + "outputId": "639d0193-a43f-4c1e-b79f-2b1d0cf0853d", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 675 + } + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 3.5))\n", + "np.set_printoptions(precision=3, suppress=True)\n", + "challenger_data_ = np.genfromtxt(\"challenger_data.csv\", skip_header=1,\n", + " usecols=[1, 2], missing_values=\"NA\",\n", + " delimiter=\",\")\n", + "#drop the NA values\n", + "challenger_data_ = challenger_data_[~np.isnan(challenger_data_[:, 1])]\n", + "\n", + "#plot it, as a function of tempature (the first column)\n", + "print(\"Temp (F), O-Ring failure?\")\n", + "print(challenger_data_)\n", + "\n", + "plt.scatter(challenger_data_[:, 0], challenger_data_[:, 1], s=75, color=\"k\",\n", + " alpha=0.5)\n", + "plt.yticks([0, 1])\n", + "plt.ylabel(\"Damage Incident?\")\n", + "plt.xlabel(\"Outside temperature (Fahrenheit)\")\n", + "plt.title(\"Defects of the Space Shuttle O-Rings vs temperature\");\n" + ], + "execution_count": 3, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Temp (F), O-Ring failure?\n", + "[[66. 0.]\n", + " [70. 1.]\n", + " [69. 0.]\n", + " [68. 0.]\n", + " [67. 0.]\n", + " [72. 0.]\n", + " [73. 0.]\n", + " [70. 0.]\n", + " [57. 1.]\n", + " [63. 1.]\n", + " [70. 1.]\n", + " [78. 0.]\n", + " [67. 0.]\n", + " [53. 1.]\n", + " [67. 0.]\n", + " [75. 0.]\n", + " [70. 0.]\n", + " [81. 0.]\n", + " [76. 0.]\n", + " [79. 0.]\n", + " [75. 1.]\n", + " [76. 0.]\n", + " [58. 1.]]\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABnAAAAH0CAYAAAANA2NyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xm4ZEV9P+DPXBhkdQaMKBKBIFhG\n0IALq0YxLqjELW5RVFxRExUjxi3GJRjNDzQSjcZdFNdEjcYFMRFRcQA14hK1wBWDSFRkWIZlYO7v\njzrNNJe+d/re28P09H3f57lPT5+lqs7pU6d76nuqatn09HQAAAAAAAAYH1ObugAAAAAAAADckAAO\nAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAAAGDMCOAAAAAAAACMGQEcAAAAAACAMSOA\nAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAAAAAYMwI4AAAAAAAAY0YABwAAAAAAYMxs\nuakLAACwMZVSpgcsXpdkdZJfJjk7ySeSfKbWum7EeR+U5A1J9k+yRZIX11rfMMo8NlellBcneWaS\nXZOsSXLHWusFC0yr9xnfstb6mxEVcUFKKbskeXaS+ya5fZKbJ7k2yW+SfDfJx5K8r9a6dpMVckyU\nUu6S5OlJ7pFk9yTbJrkqrV5+PclJtdZTB+w3Np/3TKWUeyc5LcnPa6173ER5rkzy1CQPSLJPklsk\nuTrJr5J8JclHB53HeaT/pST3mmOTq5NcmORrSd5aa/3qHGk8udb63oWWBQAAlhoBHABgqfhIWoNm\n0oIpOya5c5Kjkjw5yQ9LKU+otX5jFJmVUpYl+VCSPZJ8P8mXk/xoFGnPowwfSnLwTdWQPKyukfu1\nSaaTfDrJ/6Y1Am9ov1VJrq613ntjlm+hSimHJ/nXJNsn+XmSU5P8NsnN0q61B3Z/Ty+l3L/Weumm\nKuumVkr5mySvTrIsyTlJPp7ksrSA1z2SPC7J40opb621PnsTlnNgHSqlbJvk0iTH1VpfuQmK1ivH\n45O8OcnKtKD0l9MCYFsnuUOSpyR5ainly0keW2u9cBHZnZFk0P3x1knukvaZ/Xkp5ZW11lfP2Obf\n0j7n7y8i/yWvlPLLJKfWWo/a1GWZROP+HQMALE0COADAUvHGWuuZMxeWUvZO8vdJHpnkK6WUB9Ra\nvzyC/HZOC94kyZ/UWn81x7Yby903QZ7DOLB7PbXW+pBhdiilbJlkvyRnbbRSLUIp5ffSgoTbJ/nr\nJCfUWqdnbHO3JJ9JO/5XJXn+TV3OcVBKuV+Sv0tyRZKH1Fq/OGP9siRPTPKuJM8qpXy+1vrJm76k\nSWavQ3dJCwRvMqWUZyf55yRrk7wwyT/VWq+Zsc3eSd6W5LAkZ5VS7l5rvWiBWX661vq6WcqyLMmT\nkrwzyatKKafXWk/vra+1vnmBedIppfx+kl02dTkm1bh/xwAAS5c5cACAJa3Wel6t9VFJTkx7av1j\npZSbjyDpbfryuMmDN6WUnZLc7qbOd0i9czOf83KntM9nXP1pWu+RH9daj58ZvEmSrnfX89KGVDuw\nlLJJAwCb0JHd64dnBm+SpNY6XWs9KS0YcEWS+9yUhevZQB3apMHRUso+Sf6xe/vntdYTZgZvknZ/\nS3J4ki8muW2S92yM8nSf2XuTfLhb9PSNkc8SN64B+Ukx7t8xAMASpQcOAEDzgrSGzpLWM+JV/StL\nKSvSGt8fkWTvbvH5ST6V5HW11t/1bfuztDk9eu97jfmv6g23VEq5WdpcKY9Jcscky9OGPjolyWtr\nrf87qJCllAd1+909bRi4C9PmVfn73nwgM+as2L0v/z+otf6slLJVkr/s8r5DWkDl/5J8L8k7aq0f\n28C5mlmmQ5Ick+TQJLdMm9Pmh2nDib2l1nplt9290+YH6XlSKeVJ/WWbJf2fZf35vFfveGqtywZs\ne48kL087P9sm+XF3TG8csO1U2hB6T0zyR932F6U1dv9DrfUHQxx+z87d64aCUh9N8vEBPSW+lPaZ\nPTTJL9Kuv0PSevT8IskH0z7jq2fs1+ut8oS0p8dXpJ3/7yc5KcnbB83tVErZMcmLkjwkrafYtUm+\nlXbcnx2w/dDX/xCGPVfPS/KsQcGwvnIN9Xn3XUOH1Vq/NCCdG6yfqw4l+Wnfrq8opbwiyekbGnZp\noXV+Fi9JslWSf9tQfa21XlNKeWqS85I8sOuF8/V55DUfZyR5fNrxXW/QHDillKPSAkqfSbvu/zqt\nF89uab2Kzkzy8lrr2TMzKaU8Ju2es2+S69KGdvu7JN9MG4rvBveHvrr+pLSG+h3S5qU6N8n7krx7\nruusS+M9XRrvqbU+ZZZtjkzy/rRA7l7dsj2TvDgtEPn7aXXtl0n+M61n6Llz5dul0V+23n3zBvMs\nlVJuneTYJA9Oq9Nrk/wk7T78ht59uG/7L6V9JoelzT11XJK7pvUs+16SV9Rav1BKuUVaL9Ujkvxe\n2v3orbXW18+S3rzuYd2++yf5q27/WyW5PMl3kryz1vqBOc7HrZK8LG34votrraVvmzunfa/fM8lt\nusW/SBva8rj+4QTn+o4ppeyRrs7P8p0zcH3f+XhUdw5e2ZXjdrXWX3TbjPI7CACYUHrgAAAkqbVe\nlzYcUdKGU7teNzH9N9IapG6R5BNJ/j3tad2/TvLtUsrufbu8Ozd80v3E7u/MLr3tk5ye5A1J9kry\n2bTht65Oa+D9XjfB+w2UUl6b1th5j7QGnvemzXvx/CTf7YbYSdp8E71G3cv68u/NufKJJK9Pa7D6\ndFpPh2+lNTb9WynllbOfqRuV6dlJvprWSPWztMbQ07rjOiHJ6d3xJm2umxOzfoiaHwwo2yDvTvKF\n7t8X9O0z03277damzT90RlpD8j+WUl44o9xbpJ2Hd6U1Wp6W5OQkv05r5D2nlPLADR1/n16j/oGl\nlINm26jWum5QT4k+d+vKfZskn+z+dknyt0n+o2vw6/eutOvgkLQJ69+R1jC8X5K3dutuoJSyV5Jv\npwVwLk8L9Jya5IAknyml/N2M7ed7/W9I71w9rpSy82wb1Vqv3kCj+tCf9wLMVYdOTLt2k3Ytn9ht\nP6uF1vlZ0lqe5OHd27cOs08XHD2le/vYYfZZoJXd62Xz3O+DaQ34Z6UFOS9Ocv8kX+wayK9XSjk2\nrafPQUnOTvvsb5Z23T88g705ra78UbfdO9Kul/3S7n/D9EzqBRIe2g23Nchjutf3d2W9fVpQ6end\nMZ3clfeyJM9KG9Zu/yHyHnTffHdvZSll37Q5hl6Q9n/8Dyf5fNr8RMclObML2g5yl7R6tCbtOv7f\nJAcn+XR3TX4p7Vz/R9q9/nZJTiilzNbLal73sFLK47pjO7LL+6S078oDk5xcSnlvF6ge5C/SAoaf\nTLsn9dK8X5KvpwVGfpP2vfThtDm3np3km6WUXfvSGfY7ZiH2T6unZ3f5XNWVcdTfQQDAhNIDBwBg\nvV7vkH1LKStrrZd079+T1uj6sSSP7z1B3D1R/7a0xpZ3J/mTJKm1vrprdHxy9/6YGfmckNY4dUaS\nI3r5dA1bx6U9Xf/BUsq+tdZru3X3S3uK+6Ikd5/xBO+70p7ifUeSB9Za31xK+V6SP0t7Kvn6/Lvg\nwoOS/CjJ/rXWy/vW7ZXW6PWSUsqbez16ZtMN49Rr5HpY/zwlXWPhV9J6RrwyybG11h8lOaYLEB2Y\n5OwB5+ZGuvN5VJL7JfnRHPuckOTB/cNylVL+Pu18PifJ8X3bvjCt98m5Se5Ta72gb59npjW4vb+U\nslffdTCXz6b1htolyZdLKR9Ma5T+yswn3zfgxUleVmu9vqyllDumNf7dLy24+NFu+R3SrrHpJPes\ntX6zb58/TGvQfUIp5cT+dWkNpLdNexr+ZX377JvWcPo3pZTP9M0ZNa/rfwjvTvLMtN4s/1NKeVda\nL4FzukDqsObzec/LXHUo7Rp+b5I/THJKr1fdEGWdV52fQ+9J/euSrBr+qHJaWi+Ke8xjn/nqXQPf\nm8c+90pSk+zdd162TTu2O6dd46/olt86radNkvxFrfUtvUS6evtPMxPvApDPTHJJkj/sH9KylHKr\ntM/kSaWUN9RavzNHOb+Y9XX8T9ICJP357JgWdEpaQ3zSglIr03qpvWTG9i9Iuy5entazbVa11lnv\nm9019JG03ihvSnJMr9dd13Puo125Tkjy1AHJvzJtGL5Pd/tslXbvPiAtsPsfSZ7SC6aWUl7fHddR\nad85M83nHvYHad9fWyR5bK31I337lC7/JyX5r3RBsRmekOSutdafz1h+XFoPtTfVWp/bl+bytM/t\nsK6cz0nm9R2zEM9MO7//PmP5qL+DAIAJpQcOAMB6v+j7987J9cOwPCCtp8LT+od/6f79l2lP5d+n\na1CfUzccTW/4nSf3N8x0jW4vSwuulLQeBj29Rqg39oI3ffu8Iu2p7K27hs+5/EH3+p3+4E2X1o+S\n/HHaU+mrN3QsaQ1TWyb59zpjkvluSK1ecOApczyxPkofHDCnSq+B8bZdwKHX4PmCbvlf9DecJUmt\n9V/SGmtvkSF7K3Tn8iFpT28vT2t0/HyS1aWUr5VS/qGUctgQ5+EnaQ2t/Wl/P+sbLx/dt2pNWoPs\ns2cEaNINvfOV7u09e8tLKXdN662zOusbwnv7fC/Jv6T1GLhzt/1Ir/9uv2+k1YGr04ZkelFaD5+L\nSymfK6W8uJRypyGSGurz3tQWUedn0+s58H/zDA7+pHv9/Tm3WqBSyl+mBTauS/L2eey6fVo97D8v\nvd4gSXctdh6a1vPrJ5nR+6irtzcabi1tOLFlSX5SZ8xHVmu9KC2gfee0hvRZdZ9Vb46fRw3Y5OFp\nQYOv1Vp/3C3r3W+/NmD7E9Pq5nPmyncIR6T1PPtZkr/qHzKx1ro6yTPSgrxHlsHzu321F7zp9rkm\nrUdL0oJPL5rRE67XM22fWcozn3vYc9I+zw/1B2+6fWqSv+ne/sUsef3XgOBN0uaHev6AcqzN+p5L\n95y500Zy8czgzcb4DgIAJpceOAAA663p+3dv2K/eBOqrBj0FW2u9vJRyetok9oelzf0yl3umNfCf\nV9sE4zPTmy6lfC6tYeuwJKd0w8fcu9vkKwP2OT8z5pyYQ+1eH9wNgfO+GY3y3x0ynaQFe5LW+2SQ\n/0prONwxba6d+TyVvxCnDFj2y75/75wWpLtzWuDgqtxwTp5+n0n77A9LC2psUK31G92QSU9P92R4\n2md9cPf310l+UUo5rtY6WwP3KbMMG/bVtIDZfn35nZ++YZQG6DUKruhbdlj3+vVa61UDjuHYGYtG\nff339ntvKeULaYHJx6QN53fztHmoDk/y2lLK15O8sNZ6+izJDPt5b2rzrvMbSK93b7pinuXoBWx3\nmOd+PUd0PWBm2i5tiK190+Z3eWat9dvzSPfqDA689D7L/uu3N8zc6bPUkw9kfS+Ynh935dq/lPLS\nJP/UH7yuQ8xB0+eDaYGBh5VSnjmjt9QNhk/rJd+V5zWllAtqrf/dl++1afV6sXp19AuDem/VWn/e\n9Sa7U9o8ZZ+bscmgc3/R+t3r/82yblAwKJnHPayv7LN9h3ymez2glLJdrXXmNT/w/l1r/fCg5Z1B\n98WNaVAZN8p3EAAwmQRwAADWW9n374u71z26191LKW/MYLt1r3vPsr5fL70d5kiv18DVS+8WWd9o\ne8GNNx9erfW/SymvSxs+5u1Jji9tsuUvJPn0LE8zz6b3dPlPB63sGvd/m9ZQtVs2fgDnRmWvtV7d\nRuJJ0obpSdZ/BuuSvL5vfb+9utdhPtP+/Nakmz+hlHLLtCDXPdOGidovbeiyt5VSSq31BQOS+PGA\nZcn6xuxd+hd2DerPTxv6Z9e0a2WLG+6a/vkj9uheh72OetuP6vq/XvfU+YuSvKgbvq93ru7TpXn3\nJP9ZSnl0rfUTA5IY9vPe1PboXudT5+fS6x03WwP6bHqBm4UOx3Ro9zfINWk9Yt46zyBwklwwS4N/\nbzi9/lEjer2P/neWtG6Ud631/0opz03yliSvSfKyUspX0ubC+Uydx0TxXZD23CS3T2tY/0KSdHX9\nPmnnob8nyau75XdKm3flvC7fU5N8fp49qGazR/e6/xzXV+/7Y+/cOIAz6Fz2zv2gYTR762abl2Y+\n97A9utdHlVIOmGW/tWkB0NslmTnE3czgUpLre7g8MW1+nNunBXO3nrHZbOUftUFl3KN7Hfl3EAAw\neQRwAADW6/ViuTptroNkfcPX7bu/uQzToNpL79ZJnjdkev0NT2uHyGNOtdaXlFJOS2v4v3fasEQP\nTfLmUsopaUNyDQzKzNAbrm2uRsheL49tFljc+Rh2/pTeZ7Bthv8M5q3W+uu04YY+liSllL2T/HNa\nsOWYUsp7BzR2z9ar4prudaveglLK7dLm77hV2nk+Pa3HSS+N+6fN09Kvdy0Nex2N+vofqBu+70fp\nehSVUu6TNhzankn+uZTy6W74o37zmS9nU1pInZ/Lz7rXW5ZSVnTDZA2j1xB8feCrG/ZsrwHbvrrW\nevGMZS+ptb6uf0FpE8H/IC049NkFBG+S+d3TeveR2e45lw1aWGt9aynlv5McmzYkYO/v+FLKqrRh\nrL41ZBk+kORVacOo9Sa+/7O0/1t/vBs+spfvb7p5x56VNqziPmmfw7OSXNYFXF5V5zf300y96+tu\n3d9cBl1fc825NCiwtiFD38OyvuwPGyLdQWW/fOaCrsfqh7N+mLvvpt0bf5d2PL+f9nndVG5UxtxE\n30EAwGQQwAEAWO/w7vVrfcOK9RpfPlRrfdwI8uilt6rWesiQ+/Q3iO2YRfbCSZJa66lJTi2lbJPW\nO+TBSf487Rx8uZTyhzPnyJmlXDfP+kDOIL11G0rrptQry4W11tvcVJnWWs8rpTwkrQH+Vmnzncxs\n8J75lHhPb7if/ifiT+jS+WaSB9Raf9u/QynlfblxAKd3Le04ZLFHff0Ppdb6xVLKnyX5VtoT+/t2\n/95Ylm/EtBdS5+fy/bReNCvTencM6p00yL261/4h6R7Zt7zfG7O+F+Ksaq0XlFL+Nm3OkX8ppdyx\n1nrpkOVZiN59ebb5jbafZXlqrWel9fRYnjYP1APTemgcnPX3vNl69vT7YFoA52GllGd1wZfePCXv\nn7lxdx89Pi1YtGtaYPVRaQGkl6fdQ48ZIt/Z9K6v19ZaX7qIdEZlPvewy7vlD+i+k0bhIWnnd22S\nB9dav9C/sgsOjzKAs5B7xyb5DgIANk9TG94EAGDydZM7P617+76+VT/qXnfLaMw7ve6J7t5T3bvO\nte181VqvrLWeUmt9Tto8Nd9Ne0J5mCeie5Oi7zloZSllRZKdurfD9Oi5qfQ+g1uVUraac8shlFKW\nl1IOLKUc3Q3dM6tu3pnePDGDGv5muy5u2b1e1Les1/D+2pnBm86gz6X3mQ17HY30+i+l3LyUct9S\nyiOH2Pw7Wd8DYLEBlt7E7jcaVq2UcrO03jEby0jPYTdJ/Qe7t88dZp9Syu5pgYPpJCf3pXXvWuuy\nAX8/m0eR3pQWXNs1yT/MY7+F6A1HNdvnte+GEqi1rq21nl5rfXGSkjZX1/ZJjhqmAF1vsbPT6uS9\nSim7pA3999vMPpdLb98Laq3vqbU+KC1oPp3kmaWUxTxYOervqMWazz1sY5S9d1/8/MzgTWfg99Uc\neveOlFIGDcu4xzzTS0b8HQQATDYBHABgyesa3d+RNlfLD9LXwJnki93rgaWUgY1MpZTDSyn7DJnd\nGWlPke9aShn4NH4p5Z6llLvNCAZ8qXudOUF3SikrSilXllLWDijjshnb3r2U8rxSyo16zdRaf5M2\nN0MyXAN/r0xHzLK+16Ppl0luNHn7Ao1i3oLvJ/lV2m/hgYGEUspdus9hmIbVndI+13+ZLb2+dJen\nBcqSAfN1pD2VP0hv7pH/6VvWK9vvZmybUsofpfUySG54znoTZt+llHKLAfu9rpRybSnlnd2iUV//\n908bdurkUsptN7Dtvl3Z16ZNBr8YvaG1BjX83zdz/79ormtumOtxoXV+Liek9aa6dynlL+basLvm\n3p52vXyw1vrDubafr64HyjPTGrqPLqX88SjTn6E3j9Y9Zln/+JkLSin7lFKe1fV+uYFuzqp/797O\nJzj+ge71gUkennb9fKTW2hsmLKWUbUspDy2lPHpQArXWU9J6Od0sbe6qYc285np19EGllO0G7VBK\neXgpZb6Bi4Wazz2sV/aB56iUsk0p5TGD7lVzmOu+OJXkGd3b2eruzOX9w/INun/c6Dt5CKP+DgIA\nJpgADgCwpHWNWp9Oa0BaneTPaq3XzwlQa/1+ks+nNQr9czfkWP/+hyf5ZJKzuoms59T1pnlv9/aN\npZSd+teXUu7aSy/r5+RJ2lPuSWsg3b9v+2Vpw/lsneSrtdbzu1W9RqdbzijzX6UNj/Tabt/+vG+e\n9UGXczZ0LGnzuVyd5IhSykNnpHXrtAnDk+SfZpmkfD56x7PbzHLPV9eD4cTu7XEzAxPdNfGxJF9O\nm69mQ+ldlBa8SZJ3lVIGBrS6HknvSRv27H+yfv6MfvvMbJAvpdwp6xumP9S3qjf5+hEztr9jkn9L\n8rVu0fWBklrrd9KG0Noq7fqb6ttvryRPT+ul8v5u+5Fe/2mN5d9Oa7T+Qpll9u6uLL2ecO+Zxzwv\ns+kFy47qf4q+++xPyOC5U2arQ/3rdt9Qxouo83Ol+dMkR6cFTd5USjluUFC2u5Y/m9bI/P0kzx4m\n/fmqtZ6dFiRaluQdpZTZhtFarE+lHfM+pZQbDOlXSjk6yQED9jkyyVuSnNgFs/r3WZ4WgEmGu+f1\nfCRtDqYHZH39mzl82lZpc7GcVEo5dMa6lFL+JC1w88skvx4iz9muuVPSPtsdk7x+Zi+RUspTknw8\nyek3UW+P+dzD3po2n9H9SilPmLHPlknenHYO3zKP/Hv3xXv3B7S6+vGOrJ+X7ZZd77uegd8xXf3t\nDVv6tL7tU0q5V9rcRvP6fhv1dxAAMNk8zQEALBXHlFJ+1fd+h7T5QQ5Me6jle0keNcvT6U9Ne1L4\niCQ/KqV8IW1C5n3Sejlcl+TobtL6YbwwyR8lOSjJeaWUzye5NG0y8cO68ry81tp72jy11tNKKX+f\n5KVJvlZK+WzaXAIHJblz2rA0z+jL49y0BqkdkpxTSvlpWiPY36Q9Cf3cJA8ppZyRFri6Rdp8GrdM\n8ola6+c3dBC11h+VUp6d1ij2iVLKl7t8b53kj9PmNviPJK8f8rzM5VtpDbd7JPlWKeXXSV5aa/36\nAtM7Ie3cPTTJ90spp6Q1ot42rcFsqyTvqrV+bsj0/iqtJ86fJ/mPUsq5Sb6R9hT4DmnD0h2UNifQ\n95L8aX+gsM8/ps2V8fi0BuVbpA21tG2ST9VaP9237T+kNfI9v+txc27a8ED3SfLatKDFoUkeX0qZ\n7o7na0mektYweGRaT5yvdmV/cNok8f9Ya+2fJ2Vk13+t9dpSyp+mBSz2Tzv3X09rgF7THe+eaZOx\nT6UFojY0yfcw/jnts7lvWn04szvWI9KCSr+f5E9m7DOwDtVaP5X22SbJE7vG1+W11nvOkf+86/yG\n1Fo/UEpZk+RtSV6W5HmllNOT/CItoHuHtPvbsrQg9RM38vw0L0kLhtw+ySu69yNVaz23lPKWJH+Z\n1ovryLThGe+cdj09I+t7x/SckHZt/1mSX5RSvpQ23NmKtPvUbdOCZ++dRzkuKqX8Z1oApyT5Ua31\nzBnbXFJKOSbtvvvl7l5b0+rLXmlDfV2b5Lldg/6G9K65e5VSvpYWPD+ym4foMUn+My2od9/uGJcl\nuWvadXdlkqf29xDaiIa+h9Vaf1pKeWpasPZ9pZRnpQV4d0hy77ReUT9L8oJ55H9y2vfcbZN8r/uc\ntk2r+xel1fPz0j7/U0spn6i1vjFzf8f8U9r99pVdD7Nzu7I9MO2ae0cGDM+4AaP+DgIAJpQeOADA\nUvGYtIbg3t/j0xptP5HWsPtHsw0tVGu9IMnd0xolf5025MlRaeP2fzDJQbXW9w5bkFrrZWmNU8ek\nNSQdkdZIvm/aE+b3q7UeN2C/lyX507TG93sleXLaROZvSbJ/rfW8vm0v69b/NMkfdGlfU2v9cVqj\n7uvSJlJ+UFqj3/3SeoU8LW0C6GGP5d1pQYKPpTXcHpU2H8S30wIFD58lUDEvtdafpAWdfpkWeNsr\nLYiw0PSuTfKItHP0jbSgx9PSzs2X0oJ5T5s1gRund02t9XFpDcLv6Mr2p2lDSz0yLSjx+bSgyf5z\nzDHyg64MF3b7Paz79ysyY6idWuvH087xd9OGlHp0WsP9n9da/zbt2v5gV5aHpjWK9s7lH6UF1pYn\neWJaz6tvJHl0rfWvZuQz6uv/F2k9JR6X1jPg99ImgX9WWkPvdmmN6YfVWh/VzRu0KLXWVWnX+tfS\n6sPjk+yX5O/SzuGgfQbWoW71B5K8My34eVDWT9A+W/4LqvNDHNcnktyuS/fMtCDGU9Ku7R3TrsV7\n1Vr/tOtJsNHUWi/J+ob2Y/t7Co7YMV0+P0yrt49ImxvnkCSrum2u7xHRzQ91jyQvT+tJcd+0Rvcj\nuvcvSHLvWuvV8yxHL1C0VW7c+6aX99u6/P41refM49Ouqb3SepYcVGv92DCZdUHVv08L3O+f5DZp\nAaB0gb9enV6bVreOTKvz70iyX6311AHJbgxD38OSpNb6obSA7clpwYunpgUCf5Pk1Wn3y/8dNvOu\nrt0vLWi5Y9o5v2tafb1HF2h+Vtpnf2C6Xm8b+I45Psnzu2O7R9pvhh2TPKLW+p5hyzajnCP9DgIA\nJtey6enFjmYBAAAsRvfE/L2SPHk+wRBgva4n2jlJLqm17ripy7OUuIcBAGwchlADAABg7HVz6xya\n1tvvnbXWtTM2ObB7HXooOgAAGGcCOAAAAGwOptOG7ds5yc3T5iVJkpRSbpXkRd3bD9/0RQMAgNET\nwAEAAGDs1Vqv7ia6/0iS15VSHpE2ZNotkxyWNifYF5O8bdOVEgAARmdqUxcAAAAAhlFr/XiSQ5J8\nNMkeaZPe3zfJuUn+Ksnh3QTxAACw2Vs2PT29qcsAAAAAAABAHz1wAAAAAAAAxowADgAAAAAAwJgR\nwAEAAAAAABgzW27qAoyL1atDUCh2AAAgAElEQVRXmwwIAAAAAADYqFasWLFsmO30wAEAAAAAABgz\nAjgAAAAAAABjRgAHAAAAAABgzAjgAAAAAAAAjBkBHAAAAAAAgDEjgAObufPOOy/nnXfepi4GcBNS\n72HpUe9h6VHvYelR72HpUe/ZEAEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCY\nEcABAAAAAAAYMwI4AAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAw\nZgRwAAAAAAAAxowADgAAAAAAwJjZclMXgPE3PT2d888/PxdccEGuuOKKbLfddtl1112z2267Zdmy\nZZu6eDA2JqmuTNKxAMNR7wHGw7p167Jq1aqcdtppufTSS7PXXntln332ycEHH5ypKc9gwiTq/Q77\n1re+lTVr1uTXv/6132EAJBHAYQ5XXXVVzjzzzKxatSqrV6/O1NRUtthii1x33XVZt25dVqxYkUMO\nOSQHHnhgtt56601dXNhkJqmuTNKxAMNR7wHGwyWXXJKTTjopp556alavXp21a9dmiy22yJlnnnn9\n/fjwww/PE57whKxcuXJTFxcYgZm/wy699NJsscUWOffcc/0OAyBJsmx6enpTl2EsrF692onoc+GF\nF+Ztb3tb1q5dm+22227gEx/T09O54oorsnz58hx99NHZZZddNkFJOe+885Ike++99yYuydI0SXVl\nko5l0qn3jIp6v/lQ72GynXPOOTn22GOzdu3abLvttpmamsqVV16ZJNlmm22StJ45a9asyfLly3PC\nCSdkv/3225RFBhZp0O+wiy++OEmy0047JfE7DJYCv/OXrhUrVgzVxXKz7n9dStmqlPL/SinrSilf\n2tTlmRQXXnhh3vSmN2X58uXZfvvtZ+2uu2zZsmy//fZZvnx53vSmN+XCCy+8iUsKm9Yk1ZVJOhZg\nOOo9wHg455xz8tznPvf6+/Fsw6RNTU1dfz9+3vOel3POOecmLikwKn6HATCszTaAU0opSVYleVYS\nA4KOyFVXXZW3ve1t2W677YYeX3lqairbbbdd3v72t+eqq67ayCWE8TBJdWWSjgUYjnoPMB4uueSS\nHHvssfO+H2+77bZ54QtfmEsuuWQjlxAYNb/DAJiPzTKAU0rZMcl/J9kiyd02cXEmyplnnpm1a9fO\ne3LMqampXHPNNTn77LM3UslgvExSXZmkYwGGo94DjIeTTjppUffjk08+eSOVDNhY/A4DYD42ywBO\nkq2SvC/JQbXWuqkLMymmp6ezatWqbLfddgvaf7vttssZZ5wR8yox6SaprkzSsQDDUe8BxsO6dety\n6qmnZtttt13Q/ttuu20+97nPZd26dSMuGbCx+B0GwHxtlgGcWutFtdZn1Vr1Gx2h888/P6tXr551\n7NUNWbZsWVavXp3zzz9/xCWD8TJJdWWSjgUYjnoPMB5WrVqV1atXz/sp/J6pqamsXr06q1atGnHJ\ngI3F7zAA5mvLTV2AcXfeeedt6iLcZL71rW/l0ksvzXXXXbfgNK644oqcddZZueaaa0ZYMoaxlK7V\nTW2S6sokHctSpN6zEOr95k29h8lx2mmnZe3atbnyyivn3G6u9WvXrs1pp52WnXfeedTFAzaCYX+H\nXXzxxbOu8zsMJpPf+ZNr7733XtT+m2UPHDaONWvWZIsttlhUGlNTUybUY+JNUl2ZpGMBhqPeA4yH\nSy+9dCT348svv3xEJQI2Nr/DAJgvPXA2YLERss3Jr3/965x77rnZYYcdFpzGZZddlr322mtJnbdN\nrRehd85vOpNUVybpWJYS9Z7FUO83T+o9TJ699torZ555ZrbZZpuB63s9b2ZbnyTXXntt9txzT/cG\n2Exs6HdYr+fNTjvtNGsafofBZPE7nw3RA4fr7brrroueAHPdunXZddddR1QiGE+TVFcm6ViA4aj3\nAONhn332Gcn9eJ999hlRiYCNze8wAOZLAIfr7bbbblmxYkWmp6cXtP/09HRWrFiR3XbbbcQlg/Ey\nSXVlko4FGI56DzAeDj744KxYsWLBjbnr1q3LihUrcvDBB4+4ZMDG4ncYAPMlgMP1li1bloMPPjhX\nXHHFgva/4oorcuihh2bZsmUjLhmMl0mqK5N0LMBw1HuA8TA1NZX73//+WbNmzYL2X7NmTR74wAdm\nasp/62Fz4XcYAPPllx43cNBBB2X58uXzfgps3bp12WqrrXLAAQdspJLBeJmkujJJxwIMR70HGA9P\netKTFnU/PvLIIzdSyYCNxe8wAOZjswzglFLuWEp5ZO+vW3zL/mWllG03aSE3U1tvvXWOPvroXHHF\nFUP/mFi3bl2uuOKKPOMZz8jWW2+9kUsI42GS6sokHQswHPUeYDysXLkyJ5xwQtasWTOv+/GaNWty\n/PHHZ+XKlRu5hMCo+R0GwHxslgGcJI9O8q99f0lyxxnLdt40Rdv87bLLLnnOc56TtWvX5vLLL591\nbNbp6elcfvnlufbaa/Oc5zwnu+yyy01cUti0JqmuTNKxAMNR7wHGw3777ZcTTzzx+vvxbA2669at\nu/5+fOKJJ2a//fa7iUsKjIrfYQAMa9lCJ06bNKtXr3YiZrjqqqty9tln54wzzsjq1aszNTWVLbbY\nItddd13WrVuXlStX5pBDDskBBxzgCZBN6LzzzkuS7L333pu4JEvXJNWVSTqWSabeM0rq/eZBvYfJ\nd8kll+Tkk0/O5z73uaxevTpr167N1NTU9UMtrVy5MocffniOPPJIPW9gQsz8HXbppZdmamoqN7/5\nzf0OgyXC7/yla8WKFUNNaCaA0xHAmd309HTOP//8XHDBBbnyyiuzzTbbZNddd81uu+1m4rwx4EY/\nPiaprkzSsUwi9Z6NQb0fb+o9LB3r1q3LqlWrctppp+Xyyy/PnnvumX322ScHH3xwpqY210E0gLn0\nfoedddZZueqqq7LXXnv5HQZLhN/5S9ewAZwtN3ZB2PwtW7Ysu+++e3bfffdNXRQYa5NUVybpWIDh\nqPcA42FqaiqHHnpodt65jQquQQcmX+932DXXXJNEvQdgPY/vAAAAAAAAjBkBHAAAAAAAgDEjgAMA\nAAAAADBmBHAAAAAAAADGjAAOAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAAAGDMCOAA\nAAAAAACMGQEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAAAAAYMwI4\nAAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAwZgRwAAAAAAAAxowA\nDgAAAAAAwJgRwAEAAAAAABgzAjgAAAAAAABjRgAHAAAAAABgzAjgAAAAAAAAjBkBHAAAAAAAgDEj\ngAMAAAAAADBmBHAAAAAAAADGjAAOAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAAAGDM\nCOAAAAAAAACMGQEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAAAAAY\nMwI4AAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAwZgRwAAAAAAAA\nxowADgAAAAAAwJgRwAEAAAAAABgzAjgAAAAAAABjRgAHAAAAAABgzAjgAAAAAAAAjBkBHAAAAAAA\ngDEjgAMAAAAAADBmBHAAAAAAAADGjAAOAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAA\nAGDMCOAAAAAAAACMGQEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAA\nAAAYMwI4AAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAwZrZcbAKl\nlPsmOTwtGPT1JB+pta5bbLoAAAAAAABL1aICOKWUdyZ5cvd2WZLpJM8rpRxea71ksYUDAAAAAABY\nihYcwCmlPCrJU5L8KslJSS5P8ogkByT5cFqvHAAAAAAAAOZpMXPgPCXJZUnuVmt9Sa31NUnulhbM\nuV8p5dhRFBAAAAAAAGCpWUwA565J/rXW+sveglrrdJKnJ/lmkteWUo4upSxbZBkBAAAAAACWlMUE\ncFYm+enMhbXWa5M8Osmvk7wlyf8lSSnldqWUX5ZSLlhEngAAAAAAABNvMQGcy5LcetCKWuvPkhyc\n5BNJru4Wb9ltP3AfAAAAAAAAmi0Xse+3kzyylPKiWuuamStrrT9P8si+RT9O8geLyA8AAAAAAGBJ\nWEwA591J3pfki6WUFyb5ajcHzkDd0Go/X0R+AAAAAAAAS8KCh1CrtZ6c5F+THJDkS0nuNKIyAQAA\nAAAALGmLmQMnSR6b5BlJViVZu/jiAAAAAAAAsJgh1NINmfbO7g8AAAAAAIARWGwPnCRJKeWLpZRH\nDbHdO0sp/zOKPAEAAAAAACbVSAI4Se6d5LZDbLdFkj1HlCcAAAAAAMBEWvAQaqWUhyZ5aN+ix5RS\n9p1jl99L8oAkv11ongAAAAAAAEvBYubAuVmSg5PcPsl0krt3f3O5JskrFpEnAAAAAADAxFtwAKfW\n+tEkHy2l7JjWq+atST46xy5XJTmv1nrxQvMEAAAAAABYChbTAydJUmv9XSnlpCSfrLWePoIyAQAA\nAAAALGmLDuAkSa31yaNIBwAAAAAAgBEFcJKklHKbJI9MmxNnmyTLZtl0utb61FHlCwAAAAAAMGlG\nEsAppRya5HNJtsvsgZue6SQCOAAAAAAAALMYVQ+c1yTZPi2Ic2qS1WmBGgAAAAAAAOZpVAGcuyb5\nz1rrg0eUHgAAAAAAwJI1NaJ0ppN8ZURpAQAAAAAALGmjCuB8N8lOI0oLAAAAAABgSRtVAOd1SZ5c\nSrn9iNIDAAAAAABYskY1B05N8oYkZ5VS3pXkv5P8ZtaNaz11RPkCAAAAAABMnFEFcH6YNg/OsiTP\nH2L7LUaULwAAAAAAwMQZVQDny2kBHAAAAAAAABZpJAGcWuu9R5EOAAAAAAAAydSmLgAAAAAAAAA3\nNKoh1JIkpZTbJXlckrskuVWSF9dav9ytO6zWetoo8wMAAAAAAJhEIwvglFJemOS4Ls1laXPirOzW\n7ZTkC6WUTyR5bK31ulHlCwAAAAAAMGlGMoRaKeWIJP+QZHWSv01yVFoQp+e6JJ9M8ogkzxxFngAA\nAAAAAJNqVHPgPDfJxUnuVGt9TZLT+1fWWlcneXSSmuSJI8oTAAAAAABgIo0qgHOXJB+utV402wbd\nsGmfSvKHI8oTAAAAAABgIo0qgLNDkl8Nsd2lSZaPKE8AAAAAAICJNKoAzgVJ9htiu0OS/HJEeQIA\nAAAAAEykUQVwTk3ysFLKYwetLKVsUUo5NskDk5wyojwBAAAAAAAm0pYjSue4JH+W5AOllOcn+UmS\n6SRPK6X8eZI/TnLrJL9J8toR5QkAAAAAADCRRtIDp9b6v0numeSsJHdP8pgky5Ic0f17lyRnJjms\n2xYAAAAAAIBZjKoHTmqtP0xySCnljkkOSrJzWi+cXyU5q1sPAAAAAADABowsgNNTa/1+ku+POl0A\nAAAAAIClYkEBnFLKbovJtNZ6/mL2BwAAAAAAmGQL7YHzs7Th0RZiehH5AgAAAAAATLyFBlLOz40D\nOMuS9HrmXJnkd0mmkuyUZKtu+XeTXLXAPAEAAAAAAJaEBQVwaq179L8vpWyb5FNJvpnkVUm+W2ud\n7tZNJblbkpcn2SHJEYsoLwAAAAAAwMQb1VBmr06yQ631vjNX1FrXJTm7lPKQJGcn+fskzx1RvgAA\nAAAAABNnakTpPCrJF+faoOuR819JHjaiPAEAAAAAACbSqAI4t0py7RDbXZ1k5xHlCQAAAAAAMJFG\nFcC5IMnjSikrZ9uglLJDkscm+dWI8gQAAAAAAJhIo5oD5+QkL0/y/VLK+5N8J8nvkkwnWZlk3yRP\nSLJrkuNHlCcAAAAAAMBEGlUA57gkuyd5YpIXpgVu+i3rXj+V5JUjyhMAAAAAAGAijSSAU2tdm+So\nUsrrkzwkyT5JbpEWuLkkyQ+TfLbWeuYo8gMAAAAAAJhko+qBkySptX43yXdHmSYAAAAAAMBSM7Wp\nCwAAAAAAAMANLagHTinlJ0leU2t9V9/7YU3XWm+3kHwBAAAAAACWgoUOobZHkhUz3gMAAAAAADAC\nCwrg1Fqn5noPAAAAAADAwgm8AAAAAAAAjJmFDqF2I6WUrZMck+RHtdZ/m7HuNUnWJDm+1nrNqPIE\nAAAAAACYRCPpgVNK2S7JV5K8Jsn+Aza5Y5K/S/K1Usr2o8gTAAAAAABgUo1qCLUXJblrkncnee+A\n9cckOTHJXZL8zYjyBAAAAAAAmEijGkLtyCSfr7U+fdDKWuvPkzy/lHKHJI9K8uIR5QsAAAAAADBx\nRtUDZ9ckZwyx3RndtgAAAAAAAMxiVAGci5PcYojtbpNk9YjyBAAAAAAAmEijCuCcnuQJpZS9Z9ug\nlHLPJE/McD11AAAAAAAAlqxRzYFzXJKHJvlOKeVTSb6d5HdJbpbklkkOS3JgkrXdtgAAAAAAAMxi\nJAGcWuv3SikPSvL+JI9K8si+1cu6118leWqt9b9HkScAAAAAAMCkGlUPnNRaTyul7JnkgUnunmTn\nJOuSXJTkG0lOrbVePar8AAAAAAAAJtXIAjhJUmu9Jsknuz8AAAAAAAAWYKQBnCQppfxekm2yfui0\nG6m1nj/qfAEAAAAAACbFSAI4pZStkvxDkicmWbmBzadHlS8AAAAAAMAkGlUg5bgkz+v+vbr7mx5R\n2gAAAAAAAEvKqAI4j0nyuySH11q/PqI0AQAAAAAAlqSpEaVz6yTvFbwBAAAAAABYvFEFcC5K8tsR\npQUAAAAAALCkjSqA8x9JDh9RWgAAAAAAAEvaqAI4L02yXSnl7aWUnUaUJgAAAAAAwJK05YjSeWuS\nnyU5KsmTSik/T/KbWbadrrUeOqJ8AQAAAAAAJs6oAjiPnfF+r+5vkOkR5QkAAAAAADCRRhXAOWxE\n6QAAAAAAACx5Iwng1FpPH0U6AAAAAAAAJFObugAAAAAAAADc0IJ74JRSbr/QfWut5y50XwAAAAAA\ngEm3mCHUfphkegH7TS8yXwAAAAAAgIm2mEDK+VlYAAcAAAAAAIA5LDiAU2vdY4TlAAAAAAAAoDO1\nqQsAAAAAAADADQngAAAAAAAAjBkBHAAAAAAAgDEjgAMAAAAAADBmBHAAAAAAAADGjAAOAAAAAADA\nmBHAAQAAAAAAGDMbLYBTStmqlCJABAAAAAAAME8jDbCUUp5USvmvUsrvklyZ5Ii+da8opfzeKPMD\nAAAAAACYRFuOIpFSyhZJ/j3Jg5IsS7Juxvo/SPKKJI8tpRxaa714FPkCAAAAAABMolH1wPnLJA9O\n8qUk90yyb1ogJ0lSa/1pkmOTlCQvGlGeAAAAAAAAE2lUAZwnJPlBkgfUWs9IGz7tBmqtb0jyX0ke\nOqI8AQAAAAAAJtKoAji3T/KZWuu1G9jujCS7jyhPAAAAAACAiTSqAM6WSa4aYrtlSa4bUZ4AAAAA\nAAATaVQBnPOS3HeuDUopU2nDp/1oRHkCAAAAAABMpFEFcP4tyUGllLeWUm7et3w6SUop+yT5WJI7\nJfnoiPIEAAAAAACYSKMK4Byf5BtJjk7yf0m+lBa8ObGUcmGS76T1vvlmkn8cUZ4AAAAAAAATaSQB\nnFrrVUn+OMnrkqxOsnvafDd7JLlVkl8neW2Se9VarxxFngAAAAAAAJNqy1El1AVxXprkpaWUPZPs\nnNYL51e11p+PKh8AAAAAAIBJN7IATr9a60+S/GRjpA0AAAAAADDpRhLAKaU8Yx6bTye5IslPk3y9\n1nrtKMoAAAAAAAAwKUbVA+df0gIz83VRKeWYWutHR1QOAAAAAACAzd6oAjhvSLIiyRO7999Icn5a\nUOe2Se7WLf94kmuSbJdk3yR3SPKBUspFtdbTR1QWAAAAAACAzdqoAjjHJzkjyYeSvKDW+tv+laWU\nnZK8PsmdkhxWa72sW/6wJP+a5AVJBHAAAAAAAACSTI0onf+X5Fe11qNmBm+SpNZ6ca31yUmuSvKq\nvuX/nuSjSQ4aUTkAAAAAAAA2e6MK4Bye5LNDbHdKkofPWPaDJDcfUTkAAAAAAAA2e6MK4Gyf5DZD\nbLdrklvPWHaHJBeOqBz8//buPMySqjz8+He6Z2AWYAYkCEEHg+CrQvwhyjJgogZEiJpM3I0gxAWM\nsmhkcY2giBJRg2ACroBLNG7EDWTJoIIzgAIio76gQUcQFMXpgdmY6e7fH1UXL829Pd3T1d3V1d/P\n8/RT01Wnqs6pc+pWT733nCNJkiRJkiRJkqa8qgI4PwOOiohndEsQEU8BXgL8qvy9NyKOBF4EXFtR\nPiRJkiRJkiRJkqa8mRUd5yzgs8CVEfEj4AbgXmAQWADsCewHzADeU+7zAuBTwFrgvRXlQ5IkSZIk\nSZIkacqrJICTmf8VEXOA9wF7lT9DrQHen5kfKH//CbAUOCUzf1RFPiRJkiRJkiRJkpqgqh44ZOYn\nI+IiYH/gicAjKHrc9AG3AVdn5pq29LcAB1Z1fkmSJEmSJEmSpKaoLIADkJkbgavLn4eJiGcDe2Xm\nmVWeV5IkSZIkSZIkqUl6Jvh8LwHeNsHnlCRJkiRJkiRJmlIq64ETEXsBbwaeBMzukGQBMB+4u6pz\nSpIkSZIkSZIkNVElAZyI2Bv4HjBnE0nvBU6q4pySJEmSJEmSJElNVVUPnLdTBG8+CHwNmAVcDrwe\n+CFwGHA48I+ZeX1F55QkSZIkSZIkSWqkqgI4BwIXZ+aJABGxS7n+zsy8DrguIq4GLo+Iv8rMH1d0\nXkmSJEmSJEmSpMbpqeg421L0tGkZLJcPBogy80qKXjmnVXROSZIkSZIkSZKkRqoqgLMa2Lrt95Xl\ncvsh6W4EFlV0TkmSJEmSJEmSpEaqKoDzY+AlEfFIgMxcBawBnjsk3aOBeRWdU5IkSZIkSZIkqZGq\nmgPn48AFwO0R8bxyuLQrgedGxPnAN4A9gCOBn1R0TkmSJEmSJEmSpEaqpAdOZl4EvIdi7pv15ep3\nAGuBVwMXA2cAs4HTqzinJEmSJEmSJElSU1U1hBqZ+Q6KOW9+UP5+M/BU4HzgMuCTwNMz8+KqzilJ\nkiRJkiRJktREVQ2hBkBmrh3y+8+A11V5DkmSJEmSJEmSpKarrAeOJEmSJEmSJEmSqlFZD5yIeDnw\nYmA3irluZnRJOpiZj63qvJIkSZIkSZIkSU1TSQAnIk4BzqB70EaSJEmSJEmSJEkjVFUPnNcC9wMv\nB76TmfdVdFxJkiRJkiRJkqRpp6oAzk7Af2TmNyo6niRJkiRJkiRJ0rTVU9Fxfg2srehYkiRJkiRJ\nkiRJ01pVAZxPAf8QEbMrOp4kSZIkSZIkSdK0VdUQau8FHgV8PyI+ACwH7u2WODNXVHReSZIkSZIk\nSZKkxqkqgDMHmA3sCVy0ibSDFZ5XkiRJkiRJkiSpcaoKpJwLHAmsB34M3EcRqJEkSZIkSZIkSdIo\nVRXAeS6QwAGZubKiY0qSJEmSJEmSJE1LPRUdZw7wRYM3kiRJkiRJkiRJY1dVAOdGYH5Fx5IkSZIk\nSZIkSZrWqgrgvBk4IiIOquh4kiRJkiRJkiRJ01ZVc+DsCVwEfCsifgjcDNzbJe1gZr6tovNKkiRJ\nkiRJkiQ1TlUBnPOAQWAGsH/5080gYABHkiRJkiRJkiSpi6oCOO+iCMxIkiRJkiRJkiRpjCoJ4GTm\nqVUcR5IkSZIkSZIkSdAzkSeLiJMj4oaJPKckSZIkSZIkSdJUU9UQagBExNbAE4DZHTZvC7wMiCrP\nKUmSJEmSJEmS1DSVBXAi4n3AG4BZwySbAVxb1TklSZIkSZIkSZKaqJIh1CLiGOBkiuDNr4AfUQRr\nbgMSGATuBj4IvLiKc0qSJEmSJEmSJDVVVXPgvBr4I/DkzNwVeH65/uTMfCLwOOAXQH9m/rqic0qS\nJEmSJEmSJDVSVQGcJwAXZebN5e+D7Rsz8/+AFwBHRsQrKzqnJEmSJEmSJElSI1UVwJkF/Lbt9w3l\nck5rRWbeA3wBeF1F55QkSZIkSZIkSWqkqgI4vwOi7fffl8vHdkj3uIrOKUmSJEmSJEmS1EhVBXC+\nB7wsIt4YEQsy8wHgDuCfImLbtnQHAasrOqckSZIkSZIkSVIjVRXAOR3YCJwFHFiu+xxFD5xbIuLL\nEbEceDpwdUXnlCRJkiRJkiRJaqRKAjiZ+ROKwM2ngdvL1acCS4CdgH8AngAk8KYqzilJkiRJkiRJ\nktRUM6s6UGb+CDiq7fd1wEERsS/wF8CdwLLM3FjVOSVJkiRJkiRJkpqosgBON5l5HXDdeJ9HkiRJ\nkiRJkiSpKSoJ4ETEDOCQ8mchsDXwB+CnwDcz88YqziNJkiRJkiRJkjQdjDmAExH7AJ8EngjMGLJ5\nEDgtIq4EjsnM24fuL0mSJEmSJEmSpIcaUwAnIvYHLgO2Am4GvgIksBrYFngK8ALgYODaiPibzLxl\nTDmWJEmSJEmSJElquM0O4ETEFsCngdkUvWs+1iHZpyPiJODt5c+XImLPzNy4ueeVJEmSJEmSJElq\nup4x7Pt84LHAW7oEbwDIzA2Z+U7g3cDuwBFjOKckSZIkSZIkSVLjjSWAsxi4B/jwCNO/B7gLeOEY\nzilJkiRJkiRJktR4YwngPAW4MjM3jCRxme4S4MljOKckSZIkSZIkSVLjjSWA80jg1lHuczuw/RjO\nKUmSJEmSJEmS1HhjCeBsBawa5T7rgd4xnFOSJEmSJEmSJKnxxhLAkSRJkiRJkiRJ0jgwgCNJkiRJ\nkiRJklQzM8e4/3ER8cJRpN9pjOeTJEmSJEmSJElqvLEGcHYpf0ZjcIznlCRJkiRJkiRJarSxBHCe\nWVkuJEmSJEmSJEmS9JvKoF0AACAASURBVKDNDuBk5neqzIgkSZIkSZIkSZIKPZOdAUmSJEmSJEmS\nJD2UARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEk\nSZIkSZIkSaoZAziSJEmSJEmSJEk1YwBHkiRJkiRJkiSpZgzgSJIkSZIkSZIk1YwBHEmSJEmSJEmS\npJoxgCNJkiRJkiRJklQzBnAkSZIkSZIkSZJqxgCOJEmSJEmSJElSzRjAkSRJkiRJkiRJqhkDOJIk\nSZIkSZIkSTVjAEeSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIkSZIkSZKkmjGAI0mSJEmSJEmS\nVDMGcCRJkiRJkiRJkmrGAI4kSZIkSZIkSVLNGMCRJEmSJEmSJEmqGQM4kiRJkiRJkiRJNWMAR5Ik\nSZIkSZIkqWYM4EiSJEmSJEmSJNWMARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmS\nasYAjiRJkiRJkiRJUs0YwJEkSZIkSZIkSaoZAziSJEmSJEmSJEk1YwBHkiRJkiRJkiSpZgzgSJIk\nSZIkSZIk1YwBHEmSJEmSJEmSpJoxgCNJkiRJkiRJklQzBnAkSZIkSZIkSZJqxgCOJEmSJEmSJElS\nzRjAkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIk\nSZIkSZKkmjGAI0mSJEmSJEmSVDMGcCRJkiRJkiRJkmrGAI4kSZIkSZIkSVLNGMCRJEmSJEmSJEmq\nGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmSJNWMARxJkiRJkiRJkqSaMYAjSZIk\nSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEkSZIkSZIkSaoZAziSJEmSJEmSJEk1\nYwBHkiRJkiRJkiSpZgzgSJIkSZIkSZIk1YwBHEmSJEmSJEmSpJoxgCNJkiRJkiRJklQzBnAkSZIk\nSZIkSZJqxgCOJEmSJEmSJElSzRjAkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmSJEmSJKlm\nDOBIkiRJkiRJkiTVjAEcSZIkSZIkSZKkmpk52RmQJEmS1HyDg4OsWLGCO++8k9WrVzNv3jx23nln\nFi5cyIwZMyY7e6PS39/PxRdfzPXXX8+9997Ldtttxz777MPixYvp7e2d7OyNWJPqpEllGRgYYOnS\npSxZsoRVq1ax2267sccee7Bo0SJ6evwO5mRpShtrSjmaplUvN954I2vWrOGee+6ZsvXS+gxbvnw5\nK1euZMGCBX6G1UBT7v2mlKNprJfxZQBHkiRJ0rhZt24dy5YtY+nSpfT19dHT00Nvby/9/f0MDAww\nf/58DjjgAPbbbz9mz5492dkd1t13380ZZ5zBkiVLWLNmDcCDZfniF7/IqaeeykEHHcSb3/xmdtxx\nx0nObXdNqpMmlWXlypVceOGFXHbZZfT19bFhwwZ6e3tZtmzZg2U59NBDOeKII1iwYMFkZ3faaEob\na0o5mmZovaxatYre3l5uvfXWKVcvQz/DOrUxP8MmXlPu/aaUo2msl4kxY3BwcLLzUAt9fX1eCE1J\nt912GwC77777JOdE0kTxvpemn6l63991112cf/75bNiwgXnz5nX8Bt7g4CCrV69m1qxZHHPMMey0\n006TkNNNu+KKKzj22GPZuHEjW265ZcdvEQ8MDLB+/XpmzpzJueeey8EHHzwJOR1ek+qkSWW56aab\nOPHEE9mwYQNz586lp6eHtWvXAjBnzhygaF9r1qxh1qxZnHXWWey1116TmeVpoSltrCnlaJpO9XLv\nvfcCsN122wFTp146fYYN5WfYxGvKvd+UcnTj3/nT1/z580fUPWnK9l2MiO0i4uyI+FVEPBARv4mI\nj0eELUGSJEmaZHfddRfnnHMOs2bNYquttuo6fMKMGTPYaqutmDVrFueccw533XXXBOd006644gqO\nOeYYent7mTNnTtchYHp6epgzZw69vb289rWv5YorrpjgnA6vSXXSpLLcdNNNHH/88Q+WZbj21SrL\nCSecwE033TTBOZ1emtLGmlKOpmlSvfgZVk9NaWNNKUfTWC8Ta0oGcCJiDnAV8M/Al4GjgPOBlwDX\nRMS2k5Y5SZIkaZpbt24d559/PvPmzRvxePc9PT3MmzePj370o6xbt26cczhyd999N8ceeyyzZ88e\nVVm23HJLjj32WO6+++5xzuHINKlOmlSWlStXcuKJJ466LHPnzuWkk05i5cqV45zD6akpbawp5Wia\nJtWLn2H11JQ21pRyNI31MvGmZAAHeAPwl8AbMvNfMvNzmXkacATwF8A7JjV3kiRJ0jS2bNkyNmzY\nMOrJint6enjggQe47rrrxilno3fGGWewcePGzSrLxo0bOfPMM8cpZ6PTpDppUlkuvPDCMZXlM5/5\nzDjlbHprShtrSjmapkn14mdYPTWljTWlHE1jvUy8qRrAeQWwGvjEkPX/A9wBHB4RIxpDTpIkSVJ1\nBgcHWbp0KfPmzdus/efNm8c111xDHebq7O/vZ8mSJWy55Zabtf+WW27JFVdcQX9/f8U5G50m1UmT\nyjIwMMBll13G3LlzN2v/uXPncskllzAwMFBxzqa3prSxppSjaZpUL36G1VNT2lhTytE01svkmHIB\nnIjYBng8cENmrm/flpmDwHXAn1H0xJEkSZI0gVasWEFfX1/XsbA3ZcaMGfT19bFixYqKczZ6F198\nMWvWrBn1Nwxbenp6WLNmDRdffHHFORudJtVJk8qydOlS+vr6xtS++vr6WLp0acU5m96a0saaUo6m\naVK9+BlWT01pY00pR9NYL5Nj5mRnYDPsUi7v6LK91QJ2Bf5vrCe77bbbxnoIaULYVqXpx/temn6m\nwn1/4403smrVqjH1Olm9ejXXXnstDzzwQIU5G73LL7+c/v5+NmzYsNnH6O/v5/LLL+dJT3pShTkb\nnSbVSZPKsmTJEjZs2MDatWuHTTfc9g0bNrBkyRJ22GGHqrM3bTWljTWlHE0z0nq59957u26rS72M\n9DNsOH6GVa8p935TyjEa/p3fXLvvvvuY9p9yPXCArcvlmi7bVw9JJ0mSJGmCrFmzht7e3jEdo6en\npxYTnK5cuXKzv1nc0tPTw6pVqyrK0eZpUp00qSyrVq2qpCz3339/RTkSNKeNNaUcTdOkevEzrJ6a\n0saaUo6msV4mx1TsgTOhxhohk8ZbK0JvW5WmD+97afqZSvf9Pffcw6233srWW2/+96nuu+8+dttt\nt0kv72Me8xiuv/56Zs2atdnH2LBhAwsXLpzUsjSpTppUlt12241ly5YxZ86cjttb32rvth1g48aN\n7LrrrpNeliZpShtrSjmaZlP10up5s91223U9Rl3qZVOfYSPhZ1j1mnLvN6UcI+Hf+dqUqdgDp/X1\ntW6zJW01JJ0kSZKkCbLzzjuPeULigYEBdt5554pytPn22WefWh1nczWpTppUlj322KOSsuyxxx4V\n5UjQnDbWlHI0TZPqxc+wempKG2tKOZrGepkcUzGAczswCDyqy/bWHDn1HzhQkiRJapiFCxcyf/58\nBgcHN2v/wcFB5s+fz8KFCyvO2egtXryYuXPnbvZ/VAcGBpg7dy6LFy+uOGej06Q6aVJZFi1axPz5\n88fUvubPn8+iRYsqztn01pQ21pRyNE2T6sXPsHpqShtrSjmaxnqZHFMugJOZq4Gbgb0jYnb7tojo\nBQ4Afp2ZKyYjf5IkSdJ0NmPGDBYtWsTq1as3nbiD1atXc+CBBzJjxoyKczZ6vb29PPOZz2T9+vWb\ntf/69es5+OCDxzxW+Fg1qU6aVJaenh4OOeQQ1qzpNr3r8NasWcNhhx025nma9FBNaWNNKUfTNKle\n/Ayrp6a0saaUo2msl8kxVT8lPwHMBY4Zsv5wYAfg4xOeI0mSJEkA7L///syaNWvU38odGBhgiy22\nYN999x2nnI3eW9/6VmbOnLlZZZk5cyannHLKOOVsdJpUJ00qy5FHHjmmshx++OHjlLPprSltrCnl\naJom1YufYfXUlDbWlHI0jfUy8aZqAOc84FrgrIj4YET8Y0S8p1z/Y+CsSc2dJEmSNI3Nnj2bY445\nhtWrV4/4P3cDAwOsXr2ao48+mtmzZ296hwmy4447cu6557J+/fpRlWX9+vWce+657LjjjuOcw5Fp\nUp00qSwLFizgrLPOYs2aNaMqy5o1a3j/+9/PggULxjmH01NT2lhTytE0TaoXP8PqqSltrCnlaBrr\nZeJNyQBOZm4ADgHOAV4AXAAcSdHz5hmZuXn9NyVJkiRVYqedduK4445jw4YN3H///V3Hyh4cHOT+\n++9n48aNHHfccey0004TnNNNO/jggznvvPPo7+9n7dq1Xf+zOjAwwNq1a+nv7+e8887j4IMPnuCc\nDq9JddKksuy1116cffbZD5ZluPbVKsvZZ5/NXnvtNcE5nV6a0saaUo6maVK9+BlWT01pY00pR9NY\nLxNrxuZOOtQ0fX19XghNSbfddhsAu++++yTnRNJE8b6Xpp+pfN+vW7eO6667jmuuuYa+vj56enro\n7e2lv7+fgYEBFixYwAEHHMC+++5b+2/k3X333Zx55plcccUVD4753yoLwNy5czn44IM55ZRTatPz\nppMm1UmTyrJy5Uo+85nPcMkll9DX18eGDRvo6el5cJiSBQsWcOihh3L44Yf7rfUJ1JQ21pRyNM3Q\nelm1ahU9PT1ss802U65ehn6GdWpjfoZNvKbc+00pRyf+nT99zZ8/f0STARnAKRnA0VQ1lT/oJW0e\n73tp+mnCfT84OMiKFSu48847Wbt2LXPmzGHnnXdm4cKFU24i0/7+fi6++GKuv/56+vr6mD9/Pvvs\nsw+LFy+mt7d3srM3Yk2qkyaVZWBggKVLl7JkyRLuv/9+dt11V/bYYw8WLVrkZN+TqCltrCnlaJpW\nvVx77bWsW7eO3XbbbcrWS+szbPny5axatYptttnGz7AaaMq935RytPPv/OnLAM4oGcDRVNWED3pJ\no+N9L00/3vfS9ON9L00/3vfS9ON9P32NNIBj6FuSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIk\nSZIkSZKkmjGAI0mSJEmSJEmSVDMGcCRJkiRJkiRJkmrGAI4kSZIkSZIkSVLNGMCRJEmSJEmSJEmq\nGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmSJNWMARxJkiRJkiRJkqSamTE4ODjZ\neaiFvr4+L4QkSZIkSZIkSRpX8+fPnzGSdPbAkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmS\nJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIkSZIkSZKkmpkxODg42XmQJEmSJEmSJElSG3vgSJIkSZIk\nSZIk1YwBHEmSJEmSJEmSpJoxgCNJkiRJkiRJklQzBnAkSZIkSZIkSZJqxgCOJEmSJEmSJElSzRjA\nkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIkSZIk\nSZKkmjGAI0mSJEmSJEmSVDMzJzsDkrqLiAuAI4dJ8sbM/PeIOBV45zDpzs7MN1SZN0njKyIOA94M\n7A1sBG4ETs/M/x2Sbg7wFuClwC7AKuB/gXdk5q0TmmlJYzKS+95nvtQMETE4gmR/kZm/LNP7vJem\nuNHc9z7vpWaJiD2AtwJ/A2wPrAS+D7w/M69uS+fzXg9jAEeaGl4H3NNh/U1Dfj8VWN4h3W1VZ0jS\n+ImIVwKfAL4LnABsDbwRuDQiDsnMq8p0M4D/AQ4GPgWcBvw5cCKwNCL2zcxfTHwJJI3WSO/7Nqfi\nM1+ayl40zLb3AvMp//73eS81xojv+zan4vNemtIi4snA1cADwLnArcCjgdcD34mIxZn5dZ/36sYA\njjQ1XNL69t0mfKfDCx5JU0hE7Ah8GLgCeHZmDpTrvw4sBZ4DXFUmfynwLIpv7ZzcdowrgR8A7wee\nP2GZl7RZRnnft/jMl6awzPxSp/URsRjYDTgqM1eXq33eSw0wyvu+xee9NPW9HZgL/ENmXtZaGRFf\nAX4KvAv4Oj7v1YVz4EiSVC9HAvOAU1svcQEy8/8y85GZeVJb2leUyw+3HyAzb6Dojv3ciFgw3hmW\nNGajue8lNVREbA2cA3wvMy9s2+TzXmqoYe57Sc3x2HL5vfaVmfkz4HfAY8pVPu/VkQEcaQqJiNkR\nscmecxGxRURsMRF5klS5ZwH3UXzrnojojYgtu6TdF/h1Zt7RYdu1wCyKuTQk1dto7vuH8JkvNco7\nKIZKef2Q9T7vpebqdt8/hM97aUr7abl8XPvKiJgPLABuKVf5vFdHBnCkqeH1EXE7sBZYHxHLIuJv\nO6R7cUQsB9aX6X4cEUdMaE4ljdXjgV8Ae0XEdyju53URcUtEvLSVqPy23nZApz/uAFaUy13HM7OS\nKjGi+34In/lSg0TEDhQvcC/KzB+3rfd5LzVUt/t+CJ/30tT3HuCPwEUR8bSI2D4i/pJinptB4B0+\n7zUcAzjS1PBs4AyKMfDfBuwOfKPDS53DgPPK5QkUkyBeFBGnTGBeJY3NdhTfwvkmcA2wGDiuXPdf\nEfGqMt3W5XJNl+OsHpJOUn2N9L5v5zNfapaTgdkUL3na+byXmqvbfd/O5700xWXmLcAioJdiGLV7\ngJuB/Sjmv7wKn/caxiaHYpI0qT4A/BdwVWauL9d9KyK+BtwEfCAi/hv4DLAMWJqZfWW6SyPi88DP\ngHdGxPmZuXKC8y9p9LagGAP35Zn5udbKiPgmRdfrMyLigsnJmqRxMqL7PjP78ZkvNU5EbAv8M/CN\nzPz5ZOdH0vgbwX3v815qiIgI4FvAlsAbKe7hHYA3AV+PiBcAyycvh6o7AzhSjZXdqB/WlTozfxIR\nV1GMmf+EzFwOPOyPvsz8XUR8CXgNcCDFN3sl1dv9FH/Yfb59ZWbeHhFLgEOBJwC/LDfN63Kcrcrl\nqnHIo6RqjfS+v6V8yeMzX2qWfwTmAp0mMG89x33eS80y3H2Pz3upUT4O7Ezx/u721sqI+CLFff4p\nir/1wee9OnAINWnq+m253KaidJLq4Zd0fz7/rlxuk5n3U3S9flSXtLuUy9uqy5qkcfJLRnDfj+A4\nPvOlqelFFPNbXDJ0g897qbG63vcj4PNemiIiYh5FsPWG9uANQGauBa6iCO4sxOe9ujCAI9VURGwT\nES+PiEO7JSmXd0TESyLiRZtIt6LLdkn1spRiOKUndtjW+qOtNbHh94FHRcTCDmn/ClgL3FB5DiVV\nbUT3fUTM8pkvNUtEbAUcQDFM0touyXzeSw2yqfve573UKHOAGRTzXXUyu23p814dGcCR6usB4CPA\nBRGxffuGiDgY2Ae4LjN/DZxGMZHh7kPSPZFiIuQ7gOsmJNeSxuqCcvnOiJjRWhkRT6L4o+3mzGz9\nZ+0T5fKN7QeIiKcDTwE+X35zV1K9XVAuh73vM3MDPvOlpnkSMAu4ZZg0Pu+lZhn2vvd5LzVHZv6e\notfMk8r790ERsR3wNxTDot2Cz3t14Rw4Uk1l5rqIOIHipc51EXEecDfwZIrJDvuAY8rkrwcuBa6O\niI8At1N8K+c4YAB4TflHoKSay8xrI+Icivv3axHx3xTfwH8jsBE4oS3t1yPiK8AbImIb4H/LtCdS\n/KfurROdf0mjN5r7Hp/5UtM8rlz+slsCn/dS42zyvsfnvdQkbwK+CnwvIs4FbgW2p/gbfwHw2sxc\nD/i8V0f2wJFqLDMvpIjG/5zig/oTwAuBzwJ7Z+ZNZborgf2Aa4DjgU8Cr6b4g2//zLx04nMvaQxO\noAjUPhr4KMUfbMuAp2XmVUPSvgx4J8W39D9V7vsN4IDMvHuiMixpzEZ03/vMlxpn23J53ybS+byX\nmmOT973Pe6k5MvPrwNOA71L8vX8BxTP958BhmXl+W3Kf93qYGYODg5OdB0mSJEmSJEmSJLWxB44k\nSZIkSZIkSVLNGMCRJEmSJEmSJEmqGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmS\nJNWMARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEk\nSZIkSZIkSaoZAziSJEmSJEmSJEk1YwBHkiRJmkAR8ZiIGIyIq0axz2BEDI5jtjQNRcT8iPhpRNwR\nETtO4HmPKtv0qRN1zrGIiAvK/D5jnI4/ousREUeU6c4Yj3xIkiSpfmZOdgYkSZKksYqInYHXAs8C\nHgvMB1YBvwAuA87LzDsrOtd+wKLM/PfNPMS9wEnAr6vITxUi4hTg25l502TnZSqqoE1MlguAxwFP\nz8y7AcrA4tNHsnNmzhi3nE0v11N8Jny/fWVEvARYn5kXA2TmpyPir4C3RMR1rfWSJElqLgM4kiRJ\nmtIi4gTg34AtKF6AXkARJNkWeBrwduCkiDgxM8+t4JT/BBwKbNbL+sxcBZxVQT4qUfa8eB/wW8AA\nzuYZU5uYDBFxOLAY+EhmXt0hyceBnNhcTU+ZuRxY3mHTacAyoD1Q8ybgecBHI+KqzFw5AVmUJEnS\nJDGAI0mSpCkrIt4IfJCiN8uLM3NZhzQHAl8AzomIGZl5zhhPu/8Y96+bppVnMkypaxgRsymCdqsp\nggSdfDkzL524XKldRGxL0TvqIZ9pmXlfRJwOnAu8jaLnjiRJkhpqxuCgQ2lLkiRp6omIXYDbgA3A\n3pnZtbdARDwR+CHFHJC7toZTi4gLgCOBf8rMC4bs8wxgCXBtZu4fEUcBnxp67NYwUhGxkKK3z7OA\nPwfWASuALwNnZeb9ZbrHALcD38nMZ7Sdb2vgdOCFwCOAO4CLgDPKMj5syKqyXG8Fngn8GbASWAr8\nW2Ze0+16tO3/S2CXIatPy8xTy+1zgBOBFwG7AxuBW4FPA+dm5sa2Y50KvBP4Z+DHFAGCJwNrgW8A\nxwFrgDcDrwQeDdwFnAecmZmDQ67PT4H9gDMpeoo8okz/WeDdmbluSFkeTfFC+9nAzsB9wA3AhzPz\n60PSXkUxTNieZb5eDHwpM48ut29HcV2fByykaDe/ougJ8e7MvK9MdxRd2kRb+3lIPbfl4ZcU1/4J\nmfmzIev+DPjPsizvy8wzyu0jro/hRMSrgY8BH83MY7pcm8NGE8Apr/87+FP7HwB+DnwO+EBmPtCW\n9iiK63Ya8AmKHmkHAVtTDHv4ocz8WFv6Z1Bcyy9QBC7+Awhgt8z8dZlmxPdC23WeA7wMOIEiWLIB\nuBo4uewV00p/AcXnxDPLcr0b2JuiXdwAvDUzvzfkHL3A64BXAE8o094O/Dfw/sxc0+l6ZOapbedr\n92A7ioi5wJ1AL/CoslefJEmSGqhnsjMgSZIkbabXAbOAjw8XvAHIzJ9QvCDdgiLAsDla81QA/LH8\n90nw4Av/ZcCrKAJF7wE+DPRRBDUui4iuf3tHxAzga8DxFMO/vQ/4OsXL5Y912eevyzy9iOLl9ukU\ngZJnAd+NiJeNoEzvAS4v//2FsjyXlcefA3wHeBdF4OUDwPnAXOBDwP90KdPjy7zfWKb7A3AUcA7w\nEYoX2l+kCFA8AngvcHiH42xJETDZjyKQ9W8UAYu3Av815Fo8nuJF+tHleU8vy/MU4GvlHD+dHA8s\noujFdUl5rHkUQ/G9iSJo895y+0Dr+rSVu2ubGKP3AI+kaAfLynxtbn10clS5/HIFeSUi/hz4AfAa\nivb/bopAy3YUAcjPdNn1EcA1QD9FeT5LEZj5aES8sEP62cDnKYIs7wJaQdHNvRdOorjGl1EEkRL4\nW+DyMkgy1NOAr1IMNfheinbyNODbZQC3dT16gK9QfAbMpWj3Z1PU26llnuZ1yRNlGc8r//2DMp//\n2dpYBn8upgh4PX+Y40iSJGmKcwg1SZIkTVUHlcuRTuT9VYrgzbMoesqMSmueioh4P7AqM9vnsXkh\nsBPFN+tPbt+v/Db9iygCEUu7HP65wDMo5sHYp9W7JCLeTPHS/iEiYhZFUGNL4KDM/E7btg9SvPT9\nz4i4NDP/OEyZPhYRO1Nck0uH9EJ6B7APRQDpmLYeMm8FLqV40X0kD++B8nrgOZnZCgR9EPgNRZBm\nOfCUzFxdbruSInD1YopeJO12pejBsW9m9pfpP1AeY3FEHJCZrUnfPwlsDxyemZ9tuxbvBm4GTo+I\nr2TmbUPOcRCwV6t3VOnFFEGEb2Tm89qO9S6K3i77U8x3861NtImx2BP461a5S5tbHw8REfMpglYP\nUARCqnAMsAPFfDrHtp3rgxS95F4UEU8sA6ntjgZek5kXte3zC4oAzBHAl4akfzZFb5cPtaUfy73w\nKuDJmfmbMv1pFMGZPYFDePhny78AB2bmT8vfz4iIyyjunxdQBNIAXg38HUW9PK/VMyoi3gZcSHEv\nnEwR3H2YzLw0ItYBrwWWd2lX36IIxB1GMe+XJEmSGsgeOJIkSZqqdi2XPx021Z/cUi53G4e8bFsu\nOw1h9arMnJeZ3YI3AH9fLs9rHxosM9dTfNN/qEMohoC6uP2FdbnPLRQ9HuZTvEQetbJH0KsphpQ6\npRUsKI//APCv5a+v6LD7D1vBmzL9HynqaCbwwVbwptTKe7c6eXd7EKOcsL0V6Dm0zOseFAGJH7YH\nb8r0d1H0fJgJ/GOH439tSPAG4Iry2A/pSZOZa8ttAE/qkt+qfKG93GOsj6FaQ3/9oH0Yrw4eGRGP\nGeZnx7a0nwaeQzHc3YPK6399+Wuna/aT9uBNqTVs29Ch/aDocXfhkHVjuRc+1ArelOn7gSvLXx/X\nIf1FbcGblm93yO9ryuVJ7cPaZeYA8Jby15HU1XBuKJdPHeNxJEmSVGP2wJEkSdJUtXW5HPoCvpv7\nhuxXpcsoho06Z7CNPgAACZdJREFUuZzL5rPA9ZnZP6QXRTd7lMsfddh2bYd1+5fLX5Vzxgz1f+Vy\nbx7+wnskdqWYR2QFML/stdHu9xRDiu3dYd+bO6xrXftbuqyf3WGffv708r/dz8rl48tl61r8osu1\nWFEuO+X1xqEryjlVWvOq9FL07JlTbm4F1zrlt0pD8zWW+hhqp3L5602ku2AT279D0WuMzPw5RW+p\nVo+Y7Sl6xMCf7s9O1+yGDutavWSGlhHgV5l575B1Y7kXftghfV+5nNNhW6f0D8lvRGxBMfdTP3B/\nlzzdAzwmIrYdrofcJrQCTzsNm0qSJElTmgEcSZIkTVV9FHNozGdkQZzWC+GVVWckM28s5+z4CHBs\n+bMqIv6XogfAV9p7TXTwiHLZ6WXuHzqs26Fc/kv5080jh814d63jL6SYeL2bbSJidnuvIYo5fIYa\n7LQtMwcjAmBGh31WlT2QhmpdowVD8vri8qebTteiU16JiFdTzI+zZ5e8jbeh+RpLfQzVamu/30Qe\n3kWHAFebB/cvA11vohgS7bGbOG67Tu19oFx2uu6d6mss90Kna9Bqq53OP5L8PgLoLf89XF218rRZ\nAZzMXBsRa4C5ETFvSM82SZIkNYQBHEmSJE1VPwMOBP4fcOcI0u9ZLkc65NqoZObXIuISiiGd/rZc\nLi5/Lo+I52Tmhi67t17+dgrydBr2uJXuUxRzyHTzm2G2Dad1/F8Bb9hE2k7DxlVhoMv61vVoBSla\nef0m8PFhjtcpcPew3lER8a/AaRS9gz5M0evi/vI8RzAxk8YPzVeV9THSQObSzLx0E2laPgb8E/Bb\niiH/lgOtgMKbgKeN8Dib0qk323jfC6PVys9aOg/b126seVoJzKUIZhrAkSRJaiADOJIkSZqqLqMI\n4LyEYkLvTfmHctn+Unq4XjGj7r1SBmi+Wf4QEU+lGLbpWRQTzHcLMLRepi/osG2HDuvuLpf3ZObQ\nidar0Dr+nHE6/kjMj4iZ7XOIlFrX6LflspXX1WPNa0TMBE4sf/3bzLx6yPZnj+JwXdtWOafNn43i\nWFXWx6py2WmIslGLiJ2Ao4D1wIGZ+Ysh24+p4jzDGO97YbT+QDFX0Rzg2+XcSeOlVYd9w6aSJEnS\nlNXp23ySJEnSVHA+xbfcXx4R+w2XMCL2pOghcD/w0bZNrV4cnQInI5lPpHX82RHx+KHrM/MH/GnS\n8uGO15rXZc8O2xZ1WNeaF+fgLvnZoZyLZ7Nk5i+B3wE7RMRfdjj+jIjYdXOPP0Iz6XzNWvMF/apc\ntq7FX5fzrzxERCyIiEcMXd/F9hRzJK3sELyZBRw0wuPA8G3r8RQ9J0ak4vpoDRs2mgDScHah6EH2\n0w7BmwXAsPdmBcb1XhitMojbGnquW55GM8xcRxExB5gHrMvMkc4DJkmSpCnGAI4kSZKmpMz8LXAc\nxXwT34yIQzqli4gDgW8DWwDHZGb7nDKtCc4PG7LPY4FXdzn1emDbct6PlquBH0fEkzqkbwUh7him\nOK0eREe3ByEiYjZwSof0l1NMQr93RLxoSN7nARcDf4hygplNaAUath+y/hPl8vQhZQV4I/CLiDht\nBMcfi7dHxIP/Z4mI7YCXl79+EyAzfwosBXZkyPBiZY+aTwC/i4iRBF/uAR6g6P2z85DjfAjYqly1\n7ZD9OrWJ1vwne0bEo4cc6wxGP/RcVfXR6rGy87CpRq41fOEuZdsDHmyHn+RP7WvoNatKlfdCVVp1\n9a9loKU9T88Hfh4RF27iGN3uy5adyuVdm5dFSZIkTQUOoSZJkqQpKzM/UQ5H9WHg2xFxPfBdimGM\ntgUOoBhmbTVweGZ+bsghvgCcChxSzl+zlOLF6EuBD1JM5D7UcoqgzDcj4hfAfwBvo3hR/P2I+Cpw\nK0VgaW/guRTBm48NU5QvUgzdtTewLCL+p8z/YcAPKCaGf3DIq8zcGBGvoAj8fD4iXgDcTPGy94XA\no4GzMzOHOWd7eQBOiYjHAHdm5nuB0ymGfvs74IYyT4MU1/Mg4DbgIyM4/ua6C9gSuC4irqQYlupl\nFIGaz2XmjW1pXwNcBfxbRDwD+D6wTZn3xwNfBZZs6oSZ2R8RnwFeCVwVEZ+j+D/T31MMU3U8RV0d\nHhF/AD6ZmXfQoU1k5vKI+AZF/X8vIj5PMa/PYRS9YL4P/PUorkdV9XFDud8+ETFnrEN8Zeavy/o5\nCPhuma+tKdrhD4AzgX8Hji8DKv8+lvN1OH+V90JVPk5RT8+hCOx+kaK34FMo2sPvgPds4hi3UQQT\nnx0RFwD9mfmqtu2twPAPK8y3JEmSasYeOJIkSZrSMvPjFAGOd1O8mD6KIvDySoq/d08F/iIzP9th\n3xXAocA1FC/TTwH2oeh98+kupzyOYsizvwEWA7My89sUE7V/FfgrimHTTgEeR/HC+qmZec8wZdgI\nHEIxvNvOFAGhvwe+XJbjgQ77XAU8Ffhcec7TgFdRDC12FEWvjJH4JsUL5y0phpnbrTz+GuAZwDso\nhsg6EXgzsBD4AHBAZv5uhOfYHD3A84HvUQRuTqIIir27zOeDMnM5xcvx84AnAv8KvJ5iyLwTgJdk\n5sAIz3s8RfBuJnAyxRxLX6cInnyVIug3GziGIkgEHdpEuf4I4FMU86H8C3A4cCXFy/3h5l96mKrq\nIzNXUgQqt6QI/lThpRTlfGSZp+dQ1MVLgQsoesnsSNGWHzbM3VhVeC9UlZ8BinZwPHAvRft4O/D/\nKO61fTPz1k0c4w/l/n+gaP9D6+rQcjmS+b8kSZI0Rc0YHBzV/xskSZIkadyUvYBuB36bmTtOcnYa\nKSKOpphD6rzM/OfJzo9GpxyW7Q6KYSEflZl9k5wlSZIkjRN74EiSJEnS9PJp4DfAERHRbY4V1deR\nwHbARw3eSJIkNZsBHEmSJEmaRsp5b94CzKMYbk5TRERsRVFnv2fT8+hIkiRpijOAI0mSJEnTTGZe\nBHwNeH1EVDUXjsbfB4CdgKMz897JzowkSZLGlwEcSZIkSZqejgRuBT4fEc43VHMRcThwNPC+zPzq\nZOdHkiRJ42/G4ODgZOdBkiRJkiRJkiRJbeyBI0mSJEmSJEmSVDMGcCRJkiRJkiRJkmrGAI4kSZIk\nSZIkSVLNGMCRJEmSJEmSJEmqGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmSJNWM\nARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEkSZIk\nSZIkSaoZAziSJEmSJEmSJEk18/8BZIcfYy+Wre0AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 824, + "height": 250 + } + } + } + ] + }, + { + "metadata": { + "id": "El9Z_4ulIAz3", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "It looks clear that *the probability* of damage incidents occurring increases as the outside temperature decreases. We are interested in modeling the probability here because it does not look like there is a strict cutoff point between temperature and a damage incident occurring. The best we can do is ask \"At temperature $t$, what is the probability of a damage incident?\". The goal of this example is to answer that question.\n", + "\n", + "We need a function of temperature, call it $p(t)$, that is bounded between 0 and 1 (so as to model a probability) and changes from 1 to 0 as we increase temperature. There are actually many such functions, but the most popular choice is the *logistic function.*\n", + "\n", + "$$p(t) = \\frac{1}{ 1 + e^{ \\;\\beta t } } $$\n", + "\n", + "In this model, $\\beta$ is the variable we are uncertain about. Below is the function plotted for $\\beta = 1, 3, -5$." + ] + }, + { + "metadata": { + "id": "U4kW2QIddYEs", + "colab_type": "code", + "outputId": "9035341f-411e-47b9-a89a-7d03e3b8934b", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 210 + } + }, + "cell_type": "code", + "source": [ + "def logistic(x, beta):\n", + " \"\"\"\n", + " Logistic Function\n", + " \n", + " Args:\n", + " x: independent variable\n", + " beta: beta term\n", + " Returns: \n", + " Logistic function\n", + " \"\"\"\n", + " return 1.0 / (1.0 + tf.exp(beta * x))\n", + "\n", + "x_vals = tf.linspace(start=-4., stop=4., num=100)\n", + "log_beta_1 = logistic(x_vals, 1.)\n", + "log_beta_3 = logistic(x_vals, 3.)\n", + "log_beta_m5 = logistic(x_vals, -5.)\n", + "\n", + "[\n", + " x_vals_,\n", + " log_beta_1_,\n", + " log_beta_3_,\n", + " log_beta_m5_,\n", + "] = evaluate([\n", + " x_vals,\n", + " log_beta_1,\n", + " log_beta_3,\n", + " log_beta_m5,\n", + "])\n", + "\n", + "plt.figure(figsize(12.5, 3))\n", + "plt.plot(x_vals_, log_beta_1_, label=r\"$\\beta = 1$\", color=TFColor[0])\n", + "plt.plot(x_vals_, log_beta_3_, label=r\"$\\beta = 3$\", color=TFColor[3])\n", + "plt.plot(x_vals_, log_beta_m5_, label=r\"$\\beta = -5$\", color=TFColor[6])\n", + "plt.legend();" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAGDCAYAAAA1YX+ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd0XNlh5/nvq1wo5EAwgJlgMTa7\nm02yg2KrlWXJCpZkWWOv5SDL9uzIGu+c2dnjtWfX3tljz46zLVuWvJ7RSm61ZElWaMtSt9QtdSK7\nmVMRJAGCIAkSIFKhULnu/nELFRCYEArh9znnnvfeffe9ukVVQ1X1q3uvY4xBRERERERERERERERE\n5o6r0h0QERERERERERERERFZ6hTIiIiIiIiIiIiIiIiIzDEFMiIiIiIiIiIiIiIiInNMgYyIiIiI\niIiIiIiIiMgcUyAjIiIiIiIiIiIiIiIyxxTIiIiIiIiIiIiIiIiIzDEFMiIiIiIiIiIiIiIiInNM\ngYyIiIiIiIiIiIiIiMgcUyAjIiIiIiIiIiIiIiIyxzyV7sBcGB4eNpXug4iIiIiIiIiIiIiILG11\ndXXOnbbVCBkREREREREREREREZE5pkBGRERERERERERERERkjimQERERERERERERERERmWMKZERE\nREREREREREREROaYAhkREREREREREREREZE5pkBmmero6KCjo6PS3RCZEb2OZSnQ61iWAr2OZSnQ\n61iWAr2OZSnQ61iWAr2OZSnQ63huKJARERERERERERERERGZYwpkRERERERERERERERE5pgCGRER\nERERERERERERkTmmQEZERERERERERERERGSOKZARERERERERERERERGZYwpkRERERERERERERERE\n5phntm4UDod9wO8Dvw08H4lE3nQX1z4K/A7wMBAEzgGfA/4iEomY2eqjiIiIiIiIiIiIiIhIJcxK\nIBMOh8PAl4CtgHOX1z4OPA1cBn4PGADeB/wZsBn49Gz0UUREREREREREREREpFJmPGVZOBxuAA4D\nbuChe7jFXwEJ4PWRSORPI5HI/4hEIh8Cvgn8z+FweM9M+ygiIiIiIiIiIiIiIlJJszFCxgf8d+C3\nIpFIwg6WuTPhcPgAEAb+LhKJXJtw+i+wI2U+DhybhX7KBN0xNxc6Yvd07V0Ng1rMFtETrURXnVs8\n6L32x7ndlSWn+wd8AHRfHLunx5zY/zu53pn24NbXjz/WdM9vqn9LZ6p9Z+rzU93DKWwLD37La5xb\n1jnTtivrZ0ld+X2cssd3Jl7vjP9CwJm63il/XCf/rApt8+fL65yyuvI2TvE4v3U5xedZPC62FxER\nEZH5ZYzB5GzBUNg3xhTOYWw7DMU2+WODgVzxfOm27Bry+5TcC6ZuM6H9pOPx6/Lnyo5vU3er+rJr\nuUWb6dpN02bKU+YWJ+/wHjO572j/KADdfd339DgL2R3/28qiF70ZBeDS9UsV7onIvYvejBLaGqp0\nN5acGQcykUjkOvCpe7x8f3770hTnXslvD9zjvSfp6OiYrVstCd1jXg5fubdARmRhCNpN/g27yFxy\nMGUBTnF/unpwHINrinMuTEkQFLL1l6+WtS9sJ9S5HFMIjFyFe5S0yd9//Lw7/1h2P9+2cK/isTu/\n7wbcJXXusvPz+S8ui5Hea8lSoNexLAV3+jo2OYPJGkwmX8b38/XksHV3cEy2JAzJUQxCcpQFKtPW\nj4cdJSGILG9RopXugsiMjaLvK2Rxq9pUpffHJdrb22d8j1lZQ2YGNuS3PRNPRCKRaDgcHgI2zWuP\nREREpmBw7PcCpqySRTWUboYcpghvXDa08eTDG7cDnvGtyxRCndLzbpdt48m38Zbsexzwuow9P97O\nZR9TRERE8qM7MgaTNuRSOXLpHCZlyra5VK4YspSELblMrix4IVfpZyMiIiKyvFQ6kKnJb8emOR8r\naTNjs5FgLRVKNkVE5G4ZHLIGsqVBVHZ+HtvlgM/tFErAU9z6PQ7+0v38sd/jEPC4SvYdgl6HoMeF\nz62p6GbT+PsKvdeSxUyvY6kUYwzpsTSpWIrUaHlJx9KkE2kyiUxZ0egRERERmS96fzy7Kh3ISAU9\n2pzg5x9uq3Q3FqzF9BmnEtPQ3utD3rqvt77rxLMXLlwAYPPmzXf9b3AnzW91z0nTOd9J25JG0zUv\nTEU9RQMzxYGZ6hyT5yYuHdkx6RozxaCPknpTcuGkdiX3NFO1yVeaqdqbCX3Jz79dVj9de1OcETtn\nim3H75PLny3MeFG2NVPX58/lDGXPJWeK7XOGkn1TuDY38fr8D06NsceFutLj/D1isTg5IBAIFs6b\nfOhhjCGbbz9+rlCfK9aPt1nKcgYSGUMiMztP1OVAVT6cCXqLQU3Q61DldREcD2/y+yGfi2qf3QY9\njsIcERG5I5lkhsRggsRwohi0TAxeYqnF9eFjnAMuj8sWtwvH7dity7H7LlvnuJzyuvy+4yppX1Jw\nsPvOFHXj9fm5XMfbML4WoEPx/IS68faFY4rHZftOcf3D6doW2uT3C+dvcTzVNWX1E+rsxplUVzi8\n3SKUt2p3i/Z3dN0d3uNe73v+/HkAtmzZcs+Ps5DpfeTyoB96yFLQ0dGxpP7+LhSVDmRG8tvpVgeq\nLmkjs8yTiOMeuAleb7F4POUrcYvMq7t77fnsKvAEPK456IvI/Ojo6AegvX31jO+VKwQ1NqTJ5iBb\nWpcjP8JlYp3dZnL2ukyu/DibM2RyJfUl7TP5c+lssU06Z0hni+fTOchkbX1mgUyNkjMwmjKMpu5+\niI/LwQY03vGgxpaQz8lvi+FNjc9Frd+FWwvwiIgsWZlkhvhAnPhgnMRgorAfH4iTHktXpE9uvxuP\n34PL68Ltddvic9tjnz0unPO5y9q5vK5i0DIetnhseDJ+7PLYIEVkLjj5uWpd+pwni9j430j9rZTF\nTK/fuVHpQOZifjtpmEY4HK4D6oDD89qjZaTh8CGcv3ppUr3xeMDjBa+nJKgpCWxKAxyvF7y+Keqm\nqPf57PW+fL3PX6z3esHtrsC/gojI0uFyHFxuWMg/YTEmH+DkDOmsIZW14U0qv5/KBzdT1mcNyfx+\nMmNLomQ/md+f6x8Z5wxEkzmiSbjTOduqfQ61fjd1ARd1fhd1ARvU1AXcdut3UeN34dViOSIiC1Iu\nm2Osb4yxm2M2bCkJX+YqdHH73HhDXrxBL56AZ+riLz/uvtqN43XYunXrnPRJRERERGam0oHMi/nt\nY8DnJ5x7fX77k/nrzvLiZKb+EsnJZCCTgcT89se43Dac8ZWEOeP7vpIy8XhimfK83279fhsKiYhI\nRTiOg9eNDR68s39/YwypLPlwJlcW2iQyhnjaEM/k7DZtGMvvJ9I54hnDWNoQT+dIz/JIHjsaJ8PV\n6K3bhbyODW0CbhqDLhqDbhqDbpqq7HGN34VLI1lFROaUMYb4QJzotSjRq1Gi16KM9o5isrMT+Xur\nvPiqfbaEfFPvV/tw++7+B2uufo0oEBEREVnI5vWb6XA4vA1IRiKRToBIJHI0HA4fBn4mHA7/75FI\npCffzgF+C0gD/zCffVxOnEym0l0o4+SykIjbMocKwY+/JKzx+0v2J9RPLNPV+wMKe0REKsxxHPwe\n8Hsc8N/7l1Lp7HiAk2MsbYilc4ymcsRSJr/N5UMWux9L23Mz/aouljbE0lmuRqf+0YTXBQ0lAU0x\nrHHTlA9sNC+5iMjdSY4mbfAyHr5cGyWTuPfPSt4qL8HGIMGGIIGGgN2vD+Kr8eGt8uJyKzQRERER\nWa5m/O1xOBzeAeyYUN0SDoc/VHL83UgkMgacASLAtpJzvw78EHg+HA7/CTAEfBR4HPidSCRyYaZ9\nlKlFd+yk/r77IJ22JZPJb9OQzpTUp4v7pe3SaUin8tsMpFM42bufi3++zWXwY1xuCEwIaQIBu/X7\n8+fG9wMl5/3FukAwvw3YYMilD2wiIvPN63bwuh1q7iLUyRk76mY8pImmDNFkjuFklpFEjuFkrrCN\nJnP3FN6kc3AjluVGbPrAprnKTWu1h9bqkm3IjV/zsIuIkE1nGbkyUhbApKKpu75PaegSbCwPXjwB\n/UhLRERERKY2G+8UPwz87oS6HcBTJccbga6pLo5EIq+Ew+E3AP9Hvvixwc0nIpHI389C/2QaiVWr\nob19Vu9pcrlpw5pCfSpVsk1BqqTtdHWpCfupJKRSC3OUz9iYLbPAOE4+qAkWw5xgML8NFI/HA5xg\n0LYt3Qbz9W59MBQRmUsuxyHkcwj5bh98ZHM2uBlO5hhO5BgpbLMMJ3IMJXIMxLOMpe8utknn4Npo\nlmujkwObhoBrQkjjYWW1W6NqRGTJS42mGLgwwM1zNxnsHCSXufN5KR2XQ2hFiJpVNdSsriHUGiLY\nEMTj13trEREREbl7M34XGYlEfg/4vTtsO+Wn/Ugk8irwrpn2RRYAl6s42mMeFAKgCUHN5JKvT5ac\nTyZvXZ+01zm5WV5I4C44xkAiYcsMGa83H9pUTQ5vqqry4U3pflXJcX7ffffzWIuIyGRul0NdwE1d\nwA1107eLp3MMxG04c3Msm9/a47sNbAYTOQYTOc72ly8+HfQ4tFa7WVntoa3Ww9o6L2tqPXbaNxGR\nRcgYQ/xmnP5z/Qx0DDByZeSOrw02BgvhS83qGkIrQri9eg8sIiIiIrNDP+uRxW2uAyBjMJlMMaRJ\nJCGZyAc3CRvalG5TKRuepJJ2m5y4tftO6u6nRZgpZ3yEUvQ2K0rfghkfrVNVEtZUVUFVqGQ/fxwM\nQihUPPb7Qb/AFhG5K0GvizVeF2tqp37LNpbOhzP5kKZ/zE5ndn00w0D8zn5QEM8YuoYydA0VR506\nQGu1m7V1NqBZW+thTa2HoFfTnonIwmRyhuGeYW6eu8nNjpskBm//gyZfyEfNmppCAFO9shpv0DsP\nvRURERGR5UqBjMitOA54vbZQPWu3NblceViTTBQDm0Qyv8ZNYkKZoi6ZgHjCTpU2D5xk0vZ3eOiu\nrzUulx1pU1Vlg5pQyAY1oQllYl2wSiNzRESmUeV1UeV10VY7+Vwqa7gxmuF6LEvvaIbro1muj2a5\nEctwu9l6DNA7mqV3NMuhK8lC/YqQm7Y6D+tqvbTVeVhb56FKIY2IVEgmmWHw4iA3O24ycGGATPzW\n0xm7fW4aNjXQ1N5E/fp6fDU+TdkoIiIiIvNKgYxIJbhcxSnCZsoYTDptA5t4PriJ58Ob+Fh+O16X\nbzOxPj6GMwvTot2Kk8tBbNSWvru71oyPshkPaaqrIVRNYzJJNhiE4UGorik7h883N09ERGSR8Lkd\n2uq8tNWV/9o7ZwwD8RzXRzP0jtrRNNdHs1yNZkhkbj0F2o2YHYFz+GoxpGmuctHkDrKmKkPdaIaW\nkFtfcIrInDHGMNg5yNXXrjJ4cRCTvfXfLV+Nj6b2Jpq2NlG/rh6XRyGyiIiIiFSOAhmRxc5xbPjg\n80HtLRYiuA2Ty5UFNIyNFffL6kvOj42VtXXM3S0+faec8cfqL09ymm/1fLw+G85Uh2xAU10DNePb\nmpJttd1WhWxQJiKyxLkch+YqN81VbnauKNbnjKF/LMvl4Uy+pOkZydx2nZr+sRz9+IhEfTx7fYBa\nv4stjV62NHnZ0uhjZbUCGhGZuWw6y41TN7hy8Apj/WO3bFvdWk1jeyNNW5uobq3W3yARERERWTAU\nyIiI5XIVR6Dci1wOE58Q1sRi5cdjsfJzsRjERnHi8dl9LoCTTsHggC13wDhOcXRNIbCphprafKmB\n2vx+ba0d3aQP9yKyhLgchxUhDytCHvautnXGGG7Gc/QMp+keztAzYoOa0dT0Ic1IMsfha0kOX7Oj\naKp9DlsafWzOhzSrazy49PdTRO5QajTF1deucu3wNdLx9JRtHJdD/fp6mtqbaGxvJFAXmOdeioiI\niIjcGQUyIjI7ZhDomGzWBjeFkCZmw5vS/dFYfsqzGIzaqc9mc5o1xxiIRm3pvXb7Pns8NqSpqSmG\nNrUTgpu6OjtqKaTRNyKyODklo2nuX2XrjDEMJXI2oBlO0zWU5sLNFGkzdcgymjIc7U1ytNcGNFVe\nx4YzjT62NnlZU+vRr9dFZJLR66P0HOyh71QfJjdFCOxAU3sTK3asoGFTA56APtqKiIiIyMKnd60i\nUnlutx2RUl1zV5d1nDmDK5Fg04oWG9KMjhZG3YyHNoX6URu2OMnk7W98B5xMBgYHbbkN43LbkKZ2\nPKSptUFNbV3xeDy88ftnpX8iInPFcRwagm4agm72rLR/s86e66Av4SYZaqXjZpqLg+lp16MZSxtO\nXE9x4noKgPqAi92tfna3+tjS6MPrVjgjslwZYxjoGKDnYA/D3cNTtnH73Kzcs5LV+1YTrJ+F9RhF\nREREROaRAhkRWbSMx0O2uhrWtN35Nel0PpwphjTF7ajdxvLb6Ihdv2aGnFwWhgZtuV3//H6or4e6\nfKmvt2FNoS6/71NwIyILh9uBlcEs7ZtDPLHZrkdzZSRDx8005wdSXBhIT7sWzVAix48vxfnxpTh+\nt8P2Fh+7Wn3sXOGn2qfRhSLLQTaVpfd4L1cOXSExOPUI6EB9gNUPrWblnpV4/PoYKyIiIiKLk97J\nisjy4vVCQ6Mtd8BkMza8iY7AyIgNakZG7HG09Dgf4GSzM+qek0zC9eu23KpfwWBJYFMP9XV229AA\n9Q32+dXWaqo0EakIl+Owts7L2jovj2+qImcMvdEsHQMpzudDmqnWoUlmi9ObOUTZ1Ohl9wo/u1p9\ntFbrbavIUpOKpeh5pYfeo71kEpkp29S21dK2v42mrU04Lo2gExEREZHFTZ9sRURuxe2xoUd9/e3b\nGoMZGyuGNyPDMJzfjgzbuuH8fjRq1625R048DvH4Lde7MS5XfkRNQ0lQM2FbXw8e/V+BiMwtl+Ow\nutbD6loPb9xgpyXqHc1y8kaSE9dTdA2mmfgX0QAXBtJcGEjzjbOwIuRmd6sNZzbWe3Hri1mRRcsY\nQ+/RXjp/2DllEOO4HJq3N9O2v42aVXc3pa2IiIiIyEKmb+FERGaL40AoZMvKVbdum81iRkcnBzXD\nQ3Z/KL8dHrLr1dxLd3K54jo3ndO3M7W1dkRNY+PkbWMT1NRopI2IzCrHcVhV42FVjYe3bg4RTeY4\ndSPJietJzvanSE0x2PBGLMszF8d45uIYIa/DA6sCHFgbYH2dB8dROCOyWMT6YnQ83cFIz8ikc56A\nh1UPrGL1Q6vx12h6VhERERFZehTIiIhUgtttR6/U1d26nTGYWMwGNUNDJdt8aDNSDG+c3L1Nl+aM\n5Ef0XOqaugsejx1N0zhFWNPYCE1NWtNGRGakxu/i4bVBHl4bJJU1dNxMceK6HT0zksxNah9LG37S\nHecn3XFWVrs50BZg35oAdQF3BXovIncim87S/UI3PS/3YHLlY+ICDQHa9rfRursVt0//HYuIiIjI\n0qVARkRkIXMcqK62ZU3b9O1yOUw0CkP5ETGl26GhwkgZJ526+y5kMtDfZ8s0TE0NNDXbcKaxqbg/\nvvUrsBGRO+NzO+xc4WfnCj8f3mXoGc7YcOZGiisjk0cM9o5m+ebZGP98Nsb2Fh/72wLc1+rH69ao\nGZGFYrBzkI5/6SAxmCird9wO6x5bx9qH1+LyaDSuiIiIiCx9CmRERJaC8fVi6upg/Yap2xiDGYuV\nBTQ2uBmAgYHC1kmn7/rhnWgUolHomnpuNFNTMzmoaWmB5mZb7/Xe9WOKyNLnchzW1XtZV+/l3WEY\nGMty4nqSV68m6BoqD2cMcLovxem+FEGPw97VAQ60BVhfrynNRColNZriwjMX6Ds1+Ucd9RvqaX9H\nO8HGYAV6JiIiIiJSGQpkRESWC8eBULUt0422McaubTMe0gzcLAtrGBiAkWEcM3H57ds89HhgM8W0\naMZx7JRozeMhTUtx29xiRwfpy1QRARqr3LxxYxVv3FhF72iGgz0JDvYkGJ4wrVk8U5zSrDXkZn9b\ngP1tAeo1pZnIvDDG0Hu0l84fdpJJlIen3qCXTW/dxIqdKxSWioiIiMiyo0BGRESKHAdqamxZt37q\nNpkMZmiwGNjcvAk3+4vbgQGc3OQ1H6Z9SGNs4DM4AB3nJp03fn8xnGlphpYVsKLVbhsb7eggEVl2\nVlZ7eO+2at4TDhHpT/FKT4LjvUnSE/78XI9l+VYkxrcjMba1+HhkbYA9K/249EWwyJyI9cXoeLqD\nkZ6RSedW7lnJxjdvxFulkbEiIiIisjwpkBERkbvj8RQDkqlks5jhoXxAMyGsuXkzH9hk7/jhnGQS\nrvTYMoHxePIja0pCmhX50tiksEZkGXA5Dttb/Gxv8TOWznHkWpJXLsfpnGJKszN9Kc70pWgKunjz\npioebgvi9yiYEZkN2XSW7he66Xm5B5MrH0lb1VRF+zvbqVtXV6HeiYiIiIgsDApkRERkdrndNgxp\nbIL2Kc7ncnaETV8f9PdD3w277e+D/j6c0dE7fignk4HeXlsmMG63DY1WrCgGNitX2m1Dg6ZBE1mC\nqrwuHlsX5LF1Qa6PT2l2JcFQonzYzM14jq+eGuW752K8YX2QN2yoosavAFfkXg12DtLxdAeJoURZ\nveN2WPfYOtY+shaXW/+NiYiIiIgokBERkfnlchUDm/Dk0yYet6Np+vryIU0+rOnrg5v9ONk7G13j\nZLNwvdeWiY/h80FrK7SuLCn540Bgps9QRBaA1moPP7WtmneHQ5zrT/NKT5yjvUkyJdnMWNrwL+fH\n+MHFMQ60BXh8YxUrqvX2WOROGWO4cvAKF5+5OOlc/YZ62t/RTrAxWIGeiYiIiIgsTPrEKSIiC0sw\nCG1rbZkom8UMDsCNG7b03YAb1wujbJxMZvI1U3BSKbh82ZYJTF19SVjTCitX2aL1akQWJZfjsK3F\nx7YWH+9PZHn+UpwfX4ozli5OqZTJwQvdCV7sTrC71cdbNlWxqdFXwV6LLHwmZzj/r+e5dvhaWb23\nysumJzaxYucKHI1GFREREREpo0BGREQWj/FpyJpbYMfO8nO5HGZgoDykudFn9/v77jysGR6C4SE4\nFymrNz6fnfJsPKBZtRpWrYKWFnDr/05FFoPagJv3hKt56+YqXr6c4NnOMQbixSEzBjh+PcXx6yk2\n1nt4y+YQu1t9uPSlskiZTDLDmW+cYfDCYFn9it0r2PzEZrxBb4V6JiIiIiKysOkbJBERWRpcLmhu\ntmX7jvJzuRxm4CZcv27Xmxmfyuz6dZyhwanvN4GTSkF3ty0ljNudX59mlQ1oVuUDm9aV4NMv7EUW\nIr/HxRs3VvG69UGO9iZ55uIYl4fLQ9vOoQx/99owLSE3j2+sYn9bAJ9bwYxIMprk5JMnid2IldVv\nessm1uxfo1ExIiIiIiK3oEBGRESWPperOLJm566yUyaRsNOfXe+dUK7jJJO3vbWTzcK1q7YcKbmv\n49jHW70G1qyx29VroHWFRtSILBBul8Pe1QEeXOXn/ECaH1wY43RfqqxNXyzLkyejfOfcKG/fEuJ1\n64N4XPrCWZan0eujnPzKSVLR4n8nLo+L8HvDtGxrqWDPREREREQWB30jJCIiy1sgAOvW2VLKGMzw\nMPReg2vX8tur0HsNZ2Tktrd1jLHTpvXdgGPFpMa43Xbqs3xAE8Ih1dwCuZzWqBGpEMdxaG/y0d7k\n41o0w7MXxzh0JUG2uMwMoynD106P8lxXnPduC3H/Sr9GAsiyMnBhgDNfP0M2lS3Ueau87PyZndSu\nqa1gz0REREREFg8FMiIiIlNxHKivt2Xb9rJTJjZaEtIUwxpnYOD2t81m4coVW4A14/f8ot+uS7N6\nDaxeDW1rbamunu1nJiK3sKrGw8/tqeU94RA/6orzwqU48Uwxmekfy/KFwyNsqPfw/u3VbGrU1ISy\n9F09fJXz3ztvF1rKCzYF2fWRXQTrg5XrmIiIiIjIIqNARkRE5G6FqmFLuy0lTCJhpzu7dg2uXYGr\nV+HqVZyb/be9pZNMQlenLaX3rG+AtjYbzqxps/utKzWaRmSO1QXcvG9bNW/fUsXzXXG+f2GMREkw\n0zWU4Y9fGuK+Vj/v3RaitVpvq2XpMcbQ+WwnPa/0lNXXratjxwd34A16K9QzEREREZHFSZ8cRURE\nZksgAOs32FLCJBJ2urMrPfmQ5gpcvXJnU58NDcLQIJw8Ubyf12tH0owHNeNhTVXVLD8hEQl4XLxt\nS4hH1wX5l44YP74UJ1cySuD49SQnbyR5bF2Qd7aHqPErLJWlIZvOEvnnCP2R8h8VrNi1gq3v3orL\nrde6iIiIiMjdUiAjIiIy1wIB2LjJlhImGqXn0EH8/X20pNOFwMZJxG95OyedhktdtpTer7EJ1ubX\nw1m33m7r6mf5yYgsT9U+Fx/aWcMbNwT5ViTGkWvJwrmcgR9finPoSoInNlXx5k1V+NxaX0YWr1Qs\nxamnThG9Gi2rX//69ax73TqtnyQiIiIico8UyIiIiFRKTQ3xteuIr11HS3t++jNjMDdv2nCm5zL0\n2K3Td+O2t3MGbsLATTh2pFBnamvzIU0+oFm7Dpqa7Ro5InLXWkIePvFgHZ2Dab5xZpSLg+nCuUTG\n8O1zdhTNu8MhDrQFcOm/NVlkxvrHOPmVkySGEoU6x+Ww9d1bad3dWsGeiYiIiIgsfgpkREREFhLH\ngeZmW/bcX6g2iYSd6qzncjGoudJj15651e1GRuDUSVvG71VVVQxpxkfUrGjVujQid2Fjg5dPP1LP\n8esp/vnsKDdi2cK54WSOLx2P8sPOMd63rZodLT6NKJBFYejSEKe/dppMIlOo8wQ87PjgDurXa8Sl\niIiIiMhMKZARERFZDAIB2LTZlnG5HOZmfzGgudwNl7txBgdveStnbAwiZ23JM36/DWg2bIT162H9\nRhsK6UtkkWk5jsOelX52rfDxQnecpztijKaKC8xci2b57KFhdrT4+MjuGhqD7gr2VuTW+iP9nPn6\nGUzJIkmB+gC7PryLqmatUSYiIiIiMhsUyIiIiCxWLhe0rLDlgb2FahON2nCm+xJ050Oa20x55iST\n0HHOlvH7hKptOLNhYzGsqdcvpEUmcrsc3rChin1rAjxzcYxnL46RzhXPn+5L8V+eH+B926p5dJ2m\nMZOFZ+TKCGe/ebYsjKlZU8PCe7p0AAAgAElEQVTOD+3EF/JVsGciIiIiIkuLAhkREZGlpqYGduy0\nJc/Ex+DyZRvS5EfScO0ajjHT3saJjcLpU7aM36euHjZsgPX5smEDhKrn7KmILCZBr4v3hKt53fog\n34nEeKUnwfh/YYmM4cmTUV67muBj99XQEtLbcFkY4oNxTj11ilymmCI2h5sJvzeM26tRXSIiIiIi\ns0mfBEVERJaDYBVsDdsyLpXE9PTYkOZSly23C2mGh+DYUVvyzIpW2LjJlk2bYM0acOsthixf9QE3\nP7enljduCPKl41EujxTX4zg/kOa/PD/Ae8LVvGljUKNlpKLS8TQnnzxJeixdqGvc0sj292/Hcem1\nKSIiIiIy2/RtiYiIyHLl809elyaRwFzutuFMVxdc6rr9dGc3rsON6/DKSwAYr89OdTYe0mzcBA0N\nc/c8RBaotjov//6xBp65OMbTHTHGByCkc/D1M6McuZbgY/fVsqpGb8ll/uUyOU599RTxgXihrrq1\nmu0/rTBGRERERGSu6NOfiIiIFAUC0L7VljwTixVH0OSLMzg47S2cdArOd9gyfo+GBhvMbMiPolm3\nHnxal0CWPrfL4W1bQty30s+Xjo3QOVQcLdM1lOEPfzLAO9pDPLGpCre+BJd5Yowh8u0II5dHCnX+\nWj87P7wTt0/TlImIiIiIzBUFMiIiInJrodDkNWmGh+FSpx1Fc/ECdHXiJBLT3sIZHITB1+Dwa/Z6\nlxvWroXNW2zZsgXq6uf6mYhUzMpqD59+tIHnu+J8KzJKKmvrMzn4diTG0WtJfu6+GtrqvJXtqCwL\nXc910Xe6r3Ds9rvZ9eFd+Gv8FeyViIiIiMjSp0BGRERE7l5dHdx3vy0AuRym9xp0XoSLF6HrIly9\nOu16NE4uWxxx8+wPADDNzTac2bTZblevAZdrfp6PyDxwOQ5v2ljFrlY/Xzo+QsfN4rodPSMZ/uiF\nQd66uYq3bwnhdWu0jMyNa0evcfnFy4Vjx+Ww4wM7CK0IVbBXIiIiIiLLgwIZERERmTmXywYoq9fA\nY6+3dfE45lKXDWnyxYlGp72F098P/f3wyssAmEDQTm82Popm4ybw69fbsvg1V7n5twfqefFygm+c\nGSWRscFlzsD3zo9xrDfJx+6rZWODRsvI7Bq4OEDH0x1lde3vbKdho9b5EhERERGZDwpkREREZG4E\ng7Btuy0AxmBu9ttw5sIFuHAeei5PP4omEYfTp2wBjMsFbWthSzu0t8OWrVBTM1/PRmRWOY7DY+uC\n7Gjx8Y8nopzuSxXO9Y5m+eMXB3nTxiA/Fa7WaBmZFbEbMc780xko+ZO77rF1rNyzsnKdEhERERFZ\nZhTIiIiIyPxwHGhusWXfAVuXSGA6L9pw5sJ5O4pmmrVonFwOui/ZMj7N2arVNpxp32oDmgb9ylsW\nl4agm1/bV8ehKwm+dnqUsbT9ttwAP+yMc2EgzScerKOpSguty71LRpOcePIE2fHFi4CWnS2sf8P6\nCvZKRERERGT5USAjIiIilRMIwPYdtoBdi+ZKTzGguXAeZ2Bg2suda1fh2lV4/jkATEtLMZxp3wrN\nzTYIElnAHMdhf1uQbc0+njo1ytHeZOFc93CGP/zJAP9mTy27WjVln9y9TDLDya+cJBUtjsKqW1tH\n+N1hHP19FBERERGZVwpkREREZOFwuWDtOlve9DgAZnCgLKDh8i2mOevrg74+ePEFe21DQzGcaW+H\nlasU0MiCVRtw80t76zhyLcGXj0eJ59eWGUsb/ubVYd6+pYp3bQ3h0mtY7pDJGc5+4yyx67FCXbAx\nyI4P7cDlcVWwZyIiIiIiy5MCGREREVnYGhrhof22AMTHMBcuQMc5Wy514WSzU17qDA7CoVdsAUxt\nHWwNQ3gbhMPQskIBjSw4D6wKsLbOyxdeG+bySKZQ/73zY3QOpvmFB+qo9evLdLk1Ywznv3eegQvF\nUYbeKi+7PrILb9BbwZ6JiIiIiCxfsxLIhMPhRuB3gZ8GVgH9wHeB34lEItfu4PqPA78G7AF8QDfw\nbeD3I5HIzdnoo4iIiCwRwSrYtdsWgFQS09kJ5yJwvgMuXsBJp6e81BkZhlcP2gKYhkYbzGzdBtu2\nQWPTfD0LkVtqrnLzW4828LXTUV7oLq6rdO5mmj/88QC/+GAtmxt9FeyhLHQ9r/Rw7Ujxo5jL42Ln\nz+wk2BCsYK9ERERERJa3GQcy4XA4CPwI2Ab8BfAq0A78NvB4OBzeG4lEBm9x/f8F/K/AQeA/AaPA\no8C/Bd6Tv35kpv0UERGRJcrnz4942WaPMxnMpa7iCJoL53ESiSkvdQYH4OWXbAFMc0vxXuEw1NXP\n05MQmczrdvjo7lo2Nnh58kSUdM7WDydz/NnLQ7x3WzWPbwxqHRCZpO9MH53PdpbVbXvvNmrX1Fao\nRyIiIiIiArMzQubTwG7gNyKRyF+NV4bD4WPA14HfAT4z1YX5kTX/C9AFvCESiYyvYPr34XC4H/iP\nwC8CfzoL/RQREZHlwOOBzVtsece7IJvF9Fy2I2giZ6HjHE4yOeWlTn8f9PfBCz8GwKxcmR89s92G\nNKHQfD4TEQAOtAVZW+vl84eHuRGz0/PlDHzjzCgXB9J8fE8NQa+mMBNruGeYs/98tqxu0xObaN7W\nXKEeiYiIiIjIuNkIZH4eiAGfn1D/TaAH+Hg4HP73kUhkqtV31+X7cLAkjBn3PDaQ2TALfRQREZHl\nyu2G9RtseevbIZvBXLpkA5qzZ+DCBZx0aspLnd5e6O2F53+EcRx7j+07bECzeYsNf0TmwepaD7/9\nWANfOh7laG/xbfPx60n+6CcZPrG3lrZarQuy3KViKU5/9TQmW/zotXrvatbsW1PBXomIiIiIyLgZ\nfYsQDodrsVOV/XhioBKJREw4HD4IfADYCFyc4hadQBI7xdlEG/LbkzPpo4iIiEgZtwc2bbblHe+C\ndBrT1WlHz0TOQudFnExm0mWOMdDVacvT38H4fNC+1QY023fC6tWgqaNkDgW9Lj7xYC3PdcX5+plR\ncvnv3PvGsvy3Fwb58K4aHl6r9UGWK2MMHU93kB4rrqHV2N7I5rdu1rR2IiIiIiILhGPMVANX7kw4\nHN4NHAe+HIlEPjbF+T/GTmn21kgk8oNp7vG/Ab+PXX/mT4AosB/4LNAHPBKJRKae+H0aw8PDUz6p\njo6Ou7mNiIiILENOOk3w6hWCl7up6r5EoPeaDWNuIxMKMbZuA7H1Gxhbv55sdc089FaWq2txN09f\nq2I0Uz5V2Y7aFG9aEcejGcyWnbFLYwwfHC4cu2vcND/RjEsvBhERERGRWdHePtW4Eqirq7vjX0DN\ndJ6N8W8axqY5H5vQbpJIJPIH4XD4OvDnwG+WnPo28PN3G8aIiIiIzITxehlbv4Gx9Ru4CbiSSRvO\nXOoidKkL3+DAlNd5YjFqz5yi9swpAJJNzYyt30Bs40bia9ZivJpOSmbPqmCWj64b5Xu9QS6PFV9b\np0d83Ei6efeqGHW+e//hlSwu2XiWkSMjZXX1++sVxoiIiIiILDAVn/g8HA5/Cvgz4F+BL2NHxRwA\n/gPw3XA4/M5IJDI0G481XYK1HI2PFtK/iSxmeh3LUqDX8SKxa1dh1wwMwNnTcOY0nD2DE41OeYn/\nZj/+m/00HH7VhjFbw7BjF+zcBa2tS2p6M72OK2f3NsO/dMT4l44xxuOX/qSbr12t45P76tlQryDw\nTi3W17ExhpNPnsSkiwHc2kfXsvHAxgr2Siplsb6ORUrpdSxLgV7HshTodTw3ZhrIjP8MKzTN+eoJ\n7cqEw+EwNox5JhKJvLvk1PfC4fAx4BvAf8KGMyIiIiKV19gIj77OllwOc6UHzpyxIU3HOZx0etIl\nTjoNp07a8hSY5uZiOBPeBoFABZ6ILAUux+FdW6vZUO/lvx8dIZb/Un40Zfizlwb5xQfr2N3qr3Av\nZS71Hu1l8OJg4Ti0IsT616+vYI9ERERERGQ6Mw1kOgEDtE1zfvyTwHSLtzye78M/TXHu6fy93zyT\nDoqIiIjMGZcL1q6z5W1vh3Qac+G8HT1z5hROd/eUlzn9/fD8j+D5H2HcbtjSDjt22oBmTduSGj0j\n82PHCj//4fWNfO7VYXpGMgCkc/C5V4f58K4aXrc+WOEeylyID8W5+MzFwrHjcgj/VBiXW1OViYiI\niIgsRDMKZCKRSCwcDh8HHgyHw4HS9V7C4bAbeBS4HIlEpv42ojiyZqqfhfoBZ5pzIiIiIguP1wvb\nttvy/g9iRkbgzCk7Mub0KZzR0UmXONksRM7a8vWvYerqYedO2LnbhjRBfZEud6Yx6ObfPVLPFw6P\ncKYvBdhfNz15MspgPMt7wiEchX1LhjGGc98+RzaVLdStf/16qlurb3GViIiIiIhU0mysIfN57LRj\nnwT+tKT+48AK4HfHK8Lh8DYgGYlEOvNVL+a3HwmHw38eiURKVx79mQltRERERBaX2lo48IgtuRzm\ncndx6rKLF3DM5EXXneEhePEFePEFjMsN7e2w+z5bWldW4EnIYhLwuPjkQ3X844koL/cUfivFv14Y\nYzCR42P31eBxKZRZCq4euspw93DhuGZ1DWsfWVvBHomIiIiIyO3MRiDzWeDngP8aDofXA68CO4HP\nACeA/1rS9gwQAbYBRCKRF8Ph8FPY8OUn4XD4K0AfsA/4DeA68Aez0EcRERGRynK5YP0GW971HojF\nMGfPFAIaZ3ho0iVOrmT0zFe/gmlZYYOZXbuhfasdkSMygdvl8LH7amgIuni6Y6xQf+hKguFEll/e\nW0fQqymtFrOxm2N0/qizcOzyuAi/J4yjsE1EREREZEGbcSATiUTS4XD4bcDvAR8EfhO4Afwd8LuR\nSGTsFpcD/CzwPPA/YcMXH3AV+ALwf0YikSsz7aOIiIjIghMKwd6HbDEGc/VKcfTM+Q47ldkETt8N\nePYH8OwPMH4/bN9RDGjq6ivwJGShchyHd22tpiHg5h9PRsnlB2Odu5nmT14a4lP766gPuCvbSbkn\nJmeIfCtCLpMr1G140waqmqsq2CsREREREbkTszFChkgkMoIdEfOZ27Sb9JOtSCSSBf4iX0RERESW\nH8eBNW22vO0dEI9jzpyGk8fh5AmckZHJlySTcPSILYBZt96GM/ftgXXr7T1l2XtkXZDagIsvHB4h\nlbWpzNVohv/nhUE+tb+e1TWz8nFA5tHlly8TvRotHNetrWPNvjUV7JGIiIiIiNwpfQITERERWWiC\nQXhwry25HKb7EpzIhzOXuqa8xOm+BN2X4DvfwtTVw549sOcB2BrW1GbL3M4Vfv7dI/V89tAw0aQd\nVTGUyPEnLw7yKw/V0d7kq3AP5U6N3hjl0vOXCscur4ut79mKowBWRERERGRRUCAjIiIispC5XLBh\noy0/9T7M8BCcPGlHz5w+ZUfKTOAMD8Hzz8Hzz9mpzXbugj3326nNQtUVeBJSaevqvHzm0Qb++uAQ\nN2J2Orx4xvBXB4f4+J5a9q4OVLiHcju5bI7ItyKY8fnngE1v2USwIVjBXomIiIiIyN1QICMiIiKy\nmNTVw2OvsyWdxpzvsKNnThy3a8xM4CSTcPg1OPwaxuWCLe02nLnvfmhpqcATkEpprnLzmUcb+JtX\nh+kcTAOQycH/e2SEoXiOxzcFNdJiAev+STex67HCccPGBlY9sKqCPRIRERERkbulQEZERERksfJ6\nYfsOWz78UUxvLxw7AseOQudFHGPKmju5HJyL2PLUk5jVa/LhzB5Yv8GOxpElLeRz8ZsH6vmHIyMc\nv14cXfWNs6MMJrJ8YEc1LoUyC070apTuF7sLx26/m63v1lRlIiIiIiKLjQIZERERkaVi5UpY+U54\n+zthZARz4rgNZ86cxkmnJjV3rl6Bq1fg6e/YdWfufwAeeBDa28Gtt4lLlc/t8Et7a/mn06M81xUv\n1D/XFWcokeMX7q/F69YX/QtFNp0l8q0IlOSrW962BX+tv3KdEhERERGRe6JP2iIiIiJLUW1tcWqz\nVBJz5owNZ04cw4lGJzV3hofguR/Ccz/EhEKwe48NZ7bvAJ8WfV9qXI7DB3dU0xB0840zo4X6Y71J\nvnB4mE88WKdQZoG49Pwlxm6OFY6btjaxYteKCvZIRERERETulQIZERERkaXO57dTk+25H3I5TOdF\nG84cP4rT2zupuROLwcsvwssvYvx+2LnbhjO7dkNQC4gvFY7j8JZNVdQHXHzx2AiZnK0/eSPF5w8P\n80sKZSpuuHuYnld6CsfeoJf2d7RrqjIRERERkUVKgYyIiIjIcuJyweYttnzgQ5jrvTacOXoE5+KF\nSc2dZBIOvwqHX8V4PHbEzP0Pwp49UF1TgScgs23v6gAhr4u/fXWIdD6UOaVQpuKyqSyRb0fK6ra8\nYwu+ao1YExERERFZrBTIiIiIiCxnrSvhbe+At70DMzQEx47AkcNwLoKTy5U1dTIZOHEcThzHfNGB\n9q3wwIN46hrI1CicWcy2tfj41X31/O2h8lDm714b5pf3KpSphIvPXiQxlCgct+xsoWV7SwV7JCIi\nIiIiM6VARkRERESs+np445ttGR3FnDgGR47A6ZM2jCnhGAPnInAuwiYgvnqNXa/mwb3Q0FiZ/suM\nbGueHMqc7lMoUwlDXUNcO3ytcOyr9rHlbVsq2CMREREREZkNCmREREREZLLqanjkMVsSCcypk3bk\nzMnjOInEpObBq1fgqSfhqScxmzbbYObBh6BR4cxisq3Zxyf31fM3E0KZz702zK8olJkXJme48P3y\n6QO3vmsr3qC3Qj0SEREREZHZokBGRERERG4tEIC9D9mSTmPOnoGjh+HoUZzY6KTmzsULcPECfPUr\nmI2b7HUP7oXGpgp0Xu5WeIpQ5oxCmXnTe7yXWF+scLxi1woatyjYFBERERFZChTIiIiIiMid83ph\n9322fCyL6TjH8A+fobrjHJ6xsUnNnc6L0HmxGM6Mj5xpUjizkCmUqYxMMkPXc12FY5fXxcY3b6xc\nh0REREREZFYpkBERERGRe+N2w7bt3HB7uPH4W2nHwGuvwpHXcKLRSc0L4czXnsJs2JgfdbNP05ot\nUOFmH7+2r57PTghl/vbVYX7loTp8CmVm3eWXLpOOpQvHax9ei7/GX8EeiYiIiIjIbFIgIyIiIiIz\n53JBezuEt8FHP4bpOAeHX7PhzMjIpOZOVyd0ddpwZks7PLTPjp6pratA52U6W5t9fGq/DWVSWVt3\ntj/F514d4lceqlcoM4sSwwl6XukpHPuqfbQdaKtgj0REREREZLYpkBERERGR2eVy2WAmvA0+8rOY\n8x35kTOHcUaGJzV3znfA+Q7Mk1+21+zbD/c/CKFQBTovE7U3FUfKFEOZtEKZWdb5w05M1hSON7xp\nA26fu4I9EhERERGR2aZARkRERETmjssFW8O2fORnMRfO23Dm8GuTwhnHGDh7Bs6ewXzpi7BzFzy0\nH+7bA4FAhZ6AwPShzN++OsSvKpSZsZErI/Sd7iscV6+spnV3awV7JCIiIiIic0GBjIiIiIjMD5cL\n2rfa8uGP2mnNXj1ow5lYrKypk83C8WNw/BjG64Pd98G+fbBzN/h8FXoCy1t7k49P7avnrw8Nk8qP\n5Ij0p/mbQ0N8cp9CmXtljOHiDy6W1W16YhOOo39PEREREZGlRoGMiIiIiMy/0mnNPvoxzJkzNpw5\negQnkShr6qRTcPhVOPwqJhCAPQ/Yac227wC3pnSaT1uafHxqfx1/fbAYypy7qVBmJvrO9DFypbjO\nUnO4mfp19RXskYiIiIiIzBUFMiIiIiJSWW4P7NptSzqNOXnChjPHj9swpoSTSMArL8ErL2FqamDv\nPth/ADZuAo0omBdbGqcOZT7/2jC/+lAdbpf+d7hTuUyOzh92Fo4dl8PGN2+sYI9ERERERGQuKZAR\nERERkYXD64UHHrQlkcCcOAaHDsGpE3YasxJONAo/ehZ+9CympQX2HYD9D8PKlRXq/PKxpdHHr+dD\nmWQ+lDndl+L/Oz7Cx/fU4lI4dkd6DvaQHE4Wjlc/tJpgY7CCPRIRERERkbmkQEZEREREFqZAwIYs\n+w5ALIY5dgQOHYSzZ3CMKWvq9PXBd78N3/02Zt16O2pm336o09RPc2VzfqTMX74yRDpn6w5dSVLt\nG+X926u1BsptpEZTXH7xcuHYE/Sw/nXrK9gjERERERGZawpkRERERGThC4Xg0dfZMjyMefUQHHwZ\n51LXpKZO9yXovoT52lN2jZr9D8MDD0Cwav77vcRtbvTxiQfr+Nxrw+TyGdkPO+PU+l08sTlU2c4t\ncF3Pd5FNFUd9rX/9ejwBfTwTEREREVnK9I5fRERERBaXujp4yxPwlicw13vh4Ctw8BWcvhtlzRxj\n4OwZOHsG86X/AfftseHMrt3g0dvg2bKr1c/H7qvhi8eihbpvno1R7XPx8FpNvzWV2I0Yvcd6C8fB\npiCrHlhVwR6JiIiIiMh80CdREREREVm8WlfCT70P3vNeTFenDWdePWjXlynhZDJw+DU4/BomVG2n\nMzvwMGzYCJpaa8YOtAWJJnN882ysUPflE1FCPhe7W/0V7NnCY4zhwjMXoGTWvU1v2YTL7apcp0RE\nREREZF4okBERERGRxc9xYOMmWz70YczZMzacOXoYJ5ksbxobhR89Cz96FtO6Eh5+xIYzjU0V6vzS\n8MTmENFkjmc74wDkDPz94WF+40A9mxt9Fe7dwjF4YZChzqHCcf2Geho3N1awRyIiIiIiMl8UyIiI\niIjI0uJ2w85dtqQ+jjl+zIYzJ0/i5LJlTZ3rvfDNr8M3v47ZGrbhzAN7Iaiptu7F+7ZXM5oyHLyS\nACCdg785NMynH2lgda0+euSyOTs6ZpwDm5/YjKNRWiIiIiIiy4I+FYmIiIjI0uXzw0P7bRmNYg4d\ngldewunqnNTUOReBcxHMl78E998PDz8K27bbgEfuiMtx+Nh9NcTSOU7dSAEQzxj+8uAQn3m0gaaq\n5f1v2Xukl/jNeOF45Z6VhFaEKtgjERERERGZTwpkRERERGR5qK6BNz8Ob34c03sNXn4JXnkZZ3Cg\nrJmTTsGhg3DoIKa2Dvbvt+FM29oKdXxxcbscPvFgHX/x8iCdQxkARpI5/urgEJ9+pIEa//JcKyWT\nyND1467CsdvnZsMbNlSsPyIiIiIiMv+W56chEREREVneVq6Cn/4A/MH/jfmt38Y8+hjGP3nxeWdk\nGOcH38f5/f8Mf/Cf4ZkfQDRagQ4vLj63wyf31bOyujgi5kYsy2cPDZHI5CrYs8rpfqGbTDxTOF77\n6Fp81VpbR0RERERkOVEgIyIiIiLLl8sF4W3w878If/TfML/0K5iduzBTrOnhXL6M89Q/wn/8bfjs\nX8Kxo5DNTHFTAQj5XPz6/noaAsWPHN3DGf7utWHSWVPBns2/+GCcK4euFI79tX7W7FtTwR6JiIiI\niEglaMoyERERERGw683sO2DL8BDm4Ct2SrOey2XNnGwWjh6Bo0cwNTWw/2F49DFY01ahji9cDUE3\nv36gnj95cZBY2oYwkf40Xzw2wi88UItrmSxm3/lsJyZXDKE2vnkjbu/yXk9HRERERGQ5UiAjIiIi\nIjJRXT289e3w1rdjei7DSy/CwZdxJkxX5kSj8Mz34ZnvY9atg0ceg3377Xo1AsDKag+/tr+eP395\niFR+ZMzha0mqfaN8aGc1zhIPZYa6h+iP9BeOa9bU0LKjpYI9EhERERGRSlEgIyIiIiJyK21r4Wc+\nAu//IObkCRvOnDiOk8uWNXO6u6G7G/PVr8B998Mjj8LOXeDWSIgN9V5+eW8tnz00zPhAkecvxanx\nu3hHe6iynZtDxhgu/uBiWd3mt2xe8iGUiIiIiIhMTYGMiIiIiMid8Hjg/gdsiUbtlGYvvTD1lGZH\nXoMjr2Fqa+HAI3ZKs1WrK9TxhWF7i59/s6eWfzg6Uqj7zrkYNX4Xj60LVrBnc+fGyRuM9o4Wjlt2\ntFDbVlvBHomIiIiISCUpkBERERERuVs1NfCWJ+AtT2AudxenNBsdLWvmjIzA978H3/8eZtNmeOx1\nsHcfBAIV6nhlPbQmwGgqx9dOF/+dvnIySkPAxY4V/gr2bPblsjm6nusqHDtuh41v2li5DomIiIiI\nSMUpkBERERERmYm162z5wIfyU5q9ACdOTJ7S7OIFuHgB85V/hL0PwaOvg81bYJlNX/WmjVVEkzn+\n9cIYADkDf39khN96tIHVNUvn40nvsV6SI8nCcdv+NgL1yzOIExERERERa+l84hERERERqaTSKc1G\nRjAHX4YXX8C5eqWsmZNMwosvwIsvYFpbbTDz8KNQV1ehjs+//5+9O4+O4jzzvv+tbu1bCwFiEWKH\nFmbVyr44JoljkxC8x0s2x04yHj9xnPiNJ3PiJH7iN5nBSSaTGccT4sQTx4CXeI1jY2KbTQKE0AIY\nqRFIgBASILRLaGl1PX8UaqlBYEBLa/l9zqnT566+q+pqXOZ0cfV1X6uc4VQ1edhT2gRAk9vkf/ZU\n873FMUQF2/wcXfd53B5KMjqWsrMH2xm3YJwfIxIRERERkf5ACRkRERERkZ4WFQUrPwM3fBrz2FFI\n3wF7MjGazvlMM06dgtf/ivnm6zBrjtVrZvZssA/ur+mGYfCl2ZFUnmvjSGUrAJXnPKzLqubhBcMI\nsg/sqqHyfb7VMXEpcQSGBvoxIhEREREZalpaWli/fj2bNm3ixIkTAIwfP5477riD1atX+zm6oWtw\nP+mJiIiIiPiTYcDESdZ2+x2Y2dmQsQPjkMt3mscD+3JhXy5mVBTMX2j1mxk9xk+B975Au8E3kh38\nMr2KikZrebej1W5ezKvlK4lR2AboUm4et4fj6ce9Y3uwnbi0OD9GJCIiIiJDTWtrKw8//DA5OTlM\nnz6dNWvW0NzczPvvv89TTz1FbGwsCxcu7LN4PvjgA7Kzszl06BCHDx+moaGBG2+8kSeffLLPYugv\nlJAREREREekLQcGwYOmGgUIAACAASURBVCEsWIh5+pS1bNnODIyaap9pRm0tbN4EmzdhTp0GS5ZC\nUrJ1/CATEWTjW6lWUuac2wQgu6yZ2PAGbnZG+Dm6a1OeV05LXYt3HJeq6hgRERER6VsbN24kJyeH\nNWvW8Pjjj2Oc/7FTYmIiTzzxBHl5eX2akPnjH/9IYWEhYWFhxMbG0tDQ0GfX7m+UkBERERER6Wux\no+CLt8DnV2Me/BgydkBeHoanzWeacbgQDhdivrQB0hZYyZn48X4KuneMigjg/mQHz2RW47FyMrx3\nuJGR4XbSxoX6N7ir5HF7OJ5xQXVMqqpjRERERKRvvfbaa4SEhPDII494kzEAdrsdAEcf96/87ne/\nS2xsLPHx8WRnZ/Ptb3+7T6/fnyghIyIiIiLiL3Y7zJ5jbXV1mLt3QvoOjLKTPtOMc+dg60ew9SPM\n8RNgyTJITYPQgZWwuBTniCDunBXJhv113n0b9tcxPMzOlJggP0Z2dVQdIyIiIiL+VlZWRmlpKUuX\nLiX0gueFDz74AICUlJQ+jamvr9efKSEjIiIiItIfREbCys/ADZ/GLC6C9O2QtQejudlnmnH8GKx/\nAfPVlyAl1UrOTJps9asZwBaND+V0QxsfFDUC4PbAuqwavrd4GCPD+/9jS1fVMePSxvkxIhERERHx\n+uW/+zuCy/ve/9djp8rPzwdg5syZ3n2mafLSSy/x4YcfkpaWxrRp03rsenJ1euTJxul0xgA/Br4I\njAEqgL8DP3K5XGVXcHww8DhwLxB//vh3gH91uVwVPRGjiIiIiMiAYBgweYq13X4X5p5M2LEN49hR\n32ktLVYfmox0zLFjYfFSmL8QIgZm7xWALySEc6bBzb5TVpVJQ6vJs3uspExYoM3P0V1eee7F1TEB\nIf0/kSQiIiIyFBiFh/wdwmWZPXiugoICAGbMmEFWVhabNm0iNzeXY8eOMW3aNH76059e9vgNGzZQ\nV1dHZWUlADExMZedP336dFasWNEjsQ8F3X5CcDqdocAWIAH4LyALmAZ8H/iU0+lMdrlcVZc5PgAr\n+bL8/PF7gRTgn4ElTqcz0eVytVzqeBERERGRQSskBJYug6XLME+UwI7tkLkLo7HRZ5px8iS88hLm\n63+FeUnWMdOdA65qxmYYfHmeg9/srKKk1g3A6YY2nttbwz+lRWO39c/P43F7OL5T1TEiIiIi4n/t\nFTIzZsxg7dq1bN682fvexIkT8Xg8lz1+48aNlJV9Yo2F180336yEzFXoiZ9sPQLMBh5yuVzPtO90\nOp15wOvAj4BHL3P8t4AbgK+4XK4/n9/3F6fTWQF8HZgPbO+BOEVEREREBq5x8XDX3XDLbZg5e2HH\n9ot+6We43ZCVCVmZmLGjrOXMFi2CiEg/BX31ggMMvpnq4On0KqqbrIfFQ2dbeelAHV+aHenTlLS/\nKMst86mOGZc2TtUxIiIiIv2IOW26v0PoMwUFBYwZM4bo6GiefPJJHnvsMYqKinj55ZfZvHkzxcXF\nrF+//pLHv/nmmwAUFhYCaHmzHtYTTwlfBhqA5y7Y/yZwArjX6XR+z+VyXary6iGgEHih806Xy/Uz\n4Gc9EJ+IiIiIyOARFGQtTTZ/IWZ5udVrZlcGRl2dzzTj9Cl47RXMt14fcFUzjhA7D6Y4+I+dVbS0\nWft2ljQxKjyAG6aE+Te4C3jcHkoySrxje7CduNQ4P0YkIiIiIhfpwR4t/VlZWRk1NTUkJycDYLfb\niY6OJikpiaSkJO655x4KCwspLS0lLk7fWf2hWwkZp9MZhbVU2XaXy+XTbdTlcplOpzMTuAWYBBR1\ncfy488f/d3vCxul0hgDNl0ngiIiIiIgIwOjRcOvtsHoN5r482LEN8g9imB1fpbusmlm4CCL7d9VM\nvCOQryY6WJdV411T+82CekaE25k7OtivsXVWlltGS72qY0RERETE/zr3j+lKVFQUAGFhl/6Rk3rI\n9K7uPilMOP964hLvty+kPJkuEjJYyRiAI06n8zvAd8+fs9npdL4HfN/lch3uZoxe7WVW0kF/JjIY\n6D6WwUD3sQwGuo/9LDIKPreKgEVLcOzfh+PAPgIaGnymtFfNeN58jfqp06mZM5dz8eP7bdVMCLB4\nZBA7zoQCVrPT57OruS2+ntiQy699fa2u5j4220xObzvtHRuBBk3Dm/T/gvid7kEZDHQfy2Cg+1j6\nWkZGBgCRkZEX3X/19fXk5uYSHx9PRUUFFRUVXZ7jhRdeuOR7XVm6dOlVVducOGGlEurq6gbc/yM9\nsXxbdxMy7T+ra7zE+w0XzLtQe3rtK0AQ8BRwCqunzD8DC51O5zyXy3XlXYRERERERIYwtyOas0uW\ncXbhYiKKjuDYl0vY0WI6p1xsbW1EufKJcuXTMmwYNbPnUjtzNm2X+aWcvyRGt1DdYuNAjVUV4zYN\n3i4N587x9UQE+reovrGoEU9TR2IofHo4tkCbHyMSERERkaGsuLgYgF27djFr1ixv/0W3281zzz1H\nW1sbN91002XP8Zvf/KbX4xzK/F1LH3T+dRQwy+VynT0/fsvpdJ7CStB8D/h+T1xMDYg6qCmTDAa6\nj2Uw0H0sg4Hu434sIQFuuhkqzmDu2A4Z6Ri1NT5TgqqqGLltCyPSt0NiMixbDtOm96uqmSlTTZ7d\nU01BRSsADW023j8bwyMLhxEc0DNxXu197HF7yHw30zsOCAlgzmfnaLky8Sv9fSyDge5jGQx0H4u/\nHD9uLVi1ZcsWysvLSUlJobGxkd27d1NaWsqqVau4//77r+hcPXkfb9myha1btwJw9qyVAjh69Cjr\n168HIDo6mu985zvdvs5A0N2nhdrzr+GXeD/ignkXqj//+lanZEy757ASMiuuOToREREREYERI+GL\nt8Dnv4C5b5/Va+bgx769ZtraOnrNjB4NS1fAgoUQfqmv+n3HbjP4WpKDX2dUUV7fBsCJWjd/yavl\n60lR3l/+9aWyHN/eMXFpcUrGiIiIiIjflJeXU11dzfz584mIiCArK4sNGzYQHh5OQkICDz30ECtX\nrvRLbIcOHeKdd97x2VdaWkppaSkAY8aMUULmChVjLeU87hLvt/eYudRicEfPv9q7eK/i/LmjrjU4\nERERERHpxB4AiUnWVnEGM30HpO+4qGrGKC+HVzZivvFXSE61qmYmTfZr1UxYoI1vpkbzy/RK6lus\nRFJueTPvH27ks9P6NmnU1tpGyc4S7zggJIC4lCtfN1tEREREpKfl5+cDkJaWxn333efnaHw9+OCD\nPPjgg/4Oo1/o1gLHLperAdgHJDmdzpDO7zmdTjuwCChxuVzHL3GKg0ANMK+L9+IBAzjRnRhFRERE\nRKQLI0bC6jXw83/D/OY/YV4386IpRmsrxq4MjH//OTz1JGzbAk1NfR/reSPC7Nyf5MDWKS/0t0MN\n7D/V3KdxlOeUqzpGRERERPqVgoICAJxOp58jkcvpiY6TzwFhwDcv2H8vEAv8oX2H0+lMcDqdk9rH\nLperBVgPJDudzs9fcPw/n399uwdiFBERERGRrrRXzfyf72L+3/8f87M3YkZGXjTNOFGCsf4v8IPv\nwYsvQMmlfnPVu6YOD+L2mb7x/Tm3lrI6d59cv8vqmFRVx4iIiIiIfykhMzD0xM+4ngXuAZ52Op0T\ngCxgJvAosB94utPcfMAFJHTa92Pgs8ArTqfzF1jLmH0KuA/IPX9+ERERERHpbSNjYc1tsGo1Zm4O\nbN+KccjlM8VobobtW2H7VsxJk2HpckhJgaDgPgtzyYRQSmvd7Dh+DoAmt8m6rBq+v2QYYYE98Zuz\nSyvPKaeloaM6Ztz8cQQEqzpGRERERPyroKCAMWPG4HA4/B2KXEa3nxxcLler0+n8DPAT4FasypbT\nWJUxP3a5XI2fcPwZp9O5APgZ8CAwAigDfgU86XK5znU3RhERERERuQqBgZCaBqlpmGUnYfs22JWB\n0ej71d4oLoLiIsxXX4IFi6xeM6PH9EmIt86MoKzezZHKVgDONLbxp+wavpUajd3WO71uLqqOCQ1g\nbMrYXrmWiIiIiMjV2LRpk79DkCvQIz/lcrlctVgVMY9+wrwun4xcLtcZrCXPLlz2TERERERE/GnM\nWLjjLvjiLZh798C2rVYiphOjsRE+/Ad8+A9MZwIsWwHz5lnLofWSAJvB/UkO1u6opKrJA0BBRStv\nFdSz5rqLl1zrCWU5Zb7VMWmqjhERERERkSunpwcREREREflkQUGwcDEsXIxZctxatmz3LmsJs04M\nVwG4CjCjHLBkKSxZBjExvRJSZLCNB1Ic/DqjilYrJ8OHxeeIiwogbVxoj15L1TEiIiIiItJdvbvA\nsoiIiIiIDD7x4+Hu++Dffol5932Y4+IvmmLU1mD8/W/wrz+AZ/4LPj4AHk/Ph+II5J65UT77Nuyv\n41h1a49epyynjNaGjnOqOkZERERERK6WniBEREREROTahIRYfWOWLsMsLoKtW2DvHgy32zvFME3Y\nlwv7cjFHjLTmL1oMET23rFjy2BBKa91sPmL1uHF7YF1WDY8tGYYjxN7t86s6RkREREREeoIqZERE\nREREpHsMAyZPga/dD79Yi3nLbVby5cJpFWcwXnsVHn8M/rgODheCafZICKuc4Vw3Msg7rmn28Nze\nGlrbun/+suwLqmPmqzpGRERERESunhIyIiIiIiLScyIi4TM3wpNPYT78CObceZiG4TPFcLsxMndj\nPP1v8NSTVj+apqZuXdZmGHw1MYrY8I6KmOJqN698XIfZjaRPl9UxyaqOERERERGRq6efdYmIiIiI\nSM+z2WDmLGurrMTcsQ12bMeorfGZZpwogRdfwPzrq7BgISxbAWOvLeERGmjjwRQHv0yv4pzbSsLs\nLGkiLiqA5RPDrumc5TnltDaqOkZERERERLpPTxIiIiIiItK7YmLgC1+Em1dh5ubCti0YrgKfKUbT\nOdjyIWz5EHO6E5ZfD/Pmgf3qHllGRQTwlcQo/mdPDe11Ma8drGdMRADTRwRd9tgLedweSnapOkZE\nRERERHqGEjIiIiIiItI37AGQnALJKZjlZbBtK+xMxzh3zmeaccgFh1yYDgcsWQZLlsKwmCu+zMzY\nYL6QEM6bBQ0AeEz4Y3YN318Sw4gw+ycc3eHU/lO01Ld4x3GpcaqOERERERGRa6YeMiIiIiIi0vdG\nj4E77oJfPI1575cx4+MvmmLU1GC88zb86+PwP89AQT5cYT+YGyaHkTw22DtuaDVZl1VNs9tzRceb\nHtOnd4w9yK7qGBERERER6Rb9vEtERERERPwnONiqglm8FLO4CLZugb17MNxu7xTD44GcbMjJxhw1\n2uozs3ARhF26L4xhGNw9J4rT9VWU1FrnOlnXxl/y6vhaUhQ2w7hsWKcPnqapusk7HpsylsDQwG59\nVBERERERGdpUISMiIiIiIv5nGDB5CnztfvjFWsxbbsMcMeLiaafKMV7ZCD/4Przwv1By/JKnDLIb\nfCPFQWRQR/Ilt7yZ9w83XjYU0zQpSe+ojrEF2IhLjbuGDyUiIiIiItJBFTIiIiIiItK/RETCZ26E\nlZ/BPPgxbP0IDuzH6LRcmdHaAunbIX075uQpsPx6SEqGQN8qlphQO/cnO/jtrmrazh/+90MNjIsK\nYNaoYLpS4aqg8WxH0mZM4hiCwoN6/nOKiIiIiMiQooSMiIiIiIj0TzYbzJptbRVnMLdvg/TtGPX1\nPtOMoiNQdATz1Zdg0RJrSbPhw73vT4kJ4vZZkWzcXweACfxvbi3fXzyMURG+j0QXVscYNoNx88f1\n2kcUEREREekNLS0trF+/nk2bNnHixAkAxo8fzx133MHq1av9HN3QpYSMiIiIiIj0fyNGwppbYdUX\nMLOzYOsWKxHTiVFXB5vexXz/PZg9x6qamXEd2GwsHh9KSU0r6cetvjBNbpN1WTV8b/EwQgM7VnKu\nOlJF/amOhM+oOaMIjuq6kkZEREREpD9qbW3l4YcfJicnh+nTp7NmzRqam5t5//33eeqpp4iNjWXh\nwoV9Fs9vf/tb8vPzOX78ODU1NQQHBzN69GiWL1/O7bffTnR0dJ/F4m9KyIiIiIiIyMARGAjzF8L8\nhZjHj1vLmWXutpYwO88wTdiXB/vyMEfGwvIVsHARt14Xycm6NoqrWgE41dDGC3m1fCPZAVjVMcd3\ndupJY0D8wvi+/HQiIiIiIt22ceNGcnJyWLNmDY8//jiGYfVUTExM5IknniAvL69PEzIbNmwgISGB\n+fPnM2zYMM6dO8eBAwdYt24db7zxBn/84x8ZNWpUn8XjT0rIiIiIiIjIwDR+PNz3Fbj1dsydGbDt\nI4xTp3ymGGdOw6svY775OoGp87l/0QrWNkZQ0+wBYP+pFt4rbGSaAS1nWqg9Ues9NnZmLKHDQvv0\nI4mIiIiIdNdrr71GSEgIjzzyiDcZA2C32wFwOBx9Gs9HH31EcPDFVefPPPMMzz//PM8//zw/+MEP\n+jQmf7F98hQREREREZF+LCwMblgJP/6/mN95FHNuImanB08Ao7UVI2MH0U//jPs/fp0ATO977xY2\nUFQfQH2+b28aVceIiIiIyEBTVlZGaWkpqamphIb6/rjogw8+ACAlJaVPY+oqGQOwcuVKAEpKSrp8\nfzBShYyIiIiIiAwONpvVM2bGdVBZibljG+zYhlFb6zNtcv5u7mhoY/3cW7z7Mo8YLD/dsezZCOcI\nwkeG91noIiIiItJ7frOzyt8hXNZ3Fg7rsXPl5+cDMHPmTO8+0zR56aWX+PDDD0lLS2PatGk9dr3u\n2L59OwBTp071cyR9RwkZEREREREZfGJi4AtfhJtWYeZkw9aPMA4Xet9edDyL4444dkycD8C08kqf\nw8cvHt+n4YqIiIhI7zlc2ervEPpMQUEBADNmzCArK4tNmzaRm5vLsWPHmDZtGj/96U8ve/yGDRuo\nq6ujstL6fhwTE3PZ+dOnT2fFihVXFNtf/vIXGhsbqa+vJz8/n7y8PKZOncpXvvKVKzp+MFBCRkRE\nREREBq+AAEhNg9Q0zBMlsHULZO7CaG7mtgN/42TUKM6GjmZsbcdyZcOi2oiI9F/IIiIiIiLXqr1C\nZsaMGaxdu5bNmzd735s4cSIej+eyx2/cuJGysrIrvt7NN998VQmZ9kQPwMKFC3niiScYNqznKoT6\nOyVkRERERERkaBgXD/fcB7fcirlrJ/atH/GNrPW8O+Vun2mlTZXMfvwxK5Gz/HqYMNE/8YqIiIhI\nj5gaE+jvEPpMQUEBY8aMITo6mieffJLHHnuMoqIiXn75ZTZv3kxxcTHr16+/5PFvvvkmAIWFVnV5\nTy5v9t577wFw9uxZ9u3bx3//939z33338atf/YqEhIQeu05/poSMiIiIiIgMLaFhcP0NsOJT2LMO\nMHpzJWAAcDo8jK1TlzK2/ihzM9IhIx1z4iRYvgJS0iBw6DzMi4iIiAwWPdmjpT8rKyujpqaG5ORk\nAOx2O9HR0SQlJZGUlMQ999xDYWEhpaWlxMXF+S3O4cOHc/3115OQkMBtt93GT37yEzZu3Oi3ePqS\nEjIiIiIiIjI0GQYl5UG0J2MA8kcNB+DPiXfw2PZnGF1/BuNoMRwtxnz1FVi8BJYthxEj/RS0iIiI\niEjXOveP6UpUVBQAYWFhlzxHb/aQudCYMWOYNGkShw4dorq6mujo6Gs6z0CihIyIiIiIiAxJTdVN\nnDpwyjs+FxnM6Qjr4bQ5IJjfp97LY9ufIdTdDIDRUA/vv4e5eRPMnGUtZzZzFthsfolfRERERKSz\n9v4xXS3/VVNTQ15eHlOnTr1sz5be7CHTlYqKCgBsQ+Q7tRIyIiIiIiIyJJXsKgGzYzx6dhiTg4Io\nqmoF4HTESP535bd54KPfYW9u9s4zTBMO7IcD+zFHjIBlK2DREoiI6ONPICIiIiLSob1CZvPmzaSl\npWEYViV4a2srP//5z3G73dx9992XO0WP95A5duwYw4cPJ+KC78oej4dnn32WyspK5syZ463eGeyU\nkBERERERkSGnua6Z8rxy7zjAEUDo2GDuHx/F2vQqqps8ABwIjOXdB3/GzadzYOtHGOW+vxY0Kirg\ntVcx33rD6jGzfAVMmtyXH0VEREREBOhIyLz11lscOnSIlJQUGhsb2b17N6WlpaxatYpVq1b1aUwZ\nGRk888wzzJ07l7Fjx+JwOKisrCQ7O5vS0lKGDx/OD3/4wz6NyZ+UkBERERERkSHnxO4TmG0d5TER\nMyIwDIOoEDv3Jzn4za4q3FZOhveOtjIueTFzV1yPecgFWz6CvBwMj8d7vOF2w64M2JWBOWGilZhJ\nSYOgoL79YCIiIiIyJJWXl1NdXc38+fOJiIggKyuLDRs2EB4eTkJCAg899BArV67s87jS0tI4ceIE\nubm5uFwu6uvrCQkJYfz48Xzuc5/jzjvvxOFw9Hlc/qKEjIiIiIiIDCmtja2U5XRUuoTGhBIyLsQ7\nnjgskDtnRfLivjrvvhdya4ldPIwxzgRwJkBVFeaObbB9G0Ztjc/5jWNH4c/PY776srWU2fIVMDK2\ntz+WiIiIiAxh7f1j0tLSuO+++/wcTYcpU6bw2GOP+TuMfmNodMoRERERERE570TmCTytHdUt8Yvi\nvetrt1sQH8rSCaHecXObybqsGhrbjxs2DD6/Gn7+b5gPfAtz2vSLrmM0NmL8432MH/0QfvsfsC8X\nOlXViIiIiIj0lPblypxOp58jkctRhYyIiIiIiAwZ7iY3J/ee9I6DHcHEzoylrqjuorm3XhfByTo3\nRypbATjT2MbzObV8K9WBrT2BYw+A5BRITsE8WQpbt8CuDIzmZp9zGR8fgI8PYMbEwLIVVuXMEGlc\nKiIiIiK9TwmZgUEVMiIiIiIiMmSc3HuStuY27zh+QTw2e9ePRXabwdeTHESHdLyff6aFtwoauj75\n2Dj40j3wb7/EvOsezLFjL5piVFZivPEa/Mtj8Nw6OFwIptnFyURERERErlxBQQFjxowZUv1YBiJV\nyIiIiIiIyJDQ1tLGicwT3nFQRBCj546+7DFRwTYeSHbwHzuraF+t7IOiRuKiAkiNC+n6oJAQWHE9\nLF+BWXgItm2B7GwMT0ciyGhrgz27Yc9uzLhxVp+ZtAXWsSIiIiIiV2nTpk3+DkGugBIyIiIiIiIy\nJJTlluE+5/aOx80fhy3gkxcNGB8dyJfmRPHn3Frvvg37ahkVbmd8dOClDzQMmO60tpoazPTtsH0r\nRlWV77TSE7D+L5ivvQrzF1rJmbFxV/35RERERESkf1NCRkREREREBj2P28OJXR3VMQGhAYxJHHPF\nx6fGhVBa6+aDokYAWj2wbm8Njy0eRlSI/ZNP4HDATavgs5/D3L8Ptn6EkX/QZ4rR1ARbP4KtH2FO\nmw7Lr4d5iRCgxzYRERERkcFA3+xFRERERGTQK99XTkt9i3c8Lm0c9qArSKR08oWEcE7Wuck/Y52n\nusnDH7JreXh+NIF248pOYrdbSZZ5iZinymHbVtiZjtHY6DPNKDwEhYcwo6Jg8VJYugxihl9VvCIi\nIiIi0r98cn2+iIiIiIjIAOZp81CSUeId24PtjE0ee9XnsRkGX02MYmR4RyKnuKqVVz6uwzTNqw9s\n1Gi4/U74xVrM+76KOX78RVOM2lqMd9+Bf30cnvktHNgPHs/VX0tERERERPxOFTIiIiIiIjKoleeV\n01zb7B2PTR5LQMi1PQqFBdp4MMXBL9OraHJbSZidJU2Miwpg2cSwawswKBgWL4FFizGPFsPWLZCV\nieHu6HdjmCbsy4N9eZgjRsDS5bBoCURGXts1RURERESkz6lCRkREREREBi2P++LqmHHzx3XrnKMj\nAvjKvCg6L1L214P1FJ5tueQxV8QwYNJk+OrX4RdPY956O+bI2IunVVRgvP5X+JfH4I/r4HAhXEuF\njoiIiIiI9ClVyIiIiIiIyKBVvs+3OiYuJY7A0MBun3fWqGBWOcN529UAgMeE5/bW8NiSGIaHXV1v\nmi5FRMCnPws3fBqzIB+2bYF9eRidlisz3G7I3A2ZuzHj4mDZCpi/EEJCun99ERERERHpcUrIiIiI\niIjIoORxezieftw7tgfbiUuL67Hzf3pKGKW1brLLrIRPQ6vJ77NqeHTRMIIDjE84+grZbHDdTGur\nqsTcsR12bMOoqfGZZpSWwoYXMV97FeYvsJIz4+J7JgYREREREekRSsiIiIiIiMigVJ5XTktdxzJi\nPVUd084wDO6ZG8XphipO1Fr9Xk7WuflLXi1fT4rCMHooKdNuWAx8fjXcdDNmXh5s24JRkO8bU3Mz\nbNsK27ZiTp4Cy5ZDUgoEBfVsLCIiIiIictWUkBERERERkUHH4/ZwPKP3qmPaBdkNHkhxsHZHJfUt\nVh+X3PJm3j/cyGenhff49QCwB0BSMiQlY54qtxIwO9MxGht9phlFR6DoCObLG2HBIis5M3pM78Qk\nIiIiIiKfyObvAERERERERHraRdUxqT1bHdNZTKid+5Mc2DoVxPztUAP7TzVf+qCeMmo03H4n/OJp\nzC9/DXPipIumGI2NGB/+A+MnP4JfrYWsTHC7ez82ERERERHxoQoZEREREREZVLqqjhmXNq5Xrzl1\neBC3z4zkpQN13n1/zq3l0UXDGBPZB49dQUGwaDEsWox5/Bhs3wqZu60lzDoxDrngkAszMhIWLYEl\ny2DkyN6PT0REREREVCEjIiIiIiKDS1fVMQEhvZ8UWTIhlMXjQ7zjJrfJuqwaGls9vX5tH+MnwD1f\ntqpmvnQPZtzFS7UZdXUYm96FJ34I//lryM2Btra+jVNEREREZIjpkacSp9MZA/wY+CIwBqgA/g78\nyOVylV3luUKAPGA6cL3L5drSEzGKiIiIiMjg54/qmM5umxlJeX0bRypbATjT2Mafsmv5VqoDe+c1\nzfpCaCgsvx6WrcAsLoJtW2BvFkZrq3eKYZpw8GM4+DFm9DBYvAQWL4WYmL6NVURERER6VEtLC+vX\nr2fTpk2cOHECSSp84gAAIABJREFUgPHjx3PHHXewevVqP0c3dHU7IeN0OkOBLUAC8F9AFjAN+D7w\nKafTmexyuaqu4pQ/wkrGiIiIiIiIXJXyXN/qmHFp4/qkOqZdgM3g/iQHa3dUUtVkVcYUVLTwRn49\nt86M7LM4fBgGTJ5ibbffiblrJ2zbinGq3HdadRW88zbm3/8Gs2bD0mUwczbY7f6JW0RERESuSWtr\nKw8//DA5OTlMnz6dNWvW0NzczPvvv89TTz1FbGwsCxcu9HeYPWb16tWUlXVdFxITE8N7773XxxFd\nWk88mTwCzAYecrlcz7TvdDqdecDrWAmWR6/kRE6nczbwGJADJPZAbCIiIiIiMkR0VR0Tl3rxcl29\nLTLYxgMpDn6dUUX7amVbjp5jZLidZRPD+jweH+ERcMOn4VMrMQ+5rF4zOdkYnZYrM0wT9u+D/fsw\nhw2zes2oakZERERkwNi4cSM5OTmsWbOGxx9/HMOwKrUTExN54oknyMvLG1QJGYCIiAjuuuuui/aH\nhfn5+/cFeiIh82WgAXjugv1vAieAe51O5/dcLpd5uZM4nU4bsA44BvwP8GwPxCYiIiIiIkNEWW4Z\nLfX+q47pLN4RyL1zo/hTTq13318P1jMy3M6MkcF+icmHYYAzwdpqazF3psP2rRgVFb7Tqi6smllu\nvdrUjlRERESkv3rttdcICQnhkUce8SZjAOznK58dDoe/Qus1kZGRPPjgg/4O4xN16+nE6XRGYS1V\ntt3lcjV3fs/lcplOpzMTuAWYBBR9wun+GZgPrATiuxPXpRQWFvbGaQc0/ZnIYKD7WAYD3ccyGOg+\nFn8y20xObzvtHRuBBk0xTVd9X/bkfRwJLBgezK6zIQB4TPhDVjW3x9czPNjTY9fpEZOnwqQphB07\nimNfLhFHDmN4OmLsXDXTGhFJzew51M6agzsqyo9By6Xo72MZDHQfy2Cg+1j84cyZM5SWlpKUlOTt\nHdPujTfeACA2NvaK78+BcB+3nu+R2NuxTps2rdvn6O7PxSacfz1xiffb1wuYzGUSMk6nMx54CnjB\n5XJ94HQ6v9rNuEREREREZAhpLGrE09SRQAifHo4tyP9VHKkxzVS32CioCwKgxWPwdmk4d4yvJyzg\nsosI9D3DoHHiJBonTsLeUE/Ugf049ucRVFPjMy2wvo4RO9MZviuDhkmTqZkzj4ZJk1U1IyIiIv3W\n2S1n/R3CZQ1fMbzHzlVcXAzAlClTvPtM02TTpk3s2bOHWbNmMX78+B67Xn/hdrvZsWMHZ8+eJTg4\nmPj4eGbMmIGtn31H7W5Cpr0rZeMl3m+4YN6l/A5oAb7XzXguqycyWINFe7ZQfyYykOk+lsFA97EM\nBrqPxd88bg+Z72Z6xwEhAcz57JyrWq6sN+/jSVNM/mt3NUVV1i/3at02/lEZw8MLhhFkNz7haD+a\nlwgeD2ZBPmzfBnm5GB7fXjMRRUeIKDrS0Wtm0RIY3nP/oCBXR38fy2Cg+1gGA93H/U/ZK103fO8v\nevJe2bx5MwBLliyhpqaGTZs2kZuby7Fjx5g2bRpr165l+GW+r23YsIG6ujoqKysBiPmEPoLTp09n\nxYoVPRb/tQgMDKSiooLf/e53PvvHjh3LE088QVJSkp8iu5h/FlTuxOl03gXcDHzd5XKd8Xc8IiIi\nIiIysJTl+PaOiUuL81vvmK4E2g0eSHHwy/QqKhqthMbRajcv7qvlq/OifNb17ndsNrhuprXV1Fi9\nZnZsx6jwfXTz6TVz3UxYvBTmzIWA/vPfQURERGQoyM/PB2DGjBmsXbvWm6ABmDhxIh7P5ZfO3bhx\nI2VlV57Auvnmm/2ekFm1ahXz5s1j8uTJhIeHU1payssvv8wbb7zBd77zHZ577jmmT5/u1xjbdffb\ncXuHyvBLvB9xwTwfTqczBvgNsNXlcv2pm7GIiIiIiMgQ09baRsnOEu84ICSAuJQ4P0bUtYggG99M\ndfCr9CrOua2lyrJPNhMb3sDN0yM+4eh+wuGAG2+Cz9xoVc3s2Aa5F1fN8PEB+PgAZmQkLFgES5bC\nqNF+DFxERESGOsf4wdfE/lIKCgoYM2YM0dHRPPnkkzz22GMUFRXx8ssvs3nzZoqLi1m/fv0lj3/z\nzTeB3q30Wr169VUlfW688UaefPLJS77/wAMP+IynTJnCv/zLvxAWFsaLL77IunXrWLt27TXH25O6\nm5ApBkxg3CXeb+8xc6luOmuBaOAnTqez8zmGnX8deX7/GZfL1dzNWEVEREREZJApzy3v19UxnY2O\nCOD+ZAfPZFbjOd8+5r3CRmLDA0iNC/FvcFejq6qZ9O0YZy6omqmrg82bYPMmzGnTrcRMYjIEBfkp\ncBERERmq5t47198h9ImysjJqampITk4GwG63Ex0dTVJSEklJSdxzzz0UFhZSWlpKXJz/fsQUFxdH\n0FV8JxwxYsQ1XeeWW27hxRdfJCcn55qO7w3delJxuVwNTqdzH5DkdDpDXC5XU/t7TqfTDiwCSlwu\n1/FLnOIGIAj46BLvv3z+9XpgS3diFRERERGRwaWttY2SjAuqY1L7X3VMZ84RQdw5K5IN++u8+9bv\nqyUm1MaUmAGYqOhcNXPIBTu2Q242htvtM80oPASFhzBf2gBpC6zkzLh4PwUtIiIiMjgVFBQA1nJl\nXYmKigIgLCzskufoix4yzzzzzFXNv1bDhll1H01NTZ8ws+/0xE/HngP+E/gm1vJj7e4FYoEft+9w\nOp0JQLPL5So+v+vrQFf/9W8AHgF+COw/v4mIiIiIiHiV55TT0tBRHTNu/jgCgvtndUxni8aHcrqh\njQ+KGgFwe+APe2v43uIYRoTZ/RzdNbLZIGGGtdXXY+7eafWaKTvpM81obIQtH8KWDzEnTrJ6zaSm\nQcgAqhASERER6afa+8ckJCRc9F5NTQ15eXlMnTrVm6joykDsIXMp+/dbaQV/VgNdqCeeVp4F7gGe\ndjqdE4AsYCbwKFYi5elOc/MBF5AA4HK5PuzqhE6ns70GaafL5drSAzGKiIiIiMgg0lXvmLEpY/0Y\n0dX5QkI4Zxrc7DtlJZTqW0yezazm0cXDCAu0+Tm6boqIgBs+DZ9aiVlcZPWaydqD0dLiM804WgxH\nizFffQmSU2DREpgyFQzDT4GLiIiIDGztFTKbN28mLS0N4/z3qtbWVn7+85/jdru5++67L3uOvugh\n05OKi4sZPXo0oaGhPvtPnjzJ009bqYkbb7zRH6F1qdsJGZfL1ep0Oj8D/AS4Ffhn4DTwB+DHLper\nsbvXEBERERER6awsp2xAVse0sxkGX57n4Dc7qyiptZb3OtXQxnN7a/intGjstkGQlDAMmDzF2m6/\nC3NPJuzYhnH8mO+05mbISIeMdMxRo6zEzIJF1nJoIiIiInLF2hMyb731FocOHSIlJYXGxkZ2795N\naWkpq1atYtWqVX6Osmdt3ryZ9evXk5iYyOjRowkLC6O0tJT09HSam5tZvHgx9957r7/D9OqRJxaX\ny1WLVRHz6CfMu6KnCpfL9TzwfLcDExERERGRQaettY0TO094xwGhA6s6pl1wgMGDqQ6e3lFFTbMH\ngENnW3nl4zrunBXp/UXjoBAaCsuWw7LlmMePQ/p2yNyFce6czzTj1Cl4/a+Yb74Os+bAosUwezbY\nB06yTURERMQfysvLqa6uZv78+URERJCVlcWGDRsIDw8nISGBhx56iJUrV/o7zB6XkpLC8ePHcblc\n5OXlce7cOSIjI5k7dy6f+9znuOmmm/rV92p9qxURERERkQHlouqYtIFVHdNZdIidb6Y6+I+dVbS0\nWfvSjzcRGx7ApyZfutnqgDZ+PIy/B269DTM7GzJ2YBxy+UwxPB7Ylwv7cjGjomD+Qli8BEaP8VPQ\nIiIiIv1be/+YtLQ07rvvPj9H03eSkpJISkrydxhXbGA+tYiIiIiIyJB0Ue+YAVod01m8I5CvJjpY\nl1WDeX7fG/n1jAizM2d0sF9j61VBwbBgISxYiHn6lLVs2c4MjJpqn2lGbS1s3gSbN2FOngKLl1o9\nZ0JC/BS4iIiISP/TvlyZ0+n0cyRyOQO8W6SIiIiIiAwlZTlltDa0escDrXfMpcweFczqGRHesQn8\nb24NJTWtlz5oMIkdBV+8BX7+75gP/R/MxGRMu/2iaUbREYwXnocffA/+/DwcLgTTvGieiIiIyFCj\nhMzAMPCfXEREREREZEhwN7spybigOiZ5YFfHdPapSaGcaXCTfrwJgJY2eHZPDd9dNIwRYRcnJwYl\nmw1mz7G2ujrM3TutJc1OnvSZZjQ3Q8YOyNiBOXIkLFxsVdvEDPdT4CIiIiL+VVBQwJgxY3A4HP4O\nRS5DCRkRERERERkQSnaW0No4+Kpj2hmGwe0zI6lobMNVYX3O2mYPz+yu5ruLhhEZPMQWOIiMhJWf\ngRs+jXm02ErA7MnEaGrymWacOQNvvYH59pvgTLCSM4mJ1pJoIiIiIkPEpk2b/B2CXIHB8/QiIiIi\nIiKDVlNNEyd2n/COgyKCiEuJ82NEvcNuM/h6koP/2FlFWV0bAGca2/hdZjUPL4gmNHCIJWUADAMm\nTba22+7EzNkL6TswCg/5TjNNKMiHgnzMDSGQnAoLF8GUqdY5RERERET8TAkZERERERHp94o/KsZs\n6+gVMnHFROxBg3MZr7BAGw+lRfOrjCoqz3kAKKl184e9NXwrNZpA+xBOLgQHw4JFsGAR5pnTsGsn\n7MzAqDzrM81oaoL07ZC+HTN2lJWYmb8QYmL8FLiIiIiICAzBn1eJiIiIiMhAUltay5mDZ7zjiNER\njJo9yo8R9T5HiJ2H0qKJCOpIvhw628oLebV41MTeMjIWPr8afvZzzO9+H3P+QszAoIumGadPYbz5\nOvzrD+A3v4I9u6GlxQ8Bi4iIiMhQpwoZERERERHpt0zT5Mg/jvjsm3zDZIwhsARVbEQA306N5j93\nVdN8vjoop6yZiKB6bp8ZMST+DK6IzWb1jnEmwF13Y2bvhZ3pGIcLfaYZpgn5ByH/IGZIKCQnW1Uz\nU6dZ5xARERER6WVKyIiIiIiISL91Jv8MdaV13vHw6cOJnhDtx4j61vjoQL6R4uDZzGraV2zbfuwc\nEUE2bpoe7t/g+qPQUFi8BBYvwTx9ylrSbFcGRmWlzzSj6Ryk74D0HZgxw2H+Ais5M3q0nwIXERER\nkaFACRkREREREemXPG4PxR8Ve8eGzWDypyb7MSL/SBgRxJfnRfF8Ti3ti5W9W9hAZLDB0glhfo2t\nX4sdBV/4Iqz6AuYhF+xMh+xsjFbf5cqMyrPw7jvw7juYkyZbiZmUVIiI8FPgIiIiIjJYKSEjIiIi\nIiL90onMEzTXNHvHY1PGEhoT6seI/CdpbAj1LR5e+bjeu++VA/VEBNlIHBPix8gGAJsNEmZY213n\nrCXNdmVgFB66aKpRXATFRZivbIRZc2DBAus1MNAPgYuIiIjIYKOEjIiIiIiI9Dst9S2UZJR4xwGh\nAUxYMsGPEfnfsolh1DV7eO9wIwAm8OfcWsICbThHXNzMXrrQeUmzigrI3AW7d2KcOuUzzWhrg7wc\nyMvBDAuDlDRYsBAmTQb17hERERGRa6SEjIiIiIiI9DtHtx2lraXNO56wdAIBIXp8uWl6OHUtHtKP\nNwHg9sC6rBr+z8JoxjtUxXFVRoyAm1bB527GPFps9ZvJysRoaPCZZjQ2wrYtsG0L5shYSJsPaQtg\n1Cj/xC0iIiIiA5aeaEREREREpF9pON1AeV65dxw6PJQxiWP8GFH/YRgGd8yKpKHFJLfcWs6tuc3k\nd5nVfHfRMGLD9Yh31QzDqnyZNBluvxPzwH7YlQH791mVMp2nnjkN77wN77yNOWGilZhJSQWHwz+x\ni4iIiMiAom/rIiIiIiLSb5imyZEPjuDtXg9MvmEyNrvNf0H1MzbD4MvzomjIrKawshWA+haT/95d\nzaOLhuEIsfs5wgEsIADmJVpbfT3m3j2wa6fVW+YCxrGjcOwo5qsvWf1p5i+AeUkQop4+IiIiItI1\nJWRERERERKTfqDpSRXVxtXccPTGamCkxfoyofwq0GzyQ4uA/d1VzotYNQOU5D89k1vCdhdGEBSqB\n1W0REbD8elh+Peapcti9CzJ3Y1Sc8ZlmmCbkH4T8g5iBL8CcuVblzMxZVoJHREREROQ8fTsUERER\nEZF+wdPmsapj2hkweeVkDDVR71JooI1vp0Xz64wqKhqtpbVO1rn5fVYN/5QWTZBdf249ZtRo+MIX\n4fOrMYuLIHM37N2DUVfnM81obYW9WbA3CzM8HJJSrJ4zU6aCTUkyERERkaFOCRkREREREekXynPK\nOXf2nHc8eu5oImIj/BhR/xcVbOOh+dH8KqOKumYPAEcqW3k+p4b7kxzYbUrK9CjDgMlTrO32OzDz\n8yFzF+TlYjQ3+05taIDtW2H7VsyYGEhJs7b4eOs8IiIiIjLkKCEjIiIiIiJ+525yc3T7Ue/YHmRn\n4rKJfotnIBkRZuefUh38Zlc1TW6r+c7+Uy08n1PLVxOjlJTpLfYAmDXb2pqbMfflWpUzH3+M4Wnz\nmWpUVsL778H772GOGg0pqdY2ZqyfghcRERERf1BCRkRERERE/O54+nHc59zecfzCeIIigvwY0cAy\nzhHIgykOnsmsxm0VypBb3qykTF8JDobU+dZWV4e5Nwsyd2EUHbloqnGqHN55G955G3NcfEdyZsRI\nPwQuIiIiIn1JCRkREREREfGrc1XnKN1T6h0HRwUTlxbnx4gGpmnDg7g/ycFz2TU+SZk/5dTyNSVl\n+k5kJKy4HlZcj1lxxqqaydqDcbL0oqnGiRI4UQJvvIY5abKVmElKgWHD/BC4iIiIiPQ2JWRERERE\nRMSvij8sxvSY3vGk6ydhD7T7MaKBa9ao4IuSMnnlzfwxu5avJUURoKRM3xoxEm5aBTetwiwthb17\nYM9ujDNnLppqFBdBcRHmqy/D1GmQmgaJyVaCR0REREQGBSVkRERERETEb6qPV1PhqvCOI+MiGXmd\nlm7qjlmjgvlGsoM/7O1Iyuw71cyfsmv4WpJDSRl/iYuzts+vxjx+DPZkwt49GFVVPtMM04TCQ1B4\nCHPjekiYAUnJMC8JIiL8FLyIiIiI9AQlZERERERExC9M06ToH0U++6bcMAXDUMKgu2bGdpWUaeGP\n2TV8XUkZ/zIMmDDR2m65DbPoiJWcyc7CqKvznerxwMGP4eDHmOv/As4Ea0mzxESIUOWMiIiIyECj\nhIyIiIiIiPjF6QOnqS+v945HzhhJ1LgoP0Y0uMyMDeaBZAfrOiVl9isp07/YbNbyZFOnwR13YR5y\nQVYm5GRjNDb6TDU8Hsg/CPkHMTf8BaY7ITnFqpzRsmYiIiIiA4ISMiIiIiIi0ufaWtoo3lLsHRt2\ng0nXT/JjRIPTdbHBPJji4PdZSsr0e3Y7zLjO2r50L+bBj62eM3l5GE3nfKYaHg8U5ENBPuaGF63k\nTFIKdkc0bWFhfvoAIiIiIvJJlJAREREREZE+d2L3CVrqWrzjcWnjCIkO8WNEg9eMkV0nZZ7bayVl\nAu1KyvQ7AQEwZ661tbZi5n8Me/dCXu5lkzOTDYNz8eNhyVKrciZKFWciIiIi/YkSMiIiIiIi0qea\na5sp2VXiHQeGBRK/KN6PEQ1+7UmZdVk1tJ5Pyhw43VEpo6RMPxYYCHPmWVtrK2b+QcjOspIz5y5I\nzpgmYcePwfpjVuXM1GmQmGQlZ2Ji/PQBRERERKSdEjIiIiIiItJnTNPk0LuH8LRnBYCJyycSEKxH\nk95mJWWi+X1WtU9S5rnsGu5XUmZgCAz0rZwpyIe9WZCX02VyhsJD1vbyRswJEzuSM6NH+yd+ERER\nkSFOTz0iIiIiItJnyvPKqTpS5R2Hx4Yzeq7+cbivJIwM4sHUaH6/pyMp87GSMgNTYCDMnmNtbjdm\n/kFqt3xIxOFC7M3NF003jh2FY0fhjdcwx4ztSM7Ex4Oh/+4iIiIifUEJGRERERER6RNN1U0U/aPI\nOzZsBs7POzHUWL5PJYzoOinzh701fCNZSZkBKSAAZs/hVEgop9ramOZuhZxsq3Kmvv6i6UbZSSg7\nCX//G+bwEZCYaCVnJk8Bm80PH0BERERkaFBCRkREREREep1pmrj+5qKtpc27b8LSCUSMivBjVENX\nwoggvpkazf90SsocPNPCur01PKCkzMBmt0NCAsyaDffch3m40ErO5OZgVFVeNN04WwH/2Az/2IwZ\nFQVzE2FeIkx3WlU4IiIiItJjlJAREREREZFedzLrJDXHa7zjyDGRxC+M92NE4uwiKZN/poVnMqt5\nIMVBWKAqJQY8m81KrEx3wh13YR4/ZiVncvZinDp10XSjtha2b4XtWzFDQuC6WTB3rpXcCVfyVERE\nRKS7lJAREREREZFe1Xi2keKPir1jW4BNS5X1E10lZQ5XtvLrjCq+nRZNTKjdvwFKzzEMmDDR2lav\nwSwrg9xsyMnGKDl+8fSmJsjOguwsTJsNpk2HOXNh7jwYMbLPwxcREREZDJSQERERERGRXmN6rKXK\nPG6Pd9/EFRMJGxHmx6ikM+eIIL6dFs3vs2pocpsAlNe38cv0Kr6d6mCcQ8tWDTqGAWPHWttNqzAr\nzkBujlU9U3QEwzR9p3s84CqwtldewoyLgznzrOTM+AnqOyMiIiJyhZSQERERERGRXlOyq4S60jrv\n2BHvIC41zo8RSVemDQ/iOwujeTazhppmK3lW2+zhN7uquT/JQcLIID9HKL1qxEhY+Rlrq63B3L8f\n8nIh/yBGa8tF043SUigthXffwXREd1TOOBPUd0ZERETkMpSQERERERGRXtFwuoFj2455x7ZAG9NX\nTccwtFRZfzQuKpBHFw/jd5nVlNe3AdDkNvndnmrunhPJ/HGhfo5Q+kSUAxYvsbaWZsz8fCs5sz8P\no67uoulGTXVH35ngYEi4DmbPhllzIDraDx9AREREpP9SQkZERERERHqcp81DwdsFmJ6OpY8m3zCZ\n0GH6R/3+LCbUzncXDWNdVg2HK1v/X3v3HSbZVdh5/3srV3XumenJeXrOaIJQQgKRJRsLY4NMcuLF\nhH2d4Fmz4PC+uw+G1/hdP7vm8TrbrMGLF8y+YEBgWIKNEApgCQU00mhmrnqmJ3X39ITOXVVd8b5/\nnFuhp6tnOleH38fP8b333NCnxFWr+v7uOQeAogefOzrGcLrI6/clFKitJZGo7fnyklugWMQ7023D\nmaPP4lzqn3K4k8nA0R/bAng7dthg5sjNdu4aDW0mIiIia5wCGRERERERWXDnHztP8lKyvN22u43N\nt26uY4tkphLhAL95Zyufe26UZ/oy5fpvvJhkaKLA2w81EQwolFlzAgHYu8+Wt7wNr78fnrPhTK15\nZwCc8+fh/Hn45jfwmprg0BEbzhw8BHGFsyIiIrL2KJAREREREZEFNdY3xvkfni9vB6NB9r9RQ5Wt\nJOGgw6/c0kxbLMmD3aly/Q/OTzAyUeTdt7YQDel/zzVt0ybYdB+8/j4YHcU79hw8/zyceAFnYmLK\n4c7YGDz+Q3j8h3iBIHR22nDmyM2wcVMdPoCIiIjI0lMgIyIiIiIiC6aQK+B+3YWql+X3vX4f0eZo\n/RolcxJwHO6/qZG2WIAvHx8v/0967HKWP398iF9/aStNUQ1BJUBzM9z9SlvyebxTXfD8c3DsOZxL\nl6Yc7hQL4J605UtfxNvQAYcPw8HDYIwdKk1ERERkFVIgIyIiIiIiC+bcI+dIDVR6VKzbv46Owx11\nbJHM12t2J2iJBfifz46SK9q68yN5/uSHg/zGna10NOjPSqkSCsGBm2x5+8/jXboEx56zAU3XiziF\nwpRTnCuX4aHvwUPfwwuFoHM/HPIDms2bQb3rREREZJXQN2cREREREVkQI+dH6Hmip7wdjofpvK9T\nQ5WtArdsjtEcDfDJp0ZI5WxfmaupIn/ygyF+7aWt7G4L17mFsmxt3AgbfxLu/UlIp/FOHLcBzbHn\ncUZHpxzu5PNw4rgtfBGvrd2GM4cO2ZAnnlj6zyAiIiKyQBYkkDHGtAMfBe4HNgNXgW8CH3Fd9+IM\nzn+lf/6dQAy4AHwZ+LjruuML0UYREREREVk8hWwB9xvupLp99+0j0hipU4tkoe1pj/Chu9v46x8N\nM5i2XWWSOY+/eHyId9/aws2bNMyU3EA8DrfdbkuxiHf+nO0588IxOHcWx/OmnOIMDcJjj8Bjj9i5\nZ/burfSe2bYNAho2T0RERFaOeQcyxpg48H3gAPCXwFNAJ/DbwD3GmNtd1x26zvm/DHwOcLGhzCjw\nM8DvAq8yxrzSdd3ifNspIiIiIiKLp/t73UwMVyby3nBwAxtu2lDHFsli2NgY4sN3t/G3T41wYSQP\nQK4In3p6hLccbOQ1u+LqESUzEwjArt22/OybYXzM9p554Ri8cAxnbGzKKU6xAF0v2vLVr+A1N8NN\nB205cBBaW+vwQURERERmbiF6yHwQOAK833Xdvy5VGmOOAg8AHwE+VOtEY0wU+Btsj5i7XNcd8Xf9\nvTHmAWyPm/uwvW1ERERERGQZGjozxMVnKh3jIw0R9v3Uvjq2SBZTcyzIb72slb9/ZpTjV7IAeMCX\nj49zdjjHLx5pIhpSrwWZpcYmeOldthSLeD09cNyGM5w+hVOc+p6mMzoKTzxuC+Bt3lIJaDr3Qyy2\n1J9CRERE5LoWIpB5F5AEPn1N/deAHuCdxpgPu647te8xbAK+AjxRFcaUfBMbyNyMAhkRERERkWUp\nP5GfMlRZ5xs7Ccc1p8hqFg0F+NU7WvjCsTH+7UKlZ9TTfRl6R/O877YWNjVpylKZo0AAduyw5b6f\nhnQK7+RJG9AcO2aHMavBudgHF/vge9+1w5vt2VMJaHbugmBwaT+HiIiIyDUcr8YYrTNljGkGRoBH\nXdd9dY39XwbeAux1Xbd7ltf+beCPuabnzUyMjIzU/FBdXV2zuYyIiIiIiNzA8JPDpM+my9vx3XFa\n79CwQWuSBEc6AAAgAElEQVSF58EzQxF+eDWGR2WosrDjcc/GNKY5V8fWyarkeUQGB0ic6abh7Bni\nvT0E8vkbnlaIRklv30Fy5y5SO3aRa2sDDa8nIiIis9DZ2VmzvqWlZcZfKub7ytJOf9kzzf7z/nIP\nMONAxhgTAd4LpICvzrl1IiIiIiKyaCZ6JyaFMcFEkOaXNNexRbLUHAdub8+yMVbg2xcTpAp2qLKc\n5/Cd/gR96Qyv2jCBRjCTBeM4ZNetJ7tuPcN33ImTzxPr66Xh3FkS584SvdRPrSciwUyGxlNdNJ6y\nL2rmmppJ7dhBavtO0tt3kG/W7y4RERFZfPMNZJr8ZWqa/clrjrshY0wA+DvgJuDDruv2zb15k02X\nYK1Fpd5C+mciK5nuY1kNdB/LaqD7eG0avzTO0a8dnVR38P6DtO1qq1OL5kf38fx0AreZAp/58Sin\nBiu9Yp4fiTLqNPDeW1toT2i4qMW2Zu/jm26qrI+P47kn4cRxOHEcZ+BqzVPCY6O0vHCMlheOAeBt\n6ABzwJb9BlpalqLlUsOavY9lVdF9LKuB7uPFsawG9TXGxIHPY+eO+SvXdf+kzk0SEREREZFrZEYz\nHPviMQrZQrluyx1bVmwYIwujJRbkA3e18o0Xk3z3dOWdvXPDef7LY4O865ZmDnVE69hCWRMaG+H2\nO2zxPLyrV8rhDO5JnFTt90mdK5fhymV47BEAvE2bJwc0jY1L+SlERERklZpvIDPqLxum2d94zXHT\nMsZsAP4ZeBnwcdd1f3+ebRMRERERkQWWz+Q59sVjZMey5bqWHS3suXdPHVsly0Uw4PDmA43saQvz\n2WdHSeft9J6pnMcnnxzhp/YleMP+BgKau0OWguPAhg5bXv1aKBbxzp214cyLLpw+hZOrPc+R038R\n+i/Cww/hOQ5s3eYHNAb27YdEYkk/ioiIiKwO8w1kzgAesG2a/aU5ZrqudxFjzEbgUWA38B7XdT8z\nz3aJiIiIiMgCKxaKnHjgBMnLyXJdfF2cg289SCCoSUKk4sjGKL/7qnY+/fQIPaN2wnUP+PapFGeG\nc/zKLS00RXXPyBILBGD3Hlt++mcgl8M70w3uSVvOdOMUClNOczwPei7Y8uC/VgKazv227OsEzUEj\nIiIiMzCvQMZ13aQx5jngNmNMzHXdidI+Y0wQuBu44Lru+emuYYxpBr4N7ADe5Lrut+bTJhERERER\nWXie53HqO6cY6h4q14UTYQ7//GHC8XAdWybL1fpEkA/d3caXXhjjhxfKfyriXs3xXx8b5D23trCn\nXfeO1FE4bIcj22/gZ98M2QzeqVO294x7Es6dxSkWp5w2KaB56EEAvE2boNP4IU0ntLUv9acRERGR\nFWAh5pD5NPDnwK8Bf1ZV/06gA/hoqcIYcwDIuK57puq4PwNuAd6iMEZEREREZHnqebyH/mf7y9uB\nUIBD7zhEvDVex1bJchcOOvzizc3saQ/zhefHyPnPtocnivzZ40O8+UAjr9sdx9EQZrIcRKJw8JAt\nAOk03qkuG868eBIuXLBhTA1Ofz/098OjDwPgrV9vhzbb7/eiWb/BDqEmIiIia9pCBDJ/C/wy8Alj\nzE7gKeAQ8CHgeeATVceeAFzgAIAx5mbgV4DjQNAY87Ya17/iuu7DC9BOERERERGZg8vHL3PmoTOT\n6g68+QDNWzREj8zMXdvibG8O86lnRriStENCFT144MQ43UM5fuFIE40RDWEmy0w8DkdutgUgOW57\n0HS9aMv5c9MHNFevwtWr8PgPAfBaWmHfPtjrl23bIRhcqk8iIiIiy8S8AxnXdXPGmNcDHwPeCnwA\nuAx8Cvio67qp65x+G+AAB4F/muaYh4HXzredIiIiIiIyeyMXRnC/7k6q2/sTe1lv1tepRbJSbWkO\n8TuvaOPzz43xbH+mXH+0P8PpwSzvONzELZui6i0jy1dDI7zkFlsAJibwTvsBzakuOHsGJ5+veaoz\nMgxPP2UL4EWjsGt3JaDZswfiiaX6JCIiIlInC9FDBtd1R7E9Yj50g+Oca7Y/A3xmIdogIiIiIiIL\nKz2Y5oUvvYBXqLwBvuWOLWy9c2sdWyUrWTwc4L23NfP9s2m+emKcon9rjWc9/v6ZUW7eGOUdhxtp\nianngKwAsRgcOmwLQDaLd6bbhjNdL8Lp0zi5bM1TnUzGDoXmngTAcxzYsrUS0OzdB+vWaZgzERGR\nVWZBAhkREREREVldssksz3/hefLpytve6zrXsfcn9taxVbIaOI7D63Yn2NUa5rNHR8tDmAE8dylD\n10CWtx5q5M6tMfWWkZUlEgFzwBaAfB7v/LnKEGfdp3FStQcRcTwPentseeT7gD/MWXUPmm3bIRxe\nog8jIiIii0GBjIiIiIiITFLIFTj+peNMDE2U6xo3N3LgzQdwAnpALgtjd1uY/+tV7XzzxSTf605R\n6oeVznt87ugYT/dl+IUjTbTH1VtGVqhQCPbsteWn3gDFIl7/RTh9qlycK1emPd0ZGYZnnrIF8EIh\n2L4Ddu+pFPWiERERWVEUyIiIiIiISJnnebhfdxntHS3XRVuiHH77YYIRPRiXhRUJOtx/UyO3bo7y\nj0dHuThe6S1z4kqW//zwIPff1MjdO2IE9NBZVrpAwA5LtmUrvOo1AHijI1UBzWk4fw6nUKh5upPP\nw5luW3xec/PkgGbnLjuUmoiIiCxLCmRERERERKTszENnuHryank7GA1y+B2HiTRG6tgqWe12tob5\nnVe28y+nk/zLqVR5bplMweMLx8Z4um+CX7q5iQ0N+hNWVpnmFrj1dlvAzkNz7mwlpOk+jZNMTnu6\nMzoKR5+1haq5aPaUAprdsHmzDYNERESk7vRtVkREREREAOh7po+ex3vK207A4eBbD9KwoaGOrZK1\nIhx0eOP+Rl6yKcrnj45xYbQyf9GpwRx/9MggP2Maee3uuHrLyOoViUDnflsAPA/v8iXbK6bb7x3T\n24NTLNY8fdJcNI8+Yi8RjdqhznbtsgHNzp2woUNDnYmIiNSBAhkREREREWHw1CCnvnNqUt3+N+6n\nbVdbnVoka9W25jAffkUbD3an+FZXkrz/3DlXhAdOjPPjixP80s3NbG7Sn7OyBjgObNxky8vutnXZ\nDN65c5Xhy7pP44yMTH+JTAZOddni8xIJO7zZzl2wyw9pWtsU0oiIiCwyfYMVEREREVnjxvvHOf7A\nccqzqgM7X7WTjUc21q9RsqYFAw6v39fAzZuifP65Mc4M5cr7zg7n+a+PDXLfvgbu3ZsgFNADZFlj\nItGpvWiGhioBzZluOxdNLjftJZxUCk4ct8XnNbf4vWj8sn0HtLQs6kcRERFZaxTIiIiIiIisYWN9\nYxz74jGKucrwNx1HOtjxyh11bJWItakxxAdf3sojZ9N83R0n6891ni/CN15M8kTPBG860MBLNkVx\n9Ga/rFWOA+3tttx+h63L5/F6e+DcWVvOnoWLfdMOdQbgjI7Ac0dt8XktLbBjpw1ntu+w6+3t6kkj\nIiIyRwpkRERERETWqKvuVU5+7STFfOUBXcvOFvb/9H493JZlI+A4vHZ3gsMbo/yv50Z5caDy1v+V\nVIFPPzPK7tYQ99/UxJ72cB1bKrKMhEKVni4l2Qze+fOVkObcWZxLl657GWdkBJ5/zhaf19AwOaDZ\nvgM6OiAQWIxPIiIisqookBERERERWWM8z6P3yV66v9s9qb6ho4FDbz1EIKiHarL8rE8E+cBdrfzw\nwgRfPTHORL4yxt6Z4Tz/7d+GeMmmKG8yDXQ06k9dkSkiUdjXaYvPS6Xg/LlKL5pzZ3AGB697GSeZ\nhJMnbCldJxr1Q5rtsM0vm7dAJLJIH0ZERGRl0rdUEREREZE1xCt6nP7X0/Q93Tepvm1PGzf93E2E\novoTQZYvx3F4xY44N2+M8p1TSR49l6ZYNffR0f4Mz1/K8Iodcd7Q2UBTVOGiyHUlEnDgJlt83ugo\nXDhvy/lzcP48ztUr172Mk8nAqS5bStcJBKBjox/QbKsENS0tGvJMRETWLP21JSIiIiKyRhSyBU58\n9QSDpya//bzplk3s+6l96hkjK0ZTNMDbDjXx6l1xvn4yybP9mfK+ogePnkvzZO8EP7Enwev2JIgE\n9fBXZMaam+HQYVt8Xio1JaThUj+O5017GadYhP6Ltjz1o8q1GhunhjSbNtth1kRERFY5/ddORERE\nRGQNyIxleOGLLzB+aXxS/e57drPtrm2aM0ZWpI6GEO+7vYUzQzkeODHOmaHK/DITeY9vvJjksfNp\n3ri/gTu3xQjoPheZm0QCzAFbSjIZvN6eSkBz4Rz09eEUCte9lDM+PnXIs2AQNm6CLVtpj0bJrN8A\nra2wbp3mphERkVVFgYyIiIiIyCo3fnmcY184RnYsW65zgg4H3nSADTdtqGPLRBbG7rYw/+HlrRzt\nz/DPbpIrycoD4eGJIv/43BgPnUnx5gON3LQhogBSZCFEo7Bnry0l+Txe/0Xo6YGeC7b09uCMjV33\nUk6hAH290NfL+lLl176CF4nYuWi2boUtVUXDnomIyAqlQEZEREREZBUb7B7kxFdOUMhWHlCH42EO\nvf0Qzdua69gykYXlOA63bI5xZGOUH5xP862uJOPZynBKfWMF/ubJEcz6MD9rGtnZGq5ja0VWqVCo\nMgwZLy9XeyMjlYCmpwd6L0B/vx3W7DqcbBbOnbWlipdIVAU0W2xos2mzHW5NQY2IiCxjCmRERERE\nRFapiz++SNe3u6BqiP94e5zDP3+YeFu8fg0TWUTBgMOrdyV46dYY3z2d4qEzKXJVz3zdqzncq0N0\ntoe5d2+CmzZENJSZyGJrabGlal4acjm8ixcrQc3FPujtxRkdueHlnFQKTnXZUsVLJGwws3kLbN5c\nWW9r09BnIiKyLCiQERERERFZZTzP48xDZ+h5vGdSfcv2Fg6+7SDhuHoGyOoXDwf42QONvHJnnP/9\nYpIf9UxUZ5N0DeboGhxhU2OQe/ckuH1LjHBQwYzIkgmHYccOW6qcOnqU6MBVtgUcfxizPjvsWTp9\nw0s6qRR0n7aliheJ+OFMVUizaTNsWA9BPRoTEZGlo//qiIiIiIisIoVcAffrLldPXp1U33Gog/1v\n3E8gpDeEZW1piwd550uaed3uBF87Oc6JK9lJ+/vHC/zjc2N83U3y2t1xXrEjTiKsf09E6qWYSJBO\n7IDOzkql5+END5fnmaGvF3p74eJFnFx2+ov5nGwWzp+zpYoXCNpQZuMmv2ysLJs0/JmIiCw8BTIi\nIiIiIqtENpnl+JeOM9o7Oql+xyt3sPNVOzWRuaxpW5tD/OadrZwfyfFgd4pnL2YoVnWZGc0U+eeT\nSb7TleLuHTFeuztBezxYvwaLSIXj2GHH2tomD3tWLOINDED/RTvkWf9FuGiLMzGDHjXFAly6ZAtH\nJ+3z4vHaQU3HRohEFvgDiojIWqFARkRERERkFRg5P4L7DZeJ4YlynRNw6PzpTjbdvKmOLRNZXna0\nhHnPrS0MmAIPnUnxbxcmyBYqyUym4PHQmTQPn01z2+Yo9+5JsK1Fw/yJLEuBAGzYYMuRmyv1noc3\nMnJNSGPXnbGxGV3aSafh7BlbqnilcKhjI2zogI6Oycuwfl+IiMj0FMiIiIiIiKxguXSOMw+dof/Z\n/kn1wWiQg289SNuutjq1TGR5W5cI8rZDTbyhs4HHztsAZixTLO8vevBUX4an+jKY9WHu3ZPgwPqI\nepqJrASOA62tttx0cNIub3zchjT9F/3eMf22XLlqe8zc6NKeB4ODtpw8MfnajgOtbTac6eiADRsr\n6+s3qGeNiIgokBERERERWYk8z+PyC5fp/m43uVRu0r5oS5QjP3+ExPpEnVonsnI0RAL81L4G7tmd\n4KneCR7sTnEpOfmhrHs1h3t1hM1NQV6+Pc4dW2I0RTXPjMiK1NgI+zptqVbI4125WgloLvWXA5sZ\n96rxPBgatMU9OWmfVwqJ1vs9etaXynq7bGrSnDUiImuAAhkRERERkRUmPZim69tdDJ8dnrJvw8EN\n7P3JvUQa9BauyGyEgw4v3xHnru0xXric5XvdKU4NTg47L44V+Mrxcb56YpxDHRHu2hbnUEeEUEAP\nUUVWvGAINm2y5RpeMgmX/d40/f1w5bItly/jTEzUuNhUNqwZsqXrxak/IxqthDPVYc2GDbBuvYZC\nExFZJRTIiIiIiIisEMVCkZ7Hezj32Dm8qjkvAGKtMfbdt4/2Pe11ap3I6hBwHI5sjHJkY5SzQzke\n7E5xtD9D9b9xRQ+ev5Tl+UtZGsIOd2yNcde2GNuaQxrSTGQ1amiA3XtsqeZ5eGNjNqy5chmuXLHr\nl0thTXrGP8LJZKC315YavJYWG8ysWzd12b5OgY2IyAqhQEZEREREZAUYOT9C17e6SA2kJtU7AYdt\nL9vGjlfsIBgO1ql1IqvTrrYw77u9hSvJPI+eS/Nk7wTj2clhaDLn8fBZOwfNlqYgd22Lc8fWGM0a\n0kxk9XMcaG625doh0DzPzldz5XIlpLlyBa7aMtNh0Mo/amQERkag+3TN/V5Liw1mpoQ266CtHaLR\nuX5KERFZQApkRERERESWsVw6x5mHztD/bP+Ufc3bmum8r5OGjoY6tExk7djQEOItB5t484FGjl/J\n8kTPBMcuZbimoxp9YwUeODHO106Oc3BDhLu2xTjUESUcVK8ZkTXHcey8ME1NsGfvlN3exIQfzly1\ny3JYcxUGruLk87P7caXA5kx3zf1eQyO0t0HbOmhvr5Q2f9nSCgEFySIii02BjIiIiIjIMuR5Hpdf\nuEz3d7vJpSbPYxGKhdj9ut1sumWThkcSWULBQGU4s/Fskad7J3iid4ILI5MfnBY9OHY5y7HLWRJh\nh9u3xLh1c5Q9bWGCmm9GRABiMdi23ZZrFYt4I8M2nCkFNQMDMHDVLoeH7Jw0s+AkxyE5Dhcu1Nzv\nBQLQ2jY5pGlrs3WlZVOTQhsRkXlSICMiIiIissykB9N0fbuL4bPDU/ZtOLiBvT+xl0hjpA4tE5GS\nxkiA1+xO8JrdCfpG8zzRk+bJvgxjmeKk41I5j0fPpXn0XJpE2OFQR4QjG6McWB8hHtaDTRGpIRCw\noUhbO3Tun7o/n8cbGoLBqpCmejk0h8CmWLTXGxyY9hgvGLQ9adqqQprWVr+t/nZLCwQ1hKqIyHQU\nyIiIiIiILBPpwTS9T/Vy8ccX8a4ZCynWGmPfffto39Nep9aJyHS2NIf4uYNNvOlAIydKQ5pdzpCf\nnM2Qynk82Zvhyd4MQQc614U5vDHKkY4o7Qk9wBSRGQqFYMMGW2op+IHNgB+wDA3B4KAfuAzC0CBO\nJjPrH+sUCjcObRwHmpqhtcWGN62tdlle9+vV20ZE1igFMiIiIiIideR5HiPnR+j9US8DXVMfcDgB\nh20v28aOV+wgGNYDW5HlLBhwOLwxyuGNUZLZIk/3TfBEzwTnR6bOBVHw4OTVHCev5vjSC+NsbQ5x\npCPC4Y1RtreECGg4QhGZq2AI1m+wpRbPw0sl/aDGD2n8oKa8Podh0QB7zuiILZyf9jgvEIDmFhvQ\nlEObFr+u2W43N9twJ6THlyKyeug3moiIiIhIHRQLRa4cv0Lvj3oZvzRe85jmbc10vqGThg0NS9w6\nEZmvhkiAV+9K8OpdCYbSBZ6/lOHY5SxdA9kpPWcAekfz9I7m+fapFM3RAEc2RjjcEWX/+giRoMIZ\nEVlAjgMNjbbUmsMGoFDAGx2F4SFbhvxSWh8etqFNfmrgPKMmFIuVa5+7/rFeQ6MNaUoBTnOLDWvK\n2822JBrU60ZElj0FMiIiIiIiSyiXytH3TB8Xn75INpmteUxDRwPb7tpGx+EOHL0lL7LitcWD5XBm\nIl/k5JUsz1/K8sLlDMnc1DfQRzNFfnB+gh+cnyDowI7WMPvaw3SuC7OnLUw0pAeOIrLIgsHKXDHT\n8Ty88fFKUFMKa0aGbWAzMgzDIzjJ2i+ezJSTHIfkOPT1Xfc4LxCAxiY7HFpzc9WyVKq3myAcnle7\nRETmQoGMiIiIiMgSSF5J0vtkL5ePXaZY6/V4oH1fO1vv3ErrzlYFMSKrVCwU4JbNMW7ZHKNQ9Dgz\nnOPYpSzPX8pwOVmYcnzBgzNDOc4M5fjX0xBwYHtLiH3tEfa1h9nTHiYRVkAjInXgODbYaGqCHTum\nPczL5WB09Jqgpno5YnvbpNPza06xWBkurffGx3vxeCXAaWyCpsZrtpugsbGyHYnMq30iIqBARkRE\nRERk0Xiex1D3EL0/6mXozFDNYwLhABuPbGTrS7eSWJdY4haKSD0FA44frES4/6ZGLo3nbThzOUP3\nYI5aszcUPTg3nOfccJ4Hu8EBtjaH2LcuTEMmxJb41FBHRKSuwmFYt86W6/CyWRvcjI5UliMjk+tG\nhmF0dM5DpVVz0mlIp+HK5Rkd70WjNphpbPRLEzQ0VLYbSssGguNjFGPxebdRRFYfBTIiIiIiIgss\nPZRmoGuA/h/3kxpI1Twm0hRh6x1b2XTLJsJxDZkhIrCxMcTGxhD37k2QzBY5cSXLqcEspwZyXKrR\newbAA3pG8/SM5gE739TmywPsbYuwoyXE9pYQm5pChALqdSciy1wkAuvX23I9noeXSk0ObkbHYGzU\nltFRGBvzl6M4udyCNM/JZCCTgYGrNzx2b6mp0agf1DRUApwGG9qQaPC3GyZvJxJ2yDgRWZUUyIiI\niIiIzJPneYz1jTHQNcDAiwOkrtYOYQCatjSx9aVbWX9gPYGghhkSkdoaIgHu2Brjjq0xwM4rc9oP\nZ04NZukbm74nzMWxAhfHKkP/hAKwpcmGM9tbwmxvDrG5KUQ4qJBGRFYgx6mEGJu3XP9Yz8PLZGoG\nNYyOwvgYjI/ben/dKdYeWnZOTS2FOIMDszrPi8VtiFMd2iQSdjuRgHjCLhuu2Y7HIaDvlyLLmQIZ\nEREREZE5KOQKDJ8dZqBrgMGuQbLJ7PQHO7DerGfrnVtp3tqs+WFEZNaaowFu3Rzj1s02oElmi5wa\ntOHM6YEcPaP5mkOcAeSLcH4kz/mRPDAB2LloSiHNtuYQO1rCbGkOEVFIIyKrieNALGbLho4bH18s\n4qVTMDZuA5pSUDPmBzfVAU5yHJJJG7osdLMn0jCRBm7cG6ea5zg2lCkFNKUQJx6HhF8fj9v6WLxy\nTGk9FlOgI7LIFMiIiIiIiMxQNpll8NQgA10DDJ0Zopi7/huU4USYjsMdbL1jK7HW2BK1UkTWgoZI\ngJdsivKSTVEA0rkijx47R286xKDXQM9onvx1fkUVveqhzqyAAxsbg2xuDLGxMegPoRako0FBjYis\nEYGAP6RYI7BpRqd4uZwNaZLj/jLJ5e5ughNp1kWjlfrSMakUTmr63tTz4XgepFK2zK5TTpkXi08O\ncGIxu12qj8X8YCdWqSvVl7bDGo5XZDoKZEREREREpuEVPVJXUwyetiHMaM/oDc9JrEuwbv861nWu\no2lLE47mbRCRJRAPB9jdmGd3Y57Ozu0Uih4Xx/NcGCmVHL2jea6XIxe90nBnk4dDc4D2eKAc0JSX\nDSGaonqTWkTWuHAY2tps8Y00twCwrrOz5ileoQDpFCSTlZKabj1lw5xUCtKpBR1SrZZy75yhuV/D\nC4UgGrOhTdQPdKJRfxmr9FoqhTjV29EYxKKV4yIR29NJZJVQICMiIiIigp0HJjOaYaxvjLGLY4z1\njTHeP04hO/08DQA40LK9hXWdNoSJt8eXpsEiItcRDDhsaw6zrTnMy7fbukLR43KywPmRHD3+EGY9\no3myhekGO7M8YCBdZCCd5fiVyfsawk45oFmfCLIuEWRdPEh7IkhTxNEQjSIitQSD0Nhky2yU5sRJ\nJSs9YVKpG2+n0zbMyV5niN0F5OTzkPd7BM2T5zg2lLk2rIlG/bqq7eoSiVaOiUT8Y6qWQT0Wl/rQ\nnSciIiIia1IulWOs3wYvpRAml8zN6NxgJEjbnjbWda6jfW874YSGZRCR5S8YcNjcFGJzU4i7ttm6\nomdDmp5SL5qxPJfGCwxPzOwN7GTOo3soR/fQ1N+f4QC0++GMDWkCtMcroU2jAhsRkdmpnhOnfd2s\nT/cKeRvOlEOa9KTAZvK631MmXbVMp3EKN3hZaYE5ngeZjC2MLNh1vVCoEtREIjakiUT9dX8Zic6s\nPhKBcAQi4cr+UEg9e6QmBTIiIiIisqp5nkc+nSc1kCr3fBm7OMbE0MSsrhNpipR7wbTubCUQ0jA9\nIrLyBRyHTY0hNjWGuGNrZa6riXyRy+MFLo0XuJTM0z9e4NJ4nivJAjfoUFOWK8KlZIFLydoP78IB\nWJcI0hYP0hIN0BIL0BwN0BIL2mU0QFM0QFjz14iILIxgaG49c6p4udzkkGZiYkpow8SEX9IwkYGM\nf0xmAtITkJnAyWQW8IPNnu3Fk7ch1CIo9+wphzWlwMYPccLhSogT9rfLx1+zL1K1Pxyu7A+HKucG\ngwqAVggFMiIiIiKy4nmeRy6VIz2UZmJogvRgmvSQXwbTFDKzf5MvsT5B0+YmmrY00by1mYaNDXqT\nW0TWjFgowI7WADtaJ/cALBQ9BtJ+UDNue9P0+8t0foZJjS9XhP7xAv3j1/8d3RB2/LAmWBXa2MCm\nMWJLQyRAQ8QhoN/TIiKLqxQINDfP6zJesWgDmolrSibjL6vXq5alc8r7M+V1x5vdf4cW0+SePYvP\nc5yqoCY8fQmFbZATura+ui4E4TCNV66S3L1nSdq/liiQEREREZEVoVgokk1myYxmSA9ODV7mErqU\nRJuj5fClaUsTjZsaCUX1VVlE5FrBgENHQ4iOhhBHNkYn7UvligymCwymigykCwymCnaZLjKQKjAx\ny8CmJJnzSOYK9I1d//e8A8TDTjmgaYxUrYdtYFMd3sRDAeJhh1BAIY6IyJILBCCesGUheJ7tvVMK\nQTIZyGYmb2cq4Q1ZP8zJZiCThVy2ckwua+v885dq7p35cDwPsllbFsgWoPv//PUFu55YC/JXpjGm\nHX+lo5AAABQMSURBVPgocD+wGbgKfBP4iOu6F2dw/t3AR4CXAXHgReDvgL90XXf5RJsiIiIisqA8\nz6OQLZAdz1ZKsvZ6Pp1fkJ8Ziods+FIKYDY3EWmMLMi1RUTWskQ4QCIcYNs0L02nckU/pCkFNzaw\nGU4XGckUGcsUmc8DAA9I5TxSuQJMM0xaLeEAxMMBEmGHeMghHrZBTSmwmbQecoiFHKKhANGQQzTo\nEA05hAOoF6WISD1VDxHWNPch2WrxPK8qpMlWAp1czg9BMpUwpLrkatRl/PNyWcjmJq07ueUX/HhB\nvaS20Ob9T9QYEwe+DxwA/hJ4CugEfhu4xxhzu+u6Q9c5/x7gW8AF4GPAIPBm4M+BvcAH59tGERER\nEVlcnueRn8iXS24iR2GiYJeZArl0zu7LVB2TzJFNZinmZjZx9GxFmiLE2+PE2+LlZUNHA7HWmB6a\niYjUQSIcINESYFtL7f2Fosd41oYzIxNFRsvLAiMTtn7Ur1/INzdzRchliozOY1SZgEM5nImFHCLB\nUnBjQ5tYKEAkCJGgQzjoTFraQmU7UL3P1msoNhGROnIcf+6X6I2PnQfP8+y8NtWBTin0yeWqSqk+\nB3l/f+m8XKmual8uZ/eXzs/nptRNN9ybF1Igs9AW4p/oB4EjwPtd1/3rUqUx5ijwALbny4euc/5f\nAxPAq6p603zWGPNV4N8bY/6H67pHF6CdIiIiImuS53l4RY9ivohXsMtioVheenmPQq5AMVekkCvY\n9WzVeqk+669nC5P2ZZIZvJxHP/1L/tmizVHibXFibbFK+OJvB8PBJW+PiIjMXTDg0BIL0hILwjSh\nDUDR8xjP2IAmmbUhTjJbZDxbZDzrkcwVq+rs/uIij71R9CCd92Y9j85MBRwIBxzCQQgF7DBr4QCE\ngg7hgEMoYOvDQb/ePyYUhJDjEPTrggEIOvb4YNV5Qaeyv7Qd8JfBgEPAobw+ua50TfUQEhGZt/I8\nMGFoaFi6n+t5eMUC5CaHNudOn6YY0UgCC20hApl3AUng09fUfw3oAd5pjPlwraHHjDF3AQb4VI2h\nzf4S21PmnYACGRERkTnwZjKp4TSHTHtujeqax87kOG+afTeo9/Aqx3g33i5fZ7r16rrq871K/aQl\n4BWn1k85tuiVw5Dy8VV15e0adcVCsbKv4FEs2jDlhnWFSthSDl/yi9MDZTE5AYdwQ5hoY5RwY5hI\nQ4RIY6XE2+LEWhW6iIisRQHHoTkWpDk2s/8GeJ7HRL4U3NhlKlcknbMBSjpX9JeerffXS/WLHebM\nRNGDTMHDTpe2DBpUQ8ApFT/QqQp1HD/QCTjOpGPK9QGHAHZ7Ip3AAZqGh3GqznEcCHDNtr/f8c8t\nHeM4TtW6X6ic5/jtdarPpXqfU6mbdI3J55Q+N9Ted+21qTqmen9pnfLPdKapr6zDtfudKfud8v+r\nOr/WNarCtGuPg2uPnVpX+VlOzX3XO69635Tr3eDYycdMPWMmGeFMY8TZtBEo/94oznKS+etdU6Gn\nLBrHgWDIllisXJ0dGa1jo1aveQUyxphm7FBlj7quO6lzr+u6njHmR8BbgN1Ad41L3Okv/63Gvif8\n5V3zaaNMb/S5UR798qP1bobInJUeivY7S/9GtqwdMwo0Zn3RqVUXueGUayIrmwOhWIhQNGSXsRDh\neHhSyBJpjJSDl1A8pD86RURkQTiOPw9MOMCGWb5w7Hke2QKk88VySJMp2IAnUyr+dra6ftIx9pxs\nAXIFb5nGKfNX9EoPoas/4Vw+bdguUstvLgWRmfO7+XVdqW8z5qke38b1J8D1LeU/Hs9r5j17xpbw\nJ64N8+0hs9Nf9kyz/7y/3EPtQGbXdOe7rjtmjBn2z10QXV1dC3Wp1cF/A1dkpVuUB+YiIlLmhJxK\nCTqTtgPBAE7EIRCuLAORAE7YmbwMOTUDliJFJvz/Iw+M+EWkTvQ3g6wGuo8XVwho9EtZ0C83GNnF\n86DgQd5zyBXtMl9aepArOuW6XNW+ggcFf7vgb0+tn1pXpLQN9Xm0KiIrWT2etugRz3Ji/7uh7xUV\nnZ2d877GfAOZJn+ZmmZ/8prj5nL+dOeKiIiIrC5OpTj+OBtOwI4p4QT87RnUO0F/PejMaJugf14p\nZAkFysFL+doiIiIyb44DIQdCeNgR15bmyWNpZNaC34ulFOoUPSjgTKqz9bauSKnnizN5/Zp9hfK2\nY0d99a9dXeePzDrpfK/WeeX2OpXtSfuuOdb/x+hh21gaebZ63VMYJSIiy8RCzCGzYixEgrVadHV1\nEemI0L6+vd5NEZmzwcFBANrbdR/L8jSTh9g17+MF/ntxRg/Tpzlk2nNrjaE8w4GVpxw3aRxoZ+o5\n/pjYk46tGoN71ttO1c+5dr007nX1oOH+dvnc6mVg8vb1jnECTmVZFaaU6qt//kpTemNK37VkJdN9\nLKuB7mNZDRbjPvY8rxzilMOha+omLf19xSn7vMo6lTf5J+2nEhJNCoX8yurrce16+XhvyjHl/TW3\nvSn7Jw0cV7VRPaqch3f946raP6mu5vHelLpa16qxOqVuRlNZ1vjZ11Pz580wD615mHf9YwYGBgBY\nt27dja81o/bMPbyd85nzyItXUieXldQjZ6mbOjQ0SDjg6XvFAptvIFOa2We6UVgbrzluLudr9qBF\nEtscY3fn7no3Q2TO8l15AN3HsqLlunIA7OrcVd+GiIiIiIisUo5TmfC+qrY+jZE1oYs+ADo7Zzlx\nlcgy0tWluW4XQ2Ce55/BhnPbptm/019ON9BcaV6ZKecbY1qwM2BpkDoREREREREREREREVnR5hXI\nuK6bBJ4DbjPGxKr3GWOCwN3ABdd1z09ziR/6y1fU2Pcqf/nYfNooIiIiIiIiIiIiIiJSb/PtIQPw\naSAB/No19e8EOoBPlSqMMQeMMeWxhVzXfRZ4Bni7MWZb1XEO8B+AHPAPC9BGERERERERERERERGR\nupnvHDIAfwv8MvAJY8xO4CngEPAh4HngE1XHngBc4EBV3W8CDwGPGGP+FBgGfgG4B/iI67qnF6CN\nIiIiIiIiIiIiIiIidTPvHjKu6+aA1wN/AbwV+AzwK9ieMa91XTd1g/OfAF4NnAT+APgksAl4r+u6\nfzjf9omIiIiIiIiIiIiIiNTbQvSQwXXdUWyPmA/d4DhnmvqngJ9eiLaIiIiIiIiIiIiIiIgsNwsx\nh4yIiIiIiIiIiIiIiIhchwIZERERERERERERERGRRaZARkREREREREREREREZJE5nufVuw0LbmRk\nZPV9KBERERERERERERERWVZaWlqcmR6rHjIiIiIiIiIiIiIiIiKLTIGMiIiIiIiIiIiIiIjIIlMg\nIyIiIiIiIiIiIiIissgUyIiIiIiIiIiIiIiIiCwyBTIiIiIiIiIiIiIiIiKLzPE8r95tEBERERER\nERERERERWdXUQ0ZERERERERERERERGSRKZARERERERERERERERFZZApkREREREREREREREREFpkC\nGRERERERERERERERkUWmQEZERERERERERERERGSRKZARERERERERERERERFZZApkRERERERERERE\nREREFpkCGRERERERERERERERkUWmQEZERERERERERERERGSRKZARERERERERERERERFZZApkRERE\nREREREREREREFpkCGRERERERERERERERkUUWqncDZPkxxsSAo8B+4HWu636/vi0SuTFjjAP8MvCr\nwEGgEbgAfA34uOu6I3VsnsiMGWNeCXwUuBOIYe/jL2Pv4/F6tk1kNowx+4DPAy8F3uO67mfq2yKR\n2owx7djfu/cDm4GrwDeBj7iue7GebROZDWNMBPhD4LeBR1zXfW19WyQyO8aYDcDvAz8HbASGgcew\n34OfqWfbRGbKGHME+F3glcAWYBT4IfCfXdd9op5tE5krY8wfAB8B/sF13XfXuTkrnnrISC0fwYYx\nIivJnwCfBTLAfwI+ABwDPgx83xgTrmPbRGbEGPPLwKPAduzDwd8AnsN+of8XY4z+uy0rgjHmPcCP\ngZvq3RaR6zHGxIHvY3/ffhl4N/BJ4OeBHxhj2urWOJFZMMYY4N+w97JT5+aIzJoxpgN4Bngf8AV/\n+UngXuAxY8ytdWyeyIwYY14OPA7cA/wd8O/85euAR40xd9exeSJzYow5BPxevduxmqiHjEziJ/m/\ng32Ioi88siL4X84/CHzTdd03Vu36lDHmq8CbgZ8BHqhH+0RmwhgTBf4G2yPmrqpeXX9vjHkA++b2\nfdi3tkWWLWPMr2IfoPwFNhj/ZH1bJHJdHwSOAO93XfevS5XGmKPY7w0fAT5Up7aJzIgfHD4DdAF3\nACfr2yKROflDYBvwVtd1v1KqNMY8CXwV+L+Bd9SpbSIz9bfYUPwVruueLVUaY36E/V7xe9jnEyIr\ngv9S6N8BL6DnxAtGb9pKWdW/ZOfQwxNZWTLAfwQ+VmPfv/rLHUvWGpG52QR8BfijGkPslUKYm5e2\nSSJz9nOu6/57IFvvhojcwLuAJPDpa+q/BvQA7/SHRRVZziLA/wRe5rquW+/GiMxRH/C/mPoS3bcB\nD30PlmXOf6b2D8BvVYcxPj2XkJXqN4CXY4dDlQWiHjJS7QPAXcBPYIfLEVkRXNc9DhyfZvcBf/nc\nEjVHZE5c1z2HHSqnlhZ/Obo0rRGZO9d1/3u92yAyE8aYZuz3hEdd181U73Nd1/PfZn0LsBvorkMT\nRWbEdd1L2AcmIiuW67ofm2ZXE7bHgb4Hy7Lmum4RO5R6LXouISuOMWYb8EfA51zX/Z4dHVUWggIZ\nAcAYsx34f4HPuq77oDHm3XVuksic+JOZNmAn5f0/gPdjJx17qK4NE5kj/55+L5DCDtcgIiILY6e/\n7Jlm/3l/uQcFMiIi9fLr/vIf69oKkVkyxrQCjcArgU8AZ6g9qofIcvVXQA4N37vgFMisQsaYd87g\nsD7Xdb9Xtf032GFFPrw4rRKZnTnexwC/BPwPf/0q8Kuu635qQRsnMkPzuI9L55eGkrwJ+LDrun0L\n2T6RmZjvfSyyjDX5y9Q0+5PXHCciIkvIGPMG4PeBp7HPLERWkiF/6WGfUfyu67oDdWyPyIwZY94G\nvAl4n+u6V+rdntVGgczq9NkZHPMd4HsAxphfAN4IvFf/kskyMqv7uMq3gXuADcAbgP9ujHk98Cuu\n66YXtokiNzTX+xhjTBz4PHA/8Feu607X/V1ksc35PhYRERGZC2PMu4BPAWeBn3VdV/PSyUrzOuzo\nHbcCvwncY4x5u+u6T9W3WSLX5/fu+gvgYSovPMsCUiCzOrXN4JgcgDGmHfgz4GHXdfUvmSwnM76P\nq7mu2w/0+5tfNMY8C/wp8Dzw8YVrnsiMzOk+NsZsAP4ZeBnwcdd1f3+hGyYyC3O6j0VWgNJ8BA3T\n7G+85jgREVkCxpiPAH8APAW80XXdy3Vuksisua77fX/1fxtjPgc8A3zeGHPAn29GZLn6Y6Ad+HXX\ndb16N2Y1UiCzCrmuOzyLw/8YaAU+5k/WVFJ6+LLBr79y7WSnIotplvfx9XwKG8jchwIZWWJzuY+N\nMRuBR7GTSL/Hdd3PLHS7RGZjAX8fiyw3Z7DDiGybZn9pjpmupWmOiIgYY/4U+C3sy0m/6LrudMNK\niqwYruueNcY8CLwN2Iu+W8gyZYx5NfA+7Mv749c8KwZI+HVJ13WHplxAZiRQ7wZI3d0LRICHgAtV\npTQ0zhf97ZfXpXUiM2CM+U/GmKvGmHtr7G71lwqgZdkzxjRjh93bAbxJYYyIyOJxXTcJPAfcZoyJ\nVe8zxgSBu4ELruuer0f7RETWGr9nzG9hh8h5i8IYWUmMMTcZYy4YY/5+mkP0bEJWgnsAB/ggk58T\nX/D3v91f/291ad0qoV8C8l4gUaP+Xuy/fP8RO9TT80vZKJFZOgasw96zD16z713+8gdL2iKRufkz\n4BbsH6DfqndjRETWgE8Dfw78GvZ3cMk7gQ7go/VolIjIWmOMeR3w/wAPAP9OQzrJCtQFxIC3G2M+\n7rrumdIOY8xe4BXAFeDFOrVPZCY+jx0uspavY5+5/SmVgEbmwPE8DQUnUxlj3o19K+V1VeNeiixL\nxhgH26X9Z4BHgH8CksBrsIFMP3CH67p9dWukyA0YY24GngVOMP0DwCuu6z68dK0SmT1jzBuozMnx\nWuD9wF8B3/frdB/LsmGMCWOHibwdO3npU8Ah4EPYBysv0xvastwZYw4CB6uq/gk4zuTvE9/UvSzL\nmTHmaezk5x8AppszRvexLGvGmF8A/hEYwH7/7cYORf0BYAPwXs3fLCuVMcYD/sF13XfXuy0rnXrI\niMiK57quZ4y5H/vQ713AfwHCQC/wt8AfKoyRFeA2bNfgg9gHKbU8jH3ALbKc/Q2VuTdK3u8X0H0s\ny4jrujljzOuBjwFvpfIg8FPAR/XgT1aIdzD1ZY5rv0/sBs4uVYNE5uA2f/lX1zlG97Esa67r/n/G\nmHPA72G/U7QCo8CTwJ+4rvsv9WyfiCwP6iEjIiIiIiIiIiIiIiKyyAL1boCIiIiIiIiIiIiIiMhq\np0BGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERERERERERERBaZAhkRERERERER\nEREREZFFpkBGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERERERERERERBaZAhkR\nEREREREREREREZFFpkBGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERERERERERE\nRBaZAhkREREREREREREREZFFpkBGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERE\nRERERERERBbZ/w8Fpzj0yYABEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 818, + "height": 193 + } + } + } + ] + }, + { + "metadata": { + "id": "H_rdEcFIIAz7", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "But something is missing. In the plot of the logistic function, the probability changes only near zero, but in our data above the probability changes around 65 to 70. We need to add a *bias* term to our logistic function:\n", + "\n", + "$$p(t) = \\frac{1}{ 1 + e^{ \\;\\beta t + \\alpha } } $$\n", + "\n", + "Some plots are below, with differing $\\alpha$." + ] + }, + { + "metadata": { + "id": "T0iZj_eCIAz8", + "colab_type": "code", + "outputId": "fe88b350-5b63-49bd-9de4-d3d18df432f0", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 210 + } + }, + "cell_type": "code", + "source": [ + "def logistic(x, beta, alpha=0):\n", + " \"\"\"\n", + " Logistic Function with offset\n", + " \n", + " Args:\n", + " x: independent variable\n", + " beta: beta term \n", + " alpha: alpha term\n", + " Returns: \n", + " Logistic function\n", + " \"\"\"\n", + " return 1.0 / (1.0 + tf.exp((beta * x) + alpha))\n", + "\n", + "x_vals = tf.linspace(start=-4., stop=4., num=100)\n", + "log_beta_1_alpha_1 = logistic(x_vals, 1, 1)\n", + "log_beta_3_alpha_m2 = logistic(x_vals, 3, -2)\n", + "log_beta_m5_alpha_7 = logistic(x_vals, -5, 7)\n", + "\n", + "[\n", + " x_vals_,\n", + " log_beta_1_alpha_1_,\n", + " log_beta_3_alpha_m2_,\n", + " log_beta_m5_alpha_7_,\n", + "] = evaluate([\n", + " x_vals,\n", + " log_beta_1_alpha_1,\n", + " log_beta_3_alpha_m2,\n", + " log_beta_m5_alpha_7,\n", + "])\n", + "\n", + "plt.figure(figsize(12.5, 3))\n", + "plt.plot(x_vals_, log_beta_1_, label=r\"$\\beta = 1$\", ls=\"--\", lw=1, color=TFColor[0])\n", + "plt.plot(x_vals_, log_beta_3_, label=r\"$\\beta = 3$\", ls=\"--\", lw=1, color=TFColor[3])\n", + "plt.plot(x_vals_, log_beta_m5_, label=r\"$\\beta = -5$\", ls=\"--\", lw=1, color=TFColor[6])\n", + "plt.plot(x_vals_, log_beta_1_alpha_1_, label=r\"$\\beta = 1, \\alpha = 1$\", color=TFColor[0])\n", + "plt.plot(x_vals_, log_beta_3_alpha_m2_, label=r\"$\\beta = 3, \\alpha = -2$\", color=TFColor[3])\n", + "plt.plot(x_vals_, log_beta_m5_alpha_7_, label=r\"$\\beta = -5, \\alpha = 7$\", color=TFColor[6])\n", + "plt.legend(loc=\"lower left\");" + ], + "execution_count": 5, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAGDCAYAAAA1YX+ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd0JNdhJvrvVnWOQAONHAYYYDCR\nHJLDYRqKFC2JSZZkZYf12s/PftLaa1trvfUe77Mc1mufXXtl2c/rt+94nxxkeW1ZsqxgBcsiKTGJ\naYbkxB7MIOfU6Jzrvj9ud1c30JgBZ4BB+n7n3FPdVberq9EFoPt+de8VUkoQERERERERERERERHR\n5tG2+gCIiIiIiIiIiIiIiIh2OwYyREREREREREREREREm4yBDBERERERERERERER0SZjIENERERE\nRERERERERLTJGMgQERERERERERERERFtMgYyREREREREREREREREm4yBDBERERERERERERER0SZj\nIENERERERERERERERLTJGMgQERERERERERERERFtMstWH8BmiEQicquPgYiIiIiIiIiIiIiIdje/\n3y/WW5c9ZIiIiIiIiIiIiIiIiDYZAxkiIiIiIiIiIiIiIqJNxkCGiIiIiIiIiIiIiIhokzGQISIi\nIiIiIiIiIiIi2mQMZIiIiIiIiIiIiIiIiDYZA5k9anBwEIODg1t9GEQ3hecx7QY8j2k34HlMuwHP\nY9oNeB7TbsDzmHYDnse0G/A83hwMZIiIiIiIiIiIiIiIiDYZAxkiIiIiIiIiIiIiIqJNxkCGiIiI\niIiIiIiIiIhokzGQISIiIiIiIiIiIiIi2mQMZIiIiIiIiIiIiIiIiDYZAxkiIiIiIiIiIiIiIqJN\nZtmoHQ0MDNgA/A6ATwL4figUevgtPPZ+AL8O4F4ATgCXAfwZgD8JhUJyo46RiIiIiIiIiIiIiIho\nK2xIIDMwMDAA4G8AHAAg3uJjHwHwTQDjAH4TwBKA9wL4YwD7AfzyRhwjERERERERERERERHRVrnp\nIcsGBgbqAZwGoAM4cQO7+FMAaQAPhkKhPwqFQp8LhUIfBPAVAL84MDBw+80eIxERERERERERERER\n0VbaiB4yNgB/BeAToVAorTrLrM/AwMA9AAYA/M9QKDS9YvOfQPWU+QkAb2zAcdIKYwkdVwcTW30Y\ntMXeUpe2bWZx0Q4AGMImnsdb8APaivdE3OCT3syxims9+sY2VddbUfF6jxNr3rn2YyufZ63XVOvn\nW1o1G7FCAFgYS5VX1trLWq9HrHhQZbXqY1t936wnqve5Yl9r7afyucWqbdXrAbFqm7ayjgC04gqx\nVr3iTrTic4mq5xbm/VVLsWq9dqMnPhERERER3TQpJaRhFkio27J4WxZvG6heZ6zYLs3t5dtYxzrU\nuI3rbIO5r2utS84mAQDTiena9corVv5QSovVz1HrMbJmhTUeV+v51/m4t7yfG7UHJq7YtJ/dJogt\nxuA+4N7qw9h1bjqQCYVCswA+foMPP1lcvlhj20vF5T03uO9VBgcHN2pXu8JrYTvGJxnI0E7mUItF\nnse0k7nUYja2tYexRwnIVeGRGfLIFfeLQQ4AIaq3lQMiyIo6xW3Fulr5vqpXfV/VKz1OK+6j9Fhd\nqOc01wNacR/lUnFfL+5LF2ofeuX64j70ivXaBmVT/KxFuwHPY9oNttN5LKUsX1ABAIVMQTWuGhWN\nrAYACWguDbpdV/VSBeRj+eqG1opGWUeHo7zf9HQaRtqoanQtNaRavBbYW9SFXIV0Aanh1OrG1OLS\n1euC7lLPn55MI7uYrW6gLT5Od+jwHPKUX1PkTES9BqxoaJOAs8sJe7N6/ux8FsnhZNVzVjam1t1d\nB1H8pxw7F1OvvwZb0AZ3n2ogyyfyiL0Rq95XxSH4jvlg8ammn+RQEunpdM0GT92lw3+nv3x/6fml\n8mtaybXfBUeb+i6Wmc0gcXnt72P1D9SXX1P09Sjy0TVeU7MNngFP+TVFXotg8fuLNev6jvtg9VkB\nAIkrCaSn0jXr6S4ddSfqzNf07NKaDaHu/W442ouvaSaDeCi+5msKPBgov6bImciar8neYq9+Ta9G\n1tyn77gPVn/Fa5pc4zW5a7wmo/Zrcu13wdHqgCxIZKYzSFxJVIUMAMrnteeAR+2nAKQmUiikCuXt\nlUvNocHisajQJCeRW86tqlc6DzWrpj7kSkDmJWThGgHDLhbB2u870U7g6HBsq88VW62/v/+m97Eh\nc8jchH3F5cTKDaFQKDYwMLAMoPeWHtEekinwymAiItrbJIT6TiirVhbtpf+TKpzRi6GNRZiBjbkE\nLNrKdWZdiwZYKpfF+haxYn3FOqu2cWEQERGtTyFZgJEzVANpqRTUUvfosDcVw4tUAfFLcRWCFIpX\nsBdk+b7vTrNRPHYuhuRI0gxapLm0+CwIvitYfv65r82t2SDru8NXDhoyM5lrNmC3vL9FDZwOIH4h\njtxSrmY9Z7ezHMgYGQOxc2tfBGNvsZcDmcxcBskryZr1LD5LVSCTvJpc8zVZ66zlQCafyCM1mlrz\n+XG3eTMzm1nzNQnd/Ocp83LNxnsAMAbMVCUXySEzlalZrxTalJ9/JrNmIFP6eQLqPMnM1N6nOkDz\nZnYpi9xi7dekOcwR9WVeIjubXXuXWXOn+Vh+zbqrXtPc2q/J0eoo3y6kC8jOrf38la8pF86t+Zp0\np24+JC+vuU+ZM3eai+bWrKvZNcQuxMq/u9f62V/zNaxwrd+1SkbaQH65dgC1qm5hjR82Ee0oa4W+\ndOO2OpDxFpe1P+UAiYo6N20jEqzdYnBwEI12A3PX+NxEREREe4VAQQLqwsVbm5BYNcCmC9gtAvbi\n8nr37bqA06rBYRFwWgQcVk0tLQI6Ex66QaUr//idgbYbKSWMnIF8Jo98Kq+W6TxcDS44A04AQGQi\ngpkzM1heXIbMSliFFflsHkbWQCFfwP3/7n5oumrwfv0vX0d0MlrzuZqONqH/AfU7kJhP4LWvv7bm\ncbUH2+HvUj0qro5cRTxVu0eB1WKt+r1a8i5BFiSELlTRikUItHW1oam/SdXTl4A5VG0XxW6lQhPo\n6+8rvybbrA3p5XS514IQZj1vmxfN/c0AgGw8C2fMqbZVjKVaut18uBkOv2qYD1vCiHfGV9eFgMVl\nKe8TANyPulUjfalaRX1fuw/uoAqZUg0pRJoj1XVgPq6pv6n8GhotjcglcxXD0pr7tPvt8LX5AAD5\ndB5BT7BiV6Jqn/5OP6wuFZzF/XGkj6er6xXr6jYddd1mz4uGDzasORSSu9ENR12xN0lzBomeFT1k\nKnZd31tv/nydzchn1uhN4rXD3aR+TqELIQQeDKCtva1mXW+rF1anek3J+iTSJ9boTWLT4e8we/00\nfqRxzR4yrgZX+b3PtGSQ7FurmQqo21dnviZ3s+r1VYPNbYO7yQ1pSKSWUvC904d8Oo9CpoBCpoB8\ntng7W0Ducg6psynkU3nkUrUDHkCFivHza/feISLaaJpV4+fjDbbVgQxtoUeaU/i5B9q3+jCIbtjg\nlSsAgP6+vk3Z/1ZcA7AVQ4luxlNe/3WsXeFaD13vz+d61a61n1VD+K637oqK1xrqt7Lq8PAwpAS6\ne/apOU0kYEAik5coGIAhJQyJYpEoSMBn12ErXnAXThmIZQowio3pBUPCgKpvEcD+gK38vKen08gX\n1D4MQ10gWJAShgH0BizoKF7lOh7J4fXpTLGBXh1HwSg+TgIfOuKFpXgR41cuxTEdy6MggbyhtpcM\nNFjxjv1uSEgsJgv4u3Nrf3l894ALzW71seTF8TQuzNe+os9nE/jhg57yz/FLF9RVrhZNwKKLYq8M\nAYsOdPutaPJYIKVELGNgLlGAVRewaIAu1NKiqQZ8UWxFMaRqeiiPjCJLtyvfh2LjWOk21HsjK7aX\n78O8X7mt9PM3Su/Xive6sOIxu1nOAHKGRCK3MS/UpquQxmlVAU1lcOO0anBZBdw2De7yUoPbJuCy\narDqDHOI6NYpZAvIxrOqJNQSANrvVt/RpJR4+b+/jGw8W/Pq1J5HetB5bycAIBPNYPbsbHlbFtX/\nRwvZAjSn+uftqHcgn8lDt+nQrBp0qw7dqkOzafC1+8qPsXls6H1HLzRdg2YpFl2DsAhougZX0FWu\n2/VAF9pPtkPoApqmqQClImypdM8vrG9U8kBvAIHewLrqdp/qXlc9m8eGnrf3rKtufU896nvq11W3\n7c7awcFKzoCzHKKt5/nXw+KwIHgweP2KADxNHniaPNevCCDQt76fvd1nh91nv35FAL4O3/UrQTX+\n2Vvs63r/XY0uuBpd160HrP9navfaYfeu7zV5mjzIxDPIRrPIxDKqRDPIxrLm7UR2a75c3iShq9/1\n0u9yrduaVnu70M0QdVVZY30pRFXzQpr3y6FoxfbSOlEcK7hynTr4inWo3sdagWxlXaB6/Xrur9zH\nyMgIAGBfz76q/VbtY+WFUCvvrnNi1FX1brT+dR73lvdzo/bAR/JN+9ltsMHBwT3xftxqWx3IlC7L\nWWt2IE9FHdpgmgCvIqUdrdRuxvN4J+J7VrJgVd/OGl039i85+Bbm13vSu74v4J1+K+7vWt8X20/c\nX/1F2ZASeQPIG2ruE6dVNf5kCxLtPivyhkTekMgWgFxBIleQyBYk7mi1w+dQKVPeAHx2Ddnitmyp\nngE0ODXc2+ksP9ffnFWBTKYggRUN+g90OfFgt3odL4yl8NTw2kOEfPqxYLkx/m/ejGIxWYDLqsFp\nVQ35bpsOj01Dm8+CfXXW8vMDUEHaJqoKagxZXhYqgpuCUQpyzAAtX6pnqPX5imAtX1yfL+5PvS8o\nvz+50u2Cub72OnU7mzdgbJPf69I5E7mBXsA2XcBtE+WQRi1VeOOxafA5NHjtGnzFYi82NhARrWQU\nDKSX00gtpZAKp9DQ11BuiB//wTjGnhtDIbv6qnqb21YOZEp/X6QhoVk0WOwWWBxmcfjMIZZ8bT4c\nePIA5sPzEFaBfX37oNtU0FIKXkoOvufgul6D1WlFx8mO9dV1WWGFdV11iXaafCaP1GIKycUkkgtJ\nJBeTyERV2JJLrt2bZTMJXajfcZsOi81Svl1V7Ho5cBUWoYJXXYNmrQhZr1H4GefmlIY/rPxbTbTT\nrLyogjbGVgcyQ8Xlqk95AwMDfgB+AKdv6RHtIfaZaWB+DrBazWKxqKXDAbRV9J5JJtU2iwXQtLV3\nSkREe5omBGy6atiuZNMFeurX11Bzot2BE+3X/+IiAPzBo0Fk8gbSBdWrKJOXyBQk0nmJLr/5MafZ\no+NUlxPJvIFUTiKVKy7zKuyp7BkxEs5hOl576IlTXc5yIDMRyeMPng9XNdx7bKrh3m3T8NA+J/zF\nkCmWMWDRAIflrTfga0KY86xs0x4cg4ODMCTQ3bsfuQLKIVrOKAVqqLhtrssa1e9bJi+RLRjF+6i4\nrUK8zZYtSGRTEuHU+sY8t+kqPPTa9XJIo+5rVfd9do0XDxDtQpWT1ReyBQw9NYRUOIV0OI10pHri\ndJvbVg5khCZQyBYgdAGbx6aKWy1XXpV/x0/fAYvdAs1y7e9gjjoHWupaEBtUFyp4mtd3EQYRmXLJ\nXDlwSS5Uhy+bQWgCFqcFVqd11bJqnUMtdbsZtpSG6yMiop1nqwOZF4rLBwD8fyu2PVhcPnfrDmdv\n8YYuQbz6cs1tsjEI/M7vmSv+469CpNSVxdJiASxWwGoBrDbg8SeABx9S9S6HgG9/E7DZinVWlMef\nVNsA4MJ5IJlQ9602td1WXLo9gG993ZmJiGhvEkLAbgHsFh3X+4+xP2DD/oBtXfv9yeM+xLJmYJPM\nGUhkJRJZA70BM1RK5tTwZvGsRDxbABLVicF9nWao9A8XYnh1KgOrBvgdGnx2vbjU0Om34J4O1Ugn\npXpO5w0EN1tNE4DDosGxSZ8uDVnsMZVXgVuqWNI5Qy3zEqmcRLoYuqk6lbdVEJffwPllswVgIWlg\nIXntnWpCve/1Dh0Bp4Z6p46AU0d9+bYGx3UaW4lo6xRyBSRmE4hNx5BcTCIVTiG1lILdY8fxf30c\nAKBZNMy8MaMmvQfK83w4A04461Upabm9BS23tUC369f9W29zr+9/FxGtn5E3EJuOIT4TrwpeNqq3\ni2bVysOe2Xy28m27zw6bx1YOWnTb9f8GEBHR7nNLA5mBgYGDADKhUGgYAEKh0OsDAwOnAXxoYGDg\nU6FQaKJYTwD4BIAcgL+8lce4l2SamyHvvQ/I5YBcHsjn1O18HvD7qytbrZD5PEQuB5HPqzrFefNk\ntuJDy9ISxPlzaz6nfPwJ8843vg5xZbB2vbtPAj/zc+rO7AzwW7+hwppa5cMfBTrU2Mk48xpw9Qpg\ns5sBj82m7nu9wOEj5pPMz6nQyGYD7HbV+4eIiPa8Dv/6evIcDNrwmceDSOYk4lkD8ayBRNZAvBje\n+OxmA7sQamL6bEGuasA/2mQrBzKxrMR//JcFWDUg4NQRcOlocOoIuDQEnDoONNjgte/NhntNqDlh\nHBZcN4C7lmxBvT+JrIFErni7FLpVhG/JinXJm5zfxpBqvqdwysBQuHYdp0WUw5nSssGlo8ltQdCt\nr+p1RkSbQxoSUsry1edjz49h9NnRmnO4GFnzb7nQBPof64fVZYWz3glHnWPNXi0WO793EN1K+XQe\n0ckoIuMRRMYjiE3FzPD0rRKqR5qzzrkqbLF77bB5bbA4LAxaiIhoTTf9SXBgYOAwgMMrVgcHBgY+\nWHH/G6FQKAngIoAQgMpBa/8NgKcBfH9gYOAzAJYBfBTAIwB+PRQKXb3ZY6TaYgcPo6W/f32V/+un\nAagrd5EvhjfZYoDjqphnYOAg5M//YjHkyQG5rAp7cll132KtruvzqfXZbMUyC9RVTLaXzUIYBSCd\nUmUFma2YsPLSJYjvPV3zJci2NuBTv22u+K1PqXCptF3Ti+GMDXjvjwD3nyru8yLwzFMqtLHbVbhj\nryin3gboxdm1JycBaZjbHA7V+4cfxoiIdiVdE/DaxXVDkp88riKEdN5ANG0gkjEQKS4DTvOxiawB\nh0UgnZeYTRQwu6LXzb+9pw5eu7pa+pnhJC7MZ6sCmwanjqBbh9u2N0Ob9bDpAjanjnqnvu7HFAyJ\nRE4imikgljEQXVFiafN2Kn9jDTypvEQqlsdUrPb2eqeGJrcKaJrc6n1ucqueNhwOjejGSCmRiWQQ\nm4ohNh1Ty5kY+h/vR/PRZgBqEngpJVxBF7ytXrib3OVeLw5/9fCaLbe3bMXLIKIVMvEMouNmAJOY\nS1QNIbgeQhdwBpxwNbjgaqwoAdd1hxAkIiK6lo24NOfDAH5jxbrDAP6+4n4PgJFaDw6FQi8NDAy8\nDcBvF4sdKrj530Kh0J9vwPHRRhLCHH7MWWN7fb0q6/HD711fvY5OyP/7/zEDm2ymuCyW1laz7p13\nQTY2mnUzFXXr6sx6hgHUByBL+8pUhz6yUDH0yNwsxOtn1jw8WRquDQD+6s8hRkeqtwuhwpkHHgQ+\n9BG1cn4O+MLfAnaHCm1K4Y3dDjicwB13qh49ABBeUq/H4WDAQ0S0wzksGhweDU1rDO3f6rXg9x8N\nIpVTvSkWUwUsJQtqmTIQdJshwshyDhfnszX3sz9gxS/fp/4fSylxaSGLJrcF9U4NGv+HvGW6JuCz\ni6peT2vJFWRVaLOcLmA5bSBcfA/DKXX/rcY2pR42oYXq4VR0ATS6dDR5zN40zR4dbV4LXFY2GBHV\nIqXExX+4iMh4pOYQRakl8yKw4KEggoeC0G3rD3GJ6NaRUiK1lEJ0wgxg0uH0uh+vWTUVtFQGLw0u\nOOudnMyaiIg2xU0HMqFQ6DcB/OY669b8bxYKhV4F8EStbURVIVBlb5xaBg6qcj2aBvyn361aJfN5\nM8RxVqRNh49A/tzHVRCUzqhlJgNk0qr3j1bR2NHUBJnPFbdngHQaIpcD0mlIoyLkiUQgzr655uHJ\n3l4zkPnaVyBeeN7cpmlmONPTC/zsx9QGwwA+/znA6VChjsMBOF3FpRNo7zCHojMM9XNloxwR0bbk\ntGpwWjW0+db+qPbkATfuanOUA5vFpIGlVAFziTy8FT1kYlmJP305AgCwakCzx4Imj45mtwUtHh39\ne3gYtM1g1QUCLjXc3FoKhkQko96vcDGkCadK91Vwk1nnUCoFiYreVNUBXcCpocNnQbvPgnafFR0+\nCwJOjcOo0J5SyBWwPLqMyGgEPY/0QAg1R1cmmkEumYPVaYWnzQNvqxe+Nh88rZ6qeVsYxBBtP1JK\nxKZimL8wj/mL88jGa1+gUosz4IS/yw9/px++Dh8cdQ7+XyQioluKg9cSlVgsqqwMfRqDqqxHad6b\nCrJQUOFM5Ye8llbIj/8CkE6b4U46XVxmAF/F6PhuD2RjsFxH5HJAMgkkk5DBJrNeJgPx/LNrHpr8\n6Z8B7rlP3Xn6u8AXv6CCGodTvWanUwU4Hg/wkz9lPvDMaUDKijrFei4noPNPCBHRVgm6LQi6V/8d\nNqREtqIxP5M30B+wYjZRQDRjYCKax0Q0DyADAPjFe81h0N6YyWAukUen34pOn4VDn20SXRNqjqA1\nhk2TUiKZk5hPFjAfVyHbXKJQLtl1hjVLKQNLqSzenDUbqpwWUQxoLOWwpsVjgZVz1NAukk1ksXR1\nCYuXFxEeDsPIqQujmo42wdOsuij2Pd4Hi8MCh5+NsUQ7gZQSibkE5i/MY+7CHDKRzPUfJABPiwf+\nTjOAqQxciYiItgJbU4k2m66vDnk8HuD24+t7/Ac+pEqRLORVeJNKV4c8ug754z8JpIpz7VQt00Cg\nwaybyUBIWQ52sLRo7t+9Yhydv/9biKWlmocmH3sCeN/71Z2xMeDrX1Gv1eUuLivKwUNq/h1A9dDR\n2MhHRLQZNCHgsJj/H4JuC36xOHxZMmdgNl7AbDyvelXE82jxmB8HX55IVTXeB5xaOZzZ32BFX4CN\nGLeCEAJum4DbpmFfnbVqm5QS0YxhBjRxM6xZSBZQY97xKqm8xJWlHK4smcM0aQJo8eho91nQXWdF\nb70V7T4Lh7ejHScTy+Dily8iOhGtWu9p8aChvwFWl/n75G3x3urDI6IbkFxMlkOY1OLqOWUraRYN\n3navGcC0+9jLjYiIth0GMnuYbWEeWF4C3B7A41UhgcejJran7Uu3qPdsZXBiswEPvm19+3ji3ZCP\nPqbCmlQaSCXV7WRShSWVjt0OGVk2t6dSqn4yqea8KVmch3jzjTWfUv6XPzADmf/xp8DFC4DbDbiL\nAY67WHp6gVPF15HLAUNX1fpSHRvn0CEiulEuq4aeeg099daa2+9ud8Dv0DERyWEimi/2sMjgjZkM\n7mi1lwOZZM7A90ZS6PRZ0Onnx8lbSQgBv0OH36Gjv6F6W8GQWEwVMB0rYDKq3sPJ4vt4LYYEpmIF\nTMUKeGVSXXHssAjsq7OgN2BDb70V++ossHMSY9pGpCERnYwiuZhE63E1p6TNbUNyMQmhC9R116Gh\nvwEN/Q2w++zX2RsRbSf5RB7p8TROf/804rPxa9b1tHoQPBiEv8sPT4sHms7/VUREtL3xG/Qe5rky\nWHOIK2mzmeGMx1sMbDzV6zweNcdJ6TZ7O+w8uqX4/l3n6sAf/fHa66WsDm9690N+7OeBZMLseZNI\nmOGNs6KXUDoFkcsCy1lgOVy920zGDGSWwxB/+AfV263W8jnpeNvDSLe2qQ2XLgKTk4DHXTxv3erc\ndHvUPDoMcYiIrut4qwPHWx0AVOP+XKKAsUgOE5E8uit6aowt5/GNy4nyfZ/Vi3ZnHouOFPoabGjg\nPCVbQtcEmtwWNLktuL3FbIBO5gxMFsOZUkgzHcvjWiOfpfMSlxZyuLSgetJoAujwWdBbb0VvQPWi\n8Tt41THdevl0HtOvT2Pq1SlkohkIXSB4KAiL3QKhCRz9yFG4Glyw2PlVl2gnycazmL+o5oRZ2ctt\nJVejC8HDQTQdboIz4LxmXSIiou2Gn1L3MD1Vu7uvyGaBpSVV1kEKoRq/vb5iUONTYU0psPGuKC43\nA5zdQAg1HFuJvw44fsf6HvuJT0JmsyqwSSaAeNy8XTm0mpSQ/QeKdRJAIq7m0FkOrwpycOY0xPee\nrvl0sq0N+NRvmyv+8rMqpPF4q4NFjxcIBNQ2IqI9TtcEWr0WtHotuKejepvfoeGRHifGo3mMR/KI\n5jREczZcfDMGAPjPP9QAX7GxPp414LYKBjRbyGXV0N9gQ3+D2Qs6b0jMxguYiObKYc14JI9UvnZK\nY0hgLJLHWCSPZ0bUZ8hGl4aeehv2B6zYH7Ci2a3zfaZNkwqnMPnKJGbemCnPCWP329E40AgjbwDF\nDNLX5rvGXohou4nPxjH23BgWLi8A17hQwFHnKIcw7ib3rTtAIiKiDcZAZg9bK5B5q4SUqkE9fu2u\nxCVS0wGvR01c7/Wppc+/4r7PDHgY3uw+Qqjhzux2FYCspakZ+JV/b96XUgU58TiQiCNTec4dGFDh\nYHEbEnEz6KnsnZPLQbz4wppPKX/8XwEPPqTunH4NeOYpFdqUzslS4OjzqeHV2PBERHtQq9eCHzms\nelgaUuLFc0OYTFmwrPkRyxjlMAYAPv18GJmCRF/Air7iPDQtHjbcbzWLJtDus6DdZ34dMKTETLyA\noaUchsJZDC3lsHiN4c4WkgYWkmm8MpkGoOYcOtJkx+GgCn/sFr7HtDEysQxe+R+vlBtr67rr0H6y\nHYG+AP+WEO1Q8Zk4Rp8bxeLlxTXr2Dw2BA8HETwchLfVy993IiLaFRjI7GFzb/8heD/0kWLDdcwM\nVcolZjZux+MQ6fSGPK8wCkAkosp1SCGKPWt8gN+vght/qdSpRvHSbTvHht71KoOchgbIwUFz210n\nVKmlUKi6K3/6f1fnd6xYSrfjcaCu3qw4OwNxOVRzl9JuB/7ov5sr/ujTan4dXymw8ZtBY0cn0Nx8\no6+aiGhb04RAk8NAkyOL/v66qm2pnIFU3kA8K3F6OoPT02p+Eo9NYH/Ahod7nOV5aWjraUKgzWtB\nm9eCU91qCJjldCmgyWFoSc1Ls9YFzEspA8+OpvDsaAoWDehvsOFw0IYjTTYE3fzaQetnFAwsXV1C\nQ38DhBCwe+1o6G+AxWFB+93KA2ipAAAgAElEQVTt8DR7rr8TItqWYtMxjD03hsXB2kGMxWmBrdUG\nR5cDR+47whCGiIh2HX4z2sMMpxNoa1t3fZnLqd4GpaAmFq1u0I5WNmzHIJLJmz5GISUQjaoyOXHt\n43M4qkOb0rKuTgU2dfXqNoej2nsqh1azWoF77l3f4+57ALKnV53rpfMwFlP3V/bcGhuDSNTuJSaf\neDfwnvepO5cuAp//XPEcregdVjpnDx5Sx0hEtAs4rRp+9x2NmI0XcGUph8GlLK4s5hDNGHhjJoMH\nusz/yeMRNVdJh8/CxpdtpM6h4842HXe2qfcqnTcwspwv96IZCeeRqTEZTd4ALs5ncXE+iy9dAIJu\nHUeCNhxusqEvYINV53tMq+WSOUydnsL0a9PIJrK4/V/dDn+nHwBw+AOH+beBaAeLTcUw+twolq7U\nHhrd3+1H5z2dqOupw9WhqwDA33kiItqVGMjQ+lmtKtCoq7t+XQAyn18d3MSiKxq3o0BEbRdG4fo7\nvQaRTgPpNDA7e+3jcjhWhDR+M6wprfP71KT3tLe9hfMd/+HXIEuBTTQKRCPmsrPTrLe0BDE/B8zP\n1dyN/MM/NgOZz/6ZOp/9deo89deZ52lzMxBsuskXSES0+YQQaPFa0FLsdSGlxHyygCuLuareMd8a\nTOLN2QzqHBqONdtxrJkN99uRw6LhYKMNBxttANwoGBKT0Twuzmdxfj6LkXCuZg+a+UQBzyRSeGYk\nBZsOHGhQ4czhoB0NLr3GI2gvScwnMPnKJObOzan5YAC4gi4YBXPIPDbMEu1M0ckoRp8bRfhquOb2\nun116D7VDX+X/xYfGRER0dZgizNtHotl/Q3ahgGZTJohTWVgU27cLg5zFo2qnjM3SKTTwMyMKmso\nD5VWVw/UB4BAvbodCJjr6urUayQCVDiynoDkxAnI3v0V53QUiC6rZSIOOJxm3YkJiKnJmruR958C\nfvKn1J3ZGeAvPmsGi/X1qtRVnLc6G7uIaHsQQqDJbUHTiiGsGlwafHYNy2lz2Cu7LnAoaMMDXU4c\nDHJos+1I1wS66qzoqrPi0X43ElkDF+ezuDCfwcX5LOLZ1Z/ZsgXg3FwW5+ayAOLo8ltwot2Bu1rt\nVfMP0e4npcSFL12omkMisD+A9pPtqNtXxxCGaAeLTEQw9uwYwsO1g5j6nnp0PdgFfweDGCIi2lvY\nmkzbg6YBHo8quM4waoYBGYuZAU0kAkSWy2ENIsvlbSKXu6HDqRoqbWy0Zh0V2vjMxu/6QPWyoUH1\nZFg5tBXtbTY70NKiyvX8wi9BLofVOb1cOs+L53pXl1lvcRFieGjN3chP/RbQ1q7uPP1dYHrKDGsq\nz1/Ow0REW+j9h7143yEPJiJ5nJ3N4OxcFpPRPF6fyaCn3loOZJbTBWTzEk0efozdjtw2DSfaHTjR\n7oAhJcYieVyYy+D8XBZjkXzNx4xF8hiLxPHlC3EMNFpxot2B25rtcFr5GWq3E0LA1ehCeCiM5mPN\naL+7Ha5G11YfFhHdhMh4BKPPjmJ5ZLnm9vr99eg+1Q1fu+8WHxkREdH2wG+ytPNomppvw+8HOq9R\nT0rIVKrYmL0MLIdVQ3Y4XLFOhTfCMK6xo9pUaFPs5TA6UvsQNF01dgcCQKBBhTT1AbUMNKieNzY2\ngtMaAgFVrqenF/KTv6rO8eVldY6Hw8X7YRW8lJx9E+LC+Zq7kcfvAD728+pOJgN872n1/PXF42DA\nSESbTBNmb4snB4ClZAHn5jI42mT+r3xuNIVvX0miu86CezocuKvNARcb7rclTQjsq7NiX50VTxwA\nohkDF+czuDCn5pZJ5at7z0gAlxZyuLSQg1WL4WizHXe3O3AoaINFY0+J3SI8HIY0JAL71Wecrge6\n0HGyA1YX59Aj2slS4RQGvzm4ZhAT6Aug61QXfG0MYoiIaG9jIEO7lxCAy6VK6zV63RgGZCxqBjSl\nsCa8ZDZqh8MQmcxbPwSjACwuqLIG6fVWhzQNDUBjI9AQVLcdjjUfSwQAcDqBvv711X3XY5DHbiuf\n11Xhjctt1ltcgPiHL1Y9VGqaOQTaR38M6CgmovPzQKGg1ts4pBARbZyAS8fb9lVfLS8AOCwCo8t5\njC7H8Q8X4jjWbMc9HQ4cbLRBZ8P9tuWza7inw4l7OpwoGBIjyzmcmc7g9FQasRVDm+UM4Mx0Bmem\nM3BZBe5oteNEuwO99VZoHMZqR8omshj67hDmzs3B5rbhxP9xAhaHBbpVh27lUHVEO5WUEjNvzODq\nd67CyK2+0LGhvwFdp7rgbfVuwdERERFtPwxkiDRNXfnvrwO616hT6m1TCmlWLdVtkc2+5acXsZia\nCH6todE8HqChUZXGYindb2gwJ4AnWo+Dh1RZyTCAfMUQfzY75CPvUOf40pI6v6NRYGkRWFpU4UzJ\nt/4J4vnnAADS5zPPzYYGoLMLOHFyk18UEe0lTw548M4+N96cyeCliRRCC7lyw/2pLic+cowNPjuB\nrgnsD9iwP2DDjxzyILSQxatTabwxk0W2UB3OJHMSz4+l8fxYGgGnhrva1JBobV5+ldkJSo21w08P\nI5/KQ7NoaLu7DRp7thHteNlEFoPfGMTi4OKqbQ0HGtB9qhueFs8WHBkREdH2xW8xROtR2dumvaN2\nHSkhk0mzAXtpsXq5uKiGR5OrJ7e95lPH40A8vvawaH6/agAPBoHGYHFy+aAqXp86dqLr0bTq4fMa\nG4EPf7SqiszlzPM72GRucLkhG4PAUjG0iUaB4pw28vARM5BJpYBP/VpFuBisWAbV8H46r5Alouuz\n6aI8T0k4VcDLk2m8PJHG7a3m37HBxSymY3nc1eaA28aG3+1M1wQON9lxuMmOTF7i7GwGr06lcXE+\nC2PFx6allIHvXE3iO1eT6PRZ8FCPE3e2OmDV+XlnO0ouJHH5m5cRHY8CUJN49z3WB2e9c4uPjIhu\n1uLgIi7/02XkktXztnrbvOh/vB+eZgYxREREtTCQIdooQgButyoda0xuk89DhsPlXgblwGbRvC3y\ntSe8XfNpIxE1N87Q1VXbpN1eDGkqgppSaBMIsPGb3hqrFWhqVqXSBz6kimFARpbV+by4oJaVc+As\nLZo9wkaGV+1e/sIvAUePqTtn3wSmp8ywJtgIODnJLxGtVu/U8WifG+/aX/034unhJM7OZvHli3Ec\nbVJDmh0Kckiz7c5uMcO2eNbA6ak0Xp3KYDicW1V3PJrHX78Rw1cuJXCqy4FTXU74HPxss11IKXHh\nSxeQXEzC6rJi/zv3I3g4CMGLhYh2tEK2gKv/chUzr89UbxBA94Pd6Lq/C4L/a4mIiNbEQIboVrJY\nzN4rtRgGZDQKLMybDdoLxTloFhbUsFHG6nF51yIyGWByQpUVpKYDDQEVzjQ3mw3tTU1qLhuGNfRW\naZqaD6k+UHtOm9Y2yN/7fXNepYUFNf/Mwry63Vjxe3H6VYgXX6h6uHS7VZ3+A8AHP2xuiMcAt4e9\nwYj2uJWNvHe3O5A3gEvzWbw+k8HrMxl47Rru73TgoX0ueO3sNbPdeWwa3rbPhbftc2EhWcBrk2m8\nOpXGTLxQVS+WMfDNwST++UoSd7Y58HCPE11+Dum6VaSUEEJACIHed/Zi4dICet7eA6uT7wnRThed\niOLSVy8hvZyuWu8MOHHwPQfhbeOwoURERNfDQIZoO9E0oK5OlVoN2oWC6mFT2aBd0bAtopF1P5Uw\nCqoxfH4euHC+apvUddXw3bQyrGlWx6axEYtugKapYcnq62uf35Vuux3S6VLn9oIKbUQiASQSal6l\nkmQS4pOfgHQ6VbjY1FS97OgEHI7NfV1EtC3d0erAHa0OLKcLeGUyjZfG05hNFPDtK0loQuCJA+6t\nPkR6CxpdOh7td+NdfS5MRPN4cTyNlybSVfPNFCTwymQar0ym0VtvxcM9TtzWbGevqFskm8hi6LtD\nsNgt6Hu0DwAQ6A0g0Bu4ziOJaLszCgbGnhvD2AtjwIqhJNvuakPPIz3Qrbygj4iIaD0YyBDtJLpe\nnHOjseZmmcmoxuv5eWB+zux9MD8HLC6pEGYdRKEAzM6ocnbFc1itZq+a5hagpcVcckgp2ih33KVK\niZSQsSgwN1fdeyuyDOl0QqRSwNioKhXkv/1l4MhRdefMaWBiXJ2vpfOXYQ3Rrlfn0PHO/W68o9eF\nq+EcvjecwoPd5vwVZ2czcFsFegO2LTxKWi8hBDr9VnT6rXj3gBsvjqfx/ZEkllLVPYiHwjkMhXOo\nd2p4W7cT93c54eIk8ptm4dICLn/jMvLpPDSrhq5TXbC5+TtFtBskF5K49NVLiM/Eq9bbPDYcePcB\nhq5ERERvEQMZot3EbgfaO1RZqVCAXFpaEdgUy9wcRG712Oy1iFwOmJpUZQXp91eENK1q2dKqekSw\nVw3dDCEAn1+VSq1twKf/GDIRV2HN3BwwN1s+r9HcYtY98xrEyy9VPVz661Q4c2AAePd7zA2GwXOW\naJcRQqAvYENfRfBSMCT+/lwM4bSBnjoLfmi/G8eabdA4BOKO4LJq+KFeFx7e58TZ2Qy+N5LClaXq\nzzPhlIGvXErgm4MJnGx34qF9TrR4+RVoo0gpMfGDCQw/reaGq++pR99jfQxjiHYBKSWmXpvC8FPD\nMPLVoXfjwUb0P9YPq4tDERIREb1V/DZCtFfoujl/zaEV2wwDcnlZNWTPzQFzMxUN2/Oqx8w6iEgE\niESAy6Gq9dJqU43epd40ra2qIb2pWU0UT3QzhAA8XlV6969d7+57IAMNZu+vuTmIyLLqZWO3m/US\nceBXP1ndE6y1TZ237FVDtKvkDeBkhwPPjqYwvJzH/3wtgqBbxyM9LpzscMCmM5jZCXRN4HirA8db\nHZiI5PDMSAqvTaVR2X6YLQDPjaXw3FgKh4I2PNbnRm+An0FuhjQkrnz7CqbPTAMAet7eg457O1bN\n50REO08mlsHlr19GeDhctV636+h7tA9NR5r4u05ERHSDGMgQkeoJEAiocnBFWlPqWTM3a5bZ4nJx\nEULK2vusIHJZNVTUxHjVeqlpqtG7ra3Y4F3R6M2ghjbasdtUKTEMyKVFdT7bKq7kXViAyOeB6SlV\nVpCf+CQwcFDdGRsDshnVE6xybhsi2hHsFoF3D3jwzv1u/GA8haeGk5hPFPB352L4p8tx/NJ99Wjx\n8OPyTtLht+InbrfivQc9eH4shWdHU4hmqq/svjifxcX5LI402fDuATc6fPzMcSNGnx3F9JlpCF3g\n4HsOIngouNWHREQbYOnqEi595RLy6XzVen+XHwM/PACHnxcnERER3Qx+wySia6vsWVOai6Mkm4Wc\nnwNmZoCZabWcnQZmZyEymevuWhiG2VvhzOnyeimEmpS9tSKoaWtjUEMbS9OAxqAqlbr3QX7mT1Qv\nsdnSuT0NTE+rILKpyaz7nW9BvPIyAEB6vSqYKZ2z3d3X7rFDRNuG3SLwUI8Lp7qdeGMmg+8OJZHK\nSTS5zTmrElkDbhuHMtwpvHYNj/W78Y79LpyZyuCZkSTGItWNi+fnsjg/l8VdbXY8ccC9RUe6c7Wf\nbEdkLIKet/fA1+Hb6sMhog0wd2EOoa+GIA3zojuhC/Q83IP2k+3sFUNERLQBGMgQ0Y2z2WrPWSMl\n5HK4GNQUG7SLwYsIh2vvq4KQUvVamJ0FXj9j7lbTVGN4WwfQ3g630JANBjnfB208hwPo6lKlUqFQ\nfa4FmyC7utW5HYsBsRgweBkAIG8/Dnz8F1S9ZBL46j8Cbe0qXGxrB1yuW/RiiGi9dE3gzjYH7mi1\nI5aV5blkIukCfvuZRdzT4cTj/W547fyfs1NYNIG7Oxw40W7HcDiP7w4l8OZstqrOa1MZnJnO4JDP\niZOB9BYd6c6QXEjCUe+ApmuwOq247SduYwMt0S4x88YMLn/jMlAxAIK7yY2D7zkIdxNDayIioo3C\nQIaINp4QQH1AlUOHqzbJdLo4FNS0OSTU1BTE0uL1d2sYZshz+lW0l/b5139ZbOhuB9rbiyFRu5pT\nhGgj6Xr1/fe8TxXDgAyHiz1piuf3vh6z3uQExDNPVT1U1tcDbe1odLoQvuvuW3DwRLReQgj47GYj\n89WlHHIF4NnRFF6ZTOMd+114e4+Lc8zsIEII9Aas6A3UYXQ5h6+H4ri0kCtvNyRwPmLDpagVI4jh\nXX1ueNgjqsrilUVc/PJFNB1pQv/j/RBCMIwh2iUmX5nE1e9crVoXPBLEwJMD0Cz8W0hERLSRGMgQ\n0a3lcAA9vapUkOl0dWN2MawRCwvX3aXIZIDhIVUq9+nzmwFNRyfQ2Qm0tAA6//TRBtM0oKFBlZVD\n+wFAQwPk+z8ETE2qMj2leouFwwgA1YHMF78ALMyrc7ajE+joABoaVdBJRFvizjYHWrwWfOViHBfm\ns/h6KIHnRlN48oAbJzsc5Z40tDN011nx8/fU4/JCFl8LxTGybA5lVpACTw+n8MJYGo/0OvH2Hhec\nVjZGTr02hSv/fAWQgJEz1BX0PO2JdoWxF8Yw8sxI1bqW4y3of6wfQuMvOhER0UZjqyQRbQ8Oh+pR\nUNmrAIDMZMygZrLYmD05CbG8jqHPohEgGgEuXjD3Z7GoIaM6ulRAU2rwdnL4KNpEgQbgXY+a9w0D\ncn4emJrEwvlzKLgrhoG4cB5iarJ6uD6HU52n99wLPPjQLTxwIipp81rw8ZN1CC1k8Y8X45iI5vH5\nN2MYWc7ho8c4f8ZOdKDRhn/XUI9zc1l8PRTHVKxQ3pYpSHxzMInvj6Twzj43Hux27skeUdKQGHpq\nCJMvTwIAuh7oQvfbutkzhmgXkFJi5HsjGH9hvGp9+93t6H1HL3/PiYiINgkDGSLa3ux2oHufKhVk\nIo6Jl16CfWEewVy2HNaI9LXHfhf5PDA2pkrl/hqDZkBTWtYH2CuBNoemAc3NQHMzwiuH1vuZn4Wc\nGAcmJoCJcWBiXM1Pc2UQ8sCAWe/qFeCv/hxoL4aKpR419fU8b4k20UCjDf/nqXq8NpnB1y/H8UCX\ns7ytYEjovJp4RxFC4FizHUeabPjG6VH8YNGOSM4cnjKRk/jHi3E8M5zEY/1u3Nvh2DPvcSFXwKWv\nXMLi5UUITaD/iX603Nay1YdFRBtASomhfxnC5CuTVesZuhIREW0+BjJEtDO5PUh1diHV2YVgf79a\nJyXk4iIwNaECmslJYHJCTbhuGNfcnViYV8NEnTldXiddLqCzC+jqBrq71TLYxMZu2lztHarcY66S\nkYg6lwMBc+X4GMTsLDA7C5x+1azr8ahz9ec+rnqeEdGG04SaKP7ONntV4/yfvRaB26rh3QNu1Dv1\na+yBthtNCAz4cujz5rBg78C3BhOIZMzPDstpA397NoZnhpP46DEv9gdsW3i0t8bos6NYvLwI3a7j\n8AcOo35f/VYfEhFtAGlIDH5rEDOvz1St73l7Dzrv69yioyIiIto7GMgQ0e4hBNDYqMptx831uRzk\n9BQwPg5MjBWX49fvTZNMAqFLqhRJp7N2SKNxfHnaRH6/KpUeeBCyt0/1opms6E0Tj0OOjqreZSV/\n8F/U70fp3O3qAppbAJ0NxkQ3ozKMmU/kcWk+i4IEzkyn8XCPC+/cz/lHdhpdAKe6nTjZ4cCzIyn8\n89UEkjlZ3j4TL+AzLy7jvk4H3nfIA9cufn+7HuhCaimFfQ/tgzvovv4DiGjbMwoGQl8LYf7CfNX6\nvnf1oe1E2xYdFRER0d7CQIaIdj+rtdgI3W2uMwzVm6YioMH4OER46Zq7EqkUcDmkSpF0ONUwZ93d\nQNc+9TxNDGlok1mtKljp6jLXSQm5tASEl8yeXLkcMHRV9RIbvGxWtdrUUGePPg4cv+MWHzzR7hN0\nW/B/PdyAr12K4/R0Bt+5msSL4yk81ufGqW7nnhnmarew6QI/tN+F+7sceGo4iaeHUsgUzGDmxfE0\nzs1m8P7DXtzVZt81w/tEp6LwNHmgWTRY7BYc+eCRrT4kItogRt7AxX+8iMXLi+ZKARx48gCHIyQi\nIrqFGMgQ0d6kaUAwqModd5VXy3i83NMA42PA6Kga8kzKNXcl0inV0F3Z2O1wqHlv9u0D9vUA3T2c\n24M2nxBAQ4MqJVYr8Hv/FXJsTJ3T42oOJbG4AAwPQRbMSazxwnPAs99X521p7qbmFoaLROvU6NLx\n03f68fblHP7xYhxXl3L44oU4XplK4xP31TOU2YGcVg1PHvDgwW4XvnwhhlenMuVtsazEX74excuT\nNnz4qBeNrp3d6zAyEcGbn38TwYNBDLxnYNeETESk5oQ6/8XzWB5eLq8TmsDB9x5E8FBwC4+MiIho\n72EgQ0RUyeMBDh5SpSSdVpOsj42aZXr6OiFNevVwZz6/CmfKIc0+wM0hQOgW8NcBx+qAY7eVV8lE\nXPUO66gYK/zKFYjhIWB4yKzncKheXwMHgSd/+FYeNdGOta/Oil+6tw5nZ7P40oUYDjTYGMbscD67\nhn99hx8nOzL4u7MxLKbM+WUuzmfxu99bxOMH3Hikx7Uj3+vUUgoX/v4CZEFC28XDsBHtRflMHue+\ncA7R8Wh5ndAFDr//MBr6G67xSCIiItoMDGSIiK7H4QD6+lUpyWTMkGa0FNJMXTukiUaAN19XpUg2\nNxdDmmLp6FQ9Gog2m9tTHTwCwAc+BHn3SWB0BBgZBkZHIMJh4HIIUggzkMnngf/3T9WcNPv2Aft6\nAZ/vVr8Com1NCIHbWuwYaLRCq+hpcGkhC4cusK+ef+t3okNBO37tIRu+OZjAU0NJGMV/+zkD+Oql\nBF6dTOOjx3zo2UHvby6Zw7kvnEMulUP9/nr0P9bP3jFEu0QumcPZvzuL+HS8vE6zajjywSOo76nf\nwiMjIiLauxjIEBHdCLsd2N+nSkk2AzkxocKZkRHVoH294c5mZ4HZWeClHwAApK6rUKZ3v1kCAQ51\nRreG2w0cOqxKkYxEVEBjqfjIMDkBcfZN4OybZr3GINDTA/T0AidOMqAhKrJbzN4GyZyBz70eRSxj\n4O09Tjw54IFN59/3ncamC7z3oAcn2hz427NRjCzny9umYgX84QthPNDlxHsOuuHc5r1NjLyB8188\nj9RSCu5mNw697xDEDuzhQ0SrZeNZvPm/3kRyPllep9t1HP3IUfg7/Ft4ZERERHsbAxkioo1is5sh\nSkkqCTk6Wu5tgJFh1eNgDaJQUPVGR4CnvwsAkH6/2mfPfqC3Vw11xl40dKv4/cBtt1evCzZB/uzH\nzJ40I8MQC/PAwjzwysuQh4+agcyZ14BCQZ2/DBdpj7NoAifbHfjuUBJPDadwdjaLH7vNi74G21Yf\nGt2Adp8Fn7i/Hs+NpvC1UALpvLoAQwJ4biyFN2cz+OARD4632LdljxMpJUJfCyE6EYXNa8PRDx+F\nxc6vh0S7QS6Zwxt//QZSS6nyOovTgmM/egzeFu8WHhkRERHxEzcR0WZyulbNSSOXl8uN2OVhoVKp\nNXchIhHgzGlVUOxF09lVDH961bKeDd10C7lcwF0nVAGAQgFyegoYGgLGx4CmJrPut74JMToCoDiP\nUk+v2ZNmX4/qbUa0R9h0gfce8uB4qx2ffzOK6VgBf/SDZTzYrXpTOCzbuzcFraYJgbftc+H2Fju+\neD6O12cy5W3RjIHPno7iSJMNHz7iRcClb+GRrmbkDGQTWeg2dcW83cu/x0S7gTQkLn7lYlUYY/PY\ncOxHj8Ed5PyVREREW42BDBHRrVZXBxy/QxUAMAzIuTkVzgwPAcNXgYkJCMOo+XBRKJhhzlNqnfTX\nAfv3A/v7gb4+NeyZvr0afmgXKw2119G5etsdd0J6PKoXTTQCvHFGFQDy4UeAj/6YqpdKApms+v0g\n2uW666z496cC+OcrCXz7ShLPjqYwHcvjl+7jeP47ld+h42fu8uPcbAZfOB9DOGX+Dz8/l8V/XlzC\nh496cE+HcwuPsppu03Hso8eQXEzC0+TZ6sMhog0y8r0RLA8vl+/bvDbc/uO3wxnYPn9/iIiI9jIG\nMkREW03TgJYWVe69T63LZCBHR4Chq6rXwfBViFhszV2IyDJw+jVVAEh7cfi0vn41z01PL3si0NZ4\n7AlVpFTB4/CQKkNXgf4DZr0zpyH+6i8gGxqL4WJxjqa2dvU7QrTLWDSBJw54cHuLA3/zZhSP9vGq\n5d3gaLMd/Q1W/NPlBJ4ZTqE0i1y2IPHXb8QQWsjhI0c9VXML3WrxuTjcjW4ITUCzaPA0M4wh2i3m\nL85j/MXx8n3NouHoh44yjCEiItpGGMgQEW1HdjtwYEAVQDVmL8ybAc3QVTWx+lq9aDIZ4OIFVQBI\nTQe6ulTvmf3FkIaTrtOtJATQ3KxKKXislExCOhwQiwvA4gLw8ksAAOlwAgMHgY/9Gw7LR7tSu8+C\nX3mgHlrF+f2twQTavBbc1sIgfSeyWzS8/7AXd7c78L/OxjAeyZe3vTKZxuhyDj99hw8d/ls/H1x8\nNo43PvcGfB0+HP7AYehW9qYl2i0ScwmEvh6qWtf/RD88LQxdiYiIthMGMkREO4EQQLBJlXsqetGU\nhjkbugpcvQKRSNR+uFExzNm/fAcAIJubiz1o+lVPhcZGNnjT1nnHu4BH3gE5OQFcvQJcLZ7TS4uQ\nibh5bhoG8Jn/BnR1q/O2rw9ws6GBdrbKMGY8ksM3LicgAdzd7sBHjnpht/Bv807U6bfiV+6vx7eu\nJPDtwWS5t8xcooD/9kIYP3LIgwe7nRC36H9vJprBuS+cQyFbgMVhgcY5i4h2jVwqh/NfOg8jZ16s\n1X53O5qPNm/hUREREVEtDGSIiHYqu131HBg4qO4bBuTMDHB1ELhyBbg6CLGwsObDxewsMDsLPP8c\nAEDWB4ADB1SvnP4DKvxhQEO3kqYBnV2qPPwIAECGl4Bk0qwzMQ5xOQRcDgH/8s+QQqhhzfoPqHL4\nCODksBy0c7X7LHj/YQ++Forjlck0xiM5/MxdfrR4+LF9J9I1gScPeNAXsOGvXo8imlGNpXkD+Pvz\ncVxezOHHbvPCZd3ccDrB5PEAACAASURBVCSfyePcF84hG8vC1+nDwLsHblkQRESbSxoSl756Celw\nurzO3+VHzyM9W3hUREREtBZ+syMi2i00DWhrU+XBhwAAMhyuCmgwMQEhZc2Hi/AS8NIPVAEg/XXF\nYdOKIU1TMwMauvXqA6qUtLRA/uIngCuDKpQZGYaYnAAmJ4BnnoL89d8E2jtU3bExwOMGAg1bcuhE\nN0ITAg/3uDDQaMNnT0cwEy/g958L48du8+KuNsdWHx7doIFGG/7DgwF87o0oLs5ny+vfmMlgPJLD\nT93hR0/95gxhZhQMXPzyRSTmEnAGnDjygSPsHUO0i4w+O4rw1XD5vt1nx6EfOQRN5+85ERHRdsRA\nhohoN6uvB06cVAUAUknIoSHVmH1lUDVm53I1Hyoiy8ArL6kCQPr81T1oWloZ0NCtZ7OrXjCHj6j7\nuZwaum/wMjA6ArS2mXX/9vMQQ1chAw3qnD1wADhwkMPz0Y7Q6rXgkw/U42/OxnB6KoO/OBNFKidx\nqps9wHYqr13Dx+7246mhJL4WSsAoXh+xlDLwmRfD+OEBNx7pdVUNYXezpJS48u0rCA+FYXVacfQj\nR2F13fq5a4hocyyEFjD2/Fj5vtAFDn/gMGxu2xYeFREREV3LhgQyAwMDAQC/AeB9AFoBLAD4BoBf\nD4VC0+t4/E8A+BiA2wHYAIwB+DqA3wmFQosbcYxERATA6QKOHFUFAPJ5yNER1dNg8DL+f/buOz6u\nu8r7+OfOqLdRdbeaLY/kLlvuJc2kh/RCIAEWCCXwbCCBhW08sJuFB1jYXfrSQkshJKSTkOpuy7Ll\nKmskW9WSbEu2ep+Z3/PHlVVsucWyRuX7fr3uS7l37p05iq+kmXvuOYdDxVhdXYMeajU1Qt4OewFM\ndLSdnMnMspfEJF3kluEXHNzXrqw/Y8DlwoSHY508Adu32gtg4uPhpg/CqtUBCFjkwoUGOfjYwhhm\nxLXzTkkbCyaFBjokuUQOy2LdjEhmxIfwRH4jJ9vtFmZ+Ay8WtlJ0opsHFsQQHTo0d7Ybn6GzqRNH\nkIM5d88hPE4JPZGxoq2uDc/LngHbMm7IIHpydIAiEhERkQtxyQkZt9sdDrwHZAI/AvKADOAx4Gq3\n273Y4/HUn+P4/wC+BuQC/wi0ACuBLwA39xzfdKlxiojIIIKCYMZMe7nhJvB5MeXldnKmyGMnaDo7\nBz3Uam6GnXn2Qs9F7swscGdBZia4YofzOxEZyLLg05+zZytVV9nnc0/i0Tp5EhPk7Nt3/z7Yk29X\nz7jdEOMKXNwip7Esi7WpEayYHk6w0056+/yG8gYv6fGqdBit0uKC+Yc18Ty5t5k9R/v+zh6s7eLb\nG0/y4MIY3ImXfof7qURM67FWoqfoIq3IWOHt8HLgzwfwdfl6t01ZPIVJ8ycFMCoRERG5EENRIfMI\nMA942OPx/OTURrfbvQf4C/AvwJcGO7CnsubLQBmw1uPxnPo08hu3210HfBX4OPDfQxCniIicjzMI\n0mfYy3U3gM+HqehJ0BQXQXExVkf7oIdaJ0/Cls32AphJk3sSNJl2JU1k5HB+JyI2hwOmTbeXq9fZ\nCZqqI5CQ2LfPnnysjRtg4wYAzOQp9nnrdkOGG6KiAhS8SJ9TyRiAV4paeftwG9dlRHBDRuSQtriS\n4RMR7OATi2LYWN7OXw624LWLZWjq9PPj7Q1cNzOC6zMicTou/t+3ra6NsLgwHE4HDqdDyRiRMcQY\ng+dlD+0n+96Tx0yPIX1degCjEhERkQs1FAmZB4FW4FenbX8ROAJ8xO12P+rxeAabIp3cE0Nuv2TM\nKRuwEzKpQxCjiIi8H04npKXby7XX2xezKyvs5Iyn0K426OgY9FDraA0crbEHrVsWJKfYF7kzs+yK\nnFC13pEAcDhgevLAbVdchUlM6jmni7FqqqGm2j53U9Pgq/9k72cMdHfZc2xEAiisJznzenEbZfXd\nPLjQNWQtrmR4naqASo8L5jf5TRxvte92N8Drh9ooPtnNx7JjiA1znvuJ+mmvb2f373cTmRTJnLvn\nEBSqsaEiY0nFpgpOFPd1dg+JCmH27bNxOPV3QEREZDS4pHfnbrc7BrtV2cbTEyoej8e43e5c4A4g\nDSgZ5ClKgU7sFmenS+35uv9SYhQRkSHkcEBKqr2su9auoCkvg8KD9sXsw4ewvN4zDrOMsQeul5fB\n317HnGqVNnsOZM2BadPs5xYJhFMVNNfdYM9VKiu1z2dP4cDZNDU18B/ftM/drNn2Mj1Z564Mu+sy\nIkmJC+a3+Y0U1nXznU0n+Xi2Sy3MRrFprmC+sjqOZ/a3sKOq70aHwye7+e6mej69xEWy6/z/vsZv\n3znvbffiDHbiDL7wRI6IjHwnik9QvrG8d91yWsy+czYhUZfe4lBERESGh2XMYIUrF8btds8D9gJP\neTye+wd5/AfYLc0+4PF43jrLc/wT8O/Y82f+C2gGlgI/A2qBFR6PZ/Dbr8+isbFx0G+quLj4Yp5G\nREQuktXdTVh1FREV5URUlhN29KidjDkPb3gEbSmptKWm0pqSii9KrVVk5Ik+eIBJr71C/+ZBvrAw\n2pJTaEtJpWn2XDvZKDJMWrot/loTQU1HEA4Mq5I6WBjbhTqYjW4HG4N593g4XtP3DxlkGa6b3MaM\nqDNveuivxdNC895mHGEOkq5LwhGihLHIWOFt9lL3Vh3G2/fe2rXYRUR6RACjEhERGV8yMgarKwGX\ny3XBn8Iu9arBqStmbWd5vPW0/c7g8Xged7vdx4AfAp/v99ArwIMXm4wREZHAMcHBtKek0p6SygnA\n0dlJeGVFb4ImtK5u0OOC2tuIKSwgprAAgM7ERFpT0mhLTaV96nRMsO76lsBrzppDa2q6fT6XlxFZ\nXkZwUyPRRR4iykppnDOvd9/wI5V0JibhDwsLYMQy1kUFG+6Y3sqWujDy60Mpbw1iQWwXyseMblmu\nbiaG+3itOoKTXXaFi9dYvFodweqkDrLPknTrbuqmeX8zAK4cl5IxImOIv9tP/eb6AcmYiPQIJWNE\nRERGoYDfxul2uz8L/A/wN+Ap7KqYZcBXgNfcbvcNHo+nYShe62wZrPHoVLWQ/p/IaKbzeJSYO7f3\nP01To90G6mABFBRgNdQPekhoXR2hdXXE79xhVxzMzLDbm82eA1OnMZZu/9Z5PArNn29/NQZTexwO\nFuBobycjM9Pe3t0N//N98HohNc0+b+fOs1v9jdH2ZjqPAytzFuw92kl6fDBRugj/vo2083jeLD+/\n2WW3pbNZbKoNx4THcfecaJyOvr+Ffp+f3b/bDX6YtGASs9bOGvxJZcwbaeexXDpjDAXPFeBt7quQ\ni5kaw/y75uMIGpu/83Uey1ig81jGAp3Hl8elJmSaer5GnuXxqNP2G8DtdruxkzFvezyem/o99Ibb\n7d4DvAD8I3ZyRkRERrsYFyxZZi/GYGpq4OABKDgARUVY3V1nHGJ5vfaMmsKD8PyfMS4XzJkLc+bZ\nMzwidGegBIhlwYSJ9tJfU5OdiCk5jFVaAqUl8OrLmMhIe2bSzbfApMmBiVnGrPmTQnv/2+c3/GFP\nE1ekRZAaqwrD0Soi2MFnlsTy7IFmNlf0NQ3YXNHBiTY/f7cohvBg+2LssX3HaKlpITQmlPR16YEK\nWUQug8otlZwoOtG7HhIZQtYdWWM2GSMiIjLWXWpCphQwwLSzPJ7S8/Vsw1uu7onh+UEe+2vPc191\nKQGKiMgIZVkwZYq9XPMB6O7GHD7Uk6ApwKqsGPywxkbYshm2bMY4HJA+w64+mDPXHsw+hqpnZJRK\nSIBHvwIdHZgiDxzYDwf2Y9XVQl4u5tbb+/bdtxdCQ2HGDHAGvHBZxogN5e3kVXey52gnH1/kYt7E\n0PMfJCOS02Fx79xokiKCeLGwhVPNigrruvjBlno+vSSWhAgnk+ZPwtfpI3JiJEGh+l0iMlbUl9ZT\ntr6sd91yWGTdkUVotH6vi4iIjFaX9G7d4/G0ut3uvcAit9sd1n/ei9vtdgIrgUqPxzP4VbW+yprB\nGqyHAtZZHhMRkbEmOBgys+zldjBNTXZVTMEBOHjATsScxvL74VCxvbzwPMYV21M9Mxdmz4ZwVc9I\nAIWFwfwF9gKY48fsczUpqW+fvzyHVV2FCQsDd1bf+ZuQEKCgZSxYmxJOdZOXbUc6+EVeI/fMjWZ1\nSnigw5L3ybIsrpkRQWKkk9/mN9Ltt7fXtPj4z80neSgnltS4YKYtO9s9ciIyGvm6fBS9WjRg24xr\nZ+Ca7gpQRCIiIjIUhuL2qV9htx37NPDf/bZ/BJgAfP3UBrfbnQl0ejye0p5NW3q+3ut2u3/o8XhM\nv+PvPm0fEREZT2JiYOkyezEGU10FBw7AgX1wqBjL5zvjEKuxAbZsgi2bMA6nXXUwZ65dQTPGZs/I\nKHR6ezO/H2bPxhiDVVMNe/LtBTCTJsEtt8HinAAFK6OZ02Fx//xo4sId/LW4jWf2N1Pf7uNmdySW\nfg+OWgsmhfLIijh+ntdIU6edlWnuMvz3tnoeXBhD9mTdxyYylpStL6OzqbN3feL8iUzOVstTERGR\n0W4oEjI/Az4MfM/tdqcAecAc4EvAPuB7/fY9CHiATACPx7PF7XY/i5182eR2u/8E1AJLgIeBY8Dj\nQxCjiIiMZpZlJ1SmToNrr7NbQRUetJMz+/dh1defeYjfB8VF9vLC85jYOJg3365WcGdCSEgAvhGR\nfhwOuOteuAvMyRN2wrFgPxw8iHX0KCa439u0Ig+cqLNnJ8XEBC5mGTUsy+LGWVHEhTl5en8zfzvc\nRn2Hn/vnRxPkUFJmtEqODebRVXH8fEcD1c32jQleP/x6VxMfzPSxLj1CSTeRMaCpuomqHVW96yFR\nIcxYN0M/3yIiImPAJSdkPB5Pt9vtvhb4v8CdwOeB48Avga97PJ628zzFh4ANwMewky8hQDXwa+Df\nPB5P1dkPFRGRcSksDBZm24sxmOrq3uQMhw7ZyZjTWA31sHE9bFyPCQ6BrCyYt8BO0sTGBuCbEOkn\nPgHWrLUXnxdz+DCkpvY9vv5drJ15GMuC1DT7vJ07H6ZrbpKc24rkcGLCHPx6VxOtXX50tox+8eFO\n/s+SGH74ajVV4X2t6F4qbKW21cc9c5V0ExnN/D4/xa8NHMM787qZBIVpPpSIiMhYMCR/0T0eTxN2\nRcyXzrPfGZ8MPB6PD/hRzyIiInJxLAumTrWXa6+H9na7emb/PnuQesMg1TPdXbB3j70AJjnFrpyZ\nNx+SU3SBWwLLGQSz3AO3zZ6LaW+HIg9WaQmUlsBLL9iVX9esgw9cF5hYZVSYMyGUL62MIzHCgVMX\n6seEmo3lLC+qZv+MqXiionu3b63s4ESbj08sdhER7AhghCLyfh3ZfoTW46296wmzEkh0JwYwIhER\nERlKusVCRETGlvBwyF5kL6dmz+zbay8lh7GMOeMQq6IcKsrhlZcwrtie1mbzITMLQkID8E2InGbV\nans51a5v/z7YtxeroR7Tf57S0RooPAjzF0J8fODilRFnakzf2/5un+HJvU1cOzOSydH6ODDaNJQ1\nUJ1XjdNh8eDaJHZ1BPF8QQun/roVnejm+5vr+czSWBIjnAGNVUQuTvvJdio2VfSuO0OdzLxuZgAj\nEhERkaGmT2AiIjJ29Z89c/2N0NKM2b/frowpOIDV0X7mIY0NsGkDbNqACQ62kzILFtoVNDGuAHwT\nIv2c3q6vsnLgTJm8HVivvARPP4mZnmyfuwsWwjS1NpM+b5W0kVfdyYHjXXwqx0VGgmZqjRbeTi+e\nVz0AJK9KJmZyDFcCCRFOnshvostnp2WOtfr4z80neXhZLNNiggMXsIhcMGMMxa8X4/f6e7elXZlG\naLRuDhIRERlLlJAREZHxIyoalq+wF68Xc6jYTs7s24NVW3vG7lZ3d291jbEsSEu3L4QvyIaJEwPw\nDYj0Y1mQnDxwW2oaJnuRnXCsrIDKCrvyKz4elq+ED94WmFhlRLkmPYIjjV72HuvkJ7kNfGRBDIun\nhAU6LLkAjeWNdDZ1EjUpiukrp/dunzcxlEdWxPLzHY00dtoXc1u6DD/c1sDDS2NJjlVSRmSkO7bv\nGA1lDb3rMdNimLxocgAjEhERkctBCRkRERmfgoLs6pfMLLj7XszRGjv5sncPHD50RmszyxgoOWwv\nz/8ZM3mKXXmwMNueO+NQr34ZAebOs5fubru12d7dsGcP1smTmBMn+vbr6IB9e2DOPIiICFy8EhAh\nTotPLI7h+YIW1pe180R+Ew3tfq5OD8dSJdWIljArgeyPZuMMceJwDvy7M90VzGOr4/j5jkaONHkB\naOs2/HB7A59dEkt6vJIyIiNVV2sXJW+X9K5bDouMGzL0O1lERGQMUkJGRETEsmDyFHu59npobbFb\nm+3bA/v3D97arKYaaqrh9dfsweqnWkPNctvJHpFACg62ZyHNmw8f8mPKyyCkX1uqA/uxfvULjMMJ\ns2b1nb/xCQELWYaXw7K4c3YUceFOXjjYwguFLdR3+LhjdhQOXQAc0aKnRJ/1sdgwJ19YHstPcxso\na7CTMh1ew49zG/jMErWnExmpDr91GG+7t3d9+orpRCZFBjAiERERuVx0xUhEROR0kVGwbLm9eL2Y\nIg/szoc9+ViNjWfsbjXUw/p3Yf27mPBwmDvfvrg9d54980MkkBwOu91ef2FhmIxZcKgYq/AgFB6E\nZ57CJKdA9iK47gZVfY0DlmVxTXoEsWEO/rCnicYO//kPkoA4/OZhYlNiSZh1/qRpRLCDh5fF8rMd\njRw+2Q1Al8/w09wGHsqJJTNJSRmRkeTk4ZPUHuhrnRseH07yquRzHCEiIiKjmRIyIiIi5xIUBLPn\n2Mt999uVBnt2w+58rKM1Z+xutbfDju2wYzsmKAhmz4VFi2DeAojUnY4yQsyZay8tLZj9++xzumA/\nVkU5BgM33NS375FKmDrNriSTMWnxlDASIpxMiQ5SdcwIVFtYS9WOKmp217D0c0sJiTx/QiUsyMFn\nl8Tyv3kNFJ2wkzLdfvh5XgOfWORi7kQNCRcZCXxdPopfLx6wLePGDBxBuilCRERkrFJCRkRE5EKd\nqjRIS4fb7sAcO9qbnKG05My5M16vPcNj7267NVRmJmQvtufORJ+95YzIsImKguUr7KWrC3OwAPpf\nj6+pxvr3b2DiE+zKmexFkD5D1TNjUGq/oe9dPsN7pW1ckx6B06EETSB1tXZx6K+HAEi/Kv2CkjGn\nhAZZfHpJLL/a2UhBbRcAXj/8cmcjH8uOYeFkVXCKBFrZhjI6Gzt71yctnERscmwAIxIREZHLTQkZ\nERGR92viJHvmzLXXQ2MjZu8e2JMPhQftZEw/lt8HBQeg4ADmyd9DxizIXkyQKxavkjMyEoSE2K32\n+jtxAhPjwjp5At5+E95+ExMdbScVFy6CzCxwOgMTr1w2v81vYu+xTqqavDy4MEZJmQAxxlD812K6\n27uJTY1l8uLJF/0cIU6LTy528Zv8RvYds5MyPgO/yW/iQWNXR4lIYDTXNFO1o6p3PSQyhPSr089x\nhIiIiIwFSsiIiIgMBZcL1qy1l44Ouw1U/k7Yvw+rs3PArpYxUOSBIg/pQPvkKbBylV09k5gYmPhF\nBjN3Hnz7u5jSEsjfBbt3YdXVwcYNmB258N0f9CVk/Jo/MlasmxFB0YkudtV0Ymjio0rKBMTxA8c5\nUXQCZ4iTWTfNwnqf7eSCnRafWOTit7ubyK+x/x75jZ148/oNy6aFD2XYInIBjN9Q/Fox9CuunnHt\nDILCdIlGRERkrNNfexERkaEWFgY5S+ylqwtTcMBOzuzdY8+YOU14TTU89yw89ywmORkW5cCixTBh\nYgCCFzmNwwEzZtrLnXdjjlTabfp8Pgi221xZ3d2k/ep/YfZs+/ydM9euuJFRKS0umM8tjeUnuQ09\nF/CVlBlu3g4vJW+VADDjAzMIc11aJYvTYfHRhTEEOZrZUdUB2NeB/7CnGa8fViUrKSMynI7kHqHl\nWEvvenxGPImZuilHRERkPFBCRkRE5HIKCelp75QNXi+m8CDs2gl7dmO1tpyxu1VRARUV8MLzdnJm\n8RL7AndSUgCCFzmNZcH0ZHvpJ7zqCEGtLbAjF3bkYkJDYd4CWLwY5sxTcmYUSosL5uGlsfy4Jylj\nTBMfy1ZSZrh0NHTgCHIQMy2GifOHJjnvdFh8ZEE0QQ7YWtnRu/3pfc10+wxXpkUMyeuIyLm117dT\nvqG8d90Z4mTmdTPfdxWciIiIjC5KyIiIiAyXoCC7BdTceeDzYYqLaHz3HaIOFRHU2nrG7r3Jmb88\nh0lJtZMzi3MgIWH4Yxc5h7bUNEo/8WlST9bBzjysinLIy4W8nuTMv/0HxLgCHaZcpNR+SZndRztZ\nX9bO1em6aD8coiZFkfPpHLrbu4f0Iq3DsrhvXjTBDosN5X0Vm88VtOD1G9bNiByy1xKRMxljKH69\nGL+3r81n6hWphMVonpOIiMh4oYSMiIhIIDidkJnFcWcQx69eR4bTYVfO5O/Cqj95xu5WeRmUl8Hz\nz2LS0u3EzKIciI8f9tBFBtMdGwtLlsB1N2Bqa2FXnn1O+3wDkzHPPQtp6TB3LoSEBi5guSCpccE8\nvCyWjeXtXJGqtlbDyRnsxBnsHPLndVgWd82JIsgB75T2JWVeLGzF64frZkboTn2Ry+T4geM0lDb0\nrkdPiWbK4ikBjEhERESGmxIyIiIigeZwwMwMe7nrHkxZKeTtgF07sRrqz9jdKi2B0hL4858w6TN6\n2pothri4AAQvMoikJLjuBnvp7OzbfuwY1ptvAPS0NZsPOUvtmTM982hk5EmNDSY1tu/fp8tncFqo\nfdll0FjZyImiEySvSr6sw70ty+K2rCiCnRZvHGrr3f5qUSvdPsPN7kglZUSGWHdbNyVvlvSuWw6L\nWTfOwtLvUhERkXFFCRkREZGRxOGA9Bn2ctc9mJLDsDMPduVhNTaesbtVchhKDmP+/Iw9dD2nZ+ZM\nTEwAghcZRGi/KpjICMwdd9vn86nEY94OTFi4PWfp9jvBpdZmI1mXz/CzHQ2EBzn4+KIYgnQhccgY\nYyh5q4TmmmacoU5SVqdc1tezLIub3VEEOSxeLeprm/m3w3aC5pbMqMv6+iLjzeG3DtPd3t27Pm35\nNCInqE2giIjIeKOEjIiIyEjVv3Lm7nsxhw/ZF7Dzd2I1NQ3Y1TIGDhXDoWLMn56GzCy78iA7G8I1\n80FGiKhouPY6uPY6TF2d3dZsRy5WZQUmfyfc/+G+fY8ehQkT7J8DGTHq2nwcafTS7jX8ZlcjH1/k\nUlJmiBw/cJzmmmZCokKYtnTasL3u9RmRBDssXihs6d32t8NtRAQ7uGaG/n6IDIX60nqO7z/eux4W\nF0byquQARiQiIiKBooSMiIjIaOBwQMYse7n3Q5jiIrtyJn8nVnPzgF0tvx8KDkDBAcyTv+9rCzVv\nPoSEBOgbEDlNYiJcez1cez3m6FGoruqbKdPdDd9+HEJD7JZ8OUvsuTNqoRRwU6KD+PzyWH60rYG9\nx7r49a5G/k5JmUvm6/ZR+m4pYA/4doYM/eyYc7lmRgRBDvhzQV9S5oXCFsKDLVYma3aQyKXwe/0U\nv148YNusG2ZdlhlRIiIiMvIpISMiIjLaOBzgzrSX3uTMDti1C6u1ZcCultcL+bsgfxcmLAwWZMOS\npZCVBU69DZARYtIkezmlrhaiIrHq6uCdt+CdtzAJiZCTYycXp01XciaAkl3BfGF5LD/a3sA+JWWG\nRFVuFV3NXUROjGTivIkBieGKtAg6fYaXPX3ty57e10x4sEX25LCAxCQyFtTk19BR39G7PnHBRGJT\nYwMYkYiIiASSrsSIiIiMZk6n3Z4sMwvuux9TUAB5ubA7H6v/MHXA6uiA7Vth+1ZMVBQsWgxLltmz\nZ9QWSkaSyVPg376F6TdnxjpRB2+8Dm+8jvm//waTJgc6ynFtuiuYzy8bmJT5xCIXTiVlLlpnSycV\nWyoAmHHNjIAO+P7AjAjaug1vl9hzZAzw2/wmwoIsspJCz32wiJzB2+mlYlNF77oz1En6VekBjEhE\nREQCTQkZERGRscIZZLclmzcfujoxe/fCjlw4sM+ulOnHammBDethw3pMXJxddbBsuV15IDISWJbd\npiwtHe68G3Oo2E42Hjs2MBnzh9/B1Gl2W7Po6MDFOw71T8pYWPgNqAHPxas7WIe/20/CrISA3zVv\nWRa3ZkbS1u1na6V9R7/PwC93NvLw0jjS44MDGp/IaHNk+xG627t716evmE5whH6ORERExjMlZERE\nRMaikFD7AnXOEmhrw+zeZSdnCg9iGTNgV6u+Ht58A958AzN1KixdDkuXQVx8gIIXOY3DAbPc9tLf\nsWNYmzYAYJ59GrJm2+fvgoUQphZLw2G6K5hHV8WRGOHEoTZy78vUJVOJSIwgzDUyzlnLsrhvXjQd\nXkN+jV1p2eWDn+1o4O9XxDE1Rh8hRS5EV0sXR7Yf6V0PiQph6pKpAYxIRERERgK9mxYRERnrIiJg\n5Wp7aWrE7MyDHblYJYfP2NWqqoK/PId54Xn74vfS5bBoEYRHBCBwkfOIi8V84lOQux0OHMA6sB8O\n7MeEhNjzku64C+LiAh3lmDchsu8jRZfPcLC2iwWT1N7qYsSljazz1GFZPLAghvbuRgrrugBo9xp+\nnNvAF1fEkhSpj5Ei51O+qRx/t793PWVNCs5g1RGKiIiMd3onLSIiMp7EuOCqa+CqazB1dXYLqNzt\nWNVVA3azjAFPIXgKMU/9AeYvtFuazZkLQXr7ICNESKg9B2nJMmhpxuTlQe42rJLDmD358OEH+vat\nq4WERLsVmlwWPr/hx9sbKKnv5oEF0SydFh7okEa0xspGHEEOoiePzFZ7wU6LTy528ePt9ZQ22G0v\nmzv9/Gh7A19cGUdsmC4si5xN+8l2ju4+2rseHh/OpAWTAhiRiIiIjBS6oiIiIjJeJSbC9TfC9Tdi\njlTC9m12cqax3Z9JLQAAIABJREFUYcBultcLu/JgVx4mMhIWL7GTM+kzdHFbRo6oaLjyKrjyKkxd\nLVRW9rUt6+6G//g3u1ps6XJYtgImTgxsvGOQ02GxYFIoJfXd/HFvM5EhDuZMUKXMYPw+P0WvFtF+\nsp25980lPn1ktogMDbL4zNJY/ntrA9XNdlLmZLufH29v4JEVcUSGOAIcocjIVLa+DOPvaxGbdmUa\nlkPvmUREREQJGREREQGYNt1ebr8TU+SB3G2waydWR8eA3azWVtjwHmx4D5OYZM+a0cVtGWkSk+zl\nlNrjEByCVVcHr70Cr72CSZ9hJxZzlkBkVOBiHWOuTo+gpcvPm4fb+NXORr6wPI60OA2wPl3Nrhra\nT7YTHh9ObEpsoMM5p4hgBw8vdfGDrQ3UtfkAONri4ye5DXxheSxhQUrKiPTXXNNM7cHa3vXoKdEk\nuBMCGJGIiIiMJHr3LCIiIn0cDsjMggc/Dt/5PuaTn8bMX4BxnNmaxqqrxXrtFayv/xN851uwYT20\ntQUgaJHzmDIVvvUdzCOPYpavxISGYpUcxnrqj/APj9ntzGTI3OKOZPm0MLr99iD4mp7KCrF1t3dT\nvqkcgPRr0nE4R/5HspgwJ59fFosrtC/WikYvv8hrpNtnznGkyPhijKH0ndIB29KuSsNSRbGIiIj0\nUIWMiIiIDC4kxK4eyFlyxnyO01klh6HkMOZPT8GChbB8JcyeA07NGJAR4lSyMTMLPvRhzO582L4V\nmprs2TKnvPkGzMyA1DS15HufLMvivnnRtHb72Xesi5/kNvDYqjhcmjkCQMXmCrztXmJTYomfOTJb\nlQ0mIcLJw8ti+a+t9bR120mYohPdPJHfyN8tcuFUOyYR6kvraSjva/0aPzN+xFfBiYiIyPBSQkZE\nRETOr/98juPHYEcubNuKVXt8wG6W1ws782BnHiYmxh62vmKl3Q5NZKQIDbXblS1bbs+XOZV4qT2O\n9dyzAJiJE+12fMtWQIJazVwsp8PiY9kufry9gbhwh2aN9Gg/2U51XjUA6evSR91d85Ojg/jc0lh+\nuK2Bzp7KmL3HunhyXzMfnh+NY5R9PyJDyRhD6bunVcdcmRagaERERGSkUkJGRERELs6EiXDTLXDj\nzZjSEti6BXbuwDqtXZnV1ARvvwlvv4mZNh2Wr7BnzsS4AhS4yCCC+803CQrCrPsA5OZiHTsGL70A\nL72AyZhlV30tWWpXjskFCXFafG6pi2CnpQv1Pco22IO+Jy6YSNTE0Tm7KCU2mIdyXPx0RwNev70t\n90gHEUEWd8yOGnVJJpGhUltQS+ux1t71ifMmEjkhMoARiYiIyEikhIyIiIi8P5YF6TPs5Z77MHv3\nwLYtcGA/lt8/cNcjlfDnSszzf4Y5c+2qgwULB14MFwm0uHi46164/S5M4UH7fN6dj1VchCkrhUWL\nACVkLkZov4HvHV4/b5e0cf3MyHHb3ip9XTpBoUEkr0kOdCiXZFZiCB/PdvGrXY34e0bIvFfWTkSI\ngxsydAFaxh+/z0/Z+rLedctpkbI2JXABiYiIyIilhIyIiIhcuuBgWJxjL02NmNztsH0rVmXlgN0s\nvx/27YV9ezEREXZLs5WrIDlF8zpk5HA67cThnLnQ3o7ZtROaGiE8wn7c64XvfhvmzrMrZ5KSAhvv\nKPGbXU0U1HZR1+rjgYUx47JqJjQqlIwbMgIdxpCYPymU++dH84c9zb3bXitqJT7cwbJp4QGMTGT4\n1eyqoaOho3d9yuIphLnCAhiRiIiIjFRKyIiIiMjQinHBumth3bWYI5V2lUHudruFWT9WWxusfxfW\nv4uZMtVOzCxdDjExAQpcZBDh4bBq9cBtBQewysugvAxefdluabZiFSxaDGG6AHc2N82K5PDJbvKq\nO4kKbeGOrPHT3qrtRBvhceFYY6wyaNm0cNq7Dc8VtPRue2pvM3FhTmYlqppMxgdvp5eKTRW9685Q\nJ8krR3cVnIiIiFw+mq4pIiIil8+06XYLqG99F/Pw/8EszsEEnXk/iFVdhfXnP8FXvww//RHs2Q0+\nbwACFrkAc+dhHnkUs2wFJjgEq7gI63e/gX94FJ74NXR2BjrCESk5NphP5rhwWvBeaTtvHm47/0Fj\ngK/Lx94/7mXnL3fS2Tz2zo0r0yJYNyOid91n4Jc7GznarN/hMj4c2X6E7vbu3vXpK6YTHKGWrCIi\nIjI4VciIiIjI5ed0wrz59tLWhsnbAVs2YZWVDtjN8vvsZMye3ZjoaHvWzMpVMGVqgAIXGYTDAZlZ\n9nLf/ZhdebB1C9ahYkxZCYT0qwxobASXK3CxjjCZiSE8uDCGJ/KbeNnTSnSogxXTx3Z7q8ptlXS1\ndBEaHUpI1NisGrnFHcmJNh/5NXbCqd1r+OmOBh5dFU9MqO4BlLGrq6WLI9uP9K6HRIUwdYnes4iI\niMjZKSEjIiIiwysiAtZeAWuvwFRXwdYt9ryZ01uaNTfDW3+Dt/6GSUm1EzNLltnHi4wU4eGwag2s\nWoM5fsxOwJxqw1VXB//yNZjlhpWrIXvRwGTNOLVoShgtXX6ePdDCU3ubmRjpJD1+bP5/6Wzu5Mg2\n+2Jt+rr0MduizWFZfGRBDA3t9ZQ22JUxJ9v9/CKvgS8sjyPEOTa/b5HyTeX4u/296ylrUnAGOwMY\nkYiIiIx0SsiIiIhI4EyZCnfeDbfdjjmwHzZvhn177UqZfk7N6zDPPmNf1F61xr7I7dCd1zKCTJho\nL6dUlkNQEJanEDyFmKfD7aTiqtWQnNKXuBmH1qZG0Nzpp6nTT0rs2G3tU7m1Er/XT6I7Edf0sV0p\nFeK0+FROLN/fcpK6NvsCdVmDl9/vbuLji2JwjOPzXcam9pPtHN19tHc9PD6cSQsmBTAiERERGQ2U\nkBEREZHAcwbB/IX20tSEyd0GWzdjVVUN2M3yemFHLuzIxSQm2lUHK1ZCXHyAAhc5h+zF8P+yMHm5\nsHmTnVjc8B5seA+TmgZf+dq4TireOCsSYMxWjXQ2d1KTXwPYd82PB9GhDj6zJJbvb6mnrdsAsPto\nJy8VtnJbVlSAoxMZWmXryzB+07uedlUalmNs/j4TERGRoaOEjIiIiIwsMTGw7lq45gOYinLYshl2\nbMdqGzgA3Kqrg5dewLz8IsyeA6vXwLwFEKS3NzKCRETA2ith7ZWYI5X2+bx9GyQm9iVjfD7wFNoz\nacZRgqZ/Iqat289fi1q5JTNqzLS3qtxaifEZEjMTiZwQGehwhs3EqCA+udjFj7c34Ou5Vv12SRuJ\nEU5Wp4zteUEyfjTXNFN7sLZ3PXpqNAmzEgIYkYiIiIwWumIhIiIiI5NlQUqqvdx1D2ZPvn0x+2AB\nlum7I9UyBg7shwP7MdHRsHyl3RJq0uSAhS4yqGnT4Z774PY7ob1fgvHAPqyf/AgTF29XfK1cBYlJ\ngYszAH6b30RBbRcNHf4x094qMimSkOgQUlaPj+qY/jISQvjw/Bh+t6dvNtizB5qJD3cwe0JoACMT\nuXTGGErfKR2wLe2qtDFb7SciIiJDSwkZOauuri6efPJJ3njjDY4csYeRJicnc88993DrrbcGODoR\nERlXgoMhZ6m9nDiB2boZtmzCOnlywG5WczO8+Qa8+QYmfYZdNbMoB8LCAhS4yCCCgyG43zyRbi8m\nMdGu+nrtFXjtFYw70z5/Fy6y9x/jbsuKoqS+nt1HO3nF08oHM0d/e6vJ2ZOZtGDSuG1htGRaGLVt\nPv5a3AqA38CvdzXxyMpYpsWM/XNaxq760noayht61+NnxhObHBvAiERERGQ0UUJGBtXd3c0XvvAF\n8vPzmTVrFrfffjudnZ387W9/4/HHH2fChAmsWLFi2OJ5++232bVrF0VFRRw6dIjW1lauv/56vvnN\nbw5bDCIiMkIkJMDNH4Qbb8YUHoTNG2HPbnu+TD9WyWEoOYx55ik7kbN6DaSmjetB6jJCLc6B7EWY\n4iL7fM7fheUpBE8hJiUVvvbPgY7wspscHcQnFrn46Y4G3jzcxoRIJ8unj/72VuM1GXPKDRkRnGjz\nkVvVAUCnz/DzHY08uiqO2DBngKMTuXjGGErfPa065sq0AEUjIiIio5ESMjKop59+mvz8fG6//Xa+\n+tWv9pZfZ2dn86//+q/s2bNnWBMyv/71rykuLiYiIoIJEybQ2to6bK8tIiIjlMNhz46ZPQdamjHb\nt9mD06urBuxmdXbaF7k3b8RMmWonZpatgMjxM9NBRgGHA9yZ9tLWhtmxHTZthIXZffs0NMCBfbB4\nyZis+spMCuHuOdE8s7+Zp/c1kxDhJCMhJNBhXbTS90qxLItpy6YRFDa+P25ZlsWH5kdT3+6j+GQ3\nAA0dfn6+o5FHVsQSGjR+ZibJ2FBbUEvrsb7PohPnTRxXM6JERETk0o3vTwhyVs8//zxhYWE88sgj\nA3rhOp32nWwul+tsh14WX/ziF5kwYQLTp09n165dfPaznx3W1xcRkREuKhqu+QBcvQ5TVgqbN8GO\n7XYyph+rugr+9DTmL8/BosWwei3MzFDVjIwsERFwxVX24vP1bd+yCeulFzB/ehqWLoNVa+wZS2Po\n/F2dEs7xVi/vlrbzy52N/MOaeOLDR08lRWdTJ0e2H8H4DElZSeM+IQMQ5LD4ZI6L/9xcz/FW+3w+\n0uTlN/lNfGqxC+c4ryKS0cPv81O2vqx33XJapKwdfzOiRERE5NIMyScEt9sdD3wduA2YDNQBrwH/\n4vF4ai7g+FDgq8BHgOk9x78K/JPH46kbihjlwtXU1FBVVcWaNWsIDx/YKuLtt98GICcnZ1hjGu7X\nExGRUcqyIC3dXu6+F7MzDzZvxDp8aOBu3d2wfRts34aZOMmumlm+EqKjAxS4yFk4+yUjJk/BpM+w\n2/Ft3AAbN2CmTbfP36XL7UTOGHBbVhS1rT4SI53Eho2uCorKrZW9yRjdNd8nItjBZ5fG8p+bT9LS\nZQA4cLyL5wpauHtOlIahy6hwdPdROho6eten5kwlzDX2qhVFRETk8rrkhIzb7Q4H3gMygR8BeUAG\n8BhwtdvtXuzxeOrPcXwQdvLlip7jdwI5wOeB1W63O9vj8XRdapxy4Q4ePAjAnDlzercZY3jmmWd4\n5513WLp0KRkZGYEKT0RE5MKEhsLKVbByFeZojd3+adsWrJaWAbtZx47Cc89iXnjebg+1eq3dNsox\nui4EyziQvcieNVNdbbfh27YV60glPP0kpsgDD42NCmKHZfHJUVg50dnUSc1u+1605NXJAY5m5EmM\ncPJQTiw/3FZPt9/etrG8naRIJ1eljY1kooxdfp+fyq2VvevOUCfTV0wPYEQiIiIyWg1FhcwjwDzg\nYY/H85NTG91u9x7gL8C/AF86x/GfAa4BPurxeH7Xs+0Pbre7Dvg7YBmwcQjivCTWZz551sfMhx+A\nNVfYKxvXY/3x92ff92e/7Fv5j29iVVQMvt/qtfCRB+2V8jKsb/372Z/za/9st6sYIoWFhQBkZWWR\nl5fHG2+8we7duykvLycjI4NvfOMb5zz+qaeeorm5+YJfb9asWVx55ZWXErKIiMi5TZoMd90Dt96O\n2ZMPmzZiFR4csIvl88HOPNiZh0lMsqsOVqwEV2yAghY5iylT4O574bY7es9nVqzqe/zwISgtgeUr\n7HZ+o1D/ZExzp5/tR9q5Jj1iRFdSDKiOSVJ1zGDS4oJ5YGEMv97V1LvtLwUtxIc7WTApNICRiZzb\nsb3H6Gzqa4M6dclUgiOCAxiRiIiIjFZDkZB5EGgFfnXa9heBI8BH3G73ox6Px5zl+IeBYmBAFsPj\n8fw7cPYshFw2pypksrKy+O53v8ubb77Z+1hqaip+v/+cxz/99NPU1Jy3U12vm266SQkZEREZHsHB\nkLMUcpZiao/bF7K3bsZqahqwm1VXCy88j3npBZi3ANashdlzVDUjI0u/83mAt9/E2rXTrvrKXmyf\nvxmzRuWsGb8x/Gh7PdXNPvwGrp05MhMdHU0dqo65QNmTw7g108eLhfZgdAP8Nr+RR1bGkezSBW4Z\nec6ojglxMnXJ1ABGJCIiIqPZJSVk3G53DHarso0ej2fA1FyPx2PcbncucAeQBpQMcvy0nuN/fCph\n43a7w4DOcyRwAmJAZcu5rLkCc6pa5nz+8V+5oG8yJfXCX38IFBYWMnnyZGJjY/nmN7/Jl7/8ZUpK\nSvjTn/7Em2++SWlpKU8++eRZj3/xxReHLVYREZH3LWkC3H4nfPBWzN69sGkDFBzAMn1/nS2/H/bk\nw558THyCXTWzarWqZmRkW74S09lpn887tsOO7faspDVrR13VjMOyuCEjkl/tauJlTytJkU6yJ4+8\nmQ21BbV2dcxsVcdciGvSI6hr87G5wp7H0e2HX+Q18uVVccSEOc9ztMjwOn7g+IDZMVNyphAcruSh\niIiIvD+WMe8/7+F2u+cBe4GnPB7P/YM8/gPslmYf8Hg8bw3y+DrgTeyWZn7gi0AK0Am8Djzm8XgO\nnX7c+TQ2Ng76TRUXF1/sU407tbW1PPLIIyxZsoRHHnnkjMe/9rWvUVFRwQ9+8AMmTJgQgAihoKCA\nxx9/nFWrVvG5z30uIDGIiMjYFNTUiGvfXmL27yX4tFkzpxiHg5YZM2mcv5C2lNRRWXUg44N9Pu/B\ntW8fQa32+Xxi+UpOrFoT4Mgu3s6TIWyuC8dpGe6a3srEMF+gQxrAGEPX8S6cEU6CooeiCcHY5zfw\nUlUEFW19F7YnhXm5Y1orQSpGlBHC+A21b9Tia7F/51hOi6SbknCGKnEoIiIyHp1trrrL5brgCwOX\n+mnh1O11bWd5vPW0/U4X3/P1o0AI8DhwDHumzOeBFW63e6HH47nw/ldyScrKygBIT08f9PHISPuO\nv7Cws9+Z+Ne//pW2trOdEmdKSUkhJyfnwoMUERG5TLwxLk6sWsOJFauILC3BtW8PkSWHz6iaiS4u\nIrq4iC5XLI3zFtA0dx6+SN0VLyOLfT6v5cSK1USWHMa1dzeN8xb0Ph5dsB9nWxtNs+fijxjZQ9UX\nxXVR3+WkoCmEl6siuDe5hejgkVNQb1kWoRM1A+ViOCy4YXIbz1RE0dBtX9w+2hHEu8fDWTexXblu\nGRE6Kjt6kzEAETMilIwRERGRSxLo27dCer5OBOZ6PJ4TPesvud3uY9gJmkeBx4bixc6WwRqPTlUL\nnf7/5NS8mNWrV5/xWGNjI8XFxcycOZPFixef9bkfe+yxi54h86EPfeiC92/q6fMfHR2tf9Nx7mzn\nschoovN4BHO74foboL4es2UTbNqAVV8/YJeQxgaSNq0ncesmWJANa6+AWe5xN2tG5/Eo4HbDDTeS\ndmrdGPjDE1jHjpG0eSNkL4I1V4zoWTPpMw0/yW2g+EQ3b9TF8aWV8YQGDV2s7+c87mzuxNvhVZuy\nS5A0zct/bq6n3Wsn2A42hZA1LZ6r0kZ2knCk0u/joWP8hrx38nrXHUEO5l0/j5CokHMcJUNB57GM\nBTqPZSzQeXx5XGpC5tQE3LN9Aok6bb/TneoF8lK/ZMwpv8JOyFz5vqOTi1ZYWAjYiZmlS5di9Xwg\n7+7u5lvf+hZer5f77z+jO90AmiEjIiJjSlwc3HQL3HATZv8+2Lge9u8bWDXj88GuPNiVh0maYM/q\nWLEKokfPrA4ZZ4yB2+/CbNoAB/Zj7ciFHbn2rJm1V9izZiKjzv88wyjIYfGJRS6+v6WeORNCCR4B\nN6lXbKqgJr+GmdfOZErOlECHMypNjArio9kx/HxHY+98zb8UtDApyklWkqqOJHDqCutoP9Heuz45\ne7KSMSIiInLJLjUhUwoYYNpZHk/p+Xq24S1lPV8H+zhV1/PcMe83OLl4pxIyL730EkVFReTk5NDW\n1sb27dupqqri5ptv5uabbx72uN577z3Wr18PwIkTdu5u3759fOMb3wAgNjaWv//7vx/2uEREZBxx\nOGD+Ans5eQKzeRNs2ojV2DBgN6v2ODz/Z8xLL8DCRfbF7RFcdSDjlMMBC7Pt5cQJzOaNsHkj1rGj\n8OwzmLh4WHT2iuhAiQxx8JXVcYSOgCEjHY0dHN1zFIDY1NgARzO6zZkQyq1ZUbxw0L5fzwC/2dXE\nY6vjmBAZ6KYOMh4ZYyjfXN67bjktpi0/22UPERERkQt3Se9uPR5Pq9vt3gsscrvdYR6Pp+PUY263\n2wmsBCo9Hk/FWZ6iAGgEFg7y2HTAAo5cSoxy4Y4ePUpDQwPLli0jKiqKvLw8nnrqKSIjI8nMzOTh\nhx9m3bp1AYmtqKiIV199dcC2qqoqqqqqAJg8ebISMiIiMnziE+CWW+HGmzH79tpVMwUHBlbNeL2Q\nlwt5uZhJk3uqDlbCCJ/VIeNQQgJ88Da46WbM3r2wMw8W9M2a4dWX7WqvpcvhHHMEh0v/ZExTh4/q\nFh+ZicN/13rllkqM35A0J4mIRP1cX6qr08KpbvKSW2V/pGz3Gv53RyOProojPDjwCTgZX04UnaCt\ntm8u6qQFkwiNVsWWiIiIXLqhuN3oV8D/AJ8G/rvf9o8AE4Cvn9rgdrszgU6Px1MK4PF4utxu95PA\nZ91u9y0ej+flfsd/vudr/21yGR08eBCApUuX8sADDwQ4moEeeughHnrooUCHISIiMpDT2VdlUFfX\nU2WwCaupccBu1tEa+NPTmL88D0uW2smZ1LSzPKlIgDiD7Fky2Yv6trW2wF9fxfJ6Mc89C0uXwZor\nITk5YGGe0tTp57ub62nr9vPFlXFMiwkettfuXx2TsirlPHvLhbAsi/vmRXO81UtZgxeAY60+nshv\n4tNLXDhUZSjDxBhD+aZ+1TEOi+krpgcwIhERERlLhiIh8zPgw8D33G53CpAHzAG+BOwDvtdv34OA\nB8jst+3rwHXAs263+9vYbcyuBh4Advc8vwyDU+3K3G53gCMREREZhRIT4dbb4eZbMHv3wIb1WAcL\nBuxidXfBlk2wZRMmOcVOzCxZBqG661ZGqNAw+OjfYTa8h1VcBBs3wMYNmNQ0+/zNWQIhgTl/o0Ms\nZiWGkHukg1/kNfLl1fFEhQxPJUXF5gpVx1wGwU6LTy528d1N9TR2+gEoqO3i5cJWbs0aWTONZOw6\neegkrcdae9cnzp9ImCvw1YEiIiIyNlzyJxaPx9MNXAv8ELgTeAL4KPBL4EqPx9N29qPB4/HUAsuB\n3wIPAf8LXAF8v+f49nMcLkNICRkREZEh4AyC7MXw91/CfPNxzAeuwwwyHN2qKMf6w+/gHx6Dp5+E\n6qoABCtyHkFBdlXXo1/BfP2bmKvXYSIisMpKsX73BNQ3nPcpLhfLsrhvbjQpsUGcbPfz652N+Pzm\n/Adeoo7GDo7tPQaWqmMuB1eYk0/luOg/JuitkjZ2HOk4+0EiQ8QYQ8Wmfh3XLZi+UtUxIiIiMnSG\nZEKix+Npwq6I+dJ59hu0zrwnKfPpnkUCpLCwkMmTJ+NyuQIdioiIyNgwYSLceTd88DbMrp2wcT3W\noeIBu1gd7fDeO/DeO5iZGbD2SrtlVPDwtV8SuSCTp8A998Ftt2Py8uBIJUycaD9mDPzx95CZCQsX\n2YmcYRDstPjUYhff2VRP8clunito4Z650Zf1NS2HxYS5E8Cg6pjLJCU2mPvnx/C73U29257c10RS\nlJPUWP1ulMunvqSe5prm3vWJ8yYSHhsewIhERERkrBmeT0oyKrzxxhuBDkFERGRsCg6GZcth2XJM\nVRVseA+2b8XqGHjHt3WoGA4VY6KiYOVqWHMFJCUFJmaRswkJhZWrBm4rLcHatAE2bcDExPSdvwkJ\nlz0cV5iTTy528T/b6tlY3s7UmCBWJV++C6ih0aG4b3ZjzOWvxhnPlkwNo7rZy1uH7YYLXj/8Mq+R\nL6+OwxXmDHB0MhYNVh2TvDLw87JERERkbBmeJssiIiIiYps6FT70Yfj29zAfeRAzyHB0q6UF62+v\nw7/+I/zwv2DvbvD7AxCsyAWaPAVz34cxU6ZiNTVhvf4a/PNX4cf/A/v2XvbzNy0umHt7KmNauobn\nZ8XSkPnL7hZ3JHMmhPSuN3b6+cXORrp9SobJ0Gsoa6Cpqq8qa8KcCYTHqzpGREREhpYqZEREREQC\nISwMVq+FVWsw5WWwYT3syMXq7urdxTIGDuyHA/sx8QmwZi2sWg0xai8qI0x4OFx5FVxxJebwIVj/\nHuTvxNq3F1NyGL79PXBc3nvBlk8PJ9kVzJSYy/MRp6Ohg4MvHiR5ZTIJGZe/8kfAYVl8dGEM399S\nz9EWHwDlDV6e2tfMAwuilRSTITWgOgZVx4iIiMjloYSMiIiISCBZFqSm2cudd2O2bYWN72EdPTpw\nt5Mn4MW/YF55CbIXwxVXwswM+3iRkcKy7PNyZgY03YvZuhksR99MpI4OePpJWL0GZswc8vO3fzKm\nscNHeLCDEOfQvEbFlgqaq5qpPVirhMwwCg928FCOi+9trqet266M2VHVwdToIK6ZoRk+MjQayhto\nrGzsXU/KStKMKBEREbkslJARERERGSkiI+GadXD1NZgij11lsDsfy+/r3cXy+SAvF/JyMVOmwNor\nYdkKu0JBZCSJiYHrbhi4LXcb1rYtsG0LZsrUnvN3+ZCfv2X13fxiZyOzEoJ5cGHMJVdStDe0c2zv\nMXumxCrdNT/ckiKD+Hi2i5/kNnCqWdmLhS1MinYyZ0JoQGOTsaFi82nVMfo5FxERkctEM2RERERE\nRhrLAncmPPQZ+Nb/w9xyKyY27szdqquxnn4SvvoY/PH3cKQyAMGKXIS58zDX34iJjsaqrsJ6+o/2\n+fvkH6DqyJC9TEiQRafXkFfdydslbZf8fJVbKjF+w4S5E4hI0F3zgZCZFMIds6N61w3wRH4TR1u8\ngQtKxoTGI400lDX0rie6E4mcEBnAiERERGQsU0JGREREZCRzxcJNt8Dj38Z85mFM1uwzdrE6O7E2\nrsf692/Ad74F27dBd3cAghU5j/gEuO0O+NZ3MZ/8NGaW2z5/N7wHf/jdkL3MlOggHlgYA8BLha0U\nHO9838/bc9xwAAAgAElEQVTV0dRhV8egmRKBdkVqOMunhfWud3gNv8hrpL3bH8CoZLQ7Y3bMav2c\ni4iIyOWjlmUiIiIio4HTCQuzYWE25tgx2PgebNmM1Tbw7n+r5DCUHMb8+RlYtQbWXAEJmnchI0xQ\nEOQsgZwlmOoq2LAeMmb1PV5VBTu2w9or7CTO+7BgUig3zorktaJWnshv4rFVcUyIuviPP0e2HcH4\njT1TQtUxAWVZFvfMjeZYq4/SejvpfLzVx+92N/GpHBcOzdSSi9RU3UR9SX3vekJGAlETo85xhIiI\niMil+f/s3Xd4VOeZ9/HvmVFvo4KEEEiiSQLT1SgCg2uwTWJjx8YldrxeO4nXr994k3iTTd51yq43\n2dib7G52HSdOcYoB47XjFtsYN5pAQiAJMEiIIoSERJM06mVmzvvHgZEEAlMkjcrvc13ngnPmmTP3\niEdcc+Y+93OrQkZERERkqBk9Gr64An7yLOaX/wZz/IRzhhiNjRjvvQP/7zvw3C/g093g0V3kMggl\njIW774WMzK5j6z+y5u/3vgPP/fdlz9/PTQ5hVnwgrS6TX19GJYXH7eFk6UkAEnMSL/n1pe/52w0e\nznAQGdR1Kbv7eAfv7mv2YVQyVJ3TO0bVMSIiItLPVCEjIiIiMlQFBMD8HJifg3m4HNZ/AtvyMTo7\nvEMM04SdxbCzGDM2FhYtgQU5EKY7gGUQm7cAs7UNdhRg7CyCnUXW/L16iTV/Qy9u/toMg/tnhXO8\n2UVNo5vSkx3MHhP02U8883y7jcyvZFJ3sI6wOP3ODBYRgTb+NsPBf26pw3U6x/be/hbGOfyZFR/o\n2+BkyGiqaaK2rNa7HzUpivAx4T6MSEREREYCJWREREREhoPk8fDAg3DHnZhbc2H9JxjHj/UYYpw4\nAa+9gvnW69ZyUYuvgV6qa0R8buIka7tzBWbuJtjwiTV/X30F88QJuPdLF32qQD8bX8mM5FiTi2lx\nl/5lvV+gH7FTYy/5edK/xkf6s2J6OC/tbPQe+1NRA3E5UYwJ12WufLazq2OSc5J9FImIiIiMJPqk\nKiIiIjKchIbCdTfANddhlpbAJx/DziKrUuY0o7MTtuTCllzM5PGweAlkZlsVNyKDSUQELL0ZblyK\nuXunVQV29eKuxz/dDU6nlWC8wPwdFWJnVIjdu+/2mNhtF+430lDVQGhcKHZ/+wXHie/MSwzmiNPF\nhsOtALS7TV7Y7uRbOVGE+Gt1bjm/5uPN3uUIASLHRxIxLsKHEYmIiMhIoYSMiIiIyHBks8HUq6yt\nthZz0wbYtAGjoaHHMONwOfzxRcz/XQMLFlpfdseN9k3MIudjs8HM2dbW3dtvYhw6iPlqt/kbG3fB\nU5Wd6uDPxQ18NTOShIjeL4dc7S52r9mNgUH6w+kEhmsZrMHq9qvCONroYn9tJwAnmt38obCBr2Y5\nsBkXTrrJyHVOdcxCVceIiIjIwNBtQyIiIiLDXXQ0fOE2+NefYj78FcyU1HOGGC0tGB+8j/HU9+AX\n/wE7iy6ribrIgDFNWLQYM3k8RnMzxrq1GP/03dPzt/i88ze/so3aVg8vbK+nuaP3MdWF1bhaXQTH\nBBMQpsqxwcxuM3go3UFkUNel7Z4THfy1tNmHUclg1nKyhRN7T3j3HUkOHEkOH0YkIiIiI4kqZOS8\nOjo6WLlyJWvXrqWyshKApKQk7rrrLm699VYfRyciIiKXzM/PWposMxuzqgo2fAJbczHa23sMMz7d\nDZ/uxowZZVUcLFgI4Wp0LIOMYcCCHFiQg1l+CNZ/DNvyu+bv/Q9CzsJznnbn9HCqGl0ccbp4sbCB\nR7N7VlK4O91U5p3+7JuThKEqi0EvPNDGIxkOfr6lDtfpHNv7B1pIdPgxe0yQb4OTQefs6pikhUk+\nikRERERGIiVkpFednZ08/vjjFBYWkpqayvLly2lvb+f999/n6aefJi4ujvnz5w9YPL/4xS/Yu3cv\nFRUVOJ1OAgMDiY+PZ/Hixdx5551ERkYOWCwiIiLDwtixcM99sPwOzK1bYP3HGNVHewwxTp2Ev7yK\n+dYbkJFl9ZqZMNH6IlxkMBk/wdruuAszdzNs2woZmV2PF+RDdAxMmEiA3eDhDAfPbKql5GQHb5U0\nc+vUMO/QmuIaOps7CYsPI2pilA/ejFyOpEh/7p4Rzp+LG73H/lTcSFyYHwnhuuwVS2tdK8f3HPfu\nR4yLIDJZ15IiIiIycPTJVHq1evVqCgsLWb58Od/5zne8dwbOmTOHp556iuLi4gFNyKxatYopU6Yw\nd+5coqKiaG1tZffu3bzwwgu8/vrr/O53v2P0aK13LyIicsmCgmDJNbB4CWbZPvjkYygqxPC4vUMM\nlwvytkDeFsykJFh8DWRlQ4D6asggExYGN37O2s7o6IBVL2E0N2MmJsGSa4jOyuahdAf/nVfPBwdb\nGOfwIwIwPSaVW63qmMQFiaqOGWLmjgvmiNPF+vJWADrcJi8UOHlyYRQh/lqtW+DIliNgdu2rCk5E\nREQGmhIy0qvXXnuNoKAgnnjiiR4fUO12OwAOx8Cusfvxxx8TGHjulz7PPfccL774Ii+++CLf/va3\nBzQmERGRYcUwIDXN2urrMTdtgI0bMJz1PYdVVMCf/oD56ivWclFXL/FNvCIXy+WChYswN23CONI1\nf1Pm57A8bQmvHjFYvauRB5LBU9FKe0M7ITEhjEob5evI5TIsnxrG0QYXZbWdAJxscfNiYQNfy+q5\nNJ2MPG3ONo7tPObdVxWciIiI+IJuE5JzVFdXU1VVRVZWFsHBwT0e+/DDDwHIzMzs7an9prdkDMD1\n118PwJEjRwYyHBERkeEtMhKWfQH+9SeYj3wNM23KOUOMlhaMD9ZhPPU9xr66htD9Zedtoi7iUyEh\nsPyL8JNnMB98CHPCRGv+friOJc99jyWxbh7OcBBkB1uwjdC4UBJzVB0zVNltBn+T7iAquOtSd++J\nDt4ubfZhVDIYVG6txPR0lceoOkZERER8QRUyco69e/cCMG3aNO8x0zR5+eWX+eijj8jOziYlJcVX\n4fWwceNGACZPnuzjSERERIYhu5/VhyMjE/PoUdjwCWzNxWhr6zEstPwQoeWHMDeuh6sXQ84iCA/3\nTcwi5+PvD/MWwLwFmIfLYf0nUFPNHVnxYBiU1UFs3UFG33WN5u8QFx5o45EMBz/PraPzdJ543YEW\nxkX4kZ4Q5NvgxCc6mjqoLqr27ofEhhCTGuPDiERERGSkUkLmIj3+1+PnfezuGeHkJFmVJJsrWlm9\nq/G8Y39xS5z37z/dWMuRBlev4xYkBnHPzAgAKpydPLOp7rznfHJhFEkO/wvGfylKSkoAmDp1KgUF\nBaxdu5aioiIOHz5MSkoKP/zhDy/4/FWrVtHYeP6fwdlSU1NZsmTJRY3985//TEtLC01NTezdu5fi\n4mImT57Ml7/85Yt+PREREbkMCQlw971w2+2Y+Vvhk48xjlb1GGLUnoLXX8N8+00rkbP4Gpgw0VoO\nTWQwSR4PDzxoVXWdnp/+tbXU5++l6EALSyObNX+HuESHP/fMiOCPxQ3eYy/tbGB0mB9jI3QZPNJU\n5lViurtVxyxQdYyIiIj4hj6JyjnOVMhMnTqVZ555hnXr1nkfGz9+PJ7PWI5k9erVVFdXX3BMd7fc\ncsslJWRqa2u9+/Pnz+epp54iKkpr/4qIiAyIoCCrb8yixZj7y2D9x7BjO0a3zweGywV5WyFvq7eJ\nOlnZEND7EqQiPmOzlrU6VXaKY3s6eXPOPTQEBRO7fTWZP/2x5u8QlzUuiCMNnXx8qBWADje8UFDP\nkwujCQ3Q6t0jRWdLJ0d3HPXuB0cHEzs11ocRiYiIyEhmmKb52aOGGKfTOfzeVB8rKysD6HXpsRtu\nuIGQkBDeeOMN3G43jY2NHDx4kDVr1vDRRx8xefJkVq5cOdAh93Dq1Cl27tzJ//zP/9DS0sLPfvYz\npkw5d317Gd4uNI9FhgrNYxkODhYW4thVTMyeTzHqe6/qNUNCYH6OlcwZPXpgAxS5ANM0KXyxkKbq\nJhpTo3gveDT+pptvbPs9iccOWmMiHPD0T6xlz2RIcXtMnsuvZ9+pTu+xKaP8+VpWJHbb8KuQ0OeK\nc5WvL6dic4V3P3VZKvEz430YkXwWzWMZDjSPZTjQPL54Dofjoj9Y6rYg6aG6uhqn08nUqVMBsNvt\nREZGkp6ezk9+8hNSUlLYv38/VVVVn3Gm/hUTE8M111zDL37xC5xOJz/4wQ98Go+IiMhI5g4Lo3Z+\nDjz9Y8yvPIqZdu5NEmeaqBvf/x7818+huMhaLkrEx+oO1dFU3YQt0MbkqwKZOy6ITsPOC1d/haYH\nHsGcMBGuuqorGeN2wc4icLt9G7hcFLvN4G/SHUQHd136lpzs5K3SZh9GJQPF1eaiqqDr2jXQEUjc\ntLgLPENERESkf2nJMumhe/+Y3kREWH1tQkJCznuO/uwhc7YxY8YwYcIE9u3bR319PZGRkZd1HhER\nEekDdj9Iz4D0DMzqo7DhE9iyBaOttccwY8+nsOdTzOhoq2JmwUI4/RlDZKAd2XwEgNDUUGz+BivS\nwqludFHhdPG70FT+7sls7O5ufR+LizF+/UvMqGi4ejHkLIQIh4+il4sRFmDj4QwHP8+to/N0HvjD\ngy2Mi/Ajc2yQb4OTfnV0+1Hc7V3J08R5idjsui9VREREfEcJGenhTP+Y3pb/cjqdFBcXM3ny5Av2\nbOnPHjK9OXnyJAA2mz5Yi4iIDBpjEmDFvXDr7Zj5W+GTjzGO9qywNWpr4fXXMN9+00rkLL4GJk5S\nE3UZMM4KJ84jTvyC/AiZZN1w5G83eDjDwTObatl3yqqkuG1qWNeTDDBj4zBOHIc3/nJ6/mbC4iUw\nabLm7yCV6PDn3pkR/KGowXts5c4GRofZSXRoKbrhyN3hpjK/0rsfEBZA/CwtVSYiIiK+pYSM9HCm\nQmbdunVkZ2djnL6g7Ozs5Mc//jEul4t77733gud44403+jSmw4cPExMTQ1hYWI/jHo+H559/ntra\nWmbOnOmt3hEREZFBJCjIqoJZtBhzfxms/xh27MDwdN2xbLhckJ8H+XmY4xKtL7az5lrPFelHFblW\nX4mEzAQ6/bt6jEQF23kow8EfChuYHhfQ80lzMmDWHMy9e2D9J7CrGGNbHmzLw5yTDl/9uwF8B3Ip\nMscGUdng4sODLQB0euCF7U6ezIkmPFA3dw031YXVuFq7qtvGzRuHzU//ziIiIuJbSshID2cSMm++\n+Sb79u0jMzOTlpYW8vLyqKqqYtmyZSxbtmxAY8rNzeW5555j1qxZJCQk4HA4qK2tZceOHVRVVRET\nE8N3v/vdAY1JRERELpFhQEqqtTmdmJs2wKYNGHV1PYdVHoGX/oT56v/C/AVWciZ+jG9ilmGttbaV\nuoN12PxtjM0cS3lVeY/HJ0cH8NSSGPztvVS82Gwwbbq1nTqFuXE9bN5oVcic0dAALc2av4PMF6aE\nUtXgouRkBwB1rR5+t8PJ/5kbid2m6qbhwuPyULm1qzrGP9ifMbP1uygiIiK+p4SMeNXU1FBfX8/c\nuXMJCwujoKCAVatWERoaypQpU3jssce4/vrrBzyu7OxsKisrKSoqorS0lKamJoKCgkhKSuKmm25i\nxYoVOBxat1tERGTIcDjgls/D0psxdxbD+o8xSvb2GGK0tcLHH8LHH2KmTYEl18DM2WC3+yhoGW6C\no4NJfzidlhMt+If0vmRV92TM3hPtJDr8CQs46w77mBi47XZrTpueruOffITxztuYU6ZaiUXN30HB\nZhg8OCeCZzfXcrLF+vfaX9vJa3uauHN6uI+jk75SU1xDR3OHd3/s3LHYA/T7JyIiIr6nhIx4nekf\nk52dzf333+/jaLpMmjSJJ5980tdhiIiISF+z22FOOsxJx6yphg3rYctmjNbWHsOM0hIoLcGMjIJF\nV8PCReCI9FHQMpyExYURFhf2mePyKlt5qbiRyTH+PJZ9nkoK/7OSOh4PZkCAlWws2av5O4iEBth4\nJDOSf99cR4fbBGDD4VbGOfyYnxjs4+jkSnncHo5sOeLd9wvyIyEjwYcRiYiIiHTRAqridWa5srS0\nNB9HIiIiIiNO/Bi46274ybOY9z1g9ZI5i1Ffh/HWG/CP34ZfPw+lJWCaPghWhrqWUy2XND5tVADh\ngTbKTnXyl71NF/ek22635vOdKzBHj+45fz94/zKilr6UEO7HA7N79qBcs7uRQ3Wd53mGDBXHdx+n\nvaHdu5+QkYBfoO5FFRERkcFBCRnxUkJGREREfC4w0Koi+N5TmP/wj5hz52H69fwizfC4MXYUYPz8\nWfjhU9bSZq2X9gW7jFytta0U/LqAnS/txPRcXEIvMsjOwxkO/GywvryVLUdaP/tJACEhcN0N8IN/\nwXzim5hz0gETuiccT57U/PWRWfGBLE0J8e67PPCb7U6cbW4fRiVXwvSYVORWePdt/jbGZo31YUQi\nIiIiPek2EfEqKSlhzJgx6sciIiIivmcYMHGStd1xF2buJtiwHqP2VM9hNdXw8irMv7wKc+fB1Usg\nMck3McuQcGTLETAhKDII4xKauE+I8mfF9HBe2tnIy7saGR3qx8To3nvPnMMwYMpUa6urg8huS5at\nWQ2leyF7ntVrppfqMOk/N6WEUtXgYtcxq99IQ7uH32x38n/nRfXoISRDw4m9J2ira/PuJ2QknLdH\nlIiIiIgvKCEjXmvXrvV1CCIiIiLnioiApTfDjUsxd++E9Z/Ank8xui1XZnR0wMYNsHED5sRJ1hfb\n6Znn9vWQEa3N2caxXcfAgMT5l574mJcYTGWDi/Xlrfxmh5Mnc6KICr7ERuFRUV1/d7uhox2jvR02\nroeN6zEnTYbF11j9lTR/+53NMLh/VgQ/y62jpsmqjCmvd7FmdyP3zgzHMJSUGSpM06Ric7fqGD8b\n47LH+TAiERERkXMpISMiIiIiQ4PNBjNnW9uJ45gb1kPuJozm5h7DjIMH4OABzDUvQ85CWLQYYmN9\nFLQMJpVbKzE9JrFXxRIcfXnN25dPDaO60UVNk5umDs+lJ2S6s9vhiW9iHj0KGz+BLVswDuyHA/sx\nw8Phb79iVdVIvwr2t/FIhoNnN9fR6rISvVsr2xjn8GPx+JDPeLYMFqf2naLlZNfyf/Gz4wkIC/Bh\nRCIiIiLnUkJGRERERIae2Di44074wm2Y2wtg/ccYhw72GGI0N8H772GuWwvTplvLmU2fYSV2ZMRp\nb2qnprgGgKQFl7+snd1m8FC6A5fHxBF0BcmY7hISYMW9cOvtmNvyrCqwo0chfkzXmJMnIDpG87ef\nxIX58eCcCJ7f5uRM7d1re5pICPcjJUZf6g92Z1fHGDaDcfNUHSMiIiKDjxIyIiIiIjJ0+fvDvPkw\nbz5mRQVs+ATyt1pLmJ1mmCbs3gW7d2FGx8Ciq2HBQlDfvBHlSO4RPC4Po9JGERoXekXnCg3omRQ5\n0ewiNrQPLq2CgqyKroVXw/FjXb1mPB74j38Hj2nN35yFEKH529euigvk81NCebPEqrrzmPC7HU6e\nzIkmOqSPkm/SL+oO1tFU0+TdHz1zNEERQT6MSERERKR3ur1KRERERIaHpCT40gPwk2cxV9yDGR9/\nzhCj9hTGG3+Bf/wHeOF5KC2Bbr1oZPjyD/bHHmAnadHlV8f05p19TfzL+lr2nmjvu5MaBozuNn/r\n6qzD3efvb34F+0o1f/vY9RNDSB8T6N1v6jB5YbuTDrd+zoPV2dUxl9sjSkRERGQgqEJGRERERIaX\nkBC45jpYci3mvlJr+aeiQgyP2zvE8LhhewFsL7ASN4uWwPwF1nNlWEpelMy4ueOwB/RtpYOJVUnx\n+x0NfGthFHF9USlztpgY+NG/Yu7dY83nXcUYBdugYBvmmAT4P1+3xsgVMwyDe2dGcKy5jqoGFwCV\nDS5e2tnAg7MjMAzDxxHK2ZwVThoqG7z7cdPiCI66vB5RIiIiIv1NCRkRERERGZ4MA9KmWFt9Pebm\njbBpA8bpagPvsJoaeGU15uuvQVaW1Wtm/ATfxCz9qq+TMQA3pYRS1eBi17EOXihw8o0FUQT798NC\nBDab1Qtp2nSoPYW5aSNs2ghtbRAV1TWu9pTVa0YuW6CfwSMZDp7dXEtTh1UZs+NoO4kRLVw/6cqW\nu5O+16M6BlXHiIiIyOCmhIyIiIiIDH+RkXDL52HpzZi7dsLG9bDnU6u/zGlGZwfkbobczZhJyXD1\nYsiaC4GBFzixDHYVmyvwC/YjflY8NnvfJ0pshsEDsyP42eY6qpvc/LGogUcyHdj6s5IiOga+cBvc\nsgxOnLCSNQANDfBP34Uz8zcjCwLUkP5yxITYeSjdwX/n1eM5/d/EmyXNJIT7cVWc/k8YLBoqG6gv\nr/fuj5oyitBYJc1ERERk8FIPGREREREZOex2mD0HHn/CWgLqc0sxw8LOGWZUHMb48x/h29+C1Svh\n6FEfBCtXqr2xncObDrP/vf20nmrtt9cJ8rPxSKaDEH+D3cc7eGdfc7+9Vg92P4gf07VfVQkBARiH\nDmL84ffwnW/BmtVQUz0w8QwzKTEB3D616/8HE3ixsIHjTS7fBSU9VOT2rI5JyunbHlEiIiIifU0J\nGREREREZmWJjYfkX4cfPYD70CObklHOGGG2tGJ98hPGjp+DZf4O8rdDZ6YNg5XIcyT2C6Tatu+bj\n+veu+dhQP/5mjgMDyK9so7XT06+v16upV8FPnsW8/8uYyeMxWlowPvoA4wf/BD9/FlxKJFyqq8cH\nM3dckHe/1WXyqwInLb7495UemmqaqN1f692PnhxN2OhzE+wiIiIig4mWLBMRERGRkc3fH7LnQvZc\nzKoqazmzrVsw2npWVBj7y2B/Geaa1TB/ASy6GkbH+yho+Sztje1UF1mVIckLkwfkNafEBvDgnAgm\nxwT0Tx+ZixEYCDmLIGcR5uFy2LgBtuWBn5+1AZgmnDoFo0b5JsYhxDAMVkwP51iTi/J6K6F1vNnN\n73Y4eTQrErutH5emkws6u3eMqmNERERkKFBCRkRERETkjLFj4e574bbbMbflw4ZPMI70/NLPaG6C\nD96HD97HTJsCixZby6D56aP1YHKmOiZ2amy/V8d0l54Q1GPf7TF996V98nhru+NOaG7qOr6/DOPf\nf4p51TS4egnMmGkt5ye98rcbPJzh4NnNddS3WZUxpSc7eXVPE3dND/dxdCNT8/FmTpae9O5Hjo8k\nYmyEDyMSERERuTh9ctWYlpYWDXwfuA0YA5wE3gH+qbS09JIWLE5LSwsCioFU4JrS0tJP+iJGERER\nEZGLFhRkVcAsXIRZfuh0lUE+RmdHj2FGaQmUlmCGh8OChbDwamspNPGp9oau6pikhb65a95jmrxV\n0szh+k4em+vjSorgYGs7o/oopr8/xp5PYc+nmI5IWLjI2qKifRfnIOYIsvOVTAf/saWODrd1bOPh\nVkaH2Vk8PsS3wY1A5RvKe+yrOkZERESGiiuuo09LSwsGPgEeBV4FHgR+BawANqelpUVd4in/CSsZ\nIyIiIiLiW4YBEybCAw/Cvz2LueJezISx5w5rbMRY+y489V34r59D4Q5wuwc+XgGgurC6qzomduCq\nY7pr7jDJr2qjrNaqpBhUrl4CP3kG884VmKPjMZz1GH99C777bfjTH3wd3aCV6PDn/lk9qzBe/bSJ\nvSfafRTRyNRY3cipfae8+45kB5HJkT6MSEREROTi9UWFzBPADOCx0tLS584cTEtLKwb+gpVg+cbF\nnCgtLW0G8CRQCMzpg9jkCnR0dLBy5UrWrl1LZWUlAElJSdx1113ceuutPo5OREREZICFhMA118KS\nazAPHoAN62H7NoxujdIN04TuVQc5C62qg+gYHwY+8iQvSiYoKoiIBN8tYRQeaOPhDAf/tbXOqqQI\ntbN4wiCqpAgNg+tugGuvx9xXavVOKtwBYd2aore2Qlurqma6mT0miM+nuXmrtBkAE/j9jga+sSCK\n+HAtWzgQyteX99gff/V4n8QhIiIicjn64hPjA0Az8Nuzjr8BVAJfSktL+2Zpaal5oZOkpaXZgBeA\nw1gVNs/3QWxymTo7O3n88ccpLCwkNTWV5cuX097ezvvvv8/TTz9NXFwc8+fP93WYfebWW2+lurr3\n1fWio6N57733BjgiERERGbQMAyZNtra7VmBu3QIb1mMcq+k5zFkP77yN+e5fYdp0azmzGTPAri9t\n+5thM4ifGe/rMJgQ5c+9MyP4Y1EDr+5pYlSonWlxgb4OqyfDgLQp1tbgBKPbIgpbc2HNapgxy1rC\nb9p0sF3xIgtD3g2TQqhpcrOtqg2AVpfJrwqcfCsnitAA/Xz6k/OIk7qDdd79qElROBIdPoxIRERE\n5NIYpnnBPMkFpaWlRQBOYGNpaenVvTz+KnA7MKm0tPTgZ5zr/wL/CVwPJAK/5zJ7yDidzl7fVFlZ\n2aWeasR6++23WbVqFddeey0PPfQQhmGteb1582aee+45brvtNu68804fR9l3vv71r9PS0sLSpUvP\neSwoKIhbbrnFB1GJiIjIkGGaBFcewVFcRHhZKYbH0+swV2gYzukzcM6YicuhJXb6mrvNWibOHjS4\nGtRvPRlIfm0Q/obJnUlNjArsfX4MNqM2rieqIN87nzvDw3HOmEXD9Jm4wkd2M3uXB/5SGUp1W1eC\ndWywi9vGNWP3Ybug4cw0TWrX19JxoquX16jrR+Ef5e/DqERERGQkSUlJ6fW4w+G46E+AV3p7XvLp\nPyvP83jF6T8nAudNyKSlpSUCTwN/Ki0t/TAtLe3BK4xLrtCHH35IYGAg9913nzcZA2C3Wxe3Yd2X\nMhgmQkJCuOOOO3wdhoiIiAxFhkFrYhKtiUmcaGkh4tNdOHYWEVBf32OYX3MTMXlbiM7bQkvyeJwz\nZ9M0aTLYB1cCYahq2tNES3kLkZmRBCcFf/YTBsjcmHbqO23sawxgw/Fgbk9s9nVIF+XkosXUpWee\nntWgqHAAACAASURBVM/FBDjrGZW7iZgtm6mdO59TOYt8HaLP+NngloQWXq4Io9FlVcVUtfrx8bFg\nrhvdiqGkTJ/rON7RIxkTNDZIyRgREREZcq40IXPmtqiW8zzefNa48/kl0AF88wrjuaDzZbBGojPV\nQr39TKqrqzl+/DiLFi1ixowZPR777W+tleluuummYfXz9Pe3PsgPp/c0ElxoHosMFZrHMhxoHvdi\n1iy4+96u3hxFhRhut/dhAwg9XE7o4XLMiAiYn2P1momN813MQ1ybs42aQzXggcmzJhMy6tL6tfT3\nPJ4wyeSNkiaWpoQSNtSWtZo9G+65D7O0BDZugKJCoqdNJ/rMz6r2lLX02QjsNRM71sXPcutod1uL\nNOxpCCBtbDTXTvRNv6Dh+v+xaZoUbS7qcWzazdMIjQ31UUTSn4brPJaRRfNYhgPN4/7h8wWs09LS\n7gZuAR4qLS094et4BPbu3QvAtGnTvMdM0+Tll1/mo48+Ijs7e1j+InZ0dPDuu+9SU1NDcHAwkydP\nZs6cOd6qIBEREZFLYrPBlKnW1tiIuSUXNm3AOH6sxzCjoQHWvgtr38WcMtXqNTNrNvjrzu9LcST3\nCKbHJPaq2EtOxgwEf7vBF6f1vE/NNM0e1eiDms0GU6+ytgYnBHf7Gb/9FmzZDNNnWPN3+owRU/WV\nEOHHg3Mi+HWBkzPrZr++t4m4UDvTRw+yfkFDWO3+WhqPNnr346bFKRkjIiIiQ9KVJmQaTv95vk9C\nYWeN6yEtLS0aq2/M+tLS0t9fYSz9asO/bjjvYyk3pTBmzhgAqgurKXv3/L1qrv5uV6udHb/bQVNN\nU6/j4mfHk3pzKgCN1Y0U/r7wvOec8zdzCB/Td2s4l5SUADB16lQKCgpYu3YtRUVFHD58mJSUFH74\nwx9e8PmrVq2isbHxgmO6S01NZcmSJVcScp84deoU3//+93scS0hI4KmnniI9Pd1HUYmIiMiwEB4O\nN34ObrjRqprZtAEKd2C4XD2GGSV7oWQvZliYVTWTsxDix/go6KGjzdlGTXENAMkLkz9jtO+5PSav\n7WkiyM/g81OG4FLAEWc1UTc9YLNh7NoJu3ZiOhyn5+8iiI31TYwDaProQG6dGsbre61rOxN4sbCB\nbyyIIiHC5/dADnmmaVK+vrzrgAHJiwb/77mIiIhIb6700+EhrM+b487z+JlPSefLUDwDRAI/SEtL\n636OqNN/xp4+fqK0tLT9CmOVi3SmQmbq1Kk888wzrFu3zvvY+PHj8ZynSe0Zq1evprq6+qJf75Zb\nbvF5QmbZsmXMnj2biRMnEhoaSlVVFWvWrOH111/n61//Or/97W9JTU31aYwiIiIyDBgGpE2xtqZG\nzK1brKqZmpqew5qaYN1aWLcWc3KKlZhJz4RA3XHfG291zLTBWR1ztsoGF5sqWvGYEBdmZ+64wdPv\n5rJ8+SFY/kVrPm/egHHsGLz3Drz3Dubd98KSa30dYb+7dkIwx5pcbDnSBkC72+RXBfV8Kyea8MAh\ntkTdIHOy5CTNx7v6LsXPjCc4eoj/zoiIiMiIZZim+dmjLiAtLa0ISAFiSktL27odtwNHgfbS0tKk\n8zy3nK6kzYVcU1pa+snFxuR0Oq/sTY0AF1oD8IYbbiAkJIQ33ngDt9tNY2MjBw8eZM2aNXz00UdM\nnjyZlStXDnTIPdx6662XlPRZunQpP/rRjy75df7zP/+Tl156icWLF/PMM89c8vOlf2ktSxkONI9l\nONA8vkKmCfvLrKqZ7QXnVM14hwUFQ1a21WsmKRl1Dbe0OdvY9sttmKZJ5iOZl52QGeh5vOlwKy/v\nbsRuwGNzI0mJCRiQ1+133vm8EXYUwD/+EyQkWI8d2G8tdXZmf5hxeUz+J6+e/bWd3mMTovx5fG4k\n/vaB+X0dbv8fmx6TghcKaD3VCoBhM8h6NIsgR5CPI5P+NNzmsYxMmscyHGgeXzyHw3HRH/b6on76\nt8B/AV/FWn7sjC8BcYB3Dai0tLQpWAmaQ6cPPQT0dsV0HfAE8F1g1+lNBkB1dTVOp5OMjAwA7HY7\nkZGRpKenk56ezn333UdZWRlVVVWMHTvWZ3GOHTuWgICLv2gdNWrUZb3O7bffzksvvURh4fmXjBMR\nERG5IoYBKanWdtfdmHlbraqZo0d7DmtrhY3rYeN6zHGJ1nJQ2XMhdGT3UfC4PEQmR+If4j8kqmPO\nWJgczLFmF58cauU32518MyeKuNBhsLxV9/l8z30Q1O2L8zWrMQ6XY06cZPWayRheVV9+NoOHMxw8\nu7mOky1uAA7VdbJqVyP3zwofOv2CBpHjnx73JmMAxswZo2SMiIiIDGl98Yn/eeA+4Nm0tLRkoACY\nBnwDK5HybLexe4FSYApAaWnpR72dMC0t7cy351supTJGrlz3/jG9iYiIACAk5PwXuwPRQ+a55567\npPGXKyrKWj2vra3tM0aKiIiI9IHQMLj2erjmOszyQ1aVQUE+RnvP1XuNyiPw8krMV9dAeoaVnElN\nG5FVMyExIcy4ZwYe94WX1R2Mlk8N42Szm93HO/jVNiffWBBFaMAwWt6qezLG5YKkJMyaaoyDB+Dg\nAcw1qyE725q/w6TqKzTAxlczHfx7bh1tLmvhhm1VbcSH2blx8shOnl4qj9vD4Y2Hvfs2PxuJOYk+\njEhERETkyl1xQqa0tLQzLS3tRuAHwB3A/wGOA78Bvl9aWtpypa8hA+dM/5gpU6ac85jT6aS4uJjJ\nkyd7ExW9GYo9ZM5n1y6rOMuX1UAiIiIyAhkGTJhobXeuwNy+DTZtxDh0sOcwlwvy8yA/DzM2zuo1\nM38BOCJ9FLjv2OxDL5FhMwwenBPBz7fUU9Xg4s2SJu6ZGeHrsPqHnx/c9wDccRfm9gLYvNFKzGxY\nDxvWY371UZiT4eso+0R8uB8PpUfwy3wnZ9bSfqu0mdFhfsyKHz4VQf3t2M5jtNV33RiXkJFAYJh+\nfiIiIjK09UlNfGlpaQNWRcw3PmPcRd3yVFpa+iLw4hUHJpfsTIXMunXryM7O9pbVd3Z28uMf/xiX\ny8W99957wXO88cYb/R5nXzp06BDx8fEEB/dsDHn06FGefdYq8Fq6dKkvQhMRERGxqgxyFkHOIsyj\nVbB5E2zdgtHc1GOYceI4vP4a5puvw/QZMD8HZsy0vggfhtrq2zjwwQGScpIIHxPu63AuW6CfVVHx\nVmkTt00N83U4/S8oyEoc5izErKqCzRthZxFcNb1rzOaNEBkFU68C29BLtAFMjQ3kjmlh/O+nXb+n\nfyh08vi8KCZE+fswsqHB4/JweFNXdYw9wE7ifFXHiIiIyNA3PK/O5LKdSci8+eab7Nu3j8zMTFpa\nWsjLy6Oqqoply5axbNkyH0fZt9atW8fKlSuZM2cO8fHxhISEUFVVxebNm2lvbycnJ4cvfelLvg5T\nREREBBLGwp0r4LbbMYuLrCqDvXt6DDE8HthZDDuLMcPDYe48mL8QhlnFb0VuBaf2ncLub2fKredW\ndw8lUcF2Hpjt8HUYA2/sWLjrbmtOn1murKMdXlmD0daKGRUNC3Ksqq9Rsb6N9TJcnRxMTaObTRVW\nD5RODzy/rZ5vLIhidJguxS+kekc1HY0d3v2xWWPxD1EiS0RERIY+fQoUr5qaGurr65k7dy5hYWEU\nFBSwatUqQkNDmTJlCo899hjXX3+9r8Psc5mZmVRUVFBaWkpxcTGtra2Eh4cza9YsbrrpJm6++WY1\n4BQREZHBxd8fMrMgMwvz5AnI3QxbNmPU1fUYZjQ2wgfr4IN1mMnjrcqEzGy4QD/AoaC1vpVjO4+B\nAUkLk3wdTp9yeUzW7G7kqtgAZo8ZIc3Lu3/Wdnvgxs9h5m7COHkS/voW/PUtzClTYcFCmD0HAgJ8\nF+slMAyDL04Lo7bVzZ4TVnKhpdPkuXwrKeMIsvs4wsHJ3eGmIrfCu+8X5Me4ueN8GJGIiIhI31FC\nRrzO9I/Jzs7m/vvv93E0Ayc9PZ309HRfhyEiIiJyeUbFwhdug2VfwPx0N2zZDMVFGG53j2HG4XI4\nXI75ysswO91KzqSmDckloY7kHsH0mMRNjyMkZmgnl85WWN3OliNtFFS1ER1sJylyhFUFBAfDzctg\n6c2YZfus5csKd2CU7IWSvZjfewoSh04Szm4zeCjdwX9traPC6QKgttXDL7c5+fq8SIL9h97vX387\nuv0onS2d3v1xc8fhF6SvLkRERGR40Kca8TqzXFlaWpqPIxERERGRS2azWT1jZsyEpkbMvDzI3YRR\nVdljmNHZCdvyYFseZnSMtRzU/BwYNcpHgV+a1rpu1TE5Q+eL+YuVmRDIvpNBbK1s41cFTr6xIIqY\nkBFYSWGzQdoUa2tpwdyWB4cO9kzG/OlFaxm/7HkQPnj7CAX6GXwtK5Kf59ZxosVKlFY1uPjNdieP\nZkfiZ1M1/hmuNhdHthzx7vuH+DM2a3gttygiIiIjmxIy4qWEjIiIiMgwERYO110P116HeaQCNm+C\nbXkYLS09hhm1p7qWhEqbYvXrmJ0OgYE+CvyzlX9SjukxGT1j9LCrjgFrmasVM8I51eKmrLaT5/Lr\neWJ+FOGBI7iSIiQEFl9jbWdUH8XYvAkA89X/tRKR8xfAjBlgH3yXueGBNh7NdvDz3DoaO0wA9p3q\n5KXiBu6fHYFNSyQDUJlfiavN5d1PXJCIPWAEJiRFRERk2BrBn+rlbCUlJYwZMwaHYwQ2FBUREREZ\njgwDkpLhnvvg3/4d8+GvYF41DbOXL3+N0hKM3/8W/uEb8MffQ9k+8Hh8EPT5tTe2c2r/KWx+NpIX\nJ/s6nH7jZzN4JNPB2Ag/jje7eX5bPe2uwfVv4XOjYjEf+RrmjJlgejCKCzGe/x/4zpPwysvQ1Ojr\nCM8RG+rH17IiCbB3/f4VHG3nzZJmH0Y1eHS2dFKVX+XdDwgLYMycMT6MSERERKTvDb5bh8Rn1q5d\n6+sQRERERKS/+PtDZra11Z7C3LoFcjdjnDzRY5jR3g65myF3M+aoUTB3PsxbALGxPgq8S2B4IFlf\nzaLxaCNBEcO74X2wv41Hs6yKigqni3f2NbP8qsG7LNeA8/eHjExrc9ZbS/Rt2YxRfRRz43r4/K1d\nYzs7rfGDQFKkP3+bHsGvCpx4rEIZPjzYgiPIxjUThl/F16U4svUI7o6u3ldJC5Ow+6s6RkRERIYX\nJWREREREREaa6JiejdNzN0PhdoyOjh7DjJMnu5Y0S0m1EjMZmRDku2RIYEQggRGDd0m1vuQIsvPY\n3EjeLWvh5tQwX4czeDki4cbPwQ03YlYchuqjXXO0sxO+922YOMlakm/adJ8vaXZVXCD3zgznz8Vd\nVTyv7WkiItBGRsLwTjSeT0dTB0cLjnr3Ax2BxM+K92FEIiIiIv1DCRkRERERkZGqe+P0e+7D3FEA\nW3IxyvadM9Qo2wdl+zBXr4T0dCs5kzbFOkc/c3e6OVlykrhpcRgjrAF6bKgfD8yO8O57TBMDq9eM\nnMUwIHm8tZ1RfggaGzGKCqGoEDM8HObOs+bvuERfRcrcccE42zy8Vdq1XNmfixsID7CROirAZ3H5\nSkVuBZ5uy/IlL0rGZtcK6yIiIjL8KCEjIiIiIiJWRcGChbBgIebJE7B1C2zdcu6SZp0dkLcV8rZi\nRkV1LWkW3393s1flV1G+vpy6g3VMuXVKv73OYNfpNvljUQNjI/xYmhLq63CGhpRU+PEzmHlbrCXN\namrgg3XwwTrMcYnw99+EUN9UH90wKYT6Ng8bD7cC4PLAC9udPDE/irERI+dSva2hjerCau9+cHQw\no6eP9mFEIiIiIv1n5HzKExERERGRizMqFpZ9AW75POb+MtiSCzsKMNraegwz6urgvXfgvXcwx0+w\nKg8ysyG873qddDR1UJFbATDilzA6WNdJcU07RTXthAfayEkK9nVIQ0NkJHzuJrhxKWb5IWs+F+SD\nxwMh3RJbu3dBaioEDMySeIZh8MVpYTS0eyiuaQegzWXyy/x6vpETRXTwyOifUrGpAtNteveTr04e\ncZVwIiIiMnIoISMiIiIiIr0zDKvCICUV7r4Hs7AQtuZCyV4M0+w5tPwQlB/CfGUNTJtmVc7MnAUB\nV7b8UvmGcjydHmJSY4gcH3lF5xrq0kYFcNf0cF7e3cjLuxoJ9TeYPWZk9hy5LIYBEyZa250roK7W\nOgZw/BjGf/8nZlAQpGdY8zcltd+X5LMZBg/MjuB/8uo5WNcJgLPdwy/z63lifhShAcN72a7WulZq\nimu8+6GxocROjfVhRCIiIiL9SwkZERERERH5bAGBVgXM3HlQW4uZv9XqN3Ospscww+OGXTth107M\noODTX27Pu6wvt5uONVFTVINhM5hwzYS+fDdD1sLkYBo7PLyzr5k/FDUQGmAjJWbk9Ry5Yv7+ENdt\nWazmZswJEzEOHYTczZC7GTM6GrLnwbz5ED+m30IJsBt8NcvBz3PrqGlyA1DT5ObXBU4emxtJgH34\nVosc+ugQdMvtJi9OVn8kERERGdaG9+02IiIiIiLS96KjYenN8IN/xvz2dzEXX4PZSx8Oo60VI3cT\nxs+fhe99B/7yKhw9elEvYZomBz84CEBCRgIhMSF9+haGsqWTQ1iUHIzLA78ucFLp7PR1SEPfhInw\n7e9i/uBfMG9ehhkdg1Fbi/HeO/D0P0N7e7++fIi/jUezI4kM6rpEP1jXyR8KnXjOqkYbLmoP1nKy\n9KR3PzwhnJiUGB9GJCIiItL/VCEjIiIiIiKXp/sSUHetwPx0N2zdCjuLMFyunkPramHtu7D2Xcyk\nJKvyIGsuOBy9nrruUB31h+vxC/IjaWHSQLybIeNM75GmDg+F1e28f6CFh9J7/znKJYqPhy/cBsu+\nYPVPytsCNjsEnu4r43LB738Ds+fAzNldx/tAdLCdR7Mi+Y8tdbS6rCTMzmMdvLK7ibumhw2ryhGP\n28OB9w/0ODbphknD6j2KiIiI9EYJGRERERERuXJ2P+sL6pmzobUFc8d22LoFo2zfOUONigqoqMB8\n9RWYehVkZcPsdAjualIfmRzJ5M9NxrAb+Af7D+Q7GRJshsH9syJICG/huomqHupzNhukpllbd7t3\nYWwvgO0FmIGBMGu2lVycehXY7Vf8sgkRfjyS6eC5/HpcHuvYpopWgvwNvpAWOmwSFlX5VbTWtnr3\nR88aTcTYCB9GJCIiIjIwlJAREREREZG+FRwCOYsgZxHmqVOwLc9KztRU9xhmmCbs+RT2fIr50p9g\n5iyramb6DGz+/iRkJPjoDQwN/naDpSmh3n23x8TlMQn008rU/WbyZMy774W8rVa/mfw8yM/DDA+H\njCy4406rP80VSIkJ4P5ZEbxY2OBtr/LBgRb8bHBL6rlLAw417Y3tHN502LtvD7QzYYl6RImIiMjI\noISMiIiIiIj0n5gYq9/M527CrDgMeVthWx5GY2OPYYbLBTu2w47tmEHBkJ5uJWfSpljVCnJBHW6T\n3+9w0u4yeTQ7Ev9h3Ajep8LCYcm1sORazBPHvQkZ41gNZsle8Ot2iX3qlDX/L0N6QhBNHR5e+bTJ\ne+y9shbsRs8k3FB08MODeDo93v3xV48nIDTAhxGJiIiIDBwlZEREREREpP8ZBiSPt7Y77sTcu8eq\nnCkqxDirYbrR1gq5myF3M2aEAzKzrGXNxk+wziPnaOrwUOF00dDu4Q9FDTyUHoFNP6v+FRsHt3we\nbl5mJRubm7vm58kTGP/vHzGTkiF7rjV/HZGXdPqrx4fgNuG1PV1Jmb/ua8ZugxsmDc2kTP3hek7s\nOeHdD40LVSWciIiIjChKyIiIiIiIyMCy22H6DGvraMfcWQz5+fDpLgy3u8dQo8EJH30AH32AGRtr\nVc1kZcMYfYnbXXSwnceyrYbwxTXtrNzZyL0zw5WUGQhnko3dHa3CDArCqDgMFYetfkmpaZCZDXPS\nIezilh67ZkIIbo/JGyXN3mNvljRjNwyuHWK9gzxuD/vf39/j2OQbJ2PYNEdFRERk5FBCRs6ro6OD\nlStXsnbtWiorKwFISkrirrvu4tZbb/VxdCIiIiIyLAQEWl9SZ2ZTsmo7tl2FjDOqCKmttHrMdGOc\nOAHvvA3vvI05LtGqnMnIgthYHwU/uCRE+PHVLKshfF5lG4CSMr4yczb89GeYu3Zay5p9ugujtARK\nS6zkzDM/u+heM9dPCsXtgbf3dSVl/rK3CT+bVUUzVFRvr6blRIt3P25aHI4khw8jEhERERl4SshI\nrzo7O3n88ccpLCwkNTWV5cuX097ezvvvv8/TTz9NXFwc8+fPH7B4PvzwQ3bs2MG+ffvYv38/zc3N\nLF26lB/96EcDFsNAG4nvWUREREau+vJ6jh9qxhY1heSv3Q+uFszt26z+HBWHzxlvVB6ByiPw+muY\nyeOtxExmJkRfXs+O4WJSdABfy4rk+W1WUsYE7lNSxjcCAiAj09paWjCLCqEgH0JCu5IxLhf88fcw\naw7MmGElKHvxuZRQ3KbJu2VdCY1XPm3CbjPISQoeiHdzRTqaOijfWO7dtwfYmXDtBN8FJCIiIuIj\nSshIr1avXk1hYSHLly/nO9/5DsbpC7g5c+bw1FNPUVxcPKAJmd/97neUlZUREhJCXFwczc3Nn/2k\nIW4kvmcREREZmUyPyYEPDwCQOD+RwPBAIBCuvxGuvxGzpsbqN7MtH+P4sXOebxwuh8Pl8NormBMn\nWcmZjEyIvLSeHcNFSkxXUqap3YPbAza7r6Ma4UJCYEGOtXm6Gtqzdw9Gfh7k52EGBlqVNVlZMHXa\nORU0N6WE4vLAugNdSZnVuxqxGTA/cXAnZQ59fAh3e9dyhMmLkk//nouIiIiMLErISK9ee+01goKC\neOKJJ7zJGAC73bqSczgGtrT87//+74mLiyMxMZEdO3bw6KOPDujr+8JIfM8iIiIyMh3bfYzmY80E\nhAcwbu64cwfEx8Pnb4VlX7Cap2/Lg+0FGHV15ww1Dh6Agwcw//dlmJxiJWbSMyBiZC2NlBITwBPz\no4gP88PfruqYQcVm6/p7cjLmnSugYBvGoYOnE495mCEhMDsd7r7HWzVjGAafTwvF7TH56FCr9xSr\ndjbiZxhkjQsa6HdyUZyVTo7t6kqkhsSEkJCpHlAiIiIyMikhI+eorq6mqqqKRYsWERzc806rDz/8\nEIDMzMwBjam/X8/lcvHKK6/w9ttvU1FRgcPh4Nprr+Xxxx/H7XZz2223kZWVxT//8z/3axzdDfTP\nWERERMRXQmNDiRgXwZj0Mdj9L1DKcaZ5evJ4uP1OzIMHYPs22L4do8HZc6hpQtk+KNuH+fKq0w3V\ns043VA/v1/czWCQ6uiosOt0mGw+3smRCsJYvG0wiHHDdDXDdDZgnTljzeVs+RlUl5oH94B/QNfbg\nAYzk8dw2NQy3CevLraSMCfypuAGbDSJ88y7Oy/SYHFh7oMexSTdOwma3necZIiIiIsObEjIX699/\n6usILuyb/9Bnp9q7dy8A06ZN8x4zTZOXX36Zjz76iOzsbFJSUvrs9XzN6XTy9a9/nT179rBw4ULm\nzZvHpk2bWL16NXFxcRiGgdPp5Ctf+YqvQxUREREZlsLHhDPr/lmX9iSbzaqAmZwCd96Nub8MCrZB\n4XaMxsYeQw3ThDMN1Ve9BGlTrKqZWXMgYrB9hd0//lTcQGF1O5UNnXxpVoSSMoNRbCwsvRmW3ox5\n9Cg0NlhJSIBTpzB++mPMsDCM2encMScDd+I4Nh1pB6ykzB+LGlga78fkcJfv3sNZqguraTrW5N0f\nNWUUUROifBiRiIiIiG8pIXORjLJ9vg7hgsw+PFdJSQkAU6dOpaCggLVr11JUVMThw4dJSUnhhz/8\n4QWfv2rVKhrPugi+kNTUVJYsWXIlIV+R733ve+zZs4dvfvObrFixAoD777+fZcuWkZuby6FDh1i2\nbBmJiYnnPcdQe88iIiIig4HH7fHeKW9cSYLAZrMqYFLTYMU9mPtKreRM0Q6Ms/rwGR4P7N0De/dg\nrvwzpKRCegZ2RxTusLAreTuD2uLxwew53sG2qnZMs4H7ZyspM6glJADdlvWqq8UcHY9xrAY2bcDY\ntIE7Q8NwL7ifLUHWdYrHhPeqQ7jZaGEw3D7X2dJJ+fpy777N38bE6yb6LiARERGRQUAJGTnHmQqZ\nqVOn8swzz7Bu3TrvY+PHj8fTvQllL1avXk11dfVFv94tt9zis+REfn4++fn5zJ49m7vuust7PDIy\nkjFjxlBQUEBAQAAPP/zwBc8zlN6ziIiIyGCx76/7cHe4mXT9JIIi+6j/hd0OU6+ytnvvw9y710rO\nFBditLb2GGqYJuwrhX2lTARax46DBQutZc2io/smnkFiUnQAf5ft4Ll8JwVH24EGvjQrArtNSZkh\nYXIK/OCfMY9WwfYC2FGAvaaGe9Y9j3vOF8kfNwcADwbvHA1h3Nh2psUF+jTkQ58cwtXWVa2TtCCJ\nIMfg7HMjIiIiMlCUkLlIZkqqr0MYMCUlJYwZM4bIyEh+9KMf8eSTT3Lw4EHWrFnDunXrOHToECtX\nrjzv8994440BjPbKvPPOOwDcc88959yVGRBgrde8fPlyRo8efcHzDKX3LCIiIjIYNB5t5Pju4xh2\no//umrf7wfQZ1tbZibn3U9ixHYqLzk3OACFVlfDKanhlNeaEidayZnMyYNSo/olvgE08Kylj0sD9\nSsoMHYYBY8dZ2+dvxTx6FGNHAfe11uFJCDydaLOSMr/Jr+Ur8Y1MnT0R/Ab+sr/xaCM1RTXe/aCo\nIMbNHTfgcYiIiIgMNkrIXKw+7NEymFVXV+N0OsnIyADAbrcTGRlJeno66enp3HfffZSVlVFVVcXY\nsWN9HO2VKywsxM/Pj/nz5/f6eFBQEA8++ODABiUiIiIyzHncHsrWlgEwNmsswVHB/f+i/v4wc7a1\nuVyYJXtPJ2cKz1nWDMA4dBAOHYRXX8FMHm8lZ2anw/9n777D4yrPhP9/zxTNaDTSqPdiyZJGDwxl\n6wAAIABJREFUltwrxjbFGEIxGBNCAgmbsll2k1Cyyab8su9LINm87L5pu5uQcmWTZa83wYAJEAIE\n42BjMAaMe5E0Vu9do1EZaer5/XFGGsmSbRlb1ffnup5rNOc855nn2MfyzLnnfu4LfFFnttOCMrH8\n8sMeDjd7yLYNsjnPMtPTEhdLUSAjAzIy0AGfCaoEVK1OEIBf0fOb5igeeO0/KcqI1rK+ShaDaeqz\nZlRVpfKNyjHb8m/KR2fQTflrCyGEEELMdhKQEWOMrh8zkZhQ0VOL5dwf2uZKPZWhoSFaW1vJzMzE\nbB6bOt/U1ERdXR1LliwhISHhgmPNlXMWQgghhJgNGt5roL+lH1OMiewN2dM/AcOozJnAZ1DPnMG1\ndw/WijMYBt3juit1tVBXCy/+ETUtHZav0Fp2Trjo+hySF2/ky2tjeavWzaacaQiGiSmn1yl8dnkM\nrt5mqgeMAPj0Rn614lN89shOVn74S1SjER77F5jE55tL0Xq8lb7m8GejhIIE4hfOryUAhRBCCCE+\nKgnIiDGG68cUFRWN2+dyuTh+/Dj5+fnExcWdc4y5Uk/F4/GgquqEBWR/+tOf4vV6MUwyvX+unLMQ\nQgghxEzrb+unfn89AIW3FWIwzfBHEr0BFhXTbjDSfsONFKBqmTNHj6D0usZ1V1qaoaUZ/vIqalw8\nLF8Oy1ZAQaFWv2aOyI0zkhtnG3nuC6joFGT5sjlMr1O4Jd3Nq80WakNBmYDOwH+v/hR9zdlcU//h\n2NpIzz0DqWmwbDnYbOcY9eL4Bn3U7q0dea7oFfK2TNGShEIIIYQQc5AEZMQYwxkyu3fvZu3atSPB\nCp/PxxNPPIHf7+e+++477xizpZ7K448/zquvvsqjjz7K1q1bx+2PiYnBYrHQ2NhIRUUFBQUFADz/\n/PO8/fbbAJPOepkt5yyEEEIIMZsF/UEcLztQgyrpq9KJyz33l3xmhE4HBQVgL4JP3otaXRUKzhxG\ncTrHdVec3bB3D+zdgxoVBUuWaZkzxcUQMbMF1S+GL6Dym8MuzAYty0KCMnOXXoFb09y8N5A8snyZ\nisLO9A30bdzMrWj1knA6Ufb8Vdu/4/ewMD+U+bXykmom1b1dh2/QN/I8a33W9CxJKIQQQggxR0hA\nRowxHJB5+eWXOXPmDKtXr8btdvPBBx/Q1NTE1q1bJwxuTLW33nqLffv2AdDV1QXAyZMnefzxxwGI\njY3lkUceGXNMMBgEtDo4E1EUhdtuu42dO3fy4IMPcsMNN9DV1cVbb73FNddcw8DAAIcPH+aJJ55g\n27ZtFBcXT9XpTeijnLMQQgghxKymQHxBPMFgkNzrc2d6Nuen00F+gdbuvge1rhaOHYVjR1HaWsd1\nVwYG4P0D8P4BVGMEFJfAihWwZClEWad//hehYyBAjdPHkF8lqPby2eUxGPUSlJmrDDr43IoYrBH9\nvFM3OLL99WoP/f5+PrHYii4yEvVvPgdHj0BZKUplBVRWwPPPoWZlw+e/COnpF/W6/W39NB9pHnlu\nspnIWp91uU5LCCGEEGJekICMGNHa2kpPTw/r1q3DarVy6NAhduzYQVRUFEVFRXzlK19hy5YtMzK3\nM2fO8Oqrr47Z1tTURFNTEwBpaWnjghNVVVVERUWxYcOGc4778MMPExERwe7du3nxxReJiYnh3nvv\n5cEHH8ThcPDYY4/x4osvsnnz5st/UhfwUc5ZCCGEEGI20+l15F6XS87GnLlV4Fung9w8rW3/OGpr\nixacOXpEqy9zFsXnheNH4fhRVJ1OW85s6TJYuhySkqZ//heQHmPgK2tjefJgD8dbPfziYA9/t9qG\nxTiH/o7EGDpF4RMlVqwROv5SMTCyfX/9IP3eIH+zPAbj1Rvh6o0wNIR66iQcOwInT0BzE8TFhgf7\n4H2IiYHCQm2JvwmoqkrlrkpQw9sWblmI3jh3lvETQgghhJgOiqqqF+41x7hcrvl3UpdZRUUFwMgy\nXQB79+7lW9/6Fg899BD333//TE3tsujr6+PGG2/kvvvu4+GHH57p6YgpMtF1LMRcI9exmA/kOhYX\nEvAFCPqCGC3GmZ7KOX3k69jZDcePaQGaMw6UUJb2uajp6drSZsuWw4JcLdgzSzT2+vjVQRcuT5BU\nq54vrY0lPlJuqM8lE13H79S52Xmqf3SshMIEI19cZSPy7KCbzwcN9ZC3UHseDMI3v4bS348aGQkl\nS7Rrt2QxWCwjh7WdasPxsmPkeVxeHIs/uXjCep1CXIi8rxDzgVzHYj6Q63jybDbbpN/0SIaMGDG8\nXJndbp/hmVy6Y8eOYTAYLljvRgghhBBCTL3at2rpKO3Avs1O3IJZVjfmUsXFw3WbtTbQj3oylGlw\n+rSWKXMWpbkZmpth119Qo6O1Jc2WLINFxWA2z8AJhGXGGPnahjh+ebCH1v4AP37XydeujiPBIkGZ\nuWxTjgVrhI7/OdpLIBSVOdPl42fv9/APa2OJMY0KyhiN4WAMgNcLG69BPXFMu3YPHYRDB1F1ei1j\n5o478SRlUr27euQQRaew8MaFEowRQgghhJiABGTEiPkUkNm0aRP79++f6WkIIYQQQlzxemp7aPqw\nCUWnYDDN848fUVa4ar3WvB7U0lItc+bUCZT+/nHdlb4+OPAuHHgX1WAAe5GWfbBkqRbomQHxkXr+\n8eo4fnPIhdmgEGuePRk84qNbkWbGYtTxm0MuPKGoTEOvn38/4OTL62JJPFfQzWyGO++CO+9C7WjX\nssGOH4PKCpTyMoLb7qL85XJ8g76RQzLXZmBJsEw8nhBCCCHEFW6efyISF6O8vJy0tDRsNttMT0UI\nIYQQQswDfo8fx6vaMkbZG7KJToue4RlNowgTLF+htWAQtaYaThyDEydQWprHdVf8fjh9SmuAmp2t\nZc4sWQrZOdO6tJnFqOPLa2NRAb1Oy3IIBNWRn8XcZE+M4OH1sfzyYA/9Xi0o0+EO8NMDTr68NpaM\nmAvcHkhKhi03aa2/H7XsNA1NOlx1rpEuUV4n2bv+DE0lsHjprMj8EkIIIYSYTSQgI0bs2rVrpqcg\nhBBCCCHmkeo3q/G4PFhTrWRdnTXT05k5Oh0szNfa9ru1TIMTx7VWUYESDIw7RKmvh/p6ePXP2tJm\nJYth8RJYVAJRUVM+ZaM+HHzxBVR+/kEPxUkR3JRvkaWo5rBsm5F/XB/Hkwd76B7U6h31eoL8x3tO\nHlhtIz8hYnIDWa24Uouo/f3xkU06JUiR7xgGlxPe3Q/v7tcyvwoK4YYbtetXCCGEEOIKJwEZIYQQ\nQgghxGXXXdVN67FWFL2C/XY7Or0sfTUiKVm7QX3DjeB2o54+pQVnTp9EcbvHdVf6+uD99+D991B1\nOq3Gx+IlWsvIhCkOkJzp8lLj9FHt9OEcCvCJkmjJlpnDkq0Gvna1FpRp6dOCgYN+lScP9vD5FTaW\nppouOIZv0Ef5n8pBDW9beLOdqOXXojY1wskTWqupRikrRV13VbhjUxP090F+PujlloQQQgghrizy\n7kcIIYQQQghxWQX9Qc68dgaABdcuICpp6jM65iyLBdas1VrAj1pZOZI9o3S0j+uuBINQWaG1l15A\njY0LB2eKFk3J8lAlySb+dpWN/znq4t36IXqGgnx+hQ2TQYIyc5XNrOer6+P49Ycuqp1a/Rd/EP7r\nsIt7l0azPivynMeqqkrFaxV4ej0j2xKLEkldnqoFBzOztHbLbdDfpwUcSxaHB3hrD8o7+1DNkVBc\nAkuWQMkSiImZsvMVQgghhJgtJCAjhBBCCCGEuKx0Bh32rXZaj7WSuTZzpqczd+gNYC/S2t33oLa3\nwamTWqs4o9WZOYvS44T9b8P+t1H1em15qMVLtBvgqWmXLXtmWaqJB9fF8etDPZxu9/Kf7zv5hzWx\nRJsk82mushh1fGVdLP99xMWpdi+gJbw8faIP11CQj51jebqWoy10OjpHnptsJgpvLZx4KTtrNKxb\nP3ZbYiJqahpKawscOQRHDqEqilYracNGuOa6y3iWQgghhBCziwRkhBBCCCGEEJddXG4ccblxMz2N\nuUtRICVVazfcCENDqI7yUIDmBIrTOf6QQADKy7T2/HOocfFQXAzFi7XsmUusPZMXb+RrV8fxy4M9\n1Lv8/ORAN/+4Po4Ys/6SxhUzJ0Kv8MVVNnac7OODxqGR7a+eGaCp189nlkVjMoSDbgPtA1T/tTo8\ngAKLti3CYL6IWwsfuwU+dgtqZwecPAknj8MZB0pdLWpRUbhfdzeUlWpZNHHyu0QIIYQQ88NlCcjY\n7fZ44LvAnUAa0Am8Bvxvh8PRMonjN4aOXwuYgQbgj8D3HQ5H/+WYoxBCCCGEEGJqeQe8uLvcxGbH\nzvRU5h+zGZYt15qqojY3w6kTWoCmqlJbyuwsirM7XFxdUWBBrnZzu2Qx5CwA/cUHUlJC9Ud+dchF\nokWPVTJk5jy9TuHTS6OJjtDx1+pwDaNjrR7a+v383WobSVEGAr4AZS+VEfSHr7UF1y4gJvMjLjWW\nmATXb9aa14NaUQEJieH9x4+iPLsDADUjQwssliyGhflgNH601xRCCCGEmGGXHJCx2+2RwFtAEfBz\n4BBQAPwTsNlut69yOBzjv74VPv7TwO8BB1pQphfYCnwT2GS32zc6HI7xny6EEEIIIYQQs4aqqlT8\npYKuM10U3FJA2oq0mZ7S/KUokJGhtY/dAm43almpFqA5fQqlt3f8IaoKNdVae/XPqBYL2BeFAjQl\nEJ8w6ZePMet55KpYdIqCLrRMVSCootdJTZm5SlEUti2yEhep44+l/QRVbXtLf4Af7nfyN8tjiDhc\nh7szHLCJXRBL1vqsyzOBCNPYOjMAiUmoS5eDowylqQmammD3LlSTCZYsgy8+cHleWwghhBBiGl2O\nDJmvAkuArzgcjl8Mb7Tb7ceBF4H/DXxtogPtdrsJ+CVaRsw6h8PhCu36nd1ufxEt4+ZmtGwbIYQQ\nQgghxCzVfrqdrjNd6CP0xOXJ8kLTymKBVau1FgyiNjZA6Wk4fQqqqlCCgXGHKG43HD2sNUBNTdUy\nEBYVa3VozObzvuToZaw8fpWff+BkSYqJLQstI0EaMfdcs8BCeoyB3x120efVojKDfpVX/9rA+rrW\nkX5GixH7HfaJ68ZcLkuWas3vR62q1K7n0ydRmppQPeHl1fD54PnnQvWX7BBlnbo5CSGEEEJcossR\nkPkbYAD47Vnb/wQ0Ap+x2+1fdzgc6gTHpgIvAB+MCsYMew0tILMUCcgIIYQQQggxa3l6PVTuqgRg\n4Y0LMdvOfzNfTCGdTiuOnp0DN98arj1TehpKT6N0tE94mNLaCq2tsOevqDo95OVpdWeKFkFuLujP\n/dHxdLuH2h4/tT1+apw+7l8eg8UoS5nNVfnxEXxzUzy/PeyitsePxetlVUPrmD722+2YrKbpmZDB\nEAq2FMFdd6M6nTA0GN5fVYmyby/s26stzZedowUWFxVD3kJZ3kwIIYQQs4qiqhPFSSbHbrfHAC7g\nHYfDcc0E+/8I3AUsdDgc1Wfvv8DY/wT8kLMybybD5XJNeFIVFRUXM4wQQgghhBDiAlRVxfmOE0+b\nB1OaibgNcVP7rXlxSYw9PVhqa4iqrSGyoQ6913vBY4LGCNxZWbizc3BnL8CbmKgtmzZKTb+BN1oj\n8QR1xBiC3JLuJsU8PjNHzB3+IOxrNZNytIUEdzgjpS4llsKrooiPmB0rixtcLmLKTmOpqyWyuWlM\nPaWgwUjN3z5AwCpZM0IIIYS4dAUFBRNut9lsk/4AdKkZMjmhx8Zz7K8PPeYBkw7I2O32COALgBt4\n6SPPTgghhBBCCDGlBmsG8bR5UIwKtlU2CcbMcr7YWFzLV+BavgICASJbmkcCNKa2Vib629P5vFir\nq7BWVwHgt1hCwZkc3DkL8MfYyLX6uTenn9eaLbR7DOxsiOLapCEW27xnx27EHGHQwZqudgZGBWO6\nI818mJzC0Xq4KdXNQqt/Bmeo8dtsdF91Nd1XXY3i9RLZ1EBUXS2WuloUn49AVNRI34znnyVgseDO\nWYA7ewH+6OgZnLkQQgghrkSXGpAZfvfiPsf+gbP6XZDdbtcBvwEWAV93OBzNH316Y50rgnUlGs4W\nkj8TMZfJdSzmA7mOxXwg1/GVSw2qHH5Lq0Fiv9VOcknyDM/oo7tir+OiovDP/X2oDgeUl0JZGUpn\nx4SHGNxuYsrLiCkvA0BNSoKiYrDbWboqiRcadeyvH2RveyTFuWkUJUZMx5kILu917Kxx0lLeMvLc\nr9Pxfk46qk7BF4RXm6O4Od/CLYVRs6tuUElJ+GePhwJTaGm1XhdKXS0AMWWlAKgpKVAYWg5t0SKp\nPzNLXLG/j8W8ItexmA/kOp4al6OGzGVjt9sjgafRasc86XA4fjLDUxJCCCGEEEKcg6JTWHrvUlqP\nt5JUnDTT0xGXyhoNq1ZrDVA7O6C8DMrLwVGG0tc34WFKRwd07IN39hEBfDI1jesz8qlIyMVuXAZI\nQGau8Q54cbzsGLMt72P5JA+aqHH6Rra9XummodfP38zWukGmUXVuomNQH30cysq0oOMZB0pbG7S1\nwTv7UL/0ICxbrvXt6gKzGUZl1wghhBBCXA6XGpDpDT2e612K9ax+52S325OAl4GrgO87HI5HL3Fu\nQgghhBBCiCkQDATR6bWbrxHWCLI3ZM/wjMSUSEyCjUmw8RoIBlGbm7QATVkpVFageDwTHqa0tpDS\n2kIK78AboKalM5hbQGv6QnLXLoaYmGk+EXExVFXF8YoD70C4vlDK0hQWrEjl4aDKH0/3s79+cGTf\n6XYvP3rXyd+tspEWPau+8zmWokB6htZu2AIBP2pdHZxxgKMcCgrDfV/8Ixz+EDKztOwZexHkF0Bk\n5MzNXwghhBDzwqW+W6oBVCDzHPuHa8xUnG8Qu92eArwD5AKfdzgcT13ivMRl4PV6efrpp9m1axeN\njVqZoOzsbO655x62bds2w7MTQgghhBAzIRgIcvq500SlRJF7fa7UjLlS6HTazenMLNhyE/j9qDXV\noQyaMqipQQkGJjxUaWnG0tJMHvvgeS1AQ6E93KSOx6zSdLAJZ5Vz5HlkfCT5N+UDYNApfHJJNNmx\nBp471Yc/qPXpGAjwo3edfGZZNCvSzDMx7YunN0DeQq3dfOvYfcEg6PUoDfXQUA9/fQNVp4OcBbDp\nWrh6w4xMWQghhBBz3yUFZBwOx4Ddbj8BrLTb7WaHwzFS7c9ut+uBq4EGh8NRf64x7HZ7DPA6kA3c\n4XA4/nIpcxKXh8/n46GHHuLo0aMUFhayfft2PB4Pb7zxBj/4wQ9ITk5m/fr10zafn/3sZ5SVlVFf\nX4/L5cJkMpGamsq1117LJz7xCWJjY6dtLvNBT08Pb731Fu+++y5VVVV0dHRgMBjIz89n69at3H77\n7eh0s3DJASGEEELMKFVVqdxVibPGSX9bPxlrMjBFmy58oJh/DAYto6CgEG7fBh4PalWllm1wxgG1\ntecN0NDSDPv2AqEATX6B1goKID5hOs9EjNLX0kfN3pqR54peYdH2Regj9GP6rc+KJC3awG8Pu+gZ\n0qIy3oDK7470cnWWl+3FVsyGOfx54oF/AK8HtToUdDzjgNoalJpq1KXLwv0a6uH997R/B/kFYJUa\nNEIIIYQ4v8uRT/xb4D+Bvwf+Y9T2zwDJwHeHN9jt9iLA43A4akb1+w9gOXCXBGNmj2eeeYajR4+y\nfft2vv3tb49883HFihU8+uijHD9+fFoDMjt27KCoqIh169YRFxfH4OAgp06d4je/+Q0vvfQSv/vd\n70hJSZm2+cx1b775Jv/2b/9GYmIiq1atIjU1le7ubvbu3csPfvAD3nvvPZ544gn5xqsQQgghxmh4\nr4HWY63oDDpKPlEiwRgRZjJBcYnWAIaGxgZo6mpRgsEJDx0J0LyzDwA1Pj4UoAnd5E5L05abElPK\n5/ZR9lIZalAd2Za3OQ9rysRBhgWxRr6xMZ7/PuKisjtcV+ZAwxDlnV4+syyGgoQ5XD8owgRFi7QG\n2jVdWQGjP3eePoXy5m54czcAanpGKFBZoD3a5IuDQgghhBjrcgRkfgV8GviR3W7PAQ4BJcDXgJPA\nj0b1LQMcQBGA3W5fCnwWKAX0drv97gnG73A4HPsuwzzFRXjhhRcwm8189atfHXNTXq/Xvhlls9mm\ndT579+7FZBr/gf8Xv/gFTz31FE899RTf+ta3pnVOc1l2djY//vGP2bBhw5hMmC996Ut8/vOfZ8+e\nPezdu5fNmzfP4CyFEEIIMZu0n26n9q1aAIruKCImQ+qAiPMwm6FksdZgJEDjLSvHebyUpM5G9Oo5\nAjTd3XDwA60BapQV8vPDWTTZ2dpyU+Ky8Xv8nHz2JEPOkUUviC+IJ311+nmPizHpeHBdLC+V9fNW\nbbiuTPdgkJ+938N1uZFstVuJ0M+DgJrZDIuXjN1WXILq9ULFGaipRmluguYm2LcX1WaDf/1ROJjY\n0wOysoMQQghxxbvkd7EOh8Nnt9tvAh4DPg48CLQD/wV81+FwuM9z+EpAAYqBnefosw+47lLnKSav\npaWFpqYmNm3aRORZRQvffPNNAFavXj2tc5ooGAOwZcsWnnrqKRoaGi5pfL/fz86dO3nllVeor6/H\nZrOxefNmHnroIQKBAHfeeSdr1qzh+9///iW9zmyxZs2aCbcnJiZy11138ctf/pLDhw9LQEYIIYQQ\nALjqXThecQCQtyWPxKLEGZ6RmHNCAZqIksUkfVxl9+luqj8s43ZdI5ltNVoGTeAcS5wN9MPxY1oD\n1IgIre5HfoH2mJsnxdYvQcAX4NRzp+hv6R/ZFhEdgf02+6Qy5vU6hY+XRLMoKYKnT/Th8miBNhXY\nWzNIabuX+5fHkBNrnKpTmDnZOVoD8PlQ62q1jLDKCoiLCwdj3G74/76hBWQW5odbRibo9eccXggh\nhBDzz2X5WpHD4ehFy4j52gX6KWc9fwp46nLMYar9x3vOC3eaQY+sj7tsY5WVlQFQUlIysk1VVZ59\n9ln27NnD2rVrKSgouGyvdyneeecdAPLz8z/yGC6Xi0ceeYTS0lI2btzIVVddxf79+3nmmWdITk5G\nURRcLhcPPPDA5Zr2rGYwaL8W9PLBQAghhBBo7wOr91ajBlTSV6WTsSZjpqck5jidovCxxQk0ZV9F\nerReu2nt9dJ6uoLk5mqUqkqoqkTxeCY8XvF6tboe5drnFlVRID1DC84sDBVpT0qWZc4mIegPUvp8\nKb0NvSPbjJFGlt67FKPl4gIoxckmvnOtkZ2n+jjUHP67axsI8JMDTm5caOHmgigMunn692I0hrO4\nztbeBpGRKE4nHPpQa4BqMmkBxU99GlJTp3nCQgghhJgJkuc9SaPXxJ3vysvLAVi0aBGHDh1i165d\nHDt2jLq6OgoKCnj88cfPe/yOHTvo6+ub9OsVFhZy3XXXTarv73//e9xuN/39/ZSVlXH8+HHy8/P5\n7Gc/O+nXO9s///M/U1payte//nU++clPAnD//fezdetWDhw4QE1NDVu3biUrK+ucY0zlOU8nv9/P\na6+9BjCtNYKEEEIIMXspisLiTyym6cMmcjblSI05cdlkxIQ/jrb7dPxbaxIZsWnc9/lbSLMoqI0N\nWqZBqCnneL+tqCo0NWptuA5NdLQWmBluOQsgYg7XM5kCalCl7KUynDXhLx/qTXqW3LsES6LlI41p\nMer47Aoby1KHePZUH/1erR5NUIVdlW5Oh7Jl0qOvsFsRC3LhR/+O2toCoYAjVZUoHR1QXoYaFRXu\n+/JLMDAQzqKJj5fgohBCCDGPXGHvgsRkDGfILFq0iB/+8Ifs3r17ZN+CBQsInqMY57BnnnmGlpaW\nSb/ebbfddlEBme7u7pHn69ev59FHHyUu7qNlCB08eJCDBw+yfPly7rnnnpHtsbGxpKWlcejQISIi\nIvjiF7943nGm8pyn05NPPklVVRUbNmyQgIwQQghxhQsGgig6BUVRMFqMLLh2wUxPScxjvZ4gFqOO\n2h4//3d/NzcXRLElLwd9zgK44UZQVdS2Nqg8Ew7QdHaeczylr2/sMmc6vVZ7ZiRIkwdxV+6NblVV\ncbzioOtM18g2nVHH4k8uxppqveTxl6eZyYuP4JmTvZxs845sb+z188P93dxWGMXmPAu6K+nPX6fT\nMrnSM2DTtQCoLhc01EN0dLjfwfe1a3vfXq1PbFz4mi0u0Y4XQgghxJwlAZlJyo+fh+vdnkN5eTlp\naWnExsbyve99j2984xtUV1fz3HPPsXv3bmpqanj66afPefyf/vSnKZvb66+/DkBXVxcnTpzgySef\n5P777+cnP/kJRUVFFz3ecDbIvffeO+7bnhGhb9Bt376dlJSU844zlecMsG3btosK+Nx8881873vf\nu6jXePbZZ/nDH/7AggULeOyxxy5yhkIIIYSYT1RVpfylciKsESy8cSHKfF1iSMwa+fERfOfaeF4q\n6+e9hiFecQxwrMXDp5dGk2kzaoGT1FStbbwGANXVA9VVUFWlPdbXofj9E46vBANQW6O1PX/Vjo+x\naZkLubnaslE5ORD50TJD5hJVVal8vZL2U+0j2xS9QsndJdgybZftdWJMOv5ulY2DTUM8f7qfIb+W\nLeMPwp/KBzjR5uX+ZdEkRV3BtyVsNrAtCT9XVfjsF1BHZ9H0OOHIIThyCPX2beGATHsb1NRogZrE\npCs2uCiEEELMNVfwO5+LczlrtMxmLS0tuFwuVq1aBWh1RGJjY1m5ciUrV67k05/+NBUVFTQ1NZGR\nMXPfzElISOD666+nqKiIu+++m8cee4xnnnnmosc5evQoBoPhnNkgZrOZz33uc5c420uXkZExEiCa\njMTEiyu0+9xzz/HjH/+Y3NxcnnzySWy2y/dBTAghhBBzT82eGjodnehNejLWZhAZJwXTxdSzGHXc\ntzSGlelmdpzo1bIp3nXyqSXRrM+a4Bq0xcKKVVoDrah6Q712IzsUqFF6Xed8PaXXBSf+XU6HAAAg\nAElEQVSOaY1QLZqUVC1AsyAUpMnIAP38+disqio1e2poOTrqy14KFG8vJi738n/mVRSFdZmRFCZE\n8IcTvTg6w0uB1zh9/Os73WwrsrIxJ/LKypY5F0WBgkKtAQSDqK2tUFOttUXF4b7Hj6H8cScAqtWq\nXa/DbcGCKyK4KIQQQsxF8+edpbgsRtePmUhMTAwAFsu539xNZz2VtLQ0cnNzOXPmDD09PcTGxk76\n2KGhIVpbW8nMzMRsNo/Z19TURF1dHUuWLCEhIeGCY031Of/iF7+YdN+LtWPHDn7605+ycOFCnnzy\nSeLj46fstYQQQggx+zUfbqbxg0YUnULxXcUSjBHTrigxgu9cE8+fHQMcqB8kN26SqxUYjeElyUBb\n5qyrKxScqYSaKmhsRDnHEsyKqkJri9beO6ANYTRCVnboRncoUJOQOGezEerfrafxg8Yx24ruKCKh\n8MKfeS5FXKSeL6+NZX/dIH8q78cb0LZ7A7DzdD8n2jx8akkMiRb9lM5jztHpID1daxs2jt2XmIS6\ndDnUVGlL9J08oTVAtdngX38Uvk6bmiAlBQxyC0gIIYSYafK/sRhjuH7MRMt/uVwujh8/Tn5+/nlr\ntkx3PZXO0NrROp3uoo7zeDyoqjphYdqf/vSneL1eDJN8wzpXa8j8z//8D08++SSFhYX8/Oc/v6iA\nlhBCCCHmn67KLirfqASg4NaCKfnGvBCTYTLouLskmhsXWrCZtZv0qqryXsMQqzPMROgnERBRFEhM\n1Nraddq2oSHUutrw8mU1NdqSUOcawufTAjrVVSPb1KgoyM6BnAXhxzlQeL3xYCN1b9eN2VZwawHJ\nJcnT8vo6ReGaBRYWJUXw/473UeMMZ8s4On38YF8Xm3Mt3JRvwWS4uM92V6QVK7WmqqhdnaEsmhrt\ncXR9pKEh+JfHQK+HzCztes1ZoGXRpKZpQR8hhBBCTBsJyIgxhjNkdu/ezdq1a0eCFT6fjyeeeAK/\n389999133jEudz2Vuro6EhISsFrHFpcMBoP86le/oru7m6VLl45k7wx7/PHHefXVV3n00UfZunXr\nuHFjYmKwWCw0NjZSUVFBQUEBAM8//zxvv/02wKSzXqa6hsxU+O1vf8uvf/1rioqK+NnPfibLlAkh\nhBBXuL7WPspeLAMVsjdmk7o0daanJMRIMAbgUJOHHSf7+GuVm3uXRlOQMPklfUeYzWAv0lqI6nSG\nAjShG9p1tSgezzmHUAYGoKxUa8NjWK3h4MxwoCYubtYEaVqOtVD91+ox2/K25JG2PG3a55IUZeCr\n62PZU+3m1TMD+EMJS/4gvFHl5v3GIe4oimJNhlmWMZsMRdFqyCQmwZpQ4FFVw/t7nJCcgtLWGg5E\nhqgmEzz4SHiJNI8HIiJmzXUrhBBCzEcSkBFjDAdkXn75Zc6cOcPq1atxu9188MEHNDU1sXXr1gmD\nG1PpwIED/OIXv2DZsmWkp6djs9no7u7myJEjNDU1kZCQwHe+851xxwVDSxHo9ROnvSuKwm233cbO\nnTt58MEHueGGG+jq6uKtt97immuuYWBggMOHD/PEE0+wbds2iouLJxxnLnrllVf49a9/jV6vZ/ny\n5Tz77LPj+qSnp0/737UQQgghZk7N3hqCviDJi5PJ2ZQz09MRYpwUq560aD0tfQH+8/0eNmSbua3Q\nSrTpEr/hHxentRUrtefBIGpLixagCWXR0NSoLWl2Dkp/P5Se1lqIGh09NosmK3tGgjTtp9upeK1i\nzLacTTlkrs2c1nmMplMUtiyMojjZxB+O91Lv8o/s6/UE+f3xPt6uHeTukujJL1knwkZfY6lp8Pi/\noA66oa4O6mqhthbqalC6u1ETk8J9d/xeW/Zs+LrNytYeE+fuMn1CCCHEbCMBGTGitbWVnp4e1q1b\nh9Vq5dChQ+zYsYOoqCiKior4yle+wpYtW6Z9XmvXrqWxsZFjx47hcDjo7+/HbDaTnZ3NLbfcwic/\n+ckJszuqqqqIiopiw4YN5xz74YcfJiIigt27d/Piiy8SExPDvffey4MPPojD4eCxxx7jxRdfZPPm\nzVN5itOuubkZgEAgwDPPPDNhn5UrV0pARgghhLiCFG8vpuG9BnI25Uy4pKsQMy071sg3N8bzRqWb\nXZUDvFs/xOFmDzcutHBdrmVyy5hNhk4HGRla27BJ2+bxoNaHbmbX10FdnZZxcB5KXx+cOqm1EDXK\nCllZ2o3urGxtCanU1ClbNqrrTBflL5eP2Za5LpPsjdlT8noXKz3awNc3xPFh0xAvlw/Q6wnX96l3\n+fnJASer003cUWQlLlLqy1ySSAsULdJaiNrXB9HR4T6dnVoG2NnBxchIuOZa2H63tmG4DpMsdyaE\nEEJcNAnIiBHD9WPWrl3L/fffP8OzCVu4cCHf+MY3LuqYvr4+Kisrue+++8YtZTaayWTikUce4ZFH\nHhm3r6SkhJ07d170fOeCBx54gAceeGCmpyGEEEKIGdZT10NMZgw6vQ6D2UDu9bkzPSUhzsugU7i1\nMIoVaSZeKuuntMPLnx0DROgVrsu1TN0Lm0zask7DSzsB6uAgNNRrQZpQ5oHS0X7eYZSBfigv09rw\nOMYIyMzUgjNZ2VrAJiMDIkyXNGVnjZPSF0thVGJP2oo0cjfnzqqgq05RWJcZyfJUE29UutlT4x5Z\nxgzgULOH460etiyMYsvCyxh4E2ODMQBf/6a2hF9dDdTXa8HHhnqU3l5U3aiAWE01/MdPwtdsdjZk\n5UB6OkyyDqsQQghxpZL/KcWI4eXK7Hb7DM/k0h07dgyDwXDBejdCCCGEEFciVVVpOthE9ZvVpC5P\npeCWgll1g1aIC0mLNvCltbE4Or3sq3WzITtyZJ9zMDA92RSRkVBo11qI6naHMmhqw5k0nR3nHUbx\neUMF2cM1XlRF0ZaaysrSbnpnZGpBmxjbpJaOcjW6OP38adRAOBqTvDiZ/JvzZ+2/dZNBx+1FVtZn\nR/Knsn6OtYbr+PiC8JeKAd5vGGTbIisr00yz9jzmNEWB+HitrVg1sll19QCj/rzbWlG8Xqiu0tpw\nP70e0jPgH/8JLKEAqder1aURQgghBCABGTHKfArIbNq0if3798/0NIQQQgghZh01qFL5RiUtR1oA\nMMeaZ3hGQnx09sQI7Inhm70D3iBPvN1NTqyRbYuiyIyZ5vojlgmWhRroh4YGLZumoV77ubXl/DVp\nVBVamrV28IPwWFarFpwZbpmZkJY2JpvG2+nl1IFTBH3hNJOEwgTsW+1zIoiRaNHzt6tsVHR5+WNp\nP0294foyzqEgTx3t5e1aIx8vtpIdK/VlpoUtduzzqzeiLl0evqbr66GhDqWtDbWrUwtWDvu3H4Db\nPTawmJkFySmy5JkQQogrkgRkxIjy8nLS0tImrMcihBBCCCHmPr/HT9lLZTirnCh6BfvtdpKLk2d6\nWkJcNsM378s7vTje8bIm08zWwqiZrT8SZR0XpMHrRW1q1IIzjaEgTWOjli1zHkp/PzjKtRaiKgok\nJ6OmZ6IGUujqSWB0NkNcbhyL7lyEopv9wZjRChIi+ObGON5rGOIVRz/93nAAq9rp40fvOlmbaeZ2\nexQ2s9SXmXZWKywq1lqIOjQEXZ3hLK5AAJxOFLcbnE44eSLc1xgBd90N14fqtQ4OarVpoqKm8yyE\nEEKIaScBGTFi165dMz0FIYQQQggxRTx9Hk49e4qB9gEMkQZK7i7BliVfxBHzS2FiBI9en8CuigHe\nqRvkYOMQR5uHuC7Xwo0LLUQaZ8k38iMiIDdPa8MCAdT2tnHZNMpA/3mHUlSVQHsXZ/wFtEcljtkX\ng4tiTzW6vc3aUlJp6RAXN6llz2YDnaKwITuSlWkmXq8YYF/tIMOrsKnAB41DHGke4qqsSLbkWYi3\nSGBmRpnNWhbMML0efvTvqB3t0NgIjQ2h1oji7EaNtob7HnwfZccfUGPjyIiNxZOQCB3tWj2ls7LA\nhBBCiLlMAjJCCCGEEEJcAWrfrmWgfYDI+EgW37OYyPjICx8kxBxkjdDx8ZJorlkQyZ8dAxxt8bC7\nyk1jr58vr4298AAzRa/XAiZp6bB2nbZNVVF7XdrN7KZQa2zUljwLBABwG6IpTbyOgYi4McMluuuw\nd72Lod4/ZrtqjtRucKenh4M06Rlgm1x9mpkQadSxvTiaDTmRvFjaz6n2cCaRLwjv1A3ybv0gazLM\n3LjQQopVbnXMGjodpKRqbdXqkc3qwAAYRv09ud2oxgiUHidRPU6iamvg8IdaX6sVfvjT8PV58gQk\nJEBKCujl71oIIcTcIv9zCSGEEEIIcQXIvzEfnU7HgmsXYLRI3QUx/yVFGfjCShu1Th8vlvWzJc8y\nsq/PEyTSqGCY7ct4KYpWv8MWCyWLw9v9ftS2NjqP1uE45SUQHJX5owbJ6zlCZl8pE52dMjQINdVa\nG0W1WELBmXRITQu3uLhZU+sjOcrA36+JpazDwwul/bT2B0b2BVUtY+Zg4xDL00zcuNBClk1+181a\nZy9Ndstt8LFbUDs7aD50CFNXJwmeIWhugphRwUK/H375JEowgKrXa4Ge4Ws2LR3yC7TgohBCCDFL\nSUBGCCGEEEKIearT0Un8wnh0Bh36CD0FtxTM9JSEmHYL4ox8dX3smIL2O0/3Ud3t47rcSDZkR86e\npcwmSdXpqT3jpeGEHwjPXRehkLIwSKZtKbQkojY3Q0uzVsPjAhS3G6oqtTb6tSIitJveqaljAzXJ\nyWCcmYDHoiQT394UwdEWD29UDdDSFw7MqMDRFg9HWzwUJ0XwsXwLefERMzJPcZF0OkhOYaCgkIGC\nQhIKQv9nqeH6QQwOwuIlqM1NKJ0dWsCmuWlkt/rFv4fVa7QnJ09o13PaqOvWJEufCSGEmFkSkBFC\nCCGEEGKeUVWVmj01NH7QSFJJEkV3FI25GS3ElWb09e8LqHQMBHB5gvypfIBdlW7WZ5m5PtdCXOTs\nr0HiHfBS/qdyemp7xmyPyYjBvMIMkXooGBV8VVXUnh5oadZuXLc0w3CgZmjogq+neL3hmjajqIoC\niUlnBWpSITlFK/g+xb9z9DqF1RlmVqabON3uZVflAHU9Y5dnK+3wUtrhJT/eyE35FooSI+R34Vw0\n+u8sOhq+/CAA6tCQdj23tEBrqGVmhfuePIHy9ltjhlLjE7QATd5CuO32aZi8EEIIMZYEZIQQQggh\nhJhHAr4AjpcddDo6UXQKcQvi5AakEKMY9Qrf3BhHWYeXN6vdnOnysbdmkH21g6xKN3FboZWEWVoc\nvrepl9IXSvH2ecdsT1+VTt6WPKqqq8YfpCjasmNxcVBcEt6uqqhO58SBGo/ngnNRVFUrut7RrmUi\njKJaLFpgJiVl1GOqllVjNn+kcz8XnaKwJMXE4uQIznT5eKNygDNdvjF9Krt9VB50kW0zcFN+FEtS\nItDJ78W5z2yG3DytTWTVatToaO3abm2BtjaU7i7o7kL1esMBGZ8Pvv0NSEoK1btJCWeFJafMWCaY\nEEKI+UkCMkIIIYQQQswT3gEvp58/TV9TH3qTnuK7ionLjbvwgUJcYRRFoTjZRHGyiQaXjzer3Rxt\n8XC42cPWQutMT28cVVVpOdpC1RtVqMHw8k06g46CWwtIWZxy8YMqCsTHa210fZrhjJrWFmhtDWce\ntLaiuHrOPd7ood1uqK3R2tnnYosN3fBOGRu0SUi8pBvfiqJgT4zAnhhBjVMLzJxqHxu4qnf5+a/D\nLlKterYstLAyzYxRL4GZectepLVhAT9qR6cWoIkYtYxdRwfKQD8M9I+7ZlVFgS8/BEuWahsaG6Cv\nT7tmZ1F9JSGEEHOHBGSEEEIIIYSYB9pL26naXYVvwIfJZmLxPYuJSoq68IFCXOGybEY+t8LGHfYA\nFd1e4kPZMUFV5amjvSxJNrEy3YReNzM37gO+ABWvV9B+sn3MdnOcmeKPF2NNvswBpNEZNYuKx+xS\nB92jgjSjHjvaUYLByQ3v6gFXD5xxjB17+HWTkkMtSXtMTtaWRruIzJrcOCN/vyaWpl4/b1QNcLTZ\nw6gqJLT2B/j98T5eKO1nbYaZq7MjSYuW2yPznt4QWmIvdez2tDTU//tjaGvTrue24dYGnR2QkBDu\nu28vyjtvA6AaDNq1mRy6TrMXwNp103c+Qggh5iR5xyGEEEIIIcQ84Kp34RvwEZMVQ/H2YiKsUsRa\niIsRb9GzzhI58ryswztSHP5lh47rci1cnWUm0jh934gfdA5S+sdSBtoHxmxPKEjAfrsdg3maP9JH\nWiZeIsrvR+1o125gt7eNeVR6XZMaWlFV6O7WmqN83H41JiZ883t00CYx6Zw1azJiDHx+hY3bCv38\ntcrNwcYhAqMiM26fylu1g7xVO0hurIH12ZGsTDNjMkjWzBVFUSDGprWCwrH7An5QRv2bT0pBzS+A\n9nbt2h7OIAPUokXhgIzXA//nX8LX6+jHuHjQz85lEYUQQkw9CcgIIYQQQggxBwUDQTwuD5Hx2g3k\n3OtyiU6PJmVJitSMEeIyKEyI4L6l0eypdtPaH+Clsn5edfSzPM3EusxIChKMU1aHRFVVOso6qHy9\nEv/QqEL1Ciy4dgFZ67Nm179zgwHS0rV2FnVwUAvODAdqRgdrhgYn/RJKby/09sIEdXJUkwkSEyEh\nSXscbqHnyVEm7lsawy0FUeypdvNu/SC+sxJ6anr81PRoWTOr0k1cnRVJls0wu/6cxfTTn3Xb7KaP\naQ1Qh4a0GkrtoVpKsaOWCG1vRxkVrBlN1eng4X+EokXahuoqcDrDAUaLZarORgghxCwgARkhhBBC\nCCHmGFeDi4q/VBD0B1n1d6vQG/UYzAZSl6Ze+GAhxKQY9QrrsyJZl2mmtN3Lnho3FV0+PmzyUNnl\n47HNCRce5CPobeql+s1qeht7x84n0kjRnUVzry5UZCTkLNDaaKqK2terBWiGb2p3dozc3FYGLyJY\n4/FAU5PWJqBGR0NiEnEJiXw8MZFbEpI5ZEznPXcUjYNjAy5DfpV364d4t36IzBgD67PMrM4wY5nG\nzCgxR5jNkJWttbOlpKL+r++Gr++RwE0HSo8T1WYL993/DsqB/SNPVYtFC8wkJkFeHmy5KdzX79cC\noEIIIeYs+S0uhBBCCCHEHOEb9FGzt4bWY62AVkPC0+vBkiDfphViqugUhcUpJhanmOh0BzjYOIjF\nqBvJjun1BPnvIy7WZJhZkWb6yEuaDbmGqNlbQ0dpx7h90WnRLLprEWbb5OuozHrnWyZKVVEHBkI3\nsjvCN7RDPyu9vROPea6X6uvTCrHXVAMQBVwLXAM02NJ5N38Dh1NKGNKPXeqxsdfPztP9vFTWz4o0\nM1dnm8mLM0rWjLgwoxEys7R2FtXnG7tkWU4O6kC/FpDs7ERxu6G+DurrUIcGwwEZtxu+/gjYYrW6\nNgkJkJAYfszOgSipHSeEELOdBGSEEEIIIYSY5VRVpaO0g6rdVfjcPhSdQtb6LLKuzkJvlHXohZgu\niRY9txZax2w71DREZbePym4fz5/uY1mqtqRZYeLkljTzD/lpeK+BxoONqKMLnACKTiF9dTq51+Wi\nM1xBGRqKotWFsVrH16shtFRUZyhQ09kZah3Q1QldXSg+3+ReBsh2NZN9eCd36f/EkfTFHMheQ018\nzph+viAcbBriYNMQKcEBVhl6WRYXJC0xGiU+Hmw2qQkiJs9oHPv82uu1BqHMsb6R4AyR4bpW9PQA\noPQ4occJVZVjhlEf+iqULNaeHNgPZWXhwE18gla7Jj5ey+wRQggxYyQgI4QQQgghxCx35pUztJ1s\nAyAmM4aCWwqISpJvwQoxG2zINhMVofBBwxAV3T4ONXs41Owh1qzjqkwztxZGTZhRoQZVWo62UPdO\nHT73+ABCQmECudfnSgbcRMzmc2YfEAyi9vaGAzTDwZrOTu2504miquMOMwW8rG84wvqGIzRHp/Be\n9io+yFyJO2Lsn3+bLorXglG81gVJdZ0sb3mTpW2l5NCPEhcPcXHaje+4eIgf9XN0NOiuoKCa+GgU\nBWJitJa3cOy+9HT4+S9RnU7o6gq1zvBjcnK475kzKB9+MOFLqLl58K3vhJ6osHuXlnUTH68FbmJt\n42vnCCGEuGzkN6w4J6/Xy9NPP82uXbtobGwEIDs7m3vuuYdt27bN8OyEEEIIIa4c8fnxdFV0kbs5\nl9RlqbJcjhCziMmgY11mJOsyI+l0B/iwaYiDjYN0uoPUu/wj/14DQZWOgQDJUTqc1U5q3qzB3eUe\nN5411UreDXnE5sRO96nMDzodxMZqLb9g/H6/H7W7C7q7wzezu0M3t7u7wekkva+Nj59+jTvK3uB4\najEHctZwJnHhuKE6rInsLriW3QXXEjvYw7KWUpbVnmbhkSPo1eCYvqrBoN30Hp5bbNzEj2dnTwgx\nmt4Qri9zPjdsQbXbw9d1dxc4u6HbCZZRQUa3G+WF58ccqiqKdi3GxcO27WAv0nZ0tIPLpW232aSW\njRBCfETy21NMyOfz8dBDD3H06FEKCwvZvn07Ho+HN954gx/84AckJyezfv36mZ7mZbNt2zZaWlom\n3BcfH8/rr78+zTOaWq+88grf+973zttHp9Px/vvvT9OMhBBCCDGaq8HFQPsA6avSAUgsSiR2QSzG\nSLlRJ8RslmjRc0tBFDfnW6hy+jCMCp5Wdvv4f2+1sqatgzjXwLhjI6IjyL0ul+TFyRJ0nUoGAySn\naG0iwSBqTw90d2Ho6mJVdxeruivoqDvFe8Z0jsYupNMSP+6wnshY9uVdzb68q7F6BljSWsry1tMU\ndlZhDAZQ/P5QAKjzvNNTrdYJgjWxWjDHZtNadIxk24jzy8rW2tlUFXzeMc/VLTeFgpHd2mOvC8Xp\nBKcTNRAI9z3wLspfXtUOUxTtOowLXaOpqbD97nDfzg6wRsvyaEIIMQEJyIgJPfPMMxw9epTt27fz\n7W9/e+QDwYoVK3j00Uc5fvz4vArIAFitVj71qU+N226xzL8lAgoLC/niF7844b5jx45x6NCheff3\nK4QQQsx2alClq6KLpoNNuBpcKDoFW7aNqCRtuSMJxggxdyiKQn58uEC8p89D554qbqzs5OxQS1Cv\nw7w0jVU35GCMkI/oM06nCy3dFD8mwyYJuAO4PRikqb2f4w39HHeqtPjG/27uN0XxXs4a3stZg9k3\nREmbg+Wtp1nUfgZzwDuu/2hKfz/090Njwzn7qMPLWtlsoUDNqGDN6J9jYmTpKTGWokCEKfzcaoW7\n7xnbx+9H7dECMmRkhrfH2LTlzpxOcPWg9Lqg1wV1oHZkhAMyqgqPfxfF50U1m8dep7GxsHJVuDaU\n1wMoEBGBEEJcKeR/ZjGhF154AbPZzFe/+tUx387ShwoV2my2mZralImOjuaBBx6Y6WlMi8LCQgoL\nCyfc94UvfAGA7du3T+eUhBBCiCuW3+On7UQbTYeaGHIOAaCP0JOxJgNzrHyzVIi5bMg1RMvRFpo+\nbCLoC44JxqhATbyNU6lJRJsjWGcMF4V3DQWwmaVI/Gyk6HRkpsaQmRrDbUB7v5/jbR6Ot3qo6/GP\n6z9kNHM4cxmHM5ehU4PkDHZg766hsKmU3M4ajMHA+Be50BxUVVs6yuUC6s/ZT1UUiIqCGFu4LklM\nzKjno7ZbpcaNCDGcY1m06zdrDSAQQO11acEZp3PsteP1gs2G6upBGRqCoSFoaxvZraalhQMy7x1A\n2fEHVIslHEwcuTZtcONNWhAJYHBQy7iRDEIhxBwnARkxTktLC01NTWzatInIyMgx+958800AVq9e\nPRNTm7P8fj87d+7klVdeob6+HpvNxubNm3nooYcIBALceeedrFmzhu9///szOs/KykpOnTpFcnIy\nGzZsmNG5CCGEEFcCv8fPwScP4h/SbuKZY82kr04ndVkqBpO8VRdiLgoGgnRXdNNyrAVntXPCPnG5\nceTdkEeRxURWmxejnpEvwrmGAvyvN7vIiDGwODmCosQIcmKNGPVyE3I2SrYauNFq4MaFUTgHA5xo\n1YIzld0+1LP6BhUdNZYUaiwpvJ55FUYd5FmCFOoHKPR3kdXXgr6nB3qc0NMDPT0oA/0feW6KqmrZ\nNv390Nx03r7aElTR2jJUw8uiRUePajFjHyWj4cqm12u1ZOLGL9+HyQT/8oS2HNrgoHYtu0KtpwcW\n5IX7eryoej2K2w1uN7Q0j+xSLRa46WPhvv/ne9qSaqODibZY7XFRMRSEvnTq82ktMlKCN0KIWUk+\n5U3S8d8fn+kpnNeyzyy7bGOVlZUBUFJSMrJNVVWeffZZ9uzZw9q1aykomKA44hzn9Xr5y1/+Qmtr\nK5GRkeTn57NixYqRrKCPyuVy8cgjj1BaWsrGjRu56qqr2L9/P8888wzJydr60C6Xa1Zk57z44osA\n3HHHHZd83kIIIYSYWF9LH9ZUK4qiYDAZsGXb8Ll9ZK7NJKEwAUUnNw+EmIvcXW5aj7fSdqINn9s3\nYR9LooW8G/KIX6jdxIwCUqxjP5Y39/kx6RWaev009frZVenGoIMFsUbyE4xcn2vBYpRMhtkoLlLP\ntbkWrs210OcJcqrNw7FWD45OL4GzozOALwiOfh0OooFozBG5FCwyUpgQQWFCBGnReu3Gcm8oG6an\nJ/yzq2fMo9L/0QM3EAre9PZqranxgv1Vk+msQE3oZ6tV+9karf08/GgyXXBMMc8oClgsWktPn7jP\nTR+DG29CHegPBW5Cy6D19mpLn43m86MEAuGsnFFUgyEckDl9CuVXT2rbxgQUQ9fqbbeHa9t0dWnB\nJatVywwSQohpIL9tJslV75rpKUyb8vJyABYtWsShQ4fYtWsXx44do66ujoKCAh5//PHzHr9jxw76\n+vom/XqFhYVcd911lzLly6Krq4vvfve7Y7alp6fz6KOP/v/t3XmcZXV95//XuftSW1d1d/XeNHTz\npUEiNISWxQVQAkJEMEZBVGJcxsCIEU3GOKghmSHzw180MRodMSbjiBmNA2Z+bgR/VggAACAASURB\nVGlR3H8iyhaRQzXdQG/Va+1193Pmj++5W9W9tXVV36rm/eRx+J7zPd9z7vfee271vd/P+X6/bNu2\nbc7n/dCHPsSTTz7J7bffzhve8AYA3vzmN3PNNdfw05/+lN27d3PNNdewfv36puc4Ea9pNpvl29/+\nNuFwmGuvvXZWx4qIiMjUvJLHkaeOsO8X+xjZP8LZN5zNsk3LADjj2jMIR3UjhMhSVCqUOOIeof/R\n/il/Mya6Eqx7yTpWn7N62qDr1hVx7nrVcnYey/PrQ3n6jubZP1Ji57ECuwYKvPLUdKXsQ3sztMdD\nnLosSjyiIM1i0h4PceGGJBduSJIpeDx1JM/TRwo8fTTPobHGw5Rliz5PHMzzxEE7z0x7zGFLT4wt\nPW1sXN7Fmk2nEW5y/fjFYk2wpiZgMzIMQ8NBaredQuOA4Ww4uRzkcnDkyIzK+9FYEKAJAjbpcuCm\nrRq4SaehrY3w6AheIjn9SeXk4DhB4K4d1jVvF+Gv7sbP54PA4VA1HRqC0021XDB3jZPNNg7e/G5N\ne8cX7sHZ2WfzE0loD67F9nY460Xw8kttuWwWdvZVg43tbfVz8YiIzIICMjJJuYfM1q1bufvuu9mx\nY0dl3ymnnILneVMe/8///M8cOHBgxo939dVXtzwgc80113DOOedw6qmnkk6n2bdvH1/5yle4//77\nue222/j85z/fdM6VqTz00EM89NBDnHPOOfz+71cnyuvq6mL16tU8/PDDxGIx3v72t095nhPxmn73\nu99lZGSEiy++mN7e3lkdKyIiIo0VMgX6H+1n/y/3kxvOARBJRsiPVSd1VjBGZOkZPThK/6P9HPr1\nocqQgxM5YYflpy9n1Tmr6Dqlq25uzulEww5bV8TZusI2+I3lPXYeK3AsUyIesefxfJ+vPTnKeMEn\n5MD6zgg9ToK1ySLrCh5J9aJZNJLREOeuTnDuantX/kCmxNNH8zx9tMDTR/IMZhv/xh7J+/zqQI5f\nHbD/fkRDsK4jwoauKBs7o2zsirA8HSbkOPbu/u4eu0zF9/GzmWpvmImN2+W8kWEYGZmX4A2AU8jD\nwDG7TOO0clVjMRu4aUvbNB2kbTXr6XR1SaVtbwyN9nDyisVg+XK7NPPb2+G3t+PnczAyaq/rkRG7\njI3WD7eXSuF3dMDoKE42A9kMHD4MgN/VVS13sB/n7/6m7mGqQcY0vO0dsDroBfTvT8DhQ7SPjFJK\nJiEWrV638biGURMRBWRmqnPDyTeJfTNPPfUUq1evpqurizvvvJMPfOAD7Nq1i6985Svs2LGD3bt3\nc++99zY9/utf//qC1/Haa6+dVYDiyiuv5M4772y6/x3veEfd9mmnncYHP/hBUqkUX/rSl/jc5z7H\n3XffPet6fvOb3wTghhtumPQDLBZ8CbjuuuumDYCciNf0/vvvB+D6669f8McSERF5Idj94O7KRN4A\nye4kay9YS+/ZvQrCiCxBxVyRw08epv/RfkYONO+9nupJsercVfS+qJdoKjovj52OhXjxqvq7sQsl\nuHB9kp3H8uwZKvLcYJHniPOrgTj/3/4jvPXcDs5bYwMAY3mPaNghpnloFoVlyTDb1yXZvi6J7/sc\nHi9Ves/0Hc0zmm8wvhl2iLPdg0V2DxaBDADJiMP6zggbu6Js7IqyoTNCVyLUPADoOJBM2aV31dQV\n9X38XC5ozB6ekE5cH4HREZxpbuCcDSefh/zMgjh11U4kbWAmna5J05BOBUGbdP3+VPB6JJP1k9PL\n0haLQ08ceqYIUv7Rf7Sp5+Fnxm0AZzS4nrtr5scJh/G3nhnMyTQSBCurQUa/Ngj485/h/OIhVjd4\nOH/L6XD7n9iNYhHu+WzN9ZmuX1+3zvbGEZGTjgIyMzSfc7QsZgcOHGBoaIjzzjsPgHA4TFdXF9u2\nbWPbtm286U1voq+vj3379rF27dqW1XPt2rWVgMZMLJ/q7okpXH/99XzpS1/ikUcemdPxjzzyCJFI\nhAsvvLDh/kQiwc033zync8+nZ555hscff5yVK1dy0UUXtbo6IiIiS052MMvRvqP0bOkh0WUbQB3H\nwSt4dJ3SxboL1rHstGWzukNeRFrL933GD48zsHuAgd0DDD0/hFds3NgcioZYsXUFq85ZRcfajhPy\nWY9HHF67tQ2AbNFj90CBh3YeZN94hEO5CD2pagPhA7vG+e4z46xqC7OuM8r6zgjrOyOs64iQ0FBn\nLeU4DivTEVamI1yyMYnn+xwYKeEescGZnccKZIuNAzQAmaJve9ocrfZk6YiH2NgVYUNnlDXtEVa3\nh+lJBT1pZlc5O9dGIgErVkxf3vPwx8erjdYN09FqT4XRUTus1Dyr9HQ4dnRWx/nl55tM1QdqUslq\nECcZrCeTwXoKEsnqtgI6S1MoFPS4agMaBCrXrYfb3lfdLgcrR0fttVzbM+2sF+Gn0oz0HyCcyZDy\nveq1n6wZim9sDOfR5m1N/jvfDdts2xw7vmOXVKp6LZbXOzvhqqurB+7eBdFodb965YgsOgrISJ3a\n+WMa6ejoACCVSjU9x4mY7+TTn/70rMrP1bJldmz37By+JGazWfr7+1m3bh2J8oRxgX379vHcc89x\n9tln0zPV3RqBhX5Ny71jXvOa1xBW924REZFp+b7P6IFRjvYd5WjfUcYOjdl8z2fd9nUArN62mt7f\n6iW5TOPgiywV+dE8A88OMLBrgMFnB8mP5qcs37aqjVXnrGLlmSuJJFr38zoRCbF1RZzIYA7IsfHU\nzdR2hhkveDgOHBgtcWC0xC/22XwHeFFvjHeeb4fm8X2fTNEnpeHOWibkOKztiLC2I8Jlp6YoeT4H\nR0s8N1TgucECzw8W2TdSxGseo2E459XNRQN2uLPetgir2sKsbo+wut2uzylQ07TyoeqcMI0atRvw\nC4VqwGZsDEZHObR7N+Fshp5EwjZ2B/mMjdnt8XGciRO+zwPH9yGTscssgzllfjxe7W1TWSZuJ20Q\nJ5EI1hNBUCdIo1E1oC92tcHKiTcAv+QieMlF9PfZuWm2bNlS3VeqGeIymcB/17uD67pmGQ/SoD0K\ngOFhnPJwghP4y7rrAzKf/iROTfuRHwoHwcMkvOpKeNnL7Y69e+BnP62/RstBx2QK1q7V8H8iC0QB\nGalTnj/mjDPOmLRvaGiIxx57jM2bN1cCFY0sxTlkmnniiScA5tQbKJfL4ft+w7vjPv7xj5PP54lE\nZvYRXMjXNJfL8a1vfYtwOMy11147/QEiIiIvcLse2MWhXx+qa6gNx8J0n9ZNemV1su14uyZ7FVns\nSoUSQ3uGGNw9yMCuAcYOj017TDgepvdFvax68SraVrWdgFrO3sShyd54dgevO7Od/SNF9gwV2TNU\nYM9Qkf0jxbrgy0DG4yPfP0pHPMSqtjC9bRF602F622065VBYsiDCIYc1HRHWdES4cL0N8BdKPnuH\nizw/WAgCNUUOjZWmPE/Bg73DRfYOF4FcJf+EBGqmEo3ahueaNoahThsg7KltyK5V7olTDtaUG7HH\nx2u2x6sN2zX7nNLUr9PxcnI5yOVgcGD6wk3YBvREg6BNAuKJxuuJ+ITtYL96Rywu4Zo2oFgczj1v\nZse95rX4l7+qei1XlrHJQZM1a/FHRir7nXw++KyM2nl1yvbtw3lgB834f/23NkAD8Km/heefq/YG\nK/ckSyZg8xa46BJbLpu1c+gkk/XXbflaVg8yEUABGZmg3ENmx44dXHDBBZUv24VCgbvuuotisciN\nN9445TlOxHwn82n37t2sWrWKZLL+7tX9+/fzsY99DLBz0Ez053/+53zjG9/gwx/+MNdcc82k/R0d\nHaRSKfbu3UtfX1/lroh/+Zd/4Yc//CHAjHu9LORr+sADDzA8PMwll1wy7Vw2IiIiLyReyWP8yDgj\n+0foPbuXUDCsT3YwS340T6w9Rs+WHnpO76FrQ1dlv4gsXr7nM3po1AZgdg8wtGcIvzT9nfbRVJRl\nm5ax7LRlLDfLl+Q8UNGwU5lnBOxvn6Lnk6sZDuvweIloyPawGM55dcNgAbz/4mXB8fDUkTzZgkdv\nW4QV6TCRkBp9T5Ro2GHTsiibllXnKMoUPJ4fKtpeNEE6mJ1+PpdmgZqwA92pMMtTYXqSQZoKBWmY\nZCt7UdX1xJmF8jBTtcGaTKbayF1Zz0CmptE7WHdyuekfYx44XqkaWDpOvuPYoEw8Xg3QxONBwKZZ\n3oT8WCzYjtkgQjwOM7y5VOZJNApdXXaZzh+/v27TLxar13e6ZrSb9RvwX/f6oFfYeHDdB+uZjL0e\nyoaGcIaGYGho0sP5vl8NyBw9gnPPZ5tWzf/Af4LTNtuNHd+Bxx+rD9iUl+5uuPDi6oF9T9dfm4mE\nvS4V4JElSn9BpU45IPOv//qvPP3005x//vmMj4/z85//nH379nHNNdc0DD4sZTt27ODee+/l3HPP\nZdWqVaRSKfbt28dPfvITcrkcF198MTfddNOk47xgssJmQ3w5jsPVV1/NV7/6VW699VYuv/xyjh49\nyoMPPsjLXvYyxsbG+OUvf8ldd93Ftddey5lnnrmgz7OZ++67D4DrrruuJY8vIiKyGPi+T3Ygy8iB\nEUb2jzByYITR/tHKfBHxjjjdp9nJXTdcvIH1F6+nrbdNd4qLLGLFXJGxQ2OMHhxl7NAYYwfHGDs8\n1nQemFqhSIiO9R02CLNpGemV6ZPy8x4JOURi1edllsf42JUrOJbxODha5OBoyaZjNu1tq/72+d6u\ncX5z2PYUDDnQkwqzIhWmOxlmc0+U89bYxjw/GFrqZHz9FpNkNIRZHsMsr861Opr3ODBSpH+0yIGR\nEv3B+kh++iBkyYfDYyUON+l5k4469ATBmeUT0s54iGh4Eb7ftcNM1U7YPkN+qWgbqsfG7Rw1mUy1\nobvciJ3JNNhXzXOKxekfaB45vm97LWSzwOTG9LnyQ2HbKycWrw/UxGvzyku8ul4O8ERr1uNxux2r\nWSIR9eyZL5EIdHTYpdaaNXaZifd9AL/22s5mq9f18pr5paJR/HPPs5+H8nWXy0ImSOM1vccP7Mfp\ne7rhw/kbT6kGZDwP5//9fxqXi8fhDTfCRUHZxx+DB79XDSDGg8BNOYDzyiuq19XuXeD7E67ZuAI9\nckIoICMV/f39DA4Osn37dtra2nj44Yf58pe/TDqd5owzzuCWW27hla98ZaurOe/OP/98nn/+eVzX\n5bHHHiOTydDe3s6LX/xirrrqKl796lc3/PHwzDPPkE6nufjiixuc1XrPe95DLBZjx44d3HfffXR0\ndHDDDTdw66234rouH/3oR7nvvvu47LLLFvIpNrV7924ee+wxVq5cyUUXXdSSOoiIiLRCfjRPbiRH\n++p2AIqZIr/4zC8mlUssS9C+ur2u98tiHaJI5IXK931yQ7lK4KWcZgdnNw9kujddCcB0rOtYkr1g\n5kPIcVgeNK6ftbJ5uc3dUUIOHBwtcXS8VNd4X/T8SkDm4GiJu39yjO6kDdb0pMJ0J0NBGmZNe2Rx\nNt6fBNpiIbb0xNjSE6vLH8179I8UOVAO1IwW6R+ZWaCmbKzgMzZU5PmhxgGGdNShM2GHuetMhIK0\ndjtMOuosrUBdOAJt7XaZI79QqDZkVxq1s0FDd3ZCfm1eBrK5SgP3ieqt04zjlao9iBaA7zjV4Ew0\nWrM+Ia3dX5tGYxAL0on50Uj9/lgUQmEFgKZSDmTSfPoCAFb2wrve3XjfxHmfrroaf/uF9lrPZasB\nnEwGOjur5YpF/M1b7FCA2axNg8+Ak8vhh2uCJ4cP4Tz568YPH4nAq36nmvHFf8TZv79x2Usvhzfc\nYDf27oH/8YVqsKYcwInFbBDnVVdW69v3tJ1/amIgMhqzw7/NpIeTvCAoICMV5fljLrjgAt785je3\nuDYnzrZt29i2bdusjhkZGWHnzp3ceOONdEy8y6BGPB7ntttu47bbbpu076yzzuKrX/3qrOs7nzZt\n2sRDDz3U0jqIiIgspFKhRGYgQ+ZYhszRDKP9o4wcGCE3nCPeGWf7LdsBOxxRx9oOIqkI7avbaV/T\nTvuqdqKp6DSPICInSqlQIjeUIzuUJTuUZfzIeCX4UsrNfl6IWHusEoDpOqWLWDo2/UFSccXm6pxZ\nhZLP4bESRzM2OFPbk2YgWyJfgv7REv2jk9+nD76smzXttmni33aOsXe4SEfcNtrb1Pa46EyE6ua7\nkblri4XY3BNjc5NATf9oiSPjdjkapNnizIM1EARsCkX2TzFKdyQEHXEbnCm/322xEOODMZJhj9Cx\nPG2xEO3xEMnIEgveNBON2mWKdoSZ8D2vpoG6pjF74nZdI3auuq+yXc1zJjaYt5Dj+9X6nQC+49QE\nbKJB0CYKkWi1x075vasN7ESC7Uh5vZrXduQwfjgC+Vz1uEikpmzNdjRy8geFJj63FSvtMp1YDN7/\np5Oyfc+DfL5+Dp1zt+H3rqpeO/ma69yb0Dt23Xr8eKK+bD5vl9oh+UZHcZ5/vmn1/Je+ohqQ+eGD\nOL9o3Mbmbzkdbv8Tu5HLwe231QcPy4GbaBSueQ2csdWWffLX8NijDYKOURsc2n5h9UGee9YGviZd\nq8G6ev4sGgrISEV5uDJjTItrsvg9+uijRCKRaefTERERkYVXypfIDNqgS3YgS9cpXZWeLwd+dYBd\nD+yadEw4FibRlcArepXeL+e89ZwTWm8RqVcqlMgNBwGXwWw1+DJoAzCFscL0J2kiFA3R1ttGemWa\n9Mo0nes7SS1PnRwNvItANFydeH6irSvi/LcrlnMsU+LYuMexjA3cHBsvcTTj0Z2sNhD1HS3w1JF8\nw8fYuiLGH11g7y4eL3h8+fEROuK2sT4dc2iLhUhHbYP+8nSYmHrdzFo1UFOf7/s+4wV/UpCmnA5k\nPObSlF/04FjG41hm4jCCdo6jbx4YrOSEHFs/uzi0x0M12yGSUYdU1CEZDZGKOqSiNogTPlnnNgqF\nqhOnzwfft3ON5LK2J045UFNprM5X88rr+Rzk8vWN3rmaRu2aBu7FFOxpxPH9ar3nyQwHA6vwHacm\nYBMEbcrBmtrt8hIur4cn76uUKe+rScO1+yashyP1Zcrr4bC95hbTv5mhUP08NwDdPXaZibe9o3G+\n79cHb07ZhP/B/zzh+q659jtqesydthkfx5YpTPgc9NTUK5+3wxcWg2EQJ1ahtufZc8/i/OD7jaua\nStUHZD73GZwjRxqXveJKuP737Ebf0/APn6sGBmsDhtEo3PTWSpCp44nHGd1yeuPXSuZsXgIyxphu\n4CPAa4HVwBHgm8AdrusemMHxFwF3AC/B/sv7NPA54O9c113cf7VPIgrIzNxLX/pSfvzjH7e6GiIi\nIic93/cpZosUs0WSy5KVvL5v9ZE5miEzkCE/Wv/jedOlmyoBmVRPimR30i7LkqR703Ss6SDZk1RD\nrMgJ4Ps+pVyJwniB/Fiewnihfn2sQHY4S24wR35sfhrC4h1x0r1p2la2VdLEsoQ+8y2UitreLeum\n6RTwuybN9nUJhnMeQ9lSkHoM5TxWpKp3QQ9mPR7tb37n/K3buypzqTywa5xHD2RtwCZovE/HbIN9\nVyLEWSurcxqM5j0SEYfIydqIP0eO45COOaRjITZ2Te45WvL8INDmMTBeYjB4/waz9v0bzJYYncVw\naI14PgznPIZz088BVSsRcYJgjQ3QVII1QZqIOCQiDvEgTURCdj3skIg6xMMncVCnVqWHSPS4hmRr\nyPftUG0TgjSTgje5mkbsQiEoW6iWqds3IS+fxynMPWi/GDi+b5/bIn0evuPYwEx5KQdwwuEgcFMT\nvCkHeSYtzfKnWEKN8kLTHBOqOW7Cevmczb4TlJ9nWSIBG0+Z2Yv0isvsMp22NvxP/n39tV6+rgsF\nWF0TzjvzLPxEorqvkIdC0aaRCc36a9fjp9JQLNjPTm35aM3f7mwWZ2CgafV8r9qbte2ZnYydetrM\nnr/M2HEHZIwxSeBB4Azg74CHgS3A+4HLjDHnua7b9F02xlwGfAvYA3wUOAZcC/wtcBrw3uOto8zM\nU089xerVq+msHatRREREZAF4JY/CWIFwPEwkbr+SDj47yOHfHCY/lic/GixjefySTzQZ5cI/tneA\nOY7DwO4BckO2Mc4JOyS7kiS6EySXJWlfU21I6N7cTffm2U/cKyL1fM+nmCtSypdsmqtPi9liJcBS\nGC+QH89X1n1vYe6xc8IO6eVp0r2210u5B0w0qaEGl6oNXVE2NGjwn6grEeLmczsYznmM5jzGCh6j\neZ+xvMdo3qMjXu110z9S5NnBxvOcrOuIVAIyvu/zoe8ewfMhGqLS0yIZsb0uXn5KkjODsnuHC+w8\nWqg05MfDtjE/FjTo9yRDL6gAYDjksCIdYUW6eZlCya8E2gazXhCsKQdv7DKa92Y9NNp0skWfbNFn\nYFIvnJmLhgje62oAJxauX+IRh2gY4mGHaNhpmMbCtkw07BAN2fxIyM7bdFKrnQ+GhZuHz/d92+Og\ntuE6X26QrmnsbrSvWKyWKZbLFIOG7XKZIK8w+bjF3gNoPjjl17fY+O/pUjMpwFQJ4gRpKFQTzKnN\nK5cN1R9XKd/g+HL5icc3XMLQ32+PdYJztLUF53Hqz+c48NRv7DkdB37nysbndIL06FF7jtVr8P/s\nDiiV6pdiEbwSpKp/zIdedDZePD7FKylzMR89ZN4LnA3c4rrup8uZxpjHgPuwPV/eN8XxnwaywEtr\netN80RhzP/AeY8wXXNd9bB7qKdP4zne+0+oqiIiIyBLhlTxKuRKlQonCYAGv4HHEO0IxVyQcDbNi\n64pKuSe/9mSll0u54dYr2IYR87uG3rN7ARg7MsaBRyZ3rg7Hw0RSEXzPxwnuUt18xWZCkRDJ7iTx\n9nglX+SFyvd9/JKPV/TwSp5NCx6lYsmmBZt6xQbr5bKFEqV8aVKwpZS3+SecY3u7JDoTJLoSJDoT\nxDur2/rsv3CloiHOW5OYviDw6tPTXLg+GQRtvCBo4zNe8OhMVAM3BQ+SEYdM0afgQSHnMVzTCWfb\nmmqD1M6jBb725GjDxws58ImrVlS2P/GzAY6Ol2yDfE1DfjTkcHZvjJest70/BzIlfr43SzTsEAtT\nVy4adjilK0o8Yq/3kZxH0fODhn2IhBZ/L45o2KEnFaanpqdTI4WSzxPuM2RKDt2r1jGSs+/XaN4L\n1msXf94DOA3r5EEh7zOyQH8Hww7V9zJ4zyOhIHhTE7iJhKpp2HHsKFSOzQuHass4hGvKhx27PTm1\nx4UdCE0qawNF4RA4sDQCjLW9fE4k37c9CsoBnCBQ89zOnTilEhtWr64GgorFamCnvF4OcpSDQsVp\n9pVK1XOUivVlinbfCyFAdLxOtgDTQvBDIVY7Ds/+4btaXZWTznwEZN4CjAGfn5D/dWAvcJMx5vZG\nQ48ZY7YDBrinwdBmf4ftKXMToICMiIiISAOVRtiSh+9VG2TjnfHKj+fR/lEKmYJtdK1prPVLPoll\nCbpPtT1IcsM5nvvxc9WG2aDRtpS362defyZtvfbOxmf+7ZlJwZNjHAMgvSJdCcg4IYeBXQOT75B3\nIJaK1eV3bejitCtOI9YWs0vapuHo5Mabni0zHB/6JOTP5kf2FEWbnqdBdsOy/jRl/Fnuq83Dr277\njfMq237NeWrXG5SrWw/Kl9Pc4Rz4MBAZqDtfXeoFnznPr+Y3Wi+XK5ed6VKqntsv+XieV/181wRb\n6vKCdKF6oSykcCxMNBWtBF3infFK4CXRmSDWHiMU1gS0cnyWJcMsS04dBAAbAPmrK1bg+z75kp0z\nJVP0yRQ8MgWftTXz46ztiPCyjUmyJZ980AMjV/LJFT0cp37y+XKPkEaWp6rX95HxEt94eqxp/f7z\ny7vpbbN1+NqTI/xyf/2QbSEHIiHY3B3j3cFcO/mSz8d/OlBphK9tuA87DpduSnJqtx3a7ekjeX59\nKFe3Pxz03oiFHS7ZWJ2r5N8P5ih4vm2wd6hr5F+WCNMdBF1yRZ+BbKnSuB9yghu8g7KJiFPpHeL7\nPo5jgw/tUZ/2qM+WFdPflV0o2eDaeKE+zdRt2/exNh0veBTm3mlmXpV8KBV9ssCU/3C3UMipBnDq\n3sfyeqhmvea9dsrr2HhJ/XVgt52abcdxasqCgxPkl7frjykHi8plnKCuBPnlbSc4pxOc06mpE1SP\nLR/j1B5D/fnq86rl7JnjOE4cHNiXWoUD5LrWTTjOqT5u8D9nwnr9PmfSvsr+Zsd4PpQKUPLsXCWl\nInjBulfCKZZsXsnDKRUnrTtFL8gr4pRKUCpv2+Mcr2QngSqVJpQr2bRy/pJ9vIk9McrnqdmuDSLV\nrdddiQ3ym5adfEz1/JNLOXP87M01+DXd4y2GEKjjeTgEvYlkXh1XQMYY04EdquxHruvWfRtwXdc3\nxjwEXA9sAibPpgoXBOnPGuz7eZBuP546SnODvxzkR1/7UaurITJn5caWfqe/xTURmbsX1HXcsD3X\nZk68665ZQ/FMyx1P2ekau2dadlK5ZkWdCWWnalStKTvlOaHurvGZnnO6so984ZFquWbP3bE9XX70\nV/XfMRrdxV7IFOj7Vh993+prXr95NKtAxrw96Il/SDk+5cCizF4oEiKajhJLxYimokTTUZumosTS\nscp6uUwoomCLLD6OEwxDFoFlTcps6YmxpSc2o/N94JJuckHQplCywZ7ysjxdDRR1JUL8zuYU+ZJP\noURduULJJxGp/juajITojIcoeD5Fz5b3fMiXwKv5t67o+ewdbn73d22vn2cHC3xv9+TJpe3j1Qdk\n/uXXIxxtMgTYK09Nce1We/PG7sECn/r5YNPH//ArulmRts1SX3hkmEcO5ILG9A4cIPzMYUIOnN4T\n5R3n2yBTpuBx14+OEWJCw3zQcH3d1ja2r7N1fWhvhh8/n600yocdaI+H6ExAPBLlred0kCvZ9+br\nvxlhJOfj4+P5BItdX5YM05UIkS36DGU9Do4V8Twq5Up+9ZiTVfn5FeqenNWqFAAAEJlJREFU5En8\nhOdFMDzb3uafgRMvwpybgsPBIkuW488tCv0O/9A810SOt4fMxiDd22T/80F6Ko0DMqc0O9513RFj\nzGBw7Lzo6zsxP/aXiuJAcUneSScyUUsa2ETm2Qv9Op7p85/N69TqsjM+p78wZWf8b/x8n3NiDwUR\nWfxC4EQcnLCDE3EIRUM4UYdQJEiD7dr18r6JeROVgv+yZMEDRoNFFpR++y5u0WDJjELfwWq+CWFv\n228w4tKhPUcoN4ltS8C2jfX7PR+Kvr1ZvK/vSCXvjRtCeL5DyXbeoxSsl3wHf2CYvlH773UyE+bi\n5eG6sp7v4Pk2kFF7Ta2NJegKh6qBi5qyxdGj9PXZHrQHM2G6okn88n5s/WzqsOe5ZxmM2scfHkkB\n0SCoYYNPpZLdNzAyRl/fYQAyJYeBTEfT13b3nn2EgzmDdh6Ls3ug8dB28ZDHs7uqjYzPHGlnpNg4\nSLw6MsZ5XfYe5OecCDuPNZ8s58aNw6TC9r144GCSPeONh8/qipY4qzNP0XfIlhweG2zeG6gzWiLq\n2J404yWHnKdgtojMnu/M7W+HF4noe0WNLVu2HPc5jjcgU54xdbzJ/rEJ5eZyfLNj5Tg5UXU5ExER\nERE5YYIxSZxg/BSnMmZKTV6jNGxTJxj3xQnZ4El5vVGeE64GWCrrDbYJL5G5AURkSiEHYs7kvJWJ\nmd0RvSpZYlVyZnOkvKI3O6Nya5Il3rJpZhHYq9eM1wRrqiNSTry/Ix7yuXnTMJ7vVPbXlu2IVp/v\nGe151iaLk8r4OIQmjFl0WW+Gglcu51A7KmZ3rPq6dMdKXLZy3JahWqZcvj3iEw96EfxWV54NqWK5\nPzi1nZs7oh5ndBQAO0dNPORX9lXSIDhlOvIsj9vntWc8zO7R+iBP+X6ZkONzQU8+CLjBL4/FyZSq\nr5NXHiTJh+XxEqsSJUo4DOcdnh2L2te+9jUNzrs+VSIc8vF9h/5siLEgcDXxucdC0BXzgl5DcCQX\nnvBcqs8tGfYJ25eZXMkh59X01q5dcSDi+PjB61eccJ7FMbCTyMnNj8ZQj7j5NR9zyCwZ8xHBOln0\n9fWRPj1N7+beVldFZM6OHbNDinR3d7e4JiJzp+tYTgYvlOt4QRqt53jKWdVliqJNz9Mgu2FZZ5oy\nTu2qMymvvO00GRjdcSYfU5s3cX+zfXXrBEELx6nbt2//PnBg/br11fyatLzuOE5dsKQcVKnMG1GT\nX1euXFZkAZXvYNVvX1nKWnEdz+aRti3AOc9cgHOeN4uyS5nn+3VBJJv6lUBVJSBVs29iHhPya4N4\n+OAFUae6wF7dsbZg7f69e/fiA2vXrquUKYfdJh9bv11bp9p9E/fXHl8pVzmf37Tc5LKTm9snl/cb\n5tfVb2JdmpVrcp5Jx9Wdb/IBMznflOefMnPaXbN/nPK+aU/avMCcwyJzPPDYsWNEQ76+V8yz4w3I\nDAdps/6abRPKzeX4ZsfKcUqsTrBpy6ZWV0Nkzop9tiu6rmNZynQdy8lA17GcDI4U7RA/nRs6W1wT\nERERmalQ+caJOovgBohjtmfVluUzm29KZDEqD0Ep8+t4B57cjY2xrWuyf2OQNhtorjyvzKTjjTGd\nQOcUx4qIiIiIiIiIiIiIiCwJxxWQcV13DHgc2GaMqZspzRgTBi4C9riu+3yTU/w0SC9usO+lQfrj\n46mjiIiIiIiIiIiIiIhIqx1vDxmAzwMp4F0T8m8CVgL3lDOMMWcYYypjWbiu+yjwK+D1xph1NeUc\n4I+BAvBP81BHERERERERERERERGRljneOWQAPgO8CfiYMWYj8DBwFvA+4AngYzVlfwO4wBk1eX8E\nfB/4oTHmE8Ag8EbgMuAO13WfmYc6ioiIiIiIiIiIiIiItMxx95BxXbcAXAF8Engd8I/AW7E9Y17h\nuu74NMf/HHgZ8BRwJ/BZYBXwNtd1//J46yciIiIiIiIiIiIiItJq89FDBtd1h7E9Yt43TTmnSf7D\nwKvnoy4iIiIiIiIiIiIiIiKLzXzMISMiIiIiIiIiIiIiIiJTUEBGRERERERERERERERkgSkgIyIi\nIiIiIiIiIiIissAc3/dbXYd5NzQ0dPI9KRERERERERERERERWVQ6OzudmZZVDxkRERERERERERER\nEZEFpoCMiIiIiIiIiIiIiIjIAlNARkREREREREREREREZIEpICMiIiIiIiIiIiIiIrLAFJARERER\nERERERERERFZYI7v+62ug4iIiIiIiIiIiIiIyElNPWREREREREREREREREQWmAIyIiIiIiIiIiIi\nIiIiC0wBGRERERERERERERERkQWmgIyIiIiIiIiIiIiIiMgCU0BGRERERERERERERERkgSkgIyIi\nIiIiIiIiIiIissAUkBEREREREREREREREVlgCsiIiIiIiIiIiIiIiIgsMAVkRERERERERERERERE\nFpgCMiIiIiIiIiIiIiIiIgtMARkREREREREREREREZEFpoCMiIiIiIiIiIiIiIjIAou0ugKy+Bhj\nEsBjwOnApa7rPtjaGolMzxjjAG8C3gmcCbQBe4CvA3/huu5QC6snMmPGmEuAjwAXAAnsdfw17HU8\n2sq6icyGMWYzcC/w28AfuK77j62tkUhjxphu7N/d1wKrgSPAN4E7XNc90Mq6icyGMSYG/CXwfuCH\nruu+orU1EpkdY8wK4MPAdUAvMAj8GPs9+FetrJvITBljzgb+BLgEWAMMAz8F/qvruj9vZd1E5soY\ncydwB/BPruve3OLqLHnqISON3IENxogsJX8NfBHIAR8CbgX+HbgdeNAYE21h3URmxBjzJuBHwHps\n4+C7gcexX+j/zRijf7dlSTDG/AHwCLC11XURmYoxJgk8iP17+zXgZuCzwBuAnxhjlrWsciKzYIwx\nwM+w17LT4uqIzJoxZiXwK+APgf8VpJ8FLgd+bIw5t4XVE5kRY8yFwP8PXAZ8Dnh7kF4K/MgYc1EL\nqycyJ8aYs4A/bXU9TibqISN1gkj+B7CNKPrCI0tC8OX8vcA3Xde9umbXPcaY+4FrgWuA+1pRP5GZ\nMMbEgb/H9ojZXtOr6x+MMfdh79y+EnvXtsiiZYx5J7YB5ZPYwPhnW1sjkSm9FzgbuMV13U+XM40x\nj2G/N9wBvK9FdROZkSBw+CugDzgfeKq1NRKZk78E1gGvc133f5czjTG/AO4HPgj8fovqJjJTn8EG\nxS92XffZcqYx5iHs94o/xbZPiCwJwU2hnwN+jdqJ543utJWKmg/Zc6jxRJaWHPBnwEcb7NsRpBtO\nWG1E5mYV8L+BuxoMsVcOwvzWia2SyJxd57rue4B8qysiMo23AGPA5yfkfx3YC9wUDIsqspjFgP8B\nvMR1XbfVlRGZo/3Al5l8E923AR99D5ZFLmhT+yfgttpgTEDtErJUvRu4EDscqswT9ZCRWrcC24FX\nYofLEVkSXNd9Eniyye4zgvTxE1QdkTlxXfc57FA5jXQG6fCJqY3I3Lmu+99bXQeRmTDGdGC/J/zI\ndd1c7T7Xdf3gbtbrgU3ArhZUUWRGXNc9iG0wEVmyXNf9aJNd7dgeB/oeLIua67oedij1RtQuIUuO\nMWYdcBfwP13X/Z4dHVXmgwIyAoAxZj3wX4Avuq77gDHm5hZXSWROgslM09hJed8M3IKddOz7La2Y\nyBwF1/TbgHHscA0iIjI/Ngbp3ib7nw/SU1FARkSkVf5DkH6ppbUQmSVjTBfQBlwCfAzYTeNRPUQW\nq08BBTR877xTQOYkZIy5aQbF9ruu+72a7b/HDity+8LUSmR25ngdA9wIfCFYPwK803Xde+a1ciIz\ndBzXcfn48lCSW4HbXdfdP5/1E5mJ472ORRax9iAdb7J/bEI5ERE5gYwxVwEfBn6JbbMQWUoGgtTH\ntlH8ieu6R1tYH5EZM8b8HvAa4A9d1z3c6vqcbBSQOTl9cQZlvgN8D8AY80bgauBt+pDJIjKr67jG\nt4HLgBXAVcB/N8ZcAbzVdd3M/FZRZFpzvY4xxiSBe4HXAp9yXbdZ93eRhTbn61hERERkLowxbwHu\nAZ4Fftd1Xc1LJ0vNpdjRO84F/gi4zBjzetd1H25ttUSmFvTu+iTwA6o3PMs8UkDm5LRsBmUKAMaY\nbuBvgB+4rqsPmSwmM76Oa7mu2w/0B5tfMcY8CnwCeAL4i/mrnsiMzOk6NsasAP4VeAnwF67rfni+\nKyYyC3O6jkWWgPJ8BOkm+9smlBMRkRPAGHMHcCfwMHC167qHWlwlkVlzXffBYPUbxpj/CfwKuNcY\nc0Yw34zIYnU30A38B9d1/VZX5mSkgMxJyHXdwVkUvxvoAj4aTNZUVm58WRHkH5442anIQprldTyV\ne7ABmStRQEZOsLlcx8aYXuBH2Emk/8B13X+c73qJzMY8/j0WWWx2Y4cRWddkf3mOmb4TUx0RETHG\nfAK4DXtz0g2u6zYbVlJkyXBd91ljzAPA7wGnoe8WskgZY14G/CH25v3RCW3FAKkgb8x13YFJJ5AZ\nCbW6AtJylwMx4PvAnpqlPDTOV4LtC1tSO5EZMMZ8yBhzxBhzeYPdXUGqALQsesaYDuywexuA1ygY\nIyKycFzXHQMeB7YZYxK1+4wxYeAiYI/rus+3on4iIi80Qc+Y27BD5FyvYIwsJcaYrcaYPcaYf2hS\nRG0TshRcBjjAe6lvJ94T7H99sP7xltTuJKE/AvI2INUg/3Lsh+/PsEM9PXEiKyUyS/8O9GCv2Qcm\n7HtLkP7khNZIZG7+BjgH+wP0W62ujIjIC8Dngb8F3oX9G1x2E7AS+EgrKiUi8kJjjLkU+HPgPuDt\nGtJJlqA+IAG83hjzF67r7i7vMMacBlwMHAaeblH9RGbiXuxwkY38H2yb2yeoBmhkDhzf11BwMpkx\n5mbsXSmX1ox7KbIoGWMcbJf2a4AfAl8FxoCXYwMy/cD5ruvub1klRaZhjPkt4FHgNzRvADzsuu4P\nTlytRGbPGHMV1Tk5XgHcAnwKeDDI03Usi4YxJoodJvI87OSlDwNnAe/DNqy8RHdoy2JnjDkTOLMm\n66vAk9R/n/imrmVZzIwxv8ROfn4r0GzOGF3HsqgZY94IfAk4iv3+uws7FPWtwArgbZq/WZYqY4wP\n/JPruje3ui5LnXrIiMiS57qub4x5LbbR7y3AfwOiwD7gM8BfKhgjS8A2bNfgM7ENKY38ANvALbKY\n/T3VuTfKbgkW0HUsi4jrugVjzBXAR4HXUW0IvAf4iBr+ZIn4fSbfzDHx+8Qm4NkTVSGROdgWpJ+a\nooyuY1nUXNf9Z2PMc8CfYr9TdAHDwC+Av3Zd999aWT8RWRzUQ0ZERERERERERERERGSBhVpdARER\nERERERERERERkZOdAjIiIiIiIiIiIiIiIiILTAEZERERERERERERERGRBaaAjIiIiIiIiIiIiIiI\nyAJTQEZERERERERERERERGSBKSAjIiIiIiIiIiIiIiKywBSQERERERERERERERERWWAKyIiIiIiI\niIiIiIiIiCwwBWREREREREREREREREQWmAIyIiIiIiIiIiIiIiIiC0wBGRERERERERERERERkQWm\ngIyIiIiIiIiIiIiIiMgCU0BGRERERERERERERERkgSkgIyIiIiIiIiIiIiIissAUkBERERERERER\nEREREVlgCsiIiIiIiIiIiIiIiIgssP8LNaZiKo46rRYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 818, + "height": 193 + } + } + } + ] + }, + { + "metadata": { + "id": "W_B8n8wuIAz9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Adding a constant term $\\alpha$ amounts to shifting the curve left or right (hence why it is called a *bias*).\n", + "\n", + "Let's start modeling this in TFP. The $\\beta, \\alpha$ parameters have no reason to be positive, bounded or relatively large, so they are best modeled by a *Normal random variable*, introduced next." + ] + }, + { + "metadata": { + "id": "_52Ml-KhIAz9", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Normal distributions\n", + "\n", + "A Normal random variable, denoted $X \\sim N(\\mu, 1/\\tau)$, has a distribution with two parameters: the mean, $\\mu$, and the *precision*, $\\tau$. Those familiar with the Normal distribution already have probably seen $\\sigma^2$ instead of $\\tau^{-1}$. They are in fact reciprocals of each other. The change was motivated by simpler mathematical analysis and is an artifact of older Bayesian methods. Just remember: the smaller $\\tau$, the larger the spread of the distribution (i.e. we are more uncertain); the larger $\\tau$, the tighter the distribution (i.e. we are more certain). Regardless, $\\tau$ is always positive. \n", + "\n", + "The probability density function of a $N( \\mu, 1/\\tau)$ random variable is:\n", + "\n", + "$$ f(x | \\mu, \\tau) = \\sqrt{\\frac{\\tau}{2\\pi}} \\exp\\left( -\\frac{\\tau}{2} (x-\\mu)^2 \\right) $$\n", + "\n", + "We plot some different density functions below. " + ] + }, + { + "metadata": { + "id": "OLw3-8x2hxkm", + "colab_type": "code", + "outputId": "2ba9f921-56b7-4530-8de0-544dd320ff6c", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 239 + } + }, + "cell_type": "code", + "source": [ + "rand_x_vals = tf.linspace(start=-8., stop=7., num=150)\n", + "\n", + "density_func_1 = tfd.Normal(loc=float(-2.), scale=float(1./.7)).prob(rand_x_vals)\n", + "density_func_2 = tfd.Normal(loc=float(0.), scale=float(1./1)).prob(rand_x_vals)\n", + "density_func_3 = tfd.Normal(loc=float(3.), scale=float(1./2.8)).prob(rand_x_vals)\n", + "\n", + "[\n", + " rand_x_vals_,\n", + " density_func_1_,\n", + " density_func_2_,\n", + " density_func_3_,\n", + "] = evaluate([\n", + " rand_x_vals,\n", + " density_func_1,\n", + " density_func_2,\n", + " density_func_3,\n", + "])\n", + "\n", + "colors = [TFColor[3], TFColor[0], TFColor[6]]\n", + "\n", + "plt.figure(figsize(12.5, 3))\n", + "plt.plot(rand_x_vals_, density_func_1_,\n", + " label=r\"$\\mu = %d, \\tau = %.1f$\" % (-2., .7), color=TFColor[3])\n", + "plt.fill_between(rand_x_vals_, density_func_1_, color=TFColor[3], alpha=.33)\n", + "plt.plot(rand_x_vals_, density_func_2_, \n", + " label=r\"$\\mu = %d, \\tau = %.1f$\" % (0., 1), color=TFColor[0])\n", + "plt.fill_between(rand_x_vals_, density_func_2_, color=TFColor[0], alpha=.33)\n", + "plt.plot(rand_x_vals_, density_func_3_,\n", + " label=r\"$\\mu = %d, \\tau = %.1f$\" % (3., 2.8), color=TFColor[6])\n", + "plt.fill_between(rand_x_vals_, density_func_3_, color=TFColor[6], alpha=.33)\n", + "\n", + "plt.legend(loc=r\"upper right\")\n", + "plt.xlabel(r\"$x$\")\n", + "plt.ylabel(r\"density function at $x$\")\n", + "plt.title(r\"Probability distribution of three different Normal random variables\");" + ], + "execution_count": 6, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABoUAAAG9CAYAAADTMX8LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8VPW9//FXNkgIEgg7BgzrN6gV\nFxQVFereirVaFQWsipQrtbdeb9vr9bal6K1tbaXWKlC1WrRVQNtf8VaUqiyuiIKKQuULQRDDokCA\nLGwhmd8f3zPJZDKTzCRnMlnez8eDx+TM2T7nO+ecGb6f8/1+UwKBACIiIiIiIiIiIiIiItK2pSY7\nABEREREREREREREREUk8JYVERERERERERERERETaASWFRERERERERERERERE2gElhURERERERERE\nRERERNoBJYVERERERERERERERETaASWFRERERERERERERERE2gElhURERERERERERERERNoBJYVE\nRERERERERERERETaASWFRERERERERERERERE2gElhURERERERERERERERNoBJYVERERERERERERE\nRETaASWFRERERERERERERERE2gElhURERERERERERERERNqB9GQHICIiIq2TMSZQz+wDQBGwFPid\ntdY2c0wDrbVbErifscAy4DNrbX4c620BjgO+aq1d7r03A/gZ8KS19ibvvXxgM4C1NsWnsH3REuON\n9nlEKu/mZoyZC9wI3G2tnZGMGPxmjDkT+C1wCpAG/Le19reN3NZcXPn8yFp7v29BtgKR7lfRzhdj\nTGfgIWAc0A342Fp7ijdvGDALOAvoCMy21t7ePEfRsoTei4CXrbWXNLD8cmAMSbxHNCdjzE3An4DX\nrLVjkxuNv0I+y5uttXOTG03r4tdvJz9/G4mIiEhiKSkkIiIiTbUA2BkynQL0B04DbgVuMsZ821r7\nXDKCa2GeAHJxCbP6lAAPRpphjNmOq+y8yd/QmiRqvPEwxnTytvXzOBMoRd7+i5saQ2MZY/4N+AN1\nK9VeBvYB7yQjLr8ZY1KAeUA+8C/gdaAwhvWilY/UFu18+SFwE1AO/AXYHjLvUVxl+FZgMfBhwqNs\nJk28311sjLnaWvtXn8MSaWuC398lSY1CREREmo2SQiIiItJUv7PW1qnwNsZ0AH4B/AD4szFmpbV2\na7NH14JYa++Jcbli4D/C3zfG5AF9/Y6rqaLF2win4lqexLv/Qp/23xSnR3rTWvsM8Ewzx5JIvXAJ\nIYALrLU761k2VMTykdrqOV9Gea8/t9b+Ksq88ZHuxa1VE+93e3Etqh4wxrxkrS33LzKRtsVam+zv\nTxEREWlmGlNIREREEsJaewT4L+BjXJdGk5MbUZvQ1ivWW/PxtebY45EV/COOhBC0n/JJlGC5Ryrz\nzHrmtWZNOWc+wrVizcN1dykiIiIiIh61FBIREZGEsdZWGWNeB74CnBx8P2Rcg0XAHcAfgZHAvdba\nX4QsdzauBchooCdurKL1wHO4cTMORtu3MeZyXJdLI4AO3nqzrbV/jLDsMcDtwDeBYbgK2L3AKuAB\na+0r9ewn1YvxZmAwcAR4D7jHWvtG2LJbiKHf/Ehj9ISN4XSjMeZG4DNcq4K7gH9aay+Nsr1zgDdw\nXcP0tdYeiLZvb/ljcBWpV+Oe1N8DvAr8JNZ4vfdTcV1e3Yg7B44BdgMbgKeAJ6y1gbBxQAB+Zoz5\nGd64FyHjFKwDzsd1w3ceMN9aOzWWcQyMMaO9+M8AsoFPcefgA9baoyHLzaWeMYDC54eMsRS02RgD\n3rgW9W3PGHMi7hwdiyvnw15cz+Na4O0NW34L7vw5HagE7gbOBLoCn+POhXustRWRyiBKufTAtea7\nHNcCKA3XNdkS4H5r7YYI+w9OB8/JqOMlNVQ+Yct2BX4OfAPog+sOcDFuzKKdIcvdRGz3j1OA/8R1\nrdYbKMMlC/5orX06Srw5uHvBVcBQ7+2twP8Bvwr/TBpijLkI+DGuFVwq7j40x1r7eJTl51L/+fUn\nY8yfcNf+Fu/YgoJlGzreV/Aa/DbuXtgJ+AI33tt91tpPwvZ/Ewko25BzpSfuXvAT3JhUnXDn/KPA\ng9baQNjyEHK/i2ecEi++rwP/YYyZa639VxzrYow5DvgRcAkuuVSJu85ewl0b28OWX44rj2uAzsAM\noB8w2Fr7eej4RcAh3Ll+Gu6aWwv8zFr7ijGmO66V7Tigh7fPOdbamRFi7IW7fr+G+/7pAOwC3gJ+\nba19L55jjrD9m2jgfPC6lPw2cAPuez4H9139L+BJ4FFrbVXYduM6H0LWG4Irt/OBLriyeQ743waO\nI67fEsH4rLUpxpgbcGU8FDiI+y79obV2kzFmhBfP2bjvlY9wn+NL9cXj7WMZ7t7/s2itiI0xP/GO\nbam19gLvvaaUd2/c/WgCUGytNWHza3Xv2Vy/jerjfb9/HzdmWndc95rvAbOstS9GWL43cCfumjgO\n16XxDtw18aC1dlWs+xYREWnL1FJIREREEm2f95oZZf58XEXQXKC6gtIY813gTVwF2xZcEmEZMAS4\nH3jNG3w9kgnA/8NVVD4NLMdVnjxmjJkeuqAxJht4G1fx0h9XIf9HXAunrwEvG2Pqa+U0B5iOS1g8\nCWwCLgSWGmMuqGe9eD0IrPT+/sSbfsL7B3CR191SJOO91wUxJIQygFdwlWA5wLO4CvGTcRUxfeKI\n+WHgcVxl9KvAY7iKmZNxZfwnb7ngmETBz3+lNx1pLJA5wCDcuCrvxhjHebhzpyOu9cCLuEqqX+Mq\nH5viHWqPp/Qnb7reCmhjzBXAalwCoBiX0FmMqwSeDrxnjOkXZfWRuIrJHOBvuLIdiKtY/V2sgRtj\nhgIfAP+Nq8RehCufcuA7wAfGmPNDVnmCms8M7zgfpP7xkmItn0646/183OfzrPfejcA/jTHRHmaL\ndv+YgDuPJuHGnHrSi2UU8BdjzFyvcpWQdfriKjvvxlU+/h1YiLt3/RewxksUxMQY803cZzoGV+n/\nFO5e9ntjTExdSVJTftu86Veoufb/SuSyfdnbf5p3DI/jkg/LcNfNLly5fmiM+Vo9+/atbENcjiuT\nw7jP+B1gOPAALkEaFO1+FzMvaXM3kAHMimddY8yZwBrgNuAorqyfxz1UeQeu7E6MsvopuPvUu17M\nh8Lmn4r7HA942y3CVXi/YIw5Ffd9dSbwD9w1MRi43xjznbAY+wHv487NLrhr9wlcEvNq4G1jzMXx\nHHcDIp4PuPNrLi4x8gbuPv8q7j4/x5sXTaznA8aYQd788UAp7rx7C3cuv0iUuo2m/JYwxtyK+x77\nGHevrcIlSF7xEkKv4xJxf8ONrXY68H/GmOH1HHNQMHl6dT3LBL+7nwp5rynlfRswEXcuL6wvuJbw\n28gY8yNcAvsK3HfGXNx1eQmwKPw+6j3k8B7uGq3EXRNP4h50mAi8aYy5JJZ9i4iItHVqKSQiIiKJ\nNsR73RJh3lnAa8C3Qp8INsacQE1l5zettc+HzOuGqwg5Hfckdq2KI89dwFhr7Vsh603EVYj+2Bjz\nuLU2WMn6beBE3JP3p3rj4wTXuQVXCXK/MebPEVpg9AMuAIy19gtvnRTgEVyl+oPetpvMWvsfXquB\nUcC7oWMAGGNew1U8fxv3hDkh81KpqXSaG8OuvuPt4wtgpLW2KGRbv8Y9fd8gr4L9VlxScHhYS4/e\neJV5xpjfWms/wnuaH1chuDhKy5NjcQmkU6y1h2OJw/NjYELogPPGmGCi6GZjzJzGPlFvrV0MLDbG\n3O69dU/ok9aRGGN64iqqOgC3W2t/HzKvI64lwleB3xO5wvDXwHettU+FrBc8vycbY35YXyu6EE/i\nWkA8C0wMazF1L/A/uPHABllrD1tr7/Fadd3sHXuD41DEUT634yqdbw/GYYw5HlcBeBIusbc0bJ1o\n94+BuIrTNOA6a+2CkHkGlzS5Edca6s8h2/sT7n71N688DnvrdMRd0zfiKt0brND0kquzcBXVv7DW\n/jhk3mBcZXKDQsrvZNz5/0yEFlbRyvZHuFZXG4DzQ+55wcruObjPd4i1dh+1+V22QfcDX7fWLglZ\n78e41hbfA37jHXfU+12cHsS1lBprjJkYrYVYKOPGw5uHS7r+FtcqJNiCKRV33UzC3U9HRtjErcD1\n1tpole4zvPkvhOzvDVwrxpdxyaDJIfucibvv3oRLAATdjjsn3gPOs9ZWJ5+MMf+LSxLPxLXEaapo\n50MB7n4QAM611q4OmTcc+BC4wRjzYOi8EDGdD55f4ZK1y4BLvS5qMcZ0wt0zzw7fuA+/JX4EnGyt\n3eytk4drYTQQd47fHrwevWv+Ddw5Own3vVOfv+ISTl8xxhhrrQ2L/Xjc74cDuHuSH+V9A3Catfaz\nBmKDJP828lp33YdLql5qrX09ZN4o3LXyU2PMKyEtj6bgEljzrbXXh23vW7gy/wXwzxiOX0REpE1T\nSyERERFJGGNMf1ylJLinTMPlAjPDu4jBVaqlAwtDK3EAvO6bgpUtk6O0IHgmNCHkrfc0rjKnA+5J\n36D3gGnAbaGVHp4/ARW4ActPiLCfDOCnwUoPbz8B3NOxAeAEr1Iq0YJdUd0UYd5YXOueDdbat2PY\n1gTv9fehCSHPT3BdycUiH9dty6c2bOwZr7y+jqvs31B31ai64rqMiSchBLA8NCHkxfA6XosK4No4\nt9dU38ZVOH8QmhDy4jqMe8oZ4JvGdQ8V7q3QhJBnAa57nkxcNz/1MsachqvorcCd+0fDFpmBa1HS\nD9eNVaKVA/8ZGofX3VfwnB0aYZ1o949/x5XDvNCkhbdNS003iLcF3zfGnIR7+rwMmBJ6jnl/fw+X\nkDzfq5htyBhc2ZUS1rWVtXYTLrGXMF7y4gfe5G2hCSEvhj/gkmzdgesibMK3sg3zbGgCwBM8lwcY\n132fb7zzKRjL/caYLjGsFuxK8Qtc14XVZeB1y3UHrvXQad51FK64noQQwJvBhJC3zSPUfD92Be4M\nK/e/ea/h3yUv4c7LH4QmhDyPeK8nGtctY1NFOx8OALfgktS1khDWdU0YrKw/N8p2YzofvFYrwd8S\nPwkmhLz9HMB1L5YWYftN/S3xSDAh5K1TRM09aXtogtZLjPyfN9ng976XiA12f3ZNhEWC1+VCa22Z\n93dTy3tJjAkhSP5vox/ifkP8NjQh5G1rJS6hCLXvNQO91zq/day1fwPOof6WWSIiIu2GkkIiIiLi\nO2NMF2PMpbjuqLKAl2zkPvYPAysivH+e91qnv3jPElzFQjcgUgVttPWCFQXV4xtZa1dZa/9grV0U\nvrBXAbjDm4xWWVlnX14SJFiRdHL4/AT4K7AfGGrc+EGhgt3PzG1oI15F8ineZJ2WDF5F3PIYY9qE\nqzg9xRjzP+Hd81hrN1hrP45QmdmQZXEuD3GcD82k3vPbWrsGN/ZSGq71QLg64zF4ld9fepOxVKwH\nY3jXWrs7wvYqcC0DwCWPEm15lGRfcNyWSMmxaPePYJd30T734LV+hlfZHLrOigitZvAqZYPl8dUo\n2w0VbEHybpRz/OUI7/npJFxXhIeIfs0EyyHS8fhZtqEijSUSOjaPr0khqE4A/wWXHK937BlP8Np4\nNUILCLzr5UNvMtK10dA9KlK3l8HKc2ut/TLKvFoJLWvtcmvtLBt5fJbQJKAfZRrxfLDWbrXWPuEl\nGSMJxhEthljPh6/guv88Qk23gqFxrKHm/heqqb8l6vusIsUe8bOqxzPea6RERfC7u7rFnQ/lHfP3\nZzJ/G3mtioL3pYbuNaH3r2Brqx8ZY+rc16y1b4Um+URERNozdR8nIiIiTbXC9RoUUQDX1U60p8Z3\n27ABkT3Bpz0j/ufdWltmjNmDq/QcgBuvI9SnUfYXrDDpG/qm1zXT7bgKvt64p7XDRRojo9hau7+e\nfQ0K31ciWGsPGmPm4Z6Kvhk3fgLek8/fwo2DEN6yJJJuuDEjoHalYqiYnjK21n5pjPk+MBu4F9dt\n3xu4sQ8W2bAB7uMQqeKvIXGdD82g3vPbs4Wa8zvc51HWqfReY3nwK9YYiBKD36KdV8FEUaRWANHu\nH/ne6zXGmEhJNXBPuWfgxmv5KGSd44wx0cZlCpZDpFZL4Y71Xpt0HTVBvvdaBcyMco8Odu0Z6Xj8\nLNtQdc5da21lSHyJemjxR7gWQLcZY57wkgjRxHptjCTytdHQPSq8BSbUXLt1ErQh8+p8BxljxgDf\nxY0Z1ZPIyYho4zvFI9r5gDGmD6711EW48747da/XaDHEej4Er6ed1trK8HU8n1E3edzU3xKN/axi\nPY9fwLVAHGGMGWqt3QhgjDkF1+JzJ278qWpNLO+4vj+T+NsoJ2Rf/2aMidSaNzhOZS9jTBdrbQmu\nS8xxuETRUmPM57jE38vAi/XEJCIi0u4oKSQiIiJNtQBXcRHqIG6w65e9rpKiKYvyfjAxUd+4KMGn\n77MizCtvYJ1gZQLGmCtxx5CB6xptCa7iJNg9zWTgmCjbi7afiPtKsMdxSaFrjTHft9aW4wZ17o4b\noyda5XSoTiF/R2vBE3PXbdbaOcaY93HdwFwS8u83xpgVuG5pPoh1e8DhCN2cxSLm86GZNPX8rtN6\nIQkx+C1aRW99ot0/gq3SvhllfqhgJXpwnWE03P1eLK0AguXb5OuokYLH0wlXqVufSMfjZ9mG8uPc\njZu1dqcx5qe4cbpmG2POidAVWlBTr41oZRdU3z0sWkx1GGO+hzueFFxF+0u4REVw+w197vGIeEze\n+Fhv4RIGh3Ct6T6n5p57MW6cuGhiPR8aup4g8jXV1M/Sl88qGmvtIWPM33APc1xDzZiAwVZCz4Qm\nwXwo74bOzWpJ/m0U2rL42w0G6+41Jd4DMpfiutL9DnCq9/dNwGFjzOO4McJiGXNPRESkTVNSSERE\nRJrqd9bad3zeZjnuP/md6lkmOC9SJUe0yobg+wegemDoP+AqPf4ITAtPOhhjriJ6xUd9lRq19pVo\n1tpVxpiPcN1GXYHrlibmruM8oRVuHaMsU99nEimulbhWBRm4gcC/BkzEPXn8ujFmuK07dpHfYjof\nYpTRxFigpsKssee3H1pCDIlShnvS/BJrbazdtAWPcZ61dkK9S8YmeC35ch01QvB4dlhr+/m83XjL\ntqWYjavIPhtXCf9ElOVa/LVhjOkJzMQlhH4G/G9oksvrCtTPpFA09+MSFKtx50StMeeMMU9Rf5Ii\nVg1dTxD582rqb4nm8DTufLyaukmhP4ct2yzl3QJ+G4V+FsZaG/PYg143t48CjxpjeuBaVF2J+130\nXVzrqliS2iIiIm2axhQSERGRlijY3degSDO9wadzvclI3cJE6+6qv/caTEIMp6a7mf+OUOnRCVcB\nE00Pb5lY9tUc/ui9XmeMyQKuAvYC9Q16HqqYmqeA+0RZJuJn0hBrbYW19jVr7X8DBvfUcWfcE7yJ\nFuv5AK67LYjcXRnUdJ/VFPWe355YurBKdAzBea1tDIZC7zWebu8as059guNt+HodxSF4PL2NMR0S\nsN3m6FLQV16Li9twLTzuM8bkRlm0NVwbZwEdcGPJ3Ruh1VOiz6+gMd7rL8MTFD7HEbyeenvjzUQy\nMMJ7Tf0t0RyW4Y7vFGPMIK9bxnxgrbX2w7Blm6u8k/rbyBvXLXh8jb7XWGt3W2vnWWuvBc7EJaKu\nMMbkNXabIiIibYWSQiIiItISLfdex0WZf6n3uh3YGGH+JVHWO8d7Xe29BltNV+Eq18Ldgqt4g8j9\n5qfgnkKtxatwyA/bl5+iVYo9jetC51JclytdgPnW2pi6qvIqTT/2Js8Jn+8lmsbGsi1jzAnGmGnG\nmGPD51lrD1CTqKozH3/GwAgV6/kAUOq91qnMN8b0op7BsT2xxL7ce70s0kxjzCjc+E6HiDCouk+C\nMZxujKlTuWeMyaTms14ePr8J/P5sI1nqvUYahwJjTJYxZrwxpnuEdUYZYyJWQhpjLjXGnBBjDMHK\n3DO8p+7DfS3G7TTWv3DdeqYSeRB7jDGnGmPO9cYei1VjyrapfDtnrLVvA3/CjSHziyiLLfdeLzLG\n1GmZYozph2uRCa77rmQIfmYlUcbYmRbydyKvuWAce8NnGGNG4Fpl+RHDWlwXk5m48ZPC93Um7p4Z\nbrn32tjfEgnnjdU035v8GjXXa6RxAJurvFvCb6OG7jW9jTFXGGOO8abTvXv0LZGW97qqDY5lGOl3\nh4iISLuipJCIiIi0RLNwyY1xxpgrQmd4gyzf603+Psq4EDcaY2pVHBljJuMGVj8APO+9vRFX0ZQK\nfD1s+StxY+Gs997qT11HgF+EVoB6TzH/3Jt8t4ExleIVTFgcF2mmtbYY+Duuy5dfe2//Kc59POe9\nft/rogioPq77iL3bq0m47poeDK8U96av9CZDn4Su9/ia4FJjTPjnewFwAa7Sa37IrGBS7MrQlgRe\nQmw20ce+CXZ3E0vsT+Kegj7JGPP9sLg6A7/zJucmamBsa+0aXKVbOvCQMaa6ZZT3Wf8aN9D3OuBV\nH3YZT/k01RzcGCIXGWNuCJ3hJUAexn3ms4PvW2v/BfwTVx6zvM87dL1LcfeNlaHXRT2W4FredQP+\nM2xbxnuvMeMoxcSraH7Qm/x5eKLLGDMI+BvwOhEqb+sRd9k2QaLuB3fiKtW/AxREmP8CsAGXOPpl\n6Azv3jUL952x2FprfY4tVsHK7TxjTK1EtTHmVlyyY5f3VqTvLr/jqJV0McYcD/wVeNuPGLyWI694\nkzPC7ledgQeoaeUaqqm/JZrL097rJbiyrMJ1ARuuWcqblvHb6He4Vn3fNsZcGBZDNq5b3IXAT7y3\nq3Ctpf9ojPlW+Ma8MjoRdz6sD58vIiLS3mhMIREREWlxrLWFxpjvAo8BfzfGvI6rpOsDnIcb0+If\nuDEVIrkXeNsY80/cIMyDcQMwA9xlrd3t7afUGDMb+HfgOWPM87jKwtNwlQdX4VpzFAC/MsacBfw0\nZD+bcYM+bzDGLMY9UXs2MALXyqNWhb8PVnmvY4wxb+MqNyZZa7eFLPM4cB2uldA6a+17ce7jYeBG\nXPcxa40xL3n7OQfXncyDwI9i2M79uLL7FvC5MWY5LhGSg/sM++NawcyNcHzf9iqxM6y158YZfyQz\nqH0e9fNiS8GNibUuZNnngHuAvsA6Y8yruErwC73XWcB/R9jHKlzLmueMMe8BK621d0cKxlq7zxgz\nCZfAe9AYMxH4CNeNUbCcVwL/1YRjjsVkXEuHa4BTjTErcGUyEtfF35fA9V6CoaliLp+mstZu9p4W\nfwp4yhgzDViDG/9iLO4p8S3AD8JWvQWXKBsHFBpjXsFVbp6Au64rgX+z1u6iAd6A5z/CXY+/MsZc\ngqvQ7YNrDfAAriuznCYdbP3ux3WZdAXwL+8etQt37V2Ee9L/cWvtS7FusAll2xix3O/iZq3dbYz5\nH1yCq04rOWttpTHmelwS4g5jzEVeLFm48jwOV2k+pSlxNIW19hNjzD+Ay3Fjsz2PK5/RuHPsQtx9\n7Ou4SvIl1tppUTfYePfhkot3eC1VNuC6MDsfl1D72ItpojEmgDvf3o62sQbcibs/XgZ87N3Ps3CJ\nlI3Ay4QlS3z4LdEsrLWrjTEWdywdgFejnOfNUt4t4beRtfZtY8yduAcU/mmMWeYdby7u/pULvI+X\n2LPWVnn3o+eAvxpjVnnlcQjXBd0FuDGp/iNRD1uIiIi0JmopJCIiIi2StfYJXOXG34BhuLFnzsVV\nQE4Grgzv5z7EU7iK7lxci5XzcJV6E6y1vw9b9ke4ipaduMGHx+EqNUdba18EfoV7+jYX9/R16O+n\nSuBWb5mTvRjzgZeAc621vnb9Za19Ddfl0W7gFFxyI7wMlnjxQ+2ES6z7KMeV12xchfgE4Bu4Fj1n\nEOO4C954B+fgKoq24Sopp+LKdxuu0nhsWNd2T+Oe9N2Pq3z1q8J8KTWtgq7HVcpbXIXXD8Pi3o8b\nt2EhrnJuPK6i7gXveMqJ7HvAe7jK8TOoGZsoImvtYuBU3GfUB5eIuwhXvnfgyqY06gZ8YK39DFfJ\n9ytchfK3cJV9AVwl6Qhr7cfRtxCXuMqnqay183DJrb/gkiC34Fqn7cZVlp9irS0KW2cbcDrwM1zy\n5GrcNT0A99T+mdbauXHE8ASuPN/GHfNNuHFP7rDW/hhX5gnj3R+vwg1ivwpXcTwFGIXrVusaa23c\niY3GlG0j44/lftdYj1KTdIq07/dx9/RZuC7Lrsfdu/bhksynNzU55YNvA4/g7knjcfePd4AzrLWr\ngbtwleLHUTMWja+stf8P9338Me7+eC1eeVlrp+MS38/gvkuuwF3/jd3XR7jfBM/jknk3e/t8CneP\nPhBlvab8lmhOT1PTJdufIy3QnOVNC/htZK39DS7Z/DwuOf8dXKKzEPfdPdpaWxKy/D9wyacnvLiu\n8dY5BXgRuMBa+yAiIiJCSiCQzFbSIiIiIuInr3ujzUB3oH+wVZSIiIiIiIiIiFoKiYiIiLQtN+O6\ncPqLEkIiIiIiIiIiEkpJIREREZE2whtw/H5c1zG/SnI4IiIiIiIiItLCpCc7ABERERFpGmPMw0Av\n3BgCHYDbrLWbkhuViIiIiIiIiLQ0SgqJiIiItH63ABmABX5hrX06yfGIiIiIiIiISAuUEggEkh2D\niIiIiIiIiIiIiIiIJJjGFBIREREREREREREREWkHlBQSERERERERERERERFpBzSmUILs379f/fKJ\niIiIiIiIiIiIiEhC5eTkpMS6rFoKiYiIiIiIiIiIiIiItANKComIiIiIiIiIiIiIiLQDSgqJiIiI\niIiIiIiIiIi0A0oKiYiIiIiIiIiIiIiItANKComIiIiIiIiIiIiIiLQDSgpJ0mzcuJGNGzcmOwyR\nZqXzXtojnffSHum8l/ZI5720Rzrvpb3ROS/tkc57aWuUFBIREREREREREREREWkHlBQSERERERER\nERERERFpB5QUEhERERERERERERERaQeUFBIREREREREREREREWkHlBQSERERERERERERERFpB5QU\nEhERERERERERERERaQeUFBIREREREREREREREWkHlBQSERERERERERERERFpB5QUEhERERERERER\nERERaQeUFBIRERERERERkRa16v7sAAAgAElEQVSt6mgVOz/aye71uwlUBZIdjoiISKuVnuwARERE\nRERERERE6rPhxQ18ufZLADr16MSgCweROyg3yVGJiIi0PmopJCIiIiIiIiIiLVZJUUl1QgjgwO4D\nrJ2/lrXPruXA7gNJjExERKT1UUshERERERERERFpkQKBAJ8u/TTivOLCYvZ+upd+p/VjwDkDyMjK\naOboREREWh+1FBIRERERERERkRZpz8Y9lBSVVE+nZ9V+vjlQFWDbe9t47w/vsW3VNqoqq5o7RBER\nkVZFSSEREREREREREWlxAlUBNi/bXPNGCgwYPYD8r+aT1T2r1rJHDx5l08ubWP3H1RRvKm7eQEVE\nRFoRJYVERERERERERKTF2blmJwf3HKye7prflY7HdCSraxbHnXscx55xLBmdancZd3DPQdYuWEvh\ny4XNHa6IiEiroKSQiIiIiIiIiIi0KJVHKvns9c+qp1PSUuhZ0LNmOiWFLsd2YdCFg+h5Qk9S02tX\ncW1ftZ39W/c3W7wiIiKtRXrDi4iIiIiIiIiIiDSfoneLOFJ+pHq6+9DupGfWrcZKTUulx7AedB3Q\nlV3/2sW+z/ZVz/ty3ZfkDMhplnhFRNqKffv2sXz5ct566y02bdrErl27SE9PZ8iQIYwbN47LL7+c\n1NS21dbkiy++4NFHH2XFihXs37+fHj16MGbMGKZMmUKXLl1i2sYLL7zAPffcU+8yqampvPPOO36E\n3CRKComIiIiIiIiISItxpPwIRe8UVU+ndUwjd0huveukZ6bT99S+HC47XN3l3K71uxh88WBS09pW\n5aWISCItWbKE++67jx49enDaaafRp08fiouLWbZsGffeey8rVqzgl7/8JSkpKckO1RdFRUVMmTKF\n4uJizjvvPPLz81m3bh3z589nxYoVPPbYY3Tt2rXB7QwbNowpU6ZEnPfhhx+yatUqzjrrLL/DbxQl\nhUREREREREREpMXY+uZWKo9UVk/3LOhJWkZaTOvm5OVUJ4WOHjzK3k/30n1o94TEKSLSFg0YMICZ\nM2cyevToWi2Cpk2bxs0338zSpUtZtmwZ559/fhKj9M99991HcXExP/jBDxg/fnz1+w888ADz5s1j\nzpw53HXXXQ1uZ9iwYQwbNizivMmTJwNw5ZVX+hN0E+lRCRERERERERERaREOFh9kxwc7qqc7ZHeg\na37DT2gHHXPsMRDy8PqX6770MzwRaWcWLFjAxIkTWb58eZ15ZWVljBo1imnTpjV/YAl0+umnc+65\n59bpIq5Hjx5cddVVAKxevbpR2963bx+jRo3ijDPOqPff6NGjOXz4cJOPpSFFRUWsXLmSvn37cs01\n19SaN3XqVLKysnjppZc4ePBgo/dRWFjI2rVr6dWrF6NHj25qyL5QSyEREREREREREWkRNi/fTKAq\nUD3d84SepKTG3kVResd0sntlU/5FOQB7Nu6h8kglaR1ia2kkIg17cMXeZIdQr9vP6ubbttavXw/A\nwIEDI84LBAIMHz7ct/21dOnpLp2Qlta4e+qBAwe45ZZbqqd37NjBokWLKCgo4Jxzzql+v1u3bnTs\n2LFpwcZg1apVAJx55pl1kmDZ2dmcdNJJrFy5ko8//pgzzjijUfv4+9//DsA3vvGNRpeb35QUEhER\nERERERGRpCvZVsLu9burp7Nyszim3zFxbyenf051Uqiqooo9G/fQ64RevsUp0t4VFlckO4RmY60l\nIyODvLy8OvOCCSNjTNT1582bR2lpacz7GzZsGGPHjo07zuZw9OhRXnzxRYBGj43Tr18/pk6dWj29\ncOFCFi1axMUXX8ykSZNi2oafZbp161bAdZkXyYABA1i5ciVbt25tVFLo0KFDLF68mLS0NK644oq4\n108UJYVERERERERERCSpAoEAny75tNZ7vU7s1aiBzI/pewwpaSkEKl2Loy/XfamkkIjE7fDhw2ze\nvJn8/PyILTyCSaGCgoKo25g/fz47duyIOj/cZZdd1mKTQrNmzWLTpk2MHj260UmhcBs3bgSIOhZP\nJH6WaVlZGeBaBUUSfD+4XLxeffVVSktLGT16NL17927UNhJBSSEREREREREREUmq4o3FlBSVVE93\n7tuZTt07NWpbqempHNP3mOrt7f10LxUHKsjolOFLrCLt3ZDc9nEtFRYWUllZGbHrOIBPPvmE7Ozs\nqK1MAJ5//vlEhVftiiuuiCtJcumll3LPPffEtY8FCxbw9NNPk5+fz4wZM+KMMLoNGzYAMHTo0JjX\naY4y9cvChQsBqsdiaimUFBIRERERERERkaQJVAX4dFlIK6EUmtyyp0tel+qkUKAqwK71u+h3ar8m\nbVNEHD/H7GnJ6htPqKysjKKiIk4++eRGtWj007HHHkuHDh1iXr5Hjx5xbf/ZZ59l5syZDBw4kFmz\nZpGTkxNviBEFAgEKCwvp2bMn3bol55zq3LkzAOXl5RHnB98PLhePTZs28dFHH9GrVy/OPvvsxgeZ\nAEoKiYiIiIiIiIhI0uxcs5ODew5WT3c9risdj2naAOOde3cmNSOVqooqwHUhp6SQiMTDWgtAfn5+\nnXlr1qwhEAjUO54QNM+YQrNnz45r+XjMmzePBx54gMGDBzNr1ixyc3N92/b27dspLy9nxIgRccfk\nV5kGW3kFxxYK19CYQ/UJthL6xje+EbH7wWRSUkhERERERERERJKi8kgln73+WfV0SloKPYf3bPJ2\nU1JT6HJsF/Zt2QdAyeclHNp/iMyczCZvW0Tah2BLoUiJkJdffhmA4cOH17uN1jym0JNPPsmsWbMY\nNmwYDz/8MF27dvV1+1u2bAFg0KBBca3nZ5mOHDkSgHfeeYeqqipSU1Or55WXl/PRRx+RmZnJV77y\nlbhiPHz4MC+99BJpaWlcccUVca3bHJQUEhERERERERGRpNi1fhdHyo9UT3cf2p30TH+qq7r0r0kK\nAez61y76n9Xfl22LSNt29OhRNm3aBLgWQ6effnr1vFdeeYXFixcDMHjw4Hq305rGvwn1+OOP88gj\nj1BQUMBDDz3UYJdxd999N4sWLWL69OmMGzcupn0Eu2bLzs6OKzY/yzQvL49Ro0axcuVKnnvuOcaP\nH18979FHH+XgwYNceeWVZGVl1VqvqKiIo0ePkpeXR3p63e+sJUuWUFJSwjnnnEPv3r19i9cvSgqJ\niIiIiIiIiEhS7N28t/rvlLQUcof41zVRp+6dSM9M5+iho4DrQk5JIRGJxaZNm6ioqCA3N5dZs2Yx\ncuRI8vLy2LhxIxs2bKBbt24UFxfz+OOPM2nSpLhbkrRkL7zwAo888ghpaWmcfPLJLFiwoM4y/fr1\nq5X8qapyXXXG001asEu2+fPnU1JSwvHHH88ll1zSxOjjd+eddzJlyhRmzpzJe++9x8CBA1m7di2r\nV69mwIABTJs2rc46t912Gzt27GDhwoX061e3a9K///3vAFx55ZUJj78xlBQSEREREREREZFmFwgE\n2L9lf/V0px6dSMvwb9yFlJQUuuR1obiwGIDyL8sp31VOds/4nkoXkfYn2HXclClTWLt2La+//jof\nfPABJ5xwArNnz+aDDz7gkUceYceOHfTp0yfJ0fpr+/btAFRWVjJ//vyIy5x66qm1kkKbNm0iOzub\n0aNHx7yfgoICbr31Vp577jnmz5/P9ddfn5SkUF5eHk8++SSPPPIIK1as4O2336ZHjx5cd911TJky\nhS5dusS1vc2bN7NmzRp69erF2WefnaCom0ZJIRERERERERERaXYHdh+o1XVcIpI1Of1zqpNC4FoL\nDRw70Pf9iEjbYq0F3JhBI0aMYOLEiQwdOrR6/vHHH8/EiROTFV5CTZ06lalTp8a8fGlpKYWFhUyY\nMCHuBMrkyZOZPHlyvCH6rnfv3kyfPj3m5evrwm7gwIG8++67foSVMKkNLyIiIiIiIiIiIuKv0PF+\nIDFJoY45HenQuUP19K5/7SIQCPi+HxFpW9avX09aWlqDYwYJfPjhh6SnpzNhwoRkhyIxUlJIRERE\nRERERESaXWhSKK1DGh1zOvq+j5SUFLr0r3ly/dC+Q5RuL/V9PyLSdlRWVlJYWMhxxx1HZmZmssNp\n8c4991zefPNNevTokexQJEZKComIiIiIiIiISLMKVAXYt7UmKdSpRydSUlISsq+cvJxa01+u+zIh\n+xGRtmHLli0cOnSIYcOGJTsUkYTQmEIiIiIiIiIiItKsSneUUnm4sno6u5f/XccFdejcgcxumRza\newhwXcgNvnAwKamJSUKJSOs2ePDgFj8mjEhTtKmkkDGmA/Bz4IfA69basXGsezbwU+BMIAvYADwG\nPGytVWezIiIiIiIiIiI+aY7xhELl5OVUJ4UqDlSwd8tecgflJnSfIiIiLVGb6T7OGGOAFcA0IK5H\nPYwx5wPLgKHADOA7uKTQ74EHfA1URERERERERKSdC00KpWelk5GdkdD9HZN3TK3pXet2JXR/IiIi\nLVWbSAoZY7oB7wNpwMhGbGI2cAg411r7oLX2z9baq4Hnge8bY0b4F62IiIiIiIiISPtVWVHJ/qL9\n1dPZPbMTNp5QUEZmRq3WSLvtbiorKutZQ0REpG1qE0khoAPwFHCmtdbGs6IxZhRggGettTvCZj+M\na3U0yZcoRURERERERETauZJtJQQqa3rqT3TXcUFd+nep/rvySCXFhcXNsl8REZGWpE2MKWSt/QLX\nbVxjnOG9rogwb6X3OqqR2xYRERERERERkRDh4wl16tmpWfZ7TL9j2PnhTgJVLiH15bov6Tm8Z7Ps\nW0REpKVoE0mhJsr3XovCZ1hrS40x+4BBfu1s48aNfm2qzVCZSHuk817aI5330h7pvJf2SOe9tEc6\n7+Oze/3u6r9Ts1LZvX837K9nBR+ld02norgCgD2Fe7DrLKkd2kpHOs1H57y0RzrvpSUYOnRok7eh\nbz0IjjR4IMr88pBlRERERERERESkkaoqqqqTMgDpOc37vHJGj4yQYODQtkPNun8REZFkU0uhZuZH\nJq+tCGbXVSbSnui8l/ZI5720RzrvpT3SeS/tkc77+O3ZsIcv+KJ6uudxPenSp0s9a/irqmcVGz/d\nSNXRKgBSi1MZerE+v1jpnJf2SOe9tDVqKQQl3mu0UQ07hywjIiIiIiIiIiKNtHfL3lrT2T2iVcck\nRmpaKp37dK6eLtlWQiAQaNYYREREkklJIfjUe80Ln2GMyQFyAHUYKSIiIiIiIiLSRPu27Kv+O7Nr\nJmkd0po9hqzuWdV/Vx6u5MCuaCMKiIiItD1KCsHb3uvoCPPO9V7fbKZYRERERERERETapCNlRziw\nuyYBk92zeVsJBWXlZtWaLtmmDmJERKT9aHdJIWNMgTFmYHDaWvsh8D5wjTEmL2S5FOAOoAJ4stkD\nFRERERERERFpQ/Z9tq/WdKdenZISR2aXTFLSUqqnlRQSEZH2JD3ZAfjBGHM8cHzY2z2NMVeHTL9o\nrT0AfAJYoCBk3neBZcDrxpjfAfuA64DzgZ9aazclLHgRERERERERkXYgdDyhlNQUOuUmJymUkppC\nVres6lZLSgqJiEh70iaSQsC1wM/C3jseeC5keiCwJdLK1tqVxpjzgHu8fx1xyaPJ1to/+R6tiIiI\niIiIiEg7EggEao0nlJWbRWp68jqwycqtSQod3HOQioMVZGRlJC0eEZF4fPHFFzz66KOsWLGC/fv3\n06NHD8aMGcOUKVPo0qVLssPz1ZIlS3j//ffZsGEDhYWFlJeXc+mll3LPPfc0anvtqeyiaRNJIWvt\nDGBGjMumRHl/FfB1/6ISERERERERERGAQ/sOcXj/4erpZI0nFBQ+rlDp9lJyB+cmKRoRkdgVFRUx\nZcoUiouLOe+888jPz2fdunXMnz+fFStW8Nhjj9G1a9dkh+mbJ554go0bN9KpUyd69epFeXl5o7fV\n3soumjaRFBIRERERERERkZYrtJUQQKeeyek6Lig8KVRSVKKkkIi0Cvfddx/FxcX84Ac/YPz48dXv\nP/DAA8ybN485c+Zw1113JTFCf91xxx306tWL/v378/777zNt2rRGb6u9lV00yWunKyIiIiIiIiIi\n7UJoUig1PZWsbln1LJ146R3Tyciu6S5O4wqJSCQLFixg4sSJLF++vM68srIyRo0a1aQkRbyKiopY\nuXIlffv25Zprrqk1b+rUqWRlZfHSSy9x8ODBuLe9b98+Ro0axRlnnFHvv9GjR3P48OGGN+iTkSNH\nMmDAAFJSInYAFrNEll1ro5ZCIiIiIiIiIiKSMOHjCXXq0YmU1KZV7vkhKzeLivIKwHUfF6gKtIi4\nRFq8mb9OdgT1+8F/+bap9evXAzBw4MCI8wKBAMOHD/dtfw1ZtWoVAGeeeSapqbXbe2RnZ3PSSSex\ncuVKPv74Y84444y4tn3gwAFuueWW6ukdO3awaNEiCgoKOOecc6rf79atGx07dmzCUSRHIsuutVFS\nSEREREREREREEqb8y3IqDlZUTyd7PKGgrNwsSj53LYQqj1RyYPcBsnu1jNhEWrKUjRuSHUK9Aj5u\ny1pLRkYGeXl5deYFE0bGmKjrz5s3j9LS0pj3N2zYMMaOHRt1/tatWwEYMGBAxPkDBgxg5cqVbN26\nNe7ERr9+/Zg6dWr19MKFC1m0aBEXX3wxkyZNimkbfh+vnxJZdq2NkkIiIiIiIiIiIpIwLW08oaBO\nubXjKNlWoqSQiFQ7fPgwmzdvJj8/n7S0tDrzg0mhgoKCqNuYP38+O3bsiHmfl112Wb1JkrKyMsC1\nbIkk+H5wuabYuHEj4BI3sfL7eP3UnGXX0ikpJCIiIiIiIiIiCbPvs5qkUFrHNDp2aRndDnXs0pGU\ntBQCla5dQcm2Evqe0jfJUYm0fIGhsScJWrPCwkIqKysjdh0H8Mknn5CdnR215QnA888/n6jwEm7D\nBtcibOjQoTGv05qPtz1RUkhERERERERERBKiqrKK/Vv3V09n98xu8mDhfklJTSGrWxYHdh8AoKSo\nJMkRibQSPo7Z05LVN55QWVkZRUVFnHzyyc16T+vcuTMA5eXlEecH3w8u11iBQIDCwkJ69uxJt27d\nmrStlqK5yq41UFJIREREREREREQSonRHKZVHKqunW0rXcUFZuTVJoYPFB6k4WEFGVkaSoxKRlsBa\nC0B+fn6deWvWrCEQCNQ7nhD4P8ZOsFVScHyccA2NmxOr7du3U15ezogRI+JaryWPKdRcZdcaKCkk\nIiIiIiIiIiIJET6eUHbPljVmT1ZuVq3p0m2l5A7JTVI0ItKSBFsK5ebWvSe8/PLLAAwfPrzebfg9\nxs7IkSMBeOedd6iqqiI1NbV6Xnl5OR999BGZmZl85StfiXmfkWzZsgWAQYMGxbVeSx5TqLnKrjVQ\nUkhERERERERERBIiNCmU0SmDDtkdkhhNXeFJoZJtJUoKiQhHjx5l06ZNgGsxdPrpp1fPe+WVV1i8\neDEAgwcPrnc7fo+xk5eXx6hRo1i5ciXPPfcc48ePr5736KOPcvDgQa688kqysmrf2+6++24WLVrE\n9OnTGTduXIP7CXallp0dXyK/JYwpVFRUxNGjR8nLyyM9vSb90diya4uUFBIREREREREREd9VVlRS\nsq1mnJ6W1koIIL1jOhnZGVSUVwDUildE2q9NmzZRUVFBbm4us2bNYuTIkeTl5bFx40Y2bNhAt27d\nKC4u5vHHH2fSpEnN2rrkzjvvZMqUKcycOZP33nuPgQMHsnbtWlavXs2AAQOYNm1anXWqqqoASEtL\ni2kfwS7U5s+fT0lJCccffzyXXHKJfwcRh+XLl/Paa68BsGfPHgA+/vhj7r77bgC6du3K7bffXr38\nbbfdxo4dO1i4cCH9+vWrta3GlF1blNrwIiIiIiIiIiIiIvHZ//l+ApWB6ulOvVrWeEJBnXJr4ird\nXkqgKlDP0iLSHgS7jpsyZQoXXXQRH3/8Mf/4xz9IS0tj9uzZ3HDDDWRmZrJjxw769OnTrLHl5eXx\n5JNPMm7cONatW8fTTz/Ntm3buO6663jiiSfo2rVrnXU2bdpEdnY2o0ePjmkfBQUF3HrrraSnpzN/\n/nw++eQTvw8jZhs2bGDRokUsWrSId955B4Bt27ZVv7d06dKYt9WYsmuLfG0pZIxJs9ZWNrykiIiI\niIiIiIi0ZXXGE+rR8loKgetCbv/n+wGoPFJJ+e5yOvfqnOSoRCSZrLWAGzNoxIgRTJw4kaFDh1bP\nP/7445k4cWKywqN3795Mnz49pmVLS0spLCxkwoQJdOnSJeZ9TJ48mcmTJzc2RN9MnTqVqVOnxrx8\nQ13YxVN2bZXfLYWeN8Z09HmbIiIiIiIiIiLSyoQmhTp26Uh6ZsscxaDOuEJF6kJOpL1bv349aWlp\nDY4Z1Bp8+OGHpKenM2HChGSHIi2E30mhrwMvGWP0OIWIiIiIiIiISDtVWVFJ2Rdl1dOderbMruPA\nJaxS0lKqp0u3lSYxGhFJtsrKSgoLCznuuOPIzMxMdjhNdu655/Lmm2/So0ePZIciLYTfSaF5wFhg\niTEmN9pCxpizjTFv+bxvERERERERERFpAcq/KIeQoXmyumVFXzjJUlJTasVXsk0thUTasy1btnDo\n0CGGDRuW7FBEEsLXdrvW2onGmL3Ad4HXjDEXWWt3BucbY4YAvwKu9HO/IiIiIiIiIiLScpTurN3a\nJrNry37aPis3iwO7DwBwsPggFQcqyOiUkeSoRCQZBg8ezLvvvpvsMEQSxvfOXK213zPGFAM/Ad40\nxlwIlAI/A/4NyAD2A/f5vW8REREREREREUm+sp01XcelpqfSoXOHJEbTsDrjCm0vofuQ7kmKRkRE\nJHH87j4OAGvtdOAOYCCwAigEvgdUAvcDg6y1v0rEvkVEREREREREJLnKdtQkhTK7ZpKSklLP0slX\nJylUpC7kRESkbfK9pVCIImAP0BvXi+z/Ad+z1hYlcJ8iIiIiIiIiIpJElRWVlO8ur55u6V3HAaR3\nTKdDdgeOlB8BoHRbaQNriIiItE6+J4WMMecDvwRGAinAv4DjgVOBTn7vT0REREREREREWo7yL8rd\n48Ge1pAUAtdaqDoptKOUQFWAlNSW3cJJREQkXr52H2eMeRl4BTgdsMAV1toTgf8AjgXeMMac4uc+\nRURERERERESk5SjdWbuVTatJCnWv6UKu8kgl5bvK61laRESkdfJ7TKELgd3AbcBXrLX/ALDW/h6Y\nDOQCS40x5/m8XxERERERERERaQHKdtaMJ5SankqHzh2SGE3s6owrtE3jComISNvjd1LoF8AQa+0c\na21l6Axr7ZPAtUAmsNgYM87nfYuIiIiIiIiISJKV7ahJCmV2zSQlpXV0wdaxS0dS02uqypQUEhGR\ntsjXpJC19ifW2qgj8Vlr/w5cDlQBf/Vz3yIiIiIiIiIiklyVFZWU767pdq21dB0HkJKSQma3mnhL\nt0Wt4hIREWm1/G4p1CBr7au4bubUMauIiIiIiIiISBtS/mU5BGqmW1NSCGp3IXew+CAVByqSGI2I\niIj/mj0pBGCtfQcYk4x9i4iIiIiIiIhIYoR2HQetOykE6kJORETanqQkhQCstWuTtW8RERERERER\nEfFf6c6aLtdS01Pp0LlDEqOJX1Y3JYVERKRtS1pSSERERERERERE2pbQlkKZXTNJSUlJYjTxS++Y\nXiuRpaSQiIi0NUoKiYiIiIiIiIhIk1VWVFK+u2YI6dbWdVxQaBdypdtLCVQF6llaRESkdUlPdgAi\nIiIiIiIiItL6lX9ZDiH5k9acFNq/dT8AVRVVlO8qp3PvzkmOSkTEeeihh/jkk0/YunUr+/fvp2PH\njvTp04cxY8ZwzTXX0LVr12SH6Jt9+/axfPly3nrrLTZt2sSuXbtIT09nyJAhjBs3jssvv5zU1Pja\nvbz55pssWLCAzZs3s3//frp3705BQQETJkzgpJNOStCRtCxKComIiIiIiIiISJOFdh0HrTspFKqk\nqERJIRFpMebNm0dBQQGjRo2iW7duHDx4kLVr1/LYY4+xcOFCnnjiCXr37p3sMH2xZMkS7rvvPnr0\n6MFpp51Gnz59KC4uZtmyZdx7772sWLGCX/7ylzF3VfrQQw/x5z//mZycHMaMGUPXrl0pKiri9ddf\nZ9myZcyYMYOvfe1rCT6q5PM1KWSMWQrMsdY+18ByfwTOstae4Of+RUREREREREQkOUp3llb/nZqe\nWmtsntakY5eOpKanUnW0CnDjCvU7rV+SoxIRcZYtW0bHjh3rvD979mzmzp3L3LlzufPOO5MQmf8G\nDBjAzJkzGT16dK0WQdOmTePmm29m6dKlLFu2jPPPP7/Bbe3evZunn36a3NxcnnnmGXJzc6vnrVq1\niu9+97s88sgjSgo1wljghRiWSwMG+bxvERERERERERFJkrKdNS2FMnMyY35yu6VJSUkhs1smB3Yd\nAFxSSETapwULFjBz5ky+853vMHTo0FrzysrKuOCCCzj11FOZM2dOs8UUKSEEcOGFFzJ37lw+//zz\nRm133759XHLJJQQC9Y+jlpGRwdKlS6PG4afTTz894vs9evTgqquuYs6cOaxevTqmpNDOnTupqqri\nxBNPrJUQAhg5ciTZ2dns27fPl7hbuiYnhYwxVwBXhLw13hhzYj2r9AAuAfY0dd8iIiIiIiIiIpJ8\nlRWVlO8qr55urV3HBWXlZlUnhQ7tPcSR8iN0yG6dLZ9E/LbmL2uSHUK9Rkwa4du21q9fD8DAgQMj\nzgsEAgwfPty3/TXFG2+8AcCQIUMatf6BAwe45ZZbqqd37NjBokWLKCgo4Jxzzql+v1u3bs2SEGpI\nerpLbaSlpcW0fP/+/cnIyGDdunXs27ev1thL77//PuXl5YwZMyYhsbY0frQU6gicBQzDDSd4uvev\nPkeAn/mwbxERERERERERSbLyL8tdrZAns1vrTgp1yu3EnpDnmUu3l9J9aPckRiTScuzfuj/ZITQb\nay0ZGRnk5eXVmRdMGCaB/FoAACAASURBVBljoq4/b948SktLo84PN2zYMMaOHRvTsn/5y184cOAA\nZWVlfPLJJ6xZs4YhQ4Zw4403xry/UP369WPq1KnV0wsXLmTRokVcfPHFTJo0KaZtJPJ4Qx09epQX\nX3wRgLPOOiumdXJycvje977H7373O8aPH8+YMWPIycmhqKiIN954g1GjRnHXXXfFHUtr1OSkkLX2\nWeBZY0w3XOufOcCz9axyCNhorS1u6r5FRERERERERCT5ynaU1Zpu7S2FwpNaZV+UKSkk0s4cPnyY\nzZs3k5+fH7E1SjApVFBQEHUb8+fPZ8eOHTHv87LLLosrKVRcXFPFftZZZzF9+nS6desW8/7qs3Hj\nRsAlbmKVyOMNNWvWLDZt2sTo0aNjTgoBXH/99fTt25ef//znLFy4sPr9/v37c9lll9XpVq6t8m1M\nIWvtXmPMk8Dz1trX/NquiIiIiIiIiIi0bKU7a54MT01PpUPn1t3VWnrHdNKz0jl68ChQe7wkkfYu\nZ0BOskNoFoWFhVRWVkbsOg7gk08+ITs7mwEDBkTdxvPPP5+o8Fi8eDEAe/bs4aOPPmLWrFnccMMN\n/Pa3v603URWrDRs2ANQZS6k+iTzeoAULFvD000+Tn5/PjBkz4lr3qaeeYs6cOVx77bVce+21dO/e\nnS1btjBr1iymT5/Ohg0b+P73v5+YwFsQ35JCANbam2NZzhjTD+hirV3v176NMbm4Lum+CfQFdgMv\nAj+11jaYnjTGTAJuBUYAHYCtwAvAz621Gv9IRERERERERCSK0KRJZk4mKSkpSYzGH5k5mZQddMdV\n9oWSQiJBfo7Z05LVN55QWVkZRUVFnHzyyUm/33Xv3p2vfvWrFBQUcPXVVzNjxgzmz5/fpG0GAgEK\nCwvp2bOnby2P/PDss88yc+ZMBg4cyKxZs8jJiT1BuXr1ah5++GHGjh3LHXfcUf1+QUEBv/nNb7j6\n6qt55pln+Na3vsWxxx6biPBbDF+TQnG4BZgK9PdjY8aYLGA5UAA8DKwChgI/BM43xpxmrd1bz/q/\nAO4C3gX+BygDzgb+HRjnrV/iR6wiIiIiIiIiIm1JZUUl5bvKq6dbe9dxQZldM6uTXYf3H+booaOk\nZyarKk1Empu1FoD8/Pw689asWUMgEKh3PCFovjF2APr27cvAgQPZsGED+/bto2vXro3aDsD27dsp\nLy9nxIj4EoCJPN558+bxwAMPMHjwYGbNmhV3V29vvvkmwP9n787D5LrrO9+/T1V3V/UmtVZLso1t\nCevnBRtjQ4CwOizGrAYCzAyEJeQONzFPhutM5iEwCUsgM3PD5IawBBgctkwgJgTMloAJ493BGNtg\nY+eHvMi2rH2xurt6rzr3j9NdXd1Sa+vTql7er+epp+rUOXV+3yqVuqX61Pf345JLLjlkX7lc5rzz\nzuP6668nxmgodCJCCC8DLgQO96+AFcBvAaUch3wPcAFwZYzx0w11/Bz4JvDHwFUz1LoS+ENgK/D8\nGOPw+K4vhBD2Au8F3gF8PMd6JUmSJEmSFoXK7gqkk9vT1+NZqMrLD11XqOeME/+QVdLCMtEpdLjw\n4Yc//CEA55577hHPcbLW2Jmwd+9eAAqFwgmfA2Dr1q0AbNy48bgeN1fP90tf+hKf+tSn2Lx5M5/8\n5CdPKPAaGRkB4Iknnjjs/gMHsp6S1tbW4z73QpNrKBRC6AJ+ADzrKIcmwOx62KZ6K1ABrp52/7XA\nNuAtIYQ/iDGmhzwSnkT2OtzeEAhNuJEsFDozx1olSZIkSZIWjenr7SymTqFGhkLS0jE2NsaDDz4I\nZB1Dz3jGM+r7rrvuuvp6Pps2bTriefJeY+eRRx5h1apVdHV1Tbm/Vqvxmc98hv3793PhhReybNmy\nKfs/9KEP8b3vfY8/+ZM/4ZWvfOVRx6lUsu7Pzs7O46pvLtYUuvrqq/nsZz/LOeecwyc+8YmjThm3\nbds2xsbGOO2002hpmYw/LrroIr7+9a/zzW9+k9e+9rWsXbu2vu/WW2/lF7/4BaVSiQsuuCD35zDf\n5N0p9MfAs8mCmB8BQ2Tr9PwjsBt4EdAJ/D7wrTwGDCEsI5s27qbpoU6MMQ0h3A68DjgLeOgwp3gY\nGCabbm66M8ev782jVkmSJEmSpMWmb+fkVEFJMaGtq62J1eSnpb2FQmuB2mgNODT8krR4Pfjgg4yO\njrJy5Uo+9alP8fSnP53TTjuNLVu28Ktf/YoVK1awf/9+rr76at7ylrectCDh1ltv5dOf/jRPfepT\n2bBhA8uXL2f//v3ceeedPP7446xatYr3ve99hzyuVst+jhWLxWMa50lPehKQdf709vZy3nnncdll\nl+X3RI7Rd7/7XT772c9SLBa56KKL+Pu///tDjtmwYcOUoOvKK69kx44dfOtb32LDhg31+1/0ohdx\n7bXXcvvtt/OmN72JF7zgBaxatYqtW7dy8803k6YpV1555aym3Vso8g6FrgD+Dbg4xjgUQjiDLBT6\ncozx2yGEFuAvgf8H+D5ZaDRbZ4xfb5th/6Pj1xs5TCgUYzwYQvhT4CMhhE+M19cH/BrwfuBu4H/n\nUCcAW7ZsyetUi4aviZYi3/dainzfaynyfa+lyPe9lqKl/r7ft3Vf/Xaho8DOXTubWE2+Cu2TodD+\nR/cv+T/rCb4OWuxuvPFGAF796leze/dubrzxRu688042bdrEH/3RH3H//ffzjW98g61btzI4OHjS\n/k6ccsopPP/5zyfGyH333cfAwAClUon169fzute9jssuu4xqtXpIPffddx/lcpn169cfU63FYpE3\nvOENXHfddXzta1/jZS972XFPJZeHe+/NejWq1Spf+9rhJx4799xzp6ztNDo6CmRT4E10PE248sor\n2bx5M7fddhs//vGPGRkZoauri6c+9alcdtllXHjhhfP+59vZZx+ut+X45B0KnQH8zxjj9LAnAYgx\njoUQ/hNZ0PJfxy+z1T1+PTDD/sq04w4RY/xoCGEX8Ang3Q27vgu89TDPR5IkSZIkaclLqyljvWP1\n7ZauOVm+ummKncX68xvrGyOtpiTFpMlVSZprDz/8MJCtqfOSl7yEN7/5zVP2b9y4kVe84hUnva7T\nTz+dt7/97cf1mEqlwqOPPsrLX/7y45oO7oorruCKK644zgrz9frXv57Xv/71x/WYj3/84zPua2lp\n4fLLL+fyyy+fbWkLWt6/qWvAYMP2xO36JIcxxmoI4VrgjeQTCs1aCOF3gb8Cfgh8FdgDPBP4L8D3\nQwiXxxgPvwLVccojyVssJlJXXxMtJb7vtRT5vtdS5PteS5Hvey1Fvu+h9/FedqaTnUGrTl3F8nVH\nXu9hITk4cpDtO7ZnGymsX7ae7g0zfu940fM9r6Vi586dFItFXvjCF/LYY48BC/d9f9NNN9Ha2sqV\nV17J6tWrm12O5oG8Q6FHgec2bO8FUuBipk7BNgacmtOYvePXM8WcXdOOmyJkvWV/BfxLjLEx3v1B\nCOHnZGsfvY8sIJIkSZIkSdK46evslHvKTapkbkx/Pv27+pd0KCQtBdVqlQceeIAzzjiDcnnh/0x7\n3vOex80339zsMjSPFHI+33eBl4QQvhVC2BxjrAG/BN4ZQng2QAhhPfAfgLwmmH2YLHg6bYb9E2sO\nzTQZ4G+QhWP/eJh9/zR+7ktnU6AkSZIkSdJi1Lezr347KSa0dbU1sZr8tXW1kRQmp4vr39V/hKMl\nLQZbt25laGiIzZs3N7sUaU7kHQp9lCx8eRWTYcxfAcuAm0MI+4DHgE0cPoQ5bjHGCvAL4OIQwpTo\nNoRQBH4deCzG+OgMp5joMDpc7FsiWw9p4UfCkiRJkiRJOevfMRmSlHvKJMniWm8nKSSUlpfq24ZC\n0uK3adMmbr/9dj784Q83uxRpTuQaCsUYD5BNFfdO4L7x+z4PfBDoB1aQTR33BeBPchz6aqADeNe0\n+98CrAU+P3FHCOGcEMJZDcfcOn79phDC9H+5vGHaMZIkSZIkSQJqYzUG9g7Ut9t72ptYzdwpL5/8\nrnBld4W0ljaxGkmSZifvNYWIMQ4AX5x234dDCB8FVgN7xqeVy9NngDcDHwshnAHcAZwPXAXcA3ys\n4dj7gQicM17brSGEr5MFQDeHEK4B9gDPAK4EdpF1QEmSJEmSJGlc/+7+KQHJYltPaELj86qN1hjc\nP0jH6o4mViRJ0onLPRSaSYyxShawzMW5R0MILyXrSHo98G5gN1mH0AfGg6oj+ffAjcDbyQKgNmA7\n8DfAn8YYH5+LuiVJkiRJkhaqxqnjYBGHQsunPq/+Xf2GQpKkBeukhUJzLcbYS9YZdNVRjjtkctvx\nwOqT4xdJkiRJkiQdRd/OvvrtpJjQ1t3WxGrmTmlZacp2/85+1p6/tknVSJI0O7muKSRJkiRJkqSl\nobFTqNxTJkkO+R7uolBoKUwJvPp39R/haEmS5jdDIUmSJEmSJB2X2liNgb2Ts/W397Q3sZq51zg1\nXv+uftI0PcLRkiTNX4ZCkiRJkiRJOi79u/tJa5PByGJdT2hC47pCY4NjDPcNN7EaSZJOnKGQJEmS\nJEmSjkvj1HGwBEKhac+vsrPSpEokSZodQyFJkiRJkiQdl/6dk6FQUkymrLmzGDV2CoHrCkmSFq6W\nvE8YQngN8DZgM9AOzLTKYBpj3JT3+JIkSZIkSZpbfTv76rfLPWWSZKaPfxaHYluRlvYWxgbHAEMh\nSdLClWsoFEJ4J/A5Zg6CGrkinyRJkiRJ0gJTG6sxsGegvr3Yp46bUO4p0z+YhUGNnVKSJC0keXcK\nvYcs7Hkv8EPgIIY/kiRJkiRJi0b/7n7S2uTHPe097U2s5uQpLy/X11Ia7h1mdHCU1vbWJlclSdLx\nyTsUOhv4Sozxz3M+ryRJkiRJkuaBiWBkwlLqFGrUv6ufFWeuaFI1kiSdmELO5+sFfpXzOSVJkiRJ\nkjRPNK6nkxQT2rrbmljNyVNePjUUquyqNKkSSZJOXN6h0C3A+TmfU5IkSZIkSfNEYyhUXl4mSY5l\naemFr6W9hWJbsb7tukKSpIUo71Do/cDLQwhvzvm8kiRJkiRJarK0llLZPdkhM717ZjFLkoTS8lJ9\nuzEckyRpoch7TaHnAlcDXwghXAX8DNg7w7FpjPH9OY8vSZIkSZKkOTKwd4C0mta3Sz2lIxy9+JSX\nlxnYMwDAwL4BqqNViq3FozxKkqT5I+9Q6DNACiTA08YvM0nJOoskSZIkSZK0APTvntods5Q6hQDK\nPQ3PN4XK7grLTl3WvIIkSTpOeYdCHyYLeyRJkiRJkrTITFlHJ4HSsqXXKdSof1e/oZAkaUHJNRSK\nMX4wz/NJkiRJkiRp/mhcR6fUXaJQzHu56vmtrbuNpJjUp9Cr7Koc5RGSJM0veXcK1YUQEmAjsBqo\nAXtijFvnajxJkiRJkiTNnTRNp4QgS23qOIAkSSgvKzN4YBCYGpJJkrQQ5B4KhRDWAB8F3gR0Tdu3\nD/gb4MMxxoG8x5YkSZIkSdLcGO4dZmxorL5d6llaU8dNKPWU6qFQZXeFtJaSFJImVyVJ0rHJtcc3\nhLAauA34HaAb2AbcBfwc2E7WNfSHwE0hhI48x5YkSZIkSdLcmd4VsxQ7hWDq866N1RjY5/eeJUkL\nR96dQu8lmzLuk8CfxRh3Nu4MIZwOfAD4beAq4CM5jy9JkiRJkqQ50L/TUAig3DP1effv6qdzTWeT\nqpEk6fjkvRrgq4DrYoy/Pz0QAogxPhZj/B3gZuCNOY8tSZIkSZKkOdK4nlBLewvFtmITq2me0rIS\nNMwWNz0skyRpPss7FDod+MkxHHczsCnnsSVJkiRJkjRHGqePm94ts5QUigVK3ZPrKTWGZZIkzXd5\nh0JV4FjWCioAac5jS5IkSZIkaQ6MDowy3Dtc316qU8dNaHz+/bv6SVM/5pIkLQx5h0K/Al4SQpjx\nvCGEIvDS8WMlSZIkSZI0z/Xvnrae0BLuFAIo9Ux2Co0NjU0JzCRJms/yDoX+HrgA+KcQwq+HEFom\ndoQQWkMIzwO+DzwV+N85jy1JkiRJkqQ5MH2KNDuFpj5/1xWSJC0ULUc/5Lj8JfBy4CXAi4FqCOEg\n2fJ7y4Di+O3rgI/nPLYkSZIkSZLmQGPoUWgt0NKe90dKC8shodCuflaH1U2qRpKkY5drp1CMcYQs\nDPrPwD1kAdAqYOX4IXcBvwdcHmMcy3NsSZIkSZIkzY3+XZOhULmnTJIkTaym+YptRVo7Wuvbja+P\nJEnzWe5f6xgPe/4C+IsQQhtZIJQC+2OMo3mPJ0mSJEmSpLlTHa0ysG+gvr3Up46bUF5eZnQg+6jL\n6eMkSQvFnPb6jncO7ZzLMSRJkiRJkjR3BvYMZF/3HVfuMRQCKPWU6NvRB8BI3wijA6NTuockSZqP\nZhUKhRDeCvw0xnh/w/YxizF+eTbjS5IkSZIkaW5NnxrNTqHM4dYVWnHWiiZVI0nSsZltp9AXydYP\nur9hO53p4AbJ+HGGQpIkSZIkSfNY49RoSSGhrautidXMH9M7pgyFJEkLwWxDoQ8BtzZsf5hjC4Uk\nSZIkSZK0APTvngyFSstLJIWkidXMHy3lFoptRaojVcB1hSRJC8OsQqEY44embX9wVtVIkiRJkiRp\n3khrKZXdlfq2U8dNSpKEck+5/vpMn2ZPkqT5qJDnyUIIPw4hvOEYjvt8COGXeY4tSZIkSZKkfA3u\nH6Q2WqtvT58ybalrDMkG9w3Wu4YkSZqvcg2FgBcCpx/DcUVgY85jS5IkSZIkKUfTu1/sFJrqcOsK\nSZI0n812TSFCCK8BXtNw15tCCE85wkNWA5cB+2Y7tiRJkiRJkubO9JCjtKzUpErmp0NCoZ39LD99\neZOqkSTp6GYdCgEl4NnAZiAFnjF+OZIR4AM5jC1JkiRJkqQ50hgKtXW3UWjJe9KZha21s5VCS4Ha\nWDbFnp1CkqT5btahUIzxGuCaEMIKsu6fvwauOcJDhoAtMcb9sx1bkiRJkiRJcyNNUyo7K/Vtp447\nVJIklHvKDOwdALJOIUmS5rM8OoUAiDEeCCF8Cbg2xnhDXueVJEmSJEnSyTfSN8Lo4Gh921Do8BpD\nocqeCrWxmh1VkqR5K7dQCCDG+A6AEEIJWBFj3Nm4P4RwAfBAjHEwz3HHz72SbEq6K4D1wF7g+8Af\nxxh3HMPjS8B7gbcAp48//nvA+2OMe/OuV5IkSZIkaT6bPhXa9PVzlJnyuqRQ2V2he0N38wqSJOkI\ncv/aQgjhjcBO4J2H2f1hYEcI4Q05j9kOXA/8LvAN4O3AZ4E3AbeMT213pMe3kAVA/xX4LvA7wD+Q\nPYcbQghtedYrSZIkSZI0300PhUrLS02qZH6b3kHVt7OvSZVIknR0uXYKhRCeA3yNbN2gA4c55CfA\npcBXQwj7Yow/zmno9wAXAFfGGD/dUM/PgW8CfwxcdYTH/9/Ai4C3xRi/PH7f34YQ9gK/DTwTuCmn\nWiVJkiRJkua9yq7J9YRa2ltoKeX6MdKi0dbdRlJMSKsp4LpCkqT5Le9OoQ+STbv2lMZwZkKM8b8D\nFwL7yKZqy8tbgQpw9bT7rwW2AW8JISRHePyVwBbgK413xhg/EmPcGGM0EJIkSZIkSUtKY6eQ6wnN\nLEmSKa+PoZAkaT5L0jTN7WQhhF7gf8UY/+Aox/0F8M4Y4/IcxlwGHARuijE+/zD7vwG8DtgUY3zo\nMPtPAx4DPhVjfPf4fWVgOMZ4wi/OwYMHD/vYLVu2nOgpJUmSJEmSToraSI1d1+6qb5dOLdH+pPYm\nVjS/DTw8wMjOkWyjAOteu46kcKTvJ0uSdPzOPvvsw96/fPnyY/6lk3enUIGsC+hoDgDFnMY8Y/x6\n2wz7Hx2/3jjD/nPGrx8MIfynEMJWYBAYDCF8K4Tw5FyqlCRJkiRJWiBGD45O2S525vUxzuI05fWp\nwVjvWPOKkSTpCPKeDHYL8BvAn810QAihALwSOKRr5wR1j18PzLC/Mu246VaOX78NaAM+CuwiW2Po\n3cCzQwgXxRh35FDrjEneUjTRNeVroqXE972WIt/3Wop832sp8n2vpWgxv++3HdjGfvbXt9efuZ62\nzrYmVjS/DbUP8fCDD9e3V7atZN3Z65pY0dxYzO95aSa+77XY5B0KfQX4WAjhb4CPxRjvm9gRQmgF\nLgWuAp4OvD/nsU/UxL9oTiFbC2mi0+nbIYRdZCHRHwD/uRnFSZIkSZIknWyVXZX67UJLgdaO1iZW\nM/+VukskhYS0lq0m0L+zH57a5KIkSTqMvEOhjwMvAd4OvC2EMEq23k+JyU6dBLge+J85jdk7ft05\nw/6uacdNN7H637cbAqEJV5OFQi884eokSZIkSZIWmP5d/fXb5Z4ySeL6OEeSFBJKy0oMPTEEjIdC\nkiTNQ7muKRRjrAIvB34fuIcsdFoDLAOqwN3Ae4CXxhhHZzrPcXoYSIHTZtg/sebQlhn2bx2/Ptzk\nuHvHz73sRIuTJEmSJElaSGpjNQb2Ts7SX15ebmI1C0e5Z/J16t/VX+8akiRpPsm7U4gYYwp8Evhk\nCKENWA3UgH05BkGN41VCCL8ALg4hlGOMQxP7QghF4NeBx2KMj85wivvIupkuOsy+08k6m7blXLYk\nSZIkSdK8VNlbmRJolJaXmljNwtEYCtXGagzsG6BzzUwT20iS1By5dgpNF2MciTFujzHunItAqMHV\nQAfwrmn3vwVYC3x+4o4QwjkhhLMaawT+DrgkhPCqaY9/9/j1d3KvWJIkSZIkaR6aPvVZY9ihmU1/\nnRqn4JMkab7IvVMohPAa4G3AZqCdrNPmcNIY46achv0M8GbgYyGEM4A7gPOBq8imsftYw7H3AxE4\np+G+DwCXAV8PIfx3sinlfgP4LbIp7z6TU52SJEmSJEnzWmVXpX47KSSUuu0UOhalZaXsU7DxJqv+\nHf2c8pRTmlqTJEnT5RoKhRDeCXyOmYOgRrlNrBpjHA0hvBT4IPB6sg6f3WQdQh+IMQ4c4eHEGPeE\nEJ4FfAT4j2RT3u0A/gL4cIxxMK9aJUmSJEmS5rPGDpfSshJJ4Vg+5lGhWKC0rMTwwWHg0I4rSZLm\ng7w7hd5DFva8F/gh2Vo9J2VVvRhjL1ln0FVHOe6w/5KJMe4hm35u+hR0kiRJkiRJS0KaplR2T3YK\nuZ7Q8SkvL0+GQrv6SdOUJDFUkyTNH3mHQmcDX4kx/nnO55UkSZIkSdIcGzowRHWkWt8uL3c9oeNR\n7ilz8NGDAFRHqgwdGKJ9ZXuTq5IkaVIh5/P1Ar/K+ZySJEmSJEk6CaZPeVbuMRQ6HtNfr76dfU2q\nRJKkw8s7FLoFOD/nc0qSJEmSJOkk6N89NRQqLXP6uOMxvbPKdYUkSfNN3qHQ+4GXhxDenPN5JUmS\nJEmSNMcaQ4zWzlaKrcUmVrPwFFoKtHW31bcNhSRJ803eawo9F7ga+EII4SrgZ8DeGY5NY4zvz3l8\nSZIkSZIknaD+XZMhhlPHnZhyT5mRvhEgez3TNCVJkiZXJUlSJu9Q6DNACiTA08YvM0nJOoskSZIk\nSZLUZMN9w4xWRuvb06dC07EpLy/T+1gvAGODYwz3DvtaSpLmjbxDoQ+ThT2SJEmSJElaQPp29E3Z\nLq8wyDgR0zus+nf0GwpJkuaNXEOhGOMH8zyfJEmSJEmSTo6+7VNDofae9iZVsrBND4X6dvax+pzV\nTapGkqSpCs0uQJIkSZIkSc3XGAq1dbVRbCs2sZqFq9hapLWztb7duE6TJEnNZigkSZIkSZK0xKVp\nOmX6OKeOm53GbqH+Hf2kqastSJLmh1ynjwsh3Hoch6cxxufkOb4kSZIkSZKO3+D+QarD1fp2+wqn\njpuNck+ZvsezkG10YJSR/hFK3aUmVyVJUs6hEPCsYzgmBZLxa0mSJEmSJDVZY5cQGArN1vR1hfp3\n9hsKSZLmhbxDoUuPsO8U4BLgncD/B/xtzmNLkiRJkiTpBDSuJ0QCpeUGGLNRXn5oKLTq7FVNqkaS\npEm5hkIxxhuOcsg1IYTPAbcDvwQeyXN8SZIkSZIkHb/GUKi8vEyh6DLUs9FSaqGlvYWxwTEA+nf1\nN7kiSZIyJ/03fIzxQeAa4H0ne2xJkiRJkiRNVavWpoQW5RXlIxytY9U4hVz/TkMhSdL80KyvfWwH\nzm3S2JIkSZIkSRpX2V0hrU4u/ex6QvloDIWGe4cZqYw0sRpJkjLNCoWe3aRxJUmSJEmS1GDKekIY\nCuWlMRQCp5CTJM0Pua4pFEJ461EO6QEuB14K3JLn2JIkSZIkSTp+fTsmQ6GkmNDW3dbEahaPQ0Kh\nnf2s3LiySdVIkpTJNRQCvgikRzkmAQaAP8p5bEmSJEmSJB2nxk6h9hXtJEnSxGoWj9ZyK8VSkepw\nFXBdIUnS/JB3KPRlZg6FUmAIeAj4+xjjYzmPLUmSJEmSpOMwNjzGwN6B+nZ5RfkIR+t4tfe016eN\nMxSSJM0HswqFQggbgP4YY+/4XX8C7I8x+ltOkiRJkiRpnpseVLieUL7KPeV6KDT0xBCjg6O0trc2\nuSpJ0lJWmOXj7wd+r2H7YeD/muU5JUmSJEmSdBI0Th0HhkJ5m76uUGVXpUmVSJKUmW0oVAY2N2wn\n4xdJkiRJkiTNc42hULFUpKU975UGlrbpodBE15AkSc0y29/09wNvCyFcAuwbv+93QwivPIbHpjHG\nF81yfEmSJEmSJJ2gvh2ToVD7inaSxO/65qmlvYViW5HqSBWAvp19R3mEJElza7ah0O8B1wAXjG+n\nwKbxy9GksxxbkiRJkiRJJ2ikf4Th3uH6dnlF+QhH60QkSUK5p0xldzZtXP8OO4UkSc01q1Aoxnhr\nCOF0YC3QDjwEfBT4fA61SZIkSZIkaY40dgmB6wnNlfLyyVBocP8gY8NjtJScpk+S1Byz/g0UY0yB\nXQAhhBuAX8QYH5nteSVJkiRJkjR3GtcTAkOhuTJ9XaHK7grLT1/epGokSUtdrl9LiDFemuf5JEmS\nJEmSNDcaO4Va6+ueJgAAIABJREFUO1spthWbWM3iNT0U6tvRZygkSWqaQrMLkCRJkiRJ0smVpumU\nTiG7hOZOa2crxdbJwK13W28Tq5EkLXWGQpIkSZIkSUvM0IEhxobG6tuGQnMnSRLaV02+vr3beknT\ntIkVSZKWMkMhSZIkSZKkJaZx6jiA8oryDEcqD+0rJ0Ohkf4Rhg4ONbEaSdJSZigkSZIkSZK0xDRO\nHUdy6Lo3ylfHqo4p204hJ0lqFkMhSZIkSZKkJaaxU6i0rESh6EdEc6m8ogzJ5LahkCSpWVryPFkI\n4afAl4Cvxhj35XluSZIkSZIkzV6tWqN/Z3992/WE5l6hWKDcU2boQDZtnKGQJKlZ8v4ayCXAx4Ht\nIYRvhRBeH0Joy3kMSZIkSZIknaCBPQPUxmr1bUOhk6NxCrnK7gpjQ2NNrEaStFTlHQo9iywU2gW8\nGrgG2BFC+OsQwq/nPJYkSZIkSZKOU+/2qV0q5RWuJ3QytK+cGr5N/3OQJOlkyDUUijHeHmO8Ksb4\nJOB5wKeAIeBdwE0hhAdCCH8SQjgrz3ElSZIkSZJ0bPp3TE4dlxQTSstKTaxm6WjsFALofcxQSJJ0\n8s3ZKoIxxltijL8PnAb8BnA1sBL4APBACOHGEMI7Qgh+HUWSJEmSJOkk6dveV79d7imTJEkTq1k6\nWsottHa21rddV0iS1Awtcz1AjDEFrg8h3AB8m2x6ubOA5wLPAT4WQvgU8N9ijIMnOk4IYSJwugJY\nD+wFvg/8cYxxx3Geqwz8HNgMXBpjvP5E65IkSZIkSZovqiNVKnsr9W3XEzq5OlZ2cLByEMimj0tr\nKUnBUE6SdPLMWafQhBDCJSGETwA7gGvJAqGDwOeA9wC7gf8K3B5CWHuCY7QD1wO/C3wDeDvwWeBN\nwC0hhBXHeco/JguEJEmSJEmSFo2+nX2QTm4bCp1c7asmX+/aaI3+Xf1HOFqSpPzNSafQeLjzW8Db\ngPOBBKgBPwK+AHwzxjg8fvgnQgjvAz5C1kX0709gyPcAFwBXxhg/3VDHz4FvkoU8Vx1j7RcAfwjc\nBTztBGqRJEmSJEmalxrXEwIor3BW/5PpkHWFtvXSvb67SdVIkpaiXEOhEMLryLp0Lhs/dwJsAb4I\nfDnG+PjhHhdj/LMQwq8BrzjBod8KVMjWLWp0LbANeEsI4Q/Gp7I7Uv0F4H8Bj5B1Gn3mBOuRJEmS\npMWrVoPh8e/5ja9FkoyOAAmMjNTvI0mgWJzcltR0jesJFduKtHa0HuFo5a2tu41Ca4HaaA3IQqFT\nn3Fqk6uSJC0leXcK/cP4dS9wDfDFGOOtx/jY24BXHu+AIYRlwDnATQ3dR0C2nlEI4XbgdWTT1j10\nlNO9G3gm8GLg9OOt5Vhs2bJlLk67oPmaaCnyfa+lyPe9liLf91qQqlVaKhVa+vto6eubct06sd3f\nT1KrTXnY2TOcrtbSyuiybsa6lzHWvYzRZcsY6+5mtHsZY8uWMdbVTdrqh9Ja2BbSz/v9j+yv3046\nEnbu2tnEapamQmeB2hPZz9B9W/ctqPfPhIVYszRbvu81H5x99kz/6j52eYdC/8Lk9HCDx/nYrwI3\nncCYZ4xfb5th/6Pj1xs5QigUQjgd+CjwlRjjv4QQ3n4CtUiSJEnSwpGmtB44QHnHdtp3bKe8Yzul\nvXsOCXxmozA2Smn/fkr79894zFhHB0OnrGNow6kMrt/A0Pr1pG2l3GqQlKkOV6kOVOvbLV1zsqqA\njqKlu4WxJ8YAqA3WqA5UKXYUm1yVJGmpyPu3fwswerRAKITweeDZMcbzJ+6LMT7KZIBzPCYmXh2Y\nYX9l2nEz+WtgBPiDE6jhmOWR5C0WE+m6r4mWEt/3Wop832sp8n2veavSD1u3wkMPwtaH4eGHSAZm\n+q/UydMyMEDXww/R9XD2Pb40SeDU02DjRtj45Ox6zVqnodO8s9B+3u9/YD+72V3fXnP6GrrWdTWx\noqWpUqzw6GOTH4GtbFnJ2rPXNrGiY7fQ3vNSHnzfa7HJOxR6AfCdYziuSNa5My+EEP4d2XpGvx1j\n3NPseiRJkiQpF2kK2x6Du+6En99F8vhhl3k9+mkKBejsgs7OyUt7O9kysimk0NfXC0B3V3f9PtIU\nhgahvz8LpPr7SYaGjjpeMlH3tsfgxhuyGrq74clnw0UXw4UXQnvHUc4iabre7b1Ttssryk2qZGlr\nX9Fe//EJ2bpCa89fGKGQJGnhm3UoFEJ4DfCahrveFEJ4yhEeshq4DNg327HHTfyLpnOG/V3Tjpsi\nhLAS+DhwQ4zxCznVJEmSJEnNUatlnUB33wV330myd+8xPSwtFGDVali7FnpWZCFQ13gAVCoftUun\nf+cOALrXrT/yOGOj0F+ph0RU+uHAAdi9i6S/f8bHJX19Wbh1152kLS1wzrlw8SVw4UXQZaeDdCz6\ndvTVb7d2tNJScvq4Zii0FCj3lBk6kIXkB7cdbHJFkqSlJI/f/iXg2cBmsu84PGP8ciQjwAdyGBvg\n4fFxT5th/8SaQzOtBPbnQA/wwRBC4zlWjF+vGb9/T4xxeLbFSpIkSVLuqmMQI9x9J9x9N0nv0T9g\nTLu7Ye0pWQi05hRYtQpaTsIHxC2t0NOTXabXVOmHXbtg967seob1jZKxMbj3Hrj3nizMCufA0y6B\niy6CZcvn/jlIC1CapvRtnwyF2le0N7EadazsqIdCld0VxobHDOkkSSfFrH/bxBivAa4JIawg6/75\na+CaIzxkCNgSY5x5ldHjG78SQvgFcHEIoRxjrM9FEEIoAr8OPDa+ZtHhvAhoA/7PDPsnnsulwPV5\n1CxJkiRJuXh8G9xwPdxx+1HXBkqXLYczz4R167P1eTrm4fRrnV2wsQs2bsq2x8ZI9+3NAqKdO2Db\nNpLq2JSHJLUa3H8f3H8f6Vf/Npti7pnPgl97JrSVmvAkpPlp6OAQY4OTf3+cOq652le1w4PjGyn0\nbe9jxVkrjvgYSZLykNtXEGKMB0IIXwKujTHekNd5j9HVwF8B7yKbCm7CW4C1NHQlhRDOAYZjjA+P\n3/XbwOH+N/Qi4D3A+4B7xi+SJEmS1Fyjo9k0ajdeT/LATBMiZNJVq+DMjXDmWbBixVGngJt3Wlrg\nlHXZ5cKnwugo6WOPwtaH4dFHSEZHpxyepCls+RVs+RXpP/4DPPs58IIXZh1R0hLX2CUEdgo1W/uq\nqa9/77ZeQyFJ0kmRa19qjPEdeZ7vOHwGeDPwsRDCGcAdwPnAVWRhzscajr0fiMA5ADHGHx/uhCGE\n1eM3b4sxXj83ZUuSJEnSMdq7F266AW69OVtf5zBSyAKUM8/KLsuWndQS51xra9ZFtHFT1kX0+DZ4\n+CF4ZCvJyMiUQ5OBAfiX6+BfriM973x44aXwlAuhUGhS8VJzTQ+Fyj12CjVTa7mV1o5WRgeycNt1\nhSRJJ8usQqEQwluBn8YY72/YPmYxxi/PZvyG84yGEF4KfBB4PfBuYDfweeADMcYjz6MgSZIkSfNR\nrQa/vBduvB7uvSfrhDmMdM0a2HxONj1cR+dJLbFpWlrgjDOzS7VKuv3xLCB66MFDO4ju+yXc90vS\nVavh+S+A5zwXurqbUrbULE888kT9dml5iUKLAWmzta9qr4dCfY/3kdZSksIC6+iUJC04s+0U+iLw\nn8m6bya2D/+/lKmS8eNyCYUAYoy9ZJ1BVx3luGP67Rpj/CLZ85EkSZKkk2tsDG67BX7wzyR79xz2\nkLRYhE1nw3nnZWsELWXFIpz+pOzyrF8nfWAL3HcvyYEDUw5L9u2Fb36D9DvXwtN/DS57Gazf0KSi\npZNnpDJCZVelvt25ZomEx/Ncx8oOeh/rBaA6UqWyp0LXKV1NrkqStNjNNhT6EHBrw/aHObZQSJIk\nSZI03ego3Hoz/PM/kRzYf9hD0uXL4dzzYXOAUukkF7gAtLXBeefDueeR7tyRdVpt3UqS1uqHJGNj\n8K+3kv7kNrjkGfDyV8IGwyEtXgcfmTo1maHQ/HDIukKP9RoKSZLm3KxCoRjjh6Ztf3BW1UiSJEnS\nUjQyArfclHUGPXHgkN1pkmRrBJ17Hmw4FRKnFzqqJMm6gNZvgEqF9N/ug3+7P1traOKQNIU7bif9\n2U/hkqePh0OnNrFoaW4c2NrwcyWBjtUdzStGdaVl2TR+tbEstD647SAbnm5ALUmaW7PtFDpmIYQu\n4Bzg8RjjjpM1riRJkiTNWyPDcOMN8MMfkPQeush42toK5z8l63zp9NvjJ6yzM+sIetrFpA8/nK3P\ntHtXfXcWDv2U9Gd3wMWXwMtfBacaDmnxeGLr5HpC7SvbXU9onkiShPaV7VR2Z1P79W7rbXJFkqSl\nIPdQKITwLuA/xhgvabjvHcBfAR1AGkL4XIzx9/IeW5IkSZIWhOFhuOF6uO6fSfr6DtmdtrbBBRfA\n+RdAuXzy61usCkXY9GTYuIl0++PwsztIdu2s707SFH52B/zsDtKLnw6vMBzSwjf4xCBDTwzVt506\nbn5pXzUZCg33DjPcO0xpmVODSpLmTq6hUAjhNcBfA3tCCIUYYy2EcA7wOaAKfAs4H3hXCOH2GOMX\n8xxfkiRJkua1Wg1uuwWu/dbhO4Pa2uCCC7MwyPWC5k6SwKmnwYZTDxsOASR33gF33kH69GfAFa+D\n1WuaVKw0O41dQgCdaw2F5pOOVVOn8ju47SBrz1vbpGokSUtB3p1CVwLbgYtijBOreL4LKABXxhg/\nF0IoAXcBbwe+mPP4kiRJkjQ/3X8f/MM1JI9vO2RXWirBBU/Npopra2tCcUvUlHBoO9x5B8nOqbOd\nJ3f8lPTuu+A3XgyXvxzaXYtFC0tjKJQUE9pXtDexGk3XvqIdEiDNtnu39RoKSZLmVN6h0FOAr8cY\n9zbc9wqgl/EAKMY4HEL4LvA7OY8tSZIkSfPP9u3wj18nufeeQ3alpTJc+NRszSDDoOZJkmyauFPH\nO4fuvINkx2Q4lIyNwQ//mfS2W+BVr4HnPA+KxSYWLB2bNE2nhEIdqztICkkTK9J0hZYC5eXl+hR/\nriskSZpreYdCq4H6v5xDCKcDTwa+FWMcaThuP2C/siRJkqTFq7cXvvttuPlGklptyq60WISnXgQX\nXgStrU0qUIe14dTJaeV+8q8ke/fUdyV9ffB3f0t6/Y/h9W/MOrukeayyp8LowGh926nj5qf2le31\nUKh/Vz/VkSrFNoNnSdLcyDsUOgisb9h+NVkD7D9NO24NcCDnsSVJkiSp+UZH4cc/gn/6PsnQ4JRd\nKcDZm+HpvwZdXU0pT8dow6lwxetIH9gCP/0JSaVS35Vs3w6f+EvS85+ShUMbNjSxUGlmh6wntMZQ\naD7qWNXBgYfGPyZLoXd7LyvOXNHcoiRJi1beodDdwBtDCJ8GqsAfAqPAtycOCCG0Aa8E7s95bEmS\nJElqnjSFn98N13yNZP++Q3ev3wDPejasXtOE4nRCkiQL8c46i/QXv4Cf35VNJTex+5f3kt5/Hzzv\nBdm0cgZ9mmcaQ6FiW5HSslITq9FM2ldNXeepd5uhkCRp7uQdCv0VcC1w3/h2AnwyxrgLIISwDvga\n2ZRy/yPnsSVJkiSpOfbugb//Ksk9vzhkV7psGTzz2XDGmVnIoIWnpRUuvgTCOaR33A6/ikz8SSa1\nGtzwf0jv+Cm8/jfh2c/xz1nzQq1a4+CjB+vbnWs7SXxvzkut7a20tLcwNpiFzq4rJEmaS7mGQjHG\n74QQ3gK8G+gBvgu8t+GQKvB84G9ijH+T59iSJEmSdNKNjcF1P4Dvf49kdGTKrrRUgoufDueeB0XX\nhlgUOjvhBZfC+U8h/ddbSXbUl9QlqfTDl79Ieust8B/ekk0/JzVR3/Y+qiPV+nbHmo4mVqOj6VjV\nUQ+Deh/vJa2lJAVDPElS/vLuFCLG+HfA382wb08I4YIY4y/zHleSJEmSTqr4b/DVvyXZuXPK3WmS\nwHnnwyXPgJJTNS1Kq9fAK15N+shW+MltJL2T3+pPHthC+pEPw0teCq94JbT5HlBzuJ7QwtK+qr0e\nClWHq1T2Vuha65SUkqT85R4KHY2BkCRJkqQFrfcgfOPrJD/510N2pWvWwHOf77pBS0GSwJlnwWmn\nk/78Lrj7rmwqOSCpVeEH/0T609vh3/0HuPCpTS5WS9GBrQfqt1s7WmnrbGtiNTqajpVTO7l6H+s1\nFJIkzYncQ6EQwmuAtwGbgXZgpl7XNMa4Ke/xJUmSJGlO1Gpw0w1w7TdJBgam7Erb2uAZz4RzzoVC\noUkFqilaWrKusE1nk95yE8n2x+u7kv374NOfIL3oafDGfw8rVzaxUC0l1ZEqfY/31bc719olNN+V\nlpcotBSojWXhcu/jvWy4ZEOTq5IkLUa5hkIhhHcCn2PmIKhRmufYkiRJkjRndmyHL3+R5OGHDtmV\nPnkzPPNZ0OF6HUtaTw+8/JWkDz4A/3oryeBgfVdy912k998Hr3w1/MaLXWNKc+7gYwdJa5Mfuzh1\n3PyXJAntK9up7K4A2Z+hJElzIe9OofeQhT3vBX4IHMTwR5IkSdJCVa3Cj34I37mWZGxsyq60pyeb\nKm693+TWuCSBJ58Npz+J9I7b4b5f1r8xmQwPwze+TnrHT+Gtb4dTT2tmpVrkpq8n1LHG0HohaF81\nGQoNHxxmYN8AHav8s5Mk5SvvUOhs4Csxxj/P+bySJEmSdHLt2A5f+gLJ1oen3J0Wi3Dx0+GCC+34\n0OGVSvCc58HZm0lvvolk3976ruSRraR/9qfwspfD5a/Ipp+Tcta4nlBpWYmWku+zhaDrlC723j/5\n82Lfln2GQpKk3OX9r4Je4Fc5n1OSJEmSTp5aDa77weG7gzZsgOe9EJYta05tWljWngJXvI70vnvh\np7fX309JtQrf+w7pXXdmXUNnntXcOrWojFRGqOyq1LddT2jhKPeUaSm3MDaU/azYt2Ufpz/r9CZX\nJUlabPIOhW4Bzs/5nJIkSZJ0cuzckXUHTVs7KG1pgWc+G849L5siTDpWhQI85UI440zSm24keXxb\nfVey/XHS//Fn8OKXwqteDW2lJhaqxeLgI1PXonE9oYUjSRK61nXVp//r3dbL6MAorR2tTa5MkrSY\n5B0KvR+4OYTw5hjj/8753JIkSVLT1NKU4bGUkerEBUaqKWO1lDSdXEgzBR6vtJACY3uGScd3FAsJ\nrYWE1iK0FhPaCgmtxfHtQkKxYNDQVLVatnbQt791aHfQ+g3w/BfaHaTZ6V4Gl7+C9FcR/vVWkpER\nAJI0het+QHr3XfBbb4PNocmFaqFrnDqOBDpWO/3YQtK1fjIUIoX9D+7nlAtOaW5RkqRFJe9Q6LnA\n1cAXQghXAT8D9s5wbBpjfH/O40uSJElHNFpN6Rup0T9SozJSo384266M39c/ktI/UmNgtMZQQwg0\nVjueUca/lf34wSMf1qCQQFsxoaM1obOtQGdrQkdbgc7W7HZnW6G+b1mpQE+5SGdbQsGuldk7YnfQ\ns+Dc8+0OUj6SBMI5cPrp2VpDj2yd3LVnN/zFn5M+/wXw2t+E9vbm1akFrR4oAO0r2ym0FJpYjY5X\n55pOkmJCWs2+VbJvyz5DIUlSrvIOhT5D9uXIBHja+GUmKVlnkSRJkpSLNE3pH0k5MFhl/2CVA0M1\nDgxWOTBYq2/3DR9XunPS1FIYGksZGkvZP3hsNbYUYHmpQE97kZ5yFhRl1wVWtBdZ3VGks80PA2dk\nd5CapaMTXnIZ6cMPwa03kwwO1nclN95Aeu898NZ3wDnnNrFILUSDTwwy9MRQfdup4xaeQrFA59pO\n+nf0A3DgoQPUxmqGe5Kk3OQdCn2YyZkzJEmSpDlRGamxu1Jld2WMXf3V7Hb/GHsHqozOz8xnTozV\nYN9gjX1HCJE6WhPWdhZZ01lkTWfL5O2OIu2tS/gDJruD1GxJAhs3wYZTSW+7heSBLZO79u+Hv/yf\npC+4FF77eiiXm1ioFpLGLiGAzrWGQgtR97rueihUHanyxKNPsHLjyiZXJUlaLHINhWKMH8zzfJIk\nSVraeodrPN47yvbeKjv7x+pBUP9I/t9DSoBSS0J5/FIqZmv+tBSyNX9axm+3FA69bjwHCezbt48E\nWLVqFRN7qylUazCWplRrUK2ljKXZdbUGY7VsirrhsZShao3hsZTh6sQ6Rif+vAZGU7Y+McbWJ8aA\n4Sn7utsSTulqYX13C6cua2FDdwvru4uUF/O3kWs1+NF18O1v2h2k+aFchktfRLrpyXDzjSSVSn1X\ncsP/If3lvfC2d8DZm5tYpBaKxlAoKSa0r3AawoWoa13XlO39W/YbCkmScpN3p9AUIYTlwCnA9hhj\n/1yOJUmSpIWrWkvZXanyeO9YdunLrntzmOqtkEBXW4HOtoSu1uy6o61QD38mLm3F/NbnSfuyuk/p\nyuef27U0W9doeCy7DIymVEZrVEay64GJ69GU2nHkZX0jKX37R3lg/+iU+1d3FLKgqLuFDeNh0ZrO\n4sJfv2jnTvjyF0geenDK3WlLC/zas+A8u4PURE86A37zjaS33Ubyq3+r353s3UP6F38Ol74Irngt\ntJWaWKTmszRNp4RCHas7SAr+TFuIWsottK9oZ/BANrXkvi372PTSTST+jpIk5SD3UCiE0A78F+Ct\nwJnjd78W+Pb4/i8AH4kxPnjYE0iSJGlRq6Upu/qrPPLEKFufGOWxg2Ps6Bub1bRvXW0Jy8sFlpeK\ndJcSOlsL9SCo3JIs+A9RCslEeHXk49I0W5OoMpLSP1Lj4HCN3onLUI3BsWNLjPYO1Ng7MMI9u0bq\n95VbEk5f1sIZPa08qSe7XlEuLIzXtlaDf7kuWztodGoAlq5fD8+/1O4gzQ9tJXjBC0nPOgtuuoFk\nYACAJE3hxz/K1hp62ztg05ObXKjmo8qeCqMDkz/jnDpuYeta31UPhYZ7h6nsrtB1StdRHiVJ0tHl\nGgqNB0I3AJeQzZ6xB1jdsH8j8DbgshDCM2OMj+U5viRJkuaf3uFaFgAdyEKgRw+OMXSM4USjtiIs\nLxdZXiqMB0DZdXepMGUKt6UsSRLaWxPaW2F1Z/GQ/aPVlN7hGgeHsqDo4HCNJwarPDFUo3qUP5Kh\nsZQt+0fZ0tBV1N2WjIdErZyxPAuKOtvm2dRzdgdpIXrSGfCbbyK99eapaw3t3kX6sf8BL34pvPoK\naG1tYpGabw5ZT2iNodBC1r2+mz337alv7/vVPkMhSVIu8u4U+kPg6cDfAn8EtAL1lVtjjA+FEH4T\nuGZ8/+/lPL4kSZKaqJam7Oyr8sD+ER7cn4VA+wePvwVoeanAyvYCKzuK2XV7kY7Whd/x02ytxYRV\nHUVWdUwNjGppFhbtH6xxYLDKgcEa+werR127qW8k5d7dI9y7e7KjaF1XkU0rW9m0oo2NK1tZ2d6k\nbqIjdQetWw8veCEsW37y65KOVamUrTV01sZsraHBrGMgSVO47gek9/wi6xo6a2OTC9V88cTDk6FQ\nsa1IaZlTDS5kbd1ttHa2MlrJfofte2AfZzzvjCZXJUlaDPIOhd4I/DTG+FaAEMIhv61ijP8YQvgu\n8LKcx5YkSdJJVq2lPNY7xoP7R3lwPAgaGD32LqBCQhZSNARAK8pFWouGPydTIUnoKRfpKRdhxWTn\nwUg15cBglX2DNfZWquwdyLqKjmRnf5Wd/VVueXQIgJ5ygU0rW9m4opUnr2xjXfdJWJto10740gzd\nQc94Jpz/FLuDtHCceRasW0d6y81T3tPJzh2k/+9/g8suh1e8yq6hJa5WrXHwsYP17c61nX6RYoFL\nkoSudV0cePAAAP07+hnuG6bUbdgnSZqdvEOhs4C/PIbjfoahkCRJ0oJTraVsfWKULfuyEOihA2OM\nHG3esQbLSglrOltY01FkTWcWAhWd+m3eaismnNLVwildwJrsvpFqyr6BKnvGQ6I9A1UqR+goemKo\nxs+2D/Oz7cMAtLckPHlVK5tXtRFWt7Guq5jfB5e1Gvz4R3DtN+0O0uJSbocXvWS8a+gmkuEsdE3S\nFP75+6S/+Dm8/bezaee0JPVt76M6Uq1vd6zpaGI1ykv3+u56KASwb8s+Nly8oYkVSZIWg7xDoRpw\nLJOItwMjRz1KkiRJTZWmKTv7q8S9I8S9I2zZN8rwMYZArQU4pauFNZ3FeghUajEAWujaignru1tY\n3z35X4nB0Rp7KlV2Vars6s/CotoMb5PBsZR7do1wz67svwPdpQKbV7USVrWxeXXbIVPbHbNdO+HL\nXyR58IEpd9sdpEVl4yZYt570lptItj5cvzvZ/jjpf/8zuPzlcPkroCXv/+prvnM9ocWpY1UHhdYC\ntdGsS3f/lv2GQpKkWcv7X4r3A68MIbw/xnjYeSVCCGXgDcB9OY8tSZKkHBwYrPKrfSPjQdAovcPH\ntiZQuSVhXVeRdV0tnNJVZEV7Ye6nCdO80N5a4Ek9BZ7Uk01fNVZL2TuQBUTZZYzRGd5GfcNTO4lW\ndxTYPB4QnbO6jc62o3zn7IjdQevgBZfaHaTFpaMDXvxS0gcfgFtvJhnO/u4ktSp87zukv7gb3vbb\ncNrpTS5UJ9OBrZPdJK0drbR1tjWxGuUlKSR0ndJF77ZeIPtzro5UKbad4BcoJEki/1DoK8DHgW+H\nEP4QGBi/Pw0hlIAXA38CbOTYppmTJEnSHButpjywf4T79oxw/+4RdlWqR38Q0NmasK67ZTwIKrKs\nVHD9AgHQUkhY19XCuq7svxu1NOXAYI1d/VV29o+xo686Y8fZ3oEaeweGuPX/Z+8+gyRJ7/vOf580\n5V17N93jp2bH7cxa7C52gSVACCAIT4knGlE6neJeSHHBIHWKuBc88A6KE+OkuAgyaCSKECmRoANh\ndgkCILnEeqyfmR1fPaZnpr031eUz87kXWdNm2ozrmWrz/0Tkpq2qZ3qrurLzl//n6S2igO0pi4ea\nghxoCtCVshYHjcPD8D/+cGl1kGnCEx+R6iCxeSkFe/ZCezv69ddQ16/N7+rtRf+Hf++PM/SPPgOm\nXDze7NyGPJDMAAAgAElEQVSyS7Y/O7cebZYqoc0k1jofCmlXM9kzSWO6scatEkIIsZGtdSj0O/jB\nz+eAzwAuoIE/w+8yDkABfwP83hq/thBCCCGEuE1jeZdzIyXOj5bpHi9Tvo0cKGgq2hMm7XGL9rhF\nPHg7vQYLAYZSNERMGiImB5oDaK2ZKHgMZP2AaGjWwVmmkkgDV6ccrk45/OBijqit2N8U4KEGi4fP\nvUHob767fHXQc89DUqqDxBYQicKnPo2+2A1vvYkq+90yKteFF7+L/rBaNdQu3U1tZmPdY+gFfXZK\n13GbS6wl5l9Jq/4vHr84LqGQEEKIe7KmoVAmk/HS6fQXgX9VnY7if3VFgApwAvg68AeZTOb2RyQW\nQgghhBD3pOJqLk9UODda4uxImZHbqAYyFbTG50Og+rBUAom1oRaERIdbwPU0o3mXwazLQNZhNLf8\nmES5iuZ6dz/PfvgtwhPXFu3zq4OehIOHpTpIbC1Kwb40tHegX38V1dc7v+vaVfT/83/D578In/wU\nGBLmb0bDp4fnlpWpiLZIKLSZmAGTSGOE/KjfGc/EpQm0p1GGfNcJIYS4O2s++mQ17Pl94PfT6bQN\nNODfzzCeyWSctX49IYQQQgixvGzJ4+xIidPDZS6MlSmv0F3XQg1hg46ERUfCojlqYsoFB/EAmAu6\nmzvWFqTiagZnHfpnHPqmHbJljdIeH+t5i8+f/zsC3uLqoEv12/nusS/R2hDhUKnA/kCRoCH3oIkt\nJhaDT/8UOnMe3n5rropOOQ58+6/QJ0/AL/0LaGmtcUPFWiplS0z1TM2tx9vjmLZ0GbjZxFvjc6FQ\nJV8hO5AlsS1R41YJIYTYqNY8FFook8lUgKH7+RpCCCGEEMKntWZo1uVMNQi6OlnhVpfFAyZ0JCy2\nVYOgiC13kYvas01FV9KmK2lDJ5QHh9j14jdoHupZdFzZsHnxoU/x6s6n0MrgagHeLsSw0OwNFDkU\nLHAoVKDevL1xsoTY8JSC/QegoxP92iuogf75XVcuo//9/wVf/DI8/wmpGtokRs6MLFpPdaVq1BJx\nP8VaY4sqwsYvjksoJIQQ4q7dUyiUTqd/dA8P15lM5hP38vo3taUe+CrwRaANGAO+D/xaJpMZvI3H\nf7T6+CeAENALfAv4WiaTmV2rdgohhBBCrCXX87uFOz1S4sxwmbH8rS9+N4QNtiX9IKgpamJIV1ti\nvdIeTe+8Ssc/vIjhLK4OGq7v4E+PfpnL0bYlD3NQnC+HOV8O880stFtljgQLPBzK02FVpHc5sfnF\n4/BTP40+fxbeeduvFgK/euibf4E+cdyvGmpqrnFDxb3QWi8KCqyQRaQpUsMWifslEAsQjAcpZUuA\nHwrtfH5njVslhBBio7rXSqGPr7Bd448ltNq+NevPIZ1Oh4FXgP3AbwPvA3uBfwv8RDqdfjSTyUyu\n8vifB/4EyOAHQzPATwP/Dng2nU5/NJPJLDP0rRBCCCHEg1d2NedHy5waKnFmpES+svpplWX41UBd\nSakGEhtHcGKUrhf+hPj1y4u2e6bJxKHHyO09wBdUnknvGle8KFe8KP1eCG+ZP0MGnAADToAf5pI0\nmA5HgnmOhvLssMtID4li01IKDhyCbZ3oV19BDc3fK6kuXUR/7dfhy/8YnvuYVA1tULNDs+TH8nPr\nyc6kjP23icXaYnOhUH4sT2GyQLguXONWCSGE2IjuNRR6fpltvwR8CfhD4B1gHDCAZuBp4OeB/w78\n3j2+9kK/DBwG/nUmk/ndGxvT6fSHwHeAXwN+ZbkHptPpYLUtvcCTmUxmurrrv6XT6e/gVx59Gr/q\nSAghhBCiJnJljzMjJU4NlTg/WqZyi9tVIraiK2nRlbRpjZtYcuVbbBTao+nd1+h46YUl1UHFhmZG\nHn8OJ56c21ZnODxqTPMo0xS1wTUvzGU3So8XocTScTXGXYuX8wlezieIGy5HgnkeDhXYGyhiycdE\nbEaJJPz059FnTsN776Bcv6JUlcvw599An/gAfvGfQ2Njbdsp7tjCKiGAZFdyhSPFZhBrjTHePT63\nPn5xnG1PbKthi4QQQmxU9xQKZTKZVxeup9Ppf4JfYXMkk8n0LvOQP0mn0/8JeBc/MDp/L6+/wD8D\ncsDXb9r+AtAH/EI6nf7VTCaz3G20rcC3gXcWBEI3fB8/FDqChEJCCCGEeMAmCy6nhv0g6NJEBe8W\nddYNYYOulE1X0qI+bMjdwmLDCY4Ns/3FbxDrvbJou2eYTB5+jOm9B0CtXNEQUh5pM0fazOFpGNAh\nrrgRLnlRpnRgyfFZz+TNQpw3C3HCyuNgtYu5hwJFgsaadWwgRO0pBYePQGcX+tWXUSPzYYLKXEB/\n7avw5Z+BZ6VqaKPwXI/Rs6Nz66FUiGAiWMMWifstXB/GDJq4JT/YlVBICCHE3brXSqGb/e/At1cI\nhADIZDJX0un0t/Erd75xry+YTqcT+N3GvZ7JZEo3vZZOp9PvAl8GdgJXbn58JpO5BvzzFZ7+xm02\nM/faTiGEEEKI2zFRcDk5WOLkYJGeKWfVYxXQFjfZXg2CogG5kCc2KM+l5cf/QNsr38dwF7/viw3N\njD7+HJX4nd0BbyjYpopsM4o8qycY1wEueVEuulFG9dILpwVt8H4xyvvFKDYeDwWLHAkVOBzME5GA\nSGwWqRR87gvo06fgg/fmq4ZKJfizb6Dffw9+4ZegpaXGDRW3MnllkkphvppSqoQ2P6UUsdYY09f8\n+5mnr09TKVSww3aNWyaEEGKjWetQ6CH87tpu5Srwc2v0mtur874V9l+vznexTCi0knQ6HQD+ZyAP\nfPeuW3eTixcvrtVTbRryMxFbkbzvxVYk7/uVTVcUl7I2l2Zthourn54ZaJpCLi0hh+agi20ADsyM\ny10s69Hg4OCtD9riEmNDHHntb0iODS3a7hkG/bsPMtK1BxwPJlccIvS2mEC6OmVVgGtmHdeNFMNG\nzK+iWKCCwalShFOlCAZ1dJElzQRpJolRWe7pxQKDQ/K+X/daWrCefY7UyRMEpqbmNquL3Xhf+yrj\nT32Uyccel6qhO/Cgz3Mm31rwO1FBIVCQz94W4IQW3Dih4fyPzxPuqs24QnJuL7Yied+L9WDv3r33\n/BxrHQqVgadu47jHYc3+mopX5/kV9uduOu6W0um0AfxX/JDrVzOZzMDdN08IIYQQYqmpssGlWYtL\nWZuR0uqnZLbSNIccWkIujUEXU3qFE5uA4TrsOf4Gu0++haEXD5KVTTVy7cAjlCKx+/LacV3mkDPM\nIYbJY9Frprhm1jFoxPFu6p7Ow+AqSa6S5G/ZSQdZ9jNBmglSlO9L+4R4EJx4grFnniV25TLxzAWU\n538ODceh6fVXiHdfYOgffYZyU3ONWypu5pU9igPFuXUrZWHYEuBtBVbS8kvFqwWsxYFizUIhIYQQ\nG9dah0KvAF9Ip9P/BfjNTCZzbuHOdDq9F/g3wOdZp2P0pNPpMPCn+GMJ/U4mk/n/1vL51yLJ2yxu\npOvyMxFbibzvxVYk7/t5I7MOJ4ZKnBws0TezetdwIUuxI2Wxo86mNWZiyPhAG8qNCqG2trYat2R9\nivT1sP2FbxC+uTrIshk/8jjZXfuJKEXkAbSlDujA5SOMUdQT9HgRLrlRerwIDksvsvYTp584/8B2\nuqwSR0N5joYKNFmrf6a3ghtVCm2t8r7fUNo74NAR9GuvoIbnP5Oh4SG2/8n/gE9/Bj7zWbCli6rl\n1OI8Z+D4AMPe/LhQLXtbSLQmHtjri9pyr7nMDs8CUBmpsHvXbgzzwYWCcm4vtiJ534vNZq1DoX8H\nPA38K+B/SafTFfyeTDSQAAL49zRMA//HGr3mjZ5Soivsj9103IrS6XQT8CLwEeBrmUzm/7z35gkh\nhBBiKxvKOpwcKnFisMRAdvWLxhFbsSNlsyNl0SxBkNiEjHKJth99j+Z3XkGxeJyefOs2Rh99Bvc+\nVQfdjpDyeMic5SFzlopWXPPCXHJjXPYilDCXHH/dCXJ9NsiLs3Vss8ocDeU5FsrTLAGR2GhujDV0\n/iy8+w6q4nfsoTwXvv899Inj8Iu/BLt217ihAmDk9MjcsmEbxFpr93tTPHixtthcKOSWXKZ7p6nb\nUVfjVgkhhNhI1jQUymQyl9Lp9MP44dDn8cfxaVxwSB9+hdBvZDKZq2v0sj34odO2FfbfGHNo1U4f\n0+l0C/A6sBP4F5lM5o/WqH1CCCGE2EK01gzNupwYLHJysMTgrLvq8RFbsbOuGgRFTZQEQWKTSlw8\nS+f3/5Lg1Pii7a4dYPzYR5jt2rNkbJ9aspVmj5lnj5nH1dDnhbnkRbnkRskt82dUnxOgbzbA92ZT\ntFcDoqOhPG0SEImNQik4cAg6t6PfeA3V1zu/a3AA/R9/A57/BHz+ixAK1bChW1thosBM//w9r4lt\niQdaJSJq7+YQcOT0iIRCQggh7shaVwqRyWSGgV8FfjWdTofwe2RQwFQmk1lp3J97eb1cOp0+BTyS\nTqdDmUxmrmPddDpt4lcu9WYymesrPUc6nU4APwS6gM9nMpkfrHU7hRBCCLF5aa0ZyLqcHCxyYrDE\ncG71IChqK3bU2eyss2iKSBAkNjc7O8W2H36LunMnluyb7djB+CNP44bW93gIpoLtZoHtZoHnrTEG\ndYhuN8pFN8bsMn9SDTgBBmYDfH82RatZmQuI2q3Kesq9hFhePA6f/in0xW54+8eoUgkApTX86CX0\n8Q/gZ/8nOPrIugpyt4rh08OL1pOdyRq1RNSKHbYJN4QpjBcAGDk7wo7ndxCMBWvbMCGEEBvGmodC\nC1UDmsH7+RpVXwd+C/hfgd9csP0XgGbgqzc2pNPp/UApk8n0LDjuN4GjwJclEBJCCCHE7dBa0zfj\ncHKwxImhEqO3CIJiAcXOlM2OOpvGiCFBkNj8PI+m91+n/Ud/jVkqLtrlBEOMPfIM+W07atO2e2Ao\n6FBFOowiH7fGGdRBLroxut0oWZaOuTLk2vwwl+SHuSRN1YDoWCjPNgmIxHqmFOxLw7ZO9I/fQPVc\nmd81NQn/5ffQh4/Az/4cNDau8kRiLWmtGT4zHwrZUZtw/foO1cX9Ub+7nv7xfgC0pxn8YJAdH9tR\n20YJIYTYMO5rKPQA/Wfg54H/lE6ntwPvAweBXwFOA/9pwbHngQywHyCdTh8Bfgk4B5jpdPpnlnn+\n0Uwm8+r9a74QQgghNgKtNb3TDieGSpwcLDGWXz0IigeqXcPV2TSEJQgSW0d4sJeu7/050YFrS/bN\n7NrPxOHH8AIb/45mpaBdlWg3SjxnjTOsg34FkRdjWi8NiEZdm7/PJfn7XJJGs8LRUIGjoTxdVlkC\nIrE+RSLwyU+he3rgrTdQudzcLnX6FDpzAT77OfjkT4K5WS4vrF/TvdOUpktz66mulJxbbFHx9jh2\nxKaS98f/Gjg+QOfTnZj20vHvhBBCiJttirO2TCZTSafTnwJ+HfgK8G+AEeAPgK/eotu6R/C7tzsA\nfHOFY14FPr5W7RVCCCHExqG15tp0tSJosMhEwVv1+ETwxhhBNvUSBIktxiiXaHv5ezS/84rf1dQC\npUQdY489Q6mhpUatu7+UglZVotUo8ayeYFQH6HZjdHtRpnRgyfFjrs1LOZuXcgnqDGeugmi7XcaQ\nXxtivdm5Ezo60B+8B2fPzH2+VbkM3/kW+p234ed/EXbvqXFDN7eR0yOL1hOdiRq1RNSaUor6PfUM\nn/Irx5yCw/DpYdofaa9xy4QQQmwEmyIUAshkMjP4lUG/covj1E3rfwT80X1rmBBCCCE2HE9rrk05\nnBgscnKoxOQtgqBk0GBnncWOOpu6kARBYmtKXjhF5w++SWBmctF2zzSZPPgI03sPgbE1BkNXCppV\nmWZjgmf0BGM6wEU3SrcXY2KZgGjSs3g5n+DlfIKU4fBwtYJol12SgEisH4EAPPUM7N2Hfv011Njo\n3C410A//8TfQH30OvvRliMZq2NDNya24jJ6f/5mHG8IEokt/n4itI9mVZPT8KF7FP0/tf7eftmNt\nch4qhBDiljZNKCSEEEIIcS88remZrHBisMSHQyWmiqsHQamQUa0IsqgLS1cdYusKjg+z7YffInnp\n3JJ9+dZtjD3yNE40XoOWrQ9KQZMq02SUeZpJxj2bbi/GRTfKmF7ahd6UZ/FqPs6r+TgJw+XhUJ5j\nwTy7AxIQiXWisQm+8CX0+XPw3juoSmVul3rjNfSHJ+CLX4Gnnt4yQfCDMN49jlue77Y21ZWqYWvE\nemDaJqkdKSYuTgBQmCgwcXmChj0NNW6ZEEKI9U5CISGEEEJsWa6nuTJZ4eRgiZNDJWZKqwdBdTeC\noDqLVEiCILG1GaUCba/9LU1vv4zhLR5fywmFGT/2FLmOHchgOYs1GBWeMiZ5yppkwrO56EW56MYY\nWSYgmvFMXs/HeT0fJ264HAnmORrKszdQwpQfq6glw4CDh2DHTvTbP0ZduTy3S2Wz8Md/hH7tFfjZ\nfwq7dteunZvI8OnhuWVlKOIdWzdsF/Pqd9UzcWkCqj229r/TL6GQEEKIW5JQSAghhBBbiuNpusfK\nnBwqcXq4xGxZr3p8fXi+IigpQZAQoD3qT71Hx0svYM/OLN4FzOw5wMShR9G2dGt0K/VGhSeNKZ60\nppjyLC56MbrdKMM6tOTYrGfyZiHOm4U4UeVypNrF3L5AEUsCIlEr0Sh84ifR+9Lw5ut+IFSlrl2F\n//c/oJ98Cr70FUhJZcvdKs2WmOyZ75oz3h7HtOWcRIAdsUl0JJjp87+Pp65NMTs8S6xFunAUQgix\nMgmFhBBCCLHplV3N+dEyHw4VOTNcpuCsHgQ1Rgx2pGx21NkkgtL1jRA3RPqvse2H3yTWd3XJvkJD\nC+PHPkK5rvHBN2wTSBkOjxtTPG5NMe1ZcxVEg8sERDlt8lYhxluFGGHlcTiY51goTzpYxJaASNRC\nZxf8zD9BnzwJp06i3PnqQfXOW+iTx+Ezn4VP/CTYdg0bujGNnh2dqwQBfywZIW6o31M/FwoB9L3b\nx/7P7a9hi4QQQqx3EgoJIYQQYlMqOh5nR8qcHCxxbrRE2V39+MbIjYogm7gEQUIsYuWytP/DizSc\neBvF4lDVCUUYf/gJcp27pKu4NZI0HB4zpnnMmiarTS66/hhE/ToELP4ZF7TBu8UY7xZjhJTH4aBf\nQbQ/WCSgVg/AhVhTlg2PPQ7pNPqdt1E9V+Z2qVIJvvtt9Juvw8/8LBx5WH5f3IGFXceZQZNoU7SG\nrRHrTbguTLghTGG8APgh4s6P7yQYX9otqRBCCAESCgkhhBBiE8mVPU4Pl/hwqMSFsTLO6kME0RIz\n2ZGy2J6yiQUkCBLiZsqp0PTua7S99gPMUnHRPm0YTKUPM7X/YbQld/7fL3Hl8og1zSPWNLPa5JIb\npduL0e+F0DcFREVt8F4xynvFKEHlcTBY4FgozwEJiMSDFE/AJz+F7u+Ht95ETU7M7VKjo/B7v40+\ncBD+8c9CW3sNG7oxzA7PkhvJza0nO5MoQwI1sVjDngb6xvsA0J5m4IMBdn58Z41bJYQQYr2SUEgI\nIYQQG9pM0eXUsN81XPd4BW+V654KaI+bbK+z2Z60CNsSBAmxLM+j/vT7tL381wSnJ5fszrV3Mf7w\nkzixRA0at3XFlMtRa4ajzJDTJpfdKN1elF4vvCQgKmmD48Uox4tRAsrjQKDI0VCeQ8ECQUMCIvEA\ndHTAl38Gff4cfPCeXy1Upc6dRX/t1+Hpj8JnPwd1dbVr5zo3dHJo0bp0HSeWE2uLYUdtKrkKAIMn\nBul6ugszIGNPCSGEWEpCISGEEEJsOGN5d64i6MpEhdUubxoKtiUstqcsupI2QRmRXYiVaU3i8nna\nX3qByHD/kt3lWJLxYx+h0LqtBo0TC0WVyxFrhiPMkNdGNSCK0euF8W4KiMra4GQpwslSBBuPdLDE\noWCew8ECCfMWJZVC3AvDgIOHYPdu9PvvwYXzKO1/ayvPgzdeQ7/zNnzik/CpT0MkUuMGry+FiQKD\nJwbn1oOJIKHk0nHGhFBKUb+7nuFTfleDTsFh+PQw7Y9KNZ4QQoilJBQSQgghxLrnac31KYfTwyXO\njJQYyK4+QJBlQGfCYnudTWfCwjYlCBLiViID12h/6QUSPd1L9rl2gKkDR5necwAMuet4vYkoj8NW\nlsNkKWiDK9UKomteZElAVMHgTCnMmVKYPwd22CUOBQscCRZotSoyzIu4P0Jh+Ohz8NAB9Ftvogbn\ngw5VKcMPv49+/VX4zGfhY8+DLV1SAlz50RX0ghLohn0NNWyNWO9S21OMnh/Fq/hhf/97/bQ90oaS\nX+xCCCFuIqGQEEIIIdalsqvJjJWrQVCZbGn1u9kDJnQlbXakLNoTFpb0ty/EbQlMjNL+o7+m/uzx\nJfu0YTC99yBT+x/GC8iA1RtBWHkctLIcJEtRG1zxIlx0Y1z1wrgs7TLzaiXI1UqQ782maDQrHA4W\nOBwssCtQQvJ0seYaGuGzn0dfvwbvvYOanO+eUuVy8Fd/if7RS/D5L8ITH/ErjbaoqatTjHePz62H\n6kIktkmXnWJlhmVQt6OO8Yv++6YwUWDi0gQNeyVMFEIIsZiEQkIIIYRYN2aKLmdG/CAoM1amcote\njUKWYnvKYnvKpi1mYkoQJMRts7LTtL7+tzR98IbfjdMCGpjdsZeJg4/gRmK1aaC4ZyHlccCc5YA5\nS1krrnhRLrsRerwIZZZWfI25Ni/nbV7OJ4gol4PBIodDeR4KFAnJOERirSgF23dAZxf6Uje8/54f\nCN3YPTEBf/Tf0H/3t/Clr8Chw2y1EjbtaS6/dHnRttYjrVLxIW6pbncd45fGudG3ct87fRIKCSGE\nWEJCISGEEELUjNaawVl/fKAzwyWuTjm3fEwyZNCVtOhKWjRFTQy5QCLEHbFnpmh58+9p/OBNDHfp\nZy7X1snE4ceoJOtr0DpxvwSUZr85y35zFldDnxfmcjUkyrK0q668NnmvGOW9YhQLzd5AkcOhAoeC\nBerM1bvwFOK2GAbs2w+79qDPnYGTJ1Cl0txuNdAPv/Nb6J274Kd+ekuFQ0OnhsiNzAdlic4E4fpw\nDVskNgo7bJPYlmCmdwaA6evTZIeyxFvjNW6ZEEKI9URCISGEEEI8UK6nuTRR4fRwidPDJSYKq5cD\nKaAlZtKVtOhMWiRDMp6JEHfDnp6k9Y2/o+HEW8uGQcW6RiYefoJiU1sNWiceJFPBdrPAdrPA8xaM\n6kA1IIoyopd2E+igOF8Oc74c5i+BTqvM4VCew8ECHTIOkbhXlgVHjkL6IfSHJ+DMaZQ7Hzyqnit+\nONS13Q+HHj66qcMhp+Rw9dWrc+vKUDQfaK5dg8SGU7+7fi4UAuh/t5/9n99fwxYJIYRYbyQUEkII\nIcR9l3cU7/YVODta5vxImYKzejdEtgEdCb8aaFvSImRt3TEFhLhXgakJWm6EQd7SCo9yLMHk4cfI\ndezY1BdaxfKUgmZVptko85Q1SVabXHajXPai9HphPJa+J3qdAL2zAb4/myJlODwULHIgWCCFSRCp\nIhJ3KRj0xxE6cAh9/H3ozqD0/PmCun4N/vPvoLd1+uHQ0WObcsyh3rd6qeQqc+sN+xqwI0ur+YRY\nSbguTKQxQn4sD8DouVF2Pr+TYFzGBhRCCOGTUEgIIYQQa87TmmtTDudGShzvjTJSMoHsqo+J2oqu\nlEVX0qZVxgcS4p4FJsdoff3vaPjw7SVjBgGU40kmDxwj17kT1Oa7sCruTly5HLVmOMoMJa245kW4\n7Ea54kUoLTMO0ZRn8VYhxluFGAYNbGOWYzmXg4EirVJFJO5GLAbPfRyOHEWfPA6XLi4Oh/p64fd/\nD93eDp/5aXj0sU0TDhWnivS90ze3boUsGQ9G3JX6PfVzoZD2NAPvD7Dz+Z01bpUQQoj1QkIhIYQQ\nQqyJmZLH+dES50bLXBgtk6/cuICz8ulGY8SgK2nTmbSoDxsygLIQayA83E/zWz+i/tR7KL1MGJRI\n+WHQth0SBolVBZVmn5ljn5nD1TDghfxu5rwo03pp5YKHwXUSXM/CC0Cd4XAgWOChYJF9gSJhY/Uq\nUSEWSaXg4z8BjzyKPnkCursX/U5TAwPw9d9Hf+9F+PRn4PEn/a7oNrCel3vQ7vznpOlgE4ZUS4u7\nEGuNYUftuaqzgeMDtD3aRigRqnHLhBBCrAcb+4xJCCGEEDVTcTVXJitcGCuTGS3TO7N0jJKbmQra\n4pZfEZSwiATkQocQa0J7JC6dp/mtH5HoySx7SClZx9SBY9JNnLgrpoJOs0inWeRjepxxHaDHi9Dj\nRhjQoWW7mZv0LN4sxHmzEMdAs8MusT9YZH+gSJddxpS3obgdiaRfOXTsEfTJk9B9YVH1oxoegv/+\nh+jvfBs+/jw89zGIxWvX3rs03TvN6PnRufVQKkSyM1nDFomNTClF/Z56hj8cBsAtuWRezHDk546g\npBpfCCG2PAmFhBBCCHFbtNb0Zx0yo34QdHmiTGVpEcISEdOjKeiSbkvSGjex5A9RIdaMqpRp+PBd\nmt9+mdD48LLHlFL1TB44Rr59u4RBYk0oBY2qTKNR5nFripI2uOaFyRRM+swkBRVY8hgPxZVKiCuV\nEN8HwsojHSiyP1hgf6BIgyVjEYlbiCfg2ef8cOjDk5A5j3Ln3zdqZhpe/C76B38DTz4FP/FJaG+v\nYYNvn9aay39/edG2lsMtUkEt7klqe4qpq1OUpksATF+fpvetXrqe6apxy4QQQtSahEJCCCGEWNFk\nwaV73O8OLjNeIVu6dQpkKmiPW3QkLbYlLHIT/oXqtqScdgixVqzsNE3vvUbT+29gFXLLHlNoaGF6\n/2HybV0SBon7Kqg89pk5miqT6Ao4yRZ6vAhXq1VEepkqooI2OFmKcLIUAaDJrJAOFNkXLLInUCJu\n3MZdB2JrisXgmY/CsWPoDz+EC+dQzny1sqpU4I3X4I3X0AcOwid+Eg4cXNe/B0fOjDA7NDu3Hu+I\nE29TZOwAACAASURBVGmM1LBFYjMwTIOOxzsWdUt49bWrpHakSHQkatw6IYQQtSRXZ4QQQggxZ7ro\ncnG8Qvd4mYvjFcbyt3fndipk0JHwQ6CW2OJqoOUvVwsh7pjWRPqv0fT+69Sdfh/DW/r51EqR27aT\n6X2HKNU31aCRYqtTQLNRptko86Q1RVEb9HphrnlhrnoRZpYZiwhg1LUZLdi8UfC7/Wq3yuwLFNkX\nKLE7UCQi4xGJm0Wi8NTT/phDF87B2TOo3OKzDnXuLJw7i25tg098Ep74CASDNWrw8tyyS8/LPXPr\nylA0H2yuYYvEZhKMB2k53MLQySF/g4YLL1zgkX/5CFZQLgkKIcRWJd8AQgghxBaWLXlcrAZA3eNl\nRnK3FwKFLEVHwqI9btIRl7GBhLifzEKe+lPv0nj8x4RHBpY9xrNsZnbtZ3rvAdxI7AG3UIiVhZTH\nXjPHXjOH1jClLa55Ea55EXq9MGWW//4YcAIMOAFeyYNC02nPh0Q77RIhCYnEDcEgPHwMDh9B9/TA\n6VOo0ZFFh6ihQfjGH6O/9U14/En46LPQtT661Ox9u5fybHluvX5PPYHo0i4YhbhbqR0pciM5sgNZ\nAIpTRS798BL7v7C/xi0TQghRKxIKCSGEEFvIRMHl8kSFyxNlLk9UGJq9vRDIVNBaDYDaExZ1IUP6\nuRfiftKa2PXLNBx/k7pzJzGcyrKHVSIxpvcdIrtjL9qWi4hifVMK6pRDnTHDUWZwNQzpEFfdML1e\nmCEdwlumqzmN4nolyPVKkJdyfki0zSqzJ1Bid3WKSXdzwjBh9x7YtRs9MgynT8HVHpSeDxBVsQiv\nvwqvv4re1gnPPAtPPAnRaE2aXJwp0vd239y6GTRp2NdQk7aIzUspRduxNgqTBZyC39XiyNkR6nbX\n0XKopcatE0IIUQsSCgkhhBCblKc1w7MLQqDJCpOF27toZihoipq0xUza4hZN0cVdwgkh7g8rl6X+\nw3doPP4WofHhFY8rNLQwve8Q+Y4uUFKpJzYmU0GHKtJhFIFJylrR74W57oXp80IM6yCsEBL1OkF6\nnSAv5/1trVaZ3XZpLiiqM2/vpgexCSkFLa3+lJ1Bnz0DFy6gKuXFh/X1wl/8Kfrb34Rjj8BHn4O9\n+x5o9dDVl6/iOfPnZs0HmjFt84G9vtg6zIBJ+2PtXH/9+ty2Sz+8RKIjQbguXMOWCSGEqAUJhYQQ\nQohNouRoeqcr9ExV6JmscHmiQr5ye93rKPwQqLUaAt08LpAQ4v5RlTLJi2epO/MByczpZccKAnAD\nQbLb95DdlaaSqHvArRTi/gsozU4zz07TT3qK2qDPC9FbDYrG9cpjwQw5AYacAG9WxySqMxx2Bkrs\ntMvssEtss8tY8rW29cQT8JGn4dHH0Vcuw4XzqJHFgbuqVODdd+Ddd9BNzfD0M/DYE9B0f8dlGzg+\nwMjZ+W7ugskgye3J+/qaYmuLNkZpSDcwnhkH/PGsLrxwgYd/8WEMU24wEUKIrURCISGEEGID0loz\nmne5Olnh6pRDz2SFgayDd5tDLBgKGiMmLTGTtpgfAtmmXC0T4kFRrkP8Soa6M++TunAKs1xa8dhC\nUxszu9LkOnaAKXeQi60jpDz2mHn2VEOivDbp80L0eyH6vTCjOoBeppIIYNKzmCxaHC/63YLZeHTa\nZXYGyuy0/XGJEqZ0Obdl2Dak90N6P3piAjLn4WI3qrT4d68aHYEXvgMvfAe9Yyc89jg8+hjU1a9p\nc4ZODXHph5cWbWs53CJd84r7rml/E/mRPIXJAgDZgSzXXr/Gzo/vrHHLhBBCPEgSCgkhhBAbwGzZ\no3e6wrUph6tTFa5OVsjdZhUQgGVAS9SkpRoASXdwQtSA5xG7dpH6Mx+QOn8Sq5Bf8VAnGCa7cx/Z\nnftwYokH2Egh1q+Ictln5thn5gAoaYMBLzQXFK00JhFABYMrlRBXKqG5bfWmw3a7RJdVpssu02mX\nCRu3/90qNqj6enjqGXjiI+irPZA5j+rvX3KYutoDV3vgr/4SvWevHxA98igk7q2aZ+TsCN1/071o\nW8PeBqJNtRnXSGwtylC0P95Oz4965rou7P1xL3U76kjtSNW4dUIIIR4UCYWEEEKIdSZf8bg+7dA7\nXeH6lMP16QoTtzkW0A1hS9ESM6uTRX3YwJC7T4V48FyX2PXLpC6cou7ccezZmRUP1YZBvnUb2R17\nybd1gSFduQixmqDyFnU3V9GKIR1kwAsx4IUY9EIUWbm6bsK1mHAtTuBfjFdomk2HLrtMl11iu12m\nw64QUBIUbUqmCbv3wO496JkZ6L4A3RlULrfkUHXpIly6iP6LP/Mrjh57HI4chcSdhfZjF8a48OIF\nWPCWqttVR9PB+9tVnRALBaIBWo+2MvD+wNy2C399gUf/5aPYEbuGLRNCCPGgSCgkhBBC1NBMyaN/\npkL/jEPvtMP1aYex/J0Njm0oaAibNMdMmiL+PGor6YJEiBox87O0XzxDy7WLNPf3YJUKKx6rlaLQ\n3M5s5y7yHdvxAiuPmSKEWJ2tNJ2qSKdRBEBrmNQ2g16IAR1iwAsyrgOwQjWRRjHs2gy7Nu9Vu50z\n0LRaFbZZfkDUaZXpsMtEpKJoc0kk/HGEHn0cPTwEly9Dz2VUYfHvb6U1XDgPF86j1R/Djp3Ut7WT\n27UH9uyBVc69xi+Nc/675xcFQqkdKVqOSLdx4sFLdibJDeeY7p0GoJwt0/39bg585YC8H4UQYguQ\nUEgIIYR4ADytGZl16Ztx6M869M/400zpzscziNqK5qjfBVxzzKQ+LF3BCVFTWhMaGyLZfYZk9xmi\nvVf8C4erKDS2kOvcxey2nXih8ANqqBBbi1JQryrUGxUOkgX8LucGvSCDOsSQF2TIC1FYpZrIQzHg\nBBhwAlCc315vOtWgqEynVaHDLlNnuKtlAmIjUApa2/zpqafRg4Nw5RL0XFk6/pDW0HOFxp4rNP74\nDfRffxcOH/Gn/Q9BcD7kn+yZ5Ny3zqEXDP6Y7EzSerRVLsCLmml5uIX8RJ5KrgLAePc4l//uMrs+\nuQvDlGplIYTYzCQUEkIIIdaQ1pqposdg1mEw6zI461SXHSp3MZ512FI0Rk0aIyaNEYPGiEnYlj/S\nhKg1Mz9L/NolYj3dJC+dIzg5dsvHFOsa/SCocyduJPYAWimEuFlQeewwC+zArwDRGrJYDHlBhr0g\nQ9qfl1cJimC+67lTpcjctpDyaLMqtFtl2qyKP9kV4sZdnACI2jMM6Ojwp2c+iu7vh8uX4OpVVKW8\n5HA1PQVvvAZvvIa2LL+buYOHmEru4Ow/DKHd+UAo3hGn7ZE2CYRETZm2ScdjHVx97epcBdvABwPM\nDs/y0JcfIhiT6mUhhNisJBQSQggh7oLWmumSx9BNwc/QrEvRubsuZUKWWhT+NEZMIgEJgIRYD8xi\nnti1S8R6LhK/2k14eADF6p91zzAotHSQb+si39aJG5FBxIVYb5SCBA4J02Gf6Y8lozVMaXsuIBrR\nQUa9AKVbBEVFbdBTCdJTWXwhNW64c2FRq1WhxXJoMSvEDE8qizYKw4TOLn9yHL+C6Po1uH4NNZtd\ncrhyHDh7humLQ5xp/kk8Y36clniDTcej7Sip8hbrQLg+TMvhFoZPDc9tm+mb4cTXT/DQlx4i2ZWs\nYeuEEELcLxIKCSGEEKsoOZrRnMNwzmV41mUk5zAy6zKScym5dz+eQDJoUB8xqA+b1IcNGiImYUvG\nARJivTCLeaK9PcSvXiR2tZvIYO8tu4QDcEIR8u2djMTrmalvItUog4cLsdEoBXWqQh0VHjJnAT8o\nmtEWozrAiBdkVAcZ8QJkufWg7FnPJFs26S6HFm2PKNcPiKwKLWZlbrnBdDDldGD9sizo7PSnp59h\n5FI3oeFh4pOTMDw0912RDTRwuvmTiwKh+kIfB0+8AhcilLftpLJtF+Vtu3DrmlYdj0iI+6l+dz1W\nyGLw+CCe41c2lnNlPvzGh+z6xC46Hu+Qv1GEEGKTkVBICCHElldyNGN5159y/nw074c/k8V76/Il\nYEJdyKQubFAf8QOgupCJLVd7hFg/XJfwcD/R/qv+1HeN0PjwrR+HPzB9qb6RfFsn+bZOyqkGUIrp\nycn73GghxIOkFCSVQxKHPWZ+bntBG4x6QcZ0wJ+8AOM6QIVbV/rmtUlPxVxSWWSgaTAdmkyHRqs6\nNys0WQ4NpoMlpxDrh1I48QSz8QTx1jYoFtF9vUxem+J8eQ+uEZg7NFUc5MDYqxh4UJgldPE0oYun\nAfCCYSqt23BaOqm0dlJp2YaWbkbFA5ToSBBMBOl7p49ytto9ooYrL10h259l32f3YQZWr5YUQgix\ncUgoJIQQYtPztGa66DFecJnMe4wVFoY/LtnSvff1bxuQCpvUhQzqwgapkL8ctqX6R4h1RXsEpiaI\n9l8j0n/Vnw/2YjiV23s4UE41UGhuo9jURqGpFW0Hbvk4IcTmFFYeXWaBruoYRTBfVTS+ICga0wEm\ndQCXW58TeChGXZtR14abhq5RaOpMlyazQqPpUG+61Jt+WFRvOiSkS7qayjkBemY6mXA6WJgLxr0p\nDky+gandZR9nlAoEr10keO3i3DY3UTcXEDmtnVSa2kG+b8R9FIwH2fnxnQwcHyDbP98t4uj5UXKj\nOQ585QCRhsgqzyCEEGKjkFBICCHEhld2NVNFl8mCx2TBZbzgMlHwmMz7y1NFD+/ue3pbJGwpkiGD\nVMggGTJIBA3qwiZRCX+EWHfMYp7Q8ADh4X7CwwOER/zJLJfu6HnKiToKzW1zQZAXkIGXhRArW1hV\ntIv5qiJPw7S2mdA2k9pmQgeY8Px58RbjFd2gUUy4FhOuRWaZ/TYedaY7FxLVmy51pkPKdKkzHJKm\niy2nK2vOqSguni0z2Ocs2ReKKNp2NTFp/FOs6Qns8UEC4wPY40Or3pBgzkxizkwS6j4FgFYKN9mA\n09iK09CC29iK09CKm6wHQ8agFGvDsAw6Hu9gon6CkTMj3Bg+MT+W58QfniD9uTS3UQgphBBinZNQ\nSAghxLqltSZf0cyUPKaKfrgzVfSYKixYLrrkK2uU+FTZBsSDBsmgH/wkQybJoEEiZBCQbt+EWHfM\n/CzBiVFC4yOExoYJD/cTGhkgOH3nXbh5lkWproliQxOl+iaKDS14ofB9aLUQYqsxFoxVdLOCNhaF\nRNPaYkrbTGkb5w6uwFYwGHENRtyVxzqKGy4pwyW1ICxKmS4JwyVZnYeVloqj2+C6monhIBMjQbS3\nNBBK1Bm0dpiYpgIUTqoRJ9VIYfdh0J4fEk0MYU+NYk+OYOazS1+kSmmNNTWGNTUGl87MbdeWjdPQ\ngtPQitPYglvXhJtqxE2kwJDuvsSdU0rRsKeBcCpM37t9uCW/ws0tu5z71jnCO8JE90Rr3EohhBD3\nQkIhIYQQD5TWmoKjmS175Mr+fLroMVPymCm51bnHTHWbu7Z5z5ywpYgHDeJBv9onHlD+PGgQsqTq\nR4j1xigVCU6MzoU/wfERghMjhMZHsAr5Wz/BMjSKcjJFqb6ZUkMTxfomKokUKLkFVgjxYIWVR4cq\n0mEUF23XGnKYfkDk2XNB0ZS2mdYWpdusMFoo65lkPZNeZ+WuyGy8uYAoYcwvxw2XmOERM1yi1flW\nDJC01gwPuFy9WKFcCi3ZH44qWtpNwpFVvk+UMR8S3dhUKvoB0dQI1tQo9uQoRmX16lblVLCH+7CH\n+xa30TBxk/W4qQbcVANOqqm63IgXT8h3nbilSGOEnc/vpP/dfgoT811kFq4WKFwtcOLsCVqPtdJ8\noFnGGxJCiA1GQiEhhBD3pOz6wY4f8njMlnV1Ph/6zO2r+PvWqiu31YQtRSxgEAsoYkFjfjngL9tS\n8SPE+qE9rNwsgakJAtM3pkl/PuUvW8W7C35u8EyLcrKuOtVTTtVTqmtEWyvfTS+EELWmFMRwiSmX\nbTcFRgAlbTCjLWa0xbS2q3OLmery3YRG4FccjbkGY6tUHN1goonOhUV+UBQzvLltccMlpry5EClq\neGzU07BKRTM17nL9SoVcdukJbSAIzW0WscTd3WCkgyHKLZ2UWzqrGzRmPos1NYo1M441M4E1M4lZ\nzN3yuZTnYk2OYk2OLn0d08KNJfHiKdx4Ci+exI2ncBN1c8vI96MA7LDN9me3M3xmmMnLiyuws4NZ\nsoNZrrx0heZDzbQdayPWEqtRS4UQQtyJTRMKpdPpeuCrwBeBNmAM+D7wa5lMZvA2Hv808GvAR4Aw\n0A38V+C3M5nMA7h8KYQQtVFxNUVHU3A8ihVN3tEUKx4FR1OoaIqOR6GiF63nK/PBT8V78G0Omopo\nQBG1DSLVeTSgiNh+8BMNGFjGBr3aIMRm4rnYuSzWbBY7O409O+NP1WVrwbrhLu12525owIkl5sKf\nUjUAcqJxttyt7EKITS+oPJpUmSbKy+4vaYOsNslqi1ltkdUWWRYsa4vKPQ4Q4qKY8Sxm7uCcMKJc\nIoZHWGnChkdIedV1j5DhEVm4vbotXD0mpDQP6jTP8zTZaY/JMZfJcY/s9PL/SGVoWtosUg3G2lab\nK4UbTeBGE5Q6ds9vLpewspNY2QnMmQk/LMpOrjpG0aKndR2s6XGYHl/xGC8cxY0l8CJxf4rG8KI3\nluN4kRheNIG2A/L9uskpQ9F6pJVoY5Sx7jGKk4sDarfsMnh8kMHjg8Tb47Qda6PpQBOmLdVDQgix\nXm2KUCidToeBV4D9wG8D7wN7gX8L/EQ6nX40k8ms2Kl8Op3+CeAHQC/w68AE8AXgt4DdwC/fx+YL\nIcRt87Sm5GjKrj+VXE3Zqc5dFizfvM9/XKEa8PghkKZQ8XBqEOqsJGhC2DYI237AE7EUYVsRtg0i\nth/2RGwlgY8QD5rrYpYKmMUCZqmIWSxgFfOY+VmsfM6fCjms/CxmITe/7R6re1bjBMNU4gkqseSi\nuRNLoM1NcYorhBD3LKg8gsqjcZlxjMDvnq6EQU6b5LTFLP7cXzeZ1Ra56rZ7DY8WymuTvHv3F4xD\naj5ACiuPoNIElSagPIKGrv67NQG1dDmw5FiNjd8FntaaQl7PhUDTEy6uu3I7lIJIvEw0WaGuvu6u\n/z13SgeCVBpaqTS0LtioMYo5zNwM5uw0Vm7aX85NY+ayKH1nJ/1GIYdRyAGr32OrLRsvFMELR9Ch\niL8ciqDDEbxQdH57MIwOhtCBEF4w5FciSZi0ocTb48Tb4/Rd7qM0XMIZd/Bu+mMyO5AlO5Dl0t9e\nItocJdocJdYSI9YaI9oUlW7mhBBindgsfzH/MnAY+NeZTOZ3b2xMp9MfAt/BrwD6lVUe/7tAEXh2\nQVXRH6fT6e8C/1s6nf7DTCbz4f1puhBiI/C0xvWqcw2OB67nL3vVuetpnOq84oHjaiqexnGh4vnL\nQxMBHK3IeLNU3OpxnqbiahyvetxNywvDnfUU4NyOoKkIWf4UtJZfDll+CBS2FKaEPULcG9fFrJQw\nKmWMctmf35iWrJcwKhWMSsnf55Qxy2V/vVTELBYxi3k/BKosfwf6/eSZFk4khhON4USiOJEYlWic\nSjxJJVa9M1kIIcQ9UQpC+BU5DSsERzeUtaKgTQqY5KvzgjYoaJM8pr9PmxTwt91t13W3o6gNitqA\nuzg3NjyPcMUhWq4QKVeIVvx5rFwhVi4TqqySAlVpIF8XItcao+SWsPCIE8bGw0LPTebcxIJljXHT\n+o1j7ulMWCm8cAwvHKPS2H5Tgz2MQg5rdtoPifJZjEIOszCLUZjFLBWWf87beVmngjk7jTk7fUeP\n04aBDgTRwTBeIFQNjIJoK4C2A2jbRlu2v2zZaCsAtl3dv3D7gmU7AJYl4yXdZ2bUJLIrQssTLUz3\nTTN1dWpJ9ZDneHMB0RwF4fqwHxK1xIi2RAklQtgRGytsyZiuQgjxAG2WUOifATng6zdtfwHoA34h\nnU7/6nLdwKXT6SeBNPAHy3Qz99v4FUO/AEgoVCNa+//bVurDT6+wQ9/imNt7Pr3M0u295p0ce8tj\n9PLtuNXzae1v1yz4OS7advNxen7bwu0Lj9PeCo/1/3PjORYds+i5NJ4GT1eXWbjuhy5a+3/fzR1T\n3b9onQXHezeW/de/+fgbgc3c3MNf1jeWq4GP51W3+8d52g9sXG/ln/udq17EHM2ufliVuumV7/ZP\na3WP/wDTgICpCBoa21QEqmHPjdAneFPQE7D8Y4yVTuz13LuQub/m16bnqLumVvogrpU7ffo1bc8a\nPdddPo1V9C80qLxfNXLz+/re2uP/8lALfikp7S34JVTdV50UQHW/uvE+1IuPAVZ/Ds/z93vegmWN\n8twFy57/mIXHaG/pY10X5Too1/W7T3NdlOegXA/lOhgL9vvzG9sWbzdcF6NSRnn3Jzn21vDucADX\nDuCGwrihCG4ohBOKVIOfKE44hhuJ4QVu0R3NfRycbC2e+cYN2d79aKd0bCxq4Tbed7p6Ld1z5E26\nGVlo4njEbw6P1E3zKldDAZOi9qcCai44KmJS0gZlDEpaUV6wvrAiSaExqt/ZRvX72tD4y9zYBpbn\nYbseluctWbZcD9vzCDgu0XKFkOPcVfiSDQYYjkUYikcZjUVwzLUPvdQtgiSjOlc3rRv45zjGStuV\nxoiAEVn+8abrEC3OECvMEC3MEClkCRdmCBdzBEv+FCjlMdbw/FR5HqpYgGJhzeNDz7LRplWdTLRh\nVuf+OnPr5oJ1C22YsOj46rpp+kGTMkAptKFQykAr5W8z/O3+vhvL1bkx/7gb27Xhz9XcslrwHAuP\nVYCqfraq71o1P5/7v6EWfAjV4rlSVN8Fqx+3cL9WNx+/+FjtetXdHqnOOKnOOMWpIlPXppnpy+K5\nK1/gKIwXKIwXGD1301hXyh+/yA5b2BF7fgrbWCELwzYwTMOfWyaGZWBYyt9m+ZOq/iz9H5uqroOq\ntl2pO5gLIcQmt+FDoXQ6ncDvNu71TCZTWrgvk8nodDr9LvBlYCdwZZmneKI6f2uZfe9U50+uUXPF\nTSZeOMfrpf5aN2NZ8qfsvbi3kygF1T+C7hM5ybvvKtVJCIBQdT7DWE3b8WDduKC1hr/JjOq0Gcd9\nLlWnRZ393vpO7fXNH2g5V+vEW4gHSt734mb+e0EBkeq0UZRMg5FYlOG4P+UD9/8LWKNwUA/+E2QC\n0SaIrnyI0h7Rcp5EKUuiOOvPS7PES7NEy3milTyxcs5fLucJV4oYNfqr2nAqcJvjK4k717LC9u2A\noyzGIl1kA01kA/Xk7BSecRufHQ3/f3v3HiVJXR1w/Nszszv74OWGVyLIIyF3A9Eonihi5AASHzH4\nIkQNRBA9EYIGxWgMBiEIokdPghJjTEQxGkw08S0+TgDBZxQVUUOue5AFFKO7mGXdFzs72/njVz3b\nO8ywzG53107X93NOn6r6/aq77zS1TVfd+v3uxIYJJjZMwL07P3KtZ/p9w+D2bzbA9+q/wV1tqedz\n+19+VMv7Nt1Rpx3JskNn+/bRzpj3SSHK/3eAWf9V3lUtD2fmpNChsz0/M38REWuq5/bEihUrevVS\nw6ENbYd2S5IkSZJqMjHaYmJshPsXjLJ+fAFrlo6zdtFCJkdGmWy1WNSaYMHEFiZbI0y2WmVJWTbl\nhrN2a4R143uwbnwP7tlrx/u32ltZsnkjSye2JYkWb9nE4omNLJ64n8VbNrFoqm0Ti7ZsYtGW+1k4\nOcH4ls0smJxgfHIzo3OshaR6jbW3cOD6H3Lg+nL5rU2LjWN7sm7hsvJYsIx1Cx/GxOjimiPdgYH+\nux6u75DhSnFpd3HnnXdx78TausPYbRxxxBG7/BrDkBTas1rOVsl4/bT9dub5sz1Xu2qgd19IkiRJ\nkhqh1S5TQXVG2o60aY1Ba6xdPar1UVg0032KD2GgSZkIuTWVICrLFpOU5NFWqkfVV9a72qvtGfu6\n1idbLdq0yhTatGi3utariXm3trrWq2W7eo1qMtyy3upa73q9Xmu3Rlg/vpT14w8y/OghGNk6WRJF\nkyVRtHByM+NbJlgwuXlae+lb2LU+unWSsa2T25btzvaWGdq2bW/3vPZ8H7lcrxZtlmxZy5Ita9l/\nw0qg/LvZPLqY9Qv2YWJkEROj42VZrW8eWcSWznJkvDGJV0mz27hyDXv8yj51hzFUhiEpNK/0IpM3\nLFasWMHIw/dkj9Xrevq6rVk3duK1BvjbY9a3aj1o70P6E2f6O1oPWKnm2p3j60y9RGuGtgc2l7l9\npz1vu5mKp73J1HTGO4ihd/r7Bhs3lvzz4sVzmDyjZyH15oVau1qgaNsr9eh1emg3+6x3x49oZ2yo\nagktWdJ13M/xH/OD7t097/nUF9L0udK733OGedRnW273+p33mO0xUu0zMvs+IzO09fs/9JAcR4O2\nq/PJr15dpkvcd999exHO/OIxt9Pmex2DVatLjYj99t1v8G8+vz+6Wu3oHKBWLWiNltogrZFSP6Sz\n3mkfGRlhZOEIowtGGR0fZWzhGKMLR0s9kQHozAYyn8/1t6/jOq1Ga9U/vebsVPsD2mBrd63arnqw\n7U4N2u22u9qnvVanRix0bzO13Vlp096+jW37ba0em7t2aE/bt3v/0t/e1tZu05rcMlVXkk7NyPZW\nWlvbtNtVvcjJTl3L9rY6klurtq2TXTUsSx9V/ckHvObUeidl1xVcu3u7Uwdz6kOYtn9XW2efqUWV\nPpzeP+P+D3zvuZ/T7uD8sevDH6NzoXIzsLk6TlrVA+hab9PabhtaU39G+fymVTKd+ghaD2xr1/Q9\nOGQ3Sg/sr6nhY5ucLBN7jo56Kb0Oy08+jqXLHLPRS8NwJHfGjs12+8ke0/bbmec7Pq1P9nncI+b1\nj2dprjonjYd63KtBOsf9IR73apBNKzYBcPARB9cciTQ4G1eUOhAHHXFQzZFImotWq8Voq1MJcTdO\nEmq3MAyJUGmuPO41bIahmMsdlBzxbGcenZpDsxXz6dQZesDzI2JvYO8Hea4kSZIkSZIkSdK8Opsj\nkQAADeRJREFUMO+TQpm5HrgVODoiFnX3RcQocCxwd2beNctLfKVaPnGGvidVyy/1IlZJkiRJkiRJ\nkqS6zPukUOUqYAnw0mntpwP7A+/uNETE8og4rLOdmbcA3wJOjYiDuvZrAa+klJd8X/9ClyRJkiRJ\nkiRJ6r9hqCkE8A/AacBbI+IQ4GbgKOB84LvAW7v2vQ1IYHlX258CNwA3RcQVwBrg+cCJwIWZeXvf\n/wJJkiRJkiRJkqQ+GoqRQpk5ATwFuBI4BbgaOIMyQuj4zNywg+f/F3Ac8D/AJcC7gAOBszLz0v5F\nLkmSJEmSJEmSNBjDMlKIzFxLGRl0/g72a83SfjPwe30ITZIkSZIkSZIkqXZDMVJIkiRJkiRJkiRJ\nD86kkCRJkiRJkiRJUgOYFJIkSZIkSZIkSWqAVrvdrjuGoXTffff5wUqSJEmSJEmSpL7ae++9Ww91\nX0cKSZIkSZIkSZIkNYBJIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIawKSQJEmS\nJEmSJElSA7Ta7XbdMUiSJEmSJEmSJKnPHCkkSZIkSZIkSZLUACaFJEmSJEmSJEmSGsCkkCRJkiRJ\nkiRJUgOYFJIkSZIkSZIkSWoAk0KSJEmSJEmSJEkNYFJIkiRJkiRJkiSpAUwKSZIkSZIkSZIkNYBJ\nIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIawKSQJEmSJEmSJElSA5gUkiRJkiRJ\nkiRJaoCxugOQOiLidOBs4LeAhcBdwKeASzPz3jpjk/olIsaB1wKnAwcDq4FPA6/LzNV1xiYNQkQs\nAr4D/DpwQmZ+od6IpP6IiN8BLgIeBywC7gb+A3hDZq6rMzZpV0XEMsrx/Wzglym/Z64FLszMn9QZ\nm9QPEbEf8HrgOcABwBrgS5Tv9G/VGZs0KBFxCXAh8L7MPLPmcKS+iYinU67bHA1sAb5NuVZ5fa2B\nSbvAkULaLUTEG4H3AwuACyjJoS8ALwe+FhF71Red1B8RMUZJAP0VJQH6EuDfgRcDN0bEwhrDkwbl\nQkpCSBpaEXEa8EVK8v8i4BzgVuA1wOcjwt/kmrciYjHld/s5lETnmcC7gOcBX46Ih9UWnNQHEbE/\n8C3Kb/Z/q5bvAp4MfCkiHlNjeNJARMRRwF/UHYfUbxFxFuVGF4DzgIuBw4HPRsTxNYUl7TJHCql2\n1Z2FrwZWAsdl5v1V13sjYjUlG/8i4G31RCj1zdmUk8czMvOfq7YPVMf9WcDjKRcRpaEUEY+kfP9/\nG/ACioZSNSL0nZSRQY/PzPuqrvdExEcpIyuexraTTWm+eQXwSODczPz7TmNEfAf4KCX5f35NsUn9\ncClwEHBKZn6k0xgR3wA+Bvwl8Ic1xSb1XXUzyz8B38ff8BpiEXEg8HbgP4GnZubWqv2TwFeBZ1Bu\njJHmHe9K1O7gEZQE5de7EkIdN1XLQwcakTQY5wIrKKPkpmTmpZl5eGaaENLQ6jqZvJNyd600rA4E\nPgJc3pUQ6ugkgh412JCknnohsB64alr7x4EfAadHRGvgUUn9cw/wQUrSs9tngTZ+p2v4nQM8Afjz\nugOR+uwMYClwcSchBJCZP8zMAzLz1fWFJu0aRwppd3AHcD9wxAx9h1bL7w0sGmkAIuIgYDnwjsxs\nV22LgPs729KQexllNNxJlCm1pKGUmXdSptOayd7Vcu1gopF6q5rieTnwxek3d2VmOyK+DjwXOAz4\nYQ0hSj2XmRfP0rUn0MLvdA2x6jz2cuADmXl9RNQdktRPvwv8gjIqiIgYBcZmuKFdmnccKaTaVXfN\nvgF4TERcGRG/GhH7R8TvA68DbgH+pdYgpd5bXi1vj4jzImIlsBHYGBEfi4hfqy0yqc8i4mDgMuD9\nmXld3fFIdajqxp0FbKBMNyTNR4dUyx/N0n9XtTx8ALFIdTu7WnruqmH2DmACpwVVMywHbgceHRE3\nUm5o3xQR34uI59cbmrRrHCmkvoiI0x/Cbvdk5vUAmXlZRPwUuJJy93jHp4AXZuamPoQp9dQcj/tl\n1fYZwELKBfKfUmoMvQx4QkQ8OjN/0pdgpR6Z6/d95Z3AZuBV/YlK6q+dPO67n9+ZPvE3gFdl5j29\njE8aoD2r5YZZ+tdP208aShHxdOD1wDcpv3OkoRMRfwA8E3hxZq6qOx5pAJZRkqCfBt4LvIUyo9Fr\ngQ9GxNLMnD59rjQvmBRSv7x/x7vwOeB6gIg4h1K87fOU+ZlXUaYVeg1wbUQ8PTPX9ClWqVfmctwv\nrLYPAH4zM++ttj9RJUgvo1wwd55m7e7m+n3/fEpBzrM8mdQ8NqfjvltELAauAZ5NmUL0b3ocmyRp\ngCLihcC7gZXAyZm5ud6IpN6LiH0oN/HeSLk4LjXBQkoS6LTMvKbTGBGfBm4D3hgRV2fmZE3xSTvN\npJD65WEPYZ8JgCiT0L4duC4zn9HV/7mI+A5lSpULKAkiaXf2kI97YF21/ERXQqjjKkpS6PgexSX1\n01y+75cBbwNuzExPJjWfzeX7fkpE7Ad8AjgGeENmvr7XgUkD1qmdsnSW/j2m7ScNlYi4ELgEuBl4\nRmb+rOaQpH55C2XUxNnWwFWDrAPGgX/tbszMOyLiBuBplJH/1kHXvGNSSH0xx1E9J1KOxY/M0PcZ\noA2c0Iu4pH6a43G/slqOztC3mnLc77WrMUn9Nsfj/i3APsDFVZHajs4F9v2q9lUW79TubGdGL0fE\nAcAXgcOAF2Xm1b2OS6rBHZTfLAfN0t+pObRiMOFIgxMRVwDnUZL9L8jM2aZRlOa1iDgOeDHl5q51\n037HAyyp2tZn5v8NPECpf1ZSkj4z6dwE4HUbzUsjdQcgse3OwkUz9I0DrVn6pPnsv4H7gEfP0Hcw\n5bifrWizNF89mTIE/wbg7q5HZ/qsD1XbT6glOqlPImIv4LPAI4BnmhDSsMjM9cCtwNERsd3v9YgY\nBY4F7s7Mu+qIT+qXaoTQeZRptJ5rQkhD7kTK+ekr2P43/N1V/6nV+t/WEp3UP1+lnL8eOUNf58YX\nr9toXjIppN3BV6rl8yKiNa3v1Gn7SEOhmmv8GuCxEXHytO6XVctPDjYqqe/OAk6e4XFF1X9Btf3d\nWqKT+udtlJsAXpCZn6k7GKnHrgKWAC+d1n46sD+l1oo0NCLiBOCvgY8CL7GWhBrgGmb+Dd85j72u\nWjcppGFzdbW8qPt6ZUQ8CngScKs3vmi+arXbTgWq+kXEhygJoK9Q7hRfBfw2cC7wc+BxftFq2FS1\nJb4GPBx4E2Vo8onAHwO3AMdm5sbaApQGJCLOpNxpe0JmfqHeaKTeqk4ab6EUo71olt1WZeaNg4tK\n6p2IWECZGvGxlCLkNwNHAedTpo07xlEUGiYR8U3gMZQbuWarIXStx72aICLawPsy88y6Y5H6ISLe\nDrwc+BTleuUhwCspdROf6vmr5itrCml38QLgJuBM4DLK8Mx7gPdQCjH/uL7QpP7IzFURcQxwKfAn\nwL7ATyhTaV1iQkiShsLRlClXjgQ+PMs+NwLHDyogqZcycyIingJcDJzCtgvl7wYu8sK4htDR1fId\nD7LPYWyrISpJmr/Oo0z/fzbwj8D9wJeBizPzG3UGJu0KRwpJkiRJkiRJkiQ1gDWFJEmSJEmSJEmS\nGsCkkCRJkiRJkiRJUgOYFJIkSZIkSZIkSWoAk0KSJEmSJEmSJEkNYFJIkiRJkiRJkiSpAUwKSZIk\nSZIkSZIkNYBJIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIawKSQJEmSJEmSJElS\nA5gUkiRJkiRJkiRJagCTQpIkSZIkSZIkSQ1gUkiSJEmSJEmSJKkBTApJkiRJkiRJkiQ1gEkhSZIk\nSZIkSZKkBhirOwBJkiRJaqKIuAy4ALguM0+a1tcCPgD8EfAZ4FmZOTH4KCVJkiQNE0cKSZIkSVI9\n3gysAp4cESdN67uSkhC6CTjFhJAkSZKkXjApJEmSJEk1yMy1wMXV5uWd9oi4BDgX+CZwcmZuHHx0\nkiRJkoZRq91u1x2DJEmSJDVSRIwB3wWWA6cCDweuAG4DjsvM1TWGJ0mSJGnImBSSJEmSpBpFxDOB\njwOrgV8C7gR+JzN/XGtgkiRJkoaOSSFJkiRJqllEfB84EvgZcGxm3l5zSJIkSZKGkDWFJEmSJKlG\nEfFnlIQQwCJgbY3hSJIkSRpiJoUkSZIkqSYRcQalhtCPgU8CewEX1RqUJEmSpKHl9HGSJEmSVIOI\neA7wYWAN8CRgHfADYAw4KjN/UGN4kiRJkoaQI4UkSZIkacAi4iTgg8AG4GmZeVtm3g38HSUp9KY6\n45MkSZI0nEwKSZIkSdIARcQxwMeqzWdl5s1d3ZcD9wHPiYgnDjw4SZIkSUPNpJAkSZIkDUhEPBK4\nFhgHnpeZN3T3Z+bPgTdXm28dcHiSJEmShpw1hSRJkiRJkiRJkhrAkUKSJEmSJEmSJEkNYFJIkiRJ\nkiRJkiSpAUwKSZIkSZIkSZIkNYBJIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIa\nwKSQJEmSJEmSJElSA5gUkiRJkiRJkiRJagCTQpIkSZIkSZIkSQ1gUkiSJEmSJEmSJKkBTApJkiRJ\nkiRJkiQ1gEkhSZIkSZIkSZKkBjApJEmSJEmSJEmS1AAmhSRJkiRJkiRJkhrApJAkSZIkSZIkSVID\nmBSSJEmSJEmSJElqAJNCkiRJkiRJkiRJDfD/1lgHdt334zkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 834, + "height": 222 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 263, - "width": 815 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 4))\n", - "plt.title(\"Posterior distribution of $p_A$, the true effectiveness of site A\")\n", - "plt.vlines(prob_true, 0, 90, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", - "plt.hist(burned_prob_A_trace_, bins=25, histtype=\"stepfilled\", normed=True)\n", - "plt.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "LdLJ2iriIAyI" - }, - "source": [ - "Our posterior distribution puts most weight near the true value of $p_A$, but also some weights in the tails. This is a measure of how uncertain we should be, given our observations. Try changing the number of observations, `N`, and observe how the posterior distribution changes.\n", - "\n", - "### *A* and *B* Together\n", - "\n", - "A similar anaylsis can be done for site B's response data to determine the analogous $p_B$. But what we are really interested in is the *difference* between $p_A$ and $p_B$. Let's infer $p_A$, $p_B$, *and* $\\text{delta} = p_A - p_B$, all at once. We can do this using TFP's deterministic variables. (We'll assume for this exercise that $p_B = 0.04$, so $\\text{delta} = 0.01$, $N_B = 750$ (signifcantly less than $N_A$) and we will simulate site B's data like we did for site A's data ). Our model now looks like the following:\n", - "\n", - "$$\\begin{align*}\n", - "p_A &\\sim \\text{Uniform}[\\text{low}=0,\\text{high}=1) \\\\\n", - "p_B &\\sim \\text{Uniform}[\\text{low}=0,\\text{high}=1) \\\\\n", - "X\\ &\\sim \\text{Bernoulli}(\\text{prob}=p) \\\\\n", - "\\text{for } i &= 1\\ldots N: \\\\\n", - " X_i\\ &\\sim \\text{Bernoulli}(p_i)\n", - "\\end{align*}$$" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 85 - }, - "colab_type": "code", - "id": "yPDLHl6RIAyJ", - "outputId": "f04783fe-3111-41b5-cfb9-7166b6f4827d" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Obs from Site A: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ...\n", - "Observed Prob_A: 0.050666666666666665 ...\n", - "Obs from Site B: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] ...\n", - "Observed Prob_B: 0.04\n" - ] - } - ], - "source": [ - "reset_sess()\n", - "\n", - "#these two quantities are unknown to us.\n", - "true_prob_A_ = 0.05\n", - "true_prob_B_ = 0.04\n", - "\n", - "#notice the unequal sample sizes -- no problem in Bayesian analysis.\n", - "N_A_ = 1500\n", - "N_B_ = 750\n", - "\n", - "#generate some observations\n", - "observations_A = tfd.Bernoulli(name=\"obs_A\", \n", - " probs=true_prob_A_).sample(sample_shape=N_A_, seed=6.45)\n", - "observations_B = tfd.Bernoulli(name=\"obs_B\", \n", - " probs=true_prob_B_).sample(sample_shape=N_B_, seed=6.45)\n", - "[ \n", - " observations_A_,\n", - " observations_B_,\n", - "] = evaluate([ \n", - " observations_A, \n", - " observations_B, \n", - "])\n", - "\n", - "print(\"Obs from Site A: \", observations_A_[:30], \"...\")\n", - "print(\"Observed Prob_A: \", np.mean(observations_A_), \"...\")\n", - "print(\"Obs from Site B: \", observations_B_[:30], \"...\")\n", - "print(\"Observed Prob_B: \", np.mean(observations_B_))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "LDzYsDVgMgsz" - }, - "source": [ - "Below we run inference over the new model:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "7ghHBEdXYtxV" - }, - "outputs": [], - "source": [ - "def delta(prob_A, prob_B):\n", - " \"\"\"\n", - " Defining the deterministic delta function. This is our unknown of interest.\n", - " \n", - " Args:\n", - " prob_A: scalar estimate of the probability of a 1 appearing in \n", - " observation set A\n", - " prob_B: scalar estimate of the probability of a 1 appearing in \n", - " observation set B\n", - " Returns: \n", - " Difference between prob_A and prob_B\n", - " \"\"\"\n", - " return prob_A - prob_B\n", - "\n", - " \n", - "def double_joint_log_prob(observations_A_, observations_B_, \n", - " prob_A, prob_B):\n", - " \"\"\"\n", - " Joint log probability optimization function.\n", - " \n", - " Args:\n", - " observations_A: An array of binary values representing the set of \n", - " observations for site A\n", - " observations_B: An array of binary values representing the set of \n", - " observations for site B \n", - " prob_A: scalar estimate of the probability of a 1 appearing in \n", - " observation set A\n", - " prob_B: scalar estimate of the probability of a 1 appearing in \n", - " observation set B \n", - " Returns: \n", - " Joint log probability optimization function.\n", - " \"\"\"\n", - " tfd = tfp.distributions\n", - " \n", - " rv_prob_A = tfd.Uniform(low=0., high=1.)\n", - " rv_prob_B = tfd.Uniform(low=0., high=1.)\n", - " \n", - " rv_obs_A = tfd.Bernoulli(probs=prob_A)\n", - " rv_obs_B = tfd.Bernoulli(probs=prob_B)\n", - " \n", - " return (\n", - " rv_prob_A.log_prob(prob_A)\n", - " + rv_prob_B.log_prob(prob_B)\n", - " + tf.reduce_sum(rv_obs_A.log_prob(observations_A_))\n", - " + tf.reduce_sum(rv_obs_B.log_prob(observations_B_))\n", - " )\n" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "h0TDeF3IIAyQ" - }, - "outputs": [], - "source": [ - "number_of_steps = 37200 #@param {type:\"slider\", min:2000, max:50000, step:100}\n", - "#@markdown (Default is 18000).\n", - "burnin = 1000 #@param {type:\"slider\", min:0, max:30000, step:100}\n", - "#@markdown (Default is 1000).\n", - "leapfrog_steps=3 #@param {type:\"slider\", min:1, max:9, step:1}\n", - "#@markdown (Default is 6).\n", - "\n", - "\n", - "# Set the chain's start state.\n", - "initial_chain_state = [ \n", - " tf.reduce_mean(tf.to_float(observations_A)) * tf.ones([], dtype=tf.float32, name=\"init_prob_A\"),\n", - " tf.reduce_mean(tf.to_float(observations_B)) * tf.ones([], dtype=tf.float32, name=\"init_prob_B\")\n", - "]\n", - "\n", - "# Since HMC operates over unconstrained space, we need to transform the\n", - "# samples so they live in real-space.\n", - "unconstraining_bijectors = [\n", - " tfp.bijectors.Identity(), # Maps R to R.\n", - " tfp.bijectors.Identity() # Maps R to R.\n", - "]\n", - "\n", - "# Define a closure over our joint_log_prob.\n", - "unnormalized_posterior_log_prob = lambda *args: double_joint_log_prob(observations_A_, observations_B_, *args)\n", - "\n", - "# Initialize the step_size. (It will be automatically adapted.)\n", - "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", - " step_size = tf.get_variable(\n", - " name='step_size',\n", - " initializer=tf.constant(0.5, dtype=tf.float32),\n", - " trainable=False,\n", - " use_resource=True\n", - " )\n", - "\n", - "# Defining the HMC\n", - "hmc=tfp.mcmc.TransformedTransitionKernel(\n", - " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", - " target_log_prob_fn=unnormalized_posterior_log_prob,\n", - " num_leapfrog_steps=3,\n", - " step_size=step_size,\n", - " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", - " state_gradients_are_stopped=True),\n", - " bijector=unconstraining_bijectors)\n", - "\n", - "# Sample from the chain.\n", - "[\n", - " posterior_prob_A,\n", - " posterior_prob_B\n", - "], kernel_results = tfp.mcmc.sample_chain(\n", - " num_results=number_of_steps,\n", - " num_burnin_steps=burnin,\n", - " current_state=initial_chain_state,\n", - " kernel=hmc)\n", - "\n", - "# Initialize any created variables.\n", - "init_g = tf.global_variables_initializer()\n", - "init_l = tf.local_variables_initializer()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "beUUmGMbdrRr" - }, - "source": [ - "#### Execute the TF graph to sample from the posterior" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "HTYITb9fdqIe", - "outputId": "8bcb70ee-4c1c-4347-b0b8-6bdb6e6d2aa6" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "acceptance rate: 0.6161\n" - ] - } - ], - "source": [ - "evaluate(init_g)\n", - "evaluate(init_l)\n", - "[\n", - " posterior_prob_A_,\n", - " posterior_prob_B_,\n", - " kernel_results_\n", - "] = evaluate([\n", - " posterior_prob_A,\n", - " posterior_prob_B,\n", - " kernel_results\n", - "])\n", - " \n", - "print(\"acceptance rate: {}\".format(\n", - " kernel_results_.inner_results.is_accepted.mean()))\n", - "\n", - "burned_prob_A_trace_ = posterior_prob_A_[burnin:]\n", - "burned_prob_B_trace_ = posterior_prob_B_[burnin:]\n", - "burned_delta_trace_ = (posterior_prob_A_ - posterior_prob_B_)[burnin:]\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "YaD67cOkIAyT" - }, - "source": [ - "Below we plot the posterior distributions for the three unknowns: " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 742 - }, - "colab_type": "code", - "id": "PpBXqVKELHRO", - "outputId": "2296d675-b1c4-409b-e314-c5e4d8b53321" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABnIAAAWrCAYAAAAAYS1+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYVMW5gPEXEFkEUcSAooIoVoga\nBMOo4BJBRWK8iIkbAZd43XODGjRBJIrGmOtuNHolYDAuUYyYRBFxBcFdcF8KVAgCapAdEQGZ+8fp\nHntWpqebmWZ4f8/Dc5hz6tT5zjk9hdbXVdWguLgYSZIkSZIkSZIkFZ6GdR2AJEmSJEmSJEmSKmYi\nR5IkSZIkSZIkqUCZyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5IkSZIk\nSZIkqUCZyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5IkSZIkSZIkqUCZ\nyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5IkSZIkSZIkqUCZyJEkSZIk\nSZIkSSpQW9R1AJIkSdURQiiu4vAqYB7wDHBTjDHWTlR1J4RwKvAXYEqM8Yd1G03FKouxrmOv6Pp1\nHVOhxFDXQgjtgNuA3kAL4JEY44C6jUq1Kd+/B/msb3P5Hd1c7lOSJGlT4ogcSZK0qXkAuDnjzx+B\nSUBT4GzgjRDCcXURWAjh6g0knPLpPZL7/3stXS+f8hJ7Ds+7zp9dJbHXeVwF4A/AAGAtSUfy83Ub\njrRhtdz2S5IkaTPkiBxJkrSpuSnG+FLZnSGELYHfA78C7g4hvBxjnFvLsfWorQvFGF8BXqmt6+VT\nHmOv0fMukGdXLvYCiauu7Zfa/k+M8f46jUSqvlpr+yVJkrR5MpEjSZLqhRjjmhDCxcARwN7Az4HL\na+v6IYQGwA9q63qbu035eW/KsdeCZqntZ9meGEK4B/gZcBVwJ/BroA/QHvgamAoMizG+k59Q61d8\nqhl/nyVJklQbTORIkqR6I8a4PoTwHEkiZ5+yx0MIPYHzgV7A9iRr63wAPAjcFmP8qkz5fYCLgQOB\ntsBqYD7wKMnIoAWpcmOBUzLOS0+xc2iMcXLG/m7AhcAhqfpWAm8Bo2OM95a59qkkU0tNAC4ARpN0\nFl4VY/x9VWsY1OA+q7xW2edY5twtU89oMNABWA5MAy6r4pwKY8/X887l2aXqawKMAI4HdgG+BJ4D\nfhtjfDuj3OWp+7wrxnhqBfWUO15V7EDHDcRV7fda5hn0J3mup6TuZy3wEjAiNQoo8xrVegfVVd2Y\nyz4X4NkQApU9i0qkf+e3A94lmW5xNcl00q2AHwMHhxCK6mgdrYKOL5WQOJnkd3mfVEyrSKb8uwsY\nFWNcX+acU6nZ5yzrdmMDsdeovmza5ErOH8sG2v6aPNcqrnc52bc5p1KDd1RFDF1J2sMWwM9ijPfn\neo0s2on5wI7AXjHGd8vU8SfgXGAx0CbGWFzm+GvAvpRua7OON99tpCRJUnW5Ro4kSapvlqa2TTN3\nhhDOJenYOw6YA/wVeBbYHbgOmBJCaJFR/iCSzpwTgY+BscBDJP/9dBHwUghhl1TxJ0g6hdLS6/fM\ny6hvIPAyMCi1/65U/fsB94QQxqY6/CpyP9A8FcP7Vd18tveZy7Uyyl8J7Az8i2R9l3Yk97ZXNc5P\nx53X553D/QD8E/jvVDxjgYXAMcDzIYRq31Mlsom9RI7v9T6SzuqXgXEkHZ1HAM+EEDpmXCObd7BB\nWcb8BMlzWJH6+SGyWC8olXwLqR/PBv4N9CV59y2AgSQJua1JRsTUqkKPL2UMyTvvSTI66M/AUyTJ\nh9tTx6pSrc9ZSl7ajVzqy7FNTqvO73OuzzWfsnlH5YQQdgYeI/mcVjb9YVbXyLKdeDK1PbiC6/YB\n1gOtge+XucY2QDeS9qXsulvVjjffbaQkSVI2HJEjSZLqm91T2znpHSGEPUk61wCOiTH+M+PYtiSd\naz1IpmIbmjo0HGgCnB1jvCOjfINUXf9D8g3iC2OM94UQXgBOA4gxnp8ZUAhhV5LOvEbAiTHGBzKO\nBZLOwFOAp4G7y9zPAcAU4Cdlv2FcVg3vs0bXStX5I5KF6b8CDogxvplx7LyMWKojb8+7pveT0hOY\nDuweY1yZimELks7hfsD/AkdlcV+lVBV7COHAis7J8b0eAkSgc4xxaeqc5sCLJJ2dp/HtqIVqv4MN\n3We2MccY7wPuCyEcA7QEbs0czVYNe/Ht/9u8D/SKMS5J/bwW+FsI4bvAb4F+IYRGMcZvsqg/VwUd\nX+rapwHFwEExxukZx7oAbwCDQwg3Zx7LUO3PWZ7bjRrVl2ObXKIabX+uzzWfsmkLygkhtAImkoyI\nuSzGeFuu16hB25Z+L4eQJMHSZXckSZQ+BvwI+CFQ8jkgSfw0BJ6NMa5NjfaryTPJWxspSZKULUfk\nSJKkeiP1beH/Sv34z4xDZ5N0ov4js6MIINWZOjz1489TnfYAu6a2L5QpX5wq3xP4QzVD+x+SEUJ/\ny+wwTNUXgUtTP55XwbmtgeurmYioyX3W9FqQjCIAuCez8zR1vT8Bb5c/pVL5fN5p2d4PQGOSZNHK\njBjWASNTPx6R6tCsTbm81xbAeelOytQ5q/h2pEvmN9fz+Q5y/Sxmq2vG30/PSJJkeiy1bU4yJVJt\nKvT4VgGnA+eWTSjEGN8n6VAHOKiS87P5nOWz3ahpfbm0ydnI9bnmUzbvqJTU1HX/APYEbokxXpGn\na2TbTjxJkhQrOyKnd2o7lmSqsx+WOX5oavt4jvFujH+nJEmSqsUROZIkaZMXQtiapAPlGpLF0ifG\nGCdmFEl3+jxW9tyUp0k6h7YFvgu8Q/It3T2AW0IIZ8QYZ6ULxxhXkHxjt7rSnUyVXX9CalsUQtgq\nxvhlxrGvs7hWTe4zUzbXgm8X+H6ukuNPUMFaRZXI5/NOy/Z+AJbEGCs65zVgDbAlyeiKstPzbEy5\nvNevgYrWpUiv45CZlMrnO8j1s5it9Ofs+UreH8CnGX+vMLmXmkopkrzn3WKMH+cYV17iCyH0IZmO\nK9NKYBZJsnKD67lUJcY4F7iziiLzU9vKkpjZfM7y2W7UtL5c2uRqy8Nzzads3lGJ1GiTsSTJkXuB\nIXm8RlbtRIzxnRDCG0C3EELnjDYq/T6nkEx9dlAIoUFGEj+dyJmUY7wb498pSZKkajGRI0mSNjUv\nZkyLUlYxyToHZb9Fnf4W7eyKTooxrgwhLALakCx2/A5wAcnCyIcAM0MIb5F0Kj1OanqWLGLumNoe\nF0IoqqTMWpLRILuRLLad9kWs5kLY1Ow+M2VzLYD2qe38So7/O4u68vm807K9H6j82X0TQvicZA2O\nHWoQSy5yea/zKxmRlJ62K3OEfj7fQa6fxWylO+ofrqJM69S2mGTdo4pcRdKJ25EkYZfvRE5N40uP\n6PkV8B+gAckUV+cBd4cQPooxvpRLgCGEdiSfgcNJfre3I5l6LFNla8Zk8znLZ7tR0/o6prY1aZOz\nkuNzzads3lGmPwAnkSQxTt3ACMdsr1GTduIJkvVuDiFJZEKSqHkvxvifEMJzJEmnvYG3QgjbkYys\n+bCCxGy28W6Mf6ckSZKqxUSOJEna1DwAfFZm31fAXOCJGONHFZzTPKNcZVants0AYowfhRC+T9Jx\ncxJJR1D654UhhCtjjLdUM+b0Qs3HVKPs1mV+XllhqYplfZ85XCvzeqsrOf51dSvK8/NOy/Z+IFlw\nvjLp+2xag3pzkct7rXbHYp7fQa6fxWylp0CaUUWZ9MiNd1PT5ZUSQugOnEDy7f4pJB3B/8pDbPmI\nryvJNF03Z66dE0L4kGQaqB+QjESokRDCbiSjzNqSvJcpwCd8+/twBNCliiqy6cDOW7uRQ325tMnV\nlofnmk81STL0IElaQLIGzY+o+nci22vUpJ14Avg1yWie0SGETiSJufSaPemRWT8kScAdQpIoKzut\nWtbxbqR/pyRJkqrFRI4kSdrU3FSDb55/SdIZ17yKMuljmWujLCJZK+HSEMLuJJ1uJ5B0IP0xtSD5\nTdW4/kqSKVr6xhifyDL2bNToPnOwOlVfkw1cq1ry+LxzUVWSJn1sVTXrapxjLGm19l7z+A5qLebU\nwvXpKZAWVVH0J6ltZdM4/S8wLsb4XAhhAcmInJzlKb6uwBuZSZyUdqnt+zWPEIDrSJIN00naqVJx\nhhD+Sv4SDnltN2pYX221ybX5XCF/bU5ac5LEyePADcCdIYSuMcbKRj9lqybtxPMkbXA6wZSeVm1y\navsiSYLmh8AfqXxatRopkH+nJEnSZqiy4dOSJEn1SXo6lU4VHUwtXp+e1qiyKV4+jDHeFmM8BDgr\ntfsX1bz+h6ntLtUsX1M532eW0mt6tKvkeIVxVEeOzzsXFb6j1ELb6SnV5qW26Wnbyk6TlNYxTzHV\n9nsFcn4HtRlz14y/t6nkenuTdLiuA+6o4PgRJB3DI1K73iMZkZMPOcUXQmhM0tn/XgihTerP7iGE\n/wZ+D/wtxvh0jjGmO8WvLptsSKnx73IF8t1u1KS+2mqT8/1ca6vNSXsLOCrGeCPwIMm0cPeGECq7\nfraybidijF+TjLrZJbWm1aEk0xFOTh1fRZI4Ozi1vs+hJOubPZunmEvU4b9TkiRpM2QiR5IkbQ4m\np7Y/ruT4kantAmBWCGHbEMJxIYQjKyl/X2rbvqKDqc6jTM+ktsdXUr5ZCOGE1Fz+uZic2lbrPnO8\nFsAbqe2BZQ+knkFlz69s2Xw/71y0DSF0rWD/fiSj2b8G3k3tW5HalutADiE04duFvCtVzdgnp7Yb\n7b3m+g4qMDm1rY3PYuZC9keUPRhCaAaMIfl/nzvLrpORegf/C4zJmJrxfWCPVBIlVznFB3wX2BL4\nb5K1cxaSPLP/A/43xjgwDzGmZ2pYUkF8XYGeqR/z8buWl3Yjx/o2Sptcwe9zvp9rzm1OlpZkTPN3\nJsl6Q4eQjEjJh8mpbbbtRHoUVa9UPO/FGDPXlXqOJOl0IPA9YFqMsappMzdoI7SRkiRJWTGRI0mS\nNgd/IumA/3EIoX/mgdRC1FelfvxjauHjtiRr8fw1hPDdCuo7IbV9I2Pfioy/dyhT/naSNQAODyEM\nLnP9LYBbgfv5do7/msr2PnP1YGp7cgihc5ljv6L63zbP9/POxRrgplTnOlAyImJk6sd/ZnQIvp3a\n/jA1xU66fCPgWr6dTqusbGOvjfdak3dQldr8LKYTb8uAX4YQBqUTMCGEA0g6i3uQJGcurOD8n5Gs\n/3FFxr73SaapKvcsQgh/DSF8EEI4o5biS59/BnB46s9AkjVxRoYQDs9DjOmp2Up1qIcQvkeyBs8L\nqV07V7O+quSr3cilvny2yVX9Puf7uda0zclZjHEpye/KN8CIEEI+kkY1bSfSiZyTSBInk8vUm14n\nZyhJkiwf06rlu42UJEnKimvkSJKkei/G+GEI4Vzgz8DDIYTngJkk32o+mKTz6xHg+lT5D0IIVwOX\nAG+FECaTTOvSkGSKo54kc/v/KuMai0IIc0imtnkuhPAOSaf/HTHG2SGE04G/knQCnQO8CbQkmce/\nPTAns77auM88eBA4m+QeXgshTCDprO5OMi3V74HLqxF3Xp93jvc0ObX9MITwJEknY29gd5L1TYZl\nlH2WpGN1b5L7nwgsJfkW+HbA70hGepS93wpjp5JF3mvjvdbkHWygvtr8LKZHvAwhWZPkbpK1PNbx\n7QLpHwD9yn4rPzWK4Xckn+WtMjrH053ze/Nt53naLiSJn+qO1qhxfCldSabUui81bVQ69seBz4Hz\ngSdzjPF/gYeAC1IjRWaSJEB6A1eTPINewM9CCMUko5deqKyyDchLu5FLfflskzfQFuX7udaozcmX\nGOPzIYQrSBLb94ZkvZzFOdRXo3YixvhuCGE+0C+1a3KZqqeR/M6kE2iP1zTGjGvmtY2UJEnKliNy\nJEnSZiHGeCdJh9lDwB7AqcBBJJ13PwcGZEwhQ4xxOHAsSQfQ94CTgcHAd4BRQLcKOtxOJllboy1J\nJ+LajPr+BvwAuIfk29enAwOAL0hGAnSLMc4jR9neZ47XSneUXU1yHz8Bfgp8RtKp9UoWdeX1eedg\nHdAfuIukc/QUYFuSzuIDMqe9Si08fwRJx/zXJPf+X8AMYH+S6YAqk1XstfFea/gO6jTm1BoaHVM/\nPp5xvWUk38R/m6TjtXuM8d8VVHEeySiKk0mmbkr/uTt1fK8qLr/Bz1se4oMkkfPvzCQOQIxxCck0\nazvlEmOqrvEk7+Rtks/98UBT4KQY42+Bh0mmjlpD8vvRsjr1VnKtvLUbudSX5za5wt/nfD/XHNuc\nfLmKZMTLTsBfcq0sh3biSZL+jGJgSpk6l5Gs79MQ+DTG+FaucabqzWsbKUmSlI0GxcX5mFVDkiRJ\nkmpXanqnKcDnMcbKFruv7NxtgI9IOtMr+sb+bcDLMcajKzh3OnBLjHHsxoovo47PgOkxxqPK7G8K\nrASejjH2rWmMkiRJkgqfU6tJkiRJ2lSlpy2ryTfufwM0AS6uaHqoEMIQkimsyu7fPrX/zY0cHyGE\ntiSjPN6r4PBQoBHJSIZcYpQkSZJU4EzkSJIkSdpUdU1ts0pYhBB2An4J3FHFGh8fAb1CCC1jjJkL\n2v8G+CDG+PrGiq+C89uEEAal/t4aOBQ4BpgA3FnBednEKEmSJKnAmciRJEmStKmq6YiXK0j+X+iG\nKsp8RLKOzV7Ai+mdMcZsFjPPaUQO3yZyTk39gWQ6tXdJ1ve5I7VuSilZxihJkiSpwLlGjiRJkqRN\nTghhC5KkRhNgnxhjQU0jVujxSZIkSdp0mMiRJEmSJEmSJEkqUA3rOgBJkiRJkiRJkiRVzESOJEmS\nJEmSJElSgTKRI0mSJEmSJEmSVKC2qOsAcrVs2TIX+ZEkSZIkSZIkSRtVq1atGtTFdR2RI0mSJEmS\nJEmSVKBM5EiSJEmSJEmSJBUoEzmSJEmSJEmSJEkFykSOJEmSJEmSJElSgTKRI0mSJEmSJEmSVKBM\n5EjSJmDWrFnMmjWrrsOQpI3CNk5SfWYbJ6m+s52TpI3PRI4kSZIkSZIkSVKBMpEjSZIkSZIkSZJU\noEzkSJIkSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIkSZIkSVKBMpEjSZIkSZIkSZJUoEzkSJIk\nSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIkSZIkSVKB2iIflYQQ9gQuAXoDbYClwAvAtTHGaRnl\nmgHDgBOBDsBy4BlgRIxxZj5ikSRJkiRJkiRJqi9yHpETQugGvAL8CBgN/By4EfgBMCWEcHSqXAPg\nn8ClwNRUuWuAHwIvhhB2yzUWSZIkSZIkSZKk+iQfI3IuBZoDA2KMT6R3hhDGA+8DVwCPkIzCOZxk\nlM7FGeWeBl4DrgWOzUM8kiRJkiRJkiRJ9UI+1shJj6SZmrkzxvgB8B+gY2rXyantH8uUm0EyDduP\nQwjb5CEeSZIkSZIkSZKkeiEfiZz3U9s9MneGEFoB2wDvpHYVAZ/EGOdVUMfLQGOgex7ikSRJkiRJ\nkiRJqhfyMbXaVUBf4K8hhPOAD4AdgJFAMTAihNASaA3ESuqYm9p2Ap7JQ0zMmjUrH9VIUkGxbZNU\nn9nGSarPbOMk1Xe2c5Lqk86dO9d1CKXkPCInxvgOcADQiGR6tYXAW8B+QN8Y42SgZar4qkqq+TK1\nbVnJcUmSJEnK2VlnnUWPHj3o0aMHZ511Vl2HI0mSJEkblPOInBBCAB4DmgAXkIzI+Q7wK+CREMJP\ngHdzvU62Ci1jJkm5SH+zybZNUn1kG6fa1KxZs1J/93Onjc02TlJ9ZzunzdHIkSOZMGEC//jHP9hx\nxx3rOpxyHn30Uf70pz+xdOlSzjnnHE4++eQNn6SClo+p1UYD7YEuMcbZ6Z0hhAeBD4G/AF1Su7eq\npI4Wqe3yPMQjSZIkSZIkSYXpsuF1HUHVRl5V1xHkzZgxY+jXr1/eky3HHXccBx54IK1bt85rvfmw\nbNky/vCHP7D11lvzm9/8hi5dumz4JBW8nKZWCyFsBfQCZmQmcQBijF8Bk0mSPLuQTLm2UyVVdUht\nnUxTkiRJkiRJkpST+fPnc8cdd/Dpp5/mve7vfe979OnTh6ZNm+a97lzNnTuXNWvWcOSRR9K/f3/2\n2GOPug5JeZDrGjnNgAZAZZ/YphnbF4CdQgi7VFDuIOArYEaO8UiSJEmSJEmSNnPvvfdeXYdQJ9as\nWQNQkEkm1VxOiZwY4xcko2i+H0L4XuaxEEJroDfJdGnvAGNShy4oU+4QYF/g/hjjylzikSRJkiRJ\nkiTVvZEjR1JUVMTMmTP5v//7P/7rv/6LXr16MWDAAO69916Ki4tLlf/Pf/7D73//e44++mh69uzJ\nYYcdxvnnn8/rr79eqty6deu47777GDRoEL179+aQQw7hhBNOYNSoUSVJjLPPPpvhw5Mp7M455xyK\niopYsGABAEuXLuW6666jf//+9OzZk8MPP5yhQ4fyzjvvVBj/hx9+yJAhQzj44IOZNm1aqWPpOrO9\nh6rqrkx16j777LM555xzABg9ejRFRUWMGjWqynrfeustioqKuPbaa5k0aRJnnHEGhx56KL169eLU\nU0/ltddeq/J81Y58rJHzK+BhYGoI4VZgJtAGGAJsA5wdY/waeCSEMB44P4SwNfAMyZRqQ4F5wCV5\niEWSJEmSJEmSVCBuueUW1q5dy8knn0zjxo0ZP348N998M8XFxQwaNAiAL774gtNOO43ly5dz7LHH\n0rlzZxYtWsTDDz/Mueeeyw033MABBxwAwHXXXcf48eM54ogjOOGEE2jUqBEzZsxgzJgxfPjhh1xz\nzTWceeaZPPjggzz99NOcccYZdOrUidatW7N8+XJOP/10lixZwoABA9htt91YuHAhDz30EGeddRY3\n3XQTPXr0KBX/bbfdRps2bRg+fDidOnWq9D6zuYeNVfeZZ57J9OnT+fOf/0yfPn047LDD2HXXXat8\nPx988AEAr776KuPHj6dXr14ce+yxxBh55ZVXuOCCC3jwwQdp165dlfVo48o5kRNjfCSEcCDwa+Ac\nYFtgBfAacG6M8fGM4icBvwEGAYOBJcCjwPAY42e5xiJJkiRJkiRJKhxffPEFd999N1tskXRF9+nT\nh/79+3PXXXcxcOBAGjZsyOjRo1m4cCFXXnklffv2LTm3b9++HHfccdx4440lSZBJkybRqVMnfve7\n35WU+9GPfsTOO+/Mu+++y1dffUX37t1LRpJ0796dfffdF4Dbb7+d+fPnM3r0aPbaa6+S8/v168eJ\nJ57IjTfeyH333Vcq/rVr1zJixIgN3mc297Cx6u7evXvJSKddd92VPn36bLDuGCMACxcu5Pbbb2ef\nffYpOXbdddcxbtw4HnjgAYYMGbLBurTx5GNEDjHGl4AB1Si3Brgi9UeSJEmSJEmSVI8dffTRJUkc\ngBYtWtCjRw+eeeYZPv74Y3bffXcmT57M1ltvzWGHHVbq3Hbt2tGjRw+mTZvGvHnz2GmnnWjUqBEL\nFy5kwYIF7LjjjiVlTznllA3G8tRTT9GxY0c6dOjAihUrSvY3a9aMbt26MXXqVJYvX87WW29dcqx3\n797Vus9s7qE26q6u9IicoUOHlkriAPTv359x48Yxe/bsrOtVfuW0Ro4kSZIkbUomTJjA0qVLWbp0\nKRMmTKjrcCRJkuq9iqYMa9OmDQCffvopK1asYPHixXTs2JFGjRqVK9uhQwcA5s6dC8AZZ5zBihUr\nOP7447nooot48MEH+eSTTzYYx8qVK1m4cCEff/wxffr0Kfdn6tSpAHz2WemJozKTRZXJ9h5qo+7q\nWLNmDbNnz6Zt27b069ev3PFWrVoBybpEFZk9ezYHHnggP/vZz7K+trKTlxE5kiRJkiRJkiSV1bx5\n83L7ttpqKyCZWmzVqlVAMiqmIk2aNAHgq6++AuCEE06gY8eO3H///bz00ktMmTIFgK5du/LrX/+a\n3XffvcJ6vvzySwA6d+7MhRdeWGm8ZZMrFcVfVrb3UBt1V8eHH37IunXr2H///WnYsPyYj08//RSA\ntm3bVnj+9ddfz8CBA7nnnntYu3YtjRs3zjoGVY+JHEmSJEmSJEnSRrF69epy+1auXAnANttsU5LM\nSCcsykonKDKTHvvttx/77bcfq1ev5vXXX+fxxx/n8ccf59xzz+Whhx6iZcuW5epJJ4/WrVtXsmZO\nvtTkHgqh7vT6ODvssEOFx59//nkA9t9//3LHnn32WdavX8/gwYMZO3Yss2fPZo899sg6BlWPU6tJ\nkiRJkiRJkjaKitZXWbBgAZBMsdayZUvatGnDnDlz+Oabbyo9f9dddy13rGnTphxwwAGMHDmSE088\nkaVLlzJjxowK42jRogXf+c53mDt3LosXLy53fOnSpVndV6Zc7qEu606vj5NOrGVatmwZDz/8MG3b\ntuXggw8udWz16tXcfPPNDBkyhJYtW7L99tuXJIW0cZjIkSRJkiRJkiRtFI899lipBMSyZcuYPn06\nbdq0YeeddwagT58+rFixgieffLLUuXPnzmX69Ol06dKFdu3a8f777/OTn/yEf/zjH+Wukx5xs+WW\nWwKUrCezZs2akjJ9+vThm2++4YEHHih17vLlyxk0aBBDhgyp8X1W9x4Kqe50Iufpp58uNTXbqlWr\nGDFiBMuWLePCCy8smb4t7a9//Stdu3YlhAAk6yDNnDkz6+ur+pxaTZIkSdJmY+LEiXz++ecAlS7q\nKkmSpPzZaqut+MUvfkHv3r1p3Lgxf//731m9ejW//OUvadCgAQCnn346U6ZM4aqrrmLWrFl06tSJ\nzz//nPHjx9OoUSMuuugiIFnfpkmTJlxzzTXMmjWLLl260KhRI2bNmsW4cePo1KlTybRp6bVu7rzz\nTj7++GN69erFz3/+c5577jnGjh3L4sWL6d69O4sXL2b8+PEsWrSI4cOH1/g+q3sPhVL3unXr+Oij\nj+jcuTMrV65k4MCBHHTQQaxdu5bnnnuOhQsXct5553HooYeWOm/BggWMGzeOe++9t2Rfp06deP/9\n92t8f9owEzmSJEmSNhu33noOFtLlAAAgAElEQVRryVzfvXr1MpEjSZK0kZ111lm8+uqr3HPPPXzx\nxRe0a9eOoUOH8tOf/rSkzDbbbMOdd97JHXfcwaRJk1i0aBEtW7ake/funH766XTu3BmALbbYglGj\nRnHnnXcyZcoUHn30UdatW0e7du346U9/ymmnnVYyIqd37948+eSTvPrqq/z73/9mzz33pGPHjtx5\n552MHj2aadOmMWHCBJo1a8Zee+3F8OHD6d69e43vs7r3UCh1f/zxx6xZs4a9996bgQMHcv311/PI\nI49QXFzMnnvuyYgRIypcG+fGG29k+fLlHHPMMSX7iouLad68OcXFxSXJOeVXg+Li4rqOISfLli3b\ntG9Akqph1qxZADn9oy9Jhco2TrXpqKOOKpXImTBhQh1HpPrONk5SfWc7p8qMHDmSCRMmMGbMGPbe\ne++6DkdlPPLII1x55ZUMGzaMAQMGVOucl156iUsvvZRbb72Vxo0bl+yfM2cOw4YN4+GHH6Z9+/Yb\nK+SC0KpVqzrJVDkiR5IkSZIkSZKkzUh6fZz0Ojcbsm7dOm644QYGDhzId7/73VLH2rZtC0CMsd4n\ncupKw7oOQJIkSZIkSZIk1Z4YI40aNWK33XarVvn777+fJUuWcMIJJ5Q71qJFC7bbbjtmzpyZ7zCV\n4ogcSZIkSZIkSZI2E+vXr2fWrFl06NCBJk2aVOucQYMGMWjQoEqPT5w4MV/hqQImciRJkiRJkiRJ\neXXZZZdx2WWX1XUYqkDDhg2ZMmVKXYehLDi1miRJkiRJkiRJUoFyRI4kSZKk+uWy4ZUfmzO79N+r\nKrshI6+q+bmSJEmSVE2OyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIKlIkcSZIkSZIkSZKkAmUiR5Ik\nSZIkSZIkqUBtUdcBSJIkSVJtGdB5d/b5zvYA7NqqVR1HI0mSJEkbZiJHkiRJ0mbjv7vuXdchSJIk\nSVJWnFpNkiRJkiRJkiSpQJnIkSRJkiRJkiRJKlAmciRJkiRJkiRJkgqUiRxJkiRJkiRJkqQCtUVd\nByBJkiRJteXMx59k+uefA7Bv27aMOvLwOo5IkiRJkqrmiBxJkiRJm435K1fy0dJlfLR0GfNXrqzr\ncCRJkrQZuvbaaznwwAOJMW7U64wcOZKioiIWLFiwUa9Tl0aNGkWvXr1488036zqUjcpEjiRJkiRJ\nkiQp78aMGVOvkwg1MWnSJB588EF++ctfEkKo63A2eWeccQZ77703l1xyCcuXL6/rcDYaEzmSJEmS\nJEmSpLyaP38+d9xxB59++mldh1IwVq1axXXXXcdee+3F8ccfX9fh1AsNGjRg2LBhLF68mFtuuaWu\nw9loXCNHkiRJUu24bHhdRyBJkqRa8t5779V1CAXnwQcfZNmyZVx++eV1HUq90qFDB/r168cjjzzC\nySefzM4771zXIeWdI3IkSZIkSZIkSXlz9tlnM3x48iWec845p2SdlvSaLR9++CFDhgzh4IMPZtq0\naSXnFBUVlavriy++oKioiLPPPrvU/qVLl3LdddfRv39/evbsyeGHH87QoUN55513qh3nW2+9RVFR\nEddeey2TJk3ijDPO4NBDD6VXr16ceuqpvPbaazk8hdLWr1/P/fffT8eOHenVq1epY9nce/oZfv75\n59x1110MGDCAXr16cdRRR3HbbbfxzTffVBlHcXExl1xyCUVFRTz66KM1qvM///kPv//97zn66KPp\n2bMnhx12GOeffz6vv/56SZmjjjqKgQMHlrv+CSecQFFRUcl7T3viiScoKipi4sSJNbrHY445hvXr\n1/Pwww9Xef+bKhM5kiRJkiRJkqS8OfPMM+nTpw+QrGFy9dVX07p165Ljt912G23atGH48OF06tQp\n6/qXL1/O6aefzmOPPcZhhx3GpZdeyqBBg5g5cyZnnXUWr776arXq+eCDDwB49dVXufzyy2nVqhXH\nHnss3bp147333uOCCy7gs88+yzq+isycOZNFixax//7756W+2267jWeeeYaTTjqJX/3qV2y77baM\nHTuWBx98sMrzbrnlFp566inOO+88fvzjH2dd5xdffMFpp53GxIkT6d27N5dccgmDBw9mzpw5nHvu\nubz44osAFBUV8dFHH5Vat2bRokXMnj2b5s2bl0r6AEyfPp0GDRqw33771ege99xzT1q0aMFLL71U\n/Ye4CXFqNUmSJEmSJEmqJUcddVRW5Zs1a8bf//73cvvHjx/PmDFjsqpr4MCB/OxnPyu3f/DgwSxe\nvBiACRMmZFVnRbp3714ymqV79+7su+++pY6vXbuWESNG1Lj+MWPGMH/+fEaPHs1ee+1Vsr9fv36c\neOKJ3Hjjjdx3330brCfGCMDChQu5/fbb2WeffUqOXXfddYwbN44HHniAIUOG1DjWtHRyqUePHjnX\nBfDRRx/xl7/8hcaNGwNwwAEHcMwxx/DMM89w4oknVnjO+PHjueeeezjppJM45ZRTalTn6NGjWbhw\nIVdeeSV9+/YtObdv374cd9xx3HjjjRxwwAHst99+TJgwgTfffJODDjoIgBkzZtCoUSP69OlTYSKn\nc+fOpRJ+2dxjo0aN6N69O1OnTmXJkiVsu+22WT3PQmciR5IkSZIkSZJqyfPPP59V+RYtWlS4f/78\n+VnXdeCBB1a4/9VXX83byJPq6N27d07nP/XUU3Ts2JEOHTqwYsWKkv3NmjWjW7duTJ06leXLl7P1\n1ltXWU96RM7QoUNLJXEA+vfvz7hx45g9e3ZOsabNmzcPgF122SUv9R133HElCQ6AHXbYgW233ZZF\nixZVWP6FF17g2muv5cgjj+T888+vcZ2TJ09m66235rDDDit1brt27ejRowfTpk1j3rx59OjRgwYN\nGvD666+XJHJee+01dt99d/bdd18mTpzI6tWradq0KV988QVz587l5JNPzuked9llF4qLi5k3b56J\nnLJCCMXVKLZrjHFOqnwzYBhwItABWA48A4yIMc7MNR5JkiRJkiRJUuHacccda3zuypUrWbhwIQsX\nLiyZvq0in332WZWJnDVr1jB79mzatm1Lv379yh1v1aoVAOvWrSt3bPbs2QwePJgOHTpw7733Vivu\npUuXlqo3VzvttFO5fU2aNKkw3hgjI0eOpEuXLvz2t7+lQYMGNapzxYoVLF68mO9///s0atSoXNkO\nHTowbdo05s6dS8+ePdltt9144403So5Pnz6dnj170q1bN9atW1eyRlF69FbmtGrZ3iNQkrxJP+v6\nJB8jco6r4tjVQCtgIUAIoQHwT+Aw4C/ASGBHYCjwYgihKMb4UR5ikiRJkiRJkqSCU3ah+w1p1qxZ\nhfvbt2+fdV2VjQbp0aNHydRqtaF58+Y1PvfLL78EoHPnzlx44YWVlttQsujDDz9k3bp17L///jRs\nWH4p+U8//RSAtm3bljt2/fXXM3DgQO655x7Wrl1batTIhuKubIRVtrbccstql73iiitYtWoVs2fP\n5vPPP6d9+/Y1qnPVqlVA5Z/JJk2aAPDVV18BSWLmgQceYPXq1axYsYK5c+dy3nnnscMOO9C2bVtm\nzJhBUVERM2bMoFmzZuVGRWVzjwAtW7YEvn3W9UnOiZwYY/kJGoEQwjHA7sCpMcb0kzsROBy4NsZ4\ncUbZp4HXgGuBY3ONSZIkSZIkSZIKUT7WoAE49thjOfbY/HSl3n333XmpZ2P4+uuvS/281VZbAclI\nmbJr72QjvT7ODjvsUOHx9LR1+++/f6n9zz77LOvXr2fw4MGMHTuW2bNns8cee2zweum4V65cyTbb\nbFOtGMvee0116dKFk046iYsvvpgRI0YwatQottgi+9RAOgGXTuiUlU7gpMsVFRVx77338tZbb7F4\n8WIaNGhAt27dAOjatWvJOjnTp0+ne/fu1UqIVSU9zV76Wdcn5VONeRBCaAncAkyNMd6VcSg9yd0f\nM8vHGGcALwA/DiFU71MsSZIkSZIkSaoX0omFNWvWlNo/d+7cUj+3aNGC73znO8ydO7fCUUTVnVYr\nvT7OypUryx1btmwZDz/8MG3btuXggw8u2b969WpuvvlmhgwZQsuWLdl+++1LEkIbkk7eLFu2rNyx\n6t57TV166aUcdNBBnHbaabzzzjuMGjWqRvW0bNmSNm3aMGfOHL755ptyx9PrCe26664AdOvWjS23\n3JI33niD1157jU6dOpU8h3322Yd3332X+fPn88knn5RLmNXEkiVLAKqdKNuU5GNqtYqMIJky7Udl\n9hcBn8QY51VwzstAL6A7yZo5OZk1a1auVUhSwbFtk1Sf2cbVfx3XrK3rEBhz+GGsXZ/8T2fjho1Y\nm0NMc/zMKgu2cZLqO9s5lZVOqMyePbtkrZrly5cD8Mknn9C0adNS5dPTaD3xxBOEEAAoLi5m7Nix\nQDLaI/0523fffZk4cSK33347xx9/fEkdX375Jb/+9a/Zeeed+fWvf11lfG+++SYAkyZN4tBDDy2J\nJ52sWbZsGaeddlqpZMpDDz1Ep06daNiwIbNmzaJt27a88sorfPe7393g80jX//LLL5dL2GRz71U9\nw7Vrk/+2LVt2zpw5fPnllxx88MFMnjyZu+66i/bt2/O9730v6zr33XdfJk2axN13311qar/PPvus\nJFmzYsWKktExnTt35pVXXuGzzz6ja9euJfW0bt2aNWvWcPvttwPQrl27Gt1jpg8++IAGDRrw9ddf\n59wmde7cOafz8y3viZwQwneA84C/xhjfztjfEmgNVJaiTP9GdCIPiRxJkiRJKmu7Zk03XEiSJEk5\n23777QH45z//yfz588utf1LWD37wA6ZNm8Ydd9xBv379aNSoEa+88gpbbbVVuTVsjjnmGKZPn86/\n/vUvli1bRpcuXVi2bBlPP/00y5cv58gjj6zyWt988w2ffPIJu+yyC1999RXDhg2je/furFu3junT\np7NkyRJOOOEEevToUXLOwoULmTRpEldffXXJvp133pmPP/64Ws9jzz33BODdd98tmV6sJveei0aN\nGnHeeecxbNgwbrvtNv7whz9kvWbPgAEDeO211xg9ejRz585lp512YtGiRTz11FM0atSIU045pVT5\nvfbai3/84x98/fXXdOnSpWT/TjvtRIsWLXjuuefYbrvtNrim0YasX7+e9957j5122olWrVrlVFch\n2hgjci4GmgJXldnfMrWteAI9+LJMuZwUWsZMknKR/haBbZuk+sg2bjOyZW5zXhcaP7OqDts4SfWd\n7Zwqs8suu/D222/z6quv8vnnn3PIIYeUjMzZeeedy31mOnfuTNOmTXnggQf429/+RqtWrTjiiCM4\n55xzOPjgg2nWrFmpc+6++25Gjx7NtGnTmDZtGs2aNWOvvfZi5MiRdO/evcrYZs6cydq1a/nBD37A\nwIEDuf7665k6dSrFxcXsueeeDB48uNxUX6NGjeLLL7/kggsuKNlXXFxM8+bN2X333WnQoEGV19xt\nt9244YYb+OCDD3K696qeYXqNmbJlO3bsWJIo6dy5MxdffDFXXHEFf/vb37jmmmuyqhOSZ3/HHXfw\n4osvMnHiRFq2bEn37t05/fTTy53/ox/9iAceeACAfv36sd1225Uc69atG1OnTqVv376lzss2HoC3\n3nqLVatWceyxx9bL9qhBcXFx3ioLIWwLzAOeijH2L3NsR2A+8HSM8bAKzv1v4M/AhTHGG6t7zWXL\nluXvBiSpQPkfxpLqM9u4zchlw+s6gvwaWfa7a1J5tnGS6jvbOW2KHnnkEa688kqGDRvGgAEDNlj+\npZde4tJLL+XWW28tSSRAMmXZsGHDePjhh2nfvv0G67nrrrv405/+xE033UTPnj1zugeVduWVVzJh\nwgTGjRvHLrvsstGu06pVq6ozdhtJvkfkDASaA3dVcGx5artVJee2KFNOkiRJkgpXbSWmTBhJkiTl\n1QcffABQsh5NVdatW8cNN9zAwIEDy62F07ZtWwBijNVK5Bx33HHcc889jBkzxkROHv373//mscce\n4+ijj96oSZy6lL8J9hLHAV8DE8seiDGuBBYCO1VybofU1pXRJEmSJG0ULy/4lIkfz2bix7N5ecGn\ndR2OJEmS6kCMkUaNGrHbbrttsOz9999fsmZOWS1atGC77bZj5syZ1bpu8+bNGTp0KG+//Tbjxo3L\nOm6VV1xczNVXX822227LL37xi7oOZ6PJ24icEEILoCfwfIzxq0qKvQD0DyHsEmOcW+bYQcBXwIx8\nxSRJkiRJma544SWen78AgF7td2TCTzc8lYYkSZLqj/Xr1zNr1iw6dOhAkyZNNlh+0KBBDBo0qNLj\nEyeWG9NQpb59+/LWW2/xxz/+kX322Yc99tgjq/NV2p///GfefvttbrvtNlq1alXX4Ww0+Zxa7ftA\nY+CdKsqMAfoDF6T+ABBCOATYF/hLauSOJEmSJEmSJEl51bBhQ6ZMmVKnMVx00UVcdNFFdRpDfXHm\nmWdy5pln1nUYG10+Eznp1OGcygrEGB8JIYwHzg8hbA08QzKl2lBgHnBJHuORJEmSJEmSJEnapOUz\nkbNtartiA+VOAn4DDAIGA0uAR4HhMcbP8hiPJEmSJEmSJEnSJi1viZwY443AjdUotwa4IvVHkiRJ\nkiRJkiRJlWhY1wFIkiRJkiRJkiSpYiZyJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmS\nJKlAmciRJEmSJEmSJEkqUCZyJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAK1RV0HIEmSJEm15ZCdd2KH\nrbYCYI/W29ZxNJIkSZK0YSZyJEmSJG02Lt6vR12HIEmSJElZcWo1SZIkSZIkSZKkAmUiR5IkSZIk\nSZIkqUCZyJEkSZIkSZIkSSpQJnIkSZIkSZIkSZIK1BZ1HYAkSZIk1ZbfTJnK2wu/AGDv7dvwh0MO\nquOIJEmSJKlqJnIkSZIkbTbeXvgFz89fUNdhSJIkSVK1ObWaJEmSJEmSJElSgTKRI0mSJEmSJEmS\nVKBM5EiSJEmSJEmSJBUoEzmSJEmSJEmSJEkFykSOJEmSJEmSJElSgTKRI0mSJEmSJEmSVKBM5EiS\nJEmSJEmSJBUoEzmSJEmSJEmSJEkFykSOJEmSJEmSJElSgTKRI0mSJEmSJEmSVKBM5EiSJEmSJEmS\nJBWoLeo6AEmSJEmqLTf1+SFfrlkLwFZbNq7jaKrpsuEb/xojr9r415AkSZJUIyZyJEmSJG02Om+7\nbV2HIEmSJElZcWo1SZIkSZIkSZKkAmUiR5IkSZIkSZIkqUCZyJEkSZIkSZIkSSpQrpEjSZIkabMx\na8kSvlyzFoCttmzsmjmSJEmSCl7eEjkhhH7Ab4DuwDrgdeB3McZnypRrBgwDTgQ6AMuBZ4ARMcaZ\n+YpHkiRJkso6/+nJPD9/AQC92u/IhJ8OqOOIJEmSJKlqeZlaLYTwc+Cx1I9DgMuBTsDjIYQfZpRr\nAPwTuBSYCvwcuAb4IfBiCGG3fMQjSZIkSZIkSZJUH+Q8IieE0A74I/AU0DfGuD61/xHgReAoYHKq\n+InA4cC1McaLM+p4GngNuBY4NteYJEmSJEmSJEmS6oN8TK12CrAVcHk6iQMQY/wYaFum7Mmp7R8z\nd8YYZ4QQXgB+HELYJsa4NA9xSZIkSZIkSZIkbdLyMbXa4cAKktE3hBAahRCaVFK2CPgkxjivgmMv\nA41J1tiRJEmSJEmSJEna7OVjRM53gY+AfUIINwK9gEYhhHeB38UY7wcIIbQEWgOxknrmpradgGdy\nDWrWrFm5ViFJBce2TVJ9ZhtX/3Vcs7auQ6C4uLjU39cWQEyFYI6/fxudbZyk+s52TlJ90rlz57oO\noZR8jMhpDWwDTACeB44B/ie1728hhNNT5VqmtqsqqefLMuUkSZIkSZIkSZI2a/kYkbMl0BH4WYzx\nvvTOEMIE4H3g9yGEsXm4TlYKLWMmSblIf7PJtk1SfWQbtxnZsnFdR0CDBg1K/b1xAcRUCPz923hs\n4yTVd7ZzkrTx5WNEzkpgNXB/5s4Y42zgWeA7QBdgeerQVpXU0yK1XV7JcUmSJEmSJEmSpM1KPhI5\nc6qo5z+p7dYxxpXAQmCnSsp2SG2dUFOSJEmSJEmSJIn8TK32ItAV+B7wTplj6eTMvNT2BaB/CGGX\nGOPcMmUPAr4CZuQhJkmSJEnZuGx4XUcgSZIkSapAPkbkjE1tLwshlEw4HUL4Pkly5q2MpM2Y1PaC\nzApCCIcA+wL3p0buSJIkSZIkSZIkbfZyHpETY3w5hHAL8D/Av0II40hG4lwArAOGZJR9JIQwHjg/\nhLA18Eyq7FCSUTuX5BqPJEmSJFVm7+3bVPh3SZIkSSpU+ZhaDZJkzXvA2cAo4GvgeeDyGOOrZcqe\nBPwGGAQMBpYAjwLDY4yf5SkeSZIkSSrnD4ccVNchSJIkSVJW8pLIiTEWA/+X+rOhsmuAK1J/JEmS\nJEmSJEmSVIl8rJEjSZIkSZIkSZKkjcBEjiRJkiRJkiRJUoEykSNJkiRJkiRJklSg8rJGjiRJkiRt\nCq55+VVmLl4CwB6tt+Xi/XrUcUSSJEmSVDVH5EiSJEnabEz5ZB5/nzmLv8+cxZRP5tV1OJIkSZK0\nQSZyJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmSJKlAmciRJEmSJEmSJEkqUCZyJEmS\nJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmSJKlAmciRJEmSJEmSJEkqUCZyJEmSJEmSJEmS\nCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmSJKlAbVHXAUiSJElSbfltz/1ZvHo1AK2bNq3jaCRJkiRp\nw0zkSJIkSdps7LfjDnUdgiRJkiRlxanVJEmSJEmSJEmSCpSJHEmSJEmSJEmSpAJlIkeSJEmSJEmS\nJKlAuUaOJEmSpM3Goq++Ys036wHYslFDtmvWrI4jkiRJkqSqmciRJEmStNk4ecLjPD9/AQC92u/I\nhJ8OqOOIJEmSJKlqTq0mSZIkSZIkSZJUoEzkSJIkSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIk\nSZIkSVKBMpEjSZIkSZIkSZJUoEzkSJIkSZIkSZIkFSgTOZIkSZIkSZIkSQXKRI4kSZIkSZIkSVKB\nMpEjSZIkSZIkSZJUoEzkSJIkSZIkSZIkFagtcq0ghDAWOKWKIhfEGG9KlW0GDANOBDoAy4FngBEx\nxpm5xiJJkiRJkiRJklSf5JzIyXAusLCC/W8AhBAaAP8EDgP+AowEdgSGAi+GEIpijB/lMR5JkiRJ\nKqV9ixbstk2rkr9LkiRJUqHLZyJnYoxxThXHTwQOB66NMV6c3hlCeBp4DbgWODaP8UiSpP9n797D\n7Krq+/G/AwlySQKm0CJELpG4BC8tQVIhKPciVkSoVFTk8cpF2wKWeos0QsH6EyoqKnLJF61KrdSg\ngrb6LYgKWBDjXVkElUKCfAkKiVwkweb3xzlDJ+PM5HLOnLOZeb2eZ551svfae392mCzOzPustQFY\ny8UvPLTfJQAAAGyQbgY563J8u/3Q4I211sWllBuTvLiUsk2t9YEe1gQAAMCC+b25zpnn9OY6AAAw\njnQ9yCmlbJ7ksVrrY0N2zU1yV6116TCH3ZRkXpI5aT0zp2NLlizpxmkAGsXYBoxnxrj+2mXV6n6X\nwARwxwT+d26MA8Y74xwwnsyePbvfJaxlky6e682llF8keSTJo6WU/yqlvChJSinTksxIMlyIkyR3\ntttZXawHAAAAAADgCa2bM3IOS/KeJMuSPCfJ3yW5upTyyiTfaPd5eIRjH2q307pVTNMSM4BODHyy\nydgGjEfGuIbYbEq/K2ACmIj/zo1xwHhnnAMYe90Icv4pyb8kua7W+mh725dLKV9M8r32/r27cB0A\nAICOXPr9H+YXK1YkSXbdeuu84Y+f3eeKAAAARtdxkFNr/WGSHw6z/SellOuSHJpku/bmrUY4zdR2\nu7LTegAAAEZy5ZLbc8Oyu5Mk83bcQZADAAA0XjefkTOc/9dut0yyPMnMEfrt3G49FQ0AAAAAAKCt\noyCnlDK9lPKqUsoLR+rSbu9KcmOSmaWUnYbp9/wkjyRZ3Ek9AAAAAAAA40mnM3JWJflIko+XUrYd\nvKOUckhaz8a5uda6NMnC9q7ThvTbP8leST5Ta32ww3oAAAAAAADGjY6ekVNr/W0p5ZQkH09ycynl\nY0nuSbJnkpOTrEhyYrvvVaWURUlOLaVMT3JtWkuqnZ5kaZJ3dlILAAAAAADAeNPxM3JqrZ9IclCS\n29MKYxYmeVmSTyeZU2v93qDur0iyIK2l1C5LckqSq5PsW2u9p9NaAAAAAAAAxpOOZuQMqLV+LcnX\n1qPfqiRntb8AAAAAAAAYRcczcgAAAAAAABgbghwAAAAAAICGEuQAAAAAAAA0lCAHAAAAAACgoQQ5\nAAAAAAAADTW53wUAAAD0yl/N+ZMcU56eJPmjrbbsczUAAADrJsgBAAAmjMNn7drvEgAAADaIpdUA\nAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANNTkfhcAAADQK3/+b1fmhmV3J0nm7bhD\nvvSyo/pcEQAAwOjMyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACA\nhhLkAAAAAAAANNTkfhcAAACMYsH8flcAAABAH5mRAwAAAAAA0FCCHAAAAAAAgIYS5AAAAAAAADSU\nIAcAAAAAAKChJve7AAAAgF7ZYvLkTJ0y5fHXAAAATecnFwAAYML4t5ce0e8SAAAANoil1QAAAAAA\nABpKkAMAAAAAANBQghwAAAAAAICGEuQAAAAAAAA01OR+FwAAANAri25bkmUPPpgk2XHq1Bz99Nl9\nrggAAGB0ghwAAGDCWPiDH+WGZXcnSebtuIMgBwAAaDxLqwEAAAAAADTUmMzIKaWcleSMJJ+otb5m\n0PZNkpya5LVJZif5bQudW8IAACAASURBVJIbkry71vrtsagFAAAAAADgiarrM3JKKc9M8rYRdl+c\n5J+S3JbkhLTCnpLkG6WUfbpdCwAAAAAAwBNZV2fktGfcXJLkx0n2HLJvnySvT3JFrfUvB21flFaw\n85Ekc7pZDwAAAAAAwBNZt2fknJxknySnD7Pv+Hb7wcEba63LklyZZM/2bB4AAAAAAADSxSCnlDIz\nyT8m+VSt9dphusxN8rskNw+z76Z2+6fdqgcAAAAAAOCJrptLq30kyeokbxlh/y5J7q21rh5m353t\ndla3ilmyZEm3TgXQGMY2YDwzxg1vl1XDvX1mY61Zs2at16v9/fbUHRP437kxDhjvjHPAeDJ79ux+\nl7CWrgQ5pZSXJXlJktfXWpeP0G1akvtH2PfQoD4AAAAAAACkC0FOKWWbJBck+XqSyzquqEualpgB\ndGLgk03GNmA8Msatw2ZT+l3BuDJp0qS1Xk/x99tTE/HfuTEOGO+McwBjrxvPyDk3yYwkJ9Va14zS\nb2WSrUbYN3VQHwAAAAAAANLhjJxSyguSvD7JB5M8WEqZOaTLlu1tDyX5eZK9Simb1VpXDem3c7u1\nmCYAAAAAAEBbp0urHZRkUpJT219DHdP++kSSG5PsneR5Sb4xpN/z2+0NHdYDAAAwolfu8YzsN3PH\nJMlO0z2iEwAAaL5Og5zLk9wywr6rklyT5ANJ7mpv+5skp2VQkFNKmZ3kiCRfq7X+rMN6AAAARvSq\nPXbvdwkT24L5vbnOmef05joAANADHQU5tdbbktw23L5SSpIsrbVePWjb+UneUkq5MsmiJNsmeUuS\nR5L8dSe1AAAAAAAAjDedzsjZUKcn+UWSE5NckuThJNcleVet9Sc9rgUAAAAAAKDRxizIqbVOGmbb\nmiQfbn8BAAAAAAAwik36XQAAAAAAAADD6/XSagAAAH3z6qv/Pd++554kyd7bb59PvvjwPlcEAAAw\nOkEOAAAwYfz6t7/NPQ89/PhrAACAprO0GgAAAAAAQEMJcgAAAAAAABpKkAMAAAAAANBQghwAAAAA\nAICGEuQAAAAAAAA0lCAHAAAAAACgoQQ5AAAAAAAADSXIAQAAAAAAaChBDgAAAAAAQEMJcgAAAAAA\nABpKkAMAAAAAANBQk/tdAAAAQK9cceSL87s1a5Ikm06a1OdqAAAA1k2QAwAATBhbTpnS7xIAAAA2\niKXVAAAAAAAAGkqQAwAAAAAA0FCCHAAAAAAAgIbyjBwAAGDCuO7Ou7L84UeSJNttuUUO2Ompfa4I\nAABgdIIcAABgwjj35ltyw7K7kyTzdtxBkAMAADSepdUAAAAAAAAaSpADAAAAAADQUIIcAAAAAACA\nhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAa\nSpADAAAAAADQUIIcAAAAAACAhprc7wIAAAB65YW77pLdnrxNkmS3bbbpbzEAAADroStBTinl2Une\nmmS/JDskWZnkxiTvqbXeNKjfFknekeTYJDu3+12b5Ixa623dqAUAAGAkf73Xnv0uAQAAYIN0vLRa\nKWWfJP+V5KAklyR5Q7s9MMk3Syn7tvtNSvKFJO9K8s0kr0vyviQHJPlWKeVpndYCAAAAAAAwnnRj\nRs7HkkxKMq/WesfAxlLKzUmuTPK2JEemNQvn0CTn1lrfOqjfNUluSXJukqO7UA8AAAAAAMC40NGM\nnFLKJkk+keSUwSFO2/9ttzu12+Pb7YcGd6q1Lk5rGbYXl1IsUg0AAAAAANDW0YycWuv/JHn/CLuf\n0W5/0G7nJrmr1rp0mL43JZmXZE5az8wBAAAAAACY8LqxtNrj2jNqpibZL8l5SX6R5N2llGlJZiSp\nIxx6Z7udlS4FOUuWLOnGaQAaxdgGjGfGuOHtsmp1v0sYV95y3Tfy/eX3JUn+eLtt8/4DXtDnihgL\ndzRwPDHGAeOdcQ4YT2bPnt3vEtbS1SAnyf3tdk2Sy5K8tdb6q1LKDu3tD49w3EPtdlqX6wEAAHjc\nz1asyA/uawU5Uzeb0udqAAAA1q3bQc6BSbZKsmeSNyU5qJRyTJK7u3yddWpaYgbQiYFPNhnbgPHI\nGLcOwoaumjRp0lqvp/j7HZeaNJ4Y44DxzjgHMPa6GuTUWq9rv/xSKeVTSRYnuTzJc9vbtxrh0Knt\ndmU36wEAAAAAAHgi22SsTlxrvSPJNUlmJ/mjJMuTzByh+87t1mKaAAAAAAAAbR3NyCml7J7kq0n+\nb631dcN02WbQdW5McmQpZada651D+j0/ySNpzeABAACAjbdg/thf48xzxv4aAACQzmfkLEmyeZJj\nSim7Dt5RSnlaknlpzcS5LcnC9q7ThvTbP8leST5Ta32ww3oAAAAAAADGjY5m5NRaHyul/HWSTye5\nqZTykSQ/T7Jrkr9KskWSN9daf5fkqlLKoiSnllKmJ7k2rSXVTk+yNMk7O6kFAAAAAABgvOkoyEmS\nWutnSin/neRtaYU32yRZmeTbSd5fa/3qoO6vSPL2JMcleXWS+5NcnWR+rfWeTmsBAICe6cXSTQAA\nAEx4HQc5SVJr/VaSl65Hv1VJzmp/AQAAAAAAMIpOn5EDAAAAAADAGBHkAAAAAAAANJQgBwAAAAAA\noKG68owcAACAJ4KLDjskv33sd0mSzSdv2udqAAAA1k2QAwAATBgzp03rdwkAAAAbxNJqAAAAAAAA\nDSXIAQAAAAAAaChBDgAAAAAAQEN5Rg4AADBh/GD58qx4dFWSZOsnbZbnbLddnysCAAAYnSAHAACY\nMN7x9etzw7K7kyTzdtwhX3rZUX2uCAAAYHSWVgMAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpAD\nAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4A\nAAAAAEBDCXIAAAAAAAAaanK/CwAAAOiVuU/ZPlM32yxJsscfzOhzNQAAAOsmyAEAACaMBfP26XcJ\nAAAAG8TSagAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaanK/CwAAAOiVM2/4Vn7y\nq18nSfb4gxlZMG+fPlcEAAAwOkEOAAAwYdz8y3tyw7K7kyQPrlrV52oAAADWzdJqAAAAAAAADSXI\nAQAAAAAAaChBDgAAAAAAQEN15Rk5pZTtkvx9kqOS/FGSB5Jcn+Qfaq2Lh/TdIsk7khybZOckK5Nc\nm+SMWutt3agHAAAAAABgPOh4Rk4p5Q+TLE7y+iT/2m4vSnJwkutLKXsO6jspyReSvCvJN5O8Lsn7\nkhyQ5FullKd1Wg8AAAAAAMB40Y0ZOWcnmZnkL2qtiwY2llK+neTzac2++cv25mOTHJrk3FrrWwf1\nvSbJLUnOTXJ0F2oCAAAAAAB4wuvGM3LuTvIvSa4csv0/kqxJ8pxB245vtx8a3LG9/NqNSV5cStmm\nCzUBAAAAAAA84XU8I6fW+u4Rdk1LMimtZ+AMmJvkrlrr0mH635RkXpI5aT0zBwAANs6C+f2uAAAA\nALqiG0urjeSkdvvpJCmlTEsyI0kdof+d7XZWuhDkLFmypNNTADSOsQ0Yz7o5xu2yanXXzsX4smbN\nmrVer/a9wka6YwPHLO/jgPHOOAeMJ7Nnz+53CWvpxtJqv6eUcniSv0/ynSQXtjdPa7cPj3DYQ0P6\nAQAAAAAATGhdn5FTSjk+yaVJ7khyRK11VbevsT6alpgBdGLgk03GNmA8GpMxbrMp3TsX48qkSZPW\nej3F9wobafanPr5e/QZmfW3099qZ52zccQA94udVgLHX1SCnlHJGkrOS3JLkz2ut9w7aPfCsnK1G\nOHzqkH4AAABd9Y/775cVj7Y+a7b1kzbrczUAAADr1rUgp5TygSSnJPliklfUWtdaQq3W+mApZXmS\nmSOcYud2a0FNAABgTDxnu+36XQIAAMAG6cozctozcU5JclmSo4eGOIPcmGRmKWWnYfY9P8kjSRZ3\noyYAAAAAAIAnuo6DnFLKgUnOTHJlkjfUWn83SveF7fa0IefYP8leST5Ta32w05oAAAAAAADGg24s\nrXZeu/3PJEeXUobr8+Va68O11qtKKYuSnFpKmZ7k2rSWVDs9ydIk7+xCPQAAAAAAAONCN4KcOe32\nI6P02TXJHe3Xr0jy9iTHJXl1kvuTXJ1kfq31ni7UAwAAMKylv/lNfvtYaxGBzSdvmpnTpvW5IgAA\ngNF1HOTUWidtYP9VSc5qfwEAAPTMiV/5z9yw7O4kybwdd8iXXnZUnysCAAAYXcfPyAEAAAAAAGBs\nCHIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0l\nyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUJP7XQAAAECv7PbkbfLg6tWPvwYA\nAGg6QQ4AADBhfPDgA/tdAgAAwAaxtBoAAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACA\nhprc7wIAAAB65YLvfDe3P/BAkmS3bbbJX++1Z58rAgAAGJ0gBwAAmDD+4xd35IZldydJ5u24gyAH\nAABoPEurAQAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAA\nAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA01ud8FAAAA\n9MrfzX1uXvPwI0mS7bbcos/VAAAArJsgBwAAmDAO2Omp/S4BAABgg1haDQAAAAAAoKG6NiOnlLJZ\nkrOTnJ7kG7XWA4bps0WSdyQ5NsnOSVYmuTbJGbXW27pVCwAAAAAAwHjQlSCnlFKSXJ7k6UkmjdBn\nUpIvJDkkyWVJzkyyQ1rBz7dKKXNrrT/rRj0AAAAwLiyY35vrnHlOb64DAMAG6zjIKaU8OcniJEuS\nPDfJrSN0PTbJoUnOrbW+ddDx1yS5Jcm5SY7utB4AAICRPLx6dX63Zk2SZNNJk7LllCl9rggAAGB0\n3XhGzmZJ/jnJ82qtdZR+x7fbDw3eWGtdnOTGJC8upWzThXoAAACGdcwXrs5TL7wkT73wkhzzhav7\nXQ4AAMA6dTwjp9b6/5KcvB5d5ya5q9a6dJh9NyWZl2ROWs/MAQAAAAAAmPC68oycdSmlTEsyI8lI\nM3bubLez0qUgZ8mSJd04DUCjGNuA8aybY9wuq1Z37VyML2vay6oNvF7te4Ueafr32h3eZwId8vMq\nMJ7Mnj273yWspSdBTpJp7fbhEfY/NKQfAADj0C7/55J+lwAAAABPKL0KcnquaYkZQCcGPtlkbAOe\n8Db7/QfLD3xKfcow+6DbJk2atNZr33eMtSfKGOd9JrCx/LwKMPY26dF1VrbbrUbYP3VIPwAAAAAA\ngAmvJ0FOrfXBJMuTzByhy87t1mKaAAAAAAAAbb2akZMkNyaZWUrZaZh9z0/ySJLFPawHAAAAAACg\n0XoZ5Cxst6cN3lhK2T/JXkk+0565AwAAAAAAQJLJnZ6glLJHkj2GbN6ulPKyQX/+cq31qlLKoiSn\nllKmJ7k2rSXVTk+yNMk7O60FAAAAAABgPOk4yEnyl0kWDNm2R5IrBv151yR3JHlFkrcnOS7Jq5Pc\nn+TqJPNrrfd0oRYAAAAAAIBxo+Mgp9b67iTvXs++q5Kc1f4CAAAAAABgFN2YkQMAAPCEMGPzzbP9\nVls+/hoAAKDpBDkAAMCE8ckXH97vEgAAADbIJv0uAAAAAAAAgOEJcgAAAAAAABpKkAMAAAAAANBQ\nghwAAAAAAICGmtzvAgAAAHrl0z/5ae5c+ZskyU7Tp+VVe+ze54oAAABGJ8gBAAAmjMt/cmtuWHZ3\nkmTejjsIcgAAgMaztBoAAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUJ6RAwBAsmB+vysAAAAAhmFG\nDgAAAAAAQEMJcgAAAAAAABrK0moAAAAw0fViic0zzxn7awAAjENm5AAAAAAAADSUIAcAAAAAAKCh\nBDkAAAAAAAANJcgBAAAAAABoqMn9LgAAAKBXXv+cZ+WFs3ZJkuw4dWp/iwEAAFgPghwAAGDCOPrp\ns/tdAgAAwAaxtBoAAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhprc7wIAAAB65WWf\nvyr/dfcvkyTP2+Ep+beXHtHnigAAAEYnyAEAACaMRx57LA+uXv34a6CHFszvzXXOPKc31wEA6BFL\nqwEAAAAAADSUGTkAAE3Xq08wAwAAAI1jRg4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAA\nAACAhprc6wuWUmYkWZDkpUmekuS+JF9Ockat9Ze9rgcAAAAAAKCpehrklFK2SHJdkmck+XCSW5LM\nTnJ6koNKKXvVWu/vZU0AAADAOLJgfm+uc+Y5vbkOADDhTVqzZk3PLlZKeUeS9yR5c631o4O2vzTJ\nlUnOr7W+ZUPOuWLFit7dAAAAAAAAMCFtvfXWk/px3V4/I+f4JA8lWThk+xeSLE1yXCmlL38RAAAA\nAAAATdOzIKeUMj2tJdUW11ofHbyv1romyc1Jtkuya69qAgAAAAAAaLJezsjZud0uHWH/ne12Vg9q\nAQAAAAAAaLxeBjnT2u3DI+x/aEg/AAAAAACACa3Xz8gBAAAAAABgPU3u4bVWttutRtg/dUi/9bL1\n1ltP2uiKAAAAAAAAGqyXM3J+kWRNkpkj7B94hs6S3pQDAAAAAADQbJPWrFnTs4uVUr6XZHaSP6i1\n/nbQ9k2T3J3k0VrrTj0rCAAAAAAAoMF6/YychUm2THLikO3HJfnDJJf2uB4AAAAAAIDG6vWMnClJ\nvplkryQXJLklyTOTvCWtJdWeV2t9uGcFAQAAAAAANFhPg5wkKaVMT/LuJH+R5ClJ7k1yZZIFtdZf\n97QYAAAAAACABut5kAMAAAAAAMD66fUzcgAAAAAAAFhPghwAAAAAAICGEuQAAAAAAAA0lCAHAAAA\nAACgoQQ5AAAAAAAADSXIAQAAAAAAaKjJ/S5gQCllRpIFSV6a5ClJ7kvy5SRn1Fp/uR7H75vkjCTP\nS7JFktuSXJLkw7XWNUP67pHkrCT7J5me5L+TfCrJe2utq7p1TwADejzGPTv/O8ZNTfLLJP+e5O9r\nrfd2654ABvRyjBty3KQkX0trvHttrfXjnd0JwPB6/F5ukyR/leSEJLslWZHkmiTvqrX+vFv3BDCg\nx2Pcnyc5JcneSbZK6+fVryY5u9b63926J4ABnY5x7XPsluTytMauEX/2HMvcoREzckopWyS5LsnJ\nST6X5DVJLkry8iQ3lFKevI7jD0rrh/jZSd6d5I1p/U/jQ0nOH9L3mUm+lWS/JOcleV2Sr7eP+2xX\nbghgkB6PcfsnWZzW/1je1+57TVq/CLixlDK1O3cF0NLLMW4Yb0jrDTLAmOnDOHdZkg8mubnd9+Ik\nR7avtW2n9wMwWI9/Xj0hydVJdkpydlrv5T6X5Lgkt5RSdu7OXQG0dDrGtc/x2iTfTbL7OvqNae7Q\nlBk5pyZ5dpI311o/OrCxlPL9JFemleq/ZZTjP5rkt0mePyhF+2Qp5fNJ/qaUclmt9fvt7e9P6xPq\n+9Vaf9je9ulSykNJTimlvKTW+sWu3RlAb8e4i9t95w36NNMnSikr2nUc3z4fQLf0cox7XCll+7QC\n6+8m2bMrdwIwvJ6Nc6WUF6f1fm1BrfWsQdeqSd6b5KD4ACLQXT0Z49qzDc9J8pu0fid3X7vvP7fH\nuI+1azmti/cG0NEY1w6gL0pyQZIftV+PZExzh0bMyEnrjepDSRYO2f6FJEuTHNdeOuP3lFL+NElJ\n8tlhpkJ9OMmktJL9lFKekuTQJNcO+ssc3DdJXr2xNwEwgl6NcdOSXJ/k3GGmpH+53T5nY28CYAQ9\nGeOGcUGS/0nyno2sG2B99XKce3OSlUnOHdyx1vqpWuvMWqsQB+i2Xo1x05Nsm+Sng0KcAd9ot7ts\nzA0AjGKjx7hBjqq1/k2SEZdG60Xu0Pcgp5QyPckzkiyutT46eF97Hc2bk2yXZNcRTjG33X5rmH03\ntds/bbfPTet/Ir/Xt9Z6e5JfD+oL0LFejnG11t/UWl8/+NObg2zdblduQPkAo+rx+7jB131Jkpcl\neWta6xsDjIlejnOllE2THJjkm7XWR9rbNmtvB+i6Hv+8+kCSe5LsXErZbEjfXdrtjzakfoDRdGGM\nS6314lrr59fjcmOeO/Q9yEkysP7l0hH239luZ42wf5eRjq+1/ibJA4OOHbHvoGs9tZTSlCXngCe+\nXo5xozkpyZok/7IefQHWV8/HuPbsw4+k9cnN/7MBtQJsjF6Oc7smeVKSJaWUV5ZSfprk0SSPllKu\nKaXstYG1A6xLr9/LvTWtX5p+qpSyeyllu1LKAWk9S+LOtGZcA3RLp2PchthlPa7VUe7QhCBnWrt9\neIT9Dw3ptzHHT9uAvqNdC2BD9XKMG1Yp5ewkByf5cK31u6P1BdhA/Rjj/jHJHyY5sf0pKoCx1Mtx\nbka7PSjJ/5fkwiRHpLWE5Lwk3yilPHs9agZYXz19L1dr/WSSI9NafugnSe5N8rUkK9J6xs6961c2\nwHrpZRYw5tcy8wRgnGo/TPKCJG9Ka+3P0R5QCdB4pZR9kpyc5Oxa6639rgegywaWGtotyR+3l+FI\nkqtLKbcm+XSSBWktLQnwhFNKeWmSTyX5YZJL0vrk+jOTvDPJV0spf1ZrvXOUUwBMWE0Icgae17DV\nCPunDum3Mcev3IC+SfKbEfYDbKhejnGPK6VsldYyakckuSzJCbXWx9ZZLcCG6dkY115L/dIkt6f1\n6XSAXujle7kH2+31g0KcAf+S1hh4wIiVAmy4Xr6Xm5Hk40nuSGv2zcDPp18tpXwtyXfTWmLtL9en\ncID10OkYNxbX2ujcoQlLq/0irec2zBxh/8BadktG2P/zdvt7x5dStk7rAd9L1tV30LV+4ZedQBf1\ncowb2L5Vkq+mFeKcUWt9nXENGCO9HOPelmT3JH+fZLtSysxSysy01llPkie3t225YbcAMKpejnN3\ntNtNh/ZtLyW5PMn0dVYMsP56Ocb9afvPXxz682mt9XtJ7k5y4HpXDrBunY5xG2LMc4e+Bzm11oeS\n/CDJnFLK5oP3lVI2TbJvkrtGmVp5Y7udN8y+57fb69vtzUkeG65vKeVZSbYZ1BegYz0e49J+aNrn\nkuyT5A211rM7KB9gVD0e4w5OMinJZ5LcNejrs+3972//2ac4ga7p5ThXa30gya1Jnjn0QbillClJ\nnpKRH6ALsMF6/F5u4FPqmw/Td2D7SPsANlgXxrgNMea5Q9+DnLaFSbZMcuKQ7cel9TDbSwc2lFKe\nUUrZdeDP7dR+cZJj2p/KHOg3KclpSVYn+US7731JvpjkgFLKnkOu9bft9tIAdFdPxri2+UkOS/K3\ntdaFXb4PgOH0aox7R1ozDYd+vbO9/wPtP/9nt24MoK2X7+UuS7J9Ws8DG+zEJFOSXNXpzQAM0asx\n7qYk/5PkpcP8QvWgJDPyv8EQQLds9Bi3IXqROzThGTlJ8rEkr0pyXill5yS3pPWws7ek9QC08wb1\n/WmSmuQZg7a9KcnXknyjlPKBJA8kOTbJQWktK/SzQX3/LskLknyllHJeWlM3X9i+/sJa6ze6f3vA\nBNeTMa6U8kdpLT10b5KlpZThHoT7UK3137t4bwA9GeNqrd8a7uKllIFnSny/1np1t24KYJBe/rz6\noSR/keQD7V8kfC/J3mkFO3clOafrdwdMdL16L3dXKeWf0vq93C2llI8nWZbW0rmnJXkorQ/uAHRT\nR2NcKeXw/O+MwucOtIN+Dl1ea/16+/WY5g6T1qxZ08nxXVNKmZ7k3Wm9aX1KWr+IvDLJglrrrwf1\nW5Ok1lqfMeT45yY5K60pUU9K6y/+glrrZcNca3Zab4APSjItyc/SSuc+UGv9XddvDpjwejHGlVIO\nSOsN9Gj+u9a6S4e3A7CWXr6PG+baB6Q19r221vrxLtwOwO/p8c+rU5OckdZSkTsm+VWSL6X1C9Ff\ndv3mgAmvx2Pcq5KclOQ5aX1K/t603sudXWu9tes3B0x4nYxxpZQ78r/P0hnO12utBwzqP2a5Q2OC\nHAAAAAAAANbWlGfkAAAAAAAAMIQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBD\nCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0l\nyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQg\nBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIc\nAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIA\nAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEA\nAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaSpADAAAAAADQUIIcAAAAAACAhhLkAAAAAAAANJQgBwAA\nAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAAAEBDCXIAAAAAAAAaanK/C+jUihUr1vS7BgAA\nAAAAYHzbeuutJ/XjumbkAAAAAAAANJQgBwAAAAAAoKEEOQAAAAAAAA0lyAEAAAAAAGgoQQ4AAAAA\nAEBDCXIAngCWLFmSJUuW9LsMgDFhjAPGM2McMN4Z5wDGniAHAAAAAACgoQQ5AAAAAAAADSXIAQAA\nAAAAaChBDgAA4smhwwAAIABJREFUAAAAQEMJcgAAAAAAABpKkAMAAAAAANBQghwAAAAAAICGEuQA\nAAAAAAA0lCAHAAAAAACgoQQ5AAAAAAAADTW5GycppTwzyTuTHJRk2yQPJLkxybm11usH9dsiyTuS\nHJtk5yQrk1yb5Ixa623dqAUAAAAAAGC86HhGTillzyQ3J3lRkkuTvC7J+Umem+TrpZQj2v0mJflC\nkncl+Wa73/uSHJDkW6WUp3VaCwAAAAAAwHjSjRk570qyZZKjaq1fHdhYSlmU5KdJzkpyVVqzcA5N\na5bOWwf1uybJLUnOTXJ0F+oBAAAAAAAYF7rxjJyBmTTfHLyx1nprknuT7NLedHy7/dCQfovTWobt\nxaWUbbpQDwAAAAAAwLjQjRk5P03yx0menuT7AxtLKVsn2SatZdeSZG6Su2qtS4c5x01J5iWZk9Yz\nczq2ZMmSbpwGoFGMbcB4ZowDxjNjHDDeGeeA8WT27Nn9LmEt3QhyzklyWJJ/LqW8OcmtSZ6S5Mwk\na5KcUUqZlmRGkjrCOe5st7PSpSAHAIDmO/HEE7N48eIkyZw5c3LRRRf1uSIAAABolo6DnFrrj0op\n+yT5XNZeXu3uJIfVWr9eStmhve3hEU7zULud1mk9A5qWmAF0YuCTTcY2YLzZYost1nptnAPGG+/j\ngPHOOAcw9joOckopJcmXkzwpyWlpzcj5wyR/m+SqUspfJPlxp9cBAAAAAHiiO+dH5/W7hFHNf9bp\n/S6h8c4888x86Utfyuc///nssMMO6z6gx66++up85CMfyQMPPJCTTz45xx9//LoPotG6sbTapUl2\nTLJ7rfUXAxtLKVckuT3JZUl2b2/eaoRzTG23K7tQDwAAAAAAE9zChQtz+OGHdz1sOeaYY7Lffvtl\nxowZXT1vN6xYsSLvfe97M3369Lz97W/P7rvvvu6DaLxNOjm4lLJVknlJFg8OcZKk1vpIkuvSCnl2\nSrI8ycwRTrVzu/VUNAAAAAAAOrJs2bJcdNFF+eUvf9n1c++xxx45+OCDs/nmm3f93J268847s2rV\nqrzwhS/MkUcemac//en9Loku6CjISbJFkklJRvqO3XxQe2OSmaWUnYbp9/wkjyRZ3GE9AAAAAABM\ncD/5yU/6XUJfrFq1KkkaGTKx8ToKcmqt96U1i+Y5pZQ9Bu8rpcxIclBay6X9KMnC9q7ThvTbP8le\nST5Ta32wk3oAAAAAAOi/M888M3Pnzs1tt92Wj33sY3nJS16SefPm5aijjsqnP/3prFmzZq3+9957\nb97znvfkiCOOyL777ptDDjkkp556ar773e+u1e+xxx7L5ZdfnuOOOy4HHXRQ9t9//7z85S/PxRdf\n/HiIcdJJJ2X+/PlJkpNPPjlz587N3XffnSR54IEHct555+XII4/Mvvvum0MPPTSnn356fvSjHw1b\n/+23355TTjklL3jBC3L99devtW/gnBt6D6OdeyTrc+6TTjopJ598cpLk0ksvzdy5c3PxxRePet4f\n/OAHmTt3bs4999x85StfyRvf+MYceOCBmTdvXl7zmtfklltuGfV4eqMbz8j52yRXJvlmKeXDSW5L\nsm2SU5Jsk+SkWuujSa4qpSxKcmopZXqSa9NaUu30JEuTvLMLtQAAAAAA0BAXXHBBVq9eneOPPz5T\npkzJokWL8sEPfjBr1qzJcccdlyS577778trXvjYrV67M0UcfndmzZ+dXv/pVrrzyyrzpTW/K+9//\n/uyzzz5JkvPOOy+LFi3Kn/3Zn+XlL395Nt100yxevDgLFy7M7bffnve973054YQTcsUVV+Saa67J\nG9/4xsyaNSszZszIypUr8/rXvz73339/jjrqqDztaU/L8uXL87nPfS4nnnhiPvCBD2Tvvfdeq/6P\nfvSj2XbbbTN//vzMmjVrxPvckHsYq3OfcMIJ+c53vpNLLrkkBx98cA455JDsuuuuo/73ufXWW5Mk\n3/72t7No0aLMmzcvRx99dGqtufnmm3PaaafliiuuyPbbbz/qeRhbHQc5tdarSin7JXlbkpOTPDnJ\nb5LckuRNtdb/GNT9FUnenuS4JK9Ocn+Sq5PMr7Xe02ktAAAAAAA0x3333ZdPfvKTmTy59avogw8+\nOEceeWQ+8YlP5JWvfGU22WSTXHrppVm+fHn+4R/+IYcddtjjxx522GE55phjcv755z8egnzlK1/J\nrFmzcvbZZz/e70UvelGe+tSn5sc//nEeeeSRzJkz5/GZJHPmzMlee+2VJLnwwguzbNmyXHrppXnW\ns571+PGHH354jj322Jx//vm5/PLL16p/9erVOeOMM9Z5nxtyD2N17jlz5jw+02nXXXfNwQcfvM5z\n11qTJMuXL8+FF16YP/mTP3l833nnnZfPfvaz+dd//deccsop6zwXY6cbM3JSa/2vJEetR79VSc5q\nfwEAAAAAMI4dccQRj4c4STJ16tTsvffeufbaa/Pzn/88u+22W6677rpMnz49hxxyyFrHbr/99tl7\n771z/fXXZ+nSpZk5c+b/z969x/k53vnjf0UyJZKIU0U1EpVO77VoSYhDikUtltZh0bAtiy0l3dI+\nUm2orUPb7QM9Vy2L8m1369BGizi02KqgDglFcZu2YZIoDSFHkUTy+2MOv0wyQ5L5pJ87k+fz8ZjH\nPbmv674+7/uTyT3Da67rSu/evTNjxoy8+OKL2Wqrrdr7nnDCCe9Yy1133ZVtttkmQ4cOzZw5c9rP\n9+3bNzvvvHPuu+++zJ49OxtttFF723777bdS97kq9/C3GHtltc3IGTt2bIcQJ0kOO+yw3HDDDZky\nZcoqj0tt1STIAQCA1TFhwoQ0NTUlSRobG+tcDQAAUGudLRm2+eabJ0n+8pe/ZNCgQZk5c2Y++MEP\npnfv3iv0HTp0aCZOnJjm5uYMHjw4n/rUp/LNb34zxxxzTPbYY4+MHDkyu+++e7beeuu3rWPu3LmZ\nMWNGZsyY8bYzVV566aUOQc6yYVFX5syZs0r38LcYe2UsXLgwU6ZMyaBBg3LwwQev0D5w4MAkLfsS\nLev000/vsHfOgAEDsuOOO2bcuHEZNGjQKtXAyhHkAAAAAACwRmy44YYrnOvXr1+SlqXF5s+fn6Rl\nVkxn1l9//STJG2+8kST5+Mc/nm222SbXXXddfve73+Xee+9NknzoQx/KF7/4xbz//e/vdJx58+Yl\nafkFss9//vNd1rt8uNJZ/ctb1Xv4W4y9Mv74xz9m8eLF2X333bPeeuut0P6Xv/wlSVYIZ8qyzOmn\nn55DDz00S5cuzQsvvJCzzz47l112Wc4777xVroN3JsgBAAAAAGCNWLBgwQrn5s6dmyTZeOON28OM\ntsBieW0BxbKhx2677ZbddtstCxYsyGOPPZY77rgjd9xxR04//fT8/Oc/z4ABA1YYpy08Wrx4cfue\nObWyOvdQhbHb9sd5z3ve02n7/fffnyTZfffd289NmzYtc+bMyfDhw9tnVr373e/OsGHDOv27pjZW\njNkAAAAAAKAGOttf5cUXX0zSssTagAEDsvnmm+f555/PW2+91eX173vf+1Zo22CDDbLHHnvk/PPP\nz+jRo/P6669n8uTJndbRv3//bLHFFmlubs7MmTNXaH/99ddX6b6W1Z17qOfYbfvjtAVry5o1a1Zu\nuummDBo0KHvvvXf7+WeeeSa9e/fOBz7wgSQtwdgdd9yRp59+OkcdddQq18DKEeQAAAAAALBG3Hbb\nbR0CiFmzZmXSpEnZfPPN2/e12X///TNnzpz8+te/7nBtc3NzJk2alO222y5bbrllnnnmmfzzP/9z\nfvGLX6zwOm0zbt71rnclSft+MgsXLmzvs//+++ett97K9ddf3+Ha2bNn5xOf+ETOOOOM1b7Plb2H\nKo3dFuTcfffdHZZmmz9/fs4999zMmjUrn//859uXb2u7ZsmSJTnwwAOzzz775MMf/nAuueSSXHTR\nRdlll11W6/54Z5ZWAwCgbm6//fY88cQTSZIPfvCDnW6wCQAArL369euXz3zmM9lvv/3S0NCQn/3s\nZ1mwYEE++9nPplevXkmSk08+Offee2++9rWvpampKdtuu21efvnljB8/Pr17984XvvCFJC3726y/\n/vq56KKL0tTUlO222y69e/dOU1NTbrjhhmy77bbty6a17XVz9dVX589//nNGjRqVk046Kb/97W9z\nzTXXZObMmRk+fHhmzpyZ8ePH59VXX80555yz2ve5svdQlbEXL16cP/3pT2lsbMzcuXNz3HHHZa+9\n9sqiRYvy29/+NjNmzMiYMWOy7777driuLMvsu+++GTNmTJKWYO6KK67I17/+9dxwww0dQh9qR5AD\nAEDd/OAHP2hfd3nUqFGCHAAAerxzdhhb7xL+pk499dQ88sgj+clPfpJXXnklW265ZcaOHdthGa6N\nN944V199dS6//PLceeedefXVVzNgwIAMHz48J598chobG5Mkffr0yRVXXJGrr7469957b2699dYs\nXrw4W265ZY466qiceOKJ7TNy9ttvv/z617/OI488khdeeCHbb799ttlmm1x99dW58sorM3HixEyY\nMCF9+/bNDjvskHPOOSfDhw9f7ftc2Xuoyth//vOfs3Dhwuy444457rjj8s1vfjO33HJLli5dmu23\n3z7nnntuh71x2jz77LM56aST2mdTbb311jnhhBNy2mmnZcqUKfm7v/u71b5PutZr6dKl9a6hW2bN\nmrV23wDASmhqakqSbn3TB6iiQw45pEOQM2HChDpXBFBbfo4DejrPObpy/vnnZ8KECbnqqquy4447\n1rsclnPLLbfkwgsvzLhx43LEEUes1DXTp0/PEUcckcsuu6x95lOS3HzzzfnqV7+aW265JYMGDVpT\nJVfCwIEDe9Xjdc3IAQAAAACAdUjb/jhFUazyNZtttlleeeWVvPnmm3nyySdz6aWX5qCDDurxIU49\nCXIAAAAAAGAdUpZlevfunWHDhq30NW1BzjHHHJMk6d+/fwYPHpxTTz01H/vYx9ZInbQQ5AAAAAAA\nwDpiyZIlaWpqytChQ7P++uuv9HVjxozJmDFj1mBldEWQAwAAAABATX3lK1/JV77ylXqXQSfWW2+9\n3HvvvfUug1WwXr0LAAAAAAAAoHOCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCiBDkAAAAAAAAV\nJcgBAAAAAACoqD71LgAAgHXXEUcckaFDhyZJhg8fXudqAAAAoHoEOQAA1M2//du/pampKUnS2NhY\n52oAAACgeiytBgAAAAAAUFGCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCi+tS7AAAA1l2nnHJK\nfve73yVJdt9991xxxRV1rggAAACqxYwcAADqZvr06Wlubk5zc3OmT59e73IAAADWuIsvvjgf/vCH\nU5blGn2d888/PyNHjsyLL764Rl+nnq644oqMGjUqv//97+tdyholyAEAAAAAoOauuuqqHh0irI47\n77wzN954Yz772c+mKIp6l7PW+9SnPpUdd9wxZ599dmbPnl3vctYYQQ4AAAAAADU1ffr0XH755fnL\nX/5S71IqY/78+bnkkkuyww475Jhjjql3OT1Cr169Mm7cuMycOTPf//73613OGiPIAQAAAACgpp5+\n+ul6l1A5N954Y2bNmpWTTz653qX0KEOHDs3BBx+cW265JVOnTq13OWuEIAcAAAAAgJr59Kc/nXPO\nOSdJctppp7Xv09K2Z8sf//jHnHHGGdl7770zceLE9mtGjhy5wlivvPJKRo4cmU9/+tMdzr/++uu5\n5JJLcthhh2XPPffMAQcckLFjx+app55a6TqfeOKJjBw5MhdffHHuvPPOfOpTn8q+++6bUaNG5V//\n9V/z6KOPduNd6GjJkiW57rrrss0222TUqFEd2lbl3tvew5dffjnXXnttjjjiiIwaNSqHHHJIfvjD\nH+att9562zqWLl2as88+OyNHjsytt966WmP+9a9/zde//vV89KMfzZ577pmPfOQjOfPMM/PYY4+1\n9znkkENy3HHHrfD6H//4xzNy5Mj2v/c2v/rVrzJy5Mjcfvvtq1XT4YcfniVLluSmm2562/tfW/Wp\ndwEAAAAAAOuKQw45ZJX69+3bNz/72c9WOD9+/PhcddVVqzTWcccdl3/5l39Z4fwnP/nJzJw5M0ky\nYcKEVRqzM6ecckpuvPHG3H333fnUpz6VbbfdNptuuml7+w9/+MNsvvnmOeecc7Ltttuu8vizZ8/O\nySefnNdeey1HHHFEhg0blhkzZuTnP/95Tj311HznO9/Jrrvu+o7jPPvss0mSRx55JOPHj8+oUaNy\n5JFHpizLPPzww/nc5z6XG2+8MVtuueUq17i85557Lq+++moOOOCAbo+VtLyHzz//fI499tj06dMn\n48ePzzXXXJNNN900o0eP7vK673//+7nrrrsyZsyYHHrooas85iuvvJITTzwxs2fPzpFHHpnGxsa8\n+uqruemmm3L66afnW9/6VvbYY4+MHDkyt912W2bPnp2NNtooSfLqq69mypQp2XDDDfPYY4/lwx/+\ncPtrT5o0Kb169cpuu+22Wve5/fbbp3///vnd736Xz372s91+f6tGkAMAAAAA8Ddy//33r1L//v37\nd3p++vTpqzzWsv/jfFmPPPJIXnrppVUa6+0MHz68fTbL8OHDM2LEiA7tixYtyrnnnrva41911VWZ\nPn16rrzyyuywww7t5w8++OCMHj063/72t/O///u/7zhOWZZJkhkzZuSyyy7LTjvt1N52ySWX5IYb\nbsj111+fM844Y7VrbfPII48kyUoFTCvjT3/6U370ox+loaEhSbLHHnvk8MMPzz333NNlkDN+/Pj8\n5Cc/ybHHHpsTTjhhtca88sorM2PGjFx44YU58MAD26898MADc/TRR+fb3/529thjj+y2226ZMGFC\nfv/732evvfZKkkyePDm9e/fO/vvv32H2TtIS5DQ2NnYI/FblPnv37p3hw4fnvvvuy2uvvZZNNtlk\nld7Pqut2kFMUxdKV6Pa+siyfb+3fN8m4JKOTDE0yO8k9Sc4ty/K57tYDAAAAAEB17bffft26/q67\n7so222yToUOHZs6cOe3n+/btm5133jn33Xdfh5kgXWmbkTN27NgOIU6SHHbYYbnhhhsyZcqUbtXa\nZtq0aUmSIUOG1GS8o48+uj3cSJL3vOc92WSTTfLqq6922v+BBx7IxRdfnIMOOihnnnnmao/5m9/8\nJhtttFE+8pGPdLh2yy23zK677pqJEydm2rRp2XXXXdOrV6889thj7UHOo48+mve///0ZMWJEbr/9\n9ixYsCAbbLBBXnnllTQ3N+f444/v1n0OGTIkS5cuzbRp0wQ5nTj6bdr+M8nAJDOSpCiKXkl+meQj\nSX6U5PwkWyUZm+TBoihGlmX5pxrUBAAAAABQOcvvj/JO+vbt2+n59773vas8Vlchwq677tq+tNrf\nwlZbbbXa186dOzczZszIjBkzsv/++3fZ76WXXnrbIGfhwoWZMmVKBg0alIMPPniF9oEDByZJFi9e\n3H7u9NNP77BvzoABA7Ljjjtm3LhxGTRo0NvW/frrr3cYt7sGDx68wrn111+/Q71tyrLM+eefn+22\n2y7/8R//kV69eq3WmHPmzMnMmTPzwQ9+ML17916h79ChQzNx4sQ0Nzdnzz33zLBhw/L444+3t0+a\nNCl77rlndt555yxevLh9j6K293T5ZdVW9T7bwpu297on6XaQU5bligs0JimK4vAk70/yr2VZzms9\nPTrJAUkuLsvyrGX63p3k0SQXJzmyuzUBAAAAAFRRLfagSZIjjzwyRx5Zm/+V+uMf/7gm46ysDTfc\ncLWvnTev5X81NzY25vOf/3yX/d4pLPrjH/+YxYsXZ/fdd8966623Qvtf/vKXJOkQ0JRlmdNPPz2H\nHnpoli5dmhdeeCFnn312Lrvsspx33nkrVXdXS+Wtqne9610r3feCCy7I/PnzM2XKlLz88st573vf\nu1pjzp8/P0nX4eL666+fJHnjjTeStAQz119/fRYsWJA5c+akubk5Y8aMyXve854MGjQokydPzsiR\nIzN58uT07dt3hVlRq3qfAwYMSPL/v9c9yRrZI6coigFJvp/kvrIsr12mqW1u1PeW7V+W5eSiKB5I\ncmhRFBuXZdnzIjMAAAAAAFbJm2++2eHP/fr1S9IyU2b5vXdWRdv+OO95z3s6bW/bf2j33XdP0rI0\n2pw5czJ8+PBsvvnmSZJ3v/vdGTZsWBYsWPCOr9dW99y5c7PxxhuvVI3L3/vq2m677XLsscfmrLPO\nyrnnnpsrrrgiffqsejTQFsC1BTrLawtw2vqNHDky//M//5MnnngiM2fOTK9evbLzzjsnST70oQ+1\n75MzadKkDB8+vMMSaqujbZm9tve6J1kxaqyNc9OyZNqY5c6PTDK1LMtpnVzzUJKGJMPXUE0AAAAA\nAFRQW7CwcOHCDuebm5s7/Ll///7ZYost0tzc3OlycCu7rFbb/jhz585doW3WrFm56aabMmjQoOy9\n995JkmeeeSa9e/fOBz7wgSQtQdIdd9yRp59+OkcdddQ7vl5beDNr1qwV2lb23lfXl7/85ey11145\n8cQT89RTT+WKK65YrXEGDBiQzTffPM8//3zeeuutFdrb9hN63/velyTZeeed8653vSuPP/54Hn30\n0Wy77bbt78NOO+2UP/zhD5k+fXqmTp3aHph1x2uvvZYkKx2UrU1qPiOnKIot0hLg/L+yLJ9c5vyA\nJJsmKbu4tO2rctsk93S3jqampu4OAVA5nm1AT3Peeedl0aJFSZKGhgbPOaDH8nwDejrPOZbXFqhM\nmTKlfa+a2bNnJ0mmTp2aDTbYoEP/tiW0fvWrX6UoiiTJ0qVLc8011yRpme3R9nU2YsSI3H777bns\nsstyzDHHtI8xb968fPGLX8zWW2+dL37xi29b3+9///skyZ133pl99923vZ4FCxbku9/9bmbNmpUT\nTzyxPUx58MEHs2TJkhxwwAFJWkKXfv365YwzzsjAgQPf8d9A2/gPPfTQCoHNqtz7272Hbf9ttXzf\n559/PvPmzcvee++d3/zmN7n22mvz3ve+N3//93+/ymOOGDEid955Z3784x932KPppZdeag9r5syZ\n0z47prGxMQ8//HBeeumlfOhDH2ofZ9NNN83ChQtz2WWXJUm23HLLDu/hqtTU5tlnn02vXr3y5ptv\ndvuZ1NjY2K3ra21NLK12VpINknxtufMDWo+dz7tK5i3XDwCAHq4n/qYUAADQsuxYkvzyl7/M9OnT\nO93/ZFm77LJLJk6cmMsvvzwHH3xwevfunYcffjj9+vVbYQ+bww8/PJMmTcrNN9+cWbNmZbvttsus\nWbNy9913Z/bs2TnooIPe9rXeeuutTJ06NUOGDMkbb7yRcePGZfjw4Vm8eHEmTZqU1157LR//+Mez\n6667tl/z/PPPZ5dddsno0aOTtMzk+fnPf56rrroqF1100Tvu5bL99tsnSf7whz+0Ly+2OvfeHb17\n986YMWMybty4/PCHP8w3vvGNVd6z54gjjsijjz6aK6+8Ms3NzRk8eHBeffXV3HXXXendu3dOOOGE\nDv132GGH/OIXv8ibb76Z7bbbrv384MGD079///z2t7/NZptt9o57Gr2TJUuW5Omnn87gwYMzcODA\nbo1VRTUNcoqi2CTJaUluLcvyj7Uce1VVLTED6I623yLwbAN6Is84oCfzjAN6Os85ujJkyJA8+eST\neeSRR/Lyyy9nn332aZ+Zs/XWW6/wNdPY2JgNNtgg119/fX76059m4MCB+cd//Mecdtpp2XvvvdO3\nb98O1/z4xz/OlVdemYkTJ2bixInp27dvdthhh5x//vkZPvztd+947rnnsmjRouyyyy457rjj8s1v\nfjP33Xdfli5dmu233z6f/OQnV1jqq7m5OSeddFL22muv9nNbbLFFTjvttPTu3fsd/w0MGzYs3/rW\nt/Lss892697f7j1s22Nm+b7bbLNNe1DS2NiYs846KxdccEF++tOf5qKLLlqlMZOW9/7yyy/Pgw8+\nmNtvvz0DBgzI8OHDc/LJJ69w/T/90z/l+uuvT5IcfPDB2Wyzzdrbdt5559x333058MADV7huVWt6\n4oknMn/+/Bx55JE98nnUa+nSpTUbrCiKMUl+kOSfy7Icv1xb/yRzkvyuLMs9Orn2zCTfTvJvZVle\ntbKvOWvWrNrdAEBF+cEY6Mk844CezDMO6Ok851gb3XLLLbnwwgszbty4HHHEEe/Yf/r06TniiCNy\n2WWXZcSIEe3nb7755nz1q1/NLbfckkGDBr3jONdee20uvfTSfOc738mee+7ZrXugowsvvDATJkzI\nDTfckCFDhqyx1xk4cGCvNTb426jdvKwWRyd5M8ntyzeUZTk3yYwkg7u4dmjr0YKaAAAAAACsEc8+\n+2yStO9Hs7L9N9tss7zyyiuZPn167rjjjlx66aU56KCDVirESZKjjz46AwcOzFVXrfQ8BlbCCy+8\nkNtuuy0f/ehH12iIU081W1qtdcbNnknuL8vyjS66PZDksKIohpRl2bxc215J3kgyuVY1AQBQbQ89\n9FCeeuqpJMnMmTOz22671bkiAACgpyvLMr17986wYcNWqn9bkHPMMcckSfr375/Bgwfn1FNPzcc+\n9rGVft0NN9wwY8eOzbnnnpsbbrihfTxW39KlS/Of//mf2WSTTfKZz3ym3uWsMbXcI+eDSRqSPPU2\nfa5KcliSz7V+JEmKotgnyYgkP2qduQMAwDrgggsuyP33358kGTVqVCZMmFDnigAAgJ5syZIlaWpq\nytChQ7P++uuv1DVjxozJmDFjavL6Bx54YJ544ol873vfy0477ZQPfOADNRl3XfXf//3fefLJJ/PD\nH/4wAwcOrHc5a0wtg5y2r7jnu+pQluUtRVGMT3JmURQbJbknLUuqjU0yLcnZNawHAAAAAADarbfe\nern33nvSyPlGAAAgAElEQVTrWsMXvvCFfOELX6hrDT3FKaecklNOOaXeZaxxtQxyNmk9znmHfscm\n+VKSTyT5ZJLXktya5JyyLF+qYT0AAAAAAABrtZoFOWVZfjvJt1ei38IkF7R+AAAAAAAA0IX16l0A\nAAAAAAAAnRPkAAAAAAAAVJQgBwAAAAAAoKIEOQAAAAAAABUlyAEAAAAAAKgoQQ4AAAAAAEBFCXIA\nAAAAAAAqSpADAAAAAABQUX3qXQAAAOuuffbZJ/3790+SjBgxos7VAAAAQPUIcgAAqJuzzjorTU1N\nSZLGxsY6VwMAAADVY2k1AAAAAACAihLkAAAAAAAAVJQgBwAAAAAAoKIEOQAAAAAAABXVp94FAACw\n7vrSl76Uhx9+OEkycuTIfOMb36hzRQAAAFAtghwAAOrmySefzOTJk5Mkffv2rXM1AAAAUD2WVgMA\nAAAAAKgoQQ4AAAAAAEBFCXIAAAAAAAAqSpADAAAAAABQUYIcAAAAAACAihLkAAAAAAAAVJQgBwAA\nAAAAoKIEOQAAAAAAABUlyAEAAAAAAKgoQQ4AAAAAAEBFCXIAAAAAAAAqqk+9CwAAYN31ne98J888\n80ySZLvttqtzNQAAAFA9ghwAAOqmsbGx088BAACAFpZWAwAAAAAAqChBDgAAAAAAQEUJcgAAAAAA\nACrKHjkAANRNU1NTnnnmmfY/2ycHAAAAOqpZkFMUxcFJvpRkeJLFSR5L8tWyLO9Zrl/fJOOSjE4y\nNMnsJPckObcsy+dqVQ8AANV35pln5v7770+SjBo1KhMmTKhzRQAAAFAtNVlarSiKk5Lc1vrHM5Kc\nl2TbJHcURfEPy/TrleSXSb6c5L4kJyW5KMk/JHmwKIphtagHAAAAAACgJ+j2jJyiKLZM8r0kdyU5\nsCzLJa3nb0nyYJJDkvymtfvoJAckubgsy7OWGePuJI8muTjJkd2tCQAAAAAAoCeoxdJqJyTpl+S8\nthAnScqy/HOSQcv1Pb71+L1lT5ZlObkoigeSHFoUxcZlWb5eg7oAAAAAAADWarUIcg5IMicts29S\nFEXvJH3Ksnyzk74jk0wty3JaJ20PJRmVlj127umkfZU0NTV1dwiAyvFsA3qaN954o8PnnnNAT+X5\nBvR0nnNAT9LY2FjvEjqoxR45f5fkT0l2Kori3iRvJllQFMVTRVGMbutUFMWAJJsm6SzESZLm1uO2\nNagJAAAAAABgrVeLGTmbJlmUZEKSH6Vln5ttknwpyU+LouhXluVVSQa09p/fxTjzWo8DumhfJVVL\nzAC6o+03mzzbgJ6mb9++HT73nAN6Gj/HAT2d5xzAmleLIOddaQlu/qUsy/9tO1kUxYQkzyT5elEU\n19TgdQAAAAAAANYptVhabW6SBUmuW/ZkWZZTkvxfki2SbJdkdmtTvy7G6d96nN1FOwAAAAAAwDql\nFkHO828zzl9bjxuVZTk3yYwkg7voO7T1aGc0AAAAAACA1CbIeTAty6v9fSdtbeHMtNbjA0kGF0Ux\npJO+eyV5I8nkGtQEAAAAAACw1qtFkHNN6/ErRVH0ajtZFMUH0xLOPFGWZXPr6ataj59bdoCiKPZJ\nMiLJda0zdwAAAAAAANZ5fbo7QFmWDxVF8f0k/57k5qIobkjLTJzPJVmc5Ixl+t5SFMX4JGcWRbFR\nknta+45Ny6yds7tbDwAAa48dd9wxb7zxRvvnAAAAQEfdDnJanZHk6SSfTnJFkjeT3J/kvLIsH1mu\n77FJvpTkE0k+meS1JLcmOacsy5dqVA8AAGuBb3zjG2lqatkisbGxsc7VAAAAQPXUJMgpy3Jpkv9q\n/XinvguTXND6AQAAAAAAQBdqsUcOAAAAAAAAa4AgBwAAAAAAoKIEOQAAAAAAABVVkz1yAABgdVx0\n0UWZNGlSkmTEiBE566yz6lwRAAAAVIsgBwCAurn33ntz//33J0nmzp0ryAEAAIDlWFoNAAAAAACg\nogQ5AAAAAAAAFSXIAQAAAAAAqChBDgAAAAAAQEUJcgAAAAAAACpKkAMAAAAAAFBRghwAAAAAAICK\nEuQAAAAAAABUlCAHAAAAAACgogQ5AAAAAAAAFdWn3gUAALBu+NpTl6xwrnne1A6fd9ZnTTpnh7F/\n09cDAACAVSXIAQCgbvY6dd/MnTk3SdJ/0/51rgYAAACqR5ADAEDdvHfHrbNo0aIkSUNDQ52rAQAA\ngOqxRw4AAAAAAEBFCXIAAAAAAAAqSpADAAAAAABQUfbIAQCgbua/Pj9vvrEgSbJ+3w2y4cYb1rki\nAAAAqBZBDgAAdXPzl3+WqY83J0m23mlIRv/g+DpXBAAAANViaTUAAAAAAICKEuQAAAAAAABUlCAH\nAAAAAACgogQ5AAAAAAAAFdWn3gUAAFBbX3vqknqXAAAAANSIGTkAAAAAAAAVJcgBAAAAAACoKEEO\nAAAAAABARQlyAAAAAAAAKqpPdwcoiuKaJCe8TZfPlWX5nda+fZOMSzI6ydAks5Pck+Tcsiyf624t\nAAAAAAAAPUm3g5xlnJ5kRifnH0+Soih6Jfllko8k+VGS85NslWRskgeLohhZluWfalgPAAAAAADA\nWq2WQc7tZVk+/zbto5MckOTisizPajtZFMXdSR5NcnGSI2tYDwAAFdd/i42y8eBN2j8HAAAAOqpl\nkPNOjm89fm/Zk2VZTi6K4oEkhxZFsXFZlq//DWsCAKCODv2Pw7No0aIkSUNDQ52rAQAAgOqpeZBT\nFMUGSRaXZbl4uaaRSaaWZTmtk8seSjIqyfC07JkDAABr3NeeuqTeJXTqnB3G1rsEAAAAKqKWQc6Y\noiiOSrJNkiVFUTyS5IKyLG8rimJAkk2TlF1c29x63DY1CnKamppqMQxApXi2ASujbYbL2mZtrXtN\n8LyHnse/a6Cn85wDepLGxsZ6l9DBejUc68AkX09ySJJzkjQmubUoitFJBrT2md/FtfNajwO6aAcA\nAAAAAFjn1GJGzjeT/DTJb8qyfLP13G1FUdyc5PHW9l1r8DqrpGqJGUB3tP1mk2cbsDIanlq79pqx\nR86KPO+h5/BzHNDTec4BrHndDnLKsnwyyZOdnH+6KIrfJDkgybtbT/frYpj+rcfZ3a0HAIC1x2Pj\nH83Mqa8mSTbderPsfOQuda4IAAAAqqWWe+R05uXW44ZJZiQZ3EW/oa1Hi2kCAKxDynueztTHW7ZL\n3HqnIYIcAAAAWE639sgpimKjoij+pSiKg7rq0nqcmuSBJIOLohjSSb+9kryRZHJ36gEAAAAAAOhJ\nuhXkJFmY5NIk1xRFsfmyDUVRfCQte+M8XJbltCRXtTZ9brl++yQZkeS6sizndrMeAAAAAACAHqNb\nS6uVZbmgKIozklyT5OGiKP4ryUtJdk5yWpJZSU5t7XtLURTjk5xZFMVGSe5Jy5JqY5NMS3J2d2oB\nAAAAAADoabo7IydlWV6bZL8kf0xLGHNVkqOS/E+S4WVZPr5M92OTfCUtS6n9KMkZSW5NsmdZli91\ntxYAAAAAAICepFszctqUZfl/Sf5vJfotTHJB6wcAAAAAAABvo9szcgAAAAAAAFgzajIjBwBgXfS1\npy6pdwkAAABAD2dGDgAAAAAAQEUJcgAAAAAAACpKkAMAAAAAAFBRghwAAAAAAICK6lPvAgAAWHft\nMnr3fGC/7ZIkG20xsM7VAAAAQPUIcgAAqJv3f/gDWbRoUZKkoaGhztUAAABA9VhaDQAAAAAAoKIE\nOQAAAAAAABUlyAEAAAAAAKgoQQ4AAAAAAEBF9al3AQAArLuu+8z/y9THm5MkW+80JKN/cHydKwIA\nAIBqMSMHAAAAAACgogQ5AAAAAAAAFSXIAQAAAAAAqChBDgAAAAAAQEUJcgAAAAAAACpKkAMAAAAA\nAFBRghwAAAAAAICKEuQAAAAAAABUlCAHAAAAAACgogQ5AAAAAAAAFSXIAQAAAAAAqKg+9S4AAIB1\nV5/1G9LQ913tnwMAAAAdCXIAAKibo755bBYtWpQkaWgQ5AAAAMDyLK0GAAAAAABQUYIcAAAAAACA\nihLkAAAAAAAAVJQ9cgAAoGK+9tQl9S6hU+fsMLbeJQAAAKxzBDkAANTNs3f/Ia+/9HqSZOMtN87f\n7b99nSsCAACAahHkAABQN4/fNClTH29Okmy90xBBDgAAACzHHjkAAAAAAAAVtUZm5BRFcUGSc5Nc\nW5blvy5zfr0kZyY5MUljkgVJ7k9yXlmWj6yJWgAAAAAAANZWNZ+RUxTF9km+2EXzFUm+meS5JKek\nJewpkvy2KIo9al0LAAAAAADA2qymM3JaZ9z8d5I/JNl5ubY9kpyc5MayLI9Z5vz4tAQ7lyYZXst6\nAAAAAAAA1ma1npFzWpI9koztpO341uN3lz1ZluX0JDcl2bl1Ng8AAAAAAACpYZBTFMXgJP+Z5Cdl\nWd7TSZeRSd5K8nAnbQ+1HnerVT0AAAAAAABru1ourXZpkkVJPt9F+zZJ/lqW5aJO2ppbj9vWqpim\npqZaDQVQGZ5tUC2LFnX2Yw2rYsnSpR0+955Wm+9DsPr8+wF6Os85oCdpbGysdwkd1CTIKYriqCQf\nS3JyWZYzuug2IMlrXbTNW6YPAAAAAAAAqUGQUxTFxkm+n+TeJD/qdkU1UrXEDKA72n6zybMNqqXh\nqYZ6l7DWW69Xrw6fNzR4T6vM9yFYdX6OA3o6zzmANa8We+RcnGTTJJ8uy3Lp2/SbnaRfF239l+kD\nAAAAAABAujkjpyiKvZOcnOS7SeYWRTF4uS4btp6bl+TPSUYURfGusiwXLtdvaOvRYpoAAAAAAACt\nuru02n5JeiU5s/VjeUe3flyb5IEkuybZPclvl+u3V+vx/m7WAwDAWmSHf/pQtvrQ1kmSTd+7aZ2r\nAQAAgOrpbpDzv0ke7aLtliR3J/lOkqmt5z6b5HNZJsgpiqIxyUeT/F9Zln/qZj0AAKxFdvinD2XR\nokVJYn8cAAAA6ES3gpyyLJ9L8lxnbUVRJMm0sixvXebct5N8viiKm5KMT7J5ks8neSPJv3enFgAA\nAAAAgJ6muzNyVtXYJFOSnJrkv5PMT/KbJF8uy/Lpv3EtAAAAAAAAlbbGgpyyLHt1cm5pkh+0fgAA\nAAAAAPA21qt3AQAAAAAAAHTub720GgAAtPvFOT/Li09NS5JstcPgHP61o+pcEQAAAFSLIAcAgLpZ\nMGt+5r06t/1zAAAAoCNLqwEAAAAAAFSUIAcAAAAAAKCiBDkAAAAAAAAVJcgBAAAAAACoKEEOAAAA\nAABARQlyAAAAAAAAKkqQAwAAAAAAUFGCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCiBDkAAAAA\nAAAV1afeBQAAsO7650uOzcI330ySvGv99etcDQAAAFSPIAcAgLpp2KAh6d36eUNDfYsBAACACrK0\nGgAAAAAAQEUJcgAAAAAAACpKkAMAAAAAAFBR9sgBAKBunn/kz5nzypwkyYDNB2SbXbetc0W8na89\ndUm9S1jBOTuMrXcJAAAAa5QgBwCAuvndtRMz9fHmJMnWOw0R5AAAAMByLK0GAAAAAABQUYIcAAAA\nAACAihLkAAAAAAAAVJQ9cgCAtUIVN1kHAAAAWNPMyAEAAAAAAKgoQQ4AAAAAAEBFCXIAAAAAAAAq\nSpADAAAAAABQUYIcAAAAAACAihLkAAAAAAAAVJQgBwAAAAAAoKL61LsAAADWXdvu2ZiB790kSbLZ\n0M3rXA0AAABUT02CnKIodkxyVpIPJ9kqyewkDyT5elmWDy3Tr2+ScUlGJxna2u+eJOeWZflcLWoB\nAGDtMfK4PbJo0aIkSUNDQ52rAQAAgOrp9tJqRVHskeR3SfZL8t9J/q31uG+S+4qi2LO1X68kv0zy\n5ST3JTkpyUVJ/iHJg0VRDOtuLQAAAAAAAD1JLWbk/FeSXklGlWX5fNvJoigeTnJTki8mOSwts3AO\nSHJxWZZnLdPv7iSPJrk4yZE1qAcAAAAAAKBH6NaMnKIo1ktybZIzlg1xWv269Tik9Xh86/F7y3Yq\ny3JyWpZhO7Qoio27Uw8AAAAAAEBP0q0ZOWVZLknyrS6a/671+ETrcWSSqWVZTuuk70NJRiUZnpY9\nc7qtqampFsMAVIpnG+uytn1U6Ln8HbM6fG9kbeFrFejpPOeAnqSxsbHeJXRQi6XV2rXOqOmf5MNJ\nLkkyJcl5RVEMSLJpkrKLS5tbj9umRkEOAADVd9cld+Svz72UJNniA1vmI2MPqnNFAAAAUC01DXKS\nvNZ6XJrkR0nOKsvy1aIotmo9P7+L6+a1HgfUqpCqJWYA3dH2m02ebazLGp5qqHcJrAGzpr+Wvza9\nnCRZv9/6aWjw98yq8b2RqvNzHNDTec4BrHm1DnL2TdIvyc5JTk+yX1EURyd5scavAwAAAAAA0OPV\nNMgpy/I3rZ9OKIriJ0kmJ/nfJLu0nu/XxaX9W4+za1kPAAAAAADA2my9NTVwWZbPJ7k7SWOSQUlm\nJBncRfehrUe7ogEAAAAAALTqVpBTFMV2RVFMLYri6i66bNx67JPkgSSDi6IY0km/vZK8kZYZPAAA\nAAAAAKT7M3KakmyQ5OiiKN63bENRFMOSjErLTJznklzV2vS55frtk2REkuvKspzbzXoAAAAAAAB6\njG7tkVOW5eKiKP49yf8keagoikuT/DnJ+5J8JknfJGPKsnwryS1FUYxPcmZRFBsluSctS6qNTTIt\nydndqQUAAAAAAKCn6VaQkyRlWV5XFMULSb6YlvBm4ySzkzyS5FtlWf5qme7HJvlSkk8k+WSS15Lc\nmuScsixf6m4tAAAAAAAAPUm3g5wkKcvywSSHr0S/hUkuaP0AAAAAAADgbXR3jxwAAAAAAADWEEEO\nAAAAAABARQlyAAAAAAAAKqome+QAAMDq+KdzD8uCeQuSJBv026DO1QAAAED1CHIAAKibjQYNTN9F\nGyZJGhoa6lwNAAAAVI+l1QAAAAAAACpKkAMAAAAAAFBRghwAAAAAAICKskcOAAB183LTS5n3+rwk\nSb+N+2VQ45Z1rggAAACqRZADAEDd/N93f5WpjzcnSbbeaUhG/+D4OlcEAAAA1WJpNQAAAAAAgIoS\n5AAAAAAAAFSUIAcAAAAAAKCiBDkAAAAAAAAVJcgBAAAAAACoKEEOAAAAAABARQlyAAAAAAAAKkqQ\nAwAAAAAAUFGCHAAAAAAAgIoS5AAAAAAAAFSUIAcAAAAAAKCi+tS7AAAA1l1b7TA4ffo2JEm2GDao\nztUAAABA9QhyAACom70/vV8WLVqUJGloaKhzNQAAAFA9llYDAAAAAACoKEEOAAAAAABARQlyAAAA\nAAAAKkqQAwAAAAAAUFF96l0AAFAtX3vqknqXwDrkt/91T/76p5eTJFsMG5S9P71fnSsCAACAahHk\nAABQNy8+NS1TH29Okix+Y1GdqwEAAIDqEeQAAABrrarOIjxnh7H1LgEAAOgh7JEDAAAAAABQUYIc\nAAAAAACAiqrJ0mpFUbw7yX8kOSLJoCSvJ5mY5MKyLCcv17dvknFJRicZmmR2knuSnFuW5XO1qAcA\nAAAAAKAn6PaMnKIotkgyOcnJSa5vPV6eZP8kE4ui2HmZvr2S/DLJl5Pcl+SkJBcl+YckDxZFMay7\n9QAAAAAAAPQUtZiR89Ukg5P8c1mW49tOFkXxSJJfpGX2zTGtp0cnOSDJxWVZnrVM37uTPJrk4iRH\n1qAmAAAAAACAtV4t9sh5MclPk9y03Pk7kixN8sFlzh3fevzesh1bl197IMmhRVFsXIOaAAAAAAAA\n1nrdnpFTluV5XTQNSNIrLXvgtBmZZGpZltM66f9QklFJhqdlzxwAAAAAAIB1Wi2WVuvKp1uP/5Mk\nRVEMSLJpkrKL/s2tx21TgyCnqampu0MAVI5nG38LixYtqncJrEOWLF3a4XNff/QUvmezPF8TQE/n\nOQf0JI2NjfUuoYNaLK22gqIoDk7yH0kmJbms9fSA1uP8Li6bt1w/AAAAAACAdVrNZ+QURXF8kiuT\nPJ/ko2VZLqz1a6yMqiVmAN3R9ptNnm38LTQ81VDvEliHrNerV4fPGxp8/dEz+J5NGz/HAT2d5xzA\nmlfTIKcoinOTXJDk0SSHlGX512Wa2/bK6dfF5f2X6wcAQA+37xn/mHmvt0zM7rdxVz8mAgAAwLqr\nZkFOURTfSXJGkpuTHFuWZYcl1MqynFsUxYwkg7sYYmjr0YKaAADriEGNW7bvi2M2DgAAAKyoJnvk\ntM7EOSPJj5IcuXyIs4wHkgwuimJIJ217JXkjyeRa1AQAAAAAALC263aQUxTFvknOT3JTkn8ry/Kt\nt+l+Vevxc8uNsU+SEUmuK8tybndrAgAAAAAA6AlqsbTaJa3Hu5IcWRRFZ31uK8tyflmWtxRFMT7J\nmUVRbJTknrQsqTY2ybQkZ9egHgAAAAAAgB6hFkHO8NbjpW/T531Jnm/9/NgkX0ryiSSfTPJakluT\nnFOW5Us1qAcAgLXE7JdnZcG8BUmSDfptkI0GDaxzRQAAAFAt3Q5yyrLstYr9Fya5oPUDAIB12G0X\n/jJTH29Okmy905CM/sHxda4IAAAAqqXbe+QAAAAAAACwZghyAAAAAAAAKkqQAwAAAAAA8P+xd+9x\nOtf5/8cfwyA5RRKpHFKfklJkCJWoLZ0cYjc6KJEO22k72WhLm3a/qo1YW5YSKkq2LG0nYktKjdL6\nqc8iRVQogzEOg/n9cV3X7IyZwYxxXZc87rfb3K6Zz+f9eX9en2tcH9fMc97vd5IyyJEkSZIkSZIk\nSUpSBjmSJEmSJEmSJElJyiBHkiRJkiRJkiQpSRnkSJIkSZIkSZIkJSmDHEmSJEmSJEmSpCRlkCNJ\nkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGOJEmSJEmSJElSkkpNdAGSJEk6eFU/5nC2btqa+7kkSZIk\nScrPIEeSJEkJc8F9F5OdnQ1AuXLlElyNJEmSJEnJx6nVJEmSJEmSJEmSkpRBjiRJkiRJkiRJUpJy\najVJkiRJKmWDFz6e6BIKNaDJ3YkuQZIkSVIxOSJHkiRJkiRJkiQpSTkiR5IkSQkz78W5/PTtWgAO\nr1eTtJ5nJrgiSZIkSZKSi0GOJEmSEubrDxez4vPlABxz2rEGOZIkSZIk7cKp1SRJkiRJkiRJkpKU\nQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJkiRJScogR5IkSZIkSZIkKUkZ5EiSJEmS\nJEmSJCUpgxxJkiRJkiRJkqQkZZAjSZIkSZIkSZKUpAxyJEmSJEmSJEmSklRqoguQJOlgNXjh44ku\nQZIkSZIkSUnOETmSJEmSJEmSJElJyhE5kiRJSphWvdpy8sUbAahSs0qCq5EkSZIkKfkY5EiSJClh\n6rdoSHZ2NgDlypVLcDWSJEmSJCUfp1aTJEmSJEmSJElKUqU2IicIgvLAI8DdwL/DMGxXSJuKwO+B\nK4B6wAZgJvBAGIb/La1aJEmSJEmSJEmSfglKZUROEAQBMBe4CUgpok0K8DowEHgf6A0MAdoBc4Mg\nOK40apEkSZIkSZIkSfql2OcROUEQVAfmA4uBM4Cvimh6BXA+8FgYhvfmOX4G8CnwGNB1X+uRJEnS\ngSN7Szbbtm6NfFEByh3iOjmSJEmSJOVVGiNyygPjgFZhGIa7aXdN9PGpvBvDMJwPfAhcEgTBYaVQ\njyRJkg4Qr979EiMvHsrIi4fy6t0vJbocSZIkSZKSzj6PyAnD8EciU6rtSRqwIgzD7wrZ9zHQBmhG\nZM2cfbZ48eLS6EaSkor3tl+W7OzsRJcgJdzOnJx8n/u6kPYv30skjs+9pF8673OSfkmOP/74RJeQ\nT6mskbMnQRBUAWoAhYU4AMujjw3jUY8kSZIkSZIkSdKBYJ9H5OylKtHHrCL2b9ql3T5LtsRMkvZF\n7C+bvLf9spRb6FogUpmUlHyflyvn60Lan3wvEX++j5P0S+d9TpL2v7iMyJEkSZIkSZIkSVLxxSvI\n2RB9rFTE/sq7tJMkSZIkSZIkSTroxSXICcMwE1gDHF1Ek3rRR1dFkyRJkiRJkiRJiorn1GofAkcH\nQXBsIfvOAjYD8+NYjyRJkiRJkiRJUlKLZ5AzJvp4Z96NQRCcAzQHJkZH7kiSJEmSJEmSJAlI3dcO\ngiBoDDTeZfMRQRB0y/P1G2EY/jMIginAHUEQVAVmEplS7W7gO+D+fa1FkiRJklS0wQsfT3QJBQxo\ncneiS5AkSZKS2j4HOcCvgQd32dYYeCXP1w2Ab4AeQH/gKuBqYB0wDRgQhuEPpVCLJEmSJEmSJEnS\nL8Y+BzlhGD4EPLSXbbcBD0c/JEmSJEmSJEmStBulMSJHkiRJKpFDqh1KpcMr534uSZIkSZLyM8iR\nJElSwnQe3I3s7GwAypUrl+BqJEmSJElKPmUSXYAkSZIkSZIkSZIKZ5AjSZIkSZIkSZKUpAxyJEmS\nJEmSJEmSkpRBjiRJkiRJkiRJUpJKTXQBkiRJOngtfGMBP6/8GYAadWvQ5KKmCa5IkiRJkqTkYpAj\nSZKkhFn4xgJWfL4cgGNOO9YgRzoIDV74eKJLKNSAJncnugRJkiQJcGo1SZIkSZIkSZKkpGWQI0mS\nJEmSJEmSlKQMciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUqmJLkCSpHgYvPDx\nRJcgSZIkSZIkFZsjciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJ\nkiRJScogR5IkSZIkSZIkKUmlJroASZIkHbxO69Kc+mceB8BhtQ9LcDWSJEmSJCUfgxxJkiQlzIkd\nTiY7OxuAcuXKJbgaSZIkSZKSj1OrSZIkSZIkSZIkJSmDHEmSJEmSJEmSpCTl1GqSJEmSJO1i8MLH\nS6Wf3OkjF+779JEDmty9z31IkiTpwGOQI0kqVaX1Sw9JkiRJkiRJBjmSJElKoMl3vcR3X6wA4OhT\nj/MyK+0AACAASURBVKHbEz0SXJEkSZIkScnFIEeSJEkJs31rNtmbt+V+LkmSJEmS8iuT6AIkSZIk\nSZIkSZJUOIMcSZIkSZIkSZKkJGWQI0mSJEmSJEmSlKQMciRJkiRJkiRJkpJUaqILkCRJkiRJB67B\nCx9PdAmFGtDk7kSXIEmSVCriHuQEQVADeBDoDNQB1gJvAA+EYfh9vOuRJEmSJEmSJElKVnENcoIg\nqAjMAk4ERgCfAscDdwPtgyBoHobhunjWJEmSJEnSgSBZR75IkiRp/4r3iJw7gFOAW8IwHBnbGATB\nAuAfwAPA7+JckyRJkiRJkiRJUlJKycnJidvJgiD4EjgGODwMw615tqcAy4EKwJFhGO51UevXr4/f\nBUiSJEmSJEmSpINStWrVUhJx3jLxOlEQBFWJTKk2P2+IAxANbuYBRwAN4lWTJEmSJEmSJElSMotb\nkAPUiz5+V8T+5dHHhnGoRZIkSZIkSZIkKenFM8ipEn3MKmL/pl3aSZIkSZIkSZIkHdTiGeRIkiRJ\nkiRJkiSpGOIZ5GyIPlYqYn/lXdpJkiRJkiRJkiQd1FLjeK5lQA5wdBH7Y2voLC5Op9WqVUvZl6Ik\nSZIkSZIkSZKSVUpOTk7cThYEwefA8cDhYRhuybO9LLAK2BqG4bFxK0iSJEmSJEmSJCmJxXuNnDHA\noUC/XbZfBdQCRse5HkmSJEmSJEmSpKQV7xE55YD3gebAcOBT4GTgd0SmVGsVhmFW3AqSJEmSJEmS\nJElKYnENcgCCIKgKPARcDtQBVgP/AB4Mw/DnuBYjSZIkSZIkSZKUxOIe5EiSJEmSJEmSJGnvxHuN\nHEmSJEmSJEmSJO0lgxxJkiRJkiRJkqQkZZAjSZIkSZIkSZKUpAxyJEmSJEmSJEmSkpRBjiRJkiRJ\nkiRJUpIyyJEkSZIkSZIkSUpSBjmSJEmSJEmSJElJKjXRBcQEQVADeBDoDNQB1gJvAA+EYfj9Xhzf\nGngAaAVUBP4L/B0YEYZhzi5tGwMPA+cAVYFvgQnAn8Mw3FZa1yRJMXG+x53C/+5xlYHvgX8BfwjD\ncHVpXZMkxcTzHrfLcSnAe0Tud9eFYTh2365EkgoX5/dyZYDfAjcAjYD1wAxgYBiGX5fWNUlSTJzv\ncRcDtwMtgEpEfl59G3gkDMNvS+uaJClmX+9x0T4aAS8SuXcV+bPn/swdkmJEThAEFYFZwE3Aq8C1\nwDPAb4A5QRBU38Px7Yn8EH888BDQl8h/Gk8BT+7S9mRgLtAWeBzoDcyOHvdyqVyQJOUR53vcOcB8\nIv+xDIm2nUHkFwEfBkFQuXSuSpIi4nmPK0QfIm+QJWm/ScB97jlgGDAv2nYU0Cl6rpr7ej2SlFec\nf169AZgGHAs8QuS93KvAVcCnQRDUK52rkqSIfb3HRfu4DvgMOGkP7fZr7pAsI3LuAE4BbgnDcGRs\nYxAEC4B/EEn1f7eb40cCW4Cz8qRo44MgeA24LQiC58IwXBDd/hcif6HeNgzD/0S3vRAEwSbg9iAI\nLgvDcGqpXZkkxfceNyratk2ev2Z6PgiC9dE6ron2J0mlJZ73uFxBENQmElh/BpxeKlciSYWL230u\nCIJLiLxfezAMw4fznCsE/gy0xz9AlFS64nKPi442HAxsJPI7ubXRtuOi97ino7XcWYrXJkn7dI+L\nBtDPAMOBhdHPi7Jfc4ekGJFD5I3qJmDMLttfB74DropOnVFAEAQtgQB4uZChUCOAFCLJPkEQ1AHO\nB2bmeTLztgW4uqQXIUlFiNc9rgrwAfBYIUPS34g+nlrSi5CkIsTlHleI4cBO4NES1i1Jeyue97lb\ngA3AY3kbhmE4IQzDo8MwNMSRVNridY+rCtQEvswT4sT8O/pYvyQXIEm7UeJ7XB5dwjC8DShyarR4\n5A4JD3KCIKgKnAjMD8Nwa9590Xk05wFHAA2K6CIt+ji3kH0fRx9bRh/PIPKfSIG2YRguAX7O01aS\n9lk873FhGG4Mw/D6vH+9mUe16OOGYpQvSbsV5/dxec97GdANuJfI/MaStF/E8z4XBEFZ4Fzg/TAM\nN0e3lY9ul6RSF+efVzOAH4B6QRCU36Vt/ejjwuLUL0m7Uwr3OMIwHBWG4Wt7cbr9njskPMgBYvNf\nflfE/uXRx4ZF7K9f1PFhGG4EMvIcW2TbPOc6JgiCZJlyTtKBL573uN25EcgBXtqLtpK0t+J+j4uO\nPvwrkb/cfLYYtUpSScTzPtcAqAAsDoKgZxAEXwJbga1BEMwIgqB5MWuXpD2J93u5e4n80nRCEAQn\nBUFwRBAE7YisJbGcyIhrSSot+3qPK476e3GufcodkiHIqRJ9zCpi/6Zd2pXk+CrFaLu7c0lSccXz\nHleoIAgeAToAI8Iw/Gx3bSWpmBJxj/sTUAvoF/0rKknan+J5n6sRfWwP/B/wN+BSIlNItgH+HQTB\nKXtRsyTtrbi+lwvDcDzQicj0Q4uA1cB7wHoia+ys3ruyJWmvxDML2O/ncuSJJP1CRReTHA7cTGTu\nz90tUClJSS8IgjOBm4BHwjD8KtH1SFIpi0011AhoGp2GA2BaEARfAS8ADxKZWlKSDjhBEHQGJgD/\nAf5O5C/XTwbuB94OguBXYRgu300XknTQSoYgJ7ZeQ6Ui9lfepV1Jjt9QjLYAG4vYL0nFFc97XK4g\nCCoRmUbtUuA54IYwDLfvsVpJKp643eOic6mPBpYQ+et0SYqHeL6Xy4w+fpAnxIl5icg9sF2RlUpS\n8cXzvVwNYCzwDZHRN7GfT98OguA94DMiU6z9em8Kl6S9sK/3uP1xrhLnDskwtdoyIus2HF3E/thc\ndouL2P919LHA8UEQVCOywPfiPbXNc65l/rJTUimK5z0utr0S8DaREOeBMAx7e1+TtJ/E8x53H3AS\n8AfgiCAIjg6C4Ggi86wDVI9uO7R4lyBJuxXP+9w30ceyu7aNTiW5Bqi6x4olae/F8x7XMvr11F1/\nPg3D8HNgFXDuXlcuSXu2r/e44tjvuUPCg5wwDDcBXwDNgiA4JO++IAjKAq2BFbsZWvlh9LFNIfvO\nij5+EH2cB2wvrG0QBE2Aw/K0laR9Fud7HNFF014FzgT6hGH4yD6UL0m7Fed7XAcgBZgIrMjz8XJ0\n/1+iX/tXnJJKTTzvc2EYZgBfASfvuhBuEATlgDoUvYCuJBVbnN/Lxf5K/ZBC2sa2F7VPkoqtFO5x\nxbHfc4eEBzlRY4BDgX67bL+KyGK2o2MbgiA4MQiCBrGvo6n9fKB79K8yY+1SgDuBbOD5aNu1wFSg\nXRAEp+9yrruij6ORpNIVl3tc1ADgAuCuMAzHlPJ1SFJh4nWP+z2RkYa7ftwf3T80+vW7pXVhkhQV\nz/dyzwG1iawHllc/oBzwz329GEnaRbzucR8DO4HOhfxCtT1Qg/8FQ5JUWkp8jyuOeOQOybBGDsDT\nwJXA40EQ1AM+JbLY2e+ILID2eJ62XwIhcGKebTcD7wH/DoJgKJABXAG0JzKt0NI8be8BzgbeCoLg\ncSJDNy+Mnn9MGIb/Lv3Lk3SQi8s9LgiCI4lMPbQa+C4IgsIWwt0UhuG/SvHaJCku97gwDOcWdvIg\nCGJrSiwIw3BaaV2UJOURz59XnwIuB4ZGf5HwOdCCSLCzAhhc6lcn6WAXr/dyK4IgeILI7+U+DYJg\nLLCSyNS5dwKbiPzhjiSVpn26xwVB0JH/jSg8I/aY5+fQNWEYzo5+vl9zh5ScnJx9Ob7UBEFQFXiI\nyJvWOkR+EfkP4MEwDH/O0y4HCMMwPHGX488AHiYyJKoCkSd+eBiGzxVyruOJvAFuD1QBlhJJ54aG\nYbij1C9O0kEvHve4IAjaEXkDvTvfhmFYfx8vR5Lyief7uELO3Y7Ive+6MAzHlsLlSFIBcf55tTLw\nAJGpIusCPwHTifxC9PtSvzhJB7043+OuBG4ETiXyV/KribyXeyQMw69K/eIkHfT25R4XBME3/G8t\nncLMDsOwXZ72+y13SJogR5IkSZIkSZIkSfklyxo5kiRJkiRJkiRJ2oVBjiRJkiRJkiRJUpIyyJEk\nSZIkSZIkSUpSBjmSJEmSJEmSJElJyiBHkiRJkiRJkiQpSRnkSJIkSZIkSZIkJSmDHEmSJEmSJEmS\npCRlkCNJkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGOJEmSJEmSJElSkjLIkSRJkiRJkiRJSlIGOZIk\nSZIkSZIkSUnKIEeSJEmSJEmSJClJGeRIkiRJkiRJkiQlKYMcSZIkSZIkSZKkJGWQI0mSJEmSJEmS\nlKQMciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJkiRJScogR5Ik\nSZIkSZIkKUkZ5EiSJEmSJEmSJCUpgxxJkiRJkiRJkqQkZZAjSZIkSZIkSZKUpAxyJEmSJEmSJEmS\nkpRBjiRJkiRJkiRJUpIyyJEkSZIkSZIkSUpSBjmSJEmSJEmSJElJyiBHkiRJkiRJkiQpSRnkSJIk\nSZIkSZIkJSmDHEmSJEmSJEmSpCRlkCNJkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGOJEmSJEmSJElS\nkjLIkSRJkiRJkiRJSlIGOZIkSZIkSZIkSUnKIEeSJEmSJEmSJClJGeRIkiRJkiRJkiQlKYMcSZIk\nSZIkSZKkJGWQI0mSJEmSJEmSlKQMciRJkiRJkiRJkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElK\nUgY5kiRJkiRJkiRJScogR5IkSZIkSZIkKUkZ5EiSJEmSJEmSJCWp1EQXsK/Wr1+fk+gaJEmSJEmS\nJEnSL1u1atVSEnFeR+RIkiRJkiRJkiQlKYMcSZIkSZIkSZKkJGWQI0mSJEmSJEmSlKQMciRJkiRJ\nkiRJkpKUQY4kSZIkSZIkSVKSMsiRfgEWL17M4sWLE12GdMDxtSOVnK8fqeR8/Ugl5+tHKjlfP1LJ\n+fpRohnkSJIkSZIkSZIkJSmDHEmSJEmSJEmSpCRlkCNJkiRJkiRJkpSkDHIkSZIkSZIkSZKSlEGO\nJEmSJEmSJElSkjLIkSRJkiRJkiRJSlIGOZIkSZIkSZIkSUnKIEeSJEmSJEmSJClJGeRIkiRJkiRJ\nkiQlqdTS6igIgo5Af6AZsB34DHgkDMOZu7SrCPweuAKoB2wAZgIPhGH439KqR5IkSZIkSZIk6UBX\nKiNygiDoDbwR/fJ24CGgIfBmEATt8rRLAV4HBgLvA72BIUA7YG4QBMeVRj2SJEmSJEmSJEm/BPs8\nIicIgtrAU8C7wAVhGO6Mbv8nMBe4GJgVbX4FcD7wWBiG9+bpYwbwKfAY0HVfa5IkSZIkSZIkSfol\nKI2p1XoBlYCHYiEOQBiGXwNH7tL2mujjU3k3hmE4PwiCD4FLgiA4LAzDjFKoS5IkSZIkSZIk6YBW\nGlOrnQ9sJDL6hiAIygZBUKGItmnAijAMvytk38dAOSJr7EiSJEmSJEmSJB30UnJycvapgyAIvgPW\nANcDTwJtgLLA/wMeCcNwYrRdFWADMDcMw9aF9HM7MBToG4bh6L09//r16wu9gMWLFxfzSiRJkiRJ\nkiRJ0sHu+OOPL3R7tWrVUuJcClA6U6vVALKB6cBzRNa5qQ/0B14KgqBSGIZjgCrR9llF9LMp+lil\niP2SJElKAt9++y1ZWZG3dIceeij16tVLcEXSgaNfv37Mnz8fgGbNmvHMM88kuCJJkrQnq/+1OtEl\n7FatjrUSXULSu/322wEYNmxYgispaOfOnUyYMIHZs2ezY8cO7r//fk444YRi9bFmzRruuOMOzjrr\nLG688cZi1/Dqq68yZcoUBgwYQOPGjYt9vPa/0ghyyhMJbq4Mw/DF2MYgCKYDXwKPBkEwthTOUyxF\nJWbSL1FsBJr/7qXi8bUjlUxKSgqLFi0CoH79+jRq1CjBFUkHjooVK+b73P+DpOLx/ZtUcr5+Si5j\nRnIv5/1L+Z6+//777Nixg3bt2pV63wMHDgRK/lztz9fPnDlzeOutt2jatCldunQhLS2NmjVrFquP\nSpUqAVC1atUS1VijRg0Ajj766Nzjly5dyrx58+jRo0ex+1PpK401cjKBLcDEvBvDMFwGvAfUAk4i\nMq0aQKUi+qkcfdxQxH5JkiRJkiRJ0i9QbFTK/tC6dWtaty6w2kdSWLJkCQC9evXioosuKnaIs7/M\nmDGDiRMn7rmh4qI0gpxvdtNPbNxh1TAMM4mspXN0EW1jc3K4uI0kSZIkSZIkHSR27txJGIaJLiMh\ntm7dCuQfuZ0MYrMwKDmUxtRqc4GmQGNg4S77YuHMd9HHD4FOQRAcG4bh8l3angVsBuaXQk2SJEmS\nJEmSpL0waNAgpk+fzoQJE5g5cyZvvPEGP/30E7Vq1aJbt2707NmTlJT/rfG+YcMGnn32WWbPns3q\n1aspX748QRDQo0cPzjnnnHx9z5o1i0mTJrFs2TIyMzOpUaMGLVu25Prrr6d27dpMmzaNhx9+GIDp\n06czffp0+vTpww033ADAqlWrGD16NB999BEZGRlUrVqVM844gz59+lC/fv0C1/Diiy8yfPhwPvvs\nMx599FHatm1Lp06dAHj99ddz22/dupXx48fzzjvvsGrVKsqWLUuDBg3o3LlzbnuA9PR0brrpJrp1\n60adOnV44YUXOO200/jzn/+82+d07ty5jB8/nq+++oqtW7dSs2ZNzjrrLPr06cNhhx0GQFpaWm77\nm266CYC//e1vNG/evMh+J02axMsvv8wPP/xA9erV6dixI5dcckmhbTMyMhg9ejTvv/8+a9asoVKl\nSjRt2pRrr72WJk2aFHrMqlWr6Ny5c+7XaWlpNGvWjKeffhqIrJk6duxYPv74Y9atW0f16tUJgoC+\nffu6vs5+VBpBzljgRuDBIAh+HYZhDkAQBKcSCWe+yBPajAE6AXdGP4i2PQdoDjwXHbkjSZIkSZIk\nSYqj4cOHk52dzTXXXEO5cuWYMmUKw4YNIycnh6uuugqALVu20K9fP5YtW0anTp04+eSTyczMZNq0\nadxzzz3cf//9uUHAO++8w4ABA2jSpAl9+vShcuXKfPvtt0ycOJGPPvqISZMm0bx5c+69916GDBlC\n8+bN6datGw0aNABg5cqVXHfddZQtW5auXbtSt25dvvvuO1555RXmzJnD6NGjOe644/Jdw8iRI6lZ\nsyYDBgygYcOGhV7nzp07ueuuu5g3bx6/+tWv6NGjB9u2bWPGjBkMHjyYVatW5QYrMUuXLmX+/Pn8\n9re/5cgjj9zt8zht2jT++Mc/Ur9+fa677jqqV6/Ol19+yauvvsrHH3/MuHHjqFixIn/605949913\nmTFjBn379qVhw4ZF1gyREOeJJ57g+OOP59ZbbyU1NZXZs2cXOnpmw4YNXH/99axbt44uXbpw3HHH\nsWbNGl599VX69evH0KFDadGiRYHjatSowZ/+9CeGDBkCwL333kv16tUBWL16NX379mXnzp1ceeWV\n1KlThzVr1jBp0iT69OnD6NGjDXP2k30OcsIw/DgIguHArcDUIAheJjIS505gO3B7nrb/DIJgCnBH\nEARVgZnRtncTGbVz/77WI0mSJEmSJEkqvrVr1zJ+/HhSUyO/Nu7QoQOdOnXi+eefp2fPnpQpU4ZJ\nkyaxdOlSbr75Zq699trcYy+77DK6d+/O8OHD6dixIxUqVOCtt94C4C9/+UvuKBSAU089lYkTJ/Lt\nt99y0kkn5a5fU7t2bTp06JDbbtiwYWRnZ/Pss89y9NH/W7GjXbt29OrVi7/97W88/vjj+a4hOzub\nBx54YLfXOWPGDObNm0eXLl34/e9/n7u9a9eu9OrVi3HjxnH55ZdTq1at3H1ffPEFU6ZMoU6dOrvt\ne8uWLQwdOpTq1aszevRoqlSpAsAll1xC7dq1GT58OC+//DK9evWiQ4cOLF26FIBmzZrtdiTOjh07\nePbZZ6lcuTIjR46kWrVqAFx++eX89re/LdB+zJgxrFy5ktGjR+cbfdOxY0euuOIKnnzySV588cUC\nxx1yyCF06NCBp556CiDf9+Prr7+mUaNGdOrUiQsuuCB3e6NGjbj99tuZMmWKQc5+Uhpr5EAkrLkJ\nOAYYRSSY+QhoG4bhrF3a9gAeJDJa57nosdOA1mEY/lBK9UiSJEmSJEmSiuHSSy/NDXEAKleuTIsW\nLVi/fj1ff/01ALNnzyYlJYUuXbrkO7Zy5cq0b9+ejRs3smDBAgDKli0LwOeff56v7ZlnnsmwYcM4\n6aSTiqxly5YtfPDBBzRt2pRq1aqxcePG3I86derQsGFD0tPTCxzXvn37PV7nrFmzgEhwk1dqaioX\nXXQRO3bsYO7cufn2NWzYcI8hDsBnn33Ghg0bOP/883NDnJhLL70UgA8++GCP/exqyZIlrFu3jlat\nWuWGOECh3wuAd999l/r161OvXr18z13FihU5/fTTWbJkCRs2bChWDa1atWLkyJG5Ic7mzZvZuHEj\ntWvXBuD7778v9nVp75TG1GpEp1N7Ovqxp7bbgIejH5IkSZIkSZKkJFDYtF41a9YEIr+kb9SoEd98\n8w01a9bMFybE1KsXWTJ9+fLlpKWlcdVVVzF37lzuu+8+Tj31VM4880zS0tI4+eST8625U5jly5ez\nfft2Pvzww3yjQnaVmZlJ5cqVc78+6qij9nid33zzTZHXe+yxx+aeP68jjjhij/3m7XvXKd8ADjvs\nMKpVq8aKFSv2qq+8Vq5cCcAxxxxTYF9sKrqYzMxM1qxZw5o1a3b73P3www9UrVq1WHW88847vPTS\nSyxdupTNmzfn27djx45i9aW9VypBjiRJkiRJkiTpwHbooYcW2FapUiUgMmUZREZhxNZM2VWFChWA\nyGgagFNOOYVx48YxYcIEZs+ezYIFC3j66ac56qijuP322zn33HOLrCUrKwuIjALp1atXke3Kly+/\nx2vY1ebNm0lNTaVcuXJ7vIaYQw45ZI/9wv/qLqp9hQoV2Lhx4171lVesnsL6jdUcs2nTJgCOP/54\nfve73xXZ596EXnm9/vrrDB48mCOPPJK+ffvSoEEDDjnkEDZs2MB9991XrL5UPAY5kiRJkhQn06dP\nZ/HixUDkB2tJkqRksmt4AZHRHUDuGjcVK1YsMBJj1+Pzhin169dn4MCB3H///Xz55ZfMmjWLyZMn\n079/f55++mlOP/30QvuK9VGmTJndrh1TEhUrVmT79u1kZ2cXCHMKu4biiB23u+eoJH3Hwppt27YV\n2BcLj2Ji4dv27dtL9bl74YUXKFu2LCNGjMgdfQXw7bfflto5VLjSWiNHkiRJkiRJknQAW7ZsWYFt\nq1atAv43xVqDBg1Yu3YtGRkZBdrG1tGpX79+gX1lypTh5JNP5pZbbmHQoEHk5OTw3nvvFVnLscce\nS2pqKosWLWL79u0F9q9bt26vrqkwsanIlixZUmBf7Dko7Br2te+1a9eyYcOGEvUdW58nNsVaXrHn\nPaZy5crUqlWL5cuX8/PPPxdoX9j3bm+sWrWKWrVq5QtxILIukPYvgxxJkiRJkiRJEm+88Ua+dU7W\nr19Peno6NWvWzF2bJbbmypQpU/Idm5GRwcyZM6lZsyannnoqW7ZsoXfv3jz00EMFzhMbMRKbFq1s\n2bJA/tEmhxxyCG3btiUjI4Np06blO37lypV06tSJP//5zyW6zqKuYdu2bUyfPp0KFSrQpk2bEvXd\nrFkzqlevzrvvvsuGDRvy7fvHP/4BQPv27Yvd7wknnEDlypX56KOPcqdOA9i5cyevv/56gfYdOnRg\nx44dTJo0Kd/2DRs2cNVVV3H77bfv9nxlypRh69at+bbVqFGDjIyMfCO3fvzxR15++WWAAu1Vepxa\nTZIkSZIkSZJEpUqV+O1vf0v79u0pV64ckydPZsuWLdx2222kpKQA0K1bN958803+/ve/s3btWho3\nbkxGRgZTp04lMzOTRx99lNTUVFJTUznxxBOZPHkymZmZtGnThkMPPZTvv/+eyZMnU7FiRS699FIA\nDj/8cCpUqMDcuXMZO3YsxxxzDB06dOC2227j888/Z8iQIXz77bcEQcCqVat45ZVXKFOmDF26dCnR\ndbZr1442bdrw+uuvs23bNpo3b05WVhZvv/0233zzDXfddVfuVHLFVb58ee6++24GDhzIDTfcQKdO\nnahcuTILFy7k9ddfp0mTJnTu3LnY/aampnLllVfyzDPPcMstt9CxY0fKli3L7NmzC103p3fv3vz7\n3/9m7Nix/PzzzzRr1oyff/6ZKVOm8NNPPzFgwIDdnu+oo47ik08+4cknn6R27dr06NGD8847jwkT\nJnDfffdxwQUXsGbNGiZNmsSdd97J0KFD+e9//8urr75K27ZtOfLII4t9jSqaQY4kSZIkSZIkFaHF\njS0SXULc9OvXj08++YQJEyawdu1aateuzd133023bt1y25QvX56RI0cyevRo3nvvPV577TUqVqxI\nkyZN6N+/P82aNctte88991CvXj3eeOMNRowYQVZWFjVq1OD000+nd+/euVN0paamcscdd/D0008z\nZswYunTpQocOHTj66KN57rnnGD16NG+99RYTJ06kSpUqNGvWjOuvv77Eaw6mpKQwZMgQxo0bx5tv\nvsm7775L+fLlOeGEExgyZAjt2rXbp+fx/PPPp2rVqowdO5ZRo0axbds2ateuTa9evbj22msLrMuz\nt3r37k1qair/+Mc/GDZsGDVq1OBXv/oVvXr14vzzz8/Xtlq1ajz77LOMHj2aDz74gOnTp+d+nwYM\nGJDv+1SYfv365YZujRo1okePHtxwww1s27aNWbNm8X//938cd9xx9O/fn7PPPpvNmzfz1FNPMXLk\nSBo0aGCQU8pScnJyEl3DPlm/fv2BfQFSKXDBXKlkfO1IJbNkyRIWLVoEQOPGjWnUqFGCK5IOHP/6\n17/44osvADj11FPp2LFjgiuSDiy+f5NKztePdmfQoEFMnz6dMWPGcMoppyS6nKTj60cx1apVYqkB\nbwAAIABJREFUS0nEeR2RI0mSJElxMmLECObMmQNAmzZtDHIkSZIk7VGZRBcgSZIkSZIkSZKkwhnk\nSJIkSZIkSZIkJSmDHEmSJEmSJEk6iD344IPMmzfP9XGkJGWQI0mSJEmSJEmSlKQMciRJkiRJkiRJ\nkpKUQY4kSZIkSZIkSVKSMsiRJEmSJEmSJElKUgY5kiRJkiRJkiRJScogR5IkSZIkSZIkKUkZ5EiS\nJEmSJEmSJCUpgxxJkiRJkiRJkqQklZroAiRJkiTpYNGlSxfq1asHQLNmzRJcjSRJkqQDgSNyJEmS\nJClO+vTpw5133smdd95Jnz59El2OJEnSAa9Tp0506tSpRMemp6eTlpbGqFGjSrmq3XvhhRdo2bIl\nc+bM2a/nGTRoEGlpaaxatWq/nieRBg0aRIcOHVi+fHmiS9mvDHIkSZIkSZIk6SA3ZsyYX/Qv/PdW\nVlYWo0aNYuPGjful/88//5zhw4fTs2dP2rRps1/OcTDp378/1atXp3///mRnZye6nP3GIEeSJEmS\nJEmSDmIrV67kmWee4fvvv090KQm3aNEiRo8evV+CnJ07d/KnP/2JWrVqcfPNN5d6/wejChUqcN99\n97FkyRLGjx+f6HL2G4McSZIkSZIkSTqILVq0KNElJI39+VzMmDGDZcuWcc0111CuXLn9dp6DTYsW\nLWjevDnjx48nMzMz0eXsFwY5kiRJkiRJknSQuvHGGxkwYAAAN910U+6aKqtWrSItLY1HHnmEN954\ng0svvZRrr70WgFGjRpGWlkZ6enqB/rp3705aWlqB7VOnTuXaa6/lrLPO4pxzzuHqq69m0qRJ7Ny5\nc6/qnDdvHtdddx1nnXUW5513HgMGDGDt2rWFtt2xYwcTJkygZ8+etG3blnPPPZc+ffrw5ptv7vYc\nnTp1YsSIEQB07tw533Vs2rSJv/3tb1x++eW0adOG8847j969e/P222/vVf0QWRunSpUqXHbZZfm2\np6WlceONNxZo//bbbxdYw+fGG2/kzDPPJDs7m6eeeopLLrmE1q1b06lTJ1588cU91pCTk8P9999P\nWloa06ZNA/63ls6PP/7I888/T5cuXWjTpg0XX3wxI0eOZMeOHfn62LBhA0OHDs1td+6553LjjTcy\ne/bs3DYPPPAALVu2JCMjI9+xQ4YMIS0tjaeeeirf9rVr1+b+e4PI96Jr165kZmYyePBgLrzwQlq3\nbs2vf/3rQr+PnTp1YtOmTXv8Hh+oUhNdgCRJkiQdLG644QY++ugjAFq1ahX3hXUlSVLxXXzxxcVq\nX7FiRSZPnlxg+5QpUxgzZkyx+urZsydXXnllge1XX301P//8MwDTp08vVp+7uuGGG3jllVeYMWMG\nffv2pWHDhtSoUSO3/9WrVzNq1Ch69+5NzZo1S3SOoUOH8uKLL3L22WfTpUsXtm/fzgcffMATTzzB\n4sWLGThw4G6PX7RoEXfeeSeVKlXi2muv5YgjjmDhwoXceuutZGdn5xvdkpOTw4ABA5g1axYXXngh\nPXv2JCsri7fffps//OEPrFy5kuuvv77Q89x3332MHz+e9PR07r33XqpXr56777HHHmPp0qVcfvnl\nnHLKKWzatInp06czcOBA1q1bx29+85vdXkNGRgZffvklZ599NuXLly/Gs1e4QYMGsW7dOnr37k12\ndjYvvfQSQ4cOpW7dupxzzjlFHjd8+HDeffddbrnlFi655JJ8+0aOHMk333xDjx49SE1NZcqUKYwd\nO5YaNWpwxRVXALBlyxb69evHsmXL6NSpEyeffDKZmZlMmzaNe+65h/vvv5/OnTvTsmVL3nrrLT7/\n/HPatWuXe4709HQOPfRQPvvss3znjoWCrVq1yt22c+dO7rzzTg4//HBuvvlm1q9fz4QJE3jooYeo\nX78+J554Ym7bli1bkpKSwkcffUS3bt1K/LwmK4McSZIkSYqTlStXsnz5cgCOOeaYBFcjSZL2xpw5\nc4rVvnLlyoVuX7lyZbH7atu2baHbP/nkE3744Ydi9VWUZs2a8emnn+Z+3rx583z7P/74Y0aNGkXT\npk1L1P9///tfXnzxRbp168a9996bu/3yyy+nf//+TJ06le7duxMEQZF9jB07luzsbAYPHkyLFi0A\nuOyyyxgzZgzPPPMMderUyW37/vvvM3PmTG699VauvvrqfOfr27cvY8aMoUuXLtSoUaPAeVq3bs07\n77yT+/lRRx0FwLp166hYsSI9e/bktttuy21/wQUXcOGFFzJp0qQ9BjmffvopOTk5ufXvix07drBp\n0yZGjBhBSkoKACeccAL9+vVj5syZRQY5U6ZMYcKECfTo0YNevXoV2L906VKee+653GDszDPPpHPn\nzsycOTM3yJk0aRJLly7l5ptvzh2hBZHvR/fu3Rk+fDgdO3bMHc2UN8hZu3Yty5Yto3Pnzvzzn/8k\nKyuLQw89FID58+dTpkyZfKOgVq1aRevWrfP9uzn88MN56KGHmD17dr4gp3r16jRq1Ij09HR27NhB\n2bJli/u0JjWnVpMkSZIkSZIkFapmzZolDnEA3n33XQDOO+88Nm7cmO+jffv2AIVO0ZbXJ598Qo0a\nNQqEIF27di3QNhbEdOjQId+5srKyaNeuHdu3b2fBggXFuobq1atz33335YY4W7duZePGjeTk5HDE\nEUfw/fff77GP7777Dii9P+bp0aNHbogD0LhxYwB++umnQtt/+OGHPPbYY1x44YXccccdhbbp3r17\nvtFNderUoXr16vn6nD17NikpKXTp0iXfsZUrV6Z9+/Zs3LiRBQsWUKtWLRo0aJBv5E0srPn1r3/N\njh07+OKLL3L3paen07hxY6pWrZqv3549e+b7OnadhU2rd8wxx7Bp0ybWrVtX6PUdyByRI0mSJEmS\nJElFaNOmTbHaV6xYsdDtdevWLXZfxx57bKHbW7RokTv12f6Wd7RLSSxbtgyg0DVgYnY3uigjI4NN\nmzbRqFGjAvuqV69OtWrVCj1f586di+zzxx9/3G3NhVm2bBlPP/00CxYsYMOGDcU+PrZWzGGHHVbs\nYwtz9NFH5/u6QoUKAGzfvr1A2zAMGTRoECeddBJ/+MMf8gVAu+sz1m/ePr/55htq1qxZ4HkHqFev\nHgDLly8nLS2NtLQ0Jk+enDvyJj09neOOO45GjRpRp04dPvvsM1q1asWaNWtYvnx5gSnvypYtW+Df\nX2xausKuMzbKav369SWeBjBZGeRIkiRJkiRJUhH2dQ2amK5duxY6gqQkxo8fXyr97I3Y1FcllZWV\nBcAjjzzC4YcfXmib3f3SfevWrQAccsghhe6PBRh5z5eSksKIESMoU6bwCaliU6btrRUrVjBo0CDK\nlClD9+7dadq0ae4Ueg899NBeBUObNm0Cip56r7iKs87Oww8/TFZWFsuWLePHH3+kbt26Je5z8+bN\n+dYOyiv2vdiyZQsAaWlpTJo0iS+++IJWrVrx6aef0rp1awBOO+005s+fDxS+Pg5EgpziTJEWe24z\nMzP3+pgDhUGOJEmSJEmSJKlUxIKXmFgQVLduXU4++eRi9xcLB3btN2bz5s35wpFDDz2UnJwcjjvu\nuELXwSmJd955h+zsbAYOHMhll12Wb19hI0MKU6lSJaB4IUNR11xcJ510Ej169ODee+/lgQceYNSo\nUaSmliwaqFixIps3by50XyzAiX3PmzdvTmpqKp999hkNGzZkxYoVNGvWDIgEOTNmzGDr1q3Mnz+f\nypUrl+jfR16x57a0wrJk4ho5kiRJkiRJkqS9FgsBtm3blm/7li1bWL16db5tDRs2BCh0XZqsrKw9\nhhXVqlWjYsWKrFq1qsC+1atXs3Hjxr0+38aNG/c6eMlrzZo1AAXW6Fm+fHmRa9LsKjal2vr16wvs\nK1u2bIHnMtZ/aRg4cCBnnXUW1113HQsXLmTUqFEl7qtBgwasXbs2d6q4vL7++msA6tevD0QCnSZN\nmrBgwQLS09NJSUnh9NNPByJBzrZt21i4cCHz58/njDPOKHG4FBNbG6ewad8OdAY5kiRJkiRJknQQ\ni01fVViYUJjYVGhffvllvu2vvPIKO3fuzLetQ4cOALz66qu5IzZihg8fzgUXXMB3331X5Lliv/xf\nvXo1X3zxRb59r732WoH25513HgATJ07MV0tOTg5/+MMfuOSSS3Y7KiY2HVve5yIWDHz//fe527Zu\n3coTTzxBlSpVAApc265i68+sWLGiwL6aNWuybNmyfH1kZmYybdq03fZZXL1796ZJkyaMGzcudzqz\n4op9P6dMmZJve0ZGBjNnzqRmzZqceuqpudtbtmzJokWLmDdvHg0aNMgNtOrXr89hhx3GzJkzWb58\nOS1btizhVf3PihUrqFSpUpFTvx3InFpNkiRJkiRJkg5isTVjnn32Wb7++mvatGmz2/VSWrVqRYUK\nFXLX6jnyyCP54osvSE9Pp0mTJixcuDC37QknnMAVV1zBxIkT6du3L126dCE1NZU5c+bw3nvv0bFj\nx9yQoyjXXHMNH330Ef3796d79+4cfvjh/Oc//2HhwoUcddRR5OTk5LY9++yzadeuHbNmzeKWW27h\noosuYvv27bz99tukp6fTu3fv3U69FXsuhg8fzumnn07Hjh1p1aoV77//PoMHD+bqq69m+/btTJ06\nlVNOOYWqVavy1ltv8cwzz3DBBRdw4oknFtrvGWecQUpKCp988gndu3fPt++cc87h5Zdf5p577uFX\nv/oVmZmZTJkyhRYtWvDmm2/u9rkpjtTUVP74xz9y1VVX8eCDD/LCCy8Ue/RKt27dePPNN/n73//O\n2rVrady4MRkZGUydOpXMzEweffTRfCNr0tLSeOaZZ3jvvfe46KKLcrenpKTQtGnT3DWodl0fp7gy\nMjJYvHgxbdu2Lda6OgcKR+RIkiRJkiRJ0kGsffv2tG3blq+++ornn3++0Gmz8qpVqxbDhg2jYcOG\njB8/nieffJL169fz17/+lYoVKxZo/7vf/Y4BAwZQtmxZnnzySYYMGcLy5cu59dZbeeCBB/ZYX7Nm\nzRgyZAg1a9ZkzJgxPPXUU2RmZjJs2LBCg4hHH32UW2+9lYyMDIYMGcJf/vIXsrKyGDBgADfeeONu\nz9W1a1eaNm3KRx99xIsvvsiWLVs47bTTuO6660hJSeGJJ55g4sSJnH/++dx1111ceeWV1K1bl8mT\nJzNv3rwi+z3ssMM46aSTSE9PLzDy6ZZbbuGKK65g+fLlDBkyhNdee40rr7ySrl277vG5Ka66dety\n1113sXr1agYPHlzs48uXL8/IkSP5zW9+w5w5c3j00Ud57rnnqFOnDn/9618599xz87Vv3LgxVapU\nISsrK3datZjTTjuNrKwsjjnmGOrWrbtP1/Xxxx+Tk5Ozz4FQskrJm1YeiNavX39gX4BUChYvXgzA\n8ccfn+BKpAOLrx2pZJYsWcKiRYuAyJvyRo0aJbgi6cBx8cUXM2fOHADatGmT+xeIkvaO79+kkvP1\nI5Vcab1+3n77bQYOHMi9995Lt27dSqM0Rd1000189dVXTJ06NXe6u/2hWrVqKfut891wRI4kSZIk\nSZIkSfvZeeedR4MGDRg3bhzZ2dmJLucX45NPPiE9PZ2rr756v4Y4iWSQI0mSJEmSJEnSflamTBl+\n//vfs3r1akaOHJnocn4Rtm7dypAhQ2jUqBFXX311osvZb1L33ESSJEmSVBrGjRtHGIYA/H/27j5K\nsqq+F/63ydCCMIAIqCziADJ3K+okAoMvqBATg/cmmoSI4gVJAj4R9BrBIL6FgFyjJEg0Gs34wkWf\naGLiCkRBEzWg0QBCm1EHL2QzKgNOiIoPbzqAjTrPH3UGe8ZuZrq75pxT3Z/PWr129Tm7Tv3OmtpT\n1fWtvU8ppeNqAABo2y/+4i/mFa94Rd7xjnfksMMOyxFHHNF1SSPtvPPOy+23356LLrooO+64Y9fl\nbDeCHAAAgJY8/OEPz9577/3AbQAAFp/jjz8+xx9/fNdlLAhnn3121yW0wtJqAAAAAAAAPSXIAQAA\nAAAA6ClBDgAAAAAAQE+5Rg4AAEBLrrnmmnzta19Lktx+++158pOf3HFFAABA3wlyAAAAWnLuuefm\nyiuvTJIcccQR+cQnPtFxRQAAQN9ZWg0AAAAAAKCnBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABA\nTy2Z7wFKKR9I8jsP0uX0Wuvbm747J3ldkuOSLEtyd5IrkpxVa71xvrUAAAAAAAAsJPMOcqZ4WZLb\nptn+lSQppYwl+ViSX0lyUZI3Jtk3yRlJri6lHF5r/cYQ6wEAAAAAABhpwwxy/qnWuu5B9h+X5NlJ\nzq+1nrlpYynl8iRfSnJ+kmOGWA8AAAAAAMBIa/MaOSc27Tumbqy1rk5yVZJfL6Xs0WI9AAAAAAAA\nvTbMGTlJklLKTkl+VGv90Ra7Dk/yrVrr+mnudk2SI5IcksE1c+Zt7dq1wzgMjBTPe5gbYwdm5+ab\nb37g9rp167Jx48YOq4HRcu+9925222sQzI2xA3Nn/MDcGT+Lx/Lly7suYTPDnJHz8lLKTUnuTfLD\nUsoXSyn/I0lKKUuT7JlkuhAnSW5p2gOHWA8AAAAAAMBIG+aMnKOTvDnJfyZZkeTVSS4rpfzPJJ9v\n+twzw303NO3SYRXTt8QMtqdN3wbwvIfZMXZgbsbGxnL99dcnSfbff/8cdNBBHVcEo2PnnXfe7LbX\nIJgd799g7owfmDvjh64NI8i5IMnfJvlcrfWHzbZPllI+nuQrzf6VQ3gcAACAkXbkkUdm1113TZIc\neuihHVcDAACMgnkHObXW65JcN83260spn0vy7CR7N5t3meEwuzbt3fOtBwAAoK/OPPNM3+gEAABm\nZZjXyJnOd5r2oUluS7LfDP2WNa2rRQEAAAAAADTmFeSUUnYrpRxfSnnOTF2a9ltJrkqyXynl0dP0\ne0aSe5Osnk89AAAAAAAAC8l8Z+RMJnlXkg+UUvaauqOU8isZXBvn2lrr+iQXNrtO36LfkUkOTfKR\nWusP5lkPAAAAAADAgjGva+TUWu8rpbwyyQeSXFtKWZXk20melOTUJHcleWnT99JSysVJTiul7Jbk\nigyWVDsjyfokr59PLQAAAAAAAAvNvIKcJKm1frCUckuS12UQxuySQZjz4SR/Umv95pTuL0ry2iQn\nJHlxkjuSXJbkDbXWb8+3FgAAgD577Wtfm2uvvTZJcvjhh+e8887ruCIAAKDv5h3kJEmt9bNJPrsN\n/SaTnNv8AAAALCrXXXddVq8eXBp055137rgaAABgFMz3GjkAAAAAAABsJ4IcAAAAAACAnhLkAAAA\nAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOgpQQ4AAAAAAEBPCXIAAAAAAAB6SpADAAAA\nAADQU4IcAAAAAACAnhLkAAAAAAAA9NSSrgsAAABYLN7+9rfnhhtuSJI87nGP67gaAABgFAhyAAAA\nWrJ8+fJpbwMAAMzE0moAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABAT7lGDgAAQEvWrl2bG2644YHf\nXScHAADYGkEOAABAS0477bRceeWVSZIjjjgin/jEJzquCAAA6DtLqwEAAAAAAPSUIAcAAAAAAKCn\nBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABATy3pugAAAIC2Taya6ORxv3/r9ze7PZc6Vp6ycpgl\nAQAAPWdGDgAAAAAAQE8JcgAAAAAAAHpKkAMAAAAAANBTghwAAAAAAICeEuQAAAAAAAD01JKuCwAA\nAFgsHrPvY7Jx48YHbgMAAGyNIAcAAKAlL3vuyzI5OZkkGR8f77gaAABgFFhaDQAAAAAAoKcEOQAA\nAAAAAD0lyAEAAAAAAOgpQQ4AAAAAAEBPLem6AAAAgMXiQ5d/KOu+vS5Jsv8j988Jv3xCtwUBAAC9\nJ8gBAABoyZe//uWsuWlNkuSOH9whyAEAALZKkAMAADBCJlZNdF3CvKw8ZWXXJQAAwEhxjRwAAAAA\nAICeEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA6KklXRcAAACMnolVE12XAAAA\nsCiYkQMAAAAAANBTghwAAAAAAICesrQaAAAArRnlZflWnrKy6xIAAFiEzMgBAAAAAADoqe0yI6eU\ncm6Ss5J8sNb6u1O275DktCS/l2R5kvuSXJnknFrr6H4tCwAAYBuc9JyTcvtdtydJ9tx9z46rAQAA\nRsHQg5xSyuOTvGaG3e9NcnKSi5Ocn2T3JK9M8vlSyrNqrVcPux4AAIC+ePyyx2dycjJJMj4+3nE1\nAADAKBhqkNPMuHlfkv+b5Elb7HtqBiHOR2utL5iy/eIkNyZ5V5JDhlkPAAAAAADAKBv2NXJOTfLU\nJGdMs+/Epv2LqRtrrf+Z5JIkT2pm8wAAAAAAAJAhBjmllP2SvCXJh2qtV0zT5fAkP05y7TT7rmna\nJw+rHgAAAAAAgFE3zKXV3pXk/iSvmmH//km+W2u9f5p9tzTtgcMqZu3atcM6FIwMz3uYG2MHZufm\nm29+4Pa6deuycePGDquhK5uu88Ls3LXhrvzoxz9Kkiz5uSXZfZfdO66I2fCeoT/8W8DcGT8wd8bP\n4rF8+fKuS9jMUIKcUsrzkzwvycm11ttm6LY0yR0z7NswpQ8AAMCC9Ja/e0uuW3ddkuSJ+z8x5510\nXscVAQAAfTfvIKeUskeSdyb51yQXzbuiIelbYgbb06ZvA3jew+wYOzA3Y2Njuf7665Mk+++/fw46\n6KCOK6ILd15+Z9cljKSxsbHNbo+Pj3dYDbPlPUP3vH+DuTN+YO6MH7o2jGvknJ9kzySn1FofbF2N\nu5PsMsO+Xaf0AQAAAAAAIPOckVNKeWaSk5P8RZIflFL226LLQ5ttG5J8M8mhpZTxWuuWC2ova1qL\nDAIAAAAAADTmOyPnWUnGkpyW5Ftb/CTJsc3ttyW5qnm8p0xznGc07ZXzrAcAAAAAAGDBmO81cv4m\nyZdm2HdpksuTvD0/DXb+IMnpST6/qVMpZXmS5yb5bK31G/OsBwAAAAAAYMGYV5BTa70xyY3T7Sul\nJMn6WutlU7a9LcmrSimXJLk4yV5JXpXk3iSvmE8tAAAAAAAAC818Z+TM1hlJbkry0iTvS3JPks8l\n+aNa6/Ut1wIAAAAAANBr2y3IqbWOTbNtY5K/bH4AAAAAAAB4EDt0XQAAAAAAAADTE+QAAAAAAAD0\nlCAHAAAAAACgp7bbNXIAAADY3N677519H77vA7cBAAC2RpADAADQktce99pMTk4mScbHxzuuBgAA\nGAWWVgMAAAAAAOgpM3IAAKAjE6smui4BAACAnjMjBwAAAAAAoKcEOQAAAAAAAD1laTUAAICWfPzq\nj2f9beuTJPvtvV+e99TndVwRAADQd4IcAACAlvzrmn/NmpvWJElWHLBCkAMAAGyVpdUAAAAAAAB6\nSpADAAAAAADQU4IcAAAAAACAnhLkAAAAAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOgp\nQQ4AAAAAAEBPCXIAAAAAAAB6SpADAAAAAADQU4IcAAAAAACAnlrSdQEAAACLxfOf8fw884nPTJLs\ns8c+HVcDAACMAkEOAABAS5568FMzOTmZJBkfH++4GgAAYBRYWg0AAAAAAKCnBDkAAAAAAAA9JcgB\nAAAAAADoKUEOAAAAAABATy3pugAAAIDF4g/f84dZc9OaJMmKA1bkgpde0HFFzMbEqomuS5iXlaes\n7LoEAADmwIwcAAAAAACAnhLkAAAAAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOgpQQ4A\nAAAAAEBPCXIAAAAAAAB6SpADAAAAAADQU4IcAAAAAACAnhLkAAAAAAAA9JQgBwAAAAAAoKeWdF0A\nAADAYvGQHR+Sncd3fuA2AADA1ghyAAAAWvLmk96cycnJJMn4+HjH1QAAAKPA0moAAAAAAAA9JcgB\nAAAAAADoKUEOAAAAAABATwlyAAAAAAAAempJ1wUAAAAsFp/76ufy7du/nSR55J6PzFG/cFS3BQEA\nAL0nyAEAAGjJpV+8NGtuWpMkWXHACkEOAACwVZZWAwAAAAAA6KmhzMgppTwxyZlJnp5k3yR3J7kq\nyZtrrddM6bdzktclOS7JsqbfFUnOqrXeOIxaAAAAAAAAFop5z8gppTw1yReTPCvJ+5K8pGl/KckX\nSilPa/qNJflYkj9K8oUkJyX5syRHJbm6lPKY+dYCAAAAAACwkAxjRs6qJGNJjqi1rtu0sZRybZJL\nkrwmyW9kMAvn2UnOr7WeOaXf5Um+lOT8JMcMoR4AAAAAAIAFYV4zckopOyT5YJJXTg1xGp9p2kc3\n7YlN+46pnWqtqzNYhu3XSyl7zKceAAAAAACAhWReM3JqrT9J8ucz7H5s065p2sOTfKvWun6avtck\nOSLJIRlcM2fe1q5dO4zDwEjxvIe5MXZgdm6++eYHbq9bty4bN27ssJrRNjk52XUJtGzqeNm4caPn\nAK1aSO95FtK5QNuMH5g742fxWL58edclbGYYS6s9oJlRs2uSpyd5a5KbkpxTSlmaZM8kdYa73tK0\nB2ZIQQ4AAAAAAMCoG2qQk+SOpt2Y5KIkZ9Za/79Syr7N9ntmuN+Gpl06rEL6lpjB9rTp2wCe9zA7\nxg7MzdjYWK6//vokyf7775+DDjqos1omVk109tjDMD4+3nUJtGxsbGyz254DtGkhvOfx/g3mzviB\nuTN+6Nqwg5xfSrJLkicleVmSZ5VSjk1y65AfBwAAAAAAYMEbapBTa/1cc/MTpZQPJVmd5G+SHNZs\n32WGu+7atHcPsx4AAAAAAIBRtsP2OnCtdV2Sy5MsT/KIJLcl2W+G7sua1tWiAAAAAAAAGvOakVNK\neVySTyf5TK31pGm67DHlca5K8hullEfXWm/Zot8zktybwQweAACABelXD/3VPGHZE5JS3xMLAAAc\nUUlEQVQk++6171Z6AwAAzH9ptbVJdkpybCnlf9dab9q0o5TymCRHZDAT58YkFyb5jSSnNz+b+h2Z\n5NAkF9VafzDPegAAAHrr6MOOzuTkZJJkfHy842oAAIBRMK8gp9b6o1LKK5J8OMk1pZR3JflmkgOS\n/K8kOyd5ea31x0kuLaVcnOS0UspuSa7IYEm1M5KsT/L6+dQCAAAAAACw0Mx3Rk5qrR8ppdyc5DUZ\nhDd7JLk7yUSSP6+1fnpK9xcleW2SE5K8OMkdSS5L8oZa67fnWwsAAAAAAMBCMu8gJ0lqrVcn+c1t\n6DeZ5NzmBwAAAAAAgAexQ9cFAAAAAAAAML2hzMgBAABg697412/M9bdcnyQ5+NEH5+wXn91xRQAA\nQN8JcgAAAFpy9z135/bv3/7AbQAAgK2xtBoAAAAAAEBPCXIAAAAAAAB6SpADAAAAAADQU4IcAAAA\nAACAnlrSdQEAAADA9jexaqLrEuZs5Skruy4BAKAzZuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAA\nPSXIAQAAAAAA6ClBDgAAAAAAQE8JcgAAAAAAAHpqSdcFAAAALBZ/8nt/kvt+eF+SZKeH7NRxNQAA\nwCgQ5AAAALRkp/GdskOzMML4+HjH1QAAAKPA0moAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABAT7lG\nDgAAQEtWr12d7931vSTJXrvvlUOWH9JxRQAAQN8JcgAAAFry4Ss+nDU3rUmSrDhghSAHAADYKkur\nAQAAAAAA9JQgBwAAAAAAoKcEOQAAAAAAAD3lGjkAAIvcxKqJWfVff9v63LXhriTJdV+9Lnfsfcf2\nKAsAAACIGTkAAAAAAAC9JcgBAAAAAADoKUEOAAAAAABATwlyAAAAAAAAekqQAwAAAAAA0FOCHAAA\nAAAAgJ4S5AAAAAAAAPTUkq4LAAAAWCye8rin5FF7PipJsuwRyzquBgAAGAWCHAAAgJYc+8xjMzk5\nmSQZHx/vuBoAAGAUWFoNAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA6ClBDgAAAAAAQE8t6boAAACA\nxeJtF78t9Vs1SVJ+vuT0Y07vuCIAAKDvBDkAAAAtWX/b+nzjv76RJNllp106rgYAABgFllYDAAAA\nAADoKUEOAAAAAABATwlyAAAAAAAAekqQAwAAAAAA0FOCHAAAAAAAgJ5a0nUBAAAAAA9mYtVEkmRy\ncjJJcufld3ZZzqytPGVl1yUAACPMjBwAAAAAAICeMiMHAGAINn1TGAAAAGCYhhLklFL2TvLHSX4r\nySOS3Jnk35L871rr6i367pzkdUmOS7Isyd1JrkhyVq31xmHUAwAAAAAAsBDMe2m1Uso+SVYnOTnJ\n3zXte5L8cpJ/K6U8aUrfsSQfS/JHSb6Q5KQkf5bkqCRXl1IeM996AAAAAAAAFophzMh5U5L9kvx2\nrfXiTRtLKRNJ/jGD2TcvaDYfl+TZSc6vtZ45pe/lSb6U5PwkxwyhJgAAAAAAgJE3jCDn1iR/m+SS\nLbb/c5KNSVZM2XZi075jasda6+pSylVJfr2Usket9c4h1AUAANArr3nha7Lhng1Jkl0eukvH1QAA\nAKNg3kFOrfWcGXYtTTKWwTVwNjk8ybdqreun6X9NkiOSHJLBNXMAAAAWlH322CeTD51MkoyPj3dc\nDQAAMAqGMSNnJqc07YeTpJSyNMmeSeoM/W9p2gMzhCBn7dq18z0EjBzPe5gbY4dhmJyc7LqE1tx/\n//2b3V5M5w7DZOzA3I3a+PF+kz7xfIS5M34Wj+XLl3ddwmZ22B4HLaX89yR/nOTfk/xVs3lp094z\nw902bNEPAAAAAABgURv6jJxSyolJ3p9kXZLn1lo7+ZpM3xIz2J42fRvA8x5mx9hhmO68fPFc4m/H\nHXdMJn962/JQMDubZhIYOzB7ozp+vN+kD/z9A3Nn/NC1oQY5pZSzkpyb5EtJfq3W+t0puzddK2em\nK3ruukU/AACABeXrt349d35/EPzusXSPHLTvQR1XBAAA9N3QgpxSytuTvDLJx5O8qNa62RJqtdYf\nlFJuS7LfDIdY1rQWGgQAABakv7r0r7LmpjVJkhUHrMgFL72g44oAAIC+G8o1cpqZOK9MclGSY7YM\ncaa4Ksl+pZRHT7PvGUnuTbJ6GDUBAAAAAACMunkHOaWUX0ryxiSXJHlJrfXHD9L9wqY9fYtjHJnk\n0CQfqbX+YL41AQAAAAAALATDWFrtrU37L0mOKaVM1+eTtdZ7aq2XllIuTnJaKWW3JFdksKTaGUnW\nJ3n9EOoBAAAAAABYEIYR5BzStO96kD4HJFnX3H5RktcmOSHJi5PckeSyJG+otX57CPUAAAAAAAAs\nCPMOcmqtY7PsP5nk3OYHAAAAAACAGcz7GjkAAAAAAABsH4IcAAAAAACAnhLkAAAAAAAA9JQgBwAA\nAAAAoKcEOQAAAAAAAD0lyAEAAAAAAOipJV0XAAAAsFgcvOzg7LTjTkmSA/c9sONqAACAUSDIAQAA\naMnJzzk5k5OTSZLx8fGOqwEAAEaBpdUAAAAAAAB6SpADAAAAAADQU4IcAAAAAACAnhLkAAAAAAAA\n9NSSrgsAAABYLC785wvzzVu/mSQ5cN8Dc/JzTu64IgAAoO8EOQAAAC25/ubrs+amNUmS++6/r+Nq\nAACAUWBpNQAAAAAAgJ4S5AAAAAAAAPSUIAcAAAAAAKCnBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAA\nAABATwlyAAAAAAAAempJ1wUAAAAALGQTqya6LmHOVp6ysusSAGDRMyMHAAAAAACgpwQ5AAAAAAAA\nPSXIAQAAAAAA6CnXyAEAAGjJqc89NXd+/84kyR5L9+i4GgAAYBQIcgAAAFpy0L4HZXJyMkkyPj7e\ncTUAAMAosLQaAAAAAABATwlyAAAAAAAAekqQAwAAAAAA0FOukQMAANCS79753Wy4Z0OSZJeH7pJ9\n9tin44oAAIC+E+QAAAC05E//7k+z5qY1SZIVB6zIBS+9oOOKAACAvrO0GgAAAAAAQE8JcgAAAAAA\nAHpKkAMAAAAAANBTghwAAAAAAICeEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA\n6ClBDgAAAAAAQE8t6boAAIAkmVg10XUJAAAAAL1jRg4AAAAAAEBPmZEDAADQkv323i8b7tvwwG0A\nAICtEeQAAAC05PRjTs/k5GSSZHx8vONqAACAUWBpNQAAAAAAgJ4S5AAAAAAAAPSUIAcAAAAAAKCn\nhnaNnFLKeJI3JTkjyedrrUdN02fnJK9LclySZUnuTnJFkrNqrTcOqxYAAAAAAICFYChBTimlJPmb\nJP8tydgMfcaSfCzJryS5KMkbk+ybQfBzdSnl8FrrN4ZRDwAAQB999PMfzc3fuTlJsuwRy3LsM4/t\nuCIAAKDv5h3klFIelmR1krVJDkvyHzN0PS7Js5OcX2s9c8r9L0/ypSTnJzlmvvUAAAD01Rdv+GLW\n3LQmSbLigBWCHAAAYKuGcY2c8ST/b5Kn1Frrg/Q7sWnfMXVjrXV1kquS/HopZY8h1AMAAAAAALAg\nzHtGTq31O0lO3Yauhyf5Vq11/TT7rklyRJJDMrhmDgAAAAAAwKI3lGvkbE0pZWmSPZPMNGPnlqY9\nMEMKctauXTuMw8BI8byHuTF2+mFycrLrEthG999//2a3/dvBttu4ceNmt40fmBtjpz3eKy88/k1h\n7oyfxWP58uVdl7CZYSytti2WNu09M+zfsEU/AAAAAACARa+VGTld6FtiBtvTpm8DeN7D7CzEsTOx\naqLrEuZsfHy86xLYRjvuuGMy+dPb/u1g242NjW122/iB2dk0E8fYac9Ceq+82C3Ev3+gLcYPXWtr\nRs7dTbvLDPt33aIfAAAAAADAotdKkFNr/UGS25LsN0OXZU1rkUEAAAAAAIBGWzNykuSqJPuVUh49\nzb5nJLk3yeoW6wEAAAAAAOi1NoOcC5v29KkbSylHJjk0yUeamTsAAAAAAAAkWTLfA5RSDk5y8Bab\n9y6lPH/K75+stV5aSrk4yWmllN2SXJHBkmpnJFmf5PXzrQUAAAAAAGAhmXeQk+QFSc7eYtvBST46\n5fcDkqxL8qIkr01yQpIXJ7kjyWVJ3lBr/fYQagEAAABgSCZWTXRdwpytPGVl1yUAwFDMO8iptZ6T\n5Jxt7DuZ5NzmBwAAYFE5/lnH5+i7jk6S7LX7Xh1XAwAAjIJhzMgBAABgGxyy/JBMTk4mScbHxzuu\nBgAAGAU7dF0AAAAAAAAA0xPkAAAAAAAA9JQgBwAAAAAAoKdcIwcAAKAl903el/t+eF+S5Cf5SXYa\n36njigAAgL4T5AAAALTkDRe9IWtuWpMkWXHAilzw0gs6rggAAOg7S6sBAAAAAAD0lCAHAAAAAACg\npwQ5AAAAAAAAPSXIAQAAAAAA6ClBDgAAAAAAQE8JcgAAAAAAAHpKkAMAAAAAANBTghwAAAAAAICe\nEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPbWk6wIAAAAWi90eulv2XLrnA7cBAAC2RpADAADQ\nkrNffHYmJyeTJOPj4x1XAwAAjAJLqwEAAAAAAPSUIAcAAAAAAKCnBDkAAAAAAAA95Ro5AAAAACw4\nE6smui5hXlaesrLrEgDoCUEOAEwx6n/sAdBvn/rSp3Lr925Nkuy71745+rCjO64IAADoO0EOAABA\nSz7975/OmpvWJElWHLBCkAMAAGyVa+QAAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA\n6KklXRcAAAAAAGxuYtXEUI83OTmZJLnz8juHetzprDxl5XZ/DIDFxIwcAAAAAACAnhLkAAAAAAAA\n9JSl1QAYumEvAbC9tLm0AAAAAADMhRk5AAAAAAAAPSXIAQAAAAAA6ClBDgAAAAAAQE+5Rg4AAEBL\nnvuU52blf1uZJHnkno/suBoAAGAUCHIAemhi1UTXJQAA28FRv3BUJicnkyTj4+MdVwMAAIwCS6sB\nAAAAAAD0lCAHAAAAAACgpwQ5AAAAAAAAPSXIAQAAAAAA6KklXRcAAACwWLz+/7w+X1v3tSTJE/Z/\nQt580ps7rggAAOg7QQ4AAEBLfnj/D3Pv5L0P3AYAANgaS6sBAAAAAAD0lCAHAAAAAACgpyytBgAA\nAAAMzcSqia5LmJeVp6zsugSAzQhygAVr1N84AgAAAABYWg0AAAAAAKCnWp+RU0rZM8nZSX4zyaOS\nfC/JJ5OcVWv9r7brAQAAAAAA6KtWZ+SUUnZO8rkkpyb5hyS/m+Q9SV6Y5MpSysParAcAAAAAAKDP\n2p6Rc1qSJyZ5ea313Zs2llK+muSSJGcleVXLNQEAAAAAJBnta+6uPGVl1yUA28HYxo0bW3uwUsoN\nSX4+ycNrrT+csn0syS1JHpLkEbXWbS7qrrvuau8EAAAAAACARWn33Xcf6+JxW1tarZSyW5LHJlk9\nNcRJkia4uTbJ3kkOaKsmAAAAAACAPmvzGjnLmnb9DPtvadoDW6gFAAAAAACg99oMcpY27T0z7N+w\nRT8AAAAAAIBFrc0gBwAAAAAAgFloM8i5u2l3mWH/rlv0AwAAAAAAWNSWtPhYNyXZmGS/GfZvuobO\n2tkcdPfddx+bT1EAAAAAAAB9NbZx48bWHqyU8pUky5M8vNZ635TtP5fk1iQ/rLU+urWCAAAAAAAA\neqzta+RcmOShSV66xfYTkuyT5P0t1wMAAAAAANBbbc/I2THJF5IcmuSdSb6U5PFJXpXBkmpPqbXe\n01pBAAAAAAAAPdZqkJMkpZTdkpyT5LeTPCrJd5NckuTsWuvtrRYDAAAAAADQY60HOQAAAAAAAGyb\ntq+RAwAAAAAAwDYS5AAAAAAAAPSUIAcAAAAAAKCnBDkAAAAAAAA9JcgBAAAAAADoKUEOAAAAAABA\nTy3pugBgeqWUpyU5K8lTkuyc5MYk70vyl7XWjdtw/x2SnJbk95IsT3JfkiuTnFNrnZim74lN/5Jk\nY5Ibkrw3yXu35fGgT9ocP1Puc3SSDyR5ZJIDaq3r5n0isJ2VUvZMcnaS30zyqCTfS/LJJGfVWv9r\nG+6/zWOtlHJwknOTHJlktyQ3J/lQkvNqrZPDOidoQ5tjp+n/iAxeY56T5I211nOGciLQgZZfe56Y\nn7727Jrkv5L8U5I/rrV+d1jnBG1pefz8WpI/SPILSfbMYPx8KoO/iW4d1jlBW9p+/zblfmNJPpvB\na9Hv1Vo/ML8zYbEyIwd6qJTyrAz+k1+e5Jwk/08GLxDvSPK2bTzMe5Nc0Nzv9zN4sSlJPl9KeeoW\nfVcluSjJdzJ4o/bqDP5/WJXkLfM4FWhd2+OnlPKQUsrbMvhQYNchnAK0opSyc5LPJTk1yT8k+d0k\n70nywiRXllIetpX7b/NYK6U8PsnVSZ6e5K1JTkryr839/n4oJwQtaXPsNP1/Lcl1GYwfGGktv/Yc\nmWR1kpVJ/qzpe3kG7+2uKqV438ZIaXn8vDLJZRkEOG9K8tLmvi9J8sXmA3EYGW2/f9vCSzIIcWBe\nzMiBfnp3BjMAnjHlWwF/XUr5xyR/UEq5qNb61Znu3HzQfHKSj9ZaXzBl+8UZvNC8K8khzbanZfAC\ndGmt9XlT+n4gyX8keVUp5S211ruGeYKwHbU2fhoXJfmNDN6cPTPJ7wzzZGA7Oi3JE5O8vNb67k0b\nSylfTXJJBgHmqx7k/rMZa3+eQdD59Frrdc22D5dSNiR5ZSnlebXWjw/tzGD7am3sNLM9L8sg8Pxw\nko8N+2SgZW2+9ry36XtErfXmZtsHSyl3NXWc2BwPRkUr46eZBXp+kq9mMH42zZy+qJRyZ5JXZvA3\nz7Z+SQ76oM3XnweUUh6ZwZcJvpzkSUM5ExYtM3KgZ0opT87gm/9/P83Uzr9MMpbkhK0c5sSm/Yup\nG2ut/5nBC9STmm9HJ8kuSf42gzdqU/tuSPL5JDsmedwsTwM60cH4SZJbk6ystf6fORcO3TgxyYYk\nF26x/WNJ1ic5oVkG4GfMZqyVUh6V5NlJrpgS4kztmyQvnutJQAdaGTuNnZKcWmt9YZK7h1A7dK2t\n156lSf4tyflTQpxNPtm0K+Z6EtCRtl5/dszgQ+1XT7P87Wea9tFzOgPoTpvv36Z6Z5KfJHnzHOuG\nBwhyoH8Ob9qrp9l3TdM+eRuO8eMk127tGLXWz9Ra/2et9QvT9N29aX1wwKhodfwkSa31jFrr9bMp\nErpWStktyWOTrK61/nDqvmZ952uT7J3kgBkOMZuxdlgGf9z8TN9a69eT3J6tj0vohZbHTmqtH6u1\nrppX0dATbY6fWuv3a60n11rPnaavv3EYOS2Pn/W11j+ttX5mmr6Pbdo1sygfOtX2+7cpj/u8JM9P\ncmYG1+OBeRHkQP/s37Trt9xRa/1+kjuTHLgNx/hurfX+afbd0rQPeoxSymMy+Ab1l5PcsJXHg77Y\nv2k7HT8wApY17c+MlcbWnuv7z3T/acbajH2nPNbPl1Is+csoaHPswELTl/FzSpKNGaxKAKOik/FT\nSllSStmjlHJQKeXVGcwq+JckH9rGuqEPWh8/zczQd2Ww0o3VOxgKfzBDC0opW1vKKUlurbVekWRp\n8/s9M/TbMKXPTJYmueNB7r+pz7SaCxde3Pz68uYbCtCJURs/MCK2ZaxM7TeX+y+dRd9N/WYae9AX\nbY4dWGg6Hz+llDcl+eUk76y1fvnB+kLPdDV+np7BBd439fnjJG+ttf545lKhd7oYP29Jsk+SZ9da\nN5ZStqVOeFCCHGjHX29Dn08luWJ7F7I1pZT9k/xzksckeXGtdbqpo9CmkRk/AAD0TyllhwyuU/Cy\nDK6H8GAXtAZ+6itJfinJw5r23CRHl1JeUGu1VBRMo5Ty1CSnJnlTrfU/uq6HhUOQA+142Db02bSM\n06a1mneZod+u2fp6zndv5f5TH+cBpZTDklyWwTcJjqm1XrqVx4E2jMT4gRGzLWNlar+53P/uWfRN\nku/PsB/6pM2xAwtNJ+OnlLJLBsuoPTfJRUl+v9b6o61WC/3Syfiptd6Z5HPNr5eUUi5P8o9J/jTJ\nyQ9SL/RJa+OnlDKe5P1Jvp7BUoQwNIIcaEHz5mdbfbNp99tyRyll9wwuzrl6G45xaCllvNY6ucW+\nTWuDrt3i2E/PYFbD95M8s9b677OoGbabURg/MIJuyuD6AD8zVhpbe67PZqzN2HfKY93kQzVGRJtj\nBxaa1sdPE+J8OsnTkpxVa33TLGuGvujF60+t9WOllO8lec7W+kKPtDl+XpPkcUlelGTvKUuq7d20\nDyul7Jfk9lrrTEu1wbR26LoA4Gdc1bRHTLPvGU37b9twjB2SPOVBjnHlpg2llCcmuTTJd5M8TYjD\nCGt9/MAoqrVuSLImySGllJ2m7iul/FwGH3h9q9Z6y3T3z+zG2rVJfjRd31LKE5Lska2PS+iFlscO\nLChtj59SypIk/5DkqUleIsRhlLU5fkopv1NK+U4p5aQtOzbLFC6NL4YzQlp+/fnlJGNJPpLkW1N+\n/r7Z/+fN7y+Y/Zmw2AlyoGdqrV/JIMk/tknpkySllLEkp2ewhNQHp2zfvZTy2FLKnlMOc1EG3zY4\nfeqxSynLM1hS4LO11m802x6SwQvKT5L8Sq31m4ER1fb4gRF3YZKHJnnpFttPyODCnO/ftKEZJwds\n+n02Y61ZP/3jSY4qpTxpi8f6w6Z9f2B0tDJ2YIFqc/y8IcnRSf6w1nrhkM8DutDW+Plqc7z/VUrZ\ncYvHemGSh8QX2xg9bY2f12XwucGWP69v9r+9+f1fhnViLB4SdOinlyX5bJLPl1LenuTOJMcleVYG\nSwJM/RD5tzL44Pl1Sc5LklrrV0spb0vyqlLKJUkuTrJXBhf1vDfJK6bc//eTPDbJR5M8aZoP2ZLk\n+lrr9UM8P9ieWhs/pZSHJvkfU463aUr2fy+l3NbcNn7oq1VJjk/y1lLKsiRfSvL4DJ7r1yV565S+\nNySpGbxebDKbsfbqJM9M8qlSyluT3JrBkhzHJ7mw1vr54Z8ebDetjZ1SypH56VIcj2/ag0spz29u\nb6i1/tMQzw22t1bGTynlERksb/PdJOunjJmpjB9GTSvjp9b6lVLKu5v+E6WUDya5PclhGXx+8IMk\nZ2+vk4TtpK3xc/V0D15K+UFz86u11suGdVIsLmbkQA/VWq/J4AOv/0hybpL3JHlkkpNmsSTAGRl8\n4HxQkvclOSvJRAZLp/3fKf0ObdpjMwhzpvsx5ZOR0fL42Sebj5Wjmu3vjvFDz9Va70/yq0nemeS3\nk3wgye9k8G20o7a2ZvNsxloz2/NpGVws98wMvhF3SAZjbctvxUGvtTl2krwxP309OafZNvU921/N\n+4SgRS2On8cl2TmD92p/n+n/xjF+GCktv3d7eZIXZxDanNM8xm8l+bskh9VarxvWeUEbWn7/BtvF\n2MaNG7uuAQAAAAAAgGmYkQMAAAAAANBTghwAAAAAAICeEuQAAAAAAAD0lCAHAAAAAACgpwQ5AAAA\n/P/t2bEAAAAAwCB/62nsKI0AAIApkQMAAAAAADAlcgAAAAAAAKZEDgAAAAAAwJTIAQAAAAAAmBI5\nAAAAAAAAUyIHAAAAAABgSuQAAAAAAABMiRwAAAAAAIApkQMAAAAAADAlcgAAAAAAAKZEDgAAAAAA\nwJTIAQAAAAAAmArvDGrfquGMrAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "HAxWLKGcIA0A", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "A Normal random variable can be take on any real number, but the variable is very likely to be relatively close to $\\mu$. In fact, the expected value of a Normal is equal to its $\\mu$ parameter:\n", + "\n", + "$$ E[ X | \\mu, \\tau] = \\mu$$\n", + "\n", + "and its variance is equal to the inverse of $\\tau$:\n", + "\n", + "$$\\text{Var}( X | \\mu, \\tau ) = \\frac{1}{\\tau}$$\n", + "\n", + "\n", + "\n", + "Below we continue our modeling of the Challenger space craft:" ] - }, - "metadata": { - "image/png": { - "height": 725, - "width": 825 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 12.5))\n", - "\n", - "#histogram of posteriors\n", - "\n", - "ax = plt.subplot(311)\n", - "\n", - "plt.xlim(0, .1)\n", - "plt.hist(burned_prob_A_trace_, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_A$\", color=TFColor[0], normed=True)\n", - "plt.vlines(true_prob_A_, 0, 80, linestyle=\"--\", label=\"true $p_A$ (unknown)\")\n", - "plt.legend(loc=\"upper right\")\n", - "plt.title(\"Posterior distributions of $p_A$, $p_B$, and delta unknowns\")\n", - "\n", - "ax = plt.subplot(312)\n", - "\n", - "plt.xlim(0, .1)\n", - "plt.hist(burned_prob_B_trace_, histtype='stepfilled', bins=25, alpha=0.85,\n", - " label=\"posterior of $p_B$\", color=TFColor[2], normed=True)\n", - "plt.vlines(true_prob_B_, 0, 80, linestyle=\"--\", label=\"true $p_B$ (unknown)\")\n", - "plt.legend(loc=\"upper right\")\n", - "\n", - "ax = plt.subplot(313)\n", - "plt.hist(burned_delta_trace_, histtype='stepfilled', bins=30, alpha=0.85,\n", - " label=\"posterior of delta\", color=TFColor[6], normed=True)\n", - "plt.vlines(true_prob_A_ - true_prob_B_, 0, 60, linestyle=\"--\",\n", - " label=\"true delta (unknown)\")\n", - "plt.vlines(0, 0, 60, color=\"black\", alpha=0.2)\n", - "plt.legend(loc=\"upper right\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Hn-G0eFwIAyh" - }, - "source": [ - "Notice that as a result of `N_B < N_A`, i.e. we have less data from site B, our posterior distribution of $p_B$ is fatter, implying we are less certain about the true value of $p_B$ than we are of $p_A$. \n", - "\n", - "With respect to the posterior distribution of $\\text{delta}$, we can see that the majority of the distribution is above $\\text{delta}=0$, implying there site A's response is likely better than site B's response. The probability this inference is incorrect is easily computable:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "nZxDurxyIAyh", - "outputId": "7cb41824-d97a-4b53-e12b-169d009251e7" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Probability site A is WORSE than site B: 0.145\n", - "Probability site A is BETTER than site B: 0.855\n" - ] - } - ], - "source": [ - "# Count the number of samples less than 0, i.e. the area under the curve\n", - "# before 0, represent the probability that site A is worse than site B.\n", - "print(\"Probability site A is WORSE than site B: %.3f\" % \\\n", - " np.mean(burned_delta_trace_ < 0))\n", - "\n", - "print(\"Probability site A is BETTER than site B: %.3f\" % \\\n", - " np.mean(burned_delta_trace_ > 0))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Q8cAEzbUIAyl" - }, - "source": [ - "If this probability is too high for comfortable decision-making, we can perform more trials on site B (as site B has less samples to begin with, each additional data point for site B contributes more inferential \"power\" than each additional data point for site A). \n", - "\n", - "Try playing with the parameters `true_prob_A`, `true_prob_B`, `N_A`, and `N_B`, to see what the posterior of $\\text{delta}$ looks like. Notice in all this, the difference in sample sizes between site A and site B was never mentioned: it naturally fits into Bayesian analysis.\n", - "\n", - "I hope the readers feel this style of A/B testing is more natural than hypothesis testing, which has probably confused more than helped practitioners. Later in this book, we will see two extensions of this model: the first to help dynamically adjust for bad sites, and the second will improve the speed of this computation by reducing the analysis to a single equation. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "f-jxOi70IAyl" - }, - "source": [ - "## An algorithm for human deceit\n", - "\n", - "Social data has an additional layer of interest as people are not always honest with responses, which adds a further complication into inference. For example, simply asking individuals \"Have you ever cheated on a test?\" will surely contain some rate of dishonesty. What you can say for certain is that the true rate is less than your observed rate (assuming individuals lie *only* about *not cheating*; I cannot imagine one who would admit \"Yes\" to cheating when in fact they hadn't cheated). \n", - "\n", - "To present an elegant solution to circumventing this dishonesty problem, and to demonstrate Bayesian modeling, we first need to introduce the binomial distribution.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "qzCqZqzBDpMa" - }, - "source": [ - "## The Binomial Distribution\n", - "\n", - "The binomial distribution is one of the most popular distributions, mostly because of its simplicity and usefulness. Unlike the other distributions we have encountered thus far in the book, the binomial distribution has 2 parameters: $N$, a positive integer representing $N$ trials or number of instances of potential events, and $p$, the probability of an event occurring in a single trial. Like the Poisson distribution, it is a discrete distribution, but unlike the Poisson distribution, it only weighs integers from $0$ to $N$. The mass distribution looks like:\n", - "\n", - "$$P( X = k ) = {{N}\\choose{k}} p^k(1-p)^{N-k}$$\n", - "\n", - "If $X$ is a binomial random variable with parameters $p$ and $N$, denoted $X \\sim \\text{Bin}(N,p)$, then $X$ is the number of events that occurred in the $N$ trials (obviously $0 \\le X \\le N$). The larger $p$ is (while still remaining between 0 and 1), the more events are likely to occur. The expected value of a binomial is equal to $Np$. Below we plot the mass probability distribution for varying parameters. " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 294 - }, - "colab_type": "code", - "id": "9I53Ta3maWgJ", - "outputId": "e097f79a-2032-4e1a-949a-2b26a1004a78" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABo4AAAIqCAYAAAAaWriaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XncVVW9+PHPAyjgBIIC4oADuADT\n1PSGmimapuFsmNe5UtIc0fKndrlapjdv2hUytQRzCEPRK2Y5goplKWqDeLHF7AQoJIKAMj6/P9Y+\nD4fDOc94ngk+79fL137O3mvvtfa0Dq7vWWtVVFZWIkmSJEmSJEmSJLVp7gJIkiRJkiRJkiSpZTBw\nJEmSJEmSJEmSJMDAkSRJkiRJkiRJkjIGjiRJkiRJkiRJkgQYOJIkSZIkSZIkSVLGwJEkSZIkSZIk\nSZIAA0eSJEmSJEmSJEnKGDiSJEmSJEmSJEkSYOBIkiRJkiRJkiRJGQNHkiRJkiRJkiRJAgwcSZIk\nSZIkSZIkKWPgSJIkSZIkSZIkSYCBI0mSJEmSJEmSJGXaNXcBJEmSGlMIobKazcuA94DngFtjjLGJ\ny7RLjHF2I+ZzKPA88HaMcec67Dcb6AUMjDG+kK27DrgWuDfGeE62bmdgFkCMsaJMxVYZhBBeAA4B\nvhljvCdbdw7wa2BijPHQZijTdbTQZ6jYM7+xCSFcBZwPbE+qG/vHGN+vJv09wNnAD2OM19Uyj0Op\nR53UUpXzfIq9HxsK36/6KWf9WN/6v6n+vSJJkloeA0eSJGlj8SAwL+9zBbAj8AVSY+k5IYSzYoxj\nm6NwLczdQBdSUK06i4HhxTaEEOYAz2xoDaCt3BTS/ZrekIOEEL4KPEXdG4FfzvKf1JD8GyKE8Fvg\ngCKN/LV95jdIWQDkv4BK4Pek67C8EbJ6j/QMfNQIx24OG9r5qGUp+R0rSZLU2AwcSZKkjcWtMcaX\nC1eGEDYFbgSuAO4PIbwSY3ynyUvXgsQYf1TLdB8BlxWuDyHsAGxX7nKpYWKMkyhP0Gb/eub/FCng\n1JyKlr22z/wG7IvZ8pkY43GNlUmMcTpF6ozWakM7H7Uspb5jJUmSmoJzHEmSpI1ajHEFcCUwGWgP\nfKt5S7RBqFdgQa1Gq7y/IYQuwG7NXY4WqmO2nFdtKkmSJEkbBXscSZKkjV6McU0I4UVgT2Dv3Pq8\nOQH+AAwFRgL7ATfEGG/MS3cg6VfBBwHbkuYH+ScwFrg9xvhpqbxDCMcC3wM+D2ya7Xd7jHFkkbRb\nApcCJwC7kxp7FwKvAf8TY3y2mnzaZGX8JqnxfAXwKvCjGOMfC9LOphbzURSbf6FgTqmzQwhnA28D\nDwBXA0/HGI8qcbwvAX8kDc+zXYxxWTV5X0eaD+SHwK+Am4AjgE7AbNI1/Hl23leSAoI7AR8D44Dv\nxRiXFBxzU9KwhacAewBbZmX5B3BnjPHBIuXoDvw/4GjSNasA5gIvAcNjjK8VpN8VuAo4DNgBWAXM\nAcaTesVNLXXORfLuDfw4O9ZWwLukZ+76EunPocgcF9lzdQXpuepN+n+ED4DXgV/EGCcU7J/zfAgB\nsjlu8u7JL4D7gdtJ1/HbMcbRtZnDJcvjQqBvtuoN4KcxxnEF6WZTzTNauD1vzieAXoXzdlR3vBDC\nIOACUsBsa+ATUqD5N8A9McZVeWl3Jr0TS2OMW4QQvk66tv1J7/dbwC0xxtEFeWwKXAR8Izv3jsCH\nwJvAXTHGR4pdr1JqWyflzdGTk3tnq65NLfPbgfQsHgFsk5X9d8B/xhj/lZcul986cwLlXf/9gdWk\n93oA0Jn0XD9AqqtWFuRbAZxOqtf2Jr2zH5Oe3VExxocL0ufyn5iV9dps/+2ABcCjwP+LMS4LIZxI\nelf3yMr0InBF/jta3RxHIYRdgO+T3s+dgLakwNwLpO+QWr/rxdT0vmVp6lSn1ff5zfb9Aum+HQh0\nAGYC9wI/q+E86vN+vQ3sQnrGv0N6dhYBz5Du0fwQwiHAdcC+pDptEune1tjrMoQwMzv+2THG+0qk\nGQl8G7g7xvjtbF29rzfpPR0JfA14NcZ4ZHVzHIUQupHuzdGk7/RNgfmk757/jjG+Ws35tQeGZeXc\nKcv/RdL7Ormm65N3nBOBIaR7txXpHXoJ+FmM8S9F0pft+0+SJDU+exxJkiQlH2fLDiW2jwE2A+4h\nNZ4BEEL4LvAnYDApYHEfqSGxN3AzMDGEsEWJY54G/C+wBBhNalDcG7grhPCf+QlDCJsDfyYFBXYE\nHiM1Mk0mNRw9E0KorrfUHcB/Av9HasybAXwFeC6EcHg1+9XVcOCV7O+3ss93Z/8BHJE1MhfzjWz5\nYHVBowJbkBqBdycFhF4hNbyPyK7HXcAlpEaxx0kNk98Bfpl/kBBCW1KAcDjwOeBpUkDqL8DBwJgQ\nwo8K9tmGFHwbSmpYfpB0beeQGqP/lM0HlEu/O6lB+zzSnCi/AX5Laii9AHglhLBPbU46a4B7mXTN\nPsnyfQk4G3iCWv47P2tAfJHUAN2J9Dz+GpgKHAs8m/dc5eZI+iT7/Ej2uXAIyA7ZcRYBo0gN/7Up\ny9Wkxu93SQ3hfyU1Qj+aF8yor4ez8kIq//Dsv8U1lOkm0pw/XyW9O/eQnokvkJ6tcdmzU2zf75Lu\n8VzSs/EmsA/wmxDC4ILkjwK3kBrAf096t/9GCnY9nAUJaqWOdVJujp7Cd7bGa5Ona7b//lnZx5AC\nX9/N8tqstmUnBeb/SHoWHyE1KO8C/Adwa8F5VpACSvcDB5DexXtI1+0wYGwI4Y5q8rqf9J4+S3r3\nu5GCd3eGEM4k3btZpGfnU+AY4KksOFCtEMJeWTkuINUNo7P8FgFnAa9nacqh6PtWnzqt4Bxq/fyG\nEL5IeuYGkZ6pe0nBkqtZN9hcmEe93y/SnFxXkeq9x4DNgTOBR0IIhwFPkr7XHyYFwg8lfU9uU6o8\neR7Ill8vUe5NgBOzj/dl6xp0vUmB14NJ13pCdYULIfQk1Y9XkgI2D5K+Y9/JyvznEMKR1RziMeBc\nUt19DyngdALwUgjhc9XlnVeG20jP3WGk9z/374qvk777zi1IX7bvP0mS1DTscSRJkpT0zpazi2w7\ngBScODnGWNWjJoSwB2snrj4hxvhY3ratSQ2g+5N+9fy9Ise9Gjg0xvhS3n6nkxpUfhBCGBVjfD/b\ndBapMeptYN9s7oPcPt8mNTTfHEK4v/BX+UBP4HAgxBg/yPapIAVPzmNtQ1eDxRgvyxq5vwhMijFW\nzc8QQphIagg/izSvFHnb2rC2ke6eOmT5HeCOGOOVece6ldQz66fA+0DfGOPibNuxpJ4Qg0MIQ2KM\nS7PdjiQF0j4B9s7vaZEF1sYDV4cQbo8x5obzOpcUxBsTY/z3gvM5mdRgeSOpARHgclIPip/EGK8u\nSH8FqVF/GHBSLc77J6QG++eBo7IhF8ka6Z8kBVxq40RSsPJPpN42+b/uH0B6hm/MnqtJwKQQwgmk\nX9LfVqJH2onA/fn3vpYuAfaJMca8MvyA1KB6SwjhwRjjZ3U8JgAxxttCCG8CJwMf1aZsWcPrlcBn\npPf0lbxtO5EaS3O9JW4r2L09KdjxbzHGN/L2+xXpnbuI1Psnd52/Bkwnnf+SvPS9SQGRq0MIt8UY\nF9RQ5jrVSbk5ekq9s7X0HeBO4NJc/RhST7zXSb0uLiS9i7Xx38B383t55NWJ3wohfC+vB+d5wKmk\n3k0HZeeS22dvUkDh/BDCH2KMvy/I5wukhvd+uWcqe64fBf6dVF9+Mcb4ZratJxBJQaxDSMGm6vyA\nFPx6DDgpxrgmO04FqX47C7iBFJxtqFLvW33qtJxaP7+Zn5MCWL8h9dLJne82pGduvR8LNPD96kYK\n5PXLfRdmQYe/kgVpgGPzektuSfqRRa/set1VWJ4Co0n38MgQwla57488RwJdSN/HL+atq+/13pTU\nA26vGOPH1OxSYHtS3fDl/HoxhHA96d7dQupFXehA0rvZO1fXhBDakb4Xjyb13h1UXeYhhFNJ7/V8\n0r2bkrftWFJA6RchhOdjjDOyTeX8/pMkSU3AHkeSJGmjF0LYEchNCP9YkSRdSMPzVBasP5/0Q5xx\n+Q20ADHGhaSGJ0gNnsV+sPNAftAo2280aUipTUm/AM55ldSAdmF+0Cjza2AlqTfNHkXy2QQYlgsa\nZflUknogVQJ7ZA3OjW1UtjynyLZDgR7A1Bjjn+twzJWkxqZ8D2XLLsB1BY1+fyA1VG4C9MlbP5s0\n5M75hcNzZY2PM0j3ekDepl2y5XrlzYYW+xLr/mK9ZHpSY//BwMVFtq0j632We17/Ixc0yvJdRgrA\nlPqVfqFcmSblB42yY71MCpoeTOo1UVtbkxoB62pEftAo81NST4qupMb8ppS7F3fkN2oDxBjfIQXv\nIAVOCrUjDVX4RsH6+7Nlfm+T3D14o3D4xCwY8mVScG9RLcrc0DqpPpaShgCrqh+zuubn2cdT6nCs\nl4oMDfYgaWjNDqSehTm5+3NDftAoy//vpN4eUPz+bAF8vyAQ+TipbmgHPJILGmXHm0PqOQLF69hC\n95Ma9/8zF0TJjlPJ2qDFwbU4Tm2Uet9mU/c6LafWz28W3Nyf9F1yVcH5LiD1CipWHzXk/epIGrrw\no7x9/gZMyz6+nAsaZds+IQ1jB7W4fzHGt0g9xtqztq7Nl+sdOzrvuZ9N/a/3JqSetrUJGkH6ccBF\npGH5CoPpud60nwshdC6R1+X5dU1W9/8w+3hkCKFTDfnnfqhxTX7QKDvW46ReWJuSgow5Zfn+kyRJ\nTcceR5IkaaMVQtiK9Ovb/yY1RD0ZY3yySNLlrG00zPflbPlEiSwmkBrTtiYNn/ZmwfZS+/05S181\n31JMc+W8VixxTHM0zSXNVVCqwWe9vGKM80IIs4Bds7z+r8S+5fIwqTG5TwjhSzHGP+VtyzXE3VPH\nY74RY1xesO6DvL/Xmb8pu1YLSL+A3ypv/VvkDUFYxPukeSTyr28uyPH9EMKbMcb8uWIoDApm6Y8E\nbgghvB9j/Gte2lWkXj+1sSepQXMFa4cYy8/3HyGED0m/yq9J7hy+FUJ4CXgsxlgVJIoFczTV0vQY\n43v12K/YM7oihPA6aTikvUmBv0aX9QzJNeyXek/HZ8s9SvRK+GPhDqRhDKH4czQohHAecF/+Mx3r\nMOcIDa+T6uOFWHwet1wD8Z4hhLb5z1U11rtmMcZV2fO8A9l1CyF0YW0vyeruz2Wk4Geh1aReF/n5\nrM6rG4rdu1y9slWRbYVlLuzhlC/Xi7SmxvnaKvq+1bNOy1fb53e/bDkzru0hm+9Z0jNXNUdPmd6v\nYnMVfUD6QUCD7l/mAdLQfF8n9aQCqob3PD77mAukleN6P19i/Xqynp4vVJNPTifWDsObszAWmX+I\n9O+LFaSAz+dIPfbWk717uX+blLp3fyDNKzgwv9iU5/tPkiQ1EQNHkiRpY/GXEEKpbZWk8fkvLLF9\nQf6vqPPkfkE7q9hOMcYlIYR/kSaL34n1G2lnlsgv1/CzXf7KbPilS0kNod1Jw74Uqiiy7qMYY6ne\nCu+TAkfbldheNjHGT0MIvyX1ivgmWUNR1vPhZGAN2XwRdVAsQJHfQF1saK/c9nV634cQdiPNV3QI\n6Xp0Yf3rmf/5DtJwSQNJc0W9S2qYfwZ4osg1/xEpALInaY6TaaTG0WeAp0s0vhezfbacV01j/NvU\nLnA0jtRAehppTpn5IYQJpMbe38cYP6xlmfLVZx+o4/vQyLZmbQNv0febtcNaVpCCDVMKtheb2yl3\nv6qeoxjjX0MIPyH1zPgV8NMQwgusvQdv16HcDa2T6qOm+9aedD2rHWYvU2o+rMJ3due8bTXdn64h\nhM3iuvOmlXp3cutqXW+UEkI4njSc5eeAbUlz8DSGku9bPeq0fLV6fllbHxULGhFjXJYF5LbNW12O\n96u6ur/B9480/85NwFdDCFtmvZYgDSu5FfBqjPGf+Ts08HrXqd4MIRxCmkfsC6RrWywgViyvUnXD\n6hDCB6ThV6ura3fKO+7VIYRi71Huuye/V2+5vv8kSVITMXAkSZI2Fg8ChfMKfEqaTPqZvHH4i1lS\nYn1u0vfqGjxyw8h0LLJtaZF1+ft0yK0IIZxIOodNgH+RAhQfkn4hDOnXvVuWOF6pfIrm1chGkQJH\np4QQLolpjqGvkIYie6rEL9ars6q6jUWGFywqm2fmGdI1/IT0a+45rL0+X2dtA2nu2J+GEI4iDb13\nHrBv9vc5wPIQwijSPDKfZukXZPlcAJxNGjKpT/b5k2xuph/WomdG7rmrbr6fwl5YRWU9sM4kDdF4\nIakH3qnZf6tDCGOBi2KM/6rN8TKl3pea1Pp9aAKb5f1d6v3Ov/7F3u/CucZKijFeHUJ4ntTofCip\nR8PxwG0hhKdI8/6UamDP19A6qT5qum9Q+3tX22uWO8+V1bwvhfcnP3BUbb1B+jFBvYUQfsraee1m\nkAK0C0nBi61IgfNyKfq+1adOK1DXe1GX+qjB71fh0JoFGnT/suO/n83LN5A0F9UD2aZc79j789OX\n4XrXut4MIVwEjCAFcN4nDV23gLXP9aXV7N7Qfw9skff3RdWXdJ1eveX6/pMkSU3EwJEkSdpY3JrN\n2VJOS0kNI5tVkya3rVijUKnGmdz6ZQAhhE1Ik89vAowELihsNAshnETpwFF1jUDr5NXYYoyvhRDe\nIM2RcTypMa6+w9SV0x2k6/cEMLigdwIhhH0p0uiXzS/0K+BX2UTwR5AmXz+e9Gvw7cmbqyqbV+Kn\npF4l25OG7hkMfJU0V9NWpOG1qpNr3GtfTZrqnsnCc1hDmhfqoWz4xsNI83oMJgWQdg8h7F+i1105\ndaD4c1ifZ3STBpYlv3G11LXMX1/fYFmVGOMzwDMhhI6kHguDgH8HjgJeDCH0K5wDqYiG1kn1UVM9\nBuWvX3L3Z5MQQrsSQYSy3p/aCiF8nrVBo2/GGO8p2L4r5Q0clVKvOq0e6lMfNfn7VU+jSYGjrwMP\nZPPLHUsK0IwpSNsk1zuEsC1wCylodC1wff4PJEIIbag+cNTQfw/k7kUl0LHIULEllen7T5IkNZHa\ndtOWJEnS+nJDNO1abGM2wXSX7GOx3gI7lTjujtkyNxRPP9YO/XJVkaDRZqSh60rZJktTm7yawshs\neWrWSH4S6df445qwDFWyYEluzob/LGzwyxS9x/lijAtijL+NMZ5CmgB9GXB8CGGHEunfjzH+Osb4\nNVKQoBI4Pxu6rzpzs2X3bK6QYnYpsb5aMcbFMcZxMcZvkYJ7c0g9qQ6sz/HqqLbvA6RhDQHaFibO\n5iDp0ZCCxBgXkp5JKH3vc+tXU3qItfrk/WmM8akY48WkeYgmk4bqOqH6PYGG10n1UdN9W8raa1ku\ns1jbq6Sm+zO3Lo3bZXBItnyzMGiUqbEuaahy1Wm1lKuPir5zBc8c0LzvVx09QuotdXT2HTqIFNB6\nKsY4P5eoia/3AaR5iBYBNxTpVVtTPkXf1+x7JzdEXXX/HpjJ2jmrdqwmXbUa8P0nSZKaiIEjSZKk\n+nshWx5TYvtR2XIOMK3I9q+W2O9L2TI3eXuuIWUNqbGo0LdJDUlQfE6DClJPmHVkAY2dC/Iqp1JB\njdGkxrijgLNIvzIe08SNu/nyG6rWa+AOIRzL2l+KV2Tr2oUQjgohfLvYAWOMf2PtROnbhxA2CyEc\nH0I4pUT6p4CPSL/a71pDed8kNaZ2IM1vUVjeAaQ5RGoUQhgYQri4WAAqGxotN4l6sV/Kl7q/9bXe\n+xBC6ADsl33Mf0Zz840Ua6z+CtX/f05tyz0xW9b0fk8q0VBcKyGE/UMIlxYL7sYYF5CGv4La9VZ4\nIVvWt06qj4FZr8hCuXrsb7UdMrK2YowfA//IPtZ0ri+UM+9ayNUnpYJlF+T+qCbwW64yFC1HsTqt\nAf6eLfuEEIrNq3Z0if2a5P1qiOw5e4JU1+Z6HsH6c/E15fXO5bW4xLBuF+T9XSyv7lmvuEJfzI69\nHPi/UpnHGBcDr2Ufi36fhRD6hBCOzOpvyvz9J0mSmoiBI0mSpPr7BamR5ZhsIvQqIYQewA3ZxxEl\nGk7PDiGs0/AfQvgW0JvUW+WxbPU0UqCgDWli7vz0J5KGRcpN0l3sF8ArgBtDCF3z9qsAfpx9nFTD\nHE91lWvU71VsY4zxI+BR0nBi/52t/nUZ86+TrDy5icnXacQMIXyJdJ9zDWW567uG1HNqZAjh5MJj\nhhD6A58jPR//JAX2xgD3hhAOKpL+cFKD2RxgfuH2gvJ+DDybfbwuhFDV6yaEsAXwP6yd+6omN5Lm\nyhhapEw9Wdv4/4+8TdXe33qqBK4IIRT2lLqGNKfG+6xtaIbUCwfgnILz3wm4Oa+M+XLrts16utXk\nf7JynRdC+Lf8DSGEAHw/+zi8FseqzuXArcB/FQYSsp4MuQb0vxfuWERD66T66AxcX5BXT9bOf/LA\nenuUx8+y5VUhhN0K8j+QNO9bJen5bkq5gPE+2XXIlaldCOFHpGBnrsdcvXtsVKeedVp983qTdM5t\ngB8W5NWd9D1TrD5qqveroUZny2NIwe1FwOP5CZryerP2+dohhLB3/oYQwvmk+iL3HVLq3wO35teB\nWeA3d+8ey+YerE7u3buiMAiVDaU3BniatUMylu37T5IkNR27AUuSJNVTjHF6COG7wF3AoyGEF4Gp\npIbBLwOdSA1Mt5Q4xA3An0MIT5OG4tmNNOY/wNVZbwNijJ+EEG4HLgbGhhAeI/2q+Quk4MRJpKFe\n+gI/CSEcQJovIGcW8BIwNYTwFKnh60Dg86T5KS5p6LUokGsgOySE8GdSQ/YZMcb389KMIs2fsxXw\nfzHGV8tchrq6iXSf/ieE8BVSoGIP0nU6n9SDZz9SQ9n2pIazC4CxwMMhhNdIwYzPSEMBHU769fRl\nMcZFACGEy4DbSfPVvAREUkCwN2l4q1XAJbWcS+j/kYI6g4DJ2bPXkdSwOY3US6XUL/nzXUpq4Lsl\n6z31GmkOix6knjtbkeYH+2fePq+RnrsRIYRvALNijN+tRV7VWUGax2tyCOFJUiPs54GDSI3sFxcM\n0fgL0vw/XwH+HkJ4mXT+x5CGPNyBdA/yTSUFj7bM9pkF3B5j/F2xAsUYXwwh/BC4DvhTCOE54G3S\n/T2U1Avhjhjjgw07df4jO89LgOOyZ2MRqSH1MGBb4NEY49M1HagMdVJ9/Bw4M4RwNKmHWm5Iry7A\nJNYOTVlWMcb7QwiHAecA/wghPE8aNm030vvUljS0Z7nntqvJM6Qg397A30IIfyAFVQaSeoB8GfgD\n0B8YF0L4Q4xxWKmDNUB96rT69vq8jHRO52c/hngtO/7R2folpPe5ShO+Xw31e9L7+E1SnT4yxvhZ\nkXRNcr1jjG+FEB4nzbX0YvbvgeWkOiRXb/+I9COTkSGECTHG/F5IL2TL6SGEZ7N9DyN9D/0LuLoW\nZRiTBcQuBCaFEJ4h/RumB+nfMJsDT5G9+zHGj8v8/SdJkpqAPY4kSZIaIMZ4N6nB5hFgd1Ij5sGk\nHhrfAk4sMXE7pOFuBpMaWM8gNSi+BpwWYyz8lfz3SQ1T80hznRwDzAYOijE+AfwE+HN2rKNY9995\nq0kNVz8hNWaeQxqi7kng4BjjK/U49ZJijBNJPVkWAPsAPUmNQvkmZOUHuKec+dfTrcCVwAzS9TuJ\nNDfLV2OMI4FfkRrCNiE12LWPMT5OahS8m3TdBwPnkc75CeDwGGPVr+VjjL8kNeqNJfXWOZ3UGNmb\n9GvsATHGR2pT2BjjG6Tn7jHS/FbfJAWS7iMFj2o1tFOMcRLwb6TG/3akZ2tIdqyXgK/HGAt7I/0H\n6f61I823sd48Q/WwOsZ4Iyl4sgtwNulZfRE4Ksb4aEG5/0JqGP1zlv70LP31pPduPTHGT0jXaVa2\nz+eooWdWjPGHpMbvZ0iB2m8B+5MaX08qQ8CMrLffF0nv5xLSeX2HNLzk/wHnkp6t2h6vIXVSfXxA\nKv8/gONJAeElpIbxI2KMK8uYV6Fvke79JNI5f5PUWP87YGCM8aZGzLuobPiwY4Dfkt6N00jX/zHg\nizHG2aQfAczIyrp/IxWlznVafTOKMT5DCtSOBwLpPnye9J11FiUCJE3xfjVUNoTqI6y9PveXSNpk\n15t0TX+ZHf8bpLriZeDfYoyvk4I/k0nfM4cU7LuK9J7eS6rnzyYFtcYCB8QYZ1ILMcaLgBOB50hz\n+g0hBUdfJ30PHpP/7pfz+0+SJDWNisrKsg43LUmSJNUoGxpnFqlXxY653lWSJEmSJKl52eNIkiRJ\nzeGbpMnCf2PQSJIkSZKklsPAkSRJkppUNqH3zaRhwn7SzMWRJEmSJEl52jV3ASRJkrRxCCHcBnQj\nza+wKXBhNr+LJEmSJElqIQwcSZIkqal8mzQxeARujDGObubySJIkSZKkAhWVlZXNXQZJkiRJkiRJ\nkiS1AM5xJEmSJEmSJEmSJMDAkSRJkiRJkiRJkjIGjiRJkiRJkiRJkgRAu+YuwMZs0aJFTjAlSZIk\nSZIkSZIaVadOnSpqm9YeR5IkSZIkSZIkSQIMHEmSJEmSJEmSJClj4EiSJEmSJEmSJEnABjDHUQih\nC3AtcAKwHbAAeAIYFmOcW8djdQD+AewODIwxvlCwfUfgR8BXgW2AOcD/Aj+MMS5q2JlIkiRJkiRJ\nkiQ1r1bd4yiE0BF4AbgAeAQ4B/gl8A3gpRDC1nU85DBS0KhYXt2BvwAnA3dleT0MXAQ8G0LYpM4n\nIEmSJEmSJEmS1IK09h5HlwF7AhfGGG/PrQwh/AN4lBQIurw2Bwoh7Al8H/gbsE+RJD8CtgcGxRif\nyNY9EEJ4D/gfUvBqRD3PQ5JavGnTpgHQp0+fZi6JJBVnPSWppbOektQaWFdJaumspxpfq+5xBJwF\nLAVGFax/DHgPOCOEUFHTQUIIbUi9iN4m9Vgq3L4JcCowPS9olHMXsAI4s86llyRJkiRJkiRJakFa\nbeAohLAV0Bf4a4xxef62GGMlMAnYFtilFoe7CPgicD6wvMj2vsBWpKHq1hFjXAq8CewdQmhfl3OQ\nJEmSJEmSJElqSVrzUHW9suV7Jba/ky13BWaWOkgIYUfgBuD+GOOEEMI5RZLtXIu89gV2BKaXLnLt\n5LraSVJLZB0lqaWznpLU0llQ5dpMAAAgAElEQVRPSWoNrKsktXTWU8WVYwi/VtvjCNgyWy4rsX1p\nQbpS7iANNXdFE+QlSZIkSZIkSZLUYrXmHkcNFkI4FRgEfCvGOL+5y5PjpF6SWiInHpTU0llPSWrp\nrKcktQbWVZJaOuupxteaexwtzpabl9i+RUG6dYQQugDDgYkxxl83Zl6SJEmSJEmSJEmtQWvucTQL\nqAR2KLE9NwdSqYEOfwp0Bq4LIeQfY+tsuW22fj5r50iqLq/lrJ1XSZIkSZIkSZIkqdVptT2OYoxL\ngTeAfUMIHfK3hRDaAgcC78YYSwVzDgc2BZ4H3s3772fZ9oeyzwcAEfgXcFDhQUIInYHPAZNijCsb\neFqSJEmSJEmSJEnNptUGjjKjgM2A7xSsPwPoBozMrQgh9A0h7JKX5lvAsUX+uzXbfk32eXKMcTVw\nL7BLCOH4grwuJfXcGokkSZIkSZIkSVIr1pqHqgO4EzgduDmE0At4DdgDuByYDNycl/YtUs+hvgAx\nxueKHTCEsE32519ijC/kbfoxcDwwOoRwS3asA4DvAs8C95fnlCRJkiRJkiRJkppHq+5xlA0NdyTw\nc+Bk4B7gbFLvn0NjjMvKmNdC4EvAGGBIltfXgP8Cjo8xVpYrL0mSJEmSJEmSpObQ2nscEWNcTOph\ndHkN6Spqebx7SEGhYtvmAefWrYSSJEmSJEmSJEmtQ6vucSRJkiRJkiRJkqTyafU9jgRjJi9u7iLU\ny6l7btXcRZAkSZIkSVJDjL6vuUug5nD6Wc1dAkmNyB5HkiRJkiRJkiRJAgwcSZIkSZIkSZIkKeNQ\ndRuY6R+tbO4iVKt3l03KeryLL76YV155BYB7772Xfv36rZfmxhtvZNy4cdx0000MHDiwXvmsXLmS\nO+64g9GjR7PPPvtw5513Fk23aNEiRo4cycSJE1mwYAGdO3fmwAMP5Pzzz2ebbbapV95Nodzl/uUv\nf8moUaMYNGgQ1157bSOUWJIkSZIktTjTpjZ3CdSY+uze3CWQ1EQMHKlVe+utt6r+Hj9+fNHAUS5N\nsW218fbbbzNs2DDeeecdKisrS6b77LPPuOCCC5g9ezaDBw+mX79+vPvuu4wePZrXXnuN++67j622\nannzOpW73DNmzOC++xzfWJIkSZIkSZJaI4eqU6v1/vvvs3jxYvr168e2227LhAkT1kuzYsUKZsyY\nQZcuXejRo0ed81i8eDFnnnkmq1ev5t5776027ZgxY5g+fTqXX345Q4cO5aijjuK8887juuuuY86c\nOYwaNarO+TeFcpZ7zZo13Hjjjey6666NWGJJkiRJkiRJUmOxx9EGrNzDwtVXYw2fN2XKFAD69+9P\n27Zteeihh5gyZQr9+/evSjNt2jRWrVpF3759AZgzZw4nnHACAwYMYMSIETXmsXLlSr72ta8xdOhQ\n2rdvX23aJ554go4dO3Lcccets/6QQw6hW7duPPXUU1x22WVUVFTU9VR54403OPfccxk8eDB77bUX\nDz/8MNOnT2fFihX06dOHiy66iP32268qfV3Os5zlfuSRR5g8eTK/+MUvuPDCC+t8npIkSZIkaQPh\nsGYbBocflDZK9jhSq5U/BN3hhx8OpOHqSqWpj65du3LVVVfVGDRasmQJs2fPJoTApptuus62iooK\n9thjDxYuXMicOXPqVY5//vOfALz66qtcd911dOrUiZNOOol99tmHKVOmMHToUObNm1fn45az3B98\n8AG33347Rx99NPvvv3+dyyJJkiRJkiRJan72OFKrlR8U2m233aqGq7vkkkuKpgHo0aMHEyZMoF27\n8j76uaBNt27dim7v3r07kIbX23777et8/BgjAPPnz+eOO+5g7733rtp2880389BDD/Hggw9y6aWX\nArU/z3KW+6c//Slt27blsssuq91JSZIkSZIkSZJaHHscqVWqrKwkxkj79u3ZZZddaNOmDQMHDmTu\n3Lm8+eabVekKA0dt2rRhyy23pGPHjmUtz7JlywDo0KFD0e25/JYuXVqv4+d6HH3ve99bJ2gEcPzx\nxwMwa9asqnW1Pc9ylXvChAm8+OKLXHLJJWy99dbVppUkSZIkSZIktVwGjtQqvfPOOyxZsoQ+ffpU\n9aopHK7us88+Y9asWWyzzTZsu+22zVbWhlqxYgWzZs2ie/fuHH300ett79SpEwCrVq1q6qIB8Mkn\nn3DzzTez7777cuyxxzZLGSRJkiRJkiRJ5WHgSK1SsbmLPv/5z7PNNtvw3HPPUVlZydSpU1m9enW9\n5zeqi8033xxIwapiPv3003XS1cX06dNZtWoVAwYMoE2b9V/ZuXPnAmuHlauLcpR7xIgRLF68mKuu\nuoqKioo6l0GSJEmSJEmS1HIYOFKrVCxwlBuubt68eUyePLlomsbSs2dPKioq+OCDD4puzwV3dtpp\npzofOze/0XbbbVd0+0svvQTAgAED6nzshpb7r3/9K7/73e84+eST6dixIx988EHVf5ACUh988AGL\nFy+uc9kkSZIkSZIkSU2vXXMXQKqPUkGhww8/nLFjxzJ+/HgWLVpUNE1j6NixI7179ybGyPLly2nf\nvn3VttWrVzN58mS6d+9Ojx496nzs3PxGS5YsWW/bokWLePTRR+nevTtf/vKXm7zcr732GpWVlYwZ\nM4YxY8ast33ChAlMmDCBQYMGce2119a5fJIkSZIkSZKkpmXgaAM2/aOVzV2ERrFmzRqmTp1Khw4d\n2HnnndfZtvfee9O1a1eee+45NttsM2DdwNGaNWtYunQp7dq1o2PHjmUt13HHHcctt9zCo48+yqmn\nnlq1/sknn+Sjjz5iyJAhVetWrVrFe++9R8eOHWscYi4XOJowYQLnnXdeVbmXLVvGsGHDWLRoEddc\nc806QZ+6nGdDyv3Vr361ZGDuiiuuYP/99+fUU0+t1zB6kiRJkiRJkqSmZ+BIrc7s2bNZtmwZe+21\nF23btl1nW5s2bTjssMMYO3YskOb96dKlS9X2efPmccIJJzBgwABGjBhRY14zZ85k1qxZ66xbuHAh\nEyZMqPp80EEH0aFDB04++WSefvpphg8fzty5c+nXrx8zZ87kt7/9Lb179+aMM86o2ufDDz/klFNO\nqbEcq1atYsaMGfTp04clS5Zw2mmncfDBB7Ny5UpefPFF5s+fz4UXXsjAgQPX2a8u59mQcvfq1Yte\nvXqVPHa3bt04+OCDq81fkiRJkiRJktRyGDhSq1PT3EW54eqqS1Nb48ePZ+TIkeusmzVrFldffXXV\n53HjxtGzZ0/atWvHiBEjuOuuu3j++ecZO3YsXbp04bjjjmPIkCF06NBhveO3aVP9NGMzZ85kxYoV\n7Lnnnpx22mnccsstPP7441RWVrLHHnswbNiwes1tlK8+5ZYkSZIkSZIkbZgqKisrm7sMG61FixaV\n5eKPmby4HIdpcqfuuVVzF6FZjRs3jtdff53rr7++ZJrHH3+c66+/nquvvpoTTzyxCUsnrW/atGkA\n9OnTp5lLIknFWU9JaumspyS1BnWuq0bfl7fz1LV/99m9jKVSsyl1T08/q+nLImX8N1X9dOrUqaK2\naavv7iCp0bz88sv079+/2jS5+Y1CCE1RJEmSJEmSJEnSRs7AkdQMli9fTu/evTn22GOrTRdjpG3b\ntuy2225NVDJJkiRJkiRJ0sbMOY42ABv7kG+tUfv27Tn33HOrTbNmzRqmTZtGr169aN++fROVTJIk\nSZIkSZK0MTNwJLVQbdq0YeLEic1dDEmSJEmSJEnSRsSh6iRJkiRJkiRJkgQYOJIkSZIkSZIkSVLG\nwJEkSZIkSZIkSZIAA0eSJEmSJEmSJEnKGDiSJEmSJEmSJEkSYOBIkiRJkiRJkiRJGQNHkiRJkiRJ\nkiRJAgwcSZIkSZIkSZIkKWPgSJIkSZIkSZIkSYCBI0mSJEmSJEmSJGXaNXcBVAaj72vuEtTP6Wc1\ndwkkSZIkSZIkSVIeexxJkiRJkiRJkiQJMHAkSZIkSZIkSZKkjEPVbWimTW3uElSvz+5lPdzFF1/M\nK6+8AsC9995Lv3791ktz4403Mm7cOG666SYGDhxYr3xWrlzJHXfcwejRo9lnn3248847i6ZbtGgR\nI0eOZOLEiSxYsIDOnTtz4IEHcv7557PNNtvUK++m0NByv/3224waNYpJkybxySefsO2223LUUUfx\nzW9+k/bt2zfBGUiSJEmSJEmSysHAkVq1t956q+rv8ePHFw0c5dIU21Ybb7/9NsOGDeOdd96hsrKy\nZLrPPvuMCy64gNmzZzN48GD69evHu+++y+jRo3nttde477772GqrrepVhsbU0HJPnz6d8847jxUr\nVnDKKafQu3dv3njjDe6++27eeustbr31VioqKprwjCRJkiRJkiRJ9WXgSK3W+++/z+LFi+nXrx8L\nFixgwoQJXHzxxeukWbFiBTNmzKBLly706NGjznksXryYM888kx133JF7772XwYMHl0w7ZswYpk+f\nzpVXXsnXv/71qvV9+vThyiuvZNSoUQwdOrTOZWhsDS338OHDWbp06To9ugYNGkTXrl0ZOXIk48eP\n54gjjmj085AkSZIkSZIkNVyrDxyFELoA1wInANsBC4AngGExxrk17FsBnA4MAfoDWwDvAo8B18cY\nF+WlnQ30quZw+8QY/17vE2kMZR4Wrt4aafi8KVOmANC/f3/atm3LQw89xJQpU+jfv//arKdNY9Wq\nVfTt2xeAOXPmcMIJJzBgwABGjBhRYx4rV67ka1/7GkOHDq1xyLUnnniCjh07ctxxx62z/pBDDqFb\nt2489dRTXHbZZfXqffPGG29w7rnnMnjwYPbaay8efvhhpk+fzooVK+jTpw8XXXQR++23X1X6upxn\nQ8q9YsUKXn/9dXr06LHeMICnn346999/P08++aSBI0mSJEmSJElqJdo0dwEaIoTQEXgBuAB4BDgH\n+CXwDeClEMLWNRziZ8D9wHLgB8BFwJvAFcALIYRNCtLPBwaX+G9Wg09IdZI/BN3hhx8OpOHqSqWp\nj65du3LVVVfVGDRasmQJs2fPJoTApptuus62iooK9thjDxYuXMicOXPqVY5//vOfALz66qtcd911\ndOrUiZNOOol99tmHKVOmMHToUObNm1fn4za03B9//DGrVq2iZ8+e623bfPPN2X777asCfJIkSZIk\nSZKklq+19zi6DNgTuDDGeHtuZQjhH8CjwDDg8mI7hhD2yfZ/IsY4KG/TyBDCOOB44JjsODnLYowP\nl/cUVF/5QaHddtuNbbfdlgkTJnDJJZcUTQPQo0cPJkyYQLt25X30c0Gbbt26Fd3evXt3IA2vt/32\n29f5+DFGAObPn88dd9zB3nvvXbXt5ptv5qGHHuLBBx/k0ksvBWp/ng0t9+abbw7AwoULi+7fvn17\nPvroI5YvX15j8E2SJEmSJEmS1PxadY8j4CxgKTCqYP1jwHvAGdlwdMUsB64Briuy7dlsuVMZyqhG\nUFlZSYyR9u3bs8suu9CmTRsGDhzI3LlzefPNN6vSFQaO2rRpw5ZbbknHjh3LWp5ly5YB0KFDh6Lb\nc/ktXbq0XsfP9Tj63ve+t07QCOD4448HYNastZ3eanueDS335ptvTu/evZk9ezYzZsxYZ9vs2bOZ\nOjUNU/jpp59WWw5JkiRJkiRJUsvQanschRC2AvoCf4wxLs/fFmOsDCFMAk4CdgFmFu4fY5wClBpD\nq2+2fKOa/DcDPo0xVtaj+NWaNm1andJ3W1Q1FRMdV6yo+vvTvPXNqVSZPqzjeeabO3cuS5YsoXfv\n3lUBkxACAGPHjqV9+/asWLGCmTNn0rlzZz7++GM+/vjjeueX79NPP13vHr377rsALF68uOj9++ij\nj6rKXdf7u3LlSmbOnEnXrl3p3bv3evvnjl0q7+qUo9xHHXUUt912G5dddhnnnXcePXr0YMaMGTzw\nwAN06dKF+fPn88477zB//vw6lU0tV12fM0lqatZTklo66ylJrUFt66qW3i6lhmmMdr3a6PbsU416\nfLU8Hx5xVJ338d9UxfXp06fBx2i1gSOgV7Z8r8T2d7LlrhQJHOULIWwKbA5sB5wJXAjcG2N8viBp\nxxDCiCxNZ+CzEMLTwFUxxn/W/RRUXzNnplu66667Vq3bfffd6dy5M5MmTeL0009n9uzZrFmzZp00\njSXXM2f58uVFt+fW16en07vvvsvq1avZc889adNm/U6CuYBM165d63zscpT7gAMO4JNPPuHBBx/k\nxz/+MZB6Ig0ePJgYIwsXLnSYOkmSJEmSJElqJVpz4GjLbLmsxPalBemqcxrw6+zvBcCQGOPIIum6\nATsD3wFWAANJQaZDQwj/FmOcWou8alTniOCkv6z9+8MPqv7ctFOnchSn4UqUqVMDIp+///3vARgw\nYMA61+uII45g7NixfPbZZyxZsgSA/fbbryxR1pyOHTuud7wddtiBiooKli1bVjSv3FBtBxxwAD16\n9KhTfrmh9/r27Vv02M8+m0ZWPPLII+t8nuUqd58+fTj33HOZMWMGbdu2Zdddd2WTTTbhrLPOYued\nd67qDabWLfcrjnK+T5JUTtZTklo66ylJrUGd66qW3i6lhmmEdr1ayX+utFGoyzPlv6kaX2sOHJXT\nU8BhwLbA0cCvQghHAmfHGHOTs5wNrI4x/ilvv3EhhMnAXcAPgX9vwjJv1ArnLso5/PDDGTt2LOPH\nj2dR1n22ME1j6NixI7179ybGyPLly9fpYbN69WomT55M9+7d6xw0grXzG+UCYfkWLVrEo48+Svfu\n3fnyl7/crOVu3749/fv3r/q8YMECpk6dyje+8Y06l0uSJEmSJEkCYFpZfquvlqjP7s1dApXQmgNH\ni7Pl5iW2b1GQrqQY4zxgXvbxoRDC34FbgcnA9VmaiSV2vxv4OfCVWpS5aW2gleqaNWuYOnUqHTp0\nYOedd15n2957703Xrl157rnn2GyzzYB1A0dr1qxh6dKltGvXrl7DxlXnuOOO45ZbbuHRRx/l1FNP\nrVr/5JNP8tFHHzFkyJCqdatWreK9996jY8eOdO/evdrj5gJHEyZM4Lzzzqsq97Jlyxg2bBiLFi3i\nmmuuWSfoU5fzbGi5b731Vh577DF+/etfr3M/7rjjDioqKjjxxBOrzV+SJEmSJEmS1HK05sDRLKAS\n2KHE9twcSPWZIWskKXB0FFngqJQY45oQwgLSMHZqArNnz2bZsmXstddetG3bdp1tbdq04bDDDmPs\n2LEAdO/enS5dulRtnzdvHieccAIDBgxgxIgRNeY1c+ZMZs2atc66hQsXMmHChKrPBx10EB06dODk\nk0/m6aefZvjw4cydO5d+/foxc+ZMfvvb39K7d2/OOOOMqn0+/PBDTjnllBrLsWrVKmbMmEGfPn1Y\nsmQJp512GgcffDArV67kxRdfZP78+Vx44YUMHDhwnf3qcp4NLXfuel988cWceuqpdO7cmeeff54X\nX3yRCy64YL3gniRJkiRJkiSp5Wq1gaMY49IQwhvAviGEDjHGz3LbQghtgQOBd2OM7xTbP4TwA2Ao\n8I0Y44SCzZ2zZbss7a6k+YxeiTG+WXCcLYDtgRllOC3VQqlh6nJyw9VVl6a2xo8fz8iR6053NWvW\nLK6++uqqz+PGjaNnz560a9eOESNGcNddd/H8888zduxYunTpwnHHHceQIUPo0KHDesdv06ZNtfnP\nnDmTFStWsOeee3Laaadxyy238Pjjj1NZWckee+zBsGHDGDBgQIPOsT7lzrfXXnsxfPhwRo0axd13\n383KlSvZbbfduOGGGzjiiCMaVDZJkiRJkiSpikObtX4b6ChZG5pWGzjKjAJGAN8BhuetP4PUA+ja\n3IoQQl9geYwx133kTaArcBlQGDg6K1u+lC27k3ohjQ8hHBljrMxLexVQAfxvg8+mHDaCynPQoEEM\nGjSo5PZ9992XSZMmFd3Ws2fPktuKGTJkyDpDtdVkiy22YOjQoQwdOrTadD179uSaa67h9ddfrzZd\njBGAEAI77bQTw4cPrzZ9/vHrcp51KXex4+63337st99+tc5PkiRJkiRJktQytfbA0Z3A6cDNIYRe\nwGvAHsDlpPmJbs5L+xYQgb7Z598BvweOCSFMBMYCS4FDSIGjubn9Y4x/CSHcA5wDvBBCeAhYDnwV\n+HqW1w2NdZLaML388st8/vOfrzZNbn6jEEJTFEmSJEmSJEmStJGrfpysFi7GuBI4Evg5cDJwD3A2\nqXfQoTHGZdXsWwmcAFwKbA7cBPySFDi6E9gvxjgnb5dzs/+2BH4K3AZ8DvgxcFCMcXE5z00btuXL\nl9O7d2+OPfbYatPFGGnbti277bZbE5VMkiRJkiRJkrQxa+09jsgCNpdn/1WXrqLIutWkoe5G1CKf\n1aSh8UbVr6SN6PSzak6jFqV9+/ace+651aZZs2YN06ZNo1evXrRv376JSiZJkiRJkiRJ2pi1+sCR\ntKFq06YNEydObO5iSJIkSZIkSZI2Iq16qDpJkiRJkiRJkiSVj4EjSZIkSZIkSZIkAQaOJEmSJEmS\nJEmSlDFwJEmSJEmSJEmSJMDAkSRJkiRJkiRJkjIGjiRJkiRJkiRJkgQYOJIkSZIkSZIkSVLGwJEk\nSZIkSZIkSZIAA0eSJEmSJEmSJEnKGDiSJEmSJEmSJEkSYOBIkiRJkiRJkiRJGQNHkiRJkiRJkiRJ\nAgwcSZIkSZIkSZIkKWPgSJIkSZIkSZIkSYCBI0mSJEmSJEmSJGUMHEmSJEmSJEmSJAkwcCRJkiRJ\nkiRJkqSMgSNJkiRJkiRJkiQBBo4kSZIkSZIkSZKUMXAkSZIkSZIkSZIkwMCRJEmSJEmSJEmSMgaO\nJEmSJEmSJEmSBBg4kiRJkiRJkiRJUsbAkSRJkiRJkiRJkgADR5IkSZIkSZIkScoYOJIkSZIkSZIk\nSRJg4EiSJEmSJEmSJEkZA0eSJEmSJEmSJEkCDBxJkiRJkiRJkiQpY+BIkiRJkiRJkiRJgIEjSZIk\nSZIkSZIkZQwcSZIkSZIkSZIkCTBwJEmSJEmSJEmSpIyBI0mSJEmSJEmSJAEGjiRJkiRJkiRJkpQx\ncCRJkiRJkiRJkiTAwJEkSZIkSZIkSZIy7Zq7AA0VQugCXAucAGwHLACeAIbFGOfWsG8FcDowBOgP\nbAG8CzwGXB9jXFSQvj/wI+AQYCvgbeA3wE9ijCvKeFqSJEmSJEmSJElNrlX3OAohdAReAC4AHgHO\nAX4JfAN4KYSwdQ2H+BlwP7Ac+AFwEfAmcAXwQghhk7y89gD+AnwJuBn4FjARuA54qEynJEmSJEmS\nJEmS1Gxae4+jy4A9gQtjjLfnVoYQ/gE8CgwDLi+2Ywhhn2z/J2KMg/I2jQwhjAOOB47JjgMpyLQF\n8KUY4+Rs3egQwlLg0hDCcTHG35Xv1CRJkiRJkiRJkppWq+5xBJwFLAVGFax/DHgPOCMbjq6Y5cA1\npB5DhZ7NljsBhBC2A44AnssLGuXcli3PrFPJJUmSJEmSJEmSWphW2+MohLAV0Bf4Y4xxef62GGNl\nCGEScBKwCzCzcP8Y4xRgSonD982Wb2TL/YAK0lB1hceZHkL4CPhifc5DkiRJkiRJkiSppWi1gSOg\nV7Z8r8T2d7LlrhQJHOULIWwKbA5sR+o5dCFwb4zx+SzJzrXIa+8QQrsY46qai169adOmNfQQktRo\nrKMktXTWU5JaOuspSa1BbeuqbosWVf3dccWKqr8/zVuv1qvUPf2wkb/LfK42XOV8pvw3VXF9+vRp\n8DFac+Boy2y5rMT2pQXpqnMa8Ovs7wXAkBjjyHrmtbAW+UmSJEmSJEmSJLU4rTlwVE5PAYcB2wJH\nA78KIRwJnB1j/LSpC1OOiKAklVvuVxzWUZJaKuspSS2d9ZSk1qDOddWkvJkdPvyg6s9NO3UqZ7HU\nXErc006N/V3mc7XhKsMz5b+pGl9rDhwtzpabl9i+RUG6kmKM84B52ceHQgh/B24FJgPX1yGvT2rK\nS5IkSZIkSZIkqaVq09wFaIBZQCWwQ4ntuTmQ6jPQYW6YuqOyZW6OpOrymlWO+Y0kSZIkSZIkSZKa\nS6sNHMUYlwJvAPuGEDrkbwshtAUOBN6NMb5TbP8Qwg9CCAtCCIcX2dw5W+Z6ZE0CVgEHFTnO57L0\nf6rXiUiSJEmSJEmSJLUQrTZwlBkFbAZ8p2D9GUA31vYcIoTQN4SwS16aN4GuwGVFjntWtnwJIMa4\nAPgdcGgIYZ+CtFdky5FIkiRJkiRJkiS1Yq15jiOAO4HTgZtDCL2A14A9gMtJ8xPdnJf2LSACfbPP\nvwN+DxwTQpgIjAWWwv9n797jPb0K+t5/BgIkXDI0HoKUS7gNKwKxElEooAZeFu15WcWiFkrkYj2l\nBas0IvV4Tgz11p6aWgWKoMTGKhwOtdx6DtbeDEq5pIEDpBUXA4mGFA4JFyeYhCSEOX/s30x2N7Mn\nM7N/e/b8hvf79fq9nmc/z1rPWr/8ntfK3vP9rfX0ba0FR5/aUP8nqm+tfm+McXH1ydaWsntOdcmc\n8w+24w0CAAAAAAAcLys942jOeVv19OqV1TOrS6vntTb757w5502Hqbu/ekb1Y9W9qv+jem1rwdFr\nqsfPOT+5rvxVrS1/d1n1stZmO51bvbSvnPEEAAAAAACwclZ9xlFzzhtam2F0wZ2U23WIY7dXr1i8\njqStvdUPHEM3AQAAAAAATngrPeMIAAAAAACA5REcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmO\nAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAA\nAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAA\nWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAc\nAQAAAAAAUAmOAAAAAN4vvkMAACAASURBVAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmO\nAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAA\nAAAAWBAcAQAAAAAAUAmOAAAAAAAAWBAcAQAAAAAAUAmOAAAAAAAAWDhlpzuwVWOMM6qLqmdUD6g+\nU72junDO+akjqP+URf1vrk6tPlH96+pn55x/vq7cn1RnHeZSj5tzfvDY3gUAAAAAAMDOW+ngaIxx\nWnVZdXb1quqKak/10uppY4xvnHN+/jD1n1P9djVbC49uqL6reln1LWOMp8w5v7yuyvXViza53NVb\nezcAwJ1545U37HQXOM6edc7pO90FAAAA+Kqy0sFR9ZLqnOrFc85XHzg4xvhQ9ZbqwuqCQ1UcY9yj\n+tXWZhg9Yc65b3HqN8YYb2ltBtN3tjZ76YCb5py/s/R3AQAAAAAAcAJY9WccPbe6sbpkw/G3VddW\n548xdm1S92urN1f/aF1odMCBsOjrl9VRAAAAAACAE93KzjgaY5ze2hJ1fzjnvGX9uTnn/jHG5dVf\nrx5WXbWx/pzzT6vnb3L53YvtpuvhjDHuWd0859x/9L0/vL179y77kgBLY4xiJ+3bd+rB/f9+88r+\nGsOdeOBpXzq4v3fvp4+6vnEKONEZp4BVcKRj1Zn77vg+9mm33npw/+Z9G7+nzSra7DO9bpv/X+a+\nOnkt857yO9Wh7dmzZ8vXWOUZR2ctttducv6axfbhR3PRMcbdqx+qbqreuuH0aWOMV4wxPt/aTKeb\nxhhvHWOcfTRtAAAAAAAAnIhW+au691lsb9rk/I0byt2pMcZdql+vvq768TnnJzcUObN6aPXC6tbq\nqdWLq/PGGN885/zokbZ1OMtIBAGW7cC3OIxR7KT3f/GOycDX337bDvaE7bR7970O7u/Z8+Ajrmec\nAk50xilgFRz1WHX5e+7Yv+6O2eJ33737EIVZOZt8pru3+/9l7quT1xLuKb9Tbb9VDo6WaoxxWvWG\n6hnVP59z/tKGIs+rbp9zvmvdsbeOMa5sLWz6h9Wzj0tnAYD/wSPPuNtOd4Et+tjnBIEAAABwIljl\n4OjAV47vtcn5e28ot6kxxv2qt1dPrH52zvnTG8vMOd+5SfXfqF5ZffudtQMAAAAAAHAiW+VnHF1d\n7a8etMn5A89AOuwTssYY96/+c/X46gWHCo0OZ8755eoz1elHUw8AAAAAAOBEs7LB0ZzzxurD1blj\njFPXnxtj3LV6UvWJOec1m11jjHF69W+rh1TfPee8dJNyDx9j/K0xxmMPce7e1QOrTdsBAAAAAABY\nBSsbHC1cUt2zeuGG4+dXZ1avO3BgjHH2GONhG8r9SvUN1bPnnL97mHbuv7jWPxtj7Npw7ierXdWb\nj777AAAAAAAAJ45VfsZR1Wuq51QXjzHOqq6oHlNdUF1ZXbyu7EeqWZ1dNcb4+up51R9Vdx1jfN8h\nrn/9nPOdc873jDEurZ5fXTbGeFN1S/Ud1fct2vr5pb87AAAAAACA42ilg6M5521jjKdXL6+eWf1I\ndV1rs4MumnPedJjq57Y2U+jR1b/apMw7q/MW+z9cvat6cfWLrc3Wurr6ueqfzDm/sJX3AgAAAAAA\nsNNWOjiqmnPe0NoMowvupNyuDT9fWl16FO3c3trSeJccdScBAAAAAABWwKo/4wgAAAAAAIAlWfqM\nozHG11RPrR5X3b+6b/X51paQ+0B12Zzzs8tuFwAAAAAAgK1ZSnA0xjil+v7qRdVfbu3ZQbsOUXR/\ntX+M8e7q1dXvzDm/tIw+AAAAAAAAsDVbDo7GGD9Y/UL1F1sLiz5dvaf6o+pz1Q3V6dXXVI9uLVh6\nSvXk6p+MMX5qzvnbW+0HAAAAAAAAW7Ol4GiM8b7q8a2FRf+0+s055387gnqPrZ5f/c3qN8cYPzLn\nfOJW+gIAAAAAAMDWbHXG0YOrH61+bc5525FWmnP+1+qlY4z/tXph9VNb7AcAAAAAAABbtNXg6BFz\nzpuPtfIibHrVGOOSLfYDAAAAAACALbrLVipvDI3GGF+zjOsAAAAAAABw/G0pODqE1y/5egAAAAAA\nABwnyw6Onj7G+N+PpOAY4/5LbhsAAAAAAIAtWHZw9I7qojHGUw9XaIzxddV7l9w2AAAAAAAAW7Ds\n4Oi51f9XvX6M8bWHKjDGeEr1ruohS24bAAAAAACALVhqcDTn/Fz17Op+1f85xvgfrj/G+L7q31Wn\nVy9aZtsAAAAAAABszbJnHDXnfFf109W3VT9/4PgY4+9Xb6y+XH3vnPO1y24bAAAAAACAY3fKdlx0\nzvmPxhjnVT8xxnh39dTqJdWnq++ac75/O9oFAAAAAADg2G0pOBpjfKJ6X3VFdXl1xZzzhsXp86sP\nVm9ubWbTrP7qnPNPttImAAAAAAAA22OrM44eWP31xWt/tX+Msbf6L60FSa9qbbm6P6y+Z875Z1ts\nDwAAAAAAgG2y1eDoa6rHb3iNxes5izL7q/+p+qdjjP+3+kD1wTnnTVtsGwAAAAAAgCXaUnA05/x8\n9e8Xr6rGGPfrK8Okr1u8nr8o9uUxxkfnnI/ZSvsAAAAAAAAsz1ZnHH2FOef11e8uXlWNMR7QV4ZJ\nZy+7bQAAAAAAAI7d0oOjQ5lzfqr6N4tXVWOMBx+PtgEAAAAAADgyd9mphuecn9iptgEAAAAAAPhK\nOxYcAQAAAAAAcGIRHAEAAAAAAFAJjgAAAAAAAFg4Zac7AMDJ641X3rDTXeA4e9Y5p+90FwAAAADY\ngm2ZcTTGeMgY44x1P58xxnjIdrQFAAAAAADAcmzXUnVXV7+47ud/Wl21TW0BAAAAAACwBNu1VN2u\nxWvjMQC+Sn3sc7ftdBfYJo8842473QUAAAAAlmS7ZhwBAAAAAACwYgRHAAAAAAAAVNu3VB0AbMrS\nZqvP0oMAAAAAJyczjgAAAAAAAKgERwAAAAAAACwIjgAAAAAAAKgERwAAAAAAACwIjgAAAAAAAKgE\nRwAAAAAAACycstMd2KoxxhnVRdUzqgdUn6neUV045/zUEdR/yqL+N1enVp+o/nX1s3POP99Q9tHV\nz1TfVp1e/Wn129U/nnPeuqz3BAAAAAAAsBNWesbRGOO06rLq77YW9jy/em31N6r/PMb4C3dS/znV\nH1YPbi08+rvVh6uXVf9ujHGXdWUfU72nekp1cfVD1Turl1dvWt67AgAAAAAA2BnbNePoN6t3rfv5\nXZsV3KKXVOdUL55zvvrAwTHGh6q3VBdWFxyq4hjjHtWvtjbD6Alzzn2LU78xxnhLazOYvrO12UtV\nv1Tdu3rKnPPKxbHXjzFurH5sjPHdc863L/XdAQCwrd545Q073QWOs2edc/pOdwEAAOCEti0zjuac\nL5hz/sa6ny+Zc75gG5p6bnVjdcmG42+rrq3OH2Ps2qTu11Zvrv7RutDogANh0ddXjTEeUP2V6j+t\nC40OeNVi+4NH330AAAAAAIATx8ouVTfGOL06u/rAnPOW9efmnPury6v7VQ87VP0555/OOZ8/5/zV\nQ5zevdge+Arq46tdrS1Vt/E6H6s+Vz3hWN4HAAAAAADAiWK7lqo7Hs5abK/d5Pw1i+3Dq6uO9KJj\njLu39vyim6q3Lg4/9Aja+oYxxilzzi8daVub2bt371YvAbBtjmaM2rfv1IP7t956yrrjNy21Txx/\nm32ee/d+elvbdU+dvJZ5Tx3rOPXfb17lX405nAeedsev6Ns9TsGR8DcfsAqOdKw6c98dC/mcduut\nB/dv3rdxgR9W0Waf6XXb/P8y99XJa5n3lN+pDm3Pnj1bvsbKzjiq7rPYbvYvRTduKHenxhh3qX69\n+rrqwjnnJ7erLQAAAAAAgBONr1UujDFOq95QPaP653POX9qpviwjEQRYtgPf4jiaMer9X7zjofPX\n337bwf3du++1vI6xIzb7PPfsefC2tuueOnkt455a5jjFyeV4jlNwOMcyTgEcb0c9Vl2+7skO190x\ns/fuu3cfojArZ5PPdPd2/7/MfXXyWsI95Xeq7bfKwdGBv/I3+5eie28ot6kxxv2qt1dPrH52zvnT\nx9jWF+6sLQAATnyPPONuO90FtuhjnxMEAgAAHIstLVU3xnjIsjpyDK6u9lcP2uT8gWcgHXahwzHG\n/av/XD2+esEhQqO64xlJh2vr6mU83wgAAAAAAGCnbHXG0XvHGN815/zAUnpzFOacN44xPlydO8Y4\ndc75xQPnxhh3rZ5UfWLOec1m1xhjnF792+oh1XfPOX93k6KXV1+qnnyIazy2um/1b475zQAAAAAc\nD6//lzvdA3bCc5670z0AYIVsacZR9bXVZWOMv7aMzhyDS6p7Vi/ccPz86szqdQcOjDHOHmM8bEO5\nX6m+oXr2YUKj5pyfaW0pu/PGGI/bcPrHF9vXBQAAAAAAsMK2OuPo5YvXm8cYF8w5X3kklRYBzj+Y\nc/6dLbb/muo51cVjjLOqK6rHVBdUV1YXryv7kWpWZy/68PXV86o/qu46xvi+Q1z/+jnnOxf7P1F9\na/V7Y4yLq09W37lo/5I55x9s8b0AAAAAAADsqC0FR3POnxljfLy1mT+/PMZ4xJzzJZuVH2M8pvpf\nqx+o7lptKTiac942xnh6a+HVM6sfqa5rbfbPRXPOmw5T/dxqV/Xo6l9tUuad1XmLtq4aYzyp+vnq\nZdV9qo9XL61+eSvvAwAAAOC42/vRne4B22nPo3a6BwCsqK3OOGrO+foxxjXVW6u/t5j58zfnnDcf\nKDPG+Kbqf6u+q7Xl8W6uXr3Vthft39DaDKML7qTcrg0/X1pdepRt7W0t9AIAAAAAADjpbDk4qppz\n/uEY44nVO6rvae25R9/d2rJxP1U9tbXZPTe0Fhj9sznn9ctoGwAAAAAAgOVYSnBUa7NxxhhPaG3m\n0VOqq6pTWwuMPlv9SvXKOee+ZbUJAAAAwBJY1uzkYPlBAJZgacHRGGNX9R3VX1gcOq3aX72x+uE7\ned4QAAAAAAAAO2zLwdEY427VC6qXVQ9rbYbRVdX7qmdXf736v6s3bLUtAAAAAAAAts9dtlJ5jHFB\ndXX1q9XDqz+qfrB61JzzOdXfq+5a/dYY46e22FcAAAAAAAC20VZnHF282P6X6hfmnG9bf3LO+c/H\nGNe0NtvoZ8cYD6v+zpzz9i22CwAAAAAAwJJtacZRdVn19DnnEzaGRgfMOf9N9dTq+uqHqv9njHHv\nLbYLAAAAAADAkm0pOJpzPm3O+R+OoNwV1ROrWT29+sMxxl/cStsAAAAAAAAs11ZnHB2xOeefVH+5\nemf1l6r3Hq+2AQAAAAAAuHPHLTiqmnPua23G0RuqBx7PtgEAAAAAADi8U453g3PO26rzxxhXH++2\nAQAAAAAA2NyWZhyNMX5hjLH7WOrOOS9cXGP3GOMXttIPAAAAAAAAtm6rS9X9g+qqMcZFY4yHHE3F\nMcZDxhgvr66qXrbFfgAAAAAAALBFW12q7snVK6qLqgvHGJdV/7F6T/WR6rNzzi+NMU6pvqZ6dPWX\nq2+vvrW14Ory6ke32A8AAAAAAAC2aEvB0ZzzvdU3jzH+ZvWS6mnVU9eXGWPcUt1j3aFdi+17q1+Z\nc/5fW+kDAAAAAAAAy7HVGUdVzTnfUL1hjPH46hnVedU3VPesTl0Uu7H6QPX71VvnnB9cRtsAAAAA\nAAAsx1KCowPmnFdUVxz4eYxxz2p39WdzzpuX2RYAAAAAAADLtZTgaPEMo0e1tgzdn8w5b6yac95U\n3bSMNgAAAAAAANhed9nqBcYYL6k+U11Zfbj63BjjbWOMR2312gAAAAAAABw/WwqOxhjfX/1SdXpr\ns412VXer/lr17jHGY7fcQwAAAAAAAI6Lrc44+nuL7W9Vj6keWn1ndVl1RnXpFq8PAAAAAADAcbLV\nZxz9peqj1fPnnPsXx66p/t0Y4x3Vd4wxnjjnfO8W2wEAAAAAAGCbbXXG0X2q968Ljdb72daWrvvW\nLbYBAAAAAADAcbDV4Kjqlk2O/7fF9sFLaAMAAAAAAIBttozg6JDmnDcsdu+5XW0AAAAAAACwPFt9\nxlHV48YYL6g+VP23OefGGUi7ltAGAAAAAAAA22wZwdHXV69b7N8+xthbfXjxAgAAAAAAYEVsNTj6\noercxesvVfeqvm7x+oFqf/XcMcaTq/eve31g3VJ2AAAAAAAAnAC2FBzNOS+tLq0aY+yqRncESedW\n31Ddt9qzeP2NA3XHGB+fcz5qK+0DAAAAAACwPMtYqq6qOef+6o8XrzccOD7GeHj/Y5j0uOp+1SOW\n1TYAAAAAAABbt7TgaDNzzquqq6rfOXBsjPGg1kIkAAAAAAAAThDbHhwdypzz2uranWgbAAAAAACA\nQ7vLTncAAAAAAACAE4PgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAA\ngKpO2ekObNUY44zqouoZ1QOqz1TvqC6cc37qCK/xyOoN1TdVL5hzXnqIMn9SnXWYyzxuzvnBo+k7\nAAAAAADAiWSlg6MxxmnVZdXZ1auqK6o91Uurp40xvnHO+fk7ucYLqlccYZPXVy/a5NzVR3gNAAAA\nAACAE9JKB0fVS6pzqhfPOV994OAY40PVW6oLqws2qzzG+NvVa6tXVv91sX84N805f2ernQYAAAAA\nADgRrfozjp5b3VhdsuH426prq/PHGLvu5BrfO+f80erWbegfAAAAAADAyljZ4GiMcXprS9R9YM55\ny/pzc8791eXV/aqHbXaNOeevzTnfeozt3/MIQikAAAAAAICVscpL1Z212F67yflrFtuHV1ctqc3T\nxhivqH6wum/1xTHG71U/Oef84yW10d69e5d1KYClO5oxat++Uw/u33rrKeuO37TUPnH8bfZ57t37\n6W1t1z118lrmPWWconZunIIj4W8+dtKZ+/Yd3D/t1jsWX7l53XFW12af6XXHMO4c6Vjlnjq5LfOe\nOhruq5PXToxTX2327Nmz5Wus7Iyj6j6L7WZ/1d+4odwynFk9tHph9b3Vr1XfVb13jPGoJbYDAAAA\nAABw3K3yjKPj7XnV7XPOd6079tYxxpXVr1f/sHr2MhpaRiIIsGwHvsVxNGPU+794w8H962+/7eD+\n7t33Wl7H2BGbfZ579jx4W9t1T528lnFPGadYb6fGKTicYxmnYOkuf88d+9fdMQvz7rt370BnWLpN\nPtPdRzHuHPVY5Z46uS3hnjom7quT106MUxy1VQ6ODvyVv9lf9ffeUG5L5pzv3OTUb1SvrL59Ge0A\nAAAAAADslFVequ7qan/1oE3OH3gG0rYudDjn/HL1mer07WwHAAAAAABgu61scDTnvLH6cHXuGOPU\n9efGGHetnlR9Ys55zVbbGmM8fIzxt8YYjz3EuXtXD6y23A4AAAAAAMBOWtngaOGS6p7VCzccP786\ns3rdgQNjjLPHGA87xnbuv7jWPxtj7Npw7ierXdWbj/HaAAAAAAAAJ4RVfsZR1Wuq51QXjzHOqq6o\nHlNdUF1ZXbyu7EeqWZ194MAY4692xzOSHn9gO8b488X+9XPOd8453zPGuLR6fnXZGONN1S3Vd1Tf\nt2jr55f+7gAAAAAAAI6jlQ6O5py3jTGeXr28emb1I9V1rc0OumjOedOdXOJXu+NZSAe8ePGqemd1\n3mL/h6t3Lc79Ymuzta6ufq76J3POL2zlvQAAAAAAAOy0lQ6OquacN7Q2w+iCOym3cYm55pwPPYp2\nbm9tabxLjrKLAAAAAAAAK2HVn3EEAAAAAADAkgiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARH\nAAAAAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAA\nAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAAAAAALAiOAAAAAAAAqARHAAAAAAAA\nLAiOAAAAAAAAqARHAAAAAAAALJyy0x0ATgxvvPKGne4CO+BZ55y+010AAAAAAE4gZhwBAAAAAABQ\nCY4AAAAAAABYsFQd8BU+9rnbdroLbKNHnnG3ne4CAAAAAHCCMuMIAAAAAACASnAEAAAAAADAgqXq\ngMOyrNnJwfKDAAAAAMCRMOMIAAAAAACASnAEAAAAAADAguAIAAAAAACAyjOOAAAAluaNV96w013g\nOHvWOafvdBcAAGCpzDgCAAAAAACgEhwBAAAAAACwYKk6AACAbfCxz922011gmzzyjLvtdBcAAGDb\nmHEEAAAAAABAJTgCAAAAAABgwVJ1AAAA28zSZqvP0oMAAHy1MOMIAAAAAACASnAEAAAAAADAguAI\nAAAAAACA6iR4xtEY44zqouoZ1QOqz1TvqC6cc37qCK/xyOoN1TdVL5hzXrpJuUdXP1N9W3V69afV\nb1f/eM5569beCQAAAAAAwM5a6eBojHFadVl1dvWq6opqT/XS6mljjG+cc37+Tq7xguoVR9DWY6p3\nVzdXF1fXVudVL6/ObS24AgAAAAAAWFkrHRxVL6nOqV4853z1gYNjjA9Vb6kurC7YrPIY429Xr61e\nWf3Xxf5mfqm6d/WUOeeVi2OvH2PcWP3YGOO755xv38qbAQAAAAAA2Emr/oyj51Y3VpdsOP621mYE\nnT/G2HUn1/jeOeePVpsuNTfGeED1V6r/tC40OuBVi+0PHnGvAQAAAAAATkArGxyNMU5vbYm6D8w5\nb1l/bs65v7q8ul/1sM2uMef8tTnnW4+gucdXu6r3HOIaH6s+Vz3hyHsPAAAAAABw4lnlperOWmyv\n3eT8NYvtw6urttjWQ4+grW8YY5wy5/zSFttq7969W70EHLV9+049uH/rraesO37TTnSHJdvsM927\n99NHfa2jGaPcVyevZd5TR8M9dfIyTrFsximWbafGKVi2M/ftO7h/2q13LL5y87rjrK7NPtPrjmHc\nOdKxyj11clvmPXU03Fcnr50Yp77a7NmzZ8vXWNkZR9V9FtvN/gK7cUO5VWkLAAAAAABgR6zyjKOT\n1jISQTha7//iDQf3r7/9toP7u3ffaye6w5Jt9pnu2fPgI77GgW9xHM0Y5b46eS3jnjoW7qmTl3GK\nZTNOsWw7NU7B0l2+bhX+6+6YMXf33bt3oDMs3Saf6e6jGHeOeqxyT53clnBPHRP31clrJ8Ypjtoq\nzzg68BfZZn+B3XtDuePR1heW0BYAAAAAAMCOWOXg6Opqf/WgTc4feAbSMhY6PPCMpMO1dfUynm8E\nAAAAAACwU1Y2OJpz3lh9uDp3jHHq+nNjjLtWT6o+Mee8ZgnNXV59qXryxhNjjMdW963etYR2AAAA\nAAAAdszKBkcLl1T3rF644fj51ZnV6w4cGGOcPcZ42LE0Muf8TPX26rwxxuM2nP7xxfZ1AQAAAAAA\nrLBTdroDW/Sa6jnVxWOMs6orqsdUF1RXVhevK/uRalZnHzgwxvir3fHcoscf2I4x/nyxf/2c852L\n/Z+ovrX6vTHGxdUnq+9ctH/JnPMPlvzeAAAAAAAAjquVDo7mnLeNMZ5evbx6ZvUj1XWtzf65aM55\n051c4le741lIB7x48ap6Z3Xeoq2rxhhPqn6+ell1n+rj1UurX97qewEAAAAAANhpKx0cVc05b2ht\nhtEFd1Ju1yGOPfQo29pb/cDR1AEAAAAAAFgVq/6MIwAAAAAAAJZEcAQAAAAAAEAlOAIAAAAAAGBB\ncAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQA\nAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAA\nAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAl\nOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIA\nAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGBBcAQAAAAAAEAlOAIAAAAAAGDhlJ3uAAAAALCJ1//Lne4B\nx9tznrvTPQAAvsqZcQQAAAAAAEAlOAIAAAAAAGDBUnUAAACwCvZ+dKd7wHbZ86id7gEAwEFmHAEA\nAAAAAFCdBDOOxhhnVBdVz6geUH2mekd14ZzzU0dQ/0nVhdUTq9Oqj1a/Xr1qzrl/Xbk/qc46zKUe\nN+f84LG9CwAAAAAAgJ230sHRGOO06rLq7OpV1RXVnuql1dPGGN845/z8Yeo/rfrd6hPVy6vPVd9T\nvaJ6RPWSDVWur160yeWuPtb3AQAAAEfF0marz9KDAMAJaqWDo9aCnXOqF885X33g4BjjQ9VbWptJ\ndMFh6r+6+mL1LetmJ/3WGOOt1Y+OMf7FnPND68rfNOf8naW+AwAAAAAAgBPEqj/j6LnVjdUlG46/\nrbq2On+MsetQFccYT6hG9aZDLGn3qmpXdf5yuwsAAAAAAHDiWtngaIxxemtL1H1gznnL+nOLZxNd\nXt2vetgml/jmxfY9hzj3vsX2CYdp/56bhVIAAAAAAACraJWXqjtrsb12k/PXLLYPr646xPmHblZ/\nzvmFMcafLequd9oY4xXVD1b3rb44xvi96ifnnH98FH0/rL179y7rUnDE9u079eD+rbeesu74TTvR\nHZZss890795PH/W1jmaMcl+dvJZ5Tx0N99TJyzjFshmnWLadGqfO3Lfv4P5pt956cP/mdcdZTZt9\nntdt878JuKdObsu8r450rHJPndyMVSzbToxTX2327Nmz5Wus7Iyj6j6L7WZ/gd24odyx1N9Y98zW\nAqcXVt9b/Vr1XdV7xxieTAoAAAAAAKy0VZ5xdLw9r7p9zvmudcfeOsa4svr16h9Wz15GQ8tIBOFo\nvf+LNxzcv/72yJU9ZQAAEpZJREFU2w7u7959r53oDku22We6Z8+Dj/gaB77FcTRjlPvq5LWMe+pY\nuKdOXsYpls04xbLt1DjV5etWV7/ujtlNd9+9+8ivwYlpk89z93b/m4B76uS2hPvqqMcq99TJzVjF\nsu3EOMVRW+Xg6MBfZJv9BXbvDeWOpf7BunPOd25S7jeqV1bfvsl5AAAAAACAlbDKS9VdXe2vHrTJ\n+QPPQNpsocMDzz36ivpjjN3V7sPUPWjO+eXqM9Xpd1YWAAAAAADgRLaywdGc88bqw9W5Y4xT158b\nY9y1elL1iTnnNZtc4t2L7ZMPce5bFtt3La738DHG3xpjPHZjwTHGvasHVpu1AwAAAAAAsBJWeam6\nqkuqV1QvrH5l3fHzqzOriw4cGGOcXd0y57y6as75wTHGB6rvH2P89Jzz2kW5XdXfr26rfnNR/f7V\n66r/MMZ4+pxz/7q2frLaVb15G94fAAAAX8U+/tlbD+7f74tfPrh//brjrKbNPs9H7ERnAADWWfXg\n6DXVc6qLxxhnVVdUj6kuqK6sLl5X9iPVrM5ed+xF1e9XfzDG+OXqz6pnVU+rLpxzfrxqzvmeMcal\n1fOry8YYb6puqb6j+r5FWz+/PW8RAAAAAADg+FjZpeqq5py3VU+vXlk9s7q0el5rs4POm3PedCf1\n31d9a/XH1c9Ur62+tvqhOefPbSj+w4vXfapfrF5VPbb6uerJc84blvOuAAAAAAAAdsaqzzhqEdhc\nsHgdrtyuTY5fUf3PR9DO7a0tjXfJMXRz6d54pZzqq9Gzzjl9p7sAAADskFu/fMeq6ftu+fJhSrIK\ndn95/50XAgDYASs94wgAAAAAAIDlERwBAAAAAABQnQRL1VEf+9xtO90FttEjz7jbTncBAAA4wey+\nh++BAgCwPfymCQAAAAAAQCU4AgAAAAAAYMFSdScZy5qdHCw/CAAAAADATjDjCAAAAAAAgEpwBAAA\nAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAA\nwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILg\nCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwILgCAAA\nAAAAgEpwBAAAAAAAwILgCAAAAAAAgEpwBAAAAAAAwMIpO90BAACAk8U3/f6bDu4/6pYvH9zffQ/f\n2Vt1m36e5/zwDvQGjt3HP3vrwf37ffGO+/r6dcdZXZt9po/Yic4AsLL89QIAAAAAAEAlOAIAAAAA\nAGDBUnUAAADb4CHXX31w/+532bWDPWEZdn95/8H9fQ+y6BMnh1vX39frlmNkda0fqwDgWJlxBAAA\nAAAAQCU4AgAAAAAAYMFSdQAAANvs+r/48J3uAlu0+9qP73QXYFvtvofvFgMAa/xWAAAAAAAAQCU4\nAgAAAAAAYGHll6obY5xRXVQ9o3pA9ZnqHdWFc85PHUH9J1UXVk+sTqs+Wv169ao55/4NZR9d/Uz1\nbdXp1Z9Wv1394znnrct6TwAAAAAAADthpYOjMcZp1WXV2dWrqiuqPdVLq6eNMb5xzvn5w9R/WvW7\n1Seql1efq76nekX1iOol68o+pnp3dXN1cXVtdd6i3rmtBVcAAKyQb/r9Nx3cf9QtXz647zkPq2/T\nz/OcH96B3gDAyevjn73ju9T3++Id//+9/rO+Y30y2OwzfcROdAY4blY6OGot2DmnevGc89UHDo4x\nPlS9pbWZRBccpv6rqy9W37JudtJvjTHeWv3oGONfzDk/tDj+S9W9q6fMOa9cHHv9GOPG6sfGGN89\n53z70t4ZAPAV/CP/ycs/8gMAAAcIJE9ewsjVsGv//v13XuoENcb4SPXg6mvmnLesO76ruqa6R3X/\njUvOLco8oXpv9bo55/+y4dy3V/++unjO+RNjjAdU/736j3POv7Kh7COrvdXvzDm//2j6v2/fvtX9\njw8AAAAAAKyE3bt37zrSsiv79dwxxumtLVH3gfWhUdUiKLq8ul/1sE0u8c2L7XsOce59i+0TFtvH\nV7sOVXbO+bHWlrh7wsZzAAAAAAAAq2Rlg6PqrMX22k3OX7PYPnyT8w/drP6c8wvVn62ru2nZdW09\neIyx6kv/AQAAAAAAX8VWOTi6z2J70ybnb9xQ7ljq3+coyh6uLQAAAAAAgBPeKgdHAAAAAAAALNEq\nB0c3LLb32uT8vTeUO5b6NxxF2aovbHIeAAAAAADghLfKz+S5utpfPWiT8weegbR3k/NXLbZfUX+M\nsbvaXX3gzsqua+vqOeeXDtfhjXbv3r3raMoDAAAAAABsp5WdcTTnvLH6cHXuGOPU9efGGHetnlR9\nYs55zSaXePdi++RDnPuWxfZdi+3l1ZcOVXaM8djqvuvKAgAAAAAArKSVDY4WLqnuWb1ww/HzqzOr\n1x04MMY4e4zxsAM/zzk/2NqMou8fYzxoXbld1d+vbqt+c1H2M9Xbq/PGGI/b0NaPL7avCwAAAAAA\nYIWt8lJ1Va+pnlNdPMY4q7qiekx1QXVldfG6sh+pZnX2umMvqn6/+oMxxi9Xf1Y9q3padeGc8+Pr\nyv5E9a3V740xLq4+WX3nov1L5px/sPy3BwAAAAAAcPys9IyjOedt1dOrV1bPrC6tntfa7J/z5pw3\n3Un997UWBv1x9TPVa6uvrX5ozvlzG8pe1dryd5dVL2ttttO51Uv7yhlPAAAAAAAAK2fX/v37d7oP\nAAAAAAAAnABWesYRAAAAAAAAyyM4AgAAAAAAoBIcAQAAAAAAsCA4AgAAAAAAoBIcAQDA/9/encb4\ndhZ0HP9eKMgurVBAKggmPAiByKKiltUAVqhCUayKSMBEqpCyCiKlFVAT+wLCZtAiti6ghM1ibRSw\nSIEApQKpwkOjECBFNkFoWQS5vjj/KdPbe6tCOmcy9/NJJufOc84kvxeTuTPn9ywAAADAhuIIAAAA\nAACAqo5YO8DhboxxVHVq9ZDqFtVnqnOqU+acn1gzG8AY46bVs6qHVjerPl+dXz1nznnhmtkADmWM\n8ezqlOrMOeejVo4DUNUY47jq6dVdq69X/1Q9d8755lWDAWyMMe5YPaO6X3WTlr//3l6dPuc8f81s\nwOFnjHHt6rnVU6p/nHPe5yDPXLf6zerE6tbVF6o3t7xb/9DOpd17rDha0eYb+7zqpOrV1aOql1Y/\nV71tjHHkauGAw94Y4+jqwuox1V9uri+tfrw6f4xxlxXjARzU5oXH09bOAbDdGOPRLRMEq06uTqtu\nW507xrjPSrEALrf5++5d1U9WZ1SPrp5X3b16yxjj+BXjAYeZMcao3tHy3nzfIZ7ZV72+emb11paf\nW79f3ad6xxjj+3Yk7B5lxdG6nlDdqfr1OedLtgbHGO+rXtsyU/ZJK2UDeG51TPWwOedrtgbHGO+u\nXtcyo+PhK2UDuJIxxjWqP6r+uVJuA7vCGOPm1QuqN1YPnHN+YzN+dssLkQe1TCgEWNMzq+tVD51z\n/t3W4BjjNdUHqmdXZ6+UDTiMbBZTXFhd3FJef/AQj55Y3b9lVeRvbPv6N1UXVKdXJ1y9afcuK47W\n9cjqsuplB4y/vvp49YhNcwqwhkuqV7QU2dudW+2v7rzjiQCu2knVj7RsZQCwW/xydf3qtK3SqGrO\n+W9zzpvNOZ+6XjSAy23NzH/r9sE55werT1Xfu9OBgMPWtauzqnvMOedVPPfIzfUF2wc3Ryu8vXrw\nGOPGV0/EvU9xtJIxxo2q21cXzjm/uv3enHN/y/Lgm1a3WSEeQHPO0+acv7D5mbTdDVuWCX9hhVgA\nBzXGOKb6verPnBcC7DL3r77YsrqoMcY1xxjfsW4kgCv5wOZ6u+2DY4zvrG5cXbTjiYDD0pzzk3PO\nk+acX/lfHv2h6mNzzo8f5N47q2u1nC3Jt0BxtJ5bb64H+8au+ujmetsdyALw//HYzfXPV00BcEUv\nrr6WbX6B3ef21b9WPzDGeEv11eorY4yLxhgnrhsN4HK/U32uOmuMcewY4yZjjDtVL2/ZceKUVdMB\nbDPGuGF1VN6tX20UR+u54eb6pUPcv+yA5wBWN8Y4rnpW9Z7qD1aOA1DVGONnqp+qnjrn/PTaeQAO\ncFTLbP2/qd5WPaR6/GbsFWOMx6yYDaCqOedFLVv+XrNlu7pPV++vfrjlfLbz1ksHcCXerV/NFEcA\n/J+MMR7ZcgbbR6rj55z/tW4igNrsWf3C6i0tM2IBdptrt5wN8uQ55zPmnG+Yc76oumfL6qPfHWNc\nc82AAGOMUZ3TUmo/sTqu5Yy2z1RnjzHuv2I8AHaY4mg9W2eDXP8Q929wwHMAqxljnFKdWb2vOnbO\n+YmVIwFsOb1lNv9jD3ImG8BucGn1leqV2wfnnB+u/qE6uvr+FXIBbHdGdcvqnnPO5885z51znlXd\no+WctpePMa61akKAb/Ju/WqmOFrPh1v2iD3mEPe3zkC6eGfiABzcGOP51bOrv67uPef81MqRAKoa\nY9yrekz1kurSMcYxWx+bR663+fzI9VIC9JEO/bf31u9VN9qZKABXNsa4fvVj1YWbUvtyc84vV+e1\nlEq32/l0AFc257y0ZUtN79avJoqjlcw5L2vZK/auY4zrbL+32abgR6uPzTk/erCvB9gJm5VGJ7ds\n/3TCnPNQe8cCrOF+1b7qCdXHDvio+tnNv5+3SjqAxTtatqu7w0Hubb3UONTBzgA74botv1Nd5xD3\nr3PAFWA3eHt1zBjjVge5d8/qy9WFOxtp71Acretl1fWqXz1g/BEt2xWcseOJADbGGPetfrt6bfUr\nc87/XjkSwIH+ojr+EB9Vb9r8W3EErOlPNtdTxxj7tgbHGHdueanxfhMGgTXNOT/TMiv/zmOMK5Tc\nY4yjWibrfKG6aIV4AIfyss31idsHxxj3ru5WvXKzMolvwb79+20Fv5bN3rBvbflGfmF1QXXH6kkt\n/2Hfw+x+YC1jjPdUd6ke1ze3UTnQOX5OAbvRGGN/deac81FrZwEYY7ygenz1huqvWlYaPbFl//0H\nzjnPWy8dQI0xjm+ZNPif1YuqD1U3admB4jYt50m+dL2EwOFiU2BvL7FfVf1Ldeq2sXPmnF8aY7y6\nOqH64+rNLb9jPaW6rPrBOee/70zqveeItQMczuacXxtjPKA6rXpY33w5e0Z1qpexwMruurm++Cqe\nuU3Lvv0AABzayS0vPB5b/WH11ept1WlzznevGQygas559hjj2Opp1UnVkdUXWyY5/9qc89w18wGH\nlYd3xZKoliLpVds+33of9fPV01t28Pql6nMtE3V+S2n07bHiCAAAAAAAgMoZRwAAAAAAAGwojgAA\nAAAAAKgURwAAAAAAAGwojgAAAAAAAKgURwAAAAAAAGwojgAAAAAAAKgURwAAAAAAAGwojgAAAAAA\nAKgURwAAAAAAAGwojgAAAAAAAKgURwAAAAAAAGwcsXYAAAAArtoY46jqs9Ulc85brp0HAADYu6w4\nAgAA2P3uvrm+a9UUAADAnqc4AgAA2P22iqN3r5oCAADY8xRHAAAAu58VRwAAwI5wxhEAAMDud/dq\nf3XB9sExxndVZ1YPqv6++sU556d3Ph4AALBXWHEEAACwi40xjq6+p7p4zvn5bePHVu+tjqtOq35C\naQQAAHy7rDgCAADY3a5wvtEYY1/19Oo51WerB84537hSNgAAYI9RHAEAAOxul59vtFl99KfVA6q3\nVifOOS9ZLRkAALDnKI4AAAB2t63i6AYtW9PdvDq9esac8+urpQIAAPakffv37187AwAAAIcwxrik\nusXm029UJ8w5X79iJAAAYA+7xtoBAAAAOLgxxne3lEYfrM5v+RvuvquGAgAA9jTFEQAAwO61tU3d\nO6ufrmZ18hjjyetFAgAA9jLFEQAAwO61VRxdOOf8j+q46pPV6WOMh68XCwAA2KsURwAAALvX5cVR\n1Zzzw9WDqy9XZ40x7rVWMAAAYG9SHAEAAOxed6u+Ub13a2DOeUF1YnVE9boxxh1WygYAAOxBiiMA\nAIBdaIxxq+ro6uI556Xb7805z64eVx1Z/e0Y4xYrRAQAAPagffv37187AwAAAAAAALuAFUcAAAAA\nAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABU\niiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMA\nAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2FEcAAAAAAABUiiMAAAAAAAA2/gfsU3tlC/U3fAAAAABJ\nRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "F3DBYxvAIA0B", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "reset_sess()\n", + "\n", + "temperature_ = challenger_data_[:, 0]\n", + "temperature = tf.convert_to_tensor(temperature_, dtype=tf.float32)\n", + "D_ = challenger_data_[:, 1] # defect or not?\n", + "D = tf.convert_to_tensor(D_, dtype=tf.float32)\n", + "\n", + "beta = tfd.Normal(name=\"beta\", loc=0.3, scale=1000.).sample()\n", + "alpha = tfd.Normal(name=\"alpha\", loc=-15., scale=1000.).sample()\n", + "p_deterministic = tfd.Deterministic(name=\"p\", loc=1.0/(1. + tf.exp(beta * temperature_ + alpha))).sample()\n", + "\n", + "[\n", + " prior_alpha_,\n", + " prior_beta_,\n", + " p_deterministic_,\n", + " D_,\n", + "] = evaluate([\n", + " alpha,\n", + " beta,\n", + " p_deterministic,\n", + " D,\n", + "])\n" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "PxOWy25CIA0D", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We have our probabilities, but how do we connect them to our observed data? A *Bernoulli* random variable with parameter $p$, denoted $\\text{Ber}(p)$, is a random variable that takes value 1 with probability $p$, and 0 else. Thus, our model can look like:\n", + "\n", + "$$ \\text{Defect Incident, }D_i \\sim \\text{Ber}( \\;p(t_i)\\; ), \\;\\; i=1..N$$\n", + "\n", + "where $p(t)$ is our logistic function and $t_i$ are the temperatures we have observations about. Notice in the code below we set the values of `beta` and `alpha` to 0 in `initial_chain_state`. The reason for this is that if `beta` and `alpha` are very large, they make `p` equal to 1 or 0. Unfortunately, `tfd.Bernoulli` does not like probabilities of exactly 0 or 1, though they are mathematically well-defined probabilities. So by setting the coefficient values to `0`, we set the variable `p` to be a reasonable starting value. This has no effect on our results, nor does it mean we are including any additional information in our prior. It is simply a computational caveat in TFP. " ] - }, - "metadata": { - "image/png": { - "height": 277, - "width": 839 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "k_values = tf.range(start=0, limit=(N + 1), dtype=tf.float32)\n", - "random_var_probs_1 = tfd.Binomial(total_count=10., probs=.4).prob(k_values)\n", - "random_var_probs_2 = tfd.Binomial(total_count=10., probs=.9).prob(k_values)\n", - "\n", - "# Execute graph\n", - "[\n", - " k_values_,\n", - " random_var_probs_1_,\n", - " random_var_probs_2_,\n", - "] = evaluate([\n", - " k_values,\n", - " random_var_probs_1,\n", - " random_var_probs_2,\n", - "])\n", - "\n", - "# Display results\n", - "plt.figure(figsize=(12.5, 4))\n", - "colors = [TFColor[3], TFColor[0]] \n", - "\n", - "plt.bar(k_values_ - 0.5, random_var_probs_1_, color=colors[0],\n", - " edgecolor=colors[0],\n", - " alpha=0.6,\n", - " label=\"$N$: %d, $p$: %.1f\" % (10., .4),\n", - " linewidth=3)\n", - "plt.bar(k_values_ - 0.5, random_var_probs_2_, color=colors[1],\n", - " edgecolor=colors[1],\n", - " alpha=0.6,\n", - " label=\"$N$: %d, $p$: %.1f\" % (10., .9),\n", - " linewidth=3)\n", - "\n", - "plt.legend(loc=\"upper left\")\n", - "plt.xlim(0, 10.5)\n", - "plt.xlabel(\"$k$\")\n", - "plt.ylabel(\"$P(X = k)$\")\n", - "plt.title(\"Probability mass distributions of binomial random variables\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "xT-q-ZI0IAys" - }, - "source": [ - "The special case when $N = 1$ corresponds to the Bernoulli distribution. There is another connection between Bernoulli and Binomial random variables. If we have $X_1, X_2, ... , X_N$ Bernoulli random variables with the same $p$, then $Z = X_1 + X_2 + ... + X_N \\sim \\text{Binomial}(N, p )$.\n", - "\n", - "The expected value of a Bernoulli random variable is $p$. This can be seen by noting the more general Binomial random variable has expected value $Np$ and setting $N=1$." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "9HmW-50PIAyv" - }, - "source": [ - "## Example: Cheating among students\n", - "\n", - "We will use the binomial distribution to determine the frequency of students cheating during an exam. If we let $N$ be the total number of students who took the exam, and assuming each student is interviewed post-exam (answering without consequence), we will receive integer $X$ \"Yes I did cheat\" answers. We then find the posterior distribution of $p$, given $N$, some specified prior on $p$, and observed data $X$. \n", - "\n", - "This is a completely absurd model. No student, even with a free-pass against punishment, would admit to cheating. What we need is a better *algorithm* to ask students if they had cheated. Ideally the algorithm should encourage individuals to be honest while preserving privacy. The following proposed algorithm is a solution I greatly admire for its ingenuity and effectiveness:\n", - "\n", - "> In the interview process for each student, the student flips a coin, hidden from the interviewer. The student agrees to answer honestly if the coin comes up heads. Otherwise, if the coin comes up tails, the student (secretly) flips the coin again, and answers \"Yes, I did cheat\" if the coin flip lands heads, and \"No, I did not cheat\", if the coin flip lands tails. This way, the interviewer does not know if a \"Yes\" was the result of a guilty plea, or a Heads on a second coin toss. Thus privacy is preserved and the researchers receive honest answers. \n", - "\n", - "I call this the Privacy Algorithm. One could of course argue that the interviewers are still receiving false data since some *Yes*'s are not confessions but instead randomness, but an alternative perspective is that the researchers are discarding approximately half of their original dataset since half of the responses will be noise. But they have gained a systematic data generation process that can be modeled. Furthermore, they do not have to incorporate (perhaps somewhat naively) the possibility of deceitful answers. We can use TFP to dig through this noisy model, and find a posterior distribution for the true frequency of liars. " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "gPcqaqxMIAyw" - }, - "source": [ - "Suppose 100 students are being surveyed for cheating, and we wish to find $p$, the proportion of cheaters. There are a few ways we can model this in TFP. I'll demonstrate the most explicit way, and later show a simplified version. Both versions arrive at the same inference. In our data-generation model, we sample $p$, the true proportion of cheaters, from a prior. Since we are quite ignorant about $p$, we will assign it a $\\text{Uniform}(0,1)$ prior." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "LIg-xs2LIAyw" - }, - "outputs": [], - "source": [ - "reset_sess()\n", - "\n", - "N = 100\n", - "p = tfd.Uniform(name=\"freq_cheating\", low=0., high=1.)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "7L0nMGmrIAy0" - }, - "source": [ - "Again, thinking of our data-generation model, we assign Bernoulli random variables to the 100 students: 1 implies they cheated and 0 implies they did not. " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 68 - }, - "colab_type": "code", - "id": "aXxhrJdtIAy0", - "outputId": "57d6feb0-f99d-460e-ea0f-c6ea67392c16" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", - " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n" - ] - } - ], - "source": [ - "N = 100\n", - "reset_sess()\n", - "p = tfd.Uniform(name=\"freq_cheating\", low=0., high=1.)\n", - "true_answers = tfd.Bernoulli(name=\"truths\", \n", - " probs=p.sample()).sample(sample_shape=N, \n", - " seed=5)\n", - "# Execute graph\n", - "[\n", - " true_answers_,\n", - "] = evaluate([\n", - " true_answers,\n", - "])\n", - "\n", - "print(true_answers_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "vNB9WGYcIAy4" - }, - "source": [ - "If we carry out the algorithm, the next step that occurs is the first coin-flip each student makes. This can be modeled again by sampling 100 Bernoulli random variables with $p=1/2$: denote a 1 as a *Heads* and 0 a *Tails*." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 68 - }, - "colab_type": "code", - "id": "68t8O39EIAy4", - "outputId": "8c2114dd-6c5b-4db6-a10d-23c73c0ede87" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1\n", - " 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0\n", - " 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1]\n" - ] - } - ], - "source": [ - "N = 100\n", - "first_coin_flips = tfd.Bernoulli(name=\"first_flips\", \n", - " probs=0.5).sample(sample_shape=N, \n", - " seed=5)\n", - "# Execute graph\n", - "[\n", - " first_coin_flips_,\n", - "] = evaluate([\n", - " first_coin_flips,\n", - "])\n", - "\n", - "print(first_coin_flips_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "8-ZnScpWIAzA" - }, - "source": [ - "Although *not everyone* flips a second time, we can still model the possible realization of second coin-flips:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 68 - }, - "colab_type": "code", - "id": "acP-4TAfIAzB", - "outputId": "f4c3e132-3dee-4eb9-afd7-6c22fd128b37" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 0 1 1 1 1\n", - " 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0\n", - " 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1]\n" - ] - } - ], - "source": [ - "N = 100\n", - "second_coin_flips = tfd.Bernoulli(name=\"second_flips\", \n", - " probs=0.5).sample(sample_shape=N, \n", - " seed=5)\n", - "# Execute graph\n", - "[\n", - " second_coin_flips_,\n", - "] = evaluate([\n", - " second_coin_flips,\n", - "])\n", - "\n", - "print(second_coin_flips_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "uiVbAjoTIAzI" - }, - "source": [ - "Using these variables, we can return a possible realization of the *observed proportion* of \"Yes\" responses. " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "BJxN0jmBIAzJ" - }, - "outputs": [], - "source": [ - "def observed_proportion_calc(t_a = true_answers, \n", - " fc = first_coin_flips,\n", - " sc = second_coin_flips):\n", - " \"\"\"\n", - " Unnormalized log posterior distribution function\n", - " \n", - " Args:\n", - " t_a: array of binary variables representing the true answers\n", - " fc: array of binary variables representing the simulated first flips \n", - " sc: array of binary variables representing the simulated second flips\n", - " Returns: \n", - " Observed proportion of coin flips\n", - " Closure over: N\n", - " \"\"\"\n", - " observed = fc * t_a + (1 - fc) * sc\n", - " observed_proportion = tf.to_float(tf.reduce_sum(observed)) / tf.to_float(N)\n", - " \n", - " return tf.to_float(observed_proportion)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "OoIWHbsNIAzL" - }, - "source": [ - "The line `fc * t_a + (1 - fc) * sc` contains the heart of the Privacy algorithm. Elements in this array are 1 *if and only if* i) the first toss is heads and the student cheated or ii) the first toss is tails, and the second is heads, and are 0 else. Finally, the last line sums this vector and divides by `float(N)`, producing a proportion. " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "ma5VwRSNIAzM", - "outputId": "92449808-a8fe-4bd4-973b-73e22bb27eb5" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.01\n" - ] - } - ], - "source": [ - "observed_proportion_val = observed_proportion_calc(t_a=true_answers_,\n", - " fc=first_coin_flips_,\n", - " sc=second_coin_flips_)\n", - "# Execute graph\n", - "[\n", - " observed_proportion_val_,\n", - "] = evaluate([\n", - " observed_proportion_val,\n", - "])\n", - "\n", - "print(observed_proportion_val_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "HNoBM39rIAzQ" - }, - "source": [ - "Next we need a dataset. After performing our coin-flipped interviews the researchers received 35 \"Yes\" responses. To put this into a relative perspective, if there truly were no cheaters, we should expect to see on average 1/4 of all responses being a \"Yes\" (half chance of having first coin land Tails, and another half chance of having second coin land Heads), so about 25 responses in a cheat-free world. On the other hand, if *all students cheated*, we should expected to see approximately 3/4 of all responses be \"Yes\". \n", - "\n", - "The researchers observe a Binomial random variable, with `N = 100` and `total_yes = 35`: " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "SLcH6ZPsIAzR" - }, - "outputs": [], - "source": [ - "total_count = 100\n", - "total_yes = 35" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "-kWZd1ygofav" - }, - "outputs": [], - "source": [ - "def coin_joint_log_prob(total_yes, total_count, lies_prob):\n", - " \"\"\"\n", - " Joint log probability optimization function.\n", - " \n", - " Args:\n", - " headsflips: Integer for total number of observed heads flips\n", - " N: Integer for number of total observation\n", - " lies_prob: Test probability of a heads flip (1) for a Binomial distribution\n", - " Returns: \n", - " Joint log probability optimization function.\n", - " \"\"\"\n", - " \n", - " rv_lies_prob = tfd.Uniform(name=\"rv_lies_prob\",low=0., high=1.)\n", - "\n", - " cheated = tfd.Bernoulli(probs=tf.to_float(lies_prob)).sample(total_count)\n", - " first_flips = tfd.Bernoulli(probs=0.5).sample(total_count)\n", - " second_flips = tfd.Bernoulli(probs=0.5).sample(total_count)\n", - " observed_probability = tf.reduce_sum(tf.to_float(\n", - " cheated * first_flips + (1 - first_flips) * second_flips)) / total_count\n", - "\n", - " rv_yeses = tfd.Binomial(name=\"rv_yeses\",\n", - " total_count=float(total_count),\n", - " probs=observed_probability)\n", - " \n", - " return (\n", - " rv_lies_prob.log_prob(lies_prob)\n", - " + tf.reduce_sum(rv_yeses.log_prob(tf.to_float(total_yes)))\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "QZC4TITlIAzV" - }, - "source": [ - "Below we add all the variables of interest to our Metropolis-Hastings sampler and run our black-box algorithm over the model. It's important to note that we're using a Metropolis-Hastings MCMC instead of a Hamiltonian since we're sampling inside." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "Awl3GmgjIAzV" - }, - "outputs": [], - "source": [ - "burnin = 15000\n", - "num_of_steps = 40000\n", - "total_count=100\n", - "\n", - "# Set the chain's start state.\n", - "initial_chain_state = [\n", - " 0.4 * tf.ones([], dtype=tf.float32, name=\"init_prob\")\n", - "]\n", - "\n", - "# Define a closure over our joint_log_prob.\n", - "unnormalized_posterior_log_prob = lambda *args: coin_joint_log_prob(total_yes, total_count, *args)\n", - "\n", - "# Defining the Metropolis-Hastings\n", - "# We use a Metropolis-Hastings method here instead of Hamiltonian method\n", - "# because the coin flips in the above example are non-differentiable and cannot\n", - "# bue used with HMC.\n", - "metropolis=tfp.mcmc.RandomWalkMetropolis(\n", - " target_log_prob_fn=unnormalized_posterior_log_prob,\n", - " seed=54)\n", - "\n", - "# Sample from the chain.\n", - "[\n", - " posterior_p\n", - "], kernel_results = tfp.mcmc.sample_chain(\n", - " num_results=num_of_steps,\n", - " num_burnin_steps=burnin,\n", - " current_state=initial_chain_state,\n", - " kernel=metropolis,\n", - " parallel_iterations=1,\n", - " name='Metropolis-Hastings_coin-flips')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Lq0OtJDCufOu" - }, - "source": [ - "##### Executing the TF graph to sample from the posterior" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "x--bCsBrr91E", - "outputId": "cfab9154-992d-418d-ba2e-d16f1cae1e65" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "acceptance rate: 0.105625\n" - ] - } - ], - "source": [ - "# Content Warning: This cell can take up to 5 minutes in Graph Mode\n", - "[\n", - " posterior_p_,\n", - " kernel_results_\n", - "] = evaluate([\n", - " posterior_p,\n", - " kernel_results,\n", - "])\n", - " \n", - "print(\"acceptance rate: {}\".format(\n", - " kernel_results_.is_accepted.mean()))\n", - "# print(\"prob_p trace: \", posterior_p_)\n", - "# print(\"prob_p burned trace: \", posterior_p_[burnin:])\n", - "burned_cheating_freq_samples_ = posterior_p_[burnin:]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "QhCgk98ynq5s" - }, - "source": [ - "And finally we can plot the results." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 374 - }, - "colab_type": "code", - "id": "JoKNmLpxB1yt", - "outputId": "b793d81e-288a-4d80-8a37-f34f19e50aab" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmEAAALKCAYAAADK9/XkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuYlnWB//EPMKIgCqF5QHFBl73X\ns2KNIawLmv20TRHNXL08bJqnrMy2PGTm4qEura1YtwVLJUnSzENuZCap43o2ddVy+z1NpoZiPxVs\nVDxwkN8fMLOMDIjM83WY4fW6Lq4Znud+vvf3uZ/xmXHefO+71+LFiwMAAAAAAEB99e7qCQAAAAAA\nAPREIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABDV09gY60tLQs7uo5AAAAAAAAPdvAgQN7lRzfShgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBiALtLc3Jzm5uaungZA\nEd7jgJ7MexzQk3mPA6gvEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAA\nAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAA\nEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAAKAAEQYAAAAAgG5p/PjxGT9+fFdPIw899FAaGxvzve99\nr+22E088MY2Nje/J/t9+HGbMmJHGxsbMmDHjPdn/xIkT09jYmNmzZ78n++tOGrp6AgAAAAAAXeG8\npjldPYWVOnvsRl09hbq48847s2jRoowdO7buY59++ul1H7Nejj/++Lz00kur9dhHHnkkzzzzTD72\nsY+t0vbv5XHoaG6HHHJIxowZk8GDB79n8+guRBgAAAAAAIq58sorM2TIkCIRZo899qj7mPUycuTI\n1X7sT3/60/z5z39e5QjzXh6Hjua23XbbZbvttnvP5tCdOB0ZAAAAAABFvPXWW6nVal09jW7nd7/7\nXVdPYYXW5LmtiUQYAAAAAIAeqvVaHb///e8zZcqUHHDAARk9enQmTJiQ6dOnZ/Hixe22f/nll/Od\n73wnEyZMyOjRozNu3LiceOKJueOOO5Ybu6mpKSeddFL23XffjBkzJgcccEAuuOCC/PnPf06y5Lok\nH/rQh/Laa6/l5z//+XLXTJk9e3bOPffcfPSjH80ee+yRfffdN1/5ylfy1FNPdfgc/vCHP+SUU07J\nnnvumbvuuitJx9eEefPNN3PppZfm0EMPzd/93d9l7Nix+eQnP5kbb7yx3Xat13G57LLL8sMf/jD7\n7rtvzjjjjJUez0WLFuV73/te23E86KCDcuWVVy53HJOOrwnz8MMP59RTT80//MM/ZMyYMfnYxz6W\ns846K0888US7OT355JN5+OGH09jYmIkTJ67WcWj1s5/9LP/4j/+YMWPGZN99982FF16YefPmtd2/\nsuvHfO5zn2u71suqzO3t14S5+eabc+yxx2bs2LEZM2ZMDjnkkEyePDmvv/56u+0aGxtz8skn5/nn\nn8+ZZ56ZffbZJ6NHj85RRx2V++67b6WvyZrO6cgAAAAAAHq4iy++OAsWLMhRRx2VddZZJ9dff30m\nTZqUxYsX54gjjkiSvPHGGznhhBPy5JNPZvz48dl+++3z6quvZsaMGfnSl76UL3/5yznwwAOTJDNn\nzsxZZ52VHXbYIZ/61KcyYMCAPP3007n66qtz33335cc//nF22223nHbaabnooouy22675eMf/3iG\nDx+eJHn22WfzyU9+Mn369MlBBx2ULbbYIs8880x+8pOf5O67786ll16abbbZpt1z+I//+I9svPHG\nOeuss7L11lt3+Dzfeuut/PM//3MeeOCBfOQjH8lhhx2W+fPn59Zbb80FF1yQ2bNn56STTmr3mMcf\nfzyzZ8/OZz7zmWy66aYrPY7/9m//lquuuiojR47MUUcdlQULFmTmzJm599573/E1eOyxx3LyySdn\nq622ypFHHplBgwblueeey09+8pMcf/zxmT59erbeeut8/etfz5lnnpnhw4fn+OOPz+abb/6uj0Or\nW2+9te36LQMHDszdd9+d6667Li+88EK++c1vvuOcl7Uqc1vWZZddlksuuSQ77LBDTjjhhPTv3z+P\nPPJIpk6dmkceeSSTJ09O797/u07k9ddfz0knnZRdd901p5xySmbPnp3p06fntNNOy/XXX5+NN974\nXc13TSHCAAAAAAD0cC+++GJ++MMfpqFhya+E995774wfPz5XXHFFDj/88PTu3Ts//vGP88QTT+TT\nn/50/umf/qntsQcccEAOOeSQXHzxxdlvv/2y7rrr5pe//GWS5Fvf+lYGDRrUtu1OO+2Uq6++Ok8/\n/XS23XbbtmuVbLbZZtl7773btps0aVIWLFiQyy+/PFtuuWXb7WPHjs3RRx+dyZMnLxcJFixYkLPP\nPnulz/PWW2/NAw88kAkTJuTMM89su/2ggw7K0UcfnWnTpuXggw/OJpts0nbfvffem+uvv36lQSFJ\n/vKXv+Saa67JlltumYsvvjjrrLNOkuTggw/OkUceudLHJkvC1aJFi3LOOee0u37KmDFjMmnSpDz5\n5JMZNWpU23F63/ve1+6YvZvj0Oo3v/lNrr322rbXaPz48TnhhBPyX//1X3niiSeWC10rs+x8VjS3\nVs8//3xbSLvkkkvajtX48ePTr1+/XHvttbn11luzzz77tD3mt7/9bT772c+2O5Z9+vTJJZdcknvu\nuScHHHDAKs91TdLp05FVVfWDqqoWr+TP5+sxUQAAAAAAVs/+++/fFmCSZMCAAfngBz+YlpaW/PGP\nf0yS3HHHHenVq1cmTJjQ7rEDBgzIXnvtlVdeeSWPPvpokiW/HE+SRx55pN22o0aNyqRJk7Ltttuu\ncC5vvPFG7rrrruy8884ZOHBgXnnllbY/m2++ebbeeus89NBDyz1ur732esfn2dTUlGRJdFlWQ0ND\nPvrRj2bRokXLrVrZbrvt3jHAJMl///d/Z9GiRRk3blxbVEiSvn37trtI/Yq0HrPWY9hqxIgR+fd/\n//eMGjXqHcdIVu04tBo3bly7SNarV6+2eNLRMa6XO++8M4sWLcr+++/f7lglS74Wk7SdSq1Vnz59\ncuihh7a7rTVWvfjii8XmWlo9V8J8OskLHdz+SAe3AQAAAADwHunotFWtp3d67rnn8td//dd56qmn\nsvHGG2fgwIHLbftXf/VXSZI//elPaWxszBFHHJF77703p59+enbaaaeMGjUqjY2N2X777dOrV6+V\nzuVPf/pTFi5cmHvuuWelqyleffXVDBgwoO3vQ4YMecfn2Xo9mY6e71ZbbdW2/2WtyrhJ2q53MnTo\n0OXuGzZs2Ds+/uCDD84vfvGLfPvb385NN92UPfbYI42Njdl5553bBbJ3sqrzTdLhSpctttgiSdqu\n3VPC008/vcL9L/u1tKxNNtkkffv2bXdb698XLlxYYprviXpGmF/UarWn6jgeAAAAAAB10L9//+Vu\nW3/99ZMsOb1VsuSaHO973/s6fPy6666bZMkqliTZcccdM23atFx55ZW544478uijj2bKlCkZMmRI\nTjnllIwbN26Fc3nttdeSJB/60Idy9NFHr3C7t/9CvqPn8Havv/56Ghoallt90dFzeDfjLvu49dZb\nb4Vjr8zQoUMzbdq0TJ8+PbfddlumTp2aqVOnZvDgwTnuuONy8MEHr9I8VnW+K9q2da5vvvnmKo/z\nbrW+xv369Vvh/l9//fV2t7/99e4pXBMGAAAAAKCHe3t4SJasNEnSdrqqfv36LfeL8bc/ftlf6g8b\nNixf+cpX8uUvfzm/+93v0tTUlGuvvTZnnHFGpkyZkl133bXDsVrH6N27d3bbbbfVf1Id6NevXxYu\nXJgFCxYsF2I6eg7vRms8mD9//nL3rei4vd2mm26aL3zhC/nCF76Q5ubm3Hnnnbnmmmty4YUXpn//\n/tlvv/1Wa24r0tHr3nrbqoSj1Q01rce4NcYsq/VYre7r0N10+powb1dV1XpVVYk7AAAAAABriCef\nfHK521pPr9V6WrLhw4fnxRdfzF/+8pfltm29bkxHp93q3bt3tt9++5x88smZOHFiFi9enNtvv32F\nc9lqq63S0NCQ//mf/+nwNFMvvfTSKj2njgwfPjxJ8oc//GG5+1qPwaqcOqwjm222WZLk2WefXe6+\nJ5544l2PN2LEiBxzzDG5+OKLkyS33Xbbas1rZVpPz7asZ555Jsn/npas9VRoHcWlWbNmrdZ+W1+H\njo5L6+vQuk1PV89YcnJVVR9PMizJW1VV/TrJubVa7aZ67aC5ubleQwGsMby3AT2Z9zigJ/MeB/Rk\na8t73Pz5A955oy5Uj9fh5ZdfTpLccMMN2WWXXdK795J/l//qq6/mwQcfzKBBg/LGG2+kubk5O++8\nc37zm9/k+9//fg488MC2MV555ZXMnDkzgwYNSv/+/fP444/n/PPPz5AhQ3LiiSe2219rQJk3b16a\nm5szZ86cJMmcOXPaPZ9ddtklDz74YC6//PJ2py57/vnnc8YZZ2TMmDE55phj2j2HWbNmLXcqsNZT\nqbWOvd122+WWW27J1KlTc9xxx7Xb7oYbbsg666yTzTffPM3NzW0xoqWlZZWO9cCBA9OrV6/MnDkz\n48aNS58+fZIsiRc33nhjkmTu3LltY7Wu+Gj9+ze+8Y0sXLgwp59+etvrkCQvvLDkUutvvvlm27a9\nevVabl7v5ji0Xu/llltuyUc+8pG2U88tXrw4M2bMSJK8//3vT3Nzc9vKmPvuuy877rhj25j3339/\nXnzxxSRLYs68efPecW6t22255ZZpaGjItddem5EjR7a75s0VV1yRJKmqqt0Y8+fPX+51aH2Nlj2u\nq2vEiBGdevzqqmeE+T9Jvpbk2SQ7JflSkhlVVR1eq9WuruN+oO4effTRtLS0JFnyZrrzzjt38YwA\noPvyfRUAANY8/fr1y9e+9rU0NjZmnXXWycyZM/Pmm2/msMMOS69evZIkH/7wh3PXXXfluuuuy0sv\nvZRtttkmr7zySpqamvLaa6/lc5/7XPr06ZM+ffpk+PDh+dWvfpV58+Zl1113zXrrrZcXXnghv/rV\nr7Luuutmzz33TLLk/wn69u2bxx57LDfeeGM222yz7L777jn88MNTq9UyderUzJ49O8OGDcsLL7yQ\nmTNnplevXtlrr71W63l+4AMfyC677JKmpqYsWLAg2223Xd54443cc889mT17do488shssMEGqzX2\noEGD8vd///dpamrKRRddlMbGxsyfPz/33ntvNt100zz33HMrffy2226bq666KhdccEF23333DBgw\nIC0tLbntttvSp0+f7L333m3bbrLJJnnqqady3XXXZaONNsrYsWNXa87Dhg3LxIkTs+eee6Z///55\n6KGH0tzcnFGjRmXzzTdPsiRObLjhhrnzzjuzwQYbZIsttsisWbNy9913Z6eddspjjz3WbsxVmdug\nQYNyyCGH5Kqrrsr555+fPfbYIw0NDXn88cdz33335YMf/OAKT1fX09QjwvxrkquSNNVqtdYTxN1U\nVdV/Jnkkyb9WVXVNrVZ7q7M76qpSRc83d+7ctho8ePBgX2u8J1rrva83oKeZO3duW4QZOnSo9zmg\nx/FzHNCTrW3vcX2fndPVU1iperwOG264YZLk85//fH7961/nZz/7WV588cVsttlm+eIXv5hPfOIT\n7ba//PLLc+mll+b2229PU1NT+vXrlx122CFf/epXM3LkyLbtLrjgguy888656aabcs011+S1117L\n4MGD84EPfCDHHHNMtt5667ZtTz311EyZMiU33nhjJkyYkBEjRmTEiBGZNm1aLr300tx///355S9/\nmQ022CAjR47Mscce2+65tz6Hjv7/ovW6L8ve/t3vfjfTpk3LzTffnAceeCB9+/bN3/zN3+Siiy5q\nFwxaV28MHDhwlY/1+eefnylTpuSWW27JtGnTsummm+bAAw/M6NGjc/jhh7f73WLrRelb/37qqadm\n2223zfXXX5+f/vSnefXVV7Phhhtmxx13zLnnnpuddtqpbT9f/OIXc+GFF2bGjBkZPXp0jjvuuHd1\nHGq1WpLkiCOOSEtLS370ox/l2WefzYABA3LooYfm5JNPbreaZvLkyZk0aVLuuOOOLFq0KDvuuGMm\nT56cq666Ko899liGDRuWIUOGvOPclt3u1FNPzfbbb5+rr74611xzTd56660MHTo0n/3sZ3PYYYe1\nWx2TJH379l3uebW+Rt35d7a9Fi9eXGzwqqpuSbJPkh1qtdrjq/q4lpaWcpOCDtx///2ZO3dukiX/\nQe++++5dPCPWBmvbD7bA2uP+++/Pb3/72yTJDjvs4Psq0OP4OQ7oybzH9TwTJ07Mz3/+81x22WXt\nTjUFLDFw4MBeJcfv/c6bdMr/W/pxw8L7AQAAAAAAWKN06nRkVVVtmGT/JHNqtdrNHW2y9OOszuwH\nAAAAAACgu+nsSpj5Sb6b5AdVVW287B1VVX04yQeTPFCr1Z7p5H4AAAAAAAC6lU6thKnVam9UVXVK\nkh8keaCqqilJ/pxk1yQnJWlJckJnJwkAAAAAwLt3zjnn5JxzzunqacBaq9PXhKnValck2SvJH5J8\nOcllST6eZHqSkbVa7ZHO7gMAAAAAAKC76dRKmFa1Wu32JLfXYywAAAAAAICeoNMrYQAAAAAAAFie\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFBAkQhTVdW5VVUtrqrqByXGBwAAAAAAWNPVPcJUVbV9ktPrPS4AAAAAAEB3UtcIU1VV7yTfT/J4\nPccFAAAAAADobuq9EuakJKOSfLHO4wIAAAAAAHQrdYswVVVtmeTrSa6s1Wq31WtcAAAAAACA7qie\nK2G+m2RBki/UcUwAAAAAAIBuqaEeg1RV9fEkByQ5tlarvVCPMTvS3NxcamjWcrNmzUpLS0uSZN68\neRk8eHAXz4i1ifc2oKeZNWtWu899XwV6Kj/HAT2Z9zigpxkxYkSX7LfTK2GqqhqU5OIkdySZ2ukZ\nAQAAAAAA9AD1WAnzjSSDk5xYq9UW12G8FeqqUkXPN3fu3Ky//vpJksGDB/ta4z3R+q+KfL0BPc3c\nuXPbVpgOHTrU+xzQ4/g5DujJvMcB1FenIkxVVXsmOTbJpCSvVlW15ds26b/0tnm1Wu2lzuwLAAAA\nAACgO+ns6cj2StIryeeTzHrbnyQ5ZOnn3+7kfgAAAAAAALqVzp6O7EdJHlzBfT9LcmuS7+R/owwA\nAAAAAMBaoVMRplar/T7J7zu6r6qqJHmmVqvN6Mw+AAAAAAAAuqPOno4MAAAAAACADnT2dGQrVKvV\nepUaGwAAAAAAYE1nJQwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwA\nAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAA\nAEABIgwAAAAAAEABDV09AaB+zmua09VTSJKcPXajrp4CAAAAAECXsxIGAAAAAACgABEGAAAAAACg\nABEGAAAAAACgABEGAAAAAACgABEGAAAAAACggIaungBAT3Ze05wV3jd//oAkSd9nV7xNvZw9dqPi\n+wAAAAAA2rMSBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAA\nAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAA\noICGrp4AQCnnNc3p6ikAAAAAAGsxK2EAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAK\nEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEA\nAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKaKjHIFVV7ZjktCRjkgxJ8nKSe5J8rVar3V+PfQAAAAAA\nAHQnnV4JU1XVqCT3JdkryfeTfGrpx3FJ7qyqao/O7gMAAAAAAKC7qcdKmClJeiUZXavVnmq9saqq\nB5LckOT0JOPrsB8AAAAAAIBuo1MRpqqq3kmuSPLKsgFmqZlLP27VmX0AAAAAAAB0R52KMLVa7a0k\n31rB3X+79ONjndkHAAAAAABAd1SP05G1qapqUJIBScYk+WaSJ5P8Sz33AQAAAAAA0B3UNcIkeWnp\nx8VJpiY5rVarzanX4M3NzfUaCtqZNWtWWlpakiTz5s3L4MGDu3hGq2f+/AFdPYUka85/q2vK8Xgn\n8+fPL76PNeU1AdYOs2bNavd5d/2+CvBO/IwF9GTe44CeZsSIEV2y3951Hm9cko8l+WqS/ZI8WFXV\nB+q8DwAAAAAAgDVeXVfC1Gq1pqWf/ryqqiuTPJzkR1VV/e3S68d0SleVKnq+uXPnZv3110+SDB48\nuNt+rfV9tm4LzzplTTl+a8rxWJHWFTB9+/Ytvq815TUB1g5z585tW2E6dOhQ70FAj9P6r8O9vwE9\nkfc4gPqq90qYNrVa7akktyYZkWSbUvsBAAAAAABYE3VqJUxVVdsmuSXJzFqtdkwHmwyqx34AAAAA\nAAC6m86uhGlOsl6SQ6qqGr7sHVVVbZNkdJIXkvy+k/sBAAAAAADoVjq1QqVWqy2squqzSaYnub+q\nqu8m+WOS4Uk+k6RfkpNrtdqiTs8UAAAAAACgG+n0acJqtdrVVVU9neT0LAkvg5K8nOTXSb5Vq9Vu\n6ew+AAAAAAAAupu6XKulVqvdm+TAeowFAAAAAADQE3T2mjAAAAAAAAB0QIQBAAAAAAAooC6nIwNY\n1nlNc7p6CrzNmvKanD12o66eAgAAAAC8Z0QYANY6ohQAAAAA7wWnIwMAAAAAAChAhAEAAAAAAChA\nhAEAAAAAAChAhAEAAAAAAChGY0oTAAAbW0lEQVRAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChA\nhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEA\nAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAAChAhAEAAAAAACigoasnAMDa47ymOV09BQAA\nAAB4z1gJAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAA\nUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAI\nAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAA\nAAAAUIAIAwAAAAAAUIAIAwAAAAAAUEBDV08AANZW5zXN6eop5OyxG3X1FAAAAAB6LCthAAAAAAAA\nChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBh\nAAAAAAAAChBhAAAAAAAAChBhAAAAAAAACmjo6glAZ5zXNKcu4zz7f1vyxsuvJEnW27BPbnn93Y17\n9tiN6jIPAAAAAAB6DithAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAA\nChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBhAAAAAAAACmjo\n6glAT3Be05yungIAAAAAAGsYK2EAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEA\nAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAA\nAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAKEGEAAAAAAAAK\nEGEAAAAAAAAKaOjqCdB9ndc0p6unAAAAAAAAaywrYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQ\nYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAA\nAAAAAApo6OoJAABd57ymOV09hSTJ2WM36uopAAAAANSdlTAAAAAAAAAFiDAAAAAAAAAFiDAAAAAA\nAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAF\niDAAAAAAAAAFiDAAAAAAAAAFiDAAAAAAAAAFNNRjkKqq3p/kq0kmJNk0yV+S3JXkvFqt9nA99gEA\nAAAAANCddHolTFVVmyR5OMmxSX689OMlSfZOcldVVbt2dh8AAAAAAADdTT1WwpyfZMskB9dqtetb\nb6yq6tdJfprkzCSfqMN+AAAAAAAAuo16XBNmdpKrktzwtttvTrI4yU512AcAAAAAAEC30umVMLVa\n7V9WcNcGSXolebmz+wAAAAAAAOhu6nE6shU5cenH6fUasLm5uV5DUQfz5w/o6inUzcIFC7Nw4cK2\nz+fPn9/FM2Jt4usNfI/vaWbNmtXu88GDB3fhbADK8f0L6Mm8xwE9zYgRI7pkv/U4HdlyqqraL8lX\nkzyUZHKJfQAAAAAAAKzJ6r4Spqqqo5JcmuSpJPvXarW6/RPvripVdKzvs3O6egp107BOQxoaGto+\n79u3bxfPiLVB6woYX2/ge3xPM3fu3LS0tCRJhg4d6vUFepzWfx3u/Q3oibzHAdRXXVfCVFV1dpIr\nkjyaZEytVnuunuMDAAAAAAB0F3VbCVNV1XeSnJLkP5McVqvVXqvX2AAAAAAAAN1NXVbCLF0Bc0qS\nqUkOEmAAAAAAAIC1XadXwlRVNS7JxCQ3JPlUrVZ7q9OzAgAAAAAA6ObqcTqyby79+KskB1VV1dE2\nN1kdAwAAAAAArE3qEWFGLv343ZVsMzzJU3XYFwAAAAAAQLfQ6QhTq9V61WMiAAAAAAAAPUnvrp4A\nAAAAAABATyTCAAAAAAAAFCDCAAAAAAAAFNDpa8IAAHTWeU1zunoKSZKzx27U1VMAAAAAehArYQAA\nAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAA\nAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAAAAAoQYQAAAAD4/+3d\ne4yld13H8c/a6dJCaW3XFppwx/KrRVAu0oqCS0m8BFGUe6hcKgq1oFiQEHBsdYqaSJSbIEIBqWJC\nhXLRok2QoeUiSGqLRvlZgVIKpLZDWKQtbJusf5wzzXSY2cs8z3fOzvb1SjbPznnmOefbTfPLmXmf\n53kAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAA\nCogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIA\nAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAA\nAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAER\nBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAA\nAACAAnOzHmArWVhcmvUISZL5nTtmPQIAAAAAALAPzoQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAK\niDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBgbtYDAAAcLBYWl2Y9\nQpJkfueOWY8AAAAAjMCZMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAA\nUECEAQAAAAAAKCDCAAAAAAAAFJib9QAAABycFhaXNnTcVz+/K9/+xpFJkn+9dVcuvWVjz5Mk8zt3\nbPhYAAAAmDVnwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAA\nAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACszNegAAAO5oYXFp1iMAAAAA\nI3AmDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogw\nAAAAAAAABUQYAAAAAACAAiIMAAAAAABAgblZD8CBW1hcmvUIAAAAAADAPjgTBgAAAAAAoIAIAwAA\nAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABA\nAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgA\nAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAA\nAArMjfVErbXtSc5P8rIkl/Xed4713AAAAAAAAFvNKBGmtdaSvDvJg5JsG+M5AQAAAAAAtrLBlyNr\nrR2b5IokhyV55OCJAAAAAAAADgFj3BNme5J3JTmt995HeD4AAAAAAIAtb/DlyHrv1yc5a4RZAAAA\nAAAADhmj3BNms1x99dUzff3du4+a6etT57Zbb8ttt912+993794944m4M/H/G3Coue3W2+7w9yHr\n3Kzf/wHsjTUKOJRZ44BDzUknnTST1x3jcmQAAAAAAACssqXOhJlVqVq2/atLM3196swdPpe5ubnb\n/759+/YZT8SdwfInw/3/Bhxq5g6fu8Pfh6xzs37/B7CW5U+HW6OAQ5E1DmBczoQBAAAAAAAosKXO\nhAEA4M5lYfHgOBN5fueOWY8AAADAFuRMGAAAAAAAgAIiDAAAAAAAQIHBlyNrrZ2S5JRVDx/fWnvK\niq8v6b3fPPS1AAAAAAAAtoox7gnztCTnrnrslCQXrfj6/kmuGeG1AAAAAAAAtoTBEab3fl6S8wZP\nAgAAAAAAcAgZ40yYTbOwuDTrEQAAAAAAAPbL9816AAAAAAAAgEORCAMAAAAAAFBAhAEAAAAAACgg\nwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAA\nAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABA\nAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgA\nAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAA\nAAqIMAAAAAAAAAVEGAAAAAAAgAJzsx4AAADYPwuLS7MeIUkyv3PHrEcAAADYEpwJAwAAAAAAUECE\nAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAgblZDwAA\nAAe7hcWlWY8AAADAFuRMGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAA\nKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgD\nAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAA\nAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAArMzXoAAABga1lY\nXJr1CEmS+Z07Zj0CAADAXjkTBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAA\nAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAo\nIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMA\nAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAJzsx4AAACA\nYRYWl2Y9QpJkfueOWY8AAAAHFWfCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAnOz\nHgAAAGAjDpab0QMAAKzHmTAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAA\nAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAArMzXoAAAAADg0Li0uzHiFJMr9zx6xHAACAJM6E\nAQAAAAAAKCHCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAgbkxnqS1\ndlySc5M8KcmJSW5MckmS+d7718d4DQAAAAAAgK1k8JkwrbUjkywmOSvJe5M8N8lbkjw9ySdaa8cO\nfQ0AAAAAAICtZowzYV6S5CFJzu69v2n5wdbaVUkuTjKf5JwRXgcAAAD2aWFxqfT5d+8+Kkmy/at7\nf535nTtK5wAA4OA3xj1hnp3kpiQXrHr8A0muS3JGa23bCK8DAAAAAACwZWzbs2fPhg9urR2dZFeS\ny3vvj11j/3uT/HKSB/bev7i/z7tr166NDwUAAAAAALAfjjnmmNKTSIaeCXPf6fa6dfZfO90+YODr\nAAAAAAAAbClDI8zdp9ub19l/06rvAwAAAAAAuFMY454wAAAAAAAArDI0wnxrur3bOvuPWvV9AAAA\nAAAAdwpDI8yXkuxJcq919i/fM+bqga8DAAAAAACwpWzbs2fPoCdorV2Z5KQkO3rv31nx+GFJvpbk\nu733+wx6EQAAAAAAgC1mjHvCXJDkrklesOrxM5KckORtI7wGAAAAAADAljLGmTCHJ7k8ySOSvCHJ\nZ5M8OMk5mVyG7LTe+80D5wQAAAAAANhSBkeYJGmtHZ3kvCRPTnJikv9NcnGSc3vv3xj8AgAAAAAA\nAFvMKBEGAAAAAACAOxrjnjAAAAAAAACsIsIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAA\nAIACIgwAAAAAAEABEQYAAAAAAKDA3CxetLV2XJJzkzwpyYlJbkxySZL53vvX9+P4RyeZT3JakiOT\n/HeStyZ5Y+99T9XcAPtjhDXuJ6fHPyrJEUm+kuS9SRZ679+umhtgfwxd41Y91xFJrkryoCSP670v\njjstwIEZ4X3cXZK8IskZSe49Pf4fkryq935j1dwA+2OENe6MJC9M8iNJtie5NsnfJzm/975UNTfA\n/mqtbU9yfpKXJbms977zAI4taw6bfiZMa+3IJItJzsrkl4rPTfKWJE9P8onW2rH7OP70JB9NclKS\n85L8Wib/IK9P8mdFYwPslxHWuGcluTyTH9rPnT7P55K8PMmlrTVnMAIzM3SNW8N8JgEGYOZGeB83\nl0lw+d1Mfin5/CR/l+RXk3xs+ksBgJkYYY37wyQXJjk8ySsziTGLSV6c5F9aa0cXjQ6wX1prLcmn\nMlnnth3gsaXNYRZnwrwkyUOSnN17f9Pyg621q5JcnMkP4+fs5fg3JflOksesqPQXttben+Q3W2vv\n6L1fVTM6wD5teI2bfnLyzZmc+XJq733XdNfbW2sXZ/JppZ/N5JNKALMw9H3c7VprD0nyO0n+LcnD\nxh8V4IANXeNemOTxSZ7Te3/X9LG/bq3dmOTMJKdm8mEbgFkY8rPqcZm8b7smyWN779+d7nrHdI17\nRZLnJXld2fQAezENyVckuTrJI5N8/gCforQ5zOIT1c9OclOSC1Y9/oEk1yU5o7W2ZqlqrZ2apCV5\nzxqnSb4xk8J1xrjjAhyQDa9xSe6Z5H1J/mhFgFm2HF4eOtagABswZI273fSsvrcm+XImn8AEOBgM\nXePOzuQH/wtXPth7P7/3/oDeuwADzNKQNe4+mXyQ+zMrAsyyy6bb+400J8BGbE/yriSn9d77gRy4\nGc1hUyPM9NTEk5NcsXrRnl5X7TNJjk9y/3We4lHT7afW2Pfp6fbUEUYFOGBD17je+5d778/tvb95\njd3HTLffGnFkgP02wvu4lV6UyXu2FyZZ/YM8wKYbusa11u41Pf7S5WuGt9aO2J8wDVBthPdxX8rk\nPdtJa+y733T7H6MMC7ABvffre+9n9d6/s4HDy5vDZp8Jc9/p9rp19l873T5gnf33W+/43vv/Jfnm\nXo4FqDZ0jVvT9PrhZya5Ocn7NzYawGCjrHGttXsneXWSC3vvHxlpNoChhq5xJ0+3X2it/VZr7Zok\ntyS5pbX2/tbaD44yJcDGDFrjpldqWEjysNbaG1prD2ytndBa+/kkr0pyZZK/GXNggE10v+m2rDls\ndoS5+3R78zr7b1r1fRs5fr1jAaoNXeO+x4pL9vxQkvne+9c2Ph7AIGOtcW9OsjvJS8cYCmAkQ9e4\n46bb5yR5QSax+RczueTiEzO56fWJI8wJsBGD38f13l+dyY2qn5/kf5Jcn+RDmdzf7/QNfvoc4GBQ\n3hzmhhwMQJ3W2pFJ3p3kSUn+vPf+pzMeCWCQ1tozkjwhyZm99xtmPQ/AiLZPt/dI8sO996Xp1x9s\nrV2fSZR5aZKXzWI4gKFaa2cleX2SS5P8bZIbMrk8z8uTXNJa+7ne+zdnOCLAQWuzI8zyvQzuts7+\no1Z930aOd78EYFaGrnG3a60dn+SDSU5LstB7/73h4wEMMmiNa60dl+R1ST7We3/HyLMBDDX0fdy3\np9sPrggwyy7IJMLs3PB0AMMMfR/XMgkwH+m9P2HFrn9qrV2VyWWzX5lJkAHYasqbw2ZHmC8l2ZPk\nXuvsX75G5dXr7P/idPs9x7fWjsnkxtVXDBkQYICha1ySpLV2jySXZ3JTxOf13t851oAAAwxd4/4k\nyfcnOW96A+tlx063x08fv2H1DWMBNsHQNe6a6fawNfbdOH3uozc6HMBAQ9e40zP5HeL71tj34elz\nP27IgAAzVN4cNvWeML33m5J8LsnDW2tHrNzXWjssyaOTfKX3fu1axyf55HT7E2vse8x0+/ExZgU4\nUCOscWmtHZ3kH5PcJ8kvCDDAwWKENe7xmVyu56NJvrLiz/KlFt8z/frHx58eYO9GWOP+M8muJD+6\nxr57J9mW9W+IDVBqhDVu+dPhR6yx7y6ZrHFr7QPYCsqbw6ZGmKkLktw1k5sVrnRGkhOSvG35gdba\nya21+y9/3Xu/MpPq9NSVn6BsrW1L8ttJbk3yV3WjA+zThte4qddl8sP7M3vvH64cFGADhqxxZ2Zy\nc+rVf1473f/K6df/XjI5wL4N+Vl1dyb38ntEa+2Jq45/0XT7odEnBth/Q97HLf+C8unT38Gt9NRV\n3wNwUJtFc9jsy5ElyV8keVaS17TW7pvks0kenOScTH7ofs2K7/2vJD3JySse+41MPkF5WWvttUm+\nmeQZmZwaOd97/0L5fwHA+ja8xrXWHprkOZl8kvKw1tpT1nj+G3rvH6sbH2CvNrzG9d7/ea0nbK39\nwPSvn+q9L9aMDbBfhv6sem6Sn0lyUWvtjzO5RNnpSX4lyZXT5weYlSHv4z7ZWrsok+Dy8dbae5Lc\nkOTHkpyd5PpM7n0FMBOttVOSnLLq4eNX/W7tkt77zZlBc9j0M2F677cm+ekkb0jy5CTvzOSXjm9L\nsnP6D7G34z+d5LFJPp/kD5K8Jck9k5zZez+/bnKAfRu4xj08k9O4T0ly0Tp/fr9qdoB9Gfo+DuBg\nNsLPqjckOS2TT0r+epK/TPJTmVx2cWfv/Zay4QH2YYT3cc9M8uJMLj/26unxv5Tk7UkesbfLbgNs\ngqfljr8/S77392snrHdwdXPYtmfPnqHPAQAAAAAAwCqzuCcMAAAAAADAIU+EAQAAAAAAKCDCAAAA\nAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQ\nQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYA\nAAAAAKCACAMAAAAAAFDg/wH6risW4PuB+gAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "vRqoyxqnofbT", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "def challenger_joint_log_prob(D, temperature_, alpha, beta):\n", + " \"\"\"\n", + " Joint log probability optimization function.\n", + " \n", + " Args:\n", + " D: The Data from the challenger disaster representing presence or \n", + " absence of defect\n", + " temperature_: The Data from the challenger disaster, specifically the temperature on \n", + " the days of the observation of the presence or absence of a defect\n", + " alpha: one of the inputs of the HMC\n", + " beta: one of the inputs of the HMC\n", + " Returns: \n", + " Joint log probability optimization function.\n", + " \"\"\"\n", + " rv_alpha = tfd.Normal(loc=0., scale=1000.)\n", + " rv_beta = tfd.Normal(loc=0., scale=1000.)\n", + " logistic_p = 1.0/(1. + tf.exp(beta * tf.to_float(temperature_) + alpha))\n", + " rv_observed = tfd.Bernoulli(probs=logistic_p)\n", + " \n", + " return (\n", + " rv_alpha.log_prob(alpha)\n", + " + rv_beta.log_prob(beta)\n", + " + tf.reduce_sum(rv_observed.log_prob(D))\n", + " )" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "oHU-MbPxs8iL", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "number_of_steps = 100000 #@param {type:\"slider\", min:25000, max:120000, step:1000}\n", + "burnin = 95000 #@param {type:\"slider\", min:20000, max:100000, step:1000}\n", + "\n", + "# Set the chain's start state.\n", + "initial_chain_state = [\n", + " 0. * tf.ones([], dtype=tf.float32, name=\"init_alpha\"),\n", + " 0. * tf.ones([], dtype=tf.float32, name=\"init_beta\")\n", + "]\n", + "\n", + "# Since HMC operates over unconstrained space, we need to transform the\n", + "# samples so they live in real-space.\n", + "unconstraining_bijectors = [\n", + " tfp.bijectors.Identity(),\n", + " tfp.bijectors.Identity()\n", + "]\n", + "\n", + "# Define a closure over our joint_log_prob.\n", + "unnormalized_posterior_log_prob = lambda *args: challenger_joint_log_prob(D, temperature_, *args)\n", + "\n", + "# Initialize the step_size. (It will be automatically adapted.)\n", + "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", + " step_size = tf.get_variable(\n", + " name='step_size',\n", + " initializer=tf.constant(0.5, dtype=tf.float32),\n", + " trainable=False,\n", + " use_resource=True\n", + " )\n", + "\n", + "# Defining the HMC\n", + "hmc=tfp.mcmc.TransformedTransitionKernel(\n", + " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", + " target_log_prob_fn=unnormalized_posterior_log_prob,\n", + " num_leapfrog_steps=2,\n", + " step_size=step_size,\n", + " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", + " state_gradients_are_stopped=True),\n", + " bijector=unconstraining_bijectors)\n", + "\n", + "# Sampling from the chain.\n", + "[\n", + " posterior_alpha,\n", + " posterior_beta\n", + "], kernel_results = tfp.mcmc.sample_chain(\n", + " num_results = number_of_steps,\n", + " num_burnin_steps = burnin,\n", + " current_state=initial_chain_state,\n", + " kernel=hmc)\n", + "\n", + "# Initialize any created variables for preconditions\n", + "init_g = tf.global_variables_initializer()" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "eNkhSXDkthRs", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "#### Execute the TF graph to sample from the posterior" ] - }, - "metadata": { - "image/png": { - "height": 357, - "width": 816 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 6))\n", - "p_trace_ = burned_cheating_freq_samples_\n", - "plt.hist(p_trace_, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30, \n", - " label=\"posterior distribution\", color=TFColor[3])\n", - "plt.vlines([.1, .40], [0, 0], [5, 5], alpha=0.3)\n", - "plt.xlim(0, 1)\n", - "plt.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "tqDMt8xyIAzd" - }, - "source": [ - "With regards to the above plot, we are still pretty uncertain about what the true frequency of cheaters might be, but we have narrowed it down to a range between 0.1 to 0.4 (marked by the solid lines). This is pretty good, as *a priori* we had no idea how many students might have cheated (hence the uniform distribution for our prior). On the other hand, it is also pretty bad since there is a .3 length window the true value most likely lives in. Have we even gained anything, or are we still too uncertain about the true frequency? \n", - "\n", - "I would argue, yes, we have discovered something. It is implausible, according to our posterior, that there are *no cheaters*, i.e. the posterior assigns low probability to $p=0$. Since we started with an uniform prior, treating all values of $p$ as equally plausible, but the data ruled out $p=0$ as a possibility, we can be confident that there were cheaters. \n", - "\n", - "This kind of algorithm can be used to gather private information from users and be *reasonably* confident that the data, though noisy, is truthful. \n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Y0bK5tMAIAze" - }, - "source": [ - "### Alternative TFP Model\n", - "\n", - "Given a value for $p$ (which from our god-like position we know), we can find the probability the student will answer yes: \n", - "$$\n", - "\\begin{align}\n", - "P(\\text{\"Yes\"}) &= P(\\text{Heads on first coin} )P( \\text{cheater} ) + P( \\text{Tails on first coin} )P( \\text{Heads on second coin}) \\\\\n", - "&= \\frac{1}{2}p + \\frac{1}{2}\\frac{1}{2}\\\\\n", - "&= \\frac{p}{2} + \\frac{1}{4}\n", - "\\end{align}\n", - "$$\n", - "Thus, knowing $p$ we know the probability a student will respond \"Yes\". In TFP, we can create a deterministic function to evaluate the probability of responding \"Yes\", given $p$:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "wBps82qhIAzf" - }, - "outputs": [], - "source": [ - "reset_sess()\n", - "\n", - "p_new = tfd.Uniform(name=\"new_freq_cheating\", \n", - " low=0., \n", - " high=1.)\n", - "p_new_skewed = tfd.Deterministic(name=\"p_skewed\", \n", - " loc=(0.5 * p_new.sample(seed=0.5) + 0.25)).sample(seed=0.5)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "m_kgk64TIAzh" - }, - "source": [ - "I could have typed `p_skewed = 0.5 * p + 0.25` instead for a one-liner, as the elementary operations of addition and scalar multiplication will implicitly create a deterministic variable, but I wanted to make the determinism explicit for clarity's sake. \n", - "\n", - "If we know the probability of respondents saying \"Yes\", which is `p_skewed`, and we have $N=100$ students, the number of \"Yes\" responses is a binomial random variable with parameters `N` and `p_skewed`.\n", - "\n", - "This is where we include our observed 35 \"Yes\" responses out of a total of 100 which are passed to the `joint_log_prob`." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "GJ2jFKI7ofa9" - }, - "outputs": [], - "source": [ - "N = 100.\n", - "total_yes = 35.\n", - "\n", - "def alt_joint_log_prob(yes_responses, N, prob_cheating):\n", - " \"\"\"\n", - " Alternative joint log probability optimization function.\n", - " \n", - " Args:\n", - " yes_responses: Integer for total number of affirmative responses\n", - " N: Integer for number of total observation\n", - " prob_cheating: Test probability of a student actually cheating\n", - " Returns: \n", - " Joint log probability optimization function.\n", - " \"\"\"\n", - " tfd = tfp.distributions\n", - " \n", - " rv_prob = tfd.Uniform(name=\"rv_new_freq_cheating\", low=0., high=1.)\n", - " prob_skewed = 0.5 * prob_cheating + 0.25\n", - " rv_yes_responses = tfd.Binomial(name=\"rv_yes_responses\",\n", - " total_count=tf.to_float(N), \n", - " probs=prob_skewed)\n", - "\n", - " return (\n", - " rv_prob.log_prob(prob_cheating)\n", - " + tf.reduce_sum(rv_yes_responses.log_prob(tf.to_float(yes_responses)))\n", - " )" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "0clIAcyHIAzj" - }, - "source": [ - "\n", - "Below we add all the variables of interest to our HMC component-defining cell and run our black-box algorithm over the model. " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "C5QLZ17e5u6t" - }, - "outputs": [], - "source": [ - "number_of_steps = 25000\n", - "burnin = 2500\n", - "\n", - "# Set the chain's start state.\n", - "initial_chain_state = [\n", - " 0.2 * tf.ones([], dtype=tf.float32, name=\"init_skewed_p\")\n", - "]\n", - "\n", - "# Since HMC operates over unconstrained space, we need to transform the\n", - "# samples so they live in real-space.\n", - "unconstraining_bijectors = [\n", - " tfp.bijectors.Sigmoid(), # Maps [0,1] to R.\n", - "]\n", - "\n", - "# Define a closure over our joint_log_prob.\n", - "# unnormalized_posterior_log_prob = lambda *args: alt_joint_log_prob(headsflips, total_yes, N, *args)\n", - "unnormalized_posterior_log_prob = lambda *args: alt_joint_log_prob(total_yes, N, *args)\n", - "\n", - "# Initialize the step_size. (It will be automatically adapted.)\n", - "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", - " step_size = tf.get_variable(\n", - " name='skewed_step_size',\n", - " initializer=tf.constant(0.5, dtype=tf.float32),\n", - " trainable=False,\n", - " use_resource=True\n", - " ) \n", - "\n", - "# Defining the HMC\n", - "hmc=tfp.mcmc.TransformedTransitionKernel(\n", - " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", - " target_log_prob_fn=unnormalized_posterior_log_prob,\n", - " num_leapfrog_steps=2,\n", - " step_size=step_size,\n", - " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", - " state_gradients_are_stopped=True),\n", - " bijector=unconstraining_bijectors)\n", - "\n", - "# Sample from the chain.\n", - "[\n", - " posterior_skewed_p\n", - "], kernel_results = tfp.mcmc.sample_chain(\n", - " num_results=number_of_steps,\n", - " num_burnin_steps=burnin,\n", - " current_state=initial_chain_state,\n", - " kernel=hmc)\n", - "\n", - "# Initialize any created variables.\n", - "# This prevents a FailedPreconditionError\n", - "init_g = tf.global_variables_initializer()\n", - "init_l = tf.local_variables_initializer()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "eJYLS8EysHqj" - }, - "source": [ - "#### Execute the TF graph to sample from the posterior" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "ALvEN1yQkTIx", - "outputId": "2bedf661-d0d3-45d2-fbba-c1ca8c85bb6b" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "acceptance rate: 0.6052\n" - ] - } - ], - "source": [ - "# This cell may take 5 minutes in Graph Mode\n", - "evaluate(init_g)\n", - "evaluate(init_l)\n", - "[\n", - " posterior_skewed_p_,\n", - " kernel_results_\n", - "] = evaluate([\n", - " posterior_skewed_p,\n", - " kernel_results\n", - "])\n", - "\n", - " \n", - "print(\"acceptance rate: {}\".format(\n", - " kernel_results_.inner_results.is_accepted.mean()))\n", - "# print(\"final step size: {}\".format(\n", - "# kernel_results_.inner_results.extra.step_size_assign[-100:].mean()))\n", - "\n", - "# print(\"p_skewed trace: \", posterior_skewed_p_)\n", - "# print(\"p_skewed burned trace: \", posterior_skewed_p_[burnin:])\n", - "freq_cheating_samples_ = posterior_skewed_p_[burnin:]\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Ye0uC_c-xrWf" - }, - "source": [ - "Now we can plot our results" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 374 - }, - "colab_type": "code", - "id": "_P5Z_uySgi-S", - "outputId": "0b085693-c710-449f-c25a-730abbde9a92" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmEAAALKCAYAAADK9/XkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XuY1mWB//HPwIjCjkJqnnVBZb8r\nnrGmENYFrX7apnjIXL08bJqnrMy2PGTmKlqX1lau24KlkqRp5iF/kZmkjuvZ1DVb7XoaTEjFfiqr\nKKIOIL8/YGYZGRCd52aY4fW6Lq6B53Df9/N9uJ7h4j3399uwaNGiAAAAAAAAUF/9enoBAAAAAAAA\nfZEIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAI\nAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUEBjTy+gK3PmzFnU02sAAAAAAAD6tsGDBzeUHN9OGAAA\nAAAAgAJEGAAAAAAAgAJEGAAAAAAAgAJEGAAAAAAAgAJEGAAAAAAAgAJEGIAe0tramtbW1p5eBkAR\nPuOAvsxnHNCX+YwDqC8RBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAA\noAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAAR\nBgAAAAAAoAARBgAAAAAAoAARBgAAAAAAoAARBgAAAACAXmn8+PEZP358Ty8jDz/8cJqbm/ODH/yg\n47YTTjghzc3Nq2T+tx+HqVOnprm5OVOnTl0l859zzjlpbm7OrFmzVsl8vUljTy8AAAAAAKAnTGiZ\n3dNLWKGzxm7Q00uoi7vuuisLFy7M2LFj6z72aaedVvcx6+W4447LSy+99J6e++ijj+aZZ57JJz7x\niZV6/Ko8Dl2t7eCDD86YMWOy/vrrr7J19BYiDAAAAAAAxVx55ZXZbLPNikSY3Xffve5j1svIkSPf\n83N//vOf5y9/+ctKR5hVeRy6WtuIESMyYsSIVbaG3sTpyAAAAAAAKOKtt95KrVbr6WX0On/4wx96\negnLtTqvbXUkwgAAAAAA9FHt1+r44x//mEmTJmW//fbL6NGjc8ABB+Sqq67KokWLOj3+lVdeyfe+\n970ccMABGT16dMaNG5cTTjghd9555zJjt7S05MQTT8zee++dMWPGZL/99sv555+fv/zlL0kWX5fk\nwx/+cObNm5df/vKXy1wzZdasWTn33HPz8Y9/PLvvvnv23nvvfO1rX8uMGTO6fA3Tp0/PySefnD32\n2CN33313kq6vCfPmm2/m0ksvzSGHHJK/+7u/y9ixY/PpT386N910U6fHtV/H5bLLLsuPf/zj7L33\n3jn99NNXeDwXLlyYH/zgBx3H8cADD8yVV165zHFMur4mzCOPPJJTTjkl//AP/5AxY8bkE5/4RM48\n88w8+eSTndb01FNP5ZFHHklzc3POOeec93Qc2v3iF7/IP/7jP2bMmDHZe++9c8EFF+S1117ruH9F\n14/5whe+0HGtl5VZ29uvCXPLLbfkmGOOydixYzNmzJgcfPDBmThxYl5//fVOj2tubs5JJ52U559/\nPmeccUY++tGPZvTo0TnyyCNz//33r/A9Wd05HRkAAAAAQB938cUXZ/78+TnyyCOz1lpr5YYbbshF\nF12URYsW5fDDD0+SvPHGGzn++OPz1FNPZfz48dl+++0zd+7cTJ06NV/5ylfy1a9+Nfvvv3+SZNq0\naTnzzDOzww475DOf+Uyampoyc+bMXHPNNbn//vvz05/+NLvttltOPfXUXHjhhdltt93yyU9+MsOG\nDUuSPPvss/n0pz+d/v3758ADD8zmm2+eZ555Jj/72c9yzz335NJLL80222zT6TX8x3/8RzbccMOc\neeaZ2Xrrrbt8nW+99Vb++Z//OQ8++GA+9rGP5dBDD01bW1tuu+22nH/++Zk1a1ZOPPHETs95/PHH\nM2vWrHzuc5/LxhtvvMLj+G//9m+5+uqrM3LkyBx55JGZP39+pk2blvvuu+8d34PHHnssJ510Urba\naqscccQRGTJkSJ577rn87Gc/y3HHHZerrroqW2+9db75zW/mjDPOyLBhw3Lcccdl0003fdfHod1t\nt93Wcf2WwYMH55577sn111+fF154Id/+9rffcc1LW5m1Le2yyy7LJZdckh122CHHH398Bg0alEcf\nfTSTJ0/Oo48+mokTJ6Zfv//dJ/L666/nxBNPzK677pqTTz45s2bNylVXXZVTTz01N9xwQzbccMN3\ntd7VhQgDAAAAANDHvfjii/nxj3+cxsbF/yW81157Zfz48bniiity2GGHpV+/fvnpT3+aJ598Mp/9\n7GfzT//0Tx3P3W+//XLwwQfn4osvzj777JO11147v/71r5Mk3/nOdzJkyJCOx+6000655pprMnPm\nzGy33XYd1yrZZJNNstdee3U87qKLLsr8+fNz+eWXZ4sttui4fezYsTnqqKMyceLEZSLB/Pnzc9ZZ\nZ63wdd5222158MEHc8ABB+SMM87ouP3AAw/MUUcdlSlTpuSggw7KRhtt1HHffffdlxtuuGGFQSFJ\nXn755Vx77bXZYostcvHFF2ettdZKkhx00EE54ogjVvjcZHG4WrhwYc4+++xO108ZM2ZMLrroojz1\n1FMZNWpUx3F63/ve1+mYvZvj0O73v/99rrvuuo73aPz48Tn++OPzn//5n3nyySeXCV0rsvR6lre2\nds8//3xHSLvkkks6jtX48eMzcODAXHfddbntttvy0Y9+tOM5//3f/53Pf/7znY5l//79c8kll+Te\ne+/Nfvvtt9JrXZ10+3RkVVX9qKqqRSv49cV6LBQAAAAAgPdm33337QgwSdLU1JQPfvCDmTNnTv70\npz8lSe688840NDTkgAMO6PTcpqam7Lnnnnn11Vfzu9/9Lsni/xxPkkcffbTTY0eNGpWLLroo2223\n3XLX8sYbb+Tuu+/OzjvvnMGDB+fVV1/t+LXppptm6623zsMPP7zM8/bcc893fJ0tLS1JFkeXpTU2\nNubjH/94Fi5cuMyulREjRrxjgEmS//qv/8rChQszbty4jqiQJAMGDOh0kfrlaT9m7cew3fDhw/Pv\n//7vGTVq1DuOkazccWg3bty4TpGsoaGhI550dYzr5a677srChQuz7777djpWyeK/i0k6TqXWrn//\n/jnkkEM63dYeq1588cViay2tnjthPpvkhS5uf7SL2wAAAAAAWEW6Om1V++mdnnvuuWy77baZMWNG\nNtxwwwwePHiZx/71X/91kuTPf/5zmpubc/jhh+e+++7Laaedlp122imjRo1Kc3Nztt9++zQ0NKxw\nLX/+85+zYMGC3HvvvSvcTTF37tw0NTV1/HmzzTZ7x9fZfj2Zrl7vVltt1TH/0lZm3CQd1zvZcsst\nl7lv6NCh7/j8gw46KL/61a/y3e9+NzfffHN23333NDc3Z+edd+4UyN7Jyq43SZc7XTbffPMk6bh2\nTwkzZ85c7vxL/11a2kYbbZQBAwZ0uq39zwsWLCixzFWinhHmV7VabUYdxwMAAAAAoA4GDRq0zG1/\n9Vd/lWTx6a2SxdfkeN/73tfl89dee+0ki3exJMmOO+6YKVOm5Morr8ydd96Z3/3ud5k0aVI222yz\nnHzyyRk3btxy1zJv3rwkyYc//OEcddRRy33c2/9DvqvX8Havv/56Ghsbl9l90dVreDfjLv28ddZZ\nZ7ljr8iWW26ZKVOm5Kqrrsrtt9+eyZMnZ/LkyVl//fVz7LHH5qCDDlqpdazsepf32Pa1vvnmmys9\nzrvV/h4PHDhwufO//vrrnW5/+/vdV7gmDAAAAABAH/f28JAs3mmSpON0VQMHDlzmP8bf/vyl/1N/\n6NCh+drXvpavfvWr+cMf/pCWlpZcd911Of300zNp0qTsuuuuXY7VPka/fv2y2267vfcX1YWBAwdm\nwYIFmT9//jIhpqvX8G60x4O2trZl7lvecXu7jTfeOF/60pfypS99Ka2trbnrrrty7bXX5oILLsig\nQYOyzz77vKe1LU9X73v7bSsTjt5rqGk/xu0xZmntx+q9vg+9TbevCfN2VVWtU1WVuAMAAAAAsJp4\n6qmnlrmt/fRa7aclGzZsWF588cW8/PLLyzy2/boxXZ12q1+/ftl+++1z0kkn5ZxzzsmiRYtyxx13\nLHctW221VRobG/PEE090eZqpl156aaVeU1eGDRuWJJk+ffoy97Ufg5U5dVhXNtlkkyTJs88+u8x9\nTz755Lseb/jw4Tn66KNz8cUXJ0luv/3297SuFWk/PdvSnnnmmST/e1qy9lOhdRWXnn766fc0b/v7\n0NVxaX8f2h/T19UzlpxUVdUnkwxN8lZVVb9Ncm6tVru5XhO0trbWayiA1YbPNqAv8xkH9GU+44C+\nbE35jGtra3rnB/WgerwPr7zySpLkxhtvzC677JJ+/Rb/XP7cuXPz0EMPZciQIXnjjTfS2tqanXfe\nOb///e/zwx/+MPvvv3/HGK+++mqmTZuWIUOGZNCgQXn88cdz3nnnZbPNNssJJ5zQab72gPLaa6+l\ntbU1s2fPTpLMnj270+vZZZdd8tBDD+Xyyy/vdOqy559/PqeffnrGjBmTo48+utNrePrpp5c5FVj7\nqdTaxx4xYkRuvfXWTJ48Occee2ynx914441Za621summm6a1tbUjRsyZM2eljvXgwYPT0NCQadOm\nZdy4cenfv3+SxfHipptuSpL8z//8T8dY7Ts+2v/8rW99KwsWLMhpp53W8T4kyQsvLL7U+ptvvtnx\n2IaGhmXW9W6OQ/v1Xm699dZ87GMf6zj13KJFizJ16tQkyfvf//60trZ27Iy5//77s+OOO3aM+cAD\nD+TFF19MsjjmvPbaa++4tvbHbbHFFmlsbMx1112XkSNHdrrmzRVXXJEkqaqq0xhtbW3LvA/t79HS\nx/W9Gj58eLee/17VM8L8nyTfSPJskp2SfCXJ1KqqDqvVatfUcR6ou5kzZ3ZsjRs0aFDHxaEAgHfP\n91UAAFj9DBw4MN/4xjfS3NyctdZaK9OmTcubb76ZQw89NA0NDUmSj3zkI7n77rtz/fXX56WXXso2\n22yTV199NS0tLZk3b16+8IUvpH///unfv3+GDRuW3/zmN3nttdey6667Zp111skLL7yQ3/zmN1l7\n7bWzxx57JFkcLgYMGJDHHnssN910UzbZZJN86EMfymGHHZZarZbJkydn1qxZGTp0aF544YVMmzYt\nDQ0N2XPPPd/T6/zABz6QXXbZJS0tLZk/f35GjBiRN954I/fee29mzZqVI444Iuuuu+57GnvIkCH5\n+7//+7S0tOTCCy9Mc3Nz2tract9992XjjTfOc889t8Lnb7fddrn66qtz/vnn50Mf+lCampoyZ86c\n3H777enfv3/22muvjsdutNFGmTFjRq6//vpssMEGGTt27Hta89ChQ3POOedkjz32yKBBg/Lwww+n\ntbU1o0aNyqabbppkcZxYb731ctddd2XdddfN5ptvnqeffjr33HNPdtpppzz22GOdxlyZtQ0ZMiQH\nH3xwrr766px33nnZfffd09jYmMcffzz3339/PvjBDy73dHV9TT0izL8muTpJS61Waz9B3M1VVf3f\nJI8m+deqqq6t1WpvdXeinipV9H0NDQ0d58BsamrKtttu28MrYk3QXu99tgF9TUNDQ5544okki//B\n7/sq0Nf4dxzQl61pn3EDnp3d00tYoXq8D+utt16S5Itf/GJ++9vf5he/+EVefPHFbLLJJvnyl7+c\nT33qU50ef/nll+fSSy/NHXfckZaWlgwcODA77LBDvv71r2fkyJEdjzv//POz88475+abb861116b\nefPmZf31188HPvCBHH300dl66607HnvKKadk0qRJuemmm3LAAQdk+PDhGT58eKZMmZJLL700Dzzw\nQH79619n3XXXzciRI3PMMcd0eu3tr2HLLbdc5pi0X/dl6du///3vZ8qUKbnlllvy4IMPZsCAAfmb\nv/mbXHjhhZ2CQfvujcGDB6/0sT7vvPMyadKk3HrrrZkyZUo23njj7L///hk9enQOO+ywrL/++h1j\ntV+Uvv3Pp5xySrbbbrvccMMN+fnPf565c+dmvfXWy4477phzzz03O+20U8c8X/7yl3PBBRdk6tSp\nGT16dI499th3dRxqtVqS5PDDD8+cOXPyk5/8JM8++2yamppyyCGH5KSTTuq0m2bixIm56KKLcued\nd2bhwoXZcccdM3HixFx99dV57LHHMnTo0Gy22WbvuLalH3fKKadk++23zzXXXJNrr702b731Vrbc\ncst8/vOfz6GHHtppd0ySDBgwYJnX1f4eLX1ce5uGRYsWFRu8qqpbk3w0yQ61Wu3xlX3enDlzyi0K\nujB9+nQRhlVuTfuHLbDmmD59ekeEGTFihO+rQJ/j33FAX+Yzru8555xz8stf/jKXXXZZp1NNAYsN\nHjy4oeT4/d75Id3y/5Z8Xa/wPAAAAAAAAKuVbp2OrKqq9ZLsm2R2rVa7pauHLPn6dHfmAQAAAAAA\n6G26uxOmLcn3k/yoqqoNl76jqqqPJPlgkgdrtdoz3ZwHAAAAAACgV+nWTpharfZGVVUnJ/lRkger\nqpqU5C9Jdk1yYpI5SY7v7iIBAAAAAHj3zj777Jx99tk9vQxYY3X7mjC1Wu2KJHsmmZ7kq0kuS/LJ\nJFclGVmr1R7t7hwAAAAAAAC9Tbd2wrSr1Wp3JLmjHmMBAAAAAAD0Bd3eCQMAAAAAAMCyRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgA\nAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAA\nAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIAC\nRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACRBgAAAAAAIACGnt6\nAQCsnAkts1f5nGeN3WCVzwkAAAAAfYWdMAAAAAAAAAWIMAAAAAAAAAWIMAAAAAAAAAWIMAAAAAAA\nAAWIMAAAAAAAAAWIMAAAAAAAAAU09vQCAHqbCS2z6zJOW1tTkmTAs/UZDwAAAABYvdgJAwAAAAAA\nUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAI\nAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUIAIAwAAAAAAUECRCFNV1blVVS2qqupHJcYHAAAAAABY\n3dU9wlRVtX2S0+o9LgAAAAAAQG9S1whTVVW/JD9M8ng9xwUAAAAAAOhtGus83olJRiXZK8ltdR4b\ngFVsQsvsHpn3rLEb9Mi8AAAAAFBPddsJU1XVFkm+meTKWq12e73GBQAAAAAA6I3qeTqy7yeZn+RL\ndRwTAAAAAACgV6rL6ciqqvpkkv2SHFOr1V6ox5hdaW1tLTU0a7iZM2dm3rx5SZJBgwZl0aJFPbwi\nVmdtbU11Hq+truP1BT7voXebOXNmx+9nzJjh+yrQZ/k3C9CX+YwD+prhw4f3yLzd3glTVdWQJBcn\nuTPJ5G6vCAAAAAAAoA+ox06YbyVZP8kJtVqt6I859lSpou9raGjI3LlzkyRNTU3Zdttte3hFrM4G\nPFufi9W374AZMGBAXcbrS3zeQ+/W0NCQJ554IkkydOhQ31eBPqf9p8P9mwXoi3zGAdRXtyJMVVV7\nJDkmyUVJ5lZVtcXbHjJoyW2v1Wq1l7ozFwAAAAAAQG/S3dOR7ZmkIckXkzz9tl9JcvCS33+3m/MA\nAAAAAAD0Kt09HdlPkjy0nPt+keS2JN/L/0YZAAAAAACANUK3IkytVvtjkj92dV9VVUnyTK1Wm9qd\nOQAAAAAAAHqj7p6ODAAAAAAAgC5093Rky1Wr1RpKjQ0AAAAAALC6sxMGAAAAAACgABEGAAAAAACg\nABEGAAAAAACgABEGAAAAAACggMaeXgDQd0xomb3K5zxr7AarfE4AAAAAgJVhJwwAAAAAAEABdsIA\nvVpP7L4BAAAAAFgZdsIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU\nIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU0NjT\nCwCAt5vQMnuVz3nW2A1W+ZwAAAAA9G12wgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAA\nABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQg\nwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAA\nAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAA\nABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQg\nwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAAAAAAABQgwgAA\nAAAAABTQ2NMLAOpvQsvsnl4CAAAAAMAaz04YAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACA\nAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAhp7egEAsDqY0DK7R+Y9a+wG\nPTIvAAAAAOXZCQMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFBAY08vAPq6CS2ze3oJAAAAAAD0ADthAAAAAAAAChBhAAAAAAAAChBhAAAAAAAAChBh\nAAAAAAAAChBhAAAAAAAACmisxyBVVe2Y5NQkY5JsluSVJPcm+UatVnugHnMAAAAAAAD0Jt3eCVNV\n1agk9yfZM8kPk3xmyddxSe6qqmr37s4BAAAAAADQ29RjJ8ykJA1JRtdqtRntN1ZV9WCSG5OclmR8\nHeYBAAAAAADoNboVYaqq6pfkiiSvLh1glpi25OtW3ZkDAAAAAACgN+pWhKnVam8l+c5y7v7bJV8f\n684cAAAAAAAAvVE9TkfWoaqqIUmakoxJ8u0kTyX5l3rOAQAAAAAA0BvUNcIkeWnJ10VJJic5tVar\nza7X4K2trfUaCjqZOXNm5s2blyQZNGhQFi1aVLex29qa6jYWfVNbW1tPL4Ee5HsbfdHMmTM7fj9j\nxoy6fl8FWJ34Pg70ZT7jgL5m+PDhPTJvvzqPNy7JJ5J8Pck+SR6qquoDdZ4DAAAAAABgtddQ6icT\nq6oamuSRJC8m+dsl149ZKXPmzPHjkqxS06dPz9y5c5MkTU1N2Xbbbes29oSWum0Go49p3wEzYMCA\nHl4JPemssRv09BKg7qZPn54nnngiSTJixIi6fl8FWB20/3R4T/00JUBJPuOANc3gwYMbSo5f750w\nHWq12owktyUZnmSbUvMAAAAAAACsjrp1TZiqqrZLcmuSabVa7eguHjKkHvMAAAAAAAD0Nt3dCdOa\nZJ0kB1dVNWzpO6qq2ibJ6CQvJPljN+cBAAAAAADoVbq1Q6VWqy2oqurzSa5K8kBVVd9P8qckw5J8\nLsnAJCfVarWF3V4pAAAAAABAL9Lt04TVarVrqqqameS0LA4vQ5K8kuS3Sb5Tq9Vu7e4cAAAAAAAA\nvU1drtVSq9XuS7J/PcYCAACg2zHHAAAbZElEQVQAAADoC7p7TRgAAAAAAAC6IMIAAAAAAAAUIMIA\nAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAA\nAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU\nIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIA\nAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAA\nAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU\nIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAUIMIAAAAAAAAU0NjTCwCANdmEltmrfM6zxm6wyucE\nAAAAWBPZCQMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAA\nAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCA\nCAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMA\nAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFCACAMAAAAAAFBAY08vAFaV\nCS2zl3vf/zz7cua/PjdJstbABVn/meU/FgAAAAAAVoadMAAAAAAAAAWIMAAAAAAAAAWIMAAAAAAA\nAAWIMAAAAAAAAAU09vQCAIBVa0LL7B6Z96yxG/TIvAAAAAA9xU4YAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACA\nAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAA\nAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACA\nAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQYAAAAAACAAkQY\nAAAAAACAAhrrMUhVVe9P8vUkByTZOMnLSe5OMqFWqz1SjzkAAAAAAAB6k27vhKmqaqMkjyQ5JslP\nl3y9JMleSe6uqmrX7s4BAAAAAADQ29RjJ8x5SbZIclCtVruh/caqqn6b5OdJzkjyqTrMAwAAAAAA\n0GvU45ows5JcneTGt91+S5JFSXaqwxwAAAAAAAC9Srd3wtRqtX9Zzl3rJmlI8kp35wAAAAAAAOht\n6nE6suU5YcnXq+o1YGtra72GYg3U1ta03Pvmz2/L/AULlvyhLW1tbatoVRB/31hj+D6+5pg5c2bH\n72fMmJFFixb14GoAyvG9DejLfMYBfc3w4cN7ZN56nI5sGVVV7ZPk60keTjKxxBwAAAAAAACrs7rv\nhKmq6sgklyaZkWTfWq1Wtx/x7qlSRf1NaJm9yuccMGD596211oBkQVvH7wes6MFQJ+07YPx9Y03h\n+/iao6GhIU888USSZOjQodl22217eEUA9dX+0+G+twF9kc84gPqq606YqqrOSnJFkt8lGVOr1Z6r\n5/gAAAAAAAC9Rd12wlRV9b0kJyf5v0kOrdVq8+o1NgAAAAAAQG9Tl50wS3bAnJxkcpIDBRgAAAAA\nAGBN1+2dMFVVjUtyTpIbk3ymVqu91e1VAQAAAAAA9HL1OB3Zt5d8/U2SA6uq6uoxN9sdAwAAAAAA\nrEnqEWFGLvn6/RU8ZliSGXWYCwAAAAAAoFfodoSp1WoN9VgIAAAAAABAX9KvpxcAAAAAAADQF4kw\nAAAAAAAABYgwAAAAAAAABYgwAAAAAAAABTT29AIAgDXDhJbZq3zOs8ZusMrnBAAAAGhnJwwAAAAA\nAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEAB\nIgwAAAAAAEABIgwAAAAAAEABIgwAAAAAAEABIsz/b+/eYzS76zqOfzbdri2X1nZtoQmXBVp+tQjK\nRVpRcCmJlyCKcg8rl4pCLSgWJAQcW92iJhLlJohQQKqYUKFctCgJMrRchJDaoqn8rMC2FEhtl7RA\nF9iSjH88zzTDMLPdnXO+88xsX69kc3aeM+ecXzfNL+d53s85BwAAAAAAoIAIAwAAAAAAUECEAQAA\nAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACg\ngAgDAAAAAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwA\nAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAA\nAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBh\nAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAA\nAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCA\nCAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAA\nAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACmyd9QCYrd3z\ne2c9BAAAAAAAOCy5EgYAAAAAAKCACAMAAAAAAFDA7cgAgMPWLG67Obdz+7ofEwAAANiYXAkDAAAA\nAABQQIQBAAAAAAAoIMIAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwAAAAAAEAB\nEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAA\nAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAA\nCogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACgwNZZDwAA4HCye37vTI47t3P7TI4L\nAAAArM6VMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAA\nKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACgwNax\ndtRa25bkgiQvTXJZ733nWPsGAAAAAADYbEaJMK21luRdSR6YZMsY+wQAAAAAANjMBt+OrLV2XJIr\nkhyR5BGDRwQAAAAAAHAYGOOZMNuSvDPJGb33PsL+AAAAAAAANr3BtyPrvd+Q5OwRxgIAAAAAAHDY\nGOWZMOvlmmuumfUQDjv7999t1kPYEG67bX9u+973pj/sz/79+2c7IO5U/P8GjGEjnSdde+21t/99\nz549WVhYmOFoAOpspLkXYGzmOOBwc8opp8zkuGPcjgwAAAAAAIBlNtWVMLMqVYezbV/ZO+shbAhH\nHrkt+d7+2/++bdu2GY+IO4PFK2D8/waMYSOdJ23ZsiVXX311kmTHjh05+eSTZzwigHEtfjt8I829\nAGMxxwGMa1NFmMPd7nlBBAAAAAAADhduRwYAAAAAAFBAhAEAAAAAACggwgAAAAAAABQY/EyY1tpp\nSU5b9vIJrbUnL/n50t77vqHHAgAAAAAA2CwGR5gkT01y3rLXTkty8ZKf75dkzwjHAgAAAAAA2BQG\nR5je+/lJzh88EgAAAAAAgMOIZ8IAAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAFRBgAAAAAAIACIgwA\nAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAA\nAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBh\nAAAAAAAACogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAA\nAAAoIMIAAAAAAAAU2DrrAWxEu+f3znoIAAAAAADAJudKGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAA\noIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACmyd9QAAABhu9/zedT/m3M7t635M\nAAAA2ExcCQMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAA\ngAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogw\nAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIAAAAA\nAAAUEGEAAAAAAAAKiDAAAAAAAAAFts56AAAAbE675/eu+PrXv3Jz9n3zLkmSj37z5hx//cq/t1Zz\nO7ePuj8AAACo4koYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQYOusB3AoVnv4KwAA\nAAAAwEbjShgAAAAAAIACIgwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAA\nABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECE\nAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABbbOegAAAHAods/vXfdjzu3cvu7HBAAA\nYPNzJQwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFBAhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqI\nMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUGDrrAcAAAAb3e75vTM5\n7tzO7TM5LgAAAONwJQwAAAAAAEABEQYAAAAAAKCACAMAAAAAAFDAM2EAAGCDmsWzaDyHBgAAYDyu\nhAEAAAAAACggwgAAAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAIiDAAAAAAAQAERBgAA\nAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAACogwAAAAAAAABUQYAAAAAACA\nAiIMAAAAAABAAREGAAAAAACgwNYxdtJaOz7JeUmemOSkJDcluTTJXO/9a2McAwAAqLd7fu9Mjju3\nc/tMjgsAAFBp8JUwrbWjk8wnOTvJe5I8J8mbkzwtySdaa8cNPQYAAAAAAMBmM8aVMC9O8uAk5/Te\n37j4YmvtqiSXJJlLcu4IxwEAAAAAANg0xngmzLOS3JrkwmWvvz/J9Ul2tda2jHAcAAAAAACATWPL\nwsLCmjdurR2T5JYkl/feH7PC+vck+bUkD+i9f/Fg93vLLbesfVAAAAAAAAAH4dhjjy29iGTolTD3\nnS6vX2X9ddPl/QceBwAAAAAAYFMZGmHuPl3uW2X9rct+DwAAAAAA4E5hjGfCAAAAAAAAsMzQCPON\n6fKuq6y/27LfAwAAAAAAuFMYGmG+lGQhyb1WWb/4zJhrBh4HAAAAAABgU9mysLAwaAettSuTnJJk\ne+/9O0tePyLJV5N8t/d+n0EHAQAAAAAA2GTGeCbMhUnukuT5y17fleTEJG8d4RgAAAAAAACbyhhX\nwhyZ5PIkD0/y+iSfTfKgJOdmchuyM3rv+waOEwAAAAAAYFMZHGGSpLV2TJLzkzwpyUlJ/i/JJUnO\n671/ffABAAAAAAAANplRIgwAAAAAAADfb4xnwgAAAAAAALCMCAMAAAAAAFBAhAEAAAAAACggwgAA\nAAAAABQQYQAAAAAAAAqIMAAAAAAAAAVEGAAAAAAAgAJbZ3HQ1trxSc5L8sQkJyW5KcmlSeZ67187\niO0flWQuyRlJjk7yP0nekuQNvfeFqnEDHIwR5rifmW7/yCRHJflykvck2d17/1bVuAEOxtA5btm+\njkpyVZIHJnls731+3NECHJoRzuN+KMnLk+xKcu/p9v+c5JW995uqxg1wMEaY43YleUGSH0+yLcl1\nSf4pyQW9971V4wY4WK21bUkuSPLSJJf13ncewrZlzWHdr4RprR2dZD7J2Zl8qPicJG9O8rQkn2it\nHXcH25+Z5KNJTklyfpLfzOQf5HVJ/rJo2AAHZYQ57plJLs/kTft50/18LsnLkny4teYKRmBmhs5x\nK5jLJMAAzNwI53FbMwkuf5DJh5LPS/KPSX4jycemHwoAzMQIc9yfJLkoyZFJXpFJjJlP8qIk/95a\nO6Zo6AAHpbXWknwqk3luyyFuW9ocZnElzIuTPDjJOb33Ny6+2Fq7KsklmbwZP/cA278xyXeSPHpJ\npb+otfa+JL/TWnt77/2qmqED3KE1z3HTb06+KZMrX07vvd8yXfW21tolmXxb6Rcy+aYSwCwMPY+7\nXWvtwUl+P8l/JHno+EMFOGRD57gXJHlckmf33t85fe3vWms3JTkryemZfNkGYBaGvFc9PpPztj1J\nHtN7/+501dunc9zLkzw3yWvLRg9wANOQfEWSa5I8IsnnD3EXpc1hFt+oflaSW5NcuOz19ye5Psmu\n1tqKpaq1dnqSluTdK1wm+YZMCteucYcLcEjWPMcluWeS9yb50yUBZtFieHnIWAMFWIMhc9ztplf1\nvSXJtZl8AxNgIxg6x52TyRv/i5a+2Hu/oPd+/967AAPM0pA57j6ZfJH7M0sCzKLLpssdI40TYC22\nJXlnkjN67/1QNlyP5rCuEWZ6aeKpSa5YPmlP76v2mSQnJLnfKrt45HT5qRXWfXq6PH2EoQIcsqFz\nXO/92t77c3rvb1ph9bHT5TdGHDLAQRvhPG6pF2ZyzvaCJMvfyAOsu6FzXGvtXtPtP7x4z/DW2lEH\nE6YBqo1wHvelTM7ZTllh3Y7p8r9GGSzAGvTeb+i9n917/84aNi9vDut9Jcx9p8vrV1l/3XR5/1XW\n71ht+977N5PcfIBtAaoNneNWNL1/+FlJ9iV539qGBjDYKHNca+3eSV6V5KLe+0dGGhvAUEPnuFOn\nyy+01n63tbYnybeTfLu19r7W2smjjBJgbQbNcdM7NexO8tDW2utbaw9orZ3YWvulJK9McmWSvx9z\nwADraMd0WdYc1jvC3H263LfK+luX/d5atl9tW4BqQ+e4H7Dklj0/mmSu9/7VtQ8PYJCx5rg3Jdmf\n5CVjDApgJEPnuOOny2cneX4msflXMrnl4hMyeej1SSOME2AtBp/H9d5flcmDqp+X5H+T3JDkg5k8\n3+/MNX77HGAjKG8OW4dsDECd1trRSd6V5IlJ/qr3/hczHhLAIK21pyd5fJKzeu83zno8ACPaNl3e\nI8mP9d73Tn/+QGvthkyizEuSvHQWgwMYqrV2dpLXJflwkn9IcmMmt+d5WZJLW2u/2Hu/eYZDBNiw\n1jvCLD7L4K6rrL/bst9by/aelwDMytA57nattROSfCDJGUl2997/cPjwAAYZNMe11o5P8tokH+u9\nv33ksQEMNfQ87lvT5QeWBJhFF2YSYXaueXQAwww9j2uZBJiP9N4fv2TVv7bWrsrkttmvyCTIAGw2\n5c1hvSPMl5IsJLnXKusX71F5zSrrvzhd/sD2rbVjM3lw9RVDBggwwNA5LknSWrtHksszeSjic3vv\n7xhrgAADDJ3j/jzJDyc5f/oA60XHTZcnTF+/cfkDYwHWwdA5bs90ecQK626a7vuYtQ4OYKChc9yZ\nmXyG+N4V1n1ouu/HDhkgwAyVN4d1fSZM7/3WJJ9L8rDW2lFL17XWjkjyqCRf7r1ft9L2ST45Xf70\nCusePV1+fIyxAhyqEea4tNaOSfIvSe6T5JcFGGCjGGGOe1wmt+v5aJIvL/mzeKvFd09//qnxRw9w\nYCPMcVcnuSXJT6yw7t5JtmT1B2IDlBphjlv8dvhRK6z7oUzmuJXWAWwG5c1hXSPM1IVJ7pLJwwqX\n2pXkxCRvXXyhtXZqa+1+iz/33q/MpDo9Zek3KFtrW5L8XpLbkvxt3dAB7tCa57ip12by5v0ZvfcP\nVQ4UYA2GzHFnZfJw6uV/XjNd/4rpz/9ZMnKAOzbkver+TJ7l9/DW2hOWbf/C6fKDo48Y4OANOY9b\n/IDyadPP4JZ6yrLfAdjQZtEc1vt2ZEny10memeTVrbX7JvlskgclOTeTN92vXvK7/52kJzl1yWu/\nnck3KC9rrb0myc1Jnp7JpZFzvfcvlP8XAKxuzXNca+0hSZ6dyTcpj2itPXmF/d/Ye/9Y3fABDmjN\nc1zv/d9W2mFr7Uemf/1U732+ZtgAB2Xoe9Xzkvx8kotba3+WyS3Kzkzy60munO4fYFaGnMd9srV2\ncSbB5eOttXcnuTHJTyY5J8kNmTz7CmAmWmunJTlt2csnLPts7dLe+77MoDms+5Uwvffbkvxcktcn\neVKSd2TyoeNbk+yc/kMcaPtPJ3lMks8n+eMkb05yzyRn9d4vqBs5wB0bOMc9LJPLuE9LcvEqf/6o\nauwAd2ToeRzARjbCe9Ubk5yRyTclfyvJ3yT52Uxuu7iz9/7tssED3IERzuOekeRFmdx+7FXT7X81\nyduSPPxAt90GWAdPzfd/fpb84OdrJ662cXVz2LKwsDB0HwAAAAAAACwzi2fCAAAAAAAAHPZEGAAA\nAAAAgAIiDAAAAAAAQAERBgAAAAAAoIAIAwAAAAAAUECEAQAAAAAAKCDCAAAAAAAAFBBhAAAAAAAA\nCogwAAAAAAAABUQYAAAAAACAAiIMAAAAAABAAREGAAAAAACggAgDAAAAAABQQIQBAAAAAAAoIMIA\nAAAAAAAUEGEAAAAAAAAKiDAAAAAAAAAF/h8Z7yrTZ7YKGAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "XJyZIwoyth2j", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "66444d91-4c78-495b-ee3a-083c37c6fd81" + }, + "cell_type": "code", + "source": [ + "# In Graph Mode, this cell can take up to 36 Minutes\n", + "evaluate(init_g)\n", + "[\n", + " posterior_alpha_,\n", + " posterior_beta_,\n", + " kernel_results_\n", + "] = evaluate([\n", + " posterior_alpha,\n", + " posterior_beta,\n", + " kernel_results\n", + "])\n", + " \n", + "print(\"acceptance rate: {}\".format(\n", + " kernel_results_.inner_results.is_accepted.mean()))\n", + "print(\"final step size: {}\".format(\n", + " kernel_results_.inner_results.extra.step_size_assign[-100:].mean()))\n", + "\n", + "alpha_samples_ = posterior_alpha_[burnin::8]\n", + "beta_samples_ = posterior_beta_[burnin::8]" + ], + "execution_count": 10, + "outputs": [ + { + "output_type": "stream", + "text": [ + "acceptance rate: 0.62579\n", + "final step size: 0.014119372703135014\n" + ], + "name": "stdout" + } ] - }, - "metadata": { - "image/png": { - "height": 357, - "width": 816 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 6))\n", - "p_trace_ = freq_cheating_samples_\n", - "plt.hist(p_trace_, histtype=\"stepfilled\", normed=True, alpha=0.85, bins=30, \n", - " label=\"posterior distribution\", color=TFColor[3])\n", - "plt.vlines([.1, .40], [0, 0], [5, 5], alpha=0.2)\n", - "plt.xlim(0, 1)\n", - "plt.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "Lxt6fSRvIAzy" - }, - "source": [ - "The remainder of this chapter examines some practical examples of TFP and TFP modeling:" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "KMoiodMmIAzy" - }, - "source": [ - "## Example: Challenger Space Shuttle Disaster \n", - "\n", - "On January 28, 1986, the twenty-fifth flight of the U.S. space shuttle program ended in disaster when one of the rocket boosters of the Shuttle Challenger exploded shortly after lift-off, killing all seven crew members. The presidential commission on the accident concluded that it was caused by the failure of an O-ring in a field joint on the rocket booster, and that this failure was due to a faulty design that made the O-ring unacceptably sensitive to a number of factors including outside temperature. Of the previous 24 flights, data were available on failures of O-rings on 23, (one was lost at sea), and these data were discussed on the evening preceding the Challenger launch, but unfortunately only the data corresponding to the 7 flights on which there was a damage incident were considered important and these were thought to show no obvious trend. The data are shown below (see [1]):\n", - "\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "colab_type": "code", - "id": "tlPZvBWkg5g-", - "outputId": "d48fc2b4-441e-47b5-853d-91c7f37b6162" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "'challenger_data.csv'" + }, + { + "metadata": { + "id": "xIGyBkilIA0G", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "We have trained our model on the observed data, now we can sample values from the posterior. Let's look at the posterior distributions for $\\alpha$ and $\\beta$:" ] - }, - "execution_count": 7, - "metadata": { - "tags": [] - }, - "output_type": "execute_result" - } - ], - "source": [ - "reset_sess()\n", - "\n", - "import wget\n", - "url = 'https://raw.githubusercontent.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/master/Chapter2_MorePyMC/data/challenger_data.csv'\n", - "filename = wget.download(url)\n", - "filename" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 675 - }, - "colab_type": "code", - "id": "BNOqG_9zIAzz", - "outputId": "2f884384-a913-4b04-f6b1-56cd315f6ce2" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Temp (F), O-Ring failure?\n", - "[[66. 0.]\n", - " [70. 1.]\n", - " [69. 0.]\n", - " [68. 0.]\n", - " [67. 0.]\n", - " [72. 0.]\n", - " [73. 0.]\n", - " [70. 0.]\n", - " [57. 1.]\n", - " [63. 1.]\n", - " [70. 1.]\n", - " [78. 0.]\n", - " [67. 0.]\n", - " [53. 1.]\n", - " [67. 0.]\n", - " [75. 0.]\n", - " [70. 0.]\n", - " [81. 0.]\n", - " [76. 0.]\n", - " [79. 0.]\n", - " [75. 1.]\n", - " [76. 0.]\n", - " [58. 1.]]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABnAAAAH0CAYAAAANA2NyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xm4ZEV9P+DPXBhkdQaMKBKBIFhG\n0IALq0YxLqjELW5RVFxRExUjxi3GJRjNDzQSjcZdFNdEjcYFMRFRcQA14hK1wBWDSFRkWIZlYO7v\njzrNNJe+d/re28P09H3f57lPT5+lqs7pU6d76nuqatn09HQAAAAAAAAYH1ObugAAAAAAAADckAAO\nAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAAAGDMCOAAAAAAAACMGQEcAAAAAACAMSOA\nAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAAAAAYMwI4AAAAAAAAY0YABwAAAAAAYMxs\nuakLAACwMZVSpgcsXpdkdZJfJjk7ySeSfKbWum7EeR+U5A1J9k+yRZIX11rfMMo8NlellBcneWaS\nXZOsSXLHWusFC0yr9xnfstb6mxEVcUFKKbskeXaS+ya5fZKbJ7k2yW+SfDfJx5K8r9a6dpMVckyU\nUu6S5OlJ7pFk9yTbJrkqrV5+PclJtdZTB+w3Np/3TKWUeyc5LcnPa6173ER5rkzy1CQPSLJPklsk\nuTrJr5J8JclHB53HeaT/pST3mmOTq5NcmORrSd5aa/3qHGk8udb63oWWBQAAlhoBHABgqfhIWoNm\n0oIpOya5c5Kjkjw5yQ9LKU+otX5jFJmVUpYl+VCSPZJ8P8mXk/xoFGnPowwfSnLwTdWQPKyukfu1\nSaaTfDrJ/6Y1Am9ov1VJrq613ntjlm+hSimHJ/nXJNsn+XmSU5P8NsnN0q61B3Z/Ty+l3L/Weumm\nKuumVkr5mySvTrIsyTlJPp7ksrSA1z2SPC7J40opb621PnsTlnNgHSqlbJvk0iTH1VpfuQmK1ivH\n45O8OcnKtKD0l9MCYFsnuUOSpyR5ainly0keW2u9cBHZnZFk0P3x1knukvaZ/Xkp5ZW11lfP2Obf\n0j7n7y8i/yWvlPLLJKfWWo/a1GWZROP+HQMALE0COADAUvHGWuuZMxeWUvZO8vdJHpnkK6WUB9Ra\nvzyC/HZOC94kyZ/UWn81x7Yby903QZ7DOLB7PbXW+pBhdiilbJlkvyRnbbRSLUIp5ffSgoTbJ/nr\nJCfUWqdnbHO3JJ9JO/5XJXn+TV3OcVBKuV+Sv0tyRZKH1Fq/OGP9siRPTPKuJM8qpXy+1vrJm76k\nSWavQ3dJCwRvMqWUZyf55yRrk7wwyT/VWq+Zsc3eSd6W5LAkZ5VS7l5rvWiBWX661vq6WcqyLMmT\nkrwzyatKKafXWk/vra+1vnmBedIppfx+kl02dTkm1bh/xwAAS5c5cACAJa3Wel6t9VFJTkx7av1j\npZSbjyDpbfryuMmDN6WUnZLc7qbOd0i9czOf83KntM9nXP1pWu+RH9daj58ZvEmSrnfX89KGVDuw\nlLJJAwCb0JHd64dnBm+SpNY6XWs9KS0YcEWS+9yUhevZQB3apMHRUso+Sf6xe/vntdYTZgZvknZ/\nS3J4ki8muW2S92yM8nSf2XuTfLhb9PSNkc8SN64B+Ukx7t8xAMASpQcOAEDzgrSGzpLWM+JV/StL\nKSvSGt8fkWTvbvH5ST6V5HW11t/1bfuztDk9eu97jfmv6g23VEq5WdpcKY9Jcscky9OGPjolyWtr\nrf87qJCllAd1+909bRi4C9PmVfn73nwgM+as2L0v/z+otf6slLJVkr/s8r5DWkDl/5J8L8k7aq0f\n28C5mlmmQ5Ick+TQJLdMm9Pmh2nDib2l1nplt9290+YH6XlSKeVJ/WWbJf2fZf35vFfveGqtywZs\ne48kL087P9sm+XF3TG8csO1U2hB6T0zyR932F6U1dv9DrfUHQxx+z87d64aCUh9N8vEBPSW+lPaZ\nPTTJL9Kuv0PSevT8IskH0z7jq2fs1+ut8oS0p8dXpJ3/7yc5KcnbB83tVErZMcmLkjwkrafYtUm+\nlXbcnx2w/dDX/xCGPVfPS/KsQcGwvnIN9Xn3XUOH1Vq/NCCdG6yfqw4l+Wnfrq8opbwiyekbGnZp\noXV+Fi9JslWSf9tQfa21XlNKeWqS85I8sOuF8/V55DUfZyR5fNrxXW/QHDillKPSAkqfSbvu/zqt\nF89uab2Kzkzy8lrr2TMzKaU8Ju2es2+S69KGdvu7JN9MG4rvBveHvrr+pLSG+h3S5qU6N8n7krx7\nruusS+M9XRrvqbU+ZZZtjkzy/rRA7l7dsj2TvDgtEPn7aXXtl0n+M61n6Llz5dul0V+23n3zBvMs\nlVJuneTYJA9Oq9Nrk/wk7T78ht59uG/7L6V9JoelzT11XJK7pvUs+16SV9Rav1BKuUVaL9Ujkvxe\n2v3orbXW18+S3rzuYd2++yf5q27/WyW5PMl3kryz1vqBOc7HrZK8LG34votrraVvmzunfa/fM8lt\nusW/SBva8rj+4QTn+o4ppeyRrs7P8p0zcH3f+XhUdw5e2ZXjdrXWX3TbjPI7CACYUHrgAAAkqbVe\nlzYcUdKGU7teNzH9N9IapG6R5BNJ/j3tad2/TvLtUsrufbu8Ozd80v3E7u/MLr3tk5ye5A1J9kry\n2bTht65Oa+D9XjfB+w2UUl6b1th5j7QGnvemzXvx/CTf7YbYSdp8E71G3cv68u/NufKJJK9Pa7D6\ndFpPh2+lNTb9WynllbOfqRuV6dlJvprWSPWztMbQ07rjOiHJ6d3xJm2umxOzfoiaHwwo2yDvTvKF\n7t8X9O0z03277damzT90RlpD8j+WUl44o9xbpJ2Hd6U1Wp6W5OQkv05r5D2nlPLADR1/n16j/oGl\nlINm26jWum5QT4k+d+vKfZskn+z+dknyt0n+o2vw6/eutOvgkLQJ69+R1jC8X5K3dutuoJSyV5Jv\npwVwLk8L9Jya5IAknyml/N2M7ed7/W9I71w9rpSy82wb1Vqv3kCj+tCf9wLMVYdOTLt2k3Ytn9ht\nP6uF1vlZ0lqe5OHd27cOs08XHD2le/vYYfZZoJXd62Xz3O+DaQ34Z6UFOS9Ocv8kX+wayK9XSjk2\nrafPQUnOTvvsb5Z23T88g705ra78UbfdO9Kul/3S7n/D9EzqBRIe2g23Nchjutf3d2W9fVpQ6end\nMZ3clfeyJM9KG9Zu/yHyHnTffHdvZSll37Q5hl6Q9n/8Dyf5fNr8RMclObML2g5yl7R6tCbtOv7f\nJAcn+XR3TX4p7Vz/R9q9/nZJTiilzNbLal73sFLK47pjO7LL+6S078oDk5xcSnlvF6ge5C/SAoaf\nTLsn9dK8X5KvpwVGfpP2vfThtDm3np3km6WUXfvSGfY7ZiH2T6unZ3f5XNWVcdTfQQDAhNIDBwBg\nvV7vkH1LKStrrZd079+T1uj6sSSP7z1B3D1R/7a0xpZ3J/mTJKm1vrprdHxy9/6YGfmckNY4dUaS\nI3r5dA1bx6U9Xf/BUsq+tdZru3X3S3uK+6Ikd5/xBO+70p7ifUeSB9Za31xK+V6SP0t7Kvn6/Lvg\nwoOS/CjJ/rXWy/vW7ZXW6PWSUsqbez16ZtMN49Rr5HpY/zwlXWPhV9J6RrwyybG11h8lOaYLEB2Y\n5OwB5+ZGuvN5VJL7JfnRHPuckOTB/cNylVL+Pu18PifJ8X3bvjCt98m5Se5Ta72gb59npjW4vb+U\nslffdTCXz6b1htolyZdLKR9Ma5T+yswn3zfgxUleVmu9vqyllDumNf7dLy24+NFu+R3SrrHpJPes\ntX6zb58/TGvQfUIp5cT+dWkNpLdNexr+ZX377JvWcPo3pZTP9M0ZNa/rfwjvTvLMtN4s/1NKeVda\nL4FzukDqsObzec/LXHUo7Rp+b5I/THJKr1fdEGWdV52fQ+9J/euSrBr+qHJaWi+Ke8xjn/nqXQPf\nm8c+90pSk+zdd162TTu2O6dd46/olt86radNkvxFrfUtvUS6evtPMxPvApDPTHJJkj/sH9KylHKr\ntM/kSaWUN9RavzNHOb+Y9XX8T9ICJP357JgWdEpaQ3zSglIr03qpvWTG9i9Iuy5entazbVa11lnv\nm9019JG03ihvSnJMr9dd13Puo125Tkjy1AHJvzJtGL5Pd/tslXbvPiAtsPsfSZ7SC6aWUl7fHddR\nad85M83nHvYHad9fWyR5bK31I337lC7/JyX5r3RBsRmekOSutdafz1h+XFoPtTfVWp/bl+bytM/t\nsK6cz0nm9R2zEM9MO7//PmP5qL+DAIAJpQcOAMB6v+j7987J9cOwPCCtp8LT+od/6f79l2lP5d+n\na1CfUzccTW/4nSf3N8x0jW4vSwuulLQeBj29Rqg39oI3ffu8Iu2p7K27hs+5/EH3+p3+4E2X1o+S\n/HHaU+mrN3QsaQ1TWyb59zpjkvluSK1ecOApczyxPkofHDCnSq+B8bZdwKHX4PmCbvlf9DecJUmt\n9V/SGmtvkSF7K3Tn8iFpT28vT2t0/HyS1aWUr5VS/qGUctgQ5+EnaQ2t/Wl/P+sbLx/dt2pNWoPs\ns2cEaNINvfOV7u09e8tLKXdN662zOusbwnv7fC/Jv6T1GLhzt/1Ir/9uv2+k1YGr04ZkelFaD5+L\nSymfK6W8uJRypyGSGurz3tQWUedn0+s58H/zDA7+pHv9/Tm3WqBSyl+mBTauS/L2eey6fVo97D8v\nvd4gSXctdh6a1vPrJ5nR+6irtzcabi1tOLFlSX5SZ8xHVmu9KC2gfee0hvRZdZ9Vb46fRw3Y5OFp\nQYOv1Vp/3C3r3W+/NmD7E9Pq5nPmyncIR6T1PPtZkr/qHzKx1ro6yTPSgrxHlsHzu321F7zp9rkm\nrUdL0oJPL5rRE67XM22fWcozn3vYc9I+zw/1B2+6fWqSv+ne/sUsef3XgOBN0uaHev6AcqzN+p5L\n95y500Zy8czgzcb4DgIAJpceOAAA663p+3dv2K/eBOqrBj0FW2u9vJRyetok9oelzf0yl3umNfCf\nV9sE4zPTmy6lfC6tYeuwJKd0w8fcu9vkKwP2OT8z5pyYQ+1eH9wNgfO+GY3y3x0ynaQFe5LW+2SQ\n/0prONwxba6d+TyVvxCnDFj2y75/75wWpLtzWuDgqtxwTp5+n0n77A9LC2psUK31G92QSU9P92R4\n2md9cPf310l+UUo5rtY6WwP3KbMMG/bVtIDZfn35nZ++YZQG6DUKruhbdlj3+vVa61UDjuHYGYtG\nff339ntvKeULaYHJx6QN53fztHmoDk/y2lLK15O8sNZ6+izJDPt5b2rzrvMbSK93b7pinuXoBWx3\nmOd+PUd0PWBm2i5tiK190+Z3eWat9dvzSPfqDA689D7L/uu3N8zc6bPUkw9kfS+Ynh935dq/lPLS\nJP/UH7yuQ8xB0+eDaYGBh5VSnjmjt9QNhk/rJd+V5zWllAtqrf/dl++1afV6sXp19AuDem/VWn/e\n9Sa7U9o8ZZ+bscmgc3/R+t3r/82yblAwKJnHPayv7LN9h3ymez2glLJdrXXmNT/w/l1r/fCg5Z1B\n98WNaVAZN8p3EAAwmQRwAADWW9n374u71z26191LKW/MYLt1r3vPsr5fL70d5kiv18DVS+8WWd9o\ne8GNNx9erfW/SymvSxs+5u1Jji9tsuUvJPn0LE8zz6b3dPlPB63sGvd/m9ZQtVs2fgDnRmWvtV7d\nRuJJ0obpSdZ/BuuSvL5vfb+9utdhPtP+/Nakmz+hlHLLtCDXPdOGidovbeiyt5VSSq31BQOS+PGA\nZcn6xuxd+hd2DerPTxv6Z9e0a2WLG+6a/vkj9uheh72OetuP6vq/XvfU+YuSvKgbvq93ru7TpXn3\nJP9ZSnl0rfUTA5IY9vPe1PboXudT5+fS6x03WwP6bHqBm4UOx3Ro9zfINWk9Yt46zyBwklwwS4N/\nbzi9/lEjer2P/neWtG6Ud631/0opz03yliSvSfKyUspX0ubC+Uydx0TxXZD23CS3T2tY/0KSdHX9\nPmnnob8nyau75XdKm3flvC7fU5N8fp49qGazR/e6/xzXV+/7Y+/cOIAz6Fz2zv2gYTR762abl2Y+\n97A9utdHlVIOmGW/tWkB0NslmTnE3czgUpLre7g8MW1+nNunBXO3nrHZbOUftUFl3KN7Hfl3EAAw\neQRwAADW6/ViuTptroNkfcPX7bu/uQzToNpL79ZJnjdkev0NT2uHyGNOtdaXlFJOS2v4v3fasEQP\nTfLmUsopaUNyDQzKzNAbrm2uRsheL49tFljc+Rh2/pTeZ7Bthv8M5q3W+uu04YY+liSllL2T/HNa\nsOWYUsp7BzR2z9ar4prudaveglLK7dLm77hV2nk+Pa3HSS+N+6fN09Kvdy0Nex2N+vofqBu+70fp\nehSVUu6TNhzankn+uZTy6W74o37zmS9nU1pInZ/Lz7rXW5ZSVnTDZA2j1xB8feCrG/ZsrwHbvrrW\nevGMZS+ptb6uf0FpE8H/IC049NkFBG+S+d3TeveR2e45lw1aWGt9aynlv5McmzYkYO/v+FLKqrRh\nrL41ZBk+kORVacOo9Sa+/7O0/1t/vBs+spfvb7p5x56VNqziPmmfw7OSXNYFXF5V5zf300y96+tu\n3d9cBl1fc825NCiwtiFD38OyvuwPGyLdQWW/fOaCrsfqh7N+mLvvpt0bf5d2PL+f9nndVG5UxtxE\n30EAwGQQwAEAWO/w7vVrfcOK9RpfPlRrfdwI8uilt6rWesiQ+/Q3iO2YRfbCSZJa66lJTi2lbJPW\nO+TBSf487Rx8uZTyhzPnyJmlXDfP+kDOIL11G0rrptQry4W11tvcVJnWWs8rpTwkrQH+Vmnzncxs\n8J75lHhPb7if/ifiT+jS+WaSB9Raf9u/QynlfblxAKd3Le04ZLFHff0Ppdb6xVLKnyX5VtoT+/t2\n/95Ylm/EtBdS5+fy/bReNCvTencM6p00yL261/4h6R7Zt7zfG7O+F+Ksaq0XlFL+Nm3OkX8ppdyx\n1nrpkOVZiN59ebb5jbafZXlqrWel9fRYnjYP1APTemgcnPX3vNl69vT7YFoA52GllGd1wZfePCXv\nn7lxdx89Pi1YtGtaYPVRaQGkl6fdQ48ZIt/Z9K6v19ZaX7qIdEZlPvewy7vlD+i+k0bhIWnnd22S\nB9dav9C/sgsOjzKAs5B7xyb5DgIANk9TG94EAGDydZM7P617+76+VT/qXnfLaMw7ve6J7t5T3bvO\nte181VqvrLWeUmt9Tto8Nd9Ne0J5mCeie5Oi7zloZSllRZKdurfD9Oi5qfQ+g1uVUraac8shlFKW\nl1IOLKUc3Q3dM6tu3pnePDGDGv5muy5u2b1e1Les1/D+2pnBm86gz6X3mQ17HY30+i+l3LyUct9S\nyiOH2Pw7Wd8DYLEBlt7E7jcaVq2UcrO03jEby0jPYTdJ/Qe7t88dZp9Syu5pgYPpJCf3pXXvWuuy\nAX8/m0eR3pQWXNs1yT/MY7+F6A1HNdvnte+GEqi1rq21nl5rfXGSkjZX1/ZJjhqmAF1vsbPT6uS9\nSim7pA3999vMPpdLb98Laq3vqbU+KC1oPp3kmaWUxTxYOervqMWazz1sY5S9d1/8/MzgTWfg99Uc\neveOlFIGDcu4xzzTS0b8HQQATDYBHABgyesa3d+RNlfLD9LXwJnki93rgaWUgY1MpZTDSyn7DJnd\nGWlPke9aShn4NH4p5Z6llLvNCAZ8qXudOUF3SikrSilXllLWDijjshnb3r2U8rxSyo16zdRaf5M2\nN0MyXAN/r0xHzLK+16Ppl0luNHn7Ao1i3oLvJ/lV2m/hgYGEUspdus9hmIbVndI+13+ZLb2+dJen\nBcqSAfN1pD2VP0hv7pH/6VvWK9vvZmybUsofpfUySG54znoTZt+llHKLAfu9rpRybSnlnd2iUV//\n908bdurkUsptN7Dtvl3Z16ZNBr8YvaG1BjX83zdz/79ormtumOtxoXV+Liek9aa6dynlL+basLvm\n3p52vXyw1vrDubafr64HyjPTGrqPLqX88SjTn6E3j9Y9Zln/+JkLSin7lFKe1fV+uYFuzqp/797O\nJzj+ge71gUkennb9fKTW2hsmLKWUbUspDy2lPHpQArXWU9J6Od0sbe6qYc285np19EGllO0G7VBK\neXgpZb6Bi4Wazz2sV/aB56iUsk0p5TGD7lVzmOu+OJXkGd3b2eruzOX9w/INun/c6Dt5CKP+DgIA\nJpgADgCwpHWNWp9Oa0BaneTPaq3XzwlQa/1+ks+nNQr9czfkWP/+hyf5ZJKzuoms59T1pnlv9/aN\npZSd+teXUu7aSy/r5+RJ2lPuSWsg3b9v+2Vpw/lsneSrtdbzu1W9RqdbzijzX6UNj/Tabt/+vG+e\n9UGXczZ0LGnzuVyd5IhSykNnpHXrtAnDk+SfZpmkfD56x7PbzHLPV9eD4cTu7XEzAxPdNfGxJF9O\nm69mQ+ldlBa8SZJ3lVIGBrS6HknvSRv27H+yfv6MfvvMbJAvpdwp6xumP9S3qjf5+hEztr9jkn9L\n8rVu0fWBklrrd9KG0Noq7fqb6ttvryRPT+ul8v5u+5Fe/2mN5d9Oa7T+Qpll9u6uLL2ecO+Zxzwv\ns+kFy47qf4q+++xPyOC5U2arQ/3rdt9Qxouo83Ol+dMkR6cFTd5USjluUFC2u5Y/m9bI/P0kzx4m\n/fmqtZ6dFiRaluQdpZTZhtFarE+lHfM+pZQbDOlXSjk6yQED9jkyyVuSnNgFs/r3WZ4WgEmGu+f1\nfCRtDqYHZH39mzl82lZpc7GcVEo5dMa6lFL+JC1w88skvx4iz9muuVPSPtsdk7x+Zi+RUspTknw8\nyek3UW+P+dzD3po2n9H9SilPmLHPlknenHYO3zKP/Hv3xXv3B7S6+vGOrJ+X7ZZd77uegd8xXf3t\nDVv6tL7tU0q5V9rcRvP6fhv1dxAAMNk8zQEALBXHlFJ+1fd+h7T5QQ5Me6jle0keNcvT6U9Ne1L4\niCQ/KqV8IW1C5n3Sejlcl+TobtL6YbwwyR8lOSjJeaWUzye5NG0y8cO68ry81tp72jy11tNKKX+f\n5KVJvlZK+WzaXAIHJblz2rA0z+jL49y0BqkdkpxTSvlpWiPY36Q9Cf3cJA8ppZyRFri6Rdp8GrdM\n8ola6+c3dBC11h+VUp6d1ij2iVLKl7t8b53kj9PmNviPJK8f8rzM5VtpDbd7JPlWKeXXSV5aa/36\nAtM7Ie3cPTTJ90spp6Q1ot42rcFsqyTvqrV+bsj0/iqtJ86fJ/mPUsq5Sb6R9hT4DmnD0h2UNifQ\n95L8aX+gsM8/ps2V8fi0BuVbpA21tG2ST9VaP9237T+kNfI9v+txc27a8ED3SfLatKDFoUkeX0qZ\n7o7na0mektYweGRaT5yvdmV/cNok8f9Ya+2fJ2Vk13+t9dpSyp+mBSz2Tzv3X09rgF7THe+eaZOx\nT6UFojY0yfcw/jnts7lvWn04szvWI9KCSr+f5E9m7DOwDtVaP5X22SbJE7vG1+W11nvOkf+86/yG\n1Fo/UEpZk+RtSV6W5HmllNOT/CItoHuHtPvbsrQg9RM38vw0L0kLhtw+ySu69yNVaz23lPKWJH+Z\n1ovryLThGe+cdj09I+t7x/SckHZt/1mSX5RSvpQ23NmKtPvUbdOCZ++dRzkuKqX8Z1oApyT5Ua31\nzBnbXFJKOSbtvvvl7l5b0+rLXmlDfV2b5Lldg/6G9K65e5VSvpYWPD+ym4foMUn+My2od9/uGJcl\nuWvadXdlkqf29xDaiIa+h9Vaf1pKeWpasPZ9pZRnpQV4d0hy77ReUT9L8oJ55H9y2vfcbZN8r/uc\ntk2r+xel1fPz0j7/U0spn6i1vjFzf8f8U9r99pVdD7Nzu7I9MO2ae0cGDM+4AaP+DgIAJpQeOADA\nUvGYtIbg3t/j0xptP5HWsPtHsw0tVGu9IMnd0xolf5025MlRaeP2fzDJQbXW9w5bkFrrZWmNU8ek\nNSQdkdZIvm/aE+b3q7UeN2C/lyX507TG93sleXLaROZvSbJ/rfW8vm0v69b/NMkfdGlfU2v9cVqj\n7uvSJlJ+UFqj3/3SeoU8LW0C6GGP5d1pQYKPpTXcHpU2H8S30wIFD58lUDEvtdafpAWdfpkWeNsr\nLYiw0PSuTfKItHP0jbSgx9PSzs2X0oJ5T5s1gRund02t9XFpDcLv6Mr2p2lDSz0yLSjx+bSgyf5z\nzDHyg64MF3b7Paz79ysyY6idWuvH087xd9OGlHp0WsP9n9da/zbt2v5gV5aHpjWK9s7lH6UF1pYn\neWJaz6tvJHl0rfWvZuQz6uv/F2k9JR6X1jPg99ImgX9WWkPvdmmN6YfVWh/VzRu0KLXWVWnX+tfS\n6sPjk+yX5O/SzuGgfQbWoW71B5K8My34eVDWT9A+W/4LqvNDHNcnktyuS/fMtCDGU9Ku7R3TrsV7\n1Vr/tOtJsNHUWi/J+ob2Y/t7Co7YMV0+P0yrt49ImxvnkCSrum2u7xHRzQ91jyQvT+tJcd+0Rvcj\nuvcvSHLvWuvV8yxHL1C0VW7c+6aX99u6/P41refM49Ouqb3SepYcVGv92DCZdUHVv08L3O+f5DZp\nAaB0gb9enV6bVreOTKvz70iyX6311AHJbgxD38OSpNb6obSA7clpwYunpgUCf5Pk1Wn3y/8dNvOu\nrt0vLWi5Y9o5v2tafb1HF2h+Vtpnf2C6Xm8b+I45Psnzu2O7R9pvhh2TPKLW+p5hyzajnCP9DgIA\nJtey6enFjmYBAAAsRvfE/L2SPHk+wRBgva4n2jlJLqm17ripy7OUuIcBAGwchlADAABg7HVz6xya\n1tvvnbXWtTM2ObB7HXooOgAAGGcCOAAAAGwOptOG7ds5yc3T5iVJkpRSbpXkRd3bD9/0RQMAgNET\nwAEAAGDs1Vqv7ia6/0iS15VSHpE2ZNotkxyWNifYF5O8bdOVEgAARmdqUxcAAAAAhlFr/XiSQ5J8\nNMkeaZPe3zfJuUn+Ksnh3QTxAACw2Vs2PT29qcsAAAAAAABAHz1wAAAAAAAAxowADgAAAAAAwJgR\nwAEAAAAAABgzW27qAoyL1atDUCh2AAAgAElEQVRXmwwIAAAAAADYqFasWLFsmO30wAEAAAAAABgz\nAjgAAAAAAABjRgAHAAAAAABgzAjgAAAAAAAAjBkBHAAAAAAAgDEjgAObufPOOy/nnXfepi4GcBNS\n72HpUe9h6VHvYelR72HpUe/ZEAEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCY\nEcABAAAAAAAYMwI4AAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAw\nZgRwAAAAAAAAxowADgAAAAAAwJjZclMXgPE3PT2d888/PxdccEGuuOKKbLfddtl1112z2267Zdmy\nZZu6eDA2JqmuTNKxAMNR7wHGw7p167Jq1aqcdtppufTSS7PXXntln332ycEHH5ypKc9gwiTq/Q77\n1re+lTVr1uTXv/6132EAJBHAYQ5XXXVVzjzzzKxatSqrV6/O1NRUtthii1x33XVZt25dVqxYkUMO\nOSQHHnhgtt56601dXNhkJqmuTNKxAMNR7wHGwyWXXJKTTjopp556alavXp21a9dmiy22yJlnnnn9\n/fjwww/PE57whKxcuXJTFxcYgZm/wy699NJsscUWOffcc/0OAyBJsmx6enpTl2EsrF692onoc+GF\nF+Ztb3tb1q5dm+22227gEx/T09O54oorsnz58hx99NHZZZddNkFJOe+885Ike++99yYuydI0SXVl\nko5l0qn3jIp6v/lQ72GynXPOOTn22GOzdu3abLvttpmamsqVV16ZJNlmm22StJ45a9asyfLly3PC\nCSdkv/3225RFBhZp0O+wiy++OEmy0047JfE7DJYCv/OXrhUrVgzVxXKz7n9dStmqlPL/SinrSilf\n2tTlmRQXXnhh3vSmN2X58uXZfvvtZ+2uu2zZsmy//fZZvnx53vSmN+XCCy+8iUsKm9Yk1ZVJOhZg\nOOo9wHg455xz8tznPvf6+/Fsw6RNTU1dfz9+3vOel3POOecmLikwKn6HATCszTaAU0opSVYleVYS\nA4KOyFVXXZW3ve1t2W677YYeX3lqairbbbdd3v72t+eqq67ayCWE8TBJdWWSjgUYjnoPMB4uueSS\nHHvssfO+H2+77bZ54QtfmEsuuWQjlxAYNb/DAJiPzTKAU0rZMcl/J9kiyd02cXEmyplnnpm1a9fO\ne3LMqampXHPNNTn77LM3UslgvExSXZmkYwGGo94DjIeTTjppUffjk08+eSOVDNhY/A4DYD42ywBO\nkq2SvC/JQbXWuqkLMymmp6ezatWqbLfddgvaf7vttssZZ5wR8yox6SaprkzSsQDDUe8BxsO6dety\n6qmnZtttt13Q/ttuu20+97nPZd26dSMuGbCx+B0GwHxtlgGcWutFtdZn1Vr1Gx2h888/P6tXr551\n7NUNWbZsWVavXp3zzz9/xCWD8TJJdWWSjgUYjnoPMB5WrVqV1atXz/sp/J6pqamsXr06q1atGnHJ\ngI3F7zAA5mvLTV2AcXfeeedt6iLcZL71rW/l0ksvzXXXXbfgNK644oqcddZZueaaa0ZYMoaxlK7V\nTW2S6sokHctSpN6zEOr95k29h8lx2mmnZe3atbnyyivn3G6u9WvXrs1pp52WnXfeedTFAzaCYX+H\nXXzxxbOu8zsMJpPf+ZNr7733XtT+m2UPHDaONWvWZIsttlhUGlNTUybUY+JNUl2ZpGMBhqPeA4yH\nSy+9dCT348svv3xEJQI2Nr/DAJgvPXA2YLERss3Jr3/965x77rnZYYcdFpzGZZddlr322mtJnbdN\nrRehd85vOpNUVybpWJYS9Z7FUO83T+o9TJ699torZ555ZrbZZpuB63s9b2ZbnyTXXntt9txzT/cG\n2Exs6HdYr+fNTjvtNGsafofBZPE7nw3RA4fr7brrroueAHPdunXZddddR1QiGE+TVFcm6ViA4aj3\nAONhn332Gcn9eJ999hlRiYCNze8wAOZLAIfr7bbbblmxYkWmp6cXtP/09HRWrFiR3XbbbcQlg/Ey\nSXVlko4FGI56DzAeDj744KxYsWLBjbnr1q3LihUrcvDBB4+4ZMDG4ncYAPMlgMP1li1bloMPPjhX\nXHHFgva/4oorcuihh2bZsmUjLhmMl0mqK5N0LMBw1HuA8TA1NZX73//+WbNmzYL2X7NmTR74wAdm\nasp/62Fz4XcYAPPllx43cNBBB2X58uXzfgps3bp12WqrrXLAAQdspJLBeJmkujJJxwIMR70HGA9P\netKTFnU/PvLIIzdSyYCNxe8wAOZjswzglFLuWEp5ZO+vW3zL/mWllG03aSE3U1tvvXWOPvroXHHF\nFUP/mFi3bl2uuOKKPOMZz8jWW2+9kUsI42GS6sokHQswHPUeYDysXLkyJ5xwQtasWTOv+/GaNWty\n/PHHZ+XKlRu5hMCo+R0GwHxslgGcJI9O8q99f0lyxxnLdt40Rdv87bLLLnnOc56TtWvX5vLLL591\nbNbp6elcfvnlufbaa/Oc5zwnu+yyy01cUti0JqmuTNKxAMNR7wHGw3777ZcTTzzx+vvxbA2669at\nu/5+fOKJJ2a//fa7iUsKjIrfYQAMa9lCJ06bNKtXr3YiZrjqqqty9tln54wzzsjq1aszNTWVLbbY\nItddd13WrVuXlStX5pBDDskBBxzgCZBN6LzzzkuS7L333pu4JEvXJNWVSTqWSabeM0rq/eZBvYfJ\nd8kll+Tkk0/O5z73uaxevTpr167N1NTU9UMtrVy5MocffniOPPJIPW9gQsz8HXbppZdmamoqN7/5\nzf0OgyXC7/yla8WKFUNNaCaA0xHAmd309HTOP//8XHDBBbnyyiuzzTbbZNddd81uu+1m4rwx4EY/\nPiaprkzSsUwi9Z6NQb0fb+o9LB3r1q3LqlWrctppp+Xyyy/PnnvumX322ScHH3xwpqY210E0gLn0\nfoedddZZueqqq7LXXnv5HQZLhN/5S9ewAZwtN3ZB2PwtW7Ysu+++e3bfffdNXRQYa5NUVybpWIDh\nqPcA42FqaiqHHnpodt65jQquQQcmX+932DXXXJNEvQdgPY/vAAAAAAAAjBkBHAAAAAAAgDEjgAMA\nAAAAADBmBHAAAAAAAADGjAAOAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAAAGDMCOAA\nAAAAAACMGQEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAAAAAYMwI4\nAAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAwZgRwAAAAAAAAxowA\nDgAAAAAAwJgRwAEAAAAAABgzAjgAAAAAAABjRgAHAAAAAABgzAjgAAAAAAAAjBkBHAAAAAAAgDEj\ngAMAAAAAADBmBHAAAAAAAADGjAAOAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAAAGDM\nCOAAAAAAAACMGQEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAAAAAY\nMwI4AAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAwZgRwAAAAAAAA\nxowADgAAAAAAwJgRwAEAAAAAABgzAjgAAAAAAABjRgAHAAAAAABgzAjgAAAAAAAAjBkBHAAAAAAA\ngDEjgAMAAAAAADBmBHAAAAAAAADGjAAOAAAAAADAmBHAAQAAAAAAGDMCOAAAAAAAAGNGAAcAAAAA\nAGDMCOAAAAAAAACMGQEcAAAAAACAMSOAAwAAAAAAMGYEcAAAAAAAAMaMAA4AAAAAAMCYEcABAAAA\nAAAYMwI4AAAAAAAAY0YABwAAAAAAYMwI4AAAAAAAAIwZARwAAAAAAIAxI4ADAAAAAAAwZrZcbAKl\nlPsmOTwtGPT1JB+pta5bbLoAAAAAAABL1aICOKWUdyZ5cvd2WZLpJM8rpRxea71ksYUDAAAAAABY\nihYcwCmlPCrJU5L8KslJSS5P8ogkByT5cFqvHAAAAAAAAOZpMXPgPCXJZUnuVmt9Sa31NUnulhbM\nuV8p5dhRFBAAAAAAAGCpWUwA565J/rXW+sveglrrdJKnJ/lmkteWUo4upSxbZBkBAAAAAACWlMUE\ncFYm+enMhbXWa5M8Osmvk7wlyf8lSSnldqWUX5ZSLlhEngAAAAAAABNvMQGcy5LcetCKWuvPkhyc\n5BNJru4Wb9ltP3AfAAAAAAAAmi0Xse+3kzyylPKiWuuamStrrT9P8si+RT9O8geLyA8AAAAAAGBJ\nWEwA591J3pfki6WUFyb5ajcHzkDd0Go/X0R+AAAAAAAAS8KCh1CrtZ6c5F+THJDkS0nuNKIyAQAA\nAAAALGmLmQMnSR6b5BlJViVZu/jiAAAAAAAAsJgh1NINmfbO7g8AAAAAAIARWGwPnCRJKeWLpZRH\nDbHdO0sp/zOKPAEAAAAAACbVSAI4Se6d5LZDbLdFkj1HlCcAAAAAAMBEWvAQaqWUhyZ5aN+ix5RS\n9p1jl99L8oAkv11ongAAAAAAAEvBYubAuVmSg5PcPsl0krt3f3O5JskrFpEnAAAAAADAxFtwAKfW\n+tEkHy2l7JjWq+atST46xy5XJTmv1nrxQvMEAAAAAABYChbTAydJUmv9XSnlpCSfrLWePoIyAQAA\nAAAALGmLDuAkSa31yaNIBwAAAAAAgBEFcJKklHKbJI9MmxNnmyTLZtl0utb61FHlCwAAAAAAMGlG\nEsAppRya5HNJtsvsgZue6SQCOAAAAAAAALMYVQ+c1yTZPi2Ic2qS1WmBGgAAAAAAAOZpVAGcuyb5\nz1rrg0eUHgAAAAAAwJI1NaJ0ppN8ZURpAQAAAAAALGmjCuB8N8lOI0oLAAAAAABgSRtVAOd1SZ5c\nSrn9iNIDAAAAAABYskY1B05N8oYkZ5VS3pXkv5P8ZtaNaz11RPkCAAAAAABMnFEFcH6YNg/OsiTP\nH2L7LUaULwAAAAAAwMQZVQDny2kBHAAAAAAAABZpJAGcWuu9R5EOAAAAAAAAydSmLgAAAAAAAAA3\nNKoh1JIkpZTbJXlckrskuVWSF9dav9ytO6zWetoo8wMAAAAAAJhEIwvglFJemOS4Ls1laXPirOzW\n7ZTkC6WUTyR5bK31ulHlCwAAAAAAMGlGMoRaKeWIJP+QZHWSv01yVFoQp+e6JJ9M8ogkzxxFngAA\nAAAAAJNqVHPgPDfJxUnuVGt9TZLT+1fWWlcneXSSmuSJI8oTAAAAAABgIo0qgHOXJB+utV402wbd\nsGmfSvKHI8oTAAAAAABgIo0qgLNDkl8Nsd2lSZaPKE8AAAAAAICJNKoAzgVJ9htiu0OS/HJEeQIA\nAAAAAEykUQVwTk3ysFLKYwetLKVsUUo5NskDk5wyojwBAAAAAAAm0pYjSue4JH+W5AOllOcn+UmS\n6SRPK6X8eZI/TnLrJL9J8toR5QkAAAAAADCRRtIDp9b6v0numeSsJHdP8pgky5Ic0f17lyRnJjms\n2xYAAAAAAIBZjKoHTmqtP0xySCnljkkOSrJzWi+cXyU5q1sPAAAAAADABowsgNNTa/1+ku+POl0A\nAAAAAIClYkEBnFLKbovJtNZ6/mL2BwAAAAAAmGQL7YHzs7Th0RZiehH5AgAAAAAATLyFBlLOz40D\nOMuS9HrmXJnkd0mmkuyUZKtu+XeTXLXAPAEAAAAAAJaEBQVwaq179L8vpWyb5FNJvpnkVUm+W2ud\n7tZNJblbkpcn2SHJEYsoLwAAAAAAwMQb1VBmr06yQ631vjNX1FrXJTm7lPKQJGcn+fskzx1RvgAA\nAAAAABNnakTpPCrJF+faoOuR819JHjaiPAEAAAAAACbSqAI4t0py7RDbXZ1k5xHlCQAAAAAAMJFG\nFcC5IMnjSikrZ9uglLJDkscm+dWI8gQAAAAAAJhIo5oD5+QkL0/y/VLK+5N8J8nvkkwnWZlk3yRP\nSLJrkuNHlCcAAAAAAMBEGlUA57gkuyd5YpIXpgVu+i3rXj+V5JUjyhMAAAAAAGAijSSAU2tdm+So\nUsrrkzwkyT5JbpEWuLkkyQ+TfLbWeuYo8gMAAAAAAJhko+qBkySptX43yXdHmSYAAAAAAMBSM7Wp\nCwAAAAAAAMANLagHTinlJ0leU2t9V9/7YU3XWm+3kHwBAAAAAACWgoUOobZHkhUz3gMAAAAAADAC\nCwrg1Fqn5noPAAAAAADAwgm8AAAAAAAAjJmFDqF2I6WUrZMck+RHtdZ/m7HuNUnWJDm+1nrNqPIE\nAAAAAACYRCPpgVNK2S7JV5K8Jsn+Aza5Y5K/S/K1Usr2o8gTAAAAAABgUo1qCLUXJblrkncnee+A\n9cckOTHJXZL8zYjyBAAAAAAAmEijGkLtyCSfr7U+fdDKWuvPkzy/lHKHJI9K8uIR5QsAAAAAADBx\nRtUDZ9ckZwyx3RndtgAAAAAAAMxiVAGci5PcYojtbpNk9YjyBAAAAAAAmEijCuCcnuQJpZS9Z9ug\nlHLPJE/McD11AAAAAAAAlqxRzYFzXJKHJvlOKeVTSb6d5HdJbpbklkkOS3JgkrXdtgAAAAAAAMxi\nJAGcWuv3SikPSvL+JI9K8si+1cu6118leWqt9b9HkScAAAAAAMCkGlUPnNRaTyul7JnkgUnunmTn\nJOuSXJTkG0lOrbVePar8AAAAAAAAJtXIAjhJUmu9Jsknuz8AAAAAAAAWYKQBnCQppfxekm2yfui0\nG6m1nj/qfAEAAAAAACbFSAI4pZStkvxDkicmWbmBzadHlS8AAAAAAMAkGlUg5bgkz+v+vbr7mx5R\n2gAAAAAAAEvKqAI4j0nyuySH11q/PqI0AQAAAAAAlqSpEaVz6yTvFbwBAAAAAABYvFEFcC5K8tsR\npQUAAAAAALCkjSqA8x9JDh9RWgAAAAAAAEvaqAI4L02yXSnl7aWUnUaUJgAAAAAAwJK05YjSeWuS\nnyU5KsmTSik/T/KbWbadrrUeOqJ8AQAAAAAAJs6oAjiPnfF+r+5vkOkR5QkAAAAAADCRRhXAOWxE\n6QAAAAAAACx5Iwng1FpPH0U6AAAAAAAAJFObugAAAAAAAADc0IJ74JRSbr/QfWut5y50XwAAAAAA\ngEm3mCHUfphkegH7TS8yXwAAAAAAgIm2mEDK+VlYAAcAAAAAAIA5LDiAU2vdY4TlAAAAAAAAoDO1\nqQsAAAAAAADADQngAAAAAAAAjBkBHAAAAAAAgDEjgAMAAAAAADBmBHAAAAAAAADGjAAOAAAAAADA\nmBHAAQAAAAAAGDMbLYBTStmqlCJABAAAAAAAME8jDbCUUp5USvmvUsrvklyZ5Ii+da8opfzeKPMD\nAAAAAACYRFuOIpFSyhZJ/j3Jg5IsS7Juxvo/SPKKJI8tpRxaa714FPkCAAAAAABMolH1wPnLJA9O\n8qUk90yyb1ogJ0lSa/1pkmOTlCQvGlGeAAAAAAAAE2lUAZwnJPlBkgfUWs9IGz7tBmqtb0jyX0ke\nOqI8AQAAAAAAJtKoAji3T/KZWuu1G9jujCS7jyhPAAAAAACAiTSqAM6WSa4aYrtlSa4bUZ4AAAAA\nAAATaVQBnPOS3HeuDUopU2nDp/1oRHkCAAAAAABMpFEFcP4tyUGllLeWUm7et3w6SUop+yT5WJI7\nJfnoiPIEAAAAAACYSKMK4Byf5BtJjk7yf0m+lBa8ObGUcmGS76T1vvlmkn8cUZ4AAAAAAAATaSQB\nnFrrVUn+OMnrkqxOsnvafDd7JLlVkl8neW2Se9VarxxFngAAAAAAAJNqy1El1AVxXprkpaWUPZPs\nnNYL51e11p+PKh8AAAAAAIBJN7IATr9a60+S/GRjpA0AAAAAADDpRhLAKaU8Yx6bTye5IslPk3y9\n1nrtKMoAAAAAAAAwKUbVA+df0gIz83VRKeWYWutHR1QOAAAAAACAzd6oAjhvSLIiyRO7999Icn5a\nUOe2Se7WLf94kmuSbJdk3yR3SPKBUspFtdbTR1QWAAAAAACAzdqoAjjHJzkjyYeSvKDW+tv+laWU\nnZK8PsmdkhxWa72sW/6wJP+a5AVJBHAAAAAAAACSTI0onf+X5Fe11qNmBm+SpNZ6ca31yUmuSvKq\nvuX/nuSjSQ4aUTkAAAAAAAA2e6MK4Bye5LNDbHdKkofPWPaDJDcfUTkAAAAAAAA2e6MK4Gyf5DZD\nbLdrklvPWHaHJBeOqBz8//buPMySqjz8+He6Z2AWYAYkCEEHg+CrQvwhyjJgogZEiJpM3I0gxAWM\nsmhkcY2giBJRg2ACroBLNG7EDWTJoIIzgAIio76gQUcQFMXpgdmY6e7fH1UXL829Pd3T1d3V1d/P\n8/RT01Wnqs6pc+pWT733nCNJkiRJkiRJkqa8qgI4PwOOiohndEsQEU8BXgL8qvy9NyKOBF4EXFtR\nPiRJkiRJkiRJkqa8mRUd5yzgs8CVEfEj4AbgXmAQWADsCewHzADeU+7zAuBTwFrgvRXlQ5IkSZIk\nSZIkacqrJICTmf8VEXOA9wF7lT9DrQHen5kfKH//CbAUOCUzf1RFPiRJkiRJkiRJkpqgqh44ZOYn\nI+IiYH/gicAjKHrc9AG3AVdn5pq29LcAB1Z1fkmSJEmSJEmSpKaoLIADkJkbgavLn4eJiGcDe2Xm\nmVWeV5IkSZIkSZIkqUl6Jvh8LwHeNsHnlCRJkiRJkiRJmlIq64ETEXsBbwaeBMzukGQBMB+4u6pz\nSpIkSZIkSZIkNVElAZyI2Bv4HjBnE0nvBU6q4pySJEmSJEmSJElNVVUPnLdTBG8+CHwNmAVcDrwe\n+CFwGHA48I+ZeX1F55QkSZIkSZIkSWqkqgI4BwIXZ+aJABGxS7n+zsy8DrguIq4GLo+Iv8rMH1d0\nXkmSJEmSJEmSpMbpqeg421L0tGkZLJcPBogy80qKXjmnVXROSZIkSZIkSZKkRqoqgLMa2Lrt95Xl\ncvsh6W4EFlV0TkmSJEmSJEmSpEaqKoDzY+AlEfFIgMxcBawBnjsk3aOBeRWdU5IkSZIkSZIkqZGq\nmgPn48AFwO0R8bxyuLQrgedGxPnAN4A9gCOBn1R0TkmSJEmSJEmSpEaqpAdOZl4EvIdi7pv15ep3\nAGuBVwMXA2cAs4HTqzinJEmSJEmSJElSU1U1hBqZ+Q6KOW9+UP5+M/BU4HzgMuCTwNMz8+KqzilJ\nkiRJkiRJktREVQ2hBkBmrh3y+8+A11V5DkmSJEmSJEmSpKarrAeOJEmSJEmSJEmSqlFZD5yIeDnw\nYmA3irluZnRJOpiZj63qvJIkSZIkSZIkSU1TSQAnIk4BzqB70EaSJEmSJEmSJEkjVFUPnNcC9wMv\nB76TmfdVdFxJkiRJkiRJkqRpp6oAzk7Af2TmNyo6niRJkiRJkiRJ0rTVU9Fxfg2srehYkiRJkiRJ\nkiRJ01pVAZxPAf8QEbMrOp4kSZIkSZIkSdK0VdUQau8FHgV8PyI+ACwH7u2WODNXVHReSZIkSZIk\nSZKkxqkqgDMHmA3sCVy0ibSDFZ5XkiRJkiRJkiSpcaoKpJwLHAmsB34M3EcRqJEkSZIkSZIkSdIo\nVRXAeS6QwAGZubKiY0qSJEmSJEmSJE1LPRUdZw7wRYM3kiRJkiRJkiRJY1dVAOdGYH5Fx5IkSZIk\nSZIkSZrWqgrgvBk4IiIOquh4kiRJkiRJkiRJ01ZVc+DsCVwEfCsifgjcDNzbJe1gZr6tovNKkiRJ\nkiRJkiQ1TlUBnPOAQWAGsH/5080gYABHkiRJkiRJkiSpi6oCOO+iCMxIkiRJkiRJkiRpjCoJ4GTm\nqVUcR5IkSZIkSZIkSdAzkSeLiJMj4oaJPKckSZIkSZIkSdJUU9UQagBExNbAE4DZHTZvC7wMiCrP\nKUmSJEmSJEmS1DSVBXAi4n3AG4BZwySbAVxb1TklSZIkSZIkSZKaqJIh1CLiGOBkiuDNr4AfUQRr\nbgMSGATuBj4IvLiKc0qSJEmSJEmSJDVVVXPgvBr4I/DkzNwVeH65/uTMfCLwOOAXQH9m/rqic0qS\nJEmSJEmSJDVSVQGcJwAXZebN5e+D7Rsz8/+AFwBHRsQrKzqnJEmSJEmSJElSI1UVwJkF/Lbt9w3l\nck5rRWbeA3wBeF1F55QkSZIkSZIkSWqkqgI4vwOi7fffl8vHdkj3uIrOKUmSJEmSJEmS1EhVBXC+\nB7wsIt4YEQsy8wHgDuCfImLbtnQHAasrOqckSZIkSZIkSVIjVRXAOR3YCJwFHFiu+xxFD5xbIuLL\nEbEceDpwdUXnlCRJkiRJkiRJaqRKAjiZ+ROKwM2ngdvL1acCS4CdgH8AngAk8KYqzilJkiRJkiRJ\nktRUM6s6UGb+CDiq7fd1wEERsS/wF8CdwLLM3FjVOSVJkiRJkiRJkpqosgBON5l5HXDdeJ9HkiRJ\nkiRJkiSpKSoJ4ETEDOCQ8mchsDXwB+CnwDcz88YqziNJkiRJkiRJkjQdjDmAExH7AJ8EngjMGLJ5\nEDgtIq4EjsnM24fuL0mSJEmSJEmSpIcaUwAnIvYHLgO2Am4GvgIksBrYFngK8ALgYODaiPibzLxl\nTDmWJEmSJEmSJElquM0O4ETEFsCngdkUvWs+1iHZpyPiJODt5c+XImLPzNy4ueeVJEmSJEmSJElq\nup4x7Pt84LHAW7oEbwDIzA2Z+U7g3cDuwBFjOKckSZIkSZIkSVLjjSWAsxi4B/jwCNO/B7gLeOEY\nzilJkiRJkiRJktR4YwngPAW4MjM3jCRxme4S4MljOKckSZIkSZIkSVLjjSWA80jg1lHuczuw/RjO\nKUmSJEmSJEmS1HhjCeBsBawa5T7rgd4xnFOSJEmSJEmSJKnxxhLAkSRJkiRJkiRJ0jgwgCNJkiRJ\nkiRJklQzM8e4/3ER8cJRpN9pjOeTJEmSJEmSJElqvLEGcHYpf0ZjcIznlCRJkiRJkiRJarSxBHCe\nWVkuJEmSJEmSJEmS9JvKoF0AACAASURBVKDNDuBk5neqzIgkSZIkSZIkSZIKPZOdAUmSJEmSJEmS\nJD2UARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEk\nSZIkSZIkSaoZAziSJEmSJEmSJEk1YwBHkiRJkiRJkiSpZgzgSJIkSZIkSZIk1YwBHEmSJEmSJEmS\npJoxgCNJkiRJkiRJklQzBnAkSZIkSZIkSZJqxgCOJEmSJEmSJElSzRjAkSRJkiRJkiRJqhkDOJIk\nSZIkSZIkSTVjAEeSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIkSZIkSZKkmjGAI0mSJEmSJEmS\nVDMGcCRJkiRJkiRJkmrGAI4kSZIkSZIkSVLNGMCRJEmSJEmSJEmqGQM4kiRJkiRJkiRJNWMAR5Ik\nSZIkSZIkqWYM4EiSJEmSJEmSJNWMARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmS\nasYAjiRJkiRJkiRJUs0YwJEkSZIkSZIkSaoZAziSJEmSJEmSJEk1YwBHkiRJkiRJkiSpZgzgSJIk\nSZIkSZIk1YwBHEmSJEmSJEmSpJoxgCNJkiRJkiRJklQzBnAkSZIkSZIkSZJqxgCOJEmSJEmSJElS\nzRjAkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIk\nSZIkSZKkmjGAI0mSJEmSJEmSVDMGcCRJkiRJkiRJkmrGAI4kSZIkSZIkSVLNGMCRJEmSJEmSJEmq\nGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmSJNWMARxJkiRJkiRJkqSaMYAjSZIk\nSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEkSZIkSZIkSaoZAziSJEmSJEmSJEk1\nYwBHkiRJkiRJkiSpZgzgSJIkSZIkSZIk1YwBHEmSJEmSJEmSpJoxgCNJkiRJkiRJklQzBnAkSZIk\nSZIkSZJqxgCOJEmSJEmSJElSzRjAkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmSJEmSJKlm\nDOBIkiRJkiRJkiTVjAEcSZIkSZIkSZKkmpk52RmQJEmS1HyDg4OsWLGCO++8k9WrVzNv3jx23nln\nFi5cyIwZMyY7e6PS39/PxRdfzPXXX8+9997Ldtttxz777MPixYvp7e2d7OyNWJPqpEllGRgYYOnS\npSxZsoRVq1ax2267sccee7Bo0SJ6evwO5mRpShtrSjmaplUvN954I2vWrOGee+6ZsvXS+gxbvnw5\nK1euZMGCBX6G1UBT7v2mlKNprJfxZQBHkiRJ0rhZt24dy5YtY+nSpfT19dHT00Nvby/9/f0MDAww\nf/58DjjgAPbbbz9mz5492dkd1t13380ZZ5zBkiVLWLNmDcCDZfniF7/IqaeeykEHHcSb3/xmdtxx\nx0nObXdNqpMmlWXlypVceOGFXHbZZfT19bFhwwZ6e3tZtmzZg2U59NBDOeKII1iwYMFkZ3faaEob\na0o5mmZovaxatYre3l5uvfXWKVcvQz/DOrUxP8MmXlPu/aaUo2msl4kxY3BwcLLzUAt9fX1eCE1J\nt912GwC77777JOdE0kTxvpemn6l63991112cf/75bNiwgXnz5nX8Bt7g4CCrV69m1qxZHHPMMey0\n006TkNNNu+KKKzj22GPZuHEjW265ZcdvEQ8MDLB+/XpmzpzJueeey8EHHzwJOR1ek+qkSWW56aab\nOPHEE9mwYQNz586lp6eHtWvXAjBnzhygaF9r1qxh1qxZnHXWWey1116TmeVpoSltrCnlaJpO9XLv\nvfcCsN122wFTp146fYYN5WfYxGvKvd+UcnTj3/nT1/z580fUPWnK9l2MiO0i4uyI+FVEPBARv4mI\nj0eELUGSJEmaZHfddRfnnHMOs2bNYquttuo6fMKMGTPYaqutmDVrFueccw533XXXBOd006644gqO\nOeYYent7mTNnTtchYHp6epgzZw69vb289rWv5YorrpjgnA6vSXXSpLLcdNNNHH/88Q+WZbj21SrL\nCSecwE033TTBOZ1emtLGmlKOpmlSvfgZVk9NaWNNKUfTWC8Ta0oGcCJiDnAV8M/Al4GjgPOBlwDX\nRMS2k5Y5SZIkaZpbt24d559/PvPmzRvxePc9PT3MmzePj370o6xbt26cczhyd999N8ceeyyzZ88e\nVVm23HJLjj32WO6+++5xzuHINKlOmlSWlStXcuKJJ466LHPnzuWkk05i5cqV45zD6akpbawp5Wia\nJtWLn2H11JQ21pRyNI31MvGmZAAHeAPwl8AbMvNfMvNzmXkacATwF8A7JjV3kiRJ0jS2bNkyNmzY\nMOrJint6enjggQe47rrrxilno3fGGWewcePGzSrLxo0bOfPMM8cpZ6PTpDppUlkuvPDCMZXlM5/5\nzDjlbHprShtrSjmapkn14mdYPTWljTWlHE1jvUy8qRrAeQWwGvjEkPX/A9wBHB4RIxpDTpIkSVJ1\nBgcHWbp0KfPmzdus/efNm8c111xDHebq7O/vZ8mSJWy55Zabtf+WW27JFVdcQX9/f8U5G50m1UmT\nyjIwMMBll13G3LlzN2v/uXPncskllzAwMFBxzqa3prSxppSjaZpUL36G1VNT2lhTytE01svkmHIB\nnIjYBng8cENmrm/flpmDwHXAn1H0xJEkSZI0gVasWEFfX1/XsbA3ZcaMGfT19bFixYqKczZ6F198\nMWvWrBn1Nwxbenp6WLNmDRdffHHFORudJtVJk8qydOlS+vr6xtS++vr6WLp0acU5m96a0saaUo6m\naVK9+BlWT01pY00pR9NYL5Nj5mRnYDPsUi7v6LK91QJ2Bf5vrCe77bbbxnoIaULYVqXpx/temn6m\nwn1/4403smrVqjH1Olm9ejXXXnstDzzwQIU5G73LL7+c/v5+NmzYsNnH6O/v5/LLL+dJT3pShTkb\nnSbVSZPKsmTJEjZs2MDatWuHTTfc9g0bNrBkyRJ22GGHqrM3bTWljTWlHE0z0nq59957u26rS72M\n9DNsOH6GVa8p935TyjEa/p3fXLvvvvuY9p9yPXCArcvlmi7bVw9JJ0mSJGmCrFmzht7e3jEdo6en\npxYTnK5cuXKzv1nc0tPTw6pVqyrK0eZpUp00qSyrVq2qpCz3339/RTkSNKeNNaUcTdOkevEzrJ6a\n0saaUo6msV4mx1TsgTOhxhohk8ZbK0JvW5WmD+97afqZSvf9Pffcw6233srWW2/+96nuu+8+dttt\nt0kv72Me8xiuv/56Zs2atdnH2LBhAwsXLpzUsjSpTppUlt12241ly5YxZ86cjttb32rvth1g48aN\n7LrrrpNeliZpShtrSjmaZlP10up5s91223U9Rl3qZVOfYSPhZ1j1mnLvN6UcI+Hf+dqUqdgDp/X1\ntW6zJW01JJ0kSZKkCbLzzjuPeULigYEBdt5554pytPn22WefWh1nczWpTppUlj322KOSsuyxxx4V\n5UjQnDbWlHI0TZPqxc+wempKG2tKOZrGepkcUzGAczswCDyqy/bWHDn1HzhQkiRJapiFCxcyf/58\nBgcHN2v/wcFB5s+fz8KFCyvO2egtXryYuXPnbvZ/VAcGBpg7dy6LFy+uOGej06Q6aVJZFi1axPz5\n88fUvubPn8+iRYsqztn01pQ21pRyNE2T6sXPsHpqShtrSjmaxnqZHFMugJOZq4Gbgb0jYnb7tojo\nBQ4Afp2ZKyYjf5IkSdJ0NmPGDBYtWsTq1as3nbiD1atXc+CBBzJjxoyKczZ6vb29PPOZz2T9+vWb\ntf/69es5+OCDxzxW+Fg1qU6aVJaenh4OOeQQ1qzpNr3r8NasWcNhhx025nma9FBNaWNNKUfTNKle\n/Ayrp6a0saaUo2msl8kxVT8lPwHMBY4Zsv5wYAfg4xOeI0mSJEkA7L///syaNWvU38odGBhgiy22\nYN999x2nnI3eW9/6VmbOnLlZZZk5cyannHLKOOVsdJpUJ00qy5FHHjmmshx++OHjlLPprSltrCnl\naJom1YufYfXUlDbWlHI0jfUy8aZqAOc84FrgrIj4YET8Y0S8p1z/Y+CsSc2dJEmSNI3Nnj2bY445\nhtWrV4/4P3cDAwOsXr2ao48+mtmzZ296hwmy4447cu6557J+/fpRlWX9+vWce+657LjjjuOcw5Fp\nUp00qSwLFizgrLPOYs2aNaMqy5o1a3j/+9/PggULxjmH01NT2lhTytE0TaoXP8PqqSltrCnlaBrr\nZeJNyQBOZm4ADgHOAV4AXAAcSdHz5hmZuXn9NyVJkiRVYqedduK4445jw4YN3H///V3Hyh4cHOT+\n++9n48aNHHfccey0004TnNNNO/jggznvvPPo7+9n7dq1Xf+zOjAwwNq1a+nv7+e8887j4IMPnuCc\nDq9JddKksuy1116cffbZD5ZluPbVKsvZZ5/NXnvtNcE5nV6a0saaUo6maVK9+BlWT01pY00pR9NY\nLxNrxuZOOtQ0fX19XghNSbfddhsAu++++yTnRNJE8b6Xpp+pfN+vW7eO6667jmuuuYa+vj56enro\n7e2lv7+fgYEBFixYwAEHHMC+++5b+2/k3X333Zx55plcccUVD4753yoLwNy5czn44IM55ZRTatPz\nppMm1UmTyrJy5Uo+85nPcMkll9DX18eGDRvo6el5cJiSBQsWcOihh3L44Yf7rfUJ1JQ21pRyNM3Q\nelm1ahU9PT1ss802U65ehn6GdWpjfoZNvKbc+00pRyf+nT99zZ8/f0STARnAKRnA0VQ1lT/oJW0e\n73tp+mnCfT84OMiKFSu48847Wbt2LXPmzGHnnXdm4cKFU24i0/7+fi6++GKuv/56+vr6mD9/Pvvs\nsw+LFy+mt7d3srM3Yk2qkyaVZWBggKVLl7JkyRLuv/9+dt11V/bYYw8WLVrkZN+TqCltrCnlaJpW\nvVx77bWsW7eO3XbbbcrWS+szbPny5axatYptttnGz7AaaMq935RytPPv/OnLAM4oGcDRVNWED3pJ\no+N9L00/3vfS9ON9L00/3vfS9ON9P32NNIBj6FuSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIk\nSZIkSZKkmjGAI0mSJEmSJEmSVDMGcCRJkiRJkiRJkmrGAI4kSZIkSZIkSVLNGMCRJEmSJEmSJEmq\nGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmSJNWMARxJkiRJkiRJkqSamTE4ODjZ\neaiFvr4+L4QkSZIkSZIkSRpX8+fPnzGSdPbAkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmS\nJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIkSZIkSZKkmpkxODg42XmQJEmSJEmSJElSG3vgSJIkSZIk\nSZIk1YwBHEmSJEmSJEmSpJoxgCNJkiRJkiRJklQzBnAkSZIkSZIkSZJqxgCOJEmSJEmSJElSzRjA\nkSRJkiRJkiRJqhkDOJIkSZIkSZIkSTVjAEeSJEmSJEmSJKlmDOBIkiRJkiRJkiTVjAEcSZIkSZIk\nSZKkmjGAI0mSJEmSJEmSVDMzJzsDkrqLiAuAI4dJ8sbM/PeIOBV45zDpzs7MN1SZN0njKyIOA94M\n7A1sBG4ETs/M/x2Sbg7wFuClwC7AKuB/gXdk5q0TmmlJYzKS+95nvtQMETE4gmR/kZm/LNP7vJem\nuNHc9z7vpWaJiD2AtwJ/A2wPrAS+D7w/M69uS+fzXg9jAEeaGl4H3NNh/U1Dfj8VWN4h3W1VZ0jS\n+ImIVwKfAL4LnABsDbwRuDQiDsnMq8p0M4D/AQ4GPgWcBvw5cCKwNCL2zcxfTHwJJI3WSO/7Nqfi\nM1+ayl40zLb3AvMp//73eS81xojv+zan4vNemtIi4snA1cADwLnArcCjgdcD34mIxZn5dZ/36sYA\njjQ1XNL69t0mfKfDCx5JU0hE7Ah8GLgCeHZmDpTrvw4sBZ4DXFUmfynwLIpv7ZzcdowrgR8A7wee\nP2GZl7RZRnnft/jMl6awzPxSp/URsRjYDTgqM1eXq33eSw0wyvu+xee9NPW9HZgL/ENmXtZaGRFf\nAX4KvAv4Oj7v1YVz4EiSVC9HAvOAU1svcQEy8/8y85GZeVJb2leUyw+3HyAzb6Dojv3ciFgw3hmW\nNGajue8lNVREbA2cA3wvMy9s2+TzXmqoYe57Sc3x2HL5vfaVmfkz4HfAY8pVPu/VkQEcaQqJiNkR\nscmecxGxRURsMRF5klS5ZwH3UXzrnojojYgtu6TdF/h1Zt7RYdu1wCyKuTQk1dto7vuH8JkvNco7\nKIZKef2Q9T7vpebqdt8/hM97aUr7abl8XPvKiJgPLABuKVf5vFdHBnCkqeH1EXE7sBZYHxHLIuJv\nO6R7cUQsB9aX6X4cEUdMaE4ljdXjgV8Ae0XEdyju53URcUtEvLSVqPy23nZApz/uAFaUy13HM7OS\nKjGi+34In/lSg0TEDhQvcC/KzB+3rfd5LzVUt/t+CJ/30tT3HuCPwEUR8bSI2D4i/pJinptB4B0+\n7zUcAzjS1PBs4AyKMfDfBuwOfKPDS53DgPPK5QkUkyBeFBGnTGBeJY3NdhTfwvkmcA2wGDiuXPdf\nEfGqMt3W5XJNl+OsHpJOUn2N9L5v5zNfapaTgdkUL3na+byXmqvbfd/O5700xWXmLcAioJdiGLV7\ngJuB/Sjmv7wKn/caxiaHYpI0qT4A/BdwVWauL9d9KyK+BtwEfCAi/hv4DLAMWJqZfWW6SyPi88DP\ngHdGxPmZuXKC8y9p9LagGAP35Zn5udbKiPgmRdfrMyLigsnJmqRxMqL7PjP78ZkvNU5EbAv8M/CN\nzPz5ZOdH0vgbwX3v815qiIgI4FvAlsAbKe7hHYA3AV+PiBcAyycvh6o7AzhSjZXdqB/WlTozfxIR\nV1GMmf+EzFwOPOyPvsz8XUR8CXgNcCDFN3sl1dv9FH/Yfb59ZWbeHhFLgEOBJwC/LDfN63Kcrcrl\nqnHIo6RqjfS+v6V8yeMzX2qWfwTmAp0mMG89x33eS80y3H2Pz3upUT4O7Ezx/u721sqI+CLFff4p\nir/1wee9OnAINWnq+m253KaidJLq4Zd0fz7/rlxuk5n3U3S9flSXtLuUy9uqy5qkcfJLRnDfj+A4\nPvOlqelFFPNbXDJ0g897qbG63vcj4PNemiIiYh5FsPWG9uANQGauBa6iCO4sxOe9ujCAI9VURGwT\nES+PiEO7JSmXd0TESyLiRZtIt6LLdkn1spRiOKUndtjW+qOtNbHh94FHRcTCDmn/ClgL3FB5DiVV\nbUT3fUTM8pkvNUtEbAUcQDFM0touyXzeSw2yqfve573UKHOAGRTzXXUyu23p814dGcCR6usB4CPA\nBRGxffuGiDgY2Ae4LjN/DZxGMZHh7kPSPZFiIuQ7gOsmJNeSxuqCcvnOiJjRWhkRT6L4o+3mzGz9\nZ+0T5fKN7QeIiKcDTwE+X35zV1K9XVAuh73vM3MDPvOlpnkSMAu4ZZg0Pu+lZhn2vvd5LzVHZv6e\notfMk8r790ERsR3wNxTDot2Cz3t14Rw4Uk1l5rqIOIHipc51EXEecDfwZIrJDvuAY8rkrwcuBa6O\niI8At1N8K+c4YAB4TflHoKSay8xrI+Icivv3axHx3xTfwH8jsBE4oS3t1yPiK8AbImIb4H/LtCdS\n/KfurROdf0mjN5r7Hp/5UtM8rlz+slsCn/dS42zyvsfnvdQkbwK+CnwvIs4FbgW2p/gbfwHw2sxc\nD/i8V0f2wJFqLDMvpIjG/5zig/oTwAuBzwJ7Z+ZNZborgf2Aa4DjgU8Cr6b4g2//zLx04nMvaQxO\noAjUPhr4KMUfbMuAp2XmVUPSvgx4J8W39D9V7vsN4IDMvHuiMixpzEZ03/vMlxpn23J53ybS+byX\nmmOT973Pe6k5MvPrwNOA71L8vX8BxTP958BhmXl+W3Kf93qYGYODg5OdB0mSJEmSJEmSJLWxB44k\nSZIkSZIkSVLNGMCRJEmSJEmSJEmqGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmS\nJNWMARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEk\nSZIkSZIkSaoZAziSJEmSJEmSJEk1YwBHkiRJmkAR8ZiIGIyIq0axz2BEDI5jtjQNRcT8iPhpRNwR\nETtO4HmPKtv0qRN1zrGIiAvK/D5jnI4/ousREUeU6c4Yj3xIkiSpfmZOdgYkSZKksYqInYHXAs8C\nHgvMB1YBvwAuA87LzDsrOtd+wKLM/PfNPMS9wEnAr6vITxUi4hTg25l502TnZSqqoE1MlguAxwFP\nz8y7AcrA4tNHsnNmzhi3nE0v11N8Jny/fWVEvARYn5kXA2TmpyPir4C3RMR1rfWSJElqLgM4kiRJ\nmtIi4gTg34AtKF6AXkARJNkWeBrwduCkiDgxM8+t4JT/BBwKbNbL+sxcBZxVQT4qUfa8eB/wW8AA\nzuYZU5uYDBFxOLAY+EhmXt0hyceBnNhcTU+ZuRxY3mHTacAyoD1Q8ybgecBHI+KqzFw5AVmUJEnS\nJDGAI0mSpCkrIt4IfJCiN8uLM3NZhzQHAl8AzomIGZl5zhhPu/8Y96+bppVnMkypaxgRsymCdqsp\nggSdfDkzL524XKldRGxL0TvqIZ9pmXlfRJwOnAu8jaLnjiRJkhpqxuCgQ2lLkiRp6omIXYDbgA3A\n3pnZtbdARDwR+CHFHJC7toZTi4gLgCOBf8rMC4bs8wxgCXBtZu4fEUcBnxp67NYwUhGxkKK3z7OA\nPwfWASuALwNnZeb9ZbrHALcD38nMZ7Sdb2vgdOCFwCOAO4CLgDPKMj5syKqyXG8Fngn8GbASWAr8\nW2Ze0+16tO3/S2CXIatPy8xTy+1zgBOBFwG7AxuBW4FPA+dm5sa2Y50KvBP4Z+DHFAGCJwNrgW8A\nxwFrgDcDrwQeDdwFnAecmZmDQ67PT4H9gDMpeoo8okz/WeDdmbluSFkeTfFC+9nAzsB9wA3AhzPz\n60PSXkUxTNieZb5eDHwpM48ut29HcV2fByykaDe/ougJ8e7MvK9MdxRd2kRb+3lIPbfl4ZcU1/4J\nmfmzIev+DPjPsizvy8wzyu0jro/hRMSrgY8BH83MY7pcm8NGE8Apr/87+FP7HwB+DnwO+EBmPtCW\n9iiK63Ya8AmKHmkHAVtTDHv4ocz8WFv6Z1Bcyy9QBC7+Awhgt8z8dZlmxPdC23WeA7wMOIEiWLIB\nuBo4uewV00p/AcXnxDPLcr0b2JuiXdwAvDUzvzfkHL3A64BXAE8o094O/Dfw/sxc0+l6ZOapbedr\n92A7ioi5wJ1AL/CoslefJEmSGqhnsjMgSZIkbabXAbOAjw8XvAHIzJ9QvCDdgiLAsDla81QA/LH8\n90nw4Av/ZcCrKAJF7wE+DPRRBDUui4iuf3tHxAzga8DxFMO/vQ/4OsXL5Y912eevyzy9iOLl9ukU\ngZJnAd+NiJeNoEzvAS4v//2FsjyXlcefA3wHeBdF4OUDwPnAXOBDwP90KdPjy7zfWKb7A3AUcA7w\nEYoX2l+kCFA8AngvcHiH42xJETDZjyKQ9W8UAYu3Av815Fo8nuJF+tHleU8vy/MU4GvlHD+dHA8s\noujFdUl5rHkUQ/G9iSJo895y+0Dr+rSVu2ubGKP3AI+kaAfLynxtbn10clS5/HIFeSUi/hz4AfAa\nivb/bopAy3YUAcjPdNn1EcA1QD9FeT5LEZj5aES8sEP62cDnKYIs7wJaQdHNvRdOorjGl1EEkRL4\nW+DyMkgy1NOAr1IMNfheinbyNODbZQC3dT16gK9QfAbMpWj3Z1PU26llnuZ1yRNlGc8r//2DMp//\n2dpYBn8upgh4PX+Y40iSJGmKcwg1SZIkTVUHlcuRTuT9VYrgzbMoesqMSmueioh4P7AqM9vnsXkh\nsBPFN+tPbt+v/Db9iygCEUu7HP65wDMo5sHYp9W7JCLeTPHS/iEiYhZFUGNL4KDM/E7btg9SvPT9\nz4i4NDP/OEyZPhYRO1Nck0uH9EJ6B7APRQDpmLYeMm8FLqV40X0kD++B8nrgOZnZCgR9EPgNRZBm\nOfCUzFxdbruSInD1YopeJO12pejBsW9m9pfpP1AeY3FEHJCZrUnfPwlsDxyemZ9tuxbvBm4GTo+I\nr2TmbUPOcRCwV6t3VOnFFEGEb2Tm89qO9S6K3i77U8x3861NtImx2BP461a5S5tbHw8REfMpglYP\nUARCqnAMsAPFfDrHtp3rgxS95F4UEU8sA6ntjgZek5kXte3zC4oAzBHAl4akfzZFb5cPtaUfy73w\nKuDJmfmbMv1pFMGZPYFDePhny78AB2bmT8vfz4iIyyjunxdQBNIAXg38HUW9PK/VMyoi3gZcSHEv\nnEwR3H2YzLw0ItYBrwWWd2lX36IIxB1GMe+XJEmSGsgeOJIkSZqqdi2XPx021Z/cUi53G4e8bFsu\nOw1h9arMnJeZ3YI3AH9fLs9rHxosM9dTfNN/qEMohoC6uP2FdbnPLRQ9HuZTvEQetbJH0KsphpQ6\npRUsKI//APCv5a+v6LD7D1vBmzL9HynqaCbwwVbwptTKe7c6eXd7EKOcsL0V6Dm0zOseFAGJH7YH\nb8r0d1H0fJgJ/GOH439tSPAG4Iry2A/pSZOZa8ttAE/qkt+qfKG93GOsj6FaQ3/9oH0Yrw4eGRGP\nGeZnx7a0nwaeQzHc3YPK6399+Wuna/aT9uBNqTVs29Ch/aDocXfhkHVjuRc+1ArelOn7gSvLXx/X\nIf1FbcGblm93yO9ryuVJ7cPaZeYA8Jby15HU1XBuKJdPHeNxJEmSVGP2wJEkSdJUtXW5HPoCvpv7\nhuxXpcsoho06Z7CNPgAACZdJREFUuZzL5rPA9ZnZP6QXRTd7lMsfddh2bYd1+5fLX5Vzxgz1f+Vy\nbx7+wnskdqWYR2QFML/stdHu9xRDiu3dYd+bO6xrXftbuqyf3WGffv708r/dz8rl48tl61r8osu1\nWFEuO+X1xqEryjlVWvOq9FL07JlTbm4F1zrlt0pD8zWW+hhqp3L5602ku2AT279D0WuMzPw5RW+p\nVo+Y7Sl6xMCf7s9O1+yGDutavWSGlhHgV5l575B1Y7kXftghfV+5nNNhW6f0D8lvRGxBMfdTP3B/\nlzzdAzwmIrYdrofcJrQCTzsNm0qSJElTmgEcSZIkTVV9FHNozGdkQZzWC+GVVWckM28s5+z4CHBs\n+bMqIv6XogfAV9p7TXTwiHLZ6WXuHzqs26Fc/kv5080jh814d63jL6SYeL2bbSJidnuvIYo5fIYa\n7LQtMwcjAmBGh31WlT2QhmpdowVD8vri8qebTteiU16JiFdTzI+zZ5e8jbeh+RpLfQzVamu/30Qe\n3kWHAFebB/cvA11vohgS7bGbOG67Tu19oFx2uu6d6mss90Kna9Bqq53OP5L8PgLoLf89XF218rRZ\nAZzMXBsRa4C5ETFvSM82SZIkNYQBHEmSJE1VPwMOBP4fcOcI0u9ZLkc65NqoZObXIuISiiGd/rZc\nLi5/Lo+I52Tmhi67t17+dgrydBr2uJXuUxRzyHTzm2G2Dad1/F8Bb9hE2k7DxlVhoMv61vVoBSla\nef0m8PFhjtcpcPew3lER8a/AaRS9gz5M0evi/vI8RzAxk8YPzVeV9THSQObSzLx0E2laPgb8E/Bb\niiH/lgOtgMKbgKeN8Dib0qk323jfC6PVys9aOg/b126seVoJzKUIZhrAkSRJaiADOJIkSZqqLqMI\n4LyEYkLvTfmHctn+Unq4XjGj7r1SBmi+Wf4QEU+lGLbpWRQTzHcLMLRepi/osG2HDuvuLpf3ZObQ\nidar0Dr+nHE6/kjMj4iZ7XOIlFrX6LflspXX1WPNa0TMBE4sf/3bzLx6yPZnj+JwXdtWOafNn43i\nWFXWx6py2WmIslGLiJ2Ao4D1wIGZ+Ysh24+p4jzDGO97YbT+QDFX0Rzg2+XcSeOlVYd9w6aSJEnS\nlNXp23ySJEnSVHA+xbfcXx4R+w2XMCL2pOghcD/w0bZNrV4cnQInI5lPpHX82RHx+KHrM/MH/GnS\n8uGO15rXZc8O2xZ1WNeaF+fgLvnZoZyLZ7Nk5i+B3wE7RMRfdjj+jIjYdXOPP0Iz6XzNWvMF/apc\ntq7FX5fzrzxERCyIiEcMXd/F9hRzJK3sELyZBRw0wuPA8G3r8RQ9J0ak4vpoDRs2mgDScHah6EH2\n0w7BmwXAsPdmBcb1XhitMojbGnquW55GM8xcRxExB5gHrMvMkc4DJkmSpCnGAI4kSZKmpMz8LXAc\nxXwT34yIQzqli4gDgW8DWwDHZGb7nDKtCc4PG7LPY4FXdzn1emDbct6PlquBH0fEkzqkbwUh7him\nOK0eREe3ByEiYjZwSof0l1NMQr93RLxoSN7nARcDf4hygplNaAUath+y/hPl8vQhZQV4I/CLiDht\nBMcfi7dHxIP/Z4mI7YCXl79+EyAzfwosBXZkyPBiZY+aTwC/i4iRBF/uAR6g6P2z85DjfAjYqly1\n7ZD9OrWJ1vwne0bEo4cc6wxGP/RcVfXR6rGy87CpRq41fOEuZdsDHmyHn+RP7WvoNatKlfdCVVp1\n9a9loKU9T88Hfh4RF27iGN3uy5adyuVdm5dFSZIkTQUOoSZJkqQpKzM/UQ5H9WHg2xFxPfBdimGM\ntgUOoBhmbTVweGZ+bsghvgCcChxSzl+zlOLF6EuBD1JM5D7UcoqgzDcj4hfAfwBvo3hR/P2I+Cpw\nK0VgaW/guRTBm48NU5QvUgzdtTewLCL+p8z/YcAPKCaGf3DIq8zcGBGvoAj8fD4iXgDcTPGy94XA\no4GzMzOHOWd7eQBOiYjHAHdm5nuB0ymGfvs74IYyT4MU1/Mg4DbgIyM4/ua6C9gSuC4irqQYlupl\nFIGaz2XmjW1pXwNcBfxbRDwD+D6wTZn3xwNfBZZs6oSZ2R8RnwFeCVwVEZ+j+D/T31MMU3U8RV0d\nHhF/AD6ZmXfQoU1k5vKI+AZF/X8vIj5PMa/PYRS9YL4P/PUorkdV9XFDud8+ETFnrEN8Zeavy/o5\nCPhuma+tKdrhD4AzgX8Hji8DKv8+lvN1OH+V90JVPk5RT8+hCOx+kaK34FMo2sPvgPds4hi3UQQT\nnx0RFwD9mfmqtu2twPAPK8y3JEmSasYeOJIkSZrSMvPjFAGOd1O8mD6KIvDySoq/d08F/iIzP9th\n3xXAocA1FC/TTwH2oeh98+kupzyOYsizvwEWA7My89sUE7V/FfgrimHTTgEeR/HC+qmZec8wZdgI\nHEIxvNvOFAGhvwe+XJbjgQ77XAU8Ffhcec7TgFdRDC12FEWvjJH4JsUL5y0phpnbrTz+GuAZwDso\nhsg6EXgzsBD4AHBAZv5uhOfYHD3A84HvUQRuTqIIir27zOeDMnM5xcvx84AnAv8KvJ5iyLwTgJdk\n5sAIz3s8RfBuJnAyxRxLX6cInnyVIug3GziGIkgEHdpEuf4I4FMU86H8C3A4cCXFy/3h5l96mKrq\nIzNXUgQqt6QI/lThpRTlfGSZp+dQ1MVLgQsoesnsSNGWHzbM3VhVeC9UlZ8BinZwPHAvRft4O/D/\nKO61fTPz1k0c4w/l/n+gaP9D6+rQcjmS+b8kSZI0Rc0YHBzV/xskSZIkadyUvYBuB36bmTtOcnYa\nKSKOpphD6rzM/OfJzo9GpxyW7Q6KYSEflZl9k5wlSZIkjRN74EiSJEnS9PJp4DfAERHRbY4V1deR\nwHbARw3eSJIkNZsBHEmSJEmaRsp5b94CzKMYbk5TRERsRVFnv2fT8+hIkiRpijOAI0mSJEnTTGZe\nBHwNeH1EVDUXjsbfB4CdgKMz897JzowkSZLGlwEcSZIkSZqejgRuBT4fEc43VHMRcThwNPC+zPzq\nZOdHkiRJ42/G4ODgZOdBkiRJkiRJkiRJbeyBI0mSJEmSJEmSVDMGcCRJkiRJkiRJkmrGAI4kSZIk\nSZIkSVLNGMCRJEmSJEmSJEmqGQM4kiRJkiRJkiRJNWMAR5IkSZIkSZIkqWYM4EiSJEmSJEmSJNWM\nARxJkiRJkiRJkqSaMYAjSZIkSZIkSZJUMwZwJEmSJEmSJEmSasYAjiRJkiRJkiRJUs0YwJEkSZIk\nSZIkSaoZAziSJEmSJEmSJEk18/8BZIcfYy+Wre0AAAAASUVORK5CYII=\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "Pdgjgw9RiluO", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 390 + }, + "outputId": "7693578e-7a8e-4531-a1d8-bff9c0f14297" + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 6))\n", + "\n", + "#histogram of the samples:\n", + "plt.subplot(211)\n", + "plt.title(r\"Posterior distributions of the variables $\\alpha, \\beta$\")\n", + "plt.hist(beta_samples_, histtype='stepfilled', bins=35, alpha=0.85,\n", + " label=r\"posterior of $\\beta$\", color=TFColor[6], normed=True)\n", + "plt.legend()\n", + "\n", + "plt.subplot(212)\n", + "plt.hist(alpha_samples_, histtype='stepfilled', bins=35, alpha=0.85,\n", + " label=r\"posterior of $\\alpha$\", color=TFColor[0], normed=True)\n", + "plt.legend();" + ], + "execution_count": 11, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABm8AAALrCAYAAAAYzhPEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYHlWZN+BfIEYgbAICMowsGo8s\nikSWAWFQcGM+PhUFRURFcRR1nFE/3AY33EedcRsVNSBuiKPiBozIBHBjMWyOCxzigmyiAQmRzQDm\n+6OqQ9Pp7nSn3+63urnv6+rr5K06deqpeusknXrq1Jm1YsWKAAAAAAAA0A1r9TsAAAAAAAAA7iV5\nAwAAAAAA0CGSNwAAAAAAAB0ieQMAAAAAANAhkjcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5\nAwAAAAAA0CGSNwAAAAAAAB0ieQMAAAAAANAhkjcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5\nAwAAAAAA0CGSNwAAAAAAAB0yu98BAAAAACRJKeUfkrwiyR5JHpRkWZLLknyk1vrtfsYGADCVZq1Y\nsaLfMQAAAAD3c6WUjyT550GLliXZcNDnZ9davzq1UQEA9IeRNwAA01gpZbQncW5Pcm2Ss5N8uNZa\npyaq/imlHJnks0m+X2t9fH+jGd5IMfY79uH23++YuhJDv5VStkzyiST7J1k/yXdqrQevYVtHpjmf\np9daD+pZkNNQL6+tNWnLtX1fpZSXpEnc3JXkrUk+WWu9pb3+T0myX5KXJZG8AQDuF8x5AwAwM3wl\nyUcG/Xw0yZlJ1klydJLLSimH9iOwUsp7V5Nk6qVfpjn+r03R/nqpJ7FP4Hz3/dyNEHvf4+qA9yU5\nOM1N7c8m+fFYNprivjcdubY6opQyO8lx7ce31FrfV2u9JUlqrTck+c923Wb9iA8AoB+MvAEAmBk+\nXGu9YOjCUsqcJO9J8v+SfKGUcmGt9eopjm33qdpRrfUnSX4yVfvrpR7GvkbnuyPnbpXYOxJXv+3Z\nlq+qtZ4yju2mrO9NR66tTnl8kq2S/DnJh4ZZP5C0uWaqAgIA6DfJGwCAGazWuryU8vokT07yqCQv\nTvL2qdp/KWVWkt2man/3d9P5fE/n2KfAum15w1g3cD6ZqPYaek6SlyR5bJJZSX6eZmTMOW2dryV5\nVpK/r7X+cAK7268tz6q1Lh9m/WFt+f0J7AMAYFqRvAEAmOFqrX8tpfwgTfLmMUPXl1L2TvLqJI9L\n8uA0c+VckWZegU/UWu8YUv8xSV6fZJ8kWyS5M8l1SU5LMwLo+rbeSUleOGi7gdc3PaHWeu6g5bsm\neW2am3dbJLk1yf8mWVBr/dKQfR+Zdr6OJK9JsiDNDep311rfM9ocEmtwnKPua+h5HLLtnPYcPT/J\nNmkm3f5RkreNss2wsffqfE/k3LXtPTDJW5I8O8lDk9yW5AdJ3lpr/dmgem9vj/NztdYjh2lnlfWj\nxZ5k29XENebvdcg5eHqa8/rC9njuSnJBmhvT9xmNMdbvYKzGGvPQ85LknFJKRjoXg9q/z3ZDzufg\nemul6XsvSrJ9kuVpzsGba62LRmh7zP11lPjOSTPS4m211neMUOfNSd6Z5Oxa6wHtsllJXpCmXz0m\nyUZpzt0vk3wuyadrrX8d1MaRWYNrfrz7GSb2MfWV1ZyjcZ/nXl6npZRN08wz88R20bIkG6S5Zr9X\nSnlUkr+meZ3fuRNM3CRNcigZZiRUKeWFac7DX5KcPMH9AABMG+a8AQC4f1jalusMXlhKeUWapMKh\nSa5K8vkk5yR5eJIPJvl+KWX9QfX3TXNz97Akv0lyUpKvp/m98nVJLiilPLSt/r00N0YHDMzHc+2g\n9g5PcmGSI9rln2vb3zPJF0spJ7U3UodzSpL12hguH+3gx3ucE9nXoPrvTPK3Sb6dZk6NLdMc285j\n2H4g7p6e7wkcT5J8K80T+Be02y1J8owkPy6ljPmYRjCe2Fea4Pd6cpqb4xcm+a8kf0ozQu3sUsq2\ng/Yxnu9gtcYZ8/fSnIc/t5+/nrHN0TLW87kgzc3+RUm+kOTmNOfgnFLKdsPEPpH+OthA8uGQUeo8\npy0/P2jZCWnO/95JfpjkM0n+J02C5ZPtupGM55qfyH6SCfaVNTnPvbxO2+TTGWkSN79M8tha60Zp\nXmt2WZqHQP8xzbWzVpq/6yZq4MGCS9oYZpdSdiilfCzNdZokbx9vohQAYDoz8gYA4P7h4W151cCC\nUspOaW7oJskzaq3fGrTuQWluWu6e5jVrx7Srjk3ywCRH11o/Naj+rLatV6UZUfDaWuvJpZTz0jzV\nn1rrqwcH1N4cPiHJ2kkOq7V+ZdC6kuYG9AuTLExzY3mwvdK8PudZtdZRJ2Rfw+Nco321bf5DmqfR\n70iyV631p4PWvXJQLGPRs/O9psfT2jvJxUkeXmu9tY1hdprE1IFJ/i3J/xnHcd3HaLGXUvYZbpsJ\nfq/7JalJ5tVal7bbrJfk/CSPbuMYGCU15u9gdcc53phrrScnObmU8ow0ox7+c/CotZGM8XzulWa0\nz4611hvbdRumGflQ2m3fOmi7ifTXob6WZgL6R5VSSq21Dl5ZStkxTZLz9jQJiJRSHtnGtCLJvrXW\niwfV3yFNUuH5pZSPDF436FjH+vfFRPaTTLCvTOA89+w6TTNH2h5pzv+BA/Ok1VpvKKX8W5Ivpxnd\n85gk59Vazx5DmyMqpWye5CHtx0tLKUcl+VSac5Ak9yR5Q631/RPZDwDAdGPkDQDADFdK+dskT2s/\nfmvQqqPTPMzzzcE3kZOk1npzmpuBSfLi9uZjkgw8jX/ekPor2vp7J3nfGEN7VZqRQF8efIOyba8m\neXP78ZXDbLtJkn8fY/JhTY5zTfeVJIe35RcHJ27a/X08yZhem9Tq5fkeMN7jSZIHpEkQ3ToohruT\nHNd+fHIpZaNxxjFRE/le10/yyoHETbvN7bl3RMujB9Xt5Xcw0Wuxlx6U5GUDiZs2hmVJBvrivCH1\nJ9Jf76M972e0Hw8dpsrA/CbfHHTN3Z7kqCSvGJo0qbVenibxlST7DtPeeK75iewnmXhfWdPz3JPr\ntH3l42vaj+8bSNwM8qu23CPJnPRm1M2ubXltez0+LvcmbtL++f+UUoZekwAAM5rkDQDADFVK2bCU\n8tQ08z2sm+S/a63/PajK37flGats3FiY5unzByV5ZLts4An5jw29kVZr/XOt9fxa6x/HGOL+q9n/\n6W25Ryll7pB1f0kzSmIs1uQ413Rfyb2TxP9ghPXfG0dbvTzfA8Z7PElyc611uG0uSjNPyuyM43Vw\nPTKR7/UvGWZujSQDr2QafHO9l9/BRK/FXrq21vrzYZYPnIPNhyyfSH8dzsDcJcO9Om3glWkrR5bU\nWq+utZ5Yaz1+hPaua8vhEiNjvuYnuJ9k4n1lTc9zr67TJyfZLMndaUZHDXXnoD9fVGv97hjaXJ2B\n5M2lbfmSNH1gtzSjv5am6TtnlVLW7cH+AACmBa9NAwCYGc5vJzIfzoo0cyaM9KT2b4fbqNZ6aynl\npjQ38h6a5Odpnsh+bJrXTl1ZSvnfNDecv5vknFrrXeOIedu2PLSUsscIde5K8yT7w9JM1j3gxtEm\nDB9iTY5zsPHsK0n+pi2vG2H978bRVi/P94DxHk8y8rm7p5TyhzRz+zxkuDqTaCLf63UjjMK4py0H\nP+TWy+9gotdiL410Hf6lLdcesnzbtlyT/jqc05IsS7JLKWVerXVxkpRSdk3yiCQ3JDlr8AallC3T\nfB9PStPPNh0mzuHm3BnXNT+B/SQT7yvbtuV4z3OvrtMntOWP2tFgo+nFqJtkSPKm/a6Wpnn93MWl\nlNPSJL+2STMPz3d6tF8AgE6TvAEAmBm+kuZm52B3JLk6yfdqrb8eZpv1BtUbycBT1usmSa3116WU\nR6e5UfjcNK+XGvi8pJTyzlrrx8YY88Ck7M8YQ90Nh3y+ddhawxv3cU5gX4P3d+cI6/8ywvJV9Ph8\nDxjv8STJbaOsGzjOddag3YmYyPc65oRLj7+DiV6LvXTP6qvcx0T66ypqrXeWUr6eZn6ZQ5O8p101\nMOrm5FrryhhLKQ9L8uMkW6Q5R99Pck3uvTafnGSHEXY35mt+gvtJJt5X1ug89/A6HUik/HiE9QPX\n5S9qrd8eQ3tj8Zi2vHS4lbXWS0spv0qT1Jvq1zMCAPSN5A0AwMzw4VrrBePc5rY0N//WG6XOwLrB\n8zfclGbehTeXUh6e5mbmc9K81uajpZS1a60fHsP+b01zI+4ptdbxvEpsvNboOCfgzra9B65mX2PS\nw/M9EaPdbB5Yd/sY23rABGMZMGXfaw+/g6m+FntpMvrrl9Ikbw7JqsmbLwyp+8E0CZWL2xhuGryy\nlPL5jJ5UGauJ7meifWWNz3OPrtNt2/KaEdYPzIfzqxHWj0spZf0kD28/XjJCnbXSjH5KRh7RCAAw\n45jzBgDg/us3bbn9cCvbSbU3aT+O9CqgX9VaP1Fr3S/Jy9rF/zTG/Q/c/HvoGOuvqQkf5zj9vi23\nHGH9sHGMxQTP90QM+x2VUmbn3ldAXduWA6+nGvqaqQHb9iimqf5ek0z4O+hLzD0yGf31nDT9ZddS\nyvbta8K2TfLzWutlQ+ru15bvHZpQaa1xv+rxfsbTV4bTk/M8get0Tluucq+glLJbksPaj2vyysbh\nPLrd159qrVePUGefNMmb25OM9yEFAIBpS/IGAOD+69y2PGiE9U9ty+uTLC6lPKiUcmgp5akj1B+Y\ngPxvhltZShk6R8TZbfnsEeqvW0p5Till0+HWj8O5bTmm45zgvpJk4KbzPkNXtOdgpPM3tG6vz/dE\nbFFK2WWY5XumGc3/lyS/aJf9uS1XSV6VUh6YZhTAqMYY+7ltOWnf60S/g2Gc25ZTdS0m6dm10PP+\n2s5tckr78cA0I3CS5PPDVB94a8Qq87C01+be7ceJHutE9zOevjKccZ/nHl+nS9ryPvPtlFLmJPl0\n7j3ukZKz4zXwmra5pZRVEmOllLWTvKv9eHKtdbRXDgIAzCiSNwAA918fT3Mj8aBSytMHr2gn7H53\n+/Gj7eTuW6SZW+fzpZRHDtPewOuOBj8x/+dBf95mSP1Pppn740mllOcP2f/sJP+Z5sbuJ8Z8RMMb\n73FO1Ffb8gWllHlD1v2/jH2EQK/P90QsT/LhUsrKeVhKKQ9Iclz78Vu11oG5Pn7Wlo9vX900UH/t\nJB/IyHNWjDf2qfhe1+Q7GM1UXou9vhYmq79+qS2fkiap9dfcm2wY7PK2vE/iq5SyY5KvJTmvXfS3\n49x/r/cznr4ynDU5z728Ts9tyyNKKYe0+908ydfTJFp+2a7fr5SyxXANlFIeX0pZ0f48fjX7G0je\nPDDJd0sp+7RtrFVK2SnJt5Psm+RPSd46hvgBAGYMc94AANxP1Vp/VUp5RZLPJPlGKeUHSa5MM2Li\n79PcZP9Okn9v619RSnlvkn9N8r+llHPTvNpprTRzQOydZk6P/zdoHzeVUq5K8yqkH5RSfp7m5uWn\naq2/LaUcleYp+8+XUl6e5KdJNkjy+DRPiV81uL2pOM4e+GqSo9Mcw0WllNOT3JJkfpJHpZnb4+1j\niLun53uCx3RuW/6qlHJWmgTE/mnmqrgpyZsG1T0nTQLnUWmO/7+TLM29rz56V5J/G+Z4h4293dcq\npuJ7XZPvYDXtTdm1ON7zOYb2JqW/1lovLqXUNMmbOUn+p9Y63Lwm/5YmgfCadmTLlWkSofsneW+a\na+5xSZ5XSlmR5ITxHuOa7qfWet6g7c9ty7H0lVWsyXnu8XX6oSQvTPKgJF8tpfw5ydy2rZ+lGSF1\neZrX+/22lPLlWutRY2h3JI9pyxVJ5iX5YSnlznbZwBxBNyR5Rq3190M3BgCYyYy8AQC4H6u1npjm\nRuTXkzwiyZFpnnL+aZIXJzm41nr3oPrHJnlmku8m2THJC5I8P8nmaV6ps+uQG5lp6/wyzdPh8zNo\nroRa65eT7Jbki2meZD8qycFJbkzyjra90eaHmJTjnOC+/prmqf33pjmOZ6V5HdQNaW6i/mQcbfX0\nfE/A3UmenuRzaZIwK2/uJtmr1jowl0tqrfekmSj9C2luXB+S5GlpJiP/uzSvBBvJuGKfiu91Db+D\nvsY8SE+vhUnsr1/KvXOtfGGEfZ+a5vz8LM01+Ow0N/efW2t9a5JvpBmxszzNtbrBGsTRi/2Mua+M\nEsO4z3OvrtN23pm92nj/mGS9NMnnLyfZt02sHZbk6iTrJrlmmGYG5va5PfeO1FlFO5Jo5/bjs9Mk\nF29M8oA0f3f8JMlbkuxUa71wdbEDAMw0s1as6MWbIQAAAID7u1LK8UleluTfa63HjFLvUUn+N02S\nZ4M28Q0AQMvIGwAAAKBX9kszb88HVlNvYL6bn0vcAACsSvIGAAAAmLBSyoOTPDLJp2qtf1hN9YHk\nzWWTGxUAwPQ0u98BAAAAANNfrXVJklljrP6YtvzpJIUDADCtGXkDAAAATDXJGwCAUcxasWJFv2MA\nAAAAAACgZeQNAAAAAABAh0jeAAAAAAAAdIjkDQAAAAAAQIfM7ncA/XbLLbeY9AcAAAAAAJhUG220\n0ayx1jXyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAAAACgQyRvgBll\n8eLFWbx4cb/DACZIX4aZQV+GmUFfhplBX4aZQV++/5C8AQAAAAAA6BDJGwAAAAAAgA6RvAEAAAAA\nAOgQyRsAAAAAAIAOkbwBAAAAAADoEMkbAAAAAACADpG8AQAAAAAA6BDJGwAAAAAAgA6RvAEAAAAA\nAOgQyRsAAAAAAIAOmd3vAAAAmLkWHb+o3yGs1u5H797vEAAAAOA+jLwBAAAAAADoEMkbAAAAAACA\nDpG8AQAAAAAA6BDJGwAAAAAAgA6RvAEAAAAAAOgQyRsAAAAAAGBYxx13XPbYY49cf/31/Q5lWKed\ndloOPPDA7LXXXvn85z8/pm2WL1+ek046Kc997nOz7777Zt99983znve8fOtb35rkaMdudr8DAAAA\nAABgZlp0/KJ+hzCq3Y/evd8h9MwJJ5yQAw88MFtttVVP2z300EOzzz77ZJNNNulpu71wyy235H3v\ne1823HDDvPGNb8wOO+yw2m3uuuuuvOpVr8qll16aRzziETn44IPzl7/8Jd/73vfy7ne/O5tvvnn2\n2muvKYh+dJ1I3pRSTkrywlGqvKbW+uG27rpJ3pTksCTbJFmW5Owkb6m1XjnJoQIAAAAAQKdcd911\n+dSnPpXHPOYxPU/e7Ljjjtlxxx172mavXH311Vm+fHme+tSn5ulPf/qYtjnllFNy6aWX5uCDD84b\n3/jGzJo1K0my66675q1vfWt++tOfSt4M4xVJlgyz/LIkKaXMSvKtJE9M8tkkxyXZKskxSc4vpexR\na/31FMUKAAAAAAB998tf/rLfIfTF8uXLkyTrrLPOmLc59dRTs8466+TVr371ysRNkqy99tpJko02\n2qi3Qa6hriVv/rvWetUo6w9L8qQkH6i1vn5gYSllYZKLknwgyTMnNUIAAAAAABjkuOOOy+mnn54v\nfvGLOfvss3PGGWfkpptuyuabb55DDjkkhx9++H0SBX/84x+zYMGCnH/++bnpppuy3nrrZeedd84L\nX/jC7Lrrrivr3X333fmv//qvnHHGGbn++utz1113ZdNNN80//MM/5Mgjj8ycOXNy9NFH55JLLkmS\nvPzlL0+SfPOb38xWW22VpUuXZsGCBfnhD3+YJUuWZO7cudlll11y5JFHZuedd14l/pNPPjkf+9jH\ncumll+Y973lP9tlnn5XrBtoc7zGM1vZIxtL24ONesGBBFixYkJe85CV56UtfOmK7v//973Pddddl\n3333zbrrrnufdQsXLkyS7LbbbiNuP5W6lrxZnRe05UcHL6y1XlJKOS/JQaWUjWutS6c+NAAAAAAA\n7s8+9rGP5a677soLXvCCPOABD8ipp56aj3zkI1mxYkWOOOKIJMmNN96YF73oRVm2bFme+cxnZt68\nebnpppvyjW98I694xSvyH//xHytf2/XBD34wp556ap785CfnOc95TpYsWZIrrrgiJ5xwQn71q1/l\n/e9/f1760pfmq1/9ahYuXJh//Md/zPbbb59NNtkky5Yty1FHHZWbb745Bx98cB72sIdlyZIl+frX\nv56Xvexl+fCHP5zdd7/vnD+f+MQnstlmm+XYY4/N9ttvP+JxjucYJqvtl770pbn44ovzmc98Jgcc\ncECe+MQnZrvtthv1+7n88suTJDvttNPKZStWrMhXvvKVnH322dljjz0yb968UduYKp1M3pRS1kly\nd6317iGr9khyTa312mE2uzDJ45LMTzMHDgAAAAAATJkbb7wxX/jCFzJ7dnPr/YADDsjTn/70fO5z\nn8vhhx+etdZaKwsWLMiSJUvyzne+M095ylNWbvuUpzwlhx56aD70oQ+tTHyceeaZ2X777fOud70r\nSbJ48eLsu+++2WmnnfKLX/wid9xxR+bPn5+LLrooSTJ//vw89rGPTZJ88pOfzHXXXZcFCxbcZ5TN\ngQcemMMOOywf+tCHcvLJJ98n/rvuuitvectbVnuc4zmGyWp7/vz5WbFiRZJku+22ywEHHLDatq+4\n4ookyQ477JCLLrooZ555Zi677LL87ne/y7x583Lcccetto2p0rXkzStLKYck2TbJX0spi5K8o9Z6\nRillgySbJKkjbHt1W26fHiRvFi9ePNEmgD7Sh2Fm0Jenv4H3D3eZ62zyOccwM+jLMDPoy0y1rv+f\noFd9YtmyZUmSvfbaK7/97W/vs+6Rj3xkFi1alHPOOScPfehDs3DhwsydOzfbbrvtKvvfcccdc+ml\nl+ZHP/pRtthii8yaNSs33HBDzjvvvDz4wQ9eWW/vvffO3nvvnWuvbcY5/OlPf0qSXHvttdlwww2T\nJN/97nez1VZb5e67785ll112n/084hGPyCWXXJLLLrssc+fOXRn/zjvvvEpMA+uuuuqq3HbbbUky\nrmMYre3hjKftwcc/lrYvvvjiJMkDH/jAnHTSSbngggtWrtt0003z61//euW5nIhejN7pWvLmKUne\nk+S6JI9O8rokp5VSDk/yg7bO7SNse1tbbjCpEQIAAAAAwDD+5m/+ZpVlD3rQg5I0o3I23XTT3HLL\nLZk3b17WWmutVeo+5CEPyaWXXprf//732WKLLXLwwQfnC1/4Ql73utdll112yU477ZRHP/rR2XLL\nLUeN4/bbb8/NN9+cm2++edQ5YG688cbMnTt35efBCaKR3HbbbeM6hqloe6x++9vfZrPNNssGG2yQ\nV77ylTnyyCNz7bXX5swzz8wFF1yQ6667Lu973/vG3e5k6Ery5t+TfDnJubXWv7TLziilfDvJZe36\n3UfaeDJ05b12wPgMZNj1YZje9OWZY+nC7k9F6DqbPPoyzAz6MswM+jL90vX/E/SqTwyMdpk3b94q\nbQ4kdB784AfnIQ95SJJkk002GXbfA0mZgfXz5s3LHnvskVNOOSUXXXTRytej7bLLLnnDG96Qhz/8\n4SvrJ8nWW2+defPm5Q9/+MPKeF772teOGHcpJeuvv/6o8Q+s23bbbbPVVlutbHusxzBa20ONt+2B\nUT0j1R/s97//fW699dZV5rWZP39+nva0p+V5z3teFi9enPXWW2/YJNxU60Typtb6syQ/G2b5L0sp\n5yZ5UpKBtNzcofVa67flsp4HCAAAAAAAq3HnnXeusuzWW29Nkmy88cZZb731kjQjY4Zzxx13JMnK\nekmy5557Zs8998ydd96Z0047Leedd15+/OMf5xWveEW+/vWvZ4MNVn0Z1cBomrvvvnvlHDi9sibH\n0IW2B893M5yBJNOatD0ZVh131D1/aMv1kixJsvUI9bZpSy/uBAAAAABgyg2d7yZJrr/++iRZ+bqu\nzTbbLFdddVXuueeeEbffbrvtVlm3zjrrZJdddsnLX/7yHHbYYVm6dGkuueSSYeNYf/31s/nmm+fq\nq68edg6XpUvXfETURI6hn21ffvnlSZo5iIa65ZZb8tOf/jQPf/jDV77mrt/6nrwppWxYSnleKeWp\nI1Vpy2uSnJdk61LKQ4ept2+SO5IMf7UCAAAAAMAkOuOMM+6TdLjlllty8cUXZ7PNNsvf/u3fJkkO\nOOCA/PnPf85ZZ511n22vvvrqXHzxxdlhhx2y5ZZb5vLLL8+znvWsfPOb31xlPwMja+bMmZMkWXvt\ntZMky5cvX1nngAMOyD333JOvfOUr99l22bJlOeKII/Iv//Iva3ycYz2GLrU9MPLmrLPOyooVK1Yu\nv+uuu/Le9743d999dw4//PA1inkydOG1acuTfDzJnaWUnWutNw6sKKU8Mc1cNz+ptV5bSjkhydOT\nvKb9Gai3X5LHJvlsrfXWKY0eAAAAAADSJFX+6Z/+Kfvvv38e8IAH5Gtf+1ruvPPO/PM//3NmzZqV\nJDnqqKPy/e9/P+9+97uzePHibL/99vnDH/6QU089NWuvvXZe97rXJWnmiHngAx+Y97///Vm8eHF2\n2GGHLFmyJFdffXXOOuusbL/99itfibbVVlslSU488cT85je/yeMe97i8+MUvzg9+8IOcdNJJ+dOf\n/pT58+fnT3/6U0499dTcdNNNOfbYY9f4OMd6DF1qeyB58+1vfztXXnlldtttt9x+++258MILc911\n1+Wggw7KQQcdtMZx91rfkze11jtLKf+S5KQkPymlHJ/khiS7Jnl5kluSvKyt+51SyqlJXl1K2TDJ\n2Wlel3ZMkmuT/OvUHwEAAAAAACQve9nLsmjRonzxi1/MjTfemC233DLHHHNMDjnkkJV1Nt5445x4\n4on51Kc+lTPPPDM33XRTNthgg8yfPz9HHXVU5s2blySZPXt2Pv3pT+fEE0/M97///Zx22mm56667\nstlmm+WQQw7Ji170opUjb/bff/+cddZZWbRoUX73u99lp512yrbbbpsTTzwxCxYsyI9+9KOcfvrp\nWXfddbPzzjvn2GOPzfz589f4OMd6DF1p+4YbbsjSpUuz5557Zv31189FF12UL3/5y5k7d24e+chH\n5pWvfGWe+MQnrnHMk2HW4OGae18WAAAgAElEQVRB/VRKeUKSNyXZI8ncNAmc7yV5d631N4PqzUny\nxiRHJNk2yc1JzkxybK31mvHu95ZbbunGCQB6YvHiZtqrifwDAfSfvjxzLDp+Ub9DWK3dj9693yHM\nWPoyzAz6MswM+jJMruOOOy6nn356TjjhhDzqUY+atP3oy2vmnHPOyRve8Ia86lWvyvOf//y+xbHR\nRhvNGmvdvo+8GVBrPSfJOWOotzzJO9ofAAAAAACAEQ28Mq2U0udIxm6tfgcAAAAAAAAwWSRvAAAA\nAAAAOuSKK67IQx7ykGy00Ub9DmXMOvPaNAAAAAAAmI7e9ra35W1ve1u/w2AEZ555Zr9DGDfJGwCg\nL0abyH758uVJkqULl05VOMMykT0AAADQD16bBgAAAAAA0CGSNwAAAAAAAB0ieQMAAAAAANAhkjcA\nAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5AwAAAAAA0CGSNwAAAAAAAB0ieQMAAAAAANAhs/sd\nAABAVy06flG/Q1it3Y/evd8hAAAAAD1m5A0AAAAAAECHSN4AAAAAAAB0iOQNAAAAAABAh0jeAAAA\nAAAAdMjsfgcAAMCaW3T8on6HAAAAAPSYkTcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5AwAA\nAAAA0CGSNwAAAAAAAB0ieQMAAAAAANAhkjcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5AwAA\nAAAA0CGSNwAAAAAAAB0ieQMAAAAAANAhkjcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHTK73wEA\nAJNj0fGL+h0CAAAAAGvAyBsAAAAAAIAOkbwBAAAAAADoEMkbAAAAAACADunknDellHckeUuSz9Va\njxy0fK0kr07yoiTzktyZ5MdJ3l5r9WJ/AAAAAABg2uvcyJtSyk5J3jDC6k8n+fckVyZ5aZoET0ny\ng1LKXlMTIQAAAAAAwOTp1MibdmTNZ5L8IsmuQ9btleSoJF+ttT570PJT0yRzPp5k/tRFCwAAAAAA\n0HtdG3nz8iR7JTlmmHUvaMuPDF5Ya70uyTeS7NqO2gEAAAAAAJi2OpO8KaVsneS9Sb5Yaz17mCp7\nJLknyU+GWXdhW+45SeEBAAAAAABMic4kb9K89uyuJK8dYf22Sf5Ya71rmHVXt+X2kxAXAAAAAADA\nlOnEnDellEOSPC3JUbXWJSNU2yDJzSOsu21QnZ5YvHhxr5oC+kAfhmT58uX9DmHCZsIx0H0//uiP\n+x3Cam1+4Ob9DmFC/LsMM4O+DDODvgwzg77cbfPmzZtwG30feVNK2TjJx5J8P8ln+xwOAAAAAABA\nX3Vh5M0HkmyS5Oha64pR6i1LMneEdesPqtMTvciMAVNv4KkDfRiSpQuX9juENTYw4mbOnDl9jgS6\nYbr+u+bfZZgZ9GWYGfRlmBn05fuPviZvSil/n+SoJB9JcmspZeshVdZrl92W5DdJHltKmVNrHfoO\nlW3a0lgxAAAAAABgWuv3a9P2TzIryauTXDPkJ0kObf/8oSTnpYn374ZpZ9+27P4LywEAAAAAAEbR\n79emnZzkohHWfSfJwiQfzr3JnH9O8pokPxioVEqZl+T/Jjmn1vrryQsVAO616PhF/Q4BAAAAgBmq\nr8mbWuuVSa4cbl0pJUmurbWeNmjZh5K8tpTyjSSnJtksyWuT3JHkVZMeMAAAAAAAwCTr98ib8Tom\nyW+TvCzJZ5LcnuTcJG+utf6yj3EBAAAAAAD0RGeTN7XWWcMsW5HkP9sfAAAAAACAGWetfgcAAAAA\nAADAvSRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAA\nAACgQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6ZHa/AwAA\nAKa3RccvGnb58uXLkyRLFy6dynCGtfvRu/c7BAAAgDEz8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAA\nAACgQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAA\nAACgQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAA\nAACgQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAA\nAACgQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6ZHa/AxhQ\nSnlUktcn2SfJVkmWJTkvyXtqrRcOqrdukjclOSzJNm29s5O8pdZ65VTHDQAAAAAA0EudGHlTStkr\nyQVJ9k/ymSQvacsnJPlhKWXvtt6sJN9K8uYkP0zy4iTvT/L4JOeXUh425cEDAAAAAAD0UFdG3hyf\nZFaSx9VarxpYWEr5SZJvJHlDkqenGW3zpCQfqLW+flC9hUkuSvKBJM+curABAAAAAAB6q+/Jm1LK\nWkk+l+TPgxM3rbPa8qFt+YK2/OjgSrXWS0op5yU5qJSyca116WTFC8DkW3T8on6HAAAAAAB90/fk\nTa31r0n+Y4TVj2zL/23LPZJcU2u9dpi6FyZ5XJL5aebAAQAAAAAAmHb6nrwZqpSycZL1k+yT5INJ\nfpvk7aWUDZJskqSOsOnVbbl9JG8AAAAAAIBpqnPJmyQ3t+WKJJ9N8vpa602llK3a5bePsN1tbblB\nL4JYvHhxL5oB+kQfnt6WL1/e7xDoCNcCNLr+79rq+moX+nLXzyFMB/oRzAz6MswM+nK3zZs3b8Jt\ndDF584Qkc5PsmuQVSfYvpRya5Pq+RgUAAAAAADAFOpe8qbWe2/7x9FLKF5NckuTkJLu1y+eOsOn6\nbbmsF3H0IjMGTL2Bpw704elt6cKl/Q6BPht4Sn/OnDl9jgS6oev/ro3093aX+nLXzyF0md+xYWbQ\nl2Fm0JfvPzqXvBms1npVKWVhkkOSbJFkSZKtR6i+TVsaLwYAwIyy6PhF/Q4BAACAKbRWvwMopexQ\nSrmmlHLiCFU2bsvZSc5LsnUp5aHD1Ns3yR1pRuoAAAAAAABMS31P3qQZKbNOkkNLKdsNXlFKeViS\nx6UZcXNlkhPaVa8ZUm+/JI9Nckqt9dZJjxgAAAAAAGCS9P21abXWu0spr0rypSQXllI+nuQ3SbZL\n8k9J1k3yylrrPUm+U0o5NcmrSykbJjk7zevSjklybZJ/7ccxAAAAAAAA9ErfkzdJUms9pZTyuyRv\nSJOw2TjJsiSLkvxHrfV7g6o/N8kbkxyR5PlJbk5yWpJja603TGngAAAAAAAAPdaJ5E2S1FrPT/KM\nMdRbnuQd7Q8AAMBqLTp+Ub9DWK3dj9693yEAAAAd0YU5bwAAAAAAAGhJ3gAAAAAAAHSI5A0AAAAA\nAECHSN4AAAAAAAB0iOQNAAAAAABAh0jeAAAAAAAAdIjkDQAAAAAAQIdI3gAAAAAAAHSI5A0AAAAA\nAECHzO53AABMvUXHL+p3CADANDMdfn/Y/ejd+x0CAAD0hJE3AAAAAAAAHSJ5AwAAAAAA0CGSNwAA\nAAAAAB0ieQMAAAAAANAhkjcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5AwAAAAAA0CGSNwAA\nAAAAAB0ieQMAAAAAANAhkjcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5AwAAAAAA0CGSNwAA\nAAAAAB0ieQMAAAAAANAhkjcAAAAAAAAdInkDAAAAAADQIZI3AAAAAAAAHSJ5AwAAAAAA0CGz+x0A\nAAAAyaLjF/U7BAAAoCOMvAEAAAAAAOgQyRsAAAAAAIAOkbwBAAAAAADoEMkbAAAAAACADpG8AQAA\nAAAA6BDJGwAAAAAAgA6RvAEAAAAAAOgQyRsAAAAAAIAOmd3vAJKklPLgJG9NcnCSLZIsTfKjJO+s\ntV4ypO66Sd6U5LAk2yRZluTsJG+ptV45lXEDAAAAAAD0Wt9H3pRSNk9ySZKjknylLT+V5IAkPyql\n7Dqo7qwk30ry5iQ/TPLiJO9P8vgk55dSHjalwQMAAAAAAPRYF0bevCvJ1kmeVWs9dWBhKWVRkm+m\nGWXz7HbxYUmelOQDtdbXD6q7MMlFST6Q5JlTFDcAAAAAAEDP9X3kTZLrk3w5yTeGLP9ukhVJHj1o\n2Qva8qODK7avVjsvyUGllI0nKU4AAAAAAIBJ1/eRN7XWt4+waoMks9LMaTNgjyTX1FqvHab+hUke\nl2R+mjlwAAAAAAAApp2+J29GcXRbfilJSikbJNkkSR2h/tVtuX16kLxZvHjxRJsA+kgfHt3y5cv7\nHQKMiWsVZgZ9manid8DJ5fzCzKAvw8ygL3fbvHnzJtxGF16btopSyoFJ3prk4iSfbBdv0Ja3j7DZ\nbUPqAQAAAAAATDudG3lTSnlBkgVJrkryf2utfXlMrxeZMWDqDTx1oA+PbunCpf0OAUY18JT+nDlz\n+hwJMBH6MlPN74CTw+/YMDPoyzAz6Mv3H50aeVNKeUuSzyX5aZJ9aq2/H7R6YO6buSNsvv6QegAA\nAAAAANNOZ5I3pZQPJ3lHkm8n2a/W+sfB62uttyZZkmTrEZrYpi297A8AAAAAAJi2OpG8aUfc/EuS\nzyZ5Zq11pHltzkuydSnlocOs2zfJHUkumZwoAQAAAAAAJl/fkzellCckOS7JN5K8pNZ6zyjVT2jL\n1wxpY78kj01ySjtCBwAAAAAAYFqa3e8AknywLf8nyTNLKcPVOaPWenut9TullFOTvLqUsmGSs9O8\nLu2YJNcm+depCBgAAAAAAGCydCF5M78tPz5Kne2SXNX++blJ3pjkiCTPT3JzktOSHFtrvWGSYgQA\nAAAAAJgSfU/e1FpnjbP+8iTvaH8AAAAAAABmlL7PeQMAAAAAAMC9JG8AAAAAAAA6RPIGAAAAAACg\nQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAAAACg\nQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAAAACg\nQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAAAACg\nQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6RPIGAAAAAACg\nQyRvAAAAAAAAOkTyBgAAAAAAoEMkbwAAAAAAADpE8gYAAAAAAKBDJG8AAAAAAAA6ZHa/AwAYj0XH\nLxp1/fLly5MkSxcunYpwhrX70bv3bd8AAPdnq/tdsQv8rggAwFgYeQMAAAAAANAhkjcAAAAAAAAd\nInkDAAAAAADQIZI3AAAAAAAAHTK73wEAAADA/cWi4xf1O4RR7X707v0OAQCAGHkDAAAAAADQKZ0a\neVNKmZPkXUmOSfKDWuvjh6mzbpI3JTksyTZJliU5O8lbaq1XTl20AAAAAAAAvdeZkTellJLk/CQv\nTzJrhDqzknwryZuT/DDJi5O8P8njk5xfSnnYlAQLAAAAAAAwSTox8qaU8qAklyRZnGS3JFeMUPWw\nJE9K8oFa6+sHbb8wyUVJPpDkmZMbLQAAAAAAwOTpysibOUk+n+Tvaq11lHovaMuPDl5Ya70kyXlJ\nDiqlbDw5IQIAAAAAAEy+Toy8qbX+Ic3r0lZnjyTX1FqvHWbdhUkel2R+mjlwAAAAAAAApp1OJG/G\nopSyQZJNkow0Mufqttw+PUjeLF68eKJNAJNg+fLlPa03GabD3x/9PD8wHq5VmBn0ZZg+Rvtddjr8\nngusnr4MM4O+3G3z5s2bcBtdeW3aWGzQlrePsP62IfUAAAAAAACmnWkz8maq9SIzBvTe0oVLR10/\n8GTvnDlzpiKcYU2Hvz9Wdx6h37rQl4GJ05dh+hnud9mBJ3unw++5wMj0ZZgZ9OX7j+mUvFnWlnNH\nWL/+kHoAfbHo+EX9DgEAAAAAmMamzWvTaq23JlmSZOsRqmzTll72BwAAAAAATFvTJnnTOi/J1qWU\nhw6zbt8kdyS5ZGpDAgAAAAAA6J3plrw5oS1fM3hhKWW/JI9Ncko7QgcAAAAAAGBa6sScN6WUHZPs\nOGTxg0sphwz6fEat9TullFOTvLqUsmGSs9O8Lu2YJNcm+dcpCRgAAAAAAGCSdCJ5k+TZSd42ZNmO\nSb466PN2Sa5K8twkb0xyRJLnJ7k5yWlJjq213jDpkQIAAAAAAEyiTiRvaq1vT/L2MdZdnuQd7Q8A\nAAAAAMCMMt3mvAEAAAAAAJjRJG8AAAAAAAA6RPIGAAAAAACgQyRvAAAAgP/P3r2H2VXV9+N/B5Jw\nD0oBwYIE2nRBgCqRgBeqlFiFegEVxQsKCIIXKq2I9fvkwRCF6pdS0UJRa4JI0a/lrj+lWC8FpNpy\n1dqCq7FcAuIlgIQQLklofn+cMzgMmWRmzplz9iSv1/PMszN7rb32Z0/O55yZ8zlrLwAAGkTxBgAA\nAAAAoEEUbwAAAAAAABpE8QYAAAAAAKBBFG8AAAAAAAAaRPEGAAAAAACgQSb3OwCgOW783I39DgEA\nAAAAYINn5g0AAAAAAECDKN4AAAAAAAA0iOINAAAAAABAgyjeAAAAAAAANMjkfgcAAAAANMONn7vx\nGftWrFiRJHnouw/1Opw1mv2e2f0OAQBg3Jl5AwAAAAAA0CCKNwAAAAAAAA2ieAMAAAAAANAgijcA\nAAAAAAANMrnfAcCGZE2LfwIAALB+afrffrPfM7vfIQAA62DmDQAAAAAAQIMo3gAAAAAAADSI4g0A\nAAAAAECDKN4AAAAAAAA0iOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQIMo3gAAAAAAADSI4g0A\nAAAAAECDTO53AEwMN37uxn6HsE6z3zO73yEAAAAwzibC36dNNxF+hv7GB2BDZ+YNAAAAAABAgyje\nAAAAAAAANIjiDQAAAAAAQIMo3gAAAAAAADSI4g0AAAAAAECDTO53ANAtN37uxn6HAAAAAHTBRPgb\nf/Z7Zvc7BADWY2beAAAAAAAANIjiDQAAAAAAQINMyNumlVK2STIvyWFJdkxyf5Krkpxaa/1FP2MD\nAAAAAADoxISbeVNK2SzJNUnem+SyJEcn+XySI5L8aynl2X0LDgAAAAAAoEMTcebNnyfZO8n7a63n\nDewspfw4yRVJTk3ywT7FBgAAAMAG4MbP3djvENZq9ntm9zuEdWr6zzCZGD9H1n+Dc2XFihVJkoe+\n+1C/wlkjudJ9E27mTZJ3JlmeZOGQ/V9Lcm+SI0spk3oeFQAAAAAAQBdMWr16db9jGLFSyrQkS5N8\nv9b6sjW0X5bkDUl+r9Z6x0jGXLp06cT5AQAAAAAAABPS1ltvPeKJJxNt5s0u7e29w7Qvbm9360Es\nAAAAAAAAXTfRijdbtbePDtO+fEg/AAAAAACACWWiFW8AAAAAAADWaxOtePNwe7vFMO1bDukHAAAA\nAAAwoUy04s2dSVYn2WmY9oE1cRb1JhwAAAAAAIDumrR69ep+xzAqpZQfJZmR5HdqrY8P2r9xkvuS\nPFFrfV6/4gMAAAAAAOjERJt5kyQLk2ye5IQh+49Msn2SBT2PCAAAAAAAoEsm4sybKUm+n+SFSc5J\nclOSPZN8MK3bpb2o1vpo/yIEAAAAAAAYuwlXvEmSUsq0JKcleWOSHZP8OskVSebVWh/sY2gAAAAA\nAAAdmZDFGwAAAAAAgPXVRFzzBgAAAAAAYL2leAMAAAAAANAgijcAAAAAAAANongDAAAAAADQIIo3\nAAAAAAAADaJ4AwAAAAAA0CCKNwAAAAAAAA0yud8BdEspZZsk85IclmTHJPcnuSrJqbXWX4xwjN9P\n8pUks5McU2u9YEj7gUn+ZR3D3F1rnT6a2IHf6kUuD+r36iQntfttkeQXSf45yem11rs7uxLYsPU4\nl1+Z5JR2v02S3J7kb4frD4xcp7lcSjmgffx+STZNck+Sy5J8vNb6yJC+M5N8LMnLk0xLcneSi5J8\nsta6olvXBBuiXuZyu/9zklyQ5OAk82utp3XlQmAD1+PX5b3z29flLdP6e/mfkny01vrrbl0TbIh6\nnMuvTvKBJM9Psk1aufytJKfVWu/r1jUxPtaLmTellM2SXJPkvWk9UI9O8vkkRyT511LKs0cwxjFJ\nbk2yx1q6/VeSNw3zdUySFe0+wBj0MJdTSjk+yTeSPC/J6UmOa5/zyCQ3lVJ2Get1wIaux7l8TJKr\nk8xM8skk70nymyRfLKV8ZMwXAXScy6WUtyf5fpKd0/rj8r1J/iPJh5P8cyllo0F990zywyQHJDkr\nybuSXJvktCQXd++qYMPTy1xu9391kp+klc9Al/T4dfnlSW5J68NRZyZ5d5LvJjk+yQ9KKVt28dJg\ng9LjXD4prfe+tknrva8T0pqYcFySf2sXkWiw9WXmzZ8n2TvJ+2ut5w3sLKX8OMkVSU5N8sHhDm6/\nifv5JOck+c/2v5+h1rokyaXDjPHpJKuT/MXYLgFIj3K5/UJ2RpJlSQ6otd7fbrqwlFKTfK4di3yG\nselVLm+e5G+SPJbkRbXWe9r7v5xWQee0UsqXB/YDozbmXC6lbJLks2l9CnD/WuvSdtP5pZQr0vqU\n4cFpfcIwST6V1qd6D6i1/qS978ullOVJTiqlvK7W+vWuXh1sOHqWy6WUV6X1JtHFSb6c5GvjcUGw\ngerl6/LfJ3k8yUsH3ZXiS6WUpe043pnkqRiAUelJLrdnwf51kh+nlcsDM9m/WEp5KK070RyV5Owu\nXx9dtF7MvEnrRWN5koVD9n8tyb1JjiylTFrHGK+vtX4grdkzo1JKeWGSE5P8da31v0d7PPCUXuXy\ntCTbJrl9UOFmwHXt7fQRRQysSa9y+UVJnp3kssEFmlrrqrRm4WyS5M2jjB34rU5yeYcklyf5xKA/\nKgcMvDH0h0lSStkxyZ8k+d6gws2Ac9vbd4w+fKCtJ7nctmmS99Zaj0jycEdRA0P16nV5qyTXp/Ue\n19Dbia8p74HR6dXr8pS0CkGnrOEWxN9ub583ytjpsQk/86aUMi3J7km+X2t9YnBbrXV1KeWGJG9I\nsmuSO9Y0Rq317zsM47wkP0/yVx2OAxusXuZyrfWhUsovk+xSSpk65EVsenv7n6O8BCA9f13esb1d\n0zg/am/3G+FYwCCd5nL7zZ6jhxl+6/Z24I3dfZNMSuu2aUPH+Vkp5cEk+4/hMmCD1+NcTq3VTBsY\nB73M5VrrsiTHjqQvMDo9zuV7k/zfYfru3t7+x2jip/cmfPEmycC6FPcO0764vd0tw7xJ1IlSymvS\nemPo6FrrY90eHzYgvc7lD6e1iOpFpZR5aS0Ot2da99lfnNbtmoDR62UuD3zSaLs1tA28Jlu/CsZm\nXHK5lDI1rfVsHk1yZXv39BGc6wWllMntmXXAyPUyl4Hx05Rcfk9aSwb8v5GeA3iavuRyKWVyWrco\n3jbJ69Na/+Y7SS4a6Tnoj/XhtmlbtbePDtO+fEi/bpuX5M54sEOneprLtdZ/SHJoWrdpuS3Jr9Na\ntG1pkj+qtf66G+eBDVAvc/mGJKuSvLb9y+pgb2lvLaYKY9P1XG6vOfeFJHskObXWet94nQt4Si9z\nGRg/fc/lUsrpSeYkObfWeutIzwM8Tb9y+YAkv0myKK33sj+a5OBa68qRnof+WB+KN33TXoxx3yTn\n1Fqf7Hc8wMiVUg5L8tUkP01rSvir0loQbkaSfy6luO8nNFy7yLowyc5JriilzCyl7FJK+bMkH0vy\nYJIn1jYG0BullM2SXJbWPb7/rtb6qT6HBIyBXIb1w2hyuZSyUSnl75LMTWtNjjUupA703ihy+UdJ\n/jitW7Kdn9bfy98upWzbk0AZs/XhtmkD99ncYpj2LYf066bj0vrE75fHYWzY0PQsl0sp26R1y7S7\n0pplM3ALln8upfxLklvTun2ahc5h9Hr9unxSWh9GOTbJn7b3/SzJW5P8Y1oFHGD0upbLpZTtknw9\nyYuSfLzW+tExnmvZus4FPEMvcxkYP33J5VLKFmndIu21Sb6Y5Hi3MIWO9CWXa60PJbmm/e0VpZTv\npnV7tf+b4de4ogHWh5k3d6Z1v82dhmkfuJfgom6etF3ZfHWSH7i9EnRFL3N5/7QWcvv60F88a60/\nSnJfWp9IAEavp6/LtdYnaq3HJ9k+yYuT7F5rnZHWJ4t2SHJ7N84DG6Cu5HIp5TlJ/jWt2erHDPNH\n5cD9vNd2rju9WQRj0stcBsZPz3O5Xbj557QKN6fWWt/ltRg61ojX5Vrr19Ja+/ng0RxH70344k2t\ndXmS/0gyq5Sy6eC2UsrGSV6S5J5a6+I1Hd+BlyXZLMn3ujwubJB6nMsDn3DYdJj2TdfSBqxFv16X\na60P1Fr/rdZa27sGfgn9TjfPAxuKbuRyKWVakquTPC/J62qtFwzTdWD9qpeuYYy9kjwryfVjuAzY\n4PU4l4Fx0utcbi9ufllaH446rtZ6escXAfQ0l0spR5VSflVKedca2jZKa12d9eGuXOu1CV+8aVuY\nZPMkJwzZf2Ran8RdMLCjlLJ7KWXXLpzzhe3tf3ZhLKClV7n870n+N8lha3ixPCjJNkl+MMaxgR7l\ncillUinlX0spPy2lbDJo/2ZJTk3rU01Xj2VsIEnnufyZJC9I8tZa6z8Nd5Ja6/1p3fLhwFLKPkOa\nT25vFwQYq57kMjDuepnLc9NaF/bkWuvCjqIGhupVLv+4Pd6JpZQpQ9qOSLJJWrN3aLD1pbr2uSRv\nT3JWKWWXJDcl2TOtRdR+ktbaFQNuT1KT7D6wo5RySH77Sfx9B7allEfa/15Sa712yDn/oL29q0vX\nAPQol2ut95RS/ibJKdEC0DIAACAASURBVEluKqVckOTnSfZI8hdJlif5P92/PNhg9CqXV5dSLm+P\n9y+llPPT+t3mPWm9Th9ca10xHhcIG4gx53Ip5Q+THJXktiQbl1IOX8P4g3/HPiWtme3fKqWcldYt\nTA9un39hrfW6Ll8bbEh6lsullJcn2a69f8/2duag45YrAMGY9SSX27dj+sskv05y7zB95TKMXU9y\nudb6o1LKeUnel+TGUsqX0loTdt8kxyd5JMm8cbg+umi9KN7UWleWUl6Z5LQkb0xyYlovMguSzKu1\nPrqOIT6b395TcMD7219Jcm2SA4e0P7u9tXAqdEkvc7nW+uFSyo/TepP31LQ+9fDrJF9Lcnqt9aed\nXg9sqHqcy3/TLuq8L61PIK1I69NDx9Zab+74YmAD1mEuz0oyKcnMJJcM02dwLt9RSnlJkjOSfDit\n2zj8T5IPJfl0p9cCG7Je5nKS+UlePqT9Te2vJLk7yfRRXQCQpKe5vEdaywRsluTiYfrKZRijHv+O\n/f5Syg/Teu/rtLTe+/pVkn9Mcsag247TUJNWr17d7xgAAAAAAABoW1/WvAEAAAAAAFgvKN4AAAAA\nAAA0iOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQIMo3gAAAAAAADSI4g0AAAAAAECDKN4AAAAA\nAAA0iOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQIMo3gAAAAAAADSI4g0AAAAAAECDKN4AAAAA\nAAA0iOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQIMo3gAAAAAAADSI4g0AAAAAAECDKN4AAAAA\nAAA0iOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQINM7tZApZSpSU5P8qEk19VaDxzhcavX0eXZ\ntdaHBvWfmeRjSV6eZFqSu5NclOSTtdYVYwgdAAAAAACgMbpSvCmllCRfSfIHSSaNYYjbkswbpm35\noPPsmeQHSR5LclaSe5McmOS0JLOSHDaGcwMAAAAAADRGx8WbUsqzk9ySZFGSfZP8dAzDLKm1XjqC\nfp9KsmWSA2qtP2nv+3IpZXmSk0opr6u1fn0M5wcAAAAAAGiEbsy8mZrkwiR/UWt9vDUJp/tKKTsm\n+ZMk3x1UuBlwbpKTkrwjyaiKN0uXLl3XbdsAAAAAAAA6svXWW4/4zmUdF29qrb9K8t5Ox0mSUsqk\nJJvXWpevoXnftG7J9sM1xPCzUsqDSfbvRhwAAAAAAAD9slG/A2jbtpRyYZJlSR4ppTxcSrmwlPK7\ng/pMb2/vHWaMxUl2LqV0ZR0fAAAAAACAfmhK8WZme3tkkjcluSKtW6D9sJSybbttq/b20WHGWD6k\nHwAAAAAAwITThFkqhyRZUmu9edC+S0sp9ySZm+TkJP+nL5EBAAAAAAD0WN9n3tRarx5SuBlwXnv7\nivb24fZ2i2GG2rK9Xdat2AAAAAAAAHqt78WbtViSZHWSae3v72hvdxqm/y5J7qy1rhrvwGAiWLRo\nURYtWtTvMGCDIN+gd+Qb9Jacg96Rb9A78g16S86NTV9vm1ZK2TvJS5L8U6118ZDmGUkmJRnYf0OS\nVUleuoZx9kryrCT/3/hFCwAAAAAAMP56OvOmlLJ7KWXXQbv2SvK5JB9dQ/eBdW4uT5Ja6/1Jvp7k\nwFLKPkP6ntzeLuhiuAAAAAAAAD3X8cybUsrMJDOH7N6ulHL4oO+vqrU+muT2JDXJ7u39lyR5V5Jj\nSynbJrkqycZJ3pDWWjffSfKFQeOckuRlSb5VSjkryX1JDk7y9iQLa63XdXo9AAAAAAAA/dSN26a9\nOcm8IftmplWYGbBrkruGHlhrXVVKeW2SE9Mq4hyc5H+T/HdahZrPDF7DptZ6RynlJUnOSPLhJFsl\n+Z8kH0ry6S5cCwAAAAAAQF91XLyptZ6W5LQR9p20hn2PJzmr/TWSMRalVTACAAAAAABY7/R0zRsA\nAAAAAADWTvEGAAAAAACgQRRvAAAAAAAAGkTxBgAAAAAAoEEUbwAAAAAAABpkcr8DAAAAgK6YN7ff\nEazb/DP6HQEAABOAmTcAAAAAAAANongDAAAAAADQIIo3AAAAAAAADaJ4AwAAAAAA0CCKNwAAAAAA\nAA2ieAMAAAAAADzD/Pnzs99+++W+++7rdyhr9I1vfCOHHHJIXvziF+fCCy/sdzhdNbnfAQAAAAAA\nsB6aN7ffEazd/DP6HUHXLFy4MIccckie+9zndnXcN73pTTnggAOyzTbbdHXcbli6dGk++clPZtq0\nafnIRz6SPfbYo98hdZXiDQAAAAAATFA///nP8/nPfz4veMELul68mTlzZmbOnNnVMbtl8eLFWbFi\nRQ4++OAceuih/Q6n6xRvAAAYP13+pN30FStb/5g6pXuDrkeftgMAADY8t912W79D6IsVK1YkSTbd\ndNM+RzI+FG8AAAAAAGCM5s+fn29+85u56KKL8r3vfS9XXXVVHnjggWy//fY5/PDD87a3vS2TJk16\nqv+vf/3rLFiwID/84Q/zwAMPZPPNN89ee+2Vo446Kvvss89T/VatWpWLL744V111Ve677748+eST\n2WGHHTJnzpwcffTRmTp1at7znvfklltuSZK8973vTZJceeWVee5zn5uHHnooCxYsyPe///0sWbIk\nW2yxRZ7//Ofn6KOPzl577fWM+L/yla/knHPOya233pq/+qu/ygEHHPBU28CYo72GgeM/8YlP5Nxz\nz33a2MMZydiDr3vBggVZsGBBjjvuuBx//PFr/b9atWpVLrnkknzjG9/I4sWLs/XWW+eggw7Kn/3Z\nn+XJJ5/MYYcdltmzZ+fjH//4Ov/fx5viDQAAAAAAdOicc87JypUr8853vjNTpkzJ5Zdfns985jNZ\nvXp1jjzyyCTJ/fffn2OOOSYPP/xw3vCGN2TGjBl54IEHcsUVV+R973tfPvWpT+XFL35xkuSss87K\n5Zdfnle+8pU54ogjsvHGG+eWW27JwoUL87Of/Sxnnnlmjj/++FxyySX57ne/m3e/+93Zbbfdss02\n2+Thhx/Osccem9/85jd5/etfn9/7vd/LkiVLctlll+WEE07Ipz/96cyePftp8Z933nnZdtttM3fu\n3Oy2227DXudormHAxRdfnJ122qlrYx9//PG5+eab84UvfCFz5szJK17xiuy6665r/f9ZunRpTjrp\npNx222054IAD8qIXvSjXX399vvrVr2b77bfPpEmTsnTp0nUWgHpF8QYAAAAAADp0//335x/+4R8y\neXLrbfc5c+bk0EMPzZe+9KW87W1vy0YbbZQFCxZkyZIl+fjHP55XvepVTx37qle9Km9605ty9tln\nP1X4+Na3vpXddtstp59++lP9/vRP/zQ777xz/uu//iuPPfZYZs2alZtuuilJMmvWrLzwhS9Mknz2\ns5/Nz3/+8yxYsOBps2wOOeSQvOUtb8nZZ5+dr3zlK0+Lf+XKlTn11FPXeZ2juYYBq1at6urYs2bN\nyurVq5Mku+66a+bMmbPOsefOnZvbbrstJ598co444ogkyTve8Y685jWvyQ9+8IPceeedec1rXpOd\nd955nWP1wkb9DgAAAAAAACa61772tU8VbpJkyy23zOzZs7N06dLccccdSZJrrrkm06ZNyyte8Yqn\nHbvDDjtk9uzZueuuu3LvvfcmSTbeeOMsWbIk991339P6HnXUUTnzzDOz2WabDRvLd77znUyfPj27\n7LJLli1b9tTXZpttln322Sc/+9nP8vDDDz/tmIMOOmhE1zmaaxiw3377jdvYI3HDDTfkhhtuyAte\n8IK8+c1vfmr/s571rOy444656aabsmzZshx33HGjHnu8KN4AAAAAAECH1nQ7sG233TZJ8otf/CLL\nli3Lgw8+mOnTp2fjjTd+Rt9ddtklSbJ48eIkybvf/e4sW7Ysb37zm3PKKafkkksuyT333LPOOB55\n5JEsWbIkd9xxR+bMmfOMr+9///tJkl/+8pdPO27wmjbDGe01DNhuu+3GbeyRuOqqq5Ikb33rW5+2\n/lCSTJ06NUny+te/Ps95znNGPfZ4cds0AAAAAADo0Oabb/6MfVtssUWS1i3JHn300SQZdsbMJpts\nkiR57LHHkiRHHHFEpk+fnq9+9av5t3/7t1x77bVJkuc///n5y7/8y/z+7//+GsdZvnx5kmTGjBn5\n4Ac/OGy8Q4s1a4p/qNFew4BNN9103MYeiVtvvTWTJ09+xu3cBsd39NFHj3rc8aR4AwAAAAAAHXr8\n8cefse+RRx5J0ro910BxZKBIMdRAUWJwEWX//ffP/vvvn8cffzy33nprrr766lx99dV53/vel8su\nuyxbbbXVM8YZKBitWrXqqTVwumUs19DvsR9//PH88pe/zE477fSMItLPf/7z3H333dl7773zO7/z\nO6OOeTy5bRoAAAAAAHTozjvvfMa+gfVqtt1222y11VbZdtttc9ddd+XJJ58c9vhdd931GW2bbrpp\nXvziF2f+/Pl5y1vekoceeii33HLLGuPYcssts/3222fx4sV58MEHn9H+0EMPjeq6BuvkGvo19hNP\nPJHVq1c/43ZpSXL22WdnxYoVT1urqCkUbwAAAAAAoENXXXXV04oOS5cuzc0335xtt902O++8c5Jk\nzpw5WbZsWb797W8/7djFixfn5ptvzh577JEddtght99+e974xjfmyiuvfMZ5BmbWDKzVMrA+zIoV\nK57qM2fOnDz55JP5x3/8x6cd+/DDD+fII4/MSSedNObrHOk1NGXsadOmZfPNN8+9996bRYsWPbX/\n0ksvzXXXXZektd5O0zSvnAQAAAAAABPMFltskRNPPDEHHXRQpkyZkksvvTSPP/54PvCBDzw16+PY\nY4/NtddemzPOOCOLFi3Kbrvtll/96le5/PLLs/HGG+eUU05J0lqvZpNNNsmZZ56ZRYsWZY899sjG\nG2+cRYsW5eKLL85uu+321C3RBtauOf/883PHHXfkpS99ad71rnfluuuuywUXXJAHH3wws2bNyoMP\nPpjLL788DzzwQObOnTvm6xzpNTRl7EmTJuXVr351Lrnkkpx44omZM2dOHnjggVxzzTV52cteluXL\nl+fmm2/OJz7xiRx66KGZOXPmmOPvJsUbAAAAAADo0AknnJAbb7wxF110Ue6///7ssMMO+dCHPpTD\nDz/8qT7Petazcv755+fzn/98vvWtb+WBBx7IVlttlVmzZuXYY4/NjBkzkiSTJ0/O3//93+f888/P\ntddem2984xtZtWpVdthhhxx++OE55phjnpp5c9BBB+Xb3/52brzxxtx9993Zc889M3369Jx//vlZ\nsGBBrr/++nzzm9/MZpttlr322itz587NrFmzxnydI72GJo39gQ98IFOnTs23v/3tXHHFFZk2bVre\n+ta35sQTT0ytNaeddlquuOKKHHTQQWOOvdsmrV69ut8x9NXSpUs37B8A662BKYCdPFkCIyPfYC3m\njf3TXGuycsXKJMmUqVO6N+j8M7o3FqxnJtxrXJefc8aF5xyGMeHyDSYw+Ua3zZ8/P9/85jezcOHC\n7L333v0Op3Hk3G9tvfXWz1x4ZxjWvAEAAAAAAGgQxRsAAAAAAIAGUbwBAAAAAABoEMUbAAAAAAAY\no3nz5uWGG26w3g1dpXgDAAAAAADQIIo3AAAAAAAADaJ4AwAAAAAA0CCTuzVQKWVqktOTfCjJdbXW\nA0dx7AFJ5iXZL8mmSe5JclmSj9daHxnU764ku6xlqH1qrT8abewAAAAAAABN0ZXiTSmlJPlKkj9I\nMmmUx749yUVJaloFnIeTvCbJh5P8USnlgFrr/w46ZEmS9w0z3J2jDB0AAAAAAKBROi7elFKeneSW\nJIuS7Jvkp6M4dpMkn01rps3+tdal7abzSylXJDksycFJrhp02KO11ks7jRsAAAAAAKCJurHmzdQk\nFyZ5Ua21jvLYHZJcnuQTgwo3AwYKNn/YYXwAAAAAAAATRsczb2qtv0ry3jEee3eSo4dp3rq9fXi4\n40spmyd5rNa6eiznBwAAAAAAaJpuzLzpulLK1CTvSvJokiuHNG9WSvnbUspvkixP8mgp5cpSyu69\njhMAAAAAAKDbOp55022llI2SfCHJHklOrrXeN6TL9kmmJzkhyYokf5zk/UkOLKXsV2v9727EsWjR\nom4MA33nsQy9I9/gmaavWDku467s4rh3yV1Yp4nyGjdezznd5DmHdZko+QbrA/kGvbUh5dyMGTM6\nHqNRxZtSymZJvpLksCR/V2v91JAuRyV5stZ6/aB9V5ZSfpJWwWd+krf2JFgAAAAAAIBx0JjiTSll\nuyRfT/KiJB+vtX50aJ9a67XDHH5+knOSvKJb8XSjMgb9NFDJ9liG8SffYC2mTunqcAMzbqZ0cVy5\nC8ObcK9xXX7OGQ8T5mdJz024fIMJTL5Bb8m5sWnEmjellOck+dck+yY5Zk2Fm7Wptf5vkvuTTBuH\n8AAAAAAAAHqm7zNvSinTklyd5HlJXldr/adh+u2W1vo2/15r/c8hbVsm+d0k/zPO4QIAAAAAAIyr\nns68KaXsXkrZdcjuzyR5QZK3Dle4aXtOkgVJzi6lTBrS9pEkk5Jc3rVgAQAAAAAA+qDjmTellJlJ\nZg7ZvV0p5fBB319Va300ye1JapLd28f+YZKjktyWZOMhxwxYUmu9ttb6w1LKBUmOTnJNKeXiJE8k\neVWSw5P8JMkZnV4PAAAAAABAP3XjtmlvTjJvyL6ZSS4Z9P2uSe5aw7Gz0poxM7T/YNcmObD97+OS\nXJ/k/Un+Oq2ZQ3cmOT3JmbXWZaOOHgAAAAAAoEE6Lt7UWk9LctoI+04a8v0FSS4YxbmeTLKw/QUA\nAAATy7y5/Y5g7ea7oQXQQ316Tpy+YmXrH1OnrLuz50WgT3q65g0AAAAAAABrp3gDAAAAAADQIIo3\nAAAAAAAADaJ4AwAAAAAA0CCKNwAAAAAAAA2ieAMAAAAAANAgijcAAAAAAAANongDAAAAAADQIJP7\nHQAAQGPNm9vvCIANSQOfc6avWNn6x9Qpyfwz+hsMAABsQMy8AQAAAAAAaBDFGwAAAAAAgAZRvAEA\nAAAAAGgQxRsAAAAAAIAGUbwBAAAAAABoEMUbAAAAAACABlG8AQAAAAAAaJDJ/Q4AAAAAgB6aN7ff\nEazb/DP6HQEA9JWZNwAAAAAAAA2ieAMAAAAAANAgijcAAAAAAAANongDAAAAAADQIIo3AAAAAAAA\nDaJ4AwAAAAAA0CCKNwAAAAAAAA2ieAMAAAAAANAgk/sdAACwgZo3t98RAABDTYTX5/ln9DsCAIBx\nZ+YNAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQIMo3gAAAAAAADSI4g0AAAAAAECDKN4AAAAAAAA0\niOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQINM7tZApZSpSU5P8qEk19VaDxzFsS9JcmqSFyXZ\nLMl/J/lCknNrrauH9J2Z5GNJXp5kWpK7k1yU5JO11hWdXwkAAAAAAED/dKV4U0opSb6S5A+STBrl\nsQcl+ack9yQ5LcmDSQ5N8rdJfi/Jnw/qu2eSHyR5LMlZSe5NcmD7uFlJDuvkOgAAAAAAAPqt4+JN\nKeXZSW5JsijJvkl+OsohzkvyeJI/qrX+or3vH0opVyb5QCnli7XWH7f3fyrJlkkOqLX+pL3vy6WU\n5UlOKqW8rtb69U6uBwAAAAAAoJ+6sebN1CQXJnlRrbWO5sBSyv5JSpKLBxVuBpyb1iyeI9t9d0zy\nJ0m+N6hwM7hvkrxjlLEDAAAAAAA0Ssczb2qtv0ry3jEevl97+8M1tP17e7t/e7tvWsWcZ/Sttf6s\nlPLgoL4AAAAAAAATUlfWvOnA9Pb23qENtdZlpZSHkuy2rr5ti5O8oJQyuda6qtPAFi1a1OkQ0Age\ny9A78m10pq9Y2e8QmMBWdvHxc5fcpSGa/Ly4csXKCZErTf4Z0j0T4bHYiV78TjkRcmV9/3+mpd+P\nxZH8TumxCN2zIb1vMmPGjI7H6MZt0zqxVXv76DDtywf1GUnfwf0AAAAAAAAmnH7PvGmsblTGoJ8G\nKtkeyzD+5NsYTZ3S7wiYgAY+HTmli48fuUtjNPB5cXDOTYhcaeDPkO6bEI/FeXNHfch4vMYNawLk\nyoT4f6ZzfXosjibfPBahc943GZt+z7x5uL3dYpj2LQf1GUnfJFnWhbgAAAAAAAD6ot/Fmzva252G\nNpRStk6ydZJF6+rbtkuSO7ux3g0AAAAAAEC/9Lt484P29qVraPuj9vb69vaGJKvW1LeUsleSZw3q\nCwAAAAAAMCH1tHhTStm9lLLrwPe11h8luSXJm0opOw3qNynJXyRZmeRL7b73J/l6kgNLKfsMGfrk\n9nbBOIYPAAAAAAAw7iZ3OkApZWaSmUN2b1dKOXzQ91fVWh9NcnuSmmT3QW3vS/IvSa4rpXw6yUNJ\n3pLkoCSn1lr/Z1DfU5K8LMm3SilnJbkvycFJ3p5kYa31uk6vBwAAAAAAoJ86Lt4keXOSeUP2zUxy\nyaDvd01y15oOrrX+eynlZUk+1v7aJK0iz7tqrV8c0veOUspLkpyR5MNJtkryP0k+lOTTHV8JAAAA\nAABAn3VcvKm1npbktBH2nTTM/puS/OkIx1iUVsEIAAAAAABgvdONmTcAQBPNm9vvCAAAAAAYg436\nHQAAAAAAAAC/pXgDAAAAAADQIIo3AAAAAAAADaJ4AwAAAAAA0CCKNwAAAAAAAA2ieAMAAAAAANAg\nijcAAAAAAAANongDAAAAAADQIJP7HQAAAMC4mze33xEA3SKfNwwT4f95/hn9joBeaPpj0eMQ1ltm\n3gAAAAAAADSI4g0AAAAAAECDKN4AAAAAAAA0iOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQIMo\n3gAAAAAAADSI4g0AAAAAAECDKN4AAAAAAAA0iOINAAAAAABAgyjeAAAAAAAANIjiDQAAAAAAQIMo\n3gAAAAAAADSI4g0AAAAAAECDKN4AAAAAAAA0iOINAAAAAABAg0zudwAAAAAAMOHMm9vvCNZu/hn9\njgCADph5AwAAAAAA0CCKNwAAAAAAAA2ieAMAAAAAANAgijcAAAAAAAANongDAAAAAADQIIo3AAAA\nAAAADaJ4AwAAAAAA0CCTuzFIKWWbJPOSHJZkxyT3J7kqyam11l+s5bijk3xxHcNfW2s9sN3/riS7\nrKXvPrXWH400bgAAAAAAgKbpuHhTStksyTVJdk9ybpKbksxI8qEkB5VSXlhr/c0wh/9LkjcN07ZT\nkrOT/NeQ/UuSvG+YY+4ceeQAAAAAABPYvLn9jmDd5p/R7whgQurGzJs/T7J3kvfXWs8b2FlK+XGS\nK5KcmuSDazqw1np3krvX1FZKuTLJA0k+OqTp0VrrpV2IGwAAAAAAoHG6sebNO5MsT7JwyP6vJbk3\nyZGllEmjGbCU8vokhyb5y1rrA12IEQAAAAAAYELoqHhTSpmW1u3Sbqm1PjG4rda6OskNSbZLsuso\nxtwkyWfax56/jr6bj7YwBAAAAAAA0GSdzrzZpb29d5j2xe3tbqMY891Jdk7y4XYBaKjNSil/W0r5\nTVozfh4tpVxZStl9FOcAAAAAAABopE7XvNmqvX10mPblQ/qtVXvWzUeSXFdrvXaYbtsnmZ7khCQr\nkvxxkvcnObCUsl+t9b9Hcq51WbRoUTeGgb7zWIbeaVq+TV+xst8hwLhZ2cXH910Ny13Gh+fEzqxc\nsXJC5Ir/Z9YH3XyNY8PmeXvd5FtvTITHIr3RtPdNxtOMGTM6HqPT4k23HZ3kd5P82TDtRyV5stZ6\n/aB9V5ZSfpLkC0nmJ3nruEYIAAAAAAAwjjot3jzc3m4xTPuWQ/qty3FJHkjyjTU1rmU2zvlJzkny\nihGeZ526URmDfhqoZHssw/hrbL5NndLvCKDrBj4dOaWLj+/G5S7jw3PimAzOuQmRK/6fmcDG4zWO\nDZvn7eHJt96aEI9FxlVj3zdpuE6LN3cmWZ1kp2HaB9bEWed8qFLK9CT7Jrmw1jqqOYu11v8tpdyf\n1i3VAPpr3tx+R7Bu88/odwQAwEQzEX7HAQCA9cRGnRxca12e5D+SzCqlbDq4rZSycZKXJLmn1rp4\nBMO9qr393poaSym7lVKOLaXstYa2LdO63dpIzgMAAAAAANBYHRVv2hYm2TzJCUP2H5nWTJgFAztK\nKbuXUnYdZpwXtrf/OUz7c9pjnV1KmTSk7SNJJiW5fBRxAwAAAAAANE6nt01Lks8leXuSs0opuyS5\nKcmeST6Y5CdJzhrU9/YkNcnuaxjnD9rbu9Z0klrrD0spFyQ5Osk1pZSLkzyR1oydw9vnch8gAAAA\nAABgQut45k17fZpXJjknyRuTXJDkqLRmyRxYa310hEM9u71dtpY+x7W/tkry10nOTbJXktOTvLTW\n+vBo4wcAAAAAAGiSbsy8Sbto8sH219r6Db3d2eC254/gPE+mdZu2haONEQAAAAAAYCLoxpo3AAAA\nAAAAdIniDQAAAAAAQIMo3gAAAAAAADRIV9a8AQCACWve3H5HsG7zz+h3BGs3EX6GALCh8foMMKGZ\neQMAAAAAANAgijcAAAAAAAANongDAAAAAADQIIo3AAAAAAAADaJ4AwAAAAAA0CCKNwAAAAAAAA2i\neAMAAAAAANAgijcAAAAAAAANongDAAAAAADQIIo3AAAAAAAADaJ4AwAAAAAA0CCKNwAAAAAAAA2i\neAMAAAAAANAgijcAAAAAAAANongDAAAAAADQIIo3AAAAAAAADTK53wEADTJvbr8jWLf5Z/Q7AgAA\nAACAcWXmDQAAAAAAQIMo3gAAAAAAADSI4g0AAAAAAECDKN4AAAAAAAA0iOINAAAAAABAgyjeAAAA\nAAAANIjiDQAAAAAAQINM7ncAADAhzZv71D+nr1jZ+sfUKX0KBgAAAID1iZk3AAAAAAAADaJ4AwAA\nAAAA0CCKNwAA3fSyPQAAGldJREFUAAAAAA2ieAMAAAAAANAgijcAAAAAAAANMrkbg5RStkkyL8lh\nSXZMcn+Sq5KcWmv9xTqOXb2O4Z9da31oUP+ZST6W5OVJpiW5O8lFST5Za10x5osAAAAAAABogI6L\nN6WUzZJck2T3JOcmuSnJjCQfSnJQKeWFtdbfrGOY29Iq/qzJ8kHn2jPJD5I8luSsJPcmOTDJaUlm\npVU8AgAAAAAAmLC6MfPmz5PsneT9tdbzBnaWUn6c5Iokpyb54DrGWFJrvXQE5/pUki2THFBr/Ul7\n35dLKcuTnFRKeV2t9eujvgIAAAAAAICG6Ebx5p1pzY5ZOGT/19KaGXNkKeXkWuu6bo+2VqWUHZP8\nSZLvDircDDg3yUlJ3pFE8QZgops3t98RAAAAAEDfbNTJwaWUaWndLu2WWusTg9vaxZobkmyXZNcR\njjeplLLFMM37JpmU5IdDG2qtP0vyYJL9Rx49AAAAAABA83RUvEmyS3t77zDti9vb3dYxzrallAuT\nLEvySCnl4VLKhaWU3x3UZ/oIzrVzKaUbs4kAAAAAAAD6otNCx1bt7aPDtC8f0m84M5PckuTIdkyv\nTet2bAeWUmbVWu8f5bl+s47zrdOiRYs6HQIaYTSP5ekrVo5jJN1x1wTITT/Hzk2En+GarJygccNE\ntKHlm+dt+m1DyznoJ/kGvSPfeqPpv8vSOxvSe+4zZszoeIwmzFI5JMmSWuvNg/ZdWkq5J8ncJCcn\n+T99iQwAAAAAAKDHOi3ePNzeDrdOzZZD+j1DrfXqYZrOS6t484q0ijcjPdey4c41Gt2ojEE/DVSy\nR/VYnjplnKLpngmRm36OnZsAP8PBBj6tNWWCxQ0T0Yaab5636ZcNNeegH+Qb9I58663G/y7LuBvT\n+5R0vObNnUlWJ9lpmPaBNXHGMh9qSXvsae3v72hv13auO2utq8ZwLgAAAAAAgEboqHhTa12e5D+S\nzCqlbDq4rZSycZKXJLmn1rp4TceXUvYupZxQSnneGppnJJmUZODYG5KsSvLSNYyzV5JnJbl+rNcC\nAAAAAADQBN1Y82Zhkr9NckKSzwzaf2SS7ZPMG9hRStk9yRO11jvbu/ZK8rn2GMcNGXdgnZvLk6TW\nen8p5etJXl9K2afWeuugvie3tws6vxyg0ebN7XcEAAAAAADjqhvFm88leXuSs0opuyS5KcmeST6Y\n5CdJzhrU9/YkNcnu7e8vSfKuJMeWUrZNclWSjZO8Ia21br6T5AuDjj8lycvy/7d351G6VeWdgH+X\nQQYZDN1KtGlBbXxRoxG0JY0YiIlDazSOMUYUp6ARowTRmBDEAVtb6QyCqCiKS40r2nGiW4PRiBMO\nMVG0W33F4MTSRlkOEFABvf3H+SpWyqpbVfer+9WpW8+zVq196+y9z9nn3vvWd2q/Z5+TXFhVZyb5\nZpL7To5/Xnd/aA3OBwAAAAAAYN1M+86bdPf1Se6d5KwkD01yfpLjM6yCOba7r91G3xuSPCBDUua2\nGVbw/I8kN51su9/8d9h092UZHsV2UZJnZVixc0SSUzKs/AEAAAAAANjQ1mLlTbr7qgwrbU5ept2W\nRbb9KMPqnDN/vsei+7g0yW9vxzABAAAAAABGb+qVNwAAAAAAAKwdyRsAAAAAAIARkbwBAAAAAAAY\nEckbAAAAAACAEZG8AQAAAAAAGJHd1nsAAKyD009d7xEAsBp+bgMAAGwqVt4AAAAAAACMiOQNAAAA\nAADAiEjeAAAAAAAAjIjkDQAAAAAAwIhI3gAAAAAAAIyI5A0AAAAAAMCISN4AAAAAAACMiOQNAAAA\nAADAiEjeAAAAAAAAjIjkDQAAAAAAwIhI3gAAAAAAAIyI5A0AAAAAAMCISN4AAAAAAACMiOQNAAAA\nAADAiEjeAAAAAAAAjIjkDQAAAAAAwIhI3gAAAAAAAIyI5A0AAAAAAMCISN4AAAAAAACMiOQNAAAA\nAADAiEjeAAAAAAAAjIjkDQAAAAAAwIhI3gAAAAAAAIyI5A0AAAAAAMCISN4AAAAAAACMiOQNAAAA\nAADAiEjeAAAAAAAAjIjkDQAAAAAAwIhI3gAAAAAAAIzIbmuxk6o6IMnpSR6U5OZJrkzy7iSndfe3\nVtD/6En/uyXZM8k3kvxNkhd097/Ma/fVJAdvY1eHd/dntu8sAAAAAAAA1t/UyZuq2ivJRUkOS3J2\nkk8lOTTJKUnuWVV36e7vbaP/o5K8MUlnSOBcleQ3kzwryT2q6uju/um8Lt9J8pQldveV6c4GAAAA\nAABgfa3FypuTktwxyYndfc7cxqq6JMnbk5yW5OTFOlbVHklekWGlzZHd/YNJ1Wur6u0ZVvLcN8Mq\nnjnXdvf/XINxAwAAAAAAjM5avPPmMUmuSXLegu3vTHJ5kuOqassSfX8xyduSvGhe4mbOXMLmTmsw\nRgAAAAAAgA1hqpU3VbVfhselfbi7fzy/rru3VtUnkzwkya2SXLawf3d/Lcljl9j9/pPyqm0cf+8k\nP+zurasfPTud009d7xEs73kvXO8RAAAAAADzbYR5xbEz77nmpn1s2sGT8vIl6r8+KW+dRZI3S6mq\nGyV5fJJrk7xjQfVeVfWyJI9OcpMkP6qqC5M8u7u/uNJjLOfSSy9dq10xI4dcd/16D2FZX12H/1er\n+b+8Ef4OYcyuF0MwM+INZkvMweyIN5gd8TYb6zEftlrmxKa3kn/nzTTnfuihh069j2kfm7bvpLx2\nifprFrRbVlXtkuTVSW6X5LTu/uaCJjdLckiSJyV5cJJzk/xmko9X1W1XehwAAAAAAIAxmnblzZqq\nqr2S/FWSByV5eXf/2YImxyf5SXd/ZN62d1TV5zIkfJ6X5JFrMZa1yIwxYzfafb1HsKxZ/r+ay2Sv\n6pgb4O8Qxmjubq3dxRDscOINZkvMweyIN5gd8TZbG2Ke1f+FqW3r33m75imZOnkz9z6aGy9Rv8+C\ndkuqqpsmeVeSX0nygu5+zsI23f3BJbq/NslZSX5jueMAAAAAAACM2bSPTftKkq1JDlqifu6dONt8\nmF1VHZjko0numuRxiyVutqW7f5rkyiT7raYfAAAAAADA2EyVvOnua5J8NskRVbXn/Lqq2jXJUUm+\n0d1fX2ofVbVfkr9NcsskD+zu85dod+uqekJV/dIidfsk+Q9JljwOAAAAAADARjDtypskOS/J3kme\ntGD7cUluluQ1cxuq6rCqutWCdn+Z5M5JHtnd79nGcQ6c7OvPq2rLgrpnJ9mS5G2rHz4AAAAAAMB4\nTPvOmyR5ZZJHJTmzqg5O8qkkd0hycpLPJTlzXtsvJOkkhyVJVd0pyfFJPp9k16p62CL7/053f7C7\nP1ZV5yd5bJKLquotSX6c5D5JHjY51gvX4HwAAAAAAADWzdTJm+6+vqruneS5SR6a5KlJvp1hlczp\n3X3tNrofkWHFzO2TvHWJNh9Mcuzkz09M8pEkJyZ5aYaVQ19JckaSl3T31dOcCwAAAAAAa+j0U9d7\nBLAhrcXKm3T3VRlW2py8TLstC74/P8n5qzjOTzI8pu28VQ8SAAAAAABgA1iLd94AAAAAAACwRiRv\nAAAAAAAARkTyBgAAAAAAYEQkbwAAAAAAAEZE8gYAAAAAAGBEJG8AAAAAAABGZLf1HgBsKqefOrND\nHXLd9cMfbrT7zI4JAAAAAMD0rLwBAAAAAAAYEckbAAAAAACAEZG8AQAAAAAAGBHJGwAAAAAAgBGR\nvAEAAAAAABgRyRsAAAAAAIARkbwBAAAAAAAYEckbAAAAAACAEZG8AQAAAAAAGBHJGwAAAAAAgBGR\nvAEAAAAAABgRyRsAAAAAAIARkbwBAAAAAAAYEckbAAAAAACAEZG8AQAAAAAAGBHJGwAAAAAAgBHZ\nbb0HwAZx+qnrPQIAAAAAANgUrLwBAAAAAAAYEckbAAAAAACAEZG8AQAAAAAAGBHJGwAAAAAAgBGR\nvAEAAAAAABgRyRsAAAAAAIARkbwBAAAAAAAYEckbAAAAAACAEZG8AQAAAAAAGBHJGwAAAAAAgBHZ\nbS12UlUHJDk9yYOS3DzJlUneneS07v7WCvofleS0JL+SZK8kX0ry6iRnd/fWBW1vn+T5SY5Jsl+S\nryV5Y5IXd/d1a3E+AAAAAAAA62Xq5E1V7ZXkoiSHJTk7yaeSHJrklCT3rKq7dPf3ttH/nknek+Qb\nSZ6b5LtJfivJy5LcJslJ89reIcnFSX6Y5Mwklyc5dtLviAzJIwAAAAAAgA1rLVbenJTkjklO7O5z\n5jZW1SVJ3p5hRc3J2+h/TpIfJbnHvFU6b6iqdyR5WlW9rrsvmWz/syT7JDm6uz832famqromydOr\n6oHd/a41OCcAAAAAAIB1sRbvvHlMkmuSnLdg+zszrIw5rqq2LNaxqo5MUknessjj1c5OsiXJcZO2\nN09yryR/Py9xM79tkjx6e08CAAAAAABgDKZaeVNV+2V4XNqHu/vH8+u6e2tVfTLJQ5LcKslli+zi\nbpPyY4vUfWJSHjkp75ohmfNzbbv7y1X13XltWWvPe+F6j4BV2n29BwCbiHiD2RFvMFtiDmZHvMHs\niDeYrUMPPXS9h7AhTbvy5uBJefkS9V+flLdeov6Qpfp399VJvj+v75Jt5x3rP1bVWjwKDgAAAAAA\nYF1Mm7zZd1Jeu0T9NQvabU//fVfRdlvHAgAAAAAAGL21eOcNAAAAAAAAa2Ta5M1Vk/LGS9Tvs6Dd\n9vS/ahVtk+TqJeoBAAAAAABGb9rkzVeSbE1y0BL1c+/EuXSJ+ssm5c/1r6r9k+w/r++Sbecd6yvd\nfcO2BgwAAAAAADBmu03TubuvqarPJjmiqvbs7h/N1VXVrkmOSvKN7v76Eru4eFLePcl5C+ruMSk/\nMik/meSGSdt/o6p+KclNklyw2nPYf//9t6y2DwAAAAAAwI6yFu+8OS/J3kmetGD7cUluluQ1cxuq\n6rCqutXc9939mST/lOThVXXQvHZbkvxhkuuTvH7S9sok70pybFUdvuBYz5iUrwkAAAAAAMAGNtXK\nm4lXJnlUkjOr6uAkn0pyhyQnJ/lckjPntf1Ckk5y2LxtT0nygSQfqqq/SPL9JL+T5J5JTuvuf57X\n9plJfjXJhVV1ZpJvJrnv5PjndfeH1uB8AAAAAAAA1s3UK2+6+/ok905yVpKHJjk/yfEZVsEc293X\nLtP/ExkSMl9M8vwkr0ryi0ke391nLGh7WYZHsV2U5FkZVv0ckeSU/PzKHwAAAAAAgA1ny9atW9d7\nDAAAAAAAAEysxTtvAAAAAAAAWCOSNwAAAAAAACMieQMAAAAAADAikjcAAAAAAAAjInkDAAAAAAAw\nIpI3AAAAAAAAIyJ5AwAAAAAAMCK7rfcAgNWpqv+U5K+S/Ockj+vu85dod/8kT0vyy0kOSPKtJBcm\neW53f3OFxzo+yVOT3D7JT5P8Y5L/1t3vnfI0YMNYRczdMcnzkxyTZJ8MMfeeJM/p7m+v4Dh7JTkl\nye8kuU2SnyT5YpI3JDm7u2+Y+mRg5GYVb5N93CLJC5LcP8n+Sb6WId5e3N0/me5MYPxmGW8L9ne7\nJJ9Oskd3b9m+0cPGM8Nryl2SPCbJSUkqydYkX0hybpJzu3vr1CcDIzfja0rzJmxqK423SdsDk5yf\n5L5Jntfdz13FcTblnImVN7CBVNXjMvyye7tl2j09yf/KkLQ5I8mTknwgyROTfLyqDljBsf40ww/U\nq5P8QZJnJNk3yXuq6qHbfxawcawi5o5J8k8ZLlZekuT3krw/yQlJLq6qfZbpv0uS92b4xeH/ZLj4\nPyXJlUn+PMOFEOzUZhVvk30clOQfkjwgyV9m+Jz8UobPzFdu/1nAxjDLeFuwvy0ZJpD32I5hw4Y1\n45h7ZZLXJbkiw818z8ww9/PKJC/azlOADWPG15TmTdjUVhpvk7b3T/K5JEdvx3E27ZyJlTewQVTV\nCUleleSsDD+oXrVEuwOTvDTJJUnu3t3XTapeV1XfT/L0JMdn+OG21LFumeQ5ST6e5F5zdyBX1ZuT\nfD7Jy6vqXd19/VqcG4zRSmNu4twkP8oQc1+bbHt9Vf0gw12Pj0lyzjb63z/DBcybu/t3521/RVVd\nnOThVfXL3X3J9p0NjNuM4y1J/iLJLyQ5vLt7MoY3JPnfSe5aVft39w+293xgzNYh3uZ7UpK7J/lM\nkjuvcuiwIc0y5qrqqAwT0Bd09wPnbT8/w93JJ1fVi3zGsbOacbyZN2FTW028VdV9Mtxk/pYkb0ry\nzlUebtPOmVh5AxvLg7v7aUmu20ab3ZOcluSZ8xI3c/5uUt5ymeM8crKfs+c/Oqa7r07y+iQHJrn3\nagYOG9SyMVdV+yb5SJKXzrvon/PuSXmnZY5zm0n54UXq5rYdssw+YKObSbxV1c2TPDjJm+YSN0nS\n3Vu7+37dfbhJLTaBWX2+zd/fLZK8OMkbM9xkBJvJrGLuxknenOFmvn/V3dck+VCG3/GWvTsaNrhZ\nxZt5E1jZPGWS7Jnk97v7EUmu2o7jbNo5EytvYIPo7nNX2O7yJP99ierDJuVnl9nN3Sblxxap+8Sk\nPDLDHcqwU1pFzF2d5AlLVO8/KZe7OPnCpLztInWHZHhW+f9dyXhgI5pxvP16hhuYLpzbUFV7dfcP\nVzIG2OhmHG/znZ3h2eTPyIKJZdiZzTLmuvvv8rMb9rZrH7CRzfgzzrwJm9pK423SdrUrbRbatHMm\nkjewE6uq3TK8dO/fZ7jL+Iwk78twx+O2HDIpL1+k7uuT8tZrMETY2T05w0XEm5dp997J15Or6ksZ\nlhDvkuRBSR6S4eWyX96RA4WdwErjbe5Ghv9XVWcneVSSm1TV9zIs4f/j7v6XHTdM2CmsNN6SJFX1\n4AzXok/o7u9U1Y4cG+yMVhVzC1XVbZLcK8N7Cb6wTHPY7FYab4dMSvMmsONt2jkTyRtYJ1V13Aqa\nfbO7/36Kwxyd5AOTP1+T4XmsZ85f0ruEfZP8ZJHHrs3tZ64NbBgzirn5xzsjwx3+Z3X3p7fVtru3\nVtUDMryH45z87NnKP83wiJk/XYsxwayMOd6SHDApz07yrQzv4NiS5NEZXnx5p6o6tru3rsXYYEcb\nebylqvbLEG8fyvASddjQxh5zi/Q/IMnbJt+e6PONjWTk8WbehJ3KrONtNTbznInkDayfN6ygzYVJ\npvmh+Jkkv5bhpcy/luT5Se5TVb/d3VdOsV/YiGYRc6mqXTK8sO8pGe4GOXmFfV6T5HeTvHwyhusz\n3EXyxxkmm39/mnHBjI023pLcaFJekeR+8yax/rqqLszwbPL7Z3ihJmwEY463JHlJhlXgv27SmJ3E\n2GNu/j4OSfK3Gd4V8OjuXuzxTjBmGybeYCcwk3jbHpt5zkTyBtbPL6ygzfXTHKC7v5/kosm3b6+q\n9yd5R4Z34iz1fNdkeLbrrlW1R3f/eEHdPvPawEayw2OuquZeEvuADHcXn9DdN6yg6+My3PX/J939\nonnbL6iqq5KcVFUXdPe7F+8OozPmeJt7JNr5i0wkvzZD8ubYSN6wcYw23qrq6CQnJHlBd39xmjHA\niIw25hbs464ZPsv2TfKQ7r5gmjHBOhlzvJk3YWezw+NtCpt2zkTyBtbJJLEy62O+s6quTHLfZZpe\nluQuSQ5K8s8L6g6elJeu8fBgh9rRMTe56H9vkqOSnNbdZ6yi+70n5d8sUvfuJCdlWD23012IsHMa\nebx9dVLuukjdtyflfts/OpitscZbVd0oyaszxNzrq+qgedV7T9oclCTdvdj7AmCUxhpzC/ZxdIa7\no69O8qvd/Y9rO0qYjZHHm3kTdirrMU+5Cpt2zmSX9R4AsLaq6viquqKqHr9I3S4Z7rxaLnF78aS8\n+yJ195iUH9n+UcLOpap2y3AR8V+SPHE7fsm+8aTcc5G6PbdRB5vOGsTb3CNj7rxI3dwv2iaSIVPH\n2y2SHJbkVhkmtb4x7+vhkzZz3wNZk8+4VNUdk1yQ4YaEoyRuYHFrEG/mTWB2Nu2cieQN7HwuSXKz\nJE+tqt0X1D0iyR5JPjq3oar2rqrDqurAee3enOSHSf5gckEz1/bfJTk+wy/gF+2Y4cOGdGqS+yR5\nRneft62GS8Tc3IX/Ixfp8vAFbWCzmzbePpnk80meOH8lQFXtmuTJk289WgYG08TbFRkeQbPY1/sn\nbea+BwZTfcZV1R5J3pLhBc6/0d2X7dDRwsY27TWleRPYAcyZ/FsemwYbRFX91/ws03zXubKq5p7d\n/53u/mB3f6aqzsnwor1/qKrXJ/nupM8JGZ71f/q8Xd8tyQeSvCqTSavuvqKq/ijJy5K8b7KPPZM8\nNcOjZB7R3T/dQacKo7DSmJtcUPxRhrsbL6+qhy2yu2u6+z2TP/9czCU5J8ljkzy7qm6Z4SL/uiS/\nleTBST6c5K1rdGowOrOMt+7eWlUnJHlfkour6iVJbkjyqCRHJjm3uz+9tmcI4zGreOvuH2aJd0fN\n7au7vVuKnd6MrylPyLDi7a1JDq+qwxfZx+e7+/NTnRSM1IyvKc2bsKmtNN4mbY9JctPJ9jtMytvP\niz1zJkuQvIGN4xX52eNc5pw4+UqSD2Z4wXK6+8Sq+liGH3LPzfBc8SuS/HWSF3Z3L3ew7j5r8n6c\nP0zy8gwTWx9P8nvdvVNms2GBlcbc7ZLsNfl6yxL7+lqSQ5Y6UHd/v6qOTPInGS4+Hppka5IvJzkt\nyZmrfUktbDAzi7ck6e6PVtVRSZ4/+do7yZeSPC3J2asePWwsM403YKYxd5dJ+fD87E7khZ6X4XdE\n2BnN+prSvAmb2YrnKTN89hyzoO38zypzJkvYsnXr1vUeAwAAAAAAABPeeQMAAAAAADAikjcAAAAA\nAAAjInkDAAAAAAAwIpI3AAAAAAAAIyJ5AwAAAAAAMCKSNwAAAAAAACMieQMAAAAAADAikjcAAAAA\nAAAjInkDAAAAAAAwIpI3AAAAAAAAIyJ5AwAAAAAAMCKSNwAAAAAAACMieQMAAAAAADAikjcAAAAA\nAAAjInkDAAAAAAAwIpI3AAAAAAAAIyJ5AwAAAAAAMCL/H9wvePUmwy6gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 823, + "height": 373 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 250, - "width": 824 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 3.5))\n", - "np.set_printoptions(precision=3, suppress=True)\n", - "challenger_data_ = np.genfromtxt(\"challenger_data.csv\", skip_header=1,\n", - " usecols=[1, 2], missing_values=\"NA\",\n", - " delimiter=\",\")\n", - "#drop the NA values\n", - "challenger_data_ = challenger_data_[~np.isnan(challenger_data_[:, 1])]\n", - "\n", - "#plot it, as a function of tempature (the first column)\n", - "print(\"Temp (F), O-Ring failure?\")\n", - "print(challenger_data_)\n", - "\n", - "plt.scatter(challenger_data_[:, 0], challenger_data_[:, 1], s=75, color=\"k\",\n", - " alpha=0.5)\n", - "plt.yticks([0, 1])\n", - "plt.ylabel(\"Damage Incident?\")\n", - "plt.xlabel(\"Outside temperature (Fahrenheit)\")\n", - "plt.title(\"Defects of the Space Shuttle O-Rings vs temperature\");\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "El9Z_4ulIAz3" - }, - "source": [ - "It looks clear that *the probability* of damage incidents occurring increases as the outside temperature decreases. We are interested in modeling the probability here because it does not look like there is a strict cutoff point between temperature and a damage incident occurring. The best we can do is ask \"At temperature $t$, what is the probability of a damage incident?\". The goal of this example is to answer that question.\n", - "\n", - "We need a function of temperature, call it $p(t)$, that is bounded between 0 and 1 (so as to model a probability) and changes from 1 to 0 as we increase temperature. There are actually many such functions, but the most popular choice is the *logistic function.*\n", - "\n", - "$$p(t) = \\frac{1}{ 1 + e^{ \\;\\beta t } } $$\n", - "\n", - "In this model, $\\beta$ is the variable we are uncertain about. Below is the function plotted for $\\beta = 1, 3, -5$." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 210 - }, - "colab_type": "code", - "id": "U4kW2QIddYEs", - "outputId": "9706fbdc-9263-4903-ab32-c8c9062ff8ed" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAGDCAYAAAA1YX+ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd0XNlh5/nvq1wo5EAwgJlgMTa7\nm02yg2KrlWXJCpZkWWOv5SDL9uzIGu+c2dnjtWfX3tljz46zLVuWvJ7RSm61ZElWaMtSt9QtdSK7\nmVMRJAGCIAkSIFKhULnu/nELFRCYEArh9znnnvfeffe9ukVVQ1X1q3uvY4xBRERERERERERERERE\n5o6r0h0QERERERERERERERFZ6hTIiIiIiIiIiIiIiIiIzDEFMiIiIiIiIiIiIiIiInNMgYyIiIiI\niIiIiIiIiMgcUyAjIiIiIiIiIiIiIiIyxxTIiIiIiIiIiIiIiIiIzDEFMiIiIiIiIiIiIiIiInNM\ngYyIiIiIiIiIiIiIiMgcUyAjIiIiIiIiIiIiIiIyxzyV7sBcGB4eNpXug4iIiIiIiIiIiIiILG11\ndXXOnbbVCBkREREREREREREREZE5pkBGRERERERERERERERkjimQERERERERERERERERmWMKZERE\nREREREREREREROaYAhkREREREREREREREZE5pkBmmero6KCjo6PS3RCZEb2OZSnQ61iWAr2OZSnQ\n61iWAr2OZSnQ61iWAr2OZSnQ63huKJARERERERERERERERGZYwpkRERERERERERERERE5pgCGRER\nERERERERERERkTmmQEZERERERERERERERGSOKZARERERERERERERERGZYwpkRERERERERERERERE\n5phntm4UDod9wO8Dvw08H4lE3nQX1z4K/A7wMBAEzgGfA/4iEomY2eqjiIiIiIiIiIiIiIhIJcxK\nIBMOh8PAl4CtgHOX1z4OPA1cBn4PGADeB/wZsBn49Gz0UUREREREREREREREpFJmPGVZOBxuAA4D\nbuChe7jFXwEJ4PWRSORPI5HI/4hEIh8Cvgn8z+FweM9M+ygiIiIiIiIiIiIiIlJJszFCxgf8d+C3\nIpFIwg6WuTPhcPgAEAb+LhKJXJtw+i+wI2U+DhybhX7KBN0xNxc6Yvd07V0Ng1rMFtETrURXnVs8\n6L32x7ndlSWn+wd8AHRfHLunx5zY/zu53pn24NbXjz/WdM9vqn9LZ6p9Z+rzU93DKWwLD37La5xb\n1jnTtivrZ0ld+X2cssd3Jl7vjP9CwJm63il/XCf/rApt8+fL65yyuvI2TvE4v3U5xedZPC62FxER\nEZH5ZYzB5GzBUNg3xhTOYWw7DMU2+WODgVzxfOm27Bry+5TcC6ZuM6H9pOPx6/Lnyo5vU3er+rJr\nuUWb6dpN02bKU+YWJ+/wHjO572j/KADdfd339DgL2R3/28qiF70ZBeDS9UsV7onIvYvejBLaGqp0\nN5acGQcykUjkOvCpe7x8f3770hTnXslvD9zjvSfp6OiYrVstCd1jXg5fubdARmRhCNpN/g27yFxy\nMGUBTnF/unpwHINrinMuTEkQFLL1l6+WtS9sJ9S5HFMIjFyFe5S0yd9//Lw7/1h2P9+2cK/isTu/\n7wbcJXXusvPz+S8ui5Hea8lSoNexLAV3+jo2OYPJGkwmX8b38/XksHV3cEy2JAzJUQxCcpQFKtPW\nj4cdJSGILG9RopXugsiMjaLvK2Rxq9pUpffHJdrb22d8j1lZQ2YGNuS3PRNPRCKRaDgcHgI2zWuP\nREREpmBw7PcCpqySRTWUboYcpghvXDa08eTDG7cDnvGtyxRCndLzbpdt48m38Zbsexzwuow9P97O\nZR9TRERE8qM7MgaTNuRSOXLpHCZlyra5VK4YspSELblMrix4IVfpZyMiIiKyvFQ6kKnJb8emOR8r\naTNjs5FgLRVKNkVE5G4ZHLIGsqVBVHZ+HtvlgM/tFErAU9z6PQ7+0v38sd/jEPC4SvYdgl6HoMeF\nz62p6GbT+PsKvdeSxUyvY6kUYwzpsTSpWIrUaHlJx9KkE2kyiUxZ0egRERERmS96fzy7Kh3ISAU9\n2pzg5x9uq3Q3FqzF9BmnEtPQ3utD3rqvt77rxLMXLlwAYPPmzXf9b3AnzW91z0nTOd9J25JG0zUv\nTEU9RQMzxYGZ6hyT5yYuHdkx6RozxaCPknpTcuGkdiX3NFO1yVeaqdqbCX3Jz79dVj9de1OcETtn\nim3H75PLny3MeFG2NVPX58/lDGXPJWeK7XOGkn1TuDY38fr8D06NsceFutLj/D1isTg5IBAIFs6b\nfOhhjCGbbz9+rlCfK9aPt1nKcgYSGUMiMztP1OVAVT6cCXqLQU3Q61DldREcD2/y+yGfi2qf3QY9\njsIcERG5I5lkhsRggsRwohi0TAxeYqnF9eFjnAMuj8sWtwvH7dity7H7LlvnuJzyuvy+4yppX1Jw\nsPvOFHXj9fm5XMfbML4WoEPx/IS68faFY4rHZftOcf3D6doW2uT3C+dvcTzVNWX1E+rsxplUVzi8\n3SKUt2p3i/Z3dN0d3uNe73v+/HkAtmzZcs+Ps5DpfeTyoB96yFLQ0dGxpP7+LhSVDmRG8tvpVgeq\nLmkjs8yTiOMeuAleb7F4POUrcYvMq7t77fnsKvAEPK456IvI/Ojo6AegvX31jO+VKwQ1NqTJ5iBb\nWpcjP8JlYp3dZnL2ukyu/DibM2RyJfUl7TP5c+lssU06Z0hni+fTOchkbX1mgUyNkjMwmjKMpu5+\niI/LwQY03vGgxpaQz8lvi+FNjc9Frd+FWwvwiIgsWZlkhvhAnPhgnMRgorAfH4iTHktXpE9uvxuP\n34PL68Ltddvic9tjnz0unPO5y9q5vK5i0DIetnhseDJ+7PLYIEVkLjj5uWpd+pwni9j430j9rZTF\nTK/fuVHpQOZifjtpmEY4HK4D6oDD89qjZaTh8CGcv3ppUr3xeMDjBa+nJKgpCWxKAxyvF7y+Keqm\nqPf57PW+fL3PX6z3esHtrsC/gojI0uFyHFxuWMg/YTEmH+DkDOmsIZW14U0qv5/KBzdT1mcNyfx+\nMmNLomQ/md+f6x8Z5wxEkzmiSbjTOduqfQ61fjd1ARd1fhd1ARvU1AXcdut3UeN34dViOSIiC1Iu\nm2Osb4yxm2M2bCkJX+YqdHH73HhDXrxBL56AZ+riLz/uvtqN43XYunXrnPRJRERERGam0oHMi/nt\nY8DnJ5x7fX77k/nrzvLiZKb+EsnJZCCTgcT89se43Dac8ZWEOeP7vpIy8XhimfK83279fhsKiYhI\nRTiOg9eNDR68s39/YwypLPlwJlcW2iQyhnjaEM/k7DZtGMvvJ9I54hnDWNoQT+dIz/JIHjsaJ8PV\n6K3bhbyODW0CbhqDLhqDbhqDbpqq7HGN34VLI1lFROaUMYb4QJzotSjRq1Gi16KM9o5isrMT+Xur\nvPiqfbaEfFPvV/tw++7+B2uufo0oEBEREVnI5vWb6XA4vA1IRiKRToBIJHI0HA4fBn4mHA7/75FI\npCffzgF+C0gD/zCffVxOnEym0l0o4+SykIjbMocKwY+/JKzx+0v2J9RPLNPV+wMKe0REKsxxHPwe\n8Hsc8N/7l1Lp7HiAk2MsbYilc4ymcsRSJr/N5UMWux9L23Mz/aouljbE0lmuRqf+0YTXBQ0lAU0x\nrHHTlA9sNC+5iMjdSY4mbfAyHr5cGyWTuPfPSt4qL8HGIMGGIIGGgN2vD+Kr8eGt8uJyKzQRERER\nWa5m/O1xOBzeAeyYUN0SDoc/VHL83UgkMgacASLAtpJzvw78EHg+HA7/CTAEfBR4HPidSCRyYaZ9\nlKlFd+yk/r77IJ22JZPJb9OQzpTUp4v7pe3SaUin8tsMpFM42bufi3++zWXwY1xuCEwIaQIBu/X7\n8+fG9wMl5/3FukAwvw3YYMilD2wiIvPN63bwuh1q7iLUyRk76mY8pImmDNFkjuFklpFEjuFkrrCN\nJnP3FN6kc3AjluVGbPrAprnKTWu1h9bqkm3IjV/zsIuIkE1nGbkyUhbApKKpu75PaegSbCwPXjwB\n/UhLRERERKY2G+8UPwz87oS6HcBTJccbga6pLo5EIq+Ew+E3AP9Hvvixwc0nIpHI389C/2QaiVWr\nob19Vu9pcrlpw5pCfSpVsk1BqqTtdHWpCfupJKRSC3OUz9iYLbPAOE4+qAkWw5xgML8NFI/HA5xg\n0LYt3Qbz9W59MBQRmUsuxyHkcwj5bh98ZHM2uBlO5hhO5BgpbLMMJ3IMJXIMxLOMpe8utknn4Npo\nlmujkwObhoBrQkjjYWW1W6NqRGTJS42mGLgwwM1zNxnsHCSXufN5KR2XQ2hFiJpVNdSsriHUGiLY\nEMTj13trEREREbl7M34XGYlEfg/4vTtsO+Wn/Ugk8irwrpn2RRYAl6s42mMeFAKgCUHN5JKvT5ac\nTyZvXZ+01zm5WV5I4C44xkAiYcsMGa83H9pUTQ5vqqry4U3pflXJcX7ffffzWIuIyGRul0NdwE1d\nwA1107eLp3MMxG04c3Msm9/a47sNbAYTOQYTOc72ly8+HfQ4tFa7WVntoa3Ww9o6L2tqPXbaNxGR\nRcgYQ/xmnP5z/Qx0DDByZeSOrw02BgvhS83qGkIrQri9eg8sIiIiIrNDP+uRxW2uAyBjMJlMMaRJ\nJCGZyAc3CRvalG5TKRuepJJ2m5y4tftO6u6nRZgpZ3yEUvQ2K0rfghkfrVNVEtZUVUFVqGQ/fxwM\nQihUPPb7Qb/AFhG5K0GvizVeF2tqp37LNpbOhzP5kKZ/zE5ndn00w0D8zn5QEM8YuoYydA0VR506\nQGu1m7V1NqBZW+thTa2HoFfTnonIwmRyhuGeYW6eu8nNjpskBm//gyZfyEfNmppCAFO9shpv0DsP\nvRURERGR5UqBjMitOA54vbZQPWu3NblceViTTBQDm0Qyv8ZNYkKZoi6ZgHjCTpU2D5xk0vZ3eOiu\nrzUulx1pU1Vlg5pQyAY1oQllYl2wSiNzRESmUeV1UeV10VY7+Vwqa7gxmuF6LEvvaIbro1muj2a5\nEctwu9l6DNA7mqV3NMuhK8lC/YqQm7Y6D+tqvbTVeVhb56FKIY2IVEgmmWHw4iA3O24ycGGATPzW\n0xm7fW4aNjXQ1N5E/fp6fDU+TdkoIiIiIvNKgYxIJbhcxSnCZsoYTDptA5t4PriJ58Ob+Fh+O16X\nbzOxPj6GMwvTot2Kk8tBbNSWvru71oyPshkPaaqrIVRNYzJJNhiE4UGorik7h883N09ERGSR8Lkd\n2uq8tNWV/9o7ZwwD8RzXRzP0jtrRNNdHs1yNZkhkbj0F2o2YHYFz+GoxpGmuctHkDrKmKkPdaIaW\nkFtfcIrInDHGMNg5yNXXrjJ4cRCTvfXfLV+Nj6b2Jpq2NlG/rh6XRyGyiIiIiFSOAhmRxc5xbPjg\n80HtLRYiuA2Ty5UFNIyNFffL6kvOj42VtXXM3S0+faec8cfqL09ymm/1fLw+G85Uh2xAU10DNePb\nmpJttd1WhWxQJiKyxLkch+YqN81VbnauKNbnjKF/LMvl4Uy+pOkZydx2nZr+sRz9+IhEfTx7fYBa\nv4stjV62NHnZ0uhjZbUCGhGZuWw6y41TN7hy8Apj/WO3bFvdWk1jeyNNW5uobq3W3yARERERWTAU\nyIiI5XIVR6Dci1wOE58Q1sRi5cdjsfJzsRjERnHi8dl9LoCTTsHggC13wDhOcXRNIbCphprafKmB\n2vx+ba0d3aQP9yKyhLgchxUhDytCHvautnXGGG7Gc/QMp+keztAzYoOa0dT0Ic1IMsfha0kOX7Oj\naKp9DlsafWzOhzSrazy49PdTRO5QajTF1deucu3wNdLx9JRtHJdD/fp6mtqbaGxvJFAXmOdeioiI\niIjcGQUyIjI7ZhDomGzWBjeFkCZmw5vS/dFYfsqzGIzaqc9mc5o1xxiIRm3pvXb7Pns8NqSpqSmG\nNrUTgpu6OjtqKaTRNyKyODklo2nuX2XrjDEMJXI2oBlO0zWU5sLNFGkzdcgymjIc7U1ytNcGNFVe\nx4YzjT62NnlZU+vRr9dFZJLR66P0HOyh71QfJjdFCOxAU3sTK3asoGFTA56APtqKiIiIyMKnd60i\nUnlutx2RUl1zV5d1nDmDK5Fg04oWG9KMjhZG3YyHNoX6URu2OMnk7W98B5xMBgYHbbkN43LbkKZ2\nPKSptUFNbV3xeDy88ftnpX8iInPFcRwagm4agm72rLR/s86e66Av4SYZaqXjZpqLg+lp16MZSxtO\nXE9x4noKgPqAi92tfna3+tjS6MPrVjgjslwZYxjoGKDnYA/D3cNTtnH73Kzcs5LV+1YTrJ+F9RhF\nREREROaRAhkRWbSMx0O2uhrWtN35Nel0PpwphjTF7ajdxvLb6Ihdv2aGnFwWhgZtuV3//H6or4e6\nfKmvt2FNoS6/71NwIyILh9uBlcEs7ZtDPLHZrkdzZSRDx8005wdSXBhIT7sWzVAix48vxfnxpTh+\nt8P2Fh+7Wn3sXOGn2qfRhSLLQTaVpfd4L1cOXSExOPUI6EB9gNUPrWblnpV4/PoYKyIiIiKLk97J\nisjy4vVCQ6Mtd8BkMza8iY7AyIgNakZG7HG09Dgf4GSzM+qek0zC9eu23KpfwWBJYFMP9XV229AA\n9Q32+dXWaqo0EakIl+Owts7L2jovj2+qImcMvdEsHQMpzudDmqnWoUlmi9ObOUTZ1Ohl9wo/u1p9\ntFbrbavIUpOKpeh5pYfeo71kEpkp29S21dK2v42mrU04Lo2gExEREZHFTZ9sRURuxe2xoUd9/e3b\nGoMZGyuGNyPDMJzfjgzbuuH8fjRq1625R048DvH4Lde7MS5XfkRNQ0lQM2FbXw8e/V+BiMwtl+Ow\nutbD6loPb9xgpyXqHc1y8kaSE9dTdA2mmfgX0QAXBtJcGEjzjbOwIuRmd6sNZzbWe3Hri1mRRcsY\nQ+/RXjp/2DllEOO4HJq3N9O2v42aVXc3pa2IiIiIyEKmb+FERGaL40AoZMvKVbdum81iRkcnBzXD\nQ3Z/KL8dHrLr1dxLd3K54jo3ndO3M7W1dkRNY+PkbWMT1NRopI2IzCrHcVhV42FVjYe3bg4RTeY4\ndSPJietJzvanSE0x2PBGLMszF8d45uIYIa/DA6sCHFgbYH2dB8dROCOyWMT6YnQ83cFIz8ikc56A\nh1UPrGL1Q6vx12h6VhERERFZehTIiIhUgtttR6/U1d26nTGYWMwGNUNDJdt8aDNSDG+c3L1Nl+aM\n5Ef0XOqaugsejx1N0zhFWNPYCE1NWtNGRGakxu/i4bVBHl4bJJU1dNxMceK6HT0zksxNah9LG37S\nHecn3XFWVrs50BZg35oAdQF3BXovIncim87S/UI3PS/3YHLlY+ICDQHa9rfRursVt0//HYuIiIjI\n0qVARkRkIXMcqK62ZU3b9O1yOUw0CkP5ETGl26GhwkgZJ526+y5kMtDfZ8s0TE0NNDXbcKaxqbg/\nvvUrsBGRO+NzO+xc4WfnCj8f3mXoGc7YcOZGiisjk0cM9o5m+ebZGP98Nsb2Fh/72wLc1+rH69ao\nGZGFYrBzkI5/6SAxmCird9wO6x5bx9qH1+LyaDSuiIiIiCx9CmRERJaC8fVi6upg/Yap2xiDGYuV\nBTQ2uBmAgYHC1kmn7/rhnWgUolHomnpuNFNTMzmoaWmB5mZb7/Xe9WOKyNLnchzW1XtZV+/l3WEY\nGMty4nqSV68m6BoqD2cMcLovxem+FEGPw97VAQ60BVhfrynNRColNZriwjMX6Ds1+Ucd9RvqaX9H\nO8HGYAV6JiIiIiJSGQpkRESWC8eBULUt0422McaubTMe0gzcLAtrGBiAkWEcM3H57ds89HhgM8W0\naMZx7JRozeMhTUtx29xiRwfpy1QRARqr3LxxYxVv3FhF72iGgz0JDvYkGJ4wrVk8U5zSrDXkZn9b\ngP1tAeo1pZnIvDDG0Hu0l84fdpJJlIen3qCXTW/dxIqdKxSWioiIiMiyo0BGRESKHAdqamxZt37q\nNpkMZmiwGNjcvAk3+4vbgQGc3OQ1H6Z9SGNs4DM4AB3nJp03fn8xnGlphpYVsKLVbhsb7eggEVl2\nVlZ7eO+2at4TDhHpT/FKT4LjvUnSE/78XI9l+VYkxrcjMba1+HhkbYA9K/249EWwyJyI9cXoeLqD\nkZ6RSedW7lnJxjdvxFulkbEiIiIisjwpkBERkbvj8RQDkqlks5jhoXxAMyGsuXkzH9hk7/jhnGQS\nrvTYMoHxePIja0pCmhX50tiksEZkGXA5Dttb/Gxv8TOWznHkWpJXLsfpnGJKszN9Kc70pWgKunjz\npioebgvi9yiYEZkN2XSW7he66Xm5B5MrH0lb1VRF+zvbqVtXV6HeiYiIiIgsDApkRERkdrndNgxp\nbIL2Kc7ncnaETV8f9PdD3w277e+D/j6c0dE7fignk4HeXlsmMG63DY1WrCgGNitX2m1Dg6ZBE1mC\nqrwuHlsX5LF1Qa6PT2l2JcFQonzYzM14jq+eGuW752K8YX2QN2yoosavAFfkXg12DtLxdAeJoURZ\nveN2WPfYOtY+shaXW/+NiYiIiIgokBERkfnlchUDm/Dk0yYet6Np+vryIU0+rOnrg5v9ONk7G13j\nZLNwvdeWiY/h80FrK7SuLCn540Bgps9QRBaA1moPP7WtmneHQ5zrT/NKT5yjvUkyJdnMWNrwL+fH\n+MHFMQ60BXh8YxUrqvX2WOROGWO4cvAKF5+5OOlc/YZ62t/RTrAxWIGeiYiIiIgsTPrEKSIiC0sw\nCG1rbZkom8UMDsCNG7b03YAb1wujbJxMZvI1U3BSKbh82ZYJTF19SVjTCitX2aL1akQWJZfjsK3F\nx7YWH+9PZHn+UpwfX4ozli5OqZTJwQvdCV7sTrC71cdbNlWxqdFXwV6LLHwmZzj/r+e5dvhaWb23\nysumJzaxYucKHI1GFREREREpo0BGREQWj/FpyJpbYMfO8nO5HGZgoDykudFn9/v77jysGR6C4SE4\nFymrNz6fnfJsPKBZtRpWrYKWFnDr/05FFoPagJv3hKt56+YqXr6c4NnOMQbixSEzBjh+PcXx6yk2\n1nt4y+YQu1t9uPSlskiZTDLDmW+cYfDCYFn9it0r2PzEZrxBb4V6JiIiIiKysOkbJBERWRpcLmhu\ntmX7jvJzuRxm4CZcv27Xmxmfyuz6dZyhwanvN4GTSkF3ty0ljNudX59mlQ1oVuUDm9aV4NMv7EUW\nIr/HxRs3VvG69UGO9iZ55uIYl4fLQ9vOoQx/99owLSE3j2+sYn9bAJ9bwYxIMprk5JMnid2IldVv\nessm1uxfo1ExIiIiIiK3oEBGRESWPperOLJm566yUyaRsNOfXe+dUK7jJJO3vbWTzcK1q7YcKbmv\n49jHW70G1qyx29VroHWFRtSILBBul8Pe1QEeXOXn/ECaH1wY43RfqqxNXyzLkyejfOfcKG/fEuJ1\n64N4XPrCWZan0eujnPzKSVLR4n8nLo+L8HvDtGxrqWDPREREREQWB30jJCIiy1sgAOvW2VLKGMzw\nMPReg2vX8tur0HsNZ2Tktrd1jLHTpvXdgGPFpMa43Xbqs3xAE8Ih1dwCuZzWqBGpEMdxaG/y0d7k\n41o0w7MXxzh0JUG2uMwMoynD106P8lxXnPduC3H/Sr9GAsiyMnBhgDNfP0M2lS3Ueau87PyZndSu\nqa1gz0REREREFg8FMiIiIlNxHKivt2Xb9rJTJjZaEtIUwxpnYOD2t81m4coVW4A14/f8ot+uS7N6\nDaxeDW1rbamunu1nJiK3sKrGw8/tqeU94RA/6orzwqU48Uwxmekfy/KFwyNsqPfw/u3VbGrU1ISy\n9F09fJXz3ztvF1rKCzYF2fWRXQTrg5XrmIiIiIjIIqNARkRE5G6FqmFLuy0lTCJhpzu7dg2uXYGr\nV+HqVZyb/be9pZNMQlenLaX3rG+AtjYbzqxps/utKzWaRmSO1QXcvG9bNW/fUsXzXXG+f2GMREkw\n0zWU4Y9fGuK+Vj/v3RaitVpvq2XpMcbQ+WwnPa/0lNXXratjxwd34A16K9QzEREREZHFSZ8cRURE\nZksgAOs32FLCJBJ2urMrPfmQ5gpcvXJnU58NDcLQIJw8Ubyf12tH0owHNeNhTVXVLD8hEQl4XLxt\nS4hH1wX5l44YP74UJ1cySuD49SQnbyR5bF2Qd7aHqPErLJWlIZvOEvnnCP2R8h8VrNi1gq3v3orL\nrde6iIiIiMjdUiAjIiIy1wIB2LjJlhImGqXn0EH8/X20pNOFwMZJxG95OyedhktdtpTer7EJ1ubX\nw1m33m7r6mf5yYgsT9U+Fx/aWcMbNwT5ViTGkWvJwrmcgR9finPoSoInNlXx5k1V+NxaX0YWr1Qs\nxamnThG9Gi2rX//69ax73TqtnyQiIiIico8UyIiIiFRKTQ3xteuIr11HS3t++jNjMDdv2nCm5zL0\n2K3Td+O2t3MGbsLATTh2pFBnamvzIU0+oFm7Dpqa7Ro5InLXWkIePvFgHZ2Dab5xZpSLg+nCuUTG\n8O1zdhTNu8MhDrQFcOm/NVlkxvrHOPmVkySGEoU6x+Ww9d1bad3dWsGeiYiIiIgsfgpkREREFhLH\ngeZmW/bcX6g2iYSd6qzncjGoudJj15651e1GRuDUSVvG71VVVQxpxkfUrGjVujQid2Fjg5dPP1LP\n8esp/vnsKDdi2cK54WSOLx2P8sPOMd63rZodLT6NKJBFYejSEKe/dppMIlOo8wQ87PjgDurXa8Sl\niIiIiMhMKZARERFZDAIB2LTZlnG5HOZmfzGgudwNl7txBgdveStnbAwiZ23JM36/DWg2bIT162H9\nRhsK6UtkkWk5jsOelX52rfDxQnecpztijKaKC8xci2b57KFhdrT4+MjuGhqD7gr2VuTW+iP9nPn6\nGUzJIkmB+gC7PryLqmatUSYiIiIiMhsUyIiIiCxWLhe0rLDlgb2FahON2nCm+xJ050Oa20x55iST\n0HHOlvH7hKptOLNhYzGsqdcvpEUmcrsc3rChin1rAjxzcYxnL46RzhXPn+5L8V+eH+B926p5dJ2m\nMZOFZ+TKCGe/ebYsjKlZU8PCe7p0AAAgAElEQVTOD+3EF/JVsGciIiIiIkuLAhkREZGlpqYGduy0\nJc/Ex+DyZRvS5EfScO0ajjHT3saJjcLpU7aM36euHjZsgPX5smEDhKrn7KmILCZBr4v3hKt53fog\n34nEeKUnwfh/YYmM4cmTUV67muBj99XQEtLbcFkY4oNxTj11ilymmCI2h5sJvzeM26tRXSIiIiIi\ns0mfBEVERJaDYBVsDdsyLpXE9PTYkOZSly23C2mGh+DYUVvyzIpW2LjJlk2bYM0acOsthixf9QE3\nP7enljduCPKl41EujxTX4zg/kOa/PD/Ae8LVvGljUKNlpKLS8TQnnzxJeixdqGvc0sj292/Hcem1\nKSIiIiIy2/RtiYiIyHLl809elyaRwFzutuFMVxdc6rr9dGc3rsON6/DKSwAYr89OdTYe0mzcBA0N\nc/c8RBaotjov//6xBp65OMbTHTHGByCkc/D1M6McuZbgY/fVsqpGb8ll/uUyOU599RTxgXihrrq1\nmu0/rTBGRERERGSu6NOfiIiIFAUC0L7VljwTixVH0OSLMzg47S2cdArOd9gyfo+GBhvMbMiPolm3\nHnxal0CWPrfL4W1bQty30s+Xjo3QOVQcLdM1lOEPfzLAO9pDPLGpCre+BJd5Yowh8u0II5dHCnX+\nWj87P7wTt0/TlImIiIiIzBUFMiIiInJrodDkNWmGh+FSpx1Fc/ECdHXiJBLT3sIZHITB1+Dwa/Z6\nlxvWroXNW2zZsgXq6uf6mYhUzMpqD59+tIHnu+J8KzJKKmvrMzn4diTG0WtJfu6+GtrqvJXtqCwL\nXc910Xe6r3Ds9rvZ9eFd+Gv8FeyViIiIiMjSp0BGRERE7l5dHdx3vy0AuRym9xp0XoSLF6HrIly9\nOu16NE4uWxxx8+wPADDNzTac2bTZblevAZdrfp6PyDxwOQ5v2ljFrlY/Xzo+QsfN4rodPSMZ/uiF\nQd66uYq3bwnhdWu0jMyNa0evcfnFy4Vjx+Ww4wM7CK0IVbBXIiIiIiLLgwIZERERmTmXywYoq9fA\nY6+3dfE45lKXDWnyxYlGp72F098P/f3wyssAmEDQTm82Popm4ybw69fbsvg1V7n5twfqefFygm+c\nGSWRscFlzsD3zo9xrDfJx+6rZWODRsvI7Bq4OEDH0x1lde3vbKdho9b5EhERERGZDwpkREREZG4E\ng7Btuy0AxmBu9ttw5sIFuHAeei5PP4omEYfTp2wBjMsFbWthSzu0t8OWrVBTM1/PRmRWOY7DY+uC\n7Gjx8Y8nopzuSxXO9Y5m+eMXB3nTxiA/Fa7WaBmZFbEbMc780xko+ZO77rF1rNyzsnKdEhERERFZ\nZhTIiIiIyPxwHGhusWXfAVuXSGA6L9pw5sJ5O4pmmrVonFwOui/ZMj7N2arVNpxp32oDmgb9ylsW\nl4agm1/bV8ehKwm+dnqUsbT9ttwAP+yMc2EgzScerKOpSguty71LRpOcePIE2fHFi4CWnS2sf8P6\nCvZKRERERGT5USAjIiIilRMIwPYdtoBdi+ZKTzGguXAeZ2Bg2suda1fh2lV4/jkATEtLMZxp3wrN\nzTYIElnAHMdhf1uQbc0+njo1ytHeZOFc93CGP/zJAP9mTy27WjVln9y9TDLDya+cJBUtjsKqW1tH\n+N1hHP19FBERERGZVwpkREREZOFwuWDtOlve9DgAZnCgLKDh8i2mOevrg74+ePEFe21DQzGcaW+H\nlasU0MiCVRtw80t76zhyLcGXj0eJ59eWGUsb/ubVYd6+pYp3bQ3h0mtY7pDJGc5+4yyx67FCXbAx\nyI4P7cDlcVWwZyIiIiIiy5MCGREREVnYGhrhof22AMTHMBcuQMc5Wy514WSzU17qDA7CoVdsAUxt\nHWwNQ3gbhMPQskIBjSw4D6wKsLbOyxdeG+bySKZQ/73zY3QOpvmFB+qo9evLdLk1Ywznv3eegQvF\nUYbeKi+7PrILb9BbwZ6JiIiIiCxfsxLIhMPhRuB3gZ8GVgH9wHeB34lEItfu4PqPA78G7AF8QDfw\nbeD3I5HIzdnoo4iIiCwRwSrYtdsWgFQS09kJ5yJwvgMuXsBJp6e81BkZhlcP2gKYhkYbzGzdBtu2\nQWPTfD0LkVtqrnLzW4828LXTUV7oLq6rdO5mmj/88QC/+GAtmxt9FeyhLHQ9r/Rw7Ujxo5jL42Ln\nz+wk2BCsYK9ERERERJa3GQcy4XA4CPwI2Ab8BfAq0A78NvB4OBzeG4lEBm9x/f8F/K/AQeA/AaPA\no8C/Bd6Tv35kpv0UERGRJcrnz4942WaPMxnMpa7iCJoL53ESiSkvdQYH4OWXbAFMc0vxXuEw1NXP\n05MQmczrdvjo7lo2Nnh58kSUdM7WDydz/NnLQ7x3WzWPbwxqHRCZpO9MH53PdpbVbXvvNmrX1Fao\nRyIiIiIiArMzQubTwG7gNyKRyF+NV4bD4WPA14HfAT4z1YX5kTX/C9AFvCESiYyvYPr34XC4H/iP\nwC8CfzoL/RQREZHlwOOBzVtsece7IJvF9Fy2I2giZ6HjHE4yOeWlTn8f9PfBCz8GwKxcmR89s92G\nNKHQfD4TEQAOtAVZW+vl84eHuRGz0/PlDHzjzCgXB9J8fE8NQa+mMBNruGeYs/98tqxu0xObaN7W\nXKEeiYiIiIjIuNkIZH4eiAGfn1D/TaAH+Hg4HP73kUhkqtV31+X7cLAkjBn3PDaQ2TALfRQREZHl\nyu2G9RtseevbIZvBXLpkA5qzZ+DCBZx0aspLnd5e6O2F53+EcRx7j+07bECzeYsNf0TmwepaD7/9\nWANfOh7laG/xbfPx60n+6CcZPrG3lrZarQuy3KViKU5/9TQmW/zotXrvatbsW1PBXomIiIiIyLgZ\nfYsQDodrsVOV/XhioBKJREw4HD4IfADYCFyc4hadQBI7xdlEG/LbkzPpo4iIiEgZtwc2bbblHe+C\ndBrT1WlHz0TOQudFnExm0mWOMdDVacvT38H4fNC+1QY023fC6tWgqaNkDgW9Lj7xYC3PdcX5+plR\ncvnv3PvGsvy3Fwb58K4aHl6r9UGWK2MMHU93kB4rrqHV2N7I5rdu1rR2IiIiIiILhGPMVANX7kw4\nHN4NHAe+HIlEPjbF+T/GTmn21kgk8oNp7vG/Ab+PXX/mT4AosB/4LNAHPBKJRKae+H0aw8PDUz6p\njo6Ou7mNiIiILENOOk3w6hWCl7up6r5EoPeaDWNuIxMKMbZuA7H1Gxhbv55sdc089FaWq2txN09f\nq2I0Uz5V2Y7aFG9aEcejGcyWnbFLYwwfHC4cu2vcND/RjEsvBhERERGRWdHePtW4Eqirq7vjX0DN\ndJ6N8W8axqY5H5vQbpJIJPIH4XD4OvDnwG+WnPo28PN3G8aIiIiIzITxehlbv4Gx9Ru4CbiSSRvO\nXOoidKkL3+DAlNd5YjFqz5yi9swpAJJNzYyt30Bs40bia9ZivJpOSmbPqmCWj64b5Xu9QS6PFV9b\np0d83Ei6efeqGHW+e//hlSwu2XiWkSMjZXX1++sVxoiIiIiILDAVn/g8HA5/Cvgz4F+BL2NHxRwA\n/gPw3XA4/M5IJDI0G481XYK1HI2PFtK/iSxmeh3LUqDX8SKxa1dh1wwMwNnTcOY0nD2DE41OeYn/\nZj/+m/00HH7VhjFbw7BjF+zcBa2tS2p6M72OK2f3NsO/dMT4l44xxuOX/qSbr12t45P76tlQryDw\nTi3W17ExhpNPnsSkiwHc2kfXsvHAxgr2Siplsb6ORUrpdSxLgV7HshTodTw3ZhrIjP8MKzTN+eoJ\n7cqEw+EwNox5JhKJvLvk1PfC4fAx4BvAf8KGMyIiIiKV19gIj77OllwOc6UHzpyxIU3HOZx0etIl\nTjoNp07a8hSY5uZiOBPeBoFABZ6ILAUux+FdW6vZUO/lvx8dIZb/Un40Zfizlwb5xQfr2N3qr3Av\nZS71Hu1l8OJg4Ti0IsT616+vYI9ERERERGQ6Mw1kOgEDtE1zfvyTwHSLtzye78M/TXHu6fy93zyT\nDoqIiIjMGZcL1q6z5W1vh3Qac+G8HT1z5hROd/eUlzn9/fD8j+D5H2HcbtjSDjt22oBmTduSGj0j\n82PHCj//4fWNfO7VYXpGMgCkc/C5V4f58K4aXrc+WOEeylyID8W5+MzFwrHjcgj/VBiXW1OViYiI\niIgsRDMKZCKRSCwcDh8HHgyHw4HS9V7C4bAbeBS4HIlEpv42ojiyZqqfhfoBZ5pzIiIiIguP1wvb\nttvy/g9iRkbgzCk7Mub0KZzR0UmXONksRM7a8vWvYerqYedO2LnbhjRBfZEud6Yx6ObfPVLPFw6P\ncKYvBdhfNz15MspgPMt7wiEchX1LhjGGc98+RzaVLdStf/16qlurb3GViIiIiIhU0mysIfN57LRj\nnwT+tKT+48AK4HfHK8Lh8DYgGYlEOvNVL+a3HwmHw38eiURKVx79mQltRERERBaX2lo48IgtuRzm\ncndx6rKLF3DM5EXXneEhePEFePEFjMsN7e2w+z5bWldW4EnIYhLwuPjkQ3X844koL/cUfivFv14Y\nYzCR42P31eBxKZRZCq4euspw93DhuGZ1DWsfWVvBHomIiIiIyO3MRiDzWeDngP8aDofXA68CO4HP\nACeA/1rS9gwQAbYBRCKRF8Ph8FPY8OUn4XD4K0AfsA/4DeA68Aez0EcRERGRynK5YP0GW971HojF\nMGfPFAIaZ3ho0iVOrmT0zFe/gmlZYYOZXbuhfasdkSMygdvl8LH7amgIuni6Y6xQf+hKguFEll/e\nW0fQqymtFrOxm2N0/qizcOzyuAi/J4yjsE1EREREZEGbcSATiUTS4XD4bcDvAR8EfhO4Afwd8LuR\nSGTsFpcD/CzwPPA/YcMXH3AV+ALwf0YikSsz7aOIiIjIghMKwd6HbDEGc/VKcfTM+Q47ldkETt8N\nePYH8OwPMH4/bN9RDGjq6ivwJGShchyHd22tpiHg5h9PRsnlB2Odu5nmT14a4lP766gPuCvbSbkn\nJmeIfCtCLpMr1G140waqmqsq2CsREREREbkTszFChkgkMoIdEfOZ27Sb9JOtSCSSBf4iX0RERESW\nH8eBNW22vO0dEI9jzpyGk8fh5AmckZHJlySTcPSILYBZt96GM/ftgXXr7T1l2XtkXZDagIsvHB4h\nlbWpzNVohv/nhUE+tb+e1TWz8nFA5tHlly8TvRotHNetrWPNvjUV7JGIiIiIiNwpfQITERERWWiC\nQXhwry25HKb7EpzIhzOXuqa8xOm+BN2X4DvfwtTVw549sOcB2BrW1GbL3M4Vfv7dI/V89tAw0aQd\nVTGUyPEnLw7yKw/V0d7kq3AP5U6N3hjl0vOXCscur4ut79mKowBWRERERGRRUCAjIiIispC5XLBh\noy0/9T7M8BCcPGlHz5w+ZUfKTOAMD8Hzz8Hzz9mpzXbugj3326nNQtUVeBJSaevqvHzm0Qb++uAQ\nN2J2Orx4xvBXB4f4+J5a9q4OVLiHcju5bI7ItyKY8fnngE1v2USwIVjBXomIiIiIyN1QICMiIiKy\nmNTVw2OvsyWdxpzvsKNnThy3a8xM4CSTcPg1OPwaxuWCLe02nLnvfmhpqcATkEpprnLzmUcb+JtX\nh+kcTAOQycH/e2SEoXiOxzcFNdJiAev+STex67HCccPGBlY9sKqCPRIRERERkbulQEZERERksfJ6\nYfsOWz78UUxvLxw7AseOQudFHGPKmju5HJyL2PLUk5jVa/LhzB5Yv8GOxpElLeRz8ZsH6vmHIyMc\nv14cXfWNs6MMJrJ8YEc1LoUyC070apTuF7sLx26/m63v1lRlIiIiIiKLjQIZERERkaVi5UpY+U54\n+zthZARz4rgNZ86cxkmnJjV3rl6Bq1fg6e/YdWfufwAeeBDa28Gtt4lLlc/t8Et7a/mn06M81xUv\n1D/XFWcokeMX7q/F69YX/QtFNp0l8q0IlOSrW962BX+tv3KdEhERERGRe6JP2iIiIiJLUW1tcWqz\nVBJz5owNZ04cw4lGJzV3hofguR/Ccz/EhEKwe48NZ7bvAJ8WfV9qXI7DB3dU0xB0840zo4X6Y71J\nvnB4mE88WKdQZoG49Pwlxm6OFY6btjaxYteKCvZIRERERETulQIZERERkaXO57dTk+25H3I5TOdF\nG84cP4rT2zupuROLwcsvwssvYvx+2LnbhjO7dkNQC4gvFY7j8JZNVdQHXHzx2AiZnK0/eSPF5w8P\n80sKZSpuuHuYnld6CsfeoJf2d7RrqjIRERERkUVKgYyIiIjIcuJyweYttnzgQ5jrvTacOXoE5+KF\nSc2dZBIOvwqHX8V4PHbEzP0Pwp49UF1TgScgs23v6gAhr4u/fXWIdD6UOaVQpuKyqSyRb0fK6ra8\nYwu+ao1YExERERFZrBTIiIiIiCxnrSvhbe+At70DMzQEx47AkcNwLoKTy5U1dTIZOHEcThzHfNGB\n9q3wwIN46hrI1CicWcy2tfj41X31/O2h8lDm714b5pf3KpSphIvPXiQxlCgct+xsoWV7SwV7JCIi\nIiIiM6VARkRERESs+np445ttGR3FnDgGR47A6ZM2jCnhGAPnInAuwiYgvnqNXa/mwb3Q0FiZ/suM\nbGueHMqc7lMoUwlDXUNcO3ytcOyr9rHlbVsq2CMREREREZkNCmREREREZLLqanjkMVsSCcypk3bk\nzMnjOInEpObBq1fgqSfhqScxmzbbYObBh6BR4cxisq3Zxyf31fM3E0KZz702zK8olJkXJme48P3y\n6QO3vmsr3qC3Qj0SEREREZHZokBGRERERG4tEIC9D9mSTmPOnoGjh+HoUZzY6KTmzsULcPECfPUr\nmI2b7HUP7oXGpgp0Xu5WeIpQ5oxCmXnTe7yXWF+scLxi1woatyjYFBERERFZChTIiIiIiMid83ph\n9322fCyL6TjH8A+fobrjHJ6xsUnNnc6L0HmxGM6Mj5xpUjizkCmUqYxMMkPXc12FY5fXxcY3b6xc\nh0REREREZFYpkBERERGRe+N2w7bt3HB7uPH4W2nHwGuvwpHXcKLRSc0L4czXnsJs2JgfdbNP05ot\nUOFmH7+2r57PTghl/vbVYX7loTp8CmVm3eWXLpOOpQvHax9ei7/GX8EeiYiIiIjIbFIgIyIiIiIz\n53JBezuEt8FHP4bpOAeHX7PhzMjIpOZOVyd0ddpwZks7PLTPjp6pratA52U6W5t9fGq/DWVSWVt3\ntj/F514d4lceqlcoM4sSwwl6XukpHPuqfbQdaKtgj0REREREZLYpkBERERGR2eVy2WAmvA0+8rOY\n8x35kTOHcUaGJzV3znfA+Q7Mk1+21+zbD/c/CKFQBTovE7U3FUfKFEOZtEKZWdb5w05M1hSON7xp\nA26fu4I9EhERERGR2aZARkRERETmjssFW8O2fORnMRfO23Dm8GuTwhnHGDh7Bs6ewXzpi7BzFzy0\nH+7bA4FAhZ6AwPShzN++OsSvKpSZsZErI/Sd7iscV6+spnV3awV7JCIiIiIic0GBjIiIiIjMD5cL\n2rfa8uGP2mnNXj1ow5lYrKypk83C8WNw/BjG64Pd98G+fbBzN/h8FXoCy1t7k49P7avnrw8Nk8qP\n5Ij0p/mbQ0N8cp9CmXtljOHiDy6W1W16YhOOo39PEREREZGlRoGMiIiIiMy/0mnNPvoxzJkzNpw5\negQnkShr6qRTcPhVOPwqJhCAPQ/Yac227wC3pnSaT1uafHxqfx1/fbAYypy7qVBmJvrO9DFypbjO\nUnO4mfp19RXskYiIiIiIzBUFMiIiIiJSWW4P7NptSzqNOXnChjPHj9swpoSTSMArL8ErL2FqamDv\nPth/ADZuAo0omBdbGqcOZT7/2jC/+lAdbpf+d7hTuUyOzh92Fo4dl8PGN2+sYI9ERERERGQuKZAR\nERERkYXD64UHHrQlkcCcOAaHDsGpE3YasxJONAo/ehZ+9CympQX2HYD9D8PKlRXq/PKxpdHHr+dD\nmWQ+lDndl+L/Oz7Cx/fU4lI4dkd6DvaQHE4Wjlc/tJpgY7CCPRIRERERkbmkQEZEREREFqZAwIYs\n+w5ALIY5dgQOHYSzZ3CMKWvq9PXBd78N3/02Zt16O2pm336o09RPc2VzfqTMX74yRDpn6w5dSVLt\nG+X926u1BsptpEZTXH7xcuHYE/Sw/nXrK9gjERERERGZawpkRERERGThC4Xg0dfZMjyMefUQHHwZ\n51LXpKZO9yXovoT52lN2jZr9D8MDD0Cwav77vcRtbvTxiQfr+Nxrw+TyGdkPO+PU+l08sTlU2c4t\ncF3Pd5FNFUd9rX/9ejwBfTwTEREREVnK9I5fRERERBaXujp4yxPwlicw13vh4Ctw8BWcvhtlzRxj\n4OwZOHsG86X/AfftseHMrt3g0dvg2bKr1c/H7qvhi8eihbpvno1R7XPx8FpNvzWV2I0Yvcd6C8fB\npiCrHlhVwR6JiIiIiMh80CdREREREVm8WlfCT70P3vNeTFenDWdePWjXlynhZDJw+DU4/BomVG2n\nMzvwMGzYCJpaa8YOtAWJJnN882ysUPflE1FCPhe7W/0V7NnCY4zhwjMXoGTWvU1v2YTL7apcp0RE\nREREZF4okBERERGRxc9xYOMmWz70YczZMzacOXoYJ5ksbxobhR89Cz96FtO6Eh5+xIYzjU0V6vzS\n8MTmENFkjmc74wDkDPz94WF+40A9mxt9Fe7dwjF4YZChzqHCcf2Geho3N1awRyIiIiIiMl8UyIiI\niIjI0uJ2w85dtqQ+jjl+zIYzJ0/i5LJlTZ3rvfDNr8M3v47ZGrbhzAN7Iaiptu7F+7ZXM5oyHLyS\nACCdg785NMynH2lgda0+euSyOTs6ZpwDm5/YjKNRWiIiIiIiy4I+FYmIiIjI0uXzw0P7bRmNYg4d\ngldewunqnNTUOReBcxHMl78E998PDz8K27bbgEfuiMtx+Nh9NcTSOU7dSAEQzxj+8uAQn3m0gaaq\n5f1v2Xukl/jNeOF45Z6VhFaEKtgjERERERGZTwpkRERERGR5qK6BNz8Ob34c03sNXn4JXnkZZ3Cg\nrJmTTsGhg3DoIKa2Dvbvt+FM29oKdXxxcbscPvFgHX/x8iCdQxkARpI5/urgEJ9+pIEa//JcKyWT\nyND1467CsdvnZsMbNlSsPyIiIiIiMv+W56chEREREVneVq6Cn/4A/MH/jfmt38Y8+hjGP3nxeWdk\nGOcH38f5/f8Mf/Cf4ZkfQDRagQ4vLj63wyf31bOyujgi5kYsy2cPDZHI5CrYs8rpfqGbTDxTOF77\n6Fp81VpbR0RERERkOVEgIyIiIiLLl8sF4W3w878If/TfML/0K5iduzBTrOnhXL6M89Q/wn/8bfjs\nX8Kxo5DNTHFTAQj5XPz6/noaAsWPHN3DGf7utWHSWVPBns2/+GCcK4euFI79tX7W7FtTwR6JiIiI\niEglaMoyERERERGw683sO2DL8BDm4Ct2SrOey2XNnGwWjh6Bo0cwNTWw/2F49DFY01ahji9cDUE3\nv36gnj95cZBY2oYwkf40Xzw2wi88UItrmSxm3/lsJyZXDKE2vnkjbu/yXk9HRERERGQ5UiAjIiIi\nIjJRXT289e3w1rdjei7DSy/CwZdxJkxX5kSj8Mz34ZnvY9atg0ceg3377Xo1AsDKag+/tr+eP395\niFR+ZMzha0mqfaN8aGc1zhIPZYa6h+iP9BeOa9bU0LKjpYI9EhERERGRSlEgIyIiIiJyK21r4Wc+\nAu//IObkCRvOnDiOk8uWNXO6u6G7G/PVr8B998Mjj8LOXeDWSIgN9V5+eW8tnz00zPhAkecvxanx\nu3hHe6iynZtDxhgu/uBiWd3mt2xe8iGUiIiIiIhMTYGMiIiIiMid8Hjg/gdsiUbtlGYvvTD1lGZH\nXoMjr2Fqa+HAI3ZKs1WrK9TxhWF7i59/s6eWfzg6Uqj7zrkYNX4Xj60LVrBnc+fGyRuM9o4Wjlt2\ntFDbVlvBHomIiIiISCUpkBERERERuVs1NfCWJ+AtT2AudxenNBsdLWvmjIzA978H3/8eZtNmeOx1\nsHcfBAIV6nhlPbQmwGgqx9dOF/+dvnIySkPAxY4V/gr2bPblsjm6nusqHDtuh41v2li5DomIiIiI\nSMUpkBERERERmYm162z5wIfyU5q9ACdOTJ7S7OIFuHgB85V/hL0PwaOvg81bYJlNX/WmjVVEkzn+\n9cIYADkDf39khN96tIHVNUvn40nvsV6SI8nCcdv+NgL1yzOIExERERERa+l84hERERERqaTSKc1G\nRjAHX4YXX8C5eqWsmZNMwosvwIsvYFpbbTDz8KNQV1ehjs+//5+9O4+O4jzzvv+tbu1bCwFiEWKH\nFmbVyr44JoljkxC8x0s2x04yHj9xnPiNJ3PiJH7iN5nBSSaTGccT4sQTx4CXeI1jY2KbTQKE0AIY\nqRFIgBASILRLaGl1PX8UaqlBYEBLa/l9zqnT566+q+pqXOZ0cfV1X6uc4VQ1edhT2gRAk9vkf/ZU\n873FMUQF2/wcXfd53B5KMjqWsrMH2xm3YJwfIxIRERERkf5ACRkRERERkZ4WFQUrPwM3fBrz2FFI\n3wF7MjGazvlMM06dgtf/ivnm6zBrjtVrZvZssA/ur+mGYfCl2ZFUnmvjSGUrAJXnPKzLqubhBcMI\nsg/sqqHyfb7VMXEpcQSGBvoxIhEREREZalpaWli/fj2bNm3ixIkTAIwfP5477riD1atX+zm6oWtw\nP+mJiIiIiPiTYcDESdZ2+x2Y2dmQsQPjkMt3mscD+3JhXy5mVBTMX2j1mxk9xk+B975Au8E3kh38\nMr2KikZrebej1W5ezKvlK4lR2AboUm4et4fj6ce9Y3uwnbi0OD9GJCIiIiJDTWtrKw8//DA5OTlM\nnz6dNWvW0NzczPvvv89TTz1FbGwsCxcu7LN4PvjgA7Kzszl06BCHDx+moaGBG2+8kSeffLLPYugv\nlJAREREREekLQcGwYOmGgUIAACAASURBVCEsWIh5+pS1bNnODIyaap9pRm0tbN4EmzdhTp0GS5ZC\nUrJ1/CATEWTjW6lWUuac2wQgu6yZ2PAGbnZG+Dm6a1OeV05LXYt3HJeq6hgRERER6VsbN24kJyeH\nNWvW8Pjjj2Oc/7FTYmIiTzzxBHl5eX2akPnjH/9IYWEhYWFhxMbG0tDQ0GfX7m+UkBERERER6Wux\no+CLt8DnV2Me/BgydkBeHoanzWeacbgQDhdivrQB0hZYyZn48X4KuneMigjg/mQHz2RW47FyMrx3\nuJGR4XbSxoX6N7ir5HF7OJ5xQXVMqqpjRERERKRvvfbaa4SEhPDII494kzEAdrsdAEcf96/87ne/\nS2xsLPHx8WRnZ/Ptb3+7T6/fnyghIyIiIiLiL3Y7zJ5jbXV1mLt3QvoOjLKTPtOMc+dg60ew9SPM\n8RNgyTJITYPQgZWwuBTniCDunBXJhv113n0b9tcxPMzOlJggP0Z2dVQdIyIiIiL+VlZWRmlpKUuX\nLiX0gueFDz74AICUlJQ+jamvr9efKSEjIiIiItIfREbCys/ADZ/GLC6C9O2QtQejudlnmnH8GKx/\nAfPVlyAl1UrOTJps9asZwBaND+V0QxsfFDUC4PbAuqwavrd4GCPD+/9jS1fVMePSxvkxIhERERHx\n+uW/+zuCy/ve/9djp8rPzwdg5syZ3n2mafLSSy/x4YcfkpaWxrRp03rsenJ1euTJxul0xgA/Br4I\njAEqgL8DP3K5XGVXcHww8DhwLxB//vh3gH91uVwVPRGjiIiIiMiAYBgweYq13X4X5p5M2LEN49hR\n32ktLVYfmox0zLFjYfFSmL8QIgZm7xWALySEc6bBzb5TVpVJQ6vJs3uspExYoM3P0V1eee7F1TEB\nIf0/kSQiIiIyFBiFh/wdwmWZPXiugoICAGbMmEFWVhabNm0iNzeXY8eOMW3aNH76059e9vgNGzZQ\nV1dHZWUlADExMZedP336dFasWNEjsQ8F3X5CcDqdocAWIAH4LyALmAZ8H/iU0+lMdrlcVZc5PgAr\n+bL8/PF7gRTgn4ElTqcz0eVytVzqeBERERGRQSskBJYug6XLME+UwI7tkLkLo7HRZ5px8iS88hLm\n63+FeUnWMdOdA65qxmYYfHmeg9/srKKk1g3A6YY2nttbwz+lRWO39c/P43F7OL5T1TEiIiIi4n/t\nFTIzZsxg7dq1bN682fvexIkT8Xg8lz1+48aNlJV9Yo2F180336yEzFXoiZ9sPQLMBh5yuVzPtO90\nOp15wOvAj4BHL3P8t4AbgK+4XK4/n9/3F6fTWQF8HZgPbO+BOEVEREREBq5x8XDX3XDLbZg5e2HH\n9ot+6We43ZCVCVmZmLGjrOXMFi2CiEg/BX31ggMMvpnq4On0KqqbrIfFQ2dbeelAHV+aHenTlLS/\nKMst86mOGZc2TtUxIiIiIv2IOW26v0PoMwUFBYwZM4bo6GiefPJJHnvsMYqKinj55ZfZvHkzxcXF\nrF+//pLHv/nmmwAUFhYCaHmzHtYTTwlfBhqA5y7Y/yZwArjX6XR+z+VyXary6iGgEHih806Xy/Uz\n4Gc9EJ+IiIiIyOARFGQtTTZ/IWZ5udVrZlcGRl2dzzTj9Cl47RXMt14fcFUzjhA7D6Y4+I+dVbS0\nWft2ljQxKjyAG6aE+Te4C3jcHkoySrxje7CduNQ4P0YkIiIiIhfpwR4t/VlZWRk1NTUkJycDYLfb\niY6OJikpiaSkJO655x4KCwspLS0lLk7fWf2hWwkZp9MZhbVU2XaXy+XTbdTlcplOpzMTuAWYBBR1\ncfy488f/d3vCxul0hgDNl0ngiIiIiIgIwOjRcOvtsHoN5r482LEN8g9imB1fpbusmlm4CCL7d9VM\nvCOQryY6WJdV411T+82CekaE25k7OtivsXVWlltGS72qY0RERETE/zr3j+lKVFQUAGFhl/6Rk3rI\n9K7uPilMOP964hLvty+kPJkuEjJYyRiAI06n8zvAd8+fs9npdL4HfN/lch3uZoxe7WVW0kF/JjIY\n6D6WwUD3sQwGuo/9LDIKPreKgEVLcOzfh+PAPgIaGnymtFfNeN58jfqp06mZM5dz8eP7bdVMCLB4\nZBA7zoQCVrPT57OruS2+ntiQy699fa2u5j4220xObzvtHRuBBk3Dm/T/gvid7kEZDHQfy2Cg+1j6\nWkZGBgCRkZEX3X/19fXk5uYSHx9PRUUFFRUVXZ7jhRdeuOR7XVm6dOlVVducOGGlEurq6gbc/yM9\nsXxbdxMy7T+ra7zE+w0XzLtQe3rtK0AQ8BRwCqunzD8DC51O5zyXy3XlXYRERERERIYwtyOas0uW\ncXbhYiKKjuDYl0vY0WI6p1xsbW1EufKJcuXTMmwYNbPnUjtzNm2X+aWcvyRGt1DdYuNAjVUV4zYN\n3i4N587x9UQE+reovrGoEU9TR2IofHo4tkCbHyMSERERkaGsuLgYgF27djFr1ixv/0W3281zzz1H\nW1sbN91002XP8Zvf/KbX4xzK/F1LH3T+dRQwy+VynT0/fsvpdJ7CStB8D/h+T1xMDYg6qCmTDAa6\nj2Uw0H0sg4Hu434sIQFuuhkqzmDu2A4Z6Ri1NT5TgqqqGLltCyPSt0NiMixbDtOm96uqmSlTTZ7d\nU01BRSsADW023j8bwyMLhxEc0DNxXu197HF7yHw30zsOCAlgzmfnaLky8Sv9fSyDge5jGQx0H4u/\nHD9uLVi1ZcsWysvLSUlJobGxkd27d1NaWsqqVau4//77r+hcPXkfb9myha1btwJw9qyVAjh69Cjr\n168HIDo6mu985zvdvs5A0N2nhdrzr+GXeD/ignkXqj//+lanZEy757ASMiuuOToREREREYERI+GL\nt8Dnv4C5b5/Va+bgx769ZtraOnrNjB4NS1fAgoUQfqmv+n3HbjP4WpKDX2dUUV7fBsCJWjd/yavl\n60lR3l/+9aWyHN/eMXFpcUrGiIiIiIjflJeXU11dzfz584mIiCArK4sNGzYQHh5OQkICDz30ECtX\nrvRLbIcOHeKdd97x2VdaWkppaSkAY8aMUULmChVjLeU87hLvt/eYudRicEfPv9q7eK/i/LmjrjU4\nERERERHpxB4AiUnWVnEGM30HpO+4qGrGKC+HVzZivvFXSE61qmYmTfZr1UxYoI1vpkbzy/RK6lus\nRFJueTPvH27ks9P6NmnU1tpGyc4S7zggJIC4lCtfN1tEREREpKfl5+cDkJaWxn333efnaHw9+OCD\nPPjgg/4Oo1/o1gLHLperAdgHJDmdzpDO7zmdTjuwCChxuVzHL3GKg0ANMK+L9+IBAzjRnRhFRERE\nRKQLI0bC6jXw83/D/OY/YV4386IpRmsrxq4MjH//OTz1JGzbAk1NfR/reSPC7Nyf5MDWKS/0t0MN\n7D/V3KdxlOeUqzpGRERERPqVgoICAJxOp58jkcvpiY6TzwFhwDcv2H8vEAv8oX2H0+lMcDqdk9rH\nLperBVgPJDudzs9fcPw/n399uwdiFBERERGRrrRXzfyf72L+3/8f87M3YkZGXjTNOFGCsf4v8IPv\nwYsvQMmlfnPVu6YOD+L2mb7x/Tm3lrI6d59cv8vqmFRVx4iIiIiIfykhMzD0xM+4ngXuAZ52Op0T\ngCxgJvAosB94utPcfMAFJHTa92Pgs8ArTqfzF1jLmH0KuA/IPX9+ERERERHpbSNjYc1tsGo1Zm4O\nbN+KccjlM8VobobtW2H7VsxJk2HpckhJgaDgPgtzyYRQSmvd7Dh+DoAmt8m6rBq+v2QYYYE98Zuz\nSyvPKaeloaM6Ztz8cQQEqzpGRERERPyroKCAMWPG4HA4/B2KXEa3nxxcLler0+n8DPAT4FasypbT\nWJUxP3a5XI2fcPwZp9O5APgZ8CAwAigDfgU86XK5znU3RhERERERuQqBgZCaBqlpmGUnYfs22JWB\n0ej71d4oLoLiIsxXX4IFi6xeM6PH9EmIt86MoKzezZHKVgDONLbxp+wavpUajd3WO71uLqqOCQ1g\nbMrYXrmWiIiIiMjV2LRpk79DkCvQIz/lcrlctVgVMY9+wrwun4xcLtcZrCXPLlz2TERERERE/GnM\nWLjjLvjiLZh798C2rVYiphOjsRE+/Ad8+A9MZwIsWwHz5lnLofWSAJvB/UkO1u6opKrJA0BBRStv\nFdSz5rqLl1zrCWU5Zb7VMWmqjhERERERkSunpwcREREREflkQUGwcDEsXIxZctxatmz3LmsJs04M\nVwG4CjCjHLBkKSxZBjExvRJSZLCNB1Ic/DqjilYrJ8OHxeeIiwogbVxoj15L1TEiIiIiItJdvbvA\nsoiIiIiIDD7x4+Hu++Dffol5932Y4+IvmmLU1mD8/W/wrz+AZ/4LPj4AHk/Ph+II5J65UT77Nuyv\n41h1a49epyynjNaGjnOqOkZERERERK6WniBEREREROTahIRYfWOWLsMsLoKtW2DvHgy32zvFME3Y\nlwv7cjFHjLTmL1oMET23rFjy2BBKa91sPmL1uHF7YF1WDY8tGYYjxN7t86s6RkREREREeoIqZERE\nREREpHsMAyZPga/dD79Yi3nLbVby5cJpFWcwXnsVHn8M/rgODheCafZICKuc4Vw3Msg7rmn28Nze\nGlrbun/+suwLqmPmqzpGRERERESunhIyIiIiIiLScyIi4TM3wpNPYT78CObceZiG4TPFcLsxMndj\nPP1v8NSTVj+apqZuXdZmGHw1MYrY8I6KmOJqN698XIfZjaRPl9UxyaqOERERERGRq6efdYmIiIiI\nSM+z2WDmLGurrMTcsQ12bMeorfGZZpwogRdfwPzrq7BgISxbAWOvLeERGmjjwRQHv0yv4pzbSsLs\nLGkiLiqA5RPDrumc5TnltDaqOkZERERERLpPTxIiIiIiItK7YmLgC1+Em1dh5ubCti0YrgKfKUbT\nOdjyIWz5EHO6E5ZfD/Pmgf3qHllGRQTwlcQo/mdPDe11Ma8drGdMRADTRwRd9tgLedweSnapOkZE\nRERERHqGEjIiIiIiItI37AGQnALJKZjlZbBtK+xMxzh3zmeaccgFh1yYDgcsWQZLlsKwmCu+zMzY\nYL6QEM6bBQ0AeEz4Y3YN318Sw4gw+ycc3eHU/lO01Ld4x3GpcaqOERERERGRa6YeMiIiIiIi0vdG\nj4E77oJfPI1575cx4+MvmmLU1GC88zb86+PwP89AQT5cYT+YGyaHkTw22DtuaDVZl1VNs9tzRceb\nHtOnd4w9yK7qGBERERER6Rb9vEtERERERPwnONiqglm8FLO4CLZugb17MNxu7xTD44GcbMjJxhw1\n2uozs3ARhF26L4xhGNw9J4rT9VWU1FrnOlnXxl/y6vhaUhQ2w7hsWKcPnqapusk7HpsylsDQwG59\nVBERERERGdpUISMiIiIiIv5nGDB5CnztfvjFWsxbbsMcMeLiaafKMV7ZCD/4Przwv1By/JKnDLIb\nfCPFQWRQR/Ilt7yZ9w83XjYU0zQpSe+ojrEF2IhLjbuGDyUiIiIiItJBFTIiIiIiItK/RETCZ26E\nlZ/BPPgxbP0IDuzH6LRcmdHaAunbIX075uQpsPx6SEqGQN8qlphQO/cnO/jtrmrazh/+90MNjIsK\nYNaoYLpS4aqg8WxH0mZM4hiCwoN6/nOKiIiIiMiQooSMiIiIiIj0TzYbzJptbRVnMLdvg/TtGPX1\nPtOMoiNQdATz1Zdg0RJrSbPhw73vT4kJ4vZZkWzcXweACfxvbi3fXzyMURG+j0QXVscYNoNx88f1\n2kcUEREREekNLS0trF+/nk2bNnHixAkAxo8fzx133MHq1av9HN3QpYSMiIiIiIj0fyNGwppbYdUX\nMLOzYOsWKxHTiVFXB5vexXz/PZg9x6qamXEd2GwsHh9KSU0r6cetvjBNbpN1WTV8b/EwQgM7VnKu\nOlJF/amOhM+oOaMIjuq6kkZEREREpD9qbW3l4YcfJicnh+nTp7NmzRqam5t5//33eeqpp4iNjWXh\nwoV9Fs9vf/tb8vPzOX78ODU1NQQHBzN69GiWL1/O7bffTnR0dJ/F4m9KyIiIiIiIyMARGAjzF8L8\nhZjHj1vLmWXutpYwO88wTdiXB/vyMEfGwvIVsHARt14Xycm6NoqrWgE41dDGC3m1fCPZAVjVMcd3\ndupJY0D8wvi+/HQiIiIiIt22ceNGcnJyWLNmDY8//jiGYfVUTExM5IknniAvL69PEzIbNmwgISGB\n+fPnM2zYMM6dO8eBAwdYt24db7zxBn/84x8ZNWpUn8XjT0rIiIiIiIjIwDR+PNz3Fbj1dsydGbDt\nI4xTp3ymGGdOw6svY775OoGp87l/0QrWNkZQ0+wBYP+pFt4rbGSaAS1nWqg9Ues9NnZmLKHDQvv0\nI4mIiIiIdNdrr71GSEgIjzzyiDcZA2C32wFwOBx9Gs9HH31EcPDFVefPPPMMzz//PM8//zw/+MEP\n+jQmf7F98hQREREREZF+LCwMblgJP/6/mN95FHNuImanB08Ao7UVI2MH0U//jPs/fp0ATO977xY2\nUFQfQH2+b28aVceIiIiIyEBTVlZGaWkpqamphIb6/rjogw8+ACAlJaVPY+oqGQOwcuVKAEpKSrp8\nfzBShYyIiIiIiAwONpvVM2bGdVBZibljG+zYhlFb6zNtcv5u7mhoY/3cW7z7Mo8YLD/dsezZCOcI\nwkeG91noIiIiItJ7frOzyt8hXNZ3Fg7rsXPl5+cDMHPmTO8+0zR56aWX+PDDD0lLS2PatGk9dr3u\n2L59OwBTp071cyR9RwkZEREREREZfGJi4AtfhJtWYeZkw9aPMA4Xet9edDyL4444dkycD8C08kqf\nw8cvHt+n4YqIiIhI7zlc2ervEPpMQUEBADNmzCArK4tNmzaRm5vLsWPHmDZtGj/96U8ve/yGDRuo\nq6ujstL6fhwTE3PZ+dOnT2fFihVXFNtf/vIXGhsbqa+vJz8/n7y8PKZOncpXvvKVKzp+MFBCRkRE\nREREBq+AAEhNg9Q0zBMlsHULZO7CaG7mtgN/42TUKM6GjmZsbcdyZcOi2oiI9F/IIiIiIiLXqr1C\nZsaMGaxdu5bNmzd735s4cSIej+eyx2/cuJGysrIrvt7NN998VQmZ9kQPwMKFC3niiScYNqznKoT6\nOyVkRERERERkaBgXD/fcB7fcirlrJ/atH/GNrPW8O+Vun2mlTZXMfvwxK5Gz/HqYMNE/8YqIiIhI\nj5gaE+jvEPpMQUEBY8aMITo6mieffJLHHnuMoqIiXn75ZTZv3kxxcTHr16+/5PFvvvkmAIWFVnV5\nTy5v9t577wFw9uxZ9u3bx3//939z33338atf/YqEhIQeu05/poSMiIiIiIgMLaFhcP0NsOJT2LMO\nMHpzJWAAcDo8jK1TlzK2/ihzM9IhIx1z4iRYvgJS0iBw6DzMi4iIiAwWPdmjpT8rKyujpqaG5ORk\nAOx2O9HR0SQlJZGUlMQ999xDYWEhpaWlxMXF+S3O4cOHc/3115OQkMBtt93GT37yEzZu3Oi3ePqS\nEjIiIiIiIjI0GQYl5UG0J2MA8kcNB+DPiXfw2PZnGF1/BuNoMRwtxnz1FVi8BJYthxEj/RS0iIiI\niEjXOveP6UpUVBQAYWFhlzxHb/aQudCYMWOYNGkShw4dorq6mujo6Gs6z0CihIyIiIiIiAxJTdVN\nnDpwyjs+FxnM6Qjr4bQ5IJjfp97LY9ufIdTdDIDRUA/vv4e5eRPMnGUtZzZzFthsfolfRERERKSz\n9v4xXS3/VVNTQ15eHlOnTr1sz5be7CHTlYqKCgBsQ+Q7tRIyIiIiIiIyJJXsKgGzYzx6dhiTg4Io\nqmoF4HTESP535bd54KPfYW9u9s4zTBMO7IcD+zFHjIBlK2DREoiI6ONPICIiIiLSob1CZvPmzaSl\npWEYViV4a2srP//5z3G73dx9992XO0WP95A5duwYw4cPJ+KC78oej4dnn32WyspK5syZ463eGeyU\nkBERERERkSGnua6Z8rxy7zjAEUDo2GDuHx/F2vQqqps8ABwIjOXdB3/GzadzYOtHGOW+vxY0Kirg\ntVcx33rD6jGzfAVMmtyXH0VEREREBOhIyLz11lscOnSIlJQUGhsb2b17N6WlpaxatYpVq1b1aUwZ\nGRk888wzzJ07l7Fjx+JwOKisrCQ7O5vS0lKGDx/OD3/4wz6NyZ+UkBERERERkSHnxO4TmG0d5TER\nMyIwDIOoEDv3Jzn4za4q3FZOhveOtjIueTFzV1yPecgFWz6CvBwMj8d7vOF2w64M2JWBOWGilZhJ\nSYOgoL79YCIiIiIyJJWXl1NdXc38+fOJiIggKyuLDRs2EB4eTkJCAg899BArV67s87jS0tI4ceIE\nubm5uFwu6uvrCQkJYfz48Xzuc5/jzjvvxOFw9Hlc/qKEjIiIiIiIDCmtja2U5XRUuoTGhBIyLsQ7\nnjgskDtnRfLivjrvvhdya4ldPIwxzgRwJkBVFeaObbB9G0Ztjc/5jWNH4c/PY776srWU2fIVMDK2\ntz+WiIiIiAxh7f1j0tLSuO+++/wcTYcpU6bw2GOP+TuMfmNodMoRERERERE570TmCTytHdUt8Yvi\nvetrt1sQH8rSCaHecXObybqsGhrbjxs2DD6/Gn7+b5gPfAtz2vSLrmM0NmL8432MH/0QfvsfsC8X\nOlXViIiIiIj0lPblypxOp58jkctRhYyIiIiIiAwZ7iY3J/ee9I6DHcHEzoylrqjuorm3XhfByTo3\nRypbATjT2MbzObV8K9WBrT2BYw+A5BRITsE8WQpbt8CuDIzmZp9zGR8fgI8PYMbEwLIVVuXMEGlc\nKiIiIiK9TwmZgUEVMiIiIiIiMmSc3HuStuY27zh+QTw2e9ePRXabwdeTHESHdLyff6aFtwoauj75\n2Dj40j3wb7/EvOsezLFjL5piVFZivPEa/Mtj8Nw6OFwIptnFyURERERErlxBQQFjxowZUv1YBiJV\nyIiIiIiIyJDQ1tLGicwT3nFQRBCj546+7DFRwTYeSHbwHzuraF+t7IOiRuKiAkiNC+n6oJAQWHE9\nLF+BWXgItm2B7GwMT0ciyGhrgz27Yc9uzLhxVp+ZtAXWsSIiIiIiV2nTpk3+DkGugBIyIiIiIiIy\nJJTlluE+5/aOx80fhy3gkxcNGB8dyJfmRPHn3Frvvg37ahkVbmd8dOClDzQMmO60tpoazPTtsH0r\nRlWV77TSE7D+L5ivvQrzF1rJmbFxV/35RERERESkf1NCRkREREREBj2P28OJXR3VMQGhAYxJHHPF\nx6fGhVBa6+aDokYAWj2wbm8Njy0eRlSI/ZNP4HDATavgs5/D3L8Ptn6EkX/QZ4rR1ARbP4KtH2FO\nmw7Lr4d5iRCgxzYRERERkcFA3+xFRERERGTQK99XTkt9i3c8Lm0c9qArSKR08oWEcE7Wuck/Y52n\nusnDH7JreXh+NIF248pOYrdbSZZ5iZinymHbVtiZjtHY6DPNKDwEhYcwo6Jg8VJYugxihl9VvCIi\nIiIi0r98cn2+iIiIiIjIAOZp81CSUeId24PtjE0ee9XnsRkGX02MYmR4RyKnuKqVVz6uwzTNqw9s\n1Gi4/U74xVrM+76KOX78RVOM2lqMd9+Bf30cnvktHNgPHs/VX0tERERERPxOFTIiIiIiIjKoleeV\n01zb7B2PTR5LQMi1PQqFBdp4MMXBL9OraHJbSZidJU2Miwpg2cSwawswKBgWL4FFizGPFsPWLZCV\nieHu6HdjmCbsy4N9eZgjRsDS5bBoCURGXts1RURERESkz6lCRkREREREBi2P++LqmHHzx3XrnKMj\nAvjKvCg6L1L214P1FJ5tueQxV8QwYNJk+OrX4RdPY956O+bI2IunVVRgvP5X+JfH4I/r4HAhXEuF\njoiIiIiI9ClVyIiIiIiIyKBVvs+3OiYuJY7A0MBun3fWqGBWOcN529UAgMeE5/bW8NiSGIaHXV1v\nmi5FRMCnPws3fBqzIB+2bYF9eRidlisz3G7I3A2ZuzHj4mDZCpi/EEJCun99ERERERHpcUrIiIiI\niIjIoORxezieftw7tgfbiUuL67Hzf3pKGKW1brLLrIRPQ6vJ77NqeHTRMIIDjE84+grZbHDdTGur\nqsTcsR12bMOoqfGZZpSWwoYXMV97FeYvsJIz4+J7JgYREREREekRSsiIiIiIiMigVJ5XTktdxzJi\nPVUd084wDO6ZG8XphipO1Fr9Xk7WuflLXi1fT4rCMHooKdNuWAx8fjXcdDNmXh5s24JRkO8bU3Mz\nbNsK27ZiTp4Cy5ZDUgoEBfVsLCIiIiIictWUkBERERERkUHH4/ZwPKP3qmPaBdkNHkhxsHZHJfUt\nVh+X3PJm3j/cyGenhff49QCwB0BSMiQlY54qtxIwO9MxGht9phlFR6DoCObLG2HBIis5M3pM78Qk\nIiIiIiKfyObvAERERERERHraRdUxqT1bHdNZTKid+5Mc2DoVxPztUAP7TzVf+qCeMmo03H4n/OJp\nzC9/DXPipIumGI2NGB/+A+MnP4JfrYWsTHC7ez82ERERERHxoQoZEREREREZVLqqjhmXNq5Xrzl1\neBC3z4zkpQN13n1/zq3l0UXDGBPZB49dQUGwaDEsWox5/Bhs3wqZu60lzDoxDrngkAszMhIWLYEl\ny2DkyN6PT0REREREVCEjIiIiIiKDS1fVMQEhvZ8UWTIhlMXjQ7zjJrfJuqwaGls9vX5tH+MnwD1f\ntqpmvnQPZtzFS7UZdXUYm96FJ34I//lryM2Btra+jVNEREREZIjpkacSp9MZA/wY+CIwBqgA/g78\nyOVylV3luUKAPGA6cL3L5drSEzGKiIiIiMjg54/qmM5umxlJeX0bRypbATjT2Mafsmv5VqoDe+c1\nzfpCaCgsvx6WrcAsLoJtW2BvFkZrq3eKYZpw8GM4+DFm9DBYvAQWL4WYmL6NVURERER6VEtLC+vX\nr2fTpk2cOHECSSp84gAAIABJREFUgPHjx3PHHXewevVqP0c3dHU7IeN0OkOBLUAC8F9AFjAN+D7w\nKafTmexyuaqu4pQ/wkrGiIiIiIiIXJXyXN/qmHFp4/qkOqZdgM3g/iQHa3dUUtVkVcYUVLTwRn49\nt86M7LM4fBgGTJ5ibbffiblrJ2zbinGq3HdadRW88zbm3/8Gs2bD0mUwczbY7f6JW0RERESuSWtr\nKw8//DA5OTlMnz6dNWvW0NzczPvvv89TTz1FbGwsCxcu9HeYPWb16tWUlXVdFxITE8N7773XxxFd\nWk88mTwCzAYecrlcz7TvdDqdecDrWAmWR6/kRE6nczbwGJADJPZAbCIiIiIiMkR0VR0Tl3rxcl29\nLTLYxgMpDn6dUUX7amVbjp5jZLidZRPD+jweH+ERcMOn4VMrMQ+5rF4zOdkYnZYrM0wT9u+D/fsw\nhw2zes2oakZERERkwNi4cSM5OTmsWbOGxx9/HMOwKrUTExN54oknyMvLG1QJGYCIiAjuuuuui/aH\nhfn5+/cFeiIh82WgAXjugv1vAieAe51O5/dcLpd5uZM4nU4bsA44BvwP8GwPxCYiIiIiIkNEWW4Z\nLfX+q47pLN4RyL1zo/hTTq13318P1jMy3M6MkcF+icmHYYAzwdpqazF3psP2rRgVFb7Tqi6smllu\nvdrUjlRERESkv3rttdcICQnhkUce8SZjAOznK58dDoe/Qus1kZGRPPjgg/4O4xN16+nE6XRGYS1V\ntt3lcjV3fs/lcplOpzMTuAWYBBR9wun+GZgPrATiuxPXpRQWFvbGaQc0/ZnIYKD7WAYD3ccyGOg+\nFn8y20xObzvtHRuBBk0xTVd9X/bkfRwJLBgezK6zIQB4TPhDVjW3x9czPNjTY9fpEZOnwqQphB07\nimNfLhFHDmN4OmLsXDXTGhFJzew51M6agzsqyo9By6Xo72MZDHQfy2Cg+1j84cyZM5SWlpKUlOTt\nHdPujTfeACA2NvaK78+BcB+3nu+R2NuxTps2rdvn6O7PxSacfz1xiffb1wuYzGUSMk6nMx54CnjB\n5XJ94HQ6v9rNuEREREREZAhpLGrE09SRQAifHo4tyP9VHKkxzVS32CioCwKgxWPwdmk4d4yvJyzg\nsosI9D3DoHHiJBonTsLeUE/Ugf049ucRVFPjMy2wvo4RO9MZviuDhkmTqZkzj4ZJk1U1IyIiIv3W\n2S1n/R3CZQ1fMbzHzlVcXAzAlClTvPtM02TTpk3s2bOHWbNmMX78+B67Xn/hdrvZsWMHZ8+eJTg4\nmPj4eGbMmIGtn31H7W5Cpr0rZeMl3m+4YN6l/A5oAb7XzXguqycyWINFe7ZQfyYykOk+lsFA97EM\nBrqPxd88bg+Z72Z6xwEhAcz57JyrWq6sN+/jSVNM/mt3NUVV1i/3at02/lEZw8MLhhFkNz7haD+a\nlwgeD2ZBPmzfBnm5GB7fXjMRRUeIKDrS0Wtm0RIY3nP/oCBXR38fy2Cg+1gGA93H/U/ZK103fO8v\nevJe2bx5MwBLliyhpqaGTZs2kZuby7Fjx5g2bRpr165l+GW+r23YsIG6ujoqKysBiPmEPoLTp09n\nxYoVPRb/tQgMDKSiooLf/e53PvvHjh3LE088QVJSkp8iu5h/FlTuxOl03gXcDHzd5XKd8Xc8IiIi\nIiIysJTl+PaOiUuL81vvmK4E2g0eSHHwy/QqKhqthMbRajcv7qvlq/OifNb17ndsNrhuprXV1Fi9\nZnZsx6jwfXTz6TVz3UxYvBTmzIWA/vPfQURERGQoyM/PB2DGjBmsXbvWm6ABmDhxIh7P5ZfO3bhx\nI2VlV57Auvnmm/2ekFm1ahXz5s1j8uTJhIeHU1payssvv8wbb7zBd77zHZ577jmmT5/u1xjbdffb\ncXuHyvBLvB9xwTwfTqczBvgNsNXlcv2pm7GIiIiIiMgQ09baRsnOEu84ICSAuJQ4P0bUtYggG99M\ndfCr9CrOua2lyrJPNhMb3sDN0yM+4eh+wuGAG2+Cz9xoVc3s2Aa5F1fN8PEB+PgAZmQkLFgES5bC\nqNF+DFxERESGOsf4wdfE/lIKCgoYM2YM0dHRPPnkkzz22GMUFRXx8ssvs3nzZoqLi1m/fv0lj3/z\nzTeB3q30Wr169VUlfW688UaefPLJS77/wAMP+IynTJnCv/zLvxAWFsaLL77IunXrWLt27TXH25O6\nm5ApBkxg3CXeb+8xc6luOmuBaOAnTqez8zmGnX8deX7/GZfL1dzNWEVEREREZJApzy3v19UxnY2O\nCOD+ZAfPZFbjOd8+5r3CRmLDA0iNC/FvcFejq6qZ9O0YZy6omqmrg82bYPMmzGnTrcRMYjIEBfkp\ncBERERmq5t47198h9ImysjJqampITk4GwG63Ex0dTVJSEklJSdxzzz0UFhZSWlpKXJz/fsQUFxdH\n0FV8JxwxYsQ1XeeWW27hxRdfJCcn55qO7w3delJxuVwNTqdzH5DkdDpDXC5XU/t7TqfTDiwCSlwu\n1/FLnOIGIAj46BLvv3z+9XpgS3diFRERERGRwaWttY2SjAuqY1L7X3VMZ84RQdw5K5IN++u8+9bv\nqyUm1MaUmAGYqOhcNXPIBTu2Q242htvtM80oPASFhzBf2gBpC6zkzLh4PwUtIiIiMjgVFBQA1nJl\nXYmKigIgLCzskufoix4yzzzzzFXNv1bDhll1H01NTZ8ws+/0xE/HngP+E/gm1vJj7e4FYoEft+9w\nOp0JQLPL5So+v+vrQFf/9W8AHgF+COw/v4mIiIiIiHiV55TT0tBRHTNu/jgCgvtndUxni8aHcrqh\njQ+KGgFwe+APe2v43uIYRoTZ/RzdNbLZIGGGtdXXY+7eafWaKTvpM81obIQtH8KWDzEnTrJ6zaSm\nQcgAqhASERER6afa+8ckJCRc9F5NTQ15eXlMnTrVm6joykDsIXMp+/dbaQV/VgNdqCeeVp4F7gGe\ndjqdE4AsYCbwKFYi5elOc/MBF5AA4HK5PuzqhE6ns70GaafL5drSAzGKiIiIiMgg0lXvmLEpY/0Y\n0dX5QkI4Zxrc7DtlJZTqW0yezazm0cXDCAu0+Tm6boqIgBs+DZ9aiVlcZPWaydqD0dLiM804WgxH\nizFffQmSU2DREpgyFQzDT4GLiIiIDGztFTKbN28mLS0N4/z3qtbWVn7+85/jdru5++67L3uOvugh\n05OKi4sZPXo0oaGhPvtPnjzJ009bqYkbb7zRH6F1qdsJGZfL1ep0Oj8D/AS4Ffhn4DTwB+DHLper\nsbvXEBERERER6awsp2xAVse0sxkGX57n4Dc7qyiptZb3OtXQxnN7a/intGjstkGQlDAMmDzF2m6/\nC3NPJuzYhnH8mO+05mbISIeMdMxRo6zEzIJF1nJoIiIiInLF2hMyb731FocOHSIlJYXGxkZ2795N\naWkpq1atYtWqVX6Osmdt3ryZ9evXk5iYyOjRowkLC6O0tJT09HSam5tZvHgx9957r7/D9OqRJxaX\ny1WLVRHz6CfMu6KnCpfL9TzwfLcDExERERGRQaettY0TO094xwGhA6s6pl1wgMGDqQ6e3lFFTbMH\ngENnW3nl4zrunBXp/UXjoBAaCsuWw7LlmMePQ/p2yNyFce6czzTj1Cl4/a+Yb74Os+bAosUwezbY\nB06yTURERMQfysvLqa6uZv78+URERJCVlcWGDRsIDw8nISGBhx56iJUrV/o7zB6XkpLC8ePHcblc\n5OXlce7cOSIjI5k7dy6f+9znuOmmm/rV92p9qxURERERkQHlouqYtIFVHdNZdIidb6Y6+I+dVbS0\nWfvSjzcRGx7ApyZfutnqgDZ+PIy/B269DTM7GzJ2YBxy+UwxPB7Ylwv7cjGjomD+Qli8BEaP8VPQ\nIiIiIv1be/+YtLQ07rvvPj9H03eSkpJISkrydxhXbGA+tYiIiIiIyJB0Ue+YAVod01m8I5CvJjpY\nl1WDeX7fG/n1jAizM2d0sF9j61VBwbBgISxYiHn6lLVs2c4MjJpqn2lGbS1s3gSbN2FOngKLl1o9\nZ0JC/BS4iIiISP/TvlyZ0+n0cyRyOQO8W6SIiIiIiAwlZTlltDa0escDrXfMpcweFczqGRHesQn8\nb24NJTWtlz5oMIkdBV+8BX7+75gP/R/MxGRMu/2iaUbREYwXnocffA/+/DwcLgTTvGieiIiIyFCj\nhMzAMPCfXEREREREZEhwN7spybigOiZ5YFfHdPapSaGcaXCTfrwJgJY2eHZPDd9dNIwRYRcnJwYl\nmw1mz7G2ujrM3TutJc1OnvSZZjQ3Q8YOyNiBOXIkLFxsVdvEDPdT4CIiIiL+VVBQwJgxY3A4HP4O\nRS5DCRkRERERERkQSnaW0No4+Kpj2hmGwe0zI6lobMNVYX3O2mYPz+yu5ruLhhEZPMQWOIiMhJWf\ngRs+jXm02ErA7MnEaGrymWacOQNvvYH59pvgTLCSM4mJ1pJoIiIiIkPEpk2b/B2CXIHB8/QiIiIi\nIiKDVlNNEyd2n/COgyKCiEuJ82NEvcNuM/h6koP/2FlFWV0bAGca2/hdZjUPL4gmNHCIJWUADAMm\nTba22+7EzNkL6TswCg/5TjNNKMiHgnzMDSGQnAoLF8GUqdY5RERERET8TAkZERERERHp94o/KsZs\n6+gVMnHFROxBg3MZr7BAGw+lRfOrjCoqz3kAKKl184e9NXwrNZpA+xBOLgQHw4JFsGAR5pnTsGsn\n7MzAqDzrM81oaoL07ZC+HTN2lJWYmb8QYmL8FLiIiIiICAzBn1eJiIiIiMhAUltay5mDZ7zjiNER\njJo9yo8R9T5HiJ2H0qKJCOpIvhw628oLebV41MTeMjIWPr8afvZzzO9+H3P+QszAoIumGadPYbz5\nOvzrD+A3v4I9u6GlxQ8Bi4iIiMhQpwoZERERERHpt0zT5Mg/jvjsm3zDZIwhsARVbEQA306N5j93\nVdN8vjoop6yZiKB6bp8ZMST+DK6IzWb1jnEmwF13Y2bvhZ3pGIcLfaYZpgn5ByH/IGZIKCQnW1Uz\nU6dZ5xARERER6WVKyIiIiIiISL91Jv8MdaV13vHw6cOJnhDtx4j61vjoQL6R4uDZzGraV2zbfuwc\nEUE2bpoe7t/g+qPQUFi8BBYvwTx9ylrSbFcGRmWlzzSj6Ryk74D0HZgxw2H+Ais5M3q0nwIXERER\nkaFACRkREREREemXPG4PxR8Ve8eGzWDypyb7MSL/SBgRxJfnRfF8Ti3ti5W9W9hAZLDB0glhfo2t\nX4sdBV/4Iqz6AuYhF+xMh+xsjFbf5cqMyrPw7jvw7juYkyZbiZmUVIiI8FPgIiIiIjJYKSEjIiIi\nIiL90onMEzTXNHvHY1PGEhoT6seI/CdpbAj1LR5e+bjeu++VA/VEBNlIHBPix8gGAJsNEmZY213n\nrCXNdmVgFB66aKpRXATFRZivbIRZc2DBAus1MNAPgYuIiIjIYKOEjIiIiIiI9Dst9S2UZJR4xwGh\nAUxYMsGPEfnfsolh1DV7eO9wIwAm8OfcWsICbThHXNzMXrrQeUmzigrI3AW7d2KcOuUzzWhrg7wc\nyMvBDAuDlDRYsBAmTQb17hERERGRa6SEjIiIiIiI9DtHtx2lraXNO56wdAIBIXp8uWl6OHUtHtKP\nNwHg9sC6rBr+z8JoxjtUxXFVRoyAm1bB527GPFps9ZvJysRoaPCZZjQ2wrYtsG0L5shYSJsPaQtg\n1Cj/xC0iIiIiA5aeaEREREREpF9pON1AeV65dxw6PJQxiWP8GFH/YRgGd8yKpKHFJLfcWs6tuc3k\nd5nVfHfRMGLD9Yh31QzDqnyZNBluvxPzwH7YlQH791mVMp2nnjkN77wN77yNOWGilZhJSQWHwz+x\ni4iIiMiAom/rIiIiIiLSb5imyZEPjuDtXg9MvmEyNrvNf0H1MzbD4MvzomjIrKawshWA+haT/95d\nzaOLhuEIsfs5wgEsIADmJVpbfT3m3j2wa6fVW+YCxrGjcOwo5qsvWf1p5i+AeUkQop4+IiIiItI1\nJWRERERERKTfqDpSRXVxtXccPTGamCkxfoyofwq0GzyQ4uA/d1VzotYNQOU5D89k1vCdhdGEBSqB\n1W0REbD8elh+Peapcti9CzJ3Y1Sc8ZlmmCbkH4T8g5iBL8CcuVblzMxZVoJHREREROQ8fTsUERER\nEZF+wdPmsapj2hkweeVkDDVR71JooI1vp0Xz64wqKhqtpbVO1rn5fVYN/5QWTZBdf249ZtRo+MIX\n4fOrMYuLIHM37N2DUVfnM81obYW9WbA3CzM8HJJSrJ4zU6aCTUkyERERkaFOCRkREREREekXynPK\nOXf2nHc8eu5oImIj/BhR/xcVbOOh+dH8KqOKumYPAEcqW3k+p4b7kxzYbUrK9CjDgMlTrO32OzDz\n8yFzF+TlYjQ3+05taIDtW2H7VsyYGEhJs7b4eOs8IiIiIjLkKCEjIiIiIiJ+525yc3T7Ue/YHmRn\n4rKJfotnIBkRZuefUh38Zlc1TW6r+c7+Uy08n1PLVxOjlJTpLfYAmDXb2pqbMfflWpUzH3+M4Wnz\nmWpUVsL778H772GOGg0pqdY2ZqyfghcRERERf1BCRkRERERE/O54+nHc59zecfzCeIIigvwY0cAy\nzhHIgykOnsmsxm0VypBb3qykTF8JDobU+dZWV4e5Nwsyd2EUHbloqnGqHN55G955G3NcfEdyZsRI\nPwQuIiIiIn1JCRkREREREfGrc1XnKN1T6h0HRwUTlxbnx4gGpmnDg7g/ycFz2TU+SZk/5dTyNSVl\n+k5kJKy4HlZcj1lxxqqaydqDcbL0oqnGiRI4UQJvvIY5abKVmElKgWHD/BC4iIiIiPQ2JWRERERE\nRMSvij8sxvSY3vGk6ydhD7T7MaKBa9ao4IuSMnnlzfwxu5avJUURoKRM3xoxEm5aBTetwiwthb17\nYM9ujDNnLppqFBdBcRHmqy/D1GmQmgaJyVaCR0REREQGBSVkRERERETEb6qPV1PhqvCOI+MiGXmd\nlm7qjlmjgvlGsoM/7O1Iyuw71cyfsmv4WpJDSRl/iYuzts+vxjx+DPZkwt49GFVVPtMM04TCQ1B4\nCHPjekiYAUnJMC8JIiL8FLyIiIiI9AQlZERERERExC9M06ToH0U++6bcMAXDUMKgu2bGdpWUaeGP\n2TV8XUkZ/zIMmDDR2m65DbPoiJWcyc7CqKvznerxwMGP4eDHmOv/As4Ea0mzxESIUOWMiIiIyECj\nhIyIiIiIiPjF6QOnqS+v945HzhhJ1LgoP0Y0uMyMDeaBZAfrOiVl9isp07/YbNbyZFOnwR13YR5y\nQVYm5GRjNDb6TDU8Hsg/CPkHMTf8BaY7ITnFqpzRsmYiIiIiA4ISMiIiIiIi0ufaWtoo3lLsHRt2\ng0nXT/JjRIPTdbHBPJji4PdZSsr0e3Y7zLjO2r50L+bBj62eM3l5GE3nfKYaHg8U5ENBPuaGF63k\nTFIKdkc0bWFhfvoAIiIiIvJJlJAREREREZE+d2L3CVrqWrzjcWnjCIkO8WNEg9eMkV0nZZ7bayVl\nAu1KyvQ7AQEwZ661tbZi5n8Me/dCXu5lkzOTDYNz8eNhyVKrciZKFWciIiIi/YkSMiIiIiIi0qea\na5sp2VXiHQeGBRK/KN6PEQ1+7UmZdVk1tJ5Pyhw43VEpo6RMPxYYCHPmWVtrK2b+QcjOspIz5y5I\nzpgmYcePwfpjVuXM1GmQmGQlZ2Ji/PQBRERERKSdEjIiIiIiItJnTNPk0LuH8LRnBYCJyycSEKxH\nk95mJWWi+X1WtU9S5rnsGu5XUmZgCAz0rZwpyIe9WZCX02VyhsJD1vbyRswJEzuSM6NH+yd+ERER\nkSFOTz0iIiIiItJnyvPKqTpS5R2Hx4Yzeq7+cbivJIwM4sHUaH6/pyMp87GSMgNTYCDMnmNtbjdm\n/kFqt3xIxOFC7M3NF003jh2FY0fhjdcwx4ztSM7Ex4Oh/+4iIiIifUEJGRERERER6RNN1U0U/aPI\nOzZsBs7POzHUWL5PJYzoOinzh701fCNZSZkBKSAAZs/hVEgop9ramOZuhZxsq3Kmvv6i6UbZSSg7\nCX//G+bwEZCYaCVnJk8Bm80PH0BERERkaFBCRkREREREep1pmrj+5qKtpc27b8LSCUSMivBjVENX\nwoggvpkazf90SsocPNPCur01PKCkzMBmt0NCAsyaDffch3m40ErO5OZgVFVeNN04WwH/2Az/2IwZ\nFQVzE2FeIkx3WlU4IiIiItJjlJAREREREZFedzLrJDXHa7zjyDGRxC+M92NE4uwiKZN/poVnMqt5\nIMVBWKAqJQY8m81KrEx3wh13YR4/ZiVncvZinDp10XSjtha2b4XtWzFDQuC6WTB3rpXcCVfyVERE\nRKS7lJAREREREZFe1Xi2keKPir1jW4BNS5X1E10lZQ5XtvLrjCq+nRZNTKjdvwFKzzEMmDDR2lav\nwSwrg9xsyMnGKDl+8fSmJsjOguwsTJsNpk2HOXNh7jwYMbLPwxcREREZDJSQERERERGRXmN6rKXK\nPG6Pd9/EFRMJGxHmx6ikM+eIIL6dFs3vs2pocpsAlNe38cv0Kr6d6mCcQ8tWDTqGAWPHWttNqzAr\nzkBujlU9U3QEwzR9p3s84CqwtldewoyLgznzrOTM+AnqOyMiIiJyhZSQERERERGRXlOyq4S60jrv\n2BHvIC41zo8RSVemDQ/iOwujeTazhppmK3lW2+zhN7uquT/JQcLIID9HKL1qxEhY+Rlrq63B3L8f\n8nIh/yBGa8tF043SUigthXffwXREd1TOOBPUd0ZERETkMpSQERERERGRXtFwuoFj2455x7ZAG9NX\nTccwtFRZfzQuKpBHFw/jd5nVlNe3AdDkNvndnmrunhPJ/HGhfo5Q+kSUAxYvsbaWZsz8fCs5sz8P\no67uoulGTXVH35ngYEi4DmbPhllzIDraDx9AREREpP9SQkZERERERHqcp81DwdsFmJ6OpY8m3zCZ\n0GH6R/3+LCbUzncXDWNdVg2HK1v/X3v3HSbZVdh5/3srV3XumenJeXrOaIJQQgKRJRsLY4NMcuLF\nhH2d4Fmz4PC+uw+G1/hdP7vm8TrbrMGLF8y+YEBgWIKNEApgCQU00mhmrnqmJ3X39ITOXVVd8b5/\nnFuhp6tnOleH38fP8b333NCnxFWr+v7uOQeAogefOzrGcLrI6/clFKitJZGo7fnyklugWMQ7023D\nmaPP4lzqn3K4k8nA0R/bAng7dthg5sjNdu4aDW0mIiIia5wCGRERERERWXDnHztP8lKyvN22u43N\nt26uY4tkphLhAL95Zyufe26UZ/oy5fpvvJhkaKLA2w81EQwolFlzAgHYu8+Wt7wNr78fnrPhTK15\nZwCc8+fh/Hn45jfwmprg0BEbzhw8BHGFsyIiIrL2KJAREREREZEFNdY3xvkfni9vB6NB9r9RQ5Wt\nJOGgw6/c0kxbLMmD3aly/Q/OTzAyUeTdt7YQDel/zzVt0ybYdB+8/j4YHcU79hw8/zyceAFnYmLK\n4c7YGDz+Q3j8h3iBIHR22nDmyM2wcVMdPoCIiIjI0lMgIyIiIiIiC6aQK+B+3YWql+X3vX4f0eZo\n/RolcxJwHO6/qZG2WIAvHx8v/0967HKWP398iF9/aStNUQ1BJUBzM9z9SlvyebxTXfD8c3DsOZxL\nl6Yc7hQL4J605UtfxNvQAYcPw8HDYIwdKk1ERERkFVIgIyIiIiIiC+bcI+dIDVR6VKzbv46Owx11\nbJHM12t2J2iJBfifz46SK9q68yN5/uSHg/zGna10NOjPSqkSCsGBm2x5+8/jXboEx56zAU3XiziF\nwpRTnCuX4aHvwUPfwwuFoHM/HPIDms2bQb3rREREZJXQN2cREREREVkQI+dH6Hmip7wdjofpvK9T\nQ5WtArdsjtEcDfDJp0ZI5WxfmaupIn/ygyF+7aWt7G4L17mFsmxt3AgbfxLu/UlIp/FOHLcBzbHn\ncUZHpxzu5PNw4rgtfBGvrd2GM4cO2ZAnnlj6zyAiIiKyQBYkkDHGtAMfBe4HNgNXgW8CH3Fd9+IM\nzn+lf/6dQAy4AHwZ+LjruuML0UYREREREVk8hWwB9xvupLp99+0j0hipU4tkoe1pj/Chu9v46x8N\nM5i2XWWSOY+/eHyId9/aws2bNMyU3EA8DrfdbkuxiHf+nO0588IxOHcWx/OmnOIMDcJjj8Bjj9i5\nZ/burfSe2bYNAho2T0RERFaOeQcyxpg48H3gAPCXwFNAJ/DbwD3GmNtd1x26zvm/DHwOcLGhzCjw\nM8DvAq8yxrzSdd3ifNspIiIiIiKLp/t73UwMVyby3nBwAxtu2lDHFsli2NgY4sN3t/G3T41wYSQP\nQK4In3p6hLccbOQ1u+LqESUzEwjArt22/OybYXzM9p554Ri8cAxnbGzKKU6xAF0v2vLVr+A1N8NN\nB205cBBaW+vwQURERERmbiF6yHwQOAK833Xdvy5VGmOOAg8AHwE+VOtEY0wU+Btsj5i7XNcd8Xf9\nvTHmAWyPm/uwvW1ERERERGQZGjozxMVnKh3jIw0R9v3Uvjq2SBZTcyzIb72slb9/ZpTjV7IAeMCX\nj49zdjjHLx5pIhpSrwWZpcYmeOldthSLeD09cNyGM5w+hVOc+p6mMzoKTzxuC+Bt3lIJaDr3Qyy2\n1J9CRERE5LoWIpB5F5AEPn1N/deAHuCdxpgPu647te8xbAK+AjxRFcaUfBMbyNyMAhkRERERkWUp\nP5GfMlRZ5xs7Ccc1p8hqFg0F+NU7WvjCsTH+7UKlZ9TTfRl6R/O877YWNjVpylKZo0AAduyw5b6f\nhnQK7+RJG9AcO2aHMavBudgHF/vge9+1w5vt2VMJaHbugmBwaT+HiIiIyDUcr8YYrTNljGkGRoBH\nXdd9dY39XwbeAux1Xbd7ltf+beCPuabnzUyMjIzU/FBdXV2zuYyIiIiIiNzA8JPDpM+my9vx3XFa\n79CwQWuSBEc6AAAgAElEQVSF58EzQxF+eDWGR2WosrDjcc/GNKY5V8fWyarkeUQGB0ic6abh7Bni\nvT0E8vkbnlaIRklv30Fy5y5SO3aRa2sDDa8nIiIis9DZ2VmzvqWlZcZfKub7ytJOf9kzzf7z/nIP\nMONAxhgTAd4LpICvzrl1IiIiIiKyaCZ6JyaFMcFEkOaXNNexRbLUHAdub8+yMVbg2xcTpAp2qLKc\n5/Cd/gR96Qyv2jCBRjCTBeM4ZNetJ7tuPcN33ImTzxPr66Xh3FkS584SvdRPrSciwUyGxlNdNJ6y\nL2rmmppJ7dhBavtO0tt3kG/W7y4RERFZfPMNZJr8ZWqa/clrjrshY0wA+DvgJuDDruv2zb15k02X\nYK1Fpd5C+mciK5nuY1kNdB/LaqD7eG0avzTO0a8dnVR38P6DtO1qq1OL5kf38fx0AreZAp/58Sin\nBiu9Yp4fiTLqNPDeW1toT2i4qMW2Zu/jm26qrI+P47kn4cRxOHEcZ+BqzVPCY6O0vHCMlheOAeBt\n6ABzwJb9BlpalqLlUsOavY9lVdF9LKuB7uPFsawG9TXGxIHPY+eO+SvXdf+kzk0SEREREZFrZEYz\nHPviMQrZQrluyx1bVmwYIwujJRbkA3e18o0Xk3z3dOWdvXPDef7LY4O865ZmDnVE69hCWRMaG+H2\nO2zxPLyrV8rhDO5JnFTt90mdK5fhymV47BEAvE2bJwc0jY1L+SlERERklZpvIDPqLxum2d94zXHT\nMsZsAP4ZeBnwcdd1f3+ebRMRERERkQWWz+Q59sVjZMey5bqWHS3suXdPHVsly0Uw4PDmA43saQvz\n2WdHSeft9J6pnMcnnxzhp/YleMP+BgKau0OWguPAhg5bXv1aKBbxzp214cyLLpw+hZOrPc+R038R\n+i/Cww/hOQ5s3eYHNAb27YdEYkk/ioiIiKwO8w1kzgAesG2a/aU5ZrqudxFjzEbgUWA38B7XdT8z\nz3aJiIiIiMgCKxaKnHjgBMnLyXJdfF2cg289SCCoSUKk4sjGKL/7qnY+/fQIPaN2wnUP+PapFGeG\nc/zKLS00RXXPyBILBGD3Hlt++mcgl8M70w3uSVvOdOMUClNOczwPei7Y8uC/VgKazv227OsEzUEj\nIiIiMzCvQMZ13aQx5jngNmNMzHXdidI+Y0wQuBu44Lru+emuYYxpBr4N7ADe5Lrut+bTJhERERER\nWXie53HqO6cY6h4q14UTYQ7//GHC8XAdWybL1fpEkA/d3caXXhjjhxfKfyriXs3xXx8b5D23trCn\nXfeO1FE4bIcj22/gZ98M2QzeqVO294x7Es6dxSkWp5w2KaB56EEAvE2boNP4IU0ntLUv9acRERGR\nFWAh5pD5NPDnwK8Bf1ZV/06gA/hoqcIYcwDIuK57puq4PwNuAd6iMEZEREREZHnqebyH/mf7y9uB\nUIBD7zhEvDVex1bJchcOOvzizc3saQ/zhefHyPnPtocnivzZ40O8+UAjr9sdx9EQZrIcRKJw8JAt\nAOk03qkuG868eBIuXLBhTA1Ofz/098OjDwPgrV9vhzbb7/eiWb/BDqEmIiIia9pCBDJ/C/wy8Alj\nzE7gKeAQ8CHgeeATVceeAFzgAIAx5mbgV4DjQNAY87Ya17/iuu7DC9BOERERERGZg8vHL3PmoTOT\n6g68+QDNWzREj8zMXdvibG8O86lnRriStENCFT144MQ43UM5fuFIE40RDWEmy0w8DkdutgUgOW57\n0HS9aMv5c9MHNFevwtWr8PgPAfBaWmHfPtjrl23bIRhcqk8iIiIiy8S8AxnXdXPGmNcDHwPeCnwA\nuAx8Cvio67qp65x+G+AAB4F/muaYh4HXzredIiIiIiIyeyMXRnC/7k6q2/sTe1lv1tepRbJSbWkO\n8TuvaOPzz43xbH+mXH+0P8PpwSzvONzELZui6i0jy1dDI7zkFlsAJibwTvsBzakuOHsGJ5+veaoz\nMgxPP2UL4EWjsGt3JaDZswfiiaX6JCIiIlInC9FDBtd1R7E9Yj50g+Oca7Y/A3xmIdogIiIiIiIL\nKz2Y5oUvvYBXqLwBvuWOLWy9c2sdWyUrWTwc4L23NfP9s2m+emKcon9rjWc9/v6ZUW7eGOUdhxtp\nianngKwAsRgcOmwLQDaLd6bbhjNdL8Lp0zi5bM1TnUzGDoXmngTAcxzYsrUS0OzdB+vWaZgzERGR\nVWZBAhkREREREVldssksz3/hefLpytve6zrXsfcn9taxVbIaOI7D63Yn2NUa5rNHR8tDmAE8dylD\n10CWtx5q5M6tMfWWkZUlEgFzwBaAfB7v/LnKEGfdp3FStQcRcTwPentseeT7gD/MWXUPmm3bIRxe\nog8jIiIii0GBjIiIiIiITFLIFTj+peNMDE2U6xo3N3LgzQdwAnpALgtjd1uY/+tV7XzzxSTf605R\n6oeVznt87ugYT/dl+IUjTbTH1VtGVqhQCPbsteWn3gDFIl7/RTh9qlycK1emPd0ZGYZnnrIF8EIh\n2L4Ddu+pFPWiERERWVEUyIiIiIiISJnnebhfdxntHS3XRVuiHH77YYIRPRiXhRUJOtx/UyO3bo7y\nj0dHuThe6S1z4kqW//zwIPff1MjdO2IE9NBZVrpAwA5LtmUrvOo1AHijI1UBzWk4fw6nUKh5upPP\nw5luW3xec/PkgGbnLjuUmoiIiCxLCmRERERERKTszENnuHryank7GA1y+B2HiTRG6tgqWe12tob5\nnVe28y+nk/zLqVR5bplMweMLx8Z4um+CX7q5iQ0N+hNWVpnmFrj1dlvAzkNz7mwlpOk+jZNMTnu6\nMzoKR5+1haq5aPaUAprdsHmzDYNERESk7vRtVkREREREAOh7po+ex3vK207A4eBbD9KwoaGOrZK1\nIhx0eOP+Rl6yKcrnj45xYbQyf9GpwRx/9MggP2Maee3uuHrLyOoViUDnflsAPA/v8iXbK6bb7x3T\n24NTLNY8fdJcNI8+Yi8RjdqhznbtsgHNzp2woUNDnYmIiNSBAhkREREREWHw1CCnvnNqUt3+N+6n\nbVdbnVoka9W25jAffkUbD3an+FZXkrz/3DlXhAdOjPPjixP80s3NbG7Sn7OyBjgObNxky8vutnXZ\nDN65c5Xhy7pP44yMTH+JTAZOddni8xIJO7zZzl2wyw9pWtsU0oiIiCwyfYMVEREREVnjxvvHOf7A\nccqzqgM7X7WTjUc21q9RsqYFAw6v39fAzZuifP65Mc4M5cr7zg7n+a+PDXLfvgbu3ZsgFNADZFlj\nItGpvWiGhioBzZluOxdNLjftJZxUCk4ct8XnNbf4vWj8sn0HtLQs6kcRERFZaxTIiIiIiIisYWN9\nYxz74jGKucrwNx1HOtjxyh11bJWItakxxAdf3sojZ9N83R0n6891ni/CN15M8kTPBG860MBLNkVx\n9Ga/rFWOA+3tttx+h63L5/F6e+DcWVvOnoWLfdMOdQbgjI7Ac0dt8XktLbBjpw1ntu+w6+3t6kkj\nIiIyRwpkRERERETWqKvuVU5+7STFfOUBXcvOFvb/9H493JZlI+A4vHZ3gsMbo/yv50Z5caDy1v+V\nVIFPPzPK7tYQ99/UxJ72cB1bKrKMhEKVni4l2Qze+fOVkObcWZxLl657GWdkBJ5/zhaf19AwOaDZ\nvgM6OiAQWIxPIiIisqookBERERERWWM8z6P3yV66v9s9qb6ho4FDbz1EIKiHarL8rE8E+cBdrfzw\nwgRfPTHORL4yxt6Z4Tz/7d+GeMmmKG8yDXQ06k9dkSkiUdjXaYvPS6Xg/LlKL5pzZ3AGB697GSeZ\nhJMnbCldJxr1Q5rtsM0vm7dAJLJIH0ZERGRl0rdUEREREZE1xCt6nP7X0/Q93Tepvm1PGzf93E2E\novoTQZYvx3F4xY44N2+M8p1TSR49l6ZYNffR0f4Mz1/K8Iodcd7Q2UBTVOGiyHUlEnDgJlt83ugo\nXDhvy/lzcP48ztUr172Mk8nAqS5bStcJBKBjox/QbKsENS0tGvJMRETWLP21JSIiIiKyRhSyBU58\n9QSDpya//bzplk3s+6l96hkjK0ZTNMDbDjXx6l1xvn4yybP9mfK+ogePnkvzZO8EP7Enwev2JIgE\n9fBXZMaam+HQYVt8Xio1JaThUj+O5017GadYhP6Ltjz1o8q1GhunhjSbNtth1kRERFY5/ddORERE\nRGQNyIxleOGLLzB+aXxS/e57drPtrm2aM0ZWpI6GEO+7vYUzQzkeODHOmaHK/DITeY9vvJjksfNp\n3ri/gTu3xQjoPheZm0QCzAFbSjIZvN6eSkBz4Rz09eEUCte9lDM+PnXIs2AQNm6CLVtpj0bJrN8A\nra2wbp3mphERkVVFgYyIiIiIyCo3fnmcY184RnYsW65zgg4H3nSADTdtqGPLRBbG7rYw/+HlrRzt\nz/DPbpIrycoD4eGJIv/43BgPnUnx5gON3LQhogBSZCFEo7Bnry0l+Txe/0Xo6YGeC7b09uCMjV33\nUk6hAH290NfL+lLl176CF4nYuWi2boUtVUXDnomIyAqlQEZEREREZBUb7B7kxFdOUMhWHlCH42EO\nvf0Qzdua69gykYXlOA63bI5xZGOUH5xP862uJOPZynBKfWMF/ubJEcz6MD9rGtnZGq5ja0VWqVCo\nMgwZLy9XeyMjlYCmpwd6L0B/vx3W7DqcbBbOnbWlipdIVAU0W2xos2mzHW5NQY2IiCxjCmRERERE\nRFapiz++SNe3u6BqiP94e5zDP3+YeFu8fg0TWUTBgMOrdyV46dYY3z2d4qEzKXJVz3zdqzncq0N0\ntoe5d2+CmzZENJSZyGJrabGlal4acjm8ixcrQc3FPujtxRkdueHlnFQKTnXZUsVLJGwws3kLbN5c\nWW9r09BnIiKyLCiQERERERFZZTzP48xDZ+h5vGdSfcv2Fg6+7SDhuHoGyOoXDwf42QONvHJnnP/9\nYpIf9UxUZ5N0DeboGhxhU2OQe/ckuH1LjHBQwYzIkgmHYccOW6qcOnqU6MBVtgUcfxizPjvsWTp9\nw0s6qRR0n7aliheJ+OFMVUizaTNsWA9BPRoTEZGlo//qiIiIiIisIoVcAffrLldPXp1U33Gog/1v\n3E8gpDeEZW1piwd550uaed3uBF87Oc6JK9lJ+/vHC/zjc2N83U3y2t1xXrEjTiKsf09E6qWYSJBO\n7IDOzkql5+END5fnmaGvF3p74eJFnFx2+ov5nGwWzp+zpYoXCNpQZuMmv2ysLJs0/JmIiCw8BTIi\nIiIiIqtENpnl+JeOM9o7Oql+xyt3sPNVOzWRuaxpW5tD/OadrZwfyfFgd4pnL2YoVnWZGc0U+eeT\nSb7TleLuHTFeuztBezxYvwaLSIXj2GHH2tomD3tWLOINDED/RTvkWf9FuGiLMzGDHjXFAly6ZAtH\nJ+3z4vHaQU3HRohEFvgDiojIWqFARkRERERkFRg5P4L7DZeJ4YlynRNw6PzpTjbdvKmOLRNZXna0\nhHnPrS0MmAIPnUnxbxcmyBYqyUym4PHQmTQPn01z2+Yo9+5JsK1Fw/yJLEuBAGzYYMuRmyv1noc3\nMnJNSGPXnbGxGV3aSafh7BlbqnilcKhjI2zogI6Oycuwfl+IiMj0FMiIiIiIiKxguXSOMw+dof/Z\n/kn1wWiQg289SNuutjq1TGR5W5cI8rZDTbyhs4HHztsAZixTLO8vevBUX4an+jKY9WHu3ZPgwPqI\nepqJrASOA62tttx0cNIub3zchjT9F/3eMf22XLlqe8zc6NKeB4ODtpw8MfnajgOtbTac6eiADRsr\n6+s3qGeNiIgokBERERERWYk8z+PyC5fp/m43uVRu0r5oS5QjP3+ExPpEnVonsnI0RAL81L4G7tmd\n4KneCR7sTnEpOfmhrHs1h3t1hM1NQV6+Pc4dW2I0RTXPjMiK1NgI+zptqVbI4125WgloLvWXA5sZ\n96rxPBgatMU9OWmfVwqJ1vs9etaXynq7bGrSnDUiImuAAhkRERERkRUmPZim69tdDJ8dnrJvw8EN\n7P3JvUQa9BauyGyEgw4v3xHnru0xXric5XvdKU4NTg47L44V+Mrxcb56YpxDHRHu2hbnUEeEUEAP\nUUVWvGAINm2y5RpeMgmX/d40/f1w5bItly/jTEzUuNhUNqwZsqXrxak/IxqthDPVYc2GDbBuvYZC\nExFZJRTIiIiIiIisEMVCkZ7Hezj32Dm8qjkvAGKtMfbdt4/2Pe11ap3I6hBwHI5sjHJkY5SzQzke\n7E5xtD9D9b9xRQ+ev5Tl+UtZGsIOd2yNcde2GNuaQxrSTGQ1amiA3XtsqeZ5eGNjNqy5chmuXLHr\nl0thTXrGP8LJZKC315YavJYWG8ysWzd12b5OgY2IyAqhQEZEREREZAUYOT9C17e6SA2kJtU7AYdt\nL9vGjlfsIBgO1ql1IqvTrrYw77u9hSvJPI+eS/Nk7wTj2clhaDLn8fBZOwfNlqYgd22Lc8fWGM0a\n0kxk9XMcaG625doh0DzPzldz5XIlpLlyBa7aMtNh0Mo/amQERkag+3TN/V5Liw1mpoQ266CtHaLR\nuX5KERFZQApkRERERESWsVw6x5mHztD/bP+Ufc3bmum8r5OGjoY6tExk7djQEOItB5t484FGjl/J\n8kTPBMcuZbimoxp9YwUeODHO106Oc3BDhLu2xTjUESUcVK8ZkTXHcey8ME1NsGfvlN3exIQfzly1\ny3JYcxUGruLk87P7caXA5kx3zf1eQyO0t0HbOmhvr5Q2f9nSCgEFySIii02BjIiIiIjIMuR5Hpdf\nuEz3d7vJpSbPYxGKhdj9ut1sumWThkcSWULBQGU4s/Fskad7J3iid4ILI5MfnBY9OHY5y7HLWRJh\nh9u3xLh1c5Q9bWGCmm9GRABiMdi23ZZrFYt4I8M2nCkFNQMDMHDVLoeH7Jw0s+AkxyE5Dhcu1Nzv\nBQLQ2jY5pGlrs3WlZVOTQhsRkXlSICMiIiIissykB9N0fbuL4bPDU/ZtOLiBvT+xl0hjpA4tE5GS\nxkiA1+xO8JrdCfpG8zzRk+bJvgxjmeKk41I5j0fPpXn0XJpE2OFQR4QjG6McWB8hHtaDTRGpIRCw\noUhbO3Tun7o/n8cbGoLBqpCmejk0h8CmWLTXGxyY9hgvGLQ9adqqQprWVr+t/nZLCwQ1hKqIyHQU\nyIiIiIiILBPpwTS9T/Vy8ccX8a4ZCynWGmPfffto39Nep9aJyHS2NIf4uYNNvOlAIydKQ5pdzpCf\nnM2Qynk82Zvhyd4MQQc614U5vDHKkY4o7Qk9wBSRGQqFYMMGW2op+IHNgB+wDA3B4KAfuAzC0CBO\nJjPrH+sUCjcObRwHmpqhtcWGN62tdlle9+vV20ZE1igFMiIiIiIideR5HiPnR+j9US8DXVMfcDgB\nh20v28aOV+wgGNYDW5HlLBhwOLwxyuGNUZLZIk/3TfBEzwTnR6bOBVHw4OTVHCev5vjSC+NsbQ5x\npCPC4Y1RtreECGg4QhGZq2AI1m+wpRbPw0sl/aDGD2n8oKa8Podh0QB7zuiILZyf9jgvEIDmFhvQ\nlEObFr+u2W43N9twJ6THlyKyeug3moiIiIhIHRQLRa4cv0Lvj3oZvzRe85jmbc10vqGThg0NS9w6\nEZmvhkiAV+9K8OpdCYbSBZ6/lOHY5SxdA9kpPWcAekfz9I7m+fapFM3RAEc2RjjcEWX/+giRoMIZ\nEVlAjgMNjbbUmsMGoFDAGx2F4SFbhvxSWh8etqFNfmrgPKMmFIuVa5+7/rFeQ6MNaUoBTnOLDWvK\n2822JBrU60ZElj0FMiIiIiIiSyiXytH3TB8Xn75INpmteUxDRwPb7tpGx+EOHL0lL7LitcWD5XBm\nIl/k5JUsz1/K8sLlDMnc1DfQRzNFfnB+gh+cnyDowI7WMPvaw3SuC7OnLUw0pAeOIrLIgsHKXDHT\n8Ty88fFKUFMKa0aGbWAzMgzDIzjJ2i+ezJSTHIfkOPT1Xfc4LxCAxiY7HFpzc9WyVKq3myAcnle7\nRETmQoGMiIiIiMgSSF5J0vtkL5ePXaZY6/V4oH1fO1vv3ErrzlYFMSKrVCwU4JbNMW7ZHKNQ9Dgz\nnOPYpSzPX8pwOVmYcnzBgzNDOc4M5fjX0xBwYHtLiH3tEfa1h9nTHiYRVkAjInXgODbYaGqCHTum\nPczL5WB09Jqgpno5YnvbpNPza06xWBkurffGx3vxeCXAaWyCpsZrtpugsbGyHYnMq30iIqBARkRE\nRERk0Xiex1D3EL0/6mXozFDNYwLhABuPbGTrS7eSWJdY4haKSD0FA44frES4/6ZGLo3nbThzOUP3\nYI5aszcUPTg3nOfccJ4Hu8EBtjaH2LcuTEMmxJb41FBHRKSuwmFYt86W6/CyWRvcjI5UliMjk+tG\nhmF0dM5DpVVz0mlIp+HK5Rkd70WjNphpbPRLEzQ0VLYbSssGguNjFGPxebdRRFYfBTIiIiIiIgss\nPZRmoGuA/h/3kxpI1Twm0hRh6x1b2XTLJsJxDZkhIrCxMcTGxhD37k2QzBY5cSXLqcEspwZyXKrR\newbAA3pG8/SM5gE739TmywPsbYuwoyXE9pYQm5pChALqdSciy1wkAuvX23I9noeXSk0ObkbHYGzU\nltFRGBvzl6M4udyCNM/JZCCTgYGrNzx2b6mp0agf1DRUApwGG9qQaPC3GyZvJxJ2yDgRWZUUyIiI\niIiIzJPneYz1jTHQNcDAiwOkrtYOYQCatjSx9aVbWX9gPYGghhkSkdoaIgHu2Brjjq0xwM4rc9oP\nZ04NZukbm74nzMWxAhfHKkP/hAKwpcmGM9tbwmxvDrG5KUQ4qJBGRFYgx6mEGJu3XP9Yz8PLZGoG\nNYyOwvgYjI/ben/dKdYeWnZOTS2FOIMDszrPi8VtiFMd2iQSdjuRgHjCLhuu2Y7HIaDvlyLLmQIZ\nEREREZE5KOQKDJ8dZqBrgMGuQbLJ7PQHO7DerGfrnVtp3tqs+WFEZNaaowFu3Rzj1s02oElmi5wa\ntOHM6YEcPaP5mkOcAeSLcH4kz/mRPDAB2LloSiHNtuYQO1rCbGkOEVFIIyKrieNALGbLho4bH18s\n4qVTMDZuA5pSUDPmBzfVAU5yHJJJG7osdLMn0jCRBm7cG6ea5zg2lCkFNKUQJx6HhF8fj9v6WLxy\nTGk9FlOgI7LIFMiIiIiIiMxQNpll8NQgA10DDJ0Zopi7/huU4USYjsMdbL1jK7HW2BK1UkTWgoZI\ngJdsivKSTVEA0rkijx47R286xKDXQM9onvx1fkUVveqhzqyAAxsbg2xuDLGxMegPoRako0FBjYis\nEYGAP6RYI7BpRqd4uZwNaZLj/jLJ5e5ughNp1kWjlfrSMakUTmr63tTz4XgepFK2zK5TTpkXi08O\ncGIxu12qj8X8YCdWqSvVl7bDGo5XZDoKZEREREREpuEVPVJXUwyetiHMaM/oDc9JrEuwbv861nWu\no2lLE47mbRCRJRAPB9jdmGd3Y57Ozu0Uih4Xx/NcGCmVHL2jea6XIxe90nBnk4dDc4D2eKAc0JSX\nDSGaonqTWkTWuHAY2tps8Y00twCwrrOz5ileoQDpFCSTlZKabj1lw5xUCtKpBR1SrZZy75yhuV/D\nC4UgGrOhTdQPdKJRfxmr9FoqhTjV29EYxKKV4yIR29NJZJVQICMiIiIigp0HJjOaYaxvjLGLY4z1\njTHeP04hO/08DQA40LK9hXWdNoSJt8eXpsEiItcRDDhsaw6zrTnMy7fbukLR43KywPmRHD3+EGY9\no3myhekGO7M8YCBdZCCd5fiVyfsawk45oFmfCLIuEWRdPEh7IkhTxNEQjSIitQSD0Nhky2yU5sRJ\nJSs9YVKpG2+n0zbMyV5niN0F5OTzkPd7BM2T5zg2lLk2rIlG/bqq7eoSiVaOiUT8Y6qWQT0Wl/rQ\nnSciIiIia1IulWOs3wYvpRAml8zN6NxgJEjbnjbWda6jfW874YSGZRCR5S8YcNjcFGJzU4i7ttm6\nomdDmp5SL5qxPJfGCwxPzOwN7GTOo3soR/fQ1N+f4QC0++GMDWkCtMcroU2jAhsRkdmpnhOnfd2s\nT/cKeRvOlEOa9KTAZvK631MmXbVMp3EKN3hZaYE5ngeZjC2MLNh1vVCoEtREIjakiUT9dX8Zic6s\nPhKBcAQi4cr+UEg9e6QmBTIiIiIisqp5nkc+nSc1kCr3fBm7OMbE0MSsrhNpipR7wbTubCUQ0jA9\nIrLyBRyHTY0hNjWGuGNrZa6riXyRy+MFLo0XuJTM0z9e4NJ4nivJAjfoUFOWK8KlZIFLydoP78IB\nWJcI0hYP0hIN0BIL0BwN0BIL2mU0QFM0QFjz14iILIxgaG49c6p4udzkkGZiYkpow8SEX9IwkYGM\nf0xmAtITkJnAyWQW8IPNnu3Fk7ch1CIo9+wphzWlwMYPccLhSogT9rfLx1+zL1K1Pxyu7A+HKucG\ngwqAVggFMiIiIiKy4nmeRy6VIz2UZmJogvRgmvSQXwbTFDKzf5MvsT5B0+YmmrY00by1mYaNDXqT\nW0TWjFgowI7WADtaJ/cALBQ9BtJ+UDNue9P0+8t0foZJjS9XhP7xAv3j1/8d3RB2/LAmWBXa2MCm\nMWJLQyRAQ8QhoN/TIiKLqxQINDfP6zJesWgDmolrSibjL6vXq5alc8r7M+V1x5vdf4cW0+SePYvP\nc5yqoCY8fQmFbZATura+ui4E4TCNV66S3L1nSdq/liiQEREREZEVoVgokk1myYxmSA9ODV7mErqU\nRJuj5fClaUsTjZsaCUX1VVlE5FrBgENHQ4iOhhBHNkYn7UvligymCwymigykCwymCnaZLjKQKjAx\ny8CmJJnzSOYK9I1d//e8A8TDTjmgaYxUrYdtYFMd3sRDAeJhh1BAIY6IyJILBCCesGUheJ7tvVMK\nQTIZyGYmb2cq4Q1ZP8zJZiCThVy2ckwua+v885dq7p35cDwPsllbFsgWoPv//PUFu55YC/JXpjGm\nHX+lo5AAABQMSURBVPgocD+wGbgKfBP4iOu6F2dw/t3AR4CXAXHgReDvgL90XXf5RJsiIiIisqA8\nz6OQLZAdz1ZKsvZ6Pp1fkJ8Ziods+FIKYDY3EWmMLMi1RUTWskQ4QCIcYNs0L02nckU/pCkFNzaw\nGU4XGckUGcsUmc8DAA9I5TxSuQJMM0xaLeEAxMMBEmGHeMghHrZBTSmwmbQecoiFHKKhANGQQzTo\nEA05hAOoF6WISD1VDxHWNPch2WrxPK8qpMlWAp1czg9BMpUwpLrkatRl/PNyWcjmJq07ueUX/HhB\nvaS20Ob9T9QYEwe+DxwA/hJ4CugEfhu4xxhzu+u6Q9c5/x7gW8AF4GPAIPBm4M+BvcAH59tGERER\nEVlcnueRn8iXS24iR2GiYJeZArl0zu7LVB2TzJFNZinmZjZx9GxFmiLE2+PE2+LlZUNHA7HWmB6a\niYjUQSIcINESYFtL7f2Fosd41oYzIxNFRsvLAiMTtn7Ur1/INzdzRchliozOY1SZgEM5nImFHCLB\nUnBjQ5tYKEAkCJGgQzjoTFraQmU7UL3P1msoNhGROnIcf+6X6I2PnQfP8+y8NtWBTin0yeWqSqk+\nB3l/f+m8XKmual8uZ/eXzs/nptRNN9ybF1Igs9AW4p/oB4EjwPtd1/3rUqUx5ijwALbny4euc/5f\nAxPAq6p603zWGPNV4N8bY/6H67pHF6CdIiIiImuS53l4RY9ivohXsMtioVheenmPQq5AMVekkCvY\n9WzVeqk+669nC5P2ZZIZvJxHP/1L/tmizVHibXFibbFK+OJvB8PBJW+PiIjMXTDg0BIL0hILwjSh\nDUDR8xjP2IAmmbUhTjJbZDxbZDzrkcwVq+rs/uIij71R9CCd92Y9j85MBRwIBxzCQQgF7DBr4QCE\ngg7hgEMoYOvDQb/ePyYUhJDjEPTrggEIOvb4YNV5Qaeyv7Qd8JfBgEPAobw+ua50TfUQEhGZt/I8\nMGFoaFi6n+t5eMUC5CaHNudOn6YY0UgCC20hApl3AUng09fUfw3oAd5pjPlwraHHjDF3AQb4VI2h\nzf4S21PmnYACGRERkTnwZjKp4TSHTHtujeqax87kOG+afTeo9/Aqx3g33i5fZ7r16rrq871K/aQl\n4BWn1k85tuiVw5Dy8VV15e0adcVCsbKv4FEs2jDlhnWFSthSDl/yi9MDZTE5AYdwQ5hoY5RwY5hI\nQ4RIY6XE2+LEWhW6iIisRQHHoTkWpDk2s/8GeJ7HRL4U3NhlKlcknbMBSjpX9JeerffXS/WLHebM\nRNGDTMHDTpe2DBpUQ8ApFT/QqQp1HD/QCTjOpGPK9QGHAHZ7Ip3AAZqGh3GqznEcCHDNtr/f8c8t\nHeM4TtW6X6ic5/jtdarPpXqfU6mbdI3J55Q+N9Ted+21qTqmen9pnfLPdKapr6zDtfudKfud8v+r\nOr/WNarCtGuPg2uPnVpX+VlOzX3XO69635Tr3eDYycdMPWMmGeFMY8TZtBEo/94oznKS+etdU6Gn\nLBrHgWDIllisXJ0dGa1jo1aveQUyxphm7FBlj7quO6lzr+u6njHmR8BbgN1Ad41L3Okv/63Gvif8\n5V3zaaNMb/S5UR798qP1bobInJUeivY7S/9GtqwdMwo0Zn3RqVUXueGUayIrmwOhWIhQNGSXsRDh\neHhSyBJpjJSDl1A8pD86RURkQTiOPw9MOMCGWb5w7Hke2QKk88VySJMp2IAnUyr+dra6ftIx9pxs\nAXIFb5nGKfNX9EoPoas/4Vw+bdguUstvLgWRmfO7+XVdqW8z5qke38b1J8D1LeU/Hs9r5j17xpbw\nJ64N8+0hs9Nf9kyz/7y/3EPtQGbXdOe7rjtmjBn2z10QXV1dC3Wp1cF/A1dkpVuUB+YiIlLmhJxK\nCTqTtgPBAE7EIRCuLAORAE7YmbwMOTUDliJFJvz/Iw+M+EWkTvQ3g6wGuo8XVwho9EtZ0C83GNnF\n86DgQd5zyBXtMl9aepArOuW6XNW+ggcFf7vgb0+tn1pXpLQN9Xm0KiIrWT2etugRz3Ji/7uh7xUV\nnZ2d877GfAOZJn+ZmmZ/8prj5nL+dOeKiIiIrC5OpTj+OBtOwI4p4QT87RnUO0F/PejMaJugf14p\nZAkFysFL+doiIiIyb44DIQdCeNgR15bmyWNpZNaC34ulFOoUPSjgTKqz9bauSKnnizN5/Zp9hfK2\nY0d99a9dXeePzDrpfK/WeeX2OpXtSfuuOdb/x+hh21gaebZ63VMYJSIiy8RCzCGzYixEgrVadHV1\nEemI0L6+vd5NEZmzwcFBANrbdR/L8jSTh9g17+MF/ntxRg/Tpzlk2nNrjaE8w4GVpxw3aRxoZ+o5\n/pjYk46tGoN71ttO1c+5dr007nX1oOH+dvnc6mVg8vb1jnECTmVZFaaU6qt//kpTemNK37VkJdN9\nLKuB7mNZDRbjPvY8rxzilMOha+omLf19xSn7vMo6lTf5J+2nEhJNCoX8yurrce16+XhvyjHl/TW3\nvSn7Jw0cV7VRPaqch3f946raP6mu5vHelLpa16qxOqVuRlNZ1vjZ11Pz580wD615mHf9YwYGBgBY\nt27dja81o/bMPbyd85nzyItXUieXldQjZ6mbOjQ0SDjg6XvFAptvIFOa2We6UVgbrzluLudr9qBF\nEtscY3fn7no3Q2TO8l15AN3HsqLlunIA7OrcVd+GiIiIiIisUo5TmfC+qrY+jZE1oYs+ADo7Zzlx\nlcgy0tWluW4XQ2Ce55/BhnPbptm/019ON9BcaV6ZKecbY1qwM2BpkDoREREREREREREREVnR5hXI\nuK6bBJ4DbjPGxKr3GWOCwN3ABdd1z09ziR/6y1fU2Pcqf/nYfNooIiIiIiIiIiIiIiJSb/PtIQPw\naSAB/No19e8EOoBPlSqMMQeMMeWxhVzXfRZ4Bni7MWZb1XEO8B+AHPAPC9BGERERERERERERERGR\nupnvHDIAfwv8MvAJY8xO4CngEPAh4HngE1XHngBc4EBV3W8CDwGPGGP+FBgGfgG4B/iI67qnF6CN\nIiIiIiIiIiIiIiIidTPvHjKu6+aA1wN/AbwV+AzwK9ieMa91XTd1g/OfAF4NnAT+APgksAl4r+u6\nfzjf9omIiIiIiIiIiIiIiNTbQvSQwXXdUWyPmA/d4DhnmvqngJ9eiLaIiIiIiIiIiIiIiIgsNwsx\nh4yIiIiIiIiIiIiIiIhchwIZERERERERERERERGRRaZARkREREREREREREREZJE5nufVuw0LbmRk\nZPV9KBERERERERERERERWVZaWlqcmR6rHjIiIiIiIiIiIiIiIiKLTIGMiIiIiIiIiIiIiIjIIlMg\nIyIiIiIiIiIiIiIissgUyIiIiIiIiIiIiIiIiCwyBTIiIiIiIiIiIiIiIiKLzPE8r95tEBERERER\nERERERERWdXUQ0ZERERERERERERERGSRKZARERERERERERERERFZZApkREREREREREREREREFpkC\nGRERERERERERERERkUWmQEZERERERERERERERGSRKZARERERERERERERERFZZApkRERERERERERE\nREREFpkCGRERERERERERERERkUWmQEZERERERERERERERGSRKZARERERERERERERERFZZApkRERE\nREREREREREREFpkCGRERERERERERERERkUUWqncDZPkxxsSAo8B+4HWu636/vi0SuTFjjAP8MvCr\nwEGgEbgAfA34uOu6I3VsnsiMGWNeCXwUuBOIYe/jL2Pv4/F6tk1kNowx+4DPAy8F3uO67mfq2yKR\n2owx7djfu/cDm4GrwDeBj7iue7GebROZDWNMBPhD4LeBR1zXfW19WyQyO8aYDcDvAz8HbASGgcew\n34OfqWfbRGbKGHME+F3glcAWYBT4IfCfXdd9op5tE5krY8wfAB8B/sF13XfXuTkrnnrISC0fwYYx\nIivJnwCfBTLAfwI+ABwDPgx83xgTrmPbRGbEGPPLwKPAduzDwd8AnsN+of8XY4z+uy0rgjHmPcCP\ngZvq3RaR6zHGxIHvY3/ffhl4N/BJ4OeBHxhj2urWOJFZMMYY4N+w97JT5+aIzJoxpgN4Bngf8AV/\n+UngXuAxY8ytdWyeyIwYY14OPA7cA/wd8O/85euAR40xd9exeSJzYow5BPxevduxmqiHjEziJ/m/\ng32Ioi88siL4X84/CHzTdd03Vu36lDHmq8CbgZ8BHqhH+0RmwhgTBf4G2yPmrqpeXX9vjHkA++b2\nfdi3tkWWLWPMr2IfoPwFNhj/ZH1bJHJdHwSOAO93XfevS5XGmKPY7w0fAT5Up7aJzIgfHD4DdAF3\nACfr2yKROflDYBvwVtd1v1KqNMY8CXwV+L+Bd9SpbSIz9bfYUPwVruueLVUaY36E/V7xe9jnEyIr\ngv9S6N8BL6DnxAtGb9pKWdW/ZOfQwxNZWTLAfwQ+VmPfv/rLHUvWGpG52QR8BfijGkPslUKYm5e2\nSSJz9nOu6/57IFvvhojcwLuAJPDpa+q/BvQA7/SHRRVZziLA/wRe5rquW+/GiMxRH/C/mPoS3bcB\nD30PlmXOf6b2D8BvVYcxPj2XkJXqN4CXY4dDlQWiHjJS7QPAXcBPYIfLEVkRXNc9DhyfZvcBf/nc\nEjVHZE5c1z2HHSqnlhZ/Obo0rRGZO9d1/3u92yAyE8aYZuz3hEdd181U73Nd1/PfZn0LsBvorkMT\nRWbEdd1L2AcmIiuW67ofm2ZXE7bHgb4Hy7Lmum4RO5R6LXouISuOMWYb8EfA51zX/Z4dHVUWggIZ\nAcAYsx34f4HPuq77oDHm3XVuksic+JOZNmAn5f0/gPdjJx17qK4NE5kj/55+L5DCDtcgIiILY6e/\n7Jlm/3l/uQcFMiIi9fLr/vIf69oKkVkyxrQCjcArgU8AZ6g9qofIcvVXQA4N37vgFMisQsaYd87g\nsD7Xdb9Xtf032GFFPrw4rRKZnTnexwC/BPwPf/0q8Kuu635qQRsnMkPzuI9L55eGkrwJ+LDrun0L\n2T6RmZjvfSyyjDX5y9Q0+5PXHCciIkvIGPMG4PeBp7HPLERWkiF/6WGfUfyu67oDdWyPyIwZY94G\nvAl4n+u6V+rdntVGgczq9NkZHPMd4HsAxphfAN4IvFf/kskyMqv7uMq3gXuADcAbgP9ujHk98Cuu\n66YXtokiNzTX+xhjTBz4PHA/8Feu607X/V1ksc35PhYRERGZC2PMu4BPAWeBn3VdV/PSyUrzOuzo\nHbcCvwncY4x5u+u6T9W3WSLX5/fu+gvgYSovPMsCUiCzOrXN4JgcgDGmHfgz4GHXdfUvmSwnM76P\nq7mu2w/0+5tfNMY8C/wp8Dzw8YVrnsiMzOk+NsZsAP4ZeBnwcdd1f3+hGyYyC3O6j0VWgNJ8BA3T\n7G+85jgREVkCxpiPAH8APAW80XXdy3Vuksisua77fX/1fxtjPgc8A3zeGHPAn29GZLn6Y6Ad+HXX\ndb16N2Y1UiCzCrmuOzyLw/8YaAU+5k/WVFJ6+LLBr79y7WSnIotplvfx9XwKG8jchwIZWWJzuY+N\nMRuBR7GTSL/Hdd3PLHS7RGZjAX8fiyw3Z7DDiGybZn9pjpmupWmOiIgYY/4U+C3sy0m/6LrudMNK\niqwYruueNcY8CLwN2Iu+W8gyZYx5NfA+7Mv749c8KwZI+HVJ13WHplxAZiRQ7wZI3d0LRICHgAtV\npTQ0zhf97ZfXpXUiM2CM+U/GmKvGmHtr7G71lwqgZdkzxjRjh93bAbxJYYyIyOJxXTcJPAfcZoyJ\nVe8zxgSBu4ELruuer0f7RETWGr9nzG9hh8h5i8IYWUmMMTcZYy4YY/5+mkP0bEJWgnsAB/ggk58T\nX/D3v91f/291ad0qoV8C8l4gUaP+Xuy/fP8RO9TT80vZKJFZOgasw96zD16z713+8gdL2iKRufkz\n4BbsH6DfqndjRETWgE8Dfw78GvZ3cMk7gQ7go/VolIjIWmOMeR3w/wAPAP9OQzrJCtQFxIC3G2M+\n7rrumdIOY8xe4BXAFeDFOrVPZCY+jx0uspavY5+5/SmVgEbmwPE8DQUnUxlj3o19K+V1VeNeiixL\nxhgH26X9Z4BHgH8CksBrsIFMP3CH67p9dWukyA0YY24GngVOMP0DwCuu6z68dK0SmT1jzBuozMnx\nWuD9wF8B3/frdB/LsmGMCWOHibwdO3npU8Ah4EPYBysv0xvastwZYw4CB6uq/gk4zuTvE9/UvSzL\nmTHmaezk5x8AppszRvexLGvGmF8A/hEYwH7/7cYORf0BYAPwXs3fLCuVMcYD/sF13XfXuy0rnXrI\niMiK57quZ4y5H/vQ713AfwHCQC/wt8AfKoyRFeA2bNfgg9gHKbU8jH3ALbKc/Q2VuTdK3u8X0H0s\ny4jrujljzOuBjwFvpfIg8FPAR/XgT1aIdzD1ZY5rv0/sBs4uVYNE5uA2f/lX1zlG97Esa67r/n/G\nmHPA72G/U7QCo8CTwJ+4rvsv9WyfiCwP6iEjIiIiIiIiIiIiIiKyyAL1boCIiIiIiIiIiIiIiMhq\np0BGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERERERERERERBaZAhkRERERERER\nEREREZFFpkBGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERERERERERERBaZAhkR\nEREREREREREREZFFpkBGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERERERERERE\nRBaZAhkREREREREREREREZFFpkBGRERERERERERERERkkSmQERERERERERERERERWWQKZERERERE\nRERERERERBbZ/w8Fpzj0yYABEgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "gp0QmuZvIA0L", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "All samples of $\\beta$ are greater than 0. If instead the posterior was centered around 0, we may suspect that $\\beta = 0$, implying that temperature has no effect on the probability of defect. \n", + "\n", + "Similarly, all $\\alpha$ posterior values are negative and far away from 0, implying that it is correct to believe that $\\alpha$ is significantly less than 0. \n", + "\n", + "Regarding the spread of the data, we are very uncertain about what the true parameters might be (though considering the low sample size and the large overlap of defects-to-nondefects this behaviour is perhaps expected). \n", + "\n", + "Next, let's look at the *expected probability* for a specific value of the temperature. That is, we average over all samples from the posterior to get a likely value for $p(t_i)$." ] - }, - "metadata": { - "image/png": { - "height": 193, - "width": 818 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "def logistic(x, beta):\n", - " \"\"\"\n", - " Logistic Function\n", - " \n", - " Args:\n", - " x: independent variable\n", - " beta: beta term\n", - " Returns: \n", - " Logistic function\n", - " \"\"\"\n", - " return 1.0 / (1.0 + tf.exp(beta * x))\n", - "\n", - "x_vals = tf.linspace(start=-4., stop=4., num=100)\n", - "log_beta_1 = logistic(x_vals, 1.)\n", - "log_beta_3 = logistic(x_vals, 3.)\n", - "log_beta_m5 = logistic(x_vals, -5.)\n", - "\n", - "[\n", - " x_vals_,\n", - " log_beta_1_,\n", - " log_beta_3_,\n", - " log_beta_m5_,\n", - "] = evaluate([\n", - " x_vals,\n", - " log_beta_1,\n", - " log_beta_3,\n", - " log_beta_m5,\n", - "])\n", - "\n", - "plt.figure(figsize(12.5, 3))\n", - "plt.plot(x_vals_, log_beta_1_, label=r\"$\\beta = 1$\", color=TFColor[0])\n", - "plt.plot(x_vals_, log_beta_3_, label=r\"$\\beta = 3$\", color=TFColor[3])\n", - "plt.plot(x_vals_, log_beta_m5_, label=r\"$\\beta = -5$\", color=TFColor[6])\n", - "plt.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "H_rdEcFIIAz7" - }, - "source": [ - "But something is missing. In the plot of the logistic function, the probability changes only near zero, but in our data above the probability changes around 65 to 70. We need to add a *bias* term to our logistic function:\n", - "\n", - "$$p(t) = \\frac{1}{ 1 + e^{ \\;\\beta t + \\alpha } } $$\n", - "\n", - "Some plots are below, with differing $\\alpha$." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 210 - }, - "colab_type": "code", - "id": "T0iZj_eCIAz8", - "outputId": "b2aed49b-9ef8-49d1-bb5a-7c943ff3b629" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAGDCAYAAAA1YX+ZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xd0JNdhJvrvVnWOQAONHAYYYDCR\nHJLDYRqKFC2JSZZkZYf12s/PftLaa1trvfUe77Mc1mufXXtl2c/rt+94nxxkeW1ZsqxgBcsiKTGJ\naYbkxB7MIOfU6Jzrvj9ud1c30JgBZ4BB+n7n3FPdVberq9EFoPt+de8VUkoQERERERERERERERHR\n5tG2+gCIiIiIiIiIiIiIiIh2OwYyREREREREREREREREm4yBDBERERERERERERER0SZjIENERERE\nRERERERERLTJGMgQERERERERERERERFtMgYyREREREREREREREREm4yBDBERERERERERERER0SZj\nIENERERERERERERERLTJGMgQERERERERERERERFtMstWH8BmiEQicquPgYiIiIiIiIiIiIiIdje/\n3y/WW5c9ZIiIiIiIiIiIiIiIiDYZAxkiIiIiIiIiIiIiIqJNxkCGiIiIiIiIiIiIiIhokzGQISIi\nIiIiIiIiIiIi2mQMZIiIiIiIiIiIiIiIiDYZA5k9anBwEIODg1t9GEQ3hecx7QY8j2k34HlMuwHP\nY9oNeB7TbsDzmHYDnse0G/A83hwMZIiIiIiIiIiIiIiIiDYZAxkiIiIiIiIiIiIiIqJNxkCGiIiI\niIiIiIiIiIhokzGQISIiIiIiIiIiIiIi2mQMZIiIiIiIiIiIiIiIiDYZAxkiIiIiIiIiIiIiIqJN\nZtmoHQ0MDNgA/A6ATwL4figUevgtPPZ+AL8O4F4ATgCXAfwZgD8JhUJyo46RiIiIiIiIiIiIiIho\nK2xIIDMwMDAA4G8AHAAg3uJjHwHwTQDjAH4TwBKA9wL4YwD7AfzyRhwjERERERERERERERHRVrnp\nIcsGBgbqAZwGoAM4cQO7+FMAaQAPhkKhPwqFQp8LhUIfBPAVAL84MDBw+80eIxERERERERERERER\n0VbaiB4yNgB/BeAToVAorTrLrM/AwMA9AAYA/M9QKDS9YvOfQPWU+QkAb2zAcdIKYwkdVwcTW30Y\ntMXeUpe2bWZx0Q4AGMImnsdb8APaivdE3OCT3syxims9+sY2VddbUfF6jxNr3rn2YyufZ63XVOvn\nW1o1G7FCAFgYS5VX1trLWq9HrHhQZbXqY1t936wnqve5Yl9r7afyucWqbdXrAbFqm7ayjgC04gqx\nVr3iTrTic4mq5xbm/VVLsWq9dqMnPhERERER3TQpJaRhFkio27J4WxZvG6heZ6zYLs3t5dtYxzrU\nuI3rbIO5r2utS84mAQDTiena9corVv5QSovVz1HrMbJmhTUeV+v51/m4t7yfG7UHJq7YtJ/dJogt\nxuA+4N7qw9h1bjqQCYVCswA+foMPP1lcvlhj20vF5T03uO9VBgcHN2pXu8JrYTvGJxnI0E7mUItF\nnse0k7nUYja2tYexRwnIVeGRGfLIFfeLQQ4AIaq3lQMiyIo6xW3Fulr5vqpXfV/VKz1OK+6j9Fhd\nqOc01wNacR/lUnFfL+5LF2ofeuX64j70ivXaBmVT/KxFuwHPY9oNttN5LKUsX1ABAIVMQTWuGhWN\nrAYACWguDbpdV/VSBeRj+eqG1opGWUeHo7zf9HQaRtqoanQtNaRavBbYW9SFXIV0Aanh1OrG1OLS\n1euC7lLPn55MI7uYrW6gLT5Od+jwHPKUX1PkTES9BqxoaJOAs8sJe7N6/ux8FsnhZNVzVjam1t1d\nB1H8pxw7F1OvvwZb0AZ3n2ogyyfyiL0Rq95XxSH4jvlg8ammn+RQEunpdM0GT92lw3+nv3x/6fml\n8mtaybXfBUeb+i6Wmc0gcXnt72P1D9SXX1P09Sjy0TVeU7MNngFP+TVFXotg8fuLNev6jvtg9VkB\nAIkrCaSn0jXr6S4ddSfqzNf07NKaDaHu/W442ouvaSaDeCi+5msKPBgov6bImciar8neYq9+Ta9G\n1tyn77gPVn/Fa5pc4zW5a7wmo/Zrcu13wdHqgCxIZKYzSFxJVIUMAMrnteeAR+2nAKQmUiikCuXt\nlUvNocHisajQJCeRW86tqlc6DzWrpj7kSkDmJWThGgHDLhbB2u870U7g6HBsq88VW62/v/+m97Eh\nc8jchH3F5cTKDaFQKDYwMLAMoPeWHtEekinwymAiItrbJIT6TiirVhbtpf+TKpzRi6GNRZiBjbkE\nLNrKdWZdiwZYKpfF+haxYn3FOqu2cWEQERGtTyFZgJEzVANpqRTUUvfosDcVw4tUAfFLcRWCFIpX\nsBdk+b7vTrNRPHYuhuRI0gxapLm0+CwIvitYfv65r82t2SDru8NXDhoyM5lrNmC3vL9FDZwOIH4h\njtxSrmY9Z7ezHMgYGQOxc2tfBGNvsZcDmcxcBskryZr1LD5LVSCTvJpc8zVZ66zlQCafyCM1mlrz\n+XG3eTMzm1nzNQnd/Ocp83LNxnsAMAbMVCUXySEzlalZrxTalJ9/JrNmIFP6eQLqPMnM1N6nOkDz\nZnYpi9xi7dekOcwR9WVeIjubXXuXWXOn+Vh+zbqrXtPc2q/J0eoo3y6kC8jOrf38la8pF86t+Zp0\np24+JC+vuU+ZM3eai+bWrKvZNcQuxMq/u9f62V/zNaxwrd+1SkbaQH65dgC1qm5hjR82Ee0oa4W+\ndOO2OpDxFpe1P+UAiYo6N20jEqzdYnBwEI12A3PX+NxEREREe4VAQQLqwsVbm5BYNcCmC9gtAvbi\n8nr37bqA06rBYRFwWgQcVk0tLQI6Ex66QaUr//idgbYbKSWMnIF8Jo98Kq+W6TxcDS44A04AQGQi\ngpkzM1heXIbMSliFFflsHkbWQCFfwP3/7n5oumrwfv0vX0d0MlrzuZqONqH/AfU7kJhP4LWvv7bm\ncbUH2+HvUj0qro5cRTxVu0eB1WKt+r1a8i5BFiSELlTRikUItHW1oam/SdXTl4A5VG0XxW6lQhPo\n6+8rvybbrA3p5XS514IQZj1vmxfN/c0AgGw8C2fMqbZVjKVaut18uBkOv2qYD1vCiHfGV9eFgMVl\nKe8TANyPulUjfalaRX1fuw/uoAqZUg0pRJoj1XVgPq6pv6n8GhotjcglcxXD0pr7tPvt8LX5AAD5\ndB5BT7BiV6Jqn/5OP6wuFZzF/XGkj6er6xXr6jYddd1mz4uGDzasORSSu9ENR12xN0lzBomeFT1k\nKnZd31tv/nydzchn1uhN4rXD3aR+TqELIQQeDKCtva1mXW+rF1anek3J+iTSJ9boTWLT4e8we/00\nfqRxzR4yrgZX+b3PtGSQ7FurmQqo21dnviZ3s+r1VYPNbYO7yQ1pSKSWUvC904d8Oo9CpoBCpoB8\ntng7W0Ducg6psynkU3nkUrUDHkCFivHza/feISLaaJpV4+fjDbbVgQxtoUeaU/i5B9q3+jCIbtjg\nlSsAgP6+vk3Z/1ZcA7AVQ4luxlNe/3WsXeFaD13vz+d61a61n1VD+K637oqK1xrqt7Lq8PAwpAS6\ne/apOU0kYEAik5coGIAhJQyJYpEoSMBn12ErXnAXThmIZQowio3pBUPCgKpvEcD+gK38vKen08gX\n1D4MQ10gWJAShgH0BizoKF7lOh7J4fXpTLGBXh1HwSg+TgIfOuKFpXgR41cuxTEdy6MggbyhtpcM\nNFjxjv1uSEgsJgv4u3Nrf3l894ALzW71seTF8TQuzNe+os9nE/jhg57yz/FLF9RVrhZNwKKLYq8M\nAYsOdPutaPJYIKVELGNgLlGAVRewaIAu1NKiqQZ8UWxFMaRqeiiPjCJLtyvfh2LjWOk21HsjK7aX\n78O8X7mt9PM3Su/Xive6sOIxu1nOAHKGRCK3MS/UpquQxmlVAU1lcOO0anBZBdw2De7yUoPbJuCy\narDqDHOI6NYpZAvIxrOqJNQSANrvVt/RpJR4+b+/jGw8W/Pq1J5HetB5bycAIBPNYPbsbHlbFtX/\nRwvZAjSn+uftqHcgn8lDt+nQrBp0qw7dqkOzafC1+8qPsXls6H1HLzRdg2YpFl2DsAhougZX0FWu\n2/VAF9pPtkPoApqmqQClImypdM8vrG9U8kBvAIHewLrqdp/qXlc9m8eGnrf3rKtufU896nvq11W3\n7c7awcFKzoCzHKKt5/nXw+KwIHgweP2KADxNHniaPNevCCDQt76fvd1nh91nv35FAL4O3/UrQTX+\n2Vvs63r/XY0uuBpd160HrP9navfaYfeu7zV5mjzIxDPIRrPIxDKqRDPIxrLm7UR2a75c3iShq9/1\n0u9yrduaVnu70M0QdVVZY30pRFXzQpr3y6FoxfbSOlEcK7hynTr4inWo3sdagWxlXaB6/Xrur9zH\nyMgIAGBfz76q/VbtY+WFUCvvrnNi1FX1brT+dR73lvdzo/bAR/JN+9ltsMHBwT3xftxqWx3IlC7L\nWWt2IE9FHdpgmgCvIqUdrdRuxvN4J+J7VrJgVd/OGl039i85+Bbm13vSu74v4J1+K+7vWt8X20/c\nX/1F2ZASeQPIG2ruE6dVNf5kCxLtPivyhkTekMgWgFxBIleQyBYk7mi1w+dQKVPeAHx2Ddnitmyp\nngE0ODXc2+ksP9ffnFWBTKYggRUN+g90OfFgt3odL4yl8NTw2kOEfPqxYLkx/m/ejGIxWYDLqsFp\nVQ35bpsOj01Dm8+CfXXW8vMDUEHaJqoKagxZXhYqgpuCUQpyzAAtX6pnqPX5imAtX1yfL+5PvS8o\nvz+50u2Cub72OnU7mzdgbJPf69I5E7mBXsA2XcBtE+WQRi1VeOOxafA5NHjtGnzFYi82NhARrWQU\nDKSX00gtpZAKp9DQ11BuiB//wTjGnhtDIbv6qnqb21YOZEp/X6QhoVk0WOwWWBxmcfjMIZZ8bT4c\nePIA5sPzEFaBfX37oNtU0FIKXkoOvufgul6D1WlFx8mO9dV1WWGFdV11iXaafCaP1GIKycUkkgtJ\nJBeTyERV2JJLrt2bZTMJXajfcZsOi81Svl1V7Ho5cBUWoYJXXYNmrQhZr1H4GefmlIY/rPxbTbTT\nrLyogjbGVgcyQ8Xlqk95AwMDfgB+AKdv6RHtIfaZaWB+DrBazWKxqKXDAbRV9J5JJtU2iwXQtLV3\nSkREe5omBGy6atiuZNMFeurX11Bzot2BE+3X/+IiAPzBo0Fk8gbSBdWrKJOXyBQk0nmJLr/5MafZ\no+NUlxPJvIFUTiKVKy7zKuyp7BkxEs5hOl576IlTXc5yIDMRyeMPng9XNdx7bKrh3m3T8NA+J/zF\nkCmWMWDRAIflrTfga0KY86xs0x4cg4ODMCTQ3bsfuQLKIVrOKAVqqLhtrssa1e9bJi+RLRjF+6i4\nrUK8zZYtSGRTEuHU+sY8t+kqPPTa9XJIo+5rVfd9do0XDxDtQpWT1ReyBQw9NYRUOIV0OI10pHri\ndJvbVg5khCZQyBYgdAGbx6aKWy1XXpV/x0/fAYvdAs1y7e9gjjoHWupaEBtUFyp4mtd3EQYRmXLJ\nXDlwSS5Uhy+bQWgCFqcFVqd11bJqnUMtdbsZtpSG6yMiop1nqwOZF4rLBwD8fyu2PVhcPnfrDmdv\n8YYuQbz6cs1tsjEI/M7vmSv+469CpNSVxdJiASxWwGoBrDbg8SeABx9S9S6HgG9/E7DZinVWlMef\nVNsA4MJ5IJlQ9602td1WXLo9gG993ZmJiGhvEkLAbgHsFh3X+4+xP2DD/oBtXfv9yeM+xLJmYJPM\nGUhkJRJZA70BM1RK5tTwZvGsRDxbABLVicF9nWao9A8XYnh1KgOrBvgdGnx2vbjU0Om34J4O1Ugn\npXpO5w0EN1tNE4DDosGxSZ8uDVnsMZVXgVuqWNI5Qy3zEqmcRLoYuqk6lbdVEJffwPllswVgIWlg\nIXntnWpCve/1Dh0Bp4Z6p46AU0d9+bYGx3UaW4lo6xRyBSRmE4hNx5BcTCIVTiG1lILdY8fxf30c\nAKBZNMy8MaMmvQfK83w4A04461Upabm9BS23tUC369f9W29zr+9/FxGtn5E3EJuOIT4TrwpeNqq3\ni2bVysOe2Xy28m27zw6bx1YOWnTb9f8GEBHR7nNLA5mBgYGDADKhUGgYAEKh0OsDAwOnAXxoYGDg\nU6FQaKJYTwD4BIAcgL+8lce4l2SamyHvvQ/I5YBcHsjn1O18HvD7qytbrZD5PEQuB5HPqzrFefNk\ntuJDy9ISxPlzaz6nfPwJ8843vg5xZbB2vbtPAj/zc+rO7AzwW7+hwppa5cMfBTrU2Mk48xpw9Qpg\ns5sBj82m7nu9wOEj5pPMz6nQyGYD7HbV+4eIiPa8Dv/6evIcDNrwmceDSOYk4lkD8ayBRNZAvBje\n+OxmA7sQamL6bEGuasA/2mQrBzKxrMR//JcFWDUg4NQRcOlocOoIuDQEnDoONNjgte/NhntNqDlh\nHBZcN4C7lmxBvT+JrIFErni7FLpVhG/JinXJm5zfxpBqvqdwysBQuHYdp0WUw5nSssGlo8ltQdCt\nr+p1RkSbQxoSUsry1edjz49h9NnRmnO4GFnzb7nQBPof64fVZYWz3glHnWPNXi0WO793EN1K+XQe\n0ckoIuMRRMYjiE3FzPD0rRKqR5qzzrkqbLF77bB5bbA4LAxaiIhoTTf9SXBgYOAwgMMrVgcHBgY+\nWHH/G6FQKAngIoAQgMpBa/8NgKcBfH9gYOAzAJYBfBTAIwB+PRQKXb3ZY6TaYgcPo6W/f32V/+un\nAagrd5EvhjfZYoDjqphnYOAg5M//YjHkyQG5rAp7cll132KtruvzqfXZbMUyC9RVTLaXzUIYBSCd\nUmUFma2YsPLSJYjvPV3zJci2NuBTv22u+K1PqXCptF3Ti+GMDXjvjwD3nyru8yLwzFMqtLHbVbhj\nryin3gboxdm1JycBaZjbHA7V+4cfxoiIdiVdE/DaxXVDkp88riKEdN5ANG0gkjEQKS4DTvOxiawB\nh0UgnZeYTRQwu6LXzb+9pw5eu7pa+pnhJC7MZ6sCmwanjqBbh9u2N0Ob9bDpAjanjnqnvu7HFAyJ\nRE4imikgljEQXVFiafN2Kn9jDTypvEQqlsdUrPb2eqeGJrcKaJrc6n1ucqueNhwOjejGSCmRiWQQ\nm4ohNh1Ty5kY+h/vR/PRZgBqEngpJVxBF7ytXrib3OVeLw5/9fCaLbe3bMXLIKIVMvEMouNmAJOY\nS1QNIbgeQhdwBpxwNbjgaqwoAdd1hxAkIiK6lo24NOfDAH5jxbrDAP6+4n4PgJFaDw6FQi8NDAy8\nDcBvF4sdKrj530Kh0J9vwPHRRhLCHH7MWWN7fb0q6/HD711fvY5OyP/7/zEDm2ymuCyW1laz7p13\nQTY2mnUzFXXr6sx6hgHUByBL+8pUhz6yUDH0yNwsxOtn1jw8WRquDQD+6s8hRkeqtwuhwpkHHgQ+\n9BG1cn4O+MLfAnaHCm1K4Y3dDjicwB13qh49ABBeUq/H4WDAQ0S0wzksGhweDU1rDO3f6rXg9x8N\nIpVTvSkWUwUsJQtqmTIQdJshwshyDhfnszX3sz9gxS/fp/4fSylxaSGLJrcF9U4NGv+HvGW6JuCz\ni6peT2vJFWRVaLOcLmA5bSBcfA/DKXX/rcY2pR42oYXq4VR0ATS6dDR5zN40zR4dbV4LXFY2GBHV\nIqXExX+4iMh4pOYQRakl8yKw4KEggoeC0G3rD3GJ6NaRUiK1lEJ0wgxg0uH0uh+vWTUVtFQGLw0u\nOOudnMyaiIg2xU0HMqFQ6DcB/OY669b8bxYKhV4F8EStbURVIVBlb5xaBg6qcj2aBvyn361aJfN5\nM8RxVqRNh49A/tzHVRCUzqhlJgNk0qr3j1bR2NHUBJnPFbdngHQaIpcD0mlIoyLkiUQgzr655uHJ\n3l4zkPnaVyBeeN7cpmlmONPTC/zsx9QGwwA+/znA6VChjsMBOF3FpRNo7zCHojMM9XNloxwR0bbk\ntGpwWjW0+db+qPbkATfuanOUA5vFpIGlVAFziTy8FT1kYlmJP305AgCwakCzx4Imj45mtwUtHh39\ne3gYtM1g1QUCLjXc3FoKhkQko96vcDGkCadK91Vwk1nnUCoFiYreVNUBXcCpocNnQbvPgnafFR0+\nCwJOjcOo0J5SyBWwPLqMyGgEPY/0QAg1R1cmmkEumYPVaYWnzQNvqxe+Nh88rZ6qeVsYxBBtP1JK\nxKZimL8wj/mL88jGa1+gUosz4IS/yw9/px++Dh8cdQ7+XyQioluKg9cSlVgsqqwMfRqDqqxHad6b\nCrJQUOFM5Ye8llbIj/8CkE6b4U46XVxmAF/F6PhuD2RjsFxH5HJAMgkkk5DBJrNeJgPx/LNrHpr8\n6Z8B7rlP3Xn6u8AXv6CCGodTvWanUwU4Hg/wkz9lPvDMaUDKijrFei4noPNPCBHRVgm6LQi6V/8d\nNqREtqIxP5M30B+wYjZRQDRjYCKax0Q0DyADAPjFe81h0N6YyWAukUen34pOn4VDn20SXRNqjqA1\nhk2TUiKZk5hPFjAfVyHbXKJQLtl1hjVLKQNLqSzenDUbqpwWUQxoLOWwpsVjgZVz1NAukk1ksXR1\nCYuXFxEeDsPIqQujmo42wdOsuij2Pd4Hi8MCh5+NsUQ7gZQSibkE5i/MY+7CHDKRzPUfJABPiwf+\nTjOAqQxciYiItgJbU4k2m66vDnk8HuD24+t7/Ac+pEqRLORVeJNKV4c8ug754z8JpIpz7VQt00Cg\nwaybyUBIWQ52sLRo7t+9Yhydv/9biKWlmocmH3sCeN/71Z2xMeDrX1Gv1eUuLivKwUNq/h1A9dDR\n2MhHRLQZNCHgsJj/H4JuC36xOHxZMmdgNl7AbDyvelXE82jxmB8HX55IVTXeB5xaOZzZ32BFX4CN\nGLeCEAJum4DbpmFfnbVqm5QS0YxhBjRxM6xZSBZQY97xKqm8xJWlHK4smcM0aQJo8eho91nQXWdF\nb70V7T4Lh7ejHScTy+Dily8iOhGtWu9p8aChvwFWl/n75G3x3urDI6IbkFxMlkOY1OLqOWUraRYN\n3navGcC0+9jLjYiIth0GMnuYbWEeWF4C3B7A41UhgcejJran7Uu3qPdsZXBiswEPvm19+3ji3ZCP\nPqbCmlQaSCXV7WRShSWVjt0OGVk2t6dSqn4yqea8KVmch3jzjTWfUv6XPzADmf/xp8DFC4DbDbiL\nAY67WHp6gVPF15HLAUNX1fpSHRvn0CEiulEuq4aeeg099daa2+9ud8Dv0DERyWEimi/2sMjgjZkM\n7mi1lwOZZM7A90ZS6PRZ0Onnx8lbSQgBv0OH36Gjv6F6W8GQWEwVMB0rYDKq3sPJ4vt4LYYEpmIF\nTMUKeGVSXXHssAjsq7OgN2BDb70V++ossHMSY9pGpCERnYwiuZhE63E1p6TNbUNyMQmhC9R116Gh\nvwEN/Q2w++zX2RsRbSf5RB7p8TROf/804rPxa9b1tHoQPBiEv8sPT4sHms7/VUREtL3xG/Qe5rky\nWHOIK2mzmeGMx1sMbDzV6zweNcdJ6TZ7O+w8uqX4/l3n6sAf/fHa66WsDm9690N+7OeBZMLseZNI\nmOGNs6KXUDoFkcsCy1lgOVy920zGDGSWwxB/+AfV263W8jnpeNvDSLe2qQ2XLgKTk4DHXTxv3erc\ndHvUPDoMcYiIrut4qwPHWx0AVOP+XKKAsUgOE5E8uit6aowt5/GNy4nyfZ/Vi3ZnHouOFPoabGjg\nPCVbQtcEmtwWNLktuL3FbIBO5gxMFsOZUkgzHcvjWiOfpfMSlxZyuLSgetJoAujwWdBbb0VvQPWi\n8Tt41THdevl0HtOvT2Pq1SlkohkIXSB4KAiL3QKhCRz9yFG4Glyw2PlVl2gnycazmL+o5oRZ2ctt\nJVejC8HDQTQdboIz4LxmXSIiou2Gn1L3MD1Vu7uvyGaBpSVV1kEKoRq/vb5iUONTYU0psPGuKC43\nA5zdQAg1HFuJvw44fsf6HvuJT0JmsyqwSSaAeNy8XTm0mpSQ/QeKdRJAIq7m0FkOrwpycOY0xPee\nrvl0sq0N+NRvmyv+8rMqpPF4q4NFjxcIBNQ2IqI9TtcEWr0WtHotuKejepvfoeGRHifGo3mMR/KI\n5jREczZcfDMGAPjPP9QAX7GxPp414LYKBjRbyGXV0N9gQ3+D2Qs6b0jMxguYiObKYc14JI9UvnZK\nY0hgLJLHWCSPZ0bUZ8hGl4aeehv2B6zYH7Ci2a3zfaZNkwqnMPnKJGbemCnPCWP329E40AgjbwDF\nDNLX5rvGXohou4nPxjH23BgWLi8A17hQwFHnKIcw7ib3rTtAIiKiDcZAZg9bK5B5q4SUqkE9fu2u\nxCVS0wGvR01c7/Wppc+/4r7PDHgY3uw+Qqjhzux2FYCspakZ+JV/b96XUgU58TiQiCNTec4dGFDh\nYHEbEnEz6KnsnZPLQbz4wppPKX/8XwEPPqTunH4NeOYpFdqUzslS4OjzqeHV2PBERHtQq9eCHzms\nelgaUuLFc0OYTFmwrPkRyxjlMAYAPv18GJmCRF/Air7iPDQtHjbcbzWLJtDus6DdZ34dMKTETLyA\noaUchsJZDC3lsHiN4c4WkgYWkmm8MpkGoOYcOtJkx+GgCn/sFr7HtDEysQxe+R+vlBtr67rr0H6y\nHYG+AP+WEO1Q8Zk4Rp8bxeLlxTXr2Dw2BA8HETwchLfVy993IiLaFRjI7GFzb/8heD/0kWLDdcwM\nVcolZjZux+MQ6fSGPK8wCkAkosp1SCGKPWt8gN+vght/qdSpRvHSbTvHht71KoOchgbIwUFz210n\nVKmlUKi6K3/6f1fnd6xYSrfjcaCu3qw4OwNxOVRzl9JuB/7ov5sr/ujTan4dXymw8ZtBY0cn0Nx8\no6+aiGhb04RAk8NAkyOL/v66qm2pnIFU3kA8K3F6OoPT02p+Eo9NYH/Ahod7nOV5aWjraUKgzWtB\nm9eCU91qCJjldCmgyWFoSc1Ls9YFzEspA8+OpvDsaAoWDehvsOFw0IYjTTYE3fzaQetnFAwsXV1C\nQ38DhBCwe+1o6G+AxWFB+93KA2ipAAAgAElEQVTt8DR7rr8TItqWYtMxjD03hsXB2kGMxWmBrdUG\nR5cDR+47whCGiIh2HX4z2sMMpxNoa1t3fZnLqd4GpaAmFq1u0I5WNmzHIJLJmz5GISUQjaoyOXHt\n43M4qkOb0rKuTgU2dfXqNoej2nsqh1azWoF77l3f4+57ALKnV53rpfMwFlP3V/bcGhuDSNTuJSaf\neDfwnvepO5cuAp//XPEcregdVjpnDx5Sx0hEtAs4rRp+9x2NmI0XcGUph8GlLK4s5hDNGHhjJoMH\nusz/yeMRNVdJh8/CxpdtpM6h4842HXe2qfcqnTcwspwv96IZCeeRqTEZTd4ALs5ncXE+iy9dAIJu\nHUeCNhxusqEvYINV53tMq+WSOUydnsL0a9PIJrK4/V/dDn+nHwBw+AOH+beBaAeLTcUw+twolq7U\nHhrd3+1H5z2dqOupw9WhqwDA33kiItqVGMjQ+lmtKtCoq7t+XQAyn18d3MSiKxq3o0BEbRdG4fo7\nvQaRTgPpNDA7e+3jcjhWhDR+M6wprfP71KT3tLe9hfMd/+HXIEuBTTQKRCPmsrPTrLe0BDE/B8zP\n1dyN/MM/NgOZz/6ZOp/9deo89deZ52lzMxBsuskXSES0+YQQaPFa0FLsdSGlxHyygCuLuareMd8a\nTOLN2QzqHBqONdtxrJkN99uRw6LhYKMNBxttANwoGBKT0Twuzmdxfj6LkXCuZg+a+UQBzyRSeGYk\nBZsOHGhQ4czhoB0NLr3GI2gvScwnMPnKJObOzan5YAC4gi4YBXPIPDbMEu1M0ckoRp8bRfhquOb2\nun116D7VDX+X/xYfGRER0dZgizNtHotl/Q3ahgGZTJohTWVgU27cLg5zFo2qnjM3SKTTwMyMKmso\nD5VWVw/UB4BAvbodCJjr6urUayQCVDiynoDkxAnI3v0V53QUiC6rZSIOOJxm3YkJiKnJmruR958C\nfvKn1J3ZGeAvPmsGi/X1qtRVnLc6G7uIaHsQQqDJbUHTiiGsGlwafHYNy2lz2Cu7LnAoaMMDXU4c\nDHJos+1I1wS66qzoqrPi0X43ElkDF+ezuDCfwcX5LOLZ1Z/ZsgXg3FwW5+ayAOLo8ltwot2Bu1rt\nVfMP0e4npcSFL12omkMisD+A9pPtqNtXxxCGaAeLTEQw9uwYwsO1g5j6nnp0PdgFfweDGCIi2lvY\nmkzbg6YBHo8quM4waoYBGYuZAU0kAkSWy2ENIsvlbSKXu6HDqRoqbWy0Zh0V2vjMxu/6QPWyoUH1\nZFg5tBXtbTY70NKiyvX8wi9BLofVOb1cOs+L53pXl1lvcRFieGjN3chP/RbQ1q7uPP1dYHrKDGsq\nz1/Ow0REW+j9h7143yEPJiJ5nJ3N4OxcFpPRPF6fyaCn3loOZJbTBWTzEk0efozdjtw2DSfaHTjR\n7oAhJcYieVyYy+D8XBZjkXzNx4xF8hiLxPHlC3EMNFpxot2B25rtcFr5GWq3E0LA1ehCeCiM5mPN\naL+7Ha5G11YfFhHdhMh4BKPPjmJ5ZLnm9vr99eg+1Q1fu+8WHxkREdH2wG+ytPNomppvw+8HOq9R\nT0rIVKrYmL0MLIdVQ3Y4XLFOhTfCMK6xo9pUaFPs5TA6UvsQNF01dgcCQKBBhTT1AbUMNKieNzY2\ngtMaAgFVrqenF/KTv6rO8eVldY6Hw8X7YRW8lJx9E+LC+Zq7kcfvAD728+pOJgN872n1/PXF42DA\nSESbTBNmb4snB4ClZAHn5jI42mT+r3xuNIVvX0miu86CezocuKvNARcb7rclTQjsq7NiX50VTxwA\nohkDF+czuDCn5pZJ5at7z0gAlxZyuLSQg1WL4WizHXe3O3AoaINFY0+J3SI8HIY0JAL71Wecrge6\n0HGyA1YX59Aj2slS4RQGvzm4ZhAT6Aug61QXfG0MYoiIaG9jIEO7lxCAy6VK6zV63RgGZCxqBjSl\nsCa8ZDZqh8MQmcxbPwSjACwuqLIG6fVWhzQNDUBjI9AQVLcdjjUfSwQAcDqBvv711X3XY5DHbiuf\n11Xhjctt1ltcgPiHL1Y9VGqaOQTaR38M6CgmovPzQKGg1ts4pBARbZyAS8fb9lVfLS8AOCwCo8t5\njC7H8Q8X4jjWbMc9HQ4cbLRBZ8P9tuWza7inw4l7OpwoGBIjyzmcmc7g9FQasRVDm+UM4Mx0Bmem\nM3BZBe5oteNEuwO99VZoHMZqR8omshj67hDmzs3B5rbhxP9xAhaHBbpVh27lUHVEO5WUEjNvzODq\nd67CyK2+0LGhvwFdp7rgbfVuwdERERFtPwxkiDRNXfnvrwO616hT6m1TCmlWLdVtkc2+5acXsZia\nCH6todE8HqChUZXGYindb2gwJ4AnWo+Dh1RZyTCAfMUQfzY75CPvUOf40pI6v6NRYGkRWFpU4UzJ\nt/4J4vnnAADS5zPPzYYGoLMLOHFyk18UEe0lTw548M4+N96cyeCliRRCC7lyw/2pLic+cowNPjuB\nrgnsD9iwP2DDjxzyILSQxatTabwxk0W2UB3OJHMSz4+l8fxYGgGnhrva1JBobV5+ldkJSo21w08P\nI5/KQ7NoaLu7DRp7thHteNlEFoPfGMTi4OKqbQ0HGtB9qhueFs8WHBkREdH2xW8xROtR2dumvaN2\nHSkhk0mzAXtpsXq5uKiGR5OrJ7e95lPH40A8vvawaH6/agAPBoHGYHFy+aAqXp86dqLr0bTq4fMa\nG4EPf7SqiszlzPM72GRucLkhG4PAUjG0iUaB4pw28vARM5BJpYBP/VpFuBisWAbV8H46r5Alouuz\n6aI8T0k4VcDLk2m8PJHG7a3m37HBxSymY3nc1eaA28aG3+1M1wQON9lxuMmOTF7i7GwGr06lcXE+\nC2PFx6allIHvXE3iO1eT6PRZ8FCPE3e2OmDV+XlnO0ouJHH5m5cRHY8CUJN49z3WB2e9c4uPjIhu\n1uLgIi7/02XkktXztnrbvOh/vB+eZgYxREREtTCQIdooQgButyoda0xuk89DhsPlXgblwGbRvC3y\ntSe8XfNpIxE1N87Q1VXbpN1eDGkqgppSaBMIsPGb3hqrFWhqVqXSBz6kimFARpbV+by4oJaVc+As\nLZo9wkaGV+1e/sIvAUePqTtn3wSmp8ywJtgIODnJLxGtVu/U8WifG+/aX/034unhJM7OZvHli3Ec\nbVJDmh0Kckiz7c5uMcO2eNbA6ak0Xp3KYDicW1V3PJrHX78Rw1cuJXCqy4FTXU74HPxss11IKXHh\nSxeQXEzC6rJi/zv3I3g4CMGLhYh2tEK2gKv/chUzr89UbxBA94Pd6Lq/C4L/a4mIiNbEQIboVrJY\nzN4rtRgGZDQKLMybDdoLxTloFhbUsFHG6nF51yIyGWByQpUVpKYDDQEVzjQ3mw3tTU1qLhuGNfRW\naZqaD6k+UHtOm9Y2yN/7fXNepYUFNf/Mwry63Vjxe3H6VYgXX6h6uHS7VZ3+A8AHP2xuiMcAt4e9\nwYj2uJWNvHe3O5A3gEvzWbw+k8HrMxl47Rru73TgoX0ueO3sNbPdeWwa3rbPhbftc2EhWcBrk2m8\nOpXGTLxQVS+WMfDNwST++UoSd7Y58HCPE11+Dum6VaSUEEJACIHed/Zi4dICet7eA6uT7wnRThed\niOLSVy8hvZyuWu8MOHHwPQfhbeOwoURERNfDQIZoO9E0oK5OlVoN2oWC6mFT2aBd0bAtopF1P5Uw\nCqoxfH4euHC+apvUddXw3bQyrGlWx6axEYtugKapYcnq62uf35Vuux3S6VLn9oIKbUQiASQSal6l\nkmQS4pOfgHQ6VbjY1FS97OgEHI7NfV1EtC3d0erAHa0OLKcLeGUyjZfG05hNFPDtK0loQuCJA+6t\nPkR6CxpdOh7td+NdfS5MRPN4cTyNlybSVfPNFCTwymQar0ym0VtvxcM9TtzWbGevqFskm8hi6LtD\nsNgt6Hu0DwAQ6A0g0Bu4ziOJaLszCgbGnhvD2AtjwIqhJNvuakPPIz3Qrbygj4iIaD0YyBDtJLpe\nnHOjseZmmcmoxuv5eWB+zux9MD8HLC6pEGYdRKEAzM6ocnbFc1itZq+a5hagpcVcckgp2ih33KVK\niZSQsSgwN1fdeyuyDOl0QqRSwNioKhXkv/1l4MhRdefMaWBiXJ2vpfOXYQ3Rrlfn0PHO/W68o9eF\nq+EcvjecwoPd5vwVZ2czcFsFegO2LTxKWi8hBDr9VnT6rXj3gBsvjqfx/ZEkllLVPYiHwjkMhXOo\nd2p4W7cT93c54eIk8ptm4dICLn/jMvLpPDSrhq5TXbC5+TtFtBskF5K49NVLiM/Eq9bbPDYcePcB\nhq5ERERvEQMZot3EbgfaO1RZqVCAXFpaEdgUy9wcRG712Oy1iFwOmJpUZQXp91eENK1q2dKqekSw\nVw3dDCEAn1+VSq1twKf/GDIRV2HN3BwwN1s+r9HcYtY98xrEyy9VPVz661Q4c2AAePd7zA2GwXOW\naJcRQqAvYENfRfBSMCT+/lwM4bSBnjoLfmi/G8eabdA4BOKO4LJq+KFeFx7e58TZ2Qy+N5LClaXq\nzzPhlIGvXErgm4MJnGx34qF9TrR4+RVoo0gpMfGDCQw/reaGq++pR99jfQxjiHYBKSWmXpvC8FPD\nMPLVoXfjwUb0P9YPq4tDERIREb1V/DZCtFfoujl/zaEV2wwDcnlZNWTPzQFzMxUN2/Oqx8w6iEgE\niESAy6Gq9dJqU43epd40ra2qIb2pWU0UT3QzhAA8XlV6969d7+57IAMNZu+vuTmIyLLqZWO3m/US\nceBXP1ndE6y1TZ237FVDtKvkDeBkhwPPjqYwvJzH/3wtgqBbxyM9LpzscMCmM5jZCXRN4HirA8db\nHZiI5PDMSAqvTaVR2X6YLQDPjaXw3FgKh4I2PNbnRm+An0FuhjQkrnz7CqbPTAMAet7eg457O1bN\n50REO08mlsHlr19GeDhctV636+h7tA9NR5r4u05ERHSDGMgQkeoJEAiocnBFWlPqWTM3a5bZ4nJx\nEULK2vusIHJZNVTUxHjVeqlpqtG7ra3Y4F3R6M2ghjbasdtUKTEMyKVFdT7bKq7kXViAyOeB6SlV\nVpCf+CQwcFDdGRsDshnVE6xybhsi2hHsFoF3D3jwzv1u/GA8haeGk5hPFPB352L4p8tx/NJ99Wjx\n8OPyTtLht+InbrfivQc9eH4shWdHU4hmqq/svjifxcX5LI402fDuATc6fPzMcSNGnx3F9JlpCF3g\n4HsOIngouNWHREQbYOnqEi595RLy6XzVen+XHwM/PACHnxcnERER3Qx+wySia6vsWVOai6Mkm4Wc\nnwNmZoCZabWcnQZmZyEymevuWhiG2VvhzOnyeimEmpS9tSKoaWtjUEMbS9OAxqAqlbr3QX7mT1Qv\nsdnSuT0NTE+rILKpyaz7nW9BvPIyAEB6vSqYKZ2z3d3X7rFDRNuG3SLwUI8Lp7qdeGMmg+8OJZHK\nSTS5zTmrElkDbhuHMtwpvHYNj/W78Y79LpyZyuCZkSTGItWNi+fnsjg/l8VdbXY8ccC9RUe6c7Wf\nbEdkLIKet/fA1+Hb6sMhog0wd2EOoa+GIA3zojuhC/Q83IP2k+3sFUNERLQBGMgQ0Y2z2WrPWSMl\n5HK4GNQUG7SLwYsIh2vvq4KQUvVamJ0FXj9j7lbTVGN4WwfQ3g630JANBjnfB208hwPo6lKlUqFQ\nfa4FmyC7utW5HYsBsRgweBkAIG8/Dnz8F1S9ZBL46j8Cbe0qXGxrB1yuW/RiiGi9dE3gzjYH7mi1\nI5aV5blkIukCfvuZRdzT4cTj/W547fyfs1NYNIG7Oxw40W7HcDiP7w4l8OZstqrOa1MZnJnO4JDP\niZOB9BYd6c6QXEjCUe+ApmuwOq247SduYwMt0S4x88YMLn/jMlAxAIK7yY2D7zkIdxNDayIioo3C\nQIaINp4QQH1AlUOHqzbJdLo4FNS0OSTU1BTE0uL1d2sYZshz+lW0l/b5139ZbOhuB9rbiyFRu5pT\nhGgj6Xr1/fe8TxXDgAyHiz1piuf3vh6z3uQExDNPVT1U1tcDbe1odLoQvuvuW3DwRLReQgj47GYj\n89WlHHIF4NnRFF6ZTOMd+114e4+Lc8zsIEII9Aas6A3UYXQ5h6+H4ri0kCtvNyRwPmLDpagVI4jh\nXX1ueNgjqsrilUVc/PJFNB1pQv/j/RBCMIwh2iUmX5nE1e9crVoXPBLEwJMD0Cz8W0hERLSRGMgQ\n0a3lcAA9vapUkOl0dWN2MawRCwvX3aXIZIDhIVUq9+nzmwFNRyfQ2Qm0tAA6//TRBtM0oKFBlZVD\n+wFAQwPk+z8ETE2qMj2leouFwwgA1YHMF78ALMyrc7ajE+joABoaVdBJRFvizjYHWrwWfOViHBfm\ns/h6KIHnRlN48oAbJzsc5Z40tDN011nx8/fU4/JCFl8LxTGybA5lVpACTw+n8MJYGo/0OvH2Hhec\nVjZGTr02hSv/fAWQgJEz1BX0PO2JdoWxF8Yw8sxI1bqW4y3of6wfQuMvOhER0UZjqyQRbQ8Oh+pR\nUNmrAIDMZMygZrLYmD05CbG8jqHPohEgGgEuXjD3Z7GoIaM6ulRAU2rwdnL4KNpEgQbgXY+a9w0D\ncn4emJrEwvlzKLgrhoG4cB5iarJ6uD6HU52n99wLPPjQLTxwIipp81rw8ZN1CC1k8Y8X45iI5vH5\nN2MYWc7ho8c4f8ZOdKDRhn/XUI9zc1l8PRTHVKxQ3pYpSHxzMInvj6Twzj43Hux27skeUdKQGHpq\nCJMvTwIAuh7oQvfbutkzhmgXkFJi5HsjGH9hvGp9+93t6H1HL3/PiYiINgkDGSLa3ux2oHufKhVk\nIo6Jl16CfWEewVy2HNaI9LXHfhf5PDA2pkrl/hqDZkBTWtYH2CuBNoemAc3NQHMzwiuH1vuZn4Wc\nGAcmJoCJcWBiXM1Pc2UQ8sCAWe/qFeCv/hxoL4aKpR419fU8b4k20UCjDf/nqXq8NpnB1y/H8UCX\ns7ytYEjovJp4RxFC4FizHUeabPjG6VH8YNGOSM4cnjKRk/jHi3E8M5zEY/1u3Nvh2DPvcSFXwKWv\nXMLi5UUITaD/iX603Nay1YdFRBtASomhfxnC5CuTVesZuhIREW0+BjJEtDO5PUh1diHV2YVgf79a\nJyXk4iIwNaECmslJYHJCTbhuGNfcnViYV8NEnTldXiddLqCzC+jqBrq71TLYxMZu2lztHarcY66S\nkYg6lwMBc+X4GMTsLDA7C5x+1azr8ahz9ec+rnqeEdGG04SaKP7ONntV4/yfvRaB26rh3QNu1Dv1\na+yBthtNCAz4cujz5rBg78C3BhOIZMzPDstpA397NoZnhpP46DEv9gdsW3i0t8bos6NYvLwI3a7j\n8AcOo35f/VYfEhFtAGlIDH5rEDOvz1St73l7Dzrv69yioyIiIto7GMgQ0e4hBNDYqMptx831uRzk\n9BQwPg5MjBWX49fvTZNMAqFLqhRJp7N2SKNxfHnaRH6/KpUeeBCyt0/1opms6E0Tj0OOjqreZSV/\n8F/U70fp3O3qAppbAJ0NxkQ3ozKMmU/kcWk+i4IEzkyn8XCPC+/cz/lHdhpdAKe6nTjZ4cCzIyn8\n89UEkjlZ3j4TL+AzLy7jvk4H3nfIA9cufn+7HuhCaimFfQ/tgzvovv4DiGjbMwoGQl8LYf7CfNX6\nvnf1oe1E2xYdFRER0d7CQIaIdj+rtdgI3W2uMwzVm6YioMH4OER46Zq7EqkUcDmkSpF0ONUwZ93d\nQNc+9TxNDGlok1mtKljp6jLXSQm5tASEl8yeXLkcMHRV9RIbvGxWtdrUUGePPg4cv+MWHzzR7hN0\nW/B/PdyAr12K4/R0Bt+5msSL4yk81ufGqW7nnhnmarew6QI/tN+F+7sceGo4iaeHUsgUzGDmxfE0\nzs1m8P7DXtzVZt81w/tEp6LwNHmgWTRY7BYc+eCRrT4kItogRt7AxX+8iMXLi+ZKARx48gCHIyQi\nIrqFGMgQ0d6kaUAwqModd5VXy3i83NMA42PA6Kga8kzKNXcl0inV0F3Z2O1wqHlv9u0D9vUA3T2c\n24M2nxBAQ4MqJVYr8Hv/FXJsTJ3T42oOJbG4AAwPQRbMSazxwnPAs99X521p7qbmFoaLROvU6NLx\n03f68fblHP7xYhxXl3L44oU4XplK4xP31TOU2YGcVg1PHvDgwW4XvnwhhlenMuVtsazEX74excuT\nNnz4qBeNrp3d6zAyEcGbn38TwYNBDLxnYNeETESk5oQ6/8XzWB5eLq8TmsDB9x5E8FBwC4+MiIho\n72EgQ0RUyeMBDh5SpSSdVpOsj42aZXr6OiFNevVwZz6/CmfKIc0+wM0hQOgW8NcBx+qAY7eVV8lE\nXPUO66gYK/zKFYjhIWB4yKzncKheXwMHgSd/+FYeNdGOta/Oil+6tw5nZ7P40oUYDjTYGMbscD67\nhn99hx8nOzL4u7MxLKbM+WUuzmfxu99bxOMH3Hikx7Uj3+vUUgoX/v4CZEFC28XDsBHtRflMHue+\ncA7R8Wh5ndAFDr//MBr6G67xSCIiItoMDGSIiK7H4QD6+lUpyWTMkGa0FNJMXTukiUaAN19XpUg2\nNxdDmmLp6FQ9Gog2m9tTHTwCwAc+BHn3SWB0BBgZBkZHIMJh4HIIUggzkMnngf/3T9WcNPv2Aft6\nAZ/vVr8Com1NCIHbWuwYaLRCq+hpcGkhC4cusK+ef+t3okNBO37tIRu+OZjAU0NJGMV/+zkD+Oql\nBF6dTOOjx3zo2UHvby6Zw7kvnEMulUP9/nr0P9bP3jFEu0QumcPZvzuL+HS8vE6zajjywSOo76nf\nwiMjIiLauxjIEBHdCLsd2N+nSkk2AzkxocKZkRHVoH294c5mZ4HZWeClHwAApK6rUKZ3v1kCAQ51\nRreG2w0cOqxKkYxEVEBjqfjIMDkBcfZN4OybZr3GINDTA/T0AidOMqAhKrJbzN4GyZyBz70eRSxj\n4O09Tjw54IFN59/3ncamC7z3oAcn2hz427NRjCzny9umYgX84QthPNDlxHsOuuHc5r1NjLyB8188\nj9RSCu5mNw697xDEDuzhQ0SrZeNZvPm/3kRyPllep9t1HP3IUfg7/Ft4ZERERHsbAxkioo1is5sh\nSkkqCTk6Wu5tgJFh1eNgDaJQUPVGR4CnvwsAkH6/2mfPfqC3Vw11xl40dKv4/cBtt1evCzZB/uzH\nzJ40I8MQC/PAwjzwysuQh4+agcyZ14BCQZ2/DBdpj7NoAifbHfjuUBJPDadwdjaLH7vNi74G21Yf\nGt2Adp8Fn7i/Hs+NpvC1UALpvLoAQwJ4biyFN2cz+OARD4632LdljxMpJUJfCyE6EYXNa8PRDx+F\nxc6vh0S7QS6Zwxt//QZSS6nyOovTgmM/egzeFu8WHhkRERHxEzcR0WZyulbNSSOXl8uN2OVhoVKp\nNXchIhHgzGlVUOxF09lVDH961bKeDd10C7lcwF0nVAGAQgFyegoYGgLGx4CmJrPut74JMToCoDiP\nUk+v2ZNmX4/qbUa0R9h0gfce8uB4qx2ffzOK6VgBf/SDZTzYrXpTOCzbuzcFraYJgbftc+H2Fju+\neD6O12cy5W3RjIHPno7iSJMNHz7iRcClb+GRrmbkDGQTWeg2dcW83cu/x0S7gTQkLn7lYlUYY/PY\ncOxHj8Ed5PyVREREW42BDBHRrVZXBxy/QxUAMAzIuTkVzgwPAcNXgYkJCMOo+XBRKJhhzlNqnfTX\nAfv3A/v7gb4+NeyZvr0afmgXKw2119G5etsdd0J6PKoXTTQCvHFGFQDy4UeAj/6YqpdKApms+v0g\n2uW666z496cC+OcrCXz7ShLPjqYwHcvjl+7jeP47ld+h42fu8uPcbAZfOB9DOGX+Dz8/l8V/XlzC\nh496cE+HcwuPsppu03Hso8eQXEzC0+TZ6sMhog0y8r0RLA8vl+/bvDbc/uO3wxnYPn9/iIiI9jIG\nMkREW03TgJYWVe69T63LZCBHR4Chq6rXwfBViFhszV2IyDJw+jVVAEh7cfi0vn41z01PL3si0NZ4\n7AlVpFTB4/CQKkNXgf4DZr0zpyH+6i8gGxqL4WJxjqa2dvU7QrTLWDSBJw54cHuLA3/zZhSP9vGq\n5d3gaLMd/Q1W/NPlBJ4ZTqE0i1y2IPHXb8QQWsjhI0c9VXML3WrxuTjcjW4ITUCzaPA0M4wh2i3m\nL85j/MXx8n3NouHoh44yjCEiItpGGMgQEW1HdjtwYEAVQDVmL8ybAc3QVTWx+lq9aDIZ4OIFVQBI\nTQe6ulTvmf3FkIaTrtOtJATQ3KxKKXislExCOhwQiwvA4gLw8ksAAOlwAgMHgY/9Gw7LR7tSu8+C\nX3mgHlrF+f2twQTavBbc1sIgfSeyWzS8/7AXd7c78L/OxjAeyZe3vTKZxuhyDj99hw8d/ls/H1x8\nNo43PvcGfB0+HP7AYehW9qYl2i0ScwmEvh6qWtf/RD88LQxdiYiIthMGMkREO4EQQLBJlXsqetGU\nhjkbugpcvQKRSNR+uFExzNm/fAcAIJubiz1o+lVPhcZGNnjT1nnHu4BH3gE5OQFcvQJcLZ7TS4uQ\nibh5bhoG8Jn/BnR1q/O2rw9ws6GBdrbKMGY8ksM3LicgAdzd7sBHjnpht/Bv807U6bfiV+6vx7eu\nJPDtwWS5t8xcooD/9kIYP3LIgwe7nRC36H9vJprBuS+cQyFbgMVhgcY5i4h2jVwqh/NfOg8jZ16s\n1X53O5qPNm/hUREREVEtDGSIiHYqu131HBg4qO4bBuTMDHB1ELhyBbg6CLGwsObDxewsMDsLPP8c\nAEDWB4ADB1SvnP4DKvxhQEO3kqYBnV2qPPwIAECGl4Bk0qwzMQ5xOQRcDgH/8s+QQqhhzfoPqHL4\nCODksBy0c7X7LHj/YQ++Forjlck0xiM5/MxdfrR4+LF9J9I1gScPeNAXsOGvXo8imlGNpXkD+Pvz\ncVxezOHHbvPCZd3ccDrB5PEAACAASURBVCSfyePcF84hG8vC1+nDwLsHblkQRESbSxoSl756Celw\nurzO3+VHzyM9W3hUREREtBZ+syMi2i00DWhrU+XBhwAAMhyuCmgwMQEhZc2Hi/AS8NIPVAEg/XXF\nYdOKIU1TMwMauvXqA6qUtLRA/uIngCuDKpQZGYaYnAAmJ4BnnoL89d8E2jtU3bExwOMGAg1bcuhE\nN0ITAg/3uDDQaMNnT0cwEy/g958L48du8+KuNsdWHx7doIFGG/7DgwF87o0oLs5ny+vfmMlgPJLD\nT93hR0/95gxhZhQMXPzyRSTmEnAGnDjygSPsHUO0i4w+O4rw1XD5vt1nx6EfOQRN5+85ERHRdsRA\nhohoN6uvB06cVAUAUknIoSHVmH1lUDVm53I1Hyoiy8ArL6kCQPr81T1oWloZ0NCtZ7OrXjCHj6j7\nuZwaum/wMjA6ArS2mXX/9vMQQ1chAw3qnD1wADhwkMPz0Y7Q6rXgkw/U42/OxnB6KoO/OBNFKidx\nqps9wHYqr13Dx+7246mhJL4WSsAoXh+xlDLwmRfD+OEBNx7pdVUNYXezpJS48u0rCA+FYXVacfQj\nR2F13fq5a4hocyyEFjD2/Fj5vtAFDn/gMGxu2xYeFREREV3LhgQyAwMDAQC/AeB9AFoBLAD4BoBf\nD4VC0+t4/E8A+BiA2wHYAIwB+DqA3wmFQosbcYxERATA6QKOHFUFAPJ5yNER1dNg8DL+f/buOz6u\nu8r7+OfOqLdRdbeaLY/kLlvuJc2kh/RCIAEWCCXwbCCBhW08sJuFB1jYXfrSQkshJKSTkOpuy7Ll\nKmskW9WSbEu2ep+Z3/PHlVVsucWyRuX7fr3uS7l37p05iq+kmXvuOYdDxVhdXYMeajU1Qt4OewFM\ndLSdnMnMspfEJF3kluEXHNzXrqw/Y8DlwoSHY508Adu32gtg4uPhpg/CqtUBCFjkwoUGOfjYwhhm\nxLXzTkkbCyaFBjokuUQOy2LdjEhmxIfwRH4jJ9vtFmZ+Ay8WtlJ0opsHFsQQHTo0d7Ybn6GzqRNH\nkIM5d88hPE4JPZGxoq2uDc/LngHbMm7IIHpydIAiEhERkQtxyQkZt9sdDrwHZAI/AvKADOAx4Gq3\n273Y4/HUn+P4/wC+BuQC/wi0ACuBLwA39xzfdKlxiojIIIKCYMZMe7nhJvB5MeXldnKmyGMnaDo7\nBz3Uam6GnXn2Qs9F7swscGdBZia4YofzOxEZyLLg05+zZytVV9nnc0/i0Tp5EhPk7Nt3/z7Yk29X\nz7jdEOMKXNwip7Esi7WpEayYHk6w0056+/yG8gYv6fGqdBit0uKC+Yc18Ty5t5k9R/v+zh6s7eLb\nG0/y4MIY3ImXfof7qURM67FWoqfoIq3IWOHt8HLgzwfwdfl6t01ZPIVJ8ycFMCoRERG5EENRIfMI\nMA942OPx/OTURrfbvQf4C/AvwJcGO7CnsubLQBmw1uPxnPo08hu3210HfBX4OPDfQxCniIicjzMI\n0mfYy3U3gM+HqehJ0BQXQXExVkf7oIdaJ0/Cls32AphJk3sSNJl2JU1k5HB+JyI2hwOmTbeXq9fZ\nCZqqI5CQ2LfPnnysjRtg4wYAzOQp9nnrdkOGG6KiAhS8SJ9TyRiAV4paeftwG9dlRHBDRuSQtriS\n4RMR7OATi2LYWN7OXw624LWLZWjq9PPj7Q1cNzOC6zMicTou/t+3ra6NsLgwHE4HDqdDyRiRMcQY\ng+dlD+0n+96Tx0yPIX1degCjEhERkQs1FAmZB4FW4FenbX8ROAJ8xO12P+rxeAabIp3cE0Nuv2TM\nKRuwEzKpQxCjiIi8H04npKXby7XX2xezKyvs5Iyn0K426OgY9FDraA0crbEHrVsWJKfYF7kzs+yK\nnFC13pEAcDhgevLAbVdchUlM6jmni7FqqqGm2j53U9Pgq/9k72cMdHfZc2xEAiisJznzenEbZfXd\nPLjQNWQtrmR4naqASo8L5jf5TRxvte92N8Drh9ooPtnNx7JjiA1znvuJ+mmvb2f373cTmRTJnLvn\nEBSqsaEiY0nFpgpOFPd1dg+JCmH27bNxOPV3QEREZDS4pHfnbrc7BrtV2cbTEyoej8e43e5c4A4g\nDSgZ5ClKgU7sFmenS+35uv9SYhQRkSHkcEBKqr2su9auoCkvg8KD9sXsw4ewvN4zDrOMsQeul5fB\n317HnGqVNnsOZM2BadPs5xYJhFMVNNfdYM9VKiu1z2dP4cDZNDU18B/ftM/drNn2Mj1Z564Mu+sy\nIkmJC+a3+Y0U1nXznU0n+Xi2Sy3MRrFprmC+sjqOZ/a3sKOq70aHwye7+e6mej69xEWy6/z/vsZv\n3znvbffiDHbiDL7wRI6IjHwnik9QvrG8d91yWsy+czYhUZfe4lBERESGh2XMYIUrF8btds8D9gJP\neTye+wd5/AfYLc0+4PF43jrLc/wT8O/Y82f+C2gGlgI/A2qBFR6PZ/Dbr8+isbFx0G+quLj4Yp5G\nREQuktXdTVh1FREV5URUlhN29KidjDkPb3gEbSmptKWm0pqSii9KrVVk5Ik+eIBJr71C/+ZBvrAw\n2pJTaEtJpWn2XDvZKDJMWrot/loTQU1HEA4Mq5I6WBjbhTqYjW4HG4N593g4XtP3DxlkGa6b3MaM\nqDNveuivxdNC895mHGEOkq5LwhGihLHIWOFt9lL3Vh3G2/fe2rXYRUR6RACjEhERGV8yMgarKwGX\ny3XBn8Iu9arBqStmbWd5vPW0/c7g8Xged7vdx4AfAp/v99ArwIMXm4wREZHAMcHBtKek0p6SygnA\n0dlJeGVFb4ImtK5u0OOC2tuIKSwgprAAgM7ERFpT0mhLTaV96nRMsO76lsBrzppDa2q6fT6XlxFZ\nXkZwUyPRRR4iykppnDOvd9/wI5V0JibhDwsLYMQy1kUFG+6Y3sqWujDy60Mpbw1iQWwXyseMblmu\nbiaG+3itOoKTXXaFi9dYvFodweqkDrLPknTrbuqmeX8zAK4cl5IxImOIv9tP/eb6AcmYiPQIJWNE\nRERGoYDfxul2uz8L/A/wN+Ap7KqYZcBXgNfcbvcNHo+nYShe62wZrPHoVLWQ/p/IaKbzeJSYO7f3\nP01To90G6mABFBRgNdQPekhoXR2hdXXE79xhVxzMzLDbm82eA1OnMZZu/9Z5PArNn29/NQZTexwO\nFuBobycjM9Pe3t0N//N98HohNc0+b+fOs1v9jdH2ZjqPAytzFuw92kl6fDBRugj/vo2083jeLD+/\n2WW3pbNZbKoNx4THcfecaJyOvr+Ffp+f3b/bDX6YtGASs9bOGvxJZcwbaeexXDpjDAXPFeBt7quQ\ni5kaw/y75uMIGpu/83Uey1ig81jGAp3Hl8elJmSaer5GnuXxqNP2G8DtdruxkzFvezyem/o99Ibb\n7d4DvAD8I3ZyRkRERrsYFyxZZi/GYGpq4OABKDgARUVY3V1nHGJ5vfaMmsKD8PyfMS4XzJkLc+bZ\nMzwidGegBIhlwYSJ9tJfU5OdiCk5jFVaAqUl8OrLmMhIe2bSzbfApMmBiVnGrPmTQnv/2+c3/GFP\nE1ekRZAaqwrD0Soi2MFnlsTy7IFmNlf0NQ3YXNHBiTY/f7cohvBg+2LssX3HaKlpITQmlPR16YEK\nWUQug8otlZwoOtG7HhIZQtYdWWM2GSMiIjLWXWpCphQwwLSzPJ7S8/Vsw1uu7onh+UEe+2vPc191\nKQGKiMgIZVkwZYq9XPMB6O7GHD7Uk6ApwKqsGPywxkbYshm2bMY4HJA+w64+mDPXHsw+hqpnZJRK\nSIBHvwIdHZgiDxzYDwf2Y9XVQl4u5tbb+/bdtxdCQ2HGDHAGvHBZxogN5e3kVXey52gnH1/kYt7E\n0PMfJCOS02Fx79xokiKCeLGwhVPNigrruvjBlno+vSSWhAgnk+ZPwtfpI3JiJEGh+l0iMlbUl9ZT\ntr6sd91yWGTdkUVotH6vi4iIjFaX9G7d4/G0ut3uvcAit9sd1n/ei9vtdgIrgUqPxzP4VbW+yprB\nGqyHAtZZHhMRkbEmOBgys+zldjBNTXZVTMEBOHjATsScxvL74VCxvbzwPMYV21M9Mxdmz4ZwVc9I\nAIWFwfwF9gKY48fsczUpqW+fvzyHVV2FCQsDd1bf+ZuQEKCgZSxYmxJOdZOXbUc6+EVeI/fMjWZ1\nSnigw5L3ybIsrpkRQWKkk9/mN9Ltt7fXtPj4z80neSgnltS4YKYtO9s9ciIyGvm6fBS9WjRg24xr\nZ+Ca7gpQRCIiIjIUhuL2qV9htx37NPDf/bZ/BJgAfP3UBrfbnQl0ejye0p5NW3q+3ut2u3/o8XhM\nv+PvPm0fEREZT2JiYOkyezEGU10FBw7AgX1wqBjL5zvjEKuxAbZsgi2bMA6nXXUwZ65dQTPGZs/I\nKHR6ezO/H2bPxhiDVVMNe/LtBTCTJsEtt8HinAAFK6OZ02Fx//xo4sId/LW4jWf2N1Pf7uNmdySW\nfg+OWgsmhfLIijh+ntdIU6edlWnuMvz3tnoeXBhD9mTdxyYylpStL6OzqbN3feL8iUzOVstTERGR\n0W4oEjI/Az4MfM/tdqcAecAc4EvAPuB7/fY9CHiATACPx7PF7XY/i5182eR2u/8E1AJLgIeBY8Dj\nQxCjiIiMZpZlJ1SmToNrr7NbQRUetJMz+/dh1defeYjfB8VF9vLC85jYOJg3365WcGdCSEgAvhGR\nfhwOuOteuAvMyRN2wrFgPxw8iHX0KCa439u0Ig+cqLNnJ8XEBC5mGTUsy+LGWVHEhTl5en8zfzvc\nRn2Hn/vnRxPkUFJmtEqODebRVXH8fEcD1c32jQleP/x6VxMfzPSxLj1CSTeRMaCpuomqHVW96yFR\nIcxYN0M/3yIiImPAJSdkPB5Pt9vtvhb4v8CdwOeB48Avga97PJ628zzFh4ANwMewky8hQDXwa+Df\nPB5P1dkPFRGRcSksDBZm24sxmOrq3uQMhw7ZyZjTWA31sHE9bFyPCQ6BrCyYt8BO0sTGBuCbEOkn\nPgHWrLUXnxdz+DCkpvY9vv5drJ15GMuC1DT7vJ07H6ZrbpKc24rkcGLCHPx6VxOtXX50tox+8eFO\n/s+SGH74ajVV4X2t6F4qbKW21cc9c5V0ExnN/D4/xa8NHMM787qZBIVpPpSIiMhYMCR/0T0eTxN2\nRcyXzrPfGZ8MPB6PD/hRzyIiInJxLAumTrWXa6+H9na7emb/PnuQesMg1TPdXbB3j70AJjnFrpyZ\nNx+SU3SBWwLLGQSz3AO3zZ6LaW+HIg9WaQmUlsBLL9iVX9esgw9cF5hYZVSYMyGUL62MIzHCgVMX\n6seEmo3lLC+qZv+MqXiionu3b63s4ESbj08sdhER7AhghCLyfh3ZfoTW46296wmzEkh0JwYwIhER\nERlKusVCRETGlvBwyF5kL6dmz+zbay8lh7GMOeMQq6IcKsrhlZcwrtie1mbzITMLQkID8E2InGbV\nans51a5v/z7YtxeroR7Tf57S0RooPAjzF0J8fODilRFnakzf2/5un+HJvU1cOzOSydH6ODDaNJQ1\nUJ1XjdNh8eDaJHZ1BPF8QQun/roVnejm+5vr+czSWBIjnAGNVUQuTvvJdio2VfSuO0OdzLxuZgAj\nEhERkaGmT2AiIjJ29Z89c/2N0NKM2b/frowpOIDV0X7mIY0NsGkDbNqACQ62kzILFtoVNDGuAHwT\nIv2c3q6vsnLgTJm8HVivvARPP4mZnmyfuwsWwjS1NpM+b5W0kVfdyYHjXXwqx0VGgmZqjRbeTi+e\nVz0AJK9KJmZyDFcCCRFOnshvostnp2WOtfr4z80neXhZLNNiggMXsIhcMGMMxa8X4/f6e7elXZlG\naLRuDhIRERlLlJAREZHxIyoalq+wF68Xc6jYTs7s24NVW3vG7lZ3d291jbEsSEu3L4QvyIaJEwPw\nDYj0Y1mQnDxwW2oaJnuRnXCsrIDKCrvyKz4elq+ED94WmFhlRLkmPYIjjV72HuvkJ7kNfGRBDIun\nhAU6LLkAjeWNdDZ1EjUpiukrp/dunzcxlEdWxPLzHY00dtoXc1u6DD/c1sDDS2NJjlVSRmSkO7bv\nGA1lDb3rMdNimLxocgAjEhERkctBCRkRERmfgoLs6pfMLLj7XszRGjv5sncPHD50RmszyxgoOWwv\nz/8ZM3mKXXmwMNueO+NQr34ZAebOs5fubru12d7dsGcP1smTmBMn+vbr6IB9e2DOPIiICFy8EhAh\nTotPLI7h+YIW1pe180R+Ew3tfq5OD8dSJdWIljArgeyPZuMMceJwDvy7M90VzGOr4/j5jkaONHkB\naOs2/HB7A59dEkt6vJIyIiNVV2sXJW+X9K5bDouMGzL0O1lERGQMUkJGRETEsmDyFHu59npobbFb\nm+3bA/v3D97arKYaaqrh9dfsweqnWkPNctvJHpFACg62ZyHNmw8f8mPKyyCkX1uqA/uxfvULjMMJ\ns2b1nb/xCQELWYaXw7K4c3YUceFOXjjYwguFLdR3+LhjdhQOXQAc0aKnRJ/1sdgwJ19YHstPcxso\na7CTMh1ew49zG/jMErWnExmpDr91GG+7t3d9+orpRCZFBjAiERERuVx0xUhEROR0kVGwbLm9eL2Y\nIg/szoc9+ViNjWfsbjXUw/p3Yf27mPBwmDvfvrg9d54980MkkBwOu91ef2FhmIxZcKgYq/AgFB6E\nZ57CJKdA9iK47gZVfY0DlmVxTXoEsWEO/rCnicYO//kPkoA4/OZhYlNiSZh1/qRpRLCDh5fF8rMd\njRw+2Q1Al8/w09wGHsqJJTNJSRmRkeTk4ZPUHuhrnRseH07yquRzHCEiIiKjmRIyIiIi5xIUBLPn\n2Mt999uVBnt2w+58rKM1Z+xutbfDju2wYzsmKAhmz4VFi2DeAojUnY4yQsyZay8tLZj9++xzumA/\nVkU5BgM33NS375FKmDrNriSTMWnxlDASIpxMiQ5SdcwIVFtYS9WOKmp217D0c0sJiTx/QiUsyMFn\nl8Tyv3kNFJ2wkzLdfvh5XgOfWORi7kQNCRcZCXxdPopfLx6wLePGDBxBuilCRERkrFJCRkRE5EKd\nqjRIS4fb7sAcO9qbnKG05My5M16vPcNj7267NVRmJmQvtufORJ+95YzIsImKguUr7KWrC3OwAPpf\nj6+pxvr3b2DiE+zKmexFkD5D1TNjUGq/oe9dPsN7pW1ckx6B06EETSB1tXZx6K+HAEi/Kv2CkjGn\nhAZZfHpJLL/a2UhBbRcAXj/8cmcjH8uOYeFkVXCKBFrZhjI6Gzt71yctnERscmwAIxIREZHLTQkZ\nERGR92viJHvmzLXXQ2MjZu8e2JMPhQftZEw/lt8HBQeg4ADmyd9DxizIXkyQKxavkjMyEoSE2K32\n+jtxAhPjwjp5At5+E95+ExMdbScVFy6CzCxwOgMTr1w2v81vYu+xTqqavDy4MEZJmQAxxlD812K6\n27uJTY1l8uLJF/0cIU6LTy528Zv8RvYds5MyPgO/yW/iQWNXR4lIYDTXNFO1o6p3PSQyhPSr089x\nhIiIiIwFSsiIiIgMBZcL1qy1l44Ouw1U/k7Yvw+rs3PArpYxUOSBIg/pQPvkKbBylV09k5gYmPhF\nBjN3Hnz7u5jSEsjfBbt3YdXVwcYNmB258N0f9CVk/Jo/MlasmxFB0YkudtV0Ymjio0rKBMTxA8c5\nUXQCZ4iTWTfNwnqf7eSCnRafWOTit7ubyK+x/x75jZ148/oNy6aFD2XYInIBjN9Q/Fox9CuunnHt\nDILCdIlGRERkrNNfexERkaEWFgY5S+ylqwtTcMBOzuzdY8+YOU14TTU89yw89ywmORkW5cCixTBh\nYgCCFzmNwwEzZtrLnXdjjlTabfp8Pgi221xZ3d2k/ep/YfZs+/ydM9euuJFRKS0umM8tjeUnuQ09\nF/CVlBlu3g4vJW+VADDjAzMIc11aJYvTYfHRhTEEOZrZUdUB2NeB/7CnGa8fViUrKSMynI7kHqHl\nWEvvenxGPImZuilHRERkPFBCRkRE5HIKCelp75QNXi+m8CDs2gl7dmO1tpyxu1VRARUV8MLzdnJm\n8RL7AndSUgCCFzmNZcH0ZHvpJ7zqCEGtLbAjF3bkYkJDYd4CWLwY5sxTcmYUSosL5uGlsfy4Jylj\nTBMfy1ZSZrh0NHTgCHIQMy2GifOHJjnvdFh8ZEE0QQ7YWtnRu/3pfc10+wxXpkUMyeuIyLm117dT\nvqG8d90Z4mTmdTPfdxWciIiIjC5KyIiIiAyXoCC7BdTceeDzYYqLaHz3HaIOFRHU2nrG7r3Jmb88\nh0lJtZMzi3MgIWH4Yxc5h7bUNEo/8WlST9bBzjysinLIy4W8nuTMv/0HxLgCHaZcpNR+SZndRztZ\nX9bO1em6aD8coiZFkfPpHLrbu4f0Iq3DsrhvXjTBDosN5X0Vm88VtOD1G9bNiByy1xKRMxljKH69\nGL+3r81n6hWphMVonpOIiMh4oYSMiIhIIDidkJnFcWcQx69eR4bTYVfO5O/Cqj95xu5WeRmUl8Hz\nz2LS0u3EzKIciI8f9tBFBtMdGwtLlsB1N2Bqa2FXnn1O+3wDkzHPPQtp6TB3LoSEBi5guSCpccE8\nvCyWjeXtXJGqtlbDyRnsxBnsHPLndVgWd82JIsgB75T2JWVeLGzF64frZkboTn2Ry+T4geM0lDb0\nrkdPiWbK4ikBjEhERESGmxIyIiIigeZwwMwMe7nrHkxZKeTtgF07sRrqz9jdKi2B0hL4858w6TN6\n2pothri4AAQvMoikJLjuBnvp7OzbfuwY1ptvAPS0NZsPOUvtmTM982hk5EmNDSY1tu/fp8tncFqo\nfdll0FjZyImiEySvSr6sw70ty+K2rCiCnRZvHGrr3f5qUSvdPsPN7kglZUSGWHdbNyVvlvSuWw6L\nWTfOwtLvUhERkXFFCRkREZGRxOGA9Bn2ctc9mJLDsDMPduVhNTaesbtVchhKDmP+/Iw9dD2nZ+ZM\nTEwAghcZRGi/KpjICMwdd9vn86nEY94OTFi4PWfp9jvBpdZmI1mXz/CzHQ2EBzn4+KIYgnQhccgY\nYyh5q4TmmmacoU5SVqdc1tezLIub3VEEOSxeLeprm/m3w3aC5pbMqMv6+iLjzeG3DtPd3t27Pm35\nNCInqE2giIjIeKOEjIiIyEjVv3Lm7nsxhw/ZF7Dzd2I1NQ3Y1TIGDhXDoWLMn56GzCy78iA7G8I1\n80FGiKhouPY6uPY6TF2d3dZsRy5WZQUmfyfc/+G+fY8ehQkT7J8DGTHq2nwcafTS7jX8ZlcjH1/k\nUlJmiBw/cJzmmmZCokKYtnTasL3u9RmRBDssXihs6d32t8NtRAQ7uGaG/n6IDIX60nqO7z/eux4W\nF0byquQARiQiIiKBooSMiIjIaOBwQMYse7n3Q5jiIrtyJn8nVnPzgF0tvx8KDkDBAcyTv+9rCzVv\nPoSEBOgbEDlNYiJcez1cez3m6FGoruqbKdPdDd9+HEJD7JZ8OUvsuTNqoRRwU6KD+PzyWH60rYG9\nx7r49a5G/k5JmUvm6/ZR+m4pYA/4doYM/eyYc7lmRgRBDvhzQV9S5oXCFsKDLVYma3aQyKXwe/0U\nv148YNusG2ZdlhlRIiIiMvIpISMiIjLaOBzgzrSX3uTMDti1C6u1ZcCultcL+bsgfxcmLAwWZMOS\npZCVBU69DZARYtIkezmlrhaiIrHq6uCdt+CdtzAJiZCTYycXp01XciaAkl3BfGF5LD/a3sA+JWWG\nRFVuFV3NXUROjGTivIkBieGKtAg6fYaXPX3ty57e10x4sEX25LCAxCQyFtTk19BR39G7PnHBRGJT\nYwMYkYiIiASSrsSIiIiMZk6n3Z4sMwvuux9TUAB5ubA7H6v/MHXA6uiA7Vth+1ZMVBQsWgxLltmz\nZ9QWSkaSyVPg376F6TdnxjpRB2+8Dm+8jvm//waTJgc6ynFtuiuYzy8bmJT5xCIXTiVlLlpnSycV\nWyoAmHHNjIAO+P7AjAjaug1vl9hzZAzw2/wmwoIsspJCz32wiJzB2+mlYlNF77oz1En6VekBjEhE\nREQCTQkZERGRscIZZLclmzcfujoxe/fCjlw4sM+ulOnHammBDethw3pMXJxddbBsuV15IDISWJbd\npiwtHe68G3Oo2E42Hjs2MBnzh9/B1Gl2W7Po6MDFOw71T8pYWPgNqAHPxas7WIe/20/CrISA3zVv\nWRa3ZkbS1u1na6V9R7/PwC93NvLw0jjS44MDGp/IaHNk+xG627t716evmE5whH6ORERExjMlZERE\nRMaikFD7AnXOEmhrw+zeZSdnCg9iGTNgV6u+Ht58A958AzN1KixdDkuXQVx8gIIXOY3DAbPc9tLf\nsWNYmzYAYJ59GrJm2+fvgoUQphZLw2G6K5hHV8WRGOHEoTZy78vUJVOJSIwgzDUyzlnLsrhvXjQd\nXkN+jV1p2eWDn+1o4O9XxDE1Rh8hRS5EV0sXR7Yf6V0PiQph6pKpAYxIRERERgK9mxYRERnrIiJg\n5Wp7aWrE7MyDHblYJYfP2NWqqoK/PId54Xn74vfS5bBoEYRHBCBwkfOIi8V84lOQux0OHMA6sB8O\n7MeEhNjzku64C+LiAh3lmDchsu8jRZfPcLC2iwWT1N7qYsSljazz1GFZPLAghvbuRgrrugBo9xp+\nnNvAF1fEkhSpj5Ei51O+qRx/t793PWVNCs5g1RGKiIiMd3onLSIiMp7EuOCqa+CqazB1dXYLqNzt\nWNVVA3azjAFPIXgKMU/9AeYvtFuazZkLQXr7ICNESKg9B2nJMmhpxuTlQe42rJLDmD358OEH+vat\nq4WERLsVmlwWPr/hx9sbKKnv5oEF0SydFh7okEa0xspGHEEOoiePzFZ7wU6LTy528ePt9ZQ22G0v\nmzv9/Gh7A19cGUdsmC4si5xN+8l2ju4+2rseHh/OpAWTAhiRiIiIjBS6oiIiIjJeJSbC9TfC9Tdi\njlTC9m12cqax3Z9JLQAAIABJREFUYcBultcLu/JgVx4mMhIWL7GTM+kzdHFbRo6oaLjyKrjyKkxd\nLVRW9rUt6+6G//g3u1ps6XJYtgImTgxsvGOQ02GxYFIoJfXd/HFvM5EhDuZMUKXMYPw+P0WvFtF+\nsp25980lPn1ktogMDbL4zNJY/ntrA9XNdlLmZLufH29v4JEVcUSGOAIcocjIVLa+DOPvaxGbdmUa\nlkPvmUREREQJGREREQGYNt1ebr8TU+SB3G2waydWR8eA3azWVtjwHmx4D5OYZM+a0cVtGWkSk+zl\nlNrjEByCVVcHr70Cr72CSZ9hJxZzlkBkVOBiHWOuTo+gpcvPm4fb+NXORr6wPI60OA2wPl3Nrhra\nT7YTHh9ObEpsoMM5p4hgBw8vdfGDrQ3UtfkAONri4ye5DXxheSxhQUrKiPTXXNNM7cHa3vXoKdEk\nuBMCGJGIiIiMJHr3LCIiIn0cDsjMggc/Dt/5PuaTn8bMX4BxnNmaxqqrxXrtFayv/xN851uwYT20\ntQUgaJHzmDIVvvUdzCOPYpavxISGYpUcxnrqj/APj9ntzGTI3OKOZPm0MLr99iD4mp7KCrF1t3dT\nvqkcgPRr0nE4R/5HspgwJ59fFosrtC/WikYvv8hrpNtnznGkyPhijKH0ndIB29KuSsNSRbGIiIj0\nUIWMiIiIDC4kxK4eyFlyxnyO01klh6HkMOZPT8GChbB8JcyeA07NGJAR4lSyMTMLPvRhzO582L4V\nmprs2TKnvPkGzMyA1DS15HufLMvivnnRtHb72Xesi5/kNvDYqjhcmjkCQMXmCrztXmJTYomfOTJb\nlQ0mIcLJw8ti+a+t9bR120mYohPdPJHfyN8tcuFUOyYR6kvraSjva/0aPzN+xFfBiYiIyPBSQkZE\nRETOr/98juPHYEcubNuKVXt8wG6W1ws782BnHiYmxh62vmKl3Q5NZKQIDbXblS1bbs+XOZV4qT2O\n9dyzAJiJE+12fMtWQIJazVwsp8PiY9kufry9gbhwh2aN9Gg/2U51XjUA6evSR91d85Ojg/jc0lh+\nuK2Bzp7KmL3HunhyXzMfnh+NY5R9PyJDyRhD6bunVcdcmRagaERERGSkUkJGRERELs6EiXDTLXDj\nzZjSEti6BXbuwDqtXZnV1ARvvwlvv4mZNh2Wr7BnzsS4AhS4yCCC+803CQrCrPsA5OZiHTsGL70A\nL72AyZhlV30tWWpXjskFCXFafG6pi2CnpQv1Pco22IO+Jy6YSNTE0Tm7KCU2mIdyXPx0RwNev70t\n90gHEUEWd8yOGnVJJpGhUltQS+ux1t71ifMmEjkhMoARiYiIyEikhIyIiIi8P5YF6TPs5Z77MHv3\nwLYtcGA/lt8/cNcjlfDnSszzf4Y5c+2qgwULB14MFwm0uHi46164/S5M4UH7fN6dj1VchCkrhUWL\nACVkLkZov4HvHV4/b5e0cf3MyHHb3ip9XTpBoUEkr0kOdCiXZFZiCB/PdvGrXY34e0bIvFfWTkSI\ngxsydAFaxh+/z0/Z+rLedctpkbI2JXABiYiIyIilhIyIiIhcuuBgWJxjL02NmNztsH0rVmXlgN0s\nvx/27YV9ezEREXZLs5WrIDlF8zpk5HA67cThnLnQ3o7ZtROaGiE8wn7c64XvfhvmzrMrZ5KSAhvv\nKPGbXU0U1HZR1+rjgYUx47JqJjQqlIwbMgIdxpCYPymU++dH84c9zb3bXitqJT7cwbJp4QGMTGT4\n1eyqoaOho3d9yuIphLnCAhiRiIiIjFRKyIiIiMjQinHBumth3bWYI5V2lUHudruFWT9WWxusfxfW\nv4uZMtVOzCxdDjExAQpcZBDh4bBq9cBtBQewysugvAxefdluabZiFSxaDGG6AHc2N82K5PDJbvKq\nO4kKbeGOrPHT3qrtRBvhceFYY6wyaNm0cNq7Dc8VtPRue2pvM3FhTmYlqppMxgdvp5eKTRW9685Q\nJ8krR3cVnIiIiFw+mq4pIiIil8+06XYLqG99F/Pw/8EszsEEnXk/iFVdhfXnP8FXvww//RHs2Q0+\nbwACFrkAc+dhHnkUs2wFJjgEq7gI63e/gX94FJ74NXR2BjrCESk5NphP5rhwWvBeaTtvHm47/0Fj\ngK/Lx94/7mXnL3fS2Tz2zo0r0yJYNyOid91n4Jc7GznarN/hMj4c2X6E7vbu3vXpK6YTHKGWrCIi\nIjI4VciIiIjI5ed0wrz59tLWhsnbAVs2YZWVDtjN8vvsZMye3ZjoaHvWzMpVMGVqgAIXGYTDAZlZ\n9nLf/ZhdebB1C9ahYkxZCYT0qwxobASXK3CxjjCZiSE8uDCGJ/KbeNnTSnSogxXTx3Z7q8ptlXS1\ndBEaHUpI1NisGrnFHcmJNh/5NXbCqd1r+OmOBh5dFU9MqO4BlLGrq6WLI9uP9K6HRIUwdYnes4iI\niMjZKSEjIiIiwysiAtZeAWuvwFRXwdYt9ryZ01uaNTfDW3+Dt/6GSUm1EzNLltnHi4wU4eGwag2s\nWoM5fsxOwJxqw1VXB//yNZjlhpWrIXvRwGTNOLVoShgtXX6ePdDCU3ubmRjpJD1+bP5/6Wzu5Mg2\n+2Jt+rr0MduizWFZfGRBDA3t9ZQ22JUxJ9v9/CKvgS8sjyPEOTa/b5HyTeX4u/296ylrUnAGOwMY\nkYiIiIx0SsiIiIhI4EyZCnfeDbfdjjmwHzZvhn177UqZfk7N6zDPPmNf1F61xr7I7dCd1zKCTJho\nL6dUlkNQEJanEDyFmKfD7aTiqtWQnNKXuBmH1qZG0Nzpp6nTT0rs2G3tU7m1Er/XT6I7Edf0sV0p\nFeK0+FROLN/fcpK6NvsCdVmDl9/vbuLji2JwjOPzXcam9pPtHN19tHc9PD6cSQsmBTAiERERGQ2U\nkBEREZHAcwbB/IX20tSEyd0GWzdjVVUN2M3yemFHLuzIxSQm2lUHK1ZCXHyAAhc5h+zF8P+yMHm5\nsHmTnVjc8B5seA+TmgZf+dq4TireOCsSYMxWjXQ2d1KTXwPYd82PB9GhDj6zJJbvb6mnrdsAsPto\nJy8VtnJbVlSAoxMZWmXryzB+07uedlUalmNs/j4TERGRoaOEjIiIiIwsMTGw7lq45gOYinLYshl2\nbMdqGzgA3Kqrg5dewLz8IsyeA6vXwLwFEKS3NzKCRETA2ith7ZWYI5X2+bx9GyQm9iVjfD7wFNoz\nacZRgqZ/Iqat289fi1q5JTNqzLS3qtxaifEZEjMTiZwQGehwhs3EqCA+udjFj7c34Ou5Vv12SRuJ\nEU5Wp4zteUEyfjTXNFN7sLZ3PXpqNAmzEgIYkYiIiIwWumIhIiIiI5NlQUqqvdx1D2ZPvn0x+2AB\nlum7I9UyBg7shwP7MdHRsHyl3RJq0uSAhS4yqGnT4Z774PY7ob1fgvHAPqyf/AgTF29XfK1cBYlJ\ngYszAH6b30RBbRcNHf4x094qMimSkOgQUlaPj+qY/jISQvjw/Bh+t6dvNtizB5qJD3cwe0JoACMT\nuXTGGErfKR2wLe2qtDFb7SciIiJDSwkZOauuri6efPJJ3njjDY4csYeRJicnc88993DrrbcGODoR\nERlXgoMhZ6m9nDiB2boZtmzCOnlywG5WczO8+Qa8+QYmfYZdNbMoB8LCAhS4yCCCgyG43zyRbi8m\nMdGu+nrtFXjtFYw70z5/Fy6y9x/jbsuKoqS+nt1HO3nF08oHM0d/e6vJ2ZOZtGDSuG1htGRaGLVt\nPv5a3AqA38CvdzXxyMpYpsWM/XNaxq760noayht61+NnxhObHBvAiERERGQ0UUJGBtXd3c0XvvAF\n8vPzmTVrFrfffjudnZ387W9/4/HHH2fChAmsWLFi2OJ5++232bVrF0VFRRw6dIjW1lauv/56vvnN\nbw5bDCIiMkIkJMDNH4Qbb8YUHoTNG2HPbnu+TD9WyWEoOYx55ik7kbN6DaSmjetB6jJCLc6B7EWY\n4iL7fM7fheUpBE8hJiUVvvbPgY7wspscHcQnFrn46Y4G3jzcxoRIJ8unj/72VuM1GXPKDRkRnGjz\nkVvVAUCnz/DzHY08uiqO2DBngKMTuXjGGErfPa065sq0AEUjIiIio5ESMjKop59+mvz8fG6//Xa+\n+tWv9pZfZ2dn86//+q/s2bNnWBMyv/71rykuLiYiIoIJEybQ2to6bK8tIiIjlMNhz46ZPQdamjHb\nt9mD06urBuxmdXbaF7k3b8RMmWonZpatgMjxM9NBRgGHA9yZ9tLWhtmxHTZthIXZffs0NMCBfbB4\nyZis+spMCuHuOdE8s7+Zp/c1kxDhJCMhJNBhXbTS90qxLItpy6YRFDa+P25ZlsWH5kdT3+6j+GQ3\nAA0dfn6+o5FHVsQSGjR+ZibJ2FBbUEvrsb7PohPnTRxXM6JERETk0o3vTwhyVs8//zxhYWE88sgj\nA3rhOp32nWwul+tsh14WX/ziF5kwYQLTp09n165dfPaznx3W1xcRkREuKhqu+QBcvQ5TVgqbN8GO\n7XYyph+rugr+9DTmL8/BosWwei3MzFDVjIwsERFwxVX24vP1bd+yCeulFzB/ehqWLoNVa+wZS2Po\n/F2dEs7xVi/vlrbzy52N/MOaeOLDR08lRWdTJ0e2H8H4DElZSeM+IQMQ5LD4ZI6L/9xcz/FW+3w+\n0uTlN/lNfGqxC+c4ryKS0cPv81O2vqx33XJapKwdfzOiRERE5NIMyScEt9sdD3wduA2YDNQBrwH/\n4vF4ai7g+FDgq8BHgOk9x78K/JPH46kbihjlwtXU1FBVVcWaNWsIDx/YKuLtt98GICcnZ1hjGu7X\nExGRUcqyIC3dXu6+F7MzDzZvxDp8aOBu3d2wfRts34aZOMmumlm+EqKjAxS4yFk4+yUjJk/BpM+w\n2/Ft3AAbN2CmTbfP36XL7UTOGHBbVhS1rT4SI53Eho2uCorKrZW9yRjdNd8nItjBZ5fG8p+bT9LS\nZQA4cLyL5wpauHtOlIahy6hwdPdROho6eten5kwlzDX2qhVFRETk8rrkhIzb7Q4H3gMygR8BeUAG\n8BhwtdvtXuzxeOrPcXwQdvLlip7jdwI5wOeB1W63O9vj8XRdapxy4Q4ePAjAnDlzercZY3jmmWd4\n5513WLp0KRkZGYEKT0RE5MKEhsLKVbByFeZojd3+adsWrJaWAbtZx47Cc89iXnjebg+1eq3dNsox\nui4EyziQvcieNVNdbbfh27YV60glPP0kpsgDD42NCmKHZfHJUVg50dnUSc1u+1605NXJAY5m5EmM\ncPJQTiw/3FZPt9/etrG8naRIJ1eljY1kooxdfp+fyq2VvevOUCfTV0wPYEQiIiIyWg1FhcwjwDzg\nYY/H85NTG91u9x7gL8C/AF86x/GfAa4BPurxeH7Xs+0Pbre7Dvg7YBmwcQjivCTWZz551sfMhx+A\nNVfYKxvXY/3x92ff92e/7Fv5j29iVVQMvt/qtfCRB+2V8jKsb/372Z/za/9st6sYIoWFhQBkZWWR\nl5fHG2+8we7duykvLycjI4NvfOMb5zz+qaeeorm5+YJfb9asWVx55ZWXErKIiMi5TZoMd90Dt96O\n2ZMPmzZiFR4csIvl88HOPNiZh0lMsqsOVqwEV2yAghY5iylT4O574bY7es9nVqzqe/zwISgtgeUr\n7HZ+o1D/ZExzp5/tR9q5Jj1iRFdSDKiOSVJ1zGDS4oJ5YGEMv97V1LvtLwUtxIc7WTApNICRiZzb\nsb3H6Gzqa4M6dclUgiOCAxiRiIiIjFZDkZB5EGgFfnXa9heBI8BH3G73ox6Px5zl+IeBYmBAFsPj\n8fw7cPYshFw2pypksrKy+O53v8ubb77Z+1hqaip+v/+cxz/99NPU1Jy3U12vm266SQkZEREZHsHB\nkLMUcpZiao/bF7K3bsZqahqwm1VXCy88j3npBZi3ANashdlzVDUjI0u/83mAt9/E2rXTrvrKXmyf\nvxmzRuWsGb8x/Gh7PdXNPvwGrp05MhMdHU0dqo65QNmTw7g108eLhfZgdAP8Nr+RR1bGkezSBW4Z\nec6ojglxMnXJ1ABGJCIiIqPZJSVk3G53DHarso0ej2fA1FyPx2PcbncucAeQBpQMcvy0nuN/fCph\n43a7w4DOcyRwAmJAZcu5rLkCc6pa5nz+8V+5oG8yJfXCX38IFBYWMnnyZGJjY/nmN7/Jl7/8ZUpK\nSvjTn/7Em2++SWlpKU8++eRZj3/xxReHLVYREZH3LWkC3H4nfPBWzN69sGkDFBzAMn1/nS2/H/bk\nw558THyCXTWzarWqZmRkW74S09lpn887tsOO7faspDVrR13VjMOyuCEjkl/tauJlTytJkU6yJ4+8\nmQ21BbV2dcxsVcdciGvSI6hr87G5wp7H0e2HX+Q18uVVccSEOc9ztMjwOn7g+IDZMVNyphAcruSh\niIiIvD+WMe8/7+F2u+cBe4GnPB7P/YM8/gPslmYf8Hg8bw3y+DrgTeyWZn7gi0AK0Am8Djzm8XgO\nnX7c+TQ2Ng76TRUXF1/sU407tbW1PPLIIyxZsoRHHnnkjMe/9rWvUVFRwQ9+8AMmTJgQgAihoKCA\nxx9/nFWrVvG5z30uIDGIiMjYFNTUiGvfXmL27yX4tFkzpxiHg5YZM2mcv5C2lNRRWXUg44N9Pu/B\ntW8fQa32+Xxi+UpOrFoT4Mgu3s6TIWyuC8dpGe6a3srEMF+gQxrAGEPX8S6cEU6CooeiCcHY5zfw\nUlUEFW19F7YnhXm5Y1orQSpGlBHC+A21b9Tia7F/51hOi6SbknCGKnEoIiIyHp1trrrL5brgCwOX\n+mnh1O11bWd5vPW0/U4X3/P1o0AI8DhwDHumzOeBFW63e6HH47nw/ldyScrKygBIT08f9PHISPuO\nv7Cws9+Z+Ne//pW2trOdEmdKSUkhJyfnwoMUERG5TLwxLk6sWsOJFauILC3BtW8PkSWHz6iaiS4u\nIrq4iC5XLI3zFtA0dx6+SN0VLyOLfT6v5cSK1USWHMa1dzeN8xb0Ph5dsB9nWxtNs+fijxjZQ9UX\nxXVR3+WkoCmEl6siuDe5hejgkVNQb1kWoRM1A+ViOCy4YXIbz1RE0dBtX9w+2hHEu8fDWTexXblu\nGRE6Kjt6kzEAETMilIwRERGRSxLo27dCer5OBOZ6PJ4TPesvud3uY9gJmkeBx4bixc6WwRqPTlUL\nnf7/5NS8mNWrV5/xWGNjI8XFxcycOZPFixef9bkfe+yxi54h86EPfeiC92/q6fMfHR2tf9Nx7mzn\nschoovN4BHO74foboL4es2UTbNqAVV8/YJeQxgaSNq0ncesmWJANa6+AWe5xN2tG5/Eo4HbDDTeS\ndmrdGPjDE1jHjpG0eSNkL4I1V4zoWTPpMw0/yW2g+EQ3b9TF8aWV8YQGDV2s7+c87mzuxNvhVZuy\nS5A0zct/bq6n3Wsn2A42hZA1LZ6r0kZ2knCk0u/joWP8hrx38nrXHUEO5l0/j5CokHMcJUNB57GM\nBTqPZSzQeXx5XGpC5tQE3LN9Aok6bb/TneoF8lK/ZMwpv8JOyFz5vqOTi1ZYWAjYiZmlS5di9Xwg\n7+7u5lvf+hZer5f77z+jO90AmiEjIiJjSlwc3HQL3HATZv8+2Lge9u8bWDXj88GuPNiVh0maYM/q\nWLEKokfPrA4ZZ4yB2+/CbNoAB/Zj7ciFHbn2rJm1V9izZiKjzv88wyjIYfGJRS6+v6WeORNCCR4B\nN6lXbKqgJr+GmdfOZErOlECHMypNjArio9kx/HxHY+98zb8UtDApyklWkqqOJHDqCutoP9Heuz45\ne7KSMSIiInLJLjUhUwoYYNpZHk/p+Xq24S1lPV8H+zhV1/PcMe83OLl4pxIyL730EkVFReTk5NDW\n1sb27dupqqri5ptv5uabbx72uN577z3Wr18PwIkTdu5u3759fOMb3wAgNjaWv//7vx/2uEREZBxx\nOGD+Ans5eQKzeRNs2ojV2DBgN6v2ODz/Z8xLL8DCRfbF7RFcdSDjlMMBC7Pt5cQJzOaNsHkj1rGj\n8OwzmLh4WHT2iuhAiQxx8JXVcYSOgCEjHY0dHN1zFIDY1NgARzO6zZkQyq1ZUbxw0L5fzwC/2dXE\nY6vjmBAZ6KYOMh4ZYyjfXN67bjktpi0/22UPERERkQt3Se9uPR5Pq9vt3gsscrvdYR6Pp+PUY263\n2wmsBCo9Hk/FWZ6iAGgEFg7y2HTAAo5cSoxy4Y4ePUpDQwPLli0jKiqKvLw8nnrqKSIjI8nMzOTh\nhx9m3bp1AYmtqKiIV199dcC2qqoqqqqqAJg8ebISMiIiMnziE+CWW+HGmzH79tpVMwUHBlbNeL2Q\nlwt5uZhJk3uqDlbCCJ/VIeNQQgJ88Da46WbM3r2wMw8W9M2a4dWX7WqvpcvhHHMEh0v/ZExTh4/q\nFh+ZicN/13rllkqM35A0J4mIRP1cX6qr08KpbvKSW2V/pGz3Gv53RyOProojPDjwCTgZX04UnaCt\ntm8u6qQFkwiNVsWWiIiIXLqhuN3oV8D/AJ8G/rvf9o8AE4Cvn9rgdrszgU6Px1MK4PF4utxu95PA\nZ91u9y0ej+flfsd/vudr/21yGR08eBCApUuX8sADDwQ4moEeeughHnrooUCHISIiMpDT2VdlUFfX\nU2WwCaupccBu1tEa+NPTmL88D0uW2smZ1LSzPKlIgDiD7Fky2Yv6trW2wF9fxfJ6Mc89C0uXwZor\nITk5YGGe0tTp57ub62nr9vPFlXFMiwkettfuXx2TsirlPHvLhbAsi/vmRXO81UtZgxeAY60+nshv\n4tNLXDhUZSjDxBhD+aZ+1TEOi+krpgcwIhERERlLhiIh8zPgw8D33G53CpAHzAG+BOwDvtdv34OA\nB8jst+3rwHXAs263+9vYbcyuBh4Advc8vwyDU+3K3G53gCMREREZhRIT4dbb4eZbMHv3wIb1WAcL\nBuxidXfBlk2wZRMmOcVOzCxZBqG661ZGqNAw+OjfYTa8h1VcBBs3wMYNmNQ0+/zNWQIhgTl/o0Ms\nZiWGkHukg1/kNfLl1fFEhQxPJUXF5gpVx1wGwU6LTy528d1N9TR2+gEoqO3i5cJWbs0aWTONZOw6\neegkrcdae9cnzp9ImCvw1YEiIiIyNlzyJxaPx9MNXAv8ELgTeAL4KPBL4EqPx9N29qPB4/HUAsuB\n3wIPAf8LXAF8v+f49nMcLkNICRkREZEh4AyC7MXw91/CfPNxzAeuwwwyHN2qKMf6w+/gHx6Dp5+E\n6qoABCtyHkFBdlXXo1/BfP2bmKvXYSIisMpKsX73BNQ3nPcpLhfLsrhvbjQpsUGcbPfz652N+Pzm\n/Adeoo7GDo7tPQaWqmMuB1eYk0/luOg/JuitkjZ2HOk4+0EiQ8QYQ8Wmfh3XLZi+UtUxIiIiMnSG\nZEKix+Npwq6I+dJ59hu0zrwnKfPpnkUCpLCwkMmTJ+NyuQIdioiIyNgwYSLceTd88DbMrp2wcT3W\noeIBu1gd7fDeO/DeO5iZGbD2SrtlVPDwtV8SuSCTp8A998Ftt2Py8uBIJUycaD9mDPzx95CZCQsX\n2YmcYRDstPjUYhff2VRP8clunito4Z650Zf1NS2HxYS5E8Cg6pjLJCU2mPvnx/C73U29257c10RS\nlJPUWP1ulMunvqSe5prm3vWJ8yYSHhsewIhERERkrBmeT0oyKrzxxhuBDkFERGRsCg6GZcth2XJM\nVRVseA+2b8XqGHjHt3WoGA4VY6KiYOVqWHMFJCUFJmaRswkJhZWrBm4rLcHatAE2bcDExPSdvwkJ\nlz0cV5iTTy528T/b6tlY3s7UmCBWJV++C6ih0aG4b3ZjzOWvxhnPlkwNo7rZy1uH7YYLXj/8Mq+R\nL6+OwxXmDHB0MhYNVh2TvDLw87JERERkbBmeJssiIiIiYps6FT70Yfj29zAfeRAzyHB0q6UF62+v\nw7/+I/zwv2DvbvD7AxCsyAWaPAVz34cxU6ZiNTVhvf4a/PNX4cf/A/v2XvbzNy0umHt7KmNauobn\nZ8XSkPnL7hZ3JHMmhPSuN3b6+cXORrp9SobJ0Gsoa6Cpqq8qa8KcCYTHqzpGREREhpYqZEREREQC\nISwMVq+FVWsw5WWwYT3syMXq7urdxTIGDuyHA/sx8QmwZi2sWg0xai8qI0x4OFx5FVxxJebwIVj/\nHuTvxNq3F1NyGL79PXBc3nvBlk8PJ9kVzJSYy/MRp6Ohg4MvHiR5ZTIJGZe/8kfAYVl8dGEM399S\nz9EWHwDlDV6e2tfMAwuilRSTITWgOgZVx4iIiMjloYSMiIiISCBZFqSm2cudd2O2bYWN72EdPTpw\nt5Mn4MW/YF55CbIXwxVXwswM+3iRkcKy7PNyZgY03YvZuhksR99MpI4OePpJWL0GZswc8vO3fzKm\nscNHeLCDEOfQvEbFlgqaq5qpPVirhMwwCg928FCOi+9trqet266M2VHVwdToIK6ZoRk+MjQayhto\nrGzsXU/KStKMKBEREbkslJARERERGSkiI+GadXD1NZgij11lsDsfy+/r3cXy+SAvF/JyMVOmwNor\nYdkKu0JBZCSJiYHrbhi4LXcb1rYtsG0LZsrUnvN3+ZCfv2X13fxiZyOzEoJ5cGHMJVdStDe0c2zv\nMXumxCrdNT/ckiKD+Hi2i5/kNnCqWdmLhS1MinYyZ0JoQGOTsaFi82nVMfo5FxERkctEM2RERERE\nRhrLAncmPPQZ+Nb/w9xyKyY27szdqquxnn4SvvoY/PH3cKQyAMGKXIS58zDX34iJjsaqrsJ6+o/2\n+fvkH6DqyJC9TEiQRafXkFfdydslbZf8fJVbKjF+w4S5E4hI0F3zgZCZFMIds6N61w3wRH4TR1u8\ngQtKxoTGI400lDX0rie6E4mcEBnAiERERGQsU0JGREREZCRzxcJNt8Dj38Z85mFM1uwzdrE6O7E2\nrsf692/Ad74F27dBd3cAghU5j/gEuO0O+NZ3MZ/8NGaW2z5/N7wHf/jdkL3MlOggHlgYA8BLha0U\nHO9838/bc9xwAAAgAElEQVTV0dRhV8egmRKBdkVqOMunhfWud3gNv8hrpL3bH8CoZLQ7Y3bMav2c\ni4iIyOWjlmUiIiIio4HTCQuzYWE25tgx2PgebNmM1Tbw7n+r5DCUHMb8+RlYtQbWXAEJmnchI0xQ\nEOQsgZwlmOoq2LAeMmb1PV5VBTu2w9or7CTO+7BgUig3zorktaJWnshv4rFVcUyIuviPP0e2HcH4\njT1TQtUxAWVZFvfMjeZYq4/SejvpfLzVx+92N/GpHBcOzdSSi9RU3UR9SX3vekJGAlETo85xhIiI\niMil+f/s3Xd4VOeZ9/HvmVFvo4KEEEiiSQLT1SgCg2uwTWJjx8YldrxeO4nXr994k3iTTd51yq43\n2dib7G52HSdOcYoB47XjFtsYN5pAQiAJMEiIIoSERJM06mVmzvvHgZEEAlMkjcrvc13ngnPmmTP3\niEdcc+Y+93OrQkZERERkqBk9Gr64An7yLOaX/wZz/IRzhhiNjRjvvQP/7zvw3C/g093g0V3kMggl\njIW774WMzK5j6z+y5u/3vgPP/fdlz9/PTQ5hVnwgrS6TX19GJYXH7eFk6UkAEnMSL/n1pe/52w0e\nznAQGdR1Kbv7eAfv7mv2YVQyVJ3TO0bVMSIiItLPVCEjIiIiMlQFBMD8HJifg3m4HNZ/AtvyMTo7\nvEMM04SdxbCzGDM2FhYtgQU5EKY7gGUQm7cAs7UNdhRg7CyCnUXW/L16iTV/Qy9u/toMg/tnhXO8\n2UVNo5vSkx3MHhP02U8883y7jcyvZFJ3sI6wOP3ODBYRgTb+NsPBf26pw3U6x/be/hbGOfyZFR/o\n2+BkyGiqaaK2rNa7HzUpivAx4T6MSEREREYCJWREREREhoPk8fDAg3DHnZhbc2H9JxjHj/UYYpw4\nAa+9gvnW69ZyUYuvgV6qa0R8buIka7tzBWbuJtjwiTV/X30F88QJuPdLF32qQD8bX8mM5FiTi2lx\nl/5lvV+gH7FTYy/5edK/xkf6s2J6OC/tbPQe+1NRA3E5UYwJ12WufLazq2OSc5J9FImIiIiMJPqk\nKiIiIjKchIbCdTfANddhlpbAJx/DziKrUuY0o7MTtuTCllzM5PGweAlkZlsVNyKDSUQELL0ZblyK\nuXunVQV29eKuxz/dDU6nlWC8wPwdFWJnVIjdu+/2mNhtF+430lDVQGhcKHZ/+wXHie/MSwzmiNPF\nhsOtALS7TV7Y7uRbOVGE+Gt1bjm/5uPN3uUIASLHRxIxLsKHEYmIiMhIoYSMiIiIyHBks8HUq6yt\nthZz0wbYtAGjoaHHMONwOfzxRcz/XQMLFlpfdseN9k3MIudjs8HM2dbW3dtvYhw6iPlqt/kbG3fB\nU5Wd6uDPxQ18NTOShIjeL4dc7S52r9mNgUH6w+kEhmsZrMHq9qvCONroYn9tJwAnmt38obCBr2Y5\nsBkXTrrJyHVOdcxCVceIiIjIwNBtQyIiIiLDXXQ0fOE2+NefYj78FcyU1HOGGC0tGB+8j/HU9+AX\n/wE7iy6ribrIgDFNWLQYM3k8RnMzxrq1GP/03dPzt/i88ze/so3aVg8vbK+nuaP3MdWF1bhaXQTH\nBBMQpsqxwcxuM3go3UFkUNel7Z4THfy1tNmHUclg1nKyhRN7T3j3HUkOHEkOH0YkIiIiI4kqZOS8\nOjo6WLlyJWvXrqWyshKApKQk7rrrLm699VYfRyciIiKXzM/PWposMxuzqgo2fAJbczHa23sMMz7d\nDZ/uxowZZVUcLFgI4Wp0LIOMYcCCHFiQg1l+CNZ/DNvyu+bv/Q9CzsJznnbn9HCqGl0ccbp4sbCB\nR7N7VlK4O91U5p3+7JuThKEqi0EvPNDGIxkOfr6lDtfpHNv7B1pIdPgxe0yQb4OTQefs6pikhUk+\nikRERERGIiVkpFednZ08/vjjFBYWkpqayvLly2lvb+f999/n6aefJi4ujvnz5w9YPL/4xS/Yu3cv\nFRUVOJ1OAgMDiY+PZ/Hixdx5551ERkYOWCwiIiLDwtixcM99sPwOzK1bYP3HGNVHewwxTp2Ev7yK\n+dYbkJFl9ZqZMNH6IlxkMBk/wdruuAszdzNs2woZmV2PF+RDdAxMmEiA3eDhDAfPbKql5GQHb5U0\nc+vUMO/QmuIaOps7CYsPI2pilA/ejFyOpEh/7p4Rzp+LG73H/lTcSFyYHwnhuuwVS2tdK8f3HPfu\nR4yLIDJZ15IiIiIycPTJVHq1evVqCgsLWb58Od/5zne8dwbOmTOHp556iuLi4gFNyKxatYopU6Yw\nd+5coqKiaG1tZffu3bzwwgu8/vrr/O53v2P0aK13LyIicsmCgmDJNbB4CWbZPvjkYygqxPC4vUMM\nlwvytkDeFsykJFh8DWRlQ4D6asggExYGN37O2s7o6IBVL2E0N2MmJsGSa4jOyuahdAf/nVfPBwdb\nGOfwIwIwPSaVW63qmMQFiaqOGWLmjgvmiNPF+vJWADrcJi8UOHlyYRQh/lqtW+DIliNgdu2rCk5E\nREQGmhIy0qvXXnuNoKAgnnjiiR4fUO12OwAOx8Cusfvxxx8TGHjulz7PPfccL774Ii+++CLf/va3\nBzQmERGRYcUwIDXN2urrMTdtgI0bMJz1PYdVVMCf/oD56ivWclFXL/FNvCIXy+WChYswN23CONI1\nf1Pm57A8bQmvHjFYvauRB5LBU9FKe0M7ITEhjEob5evI5TIsnxrG0QYXZbWdAJxscfNiYQNfy+q5\nNJ2MPG3ONo7tPObdVxWciIiI+IJuE5JzVFdXU1VVRVZWFsHBwT0e+/DDDwHIzMzs7an9prdkDMD1\n118PwJEjRwYyHBERkeEtMhKWfQH+9SeYj3wNM23KOUOMlhaMD9ZhPPU9xr66htD9Zedtoi7iUyEh\nsPyL8JNnMB98CHPCRGv+friOJc99jyWxbh7OcBBkB1uwjdC4UBJzVB0zVNltBn+T7iAquOtSd++J\nDt4ubfZhVDIYVG6txPR0lceoOkZERER8QRUyco69e/cCMG3aNO8x0zR5+eWX+eijj8jOziYlJcVX\n4fWwceNGACZPnuzjSERERIYhu5/VhyMjE/PoUdjwCWzNxWhr6zEstPwQoeWHMDeuh6sXQ84iCA/3\nTcwi5+PvD/MWwLwFmIfLYf0nUFPNHVnxYBiU1UFs3UFG33WN5u8QFx5o45EMBz/PraPzdJ543YEW\nxkX4kZ4Q5NvgxCc6mjqoLqr27ofEhhCTGuPDiERERGSkUkLmIj3+1+PnfezuGeHkJFmVJJsrWlm9\nq/G8Y39xS5z37z/dWMuRBlev4xYkBnHPzAgAKpydPLOp7rznfHJhFEkO/wvGfylKSkoAmDp1KgUF\nBaxdu5aioiIOHz5MSkoKP/zhDy/4/FWrVtHYeP6fwdlSU1NZsmTJRY3985//TEtLC01NTezdu5fi\n4mImT57Ml7/85Yt+PREREbkMCQlw971w2+2Y+Vvhk48xjlb1GGLUnoLXX8N8+00rkbP4Gpgw0VoO\nTWQwSR4PDzxoVXWdnp/+tbXU5++l6EALSyObNX+HuESHP/fMiOCPxQ3eYy/tbGB0mB9jI3QZPNJU\n5lViurtVxyxQdYyIiIj4hj6JyjnOVMhMnTqVZ555hnXr1nkfGz9+PJ7PWI5k9erVVFdXX3BMd7fc\ncsslJWRqa2u9+/Pnz+epp54iKkpr/4qIiAyIoCCrb8yixZj7y2D9x7BjO0a3zweGywV5WyFvq7eJ\nOlnZEND7EqQiPmOzlrU6VXaKY3s6eXPOPTQEBRO7fTWZP/2x5u8QlzUuiCMNnXx8qBWADje8UFDP\nkwujCQ3Q6t0jRWdLJ0d3HPXuB0cHEzs11ocRiYiIyEhmmKb52aOGGKfTOfzeVB8rKysD6HXpsRtu\nuIGQkBDeeOMN3G43jY2NHDx4kDVr1vDRRx8xefJkVq5cOdAh93Dq1Cl27tzJ//zP/9DS0sLPfvYz\npkw5d317Gd4uNI9FhgrNYxkODhYW4thVTMyeTzHqe6/qNUNCYH6OlcwZPXpgAxS5ANM0KXyxkKbq\nJhpTo3gveDT+pptvbPs9iccOWmMiHPD0T6xlz2RIcXtMnsuvZ9+pTu+xKaP8+VpWJHbb8KuQ0OeK\nc5WvL6dic4V3P3VZKvEz430YkXwWzWMZDjSPZTjQPL54Dofjoj9Y6rYg6aG6uhqn08nUqVMBsNvt\nREZGkp6ezk9+8hNSUlLYv38/VVVVn3Gm/hUTE8M111zDL37xC5xOJz/4wQ98Go+IiMhI5g4Lo3Z+\nDjz9Y8yvPIqZdu5NEmeaqBvf/x7818+huMhaLkrEx+oO1dFU3YQt0MbkqwKZOy6ITsPOC1d/haYH\nHsGcMBGuuqorGeN2wc4icLt9G7hcFLvN4G/SHUQHd136lpzs5K3SZh9GJQPF1eaiqqDr2jXQEUjc\ntLgLPENERESkf2nJMumhe/+Y3kREWH1tQkJCznuO/uwhc7YxY8YwYcIE9u3bR319PZGRkZd1HhER\nEekDdj9Iz4D0DMzqo7DhE9iyBaOttccwY8+nsOdTzOhoq2JmwUI4/RlDZKAd2XwEgNDUUGz+BivS\nwqludFHhdPG70FT+7sls7O5ufR+LizF+/UvMqGi4ejHkLIQIh4+il4sRFmDj4QwHP8+to/N0HvjD\ngy2Mi/Ajc2yQb4OTfnV0+1Hc7V3J08R5idjsui9VREREfEcJGenhTP+Y3pb/cjqdFBcXM3ny5Av2\nbOnPHjK9OXnyJAA2mz5Yi4iIDBpjEmDFvXDr7Zj5W+GTjzGO9qywNWpr4fXXMN9+00rkLL4GJk5S\nE3UZMM4KJ84jTvyC/AiZZN1w5G83eDjDwTObatl3yqqkuG1qWNeTDDBj4zBOHIc3/nJ6/mbC4iUw\nabLm7yCV6PDn3pkR/KGowXts5c4GRofZSXRoKbrhyN3hpjK/0rsfEBZA/CwtVSYiIiK+pYSM9HCm\nQmbdunVkZ2djnL6g7Ozs5Mc//jEul4t77733gud44403+jSmw4cPExMTQ1hYWI/jHo+H559/ntra\nWmbOnOmt3hEREZFBJCjIqoJZtBhzfxms/xh27MDwdN2xbLhckJ8H+XmY4xKtL7az5lrPFelHFblW\nX4mEzAQ6/bt6jEQF23kow8EfChuYHhfQ80lzMmDWHMy9e2D9J7CrGGNbHmzLw5yTDl/9uwF8B3Ip\nMscGUdng4sODLQB0euCF7U6ezIkmPFA3dw031YXVuFq7qtvGzRuHzU//ziIiIuJbSshID2cSMm++\n+Sb79u0jMzOTlpYW8vLyqKqqYtmyZSxbtmxAY8rNzeW5555j1qxZJCQk4HA4qK2tZceOHVRVVRET\nE8N3v/vdAY1JRERELpFhQEqqtTmdmJs2wKYNGHV1PYdVHoGX/oT56v/C/AVWciZ+jG9ilmGttbaV\nuoN12PxtjM0cS3lVeY/HJ0cH8NSSGPztvVS82Gwwbbq1nTqFuXE9bN5oVcic0dAALc2av4PMF6aE\nUtXgouRkBwB1rR5+t8PJ/5kbid2m6qbhwuPyULm1qzrGP9ifMbP1uygiIiK+p4SMeNXU1FBfX8/c\nuXMJCwujoKCAVatWERoaypQpU3jssce4/vrrBzyu7OxsKisrKSoqorS0lKamJoKCgkhKSuKmm25i\nxYoVOBxat1tERGTIcDjgls/D0psxdxbD+o8xSvb2GGK0tcLHH8LHH2KmTYEl18DM2WC3+yhoGW6C\no4NJfzidlhMt+If0vmRV92TM3hPtJDr8CQs46w77mBi47XZrTpueruOffITxztuYU6ZaiUXN30HB\nZhg8OCeCZzfXcrLF+vfaX9vJa3uauHN6uI+jk75SU1xDR3OHd3/s3LHYA/T7JyIiIr6nhIx4nekf\nk52dzf333+/jaLpMmjSJJ5980tdhiIiISF+z22FOOsxJx6yphg3rYctmjNbWHsOM0hIoLcGMjIJF\nV8PCReCI9FHQMpyExYURFhf2mePyKlt5qbiRyTH+PJZ9nkoK/7OSOh4PZkCAlWws2av5O4iEBth4\nJDOSf99cR4fbBGDD4VbGOfyYnxjs4+jkSnncHo5sOeLd9wvyIyEjwYcRiYiIiHTRAqridWa5srS0\nNB9HIiIiIiNO/Bi46274ybOY9z1g9ZI5i1Ffh/HWG/CP34ZfPw+lJWCaPghWhrqWUy2XND5tVADh\ngTbKTnXyl71NF/ek22635vOdKzBHj+45fz94/zKilr6UEO7HA7N79qBcs7uRQ3Wd53mGDBXHdx+n\nvaHdu5+QkYBfoO5FFRERkcFBCRnxUkJGREREfC4w0Koi+N5TmP/wj5hz52H69fwizfC4MXYUYPz8\nWfjhU9bSZq2X9gW7jFytta0U/LqAnS/txPRcXEIvMsjOwxkO/GywvryVLUdaP/tJACEhcN0N8IN/\nwXzim5hz0gETuiccT57U/PWRWfGBLE0J8e67PPCb7U6cbW4fRiVXwvSYVORWePdt/jbGZo31YUQi\nIiIiPek2EfEqKSlhzJgx6sciIiIivmcYMHGStd1xF2buJtiwHqP2VM9hNdXw8irMv7wKc+fB1Usg\nMck3McuQcGTLETAhKDII4xKauE+I8mfF9HBe2tnIy7saGR3qx8To3nvPnMMwYMpUa6urg8huS5at\nWQ2leyF7ntVrppfqMOk/N6WEUtXgYtcxq99IQ7uH32x38n/nRfXoISRDw4m9J2ira/PuJ2QknLdH\nlIiIiIgvKCEjXmvXrvV1CCIiIiLnioiApTfDjUsxd++E9Z/Ank8xui1XZnR0wMYNsHED5sRJ1hfb\n6Znn9vWQEa3N2caxXcfAgMT5l574mJcYTGWDi/Xlrfxmh5Mnc6KICr7ERuFRUV1/d7uhox2jvR02\nroeN6zEnTYbF11j9lTR/+53NMLh/VgQ/y62jpsmqjCmvd7FmdyP3zgzHMJSUGSpM06Ric7fqGD8b\n47LH+TAiERERkXMpISMiIiIiQ4PNBjNnW9uJ45gb1kPuJozm5h7DjIMH4OABzDUvQ85CWLQYYmN9\nFLQMJpVbKzE9JrFXxRIcfXnN25dPDaO60UVNk5umDs+lJ2S6s9vhiW9iHj0KGz+BLVswDuyHA/sx\nw8Phb79iVdVIvwr2t/FIhoNnN9fR6rISvVsr2xjn8GPx+JDPeLYMFqf2naLlZNfyf/Gz4wkIC/Bh\nRCIiIiLnUkJGRERERIae2Di44074wm2Y2wtg/ccYhw72GGI0N8H772GuWwvTplvLmU2fYSV2ZMRp\nb2qnprgGgKQFl7+snd1m8FC6A5fHxBF0BcmY7hISYMW9cOvtmNvyrCqwo0chfkzXmJMnIDpG87ef\nxIX58eCcCJ7f5uRM7d1re5pICPcjJUZf6g92Z1fHGDaDcfNUHSMiIiKDjxIyIiIiIjJ0+fvDvPkw\nbz5mRQVs+ATyt1pLmJ1mmCbs3gW7d2FGx8Ciq2HBQlDfvBHlSO4RPC4Po9JGERoXekXnCg3omRQ5\n0ewiNrQPLq2CgqyKroVXw/FjXb1mPB74j38Hj2nN35yFEKH529euigvk81NCebPEqrrzmPC7HU6e\nzIkmOqSPkm/SL+oO1tFU0+TdHz1zNEERQT6MSERERKR3ur1KRERERIaHpCT40gPwk2cxV9yDGR9/\nzhCj9hTGG3+Bf/wHeOF5KC2Bbr1oZPjyD/bHHmAnadHlV8f05p19TfzL+lr2nmjvu5MaBozuNn/r\n6qzD3efvb34F+0o1f/vY9RNDSB8T6N1v6jB5YbuTDrd+zoPV2dUxl9sjSkRERGQgqEJGRERERIaX\nkBC45jpYci3mvlJr+aeiQgyP2zvE8LhhewFsL7ASN4uWwPwF1nNlWEpelMy4ueOwB/RtpYOJVUnx\n+x0NfGthFHF9USlztpgY+NG/Yu7dY83nXcUYBdugYBvmmAT4P1+3xsgVMwyDe2dGcKy5jqoGFwCV\nDS5e2tnAg7MjMAzDxxHK2ZwVThoqG7z7cdPiCI66vB5RIiIiIv1NCRkRERERGZ4MA9KmWFt9Pebm\njbBpA8bpagPvsJoaeGU15uuvQVaW1Wtm/ATfxCz9qq+TMQA3pYRS1eBi17EOXihw8o0FUQT798NC\nBDab1Qtp2nSoPYW5aSNs2ghtbRAV1TWu9pTVa0YuW6CfwSMZDp7dXEtTh1UZs+NoO4kRLVw/6cqW\nu5O+16M6BlXHiIiIyOCmhIyIiIiIDH+RkXDL52HpzZi7dsLG9bDnU6u/zGlGZwfkbobczZhJyXD1\nYsiaC4GBFzixDHYVmyvwC/YjflY8NnvfJ0pshsEDsyP42eY6qpvc/LGogUcyHdj6s5IiOga+cBvc\nsgxOnLCSNQANDfBP34Uz8zcjCwLUkP5yxITYeSjdwX/n1eM5/d/EmyXNJIT7cVWc/k8YLBoqG6gv\nr/fuj5oyitBYJc1ERERk8FIPGREREREZOex2mD0HHn/CWgLqc0sxw8LOGWZUHMb48x/h29+C1Svh\n6FEfBCtXqr2xncObDrP/vf20nmrtt9cJ8rPxSKaDEH+D3cc7eGdfc7+9Vg92P4gf07VfVQkBARiH\nDmL84ffwnW/BmtVQUz0w8QwzKTEB3D616/8HE3ixsIHjTS7fBSU9VOT2rI5JyunbHlEiIiIifU0J\nGREREREZmWJjYfkX4cfPYD70CObklHOGGG2tGJ98hPGjp+DZf4O8rdDZ6YNg5XIcyT2C6Tatu+bj\n+veu+dhQP/5mjgMDyK9so7XT06+v16upV8FPnsW8/8uYyeMxWlowPvoA4wf/BD9/FlxKJFyqq8cH\nM3dckHe/1WXyqwInLb7495UemmqaqN1f692PnhxN2OhzE+wiIiIig4mWLBMRERGRkc3fH7LnQvZc\nzKoqazmzrVsw2npWVBj7y2B/Geaa1TB/ASy6GkbH+yho+Sztje1UF1mVIckLkwfkNafEBvDgnAgm\nxwT0Tx+ZixEYCDmLIGcR5uFy2LgBtuWBn5+1AZgmnDoFo0b5JsYhxDAMVkwP51iTi/J6K6F1vNnN\n73Y4eTQrErutH5emkws6u3eMqmNERERkKFBCRkRERETkjLFj4e574bbbMbflw4ZPMI70/NLPaG6C\nD96HD97HTJsCixZby6D56aP1YHKmOiZ2amy/V8d0l54Q1GPf7TF996V98nhru+NOaG7qOr6/DOPf\nf4p51TS4egnMmGkt5ye98rcbPJzh4NnNddS3WZUxpSc7eXVPE3dND/dxdCNT8/FmTpae9O5Hjo8k\nYmyEDyMSERERuTh9ctWYlpYWDXwfuA0YA5wE3gH+qbS09JIWLE5LSwsCioFU4JrS0tJP+iJGERER\nEZGLFhRkVcAsXIRZfuh0lUE+RmdHj2FGaQmUlmCGh8OChbDwamspNPGp9oau6pikhb65a95jmrxV\n0szh+k4em+vjSorgYGs7o/oopr8/xp5PYc+nmI5IWLjI2qKifRfnIOYIsvOVTAf/saWODrd1bOPh\nVkaH2Vk8PsS3wY1A5RvKe+yrOkZERESGiiuuo09LSwsGPgEeBV4FHgR+BawANqelpUVd4in/CSsZ\nIyIiIiLiW4YBEybCAw/Cvz2LueJezISx5w5rbMRY+y489V34r59D4Q5wuwc+XgGgurC6qzomduCq\nY7pr7jDJr2qjrNaqpBhUrl4CP3kG884VmKPjMZz1GH99C777bfjTH3wd3aCV6PDn/lk9qzBe/bSJ\nvSfafRTRyNRY3cipfae8+45kB5HJkT6MSEREROTi9UWFzBPADOCx0tLS584cTEtLKwb+gpVg+cbF\nnCgtLW0G8CRQCMzpg9jkCnR0dLBy5UrWrl1LZWUlAElJSdx1113ceuutPo5OREREZICFhMA118KS\nazAPHoAN62H7NoxujdIN04TuVQc5C62qg+gYHwY+8iQvSiYoKoiIBN8tYRQeaOPhDAf/tbXOqqQI\ntbN4wiCqpAgNg+tugGuvx9xXavVOKtwBYd2aore2Qlurqma6mT0miM+nuXmrtBkAE/j9jga+sSCK\n+HAtWzgQyteX99gff/V4n8QhIiIicjn64hPjA0Az8Nuzjr8BVAJfSktL+2Zpaal5oZOkpaXZgBeA\nw1gVNs/3QWxymTo7O3n88ccpLCwkNTWV5cuX097ezvvvv8/TTz9NXFwc8+fP93WYfebWW2+lurr3\n1fWio6N57733BjgiERERGbQMAyZNtra7VmBu3QIb1mMcq+k5zFkP77yN+e5fYdp0azmzGTPAri9t\n+5thM4ifGe/rMJgQ5c+9MyP4Y1EDr+5pYlSonWlxgb4OqyfDgLQp1tbgBKPbIgpbc2HNapgxy1rC\nb9p0sF3xIgtD3g2TQqhpcrOtqg2AVpfJrwqcfCsnitAA/Xz6k/OIk7qDdd79qElROBIdPoxIRERE\n5NIYpnnBPMkFpaWlRQBOYGNpaenVvTz+KnA7MKm0tPTgZ5zr/wL/CVwPJAK/5zJ7yDidzl7fVFlZ\n2aWeasR6++23WbVqFddeey0PPfQQhmGteb1582aee+45brvtNu68804fR9l3vv71r9PS0sLSpUvP\neSwoKIhbbrnFB1GJiIjIkGGaBFcewVFcRHhZKYbH0+swV2gYzukzcM6YicuhJXb6mrvNWibOHjS4\nGtRvPRlIfm0Q/obJnUlNjArsfX4MNqM2rieqIN87nzvDw3HOmEXD9Jm4wkd2M3uXB/5SGUp1W1eC\ndWywi9vGNWP3Ybug4cw0TWrX19JxoquX16jrR+Ef5e/DqERERGQkSUlJ6fW4w+G46E+AV3p7XvLp\nPyvP83jF6T8nAudNyKSlpSUCTwN/Ki0t/TAtLe3BK4xLrtCHH35IYGAg9913nzcZA2C3Wxe3Yd2X\nMhgmQkJCuOOOO3wdhoiIiAxFhkFrYhKtiUmcaGkh4tNdOHYWEVBf32OYX3MTMXlbiM7bQkvyeJwz\nZ9M0aTLYB1cCYahq2tNES3kLkZmRBCcFf/YTBsjcmHbqO23sawxgw/Fgbk9s9nVIF+XkosXUpWee\nntWgqHAAACAASURBVM/FBDjrGZW7iZgtm6mdO59TOYt8HaLP+NngloQWXq4Io9FlVcVUtfrx8bFg\nrhvdiqGkTJ/rON7RIxkTNDZIyRgREREZcq40IXPmtqiW8zzefNa48/kl0AF88wrjuaDzZbBGojPV\nQr39TKqrqzl+/DiLFi1ixowZPR777W+tleluuummYfXz9Pe3PsgPp/c0ElxoHosMFZrHMhxoHvdi\n1iy4+96u3hxFhRhut/dhAwg9XE7o4XLMiAiYn2P1momN813MQ1ybs42aQzXggcmzJhMy6tL6tfT3\nPJ4wyeSNkiaWpoQSNtSWtZo9G+65D7O0BDZugKJCoqdNJ/rMz6r2lLX02QjsNRM71sXPcutod1uL\nNOxpCCBtbDTXTvRNv6Dh+v+xaZoUbS7qcWzazdMIjQ31UUTSn4brPJaRRfNYhgPN4/7h8wWs09LS\n7gZuAR4qLS094et4BPbu3QvAtGnTvMdM0+Tll1/mo48+Ijs7e1j+InZ0dPDuu+9SU1NDcHAwkydP\nZs6cOd6qIBEREZFLYrPBlKnW1tiIuSUXNm3AOH6sxzCjoQHWvgtr38WcMtXqNTNrNvjrzu9LcST3\nCKbHJPaq2EtOxgwEf7vBF6f1vE/NNM0e1eiDms0GU6+ytgYnBHf7Gb/9FmzZDNNnWPN3+owRU/WV\nEOHHg3Mi+HWBkzPrZr++t4m4UDvTRw+yfkFDWO3+WhqPNnr346bFKRkjIiIiQ9KVJmQaTv95vk9C\nYWeN6yEtLS0aq2/M+tLS0t9fYSz9asO/bjjvYyk3pTBmzhgAqgurKXv3/L1qrv5uV6udHb/bQVNN\nU6/j4mfHk3pzKgCN1Y0U/r7wvOec8zdzCB/Td2s4l5SUADB16lQKCgpYu3YtRUVFHD58mJSUFH74\nwx9e8PmrVq2isbHxgmO6S01NZcmSJVcScp84deoU3//+93scS0hI4KmnniI9Pd1HUYmIiMiwEB4O\nN34ObrjRqprZtAEKd2C4XD2GGSV7oWQvZliYVTWTsxDix/go6KGjzdlGTXENAMkLkz9jtO+5PSav\n7WkiyM/g81OG4FLAEWc1UTc9YLNh7NoJu3ZiOhyn5+8iiI31TYwDaProQG6dGsbre61rOxN4sbCB\nbyyIIiHC5/dADnmmaVK+vrzrgAHJiwb/77mIiIhIb6700+EhrM+b487z+JlPSefLUDwDRAI/SEtL\n636OqNN/xp4+fqK0tLT9CmOVi3SmQmbq1Kk888wzrFu3zvvY+PHj8ZynSe0Zq1evprq6+qJf75Zb\nbvF5QmbZsmXMnj2biRMnEhoaSlVVFWvWrOH111/n61//Or/97W9JTU31aYwiIiIyDBgGpE2xtqZG\nzK1brKqZmpqew5qaYN1aWLcWc3KKlZhJz4RA3XHfG291zLTBWR1ztsoGF5sqWvGYEBdmZ+64wdPv\n5rJ8+SFY/kVrPm/egHHsGLz3Drz3Dubd98KSa30dYb+7dkIwx5pcbDnSBkC72+RXBfV8Kyea8MAh\ntkTdIHOy5CTNx7v6LsXPjCc4eoj/zoiIiMiIZZim+dmjLiAtLa0ISAFiSktL27odtwNHgfbS0tKk\n8zy3nK6kzYVcU1pa+snFxuR0Oq/sTY0AF1oD8IYbbiAkJIQ33ngDt9tNY2MjBw8eZM2aNXz00UdM\nnjyZlStXDnTIPdx6662XlPRZunQpP/rRjy75df7zP/+Tl156icWLF/PMM89c8vOlf2ktSxkONI9l\nONA8vkKmCfvLrKqZ7QXnVM14hwUFQ1a21WsmKRl1Dbe0OdvY9sttmKZJ5iOZl52QGeh5vOlwKy/v\nbsRuwGNzI0mJCRiQ1+133vm8EXYUwD/+EyQkWI8d2G8tdXZmf5hxeUz+J6+e/bWd3mMTovx5fG4k\n/vaB+X0dbv8fmx6TghcKaD3VCoBhM8h6NIsgR5CPI5P+NNzmsYxMmscyHGgeXzyHw3HRH/b6on76\nt8B/AV/FWn7sjC8BcYB3Dai0tLQpWAmaQ6cPPQT0dsV0HfAE8F1g1+lNBkB1dTVOp5OMjAwA7HY7\nkZGRpKenk56ezn333UdZWRlVVVWMHTvWZ3GOHTuWgICLv2gdNWrUZb3O7bffzksvvURh4fmXjBMR\nERG5IoYBKanWdtfdmHlbraqZo0d7DmtrhY3rYeN6zHGJ1nJQ2XMhdGT3UfC4PEQmR+If4j8kqmPO\nWJgczLFmF58cauU32518MyeKuNBhsLxV9/l8z30Q1O2L8zWrMQ6XY06cZPWayRheVV9+NoOHMxw8\nu7mOky1uAA7VdbJqVyP3zwofOv2CBpHjnx73JmMAxswZo2SMiIiIDGl98Yn/eeA+4Nm0tLRkoACY\nBnwDK5HybLexe4FSYApAaWnpR72dMC0t7cy351supTJGrlz3/jG9iYiIACAk5PwXuwPRQ+a55567\npPGXKyrKWj2vra3tM0aKiIiI9IHQMLj2erjmOszyQ1aVQUE+RnvP1XuNyiPw8krMV9dAeoaVnElN\nG5FVMyExIcy4ZwYe94WX1R2Mlk8N42Szm93HO/jVNiffWBBFaMAwWt6qezLG5YKkJMyaaoyDB+Dg\nAcw1qyE725q/w6TqKzTAxlczHfx7bh1tLmvhhm1VbcSH2blx8shOnl4qj9vD4Y2Hvfs2PxuJOYk+\njEhERETkyl1xQqa0tLQzLS3tRuAHwB3A/wGOA78Bvl9aWtpypa8hA+dM/5gpU6ac85jT6aS4uJjJ\nkyd7ExW9GYo9ZM5n1y6rOMuX1UAiIiIyAhkGTJhobXeuwNy+DTZtxDh0sOcwlwvy8yA/DzM2zuo1\nM38BOCJ9FLjv2OxDL5FhMwwenBPBz7fUU9Xg4s2SJu6ZGeHrsPqHnx/c9wDccRfm9gLYvNFKzGxY\nDxvWY371UZiT4eso+0R8uB8PpUfwy3wnZ9bSfqu0mdFhfsyKHz4VQf3t2M5jtNV33RiXkJFAYJh+\nfiIiIjK09UlNfGlpaQNWRcw3PmPcRd3yVFpa+iLw4hUHJpfsTIXMunXryM7O9pbVd3Z28uMf/xiX\ny8W99957wXO88cYb/R5nXzp06BDx8fEEB/dsDHn06FGefdYq8Fq6dKkvQhMRERGxqgxyFkHOIsyj\nVbB5E2zdgtHc1GOYceI4vP4a5puvw/QZMD8HZsy0vggfhtrq2zjwwQGScpIIHxPu63AuW6CfVVHx\nVmkTt00N83U4/S8oyEoc5izErKqCzRthZxFcNb1rzOaNEBkFU68C29BLtAFMjQ3kjmlh/O+nXb+n\nfyh08vi8KCZE+fswsqHB4/JweFNXdYw9wE7ifFXHiIiIyNA3PK/O5LKdSci8+eab7Nu3j8zMTFpa\nWsjLy6Oqqoply5axbNkyH0fZt9atW8fKlSuZM2cO8fHxhISEUFVVxebNm2lvbycnJ4cvfelLvg5T\nREREBBLGwp0r4LbbMYuLrCqDvXt6DDE8HthZDDuLMcPDYe48mL8QhlnFb0VuBaf2ncLub2fKredW\ndw8lUcF2Hpjt8HUYA2/sWLjrbmtOn1murKMdXlmD0daKGRUNC3Ksqq9Rsb6N9TJcnRxMTaObTRVW\nD5RODzy/rZ5vLIhidJguxS+kekc1HY0d3v2xWWPxD1EiS0RERIY+fQoUr5qaGurr65k7dy5hYWEU\nFBSwatUqQkNDmTJlCo899hjXX3+9r8Psc5mZmVRUVFBaWkpxcTGtra2Eh4cza9YsbrrpJm6++WY1\n4BQREZHBxd8fMrMgMwvz5AnI3QxbNmPU1fUYZjQ2wgfr4IN1mMnjrcqEzGy4QD/AoaC1vpVjO4+B\nAUkLk3wdTp9yeUzW7G7kqtgAZo8ZIc3Lu3/Wdnvgxs9h5m7COHkS/voW/PUtzClTYcFCmD0HAgJ8\nF+slMAyDL04Lo7bVzZ4TVnKhpdPkuXwrKeMIsvs4wsHJ3eGmIrfCu+8X5Me4ueN8GJGIiIhI31FC\nRrzO9I/Jzs7m/vvv93E0Ayc9PZ309HRfhyEiIiJyeUbFwhdug2VfwPx0N2zZDMVFGG53j2HG4XI4\nXI75ysswO91KzqSmDckloY7kHsH0mMRNjyMkZmgnl85WWN3OliNtFFS1ER1sJylyhFUFBAfDzctg\n6c2YZfus5csKd2CU7IWSvZjfewoSh04Szm4zeCjdwX9traPC6QKgttXDL7c5+fq8SIL9h97vX387\nuv0onS2d3v1xc8fhF6SvLkRERGR40Kca8TqzXFlaWpqPIxERERGRS2azWT1jZsyEpkbMvDzI3YRR\nVdljmNHZCdvyYFseZnSMtRzU/BwYNcpHgV+a1rpu1TE5Q+eL+YuVmRDIvpNBbK1s41cFTr6xIIqY\nkBFYSWGzQdoUa2tpwdyWB4cO9kzG/OlFaxm/7HkQPnj7CAX6GXwtK5Kf59ZxosVKlFY1uPjNdieP\nZkfiZ1M1/hmuNhdHthzx7vuH+DM2a3gttygiIiIjmxIy4qWEjIiIiMgwERYO110P116HeaQCNm+C\nbXkYLS09hhm1p7qWhEqbYvXrmJ0OgYE+CvyzlX9SjukxGT1j9LCrjgFrmasVM8I51eKmrLaT5/Lr\neWJ+FOGBI7iSIiQEFl9jbWdUH8XYvAkA89X/tRKR8xfAjBlgH3yXueGBNh7NdvDz3DoaO0wA9p3q\n5KXiBu6fHYFNSyQDUJlfiavN5d1PXJCIPWAEJiRFRERk2BrBn+rlbCUlJYwZMwaHYwQ2FBUREREZ\njgwDkpLhnvvg3/4d8+GvYF41DbOXL3+N0hKM3/8W/uEb8MffQ9k+8Hh8EPT5tTe2c2r/KWx+NpIX\nJ/s6nH7jZzN4JNPB2Ag/jje7eX5bPe2uwfVv4XOjYjEf+RrmjJlgejCKCzGe/x/4zpPwysvQ1Ojr\nCM8RG+rH17IiCbB3/f4VHG3nzZJmH0Y1eHS2dFKVX+XdDwgLYMycMT6MSERERKTvDb5bh8Rn1q5d\n6+sQRERERKS/+PtDZra11Z7C3LoFcjdjnDzRY5jR3g65myF3M+aoUTB3PsxbALGxPgq8S2B4IFlf\nzaLxaCNBEcO74X2wv41Hs6yKigqni3f2NbP8qsG7LNeA8/eHjExrc9ZbS/Rt2YxRfRRz43r4/K1d\nYzs7rfGDQFKkP3+bHsGvCpx4rEIZPjzYgiPIxjUThl/F16U4svUI7o6u3ldJC5Ow+6s6RkRERIYX\nJWREREREREaa6JiejdNzN0PhdoyOjh7DjJMnu5Y0S0m1EjMZmRDku2RIYEQggRGDd0m1vuQIsvPY\n3EjeLWvh5tQwX4czeDki4cbPwQ03YlYchuqjXXO0sxO+922YOMlakm/adJ8vaXZVXCD3zgznz8Vd\nVTyv7WkiItBGRsLwTjSeT0dTB0cLjnr3Ax2BxM+K92FEIiIiIv1DCRkRERERkZGqe+P0e+7D3FEA\nW3IxyvadM9Qo2wdl+zBXr4T0dCs5kzbFOkc/c3e6OVlykrhpcRgjrAF6bKgfD8yO8O57TBMDq9eM\nnMUwIHm8tZ1RfggaGzGKCqGoEDM8HObOs+bvuERfRcrcccE42zy8Vdq1XNmfixsID7CROirAZ3H5\nSkVuBZ5uy/IlL0rGZtcK6yIiIjL8KCEjIiIiIiJWRcGChbBgIebJE7B1C2zdcu6SZp0dkLcV8rZi\nRkV1LWkW3393s1flV1G+vpy6g3VMuXVKv73OYNfpNvljUQNjI/xYmhLq63CGhpRU+PEzmHlbrCXN\namrgg3XwwTrMcYnw99+EUN9UH90wKYT6Ng8bD7cC4PLAC9udPDE/irERI+dSva2hjerCau9+cHQw\no6eP9mFEIiIiIv1n5HzKExERERGRizMqFpZ9AW75POb+MtiSCzsKMNraegwz6urgvXfgvXcwx0+w\nKg8ysyG873qddDR1UJFbATDilzA6WNdJcU07RTXthAfayEkK9nVIQ0NkJHzuJrhxKWb5IWs+F+SD\nxwMh3RJbu3dBaioEDMySeIZh8MVpYTS0eyiuaQegzWXyy/x6vpETRXTwyOifUrGpAtNteveTr04e\ncZVwIiIiMnIoISMiIiIiIr0zDKvCICUV7r4Hs7AQtuZCyV4M0+w5tPwQlB/CfGUNTJtmVc7MnAUB\nV7b8UvmGcjydHmJSY4gcH3lF5xrq0kYFcNf0cF7e3cjLuxoJ9TeYPWZk9hy5LIYBEyZa250roK7W\nOgZw/BjGf/8nZlAQpGdY8zcltd+X5LMZBg/MjuB/8uo5WNcJgLPdwy/z63lifhShAcN72a7WulZq\nimu8+6GxocROjfVhRCIiIiL9SwkZERERERH5bAGBVgXM3HlQW4uZv9XqN3Ospscww+OGXTth107M\noODTX27Pu6wvt5uONVFTVINhM5hwzYS+fDdD1sLkYBo7PLyzr5k/FDUQGmAjJWbk9Ry5Yv7+ENdt\nWazmZswJEzEOHYTczZC7GTM6GrLnwbz5ED+m30IJsBt8NcvBz3PrqGlyA1DT5ObXBU4emxtJgH34\nVosc+ugQdMvtJi9OVn8kERERGdaG9+02IiIiIiLS96KjYenN8IN/xvz2dzEXX4PZSx8Oo60VI3cT\nxs+fhe99B/7yKhw9elEvYZomBz84CEBCRgIhMSF9+haGsqWTQ1iUHIzLA78ucFLp7PR1SEPfhInw\n7e9i/uBfMG9ehhkdg1Fbi/HeO/D0P0N7e7++fIi/jUezI4kM6rpEP1jXyR8KnXjOqkYbLmoP1nKy\n9KR3PzwhnJiUGB9GJCIiItL/VCEjIiIiIiKXp/sSUHetwPx0N2zdCjuLMFyunkPramHtu7D2Xcyk\nJKvyIGsuOBy9nrruUB31h+vxC/IjaWHSQLybIeNM75GmDg+F1e28f6CFh9J7/znKJYqPhy/cBsu+\nYPVPytsCNjsEnu4r43LB738Ds+fAzNldx/tAdLCdR7Mi+Y8tdbS6rCTMzmMdvLK7ibumhw2ryhGP\n28OB9w/0ODbphknD6j2KiIiI9EYJGRERERERuXJ2P+sL6pmzobUFc8d22LoFo2zfOUONigqoqMB8\n9RWYehVkZcPsdAjualIfmRzJ5M9NxrAb+Af7D+Q7GRJshsH9syJICG/huomqHupzNhukpllbd7t3\nYWwvgO0FmIGBMGu2lVycehXY7Vf8sgkRfjyS6eC5/HpcHuvYpopWgvwNvpAWOmwSFlX5VbTWtnr3\nR88aTcTYCB9GJCIiIjIwlJAREREREZG+FRwCOYsgZxHmqVOwLc9KztRU9xhmmCbs+RT2fIr50p9g\n5iyramb6DGz+/iRkJPjoDQwN/naDpSmh3n23x8TlMQn008rU/WbyZMy774W8rVa/mfw8yM/DDA+H\njCy4406rP80VSIkJ4P5ZEbxY2OBtr/LBgRb8bHBL6rlLAw417Y3tHN502LtvD7QzYYl6RImIiMjI\noISMiIiIiIj0n5gYq9/M527CrDgMeVthWx5GY2OPYYbLBTu2w47tmEHBkJ5uJWfSpljVCnJBHW6T\n3+9w0u4yeTQ7Ev9h3Ajep8LCYcm1sORazBPHvQkZ41gNZsle8Ot2iX3qlDX/L0N6QhBNHR5e+bTJ\ne+y9shbsRs8k3FB08MODeDo93v3xV48nIDTAhxGJiIiIDBwlZEREREREpP8ZBiSPt7Y77sTcu8eq\nnCkqxDirYbrR1gq5myF3M2aEAzKzrGXNxk+wziPnaOrwUOF00dDu4Q9FDTyUHoFNP6v+FRsHt3we\nbl5mJRubm7vm58kTGP/vHzGTkiF7rjV/HZGXdPqrx4fgNuG1PV1Jmb/ua8ZugxsmDc2kTP3hek7s\nOeHdD40LVSWciIiIjChKyIiIiIiIyMCy22H6DGvraMfcWQz5+fDpLgy3u8dQo8EJH30AH32AGRtr\nVc1kZcMYfYnbXXSwnceyrYbwxTXtrNzZyL0zw5WUGQhnko3dHa3CDArCqDgMFYetfkmpaZCZDXPS\nIezilh67ZkIIbo/JGyXN3mNvljRjNwyuHWK9gzxuD/vf39/j2OQbJ2PYNEdFRERk5FBCRs6ro6OD\nlStXsnbtWiorKwFISkrirrvu4tZbb/VxdCIiIiIyLAQEWl9SZ2ZTsmo7tl2FjDOqCKmttHrMdGOc\nOAHvvA3vvI05LtGqnMnIgthYHwU/uCRE+PHVLKshfF5lG4CSMr4yczb89GeYu3Zay5p9ugujtARK\nS6zkzDM/u+heM9dPCsXtgbf3dSVl/rK3CT+bVUUzVFRvr6blRIt3P25aHI4khw8jEhERERl4SshI\nrzo7O3n88ccpLCwkNTWV5cuX097ezvvvv8/TTz9NXFwc8+fPH7B4PvzwQ3bs2MG+ffvYv38/zc3N\nLF26lB/96EcDFsNAG4nvWUREREau+vJ6jh9qxhY1heSv3Q+uFszt26z+HBWHzxlvVB6ByiPw+muY\nyeOtxExmJkRfXs+O4WJSdABfy4rk+W1WUsYE7lNSxjcCAiAj09paWjCLCqEgH0JCu5IxLhf88fcw\naw7MmGElKHvxuZRQ3KbJu2VdCY1XPm3CbjPISQoeiHdzRTqaOijfWO7dtwfYmXDtBN8FJCIiIuIj\nSshIr1avXk1hYSHLly/nO9/5DsbpC7g5c+bw1FNPUVxcPKAJmd/97neUlZUREhJCXFwczc3Nn/2k\nIW4kvmcREREZmUyPyYEPDwCQOD+RwPBAIBCuvxGuvxGzpsbqN7MtH+P4sXOebxwuh8Pl8NormBMn\nWcmZjEyIvLSeHcNFSkxXUqap3YPbAza7r6Ma4UJCYEGOtXm6Gtqzdw9Gfh7k52EGBlqVNVlZMHXa\nORU0N6WE4vLAugNdSZnVuxqxGTA/cXAnZQ59fAh3e9dyhMmLkk//nouIiIiMLErISK9ee+01goKC\neOKJJ7zJGAC73bqSczgGtrT87//+74mLiyMxMZEdO3bw6KOPDujr+8JIfM8iIiIyMh3bfYzmY80E\nhAcwbu64cwfEx8Pnb4VlX7Cap2/Lg+0FGHV15ww1Dh6Agwcw//dlmJxiJWbSMyBiZC2NlBITwBPz\no4gP88PfruqYQcVm6/p7cjLmnSugYBvGoYOnE495mCEhMDsd7r7HWzVjGAafTwvF7TH56FCr9xSr\ndjbiZxhkjQsa6HdyUZyVTo7t6kqkhsSEkJCpHlAiIiIyMikhI+eorq6mqqqKRYsWERzc806rDz/8\nEIDMzMwBjam/X8/lcvHKK6/w9ttvU1FRgcPh4Nprr+Xxxx/H7XZz2223kZWVxT//8z/3axzdDfTP\nWERERMRXQmNDiRgXwZj0Mdj9L1DKcaZ5evJ4uP1OzIMHYPs22L4do8HZc6hpQtk+KNuH+fKq0w3V\ns043VA/v1/czWCQ6uiosOt0mGw+3smRCsJYvG0wiHHDdDXDdDZgnTljzeVs+RlUl5oH94B/QNfbg\nAYzk8dw2NQy3CevLraSMCfypuAGbDSJ88y7Oy/SYHFh7oMexSTdOwma3necZIiIiIsObEjIX699/\n6usILuyb/9Bnp9q7dy8A06ZN8x4zTZOXX36Zjz76iOzsbFJSUvrs9XzN6XTy9a9/nT179rBw4ULm\nzZvHpk2bWL16NXFxcRiGgdPp5Ctf+YqvQxUREREZlsLHhDPr/lmX9iSbzaqAmZwCd96Nub8MCrZB\n4XaMxsYeQw3ThDMN1Ve9BGlTrKqZWXMgYrB9hd0//lTcQGF1O5UNnXxpVoSSMoNRbCwsvRmW3ox5\n9Cg0NlhJSIBTpzB++mPMsDCM2encMScDd+I4Nh1pB6ykzB+LGlga78fkcJfv3sNZqguraTrW5N0f\nNWUUUROifBiRiIiIiG8pIXORjLJ9vg7hgsw+PFdJSQkAU6dOpaCggLVr11JUVMThw4dJSUnhhz/8\n4QWfv2rVKhrPugi+kNTUVJYsWXIlIV+R733ve+zZs4dvfvObrFixAoD777+fZcuWkZuby6FDh1i2\nbBmJiYnnPcdQe88iIiIig4HH7fHeKW9cSYLAZrMqYFLTYMU9mPtKreRM0Q6Ms/rwGR4P7N0De/dg\nrvwzpKRCegZ2RxTusLAreTuD2uLxwew53sG2qnZMs4H7ZyspM6glJADdlvWqq8UcHY9xrAY2bcDY\ntIE7Q8NwL7ifLUHWdYrHhPeqQ7jZaGEw3D7X2dJJ+fpy777N38bE6yb6LiARERGRQUAJGTnHmQqZ\nqVOn8swzz7Bu3TrvY+PHj8fTvQllL1avXk11dfVFv94tt9zis+REfn4++fn5zJ49m7vuust7PDIy\nkjFjxlBQUEBAQAAPP/zwBc8zlN6ziIiIyGCx76/7cHe4mXT9JIIi+6j/hd0OU6+ytnvvw9y710rO\nFBditLb2GGqYJuwrhX2lTARax46DBQutZc2io/smnkFiUnQAf5ft4Ll8JwVH24EGvjQrArtNSZkh\nYXIK/OCfMY9WwfYC2FGAvaaGe9Y9j3vOF8kfNwcADwbvHA1h3Nh2psUF+jTkQ58cwtXWVa2TtCCJ\nIMfg7HMjIiIiMlCUkLlIZkqqr0MYMCUlJYwZM4bIyEh+9KMf8eSTT3Lw4EHWrFnDunXrOHToECtX\nrjzv8994440BjPbKvPPOOwDcc88959yVGRBgrde8fPlyRo8efcHzDKX3LCIiIjIYNB5t5Pju4xh2\no//umrf7wfQZ1tbZibn3U9ixHYqLzk3OACFVlfDKanhlNeaEidayZnMyYNSo/olvgE08Kylj0sD9\nSsoMHYYBY8dZ2+dvxTx6FGNHAfe11uFJCDydaLOSMr/Jr+Ur8Y1MnT0R/Ab+sr/xaCM1RTXe/aCo\nIMbNHTfgcYiIiIgMNkrIXKw+7NEymFVXV+N0OsnIyADAbrcTGRlJeno66enp3HfffZSVlVFVVcXY\nsWN9HO2VKywsxM/Pj/nz5/f6eFBQEA8++ODABiUiIiIyzHncHsrWlgEwNmsswVHB/f+i/v4wc7a1\nuVyYJXtPJ2cKz1nWDMA4dBAOHYRXX8FMHm8lZ2anw/9n777D4yrPhP9/zxTNaDTSqPdiyZJGDwxl\n6wAAIABJREFUltwrxjbFGEIxGBNCAgmbsll2k1Cyyab8su9LINm87L5pu5uQcmWTZa83wYAJEAIE\n42BjMAaMe5E0Vu9do1EZaer5/XFGGsmSbRlb1ffnup5rNOc855nn2MfyzLnnfu4LfFFnttOCMrH8\n8sMeDjd7yLYNsjnPMtPTEhdLUSAjAzIy0AGfCaoEVK1OEIBf0fOb5igeeO0/KcqI1rK+ShaDaeqz\nZlRVpfKNyjHb8m/KR2fQTflrCyGEEELMdhKQEWOMrh8zkZhQ0VOL5dwf2uZKPZWhoSFaW1vJzMzE\nbB6bOt/U1ERdXR1LliwhISHhgmPNlXMWQgghhJgNGt5roL+lH1OMiewN2dM/AcOozJnAZ1DPnMG1\ndw/WijMYBt3juit1tVBXCy/+ETUtHZav0Fp2Trjo+hySF2/ky2tjeavWzaacaQiGiSmn1yl8dnkM\nrt5mqgeMAPj0Rn614lN89shOVn74S1SjER77F5jE55tL0Xq8lb7m8GejhIIE4hfOryUAhRBCCCE+\nKgnIiDGG68cUFRWN2+dyuTh+/Dj5+fnExcWdc4y5Uk/F4/GgquqEBWR/+tOf4vV6MUwyvX+unLMQ\nQgghxEzrb+unfn89AIW3FWIwzfBHEr0BFhXTbjDSfsONFKBqmTNHj6D0usZ1V1qaoaUZ/vIqalw8\nLF8Oy1ZAQaFWv2aOyI0zkhtnG3nuC6joFGT5sjlMr1O4Jd3Nq80WakNBmYDOwH+v/hR9zdlcU//h\n2NpIzz0DqWmwbDnYbOcY9eL4Bn3U7q0dea7oFfK2TNGShEIIIYQQc5AEZMQYwxkyu3fvZu3atSPB\nCp/PxxNPPIHf7+e+++477xizpZ7K448/zquvvsqjjz7K1q1bx+2PiYnBYrHQ2NhIRUUFBQUFADz/\n/PO8/fbbAJPOepkt5yyEEEIIMZsF/UEcLztQgyrpq9KJyz33l3xmhE4HBQVgL4JP3otaXRUKzhxG\ncTrHdVec3bB3D+zdgxoVBUuWaZkzxcUQMbMF1S+GL6Dym8MuzAYty0KCMnOXXoFb09y8N5A8snyZ\nisLO9A30bdzMrWj1knA6Ufb8Vdu/4/ewMD+U+bXykmom1b1dh2/QN/I8a33W9CxJKIQQQggxR0hA\nRowxHJB5+eWXOXPmDKtXr8btdvPBBx/Q1NTE1q1bJwxuTLW33nqLffv2AdDV1QXAyZMnefzxxwGI\njY3lkUceGXNMMBgEtDo4E1EUhdtuu42dO3fy4IMPcsMNN9DV1cVbb73FNddcw8DAAIcPH+aJJ55g\n27ZtFBcXT9XpTeijnLMQQgghxKymQHxBPMFgkNzrc2d6Nuen00F+gdbuvge1rhaOHYVjR1HaWsd1\nVwYG4P0D8P4BVGMEFJfAihWwZClEWad//hehYyBAjdPHkF8lqPby2eUxGPUSlJmrDDr43IoYrBH9\nvFM3OLL99WoP/f5+PrHYii4yEvVvPgdHj0BZKUplBVRWwPPPoWZlw+e/COnpF/W6/W39NB9pHnlu\nspnIWp91uU5LCCGEEGJekICMGNHa2kpPTw/r1q3DarVy6NAhduzYQVRUFEVFRXzlK19hy5YtMzK3\nM2fO8Oqrr47Z1tTURFNTEwBpaWnjghNVVVVERUWxYcOGc4778MMPExERwe7du3nxxReJiYnh3nvv\n5cEHH8ThcPDYY4/x4osvsnnz5st/UhfwUc5ZCCGEEGI20+l15F6XS87GnLlV4Fung9w8rW3/OGpr\nixacOXpEqy9zFsXnheNH4fhRVJ1OW85s6TJYuhySkqZ//heQHmPgK2tjefJgD8dbPfziYA9/t9qG\nxTiH/o7EGDpF4RMlVqwROv5SMTCyfX/9IP3eIH+zPAbj1Rvh6o0wNIR66iQcOwInT0BzE8TFhgf7\n4H2IiYHCQm2JvwmoqkrlrkpQw9sWblmI3jh3lvETQgghhJgOiqqqF+41x7hcrvl3UpdZRUUFwMgy\nXQB79+7lW9/6Fg899BD333//TE3tsujr6+PGG2/kvvvu4+GHH57p6YgpMtF1LMRcI9exmA/kOhYX\nEvAFCPqCGC3GmZ7KOX3k69jZDcePaQGaMw6UUJb2uajp6drSZsuWw4JcLdgzSzT2+vjVQRcuT5BU\nq54vrY0lPlJuqM8lE13H79S52Xmqf3SshMIEI19cZSPy7KCbzwcN9ZC3UHseDMI3v4bS348aGQkl\nS7Rrt2QxWCwjh7WdasPxsmPkeVxeHIs/uXjCep1CXIi8rxDzgVzHYj6Q63jybDbbpN/0SIaMGDG8\nXJndbp/hmVy6Y8eOYTAYLljvRgghhBBCTL3at2rpKO3Avs1O3IJZVjfmUsXFw3WbtTbQj3oylGlw\n+rSWKXMWpbkZmpth119Qo6O1Jc2WLINFxWA2z8AJhGXGGPnahjh+ebCH1v4AP37XydeujiPBIkGZ\nuWxTjgVrhI7/OdpLIBSVOdPl42fv9/APa2OJMY0KyhiN4WAMgNcLG69BPXFMu3YPHYRDB1F1ei1j\n5o478SRlUr27euQQRaew8MaFEowRQgghhJiABGTEiPkUkNm0aRP79++f6WkIIYQQQlzxemp7aPqw\nCUWnYDDN848fUVa4ar3WvB7U0lItc+bUCZT+/nHdlb4+OPAuHHgX1WAAe5GWfbBkqRbomQHxkXr+\n8eo4fnPIhdmgEGuePRk84qNbkWbGYtTxm0MuPKGoTEOvn38/4OTL62JJPFfQzWyGO++CO+9C7WjX\nssGOH4PKCpTyMoLb7qL85XJ8g76RQzLXZmBJsEw8nhBCCCHEFW6efyISF6O8vJy0tDRsNttMT0UI\nIYQQQswDfo8fx6vaMkbZG7KJToue4RlNowgTLF+htWAQtaYaThyDEydQWprHdVf8fjh9SmuAmp2t\nZc4sWQrZOdO6tJnFqOPLa2NRAb1Oy3IIBNWRn8XcZE+M4OH1sfzyYA/9Xi0o0+EO8NMDTr68NpaM\nmAvcHkhKhi03aa2/H7XsNA1NOlx1rpEuUV4n2bv+DE0lsHjprMj8EkIIIYSYTSQgI0bs2rVrpqcg\nhBBCCCHmkeo3q/G4PFhTrWRdnTXT05k5Oh0szNfa9ru1TIMTx7VWUYESDIw7RKmvh/p6ePXP2tJm\nJYth8RJYVAJRUVM+ZaM+HHzxBVR+/kEPxUkR3JRvkaWo5rBsm5F/XB/Hkwd76B7U6h31eoL8x3tO\nHlhtIz8hYnIDWa24Uouo/f3xkU06JUiR7xgGlxPe3Q/v7tcyvwoK4YYbtetXCCGEEOIKJwEZIYQQ\nQgghxGXXXdVN67FWFL2C/XY7Or0sfTUiKVm7QX3DjeB2o54+pQVnTp9EcbvHdVf6+uD99+D991B1\nOq3Gx+IlWsvIhCkOkJzp8lLj9FHt9OEcCvCJkmjJlpnDkq0Gvna1FpRp6dOCgYN+lScP9vD5FTaW\nppouOIZv0Ef5n8pBDW9beLOdqOXXojY1wskTWqupRikrRV13VbhjUxP090F+PujlloQQQgghrizy\n7kcIIYQQQghxWQX9Qc68dgaABdcuICpp6jM65iyLBdas1VrAj1pZOZI9o3S0j+uuBINQWaG1l15A\njY0LB2eKFk3J8lAlySb+dpWN/znq4t36IXqGgnx+hQ2TQYIyc5XNrOer6+P49Ycuqp1a/Rd/EP7r\nsIt7l0azPivynMeqqkrFaxV4ej0j2xKLEkldnqoFBzOztHbLbdDfpwUcSxaHB3hrD8o7+1DNkVBc\nAkuWQMkSiImZsvMVQgghhJgtJCAjhBBCCCGEuKx0Bh32rXZaj7WSuTZzpqczd+gNYC/S2t33oLa3\nwamTWqs4o9WZOYvS44T9b8P+t1H1em15qMVLtBvgqWmXLXtmWaqJB9fF8etDPZxu9/Kf7zv5hzWx\nRJsk82mushh1fGVdLP99xMWpdi+gJbw8faIP11CQj51jebqWoy10OjpHnptsJgpvLZx4KTtrNKxb\nP3ZbYiJqahpKawscOQRHDqEqilYracNGuOa6y3iWQgghhBCziwRkhBBCCCGEEJddXG4ccblxMz2N\nuUtRICVVazfcCENDqI7yUIDmBIrTOf6QQADKy7T2/HOocfFQXAzFi7XsmUusPZMXb+RrV8fxy4M9\n1Lv8/ORAN/+4Po4Ys/6SxhUzJ0Kv8MVVNnac7OODxqGR7a+eGaCp189nlkVjMoSDbgPtA1T/tTo8\ngAKLti3CYL6IWwsfuwU+dgtqZwecPAknj8MZB0pdLWpRUbhfdzeUlWpZNHHyu0QIIYQQ88NlCcjY\n7fZ44LvAnUAa0Am8Bvxvh8PRMonjN4aOXwuYgQbgj8D3HQ5H/+WYoxBCCCGEEGJqeQe8uLvcxGbH\nzvRU5h+zGZYt15qqojY3w6kTWoCmqlJbyuwsirM7XFxdUWBBrnZzu2Qx5CwA/cUHUlJC9Ud+dchF\nokWPVTJk5jy9TuHTS6OJjtDx1+pwDaNjrR7a+v383WobSVEGAr4AZS+VEfSHr7UF1y4gJvMjLjWW\nmATXb9aa14NaUQEJieH9x4+iPLsDADUjQwssliyGhflgNH601xRCCCGEmGGXHJCx2+2RwFtAEfBz\n4BBQAPwTsNlut69yOBzjv74VPv7TwO8BB1pQphfYCnwT2GS32zc6HI7xny6EEEIIIYQQs4aqqlT8\npYKuM10U3FJA2oq0mZ7S/KUokJGhtY/dAm43almpFqA5fQqlt3f8IaoKNdVae/XPqBYL2BeFAjQl\nEJ8w6ZePMet55KpYdIqCLrRMVSCootdJTZm5SlEUti2yEhep44+l/QRVbXtLf4Af7nfyN8tjiDhc\nh7szHLCJXRBL1vqsyzOBCNPYOjMAiUmoS5eDowylqQmammD3LlSTCZYsgy8+cHleWwghhBBiGl2O\nDJmvAkuArzgcjl8Mb7Tb7ceBF4H/DXxtogPtdrsJ+CVaRsw6h8PhCu36nd1ufxEt4+ZmtGwbIYQQ\nQgghxCzVfrqdrjNd6CP0xOXJ8kLTymKBVau1FgyiNjZA6Wk4fQqqqlCCgXGHKG43HD2sNUBNTdUy\nEBYVa3VozObzvuToZaw8fpWff+BkSYqJLQstI0EaMfdcs8BCeoyB3x120efVojKDfpVX/9rA+rrW\nkX5GixH7HfaJ68ZcLkuWas3vR62q1K7n0ydRmppQPeHl1fD54PnnQvWX7BBlnbo5CSGEEEJcossR\nkPkbYAD47Vnb/wQ0Ap+x2+1fdzgc6gTHpgIvAB+MCsYMew0tILMUCcgIIYQQQggxa3l6PVTuqgRg\n4Y0LMdvOfzNfTCGdTiuOnp0DN98arj1TehpKT6N0tE94mNLaCq2tsOevqDo95OVpdWeKFkFuLujP\n/dHxdLuH2h4/tT1+apw+7l8eg8UoS5nNVfnxEXxzUzy/PeyitsePxetlVUPrmD722+2YrKbpmZDB\nEAq2FMFdd6M6nTA0GN5fVYmyby/s26stzZedowUWFxVD3kJZ3kwIIYQQs4qiqhPFSSbHbrfHAC7g\nHYfDcc0E+/8I3AUsdDgc1Wfvv8DY/wT8kLMybybD5XJNeFIVFRUXM4wQQgghhBDiAlRVxfmOE0+b\nB1OaibgNcVP7rXlxSYw9PVhqa4iqrSGyoQ6913vBY4LGCNxZWbizc3BnL8CbmKgtmzZKTb+BN1oj\n8QR1xBiC3JLuJsU8PjNHzB3+IOxrNZNytIUEdzgjpS4llsKrooiPmB0rixtcLmLKTmOpqyWyuWlM\nPaWgwUjN3z5AwCpZM0IIIYS4dAUFBRNut9lsk/4AdKkZMjmhx8Zz7K8PPeYBkw7I2O32COALgBt4\n6SPPTgghhBBCCDGlBmsG8bR5UIwKtlU2CcbMcr7YWFzLV+BavgICASJbmkcCNKa2Vib629P5vFir\nq7BWVwHgt1hCwZkc3DkL8MfYyLX6uTenn9eaLbR7DOxsiOLapCEW27xnx27EHGHQwZqudgZGBWO6\nI818mJzC0Xq4KdXNQqt/Bmeo8dtsdF91Nd1XXY3i9RLZ1EBUXS2WuloUn49AVNRI34znnyVgseDO\nWYA7ewH+6OgZnLkQQgghrkSXGpAZfvfiPsf+gbP6XZDdbtcBvwEWAV93OBzNH316Y50rgnUlGs4W\nkj8TMZfJdSzmA7mOxXwg1/GVSw2qHH5Lq0Fiv9VOcknyDM/oo7tir+OiovDP/X2oDgeUl0JZGUpn\nx4SHGNxuYsrLiCkvA0BNSoKiYrDbWboqiRcadeyvH2RveyTFuWkUJUZMx5kILu917Kxx0lLeMvLc\nr9Pxfk46qk7BF4RXm6O4Od/CLYVRs6tuUElJ+GePhwJTaGm1XhdKXS0AMWWlAKgpKVAYWg5t0SKp\nPzNLXLG/j8W8ItexmA/kOp4al6OGzGVjt9sjgafRasc86XA4fjLDUxJCCCGEEEKcg6JTWHrvUlqP\nt5JUnDTT0xGXyhoNq1ZrDVA7O6C8DMrLwVGG0tc34WFKRwd07IN39hEBfDI1jesz8qlIyMVuXAZI\nQGau8Q54cbzsGLMt72P5JA+aqHH6Rra9XummodfP38zWukGmUXVuomNQH30cysq0oOMZB0pbG7S1\nwTv7UL/0ICxbrvXt6gKzGUZl1wghhBBCXA6XGpDpDT2e612K9ax+52S325OAl4GrgO87HI5HL3Fu\nQgghhBBCiCkQDATR6bWbrxHWCLI3ZM/wjMSUSEyCjUmw8RoIBlGbm7QATVkpVFageDwTHqa0tpDS\n2kIK78AboKalM5hbQGv6QnLXLoaYmGk+EXExVFXF8YoD70C4vlDK0hQWrEjl4aDKH0/3s79+cGTf\n6XYvP3rXyd+tspEWPau+8zmWokB6htZu2AIBP2pdHZxxgKMcCgrDfV/8Ixz+EDKztOwZexHkF0Bk\n5MzNXwghhBDzwqW+W6oBVCDzHPuHa8xUnG8Qu92eArwD5AKfdzgcT13ivMRl4PV6efrpp9m1axeN\njVqZoOzsbO655x62bds2w7MTQgghhBAzIRgIcvq500SlRJF7fa7UjLlS6HTazenMLNhyE/j9qDXV\noQyaMqipQQkGJjxUaWnG0tJMHvvgeS1AQ6E93KSOx6zSdLAJZ5Vz5HlkfCT5N+UDYNApfHJJNNmx\nBp471Yc/qPXpGAjwo3edfGZZNCvSzDMx7YunN0DeQq3dfOvYfcEg6PUoDfXQUA9/fQNVp4OcBbDp\nWrh6w4xMWQghhBBz3yUFZBwOx4Ddbj8BrLTb7WaHwzFS7c9ut+uBq4EGh8NRf64x7HZ7DPA6kA3c\n4XA4/nIpcxKXh8/n46GHHuLo0aMUFhayfft2PB4Pb7zxBj/4wQ9ITk5m/fr10zafn/3sZ5SVlVFf\nX4/L5cJkMpGamsq1117LJz7xCWJjY6dtLvNBT08Pb731Fu+++y5VVVV0dHRgMBjIz89n69at3H77\n7eh0s3DJASGEEELMKFVVqdxVibPGSX9bPxlrMjBFmy58oJh/DAYto6CgEG7fBh4PalWllm1wxgG1\ntecN0NDSDPv2AqEATX6B1goKID5hOs9EjNLX0kfN3pqR54peYdH2Regj9GP6rc+KJC3awG8Pu+gZ\n0qIy3oDK7470cnWWl+3FVsyGOfx54oF/AK8HtToUdDzjgNoalJpq1KXLwv0a6uH997R/B/kFYJUa\nNEIIIYQ4v8uRT/xb4D+Bvwf+Y9T2zwDJwHeHN9jt9iLA43A4akb1+w9gOXCXBGNmj2eeeYajR4+y\nfft2vv3tb49883HFihU8+uijHD9+fFoDMjt27KCoqIh169YRFxfH4OAgp06d4je/+Q0vvfQSv/vd\n70hJSZm2+cx1b775Jv/2b/9GYmIiq1atIjU1le7ubvbu3csPfvAD3nvvPZ544gn5xqsQQgghxmh4\nr4HWY63oDDpKPlEiwRgRZjJBcYnWAIaGxgZo6mpRgsEJDx0J0LyzDwA1Pj4UoAnd5E5L05abElPK\n5/ZR9lIZalAd2Za3OQ9rysRBhgWxRr6xMZ7/PuKisjtcV+ZAwxDlnV4+syyGgoQ5XD8owgRFi7QG\n2jVdWQGjP3eePoXy5m54czcAanpGKFBZoD3a5IuDQgghhBjrcgRkfgV8GviR3W7PAQ4BJcDXgJPA\nj0b1LQMcQBGA3W5fCnwWKAX0drv97gnG73A4HPsuwzzFRXjhhRcwm8189atfHXNTXq/Xvhlls9mm\ndT579+7FZBr/gf8Xv/gFTz31FE899RTf+ta3pnVOc1l2djY//vGP2bBhw5hMmC996Ut8/vOfZ8+e\nPezdu5fNmzfP4CyFEEIIMZu0n26n9q1aAIruKCImQ+qAiPMwm6FksdZgJEDjLSvHebyUpM5G9Oo5\nAjTd3XDwA60BapQV8vPDWTTZ2dpyU+Ky8Xv8nHz2JEPOkUUviC+IJ311+nmPizHpeHBdLC+V9fNW\nbbiuTPdgkJ+938N1uZFstVuJ0M+DgJrZDIuXjN1WXILq9ULFGaipRmluguYm2LcX1WaDf/1ROJjY\n0wOysoMQQghxxbvkd7EOh8Nnt9tvAh4DPg48CLQD/wV81+FwuM9z+EpAAYqBnefosw+47lLnKSav\npaWFpqYmNm3aRORZRQvffPNNAFavXj2tc5ooGAOwZcsWnnrqKRoaGi5pfL/fz86dO3nllVeor6/H\nZrOxefNmHnroIQKBAHfeeSdr1qzh+9///iW9zmyxZs2aCbcnJiZy11138ctf/pLDhw9LQEYIIYQQ\nALjqXThecQCQtyWPxKLEGZ6RmHNCAZqIksUkfVxl9+luqj8s43ZdI5ltNVoGTeAcS5wN9MPxY1oD\n1IgIre5HfoH2mJsnxdYvQcAX4NRzp+hv6R/ZFhEdgf02+6Qy5vU6hY+XRLMoKYKnT/Th8miBNhXY\nWzNIabuX+5fHkBNrnKpTmDnZOVoD8PlQ62q1jLDKCoiLCwdj3G74/76hBWQW5odbRibo9eccXggh\nhBDzz2X5WpHD4ehFy4j52gX6KWc9fwp46nLMYar9x3vOC3eaQY+sj7tsY5WVlQFQUlIysk1VVZ59\n9ln27NnD2rVrKSgouGyvdyneeecdAPLz8z/yGC6Xi0ceeYTS0lI2btzIVVddxf79+3nmmWdITk5G\nURRcLhcPPPDA5Zr2rGYwaL8W9PLBQAghhBBo7wOr91ajBlTSV6WTsSZjpqck5jidovCxxQk0ZV9F\nerReu2nt9dJ6uoLk5mqUqkqoqkTxeCY8XvF6tboe5drnFlVRID1DC84sDBVpT0qWZc4mIegPUvp8\nKb0NvSPbjJFGlt67FKPl4gIoxckmvnOtkZ2n+jjUHP67axsI8JMDTm5caOHmgigMunn692I0hrO4\nztbeBpGRKE4nHPpQa4BqMmkBxU99GlJTp3nCQgghhJgJkuc9SaPXxJ3vysvLAVi0aBGHDh1i165d\nHDt2jLq6OgoKCnj88cfPe/yOHTvo6+ub9OsVFhZy3XXXTarv73//e9xuN/39/ZSVlXH8+HHy8/P5\n7Gc/O+nXO9s///M/U1payte//nU++clPAnD//fezdetWDhw4QE1NDVu3biUrK+ucY0zlOU8nv9/P\na6+9BjCtNYKEEEIIMXspisLiTyym6cMmcjblSI05cdlkxIQ/jrb7dPxbaxIZsWnc9/lbSLMoqI0N\nWqZBqCnneL+tqCo0NWptuA5NdLQWmBluOQsgYg7XM5kCalCl7KUynDXhLx/qTXqW3LsES6LlI41p\nMer47Aoby1KHePZUH/1erR5NUIVdlW5Oh7Jl0qOvsFsRC3LhR/+O2toCoYAjVZUoHR1QXoYaFRXu\n+/JLMDAQzqKJj5fgohBCCDGPXGHvgsRkDGfILFq0iB/+8Ifs3r17ZN+CBQsInqMY57BnnnmGlpaW\nSb/ebbfddlEBme7u7pHn69ev59FHHyUu7qNlCB08eJCDBw+yfPly7rnnnpHtsbGxpKWlcejQISIi\nIvjiF7943nGm8pyn05NPPklVVRUbNmyQgIwQQghxhQsGgig6BUVRMFqMLLh2wUxPScxjvZ4gFqOO\n2h4//3d/NzcXRLElLwd9zgK44UZQVdS2Nqg8Ew7QdHaeczylr2/sMmc6vVZ7ZiRIkwdxV+6NblVV\ncbzioOtM18g2nVHH4k8uxppqveTxl6eZyYuP4JmTvZxs845sb+z188P93dxWGMXmPAu6K+nPX6fT\nMrnSM2DTtQCoLhc01EN0dLjfwfe1a3vfXq1PbFz4mi0u0Y4XQgghxJwlAZlJyo+fh+vdnkN5eTlp\naWnExsbyve99j2984xtUV1fz3HPPsXv3bmpqanj66afPefyf/vSnKZvb66+/DkBXVxcnTpzgySef\n5P777+cnP/kJRUVFFz3ecDbIvffeO+7bnhGhb9Bt376dlJSU844zlecMsG3btosK+Nx8881873vf\nu6jXePbZZ/nDH/7AggULeOyxxy5yhkIIIYSYT1RVpfylciKsESy8cSHKfF1iSMwa+fERfOfaeF4q\n6+e9hiFecQxwrMXDp5dGk2kzaoGT1FStbbwGANXVA9VVUFWlPdbXofj9E46vBANQW6O1PX/Vjo+x\naZkLubnaslE5ORD50TJD5hJVVal8vZL2U+0j2xS9QsndJdgybZftdWJMOv5ulY2DTUM8f7qfIb+W\nLeMPwp/KBzjR5uX+ZdEkRV3BtyVsNrAtCT9XVfjsF1BHZ9H0OOHIIThyCPX2beGATHsb1NRogZrE\npCs2uCiEEELMNVfwO5+LczlrtMxmLS0tuFwuVq1aBWh1RGJjY1m5ciUrV67k05/+NBUVFTQ1NZGR\nMXPfzElISOD666+nqKiIu+++m8cee4xnnnnmosc5evQoBoPhnNkgZrOZz33uc5c420uXkZExEiCa\njMTEiyu0+9xzz/HjH/+Y3NxcnnzySWy2y/dBTAghhBBzT82eGjodnehNejLWZhAZJwXTxdSzGHXc\ntzSGlelmdpzo1bIp3nXyqSXRrM+a4Bq0xcKKVVoDrah6Q712IzsUqFF6Xed8PaXXBSf+XU6HAAAg\nAElEQVSOaY1QLZqUVC1AsyAUpMnIAP38+disqio1e2poOTrqy14KFG8vJi738n/mVRSFdZmRFCZE\n8IcTvTg6w0uB1zh9/Os73WwrsrIxJ/LKypY5F0WBgkKtAQSDqK2tUFOttUXF4b7Hj6H8cScAqtWq\nXa/DbcGCKyK4KIQQQsxF8+edpbgsRtePmUhMTAwAFsu539xNZz2VtLQ0cnNzOXPmDD09PcTGxk76\n2KGhIVpbW8nMzMRsNo/Z19TURF1dHUuWLCEhIeGCY031Of/iF7+YdN+LtWPHDn7605+ycOFCnnzy\nSeLj46fstYQQQggx+zUfbqbxg0YUnULxXcUSjBHTrigxgu9cE8+fHQMcqB8kN26SqxUYjeElyUBb\n5qyrKxScqYSaKmhsRDnHEsyKqkJri9beO6ANYTRCVnboRncoUJOQOGezEerfrafxg8Yx24ruKCKh\n8MKfeS5FXKSeL6+NZX/dIH8q78cb0LZ7A7DzdD8n2jx8akkMiRb9lM5jztHpID1daxs2jt2XmIS6\ndDnUVGlL9J08oTVAtdngX38Uvk6bmiAlBQxyC0gIIYSYafK/sRhjuH7MRMt/uVwujh8/Tn5+/nlr\ntkx3PZXO0NrROp3uoo7zeDyoqjphYdqf/vSneL1eDJN8wzpXa8j8z//8D08++SSFhYX8/Oc/v6iA\nlhBCCCHmn67KLirfqASg4NaCKfnGvBCTYTLouLskmhsXWrCZtZv0qqryXsMQqzPMROgnERBRFEhM\n1Nraddq2oSHUutrw8mU1NdqSUOcawufTAjrVVSPb1KgoyM6BnAXhxzlQeL3xYCN1b9eN2VZwawHJ\nJcnT8vo6ReGaBRYWJUXw/473UeMMZ8s4On38YF8Xm3Mt3JRvwWS4uM92V6QVK7WmqqhdnaEsmhrt\ncXR9pKEh+JfHQK+HzCztes1ZoGXRpKZpQR8hhBBCTBsJyIgxhjNkdu/ezdq1a0eCFT6fjyeeeAK/\n389999133jEudz2Vuro6EhISsFrHFpcMBoP86le/oru7m6VLl45k7wx7/PHHefXVV3n00UfZunXr\nuHFjYmKwWCw0NjZSUVFBQUEBAM8//zxvv/02wKSzXqa6hsxU+O1vf8uvf/1rioqK+NnPfibLlAkh\nhBBXuL7WPspeLAMVsjdmk7o0daanJMRIMAbgUJOHHSf7+GuVm3uXRlOQMPklfUeYzWAv0lqI6nSG\nAjShG9p1tSgezzmHUAYGoKxUa8NjWK3h4MxwoCYubtYEaVqOtVD91+ox2/K25JG2PG3a55IUZeCr\n62PZU+3m1TMD+EMJS/4gvFHl5v3GIe4oimJNhlmWMZsMRdFqyCQmwZpQ4FFVw/t7nJCcgtLWGg5E\nhqgmEzz4SHiJNI8HIiJmzXUrhBBCzEcSkBFjDAdkXn75Zc6cOcPq1atxu9188MEHNDU1sXXr1gmD\nG1PpwIED/OIXv2DZsmWkp6djs9no7u7myJEjNDU1kZCQwHe+851xxwVDSxHo9ROnvSuKwm233cbO\nnTt58MEHueGGG+jq6uKtt97immuuYWBggMOHD/PEE0+wbds2iouLJxxnLnrllVf49a9/jV6vZ/ny\n5Tz77LPj+qSnp0/737UQQgghZk7N3hqCviDJi5PJ2ZQz09MRYpwUq560aD0tfQH+8/0eNmSbua3Q\nSrTpEr/hHxentRUrtefBIGpLixagCWXR0NSoLWl2Dkp/P5Se1lqIGh09NosmK3tGgjTtp9upeK1i\nzLacTTlkrs2c1nmMplMUtiyMojjZxB+O91Lv8o/s6/UE+f3xPt6uHeTukujJL1knwkZfY6lp8Pi/\noA66oa4O6mqhthbqalC6u1ETk8J9d/xeW/Zs+LrNytYeE+fuMn1CCCHEbCMBGTGitbWVnp4e1q1b\nh9Vq5dChQ+zYsYOoqCiKior4yle+wpYtW6Z9XmvXrqWxsZFjx47hcDjo7+/HbDaTnZ3NLbfcwic/\n+ckJszuqqqqIiopiw4YN5xz74YcfJiIigt27d/Piiy8SExPDvffey4MPPojD4eCxxx7jxRdfZPPm\nzVN5itOuubkZgEAgwDPPPDNhn5UrV0pARgghhLiCFG8vpuG9BnI25Uy4pKsQMy071sg3N8bzRqWb\nXZUDvFs/xOFmDzcutHBdrmVyy5hNhk4HGRla27BJ2+bxoNaHbmbX10FdnZZxcB5KXx+cOqm1EDXK\nCllZ2o3urGxtCanU1ClbNqrrTBflL5eP2Za5LpPsjdlT8noXKz3awNc3xPFh0xAvlw/Q6wnX96l3\n+fnJASer003cUWQlLlLqy1ySSAsULdJaiNrXB9HR4T6dnVoG2NnBxchIuOZa2H63tmG4DpMsdyaE\nEEJcNAnIiBHD9WPWrl3L/fffP8OzCVu4cCHf+MY3LuqYvr4+Kisrue+++8YtZTaayWTikUce4ZFH\nHhm3r6SkhJ07d170fOeCBx54gAceeGCmpyGEEEKIGdZT10NMZgw6vQ6D2UDu9bkzPSUhzsugU7i1\nMIoVaSZeKuuntMPLnx0DROgVrsu1TN0Lm0zask7DSzsB6uAgNNRrQZpQ5oHS0X7eYZSBfigv09rw\nOMYIyMzUgjNZ2VrAJiMDIkyXNGVnjZPSF0thVGJP2oo0cjfnzqqgq05RWJcZyfJUE29UutlT4x5Z\nxgzgULOH460etiyMYsvCyxh4E2ODMQBf/6a2hF9dDdTXa8HHhnqU3l5U3aiAWE01/MdPwtdsdjZk\n5UB6OkyyDqsQQghxpZL/KcWI4eXK7Hb7DM/k0h07dgyDwXDBejdCCCGEEFciVVVpOthE9ZvVpC5P\npeCWgll1g1aIC0mLNvCltbE4Or3sq3WzITtyZJ9zMDA92RSRkVBo11qI6naHMmhqw5k0nR3nHUbx\neUMF2cM1XlRF0ZaaysrSbnpnZGpBmxjbpJaOcjW6OP38adRAOBqTvDiZ/JvzZ+2/dZNBx+1FVtZn\nR/Knsn6OtYbr+PiC8JeKAd5vGGTbIisr00yz9jzmNEWB+HitrVg1sll19QCj/rzbWlG8Xqiu0tpw\nP70e0jPgH/8JLKEAqder1aURQgghBCABGTHKfArIbNq0if3798/0NIQQQgghZh01qFL5RiUtR1oA\nMMeaZ3hGQnx09sQI7Inhm70D3iBPvN1NTqyRbYuiyIyZ5vojlgmWhRroh4YGLZumoV77ubXl/DVp\nVBVamrV28IPwWFarFpwZbpmZkJY2JpvG2+nl1IFTBH3hNJOEwgTsW+1zIoiRaNHzt6tsVHR5+WNp\nP0294foyzqEgTx3t5e1aIx8vtpIdK/VlpoUtduzzqzeiLl0evqbr66GhDqWtDbWrUwtWDvu3H4Db\nPTawmJkFySmy5JkQQogrkgRkxIjy8nLS0tImrMcihBBCCCHmPr/HT9lLZTirnCh6BfvtdpKLk2d6\nWkJcNsM378s7vTje8bIm08zWwqiZrT8SZR0XpMHrRW1q1IIzjaEgTWOjli1zHkp/PzjKtRaiKgok\nJ6OmZ6IGUujqSWB0NkNcbhyL7lyEopv9wZjRChIi+ObGON5rGOIVRz/93nAAq9rp40fvOlmbaeZ2\nexQ2s9SXmXZWKywq1lqIOjQEXZ3hLK5AAJxOFLcbnE44eSLc1xgBd90N14fqtQ4OarVpoqKm8yyE\nEEKIaScBGTFi165dMz0FIYQQQggxRTx9Hk49e4qB9gEMkQZK7i7BliVfxBHzS2FiBI9en8CuigHe\nqRvkYOMQR5uHuC7Xwo0LLUQaZ8k38iMiIDdPa8MCAdT2tnHZNMpA/3mHUlSVQHsXZ/wFtEcljtkX\ng4tiTzW6vc3aUlJp6RAXN6llz2YDnaKwITuSlWkmXq8YYF/tIMOrsKnAB41DHGke4qqsSLbkWYi3\nSGBmRpnNWhbMML0efvTvqB3t0NgIjQ2h1oji7EaNtob7HnwfZccfUGPjyIiNxZOQCB3tWj2ls7LA\nhBBCiLlMAjJCCCGEEEJcAWrfrmWgfYDI+EgW37OYyPjICx8kxBxkjdDx8ZJorlkQyZ8dAxxt8bC7\nyk1jr58vr4298AAzRa/XAiZp6bB2nbZNVVF7XdrN7KZQa2zUljwLBABwG6IpTbyOgYi4McMluuuw\nd72Lod4/ZrtqjtRucKenh4M06Rlgm1x9mpkQadSxvTiaDTmRvFjaz6n2cCaRLwjv1A3ybv0gazLM\n3LjQQopVbnXMGjodpKRqbdXqkc3qwAAYRv09ud2oxgiUHidRPU6iamvg8IdaX6sVfvjT8PV58gQk\nJEBKCujl71oIIcTcIv9zCSGEEEIIcQXIvzEfnU7HgmsXYLRI3QUx/yVFGfjCShu1Th8vlvWzJc8y\nsq/PEyTSqGCY7ct4KYpWv8MWCyWLw9v9ftS2NjqP1uE45SUQHJX5owbJ6zlCZl8pE52dMjQINdVa\nG0W1WELBmXRITQu3uLhZU+sjOcrA36+JpazDwwul/bT2B0b2BVUtY+Zg4xDL00zcuNBClk1+181a\nZy9Ndstt8LFbUDs7aD50CFNXJwmeIWhugphRwUK/H375JEowgKrXa4Ge4Ws2LR3yC7TgohBCCDFL\nSUBGCCGEEEKIearT0Un8wnh0Bh36CD0FtxTM9JSEmHYL4ox8dX3smIL2O0/3Ud3t47rcSDZkR86e\npcwmSdXpqT3jpeGEHwjPXRehkLIwSKZtKbQkojY3Q0uzVsPjAhS3G6oqtTb6tSIitJveqaljAzXJ\nyWCcmYDHoiQT394UwdEWD29UDdDSFw7MqMDRFg9HWzwUJ0XwsXwLefERMzJPcZF0OkhOYaCgkIGC\nQhIKQv9nqeH6QQwOwuIlqM1NKJ0dWsCmuWlkt/rFv4fVa7QnJ09o13PaqOvWJEufCSGEmFkSkBFC\nCCGEEGKeUVWVmj01NH7QSFJJEkV3FI25GS3ElWb09e8LqHQMBHB5gvypfIBdlW7WZ5m5PtdCXOTs\nr0HiHfBS/qdyemp7xmyPyYjBvMIMkXooGBV8VVXUnh5oadZuXLc0w3CgZmjogq+neL3hmjajqIoC\niUlnBWpSITlFK/g+xb9z9DqF1RlmVqabON3uZVflAHU9Y5dnK+3wUtrhJT/eyE35FooSI+R34Vw0\n+u8sOhq+/CAA6tCQdj23tEBrqGVmhfuePIHy9ltjhlLjE7QATd5CuO32aZi8EEIIMZYEZIQQQggh\nhJhHAr4AjpcddDo6UXQKcQvi5AakEKMY9Qrf3BhHWYeXN6vdnOnysbdmkH21g6xKN3FboZWEWVoc\nvrepl9IXSvH2ecdsT1+VTt6WPKqqq8YfpCjasmNxcVBcEt6uqqhO58SBGo/ngnNRVFUrut7RrmUi\njKJaLFpgJiVl1GOqllVjNn+kcz8XnaKwJMXE4uQIznT5eKNygDNdvjF9Krt9VB50kW0zcFN+FEtS\nItDJ78W5z2yG3DytTWTVatToaO3abm2BtjaU7i7o7kL1esMBGZ8Pvv0NSEoK1btJCWeFJafMWCaY\nEEKI+UkCMkIIIYQQQswT3gEvp58/TV9TH3qTnuK7ionLjbvwgUJcYRRFoTjZRHGyiQaXjzer3Rxt\n8XC42cPWQutMT28cVVVpOdpC1RtVqMHw8k06g46CWwtIWZxy8YMqCsTHa210fZrhjJrWFmhtDWce\ntLaiuHrOPd7ood1uqK3R2tnnYosN3fBOGRu0SUi8pBvfiqJgT4zAnhhBjVMLzJxqHxu4qnf5+a/D\nLlKterYstLAyzYxRL4GZectepLVhAT9qR6cWoIkYtYxdRwfKQD8M9I+7ZlVFgS8/BEuWahsaG6Cv\nT7tmZ1F9JSGEEHOHBGSEEEIIIYSYB9pL26naXYVvwIfJZmLxPYuJSoq68IFCXOGybEY+t8LGHfYA\nFd1e4kPZMUFV5amjvSxJNrEy3YReNzM37gO+ABWvV9B+sn3MdnOcmeKPF2NNvswBpNEZNYuKx+xS\nB92jgjSjHjvaUYLByQ3v6gFXD5xxjB17+HWTkkMtSXtMTtaWRruIzJrcOCN/vyaWpl4/b1QNcLTZ\nw6gqJLT2B/j98T5eKO1nbYaZq7MjSYuW2yPznt4QWmIvdez2tDTU//tjaGvTrue24dYGnR2QkBDu\nu28vyjtvA6AaDNq1mRy6TrMXwNp103c+Qggh5iR5xyGEEEIIIcQ84Kp34RvwEZMVQ/H2YiKsUsRa\niIsRb9GzzhI58ryswztSHP5lh47rci1cnWUm0jh934gfdA5S+sdSBtoHxmxPKEjAfrsdg3maP9JH\nWiZeIsrvR+1o125gt7eNeVR6XZMaWlFV6O7WmqN83H41JiZ883t00CYx6Zw1azJiDHx+hY3bCv38\ntcrNwcYhAqMiM26fylu1g7xVO0hurIH12ZGsTDNjMkjWzBVFUSDGprWCwrH7An5QRv2bT0pBzS+A\n9nbt2h7OIAPUokXhgIzXA//nX8LX6+jHuHjQz85lEYUQQkw9CcgIIYQQQggxBwUDQTwuD5Hx2g3k\n3OtyiU6PJmVJitSMEeIyKEyI4L6l0eypdtPaH+Clsn5edfSzPM3EusxIChKMU1aHRFVVOso6qHy9\nEv/QqEL1Ciy4dgFZ67Nm179zgwHS0rV2FnVwUAvODAdqRgdrhgYn/RJKby/09sIEdXJUkwkSEyEh\nSXscbqHnyVEm7lsawy0FUeypdvNu/SC+sxJ6anr81PRoWTOr0k1cnRVJls0wu/6cxfTTn3Xb7KaP\naQ1Qh4a0GkrtoVpKsaOWCG1vRxkVrBlN1eng4X+EokXahuoqcDrDAUaLZarORgghxCwgARkhhBBC\nCCHmGFeDi4q/VBD0B1n1d6vQG/UYzAZSl6Ze+GAhxKQY9QrrsyJZl2mmtN3Lnho3FV0+PmzyUNnl\n47HNCRce5CPobeql+s1qeht7x84n0kjRnUVzry5UZCTkLNDaaKqK2terBWiGb2p3dozc3FYGLyJY\n4/FAU5PWJqBGR0NiEnEJiXw8MZFbEpI5ZEznPXcUjYNjAy5DfpV364d4t36IzBgD67PMrM4wY5nG\nzCgxR5jNkJWttbOlpKL+r++Gr++RwE0HSo8T1WYL993/DsqB/SNPVYtFC8wkJkFeHmy5KdzX79cC\noEIIIeYs+S0uhBBCCCHEHOEb9FGzt4bWY62AVkPC0+vBkiDfphViqugUhcUpJhanmOh0BzjYOIjF\nqBvJjun1BPnvIy7WZJhZkWb6yEuaDbmGqNlbQ0dpx7h90WnRLLprEWbb5OuozHrnWyZKVVEHBkI3\nsjvCN7RDPyu9vROPea6X6uvTCrHXVAMQBVwLXAM02NJ5N38Dh1NKGNKPXeqxsdfPztP9vFTWz4o0\nM1dnm8mLM0rWjLgwoxEys7R2FtXnG7tkWU4O6kC/FpDs7ERxu6G+DurrUIcGwwEZtxu+/gjYYrW6\nNgkJkJAYfszOgSipHSeEELOdBGSEEEIIIYSY5VRVpaO0g6rdVfjcPhSdQtb6LLKuzkJvlHXohZgu\niRY9txZax2w71DREZbePym4fz5/uY1mqtqRZYeLkljTzD/lpeK+BxoONqKMLnACKTiF9dTq51+Wi\nM1xBGRqKotWFsVrH16shtFRUZyhQ09kZah3Q1QldXSg+3+ReBsh2NZN9eCd36f/EkfTFHMheQ018\nzph+viAcbBriYNMQKcEBVhl6WRYXJC0xGiU+Hmw2qQkiJs9oHPv82uu1BqHMsb6R4AyR4bpW9PQA\noPQ4occJVZVjhlEf+iqULNaeHNgPZWXhwE18gla7Jj5ey+wRQggxYyQgI4QQQgghxCx35pUztJ1s\nAyAmM4aCWwqISpJvwQoxG2zINhMVofBBwxAV3T4ONXs41Owh1qzjqkwztxZGTZhRoQZVWo62UPdO\nHT73+ABCQmECudfnSgbcRMzmc2YfEAyi9vaGAzTDwZrOTu2504miquMOMwW8rG84wvqGIzRHp/Be\n9io+yFyJO2Lsn3+bLorXglG81gVJdZ0sb3mTpW2l5NCPEhcPcXHaje+4eIgf9XN0NOiuoKCa+GgU\nBWJitJa3cOy+9HT4+S9RnU7o6gq1zvBjcnK475kzKB9+MOFLqLl58K3vhJ6osHuXlnUTH68FbmJt\n42vnCCGEuGzkN6w4J6/Xy9NPP82uXbtobGwEIDs7m3vuuYdt27bN8OyEEEIIIa4c8fnxdFV0kbs5\nl9RlqbJcjhCziMmgY11mJOsyI+l0B/iwaYiDjYN0uoPUu/wj/14DQZWOgQDJUTqc1U5q3qzB3eUe\nN5411UreDXnE5sRO96nMDzodxMZqLb9g/H6/H7W7C7q7wzezu0M3t7u7wekkva+Nj59+jTvK3uB4\najEHctZwJnHhuKE6rInsLriW3QXXEjvYw7KWUpbVnmbhkSPo1eCYvqrBoN30Hp5bbNzEj2dnTwgx\nmt4Qri9zPjdsQbXbw9d1dxc4u6HbCZZRQUa3G+WF58ccqiqKdi3GxcO27WAv0nZ0tIPLpW232aSW\njRBCfETy21NMyOfz8dBDD3H06FEKCwvZvn07Ho+HN954gx/84AckJyezfv36mZ7mZbNt2zZaWlom\n3BcfH8/rr78+zTOaWq+88grf+973zttHp9Px/vvvT9OMhBBCCDGaq8HFQPsA6avSAUgsSiR2QSzG\nSLlRJ8RslmjRc0tBFDfnW6hy+jCMCp5Wdvv4f2+1sqatgzjXwLhjI6IjyL0ul+TFyRJ0nUoGAySn\naG0iwSBqTw90d2Ho6mJVdxeruivoqDvFe8Z0jsYupNMSP+6wnshY9uVdzb68q7F6BljSWsry1tMU\ndlZhDAZQ/P5QAKjzvNNTrdYJgjWxWjDHZtNadIxk24jzy8rW2tlUFXzeMc/VLTeFgpHd2mOvC8Xp\nBKcTNRAI9z3wLspfXtUOUxTtOowLXaOpqbD97nDfzg6wRsvyaEIIMQEJyIgJPfPMMxw9epTt27fz\n7W9/e+QDwYoVK3j00Uc5fvz4vArIAFitVj71qU+N226xzL8lAgoLC/niF7844b5jx45x6NCheff3\nK4QQQsx2alClq6KLpoNNuBpcKDoFW7aNqCRtuSMJxggxdyiKQn58uEC8p89D554qbqzs5OxQS1Cv\nw7w0jVU35GCMkI/oM06nCy3dFD8mwyYJuAO4PRikqb2f4w39HHeqtPjG/27uN0XxXs4a3stZg9k3\nREmbg+Wtp1nUfgZzwDuu/2hKfz/090Njwzn7qMPLWtlsoUDNqGDN6J9jYmTpKTGWokCEKfzcaoW7\n7xnbx+9H7dECMmRkhrfH2LTlzpxOcPWg9Lqg1wV1oHZkhAMyqgqPfxfF50U1m8dep7GxsHJVuDaU\n1wMoEBGBEEJcKeR/ZjGhF154AbPZzFe/+tUx387ShwoV2my2mZralImOjuaBBx6Y6WlMi8LCQgoL\nCyfc94UvfAGA7du3T+eUhBBCiCuW3+On7UQbTYeaGHIOAaCP0JOxJgNzrHyzVIi5bMg1RMvRFpo+\nbCLoC44JxqhATbyNU6lJRJsjWGcMF4V3DQWwmaVI/Gyk6HRkpsaQmRrDbUB7v5/jbR6Ot3qo6/GP\n6z9kNHM4cxmHM5ehU4PkDHZg766hsKmU3M4ajMHA+Be50BxUVVs6yuUC6s/ZT1UUiIqCGFu4LklM\nzKjno7ZbpcaNCDGcY1m06zdrDSAQQO11acEZp3PsteP1gs2G6upBGRqCoSFoaxvZraalhQMy7x1A\n2fEHVIslHEwcuTZtcONNWhAJYHBQy7iRDEIhxBwnARkxTktLC01NTWzatInIyMgx+958800AVq9e\nPRNTm7P8fj87d+7klVdeob6+HpvNxubNm3nooYcIBALceeedrFmzhu9///szOs/KykpOnTpFcnIy\nGzZsmNG5CCGEEFcCv8fPwScP4h/SbuKZY82kr04ndVkqBpO8VRdiLgoGgnRXdNNyrAVntXPCPnG5\nceTdkEeRxURWmxejnpEvwrmGAvyvN7vIiDGwODmCosQIcmKNGPVyE3I2SrYauNFq4MaFUTgHA5xo\n1YIzld0+1LP6BhUdNZYUaiwpvJ55FUYd5FmCFOoHKPR3kdXXgr6nB3qc0NMDPT0oA/0feW6KqmrZ\nNv390Nx03r7aElTR2jJUw8uiRUePajFjHyWj4cqm12u1ZOLGL9+HyQT/8oS2HNrgoHYtu0KtpwcW\n5IX7eryoej2K2w1uN7Q0j+xSLRa46WPhvv/ne9qSaqODibZY7XFRMRSEvnTq82ktMlKCN0KIWUk+\n5U3S8d8fn+kpnNeyzyy7bGOVlZUBUFJSMrJNVVWeffZZ9uzZw9q1aykomKA44hzn9Xr5y1/+Qmtr\nK5GRkeTn57NixYqRrKCPyuVy8cgjj1BaWsrGjRu56qqr2L9/P8888wzJydr60C6Xa1Zk57z44osA\n3HHHHZd83kIIIYSYWF9LH9ZUK4qiYDAZsGXb8Ll9ZK7NJKEwAUUnNw+EmIvcXW5aj7fSdqINn9s3\nYR9LooW8G/KIX6jdxIwCUqxjP5Y39/kx6RWaev009frZVenGoIMFsUbyE4xcn2vBYpRMhtkoLlLP\ntbkWrs210OcJcqrNw7FWD45OL4GzozOALwiOfh0OooFozBG5FCwyUpgQQWFCBGnReu3Gcm8oG6an\nJ/yzq2fMo9L/0QM3EAre9PZqranxgv1Vk+msQE3oZ6tV+9karf08/GgyXXBMMc8oClgsWktPn7jP\nTR+DG29CHegPBW5Cy6D19mpLn43m86MEAuGsnFFUgyEckDl9CuVXT2rbxgQUQ9fqbbeHa9t0dWnB\nJatVywwSQohpIL9tJslV75rpKUyb8vJyABYtWsShQ4fYtWsXx44do66ujoKCAh5//PHzHr9jxw76\n+vom/XqFhYVcd911lzLly6Krq4vvfve7Y7alp6fz6KOP/v/t3XmcZXV95//XuftSW1d1d/XeNHTz\npUEiNISWxQVQAkJEMEZBVGJcxsCIEU3GOKghmSHzw180MRodMSbjiBmNA2Z+bgR/VggAACAASURB\nVGlR3H8iyhaRQzXdQG/Va+1193Pmj++5W9W9tXVV36rm/eRx+J7zPd9z7vfee271vd/P+X6/bNu2\nbc7n/dCHPsSTTz7J7bffzhve8AYA3vzmN3PNNdfw05/+lN27d3PNNdewfv36puc4Ea9pNpvl29/+\nNuFwmGuvvXZWx4qIiMjUvJLHkaeOsO8X+xjZP8LZN5zNsk3LADjj2jMIR3UjhMhSVCqUOOIeof/R\n/il/Mya6Eqx7yTpWn7N62qDr1hVx7nrVcnYey/PrQ3n6jubZP1Ji57ECuwYKvPLUdKXsQ3sztMdD\nnLosSjyiIM1i0h4PceGGJBduSJIpeDx1JM/TRwo8fTTPobHGw5Rliz5PHMzzxEE7z0x7zGFLT4wt\nPW1sXN7Fmk2nEW5y/fjFYk2wpiZgMzIMQ8NBaredQuOA4Ww4uRzkcnDkyIzK+9FYEKAJAjbpcuCm\nrRq4SaehrY3w6AheIjn9SeXk4DhB4K4d1jVvF+Gv7sbP54PA4VA1HRqC0021XDB3jZPNNg7e/G5N\ne8cX7sHZ2WfzE0loD67F9nY460Xw8kttuWwWdvZVg43tbfVz8YiIzIICMjJJuYfM1q1bufvuu9mx\nY0dl3ymnnILneVMe/8///M8cOHBgxo939dVXtzwgc80113DOOedw6qmnkk6n2bdvH1/5yle4//77\nue222/j85z/fdM6VqTz00EM89NBDnHPOOfz+71cnyuvq6mL16tU8/PDDxGIx3v72t095nhPxmn73\nu99lZGSEiy++mN7e3lkdKyIiIo0VMgX6H+1n/y/3kxvOARBJRsiPVSd1VjBGZOkZPThK/6P9HPr1\nocqQgxM5YYflpy9n1Tmr6Dqlq25uzulEww5bV8TZusI2+I3lPXYeK3AsUyIesefxfJ+vPTnKeMEn\n5MD6zgg9ToK1ySLrCh5J9aJZNJLREOeuTnDuantX/kCmxNNH8zx9tMDTR/IMZhv/xh7J+/zqQI5f\nHbD/fkRDsK4jwoauKBs7o2zsirA8HSbkOPbu/u4eu0zF9/GzmWpvmImN2+W8kWEYGZmX4A2AU8jD\nwDG7TOO0clVjMRu4aUvbNB2kbTXr6XR1SaVtbwyN9nDyisVg+XK7NPPb2+G3t+PnczAyaq/rkRG7\njI3WD7eXSuF3dMDoKE42A9kMHD4MgN/VVS13sB/n7/6m7mGqQcY0vO0dsDroBfTvT8DhQ7SPjFJK\nJiEWrV638biGURMRBWRmqnPDyTeJfTNPPfUUq1evpqurizvvvJMPfOAD7Nq1i6985Svs2LGD3bt3\nc++99zY9/utf//qC1/Haa6+dVYDiyiuv5M4772y6/x3veEfd9mmnncYHP/hBUqkUX/rSl/jc5z7H\n3XffPet6fvOb3wTghhtumPQDLBZ8CbjuuuumDYCciNf0/vvvB+D6669f8McSERF5Idj94O7KRN4A\nye4kay9YS+/ZvQrCiCxBxVyRw08epv/RfkYONO+9nupJsercVfS+qJdoKjovj52OhXjxqvq7sQsl\nuHB9kp3H8uwZKvLcYJHniPOrgTj/3/4jvPXcDs5bYwMAY3mPaNghpnloFoVlyTDb1yXZvi6J7/sc\nHi9Ves/0Hc0zmm8wvhl2iLPdg0V2DxaBDADJiMP6zggbu6Js7IqyoTNCVyLUPADoOJBM2aV31dQV\n9X38XC5ozB6ekE5cH4HREZxpbuCcDSefh/zMgjh11U4kbWAmna5J05BOBUGbdP3+VPB6JJP1k9PL\n0haLQ08ceqYIUv7Rf7Sp5+Fnxm0AZzS4nrtr5scJh/G3nhnMyTQSBCurQUa/Ngj485/h/OIhVjd4\nOH/L6XD7n9iNYhHu+WzN9ZmuX1+3zvbGEZGTjgIyMzSfc7QsZgcOHGBoaIjzzjsPgHA4TFdXF9u2\nbWPbtm286U1voq+vj3379rF27dqW1XPt2rWVgMZMLJ/q7okpXH/99XzpS1/ikUcemdPxjzzyCJFI\nhAsvvLDh/kQiwc033zync8+nZ555hscff5yVK1dy0UUXtbo6IiIiS052MMvRvqP0bOkh0WUbQB3H\nwSt4dJ3SxboL1rHstGWzukNeRFrL933GD48zsHuAgd0DDD0/hFds3NgcioZYsXUFq85ZRcfajhPy\nWY9HHF67tQ2AbNFj90CBh3YeZN94hEO5CD2pagPhA7vG+e4z46xqC7OuM8r6zgjrOyOs64iQ0FBn\nLeU4DivTEVamI1yyMYnn+xwYKeEescGZnccKZIuNAzQAmaJve9ocrfZk6YiH2NgVYUNnlDXtEVa3\nh+lJBT1pZlc5O9dGIgErVkxf3vPwx8erjdYN09FqT4XRUTus1Dyr9HQ4dnRWx/nl55tM1QdqUslq\nECcZrCeTwXoKEsnqtgI6S1MoFPS4agMaBCrXrYfb3lfdLgcrR0fttVzbM+2sF+Gn0oz0HyCcyZDy\nveq1n6wZim9sDOfR5m1N/jvfDdts2xw7vmOXVKp6LZbXOzvhqqurB+7eBdFodb965YgsOgrISJ3a\n+WMa6ejoACCVSjU9x4mY7+TTn/70rMrP1bJldmz37By+JGazWfr7+1m3bh2J8oRxgX379vHcc89x\n9tln0zPV3RqBhX5Ny71jXvOa1xBW924REZFp+b7P6IFRjvYd5WjfUcYOjdl8z2fd9nUArN62mt7f\n6iW5TOPgiywV+dE8A88OMLBrgMFnB8mP5qcs37aqjVXnrGLlmSuJJFr38zoRCbF1RZzIYA7IsfHU\nzdR2hhkveDgOHBgtcWC0xC/22XwHeFFvjHeeb4fm8X2fTNEnpeHOWibkOKztiLC2I8Jlp6YoeT4H\nR0s8N1TgucECzw8W2TdSxGseo2E459XNRQN2uLPetgir2sKsbo+wut2uzylQ07TyoeqcMI0atRvw\nC4VqwGZsDEZHObR7N+Fshp5EwjZ2B/mMjdnt8XGciRO+zwPH9yGTscssgzllfjxe7W1TWSZuJ20Q\nJ5EI1hNBUCdIo1E1oC92tcHKiTcAv+QieMlF9PfZuWm2bNlS3VeqGeIymcB/17uD67pmGQ/SoD0K\ngOFhnPJwghP4y7rrAzKf/iROTfuRHwoHwcMkvOpKeNnL7Y69e+BnP62/RstBx2QK1q7V8H8iC0QB\nGalTnj/mjDPOmLRvaGiIxx57jM2bN1cCFY0sxTlkmnniiScA5tQbKJfL4ft+w7vjPv7xj5PP54lE\nZvYRXMjXNJfL8a1vfYtwOMy11147/QEiIiIvcLse2MWhXx+qa6gNx8J0n9ZNemV1su14uyZ7FVns\nSoUSQ3uGGNw9yMCuAcYOj017TDgepvdFvax68SraVrWdgFrO3sShyd54dgevO7Od/SNF9gwV2TNU\nYM9Qkf0jxbrgy0DG4yPfP0pHPMSqtjC9bRF602F622065VBYsiDCIYc1HRHWdES4cL0N8BdKPnuH\nizw/WAgCNUUOjZWmPE/Bg73DRfYOF4FcJf+EBGqmEo3ahueaNoahThsg7KltyK5V7olTDtaUG7HH\nx2u2x6sN2zX7nNLUr9PxcnI5yOVgcGD6wk3YBvREg6BNAuKJxuuJ+ITtYL96Rywu4Zo2oFgczj1v\nZse95rX4l7+qei1XlrHJQZM1a/FHRir7nXw++KyM2nl1yvbtw3lgB834f/23NkAD8Km/heefq/YG\nK/ckSyZg8xa46BJbLpu1c+gkk/XXbflaVg8yEUABGZmg3ENmx44dXHDBBZUv24VCgbvuuotisciN\nN9445TlOxHwn82n37t2sWrWKZLL+7tX9+/fzsY99DLBz0Ez053/+53zjG9/gwx/+MNdcc82k/R0d\nHaRSKfbu3UtfX1/lroh/+Zd/4Yc//CHAjHu9LORr+sADDzA8PMwll1wy7Vw2IiIiLyReyWP8yDgj\n+0foPbuXUDCsT3YwS340T6w9Rs+WHnpO76FrQ1dlv4gsXr7nM3po1AZgdg8wtGcIvzT9nfbRVJRl\nm5ax7LRlLDfLl+Q8UNGwU5lnBOxvn6Lnk6sZDuvweIloyPawGM55dcNgAbz/4mXB8fDUkTzZgkdv\nW4QV6TCRkBp9T5Ro2GHTsiibllXnKMoUPJ4fKtpeNEE6mJ1+PpdmgZqwA92pMMtTYXqSQZoKBWmY\nZCt7UdX1xJmF8jBTtcGaTKbayF1Zz0CmptE7WHdyuekfYx44XqkaWDpOvuPYoEw8Xg3QxONBwKZZ\n3oT8WCzYjtkgQjwOM7y5VOZJNApdXXaZzh+/v27TLxar13e6ZrSb9RvwX/f6oFfYeHDdB+uZjL0e\nyoaGcIaGYGho0sP5vl8NyBw9gnPPZ5tWzf/Af4LTNtuNHd+Bxx+rD9iUl+5uuPDi6oF9T9dfm4mE\nvS4V4JElSn9BpU45IPOv//qvPP3005x//vmMj4/z85//nH379nHNNdc0DD4sZTt27ODee+/l3HPP\nZdWqVaRSKfbt28dPfvITcrkcF198MTfddNOk47xgssJmQ3w5jsPVV1/NV7/6VW699VYuv/xyjh49\nyoMPPsjLXvYyxsbG+OUvf8ldd93Ftddey5lnnrmgz7OZ++67D4DrrruuJY8vIiKyGPi+T3Ygy8iB\nEUb2jzByYITR/tHKfBHxjjjdp9nJXTdcvIH1F6+nrbdNd4qLLGLFXJGxQ2OMHhxl7NAYYwfHGDs8\n1nQemFqhSIiO9R02CLNpGemV6ZPy8x4JOURi1edllsf42JUrOJbxODha5OBoyaZjNu1tq/72+d6u\ncX5z2PYUDDnQkwqzIhWmOxlmc0+U89bYxjw/GFrqZHz9FpNkNIRZHsMsr861Opr3ODBSpH+0yIGR\nEv3B+kh++iBkyYfDYyUON+l5k4469ATBmeUT0s54iGh4Eb7ftcNM1U7YPkN+qWgbqsfG7Rw1mUy1\nobvciJ3JNNhXzXOKxekfaB45vm97LWSzwOTG9LnyQ2HbKycWrw/UxGvzyku8ul4O8ERr1uNxux2r\nWSIR9eyZL5EIdHTYpdaaNXaZifd9AL/22s5mq9f18pr5paJR/HPPs5+H8nWXy0ImSOM1vccP7Mfp\ne7rhw/kbT6kGZDwP5//9fxqXi8fhDTfCRUHZxx+DB79XDSDGg8BNOYDzyiuq19XuXeD7E67ZuAI9\nckIoICMV/f39DA4Osn37dtra2nj44Yf58pe/TDqd5owzzuCWW27hla98ZaurOe/OP/98nn/+eVzX\n5bHHHiOTydDe3s6LX/xirrrqKl796lc3/PHwzDPPkE6nufjiixuc1XrPe95DLBZjx44d3HfffXR0\ndHDDDTdw66234rouH/3oR7nvvvu47LLLFvIpNrV7924ee+wxVq5cyUUXXdSSOoiIiLRCfjRPbiRH\n++p2AIqZIr/4zC8mlUssS9C+ur2u98tiHaJI5IXK931yQ7lK4KWcZgdnNw9kujddCcB0rOtYkr1g\n5kPIcVgeNK6ftbJ5uc3dUUIOHBwtcXS8VNd4X/T8SkDm4GiJu39yjO6kDdb0pMJ0J0NBGmZNe2Rx\nNt6fBNpiIbb0xNjSE6vLH8179I8UOVAO1IwW6R+ZWaCmbKzgMzZU5PmhxgGGdNShM2GHuetMhIK0\ndjtMOuosrUBdOAJt7XaZI79QqDZkVxq1s0FDd3ZCfm1eBrK5SgP3ieqt04zjlao9iBaA7zjV4Ew0\nWrM+Ia3dX5tGYxAL0on50Uj9/lgUQmEFgKZSDmTSfPoCAFb2wrve3XjfxHmfrroaf/uF9lrPZasB\nnEwGOjur5YpF/M1b7FCA2axNg8+Ak8vhh2uCJ4cP4Tz568YPH4nAq36nmvHFf8TZv79x2Usvhzfc\nYDf27oH/8YVqsKYcwInFbBDnVVdW69v3tJ1/amIgMhqzw7/NpIeTvCAoICMV5fljLrjgAt785je3\nuDYnzrZt29i2bdusjhkZGWHnzp3ceOONdEy8y6BGPB7ntttu47bbbpu076yzzuKrX/3qrOs7nzZt\n2sRDDz3U0jqIiIgspFKhRGYgQ+ZYhszRDKP9o4wcGCE3nCPeGWf7LdsBOxxRx9oOIqkI7avbaV/T\nTvuqdqKp6DSPICInSqlQIjeUIzuUJTuUZfzIeCX4UsrNfl6IWHusEoDpOqWLWDo2/UFSccXm6pxZ\nhZLP4bESRzM2OFPbk2YgWyJfgv7REv2jk9+nD76smzXttmni33aOsXe4SEfcNtrb1Pa46EyE6ua7\nkblri4XY3BNjc5NATf9oiSPjdjkapNnizIM1EARsCkX2TzFKdyQEHXEbnCm/322xEOODMZJhj9Cx\nPG2xEO3xEMnIEgveNBON2mWKdoSZ8D2vpoG6pjF74nZdI3auuq+yXc1zJjaYt5Dj+9X6nQC+49QE\nbKJB0CYKkWi1x075vasN7ESC7Uh5vZrXduQwfjgC+Vz1uEikpmzNdjRy8geFJj63FSvtMp1YDN7/\np5Oyfc+DfL5+Dp1zt+H3rqpeO/ma69yb0Dt23Xr8eKK+bD5vl9oh+UZHcZ5/vmn1/Je+ohqQ+eGD\nOL9o3Mbmbzkdbv8Tu5HLwe231QcPy4GbaBSueQ2csdWWffLX8NijDYKOURsc2n5h9UGee9YGviZd\nq8G6ev4sGgrISEV5uDJjTItrsvg9+uijRCKRaefTERERkYVXypfIDNqgS3YgS9cpXZWeLwd+dYBd\nD+yadEw4FibRlcArepXeL+e89ZwTWm8RqVcqlMgNBwGXwWw1+DJoAzCFscL0J2kiFA3R1ttGemWa\n9Mo0nes7SS1PnRwNvItANFydeH6irSvi/LcrlnMsU+LYuMexjA3cHBsvcTTj0Z2sNhD1HS3w1JF8\nw8fYuiLGH11g7y4eL3h8+fEROuK2sT4dc2iLhUhHbYP+8nSYmHrdzFo1UFOf7/s+4wV/UpCmnA5k\nPObSlF/04FjG41hm4jCCdo6jbx4YrOSEHFs/uzi0x0M12yGSUYdU1CEZDZGKOqSiNogTPlnnNgqF\nqhOnzwfft3ON5LK2J045UFNprM5X88rr+Rzk8vWN3rmaRu2aBu7FFOxpxPH9ar3nyQwHA6vwHacm\nYBMEbcrBmtrt8hIur4cn76uUKe+rScO1+yashyP1Zcrr4bC95hbTv5mhUP08NwDdPXaZibe9o3G+\n79cHb07ZhP/B/zzh+q659jtqesydthkfx5YpTPgc9NTUK5+3wxcWg2EQJ1ahtufZc8/i/OD7jaua\nStUHZD73GZwjRxqXveJKuP737Ebf0/APn6sGBmsDhtEo3PTWSpCp44nHGd1yeuPXSuZsXgIyxphu\n4CPAa4HVwBHgm8AdrusemMHxFwF3AC/B/sv7NPA54O9c113cf7VPIgrIzNxLX/pSfvzjH7e6GiIi\nIic93/cpZosUs0WSy5KVvL5v9ZE5miEzkCE/Wv/jedOlmyoBmVRPimR30i7LkqR703Ss6SDZk1RD\nrMgJ4Ps+pVyJwniB/Fiewnihfn2sQHY4S24wR35sfhrC4h1x0r1p2la2VdLEsoQ+8y2UitreLeum\n6RTwuybN9nUJhnMeQ9lSkHoM5TxWpKp3QQ9mPR7tb37n/K3buypzqTywa5xHD2RtwCZovE/HbIN9\nVyLEWSurcxqM5j0SEYfIydqIP0eO45COOaRjITZ2Te45WvL8INDmMTBeYjB4/waz9v0bzJYYncVw\naI14PgznPIZz088BVSsRcYJgjQ3QVII1QZqIOCQiDvEgTURCdj3skIg6xMMncVCnVqWHSPS4hmRr\nyPftUG0TgjSTgje5mkbsQiEoW6iWqds3IS+fxynMPWi/GDi+b5/bIn0evuPYwEx5KQdwwuEgcFMT\nvCkHeSYtzfKnWEKN8kLTHBOqOW7Cevmczb4TlJ9nWSIBG0+Z2Yv0isvsMp22NvxP/n39tV6+rgsF\nWF0TzjvzLPxEorqvkIdC0aaRCc36a9fjp9JQLNjPTm35aM3f7mwWZ2CgafV8r9qbte2ZnYydetrM\nnr/M2HEHZIwxSeBB4Azg74CHgS3A+4HLjDHnua7b9F02xlwGfAvYA3wUOAZcC/wtcBrw3uOto8zM\nU089xerVq+msHatRREREZAF4JY/CWIFwPEwkbr+SDj47yOHfHCY/lic/GixjefySTzQZ5cI/tneA\nOY7DwO4BckO2Mc4JOyS7kiS6EySXJWlfU21I6N7cTffm2U/cKyL1fM+nmCtSypdsmqtPi9liJcBS\nGC+QH89X1n1vYe6xc8IO6eVp0r2210u5B0w0qaEGl6oNXVE2NGjwn6grEeLmczsYznmM5jzGCh6j\neZ+xvMdo3qMjXu110z9S5NnBxvOcrOuIVAIyvu/zoe8ewfMhGqLS0yIZsb0uXn5KkjODsnuHC+w8\nWqg05MfDtjE/FjTo9yRDL6gAYDjksCIdYUW6eZlCya8E2gazXhCsKQdv7DKa92Y9NNp0skWfbNFn\nYFIvnJmLhgje62oAJxauX+IRh2gY4mGHaNhpmMbCtkw07BAN2fxIyM7bdFKrnQ+GhZuHz/d92+Og\ntuE6X26QrmnsbrSvWKyWKZbLFIOG7XKZIK8w+bjF3gNoPjjl17fY+O/pUjMpwFQJ4gRpKFQTzKnN\nK5cN1R9XKd/g+HL5icc3XMLQ32+PdYJztLUF53Hqz+c48NRv7DkdB37nysbndIL06FF7jtVr8P/s\nDiiV6pdiEbwSpKp/zIdedDZePD7FKylzMR89ZN4LnA3c4rrup8uZxpjHgPuwPV/eN8XxnwaywEtr\netN80RhzP/AeY8wXXNd9bB7qKdP4zne+0+oqiIiIyBLhlTxKuRKlQonCYAGv4HHEO0IxVyQcDbNi\n64pKuSe/9mSll0u54dYr2IYR87uG3rN7ARg7MsaBRyZ3rg7Hw0RSEXzPxwnuUt18xWZCkRDJ7iTx\n9nglX+SFyvd9/JKPV/TwSp5NCx6lYsmmBZt6xQbr5bKFEqV8aVKwpZS3+SecY3u7JDoTJLoSJDoT\nxDur2/rsv3CloiHOW5OYviDw6tPTXLg+GQRtvCBo4zNe8OhMVAM3BQ+SEYdM0afgQSHnMVzTCWfb\nmmqD1M6jBb725GjDxws58ImrVlS2P/GzAY6Ol2yDfE1DfjTkcHZvjJest70/BzIlfr43SzTsEAtT\nVy4adjilK0o8Yq/3kZxH0fODhn2IhBZ/L45o2KEnFaanpqdTI4WSzxPuM2RKDt2r1jGSs+/XaN4L\n1msXf94DOA3r5EEh7zOyQH8Hww7V9zJ4zyOhIHhTE7iJhKpp2HHsKFSOzQuHass4hGvKhx27PTm1\nx4UdCE0qawNF4RA4sDQCjLW9fE4k37c9CsoBnCBQ89zOnTilEhtWr64GgorFamCnvF4OcpSDQsVp\n9pVK1XOUivVlinbfCyFAdLxOtgDTQvBDIVY7Ds/+4btaXZWTznwEZN4CjAGfn5D/dWAvcJMx5vZG\nQ48ZY7YDBrinwdBmf4ftKXMToICMiIiISAOVRtiSh+9VG2TjnfHKj+fR/lEKmYJtdK1prPVLPoll\nCbpPtT1IcsM5nvvxc9WG2aDRtpS362defyZtvfbOxmf+7ZlJwZNjHAMgvSJdCcg4IYeBXQOT75B3\nIJaK1eV3bejitCtOI9YWs0vapuHo5Mabni0zHB/6JOTP5kf2FEWbnqdBdsOy/jRl/Fnuq83Dr277\njfMq237NeWrXG5SrWw/Kl9Pc4Rz4MBAZqDtfXeoFnznPr+Y3Wi+XK5ed6VKqntsv+XieV/181wRb\n6vKCdKF6oSykcCxMNBWtBF3infFK4CXRmSDWHiMU1gS0cnyWJcMsS04dBAAbAPmrK1bg+z75kp0z\nJVP0yRQ8MgWftTXz46ztiPCyjUmyJZ980AMjV/LJFT0cp37y+XKPkEaWp6rX95HxEt94eqxp/f7z\ny7vpbbN1+NqTI/xyf/2QbSEHIiHY3B3j3cFcO/mSz8d/OlBphK9tuA87DpduSnJqtx3a7ekjeX59\nKFe3Pxz03oiFHS7ZWJ2r5N8P5ih4vm2wd6hr5F+WCNMdBF1yRZ+BbKnSuB9yghu8g7KJiFPpHeL7\nPo5jgw/tUZ/2qM+WFdPflV0o2eDaeKE+zdRt2/exNh0veBTm3mlmXpV8KBV9ssCU/3C3UMipBnDq\n3sfyeqhmvea9dsrr2HhJ/XVgt52abcdxasqCgxPkl7frjykHi8plnKCuBPnlbSc4pxOc06mpE1SP\nLR/j1B5D/fnq86rl7JnjOE4cHNiXWoUD5LrWTTjOqT5u8D9nwnr9PmfSvsr+Zsd4PpQKUPLsXCWl\nInjBulfCKZZsXsnDKRUnrTtFL8gr4pRKUCpv2+Mcr2QngSqVJpQr2bRy/pJ9vIk9McrnqdmuDSLV\nrdddiQ3ym5adfEz1/JNLOXP87M01+DXd4y2GEKjjeTgEvYlkXh1XQMYY04EdquxHruvWfRtwXdc3\nxjwEXA9sAibPpgoXBOnPGuz7eZBuP546SnODvxzkR1/7UaurITJn5caWfqe/xTURmbsX1HXcsD3X\nZk68665ZQ/FMyx1P2ekau2dadlK5ZkWdCWWnalStKTvlOaHurvGZnnO6so984ZFquWbP3bE9XX70\nV/XfMRrdxV7IFOj7Vh993+prXr95NKtAxrw96Il/SDk+5cCizF4oEiKajhJLxYimokTTUZumosTS\nscp6uUwoomCLLD6OEwxDFoFlTcps6YmxpSc2o/N94JJuckHQplCywZ7ysjxdDRR1JUL8zuYU+ZJP\noURduULJJxGp/juajITojIcoeD5Fz5b3fMiXwKv5t67o+ewdbn73d22vn2cHC3xv9+TJpe3j1Qdk\n/uXXIxxtMgTYK09Nce1We/PG7sECn/r5YNPH//ArulmRts1SX3hkmEcO5ILG9A4cIPzMYUIOnN4T\n5R3n2yBTpuBx14+OEWJCw3zQcH3d1ja2r7N1fWhvhh8/n600yocdaI+H6ExAPBLlred0kCvZ9+br\nvxlhJOfj4+P5BItdX5YM05UIkS36DGU9Do4V8Twq5Up+9ZiTVfn5FeqenNWqFAAAEJlJREFU5En8\nhOdFMDzb3uafgRMvwpybgsPBIkuW488tCv0O/9A810SOt4fMxiDd22T/80F6Ko0DMqc0O9513RFj\nzGBw7Lzo6zsxP/aXiuJAcUneSScyUUsa2ETm2Qv9Op7p85/N69TqsjM+p78wZWf8b/x8n3NiDwUR\nWfxC4EQcnLCDE3EIRUM4UYdQJEiD7dr18r6JeROVgv+yZMEDRoNFFpR++y5u0WDJjELfwWq+CWFv\n228w4tKhPUcoN4ltS8C2jfX7PR+Kvr1ZvK/vSCXvjRtCeL5DyXbeoxSsl3wHf2CYvlH773UyE+bi\n5eG6sp7v4Pk2kFF7Ta2NJegKh6qBi5qyxdGj9PXZHrQHM2G6okn88n5s/WzqsOe5ZxmM2scfHkkB\n0SCoYYNPpZLdNzAyRl/fYQAyJYeBTEfT13b3nn2EgzmDdh6Ls3ug8dB28ZDHs7uqjYzPHGlnpNg4\nSLw6MsZ5XfYe5OecCDuPNZ8s58aNw6TC9r144GCSPeONh8/qipY4qzNP0XfIlhweG2zeG6gzWiLq\n2J404yWHnKdgtojMnu/M7W+HF4noe0WNLVu2HPc5jjcgU54xdbzJ/rEJ5eZyfLNj5Tg5UXU5ExER\nERE5YYIxSZxg/BSnMmZKTV6jNGxTJxj3xQnZ4El5vVGeE64GWCrrDbYJL5G5AURkSiEHYs7kvJWJ\nmd0RvSpZYlVyZnOkvKI3O6Nya5Il3rJpZhHYq9eM1wRrqiNSTry/Ix7yuXnTMJ7vVPbXlu2IVp/v\nGe151iaLk8r4OIQmjFl0WW+Gglcu51A7KmZ3rPq6dMdKXLZy3JahWqZcvj3iEw96EfxWV54NqWK5\nPzi1nZs7oh5ndBQAO0dNPORX9lXSIDhlOvIsj9vntWc8zO7R+iBP+X6ZkONzQU8+CLjBL4/FyZSq\nr5NXHiTJh+XxEqsSJUo4DOcdnh2L2te+9jUNzrs+VSIc8vF9h/5siLEgcDXxucdC0BXzgl5DcCQX\nnvBcqs8tGfYJ25eZXMkh59X01q5dcSDi+PjB61eccJ7FMbCTyMnNj8ZQj7j5NR9zyCwZ8xHBOln0\n9fWRPj1N7+beVldFZM6OHbNDinR3d7e4JiJzp+tYTgYvlOt4QRqt53jKWdVliqJNz9Mgu2FZZ5oy\nTu2qMymvvO00GRjdcSYfU5s3cX+zfXXrBEELx6nbt2//PnBg/br11fyatLzuOE5dsKQcVKnMG1GT\nX1euXFZkAZXvYNVvX1nKWnEdz+aRti3AOc9cgHOeN4uyS5nn+3VBJJv6lUBVJSBVs29iHhPya4N4\n+OAFUae6wF7dsbZg7f69e/fiA2vXrquUKYfdJh9bv11bp9p9E/fXHl8pVzmf37Tc5LKTm9snl/cb\n5tfVb2JdmpVrcp5Jx9Wdb/IBMznflOefMnPaXbN/nPK+aU/avMCcwyJzPPDYsWNEQ76+V8yz4w3I\nDAdps/6abRPKzeX4ZsfKcUqsTrBpy6ZWV0Nkzop9tiu6rmNZynQdy8lA17GcDI4U7RA/nRs6W1wT\nERERmalQ+caJOovgBohjtmfVluUzm29KZDEqD0Ep8+t4B57cjY2xrWuyf2OQNhtorjyvzKTjjTGd\nQOcUx4qIiIiIiIiIiIiIiCwJxxWQcV13DHgc2GaMqZspzRgTBi4C9riu+3yTU/w0SC9usO+lQfrj\n46mjiIiIiIiIiIiIiIhIqx1vDxmAzwMp4F0T8m8CVgL3lDOMMWcYYypjWbiu+yjwK+D1xph1NeUc\n4I+BAvBP81BHERERERERERERERGRljneOWQAPgO8CfiYMWYj8DBwFvA+4AngYzVlfwO4wBk1eX8E\nfB/4oTHmE8Ag8EbgMuAO13WfmYc6ioiIiIiIiIiIiIiItMxx95BxXbcAXAF8Engd8I/AW7E9Y17h\nuu74NMf/HHgZ8BRwJ/BZYBXwNtd1//J46yciIiIiIiIiIiIiItJq89FDBtd1h7E9Yt43TTmnSf7D\nwKvnoy4iIiIiIiIiIiIiIiKLzXzMISMiIiIiIiIiIiIiIiJTUEBGRERERERERERERERkgSkgIyIi\nIiIiIiIiIiIissAc3/dbXYd5NzQ0dPI9KRERERERERERERERWVQ6OzudmZZVDxkRERERERERERER\nEZEFpoCMiIiIiIiIiIiIiIjIAlNARkREREREREREREREZIEpICMiIiIiIiIiIiIiIrLAFJARERER\nERERERERERFZYI7v+62ug4iIiIiIiIiIiIiIyElNPWREREREREREREREREQWmAIyIiIiIiIiIiIi\nIiIiC0wBGRERERERERERERERkQWmgIyIiIiIiIiIiIiIiMgCU0BGRERERERERERERERkgSkgIyIi\nIiIiIiIiIiIissAUkBEREREREREREREREVlgCsiIiIiIiIiIiIiIiIgsMAVkRERERERERERERERE\nFpgCMiIiIiIiIiIiIiIiIgtMARkREREREREREREREZEFpoCMiIiIiIiIiIiIiIjIAou0ugKy+Bhj\nEsBjwOnApa7rPtjaGolMzxjjAG8C3gmcCbQBe4CvA3/huu5QC6snMmPGmEuAjwAXAAnsdfw17HU8\n2sq6icyGMWYzcC/w28AfuK77j62tkUhjxphu7N/d1wKrgSPAN4E7XNc90Mq6icyGMSYG/CXwfuCH\nruu+orU1EpkdY8wK4MPAdUAvMAj8GPs9+FetrJvITBljzgb+BLgEWAMMAz8F/qvruj9vZd1E5soY\ncydwB/BPruve3OLqLHnqISON3IENxogsJX8NfBHIAR8CbgX+HbgdeNAYE21h3URmxBjzJuBHwHps\n4+C7gcexX+j/zRijf7dlSTDG/AHwCLC11XURmYoxJgk8iP17+zXgZuCzwBuAnxhjlrWsciKzYIwx\nwM+w17LT4uqIzJoxZiXwK+APgf8VpJ8FLgd+bIw5t4XVE5kRY8yFwP8PXAZ8Dnh7kF4K/MgYc1EL\nqycyJ8aYs4A/bXU9TibqISN1gkj+B7CNKPrCI0tC8OX8vcA3Xde9umbXPcaY+4FrgWuA+1pRP5GZ\nMMbEgb/H9ojZXtOr6x+MMfdh79y+EnvXtsiiZYx5J7YB5ZPYwPhnW1sjkSm9FzgbuMV13U+XM40x\nj2G/N9wBvK9FdROZkSBw+CugDzgfeKq1NRKZk78E1gGvc133f5czjTG/AO4HPgj8fovqJjJTn8EG\nxS92XffZcqYx5iHs94o/xbZPiCwJwU2hnwN+jdqJ543utJWKmg/Zc6jxRJaWHPBnwEcb7NsRpBtO\nWG1E5mYV8L+BuxoMsVcOwvzWia2SyJxd57rue4B8qysiMo23AGPA5yfkfx3YC9wUDIsqspjFgP8B\nvMR1XbfVlRGZo/3Al5l8E923AR99D5ZFLmhT+yfgttpgTEDtErJUvRu4EDscqswT9ZCRWrcC24FX\nYofLEVkSXNd9Eniyye4zgvTxE1QdkTlxXfc57FA5jXQG6fCJqY3I3Lmu+99bXQeRmTDGdGC/J/zI\ndd1c7T7Xdf3gbtbrgU3ArhZUUWRGXNc9iG0wEVmyXNf9aJNd7dgeB/oeLIua67oedij1RtQuIUuO\nMWYdcBfwP13X/Z4dHVXmgwIyAoAxZj3wX4Avuq77gDHm5hZXSWROgslM09hJed8M3IKddOz7La2Y\nyBwF1/TbgHHscA0iIjI/Ngbp3ib7nw/SU1FARkSkVf5DkH6ppbUQmSVjTBfQBlwCfAzYTeNRPUQW\nq08BBTR877xTQOYkZIy5aQbF9ruu+72a7b/HDity+8LUSmR25ngdA9wIfCFYPwK803Xde+a1ciIz\ndBzXcfn48lCSW4HbXdfdP5/1E5mJ472ORRax9iAdb7J/bEI5ERE5gYwxVwEfBn6JbbMQWUoGgtTH\ntlH8ieu6R1tYH5EZM8b8HvAa4A9d1z3c6vqcbBSQOTl9cQZlvgN8D8AY80bgauBt+pDJIjKr67jG\nt4HLgBXAVcB/N8ZcAbzVdd3M/FZRZFpzvY4xxiSBe4HXAp9yXbdZ93eRhTbn61hERERkLowxbwHu\nAZ4Fftd1Xc1LJ0vNpdjRO84F/gi4zBjzetd1H25ttUSmFvTu+iTwA6o3PMs8UkDm5LRsBmUKAMaY\nbuBvgB+4rqsPmSwmM76Oa7mu2w/0B5tfMcY8CnwCeAL4i/mrnsiMzOk6NsasAP4VeAnwF67rfni+\nKyYyC3O6jkWWgPJ8BOkm+9smlBMRkRPAGHMHcCfwMHC167qHWlwlkVlzXffBYPUbxpj/CfwKuNcY\nc0Yw34zIYnU30A38B9d1/VZX5mSkgMxJyHXdwVkUvxvoAj4aTNZUVm58WRHkH5442anIQprldTyV\ne7ABmStRQEZOsLlcx8aYXuBH2Emk/8B13X+c73qJzMY8/j0WWWx2Y4cRWddkf3mOmb4TUx0RETHG\nfAK4DXtz0g2u6zYbVlJkyXBd91ljzAPA7wGnoe8WskgZY14G/CH25v3RCW3FAKkgb8x13YFJJ5AZ\nCbW6AtJylwMx4PvAnpqlPDTOV4LtC1tSO5EZMMZ8yBhzxBhzeYPdXUGqALQsesaYDuywexuA1ygY\nIyKycFzXHQMeB7YZYxK1+4wxYeAiYI/rus+3on4iIi80Qc+Y27BD5FyvYIwsJcaYrcaYPcaYf2hS\nRG0TshRcBjjAe6lvJ94T7H99sP7xltTuJKE/AvI2INUg/3Lsh+/PsEM9PXEiKyUyS/8O9GCv2Qcm\n7HtLkP7khNZIZG7+BjgH+wP0W62ujIjIC8Dngb8F3oX9G1x2E7AS+EgrKiUi8kJjjLkU+HPgPuDt\nGtJJlqA+IAG83hjzF67r7i7vMMacBlwMHAaeblH9RGbiXuxwkY38H2yb2yeoBmhkDhzf11BwMpkx\n5mbsXSmX1ox7KbIoGWMcbJf2a4AfAl8FxoCXYwMy/cD5ruvub1klRaZhjPkt4FHgNzRvADzsuu4P\nTlytRGbPGHMV1Tk5XgHcAnwKeDDI03Usi4YxJoodJvI87OSlDwNnAe/DNqy8RHdoy2JnjDkTOLMm\n66vAk9R/n/imrmVZzIwxv8ROfn4r0GzOGF3HsqgZY94IfAk4iv3+uws7FPWtwArgbZq/WZYqY4wP\n/JPruje3ui5LnXrIiMiS57qub4x5LbbR7y3AfwOiwD7gM8BfKhgjS8A2bNfgM7ENKY38ANvALbKY\n/T3VuTfKbgkW0HUsi4jrugVjzBXAR4HXUW0IvAf4iBr+ZIn4fSbfzDHx+8Qm4NkTVSGROdgWpJ+a\nooyuY1nUXNf9Z2PMc8CfYr9TdAHDwC+Av3Zd999aWT8RWRzUQ0ZERERERERERERERGSBhVpdARER\nERERERERERERkZOdAjIiIiIiIiIiIiIiIiILTAEZERERERERERERERGRBaaAjIiIiIiIiIiIiIiI\nyAJTQEZERERERERERERERGSBKSAjIiIiIiIiIiIiIiKywBSQERERERERERERERERWWAKyIiIiIiI\niIiIiIiIiCwwBWREREREREREREREREQWmAIyIiIiIiIiIiIiIiIiC0wBGRERERERERERERERkQWm\ngIyIiIiIiIiIiIiIiMgCU0BGRERERERERERERERkgSkgIyIiIiIiIiIiIiIissAUkBERERERERER\nEREREVlgCsiIiIiIiIiIiIiIiIgssP8LNaZiKo46rRYAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "EIzyJL_3IA0P", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 51 + }, + "outputId": "b8250999-8613-4e18-8a6f-3d47fc845b4b" + }, + "cell_type": "code", + "source": [ + "alpha_samples_1d_ = alpha_samples_[:, None] # best to make them 1d\n", + "beta_samples_1d_ = beta_samples_[:, None]\n", + "\n", + "\n", + "beta_mean = tf.reduce_mean(beta_samples_1d_.T[0])\n", + "alpha_mean = tf.reduce_mean(alpha_samples_1d_.T[0])\n", + "[ beta_mean_, alpha_mean_ ] = evaluate([ beta_mean, alpha_mean ])\n", + "\n", + "\n", + "print(\"beta mean:\", beta_mean_)\n", + "print(\"alpha mean:\", alpha_mean_)\n", + "def logistic(x, beta, alpha=0):\n", + " \"\"\"\n", + " Logistic function with alpha and beta.\n", + " \n", + " Args:\n", + " x: independent variable\n", + " beta: beta term \n", + " alpha: alpha term\n", + " Returns: \n", + " Logistic function\n", + " \"\"\"\n", + " return 1.0 / (1.0 + tf.exp((beta * x) + alpha))\n", + "\n", + "t_ = np.linspace(temperature_.min() - 5, temperature_.max() + 5, 2500)[:, None]\n", + "p_t = logistic(t_.T, beta_samples_1d_, alpha_samples_1d_)\n", + "mean_prob_t = logistic(t_.T, beta_mean_, alpha_mean_)\n", + "[ \n", + " p_t_, mean_prob_t_\n", + "] = evaluate([ \n", + " p_t, mean_prob_t\n", + "])" + ], + "execution_count": 12, + "outputs": [ + { + "output_type": "stream", + "text": [ + "beta mean: 0.19450754\n", + "alpha mean: -12.415545\n" + ], + "name": "stdout" + } ] - }, - "metadata": { - "image/png": { - "height": 193, - "width": 818 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "def logistic(x, beta, alpha=0):\n", - " \"\"\"\n", - " Logistic Function with offset\n", - " \n", - " Args:\n", - " x: independent variable\n", - " beta: beta term \n", - " alpha: alpha term\n", - " Returns: \n", - " Logistic function\n", - " \"\"\"\n", - " return 1.0 / (1.0 + tf.exp((beta * x) + alpha))\n", - "\n", - "x_vals = tf.linspace(start=-4., stop=4., num=100)\n", - "log_beta_1_alpha_1 = logistic(x_vals, 1, 1)\n", - "log_beta_3_alpha_m2 = logistic(x_vals, 3, -2)\n", - "log_beta_m5_alpha_7 = logistic(x_vals, -5, 7)\n", - "\n", - "[\n", - " x_vals_,\n", - " log_beta_1_alpha_1_,\n", - " log_beta_3_alpha_m2_,\n", - " log_beta_m5_alpha_7_,\n", - "] = evaluate([\n", - " x_vals,\n", - " log_beta_1_alpha_1,\n", - " log_beta_3_alpha_m2,\n", - " log_beta_m5_alpha_7,\n", - "])\n", - "\n", - "plt.figure(figsize(12.5, 3))\n", - "plt.plot(x_vals_, log_beta_1_, label=r\"$\\beta = 1$\", ls=\"--\", lw=1, color=TFColor[0])\n", - "plt.plot(x_vals_, log_beta_3_, label=r\"$\\beta = 3$\", ls=\"--\", lw=1, color=TFColor[3])\n", - "plt.plot(x_vals_, log_beta_m5_, label=r\"$\\beta = -5$\", ls=\"--\", lw=1, color=TFColor[6])\n", - "plt.plot(x_vals_, log_beta_1_alpha_1_, label=r\"$\\beta = 1, \\alpha = 1$\", color=TFColor[0])\n", - "plt.plot(x_vals_, log_beta_3_alpha_m2_, label=r\"$\\beta = 3, \\alpha = -2$\", color=TFColor[3])\n", - "plt.plot(x_vals_, log_beta_m5_alpha_7_, label=r\"$\\beta = -5, \\alpha = 7$\", color=TFColor[6])\n", - "plt.legend(loc=\"lower left\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "W_B8n8wuIAz9" - }, - "source": [ - "Adding a constant term $\\alpha$ amounts to shifting the curve left or right (hence why it is called a *bias*).\n", - "\n", - "Let's start modeling this in TFP. The $\\beta, \\alpha$ parameters have no reason to be positive, bounded or relatively large, so they are best modeled by a *Normal random variable*, introduced next." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "_52Ml-KhIAz9" - }, - "source": [ - "### Normal distributions\n", - "\n", - "A Normal random variable, denoted $X \\sim N(\\mu, 1/\\tau)$, has a distribution with two parameters: the mean, $\\mu$, and the *precision*, $\\tau$. Those familiar with the Normal distribution already have probably seen $\\sigma^2$ instead of $\\tau^{-1}$. They are in fact reciprocals of each other. The change was motivated by simpler mathematical analysis and is an artifact of older Bayesian methods. Just remember: the smaller $\\tau$, the larger the spread of the distribution (i.e. we are more uncertain); the larger $\\tau$, the tighter the distribution (i.e. we are more certain). Regardless, $\\tau$ is always positive. \n", - "\n", - "The probability density function of a $N( \\mu, 1/\\tau)$ random variable is:\n", - "\n", - "$$ f(x | \\mu, \\tau) = \\sqrt{\\frac{\\tau}{2\\pi}} \\exp\\left( -\\frac{\\tau}{2} (x-\\mu)^2 \\right) $$\n", - "\n", - "We plot some different density functions below. " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 239 - }, - "colab_type": "code", - "id": "OLw3-8x2hxkm", - "outputId": "d361ad2b-ff47-4fb6-e5a9-71c7cf685ec2" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABoUAAAG9CAYAAADTMX8LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8VPW9//FXNkgIEgg7BgzrN6gV\nFxQVFereirVaFQWsipQrtbdeb9vr9bal6K1tbaXWKlC1WrRVQNtf8VaUqiyuiIKKQuULQRDDokCA\nLGwhmd8f3zPJZDKTzCRnMlnez8eDx+TM2T7nO+ecGb6f8/1+UwKBACIiIiIiIiIiIiIiItK2pSY7\nABEREREREREREREREUk8JYVERERERERERERERETaASWFRERERERERERERERE2gElhURERERERERE\nRERERNoBJYVERERERERERERERETaASWFRERERERERERERERE2gElhURERERERERERERERNoBJYVE\nRERERERERERERETaASWFRERERERERERERERE2gElhURERERERERERERERNoBJYVERERERERERERE\nRETaASWFRERERERERERERERE2gElhURERERERERERERERNqB9GQHICIiIq2TMSZQz+wDQBGwFPid\ntdY2c0wDrbVbErifscAy4DNrbX4c620BjgO+aq1d7r03A/gZ8KS19ibvvXxgM4C1NsWnsH3REuON\n9nlEKu/mZoyZC9wI3G2tnZGMGPxmjDkT+C1wCpAG/Le19reN3NZcXPn8yFp7v29BtgKR7lfRzhdj\nTGfgIWAc0A342Fp7ijdvGDALOAvoCMy21t7ePEfRsoTei4CXrbWXNLD8cmAMSbxHNCdjzE3An4DX\nrLVjkxuNv0I+y5uttXOTG03r4tdvJz9/G4mIiEhiKSkkIiIiTbUA2BkynQL0B04DbgVuMsZ821r7\nXDKCa2GeAHJxCbP6lAAPRpphjNmOq+y8yd/QmiRqvPEwxnTytvXzOBMoRd7+i5saQ2MZY/4N+AN1\nK9VeBvYB7yQjLr8ZY1KAeUA+8C/gdaAwhvWilY/UFu18+SFwE1AO/AXYHjLvUVxl+FZgMfBhwqNs\nJk28311sjLnaWvtXn8MSaWuC398lSY1CREREmo2SQiIiItJUv7PW1qnwNsZ0AH4B/AD4szFmpbV2\na7NH14JYa++Jcbli4D/C3zfG5AF9/Y6rqaLF2win4lqexLv/Qp/23xSnR3rTWvsM8Ewzx5JIvXAJ\nIYALrLU761k2VMTykdrqOV9Gea8/t9b+Ksq88ZHuxa1VE+93e3Etqh4wxrxkrS33LzKRtsVam+zv\nTxEREWlmGlNIREREEsJaewT4L+BjXJdGk5MbUZvQ1ivWW/PxtebY45EV/COOhBC0n/JJlGC5Ryrz\nzHrmtWZNOWc+wrVizcN1dykiIiIiIh61FBIREZGEsdZWGWNeB74CnBx8P2Rcg0XAHcAfgZHAvdba\nX4QsdzauBchooCdurKL1wHO4cTMORtu3MeZyXJdLI4AO3nqzrbV/jLDsMcDtwDeBYbgK2L3AKuAB\na+0r9ewn1YvxZmAwcAR4D7jHWvtG2LJbiKHf/Ehj9ISN4XSjMeZG4DNcq4K7gH9aay+Nsr1zgDdw\nXcP0tdYeiLZvb/ljcBWpV+Oe1N8DvAr8JNZ4vfdTcV1e3Yg7B44BdgMbgKeAJ6y1gbBxQAB+Zoz5\nGd64FyHjFKwDzsd1w3ceMN9aOzWWcQyMMaO9+M8AsoFPcefgA9baoyHLzaWeMYDC54eMsRS02RgD\n3rgW9W3PGHMi7hwdiyvnw15cz+Na4O0NW34L7vw5HagE7gbOBLoCn+POhXustRWRyiBKufTAtea7\nHNcCKA3XNdkS4H5r7YYI+w9OB8/JqOMlNVQ+Yct2BX4OfAPog+sOcDFuzKKdIcvdRGz3j1OA/8R1\nrdYbKMMlC/5orX06Srw5uHvBVcBQ7+2twP8Bvwr/TBpijLkI+DGuFVwq7j40x1r7eJTl51L/+fUn\nY8yfcNf+Fu/YgoJlGzreV/Aa/DbuXtgJ+AI33tt91tpPwvZ/Ewko25BzpSfuXvAT3JhUnXDn/KPA\ng9baQNjyEHK/i2ecEi++rwP/YYyZa639VxzrYow5DvgRcAkuuVSJu85ewl0b28OWX44rj2uAzsAM\noB8w2Fr7eej4RcAh3Ll+Gu6aWwv8zFr7ijGmO66V7Tigh7fPOdbamRFi7IW7fr+G+/7pAOwC3gJ+\nba19L55jjrD9m2jgfPC6lPw2cAPuez4H9139L+BJ4FFrbVXYduM6H0LWG4Irt/OBLriyeQ743waO\nI67fEsH4rLUpxpgbcGU8FDiI+y79obV2kzFmhBfP2bjvlY9wn+NL9cXj7WMZ7t7/s2itiI0xP/GO\nbam19gLvvaaUd2/c/WgCUGytNWHza3Xv2Vy/jerjfb9/HzdmWndc95rvAbOstS9GWL43cCfumjgO\n16XxDtw18aC1dlWs+xYREWnL1FJIREREEm2f95oZZf58XEXQXKC6gtIY813gTVwF2xZcEmEZMAS4\nH3jNG3w9kgnA/8NVVD4NLMdVnjxmjJkeuqAxJht4G1fx0h9XIf9HXAunrwEvG2Pqa+U0B5iOS1g8\nCWwCLgSWGmMuqGe9eD0IrPT+/sSbfsL7B3CR191SJOO91wUxJIQygFdwlWA5wLO4CvGTcRUxfeKI\n+WHgcVxl9KvAY7iKmZNxZfwnb7ngmETBz3+lNx1pLJA5wCDcuCrvxhjHebhzpyOu9cCLuEqqX+Mq\nH5viHWqPp/Qnb7reCmhjzBXAalwCoBiX0FmMqwSeDrxnjOkXZfWRuIrJHOBvuLIdiKtY/V2sgRtj\nhgIfAP+Nq8RehCufcuA7wAfGmPNDVnmCms8M7zgfpP7xkmItn0646/183OfzrPfejcA/jTHRHmaL\ndv+YgDuPJuHGnHrSi2UU8BdjzFyvcpWQdfriKjvvxlU+/h1YiLt3/RewxksUxMQY803cZzoGV+n/\nFO5e9ntjTExdSVJTftu86Veoufb/SuSyfdnbf5p3DI/jkg/LcNfNLly5fmiM+Vo9+/atbENcjiuT\nw7jP+B1gOPAALkEaFO1+FzMvaXM3kAHMimddY8yZwBrgNuAorqyfxz1UeQeu7E6MsvopuPvUu17M\nh8Lmn4r7HA942y3CVXi/YIw5Ffd9dSbwD9w1MRi43xjznbAY+wHv487NLrhr9wlcEvNq4G1jzMXx\nHHcDIp4PuPNrLi4x8gbuPv8q7j4/x5sXTaznA8aYQd788UAp7rx7C3cuv0iUuo2m/JYwxtyK+x77\nGHevrcIlSF7xEkKv4xJxf8ONrXY68H/GmOH1HHNQMHl6dT3LBL+7nwp5rynlfRswEXcuL6wvuJbw\n28gY8yNcAvsK3HfGXNx1eQmwKPw+6j3k8B7uGq3EXRNP4h50mAi8aYy5JJZ9i4iItHVqKSQiIiKJ\nNsR73RJh3lnAa8C3Qp8INsacQE1l5zettc+HzOuGqwg5Hfckdq2KI89dwFhr7Vsh603EVYj+2Bjz\nuLU2WMn6beBE3JP3p3rj4wTXuQVXCXK/MebPEVpg9AMuAIy19gtvnRTgEVyl+oPetpvMWvsfXquB\nUcC7oWMAGGNew1U8fxv3hDkh81KpqXSaG8OuvuPt4wtgpLW2KGRbv8Y9fd8gr4L9VlxScHhYS4/e\neJV5xpjfWms/wnuaH1chuDhKy5NjcQmkU6y1h2OJw/NjYELogPPGmGCi6GZjzJzGPlFvrV0MLDbG\n3O69dU/ok9aRGGN64iqqOgC3W2t/HzKvI64lwleB3xO5wvDXwHettU+FrBc8vycbY35YXyu6EE/i\nWkA8C0wMazF1L/A/uPHABllrD1tr7/Fadd3sHXuD41DEUT634yqdbw/GYYw5HlcBeBIusbc0bJ1o\n94+BuIrTNOA6a+2CkHkGlzS5Edca6s8h2/sT7n71N688DnvrdMRd0zfiKt0brND0kquzcBXVv7DW\n/jhk3mBcZXKDQsrvZNz5/0yEFlbRyvZHuFZXG4DzQ+55wcruObjPd4i1dh+1+V22QfcDX7fWLglZ\n78e41hbfA37jHXfU+12cHsS1lBprjJkYrYVYKOPGw5uHS7r+FtcqJNiCKRV33UzC3U9HRtjErcD1\n1tpole4zvPkvhOzvDVwrxpdxyaDJIfucibvv3oRLAATdjjsn3gPOs9ZWJ5+MMf+LSxLPxLXEaapo\n50MB7n4QAM611q4OmTcc+BC4wRjzYOi8EDGdD55f4ZK1y4BLvS5qMcZ0wt0zzw7fuA+/JX4EnGyt\n3eytk4drYTQQd47fHrwevWv+Ddw5Own3vVOfv+ISTl8xxhhrrQ2L/Xjc74cDuHuSH+V9A3Catfaz\nBmKDJP828lp33YdLql5qrX09ZN4o3LXyU2PMKyEtj6bgEljzrbXXh23vW7gy/wXwzxiOX0REpE1T\nSyERERFJGGNMf1ylJLinTMPlAjPDu4jBVaqlAwtDK3EAvO6bgpUtk6O0IHgmNCHkrfc0rjKnA+5J\n36D3gGnAbaGVHp4/ARW4ActPiLCfDOCnwUoPbz8B3NOxAeAEr1Iq0YJdUd0UYd5YXOueDdbat2PY\n1gTv9fehCSHPT3BdycUiH9dty6c2bOwZr7y+jqvs31B31ai64rqMiSchBLA8NCHkxfA6XosK4No4\nt9dU38ZVOH8QmhDy4jqMe8oZ4JvGdQ8V7q3QhJBnAa57nkxcNz/1MsachqvorcCd+0fDFpmBa1HS\nD9eNVaKVA/8ZGofX3VfwnB0aYZ1o949/x5XDvNCkhbdNS003iLcF3zfGnIR7+rwMmBJ6jnl/fw+X\nkDzfq5htyBhc2ZUS1rWVtXYTLrGXMF7y4gfe5G2hCSEvhj/gkmzdgesibMK3sg3zbGgCwBM8lwcY\n132fb7zzKRjL/caYLjGsFuxK8Qtc14XVZeB1y3UHrvXQad51FK64noQQwJvBhJC3zSPUfD92Be4M\nK/e/ea/h3yUv4c7LH4QmhDyPeK8nGtctY1NFOx8OALfgktS1khDWdU0YrKw/N8p2YzofvFYrwd8S\nPwkmhLz9HMB1L5YWYftN/S3xSDAh5K1TRM09aXtogtZLjPyfN9ng976XiA12f3ZNhEWC1+VCa22Z\n93dTy3tJjAkhSP5vox/ifkP8NjQh5G1rJS6hCLXvNQO91zq/day1fwPOof6WWSIiIu2GkkIiIiLi\nO2NMF2PMpbjuqLKAl2zkPvYPAysivH+e91qnv3jPElzFQjcgUgVttPWCFQXV4xtZa1dZa/9grV0U\nvrBXAbjDm4xWWVlnX14SJFiRdHL4/AT4K7AfGGrc+EGhgt3PzG1oI15F8ineZJ2WDF5F3PIYY9qE\nqzg9xRjzP+Hd81hrN1hrP45QmdmQZXEuD3GcD82k3vPbWrsGN/ZSGq71QLg64zF4ld9fepOxVKwH\nY3jXWrs7wvYqcC0DwCWPEm15lGRfcNyWSMmxaPePYJd30T734LV+hlfZHLrOigitZvAqZYPl8dUo\n2w0VbEHybpRz/OUI7/npJFxXhIeIfs0EyyHS8fhZtqEijSUSOjaPr0khqE4A/wWXHK937BlP8Np4\nNUILCLzr5UNvMtK10dA9KlK3l8HKc2ut/TLKvFoJLWvtcmvtLBt5fJbQJKAfZRrxfLDWbrXWPuEl\nGSMJxhEthljPh6/guv88Qk23gqFxrKHm/heqqb8l6vusIsUe8bOqxzPea6RERfC7u7rFnQ/lHfP3\nZzJ/G3mtioL3pYbuNaH3r2Brqx8ZY+rc16y1b4Um+URERNozdR8nIiIiTbXC9RoUUQDX1U60p8Z3\n27ABkT3Bpz0j/ufdWltmjNmDq/QcgBuvI9SnUfYXrDDpG/qm1zXT7bgKvt64p7XDRRojo9hau7+e\nfQ0K31ciWGsPGmPm4Z6Kvhk3fgLek8/fwo2DEN6yJJJuuDEjoHalYqiYnjK21n5pjPk+MBu4F9dt\n3xu4sQ8W2bAB7uMQqeKvIXGdD82g3vPbs4Wa8zvc51HWqfReY3nwK9YYiBKD36KdV8FEUaRWANHu\nH/ne6zXGmEhJNXBPuWfgxmv5KGSd44wx0cZlCpZDpFZL4Y71Xpt0HTVBvvdaBcyMco8Odu0Z6Xj8\nLNtQdc5da21lSHyJemjxR7gWQLcZY57wkgjRxHptjCTytdHQPSq8BSbUXLt1ErQh8+p8BxljxgDf\nxY0Z1ZPIyYho4zvFI9r5gDGmD6711EW48747da/XaDHEej4Er6ed1trK8HU8n1E3edzU3xKN/axi\nPY9fwLVAHGGMGWqt3QhgjDkF1+JzJ278qWpNLO+4vj+T+NsoJ2Rf/2aMidSaNzhOZS9jTBdrbQmu\nS8xxuETRUmPM57jE38vAi/XEJCIi0u4oKSQiIiJNtQBXcRHqIG6w65e9rpKiKYvyfjAxUd+4KMGn\n77MizCtvYJ1gZQLGmCtxx5CB6xptCa7iJNg9zWTgmCjbi7afiPtKsMdxSaFrjTHft9aW4wZ17o4b\noyda5XSoTiF/R2vBE3PXbdbaOcaY93HdwFwS8u83xpgVuG5pPoh1e8DhCN2cxSLm86GZNPX8rtN6\nIQkx+C1aRW99ot0/gq3SvhllfqhgJXpwnWE03P1eLK0AguXb5OuokYLH0wlXqVufSMfjZ9mG8uPc\njZu1dqcx5qe4cbpmG2POidAVWlBTr41oZRdU3z0sWkx1GGO+hzueFFxF+0u4REVw+w197vGIeEze\n+Fhv4RIGh3Ct6T6n5p57MW6cuGhiPR8aup4g8jXV1M/Sl88qGmvtIWPM33APc1xDzZiAwVZCz4Qm\nwXwo74bOzWpJ/m0U2rL42w0G6+41Jd4DMpfiutL9DnCq9/dNwGFjzOO4McJiGXNPRESkTVNSSERE\nRJrqd9bad3zeZjnuP/md6lkmOC9SJUe0yobg+wegemDoP+AqPf4ITAtPOhhjriJ6xUd9lRq19pVo\n1tpVxpiPcN1GXYHrlibmruM8oRVuHaMsU99nEimulbhWBRm4gcC/BkzEPXn8ujFmuK07dpHfYjof\nYpTRxFigpsKssee3H1pCDIlShnvS/BJrbazdtAWPcZ61dkK9S8YmeC35ch01QvB4dlhr+/m83XjL\ntqWYjavIPhtXCf9ElOVa/LVhjOkJzMQlhH4G/G9oksvrCtTPpFA09+MSFKtx50StMeeMMU9Rf5Ii\nVg1dTxD582rqb4nm8DTufLyaukmhP4ct2yzl3QJ+G4V+FsZaG/PYg143t48CjxpjeuBaVF2J+130\nXVzrqliS2iIiIm2axhQSERGRlijY3degSDO9wadzvclI3cJE6+6qv/caTEIMp6a7mf+OUOnRCVcB\nE00Pb5lY9tUc/ui9XmeMyQKuAvYC9Q16HqqYmqeA+0RZJuJn0hBrbYW19jVr7X8DBvfUcWfcE7yJ\nFuv5AK67LYjcXRnUdJ/VFPWe355YurBKdAzBea1tDIZC7zWebu8as059guNt+HodxSF4PL2NMR0S\nsN3m6FLQV16Li9twLTzuM8bkRlm0NVwbZwEdcGPJ3Ruh1VOiz6+gMd7rL8MTFD7HEbyeenvjzUQy\nMMJ7Tf0t0RyW4Y7vFGPMIK9bxnxgrbX2w7Blm6u8k/rbyBvXLXh8jb7XWGt3W2vnWWuvBc7EJaKu\nMMbkNXabIiIibYWSQiIiItISLfdex0WZf6n3uh3YGGH+JVHWO8d7Xe29BltNV+Eq18Ldgqt4g8j9\n5qfgnkKtxatwyA/bl5+iVYo9jetC51JclytdgPnW2pi6qvIqTT/2Js8Jn+8lmsbGsi1jzAnGmGnG\nmGPD51lrD1CTqKozH3/GwAgV6/kAUOq91qnMN8b0op7BsT2xxL7ce70s0kxjzCjc+E6HiDCouk+C\nMZxujKlTuWeMyaTms14ePr8J/P5sI1nqvUYahwJjTJYxZrwxpnuEdUYZYyJWQhpjLjXGnBBjDMHK\n3DO8p+7DfS3G7TTWv3DdeqYSeRB7jDGnGmPO9cYei1VjyrapfDtnrLVvA3/CjSHziyiLLfdeLzLG\n1GmZYozph2uRCa77rmQIfmYlUcbYmRbydyKvuWAce8NnGGNG4Fpl+RHDWlwXk5m48ZPC93Um7p4Z\nbrn32tjfEgnnjdU035v8GjXXa6RxAJurvFvCb6OG7jW9jTFXGGOO8abTvXv0LZGW97qqDY5lGOl3\nh4iISLuipJCIiIi0RLNwyY1xxpgrQmd4gyzf603+Psq4EDcaY2pVHBljJuMGVj8APO+9vRFX0ZQK\nfD1s+StxY+Gs997qT11HgF+EVoB6TzH/3Jt8t4ExleIVTFgcF2mmtbYY+Duuy5dfe2//Kc59POe9\nft/rogioPq77iL3bq0m47poeDK8U96av9CZDn4Su9/ia4FJjTPjnewFwAa7Sa37IrGBS7MrQlgRe\nQmw20ce+CXZ3E0vsT+Kegj7JGPP9sLg6A7/zJucmamBsa+0aXKVbOvCQMaa6ZZT3Wf8aN9D3OuBV\nH3YZT/k01RzcGCIXGWNuCJ3hJUAexn3ms4PvW2v/BfwTVx6zvM87dL1LcfeNlaHXRT2W4FredQP+\nM2xbxnuvMeMoxcSraH7Qm/x5eKLLGDMI+BvwOhEqb+sRd9k2QaLuB3fiKtW/AxREmP8CsAGXOPpl\n6Azv3jUL952x2FprfY4tVsHK7TxjTK1EtTHmVlyyY5f3VqTvLr/jqJV0McYcD/wVeNuPGLyWI694\nkzPC7ledgQeoaeUaqqm/JZrL097rJbiyrMJ1ARuuWcqblvHb6He4Vn3fNsZcGBZDNq5b3IXAT7y3\nq3Ctpf9ojPlW+Ma8MjoRdz6sD58vIiLS3mhMIREREWlxrLWFxpjvAo8BfzfGvI6rpOsDnIcb0+If\nuDEVIrkXeNsY80/cIMyDcQMwA9xlrd3t7afUGDMb+HfgOWPM87jKwtNwlQdX4VpzFAC/MsacBfw0\nZD+bcYM+bzDGLMY9UXs2MALXyqNWhb8PVnmvY4wxb+MqNyZZa7eFLPM4cB2uldA6a+17ce7jYeBG\nXPcxa40xL3n7OQfXncyDwI9i2M79uLL7FvC5MWY5LhGSg/sM++NawcyNcHzf9iqxM6y158YZfyQz\nqH0e9fNiS8GNibUuZNnngHuAvsA6Y8yruErwC73XWcB/R9jHKlzLmueMMe8BK621d0cKxlq7zxgz\nCZfAe9AYMxH4CNeNUbCcVwL/1YRjjsVkXEuHa4BTjTErcGUyEtfF35fA9V6CoaliLp+mstZu9p4W\nfwp4yhgzDViDG/9iLO4p8S3AD8JWvQWXKBsHFBpjXsFVbp6Au64rgX+z1u6iAd6A5z/CXY+/MsZc\ngqvQ7YNrDfAAriuznCYdbP3ux3WZdAXwL+8etQt37V2Ee9L/cWvtS7FusAll2xix3O/iZq3dbYz5\nH1yCq04rOWttpTHmelwS4g5jzEVeLFm48jwOV2k+pSlxNIW19hNjzD+Ay3Fjsz2PK5/RuHPsQtx9\n7Ou4SvIl1tppUTfYePfhkot3eC1VNuC6MDsfl1D72ItpojEmgDvf3o62sQbcibs/XgZ87N3Ps3CJ\nlI3Ay4QlS3z4LdEsrLWrjTEWdywdgFejnOfNUt4t4beRtfZtY8yduAcU/mmMWeYdby7u/pULvI+X\n2LPWVnn3o+eAvxpjVnnlcQjXBd0FuDGp/iNRD1uIiIi0JmopJCIiIi2StfYJXOXG34BhuLFnzsVV\nQE4Grgzv5z7EU7iK7lxci5XzcJV6E6y1vw9b9ke4ipaduMGHx+EqNUdba18EfoV7+jYX9/R16O+n\nSuBWb5mTvRjzgZeAc621vnb9Za19Ddfl0W7gFFxyI7wMlnjxQ+2ES6z7KMeV12xchfgE4Bu4Fj1n\nEOO4C954B+fgKoq24Sopp+LKdxuu0nhsWNd2T+Oe9N2Pq3z1q8J8KTWtgq7HVcpbXIXXD8Pi3o8b\nt2EhrnJuPK6i7gXveMqJ7HvAe7jK8TOoGZsoImvtYuBU3GfUB5eIuwhXvnfgyqY06gZ8YK39DFfJ\n9ytchfK3cJV9AVwl6Qhr7cfRtxCXuMqnqay183DJrb/gkiC34Fqn7cZVlp9irS0KW2cbcDrwM1zy\n5GrcNT0A99T+mdbauXHE8ASuPN/GHfNNuHFP7rDW/hhX5gnj3R+vwg1ivwpXcTwFGIXrVusaa23c\niY3GlG0j44/lftdYj1KTdIq07/dx9/RZuC7Lrsfdu/bhksynNzU55YNvA4/g7knjcfePd4AzrLWr\ngbtwleLHUTMWja+stf8P9338Me7+eC1eeVlrp+MS38/gvkuuwF3/jd3XR7jfBM/jknk3e/t8CneP\nPhBlvab8lmhOT1PTJdufIy3QnOVNC/htZK39DS7Z/DwuOf8dXKKzEPfdPdpaWxKy/D9wyacnvLiu\n8dY5BXgRuMBa+yAiIiJCSiCQzFbSIiIiIuInr3ujzUB3oH+wVZSIiIiIiIiIiFoKiYiIiLQtN+O6\ncPqLEkIiIiIiIiIiEkpJIREREZE2whtw/H5c1zG/SnI4IiIiIiIiItLCpCc7ABERERFpGmPMw0Av\n3BgCHYDbrLWbkhuViIiIiIiIiLQ0SgqJiIiItH63ABmABX5hrX06yfGIiIiIiIiISAuUEggEkh2D\niIiIiIiIiIiIiIiIJJjGFBIREREREREREREREWkHlBQSERERERERERERERFpBzSmUILs379f/fKJ\niIiIiIiIiIiIiEhC5eTkpMS6rFoKiYiIiIiIiIiIiIiItANKComIiIiIiIiIiIiIiLQDSgqJiIiI\niIiIiIiIiIi0A0oKiYiIiIiIiIiIiIiItANKComIiIiIiIiIiIiIiLQDSgpJ0mzcuJGNGzcmOwyR\nZqXzXtojnffSHum8l/ZI5720Rzrvpb3ROS/tkc57aWuUFBIREREREREREREREWkHlBQSERERERER\nERERERFpB5QUEhERERERERERERERaQeUFBIREREREREREREREWkHlBQSERERERERERERERFpB5QU\nEhERERERERERERERaQeUFBIREREREREREREREWkHlBQSERERERERERERERFpB5QUEhERERERERER\nERERaQeUFBIRERERERERkRa16v7sAAAgAElEQVSt6mgVOz/aye71uwlUBZIdjoiISKuVnuwARERE\nRERERERE6rPhxQ18ufZLADr16MSgCweROyg3yVGJiIi0PmopJCIiIiIiIiIiLVZJUUl1QgjgwO4D\nrJ2/lrXPruXA7gNJjExERKT1UUshERERERERERFpkQKBAJ8u/TTivOLCYvZ+upd+p/VjwDkDyMjK\naOboREREWh+1FBIRERERERERkRZpz8Y9lBSVVE+nZ9V+vjlQFWDbe9t47w/vsW3VNqoqq5o7RBER\nkVZFSSEREREREREREWlxAlUBNi/bXPNGCgwYPYD8r+aT1T2r1rJHDx5l08ubWP3H1RRvKm7eQEVE\nRFoRJYVERERERERERKTF2blmJwf3HKye7prflY7HdCSraxbHnXscx55xLBmdancZd3DPQdYuWEvh\ny4XNHa6IiEiroKSQiIiIiIiIiIi0KJVHKvns9c+qp1PSUuhZ0LNmOiWFLsd2YdCFg+h5Qk9S02tX\ncW1ftZ39W/c3W7wiIiKtRXrDi4iIiIiIiIiIiDSfoneLOFJ+pHq6+9DupGfWrcZKTUulx7AedB3Q\nlV3/2sW+z/ZVz/ty3ZfkDMhplnhFRNqKffv2sXz5ct566y02bdrErl27SE9PZ8iQIYwbN47LL7+c\n1NS21dbkiy++4NFHH2XFihXs37+fHj16MGbMGKZMmUKXLl1i2sYLL7zAPffcU+8yqampvPPOO36E\n3CRKComIiIiIiIiISItxpPwIRe8UVU+ndUwjd0huveukZ6bT99S+HC47XN3l3K71uxh88WBS09pW\n5aWISCItWbKE++67jx49enDaaafRp08fiouLWbZsGffeey8rVqzgl7/8JSkpKckO1RdFRUVMmTKF\n4uJizjvvPPLz81m3bh3z589nxYoVPPbYY3Tt2rXB7QwbNowpU6ZEnPfhhx+yatUqzjrrLL/DbxQl\nhUREREREREREpMXY+uZWKo9UVk/3LOhJWkZaTOvm5OVUJ4WOHjzK3k/30n1o94TEKSLSFg0YMICZ\nM2cyevToWi2Cpk2bxs0338zSpUtZtmwZ559/fhKj9M99991HcXExP/jBDxg/fnz1+w888ADz5s1j\nzpw53HXXXQ1uZ9iwYQwbNizivMmTJwNw5ZVX+hN0E+lRCRERERERERERaREOFh9kxwc7qqc7ZHeg\na37DT2gHHXPsMRDy8PqX6770MzwRaWcWLFjAxIkTWb58eZ15ZWVljBo1imnTpjV/YAl0+umnc+65\n59bpIq5Hjx5cddVVAKxevbpR2963bx+jRo3ijDPOqPff6NGjOXz4cJOPpSFFRUWsXLmSvn37cs01\n19SaN3XqVLKysnjppZc4ePBgo/dRWFjI2rVr6dWrF6NHj25qyL5QSyEREREREREREWkRNi/fTKAq\nUD3d84SepKTG3kVResd0sntlU/5FOQB7Nu6h8kglaR1ia2kkIg17cMXeZIdQr9vP6ubbttavXw/A\nwIEDI84LBAIMHz7ct/21dOnpLp2Qlta4e+qBAwe45ZZbqqd37NjBokWLKCgo4Jxzzql+v1u3bnTs\n2LFpwcZg1apVAJx55pl1kmDZ2dmcdNJJrFy5ko8//pgzzjijUfv4+9//DsA3vvGNRpeb35QUEhER\nERERERGRpCvZVsLu9burp7Nyszim3zFxbyenf051Uqiqooo9G/fQ64RevsUp0t4VFlckO4RmY60l\nIyODvLy8OvOCCSNjTNT1582bR2lpacz7GzZsGGPHjo07zuZw9OhRXnzxRYBGj43Tr18/pk6dWj29\ncOFCFi1axMUXX8ykSZNi2oafZbp161bAdZkXyYABA1i5ciVbt25tVFLo0KFDLF68mLS0NK644oq4\n108UJYVERERERERERCSpAoEAny75tNZ7vU7s1aiBzI/pewwpaSkEKl2Loy/XfamkkIjE7fDhw2ze\nvJn8/PyILTyCSaGCgoKo25g/fz47duyIOj/cZZdd1mKTQrNmzWLTpk2MHj260UmhcBs3bgSIOhZP\nJH6WaVlZGeBaBUUSfD+4XLxeffVVSktLGT16NL17927UNhJBSSEREREREREREUmq4o3FlBSVVE93\n7tuZTt07NWpbqempHNP3mOrt7f10LxUHKsjolOFLrCLt3ZDc9nEtFRYWUllZGbHrOIBPPvmE7Ozs\nqK1MAJ5//vlEhVftiiuuiCtJcumll3LPPffEtY8FCxbw9NNPk5+fz4wZM+KMMLoNGzYAMHTo0JjX\naY4y9cvChQsBqsdiaimUFBIRERERERERkaQJVAX4dFlIK6EUmtyyp0tel+qkUKAqwK71u+h3ar8m\nbVNEHD/H7GnJ6htPqKysjKKiIk4++eRGtWj007HHHkuHDh1iXr5Hjx5xbf/ZZ59l5syZDBw4kFmz\nZpGTkxNviBEFAgEKCwvp2bMn3bol55zq3LkzAOXl5RHnB98PLhePTZs28dFHH9GrVy/OPvvsxgeZ\nAEoKiYiIiIiIiIhI0uxcs5ODew5WT3c9risdj2naAOOde3cmNSOVqooqwHUhp6SQiMTDWgtAfn5+\nnXlr1qwhEAjUO54QNM+YQrNnz45r+XjMmzePBx54gMGDBzNr1ixyc3N92/b27dspLy9nxIgRccfk\nV5kGW3kFxxYK19CYQ/UJthL6xje+EbH7wWRSUkhERERERERERJKi8kgln73+WfV0SloKPYf3bPJ2\nU1JT6HJsF/Zt2QdAyeclHNp/iMyczCZvW0Tah2BLoUiJkJdffhmA4cOH17uN1jym0JNPPsmsWbMY\nNmwYDz/8MF27dvV1+1u2bAFg0KBBca3nZ5mOHDkSgHfeeYeqqipSU1Or55WXl/PRRx+RmZnJV77y\nlbhiPHz4MC+99BJpaWlcccUVca3bHJQUEhERERERERGRpNi1fhdHyo9UT3cf2p30TH+qq7r0r0kK\nAez61y76n9Xfl22LSNt29OhRNm3aBLgWQ6effnr1vFdeeYXFixcDMHjw4Hq305rGvwn1+OOP88gj\nj1BQUMBDDz3UYJdxd999N4sWLWL69OmMGzcupn0Eu2bLzs6OKzY/yzQvL49Ro0axcuVKnnvuOcaP\nH18979FHH+XgwYNceeWVZGVl1VqvqKiIo0ePkpeXR3p63e+sJUuWUFJSwjnnnEPv3r19i9cvSgqJ\niIiIiIiIiEhS7N28t/rvlLQUcof41zVRp+6dSM9M5+iho4DrQk5JIRGJxaZNm6ioqCA3N5dZs2Yx\ncuRI8vLy2LhxIxs2bKBbt24UFxfz+OOPM2nSpLhbkrRkL7zwAo888ghpaWmcfPLJLFiwoM4y/fr1\nq5X8qapyXXXG001asEu2+fPnU1JSwvHHH88ll1zSxOjjd+eddzJlyhRmzpzJe++9x8CBA1m7di2r\nV69mwIABTJs2rc46t912Gzt27GDhwoX061e3a9K///3vAFx55ZUJj78xlBQSEREREREREZFmFwgE\n2L9lf/V0px6dSMvwb9yFlJQUuuR1obiwGIDyL8sp31VOds/4nkoXkfYn2HXclClTWLt2La+//jof\nfPABJ5xwArNnz+aDDz7gkUceYceOHfTp0yfJ0fpr+/btAFRWVjJ//vyIy5x66qm1kkKbNm0iOzub\n0aNHx7yfgoICbr31Vp577jnmz5/P9ddfn5SkUF5eHk8++SSPPPIIK1as4O2336ZHjx5cd911TJky\nhS5dusS1vc2bN7NmzRp69erF2WefnaCom0ZJIRERERERERERaXYHdh+o1XVcIpI1Of1zqpNC4FoL\nDRw70Pf9iEjbYq0F3JhBI0aMYOLEiQwdOrR6/vHHH8/EiROTFV5CTZ06lalTp8a8fGlpKYWFhUyY\nMCHuBMrkyZOZPHlyvCH6rnfv3kyfPj3m5evrwm7gwIG8++67foSVMKkNLyIiIiIiIiIiIuKv0PF+\nIDFJoY45HenQuUP19K5/7SIQCPi+HxFpW9avX09aWlqDYwYJfPjhh6SnpzNhwoRkhyIxUlJIRERE\nRERERESaXWhSKK1DGh1zOvq+j5SUFLr0r3ly/dC+Q5RuL/V9PyLSdlRWVlJYWMhxxx1HZmZmssNp\n8c4991zefPNNevTokexQJEZKComIiIiIiIiISLMKVAXYt7UmKdSpRydSUlISsq+cvJxa01+u+zIh\n+xGRtmHLli0cOnSIYcOGJTsUkYTQmEIiIiIiIiIiItKsSneUUnm4sno6u5f/XccFdejcgcxumRza\newhwXcgNvnAwKamJSUKJSOs2ePDgFj8mjEhTtKmkkDGmA/Bz4IfA69basXGsezbwU+BMIAvYADwG\nPGytVWezIiIiIiIiIiI+aY7xhELl5OVUJ4UqDlSwd8tecgflJnSfIiIiLVGb6T7OGGOAFcA0IK5H\nPYwx5wPLgKHADOA7uKTQ74EHfA1URERERERERKSdC00KpWelk5GdkdD9HZN3TK3pXet2JXR/IiIi\nLVWbSAoZY7oB7wNpwMhGbGI2cAg411r7oLX2z9baq4Hnge8bY0b4F62IiIiIiIiISPtVWVHJ/qL9\n1dPZPbMTNp5QUEZmRq3WSLvtbiorKutZQ0REpG1qE0khoAPwFHCmtdbGs6IxZhRggGettTvCZj+M\na3U0yZcoRURERERERETauZJtJQQqa3rqT3TXcUFd+nep/rvySCXFhcXNsl8REZGWpE2MKWSt/QLX\nbVxjnOG9rogwb6X3OqqR2xYRERERERERkRDh4wl16tmpWfZ7TL9j2PnhTgJVLiH15bov6Tm8Z7Ps\nW0REpKVoE0mhJsr3XovCZ1hrS40x+4BBfu1s48aNfm2qzVCZSHuk817aI5330h7pvJf2SOe9tEc6\n7+Oze/3u6r9Ts1LZvX837K9nBR+ld02norgCgD2Fe7DrLKkd2kpHOs1H57y0RzrvpSUYOnRok7eh\nbz0IjjR4IMr88pBlRERERERERESkkaoqqqqTMgDpOc37vHJGj4yQYODQtkPNun8REZFkU0uhZuZH\nJq+tCGbXVSbSnui8l/ZI5720RzrvpT3SeS/tkc77+O3ZsIcv+KJ6uudxPenSp0s9a/irqmcVGz/d\nSNXRKgBSi1MZerE+v1jpnJf2SOe9tDVqKQQl3mu0UQ07hywjIiIiIiIiIiKNtHfL3lrT2T2iVcck\nRmpaKp37dK6eLtlWQiAQaNYYREREkklJIfjUe80Ln2GMyQFyAHUYKSIiIiIiIiLSRPu27Kv+O7Nr\nJmkd0po9hqzuWdV/Vx6u5MCuaCMKiIiItD1KCsHb3uvoCPPO9V7fbKZYRERERERERETapCNlRziw\nuyYBk92zeVsJBWXlZtWaLtmmDmJERKT9aHdJIWNMgTFmYHDaWvsh8D5wjTEmL2S5FOAOoAJ4stkD\nFRERERERERFpQ/Z9tq/WdKdenZISR2aXTFLSUqqnlRQSEZH2JD3ZAfjBGHM8cHzY2z2NMVeHTL9o\nrT0AfAJYoCBk3neBZcDrxpjfAfuA64DzgZ9aazclLHgRERERERERkXYgdDyhlNQUOuUmJymUkppC\nVres6lZLSgqJiEh70iaSQsC1wM/C3jseeC5keiCwJdLK1tqVxpjzgHu8fx1xyaPJ1to/+R6tiIiI\niIiIiEg7EggEao0nlJWbRWp68jqwycqtSQod3HOQioMVZGRlJC0eEZF4fPHFFzz66KOsWLGC/fv3\n06NHD8aMGcOUKVPo0qVLssPz1ZIlS3j//ffZsGEDhYWFlJeXc+mll3LPPfc0anvtqeyiaRNJIWvt\nDGBGjMumRHl/FfB1/6ISERERERERERGAQ/sOcXj/4erpZI0nFBQ+rlDp9lJyB+cmKRoRkdgVFRUx\nZcoUiouLOe+888jPz2fdunXMnz+fFStW8Nhjj9G1a9dkh+mbJ554go0bN9KpUyd69epFeXl5o7fV\n3soumjaRFBIRERERERERkZYrtJUQQKeeyek6Lig8KVRSVKKkkIi0Cvfddx/FxcX84Ac/YPz48dXv\nP/DAA8ybN485c+Zw1113JTFCf91xxx306tWL/v378/777zNt2rRGb6u9lV00yWunKyIiIiIiIiIi\n7UJoUig1PZWsbln1LJ146R3Tyciu6S5O4wqJSCQLFixg4sSJLF++vM68srIyRo0a1aQkRbyKiopY\nuXIlffv25Zprrqk1b+rUqWRlZfHSSy9x8ODBuLe9b98+Ro0axRlnnFHvv9GjR3P48OGGN+iTkSNH\nMmDAAFJSInYAFrNEll1ro5ZCIiIiIiIiIiKSMOHjCXXq0YmU1KZV7vkhKzeLivIKwHUfF6gKtIi4\nRFq8mb9OdgT1+8F/+bap9evXAzBw4MCI8wKBAMOHD/dtfw1ZtWoVAGeeeSapqbXbe2RnZ3PSSSex\ncuVKPv74Y84444y4tn3gwAFuueWW6ukdO3awaNEiCgoKOOecc6rf79atGx07dmzCUSRHIsuutVFS\nSEREREREREREEqb8y3IqDlZUTyd7PKGgrNwsSj53LYQqj1RyYPcBsnu1jNhEWrKUjRuSHUK9Aj5u\ny1pLRkYGeXl5deYFE0bGmKjrz5s3j9LS0pj3N2zYMMaOHRt1/tatWwEYMGBAxPkDBgxg5cqVbN26\nNe7ERr9+/Zg6dWr19MKFC1m0aBEXX3wxkyZNimkbfh+vnxJZdq2NkkIiIiIiIiIiIpIwLW08oaBO\nubXjKNlWoqSQiFQ7fPgwmzdvJj8/n7S0tDrzg0mhgoKCqNuYP38+O3bsiHmfl112Wb1JkrKyMsC1\nbIkk+H5wuabYuHEj4BI3sfL7eP3UnGXX0ikpJCIiIiIiIiIiCbPvs5qkUFrHNDp2aRndDnXs0pGU\ntBQCla5dQcm2Evqe0jfJUYm0fIGhsScJWrPCwkIqKysjdh0H8Mknn5CdnR215QnA888/n6jwEm7D\nBtcibOjQoTGv05qPtz1RUkhERERERERERBKiqrKK/Vv3V09n98xu8mDhfklJTSGrWxYHdh8AoKSo\nJMkRibQSPo7Z05LVN55QWVkZRUVFnHzyyc16T+vcuTMA5eXlEecH3w8u11iBQIDCwkJ69uxJt27d\nmrStlqK5yq41UFJIREREREREREQSonRHKZVHKqunW0rXcUFZuTVJoYPFB6k4WEFGVkaSoxKRlsBa\nC0B+fn6deWvWrCEQCNQ7nhD4P8ZOsFVScHyccA2NmxOr7du3U15ezogRI+JaryWPKdRcZdcaKCkk\nIiIiIiIiIiIJET6eUHbPljVmT1ZuVq3p0m2l5A7JTVI0ItKSBFsK5ebWvSe8/PLLAAwfPrzebfg9\nxs7IkSMBeOedd6iqqiI1NbV6Xnl5OR999BGZmZl85StfiXmfkWzZsgWAQYMGxbVeSx5TqLnKrjVQ\nUkhERERERERERBIiNCmU0SmDDtkdkhhNXeFJoZJtJUoKiQhHjx5l06ZNgGsxdPrpp1fPe+WVV1i8\neDEAgwcPrnc7fo+xk5eXx6hRo1i5ciXPPfcc48ePr5736KOPcvDgQa688kqysmrf2+6++24WLVrE\n9OnTGTduXIP7CXallp0dXyK/JYwpVFRUxNGjR8nLyyM9vSb90diya4uUFBIREREREREREd9VVlRS\nsq1mnJ6W1koIIL1jOhnZGVSUVwDUildE2q9NmzZRUVFBbm4us2bNYuTIkeTl5bFx40Y2bNhAt27d\nKC4u5vHHH2fSpEnN2rrkzjvvZMqUKcycOZP33nuPgQMHsnbtWlavXs2AAQOYNm1anXWqqqoASEtL\ni2kfwS7U5s+fT0lJCccffzyXXHKJfwcRh+XLl/Paa68BsGfPHgA+/vhj7r77bgC6du3K7bffXr38\nbbfdxo4dO1i4cCH9+vWrta3GlF1blNrwIiIiIiIiIiIiIvHZ//l+ApWB6ulOvVrWeEJBnXJr4ird\nXkqgKlDP0iLSHgS7jpsyZQoXXXQRH3/8Mf/4xz9IS0tj9uzZ3HDDDWRmZrJjxw769OnTrLHl5eXx\n5JNPMm7cONatW8fTTz/Ntm3buO6663jiiSfo2rVrnXU2bdpEdnY2o0ePjmkfBQUF3HrrraSnpzN/\n/nw++eQTvw8jZhs2bGDRokUsWrSId955B4Bt27ZVv7d06dKYt9WYsmuLfG0pZIxJs9ZWNrykiIiI\niIiIiIi0ZXXGE+rR8loKgetCbv/n+wGoPFJJ+e5yOvfqnOSoRCSZrLWAGzNoxIgRTJw4kaFDh1bP\nP/7445k4cWKywqN3795Mnz49pmVLS0spLCxkwoQJdOnSJeZ9TJ48mcmTJzc2RN9MnTqVqVOnxrx8\nQ13YxVN2bZXfLYWeN8Z09HmbIiIiIiIiIiLSyoQmhTp26Uh6ZsscxaDOuEJF6kJOpL1bv349aWlp\nDY4Z1Bp8+OGHpKenM2HChGSHIi2E30mhrwMvGWP0OIWIiIiIiIiISDtVWVFJ2Rdl1dOderbMruPA\nJaxS0lKqp0u3lSYxGhFJtsrKSgoLCznuuOPIzMxMdjhNdu655/Lmm2/So0ePZIciLYTfSaF5wFhg\niTEmN9pCxpizjTFv+bxvERERERERERFpAcq/KIeQoXmyumVFXzjJUlJTasVXsk0thUTasy1btnDo\n0CGGDRuW7FBEEsLXdrvW2onGmL3Ad4HXjDEXWWt3BucbY4YAvwKu9HO/IiIiIiIiIiLScpTurN3a\nJrNry37aPis3iwO7DwBwsPggFQcqyOiUkeSoRCQZBg8ezLvvvpvsMEQSxvfOXK213zPGFAM/Ad40\nxlwIlAI/A/4NyAD2A/f5vW8REREREREREUm+sp01XcelpqfSoXOHJEbTsDrjCm0vofuQ7kmKRkRE\nJHH87j4OAGvtdOAOYCCwAigEvgdUAvcDg6y1v0rEvkVEREREREREJLnKdtQkhTK7ZpKSklLP0slX\nJylUpC7kRESkbfK9pVCIImAP0BvXi+z/Ad+z1hYlcJ8iIiIiIiIiIpJElRWVlO8ur55u6V3HAaR3\nTKdDdgeOlB8BoHRbaQNriIiItE6+J4WMMecDvwRGAinAv4DjgVOBTn7vT0REREREREREWo7yL8rd\n48Ge1pAUAtdaqDoptKOUQFWAlNSW3cJJREQkXr52H2eMeRl4BTgdsMAV1toTgf8AjgXeMMac4uc+\nRURERERERESk5SjdWbuVTatJCnWv6UKu8kgl5bvK61laRESkdfJ7TKELgd3AbcBXrLX/ALDW/h6Y\nDOQCS40x5/m8XxERERERERERaQHKdtaMJ5SankqHzh2SGE3s6owrtE3jComISNvjd1LoF8AQa+0c\na21l6Axr7ZPAtUAmsNgYM87nfYuIiIiIiIiISJKV7ahJCmV2zSQlpXV0wdaxS0dS02uqypQUEhGR\ntsjXpJC19ifW2qgj8Vlr/w5cDlQBf/Vz3yIiIiIiIiIiklyVFZWU767pdq21dB0HkJKSQma3mnhL\nt0Wt4hIREWm1/G4p1CBr7au4bubUMauIiIiIiIiISBtS/mU5BGqmW1NSCGp3IXew+CAVByqSGI2I\niIj/mj0pBGCtfQcYk4x9i4iIiIiIiIhIYoR2HQetOykE6kJORETanqQkhQCstWuTtW8RERERERER\nEfFf6c6aLtdS01Pp0LlDEqOJX1Y3JYVERKRtS1pSSERERERERERE2pbQlkKZXTNJSUlJYjTxS++Y\nXiuRpaSQiIi0NUoKiYiIiIiIiIhIk1VWVFK+u2YI6dbWdVxQaBdypdtLCVQF6llaRESkdUlPdgAi\nIiIiIiIiItL6lX9ZDiH5k9acFNq/dT8AVRVVlO8qp3PvzkmOSkTEeeihh/jkk0/YunUr+/fvp2PH\njvTp04cxY8ZwzTXX0LVr12SH6Jt9+/axfPly3nrrLTZt2sSuXbtIT09nyJAhjBs3jssvv5zU1Pja\nvbz55pssWLCAzZs3s3//frp3705BQQETJkzgpJNOStCRtCxKComIiIiIiIiISJOFdh0HrTspFKqk\nqERJIRFpMebNm0dBQQGjRo2iW7duHDx4kLVr1/LYY4+xcOFCnnjiCXr37p3sMH2xZMkS7rvvPnr0\n6MFpp51Gnz59KC4uZtmyZdx7772sWLGCX/7ylzF3VfrQQw/x5z//mZycHMaMGUPXrl0pKiri9ddf\nZ9myZcyYMYOvfe1rCT6q5PM1KWSMWQrMsdY+18ByfwTOstae4Of+RUREREREREQkOUp3llb/nZqe\nWmtsntakY5eOpKanUnW0CnDjCvU7rV+SoxIRcZYtW0bHjh3rvD979mzmzp3L3LlzufPOO5MQmf8G\nDBjAzJkzGT16dK0WQdOmTePmm29m6dKlLFu2jPPPP7/Bbe3evZunn36a3NxcnnnmGXJzc6vnrVq1\niu9+97s88sgjSgo1wljghRiWSwMG+bxvERERERERERFJkrKdNS2FMnMyY35yu6VJSUkhs1smB3Yd\nAFxSSETapwULFjBz5ky+853vMHTo0FrzysrKuOCCCzj11FOZM2dOs8UUKSEEcOGFFzJ37lw+//zz\nRm133759XHLJJQQC9Y+jlpGRwdKlS6PG4afTTz894vs9evTgqquuYs6cOaxevTqmpNDOnTupqqri\nxBNPrJUQAhg5ciTZ2dns27fPl7hbuiYnhYwxVwBXhLw13hhzYj2r9AAuAfY0dd8iIiIiIiIiIpJ8\nlRWVlO8qr55urV3HBWXlZlUnhQ7tPcSR8iN0yG6dLZ9E/LbmL2uSHUK9Rkwa4du21q9fD8DAgQMj\nzgsEAgwfPty3/TXFG2+8AcCQIUMatf6BAwe45ZZbqqd37NjBokWLKCgo4Jxzzql+v1u3bs2SEGpI\nerpLbaSlpcW0fP/+/cnIyGDdunXs27ev1thL77//PuXl5YwZMyYhsbY0frQU6gicBQzDDSd4uvev\nPkeAn/mwbxERERERERERSbLyL8tdrZAns1vrTgp1yu3EnpDnmUu3l9J9aPckRiTScuzfuj/ZITQb\nay0ZGRnk5eXVmRdMGCaB/FoAACAASURBVBljoq4/b948SktLo84PN2zYMMaOHRvTsn/5y184cOAA\nZWVlfPLJJ6xZs4YhQ4Zw4403xry/UP369WPq1KnV0wsXLmTRokVcfPHFTJo0KaZtJPJ4Qx09epQX\nX3wRgLPOOiumdXJycvje977H7373O8aPH8+YMWPIycmhqKiIN954g1GjRnHXXXfFHUtr1OSkkLX2\nWeBZY0w3XOufOcCz9axyCNhorS1u6r5FRERERERERCT5ynaU1Zpu7S2FwpNaZV+UKSkk0s4cPnyY\nzZs3k5+fH7E1SjApVFBQEHUb8+fPZ8eOHTHv87LLLosrKVRcXFPFftZZZzF9+nS6desW8/7qs3Hj\nRsAlbmKVyOMNNWvWLDZt2sTo0aNjTgoBXH/99fTt25ef//znLFy4sPr9/v37c9lll9XpVq6t8m1M\nIWvtXmPMk8Dz1trX/NquiIiIiIiIiIi0bKU7a54MT01PpUPn1t3VWnrHdNKz0jl68ChQe7wkkfYu\nZ0BOskNoFoWFhVRWVkbsOg7gk08+ITs7mwEDBkTdxvPPP5+o8Fi8eDEAe/bs4aOPPmLWrFnccMMN\n/Pa3v603URWrDRs2ANQZS6k+iTzeoAULFvD000+Tn5/PjBkz4lr3qaeeYs6cOVx77bVce+21dO/e\nnS1btjBr1iymT5/Ohg0b+P73v5+YwFsQ35JCANbam2NZzhjTD+hirV3v176NMbm4Lum+CfQFdgMv\nAj+11jaYnjTGTAJuBUYAHYCtwAvAz621Gv9IRERERERERCSK0KRJZk4mKSkpSYzGH5k5mZQddMdV\n9oWSQiJBfo7Z05LVN55QWVkZRUVFnHzyyUm/33Xv3p2vfvWrFBQUcPXVVzNjxgzmz5/fpG0GAgEK\nCwvp2bOnby2P/PDss88yc+ZMBg4cyKxZs8jJiT1BuXr1ah5++GHGjh3LHXfcUf1+QUEBv/nNb7j6\n6qt55pln+Na3vsWxxx6biPBbDF+TQnG4BZgK9PdjY8aYLGA5UAA8DKwChgI/BM43xpxmrd1bz/q/\nAO4C3gX+BygDzgb+HRjnrV/iR6wiIiIiIiIiIm1JZUUl5bvKq6dbe9dxQZldM6uTXYf3H+booaOk\nZyarKk1Empu1FoD8/Pw689asWUMgEKh3PCFovjF2APr27cvAgQPZsGED+/bto2vXro3aDsD27dsp\nLy9nxIj4EoCJPN558+bxwAMPMHjwYGbNmhV3V29vvvkmwP9n787D5LrrO9+/T1V3V/UmtVZLso1t\nCevnBRtjQ4CwOizGrAYCzAyEJeQONzFPhutM5iEwCUsgM3PD5IawBBgctkwgJgTMloAJ493BGNtg\nY+eHvMi2rH2xurt6rzr3j9NdXd1Sa+vTql7er+epp+rUOXV+3yqVuqX61Pf345JLLjlkX7lc5rzz\nzuP6668nxmgodCJCCC8DLgQO96+AFcBvAaUch3wPcAFwZYzx0w11/Bz4JvDHwFUz1LoS+ENgK/D8\nGOPw+K4vhBD2Au8F3gF8PMd6JUmSJEmSFoXK7gqkk9vT1+NZqMrLD11XqOeME/+QVdLCMtEpdLjw\n4Yc//CEA55577hHPcbLW2Jmwd+9eAAqFwgmfA2Dr1q0AbNy48bgeN1fP90tf+hKf+tSn2Lx5M5/8\n5CdPKPAaGRkB4Iknnjjs/gMHsp6S1tbW4z73QpNrKBRC6AJ+ADzrKIcmwOx62KZ6K1ABrp52/7XA\nNuAtIYQ/iDGmhzwSnkT2OtzeEAhNuJEsFDozx1olSZIkSZIWjenr7SymTqFGhkLS0jE2NsaDDz4I\nZB1Dz3jGM+r7rrvuuvp6Pps2bTriefJeY+eRRx5h1apVdHV1Tbm/Vqvxmc98hv3793PhhReybNmy\nKfs/9KEP8b3vfY8/+ZM/4ZWvfOVRx6lUsu7Pzs7O46pvLtYUuvrqq/nsZz/LOeecwyc+8YmjThm3\nbds2xsbGOO2002hpmYw/LrroIr7+9a/zzW9+k9e+9rWsXbu2vu/WW2/lF7/4BaVSiQsuuCD35zDf\n5N0p9MfAs8mCmB8BQ2Tr9PwjsBt4EdAJ/D7wrTwGDCEsI5s27qbpoU6MMQ0h3A68DjgLeOgwp3gY\nGCabbm66M8ev782jVkmSJEmSpMWmb+fkVEFJMaGtq62J1eSnpb2FQmuB2mgNODT8krR4Pfjgg4yO\njrJy5Uo+9alP8fSnP53TTjuNLVu28Ktf/YoVK1awf/9+rr76at7ylrectCDh1ltv5dOf/jRPfepT\n2bBhA8uXL2f//v3ceeedPP7446xatYr3ve99hzyuVst+jhWLxWMa50lPehKQdf709vZy3nnncdll\nl+X3RI7Rd7/7XT772c9SLBa56KKL+Pu///tDjtmwYcOUoOvKK69kx44dfOtb32LDhg31+1/0ohdx\n7bXXcvvtt/OmN72JF7zgBaxatYqtW7dy8803k6YpV1555aym3Vso8g6FrgD+Dbg4xjgUQjiDLBT6\ncozx2yGEFuAvgf8H+D5ZaDRbZ4xfb5th/6Pj1xs5TCgUYzwYQvhT4CMhhE+M19cH/BrwfuBu4H/n\nUCcAW7ZsyetUi4aviZYi3/dainzfaynyfa+lyPe9lqKl/r7ft3Vf/Xaho8DOXTubWE2+Cu2TodD+\nR/cv+T/rCb4OWuxuvPFGAF796leze/dubrzxRu688042bdrEH/3RH3H//ffzjW98g61btzI4OHjS\n/k6ccsopPP/5zyfGyH333cfAwAClUon169fzute9jssuu4xqtXpIPffddx/lcpn169cfU63FYpE3\nvOENXHfddXzta1/jZS972XFPJZeHe+/NejWq1Spf+9rhJx4799xzp6ztNDo6CmRT4E10PE248sor\n2bx5M7fddhs//vGPGRkZoauri6c+9alcdtllXHjhhfP+59vZZx+ut+X45B0KnQH8zxjj9LAnAYgx\njoUQ/hNZ0PJfxy+z1T1+PTDD/sq04w4RY/xoCGEX8Ang3Q27vgu89TDPR5IkSZIkaclLqyljvWP1\n7ZauOVm+ummKncX68xvrGyOtpiTFpMlVSZprDz/8MJCtqfOSl7yEN7/5zVP2b9y4kVe84hUnva7T\nTz+dt7/97cf1mEqlwqOPPsrLX/7y45oO7oorruCKK644zgrz9frXv57Xv/71x/WYj3/84zPua2lp\n4fLLL+fyyy+fbWkLWt6/qWvAYMP2xO36JIcxxmoI4VrgjeQTCs1aCOF3gb8Cfgh8FdgDPBP4L8D3\nQwiXxxgPvwLVccojyVssJlJXXxMtJb7vtRT5vtdS5PteS5Hvey1Fvu+h9/FedqaTnUGrTl3F8nVH\nXu9hITk4cpDtO7ZnGymsX7ae7g0zfu940fM9r6Vi586dFItFXvjCF/LYY48BC/d9f9NNN9Ha2sqV\nV17J6tWrm12O5oG8Q6FHgec2bO8FUuBipk7BNgacmtOYvePXM8WcXdOOmyJkvWV/BfxLjLEx3v1B\nCOHnZGsfvY8sIJIkSZIkSdK46evslHvKTapkbkx/Pv27+pd0KCQtBdVqlQceeIAzzjiDcnnh/0x7\n3vOex80339zsMjSPFHI+33eBl4QQvhVC2BxjrAG/BN4ZQng2QAhhPfAfgLwmmH2YLHg6bYb9E2sO\nzTQZ4G+QhWP/eJh9/zR+7ktnU6AkSZIkSdJi1Lezr347KSa0dbU1sZr8tXW1kRQmp4vr39V/hKMl\nLQZbt25laGiIzZs3N7sUaU7kHQp9lCx8eRWTYcxfAcuAm0MI+4DHgE0cPoQ5bjHGCvAL4OIQwpTo\nNoRQBH4deCzG+OgMp5joMDpc7FsiWw9p4UfCkiRJkiRJOevfMRmSlHvKJMniWm8nKSSUlpfq24ZC\n0uK3adMmbr/9dj784Q83uxRpTuQaCsUYD5BNFfdO4L7x+z4PfBDoB1aQTR33BeBPchz6aqADeNe0\n+98CrAU+P3FHCOGcEMJZDcfcOn79phDC9H+5vGHaMZIkSZIkSQJqYzUG9g7Ut9t72ptYzdwpL5/8\nrnBld4W0ljaxGkmSZifvNYWIMQ4AX5x234dDCB8FVgN7xqeVy9NngDcDHwshnAHcAZwPXAXcA3ys\n4dj7gQicM17brSGEr5MFQDeHEK4B9gDPAK4EdpF1QEmSJEmSJGlc/+7+KQHJYltPaELj86qN1hjc\nP0jH6o4mViRJ0onLPRSaSYyxShawzMW5R0MILyXrSHo98G5gN1mH0AfGg6oj+ffAjcDbyQKgNmA7\n8DfAn8YYH5+LuiVJkiRJkhaqxqnjYBGHQsunPq/+Xf2GQpKkBeukhUJzLcbYS9YZdNVRjjtkctvx\nwOqT4xdJkiRJkiQdRd/OvvrtpJjQ1t3WxGrmTmlZacp2/85+1p6/tknVSJI0O7muKSRJkiRJkqSl\nobFTqNxTJkkO+R7uolBoKUwJvPp39R/haEmS5jdDIUmSJEmSJB2X2liNgb2Ts/W397Q3sZq51zg1\nXv+uftI0PcLRkiTNX4ZCkiRJkiRJOi79u/tJa5PByGJdT2hC47pCY4NjDPcNN7EaSZJOnKGQJEmS\nJEmSjkvj1HGwBEKhac+vsrPSpEokSZodQyFJkiRJkiQdl/6dk6FQUkymrLmzGDV2CoHrCkmSFq6W\nvE8YQngN8DZgM9AOzLTKYBpj3JT3+JIkSZIkSZpbfTv76rfLPWWSZKaPfxaHYluRlvYWxgbHAEMh\nSdLClWsoFEJ4J/A5Zg6CGrkinyRJkiRJ0gJTG6sxsGegvr3Yp46bUO4p0z+YhUGNnVKSJC0keXcK\nvYcs7Hkv8EPgIIY/kiRJkiRJi0b/7n7S2uTHPe097U2s5uQpLy/X11Ia7h1mdHCU1vbWJlclSdLx\nyTsUOhv4Sozxz3M+ryRJkiRJkuaBiWBkwlLqFGrUv6ufFWeuaFI1kiSdmELO5+sFfpXzOSVJkiRJ\nkjRPNK6nkxQT2rrbmljNyVNePjUUquyqNKkSSZJOXN6h0C3A+TmfU5IkSZIkSfNEYyhUXl4mSY5l\naemFr6W9hWJbsb7tukKSpIUo71Do/cDLQwhvzvm8kiRJkiRJarK0llLZPdkhM717ZjFLkoTS8lJ9\nuzEckyRpoch7TaHnAlcDXwghXAX8DNg7w7FpjPH9OY8vSZIkSZKkOTKwd4C0mta3Sz2lIxy9+JSX\nlxnYMwDAwL4BqqNViq3FozxKkqT5I+9Q6DNACiTA08YvM0nJOoskSZIkSZK0APTvntods5Q6hQDK\nPQ3PN4XK7grLTl3WvIIkSTpOeYdCHyYLeyRJkiRJkrTITFlHJ4HSsqXXKdSof1e/oZAkaUHJNRSK\nMX4wz/NJkiRJkiRp/mhcR6fUXaJQzHu56vmtrbuNpJjUp9Cr7Koc5RGSJM0veXcK1YUQEmAjsBqo\nAXtijFvnajxJkiRJkiTNnTRNp4QgS23qOIAkSSgvKzN4YBCYGpJJkrQQ5B4KhRDWAB8F3gR0Tdu3\nD/gb4MMxxoG8x5YkSZIkSdLcGO4dZmxorL5d6llaU8dNKPWU6qFQZXeFtJaSFJImVyVJ0rHJtcc3\nhLAauA34HaAb2AbcBfwc2E7WNfSHwE0hhI48x5YkSZIkSdLcmd4VsxQ7hWDq866N1RjY5/eeJUkL\nR96dQu8lmzLuk8CfxRh3Nu4MIZwOfAD4beAq4CM5jy9JkiRJkqQ50L/TUAig3DP1effv6qdzTWeT\nqpEk6fjkvRrgq4DrYoy/Pz0QAogxPhZj/B3gZuCNOY8tSZIkSZKkOdK4nlBLewvFtmITq2me0rIS\nNMwWNz0skyRpPss7FDod+MkxHHczsCnnsSVJkiRJkjRHGqePm94ts5QUigVK3ZPrKTWGZZIkzXd5\nh0JV4FjWCioAac5jS5IkSZIkaQ6MDowy3Dtc316qU8dNaHz+/bv6SVM/5pIkLQx5h0K/Al4SQpjx\nvCGEIvDS8WMlSZIkSZI0z/Xvnrae0BLuFAIo9Ux2Co0NjU0JzCRJms/yDoX+HrgA+KcQwq+HEFom\ndoQQWkMIzwO+DzwV+N85jy1JkiRJkqQ5MH2KNDuFpj5/1xWSJC0ULUc/5Lj8JfBy4CXAi4FqCOEg\n2fJ7y4Di+O3rgI/nPLYkSZIkSZLmQGPoUWgt0NKe90dKC8shodCuflaH1U2qRpKkY5drp1CMcYQs\nDPrPwD1kAdAqYOX4IXcBvwdcHmMcy3NsSZIkSZIkzY3+XZOhULmnTJIkTaym+YptRVo7Wuvbja+P\nJEnzWe5f6xgPe/4C+IsQQhtZIJQC+2OMo3mPJ0mSJEmSpLlTHa0ysG+gvr3Up46bUF5eZnQg+6jL\n6eMkSQvFnPb6jncO7ZzLMSRJkiRJkjR3BvYMZF/3HVfuMRQCKPWU6NvRB8BI3wijA6NTuockSZqP\nZhUKhRDeCvw0xnh/w/YxizF+eTbjS5IkSZIkaW5NnxrNTqHM4dYVWnHWiiZVI0nSsZltp9AXydYP\nur9hO53p4AbJ+HGGQpIkSZIkSfNY49RoSSGhrautidXMH9M7pgyFJEkLwWxDoQ8BtzZsf5hjC4Uk\nSZIkSZK0APTvngyFSstLJIWkidXMHy3lFoptRaojVcB1hSRJC8OsQqEY44embX9wVtVIkiRJkiRp\n3khrKZXdlfq2U8dNSpKEck+5/vpMn2ZPkqT5qJDnyUIIPw4hvOEYjvt8COGXeY4tSZIkSZKkfA3u\nH6Q2WqtvT58ybalrDMkG9w3Wu4YkSZqvcg2FgBcCpx/DcUVgY85jS5IkSZIkKUfTu1/sFJrqcOsK\nSZI0n812TSFCCK8BXtNw15tCCE85wkNWA5cB+2Y7tiRJkiRJkubO9JCjtKzUpErmp0NCoZ39LD99\neZOqkSTp6GYdCgEl4NnAZiAFnjF+OZIR4AM5jC1JkiRJkqQ50hgKtXW3UWjJe9KZha21s5VCS4Ha\nWDbFnp1CkqT5btahUIzxGuCaEMIKsu6fvwauOcJDhoAtMcb9sx1bkiRJkiRJcyNNUyo7K/Vtp447\nVJIklHvKDOwdALJOIUmS5rM8OoUAiDEeCCF8Cbg2xnhDXueVJEmSJEnSyTfSN8Lo4Gh921Do8BpD\nocqeCrWxmh1VkqR5K7dQCCDG+A6AEEIJWBFj3Nm4P4RwAfBAjHEwz3HHz72SbEq6K4D1wF7g+8Af\nxxh3HMPjS8B7gbcAp48//nvA+2OMe/OuV5IkSZIkaT6bPhXa9PVzlJnyuqRQ2V2he0N38wqSJOkI\ncv/aQgjhjcBO4J2H2f1hYEcI4Q05j9kOXA/8LvAN4O3AZ4E3AbeMT213pMe3kAVA/xX4LvA7wD+Q\nPYcbQghtedYrSZIkSZI0300PhUrLS02qZH6b3kHVt7OvSZVIknR0uXYKhRCeA3yNbN2gA4c55CfA\npcBXQwj7Yow/zmno9wAXAFfGGD/dUM/PgW8CfwxcdYTH/9/Ai4C3xRi/PH7f34YQ9gK/DTwTuCmn\nWiVJkiRJkua9yq7J9YRa2ltoKeX6MdKi0dbdRlJMSKsp4LpCkqT5Le9OoQ+STbv2lMZwZkKM8b8D\nFwL7yKZqy8tbgQpw9bT7rwW2AW8JISRHePyVwBbgK413xhg/EmPcGGM0EJIkSZIkSUtKY6eQ6wnN\nLEmSKa+PoZAkaT5L0jTN7WQhhF7gf8UY/+Aox/0F8M4Y4/IcxlwGHARuijE+/zD7vwG8DtgUY3zo\nMPtPAx4DPhVjfPf4fWVgOMZ4wi/OwYMHD/vYLVu2nOgpJUmSJEmSToraSI1d1+6qb5dOLdH+pPYm\nVjS/DTw8wMjOkWyjAOteu46kcKTvJ0uSdPzOPvvsw96/fPnyY/6lk3enUIGsC+hoDgDFnMY8Y/x6\n2wz7Hx2/3jjD/nPGrx8MIfynEMJWYBAYDCF8K4Tw5FyqlCRJkiRJWiBGD45O2S525vUxzuI05fWp\nwVjvWPOKkSTpCPKeDHYL8BvAn810QAihALwSOKRr5wR1j18PzLC/Mu246VaOX78NaAM+CuwiW2Po\n3cCzQwgXxRh35FDrjEneUjTRNeVroqXE972WIt/3Wop832sp8n2vpWgxv++3HdjGfvbXt9efuZ62\nzrYmVjS/DbUP8fCDD9e3V7atZN3Z65pY0dxYzO95aSa+77XY5B0KfQX4WAjhb4CPxRjvm9gRQmgF\nLgWuAp4OvD/nsU/UxL9oTiFbC2mi0+nbIYRdZCHRHwD/uRnFSZIkSZIknWyVXZX67UJLgdaO1iZW\nM/+VukskhYS0lq0m0L+zH57a5KIkSTqMvEOhjwMvAd4OvC2EMEq23k+JyU6dBLge+J85jdk7ft05\nw/6uacdNN7H637cbAqEJV5OFQi884eokSZIkSZIWmP5d/fXb5Z4ySeL6OEeSFBJKy0oMPTEEjIdC\nkiTNQ7muKRRjrAIvB34fuIcsdFoDLAOqwN3Ae4CXxhhHZzrPcXoYSIHTZtg/sebQlhn2bx2/Ptzk\nuHvHz73sRIuTJEmSJElaSGpjNQb2Ts7SX15ebmI1C0e5Z/J16t/VX+8akiRpPsm7U4gYYwp8Evhk\nCKENWA3UgH05BkGN41VCCL8ALg4hlGOMQxP7QghF4NeBx2KMj85wivvIupkuOsy+08k6m7blXLYk\nSZIkSdK8VNlbmRJolJaXmljNwtEYCtXGagzsG6BzzUwT20iS1By5dgpNF2MciTFujzHunItAqMHV\nQAfwrmn3vwVYC3x+4o4QwjkhhLMaawT+DrgkhPCqaY9/9/j1d3KvWJIkSZIkaR6aPvVZY9ihmU1/\nnRqn4JMkab7IvVMohPAa4G3AZqCdrNPmcNIY46achv0M8GbgYyGEM4A7gPOBq8imsftYw7H3AxE4\np+G+DwCXAV8PIfx3sinlfgP4LbIp7z6TU52SJEmSJEnzWmVXpX47KSSUuu0UOhalZaXsU7DxJqv+\nHf2c8pRTmlqTJEnT5RoKhRDeCXyOmYOgRrlNrBpjHA0hvBT4IPB6sg6f3WQdQh+IMQ4c4eHEGPeE\nEJ4FfAT4j2RT3u0A/gL4cIxxMK9aJUmSJEmS5rPGDpfSshJJ4Vg+5lGhWKC0rMTwwWHg0I4rSZLm\ng7w7hd5DFva8F/gh2Vo9J2VVvRhjL1ln0FVHOe6w/5KJMe4hm35u+hR0kiRJkiRJS0KaplR2T3YK\nuZ7Q8SkvL0+GQrv6SdOUJDFUkyTNH3mHQmcDX4kx/nnO55UkSZIkSdIcGzowRHWkWt8uL3c9oeNR\n7ilz8NGDAFRHqgwdGKJ9ZXuTq5IkaVIh5/P1Ar/K+ZySJEmSJEk6CaZPeVbuMRQ6HtNfr76dfU2q\nRJKkw8s7FLoFOD/nc0qSJEmSJOkk6N89NRQqLXP6uOMxvbPKdYUkSfNN3qHQ+4GXhxDenPN5JUmS\nJEmSNMcaQ4zWzlaKrcUmVrPwFFoKtHW31bcNhSRJ803eawo9F7ga+EII4SrgZ8DeGY5NY4zvz3l8\nSZIkSZIknaD+XZMhhlPHnZhyT5mRvhEgez3TNCVJkiZXJUlSJu9Q6DNACiTA08YvM0nJOoskSZIk\nSZLUZMN9w4xWRuvb06dC07EpLy/T+1gvAGODYwz3DvtaSpLmjbxDoQ+ThT2SJEmSJElaQPp29E3Z\nLq8wyDgR0zus+nf0GwpJkuaNXEOhGOMH8zyfJEmSJEmSTo6+7VNDofae9iZVsrBND4X6dvax+pzV\nTapGkqSpCs0uQJIkSZIkSc3XGAq1dbVRbCs2sZqFq9hapLWztb7duE6TJEnNZigkSZIkSZK0xKVp\nOmX6OKeOm53GbqH+Hf2kqastSJLmh1ynjwsh3Hoch6cxxufkOb4kSZIkSZKO3+D+QarD1fp2+wqn\njpuNck+ZvsezkG10YJSR/hFK3aUmVyVJUs6hEPCsYzgmBZLxa0mSJEmSJDVZY5cQGArN1vR1hfp3\n9hsKSZLmhbxDoUuPsO8U4BLgncD/B/xtzmNLkiRJkiTpBDSuJ0QCpeUGGLNRXn5oKLTq7FVNqkaS\npEm5hkIxxhuOcsg1IYTPAbcDvwQeyXN8SZIkSZIkHb/GUKi8vEyh6DLUs9FSaqGlvYWxwTEA+nf1\nN7kiSZIyJ/03fIzxQeAa4H0ne2xJkiRJkiRNVavWpoQW5RXlIxytY9U4hVz/TkMhSdL80KyvfWwH\nzm3S2JIkSZIkSRpX2V0hrU4u/ex6QvloDIWGe4cZqYw0sRpJkjLNCoWe3aRxJUmSJEmS1GDKekIY\nCuWlMRQCp5CTJM0Pua4pFEJ461EO6QEuB14K3JLn2JIkSZIkSTp+fTsmQ6GkmNDW3dbEahaPQ0Kh\nnf2s3LiySdVIkpTJNRQCvgikRzkmAQaAP8p5bEmSJEmSJB2nxk6h9hXtJEnSxGoWj9ZyK8VSkepw\nFXBdIUnS/JB3KPRlZg6FUmAIeAj4+xjjYzmPLUmSJEmSpOMwNjzGwN6B+nZ5RfkIR+t4tfe016eN\nMxSSJM0HswqFQggbgP4YY+/4XX8C7I8x+ltOkiRJkiRpnpseVLieUL7KPeV6KDT0xBCjg6O0trc2\nuSpJ0lJWmOXj7wd+r2H7YeD/muU5JUmSJEmSdBI0Th0HhkJ5m76uUGVXpUmVSJKUmW0oVAY2N2wn\n4xdJkiRJkiTNc42hULFUpKU975UGlrbpodBE15AkSc0y29/09wNvCyFcAuwbv+93QwivPIbHpjHG\nF81yfEmSJEmSJJ2gvh2ToVD7inaSxO/65qmlvYViW5HqSBWAvp19R3mEJElza7ah0O8B1wAXjG+n\nwKbxy9GksxxbkiRJkiRJJ2ikf4Th3uH6dnlF+QhH60QkSUK5p0xldzZtXP8OO4UkSc01q1Aoxnhr\nCOF0YC3QDjwEfBT4fA61SZIkSZIkaY40dgmB6wnNlfLyyVBocP8gY8NjtJScpk+S1Byz/g0UY0yB\nXQAhhBuAX8QYH5nteSVJkiRJkjR3GtcTAkOhuTJ9XaHK7grLT1/epGokSUtdrl9LiDFemuf5JEmS\nJEmSNDcaO4Va6+ueJgAAIABJREFUO1spthWbWM3iNT0U6tvRZygkSWqaQrMLkCRJkiRJ0smVpumU\nTiG7hOZOa2crxdbJwK13W28Tq5EkLXWGQpIkSZIkSUvM0IEhxobG6tuGQnMnSRLaV02+vr3beknT\ntIkVSZKWMkMhSZIkSZKkJaZx6jiA8oryDEcqD+0rJ0Ohkf4Rhg4ONbEaSdJSZigkSZIkSZK0xDRO\nHUdy6Lo3ylfHqo4p204hJ0lqFkMhSZIkSZKkJaaxU6i0rESh6EdEc6m8ogzJ5LahkCSpWVryPFkI\n4afAl4Cvxhj35XluSZIkSZIkzV6tWqN/Z3992/WE5l6hWKDcU2boQDZtnKGQJKlZ8v4ayCXAx4Ht\nIYRvhRBeH0Joy3kMSZIkSZIknaCBPQPUxmr1bUOhk6NxCrnK7gpjQ2NNrEaStFTlHQo9iywU2gW8\nGrgG2BFC+OsQwq/nPJYkSZIkSZKOU+/2qV0q5RWuJ3QytK+cGr5N/3OQJOlkyDUUijHeHmO8Ksb4\nJOB5wKeAIeBdwE0hhAdCCH8SQjgrz3ElSZIkSZJ0bPp3TE4dlxQTSstKTaxm6WjsFALofcxQSJJ0\n8s3ZKoIxxltijL8PnAb8BnA1sBL4APBACOHGEMI7Qgh+HUWSJEmSJOkk6dveV79d7imTJEkTq1k6\nWsottHa21rddV0iS1Awtcz1AjDEFrg8h3AB8m2x6ubOA5wLPAT4WQvgU8N9ijIMnOk4IYSJwugJY\nD+wFvg/8cYxxx3Geqwz8HNgMXBpjvP5E65IkSZIkSZovqiNVKnsr9W3XEzq5OlZ2cLByEMimj0tr\nKUnBUE6SdPLMWafQhBDCJSGETwA7gGvJAqGDwOeA9wC7gf8K3B5CWHuCY7QD1wO/C3wDeDvwWeBN\nwC0hhBXHeco/JguEJEmSJEmSFo2+nX2QTm4bCp1c7asmX+/aaI3+Xf1HOFqSpPzNSafQeLjzW8Db\ngPOBBKgBPwK+AHwzxjg8fvgnQgjvAz5C1kX0709gyPcAFwBXxhg/3VDHz4FvkoU8Vx1j7RcAfwjc\nBTztBGqRJEmSJEmalxrXEwIor3BW/5PpkHWFtvXSvb67SdVIkpaiXEOhEMLryLp0Lhs/dwJsAb4I\nfDnG+PjhHhdj/LMQwq8BrzjBod8KVMjWLWp0LbANeEsI4Q/Gp7I7Uv0F4H8Bj5B1Gn3mBOuRJEmS\npMWrVoPh8e/5ja9FkoyOAAmMjNTvI0mgWJzcltR0jesJFduKtHa0HuFo5a2tu41Ca4HaaA3IQqFT\nn3Fqk6uSJC0leXcK/cP4dS9wDfDFGOOtx/jY24BXHu+AIYRlwDnATQ3dR0C2nlEI4XbgdWTT1j10\nlNO9G3gm8GLg9OOt5Vhs2bJlLk67oPmaaCnyfa+lyPe9liLf91qQqlVaKhVa+vto6eubct06sd3f\nT1KrTXnY2TOcrtbSyuiybsa6lzHWvYzRZcsY6+5mtHsZY8uWMdbVTdrqh9Ja2BbSz/v9j+yv3046\nEnbu2tnEapamQmeB2hPZz9B9W/ctqPfPhIVYszRbvu81H5x99kz/6j52eYdC/8Lk9HCDx/nYrwI3\nncCYZ4xfb5th/6Pj1xs5QigUQjgd+CjwlRjjv4QQ3n4CtUiSJEnSwpGmtB44QHnHdtp3bKe8Yzul\nvXsOCXxmozA2Smn/fkr79894zFhHB0OnrGNow6kMrt/A0Pr1pG2l3GqQlKkOV6kOVOvbLV1zsqqA\njqKlu4WxJ8YAqA3WqA5UKXYUm1yVJGmpyPu3fwswerRAKITweeDZMcbzJ+6LMT7KZIBzPCYmXh2Y\nYX9l2nEz+WtgBPiDE6jhmOWR5C0WE+m6r4mWEt/3Wop832sp8n2veavSD1u3wkMPwtaH4eGHSAZm\n+q/UydMyMEDXww/R9XD2Pb40SeDU02DjRtj45Ox6zVqnodO8s9B+3u9/YD+72V3fXnP6GrrWdTWx\noqWpUqzw6GOTH4GtbFnJ2rPXNrGiY7fQ3vNSHnzfa7HJOxR6AfCdYziuSNa5My+EEP4d2XpGvx1j\n3NPseiRJkiQpF2kK2x6Du+6En99F8vhhl3k9+mkKBejsgs7OyUt7O9kysimk0NfXC0B3V3f9PtIU\nhgahvz8LpPr7SYaGjjpeMlH3tsfgxhuyGrq74clnw0UXw4UXQnvHUc4iabre7b1Ttssryk2qZGlr\nX9Fe//EJ2bpCa89fGKGQJGnhm3UoFEJ4DfCahrveFEJ4yhEeshq4DNg327HHTfyLpnOG/V3Tjpsi\nhLAS+DhwQ4zxCznVJEmSJEnNUatlnUB33wV330myd+8xPSwtFGDVali7FnpWZCFQ13gAVCoftUun\nf+cOALrXrT/yOGOj0F+ph0RU+uHAAdi9i6S/f8bHJX19Wbh1152kLS1wzrlw8SVw4UXQZaeDdCz6\ndvTVb7d2tNJScvq4Zii0FCj3lBk6kIXkB7cdbHJFkqSlJI/f/iXg2cBmsu84PGP8ciQjwAdyGBvg\n4fFxT5th/8SaQzOtBPbnQA/wwRBC4zlWjF+vGb9/T4xxeLbFSpIkSVLuqmMQI9x9J9x9N0nv0T9g\nTLu7Ye0pWQi05hRYtQpaTsIHxC2t0NOTXabXVOmHXbtg967seob1jZKxMbj3Hrj3nizMCufA0y6B\niy6CZcvn/jlIC1CapvRtnwyF2le0N7EadazsqIdCld0VxobHDOkkSSfFrH/bxBivAa4JIawg6/75\na+CaIzxkCNgSY5x5ldHjG78SQvgFcHEIoRxjrM9FEEIoAr8OPDa+ZtHhvAhoA/7PDPsnnsulwPV5\n1CxJkiRJuXh8G9xwPdxx+1HXBkqXLYczz4R167P1eTrm4fRrnV2wsQs2bsq2x8ZI9+3NAqKdO2Db\nNpLq2JSHJLUa3H8f3H8f6Vf/Npti7pnPgl97JrSVmvAkpPlp6OAQY4OTf3+cOq652le1w4PjGyn0\nbe9jxVkrjvgYSZLykNtXEGKMB0IIXwKujTHekNd5j9HVwF8B7yKbCm7CW4C1NHQlhRDOAYZjjA+P\n3/XbwOH+N/Qi4D3A+4B7xi+SJEmS1Fyjo9k0ajdeT/LATBMiZNJVq+DMjXDmWbBixVGngJt3Wlrg\nlHXZ5cKnwugo6WOPwtaH4dFHSEZHpxyepCls+RVs+RXpP/4DPPs58IIXZh1R0hLX2CUEdgo1W/uq\nqa9/77ZeQyFJ0kmRa19qjPEdeZ7vOHwGeDPwsRDCGcAdwPnAVWRhzscajr0fiMA5ADHGHx/uhCGE\n1eM3b4sxXj83ZUuSJEnSMdq7F266AW69OVtf5zBSyAKUM8/KLsuWndQS51xra9ZFtHFT1kX0+DZ4\n+CF4ZCvJyMiUQ5OBAfiX6+BfriM973x44aXwlAuhUGhS8VJzTQ+Fyj12CjVTa7mV1o5WRgeycNt1\nhSRJJ8usQqEQwluBn8YY72/YPmYxxi/PZvyG84yGEF4KfBB4PfBuYDfweeADMcYjz6MgSZIkSfNR\nrQa/vBduvB7uvSfrhDmMdM0a2HxONj1cR+dJLbFpWlrgjDOzS7VKuv3xLCB66MFDO4ju+yXc90vS\nVavh+S+A5zwXurqbUrbULE888kT9dml5iUKLAWmzta9qr4dCfY/3kdZSksIC6+iUJC04s+0U+iLw\nn8m6bya2D/+/lKmS8eNyCYUAYoy9ZJ1BVx3luGP67Rpj/CLZ85EkSZKkk2tsDG67BX7wzyR79xz2\nkLRYhE1nw3nnZWsELWXFIpz+pOzyrF8nfWAL3HcvyYEDUw5L9u2Fb36D9DvXwtN/DS57Gazf0KSi\npZNnpDJCZVelvt25ZomEx/Ncx8oOeh/rBaA6UqWyp0LXKV1NrkqStNjNNhT6EHBrw/aHObZQSJIk\nSZI03ego3Hoz/PM/kRzYf9hD0uXL4dzzYXOAUukkF7gAtLXBeefDueeR7tyRdVpt3UqS1uqHJGNj\n8K+3kv7kNrjkGfDyV8IGwyEtXgcfmTo1maHQ/HDIukKP9RoKSZLm3KxCoRjjh6Ztf3BW1UiSJEnS\nUjQyArfclHUGPXHgkN1pkmRrBJ17Hmw4FRKnFzqqJMm6gNZvgEqF9N/ug3+7P1traOKQNIU7bif9\n2U/hkqePh0OnNrFoaW4c2NrwcyWBjtUdzStGdaVl2TR+tbEstD647SAbnm5ALUmaW7PtFDpmIYQu\n4Bzg8RjjjpM1riRJkiTNWyPDcOMN8MMfkPQeush42toK5z8l63zp9NvjJ6yzM+sIetrFpA8/nK3P\ntHtXfXcWDv2U9Gd3wMWXwMtfBacaDmnxeGLr5HpC7SvbXU9onkiShPaV7VR2Z1P79W7rbXJFkqSl\nIPdQKITwLuA/xhgvabjvHcBfAR1AGkL4XIzx9/IeW5IkSZIWhOFhuOF6uO6fSfr6DtmdtrbBBRfA\n+RdAuXzy61usCkXY9GTYuIl0++PwsztIdu2s707SFH52B/zsDtKLnw6vMBzSwjf4xCBDTwzVt506\nbn5pXzUZCg33DjPcO0xpmVODSpLmTq6hUAjhNcBfA3tCCIUYYy2EcA7wOaAKfAs4H3hXCOH2GOMX\n8xxfkiRJkua1Wg1uuwWu/dbhO4Pa2uCCC7MwyPWC5k6SwKmnwYZTDxsOASR33gF33kH69GfAFa+D\n1WuaVKw0O41dQgCdaw2F5pOOVVOn8ju47SBrz1vbpGokSUtB3p1CVwLbgYtijBOreL4LKABXxhg/\nF0IoAXcBbwe+mPP4kiRJkjQ/3X8f/MM1JI9vO2RXWirBBU/Npopra2tCcUvUlHBoO9x5B8nOqbOd\nJ3f8lPTuu+A3XgyXvxzaXYtFC0tjKJQUE9pXtDexGk3XvqIdEiDNtnu39RoKSZLmVN6h0FOAr8cY\n9zbc9wqgl/EAKMY4HEL4LvA7OY8tSZIkSfPP9u3wj18nufeeQ3alpTJc+NRszSDDoOZJkmyauFPH\nO4fuvINkx2Q4lIyNwQ//mfS2W+BVr4HnPA+KxSYWLB2bNE2nhEIdqztICkkTK9J0hZYC5eXl+hR/\nriskSZpreYdCq4H6v5xDCKcDTwa+FWMcaThuP2C/siRJkqTFq7cXvvttuPlGklptyq60WISnXgQX\nXgStrU0qUIe14dTJaeV+8q8ke/fUdyV9ffB3f0t6/Y/h9W/MOrukeayyp8LowGh926nj5qf2le31\nUKh/Vz/VkSrFNoNnSdLcyDsUOgisb9h+NVkD7D9NO24NcCDnsSVJkiSp+UZH4cc/gn/6PsnQ4JRd\nKcDZm+HpvwZdXU0pT8dow6lwxetIH9gCP/0JSaVS35Vs3w6f+EvS85+ShUMbNjSxUGlmh6wntMZQ\naD7qWNXBgYfGPyZLoXd7LyvOXNHcoiRJi1beodDdwBtDCJ8GqsAfAqPAtycOCCG0Aa8E7s95bEmS\nJElqnjSFn98N13yNZP++Q3ev3wDPejasXtOE4nRCkiQL8c46i/QXv4Cf35VNJTex+5f3kt5/Hzzv\nBdm0cgZ9mmcaQ6FiW5HSslITq9FM2ldNXeepd5uhkCRp7uQdCv0VcC1w3/h2AnwyxrgLIISwDvga\n2ZRy/yPnsSVJkiSpOfbugb//Ksk9vzhkV7psGTzz2XDGmVnIoIWnpRUuvgTCOaR33A6/ikz8SSa1\nGtzwf0jv+Cm8/jfh2c/xz1nzQq1a4+CjB+vbnWs7SXxvzkut7a20tLcwNpiFzq4rJEmaS7mGQjHG\n74QQ3gK8G+gBvgu8t+GQKvB84G9ijH+T59iSJEmSdNKNjcF1P4Dvf49kdGTKrrRUgoufDueeB0XX\nhlgUOjvhBZfC+U8h/ddbSXbUl9QlqfTDl79Ieust8B/ekk0/JzVR3/Y+qiPV+nbHmo4mVqOj6VjV\nUQ+Deh/vJa2lJAVDPElS/vLuFCLG+HfA382wb08I4YIY4y/zHleSJEmSTqr4b/DVvyXZuXPK3WmS\nwHnnwyXPgJJTNS1Kq9fAK15N+shW+MltJL2T3+pPHthC+pEPw0teCq94JbT5HlBzuJ7QwtK+qr0e\nClWHq1T2Vuha65SUkqT85R4KHY2BkCRJkqQFrfcgfOPrJD/510N2pWvWwHOf77pBS0GSwJlnwWmn\nk/78Lrj7rmwqOSCpVeEH/0T609vh3/0HuPCpTS5WS9GBrQfqt1s7WmnrbGtiNTqajpVTO7l6H+s1\nFJIkzYncQ6EQwmuAtwGbgXZgpl7XNMa4Ke/xJUmSJGlO1Gpw0w1w7TdJBgam7Erb2uAZz4RzzoVC\noUkFqilaWrKusE1nk95yE8n2x+u7kv374NOfIL3oafDGfw8rVzaxUC0l1ZEqfY/31bc719olNN+V\nlpcotBSojWXhcu/jvWy4ZEOTq5IkLUa5hkIhhHcCn2PmIKhRmufYkiRJkjRndmyHL3+R5OGHDtmV\nPnkzPPNZ0OF6HUtaTw+8/JWkDz4A/3oryeBgfVdy912k998Hr3w1/MaLXWNKc+7gYwdJa5Mfuzh1\n3PyXJAntK9up7K4A2Z+hJElzIe9OofeQhT3vBX4IHMTwR5IkSdJCVa3Cj34I37mWZGxsyq60pyeb\nKm693+TWuCSBJ58Npz+J9I7b4b5f1r8xmQwPwze+TnrHT+Gtb4dTT2tmpVrkpq8n1LHG0HohaF81\nGQoNHxxmYN8AHav8s5Mk5SvvUOhs4Csxxj/P+bySJEmSdHLt2A5f+gLJ1oen3J0Wi3Dx0+GCC+34\n0OGVSvCc58HZm0lvvolk3976ruSRraR/9qfwspfD5a/Ipp+Tcta4nlBpWYmWku+zhaDrlC723j/5\n82Lfln2GQpKk3OX9r4Je4Fc5n1OSJEmSTp5aDa77weG7gzZsgOe9EJYta05tWljWngJXvI70vnvh\np7fX309JtQrf+w7pXXdmXUNnntXcOrWojFRGqOyq1LddT2jhKPeUaSm3MDaU/azYt2Ufpz/r9CZX\nJUlabPIOhW4Bzs/5nJIkSZJ0cuzckXUHTVs7KG1pgWc+G849L5siTDpWhQI85UI440zSm24keXxb\nfVey/XHS//Fn8OKXwqteDW2lJhaqxeLgI1PXonE9oYUjSRK61nXVp//r3dbL6MAorR2tTa5MkrSY\n5B0KvR+4OYTw5hjj/8753JIkSVLT1NKU4bGUkerEBUaqKWO1lDSdXEgzBR6vtJACY3uGScd3FAsJ\nrYWE1iK0FhPaCgmtxfHtQkKxYNDQVLVatnbQt791aHfQ+g3w/BfaHaTZ6V4Gl7+C9FcR/vVWkpER\nAJI0het+QHr3XfBbb4PNocmFaqFrnDqOBDpWO/3YQtK1fjIUIoX9D+7nlAtOaW5RkqRFJe9Q6LnA\n1cAXQghXAT8D9s5wbBpjfH/O40uSJElHNFpN6Rup0T9SozJSo384266M39c/ktI/UmNgtMZQQwg0\nVjueUca/lf34wSMf1qCQQFsxoaM1obOtQGdrQkdbgc7W7HZnW6G+b1mpQE+5SGdbQsGuldk7YnfQ\ns+Dc8+0OUj6SBMI5cPrp2VpDj2yd3LVnN/zFn5M+/wXw2t+E9vbm1akFrR4oAO0r2ym0FJpYjY5X\n55pOkmJCWs2+VbJvyz5DIUlSrvIOhT5D9uXIBHja+GUmKVlnkSRJkpSLNE3pH0k5MFhl/2CVA0M1\nDgxWOTBYq2/3DR9XunPS1FIYGksZGkvZP3hsNbYUYHmpQE97kZ5yFhRl1wVWtBdZ3VGks80PA2dk\nd5CapaMTXnIZ6cMPwa03kwwO1nclN95Aeu898NZ3wDnnNrFILUSDTwwy9MRQfdup4xaeQrFA59pO\n+nf0A3DgoQPUxmqGe5Kk3OQdCn2YyZkzJEmSpDlRGamxu1Jld2WMXf3V7Hb/GHsHqozOz8xnTozV\nYN9gjX1HCJE6WhPWdhZZ01lkTWfL5O2OIu2tS/gDJruD1GxJAhs3wYZTSW+7heSBLZO79u+Hv/yf\npC+4FF77eiiXm1ioFpLGLiGAzrWGQgtR97rueihUHanyxKNPsHLjyiZXJUlaLHINhWKMH8zzfJIk\nSVraeodrPN47yvbeKjv7x+pBUP9I/t9DSoBSS0J5/FIqZmv+tBSyNX9axm+3FA69bjwHCezbt48E\nWLVqFRN7qylUazCWplRrUK2ljKXZdbUGY7VsirrhsZShao3hsZTh6sQ6Rif+vAZGU7Y+McbWJ8aA\n4Sn7utsSTulqYX13C6cua2FDdwvru4uUF/O3kWs1+NF18O1v2h2k+aFchktfRLrpyXDzjSSVSn1X\ncsP/If3lvfC2d8DZm5tYpBaKxlAoKSa0r3AawoWoa13XlO39W/YbCkmScpN3p9AUIYTlwCnA9hhj\n/1yOJUmSpIWrWkvZXanyeO9YdunLrntzmOqtkEBXW4HOtoSu1uy6o61QD38mLm3F/NbnSfuyuk/p\nyuef27U0W9doeCy7DIymVEZrVEay64GJ69GU2nHkZX0jKX37R3lg/+iU+1d3FLKgqLuFDeNh0ZrO\n4sJfv2jnTvjyF0geenDK3WlLC/zas+A8u4PURE86A37zjaS33Ubyq3+r353s3UP6F38Ol74Irngt\ntJWaWKTmszRNp4RCHas7SAr+TFuIWsottK9oZ/BANrXkvi372PTSTST+jpIk5SD3UCiE0A78F+Ct\nwJnjd78W+Pb4/i8AH4kxPnjYE0iSJGlRq6Upu/qrPPLEKFufGOWxg2Ps6Bub1bRvXW0Jy8sFlpeK\ndJcSOlsL9SCo3JIs+A9RCslEeHXk49I0W5OoMpLSP1Lj4HCN3onLUI3BsWNLjPYO1Ng7MMI9u0bq\n95VbEk5f1sIZPa08qSe7XlEuLIzXtlaDf7kuWztodGoAlq5fD8+/1O4gzQ9tJXjBC0nPOgtuuoFk\nYACAJE3hxz/K1hp62ztg05ObXKjmo8qeCqMDkz/jnDpuYeta31UPhYZ7h6nsrtB1StdRHiVJ0tHl\nGgqNB0I3AJeQzZ6xB1jdsH8j8DbgshDCM2OMj+U5viRJkuaf3uFaFgAdyEKgRw+OMXSM4USjtiIs\nLxdZXiqMB0DZdXepMGUKt6UsSRLaWxPaW2F1Z/GQ/aPVlN7hGgeHsqDo4HCNJwarPDFUo3qUP5Kh\nsZQt+0fZ0tBV1N2WjIdErZyxPAuKOtvm2dRzdgdpIXrSGfCbbyK99eapaw3t3kX6sf8BL34pvPoK\naG1tYpGabw5ZT2iNodBC1r2+mz337alv7/vVPkMhSVIu8u4U+kPg6cDfAn8EtAL1lVtjjA+FEH4T\nuGZ8/+/lPL4kSZKaqJam7Oyr8sD+ER7cn4VA+wePvwVoeanAyvYCKzuK2XV7kY7Whd/x02ytxYRV\nHUVWdUwNjGppFhbtH6xxYLDKgcEa+werR127qW8k5d7dI9y7e7KjaF1XkU0rW9m0oo2NK1tZ2d6k\nbqIjdQetWw8veCEsW37y65KOVamUrTV01sZsraHBrGMgSVO47gek9/wi6xo6a2OTC9V88cTDk6FQ\nsa1IaZlTDS5kbd1ttHa2MlrJfofte2AfZzzvjCZXJUlaDPIOhd4I/DTG+FaAEMIhv61ijP8YQvgu\n8LKcx5YkSdJJVq2lPNY7xoP7R3lwPAgaGD32LqBCQhZSNARAK8pFWouGPydTIUnoKRfpKRdhxWTn\nwUg15cBglX2DNfZWquwdyLqKjmRnf5Wd/VVueXQIgJ5ygU0rW9m4opUnr2xjXfdJWJto10740gzd\nQc94Jpz/FLuDtHCceRasW0d6y81T3tPJzh2k/+9/g8suh1e8yq6hJa5WrXHwsYP17c61nX6RYoFL\nkoSudV0cePAAAP07+hnuG6bUbdgnSZqdvEOhs4C/PIbjfoahkCRJ0oJTraVsfWKULfuyEOihA2OM\nHG3esQbLSglrOltY01FkTWcWAhWd+m3eaismnNLVwildwJrsvpFqyr6BKnvGQ6I9A1UqR+goemKo\nxs+2D/Oz7cMAtLckPHlVK5tXtRFWt7Guq5jfB5e1Gvz4R3DtN+0O0uJSbocXvWS8a+gmkuEsdE3S\nFP75+6S/+Dm8/bezaee0JPVt76M6Uq1vd6zpaGI1ykv3+u56KASwb8s+Nly8oYkVSZIWg7xDoRpw\nLJOItwMjRz1KkiRJTZWmKTv7q8S9I8S9I2zZN8rwMYZArQU4pauFNZ3FeghUajEAWujaignru1tY\n3z35X4nB0Rp7KlV2Vars6s/CotoMb5PBsZR7do1wz67svwPdpQKbV7USVrWxeXXbIVPbHbNdO+HL\nXyR58IEpd9sdpEVl4yZYt570lptItj5cvzvZ/jjpf/8zuPzlcPkroCXv/+prvnM9ocWpY1UHhdYC\ntdGsS3f/lv2GQpKkWcv7X4r3A68MIbw/xnjYeSVCCGXgDcB9OY8tSZKkHBwYrPKrfSPjQdAovcPH\ntiZQuSVhXVeRdV0tnNJVZEV7Ye6nCdO80N5a4Ek9BZ7Uk01fNVZL2TuQBUTZZYzRGd5GfcNTO4lW\ndxTYPB4QnbO6jc62o3zn7IjdQevgBZfaHaTFpaMDXvxS0gcfgFtvJhnO/u4ktSp87zukv7gb3vbb\ncNrpTS5UJ9OBrZPdJK0drbR1tjWxGuUlKSR0ndJF77ZeIPtzro5UKbad4BcoJEki/1DoK8DHgW+H\nEP4QGBi/Pw0hlIAXA38CbOTYppmTJEnSHButpjywf4T79oxw/+4RdlWqR38Q0NmasK67ZTwIKrKs\nVHD9AgHQUkhY19XCuq7svxu1NOXAYI1d/VV29o+xo686Y8fZ3oEaeweGuPX/Z+8+gyRJ7/vOf580\n5V17N93jp2bH7cxa7C52gSVACCAIT4knGlE6neJeSHHBIHWKuBc88A6KE+OkuAgyaCSKECmRoANh\ndgkCILnEeqyfmR1fPaZnpr031eUz87kXWdNm2ozrmWrz/0Tkpq2qZ3qrurLzl//n6S2igO0pi4ea\nghxoCtCVshYHjcPD8D/+cGl1kGnCEx+R6iCxeSkFe/ZCezv69ddQ16/N7+rtRf+Hf++PM/SPPgOm\nXDze7NyGPJDMAAAgAElEQVSyS7Y/O7cebZYqoc0k1jofCmlXM9kzSWO6scatEkIIsZGtdSj0O/jB\nz+eAzwAuoIE/w+8yDkABfwP83hq/thBCCCGEuE1jeZdzIyXOj5bpHi9Tvo0cKGgq2hMm7XGL9rhF\nPHg7vQYLAYZSNERMGiImB5oDaK2ZKHgMZP2AaGjWwVmmkkgDV6ccrk45/OBijqit2N8U4KEGi4fP\nvUHob767fHXQc89DUqqDxBYQicKnPo2+2A1vvYkq+90yKteFF7+L/rBaNdQu3U1tZmPdY+gFfXZK\n13GbS6wl5l9Jq/4vHr84LqGQEEKIe7KmoVAmk/HS6fQXgX9VnY7if3VFgApwAvg68AeZTOb2RyQW\nQgghhBD3pOJqLk9UODda4uxImZHbqAYyFbTG50Og+rBUAom1oRaERIdbwPU0o3mXwazLQNZhNLf8\nmES5iuZ6dz/PfvgtwhPXFu3zq4OehIOHpTpIbC1Kwb40tHegX38V1dc7v+vaVfT/83/D578In/wU\nGBLmb0bDp4fnlpWpiLZIKLSZmAGTSGOE/KjfGc/EpQm0p1GGfNcJIYS4O2s++mQ17Pl94PfT6bQN\nNODfzzCeyWSctX49IYQQQgixvGzJ4+xIidPDZS6MlSmv0F3XQg1hg46ERUfCojlqYsoFB/EAmAu6\nmzvWFqTiagZnHfpnHPqmHbJljdIeH+t5i8+f/zsC3uLqoEv12/nusS/R2hDhUKnA/kCRoCH3oIkt\nJhaDT/8UOnMe3n5rropOOQ58+6/QJ0/AL/0LaGmtcUPFWiplS0z1TM2tx9vjmLZ0GbjZxFvjc6FQ\nJV8hO5AlsS1R41YJIYTYqNY8FFook8lUgKH7+RpCCCGEEMKntWZo1uVMNQi6OlnhVpfFAyZ0JCy2\nVYOgiC13kYvas01FV9KmK2lDJ5QHh9j14jdoHupZdFzZsHnxoU/x6s6n0MrgagHeLsSw0OwNFDkU\nLHAoVKDevL1xsoTY8JSC/QegoxP92iuogf75XVcuo//9/wVf/DI8/wmpGtokRs6MLFpPdaVq1BJx\nP8VaY4sqwsYvjksoJIQQ4q7dUyiUTqd/dA8P15lM5hP38vo3taUe+CrwRaANGAO+D/xaJpMZvI3H\nf7T6+CeAENALfAv4WiaTmV2rdgohhBBCrCXX87uFOz1S4sxwmbH8rS9+N4QNtiX9IKgpamJIV1ti\nvdIeTe+8Ssc/vIjhLK4OGq7v4E+PfpnL0bYlD3NQnC+HOV8O880stFtljgQLPBzK02FVpHc5sfnF\n4/BTP40+fxbeeduvFgK/euibf4E+cdyvGmpqrnFDxb3QWi8KCqyQRaQpUsMWifslEAsQjAcpZUuA\nHwrtfH5njVslhBBio7rXSqGPr7Bd448ltNq+NevPIZ1Oh4FXgP3AbwPvA3uBfwv8RDqdfjSTyUyu\n8vifB/4EyOAHQzPATwP/Dng2nU5/NJPJLDP0rRBCCCHEg1d2NedHy5waKnFmpES+svpplWX41UBd\nSakGEhtHcGKUrhf+hPj1y4u2e6bJxKHHyO09wBdUnknvGle8KFe8KP1eCG+ZP0MGnAADToAf5pI0\nmA5HgnmOhvLssMtID4li01IKDhyCbZ3oV19BDc3fK6kuXUR/7dfhy/8YnvuYVA1tULNDs+TH8nPr\nyc6kjP23icXaYnOhUH4sT2GyQLguXONWCSGE2IjuNRR6fpltvwR8CfhD4B1gHDCAZuBp4OeB/w78\n3j2+9kK/DBwG/nUmk/ndGxvT6fSHwHeAXwN+ZbkHptPpYLUtvcCTmUxmurrrv6XT6e/gVx59Gr/q\nSAghhBCiJnJljzMjJU4NlTg/WqZyi9tVIraiK2nRlbRpjZtYcuVbbBTao+nd1+h46YUl1UHFhmZG\nHn8OJ56c21ZnODxqTPMo0xS1wTUvzGU3So8XocTScTXGXYuX8wlezieIGy5HgnkeDhXYGyhiycdE\nbEaJJPz059FnTsN776Bcv6JUlcvw599An/gAfvGfQ2Njbdsp7tjCKiGAZFdyhSPFZhBrjTHePT63\nPn5xnG1PbKthi4QQQmxU9xQKZTKZVxeup9Ppf4JfYXMkk8n0LvOQP0mn0/8JeBc/MDp/L6+/wD8D\ncsDXb9r+AtAH/EI6nf7VTCaz3G20rcC3gXcWBEI3fB8/FDqChEJCCCGEeMAmCy6nhv0g6NJEBe8W\nddYNYYOulE1X0qI+bMjdwmLDCY4Ns/3FbxDrvbJou2eYTB5+jOm9B0CtXNEQUh5pM0fazOFpGNAh\nrrgRLnlRpnRgyfFZz+TNQpw3C3HCyuNgtYu5hwJFgsaadWwgRO0pBYePQGcX+tWXUSPzYYLKXEB/\n7avw5Z+BZ6VqaKPwXI/Rs6Nz66FUiGAiWMMWifstXB/GDJq4JT/YlVBICCHE3brXSqGb/e/At1cI\nhADIZDJX0un0t/Erd75xry+YTqcT+N3GvZ7JZEo3vZZOp9PvAl8GdgJXbn58JpO5BvzzFZ7+xm02\nM/faTiGEEEKI2zFRcDk5WOLkYJGeKWfVYxXQFjfZXg2CogG5kCc2KM+l5cf/QNsr38dwF7/viw3N\njD7+HJX4nd0BbyjYpopsM4o8qycY1wEueVEuulFG9dILpwVt8H4xyvvFKDYeDwWLHAkVOBzME5GA\nSGwWqRR87gvo06fgg/fmq4ZKJfizb6Dffw9+4ZegpaXGDRW3MnllkkphvppSqoQ2P6UUsdYY09f8\n+5mnr09TKVSww3aNWyaEEGKjWetQ6CH87tpu5Srwc2v0mtur874V9l+vznexTCi0knQ6HQD+ZyAP\nfPeuW3eTixcvrtVTbRryMxFbkbzvxVYk7/uVTVcUl7I2l2Zthourn54ZaJpCLi0hh+agi20ADsyM\ny10s69Hg4OCtD9riEmNDHHntb0iODS3a7hkG/bsPMtK1BxwPJlccIvS2mEC6OmVVgGtmHdeNFMNG\nzK+iWKCCwalShFOlCAZ1dJElzQRpJolRWe7pxQKDQ/K+X/daWrCefY7UyRMEpqbmNquL3Xhf+yrj\nT32Uyccel6qhO/Cgz3Mm31rwO1FBIVCQz94W4IQW3Dih4fyPzxPuqs24QnJuL7Yied+L9WDv3r33\n/BxrHQqVgadu47jHYc3+mopX5/kV9uduOu6W0um0AfxX/JDrVzOZzMDdN08IIYQQYqmpssGlWYtL\nWZuR0uqnZLbSNIccWkIujUEXU3qFE5uA4TrsOf4Gu0++haEXD5KVTTVy7cAjlCKx+/LacV3mkDPM\nIYbJY9Frprhm1jFoxPFu6p7Ow+AqSa6S5G/ZSQdZ9jNBmglSlO9L+4R4EJx4grFnniV25TLxzAWU\n538ODceh6fVXiHdfYOgffYZyU3ONWypu5pU9igPFuXUrZWHYEuBtBVbS8kvFqwWsxYFizUIhIYQQ\nG9dah0KvAF9Ip9P/BfjNTCZzbuHOdDq9F/g3wOdZp2P0pNPpMPCn+GMJ/U4mk/n/1vL51yLJ2yxu\npOvyMxFbibzvxVYk7/t5I7MOJ4ZKnBws0TezetdwIUuxI2Wxo86mNWZiyPhAG8qNCqG2trYat2R9\nivT1sP2FbxC+uTrIshk/8jjZXfuJKEXkAbSlDujA5SOMUdQT9HgRLrlRerwIDksvsvYTp584/8B2\nuqwSR0N5joYKNFmrf6a3ghtVCm2t8r7fUNo74NAR9GuvoIbnP5Oh4SG2/8n/gE9/Bj7zWbCli6rl\n1OI8Z+D4AMPe/LhQLXtbSLQmHtjri9pyr7nMDs8CUBmpsHvXbgzzwYWCcm4vtiJ534vNZq1DoX8H\nPA38K+B/SafTFfyeTDSQAAL49zRMA//HGr3mjZ5Soivsj9103IrS6XQT8CLwEeBrmUzm/7z35gkh\nhBBiKxvKOpwcKnFisMRAdvWLxhFbsSNlsyNl0SxBkNiEjHKJth99j+Z3XkGxeJyefOs2Rh99Bvc+\nVQfdjpDyeMic5SFzlopWXPPCXHJjXPYilDCXHH/dCXJ9NsiLs3Vss8ocDeU5FsrTLAGR2GhujDV0\n/iy8+w6q4nfsoTwXvv899Inj8Iu/BLt217ihAmDk9MjcsmEbxFpr93tTPHixtthcKOSWXKZ7p6nb\nUVfjVgkhhNhI1jQUymQyl9Lp9MP44dDn8cfxaVxwSB9+hdBvZDKZq2v0sj34odO2FfbfGHNo1U4f\n0+l0C/A6sBP4F5lM5o/WqH1CCCGE2EK01gzNupwYLHJysMTgrLvq8RFbsbOuGgRFTZQEQWKTSlw8\nS+f3/5Lg1Pii7a4dYPzYR5jt2rNkbJ9aspVmj5lnj5nH1dDnhbnkRbnkRskt82dUnxOgbzbA92ZT\ntFcDoqOhPG0SEImNQik4cAg6t6PfeA3V1zu/a3AA/R9/A57/BHz+ixAK1bChW1thosBM//w9r4lt\niQdaJSJq7+YQcOT0iIRCQggh7shaVwqRyWSGgV8FfjWdTofwe2RQwFQmk1lp3J97eb1cOp0+BTyS\nTqdDmUxmrmPddDpt4lcu9WYymesrPUc6nU4APwS6gM9nMpkfrHU7hRBCCLF5aa0ZyLqcHCxyYrDE\ncG71IChqK3bU2eyss2iKSBAkNjc7O8W2H36LunMnluyb7djB+CNP44bW93gIpoLtZoHtZoHnrTEG\ndYhuN8pFN8bsMn9SDTgBBmYDfH82RatZmQuI2q3Kesq9hFhePA6f/in0xW54+8eoUgkApTX86CX0\n8Q/gZ/8nOPrIugpyt4rh08OL1pOdyRq1RNSKHbYJN4QpjBcAGDk7wo7ndxCMBWvbMCGEEBvGmodC\nC1UDmsH7+RpVXwd+C/hfgd9csP0XgGbgqzc2pNPp/UApk8n0LDjuN4GjwJclEBJCCCHE7dBa0zfj\ncHKwxImhEqO3CIJiAcXOlM2OOpvGiCFBkNj8PI+m91+n/Ud/jVkqLtrlBEOMPfIM+W07atO2e2Ao\n6FBFOowiH7fGGdRBLroxut0oWZaOuTLk2vwwl+SHuSRN1YDoWCjPNgmIxHqmFOxLw7ZO9I/fQPVc\nmd81NQn/5ffQh4/Az/4cNDau8kRiLWmtGT4zHwrZUZtw/foO1cX9Ub+7nv7xfgC0pxn8YJAdH9tR\n20YJIYTYMO5rKPQA/Wfg54H/lE6ntwPvAweBXwFOA/9pwbHngQywHyCdTh8Bfgk4B5jpdPpnlnn+\n0Uwm8+r9a74QQgghNgKtNb3TDieGSpwcLDGWXz0IigeqXcPV2TSEJQgSW0d4sJeu7/050YFrS/bN\n7NrPxOHH8AIb/45mpaBdlWg3SjxnjTOsg34FkRdjWi8NiEZdm7/PJfn7XJJGs8LRUIGjoTxdVlkC\nIrE+RSLwyU+he3rgrTdQudzcLnX6FDpzAT77OfjkT4K5WS4vrF/TvdOUpktz66mulJxbbFHx9jh2\nxKaS98f/Gjg+QOfTnZj20vHvhBBCiJttirO2TCZTSafTnwJ+HfgK8G+AEeAPgK/eotu6R/C7tzsA\nfHOFY14FPr5W7RVCCCHExqG15tp0tSJosMhEwVv1+ETwxhhBNvUSBIktxiiXaHv5ezS/84rf1dQC\npUQdY489Q6mhpUatu7+UglZVotUo8ayeYFQH6HZjdHtRpnRgyfFjrs1LOZuXcgnqDGeugmi7XcaQ\nXxtivdm5Ezo60B+8B2fPzH2+VbkM3/kW+p234ed/EXbvqXFDN7eR0yOL1hOdiRq1RNSaUor6PfUM\nn/Irx5yCw/DpYdofaa9xy4QQQmwEmyIUAshkMjP4lUG/covj1E3rfwT80X1rmBBCCCE2HE9rrk05\nnBgscnKoxOQtgqBk0GBnncWOOpu6kARBYmtKXjhF5w++SWBmctF2zzSZPPgI03sPgbE1BkNXCppV\nmWZjgmf0BGM6wEU3SrcXY2KZgGjSs3g5n+DlfIKU4fBwtYJol12SgEisH4EAPPUM7N2Hfv011Njo\n3C410A//8TfQH30OvvRliMZq2NDNya24jJ6f/5mHG8IEokt/n4itI9mVZPT8KF7FP0/tf7eftmNt\nch4qhBDiljZNKCSEEEIIcS88remZrHBisMSHQyWmiqsHQamQUa0IsqgLS1cdYusKjg+z7YffInnp\n3JJ9+dZtjD3yNE40XoOWrQ9KQZMq02SUeZpJxj2bbi/GRTfKmF7ahd6UZ/FqPs6r+TgJw+XhUJ5j\nwTy7AxIQiXWisQm+8CX0+XPw3juoSmVul3rjNfSHJ+CLX4Gnnt4yQfCDMN49jlue77Y21ZWqYWvE\nemDaJqkdKSYuTgBQmCgwcXmChj0NNW6ZEEKI9U5CISGEEEJsWa6nuTJZ4eRgiZNDJWZKqwdBdTeC\noDqLVEiCILG1GaUCba/9LU1vv4zhLR5fywmFGT/2FLmOHchgOYs1GBWeMiZ5yppkwrO56EW56MYY\nWSYgmvFMXs/HeT0fJ264HAnmORrKszdQwpQfq6glw4CDh2DHTvTbP0ZduTy3S2Wz8Md/hH7tFfjZ\nfwq7dteunZvI8OnhuWVlKOIdWzdsF/Pqd9UzcWkCqj229r/TL6GQEEKIW5JQSAghhBBbiuNpusfK\nnBwqcXq4xGxZr3p8fXi+IigpQZAQoD3qT71Hx0svYM/OLN4FzOw5wMShR9G2dGt0K/VGhSeNKZ60\nppjyLC56MbrdKMM6tOTYrGfyZiHOm4U4UeVypNrF3L5AEUsCIlEr0Sh84ifR+9Lw5ut+IFSlrl2F\n//c/oJ98Cr70FUhJZcvdKs2WmOyZ75oz3h7HtOWcRIAdsUl0JJjp87+Pp65NMTs8S6xFunAUQgix\nMgmFhBBCCLHplV3N+dEyHw4VOTNcpuCsHgQ1Rgx2pGx21NkkgtL1jRA3RPqvse2H3yTWd3XJvkJD\nC+PHPkK5rvHBN2wTSBkOjxtTPG5NMe1ZcxVEg8sERDlt8lYhxluFGGHlcTiY51goTzpYxJaASNRC\nZxf8zD9BnzwJp06i3PnqQfXOW+iTx+Ezn4VP/CTYdg0bujGNnh2dqwQBfywZIW6o31M/FwoB9L3b\nx/7P7a9hi4QQQqx3EgoJIYQQYlMqOh5nR8qcHCxxbrRE2V39+MbIjYogm7gEQUIsYuWytP/DizSc\neBvF4lDVCUUYf/gJcp27pKu4NZI0HB4zpnnMmiarTS66/hhE/ToELP4ZF7TBu8UY7xZjhJTH4aBf\nQbQ/WCSgVg/AhVhTlg2PPQ7pNPqdt1E9V+Z2qVIJvvtt9Juvw8/8LBx5WH5f3IGFXceZQZNoU7SG\nrRHrTbguTLghTGG8APgh4s6P7yQYX9otqRBCCAESCgkhhBBiE8mVPU4Pl/hwqMSFsTLO6kME0RIz\n2ZGy2J6yiQUkCBLiZsqp0PTua7S99gPMUnHRPm0YTKUPM7X/YbQld/7fL3Hl8og1zSPWNLPa5JIb\npduL0e+F0DcFREVt8F4xynvFKEHlcTBY4FgozwEJiMSDFE/AJz+F7u+Ht95ETU7M7VKjo/B7v40+\ncBD+8c9CW3sNG7oxzA7PkhvJza0nO5MoQwI1sVjDngb6xvsA0J5m4IMBdn58Z41bJYQQYr2SUEgI\nIYQQG9pM0eXUsN81XPd4BW+V654KaI+bbK+z2Z60CNsSBAmxLM+j/vT7tL381wSnJ5fszrV3Mf7w\nkzixRA0at3XFlMtRa4ajzJDTJpfdKN1elF4vvCQgKmmD48Uox4tRAsrjQKDI0VCeQ8ECQUMCIvEA\ndHTAl38Gff4cfPCeXy1Upc6dRX/t1+Hpj8JnPwd1dbVr5zo3dHJo0bp0HSeWE2uLYUdtKrkKAIMn\nBul6ugszIGNPCSGEWEpCISGEEEJsOGN5d64i6MpEhdUubxoKtiUstqcsupI2QRmRXYiVaU3i8nna\nX3qByHD/kt3lWJLxYx+h0LqtBo0TC0WVyxFrhiPMkNdGNSCK0euF8W4KiMra4GQpwslSBBuPdLDE\noWCew8ECCfMWJZVC3AvDgIOHYPdu9PvvwYXzKO1/ayvPgzdeQ7/zNnzik/CpT0MkUuMGry+FiQKD\nJwbn1oOJIKHk0nHGhFBKUb+7nuFTfleDTsFh+PQw7Y9KNZ4QQoilJBQSQgghxLrnac31KYfTwyXO\njJQYyK4+QJBlQGfCYnudTWfCwjYlCBLiViID12h/6QUSPd1L9rl2gKkDR5necwAMuet4vYkoj8NW\nlsNkKWiDK9UKomteZElAVMHgTCnMmVKYPwd22CUOBQscCRZotSoyzIu4P0Jh+Ohz8NAB9Ftvogbn\ngw5VKcMPv49+/VX4zGfhY8+DLV1SAlz50RX0ghLohn0NNWyNWO9S21OMnh/Fq/hhf/97/bQ90oaS\nX+xCCCFuIqGQEEIIIdalsqvJjJWrQVCZbGn1u9kDJnQlbXakLNoTFpb0ty/EbQlMjNL+o7+m/uzx\nJfu0YTC99yBT+x/GC8iA1RtBWHkctLIcJEtRG1zxIlx0Y1z1wrgs7TLzaiXI1UqQ782maDQrHA4W\nOBwssCtQQvJ0seYaGuGzn0dfvwbvvYOanO+eUuVy8Fd/if7RS/D5L8ITH/ErjbaoqatTjHePz62H\n6kIktkmXnWJlhmVQt6OO8Yv++6YwUWDi0gQNeyVMFEIIsZiEQkIIIYRYN2aKLmdG/CAoM1amcote\njUKWYnvKYnvKpi1mYkoQJMRts7LTtL7+tzR98IbfjdMCGpjdsZeJg4/gRmK1aaC4ZyHlccCc5YA5\nS1krrnhRLrsRerwIZZZWfI25Ni/nbV7OJ4gol4PBIodDeR4KFAnJOERirSgF23dAZxf6Uje8/54f\nCN3YPTEBf/Tf0H/3t/Clr8Chw2y1EjbtaS6/dHnRttYjrVLxIW6pbncd45fGudG3ct87fRIKCSGE\nWEJCISGEEELUjNaawVl/fKAzwyWuTjm3fEwyZNCVtOhKWjRFTQy5QCLEHbFnpmh58+9p/OBNDHfp\nZy7X1snE4ceoJOtr0DpxvwSUZr85y35zFldDnxfmcjUkyrK0q668NnmvGOW9YhQLzd5AkcOhAoeC\nBerM1bvwFOK2GAbs2w+79qDPnYGTJ1Cl0txuNdAPv/Nb6J274Kd+ekuFQ0OnhsiNzAdlic4E4fpw\nDVskNgo7bJPYlmCmdwaA6evTZIeyxFvjNW6ZEEKI9URCISGEEEI8UK6nuTRR4fRwidPDJSYKq5cD\nKaAlZtKVtOhMWiRDMp6JEHfDnp6k9Y2/o+HEW8uGQcW6RiYefoJiU1sNWiceJFPBdrPAdrPA8xaM\n6kA1IIoyopd2E+igOF8Oc74c5i+BTqvM4VCew8ECHTIOkbhXlgVHjkL6IfSHJ+DMaZQ7Hzyqnit+\nONS13Q+HHj66qcMhp+Rw9dWrc+vKUDQfaK5dg8SGU7+7fi4UAuh/t5/9n99fwxYJIYRYbyQUEkII\nIcR9l3cU7/YVODta5vxImYKzejdEtgEdCb8aaFvSImRt3TEFhLhXgakJWm6EQd7SCo9yLMHk4cfI\ndezY1BdaxfKUgmZVptko85Q1SVabXHajXPai9HphPJa+J3qdAL2zAb4/myJlODwULHIgWCCFSRCp\nIhJ3KRj0xxE6cAh9/H3ozqD0/PmCun4N/vPvoLd1+uHQ0WObcsyh3rd6qeQqc+sN+xqwI0ur+YRY\nSbguTKQxQn4sD8DouVF2Pr+TYFzGBhRCCOGTUEgIIYQQa87TmmtTDudGShzvjTJSMoHsqo+J2oqu\nlEVX0qZVxgcS4p4FJsdoff3vaPjw7SVjBgGU40kmDxwj17kT1Oa7sCruTly5HLVmOMoMJa245kW4\n7Ea54kUoLTMO0ZRn8VYhxluFGAYNbGOWYzmXg4EirVJFJO5GLAbPfRyOHEWfPA6XLi4Oh/p64fd/\nD93eDp/5aXj0sU0TDhWnivS90ze3boUsGQ9G3JX6PfVzoZD2NAPvD7Dz+Z01bpUQQoj1QkIhIYQQ\nQqyJmZLH+dES50bLXBgtk6/cuICz8ulGY8SgK2nTmbSoDxsygLIQayA83E/zWz+i/tR7KL1MGJRI\n+WHQth0SBolVBZVmn5ljn5nD1TDghfxu5rwo03pp5YKHwXUSXM/CC0Cd4XAgWOChYJF9gSJhY/Uq\nUSEWSaXg4z8BjzyKPnkCursX/U5TAwPw9d9Hf+9F+PRn4PEn/a7oNrCel3vQ7vznpOlgE4ZUS4u7\nEGuNYUftuaqzgeMDtD3aRigRqnHLhBBCrAcb+4xJCCGEEDVTcTVXJitcGCuTGS3TO7N0jJKbmQra\n4pZfEZSwiATkQocQa0J7JC6dp/mtH5HoySx7SClZx9SBY9JNnLgrpoJOs0inWeRjepxxHaDHi9Dj\nRhjQoWW7mZv0LN4sxHmzEMdAs8MusT9YZH+gSJddxpS3obgdiaRfOXTsEfTJk9B9YVH1oxoegv/+\nh+jvfBs+/jw89zGIxWvX3rs03TvN6PnRufVQKkSyM1nDFomNTClF/Z56hj8cBsAtuWRezHDk546g\npBpfCCG2PAmFhBBCCHFbtNb0Zx0yo34QdHmiTGVpEcISEdOjKeiSbkvSGjex5A9RIdaMqpRp+PBd\nmt9+mdD48LLHlFL1TB44Rr59u4RBYk0oBY2qTKNR5nFripI2uOaFyRRM+swkBRVY8hgPxZVKiCuV\nEN8HwsojHSiyP1hgf6BIgyVjEYlbiCfg2ef8cOjDk5A5j3Ln3zdqZhpe/C76B38DTz4FP/FJaG+v\nYYNvn9aay39/edG2lsMtUkEt7klqe4qpq1OUpksATF+fpvetXrqe6apxy4QQQtSahEJCCCGEWNFk\nwaV73O8OLjNeIVu6dQpkKmiPW3QkLbYlLHIT/oXqtqScdgixVqzsNE3vvUbT+29gFXLLHlNoaGF6\n/2HybV0SBon7Kqg89pk5miqT6Ao4yRZ6vAhXq1VEepkqooI2OFmKcLIUAaDJrJAOFNkXLLInUCJu\n3MZdB2JrisXgmY/CsWPoDz+EC+dQzny1sqpU4I3X4I3X0AcOwid+Eg4cXNe/B0fOjDA7NDu3Hu+I\nE29TZOwAACAASURBVGmM1LBFYjMwTIOOxzsWdUt49bWrpHakSHQkatw6IYQQtSRXZ4QQQggxZ7ro\ncnG8Qvd4mYvjFcbyt3fndipk0JHwQ6CW2OJqoOUvVwsh7pjWRPqv0fT+69Sdfh/DW/r51EqR27aT\n6X2HKNU31aCRYqtTQLNRptko86Q1RVEb9HphrnlhrnoRZpYZiwhg1LUZLdi8UfC7/Wq3yuwLFNkX\nKLE7UCQi4xGJm0Wi8NTT/phDF87B2TOo3OKzDnXuLJw7i25tg098Ep74CASDNWrw8tyyS8/LPXPr\nylA0H2yuYYvEZhKMB2k53MLQySF/g4YLL1zgkX/5CFZQLgkKIcRWJd8AQgghxBaWLXlcrAZA3eNl\nRnK3FwKFLEVHwqI9btIRl7GBhLifzEKe+lPv0nj8x4RHBpY9xrNsZnbtZ3rvAdxI7AG3UIiVhZTH\nXjPHXjOH1jClLa55Ea55EXq9MGWW//4YcAIMOAFeyYNC02nPh0Q77RIhCYnEDcEgPHwMDh9B9/TA\n6VOo0ZFFh6ihQfjGH6O/9U14/En46LPQtT661Ox9u5fybHluvX5PPYHo0i4YhbhbqR0pciM5sgNZ\nAIpTRS798BL7v7C/xi0TQghRKxIKCSGEEFvIRMHl8kSFyxNlLk9UGJq9vRDIVNBaDYDaExZ1IUP6\nuRfiftKa2PXLNBx/k7pzJzGcyrKHVSIxpvcdIrtjL9qWi4hifVMK6pRDnTHDUWZwNQzpEFfdML1e\nmCEdwlumqzmN4nolyPVKkJdyfki0zSqzJ1Bid3WKSXdzwjBh9x7YtRs9MgynT8HVHpSeDxBVsQiv\nvwqvv4re1gnPPAtPPAnRaE2aXJwp0vd239y6GTRp2NdQk7aIzUspRduxNgqTBZyC39XiyNkR6nbX\n0XKopcatE0IIUQsSCgkhhBCblKc1w7MLQqDJCpOF27toZihoipq0xUza4hZN0cVdwgkh7g8rl6X+\nw3doPP4WofHhFY8rNLQwve8Q+Y4uUFKpJzYmU0GHKtJhFIFJylrR74W57oXp80IM6yCsEBL1OkF6\nnSAv5/1trVaZ3XZpLiiqM2/vpgexCSkFLa3+lJ1Bnz0DFy6gKuXFh/X1wl/8Kfrb34Rjj8BHn4O9\n+x5o9dDVl6/iOfPnZs0HmjFt84G9vtg6zIBJ+2PtXH/9+ty2Sz+8RKIjQbguXMOWCSGEqAUJhYQQ\nQohNouRoeqcr9ExV6JmscHmiQr5ye93rKPwQqLUaAt08LpAQ4v5RlTLJi2epO/MByczpZccKAnAD\nQbLb95DdlaaSqHvArRTi/gsozU4zz07TT3qK2qDPC9FbDYrG9cpjwQw5AYacAG9WxySqMxx2Bkrs\ntMvssEtss8tY8rW29cQT8JGn4dHH0Vcuw4XzqJHFgbuqVODdd+Ddd9BNzfD0M/DYE9B0f8dlGzg+\nwMjZ+W7ugskgye3J+/qaYmuLNkZpSDcwnhkH/PGsLrxwgYd/8WEMU24wEUKIrURCISGEEGID0loz\nmne5Olnh6pRDz2SFgayDd5tDLBgKGiMmLTGTtpgfAtmmXC0T4kFRrkP8Soa6M++TunAKs1xa8dhC\nUxszu9LkOnaAKXeQi60jpDz2mHn2VEOivDbp80L0eyH6vTCjOoBeppIIYNKzmCxaHC/63YLZeHTa\nZXYGyuy0/XGJEqZ0Obdl2Dak90N6P3piAjLn4WI3qrT4d68aHYEXvgMvfAe9Yyc89jg8+hjU1a9p\nc4ZODXHph5cWbWs53CJd84r7rml/E/mRPIXJAgDZgSzXXr/Gzo/vrHHLhBBCPEgSCgkhhBAbwGzZ\no3e6wrUph6tTFa5OVsjdZhUQgGVAS9SkpRoASXdwQtSA5xG7dpH6Mx+QOn8Sq5Bf8VAnGCa7cx/Z\nnftwYokH2Egh1q+Ictln5thn5gAoaYMBLzQXFK00JhFABYMrlRBXKqG5bfWmw3a7RJdVpssu02mX\nCRu3/90qNqj6enjqGXjiI+irPZA5j+rvX3KYutoDV3vgr/4SvWevHxA98igk7q2aZ+TsCN1/071o\nW8PeBqJNtRnXSGwtylC0P95Oz4965rou7P1xL3U76kjtSNW4dUIIIR4UCYWEEEKIdSZf8bg+7dA7\nXeH6lMP16QoTtzkW0A1hS9ESM6uTRX3YwJC7T4V48FyX2PXLpC6cou7ccezZmRUP1YZBvnUb2R17\nybd1gSFduQixmqDyFnU3V9GKIR1kwAsx4IUY9EIUWbm6bsK1mHAtTuBfjFdomk2HLrtMl11iu12m\nw64QUBIUbUqmCbv3wO496JkZ6L4A3RlULrfkUHXpIly6iP6LP/Mrjh57HI4chcSdhfZjF8a48OIF\nWPCWqttVR9PB+9tVnRALBaIBWo+2MvD+wNy2C399gUf/5aPYEbuGLRNCCPGgSCgkhBBC1NBMyaN/\npkL/jEPvtMP1aYex/J0Njm0oaAibNMdMmiL+PGor6YJEiBox87O0XzxDy7WLNPf3YJUKKx6rlaLQ\n3M5s5y7yHdvxAiuPmSKEWJ2tNJ2qSKdRBEBrmNQ2g16IAR1iwAsyrgOwQjWRRjHs2gy7Nu9Vu50z\n0LRaFbZZfkDUaZXpsMtEpKJoc0kk/HGEHn0cPTwEly9Dz2VUYfHvb6U1XDgPF86j1R/Djp3Ut7WT\n27UH9uyBVc69xi+Nc/675xcFQqkdKVqOSLdx4sFLdibJDeeY7p0GoJwt0/39bg585YC8H4UQYguQ\nUEgIIYR4ADytGZl16Ztx6M869M/400zpzscziNqK5qjfBVxzzKQ+LF3BCVFTWhMaGyLZfYZk9xmi\nvVf8C4erKDS2kOvcxey2nXih8ANqqBBbi1JQryrUGxUOkgX8LucGvSCDOsSQF2TIC1FYpZrIQzHg\nBBhwAlCc315vOtWgqEynVaHDLlNnuKtlAmIjUApa2/zpqafRg4Nw5RL0XFk6/pDW0HOFxp4rNP74\nDfRffxcOH/Gn/Q9BcD7kn+yZ5Ny3zqEXDP6Y7EzSerRVLsCLmml5uIX8RJ5KrgLAePc4l//uMrs+\nuQvDlGplIYTYzCQUEkIIIdaQ1pqposdg1mEw6zI461SXHSp3MZ512FI0Rk0aIyaNEYPGiEnYlj/S\nhKg1Mz9L/NolYj3dJC+dIzg5dsvHFOsa/SCocyduJPYAWimEuFlQeewwC+zArwDRGrJYDHlBhr0g\nQ9qfl1cJimC+67lTpcjctpDyaLMqtFtl2qyKP9kV4sZdnACI2jMM6Ojwp2c+iu7vh8uX4OpVVKW8\n5HA1PQVvvAZvvIa2LL+buYOHmEru4Ow/DKHd+UAo3hGn7ZE2CYRETZm2ScdjHVx97epcBdvABwPM\nDs/y0JcfIhiT6mUhhNisJBQSQggh7oLWmumSx9BNwc/QrEvRubsuZUKWWhT+NEZMIgEJgIRYD8xi\nnti1S8R6LhK/2k14eADF6p91zzAotHSQb+si39aJG5FBxIVYb5SCBA4J02Gf6Y8lozVMaXsuIBrR\nQUa9AKVbBEVFbdBTCdJTWXwhNW64c2FRq1WhxXJoMSvEDE8qizYKw4TOLn9yHL+C6Po1uH4NNZtd\ncrhyHDh7humLQ5xp/kk8Y36clniDTcej7Sip8hbrQLg+TMvhFoZPDc9tm+mb4cTXT/DQlx4i2ZWs\nYeuEEELcLxIKCSGEEKsoOZrRnMNwzmV41mUk5zAy6zKScym5dz+eQDJoUB8xqA+b1IcNGiImYUvG\nARJivTCLeaK9PcSvXiR2tZvIYO8tu4QDcEIR8u2djMTrmalvItUog4cLsdEoBXWqQh0VHjJnAT8o\nmtEWozrAiBdkVAcZ8QJkufWg7FnPJFs26S6HFm2PKNcPiKwKLWZlbrnBdDDldGD9sizo7PSnp59h\n5FI3oeFh4pOTMDw0912RDTRwuvmTiwKh+kIfB0+8AhcilLftpLJtF+Vtu3DrmlYdj0iI+6l+dz1W\nyGLw+CCe41c2lnNlPvzGh+z6xC46Hu+Qv1GEEGKTkVBICCHElldyNGN5159y/nw074c/k8V76/Il\nYEJdyKQubFAf8QOgupCJLVd7hFg/XJfwcD/R/qv+1HeN0PjwrR+HPzB9qb6RfFsn+bZOyqkGUIrp\nycn73GghxIOkFCSVQxKHPWZ+bntBG4x6QcZ0wJ+8AOM6QIVbV/rmtUlPxVxSWWSgaTAdmkyHRqs6\nNys0WQ4NpoMlpxDrh1I48QSz8QTx1jYoFtF9vUxem+J8eQ+uEZg7NFUc5MDYqxh4UJgldPE0oYun\nAfCCYSqt23BaOqm0dlJp2YaWbkbFA5ToSBBMBOl7p49ytto9ooYrL10h259l32f3YQZWr5YUQgix\ncUgoJIQQYtPztGa66DFecJnMe4wVFoY/LtnSvff1bxuQCpvUhQzqwgapkL8ctqX6R4h1RXsEpiaI\n9l8j0n/Vnw/2YjiV23s4UE41UGhuo9jURqGpFW0Hbvk4IcTmFFYeXWaBruoYRTBfVTS+ICga0wEm\ndQCXW58TeChGXZtR14abhq5RaOpMlyazQqPpUG+61Jt+WFRvOiSkS7qayjkBemY6mXA6WJgLxr0p\nDky+gandZR9nlAoEr10keO3i3DY3UTcXEDmtnVSa2kG+b8R9FIwH2fnxnQwcHyDbP98t4uj5UXKj\nOQ585QCRhsgqzyCEEGKjkFBICCHEhld2NVNFl8mCx2TBZbzgMlHwmMz7y1NFD+/ue3pbJGwpkiGD\nVMggGTJIBA3qwiZRCX+EWHfMYp7Q8ADh4X7CwwOER/zJLJfu6HnKiToKzW1zQZAXkIGXhRArW1hV\ntIv5qiJPw7S2mdA2k9pmQgeY8Px58RbjFd2gUUy4FhOuRWaZ/TYedaY7FxLVmy51pkPKdKkzHJKm\niy2nK2vOqSguni0z2Ocs2ReKKNp2NTFp/FOs6Qns8UEC4wPY40Or3pBgzkxizkwS6j4FgFYKN9mA\n09iK09CC29iK09CKm6wHQ8agFGvDsAw6Hu9gon6CkTMj3Bg+MT+W58QfniD9uTS3UQgphBBinZNQ\nSAghxLqltSZf0cyUPKaKfrgzVfSYKixYLrrkK2uU+FTZBsSDBsmgH/wkQybJoEEiZBCQbt+EWHfM\n/CzBiVFC4yOExoYJD/cTGhkgOH3nXbh5lkWproliQxOl+iaKDS14ofB9aLUQYqsxFoxVdLOCNhaF\nRNPaYkrbTGkb5w6uwFYwGHENRtyVxzqKGy4pwyW1ICxKmS4JwyVZnYeVloqj2+C6monhIBMjQbS3\nNBBK1Bm0dpiYpgIUTqoRJ9VIYfdh0J4fEk0MYU+NYk+OYOazS1+kSmmNNTWGNTUGl87MbdeWjdPQ\ngtPQitPYglvXhJtqxE2kwJDuvsSdU0rRsKeBcCpM37t9uCW/ws0tu5z71jnCO8JE90Rr3EohhBD3\nQkIhIYQQD5TWmoKjmS175Mr+fLroMVPymCm51bnHTHWbu7Z5z5ywpYgHDeJBv9onHlD+PGgQsqTq\nR4j1xigVCU6MzoU/wfERghMjhMZHsAr5Wz/BMjSKcjJFqb6ZUkMTxfomKokUKLkFVgjxYIWVR4cq\n0mEUF23XGnKYfkDk2XNB0ZS2mdYWpdusMFoo65lkPZNeZ+WuyGy8uYAoYcwvxw2XmOERM1yi1flW\nDJC01gwPuFy9WKFcCi3ZH44qWtpNwpFVvk+UMR8S3dhUKvoB0dQI1tQo9uQoRmX16lblVLCH+7CH\n+xa30TBxk/W4qQbcVANOqqm63IgXT8h3nbilSGOEnc/vpP/dfgoT811kFq4WKFwtcOLsCVqPtdJ8\noFnGGxJCiA1GQiEhhBD3pOz6wY4f8njMlnV1Ph/6zO2r+PvWqiu31YQtRSxgEAsoYkFjfjngL9tS\n8SPE+qE9rNwsgakJAtM3pkl/PuUvW8W7C35u8EyLcrKuOtVTTtVTqmtEWyvfTS+EELWmFMRwiSmX\nbTcFRgAlbTCjLWa0xbS2q3OLmery3YRG4FccjbkGY6tUHN1goonOhUV+UBQzvLltccMlpry5EClq\neGzU07BKRTM17nL9SoVcdukJbSAIzW0WscTd3WCkgyHKLZ2UWzqrGzRmPos1NYo1M441M4E1M4lZ\nzN3yuZTnYk2OYk2OLn0d08KNJfHiKdx4Ci+exI2ncBN1c8vI96MA7LDN9me3M3xmmMnLiyuws4NZ\nsoNZrrx0heZDzbQdayPWEqtRS4UQQtyJTRMKpdPpeuCrwBeBNmAM+D7wa5lMZvA2Hv808GvAR4Aw\n0A38V+C3M5nMA7h8KYQQtVFxNUVHU3A8ihVN3tEUKx4FR1OoaIqOR6GiF63nK/PBT8V78G0Omopo\nQBG1DSLVeTSgiNh+8BMNGFjGBr3aIMRm4rnYuSzWbBY7O409O+NP1WVrwbrhLu12525owIkl5sKf\nUjUAcqJxttyt7EKITS+oPJpUmSbKy+4vaYOsNslqi1ltkdUWWRYsa4vKPQ4Q4qKY8Sxm7uCcMKJc\nIoZHWGnChkdIedV1j5DhEVm4vbotXD0mpDQP6jTP8zTZaY/JMZfJcY/s9PL/SGVoWtosUg3G2lab\nK4UbTeBGE5Q6ds9vLpewspNY2QnMmQk/LMpOrjpG0aKndR2s6XGYHl/xGC8cxY0l8CJxf4rG8KI3\nluN4kRheNIG2A/L9uskpQ9F6pJVoY5Sx7jGKk4sDarfsMnh8kMHjg8Tb47Qda6PpQBOmLdVDQgix\nXm2KUCidToeBV4D9wG8D7wN7gX8L/EQ6nX40k8ms2Kl8Op3+CeAHQC/w68AE8AXgt4DdwC/fx+YL\nIcRt87Sm5GjKrj+VXE3Zqc5dFizfvM9/XKEa8PghkKZQ8XBqEOqsJGhC2DYI237AE7EUYVsRtg0i\nth/2RGwlgY8QD5rrYpYKmMUCZqmIWSxgFfOY+VmsfM6fCjms/CxmITe/7R6re1bjBMNU4gkqseSi\nuRNLoM1NcYorhBD3LKg8gsqjcZlxjMDvnq6EQU6b5LTFLP7cXzeZ1Ra56rZ7DY8WymuTvHv3F4xD\naj5ACiuPoNIElSagPIKGrv67NQG1dDmw5FiNjd8FntaaQl7PhUDTEy6uu3I7lIJIvEw0WaGuvu6u\n/z13SgeCVBpaqTS0LtioMYo5zNwM5uw0Vm7aX85NY+ayKH1nJ/1GIYdRyAGr32OrLRsvFMELR9Ch\niL8ciqDDEbxQdH57MIwOhtCBEF4w5FciSZi0ocTb48Tb4/Rd7qM0XMIZd/Bu+mMyO5AlO5Dl0t9e\nItocJdocJdYSI9YaI9oUlW7mhBBindgsfzH/MnAY+NeZTOZ3b2xMp9MfAt/BrwD6lVUe/7tAEXh2\nQVXRH6fT6e8C/1s6nf7DTCbz4f1puhBiI/C0xvWqcw2OB67nL3vVuetpnOq84oHjaiqexnGh4vnL\nQxMBHK3IeLNU3OpxnqbiahyvetxNywvDnfUU4NyOoKkIWf4UtJZfDll+CBS2FKaEPULcG9fFrJQw\nKmWMctmf35iWrJcwKhWMSsnf55Qxy2V/vVTELBYxi3k/BKosfwf6/eSZFk4khhON4USiOJEYlWic\nSjxJJVa9M1kIIcQ9UQpC+BU5DSsERzeUtaKgTQqY5KvzgjYoaJM8pr9PmxTwt91t13W3o6gNitqA\nuzg3NjyPcMUhWq4QKVeIVvx5rFwhVi4TqqySAlVpIF8XItcao+SWsPCIE8bGw0LPTebcxIJljXHT\n+o1j7ulMWCm8cAwvHKPS2H5Tgz2MQg5rdtoPifJZjEIOszCLUZjFLBWWf87beVmngjk7jTk7fUeP\n04aBDgTRwTBeIFQNjIJoK4C2A2jbRlu2v2zZaCsAtl3dv3D7gmU7AJYl4yXdZ2bUJLIrQssTLUz3\nTTN1dWpJ9ZDneHMB0RwF4fqwHxK1xIi2RAklQtgRGytsyZiuQgjxAG2WUOifATng6zdtfwHoA34h\nnU7/6nLdwKXT6SeBNPAHy3Qz99v4FUO/AEgoVCNa+//bVurDT6+wQ9/imNt7Pr3M0u295p0ce8tj\n9PLtuNXzae1v1yz4OS7advNxen7bwu0Lj9PeCo/1/3PjORYds+i5NJ4GT1eXWbjuhy5a+3/fzR1T\n3b9onQXHezeW/de/+fgbgc3c3MNf1jeWq4GP51W3+8d52g9sXG/ln/udq17EHM2ufliVuumV7/ZP\na3WP/wDTgICpCBoa21QEqmHPjdAneFPQE7D8Y4yVTuz13LuQub/m16bnqLumVvogrpU7ffo1bc8a\nPdddPo1V9C80qLxfNXLz+/re2uP/8lALfikp7S34JVTdV50UQHW/uvE+1IuPAVZ/Ds/z93vegmWN\n8twFy57/mIXHaG/pY10X5Too1/W7T3NdlOegXA/lOhgL9vvzG9sWbzdcF6NSRnn3Jzn21vDucADX\nDuCGwrihCG4ohBOKVIOfKE44hhuJ4QVu0R3NfRycbC2e+cYN2d79aKd0bCxq4Tbed7p6Ld1z5E26\nGVlo4njEbw6P1E3zKldDAZOi9qcCai44KmJS0gZlDEpaUV6wvrAiSaExqt/ZRvX72tD4y9zYBpbn\nYbseluctWbZcD9vzCDgu0XKFkOPcVfiSDQYYjkUYikcZjUVwzLUPvdQtgiSjOlc3rRv45zjGStuV\nxoiAEVn+8abrEC3OECvMEC3MEClkCRdmCBdzBEv+FCjlMdbw/FR5HqpYgGJhzeNDz7LRplWdTLRh\nVuf+OnPr5oJ1C22YsOj46rpp+kGTMkAptKFQykAr5W8z/O3+vhvL1bkx/7gb27Xhz9XcslrwHAuP\nVYCqfraq71o1P5/7v6EWfAjV4rlSVN8Fqx+3cL9WNx+/+FjtetXdHqnOOKnOOMWpIlPXppnpy+K5\nK1/gKIwXKIwXGD1301hXyh+/yA5b2BF7fgrbWCELwzYwTMOfWyaGZWBYyt9m+ZOq/iz9H5uqroOq\ntl2pO5gLIcQmt+FDoXQ6ncDvNu71TCZTWrgvk8nodDr9LvBlYCdwZZmneKI6f2uZfe9U50+uUXPF\nTSZeOMfrpf5aN2NZ8qfsvbi3kygF1T+C7hM5ybvvKtVJCIBQdT7DWE3b8WDduKC1hr/JjOq0Gcd9\nLlWnRZ393vpO7fXNH2g5V+vEW4gHSt734mb+e0EBkeq0UZRMg5FYlOG4P+UD9/8LWKNwUA/+E2QC\n0SaIrnyI0h7Rcp5EKUuiOOvPS7PES7NEy3milTyxcs5fLucJV4oYNfqr2nAqcJvjK4k717LC9u2A\noyzGIl1kA01kA/Xk7BSecRufHQ3/f3v3HiVJXR1w/Nszszv74OWGVyLIIyF3A9Eonihi5AASHzH4\nIkQNRBA9EYIGxWgMBiEIokdPghJjTEQxGkw08S0+TgDBZxQVUUOue5AFFKO7mGXdFzs72/njVz3b\nO8ywzG53107X93NOn6r6/aq77zS1TVfd+v3uxIYJJjZMwL07P3KtZ/p9w+D2bzbA9+q/wV1tqedz\n+19+VMv7Nt1Rpx3JskNn+/bRzpj3SSHK/3eAWf9V3lUtD2fmpNChsz0/M38REWuq5/bEihUrevVS\nw6ENbYd2S5IkSZJqMjHaYmJshPsXjLJ+fAFrlo6zdtFCJkdGmWy1WNSaYMHEFiZbI0y2WmVJWTbl\nhrN2a4R143uwbnwP7tlrx/u32ltZsnkjSye2JYkWb9nE4omNLJ64n8VbNrFoqm0Ti7ZsYtGW+1k4\nOcH4ls0smJxgfHIzo3OshaR6jbW3cOD6H3Lg+nL5rU2LjWN7sm7hsvJYsIx1Cx/GxOjimiPdgYH+\nux6u75DhSnFpd3HnnXdx78TausPYbRxxxBG7/BrDkBTas1rOVsl4/bT9dub5sz1Xu2qgd19IkiRJ\nkhqh1S5TQXVG2o60aY1Ba6xdPar1UVg0032KD2GgSZkIuTWVICrLFpOU5NFWqkfVV9a72qvtGfu6\n1idbLdq0yhTatGi3utariXm3trrWq2W7eo1qMtyy3upa73q9Xmu3Rlg/vpT14w8y/OghGNk6WRJF\nkyVRtHByM+NbJlgwuXlae+lb2LU+unWSsa2T25btzvaWGdq2bW/3vPZ8H7lcrxZtlmxZy5Ita9l/\nw0qg/LvZPLqY9Qv2YWJkEROj42VZrW8eWcSWznJkvDGJV0mz27hyDXv8yj51hzFUhiEpNK/0IpM3\nLFasWMHIw/dkj9Xrevq6rVk3duK1BvjbY9a3aj1o70P6E2f6O1oPWKnm2p3j60y9RGuGtgc2l7l9\npz1vu5mKp73J1HTGO4ihd/r7Bhs3lvzz4sVzmDyjZyH15oVau1qgaNsr9eh1emg3+6x3x49oZ2yo\nagktWdJ13M/xH/OD7t097/nUF9L0udK733OGedRnW273+p33mO0xUu0zMvs+IzO09fs/9JAcR4O2\nq/PJr15dpkvcd999exHO/OIxt9Pmex2DVatLjYj99t1v8G8+vz+6Wu3oHKBWLWiNltogrZFSP6Sz\n3mkfGRlhZOEIowtGGR0fZWzhGKMLR0s9kQHozAYyn8/1t6/jOq1Ga9U/vebsVPsD2mBrd63arnqw\n7U4N2u22u9qnvVanRix0bzO13Vlp096+jW37ba0em7t2aE/bt3v/0t/e1tZu05rcMlVXkk7NyPZW\nWlvbtNtVvcjJTl3L9rY6klurtq2TXTUsSx9V/ckHvObUeidl1xVcu3u7Uwdz6kOYtn9XW2efqUWV\nPpzeP+P+D3zvuZ/T7uD8sevDH6NzoXIzsLk6TlrVA+hab9PabhtaU39G+fymVTKd+ghaD2xr1/Q9\nOGQ3Sg/sr6nhY5ucLBN7jo56Kb0Oy08+jqXLHLPRS8NwJHfGjs12+8ke0/bbmec7Pq1P9nncI+b1\nj2dprjonjYd63KtBOsf9IR73apBNKzYBcPARB9cciTQ4G1eUOhAHHXFQzZFImotWq8Voq1MJcTdO\nEmq3MAyJUGmuPO41bIahmMsdlBzxbGcenZpDsxXz6dQZesDzI2JvYO8Hea4kSZIkSZIkSdK8Opsj\nkQAADeRJREFUMO+TQpm5HrgVODoiFnX3RcQocCxwd2beNctLfKVaPnGGvidVyy/1IlZJkiRJkiRJ\nkqS6zPukUOUqYAnw0mntpwP7A+/uNETE8og4rLOdmbcA3wJOjYiDuvZrAa+klJd8X/9ClyRJkiRJ\nkiRJ6r9hqCkE8A/AacBbI+IQ4GbgKOB84LvAW7v2vQ1IYHlX258CNwA3RcQVwBrg+cCJwIWZeXvf\n/wJJkiRJkiRJkqQ+GoqRQpk5ATwFuBI4BbgaOIMyQuj4zNywg+f/F3Ac8D/AJcC7gAOBszLz0v5F\nLkmSJEmSJEmSNBjDMlKIzFxLGRl0/g72a83SfjPwe30ITZIkSZIkSZIkqXZDMVJIkiRJkiRJkiRJ\nD86kkCRJkiRJkiRJUgOYFJIkSZIkSZIkSWqAVrvdrjuGoXTffff5wUqSJEmSJEmSpL7ae++9Ww91\nX0cKSZIkSZIkSZIkNYBJIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIawKSQJEmS\nJEmSJElSA7Ta7XbdMUiSJEmSJEmSJKnPHCkkSZIkSZIkSZLUACaFJEmSJEmSJEmSGsCkkCRJkiRJ\nkiRJUgOYFJIkSZIkSZIkSWoAk0KSJEmSJEmSJEkNYFJIkiRJkiRJkiSpAUwKSZIkSZIkSZIkNYBJ\nIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIawKSQJEmSJEmSJElSA5gUkiRJkiRJ\nkiRJaoCxugOQOiLidOBs4LeAhcBdwKeASzPz3jpjk/olIsaB1wKnAwcDq4FPA6/LzNV1xiYNQkQs\nAr4D/DpwQmZ+od6IpP6IiN8BLgIeBywC7gb+A3hDZq6rMzZpV0XEMsrx/Wzglym/Z64FLszMn9QZ\nm9QPEbEf8HrgOcABwBrgS5Tv9G/VGZs0KBFxCXAh8L7MPLPmcKS+iYinU67bHA1sAb5NuVZ5fa2B\nSbvAkULaLUTEG4H3AwuACyjJoS8ALwe+FhF71Red1B8RMUZJAP0VJQH6EuDfgRcDN0bEwhrDkwbl\nQkpCSBpaEXEa8EVK8v8i4BzgVuA1wOcjwt/kmrciYjHld/s5lETnmcC7gOcBX46Ih9UWnNQHEbE/\n8C3Kb/Z/q5bvAp4MfCkiHlNjeNJARMRRwF/UHYfUbxFxFuVGF4DzgIuBw4HPRsTxNYUl7TJHCql2\n1Z2FrwZWAsdl5v1V13sjYjUlG/8i4G31RCj1zdmUk8czMvOfq7YPVMf9WcDjKRcRpaEUEY+kfP9/\nG/ACioZSNSL0nZSRQY/PzPuqrvdExEcpIyuexraTTWm+eQXwSODczPz7TmNEfAf4KCX5f35NsUn9\ncClwEHBKZn6k0xgR3wA+Bvwl8Ic1xSb1XXUzyz8B38ff8BpiEXEg8HbgP4GnZubWqv2TwFeBZ1Bu\njJHmHe9K1O7gEZQE5de7EkIdN1XLQwcakTQY5wIrKKPkpmTmpZl5eGaaENLQ6jqZvJNyd600rA4E\nPgJc3pUQ6ugkgh412JCknnohsB64alr7x4EfAadHRGvgUUn9cw/wQUrSs9tngTZ+p2v4nQM8Afjz\nugOR+uwMYClwcSchBJCZP8zMAzLz1fWFJu0aRwppd3AHcD9wxAx9h1bL7w0sGmkAIuIgYDnwjsxs\nV22LgPs729KQexllNNxJlCm1pKGUmXdSptOayd7Vcu1gopF6q5rieTnwxek3d2VmOyK+DjwXOAz4\nYQ0hSj2XmRfP0rUn0MLvdA2x6jz2cuADmXl9RNQdktRPvwv8gjIqiIgYBcZmuKFdmnccKaTaVXfN\nvgF4TERcGRG/GhH7R8TvA68DbgH+pdYgpd5bXi1vj4jzImIlsBHYGBEfi4hfqy0yqc8i4mDgMuD9\nmXld3fFIdajqxp0FbKBMNyTNR4dUyx/N0n9XtTx8ALFIdTu7WnruqmH2DmACpwVVMywHbgceHRE3\nUm5o3xQR34uI59cbmrRrHCmkvoiI0x/Cbvdk5vUAmXlZRPwUuJJy93jHp4AXZuamPoQp9dQcj/tl\n1fYZwELKBfKfUmoMvQx4QkQ8OjN/0pdgpR6Z6/d95Z3AZuBV/YlK6q+dPO67n9+ZPvE3gFdl5j29\njE8aoD2r5YZZ+tdP208aShHxdOD1wDcpv3OkoRMRfwA8E3hxZq6qOx5pAJZRkqCfBt4LvIUyo9Fr\ngQ9GxNLMnD59rjQvmBRSv7x/x7vwOeB6gIg4h1K87fOU+ZlXUaYVeg1wbUQ8PTPX9ClWqVfmctwv\nrLYPAH4zM++ttj9RJUgvo1wwd55m7e7m+n3/fEpBzrM8mdQ8NqfjvltELAauAZ5NmUL0b3ocmyRp\ngCLihcC7gZXAyZm5ud6IpN6LiH0oN/HeSLk4LjXBQkoS6LTMvKbTGBGfBm4D3hgRV2fmZE3xSTvN\npJD65WEPYZ8JgCiT0L4duC4zn9HV/7mI+A5lSpULKAkiaXf2kI97YF21/ERXQqjjKkpS6PgexSX1\n01y+75cBbwNuzExPJjWfzeX7fkpE7Ad8AjgGeENmvr7XgUkD1qmdsnSW/j2m7ScNlYi4ELgEuBl4\nRmb+rOaQpH55C2XUxNnWwFWDrAPGgX/tbszMOyLiBuBplJH/1kHXvGNSSH0xx1E9J1KOxY/M0PcZ\noA2c0Iu4pH6a43G/slqOztC3mnLc77WrMUn9Nsfj/i3APsDFVZHajs4F9v2q9lUW79TubGdGL0fE\nAcAXgcOAF2Xm1b2OS6rBHZTfLAfN0t+pObRiMOFIgxMRVwDnUZL9L8jM2aZRlOa1iDgOeDHl5q51\n037HAyyp2tZn5v8NPECpf1ZSkj4z6dwE4HUbzUsjdQcgse3OwkUz9I0DrVn6pPnsv4H7gEfP0Hcw\n5bifrWizNF89mTIE/wbg7q5HZ/qsD1XbT6glOqlPImIv4LPAI4BnmhDSsMjM9cCtwNERsd3v9YgY\nBY4F7s7Mu+qIT+qXaoTQeZRptJ5rQkhD7kTK+ekr2P43/N1V/6nV+t/WEp3UP1+lnL8eOUNf58YX\nr9toXjIppN3BV6rl8yKiNa3v1Gn7SEOhmmv8GuCxEXHytO6XVctPDjYqqe/OAk6e4XFF1X9Btf3d\nWqKT+udtlJsAXpCZn6k7GKnHrgKWAC+d1n46sD+l1oo0NCLiBOCvgY8CL7GWhBrgGmb+Dd85j72u\nWjcppGFzdbW8qPt6ZUQ8CngScKs3vmi+arXbTgWq+kXEhygJoK9Q7hRfBfw2cC7wc+BxftFq2FS1\nJb4GPBx4E2Vo8onAHwO3AMdm5sbaApQGJCLOpNxpe0JmfqHeaKTeqk4ab6EUo71olt1WZeaNg4tK\n6p2IWECZGvGxlCLkNwNHAedTpo07xlEUGiYR8U3gMZQbuWarIXStx72aICLawPsy88y6Y5H6ISLe\nDrwc+BTleuUhwCspdROf6vmr5itrCml38QLgJuBM4DLK8Mx7gPdQCjH/uL7QpP7IzFURcQxwKfAn\nwL7ATyhTaV1iQkiShsLRlClXjgQ+PMs+NwLHDyogqZcycyIingJcDJzCtgvl7wYu8sK4htDR1fId\nD7LPYWyrISpJmr/Oo0z/fzbwj8D9wJeBizPzG3UGJu0KRwpJkiRJkiRJkiQ1gDWFJEmSJEmSJEmS\nGsCkkCRJkiRJkiRJUgOYFJIkSZIkSZIkSWoAk0KSJEmSJEmSJEkNYFJIkiRJkiRJkiSpAUwKSZIk\nSZIkSZIkNYBJIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIawKSQJEmSJEmSJElS\nA5gUkiRJkiRJkiRJagCTQpIkSZIkSZIkSQ1gUkiSJEmSJEmSJKkBTApJkiRJkiRJkiQ1gEkhSZIk\nSZIkSZKkBhirOwBJkiRJaqKIuAy4ALguM0+a1tcCPgD8EfAZ4FmZOTH4KCVJkiQNE0cKSZIkSVI9\n3gysAp4cESdN67uSkhC6CTjFhJAkSZKkXjApJEmSJEk1yMy1wMXV5uWd9oi4BDgX+CZwcmZuHHx0\nkiRJkoZRq91u1x2DJEmSJDVSRIwB3wWWA6cCDweuAG4DjsvM1TWGJ0mSJGnImBSSJEmSpBpFxDOB\njwOrgV8C7gR+JzN/XGtgkiRJkoaOSSFJkiRJqllEfB84EvgZcGxm3l5zSJIkSZKGkDWFJEmSJKlG\nEfFnlIQQwCJgbY3hSJIkSRpiJoUkSZIkqSYRcQalhtCPgU8CewEX1RqUJEmSpKHl9HGSJEmSVIOI\neA7wYWAN8CRgHfADYAw4KjN/UGN4kiRJkoaQI4UkSZIkacAi4iTgg8AG4GmZeVtm3g38HSUp9KY6\n45MkSZI0nEwKSZIkSdIARcQxwMeqzWdl5s1d3ZcD9wHPiYgnDjw4SZIkSUPNpJAkSZIkDUhEPBK4\nFhgHnpeZN3T3Z+bPgTdXm28dcHiSJEmShpw1hSRJkiRJkiRJkhrAkUKSJEmSJEmSJEkNYFJIkiRJ\nkiRJkiSpAUwKSZIkSZIkSZIkNYBJIUmSJEmSJEmSpAYwKSRJkiRJkiRJktQAJoUkSZIkSZIkSZIa\nwKSQJEmSJEmSJElSA5gUkiRJkiRJkiRJagCTQpIkSZIkSZIkSQ1gUkiSJEmSJEmSJKkBTApJkiRJ\nkiRJkiQ1gEkhSZIkSZIkSZKkBjApJEmSJEmSJEmS1AAmhSRJkiRJkiRJkhrApJAkSZIkSZIkSVID\nmBSSJEmSJEmSJElqAJNCkiRJkiRJkiRJDfD/1lgHdt334zkAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "Ri4BriJHPJNg", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 294 + }, + "outputId": "92de9456-2fb0-42c8-f718-3eb9c515387b" + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 4))\n", + "\n", + "plt.plot(t_, mean_prob_t_.T, lw=3, label=\"average posterior \\nprobability \\\n", + "#of defect\")\n", + "plt.plot(t_, p_t_.T[:, 0], ls=\"--\", label=\"realization from posterior\")\n", + "plt.plot(t_, p_t_.T[:, -8], ls=\"--\", label=\"realization from posterior\")\n", + "plt.scatter(temperature_, D_, color=\"k\", s=50, alpha=0.5)\n", + "plt.title(\"Posterior expected value of probability of defect; \\\n", + "plus realizations\")\n", + "plt.legend(loc=\"lower left\")\n", + "plt.ylim(-0.1, 1.1)\n", + "plt.xlim(t_.min(), t_.max())\n", + "plt.ylabel(\"probability\")\n", + "plt.xlabel(\"temperature\");" + ], + "execution_count": 13, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAAIqCAYAAADrUeMXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xl8JEX9//FX92RyZ7PJ3vdNccPi\ngaACIiheXw8U/aocgn5FUJQf3l8PPL/qV0VR8BYQRf0iHl8F+QIKeIAgCrhcxbL3bnaz2c1euTMz\n/fujqpPJZCbnJNlk38/HYx+d6bOmu6p7tj5dVUEURYiIiIiIiIiIiIiIiMjUEk50AkRERERERERE\nRERERKT4FAQSERERERERERERERGZghQEEhERERERERERERERmYIUBBIREREREREREREREZmCFAQS\nERERERERERERERGZghQEEhERERERERERERERmYIUBBIREREREREREREREZmCFAQSERERERERERER\nERGZghQEEhERERERERERERERmYIUBBIREREREREREREREZmCFAQSERERERERERERERGZghQEEhER\nERERERERERERmYIUBBIREREREREREREREZmCSiY6ASIiIjI5GGOiARa3AVuBPwJfs9ba8UnVxDHG\nLAU2AFhrg4lNjYwXY8z1wPnAp6y1V05sahxjzGnA3cAma+3SiU1NcRhjqoFvAK8E6oA11trVE5uq\noRnPe4Mx5gLgOuBea+1pw9guvp8vs9Zu9POuJydvT8a8NRZ5xxizEVgCvMhae88o95UAvgT8OzAb\n2G+trR/NPicbY8w9wKnA26y1109sag4++fKbMeZK4JPADdbaCyYoaX3od5CIiMjkoSCQiIiIDNfP\ngR1ZnwNgEfAs4GLgAmPMedbam8c7YcaYlwK3U4SKuiHYD3x9jI8hQ2CMuR/oHE4luBz03g9cALQC\nPwYaJjQ1U09879o/yHpb/brN2TONMZV+288eLMHQLAd73jkX+H9ACvgFsHc8D26MMcBTKAAz2fwN\nVxYfnIiDG2MagDtyAlD6HSQiIjJJKAgkIiIiw/U1a+3fcmcaY0qBzwNXADcaYx6w1m4e57Q9Z7wO\nZK1tBt43XseT/IwxJcDxwAMTnRYpqhP99LPW2i9MaEqmIGvtkO5d1tpnyH+fOwFIFDVRxXOw5504\nfT+w1l48Accft+ekFI+19nbcSy7jzhizEJiXO1+/g0RERCYPjQkkIiIiRWGt7QI+CKwByoALJyAZ\nqtw69BwDlE90IqToKvx0x4BryUQ5mO+1B3vemej0HczXTg5OyjMiIiKTnFoCiYiISNFYazPGmD/h\nKuaPz11ujDkZ99bo84FZuLGEngJuBq611rbnrF+Da1n0GmAl7rdLI/AP4Bpr7R/8ehfgxsWI3e16\nvOk7bosf3+Iy4CRgBq4bnr/7fd2Wc+yluL7uW31avw+8HPi7tfYlA/WF71tFvQN4M3AkUAXsxnXn\n8s043Vnrx+m/FbjcH+vZwOestZ/PPY+5jDEhrvuj84DjgEp/nv4IfNFa+2TWuif4dGSA43LHb/LL\nHwS6gROstU9mpe9XwFuBTwFnA/OBA8A9wMettU/lSVst8F7gdcAqP3sz8L/AF6y1ewp8p7fgAonH\nA9XAJlzXTl+x1rb6dTbixk0AODUe5yT7eozk+MaYOcBngVfg8skO4LfAJ/KltUD6K4GduGt/qrX2\nTwXWuwt4MfAJa+1n/Lwan+bXAIfhKo33AA8BV1lr7xxiGvqN+zLU5caY1wL/gav8mwbsAv4KfNVa\ne/9Qjp+1rwB4C/A23PWswZW9f+BaQ/wia90rceNexK4zxlzHEMakycoPxwEzgf/EtVgpB9bhytXV\n1tpMnuNdA9wIXAscBVxkrf1J1nqvAN6FOx91uHy/Bpcnr7fWpgZI1wXApcDhfta/gP+21v46z7qz\ncfe8lwErgFKgCXfuv2St/fsAxykDPg6cAyzG3bv+hMtba3LWHTBvZK13GlljAmXf97xPGmM+CdyL\n63bt34HvFGrhYox5K+48r7XWHlbouFnrj0ve8ds/C3dvOxmXZ9YDNwBfHWS70xjCcyXPcyo+d7n3\nrNW47uJOBeYALbg88/3sPJmThjrgQ8C/AUtxXc09jLv/35aVzruzNovPT88YM1lj9XxkKK2osvLD\nHmttvTHmXcA7cffaFPAo7j57W+G99OzrSgYY86bQcn+//hCuzCzBdVG7HVdmvm6tfWiwY/v9XI8b\nE+sDwBPAV4DlwIuttX/JWm/Y90ZjzKtxvwmejcsjncBaXPe6V1lrO4eQvn7fPyvNA8rzG+UU4N24\nPDsbSAMbcc/F/7LW7staN3s8yPONMeeT535Q5N9Br8a9VHQ+7l7W7bf7uLX2wZztinL9RUREpjq1\nBBIREZFii8c36NM6wxhzCfAX4A24yoYf4SqkVgJfBu71A3rH65fhKjA/CdQCv8RVEDwNvAq40xgT\ntzZ6Atcv/QH/+Rb/+W9Z+/sALijyar/+9bgKqpcCtxpjPj3Ad/os8EJchc0fBlgPY0w5cAfwTVxl\n8l9wFYkWV0F3lzHmQwPs4me4IM71wJMDrBcfL4ELzvwANy7T3biK6SZcBcojxpiXxetba/8JfA7X\nWuvbOfsKge/gunn6aHbwyCvHdUdzLi4gcQMuOPF64AFjzJE5+5vn1/sUruLrV8Cv/X4+CDxqjFmS\ns01ojPmJ/w5HA78DfuLT9CngQWPMNL/6D4E4ILINd82/nrWvkRy/Dld59HZcZdJP/DHO8vMrGQJr\nbZs/Fv789OMr/E8DIlzFOMaYKuA+4DO4sbZ+gwterMFVct2Rle/HhDHmm7jydjqum70bcEGU1wN/\nMca8fRj7CoCbcN/vJFzl+PW4CurTgZuNMd/K2iQe92Kb/3yn//zDYXyFfwP+DxdAudn/fRhwFfDd\nAtuU477zPlxZ2pL1Hb6Iy4cvBR736b8fV96+B/zal8N+jDEfwQWWtuDOwT9xQYZf+crU7HXn++Uf\nxFUu/9x/7824c3+fMeYlA3zv3+Dy7d98GptwgcS/GmOOHmC74YjHAInvDQ/4z7/AnTeANxljKvJs\nC/BGP71+sAONZ94xxpyIu1e/AjcO0g2458NH6Bu4yd1uOM+V+DmVe+6y71lv9vPfmpWOv+G6kPux\nMeZ6f16y07DSH/NDuIDRDbhn0HN9Gj7jV43Hd8o9P3cMcnqGotQY8zlcwGwr7pr9C/fcvNUH/4rO\nGDMTly8uxwUyfo77/g244OFf/FiBwzEP9xx+Bpene8bDGsm90RjzCdyz4KW4vPs93P1kKfBfwO3+\n2TsSd9Cbh3L//dOvsysnPRfgXtx4vU/7D/13mo7LQ/dl/xbz+4q7W32SIZSpIvwOugkXCH0A+B/c\nNXgJ8EcfeIqPMxbXX0REZEpSSyAREREptpV+ujGeYYw5it6KrtdYa3+TtawO+DPurdorcYN6A7wW\n9+b3X4AXZb9pb4x5nt/m88aYG/2boQ8aY16De1P8m9bae7LWPxn4ItABnJXdKsNX/t0BfNwYc6e1\n9s8536cUOBM41lo7lAG8P4F7k9oCp1hrd2Yd6yzgNp/u2621j+ZsexLujfqzrbURQ/MBXKXK08Dp\n1tq4gg9jzMXAt3BjNK3MSv/ncIG004wxF2QNDn4p7k3le4Gv5TnWGbhKrJXW2hZ/jFLc28MvxQXz\nXp61/nW4/HAL8Jb4bWcf4PsOLkj1Q1xLmNhFuDeHnwCeH6fZH+d3uGvxReBd1tpP+wqtM4Fn8oxz\nMpLjfwTXAuNJ4KT4jWjjxh66ERfEHKqf4CqizjbGvDfPNX0DLrj156zWGOfhgl+bcC2xsisgL8IF\nhL7s8333MNIyJMaYN+HyQRNwmrX2iaxlr8JVFl5jjLnbWrtuCLt8B/AmXKuo5/sxZuL9HY8LrF1s\njLnVWvu7eNwLv2wBcNMIBq//BO56/0/WsV4E3AVcZIz5bu7b5Lj7zY25ecgHXT6Iu3ecZq19IGvZ\nYlwlZdxK6Jt50nIZsDq7xZ0x5j9xgeWvGGN+bq3t8Ive67/z33H3jo6sbT4DfAzXOuGYPMc5Gdc6\nJrtsluDK5stwZeYVebYblngMEN8C4Qjg9ri1pQ9ObACW4c7nTdnb+nv9S3CtEH80hMONZ975Bi4Q\n+GPg/Li1mK9k/jOwMHeD4T5Xsp5T15Nz7vw2y3BBhwTwJmvtz7OWGb+/83EvItyYlZQbcAHjz1tr\n/zNrm6NxAaSP+XP0N9y1G+j8nIcLdO9keCpwrWOOz8nrn8AF4b9mjPmlD44X09tx3/1n1tp/z15g\njDkbF5z8PC4QPFQX4FrP9XkGjuTeaFxL1PiavNFa+8usbebggsqn4crLLcNIIwDW2pvIKWd+30fg\nnqVpXOu8eH6IOx8BcIW19qtZyypxgaMjca25vuKP8T7jWiGdCDyY5zmbz2h+B8Xbrcp6/lfiAu/H\n4loFxi3+xuL6i4iITElqCSQiIiJFY4xZhAtIgHsrPXYx7uWTX2cHgAB8d1xxJcmFvuISXEUiuEqH\nVM42f8MFTF6Iq+QYzPtxlR5fze2Wy1fqftl/vDTPtkng50MJABljkrjKE4APZld8+GPdjjsvIa7y\nIlc9rruzIQWAfIXOFXHaswNA/njfxr2lPgNXmRrPT+Eq+zpxAYWZvhXCZ3Fvkr+tQBqSwOVxJbPf\nVxe9FTIvMcZM92k7FhcYagHent3djf/73bhWBacbY+JussBVmgN8Jvuc++Ncias0mzvIqRnN8d/s\np5/N7hLHn7P34FrtDNWduArD+bguEHPFrSKyK3T/jgsoXJodAPKuw3WLU4d7u3osfNBPP5pdyQlg\nrf0trvI+7uZnKN7jp5/LrsT3+3uE3pY576R47skOAPlj3U1vi4dz8mxTR+99IFuc/m9lB4D8PjcD\ncZdZhdJ/dXaluPffuBZHM+gbgPw9Ll9ekR0A8r7jp0fHZSxHEvh/OWUzhauAB1c2awuksSj8PSNu\nNfO2PKu8Fpd37rLWbh3CLscl7/iWNM/Ble0P26zuAq21u4AP4wIzuUbzXMnnPbhA1E+zA0B+fxYX\nBOyzP+O6sDsZl58+k7PNY7jWnv/AVZ4Pylq72Vr7VJ57z2BCXLdmuXn9i7jWwTNwrWeKLf6dcF/u\nAmvtLcALKNAScwCluJcnco3k3liCC469H9cSNXubRnpbi75wmGksyLjuRH+J60b1Y9bau7IWl+G+\nx/vpbbkXp6cNFwQdVXqK8DuoGvf8y37+t+ECOtA3L4/F9RcREZmSFAQSERGRUTPGTPNvd96KeyP4\n99ba32etcoqfFhoX4A+4Crg6esfNiCuTLjTGvC63uyVr7UPW2rXZFXYF0hYALxrk+Lf66YsKLL+7\nwPxcR+MCOWkKv3kaV8iclGdZJ+5t16E6Fjf2SccAacz73Xwl1sdwlXNfwbXUmoarSN5Afnuttf0q\nW3BdrnXiKkrjbqfiCr/78wXQfGX1vdlp82/dx9vntsjCWnuftfZoa+1rC6Qv20iOPxf3hjy4rghz\nt9lFbxc7g/KV8HEwok9FlDFmAa6CqgPXZVm8zUPW2m9ba28lh8/r2/3HolfoG2Pq6R3La6RlJXd/\n8fUstL+BysNIFTpWPK5Hv/HKcC3J+gQm/L0jrgwdLP1Hmd5uCgdMiw9o/iM3Ldbae6y119j+rRGh\ntwsvyH/t99j845E8BHThKqOL1SXcQK7HtfQ53beUyjacruDGM+8820/X5wbSvTvJCf4W6bmSK75n\nDba/5xrXbWT2vv+eJ3CItfb91tpnW2sLdYNYTPnyeicuD0L+cjda8e+ED/jWfrnH/+sAz7NC7rc5\nY/SM9N5ord1trb3BWlvo5Y44vxXzfn4d7nfUr3FBuB7W2nZr7Y99evbl2bYY6SnG76DclprgunjL\nTdtYXH8REZEpSd3BiYiIyHDd73qmySvCdU2T++Zz/LZm3v+MW2tbjDG7cQGNxcBjuAqMm3AtM24B\nmowxf8BVyP0u9+3SAdTi+roHeKcxJl8rgHj8otnGmGnW2v05y4d6rPh7bs+tRMqy0U9zK0gBdg0W\n1Mqx1E8zuK6l8q0Td8+3Ks+yr+LGsjjPf/69tfZ7Axxvfb6Z1tq0MaYR953m5aRtiTEmX9dy0HsO\n4rTF20T0VviM1EiOvyBrWaHjb8KNtTFUP8GVh7ONMZdnVQSeg2tF8NvcIJXvrum9uAqyOfTm32xB\nnnmjtThrvx8xxuRrZTfbT/Plp1xLs/4uVBG30U9nGGMqbXG6iyrUTV18TeflWZavjNfRW+E4WPoD\nXJdhT+Qsz1tm6K1s7ZMWY8ypwCW48YZm4QKzufJd+0L31rhsLso91liw1m4xxtyBG0PrfHzrFGPM\nLFyQYy85LSIKWJr191jnnbjc5wsAYa1tM8bswl2PWDGeK7mW+ukbjDGF7jHduFZfK3Bj7sTb5E37\nOBtJuRutbwGvxAVe/miM2YJ7qeQO4LYCgY7B5LsXjPje6IPDl/l0LsH9zsmthynK/dwY80HgbFz3\nsOfnCzz57lAv9ustx+Xr0iKmZ7S/g7YVCJjF5zz7ReaxuP4iIiJTkoJAIiIiMlw/B3bkzGvHDV5+\nh80/Tkhl1nqFxG8xV4Br9WCMORfXbciluC5v3uT/pY0xNwPvttbuHiS92QMcn1dwrV7TcN2EZWvJ\nt2Iew/6eIzxOLP5ulbigwUD6VSb7c3wTrkUKuMGwB9I6wLIuP40rk+K0Heb/DSVtcaVpeqhd4g1g\nJMePr1/XAMG4QpVaeVlr7zfGrMdVtp1Eb7c1+bqCwxjzWlwZSwK7cRVaO+k9vxfixr0aC9ll5d2D\nrJsvOJErPp/d1tpC3TZmt16oAIoRBCqUT3PzaLZ8Za8y6+9CZTo3/UNNS7xdnOcxxrwbuBpXAbsN\n1z3cLiDuDnOgMj5Q2ex3rDH2A1wQ6AJjzGd9WT4b93/Pn+VrsZLHeOad+FgDpSu33BfjuZIr3udr\nhrg/6L2mRR8fbARGUu5GxVrb7lshX4Drhu0E//cFQKcx5gfA+621Az2Tc+W7F4zo3uhbEN0HGFw5\n/iuuJdEBv8rzcGPtjJox5nTc+DetwOvyBR19AOgPuO5JI1yLm7twwVlw4wGdOcqkjPZ30JDz8hhd\nfxERkSlJQSAREREZrq9ZNybPcLTiKkYqB1gnXpY9pkUG153W//i3aU/HjTn0Blww6DBjzHMGaT2T\nXaFjrLVPDzPtwxFXgg3re45CvI/t1tr5w93Yd3/2WVzlaQL4kjHmNt/tWT4DVSLHLSbibeO0/dRa\n++Y86+cTn78SY0x19vgmIzCS48cVU0ljTFAgEDXQtS3kJlzXe68H7jPGLMVV/O0Cbo9X8mMpfBsX\nAPo+8C6bMx6WMeZ1FCEI5I+VKz5nEVAxwFvcQxVfz6QxpiT3u3jZ57MYZQIK59PcPDqY7ErtQtd9\nsPSXkz84EaexDXpaynwFFwD6JG5MrJ7858f/GigINFDZ7HOscfC/uLGwsgOfQ+4KzhvPvBOX+7IB\n1sm9/mPxXGnB5dGXWmvvGGxlLz5PdUU4/mgVyuvDLXeF5Ltnxd0rfhf4ru9S9Ezc+FOvxrWqW8DQ\nAmsDGem98eO4ANAm4FRr7abshcaYT1OEIJAxZiHuJY4Ebgy8xwusejEuALTPp+fRnP1cyOiDQOP6\nO2icrr+IiMikpzGBREREZDzEXSItz7fQD1he7z8W6tZov7X219baC3Fj4TTg3vo8eaAD+6624tZC\n+boeKab4e84zxuR7wxV6z0Ex+qmPB0ufY4wZyVvW38Wd948Dn8N1PfbtAdbPe/6MMSX0VkI25qRt\nOOc8u+usBQXXGpqRHD8ebyfAnYt88ubhQdzkp2f7adx11M+stdlvPR9Bb5dCH84TAKocIF35xEGE\nfIPaL80zb73fJsB1HzZaG7LSUOi8xfMH6jpouApd87g7r8YCy/uw1u4B9viPg6U/DWwZRlri8xuP\nQ3QSrqXEPuBzeQKQg+W7gcpm3A3X1nzrFJuvlI1buL3JV1CfAjxprX1giLsZz7wTl/u5+RbmPJ+A\nMXuujOaeOdr7ZTGMttzFL3Pku19B/ntWH9baXdban1prz8G1smkDXu3z4GiM9N54qp9+IzcA5I3k\nedKHf/bfgjvPX7PWDtSiN07PjbkBoGKlh/H/HdRjDK+/iIjIpKcgkIiIiIyHe/z0lQWWn+WnDcBa\nAGPMi4wx7/EDcPfhB/qNB0HPV/mVu80f/TTfuA0YY+YYY15tjBltC4vHcG87h8DLCqwTf9d7Rnks\ncOOP7PDHe32+FYwxJxhjXugrg7Pnnw+8Cvg78HXgC7j0n22MeUuB483x49Xkei6uhXkX/vrRe85P\nzDNAfJyGs4wxR8Wfff/9D/uPL8mz/pHGmJQx5kCeoFehaz6c42+l9231F+RZfwEuADks1toncd9r\nsT9efK1+lLNqfI0yuGBArovo7VJpKGM2xF0O5avc7nd+ffdB8SDuhcrKKmPMS4wxg3Yt5ivK44rG\nwcr+PYPtbxjOKjD/+X5a6C35fO7108HS/2CBMWlemjvDn7tn+4//8NP42u8v0P3Zu7L+znft5xhj\njssz/0S/706G972HqlA+/IGfngO8FXePun6oOx3nvPOIn64yxszOs7zQvbzYz5XB9ldhjHmjMWZG\n1uy7/fSEnPnxNl/w98zv59llsccV61fufF4/wX8cLP8VvF/5bsxOyZlX4u/hF+XbmbX2YeBJ/3FU\nQbJR3Bvjcr0nz/pz6W2hMpprcTXuGfxn4AODrDtQeirp7dqwUHqGks5x+R00ntdfRERkKlAQSERE\nRMbDNbhKyFcaY16dvcBXhHzOf7w66w34z+MqNy7P3ZkxZj69lfTZb7PGlUhLcjb5Gu4t3vOMMWfk\n7KsKVzn5a1yXXSPmK2+v9h//y3fxlH2s1+MqP9pxrXBGxXeD93X/8bO5wQ5jzHLcG8J/IquLF/9W\n7Ndxfe9fZK1N+xYp78AFIL7pAx65uoGv+8qieF+lwKf9x99aa1t92p4A/g9X6XRN7hvBvh//3wAP\n5Jyn+Px91BizJGv9Etwg8wngF761AfRe88XZAcNRHP8XfvqRnO+ZBL5B7/gsw/UTPz0fFwCw1tq/\n56yzFteiJARenpPe1wLvB57ys4byNvoaP317zr6OAT5K/q6bvuqnV+QGFfx5+hnuvL5tCMfP3t+H\njTErcvZ3Mm6Mo4je614MZxljXpVzrDOBM/yxfj6MfV3lt3mHMea5Ofs09Fa6fj13Q7/dFcaYZTnz\nP4obY2QbvUGmuLJyYW6g1RhzMe6+0eRn5bv2XcDXsvO5z7Of8h9/E5fNIil0rwV6yt/fcC3XPoLL\n1zfmW3cA45J3rLWP4c5/SO/5io8zB9dlZleeTYv9XPkW7tlwpnHj4WXvrwT4Jq78XZuV9n/h8lAp\n7vqHWdusxN3TE/Q99wWvnTFmsTHmcOPGshmuK/wzJ9t/4rqC3U5vXi8kvl+d5tMepykB/De93crF\nMrhuM79vjDk7ZxnGmCOBo3G/PZ7KXT4CI7k3xuX6FTnrL8R1m/hPP2tELS+NMW8D3ok7v+cU6DYx\nW5yes/x5jfdTh+t6d6OfldtyZsDynm0cfweN9/UXERGZ1DQmkIiIiIw5a+0zxphLgO8BvzLG/Al4\nGvfG7ym4yp3f4sbEiL0XV6HyFf+m50O4/uPn4ipzp+G6Psn+z/1DuP/0X22MeSOwwVp7ibX2PmPM\nh4AvAf9njLnbH78eFxypx1XGfI7R+wLwQr/fp4wx9+Deuj0C13VdCniHtXZjEY4F8GVctyevBp4w\nxtyOqyxe5NNQCvzAWvv7rG2+jzvnn7XWxhVvWGv/Zoy5BngPvYO7Z7sPV+m51hhzJ65y5XRgpf+O\nH8pZ/yLc2+2vBJ7x23QBR+HORRp4p7W2KWubG3DX9y3Av4wxt+KCFaf641jgg1nrP4yrDFoKPGyM\naQI+6gMsIzn+Z3BvZ5/gz+eduMrh03FBsB+RE1QZop/i8t9luLep+1WIW2sPGGOuxZ3/m40xv8Gd\n12fh8vXrcJWJhwNfMMachOvKr5Crca1fLjDGHIELmNbhWoB9EddCo0/lurX2Z8aYFwCXAg8aY+7A\ndXM2F9d6qAo3jlG+lgX9WGtvNG7A8guAR33Z2+6PeyqugvrDIxhnbCBfAn7py97TuLfAX44779/w\nFedDYq39kzHmU8CVwF+MMX/Eje+xGDgNNw7Kt6y1+QJLXbjuFdcYY34P7ASOw12TDPCeuNLWWvuk\nMea3uGvzJ3/tO/268T3v0/57fN8Y8wdrbXbroHv89Jk8ZXM3LhBTTHGriPN88DlprX1hzjo/wN2b\npgG3WWu3MwzjnHfeB9wKXGyMeRbu+9XhWjLcinv29Kn4L/ZzxVq7wT/rfgT8yBjzLlyZrcHltQW4\nSvorcja9EBfofyuuRdBf/LFfAVQAV1lrswMwD+HuiR/x95AWa21cif4j3Ln9CO5ZNlQR7nqvMcbc\nhnsGHYvLvxEur+cLpGW7GxcIOgZ4yJeZvbgXPmbggnFfjFe21mb8OboZ+IUx5iG/fQeufL4YN87T\n+3wr01EZ4b3xv3EtP19njHkAlx/m4/LHL3AvFjyIC3zdBNxkrf3dUNJj3Pg3cUDwaVywtNDqN1lr\nH8QFEi8FnoMrU3/F5ZWX4PLFW3HduS3396ObrbU/ore8n2qMuQ93f3nrAMkb899B4339RUREJju1\nBBIREZFxYa39Ia5C6BbgMFzF3gtxlVwXAq/NfovVV1g8F1dJUoKrmP8PXIXQX4HXW2tzWwl9DPiD\nX/8kssYWsNb+N64i7Te4IMA7cBWqz+BaWDzfd/ky2u/Zjat8uxQXsDgT18XKYlxrkOdaa39SeA/D\nPl4KFxx4G66i5nRckOJEXMXwG6y1PUELY8x/4LqoegpXqZbro8Bm4KW+BUKul+PecD8Z16plOq4y\n67nW2nU5aduGq2z6JK5S8PW4674YN07O86y11+dsEwHn+n0/iquEPRdXkfgFf5ymrPXX4wIrDbgK\nppX4t/ZHePwGXN75Ma4C9XxcBdn/+e/cnOecDMrv9x5cpVTk95/PB3AVnTtwef6VuIrf51trb/Pn\n4D5cxd1ZDPB73lr7P7iKuocSmOjzAAAgAElEQVRxFdhvxlWgX2KtvXKA7d6NG1j7j7hK/P8AXoTr\nuuwdwCtzxjIazIW4oN6DuHvA23Bl8H+BF1lrvzjAtiPxR1wFYAr4d1x+fxqXT9473J1Zaz+Fy4d3\n4AJyF+Ly1T3A66y1lxTYNG2t/bw/7jJcXjoeV2F/lrX2Vznrnwd8Bzew+htx946/4fL8P3AV82tw\nb+OfmrNtChcIvgF3jzwfF8S4GTjJl5Ni+gmusnsfLo/kttIA1+Iqbn103QiPMy55x1p7By7P3AUY\nf5zjcGXxPFyld77tivpcsdb+FNdS8Me4QP5FuLK4CxcEXO27rczeZr1P61eApE/vWbjnwTnW2v+X\nc5irgF/i7pMn4wKZuTJ55g0k8PeUy3AB+XN9mv6My+u3DLYD34LkJbgAeSfufv1vuMDJ83D3+Nxt\nfuu/ww9x98Q34K7BauA24MXW2nyt9EZkuPdGa+1DuPv4A7ig2JtxY3S9Dzjfv6xwFa4cvYLeMeGG\noprea3cq7t5W6N+RPj1bcOf4btx1ejPu99jngJdZazfjXubYhfstscRvdy+udfYu3LmdzwCtYsfr\nd9B4X38REZHJLIii3DFHRURERER6GWMuwFXi3mutPW1iUyOSnzFmI67S8kXW2nsmNDGCcWPUbMUF\nTpcOM3AoE8QY8w/gu9ba7wxh3aXABgBrbbHHGBIRERGRIlFLIBERERERESm2K3AtFa5VAGhy8OO3\nHAM8NtFpEREREZHiURBIREREREREisYY8xJc14a7gGsmODkydB/GdWV3/0QnRERERESKp2SiEyAi\nIiIiIiKTm+/+7ZO48Y9ejhv76iJr7d4JTZgMmbX2ClwLLhERERGZQhQEEhERERERkdGqBC72fz8M\nfNRae8cEpkdERERERIAgiqKJToOIiIiIiIiIiIiIiIgUmcYEEhERERERERERERERmYIUBBIRERER\nEREREREREZmCFAQSERERERERERERERGZgkomOgFTxb59+zS4koiIiIiIiIiIiIiIjKna2tpgqOuq\nJZCIiIiIiIiIiIiIiMgUpCCQiIiIiIiIiIiIiIjIFKQgkIiIiIiIiIiIiIiIyBSkIJCIiIiIiIiI\niIiIiMgUpCCQiIiIiIiIiIiIiIjIFKQgkBy01q5dy9q1ayc6GSKTisqNyPCp3IgMn8qNyPCp3IgM\nn8qNyPCp3IgM31QvNwoCiYiIiIiIiIiIiIiITEEKAomIiIiIiIiIiIiIiExBCgKJiIiIiIiIiIiI\niIhMQQoCiYiIiIiIiIiIiIiITEEKAomIiIiIiIiIiIiIiExBCgKJiIiIiIiIiIiIiIhMQQoCiYiI\niIiIiIiIiIiITEEKAomIiIiIiIiIiIiIiExBCgKJiIiIiIiIiIiIiIhMQQoCiYiIiIiIiIiIiIiI\nTEEKAomIiIiIiIiIiIiIiExBCgKJiIiIiIiIiIiIiIhMQQoCiYiIiIiIiIiIiIiITEEKAomIiIiI\niIiIiIiIiExBCgKJiIiIiIiIiIiIiIhMQQoCiYiIiIiIiIiIiIiITEEKAomIiIiIiIiIiIiIiExB\nCgKJiIiIiIiIiIiIiIhMQQoCiYiIiIiIiIiIiIiITEEKAomIiIiIiIiIiIiIiExBCgKJiIiIiIiI\niIiIiIhMQQoCiYiIiIiIiIiIiIiITEEKAomIiIiIiIiIiIiIiExBCgKJiIiIiIiIiIiIiIhMQQoC\niYiIiIiIiIiIiIiITEElE50AETl0NTc3c+edd7JlyxZSqRQlJSUsXryYM844g/r6+olOnhyCJkOe\nnAxpFDnYqNyIyERat24d11xzDY899hipVIqamhpWrlzJJZdcwooVKyY6eSIHpfjZ/cgjj5BKpZgz\nZ46e3SIiIiMURFE00WkYMWNMKfBZ4P3An6y1pw1j25OBjwPPAyqAp4HvAd+01g77pOzbt2/ynsiD\n1Nq1awFYtWrVBKdEiq29vZ0bb7yRDRs2UFZWRllZWc+yzs5OOjs7WbZsGeeeey4VFRUTmNLJR+Vm\nZCZDnpwMaZysVG6mLpWbsaNyIzK45uZmLr/8cjZs2EAymST+v3dFRQUdHR10d3ezbNkyrrrqKlVq\ni3i5z+7W1lYA6uvr9ewWGSL9ThMZvslYbmpra4Ohrjtpu4MzxhjgfuBdwJC/sN/2dOBuYBVwJfAO\nXBDoauCqoiZURPpob2/n6quvZtu2bUybNq1PhRxAWVkZ06ZNY9u2bVx99dW0t7dPUErlUDEZ8uRk\nSKPIwUblRkQmUnNzM+effz5bt26lpqaG8vLyPsvLy8upqalh69atnH/++TQ3N09QSkUOHnp2i4iI\njI1JGQQyxtQB/wQSwLNHsItrgQ7ghdbar1trb7TWvh74DXCZMea44qVWRLLdeOONtLW19fuPcK7y\n8nLa2tq48cYbxyllcqiaDHlyMqRR5GCjciMiE+nyyy8f1j3o8ssvH6eUiRy89OwWEREZG5MyCASU\nAj8CnmettcPZ0BhzImCA/7HWbs9Z/E1cq6K3FiWVItJHc3MzGzZsGPRHfay8vJwNGzbozUgZM5Mh\nT06GNIocbFRuRGQirVu3bkT3oHXr1o1xykQOXnp2i4iIjJ1JGQSy1jZaa99lre0YwebP9dP78yx7\nwE9PHFnKRGQgd955Z78m/YMpKyvjrrvuGqMUyaFuMuTJyZBGkYONyo2ITKRrrrmGZDI5rG2SySTX\nXnvtGKVI5OCnZ7eIiMjYKZnoBEyApX66NXeBtfaAMWYvsLxYB4sHlZKR0zmcOh555BFSqVTP4J5D\n9fDDD7N69eoxStXUpHIzNJMhT06GNE4VKjdTh8rN+FG5EenvscceI4qiguOVFJq/Zs0alSk5ZA32\n7C7U4kfPbpHC9EwRGb6DsdysWrVq1PuYlC2BRqnGT9sKLG/NWkdEiiiVSo3rdiKDmQx5cjKkUeRg\no3IjIhNJ9yCR4VO5ERERGTuHYkugcVWMSN2hKo686hxOHXPmzKG7u3vY2yWTSeWDIVK5GZ7JkCcn\nQxonO5WbqUflZuyp3IgUVlNTk7diOm4BVFFRkXe7kpISlSk5ZBV6dsctgOrr6/Nup2e3SH/6nSYy\nfFO93ByKLYH2+2lVgeXVWeuISBEtWrSIzs7OYW3T2dnJ4sWLxyhFcqibDHlyMqRR5GCjciMiE2nF\nihV0dAxv+NqOjg5Wrlw5RikSOfjp2S0iIjJ2DsUg0Ho/XZi7wBhTC9QCB1/nfyJTwJlnnjmiH/Zn\nnHHGGKVIDnWTIU9OhjSKHGxUbkRkIl166aXDbo3Y3d3NJZdcMkYpEjn46dktIiIydg7FINB9fvr8\nPMte6Kd/Gae0iBxS6uvrWbZs2ZDfjOzo6GDZsmUFm/6LjNZkyJOTIY0iBxuVGxGZSCtWrBjRPWjF\nihVjnDKRg5ee3SIiImNnygeBjDGHG2OWxZ+ttY8A/wTeYIxZmLVeAFwOdAM3jHtCRQ4R5557LpWV\nlYP+uO/o6KCyspJzzz13nFImh6rJkCcnQxpFDjYqNyIyka666qph3YOuuuqqcUqZyMFLz24REZGx\nMSmDQMaYI40xr4//+dmzsucZYyr9/CeB3+fs4hIgAfzJGHOZMeY84FbgdODT1tp14/JFRA5BFRUV\nXHbZZSxYsID9+/f3a/Lf2dnJ/v37WbBgAZdddlnBgXNFimUy5MnJkEaRg43KjYhMpPr6em644QYW\nLlzIgQMH+lVqd3R0cODAARYuXMgNN9yg1gwi6NktIiIyVoIoiiY6DcNmjLkS+OQgqy2z1m40xkSA\ntdYenrOPZwOfBk4GynDBom9Ya68bSZr27ds3+U7kQW7tWjc006pVqyY4JTJWmpubueuuu9i8eTOp\nVIqSkhIWL17MGWecof8Ij5DKzehMhjw5GdI42ajcTH0qN8WnciMydOvWrePaa69lzZo1pFIpampq\nWLlyJZdccom6gBMpIH52P/zww6RSKebMmaNnt8gQ6XeayPBNxnJTW1sbDHXdSRkEOhgpCFR8k7Hw\niUw0lRuR4VO5ERk+lRuR4VO5ERk+lRuR4VO5ERm+yVhuhhMEmpTdwYmIiIiIiIiIiIiIiMjAFAQS\nERERERERERERERGZghQEEhERERERERERERERmYIUBBIREREREREREREREZmCSiY6AVPdcTfvoL48\nZEZZSH1ZSH25m87wUzcv4eaVhZSXDHk8JxERERERERERERERkYIUBBpjm1rSbGpJD3n9ypKgJzjU\nEyiKA0f+7xllIXV++czyBBUKHImIiIiIiIiIiIiISA4FgQ4ybamItlSara1DDxxVlwTMKA+ZVeGC\nQjPLQ2aVh8ysSLip/zerIsGMspDShIJGIiIiIiIiIiIiIiJTnYJAY+yxB97PrtJp7ExOoylZQ1Np\nLU3JGnaWTmNX0s3fWTqN3ckaMsHIhmhqSUW09LQ46h50/drSgFnlCWZVuFZFAwWP6stCEqGCRiIi\nIiIiIiIiIiIik42CQGPs8Pbt0L590PVeccwH+b8Zx/WZN727lcu23k5TaQ07k7XsStbQ5ANKzcnq\nEQeN9nVF7OtK8cz+wdcNA5hRFjK7ImRORYLZFSFzKxPMrkgwpyLsM60tDQgCBYxERERERERERERE\nRA4GCgIdJHaWTus3b3HnLj6x6Zd5108T0JScxo7SWhpLp/dMH6tayE1zX1C0dGUiaOrI0NSR4fE9\nqQHXLUuQNzg0x/89p9IFkWaXJyjXOEYiIiIiIiIiIiIiImNKQaAx1vSKRQQtacIDXZTs7aBiXyth\ne0TYDkHUu16mejqJANJZ82Z3FW6qkyBibvc+5nbvg9bNPfP/MP2ovEGgrzxzIyftW0tjaW2fwNGO\n0uk0ltb2zG9LlI/4u3amYUtLmi1D6JautjToaVk0rzLB3MoE8yoTzKsM/TRBVwZKR9bYSURERERE\nRERERETkkKcg0BjLzGyCmRCHRdop80sCgrCSIKogzJTzx9UhQd189ndFNHdmaO7MUP53yDwJQTcM\ntd3MjtLpeecf3bKF5x5YN+j2BxLlPUGi9608j0dqlvZZnsikKYu6RxUsgt4u6Z7eN9BalUwviVjw\neCPz40BRVcL/3RssmlkeEqobOhERERERERERERGRPhQEmjARUaaViFYyAZQkIAwCppcFTC8LWQ5k\nTj2KpvJyCEoJEtMIg0qCdBlhKknYEZBozRDu6yRobifcuZ+SPXtZvXIOXzmplqb2DLs63L+mjjSL\n0kMYAAioSXdQ097BqvZGojzLj27dwj/+8Z/sS1TQUFZHQ2kdDWV1bC+tY1tZ3793lE6nOxxdFtub\nCti7JzVgV3QlAb4lUW+rojhoNL8qwUIfOFIXdCIiIiIiIiIiIiJyKFEQaKyVVEOqZdDVgtL6fvOi\nrub4D6LULtLxghCo9P9mZW0Q1jC7fj8XHV7db1+J5iPo3FlHYvcBgr17SBzYO2ia9tfM6Ddvfpfb\nrjbdTm1bO0e0NQy4j53Jafx65rO5xFzUf1+dzbSFZewtqYRRtORJRbC1Nc3W1oG7oZtZHrLAB4Wy\np/G/eZUJSkIFikRERERERERERERkalAQaIxVnfILonQXUVczUdceN+3c0/u5s5moq5mgtK7ftlHX\nnuEdLNNRsN+41qM7SO9+GggISqcTlC50rYuiSsLuUsLOkLA1InGgm0RzG+G+Fh4+/zA6MgFNHWl2\ntmdobE8z8/5OWDP0JM3u3k95Jn9g5ronv82L9z5OS1jGlvIZbC2rZ0vZDLb56dbyGWzxf7eUVAzv\nXOQRt4x6dHf+9IQBzK0IfVCopE+QKP57VoW6nhMRERERERERERGRyUFBoHEQJEoJKuZCxdxhbRdW\nLyO54iIfOGruEzgi3Zb/WGX9W+8ARJ274798MMoFmNLZK1X4f7OBRCXlresor1nFouoSFvnGRUHa\n0Fb1RhLN7ST2NBPs3U2wd5ebZjJ5jz197mxevKCMxvYMO9vTNLVniICFna6lU3WmkyPaGgZsVbQ3\nUcnWsnpee8wVbKiY3WdZaaabRJShPVFWYOuhyUTQ0JahoS3D35vyB4pKQ5hXmWBRdYLF1SV+6v5e\nXO0CRWpNJCIiIiIiIiIiIiIHAwWBDmJh1RJKq5bkXRal2ok6dxF17ibjp1HXbhJ1x+VdP9O5a3gH\nT7cRJGv7zU5NT9FR+RuohGB5HUHZLILy4wjKZhBGNYTdSRIdIeH+NIm9bYR7d3Pm6mdx+uqZvfvI\nROxuT7P0r81DTs70dBvT29rYl6dF0Bl7HuN/13yZ3SXVbCqfyabymWwun8nG8llsKnOfN5bPYl+y\nanjnII+uDGxqSbOpJQ109VseBjC/Mg4MJVjkg0OLq0tYUuPGJipNKEgkIiIiIiIiIiIiImNPQaBJ\nKiipIChZBFWLSAxh/bIjLifq2JUVONpN1OX+JtWaZ4uQoLR/q6JMR1PP3z0tig48nf+gdSUEc2dS\nUjuHUk7umV0SBsypCOi68ArCPbsJmncSNu8k2N1EsKeJcH/+bvC6S8o4b/VcGtoz7GjLsL0tzY62\nNAs7XCunGakWZrS0cELLxrzb70tU+CDRLG6Z9Vx+PPeF+dM9Cpms8Ynua+y/PMAHiWoSLKryLYhq\nelsTLaxSkEhEREREREREREREikNBoENEycznFVwWpTt6gkNR5y4yHbsg3UoQ9g8vRZ1NefZQaMcp\noo4dROn2/svCBC3J3xHV7iaYO4egfA5h+So3Lakn7Eyyw24heWA/85IhYfNOyGS48jnT++/r512w\ndvDk1KbbObZ1C8e2buHxqoV51/n1mi9TEqXZWD6LzWWuBdHGilmsL5/NrmQNjHI8oAjY1pZmW1ua\n+/MsDwNYWJVgaU0Jy2riaQlL/d/Ty8JRHV9EREREREREREREDh0KAglBopygciFU5g+MZCuZeRJB\n6XSijiaijiYynW4adTZBpn/3aABh2cy88zMdO6B7P1HXbtj3RN/xiYCaREBmxjT2Vy8gWD6HsHwO\nyVQ7QU6XcOHxJ9JZXka4u5FgV6Ob7t5B0J1/XB+Ao80i3r6iii2taba1ptnWmmJPR4bT9zxOZYHv\nsT9Rzvry2WyomM2G8tms99O76o4mnSdgNhKZCDa3pNnckuZP2/svn14asGxaCUurS1g2zQWGlvi/\nF1QmSGg8IhERERERERERERHxFASSYQmrlxJWL+03P4oi6N7XGxTqaCLq3EmmYxdhzcr+66faoHv/\ngMcKiEik95HZt88HiUKSy97Sb73u2RHt6Z0Ex84nrHgWQcU8wrI5BO0Zwt0+KLRrB+GuRoLdjQRN\nO3jxCSs47ci+rYrampupvDd/AAhgWrqD41s3c3zr5p55nUEJ1adc12/dY1s2cUTrNtZXzGF9+Wx2\nJ6tH3YoIYG9XxMO7unl4V/8AVzKExdW9rYeW1CRYXlPCilr3uUzdzImIiIiIiIiIiIgcUhQEkqII\nggBKp5MonQ41qwbfIMqQXPpmoo5GMu2NRB2NRJ27cB2mFThG2QyCMNlvfnrfk6R23NV/g0QlYcVc\ngsp5hGYewfGHEVacSlAxj6BsNrkhkaooRWr1813AaPcOgrZ8YyX1tbd2Dq9aWsnmljRbWtLs7swA\n8Lqmv/OxTb/qWS+7FdH6ijk8UzGHZyrmsrZiLtvK6oiC0Xfz1p2BdfvTrNufBjr7LIu7mVsxrYSV\n00pYPq2EFf7f4poESbUgEhEREREREREREZlyFASSCREkqyldfl6feVGm241N1N5IpqOR3Q1Pkkjt\npjrZTtTRSFAxN+++ovYd+Q+SbiPTsh5a1vfrai654kJKl5zTdz8zZtP2jv9wAaKSCmhrIdy1g2Dn\ndsKmBoKm7YQ7GwibthM0bSdIp5ixeCE/On1Gzz5aujNsaUkz57q9sKl33/laEcXawyTryufwseXn\n8LuZzyp80kYhu5u5uxv6BohKAlhSk+gJCvX8qy1hYVWCsAgtmERERERERERERERk/CkIJAeNIEwS\nVMyDinkkgAOtywGYtcq1LIqiTP4NE2UEpXVEXXuGfKywYl6/eVG6i/YHLgYigtI6gooFhJULCGYt\nIFyykLDiRIKK+QSJUsikCfbsgpxxh6qTIUfUhVS07hxyWioy3RzdtpWa0v7jClWn2rn34U+7lkOV\nruVQ3IKosbS2KF3MpaLCLYjKErCsxrUcWjmthJW1JRzm/9WXF2ccJBEREREREREREREZGwoCyaQR\nFOgyreywd8Fh7yJKdxC1byfTvr3/tKMRot72QEG+IFBHI3F3dFHXHqKuPWT2PZabCoLyWT0BorB6\nBUkW9ttX+/u/5FoM7dxOuHObbz3UQLhzO8Gu7QTp3LZJ8O1zjuFLM+ex8UCajQdSbNyfIr2xkeNa\nN3NcnhZE+xPlPQGhpyvn8VTlfGzlfJ6unEtbonyAMzl0nWl4am+Kp/am+i2bURZy2PQSVvUEhpIc\nNr2ERVUJEupeTkRERERERERERGTCKQgkU0aQKCeoXkZYvazfsiiTJupsImpvINO+g7Cyf+Am094w\nhKNERB07iTp2ktnzMOE0Q3LBy/qtlWr5F1GimXD5AoKjX+zGM4qDWOkUwa5GwsathI3bCPw0mjWP\nmpKQY+pDjql3Yx+VtO0rmJJp6Q5OaNnICS0b+8z/67TDOPWET/ZbvyrVQWuirCithwB2d2a4v7GL\n+xu7+swvS8CKaSWY2iSrprsA0apa15KoKjn6sY9EREREREREREREZGgUBJJDQhAm3JhCFXMp1IlZ\nWLOSsiM/6FsQNZBp20ambSukWgrvt2JB3vmphttJ734ga+dlrmu5ykWEVYsIKxcTLl9IcNRq171c\nAVFFJamjnk3YuJVg906CQl3iZZm9YhmfeNY01u9PsW5/ivX7UzS2Z7j58a/xvP1rsZXze1oNPVU5\nn6cr5/FMxRy6wuSg+x6KzjQ8sSfFE3v6tx5aWJXA9LQeSnL49BKOqEtSV6bgkIiIiIiIiIiIiEix\nKQgk4oVlMwjnnt5vftS9n0zbVjJtDURtW8m0NxD5AFFYmT8IlGnfmjOjk0zLemhZT9+O4AKC8rmE\nVYsoXXUxYeX8PkvTx55I+tgT3YfuLoKm7YQ7tvpWRFsJGrcR7thC2NzUs83iw5bx/46t6bOfA90Z\n6h5tpDzdwXMOrOc5B9b3PQ4B6ytm9wSGHq9ayBOVC3m0ejGpsHi3ia2taba2pvnDtr5jD82pCDl8\nepIj6ko4YroLDh1el6S2VMEhERERERERERERkZFSEEhkEEFyGonaI0nUHtlnfhRFEHX3Wz+K0kQd\nu4a494ioYzvpju1w+Hv7Lc20bKB7628Jqxa7VkT1i8jMO5kgt0u3jjYXHNq+mfSSVf32U5PppHzP\nzoKpSBCxqr2RVe2NvHL3wz3z5518LU2ltX3WrUx3EBHQnigb4nccXGN7hsb2Tu7d3jc4NL8y5Ii6\nJIdP7201ZKaXUKNu5UREREREREREREQGpSCQyAgFQQBB/67cgiBB5Sm/JOrcSaZtW0+roUzbFqK2\nrUSdeQJEiUqC0vp+s9P7LamG23LWLSesXEhQuZiweilh1RLCqiVES1aSWXpY/sRmIjr//VLC7ZsJ\nt28m2L6ZcP+eAb9fpqaW+84zrNuf4pn9KdbtS/H0vhQnPHI3H//XD9hQPosnqhbyRNUCHq9cyBNV\nC3mqcj4dA3RvN1wNbRka2jr7tRxaVJ3giOklPcGhI+uSHDa9hMoSBYdEREREREREREREYgoCiYwB\nNwbRPMKKeTDj2X2WRalWFxRq3ULUtplM61YIk/1b9wCZ1i39d57uIHPgGTjwDOnGrPmJcsLKxZQs\n/DeS887ou01FJd1nvaHvvJb9riu5BhcYCndsJmzYTNC4jSDKEC1YyqyKBLMqEjxvTm+rn9KG3YRE\nrOjYyYqOnbxq9z9700vA+vLZPFG1gCeqFvJ41ULWVC3CVs6nu4jdym1pSbOlJc0dW3uDQ2EAK6aV\ncFRdkqPqSji6PslR9UkWVSXynlsRERERERERERGRqU5BIJFxFpRUkZhmSEwzg68cpSFRDumOwddN\nd5A58DSk2/Mu7lz7XcLyOT2th4Lq6WRWHkVm5VF9V+zqJNyxBdKpvPsJt20smISQiJUdjazsaOTf\nsoJDHzv6Qr4w88X9N4giKFKAJhPB2n0p1u5L8eusJE4rDTiqLsnRdS4odHR9kiOml1ClLuVERERE\nRERERERkilMQSOQgVnbYxZSueidR5y6iti1kWjf7VkSbyLRuhu59/bYJq5b0mxd17SW15Zd9ZyZr\nCauWEla77uTC6mWEVcsISivILF5ZME3dLzmbzMqjCLdtINy2kWBnA0EUDfg9PvqaE3j30nk844M0\ndl+K7Q1NXPWb9/FI5WLWVC/iX1WLWVO9mCcqFxS1S7n9XRH3N3Zxf2NXz7wAWFaT6AkKHVXnpour\nE4RqNSQiIiIiIiIiIiJThIJAIge5IAgIymdB+SwS9Sf0WRZ17SXTstEHhdw0XxAo07qp/46795HZ\n+yiZvY9mH811Y1e9jMT0Y0guek2/zdInvID0CS/ondHV6bqT2+qCQvG/YNf2nuBQZuFyqpMhx88s\n5fiZLsCTKHuaiq4DnN71OKfvfbx3/0HIxqq5/KNiEWuqF7OmajH/ql7E5rKZRWs1FAHrD6RZfyDN\nbzf1trKqSQYcWZfkmPokx85Icmx9kiPqkpQlFBgSERERERERERGRyUdBIJFJLCidTqL+eBL1xw+4\nXtS1b4jdykVE7Q2k2xuIUm35g0B7H4MgdK2GSiqgtIzMklVklqzqu2JnB2HDRsLGbVBR2W8/4Zb1\neVOQiDKsaGlgRUsD5zQ90DO/JVnJTxe9iHctfvMg32HkDnRHPLCziwd29rYaSoZw+HQXFDrOB4eO\nrk9Sre7kRERERERERERE5CCnIJDIIaBkzikkZr+AqGOnazXkWw9FrZvItG2GTHe/bcLq5Xn31bXu\nOjL7XMsd12pouetKrgiusF8AACAASURBVHo5YfVygvI5BEEAZeVklh1OZtnhefeTmbeE7pPPJNyy\nnrBhE0GBMYhi1d1tnH94Da983Tye3pviyb3dPLknxVN7uznloVtoyJTzcM1S1lQtoj1RNswzVFh3\nBtY0d7OmuZuf+HkBsLK2hON8a6G41VB9eaJoxxUREREREREREREZLQWBRA4RQRASVMwlrJgLM0/s\nmR9l0kTtDWRaNpBpWd8zDauX9dtHFEVkWjb0fm7fTrp9O+mmv/aulKgkrFlBWLOSsHoFiZqVBFWL\nCIK+AZL0cSeSPs6nI9VNuH0L4ZZ1LigUT/fu6rNNZvEqapIhz5pVyrNm+XGDMhmqbvk1QUe7+xiE\nbK9dwKM1S/hz2WIeqlrKw9VL2ZusGs3p63segLV+fKNfrG/vmb+wKuECQz4otHpmKXMrFRgSERER\nERERERGRiaEgkMghLggTBFWLCKsWwZxTeuZHfjyfbFFHI6TbBt5huo3M3jVk9q7pmVV5yi1QMkAQ\npiRJZtFyMotyWh8d2Eti6wbCzc8Qbn6G9Ioj+qd/Z0NPAAggjDIs2LuFBXu38PKs9ZprZvPU9KXc\nX7GEu8uWcnv9cUUbYyi2tTXN1tY0t27u7XZvXmXI6pmlrJ6R5IRZbqoWQyIiIiIiIiIiIjIeFAQS\nkbyCPAGSoHwWFSd+r0+LoUzLBqLOpsL7qZhHkCcA1L31f0k13O5aDPlWQ2H1cjfOUKxmOukjVpM+\nYnXB/Ye7dxCVlhN0DTzeUf2BnZx8YCcn8yDvnTmPu956Bo83d/P4nm4eb+7miT0pOlNpMkFxx/rZ\n3pZh++YObssKDC2pTnDCzFJWz3SthY6bkWRaqcYYEhERERERERERkeJSEEhEhiwIslsNndozP+o+\n0BsYOrCOTMszZFo3QZQhrFmZd1+Z/dZvsx623xEfgaByIWGN60YurFlFWLMybxAplj7q2bR+51aC\nHVtJbFpL6P8lNj1D0Lo/7zbR8sN5wdwyXjC3d+ygdCYi9e3/Irn2MdbNWMED1cv5fckS7i1bTEt2\nYKoINrWk2dTSzq82tvtvDatqS3qCQifMTHJMfSkVJcVtqSQiIiIiIiIiIiKHFgWBRGTUgmQNibrj\nSNQd1zMvSneRad0IQf6uz9IHnskzNyJq20K6bQvpxnt691+5kLDmMEqXnENYvbT/ZmGCaP4SUvOX\nwEln+F1FBM07fUBoLeGmZwg3PU3Y3ERmmem3i0QYUL3laRLNDaxubmA1f+ZiIAoC9s9cyPqZK/n/\n7N13lNxnYe//97dM211t1VaVVVuNeu+yZclVuGNsbIxxIDc3EAK/e29Ici8kQEiAA5fkXjr8KCFg\nYqoL4CZ3NatbVtdo1dtWrbZP+5b7x6wlr2ck71qyLdmf1zk6u/N96sw5X+94PvM8z8aCMawI1PK0\nNYKEFRzw6/NGfGBfh8O+DoffHMgEQ5YBE0sCzBoaYNbQIHPKg0wstrFMBUMiIiIiIiIiIiIyMAqB\nROQtYVhBrMLxOct838cqnYNnD8msBHqDc4b83uO4vcfxR96ZXeb04MUbMPNHYZiv+U+aYeCXVeKW\nVeLOuuLs5Y42fCtHMJXoxWw4kv08fJ+ilmPMbDnGTF7g44BvmnRWjuJAeR3fmXIv67rD7O90zvsc\nBsv1YWdbmp1taX6xL/P6FNgGM4cGmFuRCYXmlAepiOh8IREREREREREREclNIZCIvO0MwyBU918B\n8H0PP96A17Ufr+sAbtd+vO79kH7dVm5mCDO/Nqsv9/R2kju+BGYgc65Q4XjMIeOxCsdj5A3HeN0Z\nP35Rae5JOQ7pmz+MeTiGdTB2zq3kAAzPo6jhIDNbj/Gd//a3YAfoSnvsbEuz/VSag8db2Xk6zbp4\nHp4/uNfmfLodn9WNKVY3ps5cqy2wzoRCc8uDRDwI6HghERERERERERERQSGQiLzDDMPEyBuGmTfs\nzDlDvu/jJ5rxuurxuvbhdu7DMAMYZvaqF68z1vdLGq9zL17n3rOFVl7mfKHCKGbhBMyiiZihstwT\nKSgkdedf0DcBjNZGzEMxrEOxTDB0KIYR7+k/du14sAMADAmYLKwMsbAyRDD2O4JP/BynvJqWYRPY\nVVbHi3lj+YM/nD3dF/Z6vd6r5wv9/mBmG7mgESFa4HFFWztzy4PMqQgyIt/CMLSNnIiIiIiIiIiI\nyHuNQiARueQYhoERqcSMVELFFeet63XtO3eh24vXvgOvfcfZvkPlBMf+OXbVsvNNAL+8Gre8Gnfe\n0r6BPIzmE5lQ6OBerEN7caPTczY3D+wBwG5poLqlgWpe4FrgX+wAqZF1nKiO8krxOFaEx7AiXszx\nXu+8z3EwUr7Bji6LHbt7+AGZ0KoyYjKnPMj8isy/GUODhCyFQiIiIiIiIiIiIu92CoFE5LIWrPs4\nbsdevK59eJ378LoPgX/u83n8ZAvYkezrnovbvAqzaAJGuCp75Yxp4leNwKkaAQuvPfeEfB/r4J6c\nRYaTJnRwN2MO7mYMcAfgFZUQHzOFtUvuZ5VRydZTaba2pmiOX7xgqCnu8fjRBI8fTQAQsmBmWV8o\nVJn5WRbW2UIiIiIiIiIiIiLvNgqBROSyZubX9p0VdAMAvpfC6z6UCYQ69+F27cPvOQqcPZzHKpyQ\n1Y/Xc4Tk7q9nHgSKsIomYBZOxCqcgFk4HsPOG9iEfI/Ex/8B68AezAO7sQ7uweg99x5wZsdp8reu\nZvFHPs2issJMF77PiR6XHSc72NHUy6ruMFtb0/Q4F+eAoaQL65tTrG9Owc7MtfFF9plQaEFFkLGF\ntraQExERERERERERucwpBBKRdxXDDGIVRrEKo2eu+U5PJhDq3Isfb8AIFme18zpfs3on3YHbugG3\ndQNpAEyM/JFYRRMxiyZhFU3GiFTnDklMC3f6AtzpC/o69jAaj2Ed3IO1fzfmwT2Yxw5geGdX+nil\nFfhlFWefg2EwvMBmVNNG7vrJ1/GqR5IeN4VjwyayrjDKs95QNrekiXWce8XTYO3rcNjX4fBAfS8A\nQ8Mm8ysygdD8yiDTy7SFnIiIiIiIiIiIyOVGIZCIvOsZdj5W6Uys0pnnrON17D1PDx5+z2GcnsNw\n8slMn8ESAiPvIjDyjvMPbpr4NbU4NbU4VyzPXEsmMA/vwzqwG6t+B15Jec6mVn1mmY7ZcJRQw1HG\n8QTjgPuGFOGOm0L36MnsLI/yXLCW9W2wqSVFe+rirBZqTWRvITdraCYUWlQVYn5FkMKgeVHGEhER\nERERERERkbeGQiARESAY/RR2zXK8zr24HXvwOvfiJ1vPWd9PnQYj9zk67untmAVjMAIFuRuHwnjR\naXjRaaS555xjvBoCvZ7R1YG9dS3FW9dyBbDYDuCNmYAzfhqrhk9io13NMbOUTS0pdralcS9CLpR0\nYV1TinVNKf7vjm5MA6aVBlhcFWJRZSYYKgkpFBIREREREREREbmUKAQSEQEMK4RVPBmreDKBvmte\nogWvM4bXuScTDHXVg5c+08YsnpTVj5/uIrH17wEDI78202fRJMyiyRjhykGds5O8+xNY9Tux6ndi\nHtyDkU7lnruTxtq3A2vfDmrv/zuG1lRQV5fZ8q7X8djammZj3xlAG5qSF2W1kOfDK6fSvHIqzfd2\nZa5NKrFZXBVicWWIRVVBKiK5QzIRERERERERERF5eygEEhE5BzNcjhkuh4orAPC9FF7Xftz2XXhd\n+zDzx2S1cTt29/3mn9lCzjnxOABGsBSzeDJW0WTM4imYBaMxzrGaCMCdsRB3xsLMAyeNeaT+bChU\nvxOzo61ffT8QoLdmdL9rebbJlR0xrv3NN3EnTMcZP4191ZNYGy84Ewod7HLf5CvU3+7TDrtPO/x4\nTw8AdUU2i/tWCS2uCjEsX6GQiIiIiIiIiIjI20khkIjIABlmEKtoElZR9gqgV3kdu85Z5qfacJtX\n4zavzlyw87GKJmNXLsWuuvr8g9sBvLGT8MZOIr38g+D7GC0NmVBo3w6s2Db8ohJ8O5DV1Nr7Ctbx\ng1jHDxJ89hFmANOqRvCX0Wm40ek0LZzCS04J65tSbGhOsu1UmrQ3kFfk/Oo7HOo7HP5jXy8AtQVW\nZvu4qiBXVoWoHaI/QSIiIiIiIiIiIm8lfQInInIRBUZ8ALNwIl7Hrr4VQ/XgO7krOz24pzZi5I3I\nGQL5vodhnOOcHcPAr6jBqajBWXx95lo6BYePZFW1YtuzrpmNxzAbjxFY+Ti1wIihldwZnYE7cQY9\nc2ey2S9hQ3OK9U1JNjSn6LgIW8gd6XY5sr+XB/efDYWWVIdYUh3iyuoQVXlaKSQiIiIiIiIiInIx\nKQQSEbmIjGARdvlCKM9s4+a7Sbyu+kwg1LEbt2MXON392ljFU7L68X2P+Ev3Y0RqsIqnYhVPxSya\ngGGFzz14IJjzsjduMm68B/NwDMPLvcTHbG3CbF1BYO0KwsBVn/wCi+dfDQzB831i7Q7rmlK81JRk\nbWOSht4LXyp0pNvlgfpeHqjPhELji+wzgdCVVUFKwwqFRERERERERERELoRCIBGRt5BhhbCKp5wJ\nenzfw+85itu+A7d9B177ztwhUM9h/GQrfrIVr307aQDDxiwcnwmEiqdiFU3CsPPecA6pOz4Gd3wM\nEr1Y+3djxbZh7d2GeXAPhpPO2cYde3bLO9MwmFgSYKLVw3/t2oFz43QO+wWsaUzyUlOKtY1JjnZf\n+LlC+zoc9nU4/GRvDwYwpTRwZqXQwsoghcFzrIoSERERERERERGRnBQCiYi8jQzDxCgYhVkwisDw\nW/B9H8Mwsuq57TuzG/sOXsduvI7dcOQ3YJiYQ8ZjlczAKpmOeZ6zigAI5+FOmYM7ZU7mcSqJeXBv\nJhSKbcOq34mRSuKV1+APrcpqbu/YSPhHXwVg0sixRCfO4qMTZ+LeNI1jXpiXmlK81JhkbWOK/Z3n\n2AJvgHxgR1uaHW1pvrerG8uAWUPPhkLzKkJE7OzXTURERERERERERM5SCCQi8g7KFQABmPmjsKuv\nx23fgR9vyN3Y9/A69+J17iV95NdY5YshfM/ABw+G8CZMx5swPbPSKJ3CPLgXo6crZ3Vrz9azvx89\ngHX0AKz4Hb5hMn50lLETZ3DvxFm4c6bS5Ab6to7LBEO72y8sFHJ92NSSZlNLmn/b3k3QhLkVQZbV\nhLm6JsT0sgCWqVBIRERERERERETktS7bECgajZYCXwRuB6qBVuAJ4POxWOwcn5j2a38f8AlgOhAE\njgKPAV+OxWKn3qp5i4gMhFUyDatkGgBeshXv9A7cjp24p3fg9x7N3aZ4GiSyr6cbnsbMH4U5ZCyG\ncZ5zdgJBvOi0c89p3/ac1w3fwzq4B+vgHnj8V/h2gNq6KQyfPIc7Fl2Lv7CSUwmXdX1bx61uTLGz\nLfc2dAOV8mBtY4q1jSm+/DKUhAyuqg6zrCbE0poQtUMu2z9vIiIiIiIiIiIiF81l+SlZNBqNAC8C\nE4DvApuBOuBvgauj0ejsWCx2+jztvwp8FtgIfA7oBhYBnwZu7mvf+ZY+CRGRATJDQzGrlmFXLQPA\nT7VnzhQ6vQ339Db83mMAWCXToaF/uOKnu0jt+SbggZ2PVTwNq2Q6Vsl0jPxaDGPg5+z0fulHWLHt\nWHu2Yu3Zinl0P4bvZ9UznDT2nq3Ye7bijZ2IW1ZJWdji5toIN9dGADiVcFnTmGJVQ5JVDUnqOy5s\npdDppM+jh+M8ejgOwNhCi2U1mVDoyuqQzhMSEREREREREZH3pMsyBAL+OzAV+OtYLPb9Vy9Go9Ft\nwCPA54G/ydWwbwXR3wGHgSWxWCzZV/SzaDTaCvwv4GPAt96y2YuIXAAjWIxdcSV2xZUAeMlTeO07\nMPJrgf396mbOFvIyD5we3NZ1uK3rMo8DRX2B0Eys0pmYkexzgPqJ5OPOWIg7Y2HmcXcn1t5tWHte\nzgRDJw73q+4HQ7h1U7K6MY/up/rFx7hj8mxumz4TFhZzssdldWPyTCh0rNsd5KvS34FOlwOdPfxk\nbw+WAXPLgyytCXH1sBCzhgaxtXWciIiIiIiIiIi8B1yuIdD9QA/w09dd/wNwHLgvGo1+JhaLZX9F\nHUaSed4bXxMAvWoVmRBo1MWdrojIW8cMlWFWLs1Z5nXuOXfDdAdu8yrc5lUAGJEarNJZ2BVXZlYV\nvZGCQtw5V+LOyYRRRkcb1u6tWLs2Y+3ajDdsFASCWc2srS8RfO5ReO5RfNPEGzORUZPnMHzKbO5e\nMAnsEg53OaxqSLK6LxRqintvPJ9zcH1Y35xifXOKr73SRWHQ4MqqTCC0rCbM6CHWOc9mEhERERER\nERERuZwZfo6tfC5l0Wi0EOgAVsdisSU5yh8C7gDGxmKxgznKi4AmYHcsFpv1urK/Ar4P/EUsFnt9\nwHReHR0dOV/I+vr6wXQjInJx+T6200QwsY9Qsp5Qch+m13veJt0FS+ks+cAFj2umEnihSFbRuF98\ngyFH9+Vs5gbDdNdG6Rw7mc6xU0iVlOP7cDhusKndYnOHyZYOi07n4oU2w8IeC0tcFpW4zCnyiJzn\n2CQREREREREREZG3S11dXc7rRUVFA/5w7HJcCVTb9/P4OcpfPTF9DJAVAsVisY5oNPovwJej0eh3\ngG8CXcA84B+AV4D/vKgzFhF5pxgGTqAKJ1BF75Al4HvY6ZOEkvsIJfYRTO7H9PsvikyGo9n9+D7F\nbQ+QCtaSDE/EtcvhfKtnDCNnAISfWdHjGyaGn726x0olKKrfRlH9NgASpRV0jp1CaP51jK4Zygdr\nwPMh1mOw4bTFhnaLbZ0maf/Nh0InEia/bzD5fUOAoOEzs8hjUV8oVBvxz/s0RURERERERERELmWX\nYwg0pO/nub7K3vO6ellisdhXotFoE/Ad4FOvKXoMuD8WiyUueJZ9zpXUyRt7dRWVXkORgRvYfRMF\nlgHgew5e517ctq24bVvwug8yYtJyDLt/gON1HyR+fBN5vZsAMEIVWKUzsUpnYZXMwAgWDXyS//Ij\nenq7M+cI7dqCvXMzZlPuXD/c1ky47XnyP/gX+BU1/Z7BrX2/96Q91jWleP5kghdPJNnd7gx8Lq+T\n8g02tGfCpf97CEYWWFw3PMw1w0IsqQ5REDDfdN9y6dLfG5HB030jMni6b0QGT/eNyODpvhEZvHf7\nfXM5hkAXrG/bt28DTwO/AlqA+cDfA09Eo9H3xWKx9ndwiiIibwvDtLGKp2AVT4ExH8F3ExhWOKue\n27a132M/2YzTsAKnYQVgYA4Zh1U6G6tsLmbhBAzzDfZUyyvAnX0l7uwrSQFGSwPWri2ZUGjXFoye\nzjNVvaoR/QKgV1nbN2C/vAZr2nyunTiLa4cXA9DQ6/LiySQvnEzw4skkzRdwntDRbpef7u3hp3t7\nCJqwsDLEtcNDXDc8TLTI1llCIiIiIiIiIiJySbscQ6BXPxnMP0d5wevq9RONRqNkAqDnYrHYTa8p\nWhGNRrcBjwKfIxMIiYi8p+QKgAB8Lw12ATjduUrxuurxuupJH/k12AVYpTOxq5djl80e0Lh+eTXO\n0ptxlt5M0nMxD+7F3r4Ra8dG3LopOdvYG18ksPpJAi/8Cd+yccdPxZ06j2HT5vOhsaP50Lg8fN9n\n12mHF04keOFkkpeakiTcgb4a/aU8WNmQZGVDks9v6mR4vsV1w0NcMyzMVTUhhmiVkIiIiIiIiIiI\nXGIuxxDoEOADw89R/uqZQfXnKL+azPN+OEfZk319L7uQCYqIvNsER91DoPYuvK79fVvHvYzXsRv8\nHFuvOd24zauxiibDAEOgfkwLb9xkUuMmwx0fA9/PruP7WDs2nnlouA72nq3Ye7bCb/9/vJKhuNMW\n4MxYyJTJs5gydQifnjqEhOOzvjnJ8yeSPH8yyc629ODn1+d4j8vPYr38LNZLwITFVSFuGB7mfSPD\njBpyOf55FRERERERERGRd5vL7lOqWCzWE41GtwOzotFo+LXn90SjUQtYBByLxWJHz9HFqyuIcn3d\nPQQY5ygTEXlPMwwLqzCKVRiFUffgO3Hc9h24p7fintqM33usX32rNDsA8p1eknv+rW/ruDmY4YqB\nDJx9racTv7wav+M0hp+93Zt5uhVz5WMEVj6GHwjgTpiJO2MhXHEDS2vyWFoT5p+Bxl6XZ08kePZ4\nZvu4jlSOwGkA0h68eDLJiyeTfHZjB9Eim+UjwtwwIsy8iiC2qW3jRERERERERETk7XfZhUB9fkpm\nS7ePA996zfX7gArgi69eiEajE4BkLBY71Hfppb6fd0ej0e/EYrHXfuJ31+vqiIjIORh2BHvoPOyh\n86Du43jxRty2LbinNuPFGzDyshdsuqe34basxW1Zm+kjfyRW6RzssjmYxVMwzODABi8oIv6P34We\nrsw5Qts3YO3YiNl+Knue6TT2jo1Ye18hfeX7+pVV5VncV5fPfXX5OJ7P5pYUzx5P8syJBNtOvflV\nQrEOh1hHN9/a2U1JyOC6YZlA6JphYYpD2jZORERERERERETeHpdrCPRD4MPAv0aj0VpgMzAZ+Btg\nB/Cvr6m7B4gBEwBisdhL0Wj0d2QCnzXRaPS3QAswF/hroAn4ytv0PERE3jXMSBXmsJsIDLsJ3/cx\ncqzgcU9t6vfY7zmK03MU59jDYIawSmdilc3HGjoXMzT0jQfNH4I7bynuvKXg+5jHDmLt2IC9bQNm\n/Q4M7+wqIXfiTAhlL/S0tq3HiPfA1HksqBzCgsoQ/zi7kKZel+dOJHj2RJLnTyRof5OrhE4nfX57\nMM5vD8axDFhYGeSGEWHeNyLMuKLAm+pTRERERERERERkIC7LECgWi6Wj0ej1wD8BHwA+BTQDPwG+\nGIvFet+giw8Bq4CPkgl8gsBJ4N+Bf4nFYifempmLiLw35AqAADBtsPLAzfGfaS+J27oet3U9xMAs\nGIs1dD521TWYecMGMijeyLF4I8eSvule6O7E3rEJa9s67O0bcWYszNks8MSvsfe+gm+aeHVTcWYs\nxJm+gMqaWu6ty+fevlVCL7emeOZ4kmdPJNja+uZWCbk+rGlMsaYxxec3dTK20OKGEWGWj4iwsDJI\nQNvGiYiIiIiIiIjIRWT4uQ7clkHr6OjQC3mR1dfXA1BXV/cOz0Tk8nE53De+5+B17sU9tSmzdVz3\ngfPWD039Anb5ogsb1HXAdSEY6n+9p4v8T93Wb8XQq7zyapyZi3BnXYE7fipYZ7830RJ3ee5EJhB6\n7kSC08kL/xNQGDS4dliYm0aGuXZ4mKKgto17u1wO943IpUb3jcjg6b4RGTzdNyKDp/tGZPAux/um\nqKhowN8kvixXAomIyOXLMG2s4ilYxVNg7Mfwkqdw217GPbUR99SW/quEjABWycysPrx4I27reqyy\neZh5NW88qGX3C3FeZR47AJYFOUIgs6WB4NMPwdMP4ecX4kxfgDNrMe7UuZRH8rhnXOaf4/lsaknx\n1NEEK44n2NvuDOr1eFVnyufhQ3EePhQnYMKS6hA3jYzwvpFhqvOsN9WniIiIiIiIiIi8tykEEhGR\nd5QZKsOsvo5A9XWZVUIdu3BaN+Ce2oAZrsKwI1lt3JaXSO3/EdT/ECNvBFbZPOyh8zCLJmOYA//T\n5k2YQc/3/oi162XsV9ZhbVuP2d6aVc/o6STw0tMEXnoar3IYvf/7P8+U2abBwsoQCytDfGluEYe7\nHJ46lmDFsQRrGpOks/OlN5T24LkTSZ47keRv1sHsoQFuqo1w08gw44vsc2+3JyIiIiIiIiIi8hoK\ngURE5JJhmDZWyXSskulQ95f4biJnPefUxjO/+73HcHqP4Rx7COx8rNI52EMXYJXNxQgUvPGgoQju\nrMW4sxaD72Me3Y+19SXsrWuxDu/LHnvK3Nz9dHdAfiGjhth8YlIBn5hUQGfK44WTSVYcS/D08QSt\niTeRCAFbWtNsaU3zz1s6GVdoc9PIMDeODDO3IoipQEhERERERERERM5BIZCIiFyyDCucdc33HPze\n47kbOD24zStxm1eCYWEWT8UeuhCrfCFmuGIAAxp4tXV4tXWkb/8zjLbmTCC0ZQ3W3q0Yros764rs\ndr5P3hc/DnYAZ9ZinJmL8cZNojBocduoCLeNiuB6Pi+3pllxLMGTx+LsOv3mto3b3+nwrZ3dfGtn\nNxURk/eNCHPTyAhLqkOEbQVCIiIiIiIiIiJylkIgERG5rBimTWTRL/A69+Ge2oDbuhGv+0B2Rd/F\nO/0KqdOvQP0PiMz7IWbBqEGN5ZdW4FxzO841t0NvN/b2DbgTpmfVM48dxGxtBCD4xK8JPvFrvMIS\n3BkLcWZfgTtpNlYwxNyKIHMrgvzj7EKOdTs8fTzBU0cTrGpMknQH/1o0xz1+vq+Xn+/rpcA2uGZ4\n5hyh64eHKQ6Zg+9QRERERERERETeVRQCiYjIZccwTKyiCVhFE2DMn+ElWnBPbcJt3YB7eit4qf71\nQ+UY+bVZ/fjpbrDCAztHKK8AZ8E1OYusrWuzrpmdpzFXPUFg1RP44Tyc6Qtw5i7BnToPwnmMKLD5\nLxMK+C8TCuhOezx/IskTR+M8dSxBe8of2AvxGt2Ozx8OJ/jD4QQBE5ZWh7hlVOYcobKwNej+RERE\nRERERETk8qcQSERELntmuBxz2I0Eht2I7yZw27bgtqzLnB2U7sQaugAjx9k5qUO/xGl8FqtsLnb5\nQqzS2Rh2/qDHd2dfScp1sF5ei3Use1WSkeglsOF5Ahuexw8EcafOI73sFtxp8wEoCJjcOirCraMi\npD2fdU0pHj8S5/GjCY73DH6JUNqDZ04keeZEkv/xEiyuCnHbqDA3j4xQmadASERERERERETkvUIh\nkIiIvKsYVhi7fDF2+WKCnovXsRsjWJxVz/d93NZ14HTjNr2A2/QCGAGskmlYr54jFCob0Jje8NGk\nho+GO/4co6UB++U1mUBo33YMz+s/v3QK++U1uOMmnQmBXitgGiypDrGkOsTX5vtsb0vzxNEEjx9N\nsLMtPejXw/VhCMrxDwAAIABJREFUVUOSVQ1J/nZdBwsqg9xSG+GW2jAjCvQ2QERERERERETk3Uyf\n/oiIyLuWYVpYJVNzlvk9h/ATTa+7mM6sImrbAvu+i1k0Cbt8MVb5YsxI1YDG9MurSd9wF+kb7oKu\nduyt67A3r8TatQXDORviOHOWZDdOJQmsfBxn9hX4pRUYhsH0siDTy4J8dmYhh7ucvkAozrqmFN4g\nd43zgXVNKdY1pfjcxg5mDw1kViDVRhhdqLcEIiIiIiIiIiLvNvrER0RE3pOMUDnB6KdxW9bhnt4G\nfvYqG69jN6mO3bD/x5gFY7EqriRQe3fOreVyGlKMs+R9OEveB/Ee7FfWY29eidF+Cr9yeFZ1a9cW\nQr/8NqFffht37EScOVfhzL4Sv3IYAKOG2HxycgGfnFzAqYTLimOZFULPn0gSdwd/jtCW1jRbWtN8\ncXMnU0oD3FYb5tZREaLFgUH3JSIiIiIiIiIilx6FQCIi8p5kBIYQGHYTgWE34Ts9uKe24LSuwz21\nEZyerPpe9wGwQgRH3fPmBozk4yy8BmfhNeDnDmzszSvP/G4d2IN1YA+h3/wQd+RYnLlLceYtw6/K\nhEdlYYt76/K5ty6fXsfjhRNJ/nQkzpPHEnSkBh8I7WxLs7MtzVe2dhEtsrl1VIT3j44wqUSBkIiI\niIiIiIjI5UohkIiIvOcZdj525RLsyiX4noPXvh2n5SXclrX4qdNn6tnli3O2Tzc8jRkZhlk0EcMw\nBzBgjpVEvo+1f3fO6tbRA1hHDxB66Ke4I8fhzFuGM++qM6uJ8myTm2oj3FQbIeX6rG5M8sfDcR4/\nmqA14eXs83xiHQ7f2NbFN7Z1MaHY5vZREe4YHWG8VgiJiIiIiIiIiFxWFAKJiIi8hmHaWKWzsEpn\n4Y//K7yOvTgta3Bb1mLlCIF8N0Eq9j3wkhjBUqzyRdjlizGLp2GY1iAGNuj96s+w9u3A2rQSe8sa\nzPbWrGrW0f1YR/cT+v2PcWvHk/j45/CHjTpTHrQMrhkW5pphYf5toc9LTSn+dDjOn47EaYwPPhDa\n2+7wtVe6+NorXUwusXn/6DzuGB1hjM4QEhERERERERG55OkTHBERkXMwDAureDJW8WT8cX+Z8ywg\n99Rm8JIA+Kk2nBOP4Zx4DOwh2OULscoXY5XOwjAHsIrGsnEnzsSdOJPUff8f5sE92JtWYm9eidna\nlFXdPHkIv7T8nN3ZpsGS6hBLqkN8fUERm5pT/PFIgj8eiXOs2x34C9Fn12mHXac7+fLLnUwrDXDH\n6Ai3j44waojeToiIiIiIiIiIXIr0qY2IiMgA5AqAALyu+twNnC6chqdxGp4GOx976EKsiiVYpTMH\nFgiZJt64yaTGTSZ1z19hHtyLvfEF7I0vYrY1A+BOnQeR/Kym1pbVmM0nceYtxS+rzHRnGMyvDDG/\nMsSX5xbyyqk0fzwc549H4hzoHHwgtL0tzfa2NP+0pZNZQwO8f3SE20dFGFGgtxYiIiIiIiIiIpcK\nfVIjIiJyAYJjP4Zdsxy35SWc5jV4nXuyKzk9OI3P4jQ+C3YBwTEfJTD85oEPYhh4YyeSGjuR1N2f\nyKwQ2vgi7sSZOasHnnkYe89WQr/+Ae7YSZkzhOZehV9W0dedwcyhQWYODfKF2YXsPu3whyNx/nQ4\nzp52Z9CvwcutaV5uTfP5TZ3MKw/y/tERbhsVoSZ/ENvhiYiIiIiIiIjIRacQSERE5AKZkWrMkR8g\nMPIDeMlTmUCoZS1e+3bwX3cOj9ONESy6gMHOrhDKxWg/hbV325nH1oHdWAd2E/rV93DHTcFZcDXO\n/GX4hSWZ+obB5NIAk0sDfG5mIfva0zx6OM4jh95cILSxJcXGlhSf29jBgsog7x8V4f2jI5RHFAiJ\niIiIiIiIiLzdFAKJiIhcRGaoDHP4LQSG34KfasdpeQmneTXe6W2AB2YIq2xuVjsv2Ur64C8yW8aV\nzMAw39yfaKPpBH5hMUZHW1aZtX8n1v6dBB/8Lu6k2ZlAaPaVkFdwps744gB/PyPA388oZM/pNI/0\nBUL1HYMLhHxgXVOKdU0pPruxg6U1Ie4ck8dNI8MUBs039dxERERERERERGRwFAKJiIi8RYxgMYFh\nNxIYdmNfILQWP92JYYWz6rrNa15zhtAQ7PJFWBVXDjoQ8qLT6P3m7zD37cDe+CL2ppWYnaf7z8vz\nsHduwt65Cf/n/wdn8XKSH/tMVl8TSwJMLAnw2RlD2HXa4ZFDvTx8KM6hrsGdIeT68NyJJM+dSBK2\nYPmICHeOiXDd8DAhK/dZSyIiIiIiIiIicuEUAomIiLwNMoHQTecsd5pXveZBF07DCpyGFX2B0GLs\nyiWYxdMxzAFsq2ZaeBNmkJowg9R9n8aKbcfe8Dz2ppUY3Z3955VOg3n+lTmGYTClNMCU0iL+cVYh\n205ltox7+FCco92DC4QSLjx6OM6jh+MUBg1uq41w55g8rqgKYpkKhERERERERERELiaFQCIiIu8w\n30uDGQRM4PVnCHXhNDyF0/AUBIqxK67ErrwKs2gShjGAbdVMC3fiTNyJM0ne99+wdm3GXv8c9pbV\nGMkEAOkF1+SYlE/w0f/AmTwbb9yUM0GRYRjMGBpkxtAgX5xdyMutaR45lAl1jvcMLhDqTPk8UN/L\nA/W9VEVM7hgT4a4xecwoC2AYCoRERERERERERC6UQiAREZF3mGEGiMz8Gl6yDbdlbeYMofYdZE7W\neY10O86JP+Gc+BNGqILwrG9gRioHPpBt405fgDt9AclkAvuVdVg7N+HVTcmqah47QPDRnxN89Od4\npRU4C67BWXA13shx0BfQGIbB7PIgs8uD/PPcQjY1p3jkcJw/HI7T0Otl9Xk+jXGP7+/q4fu7ehhb\naHHnmDzuHBOhrigwqH5EREREREREROQshUAiIiKXCDNUijn8FgLDb+kLhNb0BUI7yQqE8DDC5W9+\nsFAYZ/4ynPnLchbb6587O6+2ZoJP/IrgE7/Cq6klveAanIXX4lfUnK1jGMyvDDG/MsRX5xWxrinF\nw4fiPHIoTltycIHQgU6Xr7/Sxddf6WJGWYA7x0S4Y3QeNfkD2ApPRERERERERETOUAgkIiJyCcoE\nQrcSGH4rXvIUbvNqnKYX8Tr3AmBXXpVzO7j08cfAS2BVXIV5ASGR0dKYe14njxB6+N8JPfzvuHVT\nSC+6DmfeMigoPFvHMFhcFWJxVYivzS/ihRNJfn+wl8ePJuhxXh9mnd8rp9K8cirN5zd1cmV1iLvH\nRrh1VIQhgQFshSciIiIiIiIi8h6nEEhEROQSZ4bKMEfcTmDE7XjxBpymldhDF2TV832f9NHf4iea\nYf9PMIumYFdehV1xJUaweFBjJv/6i6Q++JfY65/HXv8s1vFDWXWs+p1Y9Tvxf/kd3OkLSH3gz/GG\nj+lXJ2AaXD8izPUjwvSkPZ46luB3B+M8ezzBYPIgH1jVkGRVQ5K/XdfBzbVh7h6bx9KaELap84NE\nRERERERERHJRCCQiInIZMSPVBEfdk7PM69yTCYBefdyxk1THTlL1P8AqmYlVuRS7fBGGnT+gsfzy\natK3fJj0LR/GPHYQe/1z2Oufw2ztv0rIcB3sl9eQ/OBfnre//IDJB8bk8YExebQlXP54JMHvDvay\ntjE1oPm8Ku76/O5gnN8djFMRMblzTIS7x+YxrTSAYSgQEhERERERERF5lUIgERGRdwk/2YYRLMVP\ntb2uwMNt24LbtoVU7NtYZfOwq67GKpuLYQYH1Lc3YgypEWNI3fkXmPU7CLz0DPaGFzB6uwFwR0/A\nrx6Z1c5oOg6el1VWGrb4aDSfj0bzOd7t8MihTKizvS09qOfcHPf4/q4evr+rh0nFNnePy+POMXkM\n0/lBIiIiIiIiIiIKgURERN4t7IorsMoX4rXvxGl6Ead5NTjd/St5adyWtbgta8EuIDDyLoKj7h74\nIIaBN34ayfHTSH7401jb1hN46RmcqXNzVg/+8ZcE1jyFO3oCzuLrceYvwy8s6VdneIHNp6cO4dNT\nhxBrT/P7g3F+f7CXQ13uoJ7/7naHL27u5J82d7Kk7/ygW3R+kIiIiIiIiIi8hykEEhEReRcxDAur\nZDpWyXSC4z+J2/YyTtOLuK3rwE30r+x0Y5gX8FYgEMSdswR3zpLc5ckE9uaVAFiH9mId2kvwwe/i\nTp2Hs+g6nJmLIRTu1yRaHOAfZgX43MwhvNya5ncHe3noYJyWhDfgafnAyoYkKxuSfEbnB4mIiIiI\niIjIe5hCIBERkXcpwwxgD52PPXQ+vpvAbd2I0/QC7qlN4DuAgVW5NKud76VwTjyBVbEEM1T6pse3\ndmzCSMT7z8nzsLetx962Hj+chzP3KtJXLMcbPxXMsyt2DMNgdnmQ2eVBvjy3iBdOJvnNgV4eOxIn\nMYgFQq89P6gyYnLnmDzuHhthWtnAtsETEREREREREbmcKQQSERF5DzCsMHblEuzKJfjpLpzmVXi9\nJzBDZVl13daNpOp/CPU/wiqdmTk/aOgiDDsyqDHd2VfQ+4UfYL/0NIENz2N0dfSfU6KXwOonCax+\nEq+8hvQVN+Asvh6/vLpfPds0uG54mOuGh+lMefzxSJzf7O9lTWMKfxDzaYp7fG9XN9/b1c2U0gD3\njsvjg2MH95xERERERERERC4nCoFERETeY4zAEALDbjpnudP0Qt9vHm7bFty2LWCGsMoXYVddg1Uy\nE8O0BjCQgTd2IqmxE0l96K+xdm7EXvsM9ta1GOlUv6pmy0lCj/wMq34nib/7xjm7LAya3FeXz311\n+RzvdvjdwTi/OdDL3nZnIE/9jJ1taT63sYMvbOrgipIgN1e6jBrrE9B2cSIiIiIiIiLyLqIQSERE\nRM7wPQevsz67wEviNr2A2/QCBIqxK6/Crroac8h4DGMAwYlt485YhDtjEcnebuzNqwisXYG1d1u/\nas4Vy88xMR9eN87wApv/MW0I/31qAdtOpfn1gcGfH+T48GKbzYttNl871MgHx0a4d1w+U0oDA+5D\nRERERERERORSpRBIREREzjBMm8jCn+Ge3orT+Dxuy1rwkv0rpdtxjv8B5/gfMPKGY1ddQ2DYLRiB\ngoENkleAs+RGnCU3YrQ0YK9ZQWDtCozuTpzZV2TX72on78ufxllwNenFN+BX1PSfs2EwY2iQGUOD\n/MvcIl44kTk/6PGjgzs/qDXh8f1dPXx/Vw/TSgN8uC6PO8dEKAsPYNWTiIiIiIiIiMglSCGQiIiI\n9GOYFnbZHOyyOfhOHLd1XSYQansZ6L/Kxu89TvrwrwgMv/VNjeWXV5N+/0dJ33Y/RstJCIay6gTW\nP4/ZeIzgoz8n+OjPcaPTSV+xHGfuVRDJ61/XNLh+RJjrR4TpSHn88XBmu7g1jamsfs9ne1ua7Rs6\n+MdNHSwfEebecXlcOzys7eJERERERERE5LKiEEhERETOybAj2FVXY1ddjZdsw21ehdP4HF7X2S3j\nrPJFGHZ+Vls/1Q6BQgzDfOOBTBO/cnjOInv1U/0eW7FtWLFt+A98C2fuVThXLseNTgez/zhFQZOP\njM/nI+PzOdbt8NsDcX61v5f9nQM/PyjtwZ+OJPjTkQQVEZMPjsnj3ro8JpVouzgRERERERERufQp\nBBIREZEBMUOlmCNuJzDidryeYziNz+E0Po9ddW3O+omdX8FPNGFXXYNddS1m3rDBD+q5OLOvwOjt\nxmw52a/ISCUIrM1sJecNrcRZfAPpK5ZnbRcHMKLA5jPTh/A30wrY1JLiwfpeHj4UpzPtD3gqzXGP\n7+7q5ru7upk5NMC94/K4c0weJaEBhFwiIiIiIiIiIu8Aw/cH/uGHnFtHR4deyIusvj7zLfO6urp3\neCYilw/dN/J28/3M9nCvX+3jxRuJr/tov2tm0STsqmuxK5YM/PygswNh7ttBYM1T2BtfwEjEz1nV\nmTiT5Mf/Ab9k6Hm77HU8Hj+S4CfbW9nYbuIz+K3egibcODLC/ePzWFoTwjS0XZy8N+jvjcjg6b4R\nGTzdNyKDp/tGZPAux/umqKhowB9AaCWQiIiIvGnn2urNaXw265rXsZtUx25S9T/AGroIu/parJJZ\nGKY1kIHwotNIRqeRvO/T2JtXY695CmvPVozXfaHFbDiKX1j8hl3m2SZ3jc1jhpekMWGwwavkwfoe\nDna5bzyfPikPHj0c59HDcYbnW3y4Lo8P1+UxskBvsURERERERETknadPKEREROSis6uvB8PCaXgW\nP36if6GXxm1eidu8EiNY0nfm0HWYBaMG1nkogrP4epzF12O0NmKvfZrAmqcwmzPbxTmLbwAr+y2O\neSiGV14NBYVZZVVhn7+tG8JnphWwvjmzXdwjh+J0OwNf6Hu8x+Xrr3Txv1/pYllNiI+Mz+PGkRFC\nllYHiYiIiIiIiMg7QyGQiIiIXHRmuILgqA8RqL0Hr3MPTsOzOM0rwenpV89PnSZ99CHSRx8iMOaj\nBEfdM6hx/KFVpG+7n/StH8GMbSew6gnSS27MUdEn/IN/xmhrxpl1Jc5VN+JOnAVm/5VMhmGwsDLE\nwsoQX5tfxJ+OJHhwfy+rGpIDnxPw/Mkkz59MUhrq4O6xET4yPp9JJYFBPTcRERERERERkQulEEhE\nRETeMoZhYBVNwiqaRLDuE7it63Ean8Ft2wJ95wm9yiqdeSED4U2YTnLC9JzFZmw7ZlNmRVJgw/ME\nNjyPN7SS9BXvIzBiAumisqw2+QGTe8blcc+4PI50Ofz6QC8P1vdypHvg28W1JT1+sLuHH+zuYfbQ\nAPePz+f9oyMUBnNvoyciIiIiIiIicjEpBBIREZG3hWEFsSuXYFcuwUu24Ta9QLrhGfyewxh5IzGH\njM9q43Ufxml6Ebv6esy8mjc9dmD9c1nXzNYmQo/+B5Mx6BozEXv5XTizFkMgmFW3dojN/5xRyN9N\nH8K6phQP7u/l0UNxegaxXdyW1jRbWtv57MYObh8V4f7xecyvCGIY2i5ORERERERERN4aCoFERETk\nbWeGSjFHfgB7xB143Qcg3ZUzDEk3rMA59gjpI7/GLJqCXXM9dvmVGHZkUOMlP/wpnMmzCKx8Amvn\nJgz/bHhj4FN4cDd8/0v4+YWkF12Hs+RGvJFjs+dtGCyuCrG4KrNd3COH4jywr4dNLekBz6XX8Xlw\nfy8P7u+lrsjmI3WZ1UYVEWtQz0lERERERERE5I0oBBIREZF3jGEYWEPG5SzzvTRO49kVPF7HTlId\nO0nt+wF2xRLsmhswCycObCVNIIg7dynu3KUYp5qx1zxFYNUTmK2N/efT00nwmYcIPvMQiY9+BmfZ\nLefsckjA5P7x+dw/Pp89p9M8UN/Db/bHOZX0ztnm9eo7HL6wuZN/3tLJ8hFhPjI+n2uGhbBNrQ4S\nERERERERkQunEEhEREQuSX6iGSNQiJ/u7F/gxnEaVuA0rMDIG45dfQN21dWYoexzfXL2W1ZB+rb7\nSd9yH9aercQf/w3Fe1/GdJ2zdQwTd/r8Ac91YkmAr84r5p9mF/HksQS/2NfD8yeSDHSzOMeHx44m\neOxogpo8k3vr8rl/fB4jC/RWTURERERERETePH2yICIiIpckM28Ykfk/xuvcg3NyBU7zKnDj/er4\nvcdJH/gp6YM/wyqdi11zPdbQRQNbHWSauJNncyRYyPF4D9HmQ9irnsA6Uo87dS5+aUV2k/27MI/U\n4yy8FvIKssqDlsFtoyLcNirCsW6HB/f38sv6Xo51uwN+3id7Pf51Wxf/tq2La4eF+LNoPjeMCBPQ\n6iARERERERERGSSFQCIiInLJMgwDq2gSVtEkgnWfwGlZg9PwNF77jv4VfQ/31Ab8dCd2+eJBj+NG\n8klf+37S174f80g9+LnX8ASf+i32ppX4v/4hzvxlpJfejDd2EuQInUYU2PzPGYX83fQhrDyZ5IH6\nXh47Eic1wN3ifOCZE0meOZGkKmJyX10+HxmfR+0QvX0TERERERERkYHRpwgiIiJyWTDsCIHq6whU\nX4fXewKn4RmchmfwU6fO1LFrrs/Z1vccDHNgb3u82rrc43e0Yb28JvN7KkFg9ZMEVj+JO3w0ztJb\nSC+6DvKHZLUzDYNlw8IsGxamLeHymwNxHqjvYfdpJ6vuuTTGPf51exf/tr2La/pWBy3X6iARERER\nEREReQMKgUREROSyY+YNIzj2owTGfAS37WWchqdx27ZiVyzJquu7CeLrPoZVOhu7Zjlm0eSBbRf3\n+jGPH4JwHvR09btuHT+E9ctvE/zND3Hm9a0OqpuSc3VQadjiryYX8IlJ+WxtTfOLfT08dChOV3pg\npwf5wLMnkjyr1UEiIiIiIiIiMgD6xEBEREQuW4ZhYZfNxS6bi+8mMaxQVh2naRV+6jRO47M4jc9i\n5I0gULMcu+oajGDxgMdyJ8+m55u/x968isCLj2HFtvWfSzpFYO0KAmtX4NXUkl56M+nF10NBUY55\nG8wqDzKrPMhX5hXxh8NxHqjvZV1TasDzee3qoKuHhfiz8fm8b6RWB4mIiIiIiIjIWQqBRERE5F0h\nVwAE4DQ81e+x33uM1P4fkzrwM6zyhYT8aSRD4wc2SDCEs+g6nEXXYZw8QmDl4wTWPIXR3dmvmnny\nCKEHv4dVv5PEp7503i7zAyb31uVzb10+sfY0P9/Xw6/293I6OfDVQc+dSPLciSQVEZP76vK4f3w+\no7Q6SEREREREROQ9z7yYnUWj0Yvan4iIiMiF8H2fwLBbMIun5yh0cJtXU9byPSoavkTq0IN4iZaB\n911TS+pDn6Tnm78n8ckv4EyalVUnveTGQc03Whzgq/OK2fPBan68pIRFlcFBtW+Oe/yf7d3M+H0T\nd6xo5Q+H46S9gYVJIiIiIiIiIvLuc7G/Ino8Go0+CDwQi71ujxQRERGRt5lhGNhVy7CrluH1nsRp\neAqn4Rn81Ol+9Wy3jfShX5A+9EussrkEo5/CDJcPbJBAEGf+1Tjzr8ZoPE5g5ePYq5+EUAh3ypzs\nObWfIvjrH5Bedive+Kk5zw4K2wZ3jc3jrrF57GtP8/N9vfxqfy9tSW/Az/35k0meP6nVQSIiIiIi\nIiLvZYbvX7xvh0ajURcwyOxMsgN4APjPWCzWeNEGuUR1dHToa7YXWX19PQB1dXXv8ExELh+6b0Te\nmO85uKc24px8EvfUFuB1wYpdQN7i/zzn9nID4qQxmk/i19RmFQX+8AtCD/87AO6wUTjLbs2cHZRX\ncN4uE47PY0fj/EeshzWNAz876LWurgnx5xPyWT4ijK2zg+QC6O+NyODpvhEZPN03IoOn+0Zk8C7H\n+6aoqGjA/1N/sb8OOgz4IHA3sAD4BvC1aDT6LPAL4NFYLBa/yGOKiIiIDJhh2tjli7DLF+ElWmja\n+SvyetZhu5nVQXbV1TkDIK/3JEZ4KIY5gC3a7EDOAAjXIfDin848tE4cxvrltwn+9kc4C6/JrA4a\nHc3ZZdg2uHNMHneOyaO+I83PY708+CZXB9Xkmdw/Pp8/i+ZTnWcNuL2IiIiIiIiIXF4uagjUt+Ln\n28C3o9HocM4GQjcA1wPd0Wj0ITLbxb1wMccWERERGSwzXE530fvoLryB0WVdOCefIlCzPGfd5M6v\n4CVbsKuuIVCzHDM/R8jzBoyuDrzqkZht/c8eMlIJAisfJ7DycdzRE0hffSvO/KshFM7ZT11RgC/P\nK+Lzswt57EhmddDqQawOOtnr8bVXuvjGti5uHBnmv0zIZ0l1CDPH1nQiIiIiIiIicvm6qNvBnUs0\nGq0FPtz3byKZ7eKOA/8B/CgWi514E32WAl8EbgeqgVbgCeDzsVisYQDtQ8D/Au4DRvS1fxz4h1gs\n1jrY+Wg7uIvvclyGJ/JO030jMngDuW/crnoSmz7d75pZNAm7Zjl2xRIMK3dYcy5G43ECL/yRwOqn\nMHo6c9bx8/JJL15Oetkt+MP+H3v3HSVFne5//F1dVd0z3RPIGcnUoChBBQVUUMAAGDDntOi66e7q\n3t/eDV7vet3s3b3u3l1dFTG75kAwgIIRBRVEBYohwwxhSBO6Z7q7uuv3x4zKMD3QI40Kfl7ncJqu\neur5fttz6tDtU9/n23OfOVdWJnlwRYxHSmNsb8HqoM/0KTK5yolwad8wbfK0Okj2Tv/eiLSc7huR\nltN9I9Jyum9EWu5gvG9a0g4ucCAn8hnXddcBdwL/C6yhft+g7sDNwBrHcR50HKdjtvkcx8kH5gE3\nAE8DVwH/pH7V0duO47Tex/UW9QWfXwEzgO8ATwHXAq87jpNFnxcRERH5tvDKX25yLF25lMSyPxN7\n6xLi7t9J16zJOp/fqRuJi79H9H+fpO66X5DqN7BJjBGLEpz9NPl/+QVk8dBO32KbW48tZumFnZg2\nujUndm7ZnkarqlLcvLCKAU9s5vo3drBga5yv4mEhERERERERETlwcr0nUCOO49jAmdQXacYBNvUF\nIBd4APgU+AH1q3FOcRznRNd1V2WR+sfAkcD3Xdf9x27jfQQ8S31x6ca9XP9d4BTgStd1H2w49rDj\nONuAa4DhwJtZfkwRERE5xAV7X0kgchhe+YtNiz2pGF7ZdLyy6QSKBmB1PaNhdVAWRZhgCG/keLyR\n4wmsX4U1bzr2269g1MU+D0mOmQQtaNMWMg3O6RXmnF5hVlV6PLAi2qLVQfEUPL6qlsdX1TKwjc21\nToTz+uRTaH8lzw6JiIiIiIiISA4dkHZwjuMMBa4GLgLaUF/4qQSeAKa5rvvuHvGXUl8UesV13TOy\nyL+M+pVEbV3Xje923ADWAyGgo+u6GT9cw/Um4DQX01JqB5d7B+MyPJGvm+4bkZZryX3j+z7p6hV4\n5S/hbZkHqdrMgVYBoQE3YrUf0fIJ1cWw5r+K/drzBMrXEf3Lk1DUqnFMyiN07x/wjh1NatBwMPf+\nXE885fP82lqmuVHmb8l+76DPFNoGF/QJc40T4Yg2douvl0OP/r0RaTndNyItp/tGpOV034i03MF4\n37SkHVztBFICAAAgAElEQVROVwI5jnMjcCUwkPrCTxp4FZgGPOu6bl2m61zXfcRxnNOAyVmMUQSU\nAG/uXgBqyOM7jrOgIU8vYHWG67s1XP/3zwpAjuPkAfFcFYRERETk0GQYBmaRg1nkEOx7Hd7WeXhl\ns0hXlzYO9GoIhLt/uUHywnhjJuGNnohRsalpAQgwP3oX+53Z2O/MJt2mPcnRk/BOPAO/dbuMKUNm\nfRHngj5hPt2RZJob5fFVMaqT2X31qU76TF0eZeryKMM7BLmmJMJZPfLJs7JfoSQiIiIiIiIiX72c\nrgRyHOezPiMrgfuBB13X3ZjltT8DbnVdd6+9UxzHORJYAjzmuu4lGc7/hfp2ceNc152T4fxYYDb1\n7eLSwE+AHkAceAn4qeu6K7OZ8+6aWwn0WRVRREREDl12YgPhmrfJjy0k4CeIh/qyvcO/NYkzvQoM\nP4Vnd9qv8fo8+r8Urf600THfCLDLGcy2o0dT07Nkny3kYil4qcLk6U02K6Itb/VWbPmc2dFjcieP\nbvl6jkZEREREREQk15pbnfS1rQQCplLf7u2dL3HtXcAjWcQVNrzGmjkf3SNuT20aXq8EgsBvgC3U\n7xH0A+B4x3EGu667KYu5iIiIiJAMdqeyzUVUtTqb/Nj7pMy2GeMKq14hHH2XeKgvschIasODwGhh\ne7V0ilReGD9gYqRTnx82/DStl39I6+UfUtuuM9uOHs2Oo44nHcrPmCZswuROKc7pmOKT6gBPb7aY\nXWGS8LP7HlnpGTxUZvNQmc1xrVKc29ljVJsUWhwkIiIiIiIi8s2R6yJQH6DrvoIcx7kXON513SM+\nO+a6biX1+wYdaMGG147AQNd1tze8f8FxnC3UF4VuAn6ai8EOpj6C3zQHYy9Gka+b7huRlsv9fXNk\nxqN+soZY2SIAQvGVhOIraV1djN15LFaXMwiE9/kV6gs/+xOxXdux3nwRe950Atu2NDqdv20T3V9+\njG7znsUbMZ7k2LNJd+vdbLr+1PfS3RlP80hplGlulFVVqWbj9/TuLpN3d5l0i5hc5US4sn+Y9vlm\n9p9HDjr690ak5XTfiLSc7huRltN9I9Jyh/p90/LeH3s3GsimAb4JNP9/IvauquE10sz5gj3i9lTT\n8PrCbgWgz0xteB395aYmIiIikpm37V1IxxsfTFaSXP80te9eS+2i/8Db8gZ+OplVPr9VW5KTLiP2\np0epvfH3eIOOw9+jBZwRr8Oe+wL5t1wP0ep95mwdCvCDgYUsnNyR505ty5k98jBbsLJnYzTFbR9W\ncfgTm5ny+g7e2xInl62HRURERERERKRl9nslkOM4ZwFn7XboQsdxBu7lknbAqcCeBZhsrQF8oFsz\n53s0vDa3Gc/ahtdMj6dua8hd9CXnJiIiIpKR1ekUAuEueGWz8La+AelEo/PpnYuJ71wMdivsLuOx\nupxOIL/zvhMHTFKDjiM16DiMik3Yr72A/cZMjJovnofxjj0JIs11ys2Q0jAY3SWP0V3y2BRL8eCK\nKA+4Ucpj6X1fDCTT8OTqWp5cXcuRbWymDIhwXu98wlaunz8SERERERERkb3JRTu4EHA89Z1EfODY\nhj97kwBu+TKDua4bdRxnCTDUcZw813XrPjvnOI4JjAA2uK67vpkUS6lvOzc4w7nugAFs/DJzExER\nEWmOYRiYxYdjFh9OsN/1eJtfJVk+Cz+6x1eW5C6S654gue4J7B4XEuxzddZj+O07k7jwehLnXIW1\nYC72q89jrl5Gcuw5GePt6Q+T7nM4qQFDwMi85Kdz2ORng4u46ahCXt5Qx31ulFfL4hljM/l4R5If\nvb2LmxdWcmm/MN8pKaB3Ua47EouIiIiIiIhIJvv9C9x13SeAJxzHaU396p47gSf2ckkdUOq67o79\nGHYq8FfgeuCO3Y5fBnRgtwKT4zglQNx13TUN8004jvMocIPjOJNc152+2/U/aHjd/ZiIiIhIThl2\nIXb3s7G6nUW68lOSZTNJVbwFe7SCCxT2+XIDBEN4o07DG3UagfWrSHdv2oXX2FJG8OmpGL5PuksP\nkiefRXLUqZCfueOuFTCY0COfCT3yWVPlMc2N8nBpjB3x7FYHVSZ8/vFplH98GmVs1xDXlkQY3y0P\nM9CCfnMiIiIiIiIi0iI5ewzTdd2djuM8ADzvuu7rucrbjLuAS4HbHcfpAbwPHAHcCHwM3L5b7DLA\nBUp2O3YL9S3pnnQc5/fUt4g7GbgcWNyQX0REROSAMgwDs9VAzFYD8ZM34G2aXb86KFYGdivMdsc3\nucZP1pCqWo7ZZiiGse/2aunDMheS7Neex2jYrydQvo7Qw38l+OTdeCPGkxx7NuluzW/f2KvI4tZj\ni/nFkCKeX1fL1GVRFlQkmo3f05yyOHPK4hxWYHJtSYTL+oVpm5epU6+IiIiIiIiI7I+c9uJwXTf7\nfiX7N07ScZzxwH8B51K/gmcrcC9wi+u6sX1cX+E4znHAbcB11O9TtAn4M3Cr67q1B3D6IiIiIk0Y\ndhH2YedidZ9MetcS/MQujIDdJM7bPIdE6V0Y+Z2xupyB3Xk8RrC45eNV7cQ3jM8LQQBGvA577gvY\nc18g5QwiecrZeEefAFbmr4x5lsGFfcJc2CfM4m0J7l0e5anVMepS2c1hfU2KW96v4reLqpjcK8yU\nkghD2wdb/FlEREREREREJDPD3+2Hf0s5jvOfwCuu67672/ts+a7r/veXHvwbprKy8sv/h5SMSktL\nAejXr9/XPBORg4fuG5GWO5juG9/3qX1vCn5st+0LAzZm+xOwu00kUDQAo5m9fTIxtpbXF31en4UR\nrcoYky5ugzd6EsnRE/HbtN9nzp3xNA+XRrlveZQ11VlWg3YztJ3Nd0oiTO4VJs9Sq7hvqoPpvhH5\nptB9I9Jyum9EWk73jUjLHYz3TXFxcdY/mPd3JdB/ATXAu7u994FsJuADh0wRSERERORA86Nr8GPl\njQ+mk6S2vEZqy2sECnpjdZ2A1fFkDCt/3/k6dCFx4XdJnHM11nuvYb/6HOYat1FMoHIHwecfwJ7+\nELHfTMPv0mOvOVuHAvxwYCHfP6KAV8vi3Lushlc2xsn2aZkPtyX53lu7+NXCKi7vF+bqkgg9C3O6\neF1ERERERETkW2N/f1FfDSzc472IiIiIHACBgt7kj3gAr/xFvPIX8RM7G51P16wm4f6NxMqpWJ1O\nxu46kUBBz30nDobwTjgd74TTCaxejv3qs1jvvYaRTH6Ru0tP/M6HZT9Xw2BctzzGdctjbbXHfcuj\nPFQaZWc8u3LQjniaOz6p4a+f1DC+ex5TSiKc3DVEoAUrnURERERERES+7farCOS67gN7ey8iIiIi\nuRXIa0+w9xXYPS8hte0dkhtnkt71UeOgVAyvbAZe2QzM9qPIO/JXWedP9y4h3vvnxC+6AfvNl7Bf\ne55AxSaSY8+GDAUYc/F80p2643fq1mzOnoUWtx5bzM+HFPHMmhj3Lo+yaFuy2fjd+cDLG+p4eUMd\nvQtNrimJcFm/CK1Cgaw/k4iIiIiIiMi3lXpriIiIiByEjICF1eFErA4nko5uIFk2E2/zbPCijeIC\n4eaLM3tV2IrkGReRPO18zCULSJUMahqTiJN37+8xqivxjhxGctxkUkcOg0DmAk2+ZXBpvwiX9ovw\nQUWCe5bV8OzaWuJZbh20ujrFrxZW8ZsPqzm/Tz5TBhRwZBv7y30+ERERERERkW+B/SoCOY5z335c\n7ruue+3+jC8iIiIiEIh0J9T/uwT7XIW3ZR5e2UzS1aVAAKvrGU3ifd8nvXMRgdaDMAxzH8lNUoOP\nz3jKWjAPo7qy/u8fL8D6eAHpDl1InnIOyRNOg0hhs2mPbh/k6PZt+M2wFA+tiDHVjbKhJrtqUG3K\n58EVMR5cEeP4jkGuH1DAhB552AG1ihMRERERERHZ3f6uBLpqP671ARWBRERERHLEMPOwu5yG3eU0\nUlUu6cplBPI6NIlL7/yIusW/wMjrgNXlDOwup2EEW7V4PPPT95scC2wtJ/TY3wk+PRVv5DiSY88h\n3a13szna5pn8+KhCfjiwgFc21nHv8iivlsWznsP8LQnmb9lBl3CAa0oKuLJ/mPb5+yhsiYiIiIiI\niHxL7G8RaExOZiEiIiIiOWUWOZhFTsZzybIZAPh1W0muvp/kmocx24/E7jaJQPERGBn2/skkft0v\nSJ40keCcZzA/eBMjnf78nJGow547HXvudLwBQ0iOPYfUkBFgZv76aQYMTj8sn9MPy2dVpcdUt4ZH\nSmNUJvys5lIeS3Pbh1X8cXEV5/TK5/oBBQxtH8zqWhEREREREZFD1X4VgVzXfT1XExERERGRA8/3\noqS2L9jzIKmtr5Pa+jpGpAd21wlYnU7BsCJ7T2YYpEsGUVcyCGPHVuzXXsCaN4NA9a5GYdayRVjL\nFpFu25G6H/6adK+SvabtU2zx22Gt+NXQIp5aXcs9y6J8vCOZ1edLpOHxVbU8vqqWY9rbXDeggLN7\n5hM01SpOREREREREvn0y79orIiIiIockw4qQf/w07F6XY4TaNTnvR9eRWPEPYm9fSnz5HaSqV2eV\n12/TgcR53yH258epm/JzUr2arkIyolWkO3XPeq5hK8AV/SO8cWZ7Xj6jHef3zsduwbfX9yuSXPfG\nTgY+uZnfLqpiUyy7PYdEREREREREDhX7tRLIcZzXgDtd131yt/fZ8l3XPWV/xhcRERGRlguE2hLs\ndSl2j4tIbX+X5MaZpHd+2DgoVYdX/iJe+YsEigeSN+T3GIEsvjoGQ3ijTsUbdSqBVUuxZz+DtWAe\nRsojOfJUyG+6usjYvhW/uDVYdsaUhmEwvGOI4R1D3HZsivtXRJm2PMrm2nTG+D1trU3zx8XV/Pmj\nas7smc91AyIM7xDMuu2diIiIiIiIyMFqf/cEGg3M2ON9trJr8C4iIiIiB4QRMLHaj8RqP5J0rIxk\n2Sy8TS+DV9M4zo5kVwDaQ7rP4cT7HE7i4u9hzZuBd+xJGePy7rwVY2s5yTFn4o2ZhN+qbbM5O4ZN\nfja4iJ8cWcj0dfWt4t7dmshqPp4Pz6yp5Zk1tRzVxua6wyOc2ytMvqVikIiIiIiIiBya9rcI1AvY\nscd7ERERETnIBMJdCfWbQrD3FXhb38Arm0m6ajkAVtdJGa9J16zFiPTY54oav7gNybOuyDzuulLM\n0k8ACD13P8HpD+MdexLJcZNJ9zkcmskdNA3O7R3m3N5hFm9LcM/yKE+tjhHPsuPbkh1JfvDWLv5z\nYRVX9A9zbUmE7gX7+9VYRERERERE5Jtlv37puq67bm/vRUREROTgYpgh7M7jsDuPI1VdSmrL65ht\nhjaJS8e3U7vw+xj5nbG7TsTqNBbDLmjxeParzzceP+Vhv/sq9ruvkurZn+TYc/CGnwzBULM5BrcL\n8vdRQW49pogHV8SYujzKxmh21aAd8TT/+3ENf/2khjO653Hd4QWc0Emt4kREREREROTQcEAed3Qc\nxwZGACVAa+pbv+0APgXedV03uwbuIiIiIvK1MQv7YRb2y3jOK38J/BR+bCOJ0rtIrJqG1elk7G6T\nCBT0znqM+AVTSHfsiv3acwS2bWk8/toVmPf+Af/xu0ieNJHkyWfht+3QbK62eSY/OaqQHw4s4MUN\nddy9tIY3N2fXKi7tw4z1dcxYX8fhrSymDCjggj75ROxA1p9FRERERERE5Jsm50Ugx3F+APwaaNVM\nyFbHcf7Ddd0Hcj22iIiIiBx4vp+uLwLtLh3HK38Rr/xFAsWHY3edhNlhFEbA3nuygmKSEy4mefoF\nmIvnY89+Bmvph41CjOpKgjMewZ75GKmjR5E452rS3ZrvQmwFDCb1yGdSj3yW7kxyz7IaHl9VS8zL\nbkvKpbs8fjJ/F7d8UMll/cJMKSmgV5FaxYmIiIiIiMjBJ6ePNjqOMwX4K/Wrfz4A7gf+DPwFeABY\nDHQE7nMc55Jcji0iIiIiXw3DCJA39E/Yh10AdlGT8+nKpcSX/oHY25eTWHU/6bqKfScNmKSGjqLu\nZ38m+tv761f9hPIaj+unsd5/A1Je1nM9vLXNX0a0ZukFnfjNsGJ6FppZX1uV8PnHp1GGPr2FC2dv\nY87GOtJ+doUkERERERERkW+CXD/S+EOgCjjddd35mQIcxxkFzAR+Cjya4/FFRERE5CsQyO9EsO81\n2L0uw9v6Bl7ZDNJVyxsHJXeRXPcvkuuewGx/HKGSH2NkKBrtye/ak/iVPyF+/hTst17CnvMsgS1l\nAKT6H0m6R4YWdb4Pe9nHp1UowPePKOCGwyPM3hjn7mU1vFoWz+qz+sDLG+O8vDFO3yKL7wyIcEnf\nMEVBtYoTERERERGRb7ZcF4H6Af9srgAE4LruW47jPA5cluOxRUREROQrZphB7M5jsTuPJVVVilc2\nHW/LPEjvvhdPmnT1arAiLUseLiA5/jySYydjfrIQe86zJE84LWNo8JG/EajYTHLcZFJHHN1sQShg\nGJzaPY9Tu+dRWpnknmVRHlsZozqZ3QqflVUe//FeJbd9UMXFfcNMGRChf6t9tLwTERERERER+Zrk\nughUA2zZZxSUNcSKiIiIyCHCLOqHWXQjwb5T8Da9QrJsBn7tJgCsrhMwjKat2PxkNYZduPfEgQCp\no4aTOmp45vOxGuw3ZmHE67AWv0O682Ekx55DcuSpkB9uNm2/Yps/HteKm48u4rHSGPcsj1JamV2r\nuRrP557lUe5ZHmVMlxDXDYgwvlseZqD51UgiIiIiIiIiX7VcF4HmAcOyiBsEvJHjsUVERETkG8Cw\nC7EPOxer+zmkdnyIVz4Lu8upTeL8dIraBd/DyOuA3W0SZvuRGIGWr6qx33oJI173+fvApvWEHrqD\n4FP3khx1Gsmx5+B36tbs9YV2gOsOL2DKgAjzyuP8c1mUlzfUke3uP3PL48wtj9OjwOQ7JREu7x+h\nVUit4kREREREROTrl+si0L8DbzqOcyNwh+u6qd1POo5jAN8DjgVOzPHYIiIiIvINYhgBrLbHYLU9\nJuP51PYF+PEK/HgF8cpPMYKtsbqchtXlDAJ57bMeJ9V7AN7QUZiL3sHw01+MXxslOPtpgrOfxjtq\nOMmxk0kdeSwEMhdoDMNgTNc8xnTNY221x9TlUR5cEaUykV05aF1Nipvfr+K3i6q5oE8+1w0o4Ig2\nahUnIiIiIiIiX5/9KgI5jnNfhsMfAH8CfuU4zvvAViANtAOObnh9Hvg+8NP9GV9EREREDl7JjdMb\nvfcTO0mufYzkuscx2x2H3XUSgdaDMZrZ3+cz6b5HUPdvt2FUbMJ+7Xns12diRKsbxVhL3sNa8h7p\njt1Ijj2b5KjTIFzQbM6ehRb/fWwxPx9SyJOravnnshqW7syuVVxtyueBFTEeWBFjZKcg1w0oYMJh\neVhqFSciIiIiIiJfsf1dCXTVXs61AsY2c+5swEdFIBEREZFvrWCfq/HK2uFtmQfpxBcn/DSpindI\nVbyDEe6G3XUiVudxGFZkr/n89p1JXPhdEmdfhTV/DvacZzE3rGoUE9iykdAj/4cfLsQb1bRF3Z7C\nVoArnQhX9A/z9pYEdy+tYeb6OlJZ9op7e3OCtzfvoFvE5JqSCFf2D9M2r+neSCIiIiIiIiIHwv4W\nga7OySxERERE5FvHLOqHWXQjwb5T8Da9QrJsBn7tpkYxfmwjidK7SKyahtXpZOxelxEItd174lAe\n3uiJeCdNIOAuITjnGcwP3sRI17eKSxe2whs+pkVzNQyDUZ1CjOoUYmONxzQ3yv1ujO3x9L4vBjZG\nU9z6QRV/WFzFub3CXDcgwuB2wRbNQURERERERKSl9qsI5LruA1/mOsdxwoAapIuIiIgIhl2Ifdi5\nWN3PIbXjQ7yN00ltX0D9wvEG6TjepjkEe1/ZgsQG6ZJB1JUMwti+FXvuC9jzpuONngh20wKMuWAe\ngW2bSZ40ASKFzabtVmBx89HF/PugIp5ZE+PuZVEWb09mNaV4Ch5dGePRlTGGdwgyZUCEM3vkEzTV\nKk5ERERERERyb39XAn1ZP6G+lVy/r2l8EREREfmGMYwAVttjsNoeQ7p2M17ZLJKbXoJkFQBmh1EY\nwVZNrvP9FIax9xZrftsOJM77DokzL4dUhr19fJ/gc/djlq0l+Ow0vOPHkRw3mXT33s3mzLMMLukX\n4eK+YRZWJLh7WZTn1tTiZdkq7r2tCd7bmqBTfiVXORGudiJ0DKtVnIiIiIiIiOTOASkCOY5TAhwF\n5GU43Rq4Fuh4IMYWERERkYNfIL8Twb7XYPe6DG/rG3hlM7C7TcoYG19yKwRM7K6TCLQejGHsZVVN\nMASEmhw2ly/GLFsLgJGIY78+A/v1GXglg0mOm0xqyAgwM391NgyDYR1CDOsQ4rZjUw2t4qJsqc2u\nVdzm2jS/X1zN/yyp5uye+Vw3oIBj2tt7/xwiIiIiIiIiWchpEchxHBt4CDh/H6EG8EouxxYRERGR\nQ49hBrE7j8XuPDbj+XSsnNT29wBIVbyDEe6G3XUiVudxGFYk+3GqdpEubk2gcmej49byxVjLF5Nu\n04HkKWfVt4orbLoa6TOdwiY/H1LETUcV8sK6Wu5eGmVBRSKrOSTT8OTqWp5cXcuQdjbXDShgcq98\nQmoVJyIiIiIiIl9SIMf5bgIuAGLA68BM6gs+bwMvA7uATcC/NcSJiIiIiHxpybIZjd77sY0kSu8i\n9valxJf/lXTN6qzyeMPHEPvzE9Rd/0tSfQY0OR/YsZXQk/cQ+cn5hO79A4F1pXvNFzQNzusd5pWJ\n7Zk7qT0X9w0TbME370Xbktzw5k6OeGIzt31QRVk0lf3FIiIiIiIiIg1yXQS6BCgD+rmuezLwo4bj\nt7uuewbQB3gPGAVU53hsEREREfmWsdoOw2w7nPrnjnaTqsMrn0Xtgu9R+8GNeJvn4qf3sSLHsvFG\njKP2P+8kdstdJEeMx7fsRiFGMon95ouE/3MK9itPZzXHIe2C3HlCa5Ze2ImbhxbRtQX7/myrS3P7\nkmqOenIzV83dwTub4/h+lpsOiYiIiIiIyLderotAfYFHXdfd3PC+0S9U13V3AVcAx1K/akhERERE\n5Esz2wwmb9CvyT9+GvZhF4Bd1CQmXbmU+NI/EHv7ChKr7icd377PvOneJcSv/wWxvzxBfPI1pFu1\na3TeNwy8wce3aK7t8kxuGlTIR+d35IExbRjRMZj1tSkfnltbyxkvbuOEFyp4cEWUWk/FIBERERER\nEdm7XBeBAkDlbu/jDa+fN2R3XTcKPAVcleOxRURERORbKpDfiWDfawiPeJjggJ8SKCppGpTcRXLd\nv/BrNzc91wy/qDXJs64g9j//ou57t5DqfyQAqUHH4Xfo0iTeKF9HYPXyvea0AgZn9cxn1hntefOs\nDlzRP0x+C/b9+WRHkh+9vYvDn9jELQsrWVftZX2tiIiIiIiIfLtYOc5XDgze7f22htfD94irBnrm\neGwRERER+ZYzzCB257HYnceSqirFK5uBt2UepOufTQoU9CJQvOdX0yxYFt7wMXjDx9TvB2RkfpYq\n+MJD2PPnkOozgOTYyXjDRsMeLeV2d2Qbm7+ObM2vjynmoRVR7l0eZX1Ndvv/7Iz73PFJDX/7tIbT\nuudx/YAIJ3YOYRjZF5RERERERETk0JbrlUBzgHMdx7nDcZyurut6wCrgWsdxegI4jpMPnAXsyPHY\nIiIiIiKfM4v6ERrwE8IjHybY9zqM/C5YXSdmLJIkVj9EfNmfSVWV7jNvukc/0of1aXLc2LUda8G8\n+rFXLSPvn78hfOMFBJ+ZhrFzW5P43bUOBfjRkYUsOrcjj5zchtFdQtl9SCDtw6z1dZz18naOf24r\nU5fXUJNMZ329iIiIiIiIHLpyvRLoVuoLPD8AXgTKgHuA3wNLHcdZBvQAWgPTcjy2iIiIiEgThl2I\nfdhkrO5ng9+0OOKnEiTLpkOyCm/TKwSKSrC6TsTqcCKGmf2+PeaSBRipxq3ZApU7CT7/APaMh/GO\nOYnkuMmk+x4BzazWMQMGE3rkM6FHPu6uJPcsi/LYyhjRLPf/Wb7L46b5lfz6gyou7RtmyoACehfl\n+iu/iIiIiIiIHCxyuhLIdd2N1LeD+29gRcPh24H7gRAwBGgDvAb8v1yOLSIiIiKyN4YRwAg0LYh4\nW9+AZNXn79NVy0ksu53YO5eRWHkv6dpNWeX3Tjyd2G33kRw9CT/YeCWPkUphv/ca4dt+QP4t12O9\n+SIk4s1kque0srn9+FYsvbATvxtWTO9CM6t5AFQlfO5cGuXop7dwwextzNlYR9rPrpAkIiIiIiIi\nhw7D/4p+DDqO04n6VUBlDcWiQ0plZaV+VedYaWl9O5Z+/fp9zTMROXjovhFpOd03ktrxIYk1D5Ou\nXNpMhIHZ9hisrhMx2x6DYWRRjIlWY78xC/vV5whUZC4i+YXFxC+6AW/UaVnNM+37vFoW5+6lNcwu\n23sBKZM+RSZTBhRwSd8wRcH9exZM941Iy+m+EWk53TciLaf7RqTlDsb7pri4OOvNYL+y3hCu624G\nNn9V44mIiIiIZMNsM5T8NkNJVa/GK5uBt+U1SNXtFuGT2r6Q1PaFGHmdsLpOwO48HiNY3HzSSCHJ\n0y8keep5mIvfxZ7zDNanHzQKMaor8cOFWc8zYBiM65bHuG55rKr0uGd5DY+WxqhKZvcs0qqqFP/x\nXiW3fVDFxX3DTBkQoX8rO+vxRURERERE5OCT8yKQ4zgFwHeBCUAJ9fv/+MAO4FPgeeBe13Vb/vii\niIiIiMgBYhb2xiz5EcG+1+JtmkOybAZ+bEOjGL9uM8lVUzHMPOxuk/adNGCSGjqS1NCRGOXrsOc8\ni/3WSxjxOtLtO5MafFzTa+K1gAGhvGbT9im2+P3wVvxyaBGPr4xxz7IobqXXbPzuajyfe5ZHuWd5\nlDFdQlw3IML4bnmYgawfJBMREREREZGDRE6LQI7jdAdep77t256/Ijs3/DkF+J7jOCe7rrsll+OL\niMq7y6gAACAASURBVIiIiOwvw4pgdz8Lq9uZpHctIblxOqlt74Cfrg8ww1idTmlxXr9LDxJX/JjE\ned/Bfuul+lVAgaat5ew5zxKc+RjJkyaQPPks/Padm81ZaAf4zoACri2J8PqmOP9cGuWlDXVk26d4\nbnmcueVxehSYfKckwuX9I7QK5XTbUBEREREREfka5Xol0B+BnsDLwN+Aj6lfAWQAbYBBwI+oLwT9\nAbgqx+OLiIiIiOSEYRiYrQdhth5EOr4Nr+xFvPIXMduPxLDCTeK9rW+RqvwUu+tEAuGuzScOF5Ac\nf17mcykP+9XnMaLVBGf9C/vFJ0gNOZ7k2MmkDh8KRubVOoZhMLpLHqO75LG22mPq8igPrYiyK5Fd\nOWhdTYqb36/it4uquaBPPtcNKOCINmoVJyIiIiIicrDLdRFoLPCW67qnZzhXA6wHpjuO8w5wRo7H\nFhERERE5IAKhdgR7X47d8+I99gv6QnL906SrluFteBazzVCsrpMw2w3DMJqu9mmOuWg+ge1fLJY3\n/DTWh29jffg2qS49SY47B2/EOMhrWoT6TM9Ci/8+tpifDynkqdW1/HNpDZ/uzK5VXG3K54EVMR5Y\nEWNkpyDXDShgwmF5WGoVJyIiIiIiclDKda+HCPBSFnFzgIIcjy0iIiIickAZAQvDbvo1NlW9knTV\nsi/e7/iQ+Me/pvadq0ms/Rd+YmdW+VNHHE3dFT8m3fmwJufM8rXkPfAXIj85n+Cjf8fYUrbXXGEr\nwBX9I7x1Vgdmnt6Os3rmYbaglvP25gRXzt3B4Ke28Ocl1WyvS2V/sYiIiIiIiHwj5Hol0CqgVRZx\nxQ2xIiIiIiIHPy+KEemJH13b6LAf30py9f0k1zyM2eGE+lZxxYdjNNPWjfww3iln4518FuanH2DP\nfgbzo/kY/hdt3YxYlODLT2K/8hSpo4aTOOMi0iWDm52aYRiM7BRiZKcQG2s8prlR7ndjbI+ns/po\nG6Mpbv2gij8sruLcXmGuGxAhktWVIiIiIiIi8nXL9UqgO4ELHcdpthDkOE4RMBG4K8dji4iIiIh8\nLczWg8gfdid5Q2/H7HAS7NkCzvdIbZlL3Yc3UbfweyTLZuJ7tc0nNAxSA4+h7ie/JfbHR0icdgF+\nuPEKJMP3sT56F9NdkvU8uxVY3Hx0MZ9e0Il/jGrF4LbZ7/sTT8GjK2OMnl7BtR+FeKXCJJnObs8h\nERERERER+Xrs10ogx3H27FMxAxgILHIc5/+A+cBWIA20A4YBPwJeBh7an7FFRERERL5JDMPAbDUQ\ns9VA0vEdeOUv4ZXPwo9vaxSXrllDwv0b6eg6Qv2/t8+8focuJC7+HonJV2O9Mwd7zjOYG9fUn7Ns\nvDGTWjzXPMvgkn4RLu4bZmFFgruXRXluTS1eljWdJdUmS1yTv63fzNUlEa7qH6FjOPu9j0RERERE\nROSrsb/t4NYCmX4qGsAf93JdH+C6HIwvIiIiIvKNEwi1IdjrEuweF5La/i7JjTNI71zUKMbucnrL\nkoby8cZMwhs9EXP5YuzZz+CHC/CLWjcJNZe8h/3KUyTHTiZ11HAIZG4AYBgGwzqEGNYhxG3Hphpa\nxUXZUptdq7jNtWl+t6ia2z+q5uye+Vx/eAHHtA+27HOJiIiIiIjIAbO/RZj1ZC4CiYiIiIh86xkB\nE6v9SKz2I0lHN5Asn4W36RUCkV4ECno1iU/XrMWreAury+kEQm2bSWqQGjCE1IAhkM5crLFnP4P1\n8UKsjxeS7tCF5CnnkDzhNIgUNjvXTmGTnw8p4qajCnlhXS13L42yoCKR1edMpuHJ1bU8ubqWoe1s\npgwoYHKvfEJmM3sfiYiIiIiIyFdiv4pAruv2zNE8REREREQOaYFId0L9rifY+0r8+I6MMcmNL+CV\nzyK59jHM9iOwu04k0OooDKOZYkqGFT7G5o1YS977ImRrOaHH/k7w6al4I8eTHHsO6W5NC1CfCZoG\n5/UOc17vMIu21beKe3p1jER2i4P4cFuSG97cyc0LK7myf5irnAjdC9QAQERERERE5OuQuS+EiIiI\niIgcEIaZRyDcpclx34vibXmt4U2K1NY3qVv0M2rfm0Jyw7P4yeosR/BJDhuDv0eByEjUYc99gfAv\nrybvDzdifvAmpFN7zTSkXZA7T2jN0gs7cfPQIrq2YN+fbXVp/mdJDYOe2sIlr25nblkdaV9NBERE\nRERERL5KB+SRPMdxegDnA4OAdkAaqAAWAv9yXXf7gRhXRERERORglY6VY9hF+Km6Rsf92EYSpf8k\nsWoaVocTsbpOIFBU0uzqIL9Td+Lfv4XEjgrsuS9gzZ1OoHpXoxhr6YdYSz8k3a4jyZPPJnnSGVBQ\n3Ozc2uWZ3DSokH87soCZ6+v43w8qWFSVXUEo7cOs9XXMWl9H3yKLa0oiXNI3TKuQnkcTERERERE5\n0Aw/x0/jOY5zE/Bb6gtMe/4y9YEYcIPrug/ndOCvWWVlpR5rzLHS0lIA+vXr9zXPROTgoftGpOV0\n38g3ie+nSG1/H69sBqnt79Pc9puBgt5YXSdgdRyDYYX3njSZwFowD3v2M5hrlmcOOe4U4jfcnPU8\nS0tLWVFj8HKsLU+uqqU21bKvwvmmwfl98rm2JMKgtsEWXStysNK/NyItp/tGpOV034i03MF43xQX\nF2e9AWtOVwI5jjMJ+BNQDTwKLKB+BVAAaA+MAC4EpjmOs8p13fm5HF9ERERE5GBmGCZWu+FY7YaT\nrt2EV/4iyfKXIVnZKC5ds5qE+zdSFe+QN/g3e09qB/FGjscbOZ7AqqXYs5/BWjAPI+V9HpI8+awW\nz7V/gc+EIa359THFPLQiyr3Lo6yv2Xt7uc/UpnweXBHjwRUxhrUPcu2ACGf3zCdkZv07RkRERERE\nRLKQ63ZwPwS2AsNc112f4fxUx3H+CMwH/h2YnOPxRUREREQOCYH8zgT7XIPd63JSFe+QLJtJeteS\nRjFWp7EtypnuczjxPoeTuOgGrHkzsF97Hr+4Nen+RzaJNSo2Yb39Ct7oifit2jabs3UowI+OLOT7\nRxTw8sY67l4WZV55POs5LahIsKAiwS/eq+SK/mGuLolwWMEB6VotIiIiIiLyrZPrX1dDgcebKQAB\n4Lqu6zjO08CZOR5bREREROSQYwRsrI4nYXU8iXR0PcmyWXib54BhYnYY2STe96Ik1jyK3eU0ApHu\nGXP6rdqSPPtKkhMvwdi5DTLsL2TPfYHgzMcIvvAg3tEnkjzlLNLOoIyxAGbA4IzD8jnjsHxW7Eoy\ndXmUx1bGqEpm1ypuezzNXz6u4Y5PahjfLY8pAyKM6RIi0Mx4IiIiIiIism+5LgIVApuziFsPtMrx\n2CIiIiIih7RA5DBC/b9LsM9VpKPrMQJN99PxNr+Kt+FpvA1PE2g9GLvrGZjtjscI2E0TWjZ++85N\njyfi2G/MAsBIpbAXzMVeMJdUl554p5xFoFMf0qH8ZufZv5XNH45rxc1HF/HU6lruWVbDpzu9ZuN3\nl/bhpQ11vLShjt6FJteURLi0X4TWoUBW14uIiIiIiMgXcl0E2g44WcT1aYgVEREREZEWMsw8zKL+\nTY77vk+ybNbn79M7FxPfuRgj2Bqr86lYXU4jkN9pn/kDW8vxQ3kY1Y33IjLL12I+dAcD7RA7jjyO\nwOQrSXfv3WyeAjvAVU6EK/uHeW9rgqnLozy3tpZkOrvPubo6xa8WVnHbh1Wc1zvMd0oiDG7XtPAl\nIiIiIiIimeX6cbq3gMmO44xuLqDh3AXAmzkeW0RERETk2y1ZmfGwn9hJct2/qJ1/NXUf3Yy37V18\nP9VsmnS3XsT+9Ci1P/4t3pHDmpw3k3Haf/g64V9dQ/5vfoT17qvgJZvNZxgGx3UMcc9Jbfj0gk7c\nPLSIbhEz649Vl4KHS2OMnl7BKdO38tjKGHVedm3mREREREREvs1yvRLod9Tv9TPHcZzXgPnAVsAA\nOgAjgZOABPDb/RnIcZw2wC3A2UBnYBswC7jZdd1NLcyVB3wE9AfGuK47b3/mJiIiIiLydTCCrcgf\ndifpqmV4ZTPxtr4B6d2LMz6p7QtJbV+IEWqP1eW0+tVBobZNkwVMUkNGkBoyAmNLGfbcF7DfeBEj\nWtUozFyxBHPFErwBQ6j7j7/sc44d8k1uGlTIvx1ZwMsb6pi6PMpr5fGsP+MH25J88OZOfrmgksv7\nhbm6JELPwlz/rBERERERETk05PTXkuu6ixzHORe4DxgLnLLb6c92dC0DrnZd96MvO47jOPnAPKAE\n+D/gfaAf8FPgZMdxjnZdd2cLUt5MfQFIREREROSgZhgGZvHhmMWHE+x3Pd6m2STLZuHXljWK8+MV\nJNc8hFc2k/yRD2EYza/M8Tt2JXHRDSQmX4O1YC6pmY8TKV/TKMY79qQWzdMKGEzokc+EHvmsrEwy\ndXmUR1bGqEpkt8JnRzzNHZ/U8NdPahjfLcS1JQWM7RYiYBj7vlhERERERORbIuePzLmuO9NxnMOA\n04BjgPaAT/2KoIXAS67rZrcrbPN+DBwJfN913X98dtBxnI+AZ6kv6tyYTSLHcY4E/h1YBAzZz3mJ\niIiIiHxjGHYR9mHnYnWfTHrnRyTLZpDaNh92awVndRq71wJQI8EQ3qjTKO3Yh/zytfRZuQhr/hww\nTbwR45rGJxPYc18gOWI8FBQ1m7Zvsc3vhrfiV0OLeHpNLfcui7JkR/Pt5XbnAy9vjPPyxjg9Ckyu\nciJc1i9M+/zs282JiIiIiIgcqnJaBHIcpytQ47puJfB8w58D4QogCkzd4/jzwEbgMsdxbnJdd6+P\nETqOEwDuAdYB/wTuOgBzFRERERH5WhmGgdlmMGabwaTj2/E2vYJX9iJ+vAKr6+lN4n3fJ1H6T6x2\nwwm0HoRhNN1KtLZLT+InjSN+4Xcx15VCfqRJjPX+G4Qe+T+CT9yNN/xkkqecTbp3SbPzjNgBrugf\n4fJ+Yd6vSHLP8hqeW1NLIp3d51xXk+LXH1Tx20VVTOqRzzUlEUZ2DGJodZCIiIiIiHxLGb6fuw1V\nHcepBX7tuu7vc5a06RhFQCXwpuu6J2Y4/zQwGejjuu7qfeT6EXAH9a3rugPT+JJ7AlVWVmb8D1la\nWtrSVCIiIiIiB56fxk6sIxnq1eRUsG4l7SruAMCz2hGLHE8schxps/nVPJn0u/8PFGxc2ehYtHMP\nth09hp1HHItvB/eZY2cSnt9s8cxmi03xpsWofemZn2ZyJ48JHT2KtHWQiIiIiIgcRPr165fxeHFx\ncdZPurX8V9TelQLdcpxzTz0aXjc2c359w2vvvSVxHKc78BvgIdd1X83R3EREREREDg5GIGMBCCAc\nffvzv1veNooqp9Ox/GZab5tKqHYZ+PtemmPGqgnt3NrkeGTTOnrMuJ+Bd/w7XWc/QXBH05jdtbbh\nqu4ezx5Tx/8MiHN869Re4/e0tjbAn9cEOWNBPv+1IsjHVQFy+ByciIiIiIjIN1qun4W7AfiX4zgr\ngAdd192V4/wAhQ2vsWbOR/eIa86dQAK4KReTak5zlTrZt89WUem/oUj2dN+ItJzuG5HGfN8nXhck\nFTOo33GnnkGa/NrF5NcuxjPbECsYQceBFxMItW02V/yvT5N6/w3sV5/HXLGk0TmrLkaH92bT4b3Z\neEccQ/LkM0kNHgFW8z9RSoBrgdVVHvctj/JwaZRdiewqOvG0wcytFjO3WgxsY3ONE+H8PvkU2rl+\nLk4kM/17I9Jyum9EWk73jUjLHer3Ta6LQN8H3gd+B9zuOM46YAeQ6XE933XdkTkePyuO41wETACu\ncV234uuYg4iIiIjIN5FhGOQd+Z+ka7fgbXoZb9Mr+PFtjWKs1A6KKmdQ+84szLbDsbqcjtn2aAzD\nbJzMsvGOOwXvuFMIbFiN/drzWO+8glFX2zjs0/exPn2fdKfuxH73AAT2XpjpXWRx27Bifjm0iKfX\nxJi6PMqibcmsP+MnO5LcOH8X/7mwkvP75HO1E+GotvtuTSciIiIiInKwyXUR6KI93vdp+JPJl23C\nUNXw2nTn2XoFe8Q14jhOG+r3AXrddd1pX3IOIiIiIiKHtEB+R4K9r8DueSmpHQvxyl4ktX0hsFsr\nOD9Natt8UtveJX/EAxh5HZrNl+7em/iVPyF+wXVY78zGnvMcZvnaRjGpAUP2WQDaXb5lcFm/CJf1\ni7B4W4JpbpQnV9cS87L7qVHj+UxzY0xzYxzT3uZqJ8I5vfIJW1odJCIiIiIih4ZcF4HG5DhfJmuo\nLyA1t/fQZ3sGlTZz/k9AK+C/HMfZPUfrhtf2DccrXNeN7+9kRUREREQOZkbAxGp3HFa740jXVeBt\neoXa9TOwUjs/jzHbHkNgLwWgRvIjeKecjXfyWQTcj7DnTsd6/w0ML0ny5DMzXmLNm0HqqOH4bdo3\nm3ZwuyB3tAty67HFPLkqxn1ulKU7vaw/5/sVSd6v2MUvFlRycd8wVzsRnFZ21teLiIiIiIh8E+W0\nCOS67uuf/d1xnJ7Ut+1uBdQBW4B1ruuW7+cYUcdxlgBDHcfJc123brcxTWAEsMF13fXNpDgFCAJz\nmzn/RMPrGGDe/sxVRERERORQEshrT7DXpaxLHkOobhkdWEJq+7tYXc7IGB9f8Q8MqxCry6lNi0SG\nQbpkMPGSwcSrdmEteZf0YX2bjrl+JXnTbscPBEgNHkFyzCRSA49tdsVQcTDAdwYUcG1JhAVbE9zn\nRnlubS3xTA2qM6hM+Ny1NMpdS6OM7BTkGifCxB75hEwjuwQiIiIiIiLfILleCYTjOGcCfwQy7qLk\nOM5HwM9c1529H8NMBf4KXE99a7fPXAZ0AG7ZbbwSIO667pqGQ9cA4Qw5TwF+DPwC+Ljhj4iIiIiI\n7MkIEM8/grx+Z5OOb8ewWzUJ8RM78cpmgp8iufZRzLbHNOwdNAwjsMfPkKJWeKNOyziUPXd6/ZDp\nNNaHb2F9+Bbp9p1JnjQR78TT8YvbZJ6iYTC8Y4jhHUP8bliKR1fGuN+NsbIq+9VBb29O8PbmBO3y\nKrm0b5irnAi9inL+E0pEREREROSAyekvGMdxJgLPAAFgM+ACOxvet6J+ZdBgYJbjOGfsRyHoLuBS\n4HbHcXoA7wNHADdSX7y5fbfYZQ3zKAFwXfe1ZuberuGv813Xnfcl5yUiIiIi8q0SCLXNeDy5aQ74\nny2/8UltX0hq+0KMYBuszuOxOo8nEO6y9+S+T2BF02ezAhWbCD11D8Fn78MbegLemEl73U+oTZ7J\nDwYW8v0jCnhzc4Jpy6NMX1dLllsHsa0uzR2f1HDHJzWc2DnEVf3DTNDqIBEREREROQjk+jG2XwJJ\n4HLXdZ/a86TjOAZwETCN+tU6X6oI5Lpu0nGc8cB/AecCPwC2AvcCt7iuG/tSsxcRERERkZww7CKM\nvM74dZsaHfcTO0iu+xfJdf8i0Ooo7C6nYrYfhWGGMiQxqP3vezA/fh977guYi+dj+OkvTqdS2Avn\nYS+cR7pjN5KjJ5I84TQobLoyqT6dwYmdQ5zYOcSWWIpHVsaY5kbZUJNlrzjgjU1x3tgUp02ofu+g\nK/uH6a+9g0RERERE5BvK8P0sH3/LguM4NcDDrut+dx9xdwOXuK5bkLPBv2aVlZW5+w8pAJSWlgLQ\nr1/GzoIikoHuG5GW030j0nLZ3je+nya9czHJ8pdIVbwDfjOt2KwIVscx2N3PJhDu1mw+Y/tW7Ddm\nYr0+k8DObZnHtG1if3wUv037rD5LKu3zWnmc+5ZHeXljHekv8a3++I5Bruwf4aye+eRbWh0kmenf\nG5GW030j0nK6b0Ra7mC8b4qLi7P+4ZHrlUAesCGLuA1AIsdji4iIiIjIN4hhBDDbDMVsMxQ/sQtv\n8xySZS/i15Y1DvSieGUzsNqPgL0Ugfy2HUicczWJMy/H/Ohd7LnTMT9egLHbg23pHk7WBSAAM2Aw\nrlse47rlsbHG48HSGA+6UTbXpvd9cYP5WxLM35LgZ+/t4oI+Ya7sH2FgG60OEhERERGRr1+ui0Af\nAAP/P3t3Hh9Veff//3WWmUwmJIEQErawJIRB1rAvAqLs1K2uxaV6t1bq19bW+m3t3d61t97fttaf\nt+3derfWtipVK6LigiKyb7KIyCZoEvZ9CSRkmcxyzpzfH4FAnKAEsYq+n48HD51zPtd1rjNyJMN7\nrus6g7qewIpzfG0REREREfmCMvzN8XW4BjvvahLHNuHsm41zaCkkonXnU3IwWxQltfPcKJg+DOOU\n/X4sG7ffcNx+wzEO78e3+A3sJW9gHisnfsnljV7fXvQ6Xm473FCf0+4d1L6Zzc/6ZvDjPunM3h3h\nyQ9rWLAvesb3eCzm8dcPavjrBzUMaOXjm13TuKpzKs18jV9PRERERETks3auQ6CfAXNDodANxcXF\n/2ysIBQKXQ2MBS45x9cWEREREZEvOMMwsJr3xGreE3/XO3AOLsbZ/xZW1oCGQc9x8Z3TcQ7MxW4z\nDrvNOMxAToPzXqs2xK65jdiVt2KtXYbbZ2jyRWtrSHn2UYxYhEROW+IXfQ1n+AS85i0bHaPPNLis\nYyqXdUxle6XDP0pqeHZLmENNmB307uE47x6u4GerjnFNfiq3htIoyvafcXsREREREZFz4VyHQCOA\nV4CnQ6HQfwIrgUNAAsgGBgEXAC8A14VCoes+0t4rLi7++Tkek4iIiIiIfAEZdhq+dpPwtZuE57lJ\n5z3Pxdk/Fy96iPj2Z4hvfxYrqy92mwlYrYZgmKeEKraNO3BUo9exV87HiEUAMA/tI+WFv+J/6e+4\nRcOIj7oUt9dAMK1G23bOsPnlgEx+1i+DN3dF+EdJDfP3RjnTrYOqHY+nSsI8VRKmd5aPW0JBrskP\nkunX7CAREREREfnsnesQ6CHAAwygy/Ffjbn2eM1HeYBCIBERERGRrxjDSA5h3KPr8KKHTjni4R59\nD/foe+DLwM69BF/b8ZjNOn9s3+a+XXiG0WDvICORwH5vGfZ7y0hktcIZMYn4yIl42a0b7cNnGlze\nKZXLO6Wyq9rh6ZIwz5bWsC985rODNhyNc8+KY/xidSVXdkrllq5BBuX4MYwz3tNVRERERESkSc51\nCPQAnPGX4kRERERERE7LbNYJX+ebcfbPwYscbHgyXomz5xWcPa9gpnfFbjseO3cUhp2W1E/sxu8R\nH3c1vqVvYi+ZhVle1vA6Rw/jf3Uqvtf+gdtzIPGLvobb90KwG/+41KGZzc/7ZXBvUTrz9kaYWhxm\nzp4I7hl+Ego7Hv/cEuafW8Jc0Nzmpq5pXF+QSnag8dlIIiIiIiIiZ8vwPGU258KxY8f0Rp5jpaWl\nABQWFn7OIxE5f+i5EWk6PTciTfevfm48L0GifB3xfW/hli2HRLzxQjMFX4dr8OfffPrOXAdr4zv4\nFr+BtW4FRqLxmTy13/vP0y4v15h9NS7Pltbwj9Iwu6uTl7b7JD4TJuYFuKkwjdHtUrBMzQ76stGf\nNyJNp+dGpOn03Ig03fn43GRmZp7xB4ZzPRNIRERERETknDIMEyurH1ZWP7x4Fc6BBTj73yJRva1h\nYSKKYQc/vjPLxi0ahls0DKO8DHvZbHyL38A8vL++xEvPxC0a1qQxtk2z+HFRBvf0SWfRvihPFdcw\na1cE5wy/KhZPwGs7I7y2M0LboMnkLkFuLEwjP0Mf2URERERE5OzpE4WIiIiIiJw3DF86vrwrsNtf\nTqJqC87+t3AOLgSnBgwTu/UlSW28RAzn4BLsVhdi2Kknj7fIJn7ZTcS/dgPWB2uxF7+OvWYZ8QvH\ng8+f1I+9+A3M3VtxRn6NRIeCRsdnGgaXtAtwSbsAh2pdntsSZmpxDduqznx20L5wgv/eUM1/b6hm\nWK6fmwqDXNEplTSfecZ9iIiIiIiIgEIgERERERE5DxmGgZVRiJVRiL/Ld3APLyMR3ofhb5FU65a9\nQ+yDh4mVPIrdajh2m7GYzXthGMdDFdPE7dEft0d/olUVGI0tme15+N56AWvvDvxzZ+B26oozYiLx\noWMgLb3RMeakWvygVzp39WzGsgMxppbU8NqOWmKNr0DXqOUHYyw/GOPeVce4qnMqNxWmMaCVD8PQ\ncnEiIiIiIvLJFAKJiIiIiMh5zbBSsFuPPu15Z//cun9xIzgH5uEcmIcRaI3dZgx26zGYqa1PFqc3\np7EV3Mytm7H27qh/be0owdpRgn/an3D6jcAZMRG3Rz8wreTxGQYj2qQwok0KRwe7TNtayz9Kaviw\nwjnje6yKe0wtCTO1JEy35jY3Fga5viBITmry9URERERERE5QCCQiIiIiIl9anhvBPbYp+XjkAPHt\nzxDf/gxm897YbcZitxreYLm4UxnxGG7Hrlg7Sz5yPI5v1QJ8qxaQyMrBGTGB+PAJeDltG+0nK2Dx\nf3o0447uabx7OM7TpTXM2FZL9ZluHgR8WOHwi9WV3P9uJePzAtxUGGRs+wC2qdlBIiIiIiLSkEIg\nERERERH50jKsAMFhT+Mcfhtn/1wSFeuTahIVG4hVbCBW8r/YrUYcXy6u58nl4gD3gr7UPvA45s5S\n7KWz8S2fi1FT2aAf8+gh/K/+A/+r/8DpVkR8/DW4/YY3Pi7DYGCOn4E5fn4zKJNXd9TyTGmY5Qdj\nZ3xvjgdv7Irwxq4Iuakmk7sEubEwSGGm74z7EBERERGRLzeFQCIiIiIi8qVm2Kn42ozB12YMidoD\nOAfm4+yfixc50LDQjeAcmItzaAnB4f8EOy2pr0THQmIdC4ldPwVr3XJ8S97E2rgaw2u40Y/94ToS\nod6nDYFOleYzuaEwjRsK09h6zOHZLTX8szTMgdoz3zzoYG2C32+s5vcbqxmS42dylyBXdk4l029+\ncmMREREREfnSUggkIiIiIiJfGWZqa/ydb8TXaTKJik31oQ9upL7GzhmO0UgA5HkehnF8yTWfH3fg\nKNyBozCOHsZ+ew6+pbMwD+6tr48Pn5A8gEQCo7Icr3nLRsdXkGlzX/9MftY3gwV7ozxTWsObqija\n2gAAIABJREFUuyPEzzwPYuWhGCsPxbh3VQWXdkxlcpcgo9qkYGm5OBERERGRrxyFQCIiIiIi8pVj\nGCZWi15YLXrhL7yjwXJxduuxjbaJrP0phj8Tu/VorKz+GGbdxykvqxXxy24kfukNmCUb8S2ZhVFd\n2ei+QNYHawk8/GPc3kOIj5yI22co2Mkfy2zTYFxegHF5AcoiLs9vreWZkho+qHDO+B4jLry4rZYX\nt9XSJmhyXX6QyYVBujXXcnEiIiIiIl8VCoFEREREROQr7aPLxRmBnKSaRHhv/X5C7qEl4MvEzr0I\nu/VozPSudTOEDINEqDfRUG/wvEavZS99EyORwF63HHvdchIZLXCGjsEZPp5Ehy6NtskOWNzZoxn/\np3saa8viPF1aw0vbaqmMN36NxuwPJ/if96v5n/er6ZvtY3JBkGvyU8kKWGfch4iIiIiInH8UAomI\niIiIiBxnprZu9LhzYEHDA/FjOHtew9nzGkYwD7v1aOzcizFTc+vOG40svVZThf3u4obXqyzH/9YL\n+N96AbdDAc6F43GGjG50uTjDMOjXyk+/Vn5+NSiTmTsjPFNSw9IDsSbd49qyOGvLjvHz1ceYkBdg\ncpcgY9sH8Gm5OBERERGRLx2FQCIiIiIiIp/AzOyG1XIQ7tF3wWu4QY8X3k1821PEtz2F2bxXXSCU\nMyJ5X6FAKpHv/xe+JbOw1i7HcBsu7Wbt2oq160/4n38Mt9cgnAvH4fS9EPwpSeMJ2ibXFwS5viDI\njiqHZ0vD/LM0zN6we8b3FE/AzJ0RZu6MkB0wuSa/bv+g3lm+k3sfiYiIiIjIeU0hkIiIiIiIyCew\nWw7EbjkQL1aBc3ARzoH5JKpKk+oSFRuJVWwkVvIn/KG78LUZc/KkZeP2GYLbZwhUVeBbPhd72Wys\nXVsb9GEkEtjrV2KvX0kivTnhR55vNAg6oVO6zc/7ZfDTonSWHojyzy1hZu6IUOue+XJxZZEEj22u\n4bHNNXRvYTO5S5Dr8oPkBrVcnIiIiIjI+UwhkIiIiIiIyBky/M3x5V2JL+9KEjW7cA7MxzmwAC96\nuGFhIobZrPPpO0pvTnz8tcTHX4u5awv223OwV8zFPFbesJvCnh8bAJ3KMg1GtQ0wqm2AyiEJXt1R\ny3Nbwiw/2LTl4jaXO/xidSX/+W4lo9ul8I2CIBM7pJJqa3aQiIiIiMj5RiGQiIiIiIjIWTDTOuAv\n+Dd8+beQqNhYFwgdWgZuGCOtE2az/KQ2bmUJ7pF3sXNHYQbbApDo0IVYhy7Errsd6/13sZe9hb12\nGUY8TvzC8Y1e2z/9LyRa5+EMvAhS05LOZ/hNbu6axs1d09hR5TBtS5jntoTZWX3my8W5HszZE2XO\nnijpvgou65jK9QWpDG+dgqX9g0REREREzgsKgURERERERD4FwzCxWvTBatEHf9f/g1u2Cgyr0X11\nnP1v4ex9g/j2f2BmdMPOHYWVMxIzJavBcnHRmirs1Ytxi4YkX6+8DN+s5zG8BN7T/4PTfwTOheNx\ne/QDM3n5tk7pNj/tm8FPitJZcTDGc1vCvLqjlqr4mS8XVxX3+OeWMP/cEqZN0OSa/CDXFQTp2cLW\n/kEiIiIiIl9gCoFERERERETOEcMKYOde1Og5LxHHObik/nWi8kNilR9C6eOYLYqwW4/CbnUhhp0G\naek4oy5ttB97xTwML1F3vVgU34p5+FbMI9E8G2fYGJyhY0l0KEhqZxoGF7ZO4cLWKTw0JJPXd0Z4\nbkuYRfuinHkcBPvDCf74fjV/fL+a7s1trisIck1+Ku2b6eOliIiIiMgXjX5KFxERERER+RfwIgcx\n7CCeU/WRMwkS5e8RK3+PWPEfsVoOrpsh1HIQhuVP7igewwsEMSLhBofNijL8s6bhnzUNt31nnGFj\ncYaMxmuZm9RF0Da5rqBuNs/eGpfpW+uWiys55jTpnjZXOPznmkruX1PJha39XFcQ5PKOqTRPMZvU\nj4iIiIiIfDYMz2vKd77kdI4dO6Y38hwrLS0FoLCw8HMeicj5Q8+NSNPpuRFpOj03Z8/zPBKVH+Ac\nWIhzaAnEj52+2Api5wzH3+2HGMZHQpVoBPu9Zdhvv4X1/pr6mUGNcUN9iF79bRKh3p84tjVlcZ7b\nEualbWEqYmf3ESfFggl5Aa7NDzK2fYAUS8vFgZ4bkbOh50ak6fTciDTd+fjcZGZmnvEP2ZoJJCIi\nIiIi8i9iGAZWZneszO74C6fglq/DPbgQ5/BycGsbFrthEpFDyQEQQEoAZ+gYnKFjMMrLsFfMw142\nG2vvjqRSq3g9nMFHRMMwGNDKz4BWfn49KJPZuyO8sDXMW3sixE+fMSWJuvDqjgiv7ojQ3G/w9c6p\nXFcQZHCOH1P7B4mIiIiI/EspBBIREREREfkcGKaN3XIAdssB+N0Ibtk7OAcX4h5ZDV7dsmx27sWN\ntnUOLMRML8BM64DXIpv4pG8Qn3g95u6tdYHQinmY5WUAJLJbk+jSM/n6h/ZhHt6Pe0ERmFaDcymW\nwRWdUrmiUyrl0QSv7qjl+a1hVhyMNekeK2IeTxaHebI4TIdmFtfkp3JV5yA9WtgYCoRERERERD5z\nCoFEREREREQ+Z4YVwM4diZ07Ei9ehXN4Gc7BpditLkyq9eLVRD94BLw4ZrN8rJyR2DkjMYNtSXTo\nQqxDF2LX3o5VvB57+VwSrduDmTybyLfwNfyzppFono0z5BKcYWNJdOgCHwlnWqSY3BpK49ZQGruq\nHV7cVsvzW8IUN3H/oF3VLo9sqOaRDdV0a25zVedUrskPkp+hj6UiIiIiIp8V/bQtIiIiIiLyBWL4\n0vG1nYiv7cRGzzuH3wYvDkCiehuJ6m3Etz2FmV54MhBKzcW9oC/uBX0bv0gigb1yPgBmRRn+2dPx\nz56O27YTzrAxOENG47Vqk9SsQzObH/VO5+5ezdhwNM70rbW8uC3MwdomrBcHfFjh8Ou1Vfx6bRV9\ns31c1bluhlC7NOuTG4uIiIiIyBlTCCQiIiIiInIeSVRsbPx4VSmJqlLiW/+OmdENO2ckVs4IzECr\npFpz91aM48vFncratwPrxb+R8uLfcAt74gy+BGfQKLzMrAZ1hmHQp6WfPi39PDAgg6UHojy/tZaZ\nO2qpdrwm3c/asjhry+Lct7qSobl+rs6vW4YuO6BASERERETk01IIJCIiIiIich7xX3APdvsrcA4u\nwj20BC96OKkmUfkhscoPYcvjmJnd8Xe+GSvr5KygRMdCwo88j71yAfaKuVi7tib1YZW+j1X6Pv5n\nH8W9oAhnyGickZOSlouzTINRbQOMahvgv4dm8uauCNO3hpm3N4rbhDzIA5YfjLH8YIyfrDzGqLYp\nXN05la91TCXTn7ycnYiIiIiIfDKFQCIiIiIiIucRwzCwMgqxMgrxunybROWHOAeX4B5aihc7klSf\nOLYZz3OTjntZOcQnfYP4pG9g7tmGvXwe9op5mEcPNbyel8De/B5GLIpz0dc+dmxB2+Tq/CBX5wc5\nXOvy8vZapm8L8+7heJPu0fVg/t4o8/dGSVlRwdh2Aa7OT2V8XoCgrUBIRERERORMKQQSERERERE5\nTxmGiZXZHSuzO17h7SQqNuEcWoxzaBnEK+qKfBlYLYqS2iZqD+AeXYudcyGJ9vnErrud2DW3YZZs\nxLdiHva7izGqK+vrncGXNDoGc8smEnkFkBJocLxVqsXt3Ztxe/dmbK90mLG9lpe2hdlc4TTpHqMu\nvL4rwuu7IjSzDSZ1CPD1zqlc0i5AimV8cgciIiIiIl9hCoFERERERES+BAzDxGrRC6tFL/yFd5Co\n2IhzaDGGnY5hJn/0cw7MJ779aWIlj2K16IuVMwK71VAS3foQ7daH6M0/wNq8BnvVQuy1b+MMGpV8\n0Wgtqb+9Bwxw+g3HGXwJbs8B4PM3KOucYXNPn3Tu6ZPO5vI4L20L89L2WnZUJc9Q+jjVjsf0bbVM\n31ZLhs9gQocAV3ZK5ZK2AQK2AiERERERkY9SCCQiIiIiIvIlY5gWVlYRVlbyDKATnENL6v7Fc3GP\nvot79F1ixf+D2bwPds5w7FbDcHsPxu09mKjrgJX88dFetxIjFgHAt2IevhXz8ILNcAaMrAuELihK\nate9hY/u/TP5j34ZvFcW58VtYV7eXsuB2kST7rEy7jF9ay3Tt9aS7jOYqEBIRERERCSJQiARERER\nEZGvmET0CF7kcPIJL0GifC2x8rXEih/FbN4Tu9VwrJwLMa3spHJ79aKkY0a4Gt+SWfiWzCKR3hx3\n4EU4g0bhdu3VIBAyDIP+rfz0b+Xn/w3MZPnBGDO2h3l1R4Sj0aYFQlUfDYTyAlzZWYGQiIiIiIhC\nIBERERERka8YM6UlweHTcI+uwTm0GLdsFbi1H6nySFRsJFaxEUr/jJnRjUDRrzHsYH1F5Fs/xi4a\nir1yAdamdzESDcMbs6oCc8Gr+Ba8WhcIDRhB/JIrSXQoaFBnmQYj2qQwok0KDw3xWLg3ykvbw7yx\nM0K14zXp3qriJ5eMOxEIXdEpldHtFAiJiIiIyFePQiAREREREZGvIMPyY7cait1qKJ4bwy1/D/fQ\nMpyyleBUJ9V7bqRBAARAsBnO8Ak4wydAVQX2u0uwVy3E+nAdhtcwvDGrKjAXzsTpOQg+EgKdymca\njMsLMC4vQK3jMWdPhJe2hXlrT4Ro07YQUiAkIiIiIl95CoFERERERES+4gzLj509BDt7CP5EHLd8\n/fFAaDnEKwGwc4Y32ja2/dm6860uJD7qMpyLL8coL8NevRh71QKsLZvqa72UAG7vQcnXrziCuXML\nbo9+YPvqj6faBld0SuWKTqlUxhK8uTvCK9trmb83QqxpK8YlBUITjgdCl7RLIWibTetMREREROQ8\noRBIRERERERE6hmmD7vlAOyWA/Anvk+iYiPO4WXYOSOTar2EQ3z3K+BUEd/+NEawfd0eQq2Gkhh7\nFfFxV2McPVQ3Q2j1YhJZOeBPSerHXjGPlGl/xgs2w+l3Ic7AUbg9+oPPX1+T4Te5viDI9QVBjsUS\nzP6UgdAL22p5YVstqZbBmPYpXNYxlXHtAzRPUSAkIiIiIl8eCoFERERERESkUYZpYWUVYWUVNXo+\nUbEBnKr61154D/Gd04jvnIaRko2VPQS71TASY64kPu4aSDS+npu9elHd9cLV+Ja9hW/ZW3jBNJyi\nC3EGHQ+ETgmPMk8JhCqPB0Ivn2UgVOt6zNwZYebOCD4TRrapC4QmdQiQk2o1rTMRERERkS8YhUAi\nIiIiIiJyVjwnjBFogxfZn3wuWoaz93Wcva+DnYbVchB2q2FYWQMw7NSThZUVmNuLk9ob4Rp8y+fg\nWz4HLxDEKRqK039E3XJygZN7E2X4Ta4rCHLdKYHQKzvqAqGm7iEUT8D8vVHm741y93IYkuvnso6p\nXNoxQIdm+vgsIiIiIucf/RQrIiIiIiIiZ8XOGY7V6kIS1Vvr9hA6/DZeeHdyoVODe3Ah7sGFWK0u\nJNDrFyfPZTQn/PsXsd5bhr16MdYHazESDafzGJEwvpXz8a2cj+fz4fYYQOS7v4DUYIO6cxkIecCK\ngzFWHIzxs3eO0aelj8s6pnJZxwCh5r5PbC8iIiIi8kWgEEhERERERETOmmEYWOldsNK74C+4lUTN\nbpyyFbiHl5Oo/DCp3soeknTMy8wiNmwYzsWXQ2UF9olAaPOa5EAoHsfctxMCqUn9nOqjgdBbxwOh\neWcRCAGsPxJn/ZE4/++9Srpm2lzaMcBlHVMpaunDMIymdygiIiIi8i+gEEhERERERETOGTMtD39a\nHnS8jkT0CG7ZStzDK3DL14GXwM4enNTGi1VQ+/bNGGkdsVsNxe0/jPhFX8OoqcReswx7zVKsTWsw\nnDgATv8R0Ejw4ps1DeIxnAEj8dp2rK/J8JtcWxDk2uOB0Jw9EV7fGWHungg1jtfkeyw55vDIhmoe\n2VBN+zSLiXkBJnUIcGHrFPyWAiERERER+eJQCCQiIiIiIiKfCTOlJWa7r+Fr9zU8p4ZEZTGGLyOp\nzilbCXh4NTuI1+wgvuM5jJRsrOzBOD0GYw1/ACMWx16/EmvNMpyBo5Ivlkjge+sFzIojpMx4gkTr\nPJz+w3H6jyDRuRuYJlAXCF2TH+Sa/CC1jsfCfRFm7ozw5q5aKmJND4T21Lj89cMa/vphDRk+gzHt\nA0zMCzC2fYDmKWaT+xMREREROZcUAomIiIiIiMhnzrDTsLL6NXrOPbwi6ZgXLcPZ+wbO3jfATMHK\n6ofVYTBW3+9jpmQl1ZvbPsCsOHLy9YHd+N94Dv8bz5Fono3Tfzhu/+G4oSKw6z4Kp9oGkzqkMqlD\nKvFEc5YfiDJzZ4TXd9ZyoDaRdI1PUhn3mLG9lhnba7ENGNY6hUkd6kIhEREREZHPg0IgERERERER\n+Vz5Ot+A2awjzuHleOE9yQWJKG7ZCtyyurDITO+Kv+DfsLL61pcYVcdItMzFPHIwqblZUYZ//isw\n/xW8YBpOr8G4fYfh9B4Mael1YzANLmob4KK2AR4aksm7h2PM3Blh5s5adlQ1fRMhx4Ml+6Ms2R/l\np6uO0SUYYGRLl5uaxyjK9mFqHyERERER+RdQCCQiIiIiIiKfKysjhJURwl/wLRI1u3HKVuCWrSRx\n7EMgeUZOoqoETF+DY27fYYSLhmLuLK3bQ2jNUqy9O5LaGuEafKsW4Fu1AKfXICL/96GkGtMwGJST\nwqCcFB4YkMGmcoeZO2uZubOWzeXOWd3jlrDJlrDJE7sP0yZoMiEvwMS8VEa2SSFgKxASERERkc+G\nQiARERERERH5wjDT8vCn5UHH6/Bix3COrMYtW4l79D1ww3VFdjpmxgVJbd2qEiKV07CGDsa69BGs\n8jD2mqV1odDWzUn1Tt9hjY9hz3YSbTuAaWEYBj2zfPTM8vHvfTPYVunw+s5aXttZy7uH42d1j/vD\nCZ4sDvNkcZg02+CSdilMOL6PUE6qdVZ9ioiIiIg0RiGQiIiIiIiIfCEZ/kx8bcbgazMGLxEnUbER\np2wVhpmCYSaHJe7hFUnLxlndB2GN+AGW0wJ7wzvYa9/G2rQGIx7DLWokBApXk3rfbXjBdNw+Q3D6\nXojbsz8EggDkZ9jc1Sudu3qlcyDs8tbuCLN2R1i0L0K06avGUeN4x5ediwDQL9vHuPYBxucF6NNS\ny8aJiIiIyKejEEhERERERES+8AzTh5XVDyur32lrnLKVDV4nqkpIVJUQ3/4M+DKxWvXHnjwOq9kP\nsXfuwWuZk9SHvfEdDNfFqKrAXDYb37LZeD4f7gX9cPoOwy0aipdV16510OKWUBq3hNKoiSdYuC/K\nrF0R3tod4Ug0eRm7M/FeWZz3yuI8uK6KnFSTse0DjGsf4OK2KWT4zbPqU0RERES+uhQCiYiIiIiI\nyHnPS8Qwg+1xI4dOLht3qvgx3IMLcA8uAEzMjK5Y2z/E1+5rGP7m9WXW2uVJTY14HHvDKuwNq2Dq\n73A7dKmbJdRnCImCC8C0SPOZXNoxlUs7puImPFYfjjFrV4Q3d0coPXZ2+wgdqk3wbGmYZ0vD2AYM\nzfUzLi/A+PYBCjNtDM0SEhEREZFPoBBIREREREREznuG6SfQ6z8aLBvnHnkHr3Z/I9UJEpUfkqj8\nELvtBE6NUmJXf5tE/gVYa9/GKl6P4Sav8Wbt2oK1awv+mc/gpWUQveFOnOHjT543DYbkpjAkN4UH\nBmZSeizO0+/tYclRi/WVFt5Z3J/jwdIDMZYeiPGL1ZV0Srfql427MDeFgK1ASERERESSKQQSkS+c\n+++/nzfeeINXXnmFtm3bft7DEREREZHzSMNl4+4gEd6Le2R13a+KDZCI19ea6V0wU1o2aO+1akNt\n/44kusaw0m7Fv/Uw9roV2OtXYoSrk69XU4mXmZU8EM+r+2WaFGb6uLm9w83tHVrk5fPW7ghv7oqw\nYF+UsHM2kRDsqHJ5/IMaHv+ghqBtMLJNCuPbBxjdPoUOzfRRX0RERETq6CdDETkrW7du5Z133mHy\n5MnnvO9rr72W4cOHk5XVyIdpEREREZEmMIPtMIPt8OVdiedGcMvX14dCVtaARts4++fgHlpCHIj6\nW2CN7I91+d34jvrxbdyIvX4l5v5dAHj+AG6od/J1d20h8N/34vYejNNnMGagBYlAkOyAxY2FadxY\nmEat47Fkf5Q5e+r2EdpTkzzr6EyEHY/ZuyPM3h0BoDDTZnS7FEa3C3Bhaz9BW3sJiYiIiHxVnbch\nUCgUygJ+CVwJtAHKgFnAL4qLixub7//R9sOPtx8EBIDdwEvAfxUXFyd/vUtEGpg/fz5vvPHGZxIC\nde/ene7du5/zfkVERETkq82wAtjZg7GzB+N5HnjJe/V4CRf36HsnX8fKcQ7MwzkwjyhgdumCNWgU\nltGJlG1HMaprwJ+S1I+1YRXmsaOYS9/Et/RNepsW1e0L8A25GLfPYBLtOpNqG4zPq1vS7eEhHh9U\nOMzZHeGtPRHeORTDPbtJQpQecyg95vDY5hpSLBiWm1IfCnVrrr2ERERERL5KzssQKBQKpQKLgG7A\no8C7QCHwf4FLQqFQ/+Li4vKPaX8j8AxQTF0QVAlcCvwEGBEKhYYXFxcnPtObEDnPbd68+fMegoiI\niIjIWTMMAwxf0nEvegjDCuI5jX83MFG1hUTVFuJAxBfA6twba/cr2G0nYlgnwyB7/cqG10u4pO8q\ngV0lMP0vJLJycHsNxOk1ELd7f4y0dLq38NG9hY8f9k6nIppgwd66QGjenihHomf3ETXqwsJ9URbu\ni/IfqytpF7S45HggNKptCs1TNEtIRERE5MvsvAyBgB8CvYA7i4uL/3TiYCgUWg+8DPwC+FFjDUOh\nUArwZ+pm/gwuLi4+dvzUE6FQ6GXqZhZNoG5WkfwLbN68mX/84x+89957VFdXk52dTY8ePZgwYUL9\nfjCPPfYYTzzxBP/1X//F+PHjk/q4+uqrOXz4MLNnzyYYDOK6Ls899xyzZs1i165d+Hw+CgoKuOaa\na5gwYUJ9uzVr1nDHHXcwZcoU/H4/zz77LEVFRTz44IMA7Ny5k6eeeopVq1ZRXl5OixYtCIVCfOc7\n30maqXLkyBH+8Ic/sHz5cqLRKD169OCuu+5i8eLFPPHEE/z5z3+mf//+9fVr165l6tSpbNy4kWg0\nSk5ODqNGjeLWW28lIyPjY9+z119/nQceeICf/OQnNGvWjKlTp7J7927S0tK4+OKL+d73vkezZs3q\n6xOJBC+88AIzZ85k586dAOTl5TFp0iS+8Y1vYNsn/1dQUlLCU089xcaNGykvLyc9PZ0LLriAW265\nhT59+rBv3z6uvPLK+vpBgwbRr18/HnvsMQAikQhPPvkk8+bN48CBAwQCAbp168ZNN93E0KFDk+7h\n/vvv54MPPmDWrFlcfvnl3HXXXafdE2j27Nm88MILbN26FcdxaNOmDZdccgm33norqampDcY0cOBA\nbrrpJh5++GFqamqYPXv2x76nIiIiIiIAZmobUodNxQvvwj3yLs6R1SQqNoEXTy52I7hH3sE9thm7\n/WUNTjmDRuH5/FjFGzDc5BlH5tFDmIvfwLf4DTzDJFFwAdGbvk+iczcAmqeYXJUf5Kr8IG7C472y\nOG/tiTBnd4QNRxsZyxnaG3Z5ujTM06VhTAMGZPu5pF0KY9oH6NvSh2VqlpCIiIjIl8n5GgJ9E6gB\n/v6R468Ce4CbQqHQPcXFxY1Nnm8NzABWnRIAnTCLuhCoNwqB/iVKSkqYMmUKzZs355ZbbqFly5bs\n2bOHadOmsWLFCh588EEKCwsZN24cTzzxBAsXLkwKgUpKSti9ezfjxo0jGAzieR4///nPWbRoERMm\nTOCGG24gHA4zZ84c7rvvPvbu3cu3v/3tBn1s2rSJffv28b3vfY/c3FwADh06xHe+8x0SiQQ33ngj\nbdq04fDhwzz//PPcdttt/O1vf6sPglzX5a677qK0tJRLL72UoqIitm3bxg9+8AN6905eH3zRokX8\n+7//OwUFBdx+++2kpaWxceNGpk2bxsqVK3niiScIBAKf+P4tXryY3bt3c/XVV5Odnc3SpUuZMWMG\nBw8e5He/+1193a9+9StmzpzJ0KFDueKKK7Asi+XLl/OHP/yBkpISHnjgAQD27t3LbbfdRkZGBtdd\ndx25ubmUlZXx8ssvc+edd/L444+Tn5/Pb37zGx566CEAfvKTn9CiRQsA4vE4d955JyUlJVx++eX0\n6NGDiooKXnvtNX74wx/yy1/+kkmTJjW4h7lz51JVVcU999xDXl7eae/173//O3/5y1/o2bMnU6ZM\nIRgMsm7dOp588knWrVvHn//8Z0zz5LcYI5EIDz30ENdff732FhIRERGRJjEMAyOtI2ZaR3wdrq7b\nS6jifdyja3CPrsGr2dWg3mpRhGFYDY7Fx11DuEcqXnV3fOVBIis2kbl1E/6qiuTreQmsLZvwmmUm\nD8bzsEyDgTl+Bub4+Y9+GewPu8w9vo/Qon1RapyzWzcu4cE7h2O8czjGg+uqaJFiMKpNgEvapTCq\nbQp5zc7XvzIQERERkRPOu5/oQqFQBnXLwC0tLi6OnnquuLjYC4VC7wBXAZ2BbR9tX1xcvBO49TTd\nn/iJu/KcDVg+1tatW+nRowe33347/fr1qz+elZXFgw8+yJIlSxgyZAj5+fl06dKF5cuXE4lEGgQk\n8+bNA2DixIkALF26lAULFvD973+fm2++ub7u6quv5jvf+Q5///vf+frXv94gGFixYgUzZsygTZs2\n9ce2bdtGly5duOKKKxoET126dOEHP/gBM2bMqA+BlixZQmlpKZMmTeK+++6rr+3WrVuD1wCxWIzf\n/va3FBYW8te//pWUlLolIy699FIKCgp4+OGHmTFjBjfccMMnvn/r1q1j+vTp9eOeOHEi5eXlvP32\n25SUlNC1a1fef/99Zs6cyZAhQ/j9739fv/73VVddxd13383s2bO57rrr6NmzJ4sXLybOelyoAAAg\nAElEQVQSifDLX/6S0aNH119nwoQJ3HfffWzfvp3u3bszevRo/vCHPwA0qJsxYwYbN27k17/+NWPG\njKk/fuWVVzJ58mR+//vfM27cuAYzj95//31mzJjRYObSRx06dIi//e1vFBQU8Je//AWfr27Zjiuu\nuILU1FRefPFF5s+fz9ixYxv0e//99zeY+SUiIiIicjYMK4DdcgB2ywEAJCKHcY+urQuFytdiZfVv\ntJ2zdxaJ6q3EgURRgP2Du5DZLIR/VwT/hlKsLZswXLeuz9z2eK3aJPVhv7MQ/8tP4vQchNtrIG63\nPrQJpvLNrml8s2saUddjxcEoc/ZEWLA3yocVybOOzlR51OPlHbW8vKMWgIIMi1FtA1zUJoWRbbR0\nnIiIiMj56LwLgYCOx/+55zTnT3wlK59GQqDTCYVCfuBbQBh45axH9xGlpaXnqqsvpS5dunDPPfcA\nde9VbW0tiUSibpNWoKysrP49HDBgAFu2bOGll15i0KBB9X3Mnj2bjIwMWrZsSWlpKTNmzACgoKCA\ndevWNbhez549ef/995k9ezYDBw5kz56630b5+flUV1c3+O/VsmVL7r777vqxRSIRXNclGq3LHrdu\n3VpfP3/+fAB69erVoI/8/HxatmzJkSNH2LNnDxkZGWzcuJEjR44wevRoPvjggwbjy8vLwzAMlixZ\nwsCBA0/7vh04cACAHj16JI27Z8+erFmzhjlz5mAYBi+//DIAQ4YMYcuWLQ36GTBgAG+//TavvfYa\nKSkpHD16FKibYdShQ4cGtT/84Q/r3wuom/Vz6muA1157jdTUVLKzsxt97+fOncvChQvp1KlT/T1c\ncMEF7N+/v0FtZWVdDrtjxw5qamqYN28erusydOhQduzY0aC2qKiIF198kVmzZtGpU6f646Zp0q5d\nu6/sM/hVvW+RT0PPjUjT6bmRr7bOkNIZcq+CmgR85Hkw3SpaV289+dqLEIi8TzTyPtEguMPSiV00\nEKOqGanbq3ECrTnYyDPV4e35BPbvxr9/N8x9iYRlU5PXhcr8HlQV9KA2px3tDJN/awH/1gIORA1W\nlpusLLdYVWFR7Z798m5bK122Vtbw9w9rMPDo1izBoOYJBjV36ZORQJmQ/KvozxuRptNzI9J0X8Tn\nprCw8FP3cT6GQOnH/xk+zfmaj9R9olAoZAJ/BS4A7ikuLt539sOTpvA8j3nz5rFgwQL2799fHyyc\n4B7/VhzUhRjPP/8877zzTn0ItGPHDg4cOMC4ceOwrLrlF/bu3QucDC0ac+TIkQavW7Vq1WjdypUr\nefPNN9m9e3d9+HNCInFyY9bDhw8D1C8ld4JhGBQUFDS43onxTZ8+nenTp5/R+E6nffv2ScdOLM1W\nVlYGwL59db+dG1tq7cQMohMhzLBhw5gzZw6zZ89m/fr19O3blx49etC9e3f8fv8njmfv3r3U1tZy\n++23n7amrKysQViTk5Pzif2eGF9j93viHk6ESidkZGSc0ZJ6IiIiIiKfimECyWmI5ZYTt3PwOYca\nbWYlqkiNrgM/eCHwrJZkHq3iWIvrjvcJeB7p2zY1aGe6Duk7PiR9x4ew4CXiwXSqO3WjqlM3qjpf\nQOsWrbiytcuVrV0cDzZV1QVCK8pNNlebeJxdKORh8EG1xQfVFlP3+EgxPfpk1AVCg5q7dE3zsLSd\nkIiIiMgXzvkYAp1ToVAoFfgndXsB/W9xcfEj57L/c5HUfZk99thjPPXUU3Tu3Jkf/vCHtG/fHr/f\nz/bt2+v3nDnxHhYWFtK7d282bNhAx44d8fv9zJ07F4DJkyfX17mui2EYPProow32iDlV27ZtadOm\nTf2Mk9zc3KT/Vq+++ip//OMfyc3NZcqUKXTu3JlAIEBlZSX33nsvqamp9W1OBFDdunUjOzu7QT+t\nW7cG6gKMwsJClixZAsA3v/lNhg4d2uj4UlJSPvb3TnFxMQDt2rVLqisvLwcgLS2NwsLC+vegW7du\nSWFXamoqALZt1/fz9NNPM23aNObMmcOsWbOYNWsWaWlp3HjjjXzrW9+q7+/EkmynXj8ajZKVlcWv\nfvWr0469U6dOtGzZsv4eTrwvp8rIyKivbdu2bX0A1aVLl6TaE0Gh53kNzmVkZHwln78T31j4Kt67\nyNnScyPSdHpuRM5EITCaRO1B3KPvcWzXEvzRUqxEdaPVtnsEv3mInK6hkwdjURh1Kc7772DtKMXw\nkvf+8YWraLF5NS02rwYgkd2a2h8/jNe67gtUFwDXHK89GnFZtC/KvL1RFuyNcKA2kdTfmYomDN6p\nsHinou6zUIsUg5FtUhjVJsBFbVPonG7VL0Utcrb0541I0+m5EWm6L/tzcz6GQCf260k7zflmH6k7\nrVAo1Ap4DRgC/FdxcfF9n9BEziHHcXj++efJyMjgL3/5C82bN68/F4vFGm0zbtw41q9fz6pVqxgx\nYgTz58+nQ4cO9OjRo74mGAzieR4FBQUN9v1pqmeffRbLsnj00Ufp2LFj/fGdO3cm1Z4IKT46Wwig\npqamweu0tLrfuhkZGfTv3/ja4WcqEokkHauurvtQeeL9PBH0hMPJk+dqa2sbjAkgMzOTKVOmMGXK\nFHbv3s2yZcuYPn06jz/+OIZh8O1vf/u04wkGg9TU1Hzq+2qs30+6hxM1IiIiIiJfJGZqLma7iZSH\nu4CXIL+Nj0T5Wtzy9bgVG8Gtra+1WhQ1bOxPIXbNbUS6HcSr8eOLZuPfVUvKe1uwTrN6gFFZjtey\nkdn2NVVkmRZX5Qe5Kr/uM9OmcocFeyPM3xtlxcEosbPPhCiPery6I8KrO+o+o+Q1sxjROoURbVIY\n3tpPXrPz8a8fRERERM5/5+MKvtsBD0heF6rOib+t/9gF/EKhUC7wNjAA+DcFQP96FRUV1NTUUFhY\n2CAAAli7dm2jbcaMGYNlWSxevJiSkhJ2797NhAkTGtTk5+cDsH79+qT2VVVVOM6ZbZS6b98+cnJy\nGgRApxvbiRk2H12SzPM8Nm1quHzDifFt2LCh0etWVFSc0fiApP1xToz71DGduN7WrVuTardv3w7Q\nYHm2U+Xl5TF58mSefPJJbNtm4cKFHzue/Px8otFo/SyfU1VUVNTv9dRUnTt3Bj7+Hk7UiIiIiIh8\nYRkmVno+vg5XE+jzAMERLxDo/wi+zjdjNu+FlZX8ZSrPc3GPriVRs4Wos5KqtuspuyxK2ZQeVNw0\nmPDwHiTSTi6D7IZ6gy95KWffvJdJu/MyUv/f9/DPeBKreAM9M+CuXum8OiGb7Te04fkxLbmjexrd\nm3/6wGZ3tcs/t4S5Y2k5vV44SNGLB/jesnKe3xpmb437yR2IiIiIyDlx3oVAxcXFNcAGoF8oFGqw\n4UcoFLKAYcDu4uLiXafrIxQKZQCzgQ7A5cXFxU99diOW02nevDmWZXHgwIEG4cCWLVuYPXs2kDwj\nqEWLFgwcOJCVK1eyaNEiACZOnNigZsyYMQBMmzatwb49nudx3333cemll9bPlvk4WVlZVFRUNJht\nc/Dgwfp9fE6d9dO7d28A5s2b16CP2bNnJwVDffv2JSsri7fffjspxJk7dy4TJ06sv/9PsnLlyvr9\niE44EdQUFdV9i/CSSy4B4OWXX27wPnuexyuvvALAxRdfDMBvfvMbbrzxxqQZTYFAAMuyGuwLZJpm\nUt2J9/7ZZ59tcDwWi/H973+fyZMnN/hvcqZGjBiBz+fjtddeS9o36uWXX25wDyIiIiIi5wvDtLEy\nu+PvfCOp/f4/rKyipJpE1VZwPvL5xXNwI1uJWuupKtjK4WstDn+nGxXf6Eft0G54Tm1SP/amNRiu\ni1X6Pv5XpxL8zQ9Iu+MyAg//BN+saaTvLmF8W5vfDG7O8q/n8uH1rXl8ZAtu6BKkbfDT/9XBjiqX\nZ0rDTFlSTo/pB+j34gHuerucF7aG2R9WKCQiIiLyWTlf52P/HfgDMAX4n1OO3wTkAL88cSAUCnUD\nosXFxdtPqfsfoAi4qri4+M3PfrjSGNu2GTVqFPPnz+e+++5j2LBh7N69mxdffJEHHniAu+++m02b\nNvH6668zYsQIMjMzARg/fjz3338/M2bMoFevXrRr165BvyNHjmTUqFEsWrSIO++8k0mTJuE4DnPm\nzGHNmjV861vfolmzZo0NqYExY8bwzDPPcO+99zJ+/HgOHz7M888/z913383vf/97SkpKeOmllxg+\nfDhjx47l8ccfZ8aMGRiGQffu3dm6dStz585l5MiR9fsAQd1eOvfeey8/+9nP+O53v8sNN9xAdnY2\nH3zwAS+//DIdOnRg+PDhZ/Qe9ujRgylTpnDFFVfQqlUrFi9ezMaNGxk9enT97J5u3bpxzTXX8OKL\nL/KjH/2IkSNH4rouixcv5t133+WGG26goKAAgAEDBvDKK6/w7W9/m0mTJtGyZUsqKyt58803iUaj\nXHvttfXXbtu2LatXr+Z3v/sdrVu3ZvLkyVx11VXMnj2b2bNnE41Gueiii6iurmbmzJkUFxfzs5/9\n7LT7NH2c7Oxsvvvd7/LHP/6RO+64g/Hjx+Pz+Vi9ejVz587l4osvPuP3TERERETkfGJYqdjtLsMt\nX48XPs13HT2XRGwH0RQguhlj1SJSh/3j5J480VrMLZuSmhmxCPbGd7A3vlPXTSCI27UXbrci2nYr\n4rpOhVxXULd03JZKh0X7oizaF2XpgSiVsbOb5X/CtiqXbVVh/lFSt+Rzlwyb4a39jGiTwoWtU2gd\ntD5V/yIiIiJS53wNgR4DbgQeDoVCHYF3gR7Aj4CNwMOn1H4AFAPdAEKhUG/gFmAzYIVCoWtIdri4\nuHjxZzd8OeHee+/F7/ezatUqli1bRrdu3XjooYcoKiri61//Oq+//jp//OMf6dOnT30INGrUKB58\n8EGOHj3Kbbfd1mi/v/71r3nuueeYNWsWDz30EFC3VNnPf/5zrrjiijMa2+23304sFmPRokX89re/\npaCggJ/+9KeMHDmS2tpa/vCHP/CnP/2Jzp07k5uby6OPPsojjzzCG2+8wZw5c+jduzePPvoozz33\nHECD8OPiiy/mf//3f5k6dSpTp04lHA7TqlUrrrjiCm677bYzCqkABg8eTNu2bZk6dSo7duygWbNm\nXH/99dx5550N6n784x/TqVMnXnnlFR555BEMw2j0/Rg7dixpaWk899xzTJ06lcrKStLS0ujWrRuP\nPPJIg6BlypQp7N+/nxdffJEuXbowefJkfD5f/X3NmzePZcuW4fP5CIVC/Pa3v/1Us3VuvvlmcnNz\nmTZtGo8++iiJRIK8vLz6GUYiIiIiIl9GZloeKaG6n+8T0SMkyjfgVmzErdiAF97TeJvM7icDIADD\nJHLHf5DYNhtz51ZSSg5jxpPbGZEw9oZV2BtWAVDz+xfxWmRjGAaFmT4KM31854JmOAmPdUfix0Oh\nCO8cin2q/YQAtlQ6bKl0eOp4KNQ102Z46xQubO1naG4KbdMUComIiIicDeNs9+j4vB1f0u0/gauB\nNsAh4GXgl8XFxUdPqfOA4uLi4hMh0K3Ak5/Q/eLi4uJRTRnPsWPHzs838gustLRuW6fCwsLPeSSf\nzr333svChQt5/vnnz9m+Na+//joPPPAAd955J7fccss56VO+HL4sz43Iv5KeG5Gm03Mj0nSfxXOT\niB4hUfE+bsUG3PKN9TOF/KHv42v3taT68Krv4tXsAAwsWmGX26SUluHfXokV+UjfrfMI//bppD6s\n99/F3FmC262IRMeuYNvUxBOsPBSrnym08WgjCdOn1CndYmhuCkNz/QzL9VOQYTcMuuRLSX/eiDSd\nnhuRpjsfn5vMzMwz/kHofJ0JRHFxcSV1M39+9Al1xkdePwU89ZkNTL6SDh06xCOPPEJeXl6DWThH\njhxh1apVtGjRgg4dOnyOIxQRERERkS8bM6UlZu5F2LkXAeDFynHLN2JmXpBU68WOHQ+AADxcDuG2\ngOggYFAAk0zsYyn4t1WQsqOKRLc+jV7TXj4X39tv1fUSSMUt7ImvWxFjuxUxum9XGJjJkYjL2wdi\nLD0Q5e39UTZXOJ/6XndUueyoCvPclrqZQjmpJkNy/PXBUK8sH5apUEhERETko87bEEjki6RVq1Yc\nOXKEBQsWcPToUfr3709VVRXTp08nHA7zve99D8vS8gUiIiIiIvLZMfwtsHNHNnrOrdrysW0THCOW\nCbG+UN03BcNahfn+b0jp8dOTM248D+vDdSevF6nF3rgae+PqutP+FNz8C2gT6s3XC3txeZ8eMKQ5\nh2tdlh+MsWx/3X5CH56DUOhQbYLXdkZ4bWfdFKZ0n8GgHD/DjodC/bL9BGyFQiIiIiIKgb7Amj+5\n9/Mewseq+Ld2n/cQvjAMw+B3v/sdTz31FAsXLmTOnDlYlkWXLl347ne/y9ixYz/vIYqIiIiIyFeY\n3bI/1vDn/3/27ju+iir///hrZm5L7yEJEEgBpJdIBEGk6KqIAiqrwiq6BuwVFct+9YcrsLKuqygW\nBBZQRKW4gijKqqgURaqgoQUSSiC93+S2md8fN7nkkoRmFNTP8/HI4+bOnDlzZm7ygNz3/ZyDp2wH\nnpLt6GU/oldkAY0v5mN4KjAcBf5TrlWVg8eDJ0hBcRiox2U5itOBaedWqA2KDEVFT0wl9oHJDG8b\nw/C2AQDkV3tYe9TBmqNOvjniYHfZzw+FKlwGnx928PlhBwAWFdJiLPRt4a0W6h1jIdyqnqQXIYQQ\nQojfHwmBhGgmwcHB3HPPPdxzzz2/+LmGDRvGsGHDfvHzCCGEEEIIIX4/FEsYpph+mGL6AWC47ejl\nO/GU/oin7Ef0skzQHb72WlgX/w6Cw7C/uIia7x/GU/kTWk0g5lwnlkNVWAoM1EqD+rU3iqGj5h3E\nCIvw6yY2QOOa0EquCXBg9GlFXrXOmqOO2i8ne5ohFHLqsD7Pyfo8J1AJQMdwE71jLaTHWrgg1kKq\nrCskhBBCiD8ACYGEEEIIIYQQQog/IMUUiBbZCy2yFwCG7kavzEIv3YGn9Ee0yB4NjjHQ8VTvBww8\ntio8yVCTbPH257ZgLgLLwSrMBTrmIgNPahfQGr71YP78v1hWvIMeGkGb9l1p1a4rozp0Rb8glSMO\nhTVHHLUhjoPMZpg+DiCz1E1mqZv5u73rCkVaVW8oFOMNhnpFmwkyS7WQEEIIIX5fJAQSQgghhBBC\nCCEEimpCC+2AFtoBc+K1jbbRK7PBY290n2Fy4mwBzhbm2g0KmpKHsvtVLKnjUdRjb0Foe7YDoJaX\noG78GtPGr72HWGwkJ3egTUpnbkjtjGdIZ4ot0b6qnvV5DrYVuXAbP/96ix06nx6s4dOD3nWFNAW6\nRppJr60WSo+10DpIk2ohIYQQQvymyUdcxB/OpEmTSE9PJzc3t1n73bRpE+np6cycOfOkbXNzc0lP\nT2fSpElNjquxNr81hw4d4q9//SsXXnghN9544xn1MXPmTNLT09m0adMZHa/rOv/6178YNGgQ/fv3\n54cffjijfoQQQgghhBCgBsRh7fIkplbDUUPag6I13Vgx8JCPp/A7vwAIpwN13050GxjHHa44a9B2\nbsOy4h0CXnqS4HtH0Or/buKalS8wOaWGz6+KJWdMPB9eFsXEHiEMiLcSoDVPSOMxYGuRi5mZVWR8\nVUK3RXl0ev8oY78s4pUdFWzId1DTHOmTEEIIIcSvSCqBhDgLIiMjmTp1KvHx8afdZvbs2VxxxRUk\nJCQ0+7j+9Kc/MXPmTNq2bQvAhg0beOmll1iwYMEZ9Tdjxgx27NjBTTfdRNeuXZtxpKdu/fr1vPfe\ne3Tv3p2RI0f+IvetzjfffIPH42HgwIG/2DmEEEIIIYQ4mxRTEKbYizDFXgSA4XGgV+zBU5aJXp6J\nXpaJ4SzxO0YN6+jficlE9RMv4dj3Gk5lL6ZSMOe5MBfqmAsNtHL/tYXU/FzU/FwcY+4FIMiscnGC\njYsTbFBVgdttYqszkPVHHayrrRYqdTZPWHPErvNhdg0fZnurhUwKdIk0c36Md/q482MspIaZUKVa\nSAghhBDnKAmBzmGlt7Y820MQvxCbzcaQIUNOu83hw4d544036NGjR7OHGYcOHcLtdtOmTRvfth07\ndtClS5cTHHVie/fuJTw8nHvvvbc5hnjGYwAYO3Ys/fv3/0XP9fbbb5OQkCAhkBBCCCGE+MNQNCta\neBe0cO/fDYZhYNTkoZdl4qkNhbSw4/6mUDX0lE64CmrAbuCOBHekieq6Pl0K5gI3pkKjNhjSUcIT\nITi0wfnN61YR/PZ0BrRoRb/UznhSO+G+qDM/BbVifYGbb/OcfJfv5EClp1mu111bLbS1yOXbFmpR\n6BVtIS3aTFqMhbRoCy0CT1AhJYQQQgjxK5IQSIjfkJ9++ukX63vHjh107NjRb77rH3/88WcFGk6n\nk4CAgGYY3ZlzOBwAv/g4dF1n165dv2ilkRBCCCGEEOc6RVFQAuJQA+IwxQ1qsp3hqsCwH2x8n9nA\nmaDhrPdfa8VThvrDM1jPuw/FEu7brmZ5/0ZS8w6h5h3CvPZTAHpbbaS1ac+dyeehJ3fkaEJ71rkj\n2FDgYkO+k61FTpx6M1wwUO40WJ3rYHWuw7etVZBGWoyZ86Mt9Iqx0CPKTJBZZuQXQgghxK9PQiBx\nVk2aNIkVK1bw9ttv88UXX/Dxxx9TVFREbGwsF198MUOHDvW1nTlzJrNmzWLGjBksW7aMNWvWcNdd\ndzFq1CgAsrOzmTVrFhs3bqSsrIywsDB69OhBRkYGqampDc7tcrl45ZVXWLlyJSUlJbRo0YJrr72W\nMWPG+LXLyclh7ty5fPfdd5SUlBAREUGHDh0YN24cnTp1avS6vvnmG2bNmsW+ffuwWq307duX+++/\nn+joaMC73s+IESO48sorefrppxvt4/g2d9xxB5s3bwbgzjvvBODRRx9l2rRpjBo1ikceeaRBH//4\nxz9YunQpr7/+Or169Trha/Hjjz/SuXPnBtvuvvtuv20Oh4O33nqLVatWkZubi6ZpJCUlMWLECIYP\nHw7ARx99xDPPPOM7Jj09nfj4eD788MMmz19SUsKLL77I2rVrcTgcJCcnk5GR0WT7LVu2MG/ePLZv\n347D4SA2NpaBAwdyyy23EBoa6jtvnbp79tprr5GWlobH42HhwoV8/PHHHDhwALPZTEpKCtdddx2X\nX36537kMw2DJkiV8+OGHZGdnY7Va6dOnD7fffjutW7f2u94VK1awYsUKMjIyGD9+fJPjF0IIIYQQ\n4g9NNWPt9GjtNHI70Sv3g+FusrmhOfAUbwJTsN92be+PuIMVDBuYig2U2mBHcdSg7f4Bbbd3TdC2\nQGJIOH9OPg/ntbdR3SqVbUXeKqENtV951c2UCgGHqjwcqvL4ppFTFegYbuL8GAs9oiz0jDbTMcKM\ntZnWMxJCCCGEaIqEQOKc8PLLL+Nyubj55psxm80sXbqUd955B4D27dv7tV24cCGqqjJx4kTatWsH\nQFZWFhkZGWiaxrXXXktiYiK5ubksXryY2267jTfffLNBPy+++CIul4uxY8fi8XhYsWIFL730Eoqi\nMHr0aADy8/MZN24cuq4zZswY4uPjKSgo4L333iMjI4NZs2Y1CIJ27NjB8uXLGT58ONdeey3btm1j\n+fLlZGdnM2/ePFT1zD79NX78eBYtWsTnn3/OuHHjSE5O5sILL2Tu3Ll89tlnPPDAA5jNZl97j8fD\nl19+ScuWLenZs2ejfa5cuZJp06YBUFNTg6ZpLF682Le/srLSF8S88847xMbGMmHCBDZs2MCf/vQn\nbrzxRpxOJ59//jmTJ08mNzeXO++8k7S0NKZOnerr+9FHHz1hJY6u6zzwwANkZmZy5ZVX0qtXL/Lz\n85k2bRqtWrVq0H716tU8/vjjpKSkMH78eIKCgti+fTvvvvsu3377LXPmzMFmszF16lT+97//+d2z\n5ORkDMPgySefZPXq1Vx++eWMHj0au93OZ599xlNPPcXhw4e57bbbfOd7/vnnWbRoEUOHDmX06NHk\n5+ezYMECNmzYwH/+8x/S0tJ8gVxaWhrXXXcdSUlJp/HqCiGEEEII8ceiaDZMcYMxxQ0GwNCd6JX7\n0ct3oZfvwlO+C8N+yO8YNSQFRa33NoZh4PjLfTgPv0dNwE7wgKlUx1ykYyoyvI8lx4IhtaIUddu3\nOP98O1ZNIT3WSnqs1dtVZQUFe7NYY0tkfYnKd/lOdpS40JtnaSF0A34scfNjiZt52AEwq9ApwkzP\nKDM9or3VQp0izFgkGBJCCCFEM5IQSJwTCgsLeeuttzCZvD+SQ4YMYdiwYSxbtoz77rvPLzg5fPgw\nCxYs8LUFmD59OlVVVcyaNYtu3br5tvfr149bbrmFGTNm8NJLL/mds7q6mldffdXX9xVXXMGIESOY\nP38+N9xwA6qqsm/fPlJTUxk+fDiXXXaZ79jU1FTuv/9+li5d2iAE2rhxIwsXLvStrXP11Vfjdrv5\n5JNPWLdu3RmvS9OrVy82btzo+z4tLQ2AK6+8kv/85z988803DB482Nd+06ZNlJSUMGrUKL8p3uob\nMGAA3bp1w+PxcP311/Pyyy8TGxsLwNq1a/n444+ZPHkyANHR0Xz++eds2LCBkSNH8vjjj/v6ueaa\naxg7dizz58/n2muvJT4+nvj4eKZPnw5w0vWP1qxZQ2ZmJldccYVfZdSll17qC+TqOJ1OnnvuOdq1\na8ebb76J1er9o23YsGGkpKTw/PPPs3TpUkaPHs2QIUPIyspqcM++/vprvvjiC+69915uuukmX9/X\nXnst48aNY/bs2YwcOZLIyEh2797NokWLGlRtdejQgfvuu4/58+fz+OOPc+GFFwIQFxd30usVQggh\nhBBC+FNUC1poB7TQDr5thqsSvWI3nvLd6OW7UUPbHXeQgqdHX1wsh2JAA3eUijuq3gfvdANTqYGp\nSMdcZGCqNONp0YLj/0Iy7dxC8stPkaSqjGmVhJ7UEXub9mwPS+YLJZ7vSmBTgQiRxVwAACAASURB\nVJPCmuarFnLpsK3IxbYiF+z2BkOW2mCoR5SZntEWukswJIQQQoifSSakFeeEq666yi/UCQ4OpnPn\nzlRWVrJv3z6/thdffLFf2+rqar777jtSU1P9AiCATp06kZKSwoYNG3xrw9QZMWKEX7gUFhZGeno6\nxcXF7N+/H4A+ffrw6quv+gKg6upqKioqiIuLA+DIkSMNrqVXr16+AKjOJZdcAniDmeZ29dVXoygK\nH330kd/2//3vfyiKwpVXXtnksYGBgSQkJFBdXU1gYCA9evQgISGBhIQE8vPz6dKli++5yWRi9erV\ngDf0qc9kMjF06FA8Hg/r168/7Wv4/vvvAfyCNoDExER69+7tt23Lli0UFRUxaNAgnE4nFRUVvq8B\nAwagqqpv2rymrFq1CvCGU/WPt9vtDBw4ELfbzbZt2wDvfQRvSFhfeno6r7/+ul+IJIQQQgghhGg+\nijkYLbIXlrY3YOv2FJa2NzZoYxgGnvLdTXeiKrgjVWramajoY6bkErCvuQ5PyXa/Ztq+TO85dR3t\nQBbmrz4ibP4L9H/5Hv5vxvUs+/pxDlS/zYEWG/gwtYD7O1joE2vBpjXrJePUYWuRi7m77dy/rpSB\nywto9XYug5bn8+C6EubtqmJbkROnp5lKlIQQQgjxuyeVQOKckJyc3GBbREQE4A1a6q/pk5CQ4Nfu\n4MGD6LpOSkpKo323adOGrKwscnNz/aboauycLVu29J2zrr9Vq1axcOFCsrKyqK6u9mvv8XhO6Vrq\nxtxYaPRztWzZkrS0NNavX09RURFRUVG43W5Wr15NWloa8fHxJ+1j586dDSqadu7c2SD4yM7OBhq/\nxsTERAAOHDhw2tdw+PBhAFq3bt1gX9u2bVm7dq3veV1A99prr/Haa6812t/Ro0dPeL66PkaMGNFk\nm7y8PABfJVHdz0YdVVVPus6SEEIIIYQQ4pcXkPZvPOW70Ct2o1fsRa/IAt3R9AGGjhrk/7eHun8X\n7nCFqi4m7zRyxTqmYgPVBYrHjZazGy1nNwlAAjBU03Dc/CDVV1zJTyUuNhe42FjoZHOBk52lbpoz\nonHqsKXQxZZCF+BfMdQ1svYrykznCDOhFvmsrxBCCCH8SQgkzgmBgYENttWtIeNyuU7Y1m63+7U/\nXt10YccHOEFBQU22rasa+vDDD5k8eTItWrRg3LhxJCUlYbPZKC8vZ+LEiY2er7F+bTabX7/Nbfjw\n4WzcuJGVK1cyZswYNm7cSGlpKcOGDTvhcZWVlRiGwY4dO0hJSaGiosK3LzMzk3HjxlFRUYHZbMZm\ns1FdXY3JZPJbe6hO3b2rqak57fHXHVN3nxrrt05VVRUAN998M3379m20v+OPOZ7dbkdRFF555ZUm\n12iqC+7qXrPGrlkIIYQQQghxdimKghLU2hvqxHtnYDAMD4b9EJ7yPbWh0F70yizweP8mVKzRKJZw\nv34ctz6Me9dCalyrqEk5Vt6jVuiYSwxMxQamYh1zsYFaZaB4PBhRsZhVhe5RFrpHWbiVIHA6UOf+\nm/1RyWwIbMtKpSXrylSO2JtvGjk4VjG0tcj/7+WkEI2ukWa6RVl8AVF8oNrkFOFCCCGE+P2TEEic\nExoLDupCm/Dw8Ab76qsLherCoKb6OT6caeycx4cRCxYsQNM0XnnlFb8p3nJycpocz6n029wGDhxI\naGgon376KWPGjGHVqlUEBQX5rRHUmDFjxvhVJy1YsMBvf0ZGBoBvPZyAgADcbjcul6tBKFJ3jY0F\neidTF9o4nc4G+45/Xetex9DQUN8aP6crMDAQwzBISUkhMjLyhG3rKtIqKip86yUJIYQQQgghzl2K\noqEEtUENalMvGNIx7IfRK/Zi6A3/7jBiE3AXmyDXf7seouIIAUdivf6d3lDIUNZhKgtGCzs2q4J6\ncB+Ba1fSGegM3KKo6PGJVCUkkxXRlk2BiXymtmK1PYhiR/MGQwD7Kzzsr/CwLOfY36VRVpWuUfWq\nhiLNtAszYVIlGBJCCCH+CCQEEueE/fv3k56e7rctPz8fgOjo6BMem5iYiKZpvmm7GuvbYrE0mEZu\n//79DaaQO3jwIHBs6q/c3FxiY2MbrPGzZcuWJsdTN2Xaifptblarlcsvv5z333+fffv28eWXXzJk\nyJCThk7PPvssNTU13H///Tz77LOEhYUB3rWLVq9ezYQJEwCIiooCICkpiT179rB37146duzo11fd\nFGtt27Y97fHXTVl3+PDhBvfo+DWh6qai++GHHxrtq7S09KTBYXJyMrt372bbtm0MGjTIb19FRQUB\nAQG+dafqxrZv374GPy8rV64kICCAiy+++ITnE0IIIYQQQpxdiqIeqxhqspEGpmBwV56wL8Oi4IpT\nIH8lamQH/xAoezcG4IxTMZfoqA4dLTeb0NxsegI9gQxAD4vEnpBMTlQSa2O6sjigE1uKnJQ4mn+t\nnyKHzupcB6tzj81MYdOOTSfXOcJMp9rHCKtMJyeEEEL83si/7uKc8PHHH/utr1NWVkZmZibh4eGN\nrhNTn81mo1+/fmRlZbF161a/fZs3byYnJ4f+/fs3qFxZtmwZhnHsP9glJSVs3LjRL/SJjIyktLTU\nr7onLy+P999/H2h8erfvv//et8ZNnVWrVgHQu3fvE17LyWiad1qCxipmrr76agCmTJlCZWUlV111\n1Un769q1K+Hh4YSGhjJ48GDS0tJIS0vD6XTSu3dv3/O6YGfIkCEALF261K8fp9PJihUrsFqt9OvX\n77Svq2fPngB8/vnnfttzcnLYvHlzg7aRkZGsXbu2QeC2atUqrrjiClauXHnC811yiffTgO+++y66\nfuzTd4Zh8NRTTzFs2DAqK71/+NUFPMuWLfPr46effuKpp57i66+/Bk782gghhBBCCCHOfdYO9xB4\n0SIC+v4Ha9f/w9x2DFp0XxRb0zMCqMH+66UqNXY84QGUXmah4AYbBaOslFxipuJ8E9UpKq5IBUMD\ntayY4MyNdF6ziFvKN7P0smj23RjPtutaMG9QJA92DeaWwHxaaac/3fapqPHA5kIX83bbefS7MoZ9\nUkjSO0fo+N4Rrv2skKe+L+PdvXZ+KHLi8DR/MCWEEEKIX49UAolzQlBQEPfccw+DBw/GbDazePFi\nHA4HN9544ynNXXzvvfeyZcsWHn74Ya6//noSEhI4ePAgixcvJjw8nHvvvbfBMYqi8OCDD9K/f39c\nLhfLli3Dbrdz3333+c55ySWX8PbbbzNx4kQuu+wyCgoKeO+993jwwQd58cUX2b17N0uWLKF///6+\nfnv27Mldd93F8OHDiY6OZtOmTaxatYquXbs2qHY6XXXVTHPmzGHfvn3069fPF9C0b9+e8847jx9+\n+IHWrVvTvXv3U+rzxx9/pEuXLn7bfvjhB2644YYGbQcOHEi/fv348MMPcTqdpKWlYbfb+eyzz8jO\nzmbChAknrcJpzKBBg0hKSuK///0vhmHQtWtX8vPz+eCDD0hPT2fdunW+tmazmYkTJ/LEE09wxx13\nMHr0aKKjo8nMzOSDDz4gMTHR7/VozIABAxg4cCCrV6/m7rvvZujQobjdbj777DM2bdrEX//6V4KD\ngwHo3LkzV199NcuWLePhhx9m8ODBFBYWsnDhQkJDQxk3bhzgrZayWq2sX7+euXPn0rp1a19oJoQQ\nQgghhPhtUBQFJSAeNSAeYo59wM1wVaBX7kev3IdekeV9tB9CDWrrd7zryhupTk+G7U8DoAcqOAM1\nnPUnPNANtAoDU6mBqcTAaGVg2HNRAxNoE2KiTYiJ4W0DCJz3DGp5CY7oBPJiksgMTWSdpRWf6HFs\nNcWiK83/ud4jdp0jdgefHz72gUdNgdRQE50izHSK8D52jjSTGKyhylpDQgghxDlPQiBxTrj99tv5\n/vvvefvttyksLCQuLo6xY8dy6aWXntLxbdq0Yc6cOcycOZMlS5ZQVlZGREQEF110ERkZGY1Ow/bU\nU0+xYMEC5s6dS0lJCXFxcTzyyCNcc801vjbjx4/H6XSyevVqnnvuOVJSUnjssccYMGAA1dXVTJ8+\nnVdffZWkpCTfMRdeeCGjRo1i1qxZ7N+/H6vVytChQ3nggQd+9mKcgwcPZtWqVXz//ffk5OTQuXNn\nv/3Dhg1j586dDBs27JT73LFjB127dvU9d7vdZGZm0q1btwZtFUVh2rRpzJ8/n5UrV/K///0Pi8VC\n+/btmTZtGgMHDjyj6zKZTEyfPp2XXnqJzz//nE8++YSkpCQeeeQR8vPz/UIg8IZGM2bMYN68ecyb\nNw+73U5MTAzDhw8nIyPDF+CcyJQpU1i4cCEff/wx06ZNA7zTxD355JMMHz7cr+3jjz9OcnIyy5Yt\nY8qUKVgsFvr06cPdd99NXFyc7xoeeOABXn/9dWbPns3IkSMlBBJCCCGEEOJ3QjGHoEV0Q4s49neS\noXtQVK1BW71q/4k7UxU8YQqeMHC0AfgUbW85tm5PHztfaRFqeQm6GSyFuSQW5pLIWi4DJgG62Upp\nTCLZ4YlsDWjFalMCX6otOWKNaJbrrc9jwK4yN7vK3HyQfWx7sEnhvIi6cMg7nVzHCBPRtob3RAgh\nhBBnj1J/Oixx5srKyuRGnoFJkyaxYsUKZs+e7RdEAOzZsweAdu3anY2h/SZNnTqVFStWsGzZMiIj\nI8/2cMRZIL83Qpw++b0R4vTJ740Qp09+b/44DGcpnvJdxyqHqrIx7IfA0Js8xtz2RizJY33PtR++\nI+BfEykaZsETrHirhkr12kcDrVRHrYH6HzN0R8ay6tG32F7s8n3tLHGh6/ovUjXUlCirSodwE+eF\nm2sfTXQIN9MiQD3tD0bK740Qp09+b4Q4fb/F35uwsLBT/kdVKoGE+J3YvXs3H330EcOGDZMASAgh\nhBBCCCHOEsUSjin6Aoi+wLfN0J0Y9kPoldneryrvo+HIB2gwrZynbQfsdz2Fu/J5UHRcLRRcLfyD\nHMVhYCrzBkKmMgMlMpp+4aX0j4v1hS0Oj4H79X8QuHMzOeGJ/BDYiq9MLdlkbcmuwHiqNWuzX3+R\nQ2ddnpN1ef7rpYZbFF8w1CHc7AuHEgJPPxwSQgghxKmTEEiI37hvvvmGnJwc3nrrLUJCQrjzzjvP\n9pCEEEIIIYQQQtSjqBaU4GTU4GS/7Ya7Cr0qBzWwlf8BoeG4u7SD75quHjKsCq5YBVdsXTi0D77L\nIPDi/wLeKdmsmkJ4QQ6qvYDOFQV0MTYxuu54RaEkJJZ9oa3Yao3nW1MCmYEJZAa1pNwU2DwXXk+p\n0+DbfCff5vuHQyFm5VgwFOZ97BBuonWwTCsnhBBCNAcJgYT4jZs+fTqHDx+mS5cuTJw4kfDw8LM9\nJCGEEEIIIYQQp0AxBaGFdWp8nzkYS+o49Koc79RyVQdAd5ywPzWwFYpSLzzRddTD2VR1MVHVRfNW\nDpUZmMq8U8uFlOeTdiSP8z2QUa+fZ298hS+J46cSFwU13iBKMXQMFGjmqp0Kl8HGAhcbC1x+2wM0\nhVY2G20CdHpWlNMuzET7MBMpYSZCzL/e9HZCCCHEb52EQOKsevrpp3n66adP3lA0adGiRWd7CEII\nIYQQQgghmpliicCceK3vuWHoGDX56FU5GPaD6FUHfF947N5jAhP9O3G7cA69AZfyKWgluCMV3JHg\nwL/KRq00MJXraOUGWjnc06uK+yNsKOZoCqo9/FTiwvXtVwxZ+QpZwS3ZYo1ne0BLdga1JDMwgUPW\nSIxmXneo2mOwp0plT5XK/wor/PbFB6qkhppoF2YmNcxEu9qv1kEamipTywkhhBD1SQgkhBBCCCGE\nEEIIcY5TFBUlIA41IA6ot96QYWA4izCqDoApyP8gixXXyFtwfbsO7CVN9q0HKziDNUio3bDjaazd\nJ2OKSiMmQOPiAA2zlofFXUEnZRfdCnei1pvVrcZkJTswju22OHYHxLMrIJ49gfFkBiZQaQpovptQ\n64hd54jdyTdH/aeWs2qQHGLyBUOpoSbah5tJDTURbpXqISGEEH9MEgIJIYQQQgghhBBC/EYpioJi\njQZrdJNtzInX1E4pdxDDfgDDUXjSfo9fp0jNzcEVoVBypdV73moDU7mBVq5jKnfTtuwgqRUH0IoM\nFI/3mLfPv4lprYaxp9yNq97yRin2oxywReNSm/dtKYcHMkvdZJa6G+yLtKqkhGokhZpIDjGRHGoi\nJdT7GCEBkRBCiN8xCYGEEEIIIYQQQgghfsfMCZf7PTfcVej2Qxj2Q+j2w37foztAtaDYYvyO8XRN\nxx1RBOz09hGg4ApQcLVoGKCoVQZahcHQxN0Ma7cLYi5if4WbnaVu9hVU8uTLE3ArKtm2GF/V0K7A\nePYExLE7MJ4jlvBmn16u2KFTXKDz/XFrDwGEWxSSawOhZF9IpJEcaiLKqqI08zpIQgghxK9JQiAh\nhBBCCCGEEEKIPxDFFIQW2gFCO/htNwwdw1GE4ShAOS6Ecfe/DGfWEcjZedL+9SAFPUgB5zZMZW2w\nthhAuzAz7cLMqEouADVdFeIopGVFAX+q2IaWb/immKtWzWTZWpAV0IJ9AbFsCW7LO3H9m+fiG1Hq\nNNhc6GJzYcOAKNSi+CqHkkNMJNWGQ21DTLQIUFElIBJCCHGOkxBICCGEEEIIIYQQQnjXHbLFwHFV\nQHVMCZejhqTWqxzyfuGubLJPNSDB77ly9CAA9o4mDJt/gKI4vBVEpnKDthVHSak4glapc7CmHfkt\nB7G7TOdgpQejtv2o/PXEOcvICmhBlq0F+wNicKrmM78BjSh3GmwtcrG1qGFAZNMgMdhE2xCNNsEm\n2oRotAnxBkRtgjVCLTLNnBBCiLNPQiAhhBBCCCGEEEIIcVJqQBxqQFyD7YazDL36MLo9F6P6CHp1\nLkZ1Lro9F+W4EEhPPo/qW+/D0Gc27Meq4LYquI9b3iiYA8xTxxF47VJqdJV95W72lrvpM3sNSUe3\nggKKAwwUDlij2BfQgr0BxyqJsm0x7LPFUmYOatb7UeOB3WVudpe5AUeD/ZFWlTYhGm1rA6K6cKht\niIlWwRpmVaqIhBBC/PIkBBJCCCGEEEIIIYQQZ0yxhKFZwtDCOjXYZxiG//PoOFy9e6NsWYThLDn1\nc5jDUFSNABU6R5rpHGkm0H4UeweNql5mFJeBVmkQXlFG78pS+lTuRK000Iq921U3lJgCuajn/2Nn\nUEu/vi26C83QqdasZ3YDmlDs0Cl26GxpZJo5VYGWQZovFEoM1mgdbKJ1sEbrII2EIAmJhBBCNA8J\ngYQQQgghhBBCCCHEL0JpZM0cNag1gf0XYrir0auPeKuGqnMx7Lm+KiLDUejfT0AL/048bpTKMjzB\n3v4Ns4I7QsEd0cQ4agy0Sjdz4z/ic20oX1elklXuIafSzSVFO1i2/XmOmsPIDohhvy2GbFus9zEg\nhv22WA5aI3Grzfc2mm7AwUoPBys9rDnqbLBfVSA+QPOGQnVfQd4KorqgKMgs080JIYQ4OQmBhBBC\nCCGEEEIIIcSvTjEFoIUkQ0hyg32Gx0H2rg1o7iLiIzUUc6h/A81E1esf4/p+AlT+dNJzGTYFt02h\ntWsDt593GXfHeOecc+sG9o/Xo2eC+YpqOlTl0Kkq21s9VGWglRhoVQZGtcJhSyTZtliybdEsi07j\nw5jezXIfGqMbcNju4bDdw7f5jbeJtKq0CqofFJloXe95lFVtNIQTQgjxxyIhkPjDmTlzJrNmzeK1\n114jLS0NgPT0dHr16sXrr7/+q4/njjvuYPPmzWzYsOFXP3ed9evX849//IP8/HxGjhzJo48+etbG\nIiA3N5cRI0Zw5ZVX8vTTT5/t4QghhBBCCCHEr07RrLjNcbjNcZhbtWuikYIpZQxaVTZ69VGMmqO1\nj3mgN6yu8R1mi/V9b1IVoivy0YMU3BEqNFFJhG4QaK+ka2UFPar2Em8uxgjQWWa/wK/Zku0voCsK\nB2zRHLBGc8AW5XssMIdCM4YyddPN/VDccLo5gABNISFIpWWQiYRAlZa108y1DNJICPQ+RkpQJIQQ\nv3sSAgkBTJ06lYiIpv6n13y++eYbPB4PAwcO9G0bP348JSWnPg9yc9N1nUmTJuFwOHjooYdo3779\nWRvLb837779Pjx49mv2eRUZGMnXqVOLj45u1XyGEEEIIIYT4vTFFpUFUmt82w9AxnCUYNXkY1Ue9\nU87V5PkCItUa69fe06MvzuBS4OumT6Qq6MGgByu4gO5k8UqojfvaDCOnwk12hYcDFU6Gfr0N53kG\nnjAF1W6gVYFaYqDZDZzVJg6qURy0RXPAGlUbFEXxVtxFGErzT+1W7THIKveQVe5pso1Ng4RAbziU\nEKTRqjYgSqh9bCUVRUII8ZsnIZAQwJAhQ36V87z99tskJCT4hUC9evX6Vc7dlOLiYoqLixk8eDCj\nRo06q2P5LXE6nbz44os88cQTzR4C2Wy2X+1nUgghhBBCCCF+bxRFRbFGgTUKwjqdtL2nY0888Wa0\nnBr0mnyMmnzw2E96nCUglvNjLJwfY/Get7QIs+6msqUZZ4LW6DERrhKi7MWkVRmodnBVaxghBp/Y\ne1Koh/naDSvcxNCireRaIzhkjeSwNdL3WK4FNFtFUY0H9lV42FfRdFBk1SA+sDYUCtKID9SIC6x7\nVIkL1IgL0LCZJCgSQohzkYRAQvxKdF1n165dJCQknO2h+HE6vSXyAQEBZ3kkvy179uzB7Xaf7WEI\nIYQQQgghhGgGWngXtPAuvueGuwqjJt8XCvl97yjAcBSh2lr4d+Jy4u6chid0J9B4qGKYFTxhCp5j\neQ//4C1SWnZiY7WNg1UeDlZ6uKhsF3+t/JKqVBOq3UCtNtDKvY/VNVZy9QhytUi/gOjLiM7sCWz+\nGSUcHsiu8JB9gqAIINyi+AKiFgGq73tvSKT6vrdqEhYJIcSvSUIgcVZNmjSJFStW8M477/Dyyy+z\nZcsWpkyZQv/+/QE4cOAAs2fPZvPmzVRWVhIVFcWFF17IbbfdRmysf/n2d999x4IFC/jpp5+orq4m\nNjaWtLQ0br/9dmJiYk44juPXBEpPTz9h+/rr9+Tk5DB37ly+++47SkpKiIiIoEOHDowbN45Onbyf\nOProo4945plnAFixYgUrVqwgIyOD8ePHN7omkK7rLFq0iOXLl5OTkwNA69atGTp0KDfccAMmk/dX\nt27tmKuvvpobb7yR6dOns337dlwuFx07duTBBx+kY8eOJ73/9cdVtw5Neno6vXv35i9/+QvPP/88\nVVVVrFy58ozHN2LECP7973+ze/duQkJCGDFiBOPGjSMzM5OXXnqJnTt3EhISQv/+/ZkwYQJms/mE\nr8Hw4cOpqanh3Xff5YUXXuDbb7+lpqaGpKQk7rjjDi688EK/9tnZ2cyaNYuNGzdSVlZGWFgYPXr0\nICMjg9TUVF87t9vN+++/z8cff0xubi4ej4e4uDiGDBnCLbfcgsVi8btvzzzzDM8884zfGlNbtmxh\n3rx5bN++HYfDQWxsLAMHDuSWW24hNDTU7xo0TWPy5Mk8++yz5OTksHLlSsrLyxtdEyg/P59Zs2ax\nfv16ioqKCAwMpEuXLowdO5aePXv62i1ZsoSlS5cyY8YMli1bxpo1a7jrrruk0ksIIYQQQgghTpFi\nCkIJTkINTmp0v6G7QPf/YKARE0/No//C2PQw2A+Aq/yUz3f/+UkolnDfc21GNR5doSa58YqiSEqI\nchbTvdrwTjtXDZ/ZuvKW+WI+tp9/rB/dw/zMVzlqDeeIxft11BLBEWs4uZYISk2BzVZVVOo0KHW6\nySw98QcmI6wK8QH1AqJAlbiAY9/HBmjEBqgEmpp/ijwhhPgjkhBInBNeffVVoqOjefLJJ0lOTgZg\n7969TJ48mRYtWvCXv/yF6Oho9u7dy5IlS1i7di1z584lOjoagLVr1zJhwgTatm3L+PHjCQ0NZc+e\nPbz//vts2LCBd999l8DAwFMez9SpUxtsO3DgAK+99ppfYJCfn8+4cePQdZ0xY8YQHx9PQUEB7733\nHhkZGcyaNYtOnTqRlpbGo48+yrRp00hLS+O6664jKanx/0gCTJ48meXLl9O3b19fULBu3TqmT5/O\n7t27fYFSncLCQu69914uvfRSLr30UrKysnj33Xd56KGH+PDDD7FYLI2eZ9SoUXTu3NlvXPXXoamp\nqWHatGlcf/31REZGnvH48vPzefLJJxk5ciRXXXUV7733HrNmzULTND744ANGjhzJlVdeyfLly1m6\ndCktW7bkpptuOvGLhLeKqe51v++++6ioqGD+/PlMmDCBN954g27dugGQlZVFRkYGmqZx7bXXkpiY\nSG5uLosXL+a2227jzTff9E3p9vzzz7N06VL+9Kc/cf3116NpGps3b2b27Nns3buXadOmMWrUKAID\nA1m0aBGjRo2iV69evp/b1atX8/jjj5OSksL48eMJCgpi+/btvPvuu3z77bfMmTMHm83muwbDMHj2\n2We55JJLiIuLw2q1NnqthYWF3HrrrZSXl3PNNdfQrl07ioqK+OCDD7jrrrt44YUX6Nu3r98xCxcu\nRFVVJk6cSLt2TSykKoQQQgghhBDitCmqGdTGP7wYkPY8AIbHieEswqgpxHAUojsKa6uICr3bagow\nXKWgmMAc5teHyWrFFRkINB2oGBYFj8VbVeQCBvAT6FHsMffhYKWbGg+0cJVxfcG3lPUz4wlW0Gqr\nilS7gVpo4KnRKPSEkKeHc4hIjlgj2RMQx4xWlzXXrWqgxGFQ4nDz00nCohCzQoztWCgUG6ARE6DS\nIkBrsD1ApqITQogmSQh0DguYev9ptTfMVmoentZgu+m7LzB/8eFp9eXqfznui65osN328lMolWUA\nVD/+0mn1ecLzuVz83//9n9+2//znP4SEhDB79mzCw499GqZnz55MmDCBefPmMWHCBMBb5dG1a1f+\n9re/0aZNGwAuv/xyVFVl3rx5fPXVV1xxRcPracrx67HU1NQwa9YsgoKCf+t3vQAAIABJREFUeO65\n53zb9+3bR2pqKsOHD+eyy479Byk1NZX777+fpUuX0qlTJ+Lj432VKXVVJU3ZsWMHy5cvp0+fPrz4\n4ou+xRevueYaHnzwQVauXMmf//xnunQ5Vqa+bt06pkyZwiWXXOLbVl5ezvLly9m2bRu9e/du9Fyd\nOnXy3dvGxrVjxw4mTZrE5Zdf/rPG9+233/L666/71j9q3749t9xyC2+88QbTp0+nT58+AFx44YUM\nGzaMb7755pRCoKqqKtq3b89jjz3m23beeedxxx138NZbb/HPf/4TgOnTp1NVVcWsWbN8wRBAv379\nuOWWW5gxYwYvveT9ef70009JTk7m2Wef9bUbOnQorVu35scff6S6uppOnTqxb98+ADp27Oi7b06n\nk+eee4527drx5ptv+gKdYcOGkZKS4guYRo8e7es7NzeX22+/nVtvvfWE1zpr1iwKCgr4+9//7vez\ndtlllzFq1Cj+/e9/NwiBDh8+zIIFC3yVWUIIIYQQQgghfj2KZkEJiIeApqdoM3Q3hqvM97d1HUfG\nRFyHu6Fkv4PhLAbjxFOx1RmSFM8VKS0wDINih05ZZjGsB1eMgidMxdXIMQHYaYudtvph1BqocZi5\nwJbJhMJbKai3TtHfspdyZelm8m2hHFSjOGqJ4KglnDxLKAXmMPIsYeRZQrFrtkbOcvoqXAYVrhOv\nV1QnxKwcC4pstUFRwHEBkk0CIyHEH5O8M3gO03ZuO632hq3xNV2U4oLT7stzXo9Gt6t7f0QtLTqt\nvk7F4MGD/Z4fOHCA7OxsBg8ejKZpVFRU+Pb16NGD0NBQNm3a5Ns2ZswYxowZA3grK6qqqjAMg5Yt\nWwLeN9p/jqlTp5KVlcVzzz1H69atfdv79OnjCzAAqqurcbvdxMXFAXDkyJHTPtfq1asBGDlyZIP/\nBF511VWsXbuWNWvW+IUssbGxfgEQeAOe5cuXU1R05q+XqqpcfPHFP3t88fHxvgAI8FWlREdH+92/\n6OhoIiMjT2vMI0eO9Hveq1cvwsLC2LJlC+B9Tb777jtSU1P9AiDw3qOUlBQ2bNiAw+HAarWiaRoF\nBQXk5ub6rd80duzYk45ly5YtFBUV8ec//xmn0+lbbwlgwIABvPDCC2zevNkvBDIM44ShYJ3Vq1cT\nGhra4HWOi4ujd+/erFmzhkOHDvntu/jiiyUAEkIIIYQQQohzmKKaUKxRje4zt7wCc8srMAwdXBUY\nzmJ0RxGGoxjDWYzhKPI+1hRi1BRhuEtRLN6+FEUhyqYRE2SgxyagBxaffDCqgh4IlkA3Q9hOq1Ab\nVZUKdrcBQOeqQ3QNzaFskIXzdQO1Bm9VUY2BWo33scLA5TBR6g6iyBPCpLjr+DS4Ox6OTWun6R6S\na/LJs4RRrgU0y3R0dYFRVvnJA6Mgk0KUTSXa96X5vo+q97yuTZBJafD+hxBC/JbIu4PinFD/zXaA\n/fv3A/DFF1/wxRdfNHqMYRi+791uN/PmzePTTz/l8OHDuFz+n23xeE7tEzONWbp0KZ988gljxoxh\n0KBBDfavWrWKhQsXkpWVRXV19c8+b3Z2NgApKSkN9tVVOR04cMBve6tWrRq0ratCcbtPXF59IpGR\nkQQE+IeLZzK+41/fuvV+6sKy4/edzpgbm1YvJiaGvXv3YrfbOXToELquNzreujFnZWWRm5tLUlIS\n48aN41//+hd//vOf6du3L+np6fTp08cv/GtK3c/ta6+9xmuvvdZom6NHjzbYdvz9OV5FRQXFxcV0\n69YNTWs4H3SbNm1Ys2YNBw4c8Fv/6mT9CiGEEEIIIYQ49ymKCpYwFEtYk2sUQe37JMdVDOntu1H1\n3HzUH6fWhkWFGK4yTjTNnPekZr4Y4T1XmdMg1+4heX8luq02DKkNjPTAxsORAOy0ws6bzGB+xUAe\nLz4220eio4jMDQ9j76Dh0jQq3AGUeIIo8IRy1AjnENEcMUeQbw6lwBJKgTmUo5YwCixhjZ7rdFW5\nDaoqPRyoPLX3bGwaRNs0omwqMU0ERXVhUpRNJdQsoZEQ4twiIdA5zHNe99Nqb5gbX0vEiIw57b70\n6IZvzgPoqZ0xaqeDa07Hr9djt9sBuOiii/yqJuqr/w/q3//+dz755BO6dOnCo48+SlxcHCaTiY0b\nNzJ79uwzHtfOnTt54YUX6N69O3fffXeD/R9++KFv3aJx48aRlJSEzWajvLyciRMnntE564Kk48MX\nOBbsHB82NbXmz8/V2DpKZzK+utDneD933CaTqdE+goKCAO/0bHU/S42NFxqO+frrr6dt27a+NXy+\n+uorALp3787EiRP91oQ6XlVVFQA333xzg6nZjj9fHYvF0uT9qXO611DndNbBEkIIIYQQQgjx26Yo\nind9oeO3qyZsXY9NwW8YBrgrayuJSjCcpf6PjmJQVd/7LuFWhXCriqVzV2pc5UDBaY0rPCicbpg5\nWu2hoFqnhdP7vlJVFxN6sIIZB7E4iKWYznVjdhqoDgOlxlthVKiH8Hb4AF4sG0aVcexv47FHvuI8\n+2EKzKEUmkMotHgfC8yhFJhDqNRsP7vSqMYDh6o8HKo6tdDIrEKkVSXSqhJx3GOkrd73dc8t3kez\nKsGREOKXISHQOay51txxXzAY9wWDT97wFNTc+0yz9HMydW9eW61W0tLSTti2sLCQlStXkpiYyKuv\nvorNdmzu2ZycnDMeQ0VFBY899hjBwcFMmTKl0Wm1FixYgKZpvPLKK74qmJ973ro3+uve+K+v7k3+\nupDjbDiXxud2u3G73Q1em8rKSjRNIzQ01Pez1Nh4ofExX3DBBVxwwQXU1NSwZcsWVq5cycqVK7nr\nrrtYsmQJISEhjfZV10doaOhJf25Px6leg4Q+QgghhBBCCCFORlEUMIegmEOAtqd8nPP6OzDKB2Ep\n+8kbFlUXYVQXeqenc5dh6JWA3uC46zrEc2PrWABcuoF9/V7YAvoJlg4yLAoeiwK1f36HYucuVvKv\nsuF+7YYXbuTS0K2UX2hGdeANjmofVYeBXq1id1mo8ARQpgdRqIfwWvSlrLOeR5l+7H0Ak+4m1lVO\nsSmYGu3nfWDVpUNetU5edcN7cSIhZqXRgCjCVm9bvX3hFpVQi4IqVUdCiJOQEEick5KTkwHYvXt3\no/tLSkqIiIgAvOvuGIZBt27d/AIgwLcuzOkyDINJkyaRl5fH9OnT/abYqi83N5fY2Fi/AOjnnBe8\n1/7111+TlZXVoN+66cbatm17xv3/XOfa+LKzs/2qc9xuN3l5eURGRqKqKomJiWiaRlZWVqPH79+/\nH4vF0ujUaTabjb59+9K3b1/Cw8NZuHAhmzdvbrBOUp26n9sffvih0f2lpaWEh4ef7iUSEhJCdHQ0\n2dnZeDyeBlPC1d33pKQkv/WzhBBCCCGEEEKI5qSFdkAL7dDoPl+FkbPEr7JIizi2Pq9ZVQg/ryPV\nGQ+DcwZgNNpXY1yKlds7R5JX7aGgRie/WifBU4FhVUBreno6DTfhVBBOBW04yiz2MLP8UiaV3OBr\nc549l60bH6fifBMuk0aNy4zdbaW8Njwq0kMo0EM5SjhHlAiKTCEcsEWzJaTp6flOV926Rqc6TR2A\nqkCYRSHM4g2Fwq0qJqeFEJNBYmkZ4da67QrhFtXbzqoSXnuMJtVHQvwhSAgkzkmtW7emTZs25OTk\nsGHDBtLT0337duzYQUZGBnfeeSdjx44lMjIS8IZB9W3YsIFvv/0WAIfDcVrnnz9/Pl9//TV33nkn\nvXv3brJdZGQkpaWl1NTU+AKovLw83n///QbnrXvj3ul0nvDcgwcPZu7cuXzwwQcMGjTIV35tGAb/\n/e9/ARpdm+jXcq6Nb9myZTz00EO+599//z2VlZW+6dhsNhv9+vXj66+/ZuvWrfTo0cPXdvPmzeTk\n5DB48GDMZjOZmZn87W9/46abbmLEiBF+56mr8qmbfk5VVcD/Ne7ZsyeRkZGsXbuW7OxsvzBs1apV\nPPXUUzz99NNcfvnlp32dQ4YM4b333mPVqlV+xx84cIBNmzbRsWNH4uLiJAQSQgghhBBCCHFW+FUY\nBSU22c6IisVz0TACjSvAVYnhKsNwlnkfXWUYjhIMeyFUF2I4SjHc5RhKDRZrCJN6+68LFLDdij2w\n4dq5J1PiCfZ7Hun2Tu9ek6yhByhouAnBTQhVtKTwuAswUFzgcJnZbY5n5NHHsBvHPpT8933v09+d\niR5jUKwHU2yEUGCEcVQJ4wgRFGkhlJiCKDUFUWIOokKzYSjqaV8DgG5AicOgxOEB6sKj2rd7j1ae\n9PhQs0JovWCoLkjyhkpKvRBJJczibRtq9lYgBZlk7SMhfiskBBLnrFtvvZUpU6YwceJEbrzxRlq3\nbs3+/ftZvHgxkZGRvjfCExIS6Ny5M5s2beL555+nc+fO7Nq1i08++YSnn36ahx56iC+//JLU1FQu\nueSSk573p59+4vXXX6dFixa0bt2azz//vEGbTp06ER8fzyWXXMLbb7/NxIkTueyyyygoKOC9997j\nwQcf5MUXX2T37t0sWbKE/v37ExUVhdVqZf369cydO5fWrVszZMiQBn2fd955XHfddSxevJiHHnqI\nAQMG4PF4+Oqrr9i4cSOjR48mJSXl59/gM3Qujc9isZCZmckzzzxDjx49qKioYP78+ZjNZm6++WZf\nu3vvvZctW7bw8MMPc/3115OQkMDBgwdZvHgx4eHh3HvvvQC0a9cOq9XKtGnT2LNnDx07dkTTNPbs\n2cP7779PcnKyb5q3usqhRYsWUVNTQ/fu3enSpQsTJ07kiSee4I477mD06NFER0eTmZnJBx98QGJi\nIv379z+ja73tttv46quvmDx5Mnv27CE5OZm8vDyWLl2Kpmk88sgjP/NuCiGEEEIIIYQQvx5F0cAS\nhmIJg1OYVd4wGlYNVf/tFTyFGzEXfI9RXQSOEgxXOYa7CsOwY+AApeFxt3eP44qQaAprdIpqdKK3\n6xhbQT+VmeAUBcMCFoubLhykxvA/qFfFfs6PyqK8RxPr/7oNVGfdukeA0+CLoK6847mIZfZjH4KO\ncZbxyIGPMEJ0StRg8pUw8pQwik0hlJoCvSGSKYga1XzG6x6VuwzKXae+3lF9quKdws4bDNU+1v/e\nt02pDY7UY+1rt4WYFalGEuJXICGQOGe1a9eOSZMmsWrVKhYvXkxFRQUREREMGDCA8ePH06JFC8D7\nSZMpU6bw/PPP+9Zu6d69O6+++iopKSmMHDmSTz75hBkzZjBw4MCTnnffvn14PB7y8vJ44oknGm3z\n1FNPMWzYMMaPH4/T6WT16tU899xzpKSk8NhjjzFgwACqq6uZPn06r776KklJSbRo0YIHHniA119/\nndmzZzNy5MhGQyCARx55hLZt2/Lf//6XF154AUVRSE5O5sknn2T48OGNHvNrOpfG989//pOXXnqJ\nV155herqalJTU7nrrrvo0OFYeXqbNm2YM2cOM2fOZMmSJZSVlREREcFFF11ERkYGLVu2BMBkMjFz\n5kzmzJnDV199xUcffYTb7SYuLo7rrruOW2+91VcJ1KNHD6666ipWrVrFnDlzeOyxx+jSpQuDBg1i\nxowZzJs3j3nz5mG324mJiWH48OFkZGQQHBzc6HWcTHh4OHPmzOGNN97g008/paioiJCQEHr16sVt\nt91Gu3btfv7NFEIIIYQQQgghzlFNVZ2Yos+H6PMb3WcYBniqvcGQqwLcFRiucuJD2tMy0Hqs78iu\n1ETeh6ovxNBrMBQXnEI2UU0gg1oG+MKkwhoPke7KE4dJJgXdBAQqvtqdi/iJrWVt/UKgVo5iHjr0\nMYXXWPCEHKsUUlzeSiTF6Q2TDDe4XCacHhOHlCiWRvz/9u48Torq3v//q7eZYVgGRxRE2cGjuKFe\nERU0Iip69UtcQCMuISgqXhfACFdFRFGucQ0/JWrciCYaoiZGEzEkBiKuETGK4hFGEBFkG5bZeq/f\nH73QPdMD08Aw3c37+XjMo7qrTlV9+tQczlCfPqf688TWM6lztn2+wZsW0yW0nmCRl/WUscHTjq3e\nVmzxlLLV24qQO/tbxFEHtgQdtgSzTyClauuLJ4SSyaL0JFIbn4s2vtiybcrrNvEkUhufizZeN8We\nxn9HRPZ2rkxZdMneli1bVJG72dKlSwF0c1syGjZsGBs3bmTBggUtHUpOUbsRyZ7ajUj21G5Esqd2\nI5I9tRtpKY4TgXBNPHkUSyA5oa1QWxkbceTfjOMKQmk7ig8dn7Kfg+eZBwl4PibYdXNW57xn0wXM\n3Hp28v3gTYv523+ms+7i4thzj7LQZ+VjaVPU/WHxwwxt+wlbT45npyKxRJI7GFs6IReRkJtgxEsg\n7MMfKeL1smP5K8fwfuCQ5HFah/2cs/EToiUuNrlas9ZdxhZvKVs8pVR5WxHdyWntdgevC1r7XLRN\nJoniCSOvK55ASk8oNUgkJRNNsaVPI5T2KvnY35SVlTX5l1QjgURERERERERERETiXC4P+Nrh8rXL\ncj8X0dE34w1V4wluwglXxUYg1Vbi1MaSR/g3x5NK1RCtwYn6ibYu4pbjuvGzsv2pDETZFHBo83kR\nwS+KcRqZVa4xEcdFbcooIICycB2OL+V+sceF44FISeo9ZIciQhQRoi21/Ix/EN3qSksCHRSo5LdL\nHmPDsCIi7eMJn5CDOxwboRQNu4mGXYTDXkIRD8GIlx9c7flr2dE8ufUMqpzS5LEGbv6K3qEf8JSE\nqaQtG1yxn63xhFK1pySrpFJ4N41MSij2QGuvm1Jv7PlHrX2u5OtSr7veexetfe7k69J44qk0sX9K\n2VZeF26NWJI9TEkgERERERERERERkd3E5WuDy5fddPClQPvUFV1OJXDWyRSv+Rf4N+HUboLAFgjE\nEkhOpAYnXEc0WodDEFwhol6HsMvHLb1CFJV1YHMgyuZglC6f+7NOJgFUR0vS3pdFagFwvClJDJ+L\nqA9oFVvnwsFHCB+h+Geq5hBW8VzVYEiZR+mq1W9zQfH7bPmv9LnzktPdhRyciIto2E044iYU8fJx\naS/+GO3P72sGbau3iJ//WfU39infStjrZqtTylZK2ewqpZK2VNKGja42bPWUUuMuJtDEZygFIhCI\nRKkMZFdnTZFIFLVOJJHiCaPUZFOpNzbNXat44qjU66LEk/66NL6tVXx9Yp3PranxJJ2SQCIiIiIi\nIiIiIiI5xuXy4O18alb7LP36K4a7wvTp03bbyiMfJFL5BcVbvoTAVpxgNdFQNZFwDdFIHU40AATA\nFcLlCYMnissFh+zblh/v04rNwShbg1EO8QcBdiqhVFNvdFLbSF3G4zg+V3x9Ionh4CWClwiD+JKV\nVfumJYH2DVVz7/Lfs7FvEeEO2xk5FHVwhcEVhkDEiy3uzFXrr2NleL9kkZ+umcd/133Cvl03Uxct\npjZaTA3F1DglVDklVLtasZVWbKWULZSy2dWaZUUdWetuT5CmV0pt2KE27LChyXtkx+MimRhKTRI1\n+tqz/URTSbxM4nWJx0WxJ7YsUsIpLygJJCJ56bXXXmvpEEREREREREREcovL03Bdu/a4252Em5Oa\ndAjHiULEz/kuNxd4UkYDBQZRM2wWRev+QcS/hXCgikiwhmi4FiJ+iPqBIC5XCJcrjMsTwfECHjip\nc1uqgrA1FEsolUUD6VPUNVFdg2SSPxbzju5yu104ReAUgY8Ih/Md9R/wfvzWZZzNIjb3Ksp4iMbM\nqe3H6PXXJ9+3igT48qObcY4N4yqPEol4CEc9hKIeQlEvwaiXQNRLIFqEHx910SI2u0r5W9lR/LPu\nCCqj2xJ4B/o30jm8CZ8vzGZXLPG01dWKOncxEXeGaw1EHKgOO1SH98wj7Es8JJNCiZ/i5JLk+1be\n1PWuhvt5G9nP0/h+Hj27qUmUBBIRERERERERERERAFwuN3hLG24oLsHp3A1v55/hBYoblsjIcaK8\nUu/5Pq6zphHauBS2fE2wbivhQDXRUA1OqAYiflxRPy4ngJsQblcItytMTWkp7VqX099bRHUoSlXY\n4YC62HxtaVPUNVFtNP0TtI4EcJr6oVLUT0yVRoJ0CVRS2cZHaF8PEG7Scc7hY85ZcxuVwW1JoKtX\n/4OfV/2Zyv+Xcg7HgQi4IuBEXDhRcCJuolEXkaibb30deNs5grs3X5R2/HsrXqLL/uto3dqP3/HF\nfiiizimiliJqKaaW2OinalpRTQmLW3Xhh0h7/NupGH8E/BGHLQ3Sas3P6yKZXCpyQ5HHRbHbFVt6\nwOeObSuObytKbEt5X+yBqs1eitxwQLA6ua04fiyfO5Z0yrTfttex8xd7XHhzMDGlJJCIiIiIiIiI\niIiINAuXq+E0bU67ffC0609r+tO6icdpD4yK/2w7UEeqR8/BvfFrgtWVBOqqCPurCPurcUI1OKE6\nnHAtrkgdrmgAtxMg6POysW17Bh7Unk0hH9WhKNUhh7rSMtYWlVFCXVafz19vXrtW0fi0eTuRmKpz\n0kchtYoGG45ycrnAu230kwtwEcUNeIlwMGtYW9c+fR/H4ebv3mBrTy+B7plHEDXminU38Pe6o5Lv\nr1v1FtNXv0jVuR6IQDTqwom4iURdRKNuIo6bSNRN2ImNgAo7Hr4p2o/3fYfwyJZz04596Q/v0LvN\nGvZpVYUfH36niAA+6iiiLp6YqsNHDSXUuoqooZhVvn3Z5LTF7xQRdqAq5FAV2tUEVLzeV2zZxeOA\n20VaQqrYk5JIcrsoiienityxxJHPU/91ynYP3HFs2S7HpCSQiIiIiIgUjMrKSubOnct3331HOBzG\n6/XStWtXhgwZQnl5eUuHB8DChQuZOnUqK1euJBKJ4PF46NatG3fccQfHHntsS4cH5Ec9Qn7EWVFR\nwWOPPcbixYsJh8O0bduW3r17M3bsWHr16tXS4eWNfLjWkD9x5rpEPX766aeEw2E6duyYc/WYaNsV\nFRXJa622vXPyod3kQ4z5oFnq0eWC4hKKOx/Z5JFJAL2A/vVXnj8RgGg0TF3QT62/Dn9dFcHarYTr\nqojUVREJ1ECwGidYC+FaNrbrgG//XozZv3XyWT/eqjb8tcepdPUvo9WGWjzuCG53BLcnitvj4HY7\nuLxOxjvzGZNAnuyTSYF6iSmfE8GNg5Nd/gfInOQq8oRj88ABbhwgwvYO3ZmNlAerGySB/q/iRUqP\nqaGuZ3ZpinEbRjG7ZmDy/YXrPmDmsqcInefgRGOjo6JRN07UlRwhFU0mp9xEoh6+95WzsLgHUzZd\nknbsK9bM5/BW39KpbBNBvAQcL0G8+Cki4PgIuHwEHC8BfLHEFUUsLenE8mhH1kXaE3Vio6NCoTCR\naIioN8AmigjhJYQHh+08uyoDJYFERERERESAuro6nn/+eZYvX05xcTHFxbHbAKFQiC+//JJFixbR\no0cPLrvsMlq1atUiMa5evZoRI0bwww8/4PF4KCqK/Sc/Eonw1VdfcdFFF9GpUydmz55N586dWyTG\nfKjHfImzsrKScePGsXz5cnw+H44T+4ZqOBzm008/ZdSoUfTo0YOHH35YNxC3Ix+udT7Fmevq12M4\nHJtCKZfqsX7bLimJPS9FbTt7+dBu8iHGfJBv9eh2e2ld0obWJW2g/X47cYRyOHdKxi2RqENNPFlU\nG4pSGwrGEk3+WmpxuK3rflSHPdSEo9SGHao7D+PFzYfSqXIp3qgfT9SPxwnidYJ4COF1QnhcYbzx\nH48rwupW+2Aj6X9LFkXDVLuLcdzZj5ipnwQqiYbYbsanEcEMD24qiYbIMicCNExytY4EaB+tY31J\nCS4cXICbyHaPsT+b6Rze2CAJdNOqv9Kj9xpquvsa2TOzuzcN5/GtQ5PvB2/+gjc/u491PynGKUpJ\n5EVjP04UcIgnrVw4jotqVzGrfeWcuWZKfGzX7uFK/CGab4wx5cAU4MfAAcAG4K/AZGvtmibsfyIw\nGRgAtAK+Bn4NPGqtzbpStmzZkp8VmcOWLl0KQJ8+fVo4EpH8oXYjkj21G5Hs5Vq7qaurY8aMGdTW\n1iZvxmXi9/spLS3lhhtu2OM3GFavXs3QoUMJBALJ5E8mwWCQ4uJi5syZs8cTQflQj5AfcVZWVnLF\nFVekxVhXF5taJjWWRIyzZs3SzeIM8uFaQ/7Emesy1WNlZSVAWvvItbadidr2juVDu8mHGDPR32kS\nisaSTHVhB38k9tofdqiNxNYF/AHCgRqi/mqigRqcUG1sZFOoDle4Dne4DnfET9SJ8E37A/kweARr\nI22Tx+u/9jOGbP03h3WpwEcYnzuMzx3B647gdUXwuKN43FHcLge3O4rL7VBdVMK/w725fP1NabFW\n/eunBE8Ef6/sskpXrb+Wv9b+V/L9mO//zqMrn2X9xY3/jmWyKlzO8d/fn7buiw9v5sBD1lNzZHbj\nZ6ZUXsxTVacn35+9cRF//vwB1o4sjj28qIkijouuK59Kvt886sCM5crKypp80LwcCWSMaQXMAw4B\nHgU+BvoANwODjTHHWms3bWf/wcCbwHfAnUAlMAyYQWw04E2N7SsiIiIiIrnl+eef3+GNBYCSkhJq\na2t5/vnnGTNmzB6KLmbEiBE7TAABFBUVEQgEuOiii3jnnXf2UHQx+VCPkB9xjhs3LqsYx40bx6xZ\ns/ZQdPkjH6415E+cuS4f6lFte/fJh+udDzHmA9XjnudzuygrclHW6J+dJcCuTDHWCTgDiI1sCkQd\nAhHwR2JJorqwQyD+OrYk+XrGwbGEVGL7A72fxhPcgjtYjSvsT/54In7c0SCeSABPNIg3GsDtBPE4\nIT5q35ul4e64gMSojC9ad+GJjoPpt/KbWELKFf9xR/E0lpjylbDa1TBRX+SEcXZiEE6o3lx7vmhs\nNGu2A3oyjZjaVXmZBCKWpDkCuM5aOzOx0hjzH+CPxEb4jN/O/jMBPzAoZdTQ88aYPwE3GGOetdb+\np3lCFxERERGR3aWyspLly5fTrl27JpUvKSlh+fLlVFZW7rFvZy+zH3e7AAAgAElEQVRcuJAffvih\nyd9qLSoqYs2aNSxcuHCPPSMoH+oR8iPOiooKli9fTtu2bZtUPhFjRUWFniOSIh+uNeRPnLkuH+pR\nbXv3yYfrnQ8x5gPVY+HzuF2Uul2U7nSWoWm/G6mGx5eO4xCKJpJPnQhGTiYYhUDEoTriEIw6BKMQ\njCegEtuCUYdgZNvr2zo7rNlQSSgKpe3ac1/vx3CFArhCdbhCdbjDAdwRP55wAG/EjysSwhMN4o4G\n8EZDeKIhPinrzuLQgWmJqS9bH8TEnhfzX98sxUcEnyuML5GcIhJ/HY2NnoonqjYWt2VJq8wjf3ZF\nviaBLgdqgKfrrX8NWAVcaoyZkGlaN2PM8YABnsowbdyjxEYEXQooCSQiIiIikuPmzp2bnFe+qYqL\ni/n73//OiBEjmimqdFOnTsXjyW6KC4/Hw1133cVrr73WTFGly4d6hPyI87HHHsPny24OeZ/Px8yZ\nM3nwwQebKar8kw/XGvInzlyXD/Wotr375MP1zocY84HqUZqTy+WiyANFHtdOpJLSLV26FoA+fdrv\nclzhaCLpdACByNHxpFNstFQw6sSm64tCKJ6YCkad9NdRh+k9Y9P6BaO7HA6Qh0kgY0w7YtPAvWOt\nDaRus9Y6xpiPgPOBHsA3GQ7RP758P8O2D+PL43dTuMl5OGXnqQ5Fsqd2I5I9tRuR7OVCu/n0008J\nh8PU1NRktd+iRYs4+uijmymqdBUVFbhcLkKhUJP3cblcLFu2bI/VcT7UI+RHnIsXL8ZxnOQzgOpr\nbP3nn3+eE20qV+TDtYb8iTPX7ageE88Gqi+X2nZj1LYbyod2kw8x7kgu/N4VQj3K3qU5201R/Ge7\nXIAn/pPUtBGo27MTs9u1uG7x5apGtq+ML3s2sr17Y/tba6uAzdvZVwrAK6+8wsiRI/nyyy+T60aO\nHMm0adNaJJ5p06YxcuTIFjl3wn/+8x9uuukmLr/8cp599tkWjUVg/fr1jBw5kscff7ylQxEREcl5\n4XB4j+63M6LRnfsK387utzPyoR535Xx7Ms58iDEf5Es95kucuS4f6jEfYswX+VCX+RBjPlA9iuSG\nvBsJxLbUV20j22vqlduZ/Xc9vRbXp0+f3XWovU4i87q76zAxp+hBBx2UPPb06dPZZ599mv16vfPO\nO0QiEX70ox8l1914441s2rSpxX5XotEo119/PYFAgPHjx3PwwQfr97aJZs+eTb9+/Tj44IN363G7\ndOnC9OnTOeCAA7K+Fs3VbkQKmdqNSPZyqd107NgxqxE2CT6fb4/FX1xcTCQSyXo/j8ezx2LMh3qE\n/Iizbdu2GW9eJUYPNPZsKK/XmxNtKlfkw7WG/Ikz1zVWj4kRQI09GyQX2vaOqG03lA/tJh9ibIz+\nThPJXi61m+aQjyOBRHa70047jWOOOabZz/PCCy8wf/78tHXHHHMMp512WrOfuzGVlZVUVlZy/PHH\nM3z4cI466qgWiyWfBINBHnnkEb7++uvdfuySkhJOO+00+vbtu9uPLSIiUmi6dOlCIBDYccEUgUCA\nrl27NlNEDXXt2pVgMJjVPsFgkG7duu244G6SD/UI+RFnr1698Pv9We3j9/vp3bt3M0WUn/LhWkP+\nxJnr8qEe1bZ3n3y43vkQYz5QPYrkhnxMAm2NL1s3sr1NvXI7s39j+4rstGg0irW2pcNoIHFDorFv\nJEpmS5cu1fBkERGRHHD66afv1M2FIUOGNFNEDU2ZMiXrkUCRSIQ77rijmSJqKB/qEfIjzuuuuy7r\nbz2HQiHGjh3bTBHlp3y41pA/cea6fKhHte3dJx+udz7EmA9UjyK5IR+TQMsBBzioke2Jr8s19hSn\nb+LLBvsbY8qAsu3sK7vZ1KlT6d+/P8uWLePGG2/k5JNPZsGCBcntK1euZNKkSZxxxhmceOKJnHvu\nuUyfPp1169Y1ONaHH37IDTfcwJAhQzjppJM477zzmDZtGuvXr99hHP379+eaa65Je7+9n1Tffvst\nU6dO5eyzz+aEE07g7LPPZty4cWnPHHrjjTcYMGAAtbW1/OUvf6F///48+eSTAFxzzTUNjhmNRvn9\n73/PpZdeyqBBgxg0aBCXXHIJL7zwQlriYfXq1fTv359p06ZRUVHBjTfeyODBgxk0aBBjxoxhyZIl\nO6z/H//4xwDJuKZOnZqsg+uuu47333+fCy64gKFDh+5SfIsXL2b06NEMGjSIs88+myeffBLHcfjy\nyy+5+uqrOeWUUzjnnHP4v//7vyb9YT1s2DDOPPNMNm3axOTJkzn99NMZNGgQl19+Oe+9916D8itW\nrOD2229n6NChnHDCCQwdOpRJkyaxbNmytHLhcJjf/e53XHrppQwePJhTTjmFiy66iCeffDKZMJs6\ndSqjRo0C4K677qJ///4sXLgweYxFixZx0003cdpppzFw4EDOP/98ZsyYwdat6fnlYcOGcf7557Nk\nyRJGjhzJwIEDqa6uTtZb4lokrFu3jnvvvZdzzz2XE088kSFDhnDTTTexaNGitHKvvPIK/fv359//\n/jeTJ0/m1FNP5Q9/+MMO61RERCQflZeX06NHjyZ/O9vv99OjR49GpxZqDsceeyydOnVq8migYDBI\np06dOPbYY5s5sm3yoR4hP+Ls1avXTsXYq1evZo4sv+TDtYb8iTPX5UM9qm3vPvlwvfMhxnygehTJ\nDXmXBLLW1gCfAccYY0pStxljPMCJwHfW2pWNHCJxd/ikDNsGxZcLMmyTZjRz5kw6dOjAbbfdRs+e\nPQFYtmwZU6ZMYenSpVx66aXcfvvtnH766cyZM4ef/exnbNiwIbn/u+++y4033si6desYM2YMkydP\nZvDgwbz11luMHj2a2trGHgGV2fTp0xv8XHvttQBpQ7nXrVvHVVddxTvvvMPw4cOZMmUKP/nJT1i6\ndClXXnllMhF07LHHcssttyRfT58+fbvfarjnnnt48MEH2XfffbnhhhsYN24cnTt3ZsaMGdx1110N\nym/YsIHrr7+e7t27M378eC688EI+//xzxo8fv92bDcOHD28Q1/Dhw5Pb/X4/v/jFLxg+fDjjx4/f\n6fjWrVvHbbfdxqBBg5gwYQJlZWU89dRTPPPMM9xyyy3079+fCRMmcMABB/Dqq6/y0ksvNRpzqmAw\nyIQJE/D5fNxwww1ce+21rFu3jgkTJvDZZ58ly1VUVDBq1Cg++OADhg0bxu23384FF1zAokWLGD16\ndNqUbg888ACPPPII3bt3Z9y4cUycOJEjjjiCp59+mttvvz1Zb4l6Gj58ONOnT0/+3s6bN4+xY8ey\nYcMGxowZw6RJkzjuuON46aWXuOaaaxr84eM4DtOmTWPIkCHcdtttFBcXZ/ysGzZsYNSoUbz55psM\nHjyYW2+9lcsuu4wVK1YwduxY3n///Qb7vPjii9TV1TFx4sQ9Mt2hiIhIS7nssssoLS3d4Q0Gv99P\naWkpl1122R6KbJvZs2dTXFy8w0RQMBikuLiY2bNn76HItsmHeoT8iPPhhx/OKsaHH354D0WWX/Lh\nWkP+xJnr8qEe1bZ3n3y43vkQYz5QPYq0PG9LB7CTngZmAFcDv0xZfymwPzAlscIYcwgQsNYuB7DW\nfmqM+QQYboy5w1q7Kl7OBYwDQsCsPfIpdqDuk59nVd7lLqak37QG68Nr5xP6/o2sjuU94HR8B5zR\nYL3/87txQrHRDK2OuT+rY25PKBRi8uTJaeueffZZ2rZty9NPP0379u2T648++mgmTJjArFmzmDBh\nAhAb5XHEEUdw++23J+dOHzp0KG63m1mzZjF//nzOOuusJsdT/xk9fr+fp556itatW3Pfffcl13/z\nzTf07t07OSoloXfv3tx44428+uqr9O3blwMOOIATTzwRgE6dOm33GUCLFy/m9ddfZ8CAATzyyCO4\nXC4Azj//fMaNG8ecOXMYMWIEhx9+eHKf9957j3vvvTctsbR161Zef/11/vOf/3DcccdlPFffvn2T\ndZsprsWLFzN16tS0UUA7E98HH3zA448/nkxEHHzwwfz0pz/liSeeYMaMGQwYMACAE088kXPOOYd3\n3nmnSZ1+TU0NBx98MJMmTUquO+SQQ7jmmmt4/vnnuf/+2O/ojBkzqKmp4amnnuLII49Mlj3ppJP4\n6U9/ymOPPcYvfxn7p+Stt96iZ8+eTJu2rS2dffbZdOnShS+++IK6ujr69u3LN9/EBhUeeuihyXoL\nBoPcd9999OnTh1//+tfJhM4555xDr169eOCBB3j11Ve55JJLksdevXo1V199dXJkUWOeeuop1q9f\nz9133532u3bmmWcyfPhwHn74YU444YS0fb7//nt++9vf4vXm6z/1IiIiTdOqVStuuOEGnn/+eZYv\nX05xcXHaFysCgQCBQIAePXpw2WWXtcg0uJ07d2bOnDlcdNFFrFmzBo/HQ1FRUXJ7MBgkEonQqVMn\nZs+eTefOnfd4jPlQj/kSZ3l5ObNmzWLcuHEsX74cn8+Xtt3v9xMKhejRowcPP/ywvvHciHy41vkU\nZ67LVI+pcqEeM7XtkpJt309W2266fGg3+RBjPlA9irS8fL0z+DgwEnjAGNMN+Bg4DBgPfA48kFJ2\nCWCBQ1LWjQX+CfzLGPMIsBm4GBgMTLbWVjT7J2iC6ObPs9vBk/kfSSewIetjOe2PzLg+umUJTrAy\nu7iaYPDgwWnvV65cyYoVKxg8eDAej4eqqqrktn79+tGuXbu06bdGjhzJyJEjY7E7DjU1NTiOw4EH\nHgjEbrTviunTp1NRUcF9991Hly5dkusHDBiQTGAA1NXVEQ6H6dSpEwBr1qzJ+lzz5s0D4Lzzzksm\nWBLOPfdc3n33XRYsWJCWZNl///0bjCzq27cvr7/+Ohs3bsw6hgS3280pp5yyy/EdcMABaSNR+vTp\nA0CHDh3S6q9Dhw6Ul5dnFfN5552X9v6YY46hrKwsOUVaXV0dH374Ib17905LAEGsjnr16sVHH31E\nIBCguLgYj8fD+vXrWb16ddrNlyuuuGKHsSxatIiNGzcyYsQIgsFg2jd9Tz75ZB566CE++eSTtCSQ\n4zjbTQomzJs3j3bt2jW4zp06deK4445jwYIFrFq1Km3bKaecogSQiIjsNVq1asWYMWOorKzk73//\nOytXriQcDuP1eunVqxdDhgxp8ZtxnTt35p133mHhwoXcddddfPvtt0QiETweD4cccgh33HHHHp0C\nLpN8qMd8iTNxs7iiooKZM2fy+eefJ2Ps168fY8eO1TRRTZAP1zqf4sx19etx0aJFhMNhfD5fztRj\n/ba9bNkyte2dlA/tJh9izAeqR5GWlZd3B621IWPMGcCdwAXA/wDrgKeAKdba7c79Za390BhzMnBX\n/KeYWLLoZ9baZ5szdsms/jcdly9fDsDbb7/N22+/nXEfx3GSr8PhMLNmzeKtt97i+++/b/BMmWwf\nxJvq1Vdf5c0332TkyJGceuqpDbbPnTuXF198kYqKCurq6nb5vCtWrADI+EdjYpTTypXpsx0edFDD\nR2QlvlWR+oyebJWXlzf4BsbOxFf/+ia+CZlIltXflk3MPXr0aLBuv/32Y9myZdTW1rJq1Sqi0Wij\nf4R369aNiooKVq9eTY8ePbjqqqt48MEHGTFiBCeccAL9+/dnwIABacm/xiR+b3/1q1/xq1/9KmOZ\nH374ocG6HX3Tt6qqisrKSo488kg8Hk/Gz7BgwQJWrlzJfvvt1+TjioiIFKLy8nJGjBjR0mFs17HH\nHstrr73W0mFsVz7UI+RHnL169eLBBx9k6dLYo2cTX4iS7OTDtYb8iTPXJerx6KOPBnKz3STatuy6\nfGg3+RBjPlA9irSMvEwCAVhrtxIb+TN+B+Vcjaz/GDi7GULbbdztj8iqvMud+VkiruIO2R+rVcfM\nMZUdmpwObncqLS1Ne594hs+gQYPSRk2kSh2Fcvfdd/Pmm29y+OGHc8stt9CpUye8Xi8ff/wxTz/9\n9E7H9dVXX/HQQw9x1FFHcd111zXY/tprr3HPPffQsWNHrrrqKnr06EFJSQlbt25l4sSJO3XORCIp\n0/DXRGKnfrIpdSqR3an+dUk9dzbx1Z/+ImFX4/Z6vRmP0bp1ayA2rUrid6mx4cT1Y77ooovo3r07\nL730Eh988AHz588H4KijjmLixIlpz4Sqr6amBoDLL7+8wdRs9c+XUFRU1Gj9JGT7GRIyXT8RERER\nERERERHZe+RtEmhvsLueuePteArejqfsuGATlBwxeceFdoPEzevi4uIdTomxYcMG5syZQ9euXZk5\nc2bafLzffvvtTsdQVVXFpEmTaNOmDffee2/GabV++9vf4vF4ePTRR5OjYHb1vIkb/Ykb/6kSN/kT\nSY6WkEvxhcPh5PDhVNXV1Xg8Htq1a5f8XcoUL2SO+fjjj+f444/H7/ezaNEi5syZw5w5cxg7diyv\nvPIKbdu2zXisxDHatWu3W6dyaepnUNJHREREREREREREUrlbOgCRTHr27AnA119/nXH7pk2bkq/X\nrFmD4zgceeSRaQkgIPlcmGw5jsPUqVNZu3Ytd999d9oUW6lWr17N/vvvn5YA2pXzwrbPXlHR8NFU\nienGunfvvtPH31W5Fl9ierqEcDjM2rVrKS8vx+1207VrVzweT8Z4IRZzUVFRxqnTSkpKOOGEE5g6\ndSoXX3wxmzdv5pNPPmk0lkTdfPbZZxm3b968uYmfKl3btm3p0KEDK1asyDjFYKLeM02NJyIiIiIi\nIiIiInsvJYEkJ3Xp0oVu3bqxcuVKPvroo7Rtixcv5qyzzmLWrFkAyQfHrVmzJq3cRx99xAcffABA\nIBDI6vy/+c1v+Ne//sWYMWM47rjjGi1XXl7O5s2b8fv9yXVr165l9uzZDc6beJZLMBjc7rkHDx4M\nwB//+Me05x45jsOf/vQngIzPJtpTci2+P//5z2nv//3vf1NdXU2/fv2AWCLnpJNOoqKigk8//TSt\n7CeffMK3337LwIED8fl8LFmyhAsuuCD5OVIlRvkkpp9zu2P/fKZe46OPPpry8nLefffdBsmpuXPn\nctZZZzFnzpyd+pynnXYaVVVVzJ07N239ypUrWbhwIYceemjGZyyJiIiIiIiIiIjI3kvTwUnOGjVq\nFPfeey8TJ07kJz/5CV26dGH58uW8/PLLlJeXM3ToUAA6d+7MYYcdxsKFC3nggQc47LDDsNby5ptv\nMmXKFMaPH88///lPevfuzZAhQ3Z43i+//JLHH3+cjh070qVLF/7xj380KNO3b18OOOAAhgwZwgsv\nvMDEiRM588wzWb9+Pb///e8ZN24cjzzyCF9//TWvvPIKAwcOZN9996W4uJj333+f5557ji5dunDa\naac1OPYhhxzChRdeyMsvv8z48eM5+eSTiUQizJ8/n48//phLLrmEXr167XoF76Rciq+oqIglS5Zw\n11130a9fP6qqqvjNb36Dz+fj8ssvT5a7/vrrWbRoETfffDMXXXQRnTt35rvvvuPll1+mffv2XH/9\n9UDsYaPFxcX84he/YOnSpRx66KF4PB6WLl3K7Nmz6dmzZ3Kat8TIoT/84Q/4/X6OOuooDj/8cCZO\nnMitt97KNddcwyWXXEKHDh1YsmQJf/zjH+natSsDBw7cqc86evRo5s+fzz333MPSpUvp2bMna9eu\n5dVXX8Xj8fDzn/98F2tTRERERERERERECo2SQJKz+vTpw9SpU5k7dy4vv/wyVVVV7LPPPpx88smM\nGTOGjh07AuByubj33nt54IEHks9uOeqoo5g5cya9evXivPPO48033+Sxxx7jRz/60Q7P+8033xCJ\nRFi7di233nprxjJ33HEH55xzDmPGjCEYDDJv3jzuu+8+evXqxaRJkzj55JOpq6tjxowZzJw5kx49\netCxY0duuukmHn/8cZ5++mnOO++8jEkggJ///Od0796dP/3pTzz00EO4XC569uzJbbfdxrBhw3a6\nTneXXIrv/vvv55e//CWPPvoodXV19O7dm7Fjx2KMSZbp1q0bzzzzDE8++SSvvPIKW7ZsYZ999mHQ\noEFceeWVHHjggQB4vV6efPJJnnnmGebPn88bb7xBOBymU6dOXHjhhYwaNSo5Eqhfv36ce+65zJ07\nl2eeeYZJkyZx+OGHc+qpp/LYY48xa9YsZs2aRW1tLfvttx/Dhg3jyiuvpE2bNjv1Odu3b88zzzzD\nE088wVtvvcXGjRtp27YtxxxzDKNHj6ZPnz67XpkiIiIiIiIiIiJSUFyp0znJztuyZYsqcjdbunQp\ngG5uS0bDhg1j48aNLFiwoKVDySlqNyLZU7sRyZ7ajUj21G5Esqd2I5I9tRuR7OVjuykrK3M1taye\nCSQiIiIiIiIiIiIiIlKAlAQSEREREREREREREREpQEoCiYiIiIiIiIiIiIiIFCBvSwcgIrIzXnvt\ntZYOQURERERERERERCSnaSSQiIiIiIiIiIiIiIhIAVISSEREREREREREREREpAApCSQiIiIiIiIi\nIiIiIlKAlAQSEREREREREREREREpQEoCiYiIiIiIiIiIiIiIFCAlgURERERERERERERERAqQkkAi\nIiIiIiIiIiIiIiIFSEkgERERERERERERERGRAqQkkIiIiIiIiIiIiIiISAFSEkhERERERERERERE\nRKQAKQkkIiIiIiIiIiIiIiJSgJQEEhERERERERERERERKUBKAomIiIiIiIiIiIiIiBQgJYFERERE\nREREREREREQKkMtxnJaOoSBs2bJFFSkiIiIiIiIiIiIiIs2qrKzM1dSyGgkkIiIiIiIiIiIiIiJS\ngJQEEhERERERERERERERKUBKAomIiIiIiIiIiIiIiBQgJYFEREREREREREREREQKkJJAIiIiIiIi\nIiIiIiIiBcjlOE5LxyAiIiIiIiIiIiIiIiK7mUYCiYiIiIiIiIiIiIiIFCAlgURERERERERERERE\nRAqQkkAiIiIiIiIiIiIiIiIFSEkgERERERERERERERGRAqQkkIiIiIiIiIiIiIiISAFSEkhERERE\nRERERERERKQAKQkkIiIiIiIiIiIiIiJSgJQEEhERERERERERERERKUBKAomIiIiIiIiIiIiIiBQg\nJYFEREREREREREREREQKkJJAIiIiIiIiIiIiIiIiBcjb0gHI3skY8xxwxXaKjLPWPhIv2wr4X+Bi\noBuwFXgbmGyt/bqZQxXJGU1tN8aYO4Ep2yn3S2vtTbszNpFcZ4w5C5gEHAOEgUXANGvt2/XKqc8R\niWtKu1GfIxJjjHGaUKyHtXZFvLz6G9nrZdNu1N+IpDPGHAbcCgwGOgCbgfeA+621C1LKqb8RiWtK\nuynU/kZJIGlpY4H1GdZ/CmCMcQGvAUOAZ4GpQGfgZuB9Y0x/a23FHopVJFdst92kuBP4IkO5pbs7\nIJFcZoz5GfA08C/gRqAtMA6YY4w5w1o7L15OfY5IXFPbTYo7UZ8je7fh29k2HSgj/veb+huRpCa3\nmxR3ov5G9nLGmKOBBUAQeBT4GugCXAfMN8b82Fr7uvobkW2a2m5SdrmTAupvlASSlvZm4ttwjbgY\nOJ1YRvaWxEpjzD+Aj4H7gfObNUKR3LOjdpMwP8NNOpG9ijGmEzAD+DtwprU2Gl//OvA+8N/AvHhx\n9TkiZN1uEtTnyF7NWvtypvXGmB8DvYGfWmtr4qvV34iQdbtJUH8jArcDpcB51tq/JVYaY14FlgB3\nAa+j/kYkVVPbTUJB9Td6JpDkusvjyxmpK621nxAbrneOMab9Ho9KRETyxRVAa+DOxI1sAGvtN9ba\njtban6eUVZ8jEpNNuxGRRhhj2gL/H/COtXZWyib1NyKN2E67EZFtesWX76SutNZ+BawDusdXqb8R\n2aap7aYgKQkkOcEYU2KMyTQyrT/wnbV2VYZtHwI+YvPUi+x1ttNu6pcrMsYU7YmYRHLQ6UAVsdEL\nGGM8xpjiRsqqzxGJyabdpFGfI5JmMrFpd66rt179jUjjGms3adTfyF5uSXx5cOpKY0wZ0B5YHF+l\n/kZkm6a2G+ptL4j+RkkgaWnXGWOWA3VAwBjzgTHmbEh+A6gcyNRZAayML3s2f5giOaXRdlPPCGPM\nF0AgXu5zY8xlezRSkZZ3CFAB9DPGzCfWHvzGmMXGmIsThdTniKRpUrupR32OSApjzP7EbmL/xlr7\necp69TcijWis3dSj/kYE7gE2Ab8xxgw0xnQwxhxB7Lk/DjBZ/Y1IAztsN/XKF1R/oySQtLQzgXuJ\nzS1/G9AHeCN+g6FtvExtI/sm5gZu28h2kUK1vXaT6izg8fjyRmIPVv2NMWbiHoxVpKWVE/tWz1+A\nd4EfA9fH171ojBkdL6c+R2SbprabVOpzRNLdApQQu+GQSv2NSOMaazep1N/IXs9auxg4AfAQm9pq\nPfAZcDyx5znOQ/2NSJomtptUBdXf7HAaIZFm8iDwIjDPWhuIr/urMebPwKfx7ce1VHAiOWqH7cYY\nMxt4AfgAeN9auyVebo4x5iXgK2CKMeYJa+3mPRy/SEsoIja370hr7e8SK40xfyE2HPxeY8xzLROa\nSM5qUrux1kZQnyPSgDFmH+Ba4A1r7bKWjkckHzSh3ai/EYkzxhjgr0AxMI5YG9gfmAC8boy5APii\n5SIUyT1NaTfW2rkUaH+jJJC0iPjQ7gbDu621Xxpj5hGbi36/+OrWjRymTXy5dbcHKJKDmthuDrXW\nfgE0+I+TtXadMeZl4CrgJGLf8BYpdNXE/sh7KXWltXa5MeafwFDgUGBFfJP6HJGmt5vF8Rt16nNE\n0l0ClAKZHmqf6EfU34ik2167Qf2NSJqngAOJ/f9/eWKlMeYPxNrJs8T+VgP1NyIJO2w3xpgehdrf\naDo4yUVr48tSYkPzDmqkXLf4cmmzRySS+xLtpt1uKidSKFbQ+N876+LLdtbaatTniCSsoAntpgnH\nUZ8je6vhxOaPf7P+BvU3Io1qtN00gfob2WsYY1oTuwH9SXEfGZMAAAskSURBVOqNbABrbR0wj9iN\n7q6ovxEBsmo3B+/gUHnb3ygJJHucMaadMWakMWZoY0Xiy++A94CDjDFdM5QbBNQBnzRDmCI5JYt2\ns8oYc5ExZvgOyq1sZLtIoXmf2NRWfTNsS/zHJ/GwVPU5IjFNajfGGJ/6HJF0xpg2wInEphCpa6SY\n+huRFDtqN+pvRNK0AlzEnp+VSUnKUv2NSExT202bQu1vlASSlhAEHgOeM8Z0SN1gjBlC7FlAH1lr\nVwFPxzeNq1fuFOBY4KX4t+lECl1T2813wFRiD6vrU69cX2IP914FfLRHohZpec/Fl1OMMa7ESmPM\nkcT+4/OZtTbxB5z6HJGY5+LL7bYba20I9Tki9R0J+IDF2ymj/kYk3XbbjfobkW2stRuIjd45Mv77\nn2SMKQcGE5vibTHqb0SArNrNpxRof+NyHKelY5C9kDHmCmI3GJYDjwM/AEcTexCkH/iRtfbTeNlX\ngPOBZ4C3iX0D9WagBjjOWvvDno5fpCU0td0YY04D5gCVxBJHy4l9W+F6Ys94+LG1ds4e/wAiLcQY\nM4PY7/8bwGxi/cg4YvNgn2mtnZdSVn2OCE1vN+pzRNIZY35K7FkMN1trH9xOOfU3InFNaTfqb0S2\nMcacC/wR2AI8CnwNdABuBHoA11hrn4iXVX8jQtPbTaH2N0oCSYsxxpwK/C/Qn9iD6n4A/gbcY639\nJqVcETAJuBToDmwC3gJui496ENlrZNFujgFuB04GyoCNwHxgeiLBKrK3iI9kuBq4htgfbwHgXeBO\na+2/65VVnyNC1u1GfY5InDFmHPAQcLW19sntlFN/IxKXRbtRfyMSZ4wZAEwk9pyTfYAq4GPgodQb\n1OpvRLbJot0UXH+jJJCIiIiIiIiIiIiIiEgB0jOBRERERERERERERERECpCSQCIiIiIiIiIiIiIi\nIgVISSAREREREREREREREZECpCSQiIiIiIiIiIiIiIhIAVISSEREREREREREREREpAApCSQiIiIi\nIiIiIiIiIlKAlAQSEREREREREREREREpQEoCiYiIiIiIiIiIiIiIFCAlgURERERERERERERERAqQ\nkkAiIiIiIiIiIiIiIiIFSEkgERERERERERERERGRAqQkkIiIiIiIiIiIiIiISAHytnQAIiIiIiIi\njTHGXAQErLV/aulY8o0xpiNwLfCItXZzS8cjIiIiIiJ7nkYCiYiIiIhILpsK/Lilg8hTpwJTgPYt\nHYiIiIiIiLQMJYFERERERCQnGWP2AQ5u6Tjy2ICWDkBERERERFqWy3Gclo5BREREREQkjTHmOeCK\neqvnW2t/FN8+Erga6Af4gO+BPwP3WGs3phznR8A/gd8DE4BHgMHxfT4ErrfWfmWMOR+4FegL1MaP\ndaO1tirlWCuAbkAn4FJgTPx9FfAWMMlau6re52gF3AwMB/oAYeBr4HngUWttOKXsncRG7lwbX3Ub\nUGutNfHtXmAscBlwCFACrIt/vjuttcvi5boDyzNU66nW2nnGGAfAWuuqXyCl3q+11j5eb91ZwAnA\nNcB/rLVnpOzXpOshIiIiIiJ7lkYCiYiIiIhILnoJeDz++mPg58CvAIwxjwIvAF2Bp4AHgJXAOODf\nxphOGY5XDMyNv34E+AgYArwRT2D8GvgAeBjYDIyKl8tkWvxcb8VfLwFGAu8YY5JTr8UTQPOBu4gl\nlh4EngBK4+d5zRiT6f9kxwJ3Ar8BZqasfxb4JdA6vpwGfBU/9wfGmC7xcpXx+vom/v7e+PuKRj5P\nU51HLAE1E/hdYuVOXg8REREREdkDvC0dgIiIiIiISH3W2jnGGD+xUSdfWGsfADDGnAFcB3wKDLLW\nVif2McbcQ2w0z300HEV0DnC/tfbW+Pu7jTEfAMcTS2ocZ639On6cR4DvgOHGmCuttfWnT/hvoJ+1\ndl3KeV+Prx9LLOkCMBk4jliC6erEcYwxtwJzgLPjcT5b7/gjgYHW2k9SPlsPYqOPfgD61/vcrwDn\nA9cDt1hrtwIPGGPOAXoCv7bWrmhYy1m7EDjSWvt9yrl39nqIiIiIiMgeoJFAIiIiIiKST66KLyen\nJhzi7gZqiCVvSuptixJLRqR6L758JZEAArDWrge+BNoC+2eIYWYiARQv7wCPxt8OBTDGuIArgRAw\nMTWRZK0NAnfE316e4fhfpSaA4iqJTWM3PMPn/nN8eWSGY+1O81MTQHE7ez1ERERERGQP0EggERER\nERHJJwPiy43xZ9/U9zVwNHAosChl/bfW2i31yiae97M4w3ES2zIlLz7IsO6r+PKQ+LInsB+xadHK\njDFl9cpvIJaYOibDsRbVXxGP/Z+QTDDtQyxJlfpcn+ZOtDSIi52/HiIiIiIisgcoCSQiIiIiIvkk\nMTLnve2Wgo713ldmKOM0YZsrw7Z1GdZtii8TzwRKxNkVWN5IjADtjDEl1lr/DmLFGHMyMAUYCBRt\n55jNJVNcO3s9RERERERkD1ASSERERERE8kkiOXMZUH/6sVSfNmMM0QzrElNtJ5I5iTi/BW7awfHC\n9d5H6hcwxpwKzAU8wIvA28QSTxFiI23uqL9PM2gQF7lxPUREREREpBFKAomIiIiISD75AegGLLTW\nLmmhGDpkWJcYAbQ2vvwhvmxlrf3TbjjnLcQSQJOttdNSNxhjinfD8ROyHbGTC9dDREREREQa4d5x\nERERERERkZzxYXw5JNNGY0zP+DNzmlP/DOsOiy+/BbDWriA2bdz+xpgj6hc2xriMMT2zOGeP+PL1\nDNuGZnEciI9WMsa0T11pjPECR2Z5rFy4HiIiIiIi0gglgUREREREJFclplZLHXnzdHw5wRiTNiLH\nGDMAWALMa+a4rjPGlKec1wX8T/ztX1LKJWKdZozx1DvGOKDCGDO1ief8Pr48LHWlMWYkcHr87T71\n9slUfwDfxJdn1Vt/E9ue8dNUuXA9RERERESkEZoOTkREREREctVSIAicaYx5DohYa0cbY34FXAt8\nboz5HbFn4/QFLiD2fJ1bmzmut4FPjTF/JjYd2hnAIOBr4Ncp5aYRS9D8P+ATY8xrxJ6hcxJwWvzz\nPdbEcz4HDAZ+ZYz5L2KfeSDQD/hv4APgCGPMw8AfrLXvAV8AZwLPGmP+Ccy31r4CPAM8ADxljDkJ\nWE9sdNPR8fivbWpFWGv/lgPXQ0REREREGqGRQCIiIiIikpOstRuBG4CNwE+IJU+w1o4FLiOWRBkN\nTAFOAV4GBlhr323m0O4DfgH8CLgdOBR4ATjFWludEn9tvMxkwAXcDEwCugIPAidaa9c15YTW2ueJ\nJVpWAdfEf9YR+7wfA/9LLPkyCugV3+1+4J9AH+BSIDF66eF43GuBq4mNYqoBTowfMys5cD1ERERE\nRKQRLsdxWjoGERERERGRnGeMWQF0Aw611n7VstGIiIiIiIjsmEYCiYiIiIiIiIiIiIiIFCAlgURE\nRERERERERERERAqQkkAiIiIiIiIiIiIiIiIFSEkgERERERERERERERGRAuRyHKelYxARERERERER\nEREREZHdTCOBRERERERERERERERECpCSQCIiIiIiIiIiIiIiIgVISSAREREREREREREREZECpCSQ\niIiIiIiIiIiIiIhIAVISSEREREREREREREREpAApCSQiIiIiIiIiIiIiIlKAlAQSERERERERERER\nEREpQEoCiYiIiIiIiIiIiIiIFCAlgURERERERERERERERAqQkkAiIiIiIiIiIiIiIiIFSEkgERER\nERERERERERGRAqQkkIiIiIiIiIiIiIiISAFSEkhERERERERERERERKQA/f9PJ48pM0r7hAAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 832, + "height": 277 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 222, - "width": 834 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "rand_x_vals = tf.linspace(start=-8., stop=7., num=150)\n", - "\n", - "density_func_1 = tfd.Normal(loc=float(-2.), scale=float(1./.7)).prob(rand_x_vals)\n", - "density_func_2 = tfd.Normal(loc=float(0.), scale=float(1./1)).prob(rand_x_vals)\n", - "density_func_3 = tfd.Normal(loc=float(3.), scale=float(1./2.8)).prob(rand_x_vals)\n", - "\n", - "[\n", - " rand_x_vals_,\n", - " density_func_1_,\n", - " density_func_2_,\n", - " density_func_3_,\n", - "] = evaluate([\n", - " rand_x_vals,\n", - " density_func_1,\n", - " density_func_2,\n", - " density_func_3,\n", - "])\n", - "\n", - "colors = [TFColor[3], TFColor[0], TFColor[6]]\n", - "\n", - "plt.figure(figsize(12.5, 3))\n", - "plt.plot(rand_x_vals_, density_func_1_,\n", - " label=r\"$\\mu = %d, \\tau = %.1f$\" % (-2., .7), color=TFColor[3])\n", - "plt.fill_between(rand_x_vals_, density_func_1_, color=TFColor[3], alpha=.33)\n", - "plt.plot(rand_x_vals_, density_func_2_, \n", - " label=r\"$\\mu = %d, \\tau = %.1f$\" % (0., 1), color=TFColor[0])\n", - "plt.fill_between(rand_x_vals_, density_func_2_, color=TFColor[0], alpha=.33)\n", - "plt.plot(rand_x_vals_, density_func_3_,\n", - " label=r\"$\\mu = %d, \\tau = %.1f$\" % (3., 2.8), color=TFColor[6])\n", - "plt.fill_between(rand_x_vals_, density_func_3_, color=TFColor[6], alpha=.33)\n", - "\n", - "plt.legend(loc=r\"upper right\")\n", - "plt.xlabel(r\"$x$\")\n", - "plt.ylabel(r\"density function at $x$\")\n", - "plt.title(r\"Probability distribution of three different Normal random variables\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "HAxWLKGcIA0A" - }, - "source": [ - "A Normal random variable can be take on any real number, but the variable is very likely to be relatively close to $\\mu$. In fact, the expected value of a Normal is equal to its $\\mu$ parameter:\n", - "\n", - "$$ E[ X | \\mu, \\tau] = \\mu$$\n", - "\n", - "and its variance is equal to the inverse of $\\tau$:\n", - "\n", - "$$Var( X | \\mu, \\tau ) = \\frac{1}{\\tau}$$\n", - "\n", - "\n", - "\n", - "Below we continue our modeling of the Challenger space craft:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "F3DBYxvAIA0B" - }, - "outputs": [], - "source": [ - "reset_sess()\n", - "\n", - "temperature_ = challenger_data_[:, 0]\n", - "temperature = tf.convert_to_tensor(temperature_, dtype=tf.float32)\n", - "D_ = challenger_data_[:, 1] # defect or not?\n", - "D = tf.convert_to_tensor(D_, dtype=tf.float32)\n", - "\n", - "beta = tfd.Normal(name=\"beta\", loc=0.3, scale=1000.).sample()\n", - "alpha = tfd.Normal(name=\"alpha\", loc=-15., scale=1000.).sample()\n", - "p_deterministic = tfd.Deterministic(name=\"p\", loc=1.0/(1. + tf.exp(beta * temperature_ + alpha))).sample()\n", - "\n", - "[\n", - " prior_alpha_,\n", - " prior_beta_,\n", - " p_deterministic_,\n", - " D_,\n", - "] = evaluate([\n", - " alpha,\n", - " beta,\n", - " p_deterministic,\n", - " D,\n", - "])\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "PxOWy25CIA0D" - }, - "source": [ - "We have our probabilities, but how do we connect them to our observed data? A *Bernoulli* random variable with parameter $p$, denoted $\\text{Ber}(p)$, is a random variable that takes value 1 with probability $p$, and 0 else. Thus, our model can look like:\n", - "\n", - "$$ \\text{Defect Incident}, D_i \\sim \\text{Ber}( \\;p(t_i)\\; ), \\;\\; i=1...N$$\n", - "\n", - "where $p(t)$ is our logistic function and $t_i$ are the temperatures we have observations about. Notice in the code below we set the values of `beta` and `alpha` to 0 in `initial_chain_state`. The reason for this is that if `beta` and `alpha` are very large, they make `p` equal to 1 or 0. Unfortunately, `tfd.Bernoulli` does not like probabilities of exactly 0 or 1, though they are mathematically well-defined probabilities. So by setting the coefficient values to `0`, we set the variable `p` to be a reasonable starting value. This has no effect on our results, nor does it mean we are including any additional information in our prior. It is simply a computational caveat in TFP. " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "vRqoyxqnofbT" - }, - "outputs": [], - "source": [ - "def challenger_joint_log_prob(D, temperature_, alpha, beta):\n", - " \"\"\"\n", - " Joint log probability optimization function.\n", - " \n", - " Args:\n", - " D: The Data from the challenger disaster representing presence or \n", - " absence of defect\n", - " temperature_: The Data from the challenger disaster, specifically the temperature on \n", - " the days of the observation of the presence or absence of a defect\n", - " alpha: one of the inputs of the HMC\n", - " beta: one of the inputs of the HMC\n", - " Returns: \n", - " Joint log probability optimization function.\n", - " \"\"\"\n", - " rv_alpha = tfd.Normal(loc=0., scale=1000.)\n", - " rv_beta = tfd.Normal(loc=0., scale=1000.)\n", - " logistic_p = 1.0/(1. + tf.exp(beta * tf.to_float(temperature_) + alpha))\n", - " rv_observed = tfd.Bernoulli(probs=logistic_p)\n", - " \n", - " return (\n", - " rv_alpha.log_prob(alpha)\n", - " + rv_beta.log_prob(beta)\n", - " + tf.reduce_sum(rv_observed.log_prob(D))\n", - " )" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "oHU-MbPxs8iL" - }, - "outputs": [], - "source": [ - "number_of_steps = 60000\n", - "burnin = 50000\n", - "\n", - "# Set the chain's start state.\n", - "initial_chain_state = [\n", - " 0. * tf.ones([], dtype=tf.float32, name=\"init_alpha\"),\n", - " 0. * tf.ones([], dtype=tf.float32, name=\"init_beta\")\n", - "]\n", - "\n", - "# Since HMC operates over unconstrained space, we need to transform the\n", - "# samples so they live in real-space.\n", - "unconstraining_bijectors = [\n", - " tfp.bijectors.Identity(),\n", - " tfp.bijectors.Identity()\n", - "]\n", - "\n", - "# Define a closure over our joint_log_prob.\n", - "unnormalized_posterior_log_prob = lambda *args: challenger_joint_log_prob(D, temperature_, *args)\n", - "\n", - "# Initialize the step_size. (It will be automatically adapted.)\n", - "with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):\n", - " step_size = tf.get_variable(\n", - " name='step_size',\n", - " initializer=tf.constant(0.5, dtype=tf.float32),\n", - " trainable=False,\n", - " use_resource=True\n", - " )\n", - "\n", - "# Defining the HMC\n", - "hmc=tfp.mcmc.TransformedTransitionKernel(\n", - " inner_kernel=tfp.mcmc.HamiltonianMonteCarlo(\n", - " target_log_prob_fn=unnormalized_posterior_log_prob,\n", - " num_leapfrog_steps=2,\n", - " step_size=step_size,\n", - " step_size_update_fn=tfp.mcmc.make_simple_step_size_update_policy(),\n", - " state_gradients_are_stopped=True),\n", - " bijector=unconstraining_bijectors)\n", - "\n", - "# Sampling from the chain.\n", - "[\n", - " posterior_alpha,\n", - " posterior_beta\n", - "], kernel_results = tfp.mcmc.sample_chain(\n", - " num_results = number_of_steps,\n", - " num_burnin_steps = burnin,\n", - " current_state=initial_chain_state,\n", - " kernel=hmc)\n", - "\n", - "# Initialize any created variables for preconditions\n", - "init_g = tf.global_variables_initializer()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "eNkhSXDkthRs" - }, - "source": [ - "#### Execute the TF graph to sample from the posterior" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "XJyZIwoyth2j", - "outputId": "dde1e7af-ef4a-4814-e3ad-bcbcbc3b137e" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "acceptance rate: 0.6273333333333333\n", - "final step size: 0.01369297131896019\n" - ] - } - ], - "source": [ - "# In Graph Mode, this cell can take up to 36 Minutes\n", - "evaluate(init_g)\n", - "[\n", - " posterior_alpha_,\n", - " posterior_beta_,\n", - " kernel_results_\n", - "] = evaluate([\n", - " posterior_alpha,\n", - " posterior_beta,\n", - " kernel_results\n", - "])\n", - " \n", - "print(\"acceptance rate: {}\".format(\n", - " kernel_results_.inner_results.is_accepted.mean()))\n", - "print(\"final step size: {}\".format(\n", - " kernel_results_.inner_results.extra.step_size_assign[-100:].mean()))\n", - "\n", - "alpha_samples_ = posterior_alpha_[burnin::8]\n", - "beta_samples_ = posterior_beta_[burnin::8]" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "xIGyBkilIA0G" - }, - "source": [ - "We have trained our model on the observed data, now we can sample values from the posterior. Let's look at the posterior distributions for $\\alpha$ and $\\beta$:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 390 - }, - "colab_type": "code", - "id": "Pdgjgw9RiluO", - "outputId": "e57131fd-5b59-41d7-e812-b39d2384b085" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAALrCAYAAADgLugzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xm4HUWdN/BvIESQXRHRUQlIKMFl\nJBJ4ERgUGJV3mFEUEHdHXFDHfZ3BBdxFx3VUHCMqKuKgCAooIAiioIZFZhy1jK8im8iaBEQMS94/\num+43Nyb3OX0PfeEz+d58lROd3X1r/tUs/TvVNWsFStWBAAAAAAAgO6s0+8AAAAAAAAA1nYSMgAA\nAAAAAB2TkAEAAAAAAOiYhAwAAAAAAEDHJGQAAAAAAAA6JiEDAAAAAADQMQkZAAAAAACAjknIAAAA\nAAAAdExCBgAAAAAAoGMSMgAAAAAAAB2TkAEAAAAAAOiYhAwAAAAAAEDHJGQAAAAAAAA6JiEDAAAA\nAADQMQkZAAAAAACAjs3udwAAAADA2quU8n+TvCLJLkk2T7Isyc+TfLzW+u1+xgYAMJ1mrVixot8x\nAAAAAGuhUsrHk7x62KZlSTYZ9vngWusJ0xsVAEB/GCEDADDDlFJW94uZW5NcmeTsJB+rtdbpiap/\nSikvTPKFJOfWWp/Q32hGN1aM/Y59tPP3O6aZEkO/lVK2SvLpJHsn2SjJd2qtB0yyrRemuZ+n1lr3\n71mQA6iXfWsybenb91RKeXGaZMztSd6R5DO11qVt/z8+yV5JXpZEQgYAuFewhgwAwMz19SQfH/bn\nE0lOT7J+ksOS/LyUclA/AiulvH8NiaNe+mWa6//GNJ2vl3oS+xTud9/v3Rix9z2uGeADSQ5I86L6\nC0l+PJ6DpvnZG0T61gxRSpmd5Mj249trrR+otS5NklrrNUn+o923RT/iAwDoByNkAABmro/VWn8y\ncmMpZU6S9yV5Q5Ivl1J+Wmu9fJpjWzBdJ6q1/izJz6brfL3Uw9gndb9nyL1bJfYZEle/7dqWr6q1\nHj+B46bt2RtE+taM8oQkD05yc5KPjrJ/KBFzxXQFBADQbxIyAAADpta6vJTy5iRPSvLoJC9KcsR0\nnb+UMivJztN1vnu7Qb7fgxz7NNigLa8Z7wHuJ1PV9qFnJnlxksclmZXkF2lGsPygrfONJM9I8ne1\n1vOmcLq92vLMWuvyUfYf0pbnTuEcAAADRUIGAGAA1VrvKqX8ME1C5rEj95dSHp/ktUl2T/KANGvP\n/DrNPP2frrX+ZUT9xyZ5c5I9kjwwyW1JrkpySpqROle39b6Y5AXDjhuaOumJtdZzhm3fKcnr07yQ\ne2CSW5L8d5KFtdavjjj3C9Ouf5HkdUkWpnnp/N5a6/tWtybDJK5ztecaeR9HHDunvUfPS7J1moWp\nf5Tknas5ZtTYe3W/p3Lv2vbuk+TtSQ5O8rAkf07ywyTvqLX+z7B6R7TX+aVa6wtHaWeV/auLPcnc\nNcQ17u91xD14apr7+oL2em5P8pM0L5vvMWpivN/BeI035pH3JckPSikZ614Ma/8ex424n8PrrZPm\n2fvnJNsmWZ7mHryt1rpojLbH/byuJr4fpBkR8c5a67vGqPO2JO9OcnatdZ9226wkz0/zXD02yaZp\n7t0vk3wpyX/WWu8a1sYLM4k+P9HzjBL7uJ6VNdyjCd/nXvbTUsr906zbsm+7aVmSjdP02TNKKY9O\ncleaqfTOmWIyJmkSPskoI5ZKKS9Icx/+muS4KZ4HAGBgWEMGAGBwLWnL9YdvLKW8Ik2i4KAklyU5\nNskPkmyX5MNJzi2lbDSs/p5pXtgekuR3Sb6Y5Jtp/lvxTUl+Ukp5WFv9jDQvO4cMrW9z5bD2np3k\np0me227/Utv+rkm+Ukr5YvtydDTHJ7lvG8OvVnfxE73OqZxrWP13J3lokm+nWaNiqzTX9qhxHD8U\nd0/v9xSuJ0lOTvNL+Z+0x12X5GlJflxKGfc1jWEisa80xe/1uDQvvH+a5L+S3JhmJNnZpZS5w84x\nke9gjSYY8xlp7sPN7edvZnxrnoz3fi5M8wJ/UZIvJ7kpzT34QSllm1Fin8rzOtxQQuHA1dR5Zlse\nO2zb59Pc/8cnOS/J55J8P03S5DPtvrFMpM9P5TzJFJ+VydznXvbTNqF0WppkzC+TPK7WummaKcV+\nnubHmi9J03fWSfPPuqka+rHAxW0Ms0spO5RSPpmmnybJERNNfgIADDIjZAAABtd2bXnZ0IZSyiPT\nvKRNkqfVWk8etm/zNC8iF6SZ4uyN7a7Dk9wnyWG11s8Oqz+rbetVaX75//pa63GllPPT/Po+tdbX\nDg+ofeH7+STrJjmk1vr1YftKmpfKL0hyVpqXxcPtlmbqmmfUWle7aPkkr3NS52rb/L9pfjX+lyS7\n1VovHbbvlcNiGY+e3e/JXk/r8UkuSrJdrfWWNobZaZJN+yX5YJJ/mMB13cPqYi+l7DHaMVP8XvdK\nUpPMq7UuaY+5b5ILkjymjWNoNNO4v4M1XedEY661HpfkuFLK09KMTviP4aPLxjLO+7lbmlE5O9Za\nr2/3bZJmhEJpj33HsOOm8ryO9I00i7Q/upRSaq11+M5Syo5pEpe3pkkqpJTyiDamFUn2rLVeNKz+\nDmkSBc8rpXx8+L5h1zref15M5TzJFJ+VKdznnvXTNGuO7ZLm/u83tO5YrfWaUsoHk3wtzSicxyY5\nv9Z69jjaHFMpZcskD2o/XlJKOTTJZ9PcgyS5M8lbaq1HTeU8AACDxggZAIABVEp5aJJ/aj+ePGzX\nYWl+dHPS8BfDSVJrvSnNC74keVH7QjFJhn41f/6I+iva+o9P8oFxhvaqNCN2vjb8pWPbXk3ytvbj\nK0c59n5J/n2cCYXJXOdkz5Ukz27LrwxPxrTn+1SScU1Z1Orl/R4y0etJkvXSJH1uGRbDHUmObD8+\nqZSy6QTjmKqpfK8bJXnlUDKmPebW3D3y5DHD6vbyO5hqX+ylzZO8bCgZ08awLMnQszhvRP2pPK/3\n0N7309qPB41SZWi9kJOG9blbkxya5BUjEyG11l+lSWYlyZ6jtDeRPj+V8yRTf1Yme5970k/b6RZf\n1378wFAyZpjftuUuSeakN6NjdmrLK9v+uHvuTsak/fs/lFJG9kkAgLWahAwAwAAppWxSSnlKmvUT\nNkjy3Vrrd4dV+bu2PG2VgxtnpfmV+OZJHtFuG/ol+ydHvhyrtd5ca72g1nrtOEPcew3nP7Utdyml\nbDhi31/TjGYYj8lc52TPldy9kPoPx9h/xgTa6uX9HjLR60mSm2qtox1zYZp1R2ZnAlOx9chUvte/\nZpS1KpIMTYc0/IV5L7+DqfbFXrqy1vqLUbYP3YMtR2yfyvM6mqG1QEabtmxourKVI0BqrZfXWo+p\ntR49RntXteVoyY5x9/kpnieZ+rMy2fvcq376pCRbJLkjzSimkW4b9vcLa63fG0ebazKUkLmkLV+c\n5hnYOc0orSVpnp0zSykb9OB8AAADwZRlAAAz1wXtYt+jWZFmDYKxflH9+9EOqrXeUkq5Ic3LuYcl\n+UWaX04/Ls2UT78ppfx3mpfI30vyg1rr7ROIeW5bHlRK2WWMOren+cX5w9MsaD3k+tUtqj3CZK5z\nuImcK0n+pi2vGmP/HybQVi/v95CJXk8y9r27s5TypzRr5TxotDodmsr3etUYoyXubMvhP0br5Xcw\n1b7YS2P1w7+25bojts9ty8k8r6M5Jc1C8X9bSplXa12crFzMfvsk1yQ5c/gBpZSt0nwff5/mObv/\nKHGOtobNhPr8FM6TTP1ZmduWE73PveqnT2zLH7WjtlanF6NjkhEJmfa7WpJm6reLSimnpElobZ1m\nXZvv9Oi8AAAzmoQMAMDM9fU0LzCH+0uSy5OcUWv9f6Mcc99h9cYy9GvoDZKk1vr/SimPSfPy71lp\npnYa+nxdKeXdtdZPjjPmoYXLnzaOupuM+HzLqLVGN+HrnMK5hp/vtjH2/3WM7avo8f0eMtHrSZI/\nr2bf0HWuP4l2p2Iq3+u4kyg9/g6m2hd76c41V7mHqTyvq6i13lZK+Waa9VoOSvK+dtfQ6Jjjaq0r\nYyylPDzJj5M8MM09OjfJFbm7bz4pyQ5jnG7cfX6K50mm/qxM6j73sJ8OJUd+PMb+oX75v7XWb4+j\nvfF4bFteMtrOWuslpZTfpknUTffUiAAAfSMhAwAwc32s1vqTCR7z5zQv9O67mjpD+4avh3BDmnUM\n3lZK2S7NC8pnpplS5hOllHVrrR8bx/lvSfNy7cm11olM4zVRk7rOKbitbe8+azjXuPTwfk/F6l4g\nD+27dZxtrTfFWIZM2/faw+9guvtiL3XxvH41TULmwKyakPnyiLofTpMkuaiN4YbhO0spx2b1iZLx\nmup5pvqsTPo+96ifzm3LK8bYP7S+zG/H2D8hpZSNkmzXfrx4jDrrpBmllIw98hAAYK1jDRkAgLXL\n79py29F2tgtP36/9ONY0PL+ttX661rpXkpe1m/9lnOcfeqH3sHHWn6wpX+cE/bEttxpj/6hxjMcU\n7/dUjPodtQvPD02/dGVbDk0NNXKKpyFzexTTdH+vSab8HfQl5h7p4nn9QZrnZadSyrbtFF1zk/yi\n1vrzEXX3asv3j0yStCb9XPX4PBN5VkbTk/s8hX46py1X+f//UsrOSQ5pP05musTRPKY914211svH\nqLNHmoTMrUkm+sMDAICBJSEDALB2Oact9x9j/1Pa8uoki0spm5dSDiqlPGWM+kOLdP/NaDtLKSPX\nXDi7LQ8eo/4GpZRnllLuP9r+CTinLcd1nVM8V5IMvUjeY+SO9h6Mdf9G1u31/Z6KB5ZS/naU7bum\nGUn/1yT/2267uS1XSUiVUu6Tuxe2H9M4Yz+nLTv7Xqf6HYzinLacrr6YpGd9oefPa7tWyPHtx/3S\njJRJkmNHqT40Y8Mq65q0ffPx7cepXutUzzORZ2U0E77PPe6n17XlPdavKaXMSfKfufu6x0q4TtTQ\nFGkbllJWSXaVUtZN8p7243G11tVN9wcAsFaRkAEAWLt8Ks3Lwf1LKU8dvqNd1Pq97cdPtAugPzDN\nWjXHllIeMUp7Q1MNDf9l+83D/r71iPqfSbOWxt+XUp434vyzk/xHmpe1nx73FY1uotc5VSe05fNL\nKfNG7HtDxv9L/l7f76lYnuRjpZSV65qUUtZLcmT78eRa69DaGf/Tlk9op00aqr9ukg9l7DUgJhr7\ndHyvk/kOVmc6+2Kv+0JXz+tX2/LJaRJVd+XuBMJwv2rLeySzSik7JvlGkvPbTQ+d4Pl7fZ6JPCuj\nmcx97mU/Pactn1tKObA975ZJvpkmefLLdv9epZQHjtZAKeUJpZQV7Z8nrOF8QwmZ+yT5Xillj7aN\ndUopj0zy7SR7JrkxyTvGET8AwFrDGjIAAGuRWutvSymvSPK5JN8qpfwwyW/SjGz4uzQvzr+T5N/b\n+r8upbw/yb8l+e9SyjlpplVaJ82aCo9Ps0bGG4ad44ZSymVppiH6YSnlF2leSH621vr7UsqhaX4N\nf2wp5eVJLk2ycZInpPk192XD25uO6+yBE5IcluYaLiylnJpkaZL5SR6dZq2MI8YRd0/v9xSv6Zy2\n/G0p5cw0SYW906z9cEOSfx1W9wdpkjKPTnP9302yJHdPO/SeJB8c5XpHjb091yqm43udzHewhvam\nrS9O9H6Oo71Ontda60WllJomITMnyfdrraOtE/LBNEmB17UjUH6TJrm5d5L3p+lzuyd5TillRZLP\nT/QaJ3ueWuv5w44/py3H86ysYjL3ucf99KNJXpBk8yQnlFJuTrJh29b/pBnJ9Ks0U+v9vpTytVrr\noeNodyyPbcsVSeYlOa+Uclu7bWjNnWuSPK3W+seRBwMArM2MkAEAWMvUWo9J83Lxm0m2T/LCNL9G\nvjTJi5IcUGu9Y1j9w5M8Pcn3kuyY5PlJnpdkyzTT2ew04uVk2jq/TPMr7vkZtvZArfVrSXZO8pU0\nvzg/NMkBSa5P8q62vdWtt9DJdU7xXHel+XX9+9NcxzPSTMV0TZoXoz+bQFs9vd9TcEeSpyb5UprE\nysoXtkl2q7UOrY2SWuudaRYT/3Kal9EHJvmnNAt2/58003GNZUKxT8f3OsnvoK8xD9PTvtDh8/rV\n3L12yZfHOPeJae7P/6TpgweneWH/rFrrO5J8K83ImuVp+urGk4ijF+cZ97OymhgmfJ971U/bdVx2\na+O9Nsl90ySUv5ZkzzZZdkiSy5NskOSKUZoZWivn1tw9omYV7YifR7UfD06TMLw+yXpp/tnxsyRv\nT/LIWutP1xQ7AMDaZtaKFb2YwQEAAABYG5VSjk7ysiT/Xmt942rqPTrJf6dJ3GzcJrMBAGgZIQMA\nAACszl5p1sH50BrqDa0f8wvJGACAVUnIAAAAAKMqpTwgySOSfLbW+qc1VB9KyPy826gAAAbT7H4H\nAAAAAMxMtdbrkswaZ/XHtuWlHYUDADDQjJABAAAAekFCBgBgNWatWLGi3zEAAAAAAACs1YyQAQAA\nAAAA6JiEDAAAAAAAQMckZAAAAAAAADo2u98BdGHp0qUWxgEAAAAAADq16aabzhpvXSNkAAAAAAAA\nOiYhAwAAAAAA0DEJGQAAAAAAgI5JyAAAAAAAAHRMQgYAAAAAAKBjEjIz3OLFi7N48eJ+hwGTpg8z\nyPRfBpn+yyDTfxlk+i+DTh9mkOm/DDL9995BQgYAAAAAAKBjEjIAAAAAAAAdk5ABAAAAAADomIQM\nAAAAAABAxyRkAAAAAAAAOiYhAwAAAAAA0DEJGQAAAAAAgI5JyAAAAAAAAHRMQgYAAAAAAKBjEjIA\nAAAAAAAdm93vAAAAAGCQLTp60cq/L1++PEmy5Kwl/QpnFQsOW9DvEAAAiBEyAAAAAAAAnZOQAQAA\nAAAA6JiEDAAAAAAAQMckZAAAAAAAADomIQMAAAAAANAxCRkAAAAAALgXOfLII7PLLrvk6quv7nco\nozrllFOy3377Zbfddsuxxx47rmOWL1+eL37xi3nWs56VPffcM3vuuWee85zn5OSTT+442vGb3e8A\nAAAAAAAYHIuOXtTvEFZrwWEL+h1Cz3z+85/Pfvvtlwc/+ME9bfeggw7KHnvskfvd7349bbcXli5d\nmg984APZZJNN8ta3vjU77LDDGo+5/fbb86pXvSqXXHJJtt9++xxwwAH561//mjPOOCPvfe97s+WW\nW2a33XabhuhXT0IGAAAAAABmmKuuuiqf/exn89jHPrbnCZkdd9wxO+64Y0/b7JXLL788y5cvz1Oe\n8pQ89alPHdcxxx9/fC655JIccMABeetb35pZs2YlSXbaaae84x3vyKWXXiohAwAAADDTf2mdrF2/\ntgZgMPzyl7/sdwh9sXz58iTJ+uuvP+5jTjzxxKy//vp57WtfuzIZkyTrrrtukmTTTTftbZCTJCED\nAAAAAAAjHHnkkTn11FPzla98JWeffXZOO+203HDDDdlyyy1z4IEH5tnPfvY9Xv5fe+21WbhwYS64\n4ILccMMNue9975tHPepRecELXpCddtppZb077rgj//Vf/5XTTjstV199de68885svvnm2XXXXfOG\nN7whc+bMyWGHHZaLL744SfLyl788SXLSSSflwQ9+cJYsWZKFCxfmvPPOy3XXXZcNN9wwf/u3f5sX\nvvCFedSjHrVK/Mcdd1w++clP5pJLLsn73ve+7LHHHiv3DbU50WtYXdtjGU/bw6974cKFWbhwYV78\n4hfnpS996Zjt/vGPf8xVV12VPffcMxtssME99p111llJkp133nnM46eThAwAAAAAAIzhk5/8ZG6/\n/fY8//nPz3rrrZcTTzwxH//4x7NixYo897nPTZJcf/31+ed//ucsW7YsT3/60zNv3rzccMMN+da3\nvpVXvOIV+chHPrJyyqwPf/jDOfHEE/OkJz0pz3zmM7PuuuvmnHPOyUknnZSbbropRx11VF760pfm\nhBNOyFlnnZWXvOQl2XbbbXO/+90vy5Yty6GHHpqbbropBxxwQB7+8Ifnuuuuyze/+c287GUvy8c+\n9rEsWHDPUZ2f/vSns8UWW+Twww/PtttuO+Z1TuQaumr7pS99aS666KJ87nOfyz777JN9990322yz\nzWq/n1/96ldJkkc+8pErt61YsSJf//rXc/bZZ2eXXXbJvHnzVtvGdJGQAQAAAACAMVx//fX58pe/\nnNmzm9fp++yzT5761KfmS1/6Up797GdnnXXWycKFC3Pdddfl3e9+d5785CevPPbJT35yDjrooHz0\nox9dmcw4/fTTs+222+Y973nPynrz5s3LAx/4wPzpT3/KX/7yl8yfPz8XXnhhkmT+/Pl53OMelyT5\nzGc+k6uuuioLFy68x2iY/fbbL4ccckg++tGP5rjjjrtH/Lfffnve/va3r/E6J3INXbU9f/78rFix\nIkmyzTbbZJ999llj27/+9a+TJDvssEMuvPDCnH766fn5z3+eP/zhD5k3b16OPPLINbYxXdbpdwAA\nAAAAADBT/eM//uPKZEySbLTRRlmwYEGWLl2a3/3ud0mSc845J5tsskn23Xffexy71VZbZcGCBbns\nssty5ZVXJmnWNbnuuuty9dVX36PuP/3TP+Woo45aZdqt4b7//e9n7ty52XrrrXPzzTev/LPBBhtk\np512ym9/+9ssW7bsHsfsvffe47rOiVzDdLQ9XkMjZHbYYYd861vfysknn5w//OEPSZK5c+fmrrvu\nmlS7XZCQAQAAAACAMYw2FdcWW2yRpFm/5Oabb86NN96YuXPnrlxEfritt946SXL55ZcnSV7ykpfk\n5ptvzsEHH5w3velNOeGEE3LNNdesMY5bbrkl1113XX73u99ln332WeXPeeedlySrtDV8jZixTPQa\npqPt8fr1r3+dBz3oQdlss83yrne9K2eccUaOPvro7L333jnzzDPzmte8ZlLtdsGUZQAAAAAAMIb7\n3ve+q2zbcMMNkzRTdt16661JMubIlvvc5z5Jkr/85S9Jkmc+85mZO3dujj/++PzkJz/JueeemyTZ\nfvvtc8QRR2S77bYbtZ0///nPSZrpzV7/+tePGe/IJMlo8Y800WuYjrbH449//GOWLl26ckq3dddd\nN5tttlnmz5+f+fPn5znPeU4WL16cq666Kn/zN38z4fZ7rdOETCnl0UnenGSPJA9OsizJ+UneV2v9\n6bB6GyT51ySHJNm6rXd2krfXWn/TZYwAAAAAADCW2267bZVtt9xyS5Jks802W5mUGEo8jDSUaBie\nvNh1112z66675rbbbssll1ySE044IT/+8Y/zile8It/85jez8cYbr9LOUBLojjvuWJmA6JXJXMNM\naHv4+jGj2WSTTSbddhc6m7KslLJbkp8k2TvJ55K8uC2fmOS8Usrj23qzkpyc5G1JzkvyoiRHJXlC\nkgtKKQ/vKkYAAAAAAFid3//+96tsG1r/ZYsttsjGG2+cLbbYIpdddlnuvPPOMY/fZpttVtm3/vrr\nZ7fddsvLX/7yPOUpT8mSJUty8cUXjxrHRhttlC233DKXX355brzxxlX2L1myZELXNdxUrqGfbQ+t\nH/OIRzxilX1Lly7NpZdemu222y6bb775hNvuQpdryBydZFaS3Wut76u1frnW+m9Jnp9kvSRvaesd\nkuTvk3y41nporfWrtdYPJdkvyeZJPtRhjAAAAAAAMKbTTjvtHomEpUuX5qKLLsoWW2yRhz70oUmS\nffbZJzfffHPOPPPMexx7+eWX56KLLsoOO+yQrbbaKr/61a/yjGc8IyeddNIq5xma0mvOnDlJsnK9\nleXLl6+ss88+++TOO+/M17/+9Xscu2zZsjz3uc+d0nop472GmdT20AiZM888MytWrFi5/fbbb8/7\n3//+3HHHHXn2s589qZi70MmUZaWUdZJ8KcnNtdbLRuweuuMPa8vnt+UnhleqtV5cSjk/yf6llM1q\nrZNP7wEAAAAAwCRsuOGG+Zd/+ZfsvffeWW+99fKNb3wjt912W1796ldn1qxZSZJDDz005557bt77\n3vdm8eLF2XbbbfOnP/0pJ554YtZdd9286U1vStKs/3Kf+9wnRx11VBYvXpwddtgh6667bn72s5/l\njDPOyLbbbrtyOrKhtWCOOeaY/O53v8vuu++eF73oRfnhD3+YL37xi7nxxhszf/783HjjjTnxxBNz\nww035PDDD5/0dY73GmZS20MJmW9/+9v5zW9+k5133jm33nprfvrTn+aqq67K/vvvn/3333/Scfda\nJwmZWutdST4yxu6hsUP/3Za7JLmi1nrlKHV/mmT3JPPTrCkDAAAAAADT5mUve1kWLVqUr3zlK7n+\n+uuz1VZb5Y1vfGMOPPDAlXU222yzHHPMMfnsZz+b008/PTfccEM23njjzJ8/P4ceemjmzZuXJJk9\ne3b+8z//M8ccc0zOPffcnHLKKbnjjjty//vfP/vuu29e//rXrxwhs/fee+fMM8/MokWL8oc//CGP\nfOQjM3fu3BxzzDFZuHBhfvSjH+XUU0/NBhtskEc96lE5/PDDM3/+/Elf53ivYaa0fc0112TJkiXZ\ndddds9FGG+XCCy/M1772tWy44YZ5xCMekVe+8pXZd999Jx1zF2YNH8bTlVLKZkk2SrJHkg8nWZ5k\nnyTXJ1mW5IJa6+NHOe41ST6W5CW11oXjPd/SpUu7v6hpsnjx4iSZUmeHftKHGWT6L4NM/2WQ6b8M\nmkVHL1r596EpRYZepMwECw5b0O8Q1mj4PZypBuE+9oJ/BjPI9F967cgjj8ypp56az3/+83n0ox/d\n6bn034n7wQ9+kLe85S151atelec973l9i2PTTTedNd66nYyQGcVNbbkiyReSvLnWekMp5cHt9lvH\nOO7PbblxL4IY6tSDaJBjh0QfZrDpvwwy/ZdBpv8yKIbP6766bf0yCM/STLpfYxmE+9hL97brZe2i\n/9Iry5YtS5JcccUVWX/99aflnPrv+J1//vlJko022mha7lsvkmXTlZB5YpINk+yU5BVJ9i6lHJTk\n6mk6PwAAAAAAsJb4/e9/nySZO3dufwOZgGlJyNRaz2n/emop5StJLk5yXJKd2+0bjnHoRm25rBdx\nDOJwL0PVGHT6MINM/2WQ6b8YI4LiAAAgAElEQVQMMv2XQbPkrCUr/z4TpywbhGdp+D2cqQbhPvaC\nfwYzyPRfem2TTTZJkjz0oQ/tvF/pvxN3xRVX5EEPelB22mmnfocybutM9wlrrZclOSvJvCQPTHJd\nkoeMUX3rtjROCwAAAACAafPOd74zP/vZzzpfP4bJOf3003PyySf3O4wJ6SQhU0rZoZRyRSnlmDGq\nbNaWs5Ocn+QhpZSHjVJvzyR/STOiBgAAAAAAYCB1NWXZ4iTrJzmolPLuWuvvh3aUUh6eZPc0I2N+\nk+TzSZ6a5HXtn6F6eyV5XJIv1Fpv6ShOAAAAZrBFRy/qdwgAANATnSRkaq13lFJeleSrSX5aSvlU\nkt8l2SbJvyTZIMkra613JvlOKeXEJK8tpWyS5Ow0U5W9McmVSf6tixgBAAAAAACmS1cjZFJrPb6U\n8ockb0mThNksybIki5J8pNZ6xrDqz0ry1iTPTfK8JDclOSXJ4bXWa7qKEQAAAAAAYDp0lpBJklrr\nBUmeNo56y5O8q/0DAAAAAACwVlmn3wEAAAAAAACs7SRkAAAAAAAAOiYhAwAAAAAA0DEJGQAAAAAA\ngI5JyAAAAAAAAHRMQgYAAAAAAKBjEjIAAAAAAAAdk5ABAAAAAADo2Ox+BwAAAEB/LDp6Ub9DAACA\new0jZAAAAAAAADomIQMAAAAAANAxCRkAAAAAAICOScgAAAAAAAB0TEIGAAAAAACgYxIyAAAAAAAA\nHZOQAQAAAAAA6JiEDAAAAAAAQMckZAAAAAAAADomIQMAAAAAANAxCRkAAAAAAICOScgAAAAAAAB0\nTEIGAAAAAACgYxIyAAAAAAAAHZvd7wAAAACA7iw6elG/QwAAIEbIAAAAAAAAdE5CBgAAAAAAoGMS\nMgAAAAAAAB2TkAEAAAAAAOiYhAwAAAAAAEDHZnfVcCnlAUnekeSAJA9MsiTJj5K8u9Z68bB6RyR5\n52qa+nit9bVdxQkAAAAAANC1ThIypZQtk1yU5P5JPpPk0iTbJ3l1kieXUnavtV4y4rAjkvzvKM0t\n7iJGAAAAAACA6dLVCJn3JHlIkmfUWk8c2lhKWZTkpCT/muTgEcecW2s9p6N4AAAAAAAA+qarNWSu\nTvK1JN8asf17SVYkeUxH5wUAAAAAAJhxOhkhU2s9YoxdGyeZlWTZWMeWUua0bSzvfWQAAAAAAADT\nb9aKFSum7WSllLcleXeS19ZaP95uOyLJO9OsNbNXkh3b6r9IclSt9csTPc/SpUtHvajFiy1HAwAA\nMOTa717b7xBgYGy535b9DgEA6KN58+aNun3TTTedNd42ulpDZhWllP2SvCPJRWmSLyPtl+QjSRYn\n2T7JG5McW0p5cK31g9MVJwAAQK9IeAAAAEOmZYRMKeX5SRYmuSzJXrXWPw7bt12S7ZJcUGtdOmz7\nlkl+nWT9JA+utS4Z7/nGGiEziIZG9YyVfYOZTh9mkOm/DDL9l0G2NvXfRUcv6ncITLPly5vZt+fM\nmdPnSOi1BYct6HcI02Jt+mcw9z76L4NM/x1cExkhs06XgSRJKeXtSb6U5NIkewxPxiRJrfW3tdbv\nDU/GtNuvTfKNJBsk2b3rOAEAAAAAALrS6ZRlpZSPJXlNkm8neVat9dYJNvGnttykp4EBAAADz+gT\nAABgkHSWkGlHxrwmyReSvKTWeucoddZL8vQkd9VaTxitmba8vKs4AQAAAAAAutbJlGWllCcmOTLJ\nt5K8eLRkTJLUWm9v6x1bSrnH5HillB2TPC3JlUl+1kWcAAAAAAAA06GrETIfbsvvJ3l6KWW0Oqe1\nU5i9Msn3kvyolPKpJL9PMzLmVUnuSjO65vaO4gQAAAAAAOhcVwmZ+W35qdXU2SbJZbXWs0opuyZ5\nW5JXJ9k0yQ1pkjTvr7X+vKMYAQAAAAAApkUnCZla66wJ1r84zVoyAAAAAAAAa51O1pABAAAAAADg\nbhIyAAAAAAAAHZOQAQAAAAAA6JiEDAAAAAAAQMckZAAAAAAAADomIQMAAAAAANAxCRkAAAAAAICO\nScgAAAAAAAB0TEIGAAAAAACgYxIyAAAAAAAAHZOQAQAAAAAA6JiEDAAAAAAAQMckZAAAAAAAADom\nIQMAAAAAANAxCRkAAAAAAICOScgAAAAAAAB0bHa/AwAAAACY6RYdvajfIazWgsMW9DsEAGANjJAB\nAAAAAADomIQMAAAAAABAxyRkAAAAAAAAOiYhAwAAAAAA0DEJGQAAAAAAgI5JyAAAAAAAAHRMQgYA\nAAAAAKBjEjIAAAAAAAAdk5ABAAAAAADomIQMAAAAAABAxyRkAAAAAAAAOja7q4ZLKQ9I8o4kByR5\nYJIlSX6U5N211otH1N0gyb8mOSTJ1kmWJTk7ydtrrb/pKkYAAAAAAIDp0MkImVLKlkkuTnJokq+3\n5WeT7JPkR6WUnYbVnZXk5CRvS3JekhclOSrJE5JcUEp5eBcxAgAAAAAATJeuRsi8J8lDkjyj1nri\n0MZSyqIkJ6UZDXNwu/mQJH+f5EO11jcPq3tWkguTfCjJ0zuKEwAAAAAAoHNdrSFzdZKvJfnWiO3f\nS7IiyWOGbXt+W35ieMV2WrPzk+xfStmsozgBAAAAAAA618kImVrrEWPs2jjJrDRrxAzZJckVtdYr\nR6n/0yS7J5mfZk0ZAAAAAACAgdPVlGVjOawtv5okpZSNk9wvSR2j/uVtuW16kJBZvHjxVJvom0GO\nHRJ9mMGm/zLI9F8G2Zr67/Lly6cpEpg4/ZPp1ut/5/tvCAaZ/ssg039nrnnz5k25jWlLyJRS9kvy\njiQXJflMu3njtrx1jMP+PKIeAAAwDa797rX9DgEAAGCtMi0JmVLK85MsTHJZkn+stfblp0K9yGBN\nt6GM6CDGDok+zGDTfxlk+i9TteSsJX0799DIgjlz5vQtBpgs/Zd+6dW/8/03BINM/2WQ6b/3Dut0\nfYJSytuTfCnJpUn2qLX+cdjuobVkNhzj8I1G1AMAAAAAABg4nSZkSikfS/KuJN9Oslet9R7zHtRa\nb0lyXZKHjNHE1m1p4jwAAAAAAGBgdZaQaUfGvCbJF5I8vdY61jox5yd5SCnlYaPs2zPJX5Jc3E2U\nAAAAAAAA3eskIVNKeWKSI5N8K8mLa613rqb659vydSPa2CvJ45Ic346kAQAAAAAAGEizO2r3w235\n/SRPL6WMVue0WuuttdbvlFJOTPLaUsomSc5OM1XZG5NcmeTfOooRAAAAAABgWnSVkJnflp9aTZ1t\nklzW/v1ZSd6a5LlJnpfkpiSnJDm81npNRzECAAAAAABMi04SMrXWWROsvzzJu9o/AAAAAAAAa5VO\n1pABAAAAAADgbhIyAAAAAAAAHZOQAQAAAAAA6JiEDAAAAAAAQMckZAAAAAAAADomIQMAAAAAANCx\n2f0OAAAAem3R0Yv6HcIaLThsQb9DAGAt0qt/9y1fvjxJsuSsJT1pbzj/7gPg3s4IGQAAAAAAgI5J\nyAAAAAAAAHTMlGUAANAHgzCtGgAAAL1jhAwAAAAAAEDHJGQAAAAAAAA6JiEDAAAAAADQMQkZAAAA\nAACAjknIAAAAAAAAdExCBgAAAAAAoGMSMgAAAAAAAB2TkAEAAAAAAOiYhAwAAAAAAEDHJGQAAAAA\nAAA6JiEDAAAAAADQMQkZAAAAAACAjknIAAAAAAAAdExCBgAAAAAAoGMSMgAAAAAAAB2TkAEAAAAA\nAOiYhAwAAAAAAEDHZvc7AAAA7mnR0Yum3Mby5cuTJEvOWjLltkZacNiCnrcJAAAAa7vOEzKllDlJ\n3pPkjUl+WGt9woj9RyR552qa+Hit9bWdBQgAAAAAANCxThMypZSS5Lgk2yeZtYbqRyT531G2L+5x\nWAAAAAAAANOqs4RMKWXzJBenSajsnOTXazjk3FrrOV3FAwAAAAAA0C/rdNj2nCTHJvk/tdba4XkA\nAAAAAABmtM5GyNRa/5Tk5RM9rl1zJrXW5T0PCgAAAAAAoA+6HCEzUQeXUv43yV+T/LWU8j+llOf1\nOygAAAAAAICp6myEzCTsl+Qjadac2T7JG5McW0p5cK31g704weLFi3vRTF8McuyQ6MMMNv2X6bZ8\nee8GCveyrSGD8Ex0cd1MP98jg0z/ZdDdW/8bgrWDvsYg039nrnnz5k25jZmQkPlKkp8kuaDWurTd\n9r1SyvFJfp3knaWUz9Zal/QtQgAAAAAAgCnoe0Km1vrbJL8dZfu1pZRvJHlJkt2TnDrVc/UigzXd\nhjKigxg7JPowg03/pV+WnDX136EM/ap1zpw5U25rpEF4JnpxD+mfLvsvdE3/ZdDd2/8bgsHm/+EY\nZPrvvcNMWkNmNH9qy036GgUAAAAAAMAU9HWETCllvSRPT3JXrfWE0aq05eXTFxUAAAAAAEBv9XWE\nTK319iRHJjm2lHKPsVillB2TPC3JlUl+1ofwAAAAAAAAeqKzETJtQmXHEZsfUEo5cNjn05K8Msn3\nkvyolPKpJL9PMzLmVUnuSvKSNnEDAAAAAAAwkLqcsuzgJO8csW3HJMOnJtum1npWKWXXJG9L8uok\nmya5IU2S5v211p93GCMAAAAAAEDnOkvI1FqPSHLEOOtenGYtGQAAAAAAgLVOX9eQAQAAAAAAuDeQ\nkAEAAAAAAOhYl2vIAADMOIuOXtTvEAAAAIB7ISNkAAAAAAAAOiYhAwAAAAAA0DEJGQAAAAAAgI5J\nyAAAAAAAAHRMQgYAAAAAAKBjEjIAAAAAAAAdk5ABAAAAAADomIQMAAAAAABAx2b3OwAAAAAA1n6L\njl7U7xDWaMFhC/odAgBrMSNkAAAAAAAAOiYhAwAAAAAA0DFTlgGsJWb68H9D/wEAAAC4NzNCBgAA\nAAAAoGMSMgAAAAAAAB2TkAEAAAAAAOiYhAwAAAAAAEDHJGQAAAAAAAA6JiEDAAAAAADQMQkZAAAA\nAACAjknIAAAAAAAAdExCBgAAAAAAoGMSMgAAAAAAAB2TkAEAAAAAAOiYhAwAAAAAAEDHJGQAAAAA\nAAA6JiEDAAAAAADQsdldn6CUMifJe5K8MckPa61PGKXOBkn+NckhSbZOsizJ2UneXmv9TdcxAgAA\nAAAAdKnTETKllJLkgiQvTzJrjDqzkpyc5G1JzkvyoiRHJXlCkgtKKQ/vMkYAAAAAAICudTZCppSy\neZKLkyxOsnOSX49R9ZAkf5/kQ7XWNw87/qwkFyb5UJKndxUnAAAAAABA17qcsmxOkmOTvK7Welsz\nWGZUz2/LTwzfWGu9uJRyfpL9Symb1VqXdBcqAF1bdPSifoewRgsOW9DvEGAgDMLzDAAAADNNZwmZ\nWuuf0kxVtia7JLmi1nrlKPt+mmT3JPPTrCkDAAAAAAAwcLocIbNGpZSNk9wvSR2jyuVtuW16kJBZ\nvHjxVJvom0GOHRJ9eDosX7683yEMvLH6qf67drm3PSv3tutl7aL/Msj0XwbdvbUP+2//tYPvkUGm\n/85c8+bNm3IbfU3IJNm4LW8dY/+fR9QDAAAAgE5c+91r+x3Cam2535b9DgGAKeh3QmZa9SKDNd2G\nMqKDGDsk+vB0WnKWpbamamQ/1X/XTveWZ2XoV61z5szpcyQwcfovg0z/ZdDpwzOb/zdZPf8PxyDT\nf+8d1unz+Ze15YZj7N9oRD0AAAAAAICB09eETK31liTXJXnIGFW2bksT5wEAAAAAAAOr3yNkkuT8\nJA8ppTxslH17JvlLkounNyQAAAAAAIDemQkJmc+35euGbyyl7JXkcUmOb0fSAAAAAAAADKTZXTVc\nStkxyY4jNj+glHLgsM+n1Vq/U0o5MclrSymbJDk7zVRlb0xyZZJ/6ypGAAAAAACA6dBZQibJwUne\nOWLbjklOGPZ5mySXJXlWkrcmeW6S5yW5KckpSQ6vtV7TYYwAAAAAAACd6ywhU2s9IskR46y7PMm7\n2j8AAAAAAABrlZmwhgwAAAAAAMBaTUIGAAAAAACgYxIyAAAAAAAAHZOQAQAAAAAA6JiEDAAAAAAA\nQMckZAAAAAAAADo2u98BAADjt+joRf0OYbUWHLag3yEAAAAAzEhGyAAAAAAAAHRMQgYAAAAAAKBj\nEjIAAAAAAAAdk5ABAAAAAADomIQMAAAAAABAxyRkAAAAAAAAOiYhAwAAAAAA0DEJGQAAAAAAgI7N\n7ncAAMDaY9HRi/odAgAAAMCMZIQMAAAAAABAxyRkAAAAAAAAOmbKMgBojZxua/ny5UmSJWct6Uc4\nAAAAAKxFjJABAAAAAADomIQMAAAAAABAxyRkAAAAAAAAOiYhAwAAAAAA0DEJGQAAAAAAgI5JyAAA\nAAAAAHRMQgYAAAAAAKBjEjIAAAAAAAAdm93vAIBuLTp6UV/Pv3z58iTJkrOWjFlnwWELpiscAAAA\nAIC+mBEJmVLKF5O8YDVVXldr/dg0hQMAAAAAANBTMyIhM8wrklw3yvafT3cgAAAAAAAAvTLTEjLf\nrbVe1u8gAAAAAAAAemmdfgcAAAAAAACwtpuRCZlSyvqllJk2egcAAAAAAGBSZq1YsaLfMaSU8sUk\nL0jy4SQHJpmb5K4ki5K8q9Z62kTaW7p06agXtXjx4inFCYPo2u9e2+8Q1mjL/bbsdwhrhUH4rgEA\nAJg8//8M0D/z5s0bdfumm246a7xtzLQRMk9O8r4k/5Dk8CTzkpxSSjmkr1EBwP9n797D7arqe+F/\nYy6EW1CKCL4gITUdXI8SD1IqR23iEa16QEVRi4CAXISKxUs95tCYSlpfpKKlRdEEsVJrQS56kGoV\nBcHLy1Vqix1vOFxCQDGABAxCAs35Y60dN5u9k52sNdfa2fvzeZ79zGRexhyT/PZkrfVdY0wAAAAA\n6MBYmRbsr5P8Y5Kra61PtNddWUr5epKfJPnrUspFtdb/7OQkIyVYY9nAqJ7Nse+MDQ9f9XBfz796\n9eokybRp00bcR313R7//rcej0dQvjFXql82Z+mVzpn7Z3Knhsc375/XzORqbM/U7MYyJQKbW+tMk\nPx1m/W2llKuT/Pckeyb59x53DQAAAAAAoGNjbcqy4dzfXs7oay8AAAAAAAA2Ud9HyJRSZiR5Q5IH\na63fHG6X9vKe3vUKAAAAAACge/oeyCRZneTvkjxeStmn1vrAwIZSyquS7J/k+lrr8n51EGjWDZ+9\nod9dAAAAAABoVN8DmVrr46WUU5NckOT6Uspnk/wiyX5JTkqyMskJ/eshAAAAAABAZ8bEM2RqrV9M\nMjfJ7Uk+kmRJksOS/EOSObXWn/SxewAAAAAAAB3p+wiZAbXW7yX5Xr/7AQAAAAAA0G1jYoQMAAAA\nAADAeCaQAQAAAAAAaNiYmbIMAAAAANi83fDZG/p27tWrVydJHr7q4fXut/+J+/eiOwDPYIQMAAAA\nAABAwwQyAAAAAAAADTNlGQAAAABsBvo5HRgAnTNCBgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABom\nkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZ\nAAAAAACAhglkAAAAAAAAGjal3x2Azd0Nn72h310AAAAAAGCMM0IGAAAAAACgYQIZAAAAAACAhpmy\nDAAAAACYMMb69PP7n7h/v7sANMQIGQAAAAAAgIYJZAAAAAAAABpmyrIJbKwPz0wM0QQAAABgYvGZ\nHYxfRsgAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADZvS7w4MKKVsn2RBkkOT7Jzk\ngSRXJjm91vrzfvYNAAAAAACgE2MikCmlbJnk6iR7JPnbJDcmmZ3kA0nmllJeUmv9Vf96SL/c8Nkb\n+t0FAAAAAICuGvq55+rVq5MkD1/1cD+6M6z9T9y/310Yd8ZEIJPkfUn2TXJyrfXcgZWllFuTXJbk\n9CSn9alvAAAAAAAAHRkrz5A5MsmqJEuGrP9akuVJjiilTOp5rwAAAAAAALpg0tq1a/vagVLKjCQr\nk1xba335MNsvSfKmJL9ba71jNG2uXLmyvxcFAAAAAACMe9ttt92oB5OMhREyu7WXy0fYvqy9nNWD\nvgAAAAAAAHTdWAhktm0vHxth+6oh+wEAAAAAAGxWxkIgAwAAAAAAMK6NhUDmkfZy6xG2bzNkPwAA\nAAAAgM3KWAhk7kyyNskuI2wfeMbM0t50BwAAAAAAoLsmrV27tt99SCnlJ0lmJ/mdWuvjg9ZPTnJf\nkidqrS/oV/8AAAAAAAA6MRZGyCTJkiRbJTlhyPojkuyYZHHPewQAAAAAANAlY2WEzNQk1yZ5SZJz\nktyYZO8kp6U1Vdnv11of618PAQAAAAAANt2YCGSSpJQyI8lHk7w5yc5JfpnksiQLaq0P9bFrAAAA\nAAAAHRkzgQwAAAAAAMB4NVaeIQMAAAAAADBuCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZ\nAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaNiUfndgIiilbJ9kQZJDk+yc5IEkVyY5vdb681G28cIk\nX06yf5J31VovGGG/vZL8RZJXJJmR5O4kFyb5eK11dWdXwkTUy/pt7/u8JBckeU2ShbXWj3bQfSa4\nHt9/981v77/bJPl5kn9O8ue11l92diVMRD2u39cleW+SFyXZPq36/VaSj9Za7+vsSpioev0aYtAx\nk5J8L6378aiOgaF6Vb+llLuS7LaeZvartf5kY/oOPX4N8awkpyQ5PskLk6xMclWS/1VrvaOzK2Ei\n6kX9llJemdZrhfW5u9Y6c2P6Dn14D3dqe7+t03oP9y9Jzqi13t3ZldAkI2QaVkrZMsnVSU5KckmS\no5Ocl+TwJD8opTxnFG28K8ktSfbcwH57J/lRkoOSnJXkmCTXJPlokos28RKYwHpZv+19X5fkp2nV\nMHSkx/ffVyS5Oa0XQmcmeXdab0SPT/LDUso2m3odTEw9rt9Tk1yRVhBzRpIT0nqDelySH7ffVMBG\n6fVriCGOSyuMgU3Sh/pdkeQtI/zcudEXwITWh/r9QpJPJ7k+rdfAn0tySPtcO2z8FTCR9bB+/z0j\n33fflWR1ex8YtR6/hzs+rfdwL0jrPdxx7XMekeTGUsr6vuxBnxkh07z3Jdk3ycm11nMHVpZSbk1y\nWZLTk5w20sHtX7DzkpyT5N/afx7JJ9P6VvZBtdafttf9QyllVZJTSyn/o9b69U4uhgmnZ/VbSjk4\nrf+ZXJTkH5J8rQv9Z2Lr5f33c0keT/KyQd9E+WIpZWW7H0cmOXekg2EYPanf9qjETyS5Na36HRhN\n+4VSysNpfePqqCRnd3pBTDi9vAcPPm6ntILxW5Lst6mdZ8Lrdf0+Vmv9aqedhrZevod7fVqvcxfU\nWv9i0Pqa5ONJ5saXQ9k4PanfWuuKJMPed0spn0qyNsmfbtolMIH16j3cs5IsSvJoWp8BP9De9Pft\n++9n231Rw2OUETLNOzLJqiRLhqz/WpLlSY5oT6uwPm+stb43rYR+WKWUnZP89yTfHRTGDPjb9vKd\no+41tPSkftumJzmp1np4kkc2pbMwRK/uv9smuS7JJ4YZFnxle/lfRt1raOnV/XdqWm8MPjjM1Kbf\nbi9fMLouw9P08jXEYOck+c8kf7kRx8BQ/apf6IZe1u/Jab13+8TglbXWC2utu9RahTFsrL7ef0sp\nL0lrCr5P1Fr//409ngmvV/U7I8kOSX42KIwZ8P32cuaoekxfGCHToFLKjCR7JLm21vrE4G211rWl\nlOuTvCnJ7kmGnVu11vq5UZ7uvyaZlNaUZUPbuL2U8lCSAzai+0xwPa7f1FqNiKFrelm/tdZHkxw7\nwubt2kshI6PW4/pdnuT/HWHzHu3lv46mLRjQ69cQg877P5IcltaUDUPfnMKo9Kt+B51/qyS/qbWu\n3dQ2mLh6Wb+llMlJ/jDJd2qtv2mvm5bkqVrrU5t+FUxU/b7/tp2b5N74Ygcbqcfv4R4upfwiyW6l\nlGlDvlg3s738t428BHrICJlmDczXt3yE7cvay1ldONfMUZxr11KKEI7R6mX9QreNlfo9Ma3h7v/Y\n8HkYX/pSv6WUKaWUZ5dSXlhK+WBab0S/k+TCbp6HCaHnNdwerfh3aX0r8PxutcuE1I978JallL8p\npfwqrW/WPlZKubyUsseGDoQhelm/uyfZIsnSUso7Sik/S/JEkidKKVe1RxrAxujre7j2FHwvTfLn\nAyEjbIRe1++Hkjw3yYWllD1LKc8tpbwyrWeKL0tr1DhjlECmWdu2l4+NsH3VkP02l3MxMagpNmd9\nr99SyhlJ5iX521rrLU2dh3GpX/V7UJJfJVmaZEGSP0/ymlrrmi6fh/GvHzX8V0l2THKCkQV0qB/1\nu2NaX7A7Ickb03o23euT/LiU8ntdPA/jXy/rd/v2cm5ao20/k+QNaX2h42VJvl9K2bcL52Hi6Pd7\nuAVJ7owvI7Fpelq/tdYvJTkkrcdX3Jbkl0m+l2Rlkv9Wa/1lN85DM4yWAIAuaj9g75wk70lrrtgR\nH9oHY8xP0pp65Dnt5V8kObiU8tZh5iaGMaOUcmCSk5KcUWv9j373BzbSUWlN8XTdoHWXl1J+muTz\nSRYmeXtfegbrN629fGGSF9Vab2///YpSyn8k+Ye0PuA+rB+dg41RSjk4rUcBnGbKPTYHpZRD0woP\nB14vLE+yd5KPJPmXUsqra63L1tMEfSSQadbAMwO2HmH7NkP268W5Hu3CuZgYelm/0G19qd9SytZp\nTU/2hiRfSHJ8rfXJbp6DCaEv9VtrfTjJ1e2/XlZKuSrJ5Wl963Wk5yTBcHpWw+3nFSxOcnvM9053\n9PQeXGu9ZoRN56f1BY9XdeM8TBi9rN9ft5fXDQpjBvxjWvfmV3bhPEwc/fwM4rgkT6YVJMKm6OXr\n3+2TXJDkrrRGwwx85vAvpZTvJbklranL3trpuWiGKcuadWdazw7YZYTtA/MLLu3CuQYeCLW+c93p\ng0E2Qi/rF7qt5/XbDkY6bqAAACAASURBVGP+Ja0w5vRa6zHuuWyiMXH/rbV+La0Ho7+myfMwLvWy\nhv8syZ5pTbH33FLKLqWUXdKaUztJntNet1UXzsXEMFbuwf+Z1j14RpPnYdzpZf3e1V5OHrqhPXXk\niqhfNk5f7r+llC2TvC7JD03zRAd6Wb8HJNkuydeHfuZQa/1JkvvSmvGAMUog06Ba66ok/5pkTill\n+uBtpZTJSf4gyT1dGkJ2fVpp/suGbiil7JPk2UmuG7oNRtLj+oWu6nX9llKmJLkkyYFJjqu1ntGN\ndpmYelm/pZSjSin3l1KOGWbbs9Ka49iIajZKj+/B85JMSvKVJPcM+rmovf2T7b/7hiCj0uN78KxS\nyrHt92tDt22T5P/Jbx8CDBvUy/ptj6z9jyR7t18LDz7X1CQ7Z+SHW8Mz9PEziJcn2TLJd7vcLhNI\nj+t3YBTO9BG2T1/PNsYAgUzzliTZKq0HNA52RFoPb1w8sKKUskcpZfdNOUl7bvevJ3llKWW/IZvf\n314uDmycntQvNKSX9Ts/ycFJ3l9rXdJBOzCgV/V7a7u9U9ofngx2eJItkvxgE9tmYutVDf/PtEYm\nDv35SHv7p9p//84mts/E1Kv6fV67rbNLKZOGbPtwWmHjpZvYNhNXL18DfyHJTmk9x2uwE5JMTfK/\nO2ibiakfn0G8pL38ty60xcTWq/r9/5L8Z5JDhwl/5ibZPskPN7FtesA3Hpv32SR/nOSsUspuSW5M\n6yFLp6X14KWzBu37syQ1yR4DK0opr81vk8//OrAspQzM17pi0LzDH0wr2f9WKeWstIaovaZ9/iW1\n1u93+doY/3pWv6WUV+S304vs3V7uVUoZeAjkqlrrP3frwpgQelK/pZTnpTVlzi+TLB9Us4OpXzZW\nT+q31vqTUsq5Sd6T5IZSyheTPNQ+5vi05odf0MD1Mf71qoZ/NNzJB+13a631ii5cDxNLz+q3lHJB\nkqOTXF1KuSjJE2l9yeOw9rkWdf3qGO96+RnE3yR5c5JPtT9Y/EmS/dMKaO6J+mXj9bJ+B/xee3lX\nl66BiatXrx/uKaX8dVqfA9/Yfi1xb1rT+P5pklVpfWmJMUog07Ba65pSyquTfDStFyqnpPWh3eIk\nC2qtj22gic/kt/MMDji5/ZMk16T9oLxa6x2llD9I60XPh9KaZuT/JPlAWt8OhI3Sy/pNsjDJK4bs\n+5b2T5LcnWTmRl0AE1oP63fPtIa4b5nfTpEzlPplo/T49cPJpZQfJTmxfb6tktyf5J+SLKq11g4v\nhwmox68hoKt6XL/HpTW19MlJPpHWLBZ3JjkjyZm11kc7uRYmnh6/hni8lDIvyelpTQ15SpIH03rY\n9Omex8HG6tPrh+e0l+63dKTH998PlVJuTes93OlpvYf7ZZKvJTmj1vofnV4PzZm0du3afvcBAAAA\nAABgXPMMGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABo2pd8daMLKlSvX9rsPAAAAAADA+LbddttNGu2+RsgAAAAAAAA0TCAD\nAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgA120dOnSLF26tN/dgMaoccY7Nc54\np8YZ79Q4450aZ7xT44xn6ptEIAMAAAAAANA4gQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCAD\nAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMOm9LsD\nAHTJgvmNn2Lm6jWtP0ybuvEHL1zU3c4AAAAAwGbECBkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABo\nmEAGAAAAAACgYQIZAAAAAACAhglkAAAAAABggli4cGFe+tKX5r777ut3V4Z1xRVX5LWvfW0OPPDA\n/P3f/32/u9NVU/rdAQAAAAAANhML5ve7B+u3cFG/e9A1S5YsyWtf+9o8//nP72q7b3nLW3LQQQdl\n++2372q73bBy5cp8/OMfz4wZM/LhD384e+65Z7+71FUCGQAAAAAAGEPuvffenHfeeXnxi1/c9UBm\nr732yl577dXVNrtl2bJlWb16dV7zmtfkkEMO6Xd3us6UZQAAAAAAMIbcdttt/e5CX6xevTpJMn36\n9D73pBlGyAAAAAAAwCALFy7MN77xjVx44YX57ne/myuvvDIPPvhgdtxxxxx22GF5xzvekUmTJq3b\n/5e//GUWL16cH/3oR3nwwQez1VZbZZ999slRRx2V/fbbb91+Tz75ZC666KJceeWVue+++/LUU09l\np512yrx583L00Udn2rRpOfHEE3PzzTcnSU466aQkyeWXX57nP//5efjhh7N48eJce+21WbFiRbbe\neuu86EUvytFHH5199tnnGf3/8pe/nHPOOSe33HJL/vIv/zIHHXTQum0DbW7sNayv7ZGMpu3B1714\n8eIsXrw4xx13XI4//vj1/ls9+eSTufjii3PFFVdk2bJl2W677TJ37tz8yZ/8SZ566qkceuih2X//\n/fOxj31sg//uTRPIAAAAAADAMM4555ysWbMmRx55ZKZOnZpLL700n/70p7N27docccQRSZIHHngg\n73rXu/LII4/kTW96U2bPnp0HH3wwl112Wd7znvfkk5/8ZHbYYYckyVlnnZVLL700r371q3P44Ydn\n8uTJufnmm7NkyZLcfvvtOfPMM3P88cfn4osvzlVXXZV3v/vdmTVrVrbffvs88sgjOfbYY/OrX/0q\nb3zjG/O7v/u7WbFiRS655JKccMIJ+dSnPpX999//af0/99xzs8MOO2T+/PmZNWvWiNc5mms48MAD\nG237+OOPz0033ZTPf/7zmTdvXl71qldl9913X++/z8qVK3Pqqafmtttuy0EHHZTf//3fz3XXXZev\nfOUr2XHHHTNp0qSsXLlyg6FOrwhkAAAAAABgGA888EC+9KUvZcqU1kfp8+bNyyGHHJIvfvGLecc7\n3pFnPetZWbx4cVasWJGPfexjOfjgg9cde/DBB+ctb3lLzj777CxatChJ8q1vfSuzZs3KGWecsW6/\nP/qjP8quu+6af//3f89vfvObzJkzJzfeeGOSZM6cOXnJS16SJPnMZz6Te++9N4sXL37aaJjXvva1\nedvb3pazzz47X/7yl5/W/zVr1uT000/f4HWO5hqGBjLdbnvOnDlZu3ZtkmT33XfPvHnzNtj2/Pnz\nc9ttt+X9739/Dj/88CTJO9/5zrz+9a/PD3/4w9x55515/etfn1133XWDbfWCZ8gAAAAAAMAw3vCG\nN6wLY5Jkm222yf7775+VK1fmjjvuSJJcffXVmTFjRl71qlc97diddtop+++/f+66667cf//9SZLJ\nkydnxYoVue+++56271FHHZUzzzwzW2655Yh9+c53vpOZM2dmt912y6OPPrruZ8stt8x+++2X22+/\nPY888sjTjpk7d+6ornM017B8+fKetT0a119/fa6//vq8+MUvzlvf+tZ165/97Gdn5513zo033phH\nH300xx133Ea33RSBDAAAAAAADGO4qbgGph/7+c9/nkcffTQPPfRQZs6cmcmTJz9j3912223dvkny\n7ne/O48++mje+ta35oMf/GAuvvji3HPPPRvsx69//eusWLEid9xxR+bNm/eMn2uvvTZJ8otf/OJp\nxw1+RsxIRnsNy5Yt61nbo3HllVcmSd7+9rc/7Xk+STJt2rQkyRvf+MY873nP2+i2m2LKMgAAAAAA\nGMZWW231jHVbb711ktaUXY899liSjDiyZYsttkiSPPHEE0mSww8/PDNnzsxXvvKV/PjHP84111yT\nJHnRi16UP/uzP8sLX/jCYdtZtWpVkmT27Nk57bTTRuzv0JBkuP4PNdpr+M1vftOztkfjlltuyZQp\nU54xldqA6dOn5+ijj97odpskkAEAAAAAgGE8/vjjz1j361//OklraqyBUGIgeBhqIGgYHEgccMAB\nOeCAA/L444/nlltuyTe/+c1885vfzHve855ccskl2XbbbZ/RzkAI9OSTT657pky3jPYaRhPA9Krt\nxx9/PL/4xS+yyy67ZPr06U/bdu+99+buu+/Ovvvum9/5nd/Z6D43yZRlAAAAAAAwjDvvvPMZ6wae\n/7LDDjtk2223zQ477JC77rorTz311IjHDze91/Tp03PggQdm4cKFedvb3paHH344N99887D92Gab\nbbLjjjtm2bJleeihh56x/eGHH96o6xpstNew++67j5m2n3jiiaxdu/YZU5Ulydlnn53Vq1c/7dk/\nY4VABgAAAAAAhnHllVc+LUhYuXJlbrrppuywww7ZddddkyTz5s3Lo48+mm9/+9tPO3bZsmW56aab\nsueee2aHHXbInXfemTe/+c25/PLLn3GegREwA88+GXjeyurVq9ftM2/evDz11FP5p3/6p6cd+8gj\nj+SII47IqaeeusnXOZpr2GmnncZM2zNmzMhWW22V5cuXZ+nSpevWf/WrX833v//9JK3n14w1Yy8i\nAgAAAACAMWDrrbfOKaeckrlz52bq1Kn56le/mscffzzvfe97143OOPbYY3PNNddk0aJFWbp0aWbN\nmpX7778/l156aSZPnpwPfvCDSZIXvOAF2WKLLXLmmWdm6dKl2XPPPTN58uQsXbo0F110UWbNmrVu\nOrKBETXnn39+7rjjjrzsZS/LMccck+9///u54IIL8tBDD2XOnDl56KGHcumll+bBBx/M/PnzN/k6\nR3sNY6XtSZMm5XWve10uvvjinHLKKZk3b14efPDBXH311Xn5y1+eVatW5aabbspf/dVf5ZBDDsle\ne+21yf3vJoEMAAAAAAAM44QTTsgNN9yQCy+8MA888EB22mmnfOADH8hhhx22bp9nP/vZOf/883Pe\neeflW9/6Vh588MFsu+22mTNnTo499tjMnj07S5cuzeTJk/O5z30u559/fq655ppcccUVefLJJ7PT\nTjvlsMMOy7ve9a51I2Tmzp2bb3/727nhhhty9913Z++9987MmTNz/vnnZ/HixbnuuuvyjW98I1tu\nuWX22WefzJ8/P3PmzNnk6xzNNYy1tt/73vdm2rRp+fa3v53LLrssM2bMyNvf/vaccsopqbXmox/9\naC677LLMnTt3k/vebZPWrl3b7z503cqVK8ffRbFZGBge18kNCjbZgk3/FsRorVm9JkkyddrUjT94\n4aIu9wa6z32c8U6NM96pccY7Nc54p8YZSxYuXJhvfOMbWbJkSfbdd9+O21Pf49d22233zAfZjMAz\nZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAABhkwYIFuf7667vy/BgYIJABAAAAAABo\nmEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJ\nZAAAAAAAABomkAEAAAAAAGjYlG40UkrZPsmCJIcm2TnJA0muTHJ6rfXnozj+iCQnJnlRkmlJliW5\nIskZtdYHu9FHAAAAAACAful4hEwpZcskVyc5KcklSY5Ocl6Sw5P8oJTynA0c/5dJvpRkapKPpBXM\nXJ3kT5L8uJQyo9M+AgAAAAAA9FM3Rsi8L8m+SU6utZ47sLKUcmuSy5KcnuS04Q5sj6z5YJK7kry8\n1vpEe9MXSikPJPlwkncl+XQX+gkAAAAAANAX3XiGzJFJViVZMmT915IsT3JEKWXSCMe+IK1Q6PpB\nYcyA77eXM7vQRwAAAAAAgL7pKJBpTye2R5KbhwYqtda1Sa5P8twku4/QxJ1Jnkgye5htM9vLf+uk\njwAAAAAAAP3W6ZRlu7WXy0fYvqy9nJXkjqEba60rSykfS3JGKeWcJJ9K8miSlyaZn+QnSf6hwz4C\nAAAAAAD0VaeBzLbt5WMjbF81ZL9nqLUuKqXcn+ScJKcM2nRFkiNrrY932Md1li5d2q2mYL3UGv0w\nc/Wanp1rzSac6y6/F2xG3McZ79Q4450aZ7xT44x3apzxTH1vvmbPHm6ir43TjWfIdKSUclKSzyT5\nbpJ3JnlNkgVJ/jDJlaWUZ/exewAAAAAAAB3rdITMI+3l1iNs32bIfk9TSilJ/ibJVbXW1w3a9K1S\nyq1JLk/ykSQf6rCfSbqTYMH6DCTcao2+mDa18VMMjIyZugnn8nvB5sB9nPFOjTPeqXHGOzXOeKfG\nGc/UN0nnI2TuTLI2yS4jbB94xsxI47DmphUKXTrMtn9ut/2HnXQQAAAAAACg3zoKZGqtq5L8a5I5\npZTpg7eVUiYn+YMk99Ral43QxMDImunDbNsiyaQRtgEAAAAAAGw2uvEMmSVJtkpywpD1RyTZMcni\ngRWllD1KKbsP2ueH7eXhpZRJQ45/y5B9AAAAAAAANkudPkMmST6b5I+TnFVK2S3JjUn2TnJakp8m\nOWvQvj9LUpPskSS11h+WUi5OK3y5rpRyUZIVSfZPcnKS+5Ms6kIfAQAAAAAA+qbjETK11jVJXp3k\nnCRvTnJBkqPSGhnzylrrYxto4u1J/iStKcoWtY9/Y5Lzk7xkPdOdAQAAAAAAbBa6MUImtdZH0hoR\nc9oG9hs6LVlqrU8l+dv2DwAAAAAAwLjTjWfIAAAAAAAAsB4CGQAAAAAAgIYJZAAAAAAAABrWlWfI\nAIx7C+b3uwcAAAAAwGbMCBkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAA\nAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGFT+t0BACaIBfP73YMNW7io3z0AAAAAYJwy\nQgYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglk\nAAAAAAAAGjal3x0AyIL5/e4BAAAAAECjjJABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAA\nAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAA\nAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAA\nGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh\nAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABo2JRuNFJK2T7JgiSHJtk5yQNJrkxyeq3156M4fosk\nH05yRJJd28d/I8n8WusD3egjAAAAAABAv3Q8QqaUsmWSq5OclOSSJEcnOS/J4Ul+UEp5zgaOn5JW\n+PK/klyR5LgkX01ybJJrSinTOu0jAAAAAABAP3VjhMz7kuyb5ORa67kDK0sptya5LMnpSU5bz/En\nJpmX5Kha69+3111YSnkgyTFJDkhybRf6CQAAAAAA0BfdeIbMkUlWJVkyZP3XkixPckQpZdJ6jj85\nydIkXxq8stZ6Rq11Vq1VGAMAAAAAAGzWOgpkSikzkuyR5OZa6xODt9Va1ya5Pslzk+w+wvG7tI//\nl/b+KaVM30CAAwAAAAAAsFnpdMqy3drL5SNsX9ZezkpyxzDb92gv/08p5dQkf9pu84lSyjeTfKDW\nenuHfVxn6dKl3WoK1kutbZyZq9f0uwtspDXj9N/sLr+7tLmPM96pccY7Nc54p8YZ79Q445n63nzN\nnj274zY6nbJs2/bysRG2rxqy31Dbt5dHJTkhyaIkhyQ5L8kbkvyglLJzh30EAAAAAADoq05HyHRq\nWnv5vCT71FofbP/966WU+9MKaN6f5APdOFk3EixYn4GEe0zV2oL5/e7Bhk2b2u8eMEoDI2OmjtN/\nszH1u0tfjMn7OHSRGme8U+OMd2qc8U6NM56pb5LOR8g80l5uPcL2bYbsN9Sv28uvDwpjBixpL1+5\naV0DAAAAAAAYGzoNZO5MsjbJLiNsH3jGzEgT493VXk4eZtsD7bZnbGrnAAAAAAAAxoKOApla66ok\n/5pkTill+uBtpZTJSf4gyT211mUjNHFbkpVJXjzMtl2TTEqyvJM+AgAAAAAA9FunI2SS1tRiWyU5\nYcj6I5LsmGTxwIpSyh6llN0H/l5rXZ3ky0leUkp5w5DjT2kv/3cX+ggAAAAAANA3U7rQxmeT/HGS\ns0opuyW5McneSU5L8tMkZw3a92dJapI9Bq1bkOTgJBeXUj6e1jRmc5O8M8lP2u0DAAAAAABstjoe\nIVNrXZPk1UnOSfLmJBckOSqtkTGvrLU+toHjVyT5/SRfTHJ8ks8leUWST7aP/02nfQQAAAAAAOin\nboyQSa31kbRGxJy2gf0mjbB+RVpTng2d9gwAAAAAAGCz141nyAAAAAAAALAeAhkAAAAAAICGCWQA\nAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAA\nAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGFTutFI\nKWX7JAuSHJpk5yQPJLkyyem11p9vZFvTk9ya5PeS/GGt9epu9BEAAAAAAKBfOh4hU0rZMsnVSU5K\nckmSo5Ocl+TwJD8opTxnI5s8Pa0wBgAAAAAAYFzoxgiZ9yXZN8nJtdZzB1aWUm5NcllaActpo2mo\nlLJvkg8muSXJfl3oGwDA0y2YP+KmmavXtP4wbWqPOjOChYv6e34AAACg67rxDJkjk6xKsmTI+q8l\nWZ7kiFLKpA01Ukp5VpLPJ7k7rRE2AAAAAAAA40JHgUwpZUaSPZLcXGt9YvC2WuvaJNcneW6S3UfR\n3ClJDkhyYpInNrAvAAAAAADAZqPTKct2ay+Xj7B9WXs5K8kdIzVSStk1yaIkX6q1XlVKObrDfg1r\n6dKlTTQLzzCWam3d9DvQRWvGaV3dNYZ+d2nOaO6L/a5xtUjTxtJrFWiCGme8U+OMd2qc8Ux9b75m\nz57dcRudTlm2bXv52AjbVw3ZbySfSbI6yfs77A8AAAAAAMCY0+kImY6VUt6W5HVJjqm1rmjyXN1I\nsGB9BhLuMVVr/X4wNePKwKiBqeO0rsbU7y7NWU/9jpUaV4s0ZUy+VoEuUuOMd2qc8U6NM56pb5LO\nA5lH2sutR9i+zZD9nqaUsn2STye5ptb6hQ77AgD024L5/e4BAAAAwJjUaSBzZ5K1SXYZYfvAM2ZG\nmhjvE0meneSjpZTBbTynvXxue/2KWusTHfYVAAAAAACgLzp6hkytdVWSf00yp5QyffC2UsrkJH+Q\n5J5a67IRmpiXZFqS7yW5Z9DPJ9vbL2r//cBO+gkAAAAAANBP3XiGzJIkf5PkhLSmHxtwRJIdkywY\nWFFK2SPJE7XWO9urjkmy1TBtzkvyviQfSfLT9g8AAAAANGesT8G7cFG/ewBAB7oRyHw2yR8nOauU\nsluSG5PsneS0tIKUswbt+7MkNckeSVJr/e5wDZZSdmj/8Ue11qu70EcAAAAAAIC+6WjKsiSpta5J\n8uok5yR5c5ILkhyVZHGSV9ZaH+v0HAAAAAAAAJuzboyQSa31kbRGxJy2gf0mjbK9C9IKdgAAAAAA\nADZ7XQlkAACAcWasz6GfmEcfAADYrHQ8ZRkAAAAAAADrZ4QMAAD0Qx9GoMxcvab1h2lTe35uAACA\nic4IGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nNqXfHYDN3oL56/44c/Wa1h+mTe1TZwAAAAAAGIuMkAEAAAAAAGiYETIAAIw/g0awAgAAwFhghAwA\nAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAA\nAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAA\nAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQsCn97gAAAABs1hbM73cP1m/hon73AACAGCED\nAAAAAADQOIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAA\nAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAA\nAADQsCn97gAAAACMaMH8Ue86c/Wa1h+mTW2oMwAAsOmMkAEAAAAAAGiYETIAsDnZiG8JAwAAADB2\ndCWQKaVsn2RB/BdBMQAAFgBJREFUkkOT7JzkgSRXJjm91vrzURx/UPv4lyaZnuSeJJck+Vit9dfd\n6CMAAAAAAEC/dBzIlFK2THJ1kj2S/G2SG5PMTvKBJHNLKS+ptf5qPcf/cZILk9S0QplHkrw+yYeS\n/LdSykG11v/stJ8AsEFGnwAA49Hm8Bpn4aJ+9wAAoHHdGCHzviT7Jjm51nruwMpSyq1JLktyepLT\nhjuwlLJFks+kNSLmgFrryvam80spl6U14uY1aY22AQAAAAAA2Cw9qwttHJlkVZIlQ9Z/LcnyJEeU\nUiaNcOxOSS5N8leDwpgBAyHMf+lCHwEAAAAAAPqmoxEypZQZaU1Vdm2t9YnB22qta0sp1yd5U5Ld\nk9wx9Pha691Jjh6h+e3ay0c66SMAAAAAAEC/dTpl2W7t5fIRti9rL2dlmEBmJKWUaUmOSfJYkss3\nuXdDLF26tFtNwTozV695xro1w6yD8USNM971vcb/54f6e/4NuOuYd/e7Cxs03P+f+a2+13iX3OX1\n/YSwKb/P46XGJxK/zxvH5xvNGeuvISbK74oaZzxT35uv2bNnd9xGp4HMtu3lYyNsXzVkvw0qpTwr\nyeeT7Jnk/bXW+za9ewAAAAAAAP3XaSDTVaWULZN8OcmhSf6u1vrJbrbfjQQLnmHa1HV/HPgm3tRB\n62A8UeOMd2p8dDaL11T+DYc13mp89oUX9LsLG7ZwUb97sPnbiHodbzU+kWwW/28ZAwa+Ve2/V4PG\n+P1jvP/bq3HGM/VNkjyrw+MHnu+y9Qjbtxmy34hKKc9N8t20wpiP1VpP6bBv/N/27j1a27KuE/j3\nTcBDKkmmYwOClv5YWjOKhqapDDNarLFSS4WRBCpDA09oZqEBJuWsWCmKJiXiqXRleTYPpRxUUMZh\n4SHlp4GGmCk4eUI003f+uO9dm9d9ePZ+nmef+HzWetf17vtw7etZ6/de7/3cv+sAAAAAAABsCdPO\nkPlMkt1J9l/m/MIeMysujFdVt0/yviR3SnJcd79iynYBAAAAAABsGVPNkOnu65J8NMkhVXWzxeeq\n6iZJ7pfkc9191XJ1VNWtk7wzyR2T/IJkDAAAAAAAsNNMu2RZkpyT5BZJjt/j+NFJbpfkZQsHqurg\nqrrTHtedmeQeSY7q7nfMoD0AAAAAAABbyrRLliXJS5M8JskZVXVgkg8nuXuSk5J8LMkZi679ZJJO\ncnCSVNV/SXJMkk8kuUlV/fIS9V/T3RfMoJ0AAAAAAACbYuqETHd/p6oekuTUJL+U5MQkX8owM+aU\n7v7mCrcfkmRXkrslef0y11yQ5LBp2wkAAAAAALBZZjFDJt39tQwzYk5a5bpde/z8iiSvmEUbAAAA\nAAAAtqpZ7CEDAAAAAADACiRkAAAAAAAA5kxCBgAAAAAAYM4kZAAAAAAAAOZMQgYAAAAAAGDOJGQA\nAAAAAADmTEIGAAAAAABgziRkAAAAAAAA5kxCBgAAAAAAYM4kZAAAAAAAAOZsr81uAAAAAABTOuXk\nzW7B6k47fbNbAACbygwZAAAAAACAOZOQAQAAAAAAmDMJGQAAAAAAgDmzhwwAAGuzHdaoh61iq/97\nsZ8DAABsGDNkAAAAAAAA5kxCBgAAAAAAYM4sWcbWttWXeAAAAAAAgAmYIQMAAAAAADBnEjIAAAAA\nAABzJiEDAAAAAAAwZxIyAAAAAAAAcyYhAwAAAAAAMGd7bXYDAAAAAIAJnHLyZrdgdaedvtktANiy\nzJABAAAAAACYMzNkAAAAbqy2w0hrAADYIcyQAQAAAAAAmDMJGQAAAAAAgDmzZBkAAAAA82eZRABu\n5MyQAQAAAAAAmDMzZAAAAIDNtR1mTpx2+ma3AGDr0G/DupghAwAAAAAAMGcSMgAAAAAAAHMmIQMA\nAAAAADBn9pC5MdsOaz0CAAAAAMAOYIYMAAAAAADAnEnIAAAAAAAAzJmEDAAAAAAAwJzZQwYAAAAA\nmI0p9iw+6F+/M/xln71n1Jht6rTTN7sFbITtsL+3WJw5M2QAAAAAAADmTEIGAAAAAABgzixZBgAA\nAADAzrLFlgSzJB+JGTIAAAAAAABzZ4YMAAAAwGq2wEhro6sBYHszQwYAAAAAAGDOZjJDpqr2S3JK\nkocluUOSa5P8TZJnd/cXJrj/fkmeneS+SW6e5FNJ/izJWd29exZtBAAAAAAA2CxTz5CpqpsnOT/J\nE5L8dZJjk5yd5NFJPlBVt1nl/sOTnJfkLklOTfK4DAmZFyZ5/rTtAwAAAAAA2GyzmCHzlCQ/meSE\n7n7JwsGq+kiSN2aY+XLSCve/JMm3kjxg0WyaV1fVm5I8qarO7e6PzKCdAAAAAABb2xbYswqYj1ns\nIfPYJNclOWeP429OcnWSo6tq11I3VtV9klSSv1xiabOzkuxKcvQM2ggAAAAAALBpppohU1W3TnJw\nkvd197cXn+vu3VV1SZJHJLlTkiuXqOLQsbx4iXMfGsv7TNNGVnDa6Zvdgh1n781uAMyZGGenE+Ps\ndGKcnU6Ms9OJcXY6Mc5OJr5Jpp8hc+BYXr3M+avG8s7LnD9oufu7++tJvrLCvQAAAAAAANvCtAmZ\nW43lN5c5f90e163n/uXuBQAAAAAA2BZmsYcMAAAAAAAAK5g2IfO1sfzBZc7fco/r1nP/cvcCAAAA\nAABsC9MmZD6TZHeS/Zc5v7DHzKeXOX/lWH7f/VW1b5J9V7gXAAAAAABgW9hrmpu7+7qq+miSQ6rq\nZt39rYVzVXWTJPdL8rnuvmqZKi4ay/snOWePcw8Yy/evtV377rvvrrXeAwAAAAAAMC+z2EPmnCS3\nSHL8HsePTnK7JC9bOFBVB1fVnRZ+7u7Lklya5JFVtf+i63YleWqS7yR55QzaCAAAAAAAsGmmmiEz\nemmSxyQ5o6oOTPLhJHdPclKSjyU5Y9G1n0zSSQ5edOw3k5yX5MKqekGSryQ5MsnhSZ7d3VfMoI0A\nAAAAAACbZuoZMt39nSQPSfKiJL+U5BVJjskwM+aw7v7mKvd/KMkDk1ye5DlJzk7yn5L8anc/d9r2\nAQAAAAAAbLZdu3fv3uw2AAAAAAAA7Giz2EMGAAAAAACAFUjIAAAAAAAAzJmEDAAAAAAAwJxJyAAA\nAAAAAMyZhAwAAAAAAMCcScgAAAAAAADMmYQMAAAAAADAnO212Q2A7aKqfjzJXyT5qSTHdfcrlrnu\nbkmek+RBSW6d5B+TvCbJ87r7Xyf8XcckOTHJ3ZJ8L8n/TfIH3f3uKT8GrElVHZnkiUn+63joI0n+\nsLvfNsG9pyY5ZYVLzuzup0zdSJjCNDE+3n/zJL+T5MgkByb5WpL3Jnl2d39q9i2GyVXV0UkenyG+\n90lyVZK3JXlud395lXuPTXLuCpe8ubsfNqOmwrpME+Pj/T+Q5ClJjktylyTfSvKBJKd29/+ZV7th\nNRP0wUlyQXcfNkUd+nE2zSxifKxHP86WVlU3TfLMJEcnOSDJtUnenuTk7r52lXuPjX58R5KQgQlU\n1XFJXjjBdXdPclGS65OckeTqJIclOTXJIUlW7Sir6llJfj/JeRleEu6V5Pgk76iqR3X3X6/rQ8Aa\nLUqoXJ7k95J8NclvJnlrVf2v7n7thFWdmuTvlzj+6Rk0E9Zt2hivql1J3pzkf2R4UD4tyY8meXqS\ni6vq0O6+Yn6fAJZXVX+QIVl4SZLfTfKNJPfL8Gzx0Kq6V3d/bYKqXpzk/CWOf35GTYV1mVGM/2mS\nX0vyhiR/lGTfJE9OcmFVHd7dF8+r/bCK85I8cplz+yd5fpZ+vl6KfpytaFYxrh9ny6qqvTIkXx6U\n5KwMg63vnWEA9s9U1T0nHLitH99hJGRgFVX1G0nOTvKiJB8f/76cP05yyyQ/090fG4/9eVVdl+TJ\nVfUL3f2WFX7XHTO8FPxgkgd393fH469N8okkL66qt3T3d6b9XLCSqjogyckZ/oM/tLu/Ph5/XZIP\nJXlhVb25u785QXUXdPf5c2ssrMOMYvzIJA9O8kfd/YxFdb8nyYczfCl8xJw+AiyrqvZL8ltJPpvk\ngd397fHUuVV1bYZResclOXOC6j7c3X81l4bCOs0ixqvqpzO8xHt9dz9q0fE3JPlUhpcfh8zlA8Aq\nuvsfM6y08H2q6k1Jvpzhe+Mk9ONsObOIcf0428Djk/z3JMd096vGY68Zn1V+Ncl9krxvgnr04zuM\nPWRgMg/v7iclWTZzXVV3yPBi7r2LkjELzhrLX1nl9xyVZO8kZy0kY5JkfFH4yiS3T/KQNbYd1uPB\nGZL2L194UZ0k3X1dkhckuW2SIzapbTALs4jxx47lDWZQdvelGWZLPrSqfmhmLYbJ3TFDfF+y6EX1\nggvH8qANbRHM1ixifKEPv0HSprs/n+SNSe45zn6HLaOqHp7kF5P89iTL8sF2s8YY14+z1Z2QYWWQ\nVy8+2N3P7e47d/ckyRh2IAkZWEV3/2l3v2mCS++dZFeS75sS293/kOT/Zch+r+TQsVxqWu2HxnK1\nOmAW7jCWVy5x7rKxPHSJc8uqqn2qap+pWgWzM4sYPzTJ57r76iXOfShDgt2oPDbDZ5J8O8Na6ns6\naCw/vpYKq2rvqrrZlO2CWZlFjB+a5LsZljzbk+dutpxxH4IzM8Tsy9dxv36cLW0dMa4fZ8uqqv2T\nHJzk3d29ezx2s3HZ6/XWqR/fISRkYHYOGsulXswlwyajB4xrSK6njqvG8s5rbhms3VfH8keWOHf9\nWB44YV2Pqqq/z/Di5NtV9bGqWm22GMzbVDFeVbdKsl9W7vMTfTaboLu/mmE/untW1Yuq6seq6nZV\n9dAMS/VdluTPJ6zu8Kq6JEMffn1VXVFVT53myyRMa0YxflCSLy2zFLA+nK3ocRk2hH7Gwsu9CenH\n2S7WGuMHRT/O1nXwWF5RVU+uqs9m+J55fVW9qap+fA116cd3GHvIcKNTVUdPcNk/dfd711j1rcZy\nuf0Grlt03b+sUMd3l9nUa/H9sGZrjP2Lxp9/OcM+GIsdOZa3nPBXH5Fhf6VPJ7lrhg3PX1VVP9rd\n/3vCOmBVGxzja+nzYWprfX7p7tOr6osZ9sA7cdE1b0vy2O7+1oS/+ucy9OG/l2GZqCeNP981yRMm\nrANWtQkxvtIzuT6cmZvme+g4c+CZSS7s7gvW+Kv142yITYhx/Tgbao0xvt/48zFJ9klyepIvZthT\n5sQkP11V9+juL0xQp358h5GQ4cbo1atfknclWWtCBra6iWO/uy+tqncl+dmqOjfJc8fzjxn/fC/D\n6IyVvCbJB5NcPI5kTZJ3jpumX57klKo6u7u/stYPAsvY6BiHjbSm55eqekKG/Y3eneS1Sa7JsGzH\nM5L8TVUdsUr/+7cZEuqXdfc/Lxysqlcn+WiS46vqzO6+fD0fBpaw0TEOG22a76HHJvnPSZ64ht+n\nH2ejbXSMw0ZbS4wvLNd++yQ/sWhPpLeMA0pOT/K0DANWl6Mf36EkZLgxus0E1yw15XU1XxvLH1zm\n/MJI668vc36hjptU1U2X2KD0louugfVYa+wfmeTcDA/Hx47HLk3yyCQfzrAv0rLGvZP+YYnjX6qq\nv8owJf3+Sd4+QbtgEhsZ45P2+fpsZmXi+K6qyvCi+j3d/T8XnX9XVX0kyZuS/G6GF9dLGjfE/fwS\nx68fk5inZxjh5wsgs7KhMZ6hf9aHs5Gm+R7660m+nGEG2ET042yCDY3x6MfZeGuJ8W+M5VsWJWMW\nnJOhDz5spYr04zuXhAw3OnMcKbewMfT+y5w/MMlnuvvfVqnjXmMdVyxxfzIs+wRrttbYH69/eFXd\nIcP6vF/s7iur6ifHSz45RXO+OJa3nqIOuIGNjPHu/kZVXZOV+/xEn82MrDG+D8/wnP+GJc69I8nu\nJP9tiubow5m5TYjxK5Pcq6r2WWK5YH04M7fe76FVdVCSeyd51TJ7ZayHfpyZ24QY14+zodYY458d\ny5ssce7aDM8q0/TB+vFtTEIGZueSJP+WYcT/DVTVTyT5oSRvXaWOizKMzL5/vj8h84CxfP90zYS1\nGdc0Xbyu6RFj+XfL3VNVeyd5RJLvdffrl7pkLK9a4hxsqPXE+OiiJL9YVXfs7j1j+QEZNm28dDat\nhDVZGC16syXO3TTJrmXO/buqeliS/br75UudHkt9OJtl6hjP0If/VJL7Jrlwj3MLz90fWG8DYYZ+\ndizXtKS2fpxtZF0xHv04W9snknw1yT2WOHdAhmeVq1eqQD++c/3AZjcAdoruvjbJW5IcVlX33OP0\n08byZQsHquoWVXVwVd1+0XWvzfAC74lVtdeia384w0ZgVyQ5fw7NhxuoqltW1eVVdX5V7Vp0/EeS\nPDXJB7r7o4uO33aM51slyTiy6bQkr6qqu+xR992SPCzDw8clG/Bx4PtMG+Ojc8byqXvU/aAMsx1f\n193fCGy8i8by0Yvje/TIPa5JVe07xvd+i657QpJzquoBi28en1t+Lck3M6yRDZthFjF+bobRqXv2\n4XdJ8vNJzuvuPQdIwWa411h+fLkL9ONsc+uNcf04W9Y4a+svMszi+vk9Tp84lv8+aFs/fuNihgys\noqqOyH+Mwrv3QllVCy/ZrunuC8a//1aSB2ZYv/qMJP+U5OcybBB9TncvHrVxaJLzkpyd5PFJ0t1f\nrKrfzrAm9t9V1SszjO47McM0xEd39/fm8DHhBsblmP42Q+y9rar+MsMsrydniMnj97jlxCSnJDkq\nyevGYyckeWeS91fVi5N8JsMojidm2DD9cTNcdgHWZBYx3t1vrao3JHlKVd06w6i+AzNszHh1hv0L\nYMN190VV9foML6bfP8b3NRlGkZ6QYYmD0xfd8vAMLzV+J8nzxmNPy/BC++1V9ZIMo/wOyPBv4TZJ\nfn0cjAIbbhYx3t0fqarnJzmpqt6YYfmz2yY5KeMAqQ36OLCau47lZ1e4Rj/OdrauGNePsw2ckmEG\n2Our6nkZYvzwJL+S5LIkL110rX78RkRCBlb3J/mP9UcXnDD+SZILMm7ENe49cL8MXwCfkeRWGWa1\nPD3JCyb5Zd39oqq6NsMojxdnWAbtgxleXl+04s0wW0/JkFQ8JsODwjeSvCfJyZOMNOru91TVfZI8\nK8mTkuybYaPGdyb5w+6+bF4NhwlNFeOjo5I8M8nRGR6s/yXDZqQnd/c/z7zFMLmjMizfcWyG55J9\nMsT7y5P8/rhJ6LK6++NVdUiSZ491/HCGjXEvTnJGd58/r4bDhKaK8dHTMwwYOT7Jn2UYaXp+kmd1\n9ydm32RYl4VNpL++lpv042wj64rxkX6cLau7r6mq+yZ5bpLfyJAw/EKSP07ynO6+fpX79eM71K7d\nu3dvdhsAAAAAAAB2NHvIAAAAAAAAzJmEDAAAAAAAwJxJyAAAAAAAAMyZhAwAAAAAAMCcScgAAAAA\nAADMmYQMAAAAAADAnEnIAAAAAAAAzJmEDAAAAAAAwJxJyAAAAAAAAMyZhAwAAAAAAMCcScgAAAAA\nAADMmYQMAAAAAADAnEnIAAAAAAAAzJmEDAAAAAAAwJxJyAAAAAAAAMyZhAwAAAAAAMCcScgAAAAA\nAADM2f8H5Vtjwun4k/gAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "iI7Fosv1IA0T", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Above we also plotted two possible realizations of what the actual underlying system might be. Both are equally likely as any other draw. The blue line is what occurs when we average all the 20000 possible dotted lines together.\n" ] - }, - "metadata": { - "image/png": { - "height": 373, - "width": 818 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 6))\n", - "\n", - "#histogram of the samples:\n", - "plt.subplot(211)\n", - "plt.title(r\"Posterior distributions of the variables $\\alpha, \\beta$\")\n", - "plt.hist(beta_samples_, histtype='stepfilled', bins=35, alpha=0.85,\n", - " label=r\"posterior of $\\beta$\", color=TFColor[6], normed=True)\n", - "plt.legend()\n", - "\n", - "plt.subplot(212)\n", - "plt.hist(alpha_samples_, histtype='stepfilled', bins=35, alpha=0.85,\n", - " label=r\"posterior of $\\alpha$\", color=TFColor[0], normed=True)\n", - "plt.legend();" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "gp0QmuZvIA0L" - }, - "source": [ - "All samples of $\\beta$ are greater than 0. If instead the posterior was centered around 0, we may suspect that $\\beta = 0$, implying that temperature has no effect on the probability of defect. \n", - "\n", - "Similarly, all $\\alpha$ posterior values are negative and far away from 0, implying that it is correct to believe that $\\alpha$ is significantly less than 0. \n", - "\n", - "Regarding the spread of the data, we are very uncertain about what the true parameters might be (though considering the low sample size and the large overlap of defects-to-nondefects this behaviour is perhaps expected). \n", - "\n", - "Next, let's look at the *expected probability* for a specific value of the temperature. That is, we average over all samples from the posterior to get a likely value for $p(t_i)$." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "colab_type": "code", - "id": "EIzyJL_3IA0P", - "outputId": "f82a2e44-05e7-463d-b47e-47354a31946c" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "beta mean: 0.14313675\n", - "alpha mean: -8.920171\n" - ] - } - ], - "source": [ - "alpha_samples_1d_ = alpha_samples_[:, None] # best to make them 1d\n", - "beta_samples_1d_ = beta_samples_[:, None]\n", - "\n", - "\n", - "beta_mean = tf.reduce_mean(beta_samples_1d_.T[0])\n", - "alpha_mean = tf.reduce_mean(alpha_samples_1d_.T[0])\n", - "[ beta_mean_, alpha_mean_ ] = evaluate([ beta_mean, alpha_mean ])\n", - "\n", - "\n", - "print(\"beta mean:\", beta_mean_)\n", - "print(\"alpha mean:\", alpha_mean_)\n", - "def logistic(x, beta, alpha=0):\n", - " \"\"\"\n", - " Logistic function with alpha and beta.\n", - " \n", - " Args:\n", - " x: independent variable\n", - " beta: beta term \n", - " alpha: alpha term\n", - " Returns: \n", - " Logistic function\n", - " \"\"\"\n", - " return 1.0 / (1.0 + tf.exp((beta * x) + alpha))\n", - "\n", - "t_ = np.linspace(temperature_.min() - 5, temperature_.max() + 5, 2500)[:, None]\n", - "p_t = logistic(t_.T, beta_samples_1d_, alpha_samples_1d_)\n", - "mean_prob_t = logistic(t_.T, beta_mean_, alpha_mean_)\n", - "[ \n", - " p_t_, mean_prob_t_\n", - "] = evaluate([ \n", - " p_t, mean_prob_t\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 294 - }, - "colab_type": "code", - "id": "Ri4BriJHPJNg", - "outputId": "b1fc59fb-4ff3-4a0b-f5f2-dd2b78c3d1a4" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAAIqCAYAAADrUeMXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmcnVV9+PHPXWZLMlkmQNgSEpJw\nWEXRasUqS92qtu7WWhHcWsWlpe627mi1rUVRaLVaQarVulR/rgVU3MENFAQOIYQtYc2+zHbnPr8/\nznMzd+7cmcxMZskMn/frldcz91nPfZ5znufmfJ9zTiHLMiRJkiRJkiRJkjS3FGc6AZIkSZIkSZIk\nSZp8BoEkSZIkSZIkSZLmIINAkiRJkiRJkiRJc5BBIEmSJEmSJEmSpDnIIJAkSZIkSZIkSdIcZBBI\nkiRJkiRJkiRpDjIIJEmSJEmSJEmSNAcZBJIkSZIkSZIkSZqDDAJJkiRJkiRJkiTNQQaBJEmSJEmS\nJEmS5iCDQJIkSZIkSZIkSXOQQSBJkiRJkiRJkqQ5yCCQJEmSJEmSJEnSHFSe6QRIkqTZIYSQjbJ4\nD3A38H3gIzHGOD2pmjkhhJXABoAYY2FmU6PpEkK4BDgbeE+M8d0zm5okhHA68APgjhjjyplNzeQI\nISwAPgY8A1gCXB9jfMTMpmpspvPeEEI4B/gM8MMY4+nj2K52P18VY7w9n3cJDXl7Nuatqcg7IYTb\ngaOAM2KMV+3nvkrAPwF/ARwC7Igxdu3PPmebEMJVwGnAS2OMl8xsag48zfJbCOHdwLuAS2OM58xQ\n0obwd5AkSbOHQSBJkjReXwTurftcAJYDjwReBZwTQnhJjPFL052wEMJTgO8yCRV1Y7AD+OgUH0Nj\nEEL4OdA7nkpwHfDeCJwD7Ab+C9g0o6mZe2r3rh37WO/ufN0t9TNDCPPybc8/UIKhdQ70vHMW8HdA\nBfgysG06Dx5CCMDNGICZba4mlcVfzMTBQwibgMsbAlD+DpIkaZYwCCRJksbrIzHGqxtnhhBagQ8A\nbwAuCyFcE2O8c5rT9gfTdaAY4xbgb6freGouhFAGHg5cM9Np0aR6TD49P8b4wRlNyRwUYxzTvSvG\neCvN73OnAKVJTdTkOdDzTi19n44xvmoGjj9tz0lNnhjjd0kvuUy7EMKRwGGN8/0dJEnS7OGYQJIk\naVLEGPuANwPXA23Ay2YgGVZuPfScBLTPdCI06Try6b2jrqWZciDfaw/0vDPT6TuQr50OTOYZSZJm\nOVsCSZKkSRNjrIYQfkSqmH944/IQwqmkt0YfBxxMGkvoZuBLwMUxxu6G9TtJLYueBawh/Xa5D/g1\ncFGM8Xv5eueQxsWo+UHq8WbouC35+BavBx4LLCV1w/PLfF/fbjj2SlJf97vztH4KeBrwyxjjk0fr\nCz9vFfVK4EXA8cB8YDOpO5eP19Jdt34t/d8CzsuP9Sjg/THGDzSex0YhhCKp+6OXACcD8/Lz9H3g\nQzHGm+rWPSVPRxU4uXH8pnz5L4B+4JQY40116ftf4MXAe4DnAocDO4GrgHfEGG9ukrZFwN8AzwHW\n5rPvBP4f8MEY49YRvtNfkgKJDwcWAHeQunb6cIxxd77O7aRxEwBOq41zUn89JnL8EMIy4Hzg6aR8\nci/wDeCdzdI6QvrnAfeTrv1pMcYfjbDelcAfA++MMb4vn9eZp/lZwDGkSuOtwK+AC2KMV4wxDcPG\nfRnr8hDCs4G/IlX+LQQeBH4K/GuM8edjOX7dvgrAXwIvJV3PTlLZ+zWpNcSX69Z9N2nci5rPhBA+\nwxjGpKnLDycDBwF/T2qx0g6sJ5WrC2OM1SbHuwi4DLgYOAF4eYzxc3XrPR14Nel8LCHl++tJefKS\nGGNllHSdA7wGODaf9Tvgn2OMX2uy7iGke96fAKuBVuAB0rn/pxjjL0c5ThvwDuAFwArSvetHpLx1\nfcO6o+aNuvVOp25MoPr7Xu5dIYR3AT8kdbv2F8AnRmrhEkJ4Mek8r4sxHjPScevWn5a8k2//SNK9\n7VRSnrkNuBT4131sdzpjeK40eU7Vzl3jPesRpO7iTgOWAbtIeeZT9XmyIQ1LgLcAfwasJHU1dy3p\n/v/tunT+oG6z2vnZO8ZM3Vg9bxtLK6q6/LA1xtgVQng18Neke20F+C3pPvvtkfeyd1/vZpQxb0Za\nnt+v30IqM0eRuqi9h1RmPhpj/NW+jp3v5xLSmFhvAm4EPgwcDfxxjPEndeuN+94YQngm6TfBo0h5\npBdYR+pe94IYY+8Y0jfs+9eleVRNfqM8AXgtKc8eAgwAt5Oei/8YY9xet279eJBnhxDOpsn9YJJ/\nBz2T9FLR2aR7WX++3TtijL9o2G5Srr8kSXOdLYEkSdJkq41vMKR1RgjhXOAnwPNJlQ2fJVVIrQH+\nBfhhPqB3bf02UgXmu4BFwFdJFQS3AH8KXBFCqLU2upHUL/3O/PNX8s9X1+3vTaSgyDPz9S8hVVA9\nBfhWCOG9o3yn84HHkypsvjfKeoQQ2oHLgY+TKpN/QqpIjKQKuitDCG8ZZRdfIAVxLgFuGmW92vFK\npODMp0njMv2AVDH9AKkC5boQwp/U1o8x/gZ4P6m11r837KsIfILUzdPb64NHuXZSdzRnkQISl5KC\nE88DrgkhHN+wv8Py9d5Dqvj6X+Br+X7eDPw2hHBUwzbFEMLn8u9wIvBN4HN5mt4D/CKEsDBf/T+B\nWkBkI+maf7RuXxM5/hJS5dErSJVJn8uP8dR8/jzGIMa4Jz8W+fkZJq/wPx3ISBXjhBDmAz8D3kca\na+vrpODF9aRKrsvr8v2UCCF8nFTeziR1s3cpKYjyPOAnIYRXjGNfBeDzpO/3WFLl+CWkCuozgS+F\nEP6tbpPauBcb889X5J//cxxf4c+A/yMFUL6U/30McAHwyRG2aSd95+2ksnRX3Xf4ECkfPgX4fZ7+\nn5PK238AX8vL4TAhhLeRAkt3kc7Bb0hBhv/NK1Pr1z08X/5mUuXyF/PvfSfp3P8shPDkUb7310n5\n9uo8jQ+QAok/DSGcOMp241EbA6R2b7gm//xl0nkDeGEIoaPJtgB/nk8v2deBpjPvhBAeQ7pXP500\nDtKlpOfD2xgauGncbjzPldpzqvHc1d+zXpTPf3FdOq4mdSH3XyGES/LzUp+GNfkx30IKGF1KegY9\nOk/D+/JVa+M7NZ6fy/dxesaiNYTwflLA7G7SNfsd6bn5rTz4N+lCCAeR8sV5pEDGF0nffxMpePiT\nfKzA8TiM9By+lZSn946HNZF7YwjhnaRnwVNIefc/SPeTlcA/At/Nn70TcTmDeajx32/ydR5sSM85\npBc3npen/T/z77SYlId+Vv9bLN9XrbvVmxhDmZqE30GfJwVCrwH+h3QNngx8Pw881Y4zFddfkqQ5\nyZZAkiRpsq3Jp7fXZoQQTmCwoutZMcav1y1bAvyY9Fbtu0mDegM8m/Tm90+AM+rftA8h/GG+zQdC\nCJflb4b+IoTwLNKb4h+PMV5Vt/6pwIeAHuCp9a0y8sq/y4F3hBCuiDH+uOH7tAJPAh4WYxzLAN7v\nJL1JHYEnxBjvrzvWU4Fv5+n+bozxtw3bPpb0Rv1zY4wZY/MmUqXKLcCZMcZaBR8hhFcB/0Yao2lN\nXfrfTwqknR5COKducPDXkN5U/iHwkSbHeiKpEmtNjHFXfoxW0tvDTyEF855Wt/5nSPnhK8Bf1t52\nzgN8nyAFqf6T1BKm5uWkN4dvBB5XS3N+nG+SrsWHgFfHGN+bV2g9Cbi1yTgnEzn+20gtMG4CHlt7\nIzqksYcuIwUxx+pzpIqo54YQ/qbJNX0+Kbj147rWGC8hBb/uILXEqq+AfDkpIPQveb7vH0daxiSE\n8EJSPngAOD3GeGPdsj8lVRZeFEL4QYxx/Rh2+UrghaRWUY/Lx5ip7e/hpMDaq0II34oxfrM27kW+\n7Ajg8xMYvP6dpOv9P3XHOgO4Enh5COGTjW+Tk+43lzXmoTzo8mbSveP0GOM1dctWkCopa62EPt4k\nLa8HHlHf4i6E8PekwPKHQwhfjDH25Iv+Jv/OvyTdO3rqtnkf8A+k1gknNTnOqaTWMfVls0wqm39C\nKjNPb7LduNTGAMlbIBwHfLfW2jIPTmwAVpHO5+frt83v9U8mtUL87BgON51552OkQOB/AWfXWovl\nlcw/Bo5s3GC8z5W659QlNJy7fJtVpKBDCXhhjPGLdctCvr+zSS8iXFaXlEtJAeMPxBj/vm6bE0kB\npH/Iz9HVpGs32vl5CSnQfT/j00FqHfPwhrz+TlIQ/iMhhK/mwfHJ9ArSd/9CjPEv6heEEJ5LCk5+\ngBQIHqtzSK3nhjwDJ3JvDKklau2a/HmM8at12ywjBZVPJ5WXr4wjjQDEGD9PQznL930c6Vk6QGqd\nV5tfJJ2PAvCGGOO/1i2bRwocHU9qzfXh/Bh/G1IrpMcAv2jynG1mf34H1bZbW/f8n0cKvD+M1Cqw\n1uJvKq6/JElzki2BJEnSpAkhLCcFJCC9lV7zKtLLJ1+rDwAB5N1x1SpJXpZXXEKqSIRU6VBp2OZq\nUsDk8aRKjn15I6nS418bu+XKK3X/Jf/4mibbtgBfHEsAKITQQqo8AXhzfcVHfqzvks5LkVR50aiL\n1N3ZmAJAeYXOG2pprw8A5cf7d9Jb6ktJlam1+RVSZV8vKaBwUN4K4XzSm+QvHSENLcB5tUrmfF99\nDFbIPDmEsDhP28NIgaFdwCvqu7vJ/34tqVXBmSGEWjdZkCrNAd5Xf87z47ybVGl26D5Ozf4c/0X5\n9Pz6LnHyc/Y6UqudsbqCVGF4OKkLxEa1VhH1Fbq/JAUUXlMfAMp9htQtzhLS29VT4c359O31lZwA\nMcZvkCrva938jMXr8un76yvx8/1dx2DLnL9m8lxVHwDKj/UDBls8vKDJNksYvA/Uq6X/3+oDQPk+\n7wRqXWaNlP4L6yvFc/9ManG0lKEByO+Q8uUb6gNAuU/k0xNrZaxBC/B3DWWzQqqAh1Q2F42QxkmR\n3zNqrWZe2mSVZ5PyzpUxxrvHsMtpyTt5S5o/IJXtt8a67gJjjA8CbyUFZhrtz3OlmdeRAlH/XR8A\nyvcXSUHAIfsLqQu7U0n56X0N29xAau35a1Ll+T7FGO+MMd7c5N6zL0VSt2aNef1DpNbBS0mtZyZb\n7XfCzxoXxBi/AvwRI7TEHEUr6eWJRhO5N5ZJwbE3klqi1m9zH4OtRR8/zjSOKKTuRL9K6kb1H2KM\nV9YtbiN9jzcy2HKvlp49pCDofqVnEn4HLSA9/+qf/3tIAR0Ympen4vpLkjQnGQSSJEn7LYSwMH+7\n81ukN4K/E2P8Tt0qT8inI40L8D1SBdwSBsfNqFUmvSyE8JzG7pZijL+KMa6rr7AbIW0F4Ix9HP9b\n+fSMEZb/YIT5jU4kBXIGGPnN01qFzGObLOslve06Vg8jjX3SM0oam363vBLrH0iVcx8mtdRaSKpI\n3kBz22KMwypbSF2u9ZIqSmvdTtUq/H7eLICWV1b/sD5t+Vv3te0bW2QRY/xZjPHEGOOzR0hfvYkc\n/1DSG/KQuiJs3OZBBrvY2ae8Er4WjBhSERVCOIJUQdVD6rKsts2vYoz/HmP8Fg3yvH5P/nHSK/RD\nCF0MjuU10bLSuL/a9Rxpf6OVh4ka6Vi1cT2GjVdGakk2JDCR3ztqlaH7Sv8JYbCbwlHTkgc0f92Y\nlhjjVTHGi+Lw1ogw2IUXNL/2W2Pz8Uh+BfSRKqMnq0u40VxCaulzZt5Sqt54uoKbzrzzqHx6W2Mg\nPXcFDcHfSXquNKrds/a1v0eH1G1k/b5/2SRwSIzxjTHGR8UYR+oGcTI1y+u9pDwIzcvd/qr9TnhT\n3tqv8fg/HeV5NpKfx4YxeiZ6b4wxbo4xXhpjHOnljlp+m8z7+WdIv6O+RgrC7RVj7I4x/leenu1N\ntp2M9EzG76DGlpqQunhrTNtUXH9JkuYku4OTJEnj9fPUM01TGalrmsY3n2tvazb9z3iMcVcIYTMp\noLECuIFUgfF5UsuMrwAPhBC+R6qQ+2bj26WjWETq6x7gr0MIzVoB1MYvOiSEsDDGuKNh+ViPVfue\n9zRWItW5PZ82VpACPLivoFaDlfm0Supaqtk6te751jZZ9q+ksSxekn/+TozxP0Y53m3NZsYYB0II\n95G+02ENaTsqhNCsazkYPAe1tNW2yRis8JmoiRz/iLplIx3/DtJYG2P1OVJ5eG4I4by6isAXkFoR\nfKMxSJV31/Q3pAqyZQzm33qFJvP214q6/b4thNCsld0h+bRZfmq0su7vkSribs+nS0MI8+LkdBc1\nUjd1tWt6WJNlzcr4EgYrHPeV/gKpy7AbG5Y3LTMMVrYOSUsI4TTgXNJ4QweTArONml37ke6ttbK5\nvPFYUyHGeFcI4XLSGFpnk7dOCSEcTApybKOhRcQIVtb9PdV5p1bumwWAiDHuCSE8SLoeNZPxXGm0\nMp8+P4Qw0j2mn9TqazVpzJ3aNk3TPs0mUu72178BzyAFXr4fQriL9FLJ5cC3Rwh07Euze8GE7415\ncPj1eTqPIv3OaayHmZT7eQjhzcBzSd3Dnt0s8JR3h/qqfL2jSfm6dRLTs7+/gzaOEDCrnfP6F5mn\n4vpLkjQnGQSSJEnj9UXg3oZ53aTByy+PzccJmVe33khqbzF3QGr1EEI4i9RtyGtIXd68MP83EEL4\nEvDaGOPmfaS3foDjl4y41qCFpG7C6u1qtmIT4/6eEzxOTe27zSMFDUYzrDI5P8efJ7VIgTQY9mh2\nj7KsL5/WKpNqaTsm/zeWtNUqTQfG2iXeKCZy/Nr16xslGDdSpVZTMcafhxBuI1W2PZbBbmuadQVH\nCOHZpDLWAmwmVWjdz+D5fRlp3KupUF9WXruPdZsFJxrVzmd/jHGkbhvrWy90AJMRBBopnzbm0XrN\nyt68ur9HKtON6R9rWmrb1fI8IYTXAheSKmA3krqHexCodYc5WhkfrWwOO9YU+zQpCHROCOH8vCw/\nl/R/zy80a7HSxHTmndqxRktXY7mfjOdKo9o+nzXG/cHgNZ308cEmYCLlbr/EGLvzVsjnkLphOyX/\n+xygN4TwaeCNMcbRnsmNmt0LJnRvzFsQ/QwIpHL8U1JLop35Kn9IGmtnv4UQziSNf7MbeE6zoGMe\nAPoeqXvSjNTi5kpScBbSeEBP2s+k7O/voDHn5Sm6/pIkzUkGgSRJ0nh9JKYxecZjN6liZN4o69SW\n1Y9pUSV1p/U/+du0Z5LGHHo+KRh0TAjhD/bReqa+QifEGG8ZZ9rHo1YJNq7vuR9q+7gnxnj4eDfO\nuz87n1R5WgL+KYTw7bzbs2ZGq0SutZiobVtL23/HGF/UZP1mauevHEJYUD++yQRM5Pi1iqmWEEJh\nhEDUaNd2JJ8ndb33POBnIYSVpIq/B4Hv1lbKx1L4d1IA6FPAq2PDeFghhOcwCUGg/FiNaucsAzpG\neYt7rGrXsyWEUG78Lrn68zkZZQJGzqeNeXRf6iu1R7ru+0p/O82DE7U07oG9LWU+TAoAvYs0Jtbe\n/JeP/zVaEGi0sjnkWNPg/5HGwqoPfI65K7jcdOadWrlvG2Wdxus/Fc+VXaQ8+pQY4+X7WjlXO09L\nJuH4+2ukvD7ecjeSZvesWveKnwQ+mXcp+iTS+FPPJLWqO4KxBdZGM9F74ztIAaA7gNNijHfULwwh\nvJdJCAKFEI4kvcRRIo2B9/sRVn0VKQC0PU/Pbxv28zL2Pwg0rb+Dpun6S5I06zkmkCRJmg61LpGO\nbrYwH7C8K/84UrdGO2KMX4sxvow0Fs4m0lufp4524LyrrVproWZdj0ym2vc8LITQ7A1XGDwHk9FP\nfW2w9GUhhIm8Zf1J0nl/B/B+Utdj/z7K+k3PXwihzGAl5H0NaRvPOa/vOuuIEdcam4kcvzbeToF0\nLpppmof34fP59Ln5tNZ11BdijPVvPR/HYJdCb20SAJo3SrqaqQURmg1qv7LJvNvybQqk7sP214a6\nNIx03mrzR+s6aLxGuua17rzuG2H5EDHGrcDW/OO+0j8A3DWOtNTOb20coseSWkpsB97fJAC5r3w3\nWtmsdcN1d7N1JlteKVtr4fbCvIL6CcBNMcZrxrib6cw7tXJ/aLOFDc8nYMqeK/tzz9zf++Vk2N9y\nV3uZo9n9Cprfs4aIMT4YY/zvGOMLSK1s9gDPzPPg/pjovfG0fPqxxgBQbiLPkyHyZ/9XSOf5IzHG\n0Vr01tJzWWMAaLLSw/T/DtprCq+/JEmznkEgSZI0Ha7Kp88YYflT8+kmYB1ACOGMEMLr8gG4h8gH\n+q0Ngt6s8qtxm+/n02bjNhBCWBZCeGYIYX9bWNxAetu5CPzJCOvUvutV+3ksSOOP3Jsf73nNVggh\nnBJCeHxeGVw//2zgT4FfAh8FPkhK/3NDCH85wvGW5ePVNHo0qYV5H/n1Y/CcP6bJAPG1NDw1hHBC\n7XPef/+1+ccnN1n/+BBCJYSws0nQa6RrPp7j383g2+p/1GT9I0gByHGJMd5E+l4r8uPVrtVnG1at\nXaMqKRjQ6OUMdqk0ljEbal0ONavcHnZ+8+6DaoO4j1RW1oYQnhxC2GfXYnlFea2icV9l/6p97W8c\nnjrC/Mfl05Hekm/mh/l0X+n/xQhj0jylcUZ+7h6Vf/x1Pq1d+x0jdH/26rq/m137ZSGEk5vMf0y+\n717G973HaqR8+Ol8+gLgxaR71CVj3ek0553r8unaEMIhTZaPdC+f7OfKvvbXEUL48xDC0rrZP8in\npzTMr23zwfye+akmu5zsccWGlbs8r5+Sf9xX/hvxfpV3Y/aEhnnl/B7+8mY7izFeC9yUf9yvINl+\n3Btr5Xprk/UPZbCFyv5ciwtJz+AfA2/ax7qjpWceg10bjpSesaRzWn4HTef1lyRpLjAIJEmSpsNF\npErIZ4QQnlm/IK8IeX/+8cK6N+A/QKrcOK9xZyGEwxmspK9/m7VWiXRUwyYfIb3F+5IQwhMb9jWf\nVDn5NVKXXROWV95emH/8x7yLp/pjPY9U+dFNaoWzX/Ju8D6afzy/MdgRQjia9Ibwj6jr4iV/K/aj\npL73Xx5jHMhbpLySFID4eB7waNQPfDSvLKrtqxV4b/7xGzHG3XnabgT+j1TpdFHjG8F5P/5fB65p\nOE+18/f2EMJRdeuXSYPMl4Av560NYPCar6gPGO7H8b+cT9/W8D1bgI8xOD7LeH0un55NCgDEGOMv\nG9ZZR2pRUgSe1pDeZwNvBG7OZ43lbfTr8+krGvZ1EvB2mnfd9K/59A2NQYX8PH2BdF5fOobj1+/v\nrSGE1Q37O5U0xlHG4HWfDE8NIfxpw7GeBDwxP9YXx7GvC/JtXhlCeHTDPgODla4fbdww3+4NIYRV\nDfPfThpjZCODQaZaZeWRjYHWEMKrSPeNB/JZza59H/CR+nye59n35B+/Xiubk2Skey2wt/xdTWq5\n9jZSvr6s2bqjmJa8E2O8gXT+iwyer9pxlpG6zOxrsulkP1f+jfRseFJI4+HV768MfJxU/i6uS/vv\nSHmolXT9i3XbrCHd00sMPfcjXrsQwooQwrEhjWUzXm/Inzn1/p7UFew9DOb1kdTuV6fnaa+lqQT8\nM4PdytVUSd1mfiqE8NyGZYQQjgdOJP32uLlx+QRM5N5YK9dPb1j/SFK3ib/JZ02o5WUI4aXAX5PO\n7wtG6DaxXi09T83Pa20/S0hd796ez2psOTNqea83jb+Dpvv6S5I0qzkmkCRJmnIxxltDCOcC/wH8\nbwjhR8AtpDd+n0Cq3PkGaUyMmr8hVah8OH/T81ek/uMPJVXmLiR1fVL/n/tfkf7Tf2EI4c+BDTHG\nc2OMPwshvAX4J+D/Qgg/yI/fRQqOdJEqY97P/vsg8Ph8vzeHEK4ivXV7HKnrugrwyhjj7ZNwLIB/\nIXV78kzgxhDCd0mVxcvzNLQCn44xfqdum0+Rzvn5McZaxRsxxqtDCBcBr2NwcPd6PyNVeq4LIVxB\nqlw5E1iTf8e3NKz/ctLb7c8Abs236QNOIJ2LAeCvY4wP1G1zKen6/iXwuxDCt0jBitPy40TgzXXr\nX0uqDFoJXBtCeAB4ex5gmcjx30d6O/uU/HxeQaocPpMUBPssDUGVMfpvUv57Pelt6mEV4jHGnSGE\ni0nn/0shhK+TzusjSfn6OaTKxGOBD4YQHkvqym8kF5Jav5wTQjiOFDBdQmoB9iFSC40hlesxxi+E\nEP4IeA3wixDC5aRuzg4ltR6aTxrHqFnLgmFijJeFNGD5OcBv87J3T37c00gV1G+dwDhjo/kn4Kt5\n2buF9Bb400jn/WN5xfmYxBh/FEJ4D/Bu4CchhO+TxvdYAZxOGgfl32KMzQJLfaTuFa8PIXwHuB84\nmXRNqsDrapW2McabQgjfIF2bH+XXvjdft3bPe2/+PT4VQvhejLG+ddBV+fTWJmVzMykQM5lqrSJe\nkgefW2KMj29Y59Oke9NC4NsxxnsYh2nOO38LfAt4VQjhkaTvt4TUkuFbpGfPkIr/yX6uxBg35M+6\nzwKfDSG8mlRmO0l57QhSJf0bGjZ9GSnQ/2JSi6Cf5Md+OtABXBBjrA/A/Ip0T3xbfg/ZFWOsVaJ/\nlnRu30Z6lo1VRrre14cQvk16Bj2MlH8zUl5vFkir9wNSIOgk4Fd5mdlGeuFjKSkY96HayjHGan6O\nvgR8OYTwq3z7HlL5/GPSOE9/m7cy3S8TvDf+M6nl53NCCNeQ8sPhpPzxZdKLBb8gBb4+D3w+xvjN\nsaQnpPFvagHBW0jB0pFW/3yM8RekQOJrgD8glamfkvLKk0n54sWk7tyOzu9HX4oxfpbB8n5aCOFn\npPvLi0dJ3pT/Dpru6y9J0mxnSyBJkjQtYoz/SaoQ+gpwDKli7/GkSq6XAc+uf4s1r7B4NKmSpEyq\nmP8rUoXQT4HnxRgbWwn9A/C9fP3HUje2QIzxn0kVaV8nBQFeSapQvZXUwuJxeZcv+/s9+0mVb68h\nBSyeROpiZQWpNcijY4yfG3kP4z5ehRQceCmpouZMUpDiMaSK4efHGPcGLUIIf0XqoupmUqVao7cD\ndwJPyVsgNHoa6Q33U0mtWhaTKrMeHWNc35C2jaTKpneRKgWfR7ruK0jj5PxhjPGShm0y4Kx8378l\nVcKeRapI/GB+nAfq1r+NFFiH0sF6AAAgAElEQVTZRKpgWkP+1v4Ej7+JlHf+i1SBejapguz/8u+8\npck52ad8v1eRKqWyfP/NvIlU0XkvKc8/g1Tx+7gY47fzc/AzUsXdUxnl93yM8X9IFXXXkiqwX0Sq\nQD83xvjuUbZ7LWlg7e+TKvH/CjiD1HXZK4FnNIxltC8vIwX1fkG6B7yUVAb/H3BGjPFDo2w7Ed8n\nVQBWgL8g5fdbSPnkb8a7sxjje0j58HJSQO5lpHx1FfCcGOO5I2w6EGP8QH7cVaS89HBShf1TY4z/\n27D+S4BPkAZW/3PSveNqUp7/Nali/nrS2/inNWxbIQWCLyXdI88mBTG+BDw2LyeT6XOkyu7tpDzS\n2EoDUourWuujz0zwONOSd2KMl5PyzJVAyI9zMqksvoRU6d1su0l9rsQY/5vUUvC/SIH8l5PK4oOk\nIOAj8m4r67e5LU/rh4GWPL1PJT0PXhBj/LuGw1wAfJV0nzyVFMhsVG0ybzSF/J7yelJA/qw8TT8m\n5fWv7GsHeQuSJ5MC5L2k+/WfkQInf0i6xzdu8438O/wn6Z74fNI1eATwbeCPY4zNWulNyHjvjTHG\nX5Hu49eQgmIvIo3R9bfA2fnLCheQytHTGRwTbiwWMHjtTiPd20b6d3yenrtI5/gHpOv0ItLvsfcD\nfxJjvJP0MseDpN8SR+Xb/ZDUOvtB0rk9nFFaxU7X76Dpvv6SJM1mhSxrHHNUkiRJGhRCOIdUifvD\nGOPpM5saqbkQwu2kSsszYoxXzWhiREhj1NxNCpyuHGfgUDMkhPBr4JMxxk+MYd2VwAaAGONkjzEk\nSZKkSWJLIEmSJEnSZHsDqaXCxQaAZod8/JaTgBtmOi2SJEmaPAaBJEmSJEmTJoTwZFLXhg8CF81w\ncjR2byV1ZffzmU6IJEmSJk95phMgSZIkSZrd8u7f3kUa/+hppLGvXh5j3DajCdOYxRjfQGrBJUmS\npDnEIJAkSZIkaX/NA16V/30t8PYY4+UzmB5JkiRJQCHLsplOgyRJkiRJkiRJkiaZYwJJkiRJkiRJ\nkiTNQQaBJEmSJEmSJEmS5iCDQJIkSZIkSZIkSXNQeaYTMFds377dwZUkSZIkSZIkSdKUWrRoUWGs\n69oSSJIkSZIkSZIkaQ4yCCRJkiRJkiRJkjQHGQSSJEmSJEmSJEmagwwCSZIkSZIkSZIkzUEGgSRJ\nkiRJkiRJkuYgg0A6YK1bt45169bNdDKkWcVyI42f5UYaP8uNNH6WG2n8LDfS+FlupPGb6+XGIJAk\nSZIkSZIkSdIcZBBIkiRJkiRJkiRpDjIIJEmSJEmSJEmSNAcZBJIkSZIkSZIkSZqDDAJJkiRJkiRJ\nkiTNQQaBJEmSJEmSJEmS5iCDQJIkSZIkSZIkSXOQQSBJkiRJkiRJkqQ5yCCQJEmSJEmSJEnSHGQQ\nSJIkSZIkSZIkaQ4yCCRJkiRJkiRJkjQHGQSSJEmSJEmSJEmagwwCSZIkSZIkSZIkzUEGgSRJkiRJ\nkiRJkuYgg0CSJEmSJEmSJElzkEEgSZIkSZIkSZKkOcggkCRJkiRJkiRJ0hxkEEiSJEmSJEmSJGkO\nMggkSZIkSZIkSZI0BxkEkiRJkiRJkiRJmoMMAkmSJEmSJEmSJM1BBoEkSZIkSZIkSZLmIINAkiRJ\nkiRJkiRJc5BBIEmSJEmSJEmSpDnIIJAkSZIkSZIkSdIcVJ7pBEh66NqyZQtXXHEFd911F5VKhXK5\nzIoVK3jiE59IV1fXTCdPD0GzIU/OhjRKBxrLjaSZtH79ei666CJuuOEGKpUKnZ2drFmzhnPPPZfV\nq1fPdPKkA1Lt2X3ddddRqVRYtmyZz25JkiaokGXZTKdhwkIIrcD5wBuBH8UYTx/HtqcC7wD+EOgA\nbgH+A/h4jHHcJ2X79u2z90QeoNatWwfA2rVrZzglmmzd3d1cdtllbNiwgba2Ntra2vYu6+3tpbe3\nl1WrVnHWWWfR0dExgymdfSw3EzMb8uRsSONsZbmZuyw3U8dyI+3bli1bOO+889iwYQMtLS3U/u/d\n0dFBT08P/f39rFq1igsuuMBKbSnX+OzevXs3AF1dXT67pTHyd5o0frOx3CxatKgw1nVnbXdwIYQA\n/Bx4NTDmL5xveybwA2At8G7glaQg0IXABZOaUElDdHd3c+GFF7Jx40YWLlw4pEIOoK2tjYULF7Jx\n40YuvPBCuru7ZyileqiYDXlyNqRROtBYbiTNpC1btnD22Wdz991309nZSXt7+5Dl7e3tdHZ2cvfd\nd3P22WezZcuWGUqpdODw2S1J0tSYlUGgEMIS4DdACXjUBHZxMdADPD7G+NEY42UxxucBXwdeH0I4\nefJSK6neZZddxp49e4b9R7hRe3s7e/bs4bLLLpumlOmhajbkydmQRulAY7mRNJPOO++8cd2Dzjvv\nvGlKmXTg8tktSdLUmJVBIKAV+CzwhzHGOJ4NQwiPAQLwPzHGexoWf5zUqujFk5JKSUNs2bKFDRs2\n7PNHfU17ezsbNmzwzUhNmdmQJ2dDGqUDjeVG0kxav379hO5B69evn+KUSQcun92SJE2dWRkEijHe\nF2N8dYyxZwKbPzqf/rzJsmvy6WMmljJJo7niiiuGNenfl7a2Nq688sopSpEe6mZDnpwNaZQONJYb\nSTPpoosuoqWlZVzbtLS0cPHFF09RiqQDn89uSZKmTnmmEzADVubTuxsXxBh3hhC2AUdP1sFqg0pp\n4jyHc8d1111HpVLZO7jnWF177bU84hGPmKJUzU2Wm7GZDXlyNqRxrrDczB2Wm+ljuZGGu+GGG8iy\nbMTxSkaaf/3111um9JC1r2f3SC1+fHZLI/OZIo3fgVhu1q5du9/7mJUtgfZTZz7dM8Ly3XXrSJpE\nlUplWreT9mU25MnZkEbpQGO5kTSTvAdJ42e5kSRp6jwUWwJNq8mI1D1U1SKvnsO5Y9myZfT39497\nu5aWFvPBGFluxmc25MnZkMbZznIz91hupp7lRhpZZ2dn04rpWgugjo6OptuVy2XLlB6yRnp211oA\ndXV1Nd3OZ7c0nL/TpPGb6+XmodgSaEc+nT/C8gV160iaRMuXL6e3t3dc2/T29rJixYopSpEe6mZD\nnpwNaZQONJYbSTNp9erV9PSMb/janp4e1qxZM0Upkg58PrslSZo6D8Ug0G359MjGBSGERcAi4MDr\n/E+aA570pCdN6If9E5/4xClKkR7qZkOenA1plA40lhtJM+k1r3nNuFsj9vf3c+65505RiqQDn89u\nSZKmzkMxCPSzfPq4Jssen09/Mk1pkR5Surq6WLVq1ZjfjOzp6WHVqlUjNv2X9tdsyJOzIY3SgcZy\nI2kmrV69ekL3oNWrV09xyqQDl89uSZKmzpwPAoUQjg0hrKp9jjFeB/wGeH4I4ci69QrAeUA/cOm0\nJ1R6iDjrrLOYN2/ePn/c9/T0MG/ePM4666xpSpkeqmZDnpwNaZQONJYbSTPpggsuGNc96IILLpim\nlEkHLp/dkiRNjVkZBAohHB9CeF7tXz774Pp5IYR5+fybgO807OJcoAT8KITw+hDCS4BvAWcC740x\nrp+WLyI9BHV0dPD617+eI444gh07dgxr8t/b28uOHTs44ogjeP3rXz/iwLnSZJkNeXI2pFE60Fhu\nJM2krq4uLr30Uo488kh27tw5rFK7p6eHnTt3cuSRR3LppZfamkHCZ7ckSVOlkGXZTKdh3EII7wbe\ntY/VVsUYbw8hZECMMR7bsI9HAe8FTgXaSMGij8UYPzORNG3fvn32ncgD3Lp1aWimtWvXznBKNFW2\nbNnClVdeyZ133kmlUqFcLrNixQqe+MQn+h/hCbLc7J/ZkCdnQxpnG8vN3Ge5mXyWG2ns1q9fz8UX\nX8z1119PpVKhs7OTNWvWcO6559oFnDSC2rP72muvpVKpsGzZMp/d0hj5O00av9lYbhYtWlQY67qz\nMgh0IDIINPlmY+GTZprlRho/y400fpYbafwsN9L4WW6k8bPcSOM3G8vNeIJAs7I7OEmSJEmSJEmS\nJI3OIJAkSZIkSZIkSdIcZBBIkiRJkiRJkiRpDjIIJEmSJEmSJEmSNAcZBJIkSZIkSZIkSZqDDAJJ\nkiRJkiRJkiTNQQaBJEmSJEmSJEmS5iCDQJIkSZIkSZIkSXOQQSBJkiRJkiRJkqQ5yCCQJEmSJEmS\nJEnSHGQQSJIkSZIkSZIkaQ4yCCRJkiRJkiRJkjQHGQSSJEmSJEmSJEmagwwCSZIkSZIkSZIkzUEG\ngSRJkiRJkiRJkuYgg0CSJEmSJEmSJElzkEEgSZIkSZIkSZKkOcggkCRJkiRJkiRJ0hxkEEiSJEmS\nJEmSJGkOMggkSZIkSZIkSZI0BxkEkiRJkiRJkiRJmoMMAkmSJEmSJEmSJM1BBoEkSZIkSZIkSZLm\noPJMJ2Cu6/n9P1Fs66LQ2kVh73RpmpY7Zjp5kiRJkiRJkiRpjjIINMUG7vs+AyMtLHXsDQ61rnkF\npYVhyOIsG4BKN5TnUygUpjytkiRJkiRJkiRp7jAINJMGusm6N5J1b4SsOmxxtmcT3de8EoqtDS2J\nhk5rLY1oWUihYA9/kiRJkiRJkiTJINCUK7QdTNa3FbLK6Ou1dg2bl/VtSX9U+8h67iXruXcfBytT\nWvpo2h/2zmGLqnvuBoqpK7pS21iTL0mSJEmSJEmSZimDQFNs3uMuI8uq0L+DrG8L1d4tZH1byBqm\nhbYlw7bNereM72BZBUZoCdS37hMMbP5l+lBeQKHtIIptS1NQqO2gummaT8siu6CTJEmSJEmSJGkW\nMwg0DQqFIrQuptC6mOKCo8e8XbFzNa1rXkG1d/Ng0KhvC1nvVhjY0/xYbQc1nZ/1bh78UNlFVtnF\nwO7bR0l0C+2P+gilztVD91PZTXXnbYNBo1LrmL+PJEmSJEmSJEmaPgaBpth37+pmZWeZFQtKzCuP\nb7ye4vwVFOevaLosq3QPbVHUt4WsdzPFxSc1Xb9aHwQai6yfQuui4fvZEem57u2DM1oW5i2KDqbQ\nfnCath1EsfZ3+0EUigaKJEmSJEmSJEmabgaBptgLrxzs0m1ZR5GVnWWO6ixx1IIyKztLrOwss7Kz\nzGHzihTH0f1aodxBoXwEzDtiTOu3n/AWqj0PkvU+QNa7Of/3YAoO9W9rskWRQsvwLuqGBZP6d1Dt\n3wG7Nox47PJhT6HtuPOG72v3XVBqp9DaRaFYGtP3kCRJkiRJkiRJY2MQaBrd113lvu4+rrl/+LLW\nIqzIA0NHdZZZuSCf5p8XtY6vFVGjUtcpjBRmyar9eYuiFBjKejeTVXY3Dcxk421RBFCe33R27+8/\nQHXXBqBIoa1rSGuiYvvBtO/pZ6C0hGrvUgqti1O3epIkSZIkSZIkaUwMAh0g+qpw644Kt+6oAL3D\nli9pK6RWQwtSS6KVeYBoVWeZI+eXKBXH3oqoUaHYQqFjGXQs2+e65UP/mGLn6sFgUa1FUc8DZL0P\nQGX3sG2K7Qc33Ve154HaX/n+HoQdN+1d3pVPu+8HCmUKbQfR8aiPDuumLhvoBTIKpfYxfFtJkiRJ\nkiRJkh4aDALNElt7M7b29nPtg/3DlrUUYWVnmaM7S6xaWObozjJHL0z/li8o0bIfAaJGxfaDRwzq\nAGSVPWS9Dwx2PdfzAMVFJw5fb6AHKrvGfuCskoJMLQuGLarc/2P6bvqXND5R+zIK7YdQaD9k2N+U\nF1AYR5d7kiRJkiRJkiTNZgaB5oD+KqzbXmHd9uGtiEoFWLGgtDcoNBggKrFiQZm20uQGRQrleRTK\nR1Gcf9Q+VizS9rD3kOUtiGotibI8eERWGb5J61IKhSZd1PXcl/6ojU+0c13zY5Y68oDQIZQPezLl\nQx4/3q8nSZIkSZIkSdKsYRBoij12WSt37hxg054Bshk4/kAGG3YOsGHnAN/bODRAVCzAkfNLe4ND\nqxaW9gaJVnaW6ShPXauZQrGV8kGPabosy6pkfdu4c91vKA1s5dCuFqo9D1AotTVfv6fJIEvNDHST\n7b6Dgd13UFryiKardP/ydVCeTzFvQTTYomgZhbaDKBQtMpIkSZIkSZKk2cEa7Sn2naelrtN6Khl3\n7a5w+84B7tiZprfvrHD7rvR5Z//0h4iqGdy5a4A7dw1wVZNxiI6YV2LVwhJrFpZZvajM2kVl1iws\nc1RneVK7mGtUKBQptHXR33YU/RxFy/K1o65fXnYahfZlZD33Ue25n6znfrLe+6E6vOu8vcdoMv5R\nVummmrciqjbdqJgCQe2HUexYRqH9UIodh1E+9IzxfD1JkiRJkiRJkqaFQaBp0l4usHZRC2sXtQxb\nlmUZW3urKUC0qy5AlH++a9cAAzPQjGjjngE27hngJ/f2DZlfLqQxiFYvKrN2YZk1i8qszqeHdhSn\nfdydUtcplLpOGTKv1pooy4NC1Z77hvxd7Dhs2H72dis3kqw6uI9taVah7aCmQaDK5l+T7d5Aof1Q\nCh3LKLYfSqGlc8LfUZIkSZIkSZKk8TIIdAAoFAp0tZfoai9xysGtw5ZXqhl37x7gjr1BohQg2rCz\nwvodFXb0TW+EqJLBrTsq3Lqjwv81LFtQLuxtNbR6YWo5tHZR6mJuYWtx2tJYa01EWxcsOnaMG5Uo\nHfxHe1sU0b9935u0D29RBDDwwE+obPrO0Jnl+SkYtLcV0aEU2pdR7DgsdTc3Qnd3kiRJkiRJkiRN\nhEGgWaBcLLCyM43TA0MDBbVWRLftHOC2HZX0b2c+3THAlt6mHZtNmV2VjN9u7ue3m4d3xbaso8ia\nvEu5NXnLoTWL0veayu7lxqo4fzntJ/3D3s/ZQA9ZzwN5K6L7yLrvo9pzL1n3vVR77oP+7U1bFAFU\nu5u0KqrsprprPexa33SbtpPeSfngU4fMy7IBsr5tFFq7pr2FlSRJkiRJkiRpdjMINMvVtyJ6VJNW\nRNt6q2zYGxSqcNvOATbkgaL7u6c3QHRfd5X7uvv4aZPu5Y5eWOaYRWXC4jJrF7UQFpcpDsC80rQm\ncYhCqZ3C/OUU5y9vujyrdEN1+FhKAPRvG//x2pYOP0b3fXRf/TIotlHoOCy1GhoyPZxC+yEUihZl\nSZIkSZIkSdJQ1hzPcYvbijyirZVHHDQ8QLSzv8qGHRU2NLQi2rCjwqY90xcgqmRwy/YKt2yv8M07\n65fMY1lbleNvezAPELWwNg8UHdw+/WMPNSqUO4COpsva/+Ai6N8x2HKo+16ynnupdt9H1nMvWc/9\nkFWGbFNsP3TYfqrdm/I/esl2387A7tubJKRIoW1ZCgrNO4zSohMoH3rmfn47SZIkSZIkSdJsZxDo\nIayzpcjDlrbysOENUNhTqbJhxwDr87F/bt2exh9at70yrV3M3ddb5L5Nvfxg09AWN4tbC4NBoUVl\njlmcWg8tn1+idAB0LVcoFKB1EaXWRbAwDFueZQNkvVvyruXyoFDLwuHrdd+z74NlVbKee8h67qG6\nFbL+nU2DQP13fY2ssju1Hpp3eOrKrtw548E0SZIkSZIkSdLUMAikpuaVi5zQVeSErpZhy7b0DLB+\nxwDrtvfvDRKt255aEvUMTE/6tvVlXHN/H9fcP7RrufYSrF5YHhIgOnZJC2sWlmktHTjBjkKhRKH9\nYGg/mBInjbheafFJtK79a6rd95B130O1exNZ933DWhHVG2mcov5N3yHbfcfQmeX5eddyR1Ccd3g+\nTf8KTYJSkiRJkiRJkqTZwyCQxq02BtEfHDK0i7lqlrFx9wC3bh9sPVSb3rlrgGwa0tYzAL/fWuH3\nW4cGScqFFBw6dkmZYxe3cNziFo5dUmb1wjItB0DLoZEUF6ykuGDlkHlZNkDW80AeFLqnYbqJQpMg\nUJZVybrvHX6Aym6qO2+FnbcyLH5XXkDHYz5Jsa2rYV+ZrYckSZIkSZIkaRYwCKRJUywUWL6gzPIF\nZc44YuiynkrGhp0pKLR+e4V1+fSWaeperpJB3F4hbq/wdXr2zm8pwtqFqbXQsYvzANGSMqs6y5QP\n0OBQoVCi0HEodBxKiUcMWZZlGdDkfPbvhFIHVHuHLxtJtZdC6+Jhsyv3fo/+9Z+m0HF4ajG0t/XQ\n4RQ6DqdQah/nN5IkSZIkSZIkTQWDQJoW7eUCxy1p4bglw7uX29wzQNyWAkJxWz/r8mDNXbumvm+5\n/ircuK3CjduGthxqK8GahWWOX9LCsYtTgOi4JS0cteDAGHNoJKmFTmn4/NZFzH/8F8gqe6h230vW\nvSlvPZRP92wi671/6DYdh1MoFIftK9tzN1nfVrK+rVS3/374sdoO2tu9XHHekSlYtPAYim1NBp+S\nJEmSJEmSJE0Zg0CacUvbS5x6aIlTD20bMv93N6/jju4CPQsPJ26vcMu2fm7ZXmH9jgr9U9x4qHdI\nt3Lde+e3l+CYRakruePyVkPHL2lh+fzSrOgirVCeR6nzaOg8etiybKA371JuI9U9myiU2prsAard\nm0Y9Rtb7IFnvg1S3/XbvvNa1r6K4/FnD1h3YdgOFjsMotHbNivMnSZIkSZIkSbOJQSAdsDpKcOyC\njLWr5w2ZX6lm3L6zsrf10C11AaKd/VM78lDPAPxuSz+/29JPfXBoYUuB45e0cEJXC8cvKXPCkhaO\nX9LCwtbhLWkOVIVSG4UmYxA1KnU9kkKxleqejVS7N0L/jn3ve96Rw+Zlld30/OaN+U7npa7l5i2n\nOO9IivOX562IjqBQah22rSRJkiRJkiRp3wwCadYpFwusWdTCmkUtPL1ufpZl3Ntd5ZZt/XsDRDdv\n6+fmbRUe7JnapkM7+jOuvr+Pq+/vGzJ/+YISJyxp4YQ8MHRCVwurFx644w2NRcvhT4HDn7L3c9a/\nk2r3JrI9d1Pds4lq90ayPRup7tkIA3sAKHYcPmw/1T13D34Y2EN15zrYuY6hnQAWKLQvozh/OYV5\nR1LqPIbyoWdMzReTJEmSJEmSpDnGIJDmjEKhwGHzShw2r8RpDTGHB7oHuGlbhZu3pqDQTdv6uXlb\nP1t7p7bl0F27Brhr1wDfvWtwXlsJwqK8xVBXCyfmrYYO6SjOyi7RCi2dlFoCLAxD5mdZBv3bqe65\nm0L7smHbZfVBoBFlZD33MtBzL2z+JdXFJzcNAlU2/woGelLroXmHUyjaekiSJEmSJEmSDALpIeHg\njhIHd5R4wmGD49xkWcb93VVu3tbPTdsq3FQXINrRN3XBod76LuXWD3Ypd1B7MXUpl48zdGJXC8cu\nbqGjPPsCQ5CCcrQuptS6uOnyUtcjaXvYe/IWROlftudusr6tI+6zOH94t3IA/Xf8D9Vtv6utlbce\nOpLCvBUU5w/+K5Tn7+/XkiRJkiRJkqRZwyCQHrIKhQLL5pVY1tByKMsy7tkzGBy6eWs/N+VdzE3l\nmEMP9lT50T29/Oie3r3zigVYu7DMSUtbOKlr8N/BHaUpS8d0KbQupnzQY4DHDJmf9e/Kg0J35QGi\nu/IA0SaK85Y33dfQVkVVsp57GOi5Bzb/suGYSynkAaHWlX9BYYQAlSRJkiRJkiTNBQaBpAaFQoHD\n55c4fH6JM48YnJ9lGXfvHuDmPDB0497WQ/30DIy8v/1RzSBurxC3V/jybYOthg6bV6wLCrVyUlcL\nqxaWKM7C7uQaFVoWUFp0LKVFxw6Zn1UHIKsMWz+r7Cbr2zKmfWd9m8n6NlPdei2tq84atry6+w4G\ntlybWg3NP4pCa9es7KJPkiRJkiRJksAgkDRmhUKB5QvKLF9Q5klHtu+dX6lm3Lajwo1bK9ywtZ8b\nt/bz+y393LFriiJDwD17qtyzp5fL7x5sNTS/XODErqEtho5bMnu7k2tUKJaA4S2gCuX5zHv8l+q6\nlEsth6q77yLr3gTZ8OtQaF1KoWXBsPkDW66lb92/D84ozRvanVzevVyh/RAKheJkfj1JkiRJkiRJ\nmnQGgaT9VC4WOGZxC8csbuFZqzr2zt/ZX+Wmrf38fkuFG7f27w0QbZ+i8YZ2VzKuub+Pa+7v2zuv\nWIBjFpWHBIZOWtrCQe2zvzu5eoWWTkqLjqO06Lgh87NqP1n3Jqq776K6+w6qu+8k23MnhbaDm+6n\nuvuOoTMG9lDdcTPVHTcPnV9sozh/OYV5K2g5/CmUlpw8mV9HkiRJkiRJkiaFQSBpinS2FHn0IW08\n+pC2vfOyLGPj7gFu3Frh91v7+f3Wfm7c0s8t2ytUpiA2VM1I3ddtq/Cluu7kDq91J7e0lYcvbeHh\nS1s4Yn5pznV9Vii2UJh/FMX5RwF/tHd+ljU/2dXu+8a242ov1Z23ws5bKXWdMqx9UpZlVO766t5j\nF9oOmnPnVpIkSZIkSdKBzyCQNI0KhQJHLihz5IIyT14+2KVc70DGuu2VvUGh32/t54Yt/dzbXZ2S\ndGzaU2XTnl7+r647uaVtRR5+UAsnL23h5KWtnLy0haMWzL3AEDDid2p/+PlkvQ+mFkO776S6+06q\ne9KUyq6m2xTnrxg2L+u5n75b/2NwRnk+xTwgVJy/kuKClSk41Lp4Ur6PJEmSJEmSJDUza4NAIYQu\n4F3As4DDgAeBbwPviDHeM4btXwy8CjgZaAXuBL4JnB9j3DxV6ZaaaSul8XxO7GqB1YPzH+ge4IYt\n/Vxf9++W7RWqU9BqaHNvle9t7OV7GwcDQ4tbC5yctxY6eWkLDz+olZWdJYpzMDAEUCgUKbQfQrH9\nEFj6qL3zsywj69uaAkN5UCh1LXcXxXnLh+2nuvv2oTMqu6luv5Hq9huHzm9ZvDcgVFp8IuVDHj8F\n30qSJEmSJEnSQ9WsDAKFEDqAq4BjgY8DvwLWAm8EzgwhPDLGuHWU7T8AvA34BfB2YBdwKvA64Bn5\n9jum9EtIY3BwR4kzjihxxhGDrYa6Kxk3bR0aGLphSz+7p6A/uW19GT+8p5cf3jMYGFrYWuBhXS17\ng0MPP6iF1QvLczYwBKnlUKGtC9q6KHU9fJ/rZ3vuHtuO+7dR3Xod1a3XkfU+2DQINLDtBii1UZy3\ngkKprclOJEmSJEmSJA34cocAACAASURBVKm5WRkEAv4WOAl4TYzx4trMEMJvgf8F3gH8XbMN8xZE\nbwJuB54QY6zVbn8mhPAg8FbgpcBHpyz10n7oKBc45eBWTjm4de+8apaxYccAv9vSlwJDm1NwaCq6\nk9vRl/GTe/v4yb19e+ctKBc4qdZaKO9K7phFZUrFuRsYGk15+XMoLTudbPcdVHfdTnX37VR330F1\n9x0w0NN0m+L8lU3n991yEdVdG4AChY7DKC5YRXHB0fl0FYX2ZRQKxan7MpIkSZIkSZJmrdkaBHoJ\nsBv4dMP8rwN3Ay8OIbwhxtisacQK0vf+RV0AqOZHpCDQyslNrjS1ioUCqxeVWb2ozLNXDc6/v7E7\nuc39rNsx+d3J7apk/Py+Pn5+Xx+paML8coGHLW3hlINaOeWgNF3ZOTfHGGqUWg4thballLpO2Ts/\ny6pkPfengFAeHMp230F1910UFxw1bD9ZdYDq7lqrooysexMD3ZsYeOCngyuVOvJxhlJQqLW3lb7W\n4fuSJEmSJEmS9NBTyLIpGFxkCoUQFgLbgR/HGJ/QZPlXgOcAq2OMtzVZvgi4D7gxxnhKw7JXAxcD\nr4gxNgaYRrV9+/amJ3LdunXj2Y005XoG4NY9RW7eNfhv/Z4ClWzqgzOLyhnHLahyfGeV4xekfwe3\nza570JTIBoAMCkPj8uX+eznk3vePb1eUuOfID0OhNGR+odpLVmgBWw1JkiRJkiRJs8LatWubzl+0\naNGYK3NnY0ug2ivuIw26cWc+PRoYFgSKMW4PIbwPOD+E8DHgI8BO4NHA3wPXAZ+b1BRLB5D2EpzY\nWeXEzsGu4vqqsH5PgZt2FYm7ity0q8itu4v0T3JgaHulwNXbSly9bTBAcXBrHhDKA0PHLaiyqGVS\nD3vgawjY1FTKB3P/srfS0n8P5f5N+XQj5YERhzyj0nJo0/0t2Pk9Fuy8kv7yofS3HkGl5Qj6Ww6n\nv+UIstL8SfsqkiRJkiRJkg4cszEI1JlP94ywfHfDesPEGN8fQrgP+Bjw2rpF3wReEmNsPmjHBIwU\nqdO+1VpReQ6nxwnAn9V97q9m3LS1n+s29/O7zf1ct7mPG7b00zMwucd9oK/ID7cU+eGWwXlHd5Y4\n5f+zd9/xdZz3ne8/z8xp6JXoACswoFglSlaX1YtlW04c24nlHu/m3k3bOMlNX/vG8d4kNzfZTbJx\ndmMncds4tuPEdixZvYtUo9jJIdgJkATR+2kzc/+YI5ASDiQSjQT5fb9eeIF4Zp7nzIg4hF7zxfP7\nLYlxZa6U3PrKKEXRy3UHS/uUkSAzkisndxh/9MwHfopMtAGY+r5J7hzCG84Qyxwnljn+pmMmVoVV\nsgKraPmZXkOFTRhrMf6IEDl/+nkjcv70vhE5f3rfiJw/vW9Ezp/eNyLn71J/31yWT/hyZd/+EngU\n+CegB7gW+L+AhxzHuc913cELeIkiF1zUMqyvirG+KjY5lvUD3MEs2/vSbOvLsL0v7DU0np3bkm6H\nRjwOjUzwvUMTAFgG2ssjuf5CYTC0pjJK1Lr0+wvlY6Il2BXrsCvWTY4FgU8wcYruI4fzzvFH848D\nBOk+vL4+vL5XzgxaURIb/gi7YsOcXbeIiIiIiIiIiIgsrMUYAg3nPk9Xv6j4Lee9ieM4DmEA9ITr\nuvefdegRx3G2A/8G/C5hICQiZ4lYhjWVYQDz0Vww7vkBHcNZtvdl2Nabntw5NDaHwZAfwJ6BLHsG\nsnyzI9wEWGAbNlZHuXpJbPKjsSh/WbXLgTEWprABLzo25VgQBERbPoQ/eujMriFvus2UOX4Gk6ib\nOjx2nPThr2MVr8QqXoFVshITq8SYyzOQExERERERERERuZgtxhDoMBAATdMcf6NnUMc0x28nvO/v\n5zn2cG7t22ZzgSKXE9sytJdHaS+P8pGVhUAYDO0fyrK1N83rvRm29oal5NL+Oyx2Hia8gM3daTZ3\npyfH6gutN4VCG6su5zJyZxhjiDa+Z/LrIAgIkqfPhEK5snLB+Akg95cUKcYkaqas5Q3vwzv9HN7p\n584MRsuxS1ZgFa8Ky8oVr8QUNmCm6XUkIiIiIiIiIiIiC2PRhUCu6445jrMDuMpxnMTZ/Xscx7GB\nG4Djrusem2aJN3YQJfIciwNmmmMico5sy7C6IsrqiigP5nYMpbyAPQNhILS1N8PrPWn2DWXx57CS\n3Mlxnx8dTfKjo+E/C7aBKyqiXL0k3DF0zZIYq8oiWJf5rhVjDKagFqugFpZcPzkeeEn8sWP4owfB\nS+Xd3eOPHpq6YGYQr38rXv/WM2NWPOwvVLKSSM0tKisnIiIiIiIiIiJyASy6ECjnq4Ql3X4B+O9n\njX8MqAE+/8aA4zjtQMp13TcaYryY+/wRx3H+ynXdsx9Bf+gt54jIHInbhiurY1xZHePnc2OjGZ8d\nfZk37Rg6POLN2Wt6AezsD/sW/YMblj8rjRmuro6xKRcKbVoSpSqhHSsAxk5gl7Zhl7ZNf44VxcSq\nCNJ9b7+Yn8If3oc/vA+rsDlvCOQN7MAqWoqJlc320kVERERERERERCSPxRoC/S3wIPBnjuMsBV4F\n1gCfA3YCf3bWuXsBF2gHcF33RcdxvksY+DzvOM53gB7gGuAXgW7gSwt0HyKXteKoxQ11cW6oi0+O\nDaR8Xs/tFgrDoTQnx+eujtxwOuDJEymePJGaHFtRYk+WkLumJsbayihR6/LeLTSd2MrPEFv5GYL0\nIN7IwbCk3MgB/NFDBOOdhBU138wqXjFlLMiMknw9bL1m4jVYJasmP+zSVkysYr5vRURERERERERE\n5JK3KEMg13UzjuPcDXwB+CDwS8Bp4CvA513XfYeO5/wc8CzwKcLAJwacAP4e+KLrul3zc+Ui8k4q\n4ha3Nya4vfFMVcaT4x5be8LdQq/1pnmtJ81wZu7qyB0a8Tg0MsF3Dk0AUGAbrloS5dqaGO+qifGu\nJTEqtVvoTUysnEjVJqjaNDkWeMmwx9DoIfyRg/ijB/FHj+QNgc4uKxekTuOlTuP1ntmEaWJVWKWr\nwj5Dpa1YJaswsaq8JepEREREREREREQkv0UZAgG4rjtMuPPnc+9w3pQnhq7resBf5z5E5CJXX2hz\n/9IC7l9aAIAfBHQMZXmlJwyEXunJsGcgM2f9hSa8gBdOpXnhVHpyrLUswrtqYpPBUJt6C01h7AR2\n2WrsstWTY0HgYczUAM0fPfi2awXpPrzePrzelybH7OrrSKz/wpxdr4iIiIiIiIiIyKVu0YZAInL5\nsozBKY/ilEf5WGsREPYX2taXCUOh02le7UlzamLuysh1DGXpGMryrY5wo2FZzPCuJbmdQjVxNi2J\nUhy15uz1LhX5AiCASO1tmIKGsJTcSAf+yAGCVO/br1VQn3c8ffDvAZMrJ9eKSdRqx5CIiIiIiIiI\niAgKgUTkElEctbipLs5Nuf5CQRDQNebxWm+GV06neS3XXyjpzc3rDaUDHutK8VhXChjBMrC24qwS\ncjUxWopthRHTMLFyItXXQvW1k2Nhn6EzoZA/0kGQPD153CpeOWWdIAjIdD0E2dEzg5HisLdQSeuZ\nYKigDmMU0omIiIiIiIiIyOVFIZCIXJKMMTQVR2gqjvDAsrCMXMYP2N2f4dWedK6UXIYDw9k5eT0/\ngB39GXb0Z/i7fWMA1BVYk4HQtTVx1ldFidsKhaYT9hm6GqqunhwLMsP4IwfwRg5gl6+bMidIdr85\nAALIjuIPbMMf2HZmLFKEVdKKXdKGVdqKveQmBXQiIiIiIiIiInLJUwgkIpeNqGXYWB1jY3WMz+ba\n1gyk/FxfoTNl5IYzc9Nc6NSEzw+PJvnh0SQAcRuuqo5xfW2M62vjXLMkRnlcu1PejomWYldehV15\nVd7jQXoQU9hIMN719gtlxyaDIRNfQmHNzVPX8rMYSz8WRURERERERETk0qGnXSJyWauIW9zZlODO\npgQAnh/gDmV5+XSal06nefl0ioPDc1NDLuXB5u40m7vTwCgGWFMZ5fqaMBi6rjZOQ1H+HjqSn13W\nTuF1XyXIjuGPHMIf6ciVlDtAMH4cmBroWaVteddKu3+F1/8aVmkbVkkbdmlbWEouWjLPdyEiIiIi\nIiIiIjI/FAKJiJzFtgxXVES5oiLKp5wiAHqTHi+fTk8GQ3PVWygAdvVn2HVWCbmlxTbX1ca4oTbO\ndbUx2soiKlt2DkykCLtiHXbFOqK5sSA7gT96KNdjqANveD/BeCdWSWveNfyR/QSpXryeXryeF8m8\nsXZBA1ZpW9hjqNTBKlmFsRMLcl8iIiIiIiIiIiKzoRBIROQdVCds3tNSwHtawt5CaS9gZ38mt1Mo\nzUunU5wc9+fktY6OehwdneCfD04AUBm3uK42Fu4WqouzoSpK1FIodC5MpAC7fA12+ZrJsSA7BsHU\nv6vAS+KPHc27TjBxAm/iBF7307kRC1PUgl3SSmzVZzGxsnm4ehERERERERERkdlTCCQicp5itmHT\nkhiblsT4T2sgCAI6x7yzSsil2dmfwZuD1kL9KZ+HjiV56FjYV6jANly9JMp1tXFuqI1xdU2Mkqj6\nCp0rEynKfyDwiC77GP7Ifvzh/QTp/rdZxScYO0J2vJNY+y9PPZrqhewYprAZY/R3IyIiIiIiIiIi\nF45CIBGRWTLG0Fwcobk4wgdXFAIwlvHZ2pvJlZFL8dLpNIPp2adCE17Ac6fSPHcqDYBtYF1lNNwt\nVBunPgMV0XdYRKYwkSJiyz86+bWf6sUf7sAfdvFH9uMN74fs6JvmWMXLMVZsylrZE4+SOfx1sAvD\nMnKl7VilDnZZOyZWMe/3IiIiIiIiIiIi8gaFQCIi86AoanFzfZyb6+NACX4QsG8wy5buNJu7U2zu\nTtM5NvvGQl4A2/oybOvL8Ld7xoBClhf63N47yI21MW6si1NbaM/6dS43Vrwaa0k1LLkeCHd7BclT\n+MNhIOSP7Mcubcs71x92wz944/gD2/AHtk0eM4karNJ27FIHq7Q9118oPu/3IyIiIiIiIiIilyeF\nQCIiC8AyhisqolxREeUz7WFJsuOjb4RCabZ0p9gzmJ2T1zo8bvHVfWN8dd8YAKtKI9xYFwZCN9bF\naSxSKHS+jDGYgnqsgnoite+e9rwgCPCG901/PHkaL3ka7/SzuYVtrOLlxNp/Fbukda4vW0RERERE\nRERELnMKgURELpA3Ssh9aGVYQm4g5fPS6RSbT6XZcjrN1t40GX/2r3NgOMuB4Sxf2z8OwLISOwyE\ncjuFlpboR8FcSmz4Iv7wPvxhF29oH8FE1/QnBx7+yAFMpHTKIT/Vjz/SgV3qYGLl83jFIiIiIiIi\nIiJyqdKTPxGRi0RF3OLe5gLubS4AYCIbsLX3zE6hl0+nGc7Mvq/QkRGPIyPjfKsjDIWaiuzJnUI3\n1cVZXmJjjJn161yOjDHYpW1vKhUXZEbwht2wv9DwPrxhFzLDZ+bEKjCJmilref1bSe/9s/CcRO2Z\nMnJl7VjFK1VGTkRERERERERE3pFCIBGRi1RBxEyWcIMSPD9g90BmsoTc5u4UpyZmv1Woc8zjnw9O\n8M8HJwCoL7S4sS7ODbVxbqyL0VYWUSg0CyZaQqTqaqi6Gsj1F5o4Ge4UGt6HsWJ5//v6Z5WVC5Ld\neMluvNPP5Ba1sYpXhMFQ2WqssiswiVr9PYmIiIiIiIiIyJsoBBIRWSRsy7C+Ksb6qhj/8YowTDg6\n6vHiqRSbu9M8fyrF4RFv1q9zctzne4cm+N6hMBRakrC4oS7GTXVxbqmPKxSaJWMMprABq7CBSN1t\n057nD7vTLxJ4+CMd+CMdZLt+FK4bqyDW9otEam6a60sWEREREREREZFFSiGQiMgiZYxhWUmEZSUR\nPtpaBMALuw7w+rDFQSp44VSa/UPZWb9OT9LnB0eS/OBIEoDaAmsyELq5XuXj5kti45fCMnJDuf5C\nwy5kR6Y9P0gP5O0dFHhJvJ7NWGWrtVtIREREREREROQyoxBIROQSUhMPuGeJR2trBQCnJzxePJXm\nhVMpXjiVYs/g7EOh7gmffzk8wb8cDncKNRba3Fwf4+ZcKNRSrB8tc8FES4lUXQNV1wBvlJE7MVlG\nzh/ahz96EILc7i9jY5W0TlnHH3ZJ7fmT8JRYJVbZ6rCEXOlqrJJWjB1bsHsSEREREREREZGFpSd1\nIiKXsJoCmw8sL+ADywsA6Et6vNj9RiiUZld/hmCWr9E17vHtgxN8O9dTaFmJzc1n7RSqK7Rn+QoC\nb5SRa8QqbCRSdzsAgZfCH+nAG9oLmUGMHZ8yzxvaO/nnIN2P1/MCXs8LuUUjWCUrsUpzwVDZakx8\niXYLiYiIiIiIiIhcIhQCiYhcRqoSNu9bWsD7loah0GDKZ3N3GAi90J1ie18Gf5ap0JERjyMj43yj\nYxyA1rJIGAjVxbmpPkZ1QqHQXDF2HLt8LXb52mnP8Yf3Tb9AkMUfdvGHXbKd/xauGasiuuLjRBvu\nnevLFRERERERERGRBaYQSETkMlYet7ivpYD7WsJQaDjt89LpM+XjXu/NkJ1lKNQxlKVjKMtX940B\ncEVFhJvrwl1CN9XFKY9bs70NeRvxNb+NP9yBN7wXf2jv5K6h6QTpPow1dUdREAR4fS9hl7bn7T0k\nIiIiIiIiIiIXH4VAIiIyqTRmcVdTgruaEgCMZnxeOZ3muVMpnjuZYmtvBm+WodCegSx7BrL8z71j\nGGB9VXSyfNwNdTGKowqF5pKxE9gV67Ar1gFv9BY6iT8cBkL+0F78scMQ+JNzrLLVU9YJkqdI7fhC\nuGZBA3bZGqzyK7DL1mAKm1VCTkRERERERETkIqQQSEREplUctbitMcFtjWEoNJLx2XwqDIWePZli\nR9/segoFwPa+DNv7Mvz17lEiBq6pifHu+ji3NsTZtCRG1FK4MJfC3kINWIUNROruACDwkvjDbhgK\njR3FJGqnzPMGd0/+OZg4QXbiBJx6LByIlGCXXYFVvib8XNKGsWMLcj8iIiIiIiIiIjI9hUAiInLO\nSqIWdzcnuLs5DIUGUz4v5AKh506l2DOQndX62QA2d6fZ3J3mj7eNUBwx3FgX490NCW5tiLO6PKId\nJ/Mg3C20Abtiw7Tn+MN7p18gO4LX9xJe30tkAEwUq2QVkcb7iNbfPefXKyIiIiIiIiIi50YhkIiI\nzFh53OL+pQXcvzTsKdSb9Hj+5JmdQh1DswuFRrMBj3SmeKQzBUBNgcW76+O8uyHOu+vjNBfrx9hC\nia38DHb19fhDe/AGd+MP7wM/lf/kIIM/vJeg+rq8h/2JbkyiRoGeiIiIiIiIiMg809MzERGZM9UJ\nmw8sL+ADy8NQ6OS4x/Mnz+wUOjLizWr90xM+3z00wXcPTQCwstTm1oYE764PewqVx9VPaL6YSBGR\nqquh6moAAj+LP3ooFwrtwh/aQ5Duf9Mcu+yKKesEXpKJLZ+BSDF22WqssjdKyLWqhJyIiIiIiIiI\nyBxTCCQiIvOmvtDmQysL+dDKQgCOjWZ57mQq95Gma3x2odDBYY+Dw2N8dd8YBthYHeXWXD+ha2vi\nJCLaaTJfjBXBLm3DLm0j2vwBgiAgSHbjD+3GG9qDP7QPq7Rtyjx/eD8EHmSG8Hq34PVuOVNCrrQ1\nDITK1mCXr8VESxb8vkRERERERERELiUKgUREZMG0FEd4sDXCg61FBEHA4RGP506meCa3W6g36c94\n7QB4vTfD670Z/mLnKAkbrq0JA6FbG+Ksr4xiWwqF5osxBlNQh1VQR6TujmnP84Z25z8QZPCH9uAP\n7QG+F65ZtAy7fC129XXhLiQRERERERERETkvCoFEROSCMMawojTCitIIn3SK8IOA3QNZnj6R5NkT\nKV7oTjOeDWa8ftKDZ3IB0//9GpTHDDfXx7m9IcFtjXGWlehH4IUQWXITxorndgvtJkgPTHtuMHaE\n7NgRIFAIJCIiIiIiIiIyA3oCJiIiFwXLGNZVRllXGeWX15aQ9gJe6Unz9Ilwl9CrPWm8mWdCDKYD\nfnQ0yY+OJgFYUWJze2OC2xri3FwfpzSmfkILwSpqxipqJspPhyXkJk5OBkLe0B6CsaNT5thla6eM\nBUFA8tVfwSRqscvXYpWvxSpejjH2QtyGiIiIiIiIiMiioBBIREQuSjHbcGNdnBvr4vweMJz2eeFU\nuLPnmRMp9g5mZ7X+oRGPQ/vG+Mq+MWwD76qJcVtDnDsaE2ysUum4hWCMwRQ2YBU2QP2dAASZkTAU\nGtyJN7gLf6QDqzxPCJTsxh/pgJEOvJ7nw0G7MOwpVL42DIZK2zBWbCFvSURERERERETkoqIQSERE\nFoXSmMV9LQXc11IAwKlxbzIQeuZEiq5xb8ZrewFs7k6zuTvNf319hPKY4daGBLc3xrmtIU5zsX5c\nLhQTLSFSfS1UXwtA4KUwdnzKed7gzqmTvXG8/lfx+l8lA2BFsUqcyZ1CdtlqTKRofm9ARERERERE\nROQioqda8yz2rb/CX7UGb9VagqqaC305IiKXjLpCm4+sLOQjKwsJgoADw1meOZEKy8edSjGcnnnt\nuMF0wL8dmeDfjkwA0FoW4baGOLc3xrmpLk5xVKXjFkq+AAjAxCqxq6/DG9wN2ZH8k/0M/tAu/KFd\ncBTsqmtIbPjiPF6tiIiIiIiIiMjFRSHQPIs9+i/w6L8A4FcuwVu1Fr91Dd7KNfhLV0EkeoGvUERk\n8TPG0FoWpbUsymdXF+P5Adv6MjxzMgyFtnSnSPszX79jKEvHUJb/tXeMqBWWjrs9t1NoQ1UUy6h0\n3EKLVG0iUrWJIPAJxo7hDe3GG9yJP7iLINWbd46Vp7cQQPHwo3h2BX6yHCuxZD4vW0RERERERERk\nQSkEWkBWfw/Wy0/By08BEERj+Mvb8VrXkLnrgwQV1Rf4CkVELg22Zdi0JMamJTE+t76E8azPlu40\nT51I8URXkj0DM+8nlPHhhVNpXjiV5otboTJucWtul9BtDQkai+w5vBN5J8ZYmOJlWMXLiDbeTxAE\nBMnusJ/Q4C68oV0E450A2Pl6C3lJSoZ+jMFn4sWvYxL12BXrsMrXYZevwyqoW+hbEhERERERERGZ\nMwqB5llgWRg//6+fm0wae/8O7P07yNz1waknZNJg22DpgaKIyGwURixub0xwe2OCL15Txqlxj6dO\npHiqK8lTJ1L0JGe+Tag/5fP9wxN8/3BYOq69PCwdd2dTghtq4xREtEtoIRljMAV1YXhTfycAQXoQ\nb3AXVmnrlPP9YRfDmb//IHmS7MmTcPLRcL1EDXb5+jAUqliPSdRhtPNLRERERERERBYJhUDzbOzL\n/4592MU6sBu7Yxf2gT2YseE3neNX1+bdBRR58THi//Q3eCtWhyXkVq3FW7kaCosX6vJFRC5JdYU2\nP7eqkJ9bVYgfBOzqz/DUiRRPdqXYPMvScfsGs+wbzPLlPWMU2Iab6mLc0ZTgzsY4K0sjChAuABMr\nJ1JzU95j/kQ3AREM+XeHBcnTZE89DqceD9eKVxOpu4PYyk/P2/WKiIiIiIiIiMwVhUDzLVGIt/pK\nvNVXkgHwfcyp49gH9mAf2IXVsTvsDZSHfWA3ZmKMyO5XYferAATG4Dcuw1+1Fi8XDAW1jaCHiiIi\nM2IZw/qqGOurYvzqurB03Iun0jx5IslTXSn2Ds68dNyEF/BYV4rHulIALC22uaspwR2NcW6uj1Mc\ntebqNmSGog13c2SkkVj6KPXF/XgDO/GH94Kfznt+kOolyI7mPean+jGxCgV9IiIiIiIiInLRUAi0\n0CyLoGEp2YalZG+5Lxzzvbyn2h27poyZIMDuPIzdeZjo0z8CICgpw1u5Bq91Ddnr7yKoqpm3yxcR\nudQVRizubEpwZ1MCgBNjHk+dSPJkV4qnTqToT818m9DRUY+v7BvjK/vGiFpwfW2cuxrj3NGUYHW5\ndgldMFaMdKKV2PJWWA6Bn8Yf3o83sANvcCf+0B7wU5On2+XrpiwRBAHJV3+FwM9il6/FrliPXb4e\nU9SCMQr7REREREREROTCUAh0McjX8ycISN/9wbCEXMdurJ4T0043I0NEtr1IZNuLeKuvUggkIjKH\nGopsHmwt4sHWIvwgYEdfhidPpHiyK8lLp9NkZpgJZXx49mSKZ0+m+INXh2kotLijMQyf3l0fpzyu\n4OBCMVYsDHLK1wIQ+Bn8kQ68gR34gzux8oVAEycJUr0AeD3P4/U8Hx6IlubWWo9Vvh6reJlCIRER\nERERERFZMAqBLlbGkL39AbK3PxB+OdiHdWAP9sGwt5B1xMVkMm+aEkRjeUvL2btfI/61v8BrXYvX\ntg6vdS1BfYtKyImInCfLGDZWx9hYHeNz60sYzfi8cCrNk11JnjqRYv/QzEvHnRj3+UbHON/oGMc2\n8K6aGHc2hqXj1ldFsfRv9gVjrCh22RXYZVcAP5v3HG9wZ/7JmWG8nhfxel4Mv44UT4ZCduVGrOIV\n83PRIiIiIiIiIiIoBFo0gvIqvKtvxrv65nAgk8Y62oF9YDf2gd1YHbsIahogEp0y19q/E6u7E6u7\nk+jzPwnXKynDW5ULhdrW4S9thWhsIW9JRGTRK45a3NOc4J7msHTc8dEsT3aleLwryTMnUgxnghmt\n6wWwuTvN5u40X9wKSxIWtzfGuaspwW0NcaoSeXaQygVll68jtuo/4A3uwBvcDdP0DSI7ite7Ba93\nC3blJhIbv7SwFyoiIiIiIiIilxWFQItVNIa/ag3+qjVkAIIAkhN5T7U7pv52shkZIvL6C0RefwGA\nIBrFX776zG6htnVQWDyPNyAiculpLo7wSSfCJ50iMn7Ay6fTPNGV5PHOFDv6M++8wDR6kj7/fHCC\nfz44gQGuqo6GfYsaE1xVHcW2tEvoQrMKG7BaPki05YMEgYc/egR/cOdkXyGyI1PnVGzIu1b60Ncx\nsQrsio2Ywib1ihIRERERERGRGVMIdKkwBgoK8x7y1myCIMA+sAeTTuafnslg79+BvX8H/BiS/+nz\nZK+9bT6vWETkqfRfQAAAIABJREFUkha1DDfWxbmxLs5/2QTd4x5PdCV5oivFkyeSDKRmtksoAF7r\nzfBab4Y/2TZCRdxwR2OCu5vC0nHaJXThGWNjl6zELllJtPkDBIFPMHYU7+xQKDOEnScECrwkmaPf\ngSAsLWhiFVgVG7DLN2BXbMAU1CsUEhEREREREZFzphDoMpC5/6Nk7v8oZLNYxw5gd+zE3r8Tq2Mn\n1tBA3jle69opY6a7i9h3/w6/bS1e6zr8lpVg61tIRORc1BbafLS1iI+2FuH5AVt7MzzeleSJriSv\n9WSYWSQEA6mA7x2a4HuHwl1C1yyJcVdTWDpuQ1VUgcFFwBgLU7wcq3g50ab3EwQBwdhRTGHzlHP9\noT2TARBAkB7A634ar/vpcK14NXbFBqzyDdgV67EK6hbqNkRERERERERkEdIT/MtJJIK/oh1/RTuZ\nez4EQYA5fSIXCu3C7tiJdeIofnUdQeWSKdNtdzvRV56GV54GIIgn8FZegd+2Dq91Hd7KK6bdjSQi\nImfYluGamhjX1MT4nStL6Ut6PHUixeOd4U6hnqQ/o3UD4OWeNC/3pPnS6yPUFVjc2RTuErq1IU5p\nzJrbG5EZMcZgipflPean+iFSBNmxvMeDVC/ZU0/AqSfCtRK1ROruJLbi4/N1uSIiIiIiIiKyiCkE\nupwZQ1DbSLa2kexN94Zjo0NYvd15T7c7dr15eipJZM9W2LMVgMBY+C0r8drW4beGfYWCiup5vQUR\nkUtBVcLmZ1YU8jMrCvGDgB19GZ7oSvF4V5KXT6fxZrhN6NSEzzc7xvlmxzgRA9fXxri7OQyF2soi\n2iV0EYrW30mk7jb8kYN4A9vxB3fgDe4CL3/fvyDZTZAZyn/MS2LsxHxeroiIiIiIiIhc5BQCyZsV\nl+EXl+U9FERjBEUlmLGpza0BTOBjH+3APtoBj30fgOQnfo3sHQ/M2+WKiFxqLGPYWB1jY3WMX99Q\nwlDa5+kTKZ7oSvJ4Z5IT4zPbJZQN4LlTaZ47leYPXhlmabHN3U0J7mpKcHN9nIKIAqGLhTE2dmkb\ndmkbLP0QgZ/FH+nAG9geBkNDe8BPTZ5vV6yfskYQBExs+SxECif7CdkV6zHR0oW8FRERERERERG5\nwBQCyTlLf+I/k/7Yr2BOHsPevxO7Y1fYW6jnxLRz/KWrpg6mJog++3C4Y6h5BVhqYi4iMp2ymMUD\nywp4YFkBQRCwdzDLE51JHutKsbk7RWZmmRBHRz3+bt8Yf7dvjIQNt9SHfYTubkqwtET/e3AxMVYE\nu2w1dtlqWPazBH4af3j/ZChkl+cJgSZOEKR6IQXZsWNku34EgFW8PNdPKBcKRYoW+nZERERERERE\nZAHpKY+cH8siaFxGtnEZ2dveB4AZ7MM6u6/Q0Q6M7xPE4vjL2qYsYR/YTfybfwlAUFgU9hNqW4fX\nth5/uQPR2ILekojIYmGM4YqKKFdURPnldSWMZHyeOZHi0c4kj3UmOTnDXUJJDx7tTPFoZ4rfZAin\nLBIGQs0JrquJEbO1S+hiYqwYdvla7PK1sPzBvOd4A9vzjvujh/FHD5Pt/DfAwiptywVCG7HK1mBs\n/QwWERERERERuZQoBJJZC8qr8K65Fe+aW8OB5Dj2wb2YvtMQiU4533Z3Tv7ZjI8R2b6FyPYt4VrR\nGP7K1Xht6ykpqmKsaeVC3IKIyKJUErV479IC3rs03CW0sz/DY50pHutM8nJPGn+GvYTcoSzu0Ch/\nvXuUkqjhtoZwl9BdTQnqCrV7czGwStuJLv0w3sAO/JH9EOQLCH384X34w/vIHP1n7Kp3kdjwhwt+\nrSIiIiIiIiIyfxQCydxLFOKt2TTtYevo/mmPmUwae9927H3bWQUExsJf1kr6vR/Du/rmebhYEZFL\ngzGG9VUx1leFvYT6kx5P5nYJPd6Zoj81s11CI5mAHx5N8sOjSQA2VEW5pznBvU0JNlZHsYx2CV2M\n7JIV2CUrAAiyY3iDu8JAaHA7/shBYGpCaJWvy7tW9vSzWIUtmKKlGP19i4iIiIiIiCwqCoFkwSV/\n9UtYXUew9u/AdsMPa7A377km8LEPuxgvO/VgEGD6ewiqaub5ikVEFp/KhM3PrCjkZ1YU4vkBW3sz\nPNqZ5NHOJNv7MjNed3tfhu19Gf502wi1BRZ3NyW4pznBrQ1xiqPWHN6BzBUTKSJSfS2R6msBCDIj\neIM78Pq34Q1sIxg/DoBduXHK3MBLktr9pxBkMbEKrIqN2LkPq6B2Qe9DRERERERERM7fnIZAjuNY\nruvOsEW1XDYsC795BX7zCrJ3fCAMc3pOYp8dCnV3vmmK50xtem26uyj6rY/hV9WGPYWcDXjOeoL6\nFtBvKouITLItwzU1Ma6pifF7V5VyatzjsVwfoadOpBjJzKxuXPeEzzc6xvlGxzhxG26ui3NPcxgK\ntRTr90wuViZaQmTJjUSW3AiAn+rFH9iBVTy1BKs3uAuC8BcxgvQAXvdTeN1PhesU1OcCoSuxK9Zj\nYuULdxMiIiIiIiIick7m+glNp+M4/xv4huu6+TsSi7yVMQQ1DWRrGsjedG84NNjH6Wcfo+hYB5XZ\nJEF51ZRpdu5bzOrrxtrcTXTz4wAEJWV4rW+EQuvwW1aBrYeRIiJvqCu0+XhbER9vKyLtBWw5neax\nziSPHk/iDuXZeXkOUh483pXi8a4Uv7lliCsqItzbnOCepgRXL4lhWwrnL1ZWvBqr7va8x/zBXdPO\nCyZOkp04SfbEw+E6xSuwKjYSqb4euyJ/aTkRERERERERWVhz/WS8Fvgc8GuO4+wEvgF8y3XdU3P8\nOnKJC8qrGFy9icHVmyhsbc17jr1/R95xMzJEZOvzRLY+H66VKMBbtRbPWY931Y34TSvm7bpFRBab\nmG24pT7OLfVxvnhNGUdGsjyeKxv37MkUSW9m6+4ZyLJnYJQ/3zFKVdzirqY49zYXcHtjnNKYysYt\nFtEVn8CuuQl/YFtYPm5wJ/ipvOf6o4fwRw+Bn1YIJCIiIiIiInKRmOsQqBH4MPAR4Drg/wX+2HGc\nx4GvA//muu7EHL+mXKYyt38Av6YRe/9O7AO7MMn831omOUFk1ytEdr1Cyo4oBBIReRvLSiJ8dnUx\nn11dzEQ24LmTKR7rTPJIZ5JjozNLhPpSPt8+OMG3D04QMXBjrmzcfc0Jlpdqp+bFzBgLu2QVdskq\noi0/Q+Bn8IddvP7X8Qa24Q/vg+DN3xd2RZ7eQkFAas+fYBWvDPsJlazAGHuhbkNERERERETksjWn\nT15yO37+EvhLx3GaOBMI3QPcDYw6jvMvhOXinprL15bLj79yNf7K1WQAvCzWsYNn+grt34EZGZoy\nx2vfMHWh1AQF/99vn+kr1LoGEoXzfv0iIhe7gojh7uYEdzcn+NMgwB3K8sjxJD85nuSl02n8GbQS\nygbwzMkUz5xM8bsvD9FWFuGe5gT3Nie4tiZGRGXjLmrGimKXr8UuXwt8nCA7gTe0a3KnkD92GLti\n6s/aYLwTr/tpvO6nw5/bkWLsig1hP6HKqzAF9Rj18xMRERERERGZc/P267eu63YCfw78ueM4S4EH\ncx+fAj7pOE4n8I/A/3Jdt+t813ccpxL4PPABoB7oBR4C/sB13ZPnMD8O/DbwMaA5N//HwO+5rtt7\nvtcjF5gdwV/u4C93yNzzIQgCzMlj4S4hdzu2uwMzOoS/tG3q1I7duXO2w4++SWBZ+MudXE+hDXht\n66Cw+ALclIjIxcMYQ3t5lPbyKL+6roT+pMfjXSkeOZ7ksa4kw+kZJELA/qEs+4dG+atdo5TFDHc1\nhYHQnY0JyuMqG3exM5ECIlXXQNU1AATZMUykaMp53sC2Nw9kR/F6XsDreSFcJ1E7GQjZFRswsbJ5\nv3YRERERERGRy8GC1GBxXfeo4zhfBnoIg5flhMHLHwC/4zjOt4HfdF23+1zWcxynAHgaaAf+GngV\naAV+A7jdcZxNrusOvM38CGHg8+7c/NeAq4FfAm5yHOdK13XTM7lXuUgYQ9CwlGzDUrK3vjccGh6A\nyNRveXvfmx9MGd/HPrgX++BeeOjbBMbCb1kV9hRq34DnrIdiPZwSkctbZcLmwysL+fDKQjJ+wJbu\n9OQuoQPD2RmtOZQO+N6hCb53aALbwLU1Me7N7RJqLYtop8gikC8AAiDwMbFKgnR//sPJbrInf0L2\n5E8Ag1Wykkjj+4g23DN/FysiIiIiIiJyGZjXEMhxnCjwfsLdP3cBUcAALvA1YDdh8PIx4A7HcW5x\nXffgOSz9n4F1wC+6rvs3Z73eduBfCcOlz73N/P8DuAP4pOu6X8+NfdNxnF7gM8C1wHPneJuySASl\nFfnHi0vx61uwTh7Le9wEPvbR/dhH98Oj3wMg9dOfIfPAJ+btWkVEFpOoZbi5Ps7N9XH+6F1lHBjK\n8EhnuEvoxVMpsjPYJOQF8GJ3mhe70/yXV4dZXmJzb3OC+1oKuL42RlRl4xaVaPMDRJreTzB+HC9X\nOs4b3A7ZsTxnB/gjBwgyw3nXCoJAgaCIiIiIiIjIOZqXEMhxnKuATwM/C1QSBj9DhMHPP7iuu+Ws\n03/kOM6DuWN/BbznHF7iE8AY8NW3jP8A6AQ+5jjOr7uuO91jp18EOoBvnD3ouu4fAX90Dq8vl5DM\nvR8mc++HMUP9WO4O7H3bwvJwnYennePXt0wdDALsV57Bb11LUFE9j1csInJxW1UWZVVZlF9cU8xg\nyuepE0kePp7ksc4kA6mZlY07POLx5T1jfHnPGGUxw91NCe5rTnBHU4KymMrGLQbGGExRC1ZRC9Gm\n9xP4Hv5IB17/VryB1/GH9kJwZheZXXnVlDUCL8nE5p/HKl+DXXkldsWVWAV1C3kbIiIiIiIiIovK\nnIZAjuN8DvgksJYw+PGBJ4B/AP7Vdd1kvnmu637LcZx7gZ8+h9coJSwD95zruqm3rBM4jvNybp3l\nwKE885ty8//HGyGR4zgJIPU2oZFcBoKySrx33Yr3rlvDgZHBsKfQvrBfkHXsACYIv0V8Z/2U+ebU\ncQr+xxfC47WNZ3oKtW8gqNYDKhG5PJXHLX5qeSE/tbwQzw94pSfNT44neeR4kr2DMy8b991DE3z3\n0AQRAzfVx7kvVzZuacmCVLqVOWAsG7usHbusHZZ/lCA7gTe0C69/K/7IAazi5VPmeIO7CNJ9eKef\nxTv9bLhOQcNkIGRXbMBESxb6VkREREREREQuWiYI5i73cBzHz/3xAPCPwNdd1+08x7m/Bfyh67rx\ndzhvHbAD+CfXdT+a5/hfEJaLu8t13cfzHL8TeIywXJwP/BqwFEgBPwF+w3XdA+dyzWcbGhrK+x+y\no6PjfJeSi5SdHKfo+AESPV2cvuG+Kcertj5Ly0PfyDMTUmVVjLa0Mbq0jdGWNtIVS0ClbETkMteV\nNDzfb/N8v81rQxaZYPb/LrYW+txc5fHuSo/2Yh9Vjbu0lA58n+LRp6Y9HmDIxFpIxR1SiXbS8WVg\nogt3gSIiIiIiIiJzqLW1Ne94WVnZOT/xmOtfl/0qYbm3F2cw92+Bb53DeW/8euf4NMfH3nLeW1Xm\nPn8SiAFfAroJewT9EnC94zgbXdc9eQ7XIpcRL1HIcOt6hlun7gICKD42feAXH+ojvnMzVTs3A5Au\nKWe0pY3+9dczsnLtvFyviMjFrjER8JGGLB9pyDKWhZcGw0DohQGb/szM0puOcYuOcYu/Px5lSczn\n5kqPWyo9ri73iatq3KKXji8lmV1LLNWBFaSmHDcExNJHiaWPUjLyKL6JMVL2fsZK3n0BrlZERERE\nRETkwpvrEGgl0PhOJzmO8xXgetd117wx5rruEGHfoPkWy32uBda6rtuX+/qHjuN0E4ZCvw78xly8\n2HRJnbyzN3ZRLZr/hr/yBSYO7MZ2d2C727AO7sFkMnlPjY0MUrn7ZYrWXkVmsdyfLAqL7n0jcpaN\nwC8AfhDwem+Gh3Nl43b25/+39J30pC2+f8ri+6eiFEYMtzfEua8lwT3NCaoT9uR5et8sJq3AzxL4\nWfzhfXj9r4f9hIb3QeBPOdsK0tQ0tROpefPfbRAEBOk+rLh6+M2U3jci50/vG5Hzp/eNyPnT+0bk\n/F3q75u5DoFuBf79HM6zgRUzfI3h3OeiaY4Xv+W8txrNff7hWQHQG75KGALdOsNrk8tZPIG3ZhPe\nmk3h1+kU1qF92G7YU8ju2I1Jv7ktlte+ceo6yXEKf/fTeKvW4K3eiNe+kaCuWeXjROSyYRnDpiUx\nNi2J8ftXldI5muWRziQPH0vy7MkU6anP+t/ReDbg348l+fdjSQxwbU2M+1oS3NecQP+6Lj7GimCX\nr8UuXwt8nCA7hjewA2/gdbz+1wnGj+fOtLArNkyZH4x3MvHSf8AUNof9hCqvwi5fj4kULuh9iIiI\niIiIiMy3WYdAjuM8ADxw1tBHHMd5u/pW1cA9wFsDmHN1GAiApmmOL819nq4215HcZzvPsd7c2qUz\nvDaRM2Jx/PYN+O0byABkM1hH9mPv24a9bztW5yH8paumTLM7dmP1dWP1dRN96UkA/PIqvPYwEPJW\nbySobVIoJCKXjabiCD/fXszPtxczkvF5sivFw8cmeKQzyUDq/HsbBsCW02m2nE7z+VeHaSlIcEul\nx0dLUryrJkZEjYQWHRMpIrLkeiJLrgfAT/bgDbxOMHESE51aIdgbeB2AYPw42fHjZDt/CMbGKm0P\nA6HKTVilrRiT738XRURERERERBaPudgJFAeuB9oIn6tck/t4O2ng8zN5Mdd1xxzH2QFc5ThOwnXd\nya0VjuPYwA3Acdd1j02zxB7CsnN5tmDQDBigcybXJvK2IlH8VWvwV60h894HIQjyBjn2vm1TxqzB\nPqwtTxDd8gRwVii0+spwp1Bto0IhEbkslEQtHlhWwAPLCsj6AS+fTvPQsSQPHZvg0Ig3ozWPTVh8\ns8vim129VMYt7m6Kc19LAbc3ximJqpHQYmQllmDV3z3tca//9amDgYc/tBt/aDeZw9+ASDF2xUbs\nyk3YlVdhFdTO4xWLiIiIiIiIzI9Zh0Cu634H+I7jOBWEu3u+DHznbaYkgQ7Xdftn8bJfBf6SsHXA\nfz9r/GNADWcFTI7jtAMp13UP56437TjO/wb+T8dx3ue67o/Omv9Luc9nj4nMj2lCG795BdkN12G7\nOzDJ8bznvDUUSt//c6Q//AvzdqkiIhejiGW4oS7ODXVxvnhNKR1DWR4+HpaNe+l0mvPfIwT9KZ9v\nH5zg2wcniFlwS33YR+je5gIai7Qr5FIRbfkZrKKluX5CHUCeGoPZUbye5/F6ngcg5vwy0cb7F/ZC\nRURERERERGZpznoCua474DjO14AfuK77zFytO42/BR4E/sxxnKXAq8Aa4HPATuDPzjp3L+AC7WeN\nfZ6wJN13Hcf5Y8IScbcDHwe25dYXuSCy191B9ro7wMtiHT2QKx+37W1DIW95+9TBICDywiN4rWsJ\narRTSEQubcYY2sqjtJVH+dV1JfQmPR7JBUJPnkgxnj3/SCjtw+NdKR7vSvHrm4fYUBXlvuYE97Uk\nWF8Zxejf1UXLLl+DXb4G+BRBZgRvYHvYT6jvNYLkqbxzrNLVU8YCL4U/dgSrZJVKx4mIiIiIiMhF\nac5CIADXdT89l+u9zetkHMe5G/gC8EHCHTynga8An3ddN/+T8jPzexzHuQ74I+A/EvYpOgn8OfCH\nrutOzOPli5wbO4K/oh1/RTuZ9/xsGAod6TgTCu3fgUmG36pe+9Sm1+bUcRJ/98cA+JVLzvQUat9I\nUNOgUEhELmnVCZsHW4t4sLWIZDbg2ZMpHj4+wcPHkpyayLPr4xxs78uwvS/DH28boanI5j0tCe5v\nSXBDXZyo+ggtWiZaQqTmJiI1NwHgj5/A638Nr38r3sB28MYxsQqs4mVT5nqDO0lt/32IlGBXXpnr\nJ3QVVqJmge9CREREREREJD8TBDMplhJyHOe/AI+6rrvlrK/PVeC67hdn/OIXmaGhoZn/h5S8Ojo6\nAGhtbb3AV3KRyoVC1vGDZG9975TDkad+SOIf/zzv1MlQ6I2eQkvqFQpdIvS+EXl7fhCwvS/DQ8eS\nPHw8ya7+zKzXLIsZ7mlKcP9S9RG61AR+Fn94H0F6gEjNzVOOpzr+J9nj/zpl3BQ2TwZCdvl6TKRg\nIS53Qennjcj50/tG5PzpfSNy/vS+ETl/i/F9U1ZWds4Pc2e7E+gLwCiw5ayvA+BcLiAALpkQSGTB\n2RH8lavxV04tTwNg79857VSrvwfrxceIvvgYAH5lDV77RrI33Y235up5uVwRkYuBZQxXVse4sjrG\n711VyrHRLN947TjP9NtsHbKZQdU4htIB3zk0wXcOTRC34d31ce5vKeDe5gS1hSoRtpgZK4Jdvnba\n417/1rzjwfhxsuPHyXb+AEwEq2w1duWmcJdQySqMUVAoIiIiIiIiC2O2IdCngVfe8rWIXARSP/9b\nZO74wFnl43ZiUsm851r9p7FefBS/ZaVCIBG5rLQUR/hwQ5YPN2SpWbqSJzrDHUKPdiYZSp9/IpTy\n4NHOFI92pjDANUtiYdm4pQlay6JzfwNyQSXW/UFYNq7/NbyBHeDlqSgcZPEHd+IP7iRz6B+Jr/39\nydJzIiIiIiIiIvNtViGQ67pfe7uvReQCikTwV63BX7WGzHsfhGwW64iLvfesUCj95lDIW33l1HUm\nxin8g8/ita3LlZDLlY8TEbnElMUsfnpFIT+9opCMH7C5O83DxyZ46FiSo6Peea8XAC/3pHm5J80X\nXhumtSzC/S0J3tOS4OolMSyV4Vz0rMImrMImok3vJ/Az+EP7JvsJ+SMdhN8Fb5qBXTG1j5+f6sMf\nOYhdsR5jJxbk2kVEREREROTyMNudQCKyWJwdCr3vQchmsI7sx977OvbebVhdR/BbVk6ZZu/fidVz\nAqvnBNEXHgHAr67Fa78S74qrwlCoUg2wReTSErUMt9THuaU+zn99V8C+wSwPH0/y0LEJXu2ZWR+h\njqEs/23nKP9t5yi1BRb3Nie4v6WAW+rjJCIKhBY7Y0WxK9ZhV6yDlZ8iyAzj9W/LhUKvEaR6sUrb\nMNGSKXO9nhdI7/8bMFGs8jWT/YSs4hUqHSciIiIiIiKzMqsQyHGcv5/F9MB13Z+fzeuLyCxEomeF\nQh8D3wdr6oMme9+2KWNWbzfW8z8h+vxPAPBrG/FWh4GQt/pKgrLKeb98EZGFYoxhdUWU1RVRPre+\nhJPjHj85luTHxyZ49mSKtH/+a3ZP+Hxt/zhf2z9OccRwR1PYR+jupgTlcT30vxSYaCmR2luI1N5C\nEAQE450E2dG85072Fgoy+APb8Ae2kTn49xAtmwyE7MqrsOJVC3gHIiIiIiIicimY7U6gT81ibgAo\nBBK5WOQJgAD8xmVk12zC7tiFSafyT+3uwuruIvr0jwBI/fRnyDzwiXm7VBGRC6m+0ObT7UV8ur2I\n4bTPE11JHjqW5JHOJMMz6CM0mg34wZEkPziSJGLgxro478mVjWsu1qbtS4ExBlPUnPdYEHh4gzvz\nT8wM4XU/hdf9VLhO0bIzoVD5eowdm69LFhERERERkUvEbJ8s3DYnVyEiF63sTfeQvemesHzcoX1h\n+bh927A7dmIy+Usi+Y3Lpg4GAfb2LXita6FoaikcEZHFqDRm8VPLC/mp5YWkvYAXu1P8+GgYCnWN\nn38foWwAz5xM8czJFL/10hAbqqK8pyUsG7emIoJRH6FLjjE2hdd9FW9gG17/Vrz+rQSp3rznBmNH\nyI4dIXv8+ySu+WvsklULfLUiIiIiIiKy2MwqBHJd95m5uhARuchFovht6/Db1oW7fNIp7IN7sPdu\nw967FevgXoyXJTAGr31q02tz8hgFf/E7BMbCX9aKt/rKsK9Q2zooKLwANyQiMrdituHWhgS3NiT4\n0+sCtvdl+PdjYR+hPQPZGa25vS/D9r4M/8/rI7QU29zfkuA9LQVcXxsjYikQulSYWDmR2luJ1N6a\nKx13bDIQ8gZ2gP+WnbjRMqziFVPW8UcP448dx668Mm/vIREREREREbn8qMaIiMxMLB4GOauvBD4N\nqQnsjt1YXYehuGzK6fbe1wEwgY992MU+7MJD3yawLPwVq3NrbcRbtRbiiQW+GRGRuWWMYWN1jI3V\nMX7/qlKOjGT58bEkPz46wZbTafzzrxrHsVGPL+8Z48t7xqiIG+5pSnD/0gJub4hTFFUfoUtFWDpu\nKVbRUqLNP0Xgp/EH9+RCodfwRw9iV16FMVP/zjMnHyN7/PuAhVXahl25Cbvq/2fvvuPryOt7/7+m\nnKbe3FXc5LG8li3bW7wNlu27MlmylEDopJEAKQSS3IQkJDc3CQSSm5BHIIUQfmRJuEAIYeX1FrYa\ntrrITRqXtX0kV9nq0qkz8/vjaLVFR7uWfKR1eT8fDz2kmfnOd77jh1XOvM/3+9mAWepgmNbs34yI\niIiIiIi86c4rBHIc51Hgq67rfvcV2+cqcF33lvO5vohcQCIxvNVX4q2+Mu9heywEei3D97EO7sU6\nuBd+9O8Edgh/2Sq8phayG96CX79sJkctIjIrFpfafOKKEj5xRQlnkx5bupK0xZM8dixFwpt6ItSX\nCvjPQwn+81CCqAU3LYzSWh/lzrooc2J62H8pMcwwVlULVlUL8DGCdD+Bl8zb1uvdNvaVjz/YiT/Y\nSebIfWCXYFW2YFVvwKq6EjM6Z9bGLyIiIiIiIm+u850JdBNw/2u2z9U03gMrIher5Ec/g3XdbVj7\nduTqCnW/mLedkc1gue1YbjtBrEQhkIhccqqjFu9vLOb9jcWMZn0eO5Zic1eSB+JJelP+lPtLerCl\nK8mWriQGsHFemLvrcrOElpZp0velxghXkG8hwCA9QDB6LP9J2WG8nq14PVtzfRTVjwVCG7Aq12KY\noZkbsIiIiIiIiLypzvfJwBKg9zXbIiITFZfirb8Bb/0Nue3BfqzOndgduVDIPBGfcIrX1DKxn8Qo\n0a/+Kd4/9CsZAAAgAElEQVTKFrymFvyGRtASNyJykSqyTVobYrQ2xMj6Ac+eTrM5nqQtnuDIkDfl\n/gLg6VNpnj6V5g9fGKSpwqa1PkZrQ5SW6hCGoTpClyojXE7Rjd/F62/HO7sNr3cbQeJ43rbBaJzs\naJxs1w8puvE7oBBIRERERETkknVeIZDrukdfb1tEZFJlFXhX34R39U0AGH1nsDp35mYJ7duBMTqM\nXzdxFpC1fxd2+zPY7c8AEBQV4zm5QMhrWodfuxRM1cYQkYuPbRpcPz/C9fMj/NlVZXT0Z2k7mmBz\nV5IdZzLT6rOjP0tH/xBf2jXEwiKTu+tjtNZHuX5+hLClQOhSY9gx7JqN2DUbAfATJ8YDIa+vHbzR\nV7U3y1ZghEon9OP1tROkB7Cq1uU9LiIiIiIiIhePGVkjxHGcEHAdsBKoJPfG1F5gL/CM67pTX+tE\nRC5pQWUN2WtvJXvtrbkdwwN5wxzrNbWFjNER7B0/wd7xk1w/JWVjs4TWkW1aR7CwAfTOdxG5yBiG\nwarKEKsqQ3y2pYzu4SwPdCXZHE/y1IkU2Wksqnt81OdfOkf4l84RysIGd9RGaa2PcUtthNKQwvNL\nkRlbgFm7iVDtJgI/iz/QkQuEerfhDx3AqtqQ97xM1w/wzjwDmJhlK3LLxlVvwCx1MDT7VkRERERE\n5KJS8BDIcZxPAn8CVEzS5LTjOL/nuu43C31tEbmElJTn3x+O4JdXYQ705j1sDA9iv/Ak9gtPEgH8\n8krS7/kVsjfcOXNjFRGZYbUlNr/UVMIvNZXQn/J55FiStqNJHjmWZCgz9URoMB3w3RcTfPfFBGET\nbloYobU+xp11UeYV6SH/pcgwbazKZqzKZlj2EYJ0f952gZ/JzRoCwMcf7MQf7CRz5D6wS7AqW3KB\nULYa366ctfGLiIiIiIjI9BQ0BHIc55eAvxvbfAHYTW4GkAFUAWuBdcC/Oo6TcV3324W8vohc+tL3\nfoz0z34U40QcqyO3fJzduQNjaCBve3OgjyBWPPFAEGCcPUVQM3+GRywiUlgVEZN3LS3iXUuLSHkB\nT51IsTmeZHM8wcnE1Cdbp314qDvFQ90pDODquWFa63OzhJaVz8ikcbkAGOH879fyR+LgT7L8YHYY\nr2crXs9W5gMZez4prs3NFKpah2EoQBQREREREbnQFPqV/aeAQeAu13WfztfAcZwbgDbgM4BCIBGZ\nOsMgWNhAdmED2VvuIeX7mMeO5OoJdWzH6mzHGB0GIDAMvJUtE7s4fpTi3/8Ifs18vFXrx5eQC6rm\nzPbdiIhMW8QyuLU2yq21Ub50bTnbz2TYHE9w/9Ek+weyU+4vAJ49nebZ02n+6IVBVlbY3D0WCK2r\nCWFqec1LnlW6jKIbv4vX3z5eTyhIHM/bNpQ9SbbrB2RPPkrRDf8xyyMVERERERGRc1HoEKgR+MfJ\nAiAA13W3Oo7zHeADBb62iFyuTBO/bil+3VIyt78TfA8zfgirYwfG2VNQPLGotb1ve+7UMycxn9xM\n6MnNAPjzavFWrcNrWoe3soWgvGpWb0VEZLpMw+DKOWGunBPmjzaUc2AgMzZDKMlzp9NMo4wQnf1Z\nOvuH+etdwywoMrm7PkZrfZQb5kcIWwqELlWGHcOu2YhdsxEAP3FiPBDy+trBG31Ve6tqPYYxsa5U\n9vSTEJCbJRSa+LtYREREREREZl6hQ6Bh4NQ5tDs21lZEpPBMC3/xCvzFKyZtYnXuzH/qqW7MU92E\nHvsRAN6ixblAqGk9XlNL3kBJRORC1Fge4jeaQ/xGcymnRj22dCVpiyd4/HiK9NRXjePEqM/XO0f4\neucIZSGD2+uitNZHuWVRlLLwxABALh1mbAFm7SZCtZsI/Cz+QAc9Bx8mkuwgnOnCqtqQ97z04W8T\njBwBTMyyFbll46o3YJY6GKaWjhMREREREZkNhQ6BHgeuPod2a4EnC3xtEZFzlr77fXj1y7H2bcc6\ntBcjk7/+gXXsCNaxI/DID0i9/5Nkbn/X7A5URKQA5hVZfNgp5sNOMUMZnx93p2iLJ3iwO8lgeupz\nhAYzAd97McH3XkwQNuGtCyK0NsS4qy7KvCI93L+UGaaNVdnMUEWUId7O8oY5YEYmtPNTZ8YCIAAf\nf7ATf7CTzJH7wC7BqmzBqt6AVXUlZlRLsYqIiIiIiMyUQodAnwWechzn08Dfuq7rvfKg4zgG8GvA\nVcBbCnxtEZFz5i9rwl/WROaeD0E6hXVoX66m0L7tmC92YHjehHO8lesmdjQ6TPj+b+dmC61YDZHY\nLIxeRGT6SkMm71gS4x1LYqS9gJ+cTNEWT7I5nuD46NSnCKV9ePhYioePpfgt4Ko5YVobcrOElpeH\nCn8DckExwhV59/tDh8CwIchTmyo7jNezFa9na66PovrxQMiuzj+rSERERERERKbnvEIgx3H+Nc/u\nbcBfAZ9zHOcF4DTgAzXAhrHPPwQ+AXzmfK4vIlIQ4cjYkm/r4N6PQSqBtX8PVsd2rI6dmIddKC7B\nr10y4VRr/y7Cbd+Gtm8TWDb+sqbxpeO8ZasgPPHd0SIiF4qwZfC2RVHetijKFzeWs/NMhrZ4gs3x\nJB39eR7ev4EAeK4nzXM9af74hUGccpvWhih318dYXxPCNFRH6HJh11yDdeN38frbx+sJBYnjedsG\no3Gyo3H8gX0KgURERERERArsfGcCfeR1jlUAt05y7B3knhMoBBKRC08khtd8FV7zVbnt0WHMU91g\nTqx5Ye3bMf614WWx9u/G2r8bfvhNglAYr3H1eMDkL1kJdqEnYIqIFIZpGKyfE2b9nDB/uKGcQwNZ\nNscTtMWTPHs6zdQXjQN3IIu7a5i/3jXM/JjJ3fUxWhui3Dg/QthSIHSpM+wYds1G7JqNAPiJE+OB\nkNe3E7zEq9pPVlso0/0/GKEKrKp1GCHV5hMREREREZmK830a+dGCjEJE5EJWVJILcPIwe09PepqR\nSWPv2469bzsAQSSKt2INmbvfi7dq/YwMVUSkUJaV23yquZRPNZdyOuGxpStJ29EEj59IkZq4YuYb\nOpnw+Vd3hH91RygLGdxWm1sy7tbaKGXhiSG7XHrM2ALM2k2EajcR+Fn8gQ683hfwerfhDx3Eqr5y\nwjmBnyV96N/AGwVMzLIVWFUbsKo3YJY6GKZqUImIiIiIiLye8wqBXNf95nTOcxynCNAi8SJy0Ut+\n8k8w+s9ide7E6tiJ1bEd89SxvG2NVBJ793Nkbr5n4sEgyH3kmW0kIvJmmxuz+NCKYj60opihjM+j\nx1K0HU2wpTvJYHrqc4QGMwHfP5zg+4cThEx464IIrfUx7qqPMr9ID/UvB4ZpY1U2Y1U2w7KPEqT7\nwZ44y8cf7BwLgAB8/MFO/MFOMkfuA7sEq7JlvJ6QGZ0zuzchIiIiIiJyEXiz1iX6LXJLyTW+SdcX\nESmYoKKa7MZbyG68BQDj7Gmsjh3jH+bZUy+3NUw8Z82EPsxjh4n9xW/irWwhu2o9XtM6ggX1oPoZ\nInKBKQ2Z3LM4xj2LY2T8gJ+cTNF2NMnmeJJjo1OfIpTx4ZFjKR45luK3noar5oRorY9xd32UFRV6\nz9DlwghX5N3vj3aBYUOQp0ZVdhivZytez9ZcH0X1WNUbsGs2YlWuncnhioiIiIiIXDRmJARyHGcl\nsAaI5jlcCfwCMG8mri0i8mYLqueSveEOsjfcAUGA0XNiPBAyEiNQPPGdzta+HRjDg9gvPIn9wpMA\n+OVV4/WEvKZ1BHMXKhQSkQtKyDS4aWGUmxZG+eLGgPazGe6PJ9l8NMG+/jwP7c/B8z0Znu/J8Plt\ngzSW27TWR2mtj7FhTghTPwMvO6GFd2HPvQmvv328nlCQOJ63bTAaJzsaJ0j3KQQSEREREREZU9AQ\nyHGcEPAt4N1v0NQAHirktUVELkiGQTB3Idm5C8m+tXXSZlbHjgn7zIFezGd+TOiZHwPgV83FW/WK\nUKhaWbqIXDgMw6ClJkxLTZjPrS/jxcEsbfEEm+NJnjmVZuqLxsGBgSz/d/cw/3f3MPNiJnePBUI3\nLogQsRQIXS4MO4ZdsxG7ZiMAfuLEeCDk9bW/Yrm4HKtqQ95+0i9+E7N4CVbVOozQxDdkiIiIiIiI\nXIoKPRPot4H3ACPA88AwsAnYOvb1NUAC+AIwrXpCIiKXomzLtUCA1dmOMTqct43Zexpz64OEtj4I\nQPJjn33dYElE5M20tMzmU6tL+dTqUnoSHg90JWmLJ3n8eJLU1FeN41TC5xvuKN9wRykNGdxWG6W1\nPsqttVHKw6qndjkxYwswazcRqt1E4GfxBzpygVDvNvyhg1hV6yec46fOkjnyHy/1gFm2AqtqA1b1\nBsxSB8NULSoREREREbk0FToE+nngGHCV67onHcdZTC4E+pLruv/jOE4F8HXgBuDvC3xtEZGLVvat\nrblAx/cwjx58uabQ/l0YyUTec/xlTRP2makEpS/ug/lzoDR/fQURkdk2J2bxoRXFfGhFMcMZnx8f\nS9EWT/BgV5KB9NTnCA1lAv7rcIL/OpwgZMJbFkRorY9xV32UBUV6mH85MUwbq7IZq7IZln2EIDOU\nd5aP17vtFVs+/mAn/mAnmSP3gV2CVdmCVb0Bq+pKzOicWRu/iIiIiIjITCt0CLQc+IrruifHtl/1\nqt513X7HcT4E7CY3a+hLBb6+iMjFzbTwlzj4Sxwyd78XslnMI24uENq3HevAHoxMGr+0An/Rkgmn\nlxx1Wfr9r8H3v4ZXt+zlmkLOmry1iEREZltJyOSexTHuWRwj4wf89GR6fNm47pGpTxHK+PDjYyl+\nfCzFp5+GDTUhWhtitNZHWVFuY6iO0GVlsmXegmQPGDYEeWpVZYfxerbi9WzN9VFUj1W9AXvujVjl\nq2ZyuCIiIiIiIjOu0CGQCQy8Yjs19rn4pR2u6444jvM94CMoBBIReX22jb/8CvzlV5B5+wcgk8Y8\n1IE50At5HmyWHnHHv7a6DmF1HYKHvkdgmPiLG/Ga1uM1teCtaIZo0WzeiYjIBCHT4K0LI7x1YYQv\nXBPQfjZDWzxJWzzBvr48D+vPwbYzGbadyfCn2wZZXmbTWh+ltSHKlXPCmAqELlvhJe8nVHcvXn/7\neD2hIHE8b9tgNE52NI5hRRUCiYiIiIjIRa/QIdBxoOUV22fGPr/21dMQsLjA1xYRufSFwvgr1+JP\ncrgkvj/vfiPwsQ67WIdd2PwfBJaFv6QJr6mFzPW3Eyyon7kxi4icA8MwaKkJ01IT5g/Wl3F4MEtb\nPEFbPMmzp9P4U181joODWf52zzB/u2eYuTGTu+uitDbEeMuCCBFLgdDlxrBj2DUbsWs2AuAnTowH\nQl7fTvBevfyqVbVhQh+BnyV94KtYFWuxqtZNOvNIRERERETkQlHoEOgR4Bccx/lb4Iuu6x5zHOfQ\n2L6vu657xHGcGHAP0Fvga4uIXPYOfPCzlHQdoG7gFNa+HZjxAxjBxCenhudhHdyDdXAP3vJVeAqB\nROQCs6TM5pOrS/nk6lJ6Eh5bupJsjid57HiS5NRXjeN0wuff9o/yb/tHKbENbquNcnd9lNtqo1RE\nzMLfgFzwzNgCzNpNhGo3EfhZ/IEOvN4X8Hq34SdOYpZNrL3nD3aSPdZG9lgbYGKWrcCq2oBVvQGz\n1MEwVZNKREREREQuLIUOgf6UXMDzSeAB4Bjwz8BfAvscx+kAGoBK4BsFvraIyGXPj0QZXN5MuvHe\n3I6RIazOnVgdO7E6tmN1H35V+8Aw8VasmdCP2f0i4W//A96qXE0hf/EKsAr9K0NE5NzMiVl8cEUx\nH1xRzEjG59HjKdqOJtjSlaQ/PfUpQsPZgB8cSfCDIwlsA25cEKG1Psrd9TEWFush/uXIMG2symas\nymZY9lGCbCJvoOP1bnvFlo8/2Ik/2EnmyH1gl2BVtmBVb8CquhIzOmf2bkBERERERGQSBX2i57pu\nt+M4LcCvAC+tSfQlYCXwYWDd2L4fA79TyGuLiEgexaV4G27E23AjAMZgH2ZnO/a+7VidOwhiJVBU\nMuE0a+827L0vYO99AYAgWoTnrMFbtT4XCtUtA1PvnBeR2VccMnl7Q4y3N8TI+AFPn0rTdjS3bFz3\nyNSnCGUDeOx4iseOp/jMMwOsrwnRWh+jtSGKU25jqI7QZcmwY3n3B5lhMGwI8tSsyg7j9WzF69ma\n66OoHqt6A/b8W7FKl83kcEVERERERCZV8Ld1u657Avj8K7Z94GOO4/w+uVlAx1zX7S70dUVE5I0F\nZZV4V9+Ed/VNuR2pZN52VsfOV20byVHs9mew25/J9VNchrdyLV7T2EyhRYtBD0pFZJaFTIO3LIjw\nlgUR/vKagF29GdriSdqOJtjbl+ch/TnYfibD9jMZ/vf2QZaVWblAqD7KlXPCWKZ+zl3uIs4nCC/7\nGF5/+3g9oSBxPG/bYDROdjSOWbJEIZCIiIiIiLxpZm1tH9d1TwInZ+t6IiJyDiLRvLv96rn4lTWY\nfWfyHjdGBrG3PYW97alc+7JKUr/8v/Car56xoYqIvB7DMFhbHWZtdZjfX1fGkaEsbfEkm+MJnj6V\nxp/6qnEcGvT4uz3D/N2eYebGTO6qyy0Z99YFEaK2AqHLlWHHsGs2YtdsBMBPnBgPhLy+dvBGX9Xe\nqtowoQ8/dZbMi9/EqroSq2odRqh0VsYuIiIiIiKXn4KHQI7jlAAfB1rJLQNXCQRAL7AX+CHwL67r\npgp9bRERKYz0B3+D9Ad+HePUsVwtoY4dWB07MQf78rY3B/vwq+ZOPJBKYAwNENTMn+ERi4i82uJS\nm09cUcInrijhbNJjS1eStniSR48lSU591ThOJ3y+uX+Ub+4fpdg2uLU2Qmt9jNtro1REtDzm5cyM\nLcCs3USodhOBn8Uf6MgFQr3bIPAwI9UTzvF6t5M98RDZEw8BJmbZCqyqDVjVGzBLnbz1iERERERE\nRKajoCGQ4zh1wBPkln177dsjF4x93AL8muM4N7uue6qQ1xcRkQIyDIL5tWTn15J9289AEGAeOzIW\nCO3A6tyJMTIEgF9eSbCwYUIX1u4XiH3lD/HnLBhfOs5rWkdQWTPbdyMil7HqqMX7G4t5f2MxIxmf\nx46naIsn2dKVoC819SlCI9mAHx5J8sMjSWwDblgQobU+N0toUbEe3l/ODNPGqmzGqmyGZR8h8NN5\n23m9216x5eMPduIPdpI5ch/YJViVLVjVG7CqrsSMzpmVsYuIiIiIyKWp0DOBvggsBh4EvgLsJjcD\nyACqgLXAr5MLgr4AfKTA1xcRkZliGPi1S/Brl5C57V7wfcyuQ1gdO8D389YEsjp3AGD2nMDsOUHo\nyc0A+Avq8FauI7tqPd7KFiirmNVbEZHLV3HIZFNDjE0NMbJ+BU+fStMWT9AWT9I1PPUpQtkAHj+e\n4vHjKT77zADrakLjdYRWVtgYqpd2WTPMcP4DfhYMG4I8tauyw3g9W/F6tub6KKrHqt5AaOHdmMV1\nMzhaERERERG5FBU6BLoV2Oq67l15jg0DceBHjuP8FLi7wNcWEZHZZJr4DY34DY2TNrE6duQ/9UQX\n5okuQo/9DwBe7RK8pvV4TS14q9ZDrHhGhiwi8kq2aXDjggg3LojwF1cH7O7NjNURSrK7NzOtPnec\nybDjTIY/2z7I0lKL1oYYd9dHuXpOGMtUICQ50ebPEWQTeP3t4/WEgsTxvG2D0TjZ0Tj2nOsBhUAi\nIiIiIjI1hQ6BioEt59DuEaClwNcWEZELTOrDn84tHbdvO9bBvRjZ/A9Vre7DWN2H4eHvk/j0F/DW\nXjPLIxWRy51hGKypDrOmOsz/WlfG0aEsm+NJ2uIJfnoqjT/1VeN4ccjjK3uG+cqeYWqiJnfVRWlt\niHLTgihRW4HQ5c6wY9g1G7FrNgLgJ06MB0Je307wEi83toowy1ZO6MMbPED22I+wqq7EqlqHESqd\nreGLiIiIiMhFotAh0CHgXNb0KR9rKyIilzB/RTP+imYy93wI0imsg3vHQqEdmIc7MLxXL70UmCbe\niuYJ/RjHjxL6yUN4q9bhLV8Nkehs3YKIXKYaSm1+9YoSfvWKEs4mPR7sStIWT/LosRQJb+qJ0Jmk\nz7cOjPKtA6MU2wa3LIrQ2hDjjtooFRFzBu5ALjZmbAFm7SZCtZsI/Cz+QAde7wt4vdswovMwzIkv\n3bwzT5M98RDZEw8BJmbZCqyqDVjVGzBLHQxTNapERERERC53hQ6Bvgr8ruM4f+66bn++Bo7jlAGb\ngL8u8LVFRORCFo7grVqfW+7tnUByFGv/bqyOnVgd2zGPHMBf2gSxogmn2rueJXz/fXD/fQR2CH/Z\nKrymFrJN6/CXrYLQJDUXREQKoDpq8fONxfx8YzGjWZ/HjqVoiyfZ0pWkN+VPub+RbMD/HE3yP0eT\n2AZcPz9Ca32Uu+uj1JYU+s9zuRgZpo1V2YxV2QzLPkrg569X5fVue8WWjz/YiT/YSebIfWCXYFW2\nYFVvwKq6EjM6Z3YGLyIiIiIiF5TzepXpOE79a3bdD6wGdjiO8/fA08BpwAdqgKuBXwceBL51PtcW\nEZGLXLQIb801eGvGln4bGcIY7Mvb1Nq3ffxrI5vBctux3HbC//1NglAYr3F1LmBqWoe/2AFbD1FF\nZGYU2SatDTFaG2Jk/YBnTqdpO5qgLZ4kPpz/Qf3ryQbwxIkUT5xI8TvPDtBSHaK1PkprQ4ymChvD\n0LJxQt4ZPYHvgVUEhg1BduJJ2WG8nq14PVtzfRTVY1VvIFR3rwIhEREREZHLyPk+JTsC5FsPwwC+\n+DrnLQN+uQDXFxGRS0VxKUFxnloGQYAxPDDpaUYmjb1vO/ZYUBREY3gr1pB+1y/iNzTO1GhFRLBN\ngxvmR7hhfoQ/vzpgb1+WtniCtqNJdvXmr4H2RnaezbDzbIb/s2OIJaUWrfUxWhuiXD0njGUqEJKX\nGaZFbN1fEGQTeP3t4/WEgsTxvO2D0TjZ0Tih+nfO8khFREREROTNdL4hTJz8IZCIiEhhGAaJP/oq\nRv/ZsaXjduSWjzud/yGXkUxg73qW1Pt+beJBLwuGCabqb4hIYRmGweqqEKurQvxuSxnx4Syb40na\njib46ak00ygjxOEhj7/fO8zf7x2mJmpyZ12U1vooNy2MErMVCEmOYcewazZi12wEwE+cGA+EvL6d\n4CVeblu8GDNSM6GPbM9P8c48g1V1JVbVOoxQnjdliIiIiIjIRem8QiDXdRcXaBwiIiKvK6ioJnvt\nLWSvvQUA4+ypsUBoB9a+HZi9p8fb+hXVBAteu2IpWDt+SvTfvkx25Tq8pnV4TS25dlpuSUQKrL7E\n5uOrSvj4qhJ6kx4PdqfYHE/w42MpRrNTT4TOJH3+/cAo/35glCLb4JZFEVrrY9xRF6UyomBbXmbG\nFmDWbiJUu4nAz+IPdOD1voDXuw2rsiXvOdnTT+GdeozsiYcAE7NsBVbVBqyqdZhlKzFMLeAgIiIi\nInKx0l/zIiJyUQqq55G94U6yN9yZWzLu9PHxUCgoq8gb7Fj7tmMMDRB6/nFCzz8O5AKjXCCU+wjm\nLFAoJCIFVRW1eN/yIt63vIhENuDx40na4kkeiCc5m/Kn3N9oNuBHR5P86GgSy4Dr50dorY9yd32U\nuhL9eS8vM0wbq7IZq7IZln2UIJj4/y0IfLze7a/Y4+MPduIPdpI5ch9YRViVa7Gq1mFVbcCILVSt\nKhERERGRi8iMvEp0HKcBeDewFqgBfKAHeB74T9d1z87EdUVE5DJlGATzFpGdt4jsTZsmbWZ17Jyw\nz+w/i/n0I4SefgQAv2Ye3kszhVatI6iaO2PDFpHLT8w2uKs+xl31MTw/4NnTadriSdriCY4MeVPu\nzwvgyRMpnjyR4nefHWBtdYjW+iit9TFWVdp6WC+vYhh5Zo1lBjGLF+MP7IUgO/G4N4p35mm8M0/n\n+ojOxaraQHjZx7RsnIiIiIjIRaDgIZDjOL8N/PlY36991flB4C8dx/lV13X/vdDXFhERmVQQkH3b\nJoJ9O7A6d2IkRvI2M8+cwty6hdDWLQAkfu9v8JrWzeZIReQyYZkG182PcN38CH92VRn7+rK0xRO0\nxZO0n81Mq8/2sxnaz2b48x1DNJRYtDbkAqGNc8NYpgIhmcgIVxBb/wWCbAKvv328nlCQyF97L0ie\nJnvqCcIrPjHLIxURERERkekoaAjkOM7bgb8ChoBvA8+RmwFkAnOA64CfA77hOM4h13WfLuT1RURE\nJmUYZG5/F5nb3wW+h3n0ANa+sZpC+3dhpJITTgksC2+JM7GrU8ewDu7FW9lCUK2ZQiJy/gzD4Iqq\nEFdUhfidljK6hrM8EM8tG7f1ZApv6mWEODrs8Q97R/iHvSNUR0zurI/SWh/lbQujxGwFQvJqhh3D\nrtmIXbMRAD9xEq93B17vNry+nZAdHm9rVa7NWycofeQ7+AP7sKrWY1Wtxyiq1Ww0EREREZE3WaFn\nAn0KOA1c7bpuPM/xrzuO80XgaeCzwL0Fvr6IiMgbMy38JSvxl6wk0/o+yGYxD3di7duO1bkT68Ae\njEwaf8lKiBZNON3e9hSR73wNAH/OQryVa/FWtuA1tRBUz5vtuxGRS1Bdic0vryrhl1eV0Jfyeag7\nSdvRBI8cSzGanXoidDblc9+BUe47MEqRbXDzwgitDTHuqI1QFbVm4A7kYmfG5mMuuovQorsIAg9/\n6CBe73a83u1Y1VflPcc781P8QRfv7LMAGJE544GQVdmCES6fzVsQEREREREKHwKtB74zSQAEgOu6\nruM43wd+psDXFhERmR7bxm9cjd+4msw9H4J0CuvQPvDz1+ewOl+uLWT2HMfsOU7oqQcA8OcsyAVC\nY8FQUDN/Vm5BRC5dlRGTn1tWxM8tKyKRDXjiRJK2o0ke6EpyJulPub/RbMD98ST3x5NYBlw3L0xr\nQ4y766PUl8xIyVC5yBmGhVXmYJU5sPh9edsEmSH8wQOv3pfqIXviQbInHgQMzNLl46GQWb4KwwzN\nwv/YymgAACAASURBVOhFRERERC5vhX6VVwqcPId2caCiwNcWEREpjHBk8jpAvo952J30VLPnBGbP\niZdDoZr5eCtbSL/9/QTz62ZitCJyGYnZBnfWxbizLobnBzzXk6btaJK2eILDQ/mD69fjBfDUyTRP\nnUzze88O0FwVorU+SmtDjNWVtpbyknMWZEew5t6A17sDskP5WuAPHcAfOkDm6HfAjGBVriHS/EcK\ng0REREREZlChQ6CzwMTiCRMtG2srIiJycTFNRr/8n5gvdmB17MwtH3doL0YmfxF388xJzK1bSL/9\nAxMP+j6Y5gwPWEQuVZZpcO28CNfOi/C/ryqjoz/L5nguENpxJv/PpDeyuzfD7t4Mf7lziPoSizvr\notxdH+W6eRHClgIhmZwZm0909e+PLR13aGzpuG34Ax0QZCee4Kfwkz15A6Ag8DAMLVMoIiIiIlII\nhQ6BtgL3Oo5zk+u6j+dr4DjOTcB7gB8V+NoiIiKzIxzBX9mCv7KFDEA6hfliZy4Q6tyJdXDPq0Ih\nv6KGYN6iCd1YLzxJ5DtfHVs+LvcRzFkwe/chIpcMwzBYVRliVWWIz6wtpXs4ywNdSdriSbaeSDGN\nMkLEhz3+qWOEf+oYoSxkcPOiKHfWRbm9NlL4G5BLRm7puBVYZStg8XsJsgm8/l14vTvwercTjL68\ncrhVtT5vH6l9XyIYiWNVbcgtHVexCsMMz9YtiIiIiIhcUgodAv0FuVo/jziO8yjwNHAaMIC5wPXA\nW4E08OfncyHHcaqAPwbeASwAzgCbgT90XffEFPuKAu3ACuBtkwVYIiIieYUj+CvX4q9cS4YPvxwK\nue1YnTtzdYHyLKlkde7EPHMKc+uDhLY+CIBfPe/lUKipZdJzRUReT22JzS81lfBLTSX0p3we6s7N\nEHqkO8XINBKhwUzAfx9J8N9HEpgGrC2NcGOVxwfmZGgs17JxMjnDjmHXXINdcw0AfrJnLBDaNr7v\nlYLAx+vdDpkB/OFDZOL/L7d0XEXzeD0ho7hB/+dERERERM5RQUMg13V3OI7zTuBfgVuBW15x+KW/\n0o8BH3Vdt32613EcJwY8DqwE/h54AWgEPgPc7DjOBtd1+6bQ5R+SC4BERETO3ytDoXs+NGkzq2Pn\nhH3m2VOYP3mQ0E9eGwqtfXmmkB58icgUVERM3rOsiPcsKyKZDXjiRIq2eIIH4kl6kv6U+/MD2DFo\nsWPQ4u+OnGZpqcWd9VHurItx7bwwIVM/o2RyZnQO5sLbCS28Pe9xf/gwZAZeszOF1/sCXu8LABjh\nqvFAyKpahxGunOlhi4iIiIhctAo9EwjXddscx6kH7gSuBOYAAbkZQc8DW1zXzbMo9JT8JtAMfMJ1\n3X94aafjOO3AD8iFOp8+l44cx2kGPgvsACapAi4iIlJgvk92480EnTuxDu7FSKfyNnttKJT4vb/B\na9KvKxGZnqhtcEddlDvqonjXBjzfk2ZzPMn9RxO8OORNq88Xhzz+Ye8I/7B3hPKwwW21uWXjbl0U\npSKiumcyNYYVw6772dzScSNH87YJ0r1kTz5C9uQjAJgVzcTW/9VsDlNERERE5KJR0BDIcZxFwLDr\nugPAD8c+ZsKHgBHg66/Z/0OgG/iA4zi/7bru66514TiOCfwzcBT4R+BrMzBWERGRiUyTzD0fys0U\nyqQxD3dideaWj7MO7MkbCgWWjbe0acJ+42QXlrsrN1No7kLNFBKRc2KZBhvnRdg4L8KfXFmGO5Cl\n7WiS++MJdpzJvHEHeQykA773YoLvvZjAMuDaeWHuqo9xV12UpWUFf/+ZXILMooVEGn8FAD91ZryW\nkNe7AzL9ec8x7NK8+/3UGYxQJYZpzdh4RUREREQudEYQTKNK7CQcx0kAf+K67l8WrNOJ1ygDBoCn\nXNd9S57j3wfuBZa5rvviG/T168Dfklu6rg74BtOsCTQwMJD3H/LAgQNT7UpERC5zhpel6PgRSo66\nlBzdT3H3QaxMmuHa5Rz4yO9OaD/3pw+w6NH/AiBdWsFw/YrcR8MKUtWqKSQiU9eTMniqz+SpszbP\nD5ik/PP/ObI45nNjlceNVR7NZT62fjTJVAQ+duY4kWQn0WQn4dQhDHILTPRXvJvR0gkvDak59VfY\nmR5S0UZSEYdU1MGz5+r3ooiIiIhcNBobG/PuLy8vP+c/agv9drwDQG2B+3ythrHP3ZMcj499XgpM\nGgI5jlMH/B/gW67r/thxnI8UbIQiIiLnIbBsRuqWM1K3nFM3tGJ4WWInjmJ6+VdTLT26f/zr8FA/\nVXufo2rvcwBkikoZrm9kZCwUSsxdBIaWZxKR1zcnEnDvfI9753skPXiu3+LJXoutvRZnM9N7gH4k\nYXLkmMm3joUotwOur/S4sdpjY4VHiSYJyRsxTLLhWrLhWkbKbgU/TSR9iEiyk1QszyxZf5RQuguD\ngFhiF7HELgA8q2I8EEpFHXyrbLbvRERERERkVhX65davAv/pOM5+4P9zXTf/fP3z89Jc/9FJjo+8\npt1kvgqkgd8uxKAmM1lSJ2/spVlU+jcUOXf6vrmErZz4gAsA36fo7IlJTwuNDlHZuZ3Kzu0ABEUl\neCuaSb/7l/Frl8zESC86+r4ReWPNwC8AfhCw80yG+9qP81Svxf6R6YXKA1mDzT02m3tsQiZcPz/C\nXXW5WkINpUqE5FxdAfxM3iPZ01tJHZu4WIPl9VM0+ixFo88CYBQvxqpah1XZglXRjGEXzdho9ftG\nZOr0fSMydfq+EZm6S/37ptCvsD4BvAD8BfAlx3GOAr1Aviqzgeu61xf4+ufEcZz3Aq3Ax1zX7Xkz\nxiAiIlIQpsnol7+DecTF6tiJ5bZjHdiNkUzkbW6MDmPvfJrUB3594sGX6hCFIzM4YBG5mJmGwfo5\nYUobMny8IUN0wRIe7EqypSvJkydSpP2p95nx4fHjKR4/nuJ3nx1gVYXNnfW5QGhDTRjL1NJdMnVm\neRNh51O5mkJ9OyE7nLddMHKE7MgRsl0/wCxdTuyqv5/lkYqIiIiIzKxCh0Dvfc32srGPfKZbjGhw\n7HPxJMdLXtPuVRzHqSJXB+gJ13W/Mc0xiIiIXDhsG3/5FfjLryDz9veDl8WMH8Ryd2F1tmPt34Ux\nMjTe3K+aQ1Azf2I3254i8vUv4C9bheesxXPW4C2/AiKx2bwbEbmI1JXY/GJTCb/YVMJwxuex4yke\niCd5qDvJmeQ0EiFgX3+Wff3D/PWuYWqiJrfXRrmjLsrbFkYoC2s5Szk3ZqQac1EroUWtBIGHP/Qi\nXt8OvN4d+AN7wM9MPKdibd6+smeew4zOxShuwFA9IRERERG5yBQ6BHpbgfvL5zC5AGmy2kMv1Qw6\nMMnxvwIqgM87jvPKPirHPs8Z29/jum7qfAcrIiIy6ywbf8lK/CUrydz5HvB9zGNHsNx2zM52gorq\nvEWxLbcdI5PJBUed7QAEloW/2MFbuTYXDDWuhqKSCeeKiJSETN7eEOPtDTE8P2DbmTRbupJsiSfZ\n15+/ptkbOZP0+fbBUb59cJSQCdfOi3B7bYQ766IsLw8V+A7kUmUYFlZZI1ZZIzS8h8BL4Q/sG5sl\ntAN/6CAQYFWtm3BuEPikOr4MmQGMcCVm5brx5ePM6JzZvxkRERERkSkqaAjkuu4TL33tOM5iYCW5\nwCUJnAKOuq57/DyvMeI4zi5gveM4Udd1k6+4pgVcB3S5rhufpItbgDDw2CTH/9/Y57cBj5/PWEVE\nRC4IpolftxS/binc+rOTNrPcXRP2GZ6HdWgf1qF90PYfBIaJX788N0to5Vq8pnUKhURkAss0uHpu\nhKvnRvijDeUcGcrmAqGuJD85mSIzzWXjnjyR4skTKT73/CBLSy1ur4tyR22U6+ZHiFiaoSHnxrAi\nuSBnLPQJMoN4fe1YFasntPWHD0NmINcu3Yd36lG8U4/m+imqGwuE1mFVrsGwJ1usQkRERETkzVPw\nqquO4/wM8EUgbxUlx3Hagd91Xffh87jM14G/A36F3NJuL/kAMBf441dcbyWQcl338NiujwH5qn3e\nAvwm8PvA7rEPERGRy0MQkN70fqzOnVjuLsxT3XmbGYGPdXQ/1tH98ND3SPze3+SCIBGR17G41Obj\nq0r4+KoSBtM+jx5L8UBXgoe6k/SlprdK9ItDHl/bN8LX9o1QYhvctDDC7XVRbq+NMr/IKvAdyKXM\nCJVhz70x7zG/f+IbJF4SjHaRHe0i2/0/YJiYpStyoVD1VVjlq2ZquCIiIiIiU1LQEMhxnE3AfwEm\ncBJwgb6x7QpyM4NagM2O49x9HkHQ14D3A19yHKcBeAG4Avg0ufDmS69o2zE2jpUArus+OsnYa8a+\nfNp13cenOS4REZGLk2GQvf52stffntvsO4O1fxemuysXDB07MuGUwA7hLZv4kMs87BJ69Ie55eNW\nrs1bf0hELl9lYZN3LInxjiUxsn7Ac6fT47OE9g9Mb9m44WzA/fEk98dziwSsrQ5xe22UO+uirKsJ\nYaqOi0yTXXsPZsUa/LF6Ql7/HvDzrBoe+PiDnbmPkS6sZoVAIiIiInJhKPRMoD8AMsAHXdf93msP\nOo5jAO8FvkFuts60QiDXdTOO49wOfB54J/BJ4DTwL8Afu647Oq3Ri4iICABBZQ3Za26Ga27O7Rjq\nx9q/O1cvyN2FGT+Iv3QlhCMTzrX2PE/oyc2EntwMgF89L7d8nLMWb0UzwYL6vDWJROTyY5sG182P\ncN38CH96VTmHBrI80JVgS1eSp0+l8aY3SYj2sxnaz2b4q/Yh5kRNbq3NLRv3tkURysNmYW9CLmmG\nYWKVLsMqXUao/l0Efhp/oGOsntBO/MH9wKvXN7Qq1+btq6zv+3h2Nf5wCKO4AUO/C0VERERkFhhB\nMM1XVnk4jjMM/Lvruh9/g3b/BPy867qXTBGBgYGBwv1DCgAHDhwAoLEx78qCIpKHvm9k1owOYwz2\nE8yvnXAo+qXPYu9+ftJTg9JyvMbmXDDU2Izf0Ah2wVeoPWf6vhGZutn4vulP+fz4WJIHu5M80p2i\nNzWNQkKvYRtw7bzweC2hxnJbD+LlvASZYbz+XWOh0A6C0W5i1/wzZnHda9oNMfLUezAYe9kYqsCq\nXDv20YIRW6D/iyJ56O80kanT943I1F2M3zfl5eXn/MdjoZ+4ZIGuc2jXBaQLfG0RERGZLUUlBEWT\nvJfDsglCIYxMJu9hY2gAe/tW7O1bAQjCUZK/8Wd4q6+cqdGKyEWoImLyzqVFvHNpEZ4fsO1Mmoe6\nUmzpTrKnN//PlzeSDeCpk2meOpnmD58fZEmpxe21Ue6oi3L9/AgRSw/hZWqMUAn2nOuw51wHgJ/s\nwYjUTGjn9bW/HAABZPrxTj+Bd/qJXD+RublAqKoFs3ItZp4+RERERESmo9Ah0DZg9Tm0Ww08XeBr\ni4iIyAUg+Vt/AZk05uHO8eXjrAO7MVLJvO2NdBI/z4wiY7AP88AevMZmKKuY6WGLyAXMMg2unhvh\n6rkRPrehjGMjHg93J3mwK8kTJ1KMZqc3Kf/wkMc/dozwjx0jFNsGb10Y4c66KLfVRllQZBX4LuRy\nYEbn5N0fZIfxzGIsfyT/8dRpsicfJnsyt2K6UVSLveAOwg3vnrGxioiIiMjlodAh0O8DDzuO8/Ou\n6347XwPHcd4J3AbcXOBri4iIyIUiFMZfsQZ/xRoyAF4WM34Qy92NtX8X5v7dmEP9APhVcwlq5k/o\nwtr9PNF/+vNcmwX1eCvW4K3ILSMX1MxXXSGRy9iiYouPOMV8xCkmmQ3YejLFg91JHupKcnTYm1af\nI9mAzfEkm+O5wHpNVYjbaiPcWhvlqjlhbFM/c2T6Qgvv5MjwEuzMcWpL+/D62vH6d4OXv5xtMNoN\nmYH8x/wMhhmayeGKiIiIyCWk0CHQjcB/A99yHOfzwDPAaXKVMmuAq4Em4LvAexzHec9rzg9c1/2D\nAo9JRERE3myWjb9kJf6SlWTufDcEAcbJLix3F/j5H9ha7q7xr80TccwTcUJP3A+AX1mDt2IN/orm\n3OfaJWCq2LvI5ShqG9xaG+XW2ihfvCZg/0CWB7tytYSeOZXGm2blzl29GXb1ZvjyrmHKwwY3L4xy\na22EWxdFmadZQjIdhkk2XEuo/m2E6u8l8D38of25QKhvJ/7APvBfXjXdrGyZ0EUQeIz+5IOYsQVY\nVS1YlS2YZU0YVng270RERERELiKFDoG+CASAASwf+8jn3WNtXisAFAKJiIhc6gyDYEE92QX1kzYx\nD+yZ/FjfGcxnH4VnHwUgKCrBa1xN+mc+iL/8ioIPV0QuDoZh4FSEcCpC/HpzKf0pn8eOJ9nSleSR\n7hRnU/60+h1IB/zgSIIfHEkAmiUkhWGYFlZ5E1Z5Eyx+L4GXxh/swOvbide3C6t84u8zf/hFyPTj\nZ/rxBzvIHPkPMMOY5auwKsdCodJGDFNBpYiIiIjkFDoE+lNgmu+1ExEREXlZ4nNfwTq4D2v/rtwS\nci92YmTzF4M3Roex258h3frzEw9ms5BOQlHJDI9YRC40FRGTn11SxM8uKcLzA7afyYwvG7erN//P\nk3OhWUIyEwwrjFW5Fqty7aRt/L72PDvT+H078ft25pZgtYqwKpqxKtdgVq7BLFmKYej/pYiIiMjl\nqqAhkOu6ny9kfyIiInIZKy7FW3sN3tprctvpFOYRd7yukHVgD0bi5QLbgR3CX+JM6MY8uIfYX34a\nv24pnrMGv3GsrlBF9WzdiYhcACzT4Kq5Ya6aG+Zz68s4PuLxcHdu2bgnjqcYyU7vvWyaJSSzySxb\nib1oE17fDoLRY/kbeaN4Z5/FO/ssAPb8W4ms+swsjlJERERELiSFngkkIiIiMjPCEfwVa/BXrCHD\n+8H3MLsPY7m7MA/sxvB9CEcmnGa5uzACHyt+ECt+EB7+LwD8OQvwGldTXT6XkbrlsGyZ6gqJXEYW\nFlt82Cnmw04xKS/gJydTbOlK8lB3kiND+WuVnQvNEpKZZFWsxqpYDYCf7MHra8fv24nXt5MgdSbv\nOWZ5U979mRMPY5YswyxZjGHo95+IiIjIpUohkIiIiFycTAu/fjl+/XK47d5Jm1n7d+c/vecEZs8J\nXqpKFPx7Md6yK/AaV5O9+iaC16lXJCKXlohlcPOiKDcvivKFIODgYJaHu1M80p3kJ6dSpKaZCWmW\nkMwkMzoHc8GtsOBWgiAgSJwYqyeUqylEph8Aq2LNhHODdD/pji/nNuxSrMpmrIq1WJVrMIobFAqJ\niIiIXEIUAomIiMglLXPbvfiLFufqCh09kJsxlIcxOoK9+zns3c8RzF1EViGQyGXJMAway0M0lof4\ntStKGMn4bD2Z5pHuJA8f0ywhuTAZhoFRtBCzaCGhRXfnQqHROF7/Poyi2gntvf5XvEEiO4TX81O8\nnp/mtkPl4zWFrIqXQiEFliIiIiIXK4VAIiIicknzWq7Fa7k2t5EcxTq0D3P/HqwDe7AO7cVIJiae\ns2L1hH3GqW5iX/xtvMZmvMbV+I2r8WuXgKkHtyKXsuKQyR11Ue6oixLM8CyhWxZFuHlRlGvmhglb\neugu02cYBkZxA2ZxQ97j3kDH5CdnBvB6tuL1bM1tj4VC9vy3Yc+5fgZGKyIiIiIzSSGQiIiIXD6i\nRXhXXIl3xZVkAHyP7p88TnH3Ieb3n8I6sAcCn6B63oRTrQN7MM+cwjxzitDTjwAQxIrxlq0aD4W8\nZU0QLZrdexKRWTMbs4T+ZvcwJbbBDQsi3LIowi2Loiwt08s2Kazw8l8ktOA2vL52vP5deH27ITuU\nv/FYKGQWLQSFQCIiIiIXHb2aEBERkcuXaZGYX09ifj2VjY25fSP5H4JZ+/dM2GckRrD3PI+953kA\nAtPEr1uOt2IsFFrZQlBeNWPDF5E310zNEhrOBmzpSrKlKwkMsLjU4pZFUW5eGOHGBRHKwqrXIufH\nMEyMkiWYJUsI1b2DIPDxh4/g9+8aC4Z2Q3b4VeeYFWsn9BP4HonnfgWzZFlu+bjKtRixRVo+TkRE\nROQCohBIRERE5JWKS/Pu9pY4GGdPYR3ci5EczdvG8H2so/uxju6Hh/+L1Ht+hUzr+2ZytCJygZjJ\nWUJHhjy+3jnC1ztHsA24am6YWxZFuWVRhLXVIUw9cJfzZBgmVulSrNKlY6GQhz98GL9vV26m0EAH\nVvmqCef5w4cIRrvxRrvxTj+R6ytchVnRPFZXqBmjqF6hkIiIiMibSCGQ/P/s3Xl8VPXd9//XOWeW\nZDKZ7HsCZGMCQURBQUUEd7lstVXbate7tdI+1Fbb+6rX1f4uvbR3W+vD23pbu7dWu7mUgrtcuACi\nKG7sxEkICWTf92S2c87vj5NMGGaCCgnr5/l4zCPJd77nm3PGjCTznu/nI4QQQoiPIbzsU4SXfQoM\nHbWxDrVmtK9QzQ7Uzra4x+jlsb2FCIyQ8NCdGGWz0ctGS8i53FN89kKIo22qdgmFTXirLchbbUH+\nzweQ4VRZVuDkwnyrn1CuS/qUiSOnKBpachlachn2aZ/FNM24QY7Ruz1mzAx2o7dviIRCVk+hSrTU\nuaipc1DdxSiK/JwKIYQQQhwtEgIJIYQQQnwSqoYxrQxjWhnhi64GQOnusHoGjYVC+/dY82bMjDlc\nq62yyseNlZBTFIz86Rhlc9DLKtHLZmPmFoEq5Z6EOFlM5S6hroDByr0jrNw7AkBlmi2yS2hRjhOn\nJjswxJGbaCePkpiHlnEWeu8u0OPvkrV6Cm1C79gEgC3vUpyzvjdVpyqEEEIIIQ4iIZAQQgghxBEy\n07MIL1wGC5dZA/5h1Jb94HDGzFVronsLKaaJ1lSP1lSPfcPz1npJyeils9HLKjHKKtFLZkGia8qv\nQwhxdBy8S6i2P8yrTQFeaw7wRkuAobB52Gvv6gmzq2eQh3YO4rIpLM51cOFoKFTmsUlZLjGpbFnn\nYcs6D9PQMQb3oPdsx+jdgd67c8JQSPXMijseanwW1V2C6pmJojqm8rSFEEIIIU4pEgIJIYQQQky2\nBBdGcUX8++wOjKw81I6WCQ9Xhgawbd+MbftmAIKXXEPwS7dOxZkKIY4xRVEoS7FTlmJnxWw3Ad1k\nc3uQ15r8vNoUYEd36LDXHg6brG0MsLYxAECRW4uUjVuS5yTNKTsOxeRQVA3N40XzeGH6deM9hXp3\noI+FQqF+ALTU2FKpZrCHYPWvrS9UO6qnwuoplHoaasosFC3haF6OEEIIIcRJRUIgIYQQQoijKLT8\nC4SWfwGltwt1z2602l1oe3ah1vlQQsG4xxjllbGDponzNz/GKCqxdgsVeyFBdgsJcaJzagpL8pws\nyXPy3wugbVhnXXOA15r8vNYcoNNvHPbaDYM6j1UP81j1MAowL9POsnwnS/MTWJjtkNJxYtJE9RQq\n+gymaWAO7Ufvq0JxFcbM13t3jH9hhDB6d2D07iAEoGioyTOtQCh1DlpqJYot6ahdixBCCCHEiU5C\nICGEEEKIY8BMzUBfcD76gvOtgXAIdd8etNpdqHt2oe3ZjdrVBoBeFhsCKW1N2De/Bptfs9ZT1PFA\naKy3UHYBSOknIU5oOS6NL5S5+EKZC8M02d4V4rXmAK82+dncFuRwK8eZwJbOEFs6QzywfZBETeHc\nXAdL85wsLUigMs2GKv//EJNEUVQU9wxU94y49xsDeyc+2NQx+qsw+qtg/1OAippcgi3vMuyFn5qS\n8xVCCCGEOJlICCSEEEIIcTyw2TFKZ2GUzoJLrwVA6elErfsQMz07Zrq25+DeQgba/j1o+/dgf+0Z\nAIzk1NFQaLS/UHEFOKWkjhAnKlVRmJfpYF6mg+/NTWYgZLCxJcBrTVYoVDegH/baI7rJq00BXm0K\nwHv9ZCWoXJDvZGm+k6V5Tgrd8qejmDqO0q9hy78CfXQHkN67E3OkaYLZBsbAHsyMs+Leawb7UBwp\nU3auQgghhBAnGvlNXgghhBDiOGWmZaKnLY5/ZziMkZ6F2t0x4fHqQC/qljexbXnTOmTBEvy33jMV\npyqEOAaS7SrLpyWyfFoiAHX9YV4d7SW0sSXA4OFuEwI6/AYr946wcu8IAOUptkggtDjPSYpD+gmJ\nyaUm5qAm5kDexQAYgS6M3p2jPYV2YA7ti5qvpZ4Ws4ZphBne9BUURwpqSiVa6hy0lEqUpGkoivzM\nCiGEEOLUJCGQEEIIIcQJKLz0SsJLr0Tpbrd6C+3ZhbZnJ2p9DYoejnuMXjo77rjjLw9ipqRjlMxC\nL6mApOSpPHUhxBQp9ti40ePmxllugrrJOx1Bq5dQU4CtXaEjWrumL0xNX5g/VA2hKTA/08HSAifL\n8p0syHJgV6V0nJhcqjMDNecCbDkXAGAGe9H7dqH37MDo24XqmRVzjDGwB4wApr8d3d+O3rbOusOW\njJY6GzXF6imkJpejqPajeTlCCCGEEMeMhEBCCCGEECcwMz0b/exs9LOXWgPBAOq+mtFQaBfqnt2o\nvZ0A6GVxQqCRYeyvPYtijjebN/KmoZfOQi+ZbZWoKywBm/zaKMSJxKEpLM51sjjXyZ3zodOvs64p\nwPqWAOubAjQNH37pON2EdzqCvNMR5L6tA7htCuflWYHQ0nwn3hQbivQTEpNMcaRiyzoPW9Z5E84x\n+nbFvyM8gN65Gb1zMyEA1YHq8aKlVKJlLEBLnTMl5yyEEEIIcTyQv+aFEEIIIU4mDidG+RyM8jnW\nC12midLdjrZnF8YMb8x0rd4XFQABqC37UVv2Y3/jfwAwHU6MGTPRS2ahl87GKJ2NmRHbp0gIcfzK\nTNC4rtTFdaUuTNNkT3+YdU0B1jUHeKM1wEDo8EvHDYZN/qfBz/80+AHIc6lckOfkgvwEluQ5KUjS\nJusyhDgkLf0M7MVfwejbid5XBfpI/IlGEGO0/5AZ6JIQSAghhBAnNQmBhBBCCCFOZoqCmZFDOCMn\n/v3DgxiZOaidbRMvEQygVe9Aq94BgF4yi5G7fjMVZyuEOAoURaE8xU55ip2bZrsJGybvdwSt5ul9\nXwAAIABJREFUXULNAd5tD3IE7YRoGTZ4onaEJ2qtF+BLPRoX5FmB0OI8B5kJEgqJqaG6S3C4SwAw\nDR1jaC9G7y703p0Yfbswgz2xx6RWxl1rZMt/oDozUVMr0VLmoLgKZYebEEIIIU5IEgIJIYQQQpzC\n9PnnMzz/fJTeLtS9VWi1VdbHvVUo/vjvoNZLY/swADj+9hBKMIBeMgujdDZGwXRQ5cVeIY53NlVh\nYY6ThTlO7pgHAyGDN1sDrGsKsKElwIe98fuMfVy1/Tq1/UM84hsCYE66nSV5DpbkOTk3x4nHoU7G\nZQgRRVE1tORytORy7EVXY5om5kgLet9OKxjq24k53ISWEhsCGYEujJ6tGACtr1iD9hSrfFxqJWrq\nHFR3KYoqL6kIIYQQ4vgnv7EIIYQQQgjM1Az0Mxejn7nYGjB01OZ9qLVVaLW7UWurUJvqUUwDozRO\nbyHTxP7WKyiD/dg3vGANJSSiF1dglMxCL7WCITM14yhelRDicCTbVS4vSuTyokQAmod01jf7Wd8S\nYENzgLYR4yNWOLSd3SF2dof49a4hNAXOzLSzJM/JkjwnZ2c7SbTJbgsx+RRFQXHlo7ryIe9SAGtn\nkD01Zm7c3kKhPvTOTeidm6yvVSeqZyZaymzUlNloKbNQ7J6pvAQhhBBCiMMiIZAQQgghhIilahiF\nJRiFJYQv+DdrbGQYrd6HXlgcM11pb0IZ7I8e849gq9oCVVsiY0Z6NkbprNFwqAK9Yh5IeR0hjmv5\nSRo3lCdxQ3kSpmlS1RtmXXOA9U1+3mwLMnwEteN0E97tCPFuR4j/u30QpwZnZzkiodCZWQ7sqvw/\nQkwNxZEW/w4tETVtHkZfFRiB+HOMQKSvEICadgaJZ/xsis5UCCGEEOLwSQgkhBBCCCE+nkQX+qwz\n4t6l+EfQZ56GWl+NEpzgBTNA7W5H7W7H9u4GjLRMhh9cOVVnK4SYAoqiMDvNzuw0OzdXugnqJu90\nBFnfHGB9s58POkMYR9BPKKDDxtYgG1uD/GTLAG6bwrm5Ds4fDYVOS7ejSnAsppgt4yxsGWdhGmGM\nwdpI+Ti9dxeE+uIeo6XE2SULBPc8AjYXWkolqqccRUuYylMXQgghhIghIZAQQgghhDhixvRyRn70\nSwiHUZvqUGt3o9XutnoMteyPf0zJBL2F/vIgWu1uq4xccQVGiRcjX/oLCXE8cmgKi3OdLM518v+d\n6aE3YPBGa4DXWwJsbAlQdYT9hAbDJmsbA6xttMLlNKfC+blWIHR+npOZKTYUCYXEFFFUG5rHi+bx\nYuezo32FmtB7d2L07Ubvq8IcbgBAjRMCmUaIUOPTYAQJASgaqrsUNbUSLWUWaspsVGfm0b0oIYQQ\nQpxyJAQSQgghhBCTx2bDmF6OMb2c8IVXWWNDA2h1PisY2luFuvdD1P4e9OKKuEtoNTvQ9tei1Vdj\n5xkATGcCxgwverHXCodKKjAzc6WUnBDHmVSnypXTE7lyutVPqG1YZ+NoKPR6S4D6Af2I1u8JmDy7\nz8+z+/wAZCeqnJfjZHGeg8W5EgqJqWX1FSpEdRVC/uUAmKF+9L6quDuBjIFaMILjA6aOMVCNMVBN\nuGG1taYzGzV19mhvoVmoSSUo8qYHIYQQQkwiCYGEEEIIIcTUSkpGn7MAfc4C653QponS3Q42e+zc\ngB+1sS5mWAn40Xzb0HzbImNmcgr6DCsUCl5+HbjcU3cNQojDkuPSuLbExbUlLgD2DYQju4Q2tARo\nGzGOaP32EYPV9SOsrh8BICtB5bxcJ4tzHSzOc+KVUEhMMcXuwZa5MO59ZqgPxZmJGeic8Hgz0I7e\n1o7eth4ANbmMxLMenopTFUIIIcQpSkIgIYQQQghxdCkKZkZO/PuCfkLLPm3tHNq/ByUcmniZgT5s\nO97B3P0BwU99MXbCYD9oGiQmTdKJCyGO1PRkG19OtvHlmUmYpkl1XziyS2hjS4De4BE0FAI6/AZP\n14/w9GgolJmgsjjXyXm51k6hilQJhcTRY8tciJZxNmagw+or1F+F0bcbY2AvED8AVd0lccdDTS+C\noqJ5KlCSpqEo6hSeuRBCCCFOJhICCSGEEEKI40dyKsGv3GZ9Hg6hNuxFrfsQbe+HqHUfojbtQzGj\nXzgzikrA7ohZyv7q0zhW/xkzt2i0t1AF+oyZGNPKwCmNuYU41hRFwZtqx5tq55uz3OiGyY7uEBtH\nQ6FNbUGGwkcWCnXGCYXGAiEJhcTRoCgKSkI2am42ttxlAJjhEYx+H3rfbqu3UH8VhIeA+L2FAEL7\nnsD0t1tfaC5Uj9fqK+SpQEupQLF7jsr1CCGEEOLEIyGQEEIIIYQ4PtnsGMVejGLveH8h/zDqvj1W\nb6G6D9H2+jBKZsU9XNv7IYpporTsR23ZD5vWAmAqKkbBdIwZM60+QxIMCXFc0FSFeZkO5mU6uPW0\nZIK6yQedwchOoXfagwSPrHocnX6DZ+r9PFNv9RTKcB4QCuVZoZAqoZCYYootES19Hlr6PABM08Ac\n2o/etxstfX7MfCPQNR4AAejDGD1bMHq2jK+ZWICWUoHqmYWaUoGaVCy9hYQQQggBSAgkhBBCCCFO\nJAkuDO9cDO/c8TEjTqN500St+zDuEoppoDXWoTXWwRv/Y00fDYYCN/4HRrF3Ks5cCPEJOTSFRTlO\nFuU4+cE8GA4bvNNuhUJvtAT5oDPIEW4Uoitg8Ow+P8/uGw+Fzh0Nhc7LdTI7TUIhMfUURUVxz0B1\nz4h7vzncBKoTjMCEa5gjTYRHmqD1VWtNRwaJ5/1NdroJIYQQQkIgIYQQQghxgov3TmfTJPCV2yJl\n5LQ6H8rI0IRLjAVDpic19r7OVmxbNqEXezGKSmXHkBDHiMumsjQ/gaX51nNwMGSFQm+0BnizNcj7\nHZMTCj23z89zo6FQqkNhYY6T83IcnJPjZF6mHbsqL6qLo0tLm4tryb8whuow+j5E76vC6P8Qc6R5\nwmNU9/S4AVC49TXMUB+qpwI1uRRFjS2nKoQQQoiTi4RAQgghhBDi5KOq6AuWoC9YYn1tGCjtTWh1\n1aj1PtT6arT6ahT/cOQQMzkFMz07Zilt9xacf3vImqOqGPkzrFJyxQeUknM4j8plCSHGue0qFxYk\ncGGBFQoNHRAKvTFJoVBv0OR/Gvz8T4MVCrlsCguyHJyT4+DcHCdnZdtx2dQjvRQhPpKi2tCSy9GS\ny7EXfgoAM9iH3v8hRv9YMFQNuvXvmuqJXyo11PQ8Rt/u0UXtqMmlqCmz0DwVqCmzUJxZsntICCGE\nOMlICCSEEEIIIU5+qoqZW0Q4twjOucgaOygYQtUgzgtfar0v8rliGGiNe9Ea98Iba4ADgqFiL8aM\nmRIMCXGMJNlVlhUksOyAUOjdjiBvtFjB0PudQUJH2FNoOGxGehTBADYF5mXaOTfHyTmju4VSnRIK\niaNDcaRgy1wImQsBME0dc6gBvb8KzRNb2tQ0QhgDew4YCGGMhkjhyJrpqB4vqseL5pmJmjwTxe4+\nClcjhBBCiKkiIZAQQgghhDg1xQuG4k1r2X/IZaKCoY0vARD44i2ELr12Uk9XCPHJJNmjy8dNRSgU\nNuG9jhDvdYR4aCcowKw0G+fmODk3x8E5uU7yXHFKVgoxBRRFO3RvIX/7aG+h4IRrmMFu9M630Dvf\nIgSAimvJv1BsiVNxykIIIYQ4CiQEEkIIIYQQ4hD8/37/6I6hsTJyPtT6mqhScgfTZ8yMHRzsx/Xj\nm9Gnl2FMn4kxvRx9ehkkx/YhEkJMvoNDoeGwwbvtQTa2BnmzNcB7HUceCpnA7p4wu3vC/PFDqw9Z\ncbLGOTlOStE4I8WgzDSl3JY4JlRXAa7zn8IcaULvs3YAGX1VGEN1YMb/4VdchXEDoHDbevTenaM7\nhrzWPEV2wQkhhBDHIwmBhBBCCCGEOJSoHUMXW2OGgdLWiFZfjVrnsz7uq0bxj2AqqlUO7iDavhrU\n1gbU1gbYvC4ybqRnY0wvx5hehj4aDpnpWXFL0wkhJo/LpnJBfgIXHBQKvdFq7RT6oDNIQD/y71M3\noFM3MAxYJSJzdrdyzmj5uIXZDuak27Gp8nwXR4eiKCiuQlRXIeRZ/6aZuh+jv9rqKzTgw+ivxgx0\nAqB54rypAQh3vIXevgGanrcGNBeqZybaaCk51eNFdWYclWsSQgghxKFJCCSEEEIIIcQnpaqYedMI\n502LDobGQp4EV+wh+2riL9XdjtrdDlvejIyZbg/69HLCZy8jvPTKKbkEIUS0g0Mhf9hkS1eQTa1B\n3moLsLk9yEDIPOLv0zZi8HT9CE/XjwCQZFNYkOXg7GwHi3IcLMhykOKQHRXi6FG0BLS0uWhpcyNj\nRqALo78axRF/t6rRXx09oA9j9GzF6Nk6vq4zE9UzEzXZ2i2kpsxC0aRfnhBCCHG0SQgkhBBCCCHE\nZFBVzPzp6PnT495tZmQTPu0s1Poa1IHeQy6lDPZj2/V+3B1FANrWtzDTMjEKZoDNfqRnLoSII8Gm\njO7YcQLJ6IbJju4Qb7VZodCmtiCd/iOsHwcMhU02tATY0BIArL5Cs9NsLMpxsjDb2i00za1JCTlx\nVKnODNSsc+LeZ+pBFIfH2i1khiZcwwx0ond0ondsIgQkLvw9StK0KTpjIYQQQkxEQiAhhBBCCCGO\ngvDCCwkvvBBME6WnE3V/DWp9jVUmbn8NamdbzDHG9PLYhQyDhN/8GMU/jKnZMAqLR8vJlaNPL8eY\nVgpOaeAtxGTTVIV5mQ7mZTr4dqUb0zTZ0x/mrTarp9BbbUH2Dx55/TgT2NUTZldPmD+N9hXKc6mc\nne1gYbaTRdkOTsuwY5cScuIYUTQHiQv+H6YRxBisw+i3Ssjp/T7M4Yb4B2kuFFdhzHC4/Q1C+55A\nTS5HTZ6J6ilDTZqBosobHIQQQojJIiGQEEIIIYQQR5OiYKZnoadnoc87l8h7qAf7rUBoXw3q/j1o\n9dXocUIgpaMZxT9sfa6H0fZZQdIYU1EwswvQp5VhTCsdvZVhpmcfhYsT4tShKArlKXbKU+x8ZWYS\nAI2D4dGdQkE2tQX4sDc8Kd+rZdjgmXo/z9T7AXDZFM7MtLMo28nCHAdnZTlIdUoJOXF0KaoDzWOV\nehtjhgYxBmrQR4Mho/9DzGA3qmcmihL7M2r0V2EM7MEY2AO8NLqwHdVdjOqZSeKwh5CjCNMoRlHl\nJSwhhBDicMi/oEIIIYQQQhwP3B70yvnolfMPOU2rj99baIximihtjahtjfDuegCM3CKGf/7X2Mmm\nCVJiSohJU+i2cZ3bxnWlVl+wLr/O221BNrUFWbevD9+gis6RP+eGwyZvtAZ5ozUIWCXkKlJtVvm4\nHGu30IxkKSEnjj7F7kZLPwMt/YzImBHohNBg3Pl6f5x/08wQxkA1xkA1aaNDwx2/QHWXoCaXYy+4\nAtVdMgVnL4QQQpycJAQSQgghhBDiBBKev5jhe/6Aum8P6v6xcnJ7UPwjEx6jT9BbyPnHe1Hra6zd\nQkWlGNPL0IvKwBO/EbgQ4pPJSND4t+mJ/Nv0RGrS2hnWoTu5iLfag2xuC/JeR5ChsHnE38cEqnrD\nVPWGebTa2imYlaCyIMvBWdnWTqEzMu247bJbSBx9qjMTnJlx79NSZoMZxhioBSMw8SJGEKP/Q4z+\nD7HF6VVkGkHMkTYUV0HcHUdCCCHEqUxCICGEEEIIIU4kNnukBxBcYY0ZBkp7M9q+atT9taj791gf\nezutu6eVxl1KrfOhNdWjNe4FXo6MG6kZVig0WlJOn1aGmVsIqjbFFyfEyc2lwekFCSwrSAAgbJjs\n6gmxuS3I5nbr1jh05H2FADr8Bi81+HmpwSohpyowO83O2VkOFmTZOSvbQZnHJruFxDHlKP0aAKah\nYw7vR++vGd0FVIMxuBeMUMwxanJsqVRjoBb/+7eDloiaXIaaXI6WXI7qKUdJzJdgSAghxClNQiAh\nhBBCCCFOdKqKmVtIOLcQFl44Pt7fi9awByMzL/aYYAC1ZX/85Xq7UHu7YMc7kTHT7sAoLMH/vZ9N\n9tkLccqyqQqnZzg4PcPBTbOtscbBcCQQ2tweZEd3COPINwthmLCzO8TO7hCP+KyxNKfCgszx3UJn\nZjlIcciL5eLoU1QNxV2M6i4GLgXANMLUV23EEdxPZmIfxkANpu5HsSfHHG8MjJaV00cwendg9O4g\n0pFLc6Eml1rhkLsULbkMxVWEIm9sEEIIcYqQEEgIIYQQQoiTlScVvXJB/PtCQUKXXIPaUIu2bw/K\nUP8hl1JCQdSmOky3B9o6o+5TP9yGbdd76EWlGIXFmDkFoMmfGkIcjkK3jUK3jWtKrL5CgyGD9zuC\nvD1aQu7djiADoUlIhYCegMnLTQFebrLKcI31FjqwjJw31YYqu4XEMaCoNsKOQsKOQpzl1u4f0zTi\nzjX6qydeSB+OBEMRqhNHyZexT7t2Mk9ZCCGEOC7JX2ZCCCGEEEKcipKSCd5ws/W5aaL0dESVktMa\nalHaGlHM8RebjYLiuCXhbNs343jhH5GvTbsdI38GRlEJRuHoragEMyUd5MVkIT4Rt13lgvwELsi3\nSsjphklVb5jN7QE2t1nh0P7BySkhd2Bvob/WWL2FPHaFM7OsQOis0VJy6Qmyg0IcGxOVdbNP+yyq\nx2uVkRuowRjaBxMERoDVf8jmiRk2TZNg9a9QXUXW7iF3CYrNNVmnL4QQQhwTEgIJIYQQQghxqlMU\nzPRs9PRs9HkHNNwOjKA27LV2C+2vxcjMjXu42rg3erlQCG1fDdq+mqhx0+0Z3S1UQviCf8MoKpn0\nSxHiZKepCnPS7cxJt/ONCmusZVgf7SsUYHN7kO1dIcKTs1mI/pDJ+uYA65sDkbFSj8b8TKt83JmZ\ndk5Ld5Bok4BXHDuquwTVPf5viqn7MQb3YvSPhkKDtTHBkJoc2y/PDHQSbnr+gBEFxVWA6rbKyWnJ\nZajJZXFL0gkhhBDHKwmBhBBCCCGEEPE5EzHKKjHKKsd7K8ShjAx/rOWUwX5sVVugagv66Yvg4BAo\n4Efb9raUlBPiE8pzaVxdnMjVxYkAjIRNtnUFebfdKh/3bkeQluFD7Ir4hGr7dWr7R3hq7wgANgUq\n0+2jwZD1cWaKDU2VYEgcG4qWgJYyGy1ldmTM1IMYQ3UYA7UYg7WoSdNijjMG9hw0YmION6IPN6K3\nbyA0tn5CNqq7DDW5FC11Dlra6VN3MUIIIcQRkr+qhBDHnbvvvpsXXniBp59+mvz8/GN9OkIIIYT4\nCCM/eghGhlAb61Ab96I27EUb/VwZGoh7TLxdQGpDLYm/+m8ATLtjtKRc8Wg5udF+Q1JSToiPlGhT\nWJTjZFGOMzLWOBjmvY6QFQq1B9naFSQ4SblQ2IRtXSG2dYV4xGeNuW0Kp2dagdD80R1DhUkaijx/\nxTGiaA40jxfN451wjhnqB80F+qHf3GD629H97eidmzAyF8YNgYxAN4o9BSVOGVUhhBDiaJIQSAhx\nWGpra3nnnXe4/vrrJ33t6667jsWLF5Oenj7pawshhBBiiiQmYZTPwSifMz5mmig9nVZJucbxm9Lf\nZ4U5B1Eb6yKfK6Eg2r5qtH3Rzb7N5BT0whKMghnWrWwOxrTYkj5CiGiFbhuFbltkt1BAN9nZHeKd\n9iDvje4WmqzeQgCDYZM3W4O82RqMjGUnqpyZ6WB+pn20lJyDNGf8Hi9CHAv2/Muw5V2COdKKMbAH\nY3APxsAe9IFaCPXFPUZ1l8UdD2z7L4zhBtSk6aPl5EpGy9YVo9iSpvIyhBBCiCgnbAjk9XrTgbuA\nq4E8oBN4Efgvn8/X8jGOXzx6/NlAAtAA/Av4sc/nG5yq8xbiZPHqq6/ywgsvTEkINHv2bGbPnv3R\nE4UQQghxfFMUzPQs9PQs9NMXjo8bRtzdPAf3Foq75EBfpKQcQPDizxD88nfjrFWHkZ4FLvfhn78Q\nJzGnpjA/y9qlM6Z1WOe9DisUeqc9yJbOECP6JDUXAtpHDNY0+FnT4I+MlSRrozuFHMzPkv5C4thT\nFBXFlY/qyoecJQCYpokZ6LR6Cw3ssUrKDezBDHSgJseGQKYRxhjaD2bI6kk0UAMHvFKlJORagVAk\nGCpBSciRnXJCCCGmxAkZAnm93kRgPVABPAy8B5QD/xu40Ov1zvf5fD2HOP6LwN8AH1YQ1A9cCfwA\nON/r9S72+XyTVzBZiJPQ7t27j/UpCCGEEOJEpcZ/53/wmhsJL7oItaF2vKRcQy3K8MTv0TIKi+OO\nJ957G8pAH0Z61uiuoeLx3UP5MyDRNRlXIsRJJdelceX0RK6cbu0WChkmu3tC472F2oPsHZi83UIA\newd09g6M8M/R/kKaAhWpNs7IdDAvw868TAdz0uwkSDAkjiFFUVASslATsiBzUWTcDPaB5oyZbw43\ngBmKGY/c729F97eid24aH7Sn4Fr8DxRFyscJIYSYXCdkCATcBpwG3Ozz+X49Nuj1ercBq4H/Ar4X\n70Cv1+sEfoO182ehz+cb28/7iNfrXY21s+hyrF1F4ijYvXs3f/nLX/jggw8YHBwkMzOTyspKLr/8\n8kg/mN/+9rc88sgj/PjHP+ayyy6LWeOaa66ho6ODNWvW4HK50HWdxx9/nBdffJH9+/djt9spLS3l\n2muv5fLLL48c9/777/Ptb3+bFStW4HA4+Pvf/868efO49957Adi3bx+PPvoomzdvpqenh7S0NLxe\nL9/85jdjdqp0dXXx0EMPsWnTJgKBAJWVlXznO99hw4YNPPLII/zmN79h/vz5kflbtmzhscceY8eO\nHQQCAbKzs1m6dClf+9rX8Hg8h3zMnn/+ee655x5+8IMf4Ha7eeyxx2hoaCApKYlly5Zxyy234HaP\nv+vVMAz++c9/8txzz7Fv3z4AioqKWL58OV/4whew2cb/V1BdXc2jjz7Kjh076OnpITk5mVmzZvHV\nr36V008/nebmZq6++urI/LPPPpszzzyT3/72twD4/X7+/Oc/88orr9Da2kpCQgIVFRV86Utf4pxz\nzom5hrvvvpuqqipefPFFPv3pT/Od73xnwp5Aa9as4Z///Ce1tbWEw2Hy8vK48MIL+drXvkZiYmLU\nOZ111ll86Utf4v7772doaIg1a9Yc8jEVQgghxHEg0YVRVolRVjk+ZpooPR2oDWP9hmpRm+pQW/aj\nhEIYBTNillH6e1AGrF/z1e4O1O4O2PFu1BwjMyc6GCooxiieuE+EEKciu6pweoaD0zMc3DjLGuv2\n62zpCvF+R5D3O0N80BGkwz9576HUTdjVE2ZXT5i/1VhjNgUq0uzMy7BzRqadeRkOKiUYEscBxZEy\nwXgaDu93MAb3jt7qQB855FqqMyNuABRqegG9d0dkx5DqLkF1Sul0IYQQH9+JGgJ9BRgC/nTQ+DNA\nI/Alr9f7fZ/PF2/fei6wCth8QAA05kWsEGguEgIdFdXV1axYsYLU1FS++tWvkpGRQWNjI0888QRv\nvfUW9957L+Xl5Vx66aU88sgjrFu3LiYEqq6upqGhgUsvvRSXy4VpmvzoRz9i/fr1XH755dxwww0M\nDw+zdu1a7rzzTpqamvjGN74RtcauXbtobm7mlltuIScnB4D29na++c1vYhgGX/ziF8nLy6Ojo4Mn\nn3ySG2+8kT/+8Y+RIEjXdb7zne9QU1PDlVdeybx589i7dy/f/e53mTt3bsx1r1+/nv/8z/+ktLSU\nm266iaSkJHbs2METTzzB22+/zSOPPEJCQsJHPn4bNmygoaGBa665hszMTDZu3MiqVatoa2vjF7/4\nRWTeT37yE5577jnOOeccrrrqKjRNY9OmTTz00ENUV1dzzz33ANDU1MSNN96Ix+Phc5/7HDk5OXR2\ndrJ69Wpuvvlmfv/731NSUsLPfvYz7rvvPgB+8IMfkJaWBkAoFOLmm2+murqaT3/601RWVtLb28uz\nzz7Lbbfdxl133cXy5cujruHll19mYGCA73//+xQVFU14rX/605/43e9+x5w5c1ixYgUul4utW7fy\n5z//ma1bt/Kb3/wG9YB3Ffv9fu677z4+//nPS28hIYQQ4kSmKJjp2ejp2dEl5fQwSkcLZnp2zCEH\n9haaiNrZhtrZBtveBsDIyGH4gSdjJw72gSMBHLHv9BbiVJSeoHFRgcZFBdbfK6Zp0jik80HnWDAU\nZGtniKHw5JWRC5uwszvEzu5QVDA0azQYmpdp54wMB7MlGBLHCcWRir1g/G9f0zSsPkORUKgWY6AO\nM9AemaO6S+KupXe/j96xCb1t/figPRXVXYzqnoGaNPZxGor20a8jCCGEOPWccCGQ1+v1YJWB2+jz\n+QIH3ufz+Uyv1/sO8FmgGIgpKu7z+fYBX5tg+bG3cPRP2gmLQ6qtraWyspKbbrqJM888MzKenp7O\nvffey+uvv86iRYsoKSmhrKyMTZs24ff7owKSV155BYArrrgCgI0bN/Laa69x66238uUvfzky75pr\nruGb3/wmf/rTn/jMZz4TFQy89dZbrFq1iry8vMjY3r17KSsr46qrrooKnsrKyvjud7/LqlWrIiHQ\n66+/Tk1NDcuXL+fOO++MzK2oqIj6GiAYDPLzn/+c8vJy/vCHP+B0Wi8oXHnllZSWlnL//fezatUq\nbrjhho98/LZu3cpTTz0VOe8rrriCnp4e3nzzTaqrq5k5cyY7d+7kueeeY9GiRTz44IORGsOf/exn\nuf3221mzZg2f+9znmDNnDhs2bMDv93PXXXdx0UUXRb7P5Zdfzp133kldXR2zZ8/moosu4qGHHgKI\nmrdq1Sp27NjBT3/6Uy6++OLI+NVXX83111/Pgw8+yKWXXhq182jnzp2sWrUqaufSwdrb2/njH/9I\naWkpv/vd77Db7QBcddVVJCYmsnLlSl599VUuueSSqHXvvvvuqJ1fQgghhDiJaDbM3PhvINGLShi5\n5W7UxjrUpnrr1taAok9cxirejiIA55O/w7bxJcysPIz86dYtbzpG/jSM/OnSc0ic8hTzsJHpAAAg\nAElEQVRFochto8ht46oZ1u583TDx9YV5v8PqK/R+Z5Bd3SEmMRcibMKO7hA7ukP89aBgaGy30LwM\nO5XpdpyaBEPi2IrqM5S9ODJuhgYiO4UUV/x/04yBOP3yQr0YPVswerYc+F1QEvNR3TNwlH7D+l5C\nCCEEJ2AIBEwf/dg4wf37Rz+WECcEmojX63UAXweGgacP++wOUlNTM1lLnZTKysr4/ve/D1iP1cjI\nCIZhYJrWXwednZ2Rx3DBggXs2bOHf/3rX5x99tmRNdasWYPH4yEjI4OamhpWrVoFQGlpKVu3bo36\nfnPmzGHnzp2sWbOGs846i8ZG68eopKSEwcHBqP9eGRkZ3H777ZFz8/v96LpOIGBlj7W1tZH5r776\nKgCnnXZa1BolJSVkZGTQ1dVFY2MjHo+HHTt20NXVxUUXXURVVVXU+RUVFaEoCq+//jpnnXXWhI9b\na2srAJWVlTHnPWfOHN5//33Wrl2LoiisXr0agEWLFrFnz56odRYsWMCbb77Js88+i9PppLu7G7B2\nGE2bNi1q7m233RZ5LMDa9XPg1wDPPvssiYmJZGZmxn3sX375ZdatW8eMGTMi1zBr1ixaWlqi5vb3\nWzlsfX09Q0NDvPLKK+i6zjnnnEN9fX3U3Hnz5rFy5UpefPFFZsyYERlXVZWCgoJT9jl4ql63EEdC\nnjdCfHLH9fMmNd+6zTkPAEUP4+xqI6GjmYSOZhI7m0lob8LZ045imnS5UmiOcz0za6uwmyZKezNq\nezNsfSvq/mByKoGMPPyZufgz8/Bn5jGcX4whO4fEBI7r580ksgOLFFiUBWSBX4fqIZVdAyq7BlV2\nD6g0+OP3BztcBwZDf2EYAJtiUuoyqXAbzHIbeN0GZS6DBGm7ckI5uZ83LqAS/ED3Qddp6qSTil0d\nRDMm7o83OhlzpAl9pIk622UYtqGoe7VwJwkj2wnb8wnZ8zG0Q5ehFye+k/t5I8TUOB6fN+Xl5Ue8\nxokYAiWPfhye4P6hg+Z9JK/XqwJ/AGYB3/f5fM2Hf3rikzBNk1deeYXXXnuNlpaWSLAwRj/g3ZqL\nFi3iySef5J133omEQPX19bS2tnLppZeiadZv8U1NTcB4aBFPV1dX1NdZWVlx57399tu89NJLNDQ0\nRMKfMYYxXve6o6MDIFJKboyiKJSWlkZ9v7Hze+qpp3jqqac+1vlNpLCwMGZsrDRbZ2cnAM3N1o9z\nvFJrYzuIxkKYc889l7Vr17JmzRq2bdvGGWecQWVlJbNnz8bhcHzk+TQ1NTEyMsJNN9004ZzOzs6o\nsCY7O7aEy8HGzi/e9Y5dw1ioNMbj8XysknpCCCGEODWYmg1/dgH+7IKocSUcIqGrFd0R5/cG0ySh\noyV2/ACOgV4cA70k14+/uafqprvwZ0f/3qIG/NhGBgmmpIMyuS98C3EiSNBgrsdgrmf876i+EFQN\njgdDuwY0ukOTu2snbCr4hhR8QyrPtFljKibTXSbeJMO6uQ1mJhmk2Cf1Wwtx5BSN7qybwTRRjX7s\nwSbsoUZsoRbsoWZsoVYUontyGUoihpYas5TDv4eU3tWRr3XVHQmErI95hO15mKq8iUEIIU42J2II\nNKm8Xm8i8A+sXkC/8vl8D0zm+pOR1J3Mfvvb3/Loo49SXFzMbbfdRmFhIQ6Hg7q6ukjPmbHHsLy8\nnLlz57J9+3amT5+Ow+Hg5ZdfBuD666+PzNN1HUVRePjhh6N6xBwoPz+fvLy8yI6TnJycmP9Wzzzz\nDL/85S/JyclhxYoVFBcXk5CQQH9/P3fccQeJiYmRY8YCqIqKCjIzM6PWyc3NBawAo7y8nNdffx2A\nr3zlK5xzzjlxz8/pdB7yZ8fn8wFQUFAQM6+npweApKQkysvLI49BRUVFTNiVmGiVa7DZbJF1/vrX\nv/LEE0+wdu1aXnzxRV588UWSkpL44he/yNe//vXIemMl2Q78/oFAgPT0dH7yk59MeO4zZswgIyMj\ncg1jj8uBPB5PZG5+fn4kgCorK4uZOxYUmqYZdZ/H4zkln39j71g4Fa9diMMlzxshPrmT73kzO/6w\nHib0te+hN9WhNu9Hbd6H0t6MYhrx5wOmolJ09nlgj34DjfbeRhIf/i9MRwJGXtFoWblpkRJzZk4B\n2OQV6JPZyfe8mRwLDvjcNE1ahg22dgXZ2hVia6f1sX1k4ufc4TBQqBtWqBtWWdMxPl7k1jgt3c7c\ndDtzM6yPBUlapKS2OPrkeXOwBVFfmUYIc7gRY7AeY6gOY7AeTUugfObMmCMDNa8R7hn/WjMG0QLV\nOAPVB8xSUBLzIr2GtMxFaB557E808rwR4pM72Z83J2IINNavJ2mC+90HzZuQ1+vNAp4FFgE/9vl8\nd37EIWIShcNhnnzySTweD7/73e9ITR1/p0owGIx7zKWXXsq2bdvYvHkz559/Pq+++irTpk2jsrIy\nMsflcmGaJqWlpVF9fz6pv//972iaxsMPP8z06dMj4/v27YuZOxZSHLxbCGBoKHoLdlKS9aPr8XiY\nP3/+YZ8fgN/vjxkbHLS2iI89nmNBz/Bw7Oa5kZGRqHMCSElJYcWKFaxYsYKGhgbeeOMNnnrqKX7/\n+9+jKArf+MY3Jjwfl8vF0NDQEV9XvHU/6hrG5gghhBBCTBrNRvi8S6PHQkHUtkaU0VAocmvdjxIK\nYWbnxQRAAGqL9TukEvSj7atB2xddasLUNMzsggP6Dk1DL5uNmRO7E1qIk5WiKOQnaeQnJbJ8mvV3\njGmaNA8bkUBo7GOHf3KDIYCGQZ2GQZ0X94//nZXuVCOB0NjHUo8NTZVgSBx7impHcRejuouBZYec\na44cemfr6CzMkWb0kWb0jk0ojpS4IVC4823UxAKUxHwUVWorCiHE8e5EDIHqABOY6K+hsVfrD1nA\nz+v15gAbgWLgf/l8vkcn6wTFx9Pb2xsJDA4MgAC2bNkS95iLL76YBx54gA0bNpCTk0NDQ0NM6bGS\nkhKqq6vZtm0by5ZF/xI0MDBAYmIiNttH/+g3NzeTnZ0dFQBNdG5jO2xaW1spKBgvMWKaJrt27Yo5\nP4Dt27fH/b69vb0xj8dEDu6PM3beB55TSUkJr7/+OrW1tTHXUldXBxBVnu1ARUVFXH/99VxxxRUs\nX76cdevWHTIEKikpYdu2bfh8Prxeb8x1paSkHNa76IqLiwGrD9OiRYviXsPYHCGEEEKIKWV3YBSW\nQGEJ+oHjho7S0YoyNBD3MLU59o1EB1J0HaVlP2rLfnh/IwCBa28k9KkvxczVdn+AkZGNmZkL2on4\nJ50QH5+iKBQkaRQkJfJv08eDoaYh3QqFDgiGOqcgGOoOGKxvDrC+efwNfy6bQmWajbkZjkg4NCvV\nToJNgiFx/HKedhdmoANjsG5051A9xmAd5nAjmOG4x6hJM2LGzGAfge3/PTrBjuoqREmajnrATUnM\nRVEkHBJCiOPFCfcXg8/nG/J6vduBM71eb4LP54u8Rcfr9WrAuUCDz+fbP9EaXq/XA6wBpgGf9vl8\nL031eYtYqampaJpGa2srpmlGwoE9e/awZs0aIHZHUFpaGmeddRZvv/12pJfMFVdcETXn4osvZs2a\nNTzxxBNccMEFkfJlpmly5513UlVVxcqVK3G73RxKeno6vb29+P3+SG+Ztra2SB+fA3f9zJ07l2ee\neYZXXnklahfMmjVrYnrVnHHGGaSnp/Pmm29SX18fFcC8/PLL3Hnnndx1111cfvnlh34AsXoWdXR0\nRJV5W7duHQDz5s0D4MILL+TRRx9l9erVLFu2LPI4m6bJ008/DRAJy372s5+xc+dOHnnkEZzO8TrA\nCQkJaJoW1RdIVdXILpwxF198Mdu2bePvf/8799xzT2Q8GAxy6623EgqF+Mc//jFhmb6JnH/++dx/\n//08++yzfO5zn4uUogNYvXp11DUIIYQQQhwTqoaZU4A5wd2hS67BKJlllZRr3ofasg+1r2eC2RYj\nb1rsYDBAwn3/G8U0MG12jOwCzLwijNwiq8xc3jSM3CJwS8NvcfJSFIVCt41Ct40rDwqGtnSF2NYZ\nYktXkK2dIboCkx8MDYdN3u0I8W7HeE9bTYGZKTYq0+3MSbNbH9Pt5CaqUk5OHBcURUFJyEZNyIbM\nhZFxq6RckxUODdVHSsuZ/vbRHUbRjKED3tRghDAG62CwLvqNEaoD1VWEkjQNNWk6mmcmWvqZU3dx\nQgghDumEC4FG/Ql4CFgB/L8Dxr8EZAN3jQ14vd4KIODz+eoOmPf/gHnAZyUAOnZsNhtLly7l1Vdf\n5c477+Tcc8+loaGBlStXcs8993D77beza9cunn/+ec4//3xSUlIAuOyyy7j77rtZtWoVp512WtTO\nG4AlS5awdOlS1q9fz80338zy5csJh8OsXbuW999/n69//esfGQCBFWj87W9/44477uCyyy6jo6OD\nJ598kttvv50HH3yQ6upq/vWvf7F48WIuueQSfv/737Nq1SoURWH27NnU1tby8ssvs2TJkkgfILB6\n6dxxxx388Ic/5Fvf+hY33HADmZmZVFVVsXr1aqZNm8bixYs/1mNYWVnJihUruOqqq8jKymLDhg3s\n2LGDiy66KBIuVVRUcO2117Jy5Uq+973vsWTJEnRdZ8OGDbz33nvccMMNlJaWArBgwQKefvppvvGN\nb7B8+XIyMjLo7+/npZdeIhAIcN1110W+d35+Pu+++y6/+MUvyM3N5frrr+ezn/0sa9asYc2aNQQC\nAS644AIGBwd57rnn8Pl8/PCHP/zEARBAZmYm3/rWt/jlL3/Jt7/9bS677DLsdjvvvvsuL7/8MsuW\nLfvYj5kQQgghxLFglFRglFREDw4NRJeUG7t1Wm8iMnOLYtZR25siPYmUcAituR6a62Pmmckpo8HQ\nNPQZMwlfdPVkX5IQx5UDg6FPHRAMNQ7pbOkMsa0ryPauENu7Q7RNco8hAN2Eqt4wVb1hVjL+Zrl0\np8qcdDuVaeMBUYXsGhLHEauk3AxU94yocTM8hGKL7cQQFQJNxAhiDNbCYC06YKTPjxsCGYN7QUtE\nSchBUT75awVCCCE+nhM1BPot8EXgfq/XOx14D6gEvgfsAO4/YG4V4AMqALxe71zgq8BuQPN6vdfG\nWb/D5/NtmLrTF2PuuOMOHA4Hmzdv5o033qCiooL77ruPefPm8ZnPfIbnn3+eX/7yl5x++umREGjp\n0qXce++9dHd3c+ONN8Zd96c//SmPP/44L774Ivfddx9glSr70Y9+xFVXXfWxzu2mm24iGAyyfv16\nfv7zn1NaWsp//Md/sGTJEkZGRnjooYf49a9/TXFxMTk5OTz88MM88MADvPDCC6xdu5a5c+fy8MMP\n8/jjjwNEhR/Lli3jV7/6FY899hiPPfYYw8PDZGVlcdVVV3HjjTd+rJAKYOHCheTn5/PYY49RX1+P\n2+3m85//PDfffHPUvH//939nxowZPP300zzwwAMoihL38bjkkktISkri8ccf57HHHqO/v5+kpCQq\nKip44IEHooKWFStW0NLSwsqVKykrK+P666/HbrdHruuVV17hjTfewG634/V6+fnPf35Eu3W+/OUv\nk5OTwxNPPMHDDz+MYRgUFRVx6623cv311x/2ukIIIYQQx0xSMkb5HIzyOdHjAT9qW6O1o+cgSkvD\nx1paGehDG+hDq9mJ2lQXNwTStmxC6evGyJ+GkTsNklNAdiyIk4iiKBS5bRS5bXx6RmJkvG1YZ0e3\nFQht7wqxvSvI3gH9ECsdvu6AwestAV5vGa8koSlQnmKjMs0+GhBZH/NcsmtIHD/iBUAAttwLUd0l\nGEP7IjdzaB9mcOLdrUrS9LjjgQ9/idFfBapztKzcNFRXEWpSkbWTyFWAotrjHiuEEOLjU0xzooIF\nx7fRkm7/DVwD5AHtwGrgLp/P133APBPw+Xy+sRDoa8CfP2L5DT6fb+knOZ++vr4T84E8jtXUWG2d\nystjmxCeSO644w7WrVvHk08+OWl9a55//nnuuecebr75Zr761a9Oypri5HCyPG+EOJrkeSPEJyfP\nm2NoeBBtXw1KawNqSwNqawNqy36rH5EZf3dD6LzLCNz0nzHjCf/3DmzbN0e+Nl1JGDlFGLmFmDkF\nGDmF1i23EJKSp+ySThXyvDm+9QcNdvWEIruFtneF+LA3RGjyNw1NKM2pRJWSk11D8rw5kZihgahg\nyBjaHwmHHBW3Y8+/LHq+aTL8+jWgD0+8qKKiJOahuqaNlpcrwpa9BEVzTnyMkOeNEIfhRHzepKSk\nfOxfEE7UnUD4fL5+rJ0/3/uIecpBXz8KPDplJyZOSe3t7TzwwAMUFRVF7cLp6upi8+bNpKWlMW1a\nnJruQgghhBBCfBIuN/qsM2DWGdHjoSBqW9MB4dD+SEhk5MXuKAJQD9pVpAwPodV9iFb3Ycxc0+3B\nyCnEf9MPMXMLJ+1yhDheeBwq5+Q4OSdn/MXloG5S1WsFQju6R29dIQbDU/Me0J6AycbWIBtbx3vj\nagqUeWzMTrMzK83GrDQ7s1PtzEjW0NRTNxwSxx/FnoyWOgctNXp3qxnqB0WLmW8GOg8dAAGYBuZw\nE/pwEzpvASq27AtiphkjLZgjbShJRSiOdNlRJ4QQBzlhQyAhjidZWVl0dXXx2muv0d3dzfz58xkY\nGOCpp55ieHiYW265BU2L/aVHCCGEEEKISWF3YBQWQ2FxdHNu0wQjTpmrcBilt+NjL68M9qMN7sZ0\nxZYtVqt34Hzqd6O7hoowcgswcwoxcgrAmRhnNSFODA5N4fQMB6dnOCJjhmlS16+zvTsYCYe2d4do\nn4I+Q2D1GvL1hfH1hVldPz6eoIE31c6s1LGAyPq8IEmTF8DFcUWxeyYYTyHhjPsO2DnUgDm8/9Bl\n5RJzUDRHzHi4bQOhvY9aX9iSrJJyriKrvNxYabnEXJQ4YZQQQpwKJAQ6jqX+uelYn8Ih9f6vgmN9\nCscNRVH4xS9+waOPPsq6detYu3YtmqZRVlbGt771LS655JJjfYpCCCGEEOJUpCigxfmzz2Zj6Lcv\norQ3WyXlWhtRWxtR2hpR2xpRezpjDjFdSVbfoIOojXvRanai1eyMuc9IzcTMLRgPiHJGA6LsfHBI\nOR9x4lEVhdIUG6UpNj5zQLXv9hGdXd0hdnaH2NljfazuC09ZOTm/Dtu6QmzrCgEjkXGPXYkEQrNG\nw6HZaTYyE+TFb3F8UTQHWtpctLS5UeNmaBBjuCESChlDDRjD+zFH2lBd8SusmMMH7GwND2H0f4jR\nf9CuVsWO4ipAdRWiugqx5SxFdc+Y5KsSQojjk4RAQkwSt9vNLbfcwi233DLl3+vKK6/kyiuvnPLv\nI4QQQgghTmI2O2b+dPT86cTsFQqMWOXl2hpRW5tQ2xpBVa1Q6SBq28RvXlN7O6G3E+3DbVHjweXX\nE/z8ipj5SvM+zLRMSIzfkFyI41V2okZ2gcaygoTIWFA3qekLs7MnFAmIdvWEaJuiXUMA/SGTze1B\nNrcHo8azEtRIODQ7zU5Fqo2KNDspDnXKzkWIw6HY3Wgps9BSZkWNm3oQ9KG4xxhD+z96YTOEOVSP\n/v+z9+ZxUlTn/v+7qvfZd2bYhwGUVYQLohhB0IiKAioaJUbzFVyvS0IiMSb606hcuV6juEbBgEpw\nxQiiRKIhKi7IYhQF2UEYmH2f3uv8/qjununpGphBlkGf9+tVrzp1zqlzTnU3dE996vM8DTsJA3pa\n3wQRSIUDBPf8PSIUdUHzFKDpic4jQRCE4w0RgQRBEARBEARBEIR4XB6M7r2he+9EgagFKiuXcFF/\n9JI9aPW1bRre6GQRVUApku6+Di3gQ6WmY+R1xsjrgorsjbzOqLzOqPQsSzFKEDoaTpvGgCwHA7Ic\nUNRUX+YN83XELWQKQyG+rQ4SOHLaEGU+g7J9fj7Y54+r75pso1+GnRMyHJyQYeeEDDt90x1kuEQc\nEjoWms0JFqHgAFwD78Ro2I2KOIiMiIOIUF2r4+lJid9DyruX4LbnmvdC83RCT+qKltQV3dMlUu6C\n5sqR0IuCIBw3iAgkCIIgCIIgCIIgHDLBc6YQPGeKedBQZ4aWK2kRXq5kD1pj0xPcRn7XhHG0mkq0\ngM8s19Vgq6vBtm1jQj/lcmPkmoKQ0aUngUumHZkLE4QjRK7HxhiPjTGdm1xDQSPiGqqMuIYi7qH9\nR9A1BLCnIcyehjAr9saLQ/kePU4YOiHDwQnpdnLcutz4Fjocuicf3ZMPjIjVKaUgWBMnCqnG3RiN\ne1D+CjRPQcI4RmNLZ6uB8u4j7N0HFZ/HN9nc6J4u2HJG4ux15eG/KEEQhMOIiEDCj4577rmHZcuW\n8fe//53OnTsftnHXrl3LDTfcwLRp07j22msP2Le4uJhJkyZx/vnnc/fdd1uuy6rP8caePXu46667\n2LRpEz169GDRokXtHuOZZ55h7ty5PPXUUwwbNqzd5xuGwZ///GfeeustgsEgTz75JIMHDz74iYIg\nCIIgCEL7SU7FKOqHURQfxgeloK4mJggZ3YoSTtVK25YTVfP7sO3ZDnu2Y+zbbSkC2Ve9i23r16ab\nqFPETZTbGVxuixEF4djj0DX6ZzronxnvGir3hfmmKsTGqqC5VZvl2qA6ouvZ7zXY7/Xz7xbOoSyX\nbopC6c3dQw46J4k4JHQsNE0DZwY2Zwa2zEFxbSocsAzzpnz72z5B2IdRvw09pZdlc2DrPFSoHs3T\nGT2pM7qnsxlezibfQ4IgHH1EBBKEY0BWVhazZs2ioCDxyZOD9Zk3bx7nnnvuYRWwovz0pz/lmWee\noWfPngCsXr2aRx99lIULFx7SeE888QQbNmzgyiuvZNCgQQc/4QjwySef8PLLL3PSSScxefLkI/K6\nRfnwww8Jh8OMGTPmiM0hCIIgCIJwXKJpkJaBkZaB0WegZRcjvzu+G/6IVlqMHtm00r3oVeWtDmvk\nWf+2s335GY5P30vsn56Fyi3AyC2I3+fko7JywSZ/Igsdixy3jTMKbJxR4IrVKaXY2xCOCULfRMSh\nb6uD+A4Wv/F7Uuk3+KQkwCcl8TmHUh0afdPt9M0w8w31TbdzYoaD7ik2bLqIQ0LHQmslrJyj+yXY\n88/G8O7FaNiDatyD4d1juoca94EKJo5lEVYOIFT6oaWopLly0DwF6J4uaBFxSE/qjObpLAKRIAhH\nDPmF24Gp/qX1F4lw/ON2uxk3bly7++zdu5e//OUvDBky5LCLGXv27CEUCtGjR49Y3YYNGxg40PqP\n9LawdetWMjIyuPnmmw/HEg95DQBXXXUVp59++hGd68UXX6Rz584iAgmCIAiCIBwKaRmERlr8Rg74\nI4JQM2EoUjY690jsD+ilxdb1NZVQU4lt69cJbd4ZDxIefEri3Lu3onILUGmZkotI6BBomkbXFDtd\nU+yc3bXppnHYUOysC/NNdcQ1VBViY3WQLTUhwkfWOERdULG2PMja8vib5G4b9E530CfNTu90O30i\nW+90O6kOyTskdDw0Zzo2Zzq29P5x9UqFUb5SjMa9pjgU2fTU3gljqHAA5SuxHF/5y1H+cozqrxLa\nkn7yGpojJb5/yGuuy+451EsSBEEQEUgQjie++eabIzb2hg0b6NevX5yF/+uvv/5egkYgEMDjObY/\nVPx+M3zBkV6HYRh8++23R9RpJAiCIAiC8KPE6cLoWghdC2mryUG5PSi3B83nbfM0Rm6iS1/fs4Ok\nP91kjul0Y+TmNzmIcgrijvEkt3kuQTgS2HSNonQ7Rel2LujR9PePP6zYWmMKQqZzyCzvrDvCtiHA\nF4YNlUE2VCY6KAqSdHqn2emT7ogTiLoli3tI6Hhomi3i4CmA7P86YF8VqkVP7Y3hLYZQwwH7xrCn\nJghAAKH9KwhsfhLNmRULLWfuu5h7T2cRiARBOCgiAgnHlGgenBdffJH333+ft99+m4qKCvLy8hg9\nejTnnXderG80N8wTTzzBkiVL+Oijj7jxxhuZMsVMQrtz507mzp3LmjVrqKmpIT09nSFDhjBt2jR6\n9058MiMYDPL444+zfPlyqqqq6NSpExdffDFTp06N67dr1y7mz5/PZ599RlVVFZmZmZxwwglMnz6d\n/v37J4wLZliwuXPnsn37dlwuF6eeeiq33norOTk5gHVOoJa07HP99dezbt06AG644QYAbr/9dmbP\nns2UKVP47W9/mzDG//zP/7B48WKefvpphg4desD34uuvv2bAgAEJdTfddFNcnd/v54UXXmDFihUU\nFxdjs9koLCxk0qRJTJw4EYC33nqLe++9N3bOiBEjKCgo4M0332x1/qqqKh555BFWrVqF3++nV69e\nTJvWepLf9evXs2DBAr766iv8fj95eXmMGTOGq6++mrS0tNi8UaKvWTS3UDgcZtGiRbz99tvs3r0b\nh8NBUVERl1xyCePHj4+bSynF66+/zptvvsnOnTtxuVyMHDmS6667jm7dusVd77Jly1i2bFmbckMJ\ngiAIgiAIRwbfzIdBKbS6atNBVLIXvXQvWuk+9PJ9aGX70Kor0FSTPUJld0oYRy/bFytrAR+2vTth\n707LOVVKGkZuAaGhpxO8UJKECx0Hl01jQJaDAVmOuPr6oMHm6hCbqoNsrgmxKRJSbmddmCNsHAJg\nX6PBvsYAH+6PDy3nskFRqukWyg476OEx+ElGgN7pdtKd4h4SOj66KwfP8MdQSkGwFsNbbDqIvPsw\nvMWoxr0Rgai+6Zwk6wdKjUbT2aoClahAJUbNhoQ+mjMzIggVoHnysQe6EHJ2PTIXJwjCcYmIQEKH\n4LHHHiMYDPKLX/wCh8PB4sWL+dvf/gZA37594/ouWrQIXdeZOXMmffr0AWDbtm1MmzYNm83GxRdf\nTPfu3SkuLua1117jmmuu4dlnn00Y55FHHiEYDHLVVVcRDodZtmwZjz76KJqmccUVVwBQWlrK9OnT\nMQyDqVOnUlBQQFlZGS+//DLTpk1j7ty5CULQhg0bWLp0KRMnTuTiiy/mP//5DwCvyfUAACAASURB\nVEuXLmXnzp0sWLAAXT+0H63XXnstr776Ku+99x7Tp0+nV69enHbaacyfP593332X2267DYej6Ud9\nOBzmX//6F126dOHkk0+2HHP58uXMnj0bAJ/Ph81m47XXXou119fXx4SYv/3tb+Tl5TFjxgxWr17N\nT3/6Uy6//HICgQDvvfce999/P8XFxdxwww0MGzaMWbNmxca+/fbbD+jEMQyD2267jY0bN3L++ecz\ndOhQSktLmT17Nl27Jv5wWblyJXfccQdFRUVce+21JCcn89VXX/HSSy/x6aef8txzz+F2u5k1axb/\n/Oc/416zXr16oZTizjvvZOXKlYwfP54rrriCxsZG3n33Xe666y727t3LNddcE5vvoYce4tVXX+W8\n887jiiuuoLS0lIULF7J69Wr++te/MmzYsJggN2zYMC655BIKCwvb8e4KgiAIgiAIhx1NQ6VlotIy\nMXoPSGwPBtAqSswQczWV4HQlDlG+L/G81qarr8VWX4vRo69le+GrT+Cor8XZtQcqJx8jOx+V0wmV\n3QkjpxO4k9o8lyAcDlIcOkNznQzNjc+P4g0pttaG2FwdjAlDm2tCbK0JEToK6pA/DN9Uh/imOgRE\n/sbdUgZAnifqHmoKL9c33cw9ZBf3kNDB0DQNYuHl+iW0q2AtRmMxylsMunWeIuW1Dm8a1ydQhQpU\nYdSYoU4dWT9PEIGUChPYOhfdnR9zNGnuTq3mRxIE4YeFiEBCh6C8vJwXXngBu938SI4bN44JEyaw\nZMkSbrnlljjhZO/evSxcuDDWF2DOnDk0NDQwd+5cBg8eHKsfNWoUV199NU888QSPPvpo3Jxer5cn\nn3wyNva5557LpEmTeP755/nZz36Gruts376d3r17M3HiRM4555zYub179+bWW29l8eLFCSLQmjVr\nWLRoUSy3zoUXXkgoFOKdd97h448/PuS8NEOHDmXNmjWx8rBhwwA4//zz+etf/8qHH37I2LFjY/3X\nrl1LVVUVU6ZMiQvx1pwzzjiDwYMHEw6Hueyyy3jsscfIy8sDYNWqVbz99tvcf//9AOTk5PDee++x\nevVqJk+ezB133BEb56KLLuKqq67i+eef5+KLL6agoICCggLmzJkDcND8Rx999BEbN27k3HPPjXNG\nnX322TFBLkogEODBBx+kT58+PPvss7hc5h/rEyZMoKioiIceeojFixdzxRVXMG7cOLZt25bwmn3w\nwQe8//773HzzzVx5ZdNTmhdffDHTp09n3rx5TJ48maysLDZv3syrr76a4No64YQTuOWWW3j++ee5\n4447OO200wDIz88/6PUKgiAIgiAIHQCHE5XfjXB+t1a7hEaOw+jULeYe0iObVr4fLeC3PMfISwwr\nB5BUvBNnXTXs3W7ZrlLSTGEoNx8juxMqpxPB0eeDS8L8CEcXj11jUJaDQS2cQ0FDsaPWdAxtrjHF\noU3VIbbUBPEd+chyAJR6DUq9AT4uiXcP2TXokWqjKM1OrzR73F7CywkdFc2Rhi09DdJPbLWPvcv5\n6Gl9Y2KR4S2GYO0Bxw3bsxPqlL+S0HdvtFwBmivbFIWai0OefDPsnSO91ftJgiAcX4gIJHQILrjg\ngjhRJyUlhQEDBvD555/HhJgoo0ePjuvr9Xr57LPP6N27d5wABNC/f3+KiopYvXo1fr8/JhgATJo0\nKU5cSk9PZ8SIEfzrX/9ix44dFBUVMXLkSEaOHBk3VygUIj8/H4B9+xKfDBw6dGhMAIpy1lln8c47\n77B27dpDFoFa48ILL2T+/Pm89dZbcSLQP//5TzRN4/zzz2/13KSkJJKSkti8eTNJSUkMGTIk1lZa\nWsrAgQPjctysXLkSMEWf5tjtds477zweffRRPvnkk1hYuLby+eefA8QJbQDdu3dn+PDhrFq1Kla3\nfv16KioquPTSSwkEAgQCTT/+zzjjDB5++GHWrVuXIB41Z8WKFYApTtXV1cW1jRkzhg0bNvCf//yH\nM888k3/+85+AKRI2Z8SIETz99NMx0UwQBEEQBEH44aGyOxHO7pSYi0gptJpKtPL9pigUFYfK9mF0\n7ZU4UCiIo67mgHNFnUTs2hyrC46ekNBP3/wV9k/fQ2V3Mh1FETeRSs8CuVknHEEcukbfDAd9M+LF\nobCh+K4hzLcR19C3EYFoc3WI2uDRCCwHIQXbasNsqw0D8QKtQ4eeqaYo1CsiFEVFoq4iEAkdHHvO\nKZBzSlydCtZFwsqZopApDu1DefehAlWEbDkJ4yivlbNVofzlKH85Bl8ltOppJ+D5r0cTzwrWgc2F\n1op7SRCEjoeIQEKHoFevxD+UMjMzAVNoaS4CNRclAL777jsMw6CoqMhy7B49erBt2zaKi4vjQnRZ\nzdmlS5fYnNHxVqxYwaJFi9i2bRteb3xi2XA48XEnq3Gja7YSjb4vXbp0YdiwYXzyySdUVFSQnZ1N\nKBRi5cqVDBs2jIIC6ycRm7Np06YER9OmTZsShI+dO3cC1tfYvXt3AHbv3t3ua9i7dy8A3bolPoXZ\ns2fPOBFox44dgJnb56mnnrIcb//+/QecLzrGpEmTWu1TUlICEHMSRT8bUXRdP2ieJUEQBEEQBOEH\niqahMrJRGdnWoeZa4vdRNegUHDWVJDfWoFWWoRnGAU8xUjPA5U6ot237Bud7f0+oVw4HKrvJRWRk\nR8Sh7DyMzj1MkUgQjgA2XaNnqp2eqXbO6db0mVVKsa/RYEtNiK21pii0tTbElpoQ39UfnbxDAEED\nttSY87bEqUNhqp3CiDBkbjZ6pdnpkmxDF2FV6IBojlRsjhMg7YSENhX2YWxLvC+jgjWgO8AItn0e\np/X3hv/bOYRLPzJdRO48NHcndHcn00Hk7mSGmXPnoukOy/MFQTj6iAgkdAiSkhLjX0dzyASDwQP2\nbWxsjOvfkqj7p6WAk5yc3Gpfv998cujNN9/k/vvvp1OnTkyfPp3CwkLcbje1tbXMnDnTcj6rcd1u\nd9y4h5uJEyeyZs0ali9fztSpU1mzZg3V1dVMmJD45GBz6uvrUUqxYcMGioqK4lwxGzduZPr06dTV\n1eFwOHC73Xi9Xux2e1zuoSjR187n87V7/dFzoq+T1bhRGhoaAPjFL37Bqaeeajley3Na0tjYiKZp\nPP74463maIoKd9H3zOqaBUEQBEEQBKFNJKeya6KZc7JPnz4QDqFVlaOVl6BXlJiOovL9Zo6i8hK0\nyhJUTr7lUFpFiXV9MIi2/zv0/d8ltPmnTCc4YWpCvf29NyElDSM7D5WVh8rIAt32PS5UEJrQNI3O\nyTY6J9sY3Tn+bzRvSLG9tkkU2lwTZGsk79DRcg8BBAxM55KFQOSymQKR6SCyU5hmo2eqncJUO91S\nbDjEQSR0QDSb29IVas/7CbbcUSh/Bcq7H8NnOocM7/7YnmB1/Fge64eKlXc/zV1E1HyT6JhFj4hE\nndA9nXAUXonusf5eEwThyCMikNAhsBIOoqJNRkbGAc+NikJRMai1cVqKM1ZzthQjFi5ciM1m4/HH\nH48L8bZr165W19OWcQ83Y8aMIS0tjX/84x9MnTqVFStWkJycHBcezoqpU6fGuZMWLlwY1z5t2jSA\nWD4cj8dDKBQiGAwmiCLRa7QS9A5GVLRpHtotSsv3Nfo+pqWlxXL8tJekpCSUUhQVFZGVdeAnIqOO\ntLq6Ogn9JgiCIAiCIBwebHZUTr4Zzs2q3TDAZ/33DUqh3B40n9e63eqULIvfsaEgrhceQVNNN9yV\nzYbKzEFl5WFk5aEi4pCR3QmVlYuR3QlS0to8ryC0hseuMSDLwYAWeYeUUpR6DbbUmoLQ6p1l7PLq\nFIec7KoPYxw9fQh/GDZVmzmQWqJr0DXZRmGqnZ6p0b1Z7plqJ8Nl/bChIBxLNE1Hc+eCOxcbgxLa\nVagR5dsfE4b01D6W4xiWoeUSeqH8ZSh/GUbNBhyFVyb0CNduIbD1mSb3kKeTmZvI3QnNlYMmDyUI\nwmFDRCChQ7Bjxw5GjBgRV1daWgpATk5iLNPmdO/eHZvNFgvbZTW20+lMCCMXzfvTnO++M5+ai4b+\nKi4uJi8vLyHHz/r161tdTzRk2oHGPdy4XC7Gjx/PK6+8wvbt2/nXv/7FuHHjDio63Xffffh8Pm69\n9Vbuu+8+0tPTAVi7di0rV65kxowZAGRnm0kFCwsL2bJlC1u3bqVfv35xY0VDrPXs2bPd64+GrNu7\nd2/Ca7R9e3zi3Ggoui+//NJyrOrq6oMKh7169WLz5s2xvD/Nqaurw+PxxPJORde2ffv2hM/L8uXL\n8Xg8jB49+oDzCYIgCIIgCEK70HVISrFsClx5K4Gf3wINdaZ7qLwEvWJ/M1dRiVnf0JQ43LAQgbSq\n8jgBCEALh9HKS6C8BKtbb0ZqBo2PJ4ai07/bjlZdYTqKsvPAZR2lQRAOhqZpdEqy0SnJxun5Lkbp\nxQD06dMdf1ixo850Dm2tCbG5JsTWmiBba0NU+Y+iOgQYCnbXh9ldH+bfFvfDM11azDVUmGqjR6Tc\nM9VG5yTJQyR0TDR7ElpKL/QUi9x2EZQycPaehvKVYHhLUL79KF8pyl8BrQV51HQ0V27iWI3fYVR/\nZZmPCM2G5sqNOYmiZVta7wOuTxAEa0QEEjoEb7/9Npdccgk2m/mnRk1NDRs3biQjI8MyT0xz3G43\no0aN4oMPPuCLL75gyJAhsbZ169axa9cuxo4dm+BcWbJkCePGjUOL2GSrqqpYs2ZNnOiTlZVFdXU1\nPp8vJqiUlJTwyiuvANbh3T7//PMEMWPFihUADB8+vF2vS0uir4+VY+bCCy/klVde4YEHHqC+vp4L\nLrjgoOMNGjSILVu2kJaWFuca+uSTTxg+fHiC02bcuHG8++67LF68mDvvvDNWHwgEWLZsGS6Xi1Gj\nRrX7uk4++WRee+013nvvvTgxcNeuXaxbty6hb1ZWFqtWrWLnzp1xotOKFSu46667uPvuuxk/fnyr\n85111lksX76cl156idGjR8dCwimluOuuu9i4cSOvvfYaKSkpjB49mvnz57NkyRLOPvvs2BjffPMN\nd911FxdccAGjR48+4HsjCIIgCIIgCIcVTTPDuKWkQc++FmF4AF8jWmUZekUpRvfE/KlaZVm7p1XZ\n1s54+7/fwrlicVO/pBSMrFzTVZSZi8rMxcjMQUXqjKxcSE6zDFkkCK3hsmmcmOHgxIzEUN1VfoPt\ntSG2Rbbm5ZrA0RWIzPUoqvxB1pcn5l9x6tA9xRSHeqba6Zlmp2eKWe6RaiPFIS4ioeOiaTqOzon3\nW5QRQPnKI06iElMk8pl7lGHp6jF81uFNzQHDEYFpP0azKHX2rpNw9b0+oXtw9+sxscnMUZQLjvTY\nPT9B+LEjIpDQIUhOTua///u/Y2LNa6+9ht/v5/LLL2/Tf9g333wz69ev5ze/+Q2XXXYZnTt35rvv\nvuO1114jIyODm2++OeEcTdP41a9+xemnn04wGGTJkiU0NjZyyy23xOY866yzePHFF5k5cybnnHMO\nZWVlvPzyy/zqV7/ikUceYfPmzbz++uucfvrpsXFPPvlkbrzxRiZOnEhOTg5r165lxYoVDBo0KMHt\n1F6ibqbnnnuO7du3M2rUqJgI0rdvX0488US+/PJLunXrxkknndSmMb/++msGDhwYV/fll1/ys5/9\nLKHvmDFjGDVqFG+++SaBQIBhw4bR2NjIu+++y86dO5kxY8ZBXThWnHnmmRQWFvL3v/8dpRSDBg2i\ntLSUN954gxEjRvDxxx/H+jocDmbOnMnvf/97rr/+eq644gpycnLYuHEjb7zxBt27d497P6w444wz\nGDNmDCtXruSmm27ivPPOIxQK8e6777J27Vr+3//7f6SkmE9eDhgwgAsvvJAlS5bwm9/8hrFjx1Je\nXs6iRYtIS0tj+vTpgOmWcrlcfPLJJ8yfP59u3boxbty4dr8WgiAIgiAIgnBYcCehOvcg3LmHZbPR\ndxD1T7yJXlGKVlGKXmnutcpm5aoyNKMpYJ1lWDlAryiNO9Ya67E11sOeHa0uz3f9Hwmd2uL3ciiI\n7YtPmsSj9EywyW0L4eBkunSG5ToZluuMq1dKUek32F4bThCIttce3fxDUQIGbI3kQ4LEB0uzXDrd\nU2z0SLXRPcVullPsdE+10S3ZRrKIREIHRNOdaEmdIamzpZPU8hxHOnraiShfCSpQ1aZzdHeiowgg\nsOsVCNa06OxEc+eiufLQ3aY4pLlz0V15aO48NE8+mib/noQfB/JrSugQXHfddXz++ee8+OKLlJeX\nk5+fz1VXXRXnvDgQPXr04LnnnuOZZ57h9ddfp6amhszMTH7yk58wbdo0yzBsd911FwsXLmT+/PlU\nVVWRn5/Pb3/7Wy666KJYn2uvvZZAIMDKlSt58MEHKSoq4ne/+x1nnHEGXq+XOXPm8OSTT1JYWBg7\n57TTTmPKlCnMnTuXHTt24HK5OO+887jtttu+9xMIY8eOZcWKFXz++efs2rWLAQMGxLVPmDCBTZs2\nMWHChDaPuWHDBgYNaooFGwqF2LhxI4MHD07oq2kas2fP5vnnn2f58uX885//xOl00rdvX2bPns2Y\nMWMO6brsdjtz5szh0Ucf5b333uOdd96hsLCQ3/72t5SWlsaJQGCKRk888QQLFixgwYIFNDY2kpub\ny8SJE5k2bVpMwDkQDzzwAIsWLeLtt99m9uzZgBkm7s4772TixIlxfe+44w569erFkiVLeOCBB3A6\nnYwcOZKbbrqJ/Pz82DXcdtttPP3008ybN4/JkyeLCCQIgiAIgiB0XDQNUtIxUtKhRx9rN5ERRquu\niDmKVGq69VCVpZb1B8LISryRp1WW4Xnsrtix0nRURlbETZTTwl0UPc4Fp6vd8ws/DjRNI9ttI9tt\nY3heokBU7jNiglBLoag+dPQFIoBKv0Gl3+CLikQXEUCu2xSJYgJRqj1ybKNbih2PXZwPwvGBo8t5\nOLqcB4AK+1G+0ph7SHlLMHz7Ud79Zm6hiEikuRMfRlBhX6IABGAEUI17UY17LfLv6SSNWQItRCCj\n4TuMxu/QXLno7pyIm0iEIuH4R1Pq2Hyp/dCoqamRF/IQuOeee1i2bBnz5s2LEyIAtmzZAkCfPtaJ\n6IREZs2axbJly1iyZAlZWVnHejnCMUD+3QhC+5F/N4LQfuTfjSC0nx/yvxutbJ+Zh6iiFK2iBL2q\n3HQRVZWbAlJddcI5DQ8tQuUWxNXp335J0gO3tGvucOGJeP+/pxPq9U1foDXWo9KzUZnZqLQssMtz\nsMcbx+rfjVKKUm9EIKoLsbMuzM66EDtqzXKFP/GWckehk0dvIQ41uYm6pthw2UQk+qHzQ/y+UeEA\nyl+O5kxHsyfHtRnefXg/uw6Mtofn11w5JI16MaE+sPMlgtvnN+voQHNlo7ly0Nw56K6cSMi5HLPO\nlYPmzBSh6AfA8fjvJj09vc3/ocsvIEH4gbB582beeustJkyYIAKQIAiCIAiCIAhHDZVbQLiFoBNH\nMGA6iqrKIgJROSojO6Gbfih5iiwcRQDOd17B/kVTRAGlaajUDFRGtukmSs8y3UQZ2WZdRg5Glx7g\n8rR7DcIPD03T6JRko1OSjdPyE51mtQHDFIXqwuyqC7EjIhTtqAvxXX2Y8DF8TLjEa1DiNfi8LNFJ\npGGKRF1TbHRNttM12UbXFDPMXHSf6dIlj4rQ4dBskXBzFuieApJGvwnBGgxfKSqyGf6yprKvNM4t\nZOUoAlD+Ft9DKhjLTUQNlq5ZZ5/rcHSbnFAfKvsYzZllCkbOTDStrYHyBOHwIyKQIBznfPjhh+za\ntYsXXniB1NRUbrjhhmO9JEEQBEEQBEEQhCYcTlRuASq3wCIkTxOhIafS+P/9xXQQRQWjyrJIucws\n+31x5xiZOZZjadXl8cdKodVWQW0V7N5qeU7jH5/A6B0fclurrsDx/hKMzOwmV1FGDiotQ/IV/YhJ\nc+oMznYyOFHLJGQo9jREnUORfTM30bHIQxRFAfu9Bvu9BmssRCKAJLtmikMRYaipbKdbso3OyeIm\nEjoemqaBMwObMwPS+lr2UWG/GVrOVwqtCDLK1/7wppor8XtIhX34v7q3WScdzdnkKNJcuaarKFKO\nOYp0+V4RjgzyyRKE45w5c+awd+9eBg4cyMyZM8nIyDjWSxIEQRAEQRAEQWg/niSMwhOg8ATrdqXA\n24BWVY5eaYabM/K7WnbVqivbPb2lO2nfbpxvLkjsq+motAxTEMrIiuyzMdKzMLoWYpyQmGNV+HFg\n1zV6ptrpmWpnTAvjglKKKr/Bjmh4ubomkWh3fZi9DWGMY5xsoDGk2FwTYnNNyLK9NTdRVCzqlmIj\nS9xEQgdEs7nQkrpCkvX3BoCr3wwM736UvzyylWH4ypsdV4CK/7dhKQL5y1tUGKYA5S+D2lbW584n\n6bT5CfXhui0ofxWaKxvdlQ2ONAk/J7QbEYGEY8rdd9/N3XfffayXcVzz6quvHuslCIIgCIIgCIIg\nHHk0DZJSUEkphLv0PGBX791PolVVoFWXo1VXoleXmyHpqiN1VRUJuYpUemJYba2qPKEOQFMGWk0l\n1FTCrvi24Cln4rcQgZwvPYVWXmKKRunNtrTM2F7yFv2w0TSNLLeNLLeNYbnOhPagodjbEGZ3fZjd\n9SF21Zn73fVhdteFKW4Mc6wTUrfFTeSxaXRJttEl4hzqkmTuOyfrdI6Us0UoEjogWtRN1ApKGahA\ndTNRqBzdQlRSvvaHN9Vc1qkdQnvfJlT8TrOOdjPMnCs7smVFXEamSKS5stHcndBsiaEshR8v8utC\nEARBEARBEARBEIQfFCorD5VlnfMhRiiIVlNlikK11eBIvCmvNdS1f24LMQnA9vUabLu3Hfjc1HSM\nZgJR4NLrUC1D3hlh0HRTFBN+UDiauYgg8QZuIBwViULsighDsXJ9iH2NBwq4ePTwhhVba0NsrbV2\nEwG4bFCQZKNzUkQsiglFTaJRrlvHpsvnXOg4aJpuijWuLMA67ByAnt4P9/DHUL7yiAOoPOIoKouJ\nRxjxIqrmtP7uSHQVhVD+UpS/9dB1rkF3Yc89Lf60sI9Q8TsxwUhzZZsh6EQs+lEgIpAgCIIgCIIg\nCIIgCD8+7A5Udh4qu3WxKHj2RQTPvACtptLMVWTlKqquNHMW1ZsxfloTgbSag4eo0+pqsNXVwJ4d\nAAQuuz6hj+3rtbj//HtUemaTi6i5qygtI7LPxEjLhJRU0CUh+Q8Bp02jMM1OYZr17TxfSLGnIeIc\nqg+zqy4UcxXtrg9T4u0YIhGAP0wkT1K41T52DfJbFYlMV1F+kg27CEVCB0OzubGl9oHUPpbtSikI\n1mD4y1G+MpS/As1t/V2k/O0Pb6q5EsObKl8pgS1/SexsTzadRc7MiKsoM3asJ3XGlt6/3fMLHQ8R\ngQRBEARBEARBEARBEFrD7kBld0JldwKg1VvWoRBabRXKmegoQimMgh7gTjYFJV/jQadVmoZKTU+o\n12oq0cIhtMoyqDx4yCGl6QTHXkjgF7cltNm++BgMZQpH6VmotAxweQ46ptAxcds1eqc76J3usGz3\nhhTFDWH2NIT4riHMnvowexrCfFdv1u1pCONvXZM56oQU7Gkw19gaugZ5bp38iCBUkKTTyWOjIHKc\nn6RTkGQjx62ji3tO6CBomgbR0HOpvQ/Y1zX4blMoClSg/JWmq8gfKQcieYrCvvjxrUQgf4X1BKEG\nVKgB1fhdQpOeMQjP0P9NqA9+9wZGw+5WxSPNZvE9KBxTRAQSBEEQBEEQBEEQBEH4vtjtqKxc6zZN\nw3fHI03Hfq8Ziq62Cq26Eq2mEr3G3Ec3wiGwJd62aYujKK6/MsDltmxzvfQ0+r7dcXXK6W7mJmpy\nFUXLoaGjRCg6TvHYNYrS7RSlW98OVEpR7jOaCUMRcag+HBONynwdx00EYKimHEVUWOcoAtNVlOdp\nLhbZyI8cFyTZ6BQRkLJcIhYJHQvdnQetuISiqFAjyl9hboEKNEdmQh+jNRHoALQWoi5c8TnhynWt\nn2hPSRCIHF0vRPfkt3sNwuFBRCBBEARBEARBEARBEISjicuDyvOg8jq3+1SjVz8C512OVhsvGmm1\nNabgY4FKtU50rtVWJ9YFfGjl+6F8v+U59U+8mSAC2Taux/Hm86jUDFRqujlfZK+a71PSwG7tUhGO\nPZqmkeuxkeuxcXKOdZ/W3ER7YuUQvg7kJooSUlDcaFDcaACti0UOnYiTKCIYeeIdRflJNjp5dDJF\nLBI6EJo9Cc2eBMndWu1jzx+LPfu/MCJuIlMwqkQFqszNHy1XghEwx3W1kqcoUHXgBYXqUaF6VGPT\nQwb2/LEJ3cJ12/D/5w9ozgxwZKI5MyJbJpoz3dw7Mprqdfn+OFREBBIEQRAEQRAEQRAEQThOCPc7\nmXC/kxMbjDDU16HXVqLVVpsuo8g+3GdgYv9QCK2htl1zK12HpNSEeq1kL/aN69s2RlIyKiWd4Ojz\nCU6YmtCub/4SbHZUSjq634vhtHYxCceGtrqJ9jaEKW4Ms68xTHFDOHJsxMresDrKK28bQaN5CLqD\nO4vyPLbYvlNsb9Z18tjI9eikOjQz/JcgHEM0TW8Wgq5Xq/2UUhBuNHMR2VzWneyp4EiHYE3b53cm\nupNiAlSgCthx8EHsKdhzT8PV79cJTeHab0GFY6IRNo/8u2uGiECCIAiCIAiCIAiCIAjHO7oN0jIw\n0qxdP4n9dRoeWmQKRXURwSgaoq6uuYjU5DJSqRmg6wlDaXWJjqLW0BobzM3ntWx3PzMLvWwfACcB\nhs0OMUdRZEuJdxuFTj4NnK3crBSOKs3dRENa6aOUoiagYkJRcUOYvZH9vmbHtYGOKRRBS2fRgfHY\ntJgolOfR6ZQUEY7cicduu9y0Fo4tmqaBPRnNntxqH8/Q2QAoI9RMyKlE+auauYsqm7mLqk1hpgUH\ndRS1JFQPytpqGNg6F6P6q6YK3dXkJnJmRMShaDkdzZmOntYPzf7jCG8qI74Q7gAAIABJREFUIpAg\nCIIgCIIgCIIgCMKPDV1H5RagcgsO3tcwoKEWrbHBslmlZRLuPdAUk+qqW+0Xd05qumW9Vhf/ZLke\nDkF1ubm1Qv1f3k6os33xCc4lz6OS01Ap0S0Ski45NVaObrg8IE+NHxU0TSPDpZHh0hmQ1Xp4p7qg\nwb6IULS3wRSHmkQj01VU6e9YOYqs8IYVu+rD7Ko/eJy8dKcWcxB1auYyynXr5Hp0ct02st06uW6d\nZEeiICsIRxNNt6O5c8HdSj68CEopS1eO7s7HXnAOKlBtikXBalSgOhaOznJOCzEJQAVauJIMP8pX\nivKVtjqW55Rn0ezxIfSM+h0Ets83haKIWESzcrQem/u4chqJCCQIgiAIgiAIgiAIgiC0jq5H3DjW\nN99Co88nNPr8ZhVBtPpatLoaUxSK7Gl2bHQtTBwoGEDzNbZracrhTMhRBKCX7cO2bWPbx7E7CJ57\nGYFLpiW02T94B1BxYhIpaaikVLDLrbUjRapDJzVDp29G60KRN6Qo8YbZ3xhmf6PBvkazvM9rHu9v\nDLPf27FdRc2pCShqAiE2tyHKVpJdIyciCOVEhSK3jqq3k+lQDEryme0eGzluHYd+/NywFn5YtCaW\n2DIHYcscFFcXC0cXqGlyGQVrYo4iPd0ivCmH4CoCNEdaQp3h3U+4/LODn6w70RxpaI50bDkjcfa6\nMnGsht2AZgpX9mQzJN8xQr6phB8dzzzzDHPnzuWpp55i2LBhAIwYMYKhQ4fy9NNPH/X1XH/99axb\nt47Vq1cf9bmjfPLJJ/zP//wPpaWlTJ48mdtvv/2YrUWA4uJiJk2axPnnn8/dd999rJcjCIIgCIIg\nCILQPuwOVEY2KiO7fefpOo1/fAKtvgattoaKnduwN9aRZdfjxCStvibmNlKp6dYOnoa6dk2thYIo\nm/VtMufr89BbcSIpT3KcoyjqMApMmZ4oTvm9EAxAUooZvk/43njsGj1T7fRMPfAtzoagQYm3mUgU\nEY32txCQGkLHh1gE0BhS7K4Ps7u+Zf4ip7nbXBHXP8OpxQQhUzyykePRI+JR87JOhktHP45cDsIP\nh7hwdEmd23yee8gDMaGouasodhyohmAtEHUP6uBIzHGn2prnyAig/OUofzl6am/LLv6ND2PUbopc\nmA72tGZuorS4DYfZZssYhGY7/LnwRAQSBGDWrFlkZiYmKDvcfPjhh4TDYcaMGROru/baa6mqar9a\nfbgwDIN77rkHv9/Pr3/9a/r27XvM1nK88corrzBkyJDD/pplZWUxa9YsCgraEJZBEARBEARBEATh\nh4LNjtF7QOywtGALAMl9+iT2jbiNaMU5pHI6ERrwX6YjqaHG3LeShyhGSuJT4SiF1tD6TUHN24Dm\nbYBIHqMogZ/dkNDXvnol7rkPmsN6klHJqbGN5FRUUuQ4palsdOmJ6tLzwOsWDkqyQ6eXQ6dX2oFv\nhdYFjYhIZO5LmrmKogJSmdeg/jgSi6JUBxTVgRBb2nCP26ZBlksn263H9tnRY7ctVs526WS5zXKK\nXTuuwmMJPyxsaRbfEy1QKgzBOlMYCtVbOnM03YWeUmg6kYI1reYgijvHaR3eNE5QUgYEq01x6gBj\neU79K5rn8N8PFBFIEIBx48YdlXlefPFFOnfuHCcCDR069KjM3RqVlZVUVlYyduxYpkyZckzXcjwR\nCAR45JFH+P3vf3/YRSC3233UPpOCIAiCIAiCIAjHJRG3EVi7jUKnjyd0+vj4ymAAraEOrb4G6mvR\n6s2y1lCLVl9LuNeJiQMF/GjBYGL9AVBuD9gTQ5hpDfVN5ah4VL7/gGMFzr3MUlByz/4NWmOdKRal\npEJSapyoFBOWmh9L3qODkurQSU3X6WN9TzdGfdCgzGtQ4g1T6jUo9YYpabGP1gc6ftqiBMIKynwG\nZb62L96p00w0sjUTjfQE0SjHbSPLpeOxy+dROHpomg2cGa3mFQKw55+JPf9MIBKaLtRghqML1sSE\noZhAFCnryRbhTbHIU9SWNVqEqDsciAgkCEcJwzD49ttv6dy57VbGo0EgYCZb83gSYygLrbNlyxZC\nodCxXoYgCIIgCIIgCILQVhzO9oepc7qof3qZ6SSqr4kIR7VNQlJEQDLbzLKyyFEEoDXUtnvJKtn6\nhqBt9xa0uvbdYKx/cikkx4c/0rd+jePD5aiklNhGUgoqKTnhGKdbRKQIKQ6dFIdO4UGcRUopagJm\n3qLmIlGZhWhU5jUO6BDo6AQM2NdosK/RANp2vyTZriWIRJkRoSjTaZYzXaawFC2nOTUJVSccFTRN\nA0cKmiMF6NLu810Dfx8JQ9dcPKqNiEq1qGAtBOsg+i9fs4Et6bBeQxQRgYRjyj333MOyZcv429/+\nxmOPPcb69et54IEHOP300wHYvXs38+bNY926ddTX15Odnc1pp53GNddcQ15eXtxYn332GQsXLuSb\nb77B6/WSl5fHsGHDuO6668jNzT3gOlrmBBoxYsQB+zfP37Nr1y7mz5/PZ599RlVVFZmZmZxwwglM\nnz6d/v37A/DWW29x7733ArBs2TKWLVvGtGnTuPbaay1zAhmGwauvvsrSpUvZtWsXAN26deO8887j\nZz/7GfZI4slo7pgLL7yQyy+/nDlz5vDVV18RDAbp168fv/rVr+jXr99BX//m64rmoRkxYgTDhw/n\n5z//OQ899BANDQ0sX778kNc3adIk/vznP7N582ZSU1OZNGkS06dPZ+PGjTz66KNs2rSJ1NRUTj/9\ndGbMmIHD0XriR4CJEyfi8/l46aWXePjhh/n000/x+XwUFhZy/fXXc9ppp8X137lzJ3PnzmXNmjXU\n1NSQnp7OkCFDmDZtGr17N8XuDIVCvPLKK7z99tsUFxcTDofJz89n3LhxXH311TidzrjX7d577+Xe\ne++NyzG1fv16FixYwFdffYXf7ycvL48xY8Zw9dVXk5aWFncNNpuN+++/n/vuu49du3axfPlyamtr\nLXMClZaWMnfuXD755BMqKipISkpi4MCBXHXVVZx88smxfq+//jqLFy/miSeeYMmSJXz00UfceOON\n4vQSBEEQBEEQBEFoL5oGnmQzfFvu9wvRExpyKio1Ha2+DhrrTFdSs41oOdx0A10lpyQOpFS7cx6p\nyHW0RN+zA8fKpW0bw2aDpBSC4yYRmPzLhHb7v5aauZVaEZRwJ/3oRCRN08hwaWS4dE5o3XwAQMhQ\nVPgMSn0RcagxIhj5wpR7DcojzpxynykYHYcR6RJoCCka6sN8V3/wkFtRNCDDpTUJQxGxKKOFWNRS\nQEpzaNj0H9fnTzi22LP/66B9lApH3Ea1qFDDEQupKCKQ0CF48sknycnJ4c4776RXr14AbN26lfvv\nv59OnTrx85//nJycHLZu3crrr7/OqlWrmD9/Pjk5OQCsWrWKGTNm0LNnT6699lrS0tLYsmULr7zy\nCqtXr+all14iKantSuqsWbMS6nbv3s1TTz0VJxiUlpYyffp0DMNg6tSpFBQUUFZWxssvv8y0adOY\nO3cu/fv3Z9iwYdx+++3Mnj2bYcOGcckll1BYaG0VBLj//vtZunQpp556akwo+Pjjj5kzZw6bN2+O\nCUpRysvLufnmmzn77LM5++yz2bZtGy+99BK//vWvefPNN3E6nZbzTJkyhQEDBsStq3keGp/Px+zZ\ns7nsssvIyso65PWVlpZy5513MnnyZC644AJefvll5s6di81m44033mDy5Mmcf/75LF26lMWLF9Ol\nSxeuvPLKA79JmC6m6Pt+yy23UFdXx/PPP8+MGTP4y1/+wuDBgwHYtm0b06ZNw2azcfHFF9O9e3eK\ni4t57bXXuOaaa3j22WdjId0eeughFi9ezE9/+lMuu+wybDYb69atY968eWzdupXZs2czZcoUkpKS\nePXVV5kyZQpDhw6NfW5XrlzJHXfcQVFREddeey3Jycl89dVXvPTSS3z66ac899xzuN1NCd6UUtx3\n332cddZZ5Ofn43K5LK+1vLycX/7yl9TW1nLRRRfRp08fKioqeOONN7jxxht5+OGHOfXUU+POWbRo\nEbquM3PmTPpYxdAWBEEQBEEQBEEQjhpGUX+Mov4H7qQUBHym46ihDsPKtRQKEho+Bq2xDq2h3nQj\nNdRBQz2aaiV8V1IK6Bb5LxrrLTpbo4XDUFcDYesb9s63FqIfILyd0nRo5jBSSSn4br43wZ2kVZSg\nb98I7mSUJykmIClPMrh/uCHt7LpGpyQbnZJswIEfjI06jMoiglBUHCr3GWzdX0lVUMNrT6I80lbp\nPw5j0rWCAqr8iip/GGifeJTu1BLEoYxmYlKWWyfDqZPhNIW7dKe5Sdg64UihaTZwpB2xMHBRRATq\nwHhm3dqu/srhwveb2Qn19s/ex/H+m+0aK3j6eEI/OTeh3v3YXablGfDe8Wi7xjzgfMEgf/zjH+Pq\n/vrXv5Kamsq8efPIyGh6XOLkk09mxowZLFiwgBkzZgCmy2PQoEH84Q9/oEePHgCMHz8eXddZsGAB\n//73vzn33MTraY2W+Vh8Ph9z584lOTmZBx98MFa/fft2evfuzcSJEznnnHNi9b179+bWW29l8eLF\n9O/fn4KCgpgzJeoqaY0NGzawdOlSRo4cySOPPBJTgC+66CJ+9atfsXz5ci699FIGDhwYO+fjjz/m\ngQce4KyzzorV1dbWsnTpUv7zn/8wfPhwy7n69+8fe22t1rVhwwbuuecexo8fH1fX3vV9+umnPP30\n07H8R3379uXqq6/mL3/5C3PmzGHkyJEAnHbaaUyYMIEPP/ywTSJQQ0MDffv25Xe/+12s7sQTT+T6\n66/nhRde4H//938BmDNnDg0NDcydOzcmDAGMGjWKq6++mieeeIJHHzU/z//4xz/o1asX9913X6zf\neeedR7du3fj666/xer3079+f7du3A9CvX7/Y6xYIBHjwwQfp06cPzz77bEzQmTBhAkVFRTGB6Yor\nroiNXVxczHXXXccvf5n4FFVz5s6dS1lZGX/605/iPmvnnHMOU6ZM4c9//nOCCLR3714WLlwYc2YJ\ngiAIgiAIgiAIHRxNA5cH5fKgsvOs+zic+G+8K7HeMMDXaLqJGuvR6msjjqN6MFq5Wa7rGGmZCQ6k\nA6GSLNxJHFxQ0pQRczvFsPh71bb5K9xP35dQD1FHUxLKnWyGqIsIRaGhowiNnZjQX9/0BVo4bDq5\nPEkxVxdO13EtJjV3GLXMX7RlSwkAffr0iNVFXUblUSeRz8xpZFWu8BnUBX8ANqMWKKA6oKgOhNlR\n13bxCMBlg3SnKRClOzVz70o8To8ISOlOPSYiiQNJ6AjIncEOjG3Tf9rVX7lbiTlbWdbuscInDrGs\n17d+jV5d0a6x2sLYsWPjjnfv3s3OnTsZO3YsNpuNurqmHwhDhgwhLS2NtWvXxuqmTp3K1KlTAfNp\niIaGBpRSdOlixmssLi7+XuubNWsW27Zt48EHH6Rbt26x+pEjR8YEDACv10soFCI/Px+Affv2tXuu\nlStXAjB58uQEC+AFF1zAqlWr+Oijj+JElry8vDgBCEyBZ+nSpVRUHPr7pes6o0eP/t7rKygoiAlA\nQMyVkpOTE/f65eTkkJWV1a41T548Oe546NChpKens379esB8Tz777DN69+4dJwCB+RoVFRWxevVq\n/H4/LpcLm81GWVkZxcXFcfmbrrrqqoOuZf369VRUVHDppZcSCARi+ZYAzjjjDB5++GHWrVsXJwIp\npQ4oCkZZuXIlaWlpCe9zfn4+w4cP56OPPmLPnj1xbaNHjxYBSBAEQRAEQRAE4ceCrkfCr6W0ObdM\ncPylBMdfajqQggFTyGmsN0WkyIa3wSw3mMdGz76JAxkGeBvatVxls5l5hlpygHE0paCxAa2xASqb\nTV/QzbK/a8Ej2Ip3Ws8ddRp5kk1hKSIQ+afeDGktYrfVVmPbs90U5zxJ4Pag3OYe3daWyz2mtMdl\nBOANKSr9BhW+cGQf2fwGlZF907HpQAr8cMxGCfjDUOo1KPUe2kWmObQEkcgUirRm4lL8cZpTJ9Wh\nkeKQHEjC90fuDgodguY32wF27NgBwPvvv8/7779veY5STT9pQqEQCxYs4B//+Ad79+4lGAzG9Q23\nYlVuC4sXL+add95h6tSpnHnmmQntK1asYNGiRWzbtg2v1/u95925cycARUVFCW1Rl9Pu3bvj6rt2\n7ZrQN+pCCYXa9iSPFVlZWXg88eLioayv5fsbzfcTFctatrVnzVZh9XJzc9m6dSuNjY3s2bMHwzAs\n1xtd87Zt2yguLqawsJDp06fzf//3f1x66aWceuqpjBgxgpEjR8aJf60R/dw+9dRTPPXUU5Z99u9P\ntMa3fH1aUldXR2VlJYMHD8ZmS/xx2aNHDz766CN2794dl//qYOMKgiAIgiAIgiAIAmC6YpwulNMF\nGdltFpFi6DoNz/4DzdsQEWnqrQWlaNnbYApPFje3tXaKSYBlviMAzWc9lhYOQ0MtWkNtQltg6n8n\nXL9t6wY8j/7BcizldKM8HjNknTspsvcQHjic4E8vTuhv+2YdBHzN+kZEJU+SKYp1gBv+HrtGF7uN\nLsltE7iUUjSETLdRZTOBqMIXFY3CliJS+IdnOLKkNqioDYb5rh3h66JoQKpTI82hk9Z879Rj5dS4\nOi0mIKVFxKVUh4Zd3Eg/akQE6sCETzypXf2VwzqXiMrKbfdYRk7izXkAo/cAVCQc3OGkZb6exsZG\nAH7yk5/EuSaa09yF8qc//Yl33nmHgQMHcvvtt5Ofn4/dbmfNmjXMmzfvkNe1adMmHn74YU466SRu\nuummhPY333wzlrdo+vTpFBYW4na7qa2tZebMmYc0Z1RIaim+QJOw01Jsai3nz/fFKo/SoawvKvq0\n5Puu2263W46RnGz++AsEArHPktV6IXHNl112GT179ozl8Pn3v/8NwEknncTMmTPjckK1pKHB/HH5\ni1/8IiE0W8v5ojidzlZfnyjtvYYo7cmDJQiCIAiCIAiCIAjfC4cT5XBCWmb7RaRmBEdPIDx4pOlA\nimxmubFZ2TyOllu7j6V5G9s9v7IQlA40jhbwoQV8UFMVP45VPifA+coz2HZssp47Gg7QnQQec6/c\nSfivuR2VWxDXV6uuwPafT2NCUlSIclaWYjjd4Gs0RSWLXFCHG00zHSspDp0eqQfvD2AoRW3AdByV\n++JFouqAQZXfFJTM/D/mcbXfoD70I1GOIiigNqCoDYThEPTRKMl2LSYMNYlJukWdKSqlO5vEpFSH\nTopDI8muJUQFEo4PRATqwByunDuhU8YSOmXswTu2Ad/N9x6WcQ5G9Oa1y+Vi2LBhB+xbXl7O8uXL\n6d69O08++SRud5OVeNeuXYe8hrq6On73u9+RkpLCAw88YBlWa+HChdhsNh5//PGYC+b7zhu90R+9\n8d+c6E3+qMhxLOhI6wuFQoRCoYT3pr6+HpvNRlpaWuyzZLVesF7zKaecwimnnILP52P9+vUsX76c\n5cuXc+ONN/L666+Tmmr9iyY6Rlpa2kE/t+2hrdcgoo8gCIIgCIIgCIJw3JOShpFyeJKke3//qOlM\n8kVCyHkbm5UTxSQt4ANH4sOmB8t3ZIVyW/+NrvkOICgpZeZ18jVCdVO936KvvmcH7uf+N6F+QMt1\nON1mCgmXm9BJIwlcmZiD3P7B2+jlJSi3mY8KV/QcD8rlNp1KzesPg7ikN8tr1Cut7beo/WFFtd+g\nKiIUNYlFpkgUFY2idVUBs/6HmOeoPTSETLfW/kMMaQega5Di0Ei16xHRTyPVqZNij5QdOqlOUwyM\n1cXC2jXtUxwaKXbJlXQ0ERFI6JD06tULgM2bN1u2V1VVkZmZCZh5d5RSDB48OE4AAmJ5YdqLUop7\n7rmHkpIS5syZExdiqznFxcXk5eXFCUDfZ14wr/2DDz5g27ZtCeNGw4317NnzkMf/vnS09e3cuTPO\nnRMKhSgpKSErKwtd1+nevTs2m41t27ZZnr9jxw6cTqdl6DS3282pp57KqaeeSkZGBosWLWLdunUJ\neZKiRD+3X375pWV7dXU1GRkZlm0HIjU1lZycHHbu3Ek4HE4ICRd93QsLC+PyZwmCIAiCIAiCIAjC\njxmje+vRPNpDaPhojK6F4POaAo2v0XQm+bwR0cYbE2+iZdWKO4lDcSdZ5QE/gJjUnJhTCdDqE8Pf\nAdhXvYt90xftWlPjXU9iFPWPn6tsH66/PRETnUzhyBMRl9yxclObG5WShsru1OZ5Xbbm+Y3aTtBo\nchQ13yr9BtV+FScq1USEo5qAojrw4wlbdzAM1cyVdBhItmsxMam5SBTNhRR1IEXrosfJDi1yrk6S\nvelYcie1johAQoekW7du9OjRg127drF69WpGjBgRa9uwYQPTpk3jhhtu4KqrriIrKwswxaDmrF69\nmk8//RQAv9/qmYnWef755/nggw+44YYbGD58eKv9srKyqK6uxufzxQSokpISXnnllYR5ozfuA4HA\nAeceO3Ys8+fP54033uDMM8+M2SyVUvz9738HsMxNdLToaOtbsmQJv/71r2PHn3/+OfX19bFwbG63\nm1GjRvHBBx/wxRdfMGTIkFjfdevWsWvXLsaOHYvD4WDjxo384Q9/4Morr2TSpElx80RdPtHwc3rk\niZfm7/HJJ59MVlYWq1atYufOnXFi2IoVK7jrrru4++67GT9+fLuvc9y4cbz88susWLEi7vzdu3ez\ndu1a+vXrR35+vohAgiAIgiAIgiAIgnCYURnZhFsJ79ZevHf8Ga2xIU5MiopLsTqfN+JaitRZuIoO\n5ChqFZfbslrzey3r2zuWVlOJfd1H7Rom1H8ovpkPJw4///+wbVhj5qlyeSJ7N8rpBpfLFJGcLnC6\nTYHJ6SI0dFSioBQKoVWU4HS5yXO6yEt1Q4Z1Sg0rovmOagIqIgyZ4eqaH5t1qpl4ZLbXBMSBdCCi\n7qQSL3AI+ZJakmQ3Q9YlR4ShFLtOkqPFcayskdxMRKqp0vHYwF8ZNIWmSL3H9sMIgScikNBh+eUv\nf8kDDzzAzJkzufzyy+nWrRs7duzgtddeIysrK3YjvHPnzgwYMIC1a///9u48TKrqXNj+3TOoCHRQ\nEGUGl+KEGnECVMCIHv2IA5qImnhQVHwdwCgcJ0RRjxEnPiFKFEVNYggYjeaAL4nCUeMQFaNEskUE\n0aCgoIw9d71/VFXTQzV0Y0N3tffvurg2tfbaez+1di9WU0+ttd9h0qRJHHDAAURRxJw5cxg/fjxj\nxozh5ZdfpmfPngwePHib1/3www956KGHaN++PZ06deKvf/1rjTq9e/dmr732YvDgwTz11FOMHTuW\nk046ia+++orf//73jB49mvvvv5+PPvqI2bNn069fP37wgx+Ql5fH66+/zuOPP06nTp0YNGhQjXPv\nt99+nHXWWcyaNYsxY8YwYMAAysrKWLBgAW+//TbnnnsuPXr0+O4NvJ2aUny5ubksXryYW2+9lT59\n+rBhwwaeeOIJcnJyuOCCCyrqXXHFFSxcuJBf/OIXnHPOOXTs2JHPPvuMWbNm0aZNG6644goAevXq\nRV5eHr/85S9ZsmQJ+++/P1lZWSxZsoSZM2fSvXv3imXekjOH/vCHP1BYWMghhxzCgQceyNixY7n+\n+uu59NJLOffcc2nXrh2LFy/mj3/8I507d6Zfv37b9V5HjBjBggULuP3221myZAndu3dn1apVPPPM\nM2RlZXHttdd+x9aUJEmSJEk7WqxDp+/0zKSk0r4nsGm/PonEUUEimbSZ1SuWk1lcxJ6td48nk4oK\n4kmewgLKelZfLC6hvP4RxfJqzk7KKNyOZFJuLYmpb74m86svUu6rTXnHLpRVSwJlrFnFrtcNr1IW\ny8qulFBqQSwvD3JbJrYtKN+rM8XnXBI/vuJ5R9Dp3/8kc/UX8YRUbi7k5BHbLQ9y8xJlefFntufm\nxhNUmVmUlsdYX7xlVlE8URSrlDwqT5lgWl9czvriGAVOQ6qzzaUxNpfG+Hq7jk78HL6/ukppBlQk\nhHbNzmCXxFJ3Fa8TM5Li+zLYJSu+bZm1JcnUMpGYalkpSdUye+cmmEwCqcnq1asXEyZMYN68ecya\nNYsNGzbQtm1bBgwYwMiRI2nfPv6PekZGBnfccQeTJk2qeHbLIYccwtSpU+nRowenn346c+bMYcqU\nKRx//PHbvO4nn3xCWVkZq1at4vrrr09Z5+abb+bUU09l5MiRFBcXM3/+fO666y569OjBuHHjGDBg\nAAUFBUyePJmpU6fSrVs32rdvz9VXX81DDz3Eo48+yumnn54yCQRw7bXX0rVrV5599lnuvfdeMjIy\n6N69OzfccANDhw7d7jZtKE0pvrvvvpsHHniABx98kIKCAnr27MmoUaMIIVTU6dKlC9OnT2fatGnM\nnj2bdevW0bZtW/r3789FF13E3nvvDUB2djbTpk1j+vTpLFiwgBdeeIHS0lI6dOjAWWedxYUXXlgx\nE6hPnz6cdtppzJs3j+nTpzNu3DgOPPBATjjhBKZMmcKMGTOYMWMGmzdvZo899mDo0KFcdNFF7Lbb\nbtv1Ptu0acP06dN5+OGHefHFF1mzZg2tWrXisMMOY8SIEfTq1eu7N6YkSZIkSUoPuXnE2nWokVBa\n2yb+pdW29ficoODWaVBeDsWFicRRYUXiKKMo8boioRT/e2y31jXOE8vOpmyf7lWOSS5FV5tYXi2z\ncorrt6pP/FwpZielOE9GWSls3ljrs57K1q1NWZ7zylxy/vd/6h5PVjaFl95Ift/jya8cWlEBLSbf\nArm5iaTRliRSRSJp11xiuXmUZeeyOTOXjbm7srL7oYnl2OIzjNYXl1OwuYANRWWsKc9mfVlmPHlU\nsiWJtKEk/lrbJwZsLI2xsTTZhg2zFF5ScvZS5T/JpNEu2Zm0zM7gV/3bfufrZMRi/hA0hHXr1tmQ\nDWzJkiUAfritlIYOHcqaNWt49dX6TTNu7uw3Uv3Zb6T6s99I9WcdUItqAAAgAElEQVS/kerPfiPV\nX5PrN6mSS0VbXsfa5FOeYoZSzgu/IfPzZfEkTlHiuUZFRWQUFyS2hfHyki2PXdh826OUd666Ok3m\nx/9kl9sur1fIpfv1ofC/7q9Rnjf1VnLefKle5yq48jbKDu9fpSxj3Vp2vfKMep2nvF0HNt/zdI3y\n3JnTyP3zbwGIZedUTSzl5MWXzsvJozQ7l5LsXIqycvn0hyfxaZdDWV9SXpFUWl9SzmHvvsDGWBbr\nYzmsi2XzbSyHb2NZfFuew1qy2RDLoTAzl8LMnIo/G7NTPK9KDerbC/dOWd66des6TyNyJpAkSZIk\nSZIkqeFlZkKLXYglnmtU12/Rl5w6fNuVYEuSqbiI2C6tauyO7dmRwov/q1IiKbEtLiKjKPm6KD7L\nqbgIiguJtd8n5aUyirY+qyml3BQznbZjllPK8wCUbDlXRmkJlJaQwaYa1bKJL3jWCtitzw8JnarN\nmiovZ7fJv65XSKW5LXhh/LNsLInPOEpue/9jHgMWPktRZg4FmTkUZMS3mzNy2EgOmzJy2EA2RZlb\nkkrz2/TmtTahxjX6ffsvYmRUSTwVVjquKDOb0owsaAbP7dmRTAJJkiRJkiRJktJPtSRTdbHd21La\n76QGuVThxWPJ2LSRjJIiKC6OJ5KKC6G4OFFWlEgkJf5eUkT5nh1rnigjg7Ie+8ePSySeMoqLoaQo\n5fJ1QHxWTwoZxcUpy7cqJ7dmWWlJvU+TlZvL4H1qLsGX81kBed98Vq9zLRvycz487hjWl8TYWBJj\nYyKpNHrKA+xWuH6rx5aTQVFmNkUZ8aRQ96MeoCir6ns8ce37XP3ZnHi9RPIoWb+4xuv43/+xW5eU\niamDN35KTnlZinPlVJSVZ2TW6/3vaCaBJEmSJEmSJEnamt1aE9utdZ1nM9Um1q4DBTf/qpadMSgp\n3pJQKikio7iYWGbqpELpEcfFE01V6ieTUMWJJfMqJa1KiojtWnPGFCX1TybFUiWToMoSfXXVsU1L\n9uhYM6G0K9tOTmUSo2V5CS0pgTJ4/ay92VSewaaScjaVxpNKnf5ewID3369XTFP3OSllEuipDx+k\n9+aVWz22lMwqSaEjD7+NlXn5Ver8cP1Sblk+i8LMXIoysqvUL068Ls7MAq6sV9ypmASSlJaee+65\nxg5BkiRJkiRJajgZGfGl33LzKpJNW0s6lR34Q8oO/OF3v27LXdk45bnEjKTieCKnpJa/JxJMtSWB\nyvfqQukPB9R+fOWy4mIyYuWpZydBvZNTsawsurepea6cj+u/XNxFB+dz7rCObCqNsbk0xqbE7KSu\n78dg89aPzaac7PIidi2Pz+zaLz+PXbOzKSiNsam0nM2lMToUf8uQtdtOTG00CSRJkiRJkiRJkrZb\nZmZ8plPi5XeZ7VR69CBKjx5U9wPKSmu9YMHY+8gorZRESpWkSjwLiZKSWiOPtWpDWff9obSYjJIt\n9TNKi6G0hFhxMZnlZVUPyskhOzOD1rkZtM4FyAKgRaz+S+c9c0oH2G33KmUZb34Ei+p9qu1iEkiS\nJEmSJEmSJO18WbWnKMrDwQ1yidIjT6D0yBNq3b9kyRKIldOra1coLSGjtKTWmU5Fl9wABZvj9Uri\nSaT430ugLJlcKoknqZLluTWf6ZS5y66UdQtb6pcWVzo2fq6MsrIUEdSfSSBJkiRJzcbatWuZN28e\nn332GaWlpWRnZ9O5c2cGDx5Mfn7+tk+wE7zzzjtMmDCBFStWUFZWRlZWFl26dOHmm2/m8MMPb+zw\ngPRoR0iPOJcuXcqUKVNYtGgRpaWltGrVip49ezJq1Ch69OjR2OGljXS415A+cTZ1yXZ87733KC0t\npX379k2uHZN9e+nSpRX32r69fdKh36RDjOnAdlSTlpFZYym+VMr2P7RBLld2UF8KDuq79UrVZydt\np4xY7Ls+ykoA69atsyEb2JIlSwDo1atXI0cipQ/7jVR/9hup/ppivykoKODJJ59k2bJl5OXlkZe3\n5dt2RUVFFBUV0a1bN84//3xatmzZKDGuXLmSs88+my+//JKsrCxyc7d8u7C4uJiysjI6dOjAzJkz\n6dixY6PEmA7tmC5xrl27ltGjR7Ns2TJycnJI/t+7ZcuWFBYWUlJSQrdu3bjvvvv84Gsr0uFep1Oc\nTV31dty0aRMA+fn5TaYdq/ftFi22PMjcvl0/6dBv0iHG6vw9Taq/pthvtqV169Z1ftBR2iaBQgj5\nwHjgx8BewNfA/wA3RVH0RR2OPwa4CTgKaAl8BPwaeDCKono3ikmghpeOnU9qbPYbqf7sN1L9NbV+\nU1BQwOTJk9m8eXOVD+OqKywsZJddduHKK6/c6R8wrFy5kiFDhlBUVFQl+VNdcXExeXl5zJ07d6cn\ngtKhHSE94ly7di0/+9nPqsRYUFAAUCWWZIwzZszww+IU0uFeQ/rE2dSlase1a9cCVOkfTa1vp2Lf\n3rZ06DfpEGMq/p4m1V9T6zd1UZ8kUOaODGRHCSG0BOYDlwGzgZ8DDwPnAK+FENpu4/iBwMtAL+AW\n4GLiSaDJwH07KGxJkiRJO8CTTz65zQ8WAFq0aMHmzZt58sknd1JkW5x99tnbTAAB5ObmUlRUxDnn\nnLOTItsiHdoR0iPO0aNH1yvG0aNH76TI0ks63GtInzibunRoR/t2w0mH+50OMaYD21FqfGmZBAKu\nBg4Cro6iaEwURb+NomgCcD7QjfgMn62ZChQC/aMoeiCKoiejKDoLeA64MoRwyI4MXpIkSVLDWLt2\nLcuWLdvmBwtJLVq0YNmyZRXfLt8Z3nnnHb788sttJoCScnNz+eKLL3jnnXd2cGRbpEM7QnrEuXTp\n0u2KcenSpTs4svSSDvca0ifOpi4d2tG+3XDS4X6nQ4zpwHaUmoZ0TQJdAGwCHq1W/hzwOXBeCCHl\ndKgQwpFAAGamWDbuQSADOK9hw5UkSZK0I8ybN6/KuvJ1kZeXx1/+8pcdFFFNEyZMICsrq17HZGVl\nceutt+6giGpKh3aE9IhzypQp5OTk1OuYnJwcpk6duoMiSk/pcK8hfeJs6tKhHe3bDScd7nc6xJgO\nbEepachu7ADqK4SwO7Af8EoURUWV90VRFAshvAWcQXxG0CcpTtE3sX09xb43E9sjGyjcivUEtf1s\nQ6n+7DdS/dlvpPprCv3mvffeo7S0tOLh4XW1cOFCDj300B0UVVVLly4lIyODkpKSOh+TkZHBxx9/\nvNPaOB3aEdIjzkWLFhGLxSqeAVRdbeUffPBBk+hTTUU63GtInzibum21Y22zAppS366NfbumdOg3\n6RDjtjSFn7vm0I76fmkK/aa6hnhOUTrOBOqS2H5ey/4ViW33WvZ3re34KIo2AN9u5Vg1A7Nnz2b4\n8OF8+OGHFWXDhw9n4sSJjRLPxIkTGT58eKNcO+kf//gHV199NRdccAGPPfZYo8Yi+Oqrrxg+fDgP\nPfRQY4ciSVKTV1paulOP2x7l5eU79bjtkQ7t+F2utzPjTIcY00G6tGO6xNnUpUM7pkOM6SId2jId\nYkwHtqPUNKTdTCCgVWK7uZb9m6rV257jazu23hoiU/d9lcy8NnQb5ufnA7DPPvtUnPvOO++kbdu2\nO/x+vfLKK5SVlXH88cdXlF111VV88803jfazUl5ezhVXXEFRURFjxoxh33339ee2jmbOnEmfPn3Y\nd999G/S8nTp14s4772Svvfaq973YUf1Gas7sN1L9NaV+0759+3rNsEnKycnZafHn5eVRVlZW7+Oy\nsrJ2Wozp0I6QHnG2atUq5YdXydkDLVu2THlcdnZ2k+hTTUU63GtInzibutraMTkDKPn/+OqaQt/e\nFvt2TenQb9Ihxtr4e5pUf02p3+wI6TgTSGpwgwYN4rDDDtvh13nqqadYsGBBlbLDDjuMQYMG7fBr\n12bt2rWsXbuWI488kmHDhnHIIYc0WizppLi4mPvvv5+PPvqowc/dokULBg0aRO/evRv83JIkNTed\nOnWiqKho2xUrKSoqonPnzjsoopo6d+5McXFxvY4pLi6mS5cu267YQNKhHSE94uzRoweFhYX1Oqaw\nsJCePXvuoIjSUzrca0ifOJu6dGhH+3bDSYf7nQ4xpgPbUWoa0jEJtD6x3bWW/btVq7c9x9d2rLTd\nysvLiaKoscOoIfmBRG3fSFRqS5YscXqyJElNwIknnrhdHy4MHjx4B0VU0/jx4+s9E6isrIybb755\nB0VUUzq0I6RHnJdffnm9v/VcUlLCqFGjdlBE6Skd7jWkT5xNXTq0o3274aTD/U6HGNOB7Sg1DemY\nBFoGxIB9atmf/LpcbU9x+iSxrXF8CKE10Horx6qBTZgwgb59+/Lxxx9z1VVXMWDAAF599dWK/StW\nrGDcuHH86Ec/4phjjuG0007jzjvvZPXq1TXO9eabb3LllVcyePBgjj32WE4//XQmTpzIV199tc04\n+vbty6WXXlrl9db+VPbpp58yYcIETjnlFI4++mhOOeUURo8eXeWZQy+88AJHHXUUmzdv5s9//jN9\n+/Zl2rRpAFx66aU1zlleXs7vf/97zjvvPPr370///v0599xzeeqpp6okHlauXEnfvn2ZOHEiS5cu\n5aqrrmLgwIH079+fkSNHsnjx4m22/49//GOAirgmTJhQ0QaXX345r7/+OmeeeSZDhgz5TvEtWrSI\nESNG0L9/f0455RSmTZtGLBbjww8/5JJLLuG4447j1FNP5b//+7/r9Iv10KFDOemkk/jmm2+46aab\nOPHEE+nfvz8XXHABf/vb32rUX758OTfeeCNDhgzh6KOPZsiQIYwbN46PP/64Sr3S0lJ++9vfct55\n5zFw4ECOO+44zjnnHKZNm1aRMJswYQIXXnghALfeeit9+/blnXfeqTjHwoULufrqqxk0aBD9+vXj\njDPOYPLkyaxfXzW/PHToUM444wwWL17M8OHD6devHxs3bqxot+S9SFq9ejV33HEHp512GscccwyD\nBw/m6quvZuHChVXqzZ49m759+/L3v/+dm266iRNOOIE//OEP22xTSZLSUX5+Pt26davzt7MLCwvp\n1q1brUsL7QiHH344HTp0qPNsoOLiYjp06MDhhx++gyPbIh3aEdIjzh49emxXjD169NjBkaWXdLjX\nkD5xNnXp0I727YaTDvc7HWJMB7aj1DSkXRIoiqJNwPvAYSGEFpX3hRCygGOAz6IoWlHLKZKfDh+b\nYl//xPbVFPu0A02dOpV27dpxww030L17dwA+/vhjxo8fz5IlSzjvvPO48cYbOfHEE5k7dy7/+Z//\nyddff11x/GuvvcZVV13F6tWrGTlyJDfddBMDBw7kxRdfZMSIEWzeXNsjoFK78847a/y57LLLAKpM\n5V69ejUXX3wxr7zyCsOGDWP8+PH89Kc/ZcmSJVx00UUViaDDDz+c6667ruLvd95551a/1XD77bdz\nzz338IMf/IArr7yS0aNH07FjRyZPnsytt95ao/7XX3/NFVdcQdeuXRkzZgxnnXUWH3zwAWPGjNnq\nhw3Dhg2rEdewYcMq9hcWFvLLX/6SYcOGMWbMmO2Ob/Xq1dxwww3079+fa665htatW/PII48wffp0\nrrvuOvr27cs111zDXnvtxTPPPMPTTz9da8yVFRcXc80115CTk8OVV17JZZddxurVq7nmmmt4//33\nK+otXbqUCy+8kDfeeIOhQ4dy4403cuaZZ7Jw4UJGjBhRZUm3SZMmcf/999O1a1dGjx7N2LFjOeig\ng3j00Ue58cYbK9ot2U7Dhg3jzjvvrPi5nT9/PqNGjeLrr79m5MiRjBs3jiOOOIKnn36aSy+9tMYv\nPrFYjIkTJzJ48GBuuOEG8vLyUr7Xr7/+mgsvvJA5c+YwcOBArr/+es4//3yWL1/OqFGjeP3112sc\n87vf/Y6CggLGjh27U5Y7lCSpsZx//vnssssu2/yAobCwkF122YXzzz9/J0W2xcyZM8nLy9tmIqi4\nuJi8vDxmzpy5kyLbIh3aEdIjzvvuu69eMd533307KbL0kg73GtInzqYuHdrRvt1w0uF+p0OM6cB2\nlBpfdmMHsJ0eBSYDlwAPVCo/D9gTGJ8sCCHsBxRFUbQMIIqi90II7wLDQgg3R1H0eaJeBjAaKAFm\n7JR3sQ0F715br/oZmXm06DOxRnnpqgWU/PuFep0re68TydnrRzXKCz+4jVhJfDZDy8Purtc5t6ak\npISbbrqpStljjz1Gq1atePTRR2nTpk1F+aGHHso111zDjBkzuOaaa4D4LI+DDjqIG2+8sWLt9CFD\nhpCZmcmMGTNYsGABJ598cp3jqf6MnsLCQh555BF23XVX7rrrroryTz75hJ49e1bMSknq2bMnV111\nFc888wy9e/dmr7324phjjgGgQ4cOW30G0KJFi3j++ec56qijuP/++8nIyADgjDPOYPTo0cydO5ez\nzz6bAw88sOKYv/3tb9xxxx1VEkvr16/n+eef5x//+AdHHHFEymv17t27om1TxbVo0SImTJhQZRbQ\n9sT3xhtv8NBDD1UkIvbdd19+/vOf8/DDDzN58mSOOuooAI455hhOPfVUXnnllToN+ps2bWLfffdl\n3LhxFWX77bcfl156KU8++SR33x3/GZ08eTKbNm3ikUce4eCDD66oe+yxx/Lzn/+cKVOm8MAD8X9K\nXnzxRbp3787EiVv60imnnEKnTp345z//SUFBAb179+aTT+KTCvfff/+KdisuLuauu+6iV69e/PrX\nv65I6Jx66qn06NGDSZMm8cwzz3DuuedWnHvlypVccsklFTOLavPII4/w1Vdfcdttt1X5WTvppJMY\nNmwY9913H0cffXSVY/7973/zm9/8huzsdP2nXpKkumnZsiVXXnklTz75JMuWLSMvL6/KFyuKiooo\nKiqiW7dunH/++Y2yDG7Hjh2ZO3cu55xzDl988QVZWVnk5uZW7C8uLqasrIwOHTowc+ZMOnbsuNNj\nTId2TJc48/PzmTFjBqNHj2bZsmXk5ORU2V9YWEhJSQndunXjvvvu8xvPtUiHe51OcTZ1qdqxsqbQ\njqn6dosWW76fbN+uu3ToN+kQYzqwHaXGl66fDD4EDAcmhRC6AG8DBwBjgA+ASZXqLgYiYL9KZaOA\nl4H/DSHcD3wL/AQYCNwURdHSHf4O6qD82w/qd0BW6n8kY0Vf1/tcsTYHpywvX7eYWPHa+sVVBwMH\nDqzyesWKFSxfvpyBAweSlZXFhg0bKvb16dOH3XffvcryW8OHD2f48OHx2GMxNm3aRCwWY++99wbi\nH7R/F3feeSdLly7lrrvuolOnThXlRx11VEUCA6CgoIDS0lI6dOgAwBdffFHva82fPx+A008/vSLB\nknTaaafx2muv8eqrr1ZJsuy55541Zhb17t2b559/njVr1tQ7hqTMzEyOO+647xzfXnvtVWUmSq9e\nvQBo165dlfZr164d+fn59Yr59NNPr/L6sMMOo3Xr1hVLpBUUFPDmm2/Ss2fPKgkgiLdRjx49eOut\ntygqKiIvL4+srCy++uorVq5cWeXDl5/97GfbjGXhwoWsWbOGs88+m+Li4irf9B0wYAD33nsv7777\nbpUkUCwW22pSMGn+/PnsvvvuNe5zhw4dOOKII3j11Vf5/PPPq+w77rjjTABJkr43WrZsyciRI1m7\ndi1/+ctfWLFiBaWlpWRnZ9OjRw8GDx7c6B/GdezYkVdeeYV33nmHW2+9lU8//ZSysjKysrLYb7/9\nuPnmm3fqEnCppEM7pkucyQ+Lly5dytSpU/nggw8qYuzTpw+jRo1ymag6SId7nU5xNnXV23HhwoWU\nlpaSk5PTZNqxet/++OOP7dvbKR36TTrEmA5sR6lxpeWng1EUlYQQfgTcApwJ/B9gNfAIMD6Koq2u\n/RVF0ZshhAHArYk/ecSTRf8ZRdFjOzJ2pVb9m47Lli0D4KWXXuKll15KeUwsFqv4e2lpKTNmzODF\nF1/k3//+d41nytT3QbyVPfPMM8yZM4fhw4dzwgkn1Ng/b948fve737F06VIKCgq+83WXL18OkPKX\nxuQspxUrqq52uM8+NR+RlfxWReVn9NRXfn5+jW9gbE981e9v8puQyWRZ9X31iblbt241yvbYYw8+\n/vhjNm/ezOeff055eXmtv4R36dKFpUuXsnLlSrp168bFF1/MPffcw9lnn83RRx9N3759Oeqoo6ok\n/2qT/Ln91a9+xa9+9auUdb788ssaZdv6pu+GDRtYu3YtBx98MFlZWSnfw6uvvsqKFSvYY4896nxe\nSZKao/z8fM4+++zGDmOrDj/8cJ577rnGDmOr0qEdIT3i7NGjB/fccw9LlsQfPZv8QpTqJx3uNaRP\nnE1dsh0PPfRQoGn2m2Tf1neXDv0mHWJMB7aj1DjSMgkEEEXReuIzf8Zso15GLeVvA6fsgNAaTGab\ng+pVPyMz9bNEMvLa1f9cLdunjqn1/hXLwTWkXXbZpcrr5DN8+vfvX2XWRGWVZ6HcdtttzJkzhwMP\nPJDrrruODh06kJ2dzdtvv82jjz663XH961//4t577+WQQw7h8ssvr7H/ueee4/bbb6d9+/ZcfPHF\ndOvWjRYtWrB+/XrGjh27XddMJpJSTX9NJnaqJ5sqLyXSkKrfl8rXrk981Ze/SPqucWdnZ6c8x667\n7grEl1VJ/izVNp24esznnHMOXbt25emnn+aNN95gwYIFABxyyCGMHTu2yjOhqtu0aRMAF1xwQY2l\n2apfLyk3N7fW9kmq73tISnX/JEmSJEmSJH1/pG0S6PugoZ65k93+OLLbH7ftinXQ4qCbtl2pASQ/\nvM7Ly9vmkhhff/01c+fOpXPnzkydOrXKeryffvrpdsewYcMGxo0bx2677cYdd9yRclmt3/zmN2Rl\nZfHggw9WzIL5rtdNftCf/OC/suSH/MkkR2NoSvGVlpZWTB+ubOPGjWRlZbH77rtX/CylihdSx3zk\nkUdy5JFHUlhYyMKFC5k7dy5z585l1KhRzJ49m1atWqU8V/Icu+++e4Mu5VLX92DSR5IkSZIkSVJl\nmY0dgJRK9+7dAfjoo49S7v/mm28q/v7FF18Qi8U4+OCDqySAgIrnwtRXLBZjwoQJrFq1ittuu63K\nEluVrVy5kj333LNKAui7XBe2vPelS2s+miq53FjXrl23+/zfVVOLL7k8XVJpaSmrVq0iPz+fzMxM\nOnfuTFZWVsp4IR5zbm5uyqXTWrRowdFHH82ECRP4yU9+wrfffsu7775bayzJtnn//fdT7v/222/r\n+K6qatWqFe3atWP58uUplxhMtnuqpfEkSZIkSZIkfX+ZBFKT1KlTJ7p06cKKFSt46623quxbtGgR\nJ598MjNmzACoeHDcF198UaXeW2+9xRtvvAFAUVFRva7/xBNP8L//+7+MHDmSI444otZ6+fn5fPvt\ntxQWFlaUrVq1ipkzZ9a4bvJZLsXFxVu99sCBAwH44x//WOW5R7FYjGeffRYg5bOJdpamFt+f/vSn\nKq///ve/s3HjRvr06QPEEznHHnssS5cu5b333qtS99133+XTTz+lX79+5OTksHjxYs4888yK91FZ\ncpZPcvm5zMz4P5+V7/Ghhx5Kfn4+r732Wo3k1Lx58zj55JOZO3fudr3PQYMGsWHDBubNm1elfMWK\nFbzzzjvsv//+KZ+xJEmSJEmSJOn7y+Xg1GRdeOGF3HHHHYwdO5af/vSndOrUiWXLljFr1izy8/MZ\nMmQIAB07duSAAw7gnXfeYdKkSRxwwAFEUcScOXMYP348Y8aM4eWXX6Znz54MHjx4m9f98MMPeeih\nh2jfvj2dOnXir3/9a406vXv3Zq+99mLw4ME89dRTjB07lpNOOomvvvqK3//+94wePZr777+fjz76\niNmzZ9OvXz9+8IMfkJeXx+uvv87jjz9Op06dGDRoUI1z77fffpx11lnMmjWLMWPGMGDAAMrKyliw\nYAFvv/025557Lj169PjuDbydmlJ8ubm5LF68mFtvvZU+ffqwYcMGnnjiCXJycrjgggsq6l1xxRUs\nXLiQX/ziF5xzzjl07NiRzz77jFmzZtGmTRuuuOIKIP6w0by8PH75y1+yZMkS9t9/f7KysliyZAkz\nZ86ke/fuFcu8JWcO/eEPf6CwsJBDDjmEAw88kLFjx3L99ddz6aWXcu6559KuXTsWL17MH//4Rzp3\n7ky/fv22672OGDGCBQsWcPvtt7NkyRK6d+/OqlWreOaZZ8jKyuLaa6/9jq0pSZIkSZIkqbkxCaQm\nq1evXkyYMIF58+Yxa9YsNmzYQNu2bRkwYAAjR46kffv2AGRkZHDHHXcwadKkime3HHLIIUydOpUe\nPXpw+umnM2fOHKZMmcLxxx+/zet+8sknlJWVsWrVKq6//vqUdW6++WZOPfVURo4cSXFxMfPnz+eu\nu+6iR48ejBs3jgEDBlBQUMDkyZOZOnUq3bp1o3379lx99dU89NBDPProo5x++ukpk0AA1157LV27\nduXZZ5/l3nvvJSMjg+7du3PDDTcwdOjQ7W7ThtKU4rv77rt54IEHePDBBykoKKBnz56MGjWKEEJF\nnS5dujB9+nSmTZvG7NmzWbduHW3btqV///5cdNFF7L333gBkZ2czbdo0pk+fzoIFC3jhhRcoLS2l\nQ4cOnHXWWVx44YUVM4H69OnDaaedxrx585g+fTrjxo3jwAMP5IQTTmDKlCnMmDGDGTNmsHnzZvbY\nYw+GDh3KRRddxG677bZd77NNmzZMnz6dhx9+mBdffJE1a9bQqlUrDjvsMEaMGEGvXr2+e2NKkiRJ\nkiRJalYyKi/npO23bt06G7KBLVmyBMAPt5XS0KFDWbNmDa+++mpjh9Kk2G+k+rPfSPVnv5Hqz34j\n1Z/9Rqo/+41Uf+nYb1q3bp1R17o+E0iSJEmSJEmSJKkZMgkkSZIkSZIkSZLUDJkEkiRJkiRJkiRJ\naoayGzsASdoezz33XGOHIEmSJEmSJElNmjOBJEmSJEmSJMWnl0EAABHDSURBVEmSmiGTQJIkSZIk\nSZIkSc2QSSBJkiRJkiRJkqRmyCSQJEmSJEmSJElSM2QSSJIkSZIkSZIkqRkyCSRJkiRJkiRJktQM\nmQSSJEmSJEmSJElqhkwCSZIkSZIkSZIkNUMmgSRJkiRJkiRJkpohk0CSJEmSJEmSJEnNkEkgSZIk\nSZIkSZKkZsgkkCRJkiRJkiRJUjNkEkiSJEmSJEmSJKkZMgkkSZIkSZIkSZLUDGXEYrHGjqFZWLdu\nnQ0pSZIkSZIkSZJ2qNatW2fUta4zgSRJkiRJkiRJkpohk0CSJEmSJEmSJEnNkEkgSZIkSZIkSZKk\nZsgkkCRJkiRJkiRJUjNkEkiSJEmSJEmSJKkZyojFYo0dgyRJkiRJkiRJkhqYM4EkSZIkSZIkSZKa\nIZNAkiRJkiRJkiRJzZBJIEmSJEmSJEmSpGbIJJAkSZIkSZIkSVIzZBJIkiRJkiRJkiSpGTIJJEmS\nJEmSJEmS1AyZBJIkSZIkSZIkSWqGTAJJkiRJkiRJkiQ1QyaBJEmSJEmSJEmSmiGTQJIkSZIkSZIk\nSc2QSSBJkiRJkiRJkqRmKLuxA9D3UwjhceBnW6kyOoqi+xN1WwL/BfwE6AKsB14Cboqi6KMdHKrU\nZNS134QQbgHGb6XeA1EUXd2QsUlNXQjhZGAccBhQCiwEJkZR9FK1eo45UkJd+o1jjhQXQojVoVq3\nKIqWJ+o73uh7rz79xvFGqiqEcABwPTAQaAd8C/wNuDuKolcr1XO8kRLq0m+a63hjEkiNbRTwVYry\n9wBCCBnAc8Bg4DFgAtAR+AXwegihbxRFS3dSrFJTsdV+U8ktwD9T1FvS0AFJTVkI4T+BR4H/Ba4C\nWgGjgbkhhB9FUTQ/Uc8xR0qoa7+p5BYcc/T9Nmwr++4EWpP4/c3xRqpQ535TyS043uh7LoRwKPAq\nUAw8CHwEdAIuBxaEEH4cRdHzjjfSFnXtN5UOuYVmNN6YBFJjm5P8NlwtfgKcSDwje12yMITwV+Bt\n4G7gjB0aodT0bKvfJC1I8SGd9L0SQugATAb+ApwURVF5ovx54HXgP4D5ieqOORL17jdJjjn6Xoui\naFaq8hDCj4GewM+jKNqUKHa8kah3v0lyvJHgRmAX4PQoiv5vsjCE8AywGLgVeB7HG6myuvabpGY1\n3vhMIDV1FyS2kysXRlH0LvHpeqeGENrs9KgkSeniZ8CuwC3JD7IBoij6JIqi9lEUXVuprmOOFFef\nfiOpFiGEVsD/D7wSRdGMSrscb6RabKXfSNqiR2L7SuXCKIr+BawGuiaKHG+kLerab5olk0BqEkII\nLUIIqWam9QU+i6Lo8xT73gRyiK9TL33vbKXfVK+XG0LI3RkxSU3QicAG4rMXCCFkhRDyaqnrmCPF\n1affVOGYI1VxE/Fldy6vVu54I9Wutn5TheONvucWJ7b7Vi4MIbQG2gCLEkWON9IWde03VNvfLMYb\nk0BqbJeHEJYBBUBRCOGNEMIpUPENoHwg1WAFsCKx7b7jw5SalFr7TTVnhxD+CRQl6n0QQjh/p0Yq\nNb79gKVAnxDCAuL9oTCEsCiE8JNkJcccqYo69ZtqHHOkSkIIexL/EPuJKIo+qFTueCPVorZ+U43j\njQS3A98AT4QQ+oUQ2oUQDiL+3J8YcJPjjVTDNvtNtfrNarwxCaTGdhJwB/G15W8AegEvJD5gaJWo\ns7mWY5NrA7eqZb/UXG2t31R2MvBQYnsV8QerPhFCGLsTY5UaWz7xb/X8GXgN+DFwRaLsdyGEEYl6\njjnSFnXtN5U55khVXQe0IP6BQ2WON1Ltaus3lTne6HsviqJFwNFAFvGlrb4C3geOJP48x/k43khV\n1LHfVNasxpttLiMk7SD3AL8D5kdRVJQo+58Qwp+A9xL7j2is4KQmapv9JoQwE3gKeAN4PYqidYl6\nc0MITwP/AsaHEB6OoujbnRy/1Bhyia/tOzyKot8mC0MIfyY+HfyOEMLjjROa1GTVqd9EUVSGY45U\nQwihLXAZ8EIURR83djxSOqhDv3G8kRJCCAH4HyAPGE28D+wJXAM8H0I4E/hn40UoNT116TdRFM2j\nmY43JoHUKBJTu2tM746i6MMQwnzia9HvkSjetZbT7JbYrm/wAKUmqI79Zv8oiv4J1PiPUxRFq0MI\ns4CLgWOJf8Nbau42Ev8l7+nKhVEULQshvAwMAfYHlid2OeZIde83ixIf1DnmSFWdC+wCpHqofXIc\ncbyRqtpav8HxRqriEWBv4v//X5YsDCH8gXg/eYz472rgeCMlbbPfhBC6NdfxxuXg1BStSmx3IT41\nb59a6nVJbJfs8Iikpi/Zb3ZvoHpSc7Gc2n/fWZ3Y7h5F0UYcc6Sk5dSh39ThPI45+r4aRnz9+DnV\ndzjeSLWqtd/UgeONvjdCCLsS/wD63cofZANEUVQAzCf+QXdnHG8koF79Zt9tnCptxxuTQNrpQgi7\nhxCGhxCG1FYlsf0M+BuwTwihc4p6/YEC4N0dEKbUpNSj33weQjgnhDBsG/VW1LJfam5eJ760Ve8U\n+5L/8Uk+LNUxR4qrU78JIeQ45khVhRB2A44hvoRIQS3VHG+kSrbVbxxvpCpaAhnEn5+VSotKW8cb\nKa6u/Wa35jremARSYygGpgCPhxDaVd4RQhhM/FlAb0VR9DnwaGLX6Gr1jgMOB55OfJtOau7q2m8+\nAyYQf1hdr2r1ehN/uPfnwFs7JWqp8T2e2I4PIWQkC0MIBxP/j8/7URQlf4FzzJHiHk9st9pvoigq\nwTFHqu5gIAdYtJU6jjdSVVvtN4430hZRFH1NfPbOwYmf/wohhHxgIPEl3hbheCMB9eo379FMx5uM\nWCzW2DHoeyiE8DPiHzAsAx4CvgQOJf4gyELg+CiK3kvUnQ2cAUwHXiL+DdRfAJuAI6Io+nJnxy81\nhrr2mxDCIGAusJZ44mgZ8W8rXEH8GQ8/jqJo7k5/A1IjCSFMJv7z/wIwk/g4Mpr4OtgnRVE0v1Jd\nxxyJuvcbxxypqhDCz4k/i+EXURTds5V6jjdSQl36jeONtEUI4TTgj8A64EHgI6AdcBXQDbg0iqKH\nE3UdbyTq3m+a63hjEkiNJoRwAvBfQF/iD6r7Evi/wO1RFH1SqV4uMA44D+gKfAO8CNyQmPUgfW/U\no98cBtwIDABaA2uABcCdyQSr9H2RmMlwCXAp8V/eioDXgFuiKPp7tbqOORL17jeOOVJCCGE0cC9w\nSRRF07ZSz/FGSqhHv3G8kRJCCEcBY4k/56QtsAF4G7i38gfUjjfSFvXoN81uvDEJJEmSJEmSJEmS\n1Az5TCBJkiRJkiRJkqRmyCSQJEmSJEmSJElSM2QSSJIkSZIkSZIkqRkyCSRJkiRJkiRJktQMmQSS\nJEmSJEmSJElqhkwCSZIkSZIkSZIkNUMmgSRJkiRJkiRJkpohk0CSJEmSJEmSJEnNkEkgSZIkSZIk\nSZKkZsgkkCRJkiRJkiRJUjNkEkiSJEmSJEmSJKkZMgkkSZIkSZIkSZLUDGU3dgCSJEmSVJsQwjlA\nURRFzzZ2LOkmhNAeuAy4P4qibxs7HkmSJEk7nzOBJEmSJDVlE4AfN3YQaeoEYDzQprEDkSRJktQ4\nTAJJkiRJapJCCG2BfRs7jjR2VGMHIEmSJKlxZcRiscaOQZIkSZKqCCE8DvysWvGCKIqOT+wfDlwC\n9AFygH8DfwJuj6JoTaXzHA+8DPweuAa4HxiYOOZN4Iooiv4VQjgDuB7oDWxOnOuqKIo2VDrXcqAL\n0AE4DxiZeL0BeBEYF0XR59XeR0vgF8AwoBdQCnwEPAk8GEVRaaW6txCfuXNZougGYHMURSGxPxsY\nBZwP7Ae0AFYn3t8tURR9nKjXFViWollPiKJofgghBhBFUUb1CpXa/bIoih6qVnYycDRwKfCPKIp+\nVOm4Ot0PSZIkSTuXM4EkSZIkNUVPAw8l/v42cC3wK4AQwoPAU0Bn4BFgErACGA38PYTQIcX58oB5\nib/fD7wFDAZeSCQwfg28AdwHfAtcmKiXysTEtV5M/H0xMBx4JYRQsfRaIgG0ALiVeGLpHuBhYJfE\ndZ4LIaT6P9nhwC3AE8DUSuWPAQ8Auya2E4F/Ja79RgihU6Le2kR7fZJ4fUfi9dJa3k9dnU48ATUV\n+G2ycDvvhyRJkqSdILuxA5AkSZKk6qIomhtCKCQ+6+SfURRNAggh/Ai4HHgP6B9F0cbkMSGE24nP\n5rmLmrOITgXujqLo+sTr20IIbwBHEk9qHBFF0UeJ89wPfAYMCyFcFEVR9eUT/gPoE0XR6krXfT5R\nPop40gXgJuAI4gmmS5LnCSFcD8wFTknE+Vi18w8H+kVR9G6l99aN+OyjL4G+1d73bOAM4ArguiiK\n1gOTQginAt2BX0dRtLxmK9fbWcDBURT9u9K1t/d+SJIkSdoJnAkkSZIkKZ1cnNjeVDnhkHAbsIl4\n8qZFtX3lxJMRlf0tsZ2dTAABRFH0FfAh0ArYM0UMU5MJoET9GPBg4uUQgBBCBnARUAKMrZxIiqKo\nGLg58fKCFOf/V+UEUMJa4svYDUvxvv+U2B6c4lwNaUHlBFDC9t4PSZIkSTuBM4EkSZIkpZOjEts1\niWffVPcRcCiwP7CwUvmnURStq1Y3+byfRSnOk9yXKnnxRoqyfyW2+yW23YE9iC+L1jqE0Lpa/a+J\nJ6YOS3GuhdULErG/DBUJprbEk1SVn+uzoxMtNeJi+++HJEmSpJ3AJJAkSZKkdJKcmfO3rdaC9tVe\nr01RJ1aHfRkp9q1OUfZNYpt8JlAyzs7AslpiBNg9hNAiiqLCbcRKCGEAMB7oB+Ru5Zw7Sqq4tvd+\nSJIkSdoJTAJJkiRJSifJ5Mz5QPXlxyp7bwfGUJ6iLLnUdjKZk4zzU+DqbZyvtNrrsuoVQggnAPOA\nLOB3wEvEE09lxGfa3Fz9mB2gRlw0jfshSZIkqRYmgSRJkiSlky+BLsA7URQtbqQY2qUoS84AWpXY\nfpnYtoyi6NkGuOZ1xBNAN0VRNLHyjhBCXgOcP6m+M3aawv2QJEmSVIvMbVeRJEmSpCbjzcR2cKqd\nIYTuiWfm7Eh9U5QdkNh+ChBF0XLiy8btGUI4qHrlEEJGCKF7Pa7ZLbF9PsW+IfU4DyRmK4UQ2lQu\nDCFkAwfX81xN4X5IkiRJqoVJIEmSJElNVXJptcozbx5NbK8JIVSZkRNCOApYDMzfwXFdHkLIr3Td\nDOD/JF7+uVK9ZKwTQwhZ1c4xGlgaQphQx2v+O7E9oHJhCGE4cGLiZdtqx6RqP4BPEtuTq5VfzZZn\n/NRVU7gfkiRJkmrhcnCSJEmSmqolQDFwUgjhcaAsiqIRIYRfAZcBH4QQfkv82Ti9gTOJP1/n+h0c\n10vAeyGEPxFfDu1HQH/gI+DXlepNJJ6g+f+Ad0MIzxF/hs6xwKDE+5tSx2s+DgwEfhVC+CHx99wP\n6AP8B/AGcFAI4T7gD1EU/Q34J3AS8FgI4WVgQRRFs4HpwCTgkRDCscBXxGc3HZqI/7K6NkQURf+3\nCdwPSZIkSbVwJpAkSZKkJimKojXAlcAa4KfEkydEUTQKOJ94EmUEMB44DpgFHBVF0Ws7OLS7gF8C\nxwM3AvsDTwHHRVG0sVL8mxN1bgIygF8A44DOwD3AMVEUra7LBaMoepJ4ouVz4NLEn9XE3+/bwH8R\nT75cCPRIHHY38DLQCzgPSM5eui8R9yrgEuKzmDYBxyTOWS9N4H5IkiRJqkVGLBZr7BgkSZIkqckL\nISwHugD7R1H0r8aNRpIkSZK2zZlAkiRJkiRJkiRJzZBJIEmSJEmSJEmSpGbIJJAkSZIkSZIkSVIz\nZBJIkiRJkiRJkiSpGcqIxWKNHYMkSZIkSZIkSZIamDOBJEmSJEmSJEmSmiGTQJIkSZIkSZIkSc2Q\nSSBJkiRJkiRJkqRmyCSQJEmSJEmSJElSM2QSSJIkSZIkSZIkqRkyCSRJkiRJkiRJktQMmQSSJEmS\nJEmSJElqhkwCSZIkSZIkSZIkNUMmgSRJkiRJkiRJkpohk0CSJEmSJEmSJEnNkEkgSZIkSZIkSZKk\nZsgkkCRJkiRJkiRJUjNkEkiSJEmSJEmSJKkZ+n/yMLlrgARBMwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "XpRl_4Beof6G", + "colab_type": "code", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 297 + }, + "outputId": "58b09484-4510-4a8a-e16d-75d4393eace2" + }, + "cell_type": "code", + "source": [ + "alpha_samples_means_ = np.array(alpha_samples_1d_.mean(axis=1))\n", + "beta_samples_means_ = np.array(beta_samples_1d_.mean(axis=1))\n", + "sorted_alpha_means_ = np.sort(alpha_samples_means_)\n", + "sorted_beta_means_ = np.sort(beta_samples_means_)\n", + "alpha_index_ = sorted_alpha_means_.shape[0]\n", + "beta_index_ = sorted_beta_means_.shape[0]\n", + "upper_alpha_quantile_ix_ = int(alpha_index_ * float(0.975))\n", + "lower_alpha_quantile_ix_ = int(alpha_index_ * float(0.025))\n", + "\n", + "upper_beta_quantile_ix_ = int(beta_index_ * float(0.975))\n", + "lower_beta_quantile_ix_ = int(beta_index_ * float(0.025))\n", + "\n", + "def find_nearest(array, value):\n", + " array = np.asarray(array)\n", + " idx = (np.abs(array - value)).argmin()\n", + " return idx\n", + "\n", + "alpha_upper_quantile_ix_ = find_nearest(alpha_samples_means_, sorted_alpha_means_[upper_alpha_quantile_ix_])\n", + "alpha_lower_quantile_ix_ = find_nearest(alpha_samples_means_, sorted_alpha_means_[lower_alpha_quantile_ix_])\n", + "beta_upper_quantile_ix_ = find_nearest(beta_samples_means_, sorted_beta_means_[upper_beta_quantile_ix_])\n", + "beta_lower_quantile_ix_ = find_nearest(beta_samples_means_, sorted_beta_means_[lower_beta_quantile_ix_])\n", + "\n", + "p_t_low = logistic(t_.T, beta_samples_1d_[beta_lower_quantile_ix_], alpha_samples_1d_[alpha_lower_quantile_ix_])\n", + "p_t_high = logistic(t_.T, beta_samples_1d_[beta_upper_quantile_ix_], alpha_samples_1d_[alpha_upper_quantile_ix_])\n", + "\n", + "[ \n", + " p_t_low_, p_t_high_\n", + "] = evaluate([ \n", + " p_t_low, p_t_high\n", + "])\n", + "qs = np.stack([p_t_low_[0][::50], p_t_high_[0][::50]], axis=0)\n", + "\n", + "fig, (ax1) = plt.subplots(1, 1, sharex=True)\n", + "\n", + "ax1.fill_between(t_[::50].T[0], qs[0], qs[1], alpha=0.7, color=TFColor[6])\n", + "plt.plot(t_[::50].T[0], qs[0], label=\"95% CI\", color=TFColor[6], alpha=0.7)\n", + "\n", + "plt.plot(t_.T[0][::50], mean_prob_t_[0][::50], lw=1, ls=\"--\", color=\"k\",\n", + " label=\"average posterior \\nprobability of defect\")\n", + "\n", + "\n", + "\n", + "plt.xlim(t_.min(), t_.max())\n", + "plt.ylim(-0.02, 1.02)\n", + "plt.legend(loc=\"lower left\")\n", + "plt.scatter(temperature_, D_, color=\"k\", s=50, alpha=0.5)\n", + "plt.xlabel(\"temp, $t$\")\n", + "\n", + "plt.ylabel(\"probability estimate\")\n", + "plt.title(\"Posterior probability estimates given temp. $t$\");" + ], + "execution_count": 16, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAAIwCAYAAABJHMLqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmcHFd97/1vVfU2m0YarZYtWbIk\nH1m2JVvCxhZ4gWD2h81gEsCYLa8Yk/jisNwni4EQEp773CQ2DnEucVhNMJAQUGIwYbchCBvvi+Sj\nxSNLsmwts2qW7uml7h/VXdPd0z2anunZP+/Xa17VXVVddaq7qkeq7/zOcXzfFwAAAAAAAAAAAOYW\nd7obAAAAAAAAAAAAgPojBAIAAAAAAAAAAJiDCIEAAAAAAAAAAADmIEIgAAAAAAAAAACAOYgQCAAA\nAAAAAAAAYA4iBAIAAAAAAAAAAJiDCIEAAAAAAAAAAADmIEIgAAAAAAAAAACAOYgQCAAAAAAAAAAA\nYA4iBAIAAAAAAAAAAJiDCIEAAAAAAAAAAADmIEIgAAAAAAAAAACAOYgQCAAAAAAAAAAAYA4iBAIA\nAAAAAAAAAJiDCIEAAAAAAAAAAADmoMh0NwAAAAAAAGC6GWPeKuk8ST+31t473e0BAACoB0IgAACA\nOc4Y44+yeEDSYUk/k3SrtdZOTaumjzHmPZK+LOlea+2V09ua6TeV78d49lXpNdW2M18/2/l63NOB\n93rOu1nSZklPT3dDAAAA6oXu4AAAAOaPb0n6XNHPbZL+S1JC0vWSHjXGvG06GmaM+ewpwqp62qXg\n+P9tivaHianl86q47hSfX5OqyrHM6HN6Lr3/muHvda3m2GczIcaYBkmb8k8fnM62AAAA1BOVQAAA\nAPPHrdba35TPNMbEJP21pI9IutMYc7+19uAUt+2iqdqRtfYBSQ9M1f4wMbV8XqOsO2Xn1xQYcSyz\n4JyeM+//LHivazVnPps6uFDBPZIeSfunuS0AAAB1QwgEAAAwz1lrh4wxH5f0SknnS3qfpE9N1f6N\nMY6kF03V/jC/zKXzazYey2xs83zBZxMwxrxYUvEfSLRKyhljildrs9Z2TWnDAAAA6oQQCAAAALLW\n5owx9ykIgS4oX26M2S7pw5JeImmpgrGEnpb0r5Jut9YOlq1/gaSPS3qppOWSkpKek3S3goqkI/n1\nviLpuqLXFbolepm19hdF8y+U9MeSrshvr0/S45L+2Vr7L2X7fo+CMTu+L+kmSf+s4EbnX1lr/3q0\nMT3GcZyj7qv8fazwuu9Kepekv5B0taSVkk5K+oWkm621T1d53aj7q/U4il4XVzAmxjWSVkvql3Sf\npE9Ya58oW9eR9G5J1yo4Z1rz+9kl6auS/slamxvlPRjTvmoZg6V83dHOLwXVb5dK+hNr7f9XZXt/\nLukvJf3EWnvVaPvOrz/m87ToNRO+ViSt0ehjJH1V0o35Y36TpCWSjki6U9KnrbVZY8zvS/ojSesl\nDUr6kaSbrLUvlLV3zJ/7ZFzftbxnY5GvhPyYgutwjYIqkJ9I+nNJ50n6T40yHpUx5ueSrpT0SWvt\np6vso3Ae/cxa+zsTOO7Cvr8v6Y359+A6BddPWkGQcXO+WulUx/0VneKzmUD76nK+jfd7chzWSTqq\n4FxOKPgu6itafpQACAAAzGaMCQQAAICC7vw0UTzTGHODpF9JepukA5K+JunnCm7e/Y2ke40xzUXr\nX6bgZuTvSnpG0lckfUfBvz0/Juk3xpjV+dV/pOAmX0FhvKLDRdt7h6T7FdwEPKzgBuNvJL1Y0teN\nMV/J35iu5JuSGvNt2D3awdd6nBPZV5GEpB8quKH+oIJj65L0Vkn3G2M2jfLaivub4HHskPQBBe/v\nVyQdV3AT97+NMeeVrfvF/DrbJf1S0h0Kbp5fIOkf88tGU8u+xmu08+uL+XnvGeX1b89PvzzKOpLG\nd57W+1oZhSfpHgWB0d2Sfqog8PiEpE8aY26W9P9LekTS9xT8seDv5ttSrpbPve7Xd43v2ajy2/2O\npM/k34/v54//YgVdvp01hs0UwpC3jrJO4Tz6WtG+J/K9JknfUBDQ3C/p25I6FVRz/swYs2YM7R71\ns5lg++p5vkkT+548JWvtN6y1K/LHK0kfsdauKPrZMpHtAwAATDcqgQAAAFCwPj89UJhhjDlXwY1B\nSXqTtXZH0bJFCm4CX6Sg+7iP5hf9maS4pOuttV8oWt/Jb+uPFFSp/LG19hvGmF9Leq8kWWs/XNwg\nY8xaBTedPUm/a639VtEyo+BG5nUKbjLeWXY8l0q6V9LV1tpRBz4f53GOa19lXqHgRuh6a21ffn8x\nSf8h6VUKQpvXjnV/EzyO7ZIeKmtLJN+W10j6X5Jel5+/UcFn5ku6zFr7UNF+zpH0qKRrjTGfK142\nnn1NxGjnlzHmBUm3Bg/Ndmvtr4tfm7+xfJ6CypDvjrafCZyndblWjDEvPcVb8SYFN+Mvt9Zm86/5\nsKRbJP0PBTfUz7PWPpdftlnBZ7jdGLPBWrs3P7+mz32Sru8xv2eneE+koJrm9ZJSkl5irX04v62I\ngoDkL8awjX+T9HlJ5xtjjLXWlh1j4TwaUD7kmOD3mhRU5lhJG6y13fnXNUraKWmzgvf7k6M1+hTn\n00TbV5fzrch4vydrtTk/fawO2wIAAJgxqAQCAACAjDGrJL0h/3RH0aLrFfzh0PeKAwVJyneP82f5\np+/L3ziVpLX56a/L1vfz62+XVLH7rQr+SMFfgd9VfCMyvz2roMsmSfpQhde2SfrbMYYy4znO8e6r\nWFRBF0hh10PW2iEN38B9pTFmYQ37m8hxRBWEDcVtyWj4RvgrjTGt+ccDkt4v6YbykMdau1tB2CRJ\nl1Voe637mhT5fX87//S9FVb53fz0W9W6zysy3vO0ntfKaBoVvN/ZonmFY18g6bbCDfn8/h+XtC//\n9Nyi10z0cy83nvetnu9ZoULnrkIAlN9WRtIHJVXtzrBo3W5JP8g/fVuFVQrn0feKzveJfK9JUrOk\nDxUCoPzrBhQEUtJwmDFeE21fvc63gvF+T46ZMeZMSYsUfOZPnGJ1AACAWYUQCAAAYB4zxiwwxrxa\nQTdIDZLusdbeU7TK5fnpD0a8OPBTBVUBiyRtzM8r/CX83xtjNhSvbK09aa3daa09NsYmvvwU+/9+\nfnqxMaapbFlKwV/Gj8V4jnO8+yrWXV6BkvdgfpuegiqCse5vIsfRZa2ttM0HJQ0pCJfOkyRr7UFr\n7Zestf+nyn4KN3irBTlj3tckK3QJd02+kqJYISD4yhi2M97ztJ7XymgOWWufL5t3tOjxLzVSYfmC\nojZN9HMvN573rZ7v2db89OflC/KBw47y+VV8Iz+t1CVc4TwqrpiZyPeaFFz/lcb9KYyFNNEAdaLt\nq8v5VmS835O1KHT5ts9a2z/BbQEAAMwodAcHAAAwf+wMevKpyFcwzkK1SoX2Si+y1vYZYzoUDPy9\nWtKTkm6StE1Bl0V7jDGPKwgffijp59badA1tXpOfvs0Yc3GVddIK/lJ8nYJBywtO2PwA9WMwnuMs\nVsu+ij1TZX9ZY8zR/L5Oq7BKtf1N5DiqvabQllXFbTHGrFDwWV8l6XRJixXcjC1WbcyQmvY1Way1\nvzbGPK0gELta+Rv1xpgLJZ0drFIxrCq3Jj+t9Tyt57UymhHjBuXf68LTExVeU6jiKPnDwQl+7uXW\n5Ke1vG/1fM9Oz0+rjas01oqQuyX1StpS1n1e4Tx6QdKPi9Zfk5+O53tNkp6rUnVY8TMbh4m2r27n\nW954vydrUQiB6AoOAADMOYRAAAAA88e3FNyMLDYo6aCkH1lr91d4TWPRetUk89MGSbLW7s+P8XCT\npN9T0DVR4flxY8xfWmv/foxtbs5P3zSGdcv/gryv4lqV1XycE9hXsdH+4nwoP43VsL+JHMdobSm8\nJiFJxph1kv5b0vL8snslHSraxislnTPK9sa8rynwRUn/W0GXcIVqjUL1xpfHuI1xnad1vlZGkznF\n8jF1Y1iHz71cze9bnd+zwjVQ7Xo5OZaNWGuTxpjvKDiH3ibpr/OLCufRN8q6RpvI95oUBDCTaaLt\nq8v5VmS835O1uCA/JQQCAABzDiEQAADA/HGrtfY3Nb6mX8FNvvKusooVlhWP19ChYNyIPzfGrFdw\nc/jtCroru80Y41lrbx3D/vsUdG30Kmvtj2psey3GdZx1MFrQUejSqdJfzVczkeMYrS2FZQP56d8o\nCAIeUvDZdBSvbIz5mkYPA2rZ12T7moKb9lcaY86w1h6WdI2CyoRKg95XMu7ztI7XylSY6Odeblzv\nWx3fs5SCICheZXlzlfmV/IuCEOitGhkClZ9HU/W9Nl4zrX31/p6spFAJ9OgEtwMAADDjMCYQAAAA\nRlPohuesSguNMa2S2vJPq3Xxtc9ae7u19gpJf5Cf/Ydj3H9hsPDVY1x/vCZ8nONU8biMMREF4/ZI\npWNpnMpEjmO0thS6Wip083RFfvrZ8iBgtP2Pc1+TKj9+zH8q6MLsGmPMdgXd6v3IWntk1BcPq8t5\nOsFrZSpM9HMvN+H3bYLvWWHsoBVVltcyzszPJT0v6UJjzFn5btTWSHrSWlseLEzV99p4zbT21ft7\nsnw7TRo+d8u7tgMAAJj1CIEAAAAwml/kp6+vsvzV+ekRSXuNMYuMMW8zxry6yvqFAdRPr7TQGFM+\nlsjP8tNrqqzfYIx5uzFmcZX9jdUv8tMxHecE91VsuTHmggrzL1ZQtT9U4/5+kZ+O5ziWG2O2aKQX\n59uSkvRUfl6hR4Gu8pXz29ief1ptbJha9lU3Fc6vgi/mp++Q9M7846/UsOmaz9NJuFamwoQ+94le\n3xN9zyoojIn10gr7btLYukOTJOXH6Ppm/ulrFFQESUGlWbmp+l4bs7LPZqa1r97fk+VO1/A5O9bg\nFwAAYNYgBAIAAMBo/kHBDfnXG2PeWLwgP0D8X+Wf3pYfqHy5grGHvmaM2Vhhe4XukYr/Mr543I0z\ny9b/RwXjdVxljLm2bP8RSZ9XcOP19jEfUWW1Hme9pCV9zhgTdt9mjIlJ+nT+6X9aa0cbD6PcRI5j\nSNKtxpiGotdEJf1F/umOorbszk9LwiZjzCZJ/ybp1/lZq6q0s5Z9TdRo51fBf0l6TtI2Se9SEHLs\nqGEf4zlP632tTIXxfO71vL7H856N5rv56XXGmLPL9v2Pqh5iVvMv+emrFLxHOQ0HU8Wm6nvtVKp9\nNjOlfQU1fU8aY75mjHnaGPP7Y9x+cRXR1RNuLQAAwAzDmEAAAACoylq7zxhzg6Q7JH3XGHOfpD0K\nuk+6XMF4DP8p6W/z6z9tjPmspD+V9Lgx5hcKuh1zFYwVsl3BuDUfKdpHhzHmgIKuk+4zxjypIAT4\ngrW23RjzfgV/Tf81Y8wHFQzc3SLpSgV/wX2geHtTcZx19GsFg6TvNcb8WEGA83JJ6xUEEf+zlo1N\n8Dh+kZ/uq9CWDkl/UrTu/5L0HUk35StA9ijoTunlkj4r6QlJL5H0TmOML+mL1tpfF72+ln1NyGjn\nV9E6WWPMVyT9mYIxlW631qZq2EfN52k9rxUF799UGNfnXq/rezzv2SncKekGSVslPWSMuVtST/54\nHAVj+/zNWN8ca+1DxhirIASKSfqJtfa5CutNyffaGNpb9dqYCe0rUuv35GpJRtKYKpWstT357V4l\n6VvGmH9WMCbZoKR1+SovAACAWYtKIAAAAIzKWvslBTd2vyPpbEnvkXSZgpuC75P0Zmttpmj9P5P0\nFkk/lLRJ0rslXStpmaR/knRhWSCg/Dq7FPyl/1YFf/ld2N5dkl4k6esKKgzeL+nNCgYC/3R+exMe\nP6bW46yj1yroemy7pOskLVRQVXGxtXZ/rRubwHFkJL1R0lcVdI91nYLxNv5V0qXW2sJ4Q7LW/nt+\nW0/k171GweDtv2et/YSCCotvKKj4eaOCm8fj2ledVD2/inxJwY1mSfpyrTsYz3la72tlsk3gc6/b\n9T3O96za8QxJeoWCypbu/HZfld/2dkmd+VVrCQH+RUEAJAUhU7V9T8n32hhU/GxmUPsK6vo9WcE7\nFVRStkuKK3g/OgiAAADAXOD4fj17swAAAABwKsaY9ygIGu611l45va2BFHZp9pSk31prL57u9mD6\nGWP+h6RbJX3PWvvm6W7PfMP3JAAAQH3QHRwAAAAASH+en35uWluBKWOMWSrpEklN1tpvVljlxfnp\nk1PXKgAAAKC+6A4OAAAAwLxmjHmfpN+T9LSkb01zczB1Tpf0H5LuNMa8pHiBMWa7pKsVdBHIOQEA\nAIBZi0ogAAAAAPOOMcZI+pCk8yS9TMFA8O+epHGfMANZax81xvydpD+WdK8x5r8kHZJ0loJzIiLp\nL621VAIBAABg1iIEAgAAADAfLZF0g6S0pHslfdRa++D0NglTzVr7EWPMTgWB4EslNUnqlvQzSf9o\nrf3edLYPAAAAmCjH9/3pbgMAAAAAAAAAAADqjDGBAAAAAAAAAAAA5iBCIAAAAAAAAAAAgDmIEAgA\nAAAAAAAAAGAOikx3A+aKnp4eBlcCAAAAAAAAAACTqrW11RnrulQCAQAAAAAAAAAAzEGEQAAAAAAA\nAAAAAHMQIRAAAAAAAAAAAMAcRAgEAAAAAAAAAAAwB0WmuwETYYyJSfqMpI9Kus9ae2UNr90u6WZJ\nl0hqkLRH0h2SPm+t9evfWgAAAAAAAAAAgKkza0MgY4yR9A1JZ0tyanztyyXdI+mQpE9J6pT0Rkm3\nSVon6cP1bCvGZ+/evZKkDRs2THNLUE+Dg4O67bbbNDAwoEQiUXW9ZDKpxsZG3XjjjWpoaJjCFs5u\nXDe1mw3n5Gxo42zGdTM3cd1MLq4bYHSdnZ267rrrSr6DBgcHJanku6bwHfTVr35VbW1t09JWYKao\n9Lu7s7NTkkquD353A6Pj32lA7eb6dTMru4MzxiyS9LAkT9KLxrGJ2yUlJV1mrf2ctfZOa+1bJe2Q\ndKMxZkv9Wgug2J133nnKG3KSlEgkNDAwoDvvvHOKWob5ajack7OhjcBMw3UDYDrddNNNNX0H3XTT\nTVPUMmDm4nc3AACTY1aGQJJikr4m6RJrra3lhcaYF0sykr5trX2+bPHnFVQVvasurQRQorOzU+3t\n7af8R31BIpFQe3t7+NdfQL3NhnNyNrQRmGm4bgBMp/3794/rO2j//v2T3DJg5uJ3NwAAk2dWhkDW\n2qPW2g9aa5PjePnF+enOCsvuz09fPL6WARjNj3/8Y8Xj8ZpeE4/H9ZOf/GSSWoT5bjack7OhjcBM\nw3UDYDr9wz/8g6LRaE2viUajuv322yepRcDMx+9uAAAmz6wdE2gC1uSnh8sXWGtPGmO6JZ1Vr50V\n+hPE+PEezh2PPvqoMpmM+vv7a3rdI488ogsvvHCSWjU3cd2MzWw4J2dDG+cKrpu5g+tm6nDdACM9\n+eST8n0/HAOoXLX5TzzxBNcU5q1T/e6uVvHD726gOn6nALWbiddNPcYpmpWVQBPUkp8OVFneX7QO\ngDrKZDJT+jrgVGbDOTkb2gjMNFw3AKYT30FA7bhuAACYPPOxEmhK1SOpm68KySvv4dyxfPlypdPp\nml8XjUY5D8aI66Y2s+GcnA1tnO24buYerpvJx3UDVNfS0lLxxnShAqihoaHi6yKRCNcU5q1qv7sL\nFUBtbW0VX8fvbmAk/p0G1G6uXzfzsRKoNz9tqrK8uWgdAHW0atUqpVKpml6TSqW0evXqSWoR5rvZ\ncE7OhjYCMw3XDYDptG7dOiWTtQ1fm0wmtX79+klqETDz8bsbAIDJMx9DoGfy0zPKFxhjWiW1Sqpb\n539d7V3qPtCtnkM96n2uVyefP6m+o33qP96vgY4BDXYNKtmTVKovpaH+IaUH08qkMsplcvJzvnzf\nr1dTgGl31VVXjesf9q94xSsmqUWY72bDOTkb2gjMNFw3AKbThz70oZqrEdPptG644YZJahEw8/G7\nGwCAyTMfu4P7dX76EklfLFt2WX76q3rt7LnfPjfhbTiuM+qP67lyXEdyVPLc8UauE/54jlzXLVkn\nnFf82vx0xHzXkeM4dXiHMJ+0tbVp7dq1eu6555RIJE65fjKZ1Nq1a6uW/gMTNRvOydnQRmCm4boB\nMJ3WrVuntWvX6vDhwzV9B61bt24KWgfMTPzuBgBg8sz5EMgYs1FSylrbLknW2keNMQ9Lepsx5hPW\n2sP59RxJN0lKS/pqvfaf6k0F4YzjhNPCYzmSowqPNby+JPm+Lyc38wKXaoFSeQjlem7pOl7pOpUe\nu56rdE9ajuso2Z0cuS3PHX5fMatce+21uu222zQwMDDqP+6TyaQaGxt17bXXTmHrMB/NhnNyNrQR\nmGm4bgBMp1tuuUXXXXfdmL+DbrnllilsHTAz8bsbAIDJ4czG7saMMZskbSqa9a+Sdkn6ZNG8H1hr\nB4wxviRrrd1Y9PoXS/q5pBck3SqpW9LvSnqNpJuttZ+ptU09PT0V38hf35IvPDrV21yWZVQNN6qt\n5wwvd1Q6rzhoklRSxRNWEBWHVO7IMKpiWDXJIUx/f78kqampyvBNjkqDJXc4IKo2dSNFgVSkKHSK\nuGN6HaFTfQwODurOO+9Ue3u74vG44vF4uCyVSimVSmnt2rW69tprqw6ci8rm+kB2k2U2nJOzoY2z\nFdfN3MV1M3m4boBT6+zs1E033aT29nZFo9Gwq++GhgYlk0ml02mtXbtWt9xyC9UMQF757+7CfYG2\ntjZ+dwNjxL/TgNrNxuumtbV1zDeqZ2sI9CmVBj6VrLXWHqgUAuW38SJJn5a0XVJc0m5Jf2+t/fJ4\n2lQtBHr8G49L0vDYPn7p43BZ8eOxrneK14x4XNTCEZ/7aKeBU/zQUXkQNWKdsmBqxHM54WhUYSBV\nCJTc4SAqmUxKjtTY0FgaOjml25zKYKa4GikMiMrCojBoKjz3hgOnMFCKlC33nOHXzqOu9jo7O/WT\nn/xEBw8eVCaTUSQS0erVq/WKV7yC/wiP02z8pTWTzIZzcja0cbbhupn7uG7qj+sGGLv9+/fr9ttv\n1xNPPKFMJqOWlhatX79eN9xwA13AAVUUfnc/8sgjymQyWr58Ob+7gTHi32lA7WbjdTPnQ6CZqFoI\n9OS3n5zqpoyqWjB0qsdjDprKtl11XrVAquhhNpuVJHmed+ogqkoIVTGQKu6Wzx0ZPpUETdWmk8nR\ncLg0SlhUUtnkuXKj7vC0aHlhvhf1qGaaB2bjLy1gunHdALXjugFqx3UD1I7rBqgd1w1Qu9l43dQS\nAs35MYFQqiQgqVjSM3Wqhk35eQMDA5KvoC/gU4VSpwqecsE05+dGVlDl162ovJqpbH7JsvIKpXxY\nFQZL7vDjwnhK1caLyuVyymVyUqqmt3RMysOhcBoZ/898ql4CAAAAAAAAgNmCEAjTphB4SJUDKTcd\n9BkXbYjWdb+nDJCqBFNjCpuKQiff94PwSWMInE4RNpW8V+VBU3EVkxs8d123JGQqfpz1s8pl6xsw\nheMqRV15ES+sRvKi3nDgVPbcixQtK3odgRIAAAAAAAAA1AchEOadqayGGkvgNNq0UMFUcZ1clcqm\n8pCpOGhzKsyvNs5SoYrJHe4mr9CdXEkXeo4TtjU7lFVa6Qm9Z9UCpYohUiFAinrBssLjGF3fAQAA\nAAAAAAAhEDCJpiJwKoQ/lQKjqiFSvlKp4vpF4dKoFUxVusQLnxeHSYWKpeIwyXXkuu6I8ZjqFSg5\njhOGQiXTmDdyXnGIFAuCJi/myfXcce8fAAAAAAAAAKYbIRAwyxUCGMerb8g01sqk4nkVH+d85XKn\nqFgaa6BUeF4pUPLcEct8PwiTxstxnYrhUHnVUfgT9eTFveFqJJdKJAAAAAAAAADThxAIQEUlVTx1\nMJbgaMR4SlXW99NlYy2VBUolXd9Vq04q7uquECKVdX8X7nuc4ycVh0bF4VA4L+bJjbmKxCLh4zBA\nois7AAAAAAAAABNECARgSpSESt7EtlUxUCoPj0Z7npNy6dzwtqSKlUkVx0kqnpfv0s7xgoqkkiDJ\ncZT1s8plcuPq1q44MHKjriLxSFCBFHPD+ZFYJAiX4l4YJAEAAAAAAABAASEQgFmnHoFSeZBUc5iU\nDZ5n/Ex+g8UNrNKtnTtcpRRWH5WHR/mf7FBW2XRW6q/tuAZSA3Iijp45+EwQFsW9IECKlYZFXmL4\nMd3WAQAAAAAAAHMTIdAke9g+rLYFbWpb0KaWxha6eAJmiHoFSSXhUOGnUrBUvKxagFShAqkQKBVX\nIoVhUcSR5wUhjuPlu7BL+/IzvgY6BsZ8HIXu6orDIi9WITwqWofgCAAAAAAAAJj5CIEm2Y1/e2P4\n2HM9veLiV+jm990sSTo5cFJ3/uBOLVqwSG0L2rSoZVH4uLW5VRGPjweYyRwnCF/GozgoGhEWVVuW\n9ZXLFXVjV6H6KJvNSpL6TvaNGAPJ9Vw5kWAadmOX77Yum85qqG9ozO0vhESRxHA4FElUeB6PyI26\nBOAAAAAAAADANCBlmGSb129WZ2+nuk92q2+wryTYOdZ5TN/40Tcqvs5xHH3+o5/Xlg1bJEk/fuDH\n2tW+a0RYVHgcj8an5HgA1EcYINVYhRR2Y1chLPJzvlKDKfm+LzfiDs8vrjwapdu6knGPyrusi+SD\no0J3damsskNZpU6mTn2srhMGQl7cCx+HgVHheX4eVUYAAAAAAABAfRACTbLbP357+DiVTimTyYTP\nW5tb9Qdv/gN19naq62SXunq7wsc9fT1a0LQgXPeBpx7QPTvvqbiPDas26Ms3f1lScIP4U//8KbUt\naNOS1iVasjD/k3/cmGjkL/KBWaw4oKkk4wbfMY1NjSXzKwVGo/7UEBw57sjQyIt4QaVRPjRKD6SV\nHkiP6RirVhnFI8FYRvGIIg0RRRNRuRG35vcQAAAAAAAAmC8IgaZQPBovqdhZsnCJrn3NtRXXzWQz\ncp3hm5uvvvTVOuv0s9TV26Wuk/mwKP942aJl4Xq9/b366W9/WrUNN7/vZr3qkldJkn6767e6/6n7\nS0KiJQuXaHHrYjXEGyZ6uABmkPFUHp0yOMqWPs6lcyPGOSqEVsGTICgqzHM9V24kX2lUqDhy3Zqq\njLxovpKoIQiKog3RsFu6QlBz8waNAAAgAElEQVQUaYgE+yEABwAAAAAAwDxDCDRDlY8HtG3jNm3b\nuO2Ur4tFY/rkBz6pE90ndKLnhE50n1BHd4dO9JzQ8a7jWty6OFz3Yfuwvvnjb1bczsolK/Xtv/52\n+PzrP/y64tF4SWXR4tbFikVj4zxCADNdrcFRSWiUHRka5bK5EaFRydhGhQKjom7pKlUZuRE3eOw6\n8n1f2fSpAyPXcysHRcXPGyLyYh5hEQAAAAAAAOYMQqA5piHeoKsuvqriMt8PxhAp2L55u5obmsOw\nqBAcdXR3qCHRUPK6L/3nlzSUHjlo/IKmBbr+LdfrDZe9QZL07PPP6tG9j2p523Ita1umFW0r1Jho\nHPE6AHNPSWgUHX3dkrGNygOi8iCpSpVR+ThGhcCoUGEUhkVeEBbl+nIa6hv5PVZyDPnxi8qDouKq\nomhDVF6csAgAAAAAAAAzHyHQPOI4TslNy/PXna/z150/Yj3f9zWYGgyfZ7NZved17ympLjrRfUId\nPR3q7e9V1Bu+2/uQfUh/942/K9lec2Ozli9aruVty/XZD31WnhuUFew7vE9NiSYtXbhUkQinIjCf\nlI9t5J2i3KhSlVEYHBU/r1JhVLW6KFIWGI1x/CLHdRRtjCraEFW0MR8OFT0nKAIAAAAAAMBMwJ13\njOA4Tkn1TiQS0btf++4R6+VyOfX09SgeGx7naNWyVXrt9tfqaOdRHes6pqOdR9U30Ke+gT6d6D4R\nBkCS9Ke3/6mOnDgix3G0uHWxli1aFlYQbT9/uzau2ihJyuaych3G8wDms7FWGRXCn4oBUfHzTE7y\npUwyMzIskiR3ODAqdEVXXl001Dc0amWR4zqjhkSF7un4bgMAAAAAAMBkIQTCuLmuq0ULFpXMu2jT\nRbpo00Xhc9/31dPXo6OdR9U/2F+y7orFK5TJZoa7ous+oV3tuyRJC5sXhiHQzsd36hP/9Akta8uH\nRPmwqBAYbTVbFY2cou8pAPNCoeKnOHCuZkRXdJUCo+Ku6EapLHJcJxyvyIt6wWPP1VD/kIb6Rw+K\nCl3MlVcWxRpjBEUAAAAAAACYEEIgTCrHcbSwZaEWtiwcsey2j9wmScpkMjrRc0JHO4+GFURbzdZw\nvRM9JzSUGdLhY4d1+NjhEdv56ed/Gj7+m3/5G/X09ei0Jadp5ZKVOn3p6TptyWla3racoAhAibDK\nJ+KOup7vj+xyrqT7uWxOuaFTd0HnOI6cyMigKN2fVrq/evdz5UFRrCk2PG0K5rne6McAAAAAAACA\n+YkQCNMuEoloxeIVWrF4Rcn8/v6gcuhNV7xJr3zxK3Ws65iOdR4r7WpusK+kO7r7n7xfz3c8P2If\nruPqHa96h65/y/WSpI6eDj309ENauWSlVi5dqUUti/hLewAVFcIbqfrYReGYRdlRgqJMTv5QPiXy\nVdL9XFhNNM6gqFA5VAiFCgFRITAiJAIAAAAAAJifCIEwKzQmGrXmtDVac9qaUdf71O9/Ss8df07P\nn3heR04c0ZHjR/R8x/M61nlMzY3N4Xq72nfp01/8dPg8EUuE1UOnLTlNH3jDB8L1M9mMIh6XCoDq\niscsGnNQVBYa5bI55bI5KT08tlG1rufciCs3OjxOUWYgo8xgRuqo3L5IIhIGQsXhULQpqlhj7JTV\nUAAAAAAAAJiduLONOeXcs87VuWedO2J+OpNWJpsJny9oWqArt16p5zue15HjR3Ry4KTaj7Sr/Ui7\nJOmDV38wXPfDt3xYB184WBISrVyyUiuXrNSZp52pxa2LJ//AAMx6dQuKhnLKpIbHKCqERHKDsdoc\nN6gecmP5kMhzlRnMKJMcJSSKR0rCobCrOUIiAAAAAACAWY0QCPNCNBItGRNoy4Yt2rJhS/j85MDJ\noHro+BF19HYoHh3uYu5413F19naqs7dTTz3zVMl233zlm/WRd3xEkvTc8ef0rz/9V61avkqrl6/W\nquWrtGzRMrkuN08BjM2Yg6KyYMjP+splcsMhkZ+R+gsbzQdFhZDIKaokiuZDIj+jTCqjwc7Bivv0\n4p5iTTHFmod/4s1xxZpj8uIe3WkCAAAAAADMUIRAgKSWxha1rG7R2avPHrHsrr+8Syd6TgRdyxV1\nM3fkxBGtP2N9uN7eg3v1bz/7t5LXxqIxrVq2SquWr9LH3vUxtTa3SpJSQ6mSsYwAYKyKxw2qpGpI\nlB+XKJfJKTM0XElU0uWc58h1XDkRR17UC0Mi3/eVTWUrhkRuxC0Jh4pDokhDhIAIAAAAAABgGhEC\nAafguq6WLVqmZYuW6YKzL6i63lmnn6UPvuWDOnTskA4dDX46ezu1/7n9aj/Srk9+4JPhun/8uT9W\n+5F2rVoeBESFoGj1itU6Y+kZSsQTU3FoAOagMYVEuaByqFJYlE1n5Q/5Svvp/AaHQyLXy3c3F3XD\nkMjP+Up2J5XsTo5si+uMCIaizdHgeWNMjktABAAAAAAAMJkIgYA6Wb1itd756neWzOsb6NPhY4d1\ntOtoSXd0HT0d6u3v1VPPPDWii7mrX3a1bvq9myRJL3S8oPseuS8Mi1YsXqGIx2ULYPwKXc65Xu0h\nUS5TNiZRcRWR68h1h7uZ86Ke3IirVG9Kqd7UyHa4TjD+UIUqolhTrGr7AAAAAAAAMHbcTQYmUXNj\nszau2aiNazaWzL/rL+9SZ29nWDF08OjB8PGa09aE6z31zFO67du3hc8jXkQrl6wMQ6H3/T/vU2Oi\ncaoOB8A8MJaQKAyICuMQZYariMKu5soCIscNqpMKFURexNNQ35CG+oYqNEKKNpQGRPGWuOIL4oo1\nUUEEAAAAAAAwVoRAwDRwHEeLWxdrceviUbuYW7F4hd50xZvCgOhY1zEdPHpQB48elOd6uv4t14fr\n/sk//IlODpzUmpVrtHbl2vBnUcuiqTgkAPOE4wTjBSk6clk4HlFZOFQYiyg7lA27mXPcsoDIy1cQ\nxYIKovRAWumBtPqP9Zfu33UUa4oFgVDLcDgUb4nLi3lT8RYAAAAAAADMGoRAwAx27lnn6tyzzg2f\nJ1NJHT5+OBxvqNA1nO/7enTvozo5cFKP7n20ZBsLWxbq3a99t675nWskSQPJAaUzabU2t07dgQCY\nF0Ybj6i4m7lKlUS5dE7+gB9upzggcjxHXswLfiKeUidTSp0c2cVcJBEJA6F4S1yxBUFIFG2MBtsE\nAAAAAACYZwiBgFkkEU9o/Rnrtf6M9SOWffWTX1X7kfYRP90nuxWLxML1fvXYr/TpL35aixcsHlE1\ntHblWrU0tkzlIQGYJ0q6mYuXLisERCOCoaKwKJMMupkrriAqjEHkxT15UU/pwbQyycyI6iHXc0uq\nhsLHLfGKgRUAAAAAAMBcQQgEzAGO42jZomVatmiZXnzui8P5vu/raOfRknGDTg6cVCKWUEdvhzp6\nO/TQ0w+Fy6KRqH789z8OK4x+9eivtLBlodactkbNjc1Td0AA5pVCQCRPFbt0y2VLu5ULu5crjEHU\np3AMopLxh2Ke3Fgw/lCyO6lkd3LEtqNNUfWn++U1eOp0O4MKopaYIokI1UMAAAAAAGDWIwQC5jDH\ncbRi8YqSeVe/7Gq9+Yo364XOF0ZUDUW8SEkXc5/58mfUN9gnSVq2aNlw5dBpa7V141atXLJyyo8J\nwPzjem7FgMj3RwZDxT/pgZHjD7meG3Yt50ZcpfuCsYfSXWkd6TkSbtuLekHF0IKgeijRmlCiNaFI\nA+EQAAAAAACYPQiBgHnIdV2tXLJSK5es1Es2vySc7/t++Dg1lNL2zdvVfqRdzz7/rI51HdOxrmN6\n4KkHJEkfe9fH9MbL3yhJemzvY3pw94M6e/XZ2rBqg5a3LecmKYBJ5ziOvGjQFVyx8vGHSqqHhrLK\npIKu5QrVQ9lcVnKlwaHBMCDyfV/ZzqwGOwdLtu1FPcVbg1Ao3hpXYkEwjcT5JxUAAAAAAJh5uGMB\nIFQc3CTiCX3i/Z+QJGVzWR05fmS4auj5dp2z5pxw3Z1P7NTXf/j18HlLY4s2rNqgDas2aOOajbrq\n4qum7iAAzHujjj9UHA7lxx7KDmblZ/2gIqg/HYZDcoIqJMdz5MU9RWIR+Tlf2RNZDZwYKNlupCGi\nxIKEEgsTYeVQfAFjDgEAAAAAgOlFCATglDzX06rlq7Rq+SpdfuHlI5ZffO7FyuVy2ntor/Ye2qvu\nvm49bB/Ww/ZhrTtjXRgC+b6vW795q8487UxtWLVB605fVzJeEQBMNsd1wmqfglwsJ9/31ZhorNq1\nXGYwo5RSYddyrucG4w7FhyuHMoMZ9R3tK9qZFGuKDVcN5buUizXHgu0AAAAAAABMMkIgABO21WzV\nVrNVUhD0nOg+oT2H9mjvob1qaWgJ1zvaeVTf+fl3wueO4+iMZWeEVUNXXXzViDGMAGAqOI4jN+KO\nqNwp6Vouna8cSmfDaXpguHLIcYMKJC/qBeFQ1NNQ35CG+oak54r25TrD1UKtjDcEAAAAAAAmDyEQ\ngLpyHEdLFy3V0kVLS8YbkqRELKEb336j9h3apz0H96j9SLsOHT2kQ0cP6WcP/kwXnH1BGALds/Me\nHXzhoNavWq+zV52t05eeLtelWyUAU6ta13K+78vP+iWhUC4d/GSHslKfgnDIDcIh13ODCqS4Jy/i\nKdmdVLI7WbKvcLyhBQnFF8bD7uWKq5YAAAAAAABqQQgEYMosbFmoa37nmvD5UHpIz77wrPYcDKqG\n1p2+Llz2s9/+TDuf3Bk+b4g3aP0Z67Vh1QZtO2ebrrjwiiltOwAUcxxHTiSoHookhv855fulVUOF\nkCg7lFUmlZF6FXYpVwiXwvGG/MrjDUWbompY2KDEokQ4jTZEp/qQAQAAAADALEQIBGDaxKKxsCu4\ncle//GqdfebZwThDB/fqePdxPbH/CT2x/wn1J/vDEKizt1Nf/I8v6pw152jTWZt05ooz5bn81TyA\n6eE4+e7goqXfQ4Uu5cKqoXxQlM1kK483FHUViUXkxTyl+9JK96fV+1xvuL1IIqLEwoQaFjWE02hT\nlO7kAAAAAABACUIgADPSJeddokvOuyR83nWyS/sO7dPeQ3u1duXacP6uZ3Zpx307tOO+HZKCiqGN\nZ27UprM2adOaTbrkvEsUj8VHbB8AppLjOkF3cEVdu51yvKH+ovGGiquG4kHVUCaZUd8LfeH2vKin\nxKKgC7lCxVC8JR6ESwAAAAAAYF4iBAIwKyxqWaSLNl2kizZdVDJ/7elrdcNbb9Du9t3afWC3Xuh4\nQY/seUSP7HlEjuPonlvuCUOgXzz0CzU3NuucNeeoqaFpOg4DAEKnGm+oeKyhsEu5ZEYpJxW81h0O\nhry4Jz/nq/9Yv/qP9Yfbcj1XiYVBMFToTi7eGg/2CQAAAAAA5jxCIACz2ulLT9c7XvmO8HlHT4d2\nHwgCoRPdJ9Tc2Bwu+9y3Pqfj3cflOI7OXHFm0IXc2k06Z+05Wnf6OkUjjLEBYPoVjzdULJfNlYRC\nhWlmaHisIccNgiUv6imSCLqTG+gY0EDH8DhDjusoviBe0p1cYmFiRBd2AAAAAABg9iMEAjCnLG5d\nrJduealeuuWlJfPTmbQuv/By7WrfpX2H9+nA8wd04PkDumfnPZKkD77lg3rnq98pSTrRfULJoaRO\nX3o642sAmDFczx1ZNZQbWTGUS+eUHcpqqG9o5DhD+WAo2Z1Usjup7gPdwYYcKd4cH64YyodDkTj/\nVAQAAAAAYDbjf/YA5oVoJKqbfu8mSdJQekj7Du/T7vbd2nVgl3a379amtZvCdb//39/XHTvu0IKm\nBcPVQmvO0Tlrz9GilkXTdQgAMILjOkFQU9adXHm1UPE4Q47jSG4+GIoMB0OpkymlTqbUc6gn3Fas\nOaaGtgY1tjWqoS0YZ4iu5AAAAAAAmD0IgQDMO7FoTJvWbtKmtZt0ta6uuM6ilkXqOtml+5+6X/c/\ndX84/4INF+jzH/t8+DyTzSji8VUKYOZwHEdezJMXG+7ezff9EdVCuUxOmWRG6YG05Ax3J+dGXEXi\nEXlxT0MnhzTUN6Seg0Ew5LhO0I1cW0MQDi1uVKw5RtUkAAAAAAAzFHcuAaDMda+7Tu9+7bt1tPOo\ndrXvCsYYat+tp599Wm2tbeF6vf29esv/fIs2rtmoLRu2aPP6zTrvrPPU1NA0ja0HgJEcJxgnyIt6\niioY/8z3fflZv7RiKJ1TNpVVZjATBENOMMaQG3EVbYjKi3ka7BzUYOdguG0v6gWh0OLhiqFIgn9i\nAgAAAAAwE/A/dACowHEcrVi8QisWr9DLX/RySUHVz0ByeHD1vYf2KjmU1KN7HtWjex6VJLmOq/Wr\n1mvz+s1616vfpSULl0xL+wHgVBzHkRMJAh41BPN835efG+5OLjtUGgwVdyXnxTxFEhH5OV99R/vU\nd7Qv3HasKaaGxQ1hV3J0IwcAAAAAwPQgBAKAMYp4ES1oWhA+37Zxm+7+27v1xP4n9Pi+x/XY3sdk\nn7Xac3CP9hzco/e87j3hujvu2yHP9bR5w2atWraKrpMAzEhh5Y/nhtU8YcXQUHY4GMrklO3Paqhv\nqKQbOS/uKRKPaMgf0lB/WTdyrWXdyLXQjRwAAAAAAJONEAgAJmBhy0JddsFluuyCyyRJyVRSu9p3\n6Zkjz2hhy8Jwva/94Gs62nlUUjDe0Ob1m7V5/WZt2bBF61etZ1whADNWccVQcVdyI6qFhrLKJDNK\nOanK3ch1DWqwa1DaH2w37EauqCs5upEDAAAAAKC++J82ANRRIp7Q1o1btXXj1nBeNpfV2696ux7f\n+7ge3/e4Ons7de8j9+reR+6VJH3gjR8Iq4b6B/vluZ4S8cR0NB8AxsRxHHkxT17Mk/LDoPm5smqh\n8vGFXOeU3chFm6LhuEKNSxrVsKhBjku1EAAAAAAA40UIBACTzHM9XfM71+ia37lGvu/r8LHDYfdx\nj+97XJvXbQ7X3XHfDn3hu1+QOdOElULnrzu/pKoIAGYix3UUSUSqdiMXVg6VdyPnufISQTdyvu8r\n3Z9Wz6GgGznXc4MqoSWNwc/iRnlRbzoPEwAAAACAWYUQCACmkOM4WrV8lVYtX6XXveR1koIbpQUn\nuk/I933tat+lXe279M0ff1OStOa0NXrplpfq+rdcPy3tBoBajbkbuXRWmaGMUhrZjVwkHlH/sX71\nH+vPb1RKtCbUtLQpDIaiDdFpPEoAAAAAAGY2QiAAmGbFA6Pf+PYb9YE3fkBP7n9Sj+17TI/vfVxP\ntT+lA88f0JkrzgzXG0gO6Ja7btHWjVv1oo0v0tJFS6eh5QBQm1N1I1cYW6ikGznPked58hKeog1R\nJbuTSnYn1bG3Q5IUa46FgVDTkibFWmIl36sAAAAAAMxnhECTzM/5ymay8qIeNyQAjEljolEXn3ux\nLj73YklSOpOWPWgVcYe/sh/b+5ju2XmP7tl5jyRp9fLVetE5L9J5a8/T5vWb1dTUNC1tB4BajdqN\nXOEnnVUmlVGqNzXchVw8CIVSJ1Ma6htS94FuSZIX99S0ZLhSiHGFAAAAAADzGSHQJNv4xo3qOdSj\n7me7lepJKZPMBN2ceO50Nw3ALBGNRHXeWeeVzFt3xjrdeM2NenD3g3pkzyM6ePSgDh49qH//xb/L\ndVzt+N87tGjBIklSLpeT6/KdA2B2KOlGrjHo6i2XzZWEQoVu5Ib6hsIu5LxYEAr5OV+9z/Wq97le\nSaXjCjUtbVJDWwPjCgEAAAAA5g1CoEkWbYhqydlLtOTsJfJzvgY6BtS5v1P9x/qVHkhTJQRgXJYt\nWqZrXnGNrnnFNcpkMtr97G49tPsh3f/U/eob7AsDIEl672feq9amVm3buE3bztmmjWduVMTj6x/A\n7OF6rtwGNxz/x8/54bhChZ/0QFrp/rQct/q4Qsd1XHKkhoUNYaUQ4woBAAAAAOYy7gJOIcd11LS0\nSU1Lg26aMslMUCV0oFvJnqQyqYwcJ7hpAQBjFYlEdP6683X+uvP1tpe9TdlcNlzW2dupZ557Rr7v\n62H7sO7YcYeaEk260FyobRu36cqtVzKeEIBZx3EdReIRReLDXciF4wkVfvLjCjmOI3mSF8mPK5SI\narBrUINdgyPGFWpaGnQjF2tmXCEAAAAAwNxACDSNIomIFm9YrMUbFsv3gyqhrv1d6j/ar6GBIeUy\nOblRl5sQAGriucPdHLUtaNPdf3u3HrYP66GnH9KDux/U4WOH9avHfqVfPfYrrV6xOgyBnn3+WcVj\nca1YvGK6mg4A4+I4QXdwXiz4/qs4rtBQVplkRilneFyhSDyiSENEQyeHSsYViiQialrWFP7EmgiF\nAAAAAACzEyHQDOE4jpqWNKlpyXCVUO/hXnUd6FKymyohAOPX2tyql217mV627WWSpBc6XtBDTz+k\nh59+WJvXbw7X+6fv/ZPufeRenbHsjKDruI3btNVs1cKWhdPVdAAYl7GOK5RKp5TqS4VdyHnR/LhC\nvq+egz3qOdgjSYo2RtW8rDkMhQrbBAAAAABgpiMEmqEiiYja1repbX3bcJVQe5f6X+jXUP+Qcumc\n3BhVQgBqt2LxCr3uJa/T617yupL5TQ1Nako06fCxwzp87LB23LdDkrRh1QZd/bKr9fqXvn46mgsA\ndTGmcYXSpeMKeTFP0cYgFOo60KWuA12SpHhLvKRSqNAtHQAAAAAAMw3/Y50FRlQJpfJVQu1BlVA2\nlZUcUSUEYEL+9D1/qo9f+3HZZ60eevohPfT0Q3pi3xPae2ivegd6w/X2HNyjnU/s1PbN27X+jPWE\n0QBmpVONK5RJZZQeKAqFIo4isYgijRGpV0qdTKlzf6ckKbEwoaZlTWpe1qzGpY3yot5ouwYAAAAA\nYMoQAs1CkXhEbeva1LYuqBIa7BxU1zNd6jvaN1wlxFhCAMYh4kV07lnn6tyzztW7X/tupYZSenzf\n41q9YnW4zn2P3KevfP8rumPHHVqycIkuOe8SXXr+pbronIvUmGicxtYDwPhVGlcol84pk8qEwdBQ\n/5CG+odGjCmU7E4q2Z1Ux54OOY6jhraGoEpoeZMaFzfK9fhDHQAAAADA9CAEmuUcx1Hj4kY1Lg5u\nvGZSGfUe6lXn/k4le5PKJrNBIOQSCAGoXTwW10WbLiqZt23jNnX0dGjnkzt1ovuE7v7V3br7V3cr\n4kV05bYr9akPfGpa2goA9VQpFAq7jksF0+IxhVzPVaQhomhDVAMdAxroGNDx3cfluI4alzSGlUIN\nbQ38uwwAAAAAMGUIgeaYSHx4LKFcNqeTR06qY0+HBrsGlUlm5EYIhABMzIXmQl1oLpTv+9p3eJ9+\n8+RvtPOJnXpy/5OKR+Pher39vbpjxx269LxLtdVsVSKemMZWA8DEOE5R93Et+TGFirqOy6VzSvWm\nlOrNh0KRYPyhSCKi/mP96j/Wr2M6JjfiqnFJo5qXN6tpWZMSCxNUbwMAAAAAJg0h0Bzmeq5aV7Wq\ndVWr/Jyv/mP9OrHnhPqP9w+PI0T3JADGyXEcbVi1QRtWbdC1r7lWvf29GkwNhssfeOoBffcX39V3\nf/FdxSIxXWgu1KXnX6pLz79Upy89fRpbDgAT57iOIomIIomI4orLz/nDXcelssqlc0qmkkHA40pe\n1AsqhRJR9b3Qp74X+iRJXswLuo7L/8Rb4oRCAAAAAIC6IQSaJxzXUfOKZjWvaA7HEerY26G+F/qU\nHkjL930GMQYwIQuaFmhB04Lw+dlnnq33vv69+s2Tv9HuA7t1/1P36/6n7tet37xVa05boy/9+ZcU\ni8amscUAUD+O6yjaEFW0ISpJymVzYbdxhXAok8wo5eYrhaKuoo1R+TlfvYd71Xu4V5IUaYioeXnw\nb7bm5c1B5REAAAAAAOPE/yrnofJxhFK9KXXs61Dvc71K96eVy+SCcYT4K1QAE7B6+Wq9/w3v1/vf\n8H519nbq/ifv184nd+qBpx5QY6IxDIB839dnv/pZnXvWubrkvEu0vG35NLccACbO9Vy5jUHQI0m5\nTK4kEMqmssoMZuS4jhzPkRf1glDI99V9oFvdB7olR2psawz/kKehrYF/nwEAAAAAakIIBMUXxLVy\n60qt3LpS6YG0up7pUvez3Ur1pZRLEwgBmLi2BW16zfbX6DXbX6NMNqPO3s5w2TPPPaMf/PoH+sGv\nfyBJWnfGOl16XtBt3LlnnauIx68qALOfG3GDcYLyQU8hFCpUC6UH00oPpMNQKJKIKNoY1UDHgAY6\nBnTsqWPyYl4YCDUvbw6rjgAAAAAAqIY7aygRbYxq2XnLtOy8ZcqkMup+tltdz3Qp1ZtSdihLIARg\nwiJeRMsWLQufL120VB+/9uPa+cROPbj7Qe0/vF/7D+/X13/4dTU3NusL//MLOvO0M6exxQBQX44T\nVP54UU9qCioic+nSSqGhviEN9Q3JcYuqhHK+eg72qOdgjyQpsTChltNa1Ly8WY1LGuW4/BsNAAAA\nAFBq1oZAxpg2SZ+U9CZJp0k6IekHkm621j4/hte/S9L1krZIikk6KOluSZ+x1nZMVrtnk0g8oiVn\nL9GSs5col8mp97ledeztULI7qUwyIzficrMBwIQtaFqgN1z2Br3hsjdoKD2kx/c9rp1P7tRvnviN\nOno6dPqy08N1P/etz6mlsUWXX3i51p2+jlAawJzgOI68mCcv5inWHJOf84cDocK4QsnhruMi8aBK\nKNmdVLI7qeO7j8uLempa3hRWCcWaGHMNAAAAACA5vu9PdxtqZoxpkHS/pI2SPi/pQUkbJH1U0nFJ\n26y1XaO8/q8l/YmkByR9XVKfpO2S3iupPf/63lra1NPTM/veyHHyc776jvapw3ZooGNA6WTQdYnr\nuXXdT39/vySpqamprtsF5rK5dt10n+zWwpaFkqTB1KBee9Nrlc6kJUkrl6zUFVuv0OUXXq5z154r\n163vdxDmj7l23WDuyWVyYSCUSWXk54J/djquE3YxF01E5XjDwXh8QVzNK5rVclqLGpc01v3faXv3\n7pUkbdiwoa7bBeYyrqtRwrAAACAASURBVBugdlw3QO24boDazcbrprW1dcx/GT1bK4E+LOl8SR+y\n1t5emGmMeUzSdyXdLOmPK70wX0H0MUkHJF1urU3lF33ZGHNC0v+rIAz63KS1fpZzXEctp7Wo5bQW\n+b6vgY4BdezpUP/RfqUHg5uzboSbsQAmrhAASUE3cn91/V/pl4/9Ur989Jc6cuKI7vrRXbrrR3dp\n8YLF+sQHPqFtG7dNY2sBYHK4EVexSCzsOq4wllAmmVEunVOyK6mUm5LjBRVF0cao1COlelPq2NMh\n13PVtCxfJXRas+LN8ek+JAAAAADAFJmtIdC7JfVL+mLZ/B2SDkt6lzHmI9baStU5qxUc9wNFAVDB\nfQpCoDX1be7c5TiOmpY0qWlJk3zfV7I7qRP2hE4eOan04ORUCAGYn6KRqLZv3q7tm7fro+/8qJ7c\n/6Tue+Q+3fvIvXqh4wWdseyMcN2f/van8lxPLz7vxWqIN0xjqwGgvhwn6A4uEo8oviCuXDanTHK4\n27j0QFrp/rQcL/g3WKQxomhDVCefP6mTz5+UHpFizbGgSmhFi5qWNfHHOwAAAAAwh826EMgYs0BB\nN3C/LA9xrLW+MeYBSW+RtFbSMxU20S4ppaD7uHJr8tMn69bgecRxHDUsatCqS1aFFULHdx1X/7F+\nZVIZuR5jCAGoD8/1tGXDFm3ZsEV/+LY/1LMvPKvlbcslBX8lf8eOO3T42GHFojFdvOliXXHhFXrJ\nlpdoQdOCaW45ANSX67nB+D/lVUKpoEoo1Z1Sqicl13PDKiHf9zXUN6TOfZ1yXEdNS/NVQiuaFV8Q\nZ7w1AAAAAJhDZt2YQMaY8yU9Lukua+07Kiy/RUF3cVdZa39SZRt/JukzCsYTulXSSUkXS/o/CsYU\nutRam6ylXdXGBCr0Jzif+b6vdFdaycNJZU5m5A/5UkTcYAAwKbLZrP793n/Xfz/x39p9YHc433Vd\nbV63We945Tu0Zf2WaWwhAEwNP+fLT/vKpXPy0/7wWEKOI3mSG3Xlxt2SsYTcuKvY4piibVFFFkT4\nAx4AAAAAmEbVxima62MCteSnA1WW95etN4K19q+M+b/s3XmUHPV57/93bb1MT/esktBomdFaEmIV\nyGKxBEhsAiKMAQMGbJPEOI65SZz4OotvYpzYvk5ufrlJnF/i4wT/YsDYBmMbbMCsNosBCYEWEKIk\nZAkts+8zvVZ31++PHg0SRiCJ1vSM9HmdM6fpqur6PqNzqqnpp5/ncTuAbwK37bfr58AnDjcBJO/N\nMAxC9SFC9SGCYkCuO0dmb4ZCskAxX8SwDCWERKRsLMvi2hXXcu2Ka+kZ6OH5157n+U3Ps/HNjWzY\ntoFrV1w7euyO1h3Yts2MyTMqGLGIyNFhmAZG2MAMmwRBQFAoJYUCP6CYL1LIFyikC6XjLAMzYkIA\nmdYMmdYMhm3g1Dk49Q5OnaO2cSIiIiIiIhPQREwCfWCu634W+FfgMeD7lKp/lgJfBB52XXeV53n9\n5VjrYJm645pbeijkCvTt7KP3zV6yg1mKhSKmbY4mhJLJUj4vFotVKlKRCUfXzYFisRgzm2Zy/cXX\nM5gc5IVXX+CcU8/BsR0Avvf493h2w7O0TG1h+enLWX76ctyZrhLTxxldN3I8CooB+Wx+tHVcUAgI\nkgFFs3Q/ZlfZhOwQRsqAFORb81Q1VpGYliDeFOet1rcA3euKHI59XSJ03YgcOl03IodP143I4TvW\nr5uJmAQaHHk82Cc11e847gCu67qUEkBPep53+X67HnVddyPwU+CvKCWE5CiyQhaN8xtpnN9IPpOn\nd3svfb/pIzeco1gsVjo8ETnGJGIJLjnrkgO21Sfqqa6qZmfbTna27eTOh+9kSv0Ulp22jFVnr8Jt\ndisSq4jI0WaYBk7UwYmWZgQV80XymVJSqJArvD1LyDaxwzZOzCHZmSTZmaRtfRsZMjj1DumGNJG6\niJLnIiIiIiIi49RETALtAAJg+kH2N488HmwYzwpKv/eP32XfIyPnvuCDBCiHz47YTF40mcmLJpNL\n5uje2s2ezXsoZooU80W1HxGRo+J/3vQ/+fz1n2f91vU8vf5pnt3wLB29HfzoqR8xpX7KaBJoKDVE\nyAkRdsIVjlhEpPwMw8ByLCzHgjgUC28nhPLZPLlkjlwyh2EaWCGLUHWIgl+gkCywvXc7dtQmMTVB\nfFqc2OQYpqX7NhERERERkfFiwiWBPM9Luq67CVjsum5k//k9rutawDnAbs/zdh3kFPsqiCLvsi8M\nGAfZJ2MkFAvRdHoTyeok+WSe6kw1Q21D5FN5MNEHCyJSVrZts+TEJSw5cQl/esOf8vrO13lm/TOc\nv/j80WO+/9j3ue/J+zjn5HNYsWQFZ510lhJCInLMMi2TUCwEsVLbuEKuQD6TH00MpdIpikERLPAN\nn6AY0PubXnp/04tpm1RPqSbeFCc+NY4dmXB/boiIiIiIiBxTJupfZXdQaun2GeBf9tt+EzAZ+PK+\nDa7rLgCynuftGNn0/Mjjda7rftPzvGC/11/7jmOkwuyYzYzTZhAEAameFN1bukl2JvHTfml+kKnW\nIyJSPqZpctLskzhp9kkHbN/TuYd0Ns2T657kyXVPEovEWH76clYuWcmZC87Etifq/05FRN6bYRrY\nERs7YpfaxvmlKqH0cJqgEJDuTWOYBoY90l6uymFw7yCDewfBgKqGKhJNpSqhcFzJcxERERERkbFm\nBEHw/keNM67rOsCzwBnAN4F1wCLgTym1gTvL87zUyLEB4Hmet2C/199LKeHzPHAv0AUsAT4H9AIf\neo9Konc1MDAw8f4hx7mDDeQKgoDh9mG6tnSR7k2Tz+QxHVO96EXQgPujqbW7lV+98iueWPsEW3dt\nHd2+etlqvnizxshNZLpuRA5fMpkkKASEzFCpQihXICgGYJQqiaywRSgWwgpZo68Jx8OlCqGmOFWN\nVbp3k+POsT5wWORo0HUjcvh03Ygcvol43dTU1BzyH1QT8qvLnuf5ruteDNwOXA3cBnQC/wV8eV8C\n6D3cADwDfAr4GhACWoHvAH/ned7eoxO5lINhGMSnllqMFAtFBvcO0v1GN5n+DAW/UKoQ0ocKIlJm\nTY1NfPzij/Pxiz/Oro5dPPnSkzyx9gmWnbZs9JgXXn2Bl15/iQs/dCELWxbqvUhEjmmGZRCKhQhV\nhwiKwWjLuHw2j5/y8VP+23OEYiGCICA7lKXb68YKW6X7uaY48RPimv8oIiIiIiJylEzISqDxSJVA\n5Xe4GdiCX6DvN330bO0hO5QF0AcKctxRRcPY2vf/0H3Jni/9x5d4ev3TQClptHLJSi5cciFzps+p\nWIzy/nTdiBy+97pugiCgkC2Qz5aSQkEhICgGGJaBaZs4VQ5O1Blt62uYxugcocS0hOYIyTFrIn7D\nVKTSdN2IHD5dNyKHbyJeN8d8JZDIu7Eci0a3kUa3kcxAhs7NnQy1DpHP5lUdJCJHxTvfV25adROT\n6yfz1LqnaO1u5a5H7uKuR+5iVtMsrr/oei4/9/IKRSoiMnYMY785QomROUIjCaGiXyTTlyE7kMWw\n3p4jNNQ2xFDbEK2vtBKbFKNmeg3xaXGcqFPpX0dERERERGRCUxJIjkmRmggzz5lJUAwY3DtI1+Yu\n0gNpivmiEkIictQsbFnIwpaF3HbtbWzcupEnXnqCX73yK3a07qBvqG/0uL7BPnL5HFPqp1QwWhGR\no88wSu3grJBFOB6mmH87IVTIFsgOZckOZQ+YI5TsTJLsTMJ6iDXGSExPkJieUEJIRERERETkCCgJ\nJMc0wzSomVFDzYwa8pk83V43fTv6RnvU72tDIiJSTpZpsXjBYhYvWMznb/g867asY96Mt0uKf/L0\nT/jOz77DqfNOZeWSlVxwxgXUxesqGLGIyNgwbZOQHSrNCCoGBySE9p8jZIdtQtUhkl1Jkl1J2ja0\nUdVQRc30mlJCqEoJIRERERERkUOhJJAcN+yIzQmnnsCUU6aQ6knR9VoXw13DFLIFTEfVQSJydDi2\nw9knn33AtnQ2TcgJsXHbRjZu28i//OBfOGPBGaxcspLlpy8nXhWvULQiImPHMEfawUWdt+cIZUpJ\nIT/t46cPTAilulOkulOjCaF9FUKhWKjSv4qIiIiIiMi4pSSQHHcMwyDWGCN2foxivkjfjj66t3aT\nHcxCUPqGqojI0fS5az7Hpy7/FM9tfI4nX3qSNZvXsPb1tax9fS2vvPEKf/17f13pEEVExtQBc4SC\ngEKuQD792wkhK2SVEkI9KVI9Kdo3thOtj45WCIWqlRASERERERHZn5JAclwzbZOGeQ00zGsgN5yj\nc3Mng3sH8VN+aXaQ2sWJyFESi8a45KxLuOSsSxgYHuDp9U/z5EtPcuGHLhw95vlNz/PY2se48MwL\n+dCiDxFy9OGmiBz7DKNU/WOHfzshVMgWSGVSBySE0j1p0r1p2je1E62LliqEZiQIV4cr/auIiIiI\niIhUnJJAIiNC1SGmL51OEAQMtQ3RubmTdG+aYr5YSgipXZyIHCU11TWsXraa1ctWH7D9kRce4Zcv\n/5In1j5BdVU1K85YwWXnXMai2Yv0niQix4V3TQhl9ksIpVMY1n4Jod406b40Ha92EKmNlCqEZiQI\nx5UQEhERERGR45OSQCLvYBgGiaYEiaYE+Wye3m299GzvwU/6YIBpqV2ciIyNz179WebPnM+TLz3J\nm3ve5MFnH+TBZx9k+uTp3HTpTVzx4SsqHaKIyJg5ICGUeJeE0P4VQrEQmb4Mmf4MHa91EKmJjFYI\nRRKRSv8qIiIiIiIiY0ZJIJH3YIdtJp80mcknTSbVm6LrtS6GO4fJZ/KYjqqDROToamps4uZVN3Pz\nqpv5Tetv+MXzv+DRNY+yp3MPvYO9o8cl00ks0yIS1gebInJ8eGdCqOgX8dP+b1cIOaUKoUyQITOQ\noXNzJ+FEmMT0BDUzaggnwrqfExERERGRY5qSQCKHqKq+iublzRQLRQbeGqDL6yI7kKVYKGI5VqXD\nE5Fj3Oym2fzhNX/IrVfdykuvv8S8GfNG99331H3c8+g9XHDGBaw6exWnzjtVH2qKyHHDMErVP1bI\nGk0I5TN5/LRPIVcg1b1fQigWIggCsoNZul7vIhwvJYQS0xNEaiN67xQRERERkWOOkkAih8m0TOpm\n11E3uw4/5dO5pZOBXQP4KV+zg0TkqLMtm7NPPvuAbTvbdpLKpHjo1w/x0K8foqmxiVXnrOLSsy5l\nauPUygQqIlIB+yeEQvHQaEIon8mXEkKZtxNCTswpJYS2ZOnaUkoI1cysoaa5hnC1ZgiJiIiIiMix\nwbr99tsrHcMxIZvN3l7pGI41vb2lVkcNDQ0VjuTgLMci0ZSgcUEjVY1V5AZz+GmfoBBgmEoGydjz\nfR+AUChU4UhkLJ2/+HwuXHIhVZEq2nvaae9tZ723nvuevI8gCFjsLq50iOOarhuRwzcRrhvDMDAt\nEzts41Q52FEb0zIJiiPt41I+ftKnkCmACcVCkVRXit5tvQy3D1MsFHGqHFV8S9lMhL9vRMYbXTci\nh0/Xjcjhm4jXTSQS+cqhHqtKIJEyMAyDRFOCRFMCP+XT8WoHA7sHNDtIRMbMzBNm8pmrPsPvX/n7\nvPLGKzzywiM8/crTLGhZMHrM1l1bGUoNcfr80zFNs4LRioiMLcMoVf9YzkiFUH6kQiidp+AXyPfk\nD5ghlOpOkepJ0bahjerJ1dTMrCExPaGEkIiIiIiITDhKAomUmVPlMH3pdKYtmUbfzj66tpRmB2GU\nWsmJiBxNlmmx5MQlLDlxCcmPJwmH3m5pdPcv7uapdU8xpX4Kl559KavOXsX0ydMrGK2IyNg7ICFU\nPZIQSu83Q6gnhWEa2CGbUDzEcMcwwx3DtL3SRvXUamqba6k+oVr3dSIiIiIiMiEoCSRylBimQf3s\neupn15PuS9OxqYPhjmEKuYKqg0RkTMSisQOez50+l9d3vE57Tzvffei7fPeh73LynJNZdc4qVpyx\nguqq6gpFKiJSGb9VIeQX8dN+KSmU8fEzPqZlYkUswtVhBvcMMrhnsNQSeHqCmuYaYpNiuq8TERER\nEZFxS0kgkTEQrYvScl4LBb9Az9Yeerb1kEvmMC1Ts4NEZMx84rJPcNOlN7Fh6wYeeeERfvXKr3h1\n+6u8uv1VegZ6uOWKWyodoohIxRiGgRWysEIWQSKgkC2UEkKZPH6yND/ItEycKodQLETfjj76dvRh\nR21qZtRQ21xLpDaihJCIiIiIiIwrSgKJjCHLsZi8aDKTTpxEsjNJ+6Z20j1pioWiesyLyJgwTZPF\nCxazeMFiPn/D53n6lad5+PmHufSsS0ePeeCZB2jrbmPV2atontpcwWhFRCrDMAzsiI0dsQmCYHR+\nUD6bJzuUJTecw7ANQlUhgmJQ+pLP1h7C8TA1M2uoaa4hXB1+/4VERERERESOMiWBRCrAMAyqp1Qz\n96K5+Gmfzs2d9L/VTz6dV6s4ERkzVZEqVp2zilXnrBrdFgQBP3z8h+zq2MXdv7ibhS0Lueycy1i5\nZCWJWKKC0YqIVIZhGDhRByfqEBSD0XZxhVyBTH+G7GAW0zYJVYcIgoDs5iydmzuJ1kepnVlLYkYC\nJ+pU+tcQEREREZHjlJJAIhXmRB2mnTmNpsVN9O/qp2tzF5mBDBho4LCIVMSff+LPeeSFR3hq3VNs\n2bmFLTu38M37vskFZ1zADRffwNzpcysdoohIRRimQSgWIhQLUSwUS7OD0j5Fv0i6N41hlWYMhapD\npHvSpHvTtG1so3pyNTUza0hMS2CFVP0tIiIiIiJjR0kgkXHCMA3qWuqoa6kjM5ChY1MHQ+1DFHIF\nTFvVQSIyNgzD4NR5p3LqvFP5k+v+hGc2PMPDzz/Mui3rePTFR1l+2vLRJFAQBHpvEpHjlmmVqn9C\n1SEKfqHULi5TqhBKdadKCaGQRTgeZrhjmOGOYVpfbiXeFKd2Zi3VU6v1hR8RERERETnqlAQSGYci\nNRGalzVTzBfp3tZNz9Ye/KSPYRoYpj5wFZGxEQlHuHjpxVy89GL2du3lsTWPce4p547u/4e7/4Gc\nn2P1stWcMvcUJYRE5LhlOVapAigeougXR1vG5TOlH8MszRgKx8MM7hlkcM8glmORmJ6gZmYNsckx\nvYeKiIiIiMhRoSSQyDhm2iaTF05m0oJJpLpStG9qJ92TppAvYDlqJSIiY2fapGnccsUto89TmRSP\nvfgYWT/Loy8+SsvUFlYvX82lZ12q2UEictwyjFL1jxWyCBIBhWyhlBDK5PFTPn7Kx7RMnCqHUCxE\n344++nb04UQdaltqqW2pJRwPV/rXEBERERGRY4h1++23VzqGY0I2m7290jEca3p7ewFoaGiocCSV\nZxil/vP1s+upn1sPQHYgSz5b+mapvjkq+/i+D0AoFKpwJHKsc2yHi5ZeRCQUYW/nXtp62lizeQ33\nPXkfu9p3MWf6nAmTDNJ1I3L4dN28P8MwMG0TJ+oQqg5hORYGBsV8kXw2T244h5/2CQgASPWk6H2z\nl+H2YYIgIFQdUru4Y4z+vhE5fLpuRA6frhuRwzcRr5tIJPKVQz227JVAruuGgIXAFGCD53md5V5D\n5HhmR2yaFjcx9fSpDO4ZpOO1DjL9GQB9UCAiY6qpsYnPXPUZfu93fo9fb/o1Dzz7AC+9/hKPrnmU\nT13xqdHjisUipqn3JxE5fhmGgRN1cKIOQTEYrQ4qZAtk+7PkBnOYjkk4HibVnSLVk6JtfRuJ6Qlq\nW2qpnlKtL/2IiIiIiMgRKVsSyHXdycDfA9cC0ZHNVwEPjuz/JfCXnue9WK41RY5nhmFQM6OGmhk1\nZAYztG9oZ7htWK3iRGTM2bbNeYvP47zF59Ha3cq6LeuYMWUGAEEQ8JlvfIaZU2ayerlmB4mIGGap\nwjsUC1EsFMmnS63iin6RVHcKwyrNDwpVhxjYNcDArgGcqENNcw11LXWEE2oXJyIiIiIih64sSSDX\ndeuB54HZQBLYAJy23/5ZwDnAY67rnu153uZyrCsiJZFEhJblLeSzeTpf66RvZx/5dB7TMfVhq4iM\nqabGJlYvWz36/K32t3jjrTfYsnMLj655lOYTmlm9bDWXnn0pNdU1FYxURKTyTMskVB3CiTkU/WKp\nQii93/wguzQ/KCgGdL/RTfcb3VQ1VFHbUkvNjBqskL74IyIiIiIi761cvVm+RCkB9HWgEbgaGP3k\n2fO8HcB5QAj48zKtKSLvYIdtms5o4sSrTmT60unYEZuCXyAIgkqHJiLHqZapLfzwaz/kE5d9goZE\nA2+1v8U37/smV33xKr7yX1+hd7C30iGKiFScYRhYIYtITYTYlBjR+ih2xCYoBGQHswy3D5PsSpLP\n5El1p2h9uZU3HnyD3S/uZqh9SPd6IiIiIiJyUOVqB7caeMrzvP8F4Lrub/0V4nnei67r/hi4oExr\nishBGKZBw7wG6ufWM9w+TPuGdtJ9aTA0N0hExl5TYxO3fuRWfveK3+XXr/6aB595kLWvr2XN5jX8\nRfQvRo/L+lnCjtocicjxbf/5QQdtFxe2CcXfbhdnR21qm2vVLk5ERERERH5LuZJA04B7DuG4zZSq\nhERkDBiGQXxqnPjUOJmB0tygofYhivmi5gaJyJizbZvzTj+P804/j7buNna27RxN+iTTST72Vx/j\nQ4s+xOplqzlt/mlqZykix72DtotL+/hptYsTEREREZH3V64kkA/EDuG4Okozg0RkjEVqIrScV5ob\n1PFqB/07+8lnNDdIRCpjauNUpjZOHX2+YdsGBlODPL72cR5f+zgzp8xk9fLVrDp7lWYHichxb1+7\nOCtkESQC8plSdVAhWyA7mCU3lMN0TMLxMKnuFKmeFG3r20hMS1DbUkv1CdW63xMREREROU6Vqy/U\nBuCjrutGD3aA67oNwMeBTWVaU0SOgB22mXbmNBZetZBpS6ZhhzU3SEQq79xTzuXer93LJy//JA01\nDezq2MW/3fdvfOSLH+Er//UVsn620iGKiIwL+9rFVTVUEZsSI1ITwbTNUru4nhRD7UOke9Pks3kG\ndg/w1rNv4f3co31TO5nBTKXDFxERERGRMVauSqBvA3cBz7qu+9dA38j2mOu6LnAh8GfAFOALZVpT\nRD4A0zJpdBtpmN/AUNsQHRs7NDdIRCpqauNUPn3lp7nlilt44dUXePCZB3lx84u097QfMCvIz/s4\ntlPBSEVExge1ixMRERERkfdTliSQ53nfc133bOAPgZ+PbA6Au/c7zAD+3fO8Q5kdJCJjxDAMEk0J\nEk0J0v1p2je0M9wxrLlBIlIxtmWz7LRlLDttGe097Qylhkb3vbnnTf74//ljrlh2BVeddxUnNJxQ\nwUhFRMaHd2sXl0/nyWfyahcnIiIiInKcK1clEJ7n3ea67oPAp4GlwGRKiaB2YA1wh+d5j5drPREp\nv2htlFnnzyKfGZkb9JbmBolIZZ3QcMIBiZ7nNjzHQHKA7/3ie3z/0e9z7qnncs2Ka1jsLtb7lIgI\nb7eLc6IOxUKxVBmU8kfbxRmmgR22CcVDDOweYGD3AE6VQ92sOupm1eFUqdJSRERERORYUrYkEIDn\neY8Bj5XznCIy9uyIzbQl05i6eCo923rofqOb3HBOySARqbhPXv5JzjzxTO5/6n5++fIveXbDszy7\n4VlaprZww8U3cPm5l1c6RBGRceN928VZJk6s1C6uc3Mnna93Ej8hTt3sOuJT4xim7vtERERERCa6\nsiSBXNd9CvgPz/Pue5/j/gs42/O8ReVYV0SOLtMymbRgEo1uI0N7h0oDhfszGKahDwVEpCIMw+Ck\n2Sdx0uyTuO3a23jw2Qf56dM/ZWfbTrbs3KIkkIjIuziUdnFWyCIUDzHUNsRQ2xB21KaupVQdFKoO\nVfpXEBERERGRI1SuSqDzeXsW0HuxgNllWlNExohhGCSmJ0hMT5DuS9O2vo1kZ5KgGGDaZqXDE5Hj\nVENNA7dccQs3XXoTz6x/hnkz543ue2zNYzz64qNcs+Iali5aimnqvUpEBH67XZyf8vFTPoVcgVR3\nqlQdVFWqDura0kXXG11UT66mbnYdiWkJfRFIRERERGSCOeIkkOu6VwJX7rfpOtd1T3qPlzQClwA9\nR7qmiFRetC7K7BWz8dM+HZs6GNg1QD6Xx3KsSocmIscpx3ZYuWTlAdseeOYBNm7byJrNa5g2aRof\nPf+jXHbuZcSr4hWKUkRk/DEtk3A8TKg6RCFXwE+V2sVlB7PkhnNYjkUoEWK4Y5jhjmHssE1tSy11\ns+sIx8OVDl9ERERERA7BB6kECgNnA/OBAFgy8vNecsCXP8CaIjJOOFGH6Uun03RGE11buujZ2lPq\nLa+5QSIyDnz9s1/n58/9nJ88/RP2du3lm/d9k/984D+55KxL+NjKj9E8tbnSIYqIjBuGYWCHbeyw\nTTFRLM0NSvkU/FJ1kGGVqofC1WG6vW66vW5ik2Kl6qDpCUxL1ZYiIiIiIuPVESeBPM+7F7jXdd06\nStU9/wHc+x4vyQDbPM/rPdI1RWT8MW2TKSdPYfKiyfS82UPn5k78lI9pKxkkIpVTU13DjZfeyPUX\nX8/zm57nR0/9iJffeJkHnnmAeTPmKQkkInIQpmUSqg7hxJy3q4MyeXLDOfxk6Qs/4XiYZFeSZFcS\na71FbXOpOihSE6l0+CIiIiIi8g4feCaQ53l9rut+F3jA87ynyxCTiExAhmnQOL+RhnkN9L/VT8fG\nDrLDWSWDRKSiLNNi2WnLWHbaMna07uDBZx/k4qUXj+6/59F7SGfSrDprFbFYrIKRioiML/tXBwXF\nAD/t4yd9in6RVE8KwxypDoqH6dnWQ8+2HqoaqqibXUfNjBrNjRQRERERGSc+cBIIwPO8Ww7lONd1\nvwjc4Hne6eVYV0TGH8MwqGupo7a5lqG2IdrXt5MeSGOapgYJi0hFzWqaxR9f98ejzzPZDHc+cifD\nqWHufvRuLlxyhfj71AAAIABJREFUIVevuJoFzQsqGKWIyPhjmAahWAinyqHoF/FTPn7aJ5c8sDoo\n1Z0i1ZOifUM7NTNrqJtdR7QuWunwRURERESOa2VJAu3jum4cWAi8Wx+AOuAGwC3nmiIyPhmGQaIp\nQaIpQbIrSdvLbaR6S98aVTJIRMaDkBPiK5/+Cj98/Ie8tOUlHnnhER554REWzV7E1RdczQVnXIBj\nO5UOU0Rk3DAMAytkYYUswolwqTooNVIdNHKfZ0dtwtVherf30ru9l2hdtFQdNLMGy7Eq/SuIiIiI\niBx3ypYEcl33G8CfAO/1aYkBrCnXmiIyMcQmxZh76VzS/WnaXm4j2ZkkINAQYRGpKNM0WbpoKSe1\nnERrdyu/WPsLHnruITb/ZjObf7OZpsYmTppzUqXDFBEZlw5WHeQnffLJPKZTmi1EAOm+NO0b26mZ\nMVIdVB9Vu2ARERERkTFSliSQ67qfAb4IBMBbQD9wGrAVKALzgQ7g+8C/lGNNEZl4orVRZq+cTXY4\nS/sr7Qy2DRIUAvWMF5GKa2ps4n9c+z/4/dW/z2NrHmPjto0smr1odP8PH/8hZyw8g7nT51YwShGR\n8eed1UH5TB4/5VPIFUj3pslYGeyITTgepm9HH307+ojURKibXWofbIVUHSQiIiIicjSVqxLo94E+\n4ALP8za5rtsC/Ab4oud5D7quOxv4b6Dged7uMq0pIhNUuDpM8/Jm/LRP+8Z2BnYNUMgXsGx9CCAi\nlRUNR7ly+ZVcufzK0W07Wnfwzfu+CcCShUu47qLrWLpoqb7FLiLyDoZp4FQ5OFUOBb+An/LJp0tJ\nIT/lY9ql2UFBEJBZn6FjUweJGQka5jYQrdfsIBERERGRo6FcX79fCNzped6mkefB/js9z/sNcDXw\nSdd1f7dMa4rIBOdEHWacNYOFH1nIJHcSGFDwCwRB8P4vFhEZI9XRaq5ZcQ3RcJSXtrzEF/71C9x8\n+8387NmfkfWzlQ5PRGRcshyLSE2E2JQY0boodtgmKASke9MMtw+T7k3jZ3z6d/az/YntbH9iO307\n+ijmi5UOXURERETkmFKuJJBDqd3bPv7I4+jXuTzP6wJ+CPxhmdYUkWOEFbJoOqOJE686kRNOOQHL\ntijklAwSkfFhUt0k/uT6P+H+b9zPZz/6WSbVTmJn207+/q6/54b/dQN+3n/fc4iIHK8Mo1QdVNVY\nRdWkKkLxEIZh4Kd9kp1JhjuG8VM+6Z40e1/ai/dzj7YNbWSHlGQXERERESmHcrWD6wTc/Z53jzzO\neZfj5pdpTRE5xpi2yZSTpzB50WR63uyhc3PnaOsQtV0SkUpLxBLceOmNXHfhdTz18lP84LEfML95\nPo7tAJAv5NnTuYeWqS2VDVREZJyyHAurxiJIBKXZQcl3mR2UCNOztYeerT1UT6mmfm498alxDFP3\ngiIiIiIiR6JcSaBngRtc190E/H+e5/W7rrsHuMV13f/wPK9v5LiVQLJMa4rIMcowDRrnN9Iwr4H+\nt/rp2NRBdiirZJCIjAu2bXPx0ou56EMXkfNzo9ufXv80X/72l1m6aCnXX3Q9Zy48U+9ZIiLvwjAM\nnKiDE317dtC+n3w6X5odlAgz3DHMcMcwTpVD3ew66mbV4USdSocvIiIiIjKhlCsJ9FVgNfCPwFbg\nIeAe4IvAa67rvggsGPn5cZnWFJFjnGEY1LXUUdtcy1DbEO3r28kMZDBMQ98GFZGKMwyDcCg8+ry7\nr5uwE2bN5jWs2byGOdPmcN1F13HhkgsJOaEKRioiMn7tqw4Kx8P46VIiqOgXSXWnMCyDUCxEUAzo\nfK2Trte7SExLUD+nnqpJVUq0i4iIiIgcgrLMBPI873XgXOAuYMfI5tuBXwJTgauAhYAH/Fk51hSR\n44dhGCSaEsy/fD5zLppDtC5KMV8kKGpmkIiMH9dddB33f+N+Pn3lp2lINLB973a+/t9f55q/vIYH\nnnmg0uGJiIxrhllK+FQ1VhFtiOLEShU/2aEsw+3DpLpT5DN5BnYPsONXO3jz0TfpebOHgl+ocOQi\nIiIiIuNbuSqB8DxvI/Cp/Z5ngJWu634ImAXsBV70PC9frjVF5PgTmxRj7iVzSfenaX25lWRnqcOk\naZUlpy0i8oHUxmv55OWf5IaLb+DJl57kB0/8gO17th/QNi4IAn17XUTkIAzDwA7b2GGbYqE42iau\nkCuQ7EpiWiah6hBBEND2Shsdmzqoba6lfk49kdpIpcMXERERERl3ypYEOhjP89YCa4/2OiJyfInW\nRpmzcg7ZoSx71+0l2ZEkCAIlg0RkXAg5IVads4pLz76UdVvWsWj2otF9dzx4B1t3b+X6i67n9Pmn\nKyEkInIQpmUSjocJVYcoZAvkkjkK2QKZ/gzZoSx22CacCNO7vZfe7b1UNVZRP7eexLSE7glFRERE\nREaUNQnkum49MAeIAAf9RMPzvGfKua6IHL/C8TCzL5hNdihL68utDLcNE6BkkIiMD4ZhsOTEJaPP\nC8UCD/36Ibr6u3h+0/PMnzGf6y66jhVnrsCxNexcROTdGIaBHbGxIzbF/NvVQX669GM5FqF4iFRX\nilR3CjtsUze7jrrZdYRimskmIiIiIse3siSBXNedCtwJrDjEl1jlWFdEZJ9wPMys82eVkkGvjCSD\nVBkkIuOMZVp856+/w0+f/ik//uWP2bp7K3/3nb/jWz/+FlevuJrVy1aTiCUqHaaIyLhl2ibhRJhQ\nPEQ+nR9tFZfuSZOxMjhRh3A8TNeWLrre6CI+NU79nHqqT6hW5aWIiIiIHJfKVQn0r8BKoA14ERgC\nNLFdRMZcOB5m1nmzyA5naXu5jaG2ISWDRGRcqYvXccsVt/DxSz7O42se5weP/4CdbTv51o+/xYkt\nJ7J4weJKhygiMu4ZhoFT5eBUORRyhdHKoFwyh5/yMZ1SsmiodYih1iFC1SHq59RT21KLHT7qXdFF\nRERERMaNct39XgSsB872PC/3fgeLiBxt4eowLee1KBkkIuNW2AlzxYev4PJzL2ft62v59cZfc7p7\n+uj+ux65i1PmnsKp806tYJQiIuOfFbKwQhbhRHi0VVzRL5LqTmFaJk7MIQgC2je20/FqBzUza6if\nU0+0PqrqIBERERE55pUrCWQCDyoBJCLjzQHJoFfaGGpVMkhExhfDMFi6aClLFy0d3ba7Yzff/um3\nCYKAk+eczI2X3Mg5p5yDaeq9S0TkYAzTIFQdwomNVAclffKZPNmBLLmhHFa4lCjq39lP/85+onVR\n6ufVUzOjRveGIiIiInLMKlcS6BWgqUznEhEpu3B1mJblLeSSOVpfblUySETGtXhVnJtX3cxPfvUT\nXt3+Kn/x739By9QWPn7Jx7noQxfh2E6lQxQRGbcMw8AO29hhm2KhOFodlM/kyWfypblC8TBBEJBe\nm6ZjYwd1c+qon1OPE9X7q4iIiIgcW8r16eeXgetc1z23TOcTETkqQrEQLctbWLB6ATXTagiKAcV8\nsdJhiYgcoDZey60fuZX7v3E/f/SxP2Jy3WR2tu3k6//9dT7+Nx8n56v4WkTkUJhWKeETmxwjWh/F\nDtsEhYB0b5rh9mEy/Rn8lE/X611sfWgru1/cTaonRRBoxK2IiIiIHBvKUgnked7TruveCDzhuu5z\nwGag9yCHB57n/V051hUROVJOlUPz8mb8lE/rulYGWwcJigGmrcogERk/qiJVfOzCj/HR8z/K4y89\nzj2P3sOC5gWEnBAAxWKRgeEB6hJ1FY5URGR8MwwDJ+rgRB0KfmG0OiiXzOGn/NGZQgO7BhjYNUC0\nPkrD3AYSMxKqHBcRERGRCa0sSSDXdc8G7gLCwMqRn4MJACWBRGRcOCAZ9HIrg3uVDBKR8ce2bVad\nvYpLll5CJpcZ3f7cxue4/b9u57JzLuOGi25g2uRpFYxSRGRisBwLq8YiHA+PJoMKuQLJriSmbRKq\nDpVaxfWmsTfaahUnIiIiIhNauWYC/SNQC9wL/BoYopTsERGZEJwqh+Zlzfjp/ZJBBSWDRGR8MU2T\nqkjV6PM33nqDnJ/jp0//lAefeZDzzzifGy+5EbfZrWCUIiITg2EahKpDODGHQrZALpmjkC2Q6cuQ\nHcziRB3C8TBdr3fR/UY3iekJGuY1UNVQ9f4nFxEREREZJ8qVBDoVuN/zvOvLdD4RkYpwog7NHy4l\ng9pebmNgz4Aqg0Rk3Lr1I7dy8dKLuefRe3hszWM8te4pnlr3FGcuPJNbrriFU+edWukQRUTGPcMw\nsCM2dsRWqzgREREROeaU6451GFhfpnOJiFScE3WY+eGZLLhyAbXNtQTFgGK+WOmwRER+S8vUFv7q\nU3/FvV+/l+svup5oOMq6LevYvGNzpUMTEZlwLMciUhOheko1kZoIhmWMtoob7hjGT/mke9LsWbuH\nrQ9tpXNzJ37ar3TYIiIiIiIHVa5KoJ8D5wFfL9P5RETGBSfqMPPcmaXKoFdGKoPUJk5ExqHJdZO5\n7drb+MRln+CBZx7gymVXju574JkHCIKAVWevIhwKVzBKEZGJ4WCt4tK9aTJWZrRVXOfmTrq2dFEz\no4b6ufVqFSciIiIi4065kkB/CvzYdd07ga96nre1TOcVERkX9iWD8pk8ra+0MrBbySARGZ8SsQQ3\nr7p59Hk2l+U/H/hP+of6uePBO7h25bV85LyPkIglKhiliMjE8Fut4pI+fvq3W8X1v9VP/1v9VDVU\nUT+3npoZNRimUenwRURERETKlgT6xcjjdcCNrutmgf6DHBt4njetTOuKiIwpO2Iz85z9kkG7NDNI\nRMY327b5/A2f53u/+B5bd23l2z/9Nnc9chdXLr+S6y68jkl1kyodoojIhGA5FlZtKemzb2bQvlZx\npm0SjodJBSlSPSnaN7ZTP6ee+jn12JFy/dktIiIiInL4ynU3etY7nkeAEw5ybFCOBV3XrQe+DHwE\nmAp0Aw8Df+15XtshvD4M/AVwEzBj5PUPAV/yPK+7HDGKyLFrXzLIP92n9aVWBlsHCYJAw4FFZNyx\nTIuVZ65kxRkrWLdlHd979Hus27KOHzz+A3701I+440t3MGf6nEqHKSIyYRxSq7jEga3iGuY1VDps\nERERETlOlSsJNKtM5zkkrutGgV8BC4B/A9YB84AvACtc1z3D87y+93i9TSnhc97I618GzgRuAz7s\nuu7pnufljuovISLHBCfq0Ly8mexwltZ1rQy1DQEoGSQi445hGCw5cQlLTlzCG2+9wT2P3sPujt3M\nnjZ79JjdHbuZMWVGBaMUEZk4DrdVXNbMEm4KE8wJ1CpORERERMZMWZJAnue9VY7zHIY/AU4GPud5\n3r/v2+i67kbgJ8BfU5pTdDB/AKwEPul53p0j2+52Xbcb+F1gKfDs0QhcRI5N4eows86fRWYww96X\n9pLsSGKYhv7AF5FxaUHzAv721r8l5+cwjNL71N7Ovdz4Nzdy0pyTuPHSGzn7pLMxTSW0RUQOxaG0\nissX8+SH8ng9HvWz1SpORERERMbGRL3j/ASQBO54x/YHgD3ATa7r/pnneQdrPfc5YBtw1/4bPc/7\nKvDVMscqIseRSCLCnJVzSPen2bt2L6nulJJBIjJuhZzQ6H/vaNtBVbSKTW9uYtO/bWJW0yxuXnUz\nK85cgW1N1FtGEZGxtX+ruHwmj5/yR1vFFSlihkz8qD/aKq62uZaG+Q1EaiKVDl1EREREjlFGEBz+\niB7XdX8DfM3zvDv2e36oAs/zjrjxvOu6CWAAeNbzvOXvsv9+4KPAHM/zfisu13WnA7uB/9fzvNtG\ntkWA7Hskjd7XwMDAu75227ZtR3pKETkG+EM+qa0p8kN5sBj9xr2IyHiUyqR4+IWH+cnTP6F7oDQi\ncWrDVK6/8HouPevSCkcnIjIxBfmAYrZIMVckKAYYhoFhG5hVJqZdqrh0ah0i0yLYtbbuF0VERERk\n1Lx58951e01NzSHfNB7p1zpbgJp3PB8rzSOPew6yf9fI42zg3ZJTC0Yet7uu+8fA50fOmXVd9xfA\nFzzPe7NcwYrI8c2JO9ScUYPf75PclqSQLCgZJCLjVlWkimsuuIYrl13Jk+ue5IdP/pDW7lbWb12v\nJJCIyBEybAPLtjCjZikZlC1S9IsUB4oYloFVZeH3+/j9PlbUIjwtTHhSGMPS/aKIiIiIfHBHlATy\nPM98r+dHWXzkMXWQ/cl3HPdO9SOPnwRCwNeADkozgm4DznZd9zTP89rKEOtBM3Xy/vZVUenfUI4Z\nS2CobYi96/aSG8xh2EbZk0HJZOktMBaLlfW8IscyXTfv7uqVV3Pl+Vfyq5d/xZzpc0b/fV5+42Ve\n2/4aH73go8SrDna7Jcc6XTcihy+ZTGJFLeIN8VKruKRPIVcgSJYqhUKxECEjhNFmUOgpUD+nnvq5\n9ThRp9Khi1SMPhcQOXy6bkQO37F+3ZSlwbvrujOBXs/zht/nuGVAzPO8X5Rj3SO0r/n9FOAkz/N6\nRp4/6LpuB6Wk0J8BX6hEcCJybItPjeNe4TK4Z5C2V9rIDmcxbVOVQSIyLtmWzYUfuvCAbd/52XfY\nuG0j9zx6Dx+94KN8bOXHqEvUVShCEZGJxzAMnKiDE3Uo5Arkkjny6TzZgSy54Rx2xCaSiNC1pYtu\nr5uaGTU0zG8gWhetdOgiIiIiMgGVq4JnB3DrIRx3LfDfH3CtwZHHg33tsPodx73TvkTVg/slgPa5\nY+Tx/CMLTUTk/RmGQc2MGtzVLjPPmYkVskrfAj2CGW0iImMpCAJuueIWzlhwBslMkrseuYtr/vIa\n/vkH/0xHb0elwxMRmXCskEW0LkpsSoxwIoxhGPgpn+H2YZJdSfKZPP1v9bP98e3s+OUOBvcO6p5R\nRERERA5LWSqBAAN4zztR13XrgTM4cJbQkdgxstb0g+zfNzNo20H27xx5tN5lX/fIuRNHGpyIyKEy\nDIO6WXXUttTSu72Xjk0d5NP5o9ImTkSkHAzD4MyFZ3LmwjN57TevcefDd/L8puf50VM/4qdP/5Sv\n/sFX+fCpH650mCIiE45pmYQTYULVIfy0j5/0KfpFkl1JTNskHA+T7EyS7EoSqg7RMLeB2lm1WM67\n/VkrIiIiIvK2I04Cua77ZeBvRp4GwD+6rvuPh/DSdUe6JoDneUnXdTcBi13XjXiel9kvJgs4B9jt\ned6ug5zidWAAOO1d9s2glNDa80FiFBE5HIZh0DC3gfrZ9XRv7aZrcxd+xtcf9SIyrp00+yT+4bZ/\nYNvubdz9yN2seX0Np8w9ZXT/cGqY6qrq9ziDiIi8k2EahGIhnCqHQrZAbjhHIVcg3ZsmY2UIxUIE\nxYC2DW10bu6kdlYtDfMaCMVC739yERERETkufZBKoO8DWeAsYDXQx8FbsAFkgM3Alz7AmvvcAfwr\n8BngX/bbfhMwGfjyvg2u6y4Asp7n7QDwPC/nuu49wGdd1/0dz/N+tt/rbxt53H+biMiYMEyDSQsm\n0TCvga7XSz3gC9kCplOuzp0iIuU3b8Y8vnLrVxhKDRGvigOQ83PcfPvNuM0un7jsE5w468QKRyki\nMrEYhoEdsbEjNgW/lAzKZ/Jkh96eGxROhOnZ2kPPth4S0xI0zm8k2hBVRbmIiIiIHOCIk0Ce520F\nvgHgum4R+Jrnef9UrsDex7eAGylVHzVTqi5aBPwp8Cqwf0XSFsADFuy37cvAJcB9rut+g1KLuBXA\nzcCGkfOLiFSEaZlMOXkKkxZOouO1Dnq39ZL381i2KoNEZPzalwACeOOtNxhIDvDcxud4buNznLHg\nDD552Sc53T1dH06KiBwmyynNDSoWivhJHz/l46d98uk8pmMSrgkzuGeQwT2DROujNMxvoGZ6DYap\n91sRERERgXJ9vfwC4N4ynet9eZ7nAxcD3wSuBv4b+CTwX8D5nuel3uf1XZQqmL4L3Ap8GzgP+KeR\n16ePWvAiIofItE2mnjaVBR9ZQKPbCEDBL1Q4KhGR93fK3FP40f/+ETddehNVkSpefuNl/uif/og/\n+Ps/4Nebfq2h5iIiR2Df3KDYlBiR2gimY1LMF0l1pxhuHyaXzJHuSbPnxT1sfXgrXW90Ucjp3lFE\nRETkeGeU849w13WXep63Zr/nFqXkzGJKc3b+0/O8nrItOI4MDAzo04wy27ZtGwDz5s2rcCQi40M+\nm6dtQxsDOwcoFoqY9m/n8ZPJJACxWGyswxOZsHTdHF2DyUF+/Msfc++T9zKYHKT5hGbuuv0uTFOt\nLicyXTcih6/c100QBKW5QckchWyBoBhgWAZOlUM4HsYwDUzbpLalNDcoHA+XZV2RsaTPBUQOn64b\nkcM3Ea+bmpqaQy77/iAzgUa5rhsDHgNOAeL77XoIuAjYF9AfuK67ZKQSR0REDoMdtpmxdAZTT51K\n68utDOweIAgCTEsfpIrI+JWIJfjUFZ/iYxd+jJ89+zNOaDhhNAHU2dfJ2s1rueSsS3Bsp8KRiohM\nLO+cG+QnS23icsM5/KSPFbaI1ETofbOX3u29xKfGaZjfQGxSTK05RURERI4j5frk8AvA2cCPXNc1\nAFzX/Sillm1bgCuBvwVmAF8s05oiIsclO2Iz89yZzP+d+cSnxikWigRFFSOKyPhWFaniuouu47zF\n541u+/5j3+cbd36D6750Hfc/dT/ZXLaCEYqITFyWYxGpjRCbHCOcCGNYBvlMnuGOYZKdSfLpPEOt\nQ+z81U62P76dvp19un8UEREROU6UKwl0NfCc53m3eJ63707yJiAAPuF53s88z7sd+DlweZnWFBE5\nroVjYWadP4v5l80nWh+lmC9qzoaITCgnzTmJlqktdPZ18n9/8H+55i+v4e5f3E0ynax0aCIiE5Jp\nmYTjYWKTY0TrolghqzQ3qGdkbtBwjnRfmr1r9+I95NG1RXODRERERI515UoCzQR+ue+J67omsAJ4\n0/O8V/Y77hWguUxriogIEKmJMPfiucy9eC5W1CIoBEoGiciEsPLMldz55Tv52me/htvs0jfUx7d+\n/C2u/sureWLtE5UOT0RkwjKM0mygqsYqog1RnKhDUAzI9GcYbh8m05/BT/p0vNqB93OPtvVt5IZz\nlQ5bRERERI6CsswEAiKAv9/zJUACuOsdxxUoVQeJiEiZVTVWUXtmLbm+HFa7RXYoi2mb6vkuIuOa\naZqcd/p5LD9tOWtfX8udD9/Jxm0baZrUNHpMEAR6LxMROQKGYWCHbeywTTFfJJfM4af80cd9c4N6\ntvXQ82YPiWkJGt1GqhqqKh26iIiIiJRJuZJArcAp+z2/kVKy5+F3HDcf6CzTmiIi8i5CdSHmLplL\n/1v9tK1vw0/5SgaJyLhnGAZLFy1l6aKlvLnnTeZOnzu670vf+hJTG6dyw0U30FjbWMEoRUQmLtM2\nidRECMfDo4mgfCbPcGYYy7EI14QZ3DPI4J5BqhqraJzfSHxaXPeQIiIiIhNcuZJATwC3uK77vylV\n+3wW2AM8tu8A13VPBq4CflymNUVE5CAMw6CupY7a5lp6tvXQ+WonfsbHcqxKhyYi8r72TwDtat/F\nM+ufAeAnv/wJv7Psd7jx0huZXDe5UuGJiExohmkQqg7hxBzy6Ty5ZI6iXyTVncK0TELxEASwq3sX\noeoQDfMbqGupw7TL1U1eRERERMZSue7i/g7oAv4c+CugCHzO87wCgOu6LvDyyHr/XKY1RUTkfRiG\nQeP8RhZ8ZAFTTpkCBhR8Df8VkYlj5gkzueNLd7D89OXk8jnu/+X9XPel6/g/d/8f2rrbKh2eiMiE\n9c65QXbELs0N6ssw1D5EdjBLdjBL2ytteD/36Hi1Az/tv/+JRURERGRcKUsSyPO83cAi4DPAXwBL\nPc/7+X6H7AQ2Ald5nre+HGuKiMihMy2TE04+gYUfWUijW2qlVMwXKxyViMihcZtdvv7Zr/Pdv/ku\nK89cSb6Q54FnHuBTf/sp0tl0pcMTEZnQ9s0NqmqoompSFaHqEADZoSzD7cOke9P4aZ+uLV1sfWgr\ne9buITOQqXDUIiIiInKoytUODs/z+oD/PMi+LLCkXGuJiMiRsRyLaWdOY8rJU2h9uZWBXQMEQYBp\nqb2HiIx/c6bP4Su3foVb2m7hrofvoi5RRzQcBSBfyLO3cy/NU5srHKWIyMRlORZWrUUoHsJP+vgp\nHz/tk8/ksUIW4USY/p399O/sp/qEahrdRmKTY5obJCIiIjKOlS0JtI/rujOAxcAU4DHv/2fvzsPk\nqut8j7/PUntXdXdVd3YCSadzEgiyyC4gGAkEUBBZZDNwnfHquI46dxbleu/MyHVm1Dvj9RmdcRgE\nBQVERVZFFoHBSNhigHDSkAToTu9rdS1dp6rO/aOaJiBLlkqqu/rzep56Kmep8/umn+dXdc75nt/v\n67rbJ9ebruvqsXMRkWnADtksPmExhcMKdD3eRXpHGsMwMExdwIvI9HfQ/IO46mNX4fv+1Lp7H7uX\nq39wNacceQrrzlr3urpCIiKye0zLJJQIEWwI4uU8vIxHqVAi05/BtE3CiTDjPeOM94wTbgyTWp6i\n6cAmnUuKiIiITENVSwI5jrMC+C5w8k6rPwRsdxzHAp53HOcvXNf9RbXaFBGRvROMBVny3iXkR/N0\nPtZJtj+LYSoZJCIzw85Png+MDGBbNg888QAPPPEAJx12EuvOXseKA1fUMEIRkZnNMA2CsSCBaIBi\nvjiVDMoOZTGsyjbf9+na0EXvM72klqVItiWxglatQxcRERGRSVWZ/2dy9M8jwHuBF4E73rDLQqAZ\nuNlxnOOr0aaIiFRPuDHMstOWsWzNMkKNIcrF8uuesBcRme4uX3s5N3/tZs5/3/kEA0Ee3vgwf/K1\nP+FL3/4Sz29/vtbhiYjMaIZhEIgEiLZEibZECUQDUIaJsUrdoPxIHi/j0bupF/cOl+6nuimMF2od\ntoiIiIhQpSQQcBWQBP7Udd3lwOeAqUczXdd9GTgOyANfqlKbIiJSZdGWKMvXLmfJqUsIRAKUvJKS\nQSIyY7RsZSvFAAAgAElEQVQ2t/L5j3yeW66+hYvXXEwkFGH9M+t5/iUlgUREqsUKWkSaI8TmxAg2\nBAEoZAqM94yTHcxSzBcZ7Bhky91bePnRl8kOZGscsYiIiMjsVq3p4NYAv3Rd95rJ5T+6Y+i67guO\n49wCnFWlNkVEZB+Jz4/jfMBh9OVRdjy5Ay/rYdqmiv6KyIyQakzxqfM/xaWnX8ovHvoFZ55w5tS2\nOx65g7nJuRy18ih9p4mI7AXTNgk3hgnFQ3hZj0KmQDFfZDw/jhWwCDWGGOscY6xzjGgqSspJkViY\n0HeviIiIyH5WrSTQPODJXdjvBSrTwomIyDRnGAZNBzbRuLiRwY5B+jb14eU9rIDmeBeRmaEp3sQV\nZ10xtTyWGeNfbvoXchM5Dl5yMFecdQXHH3q8bkiKiOwFwzQINgQJxAIUc0UKmQJlr0x2IItpmQTj\nQfAhO5gl2BAk1Z6ieUkzpl2tiUlERERE5O1U66wrA7Tuwn4LgbEqtSkiIvuBYRi0LG9hxbkrmPeu\neWBAySvVOiwRkd1mWzYfPfOjNDU08dy25/gf3/kffOxrH+Ohpx6iXC7XOjwRkRnNMAwC0UrdoEgq\ngh228cs++eE86Z40E2MTTIxN0P1UN+4dLr3P9FLMF2sdtoiIiEjdq1YS6HHgAsdx3jIR5DhOG3Ap\nsKFKbYqIyH5kWiZzD53LynNX0uK0AFAu6qapiMwc0XCUy9dezi3/5xY+df6nSCaSbHl5C3/z3b/h\nyr+7krGMnlUSEdlbhmFgh2yiqSjR1uhU3aCJ9ATjPePkhnJ4OY/+5/px73DperyLibGJGkctIiIi\nUr+qNR3cPwN3Ahscx/kHoG9y/VLHcU4H3g98DEgA365SmyIiUgNWwGLhUQuZu2ouOx7fwWjnKL7v\nY1qa0kNEZoZIKMLFay7mvFPO4/ZHbueGe26gIdpAIpaY2sf3fU0TJyKyl6yAhdVkEYwH8TIeXtbD\ny3kUc0WsUKVu0PDWYYa3DhNfEKdleQvR1qi+f0VERESqqCpJINd173Yc538AXwe+M7naB745+W8D\nKAF/7bruPdVoU0REassO2yw+cTET4xN0PdbFeM84hmlgmLpoF5GZIRQMcf77zueDJ32Q4fTw1PoX\nO1/kqn+7isvXXs5px56GbVXruSkRkdnJtExCiRDBhiBezsPLeJQKJTJ9GayARSgRIr0jTXpHmkgy\nQovTQmJhQueVIiIiIlVQtce2Xdf9BrAK+BbwX0AHsAV4CPhH4F2u6/5jtdoTEZHpIdQQYun7ltK+\ntp1wY5iSV8L3/VqHJSKyy4KBIHOTc6eWf/nwL3m592W+9oOvcclVl3DHI3dQLKpuhYjI3jJMg2As\nSLQ1Srg5jBW0KBfLZAezjPeMU8gUyA5meeV3r9BxdweDHYOaflhERERkLxm6UVcdo6Oj+kNWWUdH\nBwDt7e01jkRk5pgO/Sbdk6ZrQ2Vud9M2NZ2HTHuZTAaAWCxW40hkuiiWitz72L1cd+d1dPZ1AjAv\nNY/L117O2uPXEgwEaxxh7anfiOw+9Zs/5vs+pUIJL+NRzBcrU3GaBoFogFA8hGEaWEGLZFuS5LIk\ngUig1iHLfjYdrm9EZhr1G5HdNxP7TWNj4y7fcNPcFiIiUlXxeXGcsx1GXhqh+6luvIyHGVAySERm\nDtuyWXv8WtYcu4b7NtzHdXdex0s9L/FPP/onXu59mc9c8JlahygiUhcMw8AO2dghm3KxTGG8gJfz\nKu8ZDztsE0qE6N/cz4A7QNOBTaScFOFEuNahi4iIiMwYSgKJiEjVGYZB80HNNC1uYmDLAH3P9FGc\nKGIFrFqHJiKyyyzTYs2xa1h99GoefPJBfnT3jzjvlPOmtnf2ddLa1EooGKphlCIi9cG0TcJNYYLx\nIF62UjfIy1VGCFnBSt2g4W3DDG8bJj4/TovTQrQ1qgeNRERERN6BkkAiIrLPGKZB64pWUu0pejf1\nMrhlkJJXUjJIRGYUy7RYfdRq3vfu903dbCyXy3zle19haGyIS06/hHNPPpdwSE+mi4jsLdMyCcVD\nBGNBvFwlGVQqlMj0Z7ACFqF4iHR3mnR3mkgyQsvyFhKLEhimkkEiIiIib8asdQAiIlL/TMtk/uHz\nWXnuSpJtSfyyT7mkIr8iMrPs/LT5yPgIpmEyNDbEd275Dhf8zQXc+KsbyeazNYxQRKR+GKZBMBYk\n2hol3ByemjIuO5gl3ZOmMF4gO5jllfWvsOXuLQx2DFIu6vxSRERE5I2UBBIRkf3GCloccNwBrPjg\nChILEpRLZfyyX+uwRER2WzKR5JqvXMM/fPofWHnQSobTw/zrrf/KBX99AT+8+4fkJ/K1DlFEpC4Y\nhkEgEiCSihBtiRKIBqAM+ZE84z3j5EfzFNIFup/qxr3dpXdTL17Oq3XYIiIiItNGVZJAjuMomSQi\nIrssEA1w0HsPYvmZy4kkI5SLZXxfySARmVkMw+A973oP//7X/843PvsNDll6CKOZUW669yZ89J0m\nIlJNhmFgBS0iyQixOTGCDUEACuMFxnvGyQ3l8HIe/Zv72XLnFro2dJEfU0JeREREpFo1gTodx7kR\n+KHruhurdEwREalz4cYwy9YsI9OfoeuxLnIjOUzbVIFfEZlRDMPguFXHcewhx/L45scZHR8lEooA\nkM1nueW+W/jQKR8iEUvUOFIRkfpg2ibhpjDBeBAvW6kb5OU8ivkiZsAk3BhmeNsww9uGic+P0+K0\nEG2N6hxTREREZqVqJYHmAl8A/txxnE3AD4EbXNftqdLxRUSkjsVaY7Sf2U66K03X4114GQ/DNnSh\nLiIzimEYHH3w0a9b97MHf8b3b/s+N/7qRs5ffT4Xrr6QxobGGkUoIlJfTMskFA8RjAXxcpVkUNkr\nk+nPVJJB8TDp7jTp7jSR5ggpJ0XjokYMU+eYIiIiMntUaxq3hcDngfXAocA/Aa84jnO34zgXO44T\nqVI7IiJSpwzDILEowYpzVrDw2IVYAYuSV6p1WCIie+Ww9sM4auVRZPIZrrvzOs7/6/P53s++x3B6\nuNahiYjUDcM0CMaCRFujhJvD2CEbv+iTHcoy3jNOYbxAdihL5/pOtty9hcEtg5SL5VqHLSIiIrJf\nGNWuweA4ziLgQuAi4GjAB8aBW6lMF/dAVRucJkZHRzXxe5V1dHQA0N7eXuNIRGaOeuo3ftmn79k+\n+p/vp+SVsGyr1iFJncpkMgDEYrEaRyL1bNOLm7j2jmt57NnHAIiEInzyw5/kvFPOq3Fke0b9RmT3\nqd/sP77vU/bKFMYLFPNF/LKPYRkEogFC8RCGaWAFLJLLkiSXJQlEArUOWd5CPV3fiOwv6jciu28m\n9pvGxsZdHtpcrengpriu2wl8C/iW4zgHApdOvq4A1jmO0wn8APh313W7qt2+iIjUB8M0mHvoXFpW\ntNCzsYehF4fwSz6mXa1BrCIi+8+hbYfyrc99i2e3Pst1d17Ho5sepaWxpdZhiYjUJcMwsIIWkWSE\ncrGSDPJyXuU942GHbUKJEP2b+xlwB2ha3ETKSRFuDNc6dBEREZGqq/pIoDdyHKcZOB/4K2DJTpuK\nwE+Av3Bdt3efBrEfaCRQ9c3EDKxIrdVzvynmi+x4fAejnaP4vo9pKRkk1aEns6UWOl7poG1hG6ZZ\n+S775o3fxDItLj39UlqbW2sc3TtTvxHZfeo3tVUulfGyk3WDSpWp4OygTagxhBWsjDiPz4+TclLE\nWmOqTTlN1PP1jci+on4jsvtmYr+p6UggAMdxAsAHqYz+OQ0IAAbgAtcBzwKfBi4DVjuOc7Lrui/u\ni1hERKQ+2GGbxScuZiI9QedjnWR6MximocK+IjIjtR/w2sXFcHqY2x++nWKpyG0P3cZZ7zmLy864\njHmpeTWMUESkvpiWSSgeItgQnEoGlbwSmf4Mpm0SToRJd6dJd6eJNEdIOSkaFzXqXFNERERmvKom\ngRzHORK4EvgIkKSS+Bmlkvi51nXd9TvtfrvjOJdObvt/wJnVjEVEROpTKB6ibXUbueEcnes7yQ5l\nMW1TT2uKyIzVHG/mmi9fww/u/AEPPvkgv/jtL7jjkTtYe8JaLl97OQtaFtQ6RBGRumEYBsFYkEA0\nQDFfrCSDCqXKOaVlEmwI4vs+ufU5emO9tLS30Ly0WVMSi4iIyIxVlSSQ4zhfANYBq6gkfsrAfcC1\nwM9d182/2edc173BcZwzgJlZEVdERGom0hyhfW076Z40XRu6mBidwAwoGSQiM1Pbojb+7r//Hdt2\nbOP6u67nvg33cfvDt3PP7+7hp//np6QaU7UOUUSkrhiGQSASwA7blL1K3aBivkh+JM9EeoJANIBf\n9ul+upu+Z/tILkuSXJYkEAnUOnQRERGR3VKtkUDfmHx/AfgBcL3rup27+NlngAurFIeIiMwy8Xlx\nnLMdRl4aofupbryMp2SQiMxYSxYs4at/8lWuPPtKrr/7eoql4lQCyPd9uge7NTJIRKSKDMPAClpE\nkhHKxUoyyMt5lfeMhx22CSVC9G/uZ8AdoGlxEyknRbgxXOvQRURERHZJtZJA11CZ7u3RPfjs94Ab\nqhSHiIjMQoZh0HxQM02LmxjYMkDfM30UJ4pYAavWoYmI7JHF8xbzlSu/Qrlcnlr3xPNP8Of//Oes\nPno1Hz3zoyxdsLSGEYqI1B/TNgk3hQnGX6sb5OUqLztoE2oMMbx9mOHtw8Tnx0k5KWKtMT18JCIi\nItNatZJAbcDCd9rJcZz/AI53XfeQV9e5rjtKpW6QiIjIXjFMg9YVraTaU/Ru6mWwY5BSoaRkkIjM\nWKb5Wg2KrTu2YpkWv3nsN9y34T5OOfIU1p21jmWLltUwQhGR+mNaJqF4iGDDa8mgklci05+pJIoS\nYdLdadLdaSLNEVJOisZFjRimkkEiIiIy/VQrCXQKcMcu7GcBemRRRET2KdMymX/4fOYcPIcdT+5g\nZPsIvu9jWiroKyIz14WrL+S9R7yXG+65gdsfuZ0HnniAB554gJMOP4krz76S5YuX1zpEEZG6YhgG\nwViQQDRAMV+sJIMKJbJDWUzLJNgQxPd9cutz9MZ6aWlvoWlJkx5AEhERkWllj5NAjuOcA5yz06qL\nHMdZ9TYfaQFOBwb3tE0REZHdYQUtDjjuAOYdNo+uDV2MdY1hGIae0hSRGWtuci5fuOQLXL72cm78\n9Y3c9tBtPPz0w7QtbFMSSERkHzEMg0AkgB22KXuVukHFfJH8SJ6J9ASBaAC/7NP9dDd9z/bR3NZM\nqj1FIBKodegiIiIiezUSKAQcDywHfODoydfbKQBf3Ys2RUREdlsgEuCgkw8iP5anc30n2YEshqlk\nkIjMXK3NrXzuos9x2RmXcdO9N3Hh+y+c2vboHx4lEUuwqu3tns8SEZHdZRgGVtAikoxQLlaSQV7O\nq7xnPOywTSgRYuD5AQa3DNK0uImUkyLcGK516CIiIjKL7XESyHXdm4GbHcdppjK657vAzW/zkTzQ\n4bru0J62KSIisjfCiTDL1iwjM5Ch6/dd5EZymLapYr4iMmOlGlP82fl/NrVc8Ap844Zv0Dfcx1Er\nj+LKs6/ksPbDahihiEh9Mm2TcFOYYPy1ukFervKygzahxhDD24cZ3j5MfH6clJMi1hrTeaeIiIjs\nd3tdE8h13WHHca4DbnNd97dViElERGSfirXEaD+znXRXmq4nuiiMF5QMEpG6UCwVOeP4M7j1/lt5\nfPPjPL75cY5YfgRXnn0lRzhH6HtORKTKTMskFA8RbHgtGVTySmT6M5VEUSJMujtNujtNpDlCanmK\nxgMaNSJdRERE9pu9TgIBuK57ZTWOIyIisr8YhkFiUYL4wjhDW4fo3diLl/WwgirkKyIzVzQc5ePn\nfpyPnPYRbrnvFm657xae2vIUT33rKd617F387cf/lpamllqHKSJSdwzDIBgLEogGKOaLlWRQoUR2\nKItpmQQbgvi+T+73OXo39ZJqT9G8pFnnniIiIrLP7VESyHGc/wn82nXd9Tst7yrfdd2/25N2RURE\nqs0wDFJtKZJLkvRv7qf/uX6KhSJWQBfkIjJzJWIJPvbBj3HR+y/i1gdu5abf3MTQ2BBN8aZahyYi\nUtcMwyAQCWCHbcpepW5QMV8kP5JnIj1BIBrAL/v0bOyh79k+mpc2k2pPEYwFax26iIiI1Kk9HQn0\nv4BxYP1Oyz6wK+OZfUBJIBERmVYM02DOIXNocVro3tjN8AvDlEtlTNusdWgiInusIdrAurPWccHq\nC+ge6Ma2Kqf/AyMD/M9//59ccvolvOdd79E0cSIiVWYYBlbQIpKMUC6WKWQKeFmPwngBL+NhhSzC\njWEGtwwy1DFE4oAELctbiCQjtQ5dRERE6syeJoGuBDa8YVlERGTGM22The9eyNxD5rLjiR2MvjKK\n7/uYlpJBIjJzRcNR2ha1TS3f+sCt/OGFP/CHF/5A+wHtXHHWFZx0+EmYpr7rRESqzbRNwo3h19UN\nKuaLjOfHsYIW4USY0ZdHGX15lNicGC3LW2iY36AEvYiIiFTFHiWBXNe97u2WRUREZjo7bLP4PYuZ\nGJ+ga0MX493jGKahIr4iUhfWnbmO5kQzN9xzAx2vdPDl732ZpQuWsu6sdZzy7lOwTE2JKSJSbaZl\nEoqHCDYEKeaKFMYLlL0ymYEMpl3ZlunNkOnLEIqHSDkpmg5s0sNIIiIisld0JiEiIvI2Qg0hlp66\nlPa17YSbwpS9Mr7v1zosEZG9Eg6FuXD1hdx89c38+cV/zpzmOWzdsZWvfv+rfOvGb9U6PBGRumYY\nBoFogGhrlEgygh228Us+uaEc6Z40E+kJ8mN5djy+gy13bKHv2T6K+WKtwxYREZEZao9GAjmO8597\n0abvuu7H9uLzIiIi+12kOUL7Ge1k+jJ0PtZJfjSPaZuapkNEZrRQIMSHT/0wHzjxA9z16F3ccM8N\nrD1+7dT2gZEBErEEwYAKlouIVJthGNhhGztsU/JKFMYLFHNFJsYmKIwXsMM24USYvmf7GHh+gKYD\nm0g5KULxUK1DFxERkRlkT2sCXbEXbfqAkkAiIjIjxebEWH7WctJdabqe6KIwXlAySERmvGAgyLnv\nPZezTzwb23rtEuHr13+drV1bueT0S/jAiR8gFNSNRxGRfcEKWESaI5QTZbyMV6kdlPUo5opYQYtQ\nY4ihrUMMbRsiPj9Oy/IWoq1RnYOKiIjIO9rTJNCpVY1CRERkBjEMg8SiBPGFcYa3DdPzdA/FXBHD\nNnQhLiIz2s4JoGw+S/9wP33DffzzT/6Z6++6no+s+QjnnnxuDSMUEalvpmUSSlTqBnlZj0KmQKlQ\nItOXwQpYhBIh0jvSpHekiSQjtCxvIbEoobqVIiIi8pb2KAnkuu5vqx2IiIjITGMYBsmlSZoPambA\nHajM1z5RxAqooLqIzHzRcJRrr7qWRzY+wg/u/AFbXt7Cv/70X/nR3T/iQyd/iHNOPodYLFbrMEVE\n6pJhGgQbggRiAYr5IoXxAmWvTHYwi2mZBONBfN/nlfWvEIgFSLWnaF7SrPNQERER+SN7OhJIRERE\nJhmmQevKVlLLU/Q+08vQliGKXhHL1kW4iMxspmly8hEnc9LhJ7H+mfVcd+d1PLP1GW6890bOOO6M\nWocnIlL3DMMgEAlU6gYVSngZj2K+SH4kz8TYBIFoAL/s0/N0D/3P9tO8tJlUe4pANFDr0EVERGSa\n2KMkkOM49wPfdV33lp2Wd5Xvuu7qPWlXRERkOjMtk/mHzWfOyjl0P93NyPYRysUypm3WOjQRkb1i\nGAbHH3o8x606jifdJ+l4qYNkIglAsVTkhntu4OwTzybVmKpxpCIi9ckwDOyQjR2yKRfLFMYLeDmv\n8p7xsEM2ocYQA+4Agx2DNB7QSGp5ikhzpNahi4iISI3t6UigU4A73rC8q/w9bFNERGRGsIIWi45Z\nxLx3zWPH4zsY7RzF931MS8kgEZnZDMPg3SvezYoDVkytu//x+/n+bd/nuruu44MnfZBLTr+EOc1z\nahiliEh9M22TcFOYYLxSN8jLeHj5yssKWoQbw4y8NMLISyPE5sRocVpomNeg2pUiIiKz1J4mgZYA\nQ29YFhERkZ3YYZvFJy5mYnyCHRt2kO5OY5iGCveKSF1ZsmAJJx12Eg9vfJif3v9TfvHbX3DmCWdy\n2drLWNCyoNbhiYjULdMyCcVDBBteSwaVvTKZ/gymXdmW6cuQ6csQSoRILU/RdGCTHkwSERGZZQzf\n18CcahgdHdUfsso6OjoAaG9vr3EkIjOH+s30lh/N0/n7TrIDWSWDppFMJgOgAvciu+HN+s0LnS9w\n/V3X88ATD+D7PpZpcfGai/nEeZ+oVZgi04p+b2Rf832f0kSJwniBUqGE7/sYpkGwIUiwIYhhGFgh\ni2RbkmRbkkBk+tcN0vWNyO5TvxHZfTOx3zQ2Nu7yTaU9HQn0phzHCQAnACuAZipTvw0BzwLrXdct\nV7M9ERGRmSTcGGbZmmVkB7J0PtZJfiSPYRmamkNE6sKyRcv424//LS91v8QP7/kh9/7+XlqbW6e2\n+76v7zsRkX3IMAzssI0dtikVShQyBYq5IhNjExTGC9hhm3AiTP9z/Qw8P0Dj4sm6QU2qGyQiIlLP\nqpYEchzn08D/BpreYpc+x3H+ynXd66rVpoiIyEwUbYmy/MzljHWPsWPDDibSE5i2qZujIlIXDpx/\nIF+58itcedaVtDS3TK2/5pfX8GLXi6w7ax0rDlzxNkcQEZG9ZQUtIsEI5Xi5MlXc5KuYK2IFLUKJ\nECPbRxjZPlk3aHkLDfNVN0hERKQeVSUJ5DjOnwLfnlx8HNhEZQSQASSBw4AjgP90HMdzXffGarQr\nIiIykyXmJ4h/IM7ISyN0P9WNl/WUDBKRurFwzsKpfxeLRX758C8ZGhvi4acf5rhVx7HurHUc2nZo\nDSMUEal/pm0SSkzWDcpV6gaVCqU3rxsUD5FqT9F0UBOmrbpBIiIi9aJaI4E+A4wBa13X/d2b7eA4\nzonAncCXACWBREREqEzb0XxQM00HNjHYMUjfpj68vIcVsGodmohI1di2zbVXXctP7v0Jv/jtL1j/\nzHrWP7OeI50jWXfWOo50jlQCXERkHzJMg2AsSCAaoJgvTiWDcsM58qN5gg1BfN9nx5M76H2ml+al\nzaSWpQhEp3/dIBEREXl71Xq0ox34wVslgABc130EuIlKvSARERHZiWEYtCxvYcW5K5j3rnkYhkHJ\nK9U6LBGRqkk1pvjU+Z/ilqtvYd1Z64iFYzzpPsnnvvU5ntv2XK3DExGZFQzDIBAJEG2JEm2JVpI8\nPkyMTTDeM05uOIeX8xh4foAtd22h8/ed5IZytQ5bRERE9kK1RgKNA727sF/X5L4iIiLyJkzLZO6h\nc2ld2Ur3xm6GXxymXCxrSg4RqRtN8Sb+9Jw/5SOnfYRbH7iVzds2c/CSg6e2b+zYyKq2VVimRkSK\niOxLU3WDEmW8zOvrBpkBk3BjmJGXRhh5aYRYa4zU8hTxBXGN3BQREZlhqpUEehA4Zhf2Owx4qEpt\nioiI1C3TNln47oXMXTWX7ie7GXlpBN/3MS0lg0SkPsSjca4464rXrdu2Yxuf+qdPsWjOIi474zJO\nP+50AramIhIR2ZdM64/rBpW98h/XDerPEGwITtUN0vTFIiIiM0O17iT9BXCU4zhfcBznj84CHMcx\nHMf5FHD05L4iIiKyC+yQzQHHH8CKD66gcWEjftmnXCrXOiwRkX1iaGyI+S3z6ezr5OvXf52LvnwR\nN//mZnITmopIRGRfe7VuULQ1SiQZwQ7b+CWf3FCOdE+aibEJJsYm6H6qmy13bKFnYw+FTKHWYYuI\niMg7MHzf3+0POY7zn2+yOgl8ABgFHgf6gDLQArx78v02YKvrul/a04B3iiEJfBU4F5gPDAB3AVe5\nrtu9m8cKAxuB5cCprus+uLvxjI6O7v4fUt5WR0cHAO3t7TWORGTmUL+pfxPjE+x4fAfp7jSARgZV\nQSaTASAWi9U4EpGZY1/2m2KpyP2P38+P7v4RW3dsBaAx1sjFp1/MZWdcVvX2RPYX/d7ITFTySpWp\n4nIeftnHMAzssE0oEcK0TQzDILEoQWp5imgqWvX2dX0jsvvUb0R230zsN42Njbs8P+ueTgd3xdts\nawLe/xbbzgV8YK+SQI7jRKhMQbcC+A6VpFP75HHf5zjOu13XHd6NQ15FJQEkIiIyrYUaQiw5ZQn5\nsTxdG7rI9GYwTAPD1NzsIlIfbMtmzbFreP/R7+fRTY/yw7t/yLNbn6Wzr7PWoYmIzDpWwMJqsgjG\ng6/VDcpVXlbQIpQIMfrKKKOvjBJNRUktT5FYmNC5qYiIyDSyp0mgK6saxe77PHAo8CnXdf/11ZWO\n42wEfk4lqfOFXTmQ4ziHUpmi7ingiOqHKiIiUn3hRJi21W3kRnJ0PdZFdiCrZJCI1BXTNDnxsBN5\nz7vew1NbnmJucu7UtoeffpjfP/t7Ll5zMQtbF9YwShGR2WGqblA8WEkETdYNyg5kK9viIbJ+luxg\nlkAsQGpZiuYlzVhB1Q0SERGptT1KArmue92efM5xnChQjcquHwUywDVvWH8b0Alc5jjOF13Xfdsp\n2hzHMYHvAy8B/wZ8rwqxiYiI7DeRpgjL1iwjO5Sl67EuckM5JYNEpK4YhsGRzpGvW3f9Xdezeftm\nbn/4dlYfvZrLzriMpQuX1ihCEZHZwzAqdYMC0QCliRKFTIHSRInccI78WJ5ANIBf9unZ2EPfs300\nL2km1Z4i2BCsdegiIiKz1v4uJPDnVKZu22OO4ySoTAP3pOu6Eztvm0z6PAa0Akt24XCfBo4FPgFM\nvMO+IiIi01Y0GaX9jHbaTmsjlAhR8krsSd0/EZGZ4CtXfoUzTzgTgF///td89H9/lL/8zl/yzNZn\nahyZiMjs8GptoGgqSrQ1OpXkKYwXGO8ZJzuYpZgvMtgxyJa7t/DSIy8x3jeu81MREZEaMKr5A+w4\nzsDt+3gAACAASURBVArgXUD4TTY3A58D5rquu8eVMCenb/sD8GPXdS95k+3/l8p0cae5rvubtznO\nAcBzwM9d1/2o4zhXANcCp7qu++DuxjU6Ovqmf8hXi0qJiIjsT4XhAtmOLKVcCczKhbqISL3pG+7j\npw/8lLvX303BKwDwV5f/FaceeWqNIxMRmX38sk95okw5X8YvV26RGLaBFbUwA5VnkK2oRXhBmGBr\nEMPS+amIiMg7aW9vf9P1jY2Nu/xDuqc1gV7HcZwA8EPggnfY1QB+vZfNxSffs2+xPfOG/d7Kd4EC\n8MW9jEdERGTaCTYHCRwdwBvyyL6YpZgrVqaJUzJIROrInOY5/Nl5f8Ylp13Czx/6Ob996rccd8hx\nU9tf6XuFhS0LMc39PQGCiMjsY5gGVsTCDJv4BZ9SvoRf8imOVc5DzYgJPmReyJDdniU0L0Rofggr\npLpBIiIi+1JVkkBUEikXUknAbADGgbOBRyb/fSyQA/4B2KN6QtXkOM5HgLOA/+a6bv++bOutMnXy\nzl4dRaW/ociuU7+RN+Mf6zP6yijdT3ZTyBQwbVPJoJ1kMpXnR2KxPR6oLDLrTLd+E4vF+PSFn+aT\n538Sy6zcTMxN5Pjit79IU7yJS8+4lDXHrMG2q3X5I7L7plu/EdnXfN+nVCjhZTyK+SJ+3qdcKGOH\nbULhEOawSXGkSHRhlFR7imhL9I/OUXV9I7L71G9Edl+995tqPRJ3CdAFtLuu+z7gs5Prv+G67plA\nG/B74EQgvZdtjU2+v9WZc8Mb9nsdx3GSwL8Av3Vd99q9jEVERGTaMwyDpsVNrDhnBYuPX4wVtFQz\nSETq0qsJIIDOvk4i4Qgv9bzE1T+4mou+chE/vf+n5CfyNYxQRGT2MAwDO2QTSUaIzYkRbAhiGAZe\n1iPTkyHTn6GYLzLWOca2B7bx4r0vMrxtmHKpXOvQRURE6kq1kkDLgBtd1+2ZXH7dXSXXdUeAjwJH\ns/fTr22bPP6it9h+4OT7WxXj+SegCfhfjuMsevVFpWYRQOvkutBexikiIjKtGIZB89JmVp67kkXH\nLMIKKBkkIvWr/YB2fvJ3P+HLV36Zg+YfRO9QL//8k3/m/L85n+vvup5isVjrEEVEZg3TNgk3honN\niRFuCmMGTMpemexAlvGecQrjBXLDObo2dOHe4dK7qRcv69U6bBERkbpQrSSQCYzutDwx+T41Wsd1\n3QzwU+CKvWlo8jh/AI50HCe88zbHcSzgBOAV13VffotDrAaCwAPAKzu9vjW5/ebJ5eP3Jk4REZHp\nyjAMUu0pVp67kgXvXoBlV5JBIiL1xrZt1h6/luu/ej1Xf/JqVh60kpH0CA8+8SCWpRoUIiL7m2Ea\nBGNBoq1RIskIdtjGL/vkR/KM94yTG8lRzBbp39zPlru2MP78ON6Yp4eWRERE9kK1JsXeARy+0/LA\n5PvBb9gvDRxUhfauAb4N/HcqU7u96jJgDvDVV1c4jrMCmHBdd9vkqv8GRN/kmKuBzwN/A2yafImI\niNQtwzRoXdFKqj3FwPMD9G/upzhRxAroxqiI1BfTNDn5iJM56fCTeHzz49iWPVV3orOvk5t/czMX\nnXYRC1sX1jhSEZHZwTAM7LCNHbYpF8sUMgW8rFepH5QtYgUtQokQhXSBwkCBrUNbSbWnSByQwLSq\n9TyziIjI7FCtJNBvgI85jvMvwD+6rtvlOM6Lk+uucV13u+M4EeAcYKgK7X0PuBT4huM4BwKPA4cA\nX6CSvPnGTvtuBlxgBYDruve/2QEdx2mZ/OfvXNd9sAoxioiIzAimZTLnkDm0rGih75k+BrYMUCqU\nlAwSkbpjGAZHH3z069bd8KsbuP3h2/nFb3/BKe8+hUvWXMKKg1bUKEIRkdnn1aniQvEQXq6SCCoV\nSmT6M5T9MlbEIjuUJfdYDnujTXNbM8m2JIFIoNahi4iIzAjVenzib6mM/vk0cOjkuu8D84DnHMd5\ngsoUa0cAv97bxlzX9YA1wP8DPgz8AFgH/Adwiuu62b1tQ0REZLYxLZN5h83j4A8dTOvKVjCgVNQ0\ncSJS3y5YfQFrj1+LYRjc//j9/MnVf8Jnv/lZfrfpd5p+SERkP3rTqeJ8n2KmyHjPOPmRPF7Wo/+5\nfrbcuYXO33eSHdTtHxERkXdiVOvCxnGc+VSmZ7vedd2tjuOYVJIy6wBjcrf7gItc163GaKBpZXR0\nVFeIVdbR0QFAe3t7jSMRmTnUb6SaSoUSPRt7GN42TMmr35FBmUwGgFgs9g57isir6rHf9A33cct9\nt3DbQ7eRzVduKl52xmV84rxP1DgyqRf12G9E9rXxsXHK+TJGycAv+xiGMTVVnBWsnJtGU1GS7Uka\nFzVimMY7HFGk/um+gMjum4n9prGxcZd/9KqWBHorjuPMAw4EulzX7dynjdWQkkDVNxM7n0itqd/I\nvlCcKNL9VDejL4/WZTJIN+VEdl8995vx7Di3PXQbt9x/C9/87DdpW9QGwCu9r5BMJIlF6u//LPtH\nPfcbkX3l1X4TjUTxsh6FTAG/5OP7PqZtEoqHKtPCGWBHbJJLkyTbktjhalU/EJl5dF9AZPfNxH6z\nO0mgff6r6LpuD9Czr9sRERGRfcMO2Rxw3AHMP2I+PU/3MPLSSF0mg0REABqiDVx6xqVcdNpF2NZr\nl0tX/+Bqtu3YxjnvPYcL3ncBLU0tb3MUERGpJsM0CDYECcQClCZKFDIFShMlckM58laeQDRAqByi\n79k++jf307i4kVR7ikhzpNahi4iI1FzVkkCO4zQAnwDOAlYAzYAPDAHPArcB/+G67kS12hQREZH9\nxw7ZLDp2EfMOn0fPxp2SQbaSQSJSf3ZOAGXzWSzLYjw3zg333MBN997EmmPXcPGai1myYEkNoxQR\nmV0Mw8AO29hhm5JXwst4eDmPwngBL+NVpoprDDGyfYSR7SNEW6Ikl2mqOBERmd2qMh2c4zgHAL+l\nMu3bW/2q+sDzwPtc1+3d60anGU0HV30zcRieSK2p38j+VCqU6PlDD8NbhykVZ24ySNPziOy+2dpv\nntv2HDf+6kYeeuohyn4ZgBMOPYEvXPIF5qXm1Tg6me5ma78R2Ru70m/8sv/OU8WFbZqXNpNcmiQQ\nDeyv8EVqQvcFRHbfTOw3uzMdnFmlNv8ROAj4NXA2lWRQHEhMrj8HuB9YCfxDldoUERGRGrKCFguP\nWsjKc1fS4rSAASWvVOuwRET2mYOXHMzff+LvufHvbuTc955LMBBkY8dGGiINtQ5NRGTWenWquNic\nGOHmMHbIxi/55IZypHvS5EfzeFmP/uf6ce90efm/Xma8d5x9XSNbRERkuqjWdHDvBx5xXXftm2wb\nB14Gbncc51HgzCq1KSIiItOAFbRY+O6FzHvXPHo39TL84jDFQlE1g0Skbi2as4gvXfolPvbBj/HC\nKy/QEK0kgSYKE3z+/36eNceu4cwTziQUDNU4UhGR2cMwDAKRAIFI4C2nigvGg4x1jTHWNUYoHiLZ\nlqTpoCasoM5bRUSkflUrCRQD7tmF/X4DHF6lNkVERGQasQIWC45cwNxD59L7TC9DLwxRLpQxA9Ua\neCwiMr00x5s5+uCjp5bvf/x+Nr24iU0vbuKa26/hw6d+mPNOOY/GhsYaRikiMvtYAQurySKUCOFl\nPbysR6lQIjuQxbRMAg0BfN+n++luejf10nhgI8m2JJHmSK1DFxERqbpqJYFeBJp2Yb/GyX1FRESk\nTlkBiwVHLGDeofPofbaXoY4hihMaGSQi9e+0Y08jGAxy469uxH3J5ZpfXsMN99zAWe85i4tOu4gF\nLQtqHaKIyKzy6lRxgViA0kQJL+tRzBeZGJ2gkC5gh2xCiRDDW4cZ3jpMNBUluSxJYlEC09KDTCIi\nUh+q9Yv2XeAix3HeMhHkOE6CSr2g71WpTREREZnGTNtk/mHzWXnuSuaumothGqoZJCJ1zbZsVh+1\nmv/4m//g21/4NsetOo58Ic+tD9zKl7/75VqHJyIyaxmGgR22iSQjxObECMVDGIaBl/MY7x0n05fB\ny3pkB7J0/r6TLXdsoecPPRQyhVqHLiIistf2aCSQ4ziL37DqDmAV8JTjON8Bfgf0AWWgBTgG+Czw\nK+CHexytiIiIzDimbTLvsHnMWTWHvuf6GHQHKU4UMW0TwzBqHZ6ISNUZhsGRK47kyBVH8mLni/z4\n3h9zzMHHTG3vGexhe/d2jj3kWH0PiojsZ6ZtEkqECMaDFHPFqanickM58laeQCRAKB5i4PkBBtwB\n4vPjJJclaZjboO9sERGZkfZ0OrjtgP8m6w3gH9/mc23Ax/eiXREREZmhTMtk3qHzmHPwHAY2D9D/\nfL+SQSJS99oWtfGVK7/yunU//vWPufWBW2lb2MbFay5m9dGrCdiBGkUoIjI7GYZBIBogEA1Q8kp4\nGQ8v51HIFPCyHmagkixK70iT3pEm2BAk2Zak6aAm7JBua4mIyMyxp79aL/PmSSARERGRt2VaJnNW\nzaFlZUvlCcvnB/BylQttJYNEZDZYNGcRqcYUL3a9yN9f+/d87+ff47xTzuOck8+hsaGx1uGJiMw6\nVsDCarIIJUJ4WQ8v61H2ymQHspiWSSAWwPd9ejb20PdMH42LG0m2JYkkI7UOXURE5B0Zvq9cTjWM\njo7qD1llHR0dALS3t9c4EpGZQ/1GZqJyqczAlgEGnhugmC9i2MZ+TQZlMhkAYrHYfmtTZKZTv9l7\nBa/AvY/dy49//WO2d28HIBgI8qVLv8SZJ5xZ09hk31C/Edl9teo3vu9TKlRGBxXzRfyyj2EaWKFK\nosgKWABEkhGSy5I0HtCIaVWr7LbI3tF9AZHdNxP7TWNj4y7fONH4VREREakp0zKZs3IOrU4rA1sG\n6H+uf2oKDo0MEpF6FQwEOes9Z3HmCWey4bkN3Hzfzax/Zj1tC9um9hlOD9MYa8Q0dWNRRGR/MgwD\nO2Rjh2zKpXJlqrhsJSFUzFemMw7FQ+BD11AXPU/30Ly0meTSJMGGYK3DFxEReZ2qJoEcxzkQuAA4\nDGgBykA/sAH4ieu6g9VsT0REROqHYRq0rmilZXkLgx2D9D3bp2SQiNQ9wzA45pBjOOaQY+ge6GZ+\ny/ypbVf921UMjw1zweoLOOO4MwiHwjWMVERkdjKtSm2gYDxIMV/Ey3iUCiVywznyo3kCkQCheKgy\nzbE7QHxenOSyJA3zGnQOKyIi00LVkkCO43wRuHrymG/8lbsc+LrjOJ90XfdH1WpTRERE6o9hGrQ4\nLaTaUwy+MEjfM0oGicjssHMCaCwzxo7+HfQN9/GNG77Bv/383zjn5HM479TzmNM8p4ZRiojMToZh\nEIgECEQClLzKVHFezqOQKUydq4YSIdLdadLdaYKxIM1Lm2le0owd1kQ8IiJSO1WpCeQ4zgeA24A0\ncCPwGJURQCbQCpwAXASEgJNd1/3dXjc6zagmUPXNxLkYRWpN/Ubqke/7jGwboXdTLxPjE5h2dZNB\nqtEgsvvUb/aPYrHIg08+yE2/uYnN2zcDYJkWpx51Kn/24T9TMmiGUb8R2X3Tvd/4ZR8v5+FlPMrF\nMr7vY1omgViAYCyIYRoYpkF8QZxkW5LYnJgeapJ9TvcFRHbfTOw3tagJ9BmgDzjGdd2X32T7NY7j\n/CPwO+AvgPOq1K6IiIjUOcMwaF7aTNOSJtJdabo3dpMfzWOaJoapi2gRqV+2bfP+Y97P+495P89s\nfYZbfnMLDz75IP+18b/44iVfrHV4IiKznmEaBGNBAtEApUJldFAxX2RibIJCuoAVsgjFQ4x1jjHW\nOVYZHbSkcl4biARqHb6IiMwS1UoCHQnc9BYJIABc13Udx7kV+GCV2hQREZFZxDAMEosSJBYlyPRn\n6H6im+xQFozKXO0iIvVs1dJVrPr4KnoGe9jy8hbi0TgABa/Ap/7pU5z67lM5+8SzScQSNY5URGT2\nMQwDO2Rjh2zKpTJe1sPLepQmSmTymanRQX7Zp/eZXvqe7SO+IE7z0mbVDhIRkX2uWkmgONCzC/u9\nDDRVqU0RERGZpWKtMZadsYzcSI7uJ7vJ9GWmpt8QEaln81LzmJeaN7X88MaH2bx9M5u3b+baO65l\n7fFrOX/1+Syeu7iGUYqIzF6mZRKKhwg2BClNlPCyk6ODRt8wOqhrjLGuMQKxAM0HVWoHBaIaHSQi\nItVXrSTQIODswn5tk/uKiIiI7LVIU4Sl71vKxPgEPU/1MLZjjHKxjBWwah2aiMh+ceqRpxL9TJSb\nf3MzGzZv4GcP/oyfPfgzTjj0BC5YfQFHrTxKT5iLiNSAYRjYYRs7/M6jg/qe7aPvuT7i8+MklyZp\nmK/RQSIiUj3VSgI9ApznOM4prus++GY7OI5zCnAhcHuV2hQREREBINQQ4sCTDqSYL9Lzhx5GXhqh\nVCgpGSQidc80TY4/9HiOP/R4tnZt5Zb7buFX63/Fo5seZcfADn74v35Y6xBFRGa9txwd9GrtoGBl\ndFB6R5r0jjSBaIDmJRodJCIi1VGtJND/oVLr5zeO49wP/A7oAwxgDvAe4L1AAbi6Sm2KiIiIvI4d\ntll0zCLmHzGfvuf6GHphiGKuiBkw9TSliNS9pQuX8pcf/Us+/qGP88uHfsnC1oVT333dA93c8V93\n8KH3foiWppYaRyoiMju95eigQonMwFuMDppXqR0Unx/HMHU+KyIiu68qSSDXdZ9yHOfDwH8C7wdW\n77T51V+oLuBK13U3VqNNERERkbdiBSzmHzafuavmMtgxSP/mfryMp2SQiMwKzfFm1p217nXrbn3g\nVn5y70+44Z4bWH30ai5cfSHOgbsyo7eIiOwLuzI6KBgPku5Ok+5OY0fsqdFBwViw1uGLiMgMUq2R\nQLiue6fjOIuBM4CjgFbApzIiaANwj+u6xWq1JyIiIvJOTMukdUUrLU4LI9tG6N3Uy8T4BKatZJCI\nzC6nHHkK3QPdPPz0w/xq/a/41fpfcXj74Zz/vvM58fATsa2qXRqKiMhueLvRQdmBbGV0ULQyOqj/\nuX76N/fTMLeB5NIk8QUaHSQiIu+sKmf6juMsBMZd1x0Fbpt8iYiIiEwLhmHQvLSZpiVNpLvT9DzV\nQ240h2matQ5NRGS/WNW2iq998mvsGNjBrQ/cyh0P38HTHU/zdMfTnPvec/nSpV+qdYgiIrPe60YH\nFSZHB+WKTKQnKIy/NjpovGec8Z5x7PBOo4MaNDpIRETeXLUe93oB+N/A16t0PBEREZGqMwyDxIIE\niQUJMv0Zup/sJpPJ1DosEZH9ZkHLAj5zwWf42Ac+xl2P3sXPHvgZpx93+tT257Y9x0RhgsOXH64R\nkyIiNWIYBnbIxg7ZlBNlirni60YHGZZBMBqsjA7a/NrooOalzSQWJjQ6SEREXqdaSaAOYFGVjiUi\nIiKyz8VaYyw7fRne0x7ZF7P4no9f9jFtjQ4SkfoXDUc5/33n8+FTP/y69d//xffZsHkDSxYs4UOn\nfIgzjjuDaDhaoyhFRMS0TIINQQKxwGujg/KvjQ4yAyahRIjx3nHGe8exQzZNS5poXtJMKB6qdfgi\nIjINVOsuxyeBcxzH+azjOE1VOqaIiIjIPmfHbBLvSuB8wKFxcSP4UPJKtQ5LRGS/MAxjasSP7/us\naltFMpFk245tfOvGb3HOX5zDN2/8Jlt3bK1xpCIis9uro4MizRFic2KEG8OYtknZK5MdyJLuTpMf\nzeNlPQaeH6Dj7g62PbCN4W3DOrcVEZnlDN/39/ogjuPcCESANUAAeAkYAt7sV8Z3Xfc9e93oNDM6\nOrr3f0h5nY6ODgDa29trHInIzKF+I7L73thvihNFejb2MPLSCKVCCStg1TI8kWnp1WkUY7FYjSOR\nfcErejz01EP8/MGf83TH01Prr/pvV71u6jjZPeo3IrtP/ebt+b7/utFBftnHMIzK6KB4CDtcmQDI\ntE0SixI0H9RMtDWq6T7rnO4LiOy+mdhvGhsbd/nLvFrTwX3kDcttk683o2SJiIiITFt2yGbRMYuY\nf8R8+p/rZ/CFQYr5IqZt6oJZRGaFgB1g9dGrWX30al7sfJGf//bnPPjEgxx7yLFT+zzpPskBcw6g\ntbm1hpGKiMxuO9cO8ss+XtbDy3pTo4MMy8AO24TiIUa2jzCyfYRgLEjTQU00HdREMBas9X9BRET2\ng2olgU6t0nFEREREpgUrYDHvsHnMPfT/s3ffYVLW9/7/n3ebun2XspQFWWDo1VAEIhJFRE6sUWP5\nRhONMdWYxPNNPJGjXsc0T4r5naPfGGuSE6MeYoLYEhUFQYg0KTL0Dtvr9Pb7Y2BgKQpmdRf29bgu\nrmXvueeez8zFDDPzut/vdw8atjdQvb6aWEsM0zI1bFdEuozKPpV897rv8q2rv4VjOwAkk0nuffRe\nGpobmDZmGpdNv4xxgXEKykVEOpBhGrnZQelEOhsIRRK5YMi0TVx+F5lMhur11VSvr8bf3U9x/2IK\n+hRoLqaIyBmsXUKgYDD4ZnscR0RERKSzMUyDksoSigcUE64Js3/1fsJ1YcigD8si0mUcCoAAWiIt\njKwcyVur3mLhyoUsXLmQfj37cdn0y5g1aRZ5vrwOXKmISNdmGAaWy8JyWbgL3CSjSRKRBKlYimhT\nlFhzDMtl4cp3EaoOEaoOYa40KexbSPFZxXhLvQr1RUTOMO0yE+hIgUCgPzAEKAKiQBWwMxgM7mvX\nG+pkNBOo/Z2OvRhFOpqeNyKn7qM8b2KtMarWVNG8t5lUQnODpOvRjAYBqG2sZf7i+fzlrb9Q21gL\ngNft5ZEfPEL/8v4du7hOSM8bkVOn5037SSfTucqgTCpDJpPBMA0cr4Mrz5U7ucmV56K4fzFF/Ytw\nfM6HHFU6I30vIHLqTsfnTUfMBCIQCHwW+Clw3EcqEAisAf41GAz+rb1uU0RERKQjuPPcVEypIJVI\nUfN+DfVb6rNtNhzNDRKRrqOsqIyb5tzEDbNuYPGaxcxbOI+axhoqelTk9lmzeQ3DzhrWppJIREQ+\neaZt4s5348pzkYqnSEayFULxUJxEKIHhGLl2cVXrqqhaX0Ve9zyKziqioHcBpqUKeBGR01W7hECB\nQGAOMA8wgQNAEGg4+HsR2cqgMcCLgUBgtoIgERERORNYjkXPUdm5QY07G6laW0W8JY5hGpobJCJd\nhm3bTB8/nenjpxOOhjHN7BeF1Q3VfPM/v0mBv4B/mfYvfHbaZ+lZ2rODVysi0rUZhoHttrHd9uF2\nceEEqXiKaEOUWNPhdnGtVa20VrViORaFFYUU9S/CW6J2cSIip5v2qgS6C0gANwSDweeOvjAQCBjA\nNcDjwFxAIZCIiIicMQzDoLh/McX9iwnXhdm/aj/h2jCZdEZzg0SkS/F5fLm/1zbW0q9nP7bt28ZT\nLz7F71/6PVNGT+Hy6Zczfsj4XFgkIiIdwzANHJ+D43Oy7eLCiez8oHiKcG0Y0zKxvTbuPDf1W+up\n31qPu8BNcf9iCvsV4nhV5SkicjporxBoJPDk8QIggGAwmAH+GAgEzgOubafbFBEREel0fKU+Ks+v\nJBFOcOC9AzTtbiIVT2HaahUnIl3LsLOG8eTcJ3lvy3vMWziPhSsWsmj1IhatXkT/8v48/sPH1SZO\nRKSTMG0Td4EbV362XVwinCAZTRJvzbaLM20TV162XdyB9w5QtbaKvJ4H28X1KlAVvIhIJ9ZeIVAS\n2H0S++0G4u10myIiIiKdluNz6DupL73P7k1tsJbaTbXZuUEKg0SkCzEMg9GDRjN60Gjqrqpj/uL5\n/PWtv9KvZ79cAJRKp1i9aTVjB49VdZCISAc7sl1cJp0hEUmQjCRJxVNE6iMYloHlsnDnu2nZ30LL\n/hYsl0VRvyKK+hfhKfLova6ISCfTXiHQCmDESew3AljaTrcpIiIi0umZtkn34d3pNqwbzXuaqXqv\nikhjBNMydcakiHQppYWl3HjxjVw/63pawi257e++/y7f+dV3KC8t5+KpFzP7nNl0L+7egSsVERHI\ntotz+V24/C5SiRTJSDLbLi6WIhQNYVomjtfBleeibnMddZvr8BR6KDqriKKKImxPe33tKCIi/4z2\nejX+AfC3QCBwbTAY/J/j7RAIBK4ALgBmtNNtioiIiJw2DMOgsG8hhX0LCdeHObD6AKHqkOYGiUiX\nY1s2xfnFud8j0Qg9Snqwv24/v/3Lb3nsr48xacQk5kydwzkjz8G29SWiiEhHsxwLy7Gy7eJiqWyF\nUDRJrDVGPBRv0y4uujpK1Zoq/D38FFUUkd87H8uxOvouiIh0We31bnoa8Dzwu0Ag8O/AO0A1kAbK\ngAnAUOBZ4KpAIHDVUdfPBIPBu9ppLSIiIiKdmq/Ex4AZA0hEElStraJxZyOpWArTUas4Eel6po+f\nzrSx01jx/grmL57PotWLWLJ2CUvWLmFo/6E88oNHOnqJIiJykGEY2B4b23O4XVwinCCdSB/TLq71\nQCutB1oxLZP83vkUVRSR1zNP1fAiIp+w9gqBfgpkAAMYePDP8Xzu4D5HywAKgURERKRLcbwOfSb0\nodf4XtRtqqNmY43mBolIl2SZFhOGT2DC8Ak0tDTwyjuv8MLiF5g8cnJun4bmBpatX8b0cdPxuD0d\nuFoREYFj28Ulwtn5Qclo9o9pmdgeG1eei6ZdTTTtasJyWRT2LaSoXxHeUq/e84qIfALaKwS6l2yQ\nIyIiIiKnyLRMug3tRtmQMlr2tXBgzQGijVEwspeJiHQlxfnFXHPBNVx9/tUkU8nc9peWvsR//+9/\n88unf8kFEy/gX6b+C4MrBnfgSkVE5BDLsbAKLTIFmTbt4uKheK5dnON1cPld1G+tp35rPY7foaii\niMJ+hXgKFO6LiHxc2iUECgaD/94exxERERHpygzDoKB3AQW9C4g0RqhaU0VrVSupuFrFiUjXYxgG\nju3kfu9V1ouh/Yfy/o73+fPCP/PnhX9mcN/BzJk2hwsmXEC+L78DVysiInBsu7hkNEkikiAV0T9r\nrgAAIABJREFUSxFrjhFvPRgI+R0ymQw179dQ834NniJPNhCqKMTxOR9+QyIictI0YVNERESkE/IW\neel/bn9S8RR1m+qo21KXPYvSMtVHXUS6pOnjpzN9/HS27NnCC4tf4NVlr7Jp9yZ+/j8/5x/r/8GP\nvvajjl6iiIgcwTANHJ+D43NIp9LZNnGRJKl4imhDlFhTDNMxcee5iWaiHGg8wIG1B/B381PUr4iC\n3gVYLquj74aIyGlPIZCIiIhIJ2a5LLqP6E634d0IVYeoeq+KcF2YdCqN5ehDsYh0PQP7DOT2a27n\ntituY9GqRcxfPJ+Lzrkod/n6betZvWk1F51zESUFJR24UhEROcS0zNz8oHQynW0XF0mSTqQJ14Ux\nLAPLZeHKcxGqDhGqDrFvxT7ye+VTWFFIfnm+2iSLiHxECoFERERETgOGYZDXI4+8C/JIRpNUb6im\ncUcjiXBCreJEpEtyO27On3A+5084v832/33jf3l12av85vnfMGX0FP5l6r8wYfgELFPBuYhIZ2Da\nJu58N648F+lEOjc/KBVLEY6GMcxsSzlXnovmPc0072nGciwK+hRQ2K8Qfze/3vuKiJwChUAiIiIi\npxnbY9NrXC/Kx5bTvKeZ6nXVRBojkMl+qBYR6cpmTpxJJBphydolvLXqLd5a9Rbdirpx8ZSLuXjK\nxZSXlXf0EkVEhOxJTpbLwnJZZAoypOIpkpFkdo5QOJE92ckycbwOrjwXDdsbaNjegON1KKwopLCi\nEE+RR4GQiMiHUAgkIiIicpoyDIPCvoUU9i0k3hqnam0VzXubSUaTqg4SkS5r0ohJTBoxidrGWl5a\n+hIvLH6BvTV7eWLBE6TSKW697NaOXqKIiBzFMAxst43ttslkMrn5QclYklhrjFhrDNPOtpTLpDPU\nBmupDdbiLnBTVFFEYUUhrjxXR98NEZFOSSGQiIiIyBnAleei7+S+pFNpGnc0UvN+DbHmGBiof7qI\ndEllRWXccNENXD/relZtWsWCxQu4eMrFucuff/N5gruCzJo0i5GVIzFNvVaKiHQGhmHgeB0cr0Mm\nncnND0rFU0Qbo8SaY5jOwUAok6FqXRVV66rwlfkoqiiioE8BtkdfeYqIHKJXRBEREZEziGmZlFSW\nUFJZQqQhQtXaKloPtJKKp1QdJCJdkmEYjAuMY1xgXJvtz7/5PFv2bGH+ovmUl5Yzc9JMLpx4IRU9\nKzpopSIicjTDNHD5Xbj8LtKpNMlIkkQkQTqRJlIfwbAMLMfCle8iXBsmXBtm/6r9+Lr5KOxbSEFv\nBUIiInoVFBERETlDeYu99P90f1KJFHWb66jbVEcilMCwDAxTYZCIdG1333w3r7zzCn9b9jf21+3n\nyQVP8uSCJxnafyg3zbmJc0ad09FLFBGRI5iWiSvPhSvPRSqRygVCqXiKcE0Yw8q2lHPluQhVhwhV\nh9i3ch/+bn4FQiLSpemVT0REROQMZzkW3Yd1p9vQboRrwlStrSJcGyaVTGE5VkcvT0SkQwzoNYDb\nLr+NWy+9lVWbVvHKO6/wxoo3eH/H+0Tikdx+9c31+L1+3I67A1crIiJHshwrVwGUimcDoWQ0Gwol\nIonDgZBfgZCIiF7tRERERLoIwzDwd/cz4DMDSEaT1LxfQ8P2BhKRBKatVnEi0jWZpsn4IeMZP2Q8\nd3z+DhatWcTUUVNzlz/0vw/x1qq3mHH2DC6cdCGjBo7S/CARkU7CMLJhj+22yWQypGIpktGDgVA4\nQSKcwDA/oEKoT6FmCInIGU+vcCIiIiJdkO2xKR9bTs8xPWnZ10LV2iqijVEy6QymrS83RaRr8rg9\nXDDhgtzvmUyGA3UHCEVDzF88n/mL59OztCczJ85k1qRZmh8kItKJGIaB7bGxPccJhA5VCB0vEFp1\nOBDK752P43U6+q6IiLQrhUAiIiIiXZhhGBT0LqCgdwHxUJzqddU07WkiGUliOqoOEpGuzTAMfv3d\nX7Nj/w5eeecVXnnnFQ7UHeCpF5/iqRef4vZrbufKGVd29DJFROQoHzUQYhX4y/wU9M2+P1YgJCJn\nAoVAIiIiIgKAy++iz8Q+9P5Ubxp3NFKzsYZYc4x0Kq3ZQSLSpfUv78+tl93KLZfcwurNq3nlnVdY\nuGIhZw89O7fP4tWLiSViTB09FbdL84NERDqLUw6EakKEakLsX7U/Gwj1KaCgjwIhETl9KQQSERER\nkTYM06B4QDHFA4pJhBNUv19N8+5m4qE4pmVimKoOEpGuyTRNxgXGMS4wjjuuvQO3czjseeyFx9i0\naxN+j5/p46dz4aQLGTNojOYHiYh0Ih85EFqtQEhETl8KgURERETkhByfQ+/xvek1rhehmhA162oI\n1YZIxVNqFyciXdqRAVA6neaiyRdhGiYbd25kwdsLWPD2AnqU9GDmxJnMmTqHIl9RB65WRESO9s8E\nQr5SH4V9C7Mt43wKhESkc1MIJCIiIiIfyjAM8rrnkTcjj3QyTf22euo21xFrjkEGTFtnuotI12Wa\nJp/7zOf43Gc+l5sf9OqyV6mqr+J3L/2OAb0HcM7wcwDIZDIK0EVEOpljAqF4imTkxIFQuDZMuDbM\n/lX78ZX5KOxTmK0QUiAkIp2QQiAREREROSWmbVI2uIyywWXEW+NUr6+meW8ziXAC01a7OBHp2o6c\nH7Rm8xpee/c1po2eRiqZAuCBPzzAgboDzDh7BtPGTKPAX9DBKxYRkSMZRjbssd0fHgg5ec7hQOhg\nhVB+73wKehfgztd8OBHpHBQCiYiIiMhH5spz0WdiHzKZDK0HWqleX02kLkIqoXZxItK1mabJ2MBY\nxgbGAhBKhkilUixcsZCmUBPL1i/jZ7//GZ8a+ilmnD2DqWOmku/L7+BVi4jIkU42ELJcVrZCqC5M\nuC5M1XtVuPPd2UCoVwHeUq/eF4tIh1EIJCIiIiL/NMMwyC/PJ788n1Q8Rd3WOhq2NBBriQFqFyci\nAmBZFr+/9/e8teot3ljxBis3rmTpuqUsXbcU27L51//zr1w0+aKOXqaIiBzHBwVCyWiSZCSJYR0M\nhPwuMpkMsZYYtRtrsd02+b3yye+dT16PPExL741F5JOjEEhERERE2pXlsug+tDvdh3Yn2hSlen01\nLftaSEaTqg4SkS6vOL+YSz59CZd8+hIamht4c9WbvLHiDVYFVzG47+DcfotWLyIUCTF19FTyfHkd\nuGIRETnacQOhg2FQKpYiHAljmAamY+L4HDLpDA3bG2jY3oBpmeT1zMuGQr3ysd36elZEPl56lRER\nERGRj42n0EPFORVk0hma9zVTs6GGaEOUVDKVnR+kQEhEurDigmIuPfdSLj33UhpaGijKK8pd9tSL\nT/H+jvdxbIeJwycy4+wZTBk1Bb/X34ErFhGRo7UJhAoypBPpbCAUS5JOpIk2RIk1xTBtE9tj4/gc\nmvc207y3GQzwl/lzVULuPM0REpH2pxBIRERERD52hmlQ2KeQwj6FJGNJ6jbVUb+tnkQoAQZqiSEi\nXV5xfnHu75lMhovOuQi3y82azWtYvGYxi9csxmW7mDhiIleffzVjBo/pwNWKiMjxGEa2HZzlsnDj\nJp1MH64QiqeItcSItcQwLRPbbeP4HUI1IUI1IQ6sOYC7wE1+r3wKehfgLdEcIRFpHwqBREREROQT\nZbtteozsQY+RPYg0RKheV01rVavaxYmIHGQYBpdPv5zLp19ObWMtb67Mtoxbs2UNi1Yv4rzx5+X2\nrW2sxefx4fP4OnDFIiJyPKZt4spz4cpzkUlnDs8PiiWJh+PEw3EM86g5Qs0H5wh57Fwg5O/u10lT\nIvKRKQQSERERkQ7jLfbSb1o/MukMTbubsu3imqKkk2kFQiIiQFlRGVfMuIIrZlxBbWMtC1cuZOro\nqbnLf/vX3/Lqslc5Z+Q5nHf2eZwz8hy8bm8HrlhERI7HMA0cn5OdEZTJkIqlcoFQbo6QZWSDI382\nNGrY1kDDtgZM+4g5QuWaIyQip+a0fcUIBAIlwFzgUqAcqAVeBH4YDAb3n8T1px68/gTAA+wG/he4\nLxgMtn5c6xYRERGRYxmmQVG/Ior6FZGIJKjbXEfjjkbioTiZdAbLsTp6iSIiHa6sqIwrZ1zZZlt9\ncz3xRJyFKxeycOVC3I6bySMnM+PsGUweOVmBkIhIJ2QYBrbHxvbYZDJHzBGKZucIReojGKaBYRs4\n3mxw1LynmeY9zRiGga/MR37vfAp6FeDKc3X03RGRTs7IZDIdvYZTFggEvMAyYAjw/wHvAoOA7wI1\nwPhgMNjwAde/Dvg9EAQeBpqBOcBlwFJgajAYTJ/Kmpqamk6/B7KT27x5MwCDBg3q4JWInD70vBE5\ndXredG7x1ji1m2pp3t1MPBQHsm01pGOFQiEA/H4NqBc5WR/n86aqvoqFKxbyxoo3WLdtXW77DRfd\nwK2X3drutyfySdH/N9IVHT1HKJPOZGdo2ofnCB15gpSn0JNrG+cp9rBlyxZAn29ETsXp+L1AYWHh\nSbfNOF0rgW4HRgJfCwaD/31oYyAQWAP8GfghcMfxrhgIBNzAQ2QrfyYGg8Gmgxc9FggE/ky2smgW\n2aoiEREREelArjwXvcb1ote4XkSbotRurKVlX0uuf7p6o4uIQI+SHlx9wdVcfcHVHKg7wMKVC3n9\n3deZcfaM3D5/eesvrAyuZMb4GUwYPkEVQiIindSRc4TSqXSbtnHxUJx46Ig5Qnkuoo1Rok1Rat6v\nwXbbROwITrFDsiKptnEiApy+IdD/AULAo0dt/wuwB7g+EAh8JxgMHq86pycwD1h2RAB0yItkQ6BR\nKAQSERER6VQ8hR76TOxDJpMhUh/JBkIHWkhGkpi2iWFqfpCISM/SnlxzwTVcc8E1bba/vPRl1m5d\ny2v/eA2X7eLsoWczZfQUpoyaQllRWQetVkREPohpmZg+89g5QtG2c4Qs28LxO2TSGeKROPHqOBv3\nbsRX4svOEirPx1Ps0bxNkS7qtAuBAoFAAdk2cIuCwWDsyMuCwWAmEAgsBy4HzgK2HX39YDC4E7jx\nBIcvPPizud0WLCIiIiLtyjAMfKU+KqZUkMlkCNWEqN1YS6g6RDKqQEhE5Hju/tLdvLHiDd5c9SYb\ntm9gydolLFm7hJ/xM6698Fq+esVXO3qJIiLyAT5ojlAqkSJZn8QwDVKZFKZjknKlCNeFCdeFqV5f\nje22yeuZl/ujKiGRruN0fLb3O/hzzwku33Xw5wCOEwKdSCAQcAFfBMLA8x95dUc51E9QPjo9hiKn\nTs8bkVOn581prhycng40QHRPlGRLkkwiAxY64/FjdGhWg4icvI563hR4C7hk6iVcMvUS6pvrWbZh\nGUvXLmXV5lX0KumVW9farWtZsnYJk0dMZvhZw7Es60OOLPLx0/83IidgAX4wUgaZRDYYIgGpaIrm\n/c0YpoFhGZhuE8MxaKpvgg3Zq9r5Nk6xg1PsYOVZes8sQuf8XqA95hSdjiFQ/sGf4RNcHjpqvw8V\nCARM4BFgKPCdYDC476MvT0REREQ6gmEYuEpcuEpc2VYYdXFie2MkWhNkEhkM29CHWxERoKSghIsm\nXcRFky4iGou2eW18fcXrvLj0Rea9OY98Xz4Thk1g8ojJjA+Mx+fxdeCqRUTkRAzLyIb2HshkMmQS\nmVwolE6mScfTYJINhZxsKJRsSZJsSRLZFcGwjVwg5BQ7mI7mboqcSU7HEKhdBQIBL/A/ZGcB/Vcw\nGPx5ex6/PZK6rupQ8qrHUOTk6Xkjcur0vDnzpZNpGnc1UrepjmhTlHQijemYCoT+CYfOyPb7/R28\nEpHTR2d93hy9nsvOu4yi/CIWrVnE7qrdvPbua7z27ms4tsOcqXP4zrXf6aCVSlfUWZ83Ip1ZKBTC\ncBn4i/3ZQCiVIRk72DYunjocEJlpLMfC8TnYjo0RNiAMiX0JvMXe7Cyhnvl4S7163yxnvDP9e4HT\nMQQ6NK/nRO8A8o7a74QCgUA34K/AJOC+YDB49z+/PBERERHpTEzbpGRACSUDSkjFUzRsb6B+az2x\n5hjpVDo7Q0gfbEVEABjafyhD+w/lq1d+lZ37d7JozSLeXvM267atw+v25varbqjmpSUvMW3MNM7q\ndZZeR0VEOiHDMDBsA5ftwuV3kclkSMVSJGNJUrEUqXiKZDSZaxtnu20cn0OkPkKkPkLNhhosl5Wb\nI5TfMx/bczp+nSzStZ2Oz9rtQAboc4LLD80M+sAGfoFAoAewCDgLuCkYDD7RXgsUERERkc7JclmU\nBcooC5SRjCap31pPw/YG4q1xBUIiIkfpV96PfuX9uH7W9dQ315NOp3OXvbXqLR75yyM88pdH6FXW\ni6mjpzJ1zFRGDRyFbZ2OXzWIiJz5DMPA9ti5ICedTLepEoqH4sRDcQzTyFYJeR0y6QxNu5po2tUE\nkK0SKj9YJVTixTD13lmkszvt3pkFg8FQIBB4DxgXCAQ8wWAweuiyQCBgAecAu4PB4K4THSMQCBQA\nLwMVwGeDweBLH/e6RURERKRzsT023Yd3p/vw7iTCCWo319K0s4l4KE4mnVEgJCJyhJKCkja/B/oF\nuHjKxbz93tvsq93HM689wzOvPUOBv4Bzx53LndffqddQEZFOzrTND68SajqqSqghQqThiCqhHnm5\nSiHH63T0XRKR4zjtQqCDHgUeBG4FfnXE9uuB7sDcQxsCgcAQIBYMBrcfsd+vgDHA5QqAOt7OnTt5\n9NFHWb58OS0tLXTr1o1Zs2Yxbdo0XC5Xbr977rmHBQsWnPA43/72t/n85z8PQHNzM/fffz8rVqzA\nNE0+/elP873vfa/N8Q65//77WbJkCU8//TR5eXnHXP5BqqqqePrpp1m2bBn79+8nmUxSVlZGIBDg\n4osvZtq0aW32X7FiBbfddhuXXXYZ3//+90/ptkREROTj4/gcykeXUz66nFhrjPqt9TTvbibeGieV\nTGE5lr7MFBE5wsjKkYysHEkqnWL9tvUsXrOYxasXs6tqF3WNdbnXzGQyyQtvv8CUUVPoVtytg1ct\nIiIncqIqoUPBUJsqIdvC9tk4aYem3U007c5WCbnz3fh7+Mnrnoe/ux/LZXXkXRKRg07XEOhh4Drg\ngUAg0A94FxgO3AGsBR44Yt/3gSAwBCAQCIwCvgBsAKxAIHDlcY5fEwwG3/z4li+HbNmyhVtuuYV4\nPM5VV13FwIEDee+993jsscd49913ufPOO4+5zp133klxcfEx2wcPHpz7+89//nPeffddbrnlFqLR\nKI888gjdunXjy1/+cpvrrFy5kr/85S/87Gc/O+UA6NVXX+W+++4D4MILL+Sqq67Csix27tzJggUL\neP3115k5cyZ33333ccMnERER6Zzcee5cIJSMJmnc2UjD9gZizTGSsSSWS4GQiMghlmkxauAoRg0c\nxVev+Cq7DuwilojlLl+zZQ0P/OEBHvjDAwzpN4TJIyczcfhEhvQforZxIiKd2KEqIfxkq4QOVgal\nYilSiRTJhiSxpli2SshlY/ttaIZYS4z6LfVgZFvH+btnQyFfmQ/TNjv6bol0SaflO65gMJgIBAIz\ngX8HrgC+DlQDvwXmBoPB8AdcfRxgAMOAZ0+wz5vA9PZar5zYr371K0KhED/5yU8477zzALj44osp\nLS3lt7/9LcuWLWsT7gCcc8459OrV64THTKfTvPHGG3zxi1/k6quvBmDfvn289tprbUKgWCzG/fff\nz4wZM/j0pz99SutetWoVc+fOpVevXjz44IP07t27zeU333wz3//+93n11Vfp3bs3t9122ykdX0RE\nRDoH22PnZgilk2ma9zZTt7mOaGOUZDSZbRmnPugiIjkVPSva/O52uZk2ehrLNyxn486NbNy5kcdf\neJw8Xx6fGvopfnDjD/C6vR20WhERORmGkW0HZ7tPUCUUjhMPZ6uETMvMVhR5bSL1ESL1EWo31mKY\nBr5SXzYU6pGneUIin6DTMgQCCAaDzWQrf+74kP2Mo35/AnjiY1uYnLR4PM6KFSvo2bNnLgA65Lrr\nruOpp55i8eLF3HDDDad03IaGBiKRSJvwaPDgwbz44ott9nv00UdpbGzku9/97imv/Re/+AWZTIYf\n/ehHxwRAAB6Ph/vuu49/+7d/o7y8/JSPLyIiIp2PaZsU9SuiqF8RmXSGUHWI2k21hGvDJKPJ3D4i\nInLYiAEj+NHXfkQ0FmVFcAXL1i1j+Ybl7Knew8adG/G4PLl9//jqHxnYZyCjB43G5aibgohIZ3W8\nKqFDc4RS8RSxlhixllg2FLKzoZDjdQjVhAjVhKheX41pm/i7+fF39+Pv4cdT6FG1vcjH5LQNgeT0\n19jYSDKZPG5Vj9/vp3v37mzduvWE14/FYliWhW23/WecTqcBsKzDfUcty8ptB9i8eTO///3v+b//\n9/9SWlp6Suvetm0bGzduZOLEicdUKR0pLy+PX/7yl6d0bBERETk9GKaRG4CbyWSINESo31xPy4EW\nkuEk6XQ6WyWkD7IiIgB43B6mjJrClFFTANhbvZfqhurc62RdUx3/9dx/Zfd1eRgXGMeE4ROYOHwi\nfbr30eupiEgndXSVUCZ9sHVcLEkqniKdSBOLxYg1Z0Mhy7GwvTaOx6Flfwst+1sAsNxWbpaQv4cf\nl9+l136RdqIQqBPb/sb2jl7CBzrrvLP+qev7/X4gW7lzPC6Xi+bmZmKxGG63O7f9ueee47XXXmP/\n/v2YpsmwYcP40pe+xJQp2Q8TRUVF2LbNvn37ctfZvXs33bt3B7Ih0f3338+YMWO4+OKLeeihh3jt\ntdeIRqOMHTuW733vexQUFJxw3evXrwdg3Lhx/9T9FxERkTODYRj4Snz4JvoAiLXGqN9aT/PuZuKh\nOKlECsvRHCERkSP17t6b3t0Pd1XIZDJce+G1LF+/nC17trBk7RKWrF0CQHlZOfffdj+D+g7qqOWK\niMhJMkwj2w7Oc7B1XCp9TKVQMpokZh6sFHJMHJ9DJp2haXcTTbubAHB8TjYU6pGtFnK8TkfeLZHT\nmkKgTixUE+roJXys/H4/AwcOZOvWrWzdupXKysrcZTt27GDnzp0ARCKRNiHQO++8w0033US3bt3Y\nsmULv/vd77jjjju47777mDlzJo7jMGHCBP74xz8yatQowuEwCxYs4PzzzwfgT3/6E1u2bOGPf/wj\nf/7zn3nmmWeYO3cuBQUF3HPPPfzsZz/jvvvuO+G66+vrAejWrdvH8bCIiIjIac6d56Z8dDnlo8tJ\nRpM07mykYXsDseYYyVgSy6VASETkaGVFZXz1iq/y1Su+Sm1jLcs3LGfZ+mX8Y8M/qK6vprz0cJvt\n3730OwzDYOLwiQzsM1CvqSIinZhpmZheMxfipJPpw5VCsWw4lIwkMUwDwzKwXBaO1yGTydCwo4GG\nHdmTx90F7tw8IX83P5bL+qCbFZEjKASSDnXjjTfyb//2b9x5553cddddVFRUsG7dOh588EFKSkqo\nqanBcbL/SVx33XXMnDmT8ePH43Jl+0NPmTKFadOmcf311/OrX/2K888/H9M0+fa3v803vvENrrnm\nGgAGDRrEzTffzP79+3n44Ye55ZZb6NOnDy+++CKzZ89m+vTpAFx11VX813/9F3fddRcej+e4az70\nASOTyXzMj46IiIic7myPTVmgjLJAGelkmua9zdRtriPaGCUZTWZbxmkgrohIG2VFZcw+Zzazz5lN\nKp1i14Fd5PnygGxnhz/97U80tjby8LyHKS0o5VPDP8XE4RP51NBPUZRf1MGrFxGRD2LaJqZ9sPon\nk8mFQocqhRLhBIlQIhsK2Qa2y8bxOcSasi3l6rfUgwHeYm8uFPKV+TAtzeYUORGFQJ2Yv5u/o5fw\nsZs5cyaNjY089NBDfOUrXwGgoKCAr3zlKyxatIiGhga8Xi8AAwcOZODAgcccY8CAAYwfP55ly5ax\nfft2Kisr6devH/PmzWPHjh3Ytk1FRQWmaTJ37lwqKiq49tprAdi+fTuzZ8/OHatfv34kk0l27dp1\nwnk/hyqA9u/f366PhYiIiJzZTNukqF8RRf2KyKQzhKpD1G6qJVwbJhFJYBjZwbkiInKYZVqc1etw\nK/J0Js0d196RrRRat4yaxhpeXvoyLy99GcMw+N713+Oz0z7bgSsWEZGTZRjZGUGWY4E/e8J1OpHO\nzRNKxVPEQ3HioXi2dZxlZlvNeW0i9REi9RFqN9ZimAbeYi++bj78ZX58ZT5VCokcQSFQJ/bPztw5\nXVx11VVccsklbN26FcuyGDBgAI7j8Mwzz1BeXo5pfviXISUlJQCEQodb6Nm23SY0eumll1i+fDmP\nP/44tp39p390q7lDfw+Hwye8rVGjRgGwbNkyvvzlL3/guhobGykq0ploIiIi0pZhGuT1zCOvZx6Z\nTIZIQ4T6zfW0HGghGU6STqUxHVMtjkREjmJbNjPOnsGMs2eQyWTYvm87y9YvY9n6ZazZvKbN3KDn\nXn+O1ZtWM3H4RCYMn0CPkh4duHIREfkwhpFtB3cowMlkMsfME4q1xIi1HJwnZGfbzNkem3BdmHBd\nmFpqwQBPgQdfmS8XDDk+zRSSrkshkHQKbrebYcOG5X6vra1l586dzJo1C4DW1lYWL15MYWEhkydP\nPub6h+YH9ehx/Df1jY2N/OIXv+Dzn/88Q4YMyW33er1tAp9DIZLP5zvhWnv37s2YMWNYvXo1y5cv\nZ8KECcfdLx6Pc/PNN1NSUsJ///d/54InERERkSMZhoGvxIdvYvb9RyKcoGl3E407Gom1ZOcIHTrz\nUUREDjMMgwG9BzCg9wA+P/PzRGIR3M7hk/wWrljI6s2rWbhyIQAVPSoYN2QcYwNjGTd4HMUFxR20\nchERORmGYWC7bWx39ju1TDpzeJ5QPEU6kSYai4JBLhSyPTa2xybaFCXaFKV+a3a2tyvPlQ2Fynz4\nu/lx5bl0wpV0GfokKR3ql7/8Jeeddx47duxos/2hhx7CMAxmzJgBgOM4/PSnP+Wee+5Np1N8AAAg\nAElEQVShsbGxzb7Lly9nw4YNDB8+/IQh0C9+8Qvy8vKOqdw566yzeO+993K/r1mzBsdxqKio+MB1\n33777di2zd13383GjRuPuTwSifCv//qv7Nq1i8mTJysAEhERkZPm+BzKAmUMvHAgwy4fxsCZAyk5\nqwTH42Q/+MZSmk0oInIcXre3TSeJH9z0A7573XeZNnoaXreXXVW7eP7N55n7m7n8+tlf5/aLxWM0\ntjQe75AiItKJGKaB7bHxFHrwd/Pj7+HHW+rFlefCtE3SiTSx5hih6hAt+1sIVYeINkVJxpPEWmI0\n7mhk37v72PzSZoJ/DbJryS5qN9USqY+QSev9tZy59M20dKgZM2bw7LPP8o1vfINrrrmGoqIi3njj\nDd566y2uuuoqevXqBWQrhe644w7uvfdebrzxRi6//HJKS0sJBoPMmzePvLw8vv/97x/3NpYuXcrL\nL7/Mr3/9azweT5vLZs+ezX/+53/yyCOP4PP5eO6557jggguO2e9ow4YN4yc/+Qk//OEPuemmm/jM\nZz7DuHHjcLlc7Ny5k/nz51NfX89NN93EjTfe2C6PlYiIiHQ9hmlkP+AenBWZjCZp3ttMw/YGok1R\nUrFUdj/L0JmMIiJH6VXWi0vPvZRLz72UZDLJ+zvfZ+XGlazatIqJwyfm9ntn/Tvc9dBdVPapZFxg\nHGMHj2XM4DEU+As6cPUiIvJhTMvE9GZbwsHhSqE2fxIp4q1xDMPAsLLt5hyvQyaToXlPM817mrPH\nsk18pYfbx3lLvarElzOGQiDpUKNGjeJXv/oVjz76KI899hiJRILKykr+4z/+g/79+7fZd86cOfTs\n2ZMnn3ySJ554gkgkQmlpKRdeeCFf/OIX6d279zHHj0Qi/PjHP2bOnDnHbdt2+eWXs3//fp5//nli\nsRjnnnsu3/3ud09q7dOmTeO5557jT3/6E2+//TZvv/02sViM0tJSpkyZwtVXX83gwYM/0uMiIiIi\ncjy2x6aksoSSypLcLKHGHY207GshHoqTiqewHAvDVCAkInIk27YZWTmSkZUj+cLFX2hzWU1DDS7b\nxdY9W9m6ZyvPvvYshmEwqM8gxg0Zx1ev+OpJzaoVEZGOdahSyPYc0T4u0TYUSoQTJEIJDDMbCh05\nV6i1qpXWqtbcsbwl3mz7uDI/vjJfblaRyOnGUCuJ9tHU1KQHsp1t3rwZgEGDBn3IniJyiJ43IqdO\nzxs5U6TiKVr2t9CwrYFIQ4RkNEkmk8G0zXavEjo0R9Hv97frcUXOZHredG6xRIwN2zawMriSVcFV\nrN++nkQyQWWfSp68+0kgO6D8iQVPMKTfEEYPGo3Pc+JZstI+9LwROXV63pxYJpMhnUi3CYUy6QyZ\ndCYbCh2aK+TNziEy7SNOADDAU+DJVQr5uvlyFUhy+jsdvxcoLCw86Q95qgQSERERETkDWC6Lon5F\nFPUrIpPJZPueb2+keW8z8dZslZBpm6oSEhE5DrfjZmxgLGMDYwGIxqKs27aORDKR22dvzV4e/euj\nAFimRaBfINs+LjCWUQNH4XV7O2TtIiJycgwj2w7uUEVPJpMhnUwf00IuGU1mT6Iys23iDlUXRZui\nRJui1G+pB8CV58JX5sNX6sNb4sVT6NF7bemUFAKJiIiIiJxhDMPAU+Ch5+ie9Bzdk3QyTWt1Kw1b\nGgjXh0lEEmRSGUyn/auERETOBB63h7OHnt1mm2M7XD/relZtWsXGHRvZsH0DG7Zv4Pcv/x7LtHjk\nB48wuCLbEjyTyej1VUSkkzMMA8uxsBwLDhZOHR0KpRNpYrEYseZYtlLIMrHc2blC8ZY48dY4jTsa\ngeyMIm+JN/un1IuvxIfjU7WQdDyFQCIiIiIiZzjTNinoVUBBr+yQ83goTuOuRpp2NhFriZGKpbI9\n0TX8VkTkhHqU9OArl38FgHA0zJrNa1gVXMXK4Ep2HthJ//L+uX1/8NAPaA415yqFhg8Yjttxd9DK\nRUTkZJm2mZ0TdDC8yaQzhyuEYslsO7lEinhrHMMwMOxskGR7bGyXTagmRKgmlDue43Oys4VKfHhL\nvXiLvW3bzIl8AhQCiYiIiIh0MS6/i+5Du9N9aHcy6Qyh2hD1W+sJ14RJRpKk4ikMW6GQiMiJ+Dw+\nJo+czOSRkwGIxWO4HBcAqXSKVcFVtEZaWbN5DY+/8DiO7TCk3xBGVI5gxtkzGNp/aEcuX0RETpJh\nGrl2cG7c2VAo0bZ9XCKRIBFK5OYKGZaB7c5eJ5PJkAgnaN7TnD2eYeAudOdayPlKfbjyXaoelY+V\nQiARERERkS7MMA3yuueR1z0PgFQ8RagmROOORiJ1ERKRhEIhEZEP4XYdrvKxTItn7n+GNZvXsDK4\nklXBVWzZs4W1W9eydutaepX1yoVAG3duZOOOjYysHEn/Xv2xTKuj7oKIiJwEwzwY8LizX6sfOVco\nnTj8MxaPEWuJZauFLOPwbCG3TbQxSrQxCluzx7Qcq00LOW+pN3d8kfagf00iIiIiIpJjuSwKehdQ\n0DvbOi4VT9Fa3ZoNhRoiJMIJMokM6HtKEZETKvAXMG3MNKaNmQZAc6iZDds3sHbr2jazhl5/93X+\n55X/AcDv8TN8wHBGDhzJiAEjGD5gOD6Pr0PWLyIiJ6fNXKGDjqwWOhQMpWIpkpEkGByeLeTKtpHL\npDO0VrXSWtWaO4Yrz5WrFvKWZNvIGaaqheSjUQgkIiIiIiInZLksCvsUUtinEMiGQhtXbCRWE8M2\nbBLhBOlEWjOFREQ+QIG/gEkjJjFpxKQ224cPGM75E85n3dZ1HKg7wPINy1m+YTkAlb0reXLuk0D2\nTPMDdQfoWdpTLYNERDq541ULZVJHBUOJFKnQwdlCB9vImbaJ5c4GQ/GWOPHWOI07G3PH9BZnq4UO\nzRhy/I7+T5CTohBIREREREROmuWycJW5cJW5GDRoUNtKofps+ziFQiIiJ+fcsedy7thzAahpqGHt\n1rWs27qOtVvXtpkbVFVfxed+8DlKC0qzlUKVIxhROYJARQDHdjpq+SIichIMw8i2VrZNHG/2NTuT\nyRwOg46oGEpGk8SaY7lgyHKyoZDltgjXhQnXhXPHtd023hIvnmIP3qLsT8enYEiOpRBIREREREQ+\nsuNVCh0vFDJtUy0sREQ+QLfibsw4ewYzzp4BZL8gPGR/7X4K/YXUNdexcOVCFq5cCIDLdjGk/xB+\n+MUfUl5W3hHLFhGRj8AwDCyXheWywJ/dlk6ljwmGktEkiXCibRu5g9VCmUyG5P4kLftbcse1XBbe\n4oPB0MGfLr9LwVAXpxBIRERERETajUIhEZH2ceQXdmMDY3nh5y+wu2p3m2qhHft3sH7beorzi3P7\nPvCHB4jFY4yoHMHIgSPp37M/pqnKTBGRzs60TEzLxPYcbiOXTh4bDKUSKeItR7WRc1lYbotM5tj5\nQpZj4SnyHK4YKvHgzncrGOpCFAKJiIiIiMjH5rihUFUrjTsVComInArDMKjoWUFFzwounnIxAM2h\nZrbv247H7QEgnU7z+ruv0xxq5qWlLwGQ580j0C/A0P5DOXfcuW3azImISOdlGNl2cJZj4XCwjVw6\nO1voUBiUayMXS0IzuWDIsAxsl43lscikM4RqQoRqQrljm5Z5OBg6WDHkKfDo/fgZSiGQiIiIiIh8\nYiyXRWHfQgr7HhsKRRujJMIJUokUQDYY0hmKIiInVOAvYPSg0W22/fz2n2crhbasZe3WtVQ3VLNi\n4wpWbFxBWVFZLgRat3Ud76x7hyH9hjCk/xDKiso64i6IiMgpMEwD222D+/C24wVD6USaWDwGLW2D\nodyMIdexM4YM08BTdHi+kLfYi7vQrTmfZwCFQCIiIiIi0mGODoXSqTSRhggt+1poPdBKPBQnFUuR\nTqpaSETkw5immQ11+g3hyhlXAlDdUE1wZ5D3d7zPuCHjcvsuXbeUJxc8mfu9tLCUIf2GMLT/UIae\nNZSJwyd+4usXEZFTd6JgKJ1MH7dqKN6abSWHka0IslwWtjsbDEXqI0TqI4ePbRi4C9y5UMhb7MVT\n5MG0FQydThQCiUinc88997BgwQKef/55evXq1dHLERERkU+QaZn4y/z4y/wwKrstEUkQqg7RtLtJ\n1UIiIqeoe3F3uhd3Z9qYaW22Txg2gUQyQXBnkI07NlLXVMfb773N2++9Tf/y/ky853AI9Mzfn+Gs\nXmcR6BegwF/wSd8FERE5RYZpZOcEuazctkwm0zYQSmRPtEqFjg2GTCc7m8hyLKJNUaJNURp3NB48\nOLjzssGQpzD7x13oxvE5el/eSSkEEpGPZOvWrSxfvpzPf/7z7X7sz33uc0ydOpWSkpJ2P7aIiIic\nfhyvQ1G/Ior6FQHZMxvD9WFa9rfQur+VRChBMpZUtZCIyCkYPWh0rpVcOp1mb81eNu7cyMadGynK\nK8rtV9tYy4PPPJj7vXe33gzpN4RA/wBD+g1hWP9huZlEIiLSeRnGCYKhZPqYcCiVSJEIJbKhjnkw\nGLLNXCu5WEuMWEuMJppyx7IcC3ehG0+BB3eROxcQHXl70jEUAonIR/Laa6+xYMGCjyUEGjZsGMOG\nDWv344qIiMiZwTCNw9VCI7PbVC0kIvLRmaZJ3x596dujLxdMuKDNZelMmitnXMnGHRvZtHsTe2v2\nsrdmL6+9+xoAv/7OrxkbGAvAhu0bSKaSDOo7CK/b+4nfDxEROTWGkZ0TZDkWDg5w/GAonUyTjCZJ\nhBNgHJ4zZNpmLljKpDOkalOEa8NtbsPxOdmWckWeXEDkztesoU+SQiAR+Ug2bNjQ0UsQERERyTle\ntdCh2UItB1pItGarhVKJFKZt6kOniMhJ6l7cnduvuR2AZCrJjv072LgjWzEU3BlkcMXg3L5PvfgU\ni9csxjRM+pf3Z0j/IQyuGExl70oG9h1Ivi+/g+6FiIicrBMFQ5lU5thWcrEUyUgye72j28m5s+3k\nEqEEiXCC1gOth2/DNHDludoEQ55Cj1rKfUwUAkmH27BhA0899RQrV66ktbWVsrIyhg8fzqxZs3Lz\nYB5++GEee+wx7rvvPi688MJjjnHFFVdQU1PDyy+/jM/nI5VK8cc//pEXX3yRXbt24TgOlZWVXHnl\nlcyaNSt3vRUrVnDbbbdx66234nK5+MMf/sCYMWP48Y9/DMDOnTt54oknWLZsGQ0NDRQXFxMIBLjl\nlluOqVSpq6vjwQcfZMmSJcRiMYYPH843v/lN3nzzTR577DEeeughxo8fn9t/1apVPPnkk6xdu5ZY\nLEb37t2ZPn06N954IwUFH9xj+YUXXuDee+/lzjvvJC8vjyeffJLdu3fj9/s577zz+PrXv05eXl5u\n/3Q6zbPPPsv8+fPZuXMnAH379mX27Nlcc8012Pbhl4JNmzbxxBNPsHbtWhoaGsjPz2fo0KF84Qtf\nYPTo0ezbt49LL700t/+ECRMYN24cDz/8MADRaJTHH3+cv//97xw4cACPx8OQIUO4/vrrmTx58jH3\n4Z577uH999/nxRdf5LOf/Szf/OY3TzgT6OWXX+bZZ59l69atJJNJysvLmTFjBjfeeCNer7fNmj71\nqU9x/fXX88ADDxAKhXj55Zc/8DEVERGRM4thGvhKffhKffQY2QM4WC1UE6J5dzORxki2WiiuaiER\nkZNlWzYD+wxkYJ+BzJk655jL+5f350DdAbbv2862fdvYtm8bLy55EYDzJ5zPv9/87wA0h5r5x/v/\nYGDvgfTp0QfLVKsgEZHOzDAMDDtb+cMRhZ7pVDpXNZROHhEOHWwnh3HwuqaBYWXDJdtjYzomseYY\nsea2LeVM22wzZ+jQT9utGOOfoUdPOtSmTZu49dZbKSoq4gtf+AKlpaXs2bOHp59+mqVLl/LjH/+Y\nQYMGMXPmTB577DHeeOONY0KgTZs2sXv3bmbOnInP5yOTyXDXXXexcOFCZs2axbXXXks4HObVV1/l\n7rvvZu/evXzpS19qc4z169ezb98+vv71r9OjR/ZLgurqam655RbS6TTXXXcd5eXl1NTU8Kc//Ymb\nb76Z3/72t7kgKJVK8c1vfpPNmzczZ84cxowZw7Zt2/jWt77FqFGjjrnfCxcu5Pvf/z6VlZV8+ctf\nxu/3s3btWp5++mneeecdHnvsMTyeD++p/Oabb7J7926uuOIKysrKWLRoEfPmzaOqqopf/OIXuf3+\n4z/+g/nz5zN58mQuueQSLMtiyZIlPPjgg2zatIl7770XgL1793LzzTdTUFDAVVddRY8ePaitreXP\nf/4zX/va1/jNb37DgAED+NGPfsRPf/pTAO68806Ki4sBSCQSfO1rX2PTpk189rOfZfjw4TQ2NvLX\nv/6V22+/nblz5zJ79uw29+Fvf/sbLS0tfOc736Fv374nvK+PPvoo/+///T9GjBjBrbfeis/nY/Xq\n1Tz++OOsXr2ahx56CNM8fEZvNBrlpz/9KVdffbVmC4mIiAhwsFqoooiiimOrhVqrsrOFEtEE6UQa\nANNRMCQiciq+cvlX+MrlXyEWj7F5z2aCO4Js3rOZLbu3MOyswydSrt+2nrm/mQuAy3ExoNcAKvtU\nMrDPQCr7VDKyciSO7XTU3RARkZNkWgcr7N2Ht7WpGkoeERIl0qTiKeKt8dysoaNbyllpi3BdmHDd\nUS3lvE4uFDoUDLkL1FLuZCkEkg61detWhg8fzpe//GXGjRuX215SUsKPf/xj3nrrLSZNmsSAAQMY\nOHAgS5YsIRqNtglI/v73vwNw0UUXAbBo0SJef/11vvGNb3DDDTfk9rviiiu45ZZbePTRR7nsssva\nBANLly5l3rx5lJeX57Zt27aNgQMHcskll7QJngYOHMi3vvUt5s2blwuB3nrrLTZv3szs2bO5++67\nc/sOGTKkze8A8Xicn/zkJwwaNIhHHnkEtzv7KjlnzhwqKyt54IEHmDdvHtdee+2HPn6rV6/mmWee\nya37oosuoqGhgbfffptNmzYxePBg1q1bx/z585k0aRK//OUvc19kXH755Xz729/m5Zdf5qqrrmLE\niBG8+eabRKNR5s6dy2c+85nc7cyaNYu7776b7du3M2zYMD7zmc/w4IPZwaBH7jdv3jzWrl3L/f8/\ne3ce31SV/3/8lSZpuu+lZSkFClwQlE3FBVFZRBTFDRU3HEFxV/yq+HNmcHDG9fsVUNEZGUQYRQQB\nFUUZqiyCjgygoqgEKGVvoXRfsuf+/rjNbdKkpUWgDXyej0cfSe499+bkhttL8875nOefZ9iwYfry\na665hrFjxzJjxgwuu+yygJFHW7duZenSpQEjl+o7fPgws2fPJicnh7feeguzWftjYPTo0URHR7N4\n8WK++uorhg+vq129detWpk6dGjDySwghhBDCX6jRQl6PF1upjerD1VQVVuGscuK2u/G6vaheVRsx\nFCHBkBBCNMYSaaF3l9707tI75PpoSzQXnHUBefvzOFRyiG17tPJyPl/M+EIPgb7c+CVxsXF07dCV\n9m3aYzLKR1lCCNGaBYwa8qOqqj5iKGDUkMOD2+4GtV5JOVMERkvtfEOqissWWFIOQ+18Q/FaIGRJ\nsOj3ZeRQIDkaokWNHDlSD28Aqqur8Xq9eqhx5MgRfd2IESN44403+PbbbxkyZIi+/KuvviIlJYWB\nAwcC2sgS0MKJysrKgOe75JJL2Lp1K1u2bOHSSy/Vl59xxhkBARDAeeedx3nnnac/ttlsuN1uMjMz\nASgoKNDXbdq0Se+jP1+fDx06pC/74YcfKC4u5sYbb8TpdOJ0OvV1gwcPZtq0aXz//fdNCoEGDhwY\n1O9LL72UzZs388MPP9C9e3fWrFkDwLXXXhv0TdarrrqKb775hvXr19O7d2+MRm0I/pYtWwLCndTU\nVN54442j9ic3N5fY2FgGDhwYdOwHDRqkl3JTFEVffu655zYaAIEW7Hk8Hq666io9APJ/DYsXL2b9\n+vUBIVBERAQXX3zxUfsshBBCCOEvwhhBbFossWmxtDmjDaCNGLKX26k+XE1lQSXOKicum0v/A9Zo\nNkowJIQQzdC3e1/6du8LaKXhdh3YRd7+PHbu30lpZWnA3EH/+uJfHCrV/qaONEfSuV1nfcTQ2T3P\npku7Li3yGoQQQjSPwWDQR/z400vKhSgr56pppKScKUIbyV9dLxwCjJHGgFDId98ce3rOOSQhkGhR\nqqqyZMkSPvroI/bu3YvD4QhY7/F49PuXXXYZb775JqtWrdJDIF8puBtvvFEfXZKfnw8QMG9Nff6h\nDBAw74y/3NxcFixYQF5eHjabrcG++QKh+uXMDAYDvXr1Cng+X//+/ve/8/e//z3k8xYWFjbYd39d\nugT/Zzc9PT1gH7t37wYgJycnqG12djYAe/fuBbTQatGiRXzwwQd8++23XHTRRZxzzjkMGDBAH7HU\nmPz8fKqrqwMCpPoKCwsDQqCGjr0/3zxGTXkNPikpKQHzBAkhhBBCHCtDhIHo5Giik6NJU9IALRhy\nVDqoLqqm8mAljkoHrhqtlJzX68VokmBICCGaIiE2ISAU8uf1ehl6zlD2FO4h70AehcWFWPdYse6x\nAjDx2ol6CLRt9zbWfL9GD4iyMrJk1JAQQoSBxkrK+QdC9UvKYdD+n+77MZqMGC1GIswRqKqK54iH\nmiM1Qc8VGRcZEAxFJkSietVT+v/ucjUULeqtt95izpw5dO7cmYcffpgOHToQGRlJfn6+PueMT9u2\nbTnrrLP45ptvcDqdREZGBpWCA6ipqcFgMDBz5syAOWL81Q8eYmJigtp88sknPPfcc2RkZHD33XfT\nuXNnoqKiqKioYPLkyQFt7XY7QMh5fOqPcqmurgbgjjvu4Pzzzw/Zv6YELkDIkCM2NhZAH2HkC69C\ntfU9j69NUlISc+bM4YMPPmDlypXMnz+f+fPnExsby6233spdd93V4DEF7dinpKTw3HPPNdimU6dO\nIfvbmJqamia/Bp9Q76kQQgghxPFiiDDoNclTu6YC2h+rzipnXTBU4RcMub1aWQypWy6EEE0WERHB\nuJHj9L8bK2sq2XVgFzv37WTngZ30695Pb7tp2ybeW/Ge/jjSFEmntp3o1K4Tndt15rbLbzstv/0t\nhBDhyL+knCmqLsJQVTVgxJD/j8fpgWoCRw75Rg9ZjBjN2o+93I693B7wfNXV1URERbC7YPcpWVou\n/F+BCFtut5uFCxeSkJDAW2+9RVJSkr7Ov0Sav8suu4wtW7awYcMGLrroIr766is6duxIr1699DYx\nMTGoqkpOTk7AvD/NNX/+fIxGIzNnztRHm0DdqBR/kZGRAEEjmaAu9PHx/ec1ISGBAQMGHHP/oC58\n8ldVpQ1/9B1PX3DiC1L8+YIT/yAmMTGRiRMnMnHiRPbt28f69etZtGgRs2bNwmAwMH78+Ab7ExMT\nQ3V19e9+XaH2e7TXIKGPEEIIIVqawWDQ/liMt5DSRft/qKqquGpc1BypofJgJfZSO06bU/sWo8uj\nzzEkH0wKIcTRxcfE06dbH/p06xO0rl/3ftx55Z3s3L+TvP15FBQXsH3fdrbv205maia3j6ybM/iR\naY8QHxNPdttssjOz6dS2Ex0zOhJlCf5ipxBCiNbDYDDoYY4//5FDoX7cNre2fe2cQ4YI7ctZvvJ0\nqkfFa/dSVVgVXFrOYtT/j29JsBCdHE1sm6N/qb01kRBItJiysjI9MPAPgECbNyeUYcOGMW3aNNau\nXUtGRgb79u3jnnvuCWjTpUsXtm/fHjTvD0BlZSXR0dF66bjGHDx4kDZt2gQEQA31zb8EW/v27fXl\nqqryyy+/BPUP4Keffgr5vGVlZUHHoyG+Um/1++3fpy5duvD111+Tl5cX9Fp8penqj87xycrKYuzY\nsYwcOZIrrriC1atXNxoCdenShS1btmC1WgNKvvleV2Ji4jF9wNG5c2cA8vLyAuZp8n8NvjZCCCGE\nEK2JwWAgMjaSyNhIkrK1/+Opqorb5sZWYqPiYAW2Ehtuuxu3w43qVrVycjLPkBBCNEuvLr3o1aXu\nC6JVNVXkF+Szp2APHm9dOfdqWzWbt20O2t5gMJCZmsmDNzzIxf21+WUrqisArWSdEEKI1st/5JA/\nVVVRvaHDIY/Tg9vhBhU8Xg8Gg4GqqqrQpeUcdaXl4jLiwi4EkloEosUkJSVhNBopLCxEVVV9+c6d\nO1mxYgUQPCIoOTmZc845h++++441a9YAgaXgQAuKAD744AO8Xq++XFVVpkyZwqhRo/TRMo1JSUmh\nrKwsYLTNoUOHWLRoERA46uess84C0MvT+axYsSJofp9+/fqRkpLCN998ExTi5ObmMnLkSP31H813\n331HUVFRwLLVq1cD0LevVk/ZN3/SRx99FHCcVVXl448/BtDDshdeeIFbb701aERTVFQURqNRH/EE\n2rD8+u18x37+/PkBy51OJw899BBjx44NeE+a6qKLLsJsNrNs2TJcLlfAuo8++ijgNQghhBBCtHYG\ngwFzjJmEDgl0OLcD3S7vRs9retLr+l50u6IbWednkdAhAUu8hQhTBKpXxeP04HF6UL3q0Z9ACCEE\ncTFxnJlzJqMGjWL04NH6ckukhTl/msOU8VO444o7uLjfxXRq24kIQwQFRwqINNf93fvJ159wxaQr\nGP34aB5+5WFeef8VlqxawqbfNnGk7EhLvCwhhBDNYDBoI35MFhORsZFEJUYRkxpDXEYccZlxxKbH\nEp0SjTHaiCFSG53vdXlx1jixldioPlxNVYE2Oqj6cDU1xTU4q5247K6jP3krIiOBRIsxmUxccskl\nfPXVV0yZMoULLriAffv2sXjxYp599lkmTZrEL7/8wmeffcZFF11EYmIiACNGjGDq1KksXbqUM888\nM2DkDcDgwYO55JJLWLNmDQ888ABXXHEFbreblStXsnnzZu66666geXpCGTZsGO+99x6TJ09mxIgR\nFBUVsXDhQiZNmsSMGTPYvn07S5YsYdCgQQwfPpxZs2axdOlSDAYDZ5xxBnl5eVgew78AACAASURB\nVOTm5jJ48GC+/vprfb9ms5nJkyfz9NNPc++993LLLbeQlpbGb7/9xkcffUTHjh0ZNGhQk45hr169\nmDhxIqNHjyY9PZ21a9fy888/M3ToUH10T48ePbjhhhtYvHgxjz32GIMHD8bj8bB27Vo2bdrELbfc\nQk5ODgBnn302H3/8MePHj+eKK64gNTWViooKvvjiCxwOB2PGjNGfu127dmzcuJHp06eTmZnJ2LFj\nue6661ixYgUrVqzA4XBw8cUXU1VVxaefforVauXpp59udE6hhqSlpXHvvffy+uuvc9999zFixAjM\nZjMbN24kNzeXSy+9tMnHTAghhBCitYowRRCdHE10crQ+zxCAx+nBXm6n+kg1NYdrcFQ5cNvdei10\nDNq2UlJOCCGOzmQ00b1jd7p37B6w3O12c6DoAOnJ6foym8OGxWyhuKKY4opivrd+r69rm9aWD5//\nUH+8ZPUS2qa2JbttNm1T2x7T375CCCFOHkOEQS8H51S1gQixsbFHLS1Xvrecin0VpHZLPcoztB4S\nAokWNXnyZCIjI9mwYQPr16+nR48evPzyy/Tt25drr72Wzz77jNdff50+ffroIdAll1zCiy++SElJ\nCRMmTAi53+eff54FCxbw+eef8/LLLwNaqbI//vGPjB49OuQ29d1zzz04nU7WrFnDSy+9RE5ODk89\n9RSDBw/GZrPx2muv8eabb9K5c2cyMjKYOXMm06ZNY/ny5axcuZKzzjqLmTNnsmDBAoCA/wBeeuml\nvPHGG8ybN4958+ZRU1NDeno6o0ePZsKECU0KqQAGDhxIu3btmDdvHrt37yYuLo6bbrqJBx54IKDd\nE088QadOnfj444+ZNm0aBoMh5PEYPnw4sbGxLFiwgHnz5lFRUUFsbCw9evRg2rRpAUHLxIkTKSgo\nYPHixXTt2pWxY8diNpv11/Xll1+yfv16zGYziqLw0ksv/a7ROrfffjsZGRl88MEHzJw5E6/XS1ZW\nlj7CSAghhBDiVGWMNBKbHktseiz0rFvutru1cOhwNdVF1bhqXFo45K6db8gYgcEo8w0JIURTmEwm\nstsGllC/55p7mHD1BApLCtlTsIfdBbvZU7iHPQV7yEzN1NtV1VQxfcF0/bHFbKFjZkc6tOlAhzYd\nGHHeCDq17XSSXokQQojf46il5VzNr3LU0gz+5aHEsSsvL5cDeZzt2LEDgG7durVwT36fyZMns3r1\nahYuXHjc5q357LPPePbZZ3nggQcYN27ccdmnODWcKueNECeTnDdCNJ+cN62XPt9QmY3qQ1rJCpet\nLhzyur3aqKEICYdOturqakD7hqkQomnC5bwprShl7vK5ekhUv1TcK4+8wsBeAwF4f+X75G7IpX16\ne7IysgJuUxNT5Xez+N3C5bwRojVpznnjcXroMLBDi48ESkxMbPIFQ0YCCXEcHD58mGnTppGVlRUw\nCqe4uJgNGzaQnJxMx44dW7CHQgghhBDidOCbb8gcYyahXd1E5qqq4qxyYiu1UXWoCnupHZfNhceu\nzTPkccvIISGEOFbJCclMGjtJf1xZU8newr3sP7yf/Yf3k9M+R1+Xty+PHft2sGPfjqD9dM/qzpw/\nz9Eff/GfL2iX1k4CIiGEEL+LhEBCHAfp6ekUFxezatUqSkpKGDBgAJWVlSxatIiamhoefPBBjEZj\nS3dTCCGEEEKcpgwGA5Z4C5Z4C0kdk/TlqlfFWe3EXm6n5kgNthIbbpsbt8ONx+nB6/WielQZPSSE\nEM0QHxNPry696NWlV9C6R25+hOsuvY4DRQfYd2hfwG1acprerqK6gufeeU5/HG2Jpn16e73E3Mjz\nRwaVrxNCCCFCkRBIiOPAYDAwffp05s6dy+rVq1m5ciVGo5GuXbty7733Mnz48JbuohBCCCGEEEEM\nEXXhUGKHxIB1HqdHHz1UU1SDvcKO2+HGbXfrk+UCekAkhBDi6BJiExoMiJwuZ8D9ywZepo8mqqiu\nYOf+nezcvxOAs3uerYdA737xLl9u/JIO6R3okNGBDukdaJ/ensy0TNoktcFkko//hBDidCZXASGO\nk7i4OB588EEefPDBE/5co0aNYtSoUSf8eYQQQgghxOnLGGkkOiWa6JRoUnJS9OW+eYcclQ5qimuo\nOVKDq9qljR5yePB6vHg9XikvJ4QQzRRpjtTvpyWlMWX8FP1xRXWFHgjtP7yfLu276OvyDuSRt1/7\nqa9bVjfe+fM7gPb7e+7yuWSkZJCZmknb1LakJ6djMsrHg0IIcSqT3/KtWFJSUoPrZsyYwZ133gnA\n3LlzefTRRxtsW1ZWpt+/+OKL2bJlS8h248aN49VXXwXgxx9/5JJLLmlwn2vWrKFv376N9F4IIYQQ\nQghxKvKfdyguIy5gnerV5h6yV9ipKdLKy7ns2txDHpcWEKleKS8nhBDNlRCbwBmdz+CMzmcErfuf\nW/6Hm4fdzL7D+zhw+AD7Du+j4EgBhcWFZKZm6u3KKst4e9nbAdsaI4y0SW5DZmomE0ZPoE+3PgAU\nlxfjcrtIS0qTkEgIIcKc/BYXQgghhBBCCHFcGCIMWBIsWBIaLi9XU1KD7YgNe7kdt7N29JBbC4e8\nHi+GCIMWEklAJIQQTRIfE0+PTj3o0alH0DpVVfX7BoOBO664g8LiQj0kOlJ+hILiAgqKC/B4PXrb\nxasW8+4X72ohUUob2qa21UYPpbUlOzObIWcPOSmvTQghxO8nIVAr5j+CpzF33nmnPiroaNauXduk\ndn379m3y84ebqVOnsnz5cj7++GPatWt33Pa7efNm7rvvPiZMmMA999zTaNuDBw9yzTXXcOWVV/LM\nM8+E7FeoNq3Bf/7zH1588UUOHz7Mtddey5NPPtnsfdx77718//33/Pe//z2mPpSWljJ16lQ2btyI\n2WxmzZo1x7QfIYQQQghx8viXl6Nr4DqP04Oz2omj0oGtxIa9zI7b5tZKzDk9WkDk9qKqMopICCGa\nw/93ZVJ8EvdcE/h5hdPl5FDJIQqLC+me1V1fbjKaSE1Mpbi8mIIjBRQcKdDXdcvqpodAqqpy+19u\nJzUxVS8xl5GaQUZyBunJ6WSkZASUuRNCCHHySQgkRAtISUnhhRdeoG3bts1u8/bbbzNy5MjjGmA1\nldfrZerUqTgcDh577DG6d+9+9I1OgHfffZdvv/2Wq666irPPPvuEPteiRYvo27dvi71WIYQQQojT\ngTHSSHRkNNHJ0SR1DCyLraoqbrsbV7ULW5kNW4kNR4UDj8OjhUSuupDIYNBGEWFAQiIhhGiCSHMk\nWRlZZGVkBSwff/V4xl89HofLoYVERwopKNZGDyXG1Y30LKkoYXfBbnYX7A65/ynjp3DZwMsA+Oan\nb/j2p29JT06nTXIb/Sc9OZ1oS/QJeoVCCCEkBBKiBURFRTF06NBmtzlw4ABvvfUWffv2bZEQqKSk\nhJKSEoYMGcKYMWNO+vP77Ny5E4DHH3+c6OgT9x9Fp9PJjBkzePrppyUEEkIIIYRoIQaDAXO0GXO0\nmZi0mKD1Xo8XV40LZ5UTW4kNW6kNZ7UTj8ODx1lbas6jlZqLMEVgMMooIiGEaCqL2ULHjI50zOgY\ncn1iXCLvP/u+VlKutsRcQXEBR8qOcLj0MBkpGXrbLTu28MnXn4TcT4c2Hfjgbx/ojxd9tYjYqFg9\nJGqT3IaYqOBrgBBCiKOTEEiIMPLrr7+26PM7nU6AExq8tKZ+7NixA7fbfUKfQwghhBBC/D4Rxggs\n8RYs8Rbi28YHrddLzVU4sJXasJfWlppz1o4i8qh1I4kiDFpIJOXmhBCiSUxGEx0zO9IxM3RI5G/I\ngCFkpGRwuPQwRaVFHC49zOGSwxSVFQUEPF6vlzcXv4nbE/j3eFx0HOnJ6dx55Z0MPUf70mzBkQL2\nHdqnB0Wx0bHH9wUKIcQpQEIg0aJ88+C89957rFq1is8//5zi4mLatGnDxRdfzBVXXKG3nTVrFrNn\nz+aNN95g2bJlrF+/nvvvv18fkbJ7925mz57Npk2bKC8vJzExkb59+zJhwgS6du0a9Nwul4uZM2ey\nYsUKSktLycjI4Prrr+fWW28NaLdnzx7mzp3Lhg0bKC0tJTk5GUVRuPvuuznjjDNCvq5169Yxe/Zs\ndu3ahcVi4fzzz+eRRx4hLS0NCD0nUH312/jm0QG47777AHjyySd5+eWXGTNmDE888UTQPl588UWW\nLl3KP/7xD/r379/g+3D48GFmz57Nf/7zH4qLi4mJiaF3796MGzeOfv36BbxXAMuXL2f58uVHna/I\narXy6quvsnXrVkwmE3369OHRRx9tsP2yZctYunQpeXl5RERE0LFjR0aNGsWYMWOIiIjQ513yOffc\ncwH0uYXKysqYPXs269ato6ioiNjYWPr06cOdd95J7969A56rurqat99+m9WrV3P48GGSk5O5/PLL\nufPOO4mLiwt4vc8++yzPPvssf//73xkwYECD/RdCCCGEEK1PQKm57OBSc15X7Uiiaif2MjuOCgfO\nKicepwePy1M3J5HHi+pVMUQYiDBKyTkhhGiuHp160KNTj6DlqqpSY6/RH7s9bsZeNjYgJDpcepgq\nWxVVtio8Xo/e9pufvmHGBzP0xzFRMaQmppKamEpaUhrPjH9G/139a/6vREVGkZqYSkJsgvwOF0Kc\nNiQEEq3C66+/jsvl4o477sBsNrN06VLef/99gKAyXAsWLCAiIoLJkyfTrVs3APLy8pgwYQJGo5Hr\nr7+ejh07cvDgQRYvXsz48eP55z//GbSfGTNm4HK5GDduHB6Ph+XLl/Pqq69iMBi45ZZbAC0cufvu\nu/F6vdx66620bduWoqIiFi5cyIQJE5g9e3ZQELR161Y+/fRTRo8ezfXXX8+WLVv49NNP2b17N/Pm\nzSMiIuKYjtE999zDhx9+yFdffcXdd99Nly5duOCCC5g7dy4rV67k0UcfxWw26+09Hg+rV6+mffv2\nepATypEjR/jDH/5ARUUF1113Hd26daO4uJiPPvqI+++/n2nTpnH++eczZswYevXqxcsvv8yAAQO4\n4YYbGp3TqLCwkPvuuw+Px8NNN91EdnY2O3bs4OGHHyYmJngI94wZM3j//fcZPHgw1157LW63m/Xr\n1/PKK6+wY8cO/vSnP9GlSxdeeOEFZs2aRX5+Pi+88IK+fUVFBePHj6e0tJRrr72WnJwcioqKWLJk\nCRMnTmTGjBmcc845gBYA3nfffezevZtbbrmF7Oxstm3bxvz58/nhhx/4xz/+wZgxY4iJieHDDz9k\nzJgx9O/fny5duhzLWyeEEEIIIVopg8GAMdKIMdJIVFIUCe0TgtqoqorH4akLikrt2MvtuGwuLSiq\nLTnn9Whl51RVJcIYoY0mipAPGIUQ4mgMBkPACJ5IcyQTr50Y0EZVVcqryikqKyI9KV1fnpyQzIAe\nA/TAqMZeQ429hn2H9pEUnxQQ9EyZNYXC4kIAzCYzKQkpemA0/NzhDDl7CAAV1RUcPHKQ1IRUkhOS\nMRnl41MhRHiT32KiVThy5AjvvvsuJpP2T3Lo0KGMGjWKZcuW8fDDDwcEJwcOHGD+/Pl6W4DXXnuN\n6upqZs+ezVlnnaUvv/DCC7nzzjt54403ePXVVwOe02az8eabb+r7HjlyJNdccw3/+te/uPnmm4mI\niGDXrl107dqV0aNHM2LECH3brl278sgjj7B06dKgEGjTpk0sWLCA7OxsAK6++mrcbjdffPEF3377\nLYMGDTqmY9S/f382bdqk3/eNSLnyyit55513WLduHUOGDNHbb968mdLSUsaMGdPot1tmz55NUVER\nf/3rXwNe44gRIxgzZgzTp0/n/PPP54wzziApSfvmZGZm5lHnNFqwYAFVVVX86U9/4uqrr9aXK4rC\nX/7yl4C227dv5/333+eGG27gySef1Jdff/31PPXUUyxbtowxY8agKApDhw7lww8/JD8/P6APb7/9\nNgcOHGD27NkBo35GjhzJzTffzPTp0/VgcenSpWzbto0pU6YwatQovZ3FYmHu3LmsWrWKESNGsGvX\nLgB69ux51NcrhBBCCCFOTQaDAVOUCVOUieiUaBKzEoPaqKqK2+bGVePCUeXQRhSVO3DZXXidXjwu\nD6i1gZLTI0GREEI0k8FgICk+iaT4wBGdQ88eytCztb/XVVWlsqaS4vJiisuLcbgcAW2zM7OJNEVS\nUlFCla2KQyWHOFRyCIBeXXrp7b7f9j1/eutPdc8bl0RKohYYpSWm8chNj+ih1Z6CPZiMJlISU4i2\ntGzpfCGEaIiEQKJVuOqqqwJCnbi4OHr16sXGjRv1IMbn4osvDmhrs9nYsGEDXbt2DQiAAM444wxy\ncnL473//i8PhwGKx6OuuueaagHApMTGRc889l9WrV5Ofn09OTg7nnXce5513XsBzud1uMjMzASgo\nKAh6Lf3799cDIJ9hw4bxxRdfsHnz5mMOgRpy9dVXM3fuXD777LOAEOjLL7/EYDBw5ZVXNrr9mjVr\nSEhIYNiwYQHLMzMzOeecc1i/fj379++nQ4cOzerXxo0biYiIYPjw4QHLL7vsMv73f/+X6urqgL6C\ndpwqKysD2g8ZMoRVq1axefNmFEVp8Pm+/PJLOnXqRHZ2dsA+oqOj6devH+vWraOiooKEhARWrlyJ\nyWQK6tstt9zCoEGDaN++fbNeqxBCCCGEOL0ZDAbMMWbMMWZi0kJPXL7duh2v00tWRhaOSgeOSgfO\nSmddUOT24HV59bJzvlFFUn5OCCGaxmAwkBCbQEJsAp3bdQ5a/8ojr+j37Q47xRXFlFSUUFxWHNDe\nZDLRLasbxeXFlFaW6j95+/MAeOK2unL8L/7rRX7O+xnQStGlJKSQHJ9MUnwS5595PldfpH0ptsZe\nw6/5v5Icn0xyQjIJsQkywkgIcdLIbxvRKoQqs5WcnAxoQYt/CNSuXbuAdvv27cPr9ZKTkxNy39nZ\n2eTl5XHw4EE6d667qId6Tt+H/wUFBfr+cnNzWbBgAXl5edhstoD2Ho8naB+h9uvrc6jQ6Pdq3749\nAwYM0OfzSU1Nxe12s2bNGgYMGNBoybbKykpKSko466yzMBqNQeuzs7NZv349e/fubXYIdPDgQdLS\n0oiODvwmjMlkIisri23btunL8vPzAbj33nsb3F9hYWGD66qqqigqKqKoqKjRETuFhYUkJCSwa9cu\n0tLSAkJBgKSkJH20kxBCCCGEEMeTIcKAMcpIbJtYYts0PHG51+3FZXfhtrlxVjmxV9hxVjlx17jx\nuP3Kz7m94KVuriKjQR9ZJGGREEI0LsoSRfv09rRPD/4S6KA+gxjUR/sCr9vjpqyyjCPlRygpL6G8\nqhyzqa4Uf2piKpmpmZSUl+il6PYf3g9ARkqG3m7XwV08Or1ujmSDwUBCTALJCVpg9NQdT9Ghjfa5\ny4/bf6S0slQPk5Ljk4mPiT/m6QWEEEJCINEqhJojxhceuFyuRtvW1NQEtK/P90F//QAnNjb4Dy9f\nW4dDGzL8ySef8Nxzz5GRkcHdd99N586diYqKoqKigsmTJ4d8vlD7jYqKCtjv8TZ69Gg2bdrEihUr\nuPXWW9m0aRNlZWV6qbOGHOuxawq73U5qamqj+63fj7/97W8NbpOWltbgc/lGFXXr1o3HHnuswXa+\nMM5ut5OSktJw54UQQgghhGghEaYILHEWLHEWYtMbCYs8Xtx2t16Gzl6uhUXOGmfdyCKnFhZ5vbWj\ni7wqBoOhLjCSsEgIIRplMppIS0ojLSn0ZxJ/u/dvQF0purLKMm3kUEUpmamZdfuJMNGvez9KK0sp\nqyyjvLpc/6EAjBF1X8xdvGoxa75fE/A8xggjiXGJnNvrXP70B61UndPlZMHKBXpQlBiXSGJcImaD\nmfiY+ON8JIQQ4UxCINEq2O32oGW+4OFoIzN8oZAvSGhoP/XDmVDP6VvmC23mz5+P0Whk5syZASXe\n9uzZ02B/mrLf4+2SSy4hISGBf//739x6663k5uYSGxsbUB4ulKYeu1Ah3dFYLBacTmej+63fj/bt\n29OrV69QmzTK99663W59rqTGpKSkBJWdE0IIIYQQIpxEGCOIjI0kMjYSgESC5yoCUL2qFhbZ3Thr\nnHVl6Gpc+qgij8uD6lbrStH5fmrL0ckIIyGEaJx/KbqOmR2D1vfo1IPXH39df+zxeqioqtBLzfmH\nTL1zeuNVvZRWlFJWpYVKVTVVlFSUYLPXfZ5SWlnKPz/5Z4N9eunBl7jwrAsB+PK/X/Ltz9+SEJtA\nYlyidhur3SYnJNMtq9vxOAxCiFZKQiDRKuTn53PuuecGLDt8+DDQ+AgQgI4dO2I0GsnLy2tw35GR\nkUFl5Hzz/vjbt28fUFcW7uDBg7Rp0yZojp8ffvihwf7s3r07aFn9/R5vFouFyy+/nEWLFrFr1y5W\nr17N0KFDjxo6xcfHk5aWxu7du/F4PEEl4Xxl2vzL6DVVZmYme/fuDZqLyeVy6cfDp0uXLqxdu5Yt\nW7YEhUA1NTUYjcag0UP+4uLiaNOmDXv37qWkpCRolE9ZWVlAmNi2bVt+/vlnjhw5EvDvq7y8nHXr\n1tGpUyd69+7d7NcshBBCCCFEa2OIqJuvKDql8UnLVVXF4/DgdrhxO9y4ql04q5zabY0Tj6uuFJ1e\nkk7Vgiavx6s/n8xhJIQQjTNGGElO0OYHqu/m4Tdz8/CbA5a53C7Kq8rxql59WaQpktsuv00LimoD\no/KqcsqryqmyVREXHae3/TX/V1ZuWBmyL+3S2rHo+UX649ueuQ2DwaCFRHEJAbdn9zyb7h27A9o8\nRw6ng/iY+IC5u4UQrY+coaJV+Pzzz7nhhhv0EKK8vJzffvuNpKQksrKyGt02KiqKCy+8kK+//pof\nf/yRvn376uu+//579uzZw5AhQzCbzQHbLVu2jKFDh+p/mJSWlrJp06aA0CclJYWysjLsdrseqBw6\ndIhFi7SLY6jybhs3buTAgQMBgU9ubi4A55xzTrOOS32+4xNqhM3VV1/NokWLeP7556mqquKqq65q\n0j6HDh3KwoULyc3N5fLLL9eX7927l82bN9OzZ08yMzMb2UNo/fv3Jz8/nzVr1jBixAh9+YoVK4JG\nAg0dOpR33nmHJUuWcN111wWEV6+//jpffPEF7733XqPzEg0dOpQFCxawcOFC7rvvPn15RUUFt912\nGzk5Obz66qsADB48mJ9++olPP/2UP/zhD3rbZcuW8frrr/PMM8/Qu3dvvd7uiSrjJ4QQQgghRGti\nMBgwRZkwRTXtowLVq2qBkd9II19o5LK58LrqwiKPy4PqUbXQSFVRPSoqqj7CyBBhkOBICCEaYDaZ\ng0rSJSckc+91wXMrV1dX4/F6AirijLxgJN06dqOiqoLy6nIqqisor9JuUxPryvJ7vB72FO5BVdWQ\n/Zg0dpIeAq35fg3Pz30egNioWOJj44mP0X7iYuJ49u5n9XBozeY1OFwOfZ2vXXxMPJHmSPndL8QJ\nJiGQaBViY2N58MEH9bBm8eLFOBwOxo4d26QLwUMPPcQPP/zA448/zk033US7du3Yt28fixcvJikp\niYceeihoG4PBwKRJkxg0aBAul4tly5ZRU1PDww8/rD/nsGHDeO+995g8eTIjRoygqKiIhQsXMmnS\nJGbMmMH27dtZsmQJgwYN0vfbr18/7r//fkaPHk1aWhqbN28mNzeXM888M2i0U3P5RjPNmTOHXbt2\nceGFF9KpUycAunfvTo8ePfjpp5/IysqiT58+Tdrn+PHjWbt2Lc899xw7duygS5cuHDp0iKVLl2I0\nGnniiSeOqa8333wzn332GS+++CL5+fl06NCB7du3s2bNGnr27Mlvv/2mt+3evTs333wzH3zwAXff\nfTfXXnstJpOJb775htWrVzNy5MhGAyCAu+66i6+//pq5c+dSUlJC//79KSkpYenSpRQXF/PHP/5R\nb3vjjTeyYsUKZs2aRVlZGT179mT79u0sXLiQ3r1766GV73h/+OGH2O12+vTpIyOEhBBCCCGEqGWI\nMGCONmOONh+9MeB1e3E73HicHjxODy67C1eVC1eNFhp5HB68ntrgqPZW9dSVpsOrzYWEASlTJ4QQ\njTBGGAPmGeqW1a1JJd8iDBEsfXGpFhTVBka+sKi8upwe2T30tl6vl8TYRCprKqm2V1Ntr6awuBDQ\n5lLyrzbzzmfvkHcgdAWfay6+hsdvfRyAPQV7eG3Ra3qgFBcdp92P1h6f3fNs4mK0EU4OpwOTyRTw\nOoUQoUkIJFqFiRMnsnHjRt577z2OHDlCZmYm48aNY/jw4U3aPjs7mzlz5jBr1iyWLFlCeXk5ycnJ\nXHTRRUyYMCFkGbYpU6Ywf/585s6dS2lpKZmZmTzxxBNcd911ept77rkHp9PJmjVreOmll8jJyeGp\np55i8ODB2Gw2XnvtNd58882AcmkXXHABY8aMYfbs2eTn52OxWLjiiit49NFHf/cfJ0OGDCE3N5eN\nGzeyZ8+eoNJpo0aNYtu2bYwaNarJ+0xKSmLOnDm89dZb/Pvf/6a4uJj4+Hj69+/P+PHj6dbt2OrC\nZmdnM3PmTGbOnMn8+fMxmUyceeaZzJgxg1mzZgWEQACPPfYYOTk5fPTRR0yfPh1VVcnKyuKhhx5i\n7NixR32+xMRE5syZw+zZs1m/fj3Lly8nOjqa3r1788c//pH+/fvrbaOiovjHP/7BP//5T1atWsWH\nH35IcnIyN910ExMmTNC/qdK3b1+uuuoqcnNzmTNnDk899ZSEQEIIIYQQQhyjCFMEkaZIiD16Wx9V\nVbXQyOXRS9W5arTgyF3jxmlzaiOOPF59XiNfiBQw6shbN7+RHiJJeCSEEAEMBgPpyemkJ6cfte2o\nQaMYNWgUXq+XKlsVlTWVVNVUUWWrwuawBfyOHdR3EJ3bd6aqpq5dZU0llTWVxETVzUNdVFbEhl82\nNPic86fO10Ogl959iZUbVhIbFUtcTByxUbHERms/PTv1ZPzV4wFt/uiPn/5nWwAAIABJREFU1n6k\nr/NvFxsVS0JsAmZT077MIES4MjQ0vE80T3l5uRzIYzB16lSWL1/O22+/zZlnnhmwbseOHQDHHEKc\njl544QWWL1/OsmXLgubFEacHOW+EaD45b4RoPjlvhGg+OW9OLl+pOt+oI7fdrY84ctu1OY+8ztoR\nRx5txJHX7a2b38gXIKkqeNBK1xkkRDrZqqurAQLKWgkhGhdu543H69FH85RVlvFr/q+BQZGtksrq\nSqpsVUy+fTKJcYkA/PmtP7N68+qQ+zyv93n838P/B0BpRSlXPd7wlAl/nfhXLh1wKQAfr/2Yj9d+\nHDIwSo5PDpir6Zddv2AymoiNjiXaEk1MVAxRkVFybQhTzTlvPE4PHQZ2ILVb6lHbnkiJiYlN/scm\nI4GEOEVs376dzz77jFGjRkkAJIQQQgghhDitNbdUnT/Vq2ojj1wevE5tPiO33Y3b5sZld+G21YZI\nLm/AyCPVo4068nq1EAlVK5ekerXvjAbNfSRzIAkhREA5t6T4JC4464ImbffXiX/F4/VQbavWfuzV\n+n3faCHQ5te+/tLrtfU11XrpOl/b+Jh4ve2hkkPs3L8z5POlJ6UHhED/783/R0lFSUAbg8FAtCWa\nO6+8k1tG3ALA1ryt/Ovzf+lBUf3bkeePJMqizY2999Be3B43MZYYYqJiiLHE6NVqhPg95F+REGFu\n3bp17Nmzh3fffZf4+Hjuu+++lu6SEEIIIYQQQoQtQ4QBk8WEyXJsH5moXr8Sdk4PXpcXl92Fx67N\ng+Qra+dxeeqCI0/dKCTVW1vCTlUDwiS82ugk/5FIAaGSEEKcZowRRhJiE0iITWiwTUJsApPGTmrS\n/m4cdiOXDrg0MFiqDYzql4zrmtWV0opSqm3V2Bw2bA4bdqedGnsN+P1KLiwu5Nufv23wOYeeM1QP\ngV6Z/wqbt20OWG82mYm2RHNJ/0t48vYnASipKOH/5v+fPvooKjKKaEu0dt8SxUV9L6JNchsADh45\nSHlVeWCbyCgskRa5dpxGJAQSIsy99tprHDhwgN69ezN58mSSkpJauktCCCGEEEIIcdoyRBgwRZkw\nRR37Ry6+uYw8Lo820sjlxeOumxfJbXfX3Xe49VJ2AaFS7agk1VsbJqEFVL5wSfWqQaOSfKESSLAk\nhDj9JMcnkxyf3KS20x6ZFrTM4/Vgd9gDRjf17d6XFx94EZvDRo29hhp7jX7f5rARY6mbEykjJYNO\nbTtp7Rw12Ow2XG4XLrcLh8uhtyurKuPrH75usG857XP0EGjxV4tZ9NWioDYGg4Gc9jnMnTJXX/bw\nKw9jMBiwRFqIjowmylIXHA3qM4jeOdo82YXFhVj3WusCJbOFyMhI/X5KQopcQ1oZCYFEi3rmmWd4\n5plnWrobYe3DDz9s6S4IIYQQQgghhDiODAYDBpOBCFPE796Xr7ydb94j349vpJLH4cHlcOml7zxO\nj17iDm9dSTvVo2q3vnmTQJ87CQgYvRSy7J2MWBJCnOKMEUZiowPnlElLSmNQ0qAmbf/0nU8HPFZV\nFafbSY29hghD3fWgTVIb/jbxb1pQ5LBhd9ixO7Ufm8NGm5Q2dc+fnIaSrWB32PXRSnaHHafbGfA7\nWVVVftz+I17VG7Jv6cnpegi0edtmXpj3QoOvY/Wbq/WRU49Of5S8/Xn66CNLpAWLWfs5/8zzuXHY\njQAcKTvCwi8XEhUZRaQ5Um/vC5b6Kf30EV/F5cXYHXYizZFYIi1EmiIxm80B4ZsIJCGQEEIIIYQQ\nQgghxCnKV97uePKNVPIPlXzBkcdZW+7OURcyeVwePG5PQJDU6E9tsIQXVLTnUVU1sCReqIBJRjEJ\nIU4hBoNBD0z8xcXEccmAS5q0j1suu4VbLrslaLnb48btdgcse/PJN/WgyOaw4XA6sDm1kKl3l956\nu/SkdC7qcxF2px2Hy4HdacfpcmJ32nG5XJiMddecssoySitLQ/atbVpb/f6RsiMsWLmgwdcx++nZ\negj09rK3WbZuWVAbk9FEz049+fvkvwPa9eIPf/0DZpNZG61kjtSCo9r7V1xwBf2UfgDs2LeD77d/\nT1xsHJGmyID2keZIzj3jXP3aUllT2WA/WysJgYQQQgghhBCnjJKSEnJzc9m3bx9utxuTyUTHjh0Z\nNmwYKSkpLd09ADZv3szUqVPZu3cvHo8Ho9FIdnY2U6ZMYcCAAS3dPSA8jiOERz/z8vJ444032Lp1\nK263m/j4eLp27cr9999PTk5OS3cvbITDew3h08/f63iOVAql+EgxuStz+dH6I26Xm7SUNDq078DF\nF15MYlyiXhrPN+eSx6UFTV6Xt640nuo3eqk2QPKfW0lVtXVAXbk8v3mYAtaHCJv2HdrHh6s+ZP/h\n/bi9bkwRJjpkdOCmYTeRlZF1Qo7Lqaq8qpzvtn5HYXGhfizbprVlYK+BJMYltnT3gPDoYziQ49h6\nmIymgLDGYDDoI32O5txe53Jur3Ob1NY/WHK4HDidTv1+WmKa3i4tKY17r7sXh9OBw+UIuLU77STF\n101/kRCbQNu0tlqZPKcDp8uJ0+3E7XHXfYkALejauX9ng33r272vHgL9tuc35nw2J2Q7Y4SRtf9Y\nqz9e++Nael7as0mvv7Uw+B+YcKIoSgrwDHAN0BY4AnwO/NlqtRY0YfsLgD8D5wHRwHbgn8BMq9Xa\n7INSXl4engeyFduxYwcA3bp1a+GeCBE+5LwRovnkvBGi+VrjeWOz2Xj33XfJz8/HYrFgsdR9Y9Lh\ncOBwOOjcuTO333470dHRLdLHgwcPcuONN1JYWIjRaCQyMlJf53Q68Xg8ZGZmsmjRItq1a9cifQyH\n4xgu/SwpKWHSpEnk5+djNpv1DyWio6Ox27Vvynbu3Jnp06efUuHA8RYO73U49bO1q38cq6urAUhJ\nSTkhx1Ef0eSbQynEra90ni9sKikpYcr/TmHfgX2YTea6yeJV9A8iO6R34Km7niI+Jr6uZJ5KQCCl\nbeIXOtXeDwiifOtDjXTyL68XpqX2HE4Hn67/lINFBzGbzESa/a6LLicut4t26e24atBVWCItjezp\n9O5jfb7zJjY29igtT55wPI4ivKiqqo1u8riJtmjXB6/XS96BPO13c+3vZ6fLqQVHbidn5pyph/b/\n3fpfvtv6HV68QW1VVF5+8GX9uXK/y+WO++4gtVtqi7xWn8TExCb/4g/LEEhRlGhgA9ADmAlsAroB\njwNFwACr1Rp6nJm2/RDgC2Af8DpQAowGrgdetVqtjza3TxICHX+t8cMFIVo7OW+EaD45b4RovtZ2\n3thsNl577TVqamqIiopqsJ3dbicmJoaHH374pH8Ie/DgQS6//HIcDkdA+FOf0+nEYrGwYsWKkx4E\nhcNxhPDoZ0lJCePGjQvoo81mAwjoi6+P8+bNkyAohHB4ryF8+tnahTqOJSUlAAHnR2s7t0M52rnt\nG2XkG6nk9XhDPvZ6vKhuFY+7dp4ml1crq+euC6h8ZfhUr99op3rBk//IJn15/fW+wEnvpN98T2rd\nOv/7DQZR9cIqH/+gyuF0MP/f87E77UGlrvw5XA6iIqO4dcStJz0cCIc+htLaQqBwPY7i9NKc88bj\n9NBhYAcJgU40RVH+H/A88IDVan3Tb/k1wEfAdKvV+lgj229DGz3Uw3/UkKIoHwNXA/2sVuuW5vRJ\nQqDjr7V9uCBEOJDzRojmk/NGiOZrbefNrFmzOHDgQKMfyPnY7Xbat2/PPffccxJ6VmfQoEEUFRU1\nGgD5OJ1O2rRpw7p1605Cz+qEw3GE8OjnuHHj2L9/f0AfQ4VAvj526NCBefPmndQ+hoNweK8hfPrZ\n2oU6jqFCIGhd53ZDwunc1gOiUD/15nHyerVRUqrHL5yqDat8wZTq9mvnt40eRqkqC79YyOHiw3Uj\nQvxDptrHvvsOl4M2SW24/tLrA9ZjqNtOD7L876uEDq8geP6oEI+XrFlCUWmRFlwc5aNWh8tBRnIG\n1w+5vukH/gRpbSHQ4lWLOVx6uNEAyKc1HUdxejnVQ6BwnRPoDqAaeLve8k+A/cBtiqL8T6iyboqi\nDAQUYHaIsnEz0UYE3QY0KwQSQgghhBBCnHwlJSXk5+eTkJDQpPZRUVHk5+dTUlJy0kZebN68mcLC\nwiZ/Yz0yMpKCggI2b9580uYICofjCOHRz7y8PPLz84mPj29Se18f8/LyZI4gP+HwXkP49LO1C4fj\neCqf2waDAYPRAMaT83wlJSVUr6mm7Rltj964VkVFBe2GtSMlJaXh0MpvuT73k18JvoAQy+tX9s9b\nV/7P166ktIQSZwkJaQkB4VVQsFTLZDFRUF5AjbeGxPjE4JJ+/iOrvKHDKt9zGDBobf0/3q0Xdhkw\n1JUQrB94ubXHboc7ZPAF9coHHq/lIZRXlXOw6CCx0U0LpCxmCweKDlBeVS5zBAlxHIVdCKQoSgJa\nGbh1VqvV4b/OarWqiqL8F7gO6AzsCrEL36xV/wmxbkPt7cDj1F0hhBBCCCHECZSbmxsw90ZTWCwW\nvvzyS2688cYT1KtAU6dOxWhs3idrRqORZ599lk8++eQE9SpQOBxHCI9+vvHGG5jN5mZtYzabefPN\nN3nllVdOUK/CTzi81xA+/WztwuE4yrl9/Pze9/tkhFbrFq4jNTu1Wf2MdcSyO2I3N175+/5N1p9D\nqn5Jv4BQyhu8fM/uPQBkdcgCtbZEoBe8au2tr3yg3zpfQKY/b/0wrXb+LF/f9O3qj9yqNyJr85bN\nRMVGYTQbg8oN1t0NHKVlsVjYuG0jl51/WfBIL//H/uUKoS4Y8+3fUNe2/vE1GAxBfW1wZJnfPvSQ\nDjXgcYAQuVjIsKz+Zk1o05x2DbYVp6WwC4GA7Nrb/Q2s31t724XQIVCnhra3Wq2ViqKU1W57XPhK\nZYhjJ8dQiOaT80aI5pPzRojmaw3nzY8//ojb7dZLODTVDz/8QL9+/U5QrwLl5eVhMBhwuVxN3sZg\nMLBz586TdozD4ThCePRz69atqKqql3+rr6HlP//8c6s4p1qLcHivIXz62dod7Tj6ysLV15rO7YbI\nuR0sHM6bcOhjQ8xJWlhZWFXYcCND7U/Eie1LwdoCLBmNB2n1Q5QoojhkPIS5d9ND14AygX63IZc3\nsi5gmX8GpKpB+25odFfAc3iD59Xyb+M/ukwf2eUfbnkbfs6g56q3PFSIFXQ/xOOg+cGOdR+h2jVh\n2ybtL8Q2DfU7KKSj3rGpp6qyyrchqPXCRd/2HpWDBQcpIfS16Xg7HiW4wzEE8o27rWlgfXW9dsey\nfdPG9gohhBBCCCFalNvtPqnbHQuv13v0Rsdxu2MRDsfx9zzfyexnOPQxHITLcQyXfrZ24XAcw6GP\n4SIcjmU49DEcnKzjWH9uJ3350SZzEqcs/3KNjQZPjQVmIdpqNyoR5hOcoB5n4RgChZXWMlluOGpt\nEw4LEQ7kvBGi+eS8EaL5WtN5k5GR0awRNj5ms/mk9d9iseDxeJq9ndFoPGl9DIfjCOHRz/j4+JAf\nXvlGDzQ0N5TJZGoV51RrEQ7vNYRPP1u7ho6jbwRQQ/P+tIZz+2jk3A4WDudNOPSxIfL/NCGarzWd\nNydCeEVWmora24ZmFIur1+5Ytm9oWyGEEEIIIUQrkpWVhcPhOHpDPw6Hg44dO56gHgXr2LEjTqez\nWds4nU6ys7OP3vA4CYfjCOHRz5ycHOx2e7O2sdvtdO3a9QT1KDyFw3sN4dPP1i4cjqOc28dPOLzf\n4dDHcCDHUYjWIRxDoHy0wVcdGljv+0upoYKrvnmCgrZXFCURSGxkWyGEEEIIIUQrMnz48GP6cGHY\nsGEnqEfBnnnmmWaPBPJ4PEyZMuUE9ShYOBxHCI9+PvDAA83+1rPL5eL+++8/QT0KT+HwXkP49LO1\nC4fjKOf28RMO73c49DEcyHEUonUIuxDIarVWAz8B/RVFifJfpyiKEbgA2Ge1Wvc2sItva28vDLHu\notrb9cejr0IIIYQQQogTKyUlhc6dOzf529l2u53OnTs3WFroRBgwYACZmZlNHg3kdDrJzMxkwIAB\nJ7hndcLhOEJ49DMnJ+eY+piTk3OCexZewuG9hvDpZ2sXDsdRzu3jJxze73DoYziQ4yhE6xB2IVCt\nt4EYYGK95bcBbYDZvgWKovRQFKWz77HVav0R+B4YoyhKB792BmAS4ALmnbiuCyGEEEIIIY6n22+/\nnZiYmKN+wGC324mJieH2228/ST2rs2jRIiwWy1GDIKfTicViYdGiRSepZ3XC4ThCePRz+vTpzerj\n9OnTT1LPwks4vNcQPv1s7cLhOMq5ffyEw/sdDn0MB3IchWh5BlVVW7oPzaYoihlYBwwAXgc2Ab2A\nx9BKuZ1ntVpratuqgNVqtfbw234gsBooBGYAZcDNwEjgz1ar9W/N7VN5eXn4HUghhBBCCCGEEEII\nIYQQQoSVxMREQ1PbhuVIIKvV6gIuQwuArgfmAuPQRgBd4guAGtl+AzAY2AY8C7wFZAJ3HUsAJIQQ\nQgghhBBCCCGEEEII0dqE5Uig1khGAgkhhBBCCCGEEEIIIYQQ4kQ75UcCCSGEEEIIIYQQQgghhBBC\niMZJCCSEEEIIIYQQQgghhBBCCHEKkhBICCGEEEIIIYQQQgghhBDiFCRzAgkhhBBCCCGEEEIIIYQQ\nQpyCZCSQEEIIIYQQQgghhBBCCCHEKUhCICGEEEIIIYQQQgghhBBCiFOQhEBCCCGEEEIIIYQQQggh\nhBCnIAmBhBBCCCGEEEIIIYQQQgghTkESAgkhhBBCCCGEEEIIIYQQQpyCJAQSQgghhBBCCCGEEEII\nIYQ4BUkIJIQQQgghhBBCCCGEEEIIcQqSEEgIIYQQQgghhBBCCCGEEOIUJCGQEEIIIYQQQgghhBBC\nCCHEKUhCICGEEEIIIYQQQgghhBBCiFOQhEBCCCGEEEIIIYQQQgghhBCnIFNLd0CcnhRFmQuMa6TJ\nJKvVOqO2bTTw/4CbgWygAlgF/NlqtW4/wV0VotVo6nmjKMpfgGcaafeq1Wp99Hj2TYjWTlGUkcBT\nQH/ADfwA/M1qta6q106uOULUasp5I9ccITSKoqhNaNbZarXurm0v1xtx2mvOeSPXGyECKYrSC3ga\nGAKkAWXAt8D/Wq3W9X7t5HojRK2mnDen6vVGQiDR0u4HikIs/xFAURQD8AkwDHgHmAq0Ax4H/qMo\nyrlWqzXvJPVViNai0fPGz1+AX0K023G8OyREa6Yoyl3A28DXwCNAPDAJWKEoymVWq3VNbTu55ghR\nq6nnjZ+/INcccXob08i6F4BEav//JtcbIXRNPm/8/AW53ojTnKIo/YD1gBOYCWwHsoAHgLWKolxj\ntVo/leuNEHWaet74bfIXTqHrjYRAoqV94fs2XANuBoajJbJP+hYqivIVsAn4X+C6E9pDIVqfo503\nPmtDfEgnxGlFUZRM4DXgS2CE1Wr11i7/FPgPcCWwpra5XHOEoNnnjY9cc8RpzWq1Lg61XFGUa4Cu\nwJ1Wq7W6drFcb4Sg2eeNj1xvhIA/ATHAtVardaVvoaIoS4HfgGeBT5HrjRD+mnre+JxS1xuZE0i0\ndnfU3r7mv9BqtX6PNlxvlKIoSSe9V0IIIcLFOCAW+Ivvg2wAq9W6y2q1Zlit1if82so1RwhNc84b\nIUQDFEWJB14H1lmt1nl+q+R6I0QDGjlvhBB1cmpv1/kvtFqt24DDQKfaRXK9EaJOU8+bU5KEQKJV\nUBQlSlGUUCPTzgX2Wa3W/SHWbQDMaHXqhTjtNHLe1G8XqShK5MnokxCt0HCgEm30AoqiGBVFsTTQ\nVq45Qmiac94EkGuOEAH+jFZ254F6y+V6I0TDGjpvAsj1Rpzmfqu97e6/UFGURCAJ2Fq7SK43QtRp\n6nlDvfWnxPVGQiDR0h5QFCUfsAEORVG+UxTlCtC/AZQChLpYAeytve1y4rspRKvS4HlTz42KovwC\nOGrb/awoyu0ntadCtLweQB7QV1GUtWjng11RlK2KotzsayTXHCECNOm8qUeuOUL4URSlDdqH2P+y\nWq0/+y2X640QDWjovKlHrjdCwHNAKfAvRVEGKYqSpijKmWjz/qjAn+V6I0SQo5439dqfUtcbCYFE\nSxsBPI9WW/6PQDfgs9oPGOJr29Q0sK2vNnB8A+uFOFU1dt74Gwn8o/b2EbSJVf+lKMrkk9hXIVpa\nCtq3epYD3wDXAA/VLlugKMr42nZyzRGiTlPPG39yzREi0JNAFNoHDv7keiNEwxo6b/zJ9Uac9qxW\n61bgfMCIVtqqCPgJGIg2n+Ma5HojRIAmnjf+TqnrzVHLCAlxgrwCLADWWK1WR+2yzxVFWQb8WLv+\nnJbqnBCt1FHPG0VRFgHvAd8B/7FareW17VYoivIBsA14RlGUt6xWa9lJ7r8QLSESrbbvrVar9X3f\nQkVRlqMNB39eUZS5LdM1IVqtJp03VqvVg1xzhAiiKEoycB/wmdVq3dnS/REiHDThvJHrjRC1FEVR\ngM8BCzAJ7RxoA/wP8KmiKNcDv7RcD4VofZpy3lit1lxO0euNhECiRdQO7Q4a3m21Wn9VFGUNWi36\n9P/f3t3HWH6VBRz/Li8NbRGt4EtiRarCoSTWQANRUUQkgQQhhAiN2BR8IVQNGgwIBGLLH4go1ogQ\n0QCWGA2hqCgkFohKMSLBUghtQw4oRalYCoUohfJiGf/43aGzy8zuLNvd2b3z+SSbs/P7nTn3uZs9\nee69zz3nrC6fucMw91y1/3unBwgnoV3Om3PnnNdXX/fGac558xjjTdUzqoe3fMMb1t2tLS/y3rD1\n4pzzhjHGP1aPrc6tPra6JefA7ufNdasP6uQcONhTqzOq7Q6138wj8g0c7HDzJvkGDvKa6rta3v/f\nsHlxjHFFyzz505bXaiXfwKYjzpsxxjnrmm9sB8fJ6JOr9oyWpXln79Dve1btR457RHDy25w397qT\n+sG6+Fg7v965edXea855a3IObPpYu5g3uxhHzmG/enLL/vF/d+gN+QZ2tOO82QX5hn1jjHFmywfQ\n12z9ILtqznlb9c6WD7rvm3wD1VHNmwccYahTNt8oAnHCjTHuNcb42THGY3fqsmo/Xr27OnuMcd9t\n+v1YdVt1zXEIE04qRzFvbhxjXDDGePIR+v3nDvdh3fxLy9ZWD9rm3uYbn83DUuUcWOxq3owx7i7n\nwMHGGPesfqRlC5Hbdugm38AWR5o38g0c5PTqQMv5Wdu5x5ZWvoHFbufNPdc13ygCsRe+XL2qunyM\ncZ+tN8YYj245C+i9c84bq9eubj37kH4/Xp1fvWH1bTpYd7udNx+vXtxyWN39D+n3oJbDvW+s3ntC\nooa9d/mqvWSMcWDz4hjjvJY3Ph+cc26+gJNzYHH5qj3svJlzfiU5Bw51XnX36rrD9JFv4GCHnTfy\nDdxhzvnpltU7563+/3/NGONbq0e1bPF2XfINVEc1bz7QmuabAxsbG3sdA/vQGONpLR8w3FC9urqp\nenDLQZBfrB455/zAqu9fVk+qXlf9Q8s3UJ9Tfb566JzzphMdP+yF3c6bMcZPVldWn2kpHN3Q8m2F\nZ7Wc8fDEOeeVJ/wJwB4ZY7yi5f//W6s3tuSRZ7fsg/2YOec7t/SVc6Ddzxs5Bw42xnh6y1kMz5lz\n/t5h+sk3sLKbeSPfwB3GGI+v/rr6n+qV1Yer+1S/Vp1TXTzn/ONVX/kG2v28Wdd8owjEnhlj/ET1\nguphLQfV3VS9vXrJnPOjW/qdVj2/urC6X/XZ6m3VC1erHmDfOIp585DqRdUjqm+ubqmuql66WWCF\n/WK1kuGZ1cUtL96+VP1zdemc818P6SvnQEc9b+QcWBljPLu6rHrmnPNPDtNPvoGVo5g38g2sjDF+\nqHpeyzknZ1Wfq66uLtv6AbV8A3c4inmzdvlGEQgAAAAAAGANORMIAAAAAABgDSkCAQAAAAAArCFF\nIAAAAAAAgDWkCAQAAAAAALCGFIEAAAAAAADWkCIQAAAAAADAGlIEAgAAAAAAWEOKQAAAAAAAAGtI\nEQgAAAAAAGANKQIBAAAAAACsIUUgAAAAAACANaQIBAAAAAAAsIYUgQAAAAAAANbQ3fY6AAAAgL0w\nxrig+tKc8817HcuJNMb4turm6r/mnGfvdTwAAMDxYyUQAACwX724euJeB7EHfnjVvmdPowAAAI47\nRSAAAGDfGWOcVT1gr+PYI4pAAACwTxzY2NjY6xgAAABOmDHG5dXTDrl81Zzzkav7d61+ubqoOrfl\ny3M3VG+sfnfO+YUtY11aXVL9UnVt9dvVg6vbqrdWz6q+UD2/+vnqu6v/rl5dvWzOuXHIOM+r3lX9\nVnV+yxbe11YvmXO+5Rif989VrztMl4fOOa8+lscAAABOLlYCAQAA+80bWoowVVdXz63+qGqMcZfq\nr6pXVGdUr6r+oKWQc2n1rjHGmduM+cDqLdX7q9+vbqmeXv3haoyLqitWj3Pv6qXVhduM8wPVO6pP\nVS+v/rylqPQ3Y4xj3bru1ur11e2rn/9s9fPmn+uPcXwAAOAkc7e9DgAAAOBEmnNeOcb4YnVxdf2c\n8+Vbbv9i9YTqyurxc87/qxpjvLClUHJh9Rstq3a2+pXqcXPOt6/6X1Z9YtX/+ur8OefnV/f+vvrb\n6ikthZitLqwumnN+7foY4x0tq5B+p3rzMTzvK8YY/9SyCurGOedF3+hYAADAqcFKIAAAgDs8Y9U+\nd7MAVDXn/Gr1gtWP2xVP3rdZAFr1/2z1oZYv3l22WQBauWrVfv824/z71gLQypuqm6r7jzG+d9fP\nZHvnb8Z7jOMAAACnACuBAAAAqjHGaS1br91e3TrGuN823T5V3W+Mcdaq0LPpg9v0/dyqvW6H6/fY\n5nfec+iFOefGGGNW39my7dxHd3wSR/aQVasIBAAA+4AiEAAAwOLe1V1Xf7/hCH2/o9paBPrMNn02\ntru3KupUHdjmd27e4fE2H+tbjhDXkWwWga45xnEAAIBTgCIQAACK1141AAACnklEQVTAYrNoc1v1\n1CP0/cRxiuGrO1zf3Mr7i8c4vpVAAACwjygCAQAALG6pvlKdXr1tznnbHsRwnx2ub64A+uQ3OvAY\n497VfatPzDlv+kbHAQAATh13OXIXAACA9Tfn/Er1/tWPj96uzxjj+45zGA/b5jHv0nIWUNV/HMPY\n563aa49hDAAA4BSiCAQAAOxHm9uqHbry5rWr9jfHGKdvvTHGeFL1b2OM1x/HuM4dY/z0IdcuqL69\n+uCc88Yt8Txw9We7s4W2c9qqPfNOiBMAADgF2A4OAADYjz5Sfbl6zBjj8ur2OecvVK+pnlA9rrp2\njHFFyxlB51c/Vd1cveQ4xnVF9ZoxxlOq66qzq6e1nBX0vEP6fmjVnt7uzgp6X/W56kfHGO9u+TfY\nqF4557z6TogdAAA4yVgJBAAA7DtzzluqX205B+hnqoevrn+1euLq3meqZ1Uvqn6wpUD0sDnnh49j\naB+tHlV9U/Xr1YXVNdXj5pxX7vA7G7sZeM756ZZC1lUt28td1FJg+vwxxgwAAJykDmxs7Or9AgAA\nAMfJGOPS6pLqZXPO5+/yd86pPjznvPvxjA0AADh1WQkEAABwanpEd2wJBwAA8HUUgQAAAE4xY4wD\nLdvF/cVexwIAAJy87rbXAQAAAHB05pwbLecUAQAA7MhKIAAAAAAAgDV0YGNjY69jAAAAAAAA4E5m\nJRAAAAAAAMAaUgQCAAAAAABYQ4pAAAAAAAAAa0gRCAAAAAAAYA0pAgEAAAAAAKwhRSAAAAAAAIA1\npAgEAAAAAACwhhSBAAAAAAAA1pAiEAAAAAAAwBpSBAIAAAAAAFhDikAAAAAAAABrSBEIAAAAAABg\nDSkCAQAAAAAArCFFIAAAAAAAgDWkCAQAAAAAALCG/h9oEKKMvXm5BgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 832, + "height": 280 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 277, - "width": 832 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 4))\n", - "\n", - "plt.plot(t_, mean_prob_t_.T, lw=3, label=\"average posterior \\nprobability \\\n", - "#of defect\")\n", - "plt.plot(t_, p_t_.T[:, 0], ls=\"--\", label=\"realization from posterior\")\n", - "plt.plot(t_, p_t_.T[:, -8], ls=\"--\", label=\"realization from posterior\")\n", - "plt.scatter(temperature_, D_, color=\"k\", s=50, alpha=0.5)\n", - "plt.title(\"Posterior expected value of probability of defect; \\\n", - "plus realizations\")\n", - "plt.legend(loc=\"lower left\")\n", - "plt.ylim(-0.1, 1.1)\n", - "plt.xlim(t_.min(), t_.max())\n", - "plt.ylabel(\"probability\")\n", - "plt.xlabel(\"temperature\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "iI7Fosv1IA0T" - }, - "source": [ - "Above we also plotted two possible realizations of what the actual underlying system might be. Both are equally likely as any other draw. The blue line is what occurs when we average all the 20000 possible dotted lines together.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 297 - }, - "colab_type": "code", - "id": "XpRl_4Beof6G", - "outputId": "8cd6c435-55fd-4290-e748-fb7086189ab4" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAAIwCAYAAABJHMLqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmcHFd97v+nqnqbGe1eJCxL1n4k\nWZblDYJsE7PHxAQIe8AYnBsCZrk4IbkJBAgJgR/5kWtjiMlNzOobAiYQHCCOWcIWjLGNJVmy5aPd\n2mzJ1j57L3X/qOqa6nW6Z3qWnvm8eQ3VXeupnqrWuJ/+nuP4vi8AAAAAAAAAAABMLe5ENwAAAAAA\nAAAAAACtRwgEAAAAAAAAAAAwBRECAQAAAAAAAAAATEGEQAAAAAAAAAAAAFMQIRAAAAAAAAAAAMAU\nRAgEAAAAAAAAAAAwBRECAQAAAAAAAAAATEGEQAAAAAAAAAAAAFMQIRAAAAAAAAAAAMAURAgEAAAA\nAAAAAAAwBRECAQAAAAAAAAAATEGEQAAAAAAAAAAAAFMQIRAAAAAAAAAAAMAURAgEAAAAAAAAAAAw\nBRECAQAAAAAAAAAATEGJiW4AAAAAAADARDPGvEbSOkk/ttb+dKLbAwAA0AqEQAAAAFOcMcavs7hX\n0kFJ/yXpVmutHZ9WTRxjzFslfVHST62110xsaybeeL4eIzlWtW1q7We6/m6n63lPBF7rKe9DktZL\nenyiGwIAANAqdAcHAAAwfXxd0qdjP7dJuldSRtI7JG02xrx2IhpmjPnEMGFVKz2m4Pz/dZyOh9Fp\n5vdVdd1xvr7GVI1zmdTX9FR6/TXJX+tmTbHfzagYYzokrQ2fPjSRbQEAAGglKoEAAACmj1uttfeX\nzzTGpCR9XNIfS7rTGPMra+3+cW7bFeN1IGvtA5IeGK/jYXSa+X3VWXfcrq9xUHEubXBNT5nXvw1e\n62ZNmd9NC1yi4DOSU5J2T3BbAAAAWoYQCAAAYJqz1g4aY/5U0kskXSTpRkl/OV7HN8Y4ki4fr+Nh\neplK11c7nks7tnm64HcTMMY8R1L8CxKzJRWMMfHV5llrT4xrwwAAAFqEEAgAAACy1haMMT9TEAJt\nKF9ujNko6X2SrpR0joKxhB6X9A1Jt1tr+8rW3yDpTyVdJWm+pH5JhyR9V0FF0uFwvS9JuiG2XbFb\noudba38Sm3+JpD+S9Jvh/rolPSLpDmvtP5cd+60Kxuz4nqSbJd2h4IPOv7HWfrzemB4jOM+6xyp/\nHats92+S3izpo5JeLek8SWck/UTSh6y1j9fYru7xmj2P2HZpBWNivE7SYkk9kn4m6cPW2q1l6zqS\n3iLpegXXzOzwOI9J+rKkf7TWFuq8Bg0dq5kxWMrXrXd9Kah+e66kP7fW/n819vcXkv5a0g+ttS+u\nd+xw/Yav09g2o75XJC1R/TGSvizpveE5v1LS2ZIOS7pT0l9Za/PGmD+Q9B5JKyT1Sfq+pJuttU+V\ntbfh3/tY3N/NvGaNCCsh/0TBfbhEQRXIDyX9haR1kr6jOuNRGWN+LOkaSR+x1v5VjWMUr6P/sta+\ncBTnXTz29yS9InwNblBw/2QVBBkfCquVhjvvL2mY380o2teS622k75MjsFzSEQXXckbBe1F3bPkR\nAiAAANDOGBMIAAAARSfDaSY+0xhzk6T/lvRaSfskfUXSjxV8ePcpST81xsyIrX+1gg8j3yBpj6Qv\nSfqmgr89/0TS/caYxeHq31fwIV9Rcbyig7H9/Z6kXyn4EPCggg8Y75f0HEn/1xjzpfCD6Wq+Jqkz\nbMP2eiff7HmO5lgxGUn/qeAD9YcUnNsJSa+R9CtjzNo621Y93ijP425J/0PB6/slSU8r+BD3F8aY\ndWXrfj5cZ6Okn0v6JwUfnm+Q9LlwWT3NHGuk6l1fnw/nvbXO9q8Pp1+ss46kkV2nrb5X6vAk3aMg\nMPqupB8pCDw+LOkjxpgPSfpbSZskfVvBlwXfELalXDO/95bf302+ZnWF+/2mpI+Fr8f3wvN/toIu\n35Y1sJtiGPKaOusUr6OvxI49mvc1SfqqgoDmV5LuknRcQTXnfxljljTQ7rq/m1G2r5XXmzS698lh\nWWu/aq1dEJ6vJP2xtXZB7Ofi0ewfAABgolEJBAAAgKIV4XRfcYYx5kIFHwxK0iuttXfHls1V8CHw\nFQq6j3t/uOiDktKS3mGt/T+x9Z1wX+9RUKXyR9barxpj7pP0Nkmy1r4v3iBjzFIFHzp7kt5grf16\nbJlR8EHmDQo+ZLyz7HyeK+mnkl5tra078PkIz3NExyrzIgUfhK6w1naHx0tJ+ndJL1UQ2rys0eON\n8jw2Svp1WVsSYVuulfRJSb8dzl+t4HfmS7raWvvr2HHWSNos6XpjzKfjy0ZyrNGod30ZY56SdGvw\n0Gy01t4X3zb8YHmdgsqQf6t3nFFcpy25V4wxVw3zUrxSwYfxz7PW5sNt3ifpFkn/U8EH6uustYfC\nZesV/A43GmNWWmt3hvOb+r2P0f3d8Gs2zGsiBdU010kakHSltfbhcF8JBQHJRxvYx79K+qyki4wx\nxlpry86xeB31Kgw5Rvm+JgWVOVbSSmvtyXC7Tkm/lLRewev9kXqNHuZ6Gm37WnK9xYz0fbJZ68Pp\nlhbsCwAAYNKgEggAAAAyxiyS9Dvh07tji96h4ItD344HCpIUdo/zwfDpjeEHp5K0NJzeV7a+H66/\nUVLV7reqeI+Cb4H/S/yDyHB/VkGXTZL0rirbzpP0dw2GMiM5z5EeKy6poAukqOsha+2ghj7AfYkx\nZk4TxxvNeSQVhA3xtuQ09EH4S4wxs8PHvZJ+X9JN5SGPtXa7grBJkq6u0vZmjzUmwmPfFT59W5VV\n3hBOv16r+7yYkV6nrbxX6ulU8HrnY/OK5z5L0m3FD+TD4z8iaVf49MLYNqP9vZcbyevWytesWKHz\nL8UAKNxXTtI7JdXszjC27klJ/xE+fW2VVYrX0bdj1/to3tckaYakdxUDoHC7XgWBlDQUZozUaNvX\nquutaKTvkw0zxlwgaa6C3/nWYVYHAABoK4RAAAAA05gxZpYx5rcUdIPUIekea+09sVWeF07/o2Lj\nwI8UVAXMlbQ6nFf8JvxnjDEr4ytba89Ya39prT3aYBNfMMzxvxdOn22M6SpbNqDgm/GNGMl5jvRY\ncSfLK1BCD4X79BRUETR6vNGcxwlrbbV9PiRpUEG4tE6SrLX7rbVfsNb+Q43jFD/grRXkNHysMVbs\nEu51YSVFXDEg+FID+xnpddrKe6WeA9baJ8vmHYk9/rkqFZfPirVptL/3ciN53Vr5ml0aTn9cviAM\nHO4un1/DV8NptS7hitdRvGJmNO9rUnD/Vxv3pzgW0mgD1NG2ryXXW8xI3yebUezybZe1tmeU+wIA\nAJhU6A4OAABg+vhl0JNPVb6CcRZqVSrsrbaRtbbbGHNMwcDfiyVtk3SzpMsUdFm0wxjziILw4T8l\n/dham22izUvC6WuNMc+usU5WwTfFlysYtLzoGRsOUN+AkZxnXDPHittT43h5Y8yR8FjPqrJKreON\n5jxqbVNsy6J4W4wxCxT8rl8saaGksxR8GBtXa8yQpo41Vqy19xljHlcQiL1a4Qf1xphLJK0KVqka\nVpVbEk6bvU5bea/UUzFuUPhaF58+U2WbYhVHyRcHR/l7L7cknDbzurXyNVsYTmuNq9RoRch3JZ2W\ndHFZ93nF6+gpST+Irb8knI7kfU2SDtWoOqz6OxuB0bavZddbaKTvk80ohkB0BQcAAKYcQiAAAIDp\n4+sKPoyM65O0X9L3rbW7q2zTGVuvlv5w2iFJ1trd4RgPN0t6o4KuiYrPnzbG/LW19jMNtnlGOH1l\nA+uWf4O8u+pa1TV9nqM4Vly9b5wPhtNUE8cbzXnUa0txm4wkGWOWS/qFpPnhsp9KOhDbx0skramz\nv4aPNQ4+L+n/V9AlXLFao1i98cUG9zGi67TF90o9uWGWN9SNYQt+7+Waft1a/JoV74Fa98uZRnZi\nre03xnxTwTX0WkkfDxcVr6OvlnWNNpr3NSkIYMbSaNvXkustZqTvk83YEE4JgQAAwJRDCAQAADB9\n3Gqtvb/JbXoUfMhX3lVWXHFZfLyGYwrGjfgLY8wKBR8Ov15Bd2W3GWM8a+2tDRy/W0HXRi+11n6/\nybY3Y0Tn2QL1go5il07VvjVfy2jOo15bist6w+mnFAQBv1bwuzkWX9kY8xXVDwOaOdZY+4qCD+2v\nMcacb609KOl1CioTqg16X82Ir9MW3ivjYbS/93Ijet1a+JoNKAiC0jWWz6gxv5p/VhACvUaVIVD5\ndTRe72sjNdna1+r3yWqKlUCbR7kfAACASYcxgQAAAFBPsRueZdUWGmNmS5oXPq3Vxdcua+3t1trf\nlPSH4ex3N3j84mDhixtcf6RGfZ4jVPW8jDEJBeP2SKVjaQxnNOdRry3FrpaK3Tz9Zjj9RHkQUO/4\nIzzWmArHj/mOgi7MXmeM2aigW73vW2sP1914SEuu01HeK+NhtL/3cqN+3Ub5mhXHDlpQY3kz48z8\nWNKTki4xxiwLu1FbImmbtbY8WBiv97WRmmzta/X7ZPl+ujR07ZZ3bQcAAND2CIEAAABQz0/C6XU1\nlv9WOD0saacxZq4x5rXGmN+qsX5xAPWF1RYaY8rHEvmvcPq6Gut3GGNeb4w5q8bxGvWTcNrQeY7y\nWHHzjTEbqsx/toKq/cEmj/eTcDqS85hvjLlYlZ4TtmVA0qPhvGKPAifKVw73sTF8WmtsmGaO1TJV\nrq+iz4fT35P0pvDxl5rYddPX6RjcK+NhVL/30d7fo33NqiiOiXVVlWN3qbHu0CRJ4RhdXwufXqug\nIkgKKs3Kjdf7WsPKfjeTrX2tfp8st1BD12yjwS8AAEDbIAQCAABAPX+v4AP564wxr4gvCAeI/5vw\n6W3hQOXzFYw99BVjzOoq+yt2jxT/Znx83I0Lytb/nILxOl5sjLm+7PgJSZ9V8MHr7Q2fUXXNnmer\nZCV92hgTdd9mjElJ+qvw6XestfXGwyg3mvMYlHSrMaYjtk1S0kfDp3fH2rI9nJaETcaYtZL+VdJ9\n4axFNdrZzLFGq971VXSvpEOSLpP0ZgUhx91NHGMk12mr75XxMJLfeyvv75G8ZvX8Wzi9wRizquzY\nn1PtELOWfw6nL1XwGhU0FEzFjdf72nBq/W4mS/uKmnqfNMZ8xRjzuDHmDxrcf7yK6NWjbi0AAMAk\nw5hAAAAAqMlau8sYc5Okf5L0b8aYn0naoaD7pOcpGI/hO5L+Llz/cWPMJyR9QNIjxpifKOh2zFUw\nVshGBePW/HHsGMeMMfsUdJ30M2PMNgUhwP+x1u41xvy+gm/Tf8UY804FA3fPlHSNgm9w74vvbzzO\ns4XuUzBI+k5jzA8UBDgvkLRCQRDxv5rZ2SjP4yfhdFeVthyT9OexdT8p6ZuSbg4rQHYo6E7pBZI+\nIWmrpCslvckY40v6vLX2vtj2zRxrVOpdX7F18saYL0n6oIIxlW631g40cYymr9NW3isKXr/xMKLf\ne6vu75G8ZsO4U9JNki6V9GtjzHclnQrPx1Ewts+nGn1xrLW/NsZYBSFQStIPrbWHqqw3Lu9rDbS3\n5r0xGdoX0+z75GJJRlJDlUrW2lPhfl8s6evGmDsUjEnWJ2l5WOUFAADQtqgEAgAAQF3W2i8o+GD3\nm5JWSXqrpKsVfCh4o6RXWWtzsfU/KOl3Jf2npLWS3iLpeknnSvpHSZeUBQIK13lMwTf9L1Xwze/i\n/v5F0uWS/q+CCoPfl/QqBQOB/1W4v1GPH9PsebbQyxR0PbZR0g2S5iioqni2tXZ3szsbxXnkJL1C\n0pcVdI91g4LxNr4h6bnW2uJ4Q7LWfivc19Zw3dcpGLz9jdbaDyuosPiqgoqfVyj48HhEx2qRmtdX\nzBcUfNAsSV9s9gAjuU5bfa+MtVH83lt2f4/wNat1PoOSXqSgsuVkuN+XhvveKOl4uGozIcA/KwiA\npCBkqnXscXlfa0DV380kal9RS98nq3iTgkrKvZLSCl6PYwRAAABgKnB8v5W9WQAAAAAYjjHmrQqC\nhp9aa6+Z2NZAiro0e1TSg9baZ090ezDxjDH/U9Ktkr5trX3VRLdnuuF9EgAAoDXoDg4AAAAApL8I\np5+e0FZg3BhjzpH0G5K6rLVfq7LKc8LptvFrFQAAANBadAcHAAAAYFozxtwo6Y2SHpf09QluDsbP\nQkn/LulOY8yV8QXGmI2SXq2gi0CuCQAAALQtKoEAAAAATDvGGCPpXZLWSXq+goHg3zJG4z5hErLW\nbjbG/G9JfyTpp8aYeyUdkLRMwTWRkPTX1loqgQAAANC2CIEAAAAATEdnS7pJUlbSTyW931r70MQ2\nCePNWvvHxphfKggEr5LUJemkpP+S9Dlr7bcnsn0AAADAaDm+7090GwAAAAAAAAAAANBijAkEAAAA\nAAAAAAAwBRECAQAAAAAAAAAATEGEQAAAAAAAAAAAAFNQYqIbMFWcOnWKwZUAAAAAAAAAAMCYmj17\nttPoulQCAQAAAAAAAAAATEGEQAAAAAAAAAAAAFMQIRAAAAAAAAAAAMAURAgEAAAAAAAAAAAwBSUm\nugGjYYxJSfqYpPdL+pm19pomtt0o6UOSfkNSh6Qdkv5J0mettX7rWwsAAAAAAAAAADB+2jYEMsYY\nSV+VtEqS0+S2L5B0j6QDkv5S0nFJr5B0m6Tlkt7XyrZiZHbu3ClJWrly5QS3BK3U19en2267Tb29\nvcpkMjXX6+/vV2dnp9773veqo6NjHFvY3rhvmtcO12Q7tLGdcd9MTdw3Y4v7Bqjv+PHjuuGGG0re\ng/r6+iSp5L2m+B705S9/WfPmzZuQtgKTRbV/u48fPy5JJfcH/3YD9fF3GtC8qX7ftGV3cMaYuZIe\nluRJunwEu7hdUr+kq621n7bW3mmtfY2kuyW91xhzcetaCyDuzjvvHPYDOUnKZDLq7e3VnXfeOU4t\nw3TVDtdkO7QRmGy4bwBMpJtvvrmp96Cbb755nFoGTF782w0AwNhoyxBIUkrSVyT9hrXWNrOhMeY5\nkoyku6y1T5Yt/qyCqqI3t6SVAEocP35ce/fuHfaP+qJMJqO9e/dG3/4CWq0drsl2aCMw2XDfAJhI\nu3fvHtF70O7du8e4ZcDkxb/dAACMnbYMgay1R6y177TW9o9g82eH019WWfarcPqckbUMQD0/+MEP\nlE6nm9omnU7rhz/84Ri1CNNdO1yT7dBGYLLhvgEwkf7+7/9eyWSyqW2SyaRuv/32MWoRMPnxbzcA\nAGOnbccEGoUl4fRg+QJr7RljzElJy1p1sGJ/ghg5XsOpY/Pmzcrlcurp6Wlqu02bNumSSy4Zo1ZN\nTdw3jWmHa7Id2jhVcN9MHdw344f7Bqi0bds2+b4fjQFUrtb8rVu3ck9h2hru3+5aFT/82w3Uxr8p\nQPMm433TinGK2rISaJRmhtPeGst7YusAaKFcLjeu2wHDaYdrsh3aCEw23DcAJhLvQUDzuG8AABg7\n07ESaFy1IqmbrorJK6/h1DF//nxls9mmt0smk1wHDeK+aU47XJPt0MZ2x30z9XDfjD3uG6C2mTNn\nVv1gulgB1NHRUXW7RCLBPYVpq9a/3cUKoHnz5lXdjn+7gUr8nQY0b6rfN9MxBDodTrtqLJ8RW2fU\nDj1wSHIkx3GCqesMPZdKlzlO9HjY+Qqnbul6VadySo/b5LR82+jYQJMWLVqk7du3N9XX88DAgJYv\nXz6GrcJ01g7XZDu0EZhsuG8ATKTly5dry5YtDQ9wL0n9/f3asGHDGLYKmNz4txsAgLEzHUOgPeH0\n/PIFxpjZkmZLerhVBzux70SrdjW5lIVTFdNYcNRIsFRt++5j3ZIjHTx+sHJfdbYvOXb5Y5WGZ1Uf\nl4dmwy0P21NxXqjw4he/WJs3b276D/sXvehFY9gqTGftcE22QxuByYb7BsBEete73qW3ve1tTYVA\n2WxWN9100xi2Cpjc+LcbAICxMx1DoPvC6ZWSPl+27Opw+t+tOljP00ODGlYNBmKz4tVBwWSo8qai\nAic2v2Q9xYKJKttX7LfW8WLLHFUeU77ky6++TYsM9gxKkk72nhybA4ylKqFVRaAUn18rSKoxv2Rf\ndUKvqs+l0mWx/ddsb412xvchDR9+zZs3T0uXLtWhQ4ca+o/i/v5+LV26tGbpPzBa7XBNtkMbgcmG\n+wbARFq+fLmWLl2qgwcPNvUeREUDpjP+7QYAYOxM+RDIGLNa0oC1dq8kWWs3G2MelvRaY8yHrbUH\nw/UcSTdLykr6cquO7xf88EEQmkTzfT+2UpXt/Cozqx5gFI2Thg1wHDlB2NNMZUutVeOBUo314sfJ\n5oL+gHt6e0rXqRFiRdvXCMxKnsdCsmh/ZY+rHq98X+Xtjq031iHZZFQRWLlOxbznnf88bT62Wdls\nVl7Ckx/+T1L02JevbC6rZCapa9Zfo8MPH67YV0VI5ZbNLwurSoKr8uXl+6Cia1q5/vrrddttt6m3\nt7fuf3D29/ers7NT119//Ti2LtAObQQmG+4bABPplltu0Q033NDwe9Att9wyjq0DJif+7QYAYGw4\nDYcNk4gxZq2ktbFZ35D0mKSPxOb9h7W21xjjS7LW2tWx7Z8j6ceSnpJ0q6STkt4g6VpJH7LWfqzZ\nNp06darqC7ntrm0NbV/xeyh/Wic0qrWs3j5buU3D+xtmfvmxi4NCJhPJ4fdTrz3VjOSyr5MHNBQW\nNBKODROMVdtXzZCqSvhVbSyq+Po1q9GqVYvVqDZrJPjK5/M6dPCQevt65bquXNeNlhUKBRUKBXV2\ndGrh+QvleV79nY2hqoFWlVCporKqgXWj+V4sJHNVfTuvzj7Kfnbt3iXHcabsQHZjpa+vT3feeaf2\n7t2rdDpd0g3FwMCABgYGtHTpUl1//fU1B3Omje1rqg8AOZ1x34wd7htgeMePH9fNN9+svXv3Kpkc\n+m+ajo4O9ff3K5vNaunSpbrllluoZgBC5f929/QEXwqdN28e/3YDDeLvNKB57XjfzJ49u+Fvr7dr\nCPSXKg18qllqrd1XLQQK93G5pL+StFFSWtJ2SZ+x1n5xJG0abQiESsU/9rq6uhpaf8RBVDPh1AjW\nbfW8um1vJgxr5tavmkM1UOU0TKiVy+d04swJ9Q/0RxVnmVRGc2fPVTKRrH6s8uAqXsnlxB4XK71i\n3e/VDLfi4Vi9oKsN9PT0SI40c+bMhkKjUf94wdR13arzy39cz53UlVbHjx/XD3/4Q+3fv1+5XE6J\nREKLFy/Wi170oknz4Uw7tLHdtOMfe2gO903rcd8Ajdu9e7duv/12bd26VblcTjNnztSKFSt00003\n0QUcUEPx3+5NmzYpl8tp/vz5/NsNNIi/04DmteN9M+VDoMmIEKj1mg2BEGg6YKoTLo10Xw0/H8U+\nKvYT1+jbmlP+dJjuD+uFWuXdElbZpmoXhY6qVmLF51WEWLWqu+Sop7dHjuME983ky1iGOKoeHDnD\nB0gVAVR8fjyU8krXjY7nlT2Ph1aTMJjC2GvHP/aAicZ9AzSP+wZoHvcN0DzuG6B57XjfNBMCTfkx\ngYDpploA4UzqNKB5Iw6dxuF5xbKyccHKK7ZGHGRVCbDkBNVVklQ4Xai6Xq3qpqrXTXlo5TpVK6+i\naTFEqdMtYTzQyhfyky50KQ+ZSoKjeODkVYZPJcuKIVS17WIBletVfzzZXhcAAAAAAAC0J0IgAG2n\n6thFbaahYGkkoVN/sF0qnaq/Xr39F/zmQqt6gdUwXQJWXa9KUFUz3IwFUvEwqny+4wRjLkX7Ku9K\nMHzs+76cwsRfT1XDpVhQVJznJspCKa/Gep5bWgHlVa4TfwwAAAAAAICpgRAIACbAWAVZWScrSUp3\npYdZszlNBUqNPK6yr4Yf+8Hjgl+obEdJo8uf+kOvc0mmVGPcpzrBVHkoVbdCKgygokDKrRJClVVK\nRWFUTsorX6VxYyfeJV8xZCoJjOLTYqCUiD1PlIVU4folQVTsOcETAAAAAADA2CEEAgAMq3zsoclk\n2MBIzT1uZn/xadWgK2pkjcbX65avyjpVx5UKn1etjHIru+srD6HiXfQ5jiPfCQMoR8oPjk8AVQye\naoZNnlsSKBWDp3jo5Hplj4vrlO+DwAkAAAAAAEwjhEAAgLY2mQKqWlVSDYVNDSyvOW+kQVR5JVqV\nMaSK06qVUGXjP1WET8UKqNh4UdWmxeCpkCsM8wqPXhQ4xUKl02dOS56078l9JWFRSSVTwh0KlWJh\nk5uIPU8Mbcu4TgAAAAAAYDIgBAIAoEUmw3hVzYZH0TYNVDtVLAvHjyr4herh0zAVUFW74msgeKoV\nOkVjKZVXQQ0TOOV6cpKk7lx3Q6/xsBxVViclyiqUEm5FhVNF0BRbp3x9QiYAAAAAANAIQiAAAKaQ\niaqMGq5Kqe6yZtYpNBk6NRA45fNBt3fd3d21u9iLdacX/6kaSjlSoVAIgqaB0byqNRRDprJwqOQn\nHiTVW69sPt3lAQAAAAAwtRACAQCAURvv8Knh0KiBaWEwCJVczy2pcop3sddo2CSVje1U1mVeyfJ4\ngFQ+ZlOsqqmk2qk8ZGqxYjd4UTiULA2MvIQXhUte0qu5XrR+0iNYAgAAAABgAhECAQCAttPK0KnQ\nE4QpnV2dVZePJmQqdpk36qqmBkOmii4J42GSG4RJruuWVDHFg6him/OD+RG+mpVKgqViMOSVBUnV\nfpJB6FR8HN+W7vAAAAAAAGgMIRAAAEAdUUgyRhVOLQ+XfMnPD1UxRceQRhwuxbvHq1a95LhOFM6U\nB0wtD5YcBeFQsjRYKg+LyoOnaP2ycIlACQAAAAAwlRECAQAATKCxDJmGDZQKfnNhU8FXoVCleqlG\nuNRwsKSwy7uyMZdc1x3qCi8WLuULeeWzrQmV4t3ZxcOk8scVy5JDgZKXots7AAAAAMDkRAgEAAAw\nRY1VwNRodVK1EKla1VKxW7zhusQrhkbF5yXnWDbWUnmgFP+Jr5P38yrkRz++kuM6UTgUrzwqmVfl\neXx9xlACAAAAALQaIRAAAACaMhbhUt0qpVqPy4ImvxCOtVQoDO1TGqpckl8SJFVUKsXCpHi4VFGh\n5JVWKMW7vdPA6F6HYmWSlwx5a7S3AAAgAElEQVQqjNyEG0zjFUnF4Cg1VIkUD5Po4g4AAAAAUEQI\nBAAAgAnXymCpGP5UBESNVCjFH+f9moFS0OhY2+PzGgmTvFh3d8XxlZyhyqRcf25kJx8bM6nhICk+\nL+UFIRcAAAAAYEogBAIAAMCUEgUw3hgESlUCo6oBU3xZneqkoKGl7S7OK+nqrrhOWIlUM0hyh8ZM\nyio7onN2XEdeyotCpChACh97SU8DTw/I8Rx1z+4eWo9KJAAAAACYdAiBAAAAgBpaFSjVCpOGDZCK\nzwtDz3N+WCVUL0iqNmZSeUWSFwuUYiGS7/vy+/261Ug9PT2SpH0H9pUucFQRCpUESsXqpJRbEjIV\nHzMmEgAAAAC0FiEQAAAAMMZaGSbVDYuqhUdNdG83XDWS4wThUT6bl1wp62YrQqR8Ia/8YH5E51fs\nui7+k0gl5KbcaFqcF1/H8RwqkAAAAACgCkIgAAAAoE0UQ5iRigKhGuFRtQApmhcLkfK5IOTp6+8L\nGzbUvuh5MTQqC5Jczw1CG7eyEinv51XIFZTtba4rO8d15KVLu7CLh0jF6qPy8Iju6wAAAABMdYRA\nAAAAwDQRBTJyJK/57YshUk93j+RLmUymZnBUPr9QKNTtzq6iKzvXqezGzqvSjZ3ryPEd+X2+cn21\nu7Cr/oIMdV+XSIcBUToWHoWPvXTpc9dzm3/xAAAAAGACEAIBAAAAaEgUyoTVSIl0c/85MVzFUdVl\n5d3YlYdHwf8NPS/vwq5YcVQtPHKD6qP8YF6D3YMNn4ebcIeCoXhwlI5VGpUHRwmqjgAAAACMP0Ig\nAAAAAOMi6s6uySqkqBu74QKj8lAp71evPqrSfV3d8CgxFB65rjvUbV1P493WFbusiwdH8ZAokQ4e\nx6dugoojAAAAAKNDCAQAAABgUosHM80aNjQqW95weFSt2zrXqVt55Bea67LO9dyKYCgKjzJDlUeJ\nzFAFEtVGAAAAAOIIgQAAAABMWaOpPqoIh6r8RKFS3lchWwiqlqRhq44cNzbekVcWHHlhaOT7KuQL\nyvY2VnHkOM5QlVGVyqLyaSKdGFGwBgAAAKB9EAIBAAAAQJmRhEcNdVVXVnFUdbyj+FhHNSqOXM+V\nk3DkeV4UGjmuI3/AV24gpwENNNRmLxmGRplE8FMMicLHiXQwv9htHZVGAAAAQHshBAIAAACAFhhp\ncFQrLCrkC/W7qvNjO3LqVBvFuqlzE0OVRq7rKufnlM/mNdg9OPz5Fcc1KguHosCoLERyPcY0AgAA\nACYaIRAAAAAATJCRjHcUVRzlG+iyrpFu6ooBkjsUHrluUGnkJtzgsdf8uEYlVUZhcFQcy6gkOMok\n5CZdqowAAACAMUAIBAAAAABtpNmKo4bGN8qXhkY5Pwx64l3UxSuNYt3TReMZJdyKMY2aqTJKdCSU\nzCTlpb1gmgmmUVd1xcAoQYURAAAA0ChCIAAAAACYwkYdGlWpOIq6qotXGtUY0yhe7VRsi5twK6qM\nsj1ZZXuyw7bPTbgVwVAyk1Sio7S6KJFJNFVhBQAAAExFhEAAAAAAgEgzoVG1MY1qjWXk530VCtW7\npisGRfHxjBzHicYw8hJeSYVRIVdoqMLIS3lVAyMv4ynZMVRl5KU8uqMDAADAlEQIBAAAAAAYkWbH\nNKpXZVQSHoWBUW6gRrd0sbCoeHzXc6MKI8cLxjXKD+SVH8xr4PRA/fModkcXBkPxgCjZEVYZERYB\nAACgDRECAQAAAADGRbNVRuVhUXlQVDGOUSwsKh6vpCu6Ynd0nisnERvHqMHu6OJjFxWDoehxbD5h\nEQAAACYLQiAAAAAAwKRTEhgl66/r+zWqisrmFfIFKavKMYxi1UVyh6qMorGLRhIWxSuKOhLqO9kn\nN+XqzIwzUXURYREAAADGGiEQAAAAAKCtOY4jJzF8mBIfw6g8KCrkC0OPcwXJl3L9udphUbHCqFZY\n1JtVtncoLOrr6ZMkPXH4iWie67lD3dCF0+hxZzIKkRrtbg8AAAAoRwgEAAAAAJgW4uGNm3Drrlur\nqqjkebErumphkVQyZlEun5PjOhrUYBQWFfc32D1Yp9FSIh2EQsXqomRnaWiU7EwOez4AAACYngiB\nAAAAAAAoE6/yqaeZsEi+1D/YHx6gtLIoGrcoHKvIS3jBY9dVzs8FQVMdXtKrXlXUOfTYS9P9HAAA\nwHRDCAQAAAAAwAg1GhZ1d3dLBSmTzkThUDwoKuQLQTd08TGLYlVF8e7nisfzkl7Q/ZznyPd95bN5\nDZweqNvWKCDqTEZdzkWPO5OMUwQAADDFEAIBAAAAADDGHMeRvKBrt1p83689TlHxcb0u6IpBUVhZ\n5HqunKQTVBV5wfNsT1bZnmzNNkTjFHWWhkPxsMhLei1+dQAAADBWCIEAAAAAAJgEHMeR4wVhUT0l\nXdBVqSjyC74KgwXl/BpBURgSyVEwPlGsqqiRcYq8pBeNS5TqTA11Odc1FBi5HmMUAQAATAaEQGPs\nfbe8T4vnL9biBYu1eP5iLVu4TGfPOXuimwUAAAAAaFONdEEXryqqCImK05yv/GC+blBUPI6bDMIi\n13Ojrud0qnYbE+lEFBQlO5NRWJTqTEXz6XYOAABg7BECjbGHtj+kh7Y/FD1/4RUv1Ef/4KOSpBOn\nT+hbP/mWFs1fFIVEnZnOiWoqAAAAAGCKiFcVeTVKiyqCovJpsaJoYJiu57zKMYpyfi7Y7kSN9rlO\n1L1cqjM1VEXUlYyCIsclJAIAABgtQqAx9sl3f1L7n9qv/Uf268BTB7R2ydpo2a6Du/TF736xZP1z\n5pyjxQsWa9H8Rbrx5Tdq3qx5491kAAAAAMA00HBQlK8+PlE0zZWOUVQMiaKgKPzxkl5JRdFg96AG\nuwfVo54qjZOSmVgXc51JpbpSJUFRvUooAAAABAiBxtiV66/UleuvrLrs3Lnn6vprr9eBIwf0xFNP\n6ODRg3r65NN6+uTT+vXjv9bbX/n2aN0P/+OH9cSTT5RUDRWnMzpnjNfpAAAAAACmEcdx5CSG6Xqu\n2hhFZSGRfA0FRXW6nfNSXhQSZfuyyvZlax7XS3slVUQlFUWdSXkpjy7nAADAtEcINIEueNYF+sNX\n/WH0PF/I66ljT2n/U/t1+JnDmtU1K1q288BOHThyQLsP7a7Yzyt/85V6/5veL0k603tGj+55VEvP\nW6pz557LH7wAAAAAgDE13BhFvu9LvqqGRIVcrJpoICd1F3daGhA5riPXC8cmSsbGJhrIq+9EX9Xj\nugm3soKoKxU87yIkAgAA0wMh0CTiuZ4WnrNQC89ZWLHsjg/cof1H9kddy0VdzB05oLNnnx2t99je\nx/T+24JAqDPTqQsWXKCl5y3VkvOWaOmzlurS1ZcqnUyP2zkBAAAAAKa3YtWP53pSsvo68W7nomAo\nHhYNFpTz64xNFIZQ0dhEiSAkKpwuaOD0QNVjekkvCobKA6JUF93NAQCAqYEQqE10dXRpzZI1WrNk\nTcn8QqGgbH6oPD7hJbRh1Qbte3KfTp45qe37tmv7vu3R8ntuvScKge760V3K5XNa+qylWnreUs2f\nN59vQQEAAAAAxl1Jt3NVvrdYPjZRtS7nCtlCVHVULSQqjktU7HLO933ls3n1n+yv2qZEJlESCpUE\nRZ1JOS7//QwAACY/QqA257qu0u7QX8iXrb5Ml62+TJJ04swJ7Tu8T3uf3Ku9h/fq+Knjmtk5M1r3\nGz/6hp585snoeUe6Q0uetURLnrVEz7/s+dq4fuP4nQgAAAAAADUMNzaR7wfjEtUNirKF6uMSxcck\nSnpRd3O5vlyw/rHq7Ul0Jiqqh4qPE5kEX7IEAACTAiHQFDZ35lzNNXN1ibmk6vI3vfRN2nNoj/Y9\nuU97D+/ViTMnosqhxQsWRyHQQ9sf0j986x+iLuWWnLdES89bqgXzFsh1KY8HAAAAAEwsx3HkeI7k\nSZ68iuXRuES5Qs0xifKDeWX9sKeNYkjkBl++jLqbS4ZBkecq25NVtierHvVUHM/1wvGIZsQCohmp\naEpXcwAAYLwQAk1jr/zNV5Y8P3nmpJ546gntPbxX65avi+bvOLBDjz/xuB5/4vGS9TOpjJY8a4k+\n978+p2Qi6Nj5xJkTmjNjDt94AgAAAABMGtG4RCmvZkjkF/zK8YjC0KgwWFBuYGhMIsd1oqDIcYMA\nykt4clPBuER+wVfhTEEDZ6qPR5ToSJQGQzOHAiIv5fHf1AAAoGUIgRCZM3OO5syco4tXXlwy/3eu\n+h1duPRC7T28N6oa2nd4n46dPqbjp49HAZAkvf0Tb9fp7tNatnCZlp+/XCvOX6Hl5y/XsvOWqauj\na5zPCAAAAACA4RUriVyvTndz5dVDZZVEdbua82JVRAlXud6ccn059T7TW3EsL+kF4VD8JwyIEh10\nMwcAAJpDCIRhzeicoYtXXlwRDp3uOa1nTj0TPR/IDmhwcFA9/T3aunurtu7eWrL++97wPr3mBa+R\nJB07dUw9/T1aeM5CeW7lt7AAAAAAAJgsSsYkSlcu9wt+9W7mwseFbEF+n18SEhUDIsdzorGIvIQn\n3/eVP5FX34m+yna4TkkoVB4UOS4BEQAAKEUIhBGb1TVLs7pmRc/TybTu/tTdOn76uHYf3K3dh3YH\n04O7tffJvTrv7POide+9/17d/s3blU6mo6qh5QuXR9PZM2ZPxCkBAAAAANA0x3WCLzgmK5cVu5or\n6V4uVkFUr4rI9YLu5bxUUEHkJlwNnB7QwOkq3cw5CsYh6kopPSOt5IxkFBClZ6QZhwgAgGmKEAgt\nN2/WPM1bO09XrL0impfL5UrWcRxH5849V0dPHNX2fdu1fd/2aNm5c8/Vtz75rej5Tzf9VIvOXaTF\n8xcrkeCSBQAAAAC0j2JXc/KCMYnKFauISoKh8Hl+MB+MRdSt6t3MJdyoishNuMr2ZJXtyarnaE/F\ncRIdCaVnpJWamYqmxbGIanWDBwAA2h+fqGNclIc3b3zJG/XGl7xRp3tOa8+hPdp9cLd2Hdql3Qd3\na8FZC6L1evt79cHPfTDYh5fQkmctCaqFzl+uFQtXaO3StZrROWNczwUAAAAAgFYpVhF5ySoBkV+/\ngig/mFfWz4Y7qtLNXMqrGIeo5+mygCisIErPSAdVQzPDgIgu5gAAmBIIgTChZnXN0oZVG7Rh1Yaq\ny3v7e/W8S56n3Qd369DTh7Tr4C7tOrgrWv637/5bbVy/UZK0yW7S0RNHtXLxyqBqyOPyBgAAAAC0\nr5KxiMoUu5mrVkFUfF7ezVxFQJTy5HpDFUQ6UnZ81wkCopllFUQzUkp2JoPKJAAAMKnxKTkmtbPn\nnK2Pv/PjkoJAaM/hPdE4Q7sP7daKRSuidb/739/Vvb+6V1IwPtHy85dr1eJVWrV4ldYuXasV56+o\negwAAAAAANpNsZu5al25+b4v+SoJhoo/5QFRtS7m3FTQzZyX8DTYPajB7kHpybLju05F5VAxJEpk\nEgREAABMEoRAaBudmU6tW7ZO65atq7p8w6oN6h/s1479O/TksSf12N7H9NjexyRJv7HuN/Sp935K\nktQ30Kfv/eJ7WrV4lVacv0Kdmc5xOwcAAAAAAMZaMdjxUp48lXYzV6wgincrVxEU9frBftwqYxDF\nupgbOD2ggdMDFcd3E25JQJSemY4eV+v2DgAAjB1CIEwZL7/65Xr51S+XJJ3uOa2dB3bK7rfauX+n\nLlx2YbTeroO7dOvXbpUU/GG86NxFWnXBKq1aFFQNXbT8IqVT6Qk5BwAAAAAAxlKxgkheEBLFxbuY\nKx9/KBqDqCcYg6g8IPKSYfdySVd+wVf/yX71n+yvOH6yIzkUDM0aCofoXg4AgLFBCIQpaVbXLF22\n+jJdtvqyimUd6Q69bOPLtPPATu05tEf7j+zX/iP79cMHfihJ+tdP/KsWnLVAkvTzzT+X53patXiV\nzp5z9rieAwAAAAAA46mki7my70b6flg9VK17uWwQEKlb0fhDxYDI9Vy5SVeJVEJu0lW2N6tsX1Y9\nR3tK9u96bkk4lJqZUq47J6+DyiEAAEaDEAjTzorzV+gDb/2AJGkwO6i9h/dqx/4d2nFghw4eOaj5\n8+ZH695x9x3afWi3JOmsWWdp5eKVwThDi1bpwmUX6py550zIOQAAAAAAMJ4cx5GTCLqEqxkQVele\nLj+YV24gp0F/MAqIKrqXS3nyE5XVQz09QVBkd9mhruXC6qH0zLQSHYw9BADAcAiBMK2lkimZC4zM\nBabq8uese45mdc3SzgM7dez0MR3bdkz3b7tfkvTm33qz3vG775AkPfnMk3p0z6Nas2SNzjvnPP4I\nBQAAAABMGyUBURm/UFk9FP/J9lZ2L+d6QThUyBfkeI6yPdlgvSOl+3YTbum4Q7Hu5Vyvsi0AAExH\nhEBAHTe9+iZJwbeaDj9zOKgYCn/Wr1gfrXf/tvv1d1/9O0lBV3Srl6zWmiVrop+zZp81Ie0HAAAA\nAGAiOa4jz/XkJeuPP1Q+9lBuIKd8Li850pnuM0PVQ8mweijpyS/46jvRp74TfWUHlZKdyaFgaFZa\nmVkZpWelK8ZBAgBgqiMEAhrgOI4WnrNQC89ZqOdf9vyK5efOO1cb12/U9r3bdeLMCT3w6AN64NEH\nJEldmS7dc+s9ct3gW0iP7X1Mi+cv1ozOGeN6DgAAAAAATBZ1xx8Kw6He7l75BV8JLzEUEGXzyvZk\nS8ce8hy57lDXcm7CDaqHerLqfqq7ZN+JjoTSM9PKzM4MdS03K61Eho/IAABTE//CAS1w5fordeX6\nK+X7vo4cP6LH9z2ux/Y9psf3Pa6ujq4oABrMDuqmv71JuXxOFyy4oKRiaMWiFUon08McCQAAAACA\nqc1xnSDMSQf/Ld3R1SGpbOyhfPXqIfmKupUrBk1e0osComxvVrm+nHqO9pQc00t7UbVQ/CeRYdwh\nAEB7IwQCWshxHC04a4EWnLVA11x2TcXyE2dOaOWildp1cJeeeOoJPfHUE7r3/nslSQkvoY+/8+Pa\nuH6jJKmnr0eZdEaeS6k6AAAAAADDjj1UbdyhbBAQqVtR9VC8a7lEOiE36cr3ffUM9Kjn6bJwKOkp\nPTtd0rVcelZayc4k4RAAoC0QAgHjaP68+fqnD/yTsrmsdh/cre37tkc/+57cp0XzF0Xrfu5bn9O9\n99+rVYtXafWS1Vq7ZK1WL1mt884+jz80AQAAAACIKVYPlY/5U6weymfzlWMPlXUtF4VDCVdeOhx3\nyPeVfyav3md6S/brJtySUCgzK6PUrJRSXSn+mx0AMKkQAgETIJlIavWS1Vq9ZLVepVdJknr7e9WR\n7ojWefrE0+ob6NOWnVu0ZeeWaP7srtl62ZUv07te865xbzcAAAAAAO2kVvVQSddyYSAUD4iyvaXj\nDrmeK9cLw6GUJ7/gq+94n/qO95Xs1/VcpWamomAoPSeYJruoHAIATAxCIGCS6Mx0ljz/5Ls/qRNn\nTujxfY9r+77t0fTEmRPK5/PRersP7taffvZPtW7ZOl24/EJdtPwirTh/hZKJ5HifAgAAAAAAbaHR\ncCj+k8vllO3LBtu7Q+GQ4w1VIXlJT/0n+9V/sl+ndCrab7FyKDM7o/TscMqYQwCAcUAIBExic2fO\n1XMveq6ee9FzJQV/jB45fqTkD8Tt+7bryPEjOnL8iH700I8kSalkSqsvWK11y9bpht++QV0dXRPS\nfgAAAAAA2kndcCg+7lC2LCDqywXbh+GQ4zlB5VAxHCp4VSuHvJSnzJxMFBAVw6Hybu0AABgpQiCg\njTiOowVnLSiZd+3Ga7VmyRpt27NNj+55VNt2b9P+I/v1yK5HtPPATr39VW+P1v3Sd7+kmZ0ztW75\nOi0/f7kSHm8BAAAAAAAMx3GcKNhRemh+RTgUC4nyubxy/TnJL60cKulWzvfVc7RHPUd7So6X7ExW\nrRxyPVcAADSjbT8BNsbMk/QRSa+U9CxJz0j6D0kfstY+2cD2b5b0DkkXS0pJ2i/pu5I+Zq09Nlbt\nBlrNcz0tP3+5lp+/XK943iskSae6T+nRPY/q2KljUdCTy+V05z13aiA7IEnKpDJavSSoFlq3bJ3W\nr1yvWV2zJuw8AAAAAABoN7XCIUkq5AtVK4eibuXCMYccN/hxk64S6YS8lKdsT1bZ3qy6n+qOHUxK\nz0grPTtdUjmUmpEKQiYAAKpoyxDIGNMh6SeSVkv6rKSHJK2U9H5JLzDGXGatPVFn+49L+nNJD0j6\ngKRuSRslvUfSdeH2p8f0JIAxNHvGbG1cv7FkXr6Q17tf++6oYujg0YPavGOzNu/YLEn6s7f8ma67\n6jpJ0sGjB9U30KdlC5fJcylBBwAAAACgWcWqn6qVQ2EolM/mo3Aon80r21MWDnmOvKSnRCYhN+Fq\n4MyABs4MlBzHcZ2hqqFY9VCyM8l4QwCA9gyBJL1P0kWS3mWtvb040xizRdK/SfqQpD+qtmFYQfQn\nkvZJep61tvgv5xeNMc9I+jNJb5P06TFrPTAB0qm0XnXNq/Sqa14lSTpx+kTQfdyebdq2Z5vWr1gf\nrfvNH39T3/jRN9SR7tDapWt14bILtW7ZOl247ELNnjF7ok4BAAAAAIC2VlI5FOP7vvy8XxIKFbJh\nt3KDeQ12DwbhULFqqDjeUNqTl/DUf7Jf/Sf7S/bpJcPxhmanlZmTiSqHysc7AgBMbe0aAr1FUo+k\nz5fNv1vSQUlvNsb8sbXWr7LtYgXn/UAsACr6mYIQaElrmwtMPnNnzdVVG67SVRuuqlg2s3Omzjv7\nPB1+5rB+/fiv9evHfx0tu+bSa/Sxd3xMUvBHasEvUC0EAAAAAMAoOI4jJ+FUBDS+71d0J5fP5pUf\nzCs3kJNOB9vKVRQuealwvKGCr56ne9TzdGy8obBLufJwiKohAJi62i4EMsbMUtAN3M/LQxxrrW+M\neUDS70paKmlPlV3slTSgoPu4ckvC6baWNRhoQze+/Ebd+PIbdfz0cW3bvS3qQm77vu06a/ZZ0XoH\njh7QH/zNH2jd8nXasGqD1q9YrzVL1iiVTE1g6wEAAAAAmBocJ+gOzkuWfvnSL/gV3ckVsgXlc3nl\n+nLBtm7ZeEOZhLykN9Sl3IGh/VE1BABTV9uFQJIuCKcHayzfH06XqUoIZK09ZYz5a0kfM8Z8RtKt\nks5IerakD0raLOmfW9XYnp6e4VdCXbyGEyftpXXZqst02arLJEm5fE79g/3R72Trjq3q6e/Rrx79\nlX716K8kSclEUmax0bpl6/S6F7xOXR1dE9b+6Yz7Bmge9w3QPO4boHncN0DzuG+GkQh+nIwjFSTl\nJT/vq5AvSDmpkC1I/ZJOKxpvSG4YEiWDCiQn4ej0ycrhsb0OT15X7KfTk5t2qRpqAzt37pzoJgBt\nZzLeNytXVqtlaU47hkAzw2lvjeU9ZetVsNb+jTHmiKTPSHp3bNF3Jb3FWttffUtgekt4Cc3omBE9\nv+bSa3ThsgujcYW27dmmfU/u07Y922T3W73ppW+K1v3OL76jOV1ztG75Os2dOXcCWg8AAAAAwNRW\nrPxRcmie7/tSQfJzwbhDxZ9CriBlixuWdSuXdOUkHOX78sr35aVnYsdIOFEglOhKRI8dj2AIACaj\ndgyBRs0Y805Jt0n6vqR/kfS0pOdI+lNJ/2GMudZae7IVx+rqogpipIrf9OE1nNy6urq0ZOESXXf1\ndZKk0z2n9ciuR3T0xFHNnR2EPbl8Tp//zufVN9AnSTr/3PN18cqLg58VF+u8c87jW0Qtwn0DNI/7\nBmge9w3QPO4boHncN2PLL/hBd3LZQknXcn7Ol5/15Tv+UHdynisvHYw15CU9OTknqCw6LeWVV97J\nl4w11DGnQ5m5GSUyCf57f5wVKxlaUT0ATBdT/b5pxxCoWJta6y+AGWXrlTDGGAUB0I+stb8dW3Sv\nMWaLpG9L+oCCQAhAk2Z1zdJVF19VMi+by+r3Xvp72rJzix7d86gOHj2og0cP6nu/+J4k6c/e8me6\n7qogROrt71U6lZbnehX7BgAAAAAAreG4jhLphJQemuf7fukYQ2EwlB/MKzeQk/zSsYa8pCcv49Uc\nayiRTgRjDM3NRMFQakaKYAgAxlE7hkB7JfmSzq+xvDhmUK0O/F6g4Ly/VWXZPeG+nz+aBgIo1ZHu\n0Nuue5skKZfLaefBndqyc4u27Nyirbu2au3StdG6X/zuF/Wdn39HFy2/SOtXrteGVRu0+oLVSiaS\ntXYPAAAAAABawHHCYCfpSR1D82tVDeWz+WBgBkcVVUOJdEK+7yt3JKfuI93RvtyEGwRDczLqmNsR\nPJ6dCbqxAwC0XNuFQNbaHmPMI5IuNcZk4uP3GGM8SRslHbDW7q+xi2IFUabKsrQkp8YyAC2QSCS0\nZskarVmyRm948RuCvoljDh45qO6+bv1y2y/1y22/lCSlkimtXbpWL7j8Bfrda353IpoNAAAAAMC0\n1XTVUH9OA86AHCesGvIcJVKJoGqo4Kn3mV71PtNbsv/0rHRpMDQnE4RRAIBRabsQKPR5BV26/aGk\nT8fmv1nSuZI+UpxhjFktacBauzecdV84fb0x5jPW2vgn0K8tWwfAGCsvAf/Euz6hp449pUd2PRJV\nC+17cp8279isCxZcEK139MRRfe37X9Ml5hJdvPJizeqaNc4tBwAAAABg+qpVNVTIlwVD2eDxwOCA\ndCYIfOQoqBgqdieX8tR/sl/9J/t1ct/QMN2pGamSUKhjbocSmXb9OBMAJka7vmv+g6Q3SfqUMeYC\nSQ9JulDSH0naKulTsXW3S7KSVkuStfY+Y8w3FAQ+/22MuUvS05KukPQuSUck/c04nQeAKhactUAL\nzlqglzznJZKkk2dOauvurTpn7jnROpvsJt31o7t014/ukuM4WrlopS41lwah0IqLNaNzRq3dAwAA\nAACAMeJ6rlzPLa0aKvhD3chla3cn53qu3ISrRDohL+1psHtQg92DOnXgVLSvREciGF8oDIYyczNK\ndTHOEADU0pYhkLU2a3wtCk4AACAASURBVIx5iaS/lPRqSe+WdFTSHZI+Yq3trbO5JL1R0s8kvVVB\n4JOSdFjSFyT9tbX20Ni0HMBIzJk5R1dvuLpk3qrFq/S2696mh+3DenTPo9qxf4d27N+hr/3ga0ol\nU7rn1nuUTgZ/ceZyOSUSbfl2BwAAAABA23NcR14qqPgpirqTi1cM5QrK9eeU7c0GwZATdCXnJsJx\nhlLhOEN9OZ158ky0Ly/plYRCHXM7lJ6VJhgCAElO+XgcGJlTp05VfSG33bVtvJsyZfT09EiSurq6\nhlkT013/QL+27t6qh+3D2mQ3KZlI6jPv/4wkqVAo6BV/8gotPGehLjGX6FJzqS5afpEy6ak59Bf3\nDdA87hugedw3QPO4b4Dmcd9MP77vy8/7FRVDft6XX/CHgiE3DIZSnrx00CWd45YGPm7CHRpjaG5G\nHfM6lJ459YOhnTt3SpJWrlw5wS0B2kc73jezZ89u+M2Mr8YDaHuZdEZXrL1CV6y9QlIQ/BQdPHpQ\np7pP6cSZE9q2Z5vuvOdOJRNJrV26VpeaS/XbV/62Fpy1YKKaDgAAAAAAQo7jyEkEAU/FOEOxUKiQ\nLSg/mFduICedDiqNij9eylMik5CX8tT7TK96nxnqMCgeDHXM7VBmXmZaBEMApjdCIABTjuu60ePF\nCxbrnlvv0ZadW/SwfVgP24e188BObdm5RVt2btGVF18ZhUCb7Ca5rqu1S9cqmUhOVPMBAAAAAEBM\ncZyhRGboo0y/4JeGQrHqocHuwZJxhgiGAExnhEAApryuji5tXL9RG9dvlCSd7jmtLTu36JFdj2jl\noqEyzzv+/Q5t2blF6WRaF624SJeaS3WpuVSrL1jNmEIAAAAAAEwijusokU5I6aF5vu9XBELxYMhx\nHckRwRCAaYVPNQFMO7O6ZunqDVfr6g1Xl8xfvWS1TnWf0r4n9+mh7Q/poe0PSZI60h268eU36o0v\neeMEtBYAAAAAADTCcYLu4LyUF80jGAIw3RECAUDoPa99j97z2vfo+Onj2mQ36WH7sDbZTdp/ZL/m\nzJgTrfeLR36hu392ty5ffbkuX3O5lp63lD/6AAAAAACYhAiGAEx3hEAAUGberHl64RUv1AuveKEk\n6ZmTz6gjPTQi5S+3/lL3PXKf7nvkPknSWbPP0uVrLtcVa67Q5Wsu19lzzp6QdgMAAAAAgOGNZTDk\nJT1l5mbUMa9DHfM61DmvU4mOBMEQgAlDCAQAwygPdd7ysrfowmUXBl3GPfaQjp06pnvvv1f33n+v\nVi1apS986AuSgj8g+wf7SwIkAAAAAAAw+bQqGPILvnqO9qjnaE+0n0QmEYVCHfOCqqFEmo9lAYwP\n3m0AoEnnzj1X1z73Wl373Gvl+772Ht6rBx97UA9uf1Brl66N1jtw5IDe8tG3aN3ydVGl0Oolq+W5\nXp29AwAAAACAyWCkwZDjOnI8R4l0Ql7Gk+/7yh3O6czhM9F+UjNSJdVCmTkZuQl3Ik4TwBRHCAQA\no+A4jpYtXKZlC5fp9S9+fcmynQd2qlAoaPOOzdq8Y7PuuPsOzeicoUvNpbpizRW69rnXKpPOTFDL\nAQAAAABAsxoKhgaD6cDggHRaUSjkeq68jKdEOqHBM4Ma7B7Uqf2nov2mZ6dLKoYyszJBtREAjAIh\nEACMkRde8UJdsfYKbbKb9OD2B/XgYw/q0NOH9LNNP9ODjz2o6666Llp3847NWnreUs2eMXsCWwwA\nAAAAAJpVNRj6f+zdeZxU1Z338U9tvRXSNN2CCoKieAHZZAdZZDebS3TU7DGJMYnJzCQxmeyZTPZJ\nnswTM5PEbJOYxCSYaKKJj4AgCiK77HhBUARRlK2Bbuilqp4/qikaBaShoKD5vF+vfpX33lP3/Kqb\nI0V/65yTzhwSCqUaUqTqUzTub6QuUpebMRSNR0mUJogVxdi/az/7d+1n54adQHaZueb7C5W2L6Uo\nWeT+QpJaxBBIkk6itsm2jBkwhjEDxgCwZdsWFq5eyO6a3STiCQDqG+q58647qWuo47IulzG452AG\n9xpMn0v6UJQoKmT5kiRJkiTpOESi2eXgKD54Lp1K52YMHZgtlKpL0bivESLZ50RjUaKJKImSbDBU\nu62W2m21uXvEimKv218oUZoowCuUdKYwBJKkU+iCqgu4dvS1h5zbtXcXvS7uxYr1Kwg3hoQbQ373\nyO8oThTT77J+fPTtH6X7hd0LVLEkSZIkScqHaCxKNBYlXpL9lWwmkyGTyhwaCjVkZw011DRkl4KL\nZJ8XK44RL4mTSWfY+/Je9r68N3ffRFkit7dQw94G4m38la+kg/w/giQVWIeKDtz16bvYV7eP5c8u\nZ+HqhSxcs5D1m9ezYNUCPnnLJ3Ntpy+YTn1DPYN7DaZDRYcCVi1JkiRJkk5EJBIhEj+4JBw07S/U\nmD4kFDrwWL+n/uAycs32F8pkMjTUNrB7825qamogAus3rc8GQ5VllFaWUtTGZeSks5UhkCSdJkqL\nSxl6+VCGXj4UgB27d7Bs3TI6d+ica/P7R37Ps5ufBeDiCy5mWO9hDOs9jL6X9s0tLydJkiRJks5M\nkUiEWCJGLHHo/kIHgqHmoVBjfSN1mab9hWLZMClNmkgiwr6d+9i3cx871u8ADi4jV1ZZlg2G2pce\nsoeRpNbLEEiSTlPt27Zn7MCxueNMJsNbR76VBasX8HT4NM9teY7ntjzHH6b9gdLiUj56w0eZPHhy\nASuWJEmSJEn5FolGiBXFDgltMunMoaFQfSq7v1BDdn+hPTV7srOFimLESw+/jFxx22LK2mdnCpVW\nllLStiS7BJ2kVsUQSJLOEJFIhBvH3ciN426kobGB5c8uZ/7K+cxfNZ/1L66nqrwq1/bJ5U+yeM1i\nhvUeRr/L+lGcKD7KnSVJkiRJ0pkkEo0QL4m/bn+hmt01ZFIZYpFYdn+hmhT1e5stIxfPLiOXKE5Q\nt7uOut117Hx+JwDReJTS9qUHl5FrX5pbpk7SmcsQSJLOQIl4goE9BjKwx0A+duPHeGXnK5Qny7Of\n+CG7d9CjCx5lyowpFCeKGRAMYFjvYQztPfSQ5eUkSZIkSdKZL7e/UHEUgLJkWXZ/oYaDy8il6rNf\njfsbqYscXEYuloiRKEkQK45R80oNNa/U5O6bSCZys4XKKssoaVdCNBYt1MuUdBwMgSSpFehQ0QEg\nFwLdOO5Gzq88n/kr57N201qeWvkUT618CoDxg8fztdu+VrBaJUmSJEnSyReJvH4ZuXQq/bpgqKGh\ngYaahuxScFGIxqLEi7OzjDKZDA01DVRvqs7eMxqhtCI7W6i0spSy9mUkkgkiEZeRk05XhkCS1Ar1\n7tab3t16c/v1t7Nt1zYWrl7IvJXzWLB6Ad0u6JZrt/aFtfz0/p8y9PKhDOs9jC7ndfGNmyRJkiRJ\nrVQ0Fs2GPM2WkUs3ZkOhA+FQuiFNXX12qbgDs4Wi8SiJ0uxsodrttdRur4V12XvGi+PZQKiqLLeM\nnLOFpNOHIZAktXJV7ap404g38aYRbyKVzn7C54CnVjzFgtULWLB6AT+670ecX3k+Q3sPZdjlwxjQ\nYwBlJWUFrFySJEmSJJ1MkUh2ObhY4uBsoUw6c8jycemGNKm6FI37GrMfHG2aLRQrjuVmCzVuaWTP\nlj3Zex6YLdQsGHJvIalwDIEk6SwSi8aIFR98Y3fN6Gs4r/I85q+az4JVC3hp+0v89fG/8tfH/0pV\nuyoe+O4DzgySJEmSJOksEolGssvBFR+cLZRJZQ5ZQi7dkCbVkKJ+T/0hs4XiJdnnHZgttH3tdqBp\nb6HKslwoVFJekl1+TtJJZwgkSWexinMqmDxsMpOHTSaVTrH2hbXMWzmP+Svn06lDp1wAVLOvhlu/\nfisDewxkWO9hDOo5iGRpssDVS5IkSZKkky0SiRCJNy0JR3ZGTyaTOWQJuVRD6rCzheIlr9lb6IXs\n3kLReJTS9gdnCpVVlh2yd5Gk/DEEkiQB2VlCPS/qSc+LenLrW28lnU7nrj0dPs2WbVvYMmcLD815\niHgsTv/L+jOi7wiu7HMlnTp0KmDlkiRJkiTpVIpEsrOFKM4eH2m2UN2eOur21GWDpFh26bl4aZx4\nUZyaV2qoeaUmd8/itsUHQ6GqMoraFLk6iZQHkUwmk9cbBkFQBPQEOgJLwzB8Ja8dnKaqq6sP+41c\nOWXlqS6l1aipyf4lkEw620A6Vidr3KTTadZtWsf8VfN5asVTrNqwinTmYEj01//MLh8H2Td+vknT\nmcS/b6SWc9xILee4kVrOcSO13Ok0bg63t1AmnSGTzmSXkItmZxcd2Fuo+b5EALHiWG6WUFllGaWV\npURj0QK9GrVm69atA6B79+4FruTYlZeXH/Mv3/I2EygIgg7Ad4F/AkqbTl8PPNh0/THg82EYzstX\nn5KkUyMajRJ0DQi6Brz3ze+lem8181fN58nlT7KjeschAdCHv/1hOnXoxIg+IxjWexhtk20LXL0k\nSZIkSTrVDre3ULoxfegycvUpGvc3Ure7LhsKxaLEirKhUCadYc+WPezZsid3v5J2JYcsIZcoSxTy\nJUpnhLyEQEEQtAfmAt2AGmAp0L/Z9YuBEcC0IAiGh2G4Kh/9SpIKo7xNOZOGTmLS0EmHnH/x1RdZ\n8/wa1jy/hkcXPEo0EqXPpX24su+VjOg7gq7ndXWWkCRJkiRJZ6FIJLscXPMZP+lU+pBAKNWQIlWT\non5v/cHZQommvYWK4+zbsY99O/axne0AJMoSlFWVkaxKUlZVRnF5sb93kF4jXzOBvkg2APoW8HXg\nfGDDgYthGD4XBMEYYBbwb8B789SvJOk00rlDZ+79+r08tfwp5q6Yy9K1S1m2bhnL1i3jx3/5MXd9\n6i4G9BhQ6DIlSZIkSdJpIBqLEo1lQx5omi10IBQ6sJRcXYrGfY0QITdbKF4cJ1YaI5PJ0FDbQPUL\n1QDEEjFKK0tJnpsNhUrbu4SclK8Q6BpgZhiGXwIIguB1++OEYTgvCIL7gbF56lOSdBrq0rELXSZ2\n4eaJN7O3di8LVi9g7oq5LFu3jN6X9M61+/qvvk5dfR0j+o5geO/hVLStKGDVkiRJkiSp0CKRCLGi\nGLGi7GyhTCZDJvX6vYXqGupgTzYUisSyM4wSpQky6Qx7X97L3pf3Zu8XjVDavjS7hFzTMnIHlqeT\nzhb5+hPfCbj3GNqtAm7IU5+SpNNcm7I2jBs0jnGDxpHJZHJTsusb6nl8yePsr9/PrCWziEQi9Lyo\nJyP6juDKvldyaedLnb4tSZIkSdJZLhKJEIlHiMajJEqz+/9k0q8PhRr2NdBQ23BwCbl4lHhpdgm5\n2m211G6rzd2zuG1xbvm4snOz+wr5Owi1ZvkKgRqA5DG0qyC7Z5Ak6SzT/A1VUaKI333tdzy5/Enm\nLp/LknAJq59bzernVvOLv/2CT7/z01x/1fUFrFaSJEmSJJ2OItEI8eJ4bkZPJpMh3dhsX6Gmr8b9\njdnfRUTJhkIlceIlcep211G3u44dG3YAB/cVOvBVUl5iKKRWJV8h0FLg7UEQfDkMw32HaxAEQSXw\nTmB5nvqUJJ3Bzqs8jxvG3sANY2+gdn8ti59ZzNzlc5m7fC6Dew3Otfv1P37NmufWMKLvCEb0GcG5\nFecWsGpJkiRJknQ6iUSyy8HFEjFINltCrtm+QumGNHX12fDnwL5CsaIY8dL4kfcVapotVFrpvkI6\ns+UrBPoZ8FtgdhAEXwZ2Np1PBkEQABOATwMdgTvz1KckqZUoKyljVP9RjOo/inQ6TTR68M3VY4sf\nY/3m9Ty5/EkALutyGaP7j2ZU/1F069TNT+dIkiRJkqScQ5aQo9kScs1nCjWkSNWkqN9bf8i+QvHS\nuPsKqdWJZDKZvNwoCIL/Bj4GHOmGEeDHYRh+PC8dnmaqq6sP+7pXTll5qktpNWpqsisHJpPHstKg\nJGid42bbrm08teIp5i6fy8I1C9lfvz937R2T3sEdN95RwOrUGrTGcSOdbI4bqeUcN1LLOW6klnPc\nHJtMJpObIXQgGMqkM2TSmcPuKxSNHzoT6LX7ChUliwr0SpQP69atA6B79+4FruTYlZeXH/OnovMW\nWYZh+PEgCB4EbgOGAh3IBkIvA/OBX4ZhOD1f/UmSzg5V7ap426i38bZRb6OuoY7FaxYze+ls5iyb\nQ7/u/XLtZi+dzRNPP8Go/qMY0msIJcUlBaxakiRJkiSdriKR7L5CFGePj7avEBEOhkIH9hWqfs2+\nQslENhQ6t4zkuUmK2hS5colOG3mbCXS2cyZQ/vnJBanlzqZxk0qnyGQyxGPZzzN85WdfYeaimQAU\nJYoY0msII/uN5Mp+V1JxTkUhS9Vp7mwaN1K+OG6klnPcSC3nuJFaznGTP+nUoaFQuiHNgd+lv3Zf\noVhR7JDQJ14SJ3luUyhUlaS4vNhQ6DTmTKBjEATBTOAnYRje9wbtfgEMD8Pw8nz0K0k6e8WisUOO\nP/i2D9L9wu7MXjqb1c+tZs6yOcxZNodoJMo1o6/hzne5JZ0kSZIkSTo20ViUaGmURGkL9hUqipEo\nTZDJZKjeVE31pmoAYkUxyqqys4SS5yYpaVdCJGoopFMjX8vBXQX8/RjaxYBueepTkqScrud35T3n\nv4f3vOk9bNu1jTnL5jB76WwWP7OYju075tptfGkjU+dPZXT/0QRdAz+JI0mSJEmS3lAkGsktBwcH\n9xVq/tVQ20BDTcPBUCjRFAqlM+zZsoc9W/YAEI1HDw2FKkqIxqJH6146bscdAgVBcC1wbbNTNwdB\n0PsoT6kCJgPbj7dPSZKORVW7Kq4bcx3XjbmOmn01pDPp3LWZi2dyz8P3cM/D93Buu3MZ2X8ko/qN\n4orgChLxRAGrliRJkiRJZ4oD+wrFiw+GQumG9Ov2FGqoPRgKRePZmUXxkjh7X97L3pf3AtlZR6WV\npbkl5MralxGNGwopP05kJlAxMBy4DMgAg5u+jqYe+OoJ9ClJUoskSw9dB3lIryHs3L2T2Utn8+qu\nV3lg1gM8MOsBkiVJJg6d6LJxkiRJkiSpxSKR7HJwsaLs8vWZTIZ0Y1MoVJfKPTbua8yGQtFsKBQv\nzc4uqnmlhppXsns6RaIRSitKs3sKnZukrLIsd1+ppY47BArDcAowJQiCCrKze34CTDnKU/YD68Iw\n3HG8fUqSdKIu73Y5l3e7nE++45OEL4TMXjqb2U/PZsOWDdTur821q91fy7T50xjZbyRV7aoKWLEk\nSZIkSTrTRCLZ5eBiiRgks6FQJpWhsa7xdbOFiJBdPi4eyy05V7u9ltrttWx7ZhtEoLRds1Coqiw3\nA0l6I5FMJnPCNwmC4H+BP4RhOO3ESzozVVdXH/YbuXLKylNdSqtRU5NNvpPJ5Bu0lHSA4+b4vfjK\ni6TSKbqc1wWAWYtn8aW7vwRAz4t6Mqr/KEb1H8XFF1xcyDJ1EjhupJZz3Egt57iRWs5xI7Wc4+bM\ncSAUah4IpRvTZNKZbCh0YKZQSZxEaeJ1y8MVty3O7inUIbuv0IG9itRy69atA6B79+4FruTYlZeX\nH/Mm13n5kxGG4a3H0i4Igs8C7wjD8Ip89CtJUr506tDpkON257RjVL9RLFi9gDXPr2HN82v42V9/\nRtfzujL6itF86NoPEYs6FVuSJEmSJLVcJBIhEm/aJ6gsu0dxOtVsT6G6FOmGNHV1ddTtrsuGQrFo\nbqZQXXX2/I712YW3itsW5wIhQyE1l9c/CUEQnAP0BEoOc7kCeAcQ5LNPSZJOhv6X9af/Zf3ZX7ef\nhWsWMnvpbOYsm8PGlzcyf+V8br/+9lzbZ55/hsu6XEY06qaNkiRJkiTp+ERjUaKlURKlhwmF6ptC\noT111O1pFgoVx4mXNguFnjUU0qHy9pMPguA7wL8CiaM0iwDz89WnJEknW0lxSW4puMZUI0vXLqWh\nsSF3feNLG/nQtz5EZXklo68YzVUDrqJf937EY765kiRJkiRJx++1oVAmfejycan6FHUNddTtfeNQ\nqKS8JLunUIckySpDobNJXn7SQRDcDnwWyAAbgV1Af2AtkAYuA7YCfwB+mI8+JUk61eKxOIN6Djrk\n3Cs7X6Fj+45s3bGVB2Y9wAOzHqBdm3aM7D+SMVeMYXCvwQZCkiRJkiTphEWikdxycNCyUGj/rv3s\nr95/+FDo3CTxYn930Vrl6yf7IWAnMDYMw+VBEFwEbAA+G4bhg0EQdAN+DaTCMNyUpz4lSSq4wb0G\n8+dv/5lwY8jjTz/OrCWz2LR1E3+f83dmLJzB33/w91wI1JhqNBCSJEmSJEl5cVyhUFP7w4VCyQ7J\nbDBkKNSq5Osn2RP4eRiGy5uOM80vhmG4IQiCG4AVQRCEYRj+Kk/9SpJUcJFIhB4X9aDHRT348HUf\n5rktz/H4049T31BPcaIYgLr6Om78/I30696PMQPGMKLPCJKlyQJXLkmSJEmSWotjCoVeu6fQgVCo\nOhsKbV+3HTAUak3y9ZNLkF3u7YADmyWUHjgRhuGrQRD8CfgYYAgkSWqVIpEI3Tp1o1unboecX7Vh\nFTv37GTWklnMWjKLRDzB4J6DGTNgDCP7jaS8TXmBKpYkSZIkSa3RyQiFkudmgyFDoTNHvn5SrwBB\ns+NtTY+XHKbdZXnqU5KkM8aAHgP4y3f+wuNPP84TS55g2bPLmLtiLnNXzCUWjfHnb/+ZcyvOLXSZ\nkiRJkiSplTpaKNRY10i6Id2yUKhjMhsMVSWJFcUK+dJ0FPkKgWYD7wiCYDnwv2EY7gqCYDNwaxAE\nPwnDcGdTu/FATZ76lCTpjNKxfUduGn8TN42/iR27d/DE00/wxNNPsGvPrkMCoG/9+ltc0ukSxgwY\nw3mV5xWwYkmSJEmS1Fo1D4WKKT72UKi0WSi0djtEoLSilGSHJG06tqGssoxoPFrol6cm+QqBvgFc\nA3wfWAv8A7gX+CywMgiCeUCPpq/789SnJElnrPZt23PdmOu4bsx1NKYac+c3v7KZh+c+DMCP7vsR\nPbr2YMyAMYwZMIYuHbsUqlxJkiRJktTKHVcoVBonUZpg34597Nuxj23PbCMSjVBWWZZbPq60spRo\nzFCoUPISAoVhuDoIgiuBTwLPNZ3+d2AwMBa4vuncM8Cn89GnJEmtRTx28K/jyvJKvnbb15i1ZBbz\nVs7jmY3P8MzGZ7j7gbu5pPMl/Mdt/0HX87sWsFpJkiRJknQ2OKZQaHcddbubQqF4UyhUkqDm1Rpq\nXs0uChaNRSmragqFOiQprSglEo0U+NWdPfK2e1MYhsuA9zc73g+MD4JgCHAx8CIwLwzDxsPfQZIk\nlRaXMn7weMYPHk9dfR0LVi9g1pJZPLnsSV585UU6tu+Yazt76Wy6nt/VGUKSJEmSJOmkO1wo1FjX\nmA2G6lLZUKiujrpINhSKJWLES7Pt927dy96tewGIJWKUnXswFCopLyESMRQ6WfIWAh1JGIYLgAUn\nux9Jklqb4qJiRvUfxaj+o2hobOC5Lc9RUlwCQH1DPd/41Teo2V/DJZ0vYdzAcYwdNNZASJIkSZIk\nnRKRaIREaYJEaQKAdCqdC4RyM4b2N0IkOxsomoiSKE2QKcmwZ8se9mzZA0CsKJbdT6hDG5IdkxS1\nKTIUyqO8hkBBELQHLgFKgCP+lMIwfCKf/UqS1Nol4gku63JZ7rhmXw2jrhjFnKVzWL95Pes3r+fn\nf/s5l3a+lHGDxvGWK99CZXllASuWJEmSJElnk2gsSrQ0ejAUakznlo47EA417mskEo1kl49LREmU\nJcikM+zevJvdm3cDEC+NZwOhpplCRcmiQr6sM15eQqAgCM4H7gHGHeNTYvnoV5Kks1VF2wq+dOuX\nqG+oZ+GahTy2+DFmPz2bZzc/y7Obn2Vk/5G5EKh2fy1lJWUFrliSJEmSJJ1NovEo0XhT0JPJkEkd\nunzcIaFQLLt83IG2uzbuYtfGXQAUJYtygVCyQzIXMunY5Gsm0F3AeOAlYB6wB8jk6d6SJOkIihJF\nXNn3Sq7seyX1784GQsvWLqPbBd1ybf75//wzqXSKcYPGMXbgWDp36FzAiiVJkiRJ0tkmEokQiUco\nihdBEjKZTG6m0IHl4xr2NdBQ23AwFCo6GArV19Sz87mdABS3Lc4uH9exDclzk8SKnHNyNPkKgSYC\nTwPDwzCsz9M9JUlSCzQPhA7YXbObTVs3UbO/hnWb1nH3A3dz2YWXMXbQWMYNHEenDp0KWLEkSZIk\nSTobRSLZmT+xROxgKNRw6PJxDbUNNNRkQ6FoPJoLheqq66jbXceOZ3dABEorSrOBUMckZZVlRGPR\nQr+800q+QqAo8KABkCRJp5e2ybY8+H8eZOGqpiXjls1m7aa1rN20lrsfuJvvfeJ7DO8zvNBlSpIk\nSZKks1gkkp35EyuKUdSmKBcKNdY1ZmcKNaRI1aSor6nPhkKxKPGSOPHSOPt27GPfjn28uuZVorEo\nZVVluZlCJRUlRCKRQr+8gspXCLQEuCBP95IkSXlUnChmZP+RjOw/krqGOhauWsjMxTNZtGYR/br3\ny7X79T9+TSwac4aQJEmSJEkqqOahEOdkZwo1XzouVZ+ibk8ddXvqcjOFEqUJ4iVx9m7dy96te9m6\nYiuxROzg0nEdkxS1KTrrQqF8hUBfBf4WBME9YRg+mad7SpKkPGseCKXSKWLR7Lq5DY0N/HH6H9lb\nuze7ZFyXy3J7CHU610BIkiRJkiQVTiQSIV4cJ16cjTQy6czBpePqUqQb0uyv2w8RsvsJxZv2EyrJ\nsPvF3ex+cTcAibJENhTqkA2FEqWJQr6sUyKSyWTycqMgCN4C/BmYA6wCdhyhaSYMw6/npdPTSHV1\n9WG/kSunrDzVpbQaNTU1ACSTyQJXIp05HDc6Xo2NjcxdMZfHFj/GnGVz2Fe3L3ct6BrwiX/6BP0v\n61/ACk8ex43Uco4bqeUcN1LLOW6klnPc6GyVTqVzs4Qa6xrJpDJk0hki0Ug2FEpkQ6FYceyQmUDF\nbYupjdQSL4/TN7rxfQAAIABJREFUY0CP7MyjM0B5efkxT2fKy0ygIAiGA78FioHxTV9HkgFaXQgk\nSdKZLB6PM/qK0Yy+YjR19XXMXzWfmYtn8uSyJwk3hrQpa5Nru27TOirOqaCqXVUBK5YkSZIkScqK\nxqJEy6LZ2T+ZDJlU5uB+QvUpGvY10FDbkAuF4sVxEmUJ6qrr2F+7H7bAmk1rKGuf3U8o2TFJWWUZ\n0Vi00C/thOVrObjvA+2AKcCTwB6yYY8kSTrDFBcVHxIILQmXcEmnS3LXv/e777Hm+TVccdkVjB88\nnqsGXEV5m/ICVixJkiRJkpQViUSIxCMUxYsgmd1PKN2QPrh8XH2K+pp66mvqiUQjpDIpooko6aI0\ntdtrqd1ey6trXiUai1JWVZbbU6ikouSM3E8oXyFQP+AvYRjekqf7SZKk00BxUTHD+wzPHTc0NlBZ\nXkk8FmdJuIQl4RJ+cO8PGNxrMOMHj2dUv1GHzBqSJEmSJEkqpEgkQqwoRqwoRlGbIjKZ7H5Cqbps\nKNS4v5FUY4q99XuJRCNE41ESpQnipXH2bt3L3q172bpiK7GiGG3Oa0PnoZ3PqDAoXyHQXuDpPN1L\nkiSdphLxBN/+2LfZU7uH2Utn8+jCR1m8ZjHzVs5j3sp5fOWDX2HS0EmFLlOSJEmSJOmwIpHscnDx\n4jjFFJPZkyHTmCERTZCqS5FuSLO/bj9UNy0zl8iGQpl0hsb9jWdUAAT5C4H+DowBvpWn+0mSpNPY\nOWXn8OYRb+bNI97Mzj07eXzJ48xaMouR/Ubm2tz1p7vYsWcHEwZNYMjlQyhKFBWwYkmSJEmSpNeL\nRCNEiiKUJEsASKfSuVlCuRlD+xqJRCM01jdS82oNyXOTBa762OUrBPoUcH8QBPcA3wjDcG2e7itJ\nkk5zFedUcN2Y67huzHW5c42pRh6Z9wi7a3bz6IJHaVPahtFXjGbC4AkM6DGAeCxfb0EkSZIkSZLy\nJxqLEi2LkihLZPcTakznwqBMKsP+XfvPyhDokabHm4F3BUFQB+w6QttMGIad8tSvJEk6DcVjcX7x\nxV8wc9FMZiycwbpN63h47sM8PPdh2rVpx2fe8xnGXDGm0GVKkiRJkiQdUSQSIZaIEUvEIAmp+lSh\nS2qxfIVAw15zXAKcd4S2mXx0GARBe+CrwHXA+cA24GHgy2EYvnQMzy8GPge8G7iw6fn/AL4YhuG2\nfNQoSdLZ7IKqC3j31e/m3Ve/m40vbWTGohnMWDiDjS9v5PzK83Ptlq1bRjwWp9fFvc64dXUlSZIk\nSZJOZ/kKgS7O032OSRAEpcAsoAfw38AioDtwJzAuCIKBYRjuPMrz42QDnzFNz18MDAI+DowMguCK\nMAzrT+qLkCTpLNL1/K584G0f4Na33spzW57j4gsOvnX46f0/ZcX6FZxfeT7jB49n/ODxXNr5UgMh\nSZIkSZKkE5SXECgMw435uE8L/CvQB7gjDMMfHzgZBMEy4AHgy2T3KTqSjwDjgfeFYXhP07nfBUGw\nDfgAMBSYfTIKlyTpbBaJROjWqVvuOJ1O06tbL17a/hIvbX+J3z3yO373yO/oel5Xxg8ez9XDr+aC\nqgsKWLEkSZIkSdKZ60zdlfm9QA3wy9ec/xuwGXh3EASfDsPwSEvP3QGsA37b/GQYht8AvpHnWiVJ\n0hFEo1E+8U+f4I4b7mDZumXMWDSDWYtnsfHljfzqoV9xftX5uRAonU4TjUYLXLEkSZIkSdKZI5LJ\ntHyLniAINgDfDMPwl82Oj1UmDMNLWtzpwb7bAtXA7DAMRx/m+l+AtwOXhGH4urqCIOgMbAL+JwzD\njzedKwHqjhIavaHq6urDPnf+/84/3ltKknRWakw1snTdUp5Y+gS3X3s7ydIkAP/95//muZeeY+yA\nsYzqN4ryNuUFrlSSJEmSJJ1N0g1p2gRtKLmg5JT0171798OeLy8vP+Y19I93JtBFQPlrjk+Vrk2P\nm49w/YWmx27A4cKpHk2P64Mg+Bfgk033rAuC4BHgzjAMn81XsZIkqWXisTiDegxiUI9BuXPpdJqn\nVj3Ftl3bWLlhJT++/8cM7DGQsQPGMrz3cEqLSwtYsSRJkiRJ0unpuEKgMAyjRzs+yc5peqw9wvWa\n17R7rfZNj+8DioBvAlvJ7hH0cWB4EAT9wzB8KQ+1kkwm83Gbs1JNTfZH6fdQOnaOG7Vmv//a75m9\ndDbTF0xn0ZpFLFi9gAWrF1BSVMKd77qTq4dffVz3ddxILee4kVrOcSO1nONGajnHjdRyLRk3qfoU\nF1xwAZXdK092WXmTlz2BgiDoAuwIw3DvG7QbBSTDMHwkH/0ep6Kmx45A7zAMtzcdPxgEwVayodCn\ngTsLUZwkSTq8ZGmSq4dfzdXDr2bn7p3MXDyTRxc8yor1K7jogoty7ZauXQpA30v7uoeQJEmSJEk6\nq+UlBAKeAz4D/OAN2v0TcBNw3gn0tbvp8UixXJvXtHutA0HVg80CoAN+STYEuuq4q5MkSSddRdsK\nbhh7AzeMvYGXt79Mx/Ydc9d+/refs2zdMjpUdGDC4AlMHDqRSztfSiRyzMvlSpIkSZIktQr5CoEi\nQOZoDYIgaA8M5NC9hI7Hc019dT7C9QN7Bq07wvXnmx5jh7m2renebY+3OEmSdGqdV3nwsyXpdJq+\nl/bl5e0vs3XHVu6ddi/3TruXrud1ZeKQiVw9/OpD2kuSJEmSJLVmxx0CBUHwVeArTYcZ4PtBEHz/\nGJ666Hj7BAjDsCYIguXAgCAISsIw3N+sphgwAtgUhuELR7jFaqAa6H+YaxeSDbQ2n0iNkiSpMKLR\nKLdffzu3XXsbKzesZPqC6Ty26DE2vryRXzz4C86tOJe3XPkWADKZjLODJEmSJElSq3YiM4H+ANQB\nw4BrgJ0ceQk2gP3AKuCLJ9DnAb8E7gJuB37Y7Py7gQ7AVw+cCIKgB1AXhuFzAGEY1gdBcC/w0SAI\n3haG4UPNnv/xpsfm5yRJ0hkmGo3S99K+9L20L/9y07+wcM1CHl34KKOvGJ1r88M//ZDnX3qe0f1G\nM7LvSDdOlSRJkiRJrc5xh0BhGK4FvgMQBEEa+GYYhm+0J1C+/BR4F9nZR13Jzi66HPgUsAJoPiNp\nDRACPZqd+yowGbgvCILvkF0ibhzwHmBp0/0lSVIrEI/HGd5nOMP7DM+dS6fTPL7kcV7d9SqL1izi\nR3/+ESP6jGDikIkM7zuc4kRxASuWJEmSJEnKj2ie7jMWmJKne72hMAwbgEnAj4AbgF8D7wN+AVwV\nhmHtGzz/VbIzmH4DfBj4GTAG+EHT8/edtOIlSVLBRaNRfvPV3/Bv7/k3+l3aj8ZUI48//ThfuvtL\nXPPpa5g2f1qhS5QkSZIkSTphkUwmk7ebBUEwNAzD+c2OY2TDmQFk99n5eRiG2/PW4Wmkurr6sN/I\nlVNWnupSWo2amhoAl+eRWsBxI7VcTU0N23Zt46nVTzF9wXTCjSE/+/zP6HVxLwBWrl9JLBajR9ce\n7iEkNfHvG6nlHDdSyzlupJZz3Egt15Jxk6pP0XloZyq7V57sso6qvLz8mH9BcSJ7AuUEQZAEpgF9\ngXOaXfoHMBE4UNBHgiAY3DQTR5Ik6bRQ1a6KWybewi0Tb2HT1k107tA5d+2nD/yUpWuXcmHHC5k0\ndBKThkyiU4dOBaxWkiRJkiTp2ORrObg7geHAn4MgiAAEQfB2sku2rQGuBf4DuBD4bJ76lCRJyrsL\nO16Ym/GTTqcJugS0b9ueTVs38csHf8nNX7qZ279zO3+Z+Rd27tlZ4GolSZIkSZKOLC8zgcjuyzMn\nDMNbm517N5AB3huG4RLgoSAIrgDeAnwmT/1KkiSdNNFolE/c9Ak+esNHWfLMEqbOn8oTTz/Bqg2r\nWLVhFYlEgmtGXVPoMiVJkiRJkg4rXyFQF+CBAwdBEESBccCzTQHQAUuACXnqU5Ik6ZSIx+IMuXwI\nQy4fwr66fcxZNocZC2dw1YCrcm3ufuBuXtn5CpOGTmJgj4HEY/l6myVJkiRJknR88vXbiRKgodnx\nYKAt8NvXtEuRnR0kSZJ0RiotLmXikIlMHDIxdy6VTvGPJ//Bjt07mDpvKu3btmf84PFMGjqJHl17\n5JaXkyRJkiRJOpXytSfQFqBvs+N3kQ17Hn5Nu8uAV/LUpyRJ0mkhFo3x48/+mA9e80Eu7HghO3bv\n4L4Z93Hbt27jnV95J0+teKrQJUqSJEmSpLNQvmYCPQrcGgTBt8nO9vkosBmYdqBBEAR9gOuB+/PU\npyRJ0mmjc4fO3PrWW3n/W97PMxufYdr8acxYOINNWzdxTtk5uXbPv/Q85W3KqTinonDFSpIkSZKk\ns0K+QqCvA28F/q3puAG4IwzDFEAQBAGwuOn8/81Tn5IkSaedSCRCz4t60vOintxx4x0sXbuUy7td\nnrv+X3/4L5auXcrQy4cycehERvUbRUlxSQErliRJkiRJrVVeQqAwDDcFQXA5cCNQAUwLw3BpsybP\nA8uAL4Zh+HQ++pQkSTrdxWNxBvUclDtuTDVSUpQNfOaumMvcFXMpLS5l9BWjmTR0EgN7DCQey9dn\ndCRJkiRJ0tkukslkCl1Dq1BdXX3Yb+TKKStPdSmtRk1NDQDJZLLAlUhnDseN1HKFGDc7d+9k5qKZ\nTFswjVUbVuXOf/Y9n+WaUdecsjqk4+XfN1LLOW6klnPcSC3nuJFariXjJlWfovPQzlR2rzzZZR1V\neXl55Fjb5v2jpkEQXAgMADqSnRH0fNP5aBiG6Xz3J0mSdKapaFvBDeNu4IZxN7D5lc1MXzCdmYtm\nMuaKMbk2f5j2B+rq65g4dCKdzu1UwGolSZIkSdKZKm8hUBAEPYCfAKObnb4eeD4IghjwTBAEnwnD\n8K/56lOSJOlM17lDZ259663c+tZbc+dS6RR/nPZHtu/ezi8e/AV9LunD5GGTGTdoHG2TbQtYrSRJ\nkiRJOpNE83GTptk/c4AxwHrg769p0onsXkFTgiAYno8+JUmSWrMv3PoFJg+dTElRCSvWr+D7v/8+\n137mWr7wky/wzMZnCl2eJEmSJEk6A+QlBAK+DLQHbgvD8DLgX4DcmnRhGL4ADAP2A3fmqU9JkqRW\nKRaNMfTyoXz5g1/mwe8/yJc/8GWG9BpCKpXiiaefoK6+Lte2em816bQr7kqSJEmSpNfL13Jwk4AH\nwzD8ZdNx5rUNwjB8NgiC+4C35KlPSZKkVq+spIzJwyYzedhktu3axuyls+l7ad/c9X//+b+z+ZXN\nTBw6kclDJ9P1/K4FrFaSJEmSJJ1O8hUCnQcsOYZ2z5JdFk6SJEktVNWuiuuvuj53XFdfx+ZXNvPS\n9pe45+F7uOfhewi6BkweNpkJgyfQvm37AlYrSZIkSZIKLV/LwdUA5x5Du07A7jz1KUmSdFYrLirm\nT9/8E3d9+i7eOvKtJEuShBtD7vrTXVz/2et54uknCl2iJEmSJEkqoHyFQIuAfwqC4IhBUBAElwDv\nAhbmqU9JkqSzXjQaZUAwgM+993M8+P0H+Y8P/wdX9r2SeCxOn0v75NrNWDSDhasXkkqnClitJEmS\nJEk6lfK1HNz/Bf4BLAyC4LvAK03nuwVBMBmYAHwQaAvclac+JUmS1ExxUTHjBo1j3KBx1O6vpayk\nDIBUOsWPpvyIbbu2UVleycQhE5k8bDKXdr6USCRS4KolSZIkSdLJkpcQKAzD/xcEwWeB7wD/3XQ6\nA/yfpv+OACng82EYPpKPPiVJknRkBwIggIaGBt428m1Mmz+NF199kT9O/yN/nP5Hul3QjcnDJvOm\nEW9y/yBJkiRJklqhfM0EIgzD7wdB8HeyM36GAh3IBkEvA/OB34RhuCZf/UmSJOnYlBSX8MFrPsgH\n3vYBVm1YxdT5U5m5cCYbtmzgJ/f/hF4X98qFQJlMxtlBkiRJkiS1EnkLgQDCMHwG+Ew+7ylJkqT8\niEQi9L6kN70v6c0/3/TPzF85n7kr5tKve79cmy/+9IskYgkmDZvE0F5Dicfz+nZRkiRJkiSdQv6r\nXpIk6SyUiCcY2X8kI/uPzJ3bXbObJ5c9SSqdYsaiGbQ7px0TBk9g8rDJ9OjawxlCkiRJkiSdYaKF\nLkCSJEmnh7bJtvzpm3/iw9d9mIvOv4hde3bx55l/5rZv3ca7vvIuVj+3utAlSpIkSZKkFnAmkCRJ\nknLOqzyP9775vbznTe8hfCFk6rypPLrgUV589UXOqzwv127N82vo3KEz55SdU8BqJUmSJEnS0RgC\nSZIk6XUikQg9uvagR9ce3HHjHax9YS3t27YHIJ1O88WffJFde3Yxou8Irh52NUN7DyURTxS4akmS\nJEmS1JwhkCRJko4qHovT6+JeuePqvdVc2PFCXt31KrOWzGLWklmUJ8sZP3g8k4ZN4vKLL3f/IEmS\nJEmSTgN52RMoCAL3FpIkSTpLVLSt4Ief+iF/+c5f+OjbP0q3C7pRXVPN/bPu5yPf+QjL1i0rdImS\nJEmSJIn8zQTaHATBvcBvwzD0X/2SJElngQ4VHXjX1e/inZPfybObn+WReY+wfN1y+lzaJ9fm7gfu\npmP7jowbNI62ybYFrFaSJEmSpLNPvkKgjsCngE8GQbAC+C3w+zAMX87T/SVJknSaikQidL+wO90v\n7H7I+Z17dnLv1HtJpVP88E8/ZESfEUweNpnhfYa7f5AkSZIkSadAvkKgTsBNwM3AMOB7wHeCIHgU\nuAf4axiG+/LUlyRJks4ApUWlfO59n2PqvKksfmYxjz/9OI8//Thtk20ZN2gc733ze+lQ0aHQZUqS\nJEmS1GpFMplMXm8YBEFnDgZCg4EMsBf4C9nl4h7La4enierq6sN+I1dOWXmqS2k1ampqAEgmkwWu\nRDpzOG6klnPcnBqv7nyV6QumM3XeVNa/uJ5oJMr9372fqnZVANTur6WspKzAVepYOW6klnPcSC3n\nuJFaznEjtVxLxk2qPkXnoZ2p7F55sss6qvLy8sixts17CNRcEARdgXc1ffUkGwhtBn4N/CwMwxdP\nWuenmCFQ/vmXltRyjhup5Rw3p96zm59l1YZVXDv6WgDS6TQ3f+lmKttWMnnYZMYNGkd5m/ICV6mj\ncdxILee4kVrOcSO1nONGarnWHgLlazm4wwrDcGMQBD8BXgU+B1wMXAh8Gfh8EAR/BD4ThuHWk1mH\nJEmSTh+Xdr6USztfmjve/Opmdu3ZxUvbXmLlhpX88E8/ZHif4UweOpkRfUdQlCgqYLWSJEmSJJ25\nTkoIFARBArgGeD8wEUgAESAEfgOsAj4OvBsYHwTB6DAM15+MWiRJknR669KxCw9+/0FmL53NI/Me\nYdHqRcxeOpvZS2fTpqwNP/23n3LR+RcVukxJkiRJks44eQ2BgiAYANwK3AK0Jxv8VJMNfv43DMN5\nzZo/FATBu5qu/Qh4cz5rkSRJ0pmjtLiUSUMnMWnoJLbt2sajCx9l6ryp7Ni9gws7XphrN3XeVHpe\n3JMuHbsUsFpJkiRJks4MeQmBgiD4FPA+oDfZ4CcNzAD+F3ggDMP9h3teGIa/D4LgauDt+ahDkiRJ\nZ76qdlXcMvEWbpl4Czv37CQWjQGwa88uvvXrb5FKp+h5UU+uHnY14wePp9057QpcsSRJkiRJp6d8\nzQT6ftPjs8CvgXvCMNx8jM9dCdyUpzokSZLUilScU5H777qGOiYPm8xjix9jzfNrWPP8Gu6achfD\neg9j8rDJXNnvSooTxQWsVpIkSZKk00u+QqBfkl3ube5xPPenwO/zVIckSZJaqY7tO/KF93+BT73j\nU8xeNptp86axYPUCnlz+JHNXzOUv3/kLHSo6FLpMSZIkSZJOG/kKgS4BOr1RoyAIfgEMD8Pw8gPn\nwjCsJrtvkCRJkvSGSopLmDhkIhOHTGTH7h08uvBRtry6JRcAZTIZ/uUH/8Ll3S5n8rDJXHT+RYUt\nWJIkSZKkAslXCHQV8PdjaBcDuuWpT0mSJJ3l2rdtz03jD11ZeNVzq1gSLmFJuITf/r/fEnQNmDxs\nMhMHT6SibcUR7iRJkiRJUutz3CFQEATXAtc2O3VzEAS9j/KUKmAysP14+5QkSZLeSK+LenHXp+9i\n2vxpPLboMcKNIeHGkP+5738Y3Gswn3/f56ksryx0mZIkSZIknXQnMhOoGBgOXAZkgMFNX0dTD3z1\nBPqUJEmSjioajTIgGMCAYACfvOWTzFk+h2nzpjFv5TzWvrCW8jblubbrN6/n4gsuJhqNFrBiSZIk\nSZJOjuMOgcIwnAJMCYKgguzsnp8AU47ylP3AujAMdxxvn5IkSVJLFBcVM37QeMYPGs/OPTt54eUX\niMeyb4F31+zmQ9/6EBXnVDBhyASuHnY13Tq5crEkSZIkqfU44T2BwjDcGQTBb4C/hWH4eB5qkiRJ\nkvKu4pwKKs45uCfQlle3UNWuipe2vcS9U+/l3qn30v3C7kweNpkJgydQ1a6qgNVKkiRJknTiIplM\nptA1tArV1dWH/UaunLLyVJfSatTU1ACQTCYLXIl05nDcSC3nuDm7ZTIZlj+7nKnzpjJz8Uz21u4F\nIBaN8dfv/fWQ0EgHOW6klnPcSC3nuJFaznEjtVxLxk2qPkXnoZ2p7F7YfWbLy8sjx9r2uGYCBUHw\nFWBaGIbzmh0fq0wYhl8/nn4lSZKkfIpEIvTr3o9+3fvxr7f8K0+teIqp86eyv25/LgDKZDL8aMqP\nGNxrMIN7Dc4tJydJkiRJ0unueP8F++/AXmBes+MMcCzpUwYwBJIkSdJppShRxJgBYxgzYAzpdDp3\nfs3za5gyYwpTZkzJ7R80eehkgq4Bkcgxf/hKkiRJkqRT7nhDoFuBha85liRJklqFaDSa++8OFR24\n7drbmDpvKi9sfYH7ZtzHfTPuo0vHLkwaNombxt9EWUlZAauVJEmSJOnw3BMoT9wTKP9cw1RqOceN\n1HKOGx2rTCZDuDFk6vypPLrgUXbu2Um7Nu3463/+lXg8+9mquvo6iouKC1zpyee4kVrOcSO1nONG\najnHjdRy7gkkSZIkiUgkQo+LetDjoh7cceMdLFqziJ17duYCoD21e7jxczcyIBjA5GGTGd53OMWJ\n1h8ISZIkSZJOX8cVAgVB8KsT6DMThuEHT+D5kiRJUkHFY3GG9R52yLmV61eyr24fs5fNZvay2bQp\nbcPYgWOZNHQS/br3O2SJOUmSJEmSToXjnQn0/hPoMwMYAkmSJKlVGd5nOPd/935mLJzB1HlTWbtp\nLQ/NeYiH5jzEeZXncc9X73HvIEmSJEnSKXW8IdDYvFYhSZIktQJV7aq4eeLN3DzxZjZs2cD0+dOZ\nNn8aHdt3zAVAmUyGh+Y8xIg+I6hqV1XgiiVJkiRJrdlxhUBhGD6e70IkSZKk1qTbBd24/frbue3a\n26jeW507H24M+c/f/ifRSJSBPQYyadgkxlwxxllCkiRJkqS8c2FySZIk6SSKRqNUtK3IHcdiMUb1\nH0U0GmXhmoV883+/yTV3XsPXfvE1nlrxFKl0qoDVSpIkSZJak+OaCRQEwUzgJ2EY3tfs+FhlwjAc\nfzz9SpIkSWe67hd259sf+za7a3Yzc9FMps2fxvJnlzN9wXTmr5rP3773N2LRWKHLlCRJkiS1Ase7\nJ9BVwN9fc3ysMsfZpyRJktRqtE225box13HdmOt48dUXmT5/OtFolEQ8AUDNvho++t2PMvqK0Uwa\nOoku53UpcMWSJEmSpDPN8YZAFwM7XnMsSZIk6Th0OrcT73/r+w85N2fZHDZs2cCGLRv49T9+TdA1\nYNKQSYwfPJ6qdlWFKVSSJEmSdEY5rhAoDMONRzuWJEmSdGImDJlAZXkl0+ZPY9aSWYQbQ8KNIf/z\n5/9hYI+BfPfj36UoUVToMiVJkiRJp7HjnQl0WEEQJIARQA+gguzSbzuAVcC8MAzT+exPkiRJaq1i\n0RiDeg5iUM9BfPqdn+bJ5U8yff50nlr5FPvq9uUCoEwmw8LVC7kiuCK3lJwkSZIkSZDHECgIgo8D\nXwPaHaHJK0EQfC4Mw9/kq09JkiTpbFBcVMy4QeMYN2gcu2t2s716e+7as5uf5VM//BTnlJ3D2IFj\nmTR0En0v7Us0Gi1gxZIkSZKk00FeQqAgCG4D7mo6XASsIDsDKAK0B/oBVwC/CoKgIQzDe/PRryRJ\nknS2aZtsS9tk29zxnto9XNL5EtZvXs+Dsx/kwdkP0rF9RyYMmcCkIZO4pPMlBaxWkiRJklRI+ZoJ\n9AlgN/CmMAyfOlyDIAhGAv8A7gQMgSRJkqQ8GBAM4Ddf+Q0bXtzAtPnTmL5gOlt3bOX3j/yevz3x\nNx76/kMuEydJkiRJZ6l8hUDdgbuPFAABhGE4JwiCPwHvzlOfkiRJkpp069SNj7z9I3z4ug+zYv0K\nps2fRrI0mQuAavfX8sWffJGrBl7F2IFjD5lNJEmSJElqnfIVAu0Fth5Duxeb2kqSJEk6CaLRKP26\n96Nf936HnH/i6SdYuGYhC9cs5L/+8F8M7z2ciUMncmXfKykuKi5QtZIkSZKkkylfIdAsYMgxtOsH\nPJGnPiVJkiQdo1H9R/GF93+BafOnseSZJcxeNpvZy2aTLEkyZsAYPvvuzxKP5+ufB5IkSZKk00G+\n/pX3GWB2EASfAn4YhmGq+cUgCCLAx4DBwOg89SlJkiTpGCVLk7x5xJt584g3s23XNmYsnMH0BdN5\nZuMzPP/S87kAKJPJsG7TOrpf2J1IJFLYoiVJkiRJJ+S4QqAgCH51mNOLge8BXwqCYBHwCpAGqoCB\nTY9/A+4A7jyuag+toT3wVeA64HxgG/Aw8OUwDF9q4b1KgGXAZcDYMAxnnWh9kiRJ0umqql0VN0+8\nmZsn3swLL7/Anto9uWvrX1zPB77xAS6ouoAJQyYwYcgEul3QrYDVSpIkSZKO1/HOBHr/Ua61AyYc\n4dp1QIYTDIGCICgluwRdD+C/gUXA/2fvzuOjqu/9j7/OzGTfdwIhgSycsBNAdgQRaYtLrVaxLq37\n7e2tV6vbDR59AAAgAElEQVStt623tbb32rrV2tuq92epVntba3GrVUsVQURowo4N5ACBLIQAgezb\n7L8/BkaCoAQGJgnv5+ORx2TO9zvnfGb0+4DDe77fb9Hh884zTXOSZVlNvTjlDwgEQCIiIiIi55Tc\nQbk9nh9oPEBaUhp7D+7l+bee5/m3nqcgp4D5581n/nnzyU7PDlOlIiIiIiIi0lunGgLdFNIqeu8u\nYCzwb5ZlPXnkoGmam4FXCYQ6d5/MiUzTHEtgObuNQEnoSxURERER6T9mjJvBKw+9wubtm3mn7B1W\nbFhB5Z5KKvdU8n9L/4+/PvrXcJcoIiIiIiIiJ+mUQiDLsn53Kq8zTTMWiDiV1x7jq0AHsPiY468D\ne4DrTdO8x7Is/2fUYwOeAaqB/wWeDkFtIiIiIiL9mt1mZ2LxRCYWT+Tua++mtLyUd8reISUhBYfD\ngdPppNvZzQPPPsDciXM5f8L5xMfGh7tsEREREREROcapzgQ6Vd8isJRc0amewDTNRALLwH1gWZbz\n6DbLsvymaZYBVwDDgV2fcbpvAlMJLF839FRrEhEREREZqCIcEcwaP4tZ42f1OL6mfA2rt6xm9ZbV\nPOp4lOljpzN/ynxmjJ1BVGRUmKoVERERERGRo4U0BDJNsxgYB0QfpzkFuAXIOs3L5B1+3HOC9prD\nj/l8SghkmuZQ4L+BFyzLWmaa5o2nWddxdXR0nInTnlP0GYr0nsaNSO9p3Ij0ziRzEndefScrNqxg\nS+UW3t/4Pu9vfJ/YqFimj53OtxZ9iwhHKBYBEBlY9OeNSO9p3Ij0nsaNSO+dzLjxuX3s3buXRhrP\nQkVQVHTK82mCQhICmaYZAbwAXPUZXQ3g76d5uYTDj50naO84pt+JPAW4gHtOsx4RERERkXNOYlwi\nC6cvZOH0hRxsPsjKTStZvnE522u2U7OvpkcAZNVYFOUUYbPZwlixiIiIiIjIuSdUM4HuAa4mEMCs\nBdqBS4BVh3+fCnQBDwGntJ9QKJmmeQ1wMXCzZVkNZ/JacXFxZ/L0A9qR5FWfocjJ07gR6T2NG5He\nO3bcxMXFccOQG7jh4hvYc2APze3NwbZde3fx74//O5kpmcw/bz4XTb2IwpxCDMMIW/0i4aA/b0R6\nT+NGpPc0bkR6rzfjxuvyMnjwYNKK0s50WSETqq/iXQvUAUWWZc0D/v3w8Ucty1oIFAClwCyg7TSv\n1Xr48UT/ReKP6deDaZqpwBPA+5ZlPXuatYiIiIiIyFFyMnMYkz8m+LyhqYGs1CwONB3gD3//Azf9\n5Cauv/96nvvrc+w5cKIVnkVERERERCQUQhUCFQJ/sCxr3+Hn/qMbLctqBr4KnMfpL7+2+/D5c07Q\nfmTPoB0naH8ESAZ+ZJpmzpEfAnsWAWQcPqbdbEVERERETtPU0VP584N/5tff+TVfmvslkuOTqd5X\nzW/+8htu+a9bcHvc4S5RRERERERkwArVcnA2oOWo587Dj8HZOpZldZimuQS4EXj0VC90+DxbgImm\naUZbltV9pM00TTswA6i1LKvmBKe4EIgElp+g/aXDjxcAK061ThERERERCbDZbIwvGs/4ovHcefWd\nrKtYx7tr3yUuOi64d1C3s5vvPfk9Zk2YxQWTLiA1MTXMVYuIiIiIiPR/oQqB9gITjnp+8PDjqGP6\ntQHDQnC9xcAvgX8hsLTbEdcDmcD9Rw6YplkMOC3L2n340M1A7HHOeSFwF/B94KPDPyIiIiIiEkIO\nh4NpY6Yxbcy0HsdXf7SatdvWsnbbWp548QlKzBIuPO9C5pTMISk+KUzVioiIiIiI9G+hCoHeBW4x\nTfMJ4GHLsupM06w8fGyxZVlVpmnGAF8EGkNwvaeB64BHTdPMA9YBo4G7CYQ3R8802gZYQDGAZVnv\nHe+EpmmmH/51jWVZK0JQo4iIiIiInKRpY6bxw1t+yLtr36WsvIz1FetZX7Gex/7vMSaPnMyD//og\nUZFasVlERERERKQ3QrUn0I8JzP75JjD28LFngEHAVtM01wO1QAnw99O9mGVZbmAB8D/AlcBzwNeA\n3wBzLcvqPN1riIiIiIjI2RMbHcuCqQt4+JsP85dH/8L3vvY9poyaAkBja2OPAGjVplV0duuv/CIi\nIiIiIp/F8Pv9ITmRaZrZBJZne96yrF2madoIhDJfA4zD3ZYBiyzLCsVsoD6lpaXluB/kP1/659ku\nZcDo6OgAIC4u7jN6isgRGjcivadxI9J7Z3PcNLU1cbD5IEVDiwCoqq/i+vuvJzIikhljZzBv8jxm\njJ1BdFT0Ga9F5HTozxuR3tO4Eek9jRuR3uvNuPG6vORMzSGtKO1Ml/WpkpKSjM/uFRCq5eCwLKse\n+NFRz33AzaZpfh/IA+osy9oTquuJiIiIiMjAl5KQQkpCSvB5R1cHYwvG8lHlR6zYsIIVG1YQExXD\nzPEzuXDyhUwfMx2HI2S3OSIiIiIiIv3aGb87sixrH7DvTF9HREREREQGvtH5o3nqP55if+N+lq9f\nzrK1y9hWtY13y97lw80f8tfH/orj8G2O3+/HME76C3IiIiIiIiIDTshCINM044GvAxcDxUAK4Aca\ngXLgdeA3lmU5Q3VNERERERE5N2WlZnHNRddwzUXXUNdQx3vr3sPldgX3DnK6nFx///VMHjmZeZPn\nUWKW4LBrhpCIiIiIiJxbQnIXZJrmUOB9Asu+HftVu+zDPxcC3zBNc55lWftDcV0REREREZEhGUO4\n4Qs39Di2wdpA/aF63lj1Bm+seoOUhBTmTprLhZMvZFzhOGw2W5iqFREREREROXtCdefzMDAM+Dtw\nCYEwKAFIPHz8i8B7wEjgoRBdU0RERERE5Limj53O8/c/z9cu/ho5mTk0tTXx6opX+eaj3+SK715B\nS3tLuEsUERERERE540K1HsJ8YJVlWV84Tls7UAO8YZrmamBhiK4pIiIiIiJyQvlD8skfks+tl93K\njtodLFu3jPfWvkdsTCxJ8UnBfi++8yLji8ZTnFesPYRERERERGRACVUIFAf87ST6vQtMCNE1RURE\nREREPpNhGIzIHcGI3BF8/Utfp6mtKdhWu7+WX/35VwAMShvE3IlzuWDSBYwaPkqBkIiIiIiI9Huh\nCoEqgeST6Jd0uK+IiIiIiMhZZxgGqYmpwecOu4Mvz/syKzasYN+hfbz4zou8+M6LZKZkcsGkC/jq\nwq/2mDUkIiIiIiLSn4RqT6CngEWmaZ4wCDJNM5HAfkFPh+iaIiIiIiIipyU7PZu7rrmLV372Ck/e\n+yRXXXgVGckZHGg6wOsrXycqIirYt3Z/LT6fL4zVioiIiIiI9M4pzQQyTTP3mEN/BcYAG03T/BWw\nBjgA+IB0YArw78BS4IVTrlZEREREROQMsNlsjCscx7jCcdxx1R1s3b2V2v21REdFA+Byu7jlv28h\nNjqWuRPnMnfiXMYWjsVus4e5chERERERkRM71eXgqgD/cY4bwMOf8roC4PbTuK6IiIiIiMgZZbPZ\nGFMwhjEFY4LH9h7cS2JcIvsO7WPJe0tY8t4S0hLTmDNxDnMnzWV80XgFQiIiIiIi0uecahhTw/FD\nIBERERERkQFnWPYw/vzgn6mormD5+uUsX7+c+oP1vLLiFV5Z8Qov/OgFhg8eHu4yRUREREREejil\nEMiyrGEhrkNERERERKRPMwyDkcNGMnLYSP71in9le812lq9fzq66XT0CoHueuIes1CwumHQBJWYJ\nDrsWQhARERERkfDQ3YiIiIiIiEgvGYaBmWdi5pk9jtcfrKe0vBSAv3zwF5Likji/5HwumHQBE82J\nOBy6BRMRERERkbMnpHcgpmnmAVcB44F0wAc0AGuBFy3LOhTK64mIiIiIiPQlg9IG8ewPng0uGVe7\nv5Y3Vr3BG6veIDEukcfufIyRw0aGu0wRERERETlHhCwEMk3zHuDBw+c0jmm+AfiZaZr/alnW70N1\nTRERERERkb7EMAyKhhZRNLSI2754G7vqdrFiwwqWr1/O3oN7yRuUF+z711V/JTUxlckjJxMZERnG\nqkVEREREZKAKSQhkmualwCNAG/AHoIzADCAbkAHMABYBz5qmWWlZ1ppQXFdERERERKSvMgyDgpwC\nCnIKuOWyW2hoaiA2OhYAt8fNr5b8ivbOduKi45g+bjpzSuYwdfTUYB8REREREZHTFaqZQHcAB4Ap\nlmXVHKd9sWmaDwNrgO8AV4TouiIiIiIiIv1CRkpG8He3x801869h+YblVO6p5N2yd3m37F0iIyKZ\nMmoKt1x2C0VDi8JYrYiIiIiIDAS2EJ1nIvDyCQIgACzLsoCXgZkhuqaIiIiIiEi/FBsdy42X3Mjv\nfvg7/vRff+IbX/4GY/LH4HK7WLV5FTbj41u17TXbOdh8MIzVioiIiIhIfxWqmUAJwL6T6FcDJIfo\nmiIiIiIiIv3ekMwhXLvgWq5dcC0Hmw9StrWM/CH5wfZHfv8I26q2MTp/NHNK5nB+yfnkZOaEsWIR\nEREREekvQhUCHQLMk+hXcLiviIiIiIiIHCM9OZ2FMxYGn3s8HtKT04mMiKR8Vznlu8p58uUnKRhS\nwPkl5/P5aZ9nSOaQMFYsIiIiIiJ9WahCoFXAFaZpzrUsa8XxOpimORe4GngjRNcUEREREREZ0BwO\nBz/9xk/pcnZR+s9S3t/4Pqu3rKayrpLKukpyB+UGQ6D2znZio2Ox2UK16reIiIiIiPR3oQqBfgpc\nBrxrmuZ7wBrgAGAAmQT2AZoDuIAHQ3RNERERERGRc0JMVAxzJ81l7qS5uNwuNlgbWLlxJdPHTA/2\n+eVLv6S0vJTZE2Yzp2QOJSNKcDhCdcsnIiIiIiL9UUjuCCzL2mia5pXAb4H5wIVHNRuHH+uAmyzL\n2hyKa4qIiIiIiJyLIiMimTZmGtPGTAse8/v97Nyzk0Mth3jt/dd47f3XSIhNYOb4mcwpmcOUUVOI\niowKY9UiIiIiIhIOIftamGVZb5qmmQt8HpgMZAB+AjOC1gJ/syzLE6rriYiIiIiISIBhGCy+bzFW\njcXKjStZuXElVfVV/G3N3/jbmr/xtYu/xm1fvC3cZYqIiIiIyFkWkhDINM0hQLtlWS3A64d/RERE\nRERE5CwxDIPivGKK84q5/fLbqa6vZuWmlby/4X3On3B+sN/L773Mmn+uYU7JHGaNn0VKYkoYqxYR\nERERkTMpVDOBdgIPAD8L0flERERERETkNORl53FD9g3c8IUbehx/b/17bN6xmX/88x88/PuHGZM/\nhpnjZzJ7/GxyB+ViGMYJzigiIiIiIv2NLUTn2QHkhOhcIiIiIiIicob817/8F/9xw38wbcw0HHYH\nH1V+xNOvPM1191/Hz//483CXJyIiIiIiIRSqmUD/CrxomuZ24HnLsppDdF4REREREREJoZTEFC6d\nfSmXzr6Uzu5OysrL+GDzB6z5aA2jho8K9ttQsYG317zNrPGzOG/UecRGx4axahERERERORWhCoH+\nDVgH/BR41DTNaqAR8B6nr9+yrJkhuq6IiIiIiIicotjoWOZOmsvcSXPxeD34/f5g27J1y3h7zdu8\nveZtIh2RTB45mZnjZzJz3EzSk9PDWLWIiIiIiJysUIVA1xzzvODwz/H4T3BcREREREREwsRh73l7\nuGj+IgalDWLV5lVs3b2V1R+tZvVHq3mER5g/ZT4/uvVHYalTREREREROXqhCoAtCdB4RERERERHp\nA3IH5XLDF27ghi/cwKGWQ6zesppVm1exdttaMpMzg/32HdrHS+++xKwJsxhXOO4TYZKIiIiIiIRP\nSP52blnW+6E4j4iIiIiIiPQ9aUlpwX2Eup3dON3OYNuqzat4adlLvLTsJRJiE5gxdgYzx89k6uip\nxMXEhbFqEREREREJ+Ve0TNMcBhQDyUA3sB+otixrb6ivJSIiIiIiImdXdFQ00VHRweclI0q49nPX\n8uHmD6neV83S0qUsLV1KhCOCaaOn8eA3HsQwjDBWLCIiIiJy7gpZCGSa5mXAw0DRCdo3A/9hWdY7\nobqmiIiIiIiIhFdBTgHfyPkG37jyG9Tsr2HV5lV8uPlDPtr5EV6fNxgAeTwe/m/p/zFj3AwKcwoV\nDImIiIiInAUhCYFM07wEeAWwAfsAC2g6/DyZwMygCcBbpmkuVBAkIiIiIiIy8ORm5XLtgmu5dsG1\nNLU10dbZFmzbvHMzz7z+DM+8/gxZqVnMGj+L6WOnU2KWEBURFcaqRUREREQGrlDNBLoPcAM3WJa1\n5NhG0zQN4BrgWeB+QCGQiIiIiIjIAJaSkEJKQkqP55fNvowPN3/I/sb9vLz8ZV5e/jLRkdFMKp7E\n/bfeT2x0bBgrFhEREREZeEIVAo0Ffne8AAjAsiw/8EfTNC8Arg3RNUVERERERKSfyB+Sz7033Ivv\nOh/bqrax+qPVrNmyhu2129lVt4uYqJhg3yXvLWFE7ghG54/GbrOHsWoRERERkf4tVCGQB6g9iX61\ngCtE1xQREREREZF+xmazMTp/NKPzR3PbF2+joamBfY37gnsEHWw+yC9e/AUAiXGJTB09leljpzNt\nzDQS4xLDWbqIiIiISL8TqhBoPTDmJPqNAdaE6JoiIiIiIiLSz2WkZJCRkhF87vf7uerCq1jz0Rr2\nHNjDO2Xv8E7ZO9iMQHj0va99j9xBuWGsWERERESk/whVCPR94B3TNK+1LOsPx+tgmuaVwEXAvBBd\nU0RERERERAaYjJQM7lx0J3cuupOa/TWs2bKG1R+tZtP2TWzdvZXUxNRg37dWv0ViXCKTiycTHRUd\nxqpFRERERPqmUIVAs4HXgBdM0/wR8A/gAOAD0oEpwEjgz8DVpmlefczr/ZZl3ReiWkRERERERGQA\nyM3KJfeiXBZdtIiOrg6sGov42HgAvD4vTy55kub2ZiIdkZSYJcwYO4Pp46YzOH1wmCsXEREREekb\nQhUCPQz4AQMoPPxzPFcd7nMsP6AQSERERERERI4rLiaOiebE4HO3282V865k9ZbVVFRXUFpeSml5\nKY+/+DjDsodx56I7OW/UeWGsWEREREQk/EIVAv2YQJAjIiIiIiIicsZFR0Vz0yU3cdMlN9HY2sg/\n/vkPVm9Zzdqta6mqryIhNiHYd9XmVbR1tDFtzDRSElPCV7SIiIiIyFkWkhDIsqwfheI8IiIiIiIi\nIr2VmpjKwhkLWThjIR6Phy2VWxiROyLY/uLfX2TTjk0YhkFxXjEzxs1g2phpmLkmNpstjJWLiIiI\niJxZoZoJJCIiIiIiIhJ2Doejx7JxAPOnzCcqMoqN1ka2VW1jW9U2Fv9lMUlxSdx86c1cOe/KMFUr\nIiIiInJmKQQSERERERGRAe3yOZdz+ZzL6XJ2sb5iPWs+WkNZeRn1h+qJiY4J9ttobWTNP9cwdfRU\nxhaMJTIiMoxVi4iIiIicPoVAZ5g9wo6ry4WBgc2hZQZERERERETCJSYqhlnjZzFr/Cz8fj+1B2pJ\nSfh4j6Bl65bx2vuv8YelfyAmKoYSs4Spo6YyZfQUcjJzMAwjjNWLiIiIiPSeQqAzrPjyYrqbuzm0\n/RBt+9pwd7jx+/3YHDbdQIiIiIiIiISJYRjkZuX2OPa5aZ8jJiqGsvIyKusqWb1lNau3rAZgxtgZ\nPHzHw+EoVURERETklCkEOsMMwyAmJYacqTkAONucHNp5iNY9rbg73Pg8PmwRCoRERERERETCbWzB\nWMYWjOXfvvxvNDQ1ULa1jLLyMtZuW0tedl6wX92BOn76/E+ZOnoqU0ZNoWhoETabVn4QERERkb7H\n8Pv94a5hQGhpaen1B+nudNNY2UhzTTOuNhdejxd7hF2B0GEdHR0AxMXFhbkSkf5D40ak9zRuRHpP\n40bONV6fF6fLSWx0LAAvL3+Zx//4eLA9JSGFKaOmMGX0FKaMmkJKYsonzqFxI9J7GjcivadxI9J7\nvRk3XpeXnKk5pBWlnemyPlVSUtJJhwiaCRRGEbERZI3NImtsFp5uD83VzTTuasTZ6sTn1gwhERER\nERGRvsBuswcDIIAFUxeQmphKWXkZpeWlHGg6wNLSpSwtXUpMVAxvPf4WEY4IAHw+n2YJiYiIiEjY\nKATqIxzRDtLNdNLNdLwuLy21LTTubKS7tRuv0xvYQ8imQEhERERERCTcEmITuGDSBVww6QL8fj9V\n9VXBQCgmKiYYALk9bq76/lWMzBvJhKIJTC6eTEFcQXiLFxEREZFzikKgPsgeaSe1IJXUglR8Hh+t\ne1s5tP0Q3c3deLo9CoRERERERET6CMMwGD54OMMHD2fRRYs4esl1q9riYPNBPmj+gA82fwDA0Kyh\nTBk1hUnFkzhv1HnERMWEq3QREREROQdoT6AQOZU9gXrL7/PTvq+dg9sP0nWoC3e3G8NmYLMPzKUF\ntIapSO9p3Ij0nsaNSO9p3IicvP2N+ykrL+PDzR+ycftGOro7gm1/+MkfyM3KBaCuoY705HSiIqLC\nVapIn6M/b0R6T+NGpPe0J5D0GYbNIGFwAgmDE/D7/XQc7OCQdYiOhg7cnQM7EBIREREREemPslKz\nuHT2pcybOA+v10vVgSrWbVtH5Z5KhmYODfb7z6f/k+p91YwrHBeYJTTyPIpyi7Db7GGsXkRERET6\nO4VA/ZRhGMRnxBOfEY/f76erqYtD2w/Rvq8dd5cbv88fWDbO0LJxIiIiIiIifYHdbmdc4TjGFY7r\ncdzldgUf121bx7pt6/jfV/+XhNgEJpoTuerCq5gwYkI4ShYRERGRfk4h0ABgGAaxqbHETosFwNnm\npHFXI2172nC2O/G5fdgiFAiJiIiIiIj0RZERkTz7g2dpam1ig7UhEARVrKP+YD3vb3yfBVMXBPtu\n3rGZ/Y37mWhOJD05PYxVi4iIiEh/oBBoAIpKiCJ7fDbZ47PxOD207mmlaVcT3S3deLo9GHYtGyci\nIiIiItLXpCSmcOF5F3LheRcCgX2C1lesp8QsCfb5y8q/sLR0KQDDBw9nUvEkJo+cTMmIEuJitP+D\niIiIiPSkEGiAc0Q5SC1IJbUgFb/PT8eBDg7tPERnQ2dg2Ti/lo0TERERERHpi4ZkDGFIxpAex0rM\nEprbm9m8YzO79+5m997dLHlvCXabncvOv4x7rr0nTNWKiIiISF+kEOgcYtgM4gfFEz8oHvh42bjW\nPa242l1aNk5ERERERKSPu2TWJVwy6xLcHjflu8pZt20d6yvWs3X3VlITU4P9dtTu4KlXnmJy8WQm\nj5xMYU4hNptWhBARERE51ygEOod9Ytm42lYadzXibHVq2TgREREREZE+LMIRwYQRE5gwYgK3fvFW\nOro68Pq8wfbS8lLKyssoKy8DICkuiYnFE5lUPImJxRMZmjlUXwAUEREROQcoBBLg8LJxhamkFh61\nbNyOQ3Qe1LJxIiIiIiIifd2x+wFdPONiMlMyWV+xnnXb1rG/cT/L1y9n+frlJMcn88ZjbwT77ju0\nj6zULN3viYiIiAxACoHkE45eNs7v9+Nqc9FY2UhrXSuuDi0bJyIiIiIi0telJKawYOoCFkxdgN/v\np66hLrh0XGJcYvB+rrO7k0X3LSIpPomSESVMGDGBErOEvEF5uucTERERGQAUAsmnMgyDqMQoskuy\nyS4JLBvXUttC064mulu68Tq9gRlCNt0ciIiIiIiI9EWGYZCTmUNOZg6Xz7m8R1tdQx1J8Uk0tjay\nbN0ylq1bBkBKQgoTRkzg9stvZ2jW0HCULSIiIiIhoBBIesUR5SCtMI20wjT8Pj/t+9tp3NlIx8EO\nPF0eLRsnIiIiIiLSjxQNLeL1R16nZl8NG7dvZOP2jWyyNnGo9RDL1y/nzkV3Bvu+9v5reH1eSswS\nhmcP132fiIiISD+gEEhOmWEzSMhOICE7Ab/fj7PNSVNlE21723B1uPC6NEtIRERERESkrzMMg7zs\nPPKy87h8zuX4/X5q99dSUV1BenJ6sN+L77zIngN7AEiOT2bCiAmB5eNGlDB88HBsNlu43oKIiIiI\nnIBCIAkJwzCITowOLhvn8/ho29dGU2UTXU1duDvd+H1+7SUkIiIiIiLSxxmGQe6gXHIH5QaP+Xw+\nrvvcdYHZQtZGGpobWLFhBSs2rADgpktu4pbLbgHA5XbhsDsUComIiIj0AQqB5IywOWwk5SSRlJME\ngLPdSUt1Cy21LThbnXhdXgy7gc2umwIREREREZG+zmazcensS7l09qX4/X7qGurYaG1k0/ZNbLA2\nMK5wXLDv6ytf57dv/JYJRRMoMUsoMUsoGFKgUEhEREQkDPptCGSaZipwP3A5kA0cBN4CfmBZVv1J\nvH7W4ddPAaKBWuBl4CeWZbWfqbrPVVHxUWSOziRzdCY+r4/Ohk4aKz/eS8jr8WKPsGuWkIiIiIiI\nSB9nGAY5mTnkZOYEQyG/3x9sr6yrpK2zjQ82f8AHmz8AICE2gfFF45k2ZhqXz7k8XKWLiIiInHOM\no/+i1l+YphkDlALFwK+AdUAR8G2gAZhkWVbTp7z+OuD3gAU8DbQClwBfAtYAsyzL8vWmppaWlv73\nQfYR7k43LXtaaK5qxtnqxOP0YBgGXc4uAOLi4sJcoUj/0dHRAWjciPSGxo1I72nciPTeuTRu/H4/\n9Yfqe8wU2t+4H4CZ42by0DcfAqDb2c3v3vod4wrHMaZgDAmxCeEsW/qgc2nciISKxo1I7/Vm3Hhd\nXnKm5pBWlHamy/pUSUlJJz2bor/OBLoLGAv8m2VZTx45aJrmZuBV4AfA3cd7oWmaUcBTBGb+TLUs\nq+Vw029N03yVwMyizxOYVSRnQURsBOkj0kkfkY7f56ezsZOmyib2Vu7F1+3D6/JqLyEREREREZF+\nwjAMBqcPZnD6YC6eeTEA9Qfr2bR9EymJKcF+W6u28sLbLwRfkz8kn3GF4xhXOI6xBWMZlDYoLPWL\niIiIDCT9NQT6KtABLD7m+OvAHuB60zTvsSzreLNzBgGvAKVHBUBHvEUgBBqHQqCwMGwGcelxxKXH\n0SJo/m8AACAASURBVJXahc/tIyMmg+ZdzXQ3d+N2usEf2HNIoZCIiIiIiEj/kJ2eTXZ6do9j6Unp\nXLvgWrbs3EJFdQWVeyqp3FPJqyteBeCVh14hMyUTgIPNB0lJTMFus5/12kVERET6s34XApmmmUhg\nGbgPLMtyHt1mWZbfNM0y4ApgOLDr2NdbllUN3HiC0ycdfmwNWcFyWmwRNlKHp5I6PBW/3093czfN\nVc207W3D1eEKzBJy2DBsCoRERERERET6k9xBuXzjy98AwOlyUlFdwZadW/ho50ccaDoQDIAA7nr8\nLhqaGhhTMCY4W2jksJFER0WHq3wRERGRfqHfhUBA3uHHPSdorzn8mM9xQqATMU0zErgZ6AReO+Xq\njrFjx45Qneqc9YnPMB6MEQaR3khcTS5c+1x42jz43D78Pj+G3dAsITnnHVnLVEROnsaNSO9p3Ij0\nnsbNiRUOLqRwcCFXnH8F8PFn5XQ56XJ20dHdQWl5KaXlpQDYbXaKhhZx7UXXMnX01LDVLWeexo1I\n72nciPTeyYwbn9vH3r17aaTxLFQERUVFp32O/hgCHdkpsvME7R3H9PtMpmnagGeAkcA9lmXtPfXy\n5Gwx7AZR6VFEpUfh9/vxdftwHXThanDh7fLi9/jBD9hRKCQiIiIiItJPRUVG8fwPnqehuYHy3eWU\n7ypn6+6t7Nq7i4rqCvx8vBL8io0r2GBtYPTw0YwePpohGUN0PygiIiLntP4YAoWUaZoxwB8I7AX0\na8uyfh7K84ciqTtXHZkBdCqfod/vp6upi9baVlr3tuJqd+F1ejFshmYKyYB25BsLcXFxYa5EpP/Q\nuBHpPY0bkd7TuDl9cXFxDBsyjItnXQxAR1cH5bvKGZ0/mriYwOe6tmIt75a9y9LSpQAkJyQzrnAc\nYwvGUmKWUJxXHLb6pfc0bkR6T+NGpPd6M268Li+DBw8mrSjtTJcVMv0xBDqyX8+J/ovEH9PvhEzT\nzAD+AkwDfmJZ1g9PvzzpCwzDIDY1ltjUWAaNH4Tf56fzUCfN1c107O8I7idk2A1sdlu4yxURERER\nEZFeiouJY8roKT2OXfe56xiZN5ItO7ewZecWmtqaWLlxJSs3rmTamGk8+u+PAoEl5lZuWsno/NFk\np2Xri4IiIiIyYPXHEGg3gUW+ck7QfmTPoE/djMc0zSzgA2A4cJNlWc+FqkDpewybQVxGHHEZgezQ\n5/XRcaCD5qpmOg924u5043V7sTlsGDb95V9ERERERKQ/KhpaRNHQIhZdtAi/38+eA3v4qPIjtuzc\nwshhI4P9rBqLB37zAAApCSmMzh8d+Bk+muJhxcRGx4brLYiIiIiEVL8LgSzL6jBNcwsw0TTNaMuy\nuo+0maZpB2YAtZZl1ZzoHKZpJgJ/A3KByyzLevtM1y19i81uIyE7gYTswNZRXpeX9v3tNO9uprOp\nE0+XB5/bhy1CoZCIiIiIiEh/ZBgGQ7OGMjRrKAtnLOzRZrPZmDFuBlt3baWprYlVm1exavOqQJth\n4+WfvUxGSgYATa1NJMUnYbNpFQkRERHpf/pdCHTYYuCXwL8ATxx1/HogE7j/yAHTNIsBp2VZu4/q\n9wQwAbhCAVD4VVdXs3jxYsrKymhrayMjI4PPf/7zzJ49m8jIyGC/Bx54gDfffPOE5/nWt77FV77y\nFQBaW1t58MEHWb9+PTabjfPPP5/vfOc7Pc53xIMPPsjq1at58cUXyRsamEjm6fbQWt9Ky+4Wulq6\n8HR78Hl82CPtPZYJaGxt5J0N71BeVc6h1kN4fV6S4pLIzcxl5piZTCiY0ONaFTUVPPzSw8wdP5ev\nXvTV0/rcRERERERE5NSMyR/Dw998GL/fz96GvZTvLqd8V+CnsbWR9OT0YN+7fnEX+w/tZ+SwkcEZ\nQ6OGjyIpPimM70BERETk5PTXEOhp4DrgUdM084B1wGjgbuAj4NGj+m4DLKAYwDTNccDXgK2A3TTN\nLx/n/A2WZb1/5sqXI3bu3Mltt92Gy+Xi6quvprCwkC1btvDb3/6WdevWce+9937iNffeey8pKSmf\nOD5ixIjg7z//+c9Zt24dt912G93d3TzzzDNkZGRw++2393jNhg0beP3113nkkUeIj48PHndEO0gd\nnkrq8FQAXB0uWutaaalpwdnixOP0UFpRynPvPoeBwdSRU5k/cT6GYbCvaR+ry1ezfsd6phZP5ebP\n30yEIyJUH5mIiIiIiIiEiGEYDMkcwpDMISyYugAAj9cT/PKf2+Omo6uD9q521m5by9pta4OvzcnM\n4dbLbmX+lPlhqV1ERETkZPTLEMiyLLdpmguAHwFXAt8EDgC/Ae63LKvzU14+ETCAUcCfT9DnfWBu\nqOqVE3viiSfo6OjgoYce4oILLgDg4osvJi0tjd/85jeUlpb2CHcAZsyYweDBg094Tp/Px/Lly7n5\n5ptZtGgRAHv37mXZsmU9QiCn08mDDz7IvHnzOP/88z+1zsi4SNJHpJM+Ih2/30/Z6jIW/3IxGckZ\n3PPle0iNScWPP7CnkGHwxelf5Mk3nqS0opSM5AyumHXFqX5EIiIiIiIichY57B//U0mEI4IlP11C\nQ1MDW3dvDcwW2l1ORVUFew7s6fGFv7dWv8WbH77J6OEfzxY6sqSciIiISLj0yxAIwLKsVgIzf+7+\njH7GMc+fA547Y4XJSXO5XKxfv55BgwYFA6AjrrvuOp5//nlWrVrFDTfc0KvzNjU10dXV1SM8GjFi\nBG+99VaPfosXL6a5uZlvf/vbvTq/YRj8+n9/DcBjv3yMoqIiupq6aKltob2+HVe7C4fh4JaLbuE3\nf/8N6Ynpn3FGERERERER6csyUjKYkzKHORPnAODxeKisq2RIxpBgn43WRjbv2MzmHZuDxzJTMhk1\nfBSTR07m8jmXn/W6RURERPptCCT9X3NzMx6P57izeuLi4sjMzKSysvKEr3c6ndjtdhyOnv8b+3w+\nAOx2e/CY3W4PHgfYsWMHv//97/nud79LWlpar+retWsXFRUVTJ06NRg0xabGEpsaC+PB7/fjbHXS\nWtfK93O/j7MtsHycz+vDj79X1xIREREREZG+x+FwYOaZPY5986pvMm/yvOCMoa27t3Kg6QAHmg7Q\n3tUeDIGcbicPv/AwZp7JyGEjKcopIjoqOhxvQ0RERM4BCoH6sN3Ld4e7hE81/ILhp/X6uLg4IDBz\n53giIyNpbW3F6XQSFRUVPL5kyRKWLVtGfX09NpuNUaNGccsttzBz5kwAkpOTcTgc7N27N/ia2tpa\nMjMzgUBI9OCDDzJhwgQuvvhinnrqKZYtW0Z3dzclJSV85zvfITEx8YR1l5eXAzBx4sTjthuGQXRS\nNNFJ0WSOysTv9+PudNNW30bt8logEBR5Xd7A8nE247jnERERERERkf4jKT6J6WOnM33sdCBw71mz\nv4byXeUkxCYE++2q28XSfyxl6T+WAmAzbAwfPBwzz6R4WDHzJs0jOSE5LO9BREREBh6FQH1YR0NH\nuEs4o+Li4igsLKSyspLKykoKCgqCbVVVVVRXVwPQ1dXVIwT6xz/+wU033URGRgY7d+7khRde4O67\n7+YnP/kJCxYsICIigilTpvDHP/6RcePG0dnZyZtvvsn8+YHNOv/0pz+xc+dO/vjHP/Lqq6/y0ksv\ncf/995OYmMgDDzzAI488wk9+8pMT1t3Y2AhARsbJre1sGAaRcZGkFaYxuCUw6yllWAp5s/Norm6m\nu7kbd6cbn9uH4TCw2W29+yBFRERERESkz7HZbAzLHsaw7GE9jmemZPLt675NRXUF26q2UbW3isq6\nSirrKnlr9VtMGTUlGAIt/cdSul3dFOcVkz8kv8ceRCIiIiInQyGQhNWNN97If/7nf3Lvvfdy3333\nkZubyz//+U9++ctfkpqaSkNDAxERgb/kXnfddSxYsIBJkyYRGRkJwMyZM5k9ezbXX389TzzxBPPn\nz8dms/Gtb32LO+64g2uuuQaAoqIibr31Vurr63n66ae57bbbyMnJ4a233mLhwoXMnTsXgKuvvppf\n//rX3HfffURHH386vmEEZu74/ae+tJthN0jOSyY5L/AXe6/LS8fBDpqrm+k61IW7043X5cWwGRh2\nI3hNERERERER6d/SktJ67A/U7exm556dVFRXULmn5z5DLy17CavaAiDSEUlBTgHFw4opzitmfNF4\ncjJzznr9IiIi0r8oBOrD4jLiwl3CGbdgwQKam5t56qmn+PrXvw5AYmIiX//61/nggw9oamoiJiYG\ngMLCQgoLCz9xjvz8fCZNmkRpaSm7d++moKCAvLw8XnnlFaqqqnA4HOTm5mKz2bj//vvJzc3l2muv\nBWD37t0sXLgweK68vDw8Hg81NTXB/X6OdWQGUH19fcg+B3ukncTBiSQODixD5/P66DzUSUtNCx0H\nOnB1uPC5AnsK2Rw2hUIiIiIiIiIDRHRUNGMKxjCmYMwn2hZOX0huVi4V1RXU7q9lW9U2tlVtA2DR\nRYu446o7ANh3aB+btm+ieFgxQ7OGYrfZP3EuEREROTcpBOrDTnfPnf7i6quv5otf/CKVlZXY7Xby\n8/OJiIjgpZdeIjs7G5vts5dHS01NBaCj4+Ml9BwOR4/Q6O2336asrIxnn30WhyPwv/6xS80d+b2z\ns/OE1xo3bhwApaWl3H777Z9aV3NzM8nJvV/L2Wa3EZ8ZT3xmPAB+n5+upi5a97TSVt+Gq8OF1+nF\n7/Nji1AoJCIiIiIiMhBdOe9Krpx3JQDtne1sr9nOtqptVFRXMNH8eJ/atVvX8tALDwEQExUT2F8o\nLzBjqHhYMUMyhui+UURE5BylEEj6hKioKEaNGhV8fvDgQaqrq/n85z8PQHt7O6tWrSIpKYnp06d/\n4vVH9g/Kyso67vmbm5t5/PHH+cpXvkJxcXHweExMTI/A50iIFBsbe8JahwwZwoQJE9i0aRNlZWVM\nmTLluP1cLhe33norqampPPnkk8Hg6VQYNoPYtFhi02IZNH4Qfr8fZ5uT1rpW2uracLY58Tq9eN1e\nbA6b9hUSEREREREZYOJj45lYPJGJxRM/0ZaenM75JedTUVXBgaYDbNq+iU3bNwGBUGjpE0uDIdAH\nmz4gKzWL4YOHa48hERGRc4BCIAmrX/ziF7z++us8++yzDBs2LHj8qaeewjAM5s2bB0BERAQPP/ww\nkZGRvPjiiz1m15SVlbF161ZGjx59whDo8ccfJz4+/hMzd4YPH86WLVtYtGgRAJs3byYiIoLc3NxP\nrfuuu+7i1ltv5Yc//CG/+MUvegRLEJhh9P3vf5+amhouvvji0wqAjscwDKITo4lOjCZzZCYA7i43\nHQ0dtNa20tXchbvDjc/tw+/XbCEREREREZGBbPrY6UwfG/jCZGNrI1a1RUV1BRVVFdjt9uAKGx6v\nh/ufuR+X24XD7mBY9jCKhhZRlFtEUU4RZp5JbPSJvxQpIiIi/Y9CIAmrefPm8ec//5k77riDa665\nhuTkZJYvX87KlSu5+uqrGTx4MBCYKXT33Xfz4x//mBtvvJErrriCtLQ0LMvilVdeIT4+nu9973vH\nvcaaNWv429/+xv/8z/8QHR3do23hwoU89thjPPPMM8TGxrJkyRIuuuiiT/Q71qhRo3jooYf4wQ9+\nwE033cSFF17IxIkTiYyMpLq6mjfeeIPGxkZuuukmbrzxxpB8Vp8lIiaC5NxkknMDAZnf56e7pZu2\nvW2BJeTaXXi6PZotJCIiIiIiMoClJqb2CIWO1tndyezxs9leu509B/awc89Odu7Zydtr3gbgvpvu\n4wvTvwDAjtod7G/cT9HQIjJTMvXFQhERkX5KIZCE1bhx43jiiSdYvHgxv/3tb3G73RQUFPDf//3f\nPWYGAVxyySUMGjSI3/3udzz33HN0dXWRlpbG5z73OW6++WaGDBnyifN3dXXxs5/9jEsuueS4y7Zd\nccUV1NfX89prr+F0OpkzZw7f/va3T6r22bNns2TJEv70pz/x4Ycf8uGHH+J0OklLS2PmzJksWrSI\nESNGnNLnEgqGzSAmJYaYlBgyRwdmC3m6PXQe6qSlpoWupq7A3kJuL/jQbCEREREREZEBLjEukQdu\nfwAIBEK76naxvXY7O2p3sKNmB2aeGez75odvsuS9JQAkxSVROLSQEbkjKBpahJlrkpedF5b3ICIi\nIr1j+P3+cNcwILS0tOiDDLEdO3YAUFRUFOZKBi6/34+zxUlrfSvte9txtjnxdHvwuX0YDgPDZigY\n6meO7GsVFxcX5kpE+g+NG5He07gR6T2NG+lvXl3xKis2rGBH7Q5aO1p7tI3JH8PT330aAK/Py19W\n/oWioUUU5BQQExUTsho0bkR6T+NGpPd6M268Li85U3NIK0o702V9qqSkpJP+R1vNBBI5hxmGQXRy\nNNHJH+8t5HV56TzYSUttC52HOnF3uvG6vPi8PuyRdoVCIiIiIiIi54Avzf0SX5r7Jfx+PweaDrCj\nZgc79uxge812CnMKg/1q99fy2B8eAwL3mEMzhwb2GBpaxIihIxhbODakwZCIiIj0jkIgEenBHmkn\nYXACCYMTgMOzhdqctO9rp21PG852J54uDx6XB5vdhmHXbCEREREREZGByjAMslKzyErNYtaEWZ9o\ntxk2vjD9C2yv3U7V3ipq9tdQs7+GZWuXAfDcD58LhkYr1q+gtbOV/CH55A/OJzY69qy+FxERkXOR\nQiAR+VSGYRCdGE10YjTpI9IB8Lq9dDV2BWYLHezE3eHG6/bidXuxOWzY7LYwVy0iIiIiIiJnQ+6g\nXO676T4AXG4XVfVVbK/Zzs49O9lZu5PcrNxg3yXLl7Bp+6bg8+z0bPIH55M/JJ9JxZOYPHLy2S5f\nRERkwFMIJCK9Zo+wE58VT3xWPBCYLeTp8tB5qJO2uja6mrpwdbrwurz4vX4Mu6FgSEREREREZICL\njIhkRO4IRuSOOG77vMnzyEzJpLKukur6auoP1lN/sJ4Pt3xIW2dbMASqO1DH4jcWk5Oew7DsYYwq\nGEVWapZWoRARETkFCoFE5LQZhkFEbARJsUkkDU0CPg6GOg520FbXRndTN64uFz63D5/bh+FQMCQi\nIiIiInIuuWLuFVwx9woAPB4PtQdq2VW3i8q6SsYWjA32q6iu4O+lf+/x2rjouMAyckPy+Zcv/QuJ\ncYlntXYREZH+yvD7/eGuYUBoaWnRBxliO3bsAKCoqCjMlUio+P1+3J1uOg920rq3le6mbtydbnxu\nH16PlpILhY6ODgDi4uLCXIlI/6FxI9J7GjcivadxI3Ly9h3ax9qta7GqLHbX76Z6XzXN7c0A2G12\n3v3Vu0Q4IgC4///dT3tXezAgKhhSQF52HlERUeF8CyJhoz9vRHqvN+PG6/KSMzWHtKK0M13Wp0pK\nSjrp6bGaCSQiZ41hGETGRRIZF0lyXjJwVDDUcDgYag4EQ163F5/Hhz3CjmHTlH8REREREZFzxaC0\nQVw6+1LmTZwHQGxsLI2tjeyq20VDc0MwAPL7/azdtpbWjlZKy0uDr7cZNnIyc/jKgq9w6exLAXC6\nnQAKh0RE5JyjEEhEwqpHMDTsqGCow/3xUnItRwVDXh92h4IhERERERGRc4VhGKQlpZGW9MlvXf+/\n7/0/KusqA8vK7alk997d1O6vpWZ/DW6vO9jvg40f8OPFPyY7PZth2cPIy85jWPawwO+D8oiL0awJ\nEREZmBQCiUifYxgGkfGRRMZHkjIsBQgEQ64OV2DGUF0r3S3deLo8wRlDNocNw2Zoo1AREREREZFz\nhGEY5GTmkJOZw5ySOcHjTreT6vrqHqFRY2sjhmFQ11BHXUMdH275MNgW4Yjgnf95B4c98M9k7298\nn6S4JPKy80hJSDl7b0hEROQMUAgkIv2CYRhExUcRFR9FyvCewVDXoS7a69vpaunC0+nB4/Tg8/jA\nIBAOKRgSERERERE5Z0RFRDEid0SPY1fPv5rL51zOnoY9VO2tonpfNVV7q6jaV4XD7ggGQH6/n5/+\n7qe0d7YDkByfTF52HnmD8hg2eBhTRk1hWPaws/2WRERETplCIBHpt44Oho7sMQSBDdq6mrvo2N9B\nx4EOXJ0uPN0efG4fPp8Pm92GzW4LY+UiIiIiIiJytkVGRJI/OJ/8wfk9jvv9/uDvLo+L8yecz+69\nu6neV01zezPNO5rZvGMzAN++7tvBEKi0vJR3y97tsbRcdno2dpv9rL0nERGRz6IQSEQGHHuknfjM\neOIz44PH/H4/rjYXnYc6aatvw9nixN3lxuvy4nV7MWyGZg2JiIiIiIicg46+D4yKiOL7N34fCNxH\nNjQ3UF1fze763VTXVzM6f3Sw7+Ydm3l7zds9zhXpiGTooKGYuWbwPADdzm6io6LP8DsRERH5JIVA\nInJOMAyDqMQoohI/Xk4OwOP00N3cTdu+NjobOnF3uvF0e/B6vPi9fuwRdgybgiEREREREZFzjWEY\nZKZkkpmSyXmjzvtE+/zz5pOZkklVfRXV9dVU1VfR0NxA5Z5K+HhyEX6/n8u+cxnRkdEMzRoa+Mkc\nSu6gXIZmDWVw+mAiIyLP2vsSEZFzi0IgEelzHnjgAd58801ee+01Bg8efEav5YhyEJ8VT3zWUbOG\nfH6crU46DnbQvq8dZ2tg1pDP7cPn9mHYjcCPZg2JiIiIiIics/KH5JM/pOfScu2d7VTvq8bpcgaP\ntbS34PV6aWxtpLG1Mbi03BHf/ep3uWTWJQCU7yqnorri/7N35/FNVfn/x19Jmqb7TlsoawsWAQVh\nFHAQkR0GBEVUREZGNvftq+J3nIEfzNd1ZgQRN0REB0QWQUGUocgiiCKgIrgULFuhQPctzZ77+yPk\ntrdJS4uFNvh5Ph59JLk5996TEy+2eedzDq2TPAFRYmwier1MZy6EEOL8SQgkhDgvWVlZfPPNN4wb\nN67Bjz127Fj69OlDXFxcgx+7LnR6HSExIYTEhBDfPl7d7rA4sBZbKT9VTkXB2aohmxO3043b5Vlr\nSMIhIYQQQgghhPj9igiL0EwZBxATGUPGKxnkFedx/PRxsnOzyT5T+dM6ubXadvv321myYYn6ONgY\nTMtmLWmV1IoOrTowccTEi/VShBBCXCIkBBJCnJfPP/+c9evXX5AQqFOnTnTq1KnBj/tbGUONGEON\nRDaPVLcpbgV7uR1LkYXyM+VYi604LU4Jh4QQQgghhBBCqPR6PUlxSSTFJfmdWs6rc2pnRvYZqQZE\nBaUFHM45zOGcw5zKP6WGQIqiMOapMSTEJHimlUtspZlqTtYfEkII4SUhkBDivPz000+N3YUmQaev\nXGsopk2Mul3CISGEEEIIIYQQ9XVdt+u4rtt16mOzxUx2bjbHTx8nyFD5MV5ecR65RbnkFuXy0xHf\nv89nTZnFgKsHAJB5LJPsM9mkJKaQ0iyFqPCoC/9ChBBCNBkSAolG99NPP/Hee+/x7bffUl5eTkJC\nAp07d2bo0KHqejBvvPEGixYt4h//+AdDhgzxOcaYMWPIy8tjw4YNhIWF4XK5WLZsGZ9++inHjx/H\naDSSlpbGLbfcwtChQ9X99u7dy7333su0adMIDg5m6dKldOvWjeeffx6AY8eOsXjxYnbt2kVRURGx\nsbGkp6czZcoUn0qVgoIC5s2bx86dO7HZbHTu3JmHHnqIbdu2sWjRIl5//XV69Oihtv/uu+949913\n2b9/PzabjcTERPr168fEiROJiqr9F7JPPvmE2bNn8+STTxIREcG7775LdnY24eHh3HDDDTzwwANE\nRFSuceN2u1m5ciXr1q3j2LFjALRq1Yrhw4dz++23ExRU+U/BwYMHWbx4Mfv376eoqIjIyEguv/xy\n7rrrLrp27UpOTg6jR49W219zzTV0796dN954AwCr1co777zDpk2bOH36NCEhIXTs2JE777yT3r17\n+7yGWbNm8fPPP/Ppp59y44038tBDD9W4JtCGDRtYuXIlWVlZOJ1OmjdvTv/+/Zk4cSKhoaGaPl19\n9dXceeed/Otf/8JsNrNhw4Zax7ShSTgkhBBCCCGEEOK3Cg8Np2ObjnRs01GzvVlMMz7+58eaaeWy\nz2STnZvNidwTNIttprbdtHsTyzYuUx9HhEXQIqEFKc1S6NCqA38e/mf1OUVR5G9RIYS4xEgIJBrV\nwYMHmTZtGjExMdx1113Ex8dz4sQJPvjgA7766iuef/55OnTowODBg1m0aBFbtmzxCYEOHjxIdnY2\ngwcPJiwsDEVRePrpp9m6dStDhw7ljjvuoKKigo0bNzJjxgxOnjzJpEmTNMf48ccfycnJ4YEHHiAp\nKQmA3NxcpkyZgtvtZvz48TRv3py8vDyWL1/O5MmTWbhwoRoEuVwuHnroIQ4dOsSIESPo1q0bhw8f\n5uGHH+bKK6/0ed1bt27lf//3f0lLS2Pq1KmEh4ezf/9+PvjgA77++msWLVpESMi5S7e3bdtGdnY2\nY8aMISEhge3bt7N69WrOnDnDnDlz1HbPPPMM69ato3fv3owaNQqDwcDOnTuZN28eBw8eZPbs2QCc\nPHmSyZMnExUVxa233kpSUhL5+fmsWbOG+++/nwULFpCamspzzz3Hiy++CMCTTz5JbGwsAA6Hg/vv\nv5+DBw9y44030rlzZ4qLi1m7di2PPPIIM2fOZPjw4ZrXkJGRQVlZGf/zP/9Dq1atanytb7/9Nm++\n+SZdunRh2rRphIWF8f333/POO+/w/fff8/rrr2sWy7Rarbz44ovcdtttjba2kD8SDgkhhBBCCCGE\n+K10Oh3x0fHER8fT7bJumuecLqfm78a0lDSuv+p6Tuad5GTeScoryjl4/CAHjx/kVP4pNQRyuV0M\nf2Q48dHxpDRLISUxhRbNPGFRSrMUWiS0INgYfFFfpxBCiN9OQiDRqLKysujcuTNTp06le/fu6va4\nuDief/55vvjiC3r16kVqairt27dn586dWK1WTUCyadMmAIYNGwbA9u3b2bx5Mw8++CATJkxQNT5v\nZgAAIABJREFU240ZM4YpU6bw9ttvc9NNN2mCga+++orVq1fTvHlzddvhw4dp3749o0aN0gRP7du3\n5+GHH2b16tVqCPTFF19w6NAhhg8fzowZM9S2HTt21DwGsNvtvPDCC3To0IG33noLk8kEwIgRI0hL\nS+Nf//oXq1ev5o477jjn+H3//fesWLFC7fewYcMoKiriyy+/5ODBg1x22WUcOHCAdevW0atXL+bO\nnav+InjzzTfz6KOPsmHDBm699Va6dOnCtm3bsFqtzJw5kwEDBqjnGTp0KDNmzODIkSN06tSJAQMG\nMG/ePABNu9WrV7N//36effZZBg4cqG4fPXo048aNY+7cuQwePFhTeXTgwAFWr16tqVyqLjc3l4UL\nF5KWlsabb76J0WgEYNSoUYSGhrJq1So+//xzBg0apDnurFmzNJVfTVmdwqHccqxFvuGQTq9DH6SX\ncEgIIYQQQgghhGbaOIChvYcytLfnb2NFUSguK1YDIWOQUW1XUFKA2WrGbDVz/Mxxn+POmDSDwT0H\nA/DtL9/y45EfNSFRZFikzz5CCCEan4RAolENGzZMDW8AzGYzbrdbDTXy8/PV54YMGcKrr77Kzp07\n6d+/v7r9888/Jy4ujp49ewKeyhLwhBNlZWWa8/Xr148DBw6wb98+brjhBnV7p06dNAEQQK9evejV\nq5f62GKx4HQ6SU5OBuDUqVPqc3v27FH7WJW3z2fOnFG3fffddxQUFHDrrbdit9ux2+3qc3379uWl\nl17i22+/rVMI1LNnT59+33DDDezdu5fvvvuOyy67jK1btwJw0003+YQEI0eO5Msvv2THjh106dIF\ng8EAwL59+zThTnx8PK+++uo5+5ORkUF4eDg9e/b0Gfs+ffqoU7mlp6er26+55ppaAyDwBHsul4uR\nI0eqAVDV17Bq1Sp27NihCYH0ej3XX3/9Ofvc1NUaDpnt2EptmPPNWAosOCwOsIDiUnA5XChuxRMO\n6aV6SAghhBBCCCGEp4IoNiqW2KhYuqR10TyXGJvIxnkbOZl3kpz8HM9tXg4ncz2BUcvElmrbL3/4\nkuWblmv2jwqPokVCCzq27cjj4x9Xt5/MO0lCTAImo+nCvjghhBB+SQgkGpWiKHz44YesWbOG48eP\nY7PZNM+7XC71/uDBg3nttdfYvHmzGgJ5p4K79dZb1eqSI0eOAGjWramuaigDaNadqSojI4Nly5aR\nlZWFxWKpsW/eQKj6dGY6nY7OnTtrzuft3+uvv87rr7/u97ynT5+use9Vpaam+mxr1qyZ5hhHjx4F\nIC0tzadtmzZtADh+3PMNnyFDhrBixQo++OADdu7cyXXXXcfVV19Njx491Iql2hw5cgSz2awJkKo7\nffq0JgSqaeyr8q5jVJfX4BUXF6dZJ+hSo9PrMEWaMEWaiEqpXEPq0KFDKE6FVkmtsBRbqMirwFpi\nxWn1VA95AyKdTqcGREIIIYQQQgghBEBYSBgdWnWgQ6sOtba7utPV6HS6yqAo7ySl5lJKzaWaqdqd\nLid3/P0OXG4X8dHxNI9vTnJCsuc2Ppk/XP4HUpqlXOiXJYQQv2sSAolG9eabb7Jo0SLatWvHQw89\nRMuWLQkODubIkSPqmjNezZs358orr+TLL7/EbrcTHBzsMxUcQEVFBTqdjvnz52t+8aiqevAQFhbm\n0+bjjz/mmWeeISkpiSlTptCuXTtCQkIoLS1l+vTpmrZWqxXA7zo+1atczGYzAH/+85/p3bu33/7V\nJXAB/IYc4eHhAGqFkTe88tfWex5vm5iYGBYtWsQHH3zAxo0bWbp0KUuXLiU8PJzx48dz99131zim\n4Bn7uLg4nnnmmRrbtG3b1m9/a1NRUVHn1+Dl7z39vdAF6QiNCyU0LpS41MppDxVFwWlxYiuzUVFQ\nQUV+BQ6zA6fNicvmwu2StYeEEEIIIYQQQpxbry696NWlcvYURVEoLC3kRO4JFEVRt5eZy0iMSyS3\nMJeCkgIKSgo4cPiA+vysKbPUEOiTHZ+w/sv1JMcnkxyfTPOE5mpYlBSXJOsRCSHEeZIQSDQap9PJ\n8uXLiYqK4s033yQmpnKqq6pTpFU1ePBg9u3bx65du7juuuv4/PPPad26NZ07d1bbhIWFoSgKaWlp\nmnV/6mvp0qUYDAbmz5+vVptAZVVKVcHBnl9EqlcyQWXo4+UNPaKioujRo8d59w8qw6eqysvLAdTx\n9AYn3iClKm9wUjWIiY6OZtq0aUybNo3s7Gx27NjBihUrWLBgATqdjkmTJtXYn7CwMMxm829+Xf6O\ne67X8HsOfepKp9NhDDNiDDMSkaQNJ90ut2d6uRIb5jwz1iIrDosnIHI7POGQTC8nhBBCCCGEEMIf\nnU5HfHQ88dHxmu2xUbGsfHYlTpeT/OJ8Thec5lTBKc9t/ilSUypnOMk6mcX+rP3sz9rvc/yEmAQ+\nevEj9fGSDUuICo+ieXxzmic0JzE2UUIiIYSogYRAotEUFxergUHVAAg86+b4M3DgQF566SW2bdtG\nUlIS2dnZTJ06VdMmNTWVgwcP+qz7A1BWVkZoaKg6dVxtcnJySExM1ARANfWt6hRsKSmVZcyKovDj\njz/69A/ghx9+8Hve4uJin/GoiXeqt+r9rtqn1NRUvvjiC7Kysnxei3dquurVOV6tWrVi3LhxDBs2\njOHDh7Nly5ZaQ6DU1FT27dtHZmamZso37+uKjo4+r/CgXbt2AGRlZWnWaar6GrxtxPnRG/SERIUQ\nEhVCdKtozXMuuwtbmQ1L0dnp5UqtuGwudXo5t9ONokhAJIQQQgghhBDCvyBDkFrh041uftvcOfRO\n+nbr6xMUnS44TWJcotrO6XSyYM0C3Ipb3abT6UiITiA5PpkJwyZw7ZXXApBfnE9haSFJcUlEhUfJ\n36tCiN8lCYFEo4mJicFgMHD69GkURVH/R/zrr7+yYcMGwLciKDY2lquvvpqvv/6axETPLwBVp4ID\nT1C0YcMGPvjgA66//np1+jJFUZgxYwY///wzq1at8pmmrbq4uDiKi4uxWq3qNG9nzpxhxYoVgLbq\n58orr+Tjjz9m06ZNmiqYDRs2+Kzvc9VVVxEXF8eXX37J0aNHNQFMRkYGM2bMYObMmQwdOrT2AQS+\n/vpr8vLy1MAHYMuWLQB06+b5pap///4sXryYNWvWcMMNN6jjrCgKH33k+RaNNyx77rnnOHDgAIsW\nLdJMSRcSEoLBYFArngD0er3PFGwDBw5k3759LF26lNmzZ6vb7XY7Dz74IA6Hg/fff7/WKeX8ue66\n6/jXv/7F2rVrufXWWzEajepza9as0bwG0fAMwQbC4sMIiw8jvn3lt7oURcFlc2Evt2MptmAptGAr\nseG0OSsriNxuFJeCTn92DSL5hVsIIYQQQgghhB/+Kom8qk4x53A5mDhiIqcLTpOTn8PpgtPkFuaS\nV5xHXnEeNkfl5zUZ32Tw6qpXATAZTSTGJZIUl0RibCItElowccREta3dYZdqIiHEJUlCINFogoKC\n6NevH59//jkzZszg2muvJTs7m1WrVjF79mweffRRfvzxRz755BOuu+46oqM91QlDhgxh1qxZrF69\nmiuuuEJTeQPQt29f+vXrx9atW7n//vsZPnw4TqeTjRs3snfvXu6+++5zBkDgCTSWLFnC9OnTGTJk\nCHl5eSxfvpxHH32UuXPncvDgQT788EP69OnDoEGDWLBgAatXr0an09GpUyeysrLIyMigb9++fPHF\nF+pxjUYj06dP569//Sv33HMPd9xxBwkJCfz888+sWbOG1q1b06dPnzqNYefOnZk2bRqjRo2iWbNm\nbNu2jf379zNgwAA1XOrYsSO33HILq1at4rHHHqNv3764XC62bdvGnj17uOOOO0hLSwPgD3/4Ax99\n9BGTJk1i+PDhxMfHU1paymeffYbNZmPs2LHquVu0aMHu3buZM2cOycnJjBs3jptvvpkNGzawYcMG\nbDYb119/PeXl5axbt47MzEz++te/1jsAAkhISOCee+7hlVde4d5772XIkCEYjUZ2795NRkYGN9xw\nQ53HTDQcnU5HUEgQQSFBhCX4Tsfndrqxl9vVNYi8U8y57C5cdpdaRYQOtYpICCGEEEIIIYSoruoX\nCkNNodw98m7N806nk7ziPE4VnKJdi3aatu1atCO3MBez1Uz2mWyyz2QDkBibqAmBbn36Vmx2myck\nikskMdYTGCXFJdGpXSdaJra8sC9SCCEuEAmBRKOaPn06wcHB7Nq1ix07dtCxY0defPFFunXrxk03\n3cQnn3zCK6+8QteuXdUQqF+/fjz//PMUFhYyefJkv8d99tlnWbZsGZ9++ikvvvgi4Jmq7Omnn2bU\nqFF16tvUqVOx2+1s3bqVF154gbS0NJ566in69u2LxWJh3rx5vPbaa7Rr146kpCTmz5/PSy+9xPr1\n69m4cSNXXnkl8+fPZ9myZQCa8OOGG27g1Vdf5d133+Xdd9+loqKCZs2aMWrUKCZPnlynkAqgZ8+e\ntGjRgnfffZejR48SERHBbbfdxv33369p98QTT9C2bVs++ugjXnrpJXQ6nd/xGDRoEOHh4Sxbtox3\n332X0tJSwsPD6dixIy+99JImaJk2bRqnTp1i1apVtG/fnnHjxmE0GtXXtWnTJnbs2IHRaCQ9PZ0X\nXnjhN1XrTJgwgaSkJD744APmz5+P2+2mVatWPPjgg4wbN+68jysuHH2QnpCYEEJifKeYU9wKjgoH\ntnLPNHOWAgv2crsaELmdsg6REEIIIYQQQoi6CQoKonmCZ32gqkZfP5rR148GwGwxc6boDGcKzpBb\nlKtp53Q5KTOXYXPYKKso49cTv2qef3Dsg9w26DYAduzbwXufvucJieKTSIpNUu83i2lGfHS8/P0q\nhGhSdFXLKcX5KykpkYFsYIcOHQKgQ4cOjdyT32b69Ols2bKF5cuXN9i6NZ988gmzZ8/m/vvv5667\n7mqQY4pLw6Vw3ajTzJntWIutVBRUYCu14bQ6cdkqAyK3y41Op0Nn0ElIJH4Ts9kMQHh4eCP3RIjA\nIdeNEPUn140Q9SfXjbiY3G43xeXF5BbmesKiwjPkFuaSW5TL6L6j6d6xOwDv//d9XvvwNb/HMOgN\nbHlti/pF4NdWvYbNYSMhJoFmMc3U22axzQgL8Z1RoyHIdSNE/dXnunHZXbTs2ZL4Dv6nr7xYoqOj\n6/xBmFQCCdEAcnNzeemll2jVqpWmCqegoIBdu3YRGxtL69atG7GHQgQOzTRz8WHEpcVpnnc73WoV\nkbXEirXIqqkicjlcKG4FxamADgmJhBBCCCGEEEKck16vJy4qjrioODq27Vhju+HXDqdzamdyi3LV\noOhMoae6SFEUzUww/931XwpKCvwe586hd3LPzfcAcOzUMT776jM1KEqISaBZbDPiouIIMsjHt0KI\n30b+FRGiATRr1oyCggI2b95MYWEhPXr0oKysjBUrVlBRUcEDDzyAwWBo7G4KcUnQB+kxRZkwRZmI\nahHl87zb5cZhcXjWIyqxYS2yYiu34bQ5cdvdnpDIpXimm1MU9Aa9JyiSkEgIIYQQQgghxDnERMYQ\nExlTp7aP3v4ouUW55BXnkVecR35RPvkl+eQV5REbGau2O5R9iCUblvjsr9fpiY2K5b2Z7xEd4Zlm\nffOezVjtVk1lUXhouPxNK4SokYRAQjQAnU7HnDlzWLx4MVu2bGHjxo0YDAbat2/PPffcw6BBgxq7\ni0L8bugNekwRJkwRJiKTI32eV9wKDosDh9mBtdSKpciCrdSGy+ZSq4kUt1K5JpGEREIIIYQQQggh\nzkO/Hv38blcUBZfbpT5OTUll8o2TPUFRcb56W1RWRHFZMRFhlWtHv//f9/nl2C+a44WaQomPjmdo\nr6GMvWEsACXlJXz5w5fER8cTFxVHfHQ8MRExmkolIcTvg4RAQjSQiIgIHnjgAR544IELfq4RI0Yw\nYsSIC34eIS5FOr2O4PBggsODCU/0netVURScVicOswNbmQ1LkQVriRWXxYXT4fSERC5FDYpkXSIh\nhBBCCCGEEPWh0+k007ylpqSSmpLq087pdFJUVoRBXzm7zPXdr6dNcpvK6qLifCw2CydyT1BuKVfb\nHT11lGcXP6s5nkFvICYyhvjoeP4x9R+kJKYA8F3md5SUlxAX7QmL4qPiCTGFNPCrFkI0FgmBmrCY\nmJpLS+fOncvEiRMBWLx4MY888kiNbYuLi9X7119/Pfv27fPb7q677uLll18G4Pvvv6dfv341HnPr\n1q1069atlt4LIURg0ul0GEONGEONhCWEEdsu1qeNy+7yVBNVOLCVetYmspXZ1Eoit8PtqSRyKSgu\nWZtICCGEEEIIIUT9BQUF0Sy2mWbbhGETNI8VRcFsMZNfkk+oKVTdHh4azpCeQ8gvyaewtJCCkgJK\nzaUUlBRQUFKAKdiktl2xaQXb923XHDc8JJy46Dh6denFw7c9DIDdYefzPZ8THxWvBkbR4dFSXSRE\nEychkBBCCFFPhmADhmADIdEhRDb3nXIOwOVw4bQ4sVfYPUFRsRV7ud0z7ZzjbFjk9KxLpDgVFGTq\nOSGEEEIIIYQQ9aPT6YgIi1CnjDObzQC0b9mev0/6u6at3WGnqKyIgpICYqMqv/DYJa0LgBoYFZYW\nYraaMVvNXNb6MrVdXnEez7zzjOaYBr2B2KhY4iLj+J/x/0Pn1M4A7M/az4ncE8RGxnp+ojy3xiBj\nww+CEKJWEgI1YVUreGozceJEtSroXLZt21andt26davz+QPNrFmzWL9+PR999BEtWrRosOPu3buX\ne++9l8mTJzN16tRa2+bk5DB69Gj+9Kc/MXPmTL/98temKfjqq694/vnnyc3N5aabbuLJJ5+s9zHu\nuecevv32W7755pvz6kNRURGzZs1i9+7dGI1Gtm7del7HEeJCMhgNGIwGTFH+1yYCcDvdlRVFZZ6g\nyFZmw2X1BEVuuxuXyzP9nNvlBjxrHun0Ok91kYRFQgghhBBCCCHqKNgYTFJcEklxSZrt44eO1zxW\nFIWyijIKSgo009bpdXoGXTNIrSwqLC2k1FxKfnE++cX5moqgjbs2smbrGp8+RIRF0KldJ156+CV1\n27vr3yUyPJK4yDg1LIqJjCEyLFL+7hWiAUgIJEQjiIuL47nnnqN58+b1bvP2228zbNiwBg2w6srt\ndjNr1ixsNhuPPfYYl1122bl3ugD+85//sHPnTkaOHMkf/vCHC3quFStW0K1bt0Z7reLSpg/SY4o0\nYYo0EZEU4beN23U2KDI7sJfbsZXZsJXZcFqcuB1uT1WRw4Xi9qxTpLgUFEVBp9ehN+glLBJCCCGE\nEEIIUS86nY6o8CiiwqM025snNGfmZO0Xle0OO4WlhRSXFdOmeRt1e6d2nTBbzBSVFlFU5vkpLium\nvKIcq82qtrM5bLz18Vt++xFkCOKpPz/F0N5DAc/aRTv371Sri2IiY4iLiiMmMoaYiBjNFHdCiEoS\nAgnRCEJCQhgwYEC925w8eZI333yTbt26NUoIVFhYSGFhIf3792fs2LEX/fxev/76KwCPP/44oaGh\n52h9/ux2O3PnzuWvf/2rhECi0egNekwRJkwRJkiquZ23qshpcWI327GWWrGX2XFanGpQpK5V5A2L\n3Ao6g4RFQgghhBBCCCHOT7AxmOT4ZJLjkzXbh/UexrDewzTb3G43ZRVl2B12zbaJf5pIUVmRGiYV\nlRVRVFqE2WomLCRMbbs/az/LNi7z249QUygZr2Soj1947wVsDhvREdFER0QTE+EJiqIjommV1IqE\nmISGePlCBAQJgYQIID/99FOjnt9u9/xP+kIGL02pH4cOHcLpdF7QcwjRUKpWFYUTXmM7t8uN0+LE\nafWERbZST2WRo8KhrlPkdrhxOV3gBsXtmYpOZ9Ch05/9kbBICCGEEEIIIUQ96fV6oiOiNdtCTaFM\nHjXZb3ub3aaZYq5Hxx7cc/M9akhUVFpEYVkhJeUlhJnCNPtu/347xeX+l7r4y4i/MOnGSQDs+XkP\n/37/32pApIZGZ6uL+vfoT4gpxNMfh43goGD5m1gEHAmBRKPyroOzZMkSNm/ezKeffkpBQQGJiYlc\nf/31DB8+XG27YMECFi5cyKuvvsratWvZsWMH9913n1qRcvToURYuXMiePXsoKSkhOjqabt26MXny\nZNq3b+9zbofDwfz589mwYQNFRUUkJSUxZswYxo/XzoN67NgxFi9ezK5duygqKiI2Npb09HSmTJlC\np06d/L6u7du3s3DhQg4fPozJZKJ37948/PDDJCR4vmVQl/V+qrfxrqMDcO+99wLw5JNP8uKLLzJ2\n7FieeOIJn2M8//zzrF69mjfeeIPu3bvX+D7k5uaycOFCvvrqKwoKCggLC6NLly7cddddXHXVVZr3\nCmD9+vWsX7/+nOsVZWZm8vLLL3PgwAGCgoLo2rUrjzzySI3t165dy+rVq8nKykKv19O6dWtGjBjB\n2LFj0ev16rpLXtdccw2AurZQcXExCxcuZPv27eTl5REeHk7Xrl2ZOHEiXbp00ZzLbDbz9ttvs2XL\nFnJzc4mNjWXo0KFMnDiRiIgIzeudPXs2s2fP5vXXX6dHjx419l+IQKA36AmOCCY4IpiwhLAa27ld\nbpxWT1jkqHBgK7VhL7Njt9g9YZHD7QmMnJ7qItyeb3ApbgWdrkpgpJdfjoUQQgghhBBC1F/16d06\np3amc2rnOu379F+epri8mOKyYkrKSygpL6G43HO/VVIrtV1ecR7ZZ7LJPpPt9zh9u/VV7z/5ypPs\nO7RPrSzyBkZR4VF07dCVwT0HA2C1Wck8nqlOqRcVHoUxyFjfly9Eg5EQSDQJr7zyCg6Hgz//+c8Y\njUZWr17N+++/D+AzDdeyZcvQ6/VMnz6dDh06AJCVlcXkyZMxGAyMGTOG1q1bk5OTw6pVq5g0aRJv\nvfWWz3Hmzp2Lw+HgrrvuwuVysX79el5++WV0Oh133HEH4AlHpkyZgtvtZvz48TRv3py8vDyWL1/O\n5MmTWbhwoU8QdODAAdatW8eoUaMYM2YM+/btY926dRw9epR3331X8w2G+pg6dSorV67k888/Z8qU\nKaSmpnLttdeyePFiNm7cyCOPPILRWPk/FJfLxZYtW0hJSVGDHH/y8/P5y1/+QmlpKTfffDMdOnSg\noKCANWvWcN999/HSSy/Ru3dvxo4dS+fOnXnxxRfp0aMHt9xyS61rGp0+fZp7770Xl8vFbbfdRps2\nbTh06BAPPfQQYWG+HzzPnTuX999/n759+3LTTTfhdDrZsWMH//73vzl06BB/+9vfSE1N5bnnnmPB\nggUcOXKE5557Tt2/tLSUSZMmUVRUxE033URaWhp5eXl8+OGHTJs2jblz53L11VcDngDw3nvv5ejR\no9xxxx20adOGX375haVLl/Ldd9/xxhtvMHbsWMLCwli5ciVjx46le/fupKamns9bJ0RA0hv0BIcH\nExweDPG1t/UGRi6bC4fFs3aR98dpr1y7SHEquJ1uFEVRK4wAWb9ICCGEEEIIIUSD6n1F7zq169e9\nH53advIERmdDIjU4MpcQHlo504bNbsPpclJQUkBBSYHmOC63Sw2BTuSd4P5/3q95PtQUSlR4FNHh\n0Tz9l6dJa5kGwFf7v+LY6WOesCgsisjwSDVYigyLlPBINAgJgUSTkJ+fz3/+8x+Cgjz/SQ4YMIAR\nI0awdu1aHnroIU1wcvLkSZYuXaq2BZg3bx5ms5mFCxdy5ZVXqtv/+Mc/MnHiRF599VVefvllzTkt\nFguvvfaaeuxhw4YxevRo3nvvPW6//Xb0ej2HDx+mffv2jBo1iiFDhqj7tm/fnocffpjVq1f7hEB7\n9uxh2bJltGnjWQzvxhtvxOl08tlnn7Fz50769OlzXmPUvXt39uzZo973VqT86U9/4p133mH79u30\n799fbb93716KiooYO3ZsrR+qLly4kLy8PP7xj39oXuOQIUMYO3Ysc+bMoXfv3nTq1ImYmBgAkpOT\nz7mm0bJlyygvL+dvf/sbN954o7o9PT2d//f//p+m7cGDB3n//fe55ZZbePLJJ9XtY8aM4amnnmLt\n2rWMHTuW9PR0BgwYwMqVKzly5IimD2+//TYnT55k4cKFmqqfYcOGcfvttzNnzhw1WFy9ejW//PIL\nM2bMYMSIEWo7k8nE4sWL2bx5M0OGDOHw4cMAXH755ed8vUL8nnkDI8IhlNqnaVTcCi67y1NhZHXg\nMDs809GZHTgsDrXCyOXwTE2nuBXNj6bCSEIjIYQQQgghhBC/QagplDbN29CGNuds+8ZTb2Bz2Cgt\nL1UDo5LyEkrNpZrqIh06uqR2odRcSmlFKWXmMiw2CxabhTOFZzQzZmzes5nPvvrM7/nS26Tz9tNv\nA56Q6fGXHycyPFKtLooOjyYiLILIsEgub3s5zWKbAeB0OTHoDfL3slBJCCSahJEjR2pCnYiICDp3\n7szu3bvVIMbr+uuv17S1WCzs2rWL9u3bawIggE6dOpGWlsY333yDzWbDZKosIx09erQmXIqOjuaa\na65hy5YtHDlyhLS0NHr16kWvXr0053I6nSQnexa7O3XqlM9r6d69uxoAeQ0cOJDPPvuMvXv3nncI\nVJMbb7yRxYsX88knn2hCoE2bNqHT6fjTn/5U6/5bt24lKiqKgQMHarYnJydz9dVXs2PHDk6cOEHL\nli3r1a/du3ej1+sZNGiQZvvgwYP55z//idls1vQVPONUVlamad+/f382b97M3r17SU9Pr/F8mzZt\nom3btrRp00ZzjNDQUK666iq2b99OaWkpUVFRbNy4kaCgIJ++3XHHHfTp04eUlJR6vVYhRN3p9DqC\nQoIICgkihJBa2yqKgtvhxmk7W2V0NjSyl9txVDhw2pyVU9JVnZpO8YRNiktBQRscyS/BQgghhBBC\nCCHOl8loollsMzVw8SetZRpvPPWG+lhRFMwWM6UVpZSaS0lpVvm5U68uvYgMi6TEXEKC0ORAAAAg\nAElEQVSZuYxSc6l6PzYyVm1ntpjZ/fPuGs85c/JMBl3j+Zxr5ecreWP1G0SERhAZHum5DYskMjyS\n2MhYHh33qLrf1we+Rq/TExkeSWSYp21EWARBBokNLiXyboomwd80W7Gxnn/oTp06pQmBWrRooWmX\nnZ2N2+0mLS3N77HbtGlDVlYWOTk5tGvXrtZzej/8P3XqlHq8jIwMli1bRlZWFhaLRdPe5XLV6bV4\n++wvNPqtUlJS6NGjh7qeT3x8PE6nk61bt9KjR49ap2wrKyujsLCQK6+8EoPB4PN8mzZt2LFjB8eP\nH693CJSTk0NCQgKhodqqgKCgIFq1asUvv/yibjty5AgA99xzT43HO336dI3PlZeXk5eXR15eXq0V\nO6dPnyYqKorDhw+TkJCgCQUBYmJi1GonIUTj0+l0GIINGIINEFm3fRS3ooZGTrtnPSOH2YHdbMdp\ncXqCI9fZwMjh9gRFigIKninr3Irn3BIcCSGEEEIIIYRoADqdjogwT7jSIkH7ueaAqwcw4Gr/n2Up\niqLeDwkO4d8P/9tTXWT2VBeVmEsoryinrKJMc1yLzYLL7aLE7JnSrqq4qDhNCPTCey+QV5znc+6w\nkDAmDJvAhGETADiUfYiVn6/UBEsRYRGe29AIOqd2JtgYrPZb/o5uWiQEEk2CvzVivOGBw+GotW1F\nRYWmfXXeD/qrBzjh4eE1trXZbAB8/PHHPPPMMyQlJTFlyhTatWtHSEgIpaWlTJ8+3e/5/B03JCRE\nc9yGNmrUKPbs2cOGDRsYP348e/bsobi4WJ3qrCbnO3Z1YbVaiY/3v5BI9fDF24//+7//q3GfhISE\nGs/lrSrq0KEDjz32WI3tvGGc1WolLi6u5s4LIQKWTq/DGGrEGFq3eZMVReFQ5iHcDjdtUtp4qo0q\nzoZGFU4cFocnHHJ51jByOzxT1LmdbnV/xaWdqg4dEh4JIYQQQgghhPhNqv5NGWwMpmfnnnXa7+6R\ndzNh2ATKLZ6AyBsUlZnLUFA0bbt37E5+cb6nrbmMcks55RXlVFgrNOfPPpPNpzs/rfGc6/69Tg2B\nnnjlCfYd2kd4aDgRoRGEh4ar97u278qY/mMAqLBWsO27bWqb6rdSjdRwZCRFk2C1Wn22eYOHc1Vm\neEMhb5BQ03GqhzP+zund5g1tli5disFgYP78+Zop3o4dO1Zjf+py3IbWr18/oqKi+O9//8v48ePJ\nyMggPDxcMz2cP3UdO38h3bmYTCbsdnutx63ej5SUFDp37lzvc3nfW6fTqa6VVJu4uDifaeeEEL9P\nOp0OnUGHwWAgNC70nGsaebldblx2Fy6Hy1N1ZDtbdVThwGnxrHfkdnimp1Ocilp9VLXyyO3yBEpq\naCSVR0IIIYQQQgghGoAxyEhsZKxmSjl//n733322ud1uLDaL5m/Tjm078tSfn/KESWd/zBYz5ZZy\nzBYzEaERaluzxayugZRfnK85tkFvUEOg/OJ8nnnnmRr7Nu+xeXTv2B2ANVvXsH3fdm1QFBJOWGgY\nCdEJ9P9D5WegR08dJSQ4hPDQcMJCwjDofWc/+r2REEg0CUeOHOGaa67RbMvNzQVqrwABaN26NQaD\ngaysrBqPHRwc7DONnHfdn6qys7OBymnhcnJySExM9Fnj57vvvquxP0ePHvXZVv24Dc1kMjF06FBW\nrFjB4cOH2bJlCwMGDDhn6BQZGUlCQgJHjx7F5XL5TAnnnaat6jR6dZWcnMzx48d91mJyOBzqeHil\npqaybds29u3b5xMCVVRUYDAYfKqHqoqIiCAxMZHjx49TWFjoU+VTXFysCRObN2/O/v37yc/P1/z3\nVVJSwvbt22nbti1dunSp92sWQvx+6A169KH6OlcceSluxRMc2T0/3vDIW3XktDhxOpw+wZHb5fZU\nHbmVyjWPlCpT1+mqVCFJiCSEEEIIIYQQ4jzp9XrCQ7Vfpm+R0IIWfVrUsIfWa0++hsVm8QmKyi3l\nJMYmqu2CjcEM7jlY87zZYqa8ohyz1UxYSOWX0n898Svf/PiN3/OlpaSpIZCiKEycPRGny6k+HxIc\nQnhIOKEhodw98m4G9xwMwA+//kDGNxmEhYRh1BsJM4URGx1LWEgYYSFh9OjYQ11P3ma3YQwyataX\nDyQSAokm4dNPP+WWW25RQ4iSkhJ+/vlnYmJiaNWqVa37hoSE8Mc//pEvvviC77//nm7duqnPffvt\ntxw7doz+/ftjNGo/qFu7di0DBgxQPywrKipiz549mtAnLi6O4uJirFarGqicOXOGFStWAP6nd9u9\nezcnT57UBD4ZGRkAXH311fUal+q84+OvwubGG29kxYoVPPvss5SXlzNy5Mg6HXPAgAEsX76cjIwM\nhg4dqm4/fvw4e/fu5fLLLyc5Obnefe3evTtHjhxh69atDBkyRN2+YcMGn0qgAQMG8M477/Dhhx9y\n8803a8KrV155hc8++4wlS5bUui7RgAEDWLZsGcuXL+fee+9Vt5eWlnLnnXeSlpbGyy+/DEDfvn35\n4YcfWLduHX/5y1/UtmvXruWVV15h5syZdOnSpfIf+gs0jZ8Q4vdHp9cRZAoiyFS/X8G80865HJ7q\nI7fdjdPu9FQdWRw4rZ77TrvTExy5FTVI8hsiee+DtgJJQiQhhBBCCCGEEL+BTqdTg5TaJMcnM2PS\nDL/Pud1uzePbBt5Gn659NIFRhbWCCmuFptrJ5XLRMrGl+pzZasZqt2K1W6EU7I7Kz1R/PfEra7au\nqfE1bHt9m/r4vn/ex8HjBwk1hXJjnxt5pmfNFUxNkYRAokkIDw/ngQceUMOaVatWYbPZGDduXJ0+\njHrwwQf57rvvePzxx7ntttto0aIF2dnZrFq1ipiYGB588EGffXQ6HY8++ih9+vTB4XCwdu1aKioq\neOihh9RzDhw4kCVLljB9+nSGDBlCXl4ey5cv59FHH2Xu3LkcPHiQDz/8kD59+qjHveqqq7jvvvsY\nNWoUCQkJ7N27l4yMDK644gqfaqf68lYzLVq0iMOHD/PHP/6Rtm3bAnDZZZfRsWNHfvjhB1q1akXX\nrl3rdMxJkyaxbds2nnnmGQ4dOkRqaipnzpxh9erVGAwGnnjiifPq6+23384nn3zC888/z5EjR2jZ\nsiUHDx5k69atXH755fz8889q28suu4zbb7+dDz74gClTpnDTTTcRFBTEl19+yZYtWxg2bFitARDA\n3XffzRdffMHixYspLCyke/fuFBYWsnr1agoKCnj66afVtrfeeisbNmxgwYIFFBcXc/nll3Pw4EGW\nL19Oly5d1NDKO94rV67EarXStWtXqRASQjQKnU6HLkiHPqj+1UdQJUQ6O4Wd2+HGaXPitNYtRFLc\niueX8LMBklQjCSGEEEIIIYS4UKpX3LRObk3r5Nbn3C8oKIgls5aojxVFwWKzqKFQTGTlTEHdOnTj\n0dsfpcJWQXFpMRXWCuwuOxWWCpwup6YPLpcLRVGosFaoX6gMJBICiSZh2rRp7N69myVLlpCfn09y\ncjJ33XUXgwYNqtP+bdq0YdGiRSxYsIAPP/yQkpISYmNjue6665g8ebLfadhmzJjB0qVLWbx4MUVF\nRSQnJ/PEE09w8803q22mTp2K3W5n69atvPDCC6SlpfHUU0/Rt29fLBYL8+bN47XXXtNMl3bttdcy\nduxYFi5cyJEjRzCZTAwfPpxHHnnkN38o1r9/fzIyMti9ezfHjh3zmTptxIgR/PLLL4wYMaLOx4yJ\niWHRokW8+eab/Pe//6WgoIDIyEi6d+/OpEmT6NChw3n1tU2bNsyfP5/58+ezdOlSgoKCuOKKK5g7\ndy4LFizQhEAAjz32GGlpaaxZs4Y5c+agKAqtWrXiwQcfZNy4cec8X3R0NIsWLWLhwoXs2LGD9evX\nExoaSpcuXXj66afp3r272jYkJIQ33niDt956i82bN7Ny5UpiY2O57bbbmDx5MkFBnn8au3XrxsiR\nI8nIyGDRokU89dRTEgIJIQKSJkSi/iESVE5l53a4NbdOqydMcto8Py6b5znFXa0SyXt79hdmRVHA\njRouqWsjSZgkhBBCCCGEEKIB1FaVlJqSSmpKKgBmsxnwXVPea/GMxbjcLixWC26H22+bpkzn/Qan\n+G1KSkpkIM/DrFmzWL9+PW+//TZXXHGF5rlDhw4BnHcI8Xv03HPPsX79etauXeuzLo74fZDrRoj6\nk+vm4vKudeQNkrxhksPqwGV1qYGSy372effZyqQqIZL3sfoNrCpT3HkrlTRB0tmACSRYaijn+iNJ\nCOFLrhsh6k+uGyHqT64bIeqvPteNy+6iZc+WxHeIv9DdqlV0dHSd/7iVSiAhLhEHDx7kk08+YcSI\nERIACSGEaLL0Bj16g77e6yL5o1YnOT3BkttxNmCynw2VbC7PFHjeH4dLU6FUNVDyhk0oVIZKVdZR\n0gRK/m6FEEIIIYQQQogmSEIgIQLc9u3bOXbsGP/5z3+IjIzk3nvvbewuCSGEEBeFTq/zhEmmhjme\n4lYqA6UqPy6nJ0By2VyVwZLD5VutVK1KSXFVBknVq5Y06ypJwCSEEEIIIYQQ4gKREEiIADdv3jxO\nnjxJly5dmD59OjExMefeSQghhBA+dHodhmADhmBDgx7XGwS5HW51Ojy38+x9h6dyyWVz4bRXToPn\nnS5PUaqESopvsKT+nA2WvOdTwyY35wyaQMImIYQQQgghhLhUSQgkGtXMmTOZOXNmY3cjoK1cubKx\nuyCEEEKIWuh0OnQGHXqD/oIc3xv6qMGSy43iVNT7bsfZaiZbZcDksrvUKfRcTpcmUMJdWaVUPWyq\nOlUeimeNp6prMnk6RO1hk1Q4CSGEEEIIIcRFIyGQEEIIIYQQAcwbrBiCDRho2Cqm6rzVSIcOHgI3\ntG3bVg2cFJeiqXTyTpvnvV91ij3NdHnVKpy8U+VVDZcUpUrAdLYf6q2bysonqD14ksonIYQQQggh\nxO+MhEBCCCGEEEKIOtHpdOiCdOiNnqomU0QDLch0Dt5KJLerMkByuz3BU9X7bqebgvwCtnyxhRMn\nT2C32wnSBdG8WXOu7X4tUaFRnhCqWuCkuBUUKqfPqzrFnred2+2u0qGzN36m4fMbSFW7/9PRn3jr\n47c4VXAKl9uFQW+geUJzpt00jU7tOl2UMT2XkvISvj7wNacLTuN0OwnSB9E8oTk9O/ckOiK6sbun\nCoR+Zp/JZnnGco6dPobT5cRkNNEyqSW3DbyNVkmtGrt7ASMQ3msInH42dd5xPH76OC6Xi9CQ0CY3\njt5r+0TuCfW9lmv7/ATCdRMIfQwEMo5CNA6d+gdKgElPT48DZgKjgeZAPvAp8PfMzMxTddj/WuDv\nQC8gFDgIvAXMz8zMrPeglJSUBOZANmGHDh0CoEOHDo3cEyECh1w3QtSfXDdC1F9TvG4sFgv/+c9/\nOHLkCCaTCZOpMqCy2WzYbDbatWvHhAkTCA0Nrffxq4ZCVcMoxV0lkKoydZ5aEeVwqVP05ZzO4Z6n\n7iE3LxeDwYAxyKgGRg6nA5fLRbO4Zsx9ci7NYptppt+rWh2lua26JpS3wMkbRlEZTFV9DW7FjQ4/\nlVE6sNltrP9qPTn5ORiDjJiMJvU5u8OOw+mgRbMWjOwzElPwxQkB/bHZbazbsY6cPE8/g43B6nNN\npZ+l5aW8uORFTuadxBhkxKD3VOoZ9AZPH10OUpql8OSdTxIVEdUofQwEgfBeB1I/m7rq46g7+w+V\n0WhsMuNY/doODqr2Xsu1XWeBcN0EQh+rM5vNAISHhzdyTyoF4jiK35f6XDcuu4uWPVsS3yH+Qner\nVtHR0XWe3iAgQ6D09PRQYBfQEZgP7AE6AI8DeUCPzMzMolr27w98BmQDrwCFwChgDPByZmbmI/Xt\nk4RADa8pfrggRFMn140Q9SfXjRD119SuG4vFwrx586ioqCAkJKTGdlarlbCwMB566KHzCoJ+i5yc\nHIYOHYrNZiM4OLjGdna7HZPJxIYNG2jRokWdju03oKq6rlO1gMrbzrtmlLeaymK28NbSt7BYLJ4P\nZ9za0MkbRNnsNkJMIdw58k5CjCG+wVS1NaI0ARb4neKv+uvRodNO++dtp4DVbmXZpmXY7JVjqaMy\nyPKyOWyEmkIZN2gcIaYQn+cv5LSApeWlPP3G01jtVjVIc7ldAGoY5O1jSHAIz9zzjHxY7IfNbmPp\nf5dqxtFvu7PjOH7I+Eb58DBQ+tnU+RtHh8MBeEIgtV0jjqO/a9sfubbPLRCum0Dooz9NLQQK1HEU\nvy8SAjVB6enp/ws8C9yfmZn5WpXto4E1wJzMzMzHatn/FzzVQx2rVg2lp6d/BNwIXJWZmbmvPn2S\nEKjhNbUPF4QIBHLdCFF/ct0IUX9N7bpZsGABJ0+erDUA8rJaraSkpDB16tSL0LNKffr0IS8vr9YA\nyMtut5OYmMj27dsvQs8qXcxxrF7J5A2nat12dvui9xaRczqHkOAQ33ZKlWn9FAWrzUpyfDK3j7i9\nMgyrsg5V1b5ogiy0wZZmmr8qFVpqlZVb+9zTrz9NblGu5sMul+tsCGQweI5/lt1uJykuiVmTZ6nH\nUI9F5TkA/yFWTcGWvzWwLlII1lBWbV7lM441sTlsJMUmMab/mIvQM61A6WdT528c/YVA0Hjj+Lc3\n/saZwjN1fq+T45L5xz3/uAg9CzyBcN0EQh/9aWohUKCOo/h9udRDoEBdE+jPgBl4u9r2j4ETwJ3p\n6en/429at/T09J5AOrDQz7Rx8/FUBN0J1CsEEkIIIYQQQlx8hYWFHDlyhKioun3TOiQkhCNHjlBY\nWEhcXNwF7p3H3r17OX36dJ2rj4KDgzl16hR79+6lR48eF7h3Hhd7HHU6z3R0On39gojCwkJOFZ4i\nOqFu6wZEEklRaRERHSMu2vudlZVFkauIuJQ4TXBksVgACA0JrQyBFAgjjLzyPII6BtGubTttEOad\nws/lBrdnKj9NZVeV+26327Ovq1oVWLWgzO12V1Z5ne1D9fBL3U4NIVjVkOzsNqgWhlU/lqL4rwCr\nOo2h966iUFpeysnck4SHhmurwao7uz1YH0z26WwKCguICouqrA6reg7vw+oBWG3h2Dn2LTGXcDLv\nJBGhETV0UMtkNHEy7yQl5SWy/kUVJeUl5OTlEB5atw+tG2Mcs89kczLvJOEhde/jibwTZJ/JljWC\nqgmE9zsQ+hgIZByFaBoCLgRKT0+PwjMN3PbMzExb1ecyMzOV9PT0b4CbgXbAYT+HuObs7Vd+ntt1\n9rZnA3VXCCGEEEIIcQFlZGRo1v+pC5PJxKZNm7j11lsvUK+0Zs2ahcFgOHfDKgwGA7Nnz+bjjz++\nQL3SCoRxhMDo56uvvqpWLVSt1vEGXjqDThtQ4AnVFr2/iH//+98XpY+NyW/45K5WWaUorFq1iuTL\nk9UpgXwCJD9BU5gtjOOG44weNFpzTJ8pEqtUjvk8rlJN5g3eUNBUmFVt88WWL4iIjvC851X6or7e\n6tVcQKghlL1ZexnWZ5gmEKy8q/gcq+o2f2Fa9WkT/e3j/e9OUwWHZzpFRdtpT/hV9dafqufxHkdR\nfPap2o+qUz1W9dX3XxGkC/IEnlX6oLg8bd06t/cAKoPOwFfff8XAqwfWXNlW0+Z6tgdYnrEco8FY\ncwM/jAYjyzct5/Hxj9drv0vd1we+xhhUz7EMMrLrx10M7jn4AvVKKxD6GAhkHIVoGgIuBALanL09\nUcPzx8/epuI/BGpb0/6ZmZll6enpxWf3bRDeqTLE+ZMxFKL+5LoRov7kuhGi/prCdfP999/jdDrV\nKRzq6rvvvuOqq666QL3SysrKQqfTqdMa1YVOp+PXX3+9aGMcCOMIgdHPAwcOoCiKWvlTXU3b9+/f\n3ySuqabih59+wOl0YrVb67XfT4d/old5r9ob6aj8sL9++ayPE9YTBMUHaUOUcwgmmFPuU9Aen0DQ\n072LO1Wf3wqtqoGTn+3+Qjif/fxs1+xbZXvu3lxCmof4tDVgqLF/IYRwxn0GQxuDtq9VArXqFW3V\n++evwq2m13S84DhBpiDcuPHLz38CQcFBHD9zHKve6n8c63CM6mNVl318ttd23PM59m88/vHTx9Hh\n//+LtS1bcSznGOZy33//63T9eZtUqT5Ug1E/+x/POQ6KZ8rOcx1H08eTxygvLT93f87uW+d/O6o0\n0+l0Puf1N31oWXGZ3z7W6AL803M85zi4wW6zn7txFcdOHqO8pJZxvND/TF7sGVMbYYbWQJgWtjHU\n5XdMt8NNTk4OhRRehB41zBTcgRgCRZ69rajheXO1duezf037CiGEEEIIIZoQp9N5Ufc7H253DR8Y\nXqD9zkcgjONvOd/F7Gcg9DEQBMo4Bko/a+NvfSn1uYv0yaQSpGAIOr9ETg2PLjQTBJnO72O06K4y\nrVVVwT+ee328qqoGQ7F/jPXTwPfxOUMuP/tU3lUwHjASVP1j07qEKQpE/yHaZ9s5z19le737fo7t\n/oI1dfrOmo5Ry/hUfVxTaOfdrv9Wj1GppRKohm7o0BGaGlrZpq7jUL1C8hzn9TvWdQ0/a9rm79jn\nOkZ9+vBbzlP37yvUaR8FRVNNWvX/Ger46zQ7nJ/z3c/voc7jfalGH6LHEPYbv0VykQViCBRQmspi\nuYGoqS04LEQgkOtGiPqT60aI+mtK101SUlK9Kmy8jEbjReu/yWTC5XLVez+DwXDR+hgI4wiB0c/I\nyEi/H/CrawLVsDZUUFBQk7immopAeK8hcPrZ1NU0joWFnm9Z17SmV1O4ts9Frm1fv+W6uSz9sgvQ\nI1/JKcnn3cfLu11+AXpUd03p97SU3SnnPY5dB3S9AD0Swr+mdN1cCPrG7sB5KD17W9OKYhHV2p3P\n/jXtK4QQQgghhGhCWrVqhc1mO3fDKmw2G61bt75APfLVunVr3+lkzsFut9OmTZtzN2wggTCOEBj9\nTEtLw2qt3xRmVquV9u3bX6AeBaZAeK8hcPrZ1AXCOMq13XAC4f0OhD4GAhlHIZqGQAyBjuAp0GpZ\nw/Pev5RqmkzZu06Qz/7p6enRQHQt+wohhBBCCCGakEGDBp3XhwsDBw68QD3yNXPmzHpXArlcLmbM\nmHGBeuQrEMYRAqOf999/f72/9exwOLjvvvsuUI8CUyC81xA4/WzqAmEc5dpuOIHwfgdCHwOBjKMQ\nTUPAhUCZmZlm4Aege3p6umbi1/T0dANwLZCdmZl5vIZD7Dx7+0c/z1139nZHQ/RVCCGEEEIIcWHF\nxcXRrl27On8722q10q5duxqnFroQevToQXJycp2rgex2O8nJyfTo0eMC96xSIIwjBEY/09LSzquP\naWlpF7hngSUQ3msInH42dYEwjnJtN5xAeL8DoY+BQMZRiKYh4EKgs94GwoBp1bbfCSQCC70b0tPT\nO6anp7fzPs7MzPwe+BYYm56e3rJKOx3wKOAA3r1wXRdCCCGEEEI0pAkTJhAWFnbODxisVithYWFM\nmDDhIvWs0ooVKzCZTOcMgux2OyaTiRUrVlyknlUKhHGEwOjnnDlz6tXHOXPmXKSeBZZAeK8hcPrZ\n1AXCOMq13XAC4f0OhD4GAhlHIRqfTlGUxu5DvaWnpxuB7UAP4BVgD9AZeAzPVG69MjMzK862VYDM\nzMzMjlX27wlsAU4Dc4Fi4HZgGPD3zMzM/6tvn0pKSgJvIIUQQgghhBBCCCGEEEIIEVCio6N1dW0b\nkJVAmZmZDmAwngBoDLAYuAtPBVA/bwBUy/67gL7AL8Bs4E0gGbj7fAIgIYQQQgghhBBCCCGEEEKI\npiYgK4GaIqkEEkIIIYQQQgghhBBCCCHEhXbJVwIJIYQQQgghhBBCCCGEEEKI2kkIJIQQQgghhBBC\nCCGEEEIIcQmSEEgIIYQQQgghhBBCCCGEEOISJGsCCSGEEEIIIYQQQgghhBBCXIKkEkgIIYQQQggh\nhBBCCCGEEOISJCGQEEIIIYQQQgghhBBCCCHEJUhCICGEEEIIIYQQQgghhBBCiEuQhEBCCCGEEEII\nIYQQQgghhBCXIAmBhBBCCCGEEEIIIYQQQgghLkESAgkhhBBCCCGEEEIIIYQQQlyCJAQSQgghhBBC\nCCGEEEIIIYS4BEkIJIQQQgghhBBCCCGEEEIIcQmSEEgIIYQQQgghhBBCCCGEEP+/vbsPsqsuDzj+\nDS+REMJrRKdFBBUesCMtZEhrtdZSLFrUSWl5qaYJ1TqiDKVpeS3QLJ0CWpRWxCl2QANtlSHUqkGN\nUGkCCtTGwJCk+AQhVFIag4DKS3gRtn/8ziV3N/fu3mWze++e+/3MZE72d5579reZPPPcPc/9/Y5q\nyCaQJEmSJEmSJElSDdkEkiRJkiRJkiRJqqGduj0B9aeIWAIsHCFkUWb+fRU7AzgXOAl4LfAz4Bbg\ngsxcP8FTlXpGp3kTEQPA4hHiPpWZf7Y95yb1uoh4F3AOcATwc+Au4G8y85ZhcdYcqdJJ3lhzpCIi\nBjsIOzAzH6zirTfqe2PJG+uNNFRE/BLwl8BRwGzgJ8DtwKWZ+e2mOOuNVOkkb+pab2wCqds+CjzS\nYvxugIiYBnwFOBr4PHAh8AvAGcAdETE3M++fpLlKvWLEvGkyAKxrEXff9p6Q1Msi4gPA1cCtwOnA\nLGARsDwificzV1Rx1hyp0mneNBnAmqP+dvwI5y4B9qB6/2a9kV7Scd40GcB6oz4XEYcD3waeA64A\n1gOvAU4FVkbEvMxcZr2Rtuo0b5peMkCN6o1NIHXbNxqfhmvjJOAdlI7sWY3BiPgWsAq4FDhuQmco\n9Z7R8qZhZYubdFJfiYhXA5cD/w4ck5kvVuPLgDuAY4EVVbg1R2LMedNgzVFfy8wbWo1HxDzgDcDJ\nmflUNWy9kRhz3jRYbyQ4H9gV+L3MvKkxGBFfAu4F/hpYhvVGatZp3jTUqt74TCD1ugXV8fLmwcxc\nTVmu9+6I2HPSZyVJmioWAjOBgcaNbIDMfCAzX5WZZzbFWnOkYix5I6mNiJgFfKxsjJwAAAu6SURB\nVBq4LTOvaTplvZHaGCFvJG31+up4W/NgZn4f2AwcUA1Zb6StOs2bWrIJpJ4QEbtERKuVaXOBhzJz\nY4tz/wnsTNmnXuo7I+TN8LjpETF9MuYk9aB3AE9QVi8QETtGxCvaxFpzpGIseTOENUca4gLKtjun\nDhu33kjttcubIaw36nP3VseDmwcjYg9gT2BtNWS9kbbqNG8Ydr4W9cYmkLrt1IjYAGwBno2IOyPi\nd+GlTwDtDbQqVgA/rI6vm/hpSj2lbd4Mc0JErAOereLWRMQfTepMpe47BLgf+JWIWEnJh2ciYm1E\nnNQIsuZIQ3SUN8NYc6QmEbEv5Sb2tZm5pmnceiO10S5vhrHeSHAR8DhwbUS8NSJmR8SbKM/9GQQu\nsN5I2xg1b4bF16re2ARStx0DXEzZW/484CDgxuoGw6wq5uk2r23sDTyrzXmprkbKm2bvAq6sjqdT\nHqx6bUScPYlzlbptb8qner4GfAeYB5xWjX0xIj5YxVlzpK06zZtm1hxpqLOAXSg3HJpZb6T22uVN\nM+uN+l5mrgXeDOxI2drqEeAe4Fcpz3NcgfVGGqLDvGlWq3oz6jZC0gT5JPBFYEVmPluNfT0ivgrc\nXZ0/sluTk3rUqHkTEdcD/wzcCdyRmT+t4pZHxHXA94HFEfHZzPzJJM9f6obplL1935+ZX2gMRsTX\nKMvBL46IJd2ZmtSzOsqbzHwBa460jYjYC/gIcGNm/qDb85Gmgg7yxnojVSIigK8DrwAWUXJgX+Av\ngGUR8fvAuu7NUOo9neRNZt5MTeuNTSB1RbW0e5vl3Zn53xGxgrIX/Sur4ZltLrNbdfzZdp+g1IM6\nzJtDM3MdsM0vTpm5OSJuAD4EvIXyCW+p7p6kvMm7rnkwMzdExH8A7wQOBR6sTllzpM7zZm11o86a\nIw31PmBXoNVD7Rt1xHojDTVS3mC9kYa4CvhFyu//GxqDEbGUkiefp7xXA+uN1DBq3kTEgXWtN24H\np170o+q4K2Vp3n5t4l5bHe+b8BlJva+RN7tvpzipLh6k/fudzdVx98x8EmuO1PAgHeRNB9ex5qhf\nHU/ZP/4bw09Yb6S22uZNB6w36hsRMZNyA3p1841sgMzcAqyg3OjeH+uNBIwpbw4e5VJTtt7YBNKk\ni4jdI+L9EfHOdiHV8SHgdmC/iNi/RdxvAFuA1RMwTamnjCFvNkbEiRFx/ChxP2xzXqqbOyhbW72x\nxbnGLz6Nh6Vac6Sio7yJiJ2tOdJQEbEb8OuULUS2tAmz3khNRssb6400xAxgGuX5Wa3s0nS03khF\np3mzW13rjU0gdcNzwGeAJRExu/lERBxNeRbQdzNzI3B1dWrRsLjfBOYA11WfppPqrtO8eQi4kPKw\nuoOGxb2R8nDvjcB3J2XWUvctqY6LI2JaYzAiDqP84nNPZjbewFlzpGJJdRwxbzLzeaw50nCHATsD\na0eIsd5IQ42YN9YbaavM/DFl9c5h1f//l0TE3sBRlC3e1mK9kYAx5c3d1LTeTBscHOz2HNSHImIh\n5QbDBuBKYBNwOOVBkM8Ab8/Mu6vYfwWOAz4H3EL5BOoZwFPAkZm5abLnL3VDp3kTEb8NLAceozSO\nNlA+rXAa5RkP8zJz+aT/AFKXRMTllP//NwLXU+rIIso+2Mdk5oqmWGuOROd5Y82RhoqIkynPYjgj\nMz85Qpz1Rqp0kjfWG2mriHgP8G/AT4ErgPXAbOB04EDglMz8bBVrvZHoPG/qWm9sAqlrIuK3gHOB\nuZQH1W0CbgIuyswHmuKmA+cA84EDgMeBbwLnVasepL4xhrw5AjgfeBuwB/AosBK4pNFglfpFtZLh\nw8AplDdvzwLfAQYy87+GxVpzJMacN9YcqRIRi4DLgA9n5j+OEGe9kSpjyBvrjVSJiF8DzqY852Qv\n4AlgFXBZ8w1q64201Rjypnb1xiaQJEmSJEmSJElSDflMIEmSJEmSJEmSpBqyCSRJkiRJkiRJklRD\nNoEkSZIkSZIkSZJqyCaQJEmSJEmSJElSDdkEkiRJkiRJkiRJqiGbQJIkSZIkSZIkSTVkE0iSJEmS\nJEmSJKmGbAJJkiRJkiRJkiTVkE0gSZIkSZIkSZKkGrIJJEmSJEmSJEmSVEM2gSRJkiRJkiRJkmrI\nJpAkSZIkSZIkSVIN2QSSJEmSJEmSJEmqoZ26PQFJkiRJ6oaIOBF4NjO/3O25TKaIeCWwGfjfzNyv\n2/ORJEmSNHFcCSRJkiSpX10IzOv2JLrgzdXxzq7OQpIkSdKEswkkSZIkqe9ExF7Awd2eR5fYBJIk\nSZL6xLTBwcFuz0GSJEmSJk1ELAEWDhtemZlvr87vCHwUWAAcSvnw3AbgeuDSzHy66VoDwGLgI8Aa\n4GPA4cAW4EbgNOBp4BzgA8BrgP8DrgQ+npmDw65zNnArcDEwh7KF9xrgosxcNs6f+4+Bz40QcmRm\nrhrP95AkSZLUW1wJJEmSJKnfXEdpwgCsAs4E/gEgInYAvgRcDuwKfAb4FKWRMwDcGhEzW1zzEGAZ\ncBfwd8CjwMnAp6trLACWVt9nH+ASYH6L67wJuBl4BPgE8C+UptJXImK8W9c9CVwDvFB9/U/V140/\n68Z5fUmSJEk9ZqduT0CSJEmSJlNmLo+IZ4BTgHWZ+Ymm038CvBdYDrwnM38OEBHnURol84GzKKt2\nmp0KHJuZN1XxlwEPV/HrgDmZ+VR17lvAV4ETKI2YZvOBBZn50nhE3ExZhfS3wJfH8XMvjYjbKKug\nNmbmgpd7LUmSJElTgyuBJEmSJGmrD1XHMxsNIIDMfBE4t/qyVfPke40GUBX/OHAv5YN3lzUaQJWV\n1fENLa5zf3MDqHIDsAk4KCJe1/FP0tqcxnzHeR1JkiRJU4ArgSRJkiQJiIjplK3XXgCejIgDWoQ9\nAhwQEXtVjZ6Ge1rEPlEd17YZ36XFa+4cPpCZgxGRwKsp28490PaHGN0R1dEmkCRJktQHbAJJkiRJ\nUrEPsGP19w2jxL4KaG4CPdYiZrDVuaqpAzCtxWs2t/l+je+15yjzGk2jCbR6nNeRJEmSNAXYBJIk\nSZKkotG02QK8b5TYhydoDi+2GW9s5f3MOK/vSiBJkiSpj9gEkiRJkqTiUeB5YAbwzczc0oU5zG4z\n3lgB9KOXe+GI2AfYH3g4Mze93OtIkiRJmjp2GD1EkiRJkuovM58H7qq+PLpVTES8foKnMbfF99yB\n8iwggP8Zx7UPq45rxnENSZIkSVOITSBJkiRJ/aixrdrwlTdXV8e/iogZzSci4jjgBxFxzQTO69CI\n+INhYycC+wL3ZObGpvkcUv1p9WyhVqZXx5nbYZ6SJEmSpgC3g5MkSZLUj+4DngOOiYglwAuZ+UHg\nKuC9wLHAmohYSnlG0Bzg3cBm4KIJnNdS4KqIOAFYC+wHLKQ8K+jsYbH3VscZdPasoO8BTwBvjYjb\nKf8Gg8AVmblqO8xdkiRJUo9xJZAkSZKkvpOZjwJ/SnkO0B8Cb6nGXwTmVeceA04Dzgd+mdIgmpuZ\n6ydwag8ARwGzgD8H5gOrgWMzc3mb1wx2cuHM/DGlkbWSsr3cAkqD6alxzlmSJElSj5o2ONjR7wuS\nJEmSpAkSEQPAYuDjmXlOh685EFifmTtP5NwkSZIkTV2uBJIkSZKkqeltbN0STpIkSZK2YRNIkiRJ\nkqaYiJhG2S7uC92eiyRJkqTetVO3JyBJkiRJGpvMHKQ8p0iSJEmS2nIlkCRJkiRJkiRJUg1NGxwc\n7PYcJEmSJEmSJEmStJ25EkiSJEmSJEmSJKmGbAJJkiRJkiRJkiTVkE0gSZIkSZIkSZKkGrIJJEmS\nJEmSJEmSVEM2gSRJkiRJkiRJkmrIJpAkSZIkSZIkSVIN2QSSJEmSJEmSJEmqIZtAkiRJkiRJkiRJ\nNWQTSJIkSZIkSZIkqYZsAkmSJEmSJEmSJNWQTSBJkiRJkiRJkqQasgkkSZIkSZIkSZJUQzaBJEmS\nJEmSJEmSasgmkCRJkiRJkiRJUg3ZBJIkSZIkSZIkSaqh/we3S/ZV3THZbQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "rtcc9pBFIA0X", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "The 95% credible interval, or 95% CI, painted in purple, represents the interval, for each temperature, that contains 95% of the distribution. For example, at 65 degrees, we can be 95% sure that the probability of defect lies between 0.25 and 0.75.\n", + "\n", + "More generally, we can see that as the temperature nears 60 degrees, the CI's spread out over $[0,1]$ quickly. As we pass 70 degrees, the CI's tighten again. This can give us insight about how to proceed next: we should probably test more O-rings around 60-65 temperature to get a better estimate of probabilities in that range. Similarly, when reporting to scientists your estimates, you should be very cautious about simply telling them the expected probability, as we can see this does not reflect how *wide* the posterior distribution is." ] - }, - "metadata": { - "image/png": { - "height": 280, - "width": 832 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "alpha_samples_means_ = np.array(alpha_samples_1d_.mean(axis=1))\n", - "beta_samples_means_ = np.array(beta_samples_1d_.mean(axis=1))\n", - "sorted_alpha_means_ = np.sort(alpha_samples_means_)\n", - "sorted_beta_means_ = np.sort(beta_samples_means_)\n", - "alpha_index_ = sorted_alpha_means_.shape[0]\n", - "beta_index_ = sorted_beta_means_.shape[0]\n", - "upper_alpha_quantile_ix_ = int(alpha_index_ * float(0.975))\n", - "lower_alpha_quantile_ix_ = int(alpha_index_ * float(0.025))\n", - "\n", - "upper_beta_quantile_ix_ = int(beta_index_ * float(0.975))\n", - "lower_beta_quantile_ix_ = int(beta_index_ * float(0.025))\n", - "\n", - "def find_nearest(array, value):\n", - " array = np.asarray(array)\n", - " idx = (np.abs(array - value)).argmin()\n", - " return idx\n", - "\n", - "alpha_upper_quantile_ix_ = find_nearest(alpha_samples_means_, sorted_alpha_means_[upper_alpha_quantile_ix_])\n", - "alpha_lower_quantile_ix_ = find_nearest(alpha_samples_means_, sorted_alpha_means_[lower_alpha_quantile_ix_])\n", - "beta_upper_quantile_ix_ = find_nearest(beta_samples_means_, sorted_beta_means_[upper_beta_quantile_ix_])\n", - "beta_lower_quantile_ix_ = find_nearest(beta_samples_means_, sorted_beta_means_[lower_beta_quantile_ix_])\n", - "\n", - "p_t_low = logistic(t_.T, beta_samples_1d_[beta_lower_quantile_ix_], alpha_samples_1d_[alpha_lower_quantile_ix_])\n", - "p_t_high = logistic(t_.T, beta_samples_1d_[beta_upper_quantile_ix_], alpha_samples_1d_[alpha_upper_quantile_ix_])\n", - "\n", - "[ \n", - " p_t_low_, p_t_high_\n", - "] = evaluate([ \n", - " p_t_low, p_t_high\n", - "])\n", - "qs = np.stack([p_t_low_[0][::50], p_t_high_[0][::50]], axis=0)\n", - "\n", - "fig, (ax1) = plt.subplots(1, 1, sharex=True)\n", - "\n", - "ax1.fill_between(t_[::50].T[0], qs[0], qs[1], alpha=0.7, color=TFColor[6])\n", - "plt.plot(t_[::50].T[0], qs[0], label=\"95% CI\", color=TFColor[6], alpha=0.7)\n", - "\n", - "plt.plot(t_.T[0][::50], mean_prob_t_[0][::50], lw=1, ls=\"--\", color=\"k\",\n", - " label=\"average posterior \\nprobability of defect\")\n", - "\n", - "\n", - "\n", - "plt.xlim(t_.min(), t_.max())\n", - "plt.ylim(-0.02, 1.02)\n", - "plt.legend(loc=\"lower left\")\n", - "plt.scatter(temperature_, D_, color=\"k\", s=50, alpha=0.5)\n", - "plt.xlabel(\"temp, $t$\")\n", - "\n", - "plt.ylabel(\"probability estimate\")\n", - "plt.title(\"Posterior probability estimates given temp. $t$\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "rtcc9pBFIA0X" - }, - "source": [ - "More generally, we can see that as the temperature nears 60 degrees, the CI's spread out over $[0,1]$ quickly. As we pass 70 degrees, the CI's tighten again. This can give us insight about how to proceed next: we should probably test more O-rings around 60-65 temperature to get a better estimate of probabilities in that range. Similarly, when reporting to scientists your estimates, you should be very cautious about simply telling them the expected probability, as we can see this does not reflect how *wide* the posterior distribution is." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "lesq_3oIIA0Y" - }, - "source": [ - "### What about the day of the Challenger disaster?\n", - "\n", - "On the day of the Challenger disaster, the outside temperature was 31 degrees Fahrenheit. What is the posterior distribution of a defect occurring, given this temperature? The distribution is plotted below. It looks almost guaranteed that the Challenger was going to be subject to defective O-rings." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 258 - }, - "colab_type": "code", - "id": "AYbamYmdUdBZ", - "outputId": "1bdab35d-4dc5-41a0-a3c1-842416444ef7" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[0.94 0.957 0.964 ... 0.99 0.987 0.988]\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABnIAAAHACAYAAACWHfb0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xu4ded8L/xviENOxKGlhESIH4oS\nGk1IHXax2VpnpYhT967DaxNSdYomtHSXvnW2qzQOFVQJDao2ORBxirRUcSeUl0TVYUuIyAHP+8cY\nU2aWtdaz5przWet+1vP5XNdzjaw57jnGb44x1li5xnfe973btm3bAgAAAAAAQH+usNkFAAAAAAAA\nsDxBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRKkAMAAAAAANApQQ4AAAAAAECnBDkAAAAAAACd\nEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5AAAAAAAAnRLkAAAAAAAAdEqQAwAAAAAA0ClB\nDgAAAAAAQKcEOQAAAAAAAJ3afbMLAAAAANieqnpQklsmObm1dupm15MkVXX7JPdN8utJbpLkl5Jc\nNcl3k5yR5LjW2rtXeO8+Se46vvf24/Ja4+qbt9a+tGOrBwB2FoIcAGAhqmrbKqsvTHJOkpOSvLS1\n1jamqs1TVY9OclySU1trd9ncapa3Uo2bXfty+9/smnqpYdGq6rpJXp3kbkn2TnJia+3+m1vV2mzk\n+VjPvmb5/doZr61FXzuLPgY787W9CDvjNbVGRye5dZKeAo7fT/IHUz9fkORnSa6X5HeS/E5VvTPJ\nw1prly55739JcsKGVAkA7NQMrQYALNrbk7xs6t/Lk/xThm+nPj7Jv1TVgzejsKp60XYCp0X6QobP\n//cbtL9FWkjtcxzvTT92K9S+6XXtAH+W5P5JLs3w0Pdjm1vOljLL9bJs2w2+Z82q92tnU+vr4Nxt\nuftVVe2R5Bbjj2dsZi1LfDzJkUlul2Sf1to+rbU9ktwwyYvHNg9M8swV3v/tJO9PcmyS/7GDawUA\ndlJ65AAAi/bS1tonlr5YVVdO8sIkT0/y5qr6ZGvt6xtc269v1I5aa59K8qmN2t8iLbD2dR3vTo7d\nL9TeSV2Ldodx+eTW2ts2tZItZpbrZZW2G3bPWofer53Nrm9Tz90WvV/dNsMzjPOTfGWTa/m51tob\nV3j9G0meUVW/kuQRSR6d5AVLmp04PexaVR2wg8oEAHZyeuQAABuitXZJkmck+dckV0ny2I3cf1Xt\nlmH8eTbAzny8d+ba12GPcfmtTa2CX7ATXIe9XzubVt9OcO52KlV1h7F306RX1dWT/Kyqtk39u8Ym\nlrg9nx6X11u6orX20w2uBQDYSemRAwBsmNbaz6rqI0luleQ2S9dX1WFJnprkjhkmC74wwzj470jy\n6tbaj5e0v02GcOhOSa6T5KIk5yZ5b4aeQd8c270hyaOm3jcZ7uaurbVTpl6/bZKnJbnzuL0Lknwu\nyetaa29Zsu9HZxiu530ZhlR5XYYHd3/aWnvhavMTrONzrrqvpcdxyXuvPB6jRybZP8kPkpyW5I9X\nec+ytS/qeM9z7MbtXSXDPAkPyTB0zY+SfCTJ81pr/zrV7pjxc76xtfboZbbzC+tXqz3JAdupa83n\ndckxuG+G4/qo8fNcmuQTSY4ev1W/ZmutYennTHJyVWWlz7ZkH5PaT8jwLfNjMwwbdL0kP0xyylj7\nl5Z5z6rX8Ky/G1PvW9M1MdV+tyRHZPi9uE2GB8MXZhiO6o1JXtta+9k8+5pljpKlbbdzHb4wyaFJ\nntVa+7MVtvfcDN/8/1Br7e6r7XvqPRtx7cx8P5p675ruz2utb5b7/dR7Ds1wjA5Pcu0Mk9n/Y5Jj\nJz1M1/r3ZlbjsfvDDL9zB2TolfKhJM9NcsskJ2Y78y5V1clJ7pLkj1trz19hP5Nr56TW2n+Zen29\nfx8XcX+7cZL/zPB7etUMv3MXTK3/z9ba99e4rc1w2Lj86qZWAQDs1PTIAQA22nnj8qrTL1bVEzM8\n0Htwkq8leVOSk5PcJMlLkpxaVXtPtT88w8Oghyb59yRvSPLODP9/84dJPlFVNxybfzDDQ6WJyfw9\n50xt7/eSfDLDQ7JzMjzM/USG4Xn+tqreMD78Xc7bkuw51vDF1T78rJ9znn1NtX9Bkhsk+YcM8yVc\nN8Nnu+Ua3j+pe6HHe47PkyTvyTC59CfG930nyf2SfKyq1vyZVjBL7T8353k9PsMD0k8m+bsk/zfJ\nPZKcNMswOzPW8MHxc/1w/PmdmX0+jasm+UCGh/JnZPid+X6SByX5ZFXdYoX3LXvO5zyGs14Trx/b\nHZbko0n+OsND8dskec24biU78vqbWO06fP342qNXef/vjsvjVmnzcxt47azrfjTj/Xm79a3nfj8e\no49mmLz+40n+JsnXM/Qu/UJV/drU/me+h6xmrOWdSf4kQ4jzviTvTnJIhuHTDlzjpiaBy4NWaTO5\ndt40tf95/j7OfX9rrR3fWrvuuI0keXpr7bpT/35ttfdvhqrau6puXVWvymXH9JWbWRMAsHPTIwcA\n2Gg3GZdfm7xQVb+a4UFXktyvtfaeqXXXyPDw7NeTHJPkqHHVczIM0fb41tpfTbXfbdzWkzN8c/pp\nrbXjq+r0JI9JktbaU6cLqqobZXg4esUkD22tvX1qXWV4MPeoJB9O8uYln+fQJKcmeWBrbdWJrdf5\nOde1r3Gb984w2fePkxzaWvvs1LonTdWyFgs73uv9PKPDknwmyU1aaxeMNeye4aHwvZL8ryT/bYbP\ndTmr1V5Vd1ruPXOe1zsnaUkOaq2dN75nzwwPim891rGW3goz1dBaOz7J8VV1vyT7JHnlOnoL/FaS\nf87lz8WVM5yLe2YIAO695D3LnvM5j+FM10RV3SzDcd2W5PDW2mem1t08yb8keWRVvWx63Xr2tV7b\nuQ6/leSlw3/WYa2106ffOwZot8zQY+OE7e1ro66d9d6PZr0/b6++9dzvx+viZUkuTnLH1tq/TL3n\n2CTPS/LWJLeY4f43i/smuc/U/s8c9717htDo2DVu5+8zhAm3qqpqrbXplVPXzoUZgqN5/z4u5P42\n5dbj8rOrtrr8Zzpmxn1MO7a1dswM+9ovyTeWWXVRht6Hr15nHQAAeuQAABunqm6Q4dvMyfCt9onH\nZ/iCybunHyImyThcynPGHx87PrhKkhuNy9OXtN82tj8sybLDDi3jyRl6F7x1+iHVuL2WYeiaJHnS\nMu+9ZpK/WGMQsZ7Pud59Jcnvjcu/nX5oOu7vVRnmK1qrRR7viVk/T5JcKUNY9PNhdVprP8llDzLv\nUVVXn7GOec1zXvdO8qTJQ87xPRfmst4Dt87azHttrceVkhy55Fxckssemt6jqvZd8p6Vzvk89c96\nTVyY5HFJnrg0qGmtfTFDcJEMw2ct95k39fob9/1344+PWabJQ8fl21caim6Jjbp21ns/muf+vKjt\nPTHDMXrzdIgz+rOx9u9X1f5rrGFWkx4db52EOGO9P0nyhCTLDgO41Hifef/444OXaTK5dt49dY3P\nc/wXdX/LeGyvkeGzzvK364IMw7Kt598Fy2xvNT+deu8l42s/SfKiJK+acVsAAJejRw4AsMNV1dUy\nPOj/8wwTUP9ja+0fp5r85rh8/9L3jj6c4dvz10hysySfz/At35smeUVV/ffW2tmTxq21H2b4xu9a\n3W07+3/fuDykqvZqrf1oat3FM+xrPZ9z2iz7Si6bbPsjK6z/YJaZq2gFizzeE7N+niT5fmttufec\nkeHB2ZUzfKP8Y8u02VHmOa8XZxgaaalvjsu1hgLzXlvrcd7S3iCjMzJ8rqtkOBenTa1b6ZzPU/9M\n10Qb5jL5mxX2kwzzPiXLH/terr/XZxjS6yFV9ZTx4fjE5KH/G9a4rY26dtZ7P5rn/ryc9WzvruNr\nH13aeAzL1hxIrNPB4/LkZfZ/QVW9J8uHess5PkPPqAdlGKpt2uTame5ZM+/fx0Xc35JkMnzal9dw\njn+utfaSDL0Dd7jW2n9kGCowVXWFDD2Q/yhD0Pu4qrp3a+3fNqIWAGDrEeQAAIv28WG0lWVtyzC2\n/tJv7k56eyw7EfD4oOp7GSaXvmGGB4lHJrldhqFbzqqqz2V44PiBJCe31i6doeYDxuWDq+qQFdpc\nmuHb+DfOMMHzxHfbCpOiL2M9n3PaLPtKkuuPy3NXWP//zbCtRR7viVk/T7LysftpVf1nhrk3fmUd\ntcxjnvN67go9kn46Ltfag37ea2s9/n2FfU3OxQ3zi+dipXM+T/0zXxNVdd0M1/TdM/yeXCvD0FHT\nlpvzo4vrr7V2elV9KUOw8sBcNgTYbTMErm2FwGk5G3XtrPd+dMC4XM/9eVHbm7xnpdp3tMmxW2me\nnVl6qLw3yQ+S/FpVHTQJ5aeunW8l+T9T7Q8Yl+s5/ou6vyWXBTlrHlZtM433ubMyBDjnZZgn6M1V\ndft1/N0DABDkAAAL9/YMD4Km/TjDpNAfbK19ZZn37DnVbiUXjcs9kqS19pWqunWGh7EPy/CN6MnP\n36mqF7TWXrHGmieTeN9vDW2vtuTnWYZemflzzrGv6f1dtML6i9e6oQUf74lZP0+SrPZN7MnnvOo6\ntjuPec7regKwRdewXqudi8mwQlde8vpK53ye+me6Jqrqxhl6zFxnXH9qhnktJtu5R5Kbr7C9nq6/\n1yd5cYaeGJMeFJMeFcfNsJ2NunbWez+a5/68qO1Nzumifl9nNTnuK52jH651Q621i6rqnRmumwcn\neeG4anLtHN9a++nUW+Y5/os8XpPeWjtFkLPEKzIEObcd/y2dewsAYLsEOQDAor20tfaJGd/zowwP\ngPZcpc1k3fTcFN/LMD7/c6vqJhkewP5uhqGCXl5VV2ytvXQN+78gwxAv92ytfXDG2mexrs85h4vG\n7V1lO/takwUe73ms9pB8su7CVdpMu9KctUxs9HntpYbVzsVkyKTvrnFb89Q/6zXxkgwhzmcy/M5/\nb/oNVfWmrBzkLPL6m9ebMjyEv0tV7ddaOyfJQzL0dlg66fxqNuraWe/9aNH35/Vsb3KMrrGA/a/H\nxRnCnJWO3d4rvL6St2QIch6UXwxyll47G/X3cXsmPXKWzlG0qqo6KslR69znS8ah2eY13ZPrxhHk\nAADrMEtXZgCAHWUyRNOBy60cJw+/5vjjSsP/fLm19urW2p2T/MH48v+zxv1/eVzecI3t12vuzzmj\n/xiX111h/bJ1rMWcx3sey56jcRL2yZBWk+GHJsPXLB0ya+KABdW00ee1lxpWOxeTB97/ucZtzVP/\nLNdEMgwPmCQvWhrirFbDOve1w7TWvp3kxAxDwD2kqg7LMEzaB1tr31z1zZe3UdfOeu9Hi74/r2d7\nk2N0/VVb7TjfHpcrHbtbzri9kzOcj9tW1YHjkGkHJPl8a21pULJRfx9XVFV75bLrY3tD5y21d4bg\ndj3/Zg3IVnKjqf/eUWE+ALDFCXIAgB6cMi7vs8L6/zouv5nk7Kq6RlU9uKr+6wrtjx+Xyz50q6ql\nc1+cNC4fskL7Parqd6vqWivsb61OGZdr+pxz7iu57JvLd1q6YjwGKx2/pW0XfbzncZ2q+rVlXr9D\nht7mFyeZTCY9GW7oFx5+VtVVctkk7ytaY+2njMuNOq+91HCdqlpucvpDMpyLS2bY1ynjcj31z3JN\nJJeNSvD9pW8Yt3PY+ONy537WfS3EKtfh68fl7yV5+Pjfb5hx86eMyx197az3frTo+/N6tnfyuLzH\nMu2vUFXnVtVPqurwZdYv4v43mZdouWO3V9Y27NnPjXO0vG388V4ZeuYkQy+vpTbq7+Nqrp/Lfh9n\nCSnTWjumtbbbOv8ds73tV9UV13CO/3Bc/iTJWueuAgC4HEEOANCDV2V4AHqfqrrv9IpxUvI/HX98\n+Thx8nUyzMXzpqq62TLbmwwRM/3N4uk5BPZf0v41GeYeuHtVPXLJ/ndP8soMD71eveZPtLxZP+e8\n3jEuj6iqg5ase3rW3iNn0cd7HpckeWlV/Xyujqq6UpJjxx/f01qbzGMymQD8LuNQcJP2V8wwt8hk\n+K+lZq19o89rLzVcmuRlVfXzIbGq6spJnj/+eOLUudieeeqf5ZpIki+Oy8sFF1V1iyR/n+T08aUb\nLFPnrPuax1quw3/KMGzT7ZI8IkM49Z4Z97NR185670eLvj+vZ3v/O8P1fr+quteS7T0lyfWSfC2X\nXTurnruqelNVfamq/vsaaz5hXD6qqm66pN7XZPnQcXveMi7vmeF34We5LJSftlF/H1cz3bPvgTtw\nP+txgyRnVNVjq2q/yYtjwHebqnpLkt8fX35Fa225APnak3+5/PB9+06vqyrPbwBgF2aOHABg07XW\nvlxVT0zy10lOqKqPJDkrQ0+K38zwwP3EJH8xtv9SVb0oybOTfK6qTskw5M8VMsxtcViGOQ2ePrWP\n71XV1zIMH/ORqvp8hoeuf9Va+2pVPS7Dt5HfVFVPyDCh8j5J7pLh28Bfm97eRnzOBXhHksdn+Axn\nVNX7kpyf5OAkt8owN8Ixa6h7ocd7zs90yrj8clX9nwwPoO+W5CZJvpfkWVNtT84Q5twqw+f/xyTn\nZfhW+7WS/EmS/7XM51229qwwGfsmnNdeajg9ybYMveSWnovvJ/mjDar/lHG5lmsiGc75O5McOfau\nOStDiHC3JC/KcM3cMcnDq2pbLuv1sp59rdtafodaaz+tqjckeU6GOVxe3Vpb9jpdZT8bde2s6360\n6PvzerbXWjurqp6cIdQ4sar+Kck3ktw6yaEZhss6orX207H99s7dDZNUhvvQWrw5yRMzHKvPVNV7\nMxy7u2UIcV6YYe6nNWutfaaqWoYg58pJPtRaO3eZdhvy93E7tZ4//r7dPcnbq+p1Geai+nGSG489\njDbTwRnvE1V1UYbrYZ9cfk6jNyR5xgrv/84Kry/tvXOjDMcaANgF+UYHANCF1trfZHh4+s4kN03y\n6CSHZ3hg9Ngk92+t/WSq/XOSPCDJB5LcIskRSR6Z5JeTvDbJbVtrp+fyjkjyhQw9TA7O8A3ryfbe\nmuT2Sf42wzdsH5fk/hkma3/+uL25576Y9XPOua+fZfim9YsyfI4HZhhC51sZwpdPzbCthR7vOfwk\nyX2TvDFDIPOoDN9gfkeSQ1trk7ksMj5UvUeGh6AXZ/jsv5PkzCS/kdWH6Jmp9o08r53VcO8MDygP\ny3Au9s3Qq+WQ1tpXZtnQHPWv+ZoY9/OucXv/OrZ/SJKrJnlYa+15GXo/HJ+h9819MzyQXde+FmAt\n1+HfZAjUkuS49exkI66dee5Hi74/r2d7YwhzeIZQ6/bjew7IEHAcvM7735ruia21S5L8VobeL+dl\nuBffM8P9+LAk/3dsOmug8ZYMIU4y3CdX2v+G/H3cjodn6D321QwByXWSfK+DEOebGXqlvjZDr9Tz\nM9wHL81w/l+f5E6ttcfs6L8BAMDWttu2bTtqdAcAAGCrqapHZwgMTm2t3WVzq2EcEu7fkny6tXbI\nZtfD2lTVZzIMtfWGBWzrKUlemuTdrbX7z7s9AAD6Y2g1AACAnddzx+XLNrUK1qyqfinDcHKfnaH9\nbyTZq7X2tmWa3GFcfn4xFQIA0BtDqwEAAOyEquqxSR6W5EtJ3r7J5bB2z0zypdbaP6+x/fWT/EOS\nN1fVHadXVNVhGYap2xbXAADAlqVHDgAAwE6iqirJk5LcMsldM0z6foT5N3YerbWnz9j+X6rq/03y\ntCSnVtU/JflGkgMzXAO7J3lBa02PHACALUqQAwAAsPO4dpInZphM/dQkR7XWztjcktjRWmtPr6qP\nZwjx7pRkryTnJTkpyWtaa+/ezPoAANixdtu2bdtm1wAAAAAAAMAyzJEDAAAAAADQKUEOAAAAAABA\np3b6OXLOP/98Y8MBAAAAAAA71NWvfvXdNmO/euQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5\nAAAAAAAAnRLkAAAAAAAAdEqQA7ATOPvss3P22WdvdhkAO4R7HLCVuccBW537HMCOJ8gBAAAAAADo\nlCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6JQgBwAAAAAAoFOCHAAAAAAAgE4J\ncgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBOCXIAAAAAAAA6tftmFwAAAAAAAOux\n73HnbnYJW9Z5j7n+ZpfASI8cAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6JQgBwAAAAAAoFOCHAAA\nAAAAgE4JcgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBOCXIAAAAAAAA6JcgBAAAA\nAADolCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6JQgBwAAAAAAoFOCHAAAAAAA\ngE4JcgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBO7b6IjVTVryZ5dpK7Jbl2kvOS\nnJ7kxa2106ba7ZHkWUkemmT/JD9IclKSo1trZy2iFgAAAAAAgK1i7h45VXXbJJ9Kcu8kr0vy2CR/\nmeT2SU6tqt8e2+2W5D1Jnpvko2O7P09ylyQfr6obz1sLAAAAAADAVrKIHjnPTbJnkvu31j44ebGq\n3pXki0men+TEDL1w7p6hl84zptp9OMkZSV6c5AELqAcAAAAAAGBLWMQcOZOeNB+dfrG19qUk305y\nwPjSEePy5UvanZlhGLb7VNW+C6gHAAAAAABgS1hEkPPFcXnT6Rer6upJ9k3y+fGlQ5J8o7V2zjLb\n+GSSKyU5eAH1AAAAAAAAbAmLGFrtT5PcM8mbqupJSb6U5FeSHJtkW5Kjq2qfJNdM0lbYxtfH5YFJ\nTlpATTn77LMXsRmArri3AVuZexywlbnHAVud+xybZ8/NLmDL2pV/rw866KDNLuFy5u6R01r7fJJD\nk1wxw/Bq30nyuSR3SHLP1topSfYZm1+4wmZ+NC73WWE9AAAAAADALmfuHjlVVUnen+QqSY7M0CPn\nl5M8PcmJVfXAJP82735m1VtiBjCPyTcg3NuArcg9DtjK3OOArc59jk132rmbXcGW5fe6H4sYWu11\nSa6f5Oatta9OXqyqdyT5cpLjktx8fHmvFbax97j8wQLqAQAAAAAA2BLmGlqtqvZKcsckZ06HOEnS\nWvtxklMyhDw3zDDk2n4rbGr/cbnrDroHAAAAAACwxLxz5OyRZLckV11h/VWnlqcn2a+qbrhMu8OT\n/DjJmXPWAwAAAAAAsGXMFeS01r6boRfNravqFtPrquqaSe6WYbi0zyd5/bjqyCXt7pzkdkne1lq7\nYJ56AAAAAAAAtpJFzJHz9CQnJPloVb0yyVlJrp3kKUn2TfL41trFSU6sqncleWpVXS3JSRmGVDsq\nyTlJnr2AWgAAAAAAALaMuYOc1tqJVXWnJH+U5AlJrpHkh0nOSPLE1toHppo/LMkzkzwiySOTfD/J\ne5M8p7X2rXlrAQAAAAAA2EoW0SMnrbVPJLn/GtpdkuT54z8AAAAAAABWMdccOQAAAAAAAOw4ghwA\nAAAAAIBOCXIAAAAAAAA6JcgBAAAAAADolCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAA\nAAAA6JQgBwAAAAAAoFOCHAAAAAAAgE4JcgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAA\nAIBOCXIAAAAAAAA6JcgBAAAAAADolCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA\n6JQgBwAAAAAAoFOCHAAAAAAAgE4JcgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBO\nCXIAAAAAAAA6JcgBAAAAAADolCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6JQg\nBwAAAAAAoFOCHAAAAAAAgE4JcgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBOCXIA\nAAAAAAA6JcgBAAAAAADolCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6JQgBwAA\nAAAAoFOCHAAAAAAAgE4JcgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBOCXIAAAAA\nAAA6JcgBAAAAAADolCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6NTui9pQVd0r\nyTOTHJzkJ0n+OcmftNZOWtJujyTPSvLQJPsn+UGSk5Ic3Vo7a1H1AAAAAAAA7OwW0iOnqh6b5P3j\nj09JckySA5N8oKruMtVutyTvSfLcJB9N8tgkf57kLkk+XlU3XkQ9AAAAAAAAW8HcPXKq6rpJXp7k\nQ0nu2Vr72fj6iUk+nuS/JTllbP7QJHdP8uLW2jOmtvHhJGckeXGSB8xbEwAAAAAAwFawiKHVHpVk\nryTHTEKcJGmt/XuS6yxpe8S4fPn0i621M6vq9CT3qap9W2vnLaAuAAAAAACAndoigpy7J/lhht43\nqaorJtm9tXbxMm0PSfKN1to5y6z7ZJI7Zphj56Rl1s/k7LPPnncTAN1xbwO2Mvc4YCtzjwO2Ovc5\nNs+em13AlrUr/14fdNBBm13C5SxijpybJflKkttU1alJLk5yUVV9vqoeOmlUVfskuWaS5UKcJPn6\nuDxwATUBAAAAAADs9BbRI+eaSS5N8r4kx2WY5+aAJM9M8taq2qu19vok+4ztL1xhOz8al/ussH4m\nvSVmAPOYfAPCvQ3YitzjgK3MPQ7Y6tzn2HSnnbvZFWxZfq/7sYgg58oZgpuHt9aOn7xYVe9L8sUk\nL6yqNyxgPwAAAAAAALuURQytdkGSi5K8bfrF1tpXk5yc5JeT3DzJD8ZVe62wnb3H5Q9WWA8AAAAA\nALBLWUSQ87VVtvPtcXm11toFSb6TZL8V2u4/LnfdGZQAAAAAAACmLCLI+XiG4dVuscy6SThzzrg8\nPcl+VXXDZdoenuTHSc5cQE0AAAAAAAA7vUUEOW8Yl39cVbtNXqyqW2cIZz7XWvv6+PLrx+WR0xuo\nqjsnuV2St409dwAAAAAAAHZn73JmAAAgAElEQVR5u8+7gdbaJ6vqFUmenOQfqurvMvTEOTLJT5I8\nZartiVX1riRPraqrJTlpbHtUhl47z563HgAAAAAAgK1i7iBn9JQkX0jy+CSvTXJxko8lOaa19ukl\nbR+W5JlJHpHkkUm+n+S9SZ7TWvvWguoBAAAAAADY6S0kyGmtbUvyv8d/22t7SZLnj/8AAAAAAABY\nwSLmyAEAAAAAAGAHEOQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5AAAAAAAAnRLkAAAAAAAA\ndEqQAwAAAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRKkAMAAAAAANApQQ4AAAAAAECn\nBDkAAAAAAACdEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5AAAAAAAAnRLkAAAAAAAAdEqQ\nAwAAAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRKkAMAAAAAANApQQ4AAAAAAECnBDkA\nAAAAAACdEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5AAAAAAAAnRLkAAAAAAAAdEqQAwAA\nAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRKkAMAAAAAANApQQ4AAAAAAECnBDkAAAAA\nAACdEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5AAAAAAAAnRLkAAAAAAAAdEqQAwAAAAAA\n0ClBDgAAAAAAQKd23+wCAAAAAAC2un2PO3ezSwB2UnrkAAAAAAAAdEqQAwAAAAAA0ClBDgAAAAAA\nQKcEOQAAAAAAAJ0S5AAAAAAAAHRKkAMAAAAAANApQQ4AAAAAAECnBDkAAAAAAACdEuQAAAAAAAB0\nSpADAAAAAADQKUEOAAAAAABAp3bfERutqucnOTrJG1trj556/QpJnprkMUkOSnJRko8lOaa19ukd\nUQsAAAAAAMDOauE9cqrqV5P80QqrX5vkL5KcleR/ZAh7KslHqurQRdcCAAAAAACwM1toj5yxx81f\nJ/m3JLddsu7QJI9L8o7W2kOmXn9XhmDnVUkOXmQ9AAAAAAAAO7NF98h5QpJDkxy1zLojxuXLpl9s\nrZ2b5IQktx178wAAAAAAAJAF9sipqv2SvCjJ37bWTqqqpU0OSfLTJJ9a5u2fTPLwJHfI0Jtnbmef\nffYiNgPQFfc2YCtzjwO2Mvc4YKtzn1uLPTe7AJjJrvx7fdBBB212CZezyB45r0pyaZKnrbD+gCTf\nbq1dusy6r4/LAxdYDwAAAAAAwE5tIT1yqupBSX4nyeNaa99Zodk+Sb6/wrofTbVZiN4SM4B5TL4B\n4d4GbEXuccBW5h4HbHXuczM47dzNrgBm4ve6H3P3yKmqfZO8IsmpSY6buyIAAAAAAACSLGZotRcn\nuWaSx7fWtq3S7gdJ9lph3d5TbQAAAAAAAMicQ6tV1W8meVySlyW5oKr2W9Jkz/G1HyX59yS3q6or\nt9YuWdJu/3G5686eBAAAAAAAsMS8PXLulmS3JE9N8o0l/5LkweN//2WS08f9/cYy2zl8XH5sznoA\nAAAAAAC2jLl65CQ5PskZK6w7McmHk7w0lwU7/zPJkUk+MmlUVQcl+e0kJ7fWvjJnPQAAAAAAAFvG\nXEFOa+2sJGctt66qkuSc1tp7p177yyRPq6oTkrwrybWTPC3Jj5M8eZ5aAAAAAAAAtpp5e+TM6qgk\nX03yB0n+OsmFSU5J8tzW2hc2uBYAAAAAAICu7bAgp7W22zKvbUvyyvEfAAAAAAAAq7jCZhcAAAAA\nAADA8gQ5AAAAAAAAnRLkAAAAAAAAdEqQAwAAAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAA\nAHRKkAMAAAAAANApQQ4AAAAAAECnBDkAAAAAAACdEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABA\npwQ5AAAAAAAAnRLkAAAAAAAAdEqQAwAAAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRK\nkAMAAAAAANApQQ4AAAAAAECnBDkAAAAAAACdEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5\nAAAAAAAAnRLkAAAAAAAAdEqQAwAAAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRKkAMA\nAAAAANApQQ4AAAAAAECnBDkAAAAAAACdEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5AAAA\nAAAAnRLkAAAAAAAAdEqQAwAAAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRKkAMAAAAA\nANApQQ4AAAAAAECnBDkAAAAAAACdEuQAAAAAAAB0SpADAAAAAADQKUEOAAAAAABApwQ5AAAAAAAA\nnRLkAAAAAAAAdEqQAwAAAAAA0ClBDgAAAAAAQKcEOQAAAAAAAJ0S5AAAAAAAAHRq90VspKp+Kcnz\nktw/yXWSnJfktCQvaK2duaTtHkmeleShSfZP8oMkJyU5urV21iLqAQAAAAAA2ArmDnKq6peTfCbJ\ntZK8Jslnk9w0yf9Mcs+qumNr7Z/HtrsleU+S30pyXJJjk1wvyVFJPl5Vh7TWvjJvTQAAAADA7PY9\n7twZ37HnsDht1vcBsFaL6JHzJ0n2S/LA1tq7Ji9W1aeTvDtD75uHjC8/NMndk7y4tfaMqbYfTnJG\nkhcnecACagIAAAAAANjpLWKOnG8meWuSE5a8/oEk25Lceuq1I8bly6cbjsOvnZ7kPlW17wJqAgAA\nAAAA2OnN3SOntXbMCqv2SbJbhjlwJg5J8o3W2jnLtP9kkjsmOTjDnDkAAAAAAAC7tEUMrbaSx4/L\ntyRJVe2T5JpJ2grtvz4uD8wCgpyzzz573k0AdMe9DdjK3OOArcw9Dth57LnZBQCd2JX//+Wggw7a\n7BIuZxFDq/2CqrpXkucl+UyS14wv7zMuL1zhbT9a0g4AAAAAAGCXtvAeOVV1RJLXJflakt9urV2y\n6H2sRW+JGcA8Jt+AcG8DtiL3OGArc48DdjqnnbvZFQCd8P8v/Vhoj5yqOjrJG5N8NsmdWmv/MbV6\nMlfOXiu8fe8l7QAAAAAAAHZpCwtyquqlSZ6f5B+S3Lm19u3p9a21C5J8J8l+K2xi/3G56w68BwAA\nAAAAMGUhQc7YE+cpSY5L8oDW2krz4JyeZL+quuEy6w5P8uMkZy6iJgAAAAAAgJ3d3EFOVd01ybFJ\nTkjy+621n67S/PXj8sgl27hzktsledvYcwcAAAAAAGCXt/sCtvGScfmhJA+oquXavL+1dmFr7cSq\neleSp1bV1ZKclGFItaOSnJPk2QuoBwAAAAAAYEtYRJBz8Lh81SptbpTka+N/PyzJM5M8Iskjk3w/\nyXuTPKe19q0F1AMAAAAAALAlzB3ktNZ2m7H9JUmeP/4DAAAAAABgBXPPkQMAAAAAAMCOIcgBAAAA\nAADolCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6JQgBwAAAAAAoFOCHAAAAAAA\ngE4JcgAAAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBOCXIAAAAAAAA6JcgBAAAAAADo\nlCAHAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6NTum10AAAAAAMxi3+PO3ewSAGDD\n6JEDAAAAAADQKUEOAAAAAABApwQ5AAAAAAAAnRLkAAAAAAAAdEqQAwAAAAAA0ClBDgAAAAAAQKcE\nOQAAAAAAAJ0S5AAAAAAAAHRKkAMAAAAAANApQQ4AAAAAAECnBDkAAAAAAACdEuQAAAAAAAB0SpAD\nAAAAAADQKUEOAAAAAABApwQ5AAAAAAAAndp9swsAAAAA2Ir2Pe7czS4BANgC9MgBAAAAAADolCAH\nAAAAAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6JQgBwAAAAAAoFOCHAAAAAAAgE4JcgAA\nAAAAADolyAEAAAAAAOiUIAcAAAAAAKBTghwAAAAAAIBOCXIAAAAAAAA6JcgBAAAAAADolCAHAAAA\nAACgU4IcAAAAAACATglyAAAAAAAAOiXIAQAAAAAA6NTum10AAAAArMW+x5272SWsw57D4rS+az/v\nMdff7BIAAFiBIAcAAAB2cTtnSAYAsGswtBoAAAAAAECnBDkAAAAAAACd2vCh1arqmkn+OMn9kvxK\nku8meX+So1tr/7HR9QAAAAAAAPRqQ3vkVNUeSU5J8oQk70zy6CR/leR3k3ysqq6xkfUAAAAAAAD0\nbKN75Dw1ya2SPKm19urJi1X12SQnJDk6ydM2uCYAAAAAAIAu7bZt27YN21lVfTHJDZJcq7V28dTr\nuyX5epKrJLlOa23NRZ1//vkb9wEAAAAAAIBd0tWvfvXdNmO/Gza0WlVdLcnNkpw5HeIkyRjcfCrJ\nLyW50UbVBAAAAAAA0LONnCNn/3F5zgrrvz4uD9yAWgAAAAAAALq3kUHOPuPywhXW/2hJOwAAAAAA\n+P/bu/N4+6b68eOvTyVEpgwpUypvU2UqQpmKpKQfojIlJanIlDGz8k3oiyJCNKCiJPmS+IgkQ8bq\nnZChZEwD0eD+/ljruOdzPufce84dzj14PR8Pj+3uvfZaa++z7/qcu957rSU9r/UzkCNJkiRJkiRJ\nkqQe9DOQ87e6naPD8Tlb0kmSJEmSJEmSJD2vvaiPZd0FDAGLdDjeWEPn9l4ynXvuuaeNp1KSJEmS\nJEmSJEmDatrQ0FDfCouIG4HXAi/LzCeb9r8Q+BPwVGYu1rcKSZIkSZIkSZIkDbB+r5HzNeAlwI4t\n+7cCFgRO6XN9JEmSJEmSJEmSBla/R+TMAvwMWBk4DrgOWA7YjTKl2mqZ+UTfKiRJkiRJkiRJkjTA\n+hrIAYiIuYCDgE2BhYEHgfOAAzPz0b5WRpIkSZIkSZIkaYD1PZAjSZIkSZIkSZKk7vR7jRxJkiRJ\nkiRJkiR1yUCOJEmSJEmSJEnSgDKQI0mSJEmSJEmSNKAM5EiSJEmSJEmSJA0oAzmSJEmSJEmSJEkD\nykCOJEmSJEmSJEnSgDKQI0mSJEmSJEmSNKBeNNUVaIiI+YADgU2AhYGHgQuBAzLz/i7O3xL4JPCG\nuusm4HOZeUGbtKsDBwCrAbMDvwNOBo7PzKHxX40kzajPbdyataw3AbMB9wLfAw7NzH+M/2okaUb9\nbONazputpl0KWCczLx/rNUjSSPr8XW5WYG9gK2DRWtaPgP0y8+HxX40kzajPbdxWwMdq2hcD9wAX\nAIdl5iPjvxpJmllEvBg4DNgDuCIz1+7h3K5jCRGxLHAIsBYwF3A38A3g85n5r/Fcw0CMyImI2YHL\ngZ0onY3bAScBWwBXRcS8o5x/EPBtYD7gs8AulM7LH0bE+1vSrgtcBrwWOAj4COXm/y9wzMRckSQN\n63Mb90HgZ5Q/+g+sZd4M7AVcHBED0e5Leu7oZxvXxgGUII4kTZo+f5d7ESVosz+lY3MH4LvAh4Hp\ntRNCkiZMn9u4I4AzgVmAfSkBncspQaBfRMRcE3NVkjQsIgK4mtLOTevx3K5jCRGxXC1nTeAoYHtg\nej3vnHFcAgDThoamfgBKROwDHAHsnJlfbtq/CXAecExm7tbh3EWBO4EHgGUy8+91/xzANcBCwOKZ\n+UTd/1vK2wVLN79VEBHfBzYGVszMmyb+KiU9X/Wrjatvbz4EPAa8LjP/2pTPeZS3qzbKzAsn4TIl\nPU/183tcy7mvA64HbgVWxBE5kiZJn/9e/QRwHLBtZp7RlM/+lM6AbTPzZxN/lZKer/r49+p8Nd19\nlD65p5ry+RxlJOKumfmlSbhMSc9TNRh9H3A7JUD9W2B6tyNyeoklRMT/AW8DVsjMW5rSHksJcr8n\nM88f67UMypvZ2wCPA19r2f8Dyo3eKiI6RcveTpki7tTGPxgAmfk4cCwwP7AhQESsCgRwTpuhocdT\nInJbje9SJGkmfWnjgJcD51KGsP+1JZ9G8Ob1Y70ISeqgX23cM+rowpMpw9RPGu8FSNIo+tnO7Uzp\naDizOZPMPCwzlzSII2kS9KuNW6ym/WVzEKe6om6XGOM1SFInLwbOAFbLzOzlxF5iCRGxMKVN/Glz\nEKcpLcDWPdZ9BlMeyKnDJpcGbmhtyOscc78EFgBe1SGLhev2zjbHbqzbN7Vsr26T9pq6XbWLaktS\nV/rZxmXm3Zm5XWZ+pU3auev2bz1UX5JG1Ofvcc0+QfnO9jGgtSNAkiZMP9u5iFiklnVxY771iJht\nhA5USRqXPn+Xu4vyve21bdIuUbe3dlVxSepSZj6QmTtl5pNjOL2XWMIqlMDOTGkz8/fAo4wz7jDl\ngRxg8bq9r8Pxe+p2yQ7HG2+dL9Dm2D9byliiU1n1zYHHRihHksain21cW3Uu9e2BJ4Dvj5RWknrU\n9zauTuFxOHBmZl7aZT0laaz62c4tXbd3RMQuEfGHmuafEfH9iHhNVzWWpO71rY2rs0YcCqwYEcdF\nxKsjYsGIeBewHyXw881eKi9Jk2yJuu0mltAxbXUPsGhdD3FMBiGQ89K6nWnu8+rxlnStfl63m7U5\ntmXdztlDWZ3KkaSx6GcbN5Om6YeWAQ7IzD91rqok9Wwq2rivAP8Cdu+mgpI0Tv1s5+ar222BHSlB\n6/dQppB8N2XR8YWRpInT1+9ymXk4ZaHwHYDfU9bM+SHwK2DdMb4xL0mTpZdYwnjb01GNOQI0KDLz\nhrqQ0AYRcRpwWD30wfrf0zjlhqRnqfG0cRExO/AtYBPghMw8ug9VlqSu9drGRcSWwEbA9pn5UL/r\nK0m96rGde3HdLgQsn5mP1J/Pj4gHKIGd3YE9+lJ5SRrFGL7L7QT8L3Ax8G3gIcpUQ3sBF0bEhpn5\nWB8vQZKeNQZhRE5jvYY5OhyfsyVdO1tSpgvajhLR/z3lzaXNKdf4aA9luX6EpInUzzbuGRGxAPBT\nShDn0Mz8RK8Vl6Qu9K2Ni4j5gC8B0zPztHHVWpK618/vcv+o2/ObgjgNjUXI1+6m0pLUpX5+lwtK\nEOfSzNwoM7+Rmf+XmYdQgj6rAfuO/VIkacL1Ekvotj39+1grMwiBnLuAIWCRDscb83Xe3imDzHws\nM98LvAJYHXh1Zq5MmXYD4Dd121h8baayImJuymLgHcuRpDHoZxsHQEQsBFxFWWjtQ5n52bFXX5JG\n1M827gvAPMBBEbFI4z9g3np8gbpv1rFfjiTNpJ/t3B/q9oVtsnm41mOurmsuSaPrZxu3LmVmoHPb\nZPPjWo91eqq9JE2uXmIJHdNWiwN3ZeZ/xlqZKZ9aLTMfj4ibgZUiYrbm+TAj4oWUfwTuzcx7OmYy\nnNf9wP1Nuzas25/UbWPuzjUYfqOp4S11e2WPlyBJHfW5jSMi5gIuAhYDNs7MH0/AZUhSW31u49aj\nTDt0WYcszqnbdYDLu74ISRpBn9u5X1MWDl+hzemLAtPovICuJPWsz21c4y312dqcPiuljWt3TJKm\nSi+xhF8C/6lpZxARy1NeSvzheCozCCNyoNyIl1AWdGy2FbAgcEpjR0QsHRGvavp5zoj4bURcHhHT\nmvYvAHwauCozbwbIzBuBG4DN6xucjbTTatp/A1+f6IuT9LzXlzau+hLlj//3G8SR1Cf9auO2pyz2\n3frfsfX4vvXnWybw2iQJ+vf36r8o6xuuHBHvbimrMU3uuDoAJKmNfn2Xa3SIbtGcttq8JY0k9V1r\nG9dLLCEzHwbOB9aOiBVbst69bk9hHKYNDQ2N5/wJERGzAD8DVgaOA64DlgN2owxPWi0zn6hph4DM\nzKWbzj+O8sX2QsrbmPMAu1Cm2lgzM29rSrsq5U3OP1P+8H+MMp/nhsABmdlYmE2SJkS/2riIeD1w\nI2Xo+oEdqvNQZk6f6GuU9PzVz+9xHcrfDjgNWCczL5/Ia5Mk6PvfqwsAvwBeCXyeMt3ausDWlO95\nq2fmPyfxciU9z/S5jTuHErT5eU37EPBGYGfKWjpv6mb0jyR1KyKWBZZt2vUdyijo5n6zCzPziQ5t\nXNexhIhYEriGMlXkUcCfgHdQ1gH7WmbuMJ5rmfKp1QAy898RsT5wELAp5R+ABylRqgMb/2CMYFfK\njdkWOJGySOSlwH6ZeUdLWddExFuBQ+p/s1I6Pbd34VxJk6GPbdxKlOHoy1L+YWpnOi6SK2kC9fN7\nnCRNhT7/vfpQRKwGHAZ8FJifMlXR0cAhBnEkTbQ+f5d7P3AFsB1wOGXa3D8BpwKHZuYfJ+CSJKnZ\n+5j5ZefWfrNXMbxW4Qx6iSVk5p0RsTqlfdsLeClwB7AHwzNJjNlAjMiRJEmSJEmSJEnSzAZljRxJ\nkiRJkiRJkiS1MJAjSZIkSZIkSZI0oAzkSJIkSZIkSZIkDSgDOZIkSZIkSZIkSQPKQI4kSZIkSZIk\nSdKAMpAjSZIkSZIkSZI0oAzkSJIkSZIkSZIkDSgDOZIkSZIkSZIkSQPKQI4kSZIkSZIkSdKAMpAj\nSZIkSZIkSZI0oAzkSJIkSZIkSZIkDagXTXUFJEmSJICI+AOwOPCqzPzDJOS/HXAa8PXM3K6L9EsA\ndwHTM3Ptum9t4LLmPJryPTgzD5roek+EiJgbOAHYGJgd2CczjxpjXqcD2wIfyszTx1Gn1YEvA8sC\nTwHLZOZ9Y81P49fumZ9KTc/aOpl5+dTWZmJFxOXAWkxSeydJkqTnFgM5kiRJUnuPAnsC946S7tqa\n7ufNOyNiC+CpzPz+5FSvJ3sDHwR+BZwLXDeVlYmIFwDnAK8Evg78DvhHH8pdFXhzZh472WU9S3X7\nzPfLWcCtwB2TWUhEzAd8FHgHsAwwL+V5vBv4KXBSZv5ugov9CnAB5Z5LkiRJIzKQI0mSJLWRmX8D\nRh21kpm3Abe1OXQw8AtgEAI5K9btRzLz+imtSbEgJYhzazejoybQhyid9QZy2uj2me+XzLwIuGgy\ny4iI9wGnAC8FbgK+BTwIzAW8EdgF2DUijgT2z8ynJ6LczDx7IvKRJEnS84OBHEmSJGmCRcS8wFKU\nQM4gmK1uH5nSWgybqvqs1ufyNMAi4v8BZwOPAe/OzAvapFkW+A6wDzArsHtfKylJkiRhIEeSJElV\nRBwEHAh8BrgCOAJYmfKd8Rbg8Mz8YVP6tSnrxZwNHE9Z7ySA12TmvTXNSpRpvd4CvAz4O3ADcFxm\nnj9CXT4OfBx4NfA48BNgr8y8pyXdosABwNuBVwBPA7+nvFX/xcz8V4f8XwX8D7AOMCdwe63TV5vS\nLEEX64W0rpHTtK4HwLYRsS0wvdbrw8Ce7daniYiFgfuAh4BFMvM/ncqs6Tej3KMVgTnqedOBz2Xm\nLS11a7grIqCL9Xwi4gOUabaWpnwGl1GejU7pZwf2ADYHXgv8hzJl2pnA8Y3raVobBGCtiBiq///M\nWiER8UFgR2AFYBbgj8D5lGdwpuBPRLyHMnJiJUqQKIGjgTMz8+nW+9AoMzOnjXQPatqenuGIWAz4\nLGXkz4KUz+Vc4JDMfGgsaUeqb9PztlNmntiyb0PgzcDHgJsyc/2me3EkcA3l92DRzJxtlHWhzq75\nHE5Za2kh4M91//6Z+VRTnaYBOwM7UX6HH6nXtW8te1NgwzripqN2a+Q0PT/LUJ6zfYDXAdOA64H9\nMvPKkfKt+cwJnExpMzbJzOnt0mXmryNiXUobuFtEnJWZ146Wfy1jCHiA8lyeDqwBfDQzv9lujZym\ndcJmB95PeaaXAv4NXElpA29rKWNlymfy5noPrgH2ozxPPwTOzswtu6mvJEmSBtcLproCkiRJGjiv\nAy6hdCofBXyTEiz4QURs0ib9bJS1LK4EDqGudRIRGwFXUzp9L6N0Np4DvKHmtWeH8j9D6Zy9qJ7z\nW2AL4IqImKuRKCJeQVnr5SOUDtxDKQGl+ShBqG90yH9e4GfAi4FjgK9SOk9PiohPdb4tXTsLOLH+\n/3WUYMhXKB25MBzkabU55fv5t7sI4hxOGSWwHKUj/XBKEGdT4JqIaARKGuv33Fl/PqL+fPEo+W9H\n+dxfQ5l26njK53wVsECb9LPX8g8BngC+CJwEvIRyj39Q18WBci+OqP9/Z63PntS1QiLieMpnt1gt\n+yjgHuDTwLUR8fKWsvelTF/3ylrPoyjBx9OBE1ruA8BfmsocUa/PcEQsA9wMfAD4Ub0fV1OCGtdG\nxIJjSTsO7wW2pgRZv9Vy7BWUZ/98hj+PkcxKWS/mDZTP9gTKdGR7UIJBzQ4GjgNeTvm8vwqsTXnu\nZu39MtragvKMXkv5zH8BvBW4KCIW6eL8rSltxQWdgjgNmfkAw1PO7TKGun4FeBI4DPhNF+n3BD5P\nuV9HUQKT7wQuiYiXNBJFxOsoQfcNKMHuIym/R5cDq46hnpIkSRpQjsiRJElSq62AbTLzzMaOiLiE\n0oH9P8y85ssGwL6ZeUxT+tmAUymjKd6emZc2HTuS0oF9RER8NzPvasnvncAKjZEXNWjx41rOxxju\nNN6R8tb5CZn5iab8j6aMsNk8IpbNzF+35L8x5c32LzSdcxYlSHFwRJzUPLqgV5l5UUQ8Wet6W/Po\nm4j4PbB8RKySmde1nLpF3Z4xUv71Dfx9KG/6r5CZf246tinwXeDkiIjG+j0R8S5gSeDkxtv/I+T/\nIkqHMJRRE1c2HduF9uvLHEBZT+RkYMfMHKrp96UE5N5JCWCdlplnR8Q1lNEZ97bcn/UpgYwbgbdk\n5j+ajh1ezzmy5kVEvIESAPktsHJmPlH3H0oJ7n0sIs7MzJ/X+/AF4G/tRkS1uQ9jeYbPAOYG1s3M\ny5rS708JNB4GfHQMacdqM+D1mfnHNsc2Bz6Qmed1mde7ga8DOzR9vt+mjADZJiJ2zcyhGoD6DGUU\nyZqZ+Zua9giGf48nwm7Aqo38axkXUkYhbcbo6yCtV7fdrmF1HuXZe3uP9ZwXeDoz39vDOR8GVszM\nPwFExMGU34nlgfUZriPLQBwAAAwJSURBVPOhlGDpYZl5QOPkiNie4WCyJEmSngMckSNJkqRWdzQH\ncarvUqZRem1ELNlybBZKB2+zxlRRlzV3gAPUQMK3KC8Vbd6m/BOap8+qncbH1R83akp3Zv35yKZ9\nZOb9lLf0AV7fJv+/0tLJWzv6rwPmAVZvc85EOb1uP9S8s04R92bg1sz81Sh5bE2ZQumE5iAOQGZ+\nj/L2/mspgZWxWI3y2V3fZoqq44GHW+o+DdiB0nH/mUYnf63PvyhThwFs00XZH6nbA5qDONWhlCne\nNq9BFij38YWUe/FEU7lPAXvVc/7bRbnt9PQMR8QKwCqU+3bZjFlxIiUAeW2vacdpeocgDpSRcx2n\nN2xjiJk/319Sfp/mYXik1gaU0W4XNgdZMvPflODLLD2UOZJTm/OvGiPNluri/EY71s0IGTLzduAp\nYMGIeGl3VQTKvTht1FQzOqYRxKll/xdoPINLAUTEiyn3+mnKqLfmup4K3NpjmZIkSRpgjsiRJElS\nq1+07qhv2idlqqSlGZ6qC+DuzHy05ZRV6vbnHcr4JWVEzRvaHGt3zi11u3RTnX5PWXeGiJgFmJ/h\naZsaQYBGh3+z62qncrsyVqlltHauT5QzKCNItoyI3ZpG/mxOCc60BtDa6ebeBuXe/nIMdVyubm9q\nPZCZ/42I65lxVMWSlE78e4C5I2LultMepnQ2r9RF2avV7SN1vZZWv6NM87cM8CuGg1U3tqnrhcCF\nXZTZSa/P8Eh1eZgZ1xfqJe14jBQUvLkGCLp1d61bq79SRhbNXn9etm5vaE2YmTdHxP3Awj2U28n1\nHepCU11G0gjGtAYMR/IPShvzUuDvEbE4MwemHm3THo4WnG3VzbW9itK+3dWmPCgj4VbssVxJkiQN\nKAM5kiRJavVgh/1/qdt5Wva360RsvJ3fKa/GQu7zd1l+o4x5Gzsi4oXA7pTpp17doZx2OtVppjIm\nWmbeGxE/Bd5GmeLtO/XQFpRgR6d1fZqN595242V1+5cOxx9p+bmxlstiQOs0ec3miojZMvPJEdI0\n8uoUPGlYqCV9p7qOR6/3uZe6TGa9m7X73ezmWDvtgjhQRupACUTC8PPTKf97mJhATrv6tNZlJI3A\nSGvgsa068qwR/HmsbqdT1tdqdjBwUMu+ibjXY7nPkiRJeo4wkCNJkqRWT3fY35iWt7Ujvt1b/aN1\nqDbyaldWu32NfIaa9p1MmVrrAeBzwG2UqbegBHjW7FB2p+trV8ZkOI0SyNkO+E4defIm4JLm6ZRG\nMJ57243R7kPr9MyNdHcDu46S939GOd7Ia2tGHinRGMnSuMZZOyUch17vcy91mcx6NxtpxM1Yp5wb\nzWjPz2T/fnXrt8DKlBFVV3WRfinKNGn3NE3j91HKGjWt+baajHv9bLnPkiRJmgAGciRJktSq00iO\nxkicB7rIozGKYcEOxxujHR5qc2x+6pRpTear20cBImJhSiDkKWCNzLyjOXFE7DhC3Tpd3wxlTKLz\nKKMB3h4RLwM+UPef0eX5D1KmThvLve1GY7RB68irhtZyG+v0zJ6Z3S4c38mfKSMcrm+z/kk7D1A6\n2BcYLeEY9PoMP9CyfyS9pB3NQqMn6avGSJdOz8+i/arIKC4GPkgZDfflLtK/t24vauzIzIs7pO2H\nZ8t9liRJ0gRofZtOkiRJelPrjoh4AcPr09zdRR6NhdrX6HD8zS3pRiyf4XVIbqvbxSlvpP+mTRBn\nHmDVEeq2cp2WbbQyJkVm/hM4h7K2xqbAVpTRJ+d1mcV47m03GiMKlm89UBdYX7l5X2b+gRL0WDAi\nXtfmnGkRsWTr/g6uqdu3tTsYEUvWKa4arqvbddqkfVdEfD8iPthl2a16vc+NuqxVf1+a6zJHRJwX\nEV8bQ1qoo+Dqs92c9kXA67u6mv65vW7bPT/LA6/sb3U6Ohu4H3hrRGw6UsKIeDmwB2Uk1bF9qFs3\n7qSM9Fk8IuZsc/wdfa6PJEmSJpGBHEmSJLVaJiI2a9m3BWVkws2ZeV8XeVwE/JHSUT1DJ3tEBLAl\n8ARwVptzPxURczelnwZ8sv54ft3+sW4Xj4g5mtLOAZzK8PRv7da7mR/YqaVOa1IWBn8I+MVoF9eF\nRvmdRv+cVrd7A8sA52bm4x3Stjv3aWCniJhhNEZEbAUsCVyXmbf0VuVnXAX8DVg1IlZpObYr7dcU\naQQdDmsTJPs0cEdEHNxF2Y18do+IGe5dRKwG/Aa4vGn3GZQppLaNiAWa0s4CHAC8B7i3Kf1TwLwd\nAnmtenqGM/NmypRvC1NGejTbAdiEOh1WL2mrO+t2w5a0u9J5xNBUuYTymWwcEYs1dtbP5BjKZzDl\nMvMpyqi+p4EzOwX8ImI54FLKmjQHdDlSbNLV6d2uogSEP9Z8LCK2o00gTZIkSc9eTq0mSZKkVt8B\nTomI9wG3AosA21I6PD/TTQaZ+e+I+BDwQ+DCiDgHuANYjDIKZTZg+8xsN/3XT4BfRcQFlOmD1qOM\nfkjKujhk5r0RcWk9dkVE/ICyEPlmlNEOR1LenP9UDe40v0X/A2CfiFgPuAl4BaVTHmDvzBxtHZdu\n3A78C9ggIk4H/puZH24czMyrIyIpU6RB99OqkZm3RsRBwCGU+/Q94BFKx+0mwF+AD3fOYdT8n6z5\nHw1cUuv/V2AVykinsymBvWaHAW8HNgZuqJ/HEGU0y3qU+3FCF2VfHBFfoQTabomIb9XrWZby3PwH\n2Lcp/Y0R8bm674aI+Cbwb8p9WB44MTOvaCriNmAl4EcRcQfw5cxsOwJrjM/wDsBlwGkR8Tbgd5SR\nXptSAkp7jTHtqcBRlN/LNSgBxzdRgo8n0xKYnEqZeWdEnEFpM66uz+ejlOu6mxIoXWsKq/iM+ry9\nh/L7942I2JfS/vwZmIsy+mwdyrO8V2Z+Ycoq294hlCniPh8Rb6S018tTRrQdDewzhXWTJEnSBHJE\njiRJklrdCaxLCYzsRpn66wZgo8y8aKQTm2XmJZQAzAXABgyPkLgCWCszv97h1L0pb+6vB+xJWQPl\nG8A6dVqyhi0po1MWqudsBJxY959OGRnwcmB7ylvrDXcBb6UEpj4BbFP3bZOZp3Z7fSPJzEeAT1EC\nLO+n/fRcjeu/j9Kh30v+h1I6xhPYmhLIeCOlw3+lOuJjzDLzGGDHWredKNfyX2BN4J426Z8A1qZ8\nxtMo01DtTQl6fBFYPTMfbD2vQ9kfr9d0OyUgdSCl4/+7wGqZeVVL+v0o9/juWtc9a113Bj7ekv0n\nKVPHrUsJ9szCCHp9hjPzekrn/1nA+rXuawCnAKtm5sNjSUv5fdifsrbOjpTn9nFgdYbX8hkkOwKf\np3wOO1LakHMpz2zD0BTUayaZeQFlFNvewMOU9uNgSr1fRrn3Sw1gEIfMvJTyPN5ACaJ+kvKy5hqU\nwCAMyH2WJEnS+EwbGvJ7nSRJkqCOwjgQODIz957i6jznRcTGlNFBh2fm/lNdH6kfIuJayuiut2Tm\nlVNdn+eqiNgZOB74WmbuMNX1kSRJ0vg4tZokSZI0NXamjFg4aaorIk2UiHgBsAKwRGae23JsFsoI\nOyij4DQOEbEo5V7fmJn3thxurJHjfZYkSXoOcGo1SZIkqc/qwurrA2e36YCVnu1+AHwvItZp2b8z\nZe2ZGzPzj/2v1nPOTsD5lDWqnhERSzC87tcFfa6TJEmSJoEjciRJkqQ+iIh5KOtuLA98gLLeyR5T\nWilpgmXm0xGxO2Xtnx9FxDeBe4GVKOu5PAXsMoVVfC45FtgC2KaOzpkOLEBpX+YBTszMm6awfpIk\nSZogjsiRJEmS+uOlwKHAZsBPKGuE3D+1VZImXmaeA6wLXAa8E9gfWA34LrB6Zl4xhdV7zsjMB4E1\nKQGdVwKfAbYFfkcJGn986monSZKkiTRtaGhoqusgSZIkSZIkSZKkNhyRI0mSJEmSJEmSNKAM5EiS\nJEmSJEmSJA0oAzmSJEmSJEmSJEkDykCOJEmSJEmSJEnSgDKQI0mSJEmSJEmSNKAM5EiSJEmSJEmS\nJA0oAzmSJEmSJEmSJEkDykCOJEmSJEmSJEnSgDKQI0mSJEmSJEmSNKAM5EiSJEmSJEmSJA0oAzmS\nJEmSJEmSJEkDykCOJEmSJEmSJEnSgPr/Mto8dZtt7AEAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "lesq_3oIIA0Y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### What about the day of the Challenger disaster?\n", + "\n", + "On the day of the Challenger disaster, the outside temperature was 31 degrees Fahrenheit. What is the posterior distribution of a defect occurring, given this temperature? The distribution is plotted below. It looks almost guaranteed that the Challenger was going to be subject to defective O-rings." ] - }, - "metadata": { - "image/png": { - "height": 224, - "width": 825 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(12.5, 3))\n", - "\n", - "prob_31 = logistic(31, beta_samples_, alpha_samples_)\n", - "\n", - "[ prob_31_ ] = evaluate([ prob_31 ])\n", - "print(prob_31_)\n", - "\n", - "plt.xlim(0.900, 1) # This should be changed to plt.xlim(0.995, 1), but illustrates the error\n", - "plt.hist(prob_31_, bins=10, normed=True, histtype='stepfilled')\n", - "plt.title(\"Posterior distribution of probability of defect, given $t = 31$\")\n", - "plt.xlabel(\"probability of defect occurring in O-ring\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "WjAFZ8W9IA0c" - }, - "source": [ - "### Is our model appropriate?\n", - "\n", - "The skeptical reader will say \"You deliberately chose the logistic function for $p(t)$ and the specific priors. Perhaps other functions or priors will give different results. How do I know I have chosen a good model?\" This is absolutely true. To consider an extreme situation, what if I had chosen the function $p(t) = 1,\\; \\forall t$, which guarantees a defect always occurring: I would have again predicted disaster on January 28th. Yet this is clearly a poorly chosen model. On the other hand, if I did choose the logistic function for $p(t)$, but specified all my priors to be very tight around 0, likely we would have very different posterior distributions. How do we know our model is an expression of the data? This encourages us to measure the model's **goodness of fit**.\n", - "\n", - "We can think: *how can we test whether our model is a bad fit?* An idea is to compare observed data with artificial dataset which we can simulate. The rationale is that if the simulated dataset does not appear similar, statistically, to the observed dataset, then likely our model is not accurately represented the observed data. \n", - "\n", - "Previously in this Chapter, we simulated an artificial dataset for the SMS example. To do this, we sampled values from the priors. We saw how varied the resulting datasets looked like, and rarely did they mimic our observed dataset. In the current example, we should sample from the *posterior* distributions to create *very plausible datasets*. Luckily, our Bayesian framework makes this very easy. We only need to gather samples from the distribution of choice, and specify the number of samples, the shape of the samples (we had 21 observations in our original dataset, so we'll make the shape of each sample 21), and the probability we want to use to determine the ratio of 1 observations to 0 observations.\n", - "\n", - "\n", - "Hence we create the following:\n", - "\n", - "```python\n", - "simulated_data = tfd.Bernoulli(name=\"simulation_data\", probs=p).sample(sample_shape=N)\n", - "```\n", - "Let's simulate 10 000:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "MvFwyz9hwROg" - }, - "outputs": [], - "source": [ - "alpha = alpha_mean_ # We're basing these values on the outputs of our model above\n", - "beta = beta_mean_\n", - "p_deterministic = tfd.Deterministic(name=\"p\", loc=1.0/(1. + tf.exp(beta * temperature_ + alpha))).sample()#seed=6.45)\n", - "simulated_data = tfd.Bernoulli(name=\"bernoulli_sim\", \n", - " probs=p_deterministic_).sample(sample_shape=10000)\n", - "[ \n", - " bernoulli_sim_samples_,\n", - " p_deterministic_\n", - "] =evaluate([\n", - " simulated_data,\n", - " p_deterministic\n", - "])" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 734 - }, - "colab_type": "code", - "id": "gDyVY1wmgjx4", - "outputId": "d48ffb1b-57bf-41e5-eda5-4289bef1ad4a" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of simulations: 10000\n", - "Number data points per simulation: 23\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAVWCAYAAACD3dYWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X+0XnV9J/r34eQXIZAaCR0tFMJN\n/KZ6ta3tiEO1OnawPxgnzKhXe6UqTnutY1OVUuXSYYGtP9AyvbWxjk6loM60XfaHUAS95daiIFaX\ni/qr4pdQg4SlLYkzBkjMSU4494/nOfR4OE9OTp5nn+ec/bxea7E22fu7d77f7PPJ98l5n+/eY1NT\nUwEAAAAAAKA5Jwy7AwAAAAAAAG0nkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaNiKYXegCfv27Zsa\ndh8AAAAAAIB2W79+/dixtrVCBgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhlYQnbu3JmdO3cOuxvAIlL3MJrUPowedQ+jR93D6FH3zEcgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nbMWwO8Die+CBB3LDDTdk165dOXz4cFauXJlNmzZl27ZtOe2004bdPVgy1AoAzK1Nc+Ttt9+eyy67\nLN/85jdz5MiRjI+P54lPfGLe9ra35VnPetawu7cgbbovbRoLAABMG5uamhrIhUopq5K8JcklST5V\na33uAs49N8nlSZ6Z5MQkdyf5gyTvrrUuuIP79u0bzKBa5sCBA9mxY0fuueeerFixIqtXr3702MTE\nRCYnJ7N58+Zs3749a9euHWJPR9fOnTuTJFu2bBlyT0abWmExqXsYTcu19ts0R+7evTvnn39+9u7d\nm7GxsaxY8c8/qzY5OZmpqamceuqpuemmm3LGGWcMsafza9N9adNYZluudQ8cP3UPo0fdj6b169eP\nHWvbgTyyrJRSknwmyWuSHPNv3j33eUn+JsmWJFcm+aV0ApnfS/L/DKJ/dP5hc+WVV2bXrl056aST\nvucfNkmyevXqnHTSSdm1a1fe/OY358CBA0PqKQyXWgGAubVpjty9e3d+8id/Mt/+9rezcuXK7wlj\nkmTFihVZuXJlvv3tb+c5z3lOdu/ePaSezq9N96VNYwEAgLn0HciUUh6X5M4k40l+/Dgu8Z4kB5M8\nu9b6rlrrh2qtL0pyQ5JfLaX8cL99JNmxY0cefPDBrFmz5qjt1qxZk3379mXHjh2L1DNYWtQKAMyt\nTXPk+eefn0OHDj0miJltxYoVmZiYyPnnn79IPVu4Nt2XNo0FAADmMogVMquSfDDJM2utdSEnllLO\nSVKSfLjW+q1Zh9+dzmqbCwfQx5H2wAMP5J577pn3HzbT1qxZk507d2bPnj0N9wyWFrUCAHNr0xx5\n++23Z+/evfOGMdNWrFiRPXv25I477mi4ZwvXpvvSprEAAEAvfQcytdZ/qrW+ptZ68DhOf0Z3+5k5\njn22uz3n+HrGtBtuuOGY/8E5beXKlbn++usb6hEsTWoFAObWpjnysssuy9jYgp6ynBNOOCGXXnpp\nQz06fm26L20aCwAA9LKwT7yDd1Z3e//sA7XWh0op30ly9qB+s+mXKo2aO++8MwcPHszBgwvLzO68\n886R/TMbNn/uw6FWGCZfQzCalkvtt2mO3L17d8bGxnLkyJFjPmdsbCy7d+9ecmNp031p01jms9z6\nC/RP3cPoUffttGXLlr6vMYhHlvXj5O6219sY989ow3GanJxc1PNguVIrADC3Ns2RCwliBnFek9p0\nX9o0FgAA6GXYK2QW1SASrOVo48aNOXCgV+bV29q1a0f2z2xYptNzf+7DoVYYBnUPo2m51X6b5shV\nq1bl8OHDCz5v5cqVS24sbbovbRpLL8ut7oH+qXsYPeqe+Qx7hcyD3e1JPY6vm9GG47Rp06ZMTEws\n6JyJiYls2rSpoR7B0qRWAGBubZojn/jEJy54VcXk5GSe+MQnNtSj49em+9KmsQAAQC/DDmS+3t2e\nPvtAKWV9kvVJPHCvT9u2bTuuf3RecMEFDfUIlia1AgBza9Mc+ba3vS1TU1MLOueRRx7JVVdd1VCP\njl+b7kubxgIAAL0MO5C5o7v9iTmOPbu7vX2R+tJap512WjZv3nzML8g8ePBgNm/enI0bNzbcM1ha\n1AoAzK1Nc+SznvWsnHrqqcf8zf/Jycls3Lgx5557bsM9W7g23Zc2jQUAAHpZ1ECmlLK1lPLomvJa\n6xeS3JnkxaWU02e0G0vyhiSHk3xgMfvYVtu3b88pp5wy7z9wDh48mPXr12f79u2L1DNYWtQKAMyt\nTXPkTTfdlFWrVs0bykxOTmb16tW56aabFqlnC9em+9KmsQAAwFz6DmRKKU8upbxo+r/u7o0z95VS\n1nb335XkY7Mu8Z+SjCf5VCnlV0spL09yU5LnJfnNWus/9NtHOi+7vPLKK7Np06Y8/PDDj3k+88TE\nRPbv359NmzbliiuuyNq1a3tcCdpNrQDA3No0R55xxhn51Kc+lcc//vE5dOjQY4KZycnJHDp0KI9/\n/OPzyU9+MmecccaQejq/Nt2XNo0FAADmMrbQ5yfPVkq5MskV8zTbVGu9t5QylaTWWrfOusaPJ/nN\nJOcmWZ1OcLOj1nrt8fRp3759/Q2q5fbs2ZPrr78+u3btyuHDh7Ny5cqcffbZ2bZtmyX/Q7ZzZ+eV\nSVu2bBlyT0jUCotD3cNoWu6136Y58o477sill16ab37zmzly5EjGx8fzAz/wA3n729++JB9TdjRt\nui9tGsu05V73wMKpexg96n40rV+/fuxY2/YdyCxFAhmWK39pw+hR9zCa1D6MHnUPo0fdw+hR96Np\nIYHMor5DBgAAAAAAYBQJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGrZiEBcppWxIckWSC5I8IcneJDcnubzW\n+q1jOP/CJL+c5IeTrEpyX5KPJnlLrfXbg+gjAAAAAADAsPS9QqaUcmKSW5O8JsmfJ3llkvcleUmS\nT5dSHjfP+W9L8qEkK5Nclk4wc2uS7Un+tpRySr99BAAAAAAAGKZBrJB5fZKnJnltrfU90ztLKV9M\n8pEklye5eK4Tuytrfj3JvUl+stY60T10bSllb5JLk1yU5F0D6CcAAAAAAMBQDOIdMi9Psj/JNbP2\n35Dk/iQXllLGepz7g+mEQp+bEcZM+1R3e9YA+ggAAAAAADA0fQUy3ceJbU1y5+xApdY6leRzSTYm\n2dTjEruSTCTZMsexs7rbr/TTRwAAAAAAgGHr95FlZ3a39/c4fl93e3aSr88+WGvdV0r5rSRvKaXs\nSPK7SR5K8owkv5HkC0n+R599fNTOnTsHdSlolK9VGD3qHkaT2ofRo+5h9Kh7GD3qvp22bJlrXcnC\n9PvIspO72wM9ju+f1e4xaq1vTfJLSX4xyT1J/inJjUn+Lsnzaq0H++wjAAAAAADAUPW7QqZvpZTX\nJPm9JH+V5I+T7ElyTpI3Jrm5lPKztdbvDOL3GkSCBU2aTs99rcLoUPcwmtQ+jB51D6NH3cPoUffM\np99A5sHu9qQex9fNavc9SiklnTDmr2ut58849P+WUr6Y5Pokl6UTzgAAAAAAACxL/T6ybFeSqSSn\n9zg+/Y6ZXg/Ne146odBfzHHsY91r/+t+OggAAAAAADBsfQUytdb9Sb6U5OmllDUzj5VSxpOcm2R3\nrfW+HpeYXlmzZo5jq5OM9TgGAAAAAACwbPS7QiZJrkmyNsmrZ+2/MMlpSd4/vaOUsrWUsmlGmzu6\n25eUUsZmnf/iWW0AAAAAAACWpX7fIZMk703ysiRXl1LOTPL5JE9JcnGSLye5ekbbu5LUJFuTpNZ6\nRynlT9MJX24vpXw4yZ4k/zLJa5P8U5K3DqCPAAAAAAAAQ9P3Cpla6+Ekz0+yI8kLk1yX5BXprIx5\nbq31wDyX+Pkk29N5RNlbu+f/+yR/mOTHjvK4MwAAAAAAgGVhECtkUmt9MJ0VMRfP0272Y8lSaz2S\n5N3d/wAAAAAAAFpnEO+QAQAAAAAA4CgEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAA\nAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAA\nNEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDD\nBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwg\nAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIA\nAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADVsxiIuUUjYkuSLJBUme\nkGRvkpuTXF5r/dYxnL86yaVJLkxyRvf8m5L8Rq117yD6CAAAAAAAMCx9r5AppZyY5NYkr0ny50le\nmeR9SV6S5NOllMfNc/6KdMKX/5zko0l+McmfJfmPST5ZSlnVbx8BAAAAAACGaRArZF6f5KlJXltr\nfc/0zlLKF5N8JMnlSS4+yvm/nOSnkryi1vrB7r7/XkrZm+RVSc5JctsA+gkAAAAAADAUg3iHzMuT\n7E9yzaz9NyS5P8mFpZSxo5z/2iQ7k3xo5s5a61tqrWfXWoUxAAAAAADAstZXIFNKOSXJ1iR31lon\nZh6rtU4l+VySjUk29Tj/9O75f9Vtn1LKmnkCHAAAAAAAgGWl30eWndnd3t/j+H3d7dlJvj7H8a3d\n7T+UUl6X5A3da06UUj6e5JJa6z199vFRO3fuHNSloFG+VmH0qHsYTWofRo+6h9Gj7mH0qPt22rJl\nS9/X6PeRZSd3twd6HN8/q91sG7rbVyR5dZK3JtmW5H1JXpDk06WUJ/TZRwAAAAAAgKHqd4VMv1Z1\nt9+f5H+vtX67++u/LKX8UzoBza8luWQQv9kgEixo0nR67msVRoe6h9Gk9mH0qHsYPeoeRo+6Zz79\nrpB5sLs9qcfxdbPazfZwd/uXM8KYadd0t889vq4BAAAAAAAsDf0GMruSTCU5vcfx6XfM9Hpo3r3d\n7fgcx/Z2r33K8XYOAAAAAABgKegrkKm17k/ypSRPL6WsmXmslDKe5Nwku2ut9/W4xFeT7EvyI3Mc\nOyPJWJL7++kjAAAAAADAsPW7QibpPFpsbZJXz9p/YZLTkrx/ekcpZWspZdP0r2uth5L8UZIfK6W8\nYNb5v9Ld3jiAPgIAAAAAAAzNigFc471JXpbk6lLKmUk+n+QpSS5O8uUkV89oe1eSmmTrjH1XJPnp\nJH9aSrkqnceYPS/JLyT5Qvf6AAAAAAAAy1bfK2RqrYeTPD/JjiQvTHJdklekszLmubXWA/OcvyfJ\nM5N8IMn/leS/JXlOkt/pnv/dfvsIAAAAAAAwTINYIZNa64PprIi5eJ52Yz3270nnkWezH3sGAAAA\nAACw7A3iHTIAAAAAAAAchUAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAA\nAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhKwZxkVLKhiRXJLkgyROS7E1yc5LL\na63fWuC11iT5YpInJfnXtdZbB9FHAAAAAACAYel7hUwp5cQktyZ5TZI/T/LKJO9L8pIkny6lPG6B\nl7w8nTAGAAAAAACgFQaxQub1SZ6a5LW11vdM7yylfDHJR9IJWC4+lguVUp6a5NeT/F2SHx1A3wAA\nAAAAAIZuEO+QeXmS/UmumbX/hiT3J7mwlDI230VKKSck+YMk30hnhQ0AAAAAAEAr9BXIlFJOSbI1\nyZ211omZx2qtU0k+l2Rjkk3HcLlfSXJOkl9OMjFPWwAAAAAAgGWj30eWndnd3t/j+H3d7dlJvt7r\nIqWUM5K8NcmHaq1/XUp5ZZ/9mtPOnTubuCwMnK9VGD3qHkaT2ofRo+5h9Kh7GD3qvp22bNnS9zX6\nfWTZyd3tgR7H989q18t/TXIoya/12R8AAAAAAIAlp98VMn0rpbw0yflJXlVr3dPk7zWIBAuaNJ2e\n+1qF0aHuYTSpfRg96h5Gj7qH0aPumU+/K2Qe7G5P6nF83ax236OUsiHJu5J8stZ6bZ99AQAAAAAA\nWJL6XSGzK8lUktN7HJ9+x0yvh+b9dpLvS3JlKWXmNR7X3W7s7t9Ta53os68AAAAAAABD0dcKmVrr\n/iRfSvL0UsqamcdKKeNJzk2yu9Z6X49L/FSSVUn+JsnuGf/9Tvf4h7u//lf99BMAAAAAAGCYBvEO\nmWuS/F6SV6fz+LFpFyY5LckV0ztKKVuTTNRad3V3vSrJ2jmu+VNJXp/ksiRf7v4HAAAAAACwLA0i\nkHlvkpclubqUcmaSzyd5SpKL0wlSrp7R9q4kNcnWJKm1fmKuC5ZSTu3+72dqrbcOoI8AAAAAAABD\n09cjy5Kk1no4yfOT7EjywiTXJXlFkvcneW6t9UC/vwcAAAAAAMByNogVMqm1PpjOipiL52k3dozX\nuy6dYAcAAAAAAGDZ63uFDAAAAAAAAEcnkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaNiKQVyklLIhyRVJLkjy\nhCR7k9yc5PJa67eO4fxndc9/RpI1SXYn+fMkv1VrfXgQfQQAAAAAABiWvlfIlFJOTHJrktekE6K8\nMsn7krwkyadLKY+b5/yXJbktyRnphDKvSfKlJG9M8lelFKt4AAAAAACAZW0QK2Ren+SpSV5ba33P\n9M5SyheTfCTJ5UkunuvEUsrqJP81nRUx59Ra93UP/WEp5SPprLj5mXRW2wAAAAAAACxLg1h98vIk\n+5NcM2v/DUnuT3JhKWWsx7n/IslfJHn7jDBm2nQI87QB9BEAAAAAAGBo+lohU0o5JcnWJLfVWidm\nHqu1TpVSPpfkPyTZlOTrs8+vtX4jnUeczWV9d/tgP30EAAAAAAAYtn4fWXZmd3t/j+P3dbdnZ45A\nppdSyqokr0pyIMn1x927WXbu3DmoS0GjfK3C6FH3MJrUPowedQ+jR93D6FH37bRly5a+r9FvIHNy\nd3ugx/H9s9rNq5RyQpI/SPJDSX6t1vrN4+8eAAAAAADA8PUbyAxUKeXEJH+U5IIkv19r/Z1BXn8Q\nCRY0aTo997UKo0Pdw2hS+zB61D2MHnUPo0fdM58T+jx/+v0uJ/U4vm5Wu55KKRuTfCKdMOa3aq2/\n0mffAAAAAAAAloR+V8jsSjKV5PQex6ffMXPUh+aVUr4/yW1JNiW5qNZ6XZ/9AgAAAAAAWDL6WiFT\na92f5EtJnl5KWTPzWCllPMm5SXbXWu/rdY1SyilJPp7kB5P8O2EMAAAAAADQNv0+sixJrkmyNsmr\nZ+2/MMlpSd4/vaOUsrWUsmlWu3cl+ZEkP19r/dgA+gMAAAAAALCk9PvIsiR5b5KXJbm6lHJmks8n\neUqSi5N8OcnVM9relaQm2ZokpZSnJXlFkq8mGS+lvGiO6++ptX5yAP0EAAAAAAAYir4DmVrr4VLK\n85NcmeSFSX4lyQPprIy5otZ64CinPz3JWJInJ/nTHm0+meS5/fYTAAAAAABgWAaxQia11gfTWRFz\n8Tztxmb9+rok1w2iDwAAAAAAAEvVIN4hAwAAAAAAwFEIZAAAAAAAABomkAEAAAAAAGiYQAYAAAAA\nAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAA\nGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh\nAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQ\nAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkA\nAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGrZi2B0A\noHkPPPBAbrjhhuzatSuHDx/OypUrs2nTpmzbti2nnXbasLsHNEDdAywNN954Y970pjdl7969mZqa\nyvj4eDZs2JB3vOMdecELXjDs7o2kNs2RbRpLm3z1q1/NO9/5ztx1112ZnJzMunXrsmnTprzxjW/M\nk5/85GF3b0GmxzL7a2w5jqUt2lT3bRpLm7gvzRqbmprq+yKllA1JrkhyQZInJNmb5OYkl9dav3UM\n55+b5PIkz0xyYpK7k/xBknfXWhfcwX379vU/KBiCnTt3Jkm2bNky5J7QFgcOHMiOHTtyzz33ZMWK\nFVm9evWjxyYmJjI5OZnNmzdn+/btWbt27RB7OrrUPYOm7pcHtQ/td/fdd+e8887Lww8/nCQZGxtL\nkpxwwgk5cuRIkmTdunW55ZZb8qQnPWlo/RwlbZoj2zSWNtm7d28uuuiifOMb38gJJ/zzQ2lWrVqV\nQ4cO5ZFHHsmZZ56Za6+9NqeeeuoQezq/2WNZtWrVo8eW21jaok1136axzLacP+e3+b40bf369WPH\n2rbvQKaUcmKSzybZmuTdST6fZEuSS5LsSfJjtdb/dZTzn5fkY0l2J9mR5H8m2ZbkhUneVWt9/UL7\nJJBhuVrOf2mz9Bw4cCBXXnllHnzwwaxZs6Znu4MHD2b9+vW54oorTKhDoO4ZJHW/fKh9aLe77747\nz372szM5OZnx8fEkySOPPJIk3/NN2iNHjmTFihW57bbbhDINa9Mc2aaxtMnevXuzbdu27N+//9Hw\n4tChQ0nymDBj3bp1uf7665dskDHXWOayHMbSFm2q+zaNZS7L9XN+2+9L0xYSyAziHTKvT/LUJK+v\ntV5ca/2jWuubk/xCkk3prHw5mvckOZjk2bXWd9VaP1RrfVGSG5L8ainlhwfQR4CRs2PHjnkn0iRZ\ns2ZN9u3blx07dixSz4CmqHuApeG88877njCml/Hx8UxOTua8885bpJ6NrjbNkW0aS5tcdNFF8wYY\nSSecefjhh3PRRRctUs8Wrk1jaYs21X2bxtIm7sviGUQg8/Ik+5NcM2v/DUnuT3JhKWXOhKiUck6S\nkuTDczza7N1JxpJcOIA+AoyUBx54IPfcc8+8E+m0NWvWZOfOndmzZ0/DPQOaou4BloYbb7wxDz/8\n8LxhzLTx8fE89NBDufnmmxvu2ehq0xzZprG0yVe/+tV84xvfmDfAmLZq1arce++9+drXvtZwzxau\nTWNpizbVfZvG0ibuy+LqK5AppZySzqPK7qy1Tsw81n33y+eSbExnpcxcntHdfmaOY5/tbs/pp48A\no+iGG27IihUrFnTOypUrc/311zfUI6Bp6h5gaXjTm9604HPGxsZyySWXNNAbknbNkW0aS5u8853v\n/J7HER6L8fHxXHXVVQ316Pi1aSxt0aa6b9NY2sR9WVwL+5N+rDO72/t7HL+vuz07ydfnOH5Wr/Nr\nrQ+VUr7TPXcgpp/hB0udr1X6deedd+bgwYM5ePDggs/z9Tcc/tzpl7pfnvzZQ/vs3bs3Y2Njj74z\nZra59o+NjWXv3r3+TmhIm+bINo2lTe66664k//zOmNl67b/rrruW3H2ZbyxHO2+pjaUt2lT3bRrL\nfJZTf0fpvvRrEO8G6veRZSd3twd6HN8/q93xnN/rXAB6mJycXNTzgOFT9wBLw9TU1KKex/zaNEe2\naSxt0qb70qaxtEWb7kmbxtIm7svi6neFzLIyiAQLmjSdKvtapV8bN27MgQO9su7e1q5d6+tvkal7\nBkXdLy9qH9prfHx8zlUw0/sCDnvyAAAgAElEQVR6PQrohBNO8HdCQ9o0R7ZpLG2ybt26fPe7333M\n/ulVJr3ex3LiiScuufvSayzzWYpjaYs21X2bxtLLcvycPwr3ZSnpd4XMg93tST2Or5vV7njO73Uu\nAD1s2rQpExMT8zecYWJiIps29XrlF7DUqXuApWHDhg05cuTIgs45cuRINmzY0FCPaNMc2aaxtMmm\nTZsW/IivQ4cOLcn70qaxtEWb6r5NY2kT92Vx9RvI7EoyleT0Hsen3zHT62Fy0++Vecz5pZT1SdYf\n5VwAeti2bduCl45OTk7mggsuaKhHQNPUPcDS8I53vGPB50xNTeXqq69uoDck7Zoj2zSWNnnjG9/Y\n871RvRw5ciSXXnppQz06fm0aS1u0qe7bNJY2cV8WV1+BTK11f5IvJXl6KWXNzGOllPEk5ybZXWu9\nr8cl7uhuf2KOY8/ubm/vp48Ao+i0007L5s2bj/mFbAcPHszmzZuzcePGhnsGNEXdAywNL3jBC7Ju\n3bpjXiVz5MiRnHzyyfm5n/u5hns2uto0R7ZpLG3y5Cc/OWeeeeYxryw5dOhQzjrrrGzdurXhni1c\nm8bSFm2q+zaNpU3cl8XV7wqZJLkmydokr561/8IkpyV5//SOUsrWUsqja5lqrV9IcmeSF5dSTp/R\nbizJG5IcTvKBAfQRYORs3749p5xyyrwT6sGDB7N+/fps3759kXoGNEXdAywNt9xyS1asWDFvKHPk\nyJGsWLEit9xyyyL1bHS1aY5s01ja5Nprr81JJ500b5Bx6NChrFu3Ltdee+0i9Wzh2jSWtmhT3bdp\nLG3iviyesampqb4uUEpZmeS2JD+WZEeSzyd5SpKL03nc2DNrrQe6baeS1Frr1hnnn5Pkb5L8Y5Lf\nTfKdJC9N8rNJLq+1vmWhfdq3b19/g4IhWY4v/mJpO3DgQHbs2JGdO3dm5cqVWb169aPHJiYmMjk5\nmc2bN2f79u1Zu3btEHs6utQ9g6bulwe1D+13991357zzzstDDz2UsbGxjI2NJUlOOOGEHDlyJFNT\nUzn55JNzyy235ElPetKQezsa2jRHtmksbbJ3795cdNFFuffeezM+Pv7o/lWrVuXQoUM5cuRIzjrr\nrFx77bU59dRTh9jT+c0ey6pVqx49ttzG0hZtqvs2jWW25fw5v833pWnr168fO9a2fQcySVJKOSXJ\nlUlemOQJSR5I8pEkV9Ra/+eMdo8JZLr7fzzJb6bziLPVSe5KsqPWelwRu0CG5Wo5/6XN0rZnz55c\nf/312bVrVw4fPpyVK1fm7LPPzrZt2ywxHTJ1T1PU/dKm9mF03Hzzzbnkkkuyd+/eTE1NZXx8PBs2\nbMjVV1/tMWVD0qY5sk1jaZOvfe1rueqqq3LXXXdlcnIy69aty9lnn503velNy+7RXtNjmf01thzH\n0hZtqvs2jWVaGz7nt/G+NG3RA5mlRiDDctWGv7SBhVH3MJrUPowedQ+jR93D6FH3o2khgcwg3iED\nAAAAAADAUQhkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEA\nAAAAAGjY2NTU1LD7MHD79u1r36AAAAAAAIAlZf369WPH2tYKGQAAAAAAgIYJZAAAAAAAABomkAEA\nAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGjU1NTQ27DwAAAAAAAK1mhQwAAAAAAEDDBDIAAAAAAAAN\nE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCB\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRsxbA7AKOklHJdklccpckbaq2/W0q5MskVR2n3rlrr\n6wfZN6A5pZSfTXJpkqcnmUzyd0neUmv9xKx2Jyb5v5O8NMmZSR5M8okkl9da717UTgN9OZa6N99D\ne5RSpo6h2aZa673d9uZ8WOYWUvfmfGiXUspTklyW5HlJTk3ynSR3JPntWuvtM9qZ73kMgQwMx39K\nsmeO/V+Y9esrk/z9HO12DrpDQDNKKa9Kck2STyV5XZKTk7whycdLKc+vtd7abTeW5IYk/ybJtUne\nnOSJSS5J8plSyjNqrf+w+CMAFupY636GK2O+h+XuxUc59vYk69P9/G/Oh9Y45rqf4cqY82FZK6X8\naJLbkxxK8u4kdyc5I8lrk3yylHJBrfVG8z29CGRgOD42/dNx8/jkHN+0AZaJUsq/SPJ7Sf6/JD9d\na32ku//GJJ9Jcn6SW7vNX5rkvHR+ouaNM67x10k+n+S3k/yHRes8cFwWWPfTzPewzNVa/2yu/aWU\nC5JsTvLKWuv+7m5zPrTAAut+mjkflr//nGRtkn9fa/2r6Z2llL9IcleS30xyY8z39OAdMgDQnFck\nOSnJldPflE2SWuvXa63fX2v99RltX97d/t7MC9Ra70xn6fO/LaV8X9MdBvq2kLoHWqyUcnKSHUlu\nq7V+YMYhcz601FHqHmiP/627vW3mzlrr15I8kOSs7i7zPXMSyMAQlVLWlFLmXalWSllVSlm1GH0C\nBuq8JA+l81PxKaWMl1JW92j7jCS7a633z3Hss0lWpvMuCmBpW0jdfw/zPbTO5ek8muS1s/ab86G9\netX99zDnw7J2V3f7pJk7Synrk3xfkq90d5nvmZNABobjtaWUXUm+m2SilPK3pZSfm6Pd/1FK+fsk\nE912Xy6l/MKi9hTox9Yk/5DkR0opn0ynlg+WUr5SSnnpdKPuT9JtSDLXB7Ukua+7PbvJzgIDcUx1\nP4v5HlqmlHJaOt+Q/WCt9csz9pvzoaV61f0s5nxY/t6a5H8l+WAp5VmllFNLKU9N5z0xU0kuN99z\nNAIZGI6fTvK2dJ4j/xtJtiT56BzfqPnZJO/tbl+XzksBP1hKedMi9hU4fhvS+QmZm5J8OskFSbZ3\n9/1xKeU/dtud3N0e6HGd/bPaAUvXsdb9TOZ7aJ83JlmTzjdtZjLnQ3v1qvuZzPmwzNVav5LkXyUZ\nT+exZXuSfCnJOem8Q/LWmO85inkflQQM1H9J8sdJbq21TnT33VxK+cskX0jyX0opH07y35P8bZLP\n1Fr3ddt9vJTyJ0m+luSKUsr7aq3fWeT+AwuzKp3nx76s1vpH0ztLKTels8z5baWU64bTNaAhx1T3\ntdYjMd9DK5VSHpfkNUk+Wmu9Z9j9AZp3DHVvzoeWKKWUJDcnWZ3kDenU8GlJfi3JjaWUFyb5++H1\nkKVOIAOLqLts+TFLl2utXy2l3JrOc+d/qNb690ke8yGu1vpAKeXPkvxSkp9I56dvgaXr4XQ+pP3J\nzJ211l2llL9J8jNJfijJvd1DJ/W4zrru9sEG+ggM1rHW/Ve637Ax30P7/J9J1iaZ64Xe03O5OR/a\n5Wh1H3M+tMr7k/xAOt+/2zW9s5Typ+nU+bXpfN5PzPfMwSPLYOn4p+72lAG1A4bv3vSeax/obk+p\ntT6czjLn03u0PbO73Tm4rgENuTfHUPfHcB3zPSxfL07n/RAfm33AnA+t1bPuj4E5H5aJUspJ6YSn\nd84MY5Kk1vrdJLemE9b8YMz39CCQgUVSSjmllPKyUsrP9GrS3d5fSnlJKeXF87S7r8dxYOn4TDqP\nL3ryHMemP4BNv+TvjiSnl1J+cI62z07y3SR3DryHwKAdU92XUlaa76F9SinrkpybzmOJvtujmTkf\nWmS+ujfnQ6ucmGQsnfdFzWXNjK35njkJZGDxHEry+0muK6WcOvNAKeXfJPmXST5Xa92d5M3pvNhv\ny6x2T07n5cD3J/ncovQa6Md13e0VpZSx6Z2llKel8wHsS7XW6X94XdPdvmHmBUopz0nyY0n+pPtT\ntcDSdl13e9S6r7Uejvke2uhpSVYm+cpR2pjzoV2OWvfmfGiPWuvedFa1PK1bv48qpWxI8rx0HkP2\nlZjv6cE7ZGCR1FoPllJel843aj5XSnlvkn9M8qPpvPxvX5JXd5u/NsnHk9xeSvn9JLvS+amZ7Uke\nSfJL3Q91wBJWa/1sKWVHOrX7l6WUD6fzE/JvSDKZ5HUz2t5YSvmLJK8vpZyS5BPdtpek8w+0yxa7\n/8DCLaTuY76HNnpSd3tvrwbmfGidees+5nxok19L8pEkt5VS3p3k7iSnpvM5//uS/HKtdSKJ+Z45\nWSEDi6jW+oF00vJ70vmL95okL0ryP5I8vdb6hW67v05yTpJPJ/nVJH+Y5BfT+QD3zFrrxxe/98Bx\nel06oesZSf5bOh++/jbJs2qtt85q+/NJrkjnp+iv7Z770STn1lr/cbE6DPTtmOrefA+t9Lju9qF5\n2pnzoT3mrXtzPrRHrfXGJM9K8ql0PvNfl86cfk+Sn621vm9Gc/M9jzE2NTU17D4AAAAAAAC0mhUy\nAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMA\nAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAA\nAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAA\nANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQsBXD7kAT9u3bNzXsPgAAAAAA\nAO22fv36sWNta4UMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMME\nMvz/7N19lB1nfSf4b1uvloQ7cCxlIHZseaU8ilnyQjKYOJBhyEwS1jMrzwALWRzATLKEJQrgEMI6\n42OTAOEQJhNowsAExw7MJDmQBCvEJJuzAQPGBA5H4S2Yh1aQsXyWIGlmkIIatdS29o9729tu91V3\n697q21338znHp6yqp0rPo6pfP7f721XFKjI5OZnJyclhdwNYQeoeRpPah9Gj7mH0qHsYPeqexQhk\nAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhkAAAAAAICGrR92B1h5R44cyf79+3Po0KGcOXMmGzZsyM6dO7N3797s2LFj2N0DAAbA\nfA9L06ZaadNY2mT2vBw4cCAzMzPZvn278wIAMKLGzp49O5ADlVI2Jnl9klcn+Vit9RnL2PfqJDcl\neWqSC5N8JcnvJnl7rXXZHTx+/PhgBtUyU1NTmZiYyMGDB7N+/fps2rTp4W3T09OZmZnJrl27sm/f\nvmzZsmWIPR1dk5OTSZLdu3cPuSfASlH3DJr5fm1Q+8PXplpp01jaZP55OXXqVJJkfHzceYERYb6H\n0aPuR9P4+PjYUtsO5JFlpZSS5JNJXpZkyX95d99nJvlIkt1Jbknyc+kEMm9L8h8H0T863wzccsst\nOXToULZu3fqIb9KSZNOmTdm6dWsOHTqU173udZmamhpSTwGA82W+h6VpU620aSxt4rwAALCQvgOZ\nUspjkxxIsi7JD5/HId6R5FSSp9da31prfW+t9TlJ9if5xVLK9/fbR5KJiYmcOHEimzdvPme7zZs3\n5/jx45mYmFihngEAg2K+h6VpU620aSxt4rwAALCQQdwhszHJe5I8tdZal7NjKeWqJCXJ+2qtX5+3\n+e3p3G1z3QD6ONKOHDmSgwcPLvrNwKzNmzdncnIyR48ebbhnAMCgmO9hadpUK20aS5s4LwAA9NJ3\nIFNr/Uat9WW11lPnsftTustPLrDtU93lVefXM2bt378/69evX9Y+GzZsyB133NFQjwCAQTPfw9K0\nqVbaNJY2cV4AAOhleZ8SB+/y7vKB+Rtqrf9YSvlmkisG9ZfNvlRp1Bw4cCCnTp16+CWSy9lvVP/N\nhs2/O4wedU+/zPdrk3/7ldemWmnTWNpksfNy/Pjxnvs5L9BOahtGj7pvp927d/d9jEE8sqwfj+ku\ne73B8OScNpynmZmZFd0PAFh55ntYmjbVSpvG0ibOCwAAvQz7DpkVNYgEay3avn17pqZ6ZV69bdmy\nZWT/zYZlNj337w6jQ90zKOb7tUXtD0+baqVNY2mTXudl9s6Y8fHxBfdzXqB9zPcwetQ9ixn2HTIn\nusutPbZvm9OG87Rz585MT08va5/p6ens3LmzoR4BAINmvoelaVOttGksbeK8AADQy7ADma92l5fM\n31BKGU8ynsQD9/q0d+/eZd/+PjMzk2uvvbahHgEAg2a+h6VpU620aSxt4rwAANDLsAOZe7rLH11g\n29O7y7tXqC+ttWPHjuzatWvJL/s8depUdu3ale3btzfcMwBgUMz3sDRtqpU2jaVNnBcAAHpZ0UCm\nlLKnlPLwfdi11s8mOZDkuaWUS+a0G0vyqiRnkvz+Svaxrfbt25eLLrpo0W8KTp06lfHx8ezbt2+F\negYADIr5HpamTbXSprG0ifMCAMBCxs6ePdvXAUopVya5cs6q9yf5UpKb56z7UK11qpRyNkmtte6Z\ns/9VST6S5B+S/HaSbyZ5fpJnJbmp1vr65fbp+PHj/Q2qpaampjIxMZHJycls2LAhmzZtenjb9PR0\nZmZmsmvXruzbty9btmwZYk9Hlxd/wehR9wya+X5tUPvD16ZaadNY2mT+eZkNZ8bHx50XGBHmexg9\n6n40jY+Pjy217SACmVvyyPBlITtrrfctFMh0j/HDSX4tydVJNiW5N8lErfW28+mTQObcjh49mjvu\nuCOHDh3KmTNnsmHDhlxxxRXZu3ev2+SHzBdtGD3qnqaY71c3tb96tKlW2jSWNpk9LwcOHMjMzEy2\nb9/uvMCIMN/D6FH3o2lFA5nVSCDDWuWLNowedQ+jSe3D6FH3MHrUPYwedT+alhPIrOg7ZAAAAAAA\nAEaRQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACA\nhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiY\nQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglk\nAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAA\nAAAAGiaQAQAAAAAAaJhABgAAAAAAoGHrB3GQUsrjktyc5Nokj09yLMmHktxUa/36Eva/LsnPJ/n+\nJBuT3J/kz5O8vtb63wbRRwAAAAAAgGHp+w6ZUsqFSe5K8rIkf5LkxUneleR5ST5RSnnsIvu/Mcl7\nk2xIcmM6wcxdSfYl+ZtSykX99hEAAAAAAGCYBnGHzCuTPCnJy2ut75hdWUr5XJIPJLkpyQ0L7di9\ns+aXk9yX5MdqrdPdTbeVUo4leW2S65O8dQD9BAAAAAAAGIpBvEPmhUlOJrl13vr9SR5Icl0pZazH\nvt+dTij06TlhzKyPdZeXD6CPAAAAAAAAQ9NXINN9nNieJAfmByq11rNJPp1ke5KdPQ5xKMl0kt0L\nbLu8u/xiP30EAAAAAAAYtn4fWXZZd/lAj+33d5dXJPnq/I211uOllF9P8vpSykSS307yj0mekuRX\nk3w2yX/ts48Pm5ycHNShoFGuVRg96h5Gk9qH0aPuYfSoexg96r6ddu9e6L6S5en3kWWP6S6nemw/\nOa/do9Ra35Dk55L8bJKDSb6R5INJ/jbJM2utp/rsIwAAAAAAwFD1e4dM30opL0vytiR/leQPkxxN\nclWS1yT5UCnlWbXWbw7i7xpEggVNmk3PXaswOtQ9jCa1D6NH3cPoUfcwetQ9i+k3kDnRXW7tsX3b\nvHaPUEop6YQxf11rvWbOpv+7lPK5JHckuTGdcAYAAAAAAGBN6veRZYeSnE1ySY/ts++Y6fXQvGem\nEwr96QLb/qJ77H/eTwcBAAAAAACGra9AptZ6Msnnkzy5lLJ57rZSyrokVyc5XGu9v8chZu+s2bzA\ntk1JxnpsAwAAAAAAWDP6vUMmSW5NsiXJS+etvy7JjiTvnl1RStlTStk5p8093eXzSilj8/Z/7rw2\nAAAAAAAAa1K/75BJkncmeUGSt5RSLkvymSRPTHJDki8kecuctvcmqUn2JEmt9Z5SyvvTCV/uLqW8\nL8nRJP80ycuTfCPJGwbQRwAAAAAAgKHp+w6ZWuuZJD+RZCLJs5PcnuRF6dwZ84xa69Qih/jpJPvS\neUTZG7r7/5skv5fkh87xuDMAAAAAAIA1YRB3yKTWeiKdO2JuWKTd/MeSpdb6YJK3d/8DAAAAAABo\nnUG8QwYAAAAAAIBzEMgAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAA\nNEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDD\nBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwg\nAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIA\nAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAA\nAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRs/SAOUkp5XJKbk1yb5PFJjiX5UJKbaq1f\nX8L+m5K8Nsl1SS7t7n9nkl+ttR4bRB8BAAAAAACGpe87ZEopFya5K8nLkvxJkhcneVeS5yX5RCnl\nsYvsvz6d8OXfJ/nzJD+b5I+T/LskHy2lbOy3jwAAAAAAAMM0iDtkXpnkSUleXmt9x+zKUsrnknwg\nyU1JbjjH/j+f5MeTvKjW+p7uuv9SSjmW5CVJrkry8QH0EwAAAAAAYCgG8Q6ZFyY5meTWeev3J3kg\nyXWllLFz7P/yJJNJ3jt3Za319bXWK2qtwhgAAAAAAGBN6yuQKaVclGRPkgO11um522qtZ5N8Osn2\nJDt77H9Jd/+/6rZPKWXzIgEOAAAAAADAmtLvHTKXdZcP9Nh+f3d5RY/te7rLvy+lvKKUcl+Sbyf5\ndinljlLKrj77BwAAAAAAMHT9vkPmMd3lVI/tJ+e1m+9x3eWLkmxM8oYk30jnnTK/kORHSik/UGv9\nep/9TJJMTk4O4jDQONcqjB51D6NJ7cPoUfcwetQ9jB513067d+/u+xj9BjL92thdfmeS/7nW+t+6\nf/6zUso30glofinJq4fROQAAAAAAgEHoN5A50V1u7bF927x2832ru/yzOWHMrFvTCWSecd69m2cQ\nCRY0aTY9d63C6FD3MJrUPowedQ+jR93D6FH3LKbfd8gcSnI2ySU9ts++Y6bXPVr3dZfrFth2rHvs\ni863cwAAAAAAAKtBX4FMrfVkks8neXIpZfPcbaWUdUmuTnK41np/j0N8KcnxJD+wwLZLk4wleaCf\nPgIAAAAAAAxbv3fIJJ1Hi21J8tJ5669LsiPJu2dXlFL2lFJ2zv651no6yR8k+aFSyr+et/8vdJcf\nHEAfAQAAAAAAhqbfd8gkyTuTvCDJW0oplyX5TJInJrkhyReSvGVO23uT1CR75qy7OclPJnl/KeVN\n6TzG7JlJfibJZ7vHBwAAAAAAWLP6vkOm1nomyU8kmUjy7CS3J3lROnfGPKPWOrXI/keTPDXJ7yf5\nP5L85yT/LMlvdff/dr99BAAAAAAAGKZB3CGTWuuJdO6IuWGRdmM91h9N55Fn8x97BgAAAAAAsOYN\n4h0yAAAAAAAAnINABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh\nAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQ\nAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkA\nAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAA\nAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAA\nAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhq0fxEFKKY9LcnOSa5M8Psmx\nJB9KclOt9evLPNbmJJ9L8j1J/nmt9a5B9BEAAAAAAGBY+r5DppRyYZK7krwsyZ8keXGSdyV5XpJP\nlFIeu8xD3pROGAMAAAAAANAKg7hD5pVJnpTk5bXWd8yuLKV8LskH0glYbljKgUopT0ryy0n+NskP\nDqBvAAAAAAAAQzeId8i8MMnJJLfOW78/yQNJriuljC12kFLKBUl+N8nX0rnDBgAAAAAAoBX6CmRK\nKRcl2ZPkQK11eu62WuvZJJ9Osj3JziUc7heSXJXk55NML9IWAAAAAABgzej3kWWXdZcP9Nh+f3d5\nRZKv9jpIKeXSJG9I8t5a61+XUl7cZ78WNDk52cRhYeBcqzB61D2MJrUPo0fdw+hR9zB61H077d69\nu+9j9PvIssd0l1M9tp+c166X/5TkdJJf6rM/AAAAAAAAq06/d8j0rZTy/CTXJHlJrfVok3/XIBIs\naNJseu5ahdGh7mE0qX0YPeoeRo+6h9Gj7llMv3fInOgut/bYvm1eu0copTwuyVuTfLTWeluffQEA\nAAAAAFiV+r1D5lCSs4e5tusAACAASURBVEku6bF99h0zvR6a95tJviPJLaWUucd4bHe5vbv+aK11\nus++AgAAAAAADEVfd8jUWk8m+XySJ5dSNs/dVkpZl+TqJIdrrff3OMSPJ9mY5CNJDs/577e629/X\n/fOP9NNPAAAAAACAYRrEO2RuTfK2JC9N5/Fjs65LsiPJzbMrSil7kkzXWg91V70kyZYFjvnjSV6Z\n5MYkX+j+BwAAAAAAsCYNIpB5Z5IXJHlLKeWyJJ9J8sQkN6QTpLxlTtt7k9Qke5Kk1vrhhQ5YSrm4\n+7+frLXeNYA+AgAAAAAADE1fjyxLklrrmSQ/kWQiybOT3J7kRUneneQZtdapfv8OAAAAAACAtWwQ\nd8ik1noinTtiblik3dgSj3d7OsEOAAAAAADAmtf3HTIAAAAAAACcm0AGAAAAAACgYQIZAAAAAACA\nhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiY\nQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglk\nAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAA\nAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAA\nAKBh6wdxkFLK45LcnOTaJI9PcizJh5LcVGv9+hL2f1p3/6ck2ZzkcJI/SfLrtdZvDaKPAAAAAAAA\nw9L3HTKllAuT3JXkZemEKC9O8q4kz0vyiVLKYxfZ/wVJPp7k0nRCmZcl+XyS1yT5q1KKu3gAAAAA\nAIA1bRB3yLwyyZOSvLzW+o7ZlaWUzyX5QJKbktyw0I6llE1J/lM6d8RcVWs93t30e6WUD6Rzx81P\npXO3DQAAAAAAwJo0iLtPXpjkZJJb563fn+SBJNeVUsZ67PtPkvxpkt+YE8bMmg1hvm8AfQQAAAAA\nABiavu6QKaVclGRPko/XWqfnbqu1ni2lfDrJv02yM8lX5+9fa/1aOo84W8h4d3minz4CAAAAAAAM\nW7+PLLusu3ygx/b7u8srskAg00spZWOSlySZSnLHefdunsnJyUEdChrlWoXRo+5hNKl9GD3qHkaP\nuofRo+7baffu3X0fo99A5jHd5VSP7SfntVtUKeWCJL+b5HuT/FKt9f89/+4BAAAAAAAMX7+BzECV\nUi5M8gdJrk3yO7XW3xrk8QeRYEGTZtNz1yqMDnUPo0ntw+hR9zB61D2MHnXPYi7oc//Z97ts7bF9\n27x2PZVStif5cDphzK/XWn+hz74BAAAAAACsCv3eIXMoydkkl/TYPvuOmXM+NK+U8p1JPp5kZ5Lr\na62399kvAAAAAACAVaOvO2RqrSeTfD7Jk0spm+duK6WsS3J1ksO11vt7HaOUclGSv0zy3Un+V2EM\nAAAAAADQNv0+sixJbk2yJclL562/LsmOJO+eXVFK2VNK2Tmv3VuT/ECSn661/sUA+gMAAAAAALCq\n9PvIsiR5Z5IXJHlLKeWyJJ9J8sQkNyT5QpK3zGl7b5KaZE+SlFK+L8mLknwpybpSynMWOP7RWutH\nB9BPAAAAAACAoeg7kKm1niml/ESSW5I8O8kvJDmSzp0xN9dap86x+5OTjCW5Msn7e7T5aJJn9NtP\nAAAAAACAYRnEHTKptZ5I546YGxZpNzbvz7cnuX0QfQAAAAAAAFitBvEOGQAAAAAAAM5BIAMAAAAA\nANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAA\nDRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAw\ngQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPI\nAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwA\nAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAA\nAAAANGz9sDsAsFodOXIk+/fvz6FDh3LmzJls2LAhO3fuzN69e7Njx45hd29Z2jQWAIavTfPKl770\npbz5zW9+1Fhe85rX5Morrxx290ZWm66xu+++OzfeeGMOHz6cBx98MBs3bswTnvCEvPGNb8zTnva0\nYXdvJLXp+mrTWNpkdm659957MzMzk23btq3ZucU8ufq0qe7bNJY2cV6aNXb27Nm+D1JKeVySm5Nc\nm+TxSY4l+VCSm2qtX1/C/lcnuSnJU5NcmOQrSX43ydtrrcvu4PHjx/sfFAzB5ORkkmT37t1D7slo\nm5qaysTERA4ePJj169dn06ZND2+bnp7OzMxMdu3alX379mXLli1D7Oni2jSWtlL3MJrWau23aV45\nduxYrr/++nzta1/LBRdckI0bNz687fTp03nooYdy2WWX5bbbbsvFF188xJ6OljZdY4cPH84111yT\nY8eOZWxsLGNjY0mSdevWZWZmJmfPns3FF1+cO++8M5deeumQezsa2nR9tWksbTJ/bpm1cePGNTe3\nmCdXnzbVfZvGMt9a/ZyftPu8NG18fHxsqW37DmRKKRcm+VSSPUnenuQzSXYneXWSo0l+qNb6P86x\n/zOT/EWSw0kmkvz3JHuTPDvJW2utr1xunwQyrFVr+Yt2W0xNTeWWW27JiRMnsnnz5p7tTp06lfHx\n8dx8882rdhJq01jaTN3DaFqLtd+meeXYsWPZu3dvTp48+YgfMM13+vTpbNu2LXfccYcfNq2ANl1j\nhw8fzo/92I/l9OnTWb++82CKBx98MEknkJk1MzOTTZs25aMf/ahQpmFtur7aNJY2WWhuOX36dJI8\nKsxY7XOLeXL1aVPdt2ksC1mLn/OT9p+Xpi0nkBnEO2RemeRJSV5Za72h1voHtdbXJfmZJDvTufPl\nXN6R5FSSp9da31prfW+t9TlJ9if5xVLK9w+gjwBLMjExsejkkySbN2/O8ePHMzExsUI9W742jQWA\n4WvTvHL99dcv+kOmpPMDtG9961u5/vrrV6hno61N19g111zziDCml/Xr12d6ejrXXHPNCvVsdLXp\n+mrTWNqkTXNLm8bSFm2q+zaNpU2cl5UziEDmhUlOJrl13vr9SR5Icl0pZcGEqJRyVZKS5H0LPNrs\n7UnGklw3gD4CLOrIkSM5ePDgopPPrM2bN2dycjJHjx5tuGfL16axADB8bZpXvvSlL+VrX/vaoj9k\nmrVx48bcd999+fKXv9xwz0Zbm66xu+++O8eOHVs0jJm1fv36HD16NPfcc0/DPRtdbbq+2jSWNmnT\n3NKmsbRFm+q+TWNpE+dlZfUVyJRSLkrnUWUHaq3Tc7d13/3y6STb07lTZiFP6S4/ucC2T3WXV/XT\nR4Cl2r9//5K/cZ61YcOG3HHHHQ316Py1aSwADF+b5pU3v/nNj3iu/1KsW7cub3rTmxrqEUm7rrEb\nb7zx4ffFLNUFF1yQ1772tQ31iDZdX20aS5u0aW5p01jaok1136axtInzsrKW9y/9aJd1lw/02H5/\nd3lFkq8usP3yXvvXWv+xlPLN7r4DMfsMP1jtXKvDceDAgZw6dSqnTp1a9n6r7Zy1aSyjwr87jKa1\nUvttmlfuvffeJP//c/2Xs99qG0ubtOkaO3z4cMbGxh5+Z8x8C60fGxvL4cOHV91Y2qJN11ebxtIm\ni80tvdavxrnFPLn6tKnu2zSWxayl/o7SeenXIN4N1O8jyx7TXU712H5yXrvz2b/XvgADNTMzs6L7\nNalNYwFg+No0r7RpLG3SpvPSK4hpaj8W16brq01jaZM2nZc2jaUt2nRO2jSWNnFeVla/d8isKYNI\nsKBJs6mya3U4tm/fnqmpXvlwb1u2bFl156xNY2k7dQ+jaa3VfpvmlW3btuXb3/72sve78MILV91Y\n2qRN19jGjRtz5syZR62fDVzWrVu34H4bNmxYdWNpizZdX20aS5v0mltm7zLp9T6W1Ti3mCdXnzbV\nfZvG0sta+5yfjMZ5WU36vUPmRHe5tcf2bfPanc/+vfYFGKidO3dmenp68YZzTE9PZ+fOXq/JGp42\njQWA4WvTvLJz585lP4bl9OnTq3IsbdKma+wJT3jCsn9jdGZmJk94whMa6hFtur7aNJY2adPc0qax\ntEWb6r5NY2kT52Vl9RvIHEpyNsklPbbPvmOm18PkZt8r86j9SynjScbPsS/AQO3du/e8vnm+9tpr\nG+rR+WvTWAAYvjbNK695zWvy0EMPLWufBx980AvXG9ama+yNb3xjzp49u6x9HnroIS/EblCbrq82\njaVN2jS3tGksbdGmum/TWNrEeVlZfQUytdaTST6f5MmllM1zt5VS1iW5OsnhWuv9PQ5xT3f5owts\ne3p3eXc/fQRYqh07dmTXrl1LfonZqVOnsmvXrmzfvr3hni1fm8YCwPC1aV658sorc9llly35t39P\nnz6dyy+/PHv27Gm4Z6OtTdfY0572tFx88cVL/sHGzMxMtm/fnquvvrrhno2uNl1fbRpLm7RpbmnT\nWNqiTXXfprG0ifOysvq9QyZJbk2yJclL562/LsmOJO+eXVFK2VNKefheplrrZ5McSPLcUsolc9qN\nJXlVkjNJfn8AfQRYkn379uWiiy5adBI6depUxsfHs2/fvhXq2fK1aSwADF+b5pXbbrstW7duXfSH\nTadPn862bdty2223rVDPRlubrrE777wzGzduXDSUmZmZyaZNm3LnnXeuUM9GV5uurzaNpU3aNLe0\naSxt0aa6b9NY2sR5WTljy72Ver5SyoYkH0/yQ0kmknwmyROT3JDO48aeWmud6rY9m6TWWvfM2f+q\nJB9J8g9JfjvJN5M8P8mzktxUa339cvt0/Pjx/gYFQ7IWX/zVRlNTU5mYmMjk5GQ2bNiQTZs2Pbxt\neno6MzMz2bVrV/bt25ctW7YMsaeLa9NY2krdw2haq7Xfpnnl2LFjuf7663Pfffdl3bp1j3jh8unT\np/Pggw/m8ssvz2233ZaLL754iD0dLW26xg4fPpxrrrkmR48ezQUXXJCxsbEkybp16zIzM5OHHnoo\n27dvz5133plLL710yL0dDW26vto0ljaZP7fM2rhx45qbW8yTq0+b6r5NY5lvrX7OT9p9Xpo2Pj4+\nttS2fQcySVJKuSjJLUmeneTxSY4k+UCSm2ut/31Ou0cFMt31P5zk19J5xNmmJPcmmai1nlfELpBh\nrVrLX7Tb6OjRo7njjjty6NChnDlzJhs2bMgVV1yRvXv3rrnbMts0lrZR9zCa1nrtt2le+fKXv5w3\nvelNjxrLr/zKr3j8yhC16Rq755578trXvjaHDx/Ogw8+mI0bN+a7vuu78hu/8RseUzYkbbq+2jSW\nNpmdW+69997MzMxk27Zta3ZuMU+uPm2q+zaNZdZa/5yftPO8NG3FA5nVRiDDWtWGL9rA8qh7GE1q\nH0aPuofRo+5h9Kj70bScQGYQ75ABAAAAAADgHAQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCB\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRs7OzZs8Puw8AdP368fYMCAAAAAABWlfHx8bGltnWH\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDxs6ePTvsPgAAAAAA\nALSaO2QAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAA\naJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh64fdARglpZTb\nk7zoHE1eVWv97VLKLUluPke7t9ZaXznIvgHNKaU8K8lrkzw5yUySv03y+lrrh+e1uzDJ/5Xk+Uku\nS3IiyYeT3FRr/cqKdhroy1Lq3nwP7VFKObuEZjtrrfd125vzYY1bTt2b86FdSilPTHJjkmcmuTjJ\nN5Pck+Q3a613z2lnvudRBDIwHP9nkqMLrP/svD/fkuTvFmg3OegOAc0opbwkya1JPpbkFUkek+RV\nSf6ylPITtda7uu3GkuxP8i+S3JbkdUmekOTVST5ZSnlKrfXvV34EwHItte7nuCXme1jrnnuObb+R\nZDzdz//mfGiNJdf9HLfEnA9rWinlB5PcneR0krcn+UqSS5O8PMlHSynX1lo/aL6nF4EMDMdfzP52\n3CI+usAPbYA1opTyT5K8Lcn/k+Qna60Pddd/MMknk1yT5K5u8+cn+Zfp/EbNa+Yc46+TfCbJbyb5\ntyvWeeC8LLPuZ5nvYY2rtf7xQutLKdcm2ZXkxbXWk93V5nxogWXW/SxzPqx9/z7JliT/ptb6V7Mr\nSyl/muTeJL+W5IMx39ODd8gAQHNelGRrkltmfyibJLXWr9Zav7PW+stz2r6wu3zb3APUWg+kc+vz\nvyqlfEfTHQb6tpy6B1qslPKYJBNJPl5r/f05m8z50FLnqHugPf6n7vLjc1fWWr+c5EiSy7urzPcs\nSCADQ1RK2VxKWfROtVLKxlLKxpXoEzBQ/zLJP6bzW/EppawrpWzq0fYpSQ7XWh9YYNunkmxI510U\nwOq2nLp/BPM9tM5N6Tya5OXz1pvzob161f0jmPNhTbu3u/yeuStLKeNJviPJF7urzPcsSCADw/Hy\nUsqhJN9OMl1K+ZtSyv+yQLv/rZTyd0mmu+2+UEr5mRXtKdCPPUn+PskPlFI+mk4tnyqlfLGU8vzZ\nRt3fpHtckoU+qCXJ/d3lFU12FhiIJdX9POZ7aJlSyo50fiD7nlrrF+asN+dDS/Wq+3nM+bD2vSHJ\n/0jynlLK00opF5dSnpTOe2LOJrnJfM+5CGRgOH4yyRvTeY78rybZneTPF/hBzbOSvLO7fEU6LwV8\nTynlV1awr8D5e1w6vyFzZ5JPJLk2yb7uuj8spfy7brvHdJdTPY5zcl47YPVaat3PZb6H9nlNks3p\n/NBmLnM+tFevup/LnA9rXK31i0l+JMm6dB5bdjTJ55Nclc47JO+K+Z5zWPRRScBA/Yckf5jkrlrr\ndHfdh0opf5bks0n+QynlfUn+S5K/SfLJWuvxbru/LKX8UZIvJ7m5lPKuWus3V7j/wPJsTOf5sS+o\ntf7B7MpSyp3p3Ob8xlLK7cPpGtCQJdV9rfXBmO+hlUopj03ysiR/Xms9OOz+AM1bQt2b86ElSikl\nyYeSbEryqnRqeEeSX0rywVLKs5P83fB6yGonkIEV1L1t+VG3Ltdav1RKuSud585/b63175I86kNc\nrfVIKeWPk/xckh9N57dvgdXrW+l8SPujuStrrYdKKR9J8lNJvjfJfd1NW3scZ1t3eaKBPgKDtdS6\n/2L3Bzbme2if/z3JliQLvdB7di4350O7nKvuY86HVnl3ku9K5+d3h2ZXllLen06d35bO5/3EfM8C\nPLIMVo9vdJcXDagdMHz3pfdce6S7vKjW+q10bnO+pEfby7rLycF1DWjIfVlC3S/hOOZ7WLuem877\nIf5i/gZzPrRWz7pfAnM+rBGllK3phKcH5oYxSVJr/XaSu9IJa7475nt6EMjACimlXFRKeUEp5ad6\nNekuHyilPK+U8txF2t3fYzuwenwynccXXbnAttkPYLMv+bsnySWllO9eoO3Tk3w7yYGB9xAYtCXV\nfSllg/ke2qeUsi3J1ek8lujbPZqZ86FFFqt7cz60yoVJxtJ5X9RCNs9Zmu9ZkEAGVs7pJL+T5PZS\nysVzN5RS/kWSf5rk07XWw0lel86L/XbPa3dlOi8HfiDJp1ek10A/bu8uby6ljM2uLKV8XzofwD5f\na539xuvW7vJVcw9QSvlnSX4oyR91f6sWWN1u7y7PWfe11jMx30MbfV+SDUm+eI425nxol3PWvTkf\n2qPWeiydu1q+r1u/DyulPC7JM9N5DNkXY76nB++QgRVSaz1VSnlFOj+o+XQp5Z1J/iHJD6bz8r/j\nSV7abf7yJH+Z5O5Syu8kOZTOb83sS/JQkp/rfqgDVrFa66dKKRPp1O6flVLel85vyL8qyUySV8xp\n+8FSyp8meWUp5aIkH+62fXU636DduNL9B5ZvOXUf8z200fd0l/f1amDOh9ZZtO5jzoc2+aUkH0jy\n8VLK25N8JcnF6XzO/44kP19rnU5ivmdB7pCBFVRr/f100vKD6XzhvTXJc5L81yRPrrV+ttvur5Nc\nleQTSX4xye8l+dl0PsA9tdb6lyvfe+A8vSKd0PXSJP85nQ9ff5PkabXWu+a1/ekkN6fzW/S3dff9\n8yRX11r/YaU6DPRtSXVvvodWemx3+Y+LtDPnQ3ssWvfmfGiPWusHkzwtycfS+cx/ezpz+sEkz6q1\nvmtOc/M9jzJ29uzZYfcBAAAAAACg1dwhAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAA\nADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABA\nwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRM\nIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQy\nAAAAAAAADRPIAAAAAAAANGz9sDvQhOPHj58ddh8AAAAAAIB2Gx8fH1tqW3fIAAAAAAAANEwgAwAA\nAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAOryOTkZCYnJ4fdDWAFqXsYTWofRo+6\nh9Gj7mH0qHsWI5ABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhA\nBgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABq2ftgdYOUdOXIk+/fvz6FDh3LmzJls2LAhO3fuzN69\ne7Njx45hdw8AGADzPSyNWgFg0GbnlgMHDmRmZibbt283twBrhs/HzRo7e/bsQA5UStmY5PVJXp3k\nY7XWZyxj36uT3JTkqUkuTPKVJL+b5O211mV38Pjx44MZVMtMTU1lYmIiBw8ezPr167Np06aHt01P\nT2dmZia7du3Kvn37smXLliH2dHRNTk4mSXbv3j3kngArRd0zaOb7tUHtD59aYaWpe2i/+XPLqVOn\nkiTj4+PmFhgRa3m+9/n4/I2Pj48tte1AHllWSilJPpnkZUmW/Jd3931mko8k2Z3kliQ/l04g87Yk\n/3EQ/aNTULfccksOHTqUrVu3PqKgkmTTpk3ZunVrDh06lNe97nWZmpoaUk8BgPNlvoelUSsADJq5\nBVjLfA1bOX0HMqWUxyY5kGRdkh8+j0O8I8mpJE+vtb611vreWutzkuxP8oullO/vt48kExMTOXHi\nRDZv3nzOdps3b87x48czMTGxQj0DAAbFfA9Lo1YAGDRzC7CW+Rq2cgZxh8zGJO9J8tRaa13OjqWU\nq5KUJO+rtX593ua3p3O3zXUD6ONIO3LkSA4e/P/Yu/8oze66TvDvSv9Mp9MlfdLtsBtMOtvNtw2L\nP9AhDMoOgxMUXbYzgyy4RCCOLrLYEmIEVieno4IDmPGIjQyMxASZQQ+opI0G1qwaDD+Ew2n5ZcI3\nFemQ5CyS7nGoJF1Udaqp/eN5KqeoVHVV9fPceqru83qd0+em7/3e299v3fup75N617333iULatbW\nrVszNjaW48ePN9wzAKBfzPewPGoFgH4ztwDrme9hq6vnQKbW+rVa66trrZNnsfszu8tPLrDtU93l\nZWfXM2YdOXIkGzduXNE+mzZtyi233NJQjwCAfjPfw/KoFQD6zdwCrGe+h62ulX2l++/i7vLB+Rtq\nrY+UUr6e5JJ+/WOzL1UaNkePHs3k5OTjL5NbyX7D+jUbNF93GD7qnl6Z79cnX/vVp1YYNNcRtM9S\nc8v4+Pii+/meAO20nmrb5+Pl27dvX8/H6Mcjy3pxfne52FuATs5pw1manp5e1f0AgNVnvoflUSsA\n9Ju5BVjPfA9bXYO+Q2ZV9SPBWo927dqViYnFMq/Fbdu2bWi/ZoMymyr7usPwUPf0i/l+fVH7g6NW\nGBR1D+212Nwye2fM6OjogvuZW6B91uN87/Px6hr0HTIPd5fnLbJ9+5w2nKU9e/ZkampqRftMTU1l\nz549DfUIAOg38z0sj1oBoN/MLcB65nvY6hp0IPPl7vLC+RtKKaNJRpMM14PoGnDgwIEV30I2PT2d\nK664oqEeAQD9Zr6H5VErAPSbuQVYz3wPW12DDmQ+0V3+wALbntNdfmyV+tJau3fvzt69e5f9YqbJ\nycns3bs3u3btarhnAEC/mO9hedQKAP1mbgHWM9/DVteqBjKllP2llMfvZaq1fjbJ0SQvLqVcOKfd\nSJLXJXksyXtXs49tdfDgwezYsWPJwpqcnMzo6GgOHjy4Sj0DAPrFfA/Lo1YA6DdzC7Ce+R62ekZm\nZmZ6OkAp5dIkl85Z9cEkdyU5NGfdbbXWiVLKTJJaa90/Z//Lkvx1kn9M8ltJvp7kpUlekOS6Wuub\nVtqn8fHx3gbVUhMTEzl8+HDGxsayadOmbNmy5fFtU1NTmZ6ezt69e3Pw4MFs27ZtgD0dXuvxxV9A\nb9Q9/Wa+Xx/U/uCpFVabuof2mz+3zP5gc3R01NwCQ2I9z/c+H5+90dHRkeW27Ucgc32+NXxZyJ5a\n630LBTLdY3x/xoQMRQAAIABJREFUkl9N8uwkW5LcneRwrfWms+mTQObMjh8/nltuuSXHjh3LY489\nlk2bNuWSSy7JgQMH3Go2YOv5mzZwdtQ9TTHfr21qf+1QK6wWdQ/DY3ZuOXr0aKanp7Nr1y5zCwyJ\nNsz3Ph+v3KoGMmuRQIb1qg3ftIGVUfcwnNQ+DB91D8NH3cPwUffDaSWBzKq+QwYAAAAAAGAYCWQA\nAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAA\nAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABq2sR8HKaXsTHIoyRVJnpzkRJLbklxXa/3qMva/MsnPJvnuJJuT3J/k\nz5K8qdb63/rRRwAAAAAAgEHp+Q6ZUsq5Se5I8uokf5zklUneneQlST5eSnnSEvv/epL3JdmU5JfS\nCWbuSHIwyd+WUnb02kcAAAAAAIBB6scdMlcneXqS19Ra3zm7spTyuSQfSnJdkmsW2rF7Z80vJrkv\nyf9Sa53qbrqplHIiyRuTXJXk7X3oJwAAAAAAwED04x0yL09yMsmN89YfSfJgkitLKSOL7Psd6YRC\nn54Txsz6m+7y4j70EQAAAAAAYGB6CmS6jxPbn+To/ECl1jqT5NNJdiXZs8ghjiWZSrJvgW0Xd5df\n7KWPAAAAAAAAg9brI8su6i4fXGT7/d3lJUm+PH9jrXW8lPJrSd5USjmc5LeSPJLkmUl+Oclnk/zX\nHvv4uLGxsX4dChrlWoXho+5hOKl9GD7qHoaPuofho+7bad++he4rWZleH1l2fnc5scj2k/PaPUGt\n9c1JfibJTye5N8nXktya5O+SPK/WOtljHwEAAAAAAAaq1ztkelZKeXWS307yF0n+IMnxJJcleX2S\n20opL6i1fr0f/1Y/Eixo0mx67lqF4aHuYTipfRg+6h6Gj7qH4aPuWUqvgczD3eV5i2zfPq/dtyil\nlHTCmL+stf7YnE3/Tynlc0luSfJL6YQzAAAAAAAA61Kvjyw7lmQmyYWLbJ99x8xiD817Xjqh0J8s\nsO3D3WP/q146CAAAAAAAMGg9BTK11pNJPp/kGaWUrXO3lVI2JHl2kgdqrfcvcojZO2u2LrBtS5KR\nRbYBAAAAAACsG73eIZMkNybZluRV89ZfmWR3kvfMriil7C+l7JnT5hPd5UtKKSPz9n/xvDYAAAAA\nAADrUq/vkEmSdyV5WZIbSikXJflMkqcluSbJF5LcMKft3Ulqkv1JUmv9RCnlg+mELx8rpXwgyfEk\n/zzJa5J8Lcmb+9BHAAAAAACAgen5Dpla62NJnp/kcJIXJbk5ySvSuTPmubXWiSUO8RNJDqbziLI3\nd/f/N0l+L8n3neFxZwAAAAAAAOtCP+6QSa314XTuiLlmiXbzH0uWWuvpJO/o/gEAAAAAAGidfrxD\nBgAAAAAAgDMQyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCAD\nAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAA\nAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAA\nAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAA\nAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQ\nMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANGxjPw5SStmZ5FCSK5I8OcmJJLclua7W+tVl7L8l\nyRuTXJnkKd39/zzJL9daT/SjjwAAAAAAAIPS8x0ypZRzk9yR5NVJ/jjJK5O8O8lLkny8lPKkJfbf\nmE748u+T/FmSn07yR0n+XZKPllI299pHAAAAAACAQerHHTJXJ3l6ktfUWt85u7KU8rkkH0pyXZJr\nzrD/zyb5oSSvqLX+fnfdfymlnEjyU0kuS3JnH/oJAAAAAAAwEP14h8zLk5xMcuO89UeSPJjkylLK\nyBn2f02SsSTvm7uy1vqmWusltVZhDAAAAAAAsK71FMiUUnYk2Z/kaK11au62WutMkk8n2ZVkzyL7\nX9jd/y+67VNK2bpEgAMAAAAAALCu9PrIsou6ywcX2X5/d3lJki8vsH1/d/kPpZTXJnld95hTpZSP\nJLm21npvj3183NjYWL8OBY1yrcLwUfcwnNQ+DB91D8NH3cPwUffttG/fvp6P0esjy87vLicW2X5y\nXrv5dnaXr0jyqiRvTnIgybuTvDDJx0spT+6xjwAAAAAAAAPV6x0yvdrcXX57kv+51vrfun//01LK\n19IJaH4hybX9+Mf6kWBBk2bTc9cqDA91D8NJ7cPwUfcwfNQ9DB91z1J6vUPm4e7yvEW2b5/Xbr5H\nu8s/nRPGzLqxu3zu2XUNAAAAAABgbeg1kDmWZCbJhYtsn33HzGIPzbuvu9ywwLYT3WPvONvOAQAA\nAAAArAU9BTK11pNJPp/kGaWUrXO3lVI2JHl2kgdqrfcvcoi7kown+Z4Ftj0lyUiSB3vpIwAAAAAA\nwKD1eodM0nm02LYkr5q3/soku5O8Z3ZFKWV/KWXP7N9rraeSvD/J95VSXjhv/5/rLm/tQx8BAAAA\nAAAGZmMfjvGuJC9LckMp5aIkn0nytCTXJPlCkhvmtL07SU2yf866Q0l+OMkHSylvSecxZs9L8pNJ\nPts9PgAAAAAAwLrV8x0ytdbHkjw/yeEkL0pyc5JXpHNnzHNrrRNL7H88ybOSvDfJ/5nkPyf5l0l+\ns7v/N3rtIwAAAAAAwCD14w6Z1FofTueOmGuWaDeyyPrj6TzybP5jzwAAAAAAANa9frxDBgAAAAAA\ngDMQyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQ\nMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0T\nyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEM\nAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAA\nAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAA\nAABAwwQyAAAAAAAADRPIAAAAAAAANGxjPw5SStmZ5FCSK5I8OcmJJLclua7W+tUVHmtrks8leWqS\nf1VrvaMffQQAAAAAABiUnu+QKaWcm+SOJK9O8sdJXpnk3UlekuTjpZQnrfCQ16UTxgAAAAAAALRC\nP+6QuTrJ05O8ptb6ztmVpZTPJflQOgHLNcs5UCnl6Ul+McnfJfnePvQNAAAAAABg4PrxDpmXJzmZ\n5MZ5648keTDJlaWUkaUOUko5J8nvJvlKOnfYAAAAAAAAtEJPgUwpZUeS/UmO1lqn5m6rtc4k+XSS\nXUn2LONwP5fksiQ/m2RqibYAAAAAAADrRq+PLLuou3xwke33d5eXJPnyYgcppTwlyZuTvK/W+pel\nlFf22K8FjY2NNXFY6DvXKgwfdQ/DSe3D8FH3MHzUPQwfdd9O+/bt6/kYvT6y7PzucmKR7SfntVvM\nf0pyKskv9NgfAAAAAACANafXO2R6Vkp5aZIfS/JTtdbjTf5b/UiwoEmz6blrFYaHuofhpPZh+Kh7\nGD7qHoaPumcpvd4h83B3ed4i27fPa/ctSik7k7w9yUdrrTf12BcAAAAAAIA1qdc7ZI4lmUly4SLb\nZ98xs9hD834jybclub6UMvcYT+oud3XXH6+1TvXYVwAAAAAAgIHo6Q6ZWuvJJJ9P8oxSyta520op\nG5I8O8kDtdb7FznEDyXZnOSvkzww589vdrd/oPv3f9FLPwEAAAAAAAapH++QuTHJbyd5VTqPH5t1\nZZLdSQ7Nriil7E8yVWs91l31U0m2LXDMH0pydZJfSvKF7h8AAAAAAIB1qR+BzLuSvCzJDaWUi5J8\nJsnTklyTTpByw5y2dyepSfYnSa31rxY6YCnlgu5/frLWekcf+ggAAAAAADAwPT2yLElqrY8leX6S\nw0lelOTmJK9I8p4kz621TvT6bwAAAAAAAKxn/bhDJrXWh9O5I+aaJdqNLPN4N6cT7AAAAAAAAKx7\nPd8hAwAAAAAAwJkJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAA\nAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAA\nAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGraxHwcppexMcijJFUmenOREktuSXFdr/eoy\n9v/B7v7PTLI1yQNJ/jjJr9VaH+1HHwEAAAAAAAal5ztkSinnJrkjyavTCVFemeTdSV6S5OOllCct\nsf/LktyZ5CnphDKvTvL5JK9P8helFHfxAAAAAAAA61o/7pC5OsnTk7ym1vrO2ZWllM8l+VCS65Jc\ns9COpZQtSf5TOnfEXFZrHe9u+r1SyofSuePmR9K52wYAAAAAAGBd6sfdJy9PcjLJjfPWH0nyYJIr\nSykji+z7z5L8SZL/MCeMmTUbwnxXH/oIAAAAAAAwMD3dIVNK2ZFkf5I7a61Tc7fVWmdKKZ9O8m+T\n7Eny5fn711q/ks4jzhYy2l0+3EsfAQAAAAAABq3XR5Zd1F0+uMj2+7vLS7JAILOYUsrmJD+VZCLJ\nLWfdu3nGxsb6dSholGsVho+6h+Gk9mH4qHsYPuoeho+6b6d9+/b1fIxeA5nzu8uJRbafnNduSaWU\nc5L8bpLvTPILtdb/7+y7BwAAAAAAMHi9BjJ9VUo5N8n7k1yR5Hdqrb/Zz+P3I8GCJs2m565VGB7q\nHoaT2ofho+5h+Kh7GD7qnqWc0+P+s+93OW+R7dvntVtUKWVXkr9KJ4z5tVrrz/XYNwAAAAAAgDWh\n1ztkjiWZSXLhIttn3zFzxofmlVK+PcmdSfYkuarWenOP/QIAAAAAAFgzerpDptZ6MsnnkzyjlLJ1\n7rZSyoYkz07yQK31/sWOUUrZkeQjSb4jyf8mjAEAAAAAANqm10eWJcmNSbYledW89Vcm2Z3kPbMr\nSin7Syl75rV7e5LvSfITtdYP96E/AAAAAAAAa0qvjyxLkncleVmSG0opFyX5TJKnJbkmyReS3DCn\n7d1JapL9SVJK+a4kr0hyV5INpZQfX+D4x2utH+1DPwEAAAAAAAai50Cm1vpYKeX5Sa5P8qIkP5fk\noXTujDlUa504w+7PSDKS5NIkH1ykzUeTPLfXfgIAAAAAAAxKP+6QSa314XTuiLlmiXYj8/5+c5Kb\n+9EHAAAAAACAtaof75ABAAAAAADgDAQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nTCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMME\nMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCAD\nAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAA\nAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDNg66AwBr1UMPPZQjR47k2LFjeeyxx7Jp\n06bs2bMnBw4cyO7duwfdvRVp01gAGLw2zSt33XVX3va2tz1hLK9//etz6aWXDrp7K9Km89Kmsdx6\n6615wxvekBMnTmRmZiYbNmzIzp0789a3vjUvfOELB929odSm66tNY2mT2fNy9OjRTE9PZ9euXev2\nvLRpnmyLNtV9m8YCyzUyMzPT80FKKTuTHEpyRZInJzmR5LYk19Vav7qM/Z+d5Lokz0pybpJ7kvxu\nknfUWlfcwfHx8d4HBQMwNjaWJNm3b9+AezLcJiYmcvjw4dx7773ZuHFjtmzZ8vi2qampTE9PZ+/e\nvTl48GC2bds2wJ4urU1jaSt1D8NpvdZ+m+aVEydO5KqrrspXvvKVnHPOOdm8efPj206dOpVvfvOb\nueiii3LTTTflggsuGGBPl9am89Kmsdxzzz25/PLL8+ijjyZJRkZGkiTnnHNOTp8+nSTZvn17br/9\n9jz1qU8dWD+HSZuurzaNpU3mn5fJyckkyejo6Lo7L22aJ9uiTXXfprHMt14/59Ob0dHRkeW27TmQ\nKaWcm+RTSfYneUeSzyTZl+TaJMeTfF+t9b+fYf/nJflwkgeSHE7yT0kOJHlRkrfXWq9eaZ8EMqxX\nvmkP3sTERK6//vo8/PDD2bp166LtJicnMzo6mkOHDq3ZDwdtGkubqXsYTuux9ts0r5w4cSIHDhzI\nyZMnv+UHTPOdOnUq27dvzy233LJmf9jUpvPSprHcc889ec5znpPp6els2LAhSfLNb34zSSeQmXX6\n9Ols3Lgxd955p1CmYW26vto0ljZZ6LyMj48n6QQys9bDeWnTPNkWbar7No1lIevxcz69W0kg0493\nyFyd5OlJrq61XlNrfX+t9VeS/GSSPenc+XIm70wymeQ5tda311rfV2v98SRHkvx8KeW7+9BHgGU5\nfPjwkh8KkmTr1q0ZHx/P4cOHV6lnK9emsQAweG2aV6666qolf8iUJJs3b86jjz6aq666apV6tnJt\nOi9tGsvll1/+LWHMYjZs2JDp6elcfvnlq9Sz4dWm66tNY2mTNp2XNs2TbdGm66tNY4Gz0Y9A5uVJ\nTia5cd76I0keTHJlKWXBhKiUclmSkuQDCzza7B1JRpJc2Yc+AizpoYceyr333rvkh4JZW7duzdjY\nWI4fP95wz1auTWMBYPDaNK/cdddd+cpXvrLkD5lmbd68Offdd1++9KUvNdyzlWvTeWnTWG699dY8\n+uijS4YxszZs2JBHHnkkt912W8M9G15tur7aNJY2adN5adM82RZtur7aNBY4Wz0FMqWUHek8quxo\nrXVq7rbuu18+nWRXOnfKLOSZ3eUnF9j2qe7ysl76CLBcR44cycaNG1e0z6ZNm3LLLbc01KOz16ax\nADB4bZpX3va2t33LI6OWY8OGDXnLW97SUI/OXpvOS5vG8oY3vGHF+4yMjOTaa69toDck7bq+2jSW\nNmnTeWnTPNkWbbq+2jQWOFsrq4Anuqi7fHCR7fd3l5ck+fIC2y9ebP9a6yOllK939+2L2Wf4wVrn\nWh2Mo0ePZnJy8vEXL65kv7V2zto0lmHh6w7Dab3UfpvmlbvvvjtJ57n3K91vrY2lTeelTWM5ceJE\nRkZGHn9nzHwLrR8ZGcmJEyfW3Fjaok3XV5vG0iZLnZfZd8kstN9aOy9tmifbok1136axLGW99Zfl\n6ce7gXp9ZNn53eXEIttPzmt3Nvsvti9AX01PT6/qfk1q01gAGLw2zSvGYixNm5mZWdX9WFqbrq82\njaVN2nRe2jSWtmjTOWnTWOBs9XqHzLrSjwQLmjSbnrtWB2PXrl2ZmFgsH17ctm3b1tw5a9NY2k7d\nw3Bab7Xfpnll+/bt+cY3vrHi/c4999w1N5Y2nZc2jWXDhg0L3gUzu26xRwGdc845a24sbdGm66tN\nY2mTxc7L7J0xo6OjC+63Fs9Lm+bJtmhT3bdpLItZb5/zWX293iHzcHd53iLbt89rdzb7L7YvQF/t\n2bMnU1NTSzecY2pqKnv2LPaarMFp01gAGLw2zSt79uxZ8WNYTp06tWbH0qbz0pax7Ny5M6dPn17R\nPqdPn87OnTsb6hFtur7aNJY2adN5adM82RZtu77aMhY4W70GMseSzCS5cJHts++YWeyhebPvlXnC\n/qWU0SSjZ9gXoK8OHDiw4ttgp6enc8UVVzTUo7PXprEAMHhtmlde//rXL/puj8WcPn06b3zjGxvq\n0dlr03lp01je+ta3rnifmZmZ3HDDDQ30hqRd11ebxtImbTovbZon26JN11ebxgJnq6dAptZ6Msnn\nkzyjlLJ17rZSyoYkz07yQK31/kUO8Ynu8gcW2Pac7vJjvfQRYLl2796dvXv3LvvlcpOTk9m7d292\n7drVcM9Wrk1jAWDw2jSvXHrppbnooouW/du/p06dysUXX5z9+/c33LOVa9N5adNYXvjCF2b79u3L\nvkvm9OnTOf/88/OjP/qjDfdseLXp+mrTWNqkTeelTfNkW7Tp+mrTWOBs9XqHTJLcmGRbklfNW39l\nkt1J3jO7opSyv5Ty+D1mtdbPJjma5MWllAvntBtJ8rokjyV5bx/6CLAsBw8ezI4dO5b8cDA5OZnR\n0dEcPHhwlXq2cm0aCwCD16Z55aabbsp555235A+bTp06le3bt+emm25apZ6tXJvOS5vGcvvtt2fj\nxo1LhjKnT5/Oxo0bc/vtt69Sz4ZXm66vNo2lTdp0Xto0T7ZFm66vNo0FzsbIzMxMTwcopWxKcmeS\n70tyOMlnkjwtyTXpPG7sWbXWiW7bmSS11rp/zv6XJfnrJP+Y5LeSfD3JS5O8IMl1tdY3rbRP4+Pj\nvQ0KBsSLv9aGiYmJHD58OGNjY9m0aVO2bNny+LapqalMT09n7969OXjwYLZt2zbAni6tTWNpK3UP\nw2m91n6b5pUTJ07kqquuyn333ZcNGzZk8+bNj287depUTp8+nYsvvjg33XRTLrjgggH2dGltOi9t\nGss999yTyy+/PI888khGRkYyMjKSJDnnnHNy+vTpzMzM5Pzzz8/tt9+epz71qQPu7XBo0/XVprG0\nyfzzMvsD59HR0XV3Xto0T7ZFm+q+TWOZb71+zqc3o6OjI8tt23MgkySllB1Jrk/yoiRPTvJQkg8l\nOVRr/ac57Z4QyHTXf3+SX03nEWdbktyd5HCt9awidoEM65Vv2mvL8ePHc8stt+TYsWN57LHHsmnT\nplxyySU5cODAurtdtk1jaRt1D8Npvdd+m+aVL33pS3nLW97yhLG84Q1vWHePX2nTeWnTWG677bZc\ne+21OXHiRGZmZrJhw4bs3LkzN9xwg8eUDUibrq82jaVNZs/L0aNHMz09nV27dq3b89KmebIt2lT3\nbRrLrPX+OZ+zs+qBzFojkGG98k0bho+6h+Gk9mH4qHsYPuoeho+6H04rCWT68Q4ZAAAAAAAAzkAg\nAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDRmZm\nZgbdh74bHx9v36AAAAAAAIA1ZXR0dGS5bd0hAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAA\nAAAAADRMIAMAAAAAANCwkZmZmUH3AQAAAAAAoNXcIQMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAAN\nE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCB\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRs46A7AMOklHJzklecocnraq2/VUq5PsmhM7R7e631\n6n72DWhOKeUFSd6Y5BlJppP8XZI31Vr/al67c5P830lemuSiJA8n+ask19Va71nVTgM9WU7dm++h\nPUopM8totqfWel+3vTkf1rmV1L05H9qllPK0JL+U5HlJLkjy9SSfSPIbtdaPzWlnvucJBDIwGP9X\nkuMLrP/svL9fn+TvF2g31u8OAc0opfxUkhuT/E2S1yY5P8nrknyklPL8Wusd3XYjSY4k+ddJbkry\nK0n+hyTXJvlkKeWZtdZ/WP0RACu13Lqf4/qY72G9e/EZtv2HJKPpfv4350NrLLvu57g+5nxY10op\n35vkY0lOJXlHknuSPCXJa5J8tJRyRa31VvM9ixHIwGB8ePa345bw0QV+aAOsE6WUf5bkt5P8v0l+\nuNb6ze76W5N8MsmPJbmj2/ylSS5P5zdqXj/nGH+Z5DNJfiPJv121zgNnZYV1P8t8D+tcrfWPFlpf\nSrkiyd4kr6y1nuyuNudDC6yw7meZ82H9+/dJtiX5N7XWv5hdWUr5kyR3J/nVJLfGfM8ivEMGAJrz\niiTnJbl+9oeySVJr/XKt9dtrrb84p+3Lu8vfnnuAWuvRdG59/l9LKd/WdIeBnq2k7oEWK6Wcn+Rw\nkjtrre95uNfvAAAgAElEQVSds8mcDy11hroH2uN/6i7vnLuy1vqlJA8lubi7ynzPggQyMECllK2l\nlCXvVCulbC6lbF6NPgF9dXmSR9L5rfiUUjaUUrYs0vaZSR6otT64wLZPJdmUzrsogLVtJXX/Lcz3\n0DrXpfNoktfMW2/Oh/ZarO6/hTkf1rW7u8unzl1ZShlN8m1JvthdZb5nQQIZGIzXlFKOJflGkqlS\nyt+WUn50gXb/eynl75NMddt9oZTyk6vaU6AX+5P8Q5LvKaV8NJ1aniylfLGU8tLZRt3fpNuZZKEP\naklyf3d5SZOdBfpiWXU/j/keWqaUsjudH8j+fq31C3PWm/OhpRar+3nM+bD+vTnJf0/y+6WUHyyl\nXFBKeXo674mZSXKd+Z4zEcjAYPxwkl9P5znyv5xkX5I/W+AHNS9I8q7u8rXpvBTw90spb1jFvgJn\nb2c6vyHz50k+nuSKJAe76/6glPLvuu3O7y4nFjnOyXntgLVruXU/l/ke2uf1Sbam80Obucz50F6L\n1f1c5nxY52qtX0zyL5JsSOexZceTfD7JZem8Q/KOmO85gyUflQT01X9M8gdJ7qi1TnXX3VZK+dMk\nn03yH0spH0jyX5L8bZJP1lrHu+0+Ukr5wyRfSnKolPLuWuvXV7n/wMpsTuf5sS+rtb5/dmUp5c/T\nuc3510spNw+ma0BDllX3tdbTMd9DK5VSnpTk1Un+rNZ676D7AzRvGXVvzoeWKKWUJLcl2ZLkdenU\n8O4kv5Dk1lLKi5L8/eB6yFonkIFV1L1t+Qm3Ltda7yql3JHOc+e/s9b690me8CGu1vpQKeWPkvxM\nkh9I57dvgbXr0XQ+pP3h3JW11mOllL9O8iNJvjPJfd1N5y1ynO3d5cMN9BHor+XW/Re7P7Ax30P7\n/B9JtiVZ6IXes3O5OR/a5Ux1H3M+tMp7kvyP6fz87tjsylLKB9Op85vS+byfmO9ZgEeWwdrxte5y\nR5/aAYN3Xxafax/qLnfUWh9N5zbnCxdpe1F3Oda/rgENuS/LqPtlHMd8D+vXi9N5P8SH528w50Nr\nLVr3y2DOh3WilHJeOuHp0blhTJLUWr+R5I50wprviPmeRQhkYJWUUnaUUl5WSvmRxZp0lw+WUl5S\nSnnxEu3uX2Q7sHZ8Mp3HF126wLbZD2CzL/n7RJILSynfsUDb5yT5RpKjfe8h0G/LqvtSyibzPbRP\nKWV7kmen81iibyzSzJwPLbJU3ZvzoVXOTTKSzvuiFrJ1ztJ8z4IEMrB6TiX5nSQ3l1IumLuhlPKv\nk/zzJJ+utT6Q5FfSebHfvnntLk3n5cAPJvn0qvQa6MXN3eWhUsrI7MpSynel8wHs87XW2f/xurG7\nfN3cA5RS/mWS70vyh93fqgXWtpu7yzPWfa31sZjvoY2+K8mmJF88QxtzPrTLGevenA/tUWs9kc5d\nLd/Vrd/HlVJ2JnleOo8h+2LM9yzCO2RgldRaJ0spr03nBzWfLqW8K8k/JvnedF7+N57kVd3mr0ny\nkSQfK6X8TpJj6fzWzMEk30zyM90PdcAaVmv9VCnlcDq1+6ellA+k8xvyr0syneS1c9reWkr5kyRX\nl1J2JPmrbttr0/kftF9a7f4DK7eSuo/5Htroqd3lfYs1MOdD6yxZ9zHnQ5v8QpIPJbmzlPKOJPck\nuSCdz/nfluRna61TScz3LMgdMrCKaq3vTSctvzedb7w3JvnxJP81yTNqrZ/ttvvLJJcl+XiSn0/y\ne0l+Op0PcM+qtX5k9XsPnKXXphO6PiXJf07nw9ffJvnBWusd89r+RJJD6fwW/U3dff8sybNrrf+4\nWh0GerasujffQys9qbt8ZIl25nxojyXr3pwP7VFrvTXJDyb5m3Q+89+czpx+b5IX1FrfPae5+Z4n\nGJmZmRl0HwAAAAAAAFrNHTIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAA\nAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAA\nANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAA\nDRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANCw\njYPuQBPGx8dnBt0HAAAAAACg3UZHR0eW29YdMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwA\nAAAAAEDDBDIAAAAAAAANE8jAGjI2NpaxsbFBdwNYReoehpPah+Gj7mH4qHsYPuqepQhkAAAAAAAA\nGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh\nAhkAAAAAAICGbRx0B1h9Dz30UI4cOZJjx47lsccey6ZNm7Jnz54cOHAgu3fvHnT3YM1oU620aSzA\n8qh7WJ421UqbxtIms+fl6NGjmZ6ezq5du5wX+kbdr03qHoDFjMzMzPTlQKWUzUnelOTaJH9Ta33u\nCvZ9dpLrkjwryblJ7knyu0neUWtdcQfHx8f7M6iWmZiYyOHDh3Pvvfdm48aN2bJly+PbpqamMj09\nnb179+bgwYPZtm3bAHs6vMbGxpIk+/btG3BPhlubaqVNY2krdU+/qfv1Qe0PXptqpU1jaZP552Vy\ncjJJMjo66rzQM3W/Nql7wOf84TQ6Ojqy3LZ9CWRKKSXJ+5M8Ncn2JB9dbiBTSnlekg8neSDJ4ST/\nlORAkhcleXut9eqV9kcg80QTExO5/vrr8/DDD2fr1q2LtpucnMzo6GgOHTrkw8EA+KY9eG2qlTaN\npc3UPf2k7tcPtT9YbaqVNo2lTRY6L+Pj40k6P5id5bxwNtT92qTugcTn/GG1kkCm53fIlFKelORo\nkg1Jvv8sDvHOJJNJnlNrfXut9X211h9PciTJz5dSvrvXPpIcPnx4yQ9rSbJ169aMj4/n8OHDq9Qz\nWFvaVCttGguwPOoelqdNtdKmsbSJ80KTXF9rk/MCwHL0HMgk2Zzk95M8q9ZaV7JjKeWyJCXJB2qt\nX523+R1JRpJc2Yc+DrWHHnoo995775IfCmZt3bo1Y2NjOX78eMM9g7WlTbXSprEAy6PuYXnaVCtt\nGkubOC80yfW1NjkvACxXz4FMrfVrtdZX11onz2L3Z3aXn1xg26e6y8vOrmfMOnLkSDZu3LiifTZt\n2pRbbrmloR7B2tSmWmnTWIDlUfewPG2qlTaNpU2cF5rk+lqbnBcAlmtls0X/XdxdPjh/Q631kVLK\n15Nc0q9/bPYZfsPm6NGjmZycfPxlcivZb1i/ZoPm6z4YbaqVNo1lWPi60yt1vz752q++NtVKm8bS\nJkudl9l3Siy0n/PCUtT92qTugfnUdjv1491A/XhkWS/O7y4nFtl+ck4bztL09PSq7gfrVZtqpU1j\nAZZH3cPytKlW2jSWNnFeaJLra21yXgBYrkHfIbOq+pFgrUe7du3KxMRimdfitm3bNrRfs0GZTc99\n3QejTbXSprG0nbqnX9T9+qL2B6dNtdKmsbTJYudl9jfkR0dHF9zPeWE51P3apO6BWT7ns5RB3yHz\ncHd53iLbt89pw1nas2dPpqamVrTP1NRU9uzZ01CPYG1qU620aSzA8qh7WJ421UqbxtImzgtNcn2t\nTc4LAMs16EDmy93lhfM3lFJGk4wm8cC9Hh04cGDFt8FOT0/niiuuaKhHsDa1qVbaNBZgedQ9LE+b\naqVNY2kT54Umub7WJucFgOUadCDzie7yBxbY9pzu8mOr1JfW2r17d/bu3bvsl/5NTk5m79692bVr\nV8M9g7WlTbXSprEAy6PuYXnaVCttGkubOC80yfW1NjkvACzXqgYypZT9pZTH78estX42ydEkLy6l\nXDin3UiS1yV5LMl7V7OPbXXw4MHs2LFjyQ8Hk5OTGR0dzcGDB1epZ7C2tKlW2jQWYHnUPSxPm2ql\nTWNpE+eFJrm+1ibnBYDlGJmZmenpAKWUS5NcOmfVB5PcleTQnHW31VonSikzSWqtdf+c/S9L8tdJ\n/jHJbyX5epKXJnlBkutqrW9aaZ/Gx8d7G1RLTUxM5PDhwxkbG8umTZuyZcuWx7dNTU1leno6e/fu\nzcGDB7Nt27YB9nR4efHX2tCmWmnTWNpK3dNv6n59UPuD16ZaadNY2mT+eZn9Ie3o6KjzQs/U/dqk\n7gGf84fT6OjoyHLb9iOQuT7fGr4sZE/9/9u7/2i7qsJO4N9HfhICUVZCK4IhDOlOcbQttmIptda2\ntg7TCa11tCMVse2og6mIFhlaVmir6LK0qxprtZUGtbVdWhVE0HGNFgqislypogLbUAOENVaStgZN\nzI8XMn/c+1jPx7t5ebn3vB/nfj5rsY45e5+Tfbx7331zv3efU+v9kwUy3XP8eJI/THJOkiVJ7kmy\nqda6+WjaJJA5vB07duT666/Ptm3bcuDAgSxatCinn3561q9fb7nsLPOmPbe0aay06VraxrinKcb9\n3Gbszx1tGittupY2GXtdtmzZktHR0axatcrrwsAY93OTcQ/Dy+f84TSjgcxcJJBhvvKmDcPHuIfh\nZOzD8DHuYfgY9zB8jPvhNJ1AZkafIQMAAAAAADCMBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQ\nMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0T\nyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEM\nAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAA\nAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAA\nAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA1bOIiTlFJO\nTLIxyflJnpRkZ5Kbk1xZa/3mERx/QZJXJvmRJIuTPJjk40neWGv9t0G0EQAAAAAAYLb0vUKmlHJs\nkluSvCrJh5O8LMm7k7woyWdLKU+c4virk7w/yaIkV6QTzNySZEOSz5dSTui3jQAAAAAAALNpECtk\nLknytCQX11rfObazlPLlJB9NcmWSSyc7sLuy5neT3J/k2bXWfd2izaWUnUkuT3JRkrcNoJ0AAAAA\nAACzYhDPkHlpkt1Jrp2w/4YkDyW5oJQy0uPYp6QTCt05LowZ80/d7WkDaCMAAAAAAMCs6SuQ6d5O\nbF2SLRMDlVrroSR3JlmVZE2PU2xLsi/J2knKTutuv9pPGwEAAAAAAGZbv7csW93dPtSj/MHu9vQk\n35hYWGvdVUr5oyRvLKVsSvJnSb6T5JlJfi/Jl5L8bZ9tfMzWrVsHdSpolL4Kw8e4h+Fk7MPwMe5h\n+Bj3MHyM+3Zau3aydSXT0+8ty47vbvf0KN89od7j1FrflOS3k/xWkvuSfCvJjUn+Oclza617+2wj\nAAAAAADArOp3hUzfSimvSvL2JJ9K8ndJdiQ5O8llSW4upTy/1vrtQfxdg0iwoElj6bm+CsPDuIfh\nZOzD8DHuYfgY9zB8jHum0m8g80h3e1yP8uUT6n2fUkpJJ4z5dK31vHFF/6eU8uUk1ye5Ip1wBgAA\nAAAAYF7q95Zl25IcSnJKj/KxZ8z0umnec9MJhT4ySdknuuf+2X4aCAAAAAAAMNv6CmRqrbuT3JXk\nrFLK0vFlpZQFSc5Jsr3W+mCPU4ytrFk6SdmSJCM9ygAAAAAAAOaNflfIJMm1SZYlecWE/RckOSnJ\ne8Z2lFLWlVLWjKtzR3f7olLKyITjXzihDgAAAAAAwLzU7zNkkuRdSV6S5JpSyuokX0zy1CSXJvlK\nkmvG1b0nSU2yLklqrXeUUj6UTvhyeynlg0l2JPmJJBcn+VaSNw2gjQAAAAAAALOm7xUytdYDSZ6X\nZFOSFyS5LsmF6ayMeU6tdc8Up/j1JBvSuUXZm7rH/0qSv07yjMPc7gwAAAAAAGBeGMQKmdRaH0ln\nRcylU9SbeFuy1FoPJnlH9z8AAAAAAIDWGcQzZAAAAAAAADgMgQwAAAAAAEDDBDIAAAAAAAANE8gA\nAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAA\nAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAA\nAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nTCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMW\nDuIkpZQTk2xMcn6SJyXZmeTmJFfWWr95BMcvSXJ5kguSnNo9/qYkv1dr3TmINgIAAAAAAMyWvlfI\nlFKOTXJLklcl+XCSlyV5d5IXJflsKeWJUxy/MJ3w5feTfDzJbyX5hyS/meTWUsriftsIAAAAAAAw\nmwaxQuaSJE9LcnGt9Z1jO0spX07y0SRXJrn0MMe/MsnPJbmw1vq+7r6/KaXsTPLyJGcnuW0A7QQA\nAAAAAJgVg3iGzEuT7E5y7YT9NyR5KMkFpZSRwxx/cZKtSd4/fmet9Y211tNrrcIYAAAAAABgXusr\nkCmlnJBkXZIttdZ948tqrYeS3JlkVZI1PY4/pXv8p7r1U0pZOkWAAwAAAAAAMK/0e8uy1d3tQz3K\nH+xuT0/yjUnK13W3/1JKeU2S13bPua+U8skkr6+13tdnGx+zdevWQZ0KGqWvwvAx7mE4GfswfIx7\nGD7GPQwf476d1q5d2/c5+r1l2fHd7Z4e5bsn1JvoxO72wiSvSPKmJOuTvDvJLyf5bCnlSX22EQAA\nAAAAYFb1u0KmX4u72x9I8p9rrf/W/fPHSinfSiegeV2S1w/iLxtEggVNGkvP9VUYHsY9DCdjH4aP\ncQ/Dx7iH4WPcM5V+V8g80t0e16N8+YR6E323u/3YuDBmzLXd7XOOrmkAAAAAAABzQ7+BzLYkh5Kc\n0qN87BkzvW6ad393u2CSsp3dc59wtI0DAAAAAACYC/oKZGqtu5PcleSsUsrS8WWllAVJzkmyvdb6\nYI9T3J1kV5IfnaTs1CQjSR7qp40AAAAAAACzrd8VMknn1mLLkrxiwv4LkpyU5D1jO0op60opa8b+\nXGvdn+QDSZ5RSvnlCce/uru9cQBtBAAAAAAAmDULB3COdyV5SZJrSimrk3wxyVOTXJrkK0muGVf3\nniQ1ybpx+zYm+cUkHyqlvCWd25g9N8lvJPlS9/wAAAAAAADzVt8rZGqtB5I8L8mmJC9Icl2SC9NZ\nGfOcWuueKY7fkeRZSd6b5H8m+cskP5PkT7vHf6/fNgIAAAAAAMymQayQSa31kXRWxFw6Rb2RHvt3\npHPLs4m3PQMAAAAAAJj3BvEMGQAAAAAAAA5DIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gA\nAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAA\nAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAA\nAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nTCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0LCFgzhJKeXEJBuT\nnJ/kSUl2Jrk5yZW11m9O81xLk3w5yQ8l+dla6y2DaCMAAAAAAMBs6XuFTCnl2CS3JHlVkg8neVmS\ndyd5UZLPllKeOM1TXplOGAMAAAAAANAKg1ghc0mSpyW5uNb6zrGdpZQvJ/loOgHLpUdyolLK05L8\nbpJ/TvJjA2gbAAAAAADArBvEM2RemmR3kmsn7L8hyUNJLiiljEx1klLKMUn+KskD6aywAQAAAAAA\naIW+AplSyglJ1iXZUmvdN76s1nooyZ1JViVZcwSne3WSs5O8Msm+KeoCAAAAAADMG/3esmx1d/tQ\nj/IHu9vTk3yj10lKKacmeVOS99daP11KeVmf7ZrU1q1bmzgtDJy+CsPHuIfhZOzD8DHuYfgY9zB8\njPt2Wrt2bd/n6PeWZcd3t3t6lO+eUK+Xv0iyP8nr+mwPAAAAAADAnNPvCpm+lVJenOS8JC+vte5o\n8u8aRIIFTRpLz/VVGB7GPQwnYx+Gj3EPw8e4h+Fj3DOVflfIPNLdHtejfPmEet+nlHJikrclubXW\nurnPtgAAAAAAAMxJ/a6Q2ZbkUJJTepSPPWOm103z/jjJE5JcVUoZf44ndreruvt31Fr39dlWAAAA\nAACAWdHXCpla6+4kdyU5q5SydHxZKWVBknOSbK+1PtjjFD+XZHGSf0yyfdx/f9ot/2D3zz/ZTzsB\nAAAAAABm0yCeIXNtkrcneUU6tx8bc0GSk5JsHNtRSlmXZF+tdVt318uTLJvknD+X5JIkVyT5Svc/\nAAAAAACAeWkQgcy7krwkyTWllNVJvpjkqUkuTSdIuWZc3XuS1CTrkqTW+pnJTlhKWdn9n5+rtd4y\ngDYCAAAAAADMmr5uWZYktdYDSZ6XZFOSFyS5LsmFSd6T5Dm11j39/h0AAAAAAADz2SBWyKTW+kg6\nK2IunaLeyBGe77p0gh0AAAAAAIB5r+8VMgAAAAAAAByeQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGELB3GS\nUsqJSTYmOT/Jk5LsTHJzkitrrd88guPP7R7/zCRLk2xP8uEkf1Rr/e4g2ggAAAAAADBb+l4hU0o5\nNsktSV6VTojysiTvTvKiJJ8tpTxxiuNfkuS2JKemE8q8KsldSS5L8qlSilU8AAAAAADAvDaIFTKX\nJHlakotrre8c21lK+XKSjya5Msmlkx1YSlmS5C/SWRFzdq11V7for0spH01nxc0vpbPaBgAAAAAA\nYF4axOqTlybZneTaCftvSPJQkgtKKSM9jv3BJB9J8uZxYcyYsRDm6QNoIwAAAAAAwKzpa4VMKeWE\nJOuS3FZr3Te+rNZ6qJRyZ5JfTbImyTcmHl9rfSCdW5xNZkV3+0g/bQQAAAAAAJht/d6ybHV3+1CP\n8ge729MzSSDTSyllcZKXJ9mT5Pqjbt0EW7duHdSpoFH6Kgwf4x6Gk7EPw8e4h+Fj3MPwMe7bae3a\ntX2fo99A5vjudk+P8t0T6k2plHJMkr9K8sNJXldr/X9H3zwAAAAAAIDZ128gM1CllGOTfCDJ+Un+\nvNb6p4M8/yASLGjSWHqur8LwMO5hOBn7MHyMexg+xj0MH+OeqRzT5/Fjz3c5rkf58gn1eiqlrEry\nmXTCmD+qtb66z7YBAAAAAADMCf2ukNmW5FCSU3qUjz1j5rA3zSul/ECS25KsSXJRrfW6PtsFAAAA\nAAAwZ/S1QqbWujvJXUnOKqUsHV9WSlmQ5Jwk22utD/Y6RynlhCSfTPKUJP9NGAMAAAAAALRNv7cs\nS5JrkyxL8ooJ+y9IclKS94ztKKWsK6WsmVDvbUl+NMmv11o/MYD2AAAAAAAAzCn93rIsSd6V5CVJ\nrimlrE7yxSRPTXJpkq8kuWZc3XuS1CTrkqSU8vQkFya5O8mCUsqvTXL+HbXWWwfQTgAAAAAAgFnR\ndyBTaz1QSnlekquSvCDJq5M8nM7KmI211j2HOfysJCNJzkzyoR51bk3ynH7bCQAAAAAAMFsGsUIm\ntdZH0lkRc+kU9UYm/Pm6JNcNog0AAAAAAABz1SCeIQMAAAAAAMBhCGQAAAAAAAAaJpABAAAAAABo\nmEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJ\nZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAG\nAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAA\nAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAA\nAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAA\nABLXXjoAABKwSURBVBq2cLYbAAAAzC8PP/xwbrjhhmzbti0HDhzIokWLsmbNmqxfvz4nnXTSbDdv\nWu6+++689a1vfdy1XHbZZTnzzDNnu3lDq0197Pbbb88VV1yR7du35+DBg1m8eHFOPvnkXH311Tn3\n3HNnu3lDqU39i7lprI9t2bIlo6OjWbVq1bztY+bJuadN72FtupY28bo0a+TQoUN9n6SUcmKSjUnO\nT/KkJDuT3JzkylrrN4/g+HOSXJnkWUmOTfL1JH+V5B211mk3cNeuXf1fFMyCrVu3JknWrl07yy0B\nZopxD8Npvo79PXv2ZNOmTbnvvvuycOHCLFmy5LGyffv2ZXR0NGeccUY2bNiQZcuWzWJLp7Zz585c\ndNFFeeCBB3LMMcdk8eLFj5Xt378/jz76aFavXp3Nmzdn5cqVs9jS4dKmPrZ9+/acd9552blzZ0ZG\nRjIyMpIkWbBgQUZHR3Po0KGsXLkyN910U0499dRZbu1waFP/Ym6a2Mf27t2bJFmxYsW862Pmybmn\nTe9hbbqWiebr5/yk3a9L01asWDFypHX7DmRKKccm+UKSdUnekeSLSdYmeX2SHUmeUWv9j8Mc/9wk\nn0iyPcmmJP+eZH2SFyR5W631kum2SSDDfDWf37SBo2Pcw3Caj2N/z549ueqqq/LII49k6dKlPevt\n3bs3K1asyMaNG+fsP9R27tyZ9evXZ/fu3d/3BdNE+/fvz/Lly3P99df7smkGtKmPbd++Pc9+9rOz\nf//+LFzYuTHFwYMHk3QCmTGjo6NZsmRJbr31VqFMw9rUv5ibJutju3btStIJZMbMhz5mnpx72vQe\n1qZrmcx8/JyftP91adp0AplBPEPmkiRPS3JJrfXSWusHaq1/kOQ3kqxJZ+XL4bwzyd4kP11rfVut\n9f211l9LckOS3yml/MgA2ggAAPRh06ZNU/4DLUmWLl2aXbt2ZdOmTTPUsum76KKLpvySKUkWL16c\n7373u7noootmqGXDrU197Lzzzvu+MKaXhQsXZt++fTnvvPNmqGXDq039i7mpTX3MPDn3tKl/tela\n2sTrMnMGEci8NMnuJNdO2H9DkoeSXFBKmTQhKqWcnaQk+eAktzZ7R5KRJBcMoI0AAMBRevjhh3Pf\nffdN+Q+0MUuXLs3WrVuzY8eOhls2fXfffXceeOCBKb9kGrN48eLcf//9uffeextu2XBrUx+7/fbb\ns3PnzinDmDELFy7Mjh07cscddzTcsuHVpv7F3NSmPmaenHva1L/adC1t4nWZWX0FMqWUE9K5VdmW\nWuu+8WXdZ7/cmWRVOitlJvPM7vZzk5R9obs9u582AgAA/bnhhhuO+MvlMYsWLcr111/fUIuO3lvf\n+tYcc8z0/hm0YMGCvOUtb2moRSTt6mNXXHHFY8+LOVLHHHNMLr/88oZaRJv6F3NTm/qYeXLuaVP/\natO1tInXZWZN7//px1vd3T7Uo/zB7vb0JN+YpPy0XsfXWr9TSvl299iBGLuHH8x1+ioMH+MehtN8\nGftbtmzJ3r17H3s48XSOm2vXeM899yTp3Pd+usfNtWtpkzb1se3bt2dkZOSxZ8ZMNNn+kZGRbN++\nfc5dS1u0qX8xN03Vx8aeJTPZcXOtj5kn5542vYe16VqmMp/aO0yvS78G8Wygfm9Zdnx3u6dH+e4J\n9Y7m+F7HAgAAM2B0dHRGj2tSm66lTdr0uvQKYpo6jqm1qX8xN7Wpj7XpWtqiTa9Jm66lTbwuM6vf\nFTLzyiASLGjSWKqsr8LwMO5hOM23sb9q1ars2dPrN1S9LVu2bM5d4/Lly/O9731v2scde+yxc+5a\n2qRNfWzx4sU5cODA4/aPBS4LFiyY9LhFixbNuWtpizb1L+amXn1sbGXMihUrJj1uLvYx8+Tc06b3\nsDZdSy/z7XN+Mhyvy1zS7wqZR7rb43qUL59Q72iO73UsAAAwA9asWZN9+/ZNXXGcffv2Zc2aXo+S\nnD1r1qyZ9m1Y9u/fPyevpU3a1MdOPvnkaf9idHR0NCeffHJDLaJN/Yu5qU19zDw597Stf7XlWtrE\n6zKz+g1ktiU5lOSUHuVjz5jpdTO5sefKPO74UsqKJCsOcywAADAD1q9ff1RfMJ9//vkNtejoXXbZ\nZXn00UendczBgwc9cL1hbepjV199dQ4dOjStYx599FEPxG5Qm/oXc1Ob+ph5cu5pU/9q07W0iddl\nZvUVyNRadye5K8lZpZSl48tKKQuSnJNke631wR6nuKO7/alJyn66u729nzYCAAD9Oemkk3LGGWcc\n8YM+9+7dmzPOOCOrVq1quGXTd+aZZ2b16tVH/Ovf/fv357TTTsu6desabtlwa1MfO/fcc7Ny5coj\n/mJjdHQ0q1atyjnnnNNwy4ZXm/oXc1Ob+ph5cu5pU/9q07W0iddlZvW7QiZJrk2yLMkrJuy/IMlJ\nSd4ztqOUsq6U8thaplrrl5JsSfLCUsop4+qNJHltkgNJ3juANgIAAH3YsGFDTjjhhCn/obZ3796s\nWLEiGzZsmKGWTd/mzZtz3HHHTfll0/79+7N8+fJs3rx5hlo23NrUx2666aYsXrx4ylBmdHQ0S5Ys\nyU033TRDLRtebepfzE1t6mPmybmnTf2rTdfSJl6XmTMy3aXUE5VSFiW5LckzkmxK8sUkT01yaTq3\nG3tWrXVPt+6hJLXWum7c8Wcn+cck/5rkz5J8O8mLkzw/yZW11jdOt027du3q76JglszHB38B/THu\nYTjN17G/Z8+ebNq0KVu3bs2iRYuyZMmSx8r27duX0dHRnHHGGdmwYUOWLVs2iy2d2s6dO3PRRRfl\n/vvvz4IFC7J48eLHyvbv35+DBw/mtNNOy+bNm7Ny5cpZbOlwaVMf2759e84777zs2LEjxxxzTEZG\nRpIkCxYsyOjoaB599NGsWrUqN910U0499dRZbu1waFP/Ym6a2MfGvthcsWLFvOtj5sm5p03vYW26\nlonm6+f8pN2vS9NWrFgxcqR1+w5kkqSUckKSq5K8IMmTkjyc5KNJNtZa/31cvccFMt39P57kD9O5\nxdmSJPck2VRrPaqIXSDDfDWf37SBo2Pcw3Ca72N/x44duf7667Nt27YcOHAgixYtyumnn57169fP\nu1sX3HvvvXnLW97yuGt5wxve4PYrs6hNfeyOO+7I5Zdfnu3bt+fgwYNZvHhxnvzkJ+fNb36z25TN\nkjb1L+amsT62ZcuWx25LOF/7mHly7mnTe1ibrmXMfP+cn7TzdWnajAcyc41AhvmqDW/awPQY9zCc\njH0YPsY9DB/jHoaPcT+cphPIDOIZMgAAAAAAAByGQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAho0cOnRottswcLt27WrfRQEAAAAAAHPKihUrRo60\nrhUyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0bOXTo0Gy3AQAA\nAAAAoNWskAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAA\nAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYtnO0GwDAp\npVyX5MLDVHltrfXPSilXJdl4mHpvq7VeMsi2Ac0ppTw/yeVJzkoymuSfk7yx1vqZCfWOTfK/k7w4\nyeokjyT5TJIra61fn9FGA305knFvvof2KKUcOoJqa2qt93frm/NhnpvOuDfnQ7uUUp6a5Iokz02y\nMsm3k9yR5I9rrbePq2e+53EEMjA7/leSHZPs/9KEP1+V5GuT1Ns66AYBzSilvDzJtUn+Kclrkhyf\n5LVJPllKeV6t9ZZuvZEkNyT5+SSbk/xBkpOTvD7J50opz6y1/svMXwEwXUc67se5KuZ7mO9eeJiy\nNydZke7nf3M+tMYRj/txroo5H+a1UsqPJbk9yf4k70jy9SSnJrk4ya2llPNrrTea7+lFIAOz4xNj\nv46bwq2TfGkDzBOllB9M8vYk/zfJL9ZaH+3uvzHJ55Kcl+SWbvUXJ/mFdH5Rc9m4c3w6yReT/HGS\nX52xxgNHZZrjfoz5Hua5Wus/TLa/lHJ+kjOSvKzWuru725wPLTDNcT/GnA/z3+8nWZbkV2qtnxrb\nWUr5SJJ7kvxhkhtjvqcHz5ABgOZcmOS4JFeNfSmbJLXWb9Raf6DW+rvj6r60u337+BPUWreks/T5\nv5ZSntB0g4G+TWfcAy1WSjk+yaYkt9Va3zuuyJwPLXWYcQ+0x3/qbm8bv7PWem+Sh5Oc1t1lvmdS\nAhmYRaWUpaWUKVeqlVIWl1IWz0SbgIH6hSTfSedX8SmlLCilLOlR95lJttdaH5qk7AtJFqXzLApg\nbpvOuP8+5ntonSvTuTXJxRP2m/OhvXqN++9jzod57Z7u9ofG7yylrEjyhCRf7e4y3zMpgQzMjotL\nKduSfC/JvlLK50sp/2WSev+9lPK1JPu69b5SSvmNGW0p0I91Sf4lyY+WUm5NZyzvLaV8tZTy4rFK\n3V/SnZhksg9qSfJgd3t6k40FBuKIxv0E5ntomVLKSel8Ifu+WutXxu0350NL9Rr3E5jzYf57U5L/\nSPK+Usq5pZSVpZSnpfOcmENJrjTfczgCGZgdv5jk6nTuI/97SdYm+fgkX9Q8P8m7utvXpPNQwPeV\nUt4wg20Fjt6J6fxC5qYkn01yfpIN3X1/V0r5zW6947vbPT3Os3tCPWDuOtJxP575HtrnsiRL0/nS\nZjxzPrRXr3E/njkf5rla61eT/GSSBenctmxHkruSnJ3OMyRvifmew5jyVknAQP1Jkr9LckutdV93\n382llI8l+VKSPymlfDDJ3yT5fJLP1Vp3det9spTy90nuTbKxlPLuWuu3Z7j9wPQsTuf+sS+ptX5g\nbGcp5aZ0ljlfXUq5bnaaBjTkiMZ9rfVgzPfQSqWUJyZ5VZKP11rvm+32AM07gnFvzoeWKKWUJDcn\nWZLktemM4ZOSvC7JjaWUFyT52uy1kLlOIAMzqLts+XFLl2utd5dSbknnvvM/XGv9WpLHfYirtT5c\nSvmHJL+d5KfS+fUtMHd9N50PaX8/fmetdVsp5R+T/FKSH05yf7fouB7nWd7dPtJAG4HBOtJx/9Xu\nFzbme2if/5FkWZLJHug9Npeb86FdDjfuY86HVnlPkien8/3dtrGdpZQPpTPON6fzeT8x3zMJtyyD\nueNb3e0JA6oHzL7703uufbi7PaHW+t10ljmf0qPu6u526+CaBjTk/hzBuD+C85jvYf56YTrPh/jE\nxAJzPrRWz3F/BMz5ME+UUo5LJzzdMj6MSZJa6/eS3JJOWPOUmO/pQSADM6SUckIp5SWllF/qVaW7\nfaiU8qJSygunqPdgj3Jg7vhcOrcvOnOSsrEPYGMP+bsjySmllKdMUvenk3wvyZaBtxAYtCMa96WU\nReZ7aJ9SyvIk56RzW6Lv9ahmzocWmWrcm/OhVY5NMpLO86Ims3Tc1nzPpAQyMHP2J/nzJNeVUlaO\nLyil/HySn0hyZ611e5I/SOfBfmsn1DsznYcDP5TkzhlpNdCP67rbjaWUkbGdpZSnp/MB7K5a69g/\nvK7tbl87/gSllJ9J8owkf9/9VS0wt13X3R523NdaD8R8D2309CSLknz1MHXM+dAuhx335nxoj1rr\nznRWtTy9O34fU0o5Mclz07kN2VdjvqcHz5CBGVJr3VtKeU06X9TcWUp5V5J/TfJj6Tz8b1eSV3Sr\nX5zkk0luL6X8eZJt6fxqZkOSR5P8dvdDHTCH1Vq/UErZlM7Y/Vgp5YPp/EL+tUlGk7xmXN0bSykf\nSXJJKeWEJJ/p1n19Ov9Au2Km2w9M33TGfcz30EY/1N3e36uCOR9aZ8pxH3M+tMnrknw0yW2llHck\n+XqSlel8zn9CklfWWvclMd8zKStkYAbVWt+bTlp+XzpvvNcm+bUkf5vkrFrrl7r1Pp3k7CSfTfI7\nSf46yW+l8wHuWbXWT85864Gj9Jp0QtdTk/xlOh++Pp/k3FrrLRPq/nqSjen8in5z99iPJzmn1vqv\nM9VgoG9HNO7N99BKT+xuvzNFPXM+tMeU496cD+1Ra70xyblJ/imdz/zXpTOn35fk+bXWd4+rbr7n\ncUYOHTo0220AAAAAAABoNStkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAA\nAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAA\nAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAA\nABr2/wHMlCH03nNgngAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "AYbamYmdUdBZ", + "colab_type": "code", + "outputId": "36119446-ebdd-47c8-95d3-3fb29e86c041", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 241 + } + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(12.5, 3))\n", + "\n", + "prob_31 = logistic(31, beta_samples_, alpha_samples_)\n", + "\n", + "[ prob_31_ ] = evaluate([ prob_31 ])\n", + "#print(prob_31_)\n", + "\n", + "plt.xlim(0.995, 1) # This should be changed to plt.xlim(0.995, 1), but illustrates the error\n", + "plt.hist(prob_31_, bins=10, normed=True, histtype='stepfilled')\n", + "plt.title(\"Posterior distribution of probability of defect, given $t = 31$\")\n", + "plt.xlabel(\"probability of defect occurring in O-ring\");" + ], + "execution_count": 21, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABoMAAAHACAYAAABpkxFTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xncbfd8L/BPiCARYihaaRLD6beG\nqqAhQQ29uFzzkFKESC9K80Kkhko0htIW1xhuDU1QQVWCmOqSBElMoaWmX47pkqjxJogIEef+sdaW\nbXv2c/bz7H2efc467/frtV/rPGv91m/91vCs57zWZ/9+a5ctW7YEAAAAAACAYbrMshsAAAAAAADA\ntiMMAgAAAAAAGDBhEAAAAAAAwIAJgwAAAAAAAAZMGAQAAAAAADBgwiAAAAAAAIABEwYBAAAAAAAM\nmDAIAAAAAABgwIRBAAAAAAAAAyYMAgAAAAAAGDBhEAAAAAAAwIAJgwAAAAAAAAZMGAQAAAAAADBg\nwiAAAAAAAIABEwYBAAAAAAAM2K7LbgAAAADAIlXVA5LcJMmprbUPLbs9SVJVt0xy7yR/lOQGSX4r\nyRWSfD/JWUmOa629fcq6eya5Y7/uLfvp1fvFN2ytfWnbth4A2NEJgwCADVdVW1ZZfGGSc5KckuTF\nrbW2Ma1anqp6RJLjknyotXaH5bZmZdPauOy2r7T9Zbdpe2nDolXVtZO8Ismdklwpycmttfsut1Wz\n2cjzsZ5treX3a0e8thZ97Sz6GOzI1/Yi7IjX1IyOTnLTJNtTSPLnSR499vMFSX6Z5HeS3CvJvarq\nbUke3Fq7eGLdP0ly0oa0EgAYJMPEAQDL9JYkLxn7vDTJv6X7luxjkvxHVT1wGQ2rqudtJbRapC+k\n2/9/3aDtLdJC2j7H8V76sZvS9qW3axv4uyT3TXJxugfHZyy3OYOylutlxbIbfM9aq+392llq+7aD\ncze4+1VVXTHJjfofz1pmWyZ8NMkTk9wiyZ6ttT1ba1dMsk+S5/dl7p/kqVPW/26S9yR5ZpJHbeO2\nAgADo2cQALBML26tfWxyZlXtluS5SZ6U5A1V9fHW2jc2uG1/tFEbaq19IsknNmp7i7TAtq/reG8n\nx+432r6dtGvRbtVPD2+tvXmpLRmYtVwvq5TdsHvWOmzv186y27fUczfQ+9X+6Z53/DDJV5bcll9p\nrb1uyvxvJnlyVf12kocmeUSSZ08UO3l8CLmq2m8bNRMAGCg9gwCA7U5r7edJnpzkP5NcPskjN3L7\nVbVLuvH42QA78vHekdu+Dlfsp99eaiv4DTvAdbi9XztLa98OcO52KFV1q76X1ah311WS/LKqtox9\nrrrEJm7NJ/vp70wuaK1dssFtAQAGRs8gAGC71Fr7ZVV9OMkfJLnZ5PKqOijJE5LcJt0LmC9M916A\ntyZ5RWvtpxPlb5YuYLptkmsluSjJuUnela6H0rf6cscnefjYeqOhe+7YWjttbP7+SY5Icvu+vguS\nfDbJa1prb5zY9iPSDT307nTDw7wm3cO/v22tPXe19zWsYz9X3dbkcZxYd7f+GD0syb5JfpTk9CR/\ns8o6K7Z9Ucd7nmPX13f5dO+NODjdMDw/SfLhJM9orf3nWLlj+v18XWvtESvU8xvLV2t7kv220q6Z\nz+vEMbh3uuP68H5/Lk7ysSRH99/un9msbZjczySnVlWm7dvENkZtPyndt92fmW4IpN9J8uMkp/Vt\n/9IK66x6Da/1d2NsvZmuibHyuyQ5JN3vxc3SPVy+MN3QWq9L8qrW2i/n2dZa3tkyWXYr1+FzkxyY\n5Gmttb+bUt9R6XogfKC1dufVtj22zkZcO2u+H42tO9P9edb2reV+P7bOgemO0e2SXCPJ95O8N8kz\nRz1dZ/17s1b9sfurdL9z+6XrHfOBJEcluUmSk7OV91BV1alJ7pDkb1prz5qyndG1c0pr7U/G5q/3\n7+Mi7m/XT/KddL+nV0j3O3fB2PLvtNbOm7GuZTion35tqa0AAAZJzyAAYHt2fj+9wvjMqnpsuoeC\nD0zy9SSvT3JqkhskeUGSD1XVlcbK3y7dA6UHJflqkuOTvC3d/4X+KsnHqmqfvvj70z2YGhm9z+ic\nsfr+LMnH0z1oOyfdA+GPpRtq6J+r6vj+AfJK3pxk974NX1xt59e6n/Nsa6z8s5P8bpJ3pnt/xLXT\n7dtNZlh/1O6FHu859idJ3pHuhd0f69f7XpL7JDmjqmbepynW0vZfmfO8npDuIevHk/xLkv+X5C5J\nTlnLkEFrbMP7+/36cf/z27L294tcIcn70j3YPyvd78x5SR6Q5ONVdaMp6614zuc8hmu9Jl7blzso\nyUeSvDrdg/WbJXllv2yabXn9jax2Hb62n/eIVdb/03563CplfmUDr5113Y/WeH/eavvWc7/vj9FH\nktwr3Tti/inJN9L1cv1CVf3h2PbXfA9ZTd+WtyV5Trog6N1J3p7kgHRDwV1vxqpGoc0DVikzunZe\nP7b9ef4+zn1/a62d0Fq7dl9HkjyptXbtsc8frrb+MlTVlarqplV1bC49pi9fZpsAgGHSMwgA2J7d\noJ9+fTSjqm6c7mFZktyntfaOsWVXTfcA7o+SHJPkyH7R09MNN/eY1to/jpXfpa/r8HTf4D6itXZC\nVZ2Z5NAkaa09YbxBVXXddA9YL5vkQa21t4wtq3QP9x6e5INJ3jCxPwcm+VCS+7fWVn1Z+Dr3c13b\n6uu8e7oXqP80yYGttc+MLXvcWFtmsbDjvd796R2U5FNJbtBau6Bvw67pHizfLcnfJ/kfa9ivX7Na\n26vqtiutM+d5vX2SlmRTa+38fp3d0z1svmnfjll6TaypDa21E5KcUFX3SbJnkpevo9fCf0vy7/n1\nc7FbunNx13Qhwt0n1lnxnM95DNd0TVTV76c7rluS3K619qmxZTdM8h9JHlZVLxlftp5trddWrsNv\nJ3lx9886qLV25vi6fQh3k3Q9R07a2rY26tpZ7/1orffnrbVvPff7/rp4SZKfJblNa+0/xtZ5ZpJn\nJHlTkhut4f63FvdOco+x7X+63/au6YKnZ85Yz7+mCyT+oKqqtdbGF45dOxemC5/m/fu4kPvbmJv2\n08+sWurX9+mYNW5j3DNba8esYVt7J/nmCosuStcL8hXrbAcAwFR6BgEA26Wq+t1036pOum/Xjzwm\n3Rda3j7+IDJJ+qFfnt7/+Mj+4VeSXLefnjlRfktf/qAkKw6htILD0/VyeNP4g66+vpZuGJ4kedwK\n614tyQtnDDPWs5/r3VaS/Fk//efxB6/99o5N9/6mWS3yeI+sdX+S5HLpAqdfDRHUWvtFLn0Yepeq\nusoa2zGvec7rlZI8bvSgtF/nwlzai+Gmmc2819Z6XC7JEyfOxc9z6YPXu1TVXhPrTDvn87R/rdfE\nhUkOS/LYybCntfbFdOFH0g0FttI+L/X667f9L/2Ph65Q5EH99C3ThtWbsFHXznrvR/PcnxdV32PT\nHaM3jAdBvb/r235eVe07YxvWatSz5E2jIKhv7y+S/EWSFYc0nNTfZ97T//jAFYqMrp23j13j8xz/\nRd3f0h/bq6bb17X87bog3RBz6/lcsEJ9q7lkbN2f9/N+keR5SY5dY10AADPRMwgA2K5U1ZXThQX/\nkO6l3u9trb13rMgf99P3TK7b+2C6b/FfNcnvJ/lcum8b/16Sl1XV/2ytbR4Vbq39ON03j2d1p61s\n/9399ICq2qO19pOxZT9bw7bWs5/j1rKt5NIXmH94yvL3Z4V3N02xyOM9stb9SZLzWmsrrXNWuodv\nu6X7ZvsZK5TZVuY5rz9LN8zTpG/101mDhXmvrfU4f7JXSu+sdPt1+XTn4vSxZdPO+TztX9M10bp3\nu/zTlO0k3XuwkpWP/fZy/b023fBkB1fV4/sH7COj4OD4GevaqGtnvfejee7PK1lPfXfs531ksnAf\nuM0caqzTzfvpqSts/4KqekdWDgZXckK6HloPSDfs3LjRtTPew2fev4+LuL8lyWgouC/PcI5/pbX2\ngnS9FLe51tp/pRv2MFV1mXQ9oZ+SLiw+rKru3lr7/Ea0BQDYeQiDAIBl+mg3csyKtqR718DkN4hH\nvU5WfLly/7DrB+le2L1PuoeRT0xyi3TD0JxdVZ9N99DyfUlOba1dvIY279dPH1hVB0wpc3G6XgHX\nT/fS7JHvtykvml/BevZz3Fq2lSTX6afnTln+f9dQ1yKP98ha9yeZfuwuqarvpHsXyW+voy3zmOe8\nnjulZ9Ql/XTWXv/zXlvr8dUp2xqdi33ym+di2jmfp/1rviaq6trpruk7p/s9uXq6YbDGrfQOlO3i\n+mutnVlVX0oXztw/lw5ntn+60LZNCa1WslHXznrvR/v10/XcnxdV32idaW3f1kbHbtp7h9bSU+Zd\nSX6U5A+ratMo2B+7dr6d5P+Mld+vn67n+C/q/pZcGgbNPETcMvX3ubPThUDnp3tv0huq6pbr+LsH\nADCVMAgAWKa3pHuYNO6n6V60/f7W2ldWWGf3sXLTXNRPr5gkrbWvVNVN0z3QfXC6b2aPfv5eVT27\ntfayGds8ejH6fWYoe+WJn9cyjMya93OObY1v76Ipy382a0ULPt4ja92fJFntG+Gj/bzCOuqdxzzn\ndT0h2qLbsF6rnYvREEm7Tcyfds7naf+aromqun66njvX6pd/KN17Pkb13CXJDafUtz1df69N8vx0\nPUJGPTlGPTuOW0M9G3XtrPd+NM/9eVH1jc7pon5f12p03Kedox/PWlFr7aKqelu66+aBSZ7bLxpd\nOye01i4ZW2We47/I4zXqNbZDhEETXpYuDNq//0y+iwwAYN2EQQDAMr24tfaxNa7zk3QPkXZfpcxo\n2fi7On6Q7n0FR1XVDdI9xP3TdMMevbSqLttae/EM278g3XA1d22tvX+NbV+Lde3nHC7q67v8VrY1\nkwUe73ms9qB9tOzCVcqMu9ycbRnZ6PO6vbRhtXMxGv7p+zPWNU/713pNvCBdEPSpdL/zPxhfoape\nn+lh0CKvv3m9Pt2D/DtU1d6ttXOSHJyu18UbVl3z123UtbPe+9Gi78/rqW90jK66gO2vx8/SBULT\njt2Vpsyf5o3pwqAH5DfDoMlrZ6P+Pm7NqGfQ5DubVlVVRyY5cp3bfEE/zNy8xnuUXT/CIABggdbS\n1RoAYHswGm7qeist7F/IfrX+x2lDGX25tfaK1trtkzy6n/2XM27/y/10nxnLr9fc+7lG/9VPrz1l\n+YrtmMWcx3seK56j/sX2o+G5RkMpjYbimRz+a2S/BbVpo8/r9tKG1c7F6KH5d2asa572r+WaSLqh\nDpPkeZNB0GptWOe2tpnW2neTnJxuOLuDq+qgdEO+vb+19q1VV/51G3XtrPd+tOj783rqGx2j66xa\natv5bj+dduxussb6Tk13Pvavquv1w7/tl+RzrbXJsGWj/j5OVVV75NLrY2vDAE66Urrwdz2ftYZs\n01x37N/b6gsBAMBOShgEAOxoTuun95iy/L/3028l2VxVV62qB1bVf59S/oR+uuKDu6qafBfIKf30\n4Cnlr1hVf1pVV5+yvVmd1k9n2s85t5Vc+g3q204u6I/BtOM3WXbRx3se16qqP1xh/q3S9ZD/WZLR\nC7pHQyf9xgPUqrp8uh5Nq5qx7af10406r9tLG65VVTdbYf4B6c7Fz9ewrdP66Xrav5ZrIrl0JIXz\nJlfo6zmo/3Glc7/WbS3EKtfha/vpnyV5SP/v49dY/Wn9dFtfO+u9Hy36/rye+k7tp3dZofxlqurc\nqvpFVd1uheWLuP+N3tO00rHbI7MN4fYr/Ttr3tz/eLd0PYSSrrfZpI36+7ia6+TS38e1BJ1prR3T\nWttlnZ9jtlZ/VV12hnP8V/30F0lmfZcXAMBMhEEAwI7m2HQPUe9RVfceX9C/6P1v+x9f2r+M+lrp\n3k30+qr6/RXqGw13M/4N5/F3Kuw7Uf6V6d7FcOeqetjE9ndN8vJ0D85eMfMerWyt+zmvt/bTQ6pq\n08SyJ2X2nkGLPt7z+HmSF1fVr95dUlWXS/LM/sd3tNZG73UZvVT9Dv2wdqPyl033rpXRUGaT1tr2\njT6v20sbLk7ykqr61fBeVbVbkmf1P548di62Zp72r+WaSJIv9tNfCz+q6kZJ/jXJmf2s312hnWvd\n1jxmuQ7/Ld0QVLdI8tB0Adc71ridjbp21ns/WvT9eT31/e901/t9qupuE/U9PsnvJPl6Lr12Vj13\nVfX6qvpSVf3PGdt8Uj99eFX93kR7X5mVg8uteWM/vWu634Vf5tJgf9xG/X1czXgPw/tvw+2sx+8m\nOauqHllVe49m9iHhzarqjUn+vJ/9stbaSiH0NUaf/PpQhHuNL6sqz3oAgN/gnUEAwA6ltfblqnps\nklcnOamqPpzk7HQ9Ov443UP7k5O8sC//pap6XpK/TvLZqjot3fBFl0n3ro+D0r3j4Ulj2/hBVX09\n3VA4H66qz6V7cPuPrbWvVdVh6b4V/fqq+ot0L6neM8kd0n0r+evj9W3Efi7AW5M8Jt0+nFVV707y\nwyQ3T/IH6d4VccwM7V7o8Z5zn07rp1+uqv+T7iH2nZLcIMkPkjxtrOyp6QKhP0i3/+9Ncn66b9df\nPclzkvz9Cvu7Ytsz5QX3Sziv20sbzkyyJV1vvclzcV6Sp2xQ+0/rp7NcE0l3zt+W5Il9L5+z0wUR\nd0ryvHTXzG2SPKSqtuTS3jfr2da6zfI71Fq7pKqOT/L0dO+0eUVrbcXrdJXtbNS1s6770aLvz+up\nr7V2dlUdni4YObmq/i3JN5PcNMmB6Yb+OqS1dklffmvnbp8kle4+NIs3JHlsumP1qap6V7pjd6d0\nQdBz070La2attU9VVUsXBu2W5AOttXNXKLchfx+30tYf9r9vd07ylqp6Tbp3c/00yfX7nk7LdPP0\n94mquijd9bBnfv0dT8cnefKU9b83Zf5kL6LrpjvWAAC/4tsiAMAOp7X2T+kewL4tye8leUSS26V7\n6PTIJPdtrf1irPzTk9wvyfuS3CjJIUkeluSaSV6VZP/W2pn5dYck+UK6ni43T/dN71F9b0pyyyT/\nnO6bvocluW+S76fr6bB//4L2Dd3PObf1y3Tf+H5euv24f7rhgL6dLsD5xBrqWujxnsMvktw7yevS\nhToPT/dN6rcmObC1Nnq3R/oHs3dJ9yD1Z+n2/V5JPp3k1ll9uKE1tX0jz+t21oa7p3vIeVC6c7FX\nut41B7TWvrKWiuZo/8zXRL+dE/v6/rMvf3CSKyR5cGvtGel6YZyQrhfQvdM91F3XthZgluvwn9KF\nckly3Ho2shHXzjz3o0Xfn9dTXx/k3C5dMHbLfp390oUkN1/n/W+me2Jr7edJ/lu6Xjjnp7sX3zXd\n/figJP+vL7rWUOSN6YKgpLtPTtv+hvx93IqHpOvF9rV0Icu1kvxgOwiCvpWud+yr0vWO/WG6++DF\n6c7/a5PctrV26Lb+GwAA7Jx22bJlW40+AQAA7Myq6hHpQocPtdbusNzW0A9v9/kkn2ytHbDs9jCb\nqvpUumHDjl9AXY9P8uIkb2+t3Xfe+gAA2HEYJg4AAGDncFQ/fclSW8HMquq30g2N95k1lL91kj1a\na29eocit+unnFtNCAAB2FIaJAwAAGLiqemSSByf5UpK3LLk5zO6pSb7UWvv3GctfJ8k7k7yhqm4z\nvqCqDko35N6WuAYAAHY6egYBAAAMUFVVkscluUmSOya5MMkh3key42itPWmN5f+jqv5XkiOSfKiq\n/i3JN5NcL901sGuSZ7fW9AwCANjJCIMAAACG6RpJHpvuBfUfSnJka+2s5TaJba219qSq+mi6IPC2\nSfZIcn6SU5K8srX29mW2DwCA5dhly5Yty24DAAAAAAAA24h3BgEAAAAAAAyYMAgAAAAAAGDAdqp3\nBv3whz80Jh4AAAAAALBNXeUqV9ll2W0Yp2cQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAA\nAAAAgAETBgEAAAAAAAyYMAhgYDZv3pzNmzcvuxkA24R7HDB07nPAkLnHASzProuopKpunOSvk9wp\nyTWSnJ/kzCTPb62dPlbuikmeluRBSfZN8qMkpyQ5urV29kSdl0nyhCSHJtmU5KIkZyQ5prX2yUW0\nGwAAAAAAYOjm7hlUVfsn+USSuyd5TZJHJnlRklsm+VBV3bMvt0uSdyQ5KslH+nL/kOQOST5aVdef\nqPpVSV6Y5Owkj0pydJJK8uGqOnDedgMAAAAAAOwMFtEz6Kgkuye5b2vt/aOZVXViki8meVaSk9P1\nBrpzut5CTx4r98EkZyV5fpL79fMOTHJYkre21g6eqPPsJMcmufkC2g4AAAAAADBoi3hn0KhHz0fG\nZ7bWvpTku0n262cd0k9fOlHu0+mGlLtHVe01UfYlE2XPTXJSkv37oekAAAAAAABYxSLCoC/2098b\nn1lVV0myV5LP9bMOSPLN1to5K9Tx8SSXy6W9fQ5Ickm64edWKpskt5qjzQAAAAAAADuFRQwT97dJ\n7prk9VX1uCRfSvLbSZ6ZZEuSo6tqzyRXS9Km1PGNfnq9JKek60303dbaxVspuxCbN29eVFUA2w33\nNmDI3OOAoXOfA4bMPQ4Ykk2bNi27CTOZu2dQa+1zSQ5Mctl0Q8V9L8ln0/XcuWtr7bQke/bFL5xS\nzU/66Z5j01nLAgAAAAAAMMXcPYOqqpK8J8nlkzwxXc+gayZ5UpKTq+r+ST4/73a2pR0luQOYxegb\nVu5twBC5xwFD5z4HDJl7HMDyLGKYuNckuU6SG7bWvjaaWVVvTfLlJMcluWE/e48pdVypn/5obDpr\nWQAAAAAAAKaYa5i4qtojyW2SfHo8CEqS1tpPk5yWLijaJ93wcXtPqWrffjoaMPSrSa5ZVbvNUBYA\nAAAAAIAp5n1n0BWT7JLkClOWX2FsemaSvatqnxXK3S7JT5N8uv/5zL5tt55SNknOWE+DAQAAAAAA\ndiZzhUGtte+n66Fz06q60fiyqrpakjulG87tc0le2y964kS52ye5RZI3t9Yu6Gcfl2TLCmU3Jbln\nklNba1+Zp+0AAAAAAAA7g0W8M+hJSU5K8pGqenmSs5NcI8njk+yV5DGttZ8lObmqTkzyhKq6cpJT\n0g35dmSSc5L89ajC1tpnqupFSY6oqpOSnNjXeUS6HkSHL6DdAAAAsFPb67hzl92Endr5h15n2U0A\nAHYSc4dBrbWTq+q2SZ6S5C+SXDXJj5OcleSxrbX3jRV/cJKnJnlokoclOS/Ju5I8vbX27Ymqj0zy\ntSSPTvLqJBemewfRUa21L8zbbgAAAAAAgJ3BInoGpbX2sST3naHcz5M8q/9sreyWJC/vPwAAAAAA\nAKzDXO8MAgAAAAAAYPsmDAIAAAAAABgwYRAAAAAAAMCACYMAAAAAAAAGTBgEAAAAAAAwYMIgAAAA\nAACAARMGAQAAAAAADJgwCAAAAAAAYMCEQQAAAAAAAAO267IbAAAAALAz2uu4c5fdhJ3e+YdeZ9lN\nAIANoWcQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAA\nAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAA\ngAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAA\nBkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAY\nMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDA\nhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAET\nBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwY\nBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQ\nAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAdl1U\nRVV1tyRPTXLzJL9I8u9JntNaO2Wi3BWTPC3Jg5Lsm+RHSU5JcnRr7eyJspdJ8oQkhybZlOSiJGck\nOaa19slFtR0AAAAAAGCoFtIzqKoemeQ9/Y+PT3JMkusleV9V3WGs3C5J3pHkqCQfSfLIJP+Q5A5J\nPlpV15+o+lVJXpjk7CSPSnJ0kkry4ao6cBFtBwAAAAAAGLK5ewZV1bWTvDTJB5LctbX2y37+yUk+\nmuR/JDmtL/6gJHdO8vzW2pPH6vhgkrOSPD/J/fp5ByY5LMlbW2sHj5U9MV04dGy6XkgAAAAAAABM\nsYieQQ9Pske6odt+OZrZWvtqa+1arbW/Git7SD996XgFrbVPJzkzyT2qaq+Jsi+ZKHtukpOS7F9V\nN15A+wEAAAAAAAZrEWHQnZP8OF0voFTVZavq8lPKHpDkm621c1ZY9vEkl8ulvX0OSHJJkk9MKZsk\nt1pvowEAAAAAAHYGcw8Tl+T3k3wlyc2q6kVJbpPkslX1+STPaa29OUmqas8kV0vSptTzjX56vSSn\nJNkvyXdbaxdvpezcNm/evIhqALYr7m3AkLnHAUO3cfe53TdoO7B98n+K5XDcgSHZtGnTspswk0X0\nDLpakr2SvDvJGUnuk+Twft6bquqwvtye/fTCKfX8ZKLcnmsoCwAAAAAAwAoW0TNot3S9eB7SWjth\nNLOq3p3ki0meW1XHL2A728yOktwBzGL0DSv3NmCI3OOAodvw+9zp527MdmA75f8UG8v/5QCWZxE9\ngy5IclGSN4/PbK19LcmpSa6Z5IZJftQv2mNKPVfqpz8am85aFgAAAAAAgBUsIgz6+ir1fLefXrm1\ndkGS7yXZe0rZffvpaNDQrya5ZlXtNkNZAAAAAAAAVrCIMOij6YaKu9EKy0ahzTn99Mwke1fVPiuU\nvV2Snyb59FjZyyS59ZSySfcJ208VAAAgAElEQVSOIgAAAAAAAKZYRBh0fD/9m6raZTSzqm6aLrT5\nbGvtG/3s1/bTJ45XUFW3T3KLJG/uexAlyXFJtqxQdlOSeyY5tbX2lQW0HwAAAAAAYLB2nbeC1trH\nq+plSQ5P8s6q+pd0PYKemOQXSR4/VvbkqjoxyROq6spJTunLHpmu99Bfj5X9TFW9KMkRVXVSkhOT\nXCPJEel6EB0+b9sBAAAAAACGbu4wqPf4JF9I8pgkr0rys3RDuB3TWvvkRNkHJ3lqkocmeViS85K8\nK8nTW2vfnih7ZJKvJXl0klcnuTDJaUmOaq19YUFtBwAAYAn2Ou7cZTdhO7R7NzndsQEAYHEWEga1\n1rYk+d/9Z2tlf57kWf1nlnpf3n8AAAAAAABYo0W8MwgAAAAAAIDtlDAIAAAAAABgwIRBAAAAAAAA\nAyYMAgAAAAAAGDBhEAAAAAAAwIAJgwAAAAAAAAZMGAQAAAAAADBgwiAAAAAAAIABEwYBAAAAAAAM\nmDAIAAAAAABgwIRBAAAAAAAAAyYMAgAAAAAAGDBhEAAAAAAAwIAJgwAAAAAAAAZMGAQAAAAAADBg\nwiAAAAAAAIABEwYBAAAAAAAMmDAIAAAAAABgwIRBAAAAAAAAAyYMAgAAAAAAGDBhEAAAAAAAwIAJ\ngwAAAAAAAAZMGAQAAAAAADBgwiAAAAAAAIABEwYBAAAAAAAMmDAIAAAAAABgwIRBAAAAAAAAAyYM\nAgAAAAAAGDBhEAAAAAAAwIAJgwAAAAAAAAZMGAQAAAAAADBgwiAAAAAAAIABEwYBAAAAAAAMmDAI\nAAAAAABgwIRBAAAAAAAAA7brshsAAAAAAMuw13HnLrsJO5ndu8np3XE//9DrLLEtADsXPYMAAAAA\nAAAGTBgEAAAAAAAwYMIgAAAAAACAARMGAQAAAAAADJgwCAAAAAAAYMCEQQAAAAAAAAMmDAIAAAAA\nABgwYRAAAAAAAMCACYMAAAAAAAAGTBgEAAAAAAAwYMIgAAAAAACAARMGAQAAAAAADJgwCAAAAAAA\nYMCEQQAAAAAAAAMmDAIAAAAAABgwYRAAAAAAAMCACYMAAAAAAAAGTBgEAAAAAAAwYMIgAAAAAACA\nARMGAQAAAAAADJgwCAAAAAAAYMCEQQAAAAAAAAMmDAIAAAAAABgwYRAAAAAAAMCACYMAAAAAAAAG\nTBgEAAAAAAAwYMIgAAAAAACAARMGAQAAAAAADJgwCAAAAAAAYMB23RaVVtWzkhyd5HWttUeMzb9M\nkickOTTJpiQXJTkjyTGttU+uUM/Dk/xlkhsl+WWSTyV5bmvt/dui3QAAAAAAAEOz8J5BVXXjJE+Z\nsvhVSV6Y5Owkj0oXGFWSD1fVgRP1HJXk+CQ/TnJ4kicl2TPJe6vq/otuNwAAAAAAwBAttGdQ3/Pn\n1Uk+n2T/iWUHJjksyVtbawePzT8xXTh0bJKb9/P2SfKMJB9LcufW2iX9/Dcl+UKSY6vqna21ixfZ\nfgAAAAAAgKFZdM+gv0hyYJIjV1h2SD99yfjM1tq5SU5Ksn/fqyhJHpzkcklePgqC+rI/TvK6JNdK\ncpfFNh0AAAAAAGB4FtYzqKr2TvK8JP/cWjulqiaLHJDkkiSfWGH1jyd5SJJbpetVdEA//6NTyqYv\n++45m50k2bx58yKqAdiuuLcBQ+YeB0Ox+7IbAMAS+T8dMASbNm1adhNmssieQccmuTjJEVOW75fk\nu1OGdvtGP73eWNkkOWeGsgAAAAAAAEyxkJ5BVfWAJPdKclhr7XtTiu2Z5Lwpy34yVmY0vaS19vMZ\nys5tR0nuAGYx+maVexswRO5xMDCnn7vsFgCwRP5PB7Bx5u4ZVFV7JXlZkg8lOW7uFgEAAAAAALAw\nixgm7vlJrpbkMa21LauU+1GSPaYsu9JYmdH0slV1+RnKAgAAAAAAMMVcw8RV1R8nOSzJS5JcUFV7\nTxTZvZ/3kyRfTXKLqtptheHf9u2no7fGfTXJLZLsneQrWykLAAAAAADAFPP2DLpTkl2SPCHJNyc+\nSfLA/t8vSnJmv71br1DP7frpGf30zH56m1XKnj5PwwEAAAAAAHYG84ZBJyS555RPknyw//eL0r1P\naEuSJ45XUFWb+jKnttZGvYDelOSnSQ6vql3Hyl49ycPT9RY6bc62AwAAAAAADN5cw8S11s5OcvZK\ny6oqSc5prb1rbN6LkhxRVSclOTHJNZIckT74Gav3O1X1lCQvTfKBqnpdkisk+cskV07yp621X87T\ndgAAAAAAgJ3BvD2D1urIdKHPDZK8OsnRST6Z5KDW2ufHC7bWXpbkz5LsnuTYJH+f5Nwkd2ytnbKR\njQYAAAAAANhRzdUzaDWttV1WmLclycv7zyx1vCndkHEAAAAAAACsw0b3DAIAAAAAAGADCYMAAAAA\nAAAGTBgEAAAAAAAwYMIgAAAAAACAARMGAQAAAAAADJgwCAAAAAAAYMCEQQAAAAAAAAMmDAIAAAAA\nABgwYRAAAAAAAMCACYMAAAAAAAAGTBgEAAAAAAAwYLsuuwEAAADLstdx5y67CQAAANucnkEAAAAA\nAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAA\nAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAA\nMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADA\ngAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAAD\nJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyY\nMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDC\nIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmD\nAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwC\nAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABmzXRVRSVb+V5BlJ7pvkWknOT3J6kme31j49UfaKSZ6W\n5EFJ9k3yoySnJDm6tXb2RNnLJHlCkkOTbEpyUZIzkhzTWvvkItoOAAAAAAAwZHP3DKqqayb5dJLD\nkryln/5jkj9JcnpV7T9Wdpck70hyVJKPJHlkkn9IcockH62q609U/6okL0xydpJHJTk6SSX5cFUd\nOG/bAQAAAAAAhm4RPYOek2TvJPdvrZ04mllVn0zy9nS9gA7uZz8oyZ2TPL+19uSxsh9MclaS5ye5\nXz/vwHTB0ltbawePlT0xXTh0bJKbL6D9AAAAAAAAg7WIdwZ9K8mbkpw0Mf99SbYkuenYvEP66UvH\nC/ZDyZ2Z5B5VtddE2ZdMlD2339b+VXXjuVsPAAAAAAAwYHP3DGqtHTNl0Z5Jdkn3TqCRA5J8s7V2\nzgrlP57kNul6+5zSl70kySemlH1Iklsl+fy6Gj5m8+bN81YBsN1xbwOGzD2Oxdl92Q0AgJ2W/9MB\nQ7Bp06ZlN2Emi+gZNM1j+ukbk6Sq9kxytSQrBUFJ8o1+er1+ul+S77bWLp6hLAAAAAAAACtYxDuD\nfkNV3S3JM5J8Kskr+9l79tMLp6z2k4lyeyY5b8ayc9lRkjuAWYy+WeXeBgyRexwLd/q5y24BAOy0\n/J8OYOMsvGdQVR2S5B1Jvp7knq21ny96GwAAAAAAAMxmoWFQVR2d5HVJPpPktq21/xpbPHp30B5T\nVr/SRLkfraEsAAAAAAAAK1hYGFRVL07yrCTvTHL71tp3x5e31i5I8r0ke0+pYt9+Onpz3FeTXLOq\ndpuhLAAAAAAAACtYSBjU9wh6fJLjktyvtTbtvUBnJtm7qvZZYdntkvw0yafHyl4mya2nlE2SM9bd\naAAAAAAAgJ3A3GFQVd0xyTOTnJTkz1trl6xS/LX99IkTddw+yS2SvLnvQZR0wdKWFcpuSnLPJKe2\n1r4yb/sBAAAAAACGbNcF1PGCfvqBJPerqpXKvKe1dmFr7eSqOjHJE6rqyklOSTfk25FJzkny16MV\nWmufqaoXJTmiqk5KcmKSayQ5Il0PosMX0HYAAAAAAIBBW0QYdPN+euwqZa6b5Ov9vx+c5KlJHprk\nYUnOS/KuJE9vrX17Yr0jk3wtyaOTvDrJhUlOS3JUa+0LC2g7AAAAAADAoO2yZcuWZbdhw/zwhz/c\neXYW2Glt3rw5SbJp06YltwRg8dzjWLS9jjt32U0AgJ3W+YdeZ9lNANhmrnKVq+yy7DaMm/udQQAA\nAAAAAGy/hEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAA\nAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAAAAAYMGEQAAAAAADAgAmDAAAA\nAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAAAGDAhEEAAAAAAAADJgwCAAAA\nAAAYMGEQAAAAAADAgAmDAAAAAAAABkwYBAAAAAAAMGDCIAAAAAAAgAETBgEAAAAAAAyYMAgAAAAA\nAGDAhEEAAAAAAAADtuuyGwAAADurvY47d9lNAAAAYCegZxAAAAAAAMCA6RkEAAAAAGw4vaSX7/xD\nr7PsJgAbRM8gAAAAAACAARMGAQAAAAAADJgwCAAAAAAAYMCEQQAAAAAAAAMmDAIAAAAAABgwYRAA\nAAAAAMCACYMAAAAAAAAGTBgEAAAAAAAwYMIgAAAAAACAARMGAQAAAAAADJgwCAAAAAAAYMCEQQAA\nAAAAAAMmDAIAAAAAABgwYRAAAPD/27vzuNvmeoHjn1OEMmdIkaHLF+lmKkIZGlx1iy4ulalSkorM\nxDUr9yrdiyJCNCARyXVTGSIZQ5RvpkxJhlDUUXnuH7/f7izb3s+zn+k8++zzeb9eXstZ67vW+q61\n1/M7z1nf/fv9JEmSJEkDzGKQJEmSJEmSJEnSALMYJEmSJEmSJEmSNMAsBkmSJEmSJEmSJA0wi0GS\nJEmSJEmSJEkDzGKQJEmSJEmSJEnSALMYJEmSJEmSJEmSNMAsBkmSJEmSJEmSJA0wi0GSJEmSJEmS\nJEkDzGKQJEmSJEmSJEnSALMYJEmSJEmSJEmSNMDmmOoEJEmSNDUWPPXBqU5hDF5aFlfOirlLkiRJ\nkjQ17BkkSZIkSZIkSZI0wCwGSZIkSZIkSZIkDTCLQZIkSZIkSZIkSQPMYpAkSZIkSZIkSdIAsxgk\nSZIkSZIkSZI0wOaY6gQkSdLsa8FTH5zqFCRJkiRJkgaePYMkSZIkSZIkSZIGmMUgSZIkSZIkSZKk\nAWYxSJIkSZIkSZIkaYBZDJIkSZIkSZIkSRpgc0x1AiOJiIWBg4DNgCWAR4GLgAMz86GpzE2SJEmS\nJEmSJKnf9XUxKCLmAS4DVgSOA64Hlgf2BDaKiDUy8w9Tl6EkaVa24KkPTnUKkiRJkiRJ0qTr62IQ\nsBvwOmCXzPxSa2VE3AycBxwI7D5FuUmSJEmSJEmSJPW9aUNDQ1OdQ1cR8StgKeDlmTm9sX4acB8w\nF7B4ZvZ0EU8++WT/XqwkSZIkSZIkSRoICyywwLSpzqHpRVOdQDcRMT9leLgbm4UggFr8uRZYFFh2\nCtKTJEmSJEmSJEmaJfRtMQhYui4f6LL9vrpcbibkIkmSJEmSJEmSNEvq52LQfHX5TJftT7fFSZIk\nSZIkSZIkqU0/F4MkSZIkSZIkSZI0Tv1cDHqqLl/WZfu8bXGSJEmSJEmSJElqM8dUJzCMe4AhYMku\n21tzCt3R6wEXWGCBaeNNSpIkSZIkSZIkaVYybWhoaKpz6CoibgKWB16emX9prH8x8Ftgema+eqry\nkyRJkiRJkiRJ6nf9PEwcwFeBlwI7ta3fBlgMOHmmZyRJkiRJkiRJkjQL6feeQXMCPwHWAI4Frgde\nC+xOGR5u7cx8ZuoylCRJkiRJkiRJ6m99XQwCiIj5gYOBzYElgN8D5wEHZebjU5iaJEmSJEmSJElS\n3+v7YpAkSZIkSZIkSZLGrt/nDJIkSZIkSZIkSdI4WAySJEmSJEmSJEkaYBaDJEmSJEmSJEmSBpjF\nIEmSJEmSJEmSpAFmMUiSJEmSJEmSJGmAWQySJEmSJEmSJEkaYBaDJEmSJEmSJEmSBtgcU53ASCJi\nYeAgYDNgCeBR4CLgwMx8qIf9twY+Cby+rroZ+GxmXjjW2IgYGuG0C2XmEyPlJkn92MbV2LmAfYFt\ngKVqXt8HPpOZj47mGiXNvvqtjYuIHYBTRzjt5Zm5wUi5SVK/tXGN2G2Aj9XYlwD3ARcCh2fmY6O5\nRkmztz5u53qOlaRuIuIlwOHAnsAVo/l3YESsAxwIrA3MA/waOAk4LjOH2mJXBg4F1gfmB+4Fvg58\nLjOfbYtdqsZuDCwC/BY4FzgkM58c/VU+X1/3DIqIeYDLgJ2B7wA7ACcCWwFXRcRCI+x/MPAtYGHg\nP4BdgbmB70XE+8YaW/0S2LLLf0+P8lIlzYb6tY2LiDkohZ8DKC8OdgTOAT4MXF7/spSkYfVpG3cp\n3X9/+3SNuW30VytpdtOnbRwRcSRwBjAnsD+lKHQZ5aXpzyJi/jFdsKTZTh+3cz3HSlI3ERHA1ZQ2\nbtoo992I8m/L5YGDgY9QikH/AxzTFvvaep71gKOBDwGX1/3ObotdvMZuTiks7UB5H/cJ4JKImHM0\neXYybWhopE4uUyci9gOOBHbJzC811m8GnAcck5m7d9l3KeBu4GFgpcz8Y13/MuAaYHFg6cx8ZjSx\ndf0QfmtU0jj1cRv3CeBYYPvMPL1xzgMof2ltn5k/mbg7IWkQ9WsbN0y+36X8gh5+c17SSPqxjavf\n4H8YeABYMTOnN875WUqv790y878n8FZIGlB92s5NyO99kmZvtZj9AHAHpcB9O6N41x8Rt1N6S67Y\n7CVZ/035HmC1zLy5rvs/4G3Aqpn5i0bsFynF7E0z84K67kTgo8C7MvOiRuxulCLTrpn5P2O9bujz\nnkHAdpReNl9tW38+5QPbJiK6Ve7eThkG75TWXw4Amfk08EVKN6tNxhArSROlX9u4XSh/IZ7RPGFm\nHp6Zy1kIktSjfm3jXiAi3gtsCuxjIUhSj/qxjXt1jb22WQiqrqjLZXq8Pknqx3bO93eSJsJLgNOB\ntTMzR7NjRKwFBHB2h+Eyj6P0Mtqmxi5Babd+3CwENWIBtq2xcwJbA3c2C0HVScCzrdjx6NtiUO2+\nviJwY/svsnXcvWuBRYFluxxiibq8u8O2m+ryjWOIbc9zWv0GgiT1rF/buIhYsub1g9YYpxEx9zC/\n5EvSC/RrG9cl17mA/645ndItTpJa+riNuweYThmypN0ydXlrl5wk6R/6uJ0b1+99kgSQmQ9n5s6Z\n+Zcx7N5qY67usO2aulyrLtekFIdeEJuZdwKPN2JXpMwn1Cn2acrvcKvWf7+OWd8Wg4Cl6/KBLtvv\nq8vlumxvTai0aIdtf247x2hiWxaJiNOBPwJ/ioinIuL0iHhVl3wkqalf27gV6/KuiNg1In5TY/4c\nEd+NiH/qko8kNfVrG9fJR4ClgL3bJ/qUpC76so2rkwofBqwWEcdGxGsiYrGI+FfgM5QXpd/okpMk\nNfVlOzfKWEmaDMvU5Qvax9pj8QlmtI1dY6v7gKXq3N29xM5B+bfrmPVzMWi+uuw2zufTbXHtflqX\nW3TYtnVdzjuG2JaV63IbyqTD51G6al0dEYt0yUmSWvq1jVu4LrcHdgKOoAyddCLwbspEoUsgScPr\n1zbueeq3qvYFrsjMy7vkIknt+raNy8wjKEXuHYE7KfNqfA/4ObDRGL8BK2n206/t3Jh/75OkCdJL\n+zjfKGJbceNtd3syx3h27meZeWOdoGnjiDgVOLxu+kD97zlKF/pRxVabAI9k5g2NdedExP2Ub1zt\nAew3OVcmSZPaxr2kLhcHVmnMnXFBRDxMKQ7tAew5aRcnabY3yb/HNe0AvAr45GRchyR1MpltXETs\nDPwP8APgW8AjlOFH9gYuiohNMvOJSb5ESbO5yWrnxvl7nyTN9vq5Z9BTddltPp552+I62Rr4LuUf\n+nfW/zal9OR5EWVcvlHHZubFbYWgli/V5duGyUmSoH/buD/V5QUdJlFvTRy6wTA5SRL0bxvXbkfg\nMeDCYfKQpHZ92cZFRFAKQT/KzHdl5tcz8/8y81DKS9K1gf17vUhJs7W+bOfGECtJE62X9vGpUcRC\nmYZmItrdEfVzMegeYAhYssv21higd3Q7QGY+kZnvBV4JrAO8JjPXAJ6tIb8aS+wwHqk5z99DrKTZ\nW7+2cb+pyxd3OOWj2MZJ6k2/tnH/EBHLUCb0/H5m/rXH65Ik6N82biPK6B/ndjjl/9acNxz+0iQJ\n6N92bqLe30nSWN1dly9oHyNiAWABZrSNXWOrpYF7MvNvPcZOZ8acbWPSt8PEZebTEXELsHpEzN0c\n2zgiXkxp8O/PzBFvQGY+BDzUWLVJXf5wtLER8bp67v/tcO7lgWmM80ORNPj6tY0DfkmZlHPVDqda\nitLGdZvMTpKAvm7jmjauyx+PlIMkNfVxG9f6JuncHU41F+X3uE7bJOl5+ridG1OsJE2g1txl6zJj\nBJ2WN9fllXV5LfC3Gvs8EbEKsCBlbkeApIxa0Sl2QWAV4OrxfpGxn3sGQbmhL6VMYt60DbAYcHJr\nRUSsGBHLNv48b0TcHhGXRcS0xvpFgU8DV2XmLaONpdz4E4D/6JBva56gTt/EkqR2fdfGZeazwDeB\nNSLi3W15faIuv4ckjazv2rg2a9TlreO6Skmzq35s41ovJ7ZqxlZbtsVI0kj6rp0bx+99kjQm7e1b\nZt4E3AhsGRFLNuKmUdqhvwJfq7GPAhcAG0TEam2H3qMuT66xf6/7LRsRm7bF7krp1HMy4zRtaGho\nvMeYNBExJ/ATyj/WjwWuB14L7E7pbrV2Zj5TY4eAzMwVG/sfS3l5eRFwNqXatiuwELBeZt422tiI\nmIPSxf5twPk1/sXAv9V1PwQ2qd27JKmrfmzjauyiwM8ok6p/jjJ03EbAtsBNwDqZ+eeJvRuSBk2/\ntnGNfS4D1gcW6TBHmiQNq1/buIg4m1L4+WmNfQR4A7ALZR6NN/byTX5J6uN2btS/90lSU0SsDKzc\nWPVtykg5BzXWXZSZz3Rp39YCLgV+B3wReIIyn9kmwIGZeXgjdjngGsrQm0cDvwX+hTKf41czc8dG\n7ELAdcArgM9Tegu9Cfg48CNg48wcVzGnr3sG1W5P76D8pbM5cBqwPaUKtkHrL51h7EaZIPM1lN48\nB1C6Z63Z4S+HnmJrkefdwF7ACpQJOj8PLFrXvdNCkKRe9GMbV/N6hDLB8NeAjwJfobww/ULNy0KQ\npBH1axvXsFBd/rH3q5Kkoo/buPcBn6QMC3dEzeu9wCnAGhaCJPWqj9u5sfzeJ0lN/04pALX+g1Ic\naq5brNvOmXkN8BbgduBQ4ERKAedDzUJQjb2bMrTmZcDelF6XqwN70tbzMjP/AKwHnEl5H3ca8E7g\ns8Cm4y0EQZ/3DJIkSZIkSZIkSdL49HXPIEmSJEmSJEmSJI2PxSBJkiRJkiRJkqQBZjFIkiRJkiRJ\nkiRpgFkMkiRJkiRJkiRJGmAWgyRJkiRJkiRJkgaYxSBJkiRJkiRJkqQBZjFIkiRJkiRJkiRpgFkM\nkiRJkiRJkiRJGmAWgyRJkiRJkiRJkgaYxSBJkiRJkiRJkqQBZjFIkiRJkiRJkiRpgM0x1QlIkiRJ\noxURvwGWBpbNzN9MwvF3AE4FvpaZO/QQvwxwD3B5Zm5Q120AXNo8RuO4h2TmwROd90SIiAWA44H3\nAPMA+2Xm0WM81mnA9sAHM/O0ceS0DvAlYGVgOrBSZj4w1uNp/Do981Op8axtmJmXTW02EysiLgPW\nZ5LaO0mSJM0eLAZJkiRJ4/c4sBdw/whx19W4nzZXRsRWwPTM/O7kpDcq+wIfAH4OnAtcP5XJRMSL\ngLOBVwFfA34N/GkmnHct4E2Z+cXJPtcsqtdnfmY5E7gVuGsyTxIRCwMfBf4FWAlYiPI83gv8GDgx\nM389waf9MnAh5Z5LkiRJY2IxSJIkSRqnzHwKGLH3TGbeBtzWYdMhwM+AfigGrVaXH8nMG6Y0k2Ix\nSiHo1l56aU2gD1Je+FsM6qDXZ35mycyLgYsn8xwR8e/AycB8wM3AN4HfA/MDbwB2BXaLiKOAAzLz\nuYk4b2aeNRHHkSRJ0uzNYpAkSZI0hSJiIWAFSjGoH8xdl49NaRYzTFU+a8/k86mPRcS/AWcBTwDv\nzswLO8SsDHwb2A+YC9hjpiYpSZIkDcNikCRJkkYtIg4GDgL2Aa4AjgTWoPx++QvgiMz8XiN+A8r8\nOWcBx1HmfwngnzLz/hqzOmWIsjcDLwf+CNwIHJuZFwyTy8eBjwOvAZ4GfgjsnZn3tcUtBRwIvB14\nJfAccCfl2/2fz8xnuxx/WeA/gQ2BeYE7ak5facQsQw/zp7TPGdSY5wRg+4jYHri85vVhYK9O8/VE\nxBLAA8AjwJKZ+bdu56zxW1Du0WrAy+p+lwOfzcxftOXWck9EQA/zG0XE+ylDhq1I+QwupTwb3eLn\nAfYEtgSWB/5GGf7tDOC41vU05koBWD8ihur//2PulIj4ALATsCowJ/AgcAHlGXxBASkiNqX04Fid\nUmhK4AvAGZn5XPt9aJ0zM6cNdw9q7Kie4Yh4NfAflB5Ii1E+l3OBQzPzkbHEDpdv43nbOTNPaFu3\nCfAm4GPAzZn5jsa9OKI36tkAABAySURBVAq4hvJzsFRmzj3CPFln1eMcQZl7anHgd3X9AZk5vZHT\nNGAXYGfKz/Bj9br2r+feHNik9vzpqtOcQY3nZyXKc7Yf8DpgGnAD8JnMvHK449bjzAucRGkzNsvM\nyzvFZeYvI2IjShu4e0ScmZnXjXT8eo4h4GHKc3kasC7w0cz8Rqc5gxrzps0DvI/yTK8A/BW4ktIG\n3tZ2jjUon8mb6j24BvgM5Xn6HnBWZm7dS76SJEma9bxoqhOQJEnSLO11wCWUF9NHA9+gFBzOj4jN\nOsTPTZnb40rgUOrcLxHxLuBqyovjSykvLM8GXl+PtVeX8+9DecF7cd3ndmAr4IqImL8VFBGvpMx9\n8xHKS+DDKEWphSmFrK93Of5CwE+AlwDHAF+hvIA9MSI+1f229OxM4IT6/9dTCipfprwMhhmFonZb\nUn6X/1YPhaAjKL0VXkt5GX8EpRC0OXBNRLSKLa35jO6ufz6y/vkHIxx/B8rn/k+UIbSOo3zOVwGL\ndoifp57/UOAZ4PPAicBLKff4/DpPEJR7cWT9/7trPntR506JiOMon92r67mPBu4DPg1cFxGvaDv3\n/pSh+F5V8zyaUsA8DTi+7T4A/KFxzmGN9hmOiJWAW4D3A9+v9+NqSmHkuohYbCyx4/BeYFtKofab\nbdteSXn2L2DG5zGcuSjz57ye8tkeTxlabU9KQanpEOBY4BWUz/srwAaU526u0V9GR1tRntHrKJ/5\nz4C3ABdHxJI97L8tpa24sFshqCUzH2bG8Hm7jiHXLwN/AQ4HftVD/F7A5yj362hKcfOdwCUR8dJW\nUES8jlK435hSMD+K8nN0GbDWGPKUJEnSLMaeQZIkSRqPbYDtMvOM1oqIuITyEvw/eeEcOBsD+2fm\nMY34uYFTKL063p6ZP2psO4ryEvzIiDgnM+9pO947gVVbPUBq4eN/63k+xowXzztRvv1+fGZ+onH8\nL1B6+mwZEStn5i/bjv8eyjfs/6uxz5mUQschEXFis5fDaGXmxRHxl5rrbc1eQBFxJ7BKRKyZmde3\n7bpVXZ4+3PFrT4D9KD0OVs3M3zW2bQ6cA5wUEdGazygi/hVYDjip1QthmOPPQXmpDKX3xpWNbbvS\neb6dAynzq5wE7JSZQzV+f0pR752UItipmXlWRFxD6SVyf9v9eQelGHIT8ObM/FNj2xF1n6PqsYiI\n11OKKLcDa2TmM3X9YZQC4cci4ozM/Gm9D/8FPNWpZ1aH+zCWZ/h0YAFgo8y8tBF/AKVYeTjw0THE\njtUWwD9n5oMdtm0JvD8zz+vxWO8Gvgbs2Ph8v0XpibJdROyWmUO1iLUPpTfLepn5qxp7JDN+jifC\n7sBarePXc1xE6Q21BSPPC/XWuux1Tq/zKM/e20eZ50LAc5n53lHs82Fgtcz8LUBEHEL5mVgFeAcz\ncj6MUnA9PDMPbO0cER9iRkFakiRJA8yeQZIkSRqPu5qFoOocypBQy0fEcm3b5qS8JG5qDXt1afMl\nOkAtRnyT8iWmLTuc//jmUGD1xfOx9Y/vasSdUf98VGMdmfkQpbcAwD93OP6TtL0orsWC64EFgXU6\n7DNRTqvLDzZX1uHu3gTcmpk/H+EY21KGgzq+WQgCyMzvUHoRLE8pzozF2pTP7oYOw20dBzzalvs0\nYEfKy/99WoWCms+zlGHQALbr4dwfqcsDm4Wg6jDKcHVb1kINlPv4Ysq9eKZx3unA3nWfv/dw3k5G\n9QxHxKrAmpT7dunzD8UJlCLmdaONHafLuxSCoPTg6zpUYwdDvPDzvZby87QgM3qMbUzpdXdRs1CT\nmX+lFHDmHMU5h3NK8/hVq8fbCj3s32rHeumpQ2beAUwHFouI+XpLESj34tQRo57vmFYhqJ7770Dr\nGVwBICJeQrnXz1F63zVzPQW4dZTnlCRJ0izInkGSJEkaj5+1r6jf+E/KsE8rMmPYMYB7M/Pxtl3W\nrMufdjnHtZSePa/vsK3TPr+oyxUbOd1JmYeHiJgTWIQZQ1C1CgmtokHT9fXFdKdzrFnP0f6CfqKc\nTunJsnVE7N7ogbQlpcDTXoTrpJd7G5R7e+0YcnxtXd7cviEz/x4RN/D83h3LUQoB9wELRMQCbbs9\nSnlhvXoP5167Lh+r89e0+zVlyMKVgJ8zo+B1U4dcLwIu6uGc3Yz2GR4ul0d5/nxLo4kdj+EKi7fU\nIkOv7q25tXuS0sNpnvrnlevyxvbAzLwlIh4ClhjFebu5oUsuNHIZTqug0150HM6fKG3MfMAfI2Jp\nXljcerxDezhSgbddL9e2LKV9u6fD+aD0yFttlOeVJEnSLMZikCRJksbj913W/6EuF2xb3+lFZKuX\nQLdjPVKXi/R4/tY5FmqtiIgXA3tQhtJ6TZfzdNItpxecY6Jl5v0R8WPgbZTh6r5dN21FKZh0m+eo\naTz3thcvr8s/dNn+WNufW3PbvBpoH/Kvaf6ImDsz/zJMTOtY3QowLYu3xXfLdTxGe59Hk8tk5t3U\n6Wezl22ddCoEQekxBKWYCTOen27Hv4+JKQZ1yqc9l+G0iivtxcuOag+4VgHpibq8nDLfWNMhwMFt\n6ybiXo/lPkuSJGnAWQySJEnSeDzXZX1rOOL2l/mdeheM9FK2daxO5+q0rnWcoca6kyjDhD0MfBa4\njTKMGJQi0Xpdzt3t+jqdYzKcSikG7QB8u/aAeSNwSXNoqGGM5972YqT70D4sdSvuXmC3EY79txG2\nt461LcP32Gj1qGld41zdAsdhtPd5NLlMZt5Nw/X8GevweSMZ6fmZ7J+vXt0OrEHp2XVVD/ErUIZ8\nu68xJOFHKXP2tB+33WTc61nlPkuSJGkSWQySJEnSeHTrUdLqEfRwD8do9aZYrMv2Vq+LRzpsW4Q6\n/FvDwnX5OEBELEEppkwH1s3Mu5rBEbHTMLl1u77nnWMSnUfplfD2iHg58P66/vQe9/89ZRi4sdzb\nXrR6PbT3AGtpP29r3qJ5MvO77cGj9DtKT4sbOswH08nDlJf0i44UOAajfYYfbls/nNHEjmTxkUNm\nqlaPm27Pz1IzK5ER/AD4AKVX3pd6iH9vXV7cWpGZP+gSOzPMKvdZkiRJk6j9m3qSJEnSaLyxfUVE\nvIgZ8/Xc28MxrqvLdbtsf1Nb3LDnZ8a8LLfV5dKUb8b/qkMhaEFgrWFyW6MOMTfSOSZFZv4ZOJsy\n18jmwDaUXjDn9XiI8dzbXrR6NqzSvqFOWr9Gc11m/oZSOFksIl7XYZ9pEbFcj+e+pi7f1mljRCxX\nh+tqub4uN+wQ+68R8d2I+ECP52432vvcymX9+vPSzOVlEXFeRHx1DLFQe+PVZ7sZOwfwzz1dzcxz\nR112en5WAV41c9Pp6izgIeAtEbH5cIER8QpgT0qPri/OhNx6cTelx9HSETFvh+3/MpPzkSRJ0hSw\nGCRJkqTxWCkitmhbtxWlh8QtmflAD8e4GHiQ8rL7eS/qIyKArYFngDM77PupiFigET8N+GT94wV1\n+WBdLh0RL2vEvgw4hRlD2XWa/2cRYOe2nNajTLb+CPCzkS6uB63zd+uFdGpd7gusBJybmU93ie20\n73PAzhHxvF4hEbENsBxwfWb+YnQp/8NVwFPAWhGxZtu23eg8x0qrcHF4h0Lbp4G7IuKQHs7dOs4e\nEfG8excRawO/Ai5rrD6dMhzW9hGxaCN2TuBAYFPg/kb8dGChLsXAdqN6hjPzFsrwdUtQepw07Qhs\nRh3aazSx1d11uUlb7G5077k0VS6hfCbviYhXt1bWz+QYymcw5TJzOqV34XPAGd2KhhHxWuBHlDl6\nDuyxx9qkq0PVXUUpKn+suS0idqBDMU6SJEmDx2HiJEmSNB7fBk6OiH8HbgWWBLanvDTdp5cDZOZf\nI+KDwPeAiyLibOAu4NWU3jBzAx/KzE5Dmf0Q+HlEXEgZCumtlF4YSZkniMy8PyJ+VLddERHnUyZ3\n34LS6+Ioyjf4P1ULRM1v858P7BcRbwVuBl5JebEPsG9mjjSvTS/uAJ4FNo6I04C/Z+aHWxsz8+qI\nSMpwb9D7EHFk5q0RcTBwKOU+fQd4jPLydzPgD8CHux9hxOP/pR7/C8AlNf8ngTUpPa7OohQHmw4H\n3g68B7ixfh5DlF41b6Xcj+N7OPcPIuLLlGLdLyLim/V6VqY8N38D9m/E3xQRn63rboyIbwB/pdyH\nVYATMvOKxiluA1YHvh8RdwFfysyOPcHG+AzvCFwKnBoRbwN+TelxtjmlKLX3GGNPAY6m/FyuSyla\nvpFSwDyJtuLmVMrMuyPidEqbcXV9Ph+nXNe9lGLr+lOY4j/U521Tys/f1yNif0r78ztgfkovuA0p\nz/LemflfU5ZsZ4dShrv7XES8gdJer0LpWfcFYL8pzE2SJEkzgT2DJEmSNB53AxtRiiu7U4YxuxF4\nV2ZePNyOTZl5CaWIcyGwMTN6alwBrJ+ZX+uy676UHgRvBfaizAnzdWDDOsRay9aUXjKL133eBZxQ\n159G6aHwCuBDlG/Pt9wDvIVS3PoEsF1dt11mntLr9Q0nMx8DPkUp0ryPzkONta7/AUpRYDTHP4zy\ncj2BbSnFkDdQigar154nY5aZxwA71dx2plzL34H1gPs6xD8DbED5jKdRhtTal1I4+TywTmb+vn2/\nLuf+eL2mOyhFrYMoxYNzgLUz86q2+M9Q7vG9Nde9aq67AB9vO/wnKcPgbUQpGM3JMEb7DGfmDZQC\nwpnAO2ru6wInA2tl5qNjiaX8PBxAmWtoJ8pz+zSwDjPmNuonOwGfo3wOO1HakHMpz2zL0BTk9QKZ\neSGlN92+wKOU9uMQSt4vp9z7FfqwEERm/ojyPN5IKcR+kvLl0HUpxUXok/ssSZKkyTFtaMjf9yRJ\nkjQ6tTfIQcBRmbnvFKcz8CLiPZReSkdk5gFTnY80M0TEdZReZm/OzCunOp9BFRG7AMcBX83MHac6\nH0mSJE0Oh4mTJEmS+t8ulJ4TJ051ItJEiYgXAasCy2TmuW3b5qT09IPSG0/jEBFLUe71TZl5f9vm\n1pxB3mdJkqQB5jBxkiRJUh+rk9W/Azirw0tcaVZ3PvCdiNiwbf0ulLl4bsrMB2d+WgNnZ+ACypxd\n/xARyzBjHrQLZ3JOkiRJmonsGSRJkiT1mYhYkDIPySrA+ynzv+w5pUlJEywzn4uIPShzIX0/Ir4B\n3A+sTpnfZjqw6xSmOEi+CGwFbFd7CV0OLEppXxYETsjMm6cwP0mSJE0yewZJkiRJ/Wc+4DBgC+CH\nlDlTHpralKSJl5lnAxsBlwLvBA4A1gbOAdbJzCumML2BkZm/B9ajFIVeBewDbA/8mlJ4/vjUZSdJ\nkqSZYdrQ0NBU5yBJkiRJkiRJkqRJYs8gSZIkSZIkSZKkAWYxSJIkSZIkSZIkaYBZDJIkSZIkSZIk\nSRpgFoMkSZIkSZIkSZIGmMUgSZIkSZIkSZKkAWYxSJIkSZIkSZIkaYBZDJIkSZIkSZIkSRpgFoMk\nSZIkSZIkSZIGmMUgSZIkSZIkSZKkAWYxSJIkSZIkSZIkaYBZDJIkSZIkSZIkSRpgFoMkSZIkSZIk\nSZIG2P8DXepLAhqrvdcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 833, + "height": 224 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 683, - "width": 818 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "simulations_ = bernoulli_sim_samples_\n", - "print(\"Number of simulations: \", simulations_.shape[0])\n", - "print(\"Number data points per simulation: \", simulations_.shape[1])\n", - "\n", - "plt.figure(figsize(12.5, 12))\n", - "plt.title(\"Simulated dataset using posterior parameters\")\n", - "for i in range(4):\n", - " ax = plt.subplot(4, 1, i+1)\n", - " plt.scatter(temperature_, simulations_[1000*i, :], color=\"k\",\n", - " s=50, alpha=0.6)\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "RFSaMzNQIA0l" - }, - "source": [ - "Note that the above plots are different (if you can think of a cleaner way to present this, please send a pull request and answer [here](http://stats.stackexchange.com/questions/53078/how-to-visualize-bayesian-goodness-of-fit-for-logistic-regression)!).\n", - "\n", - "We wish to assess how good our model is. \"Good\" is a subjective term of course, so results must be relative to other models. \n", - "\n", - "We will be doing this graphically as well, which may seem like an even less objective method. The alternative is to use *Bayesian p-values*. These are still subjective, as the proper cutoff between good and bad is arbitrary. Gelman emphasises that the graphical tests are more illuminating [3] than p-value tests. We agree.\n", - "\n", - "The following graphical test is a novel data-viz approach to logistic regression. The plots are called *separation plots*[4]. For a suite of models we wish to compare, each model is plotted on an individual separation plot. I leave most of the technical details about separation plots to the very accessible [original paper](http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf), but I'll summarize their use here.\n", - "\n", - "For each model, we calculate the proportion of times the posterior simulation proposed a value of 1 for a particular temperature, i.e. compute $P( \\;\\text{Defect} = 1 | t, \\alpha, \\beta )$ by averaging. This gives us the posterior probability of a defect at each data point in our dataset. For example, for the model we used above:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 425 - }, - "colab_type": "code", - "id": "3ho1cPLAIA0l", - "outputId": "753be416-5530-43c0-e44c-bb5d62dfc358" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "posterior prob of defect | realized defect \n", - "0.36 | 0\n", - "0.25 | 1\n", - "0.28 | 0\n", - "0.31 | 0\n", - "0.33 | 0\n", - "0.20 | 0\n", - "0.18 | 0\n", - "0.24 | 0\n", - "0.69 | 1\n", - "0.48 | 1\n", - "0.26 | 1\n", - "0.10 | 0\n", - "0.34 | 0\n", - "0.78 | 1\n", - "0.34 | 0\n", - "0.13 | 0\n", - "0.25 | 0\n", - "0.07 | 0\n", - "0.12 | 0\n", - "0.08 | 0\n", - "0.14 | 1\n", - "0.13 | 0\n", - "0.66 | 1\n" - ] - } - ], - "source": [ - "posterior_probability_ = simulations_.mean(axis=0)\n", - "print(\"posterior prob of defect | realized defect \")\n", - "for i in range(len(D_)):\n", - " print(\"%.2f | %d\" % (posterior_probability_[i], D_[i]))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "-q4yysOiIA0n" - }, - "source": [ - "Next we sort each column by the posterior probabilities:" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 425 - }, - "colab_type": "code", - "id": "i3TkXUhSIA0n", - "outputId": "3de583e0-0204-4fa1-f67b-caee128c5569" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "probb | defect \n", - "0.07 | 0\n", - "0.08 | 0\n", - "0.10 | 0\n", - "0.12 | 0\n", - "0.13 | 0\n", - "0.13 | 0\n", - "0.14 | 1\n", - "0.18 | 0\n", - "0.20 | 0\n", - "0.24 | 0\n", - "0.25 | 1\n", - "0.25 | 0\n", - "0.26 | 1\n", - "0.28 | 0\n", - "0.31 | 0\n", - "0.33 | 0\n", - "0.34 | 0\n", - "0.34 | 0\n", - "0.36 | 0\n", - "0.48 | 1\n", - "0.66 | 1\n", - "0.69 | 1\n", - "0.78 | 1\n" - ] - } - ], - "source": [ - "ix_ = np.argsort(posterior_probability_)\n", - "print(\"probb | defect \")\n", - "for i in range(len(D_)):\n", - " print(\"%.2f | %d\" % (posterior_probability_[ix_[i]], D_[ix_[i]]))" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "ajvopQADIA0p" - }, - "source": [ - "We can present the above data better in a figure: we've creates a `separation_plot` function." - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 237 - }, - "colab_type": "code", - "id": "tFR1_yu8IA0p", - "outputId": "e5508fb9-0448-483c-d42e-157d82b60500" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "metadata": { + "id": "WjAFZ8W9IA0c", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "### Is our model appropriate?\n", + "\n", + "The skeptical reader will say \"You deliberately chose the logistic function for $p(t)$ and the specific priors. Perhaps other functions or priors will give different results. How do I know I have chosen a good model?\" This is absolutely true. To consider an extreme situation, what if I had chosen the function $p(t) = 1,\\; \\forall t$, which guarantees a defect always occurring: I would have again predicted disaster on January 28th. Yet this is clearly a poorly chosen model. On the other hand, if I did choose the logistic function for $p(t)$, but specified all my priors to be very tight around 0, likely we would have very different posterior distributions. How do we know our model is an expression of the data? This encourages us to measure the model's **goodness of fit**.\n", + "\n", + "We can think: *how can we test whether our model is a bad fit?* An idea is to compare observed data with artificial dataset which we can simulate. The rationale is that if the simulated dataset does not appear similar, statistically, to the observed dataset, then likely our model is not accurately represented the observed data. \n", + "\n", + "Previously in this Chapter, we simulated an artificial dataset for the SMS example. To do this, we sampled values from the priors. We saw how varied the resulting datasets looked like, and rarely did they mimic our observed dataset. In the current example, we should sample from the *posterior* distributions to create *very plausible datasets*. Luckily, our Bayesian framework makes this very easy. We only need to gather samples from the distribution of choice, and specify the number of samples, the shape of the samples (we had 21 observations in our original dataset, so we'll make the shape of each sample 21), and the probability we want to use to determine the ratio of 1 observations to 0 observations.\n", + "\n", + "\n", + "Hence we create the following:\n", + "\n", + "```python\n", + "simulated_data = tfd.Bernoulli(name=\"simulation_data\", probs=p).sample(sample_shape=N)\n", + "```\n", + "Let's simulate 10 000:" ] - }, - "metadata": { - "tags": [] - }, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAGXCAYAAABBU1oCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X+45mVdJ/D3yISgwsQUGnthCF7T\nZ9K1Ek0MVlNq6IfLxmo27iWJuZoSVkjmFkZQau1l1Por1BWQtKw0Q6XQnCXxByosocim3I2CAZsp\nNAE1JFI7+8fznKvj6Rxm7nm+c75zznm9rmuu23P/+D6fP/Dhy7zPfd/rdu3aFQAAAAAAgB4PGLsA\nAAAAAABg5REwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAA\nAEA3AQMAAAAAANBNwAAAAAAAAHRbP3YB+8Jdd921a+waAAAAAABgpdmwYcO6PZ1rBwMAAAAAANBN\nwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AALAGbN++Pdu3bx+7DIDR+T4EmPB9\nCDDh+xBmI2AAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKCbgAEAAAAAAOgmYAAAAAAAALoJGAAAAAAA\ngG4CBgAAAAAAoNv6oR5UVQcmeWWSlyb5SGvtKR1rj09yTpInJjk4yV8leUuSN7TWdg1VIwAAAAAA\nMIxBAoaqqiTvSPJtSdZ1rj0xyfuT3JrkvCQ7kvxIktcleWSSM4eoEQAAAAAAGM7MRyRV1WFJrkty\nQJLH78UjLkjy1SRPaq29trX29tbajyZ5b5KfqarvnLVGAAAAAABgWEPcwXBgkrcleWJrrfUsrKrj\nklSSd7bWvrRg+A2Z7IY4dYAaAQAAAACAAc18RFJr7ctJTt/L5U+Ytp9YZOzqaXvcXj4bAAAAAADY\nRwa75HkvPWLa3rZwoLX2D1V1Z5Jjhvqw7du3D/UogBXJ9yDAhO9DgAnfhwATvg9ZizZt2jTzM8YO\nGA6ZtvcsMb5z3pyZPfKRjxzqUQDshZMu/NTYJYzqg89/7NglwH5hrX8XJL4P/DPgnwFYLU4++eRc\nddVVSZITTjghl1122cgVsRL59yKQJG986qFjl7BXxg4YAAAAAABgTRtiN8EYhrjkeRZ3T9sHLzH+\nkHlzAAAAAACA/cTYAcNN0/bIhQNVtSHJhiQOQAMAAAAAgP3M2AHDx6ftCYuMPWnafmyZagEAAAAA\nAPbQsgYMVbW5qo6e+7m19ukk1yV5ZlUdOW/euiQvSXJfkt9ZzhoBAAAAAIDdm/mS56p6VJJHLeg+\nvKp+dN7Pl7fW7knyuSQtyeZ5Yz+V5ENJPlJVr0lyZ5JnJTkxyTmttS/MWiMAAAAAADCsmQOGJD+W\n5NwFfY9K8q55Px+d5IuLLW6tXV1VT07yq9M/D8wkiHhea+2tA9QHAAAAAAAMbOaAobV2XpLz9nDu\nuiX6r03yw7PWAgAAAAAALI+xL3kGAAAAAABWIAEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwA\nAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAA\ndBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMA\nAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA\n3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAA\nAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABA\nNwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAA\nAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQ\nTcAAAAAAAAB0Wz/EQ6pqY5Jzk5yS5IgkdyS5PMk5rbUv7cH6U5O8KMl3JjkwyS1J/iTJK1trfzdE\njQAAAAAAwHBm3sFQVQcnuTLJ6UneneS5Sd6cZGuSq6rqsN2s/7Ukb0/yDUnOziRouDLJTyf5ZFUd\nOmuNAAAAAADAsIbYwXBmksckOaO1dsFcZ1Vdn+TSJOckOWuxhdOdDz+f5ItJntxau3c69NaquiPJ\nLyT5iSSvHaBOAAAAAABgIEPcwfCcJDuTXLSg/71JbktyalWtW2Ltt2YSclwzL1yY85Fp+4gBagQA\nAAAAAAY0U8AwPb5oc5LrFgYErbVdSa5JcniSo5d4xM1J7k2yaZGxR0zb/zNLjQAAAAAAwPBmPSLp\nqGl72xLjt0zbY5LctHCwtXZXVb0iySur6vVJXpPkH5I8IcnLk3w6ye/NWCMAAAAAAOy3tm/fvuyf\nuWnTYr/332fWI5IOmbb3LDG+c8G8f6O19qokL0jy/CSfT/LlJJcl+VSSE1trX52xRgAAAAAAYGBD\nXPI8k6o6Pcnrknwwye8nuT3JcUleluTyqvqh1tqdI5YIAAAAAAD7zBC7CcYwa8Bw97R98BLjD1kw\n7+tUVWUSLlzRWnvavKE/q6rrk7wnydmZhA0AAAAAAMB+YtYjkm5OsivJkUuMz93RsNQBUidmEnL8\n8SJj758++6mzFAgAAAAAAAxvpoChtbYzyWeSHFtVB80fq6oDkhyf5NbW2i2Lrc+/7nw4aJGxByZZ\nt8QYAAAAAAAwoiHuYLgok2OOXpjktfP6T03y0CTnznVU1eYk97bWbp52fXzabq2q17fWds1b/8wF\ncwAAAAAAYFDbLz47d9149ag1fOMIlwTceefsVx8PETC8Kcmzk5xfVUcluTbJo5OcleSGJOfPm/u5\nJC3J5iRprX28qt6VSZjwsap6ZyaXPH93kjOSfDnJqwaoEQAAAAAA/o2xw4WVbOaAobV2X1WdlOS8\nJM9I8uIkX0lyYZJzW2v37OYR/yXJR5I8N5Mw4cAkf5Pk4iSvaK3931lrBAAAAACA+/P4V18x2mf/\nr5983GifPYshdjCktXZ3JjsWztrNvHWL9P1LkjdM/wAAAAAAACvATJc8AwAAAAAAa5OAAQAAAAAA\n6CZgAAAAAAAAugkYAAAAAACAbgIGAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYA\nAAAAAKCbgAEAAAAAAOgmYAAAAAAAALoJGAAAAAAAgG4CBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAA\nugkYAAAAAACAbgIGAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKCbgAEA\nAAAAAOgmYAAAAAAAALoJGAAAAAAAgG4CBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAuq0fuwAAAAAA\nAMax/eKzc9eNV49dBiuUHQwAAAAAAGuUcGFiw+bjxi5hRbKDAQAAAABgjXv8q68YuwRWIDsYAAAA\nAACAbgIGAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKDb+rELAAAAAAAY\nw/aLz85dN149dhmwYtnBAAAAAACsScKFiQ2bjxu7BFYoOxgAAAAAgDXt8a++YuwSYEWygwEAAAAA\nAOgmYAAAAAAAALoJGAAAAAAAgG4CBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAugkYAAAAAACAbgIG\nAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKDb+iEeUlUbk5yb5JQkRyS5\nI8nlSc5prX1pD9Y/MMkvJDk1ycOn6/80yctba3cMUSMAAAAAADCcmXcwVNXBSa5McnqSdyd5bpI3\nJ9ma5KqqOmw369dnEib8UpI/SfL8JH+U5L8m+XBVHThrjQAAAAAAwLCG2MFwZpLHJDmjtXbBXGdV\nXZ/k0iTnJDnrfta/KMn3JTmttfa2ad/vVtUdSZ6X5LgkHx2gTgAAAAAAYCBD3MHwnCQ7k1y0oP+9\nSW5LcmpVrbuf9Wck2Z7k7fM7W2uvbK0d01oTLgAAAAAAwH5mpoChqg5NsjnJda21e+ePtdZ2Jbkm\nyeFJjl5i/ZHT9R+czk9VHbSbQAIAAAAAABjZrEckHTVtb1ti/JZpe0ySmxYZ3zxtv1BVP5vkJdNn\n3ltVH0jy0tba52esEQAAAAAA9lvbt29f9s/ctGnTzM+Y9YikQ6btPUuM71wwb6GN0/a0JC9M8qok\nP5LJJdEnZ3JJ9BEz1ggAAAAAAAxsiEueZ3HgtH1Ykn/fWvu76c/vq6ovZxI4/FySl45RHAAAAAAA\n7GtD7CYYw6w7GO6etg9eYvwhC+Yt9I/T9n3zwoU5c5dGP2XvSgMAAAAAAPaVWQOGm5PsSnLkEuNz\ndzQsdYDUF6ftAYuM3TF99qF7WxwAAAAAALBvzBQwtNZ2JvlMkmOr6qD5Y1V1QJLjk9zaWrtlsfVJ\nPpvkriTftcjYw5Osy9IXSAMAAAAAACOZdQdDMjnK6EGZXNI836lJHprkwrmOqtpcVUfP/dxa+1qS\ndyR5XFWdvGD9i6ftZQPUCAAAAAAADGiIS57flOTZSc6vqqOSXJvk0UnOSnJDkvPnzf1ckpZk87y+\nc5P8QJJ3VdV/z+TYpBOT/HiST0+fDwAAAAAA7Edm3sHQWrsvyUlJXp/kGUkuSXJaJjsXntJau2c3\n629P8sQkv5PkJ5P8zyTfm+S3puv/adYaAQAAAACAYQ2xgyGttbsz2bFw1m7mrVui//ZMjlhaeMwS\nAAAAAACwHxriDgYAAAAAAGCNETAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAA\nAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQ\nTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAA\nAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0\nEzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN3Wj10AAAAAALD8tl98\ndu668eqxywBWMDsYAAAAAGANEi5MbNh83NglwIplBwMAAAAArGGPf/UVY5cArFB2MAAAAAAAAN0E\nDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAA\nAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcB\nAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABAt/VDPKSqNiY5N8kpSY5IckeSy5Oc01r7\nUuezDkpyfZJvS/LU1tqVQ9QIAAAAAAAMZ+YdDFV1cJIrk5ye5N1JnpvkzUm2Jrmqqg7rfOQ5mYQL\nAAAAAADAfmqIHQxnJnlMkjNaaxfMdVbV9UkuzSQwOGtPHlRVj0ny80k+leSxA9QGAAAAAADsA0Pc\nwfCcJDuTXLSg/71JbktyalWt291DquoBSd6S5K8z2QEBAAAAAADsp2YKGKrq0CSbk1zXWrt3/lhr\nbVeSa5IcnuToPXjci5Mcl+RFSe7dzVwAAAAAAGBEsx6RdNS0vW2J8Vum7TFJblrqIVX18CSvSvL2\n1toVVfXcGesCAAAAAIAVYfv27cv+mZs2bZr5GbMekXTItL1nifGdC+Yt5Y1Jvpbk52asBwAAAAAA\nWAZDXPI8k6p6VpKnJXlea+32sesBAAAAAIDlNMRugjHMuoPh7mn74CXGH7Jg3tepqo1JXpvkw621\nt85YCwAAAAAAsExm3cFwc5JdSY5cYnzujoalDpD6jSTfmOS8qpr/jMOm7eHT/tsXXiINAAAAAACM\nZ6YdDK21nUk+k+TYqjpo/lhVHZDk+CS3ttZuWWx9ku9LcmCSDyW5dd6f35qOv3P68/fMUicAAAAA\nADCsIe5guCjJ65K8MJPjjuacmuShSc6d66iqzUnuba3dPO16XpIHLfLM70tyZpKzk9ww/QMAAAAA\nAOwnhggY3pTk2UnOr6qjklyb5NFJzsokGDh/3tzPJWlJNidJa+3PF3tgVX3z9H9+orV25QA1AgAA\nAAAAA5r1kue01u5LclKS1yd5RpJLkpyW5MIkT2mt3TPrZwAAAAAAAPuXIXYwpLV2dyY7Fs7azbx1\ne/i8SzIJKgAAAAAAgP3QzDsYAAAAAACAtUfAAAAAAAAAdBvkiCQAAAAAWEm2bt2abdu2jV0GwIpm\nBwMAAAAAa45wYWLD5uPGLgFYwexgAAAAAGDN2rFjx6iff9KFnxr18wFmYQcDAAAAAADQTcAAAAAA\nAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBt/dgFAAAAALD8tm7dmm3bto1dBgArmIABAAAA\n1hh/sTy8q666Khs3bhy7DDpt2bJl7BIAVjQBAwAAAKwxwgXmbNmyJX/4h384dhkArFACBgAAAFij\nduzYMXYJK9rJJ5+cq666Kklywgkn5LLLLhu5IgBYXi55BgAAAAAAugkYAAAAAACAbgIGAAAAAACg\nm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKDb+rELAAAAgOW0devWbNu2bewyAABW\nPDsYAAAAWFOECxNbtmwZuwQAYIWzgwEAAIA1aceOHWOXAACwotnBAAAAAAAAdBMwAAAAAAAA3QQM\nAAAAAABANwEDAAAAAADQTcAAAAAAAAB0Wz92AQAAACyvrVu3Ztu2bWOXAQDACmcHAwAAwBojXEi2\nbNkydgkAACueHQwAAABr1I4dO8YuAQCAFcwOBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAugkYAAAA\nAACAbgIGAAAAAACg2/qxCwAAAFhO2y8+O3fdePWoNWx82agfDwAAgxAwAADAGrJ169Zs27Zt7DLY\nD2zZsmXsEgAAWOEEDAAAsIYIFyY2bD4um573a6N9/gef/9jRPhsAAIYiYAAAYM3YH47GSfaP43F2\n7Ngx2mefdOGnRvtsAABgOAIGAIA1wtE4zHE0DgAAMAQBAwDAGiFcmBj7aJzE8TgAAMDqIGAAAFhj\nxjwaJ3E8DgAAwGrxgLELAAAAAAAAVh4BAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABA\nNwEDAAAAAADQTcAAAAAAAAB0Wz/EQ6pqY5Jzk5yS5IgkdyS5PMk5rbUv7cH6/zBd/4QkByW5Ncm7\nk7yitfaPQ9QIAAAAAAAMZ+YdDFV1cJIrk5yeSSjw3CRvTrI1yVVVddhu1j87yUeTPDyTkOH0JJ9J\n8rIkH6wquywAAAAAAGA/M8QOhjOTPCbJGa21C+Y6q+r6JJcmOSfJWYstrKoHJnljJjsWjmut3TUd\nuriqLs1kR8QPZrIbAgAAAAAA2E8MsTvgOUl2JrloQf97k9yW5NSqWrfE2m9J8sdJfn1euDBnLlT4\njgFqBAAAAAAABjTTDoaqOjTJ5iQfba3dO3+stbarqq5J8vQkRye5aeH61tpfZ3Kk0mI2TNu7Z6kR\nAAAAAAAY3qxHJB01bW9bYvyWaXtMFgkYllJVByZ5XpJ7krxnr6sDAAAAAID93Pbt25f9Mzdt2jTz\nM2YNGA6ZtvcsMb5zwbzdml7q/JYk357k51prf7P35QEA/KutW7dm27ZtY5cBAAAAq8IQlzwPpqoO\nTvKOTC53/u3W2m+NXBIAsIoIF5ItW7aMXQIAAAALDLGbYAyzBgxz9yM8eInxhyyYt6SqOjzJ+5I8\nMckrWmu/PGNtAACL2rFjx9glAAAAwIo3a8Bwc5JdSY5cYnzujob7PUCqqh6W5KOZXAb9E621S2as\nCwAAAAAA2IceMMvi1trOJJ9JcmxVHTR/rKoOSHJ8kltba7cstn4679AkH0jyrUn+k3ABAAAAAAD2\nf0PcwXBRktcleWGS187rPzXJQ5OcO9dRVZuT3Ntau3nevNcm+a4kT2+tvX+AegCARbjgGAAAABjS\nEAHDm5I8O8n5VXVUkmuTPDrJWUluSHL+vLmfS9KSbE6SqvqOJKcl+WySA6rqRxd5/u2ttQ8PUCcA\nrGnChQmXHAMAAMAwZg4YWmv3VdVJSc5L8owkL07ylSQXJjm3tXbP/Sw/Nsm6JI9K8q4l5nw4yVNm\nrRMAmHDBMQAAADCEIXYwpLV2dyY7Fs7azbx1C36+JMklQ9QAAAAAAAAsn5kueQYAAAAAANYmAQMA\nAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA\n3QQMAAAAAABAt/VjFwAAy2H7xWfnrhuvHrWGjS8b9eMBAAAABmUHAwBrwtjhwv5iy5YtY5cAAAAA\nrBJ2MACsAVu3bs22bdvGLmO/8PhXXzHaZ3/w+Y8d7bMBAAAAhmYHA8AaIFyY2LD5uLFLAAAAAFg1\n7GAAVj2/vf+vduzYMernn3Thp0b9fAAAAACGYwcDsOoJFyacvQ8AAADAkOxgANaMsX97HwAAAABW\nEwEDrAGOCAIAAAAAhuaIJFgDhAuOBwIAAACAodnBAGuII4IAAAAAgKHYwQAAAAAAAHQTMAAAAAAA\nAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdFs/dgGwr23dujXbtm0buwwAAAAAgFXFDgZWPeHC\nxJYtW8YuAQAAAABYRexgYM3YsWPH2CUAAAAAAKwadjAAAAAAAADd7GBY5dw/AAAAAADAvmAHwyon\nXJhw/wAAAAAAwLDsYFgj3D8AAAAAAMCQ7GAAAAAAAAC6CRgAAAAAAIBua+qIpI0bN45dAgAAAAAA\nrAp2MKwBLjgGAAAAAGBoa2oHg4uOAQAAAABgGHYwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAA\nAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAA\nQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQbf0QD6mqjUnOTXJK\nkiOS3JHk8iTntNa+tAfrj09yTpInJjk4yV8leUuSN7TWdg1RIwAAAAAAMJyZdzBU1cFJrkxyepJ3\nJ3lukjcn2Zrkqqo6bDfrT0zyoSSbkpyX5AWZBAyvS/I/Zq0PAAAAAAAY3hA7GM5M8pgkZ7TWLpjr\nrKrrk1yayc6Es+5n/QVJvprkSfN2O7y9qt6T5Geq6q2ttesHqBMAAAAAABjIul27ZjuBqKo+l+Th\nSb6ptXbvvP51SW5J8sAkD1vsqKOqOi7JJ5Nc2Fp7wYKx70+yLcn5rbWf76nprrvucqwSAAAAAAB0\n2rBhw7o9nTvTEUlVdWiSzUmumx8uJMk0ULgmyeFJjl7iEU+Ytp9YZOzqaXvcLDUCAAAAAADDm/UO\nhqOm7W1LjN8ybY9ZYvwRS61vrf1DkjvvZy0AAAAAADCSWQOGQ6btPUuM71wwb2/WL7UWAAAAAAAY\nyawBAwAAAAAAsAbNGjDcPW0fvMT4QxbM25v1S60FAAAAAABGsn7G9Tcn2ZXkyCXG5+5o2L7E+E3T\n9t+sr6oNSTYkua63qJ5brgEAAAAAgH4z7WBore1M8pkkx1bVQfPHquqAJMcnubW1dsti65N8fNqe\nsMjYk6btx2apEQAAAAAAGN4QdzBclORBSV64oP/UJA9NcuFcR1Vtrqqj535urX06kx0Kz6yqI+fN\nW5fkJUnuS/I7A9QIAAAAAAAMaNYjkpLkTUmeneT8qjoqybVJHp3krCQ3JDl/3tzPJWlJNs/r+6kk\nH0rykap6TZI7kzwryYlJzmmtfWGAGgEAAAAAgAHNvIOhtXZfkpOSvD7JM5JckuS0THYuPKW1ds9u\n1l+d5MlJbkzyq0nenORbkjyvtfbKWesDAAAAAACGt27Xrl1j1wAAAAAAAKwwQ9zBAAAAAAAArDEC\nBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAugkYAAAAAACAbgIGAAAAAACgm4ABAAAAAADotn7sAvaF\nqtqY5NwkpyQ5IskdSS5Pck5r7Utj1gawXKrqkiSn3c+Ul7TWXrNM5QAsq6o6MMkrk7w0yUdaa09Z\nZM7BSX4xybOSHJXk7iR/nsk7418tX7UA+8buvgur6rxM/tt5Ka9trZ25zwoEWAZVdXiSX07yn5M8\nLMmdST6W5BWttesWzPV+CJ1WXcAw/SK4MsnmJG9Icm2STZm8UJ1YVY9rrf39eBUCLLufSnL7Iv2f\nXu5CAJZDVVWSdyT5tiTrlpizLsl7k3x/krcm+ZUk/y6Td8ZPVNUTWmtfWJ6KAYa3J9+F85yX5C8X\n6d8+cFkAy6qqHprkL5J8U5I3Jrk+k+/Fn0nyA1V1QmvtU9O53g9hL6y6gCHJmUkek+SM1toFc51V\ndX2SS5Ock+SskWoDGMP7W2tfHLsIgOVQVYcluS6TvxR7fJIbl5j6rCRbkvxGa+1l89ZfkckvqPxG\nkqfv22oB9o2O78I5H26tXbmv6wIYwSuTHJnkGa21P57rrKr/neQ9mexW+LFpt/dD2Aur8Q6G5yTZ\nmeSiBf3vTXJbklOniSQAAKvPgUneluSJrbV2P/OeM21fN79zuk3+40n+Y1V9474pEWCf29PvQoDV\n7m+S/H4mv3Q83weS7EryHfP6vB/CXlhVOxiq6tBMjkb6aGvt3vljrbVdVXVNJknj0UluGqFEgNFU\n1UFJ/rm19s9j1wKwr7TWvpzk9D2Y+oQkt7bWbltk7OokJyQ5NpMzdwFWlI7vwq8zvbMhrbWvDV4U\nwAhaa+ctMXRIJsfH3T2vz/sVBDKJAAAEQ0lEQVQh7IXVtoPhqGm72BdBktwybY9ZhloA9hdnVNXN\nSf4pyb1V9cmq+uGxiwIYS1UdkmRjvDMCzPmxqvrLJPdm8r54Q1X9+NhFAexDL5q2v5d4P4RZrLaA\n4ZBpe88S4zsXzANYC34gya8leVqSl2dy8f2fVNWzRq0KYDzeGQG+3g8ledO0/dkkG5K8rar+26hV\nAewDVfVDSX45k8uf3zjt9n4Ie2lVHZEEwNf5zUzOmrxy3rFxl1fV+5J8OslvVtU7W2v/b7QKAQAY\n0+8m+WSST7TW7pr2faCq/iCTi6HPrao3t9buHK1CgAFV1XOSXJjki0lOdiQczG61BQxz56Y9eInx\nhyyYB7BqtdZuSHLDIv2fraork2xJ8u1J/nKZSwMYm3dGgCSttc8n+fwi/V+pqj9K8oJMzhz/0+Wu\nDWBoVXVOkl9Ncm2Sp7XWvjJv2Psh7KXVdkTSzZncAH/kEuNzdzRsX55yAPZbX562h45aBcAIWmv/\nmOT2eGcEuD/eF4FVo6pek0m48L4k37sgXPB+CDNYVQFDa21nks8kObaqDpo/VlUHJDk+k9vgb1ls\nPcBqUVWHVtWzq+oHl5oybW9drpoA9jMfT3JkVX3rImNPSvJPSa5b3pIAlk9VfUNVba2qZy41Zdr6\n72dgRZvuXPjZJG9N8vTW2lL3LHg/hL2wqgKGqYuSPCjJCxf0n5rkoZmcswaw2n0tyW8nuaSqvnn+\nQFV9f5LvTnJNa+22MYoD2A9cNG1fMr+zqr43yeOS/MH0N9kAVqXW2n1JfiWTy5w3zR+rqkclOSXJ\nbUmuGaE8gEFU1VMz+a67NMnzW2v/cj/TvR/CXli3a9eusWsYVFV9Q5KPZvJ//Ndncq7ao5Oclck2\npifeT1IJsGpU1WlJLsnk+Lg3JfnbJI9NcnqSryZ5Smvt06MVCLAPTP9S7FHzut6V5LNJzp3Xd3lr\n7Z6qeneSpye5OMmfZ7L1/aVJdib57tba3y5P1QDD2tPvwiTfk+QDSXZk8sspN2eyc+GnkzwwySmt\ntQ8sR80A+0JV/UUm/x384iRfWWLa5XN/V+j9EPqtuoAhmRwNkuS8JM9IckQmXyCXJjm3tbZjxNIA\nltX0tzV+MckTMrms6m+TfDDJq1prN41ZG8C+UFXn5ev/Am0xR7fWvlhVByb5hUx2uj4iyd8n+bMk\nL2+tOUIOWLE6vwuPTfJLSZ6cZEOSv0vy4SS/7pdRgJWuqvbkLz6Pbq19cTrf+yF0WpUBAwAAAAAA\nsG+txjsYAAAAAACAfUzAAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0\nEzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAA\nAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABAt/8Pc2W+u29snhgAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + "metadata": { + "id": "MvFwyz9hwROg", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "alpha = alpha_mean_ # We're basing these values on the outputs of our model above\n", + "beta = beta_mean_\n", + "p_deterministic = tfd.Deterministic(name=\"p\", loc=1.0/(1. + tf.exp(beta * temperature_ + alpha))).sample()#seed=6.45)\n", + "simulated_data = tfd.Bernoulli(name=\"bernoulli_sim\", \n", + " probs=p_deterministic_).sample(sample_shape=10000)\n", + "[ \n", + " bernoulli_sim_samples_,\n", + " p_deterministic_\n", + "] =evaluate([\n", + " simulated_data,\n", + " p_deterministic\n", + "])" + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "gDyVY1wmgjx4", + "colab_type": "code", + "outputId": "d48ffb1b-57bf-41e5-eda5-4289bef1ad4a", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 734 + } + }, + "cell_type": "code", + "source": [ + "simulations_ = bernoulli_sim_samples_\n", + "print(\"Number of simulations: \", simulations_.shape[0])\n", + "print(\"Number data points per simulation: \", simulations_.shape[1])\n", + "\n", + "plt.figure(figsize(12.5, 12))\n", + "plt.title(\"Simulated dataset using posterior parameters\")\n", + "for i in range(4):\n", + " ax = plt.subplot(4, 1, i+1)\n", + " plt.scatter(temperature_, simulations_[1000*i, :], color=\"k\",\n", + " s=50, alpha=0.6)\n", + " " + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "Number of simulations: 10000\n", + "Number data points per simulation: 23\n" + ], + "name": "stdout" + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAVWCAYAAACD3dYWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3X+0XnV9J/r34eQXIZAaCR0tFMJN\n/KZ6ta3tiEO1OnawPxgnzKhXe6UqTnutY1OVUuXSYYGtP9AyvbWxjk6loM60XfaHUAS95daiIFaX\ni/qr4pdQg4SlLYkzBkjMSU4494/nOfR4OE9OTp5nn+ec/bxea7E22fu7d77f7PPJ98l5n+/eY1NT\nUwEAAAAAAKA5Jwy7AwAAAAAAAG0nkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaNiKYXegCfv27Zsa\ndh8AAAAAAIB2W79+/dixtrVCBgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhlYQnbu3JmdO3cOuxvAIlL3MJrUPowedQ+jR93D6FH3zEcgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nbMWwO8Die+CBB3LDDTdk165dOXz4cFauXJlNmzZl27ZtOe2004bdPVgy1AoAzK1Nc+Ttt9+eyy67\nLN/85jdz5MiRjI+P54lPfGLe9ra35VnPetawu7cgbbovbRoLAABMG5uamhrIhUopq5K8JcklST5V\na33uAs49N8nlSZ6Z5MQkdyf5gyTvrrUuuIP79u0bzKBa5sCBA9mxY0fuueeerFixIqtXr3702MTE\nRCYnJ7N58+Zs3749a9euHWJPR9fOnTuTJFu2bBlyT0abWmExqXsYTcu19ts0R+7evTvnn39+9u7d\nm7GxsaxY8c8/qzY5OZmpqamceuqpuemmm3LGGWcMsafza9N9adNYZluudQ8cP3UPo0fdj6b169eP\nHWvbgTyyrJRSknwmyWuSHPNv3j33eUn+JsmWJFcm+aV0ApnfS/L/DKJ/dP5hc+WVV2bXrl056aST\nvucfNkmyevXqnHTSSdm1a1fe/OY358CBA0PqKQyXWgGAubVpjty9e3d+8id/Mt/+9rezcuXK7wlj\nkmTFihVZuXJlvv3tb+c5z3lOdu/ePaSezq9N96VNYwEAgLn0HciUUh6X5M4k40l+/Dgu8Z4kB5M8\nu9b6rlrrh2qtL0pyQ5JfLaX8cL99JNmxY0cefPDBrFmz5qjt1qxZk3379mXHjh2L1DNYWtQKAMyt\nTXPk+eefn0OHDj0miJltxYoVmZiYyPnnn79IPVu4Nt2XNo0FAADmMogVMquSfDDJM2utdSEnllLO\nSVKSfLjW+q1Zh9+dzmqbCwfQx5H2wAMP5J577pn3HzbT1qxZk507d2bPnj0N9wyWFrUCAHNr0xx5\n++23Z+/evfOGMdNWrFiRPXv25I477mi4ZwvXpvvSprEAAEAvfQcytdZ/qrW+ptZ68DhOf0Z3+5k5\njn22uz3n+HrGtBtuuOGY/8E5beXKlbn++usb6hEsTWoFAObWpjnysssuy9jYgp6ynBNOOCGXXnpp\nQz06fm26L20aCwAA9LKwT7yDd1Z3e//sA7XWh0op30ly9qB+s+mXKo2aO++8MwcPHszBgwvLzO68\n886R/TMbNn/uw6FWGCZfQzCalkvtt2mO3L17d8bGxnLkyJFjPmdsbCy7d+9ecmNp031p01jms9z6\nC/RP3cPoUffttGXLlr6vMYhHlvXj5O6219sY989ow3GanJxc1PNguVIrADC3Ns2RCwliBnFek9p0\nX9o0FgAA6GXYK2QW1SASrOVo48aNOXCgV+bV29q1a0f2z2xYptNzf+7DoVYYBnUPo2m51X6b5shV\nq1bl8OHDCz5v5cqVS24sbbovbRpLL8ut7oH+qXsYPeqe+Qx7hcyD3e1JPY6vm9GG47Rp06ZMTEws\n6JyJiYls2rSpoR7B0qRWAGBubZojn/jEJy54VcXk5GSe+MQnNtSj49em+9KmsQAAQC/DDmS+3t2e\nPvtAKWV9kvVJPHCvT9u2bTuuf3RecMEFDfUIlia1AgBza9Mc+ba3vS1TU1MLOueRRx7JVVdd1VCP\njl+b7kubxgIAAL0MO5C5o7v9iTmOPbu7vX2R+tJap512WjZv3nzML8g8ePBgNm/enI0bNzbcM1ha\n1AoAzK1Nc+SznvWsnHrqqcf8zf/Jycls3Lgx5557bsM9W7g23Zc2jQUAAHpZ1ECmlLK1lPLomvJa\n6xeS3JnkxaWU02e0G0vyhiSHk3xgMfvYVtu3b88pp5wy7z9wDh48mPXr12f79u2L1DNYWtQKAMyt\nTXPkTTfdlFWrVs0bykxOTmb16tW56aabFqlnC9em+9KmsQAAwFz6DmRKKU8upbxo+r/u7o0z95VS\n1nb335XkY7Mu8Z+SjCf5VCnlV0spL09yU5LnJfnNWus/9NtHOi+7vPLKK7Np06Y8/PDDj3k+88TE\nRPbv359NmzbliiuuyNq1a3tcCdpNrQDA3No0R55xxhn51Kc+lcc//vE5dOjQY4KZycnJHDp0KI9/\n/OPzyU9+MmecccaQejq/Nt2XNo0FAADmMrbQ5yfPVkq5MskV8zTbVGu9t5QylaTWWrfOusaPJ/nN\nJOcmWZ1OcLOj1nrt8fRp3759/Q2q5fbs2ZPrr78+u3btyuHDh7Ny5cqcffbZ2bZtmyX/Q7ZzZ+eV\nSVu2bBlyT0jUCotD3cNoWu6136Y58o477sill16ab37zmzly5EjGx8fzAz/wA3n729++JB9TdjRt\nui9tGsu05V73wMKpexg96n40rV+/fuxY2/YdyCxFAhmWK39pw+hR9zCa1D6MHnUPo0fdw+hR96Np\nIYHMor5DBgAAAAAAYBQJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGrZiEBcppWxIckWSC5I8IcneJDcnubzW\n+q1jOP/CJL+c5IeTrEpyX5KPJnlLrfXbg+gjAAAAAADAsPS9QqaUcmKSW5O8JsmfJ3llkvcleUmS\nT5dSHjfP+W9L8qEkK5Nclk4wc2uS7Un+tpRySr99BAAAAAAAGKZBrJB5fZKnJnltrfU90ztLKV9M\n8pEklye5eK4Tuytrfj3JvUl+stY60T10bSllb5JLk1yU5F0D6CcAAAAAAMBQDOIdMi9Psj/JNbP2\n35Dk/iQXllLGepz7g+mEQp+bEcZM+1R3e9YA+ggAAAAAADA0fQUy3ceJbU1y5+xApdY6leRzSTYm\n2dTjEruSTCTZMsexs7rbr/TTRwAAAAAAgGHr95FlZ3a39/c4fl93e3aSr88+WGvdV0r5rSRvKaXs\nSPK7SR5K8owkv5HkC0n+R599fNTOnTsHdSlolK9VGD3qHkaT2ofRo+5h9Kh7GD3qvp22bJlrXcnC\n9PvIspO72wM9ju+f1e4xaq1vTfJLSX4xyT1J/inJjUn+Lsnzaq0H++wjAAAAAADAUPW7QqZvpZTX\nJPm9JH+V5I+T7ElyTpI3Jrm5lPKztdbvDOL3GkSCBU2aTs99rcLoUPcwmtQ+jB51D6NH3cPoUffM\np99A5sHu9qQex9fNavc9SiklnTDmr2ut58849P+WUr6Y5Pokl6UTzgAAAAAAACxL/T6ybFeSqSSn\n9zg+/Y6ZXg/Ne146odBfzHHsY91r/+t+OggAAAAAADBsfQUytdb9Sb6U5OmllDUzj5VSxpOcm2R3\nrfW+HpeYXlmzZo5jq5OM9TgGAAAAAACwbPS7QiZJrkmyNsmrZ+2/MMlpSd4/vaOUsrWUsmlGmzu6\n25eUUsZmnf/iWW0AAAAAAACWpX7fIZMk703ysiRXl1LOTPL5JE9JcnGSLye5ekbbu5LUJFuTpNZ6\nRynlT9MJX24vpXw4yZ4k/zLJa5P8U5K3DqCPAAAAAAAAQ9P3Cpla6+Ekz0+yI8kLk1yX5BXprIx5\nbq31wDyX+Pkk29N5RNlbu+f/+yR/mOTHjvK4MwAAAAAAgGVhECtkUmt9MJ0VMRfP0272Y8lSaz2S\n5N3d/wAAAAAAAFpnEO+QAQAAAAAA4CgEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAA\nAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAA\nNEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDD\nBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwg\nAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIA\nAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADVsxiIuUUjYkuSLJBUme\nkGRvkpuTXF5r/dYxnL86yaVJLkxyRvf8m5L8Rq117yD6CAAAAAAAMCx9r5AppZyY5NYkr0ny50le\nmeR9SV6S5NOllMfNc/6KdMKX/5zko0l+McmfJfmPST5ZSlnVbx8BAAAAAACGaRArZF6f5KlJXltr\nfc/0zlLKF5N8JMnlSS4+yvm/nOSnkryi1vrB7r7/XkrZm+RVSc5JctsA+gkAAAAAADAUg3iHzMuT\n7E9yzaz9NyS5P8mFpZSxo5z/2iQ7k3xo5s5a61tqrWfXWoUxAAAAAADAstZXIFNKOSXJ1iR31lon\nZh6rtU4l+VySjUk29Tj/9O75f9Vtn1LKmnkCHAAAAAAAgGWl30eWndnd3t/j+H3d7dlJvj7H8a3d\n7T+UUl6X5A3da06UUj6e5JJa6z199vFRO3fuHNSloFG+VmH0qHsYTWofRo+6h9Gj7mH0qPt22rJl\nS9/X6PeRZSd3twd6HN8/q91sG7rbVyR5dZK3JtmW5H1JXpDk06WUJ/TZRwAAAAAAgKHqd4VMv1Z1\nt9+f5H+vtX67++u/LKX8UzoBza8luWQQv9kgEixo0nR67msVRoe6h9Gk9mH0qHsYPeoeRo+6Zz79\nrpB5sLs9qcfxdbPazfZwd/uXM8KYadd0t889vq4BAAAAAAAsDf0GMruSTCU5vcfx6XfM9Hpo3r3d\n7fgcx/Z2r33K8XYOAAAAAABgKegrkKm17k/ypSRPL6WsmXmslDKe5Nwku2ut9/W4xFeT7EvyI3Mc\nOyPJWJL7++kjAAAAAADAsPW7QibpPFpsbZJXz9p/YZLTkrx/ekcpZWspZdP0r2uth5L8UZIfK6W8\nYNb5v9Ld3jiAPgIAAAAAAAzNigFc471JXpbk6lLKmUk+n+QpSS5O8uUkV89oe1eSmmTrjH1XJPnp\nJH9aSrkqnceYPS/JLyT5Qvf6AAAAAAAAy1bfK2RqrYeTPD/JjiQvTHJdklekszLmubXWA/OcvyfJ\nM5N8IMn/leS/JXlOkt/pnv/dfvsIAAAAAAAwTINYIZNa64PprIi5eJ52Yz3270nnkWezH3sGAAAA\nAACw7A3iHTIAAAAAAAAchUAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAA\nAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhKwZxkVLKhiRXJLkgyROS7E1yc5LL\na63fWuC11iT5YpInJfnXtdZbB9FHAAAAAACAYel7hUwp5cQktyZ5TZI/T/LKJO9L8pIkny6lPG6B\nl7w8nTAGAAAAAACgFQaxQub1SZ6a5LW11vdM7yylfDHJR9IJWC4+lguVUp6a5NeT/F2SHx1A3wAA\nAAAAAIZuEO+QeXmS/UmumbX/hiT3J7mwlDI230VKKSck+YMk30hnhQ0AAAAAAEAr9BXIlFJOSbI1\nyZ211omZx2qtU0k+l2Rjkk3HcLlfSXJOkl9OMjFPWwAAAAAAgGWj30eWndnd3t/j+H3d7dlJvt7r\nIqWUM5K8NcmHaq1/XUp5ZZ/9mtPOnTubuCwMnK9VGD3qHkaT2ofRo+5h9Kh7GD3qvp22bNnS9zX6\nfWTZyd3tgR7H989q18t/TXIoya/12R8AAAAAAIAlp98VMn0rpbw0yflJXlVr3dPk7zWIBAuaNJ2e\n+1qF0aHuYTSpfRg96h5Gj7qH0aPumU+/K2Qe7G5P6nF83ax236OUsiHJu5J8stZ6bZ99AQAAAAAA\nWJL6XSGzK8lUktN7HJ9+x0yvh+b9dpLvS3JlKWXmNR7X3W7s7t9Ta53os68AAAAAAABD0dcKmVrr\n/iRfSvL0UsqamcdKKeNJzk2yu9Z6X49L/FSSVUn+JsnuGf/9Tvf4h7u//lf99BMAAAAAAGCYBvEO\nmWuS/F6SV6fz+LFpFyY5LckV0ztKKVuTTNRad3V3vSrJ2jmu+VNJXp/ksiRf7v4HAAAAAACwLA0i\nkHlvkpclubqUcmaSzyd5SpKL0wlSrp7R9q4kNcnWJKm1fmKuC5ZSTu3+72dqrbcOoI8AAAAAAABD\n09cjy5Kk1no4yfOT7EjywiTXJXlFkvcneW6t9UC/vwcAAAAAAMByNogVMqm1PpjOipiL52k3dozX\nuy6dYAcAAAAAAGDZ63uFDAAAAAAAAEcnkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaNiKQVyklLIhyRVJLkjy\nhCR7k9yc5PJa67eO4fxndc9/RpI1SXYn+fMkv1VrfXgQfQQAAAAAABiWvlfIlFJOTHJrktekE6K8\nMsn7krwkyadLKY+b5/yXJbktyRnphDKvSfKlJG9M8lelFKt4AAAAAACAZW0QK2Ren+SpSV5ba33P\n9M5SyheTfCTJ5UkunuvEUsrqJP81nRUx59Ra93UP/WEp5SPprLj5mXRW2wAAAAAAACxLg1h98vIk\n+5NcM2v/DUnuT3JhKWWsx7n/IslfJHn7jDBm2nQI87QB9BEAAAAAAGBo+lohU0o5JcnWJLfVWidm\nHqu1TpVSPpfkPyTZlOTrs8+vtX4jnUeczWV9d/tgP30EAAAAAAAYtn4fWXZmd3t/j+P3dbdnZ45A\nppdSyqokr0pyIMn1x927WXbu3DmoS0GjfK3C6FH3MJrUPowedQ+jR93D6FH37bRly5a+r9FvIHNy\nd3ugx/H9s9rNq5RyQpI/SPJDSX6t1vrN4+8eAAAAAADA8PUbyAxUKeXEJH+U5IIkv19r/Z1BXn8Q\nCRY0aTo997UKo0Pdw2hS+zB61D2MHnUPo0fdM58T+jx/+v0uJ/U4vm5Wu55KKRuTfCKdMOa3aq2/\n0mffAAAAAAAAloR+V8jsSjKV5PQex6ffMXPUh+aVUr4/yW1JNiW5qNZ6XZ/9AgAAAAAAWDL6WiFT\na92f5EtJnl5KWTPzWCllPMm5SXbXWu/rdY1SyilJPp7kB5P8O2EMAAAAAADQNv0+sixJrkmyNsmr\nZ+2/MMlpSd4/vaOUsrWUsmlWu3cl+ZEkP19r/dgA+gMAAAAAALCk9PvIsiR5b5KXJbm6lHJmks8n\neUqSi5N8OcnVM9relaQm2ZokpZSnJXlFkq8mGS+lvGiO6++ptX5yAP0EAAAAAAAYir4DmVrr4VLK\n85NcmeSFSX4lyQPprIy5otZ64CinPz3JWJInJ/nTHm0+meS5/fYTAAAAAABgWAaxQia11gfTWRFz\n8Tztxmb9+rok1w2iDwAAAAAAAEvVIN4hAwAAAAAAwFEIZAAAAAAAABomkAEAAAAAAGiYQAYAAAAA\nAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAA\nGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh\nAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQ\nAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkA\nAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGrZi2B0A\noHkPPPBAbrjhhuzatSuHDx/OypUrs2nTpmzbti2nnXbasLsHNEDdAywNN954Y970pjdl7969mZqa\nyvj4eDZs2JB3vOMdecELXjDs7o2kNs2RbRpLm3z1q1/NO9/5ztx1112ZnJzMunXrsmnTprzxjW/M\nk5/85GF3b0GmxzL7a2w5jqUt2lT3bRpLm7gvzRqbmprq+yKllA1JrkhyQZInJNmb5OYkl9dav3UM\n55+b5PIkz0xyYpK7k/xBknfXWhfcwX379vU/KBiCnTt3Jkm2bNky5J7QFgcOHMiOHTtyzz33ZMWK\nFVm9evWjxyYmJjI5OZnNmzdn+/btWbt27RB7OrrUPYOm7pcHtQ/td/fdd+e8887Lww8/nCQZGxtL\nkpxwwgk5cuRIkmTdunW55ZZb8qQnPWlo/RwlbZoj2zSWNtm7d28uuuiifOMb38gJJ/zzQ2lWrVqV\nQ4cO5ZFHHsmZZ56Za6+9NqeeeuoQezq/2WNZtWrVo8eW21jaok1136axzLacP+e3+b40bf369WPH\n2rbvQKaUcmKSzybZmuTdST6fZEuSS5LsSfJjtdb/dZTzn5fkY0l2J9mR5H8m2ZbkhUneVWt9/UL7\nJJBhuVrOf2mz9Bw4cCBXXnllHnzwwaxZs6Znu4MHD2b9+vW54oorTKhDoO4ZJHW/fKh9aLe77747\nz372szM5OZnx8fEkySOPPJIk3/NN2iNHjmTFihW57bbbhDINa9Mc2aaxtMnevXuzbdu27N+//9Hw\n4tChQ0nymDBj3bp1uf7665dskDHXWOayHMbSFm2q+zaNZS7L9XN+2+9L0xYSyAziHTKvT/LUJK+v\ntV5ca/2jWuubk/xCkk3prHw5mvckOZjk2bXWd9VaP1RrfVGSG5L8ainlhwfQR4CRs2PHjnkn0iRZ\ns2ZN9u3blx07dixSz4CmqHuApeG88877njCml/Hx8UxOTua8885bpJ6NrjbNkW0aS5tcdNFF8wYY\nSSecefjhh3PRRRctUs8Wrk1jaYs21X2bxtIm7sviGUQg8/Ik+5NcM2v/DUnuT3JhKWXOhKiUck6S\nkuTDczza7N1JxpJcOIA+AoyUBx54IPfcc8+8E+m0NWvWZOfOndmzZ0/DPQOaou4BloYbb7wxDz/8\n8LxhzLTx8fE89NBDufnmmxvu2ehq0xzZprG0yVe/+tV84xvfmDfAmLZq1arce++9+drXvtZwzxau\nTWNpizbVfZvG0ibuy+LqK5AppZySzqPK7qy1Tsw81n33y+eSbExnpcxcntHdfmaOY5/tbs/pp48A\no+iGG27IihUrFnTOypUrc/311zfUI6Bp6h5gaXjTm9604HPGxsZyySWXNNAbknbNkW0aS5u8853v\n/J7HER6L8fHxXHXVVQ316Pi1aSxt0aa6b9NY2sR9WVwL+5N+rDO72/t7HL+vuz07ydfnOH5Wr/Nr\nrQ+VUr7TPXcgpp/hB0udr1X6deedd+bgwYM5ePDggs/z9Tcc/tzpl7pfnvzZQ/vs3bs3Y2Njj74z\nZra59o+NjWXv3r3+TmhIm+bINo2lTe66664k//zOmNl67b/rrruW3H2ZbyxHO2+pjaUt2lT3bRrL\nfJZTf0fpvvRrEO8G6veRZSd3twd6HN8/q93xnN/rXAB6mJycXNTzgOFT9wBLw9TU1KKex/zaNEe2\naSxt0qb70qaxtEWb7kmbxtIm7svi6neFzLIyiAQLmjSdKvtapV8bN27MgQO9su7e1q5d6+tvkal7\nBkXdLy9qH9prfHx8zlUw0/sCDnvyAAAgAElEQVR6PQrohBNO8HdCQ9o0R7ZpLG2ybt26fPe7333M\n/ulVJr3ex3LiiScuufvSayzzWYpjaYs21X2bxtLLcvycPwr3ZSnpd4XMg93tST2Or5vV7njO73Uu\nAD1s2rQpExMT8zecYWJiIps29XrlF7DUqXuApWHDhg05cuTIgs45cuRINmzY0FCPaNMc2aaxtMmm\nTZsW/IivQ4cOLcn70qaxtEWb6r5NY2kT92Vx9RvI7EoyleT0Hsen3zHT62Fy0++Vecz5pZT1SdYf\n5VwAeti2bduCl45OTk7mggsuaKhHQNPUPcDS8I53vGPB50xNTeXqq69uoDck7Zoj2zSWNnnjG9/Y\n871RvRw5ciSXXnppQz06fm0aS1u0qe7bNJY2cV8WV1+BTK11f5IvJXl6KWXNzGOllPEk5ybZXWu9\nr8cl7uhuf2KOY8/ubm/vp48Ao+i0007L5s2bj/mFbAcPHszmzZuzcePGhnsGNEXdAywNL3jBC7Ju\n3bpjXiVz5MiRnHzyyfm5n/u5hns2uto0R7ZpLG3y5Cc/OWeeeeYxryw5dOhQzjrrrGzdurXhni1c\nm8bSFm2q+zaNpU3cl8XV7wqZJLkmydokr561/8IkpyV5//SOUsrWUsqja5lqrV9IcmeSF5dSTp/R\nbizJG5IcTvKBAfQRYORs3749p5xyyrwT6sGDB7N+/fps3759kXoGNEXdAywNt9xyS1asWDFvKHPk\nyJGsWLEit9xyyyL1bHS1aY5s01ja5Nprr81JJ500b5Bx6NChrFu3Ltdee+0i9Wzh2jSWtmhT3bdp\nLG3iviyesampqb4uUEpZmeS2JD+WZEeSzyd5SpKL03nc2DNrrQe6baeS1Frr1hnnn5Pkb5L8Y5Lf\nTfKdJC9N8rNJLq+1vmWhfdq3b19/g4IhWY4v/mJpO3DgQHbs2JGdO3dm5cqVWb169aPHJiYmMjk5\nmc2bN2f79u1Zu3btEHs6utQ9g6bulwe1D+13991357zzzstDDz2UsbGxjI2NJUlOOOGEHDlyJFNT\nUzn55JNzyy235ElPetKQezsa2jRHtmksbbJ3795cdNFFuffeezM+Pv7o/lWrVuXQoUM5cuRIzjrr\nrFx77bU59dRTh9jT+c0ey6pVqx49ttzG0hZtqvs2jWW25fw5v833pWnr168fO9a2fQcySVJKOSXJ\nlUlemOQJSR5I8pEkV9Ra/+eMdo8JZLr7fzzJb6bziLPVSe5KsqPWelwRu0CG5Wo5/6XN0rZnz55c\nf/312bVrVw4fPpyVK1fm7LPPzrZt2ywxHTJ1T1PU/dKm9mF03Hzzzbnkkkuyd+/eTE1NZXx8PBs2\nbMjVV1/tMWVD0qY5sk1jaZOvfe1rueqqq3LXXXdlcnIy69aty9lnn503velNy+7RXtNjmf01thzH\n0hZtqvs2jWVaGz7nt/G+NG3RA5mlRiDDctWGv7SBhVH3MJrUPowedQ+jR93D6FH3o2khgcwg3iED\nAAAAAADAUQhkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEA\nAAAAAGjY2NTU1LD7MHD79u1r36AAAAAAAIAlZf369WPH2tYKGQAAAAAAgIYJZAAAAAAAABomkAEA\nAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGjU1NTQ27DwAAAAAAAK1mhQwAAAAAAEDDBDIAAAAAAAAN\nE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCB\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRsxbA7AKOklHJdklccpckbaq2/W0q5MskVR2n3rlrr\n6wfZN6A5pZSfTXJpkqcnmUzyd0neUmv9xKx2Jyb5v5O8NMmZSR5M8okkl9da717UTgN9OZa6N99D\ne5RSpo6h2aZa673d9uZ8WOYWUvfmfGiXUspTklyW5HlJTk3ynSR3JPntWuvtM9qZ73kMgQwMx39K\nsmeO/V+Y9esrk/z9HO12DrpDQDNKKa9Kck2STyV5XZKTk7whycdLKc+vtd7abTeW5IYk/ybJtUne\nnOSJSS5J8plSyjNqrf+w+CMAFupY636GK2O+h+XuxUc59vYk69P9/G/Oh9Y45rqf4cqY82FZK6X8\naJLbkxxK8u4kdyc5I8lrk3yylHJBrfVG8z29CGRgOD42/dNx8/jkHN+0AZaJUsq/SPJ7Sf6/JD9d\na32ku//GJJ9Jcn6SW7vNX5rkvHR+ouaNM67x10k+n+S3k/yHRes8cFwWWPfTzPewzNVa/2yu/aWU\nC5JsTvLKWuv+7m5zPrTAAut+mjkflr//nGRtkn9fa/2r6Z2llL9IcleS30xyY8z39OAdMgDQnFck\nOSnJldPflE2SWuvXa63fX2v99RltX97d/t7MC9Ra70xn6fO/LaV8X9MdBvq2kLoHWqyUcnKSHUlu\nq7V+YMYhcz601FHqHmiP/627vW3mzlrr15I8kOSs7i7zPXMSyMAQlVLWlFLmXalWSllVSlm1GH0C\nBuq8JA+l81PxKaWMl1JW92j7jCS7a633z3Hss0lWpvMuCmBpW0jdfw/zPbTO5ek8muS1s/ab86G9\netX99zDnw7J2V3f7pJk7Synrk3xfkq90d5nvmZNABobjtaWUXUm+m2SilPK3pZSfm6Pd/1FK+fsk\nE912Xy6l/MKi9hTox9Yk/5DkR0opn0ynlg+WUr5SSnnpdKPuT9JtSDLXB7Ukua+7PbvJzgIDcUx1\nP4v5HlqmlHJaOt+Q/WCt9csz9pvzoaV61f0s5nxY/t6a5H8l+WAp5VmllFNLKU9N5z0xU0kuN99z\nNAIZGI6fTvK2dJ4j/xtJtiT56BzfqPnZJO/tbl+XzksBP1hKedMi9hU4fhvS+QmZm5J8OskFSbZ3\n9/1xKeU/dtud3N0e6HGd/bPaAUvXsdb9TOZ7aJ83JlmTzjdtZjLnQ3v1qvuZzPmwzNVav5LkXyUZ\nT+exZXuSfCnJOem8Q/LWmO85inkflQQM1H9J8sdJbq21TnT33VxK+cskX0jyX0opH07y35P8bZLP\n1Fr3ddt9vJTyJ0m+luSKUsr7aq3fWeT+AwuzKp3nx76s1vpH0ztLKTels8z5baWU64bTNaAhx1T3\ntdYjMd9DK5VSHpfkNUk+Wmu9Z9j9AZp3DHVvzoeWKKWUJDcnWZ3kDenU8GlJfi3JjaWUFyb5++H1\nkKVOIAOLqLts+TFLl2utXy2l3JrOc+d/qNb690ke8yGu1vpAKeXPkvxSkp9I56dvgaXr4XQ+pP3J\nzJ211l2llL9J8jNJfijJvd1DJ/W4zrru9sEG+ggM1rHW/Ve637Ax30P7/J9J1iaZ64Xe03O5OR/a\n5Wh1H3M+tMr7k/xAOt+/2zW9s5Typ+nU+bXpfN5PzPfMwSPLYOn4p+72lAG1A4bv3vSeax/obk+p\ntT6czjLn03u0PbO73Tm4rgENuTfHUPfHcB3zPSxfL07n/RAfm33AnA+t1bPuj4E5H5aJUspJ6YSn\nd84MY5Kk1vrdJLemE9b8YMz39CCQgUVSSjmllPKyUsrP9GrS3d5fSnlJKeXF87S7r8dxYOn4TDqP\nL3ryHMemP4BNv+TvjiSnl1J+cI62z07y3SR3DryHwKAdU92XUlaa76F9SinrkpybzmOJvtujmTkf\nWmS+ujfnQ6ucmGQsnfdFzWXNjK35njkJZGDxHEry+0muK6WcOvNAKeXfJPmXST5Xa92d5M3pvNhv\ny6x2T07n5cD3J/ncovQa6Md13e0VpZSx6Z2llKel8wHsS7XW6X94XdPdvmHmBUopz0nyY0n+pPtT\ntcDSdl13e9S6r7Uejvke2uhpSVYm+cpR2pjzoV2OWvfmfGiPWuvedFa1PK1bv48qpWxI8rx0HkP2\nlZjv6cE7ZGCR1FoPllJel843aj5XSnlvkn9M8qPpvPxvX5JXd5u/NsnHk9xeSvn9JLvS+amZ7Uke\nSfJL3Q91wBJWa/1sKWVHOrX7l6WUD6fzE/JvSDKZ5HUz2t5YSvmLJK8vpZyS5BPdtpek8w+0yxa7\n/8DCLaTuY76HNnpSd3tvrwbmfGidees+5nxok19L8pEkt5VS3p3k7iSnpvM5//uS/HKtdSKJ+Z45\nWSEDi6jW+oF00vJ70vmL95okL0ryP5I8vdb6hW67v05yTpJPJ/nVJH+Y5BfT+QD3zFrrxxe/98Bx\nel06oesZSf5bOh++/jbJs2qtt85q+/NJrkjnp+iv7Z770STn1lr/cbE6DPTtmOrefA+t9Lju9qF5\n2pnzoT3mrXtzPrRHrfXGJM9K8ql0PvNfl86cfk+Sn621vm9Gc/M9jzE2NTU17D4AAAAAAAC0mhUy\nAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMA\nAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAA\nAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAA\nANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQsBXD7kAT9u3bNzXsPgAAAAAA\nAO22fv36sWNta4UMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMME\nMvz/7N19lB1nfSf4b1uvloQ7cCxlIHZseaU8ilnyQjKYOJBhyEwS1jMrzwALWRzATLKEJQrgEMI6\n42OTAOEQJhNowsAExw7MJDmQBCvEJJuzAQPGBA5H4S2Yh1aQsXyWIGlmkIIatdS29o9729tu91V3\n697q21338znHp6yqp0rPo6pfP7f721XFKjI5OZnJyclhdwNYQeoeRpPah9Gj7mH0qHsYPeqexQhk\nAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhkAAAAAAICGrR92B1h5R44cyf79+3Po0KGcOXMmGzZsyM6dO7N3797s2LFj2N0DAAbA\nfA9L06ZaadNY2mT2vBw4cCAzMzPZvn278wIAMKLGzp49O5ADlVI2Jnl9klcn+Vit9RnL2PfqJDcl\neWqSC5N8JcnvJnl7rXXZHTx+/PhgBtUyU1NTmZiYyMGDB7N+/fps2rTp4W3T09OZmZnJrl27sm/f\nvmzZsmWIPR1dk5OTSZLdu3cPuSfASlH3DJr5fm1Q+8PXplpp01jaZP55OXXqVJJkfHzceYERYb6H\n0aPuR9P4+PjYUtsO5JFlpZSS5JNJXpZkyX95d99nJvlIkt1Jbknyc+kEMm9L8h8H0T863wzccsst\nOXToULZu3fqIb9KSZNOmTdm6dWsOHTqU173udZmamhpSTwGA82W+h6VpU620aSxt4rwAALCQvgOZ\nUspjkxxIsi7JD5/HId6R5FSSp9da31prfW+t9TlJ9if5xVLK9/fbR5KJiYmcOHEimzdvPme7zZs3\n5/jx45mYmFihngEAg2K+h6VpU620aSxt4rwAALCQQdwhszHJe5I8tdZal7NjKeWqJCXJ+2qtX5+3\n+e3p3G1z3QD6ONKOHDmSgwcPLvrNwKzNmzdncnIyR48ebbhnAMCgmO9hadpUK20aS5s4LwAA9NJ3\nIFNr/Uat9WW11lPnsftTustPLrDtU93lVefXM2bt378/69evX9Y+GzZsyB133NFQjwCAQTPfw9K0\nqVbaNJY2cV4AAOhleZ8SB+/y7vKB+Rtqrf9YSvlmkisG9ZfNvlRp1Bw4cCCnTp16+CWSy9lvVP/N\nhs2/O4wedU+/zPdrk3/7ldemWmnTWNpksfNy/Pjxnvs5L9BOahtGj7pvp927d/d9jEE8sqwfj+ku\ne73B8OScNpynmZmZFd0PAFh55ntYmjbVSpvG0ibOCwAAvQz7DpkVNYgEay3avn17pqZ6ZV69bdmy\nZWT/zYZlNj337w6jQ90zKOb7tUXtD0+baqVNY2mTXudl9s6Y8fHxBfdzXqB9zPcwetQ9ixn2HTIn\nusutPbZvm9OG87Rz585MT08va5/p6ens3LmzoR4BAINmvoelaVOttGksbeK8AADQy7ADma92l5fM\n31BKGU8ynsQD9/q0d+/eZd/+PjMzk2uvvbahHgEAg2a+h6VpU620aSxt4rwAANDLsAOZe7rLH11g\n29O7y7tXqC+ttWPHjuzatWvJL/s8depUdu3ale3btzfcMwBgUMz3sDRtqpU2jaVNnBcAAHpZ0UCm\nlLKnlPLwfdi11s8mOZDkuaWUS+a0G0vyqiRnkvz+Svaxrfbt25eLLrpo0W8KTp06lfHx8ezbt2+F\negYADIr5HpamTbXSprG0ifMCAMBCxs6ePdvXAUopVya5cs6q9yf5UpKb56z7UK11qpRyNkmtte6Z\ns/9VST6S5B+S/HaSbyZ5fpJnJbmp1vr65fbp+PHj/Q2qpaampjIxMZHJycls2LAhmzZtenjb9PR0\nZmZmsmvXruzbty9btmwZYk9Hlxd/wehR9wya+X5tUPvD16ZaadNY2mT+eZkNZ8bHx50XGBHmexg9\n6n40jY+Pjy217SACmVvyyPBlITtrrfctFMh0j/HDSX4tydVJNiW5N8lErfW28+mTQObcjh49mjvu\nuCOHDh3KmTNnsmHDhlxxxRXZu3ev2+SHzBdtGD3qnqaY71c3tb96tKlW2jSWNpk9LwcOHMjMzEy2\nb9/uvMCIMN/D6FH3o2lFA5nVSCDDWuWLNowedQ+jSe3D6FH3MHrUPYwedT+alhPIrOg7ZAAAAAAA\nAEaRQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACA\nhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiY\nQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglk\nAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAA\nAAAAGiaQAQAAAAAAaJhABgAAAAAAoGHrB3GQUsrjktyc5Nokj09yLMmHktxUa/36Eva/LsnPJ/n+\nJBuT3J/kz5O8vtb63wbRRwAAAAAAgGHp+w6ZUsqFSe5K8rIkf5LkxUneleR5ST5RSnnsIvu/Mcl7\nk2xIcmM6wcxdSfYl+ZtSykX99hEAAAAAAGCYBnGHzCuTPCnJy2ut75hdWUr5XJIPJLkpyQ0L7di9\ns+aXk9yX5MdqrdPdTbeVUo4leW2S65O8dQD9BAAAAAAAGIpBvEPmhUlOJrl13vr9SR5Icl0pZazH\nvt+dTij06TlhzKyPdZeXD6CPAAAAAAAAQ9NXINN9nNieJAfmByq11rNJPp1ke5KdPQ5xKMl0kt0L\nbLu8u/xiP30EAAAAAAAYtn4fWXZZd/lAj+33d5dXJPnq/I211uOllF9P8vpSykSS307yj0mekuRX\nk3w2yX/ts48Pm5ycHNShoFGuVRg96h5Gk9qH0aPuYfSoexg96r6ddu9e6L6S5en3kWWP6S6nemw/\nOa/do9Ra35Dk55L8bJKDSb6R5INJ/jbJM2utp/rsIwAAAAAAwFD1e4dM30opL0vytiR/leQPkxxN\nclWS1yT5UCnlWbXWbw7i7xpEggVNmk3PXaswOtQ9jCa1D6NH3cPoUfcwetQ9i+k3kDnRXW7tsX3b\nvHaPUEop6YQxf11rvWbOpv+7lPK5JHckuTGdcAYAAAAAAGBN6veRZYeSnE1ySY/ts++Y6fXQvGem\nEwr96QLb/qJ77H/eTwcBAAAAAACGra9AptZ6Msnnkzy5lLJ57rZSyrokVyc5XGu9v8chZu+s2bzA\ntk1JxnpsAwAAAAAAWDP6vUMmSW5NsiXJS+etvy7JjiTvnl1RStlTStk5p8093eXzSilj8/Z/7rw2\nAAAAAAAAa1K/75BJkncmeUGSt5RSLkvymSRPTHJDki8kecuctvcmqUn2JEmt9Z5SyvvTCV/uLqW8\nL8nRJP80ycuTfCPJGwbQRwAAAAAAgKHp+w6ZWuuZJD+RZCLJs5PcnuRF6dwZ84xa69Qih/jpJPvS\neUTZG7r7/5skv5fkh87xuDMAAAAAAIA1YRB3yKTWeiKdO2JuWKTd/MeSpdb6YJK3d/8DAAAAAABo\nnUG8QwYAAAAAAIBzEMgAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAA\nNEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDD\nBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwg\nAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIA\nAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAA\nAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRs/SAOUkp5XJKbk1yb5PFJjiX5UJKbaq1f\nX8L+m5K8Nsl1SS7t7n9nkl+ttR4bRB8BAAAAAACGpe87ZEopFya5K8nLkvxJkhcneVeS5yX5RCnl\nsYvsvz6d8OXfJ/nzJD+b5I+T/LskHy2lbOy3jwAAAAAAAMM0iDtkXpnkSUleXmt9x+zKUsrnknwg\nyU1JbjjH/j+f5MeTvKjW+p7uuv9SSjmW5CVJrkry8QH0EwAAAAAAYCgG8Q6ZFyY5meTWeev3J3kg\nyXWllLFz7P/yJJNJ3jt3Za319bXWK2qtwhgAAAAAAGBN6yuQKaVclGRPkgO11um522qtZ5N8Osn2\nJDt77H9Jd/+/6rZPKWXzIgEOAAAAAADAmtLvHTKXdZcP9Nh+f3d5RY/te7rLvy+lvKKUcl+Sbyf5\ndinljlLKrj77BwAAAAAAMHT9vkPmMd3lVI/tJ+e1m+9x3eWLkmxM8oYk30jnnTK/kORHSik/UGv9\nep/9TJJMTk4O4jDQONcqjB51D6NJ7cPoUfcwetQ9jB513067d+/u+xj9BjL92thdfmeS/7nW+t+6\nf/6zUso30glofinJq4fROQAAAAAAgEHoN5A50V1u7bF927x2832ru/yzOWHMrFvTCWSecd69m2cQ\nCRY0aTY9d63C6FD3MJrUPowedQ+jR93D6FH3LKbfd8gcSnI2ySU9ts++Y6bXPVr3dZfrFth2rHvs\ni863cwAAAAAAAKtBX4FMrfVkks8neXIpZfPcbaWUdUmuTnK41np/j0N8KcnxJD+wwLZLk4wleaCf\nPgIAAAAAAAxbv3fIJJ1Hi21J8tJ5669LsiPJu2dXlFL2lFJ2zv651no6yR8k+aFSyr+et/8vdJcf\nHEAfAQAAAAAAhqbfd8gkyTuTvCDJW0oplyX5TJInJrkhyReSvGVO23uT1CR75qy7OclPJnl/KeVN\n6TzG7JlJfibJZ7vHBwAAAAAAWLP6vkOm1nomyU8kmUjy7CS3J3lROnfGPKPWOrXI/keTPDXJ7yf5\nP5L85yT/LMlvdff/dr99BAAAAAAAGKZB3CGTWuuJdO6IuWGRdmM91h9N55Fn8x97BgAAAAAAsOYN\n4h0yAAAAAAAAnINABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh\nAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQ\nAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkA\nAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAA\nAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAA\nAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhq0fxEFKKY9LcnOSa5M8Psmx\nJB9KclOt9evLPNbmJJ9L8j1J/nmt9a5B9BEAAAAAAGBY+r5DppRyYZK7krwsyZ8keXGSdyV5XpJP\nlFIeu8xD3pROGAMAAAAAANAKg7hD5pVJnpTk5bXWd8yuLKV8LskH0glYbljKgUopT0ryy0n+NskP\nDqBvAAAAAAAAQzeId8i8MMnJJLfOW78/yQNJriuljC12kFLKBUl+N8nX0rnDBgAAAAAAoBX6CmRK\nKRcl2ZPkQK11eu62WuvZJJ9Osj3JziUc7heSXJXk55NML9IWAAAAAABgzej3kWWXdZcP9Nh+f3d5\nRZKv9jpIKeXSJG9I8t5a61+XUl7cZ78WNDk52cRhYeBcqzB61D2MJrUPo0fdw+hR9zB61H077d69\nu+9j9PvIssd0l1M9tp+c166X/5TkdJJf6rM/AAAAAAAAq06/d8j0rZTy/CTXJHlJrfVok3/XIBIs\naNJseu5ahdGh7mE0qX0YPeoeRo+6h9Gj7llMv3fInOgut/bYvm1eu0copTwuyVuTfLTWeluffQEA\nAAAAAFiV+r1D5lCSs4e5tusAACAASURBVEku6bF99h0zvR6a95tJviPJLaWUucd4bHe5vbv+aK11\nus++AgAAAAAADEVfd8jUWk8m+XySJ5dSNs/dVkpZl+TqJIdrrff3OMSPJ9mY5CNJDs/577e629/X\n/fOP9NNPAAAAAACAYRrEO2RuTfK2JC9N5/Fjs65LsiPJzbMrSil7kkzXWg91V70kyZYFjvnjSV6Z\n5MYkX+j+BwAAAAAAsCYNIpB5Z5IXJHlLKeWyJJ9J8sQkN6QTpLxlTtt7k9Qke5Kk1vrhhQ5YSrm4\n+7+frLXeNYA+AgAAAAAADE1fjyxLklrrmSQ/kWQiybOT3J7kRUneneQZtdapfv8OAAAAAACAtWwQ\nd8ik1noinTtiblik3dgSj3d7OsEOAAAAAADAmtf3HTIAAAAAAACcm0AGAAAAAACgYQIZAAAAAACA\nhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiY\nQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglk\nAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYA\nAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAA\nAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAA\nAKBh6wdxkFLK45LcnOTaJI9PcizJh5LcVGv9+hL2f1p3/6ck2ZzkcJI/SfLrtdZvDaKPAAAAAAAA\nw9L3HTKllAuT3JXkZemEKC9O8q4kz0vyiVLKYxfZ/wVJPp7k0nRCmZcl+XyS1yT5q1KKu3gAAAAA\nAIA1bRB3yLwyyZOSvLzW+o7ZlaWUzyX5QJKbktyw0I6llE1J/lM6d8RcVWs93t30e6WUD6Rzx81P\npXO3DQAAAAAAwJo0iLtPXpjkZJJb563fn+SBJNeVUsZ67PtPkvxpkt+YE8bMmg1hvm8AfQQAAAAA\nABiavu6QKaVclGRPko/XWqfnbqu1ni2lfDrJv02yM8lX5+9fa/1aOo84W8h4d3minz4CAAAAAAAM\nW7+PLLusu3ygx/b7u8srskAg00spZWOSlySZSnLHefdunsnJyUEdChrlWoXRo+5hNKl9GD3qHkaP\nuofRo+7baffu3X0fo99A5jHd5VSP7SfntVtUKeWCJL+b5HuT/FKt9f89/+4BAAAAAAAMX7+BzECV\nUi5M8gdJrk3yO7XW3xrk8QeRYEGTZtNz1yqMDnUPo0ntw+hR9zB61D2MHnXPYi7oc//Z97ts7bF9\n27x2PZVStif5cDphzK/XWn+hz74BAAAAAACsCv3eIXMoydkkl/TYPvuOmXM+NK+U8p1JPp5kZ5Lr\na62399kvAAAAAACAVaOvO2RqrSeTfD7Jk0spm+duK6WsS3J1ksO11vt7HaOUclGSv0zy3Un+V2EM\nAAAAAADQNv0+sixJbk2yJclL562/LsmOJO+eXVFK2VNK2Tmv3VuT/ECSn661/sUA+gMAAAAAALCq\n9PvIsiR5Z5IXJHlLKeWyJJ9J8sQkNyT5QpK3zGl7b5KaZE+SlFK+L8mLknwpybpSynMWOP7RWutH\nB9BPAAAAAACAoeg7kKm1niml/ESSW5I8O8kvJDmSzp0xN9dap86x+5OTjCW5Msn7e7T5aJJn9NtP\nAAAAAACAYRnEHTKptZ5I546YGxZpNzbvz7cnuX0QfQAAAAAAAFitBvEOGQAAAAAAAM5BIAMAAAAA\nANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAA\nDRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAw\ngQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPI\nAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwA\nAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAA\nAAAANGz9sDsAsFodOXIk+/fvz6FDh3LmzJls2LAhO3fuzN69e7Njx45hd29Z2jQWAIavTfPKl770\npbz5zW9+1Fhe85rX5Morrxx290ZWm66xu+++OzfeeGMOHz6cBx98MBs3bswTnvCEvPGNb8zTnva0\nYXdvJLXp+mrTWNpkdm659957MzMzk23btq3ZucU8ufq0qe7bNJY2cV6aNXb27Nm+D1JKeVySm5Nc\nm+TxSY4l+VCSm2qtX1/C/lcnuSnJU5NcmOQrSX43ydtrrcvu4PHjx/sfFAzB5ORkkmT37t1D7slo\nm5qaysTERA4ePJj169dn06ZND2+bnp7OzMxMdu3alX379mXLli1D7Oni2jSWtlL3MJrWau23aV45\nduxYrr/++nzta1/LBRdckI0bNz687fTp03nooYdy2WWX5bbbbsvFF188xJ6OljZdY4cPH84111yT\nY8eOZWxsLGNjY0mSdevWZWZmJmfPns3FF1+cO++8M5deeumQezsa2nR9tWksbTJ/bpm1cePGNTe3\nmCdXnzbVfZvGMt9a/ZyftPu8NG18fHxsqW37DmRKKRcm+VSSPUnenuQzSXYneXWSo0l+qNb6P86x\n/zOT/EWSw0kmkvz3JHuTPDvJW2utr1xunwQyrFVr+Yt2W0xNTeWWW27JiRMnsnnz5p7tTp06lfHx\n8dx8882rdhJq01jaTN3DaFqLtd+meeXYsWPZu3dvTp48+YgfMM13+vTpbNu2LXfccYcfNq2ANl1j\nhw8fzo/92I/l9OnTWb++82CKBx98MEknkJk1MzOTTZs25aMf/ahQpmFtur7aNJY2WWhuOX36dJI8\nKsxY7XOLeXL1aVPdt2ksC1mLn/OT9p+Xpi0nkBnEO2RemeRJSV5Za72h1voHtdbXJfmZJDvTufPl\nXN6R5FSSp9da31prfW+t9TlJ9if5xVLK9w+gjwBLMjExsejkkySbN2/O8ePHMzExsUI9W742jQWA\n4WvTvHL99dcv+kOmpPMDtG9961u5/vrrV6hno61N19g111zziDCml/Xr12d6ejrXXHPNCvVsdLXp\n+mrTWNqkTXNLm8bSFm2q+zaNpU2cl5UziEDmhUlOJrl13vr9SR5Icl0pZcGEqJRyVZKS5H0LPNrs\n7UnGklw3gD4CLOrIkSM5ePDgopPPrM2bN2dycjJHjx5tuGfL16axADB8bZpXvvSlL+VrX/vaoj9k\nmrVx48bcd999+fKXv9xwz0Zbm66xu+++O8eOHVs0jJm1fv36HD16NPfcc0/DPRtdbbq+2jSWNmnT\n3NKmsbRFm+q+TWNpE+dlZfUVyJRSLkrnUWUHaq3Tc7d13/3y6STb07lTZiFP6S4/ucC2T3WXV/XT\nR4Cl2r9//5K/cZ61YcOG3HHHHQ316Py1aSwADF+b5pU3v/nNj3iu/1KsW7cub3rTmxrqEUm7rrEb\nb7zx4ffFLNUFF1yQ1772tQ31iDZdX20aS5u0aW5p01jaok1136axtInzsrKW9y/9aJd1lw/02H5/\nd3lFkq8usP3yXvvXWv+xlPLN7r4DMfsMP1jtXKvDceDAgZw6dSqnTp1a9n6r7Zy1aSyjwr87jKa1\nUvttmlfuvffeJP//c/2Xs99qG0ubtOkaO3z4cMbGxh5+Z8x8C60fGxvL4cOHV91Y2qJN11ebxtIm\ni80tvdavxrnFPLn6tKnu2zSWxayl/o7SeenXIN4N1O8jyx7TXU712H5yXrvz2b/XvgADNTMzs6L7\nNalNYwFg+No0r7RpLG3SpvPSK4hpaj8W16brq01jaZM2nZc2jaUt2nRO2jSWNnFeVla/d8isKYNI\nsKBJs6mya3U4tm/fnqmpXvlwb1u2bFl156xNY2k7dQ+jaa3VfpvmlW3btuXb3/72sve78MILV91Y\n2qRN19jGjRtz5syZR62fDVzWrVu34H4bNmxYdWNpizZdX20aS5v0mltm7zLp9T6W1Ti3mCdXnzbV\nfZvG0sta+5yfjMZ5WU36vUPmRHe5tcf2bfPanc/+vfYFGKidO3dmenp68YZzTE9PZ+fOXq/JGp42\njQWA4WvTvLJz585lP4bl9OnTq3IsbdKma+wJT3jCsn9jdGZmJk94whMa6hFtur7aNJY2adPc0qax\ntEWb6r5NY2kT52Vl9RvIHEpyNsklPbbPvmOm18PkZt8r86j9SynjScbPsS/AQO3du/e8vnm+9tpr\nG+rR+WvTWAAYvjbNK695zWvy0EMPLWufBx980AvXG9ama+yNb3xjzp49u6x9HnroIS/EblCbrq82\njaVN2jS3tGksbdGmum/TWNrEeVlZfQUytdaTST6f5MmllM1zt5VS1iW5OsnhWuv9PQ5xT3f5owts\ne3p3eXc/fQRYqh07dmTXrl1LfonZqVOnsmvXrmzfvr3hni1fm8YCwPC1aV658sorc9llly35t39P\nnz6dyy+/PHv27Gm4Z6OtTdfY0572tFx88cVL/sHGzMxMtm/fnquvvrrhno2uNl1fbRpLm7RpbmnT\nWNqiTXXfprG0ifOysvq9QyZJbk2yJclL562/LsmOJO+eXVFK2VNKefheplrrZ5McSPLcUsolc9qN\nJXlVkjNJfn8AfQRYkn379uWiiy5adBI6depUxsfHs2/fvhXq2fK1aSwADF+b5pXbbrstW7duXfSH\nTadPn862bdty2223rVDPRlubrrE777wzGzduXDSUmZmZyaZNm3LnnXeuUM9GV5uurzaNpU3aNLe0\naSxt0aa6b9NY2sR5WTljy72Ver5SyoYkH0/yQ0kmknwmyROT3JDO48aeWmud6rY9m6TWWvfM2f+q\nJB9J8g9JfjvJN5M8P8mzktxUa339cvt0/Pjx/gYFQ7IWX/zVRlNTU5mYmMjk5GQ2bNiQTZs2Pbxt\neno6MzMz2bVrV/bt25ctW7YMsaeLa9NY2krdw2haq7Xfpnnl2LFjuf7663Pfffdl3bp1j3jh8unT\np/Pggw/m8ssvz2233ZaLL754iD0dLW26xg4fPpxrrrkmR48ezQUXXJCxsbEkybp16zIzM5OHHnoo\n27dvz5133plLL710yL0dDW26vto0ljaZP7fM2rhx45qbW8yTq0+b6r5NY5lvrX7OT9p9Xpo2Pj4+\nttS2fQcySVJKuSjJLUmeneTxSY4k+UCSm2ut/31Ou0cFMt31P5zk19J5xNmmJPcmmai1nlfELpBh\nrVrLX7Tb6OjRo7njjjty6NChnDlzJhs2bMgVV1yRvXv3rrnbMts0lrZR9zCa1nrtt2le+fKXv5w3\nvelNjxrLr/zKr3j8yhC16Rq755578trXvjaHDx/Ogw8+mI0bN+a7vuu78hu/8RseUzYkbbq+2jSW\nNpmdW+69997MzMxk27Zta3ZuMU+uPm2q+zaNZdZa/5yftPO8NG3FA5nVRiDDWtWGL9rA8qh7GE1q\nH0aPuofRo+5h9Kj70bScQGYQ75ABAAAAAADgHAQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCB\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRs7OzZs8Puw8AdP368fYMCAAAAAABWlfHx8bGltnWH\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDxs6ePTvsPgAAAAAA\nALSaO2QAAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAA\naJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh64fdARglpZTb\nk7zoHE1eVWv97VLKLUluPke7t9ZaXznIvgHNKaU8K8lrkzw5yUySv03y+lrrh+e1uzDJ/5Xk+Uku\nS3IiyYeT3FRr/cqKdhroy1Lq3nwP7VFKObuEZjtrrfd125vzYY1bTt2b86FdSilPTHJjkmcmuTjJ\nN5Pck+Q3a613z2lnvudRBDIwHP9nkqMLrP/svD/fkuTvFmg3OegOAc0opbwkya1JPpbkFUkek+RV\nSf6ylPITtda7uu3GkuxP8i+S3JbkdUmekOTVST5ZSnlKrfXvV34EwHItte7nuCXme1jrnnuObb+R\nZDzdz//mfGiNJdf9HLfEnA9rWinlB5PcneR0krcn+UqSS5O8PMlHSynX1lo/aL6nF4EMDMdfzP52\n3CI+usAPbYA1opTyT5K8Lcn/k+Qna60Pddd/MMknk1yT5K5u8+cn+Zfp/EbNa+Yc46+TfCbJbyb5\ntyvWeeC8LLPuZ5nvYY2rtf7xQutLKdcm2ZXkxbXWk93V5nxogWXW/SxzPqx9/z7JliT/ptb6V7Mr\nSyl/muTeJL+W5IMx39ODd8gAQHNelGRrkltmfyibJLXWr9Zav7PW+stz2r6wu3zb3APUWg+kc+vz\nvyqlfEfTHQb6tpy6B1qslPKYJBNJPl5r/f05m8z50FLnqHugPf6n7vLjc1fWWr+c5EiSy7urzPcs\nSCADQ1RK2VxKWfROtVLKxlLKxpXoEzBQ/zLJP6bzW/EppawrpWzq0fYpSQ7XWh9YYNunkmxI510U\nwOq2nLp/BPM9tM5N6Tya5OXz1pvzob161f0jmPNhTbu3u/yeuStLKeNJviPJF7urzPcsSCADw/Hy\nUsqhJN9OMl1K+ZtSyv+yQLv/rZTyd0mmu+2+UEr5mRXtKdCPPUn+PskPlFI+mk4tnyqlfLGU8vzZ\nRt3fpHtckoU+qCXJ/d3lFU12FhiIJdX9POZ7aJlSyo50fiD7nlrrF+asN+dDS/Wq+3nM+bD2vSHJ\n/0jynlLK00opF5dSnpTOe2LOJrnJfM+5CGRgOH4yyRvTeY78rybZneTPF/hBzbOSvLO7fEU6LwV8\nTynlV1awr8D5e1w6vyFzZ5JPJLk2yb7uuj8spfy7brvHdJdTPY5zcl47YPVaat3PZb6H9nlNks3p\n/NBmLnM+tFevup/LnA9rXK31i0l+JMm6dB5bdjTJ55Nclc47JO+K+Z5zWPRRScBA/Yckf5jkrlrr\ndHfdh0opf5bks0n+QynlfUn+S5K/SfLJWuvxbru/LKX8UZIvJ7m5lPKuWus3V7j/wPJsTOf5sS+o\ntf7B7MpSyp3p3Ob8xlLK7cPpGtCQJdV9rfXBmO+hlUopj03ysiR/Xms9OOz+AM1bQt2b86ElSikl\nyYeSbEryqnRqeEeSX0rywVLKs5P83fB6yGonkIEV1L1t+VG3Ltdav1RKuSud585/b63175I86kNc\nrfVIKeWPk/xckh9N57dvgdXrW+l8SPujuStrrYdKKR9J8lNJvjfJfd1NW3scZ1t3eaKBPgKDtdS6\n/2L3Bzbme2if/z3JliQLvdB7di4350O7nKvuY86HVnl3ku9K5+d3h2ZXllLen06d35bO5/3EfM8C\nPLIMVo9vdJcXDagdMHz3pfdce6S7vKjW+q10bnO+pEfby7rLycF1DWjIfVlC3S/hOOZ7WLuem877\nIf5i/gZzPrRWz7pfAnM+rBGllK3phKcH5oYxSVJr/XaSu9IJa7475nt6EMjACimlXFRKeUEp5ad6\nNekuHyilPK+U8txF2t3fYzuwenwynccXXbnAttkPYLMv+bsnySWllO9eoO3Tk3w7yYGB9xAYtCXV\nfSllg/ke2qeUsi3J1ek8lujbPZqZ86FFFqt7cz60yoVJxtJ5X9RCNs9Zmu9ZkEAGVs7pJL+T5PZS\nysVzN5RS/kWSf5rk07XWw0lel86L/XbPa3dlOi8HfiDJp1ek10A/bu8uby6ljM2uLKV8XzofwD5f\na539xuvW7vJVcw9QSvlnSX4oyR91f6sWWN1u7y7PWfe11jMx30MbfV+SDUm+eI425nxol3PWvTkf\n2qPWeiydu1q+r1u/DyulPC7JM9N5DNkXY76nB++QgRVSaz1VSnlFOj+o+XQp5Z1J/iHJD6bz8r/j\nSV7abf7yJH+Z5O5Syu8kOZTOb83sS/JQkp/rfqgDVrFa66dKKRPp1O6flVLel85vyL8qyUySV8xp\n+8FSyp8meWUp5aIkH+62fXU636DduNL9B5ZvOXUf8z200fd0l/f1amDOh9ZZtO5jzoc2+aUkH0jy\n8VLK25N8JcnF6XzO/44kP19rnU5ivmdB7pCBFVRr/f100vKD6XzhvTXJc5L81yRPrrV+ttvur5Nc\nleQTSX4xye8l+dl0PsA9tdb6lyvfe+A8vSKd0PXSJP85nQ9ff5PkabXWu+a1/ekkN6fzW/S3dff9\n8yRX11r/YaU6DPRtSXVvvodWemx3+Y+LtDPnQ3ssWvfmfGiPWusHkzwtycfS+cx/ezpz+sEkz6q1\nvmtOc/M9jzJ29uzZYfcBAAAAAACg1dwhAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAA\nADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABA\nwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRM\nIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQy\nAAAAAAAADRPIAAAAAAAANGz9sDvQhOPHj58ddh8AAAAAAIB2Gx8fH1tqW3fIAAAAAAAANEwgAwAA\nAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAOryOTkZCYnJ4fdDWAFqXsYTWofRo+6\nh9Gj7mH0qHsWI5ABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhA\nBgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABq2ftgdYOUdOXIk+/fvz6FDh3LmzJls2LAhO3fuzN69\ne7Njx45hdw8AGADzPSyNWgFg0GbnlgMHDmRmZibbt283twBrhs/HzRo7e/bsQA5UStmY5PVJXp3k\nY7XWZyxj36uT3JTkqUkuTPKVJL+b5O211mV38Pjx44MZVMtMTU1lYmIiBw8ezPr167Np06aHt01P\nT2dmZia7du3Kvn37smXLliH2dHRNTk4mSXbv3j3kngArRd0zaOb7tUHtD59aYaWpe2i/+XPLqVOn\nkiTj4+PmFhgRa3m+9/n4/I2Pj48tte1AHllWSilJPpnkZUmW/Jd3931mko8k2Z3kliQ/l04g87Yk\n/3EQ/aNTULfccksOHTqUrVu3PqKgkmTTpk3ZunVrDh06lNe97nWZmpoaUk8BgPNlvoelUSsADJq5\nBVjLfA1bOX0HMqWUxyY5kGRdkh8+j0O8I8mpJE+vtb611vreWutzkuxP8oullO/vt48kExMTOXHi\nRDZv3nzOdps3b87x48czMTGxQj0DAAbFfA9Lo1YAGDRzC7CW+Rq2cgZxh8zGJO9J8tRaa13OjqWU\nq5KUJO+rtX593ua3p3O3zXUD6ONIO3LkSA4e/P/Yu/8oze66TvDvSv9Mp9MlfdLtsBtMOtvNtw2L\nP9AhDMoOgxMUXbYzgyy4RCCOLrLYEmIEVieno4IDmPGIjQyMxASZQQ+opI0G1qwaDD+Ew2n5ZcI3\nFemQ5CyS7nGoJF1Udaqp/eN5KqeoVHVV9fPceqru83qd0+em7/3e299v3fup75N617333iULatbW\nrVszNjaW48ePN9wzAKBfzPewPGoFgH4ztwDrme9hq6vnQKbW+rVa66trrZNnsfszu8tPLrDtU93l\nZWfXM2YdOXIkGzduXNE+mzZtyi233NJQjwCAfjPfw/KoFQD6zdwCrGe+h62ulX2l++/i7vLB+Rtq\nrY+UUr6e5JJ+/WOzL1UaNkePHs3k5OTjL5NbyX7D+jUbNF93GD7qnl6Z79cnX/vVp1YYNNcRtM9S\nc8v4+Pii+/meAO20nmrb5+Pl27dvX8/H6Mcjy3pxfne52FuATs5pw1manp5e1f0AgNVnvoflUSsA\n9Ju5BVjPfA9bXYO+Q2ZV9SPBWo927dqViYnFMq/Fbdu2bWi/ZoMymyr7usPwUPf0i/l+fVH7g6NW\nGBR1D+212Nwye2fM6OjogvuZW6B91uN87/Px6hr0HTIPd5fnLbJ9+5w2nKU9e/ZkampqRftMTU1l\nz549DfUIAOg38z0sj1oBoN/MLcB65nvY6hp0IPPl7vLC+RtKKaNJRpMM14PoGnDgwIEV30I2PT2d\nK664oqEeAQD9Zr6H5VErAPSbuQVYz3wPW12DDmQ+0V3+wALbntNdfmyV+tJau3fvzt69e5f9YqbJ\nycns3bs3u3btarhnAEC/mO9hedQKAP1mbgHWM9/DVteqBjKllP2llMfvZaq1fjbJ0SQvLqVcOKfd\nSJLXJXksyXtXs49tdfDgwezYsWPJwpqcnMzo6GgOHjy4Sj0DAPrFfA/Lo1YA6DdzC7Ce+R62ekZm\nZmZ6OkAp5dIkl85Z9cEkdyU5NGfdbbXWiVLKTJJaa90/Z//Lkvx1kn9M8ltJvp7kpUlekOS6Wuub\nVtqn8fHx3gbVUhMTEzl8+HDGxsayadOmbNmy5fFtU1NTmZ6ezt69e3Pw4MFs27ZtgD0dXuvxxV9A\nb9Q9/Wa+Xx/U/uCpFVabuof2mz+3zP5gc3R01NwCQ2I9z/c+H5+90dHRkeW27Ucgc32+NXxZyJ5a\n630LBTLdY3x/xoQMRQAAIABJREFUkl9N8uwkW5LcneRwrfWms+mTQObMjh8/nltuuSXHjh3LY489\nlk2bNuWSSy7JgQMH3Go2YOv5mzZwdtQ9TTHfr21qf+1QK6wWdQ/DY3ZuOXr0aKanp7Nr1y5zCwyJ\nNsz3Ph+v3KoGMmuRQIb1qg3ftIGVUfcwnNQ+DB91D8NH3cPwUffDaSWBzKq+QwYAAAAAAGAYCWQA\nAAAAAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAA\nAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABq2sR8HKaXsTHIoyRVJnpzkRJLbklxXa/3qMva/MsnPJvnuJJuT3J/k\nz5K8qdb63/rRRwAAAAAAgEHp+Q6ZUsq5Se5I8uokf5zklUneneQlST5eSnnSEvv/epL3JdmU5JfS\nCWbuSHIwyd+WUnb02kcAAAAAAIBB6scdMlcneXqS19Ra3zm7spTyuSQfSnJdkmsW2rF7Z80vJrkv\nyf9Sa53qbrqplHIiyRuTXJXk7X3oJwAAAAAAwED04x0yL09yMsmN89YfSfJgkitLKSOL7Psd6YRC\nn54Txsz6m+7y4j70EQAAAAAAYGB6CmS6jxPbn+To/ECl1jqT5NNJdiXZs8ghjiWZSrJvgW0Xd5df\n7KWPAAAAAAAAg9brI8su6i4fXGT7/d3lJUm+PH9jrXW8lPJrSd5USjmc5LeSPJLkmUl+Oclnk/zX\nHvv4uLGxsX4dChrlWoXho+5hOKl9GD7qHoaPuofho+7bad++he4rWZleH1l2fnc5scj2k/PaPUGt\n9c1JfibJTye5N8nXktya5O+SPK/WOtljHwEAAAAAAAaq1ztkelZKeXWS307yF0n+IMnxJJcleX2S\n20opL6i1fr0f/1Y/Eixo0mx67lqF4aHuYTipfRg+6h6Gj7qH4aPuWUqvgczD3eV5i2zfPq/dtyil\nlHTCmL+stf7YnE3/Tynlc0luSfJL6YQzAAAAAAAA61Kvjyw7lmQmyYWLbJ99x8xiD817Xjqh0J8s\nsO3D3WP/q146CAAAAAAAMGg9BTK11pNJPp/kGaWUrXO3lVI2JHl2kgdqrfcvcojZO2u2LrBtS5KR\nRbYBAAAAAACsG73eIZMkNybZluRV89ZfmWR3kvfMriil7C+l7JnT5hPd5UtKKSPz9n/xvDYAAAAA\nAADrUq/vkEmSdyV5WZIbSikXJflMkqcluSbJF5LcMKft3Ulqkv1JUmv9RCnlg+mELx8rpXwgyfEk\n/zzJa5J8Lcmb+9BHAAAAAACAgen5Dpla62NJnp/kcJIXJbk5ySvSuTPmubXWiSUO8RNJDqbziLI3\nd/f/N0l+L8n3neFxZwAAAAAAAOtCP+6QSa314XTuiLlmiXbzH0uWWuvpJO/o/gEAAAAAAGidfrxD\nBgAAAAAAgDMQyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCAD\nAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAA\nAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAA\nAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAA\nAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQ\nMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANGxjPw5SStmZ5FCSK5I8OcmJJLclua7W+tVl7L8l\nyRuTXJnkKd39/zzJL9daT/SjjwAAAAAAAIPS8x0ypZRzk9yR5NVJ/jjJK5O8O8lLkny8lPKkJfbf\nmE748u+T/FmSn07yR0n+XZKPllI299pHAAAAAACAQerHHTJXJ3l6ktfUWt85u7KU8rkkH0pyXZJr\nzrD/zyb5oSSvqLX+fnfdfymlnEjyU0kuS3JnH/oJAAAAAAAwEP14h8zLk5xMcuO89UeSPJjkylLK\nyBn2f02SsSTvm7uy1vqmWusltVZhDAAAAAAAsK71FMiUUnYk2Z/kaK11au62WutMkk8n2ZVkzyL7\nX9jd/y+67VNK2bpEgAMAAAAAALCu9PrIsou6ywcX2X5/d3lJki8vsH1/d/kPpZTXJnld95hTpZSP\nJLm21npvj3183NjYWL8OBY1yrcLwUfcwnNQ+DB91D8NH3cPwUffttG/fvp6P0esjy87vLicW2X5y\nXrv5dnaXr0jyqiRvTnIgybuTvDDJx0spT+6xjwAAAAAAAAPV6x0yvdrcXX57kv+51vrfun//01LK\n19IJaH4hybX9+Mf6kWBBk2bTc9cqDA91D8NJ7cPwUfcwfNQ9DB91z1J6vUPm4e7yvEW2b5/Xbr5H\nu8s/nRPGzLqxu3zu2XUNAAAAAABgbeg1kDmWZCbJhYtsn33HzGIPzbuvu9ywwLYT3WPvONvOAQAA\nAAAArAU9BTK11pNJPp/kGaWUrXO3lVI2JHl2kgdqrfcvcoi7kown+Z4Ftj0lyUiSB3vpIwAAAAAA\nwKD1eodM0nm02LYkr5q3/soku5O8Z3ZFKWV/KWXP7N9rraeSvD/J95VSXjhv/5/rLm/tQx8BAAAA\nAAAGZmMfjvGuJC9LckMp5aIkn0nytCTXJPlCkhvmtL07SU2yf866Q0l+OMkHSylvSecxZs9L8pNJ\nPts9PgAAAAAAwLrV8x0ytdbHkjw/yeEkL0pyc5JXpHNnzHNrrRNL7H88ybOSvDfJ/5nkPyf5l0l+\ns7v/N3rtIwAAAAAAwCD14w6Z1FofTueOmGuWaDeyyPrj6TzybP5jzwAAAAAAANa9frxDBgAAAAAA\ngDMQyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQ\nMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0T\nyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEM\nAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAA\nAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAA\nAABAwwQyAAAAAAAADRPIAAAAAAAANGxjPw5SStmZ5FCSK5I8OcmJJLclua7W+tUVHmtrks8leWqS\nf1VrvaMffQQAAAAAABiUnu+QKaWcm+SOJK9O8sdJXpnk3UlekuTjpZQnrfCQ16UTxgAAAAAAALRC\nP+6QuTrJ05O8ptb6ztmVpZTPJflQOgHLNcs5UCnl6Ul+McnfJfnePvQNAAAAAABg4PrxDpmXJzmZ\n5MZ5648keTDJlaWUkaUOUko5J8nvJvlKOnfYAAAAAAAAtEJPgUwpZUeS/UmO1lqn5m6rtc4k+XSS\nXUn2LONwP5fksiQ/m2RqibYAAAAAAADrRq+PLLuou3xwke33d5eXJPnyYgcppTwlyZuTvK/W+pel\nlFf22K8FjY2NNXFY6DvXKgwfdQ/DSe3D8FH3MHzUPQwfdd9O+/bt6/kYvT6y7PzucmKR7SfntVvM\nf0pyKskv9NgfAAAAAACANafXO2R6Vkp5aZIfS/JTtdbjTf5b/UiwoEmz6blrFYaHuofhpPZh+Kh7\nGD7qHoaPumcpvd4h83B3ed4i27fPa/ctSik7k7w9yUdrrTf12BcAAAAAAIA1qdc7ZI4lmUly4SLb\nZ98xs9hD834jybclub6UMvcYT+oud3XXH6+1TvXYVwAAAAAAgIHo6Q6ZWuvJJJ9P8oxSyta520op\nG5I8O8kDtdb7FznEDyXZnOSvkzww589vdrd/oPv3f9FLPwEAAAAAAAapH++QuTHJbyd5VTqPH5t1\nZZLdSQ7Nriil7E8yVWs91l31U0m2LXDMH0pydZJfSvKF7h8AAAAAAIB1qR+BzLuSvCzJDaWUi5J8\nJsnTklyTTpByw5y2dyepSfYnSa31rxY6YCnlgu5/frLWekcf+ggAAAAAADAwPT2yLElqrY8leX6S\nw0lelOTmJK9I8p4kz621TvT6bwAAAAAAAKxn/bhDJrXWh9O5I+aaJdqNLPN4N6cT7AAAAAAAAKx7\nPd8hAwAAAAAAwJkJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAA\nAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAA\nAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGraxHwcppexMcijJFUmenOREktuSXFdr/eoy\n9v/B7v7PTLI1yQNJ/jjJr9VaH+1HHwEAAAAAAAal5ztkSinnJrkjyavTCVFemeTdSV6S5OOllCct\nsf/LktyZ5CnphDKvTvL5JK9P8helFHfxAAAAAAAA61o/7pC5OsnTk7ym1vrO2ZWllM8l+VCS65Jc\ns9COpZQtSf5TOnfEXFZrHe9u+r1SyofSuePmR9K52wYAAAAAAGBd6sfdJy9PcjLJjfPWH0nyYJIr\nSykji+z7z5L8SZL/MCeMmTUbwnxXH/oIAAAAAAAwMD3dIVNK2ZFkf5I7a61Tc7fVWmdKKZ9O8m+T\n7Eny5fn711q/ks4jzhYy2l0+3EsfAQAAAAAABq3XR5Zd1F0+uMj2+7vLS7JAILOYUsrmJD+VZCLJ\nLWfdu3nGxsb6dSholGsVho+6h+Gk9mH4qHsYPuoeho+6b6d9+/b1fIxeA5nzu8uJRbafnNduSaWU\nc5L8bpLvTPILtdb/7+y7BwAAAAAAMHi9BjJ9VUo5N8n7k1yR5Hdqrb/Zz+P3I8GCJs2m565VGB7q\nHoaT2ofho+5h+Kh7GD7qnqWc0+P+s+93OW+R7dvntVtUKWVXkr9KJ4z5tVrrz/XYNwAAAAAAgDWh\n1ztkjiWZSXLhIttn3zFzxofmlVK+PcmdSfYkuarWenOP/QIAAAAAAFgzerpDptZ6MsnnkzyjlLJ1\n7rZSyoYkz07yQK31/sWOUUrZkeQjSb4jyf8mjAEAAAAAANqm10eWJcmNSbYledW89Vcm2Z3kPbMr\nSin7Syl75rV7e5LvSfITtdYP96E/AAAAAAAAa0qvjyxLkncleVmSG0opFyX5TJKnJbkmyReS3DCn\n7d1JapL9SVJK+a4kr0hyV5INpZQfX+D4x2utH+1DPwEAAAAAAAai50Cm1vpYKeX5Sa5P8qIkP5fk\noXTujDlUa504w+7PSDKS5NIkH1ykzUeTPLfXfgIAAAAAAAxKP+6QSa314XTuiLlmiXYj8/5+c5Kb\n+9EHAAAAAACAtaof75ABAAAAAADgDAQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nTCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMME\nMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCAD\nAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAA\nAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDNg66AwBr1UMPPZQjR47k2LFjeeyxx7Jp\n06bs2bMnBw4cyO7duwfdvRVp01gAGLw2zSt33XVX3va2tz1hLK9//etz6aWXDrp7K9Km89Kmsdx6\n6615wxvekBMnTmRmZiYbNmzIzp0789a3vjUvfOELB929odSm66tNY2mT2fNy9OjRTE9PZ9euXev2\nvLRpnmyLNtV9m8YCyzUyMzPT80FKKTuTHEpyRZInJzmR5LYk19Vav7qM/Z+d5Lokz0pybpJ7kvxu\nknfUWlfcwfHx8d4HBQMwNjaWJNm3b9+AezLcJiYmcvjw4dx7773ZuHFjtmzZ8vi2qampTE9PZ+/e\nvTl48GC2bds2wJ4urU1jaSt1D8NpvdZ+m+aVEydO5KqrrspXvvKVnHPOOdm8efPj206dOpVvfvOb\nueiii3LTTTflggsuGGBPl9am89Kmsdxzzz25/PLL8+ijjyZJRkZGkiTnnHNOTp8+nSTZvn17br/9\n9jz1qU8dWD+HSZuurzaNpU3mn5fJyckkyejo6Lo7L22aJ9uiTXXfprHMt14/59Ob0dHRkeW27TmQ\nKaWcm+RTSfYneUeSzyTZl+TaJMeTfF+t9b+fYf/nJflwkgeSHE7yT0kOJHlRkrfXWq9eaZ8EMqxX\nvmkP3sTERK6//vo8/PDD2bp166LtJicnMzo6mkOHDq3ZDwdtGkubqXsYTuux9ts0r5w4cSIHDhzI\nyZMnv+UHTPOdOnUq27dvzy233LJmf9jUpvPSprHcc889ec5znpPp6els2LAhSfLNb34zSSeQmXX6\n9Ols3Lgxd955p1CmYW26vto0ljZZ6LyMj48n6QQys9bDeWnTPNkWbar7No1lIevxcz69W0kg0493\nyFyd5OlJrq61XlNrfX+t9VeS/GSSPenc+XIm70wymeQ5tda311rfV2v98SRHkvx8KeW7+9BHgGU5\nfPjwkh8KkmTr1q0ZHx/P4cOHV6lnK9emsQAweG2aV6666qolf8iUJJs3b86jjz6aq666apV6tnJt\nOi9tGsvll1/+LWHMYjZs2JDp6elcfvnlq9Sz4dWm66tNY2mTNp2XNs2TbdGm66tNY4Gz0Y9A5uVJ\nTia5cd76I0keTHJlKWXBhKiUclmSkuQDCzza7B1JRpJc2Yc+AizpoYceyr333rvkh4JZW7duzdjY\nWI4fP95wz1auTWMBYPDaNK/cdddd+cpXvrLkD5lmbd68Offdd1++9KUvNdyzlWvTeWnTWG699dY8\n+uijS4YxszZs2JBHHnkkt912W8M9G15tur7aNJY2adN5adM82RZtur7aNBY4Wz0FMqWUHek8quxo\nrXVq7rbuu18+nWRXOnfKLOSZ3eUnF9j2qe7ysl76CLBcR44cycaNG1e0z6ZNm3LLLbc01KOz16ax\nADB4bZpX3va2t33LI6OWY8OGDXnLW97SUI/OXpvOS5vG8oY3vGHF+4yMjOTaa69toDck7bq+2jSW\nNmnTeWnTPNkWbbq+2jQWOFsrq4Anuqi7fHCR7fd3l5ck+fIC2y9ebP9a6yOllK939+2L2Wf4wVrn\nWh2Mo0ePZnJy8vEXL65kv7V2zto0lmHh6w7Dab3UfpvmlbvvvjtJ57n3K91vrY2lTeelTWM5ceJE\nRkZGHn9nzHwLrR8ZGcmJEyfW3Fjaok3XV5vG0iZLnZfZd8kstN9aOy9tmifbok1136axLGW99Zfl\n6ce7gXp9ZNn53eXEIttPzmt3Nvsvti9AX01PT6/qfk1q01gAGLw2zSvGYixNm5mZWdX9WFqbrq82\njaVN2nRe2jSWtmjTOWnTWOBs9XqHzLrSjwQLmjSbnrtWB2PXrl2ZmFgsH17ctm3b1tw5a9NY2k7d\nw3Bab7Xfpnll+/bt+cY3vrHi/c4999w1N5Y2nZc2jWXDhg0L3gUzu26xRwGdc845a24sbdGm66tN\nY2mTxc7L7J0xo6OjC+63Fs9Lm+bJtmhT3bdpLItZb5/zWX293iHzcHd53iLbt89rdzb7L7YvQF/t\n2bMnU1NTSzecY2pqKnv2LPaarMFp01gAGLw2zSt79uxZ8WNYTp06tWbH0qbz0pax7Ny5M6dPn17R\nPqdPn87OnTsb6hFtur7aNJY2adN5adM82RZtu77aMhY4W70GMseSzCS5cJHts++YWeyhebPvlXnC\n/qWU0SSjZ9gXoK8OHDiw4ttgp6enc8UVVzTUo7PXprEAMHhtmlde//rXL/puj8WcPn06b3zjGxvq\n0dlr03lp01je+ta3rnifmZmZ3HDDDQ30hqRd11ebxtImbTovbZon26JN11ebxgJnq6dAptZ6Msnn\nkzyjlLJ17rZSyoYkz07yQK31/kUO8Ynu8gcW2Pac7vJjvfQRYLl2796dvXv3LvvlcpOTk9m7d292\n7drVcM9Wrk1jAWDw2jSvXHrppbnooouW/du/p06dysUXX5z9+/c33LOVa9N5adNYXvjCF2b79u3L\nvkvm9OnTOf/88/OjP/qjDfdseLXp+mrTWNqkTeelTfNkW7Tp+mrTWOBs9XqHTJLcmGRbklfNW39l\nkt1J3jO7opSyv5Ty+D1mtdbPJjma5MWllAvntBtJ8rokjyV5bx/6CLAsBw8ezI4dO5b8cDA5OZnR\n0dEcPHhwlXq2cm0aCwCD16Z55aabbsp555235A+bTp06le3bt+emm25apZ6tXJvOS5vGcvvtt2fj\nxo1LhjKnT5/Oxo0bc/vtt69Sz4ZXm66vNo2lTdp0Xto0T7ZFm66vNo0FzsbIzMxMTwcopWxKcmeS\n70tyOMlnkjwtyTXpPG7sWbXWiW7bmSS11rp/zv6XJfnrJP+Y5LeSfD3JS5O8IMl1tdY3rbRP4+Pj\nvQ0KBsSLv9aGiYmJHD58OGNjY9m0aVO2bNny+LapqalMT09n7969OXjwYLZt2zbAni6tTWNpK3UP\nw2m91n6b5pUTJ07kqquuyn333ZcNGzZk8+bNj287depUTp8+nYsvvjg33XRTLrjgggH2dGltOi9t\nGss999yTyy+/PI888khGRkYyMjKSJDnnnHNy+vTpzMzM5Pzzz8/tt9+epz71qQPu7XBo0/XVprG0\nyfzzMvsD59HR0XV3Xto0T7ZFm+q+TWOZb71+zqc3o6OjI8tt23MgkySllB1Jrk/yoiRPTvJQkg8l\nOVRr/ac57Z4QyHTXf3+SX03nEWdbktyd5HCt9awidoEM65Vv2mvL8ePHc8stt+TYsWN57LHHsmnT\nplxyySU5cODAurtdtk1jaRt1D8Npvdd+m+aVL33pS3nLW97yhLG84Q1vWHePX2nTeWnTWG677bZc\ne+21OXHiRGZmZrJhw4bs3LkzN9xwg8eUDUibrq82jaVNZs/L0aNHMz09nV27dq3b89KmebIt2lT3\nbRrLrPX+OZ+zs+qBzFojkGG98k0bho+6h+Gk9mH4qHsYPuoeho+6H04rCWT68Q4ZAAAAAAAAzkAg\nAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDRmZm\nZgbdh74bHx9v36AAAAAAAIA1ZXR0dGS5bd0hAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAA\nAAAAADRMIAMAAAAAANCwkZmZmUH3AQAAAAAAoNXcIQMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAAN\nE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCB\nDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRs46A7AMOklHJzklecocnraq2/VUq5PsmhM7R7e631\n6n72DWhOKeUFSd6Y5BlJppP8XZI31Vr/al67c5P830lemuSiJA8n+ask19Va71nVTgM9WU7dm++h\nPUopM8totqfWel+3vTkf1rmV1L05H9qllPK0JL+U5HlJLkjy9SSfSPIbtdaPzWlnvucJBDIwGP9X\nkuMLrP/svL9fn+TvF2g31u8OAc0opfxUkhuT/E2S1yY5P8nrknyklPL8Wusd3XYjSY4k+ddJbkry\nK0n+hyTXJvlkKeWZtdZ/WP0RACu13Lqf4/qY72G9e/EZtv2HJKPpfv4350NrLLvu57g+5nxY10op\n35vkY0lOJXlHknuSPCXJa5J8tJRyRa31VvM9ixHIwGB8ePa345bw0QV+aAOsE6WUf5bkt5P8v0l+\nuNb6ze76W5N8MsmPJbmj2/ylSS5P5zdqXj/nGH+Z5DNJfiPJv121zgNnZYV1P8t8D+tcrfWPFlpf\nSrkiyd4kr6y1nuyuNudDC6yw7meZ82H9+/dJtiX5N7XWv5hdWUr5kyR3J/nVJLfGfM8ivEMGAJrz\niiTnJbl+9oeySVJr/XKt9dtrrb84p+3Lu8vfnnuAWuvRdG59/l9LKd/WdIeBnq2k7oEWK6Wcn+Rw\nkjtrre95uNfvAAAgAElEQVSds8mcDy11hroH2uN/6i7vnLuy1vqlJA8lubi7ynzPggQyMECllK2l\nlCXvVCulbC6lbF6NPgF9dXmSR9L5rfiUUjaUUrYs0vaZSR6otT64wLZPJdmUzrsogLVtJXX/Lcz3\n0DrXpfNoktfMW2/Oh/ZarO6/hTkf1rW7u8unzl1ZShlN8m1JvthdZb5nQQIZGIzXlFKOJflGkqlS\nyt+WUn50gXb/eynl75NMddt9oZTyk6vaU6AX+5P8Q5LvKaV8NJ1aniylfLGU8tLZRt3fpNuZZKEP\naklyf3d5SZOdBfpiWXU/j/keWqaUsjudH8j+fq31C3PWm/OhpRar+3nM+bD+vTnJf0/y+6WUHyyl\nXFBKeXo674mZSXKd+Z4zEcjAYPxwkl9P5znyv5xkX5I/W+AHNS9I8q7u8rXpvBTw90spb1jFvgJn\nb2c6vyHz50k+nuSKJAe76/6glPLvuu3O7y4nFjnOyXntgLVruXU/l/ke2uf1Sbam80Obucz50F6L\n1f1c5nxY52qtX0zyL5JsSOexZceTfD7JZem8Q/KOmO85gyUflQT01X9M8gdJ7qi1TnXX3VZK+dMk\nn03yH0spH0jyX5L8bZJP1lrHu+0+Ukr5wyRfSnKolPLuWuvXV7n/wMpsTuf5sS+rtb5/dmUp5c/T\nuc3510spNw+ma0BDllX3tdbTMd9DK5VSnpTk1Un+rNZ676D7AzRvGXVvzoeWKKWUJLcl2ZLkdenU\n8O4kv5Dk1lLKi5L8/eB6yFonkIFV1L1t+Qm3Ltda7yql3JHOc+e/s9b690me8CGu1vpQKeWPkvxM\nkh9I57dvgbXr0XQ+pP3h3JW11mOllL9O8iNJvjPJfd1N5y1ynO3d5cMN9BHor+XW/Re7P7Ax30P7\n/B9JtiVZ6IXes3O5OR/a5Ux1H3M+tMp7kvyP6fz87tjsylLKB9Op85vS+byfmO9ZgEeWwdrxte5y\nR5/aAYN3Xxafax/qLnfUWh9N5zbnCxdpe1F3Oda/rgENuS/LqPtlHMd8D+vXi9N5P8SH528w50Nr\nLVr3y2DOh3WilHJeOuHp0blhTJLUWr+R5I50wprviPmeRQhkYJWUUnaUUl5WSvmRxZp0lw+WUl5S\nSnnxEu3uX2Q7sHZ8Mp3HF126wLbZD2CzL/n7RJILSynfsUDb5yT5RpKjfe8h0G/LqvtSyibzPbRP\nKWV7kmen81iibyzSzJwPLbJU3ZvzoVXOTTKSzvuiFrJ1ztJ8z4IEMrB6TiX5nSQ3l1IumLuhlPKv\nk/zzJJ+utT6Q5FfSebHfvnntLk3n5cAPJvn0qvQa6MXN3eWhUsrI7MpSynel8wHs87XW2f/xurG7\nfN3cA5RS/mWS70vyh93fqgXWtpu7yzPWfa31sZjvoY2+K8mmJF88QxtzPrTLGevenA/tUWs9kc5d\nLd/Vrd/HlVJ2JnleOo8h+2LM9yzCO2RgldRaJ0spr03nBzWfLqW8K8k/JvnedF7+N57kVd3mr0ny\nkSQfK6X8TpJj6fzWzMEk30zyM90PdcAaVmv9VCnlcDq1+6ellA+k8xvyr0syneS1c9reWkr5kyRX\nl1J2JPmrbttr0/kftF9a7f4DK7eSuo/5Htroqd3lfYs1MOdD6yxZ9zHnQ5v8QpIPJbmzlPKOJPck\nuSCdz/nfluRna61TScz3LMgdMrCKaq3vTSctvzedb7w3JvnxJP81yTNqrZ/ttvvLJJcl+XiSn0/y\ne0l+Op0PcM+qtX5k9XsPnKXXphO6PiXJf07nw9ffJvnBWusd89r+RJJD6fwW/U3dff8sybNrrf+4\nWh0GerasujffQys9qbt8ZIl25nxojyXr3pwP7VFrvTXJDyb5m3Q+89+czpx+b5IX1FrfPae5+Z4n\nGJmZmRl0HwAAAAAAAFrNHTIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAA\nAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAA\nANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAA\nDRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANCw\njYPuQBPGx8dnBt0HAAAAAACg3UZHR0eW29YdMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwA\nAAAAAEDDBDIAAAAAAAANE8jAGjI2NpaxsbFBdwNYReoehpPah+Gj7mH4qHsYPuqepQhkAAAAAAAA\nGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBh\nAhkAAAAAAICGbRx0B1h9Dz30UI4cOZJjx47lsccey6ZNm7Jnz54cOHAgu3fvHnT3YM1oU620aSzA\n8qh7WJ421UqbxtIms+fl6NGjmZ6ezq5du5wX+kbdr03qHoDFjMzMzPTlQKWUzUnelOTaJH9Ta33u\nCvZ9dpLrkjwryblJ7knyu0neUWtdcQfHx8f7M6iWmZiYyOHDh3Pvvfdm48aN2bJly+PbpqamMj09\nnb179+bgwYPZtm3bAHs6vMbGxpIk+/btG3BPhlubaqVNY2krdU+/qfv1Qe0PXptqpU1jaZP552Vy\ncjJJMjo66rzQM3W/Nql7wOf84TQ6Ojqy3LZ9CWRKKSXJ+5M8Ncn2JB9dbiBTSnlekg8neSDJ4ST/\nlORAkhcleXut9eqV9kcg80QTExO5/vrr8/DDD2fr1q2LtpucnMzo6GgOHTrkw8EA+KY9eG2qlTaN\npc3UPf2k7tcPtT9YbaqVNo2lTRY6L+Pj40k6P5id5bxwNtT92qTugcTn/GG1kkCm53fIlFKelORo\nkg1Jvv8sDvHOJJNJnlNrfXut9X211h9PciTJz5dSvrvXPpIcPnx4yQ9rSbJ169aMj4/n8OHDq9Qz\nWFvaVCttGguwPOoelqdNtdKmsbSJ80KTXF9rk/MCwHL0HMgk2Zzk95M8q9ZaV7JjKeWyJCXJB2qt\nX523+R1JRpJc2Yc+DrWHHnoo995775IfCmZt3bo1Y2NjOX78eMM9g7WlTbXSprEAy6PuYXnaVCtt\nGkubOC80yfW1NjkvACxXz4FMrfVrtdZX11onz2L3Z3aXn1xg26e6y8vOrmfMOnLkSDZu3LiifTZt\n2pRbbrmloR7B2tSmWmnTWIDlUfewPG2qlTaNpU2cF5rk+lqbnBcAlmtls0X/XdxdPjh/Q631kVLK\n15Nc0q9/bPYZfsPm6NGjmZycfPxlcivZb1i/ZoPm6z4YbaqVNo1lWPi60yt1vz752q++NtVKm8bS\nJkudl9l3Siy0n/PCUtT92qTugfnUdjv1491A/XhkWS/O7y4nFtl+ck4bztL09PSq7gfrVZtqpU1j\nAZZH3cPytKlW2jSWNnFeaJLra21yXgBYrkHfIbOq+pFgrUe7du3KxMRimdfitm3bNrRfs0GZTc99\n3QejTbXSprG0nbqnX9T9+qL2B6dNtdKmsbTJYudl9jfkR0dHF9zPeWE51P3apO6BWT7ns5RB3yHz\ncHd53iLbt89pw1nas2dPpqamVrTP1NRU9uzZ01CPYG1qU620aSzA8qh7WJ421UqbxtImzgtNcn2t\nTc4LAMs16EDmy93lhfM3lFJGk4wm8cC9Hh04cGDFt8FOT0/niiuuaKhHsDa1qVbaNBZgedQ9LE+b\naqVNY2kT54Umub7WJucFgOUadCDzie7yBxbY9pzu8mOr1JfW2r17d/bu3bvsl/5NTk5m79692bVr\nV8M9g7WlTbXSprEAy6PuYXnaVCttGkubOC80yfW1NjkvACzXqgYypZT9pZTH78estX42ydEkLy6l\nXDin3UiS1yV5LMl7V7OPbXXw4MHs2LFjyQ8Hk5OTGR0dzcGDB1epZ7C2tKlW2jQWYHnUPSxPm2ql\nTWNpE+eFJrm+1ibnBYDlGJmZmenpAKWUS5NcOmfVB5PcleTQnHW31VonSikzSWqtdf+c/S9L8tdJ\n/jHJbyX5epKXJnlBkutqrW9aaZ/Gx8d7G1RLTUxM5PDhwxkbG8umTZuyZcuWx7dNTU1leno6e/fu\nzcGDB7Nt27YB9nR4efHX2tCmWmnTWNpK3dNv6n59UPuD16ZaadNY2mT+eZn9Ie3o6KjzQs/U/dqk\n7gGf84fT6OjoyHLb9iOQuT7fGr4sZE/9/9u7/2i7qsJO4N9HfhICUVZCK4IhDOlOcbQttmIptda2\ntg7TCa11tCMVse2og6mIFhlaVmir6LK0qxprtZUGtbVdWhVE0HGNFgqislypogLbUAOENVaStgZN\nzI8XMn/c+1jPx7t5ebn3vB/nfj5rsY45e5+Tfbx7331zv3efU+v9kwUy3XP8eJI/THJOkiVJ7kmy\nqda6+WjaJJA5vB07duT666/Ptm3bcuDAgSxatCinn3561q9fb7nsLPOmPbe0aay06VraxrinKcb9\n3Gbszx1tGittupY2GXtdtmzZktHR0axatcrrwsAY93OTcQ/Dy+f84TSjgcxcJJBhvvKmDcPHuIfh\nZOzD8DHuYfgY9zB8jPvhNJ1AZkafIQMAAAAAADCMBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQ\nMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0T\nyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEM\nAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0TyAAA\nAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0TCADAAAAAADQMIEMAAAA\nAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA1bOIiTlFJO\nTLIxyflJnpRkZ5Kbk1xZa/3mERx/QZJXJvmRJIuTPJjk40neWGv9t0G0EQAAAAAAYLb0vUKmlHJs\nkluSvCrJh5O8LMm7k7woyWdLKU+c4virk7w/yaIkV6QTzNySZEOSz5dSTui3jQAAAAAAALNpECtk\nLknytCQX11rfObazlPLlJB9NcmWSSyc7sLuy5neT3J/k2bXWfd2izaWUnUkuT3JRkrcNoJ0AAAAA\nAACzYhDPkHlpkt1Jrp2w/4YkDyW5oJQy0uPYp6QTCt05LowZ80/d7WkDaCMAAAAAAMCs6SuQ6d5O\nbF2SLRMDlVrroSR3JlmVZE2PU2xLsi/J2knKTutuv9pPGwEAAAAAAGZbv7csW93dPtSj/MHu9vQk\n35hYWGvdVUr5oyRvLKVsSvJnSb6T5JlJfi/Jl5L8bZ9tfMzWrVsHdSpolL4Kw8e4h+Fk7MPwMe5h\n+Bj3MHyM+3Zau3aydSXT0+8ty47vbvf0KN89od7j1FrflOS3k/xWkvuSfCvJjUn+Oclza617+2wj\nAAAAAADArOp3hUzfSimvSvL2JJ9K8ndJdiQ5O8llSW4upTy/1vrtQfxdg0iwoElj6bm+CsPDuIfh\nZOzD8DHuYfgY9zB8jHum0m8g80h3e1yP8uUT6n2fUkpJJ4z5dK31vHFF/6eU8uUk1ye5Ip1wBgAA\nAAAAYF7q95Zl25IcSnJKj/KxZ8z0umnec9MJhT4ySdknuuf+2X4aCAAAAAAAMNv6CmRqrbuT3JXk\nrFLK0vFlpZQFSc5Jsr3W+mCPU4ytrFk6SdmSJCM9ygAAAAAAAOaNflfIJMm1SZYlecWE/RckOSnJ\ne8Z2lFLWlVLWjKtzR3f7olLKyITjXzihDgAAAAAAwLzU7zNkkuRdSV6S5JpSyuokX0zy1CSXJvlK\nkmvG1b0nSU2yLklqrXeUUj6UTvhyeynlg0l2JPmJJBcn+VaSNw2gjQAAAAAAALOm7xUytdYDSZ6X\nZFOSFyS5LsmF6ayMeU6tdc8Up/j1JBvSuUXZm7rH/0qSv07yjMPc7gwAAAAAAGBeGMQKmdRaH0ln\nRcylU9SbeFuy1FoPJnlH9z8AAAAAAIDWGcQzZAAAAAAAADgMgQwAAAAAAEDDBDIAAAAAAAANE8gA\nAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAA\nAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAA\nAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nTCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMW\nDuIkpZQTk2xMcn6SJyXZmeTmJFfWWr95BMcvSXJ5kguSnNo9/qYkv1dr3TmINgIAAAAAAMyWvlfI\nlFKOTXJLklcl+XCSlyV5d5IXJflsKeWJUxy/MJ3w5feTfDzJbyX5hyS/meTWUsriftsIAAAAAAAw\nmwaxQuaSJE9LcnGt9Z1jO0spX07y0SRXJrn0MMe/MsnPJbmw1vq+7r6/KaXsTPLyJGcnuW0A7QQA\nAAAAAJgVg3iGzEuT7E5y7YT9NyR5KMkFpZSRwxx/cZKtSd4/fmet9Y211tNrrcIYAAAAAABgXusr\nkCmlnJBkXZIttdZ948tqrYeS3JlkVZI1PY4/pXv8p7r1U0pZOkWAAwAAAAAAMK/0e8uy1d3tQz3K\nH+xuT0/yjUnK13W3/1JKeU2S13bPua+U8skkr6+13tdnGx+zdevWQZ0KGqWvwvAx7mE4GfswfIx7\nGD7GPQwf476d1q5d2/c5+r1l2fHd7Z4e5bsn1JvoxO72wiSvSPKmJOuTvDvJLyf5bCnlSX22EQAA\nAAAAYFb1u0KmX4u72x9I8p9rrf/W/fPHSinfSiegeV2S1w/iLxtEggVNGkvP9VUYHsY9DCdjH4aP\ncQ/Dx7iH4WPcM5V+V8g80t0e16N8+YR6E323u/3YuDBmzLXd7XOOrmkAAAAAAABzQ7+BzLYkh5Kc\n0qN87BkzvW6ad393u2CSsp3dc59wtI0DAAAAAACYC/oKZGqtu5PcleSsUsrS8WWllAVJzkmyvdb6\nYI9T3J1kV5IfnaTs1CQjSR7qp40AAAAAAACzrd8VMknn1mLLkrxiwv4LkpyU5D1jO0op60opa8b+\nXGvdn+QDSZ5RSvnlCce/uru9cQBtBAAAAAAAmDULB3COdyV5SZJrSimrk3wxyVOTXJrkK0muGVf3\nniQ1ybpx+zYm+cUkHyqlvCWd25g9N8lvJPlS9/wAAAAAAADzVt8rZGqtB5I8L8mmJC9Icl2SC9NZ\nGfOcWuueKY7fkeRZSd6b5H8m+cskP5PkT7vHf6/fNgIAAAAAAMymQayQSa31kXRWxFw6Rb2RHvt3\npHPLs4m3PQMAAAAAAJj3BvEMGQAAAAAAAA5DIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gA\nAAAAAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAA\nAAAAQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAA\nAAA0TCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAA\nQMMEMgAAAAAAAA0TyAAAAAAAADRMIAMAAAAAANAwgQwAAAAAAEDDBDIAAAAAAAANE8gAAAAAAAA0\nTCADAAAAAADQMIEMAAAAAABAwwQyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0LCFgzhJKeXEJBuT\nnJ/kSUl2Jrk5yZW11m9O81xLk3w5yQ8l+dla6y2DaCMAAAAAAMBs6XuFTCnl2CS3JHlVkg8neVmS\ndyd5UZLPllKeOM1TXplOGAMAAAAAANAKg1ghc0mSpyW5uNb6zrGdpZQvJ/loOgHLpUdyolLK05L8\nbpJ/TvJjA2gbAAAAAADArBvEM2RemmR3kmsn7L8hyUNJLiiljEx1klLKMUn+KskD6aywAQAAAAAA\naIW+AplSyglJ1iXZUmvdN76s1nooyZ1JViVZcwSne3WSs5O8Msm+KeoCAAAAAADMG/3esmx1d/tQ\nj/IHu9vTk3yj10lKKacmeVOS99daP11KeVmf7ZrU1q1bmzgtDJy+CsPHuIfhZOzD8DHuYfgY9zB8\njPt2Wrt2bd/n6PeWZcd3t3t6lO+eUK+Xv0iyP8nr+mwPAAAAAADAnNPvCpm+lVJenOS8JC+vte5o\n8u8aRIIFTRpLz/VVGB7GPQwnYx+Gj3EPw8e4h+Fj3DOVflfIPNLdHtejfPmEet+nlHJikrclubXW\nurnPtgAAAAAAAMxJ/a6Q2ZbkUJJTepSPPWOm103z/jjJE5JcVUoZf44ndreruvt31Fr39dlWAAAA\nAACAWdHXCpla6+4kdyU5q5SydHxZKWVBknOSbK+1PtjjFD+XZHGSf0yyfdx/f9ot/2D3zz/ZTzsB\nAAAAAABm0yCeIXNtkrcneUU6tx8bc0GSk5JsHNtRSlmXZF+tdVt318uTLJvknD+X5JIkVyT5Svc/\nAAAAAACAeWkQgcy7krwkyTWllNVJvpjkqUkuTSdIuWZc3XuS1CTrkqTW+pnJTlhKWdn9n5+rtd4y\ngDYCAAAAAADMmr5uWZYktdYDSZ6XZFOSFyS5LsmFSd6T5Dm11j39/h0AAAAAAADz2SBWyKTW+kg6\nK2IunaLeyBGe77p0gh0AAAAAAIB5r+8VMgAAAAAAAByeQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAA\nAAAaJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAA\noGECGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGEC\nGQAAAAAAgIYJZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpAB\nAAAAAABomEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGELB3GS\nUsqJSTYmOT/Jk5LsTHJzkitrrd88guPP7R7/zCRLk2xP8uEkf1Rr/e4g2ggAAAAAADBb+l4hU0o5\nNsktSV6VTojysiTvTvKiJJ8tpTxxiuNfkuS2JKemE8q8KsldSS5L8qlSilU8AAAAAADAvDaIFTKX\nJHlakotrre8c21lK+XKSjya5Msmlkx1YSlmS5C/SWRFzdq11V7for0spH01nxc0vpbPaBgAAAAAA\nYF4axOqTlybZneTaCftvSPJQkgtKKSM9jv3BJB9J8uZxYcyYsRDm6QNoIwAAAAAAwKzpa4VMKeWE\nJOuS3FZr3Te+rNZ6qJRyZ5JfTbImyTcmHl9rfSCdW5xNZkV3+0g/bQQAAAAAAJht/d6ybHV3+1CP\n8ge729MzSSDTSyllcZKXJ9mT5Pqjbt0EW7duHdSpoFH6Kgwf4x6Gk7EPw8e4h+Fj3MPwMe7bae3a\ntX2fo99A5vjudk+P8t0T6k2plHJMkr9K8sNJXldr/X9H3zwAAAAAAIDZ128gM1CllGOTfCDJ+Un+\nvNb6p4M8/yASLGjSWHqur8LwMO5hOBn7MHyMexg+xj0MH+OeqRzT5/Fjz3c5rkf58gn1eiqlrEry\nmXTCmD+qtb66z7YBAAAAAADMCf2ukNmW5FCSU3qUjz1j5rA3zSul/ECS25KsSXJRrfW6PtsFAAAA\nAAAwZ/S1QqbWujvJXUnOKqUsHV9WSlmQ5Jwk22utD/Y6RynlhCSfTPKUJP9NGAMAAAAAALRNv7cs\nS5JrkyxL8ooJ+y9IclKS94ztKKWsK6WsmVDvbUl+NMmv11o/MYD2AAAAAAAAzCn93rIsSd6V5CVJ\nrimlrE7yxSRPTXJpkq8kuWZc3XuS1CTrkqSU8vQkFya5O8mCUsqvTXL+HbXWWwfQTgAAAAAAgFnR\ndyBTaz1QSnlekquSvCDJq5M8nM7KmI211j2HOfysJCNJzkzyoR51bk3ynH7bCQAAAAAAMFsGsUIm\ntdZH0lkRc+kU9UYm/Pm6JNcNog0AAAAAAABz1SCeIQMAAAAAAMBhCGQAAAAAAAAaJpABAAAAAABo\nmEAGAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJ\nZAAAAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAG\nAAAAAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAA\nAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAA\nAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAA\nABLXXjoAABKwSURBVBq2cLYbAAAAzC8PP/xwbrjhhmzbti0HDhzIokWLsmbNmqxfvz4nnXTSbDdv\nWu6+++689a1vfdy1XHbZZTnzzDNnu3lDq0197Pbbb88VV1yR7du35+DBg1m8eHFOPvnkXH311Tn3\n3HNnu3lDqU39i7lprI9t2bIlo6OjWbVq1bztY+bJuadN72FtupY28bo0a+TQoUN9n6SUcmKSjUnO\nT/KkJDuT3JzkylrrN4/g+HOSXJnkWUmOTfL1JH+V5B211mk3cNeuXf1fFMyCrVu3JknWrl07yy0B\nZopxD8Npvo79PXv2ZNOmTbnvvvuycOHCLFmy5LGyffv2ZXR0NGeccUY2bNiQZcuWzWJLp7Zz585c\ndNFFeeCBB3LMMcdk8eLFj5Xt378/jz76aFavXp3Nmzdn5cqVs9jS4dKmPrZ9+/acd9552blzZ0ZG\nRjIyMpIkWbBgQUZHR3Po0KGsXLkyN910U0499dRZbu1waFP/Ym6a2Mf27t2bJFmxYsW862Pmybmn\nTe9hbbqWiebr5/yk3a9L01asWDFypHX7DmRKKccm+UKSdUnekeSLSdYmeX2SHUmeUWv9j8Mc/9wk\nn0iyPcmmJP+eZH2SFyR5W631kum2SSDDfDWf37SBo2Pcw3Caj2N/z549ueqqq/LII49k6dKlPevt\n3bs3K1asyMaNG+fsP9R27tyZ9evXZ/fu3d/3BdNE+/fvz/Lly3P99df7smkGtKmPbd++Pc9+9rOz\nf//+LFzYuTHFwYMHk3QCmTGjo6NZsmRJbr31VqFMw9rUv5ibJutju3btStIJZMbMhz5mnpx72vQe\n1qZrmcx8/JyftP91adp0AplBPEPmkiRPS3JJrfXSWusHaq1/kOQ3kqxJZ+XL4bwzyd4kP11rfVut\n9f211l9LckOS3yml/MgA2ggAAPRh06ZNU/4DLUmWLl2aXbt2ZdOmTTPUsum76KKLpvySKUkWL16c\n7373u7noootmqGXDrU197Lzzzvu+MKaXhQsXZt++fTnvvPNmqGXDq039i7mpTX3MPDn3tKl/tela\n2sTrMnMGEci8NMnuJNdO2H9DkoeSXFBKmTQhKqWcnaQk+eAktzZ7R5KRJBcMoI0AAMBRevjhh3Pf\nffdN+Q+0MUuXLs3WrVuzY8eOhls2fXfffXceeOCBKb9kGrN48eLcf//9uffeextu2XBrUx+7/fbb\ns3PnzinDmDELFy7Mjh07cscddzTcsuHVpv7F3NSmPmaenHva1L/adC1t4nWZWX0FMqWUE9K5VdmW\nWuu+8WXdZ7/cmWRVOitlJvPM7vZzk5R9obs9u582AgAA/bnhhhuO+MvlMYsWLcr111/fUIuO3lvf\n+tYcc8z0/hm0YMGCvOUtb2moRSTt6mNXXHHFY8+LOVLHHHNMLr/88oZaRJv6F3NTm/qYeXLuaVP/\natO1tInXZWZN7//px1vd3T7Uo/zB7vb0JN+YpPy0XsfXWr9TSvl299iBGLuHH8x1+ioMH+MehtN8\nGftbtmzJ3r17H3s48XSOm2vXeM899yTp3Pd+usfNtWtpkzb1se3bt2dkZOSxZ8ZMNNn+kZGRbN++\nfc5dS1u0qX8xN03Vx8aeJTPZcXOtj5kn5542vYe16VqmMp/aO0yvS78G8Wygfm9Zdnx3u6dH+e4J\n9Y7m+F7HAgAAM2B0dHRGj2tSm66lTdr0uvQKYpo6jqm1qX8xN7Wpj7XpWtqiTa9Jm66lTbwuM6vf\nFTLzyiASLGjSWKqsr8LwMO5hOM23sb9q1ars2dPrN1S9LVu2bM5d4/Lly/O9731v2scde+yxc+5a\n2qRNfWzx4sU5cODA4/aPBS4LFiyY9LhFixbNuWtpizb1L+amXn1sbGXMihUrJj1uLvYx8+Tc06b3\nsDZdSy/z7XN+Mhyvy1zS7wqZR7rb43qUL59Q72iO73UsAAAwA9asWZN9+/ZNXXGcffv2Zc2aXo+S\nnD1r1qyZ9m1Y9u/fPyevpU3a1MdOPvnkaf9idHR0NCeffHJDLaJN/Yu5qU19zDw597Stf7XlWtrE\n6zKz+g1ktiU5lOSUHuVjz5jpdTO5sefKPO74UsqKJCsOcywAADAD1q9ff1RfMJ9//vkNtejoXXbZ\nZXn00UendczBgwc9cL1hbepjV199dQ4dOjStYx599FEPxG5Qm/oXc1Ob+ph5cu5pU/9q07W0iddl\nZvUVyNRadye5K8lZpZSl48tKKQuSnJNke631wR6nuKO7/alJyn66u729nzYCAAD9Oemkk3LGGWcc\n8YM+9+7dmzPOOCOrVq1quGXTd+aZZ2b16tVH/Ovf/fv357TTTsu6desabtlwa1MfO/fcc7Ny5coj\n/mJjdHQ0q1atyjnnnNNwy4ZXm/oXc1Ob+ph5cu5pU/9q07W0iddlZvW7QiZJrk2yLMkrJuy/IMlJ\nSd4ztqOUsq6U8thaplrrl5JsSfLCUsop4+qNJHltkgNJ3juANgIAAH3YsGFDTjjhhCn/obZ3796s\nWLEiGzZsmKGWTd/mzZtz3HHHTfll0/79+7N8+fJs3rx5hlo23NrUx2666aYsXrx4ylBmdHQ0S5Ys\nyU033TRDLRtebepfzE1t6mPmybmnTf2rTdfSJl6XmTMy3aXUE5VSFiW5LckzkmxK8sUkT01yaTq3\nG3tWrXVPt+6hJLXWum7c8Wcn+cck/5rkz5J8O8mLkzw/yZW11jdOt027du3q76JglszHB38B/THu\nYTjN17G/Z8+ebNq0KVu3bs2iRYuyZMmSx8r27duX0dHRnHHGGdmwYUOWLVs2iy2d2s6dO3PRRRfl\n/vvvz4IFC7J48eLHyvbv35+DBw/mtNNOy+bNm7Ny5cpZbOlwaVMf2759e84777zs2LEjxxxzTEZG\nRpIkCxYsyOjoaB599NGsWrUqN910U0499dRZbu1waFP/Ym6a2MfGvthcsWLFvOtj5sm5p03vYW26\nlonm6+f8pN2vS9NWrFgxcqR1+w5kkqSUckKSq5K8IMmTkjyc5KNJNtZa/31cvccFMt39P57kD9O5\nxdmSJPck2VRrPaqIXSDDfDWf37SBo2Pcw3Ca72N/x44duf7667Nt27YcOHAgixYtyumnn57169fP\nu1sX3HvvvXnLW97yuGt5wxve4PYrs6hNfeyOO+7I5Zdfnu3bt+fgwYNZvHhxnvzkJ+fNb36z25TN\nkjb1L+amsT62ZcuWx25LOF/7mHly7mnTe1ibrmXMfP+cn7TzdWnajAcyc41AhvmqDW/awPQY9zCc\njH0YPsY9DB/jHoaPcT+cphPIDOIZMgAAAAAAAByGQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAa\nJpABAAAAAABomEAGAAAAAACgYQIZAAAAAACAho0cOnRottswcLt27WrfRQEAAAAAAHPKihUrRo60\nrhUyAAAAAAAADRPIAAAAAAAANEwgAwAAAAAA0DCBDAAAAAAAQMMEMgAAAAAAAA0bOXTo0Gy3AQAA\nAAAAoNWskAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAA\nAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYtnO0GwDAp\npVyX5MLDVHltrfXPSilXJdl4mHpvq7VeMsi2Ac0ppTw/yeVJzkoymuSfk7yx1vqZCfWOTfK/k7w4\nyeokjyT5TJIra61fn9FGA305knFvvof2KKUcOoJqa2qt93frm/NhnpvOuDfnQ7uUUp6a5Iokz02y\nMsm3k9yR5I9rrbePq2e+53EEMjA7/leSHZPs/9KEP1+V5GuT1Ns66AYBzSilvDzJtUn+Kclrkhyf\n5LVJPllKeV6t9ZZuvZEkNyT5+SSbk/xBkpOTvD7J50opz6y1/svMXwEwXUc67se5KuZ7mO9eeJiy\nNydZke7nf3M+tMYRj/txroo5H+a1UsqPJbk9yf4k70jy9SSnJrk4ya2llPNrrTea7+lFIAOz4xNj\nv46bwq2TfGkDzBOllB9M8vYk/zfJL9ZaH+3uvzHJ55Kcl+SWbvUXJ/mFdH5Rc9m4c3w6yReT/HGS\nX52xxgNHZZrjfoz5Hua5Wus/TLa/lHJ+kjOSvKzWuru725wPLTDNcT/GnA/z3+8nWZbkV2qtnxrb\nWUr5SJJ7kvxhkhtjvqcHz5ABgOZcmOS4JFeNfSmbJLXWb9Raf6DW+rvj6r60u337+BPUWreks/T5\nv5ZSntB0g4G+TWfcAy1WSjk+yaYkt9Va3zuuyJwPLXWYcQ+0x3/qbm8bv7PWem+Sh5Oc1t1lvmdS\nAhmYRaWUpaWUKVeqlVIWl1IWz0SbgIH6hSTfSedX8SmlLCilLOlR95lJttdaH5qk7AtJFqXzLApg\nbpvOuP8+5ntonSvTuTXJxRP2m/OhvXqN++9jzod57Z7u9ofG7yylrEjyhCRf7e4y3zMpgQzMjotL\nKduSfC/JvlLK50sp/2WSev+9lPK1JPu69b5SSvmNGW0p0I91Sf4lyY+WUm5NZyzvLaV8tZTy4rFK\n3V/SnZhksg9qSfJgd3t6k40FBuKIxv0E5ntomVLKSel8Ifu+WutXxu0350NL9Rr3E5jzYf57U5L/\nSPK+Usq5pZSVpZSnpfOcmENJrjTfczgCGZgdv5jk6nTuI/97SdYm+fgkX9Q8P8m7utvXpPNQwPeV\nUt4wg20Fjt6J6fxC5qYkn01yfpIN3X1/V0r5zW6947vbPT3Os3tCPWDuOtJxP575HtrnsiRL0/nS\nZjxzPrRXr3E/njkf5rla61eT/GSSBenctmxHkruSnJ3OMyRvifmew5jyVknAQP1Jkr9LckutdV93\n382llI8l+VKSPymlfDDJ3yT5fJLP1Vp3det9spTy90nuTbKxlPLuWuu3Z7j9wPQsTuf+sS+ptX5g\nbGcp5aZ0ljlfXUq5bnaaBjTkiMZ9rfVgzPfQSqWUJyZ5VZKP11rvm+32AM07gnFvzoeWKKWUJDcn\nWZLktemM4ZOSvC7JjaWUFyT52uy1kLlOIAMzqLts+XFLl2utd5dSbknnvvM/XGv9WpLHfYirtT5c\nSvmHJL+d5KfS+fUtMHd9N50PaX8/fmetdVsp5R+T/FKSH05yf7fouB7nWd7dPtJAG4HBOtJx/9Xu\nFzbme2if/5FkWZLJHug9Npeb86FdDjfuY86HVnlPkien8/3dtrGdpZQPpTPON6fzeT8x3zMJtyyD\nueNb3e0JA6oHzL7703uufbi7PaHW+t10ljmf0qPu6u526+CaBjTk/hzBuD+C85jvYf56YTrPh/jE\nxAJzPrRWz3F/BMz5ME+UUo5LJzzdMj6MSZJa6/eS3JJOWPOUmO/pQSADM6SUckIp5SWllF/qVaW7\nfaiU8qJSygunqPdgj3Jg7vhcOrcvOnOSsrEPYGMP+bsjySmllKdMUvenk3wvyZaBtxAYtCMa96WU\nReZ7aJ9SyvIk56RzW6Lv9ahmzocWmWrcm/OhVY5NMpLO86Ims3Tc1nzPpAQyMHP2J/nzJNeVUlaO\nLyil/HySn0hyZ611e5I/SOfBfmsn1DsznYcDP5TkzhlpNdCP67rbjaWUkbGdpZSnp/MB7K5a69g/\nvK7tbl87/gSllJ9J8owkf9/9VS0wt13X3R523NdaD8R8D2309CSLknz1MHXM+dAuhx335nxoj1rr\nznRWtTy9O34fU0o5Mclz07kN2VdjvqcHz5CBGVJr3VtKeU06X9TcWUp5V5J/TfJj6Tz8b1eSV3Sr\nX5zkk0luL6X8eZJt6fxqZkOSR5P8dvdDHTCH1Vq/UErZlM7Y/Vgp5YPp/EL+tUlGk7xmXN0bSykf\nSXJJKeWEJJ/p1n19Ov9Au2Km2w9M33TGfcz30EY/1N3e36uCOR9aZ8pxH3M+tMnrknw0yW2llHck\n+XqSlel8zn9CklfWWvclMd8zKStkYAbVWt+bTlp+XzpvvNcm+bUkf5vkrFrrl7r1Pp3k7CSfTfI7\nSf46yW+l8wHuWbXWT85864Gj9Jp0QtdTk/xlOh++Pp/k3FrrLRPq/nqSjen8in5z99iPJzmn1vqv\nM9VgoG9HNO7N99BKT+xuvzNFPXM+tMeU496cD+1Ra70xyblJ/imdz/zXpTOn35fk+bXWd4+rbr7n\ncUYOHTo0220AAAAAAABoNStkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAA\nAAAAABomkAEAAAAAAGiYQAYAAAAAAKBhAhkAAAAAAICGCWQAAAAAAAAaJpABAAAAAABomEAGAAAA\nAACgYQIZAAAAAACAhglkAAAAAAAAGiaQAQAAAAAAaJhABgAAAAAAoGECGQAAAAAAgIYJZAAAAAAA\nABr2/wHMlCH03nNgngAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 818, + "height": 683 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 203, - "width": 780 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "def separation_plot( p, y, **kwargs ):\n", - " \"\"\"\n", - " This function creates a separation plot for logistic and probit classification. \n", - " See http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf\n", - " \n", - " p: The proportions/probabilities, can be a nxM matrix which represents M models.\n", - " y: the 0-1 response variables.\n", - " \n", - " \"\"\" \n", - " assert p.shape[0] == y.shape[0], \"p.shape[0] != y.shape[0]\"\n", - " n = p.shape[0]\n", - "\n", - " try:\n", - " M = p.shape[1]\n", - " except:\n", - " p = p.reshape( n, 1 )\n", - " M = p.shape[1]\n", - "\n", - " colors_bmh = np.array( [\"#eeeeee\", \"#348ABD\"] )\n", - "\n", - "\n", - " fig = plt.figure( )\n", - " \n", - " for i in range(M):\n", - " ax = fig.add_subplot(M, 1, i+1)\n", - " ix = np.argsort( p[:,i] )\n", - " #plot the different bars\n", - " bars = ax.bar( np.arange(n), np.ones(n), width=1.,\n", - " color = colors_bmh[ y[ix].astype(int) ], \n", - " edgecolor = 'none')\n", - " ax.plot( np.arange(n+1), np.append(p[ix,i], p[ix,i][-1]), \"k\",\n", - " linewidth = 1.,drawstyle=\"steps-post\" )\n", - " #create expected value bar.\n", - " ax.vlines( [(1-p[ix,i]).sum()], [0], [1] )\n", - " plt.xlim( 0, n)\n", - " \n", - " plt.tight_layout()\n", - " \n", - " return\n", - "\n", - "plt.figure(figsize(11., 3))\n", - "separation_plot(posterior_probability_, D_)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "tBuY2lSaIA0s" - }, - "source": [ - "The snaking-line is the sorted probabilities, blue bars denote defects, and empty space (or grey bars for the optimistic readers) denote non-defects. As the probability rises, we see more and more defects occur. On the right hand side, the plot suggests that as the posterior probability is large (line close to 1), then more defects are realized. This is good behaviour. Ideally, all the blue bars *should* be close to the right-hand side, and deviations from this reflect missed predictions. \n", - "\n", - "The black vertical line is the expected number of defects we should observe, given this model. This allows the user to see how the total number of events predicted by the model compares to the actual number of events in the data.\n", - "\n", - "It is much more informative to compare this to separation plots for other models. Below we compare our model (top) versus three others:\n", - "\n", - "1. the perfect model, which predicts the posterior probability to be equal 1 if a defect did occur.\n", - "2. a completely random model, which predicts random probabilities regardless of temperature.\n", - "3. a constant model: where $P(D = 1 \\; | \\; t) = c, \\;\\; \\forall t$. The best choice for $c$ is the observed frequency of defects, in this case 7/23. \n" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 618 - }, - "colab_type": "code", - "id": "RbX1nHrBIA0s", - "outputId": "d705df41-b68e-4f98-983a-df76934e9ffc" - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" + }, + { + "metadata": { + "id": "RFSaMzNQIA0l", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "Note that the above plots are different (if you can think of a cleaner way to present this, please send a pull request and answer [here](http://stats.stackexchange.com/questions/53078/how-to-visualize-bayesian-goodness-of-fit-for-logistic-regression)!).\n", + "\n", + "We wish to assess how good our model is. \"Good\" is a subjective term of course, so results must be relative to other models. \n", + "\n", + "We will be doing this graphically as well, which may seem like an even less objective method. The alternative is to use *Bayesian p-values*. These are still subjective, as the proper cutoff between good and bad is arbitrary. Gelman emphasises that the graphical tests are more illuminating [3] than p-value tests. We agree.\n", + "\n", + "The following graphical test is a novel data-viz approach to logistic regression. The plots are called *separation plots*[4]. For a suite of models we wish to compare, each model is plotted on an individual separation plot. I leave most of the technical details about separation plots to the very accessible [original paper](http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf), but I'll summarize their use here.\n", + "\n", + "For each model, we calculate the proportion of times the posterior simulation proposed a value of 1 for a particular temperature, i.e. compute $P( \\;\\text{Defect} = 1 | t, \\alpha, \\beta )$ by averaging. This gives us the posterior probability of a defect at each data point in our dataset. For example, for the model we used above:" ] - }, - "metadata": { - "tags": [] - }, - "output_type": "display_data" }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xm4ZEV9P/73KAooixI3vqKAOn4m\noCYsggEX5Cducd/QiEtcogEjiEpcghCXaAwuUVwSQYkxGtS4JrjgggsgBFEkRstRQCCuOAgIiiDz\n++OcK23T9849c+/cdriv1/Pw1O1TVaeqT59ueurTVbVi7dq1AQAAAAAAGOIG0+4AAAAAAACw8RFg\nAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAA\nAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABttk2h0AAGDp\nVdWRSY5Yj6o7ttbOW9zecH1WVT9Kcuskf9Ja+8q0+zMtVbUqybeSXNla22za/bk+qarXJPnrJP/U\nWnv2As/1lSR7JnlCa+3fF6N/AADXZwIMAADL01eS/OOE409OcvMkJyb53wn5l27ITi03VXVwkjcm\n2ba19qNp94frt6p6eJKPZJkHewAAWDwCDAAAy1Br7ZNJPjl+vKoemC7A8N7W2nFL3a9l6O7T7gDL\nivsNAIBFZQ8GAACYHgO+LCX3GwAAi8oMBgAA1ktV3TDJ05I8KcndkmyW5MdJPpvk1a211WPln53k\nbUn+KcmLk7w6yUOT/EGSC5Mcl+TvWmvXVNWBSQ5Mcscklyf5RJLntdYumnC+9yX5iySvSPLIJNsm\nuSTJ55L8TWvtuxP6fvMkz0vy8CR3SrI2yffTLR/z2tbaJWPl/z3J/kn+qu/r3yfZIcnerbUz+jJb\nJzkkycOS3Lm/HmuSnJ7k9a21z4+cb2bN+Bk/rKqkX/d9XevAT8ofuR7/keTwJMck2aW/Bq8fqbt7\nkkOT3DvJrdIte3VWkn9urR0/3tZ8VNWeSY5Mco8kN07yvSTvyuRluEbr3S/Jc5L8SbqZMxenu15v\naq2dOFZ2Zg+DHya5bV/vmenukauTnJnuvvv0hHbW9179jyRPSPKiJAckuX2SK5OcmuSlrbUzJ7T1\npCTPTbJzkl8n+XqSf+ivyWzXYYP2b6T8jFP7++3FrbXXzNavvu7MHhrbJtkjyUuT7JTkqnSv1V+3\n1s6qqjume0/vk2SrJN9J936edP9uleTgJI9K9/rduH++X0j3Xvn6hDo3S3ePPTLJbZJclOTTSf5m\nHf2/bZIXJHlQku3TvSbfS3J8kje21q6cqz4AAHMzgwEAgMGq6kZJ/jPJPyf5o3QDoe9NN6D+50m+\nUVX7zlL9RukGBvdK8vEkJ6UbZHxFkhdV1av6v/873YD/pukGT2cb/L5Jks+kCwCcluRfklzWPz69\nqlaO9f32Sb6abhD+ZukGaT+eZIskL0nytX5QcpLbJ3lPkm8nOTZdIGNmwPQr6QZA/1+SD/f530ry\nkCSfraonjpzny0mOHnn8jnSD8W2WdodYkeQDSW6YbpD/OzMZVfXUvp9PSHJuuqDO6Un2TvLvVfVP\nQxurqnsl+WKSByY5L8m7k3wzycuSvH2Oeoen2+vjIUm+0fflf5I8OMmnq+ols1S9cZKjkrwmXVDo\nX/v29knyyap67Fg7C7lXk+5aPifdoP37073mD0zy+arabqytw/rnv1t/Td6b5Bfp7uPR13+p+/eN\ndPfXFf3j4/vH/z3Hecc9qu/XeUk+mC7w94B09/YfJjkl3cD/h5OcneSuSd7X3x+jz/c26e65l6cL\nXJyY5N+S/CRdgOX0qnrMWJ3N0gUMD073Pj0+3TW7e3+uW0zqcFXtki7Ac0i6IOL7+va2S3f/nNy/\ndwEAWE9mMAAAsD5emm4Q85tJ7je6QXFVHZLkDUneW1V3aq39Yqzu49IN6j+ttXZNX+dF6X79fFiS\nnyXZqbX24z5vZhBx36q6XWvtgrHzPThdYOFOrbUr+jqbpttjYp90sw0eNVL+3Ul2TDfY+NTW2q/7\nOpsneWeSx6cb7P3TCc/76Ule0FobHzh/epJVSb6bZPfRGRBVdVC6YMLrqup9rbVrWmv/WVWfSTcw\nnCQvW8RNnvdJF8D5s9ba2pF+VLrZI0nyyNbaR0bydu7r/EVVfaa19oEB7R2dbtD/2CTPnGmzqm6d\nLpByncHfqrpvugHmXyS5f2vt1JG8e6Z77V7Z9+X0seo3SzdYf7fW2vdG6v1dupkxb6qqj438Mn0h\n9+oD0gU9VrbWLu3rbJFuYH5VugHxV/fHt+2fU5I8pbX2ryPt7JVuYHuSDd6/1topSU6pqsenC8i9\ncT02eX5Zkr1aa9/o27l5uo3gb5PkS0mOmpkNUVU3SPLRdMGjp/b5M96apNIFDB7SWvvlyPN9brrA\nxzFV9fnW2s/6rAPTzcb5vyR3b639sC+/oi9/4Hhnq2qTdAGXW6QLSB02cm9uky5Ict90r99BA68F\nAAA9MxgAABik/8X1If3DZ48PjLfW3pju18y3TvKYXNemSZ4/E1zovb9Pt07yupngQn++/04yE1TY\necL5bpTk4JngQl/nynSzCZLkT6vqpn3f90hynyQ/T/IXM8GFvs4vk/xlul95P7iqdpjQ1op0Sw+N\nO6Wv+1fjyyv15a9Jdz3uPKHuYtsm3WDv2rHjB6cLBBw3GlxIktbaN3Pt9Zr3YGtV3SXdkj7XpFtu\n57dt9q/h36SbSTHuhX3696PBhb7el9MNGq/IhIHj/nyvHQ0u9F6Z7lf1t0lyr75/C71Xt+jrXTpS\n5xdJPtQ/vNtI2Uenu7fPHg0u9HVOSRfY+h1L3L+Feu9McKFv5+JcGzS5Kt0yUDN516SbyZCMvGer\n6nbpliVLkgNHgwt9vTelm/WzdbpA34w/69PXzwQX+vJr0wUlL5vQ30elW/7sO+mWcRq9N9ckeVb/\n8M+r6iazP20AAOYiwAAAwFC7pRsAvDTJybOU+a8+ve+EvHNGfpk848cjf38p1zWTP2k5kx9PWgs/\n3ZIx16QbVP/D/tjMUjNfmvBr8LTWfp5rn9Okvn+5tXb1hHqntdbe3lr75IS8K9OtF590121Du7S1\n9tUJx2ee+wmz1Jt5zfauqhvPs63d+/RbrbWfTsiftB/CJun2f5hPXya9BhPr9QGmr/UP/7hPF3qv\nXtZaO2vC8R/06ejrOXMtvjhLO9e5Fkvcv4Uan0mSXPu+PKW19ptZ8kbfs/dM92/Q77XWZlsO7LN9\n+ifJb4MwM4GS61zb1tqvJh3Ptff7p8aCmTP1VidZnWTzdPuZAACwHiyRBADAUDv06Yokb+g3ix23\nqk9XTsi7cMKx0cHJi+bIn/QDmYmb57bWfl1VF6XbyHjb/vAOfXqnqnrjpHrp9lBIJvf9J7PUSVXt\nlm6WwJ59mzebUGzFbPUX0aSB/uTa5/5nVXXvWcqsTfdvhB0ysnfDHGb2qvi/SZmttYur6rIkW44c\nvkWSm/Z/P6eqLr1uzWzRp7evqhuPzjTpzbZh8szA+vjrvb736vhyXDMm3Y9zXot0+0WMW8r+LdRc\n79v5vmd37NNz52jnvD69fZ/eKt0spWT9ru0ec7zXN+vTlUk+P0sZAADmIMAAAMBQM4O/W6YbUJ/L\npBkH15kBMGZ8aZ91uXyOvJmB6Zlf5M/0/Q9z7ayG2Uzq+3VmPSRJVe2fbvPnTdIN8H8mXTDiqr7I\nM9Otfb8UrtPHftbApv3DR8/jHFv19R6S5H4T8v+ltfa1XPucfjXHua7M7wYYthj5+8/n2ZfRAeyr\nWmtXzVJ2ttd7fe/V2dqZZF3X4soJx5ayfws11/t2vu/ZmWv0yznKzFy/zcfqjOaNm+va7pl1z1Cw\n0TMAwHoSYAAAYKiZAexzW2t3mGpPOpvNkTezRMzMAPVM39/VWnvaYjReVZsleVu679ZvSbcfxG/G\nyvxZFjfAcKN1F7lWa+3qqroyXZDhPq212ZbxGXfPTB74/kq65YhmBnw3nVBmxvjzHg2AbN9aO3+e\nfZlxo6q6waRlbzL7670U9+q6rsWk1//37b20oc0EA+d6L8zkzVyb0aDC+lzbI1prL5+QDwDAIhBg\nAABgqO/26W3nGOhdSrefdLCqNs21v5yfWQ9+pu8T66ynuyW5ebpfcb94QnBh6yR/MPCcM9d00gbJ\nybXLvwzx3XQb7s77ubfWXpTkRXMUmdlw9zaTMqvq1rnu4O9P0m3Ku2Xfl6EBhvT1zptw/JZ9Ov56\nL8W9Oue1SDIpgPD79l7a0M7p07mCKTN5M8so/STd++EG6a7tj+aoM+q7SR6QxX2vAwAwxibPAAAM\ndVaSn6VbhuYRkwpU1d2rau+qmm2AfDFtX1WrJhzfu0+vyLWDlZ/r03tV1bbXrZJU1YOral3LJ42a\n+dHOVZm8hNJf5Nrv3bPtwTB+/LI+vc5gdb/XwzYD+jdj5rk/blJmVW1RVY+tqpsPOOfX+3Tnqpq0\n58SDxg/0g+gnraMvt62qh1bVTSflJ3nghDpbJPmj/uE3+3Qp79WZa3HPWfKvcy2WuH+jlmIvkEm+\nlG5vhh2raqfxzKq6QZL79w9PSn67Sfq3+mPXubb96z7pms/c7w/tZxldR1U9uqp2GNB/AADGCDAA\nADBIv/790f3DV1fVbUfzq+rOST6U5MtJZttMeDFdleTNo4OI/d9H9g8/3A9SprV2ZpIvpBvQffP4\nwGNVPSzJR5OcOmCgvaX7hfWNk+w3dr7HJTkw1/5S/XYj2Vfm2j0Dth8759l9ekA/E2PmfLdMtwzT\nZRnuLX2bD+n7NdrPGyV5e5L3J5ltQ9xJvpruV+mbJDli7Jy3TfcaTNon4A19+ozxDaerassk/5Lk\nY0kOm1D3miQvrqrxa3ZEunX7v5/k1GTJ79UPpRs8362qHj7Wzn2TPHa8whTeSzP3zfi1WxKttR8k\nOb5/ePSEgf8Xp5uN8IMkHxg5PvP386rqt8G1PiDx+ly758aoj6d7390qyd/3ZTNS98AkH0zy2X6P\nEgAA1oMvUgAArI9Xpds49YFJvl1Vn0y37v326TYFvlGSt7TWPr8Effl8ug1dV1fVZ9INaP9/6QYq\nf5rkpWPln5Lu182PTrLnSJ27pXtOVyf5y9baxfNpvLX2s6o6Nt1Gzh+tqo8muTTJ3ZNUkocleUKS\nOyV5XT/Y/KLW2iVVdWaSeyT5SP/3l1prr07yz0kOSvLHSf6nqr6U7sdBD05yRrrB0z8bcpFaa62q\nnp3kmCTHV9VfJfmfdBvc7ptutsR3M/eSSOPnXFtVB6cLyhxSVfdItzfDH6S7Nz6YbiZJjdX7fFW9\nLMnLk3y+qj7bt32LdEGamyU5LclrJzR7ZZL3pbsun0h33+2S7jpek+Q5rbXRDYmX5F5trZ1TVa9P\n8sIk/1FVJyS5IN19uF+SlyT5+wlVl/K9dEa6+/DtVfWUrtvtkEU47xDPTfdeu2+69+yX072mf5xu\nBsqlSR7fWhvdCPoNSQ5I1/dv9tfoqiT3SnevvCXJ80Ybaa1d1QfSPt23+aCq+kK6ZcfunuQu6faE\nePrY/QIAwABmMAAAMFj/y+uHpBtU/1q6gdBnphu4+0ySR7bWnrNE3VmbblmV96YbcHxyuvX9j0+y\nZ2vt+2N9/36S3dINbl+cbpmepybZNsl7kty9tfa+gX04OMnr0gU0HpUuEPCdJHu11j6T5JVJTk+3\nR8D9c+0SNc9Ocma6QdK7p/sFfFpr30kXJPlcklunCybslW4g9RH9cx6stXZcusHs9yXZMcnTkzw8\n3br2RyTZrbX2w1lPMPmc/9k/p88l2Sndtdw53XN+ZrrB40n1XpHuvvl4uoHlZ6YfZE9ySLrNqC+f\nUPUG/d4QL0xyx3Sv987pltS5X9+f0XaW8l7963QzVv4nXVDhgHTBr0cnecekCkvcvxelm8GzabqA\nzJL/e7C19rN09/Lh6QIpD0vy+HTX6W1J/qi19qWxOpemWwbpn9MFkZ6Y7pr9d5I90gVyJrX1tXT3\n1hvTvWee2P+3eboZO3/UWjtpUZ8gAMAys2Lt2vX6twkAAExV/2v8tyX5VGvtOmvyc/3S77PxrSRX\nttYmrqkPAAAsLTMYAAAAAACAwQQYAAAAAACAwQQYAAAAAACAwQQYAAAAAACAwWzyDAAAAAAADGYG\nAwAAAAAAMJgAAwAAAAAAMNgm0+7AtF1yySXWiAIAAAAAgCRbb731ivmWNYMBAAAAAAAYTIABAAAA\nAAAYTIABAAAAAAAYTIABAAAAAAAYTIABAAAAAAAYTIABgCTJ6tWrs3r16ml3A2AqfAYCy53PQWA5\n8xkI60+AAQAAAAAAGGyTxTpRVd04ySuTvCDJF1tr+wyou1eSw5PcI8nmSb6T5B1Jjm6trR0ru1OS\nlye5T5Ktknw/yXuSvKa19uuFPxMAAAAAAGBdFiXAUFWV5L1J7pxkxcC6+yb5RJILkhyZZE2Shyd5\nU5I7JjlkpOzOSU5J8sskRyW5MMk+fb1dkzxiIc8DAAAAAACYnwUHGKrq5knOTLI6ye5Jvj3wFG9N\n8qsk92qt/bA/9q9V9ZEkz62qd7XWzuqPvz7JFknu2Vo7uz/2b1V1eZKDq+phrbWPLeT5AAAAAAAA\n67YYezDcOMm7k9yjtdaGVKyqPZNUkvePBBdmHJ1uNsQBfdltk+yX5HMjwYXRsknypIF9BwAAAAAA\n1sOCZzC01n6c5C/Xs/oefXrqhLzT+nTPPt09XcDhOmVba9+tqjUjZRfMzvHAcuXzD1jOfAYCy53P\nQWA58xnIcrNy5coFn2PRNnleTzv06YXjGa21y6rq50nusK6yvfOT/HFVbdJau3qhHbvjHe+40FMA\nMND9j/natLswVZ9+xi7T7gJMlc8AnwHuAfcAbMwe+tCH5uSTT06S7L333vn4xz8+5R6xsVnu/x+E\n5e5t991q2l1YL9MOMGzZp1fMkn/5SJn5lJ0pd/HCuwYAAAAAABveYswmmIbF2IMBAAAAAABYZqYd\nYLi0T286S/4WI2XmUzZJLluEfgEAAAAAAHOYdoDhnD7dbjyjqrZOsnWS1esq29s+ybmLsf8CAAAA\nAAAwt2kHGE7p070n5N2rT7/cp6cnuXpS2aq6S5KbjZQFAAAAAAA2oCUNMFTVqqraceZxa+3rSc5M\n8tiq2m6k3Iokz0tyVZJ/6ctelORjSfapql3GTv38Pj1mA3YfAAAAAADobbLQE1TVTkl2Gjt8y6p6\nzMjjE1prVyT5VpKWZNVI3oFJPp/ki1X1xiQ/T/L4JPsmOby19r2Rsi9Mcu8kn6qqo5L8IMkDkzwx\nybGttS8u9PkAAAAAAADrtuAAQ5LHJTli7NhOST4w8njHJOdNqtxaO62q7p3k5f1/m6YLRDyttfau\nsbLnVNVeSV6V5LAkWyb5XpIXJHnjgp8JAAAAAAAwLwsOMLTWjkxy5DzLrpjl+BlJHjzPc6xOF9QA\nAAAAAACmZNqbPAMAAAAAABshAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYA\nAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAA\nAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAw\nAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYA\nAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAA\nAGCwTabdAQAAAAAAmJbV73xJLvn2aVPtw80OW/o2f/7zny/4HGYwAAAAAACwbE07uLAxW5QZDFW1\nTZIjkjwiybZJLkpyQpLDW2s/nKPeU5O8ax2n/0JrbZ++/HlJtp+j7C6tta/Pt98AAAAAAJAku7/2\ns1Nr+zN/sdvU2l6IBQcYqmrzJCclWZXk6CRnJFmZ5AVJ9q2q3VprF89S/fNJHjtL3nZJ3pDkm2PH\nf5rkwFnqnDv/ngMAAAAAAOtrMWYwHJLkrkkOaq29deZgVZ2V5MNJDk9y6KSKrbXvJ/n+pLyq+kiS\nnyV52VjWFa21Dy5CvwEAAAAAgPW0GHswPDnJ5UmOHTv+0SQXJjmgqlYMOWFVPTLJw5P8dWvtZ4vQ\nRwAAAAAAYBEtaAZDVW2VbmmkL7XWrhzNa62trarTkzwqyY5JzpnnOTdN8o9JTk/yznWUvUmSX7bW\n1q5H9wEAAAAAYOpWr1695G2uXLlywedY6AyGmQ2XL5wl//w+vcOAcz4zye2SHDZL4GDzqnpTVV2c\nbubEFVX1kapaNaANAAAAAABgARa6B8OWfXrFLPmXj5WbUz974UVJvtha+8IsxW6VZIckz0ry6yT3\nTXJQkn2qao/W2nfm0xYAAAAAAPw+WIzZBNOwGJs8L6anJrltkr+aJf8pSX7TWvvyyLGPVNXZSd6R\n5G+TPGGD9hAAAAAAAFhwgOHSPr3pLPlbjJVbl2ck+VmS/5yUOceshncmeXOS+82zHQAAAAAAYAEW\nugfDuUnWJtlulvyZPRrWuUNFVe2QZPck/9Vau2pIJ1pr1yS5KMlWQ+oBAAAAAADrZ0EBhtba5Um+\nkWTXqtpsNK+qbphkryQXtNbOn1R/zAP69HOTMqvqDlX19Kq6y4S8LdItrTSfdgAAAAAAgAVa6AyG\nJDk2yU3Sbbo86oB0GzIfM3OgqlZV1Y6znGe3Pv2fWfJv3Z/rDVW1YizvRUlWJPnQgH4DAAAAAADr\naTE2eX57kicmOaqqtk9yRpKdkxya5OwkR42U/VaSlmTVhPPcuU/Pm9RIa+3Uqjou3UbQJ1XV+5Nc\nmW7mw2P6tl61sKcCAAAAAADMx4JnMPT7Jdw/3SbLj05yXJKnpJttsE9r7Yp5nurmfXrZHGWe0f+3\nZZJ/SHJ0krskeWWSvVtr891MGgAAAAAAWIDFmMGQfmD/0P6/ucqNL200mvdH82jnN+mWZDp2aB8B\nAAAAAIDFsxh7MAAAAAAAAMvMosxgAAAAAABg47T6nS/JJd8+bdrdYCNkBgMAAAAAwDImuJBsvWrP\naXdho2QGAwAAAAAA2f21n512F9jImMEAAAAAAAAMJsAAAAAAAAAMJsAAAAAAAAAMZg8GAAAAAGDZ\nWv3Ol9jkGNaTGQwAAAAAwLIluNDZetWe0+4CGyEzGAAAAACAZW/313522l2AjY4ZDAAAAAAAwGAC\nDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAA\nAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAA\nwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGAC\nDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGCbLMZJqmqbJEckeUSSbZNclOSEJIe31n64jrpr13H6\nm7fWfj5SfqckL09ynyRbJfl+kvckeU1r7dfr/SQAAAAAAIB5W3CAoao2T3JSklVJjk5yRpKVSV6Q\nZN+q2q21dvE6TvO/6QIUk1w+0tbOSU5J8sskRyW5MMk+SY5Msmu6AAcAAAAAALCBLcYMhkOS3DXJ\nQa21t84crKqzknw4yeFJDl3HOX7aWvvgPNp6fZItktyztXZ2f+zfquryJAdX1cNaax8b/AwAAAAA\nAIBBFmMPhienm2Vw7Njxj6abYXBAVa1YaCNVtW2S/ZJ8biS4MOPoPn3SQtsBAAAAAADWbUEzGKpq\nq3RLI32ptXblaF5rbW1VnZ7kUUl2THLOPM63IslNWmuXT8jePcmKJKeOZ7TWvltVa5LsOfxZAAAA\nAADA9KxevXrJ21y5cuWCz7HQGQzb9+mFs+Sf36d3WMd5blFV705yWZJfVNWlVfXuqrrtSJkd5tHW\n7apqUTauBgAAAAAAZrfQwfgt+/SKWfIvHys3m52SnJnkgL5PD0239NI+VbVra+2igW2ta1NpAAAA\nAAD4vbAYswmm4ffh1/4PSrfJ81dHjn2wqi5I8tIkz0/y4qn0DAAAAAAAmGihSyRd2qc3nSV/i7Fy\n19Fa++RYcGHGW/v0fgPbumy2tgAAAAAAgMWx0BkM5yZZm2S7WfJn9mhYnx0qftqfe6v+8cwm0XO1\ndW5r7er1aAsAAAAAlqXV73xJLvn2adPuBrARWtAMhtba5Um+kWTXqtpsNK+qbphkryQXtNbOn1S/\nqu5aVc+qqttPyF6ZZEWu3Sj69CRXJ9l7wnnukuRmSb68vs8FAAAAAJYjwYVk61V7TrsLsFFajD0Y\njk3ypiTPSvKPI8cPSHKrJEfMHKiqVUmubK2d2x+6S5K39+d4xth5Z/Zd+FCStNYuqqqPJXlkVe3S\nWvvaSNnn9+kxC386AAAAALD87P7az067C8BGZjECDG9P8sQkR1XV9knOSLJzkkOTnJ3kqJGy30rS\nkqzqH38gydOSPL2qbpHkhCQ3TPKodHsvfCbJO0bqvzDJvZN8qqqOSvKDJA/s2z+2tfbFRXg+AAAA\nAADAOix0k+e01q5Kcv8kb07y6CTHJXlKutkE+7TWrpij7tVJHpoucHDndDMhXpfklv2xB4/uqdBa\nOyfdsksnJTks3cyHXZO8IN0MCgAAAAAAYAksxgyGtNYuTTdj4dB1lFsx4div0s1yOOq6NSaeY3WS\nx61HNwEAAAAAgEWy4BkMAAAAAADA8iPAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAA\nDCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbA\nAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADLbJtDsAAAAAANO0//7758QTT5x2NwA2\nOmYwAAAAALCsCS4kW6/ac9rohZ9nAAARYklEQVRdADZCZjAAAAAAQJI1a9ZMre37H/O1qbUNsL7M\nYAAAAAAAAAYTYAAAAAAAAAYTYAAAAAAAAAazBwMAAAAsc/vvv79NbhfRySefnG222Wba3QCADc4M\nBgAAAFjmBBcg2W+//abdBYCNjhkMAAAAQJJkzZo10+7CRuuhD31oTj755CTJ3nvvnY9//ONT7hEA\nbHhmMAAAAAAAAIMJMAAAAAAAAIMJMAAAAAAAAIPZgwEAAIBlbf/997fJMQDAejCDAQAAgGVNcKGz\n3377TbsLAMBGxgwGAAAASLJmzZppdwEAYKNiBgMAAAAAADCYAAMAAAAAADCYJZIAAACWOZscAwCw\nPhYlwFBV2yQ5Iskjkmyb5KIkJyQ5vLX2w3nUv2dff48kmyW5IMl/JHlFa+0XI+XOS7L9HKfapbX2\n9fV7FgAAAMuT4IINjgEA1seCAwxVtXmSk5KsSnJ0kjOSrEzygiT7VtVurbWL56j/xCTvSdLSBRku\nTfKQJIcluVdV3bO1ds1IlZ8mOXCW0527sGcDAACwfNnkGACAIRZjBsMhSe6a5KDW2ltnDlbVWUk+\nnOTwJIdOqlhVmyZ5W7oZC3u21i7ps95ZVR9ONyPigelmQ8y4orX2wUXoNwAAAAAAsJ4WI8Dw5CSX\nJzl27PhHk1yY5ICqen5rbe2EurdJ8qEkp40EF2ackC7AcLf8boABAABgUa1+50tyybdPm2oftjls\nqs0DAMBgCwowVNVW6ZZG+lJr7crRvNba2qo6PcmjkuyY5Jzx+q217yd56iyn37pPL52j/Zsk+eUs\nwQsAAGCebPKLPQgAAKZn9erVS97mypUrF3yOhc5gmNlw+cJZ8s/v0ztkQoBhNlV14yRPS3JFko+M\nZW9eVW9K8qQkN0vyq6r6VJIXtda+Pd82AAC4lsHl6fPr9enbetWeWfm0v5ta+59+xi5TaxsAANbH\nQgMMW/bpFbPkXz5Wbp2q6gZJ3pHkD5M8v7X2g7Eit0qyQ5JnJfl1kvsmOSjJPlW1R2vtO/NtCwCA\njuACSfcL9uOPP35q7d//mK9NrW0AAJimxZhNMA2LsQfDoqmqzZO8N93eC29prb1+rMhTkvymtfbl\nkWMfqaqz0wUl/jbJE5akswAA10Nr1qyZWtvLfXDZr9cBAICNzUIDDDP7I9x0lvwtxsrNqqpumeRj\nSe6R5BWttZeNl2mtfWGW6u9M8uYk91tXOwAAAAAAwMLdYIH1z02yNsl2s+TP7NEw5w4VVXXrJCcn\n2T3Jn08KLsyltXZNkouSbDWkHgAAAAAAsH4WFGBorV2e5BtJdq2qzUbzquqGSfZKckFr7fxJ9fty\nWyX5ZJLbJ3lYa+24WcrdoaqeXlV3mZC3RZLb5tpNpQEAAAAAgA1ooTMYkuTYJDdJt+nyqAPSbch8\nzMyBqlpVVTuOlfvHJH+c5AmttU/M0c6t+3O9oapWjOW9KMmKJB8a3n0AAAAAAGCoxdjk+e1Jnpjk\nqKraPskZSXZOcmiSs5McNVL2W0laklVJUlV3S7dx8/8muWFVPWbC+X/aWvtCa+3UqjouyVOTnFRV\n709yZZIHJHlM39arFuH5AAAAAAAA67DgAENr7aqqun+SI5M8Oslzkvwk3WyDI1prV8xRfdd0Mw92\nSvKBWcp8Ick+/d/PSPLlJAcl+Yd0MzDOTfLKJK9trV22kOcCAAAAAADMz2LMYEhr7dJ0MxYOXUe5\nFWOPj0ty3IB2fpNuSaZjB3cSAAAAAABYNIsSYAAA2Njtv//+OfHEE6fdDQAAANhoLMYmzwAAGz3B\nhWS//fabdhcAAADYiJjBAAAwYs2aNdPuAgAAAGwUBBgAAMsDAQAAAINZIgkAEFzoWSIIAAAA5s8M\nBgDgtywPBAAAAMyXGQwAAAAAAMBgAgwAAAAAAMBgAgwAAAAAAMBgAgwAAAAAAMBgAgwAAAAAAMBg\nm0y7AwDw+2D1O1+SS7592lT7sM1hU20eAAAAYBABBgCSJPvvv39OPPHEaXeDKdpvv/2m3QUAAABg\nIyLAABCD63S2XrVnVj7t76bW/qefscvU2gYAAAAYSoABIBFc6O233345/vjjp9b+/Y/52tTaBgAA\nAGAYAQYgiV/wz1izZs20uwAAAAAAG4UbTLsDwO8HwQXrzwMAAADAEGYwAL/DL/gBAAAAgPkwgwEA\nAAAAABjMDAbo2YMAAAAAAGD+zGCAnuCCPQgAAAAAgPkzgwHG2IMAAAAAAGDdBBj4LUsEAQAAAAAw\nX5ZI4rcEFywRBAAAAAAwX2YwzGKbbbaZdhemxhJBAAAAAACsixkM/A6/4AcAAAAAYD7MYJiFX/ED\nAAAAAMDszGAAAAAAAAAGE2AAAAAAAAAGE2AAAAAAAAAGE2AAAAAAAAAGE2AAAAAAAAAGE2AAAAAA\nAAAG22QxTlJV2yQ5Iskjkmyb5KIkJyQ5vLX2w3nU3yvJ4UnukWTzJN9J8o4kR7fW1o6V3SnJy5Pc\nJ8lWSb6f5D1JXtNa+/ViPB8AAAAAAGBuCw4wVNXmSU5KsirJ0UnOSLIyyQuS7FtVu7XWLp6j/r5J\nPpHkgiRHJlmT5OFJ3pTkjkkOGSm7c5JTkvwyyVFJLkyyT19v13QBDgAAAAAAYANbjBkMhyS5a5KD\nWmtvnTlYVWcl+XC6mQmHzlH/rUl+leReI7Md/rWqPpLkuVX1rtbaWf3x1yfZIsk9W2tn98f+raou\nT3JwVT2stfaxRXhOAAAAAADAHFasXbt23aXmUFXfSnK7JH/QWrty5PiKJOcn2TTJrceXOurL7Jnk\nK0mOaa09cyzvfklOTHJUa+2FVbVtkv9L8tnW2n5jZe+UZHWSD7bWHjuk/5dccsnCLgAAAAAAAFxP\nbL311ivmW3ZBmzxX1VbplkY6czS4kCR9QOH0JLdMsuMsp9ijT0+dkHdan+7Zp7snWTGpbGvtu+mW\nVtpzPA8AAAAAAFh8CwowJNm+Ty+cJf/8Pr3DLPk7zFa/tXZZkp+P1J217Ehbt6uqRdm4GgAAAAAA\nmN1CAwxb9ukVs+RfPlZufepvOaDsXG0BAAAAAACLZKEBBgAAAAAAYBlaaIDh0j696Sz5W4yVW5/6\nlw4omySXzZIPAAAAAAAskoXuV3BukrVJtpslf2aPhtWz5J/Tp9epX1VbJ9k6yZnrKjvS1rmttavn\n6vC4ITtiAwAAAAAAnQXNYGitXZ7kG0l2rarNRvOq6oZJ9kpyQWvt/En1k5zSp3tPyLtXn365T09P\ncvWkslV1lyQ3GykLAAAAAABsQIuxB8OxSW6S5Fljxw9Icqskx8wcqKpVVbXjzOPW2tfTzVB4bFVt\nN1JuRZLnJbkqyb/0ZS9K8rEk+1TVLmNtPb9PjwkAAAAAALDBLXSJpCR5e5InJjmqqrZPckaSnZMc\nmuTsJEeNlP1WkpZk1cixA5N8PskXq+qNSX6e5PFJ9k1yeGvteyNlX5jk3kk+VVVHJflBkgf27R/b\nWvviIjwfAAAAAABgHRY8g6G1dlWS+yd5c5JHJzkuyVPSzSbYp7V2xTrqn5YuaPDtJC9P8k9JbpPk\naa21V46VPSfdsksnJTks3eyJXZO8INedQQEAAAAAAGwgK9auXTvtPgAAAAAAABuZxdiDAQAAAAAA\nWGYEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgME2\nmXYHpq2qtklyRJJHJNk2yUVJTkhyeGvth9PsG8CGVlXHJXnKHEWe11p74xJ1B2CDq6obJ3llkhck\n+WJrbZ8JZTZP8uIkj0+yfZJLk3wu3ffD7yxdbwEW17o+A6vqyHT/Pp7NP7bWDtlgHQTYQKrqlkle\nluSRSW6d5OdJvpzkFa21M8fK+i4IAyzrAEP/gXFSklVJjk5yRpKV6b5s7VtVu7XWLp5eDwGWzIFJ\nfjrh+NeXuiMAG0pVVZL3JrlzkhWzlFmR5KNJ7pfkXUn+Nsn/S/f98NSq2qO19r2l6THA4pnPZ+CI\nI5N8c8Lx1YvcLYANrqpuleSrSf4gyduSnJXus/C5SR5QVXu31r7Wl/VdEAZa1gGGJIckuWuSg1pr\nb505WFVnJflwksOTHDqlvgEspU+01s6bdicANpSqunmSM9MNju2e5NuzFH18kv2S/ENr7bCR+p9N\n92OUf0jyqA3bW4DFNeAzcMYXWmsnbeh+ASyRVybZLsmjW2sfmjlYVf+d5CPpZis8rj/suyAMtNz3\nYHhyksuTHDt2/KNJLkxyQB+5BABg43bjJO9Oco/WWpuj3JP79E2jB/up86ckeUhV3WzDdBFgg5nv\nZyDA9dEPkrwv3Y+JR30yydokdxs55rsgDLRsZzBU1Vbplkb6UmvtytG81traqjo9XURyxyTnTKGL\nAEuuqjZLcnVr7epp9wVgMbXWfpzkL+dRdI8kF7TWLpyQd1qSvZPsmm4dXoCNwoDPwN/R79mQ1tqv\nF71TAEuktXbkLFlbplsy7tKRY74LwkDLeQbD9n066QMjSc7v0zssQV8Apu2gqjo3yS+TXFlVX6mq\nB0+7UwBLqaq2TLJNfD8EeFxVfTPJlem+G55dVU+adqcAFtmz+/TfEt8FYX0t5wDDln16xSz5l4+V\nA7g+e0CSv0vyp0lemm7D+/+sqsdPtVcAS8v3Q4DOg5K8vU8PTrJ1kndX1V9PtVcAi6SqHpTkZek2\nf35bf9h3QVgPy3aJJACSJK9LtxblSSPLxZ1QVR9L8vUkr6uq97fWrplaDwEAWCrvSfKVJKe21i7p\nj32yqv493cbQR1TVP7XWfj61HgIsUFU9OckxSc5L8lDLwMHCLOcAw8z6ajedJX+LsXIA1zuttbOT\nnD3h+P9W1UlJ9kvyh0m+ucRdA5gG3w+BZa219t0k351w/CdV9cEkz0y3/vh/LXXfABZDVR2e5OVJ\nzkjyp621n4xk+y4I62E5L5F0brqd4rebJX9mj4bVS9MdgN87P+7TrabaC4Al0lr7RZKfxvdDgEl8\nNwQ2alX1xnTBhY8luc9YcMF3QVhPyzbA0Fq7PMk3kuxaVZuN5lXVDZPslW7X+PMn1QfY2FXVVlX1\nxKp64GxF+vSCpeoTwO+BU5JsV1W3n5B3ryS/THLm0nYJYMOrqhtV1f5V9djZivSpfyMDG51+5sLB\nSd6V5FGttdn2WfBdEAZatgGG3rFJbpLkWWPHD0hyq3TrsQFcX/06yVuSHFdVtxjNqKr7Jbl7ktNb\naxdOo3MAU3Jsnz5v9GBV3SfJbkn+vf91G8D1SmvtqiR/m24z55WjeVW1U5JHJLkwyelT6B7Aequq\n+6b7fPtwkme01n4zR3HfBWGgFWvXrp12H6amqm6U5EvpPiDenG79tZ2THJpuutM95ohoAmz0quop\nSY5Lt2zc25P8KMkuSf4yya+S7NNa+/rUOgiwSPrBsZ1GDn0gyf8mOWLk2AmttSuq6j+SPCrJO5N8\nLt10+BckuTzJ3VtrP1qaXgMsjvl+Bib5kySfTLIm3Q9Rzk03c+Gvkmya5BGttU8uRZ8BFktVfTXd\nv3Ofk+QnsxQ7YWYM0HdBGGZZBxiSbomQJEcmeXSSbdN90Hw4yRGttTVT7BrAkuh/zfHiJHuk28zq\nR0k+neRVrbVzptk3gMVSVUfmdwfSJtmxtXZeVd04yYvSzWrdIcnFST6V5KWtNcvGARudgZ+Buyb5\nmyT3TrJ1kp8l+UKSV/vhCbAxqqr5DH7u2Fo7ry/vuyAMsOwDDAAAAAAAwHDLfQ8GAAAAAABgPQgw\nAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAA\nAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAA\ngwkwAAAAAAAAgwkwAAAAAAD//0bBKBgFo4BkAABY6wHa17h3gQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" + "metadata": { + "id": "3ho1cPLAIA0l", + "colab_type": "code", + "outputId": "753be416-5530-43c0-e44c-bb5d62dfc358", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 425 + } + }, + "cell_type": "code", + "source": [ + "posterior_probability_ = simulations_.mean(axis=0)\n", + "print(\"posterior prob of defect | realized defect \")\n", + "for i in range(len(D_)):\n", + " print(\"%.2f | %d\" % (posterior_probability_[i], D_[i]))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "posterior prob of defect | realized defect \n", + "0.36 | 0\n", + "0.25 | 1\n", + "0.28 | 0\n", + "0.31 | 0\n", + "0.33 | 0\n", + "0.20 | 0\n", + "0.18 | 0\n", + "0.24 | 0\n", + "0.69 | 1\n", + "0.48 | 1\n", + "0.26 | 1\n", + "0.10 | 0\n", + "0.34 | 0\n", + "0.78 | 1\n", + "0.34 | 0\n", + "0.13 | 0\n", + "0.25 | 0\n", + "0.07 | 0\n", + "0.12 | 0\n", + "0.08 | 0\n", + "0.14 | 1\n", + "0.13 | 0\n", + "0.66 | 1\n" + ], + "name": "stdout" + } ] - }, - "metadata": { - "image/png": { - "height": 146, - "width": 780 + }, + { + "metadata": { + "id": "-q4yysOiIA0n", + "colab_type": "text" }, - "tags": [] - }, - "output_type": "display_data" + "cell_type": "markdown", + "source": [ + "Next we sort each column by the posterior probabilities:" + ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xm0ZVV9L/pvKTYgjb0hooCm/BHU\nRMGosUWeXRJjjL1XFJtEo1wjQWwyvAh2Se6TKCpXzRWU2CbRKPIMNs8GeyXEiCTqz1JA5NqiIlgo\nitb7Y63z3DmcU1Wrzq5zCuvzGaPGrD2bNec6NcYeu/b3zDXXbdq0KQAAAAAAAFNcba0XAAAAAAAA\nXPUIGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZg\nAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAw2S5rvQAA\nANhZVNWmzTRfluTCJB9KckJ39+qsKqmq5yT5syQ3HddxYHf/n9Wa/1dRVR2S5MNJvtbd+63wWscl\nOTbJ33f341a6NgAAmBcBAwAArL5/TPKtmdfrktwsycEZvuh/XFU9trvftr0XMn4R/tdJNiV5d4aQ\n4/LtPe/M/LsluSTJi7r7uNWaFwAAWDkBAwAArL4TuvvTiyur6ppJ/irJM5K8sao+090XbOe13Gks\n39/dD9zOcy3loCRXX4N5AQCAFXIGAwAA7CC6+6dJnpXknCTXSvKEVZh217H81mZ7bT+/s0bzAgAA\nK2QHAwAA7EC6+xdV9dEkt01yu8XtVXX7JEcluWeSmyT5UZLPJzmpu9+8RP+Fcx9ukuS5Sf5bku8n\neXKGMwIWHF5Vh49/37+7zx/H/0aSo5PcJ8k+Gc5o6CRvTPKa7v75EnNee1zjQ5Osz/CLTV9I8vIk\nb+7uTVW1X5LzZoYdW1XHJvlIdx+y/E8oqapTkhye5PFJPp3kb5LcLUNY8uUk/7O7/6Gqdk1yXJJH\nJNk7ybeTvDnJMd19xaJrrkvy6PGat0uyR5KLk/xbkpO7++1LrGNdkqcmeVKSW40/m7OSvHgL67/W\nOO4RSQ5Mco0k30jy3iR/3d0Xbm48AADsKOxgAACAHc/FY3nt2cqq+m9JPpPksAxnJfx9hi/Y75Tk\nTVV1yvil91KOyPAF+ruSnDqOf/l4vST54vj65RnOREhV3SvJv2cIIy7JECp8JEklOTHJe8cvy2fX\neMMkZ2b4kv1aSd4yzrl+HP+Gsesl41xfHF9/Znx9pS/yN2OfJB/LEAb8c4YQ43ZJ3lJV90lyWpKH\nJHlfkveP/Z+T5PmL1rxuXOcbk/xukn9Ncsp474cmeVtVvXqJ+f92/DkcOF7/HzP8H+sDGQKZK6mq\n3TP8DF+a5DeSnD6OuzxD6PAfVXXQhJ8BAACsGTsYAABgx/MbY3n+QkVV7Z/k5AznFTyyu/9xpq0y\nfMF9eJIPZviifLHHJDm4u782U3dkVR2XIaA4s7uPnLnmHhm++N49yTO7+/iZtl/PcCD0vTM80umF\nM9d8eYbdF29Kcnh3/2JmzFlJDquqd4/rP3LcjfCbSd67DYc8PzvJs7v7VeMc6zIEDX+c5K1JPpvk\nwPHRU6mqpyV5RZLHZdjNseBPkzwyyXeS3LW7vzJzr7dL8okkf1ZV/9Ld7x7rb53kyAyHY/9Bd79/\nZswfjutYyvEZft6fSPKA7r54HHO1JC9K8pcZApLbLN5lAQAAOxo7GAAAYAdSVTdLsnDY8rtmmp6W\nYUfDW2fDhSTp7k7yP8aXRyxz6Q8uChe25PFJbpTkE7PhwjjfN5I8fXz5lIVdE1V14wyP/dmU5FkL\n4cLMmJck+VySAyasY3MuWAgXxjk25Zc7IG6Q5DkL4cJo4Uv/X6+q687UP20sXzwbLozX/FyS/z2+\nfPJM06OSrEvygdlwYRzz/yT5l8WLraob5Jfnajx+IVwYx/wiQ+jxlQw7RO695B0DAMAORMAAAAA7\ngKras6run+GL6V2TvKe73zPT5dCxPH2ZSyx8oX3HqrrOEu0fXqJuc7Y03yeS/DDD2QYLgcE9Muyw\n+Gp3f3PxgO5+WXffvrufv7htG/3rEnXfHsuNGR5xtFRbkuyZJFV1/SS3GeuWu9cPjOXvztTdYSw/\nusyY9y9Rd/cM5y1s6O4NixvHgGTh3/xey1wXAAB2GB6RBAAAq+9Tw1ONlrQpw9kKi3ci7DeWD6uq\nOy4z9mcZvsC+ZYaDn2d9Z+IaF+b7v8adCUtZeITP+gxnKSyM+T8T59pWSx2GvHDo9PfGL+z/f939\n85mf+8IvW+0302X20OlZ54/lDapqt+6+LMlNx7rl7nWp3SILc+1RVScsM27hYO/1y7QDAMAOQ8AA\nAACr7x+TfGtR3Y+TXJDk/d391SXG7D6WD9qK6++5RN2Ptn55/2W+Q/PL3Qxbmm/hUOqfTZxrW23u\njIJNm2mbtdtY/qy7f75Mn5/M/H3XJJfNjPvJlbsnGQ5tXmzhZ/pr+eUjppaz1L8hAADsUAQMAACw\n+k7o7k9PHPOjJHslud/iZ/5vJwuBxJO7+39vtucvbRzL622H9WwvC2u+RlXtsszByrvN/H3h57IQ\nLFxrmevutkTdwthPdfddpi0TAAB2PM5gAACAq4aFw4dvvgPPd+5Y/vqc17I9nZdf7na4xTJ9Fuq/\n2d0LOxMWzpj4tS2MmbXa/4YAALBdCRgAAOCq4UNj+fClGqtq16p6RFXdYM7zPbSq1i0x37qqemRV\nzYYJH8/weKS9q+q2S4x5SlVdUVX/7xLzXWmO1dDdFyc5e3z5gGW63X8sz5ip+9xY3m2ZMb+3RN0n\nMjw66aZVteQOhqq6e1Xdoar8Xw0AgB2eD60AAHDV8OoM5zTcp6oeM9tQVbskOTHJPyR51Zzme3OG\ng6EryXMXzbcuybFJ3prknQv13f29JG8ZX55QVdeeGXPDJM9IcvUkb5q53KVjue+c1r0tXjqWz6mq\nW842jEHAEzLscnjFTNPbxvL+VXXXRWMemuReiyfp7h8kOWV8eUJVXX/RuIOTvCvJZ5IcuE13AgAA\nq8gZDAAAcBXQ3edV1ROTvCHJG6rqKRl+836PJIckuWmS8zN8iT+P+X5YVY9MclqSF1bVw5J8OsOZ\nA3dJsj7J95I8adHQZyQ5OMPB0F+qqg9kOPz5D5JcN8k/j/ew4KyxfGxV3TzJNbr77vO4h63V3W+s\nqkOTPC7J2VX14QyPQLplkntmCEWeM3tuRnd/pqremOQxST5YVe9O8u0kv5nkHkmOSfJXS0z3zCS/\nneTOSTZU1fuSXJLkNzKEEldLckx3/8f2uFcAAJgnOxgAAOAqorvfmuQOGXYA3CzJE5P8cZKLkrwg\nye27+8I5zvfhDF+G/12S3ZMcnuQRSX6e5GVJfqu7z1405ntJ7pRhh8OlSR6V5MEZzh94SpKHd/em\nmSFvTnJSkh9m+NJ9r3mtf6InJHl0kjOT3DXJ45PcOkPAcq/u/p/LjHl2hrMnHpDhXn+e5D5JTl1q\nku6+NEMgdGSSDeO4Jya5zTjXfbr7RfO6KQAA2J7Wbdq0acu9AAAAAAAAZtjBAAAAAAAATCZgAAAA\nAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAw2S5rvYC19sMf\n/nDTWq8BAAAAAAB2BHvttde6re1rBwMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYT\nMAAAAAAAAJMJGABIkmzYsCEbNmxY62UArAnvgcDOzvsgsDPzHgjbTsAAAAAAAABMtsu8LlRV10zy\noiRHJ/lodx8yYexdkhyT5M5Jdk3y5SSvTXJid29a1PfAJC9Ics8keyb5WpI3Jfmb7v7pyu8EAAAA\nAADYkrkEDFVVSd6S5FZJ1k0ce2iS9yT5epLjknw/yR8leUWSWyY5cqbvrZN8MsmPkxyf5MIkh4zj\nDkryoJXcBwAAAAAAsHVWHDBU1fWSfDbJhiR3SPKliZd4VZKfJLl7d39zrHtjVZ2a5M+r6vXdffZY\n/9Ikuye5W3efM9a9uao2Jnl6VT2wu09byf0AAAAAAABbNo8zGK6Z5A1J7tzdPWVgVd0pSSX5p5lw\nYcGJGXZDHDb23TvJfZJ8aCZcmO2bJI+ZuHYAAAAAAGAbrHgHQ3d/O8lTtnH4HcfyU0u0fWYs7zSW\nd8gQOFypb3d/paq+P9N3xZwcD+ysvP8BOzPvgcDObmd9HzzyyCPziU98Yq2XAQCr6uKLL17xNeZ2\nyPM22m8sL1zc0N2XVtXFSW6xpb6jC5Lcrqp26e4rVrqwW97yliu9BAAAALCV7nvSv6/JvF96zVH5\n0blnb7kjAHAlax0w7DGWly3TvnGmz9b0Xej3g5UvDQAAANiZ7H6L384Bf/bStV4GADuhDzzp4LVe\nwjaZxxkMAAAAAADATmatA4ZLxvI6y7TvPtNna/omyaVzWBcAAAAAALAZax0wnDuW+yxuqKq9kuyV\nZMOW+o72TXLePM5fAAAAAAAANm+tA4ZPjuVdl2i7+1h+fCzPTHLFUn2r6jZJrjvTFwAAAAAA2I5W\nNWCoqgOqav+F1939uSSfTfKwqtpnpt+6JH+R5GdJ/n7se1GS05IcUlW3X3TpZ4zlSdtx+QAAAAAA\nwGiXlV6gqg5McuCi6htV1UNnXp/e3Zcl+WKSTnLATNtTk3w4yUer6oQkFyd5ZJJDkxzT3V+d6fvM\nJPdI8r6qOj7JN5LcP8mjk5zc3R9d6f0AAAAAAABbtuKAIcnDkxy7qO7AJG+beb1/kvOXGtzdn6mq\neyR5wfjnWhmCiCd09+sX9T23qu6S5MVJnpVkjyRfTXJ0khNWfCcAAAAAAMBWWXHA0N3HJTluK/uu\nW6b+rCS/v5XX2JAh1AAAAAAAANbIWh/yDAAAAAAAXAUJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAA\nYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQM\nAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAA\nAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwm\nYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAA\nAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAk+0yj4tU1fWTHJvkQUn2TnJRktOTHNPd39zM\nuMclef0WLv+R7j5k7H9+kn030/f23f25rV03AAAAAACwbVYcMFTVrknOSHJAkhOTnJVkfZKjkxxa\nVQd39w+WGf7hJA9bpm2fJC9L8p+L6r+b5KnLjDlv61cOAAAAAABsq3nsYDgyyW2THNHdr1qorKqz\nk7wzyTFJjlpqYHd/LcnXlmqrqlOTfC/J8xY1Xdbdb5/DugEAAAAAgG00jzMYHptkY5KTF9W/K8mF\nSQ6rqnVTLlhVf5zkj5I8u7u/N4c1AgAAAAAAc7SiHQxVtWeGRyN9rLsvn23r7k1VdWaSByfZP8m5\nW3nNayV5eZIzk7xuC313S/Lj7t60DcsHAAAAAIA1t2HDhlWfc/369Su+xkp3MCwcuHzhMu0XjOUt\nJlzzT5PcLMmzlgkOdq2qV1TVDzLsnLisqk6tqgMmzAEAAAAAAKzASs9g2GMsL1umfeOifps17l54\nTpKPdvdHlul24yT7JXlykp8muVeSI5IcUlV37O4vb81cAAAAAACwI5jHboK1MI9DnufpcUlumuRp\ny7QfnuTn3f3xmbpTq+qcJK9N8vwkj9quKwQAAAAAAFYcMFwyltdZpn33Rf225E+SfC/Ju5dq3Myu\nhtcleWWSe2/lPAAAAAAAwAqs9AyG85JsSrLPMu0LZzRs8YSKqtovyR2S/Et3/2zKIrr7F0kuSrLn\nlHEAAAAAAMC2WVHA0N0bk3w+yUFVde3Ztqq6epK7JPl6d1+w1PhF7jeWH1qqsapuUVVPrKrbLNG2\ne4ZHK23NPAAAAAAAwAqtdAdDkpycZLcMhy7POizDgcwnLVRU1QFVtf8y1zl4LP9jmfabjNd6WVWt\nW9T2nCTrkrxjwroBAAAAAIBtNI9Dnl+T5NFJjq+qfZOcleTWSY5Kck6S42f6fjFJJzlgievcaizP\nX2qS7v5UVZ2S4SDoM6rqn5JcnmHnw0PHuV68slsBAAAAAAC2xop3MIznJdw3wyHLD0lySpLDM+w2\nOKS7L9vKS11vLC/dTJ8/Gf/skeQlSU5McpskL0py1+7e2sOkAQAAAACAFZjHDoaMX+wfNf7ZXL/F\njzaabfvtrZjn5xkeyXTy1DUCAAAAAADzM48zGAAAAAAAgJ2MgAEAAAAAAJhMwAAAAAAAAEwmYAAA\nAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAA\nmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgED\nAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAA\nAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJ\nGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMNku87hIVV0/ybFJHpRk7yQXJTk9yTHd\n/c0tjN20hctfr7svnul/YJIXJLlnkj2TfC3Jm5L8TXf/dJtvAgAAAAAA2GorDhiqatckZyQ5IMmJ\nSc5Ksj7J0UkOraqDu/sHW7jMFzIEFEvZODPXrZN8MsmPkxyf5MIkhyQ5LslBGQIOAAAAAABgO5vH\nDoYjk9w2yRHd/aqFyqo6O8k7kxyT5KgtXOO73f32rZjrpUl2T3K37j5nrHtzVW1M8vSqemB3nzb5\nDgAAAAAAgEnmcQbDYzPsMjh5Uf27MuwwOKyq1q10kqraO8l9knxoJlxYcOJYPmal8wAAAAAAAFu2\noh0MVbVnhkcjfay7L59t6+5NVXVmkgcn2T/JuVtxvXVJduvujUs03yHJuiSfWtzQ3V+pqu8nudP0\nuwAAAAAAgLWzYcOGVZ9z/fr1K77GSncw7DuWFy7TfsFY3mIL17lhVb0hyaVJflRVl1TVG6rqpjN9\n9tuKuW5WVXM5uBoAAAAAAFjeSr+M32MsL1umfeOifss5MMlnkxw2rukPMzx66ZCqOqi7L5o415YO\nlQYAAAAAgB3CPHYTrIUd4bf9fy/DIc//NlP39qr6epLnJnlGkr9ck5UBAAAAAABLWukjki4Zy+ss\n0777on5X0t3vXRQuLHjVWN574lyXLjcXAAAAAAAwHysNGM5LsinJPsu0L5zRsC0nVHx3vPae4+uF\nQ6I3N9d53X3FNswFAAAAAABMsKKAobs3Jvl8koOq6tqzbVV19SR3SfL17r5gqfFVdduqenJV3XyJ\n5vVJ1uWXB0WfmeSKJHdd4jq3SXLdJB/f1nsBAAAAAAC23kp3MCTJyUl2S/LkRfWHJblxkpMWKqrq\ngKraf6bPbZK8JsnzlrjuwrkL70iS8aDn0zIc/Hz7RX2fMZYnBQAAAAAA2O7mccjza5I8OsnxVbVv\nkrOS3DrJUUnOSXL8TN8vJukkB4yv35bkCUmeWFU3THJ6kqsneXCGsxc+kOS1M+OfmeQeSd5XVccn\n+UaS+4/zn9zdH53D/QAAAAAAAFuw4h0M3f2zJPdN8sokD0lySpLDM+wmOKS7L9vM2CuS/GGG4OBW\nSV6R5G+T3Gis+/3ZMxW6+9wMj106I8mzMuyeOCjJ0bnyDgoAAAAAAGA7mccOhnT3JRl2LBy1hX7r\nlqj7SYZdDsdfecSS19iQ5OHbsEwAAAAAAGBO5nEGAwAAAAAAsJMRMAAAAAAAAJMJGAAAAAAAgMkE\nDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAA\nAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABM\nJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEA\nAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAA\nYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJttlHhepqusnOTbJg5LsneSiJKcn\nOaa7v7kV4+82jr9jkmsn+XqSf07ywu7+0Uy/85Psu5lL3b67P7dtdwEAAAAAAGytFQcMVbVrkjOS\nHJDkxCRnJVmf5Ogkh1bVwd39g82Mf3SSNyXpDCHDJUkekORZSe5eVXfr7l/MDPlukqcuc7nzVnY3\nAAAAAADA1pjHDoYjk9w2yRHd/aqFyqo6O8k7kxyT5KilBlbVtZK8OsOOhTt19w/HptdV1Tsz7Ii4\nf4bdEAsu6+63z2HdAAAAAADANprHGQyPTbIxycmL6t+V5MIkh1XVumXG/lqSdyT565lwYcFCqPBb\nc1gjAAAAAAAwRyvawVBVe2Z4NNLHuvvy2bbu3lRVZyZ5cJL9k5y7eHx3fy3J45a5/F5jeclm5t8t\nyY+7e9P01QMAAAAAwNrbsGHDqs+5fv36FV9jpTsYFg5cvnCZ9gvG8hZTLlpV10zyhCSXJTl1UfOu\nVfWKqvpBhp0Tl1XVqVV1wJQ5AAAAAACAbbfSMxj2GMvLlmnfuKjfFlXV1ZK8NslvJnlGd39jUZcb\nJ9kvyZOT/DTJvZIckeSQqrpjd395a+cCAAAAAIC1No/dBGthHoc8z01V7ZrkLRkOd/5f3f3SRV0O\nT/Lz7v74TN2pVXVOhlDi+UketSqLBQAAAACAndhKA4aF8xGus0z77ov6LauqbpTktCR3TvLC7n7e\n4j7d/ZFlhr8uySuT3HtL8wAAAAAAACu30jMYzkuyKck+y7QvnNGw2RMqquomST6R5A5JHr9UuLA5\n3f2LJBcl2XPKOAAAAAAAYNusKGDo7o1JPp/koKq69mxbVV09yV2SfL27L1hq/NhvzyTvTXLzJA/s\n7lOW6XeLqnpiVd1mibbdk9w0vzxUGgAAAAAA2I5WuoMhSU5OsluGQ5dnHZbhQOaTFiqq6oCq2n9R\nv5cnuV2SR3X3ezYzz03Ga72sqtYtantOknVJ3jF9+QAAAAAAwFTzOOT5NUkeneT4qto3yVlJbp3k\nqCTnJDl+pu8Xk3SSA5Kkqn4rw8HNX0hy9ap66BLX/253f6S7P1VVpyR5XJIzquqfklye5H5JHjrO\n9eI53A8AAAAAALAFKw4YuvtnVXXfJMcleUiS/57kOxl2Gxzb3ZdtZvhBGXYeHJjkbcv0+UiSQ8a/\n/0mSjyc5IslLMuzAOC/Ji5L839196UruBQAAAAAA2Drz2MGQ7r4kw46Fo7bQb92i16ckOWXCPD/P\n8EimkycvEgAAAAAAmJt5nMEAAAAAAADsZAQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAA\nAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAy\nAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAA\nAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAA\nkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAA\nAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJdpnHRarq+kmOTfKgJHsnuSjJ6UmO6e5vbsX4uyQ5Jsmd\nk+ya5MtJXpvkxO7etKjvgUlekOSeSfZM8rUkb0ryN93903ncDwAAAAAAsHkrDhiqatckZyQ5IMmJ\nSc5Ksj7J0UkOraqDu/sHmxl/aJL3JPl6kuOSfD/JHyV5RZJbJjlypu+tk3wyyY+THJ/kwiSHjOMO\nyhBwAAAAAAAA29k8djAcmeS2SY7o7lctVFbV2UnemWFnwlGbGf+qJD9JcveZ3Q5vrKpTk/x5Vb2+\nu88e61+aZPckd+vuc8a6N1fVxiRPr6oHdvdpc7gnAAAAAABgM+YRMDw2ycYkJy+qf1eGHQaHVdUz\nFj/qKEmq6k5JKslJSzxK6cQMOxkOS3J2Ve2d5D5JPjgTLsz2fXqSxySZS8Bwtas5ngIAAABWywee\ndPDaTPykj6zNvADwK2BF36JX1Z4ZHo302e6+fLZtDBTOTHKjJPsvc4k7juWnlmj7zFjeaSzvkGTd\nUn27+ysZHq10p8VtAAAAAADA/K301/T3HcsLl2m/YCxvsUz7fsuN7+5Lk1w8M3bZvjNz3ayq5nJw\nNQAAAAAAsLyVBgx7jOVly7RvXNRvW8bvMaHv5uYCAAAAAADmxEEDAAAAAADAZCsNGC4Zy+ss0777\non7bMv6SCX2T5NJl2gEAAAAAgDlZ6XkF5yXZlGSfZdoXzmjYsEz7uWN5pfFVtVeSvZJ8dkt9Z+Y6\nr7uv2NyCF9trr73WTekPAAAAAACscAdDd29M8vkkB1XVtWfbqurqSe6S5OvdfcFS45N8cizvukTb\n3cfy42N5ZpIrlupbVbdJct2ZvgAAAAAAwHY0jzMYTk6yW5InL6o/LMmNk5y0UFFVB1TV/guvu/tz\nGXYoPKyq9pnpty7JXyT5WZK/H/telOS0JIdU1e0XzfWMsTwpAAAAAADAdrfSRyQlyWuSPDrJ8VW1\nb5Kzktw6yVFJzkly/EzfLyZUGM9fAAAHYklEQVTpJAfM1D01yYeTfLSqTkhycZJHJjk0yTHd/dWZ\nvs9Mco8k76uq45N8I8n9x/lP7u6PzuF+AAAAAACALVjxDobu/lmS+yZ5ZZKHJDklyeEZdhMc0t2X\nbWH8ZzKEBl9K8oIkf5fk15I8obtftKjvuRkeu3RGkmdl2D1xUJKjc+UdFAAAAAAAwHaybtOmTWu9\nBgAAAAAA4CpmHmcwAAAAAAAAOxkBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMw\nAAAAAAAAkwkYAAAAAACAyXZZ6wWstaq6fpJjkzwoyd5JLkpyepJjuvuba7k2gO2tqk5JcvhmuvxF\nd5+wSssB2O6q6ppJXpTk6CQf7e5Dluiza5K/TPLIJPsmuSTJhzJ8Pvzy6q0WYL629B5YVcdl+P/x\ncl7e3UdutwUCbCdVdaMkz0vyx0lukuTiJB9P8sLu/uyivj4LwgQ7dcAwvmGckeSAJCcmOSvJ+gwf\ntg6tqoO7+wdrt0KAVfPUJN9dov5zq70QgO2lqirJW5LcKsm6ZfqsS/KuJPdO8vokz0/y6xk+H36q\nqu7Y3V9dnRUDzM/WvAfOOC7Jfy5Rv2HOywLY7qrqxkn+LckNkrw6ydkZ3gv/PMn9ququ3f3vY1+f\nBWGinTpgSHJkktsmOaK7X7VQWVVnJ3lnkmOSHLVGawNYTe/p7vPXehEA20tVXS/JZzN8OXaHJF9a\npusjk9wnyUu6+1kz4z+Y4ZdRXpLkwdt3tQDzNeE9cMFHuvuM7b0ugFXyoiT7JHlId79jobKq/jXJ\nqRl2Kzx8rPZZECba2c9geGySjUlOXlT/riQXJjlsTC4BALhqu2aSNyS5c3f3Zvo9dixfMVs5bp3/\nZJIHVNV1t88SAbabrX0PBPhV9I0kb83wy8Sz3ptkU5LfmqnzWRAm2ml3MFTVnhkejfSx7r58tq27\nN1XVmRkSyf2TnLsGSwRYdVV17SRXdPcVa70WgHnq7m8necpWdL1jkq9394VLtH0myV2THJThObwA\nVwkT3gP/i/HMhnT3T+e+KIBV0t3HLdO0R4ZHxl0yU+ezIEy0M+9g2Hcsl3rDSJILxvIWq7AWgLV2\nRFWdl+THSS6vqk9X1e+v9aIAVlNV7ZHk+vH5EODhVfWfSS7P8NnwnKp6zFovCmDO/mws35z4LAjb\namcOGPYYy8uWad+4qB/Ar7L7JfmrJH+Q5LkZDrx/d1U9ck1XBbC6fD4EGPxekteM5dOT7JXkDVX1\n7DVdFcCcVNXvJXlehsOfXz1W+ywI22CnfUQSAEmSv83wLMozZh4Xd3pVnZbkc0n+tqr+qbt/sWYr\nBABgtbwpyaeTfKq7fzjWvbeq/iHDwdDHVtXfdffFa7ZCgBWqqscmOSnJ+Un+0GPgYGV25oBh4flq\n11mmffdF/QB+5XT3OUnOWaL+C1V1RpL7JPnNJP+5yksDWAs+HwI7te7+SpKvLFH/nap6e5I/zfD8\n8X9Z7bUBzENVHZPkBUnOSvIH3f2dmWafBWEb7MyPSDovw0nx+yzTvnBGw4bVWQ7ADufbY7nnmq4C\nYJV094+SfDc+HwIsxWdD4Cqtqk7IEC6cluSei8IFnwVhG+20AUN3b0zy+SQHVdW1Z9uq6upJ7pLh\n1PgLlhoPcFVXVXtW1aOr6v7LdRnLr6/WmgB2AJ9Msk9V3XyJtrsn+XGSz67ukgC2v6q6RlU9oqoe\ntlyXsfR/ZOAqZ9y58PQkr0/y4O5e7pwFnwVhop02YBidnGS3JE9eVH9YkhtneB4bwK+qnyb5X0lO\nqaobzjZU1b2T/E6SM7v7wrVYHMAaOXks/2K2sqrumeTgJP8w/nYbwK+U7v5ZkudnOMx5/WxbVR2Y\n5EFJLkxy5hosD2CbVdW9Mry/vTPJn3T3zzfT3WdBmGjdpk2b1noNa6aqrpHkYxneIF6Z4flrt05y\nVIbtTnfeTKIJcJVXVYcnOSXDY+Nek+RbSW6f5ClJfpLkkO7+3JotEGBOxi/HDpypeluSLyQ5dqbu\n9O6+rKr+OcmDk7wuyYcybIc/OsnGJL/T3d9anVUDzMfWvgcm+d0k703y/Qy/iHJehp0LT0tyrSQP\n6u73rsaaAealqv4tw/9z/3uS7yzT7fSF7wB9FoRpduqAIRkeEZLkuCQPSbJ3hjeadyY5tru/v4ZL\nA1gV429z/GWSO2Y4zOpbSd6f5MXdfe5arg1gXqrquPzXL9KWsn93n19V10zynAy7WvdL8oMk70vy\n3O722DjgKmfie+BBSf5Hknsk2SvJ95J8JMlf+8UT4Kqoqrbmy8/9u/v8sb/PgjDBTh8wAAAAAAAA\n0+3sZzAAAAAAAADbQMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBk\nAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAA\nAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMNn/B4w8B69Vicr8AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "metadata": { + "id": "i3TkXUhSIA0n", + "colab_type": "code", + "outputId": "3de583e0-0204-4fa1-f67b-caee128c5569", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 425 + } + }, + "cell_type": "code", + "source": [ + "ix_ = np.argsort(posterior_probability_)\n", + "print(\"probb | defect \")\n", + "for i in range(len(D_)):\n", + " print(\"%.2f | %d\" % (posterior_probability_[ix_[i]], D_[ix_[i]]))" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "stream", + "text": [ + "probb | defect \n", + "0.07 | 0\n", + "0.08 | 0\n", + "0.10 | 0\n", + "0.12 | 0\n", + "0.13 | 0\n", + "0.13 | 0\n", + "0.14 | 1\n", + "0.18 | 0\n", + "0.20 | 0\n", + "0.24 | 0\n", + "0.25 | 1\n", + "0.25 | 0\n", + "0.26 | 1\n", + "0.28 | 0\n", + "0.31 | 0\n", + "0.33 | 0\n", + "0.34 | 0\n", + "0.34 | 0\n", + "0.36 | 0\n", + "0.48 | 1\n", + "0.66 | 1\n", + "0.69 | 1\n", + "0.78 | 1\n" + ], + "name": "stdout" + } ] - }, - "metadata": { - "image/png": { - "height": 146, - "width": 780 + }, + { + "metadata": { + "id": "ajvopQADIA0p", + "colab_type": "text" }, - "tags": [] - }, - "output_type": "display_data" + "cell_type": "markdown", + "source": [ + "We can present the above data better in a figure: we've creates a `separation_plot` function." + ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xmc5Vdd5/9XAyJLSDAqikZZnHgy\nLCoBQVk0MjQ6oyiy2Ppjcxz8oaKCgAzqxETFGX+aUUREHAniguNPURAUgRYFZBEGWcyoHAKEJYIC\nNgRM2On5494ayqKq07er0jdNP5+PB4+v9T3nfM/nVuB6c991ztl3+PDhAAAAAAAAVnGNdRcAAAAA\nAACceAQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADA\nygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAyq61\n7gIAAODTxRjj8JV0ubx6S/Vn1S/OOS+5yos6RmOM76x+vXrRnPOc9Vbz6WWM8dTqQdVPzDnP3+Wz\n3lLdpPq6OecLd1kaAACsRMAAAAB77/+v/nHLvWtWX1x9dfWw6sFjjPvMOZ97vIsDAADYCwIGAADY\ne4+bc/7Vdg1jjOtXP1N9f/U7Y4wvmXO+97hWBwAAsAecwQAAAMfRnPPy6uHVW6vPqu693ooAAACO\njRUMAABwnM05Pz7GeEWLvfNvsbV9jPFl1SOru1RfsLz99ur51WPnnO/c0v+pLfb0/+HqN6qfqr6x\nulH13uW4R885/3HLuGtXj64esKzl/dVLqvOOVP8Y43OW9d2jummL7Z/eUb2gumDO+YYd6vuP1V+1\nWMFx5+q61Ruq/2/O+btjjOtW51cHqhtX/1Q9rTp3zvmxI9W0aa7DVXPOfWOMByzrPLP6YPWX1aPm\nnG8aY3x59djqjtX1q7+pzptz/uluX+9yzOctn/+N1We32DLr2dWPX0n9/6Z6VLW/OqO6oprVb1VP\nmnN+/Gh+DwAAcDxYwQAAAOtxw+X1A5tvjjH2V/+remD1nuo3q9+t9lXfV/31GOMLd3jmadVLq3Oq\n51TPbPEl/gOq548xrrml/++2CCO+qHpW9fTq81uEALfaboIxxpnVa6rHVKdUf9LizInLq++uXjPG\nuOsO9Z3R4kv+G1R/UP1d9RUttorav6zh3tXzWoQiZyzn+YkdnrejMcb3VE+oLlrO9YnqntXBZbjw\n4uray7Y3Vl9ZPWuM8W93+3rHGJ/V4p/Dg1v8c3tadbD6huX96+1Q89ct53pIi7Dnt6oXVWP5Wp47\nxvjMVX8XAABwVbGCAQAAjrMxxmnV7ZY//u8tzY9t8cX3L805f3DTmM9o8cX717X4svsHtnn0w6v/\nWX3PnPMTy3H/psWX7Leuvqb6i+X9/1B9a4u/7P/qOefrNs310OoXdyj/N1p88f971f02rywYY/x0\n9aPVb40xbj7n/PCWsf+5+s9zzicu++9r8QX/ty7rfnV1iznnR5btP1A9vvrO6sd2qGcnP1x9xZzz\nkuWzzqheX92sxcqDh805n7ps+4wWwccdqvtvmetYXu+PVF9S/X2L3+1ly/7XahEa3HdrsWOMG7QI\nLk6pfnjOecGmti+o/ri6W4sVJz+14u8CAACuElYwAADAcbT8C/QnVqe32Pboj7d0+YXqh6oLNt+c\nc360esryx7vs8PiPtPji/BObxr2xetnyxy/b1Pf/WV5/e3O4sBzzyy1Cia2137b66uqj1UO32bbo\n/OrdLbZ1+qZt6nvbRriwnOdwi1UTtdhG6DEb4cLSHyyvXzDGuGGr+dWNcGE516V98vfwjo1wYdn2\n0RarJ6puuXF/F69343f72I1wYTnPx1oEQ4e3qfc/Vp9bvXRzuLAc947qYcsfv3cZzAAAwNpZwQAA\nAHvv4WOMf9xyb1+LL9Hv2uJ8gXdX95pzfnBzpznn7x7huf+wvJ62Q/tfb33e0ju2GbexguLFOzzr\n+S22L9rsa5bXV84537N1wJzzo2OMF1X3afHF/B9s6fK/tpnnn5bXy1tsD7RdW9Wp1ft2qHU7rzzC\nXH95hLZTN91b+fWOMT6/2tjC6lN+t3PO94wxXl3dfkvTxjZLz9mmtlpsrXRZi//unNVidQQAAKyV\ngAEAAPbegSO0vaP6yeqX55zv2to4xrhGi/MX7ld9aYuDmq+zpdtOf8H+9h3ubxwMvHkF88aX4P/Q\n9t66zb2bLa+XbNO24S3L6xdv03bpEWr75+WKhv9reRj2xo+rrr4+0lyfEha0/e/oWF7v5vMx3tH2\n3tqnBgw3XV7/3RjjRjuM21hBcWYCBgAArgYEDAAAsPe+es75V5tvjDHu0WIbnlOq/7FDuLCvxcHL\nG3v0X9TikN/3tthW54wWhyDv5KMr1Lhx0PCHdmjfen7C5jHbrZLYsPG8627TtnWLoc222zZoN/Zi\nrmN5vRtjPrJ5q6ottvvdnrK83rVPrmbYyalX0g4AAMeFgAEAAI6DOeezxxh/VH1L9SvVN2/T7Ztb\nhAsfrb5xznlwc+MY464dOWBYxYdafBn+mTu0X2+be5cfoW3ruH85xrquTo7l9W4EDp8xxti3dVXG\nEZ63Mf4hc87/sVqZAACwHg55BgCA4+cHWnxpfY8xxnbbKH3t8vq8reHC0s33sJZ3Lq+fv0P7dnO9\n+Sjq2Gg70rZCJ4pjeb0bv9d91eddyZjN3ri8bre1FAAAXC0JGAAA4DiZc769On/54+PHGJ+9pcvG\nCuP3bh27PJvh/13+uNMZDKt47fJ6523m2ld9wzZjXri8fuUY41O+PB9jXKc6Z0vfE9kLl9ejfr1z\nzkv75BkP2/1uv7D6sm3m+vPl9T7L3//WcfvGGN8+xviCFeoHAICrlIABAACOr8e1OFvhRtUvbGnb\nOLj3nDHG9TdujjGuV/1an9x+53PHGDttbXS0fn95feAY48wtbY9sm7+yn3O+rsUX4deqfmmMcc1N\nNe6rfra6YfW31Z/tsr6128Xrffry+iPLf3YbYz6j+qW2Px/iadW7qlH92OaG5VznVf+zesbuXhUA\nAOwdZzAAAMBxNOf82Bjje6qXVA8YYzxtzvm8ZfNvV/+l+qLqf48x/qzFfv13q/6p+nfVxdVp1fPH\nGM+Ycz7uGEv5/ep7WvwF/qvGGH9SXVadXd26+q99crXFZt/V4uDp+1ZnjzFe3mJFxe1afDn+ruo7\njnDA8YnmWF7vT1X3bPG7/LsxxsEWf9x11xbna/xm9eDNk8w5LxtjfHuLg8B/aoxx3+qvWpyRccfq\nzOqf++QqFgAAWDsrGAAA4Dibc76sunD546+OMU5Z3v9Atb/64+qzqvtVt62eXN15zvnu6nurf6ju\nUN1iFzV8ovqm6r+12NLn3tV9qn9s8YX2K3cY99ZlTT9TfXg57l7V4eq/V18+57zoWOu6ujmW1zvn\nfEf11S0Co+tWD6ruXj2vxe/20A5z/UX15dWvVqcsxx2oPt5itcuXLVdVAADA1cK+w4cPr7sGAAAA\nAADgBGMFAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAA\nsDIBAwAAAAAAsLJrrbuAdbvssssOr7sGAAAAAAC4OjjttNP2HW1fKxgAAAAAAICVCRgAAAAAAICV\nCRgAAAAAAICVCRgAAAAAAICVCRgAAAAAAICVCRgAqOriiy/u4osvXncZAGvhPRA42XkfBE5m3gPh\n2AkYAAAAAACAlV1rrx40xrh29djqUdWL55znrDD2jtW51VdV163eUP1a9YQ55+EtfW9R/WT1tdWp\n1Vur365+Zs75kd2/EgAAAAAA4MrsScAwxhjV71RfWu1bcexdqz+t3l6dXx2qvqV6fPUl1cM39b1l\n9bLqg9UF1aXVOctxZ1f33M3rAAAAAAAAjs6uA4YxxmdVr64urm5XvX7FRzyx+lB1lznnO5f3fmuM\n8czqB8cYvz7nfN3y/s9Xp1R3nnNetLz3tDHG5dXDxhjfPOd81m5eDwAAAAAAcOX24gyGa1e/WX3V\nnHOuMnCMcYdqVL+3KVzY8IQWqyHuv+x742p/9eebwoXNfasesGLtAAAAAADAMdj1CoY55z9V33uM\nw2+/vL58m7ZXLK93WF5v1yJw+JS+c843jjEObeq7a06OB05W3v+Ak5n3QOBk530QOJl5D+Rkc+aZ\nZ+76GXt2yPMxuunyeunWhjnnB8YY76tufmV9l95WfcUY41pzzo/ttrAv+ZIv2e0jVnb3J7/muM95\ndfP8B99m3SUAa+R9EP9/4OR2sr8HnKz//b/HPe7RS1/60qrudKc79exnP3vNFbEuJ/t7ACfv++AG\n/xvw3wHg5PamN71p3SUck3UHDDdYXq/Yof3yTX2Opu9Gv/fuvjQAAAAAALjq7cVqgnXYizMYAAAA\nAACAk8y6A4b3L6/X36H9lE19jqZv1Qf2oC4AAAAAAOAI1h0wvHl5PWNrwxjjtOq06uIr67t0k+qS\nvTh/AQAAAAAAOLJ1n8HwsuX1TtWFW9rusry+ZHl9ZfWxZd9/ZYxxq+qGlRPhAAAAAAA4agcOHOjg\nwYPrLuO4e9/73rfrZxzXFQxjjLPGGDfb+HnO+drq1dV9xxhnbOq3r/qh6qPVbyz7vqd6VnXOGOM2\nWx79yOX1yVdh+QAAAAAAfJo5GcOFvbLrFQxjjFtUt9hy+3PHGPfZ9PNz5pxXVH9fzeqsTW3fV/1F\n9eIxxuOq91XfXt21OnfO+aZNfX+4+prqeWOMC6p3VN9Q3a+6cM754t2+HgAAAAAATj6HDh1a29zX\nuMa6TzM4NnuxRdK3VedtuXeL6vc3/Xyz6i3bDZ5zvmKM8TXVTy7/85ktgojvmnP++pa+bx5j3LH6\n6erR1Q2qN1WPqh6361cCAAAAAAAclV0HDHPO86vzj7Lvvh3uv6r6D0f5jItbhBoAAAAAAMCanJjr\nLgAAAAAAgLUSMAAAAAAAACsTMAAAAAAAACvbi0OeAQAAAAA4QR04cKCDBw+uuwxOQFYwAAAAAACc\nxIQLtX///nWXcEKyggEAAAAAOGn56/1POnTo0LpL4ARjBQMAAAAAcNISLiz4C36OhRUMAAAAAMBJ\nz1/vw+oEDAAAAABwErNFEHCsbJEEAAAAACcx4YLtgeBYWcEAAAAAANgiCFiZFQwAAAAAAMDKBAwA\nAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAA\nAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKrrXuAgAAAABg\nnQ4cONDBgwfXXQbACccKBgAAAABOasKF2r9//7pLAE5AVjAAAAAAQHXo0KF1lwBwQrGCAQAAAAAA\nWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJlDngEAAABOYhc/5Ue77PWvWHcZnf7odVcAwKqs\nYAAAAAA4iV0dwoWrg/3796+7BIATzp6sYBhjnF6dV92zunH1nuo51blzznceYdx3Vr9+JY9/0Zzz\nnGX/t1Q3OULf28w5X3u0dQMAAACwcLuffcFa53/+g2+z1vkBWN2uA4YxxnWrF1ZnVU+oXlWdWT2q\nuusY47ZzzvfuMPwvqvvu0HZG9QvV3265/+7q+3YYc8nRVw4AAABQBw4c6ODBg+suAwBOOHuxguHh\n1a2rh845n7hxc4zxuuoZ1bnVI7YbOOd8a/XW7drGGM+s/rn68S1NV8w5n74HdQMAAAAIF6rTzrrD\nuksA4AS0FwHDA6vLqwu33P+j6tLq/mOMR845Dx/tA8cY31p9S/XgOec/70GNAAAAwA6uDof8Xh0O\n+D106NDa5r77k1+ztrkB4FjtKmAYY5zaYmukv5xzfnhz25zz8BjjldW9qptVbz7KZ35m9YvVK6un\nXEnf61UfXCW8AAAAAP61dYcLVwcO+AVgnS6++OLjPueZZ56562fsdgXDxoHLl+7Q/rbl9eYdZcBQ\nfXf1RdUDdggOrjvGeHz1gOqG1YfGGM+rHjPnfP1RzgEAAABssc5Dfh3wCwAnnt0GDDdYXq/Yof3y\nLf2OaLl64THVi+ecL9qh242qm1YPqT5SfV310OqcMcbt55xvOJq5AAAAAADg6mAvVhOsw16cwbCX\nvrP6wuoHdmh/UPXxOedLNt175hjjourXqp+ovuMqrRAAAAAAANh1wPD+5fX6O7SfsqXflXlw9c/V\nH2/XeIRVDU+pfqm621HOAwAAAAAA7MI1djn+kupwdcYO7RtnNFzpCRVjjJtWt6v+ZM750VWKmHN+\nonpPdeoq4wAAAAAAgGOzq4Bhznl59TfV2WOM62xuG2Ncs7pj9fY559u2G7/F1y+vf75d4xjj5mOM\n/zTGuNU2bae02FrpaOYBAAAAAAB2abcrGKourK7X4tDlze7f4kDmJ2/cGGOcNca42Q7Pue3y+r93\naP+85bN+YYyxb0vbY6p91R+uUDcAAAAAAHCM9uKQ5ydV96suGGPcpHpVdcvqEdVF1QWb+v59Nauz\ntnnOly6vb9lukjnny8cYT21xEPQLxxi/V324xcqH+yzn+undvRQAAAAAAOBo7HoFw/K8hLu3OGT5\n3tVTqwe1WG1wzpzziqN81Gctrx84Qp8HL/9zg+rnqidUt6oeW91pznm0h0kDAAAAAAC7sBcrGFp+\nsf+I5X+O1G/r1kab2778KOb5eIstmS5ctUYAAAAAAGDv7MUZDAAAAAAAwElGwAAAAAAAAKxMwAAA\nAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAA\nAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxM\nwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKzsWusuAAAAgPU6cOBABw8eXHcZAACcYKxgAAAAOMkJ\nF6g67aw7rLsEAOAEYwUDAAAAVR06dGhtc9/9ya9Z29wAABwbAQMAAHDSs0UQAACszhZJAADASU+4\nUPv37193CQAAnGCsYAAAAFha5xZBAABworGCAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAA\nAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWNm19uIhY4zT\nq/Oqe1Y3rt5TPac6d875zisZe/hKHv9Zc873bep/i+onq6+tTq3eWv129TNzzo8c84sAAAAAAACO\n2q4DhjHGdasXVmdVT6heVZ1ZPaq66xjjtnPO917JY/6uRUCxncs3zXXL6mXVB6sLqkurc6rzq7Nb\nBBwAAMCKDhw40MGDB9daw0tf+tJOP/30tdYAAAAcvb1YwfDw6tbVQ+ecT9y4OcZ4XfWM6tzqEVfy\njHfPOZ9+FHP9fHVKdec550XLe08bY1xePWyM8c1zzmet/AoAAOAkt+5w4epg//796y4BAABOKHsR\nMDywxSqDC7fc/6MWKwzuP8Z45JzzyrZCOqIxxo2r/dULNoULG55QPax6QCVgAACAY3To0KHjOt89\n7nGPXvrSl1Z1pzvdqWc/+9nHdX4AAODY7SpgGGOc2mJrpL+cc354c9uc8/AY45XVvaqbVW8+iuft\nq64357x8m+bbVfuql29tmHO+cYxxqLrD6q8CAAAAAADW5+KLLz7uc5555pm7fsY1djn+JsvrpTu0\nv215vfmVPOdzxhi/WX2g+pcxxvvHGL85xvjCTX1uehRzfdEYY08OrgYAAAAAAHa22y/jb7C8XrFD\n++Vb+u3kFtWrq/sva7pHi62XzhljnD3nfM+Kc13ZodIAAAAAAHC1sBerCdbh6vDX/v++xSHPf73p\n3tPHGG+vfqx6ZPUja6kMAAAAAADY1m63SHr/8nr9HdpP2dLvU8w5n7slXNjwxOX1bivO9YGd5gIA\nAAAAAPbGbgOGS6rD1Rk7tG+c0XAsJ1S8e/nsU5c/bxwSfaS5LplzfuwY5gIAAAAAAFawq4Bhznl5\n9TfV2WOM62xuG2Ncs7pj9fY559u2Gz/GuPUY4yFjjC/epvnMal+fPCj6ldXHqjtt85xbVTesXnKs\nrwUAAAAAADh6e3EGw4XV46uHVL+46f79qxtV523cGGOcVX14znnJ8tatqictn/HgLc/dOHfhD6vm\nnO8ZYzyr+tYxxm3mnK/Z1PeRy+uTd/9yAAA42Vz8lB/tste/Yq01nP7otU4PAACwsr0IGJ5U3a+6\nYIxxk+pV1S2rR1QXVRds6vv31azOWv78+9V3Vf9pjPE51XOqa1b3anH2wp9Vv7Zp/A9XX1M9b4xx\nQfWO6huW818453zxHrweAABOMusOF64u9u/fv+4SAACAE8iuA4Y550fHGHevzq/uXX1/9a4WqwnO\nm3NecYSxHxtj3GM55rtahAWfqN7QIkz4xc1nKsw53zzGuGP109WjqxtUb6oeVT1ut68FAICT2+1+\n9gVrm/v5D77N2uYGAAA4FnuxgqE55/tbrFh4xJX027fNvQ+1WOVwwaeO2PYZF1ffdgxlAgAAAAAA\ne2RXhzwDAAAAAAAnJwEDAAAAAACwMgEDAAAAAACwMgEDAAAAAACwMgEDAAAAAACwMgEDAAAAAACw\nMgEDAAAAAACwMgEDAAAAAACwsmutuwAAANbvwIEDHTx4cN1lAAAAcAKxggEAAOFCddpZd1h3CQAA\nACcUKxgAAPi/Dh06tLa57/7k16xtbgAAAFZnBQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyZzAA\nAFQHDhxw0DEAAACswAoGAIASLlT79+9fdwkAAACcQKxgAADY5NChQ+suAQAAAE4IAgYAoIuf8qNd\n9vpXrLuMTn/0uisAAAAAjpYtkgCAq0W4cHVgiyAAAAA4elYwAAD/1+1+9gVrnf/5D77NWucHAAAA\njp4VDAAAAAAAwMoEDAAAAAAAwMoEDAAAAAAAwMqcwQAA1cVP+VEHHQMAAACswAoGACjhQnXaWXdY\ndwkAAADACcQKBgDY5HY/+4J1lwAAAABwQrCCAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAA\nAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWNm19uIhY4zTq/Oqe1Y3rt5TPac6d875zqMY\nf+fl+NtX16neXv1B9VNzzn/Z1O8t1U2O8KjbzDlfe2yvAgAAAAAAOFq7DhjGGNetXlidVT2helV1\nZvWo6q5jjNvOOd97hPH3q367mi1ChvdX31Q9urrLGOPOc85PbBry7ur7dnjcJbt7NQAAAAAAwNHY\nixUMD69uXT10zvnEjZtjjNdVz6jOrR6x3cAxxmdWv9JixcId5pyXLZueMsZ4RosVEd/QYjXEhivm\nnE/fg7oBAAAAAIBjtBcBwwOry6sLt9z/o+rS6v5jjEfOOQ9vM/bzqz+sXrEpXNjwnBYBw5f1rwMG\nAK4CBw4c6ODBg+suAwAAAIATxK4ChjHGqS22RvrLOeeHN7fNOQ+PMV5Z3au6WfXmrePnnG+tvnOH\nx5+2vL7/CPNfr/rgDuEFACsQLtRpZ91h3SUAAAAAJ6GLL774uM955pln7voZu13BsHHg8qU7tL9t\neb152wQMOxljXLv6ruqK6plbmq87xnh89YDqhtWHxhjPqx4z53z90c4BwPYOHTq0trnv/uTXrG1u\nAAAAAFaz24DhBsvrFTu0X76l35UaY1yj+rXq31aPnHO+Y0uXG1U3rR5SfaT6uuqh1TljjNvPOd9w\ntHMBAAAAAMC67cVqgnXYizMY9swY47rV77Q4e+GX55w/v6XLg6qPzzlfsuneM8cYF7UIJX6i+o7j\nUiwAAAAAAJzEdhswbJyPcP0d2k/Z0m9HY4zPrZ5VfVX1U3POH9/aZ875oh2GP6X6pepuVzYPAAAA\nAACwe9fY5fhLqsPVGTu0b5zRcMQTKsYYn1e9tLpd9R+3CxeOZM75ieo91amrjAMAAAAAAI7NrgKG\nOefl1d9UZ48xrrO5bYxxzeqO1dvnnG/bbvyy36nVc6svrr55zvnUHfrdfIzxn8YYt9qm7ZTqC/vk\nodIAAAAAAMBVaLcrGKourK7X4tDlze7f4kDmJ2/cGGOcNca42ZZ+v1h9RfUdc84/PcI8n7d81i+M\nMfZtaXtMta/6w9XLBwAAAAAAVrUXhzw/qbpfdcEY4ybVq6pbVo+oLqou2NT376tZnVU1xviyFgc3\n/111zTHGfbZ5/rvnnC+ac758jPHU6jurF44xfq/6cPX11X2Wc/30HrweAAAAAADgSuw6YJhzfnSM\ncffq/Ore1fdX72qx2uC8OecVRxh+douVB7eofn+HPi+qzln+3w+uXlI9tPq5FiswLqkeW/3snPMD\nu3ktAAAAAADA0dmLFQzNOd/fYsXCI66k374tPz+1euoK83y8xZZMF65cJAAAAAAAsGf24gwGAAAA\nAADgJCNgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAA\nViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZg\nAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAVnatdRcAcHVw4MCBDh48\nuO4yAAAAAOCEYQUDQAkXlvbv37/uEgAAAAA4QVjBALDJoUOH1l0CAAAAAJwQrGAAAAAAAABWJmAA\nAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAA\nAABWJmAAAAAAAABWJmAAAAAAAABWdq11FwBcPRw4cKCDBw+uuwwAAAAA4ARhBQNQJVyo9u/fv+4S\nAAAAAOCEsScrGMYYp1fnVfesbly9p3pOde6c851HMf6O1bnVV1XXrd5Q/Vr1hDnn4S19b1H9ZPW1\n1anVW6vfrn5mzvmRvXg9J6spxYKBAAAKOElEQVSLn/KjXfb6V6y1htMfvdbpqQ4dOrTuEgAAAACA\nE8CuA4YxxnWrF1ZnVU+oXlWdWT2quusY47ZzzvceYfxdqz+t3l6dXx2qvqV6fPUl1cM39b1l9bLq\ng9UF1aXVOctxZ7cIODhG6w4XWD9/wQ8AAAAAHK29WMHw8OrW1UPnnE/cuDnGeF31jBYrEx5xhPFP\nrD5U3WXTaoffGmM8s/rBMcavzzlft7z/89Up1Z3nnBct7z1tjHF59bAxxjfPOZ+1B6+p008/fS8e\nc0K63c++YG1zP//Bt1nb3AAAAAAAHL19hw8fvvJeRzDG+Pvqi6rPnnN+eNP9fdXbqs+sPm/rVkfL\nPneo/qp68pzzu7e03a06WF0w5/zhMcaNq3+oXjDn3L+l77+pLq6ePue87yr1X3bZZbv7BQAAAAAA\nwKeJ0047bd/R9t3VIc9jjFNbbI306s3hQtUyUHhl9bnVzXZ4xO2X15dv07axX88dltfbVfu26zvn\nfGOLrZXusLUNAAAAAADYe7sKGKqbLK+X7tD+tuX15ju033Sn8XPOD1Tv2zR2x76b5vqiMcaeHFwN\nAAAAAADsbLcBww2W1yt2aL98S79jGX+DFfoeaS4AAAAAAGCP7DZgAAAAAAAATkK7DRjev7xef4f2\nU7b0O5bx71+hb9UHdmgHAAAAAAD2yG7PK7ikOlydsUP7xhkNF+/Q/ubl9VPGjzFOq06rXn1lfTfN\ndcmc82NHKnirVU7EBgAAAAAAFna1gmHOeXn1N9XZY4zrbG4bY1yzumP19jnn27YbX71seb3TNm13\nWV5fsry+svrYdn3HGLeqbripLwAAAAAAcBXaizMYLqyuVz1ky/37VzeqnrxxY4xx1hjjZhs/zzlf\n22KFwn3HGGds6rev+qHqo9VvLPu+p3pWdc4Y4zZb5nrk8vrkAAAAAACAq9xut0iqelJ1v+qCMcZN\nqldVt6weUV1UXbCp799Xszpr073vq/6ievEY43HV+6pvr+5anTvnfNOmvj9cfU31vDHGBdU7qm9Y\nzn/hnPPFe/B6AAAAAACAK7HrFQxzzo9Wd69+qbp39dTqQS1WE5wz57ziSsa/okVo8PrqJ6tfrT6/\n+q4552O39H1zi22XXlg9usXqibOrR/WpKygAAAAAAICryL7Dhw+vuwYAAAAAAOAEsxdnMAAAAAAA\nACcZAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALCy\na627gHUbY5xenVfds7px9Z7qOdW5c853rrM2gKvaGOOp1YOO0OWH5pyPO07lAFzlxhjXrh5bPap6\n8ZzznG36XLf6kerbq5tU76/+vMXnwzccv2oB9taVvQeOMc5v8e/HO/nFOefDr7ICAa4iY4zPrX68\n+tbq86r3VS+pfmrO+eotfX0WhBWc1AHD8g3jhdVZ1ROqV1Vntviwddcxxm3nnO9dX4UAx833Ve/e\n5v5rj3chAFeVMcaofqf60mrfDn32VX9U3a369eonqi9o8fnw5WOM288533R8KgbYO0fzHrjJ+dXf\nbnP/4j0uC+AqN8a4UfXX1WdXv1K9rsV74Q9WXz/GuNOc8zXLvj4LwopO6oChenh16+qhc84nbtwc\nY7yuekZ1bvWINdUGcDz96ZzzLesuAuCqMsb4rOrVLb4cu131+h26fnu1v/q5OeejN41/QYs/Rvm5\n6l5XbbUAe2uF98ANL5pzvvCqrgvgOHlsdUZ17znnH27cHGP8r+qZLVYrfNvyts+CsKKT/QyGB1aX\nVxduuf9H1aXV/ZfJJQAAJ7ZrV79ZfdWccx6h3wOX18dvvrlcOv+y6pvGGDe8akoEuMoc7XsgwKej\nd1T/s8UfE2/23Opw9WWb7vksCCs6aVcwjDFObbE10l/OOT+8uW3OeXiM8coWieTNqjevoUSA426M\ncZ3qY3POj627FoC9NOf8p+p7j6Lr7au3zzkv3abtFdWdqrNb7MMLcEJY4T3wX1me2dCc8yN7XhTA\ncTLnPH+Hphu02DLu/Zvu+SwIKzqZVzDcZHnd7g2j6m3L682PQy0A6/bQMcYl1QerD48x/mqM8R/W\nXRTA8TTGuEF1ej4fAnzbGONvqw+3+Gx40RjjAesuCmCPfc/y+rTyWRCO1ckcMNxgeb1ih/bLt/QD\n+HT29dV/rb6x+rEWB97/8Rjj29daFcDx5fMhwMK/r560vD6sOq36zTHGf15rVQB7ZIzx76sfb3H4\n868sb/ssCMfgpN0iCYCq/nuLvShfuGm7uOeMMZ5Vvbb672OM35tzfmJtFQIAcLz8dvVX1cvnnJct\n7z13jPG7LQ6GPm+M8atzzvetrUKAXRpjPLB6cvWW6h62gYPdOZkDho391a6/Q/spW/oBfNqZc15U\nXbTN/b8bY7yw2l/92+pvj3NpAOvg8yFwUptzvrF64zb33zXGeHr13S32H/+T410bwF4YY5xb/WT1\nquob55zv2tTssyAcg5N5i6RLWpwUf8YO7RtnNFx8fMoBuNr5p+X11LVWAXCczDn/pXp3Ph8CbMdn\nQ+CENsZ4XItw4VnV124JF3wWhGN00gYMc87Lq7+pzh5jXGdz2xjjmtUdW5wa/7btxgOc6MYYp44x\n7jfG+Iaduiyvbz9eNQFcDbysOmOM8cXbtN2l+mD16uNbEsBVb4zxGWOMA2OM++7UZXn178jACWe5\ncuFh1a9X95pz7nTOgs+CsKKTNmBYurC6XvWQLffvX92oxX5sAJ+uPlL9cvXUMcbnbG4YY9yt+srq\nlXPOS9dRHMCaXLi8/tDmm2OMr61uW/3u8q/bAD6tzDk/Wv1Ei8Ocz9zcNsa4RXXP6tLqlWsoD+CY\njTG+rsX72zOqB885P36E7j4Lwor2HT58eN01rM0Y4zOqv2zxBvFLLfZfu2X1iBbLnb7qCIkmwAlv\njPGg6qktto17UvWP1W2q760+VJ0z53zt2goE2CPLL8dusenW71d/V5236d5z5pxXjDH+oLpX9ZTq\nz1ssh39UdXn1lXPOfzw+VQPsjaN9D6y+unpudajFH6Jc0mLlwg9Un1ndc8753ONRM8BeGWP8dYt/\nz/3+6l07dHvOxneAPgvCak7qgKEWW4RU51f3rm7c4o3mGdV5c85DaywN4LhY/jXHj1S3b3GY1T9W\nz69+es755nXWBrBXxhjn96+/SNvOzeacbxljXLt6TItVrTet3ls9r/qxOadt44ATzorvgWdX/6X6\nmuq06p+rF1X/zR+eACeiMcbRfPl5sznnW5b9fRaEFZz0AQMAAAAAALC6k/0MBgAAAAAA4BgIGAAA\nAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAA\ngJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJ\nGAAAAAAAgJUJGAAAAAAAgJX9HwilPZ3m/wjsAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "metadata": { + "id": "tFR1_yu8IA0p", + "colab_type": "code", + "outputId": "e5508fb9-0448-483c-d42e-157d82b60500", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 237 + } + }, + "cell_type": "code", + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "def separation_plot( p, y, **kwargs ):\n", + " \"\"\"\n", + " This function creates a separation plot for logistic and probit classification. \n", + " See http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf\n", + " \n", + " p: The proportions/probabilities, can be a nxM matrix which represents M models.\n", + " y: the 0-1 response variables.\n", + " \n", + " \"\"\" \n", + " assert p.shape[0] == y.shape[0], \"p.shape[0] != y.shape[0]\"\n", + " n = p.shape[0]\n", + "\n", + " try:\n", + " M = p.shape[1]\n", + " except:\n", + " p = p.reshape( n, 1 )\n", + " M = p.shape[1]\n", + "\n", + " colors_bmh = np.array( [\"#eeeeee\", \"#348ABD\"] )\n", + "\n", + "\n", + " fig = plt.figure( )\n", + " \n", + " for i in range(M):\n", + " ax = fig.add_subplot(M, 1, i+1)\n", + " ix = np.argsort( p[:,i] )\n", + " #plot the different bars\n", + " bars = ax.bar( np.arange(n), np.ones(n), width=1.,\n", + " color = colors_bmh[ y[ix].astype(int) ], \n", + " edgecolor = 'none')\n", + " ax.plot( np.arange(n+1), np.append(p[ix,i], p[ix,i][-1]), \"k\",\n", + " linewidth = 1.,drawstyle=\"steps-post\" )\n", + " #create expected value bar.\n", + " ax.vlines( [(1-p[ix,i]).sum()], [0], [1] )\n", + " plt.xlim( 0, n)\n", + " \n", + " plt.tight_layout()\n", + " \n", + " return\n", + "\n", + "plt.figure(figsize(11., 3))\n", + "separation_plot(posterior_probability_, D_)" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAGXCAYAAABBU1oCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3X+45mVdJ/D3yISgwsQUGnthCF7T\nZ9K1Ek0MVlNq6IfLxmo27iWJuZoSVkjmFkZQau1l1Por1BWQtKw0Q6XQnCXxByosocim3I2CAZsp\nNAE1JFI7+8fznKvj6Rxm7nm+c75zznm9rmuu23P/+D6fP/Dhy7zPfd/rdu3aFQAAAAAAgB4PGLsA\nAAAAAABg5REwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAA\nAEA3AQMAAAAAANBNwAAAAAAAAHRbP3YB+8Jdd921a+waAAAAAABgpdmwYcO6PZ1rBwMAAAAAANBN\nwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AALAGbN++Pdu3bx+7DIDR+T4EmPB9\nCDDh+xBmI2AAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKCbgAEAAAAAAOgmYAAAAAAAALoJGAAAAAAA\ngG4CBgAAAAAAoNv6oR5UVQcmeWWSlyb5SGvtKR1rj09yTpInJjk4yV8leUuSN7TWdg1VIwAAAAAA\nMIxBAoaqqiTvSPJtSdZ1rj0xyfuT3JrkvCQ7kvxIktcleWSSM4eoEQAAAAAAGM7MRyRV1WFJrkty\nQJLH78UjLkjy1SRPaq29trX29tbajyZ5b5KfqarvnLVGAAAAAABgWEPcwXBgkrcleWJrrfUsrKrj\nklSSd7bWvrRg+A2Z7IY4dYAaAQAAAACAAc18RFJr7ctJTt/L5U+Ytp9YZOzqaXvcXj4bAAAAAADY\nRwa75HkvPWLa3rZwoLX2D1V1Z5Jjhvqw7du3D/UogBXJ9yDAhO9DgAnfhwATvg9ZizZt2jTzM8YO\nGA6ZtvcsMb5z3pyZPfKRjxzqUQDshZMu/NTYJYzqg89/7NglwH5hrX8XJL4P/DPgnwFYLU4++eRc\nddVVSZITTjghl1122cgVsRL59yKQJG986qFjl7BXxg4YAAAAAABgTRtiN8EYhrjkeRZ3T9sHLzH+\nkHlzAAAAAACA/cTYAcNN0/bIhQNVtSHJhiQOQAMAAAAAgP3M2AHDx6ftCYuMPWnafmyZagEAAAAA\nAPbQsgYMVbW5qo6e+7m19ukk1yV5ZlUdOW/euiQvSXJfkt9ZzhoBAAAAAIDdm/mS56p6VJJHLeg+\nvKp+dN7Pl7fW7knyuSQtyeZ5Yz+V5ENJPlJVr0lyZ5JnJTkxyTmttS/MWiMAAAAAADCsmQOGJD+W\n5NwFfY9K8q55Px+d5IuLLW6tXV1VT07yq9M/D8wkiHhea+2tA9QHAAAAAAAMbOaAobV2XpLz9nDu\nuiX6r03yw7PWAgAAAAAALI+xL3kGAAAAAABWIAEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwA\nAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAA\ndBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMA\nAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA\n3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAA\nAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABA\nNwEDAAAAAADQTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAA\nAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQ\nTcAAAAAAAAB0Wz/EQ6pqY5Jzk5yS5IgkdyS5PMk5rbUv7cH6U5O8KMl3JjkwyS1J/iTJK1trfzdE\njQAAAAAAwHBm3sFQVQcnuTLJ6UneneS5Sd6cZGuSq6rqsN2s/7Ukb0/yDUnOziRouDLJTyf5ZFUd\nOmuNAAAAAADAsIbYwXBmksckOaO1dsFcZ1Vdn+TSJOckOWuxhdOdDz+f5ItJntxau3c69NaquiPJ\nLyT5iSSvHaBOAAAAAABgIEPcwfCcJDuTXLSg/71JbktyalWtW2Ltt2YSclwzL1yY85Fp+4gBagQA\nAAAAAAY0U8AwPb5oc5LrFgYErbVdSa5JcniSo5d4xM1J7k2yaZGxR0zb/zNLjQAAAAAAwPBmPSLp\nqGl72xLjt0zbY5LctHCwtXZXVb0iySur6vVJXpPkH5I8IcnLk3w6ye/NWCMAAAAAAOy3tm/fvuyf\nuWnTYr/332fWI5IOmbb3LDG+c8G8f6O19qokL0jy/CSfT/LlJJcl+VSSE1trX52xRgAAAAAAYGBD\nXPI8k6o6Pcnrknwwye8nuT3JcUleluTyqvqh1tqdI5YIAAAAAAD7zBC7CcYwa8Bw97R98BLjD1kw\n7+tUVWUSLlzRWnvavKE/q6rrk7wnydmZhA0AAAAAAMB+YtYjkm5OsivJkUuMz93RsNQBUidmEnL8\n8SJj758++6mzFAgAAAAAAAxvpoChtbYzyWeSHFtVB80fq6oDkhyf5NbW2i2Lrc+/7nw4aJGxByZZ\nt8QYAAAAAAAwoiHuYLgok2OOXpjktfP6T03y0CTnznVU1eYk97bWbp52fXzabq2q17fWds1b/8wF\ncwAAAAAAYFDbLz47d9149ag1fOMIlwTceefsVx8PETC8Kcmzk5xfVUcluTbJo5OcleSGJOfPm/u5\nJC3J5iRprX28qt6VSZjwsap6ZyaXPH93kjOSfDnJqwaoEQAAAAAA/o2xw4WVbOaAobV2X1WdlOS8\nJM9I8uIkX0lyYZJzW2v37OYR/yXJR5I8N5Mw4cAkf5Pk4iSvaK3931lrBAAAAACA+/P4V18x2mf/\nr5983GifPYshdjCktXZ3JjsWztrNvHWL9P1LkjdM/wAAAAAAACvATJc8AwAAAAAAa5OAAQAAAAAA\n6CZgAAAAAAAAugkYAAAAAACAbgIGAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYA\nAAAAAKCbgAEAAAAAAOgmYAAAAAAAALoJGAAAAAAAgG4CBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAA\nugkYAAAAAACAbgIGAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKCbgAEA\nAAAAAOgmYAAAAAAAALoJGAAAAAAAgG4CBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAuq0fuwAAAAAA\nAMax/eKzc9eNV49dBiuUHQwAAAAAAGuUcGFiw+bjxi5hRbKDAQAAAABgjXv8q68YuwRWIDsYAAAA\nAACAbgIGAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKDb+rELAAAAAAAY\nw/aLz85dN149dhmwYtnBAAAAAACsScKFiQ2bjxu7BFYoOxgAAAAAgDXt8a++YuwSYEWygwEAAAAA\nAOgmYAAAAAAAALoJGAAAAAAAgG4CBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAugkYAAAAAACAbgIG\nAAAAAACgm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKDb+iEeUlUbk5yb5JQkRyS5\nI8nlSc5prX1pD9Y/MMkvJDk1ycOn6/80yctba3cMUSMAAAAAADCcmXcwVNXBSa5McnqSdyd5bpI3\nJ9ma5KqqOmw369dnEib8UpI/SfL8JH+U5L8m+XBVHThrjQAAAAAAwLCG2MFwZpLHJDmjtXbBXGdV\nXZ/k0iTnJDnrfta/KMn3JTmttfa2ad/vVtUdSZ6X5LgkHx2gTgAAAAAAYCBD3MHwnCQ7k1y0oP+9\nSW5LcmpVrbuf9Wck2Z7k7fM7W2uvbK0d01oTLgAAAAAAwH5mpoChqg5NsjnJda21e+ePtdZ2Jbkm\nyeFJjl5i/ZHT9R+czk9VHbSbQAIAAAAAABjZrEckHTVtb1ti/JZpe0ySmxYZ3zxtv1BVP5vkJdNn\n3ltVH0jy0tba52esEQAAAAAA9lvbt29f9s/ctGnTzM+Y9YikQ6btPUuM71wwb6GN0/a0JC9M8qok\nP5LJJdEnZ3JJ9BEz1ggAAAAAAAxsiEueZ3HgtH1Ykn/fWvu76c/vq6ovZxI4/FySl45RHAAAAAAA\n7GtD7CYYw6w7GO6etg9eYvwhC+Yt9I/T9n3zwoU5c5dGP2XvSgMAAAAAAPaVWQOGm5PsSnLkEuNz\ndzQsdYDUF6ftAYuM3TF99qF7WxwAAAAAALBvzBQwtNZ2JvlMkmOr6qD5Y1V1QJLjk9zaWrtlsfVJ\nPpvkriTftcjYw5Osy9IXSAMAAAAAACOZdQdDMjnK6EGZXNI836lJHprkwrmOqtpcVUfP/dxa+1qS\ndyR5XFWdvGD9i6ftZQPUCAAAAAAADGiIS57flOTZSc6vqqOSXJvk0UnOSnJDkvPnzf1ckpZk87y+\nc5P8QJJ3VdV/z+TYpBOT/HiST0+fDwAAAAAA7Edm3sHQWrsvyUlJXp/kGUkuSXJaJjsXntJau2c3\n629P8sQkv5PkJ5P8zyTfm+S3puv/adYaAQAAAACAYQ2xgyGttbsz2bFw1m7mrVui//ZMjlhaeMwS\nAAAAAACwHxriDgYAAAAAAGCNETAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAA\nAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQ\nTcAAAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAA\nAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0\nEzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN3Wj10AAAAAALD8tl98\ndu668eqxywBWMDsYAAAAAGANEi5MbNh83NglwIplBwMAAAAArGGPf/UVY5cArFB2MAAAAAAAAN0E\nDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAA\nAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcB\nAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABAt/VDPKSqNiY5N8kpSY5IckeSy5Oc01r7\nUuezDkpyfZJvS/LU1tqVQ9QIAAAAAAAMZ+YdDFV1cJIrk5ye5N1JnpvkzUm2Jrmqqg7rfOQ5mYQL\nAAAAAADAfmqIHQxnJnlMkjNaaxfMdVbV9UkuzSQwOGtPHlRVj0ny80k+leSxA9QGAAAAAADsA0Pc\nwfCcJDuTXLSg/71JbktyalWt291DquoBSd6S5K8z2QEBAAAAAADsp2YKGKrq0CSbk1zXWrt3/lhr\nbVeSa5IcnuToPXjci5Mcl+RFSe7dzVwAAAAAAGBEsx6RdNS0vW2J8Vum7TFJblrqIVX18CSvSvL2\n1toVVfXcGesCAAAAAIAVYfv27cv+mZs2bZr5GbMekXTItL1nifGdC+Yt5Y1Jvpbk52asBwAAAAAA\nWAZDXPI8k6p6VpKnJXlea+32sesBAAAAAIDlNMRugjHMuoPh7mn74CXGH7Jg3tepqo1JXpvkw621\nt85YCwAAAAAAsExm3cFwc5JdSY5cYnzujoalDpD6jSTfmOS8qpr/jMOm7eHT/tsXXiINAAAAAACM\nZ6YdDK21nUk+k+TYqjpo/lhVHZDk+CS3ttZuWWx9ku9LcmCSDyW5dd6f35qOv3P68/fMUicAAAAA\nADCsIe5guCjJ65K8MJPjjuacmuShSc6d66iqzUnuba3dPO16XpIHLfLM70tyZpKzk9ww/QMAAAAA\nAOwnhggY3pTk2UnOr6qjklyb5NFJzsokGDh/3tzPJWlJNidJa+3PF3tgVX3z9H9+orV25QA1AgAA\nAAAAA5r1kue01u5LclKS1yd5RpJLkpyW5MIkT2mt3TPrZwAAAAAAAPuXIXYwpLV2dyY7Fs7azbx1\ne/i8SzIJKgAAAAAAgP3QzDsYAAAAAACAtUfAAAAAAAAAdBvkiCQAAAAAWEm2bt2abdu2jV0GwIpm\nBwMAAAAAa45wYWLD5uPGLgFYwexgAAAAAGDN2rFjx6iff9KFnxr18wFmYQcDAAAAAADQTcAAAAAA\nAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBt/dgFAAAAALD8tm7dmm3bto1dBgArmIABAAAA\n1hh/sTy8q666Khs3bhy7DDpt2bJl7BIAVjQBAwAAAKwxwgXmbNmyJX/4h384dhkArFACBgAAAFij\nduzYMXYJK9rJJ5+cq666Kklywgkn5LLLLhu5IgBYXi55BgAAAAAAugkYAAAAAACAbgIGAAAAAACg\nm4ABAAAAAADoJmAAAAAAAAC6CRgAAAAAAIBuAgYAAAAAAKDb+rELAAAAgOW0devWbNu2bewyAABW\nPDsYAAAAWFOECxNbtmwZuwQAYIWzgwEAAIA1aceOHWOXAACwotnBAAAAAAAAdBMwAAAAAAAA3QQM\nAAAAAABANwEDAAAAAADQTcAAAAAAAAB0Wz92AQAAACyvrVu3Ztu2bWOXAQDACmcHAwAAwBojXEi2\nbNkydgkAACueHQwAAABr1I4dO8YuAQCAFcwOBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAugkYAAAA\nAACAbgIGAAAAAACg2/qxCwAAAFhO2y8+O3fdePWoNWx82agfDwAAgxAwAADAGrJ169Zs27Zt7DLY\nD2zZsmXsEgAAWOEEDAAAsIYIFyY2bD4um573a6N9/gef/9jRPhsAAIYiYAAAYM3YH47GSfaP43F2\n7Ngx2mefdOGnRvtsAABgOAIGAIA1wtE4zHE0DgAAMAQBAwDAGiFcmBj7aJzE8TgAAMDqIGAAAFhj\nxjwaJ3E8DgAAwGrxgLELAAAAAAAAVh4BAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABA\nNwEDAAAAAADQTcAAAAAAAAB0Wz/EQ6pqY5Jzk5yS5IgkdyS5PMk5rbUv7cH6/zBd/4QkByW5Ncm7\nk7yitfaPQ9QIAAAAAAAMZ+YdDFV1cJIrk5yeSSjw3CRvTrI1yVVVddhu1j87yUeTPDyTkOH0JJ9J\n8rIkH6wquywAAAAAAGA/M8QOhjOTPCbJGa21C+Y6q+r6JJcmOSfJWYstrKoHJnljJjsWjmut3TUd\nuriqLs1kR8QPZrIbAgAAAAAA2E8MsTvgOUl2JrloQf97k9yW5NSqWrfE2m9J8sdJfn1euDBnLlT4\njgFqBAAAAAAABjTTDoaqOjTJ5iQfba3dO3+stbarqq5J8vQkRye5aeH61tpfZ3Kk0mI2TNu7Z6kR\nAAAAAAAY3qxHJB01bW9bYvyWaXtMFgkYllJVByZ5XpJ7krxnr6sDAAAAAID93Pbt25f9Mzdt2jTz\nM2YNGA6ZtvcsMb5zwbzdml7q/JYk357k51prf7P35QEA/KutW7dm27ZtY5cBAAAAq8IQlzwPpqoO\nTvKOTC53/u3W2m+NXBIAsIoIF5ItW7aMXQIAAAALDLGbYAyzBgxz9yM8eInxhyyYt6SqOjzJ+5I8\nMckrWmu/PGNtAACL2rFjx9glAAAAwIo3a8Bwc5JdSY5cYnzujob7PUCqqh6W5KOZXAb9E621S2as\nCwAAAAAA2IceMMvi1trOJJ9JcmxVHTR/rKoOSHJ8kltba7cstn4679AkH0jyrUn+k3ABAAAAAAD2\nf0PcwXBRktcleWGS187rPzXJQ5OcO9dRVZuT3Ntau3nevNcm+a4kT2+tvX+AegCARbjgGAAAABjS\nEAHDm5I8O8n5VXVUkmuTPDrJWUluSHL+vLmfS9KSbE6SqvqOJKcl+WySA6rqRxd5/u2ttQ8PUCcA\nrGnChQmXHAMAAMAwZg4YWmv3VdVJSc5L8owkL07ylSQXJjm3tXbP/Sw/Nsm6JI9K8q4l5nw4yVNm\nrRMAmHDBMQAAADCEIXYwpLV2dyY7Fs7azbx1C36+JMklQ9QAAAAAAAAsn5kueQYAAAAAANYmAQMA\nAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA\n3QQMAAAAAABAt/VjFwAAy2H7xWfnrhuvHrWGjS8b9eMBAAAABmUHAwBrwtjhwv5iy5YtY5cAAAAA\nrBJ2MACsAVu3bs22bdvGLmO/8PhXXzHaZ3/w+Y8d7bMBAAAAhmYHA8AaIFyY2LD5uLFLAAAAAFg1\n7GAAVj2/vf+vduzYMernn3Thp0b9fAAAAACGYwcDsOoJFyacvQ8AAADAkOxgANaMsX97HwAAAABW\nEwEDrAGOCAIAAAAAhuaIJFgDhAuOBwIAAACAodnBAGuII4IAAAAAgKHYwQAAAAAAAHQTMAAAAAAA\nAN0EDAAAAAAAQDcBAwAAAAAA0E3AAAAAAAAAdFs/dgGwr23dujXbtm0buwwAAAAAgFXFDgZWPeHC\nxJYtW8YuAQAAAABYRexgYM3YsWPH2CUAAAAAAKwadjAAAAAAAADd7GBY5dw/AAAAAADAvmAHwyon\nXJhw/wAAAAAAwLDsYFgj3D8AAAAAAMCQ7GAAAAAAAAC6CRgAAAAAAIBua+qIpI0bN45dAgAAAAAA\nrAp2MKwBLjgGAAAAAGBoa2oHg4uOAQAAAABgGHYwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAA\nAAAAAAB0EzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAA\nQDcBAwAAAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQbf0QD6mqjUnOTXJK\nkiOS3JHk8iTntNa+tAfrj09yTpInJjk4yV8leUuSN7TWdg1RIwAAAAAAMJyZdzBU1cFJrkxyepJ3\nJ3lukjcn2Zrkqqo6bDfrT0zyoSSbkpyX5AWZBAyvS/I/Zq0PAAAAAAAY3hA7GM5M8pgkZ7TWLpjr\nrKrrk1yayc6Es+5n/QVJvprkSfN2O7y9qt6T5Geq6q2ttesHqBMAAAAAABjIul27ZjuBqKo+l+Th\nSb6ptXbvvP51SW5J8sAkD1vsqKOqOi7JJ5Nc2Fp7wYKx70+yLcn5rbWf76nprrvucqwSAAAAAAB0\n2rBhw7o9nTvTEUlVdWiSzUmumx8uJMk0ULgmyeFJjl7iEU+Ytp9YZOzqaXvcLDUCAAAAAADDm/UO\nhqOm7W1LjN8ybY9ZYvwRS61vrf1DkjvvZy0AAAAAADCSWQOGQ6btPUuM71wwb2/WL7UWAAAAAAAY\nyawBAwAAAAAAsAbNGjDcPW0fvMT4QxbM25v1S60FAAAAAABGsn7G9Tcn2ZXkyCXG5+5o2L7E+E3T\n9t+sr6oNSTYkua63qJ5brgEAAAAAgH4z7WBore1M8pkkx1bVQfPHquqAJMcnubW1dsti65N8fNqe\nsMjYk6btx2apEQAAAAAAGN4QdzBclORBSV64oP/UJA9NcuFcR1Vtrqqj535urX06kx0Kz6yqI+fN\nW5fkJUnuS/I7A9QIAAAAAAAMaNYjkpLkTUmeneT8qjoqybVJHp3krCQ3JDl/3tzPJWlJNs/r+6kk\nH0rykap6TZI7kzwryYlJzmmtfWGAGgEAAAAAgAHNvIOhtXZfkpOSvD7JM5JckuS0THYuPKW1ds9u\n1l+d5MlJbkzyq0nenORbkjyvtfbKWesDAAAAAACGt27Xrl1j1wAAAAAAAKwwQ9zBAAAAAAAArDEC\nBgAAAAAAoJuAAQAAAAAA6CZgAAAAAAAAugkYAAAAAACAbgIGAAAAAACgm4ABAAAAAADotn7sAvaF\nqtqY5NwkpyQ5IskdSS5Pck5r7Utj1gawXKrqkiSn3c+Ul7TWXrNM5QAsq6o6MMkrk7w0yUdaa09Z\nZM7BSX4xybOSHJXk7iR/nsk7418tX7UA+8buvgur6rxM/tt5Ka9trZ25zwoEWAZVdXiSX07yn5M8\nLMmdST6W5BWttesWzPV+CJ1WXcAw/SK4MsnmJG9Icm2STZm8UJ1YVY9rrf39eBUCLLufSnL7Iv2f\nXu5CAJZDVVWSdyT5tiTrlpizLsl7k3x/krcm+ZUk/y6Td8ZPVNUTWmtfWJ6KAYa3J9+F85yX5C8X\n6d8+cFkAy6qqHprkL5J8U5I3Jrk+k+/Fn0nyA1V1QmvtU9O53g9hL6y6gCHJmUkek+SM1toFc51V\ndX2SS5Ock+SskWoDGMP7W2tfHLsIgOVQVYcluS6TvxR7fJIbl5j6rCRbkvxGa+1l89ZfkckvqPxG\nkqfv22oB9o2O78I5H26tXbmv6wIYwSuTHJnkGa21P57rrKr/neQ9mexW+LFpt/dD2Aur8Q6G5yTZ\nmeSiBf3vTXJbklOniSQAAKvPgUneluSJrbV2P/OeM21fN79zuk3+40n+Y1V9474pEWCf29PvQoDV\n7m+S/H4mv3Q83weS7EryHfP6vB/CXlhVOxiq6tBMjkb6aGvt3vljrbVdVXVNJknj0UluGqFEgNFU\n1UFJ/rm19s9j1wKwr7TWvpzk9D2Y+oQkt7bWbltk7OokJyQ5NpMzdwFWlI7vwq8zvbMhrbWvDV4U\nwAhaa+ctMXRIJsfH3T2vz/sVBDKJAAAEQ0lEQVQh7IXVtoPhqGm72BdBktwybY9ZhloA9hdnVNXN\nSf4pyb1V9cmq+uGxiwIYS1UdkmRjvDMCzPmxqvrLJPdm8r54Q1X9+NhFAexDL5q2v5d4P4RZrLaA\n4ZBpe88S4zsXzANYC34gya8leVqSl2dy8f2fVNWzRq0KYDzeGQG+3g8ledO0/dkkG5K8rar+26hV\nAewDVfVDSX45k8uf3zjt9n4Ie2lVHZEEwNf5zUzOmrxy3rFxl1fV+5J8OslvVtU7W2v/b7QKAQAY\n0+8m+WSST7TW7pr2faCq/iCTi6HPrao3t9buHK1CgAFV1XOSXJjki0lOdiQczG61BQxz56Y9eInx\nhyyYB7BqtdZuSHLDIv2fraork2xJ8u1J/nKZSwMYm3dGgCSttc8n+fwi/V+pqj9K8oJMzhz/0+Wu\nDWBoVXVOkl9Ncm2Sp7XWvjJv2Psh7KXVdkTSzZncAH/kEuNzdzRsX55yAPZbX562h45aBcAIWmv/\nmOT2eGcEuD/eF4FVo6pek0m48L4k37sgXPB+CDNYVQFDa21nks8kObaqDpo/VlUHJDk+k9vgb1ls\nPcBqUVWHVtWzq+oHl5oybW9drpoA9jMfT3JkVX3rImNPSvJPSa5b3pIAlk9VfUNVba2qZy41Zdr6\n72dgRZvuXPjZJG9N8vTW2lL3LHg/hL2wqgKGqYuSPCjJCxf0n5rkoZmcswaw2n0tyW8nuaSqvnn+\nQFV9f5LvTnJNa+22MYoD2A9cNG1fMr+zqr43yeOS/MH0N9kAVqXW2n1JfiWTy5w3zR+rqkclOSXJ\nbUmuGaE8gEFU1VMz+a67NMnzW2v/cj/TvR/CXli3a9eusWsYVFV9Q5KPZvJ//Ndncq7ao5Oclck2\npifeT1IJsGpU1WlJLsnk+Lg3JfnbJI9NcnqSryZ5Smvt06MVCLAPTP9S7FHzut6V5LNJzp3Xd3lr\n7Z6qeneSpye5OMmfZ7L1/aVJdib57tba3y5P1QDD2tPvwiTfk+QDSXZk8sspN2eyc+GnkzwwySmt\ntQ8sR80A+0JV/UUm/x384iRfWWLa5XN/V+j9EPqtuoAhmRwNkuS8JM9IckQmXyCXJjm3tbZjxNIA\nltX0tzV+MckTMrms6m+TfDDJq1prN41ZG8C+UFXn5ev/Am0xR7fWvlhVByb5hUx2uj4iyd8n+bMk\nL2+tOUIOWLE6vwuPTfJLSZ6cZEOSv0vy4SS/7pdRgJWuqvbkLz6Pbq19cTrf+yF0WpUBAwAAAAAA\nsG+txjsYAAAAAACAfUzAAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABANwEDAAAAAADQTcAAAAAAAAB0\nEzAAAAAAAADdBAwAAAAAAEA3AQMAAAAAANBNwAAAAAAAAHQTMAAAAAAAAN0EDAAAAAAAQDcBAwAA\nAAAA0E3AAAAAAAAAdBMwAAAAAAAA3QQMAAAAAABAt/8Pc2W+u29snhgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 780, + "height": 203 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 146, - "width": 780 + }, + { + "metadata": { + "id": "tBuY2lSaIA0s", + "colab_type": "text" }, - "tags": [] - }, - "output_type": "display_data" + "cell_type": "markdown", + "source": [ + "The snaking-line is the sorted probabilities, blue bars denote defects, and empty space (or grey bars for the optimistic readers) denote non-defects. As the probability rises, we see more and more defects occur. On the right hand side, the plot suggests that as the posterior probability is large (line close to 1), then more defects are realized. This is good behaviour. Ideally, all the blue bars *should* be close to the right-hand side, and deviations from this reflect missed predictions. \n", + "\n", + "The black vertical line is the expected number of defects we should observe, given this model. This allows the user to see how the total number of events predicted by the model compares to the actual number of events in the data.\n", + "\n", + "It is much more informative to compare this to separation plots for other models. Below we compare our model (top) versus three others:\n", + "\n", + "1. the perfect model, which predicts the posterior probability to be equal 1 if a defect did occur.\n", + "2. a completely random model, which predicts random probabilities regardless of temperature.\n", + "3. a constant model: where $P(D = 1 \\; | \\; t) = c, \\;\\; \\forall t$. The best choice for $c$ is the observed frequency of defects, in this case 7/23. \n" + ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xm8bWVdP/DPTUJBBrXUSAqw8EuO\nAaYmDkg4pFmmWZbkUKalpYhDWiE4NJMjOfwEJYeyNMdyygEHHBANpbRv1wABNRUVsIsTen9/rHVi\nt93n3rPuOfcc9L7frxevxVnPsJ49sN2uz36eZ9PWrVsDAAAAAAAwxfdt9AAAAAAAAIDvPgIGAAAA\nAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJ\nBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEy220YPAACAXUtV/XSS\nX09yxyQ/nOQaST6b5IIkr0nysu7+4saNkKuqqjo/yQFJ7tTdp4/nTkxyQpK/6e4H7YRr7tT+v9et\n5fNXVadn+Nx4cHefttqxAQCwemYwAACwLqpqr6r6hyTvS/I7Sa5I8oYkL0rysSSHJXlmkvOq6hc3\nbKA7oKreP9783Mgx/GlVbd3IMWyQDyR5VpK3rqaTqrprVW2tqiN3Rv8AAPC9yAwGAAB2uqq6epK3\nJ7lVko9n+AXymXN1rpPkxCS/l+Qfq+pXuvuV6z3WqapqtyQ/meSDGzyUn9rg62+I7n5zkjevQVcL\nn7817B8AAL7nmMEAAMB6eEqGcOG8JHecDxeSpLu/1N2PzDCLYVOSZ1fV3us7zB1yswzLPG2YqtqU\n5JYbOYbvAbtkQAMAAKthBgMAADtVVV07ySPGP4/t7ou30+T4JF9J8sru/spcXwckeVySuybZP8m3\nklyY5E1JTuruz8zVPz3Dmu33TfKRJE9NclSSH0jyuSSvS/LEBdc5Msmjktw6yXWTXDZe59VJnt3d\nl4z1zs+wJ0CS3HFpiaLu3jTT182TPCbJ7TPsOZGxr7cmeVp3f3bu2qcleeD4OP9mHPM9klwvyZfH\ndo/v7v+eq7/UfmmZpP/dp2BbZto/KsOSVX+S5E5Jrp3kvzPsi3FCd1869/y8M8m/Z3g+X5TkDkle\n0d0Pnan340kem+TOGV6vy5N0kpcmeX53f2vBeA5P8uQkt80Q3Jw7Pg9PX2b8J2aZNf6rav8kT0hy\nt/H6X82w5NFTu/t9Y50HJXnxTLN3VlWSPLm7T9xO/+vyflzOzPvvoCQ3TvJHGQKvK5KcleQJ3f3h\nqjowyZ+O17pWks1J/ry7X7qgz72SPDLJfZIcnOTq49jek+QZ3X3WgjZ7j8/RLyXZL8kXk7xtHM+2\nxv9DGd4f90hyYJJvZni9X5nk6d391ZU8DwAAbBwzGAAA2NnunuSaST6T5J+2V7m7/6e7n9Td58ye\nr6rbJPlohrDiiiSvynBDdrckj05ydlXddJluD8hwY7mSvHYcx/XGvl4xd537JXlHhpueH0tySpJ/\nTnKdDDe+31VV+4zVX5TkX8Z//3SGtfqfNdPXnZN8KMkDklyc5CXj9TYleXiSD1fVDZYZ875Jzkhy\nZJI3juPeI8MG2W+tqquN9d6a/3uDfGkMFy3T73IOzLDM0y2SvCXJ3yfZK0Pw8O6q2nOZds9LcsMk\nL0vyvzNTqupOSf41ycMyBDQvTfKuDK/ByUnePC6dlZk2t07y3gzP/UUZgoWPJnni3GPcrvH98rEM\nr/EFY/szMoQdZ1TVQ8aqH8/wfC3d1P/H8e8PrKD/nf5+XKF7ZLgpf9F4vDTJ0UneXlU/keFx/+h4\nrbOT3CTJS8b35+xj+sEk70/yx0lukCEkeFmG/3Z/LckHqur+c22+P8N/A4/J8J79hySvz7Bs2IeS\n/NCiAY/Pzdlju+8bH/dbxvpPG6917R14LgAAWEdmMAAAsLP99Hh8T3d/e0c6qKrdk/xdhhuYT0/y\n2O7eOpZ9X4Yb0cckOS2Llwo6MclfdPdTZ/o8IsPN7LtX1UHdfd5M3U1J7tndb5mp//0Zbrr/YpIH\nZZjJ8JTxF/B3TvLJ7j527rpPS7J7kueMyz/N9vWWDDMFnpBh34l5x46P+beXnrdxRsA5GX6lfock\n7+zuv62q9yV5cJIsGMNK/W6S/5fk92ae2/0y/BL+5mP5X8y1uUGG8ODQ7v76zOPbO1cGFI/r7pNm\nyn44ww31o5M8PsOv+Jc8J8OshZcleeDM4/7BDL+g338lD2Tm/XLtJA/t7hfOlB2d4bl/blW9ZVyu\n68yquleSvZOcvL2ZH+v8flyJE5Pcobs/PPa1T5J/S/IjGZ63k7v7xLFsU4YQ4j4Z3sf/MtPPs5Pc\ndBzH3bp7y8z4HprkBUleUFVvX5pBk+S3Msz0+VySW3b3RTNt/iLJcfODHZ+jv09y/Qyv+bEzr/VS\nSHGXJCcl+c0JzwMAAOvMDAYAAHa2pV/oT7lhOu+eGX5h/7kMy74sLQOU8cbkozP8ivzwcYmdeRdk\nuNmfmXZnZFiOJRluoC85aDy+b67+N5P8doa9JL5jaZllPGMc20mzJ8e+XjT+eftl2n4jyaNmQ5nu\n/uTMuG6+sNWOuzxDGDD73H42w03nJPnlBW2uleSvZ8OF0YMzLC11xmy4MPb5mQyzIpLkd8Yb3kvh\nyU8l2ZrhNZ593BdnCGKulpVZer/0bLgw9vW2DDe3z05y6Ar7W67/9Xg/rsQrl8KFsa/LcuXG1Jsy\nzEhYKtuaYamvZJjJkCSpquvnytf4EbPhwtju/2V4zq6ZZHYWw6+Nx2fPhgujP8qwXNK8n8uwpNP5\nSY6be60vTfLQDO+DY2ZmCwEAcBUkYAAAYGfbazxu2WatbbvDeHzbeHP+/xhvQJ89/vnT8+UZbnRv\nXXB+aY38fWe7G4+nzi9f1N2f7+4PdfeXVzLo7n5Fdz+zuy9YUPzpBdee9eFl1qBfNOa1cPoy13vv\neLzZ+Mvzee9ccO6o8fjGZa51RoZlfPZLcsh4bumX/ud296cXtPmXDDedV+JO4/E9iwq7+9e6+1bd\n/foV9jdvPd+PK/Edm6ZnCD+S5AMLxrhUNnvz/rYZApxPd/fHlrnO28bjTyf/OxNhKaR593zl7v5G\nktMX9LP0/viX7r5iQbtPZZiBsXuSI5YZCwAAVwGWSAIAYGe7bDyu5pfIS7MKtjUL4vwMN6l/dEHZ\nhcu0WdpkePbG+UMy3My+b5L7VNWHkrw9wy/Cz5iyzNN4A/YBGX7xfaMM6+xfY67apvl2OzDmtfBf\ny5xfuum9e4bNiL8wV/75BW0OHI8/U1XXW6bfpRvLByf5RK6c6bIoXEh3X15VF2eYGbE9S9df2Nca\nWM/340os2m9jqa9Fm6ovus5KH1Ny5WO6dpKlvTmWe64/teDcgePx0Kp65jLtloLJgzNsmg0AwFWQ\ngAEAgJ1t6QbjT6yij6WbmIt+Yb/ka+NxjwVl3/Er8+V095njBrSPy7BO/a3Hf/4gyaeq6ve7+++3\n18+49M8rMgQVybB3wruSfDnDL/H3H/tfzorHvI0x/HiGvRPmndndfzt3brkZJt+Y+ffd58q+vugX\n6Lny5vBRufLX6stZCp6WXuOvLVcxyfxSTMtZCnFW/RwuY93ejyu06DVYstJZHzvymPZcUDZv0Wu2\n9P64ZRbvUTHLEkkAAFdhAgYAAHa292VYk/72VbXHMsvw/B9Vtfu4vMqSpZvfey6qP1f2Pzs2zCt1\n94VJHpnkkWPYcLcMa80fmuQVVfX17n7tdrr5+QzhwjeT3KO7ZzfTTVUdlW0HDGth/1y538Gsv0ky\nHzDMz6xYMrtcz6Jfwy+y9Bo8bFy7fyWWblBffRt1tvX6z1p6v1x7hfWnWtf34zrZkcc0Gyos97ot\n6m+p/Z929x+sbHgAAFwVCRgAANjZ3pTkkgwbAj8oyfO2Vbmqrpbkg1X1iSSPGTcaXtr89obbaLpU\ntprNpL9Dd/9bhvXgT6qqP0nyxAyzArYXMNxxPL5lPlwYbeuxrInuPj3LL8E0b9FSPsmVSxJdumAz\n5+V8MsktttHnIp8djz+0qLCq9k1ynRX2tfR+ucE2a+24DXs/7kQ78pi+lGGGy+4ZXrfzt9Fm1ifH\n45T3BwAAV0E2eQYAYKfq7i1JThr//JOqutF2mvxJkp9Mcrtc+Uvn08fjnavqO34pXVU/nOTm45/v\n2tGxVtV+VXVMVd12mSpLv/pfdON6/kb+0o95vmND6HFvhocu025VxqWZdsRRVTW/BFJy5Sa7/z6h\nr3eMx19aNJ6q2lRV9xtftyVLmyIfvMy+DT874fpLG08fWVXfv+D6r6iqK6rqjxa0Xcnzd/p43Knv\nx3V2RobZNvtV1WHzhePreNfxz9OTpLu/lWHpr2T473W+zR5JjlxwraX3x92r6pqLBlNVv1hVOz2E\nAwBgdQQMAACshz/LcFPxWkneXVW/MF+hqq5bVS9I8vgMy7X8end/ZSz+pyT/meQHk/zpXLvvT/LX\nGb7bvrm7exXjvHmSlyZ5cVXtt6D8V8bj2TPnlsb4o3M30z8xHo+cvYlaVXsmeWGuXF7muotuUk/0\nlZl/P2AH+7hWkqfNnqiqGyT5vfHPv5vQ18szbP5cSf5wrs9NSU4Y+3vN0vlxpsgnMryOT55rc/1x\nbLPLZm3LmzL8Sv6HFvR1myT3SvLtDHtkLFl6Dlfy/K3X+3HddPfFGd77SfKs8X066zEZ9lH5fP7v\ne+GV4/GRVfW/G3CPr/OfZ/ESSW9O8vEMS1j91ThrKTNtfyPJq5O8a5nQCwCAqwhLJAEAsNN197eq\n6h4Zlkd6YJLXVtV5Sd6fYfmkGyQ5Osk1k1yY5F7d/ZG59r+a5F+SPLqq7pzkrAybzd4mw03hzUke\nsspxvqWqXp7k/kk+WVXvSHJRhiVgDh3/+UKSJ800+9cMN6sPTPKvVfWFDBtCvyzJHyX5kST/VlVv\ny3Cz9egkn0vyM+OY903y1qp6TXc/cwfH/cWqOn8cw7ur6t+SvK67XzChmxcmeWBV3TXD67Jnkntk\nWJboQ2P5SsdzaVXdL8nrkzy1qu6b5AMZ1um/bZKDk3wxV87iWHJskn9O8ttVdXiG1/jaGWYv/HOG\nGS23WMH1v1lVv5bh/fLEqjo6yUeS/PDY19WSPLq7PznT7KwkN03y7Kr6lSTndffDl+l/Xd6PG+Ax\nSQ7LMBthc1W9J8Omz7fI8N7/nyS/OhP8JcnJGf6b/okM7/M3ZdjY+XZJrpfkWRk2TP9f3f3t8Tl+\nW5KHJTm6qk7PMHvk8PF6X03ym3N7sQAAcBVjBgMAAOuiu7/W3Q9O8lMZbkp+NcMN7IdmuOn8/iQP\nT1Kz4cJM+49kWDrprzNsSPyrSX4uQ0BxYpKf6u5Pr8FQfz3Jb4zjueX47/fLEDI8PcktunvzzLjO\nzbAh9Gcy3GT98STfGG/C3jnDr92vnSG0ODzJKUlu191fSPI7ST6d5NZJbrzKcT8gw6/Cr5/hJvE3\nJ7b/QobX5uwk98wwW2NLkmcm+ZkJ+y8kSbr7nRluFL8gyV4ZbkL/SpJvJXlGkpt390fn2rw1Q/Dy\ntgyzHx489vHn4+Nb8Ri6+0MZZqS8IMON7gcnuX2Stye5c3c/a67JH41luyX56QwhxLb6X6/347rp\n7ksyBAN/kCEE+7kMj+taGZ7Hn+zud8y12ZLkDkmem2GGya9l2OD87CS3yjJ7UIwzVm6R5K8yvFd/\nLckxSfbOEGb95Ph+AADgKmzT1q1bN3oMAADABqmq0zLc/H9yd5+4saMBAAC+m5jBAAAAAAAATCZg\nAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyWzyDAAAAAAATGYGAwAAAAAAMJmAAQAAAAAAmGy3jR7A\nRrv00kutEQUAAAAAAEn23XffTSutawYDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAm\nEzAAAAAAAACTCRgASJJs3rw5mzdv3uhhAGwIn4HArs7nILAr8xkIO07AAAAAAAAATLbbWnVUVbsn\neVqSxyZ5d3cfOaHtbZMcn+Q2SfZI8p9JXpjk5O7eOlf3xkmekuSOSfZJ8qkkL0vyZ939jdU/EgAA\nAAAAYHvWJGCoqkryt0lulGTTxLZHJXlTkguTnJjkS0l+Icmzk/xYkmNn6t4kyfuSfDXJSUkuSnLk\n2O6wJPdazeMAAAAAAABWZtUBQ1VdO8lHkmxOcssk/zGxi+cm+VqS23f3Z8dzL62q1yZ5ZFW9uLs/\nOp5/epK9ktyuu88Zz728qrYkeVRV/Xx3v341jwcAAAAAANi+tdiDYfckL0lym+7uKQ2r6tZJKsk/\nzIQLS07OMBvimLHufknunOQdM+HCbN0k+fWJYwcAAAAAAHbAqmcwdPfnkvzODja/1Xh8/4KyD47H\nW4/HW2YIHL6jbnd/sqq+NFN31ewcD+yqfP4BuzKfgcCuzucgsCvzGciu5uCDD151H2u2yfMOOnA8\nXjRf0N1fqapLktxwe3VHFyT5yararbuvWO3AfuzHfmy1XUx2l1P+dd2veVXz1occutFDAGAD7er/\nW+h/B9nV7eqfAbs6n4FslHve854544wzkiRHHHFE3vCGN2zwiGDX5HsAu7rn3WmfjR7CDtnogGHv\n8Xj5MuVbZuqspO5SvS+vfmgAAAAAALDzrcVsgo2wFnswAAAAAAAAu5iNDhguG4/XXKZ8r5k6K6mb\nJF9Zg3EBAAAAAADbsNEBw7njcf/5gqraN8m+STZvr+7ogCTnrcX+CwAAAAAAwLZtdMDwvvF4xIKy\n24/H947HM5NcsahuVd00ybVm6gIAAAAAADvRugYMVXVIVR209Hd3n53kI0nuW1X7z9TblOTRSb6Z\n5G/GuhcneX2SI6vq0LmuHzMeT9mJwwcAAAAAAEa7rbaDqrpxkhvPnb5uVf3SzN9v7O7Lk3wiSSc5\nZKbs4UnemeTdVfXMJJckuV+So5Ic393/NVP3cUnukOQtVXVSks8kuVuS+yc5tbvfvdrHAwAAAAAA\nbN+qA4Ykv5zkhLlzN07yypm/D0py/qLG3f3BqrpDkqeM/1w9QxDxG9394rm651bVbZP8cZLHJ9k7\nyX8leWySZ676kQAAAAAAACuy6oChu09McuIK625a5vxZSe6+wj42Zwg1AAAAAACADbLRmzwDAAAA\nAADfhQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAm\nEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAA\nAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAA\nMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIG\nAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAA\nAIDJdluLTqrqOklOSHKvJPsluTjJG5Mc392f3Ua7ByV58Xa6f1d3HznWPz/JAduoe2h3n73ScQMA\nAAAAADtm1QFDVe2R5PQkhyQ5OclZSQ5O8tgkR1XV4d395WWavzPJfZcp2z/JM5L8+9z5LyR5+DJt\nzlv5yAEAAAAAgB21FjMYjk1ysySP6O7nLp2sqo8meU2S45Mct6hhd38qyacWlVXVa5N8McmT5oou\n7+5XrcG4AQAAAACAHbQWezA8IMmWJKfOnX9dkouSHFNVm6Z0WFW/mOQXkvx+d39xDcYIAAAAAACs\noVXNYKiqfTIsjfSe7v76bFl3b62qM5PcO8lBSc5dYZ9XT/KsJGcmedF26u6Z5KvdvXUHhg8AAAAA\nABtu8+bN637Ngw8+eNV9rHYGw9KGyxctU37BeLzhhD5/K8mPJHn8MsHBHlX17Kr6coaZE5dX1Wur\n6pAJ1wAAAAAAAFZhtXsw7D0eL1+mfMtcvW0aZy88Icm7u/tdy1S7XpIDkzwsyTeS3CnJI5IcWVW3\n6u7/XMm1AAAAAADgqmAtZhNshLXY5HktPSjJDZL83jLlD0zyre5+78y511bVOUlemOTJSX51p44Q\nAAAAAABYdcBw2Xi85jLle83V256HJPlikn9aVLiNWQ0vSvKcJEev8DoAAAAAAMAqrHYPhvOSbE2y\n/zLlS3s0bHeHiqo6MMktk/xzd39zyiC6+9tJLk6yz5R2AAAAAADAjllVwNDdW5J8LMlhVXWN2bKq\nulqS2ya5sLsvWNR+zl3H4zsWFVbVDavqN6vqpgvK9sqwtNJKrgMAAAAAAKzSamcwJMmpSfbMsOny\nrGMybMh8ytKJqjqkqg5app/Dx+O/LVN+/bGvZ1TVprmyJyTZlOTVE8YNAAAAAADsoLXY5Pn5Se6f\n5KSqOiDJWUlukuS4JOckOWmm7ieSdJJDFvRzo/F4/qKLdPf7q+q0DBtBn15V/5Dk6xlmPvzSeK0/\nXt1DAQAAAAAAVmLVMxjG/RLukmGT5fskOS3JAzPMNjiyuy9fYVfXHo9f2Uadh4z/7J3kL5OcnOSm\nSZ6W5IjuXulm0gAAAAAAwCqsxQyGjDf2jxv/2Va9+aWNZstusYLrfCvDkkynTh0jAAAAAACwdtZi\nDwYAAAAAAGAXI2AAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMA\nAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAA\nwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkY\nAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAA\nAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhM\nwAAAAAAAAEy221p0UlXXSXJCknsl2S/JxUnemOT47v7sdtpu3U731+7uS2bq3zjJU5LcMck+ST6V\n5GVJ/qy7v7HDDwIAAAAAAFixVQcMVbVHktOTHJLk5CRnJTk4yWOTHFVVh3f3l7fTzcczBBSLbJm5\n1k2SvC/JV5OclOSiJEcmOTHJYRkCDgAAAAAAYCdbixkMxya5WZJHdPdzl05W1UeTvCbJ8UmO204f\nX+juV63gWk9PsleS23X3OeO5l1fVliSPqqqf7+7XT34EAAAAAADAJGuxB8MDMswyOHXu/OsyzDA4\npqo2rfYiVbVfkjsnecdMuLDk5PH466u9DgAAAAAAsH2rmsFQVftkWBrpPd399dmy7t5aVWcmuXeS\ng5Kcu4L+NiXZs7u3LCi+ZZJNSd4/X9Ddn6yqLyW59fRHAQAAAAAAG2fz5s3rfs2DDz541X2sdgbD\nAePxomXKLxiPN9xOPz9YVS9J8pUk/1NVl1XVS6rqBjN1DlzBtX6kqtZk42oAAAAAAGB5q70Zv/d4\nvHyZ8i1z9ZZz4yQfSXLMOKZ7Zlh66ciqOqy7L554re1tKg0AAAAAAFcJazGbYCNcFX7t/7MZNnn+\n8My5V1XVhUn+MMljkjxxQ0YGAAAAAAAstNolki4bj9dcpnyvuXrfobvfPBcuLHnueDx64rW+sty1\nAAAAAACAtbHagOG8JFuT7L9M+dIeDTuyQ8UXxr73Gf9e2iR6W9c6r7uv2IFrAQAAAAAAE6wqYOju\nLUk+luSwqrrGbFlVXS3JbZNc2N0XLGpfVTerqodV1Y8uKD44yaZcuVH0mUmuSHLEgn5umuRaSd67\no48FAAAAAABYudXOYEiSU5PsmeRhc+ePSXK9JKcsnaiqQ6rqoJk6N03y/CRPWtDv0r4Lr06ScaPn\n12fY+PnQubqPGY+nBAAAAAAA2OnWYpPn5ye5f5KTquqAJGcluUmS45Kck+SkmbqfSNJJDhn/fmWS\n30jym1X1g0nemORqSe6dYe+FtyV54Uz7xyW5Q5K3VNVJST6T5G7j9U/t7nevweMBAAAAAAC2Y9Uz\nGLr7m0nukuQ5Se6T5LQkD8wwm+DI7r58G22vSHLPDMHBjZI8O8lfJbnueO7us3sqdPe5GZZdOj3J\n4zPMnjgsyWPznTMoAAAAAACAnWQtZjCkuy/LMGPhuO3U27Tg3NcyzHI46TtbLOxjc5Jf3oFhAgAA\nAAAAa2Qt9mAAAAAAAAB2MQIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAA\nAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhM\nwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAA\nAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADA\nZAIGAAAAAABgMgEDAAAAAAAw2aatW7du9Bg21KWXXrrwCbjWta613kMBAAAAAIB1cckllyw8v+++\n+25aaR9mMAAAAAAAAJPtttEDuKr60pe+tO7XvMsp/7ru17yqeetDDt3oIQCwgXb1/y30v4Ps6nb1\nz4Bdnc9ANso973nPnHHGGUmSI444Im94wxs2eESwa/I9gF3d2x56+EYPYYeYwQAAAAAAAEwmYAAA\nAAAAACYTMAAAAAAAAJOtyR4MVXWdJCckuVeS/ZJcnOSNSY7v7s+uoP3txva3SnKNJBcm+cckT+3u\n/5mpd36SA7bR1aHdffaOPQoAAAAAAGClVh0wVNUeSU5PckiSk5OcleTgJI9NclRVHd7dX95G+/sn\neVmSzhAyXJbk55I8Psntq+p23f3tmSZfSPLwZbo7b3WPBgAAAAAAWIm1mMFwbJKbJXlEdz936WRV\nfTTJa5Icn+S4RQ2r6upJnpdd+jmcAAAOf0lEQVRhxsKtu/vSsehFVfWaDDMi7pZhNsSSy7v7VWsw\nbgAAAAAAYAetxR4MD0iyJcmpc+dfl+SiJMdU1aZl2v5Qklcn+dOZcGHJUqhw8zUYIwAAAAAAsIZW\nNYOhqvbJsDTSe7r767Nl3b21qs5Mcu8kByU5d759d38qyYOW6X7f8XjZNq6/Z5KvdvfW6aMHAAAA\nAICNt3nz5nW/5sEHH7zqPlY7g2Fpw+WLlim/YDzecEqnVbV7kt9IcnmS184V71FVz66qL2eYOXF5\nVb22qg6Zcg0AAAAAAGDHrXYPhr3H4+XLlG+Zq7ddVfV9SV6Y5CeSPKa7PzNX5XpJDkzysCTfSHKn\nJI9IcmRV3aq7/3Ol1wIAAAAAgI22FrMJNsJabPK8ZqpqjyR/m2Fz57/u7qfPVXlgkm9193tnzr22\nqs7JEEo8OcmvrstgAQAAAABgF7bagGFpf4RrLlO+11y9ZVXVdZO8Psltkjy1u580X6e737VM8xcl\neU6So7d3HQAAAAAAYPVWuwfDeUm2Jtl/mfKlPRq2uUNFVV0/yRlJbpnkwYvChW3p7m8nuTjJPlPa\nAQAAAAAAO2ZVAUN3b0nysSSHVdU1Zsuq6mpJbpvkwu6+YFH7sd4+Sd6c5EeT/Hx3n7ZMvRtW1W9W\n1U0XlO2V5Aa5clNpAAAAAABgJ1rtDIYkOTXJnhk2XZ51TIYNmU9ZOlFVh1TVQXP1npXkJ5P8ane/\naRvXuf7Y1zOqatNc2ROSbEry6unDBwAAAAAAplqLTZ6fn+T+SU6qqgOSnJXkJkmOS3JOkpNm6n4i\nSSc5JEmq6uYZNm7+eJKrVdUvLej/C939ru5+f1WdluRBSU6vqn9I8vUkd03yS+O1/ngNHg8AAAAA\nALAdqw4YuvubVXWXJCcmuU+S303y+QyzDU7o7su30fywDDMPbpzklcvUeVeSI8d/f0iS9yZ5RJK/\nzDAD47wkT0vyF939ldU8FgAAAAAAYGXWYgZDuvuyDDMWjttOvU1zf5+W5LQJ1/lWhiWZTp08SAAA\nAAAAYM2sxR4MAAAAAADALkbAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAA\nAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACT\nCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAA\nAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAA\nmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgED\nAAAAAAAwmYABAAAAAACYbLe16KSqrpPkhCT3SrJfkouTvDHJ8d392RW0v22S45PcJskeSf4zyQuT\nnNzdW+fq3jjJU5LcMck+ST6V5GVJ/qy7v7EWjwcAAAAAANi2VQcMVbVHktOTHJLk5CRnJTk4yWOT\nHFVVh3f3l7fR/qgkb0pyYZITk3wpyS8keXaSH0ty7EzdmyR5X5KvJjkpyUVJjhzbHZYh4AAAAAAA\nAHaytZjBcGySmyV5RHc/d+lkVX00yWsyzEw4bhvtn5vka0luPzPb4aVV9dokj6yqF3f3R8fzT0+y\nV5Lbdfc547mXV9WWJI+qqp/v7tevwWMCAAAAAAC2YdPWrVu3X2sbquoTSX4kyQ9099dnzm9KckGS\nqye5/vxSR2OdWyf5QJJTuvu35sqOTvIvSU7q7sdV1X5JPp3k7d1957m6P55kc5JXdfd9p4z/0ksv\nXd0TAAAAAAAA3yP23XffTSutu6pNnqtqnwxLI31kNlxIkjFQODPJdZMctEwXtxqP719Q9sHxeOvx\neMskmxbV7e5PZlha6dbzZQAAAAAAwNpbVcCQ5IDxeNEy5ReMxxsuU37gcu27+ytJLplpu2zdmWv9\nSFWtycbVAAAAAADA8lYbMOw9Hi9fpnzLXL0dab/3hLrbuhYAAAAAALBGVhswAAAAAAAAu6DVBgyX\njcdrLlO+11y9HWl/2YS6SfKVZcoBAAAAAIA1str9Cs5LsjXJ/suUL+3RsHmZ8nPH43e0r6p9k+yb\n5CPbqztzrfO6+4ptDXjelB2xAQAAAACAwapmMHT3liQfS3JYVV1jtqyqrpbktkku7O4LFrVP8r7x\neMSCstuPx/eOxzOTXLGoblXdNMm1ZuoCAAAAAAA70VrswXBqkj2TPGzu/DFJrpfklKUTVXVIVR20\n9Hd3n51hhsJ9q2r/mXqbkjw6yTeT/M1Y9+Ikr09yZFUdOnetx4zHUwIAAAAAAOx0q10iKUmen+T+\nSU6qqgOSnJXkJkmOS3JOkpNm6n4iSSc5ZObcw5O8M8m7q+qZSS5Jcr8kRyU5vrv/a6bu45LcIclb\nquqkJJ9Jcrfx+qd297vX4PEAAAAAAADbseoZDN39zSR3SfKcJPdJclqSB2aYTXBkd1++nfYfzBAa\n/EeSpyR5QZIfSvIb3f20ubrnZlh26fQkj88we+KwJI/Nd86gAAAAAAAAdpJNW7du3egxAAAAAAAA\n32XWYg8GAAAAAABgFyNgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABg\nMgEDAAAAAAAw2W4bPYCNVlXXSXJCknsl2S/JxUnemOT47v7sRo4NYGerqtOSPHAbVR7d3c9cp+EA\n7HRVtXuSpyV5bJJ3d/eRC+rskeSJSe6X5IAklyV5R4bvh/+5fqMFWFvb+wysqhMz/P/j5Tyru4/d\naQME2Emq6rpJnpTkF5NcP8klSd6b5Knd/ZG5ur4LwgS7dMAwfmCcnuSQJCcnOSvJwRm+bB1VVYd3\n95c3boQA6+bhSb6w4PzZ6z0QgJ2lqirJ3ya5UZJNy9TZlOR1SY5O8uIkT07ywxm+H76/qm7V3f+1\nPiMGWDsr+QyccWKSf19wfvMaDwtgp6uq6yX5cJIfSPK8JB/N8Fn4yCR3raojuvtfx7q+C8JEu3TA\nkOTYJDdL8ojufu7Syar6aJLXJDk+yXEbNDaA9fSm7j5/owcBsLNU1bWTfCTDzbFbJvmPZareL8md\nk/xldz9+pv3bM/wY5S+T3HvnjhZgbU34DFzyru4+fWePC2CdPC3J/knu092vXjpZVR9K8toMsxV+\neTztuyBMtKvvwfCAJFuSnDp3/nVJLkpyzJhcAgDw3W33JC9Jcpvu7m3Ue8B4fPbsyXHq/PuS/FxV\nXWvnDBFgp1npZyDA96LPJPm7DD8mnvXmJFuT3HzmnO+CMNEuO4OhqvbJsDTSe7r767Nl3b21qs7M\nkEgelOTcDRgiwLqrqmskuaK7r9josQCspe7+XJLfWUHVWyW5sLsvWlD2wSRHJDkswzq8AN8VJnwG\n/h/jng3p7m+s+aAA1kl3n7hM0d4Zloy7bOac74Iw0a48g+GA8bjoAyNJLhiPN1yHsQBstEdU1XlJ\nvprk61X1gaq6+0YPCmA9VdXeSa4T3w8Bfrmq/j3J1zN8Nzynqn59owcFsMZ+ezy+PPFdEHbUrhww\n7D0eL1+mfMtcPYDvZXdN8idJ7pHkDzNseP9PVXW/DR0VwPry/RBg8LNJnj8eH5Vk3yQvqarf39BR\nAayRqvrZJE/KsPnz88bTvgvCDthll0gCIEnyVxnWojx9Zrm4N1bV65OcneSvquofuvvbGzZCAADW\ny8uSfCDJ+7v70vHcm6vqFRk2hj6hql7Q3Zds2AgBVqmqHpDklCTnJ7mnZeBgdXblgGFpfbVrLlO+\n11w9gO853X1OknMWnP94VZ2e5M5JfiLJv6/z0AA2gu+HwC6tuz+Z5JMLzn++ql6V5LcyrD/+z+s9\nNoC1UFXHJ3lKkrOS3KO7Pz9T7Lsg7IBdeYmk8zLsFL//MuVLezRsXp/hAFzlfG487rOhowBYJ939\nP0m+EN8PARbx3RD4rlZVz8wQLrw+yR3nwgXfBWEH7bIBQ3dvSfKxJIdV1TVmy6rqaklum2HX+AsW\ntQf4bldV+1TV/avqbstVGY8XrteYAK4C3pdk/6r60QVlt0/y1SQfWd8hAex8VfX9VfUrVXXf5aqM\nR/8fGfiuM85ceFSSFye5d3cvt8+C74Iw0S4bMIxOTbJnkofNnT8myfUyrMcG8L3qG0n+OslpVfWD\nswVVdXSSn0pyZndftBGDA9ggp47HR8+erKo7Jjk8ySvGX7cBfE/p7m8meXKGzZwPni2rqhsnuVeS\ni5KcuQHDA9hhVXWnDJ9vr0nykO7+1jaq+y4IE23aunXrRo9hw1TV9yd5T4YPiOdkWH/tJkmOyzDd\n6TbbSDQBvutV1QOTnJZh2bjnJ/nvJIcm+Z0kX0tyZHefvWEDBFgj482xG8+cemWSjyc5YebcG7v7\n8qr6xyT3TvKiJO/IMB3+sUm2JPmp7v7v9Rk1wNpY6Wdgkp9O8uYkX8rwQ5TzMsxc+L0kV09yr+5+\n83qMGWCtVNWHM/z/3N9N8vllqr1x6R6g74IwzS4dMCTDEiFJTkxynyT7ZfigeU2SE7r7Sxs4NIB1\nMf6a44lJbpVhM6v/TvLWJH/c3edu5NgA1kpVnZj/eyNtkYO6+/yq2j3JEzLMaj0wyZeTvCXJH3a3\nZeOA7zoTPwMPS/JHSe6QZN8kX0zyriR/6ocnwHejqlrJzc+Duvv8sb7vgjDBLh8wAAAAAAAA0+3q\nezAAAAAAAAA7QMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYA\nAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAA\ngMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMNn/B3gi1TN76MsKAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" + "metadata": { + "id": "RbX1nHrBIA0s", + "colab_type": "code", + "outputId": "d705df41-b68e-4f98-983a-df76934e9ffc", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 618 + } + }, + "cell_type": "code", + "source": [ + "plt.figure(figsize(11., 2))\n", + "\n", + "# Our temperature-dependent model\n", + "separation_plot(posterior_probability_, D_)\n", + "plt.title(\"Temperature-dependent model\")\n", + "\n", + "# Perfect model\n", + "# i.e. the probability of defect is equal to if a defect occurred or not.\n", + "p_ = D_\n", + "separation_plot(p_, D_)\n", + "plt.title(\"Perfect model\")\n", + "\n", + "# random predictions\n", + "p_ = np.random.rand(23)\n", + "separation_plot(p_, D_)\n", + "plt.title(\"Random model\")\n", + "\n", + "# constant model\n", + "constant_prob_ = 7./23 * np.ones(23)\n", + "separation_plot(constant_prob_, D_)\n", + "plt.title(\"Constant-prediction model\");" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [] + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xm4ZEV9P/73KAooixI3vqKAOn4m\noCYsggEX5Cducd/QiEtcogEjiEpcghCXaAwuUVwSQYkxGtS4JrjgggsgBFEkRstRQCCuOAgIiiDz\n++OcK23T9849c+/cdriv1/Pw1O1TVaeqT59ueurTVbVi7dq1AQAAAAAAGOIG0+4AAAAAAACw8RFg\nAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAA\nAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABhNgAAAAAAAABttk2h0AAGDp\nVdWRSY5Yj6o7ttbOW9zecH1WVT9Kcuskf9Ja+8q0+zMtVbUqybeSXNla22za/bk+qarXJPnrJP/U\nWnv2As/1lSR7JnlCa+3fF6N/AADXZwIMAADL01eS/OOE409OcvMkJyb53wn5l27ITi03VXVwkjcm\n2ba19qNp94frt6p6eJKPZJkHewAAWDwCDAAAy1Br7ZNJPjl+vKoemC7A8N7W2nFL3a9l6O7T7gDL\nivsNAIBFZQ8GAACYHgO+LCX3GwAAi8oMBgAA1ktV3TDJ05I8KcndkmyW5MdJPpvk1a211WPln53k\nbUn+KcmLk7w6yUOT/EGSC5Mcl+TvWmvXVNWBSQ5Mcscklyf5RJLntdYumnC+9yX5iySvSPLIJNsm\nuSTJ55L8TWvtuxP6fvMkz0vy8CR3SrI2yffTLR/z2tbaJWPl/z3J/kn+qu/r3yfZIcnerbUz+jJb\nJzkkycOS3Lm/HmuSnJ7k9a21z4+cb2bN+Bk/rKqkX/d9XevAT8ofuR7/keTwJMck2aW/Bq8fqbt7\nkkOT3DvJrdIte3VWkn9urR0/3tZ8VNWeSY5Mco8kN07yvSTvyuRluEbr3S/Jc5L8SbqZMxenu15v\naq2dOFZ2Zg+DHya5bV/vmenukauTnJnuvvv0hHbW9179jyRPSPKiJAckuX2SK5OcmuSlrbUzJ7T1\npCTPTbJzkl8n+XqSf+ivyWzXYYP2b6T8jFP7++3FrbXXzNavvu7MHhrbJtkjyUuT7JTkqnSv1V+3\n1s6qqjume0/vk2SrJN9J936edP9uleTgJI9K9/rduH++X0j3Xvn6hDo3S3ePPTLJbZJclOTTSf5m\nHf2/bZIXJHlQku3TvSbfS3J8kje21q6cqz4AAHMzgwEAgMGq6kZJ/jPJPyf5o3QDoe9NN6D+50m+\nUVX7zlL9RukGBvdK8vEkJ6UbZHxFkhdV1av6v/873YD/pukGT2cb/L5Jks+kCwCcluRfklzWPz69\nqlaO9f32Sb6abhD+ZukGaT+eZIskL0nytX5QcpLbJ3lPkm8nOTZdIGNmwPQr6QZA/1+SD/f530ry\nkCSfraonjpzny0mOHnn8jnSD8W2WdodYkeQDSW6YbpD/OzMZVfXUvp9PSHJuuqDO6Un2TvLvVfVP\nQxurqnsl+WKSByY5L8m7k3wzycuSvH2Oeoen2+vjIUm+0fflf5I8OMmnq+ols1S9cZKjkrwmXVDo\nX/v29knyyap67Fg7C7lXk+5aPifdoP37073mD0zy+arabqytw/rnv1t/Td6b5Bfp7uPR13+p+/eN\ndPfXFf3j4/vH/z3Hecc9qu/XeUk+mC7w94B09/YfJjkl3cD/h5OcneSuSd7X3x+jz/c26e65l6cL\nXJyY5N+S/CRdgOX0qnrMWJ3N0gUMD073Pj0+3TW7e3+uW0zqcFXtki7Ac0i6IOL7+va2S3f/nNy/\ndwEAWE9mMAAAsD5emm4Q85tJ7je6QXFVHZLkDUneW1V3aq39Yqzu49IN6j+ttXZNX+dF6X79fFiS\nnyXZqbX24z5vZhBx36q6XWvtgrHzPThdYOFOrbUr+jqbpttjYp90sw0eNVL+3Ul2TDfY+NTW2q/7\nOpsneWeSx6cb7P3TCc/76Ule0FobHzh/epJVSb6bZPfRGRBVdVC6YMLrqup9rbVrWmv/WVWfSTcw\nnCQvW8RNnvdJF8D5s9ba2pF+VLrZI0nyyNbaR0bydu7r/EVVfaa19oEB7R2dbtD/2CTPnGmzqm6d\nLpByncHfqrpvugHmXyS5f2vt1JG8e6Z77V7Z9+X0seo3SzdYf7fW2vdG6v1dupkxb6qqj438Mn0h\n9+oD0gU9VrbWLu3rbJFuYH5VugHxV/fHt+2fU5I8pbX2ryPt7JVuYHuSDd6/1topSU6pqsenC8i9\ncT02eX5Zkr1aa9/o27l5uo3gb5PkS0mOmpkNUVU3SPLRdMGjp/b5M96apNIFDB7SWvvlyPN9brrA\nxzFV9fnW2s/6rAPTzcb5vyR3b639sC+/oi9/4Hhnq2qTdAGXW6QLSB02cm9uky5Ict90r99BA68F\nAAA9MxgAABik/8X1If3DZ48PjLfW3pju18y3TvKYXNemSZ4/E1zovb9Pt07yupngQn++/04yE1TY\necL5bpTk4JngQl/nynSzCZLkT6vqpn3f90hynyQ/T/IXM8GFvs4vk/xlul95P7iqdpjQ1op0Sw+N\nO6Wv+1fjyyv15a9Jdz3uPKHuYtsm3WDv2rHjB6cLBBw3GlxIktbaN3Pt9Zr3YGtV3SXdkj7XpFtu\n57dt9q/h36SbSTHuhX3696PBhb7el9MNGq/IhIHj/nyvHQ0u9F6Z7lf1t0lyr75/C71Xt+jrXTpS\n5xdJPtQ/vNtI2Uenu7fPHg0u9HVOSRfY+h1L3L+Feu9McKFv5+JcGzS5Kt0yUDN516SbyZCMvGer\n6nbpliVLkgNHgwt9vTelm/WzdbpA34w/69PXzwQX+vJr0wUlL5vQ30elW/7sO+mWcRq9N9ckeVb/\n8M+r6iazP20AAOYiwAAAwFC7pRsAvDTJybOU+a8+ve+EvHNGfpk848cjf38p1zWTP2k5kx9PWgs/\n3ZIx16QbVP/D/tjMUjNfmvBr8LTWfp5rn9Okvn+5tXb1hHqntdbe3lr75IS8K9OtF590121Du7S1\n9tUJx2ee+wmz1Jt5zfauqhvPs63d+/RbrbWfTsiftB/CJun2f5hPXya9BhPr9QGmr/UP/7hPF3qv\nXtZaO2vC8R/06ejrOXMtvjhLO9e5Fkvcv4Uan0mSXPu+PKW19ptZ8kbfs/dM92/Q77XWZlsO7LN9\n+ifJb4MwM4GS61zb1tqvJh3Ptff7p8aCmTP1VidZnWTzdPuZAACwHiyRBADAUDv06Yokb+g3ix23\nqk9XTsi7cMKx0cHJi+bIn/QDmYmb57bWfl1VF6XbyHjb/vAOfXqnqnrjpHrp9lBIJvf9J7PUSVXt\nlm6WwJ59mzebUGzFbPUX0aSB/uTa5/5nVXXvWcqsTfdvhB0ysnfDHGb2qvi/SZmttYur6rIkW44c\nvkWSm/Z/P6eqLr1uzWzRp7evqhuPzjTpzbZh8szA+vjrvb736vhyXDMm3Y9zXot0+0WMW8r+LdRc\n79v5vmd37NNz52jnvD69fZ/eKt0spWT9ru0ec7zXN+vTlUk+P0sZAADmIMAAAMBQM4O/W6YbUJ/L\npBkH15kBMGZ8aZ91uXyOvJmB6Zlf5M/0/Q9z7ayG2Uzq+3VmPSRJVe2fbvPnTdIN8H8mXTDiqr7I\nM9Otfb8UrtPHftbApv3DR8/jHFv19R6S5H4T8v+ltfa1XPucfjXHua7M7wYYthj5+8/n2ZfRAeyr\nWmtXzVJ2ttd7fe/V2dqZZF3X4soJx5ayfws11/t2vu/ZmWv0yznKzFy/zcfqjOaNm+va7pl1z1Cw\n0TMAwHoSYAAAYKiZAexzW2t3mGpPOpvNkTezRMzMAPVM39/VWnvaYjReVZsleVu679ZvSbcfxG/G\nyvxZFjfAcKN1F7lWa+3qqroyXZDhPq212ZbxGXfPTB74/kq65YhmBnw3nVBmxvjzHg2AbN9aO3+e\nfZlxo6q6waRlbzL7670U9+q6rsWk1//37b20oc0EA+d6L8zkzVyb0aDC+lzbI1prL5+QDwDAIhBg\nAABgqO/26W3nGOhdSrefdLCqNs21v5yfWQ9+pu8T66ynuyW5ebpfcb94QnBh6yR/MPCcM9d00gbJ\nybXLvwzx3XQb7s77ubfWXpTkRXMUmdlw9zaTMqvq1rnu4O9P0m3Ku2Xfl6EBhvT1zptw/JZ9Ov56\nL8W9Oue1SDIpgPD79l7a0M7p07mCKTN5M8so/STd++EG6a7tj+aoM+q7SR6QxX2vAwAwxibPAAAM\ndVaSn6VbhuYRkwpU1d2rau+qmm2AfDFtX1WrJhzfu0+vyLWDlZ/r03tV1bbXrZJU1YOral3LJ42a\n+dHOVZm8hNJf5Nrv3bPtwTB+/LI+vc5gdb/XwzYD+jdj5rk/blJmVW1RVY+tqpsPOOfX+3Tnqpq0\n58SDxg/0g+gnraMvt62qh1bVTSflJ3nghDpbJPmj/uE3+3Qp79WZa3HPWfKvcy2WuH+jlmIvkEm+\nlG5vhh2raqfxzKq6QZL79w9PSn67Sfq3+mPXubb96z7pms/c7w/tZxldR1U9uqp2GNB/AADGCDAA\nADBIv/790f3DV1fVbUfzq+rOST6U5MtJZttMeDFdleTNo4OI/d9H9g8/3A9SprV2ZpIvpBvQffP4\nwGNVPSzJR5OcOmCgvaX7hfWNk+w3dr7HJTkw1/5S/XYj2Vfm2j0Dth8759l9ekA/E2PmfLdMtwzT\nZRnuLX2bD+n7NdrPGyV5e5L3J5ltQ9xJvpruV+mbJDli7Jy3TfcaTNon4A19+ozxDaerassk/5Lk\nY0kOm1D3miQvrqrxa3ZEunX7v5/k1GTJ79UPpRs8362qHj7Wzn2TPHa8whTeSzP3zfi1WxKttR8k\nOb5/ePSEgf8Xp5uN8IMkHxg5PvP386rqt8G1PiDx+ly758aoj6d7390qyd/3ZTNS98AkH0zy2X6P\nEgAA1oMvUgAArI9Xpds49YFJvl1Vn0y37v326TYFvlGSt7TWPr8Effl8ug1dV1fVZ9INaP9/6QYq\nf5rkpWPln5Lu182PTrLnSJ27pXtOVyf5y9baxfNpvLX2s6o6Nt1Gzh+tqo8muTTJ3ZNUkocleUKS\nOyV5XT/Y/KLW2iVVdWaSeyT5SP/3l1prr07yz0kOSvLHSf6nqr6U7sdBD05yRrrB0z8bcpFaa62q\nnp3kmCTHV9VfJfmfdBvc7ptutsR3M/eSSOPnXFtVB6cLyhxSVfdItzfDH6S7Nz6YbiZJjdX7fFW9\nLMnLk3y+qj7bt32LdEGamyU5LclrJzR7ZZL3pbsun0h33+2S7jpek+Q5rbXRDYmX5F5trZ1TVa9P\n8sIk/1FVJyS5IN19uF+SlyT5+wlVl/K9dEa6+/DtVfWUrtvtkEU47xDPTfdeu2+69+yX072mf5xu\nBsqlSR7fWhvdCPoNSQ5I1/dv9tfoqiT3SnevvCXJ80Ybaa1d1QfSPt23+aCq+kK6ZcfunuQu6faE\nePrY/QIAwABmMAAAMFj/y+uHpBtU/1q6gdBnphu4+0ySR7bWnrNE3VmbblmV96YbcHxyuvX9j0+y\nZ2vt+2N9/36S3dINbl+cbpmepybZNsl7kty9tfa+gX04OMnr0gU0HpUuEPCdJHu11j6T5JVJTk+3\nR8D9c+0SNc9Ocma6QdK7p/sFfFpr30kXJPlcklunCybslW4g9RH9cx6stXZcusHs9yXZMcnTkzw8\n3br2RyTZrbX2w1lPMPmc/9k/p88l2Sndtdw53XN+ZrrB40n1XpHuvvl4uoHlZ6YfZE9ySLrNqC+f\nUPUG/d4QL0xyx3Sv987pltS5X9+f0XaW8l7963QzVv4nXVDhgHTBr0cnecekCkvcvxelm8GzabqA\nzJL/e7C19rN09/Lh6QIpD0vy+HTX6W1J/qi19qWxOpemWwbpn9MFkZ6Y7pr9d5I90gVyJrX1tXT3\n1hvTvWee2P+3eboZO3/UWjtpUZ8gAMAys2Lt2vX6twkAAExV/2v8tyX5VGvtOmvyc/3S77PxrSRX\nttYmrqkPAAAsLTMYAAAAAACAwQQYAAAAAACAwQQYAAAAAACAwQQYAAAAAACAwWzyDAAAAAAADGYG\nAwAAAAAAMJgAAwAAAAAAMNgm0+7AtF1yySXWiAIAAAAAgCRbb731ivmWNYMBAAAAAAAYTIABAAAA\nAAAYTIABAAAAAAAYTIABAAAAAAAYTIABAAAAAAAYTIABgCTJ6tWrs3r16ml3A2AqfAYCy53PQWA5\n8xkI60+AAQAAAAAAGGyTxTpRVd04ySuTvCDJF1tr+wyou1eSw5PcI8nmSb6T5B1Jjm6trR0ru1OS\nlye5T5Ktknw/yXuSvKa19uuFPxMAAAAAAGBdFiXAUFWV5L1J7pxkxcC6+yb5RJILkhyZZE2Shyd5\nU5I7JjlkpOzOSU5J8sskRyW5MMk+fb1dkzxiIc8DAAAAAACYnwUHGKrq5knOTLI6ye5Jvj3wFG9N\n8qsk92qt/bA/9q9V9ZEkz62qd7XWzuqPvz7JFknu2Vo7uz/2b1V1eZKDq+phrbWPLeT5AAAAAAAA\n67YYezDcOMm7k9yjtdaGVKyqPZNUkvePBBdmHJ1uNsQBfdltk+yX5HMjwYXRsknypIF9BwAAAAAA\n1sOCZzC01n6c5C/Xs/oefXrqhLzT+nTPPt09XcDhOmVba9+tqjUjZRfMzvHAcuXzD1jOfAYCy53P\nQWA58xnIcrNy5coFn2PRNnleTzv06YXjGa21y6rq50nusK6yvfOT/HFVbdJau3qhHbvjHe+40FMA\nMND9j/natLswVZ9+xi7T7gJMlc8AnwHuAfcAbMwe+tCH5uSTT06S7L333vn4xz8+5R6xsVnu/x+E\n5e5t991q2l1YL9MOMGzZp1fMkn/5SJn5lJ0pd/HCuwYAAAAAABveYswmmIbF2IMBAAAAAABYZqYd\nYLi0T286S/4WI2XmUzZJLluEfgEAAAAAAHOYdoDhnD7dbjyjqrZOsnWS1esq29s+ybmLsf8CAAAA\nAAAwt2kHGE7p070n5N2rT7/cp6cnuXpS2aq6S5KbjZQFAAAAAAA2oCUNMFTVqqraceZxa+3rSc5M\n8tiq2m6k3Iokz0tyVZJ/6ctelORjSfapql3GTv38Pj1mA3YfAAAAAADobbLQE1TVTkl2Gjt8y6p6\nzMjjE1prVyT5VpKWZNVI3oFJPp/ki1X1xiQ/T/L4JPsmOby19r2Rsi9Mcu8kn6qqo5L8IMkDkzwx\nybGttS8u9PkAAAAAAADrtuAAQ5LHJTli7NhOST4w8njHJOdNqtxaO62q7p3k5f1/m6YLRDyttfau\nsbLnVNVeSV6V5LAkWyb5XpIXJHnjgp8JAAAAAAAwLwsOMLTWjkxy5DzLrpjl+BlJHjzPc6xOF9QA\nAAAAAACmZNqbPAMAAAAAABshAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYA\nAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAA\nAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAw\nAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYA\nAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAAAGAwAQYAAAAA\nAGCwTabdAQAAAAAAmJbV73xJLvn2aVPtw80OW/o2f/7zny/4HGYwAAAAAACwbE07uLAxW5QZDFW1\nTZIjkjwiybZJLkpyQpLDW2s/nKPeU5O8ax2n/0JrbZ++/HlJtp+j7C6tta/Pt98AAAAAAJAku7/2\ns1Nr+zN/sdvU2l6IBQcYqmrzJCclWZXk6CRnJFmZ5AVJ9q2q3VprF89S/fNJHjtL3nZJ3pDkm2PH\nf5rkwFnqnDv/ngMAAAAAAOtrMWYwHJLkrkkOaq29deZgVZ2V5MNJDk9y6KSKrbXvJ/n+pLyq+kiS\nnyV52VjWFa21Dy5CvwEAAAAAgPW0GHswPDnJ5UmOHTv+0SQXJjmgqlYMOWFVPTLJw5P8dWvtZ4vQ\nRwAAAAAAYBEtaAZDVW2VbmmkL7XWrhzNa62trarTkzwqyY5JzpnnOTdN8o9JTk/yznWUvUmSX7bW\n1q5H9wEAAAAAYOpWr1695G2uXLlywedY6AyGmQ2XL5wl//w+vcOAcz4zye2SHDZL4GDzqnpTVV2c\nbubEFVX1kapaNaANAAAAAABgARa6B8OWfXrFLPmXj5WbUz974UVJvtha+8IsxW6VZIckz0ry6yT3\nTXJQkn2qao/W2nfm0xYAAAAAAPw+WIzZBNOwGJs8L6anJrltkr+aJf8pSX7TWvvyyLGPVNXZSd6R\n5G+TPGGD9hAAAAAAAFhwgOHSPr3pLPlbjJVbl2ck+VmS/5yUOceshncmeXOS+82zHQAAAAAAYAEW\nugfDuUnWJtlulvyZPRrWuUNFVe2QZPck/9Vau2pIJ1pr1yS5KMlWQ+oBAAAAAADrZ0EBhtba5Um+\nkWTXqtpsNK+qbphkryQXtNbOn1R/zAP69HOTMqvqDlX19Kq6y4S8LdItrTSfdgAAAAAAgAVa6AyG\nJDk2yU3Sbbo86oB0GzIfM3OgqlZV1Y6znGe3Pv2fWfJv3Z/rDVW1YizvRUlWJPnQgH4DAAAAAADr\naTE2eX57kicmOaqqtk9yRpKdkxya5OwkR42U/VaSlmTVhPPcuU/Pm9RIa+3Uqjou3UbQJ1XV+5Nc\nmW7mw2P6tl61sKcCAAAAAADMx4JnMPT7Jdw/3SbLj05yXJKnpJttsE9r7Yp5nurmfXrZHGWe0f+3\nZZJ/SHJ0krskeWWSvVtr891MGgAAAAAAWIDFmMGQfmD/0P6/ucqNL200mvdH82jnN+mWZDp2aB8B\nAAAAAIDFsxh7MAAAAAAAAMvMosxgAAAAAABg47T6nS/JJd8+bdrdYCNkBgMAAAAAwDImuJBsvWrP\naXdho2QGAwAAAAAA2f21n512F9jImMEAAAAAAAAMJsAAAAAAAAAMJsAAAAAAAAAMZg8GAAAAAGDZ\nWv3Ol9jkGNaTGQwAAAAAwLIluNDZetWe0+4CGyEzGAAAAACAZW/313522l2AjY4ZDAAAAAAAwGAC\nDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAA\nAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAA\nwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGAC\nDAAAAAAAwGACDAAAAAAAwGACDAAAAAAAwGCbLMZJqmqbJEckeUSSbZNclOSEJIe31n64jrpr13H6\nm7fWfj5SfqckL09ynyRbJfl+kvckeU1r7dfr/SQAAAAAAIB5W3CAoao2T3JSklVJjk5yRpKVSV6Q\nZN+q2q21dvE6TvO/6QIUk1w+0tbOSU5J8sskRyW5MMk+SY5Msmu6AAcAAAAAALCBLcYMhkOS3DXJ\nQa21t84crKqzknw4yeFJDl3HOX7aWvvgPNp6fZItktyztXZ2f+zfquryJAdX1cNaax8b/AwAAAAA\nAIBBFmMPhienm2Vw7Njxj6abYXBAVa1YaCNVtW2S/ZJ8biS4MOPoPn3SQtsBAAAAAADWbUEzGKpq\nq3RLI32ptXblaF5rbW1VnZ7kUUl2THLOPM63IslNWmuXT8jePcmKJKeOZ7TWvltVa5LsOfxZAAAA\nAADA9KxevXrJ21y5cuWCz7HQGQzb9+mFs+Sf36d3WMd5blFV705yWZJfVNWlVfXuqrrtSJkd5tHW\n7apqUTauBgAAAAAAZrfQwfgt+/SKWfIvHys3m52SnJnkgL5PD0239NI+VbVra+2igW2ta1NpAAAA\nAAD4vbAYswmm4ffh1/4PSrfJ81dHjn2wqi5I8tIkz0/y4qn0DAAAAAAAmGihSyRd2qc3nSV/i7Fy\n19Fa++RYcGHGW/v0fgPbumy2tgAAAAAAgMWx0BkM5yZZm2S7WfJn9mhYnx0qftqfe6v+8cwm0XO1\ndW5r7er1aAsAAAAAlqXV73xJLvn2adPuBrARWtAMhtba5Um+kWTXqtpsNK+qbphkryQXtNbOn1S/\nqu5aVc+qqttPyF6ZZEWu3Sj69CRXJ9l7wnnukuRmSb68vs8FAAAAAJYjwYVk61V7TrsLsFFajD0Y\njk3ypiTPSvKPI8cPSHKrJEfMHKiqVUmubK2d2x+6S5K39+d4xth5Z/Zd+FCStNYuqqqPJXlkVe3S\nWvvaSNnn9+kxC386AAAAALD87P7az067C8BGZjECDG9P8sQkR1XV9knOSLJzkkOTnJ3kqJGy30rS\nkqzqH38gydOSPL2qbpHkhCQ3TPKodHsvfCbJO0bqvzDJvZN8qqqOSvKDJA/s2z+2tfbFRXg+AAAA\nAADAOix0k+e01q5Kcv8kb07y6CTHJXlKutkE+7TWrpij7tVJHpoucHDndDMhXpfklv2xB4/uqdBa\nOyfdsksnJTks3cyHXZO8IN0MCgAAAAAAYAksxgyGtNYuTTdj4dB1lFsx4div0s1yOOq6NSaeY3WS\nx61HNwEAAAAAgEWy4BkMAAAAAADA8iPAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAA\nDCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbA\nAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADCbAAAAAAAAADLbJtDsAAAAAANO0//7758QTT5x2NwA2\nOmYwAAAAALCsCS4kW6/ac9rohZ9nAAARYklEQVRdADZCZjAAAAAAQJI1a9ZMre37H/O1qbUNsL7M\nYAAAAAAAAAYTYAAAAAAAAAYTYAAAAAAAAAazBwMAAAAsc/vvv79NbhfRySefnG222Wba3QCADc4M\nBgAAAFjmBBcg2W+//abdBYCNjhkMAAAAQJJkzZo10+7CRuuhD31oTj755CTJ3nvvnY9//ONT7hEA\nbHhmMAAAAAAAAIMJMAAAAAAAAIMJMAAAAAAAAIPZgwEAAIBlbf/997fJMQDAejCDAQAAgGVNcKGz\n3377TbsLAMBGxgwGAAAASLJmzZppdwEAYKNiBgMAAAAAADCYAAMAAAAAADCYJZIAAACWOZscAwCw\nPhYlwFBV2yQ5Iskjkmyb5KIkJyQ5vLX2w3nUv2dff48kmyW5IMl/JHlFa+0XI+XOS7L9HKfapbX2\n9fV7FgAAAMuT4IINjgEA1seCAwxVtXmSk5KsSnJ0kjOSrEzygiT7VtVurbWL56j/xCTvSdLSBRku\nTfKQJIcluVdV3bO1ds1IlZ8mOXCW0527sGcDAACwfNnkGACAIRZjBsMhSe6a5KDW2ltnDlbVWUk+\nnOTwJIdOqlhVmyZ5W7oZC3u21i7ps95ZVR9ONyPigelmQ8y4orX2wUXoNwAAAAAAsJ4WI8Dw5CSX\nJzl27PhHk1yY5ICqen5rbe2EurdJ8qEkp40EF2ackC7AcLf8boABAABgUa1+50tyybdPm2oftjls\nqs0DAMBgCwowVNVW6ZZG+lJr7crRvNba2qo6PcmjkuyY5Jzx+q217yd56iyn37pPL52j/Zsk+eUs\nwQsAAGCebPKLPQgAAKZn9erVS97mypUrF3yOhc5gmNlw+cJZ8s/v0ztkQoBhNlV14yRPS3JFko+M\nZW9eVW9K8qQkN0vyq6r6VJIXtda+Pd82AAC4lsHl6fPr9enbetWeWfm0v5ta+59+xi5TaxsAANbH\nQgMMW/bpFbPkXz5Wbp2q6gZJ3pHkD5M8v7X2g7Eit0qyQ5JnJfl1kvsmOSjJPlW1R2vtO/NtCwCA\njuACSfcL9uOPP35q7d//mK9NrW0AAJimxZhNMA2LsQfDoqmqzZO8N93eC29prb1+rMhTkvymtfbl\nkWMfqaqz0wUl/jbJE5akswAA10Nr1qyZWtvLfXDZr9cBAICNzUIDDDP7I9x0lvwtxsrNqqpumeRj\nSe6R5BWttZeNl2mtfWGW6u9M8uYk91tXOwAAAAAAwMLdYIH1z02yNsl2s+TP7NEw5w4VVXXrJCcn\n2T3Jn08KLsyltXZNkouSbDWkHgAAAAAAsH4WFGBorV2e5BtJdq2qzUbzquqGSfZKckFr7fxJ9fty\nWyX5ZJLbJ3lYa+24WcrdoaqeXlV3mZC3RZLb5tpNpQEAAAAAgA1ooTMYkuTYJDdJt+nyqAPSbch8\nzMyBqlpVVTuOlfvHJH+c5AmttU/M0c6t+3O9oapWjOW9KMmKJB8a3n0AAAAAAGCoxdjk+e1Jnpjk\nqKraPskZSXZOcmiSs5McNVL2W0laklVJUlV3S7dx8/8muWFVPWbC+X/aWvtCa+3UqjouyVOTnFRV\n709yZZIHJHlM39arFuH5AAAAAAAA67DgAENr7aqqun+SI5M8Oslzkvwk3WyDI1prV8xRfdd0Mw92\nSvKBWcp8Ick+/d/PSPLlJAcl+Yd0MzDOTfLKJK9trV22kOcCAAAAAADMz2LMYEhr7dJ0MxYOXUe5\nFWOPj0ty3IB2fpNuSaZjB3cSAAAAAABYNIsSYAAA2Njtv//+OfHEE6fdDQAAANhoLMYmzwAAGz3B\nhWS//fabdhcAAADYiJjBAAAwYs2aNdPuAgAAAGwUBBgAAMsDAQAAAINZIgkAEFzoWSIIAAAA5s8M\nBgDgtywPBAAAAMyXGQwAAAAAAMBgAgwAAAAAAMBgAgwAAAAAAMBgAgwAAAAAAMBgAgwAAAAAAMBg\nm0y7AwDw+2D1O1+SS7592lT7sM1hU20eAAAAYBABBgCSJPvvv39OPPHEaXeDKdpvv/2m3QUAAABg\nIyLAABCD63S2XrVnVj7t76bW/qefscvU2gYAAAAYSoABIBFc6O233345/vjjp9b+/Y/52tTaBgAA\nAGAYAQYgiV/wz1izZs20uwAAAAAAG4UbTLsDwO8HwQXrzwMAAADAEGYwAL/DL/gBAAAAgPkwgwEA\nAAAAABjMDAbo2YMAAAAAAGD+zGCAnuCCPQgAAAAAgPkzgwHG2IMAAAAAAGDdBBj4LUsEAQAAAAAw\nX5ZI4rcEFywRBAAAAAAwX2YwzGKbbbaZdhemxhJBAAAAAACsixkM/A6/4AcAAAAAYD7MYJiFX/ED\nAAAAAMDszGAAAAAAAAAGE2AAAAAAAAAGE2AAAAAAAAAGE2AAAAAAAAAGE2AAAAAAAAAGE2AAAAAA\nAAAG22QxTlJV2yQ5Iskjkmyb5KIkJyQ5vLX2w3nU3yvJ4UnukWTzJN9J8o4kR7fW1o6V3SnJy5Pc\nJ8lWSb6f5D1JXtNa+/ViPB8AAAAAAGBuCw4wVNXmSU5KsirJ0UnOSLIyyQuS7FtVu7XWLp6j/r5J\nPpHkgiRHJlmT5OFJ3pTkjkkOGSm7c5JTkvwyyVFJLkyyT19v13QBDgAAAAAAYANbjBkMhyS5a5KD\nWmtvnTlYVWcl+XC6mQmHzlH/rUl+leReI7Md/rWqPpLkuVX1rtbaWf3x1yfZIsk9W2tn98f+raou\nT3JwVT2stfaxRXhOAAAAAADAHFasXbt23aXmUFXfSnK7JH/QWrty5PiKJOcn2TTJrceXOurL7Jnk\nK0mOaa09cyzvfklOTHJUa+2FVbVtkv9L8tnW2n5jZe+UZHWSD7bWHjuk/5dccsnCLgAAAAAAAFxP\nbL311ivmW3ZBmzxX1VbplkY6czS4kCR9QOH0JLdMsuMsp9ijT0+dkHdan+7Zp7snWTGpbGvtu+mW\nVtpzPA8AAAAAAFh8CwowJNm+Ty+cJf/8Pr3DLPk7zFa/tXZZkp+P1J217Ehbt6uqRdm4GgAAAAAA\nmN1CAwxb9ukVs+RfPlZufepvOaDsXG0BAAAAAACLZKEBBgAAAAAAYBlaaIDh0j696Sz5W4yVW5/6\nlw4omySXzZIPAAAAAAAskoXuV3BukrVJtpslf2aPhtWz5J/Tp9epX1VbJ9k6yZnrKjvS1rmttavn\n6vC4ITtiAwAAAAAAnQXNYGitXZ7kG0l2rarNRvOq6oZJ9kpyQWvt/En1k5zSp3tPyLtXn365T09P\ncvWkslV1lyQ3GykLAAAAAABsQIuxB8OxSW6S5Fljxw9Icqskx8wcqKpVVbXjzOPW2tfTzVB4bFVt\nN1JuRZLnJbkqyb/0ZS9K8rEk+1TVLmNtPb9PjwkAAAAAALDBLXSJpCR5e5InJjmqqrZPckaSnZMc\nmuTsJEeNlP1WkpZk1cixA5N8PskXq+qNSX6e5PFJ9k1yeGvteyNlX5jk3kk+VVVHJflBkgf27R/b\nWvviIjwfAAAAAABgHRY8g6G1dlWS+yd5c5JHJzkuyVPSzSbYp7V2xTrqn5YuaPDtJC9P8k9JbpPk\naa21V46VPSfdsksnJTks3eyJXZO8INedQQEAAAAAAGwgK9auXTvtPgAAAAAAABuZxdiDAQAAAAAA\nWGYEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgMEEGAAAAAAAgME2\nmXYHpq2qtklyRJJHJNk2yUVJTkhyeGvth9PsG8CGVlXHJXnKHEWe11p74xJ1B2CDq6obJ3llkhck\n+WJrbZ8JZTZP8uIkj0+yfZJLk3wu3ffD7yxdbwEW17o+A6vqyHT/Pp7NP7bWDtlgHQTYQKrqlkle\nluSRSW6d5OdJvpzkFa21M8fK+i4IAyzrAEP/gXFSklVJjk5yRpKV6b5s7VtVu7XWLp5eDwGWzIFJ\nfjrh+NeXuiMAG0pVVZL3JrlzkhWzlFmR5KNJ7pfkXUn+Nsn/S/f98NSq2qO19r2l6THA4pnPZ+CI\nI5N8c8Lx1YvcLYANrqpuleSrSf4gyduSnJXus/C5SR5QVXu31r7Wl/VdEAZa1gGGJIckuWuSg1pr\nb505WFVnJflwksOTHDqlvgEspU+01s6bdicANpSqunmSM9MNju2e5NuzFH18kv2S/ENr7bCR+p9N\n92OUf0jyqA3bW4DFNeAzcMYXWmsnbeh+ASyRVybZLsmjW2sfmjlYVf+d5CPpZis8rj/suyAMtNz3\nYHhyksuTHDt2/KNJLkxyQB+5BABg43bjJO9Oco/WWpuj3JP79E2jB/up86ckeUhV3WzDdBFgg5nv\nZyDA9dEPkrwv3Y+JR30yydokdxs55rsgDLRsZzBU1Vbplkb6UmvtytG81traqjo9XURyxyTnTKGL\nAEuuqjZLcnVr7epp9wVgMbXWfpzkL+dRdI8kF7TWLpyQd1qSvZPsmm4dXoCNwoDPwN/R79mQ1tqv\nF71TAEuktXbkLFlbplsy7tKRY74LwkDLeQbD9n066QMjSc7v0zssQV8Apu2gqjo3yS+TXFlVX6mq\nB0+7UwBLqaq2TLJNfD8EeFxVfTPJlem+G55dVU+adqcAFtmz+/TfEt8FYX0t5wDDln16xSz5l4+V\nA7g+e0CSv0vyp0lemm7D+/+sqsdPtVcAS8v3Q4DOg5K8vU8PTrJ1kndX1V9PtVcAi6SqHpTkZek2\nf35bf9h3QVgPy3aJJACSJK9LtxblSSPLxZ1QVR9L8vUkr6uq97fWrplaDwEAWCrvSfKVJKe21i7p\nj32yqv493cbQR1TVP7XWfj61HgIsUFU9OckxSc5L8lDLwMHCLOcAw8z6ajedJX+LsXIA1zuttbOT\nnD3h+P9W1UlJ9kvyh0m+ucRdA5gG3w+BZa219t0k351w/CdV9cEkz0y3/vh/LXXfABZDVR2e5OVJ\nzkjyp621n4xk+y4I62E5L5F0brqd4rebJX9mj4bVS9MdgN87P+7TrabaC4Al0lr7RZKfxvdDgEl8\nNwQ2alX1xnTBhY8luc9YcMF3QVhPyzbA0Fq7PMk3kuxaVZuN5lXVDZPslW7X+PMn1QfY2FXVVlX1\nxKp64GxF+vSCpeoTwO+BU5JsV1W3n5B3ryS/THLm0nYJYMOrqhtV1f5V9djZivSpfyMDG51+5sLB\nSd6V5FGttdn2WfBdEAZatgGG3rFJbpLkWWPHD0hyq3TrsQFcX/06yVuSHFdVtxjNqKr7Jbl7ktNb\naxdOo3MAU3Jsnz5v9GBV3SfJbkn+vf91G8D1SmvtqiR/m24z55WjeVW1U5JHJLkwyelT6B7Aequq\n+6b7fPtwkme01n4zR3HfBWGgFWvXrp12H6amqm6U5EvpPiDenG79tZ2THJpuutM95ohoAmz0quop\nSY5Lt2zc25P8KMkuSf4yya+S7NNa+/rUOgiwSPrBsZ1GDn0gyf8mOWLk2AmttSuq6j+SPCrJO5N8\nLt10+BckuTzJ3VtrP1qaXgMsjvl+Bib5kySfTLIm3Q9Rzk03c+Gvkmya5BGttU8uRZ8BFktVfTXd\nv3Ofk+QnsxQ7YWYM0HdBGGZZBxiSbomQJEcmeXSSbdN90Hw4yRGttTVT7BrAkuh/zfHiJHuk28zq\nR0k+neRVrbVzptk3gMVSVUfmdwfSJtmxtXZeVd04yYvSzWrdIcnFST6V5KWtNcvGARudgZ+Buyb5\nmyT3TrJ1kp8l+UKSV/vhCbAxqqr5DH7u2Fo7ry/vuyAMsOwDDAAAAAAAwHDLfQ8GAAAAAABgPQgw\nAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAA\nAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAAgwkwAAAAAAAA\ngwkwAAAAAAAAgwkwAAAAAAD//0bBKBgFo4BkAABY6wHa17h3gQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 780, + "height": 146 + } + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xm0ZVV9L/pvKTYgjb0hooCm/BHU\nRMGosUWeXRJjjL1XFJtEo1wjQWwyvAh2Se6TKCpXzRWU2CbRKPIMNs8GeyXEiCTqz1JA5NqiIlgo\nitb7Y63z3DmcU1Wrzq5zCuvzGaPGrD2bNec6NcYeu/b3zDXXbdq0KQAAAAAAAFNcba0XAAAAAAAA\nXPUIGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZg\nAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAw2S5rvQAA\nANhZVNWmzTRfluTCJB9KckJ39+qsKqmq5yT5syQ3HddxYHf/n9Wa/1dRVR2S5MNJvtbd+63wWscl\nOTbJ33f341a6NgAAmBcBAwAArL5/TPKtmdfrktwsycEZvuh/XFU9trvftr0XMn4R/tdJNiV5d4aQ\n4/LtPe/M/LsluSTJi7r7uNWaFwAAWDkBAwAArL4TuvvTiyur6ppJ/irJM5K8sao+090XbOe13Gks\n39/dD9zOcy3loCRXX4N5AQCAFXIGAwAA7CC6+6dJnpXknCTXSvKEVZh217H81mZ7bT+/s0bzAgAA\nK2QHAwAA7EC6+xdV9dEkt01yu8XtVXX7JEcluWeSmyT5UZLPJzmpu9+8RP+Fcx9ukuS5Sf5bku8n\neXKGMwIWHF5Vh49/37+7zx/H/0aSo5PcJ8k+Gc5o6CRvTPKa7v75EnNee1zjQ5Osz/CLTV9I8vIk\nb+7uTVW1X5LzZoYdW1XHJvlIdx+y/E8oqapTkhye5PFJPp3kb5LcLUNY8uUk/7O7/6Gqdk1yXJJH\nJNk7ybeTvDnJMd19xaJrrkvy6PGat0uyR5KLk/xbkpO7++1LrGNdkqcmeVKSW40/m7OSvHgL67/W\nOO4RSQ5Mco0k30jy3iR/3d0Xbm48AADsKOxgAACAHc/FY3nt2cqq+m9JPpPksAxnJfx9hi/Y75Tk\nTVV1yvil91KOyPAF+ruSnDqOf/l4vST54vj65RnOREhV3SvJv2cIIy7JECp8JEklOTHJe8cvy2fX\neMMkZ2b4kv1aSd4yzrl+HP+Gsesl41xfHF9/Znx9pS/yN2OfJB/LEAb8c4YQ43ZJ3lJV90lyWpKH\nJHlfkveP/Z+T5PmL1rxuXOcbk/xukn9Ncsp474cmeVtVvXqJ+f92/DkcOF7/HzP8H+sDGQKZK6mq\n3TP8DF+a5DeSnD6OuzxD6PAfVXXQhJ8BAACsGTsYAABgx/MbY3n+QkVV7Z/k5AznFTyyu/9xpq0y\nfMF9eJIPZviifLHHJDm4u782U3dkVR2XIaA4s7uPnLnmHhm++N49yTO7+/iZtl/PcCD0vTM80umF\nM9d8eYbdF29Kcnh3/2JmzFlJDquqd4/rP3LcjfCbSd67DYc8PzvJs7v7VeMc6zIEDX+c5K1JPpvk\nwPHRU6mqpyV5RZLHZdjNseBPkzwyyXeS3LW7vzJzr7dL8okkf1ZV/9Ld7x7rb53kyAyHY/9Bd79/\nZswfjutYyvEZft6fSPKA7r54HHO1JC9K8pcZApLbLN5lAQAAOxo7GAAAYAdSVTdLsnDY8rtmmp6W\nYUfDW2fDhSTp7k7yP8aXRyxz6Q8uChe25PFJbpTkE7PhwjjfN5I8fXz5lIVdE1V14wyP/dmU5FkL\n4cLMmJck+VySAyasY3MuWAgXxjk25Zc7IG6Q5DkL4cJo4Uv/X6+q687UP20sXzwbLozX/FyS/z2+\nfPJM06OSrEvygdlwYRzz/yT5l8WLraob5Jfnajx+IVwYx/wiQ+jxlQw7RO695B0DAMAORMAAAAA7\ngKras6run+GL6V2TvKe73zPT5dCxPH2ZSyx8oX3HqrrOEu0fXqJuc7Y03yeS/DDD2QYLgcE9Muyw\n+Gp3f3PxgO5+WXffvrufv7htG/3rEnXfHsuNGR5xtFRbkuyZJFV1/SS3GeuWu9cPjOXvztTdYSw/\nusyY9y9Rd/cM5y1s6O4NixvHgGTh3/xey1wXAAB2GB6RBAAAq+9Tw1ONlrQpw9kKi3ci7DeWD6uq\nOy4z9mcZvsC+ZYaDn2d9Z+IaF+b7v8adCUtZeITP+gxnKSyM+T8T59pWSx2GvHDo9PfGL+z/f939\n85mf+8IvW+0302X20OlZ54/lDapqt+6+LMlNx7rl7nWp3SILc+1RVScsM27hYO/1y7QDAMAOQ8AA\nAACr7x+TfGtR3Y+TXJDk/d391SXG7D6WD9qK6++5RN2Ptn55/2W+Q/PL3Qxbmm/hUOqfTZxrW23u\njIJNm2mbtdtY/qy7f75Mn5/M/H3XJJfNjPvJlbsnGQ5tXmzhZ/pr+eUjppaz1L8hAADsUAQMAACw\n+k7o7k9PHPOjJHslud/iZ/5vJwuBxJO7+39vtucvbRzL622H9WwvC2u+RlXtsszByrvN/H3h57IQ\nLFxrmevutkTdwthPdfddpi0TAAB2PM5gAACAq4aFw4dvvgPPd+5Y/vqc17I9nZdf7na4xTJ9Fuq/\n2d0LOxMWzpj4tS2MmbXa/4YAALBdCRgAAOCq4UNj+fClGqtq16p6RFXdYM7zPbSq1i0x37qqemRV\nzYYJH8/weKS9q+q2S4x5SlVdUVX/7xLzXWmO1dDdFyc5e3z5gGW63X8sz5ip+9xY3m2ZMb+3RN0n\nMjw66aZVteQOhqq6e1Xdoar8Xw0AgB2eD60AAHDV8OoM5zTcp6oeM9tQVbskOTHJPyR51Zzme3OG\ng6EryXMXzbcuybFJ3prknQv13f29JG8ZX55QVdeeGXPDJM9IcvUkb5q53KVjue+c1r0tXjqWz6mq\nW842jEHAEzLscnjFTNPbxvL+VXXXRWMemuReiyfp7h8kOWV8eUJVXX/RuIOTvCvJZ5IcuE13AgAA\nq8gZDAAAcBXQ3edV1ROTvCHJG6rqKRl+836PJIckuWmS8zN8iT+P+X5YVY9MclqSF1bVw5J8OsOZ\nA3dJsj7J95I8adHQZyQ5OMPB0F+qqg9kOPz5D5JcN8k/j/ew4KyxfGxV3TzJNbr77vO4h63V3W+s\nqkOTPC7J2VX14QyPQLplkntmCEWeM3tuRnd/pqremOQxST5YVe9O8u0kv5nkHkmOSfJXS0z3zCS/\nneTOSTZU1fuSXJLkNzKEEldLckx3/8f2uFcAAJgnOxgAAOAqorvfmuQOGXYA3CzJE5P8cZKLkrwg\nye27+8I5zvfhDF+G/12S3ZMcnuQRSX6e5GVJfqu7z1405ntJ7pRhh8OlSR6V5MEZzh94SpKHd/em\nmSFvTnJSkh9m+NJ9r3mtf6InJHl0kjOT3DXJ45PcOkPAcq/u/p/LjHl2hrMnHpDhXn+e5D5JTl1q\nku6+NEMgdGSSDeO4Jya5zTjXfbr7RfO6KQAA2J7Wbdq0acu9AAAAAAAAZtjBAAAAAAAATCZgAAAA\nAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAw2S5rvYC19sMf\n/nDTWq8BAAAAAAB2BHvttde6re1rBwMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYT\nMAAAAAAAAJMJGABIkmzYsCEbNmxY62UArAnvgcDOzvsgsDPzHgjbTsAAAAAAAABMtsu8LlRV10zy\noiRHJ/lodx8yYexdkhyT5M5Jdk3y5SSvTXJid29a1PfAJC9Ics8keyb5WpI3Jfmb7v7pyu8EAAAA\nAADYkrkEDFVVSd6S5FZJ1k0ce2iS9yT5epLjknw/yR8leUWSWyY5cqbvrZN8MsmPkxyf5MIkh4zj\nDkryoJXcBwAAAAAAsHVWHDBU1fWSfDbJhiR3SPKliZd4VZKfJLl7d39zrHtjVZ2a5M+r6vXdffZY\n/9Ikuye5W3efM9a9uao2Jnl6VT2wu09byf0AAAAAAABbNo8zGK6Z5A1J7tzdPWVgVd0pSSX5p5lw\nYcGJGXZDHDb23TvJfZJ8aCZcmO2bJI+ZuHYAAAAAAGAbrHgHQ3d/O8lTtnH4HcfyU0u0fWYs7zSW\nd8gQOFypb3d/paq+P9N3xZwcD+ysvP8BOzPvgcDObmd9HzzyyCPziU98Yq2XAQCr6uKLL17xNeZ2\nyPM22m8sL1zc0N2XVtXFSW6xpb6jC5Lcrqp26e4rVrqwW97yliu9BAAAALCV7nvSv6/JvF96zVH5\n0blnb7kjAHAlax0w7DGWly3TvnGmz9b0Xej3g5UvDQAAANiZ7H6L384Bf/bStV4GADuhDzzp4LVe\nwjaZxxkMAAAAAADATmatA4ZLxvI6y7TvPtNna/omyaVzWBcAAAAAALAZax0wnDuW+yxuqKq9kuyV\nZMOW+o72TXLePM5fAAAAAAAANm+tA4ZPjuVdl2i7+1h+fCzPTHLFUn2r6jZJrjvTFwAAAAAA2I5W\nNWCoqgOqav+F1939uSSfTfKwqtpnpt+6JH+R5GdJ/n7se1GS05IcUlW3X3TpZ4zlSdtx+QAAAAAA\nwGiXlV6gqg5McuCi6htV1UNnXp/e3Zcl+WKSTnLATNtTk3w4yUer6oQkFyd5ZJJDkxzT3V+d6fvM\nJPdI8r6qOj7JN5LcP8mjk5zc3R9d6f0AAAAAAABbtuKAIcnDkxy7qO7AJG+beb1/kvOXGtzdn6mq\neyR5wfjnWhmCiCd09+sX9T23qu6S5MVJnpVkjyRfTXJ0khNWfCcAAAAAAMBWWXHA0N3HJTluK/uu\nW6b+rCS/v5XX2JAh1AAAAAAAANbIWh/yDAAAAAAAXAUJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAA\nYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQM\nAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAA\nAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwm\nYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAA\nAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAk+0yj4tU1fWTHJvkQUn2TnJRktOTHNPd39zM\nuMclef0WLv+R7j5k7H9+kn030/f23f25rV03AAAAAACwbVYcMFTVrknOSHJAkhOTnJVkfZKjkxxa\nVQd39w+WGf7hJA9bpm2fJC9L8p+L6r+b5KnLjDlv61cOAAAAAABsq3nsYDgyyW2THNHdr1qorKqz\nk7wzyTFJjlpqYHd/LcnXlmqrqlOTfC/J8xY1Xdbdb5/DugEAAAAAgG00jzMYHptkY5KTF9W/K8mF\nSQ6rqnVTLlhVf5zkj5I8u7u/N4c1AgAAAAAAc7SiHQxVtWeGRyN9rLsvn23r7k1VdWaSByfZP8m5\nW3nNayV5eZIzk7xuC313S/Lj7t60DcsHAAAAAIA1t2HDhlWfc/369Su+xkp3MCwcuHzhMu0XjOUt\nJlzzT5PcLMmzlgkOdq2qV1TVDzLsnLisqk6tqgMmzAEAAAAAAKzASs9g2GMsL1umfeOifps17l54\nTpKPdvdHlul24yT7JXlykp8muVeSI5IcUlV37O4vb81cAAAAAACwI5jHboK1MI9DnufpcUlumuRp\ny7QfnuTn3f3xmbpTq+qcJK9N8vwkj9quKwQAAAAAAFYcMFwyltdZpn33Rf225E+SfC/Ju5dq3Myu\nhtcleWWSe2/lPAAAAAAAwAqs9AyG85JsSrLPMu0LZzRs8YSKqtovyR2S/Et3/2zKIrr7F0kuSrLn\nlHEAAAAAAMC2WVHA0N0bk3w+yUFVde3Ztqq6epK7JPl6d1+w1PhF7jeWH1qqsapuUVVPrKrbLNG2\ne4ZHK23NPAAAAAAAwAqtdAdDkpycZLcMhy7POizDgcwnLVRU1QFVtf8y1zl4LP9jmfabjNd6WVWt\nW9T2nCTrkrxjwroBAAAAAIBtNI9Dnl+T5NFJjq+qfZOcleTWSY5Kck6S42f6fjFJJzlgievcaizP\nX2qS7v5UVZ2S4SDoM6rqn5JcnmHnw0PHuV68slsBAAAAAAC2xop3MIznJdw3wyHLD0lySpLDM+w2\nOKS7L9vKS11vLC/dTJ8/Gf/skeQlSU5McpskL0py1+7e2sOkAQAAAACAFZjHDoaMX+wfNf7ZXL/F\njzaabfvtrZjn5xkeyXTy1DUCAAAAAADzM48zGAAAAAAAgJ2MgAEAAAAAAJhMwAAAAAAAAEwmYAAA\nAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAA\nmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgED\nAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAA\nAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJ\nGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMNku87hIVV0/ybFJHpRk7yQXJTk9yTHd\n/c0tjN20hctfr7svnul/YJIXJLlnkj2TfC3Jm5L8TXf/dJtvAgAAAAAA2GorDhiqatckZyQ5IMmJ\nSc5Ksj7J0UkOraqDu/sHW7jMFzIEFEvZODPXrZN8MsmPkxyf5MIkhyQ5LslBGQIOAAAAAABgO5vH\nDoYjk9w2yRHd/aqFyqo6O8k7kxyT5KgtXOO73f32rZjrpUl2T3K37j5nrHtzVW1M8vSqemB3nzb5\nDgAAAAAAgEnmcQbDYzPsMjh5Uf27MuwwOKyq1q10kqraO8l9knxoJlxYcOJYPmal8wAAAAAAAFu2\noh0MVbVnhkcjfay7L59t6+5NVXVmkgcn2T/JuVtxvXVJduvujUs03yHJuiSfWtzQ3V+pqu8nudP0\nuwAAAAAAgLWzYcOGVZ9z/fr1K77GSncw7DuWFy7TfsFY3mIL17lhVb0hyaVJflRVl1TVG6rqpjN9\n9tuKuW5WVXM5uBoAAAAAAFjeSr+M32MsL1umfeOifss5MMlnkxw2rukPMzx66ZCqOqi7L5o415YO\nlQYAAAAAgB3CPHYTrIUd4bf9fy/DIc//NlP39qr6epLnJnlGkr9ck5UBAAAAAABLWukjki4Zy+ss\n0777on5X0t3vXRQuLHjVWN574lyXLjcXAAAAAAAwHysNGM5LsinJPsu0L5zRsC0nVHx3vPae4+uF\nQ6I3N9d53X3FNswFAAAAAABMsKKAobs3Jvl8koOq6tqzbVV19SR3SfL17r5gqfFVdduqenJV3XyJ\n5vVJ1uWXB0WfmeSKJHdd4jq3SXLdJB/f1nsBAAAAAAC23kp3MCTJyUl2S/LkRfWHJblxkpMWKqrq\ngKraf6bPbZK8JsnzlrjuwrkL70iS8aDn0zIc/Hz7RX2fMZYnBQAAAAAA2O7mccjza5I8OsnxVbVv\nkrOS3DrJUUnOSXL8TN8vJukkB4yv35bkCUmeWFU3THJ6kqsneXCGsxc+kOS1M+OfmeQeSd5XVccn\n+UaS+4/zn9zdH53D/QAAAAAAAFuw4h0M3f2zJPdN8sokD0lySpLDM+wmOKS7L9vM2CuS/GGG4OBW\nSV6R5G+T3Gis+/3ZMxW6+9wMj106I8mzMuyeOCjJ0bnyDgoAAAAAAGA7mccOhnT3JRl2LBy1hX7r\nlqj7SYZdDsdfecSS19iQ5OHbsEwAAAAAAGBO5nEGAwAAAAAAsJMRMAAAAAAAAJMJGAAAAAAAgMkE\nDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAA\nAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABM\nJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEA\nAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAA\nYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJttlHhepqusnOTbJg5LsneSiJKcn\nOaa7v7kV4+82jr9jkmsn+XqSf07ywu7+0Uy/85Psu5lL3b67P7dtdwEAAAAAAGytFQcMVbVrkjOS\nHJDkxCRnJVmf5Ogkh1bVwd39g82Mf3SSNyXpDCHDJUkekORZSe5eVXfr7l/MDPlukqcuc7nzVnY3\nAAAAAADA1pjHDoYjk9w2yRHd/aqFyqo6O8k7kxyT5KilBlbVtZK8OsOOhTt19w/HptdV1Tsz7Ii4\nf4bdEAsu6+63z2HdAAAAAADANprHGQyPTbIxycmL6t+V5MIkh1XVumXG/lqSdyT565lwYcFCqPBb\nc1gjAAAAAAAwRyvawVBVe2Z4NNLHuvvy2bbu3lRVZyZ5cJL9k5y7eHx3fy3J45a5/F5jeclm5t8t\nyY+7e9P01QMAAAAAwNrbsGHDqs+5fv36FV9jpTsYFg5cvnCZ9gvG8hZTLlpV10zyhCSXJTl1UfOu\nVfWKqvpBhp0Tl1XVqVV1wJQ5AAAAAACAbbfSMxj2GMvLlmnfuKjfFlXV1ZK8NslvJnlGd39jUZcb\nJ9kvyZOT/DTJvZIckeSQqrpjd395a+cCAAAAAIC1No/dBGthHoc8z01V7ZrkLRkOd/5f3f3SRV0O\nT/Lz7v74TN2pVXVOhlDi+UketSqLBQAAAACAndhKA4aF8xGus0z77ov6LauqbpTktCR3TvLC7n7e\n4j7d/ZFlhr8uySuT3HtL8wAAAAAAACu30jMYzkuyKck+y7QvnNGw2RMqquomST6R5A5JHr9UuLA5\n3f2LJBcl2XPKOAAAAAAAYNusKGDo7o1JPp/koKq69mxbVV09yV2SfL27L1hq/NhvzyTvTXLzJA/s\n7lOW6XeLqnpiVd1mibbdk9w0vzxUGgAAAAAA2I5WuoMhSU5OsluGQ5dnHZbhQOaTFiqq6oCq2n9R\nv5cnuV2SR3X3ezYzz03Ga72sqtYtantOknVJ3jF9+QAAAAAAwFTzOOT5NUkeneT4qto3yVlJbp3k\nqCTnJDl+pu8Xk3SSA5Kkqn4rw8HNX0hy9ap66BLX/253f6S7P1VVpyR5XJIzquqfklye5H5JHjrO\n9eI53A8AAAAAALAFKw4YuvtnVXXfJMcleUiS/57kOxl2Gxzb3ZdtZvhBGXYeHJjkbcv0+UiSQ8a/\n/0mSjyc5IslLMuzAOC/Ji5L839196UruBQAAAAAA2Drz2MGQ7r4kw46Fo7bQb92i16ckOWXCPD/P\n8EimkycvEgAAAAAAmJt5nMEAAAAAAADsZAQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAA\nAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAy\nAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAA\nAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAA\nkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAA\nAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJdpnHRarq+kmOTfKgJHsnuSjJ6UmO6e5vbsX4uyQ5Jsmd\nk+ya5MtJXpvkxO7etKjvgUlekOSeSfZM8rUkb0ryN93903ncDwAAAAAAsHkrDhiqatckZyQ5IMmJ\nSc5Ksj7J0UkOraqDu/sHmxl/aJL3JPl6kuOSfD/JHyV5RZJbJjlypu+tk3wyyY+THJ/kwiSHjOMO\nyhBwAAAAAAAA29k8djAcmeS2SY7o7lctVFbV2UnemWFnwlGbGf+qJD9JcveZ3Q5vrKpTk/x5Vb2+\nu88e61+aZPckd+vuc8a6N1fVxiRPr6oHdvdpc7gnAAAAAABgM+YRMDw2ycYkJy+qf1eGHQaHVdUz\nFj/qKEmq6k5JKslJSzxK6cQMOxkOS3J2Ve2d5D5JPjgTLsz2fXqSxySZS8Bwtas5ngIAAABWywee\ndPDaTPykj6zNvADwK2BF36JX1Z4ZHo302e6+fLZtDBTOTHKjJPsvc4k7juWnlmj7zFjeaSzvkGTd\nUn27+ysZHq10p8VtAAAAAADA/K301/T3HcsLl2m/YCxvsUz7fsuN7+5Lk1w8M3bZvjNz3ayq5nJw\nNQAAAAAAsLyVBgx7jOVly7RvXNRvW8bvMaHv5uYCAAAAAADmxEEDAAAAAADAZCsNGC4Zy+ss0777\non7bMv6SCX2T5NJl2gEAAAAAgDlZ6XkF5yXZlGSfZdoXzmjYsEz7uWN5pfFVtVeSvZJ8dkt9Z+Y6\nr7uv2NyCF9trr73WTekPAAAAAACscAdDd29M8vkkB1XVtWfbqurqSe6S5OvdfcFS45N8cizvukTb\n3cfy42N5ZpIrlupbVbdJct2ZvgAAAAAAwHY0jzMYTk6yW5InL6o/LMmNk5y0UFFVB1TV/guvu/tz\nGXYoPKyq9pnpty7JXyT5WZK/H/telOS0JIdU1e0XzfWMsTwpAAAAAADAdrfSRyQlyWuSPDrJ8VW1\nb5Kzktw6yVFJzkly/EzfLyZUGM9fAAAHYklEQVTpJAfM1D01yYeTfLSqTkhycZJHJjk0yTHd/dWZ\nvs9Mco8k76uq45N8I8n9x/lP7u6PzuF+AAAAAACALVjxDobu/lmS+yZ5ZZKHJDklyeEZdhMc0t2X\nbWH8ZzKEBl9K8oIkf5fk15I8obtftKjvuRkeu3RGkmdl2D1xUJKjc+UdFAAAAAAAwHaybtOmTWu9\nBgAAAAAA4CpmHmcwAAAAAAAAOxkBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMw\nAAAAAAAAkwkYAAAAAACAyXZZ6wWstaq6fpJjkzwoyd5JLkpyepJjuvuba7k2gO2tqk5JcvhmuvxF\nd5+wSssB2O6q6ppJXpTk6CQf7e5Dluiza5K/TPLIJPsmuSTJhzJ8Pvzy6q0WYL629B5YVcdl+P/x\ncl7e3UdutwUCbCdVdaMkz0vyx0lukuTiJB9P8sLu/uyivj4LwgQ7dcAwvmGckeSAJCcmOSvJ+gwf\ntg6tqoO7+wdrt0KAVfPUJN9dov5zq70QgO2lqirJW5LcKsm6ZfqsS/KuJPdO8vokz0/y6xk+H36q\nqu7Y3V9dnRUDzM/WvAfOOC7Jfy5Rv2HOywLY7qrqxkn+LckNkrw6ydkZ3gv/PMn9ququ3f3vY1+f\nBWGinTpgSHJkktsmOaK7X7VQWVVnJ3lnkmOSHLVGawNYTe/p7vPXehEA20tVXS/JZzN8OXaHJF9a\npusjk9wnyUu6+1kz4z+Y4ZdRXpLkwdt3tQDzNeE9cMFHuvuM7b0ugFXyoiT7JHlId79jobKq/jXJ\nqRl2Kzx8rPZZECba2c9geGySjUlOXlT/riQXJjlsTC4BALhqu2aSNyS5c3f3Zvo9dixfMVs5bp3/\nZJIHVNV1t88SAbabrX0PBPhV9I0kb83wy8Sz3ptkU5LfmqnzWRAm2ml3MFTVnhkejfSx7r58tq27\nN1XVmRkSyf2TnLsGSwRYdVV17SRXdPcVa70WgHnq7m8necpWdL1jkq9394VLtH0myV2THJThObwA\nVwkT3gP/i/HMhnT3T+e+KIBV0t3HLdO0R4ZHxl0yU+ezIEy0M+9g2Hcsl3rDSJILxvIWq7AWgLV2\nRFWdl+THSS6vqk9X1e+v9aIAVlNV7ZHk+vH5EODhVfWfSS7P8NnwnKp6zFovCmDO/mws35z4LAjb\namcOGPYYy8uWad+4qB/Ar7L7JfmrJH+Q5LkZDrx/d1U9ck1XBbC6fD4EGPxekteM5dOT7JXkDVX1\n7DVdFcCcVNXvJXlehsOfXz1W+ywI22CnfUQSAEmSv83wLMozZh4Xd3pVnZbkc0n+tqr+qbt/sWYr\nBABgtbwpyaeTfKq7fzjWvbeq/iHDwdDHVtXfdffFa7ZCgBWqqscmOSnJ+Un+0GPgYGV25oBh4flq\n11mmffdF/QB+5XT3OUnOWaL+C1V1RpL7JPnNJP+5yksDWAs+HwI7te7+SpKvLFH/nap6e5I/zfD8\n8X9Z7bUBzENVHZPkBUnOSvIH3f2dmWafBWEb7MyPSDovw0nx+yzTvnBGw4bVWQ7ADufbY7nnmq4C\nYJV094+SfDc+HwIsxWdD4Cqtqk7IEC6cluSei8IFnwVhG+20AUN3b0zy+SQHVdW1Z9uq6upJ7pLh\n1PgLlhoPcFVXVXtW1aOr6v7LdRnLr6/WmgB2AJ9Msk9V3XyJtrsn+XGSz67ukgC2v6q6RlU9oqoe\ntlyXsfR/ZOAqZ9y58PQkr0/y4O5e7pwFnwVhop02YBidnGS3JE9eVH9YkhtneB4bwK+qnyb5X0lO\nqaobzjZU1b2T/E6SM7v7wrVYHMAaOXks/2K2sqrumeTgJP8w/nYbwK+U7v5ZkudnOMx5/WxbVR2Y\n5EFJLkxy5hosD2CbVdW9Mry/vTPJn3T3zzfT3WdBmGjdpk2b1noNa6aqrpHkYxneIF6Z4flrt05y\nVIbtTnfeTKIJcJVXVYcnOSXDY+Nek+RbSW6f5ClJfpLkkO7+3JotEGBOxi/HDpypeluSLyQ5dqbu\n9O6+rKr+OcmDk7wuyYcybIc/OsnGJL/T3d9anVUDzMfWvgcm+d0k703y/Qy/iHJehp0LT0tyrSQP\n6u73rsaaAealqv4tw/9z/3uS7yzT7fSF7wB9FoRpduqAIRkeEZLkuCQPSbJ3hjeadyY5tru/v4ZL\nA1gV429z/GWSO2Y4zOpbSd6f5MXdfe5arg1gXqrquPzXL9KWsn93n19V10zynAy7WvdL8oMk70vy\n3O722DjgKmfie+BBSf5Hknsk2SvJ95J8JMlf+8UT4Kqoqrbmy8/9u/v8sb/PgjDBTh8wAAAAAAAA\n0+3sZzAAAAAAAADbQMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBk\nAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAA\nAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMNn/B4w8B69Vicr8AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 780, + "height": 146 + } + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xmc5Vdd5/9XAyJLSDAqikZZnHgy\nLCoBQVk0MjQ6oyiy2Ppjcxz8oaKCgAzqxETFGX+aUUREHAniguNPURAUgRYFZBEGWcyoHAKEJYIC\nNgRM2On5494ayqKq07er0jdNP5+PB4+v9T3nfM/nVuB6c991ztl3+PDhAAAAAAAAVnGNdRcAAAAA\nAACceAQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADA\nygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAygQMAAAAAADAyq61\n7gIAAODTxRjj8JV0ubx6S/Vn1S/OOS+5yos6RmOM76x+vXrRnPOc9Vbz6WWM8dTqQdVPzDnP3+Wz\n3lLdpPq6OecLd1kaAACsRMAAAAB77/+v/nHLvWtWX1x9dfWw6sFjjPvMOZ97vIsDAADYCwIGAADY\ne4+bc/7Vdg1jjOtXP1N9f/U7Y4wvmXO+97hWBwAAsAecwQAAAMfRnPPy6uHVW6vPqu693ooAAACO\njRUMAABwnM05Pz7GeEWLvfNvsbV9jPFl1SOru1RfsLz99ur51WPnnO/c0v+pLfb0/+HqN6qfqr6x\nulH13uW4R885/3HLuGtXj64esKzl/dVLqvOOVP8Y43OW9d2jummL7Z/eUb2gumDO+YYd6vuP1V+1\nWMFx5+q61Ruq/2/O+btjjOtW51cHqhtX/1Q9rTp3zvmxI9W0aa7DVXPOfWOMByzrPLP6YPWX1aPm\nnG8aY3x59djqjtX1q7+pzptz/uluX+9yzOctn/+N1We32DLr2dWPX0n9/6Z6VLW/OqO6oprVb1VP\nmnN+/Gh+DwAAcDxYwQAAAOtxw+X1A5tvjjH2V/+remD1nuo3q9+t9lXfV/31GOMLd3jmadVLq3Oq\n51TPbPEl/gOq548xrrml/++2CCO+qHpW9fTq81uEALfaboIxxpnVa6rHVKdUf9LizInLq++uXjPG\nuOsO9Z3R4kv+G1R/UP1d9RUttorav6zh3tXzWoQiZyzn+YkdnrejMcb3VE+oLlrO9YnqntXBZbjw\n4uray7Y3Vl9ZPWuM8W93+3rHGJ/V4p/Dg1v8c3tadbD6huX96+1Q89ct53pIi7Dnt6oXVWP5Wp47\nxvjMVX8XAABwVbGCAQAAjrMxxmnV7ZY//u8tzY9t8cX3L805f3DTmM9o8cX717X4svsHtnn0w6v/\nWX3PnPMTy3H/psWX7Leuvqb6i+X9/1B9a4u/7P/qOefrNs310OoXdyj/N1p88f971f02rywYY/x0\n9aPVb40xbj7n/PCWsf+5+s9zzicu++9r8QX/ty7rfnV1iznnR5btP1A9vvrO6sd2qGcnP1x9xZzz\nkuWzzqheX92sxcqDh805n7ps+4wWwccdqvtvmetYXu+PVF9S/X2L3+1ly/7XahEa3HdrsWOMG7QI\nLk6pfnjOecGmti+o/ri6W4sVJz+14u8CAACuElYwAADAcbT8C/QnVqe32Pboj7d0+YXqh6oLNt+c\nc360esryx7vs8PiPtPji/BObxr2xetnyxy/b1Pf/WV5/e3O4sBzzyy1Cia2137b66uqj1UO32bbo\n/OrdLbZ1+qZt6nvbRriwnOdwi1UTtdhG6DEb4cLSHyyvXzDGuGGr+dWNcGE516V98vfwjo1wYdn2\n0RarJ6puuXF/F69343f72I1wYTnPx1oEQ4e3qfc/Vp9bvXRzuLAc947qYcsfv3cZzAAAwNpZwQAA\nAHvv4WOMf9xyb1+LL9Hv2uJ8gXdX95pzfnBzpznn7x7huf+wvJ62Q/tfb33e0ju2GbexguLFOzzr\n+S22L9rsa5bXV84537N1wJzzo2OMF1X3afHF/B9s6fK/tpnnn5bXy1tsD7RdW9Wp1ft2qHU7rzzC\nXH95hLZTN91b+fWOMT6/2tjC6lN+t3PO94wxXl3dfkvTxjZLz9mmtlpsrXRZi//unNVidQQAAKyV\ngAEAAPbegSO0vaP6yeqX55zv2to4xrhGi/MX7ld9aYuDmq+zpdtOf8H+9h3ubxwMvHkF88aX4P/Q\n9t66zb2bLa+XbNO24S3L6xdv03bpEWr75+WKhv9reRj2xo+rrr4+0lyfEha0/e/oWF7v5vMx3tH2\n3tqnBgw3XV7/3RjjRjuM21hBcWYCBgAArgYEDAAAsPe+es75V5tvjDHu0WIbnlOq/7FDuLCvxcHL\nG3v0X9TikN/3tthW54wWhyDv5KMr1Lhx0PCHdmjfen7C5jHbrZLYsPG8627TtnWLoc222zZoN/Zi\nrmN5vRtjPrJ5q6ottvvdnrK83rVPrmbYyalX0g4AAMeFgAEAAI6DOeezxxh/VH1L9SvVN2/T7Ztb\nhAsfrb5xznlwc+MY464dOWBYxYdafBn+mTu0X2+be5cfoW3ruH85xrquTo7l9W4EDp8xxti3dVXG\nEZ63Mf4hc87/sVqZAACwHg55BgCA4+cHWnxpfY8xxnbbKH3t8vq8reHC0s33sJZ3Lq+fv0P7dnO9\n+Sjq2Gg70rZCJ4pjeb0bv9d91eddyZjN3ri8bre1FAAAXC0JGAAA4DiZc769On/54+PHGJ+9pcvG\nCuP3bh27PJvh/13+uNMZDKt47fJ6523m2ld9wzZjXri8fuUY41O+PB9jXKc6Z0vfE9kLl9ejfr1z\nzkv75BkP2/1uv7D6sm3m+vPl9T7L3//WcfvGGN8+xviCFeoHAICrlIABAACOr8e1OFvhRtUvbGnb\nOLj3nDHG9TdujjGuV/1an9x+53PHGDttbXS0fn95feAY48wtbY9sm7+yn3O+rsUX4deqfmmMcc1N\nNe6rfra6YfW31Z/tsr6128Xrffry+iPLf3YbYz6j+qW2Px/iadW7qlH92OaG5VznVf+zesbuXhUA\nAOwdZzAAAMBxNOf82Bjje6qXVA8YYzxtzvm8ZfNvV/+l+qLqf48x/qzFfv13q/6p+nfVxdVp1fPH\nGM+Ycz7uGEv5/ep7WvwF/qvGGH9SXVadXd26+q99crXFZt/V4uDp+1ZnjzFe3mJFxe1afDn+ruo7\njnDA8YnmWF7vT1X3bPG7/LsxxsEWf9x11xbna/xm9eDNk8w5LxtjfHuLg8B/aoxx3+qvWpyRccfq\nzOqf++QqFgAAWDsrGAAA4Dibc76sunD546+OMU5Z3v9Atb/64+qzqvtVt62eXN15zvnu6nurf6ju\nUN1iFzV8ovqm6r+12NLn3tV9qn9s8YX2K3cY99ZlTT9TfXg57l7V4eq/V18+57zoWOu6ujmW1zvn\nfEf11S0Co+tWD6ruXj2vxe/20A5z/UX15dWvVqcsxx2oPt5itcuXLVdVAADA1cK+w4cPr7sGAAAA\nAADgBGMFAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAAsDIBAwAAAAAA\nsDIBAwAAAAAAsLJrrbuAdbvssssOr7sGAAAAAAC4OjjttNP2HW1fKxgAAAAAAICVCRgAAAAAAICV\nCRgAAAAAAICVCRgAAAAAAICVCRgAAAAAAICVCRgAqOriiy/u4osvXncZAGvhPRA42XkfBE5m3gPh\n2AkYAAAAAACAlV1rrx40xrh29djqUdWL55znrDD2jtW51VdV163eUP1a9YQ55+EtfW9R/WT1tdWp\n1Vur365+Zs75kd2/EgAAAAAA4MrsScAwxhjV71RfWu1bcexdqz+t3l6dXx2qvqV6fPUl1cM39b1l\n9bLqg9UF1aXVOctxZ1f33M3rAAAAAAAAjs6uA4YxxmdVr64urm5XvX7FRzyx+lB1lznnO5f3fmuM\n8czqB8cYvz7nfN3y/s9Xp1R3nnNetLz3tDHG5dXDxhjfPOd81m5eDwAAAAAAcOX24gyGa1e/WX3V\nnHOuMnCMcYdqVL+3KVzY8IQWqyHuv+x742p/9eebwoXNfasesGLtAAAAAADAMdj1CoY55z9V33uM\nw2+/vL58m7ZXLK93WF5v1yJw+JS+c843jjEObeq7a06OB05W3v+Ak5n3QOBk530QOJl5D+Rkc+aZ\nZ+76GXt2yPMxuunyeunWhjnnB8YY76tufmV9l95WfcUY41pzzo/ttrAv+ZIv2e0jVnb3J7/muM95\ndfP8B99m3SUAa+R9EP9/4OR2sr8HnKz//b/HPe7RS1/60qrudKc79exnP3vNFbEuJ/t7ACfv++AG\n/xvw3wHg5PamN71p3SUck3UHDDdYXq/Yof3yTX2Opu9Gv/fuvjQAAAAAALjq7cVqgnXYizMYAAAA\nAACAk8y6A4b3L6/X36H9lE19jqZv1Qf2oC4AAAAAAOAI1h0wvHl5PWNrwxjjtOq06uIr67t0k+qS\nvTh/AQAAAAAAOLJ1n8HwsuX1TtWFW9rusry+ZHl9ZfWxZd9/ZYxxq+qGlRPhAAAAAAA4agcOHOjg\nwYPrLuO4e9/73rfrZxzXFQxjjLPGGDfb+HnO+drq1dV9xxhnbOq3r/qh6qPVbyz7vqd6VnXOGOM2\nWx79yOX1yVdh+QAAAAAAfJo5GcOFvbLrFQxjjFtUt9hy+3PHGPfZ9PNz5pxXVH9fzeqsTW3fV/1F\n9eIxxuOq91XfXt21OnfO+aZNfX+4+prqeWOMC6p3VN9Q3a+6cM754t2+HgAAAAAATj6HDh1a29zX\nuMa6TzM4NnuxRdK3VedtuXeL6vc3/Xyz6i3bDZ5zvmKM8TXVTy7/85ktgojvmnP++pa+bx5j3LH6\n6erR1Q2qN1WPqh6361cCAAAAAAAclV0HDHPO86vzj7Lvvh3uv6r6D0f5jItbhBoAAAAAAMCanJjr\nLgAAAAAAgLUSMAAAAAAAACsTMAAAAAAAACvbi0OeAQAAAAA4QR04cKCDBw+uuwxOQFYwAAAAAACc\nxIQLtX///nWXcEKyggEAAAAAOGn56/1POnTo0LpL4ARjBQMAAAAAcNISLiz4C36OhRUMAAAAAMBJ\nz1/vw+oEDAAAAABwErNFEHCsbJEEAAAAACcx4YLtgeBYWcEAAAAAANgiCFiZFQwAAAAAAMDKBAwA\nAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAA\nAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKBAwAAAAAAMDKrrXuAgAAAABg\nnQ4cONDBgwfXXQbACccKBgAAAABOasKF2r9//7pLAE5AVjAAAAAAQHXo0KF1lwBwQrGCAQAAAAAA\nWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJlDngEAAABOYhc/5Ue77PWvWHcZnf7odVcAwKqs\nYAAAAAA4iV0dwoWrg/3796+7BIATzp6sYBhjnF6dV92zunH1nuo51blzznceYdx3Vr9+JY9/0Zzz\nnGX/t1Q3OULf28w5X3u0dQMAAACwcLuffcFa53/+g2+z1vkBWN2uA4YxxnWrF1ZnVU+oXlWdWT2q\nuusY47ZzzvfuMPwvqvvu0HZG9QvV3265/+7q+3YYc8nRVw4AAABQBw4c6ODBg+suAwBOOHuxguHh\n1a2rh845n7hxc4zxuuoZ1bnVI7YbOOd8a/XW7drGGM+s/rn68S1NV8w5n74HdQMAAAAIF6rTzrrD\nuksA4AS0FwHDA6vLqwu33P+j6tLq/mOMR845Dx/tA8cY31p9S/XgOec/70GNAAAAwA6uDof8Xh0O\n+D106NDa5r77k1+ztrkB4FjtKmAYY5zaYmukv5xzfnhz25zz8BjjldW9qptVbz7KZ35m9YvVK6un\nXEnf61UfXCW8AAAAAP61dYcLVwcO+AVgnS6++OLjPueZZ56562fsdgXDxoHLl+7Q/rbl9eYdZcBQ\nfXf1RdUDdggOrjvGeHz1gOqG1YfGGM+rHjPnfP1RzgEAAABssc5Dfh3wCwAnnt0GDDdYXq/Yof3y\nLf2OaLl64THVi+ecL9qh242qm1YPqT5SfV310OqcMcbt55xvOJq5AAAAAADg6mAvVhOsw16cwbCX\nvrP6wuoHdmh/UPXxOedLNt175hjjourXqp+ovuMqrRAAAAAAANh1wPD+5fX6O7SfsqXflXlw9c/V\nH2/XeIRVDU+pfqm621HOAwAAAAAA7MI1djn+kupwdcYO7RtnNFzpCRVjjJtWt6v+ZM750VWKmHN+\nonpPdeoq4wAAAAAAgGOzq4Bhznl59TfV2WOM62xuG2Ncs7pj9fY559u2G7/F1y+vf75d4xjj5mOM\n/zTGuNU2bae02FrpaOYBAAAAAAB2abcrGKourK7X4tDlze7f4kDmJ2/cGGOcNca42Q7Pue3y+r93\naP+85bN+YYyxb0vbY6p91R+uUDcAAAAAAHCM9uKQ5ydV96suGGPcpHpVdcvqEdVF1QWb+v59Nauz\ntnnOly6vb9lukjnny8cYT21xEPQLxxi/V324xcqH+yzn+undvRQAAAAAAOBo7HoFw/K8hLu3OGT5\n3tVTqwe1WG1wzpzziqN81Gctrx84Qp8HL/9zg+rnqidUt6oeW91pznm0h0kDAAAAAAC7sBcrGFp+\nsf+I5X+O1G/r1kab2778KOb5eIstmS5ctUYAAAAAAGDv7MUZDAAAAAAAwElGwAAAAAAAAKxMwAAA\nAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAA\nAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKxM\nwAAAAAAAAKxMwAAAAAAAAKxMwAAAAAAAAKzsWusuAAAAgPU6cOBABw8eXHcZAACcYKxgAAAAOMkJ\nF6g67aw7rLsEAOAEYwUDAAAAVR06dGhtc9/9ya9Z29wAABwbAQMAAHDSs0UQAACszhZJAADASU+4\nUPv37193CQAAnGCsYAAAAFha5xZBAABworGCAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAA\nAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWNm19uIhY4zT\nq/Oqe1Y3rt5TPac6d875zisZe/hKHv9Zc873bep/i+onq6+tTq3eWv129TNzzo8c84sAAAAAAACO\n2q4DhjHGdasXVmdVT6heVZ1ZPaq66xjjtnPO917JY/6uRUCxncs3zXXL6mXVB6sLqkurc6rzq7Nb\nBBwAAMCKDhw40MGDB9daw0tf+tJOP/30tdYAAAAcvb1YwfDw6tbVQ+ecT9y4OcZ4XfWM6tzqEVfy\njHfPOZ9+FHP9fHVKdec550XLe08bY1xePWyM8c1zzmet/AoAAOAkt+5w4epg//796y4BAABOKHsR\nMDywxSqDC7fc/6MWKwzuP8Z45JzzyrZCOqIxxo2r/dULNoULG55QPax6QCVgAACAY3To0KHjOt89\n7nGPXvrSl1Z1pzvdqWc/+9nHdX4AAODY7SpgGGOc2mJrpL+cc354c9uc8/AY45XVvaqbVW8+iuft\nq64357x8m+bbVfuql29tmHO+cYxxqLrD6q8CAAAAAADW5+KLLz7uc5555pm7fsY1djn+JsvrpTu0\nv215vfmVPOdzxhi/WX2g+pcxxvvHGL85xvjCTX1uehRzfdEYY08OrgYAAAAAAHa22y/jb7C8XrFD\n++Vb+u3kFtWrq/sva7pHi62XzhljnD3nfM+Kc13ZodIAAAAAAHC1sBerCdbh6vDX/v++xSHPf73p\n3tPHGG+vfqx6ZPUja6kMAAAAAADY1m63SHr/8nr9HdpP2dLvU8w5n7slXNjwxOX1bivO9YGd5gIA\nAAAAAPbGbgOGS6rD1Rk7tG+c0XAsJ1S8e/nsU5c/bxwSfaS5LplzfuwY5gIAAAAAAFawq4Bhznl5\n9TfV2WOM62xuG2Ncs7pj9fY559u2Gz/GuPUY4yFjjC/epvnMal+fPCj6ldXHqjtt85xbVTesXnKs\nrwUAAAAAADh6e3EGw4XV46uHVL+46f79qxtV523cGGOcVX14znnJ8tatqictn/HgLc/dOHfhD6vm\nnO8ZYzyr+tYxxm3mnK/Z1PeRy+uTd/9yAAA42Vz8lB/tste/Yq01nP7otU4PAACwsr0IGJ5U3a+6\nYIxxk+pV1S2rR1QXVRds6vv31azOWv78+9V3Vf9pjPE51XOqa1b3anH2wp9Vv7Zp/A9XX1M9b4xx\nQfWO6huW818453zxHrweAABOMusOF64u9u/fv+4SAACAE8iuA4Y550fHGHevzq/uXX1/9a4WqwnO\nm3NecYSxHxtj3GM55rtahAWfqN7QIkz4xc1nKsw53zzGuGP109WjqxtUb6oeVT1ut68FAICT2+1+\n9gVrm/v5D77N2uYGAAA4FnuxgqE55/tbrFh4xJX027fNvQ+1WOVwwaeO2PYZF1ffdgxlAgAAAAAA\ne2RXhzwDAAAAAAAnJwEDAAAAAACwMgEDAAAAAACwMgEDAAAAAACwMgEDAAAAAACwMgEDAAAAAACw\nMgEDAAAAAACwMgEDAAAAAACwsmutuwAAANbvwIEDHTx4cN1lAAAAcAKxggEAAOFCddpZd1h3CQAA\nACcUKxgAAPi/Dh06tLa57/7k16xtbgAAAFZnBQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyZzAA\nAFQHDhxw0DEAAACswAoGAIASLlT79+9fdwkAAACcQKxgAADY5NChQ+suAQAAAE4IAgYAoIuf8qNd\n9vpXrLuMTn/0uisAAAAAjpYtkgCAq0W4cHVgiyAAAAA4elYwAAD/1+1+9gVrnf/5D77NWucHAAAA\njp4VDAAAAAAAwMoEDAAAAAAAwMoEDAAAAAAAwMqcwQAA1cVP+VEHHQMAAACswAoGACjhQnXaWXdY\ndwkAAADACcQKBgDY5HY/+4J1lwAAAABwQrCCAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAA\nAAAAWJmAAQAAAAAAWJmAAQAAAAAAWJmAAQAAAAAAWNm19uIhY4zTq/Oqe1Y3rt5TPac6d875zqMY\nf+fl+NtX16neXv1B9VNzzn/Z1O8t1U2O8KjbzDlfe2yvAgAAAAAAOFq7DhjGGNetXlidVT2helV1\nZvWo6q5jjNvOOd97hPH3q367mi1ChvdX31Q9urrLGOPOc85PbBry7ur7dnjcJbt7NQAAAAAAwNHY\nixUMD69uXT10zvnEjZtjjNdVz6jOrR6x3cAxxmdWv9JixcId5pyXLZueMsZ4RosVEd/QYjXEhivm\nnE/fg7oBAAAAAIBjtBcBwwOry6sLt9z/o+rS6v5jjEfOOQ9vM/bzqz+sXrEpXNjwnBYBw5f1rwMG\nAK4CBw4c6ODBg+suAwAAAIATxK4ChjHGqS22RvrLOeeHN7fNOQ+PMV5Z3au6WfXmrePnnG+tvnOH\nx5+2vL7/CPNfr/rgDuEFACsQLtRpZ91h3SUAAAAAJ6GLL774uM955pln7voZu13BsHHg8qU7tL9t\neb152wQMOxljXLv6ruqK6plbmq87xnh89YDqhtWHxhjPqx4z53z90c4BwPYOHTq0trnv/uTXrG1u\nAAAAAFaz24DhBsvrFTu0X76l35UaY1yj+rXq31aPnHO+Y0uXG1U3rR5SfaT6uuqh1TljjNvPOd9w\ntHMBAAAAAMC67cVqgnXYizMY9swY47rV77Q4e+GX55w/v6XLg6qPzzlfsuneM8cYF7UIJX6i+o7j\nUiwAAAAAAJzEdhswbJyPcP0d2k/Z0m9HY4zPrZ5VfVX1U3POH9/aZ875oh2GP6X6pepuVzYPAAAA\nAACwe9fY5fhLqsPVGTu0b5zRcMQTKsYYn1e9tLpd9R+3CxeOZM75ieo91amrjAMAAAAAAI7NrgKG\nOefl1d9UZ48xrrO5bYxxzeqO1dvnnG/bbvyy36nVc6svrr55zvnUHfrdfIzxn8YYt9qm7ZTqC/vk\nodIAAAAAAMBVaLcrGKourK7X4tDlze7f4kDmJ2/cGGOcNca42ZZ+v1h9RfUdc84/PcI8n7d81i+M\nMfZtaXtMta/6w9XLBwAAAAAAVrUXhzw/qbpfdcEY4ybVq6pbVo+oLqou2NT376tZnVU1xviyFgc3\n/111zTHGfbZ5/rvnnC+ac758jPHU6jurF44xfq/6cPX11X2Wc/30HrweAAAAAADgSuw6YJhzfnSM\ncffq/Ore1fdX72qx2uC8OecVRxh+douVB7eofn+HPi+qzln+3w+uXlI9tPq5FiswLqkeW/3snPMD\nu3ktAAAAAADA0dmLFQzNOd/fYsXCI66k374tPz+1euoK83y8xZZMF65cJAAAAAAAsGf24gwGAAAA\nAADgJCNgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAA\nViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZg\nAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAViZgAAAAAAAAVnatdRcAcHVw4MCBDh48\nuO4yAAAAAOCEYQUDQAkXlvbv37/uEgAAAAA4QVjBALDJoUOH1l0CAAAAAJwQrGAAAAAAAABWJmAA\nAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAAAABWJmAAAAAA\nAABWJmAAAAAAAABWJmAAAAAAAABWdq11FwBcPRw4cKCDBw+uuwwAAAAA4ARhBQNQJVyo9u/fv+4S\nAAAAAOCEsScrGMYYp1fnVfesbly9p3pOde6c851HMf6O1bnVV1XXrd5Q/Vr1hDnn4S19b1H9ZPW1\n1anVW6vfrn5mzvmRvXg9J6spxYKBAAAKOElEQVSLn/KjXfb6V6y1htMfvdbpqQ4dOrTuEgAAAACA\nE8CuA4YxxnWrF1ZnVU+oXlWdWT2quusY47ZzzvceYfxdqz+t3l6dXx2qvqV6fPUl1cM39b1l9bLq\ng9UF1aXVOctxZ7cIODhG6w4XWD9/wQ8AAAAAHK29WMHw8OrW1UPnnE/cuDnGeF31jBYrEx5xhPFP\nrD5U3WXTaoffGmM8s/rBMcavzzlft7z/89Up1Z3nnBct7z1tjHF59bAxxjfPOZ+1B6+p008/fS8e\nc0K63c++YG1zP//Bt1nb3AAAAAAAHL19hw8fvvJeRzDG+Pvqi6rPnnN+eNP9fdXbqs+sPm/rVkfL\nPneo/qp68pzzu7e03a06WF0w5/zhMcaNq3+oXjDn3L+l77+pLq6ePue87yr1X3bZZbv7BQAAAAAA\nwKeJ0047bd/R9t3VIc9jjFNbbI306s3hQtUyUHhl9bnVzXZ4xO2X15dv07axX88dltfbVfu26zvn\nfGOLrZXusLUNAAAAAADYe7sKGKqbLK+X7tD+tuX15ju033Sn8XPOD1Tv2zR2x76b5vqiMcaeHFwN\nAAAAAADsbLcBww2W1yt2aL98S79jGX+DFfoeaS4AAAAAAGCP7DZgAAAAAAAATkK7DRjev7xef4f2\nU7b0O5bx71+hb9UHdmgHAAAAAAD2yG7PK7ikOlydsUP7xhkNF+/Q/ubl9VPGjzFOq06rXn1lfTfN\ndcmc82NHKnirVU7EBgAAAAAAFna1gmHOeXn1N9XZY4zrbG4bY1yzumP19jnn27YbX71seb3TNm13\nWV5fsry+svrYdn3HGLeqbripLwAAAAAAcBXaizMYLqyuVz1ky/37VzeqnrxxY4xx1hjjZhs/zzlf\n22KFwn3HGGds6rev+qHqo9VvLPu+p3pWdc4Y4zZb5nrk8vrkAAAAAACAq9xut0iqelJ1v+qCMcZN\nqldVt6weUV1UXbCp799Xszpr073vq/6ievEY43HV+6pvr+5anTvnfNOmvj9cfU31vDHGBdU7qm9Y\nzn/hnPPFe/B6AAAAAACAK7HrFQxzzo9Wd69+qbp39dTqQS1WE5wz57ziSsa/okVo8PrqJ6tfrT6/\n+q4552O39H1zi22XXlg9usXqibOrR/WpKygAAAAAAICryL7Dhw+vuwYAAAAAAOAEsxdnMAAAAAAA\nACcZAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALAyAQMAAAAAALCy\na627gHUbY5xenVfds7px9Z7qOdW5c853rrM2gKvaGOOp1YOO0OWH5pyPO07lAFzlxhjXrh5bPap6\n8ZzznG36XLf6kerbq5tU76/+vMXnwzccv2oB9taVvQeOMc5v8e/HO/nFOefDr7ICAa4iY4zPrX68\n+tbq86r3VS+pfmrO+eotfX0WhBWc1AHD8g3jhdVZ1ROqV1Vntviwddcxxm3nnO9dX4UAx833Ve/e\n5v5rj3chAFeVMcaofqf60mrfDn32VX9U3a369eonqi9o8fnw5WOM288533R8KgbYO0fzHrjJ+dXf\nbnP/4j0uC+AqN8a4UfXX1WdXv1K9rsV74Q9WXz/GuNOc8zXLvj4LwopO6oChenh16+qhc84nbtwc\nY7yuekZ1bvWINdUGcDz96ZzzLesuAuCqMsb4rOrVLb4cu131+h26fnu1v/q5OeejN41/QYs/Rvm5\n6l5XbbUAe2uF98ANL5pzvvCqrgvgOHlsdUZ17znnH27cHGP8r+qZLVYrfNvyts+CsKKT/QyGB1aX\nVxduuf9H1aXV/ZfJJQAAJ7ZrV79ZfdWccx6h3wOX18dvvrlcOv+y6pvGGDe8akoEuMoc7XsgwKej\nd1T/s8UfE2/23Opw9WWb7vksCCs6aVcwjDFObbE10l/OOT+8uW3OeXiM8coWieTNqjevoUSA426M\ncZ3qY3POj627FoC9NOf8p+p7j6Lr7au3zzkv3abtFdWdqrNb7MMLcEJY4T3wX1me2dCc8yN7XhTA\ncTLnPH+Hphu02DLu/Zvu+SwIKzqZVzDcZHnd7g2j6m3L682PQy0A6/bQMcYl1QerD48x/mqM8R/W\nXRTA8TTGuEF1ej4fAnzbGONvqw+3+Gx40RjjAesuCmCPfc/y+rTyWRCO1ckcMNxgeb1ih/bLt/QD\n+HT29dV/rb6x+rEWB97/8Rjj29daFcDx5fMhwMK/r560vD6sOq36zTHGf15rVQB7ZIzx76sfb3H4\n868sb/ssCMfgpN0iCYCq/nuLvShfuGm7uOeMMZ5Vvbb672OM35tzfmJtFQIAcLz8dvVX1cvnnJct\n7z13jPG7LQ6GPm+M8atzzvetrUKAXRpjPLB6cvWW6h62gYPdOZkDho391a6/Q/spW/oBfNqZc15U\nXbTN/b8bY7yw2l/92+pvj3NpAOvg8yFwUptzvrF64zb33zXGeHr13S32H/+T410bwF4YY5xb/WT1\nquob55zv2tTssyAcg5N5i6RLWpwUf8YO7RtnNFx8fMoBuNr5p+X11LVWAXCczDn/pXp3Ph8CbMdn\nQ+CENsZ4XItw4VnV124JF3wWhGN00gYMc87Lq7+pzh5jXGdz2xjjmtUdW5wa/7btxgOc6MYYp44x\n7jfG+Iaduiyvbz9eNQFcDbysOmOM8cXbtN2l+mD16uNbEsBVb4zxGWOMA2OM++7UZXn178jACWe5\ncuFh1a9X95pz7nTOgs+CsKKTNmBYurC6XvWQLffvX92oxX5sAJ+uPlL9cvXUMcbnbG4YY9yt+srq\nlXPOS9dRHMCaXLi8/tDmm2OMr61uW/3u8q/bAD6tzDk/Wv1Ei8Ocz9zcNsa4RXXP6tLqlWsoD+CY\njTG+rsX72zOqB885P36E7j4Lwor2HT58eN01rM0Y4zOqv2zxBvFLLfZfu2X1iBbLnb7qCIkmwAlv\njPGg6qktto17UvWP1W2q760+VJ0z53zt2goE2CPLL8dusenW71d/V5236d5z5pxXjDH+oLpX9ZTq\nz1ssh39UdXn1lXPOfzw+VQPsjaN9D6y+unpudajFH6Jc0mLlwg9Un1ndc8753ONRM8BeGWP8dYt/\nz/3+6l07dHvOxneAPgvCak7qgKEWW4RU51f3rm7c4o3mGdV5c85DaywN4LhY/jXHj1S3b3GY1T9W\nz69+es755nXWBrBXxhjn96+/SNvOzeacbxljXLt6TItVrTet3ls9r/qxOadt44ATzorvgWdX/6X6\nmuq06p+rF1X/zR+eACeiMcbRfPl5sznnW5b9fRaEFZz0AQMAAAAAALC6k/0MBgAAAAAA4BgIGAAA\nAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAA\ngJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJGAAAAAAAgJUJ\nGAAAAAAAgJUJGAAAAAAAgJX9HwilPZ3m/wjsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 780, + "height": 146 + } + } + }, + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAEkCAYAAADdDTvZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzt3Xm8bWVdP/DPTUJBBrXUSAqw8EuO\nAaYmDkg4pFmmWZbkUKalpYhDWiE4NJMjOfwEJYeyNMdyygEHHBANpbRv1wABNRUVsIsTen9/rHVi\nt93n3rPuOfcc9L7frxevxVnPsJ49sN2uz36eZ9PWrVsDAAAAAAAwxfdt9AAAAAAAAIDvPgIGAAAA\nAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJ\nBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEy220YPAACAXUtV/XSS\nX09yxyQ/nOQaST6b5IIkr0nysu7+4saNkKuqqjo/yQFJ7tTdp4/nTkxyQpK/6e4H7YRr7tT+v9et\n5fNXVadn+Nx4cHefttqxAQCwemYwAACwLqpqr6r6hyTvS/I7Sa5I8oYkL0rysSSHJXlmkvOq6hc3\nbKA7oKreP9783Mgx/GlVbd3IMWyQDyR5VpK3rqaTqrprVW2tqiN3Rv8AAPC9yAwGAAB2uqq6epK3\nJ7lVko9n+AXymXN1rpPkxCS/l+Qfq+pXuvuV6z3WqapqtyQ/meSDGzyUn9rg62+I7n5zkjevQVcL\nn7817B8AAL7nmMEAAMB6eEqGcOG8JHecDxeSpLu/1N2PzDCLYVOSZ1fV3us7zB1yswzLPG2YqtqU\n5JYbOYbvAbtkQAMAAKthBgMAADtVVV07ySPGP4/t7ou30+T4JF9J8sru/spcXwckeVySuybZP8m3\nklyY5E1JTuruz8zVPz3Dmu33TfKRJE9NclSSH0jyuSSvS/LEBdc5Msmjktw6yXWTXDZe59VJnt3d\nl4z1zs+wJ0CS3HFpiaLu3jTT182TPCbJ7TPsOZGxr7cmeVp3f3bu2qcleeD4OP9mHPM9klwvyZfH\ndo/v7v+eq7/UfmmZpP/dp2BbZto/KsOSVX+S5E5Jrp3kvzPsi3FCd1869/y8M8m/Z3g+X5TkDkle\n0d0Pnan340kem+TOGV6vy5N0kpcmeX53f2vBeA5P8uQkt80Q3Jw7Pg9PX2b8J2aZNf6rav8kT0hy\nt/H6X82w5NFTu/t9Y50HJXnxTLN3VlWSPLm7T9xO/+vyflzOzPvvoCQ3TvJHGQKvK5KcleQJ3f3h\nqjowyZ+O17pWks1J/ry7X7qgz72SPDLJfZIcnOTq49jek+QZ3X3WgjZ7j8/RLyXZL8kXk7xtHM+2\nxv9DGd4f90hyYJJvZni9X5nk6d391ZU8DwAAbBwzGAAA2NnunuSaST6T5J+2V7m7/6e7n9Td58ye\nr6rbJPlohrDiiiSvynBDdrckj05ydlXddJluD8hwY7mSvHYcx/XGvl4xd537JXlHhpueH0tySpJ/\nTnKdDDe+31VV+4zVX5TkX8Z//3SGtfqfNdPXnZN8KMkDklyc5CXj9TYleXiSD1fVDZYZ875Jzkhy\nZJI3juPeI8MG2W+tqquN9d6a/3uDfGkMFy3T73IOzLDM0y2SvCXJ3yfZK0Pw8O6q2nOZds9LcsMk\nL0vyvzNTqupOSf41ycMyBDQvTfKuDK/ByUnePC6dlZk2t07y3gzP/UUZgoWPJnni3GPcrvH98rEM\nr/EFY/szMoQdZ1TVQ8aqH8/wfC3d1P/H8e8PrKD/nf5+XKF7ZLgpf9F4vDTJ0UneXlU/keFx/+h4\nrbOT3CTJS8b35+xj+sEk70/yx0lukCEkeFmG/3Z/LckHqur+c22+P8N/A4/J8J79hySvz7Bs2IeS\n/NCiAY/Pzdlju+8bH/dbxvpPG6917R14LgAAWEdmMAAAsLP99Hh8T3d/e0c6qKrdk/xdhhuYT0/y\n2O7eOpZ9X4Yb0cckOS2Llwo6MclfdPdTZ/o8IsPN7LtX1UHdfd5M3U1J7tndb5mp//0Zbrr/YpIH\nZZjJ8JTxF/B3TvLJ7j527rpPS7J7kueMyz/N9vWWDDMFnpBh34l5x46P+beXnrdxRsA5GX6lfock\n7+zuv62q9yV5cJIsGMNK/W6S/5fk92ae2/0y/BL+5mP5X8y1uUGG8ODQ7v76zOPbO1cGFI/r7pNm\nyn44ww31o5M8PsOv+Jc8J8OshZcleeDM4/7BDL+g338lD2Tm/XLtJA/t7hfOlB2d4bl/blW9ZVyu\n68yquleSvZOcvL2ZH+v8flyJE5Pcobs/PPa1T5J/S/IjGZ63k7v7xLFsU4YQ4j4Z3sf/MtPPs5Pc\ndBzH3bp7y8z4HprkBUleUFVvX5pBk+S3Msz0+VySW3b3RTNt/iLJcfODHZ+jv09y/Qyv+bEzr/VS\nSHGXJCcl+c0JzwMAAOvMDAYAAHa2pV/oT7lhOu+eGX5h/7kMy74sLQOU8cbkozP8ivzwcYmdeRdk\nuNmfmXZnZFiOJRluoC85aDy+b67+N5P8doa9JL5jaZllPGMc20mzJ8e+XjT+eftl2n4jyaNmQ5nu\n/uTMuG6+sNWOuzxDGDD73H42w03nJPnlBW2uleSvZ8OF0YMzLC11xmy4MPb5mQyzIpLkd8Yb3kvh\nyU8l2ZrhNZ593BdnCGKulpVZer/0bLgw9vW2DDe3z05y6Ar7W67/9Xg/rsQrl8KFsa/LcuXG1Jsy\nzEhYKtuaYamvZJjJkCSpquvnytf4EbPhwtju/2V4zq6ZZHYWw6+Nx2fPhgujP8qwXNK8n8uwpNP5\nSY6be60vTfLQDO+DY2ZmCwEAcBUkYAAAYGfbazxu2WatbbvDeHzbeHP+/xhvQJ89/vnT8+UZbnRv\nXXB+aY38fWe7G4+nzi9f1N2f7+4PdfeXVzLo7n5Fdz+zuy9YUPzpBdee9eFl1qBfNOa1cPoy13vv\neLzZ+Mvzee9ccO6o8fjGZa51RoZlfPZLcsh4bumX/ud296cXtPmXDDedV+JO4/E9iwq7+9e6+1bd\n/foV9jdvPd+PK/Edm6ZnCD+S5AMLxrhUNnvz/rYZApxPd/fHlrnO28bjTyf/OxNhKaR593zl7v5G\nktMX9LP0/viX7r5iQbtPZZiBsXuSI5YZCwAAVwGWSAIAYGe7bDyu5pfIS7MKtjUL4vwMN6l/dEHZ\nhcu0WdpkePbG+UMy3My+b5L7VNWHkrw9wy/Cz5iyzNN4A/YBGX7xfaMM6+xfY67apvl2OzDmtfBf\ny5xfuum9e4bNiL8wV/75BW0OHI8/U1XXW6bfpRvLByf5RK6c6bIoXEh3X15VF2eYGbE9S9df2Nca\nWM/340os2m9jqa9Fm6ovus5KH1Ny5WO6dpKlvTmWe64/teDcgePx0Kp65jLtloLJgzNsmg0AwFWQ\ngAEAgJ1t6QbjT6yij6WbmIt+Yb/ka+NxjwVl3/Er8+V095njBrSPy7BO/a3Hf/4gyaeq6ve7+++3\n18+49M8rMgQVybB3wruSfDnDL/H3H/tfzorHvI0x/HiGvRPmndndfzt3brkZJt+Y+ffd58q+vugX\n6Lny5vBRufLX6stZCp6WXuOvLVcxyfxSTMtZCnFW/RwuY93ejyu06DVYstJZHzvymPZcUDZv0Wu2\n9P64ZRbvUTHLEkkAAFdhAgYAAHa292VYk/72VbXHMsvw/B9Vtfu4vMqSpZvfey6qP1f2Pzs2zCt1\n94VJHpnkkWPYcLcMa80fmuQVVfX17n7tdrr5+QzhwjeT3KO7ZzfTTVUdlW0HDGth/1y538Gsv0ky\nHzDMz6xYMrtcz6Jfwy+y9Bo8bFy7fyWWblBffRt1tvX6z1p6v1x7hfWnWtf34zrZkcc0Gyos97ot\n6m+p/Z929x+sbHgAAFwVCRgAANjZ3pTkkgwbAj8oyfO2Vbmqrpbkg1X1iSSPGTcaXtr89obbaLpU\ntprNpL9Dd/9bhvXgT6qqP0nyxAyzArYXMNxxPL5lPlwYbeuxrInuPj3LL8E0b9FSPsmVSxJdumAz\n5+V8MsktttHnIp8djz+0qLCq9k1ynRX2tfR+ucE2a+24DXs/7kQ78pi+lGGGy+4ZXrfzt9Fm1ifH\n45T3BwAAV0E2eQYAYKfq7i1JThr//JOqutF2mvxJkp9Mcrtc+Uvn08fjnavqO34pXVU/nOTm45/v\n2tGxVtV+VXVMVd12mSpLv/pfdON6/kb+0o95vmND6HFvhocu025VxqWZdsRRVTW/BFJy5Sa7/z6h\nr3eMx19aNJ6q2lRV9xtftyVLmyIfvMy+DT874fpLG08fWVXfv+D6r6iqK6rqjxa0Xcnzd/p43Knv\nx3V2RobZNvtV1WHzhePreNfxz9OTpLu/lWHpr2T473W+zR5JjlxwraX3x92r6pqLBlNVv1hVOz2E\nAwBgdQQMAACshz/LcFPxWkneXVW/MF+hqq5bVS9I8vgMy7X8end/ZSz+pyT/meQHk/zpXLvvT/LX\nGb7bvrm7exXjvHmSlyZ5cVXtt6D8V8bj2TPnlsb4o3M30z8xHo+cvYlaVXsmeWGuXF7muotuUk/0\nlZl/P2AH+7hWkqfNnqiqGyT5vfHPv5vQ18szbP5cSf5wrs9NSU4Y+3vN0vlxpsgnMryOT55rc/1x\nbLPLZm3LmzL8Sv6HFvR1myT3SvLtDHtkLFl6Dlfy/K3X+3HddPfFGd77SfKs8X066zEZ9lH5fP7v\ne+GV4/GRVfW/G3CPr/OfZ/ESSW9O8vEMS1j91ThrKTNtfyPJq5O8a5nQCwCAqwhLJAEAsNN197eq\n6h4Zlkd6YJLXVtV5Sd6fYfmkGyQ5Osk1k1yY5F7d/ZG59r+a5F+SPLqq7pzkrAybzd4mw03hzUke\nsspxvqWqXp7k/kk+WVXvSHJRhiVgDh3/+UKSJ800+9cMN6sPTPKvVfWFDBtCvyzJHyX5kST/VlVv\ny3Cz9egkn0vyM+OY903y1qp6TXc/cwfH/cWqOn8cw7ur6t+SvK67XzChmxcmeWBV3TXD67Jnkntk\nWJboQ2P5SsdzaVXdL8nrkzy1qu6b5AMZ1um/bZKDk3wxV87iWHJskn9O8ttVdXiG1/jaGWYv/HOG\nGS23WMH1v1lVv5bh/fLEqjo6yUeS/PDY19WSPLq7PznT7KwkN03y7Kr6lSTndffDl+l/Xd6PG+Ax\nSQ7LMBthc1W9J8Omz7fI8N7/nyS/OhP8JcnJGf6b/okM7/M3ZdjY+XZJrpfkWRk2TP9f3f3t8Tl+\nW5KHJTm6qk7PMHvk8PF6X03ym3N7sQAAcBVjBgMAAOuiu7/W3Q9O8lMZbkp+NcMN7IdmuOn8/iQP\nT1Kz4cJM+49kWDrprzNsSPyrSX4uQ0BxYpKf6u5Pr8FQfz3Jb4zjueX47/fLEDI8PcktunvzzLjO\nzbAh9Gcy3GT98STfGG/C3jnDr92vnSG0ODzJKUlu191fSPI7ST6d5NZJbrzKcT8gw6/Cr5/hJvE3\nJ7b/QobX5uwk98wwW2NLkmcm+ZkJ+y8kSbr7nRluFL8gyV4ZbkL/SpJvJXlGkpt390fn2rw1Q/Dy\ntgyzHx489vHn4+Nb8Ri6+0MZZqS8IMON7gcnuX2Stye5c3c/a67JH41luyX56QwhxLb6X6/347rp\n7ksyBAN/kCEE+7kMj+taGZ7Hn+zud8y12ZLkDkmem2GGya9l2OD87CS3yjJ7UIwzVm6R5K8yvFd/\nLckxSfbOEGb95Ph+AADgKmzT1q1bN3oMAADABqmq0zLc/H9yd5+4saMBAAC+m5jBAAAAAAAATCZg\nAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyWzyDAAAAAAATGYGAwAAAAAAMJmAAQAAAAAAmGy3jR7A\nRrv00kutEQUAAAAAAEn23XffTSutawYDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAm\nEzAAAAAAAACTCRgASJJs3rw5mzdv3uhhAGwIn4HArs7nILAr8xkIO07AAAAAAAAATLbbWnVUVbsn\neVqSxyZ5d3cfOaHtbZMcn+Q2SfZI8p9JXpjk5O7eOlf3xkmekuSOSfZJ8qkkL0vyZ939jdU/EgAA\nAAAAYHvWJGCoqkryt0lulGTTxLZHJXlTkguTnJjkS0l+Icmzk/xYkmNn6t4kyfuSfDXJSUkuSnLk\n2O6wJPdazeMAAAAAAABWZtUBQ1VdO8lHkmxOcssk/zGxi+cm+VqS23f3Z8dzL62q1yZ5ZFW9uLs/\nOp5/epK9ktyuu88Zz728qrYkeVRV/Xx3v341jwcAAAAAANi+tdiDYfckL0lym+7uKQ2r6tZJKsk/\nzIQLS07OMBvimLHufknunOQdM+HCbN0k+fWJYwcAAAAAAHbAqmcwdPfnkvzODja/1Xh8/4KyD47H\nW4/HW2YIHL6jbnd/sqq+NFN31ewcD+yqfP4BuzKfgcCuzucgsCvzGciu5uCDD151H2u2yfMOOnA8\nXjRf0N1fqapLktxwe3VHFyT5yararbuvWO3AfuzHfmy1XUx2l1P+dd2veVXz1occutFDAGAD7er/\nW+h/B9nV7eqfAbs6n4FslHve854544wzkiRHHHFE3vCGN2zwiGDX5HsAu7rn3WmfjR7CDtnogGHv\n8Xj5MuVbZuqspO5SvS+vfmgAAAAAALDzrcVsgo2wFnswAAAAAAAAu5iNDhguG4/XXKZ8r5k6K6mb\nJF9Zg3EBAAAAAADbsNEBw7njcf/5gqraN8m+STZvr+7ogCTnrcX+CwAAAAAAwLZtdMDwvvF4xIKy\n24/H947HM5NcsahuVd00ybVm6gIAAAAAADvRugYMVXVIVR209Hd3n53kI0nuW1X7z9TblOTRSb6Z\n5G/GuhcneX2SI6vq0LmuHzMeT9mJwwcAAAAAAEa7rbaDqrpxkhvPnb5uVf3SzN9v7O7Lk3wiSSc5\nZKbs4UnemeTdVfXMJJckuV+So5Ic393/NVP3cUnukOQtVXVSks8kuVuS+yc5tbvfvdrHAwAAAAAA\nbN+qA4Ykv5zkhLlzN07yypm/D0py/qLG3f3BqrpDkqeM/1w9QxDxG9394rm651bVbZP8cZLHJ9k7\nyX8leWySZ676kQAAAAAAACuy6oChu09McuIK625a5vxZSe6+wj42Zwg1AAAAAACADbLRmzwDAAAA\nAADfhQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAm\nEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAA\nAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAA\nMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIG\nAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAA\nAIDJdluLTqrqOklOSHKvJPsluTjJG5Mc392f3Ua7ByV58Xa6f1d3HznWPz/JAduoe2h3n73ScQMA\nAAAAADtm1QFDVe2R5PQkhyQ5OclZSQ5O8tgkR1XV4d395WWavzPJfZcp2z/JM5L8+9z5LyR5+DJt\nzlv5yAEAAAAAgB21FjMYjk1ysySP6O7nLp2sqo8meU2S45Mct6hhd38qyacWlVXVa5N8McmT5oou\n7+5XrcG4AQAAAACAHbQWezA8IMmWJKfOnX9dkouSHFNVm6Z0WFW/mOQXkvx+d39xDcYIAAAAAACs\noVXNYKiqfTIsjfSe7v76bFl3b62qM5PcO8lBSc5dYZ9XT/KsJGcmedF26u6Z5KvdvXUHhg8AAAAA\nABtu8+bN637Ngw8+eNV9rHYGw9KGyxctU37BeLzhhD5/K8mPJHn8MsHBHlX17Kr6coaZE5dX1Wur\n6pAJ1wAAAAAAAFZhtXsw7D0eL1+mfMtcvW0aZy88Icm7u/tdy1S7XpIDkzwsyTeS3CnJI5IcWVW3\n6u7/XMm1AAAAAADgqmAtZhNshLXY5HktPSjJDZL83jLlD0zyre5+78y511bVOUlemOTJSX51p44Q\nAAAAAABYdcBw2Xi85jLle83V256HJPlikn9aVLiNWQ0vSvKcJEev8DoAAAAAAMAqrHYPhvOSbE2y\n/zLlS3s0bHeHiqo6MMktk/xzd39zyiC6+9tJLk6yz5R2AAAAAADAjllVwNDdW5J8LMlhVXWN2bKq\nulqS2ya5sLsvWNR+zl3H4zsWFVbVDavqN6vqpgvK9sqwtNJKrgMAAAAAAKzSamcwJMmpSfbMsOny\nrGMybMh8ytKJqjqkqg5app/Dx+O/LVN+/bGvZ1TVprmyJyTZlOTVE8YNAAAAAADsoLXY5Pn5Se6f\n5KSqOiDJWUlukuS4JOckOWmm7ieSdJJDFvRzo/F4/qKLdPf7q+q0DBtBn15V/5Dk6xlmPvzSeK0/\nXt1DAQAAAAAAVmLVMxjG/RLukmGT5fskOS3JAzPMNjiyuy9fYVfXHo9f2Uadh4z/7J3kL5OcnOSm\nSZ6W5IjuXulm0gAAAAAAwCqsxQyGjDf2jxv/2Va9+aWNZstusYLrfCvDkkynTh0jAAAAAACwdtZi\nDwYAAAAAAGAXI2AAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMA\nAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAA\nwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkY\nAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAA\nAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhM\nwAAAAAAAAEy221p0UlXXSXJCknsl2S/JxUnemOT47v7sdtpu3U731+7uS2bq3zjJU5LcMck+ST6V\n5GVJ/qy7v7HDDwIAAAAAAFixVQcMVbVHktOTHJLk5CRnJTk4yWOTHFVVh3f3l7fTzcczBBSLbJm5\n1k2SvC/JV5OclOSiJEcmOTHJYRkCDgAAAAAAYCdbixkMxya5WZJHdPdzl05W1UeTvCbJ8UmO204f\nX+juV63gWk9PsleS23X3OeO5l1fVliSPqqqf7+7XT34EAAAAAADAJGuxB8MDMswyOHXu/OsyzDA4\npqo2rfYiVbVfkjsnecdMuLDk5PH466u9DgAAAAAAsH2rmsFQVftkWBrpPd399dmy7t5aVWcmuXeS\ng5Kcu4L+NiXZs7u3LCi+ZZJNSd4/X9Ddn6yqLyW59fRHAQAAAAAAG2fz5s3rfs2DDz541X2sdgbD\nAePxomXKLxiPN9xOPz9YVS9J8pUk/1NVl1XVS6rqBjN1DlzBtX6kqtZk42oAAAAAAGB5q70Zv/d4\nvHyZ8i1z9ZZz4yQfSXLMOKZ7Zlh66ciqOqy7L554re1tKg0AAAAAAFcJazGbYCNcFX7t/7MZNnn+\n8My5V1XVhUn+MMljkjxxQ0YGAAAAAAAstNolki4bj9dcpnyvuXrfobvfPBcuLHnueDx64rW+sty1\nAAAAAACAtbHagOG8JFuT7L9M+dIeDTuyQ8UXxr73Gf9e2iR6W9c6r7uv2IFrAQAAAAAAE6wqYOju\nLUk+luSwqrrGbFlVXS3JbZNc2N0XLGpfVTerqodV1Y8uKD44yaZcuVH0mUmuSHLEgn5umuRaSd67\no48FAAAAAABYudXOYEiSU5PsmeRhc+ePSXK9JKcsnaiqQ6rqoJk6N03y/CRPWtDv0r4Lr06ScaPn\n12fY+PnQubqPGY+nBAAAAAAA2OnWYpPn5ye5f5KTquqAJGcluUmS45Kck+SkmbqfSNJJDhn/fmWS\n30jym1X1g0nemORqSe6dYe+FtyV54Uz7xyW5Q5K3VNVJST6T5G7j9U/t7nevweMBAAAAAAC2Y9Uz\nGLr7m0nukuQ5Se6T5LQkD8wwm+DI7r58G22vSHLPDMHBjZI8O8lfJbnueO7us3sqdPe5GZZdOj3J\n4zPMnjgsyWPznTMoAAAAAACAnWQtZjCkuy/LMGPhuO3U27Tg3NcyzHI46TtbLOxjc5Jf3oFhAgAA\nAAAAa2Qt9mAAAAAAAAB2MQIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAA\nAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhM\nwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAA\nAAAAMJmAAQAAAAAAmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADA\nZAIGAAAAAABgMgEDAAAAAAAw2aatW7du9Bg21KWXXrrwCbjWta613kMBAAAAAIB1cckllyw8v+++\n+25aaR9mMAAAAAAAAJPtttEDuKr60pe+tO7XvMsp/7ru17yqeetDDt3oIQCwgXb1/y30v4Ps6nb1\nz4Bdnc9ANso973nPnHHGGUmSI444Im94wxs2eESwa/I9gF3d2x56+EYPYYeYwQAAAAAAAEwmYAAA\nAAAAACYTMAAAAAAAAJOtyR4MVXWdJCckuVeS/ZJcnOSNSY7v7s+uoP3txva3SnKNJBcm+cckT+3u\n/5mpd36SA7bR1aHdffaOPQoAAAAAAGClVh0wVNUeSU5PckiSk5OcleTgJI9NclRVHd7dX95G+/sn\neVmSzhAyXJbk55I8Psntq+p23f3tmSZfSPLwZbo7b3WPBgAAAAAAWIm1mMFwbJKbJXlEdz936WRV\nfTTJa5Icn+S4RQ2r6upJnpdd+jmcAAAOf0lEQVRhxsKtu/vSsehFVfWaDDMi7pZhNsSSy7v7VWsw\nbgAAAAAAYAetxR4MD0iyJcmpc+dfl+SiJMdU1aZl2v5Qklcn+dOZcGHJUqhw8zUYIwAAAAAAsIZW\nNYOhqvbJsDTSe7r767Nl3b21qs5Mcu8kByU5d759d38qyYOW6X7f8XjZNq6/Z5KvdvfW6aMHAAAA\nAICNt3nz5nW/5sEHH7zqPlY7g2Fpw+WLlim/YDzecEqnVbV7kt9IcnmS184V71FVz66qL2eYOXF5\nVb22qg6Zcg0AAAAAAGDHrXYPhr3H4+XLlG+Zq7ddVfV9SV6Y5CeSPKa7PzNX5XpJDkzysCTfSHKn\nJI9IcmRV3aq7/3Ol1wIAAAAAgI22FrMJNsJabPK8ZqpqjyR/m2Fz57/u7qfPVXlgkm9193tnzr22\nqs7JEEo8OcmvrstgAQAAAABgF7bagGFpf4RrLlO+11y9ZVXVdZO8Psltkjy1u580X6e737VM8xcl\neU6So7d3HQAAAAAAYPVWuwfDeUm2Jtl/mfKlPRq2uUNFVV0/yRlJbpnkwYvChW3p7m8nuTjJPlPa\nAQAAAAAAO2ZVAUN3b0nysSSHVdU1Zsuq6mpJbpvkwu6+YFH7sd4+Sd6c5EeT/Hx3n7ZMvRtW1W9W\n1U0XlO2V5Aa5clNpAAAAAABgJ1rtDIYkOTXJnhk2XZ51TIYNmU9ZOlFVh1TVQXP1npXkJ5P8ane/\naRvXuf7Y1zOqatNc2ROSbEry6unDBwAAAAAAplqLTZ6fn+T+SU6qqgOSnJXkJkmOS3JOkpNm6n4i\nSSc5JEmq6uYZNm7+eJKrVdUvLej/C939ru5+f1WdluRBSU6vqn9I8vUkd03yS+O1/ngNHg8AAAAA\nALAdqw4YuvubVXWXJCcmuU+S303y+QyzDU7o7su30fywDDMPbpzklcvUeVeSI8d/f0iS9yZ5RJK/\nzDAD47wkT0vyF939ldU8FgAAAAAAYGXWYgZDuvuyDDMWjttOvU1zf5+W5LQJ1/lWhiWZTp08SAAA\nAAAAYM2sxR4MAAAAAADALkbAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAA\nAADAZAIGAAAAAABgMgEDAAAAAAAwmYABAAAAAACYTMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACT\nCRgAAAAAAIDJBAwAAAAAAMBkAgYAAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAA\nAAAAACYTMAAAAAAAAJMJGAAAAAAAgMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMJmAAQAAAAAA\nmEzAAAAAAAAATCZgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABgMgED\nAAAAAAAwmYABAAAAAACYbLe16KSqrpPkhCT3SrJfkouTvDHJ8d392RW0v22S45PcJskeSf4zyQuT\nnNzdW+fq3jjJU5LcMck+ST6V5GVJ/qy7v7EWjwcAAAAAANi2VQcMVbVHktOTHJLk5CRnJTk4yWOT\nHFVVh3f3l7fR/qgkb0pyYZITk3wpyS8keXaSH0ty7EzdmyR5X5KvJjkpyUVJjhzbHZYh4AAAAAAA\nAHaytZjBcGySmyV5RHc/d+lkVX00yWsyzEw4bhvtn5vka0luPzPb4aVV9dokj6yqF3f3R8fzT0+y\nV5Lbdfc547mXV9WWJI+qqp/v7tevwWMCAAAAAAC2YdPWrVu3X2sbquoTSX4kyQ9099dnzm9KckGS\nqye5/vxSR2OdWyf5QJJTuvu35sqOTvIvSU7q7sdV1X5JPp3k7d1957m6P55kc5JXdfd9p4z/0ksv\nXd0TAAAAAAAA3yP23XffTSutu6pNnqtqnwxLI31kNlxIkjFQODPJdZMctEwXtxqP719Q9sHxeOvx\neMskmxbV7e5PZlha6dbzZQAAAAAAwNpbVcCQ5IDxeNEy5ReMxxsuU37gcu27+ytJLplpu2zdmWv9\nSFWtycbVAAAAAADA8lYbMOw9Hi9fpnzLXL0dab/3hLrbuhYAAAAAALBGVhswAAAAAAAAu6DVBgyX\njcdrLlO+11y9HWl/2YS6SfKVZcoBAAAAAIA1str9Cs5LsjXJ/suUL+3RsHmZ8nPH43e0r6p9k+yb\n5CPbqztzrfO6+4ptDXjelB2xAQAAAACAwapmMHT3liQfS3JYVV1jtqyqrpbktkku7O4LFrVP8r7x\neMSCstuPx/eOxzOTXLGoblXdNMm1ZuoCAAAAAAA70VrswXBqkj2TPGzu/DFJrpfklKUTVXVIVR20\n9Hd3n51hhsJ9q2r/mXqbkjw6yTeT/M1Y9+Ikr09yZFUdOnetx4zHUwIAAAAAAOx0q10iKUmen+T+\nSU6qqgOSnJXkJkmOS3JOkpNm6n4iSSc5ZObcw5O8M8m7q+qZSS5Jcr8kRyU5vrv/a6bu45LcIclb\nquqkJJ9Jcrfx+qd297vX4PEAAAAAAADbseoZDN39zSR3SfKcJPdJclqSB2aYTXBkd1++nfYfzBAa\n/EeSpyR5QZIfSvIb3f20ubrnZlh26fQkj88we+KwJI/Nd86gAAAAAAAAdpJNW7du3egxAAAAAAAA\n32XWYg8GAAAAAABgFyNgAAAAAAAAJhMwAAAAAAAAkwkYAAAAAACAyQQMAAAAAADAZAIGAAAAAABg\nMgEDAAAAAAAw2W4bPYCNVlXXSXJCknsl2S/JxUnemOT47v7sRo4NYGerqtOSPHAbVR7d3c9cp+EA\n7HRVtXuSpyV5bJJ3d/eRC+rskeSJSe6X5IAklyV5R4bvh/+5fqMFWFvb+wysqhMz/P/j5Tyru4/d\naQME2Emq6rpJnpTkF5NcP8klSd6b5Knd/ZG5ur4LwgS7dMAwfmCcnuSQJCcnOSvJwRm+bB1VVYd3\n95c3boQA6+bhSb6w4PzZ6z0QgJ2lqirJ3ya5UZJNy9TZlOR1SY5O8uIkT07ywxm+H76/qm7V3f+1\nPiMGWDsr+QyccWKSf19wfvMaDwtgp6uq6yX5cJIfSPK8JB/N8Fn4yCR3raojuvtfx7q+C8JEu3TA\nkOTYJDdL8ojufu7Syar6aJLXJDk+yXEbNDaA9fSm7j5/owcBsLNU1bWTfCTDzbFbJvmPZareL8md\nk/xldz9+pv3bM/wY5S+T3HvnjhZgbU34DFzyru4+fWePC2CdPC3J/knu092vXjpZVR9K8toMsxV+\neTztuyBMtKvvwfCAJFuSnDp3/nVJLkpyzJhcAgDw3W33JC9Jcpvu7m3Ue8B4fPbsyXHq/PuS/FxV\nXWvnDBFgp1npZyDA96LPJPm7DD8mnvXmJFuT3HzmnO+CMNEuO4OhqvbJsDTSe7r767Nl3b21qs7M\nkEgelOTcDRgiwLqrqmskuaK7r9josQCspe7+XJLfWUHVWyW5sLsvWlD2wSRHJDkswzq8AN8VJnwG\n/h/jng3p7m+s+aAA1kl3n7hM0d4Zloy7bOac74Iw0a48g+GA8bjoAyNJLhiPN1yHsQBstEdU1XlJ\nvprk61X1gaq6+0YPCmA9VdXeSa4T3w8Bfrmq/j3J1zN8Nzynqn59owcFsMZ+ezy+PPFdEHbUrhww\n7D0eL1+mfMtcPYDvZXdN8idJ7pHkDzNseP9PVXW/DR0VwPry/RBg8LNJnj8eH5Vk3yQvqarf39BR\nAayRqvrZJE/KsPnz88bTvgvCDthll0gCIEnyVxnWojx9Zrm4N1bV65OcneSvquofuvvbGzZCAADW\ny8uSfCDJ+7v70vHcm6vqFRk2hj6hql7Q3Zds2AgBVqmqHpDklCTnJ7mnZeBgdXblgGFpfbVrLlO+\n11w9gO853X1OknMWnP94VZ2e5M5JfiLJv6/z0AA2gu+HwC6tuz+Z5JMLzn++ql6V5LcyrD/+z+s9\nNoC1UFXHJ3lKkrOS3KO7Pz9T7Lsg7IBdeYmk8zLsFL//MuVLezRsXp/hAFzlfG487rOhowBYJ939\nP0m+EN8PARbx3RD4rlZVz8wQLrw+yR3nwgXfBWEH7bIBQ3dvSfKxJIdV1TVmy6rqaklum2HX+AsW\ntQf4bldV+1TV/avqbstVGY8XrteYAK4C3pdk/6r60QVlt0/y1SQfWd8hAex8VfX9VfUrVXXf5aqM\nR/8fGfiuM85ceFSSFye5d3cvt8+C74Iw0S4bMIxOTbJnkofNnT8myfUyrMcG8L3qG0n+OslpVfWD\nswVVdXSSn0pyZndftBGDA9ggp47HR8+erKo7Jjk8ySvGX7cBfE/p7m8meXKGzZwPni2rqhsnuVeS\ni5KcuQHDA9hhVXWnDJ9vr0nykO7+1jaq+y4IE23aunXrRo9hw1TV9yd5T4YPiOdkWH/tJkmOyzDd\n6TbbSDQBvutV1QOTnJZh2bjnJ/nvJIcm+Z0kX0tyZHefvWEDBFgj482xG8+cemWSjyc5YebcG7v7\n8qr6xyT3TvKiJO/IMB3+sUm2JPmp7v7v9Rk1wNpY6Wdgkp9O8uYkX8rwQ5TzMsxc+L0kV09yr+5+\n83qMGWCtVNWHM/z/3N9N8vllqr1x6R6g74IwzS4dMCTDEiFJTkxynyT7ZfigeU2SE7r7Sxs4NIB1\nMf6a44lJbpVhM6v/TvLWJH/c3edu5NgA1kpVnZj/eyNtkYO6+/yq2j3JEzLMaj0wyZeTvCXJH3a3\nZeOA7zoTPwMPS/JHSe6QZN8kX0zyriR/6ocnwHejqlrJzc+Duvv8sb7vgjDBLh8wAAAAAAAA0+3q\nezAAAAAAAAA7QMAAAAAAAABMJmAAAAAAAAAmEzAAAAAAAACTCRgAAAAAAIDJBAwAAAAAAMBkAgYA\nAAAAAGAyAQMAAAAAADCZgAEAAAAAAJhMwAAAAAAAAEwmYAAAAAAAACYTMAAAAAAAAJMJGAAAAAAA\ngMkEDAAAAAAAwGQCBgAAAAAAYDIBAwAAAAAAMNn/B3gi1TN76MsKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 780, + "height": 146 + } + } + } ] - }, - "metadata": { - "image/png": { - "height": 146, - "width": 780 - }, - "tags": [] - }, - "output_type": "display_data" - } - ], - "source": [ - "plt.figure(figsize(11., 2))\n", - "\n", - "# Our temperature-dependent model\n", - "separation_plot(posterior_probability_, D_)\n", - "plt.title(\"Temperature-dependent model\")\n", - "\n", - "# Perfect model\n", - "# i.e. the probability of defect is equal to if a defect occurred or not.\n", - "p_ = D_\n", - "separation_plot(p_, D_)\n", - "plt.title(\"Perfect model\")\n", - "\n", - "# random predictions\n", - "p_ = np.random.rand(23)\n", - "separation_plot(p_, D_)\n", - "plt.title(\"Random model\")\n", - "\n", - "# constant model\n", - "constant_prob_ = 7./23 * np.ones(23)\n", - "separation_plot(constant_prob_, D_)\n", - "plt.title(\"Constant-prediction model\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "etHuMg8OIA0u" - }, - "source": [ - "In the random model, we can see that as the probability increases there is no clustering of defects to the right-hand side. Similarly for the constant model.\n", - "\n", - "In the perfect model, the probability line is not well shown, as it is stuck to the bottom and top of the figure. Of course the perfect model is only for demonstration, and we cannot infer any scientific inference from it." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "_I_3h7lsIA0v" - }, - "source": [ - "## Exercises\n", - "\n", - "1\\. Try putting in extreme values for our observations in the cheating example. What happens if we observe 25 affirmative responses? 10? 50? " - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "_B-K0Neyx7pZ" - }, - "outputs": [], - "source": [ - "#type your code here." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "ulECHYwMIA0v" - }, - "source": [ - "2\\. Try plotting $\\alpha$ samples versus $\\beta$ samples. Why might the resulting plot look like this?" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 294 - }, - "colab_type": "code", - "id": "21v-EuHZIA0v", - "outputId": "ac7f87d4-4b14-45c4-ace4-dd2e7aa2eb28" - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABo8AAAIqCAYAAAD1mNOkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYZFld5//3vRGRW1Vl7900zdIg\neFDUAVEYcWtRQNBHcdzGAVnckMEFURhHh5+i8IyOPYwoyjjC2CqijjsjgoACLqjIqAiDc2xpoKEX\nqqu7a8k94t7z++PciIqKisitMiuXer+ehycqI+5y7pIB3E9+v6dIKSFJkiRJkiRJkiQBlHs9AEmS\nJEmSJEmSJO0fhkeSJEmSJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmSJEmSBgyPJEmSJEmSJEmS\nNGB4JEmSJEmSJEmSpAHDI0mSJEmSJEmSJA0YHkmSJEmSJEmSJGnA8EiSJEmSJEmSJEkDhkeSJEmS\nJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmSJEmSBgyPJEmSJEmSJEmSNNDe6wFIkiRJ+0UI4Z3A\nTcBrYozfvc5ytwKPAP5bjPHF6yx3B/BA4EUxxleHEN4FfDHw9THG397Jse+EEMJHgYcCXxJjfNee\nDmaXhBBuAZ4DvCTGePMeD2dLQgip+efDYowfvQT3/1F24P4MIdwEvBP4WIzxxvW2H0L4UeBHgF+O\nMT53u/vcDUPj/dwY4/s2uc4t5Pv/5THGH73A/T8B+G7gC4HrgB7wEeCtwKtjjJ+4kO1LkiRpb1l5\nJEmSJJ31lub1KZMWCCHcSA6OAJ68znKPJgdHAH+0E4PT5oUQnh9CSM310gjPz1j/E3g1sK9CjxDC\nrzdB0U54G/kY//pCNhJCeAnwHuCZwD3AG4E3AXPADwAfDCF80YUNVZIkSXvJyiNJkiTprLcAPwl8\nagjhoTHGj41Zph8sLQGfEUK4PsZ415jl+sHSh2OMt+7CWLW+z93rAexznp8RMcYf2+sxTLBj1yrG\n+EZy0LNtIYQvAf4L0AW+Lsb4e0OftYAfA34I+I0QwiNijEsXsj9JkiTtDSuPJEmSpEaM8QPAHc2P\nT52wWD8UesPIz5OWs+pobxiOrM/zcwCEEK4EPmWvxzHiB5rXm4eDI4AYYwX8J+D/AtcDX36RxyZJ\nkqQdYuWRJEmSdK63AN9GrjD6H8MfhBBK4EuB+4BfA76jWe5XRpabIs9t1N/eeUIIDwZeSQ6ZrgI+\nCfwe8MMxxjPNvj4GPAj4phjjb0zYzuuAbwVeF2P89o0OLoTwOODlwBOBGeA24JeBV22w3lcALyCH\nDlcAZ4APkEO0W2KMvTHrPID8oPkrgBvJlQq3Ab8FvCrGuDyyfAk8lzwny2cCx4ATwD+Tz/H/jDEm\n1jE0R03fR0IIAM+LMd4ysuzlwCuArwIeQL6ubwV+MMZ495htPxZ4MfnaXgcsAP9IPve/tt64Rrbz\nXOCXyNf7WeTr8bXkNodngHcBL4sx/r9Nbq8gtw97HvAY8nk7Cfwf4PXD82tt5fxs4Xg2vf+R9T6D\nfH/cRA4aVsn3xx8APx1jvH8LY7iFfN+8F/jSGOPCNo7jo2xhTqUQwpOBNwMV8NQY458NfXYT8D3A\n55F/v08Cfwv8XIxxU4Hy0BxpAA9db86ppk3mj5PnH5oHPk6uMPrxGGN3aLlbGDPnUQjh4cAPAk8i\nf+f0gDuBd5CvxT8P7S4B7wbGfifFGFMI4QPAo4FHbuZYJUmStP9YeSRJkiSdqx/2fGnTgmnY55CD\nk/eQHwSvAV/WPDwf9nnAEWAZeOeYfTwA+BvgUeQA4feBa8mTz/8GQIyxBm5pln/euIGGEDrA1zQ/\n/tJGB9ZMcP8X5DDnE+TQ6P3Af1xv/RDCTwJ/SK7G+r/NuP4KeBzwi8Dvj56rJhj4B+D7yf+/4zeA\nP26O/RXAX4cQrhjZ1WuA1wP/ivzQ+heBvyQHEq/bzDGS53J59dDPv9T8/KGR5ebI5+JJ5Oqw/9W8\n9xzgj0MI5/yhXQjh35Gv2bM4e+7+GngC8IYQwi1j7oONzJDDqm8G3tds837g64C/CSF8+kYbaPb5\nRuBXyffd35Kvz983x/ZbIYTXDq2y2fOzKdvYf3+9ryaHS88hh3ZvJJ+Lq4H/D/jbEMIDR9ebMIYf\nb7bzT8DTtxMcbVUI4THA7wAF8I0jwdFLgD8Fvpp8Xm8h/549FXhzCGGz7fF+u9kH5FDx1c1/To8s\n9xnk38cryMHsHwMPB14G/PQmjuVTydfi28nX4g3Arzf7fAH5Xnxsf/kY41fGGG+KMf7jOpu9sXm9\nd6P9S5IkaX+y8kiSJEk619vJFTKXA48nP5Tt68939K4Y43II4T3kqonPIj8c7nvy0HIrY/bxcuCn\nYow/0X8jhPAU8kPfp4cQHh5jvI38YP+HyQHVg2KMnxjZzlOAK4F/jjG+ZxPH9rPkwOINwHOagIoQ\nwtXAn5MrDs7RjOulwApwU4zxb4Y+ewg5UOlXJb2meb8EfpNcnfOzwIuG9nUZOah5CnAzuWqKEML1\nwHeSKzQ+bbjyJ4RwHTlEek4I4VXrPbSOMb4VeGsI4Xubt35stEqj8b3kQOt7+1VTTVjzfvL1/CJy\nAEAI4WHkUKsF/NsY428OjS0AbyOHF39CDlE268vIIcsj+oFHU7X2JnLQcDPw9A228e3AvwWOA58f\nY/yXobE9hnzevjOE8OYY4x9u4fxs1pb237x/DTkomyKf/58ZWmeaHOB+CfAz5CBtohDCt5HbpN0O\nPCXGuOthRXPf/xFwlFyx9aahz55InjdtBfjykVDpCeR75WUhhLfHGP98vf3EGF8TQvgguSrtvhjj\niyYsejPwnc18Rv19fQfwC8C3hhBessG8Qy8mf9/9RIzxP44c6/c3238Z8G/WG+/QOp9L/u5M5KBd\nkiRJB5CVR5IkSdKQGOMZ8gNvOBsW9fVDobc3r38y8v7ocmNb1gEfHg6Omv2+jfwAHJpWT02A9E7y\n/25/zpjtfGPzesuE/QyEEB5BbjmXyG3Z6qF9nyC3rBqttIJcDQXw2uHgqFnvdqB/HM8f+ugrgU8H\nPgq8eGRfp8jt/hLwrBDCfPPRjeQqjttGW8bFGD9JDlE+i9zCbicsNmMbtNuLMX6Isw+7h9ttfTc5\ndPv14eCoWSeSwwuAF25xDB3g+4YrZWKMa5xtK/eUprXeevrX55XDwU2zrX/gbOvF57M7trP/ZwOX\nAX8/HBw166wC39f8+IwQwrWTdhxCeBrwWuAecnA0Gq7uuOZ6vIXcZu8HYoy/PLLID5Dv41cNB0cA\nze/Pzc2PW71X1vOnw8FR4xZyCD4NPHiD9R/WvI4Lel5NboX33WM+O09TcfgH5O+s1zW/U5IkSTqA\nDI8kSZKk8/VDn6f23wghHCW35TpOnusHzoZHTxla7gpyezvI1QnjvHXC+3c2r8MPzF/fvD53eMGm\nQuOrgZqROZcm6I/pthjjHWM+fzs50BneR0F+cAyTj+Udzeujh4KgJ/W3OW4upBjjx4APkitPPr95\n+8PkeVYeG0L4oeZ8D6/zzzHGD0yo5NqOdzVBxahx16B/PJPOwZub18eHEI5sYQwnJ1SMvY88/0+L\n3JJsrBDClUOfb3R9Pm8L49qUC9j/F623Tozx/eS5rlrkCpZx+34cuUXbMvC0JsTbVU1V2O+Tg9H/\nHGN81cjnBbliCja+V75kwufbcd73SRNC9quwJgZw/cWb11eGED57ZDu9GONfTPjOOEcI4RvIbRGv\nJ1c3/vuN1pEkSdL+Zds6SZIk6XxvIbeeenwI4bKmWuYmcqXIO2KM/ZDlveT5R74whDDTBBtPIv+R\n1q0xxg9P2P7HJrzfDzOGK4B+l9zK7REhhC8canX1dGAe+OPNPNgFbmhexy4bY1wKIZwArhl6+wpy\nhQjARyZs96PNa0Fue/chzs538tgQwqQ5V/rh0COBt8QYj4cQvgf4eeCVwA+HEP6cHD68Ocb4TxO2\ns11buQY3Nq9fH0IYG2aQqzw6wKcA680FM+y2cW/GGKsQwieBh5AfxE9y49C/N7o+V4UQ5jZoX7ZV\n291/v9Jl0jr99a4mn4Nx+/0J8rxiz44x/p/NDfeCFORWe18M/EmM8YfGLHMZuf0bwPObMGXUTPN6\nbQhhPsY4On/RdmzlXh7nx8jfW58J/J8Qwq3k37u3kb9fljcaQAjhu8ltBteA74ox/txmBi5JkqT9\ny/BIkiRJGhFj/EAI4Q5y4PKl5ACn34ruHUPLVSGEdwFfRa7QeTt5HhuYXHkAUG1hLCshhF8jt7l6\nHnluIjjbsu6XNrmpueZ1vcqd0UqcuaF/T3qAPLy92ea1Hwx9DmcrnibpVysRY3xtCOHvyK2/njr0\nn58KIfwV8MIY499vsL3N2vQ14OzxPGMTy85vvMjA4jqfrTWvU+ss078+3RjjpOMZvT47GR5td//9\n9dYLJfrrzY757OeGtvHCEMKvj6tw22FfN7TPLwwhPG5MaDVcLffsTWxznhw+X6it3MvniTGeCCH8\na/K8Zc8BHk0OdV8AnGkC4JdPusYhhM8Efpp8zz4txvinFzIeSZIk7Q+GR5IkSdJ4bwG+jfwX+b/L\n2VDo7SPLvYMcHj2p+Wyj+Y624/Xk8OjrQgj/nlxJ8JXkiqTf3+Q2+g/jp9dZZm7k58V1Phv3/sLI\n63+eUKExUTMvzNeHEDrAE4GnAc8ktz37sxDCp12MuW1GLJCrSp7azE21U2bW+axf8XVinWX616cT\nQmhPCFDGXZ+dst39L475bNJ6k8b8zeS5pp4AvII8Z9dumiO3h7wL+A/Ab4QQHjs8XxXnjjXEGHdq\nfq5d1xzHT5GD2hvIrTi/nhzevowcdL1owurfSq62/BmDI0mSpMPDOY8kSZKk8fqVQ1/UzO3y6UAc\nE1y8Y2i5G8hty5aAd+/UQJpqm78DjpHb1X01uWXXr0+Yt2ecu5rXB4z7MIRwGXDlyH7vB+5vfnz4\nhO3236+Ajzf//pfmdVzLsU2JMXZjjO+OMf4gEMjzSx1lZO6ni+SCj2eCsdsLIbTJLQMBPrnO+h/h\n7DxVG12fu7Zwr2zWdvd/28hn46zX2u65McY3AN9ErnZ5aQjhyWOW20lvjjE+hxxY/RXwCOC1wwvE\nGE9ydp6hnb5XLpoY4x0xxl+KMT4d+AryNf7O5r4c527gd8hzUEmSJOmQMDySJEmSxnsHeR6bzyA/\nQIXzq45o5uK5k9ye7abm7Xc28x/tpNc3r/+OXIkDcMsW1v+H5vWRIYRrx3z+tAnr9UOwr5zw+Zc3\nr+8dmk+nX33w9BDCkXErhRC+JoTw8KGfHx1CeEETwJ2j2W6/wuq8zzdQbHH5cfrHM24OG0IIsyGE\nbwwhXLXF7V4XQnjMmPcfT+4SsQbcOmnlJqx4f/PjRtfnXRM+3/b5uYD99//9FYwRQngCOTxbAf5m\nzCL3NPv/e3LFUQH8agjhuk0OfTtONPvskX8HTwHPCiE8Z2S5je6V60IIXx1COLbF/e/EfTxuPHPN\neMaON8b4VuA+csXi2Ps7xvgTMcavizG+dzfGKEmSpL1heCRJkiSNEWM8A/wl+aHt9zZvv2PC4n9C\nnpvmhc3PO9myru+N5IfpTye3lPrQVh7Wxhg/CPwT+f8DvHz4s+ah+ys4O8/OsP9Grjz49hDC40fW\nC8BLmh9fPfTRW4EPkQOA/xpCaI2s9y3kVoDvDiH05/R5FvDzwKublnXDy3eAr2l+/Ac2p99C7KGb\nXH49ryXPz/PkEMI3j4ytDbwG+A3y+LeiSz7eQfu25nz8WPPj/44xrjcvEsCrmtcfDCF8ysjYngh8\nC/n6/czIejt1fraz/18mV+h8Vgjhe0bWOUqePwfglhjjqQ32/9Pk37frgF8JIexKyDIsxvhR4PnN\nj68JIXzqyHgS8OwQwpcNr9cEqbeQg9D/tMndnWlerwkhjJv/6UJNke/dXw4hfP7ohyGELyWHRnfS\nhHZjlvmUEMKjthGISZIkaR9zziNJkiRpsreQq4keB/SAd05Y7h3kOVg+r/n5jyYst20xxpMhhN9h\ne1VHfS8C3kxuQfU44H3kgOdpzfsLwL8a2e+fhRBeDvwo8BchhD8FPkZuy3UTed6e18YYf3NonTqE\n8I3k8/J84MtCCO8iB3GPa/axDHxrjLEfWN1MrkT5WuDjzfL3kuf++SLgweQqlM0e9/ua8f1WCOFv\ngb+JMb58/VXGizF+JITwreQ5b34lhPACcsXNsWYfNwAfBb5/i5t+DzlouDWE8HZglTx31iPI7QL/\nwybG9qshhCeR2/m9P4TwTnKLwk8Bvpg8P9YPxhj/emTVHTk/29l/cy8/C/g9cnj2TOAfyW0TvwC4\nlnytX7qJ/acQwnOb9Z9CDjP/y1aPY6tijL8ZQngq8DzgN0MI/zrGuBpjfE8I4T80Y/jj5nz8M/nY\nnty8/h3wyk3u6p/JAdIx4B9CCB8Bfj7G+KYdOo6TIYQXkYPPPwsh/CUQyW0oH0G+hj3ge2KM9YTN\n/Ak5hPwmchAlSZKkQ8DKI0mSJGmy4Qqiv40xnp6w3HBFUowxjpunZSf0W9dVwK9udeUY49uALyWP\nN5AffP8r4CeBZ5PDi3HrvZwcML2NHP58C/C55PZj/ybG+O/HrPPBZtv/lVxh8+/I1UXHgF8EHtOM\np7/8veTg4GXAHcCXAd9Bbod2BzmYuWkL8/Z8F/C3zf4eD0x68L0pMcZfJ7cmfAM5yPpWcjXUCXKl\n0GPHzIe1GU8nB2JPBJ4DXA78NvD4GOOHN7mNbyGHiu8FPp98XR8NvAn4khjjT45ZZyfPz5b337RD\n+2zysT+AfOxPJs9x9H3ka31mdL1xYozHyfdvAl7RtL27GL6bHO48BvipofH8FDmY+wPyefh28nX+\nF+AHgM9f57vkHM05eB75vDyM3EZzXIXgtsUYf4H8+/Zb5BDomc0+H0EOg/51jPF3dnKfkiRJ2v+K\nlNLGS0mSJEnacyGEp5MrhH47xvj1ez0ebU9TKfNLwLtjjDft7WgkSZIk6XxWHkmSJEkHxw83rz+9\n7lKSJEmSJF0AwyNJkiTpAGjmHXoi8Ccxxr/c6/FIkiRJkg6v9l4PQJIkSdJ4IYTPI88V9ATyHEP3\nAN+2p4OSJEmSJB16Vh5JkiRJ+9eNwAuBTwf+EHhijPGjezkgSZIkSdLhV6SU9noMkiRJkiRJkiRJ\n2iesPJIkSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI00N7rAVzqTp065aRTkiRJkiRJ\nkiRpV1122WXFZpe18kiSJEmSJEmSJEkDhkeSJEmSJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmS\nJEmSBgyPJEmSJEmSJEmSNGB4JF3ibr31Vm699da9Hoa0K7y/ddh5j+sw8/7WYec9rsPM+1uHnfe4\nDjPvb/UZHkmSJEmSJEmSJGnA8EiSJEmSJEmSJEkDhkeSJEmSJEmSJEkaaO/1AHZCCOFK4EeAZwDX\nAyeAPwJeFmO8axPrf0Gz/uOBGeDjwO8APx5jXBhZ9tOBHwO+GJgHPga8AfiJGOPaTh2TJEmSJEmS\nJEnSXjjwlUchhFngXcALyIHPc4FfAL4R+MsQwhUbrP9M4M+BB5MDpBcA/wi8FHhbCKEcWvbRwF8B\nXwDcDHwL8G7gR4H/tXNHJUmSJEmSJEmStDcOQ+XRi4DPBF4YY/z5/pshhPcDvwe8DHjxuBVDCNPA\na8mVRk+IMZ5qPvqfIYTfI1cyfTm5igngVcBR4AtijB9o3vu1EMIi8L0hhK+KMb5pR49OkiRJkiRJ\nkiTpIjrwlUfAs4FF4PUj7/8B8AngWSGEYsK6DwB+F/jPQ8FRXz8w+iyAEML1wJOBPx0Kjvpe07x+\n89aHL0mSJEmSJEmStH8c6PAohDAPPAr4uxjj6vBnMcYEvBe4BnjYuPVjjB+LMT43xvjaMR9f1rye\nbl4/ByjIbetGt/MvwH3AE7ZzHJIkSZIkSZIkSfvFQW9b99Dm9RMTPr+9eX04cNtmNxpCmCLPZ7QE\n/H7z9o2b2NdjQgjtGGNvs/ua5NZbb73QTUhb4j2nw8z7W4ed97gOM+9vHXbe4zrMvL912HmP6zDz\n/j7YHvnIR17wNg505RFwrHldmvD54shyGwohlMAvAp8GvCzGeOdu7UuSJEmSJEmSJGm/OeiVRzsq\nhDALvBF4BvBzMcZX7dVYdiIZlDaj/1cE3nM6jLy/ddh5j+sw8/7WYec9rsPM+1uHnfe4DjPvb/Ud\n9Mqj/nxERyZ8fnRkuYlCCNcAf0oOjn48xvhd29zXmY32JUmSJEmSJEmStF8d9MqjjwAJeNCEz/tz\nIq3boDGEcB3w58DDgOfFGG8Zs1h/zqT19vWRnZjvSJIkSZIkSZIkaa8c6MqjGOMi8I/AZ4cQZoY/\nCyG0gCcCH48x3j5pGyGEeeCtwEOAr5oQHAG8F+gBnz9mG58BXA78xTYOQ5IkSZIkSZIkad840OFR\n4/XAHPD8kfefBVwLvK7/RgjhUSGEh40s92rgMcA3xRjfMmknMcYTwJuAm0IIjx35+Pub19chSZIk\nSZIkSZJ0gB30tnUA/x14JnBzCOGhwPuARwMvBj4A3Dy07D8BEXgUQAjhs4DnAB8CWiGErxuz/Xti\njO9u/v0S4IuAPw4h3AzcCXx5s//Xxxj/bIePTZIkSZIkSZIk6aI68OFRjLEbQngK8KPA1wLfBRwn\nVwH9SIxxaZ3VPxsogE8HfmvCMu8Gbmr2dVsI4YnAK4GXAseADwM/APz0hR6LJEmSJEmSJEnSXjvw\n4RFAjPE0udLoxRssV4z8fAtwyxb3dSvwDVsboSRJkiRJkiRJ0sFwGOY8kiRJkiRJkiRJ0g4xPJIk\nSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIk\nDRgeSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIk\nSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkacDw\nSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIk\nSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5Ik\nSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKk\nAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIk\nSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRge\nSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIkSZIk\nSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkaaC91wOQ\nJO2NOiVOrdUs9xI1+a8J5toF81MlZVHs9fAkSZIkSZIk7RHDI0m6xKSUOLFSs9itaZUF7bKg1Xx2\npps4udrjSKfk6pmSwhBJkiRJkiRJuuTYtk6SLiEpJe5aqliuEtPtknZ5bjjULgum2yXLVV4upbRH\nI5UkSZIkSZK0VwyPJOkScmKlppegU65fUdQpC3opLy9JkiRJkiTp0mLbOkmXrEttzp86JRa7NdPt\nzf3dQKcsWOzWXDVzOM+HJEmSJEmSpPEMjyRdci7VOX9Or+Xj3YqyLDi9VnP5dGvjhSVJkiRJkiQd\nCratk3RJuZTn/FnqpfOOdyOdsmCpd3jOgSRJkiRJkqSNGR5JuqRcynP+bPdIDs8ZkCRJkiRJkrQZ\nh6JtXQjhSuBHgGcA1wMngD8CXhZjvGuT23gE8Ebgc4HnxRhvmbDcVwDf2yx3BLgLeBvwihjjxy7s\nSCTtpkt9zp/t/rWAf2UgSZIkSZIkXVoO/DPBEMIs8C7gBcDvAM8FfgH4RuAvQwhXbGIbzwP+Hvi0\nDZb7DuAPgYcArwC+rdnns4D3hRAeut3jkLT7LmTOn8Ngrl3Qq7fWgq5bJ+baBz84kyRJkiRJkrR5\nh6Hy6EXAZwIvjDH+fP/NEML7gd8DXga8eNLKTSD0C8DPAh9s/j1uuRJ4JXAG+IIY44nmo18JIUTg\nvzdj+b4LPSBJu+NC5vy5fHqXBnURzU+VnFztbekc1HVifqq1i6OSJEmSJEmStN8c+Moj4NnAIvD6\nkff/APgE8KwQwkZPSr8mxvg9wNo6y8wDVwP/NBQc9f1Z83rjpkYsaU9c6nP+lEXBkU5Jd5PVR906\ncaRzOFr2SZIkSZIkSdq8Ax0ehRDmgUcBfxdjXB3+LMaYgPcC1wAPm7SNGOP/iDH+/kb7ijGeBO4G\nHhpCmBr5+Mbm9YObH72ki805f+DqmZJ2wYYBUrdOtIu8vCRJkiRJkqRLy0FvW9efY+gTEz6/vXl9\nOHDbDuzvpcAtwBtCCD8CnAAeDdzc7Otnd2AfANx66607tSlpUy6Fe+50D5Z6Ba0tFNL0ajjSSSwe\n9G/LISnB/V1YrqCkoD2UD/VqqEnMtuCKDvzLISk6uhTub13avMd1mHl/67DzHtdh5v2tw857XIeZ\n9/fB9shHPvKCt3HQ/6T8WPO6NOHzxZHlLkiM8VeBrwaeDHwIOA68EzgFfGGM8fhO7EfS7jjagipt\nrmVbX03i6CGb8qco4MopuH4mB2OJRJXy65FO4vqZ/Lnd6iRJkiRJkqRL0yH6W/rdF0J4BvAG4APA\nL5Irnh4N/BDwthDCU2KMt6+ziU3biWRQ2oz+XxFcKvfclcsVy1WiU26cjHTrxGyr4JrZQ5YeXUIu\ntftblx7vcR1m3t867LzHdZh5f+uw8x7XYeb9rb6DHh6dbl6PTPj86Mhy2xZCuJLcsu6j5CqjXvPR\n20II7wT+nty+7hsudF+Sds/nWMONAAAgAElEQVTVMyV3LVV06/UDJOf8kSRJkiRJknSpOuhPRT8C\nJOBBEz7vz4m0Ew0anwBcBrxpKDgCIMb4D8CdwJfswH4k7aKiKLh+rsVsq2C1V9Otz21j160Tq72a\n2VZerrB3myRJkiRJkqRLzIEOj2KMi8A/Ap8dQpgZ/iyE0AKeCHx8h1rJ9aubZiZ8PrPOZ5L2kaLI\nregecqzNfKcgpWbOn5SY7xQ85Fiba2YNjiRJkiRJkiRdmg50eNR4PTAHPH/k/WcB1wKv678RQnhU\nCOFh29zP3wA18IwxQdWTgCuB92xz25L2QFkUXD7d4oFH2jzoSJsHHmlz+XSL0tBIkiRJkiRJ0iXs\noM95BPDfgWcCN4cQHgq8D3g08GLgA+R5iPr+CYjAo/pvhBCextmqos/pv4YQFpp/3xNjfHeM8eMh\nhP8KvAR4XwjhFuAO4NOA7wMWgf+484cnSZIkSZIkSZJ08Rz48CjG2A0hPAX4UeBrge8CjpMrjn4k\nxri0wSZey9m5kfpe2PwH4N3ATc2+XhpCeD/wncDLyBVPx4E/AF4RY/x/F3o8kiRJkiRJkiRJe+nA\nh0cAMcbT5EqjF2+w3Hm9qGKMN25xX78G/NpW1pEkSZIkSZIkSTooDsOcR5IkSZIkSZIkSdohhkeS\nJEmSJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmSJEmSBgyPJEmSJEmSJEmSNGB4JEmSJEmSJEmS\npAHDI0mSJEmSJEmSJA0YHkmSJEmSJEmSJGmgvdcDkA6qOiVOrdUs9xI1OYmdaxfMT5WURbHXw9MY\nB+2aHbTxXqhL7XglSZIkSZKk/crwSNqilBInVmoWuzWtsqBdFrSaz850EydXexzplFw9U1L4wHtf\nOGjX7KCN90JdascrSZIkSZIk7XeGR9IWpJS4a6mil2C6fX7Xx3bz4Hu5ystdP9fyYfceO2jX7KCM\nd6eqhA7K8UqSJEmSJEmXEuc8krbgxEpNL0GnXP/hdacs6KW8vPbWQbtm+328KSXuWa64/UyPhW6i\nKApaRUFRFJzpJm4/0+Oe5YqU0qa2t9+PV5IkSZIkSboUGR5Jm1SnxGK33vAhd1+nLFjs1tSbfIh+\nKatT4v7VijsXe3xiscediz1OrlYXfO4O2jXb7+PtVwktV4npdkl7ZJztsmC6XQ6qhDYKkPb78UqS\nJEmSJEmXKsMjaZNOr+X5WLaiLAtOr1kpMclOV7GMOkjXrE6J2890ObFSc/dij08u9Ti9tnGAdjHH\nu9NVQgfp+kiSJEmSJEmXEsMjaZOWeum8SouNdMqCpZ5VEuPsdBXLOAfhmg0HaCdWajqtgrLMAdpC\nN3HHYsW9K5OP/2KNdzeqhA7C9ZEkSZIkSZIuRYZH0iZtt9bBGonxLsZcN/v9mo0GaOW4AK1VsFol\nji/XEwOkizHe3agS2u/XR5IkSZIkSbpUtfd6ANJBsd2k9bAktHVKnFqrWe4lavJxzbUL5qdKymJr\noUK/imW6Pf7s1ClxZq1mpTq7r7KAK6YL2uXmz+h+v2ajAdqk/bbLgl6duG+15qqZ1nmfX4zxXkiV\n0OXT4z/f79dHkiRJkiRJulT5DE7apLl2foC/Fd06Mdfe2gP3/WY35iWaVMWSUuLelYo7Fnos9s7d\n13Iv8aH7ulva136+ZuPawM22Jo+33QQxo23gLtp4d2G9/Xx9JEmSJEmSpEuZ4ZG0SfNTJdUWH3TX\ndWJ+6uD+mu3WvETjqlhSShxfrliZsK+ZdkkNW9rXfr5m4wK0oxuMt1XAQvfcOOZijXc3qoT28/WR\nJEmSJEmSLmU+gZM2qSwKjnRKupt82N2tE0c6W2/ptp9sZl6iOiWWujV3LFZ84N417lzscXK1Oq9C\n5px1xrx33+rG+0ppa3Mg7edrNi5AK4uCuXXG2y5zBVbfxRzvblQJ7efrI0mSJEmSJF3KDI+kLbh6\npqRdsOHD7m6daBd5+YNqXFu1YYMWc4sVi73EVKtgpUok2LCd3ehZ6QdQ6wVHAP3MoFMWLHbrdQOq\nvv16zSZFX1dOrz/e/iFf7PHuVpXQfr0+kiRJkiRJ0qXMp3DSFhRFwfVzLWZbBau9+rwH3t06sdqr\nmW3l5Yp9WCFRp8T9qxV3Lvb4xGKP46twusd5QcykeYmg32KuZrVKTLeKQQVNWRYsrNUbtrMbrWJZ\nWGdffb06MTtUxVKWBafXNq4+2q/XbNKXb1EUXDvbYmbCeHuJvRnvLlUJ7dfrI0mSJEmSJF3K2ns9\nAOmgKYqCa2ZbXDVTcnqtZqmXqMlhwHynYH6qtS/baqWUOLFSs9jNQU27LGgBBQVLPbj9TI8jnZKr\nZ0qKohjbVq3vvtWaKp3/eacsWK4S80M/d+u832tmW4Pl5qdKTq72KAs4s1bz8YUekCuLZlrF2NCh\nSnC0czZy6ZR5jJdPb3zs+/GazbULznTHn+OiKLhqpsUV0yULazXLVR5vXSeunSl58LH2ntxjV8+U\n3LVU0a3TulViW60S2o/XR5IkSZIkSbqUGR5J21QWBZdPtzYVXuy1lHIFUC/BdPv8B/qtgnMqha6f\na1EDrfM3lVvM9XLF0TijtUD9FnNXzZwNhApguUrcudhjul2SCmg1ny32Eme6FbOtgsunc5DVa+bO\nGQ0QNq47OjvmU2s1y0OhxNF2wfzU+pUx49ab28R6m9EP0CYFdJDvsfnp1iCMW+3VexYcwdkqoX4I\nWZbFOSFSt07UTcVRP4TcioP0OyVJkiRJkiQdZoZH0iXgxEpNL+Ugp06JM2t1np8owb2rMN3KQclw\npdCkmpGFbs2E3AiY0I6tgNvPdJlqlVQpcWK5plMkZtolaWSdfpiy2ozj8qmCdlly5fT5W96ormVS\ntRXkeZlOrvbGBh3bXW8r+m3glqv1q3j6NtsGbpydDMGsEpIkSZIkSZIOP8Mj6ZCrU2KxWzPVKrh3\npWKpl2gVOaQpCqCApQruWKyYaxdcOV2y2K2ZnypYHNO6bnmddnbdOnGsfW4Ic99qzVK3piwKbjha\ncGq1pgZWU0GvqlmtoUyJ5SqHSefuq2aqLHnEZeeHNN06Md+ZHFKMVlvVKXFqtWKlOht2zLYKKGq6\nS4nrZktOdxNL3Zq7l2tSShzrlBwdScraTZg0XKW13QBpt9rA9e1mCGaV0NbtZiWbJEmSJEmStJMM\nj6RD7vRaTVnA8eU8T9G4dnOtAqZbBatV4vhyzRXTeZmqPj8oSinPTTROXSeOTrWa5RLHl4fCmzqd\n1/KuXbZo1Sl/E60k6gSJREHBkXbJtbMF3RoSudXd6L7mp8Y11sv61VbtghyajQlQFnqJk6sVi73E\n3Qsl1xxpc2otAdBplSz0EqfWesx1cuXTcMAyaT6nrdjNNnAbtSrcyRBM67sYlWySJEmSJEnSTjI8\nki6Svao6WOolTncTVZpcMdTXLvP8Qme6ORwZ11Zt0lC7dWJuqK3afatnW+X11xvX8i6HMCXtds1c\npzyvAqdVJBa69TlB0UYt3IarrYYDrFGtAu7vwWoFK1XF1XPlSLiVH/SvVDkIu3a2dV6ANDqf01bt\nVhu44VaF69mJEEyTGeJJkiRJkiTpIDI8knbZXlcd9EaqfTbSLguWeon5qcT1M63z2qrNtgsWuucG\nUf22av15ieqU27/1H5b36sTRTjGx5V2nLJguoSTRrc8NPNplXm9+6uy+SvL+7lzsjQ3iTq/lcz0a\nYI06uZqrsWbaeR//7/4eV40JUPoBy32rNVfNnPt5Web9XT59YcHLTraB64dn48KKcXYiBLtYDlrr\nN0M8SZIkSZIkHUSGR9Iu2g9VB0tjqn020iryeuPaqh3tlJxaq2hztq3aaFu3hSa86asSHO2ULHWr\niZVLrVbJXAt6FHmOpKEWbinlfVVVzUoNs2XBAkwM4taqPMfS0joBSt3MszTV6odiJXcu9LhmbvyD\n+06Zt3fF9LkhRacJ2/bT3D+nR87/ZuxUCLYTxgVEsy1Yq/OcWwel9dthDvEkSZIkSZJ0uBkeSbvo\noFYdpKF/j2urNt2CblVzrFNydExbteXqbIVRr07MtQvKopgYHEE+Byt14rq5FldMlyys1SxXOTwo\ngGNtWKSg1SrGns/hIO7EUsVcu1g3QFns5rmgzlHA4lrNsZEApU6JhbWaxV5iuVrjsqkWs62Co021\nSz35sPbE0oQKr/XshxBsUpVeSokPn65Yq2rmp1tcOX3use3X1m8HPcTTxXfQKuskSZIkSdLhZXgk\n7ZL9UnUw1yk5vVZtKUzI1UQj7dmG2qpdP9caVFSNG2sNtMjBUasoBu3sxrW8G12vv6/56Rbz5Iqj\n+U5Bt86fbyaIqyi4a7niypnJX3Er1fnjmGoCrGPNzyklTq7mB7llCZ1WDvmKomChlzi11mOuU3LF\n1P56qNs//9tZb6+sV6V332pNUcCRqdbE+adg/4Wwux3iGTQcHnvd3lSSJEmSJGnU5p5qS9qyC6k6\n2EntomCuU9Kt08YLk8OauU5Je50HlP12drOtgtVefd626zqxWuV5lq6dPfuw82inpFpnGOO+kOpm\nvqTFbr1hcNQ3P1VwZi1Rp8k7G/2oVycuGzpP+WFuxUqdmGoXgxCgv167LJhulyx0a850a9I6+7rY\ntvvFvt56dUrcv1px52KPTyz2uHOxx8nVat1zvBWTqvTqZs6u/vnvlAW9lAOlcfoh7E6N60Js9zd5\no/VSStyzXHH7mR4L3RxmtoqCoig4003cfqbHPcvVvronNVk/OF2uEtPt8rzAsf9d06+s87pKkiRJ\nkqSLwcojaZfsl9Zhc+2CXl3QqxPdOq0bwHTrRLuAY52Cufb6Yx/Xzq5f/XDNTAlFwVTr3DiiLPJ2\nV8dU/XTrxLH2+e8d6ZQsdNOWgrijnbzfxW7NsanzK1D6VWFrdW7RVzTjfuh8i3uW84PZk6vjw4zR\nTK0sCmba5Z5Vu4yrPulW9djzv55+hdeoi1ERsV6V3sKYObsmzT/Vt19avw0fTZ0SZ9ZqVqpESvk+\nmm3nOcRGj2G9q7Yf5lHTzjqo7U0lSZIkSdLhZuWRtEt2q+pgq+anSuoE1862mJlQKdSrYbVXM9Mq\nuHa2RUpwtFNsqtKk387ugUfaPOhImwceafPgY53zKnv6rpwuaRU5zBpW14mjU2e/kvpB1tUz5ZaD\nuLIouGam5ORIdUpKiftXKu5eqqgTVM2yFTlEumspp0mrvYrl3vlBW69OzAwlGf35nKZb5UWvdlmv\n+oSi4ONnety7svkqhbpOzE+d+18JF6siYr0qveUJ174sCxYmVOn1Q9i9Ntcu6FY1965U3LFYsdjL\n16ks83Va6CbuWKzOuU7d5p6aZCtBQy/l5bV/9YPTzVZV7qfKOkmSJEmSdLgZHkm7ZDdah21re0XB\nkU5JL8FVMy1uONrmWLsgpUSVEgmY68ANR9tcNdOiWyeWq8QnFqpNt8QabWl291JFr06sVuc/uC6K\n3MpuulWw3Ku5fyWvt9CtuWe54t6VHsvditlWMaia2M7j7wcfawNpEFL1K2hW68RUq+DYdA7VeinR\nouCy6YLVbiKR+MCJLves9FhcO/chbZ3gSFPVNDqf0260HJxko1BnqlVy+UyLhW7N8eWNW+r1K7xG\nK2AuVlCxXjg4aeidprpmkv0QmRzrFNy1WA1aOI4N31q5Eq9/ncaFeH0GDYfPfmlvKkmSJEmSNMq2\nddIumWvnsGUrFTOTWoddqKtnSu5aqgZt6+anW8w3n61M5deyKFirau5bqblyphzb8my0JdYDZkvu\nXU1jW5pNtQruXqqYatVcOzu+dVYBVHVNuyi4rAlhigQFm2/jNUmrLHnI0TY1sFolTq9WVM0xQA6C\nWgUUKdFqwV1LiblWwUynxUwnsVbDyW7NyTU4OlUy14LZVg6c+tUhV06fbdW2Gy0HJ9lMqHPldEmv\nTqxUNfet5uBwnOEKr2HrtZIbpx9UXDUzvpXcJP3gsVszaLs32yo4OpW3s96m1nt8vp17ZlwLwLl2\nwfzU1o6p777VxHQ7B2vraZe5Eu/4csUNR9oT93UhQcNet/DTePulvakkSZIkSdIowyNpl8xPlZxc\n7W3pwWCuOtj5h7xFkat4+nPXlGVxTvDQb1u3XKWJwdGwTpmDpg/d32N+uhwbMHRaJQ86WnB8ueLj\nZ3o84EiLqVZJSrnKYqWqKYHrjnTOCWH6huds2W4Q9+CjbZYrWKlqFtfy+3WdKAo40i64errFh09X\nLKwlZtsFV8yU1CmxUiVWKrh8qqCb4J6lHsc6BZ96WZnDrrKkW+WH/cPz1kwKM3YylBgX6gzPpzMc\nwFw9U3JyLXFypeJoJ7fXGz4/dVNxNG6+ot0OKobnUlruQad1Nnhc6CVOrfWY65TMtGBxUuu6Cdve\nagg7bl6nIiVOr9XcuZiDuiPtggcdaXHZdGtT16x/na6dbXF8udpwvrEErFWJK6cnL2PQcPjUwHa+\n8a07kiRJkiRJu83wSNol/XZxy9X6D437JrUO2wn98KJbJ8oSlroVAHOdkkTiSAcedLTFJxaqscHR\nuHBiuVtTJ7hiZnLQVBQF1821Wa1qulWiUybuWckt7a6YKgfVJeMMTw5/1cz2grjLpttcDnz4VJ7P\nqdMuz7kWx5d6zJTQmSqZLuDe1Zqqzg/xy6JgpQcznYK5dslalbjtTMXD59vnhCoL3cSptYq5dsEV\nU+eOb1wo0X9QfKabOLna40in5MrpgtPdxHIv0WtCh4J8fdpFcU7QNBzqpJS4b7Vmacz2cwBTM9cp\nueFoiyKl3BatuX7znYL5qclByG4GFf22e70E0+2SY1OJhaFwsF/htlIlShJVzXlj6daJYxPmBtpK\nCDs6lpQS965Ug3PaaZV0gLU68eHTFVdMVSQKZtsFqSgmBoH965TbNLYG12k0uO2HeHOdkmMzJWe6\nk8+fQcPhs1/am0pbtdOVmpIkSZKk/cfwSNpFo+3iJpnUOuxCjYYXZQFL3VxV060Tp9cqliu4qpND\nkNFKk0nhRJ0SJ1ZrSFCe7vLQ+c7YtnTDodNKlXhgK7equ36d1lzDWgXcudRjtSo51a3prlQc66wf\nOsH5Qdxcp+QhnZKFtVxdVeeDo13ADcfaLK7V3LlUcXqtJlHkOWJSQdmBa2ZKTq4mWq18DPet1lw7\nWwyOt10WtIGFbk1JwdxKj8Ve4uRqxZ2LNe0SLp8uOdI+d9ztsqBVwB2LPW47lXjAXMmZHoNzDXC6\nWzPXLujVBSdXa450StaqXPmUK7jOhh6jhgOYXp2P44FHNv+Vv5tBxWjbvaOdklNr1Xn/hdQq4ORq\nfkA5XVZ0WgUzrRzK1nXi6JiAaKsh7PBY1junrQJOrFTctwqXTZVM94pBO8bhILBfxTUcvhVFwVUz\nLa6YPvceLIFj7YKjQyHeeuGbQcPhs5/am0qbsdk/ihhX0SpJkiRJOlgMj6RdtFG7uI1ah12I4YqK\nqVZxXgg01cr7OtktONVNrJ3pcfVs65z1Jz1IX+wmplsFrbLgZDcxu1ydM6/RuNCpU8Inl2tSgjsW\nckuyce3qRtdPwGIrcc1Mi+PLNSfX6kFFzbj1h4O4/l9G373Yg7I4Zz6dM2sV96/A8aWaM70cGl0x\nk78S1+qSE0sVVQVn1uo8V1JRQAvOrCWmyporZs49V6dWKrpVwSeXKo50Sk53a1IBvZSPu1PUHOsU\nHJlqcWUzv1P//LZKuO10j2PTrXPOdZs8X9N9NVw7m6vYTixVPOBIvp4bzXsEZyu47l2pueHououe\nY6eCitG/Ticl7lupuWroXiub6qrVKj9ETylxcjWHLK0CpgpolQVVyi3s7l+tuGxqdGasrYewoy0A\nJ53T/sPSijxX1lQrz2N032rNVTOt8+YCu36uNTZ8K4tz5xsbO6Yx56z/F/3rtfCbxKBhf9tP7U2l\njYxWao4a911ogCRJkiRJB5fhkfa9g94apSgKrpltcdVMyem1mqXe5luHXYh+RUW7YN0KlekSeqng\n7uUeNQxCoPXCiZXqbJVSuwlI+g/SJ4VO7bLg+FLFtXPtwTaOj4ROMD60Wu4l5qcKrp0tuW81V2cs\ndGt6dRqsPxzEXTVdnFtxVZ6tFFroJU6t9rh9ocuRqRbtFvTWzj3OqTLPY7TUq1hdSlzTBB3tIgcY\ny1XispRb26WUuHu5olXCal2w3K2Zn4ZuzSCgawG9OnGmB2VZc7zOoUj//N6/UnOml7h85vzr2C4L\nenUanN+KghMrFSu9NPZ6jtMpC1Z6NXUz5s240IqISX+dfrqpRLtjMbf66weAV06XHF+u6VY1J9cS\nVUqD81cDsyVUFJzu1kyVMNsuB/dPL7GtEHa4BWCdEksjc0n1nVytqVIaXIvFbs2xqRZL3Zorps9+\nDw23WtxO+JZS4v6Vil7z+zX6F/39c/OALTyQNWjY3/ZTe1NpI6NVo5MMfxdeM+v3jyRJkiQdVHaz\n0b6VUuKe5Yrbz/RY6CaKoqBVFIM2Ubef6XHPckVKaa+HuillUXD5dIsHHmnzoCNtHnikzeXTuxMc\n9SsqOuXmKlTaBXTrgrUmpOg/SJ+0TuLsOS+KZq6bbl5vvf3VQ9eqU56t3hg2bv3+av32XzccyS3A\nujWcaO6B+U7BQ461uXqm5O7lXLUy3S5pl3l+ml6dN9IuC5aqxFKVq4iW1mrGHeZsp6AsSqqUlxs+\n9rLI1VcA9yxXuQVeWVClRKddcHzp/G32P1/sJtbqxF2LFZ0yt8hb7uVKrv42R7WbuYTqlEO0Ty71\n2Mpt06sTc508X9JmzU+VVPX48dQpcWq14pNLPe5a6vHJpR6nVyuqKjE/VQ7+On34GvT135tu5Uqj\n48s1KaVmbqCSpV5iuXfuODtlwWKVA60bj7W58VibTlmwVuX5ifrX/prZrf2V+3BruYWhIGn0WJer\nc+djWqnyeSnLgoW1MWPt1sy0GNxzm5FSDtRKOO+c9fc722lRFnDnYm9T33sGDQfD1TNl8x28/jXd\nrfam0mYM/++Kzeh/F9YH5H+jSZIkSZLOZ+WR9iVbo1yYfkXFetUUo462c9UMCVqcP//RsH7DsF6d\nONLO/y7LgtOrFUvdyRUxow+x+6FTv3qjTonFtZq1OnGyPluhNd0cS3/9ssgVW/NTsNqruXa25Ew3\ncfdSxYnlitUa5qcKWs2D8+E5dfphzUyroCJxYiUxP33+eBNw5UzJUjdXOc10CqbKgoJ8753p1rSL\nHKNdO9vik8v1oFLmxGp1TgvAvv49W5JYqxkcb1meDSWOTTjnrSLPq3S0U7Lcg9l2YrMFJVWCK6Zb\n686nM2pcRcSkObAATq7VdAo4upLDo34AODzvVS8lPna6R7uAmU5BqyjpFFAWiWtm2yRgpl1ybKpk\nsZvXSSkHlLNtuOHo2bmyLmv2u9qrt12FONxabjggGrbYzVViw/rPQjvN9Zzn3Pm91qrEUq+gV8NV\ns5sLiO9bzVVXlx/prLvctbMt7lisOL5ccd3c5P8KN2g4OPayvam0WacnBOzrKcv8RwuXT1t9JEmS\nJEkHkeGR9iVbo1yYfkXF6dVqYjXFQrdmtYJ716AALivg9Nr/z96bxFi6relZz7fW3+0ummxPd++t\nW1X3RllWqRBgCzGyCwkJiQGdGIBl4YktVB4ggzyiVAgJCQsPoIzoZMseGJCYAAIxAokCxADZVlUZ\nbMe9dZvT5snMyGh38zdrrY/B9+8dOyIjMvM099zMvP8jHUWeiL333639R+b37vd9lUlhsWg75e23\nh8oLy5BICpPchtO5E47qwDh//jokVU77OK7PFh25EyonTAq3cW/MCsdH5x3P6kSeXQoTISnplp4k\nVeW0TZyfJPZLc2XUvbNl3iln7WU02rpTZ9WZWFN5cyCtojK9FucWVBk5oVMTlqpcQJUuKSNv4sjE\nw27pyD0sw1WnUeT2T1o7gZMmUeW9QJIuRQt9wfMyJ5v4vkkuzPvotJcRkjLOBCfmfPoi3CmFH5xF\nFl1CBI7rRO5g95pjLiSl9I4HI8ciJB4vIh9MPc9qE5qcwLyzc90mpRVhXisjl5jk8JNzc+8UzkQy\nJ8Ks8FeENL0tck/go4uOwrsvHGu5Lavc1FEEVyMaTYxV6phATETNRft1Z/ueOaHMzMUH8OFFYKe4\nvd9r/brnbWLnFZyIIsL7E8/ni0DdJbwfhIa3gZ9XvOnAwKuy7dR8VfLeNfuqH1oYGBgYGBgYGBgY\nGBgYeL0YxKOB147rJfYvYx2Ncrca4pnWrAfh190UqsppY5FuXrA+oP7HdbQBduUjMSk7Lxj2THLh\npFFm1yKxlhF2yhu2F0x4meXw2TIhTlg2CcUEmN1cGOfCRQej4up1Two7vTNpuycJ4Mkq0SeIkTnh\ntA4sQ+K8S5vB67KFNnoejhxPa5iHRO4dLrf+I+esU2nSd/UEVTzCTikc1/bihRNUYVY43hn7TddR\nEy8dQ9vn2bN2UZlYsu2gGhfCMinT/nnbosXa0XUba+3nTul4Wlvn04uGeSEpvu8TWr/ASRNf2h+2\n3Vc08nBSKx9eBDpVMuc4qhN3KsdO7kjIle6iJiQU5QenHbPSU3jrn1p3GI29Y5mUwgmNKqEVdgrh\nuI50iRtF4C4ps+zqcW5cUMGcXO9P/ZV+oNMmMMndxrl0E9u9TleEpC1x9ekq4BCaZA4pBGaZ26yB\nzxaR887eC3tbDrYEvDPyPFnFvp8LHoxuFnNOmkjhuLxOL0FEuDfOmGYmtA1Cw5vFdo9f6H/fCTDO\nHZnY+2l9nxkYeF24TWB/lecNDAwMDAwMDAwMDAwMvJkM4tHAa8cQjfI828PGV3FXrEfQ28OetSCw\nHuJfxzvh/sgRgKdN4uFEX+CUgGnmmOZXfy5bxhbbngkCF62JOYV3dBHO60jhBQUeLyMfRzjY85y2\nyjhz7JTWbRWSMvKyOUbfu3ZOGuvJaRNMc0fprfvm44u4iYBbH3eTlE/ngXnn+JWdjGe1deU4gSoT\nygCrkCgzISmMnGy2XxZflKwAACAASURBVPbupEzMhbTeF3PzwJNlpFPrPfLiKBx0KXGySjxeRRsE\ne2GU2+stkzJfWu/R/coi2dZL3SIArwtnyrxNNL0AJWrXvfLCfmG9QcugG8fLmpCU2D92LUg8Xgac\ngHI1bm5baFlHnD1aRrqkzEPffeWFndIRk4mMTVQ+vojcLZXfuJeT+cv33SoqdYSLoOxVcNrYmlvv\n37gQ5ksFD5kIQZVlZ/sfkomN+9XV93FKynTLZaWqvXBoXVHxmqFqO9byqIV7xfX1a++nRZf4dB6o\nMkcXFSWxDFwVV4GzTuliArH/f1DZsTxrEoUTxrmj6R2Qa7ePg77HyXPcJM6byBP0StTc2iWkCu9N\nsi/kEsp78fG9iR8+1f+GsC3KOoHzTjcRkADnXWKcCSEJp00a3GMDrxUvk7ZDSny2CJy39vvHC+wV\nwsPx2/n3soGBgYGBgYGBgYGBgV8EBvFo4LVjiEa5ZHvYeL1j5vrQf3vAuHZUbA97rg/xr7MWL6a5\no+4iny0CD8fZraLE9/cynta6cb90SRlt3VFOm0SX4KSOIHC/cpw0SpFBpY7UP895OK4Dny8ds9Lc\nKMc17BTmctkr3XOOqS6asFVmwqKL/PQ88XCseFG8uzriypyQFcJpa4LOndKBCItOcSSaDC4aZezN\n/bQtxo1zYR6UgAlI6315Vke6wrGKkPeC0kWbWIbIcZ24P/b4PnZxlZTFyjqWZoWQeaEO5pq6Xzkq\nJyyi9hGAW3F8vWNrLYZpMmFtHpS6S8SkvD/N2C+tC2kVLvuBprn1PK3dMU9WFh/3nZ38ObHxen9Y\nJtDExMfzyCIomYNlPwyclRY1uKYOyh+dBw72Ltdf6DulSm+xiU9X5jDbdl+VHlpVchEysXM0SULu\nbT92tyLquqSMrzncjq+t5duGmrmzQfxJp5vzevX95JgWnjoqoPyDk+65aMQ2QRcThXe9Kw1OG2Wv\nVFadOZ7W53Etfk0Lt3FKiQh3K89+6XhWR2K6FKHWLqHPlvFLCQTDJ/rfHLZ7/AovPFk93+mXAU1U\njnuX2tDpN/A6se3U3CalxI/OAye19f4V2aWT8/Nl4tkqsQhwsJvh3Ku5KwcGBgYGBgYGBgYGBgZe\nDwbxaOC1Y4hGMbaHjTdF+F0f+m8PGHcKx2kTGHkTP5yYm+Imx9GadX9RUDjYK3i6iowzG2beJEoA\nPBhdRoeFmLhXeZa9q+eiTSyC4r1wt3ScN0pEyZ1jr1AuOnvtRRuZVY5VSmTBkTnoVCmi45fGdtzX\nHVPzVkETZeY5a63TJwFnbeJOJTcOWksvnLdK6aDIhFnhmBWO+yPPyHc4sXOwPRdL/aenY1I+mNiq\n/LwXWEaZIyRYdJFlp6xioo4WPSUIq5QQTKRoVXlSR57V5pTaLR3LLlHnjnsjx8lFYFZcij1HdT9k\n3opqSwqjjD6Wz4Sy3z9q+eUdz6zw7BQ3X9vjJlHHl/fp5E6oQ+QfnnZEMTGw6tddk8w59mSlV5xZ\nVSbMO9vf+71yuOr7kRat8lETGOWO0rnNe3qZlNS7kzS3SMD1+ryXO5qYWHTKrLB9yORqnNs61rKN\nSpOULsE0g5EXpjc48TIHqwgxJR6v0nPvp71C+PFZ4NEqUXfKeRtYtp73piYgiZgAtI4z3CuFiPLp\nIjHNrm5v/X4cxcR0nD93jh0m9E2vdVV92XHqMIZ9PbnJKbrsEpkXSm8i4m2dfmsR8rhJ3K380Ok3\n8Nqw/nvFtniUUuIfnHTmAr4hdjPz5jw6axN/8KzjN+7mg4A0MDAwMDAwMDAwMDDwBjGIRwOvHcMg\n1Tiq060Dxm3y3vWzPWB0IkxyB5JsiJlMBLmNoGwi2bqY2BlnNAmiciVm6zoKZGJCl6q5xk7aSCHC\nNDdRoModSZVV33MDNozfKfpeoC4y9o6kJiZNvGNvbMKMAmc3OKZCH1OWVFl2yvszE0a8yGboep3M\niR2nCCEmMmePiQq/tp+zDHDeRoJeimWTTLhfZXy+SJS542hlLqp7/Xme5MInc6XIrK8pKNztXSuV\nwlGT8Jg7KXfmXJl3FudWR+W0Djwcmeixdh2dNs9f9y5a/86TlcX1TTLHXun5fBn58CKwX3Gld2hN\nUuux2o6vu/VaqvLJPHIelMLZddu+zl4EL2ycYXcqu46Fh6NV5G617oKyDh8VIapQXneCidiiccqq\nS+AdSUy1m+SOi0656BKF4zkXkKp1Lx2vInkm/ZqwSLt5UM7a8NxzABzCT84DReY253XTmdQlqswi\nFGeF56xLnHWR+nzdg2ViqFPY64VJ7aP23p88f06TrkXI57fj+zW42/9s7R4MyYTR3L/6XaxLyk7+\n4nvDwDfLbU7RpMrTOuEFqsxEyjK//VpnvZN2X3Xo9Bt4bVj/vWIVdXMf/dF5oE0WAXud7djZUSas\nQuLwLPDH9ovnHjswMDAwMDAwMDAwMDDwejKIRwOvHbdFo7yIt22QunZX3OQ4uombBoz3Kke3tKH0\nsybe6joKVj/DXumuRIQ9GHke99031wWszUA8KNr3znxrap0tfil8fBEQ7FPHAMvuZvEqKeyWnv2+\nq6pLyiiXjQPook03OqYURYGLJl2JmtspHZ8uIvtbsWfb5/SiSXTJ0YZEkSmzXMidMCsydgqLk7re\nIdQl5d2JI6rFtD2cXI2QCn0fkReY5VviQgRRGxK3UWlToksKCpNamDhoEnw6D3x/N+OzVaJJkbMm\nMcsdPmcj5p23yk5hLhjfR/mJCO+MPU9WEU2JeSeEPu5KeufQaR0ZZ3YtXxZ7ddyYUywlE4iqLePM\n9jPXPUXnDexWNiBvonUz7ZSeNlnU2zgTU51uoXCCFI5CQFSovD288ra+3p9mV66hxe9FztrEqI/O\n2x5Ouv6a1dEet33MTuz4vtU7ftavtXYhXTSR/dLhBCYNHDUwbxN1gN3S8d2Z56w1B5bDhNbdUlh1\nyrTcEvmSUnooPJzWgaeryKfLSOy7ue5UcqXXau0eJCY+X0Y+mN7smruJlJSdYnCjvC68yCk67yzO\nK3PCcR2oI7yTvfhae7Hn7RT+re/0G3hzuFe5TSeeoJzU6UbHUUiK76Ne14wyx7NVJOwmssF9NDAw\nMDAwMDAwMDAw8EYwiEcDrx03RaO8jLdtkHreXpaovyrXB4wiwrtjTybwyTxQ69VPB4dkPTulg5k3\nEWkdEZZUuWjN8XNaR+qojHNhv/QI5oCpow3SJ9ecHg9GnseryJNloPSeO5U5ivy1QWlIinewuyX6\nebF4OREhqg2mRjeIggrMm0hA2C1tIFU6YVwIYydcNInd6lIoOG/M+SQou17IxCECx3Wi9MIkT9wp\nnXXTqG46hOqYaINyf+SJKA/HDlQ3vTWLNvL+xNGpkAnMu77zJ5oIUzihCQqCuadw5F5po/Kwsq6d\nR4tI6Rz3J57Hi0hS4TwkTlsTs0oH4wwUoXKyEY7W1/hO5Zl4E5ouusTTWrlfeXZyweGe64C6CXNw\nJZyDuD7BW1ReWG5dw3VP0awX6bI+dm6qFiM3yxzLmBjd8Gn0bXIRll3ig5nnTul5OM54UDl+fB54\ntAg4J6DWq3XRKW2EszYyypw5ddzV4SRcOvG2HWiLBNt1aMfX3F11uhSrZ5VnVnnamDheJsTDeavs\nl44mOJwTvIPQCE1SpphopAmqDFTh8CywkzmWUdG+m6tOyk8vEpmYkHu3uhS3Su8ofOLJKr7Q6bem\nS8okH5worxMvcoqutnr8ggJiDsP9GxySazInrIKyU7y9nX4Dbx7rv1cc1YkfnLRcX+7rv1eM/NXf\nVWsyL3w6D3xnZ3AfDQwMDAwMDAwMDAwMvAkM4tHAa8dN0Sgv4m0cpC7DF3Newc0DRhHhwTjjN+4m\nPplHTltTBXJvkWyT3FE7G2hWXtgvZOMocijLkMgKj3NwtAw8WZqjaJo7dvN1H47y+SpuHBnTwvGg\ncpx3jlWXOF4JKiC9fyUkcw1VmbCTC4tWWSYlE9k85l7lOG0Sj0Okyi8HrKrKcZ04WgUqL+zlbiNo\nLJMyXyqVhzZp/8lnOK6ta8nBxvWhAvuFw4sy9vYJ/7Vrx4lQeWHRJgrneG/HkXvH42Ug88JZE1kF\nc5iEZNFqu5kJdxOUeWOusVxgGaFNib3Cs5N7xplQ5Y6JV5I4fKbsOkcSmHgoM+GBt94cFLwoZ63y\nnZlnWtzcWZQ7EzEejj07pacJiXfG9th5eIH1Z4t5L1Y6rDvs+lZGub3WtgHMiTnKpoVF/KX+dUaZ\nrbtVFCaZWlfQLe/NoEqWCU6hcvCsjpw3kb1CuGgTHy0ibQSHxf3drRwXbeJJbXGAD0ee0ummQ2je\nJppksYMhgUf7OESLDoRLoWzbHXJTz1rhHVmm3Bt52mhfncjGFVh3cN4776ZeGFfCszrxtE4oQpkL\nZ92la86LkDsTaz9dRkKCh1s9ZQ9Gno8vAk1MlC+Ir1v3QN2rhk/uvy68zCm6jsFc/znvhaHdGxyS\n15+32cbXucMDA18BEeH+yPPRhWNfLIJVUQRzVk623MDXGWWO40b5zje8zwMDAwMDAwMDAwMDAwNf\njkE8Gngt2Y5GeZGA9LYOUm8aZr/q825iVng+mDm+LTZgX0XdiATjHCbOHEdPVomQEsvOnEezwlxA\nuQj7I0cbEx+dd5w28N4Yssxtej2ATe9MTDZQ3yscZ3Wi66eggolWo63h0riA+VIJThl7cwSJCPuV\np46JSWZRZCnBSZvIRfjOLMeLMO8ujzgTAW+Ra6JQOHi8SoSklN7RqUXihaTEpFSZ472JMxdTmzau\nnXulYxWUvcrRRnOppBT50Xlnw7FCKDJHm5STNpGwnh5RuD9yCEIUOOnP5cgJe4UwyhxVZsd92kam\nuQlm6kxM+2QeUWfxa9PcBKykinNK1NuHcdev+7YD7VXfFatoYmXlLDLwumHIiVBl5qJai5qZWFxd\nEQGFZ6vI0dpVUSfeGQkijo8WkdL316cnaP/pdCfslCZ6LqMSVZkHc4hdhD5KMdprn7XK4zpQ+sS3\npjml93SqfDyPiERA2C8dubd4P0F5vIocN3Ae4Pv9Ip3f4Oq77TyVDmKyzqNFl5j1At6s8Exyx6NF\n4P7Ifo2e1JGTvp9rJ/csW+W66UuBWWn9Xs/qSN47kNZOPyfKJ/OOwjlGHrwT2mQiQuhdgg/H/pVi\nCH9WJFXrUQt2D3FYROFO8XYJ+F+ElzlFt0/L+s/iYNEmZi+Iott+3tv1G27gbcB64hyzL/i8qK/2\noYaBgYGBgYGBgYGBgYGBnz+DeDTwWrIdjbLoEs7JFRGpS0rqHUf3quejUd50vuyg8LbnbaIAM8dO\n6dnZ+tmyn10eNyZ2nLYWv5R5YffaYLMOSqtCExJpqfzK7tUtrjtcmpiYd8pMhFnp0ATOceOA1YlQ\neni6SqRCSSpAIBMbSs8Kzwwbzu8UjlUfX6aaOG8iIuZ2Wg+ucxFaMUFmljtCssF/kZn7qXTwcOLZ\n6yOjBOyc9K4d33+S+rzvafICx63SqQk7J41SZYmdXFCFZafsVo6VwFFjUXx3K48iPHAZCuwW1kn1\naGFxf6eNuYPG3oSoLtlA7Z2x9ZsALILydJUYe0FI7Ortw/ntq+AFHi0Dy6CctpFlp8xyd+UcXSeo\nsupFxbM6kGduEwO46ZPKhePe0ZU56eMAE8sg3KtcH1Vnrh8nyiLYuvvW2HHagpmp7NPpY+8Y951O\nISl1VGIvqHgRmiSIKLlz5E55tDQhyTthFSKfLhLfnTk8cNSagDwrhfNWuVPZ/SN31s2UO2iDufl2\nCt0IZdtUTljc8P1xbl1XhTcBc3tIGtXca6EXl5adRfY5EcY5nNR6VTBLuhEPnUAblXkbSarUQfFO\nKDJPlkyI+HwZaAJ9XKRjJzfxcRWsryl3UEe+MQFHVTf3Y9+/z9d3h4tOOW3CW3s/fhkvc4qOMmHe\n9/hVXlgE+1BEnfTWwXtIyjS/7F17mzr9Bt4ObnOU/qyeNzAwMDAwMDAwMDAwMPDN81aIRwcHB3eA\n3wH+BeBd4Aj4X4DfPjw8fPSKr/GrwH8D/Angzx0eHv6tWx7ngL8I/HngV4Ez4H8D/t3Dw8Mff7Uj\nGdhmHY1yt3Kctxalth6U7uRiReJv6RBinAkX3atF161dC/MuMe4HjNcHyS+LAkxqA9Blp/QVPVT+\nebfLk2UEsZ6jRVCOm8jd6vnbSOkdu6Xj6TLyzjQjYuLA9c/Yr/uIlp3iRYlqIof0/T0jLxwtA3ul\n8GgR6PrIp/sjBwgBbMieLPJtlglRrXPneJWYFo4sg0nuN0PtJiR2bvm0v6L8f8eBvcpT9nFjJ3Uk\nqjLJHKuYLCYuKMdJGTu4CNb9Mysd80XcRPA5gTZE5iHx8ULoQiLzQogWeddE5ZN5YH/keTjyjLwQ\nk+2DExPq5l3ivAUUROGdafbcNemSMstMzDluEssuIcBeKewWnnkXN46w8bV+qvVzni6t7yhzwl7l\naaJFCc4XiaRQZIICokoXbbA9bxMBeL/yeCeU3hxP48zxvb2cZ42yCInCCTuFiRzXS9JD0s1aO2us\nR+pu5Xi8Spu4t/POBKuij3IbZZ5FCJysIlnvVOvU7gsR5byB3aqPqMMcO/sldKl3kfH8OpwUjotF\nvKLChWTXPCSlSfqcMJuS8q1ZxlGtnNaBOiYUZezsfbe9nXW/17YAICifziN3R9mm+0ZVeVpbV9OD\ncb65viL2CX+wY/hsESi8472J3wxif5YCjqryaBnN/XRDNNtaNF5Fe9y745+fM+rnwcucotPccdZG\nMuzeedHFzfNuI6o9D96+Tr+Bt4M7pfB4dXtc402sQuLd0eCjGxgYGBgYGBgYGBgYeFN448Wjg4OD\nEfC/A78G/KfA3wG+B/w7wG8eHBz8E4eHhycveY0/B/zuK27ybwJ/tv/6V4DvA38J+NMHBwe/fnh4\nePRljmPgdpwIe6X/hSoL3ziFXiAerQf/izaxiiauPRBPGyO5wElmQsx6kPyiKMBlhAplFSxqy4uV\nXW+TVFlEJSbokkXR/fg0ke3BrHxeyHsw8hzXJmZUmTDqu3nWx2T9RUqbElXmuD9y1BFChEhilpsA\n9fFF4MdnHU1SqsxTODiuE6UX7pSOZedZhMSqU2KSPhbPcdomaBP3Rn5T3N0lZdwPZM+aaF0NfR/J\nKDOhahWVe+6yH2cVrbdmnCvzYM6ezJljJng7jnmbEIRVSBweB5YhsIxQB4vd2x9nTDPbh/MuISIs\nV4lRJmQiHC0Te5VwtxRO6t5NIuAQvDNn0EfzAE6eKyJfO/CerC6H+9rHAjkRxpnFy5WZo47mWnkw\nskH0+jmzwtwQISkPKsfHi8iHpy2p38YkEx5OMpxz5KKcrCIXbeTBKKPKTPzZKRzTTFhGi867Vymn\nDVx0icqZoLiKJowltcguwTqhUKgKx3emmfVtyeWaq8Pz63U3d1y0Sp4lxrkjoKwCTHJhlUzMcyKk\npHjgXmli9LJLZI6reWD9eRpl5gTJN9feXk8Qjmpz5a1ZryPvHA9GykkNFyGRi2On7AVbnu/32hZU\nlh3UfRzdmtMmkfSqaJw7W7fP6kjsHz8pPCHZ+/9uLzz9LAWco9rciC/roFvv61GduD/6xRE7XjYK\n334fZv17uElXO8S2CUkZ9y61t7HTb+Dt4P1pxsfzhvIL/EsiROX96Rv/T4+BgYGBgYGBgYGBgYFf\nGN6Gf8H9W8CvA791eHj4n62/eXBw8AfAfw/8Nibu3MjBwcGfB/5L4K8B/2//59se+89jwtHvHB4e\n/vtb3z8E/kPgN4H/7qsczMAAvNwppKo8XgaeNYkuQsJcEnnv7KiTsqgjZ12ijY73JtkLowCbCBdt\n4qyN5CLMCsdRHam87YcAn14ETptE7qUfjNvAnNOOKovslp73JzZQBxvW//KO5/EyUXfK/sQRWjax\nZ8d1oo7KNHOMciF38O7E0yWl6ZRJYZ0/J03k82XHg0nO7pagtYzWj7NbCKPMs+x0Iw4INqwf57Jx\ndXRJ8ZhY9OkibkSg9Uz2vE388DwwzRwxJXNWrcy1k/dxU6VAp+Ysypyw6uyc/fTCupVOG+Wk6Zh3\nCXHWmRQFFheRUa7sF3acIkIdE6Pc2blEWXXKxwthN3ckMQGv8FDHRCYmbKy6xEmtPF7CncqRO+FO\n5TltdTPc3467gu0uK90M948bE0LWz/G546QOtEkZeSEXcJkjRKUQi3T76Dxwt/JUGXTApPQ8GAvv\njjMe9kJFUuViHvrzaud+t3Sc1pGdQpgmeLRMLLtIX27FWQN3R3CyijxeRi6axKT0jDy2H04onIlC\n6xi43DvEBVTteBwWA2dF7XDeKLlX7peOVNimxn10WExW7n5dmN0rbc13vRtqtOW82yuELjmaqCRV\nql64XJ/DUe54b+ypvKNJEFKii8oqJXMvRVgCoz6qL6myDIk2wVEd0H5dntSJdyfPSxG5M+fdXuUo\newdW5qwrar8XyrYf+3UKOEmVRffq7oLcWUTj3eoXR/B4Fafo9vtwrzQhv7zhlIakeLH19bZ2+g28\nHWTOcXfkOWsTo1e4P6xC4u7IP+dAHRgYGBgYGBgYGBgYGHh9eRvEoz8LLIC/ce37/yPwCfBnDg4O\n/u3Dw8MXNfT+i4eHh//DwcHBv/GSbf0WcA78R9vfPDw8/NvA3/5Cez3w2vGqRfDfVGH8i5xCz+rI\n41UCsS6hXNwVp9DahdAlcyHkTngwzm6MAoxJOemgqRO7pd/EhYH17ly0kWWXrJ+jEJ7ViZDMGeMF\nEkKZWSzTeRt5b+LZL01MKDPPO2PYLR11gJ0c5q2JPClhw221Qf00F9oE48zxfj9A/3wZ2S8dq0mx\nGdyvz3EmAgKtmlNlmkOVOWa5RZ+BiWrrfqxRJoRk2yhv+Mh/EyFz8LQOHDeJaWExbA5H4SFoQhVW\nAUZZYhVs/wpJHK+UDiicCVmfXiTEJ3IBEY8XcCHxJNh1LaKyUzrrTApK2TsRXBf5zizjtDFn1yiD\nRacso4kNYy/slL3rpFV2c2HVJs6CbtxE23FXYELVg5GzSLtgbodFmwClyu21YrJYwdJbj47zjl+a\nOs6bxGlIuCSEaEJWHZWZh3GRUXhnYt1WPOI4N4fTes06sX0eZ3buqkzIfGZrR2HeRX5yrtQx4Zyj\n7pI1IxXCp42Si8UjpQTbVo0ugc/AYe6wNiqZyxjntjYeVI5vzXI+fGaPv1Na/1UbIzE9P+g3d57n\naBVpkzLZej8lhHcnnpSsk2uUWSydU+uicRPPUb9vsUl0Sbg7cjyrZbOdtdhZelg0ds0yJ0wx196i\nMwfhvHMkjVfdZao0Cdr++Wu8wLxLz0WafZ0CznmbbuwqexHO2Xtn75Z4yBfxTd1fv05exSl6/X24\nk5ljsw4m5Av23h1nwiyXXgz9xeyQGnhzONjN+INnHavwYgFpFRKlEw5234Z/dgwMDAwMDAwMDAwM\nDPzi8Eb/K+7g4GAHi6v7Pw8PD5vtnx0eHurBwcH/A/xLwHeBG/uIDg8P/6tX3JYH/jTwvx4eHq76\n7xVAPDw8jF/+KAZ+3rxqEfzdUqzH5RsqjL/NKZQ2/SOKxxwx24PmbcyFAJ8sIvdGl9Fy6yjA3UL5\nqYOZFyaVe67IOnPCWZus/6ax4p0mXoovqrBWZUvv6FR5ukpElc15iAi/ulsAbASro7rjo7NI0yXK\nTGhi3+tRCm2yCLZVZ0JFlTn2C+W0M3fUJHdXh7QKTVJ2Csf3pp7zNjFvE6WY+DXLhGnhOWkS6QbH\nyZplF/lsnkCUSaasOossEzHRZBGgcsLIK58vlSZEnAhHjcXMlQ7Ou8hZHSly6CK0CjFEFEjRsV95\nEtCoMlu7xKL1BK1iH7sWzFV03iirkFhGpe4SO5UnqjmfVEESPBg5lkEJCY7qyF7hGGfPD9lFhLuV\nZ1+tR+lRE0lYlN00t/P/wdRz3CSOm7gZAu5Wnpk6VgEWITFyJmZluef7uxneOVYhXRH1zGFxVfTM\nnPDZItD2fVqFF7qonLaJOigRZZz7/jooj+vAonNEhJUoqwQTZ06lXGAeTWCw/q2MqQPNYJxb59Uy\nJEaZ56JNPOuvz3gVMROakFSeG3a2MXHRJrzAg8qxCkodIrmHSebYK9wLBYzTOvLJKm2OD4SRT9Sq\n5CJ4ERzKk0XitDFxqPCX76V5SOzk3t4PvXNo/R5adMlcaEmZXXt/roKyUzy/P19FwNlmGV6te22b\nvHdFfZGo0Ve9D7+OYsraKboItp6vx2FO+9i59ftwGhMhmtAa1MR0gHHuyPqIu9dZLBsYWOOc4zfu\n5hyeBZ6tIpmXK/fVVUiEqNwdeQ52Lfp0YGBgYGBgYGBgYGBg4M3hjRaPgO/0Xz+55ecf9V9/mVvE\noy/Ad4ES+OHBwcG/hsXh/RoQDw4Ofg/4y4eHh3/3K25jww9/+MOv66UGXoAqHLUQkvCi1JUuwllQ\ndjMhf8EsNiTInHKveK5W5SuRFObRXCGnHXy6EnYyGHkIAhcvef4qQnyq7OVXv3/cH/skh08++Yzs\n2j4ntcfkDj5ZmVCUOTjr619KB62Ddut1uwTnOTz2MPZQOOVH5/YzVTjp4JMaPBZ/d9wfl2LCQulg\n6uFpC+cBKm/nso0gCiGDNkFM0OtZFA6OgGUFE29uhVlmUXXPLoSnCk9ai0G7CVX4w3M4DTDz0DmL\nI3Nqzq6ktq02QJ3AA0lg7ODjhcWRoTDvTDBK/TEJkHs7pgY4b2HhoBBoSztmBToBFSAHPYW9Xgw4\n76ALcNZBcOAd3C9h5KAFfnBi5wIx59TIw3fHcP6StXfe2nmrSphvnZt5gNMGjpL18azFQcGcZrXY\nuW69HbcTW/MnuZ237fN5Fi7PgRP48Rz2to65jbZW5sHWtBNbp4tkx3Ls+mvZbyP2w3hJdq5UYZVB\nV9jrVQ4ab6+5CLB4BndzW68O+Pijj4kKEeXdAi4CPAomDs779Tfxttbn/XE0EZxT3ivhSQFPt85r\nUnsNi6mDP1rADCIG5AAAIABJREFURRT2MjadTaq2hu2+YI8Patf1xMGDHOpsfX+B/QyeZHYsCXjs\nYCeDk9YuQlRYXROKksK8gEW0c7p265QeRl55p3rxWngZn9c8Jyq/ClGVxQ3b3j5vSe1clc7WStIX\n34d/VvfXr4r298nPGkhJrrjDoto1qRzsZvb/62NY9MewfnjT/7cAnn6J/Rj+3jDw8yID7ib7XfKk\ntftcJrBbwIMCsgX86Cs2gg7re+BtZ1jjA28zw/oeeNsZ1vjA28ywvt9svve9733l13jTxaP1h7CX\nt/x8ce1xX4U7/dffBP4VLLrux8CfBP4y8H8cHBz8U4eHh3//a9jWwDfESfdy4Qj6gXYSFgn2XiAe\nZc5e76RT7tzgBviyOLEh8k5mg9cHJbeWrd9ELvCs5Yp4lNSG9YWDsdi+x3T1dVd9PF3qB/chmrCz\npI8N8zwnpgnQ9QJKJfBwZN/fFuo8NuA+7QfrWylrdAqfN7ZfWS8auX5w7lhHnZlI44CqH9YrNmRf\nZSbOTDPlXm77WafnS+2TwjKa+HLawtPaBl1rJ5VgQ99lP/AXehGrV1NSgLr/3khgmUzcGYttP3P2\n2O3ndtjxNmqi2Cw3Ieisg/3SHqdb+9eqCXA73rbZJBu0r8WJJtnrW/SfvdZa7HkRSS8fs4yX56YO\nJpjMk50XVVsPpbevkUsxaBVhktlxNvGqeCRiay1l9t552tixezC3jcAzvXyN885EFhEbssdeWIi9\ngNWqrQNV216OnYfYCzECTErb52U08c2LCSq7WxdeFaa5ENTWx06mfNZA6aR3Jdl2z6Od20JgJsJH\nK3hUK3cLO/Ym9cJgHze2iHDRmQh23Jpwea/fh53sUvitIxthYRFgbgYlKmfny1xudgy5mIjVJVvX\n3tn7ZC24rI/norPr4rDtrQ932QtShYP9/MuLLV/QdHTr89bC8SqaGOXl8l7zqLbvTzPYldv39Wd1\nf/0qbN/XHhZXRdPM2TF67HqvovJ+BXd+zuLXTQJe5e3e/mWv98BA5uC9yv4bGBgYGBgYGBgYGBgY\neDt408Wjb5L1qOpXgd84PDz8o/7//+eDg4N/BPzXwO9gwtJX5utQBgdeTFIlvwgvLYJPqmTzwPuZ\no4nK+xP/0jihJiS+Pct+JrFDZ49XrHp3hlo7DJUXJrm8cHsxJr734HKqc9pExp3y8U9/ihP4x37l\nW3x4HhgXl+fj2SpabFZI5F3iuEnMcs89p7QBcBbxlfvL54Rk3UQPR577lePX75U4EZ6uIlXfhfN4\nGThtEsUNfU4AjxeRKhemURER2qQ8W12qB/v0nUdAUCWpRcpNC+HeyLNsI2Xl+dbU82SVmK8S9wrH\nJLdh/2mTWIREERRJyvIisF8lJpnF7AkwdsJRHUl9J1PRRwbmCheNMi3g6TKy66GLwm4ulNEcFw5l\nHC1SLGjCYdFWisWUhRh5uFuwV3qSQlhG9icWaVcVwu4os4i9oBTOcacywWPsLI5sHYulKCPvmPYR\nV11ax/Q5Ltp0a3zWeBkAeDjOeNz/+aSO/OS4Q1Niqo61DOWdCRCj3DHN7Ly3SblbeR6M7VdIVOXd\n8e2/Tg6PG74lsFfZYy7aiC4ik/46pnlHWkRGvYo4CokmKKVX2uhMXFRlERKz3CLkRpmjS7oZ0t8t\nMyaFsIrKu/17tI1K+/QznMC3v/NtmpB4f5ptztWiS7ybCU2wTqmTJtFE+FZmPTbnrbIKStWvM82F\nSeHIe/GojkrhYBLh4E7i0TLyZBlZJXjk4INJxrsTj3fCeRM5XiWapDSLwI6DX9kreDDuO49aiyh0\nWEzbIlgE3t7EM04QMDG2yB0jL+wWwuM68YGD/erquU+qzPvrL6VjIcIvzTy75cvvXde530Quui8W\nXdcl64JaR+ZpH7VZKc+939f31zJzhKT4vhvoRdF0P8v76xdl+762Zn3+V/Gyt2nkhTITJpmzrrev\nkfUnwV7294btaMCxkyvXdN199rpGAw784vKq63tg4E1lWOMDbzPD+h542xnW+MDbzLC+B9a86eJR\nH4bF5JafT6897quwTjL6v7aEozX/LfDXgT/1NWxn4BviVYvg51uPu62g/jpftW/kptL4kTdnxaNV\novSCd9LLHNbxctHZgPKm/qOkynmX+GwRNq933kZmW8dxr/I8q01UWXcWJOxT822E3DnGGcybyP1x\nxt5EKMT6XeqoG8fLJBOKTNirPM6ZaJLUBvVroa50dl5Hxc3CnXdQB2XsYRUTi1YJScmcdSOVW2JV\nJgICrSrHq0SIicIJTswJ8s4k47RtOa0jz2qli0pMENbnLioZwv4442kdaYOdewEmhTDOrMupScp5\nk/o+G6WOQojKLHMca/8pfpRc7Po3SSk9SLJekzJzdh1zYRXMzrUMiTYomTddLPdQecdFSBytIrul\n5+HIulI0KrO+t2ptpVRVRpkw7xQn5tT6bBGYdB4v1omzXgrzTjlrI+NMyFCkX9MpKc+axIfngfM2\nUnjXP6cX55L1XM3bgIwc700znp5FLjpTUAShdJBGeuswfx6U96eXv27qqIT+2iVVCieMc6GJicI7\nKgdLhc8XiVEOEi2qLiXsDwL7hSNhosq90tEpPF5G3tsSFbYdUl1Sxvllj4wXE0e/u5tT9KLTTunJ\nnfRD9khQKPosxwLhk3lgf6S8O/I8a0ycKZ1w1kQaFUaZcG/sOVklVjHxyaLjoku8M/bUUfFe6ILy\nzsRvHHTTDsa5MsqFiy5xHuyajLytm6NauT9yNE1iNrXr3yTlxxeJXODh7PK8qiqnjYkWqrCTC6U3\nUebDeWSv/eLiwE7hOG3CFxKPUtIr98ijOhFuEI7g6v01c0JIynGTuFvdfu/8uvqcvirX72trnAg7\npWfnhucsusTd6pvvM1oLeEG58QMTWS8mraI97t2xHwSkgYGBgYGBgYGBgYGBgYFfcN508egn2Mfj\nP7jl5+tOpK8joPGn/dfnplWHh4d6cHDwFHj3a9jOwDfEqxbBr+Ll415UUL/NlymMh9tL41WVH51H\n2mhZYknlykL0/eOaZM+/VzmiKo8Xgc8WiYuQmObCJBPemWSIc1x0ynkXOe2si0NE+P5uxg9ObeBd\netlEYKmau6R0kAph1DtQ9ioTNq6rt11UMoG90l7hRqFuIyqpRZL1LqrSy5XotfNGicLGARMSHK0s\nFypzQuHNdZRUOa4TiuNPPsxZRfjwvKMZe6LCbuk4rgOPFhHnhHsjR+Ud3gkpeQRzMAWUaSE8XSZE\nYFYIMZgw5J3QRGXZwRRlr/Q0alFsXVRKp+TeHGBZH/NWZdaDkvfReyjkKKsgvDfzeGwtrqIVSS2D\nDfwLL8SkPGsiu4VnlF11loWkTHNzE521EUmJDy8Ci6A8oI/0c+aUcWJrKQOaqHQB7vdxgsd15Cdn\ngSdtIqlw3kZK76i8XVsnJsTVXeKoTjTJhIRlsIC9oEqe4NOFCVN3romXXVJGGVf2XfVSmFwFW7/v\njjM+XXQ8Xga6CIKyisqkgC4o82DlTp5E7oTTLPKg8uReCNj+JSz6bE3mxKL+kglrd8rLofm8S+Re\nmLeJro8XXIsbx03krFGLzSMhSL/2lLpTPoyRKjPH39NV5KxW7o4dIOwWMMsdyy7xrDZR9fEy0EYT\njVwhjIqM8yZRJ7vu8wAjZ46uNpjQmFRpo3LcRUrvmQdl2XnGuQmF521kr7h0Eq3vHVGVwgttUCa9\nOJv16zb3X1wccCJMcscq3uwSvE7Xu1fW+3WbwLJm+/663tdlUPb1djHyy95fv25e9QMI2/y8hK8X\nCXjb5M5ceUd1+todUgMDAwMDAwMDAwMDAwMDA28WL2l6eb05PDxcAH8I/OMHBwdXUtYPDg488E8D\nHx8eHn70NWzrFPhHwB8/ODi4IrodHBzkmHD0yVfdzsA3R/qSj1O98WFf+vUvX9eGuqtow+Ptgepx\nY0LGpPBMc8fny8B5HXm2ihyt7Ou8TTiBLiZ+/6jlD5+2/OQiWteMCPcrz1Gt/L0nLT88bfEopbfh\n+rPWtu+c42C/4JdmGV6Vuos8WQZOm0gblSKD+6VjmjtmuZgYskVIyrJTdnPhwcjjZe2MujogrqPS\nJeXRIlq0ltiQWsScRvNWmXeXsU8xJpatDTQzL9ypHGMvoMqySxzXkZNV5F5hw+fHK3NteW9i38gL\nZ23ko3miyB37lSMXi3sTbLvz3kVSOEeboMqEzFsfzSw3cS4kc8lMc8uCu1c5mpjMFSXKOBfAxJPC\ngYiSormmumhDf3NQCbNSKJ0jABMPirBfZdwbZcwKRyaOoPD5MvH5MrJbXB36RoVp7kw0WAb+788b\nPplHFp0JHAosovL5InJSR7RfuApUuZiLbdHxo7PASYgUzpwzCXO2nLQmYqoqbUwsOuWkSXwyjzQp\n4VQ5qxOaYKfytpai8mSVNtvqkomI740zQrpcLLLVzdP2UW3zNtElqETIM6GLMM4cpbMHm1alqCQm\nuWOSOYrM0UVl0SaaqOyVvaurp0tKm6xn6MHoqliyCkqVORYhsezSxnH0rA58dBHp9HJdKson846P\nF5EfnQd+ctZRd4nT1gStKCaSrHEiTAvP+zPPBxOLi7tTeboo5H0036wwgTEBhRNWyRx2uVNOm9hH\n6FksX0i2/xdd5Mkq8ck8UHoTr9bbPW1MOMr64f91sXHtmsydRSAe1a9+h7pXOTKx83kTSZWzJvLp\nvOPpykTu0yaa4/ElAstNe7He1xfxRe+vPwte9QMI2+Rbwus3xVrAexXxD2wfF126sqYHBgYGBgYG\nBgYGBgYGBgZ+8XjTnUcAfwP4XeAvAP/J1vf/DPAA6yEC4ODg4NeA5vDw8Cdfclt/E/grwL8J/LWt\n7/8FrMP9f/qSrzvwc+BVldPrj3vVJJ8vqsyuPxnuBc4aE1USgCpnTWKv8qgqKnBWJ5ZBuT/KNg6d\nZbSejc9XEQ/26X8niFq03NqBUmTCRaccr5T3p+bICMqVqCgnwqz0fEvgs5Uy9uaS0ASjUtgvHTuF\nDUG3e3UmmbCXwweznNDHZsGly8QOR3lSJ0aZ0CVH5OqA0oswK+DJKnHRKndL5VEDixgRHBetgpjb\nZydzm1i8T+ct5zHjnRJCNPHHA3Xfz/NoYVtKySLcNEvMVPrOHKXuLDJt6pRFZ2KOqG1rr/DslZ5Z\nFjjrFCeeeRO5N8l5VAsoKNaR40hEwA5duehMdMvkUmCxAT+klGhDIorwoDJn2OV5MGFlZll9/OQ8\nMOudJFGtU+ZopXy6sCGvICAmgC2jMg9KlQk7uVAni2HbLRy5E+5Xjk/mgYs24jNIrSP3tu3SCZ2a\ny6RNyuki9d1KQpGZWLaKynvjjMfLyIMxhGROqXXs2JNVZK9wm4i00il/90mL84IqLDqlCYrzkEhc\ntHAREl6E3ZFjR5XPkzLLLXbOizByQuaVncKxjIlPF8Ios/6jMhNOGutxqWNipBYROPXCgwL2cp5z\n2azX7EWbmBZ+49w5rxNlJngxMeki2L4uerHpoomUmfB0FVhGc36VXpl3ys41gS8T4aiJlF7IRHjW\nJh5kvr+G8M7IEdXcQKukqCjzDuhFxhSV/SpjnDt2S0ezSoRkMZKVFxZd5MNzE4qe1tYHVXgld5eu\nv82+bLkm1+LAq8aniQjvjv3GFemcbMS24yZx3lg32qxwG+fZRaecNoGL7iURdDd871Ucnl/mky83\nxYGOM2GnvzeGlPh4HjhtlKjWv3SnFN6fZmTu+S1u39e+0H58iee88mvfcIxdTF84gu51iQYcGHgR\nL3tPDwwMDAwMDAwMDAwMDHw13gbx6L8A/nXgrx4cHHwH+DvAHwf+EvD3gb+69dh/CBwCv7b+xsHB\nwT/HZWfSP7n+enBwsO44enp4ePh7/Z9/F/iXgf/44ODgu8DvA38CE5M+Bv6Dr/fQBn6WjHsR5bZP\njidVLtrERRuZd9ZHkwk8HL98mLYujH9Vkpp7Yh7NSbMdWXfRWXxXPY8sY2KcOz6YZXy6jLQpUfRD\nzUyET+rIKiiZU9pW2ck9CjwYXR2kVJkJLj+9iFTYcS2DspcSR7UNTqvMUWUOcZFVdBw3NvLcrxxN\nUo4bcyTMtgbmXVKqPrati5fdUNtj1+Mm9f0+wp0KzhtYpXVnz7qrRiidcLxqaYJnlFmcW9A+Pg6h\nCcpKFe/s/GVinUxdhGdNoknmvklYfNuyFyfWAsciWPxc5YXz1kLzwAblRWY9OXWCR4vI3aofSuUm\nvuXOscgde7lnJ4t8ukrkzo5hlAmLTjnrlBRt3eRYLF8b+zg5b3F7R01itxD+2F5G4YXPV4kuJjIn\n3KmERedoIlxE6JYRECaFCRvnnfKTi47cCUX/+NPaoskUEwiaoBz3a3EVhcIp7+9mdg3EXGe7ueeI\nQNv3Ddn7AtqYWHa6dU7sKgrQBhsu3x15vj3z1CGRCagIXqxr6IOpOc+OahMBW4W6Tpw1keM28XiV\naCOgyl4BHULhL8UxB0S1qD2cIF5IaqKeEwdqLp1FtO+jSnKOO5nwYGS/2kIfmXcT67dDm0ysOKkj\nUS+7mFSV0zYRk53L9fA99T9/vErcG2V00VSoEBM71zq8kip1UGa5iU4ndSRGW0dO4E7lyZxjpsqn\nF7Y+liFxf5xxtzCBaVa6jcPvW2NHq3B4Ym60SSbslSC9Q+m8ieSZ8HB0s7SybST5ouKAiHB/5Llb\nOc57V9rjZSRi62CaX73HrDt0nqwiT1bxOefXmpEX5jc4eF5kevmi99fb4kDB7q8nq47PVtH61DLX\n95PZ6z9eJT6eN9wdeQ52M9yWiPRlrds/C8u3KjxdxRuP8WmdSAjjTJ+LlbyN1yUacGDgJl72nj5t\nwhfudxsYGBgYGBgYGBgYGBh4njdePDo8POwODg7+WeDfw4Sdvwg8Af468DuHh4fLl7zEf85lN9Ka\n3+r/A/g94E/126oPDg7+GeC3gX+139Yz4G8Bv314ePjkKx7OwDfIbUXw60/Tr0WcaeGZd7H/NH2i\napWo8YVDuOuF8S/jrIkcNRFEnusGqfsYu7M6sYo2WN8vHXVU2k6h70ABuGhtPx8vlU4T354I98bC\n7IZB6zh3nNYBiRbr5QU+ngcKfzUyb690hDr2w/rLDpyQlNMmsd+7CtYRZXdKt+k9AThpIudt5KJT\nvMBpm6i8de0EtRg13/cBxV7CEWC/gLPOMW8Td/KccRJKTy9MAfSxX5rQaKJWh3BaR/YLx6wwV5ao\nsojmAOpP8abXYxXNfdHMYeyFVhVVpQm2U4UXQLlTrd0iyqJJnKXA93czjlvlg6njrEvUAZKj7wmy\nY1UPRYJp4Rl5pU6QoWSSeFhl3Ks8O5Un847dyrNT2jldRUVQntVqThrvCDFxHmzYL/QxbiJE4PEq\nMi0cD8cZs1JYdkqzjsmLSvDCB1NPF00YXPadVo+WkZ3Cs1OYyNPEwChzTDJ4vLAOqC4pXUoUDnJn\n10qBUix6r8o8vu96uru1Fi5aW69dL9Qt2sgPzoPF5nnHTu44ioGPFh2Hp8o4c+wUnpEHnFCZ4Yr/\nn703a5IcybL0vquqAAxm5kvsuVR39XTPItNCCimcf8YX/klyhCPCIaW6qrqWrNxi8XB3W2AAVO/l\nw4V5eOyRkVmdk1H4RFq60sPNDTAo4BH36Dlnk737R8SAQJehSUYI8KQzvlhBb35tRyus04v7rhi8\nTettk3DZK3V0kacr3hV0dJNcj8pm8KE75q6+ECCJEYKwG+ABLsIU9RjGYyThkW5UulF5Kr6qV1Wg\nL0Yd3T3028vCIhROmkA2j5FcVolFFJokNCKcLTya8EGbpoFp4awRxiLssjKaYkVYJ2E57bYfbnWf\n3X5G3X5cfaw4EEQ4byKjwv2lvDcKrY7ymrPxNus6cDW8/hw+HutRxL/tcAzAF8vqg473GAeajTf2\nLgWM320y++zPrJP48nG4mARXg/Lfno38L/eqGwHpQzcg3D72FOCLD9iA8EMwg6cDLKbfFa+dYxAq\neREr+bD9sIH6/wjRgDM/Pb90t8777umjcP1D+91mZmZmZmZmZmZmZmZmXucXLx4B/OY3v7nGnUb/\n+3u+77V/Pf7mN7/5hx/4Xlvg/5j+b+YXzJuK4M08cuvVoUSbhG32WKg2hXcO4V4tjP8Q/rJzVeNN\ng1jDB49d8eFyNmMzuAPqqjcWEQ7Z+N31yHaEOk0OGIG7baCNwtODsUjKaSUvHe+dReD753B3cos8\n75Uv1y8PNkWEszoQgf3oTopFejGcWRYFczHqbuM9PXE65j9vMjEIJ3XkeizsxsL3+8JhhH3xQvbj\n52QYxaANwmkjPD3AWQxonAb3Bk302DUSZHNxYxESz7qRpwdlmSJ1EPI09RzNWE2DpBAFSuHxXqmD\nu3PUAvcWtYsG5r1KfTHWFZRpjdzudYoiLCugCBcHRQKkEFnGwmEoDGo8V+WQxRUwhSZ5PF2Mgf98\nnhgLtCnwxco/5+PneGZGEOHOInJmxtebTJs8Em40o6ncUZKCsMuTi2lya/VqxEF5dJYQEda1sL51\nDYfpJEIQvt2OXI8wmvf+nDUuOjwQ7x26GFy4apKwjsLFwYXIy15ZVh55d94EVrXHxsEkRIzKncbX\nfRWEv+wyp3Xg4lD4bq9kcXFpN04dUFm5GoyiLnZY9j6j3QjrBFsTuskN5efpa+T5QdkO8OUqsg/K\nZgicNoE6CU/3hUeTQJHVWCYhC6i9iII8DvGbCH1WTurgUWzTbSH4YPXbncfNhUnNrII/AwJgo4J5\nlOMyCnGKcQti5MnJZGZ8d/C1Vk//3VbCbw8jg0XvEZoiAq9643p0kWEZA6rGMiVOGxc515Ogcdl7\ntOVJFdgHo6kibRSWlbvR1IxNrwxq/nMPwqNlZFUH1GD9ioj8seLAsUPnTYPbV2mTsB3tpfVxmyDC\nsnIx/Pj8y2qsEjw7FPbZhdgUvJvsKFL/ZVtYVfZeZ8ExDvRtItfvrzO9Gus6vCaIv3wegS4rv7nK\n/Oc7nqf33g0Irxw7wKYvXMVAsfKTuSKej5D17ULe8SodXZdvE/Le9rqZT4NPxa3zvnv6yHGTyNOD\n/11jZmZmZmZmZmZmZmZm5ofzSYhHMzMfy/1F4Nt9YVQfXF70bx5KrCthVGE1DV/fNoQ7DjbvLz58\n7HYcxLbVm4cbgrCbXA/gYkGnxgnCaS3cWwS+ui6owoM2AEIthUoClchNV8cxwuy2Y6qtXBRqIjzv\n/GfcZlTzQXYV+HKVUDO+2mQup94hwRCDL9aJYi5SLJP3+RzUo+mOO++v+8xvno8sYmDdBMbee1oe\nTIOqJC649GZ8t1OiQB0Dpwt3cq2rwGa0m36fNgba5MPnr3YewbYWF32OHDuarg7KbvBr21aRBKQY\n2AyF7/YFzDuikijXGbYDXPaFJO4+2o9KFfxntzHwoIHfXGVSgF+fJr5YR64Gj8W77DN9MU6rwHmb\naJNH1Kl/YAzFOF8IV4N3IXWdkgIseyOEQJeN677wfae0lbjLRAMBQ0R4fvCv98Vj+fpR2Q/KFugn\n58s6+bD76OwqaogZD5eR328K54tIHYV1ChTzPqPdAEjgtFaue3drNQrDFEWYgFUlXI/KqHBWB9oT\nUJvcaEHYDsppE2/WtIjwrFc2oxJEuL+I1MF7uXZq1MDd2nuU+mK0UbEQsBAmcUlZVcZJFScRSVAU\nMdgr7PZKDIVVBXUIxKBkc3EqinCnFv48+lpsp2i040z0elBGw+Mis1End/jsR+N5dxSOXjwHqghV\nEZoobHJBpujEZXQhs02BRRCKCIdsbHtlLMadNjKaUZuxM+9hetB6P1a2cuO62w1Km6Ar7na607jQ\na8VYtcHdUdmokxAr2GbzczEQg6vJsebuKKEW77raZGMzFmKAR+3Lbp2PFQeuBx8+fwjrKnA1lJv1\nsa7DzTPh6HpYBHcAjVNEYFZjnwXDBfMjx+frMQLvfc6C94lcWZXnvR8TvC7kvkqbAs+6Qj5TUghv\n3YDw3b5wPT1vPBBTaILfS0GEy0F52ivPDvAfziriG/qUPhR3zUH9jh9xOxowTY6zO285xyM/NBpw\n5n9sPhW3zg8RruGH97vNzMzMzMzMzMzMzMzMvMwsHs38TXO7CH47ePH76lbcXFZ3wyxT4J+XkeeD\n76A/FsYfh3DFXOD4mF2714O+sYz9yCIKT8rL3xPEXUCryvt6FrVwtog3A8xiRptcYDimOx0Fr+vR\nOLvVU1SA8woWi0g1FsxeDHVPksf2HYcuUYR/OKvRKcarK37uApxWwmkdeXbwAf5m1Jf6mwTYF+My\nF6RTmuSD1YuDce92MY1Br8pJCjS1sNkrVRS+XEeue6M3u+lGAh8mKUYQ41D8z5rKHR2LOLk1gHtN\n4JvOu3mus7JQH0w3IUBS1JRdhn6K8TupAtejcp4Cu+zOlPuLwLoWNr1H2Q3Z2B4ym0F5sIw3w+Qk\nLk7dSbArsC0Kalz1yq9WiUXlkWn7IqTga+93F/4ziwiq3uU0FHeVCcbdRsjZ2GWlqSLXfeb7zju5\nNtnIxQf1dSWIecTceZP4YhWpYuBiUC5H46Ir3GsjWY1HK1/7bQqMBXp1AfFyVA7ZGKJQBXfu7BRk\nhF6FJhhj8aH1bl9oo3De+BD9FHcwBRF2Q5ni5KC+Ga5DUXfwSBAWEe4p7EYYi9HnwlCUgPce5SJY\nJZNw5E4fBAJCEeN6LHyzg9NKEYw/bwpNEH61inzfuahYTe6PI+N07X+1qvh6l/nddebvToTr3sWZ\nVwXkMnVq3Wm8u0myH/dmUO400V09jb/XvTawSsr14C4iEEyNqhIqIJA4qPcejeodXUG8Y0olcLcW\nFlHYDMaydudOEGHTlxsBOYiwSC7G3KlcoH168E4sw+/HOgrVFI+3SP61pwflYeui1I8RB/aTEPGm\nWLY2Ccup9+v49d2oyOSwOhnia66HXTFKgYMqEWNQOG3izTW7LWLfFr/f5yx4n8j13a5QvfLoDeLH\ne/KW2NFayx7NAAAgAElEQVQUha+3mV+fuvvo9gaEJPC7q5GrwWMhY/CMx+teuRwLSeDvVgkRvx+O\nUXh/t04f7fa4nkTrd/FqNGAU2I76zmjVHxq9OvM/Np+KW+eHCNdHfmi/28zMzMzMzMzMzMzMzMwL\nZvFo5m+eYxF8FGNfvK/nOAhdV/JSEfy9Bdxpwo1wAsZmKHy2TJzeEll+CPtsnNQe7fRq/JGaUVR5\n2ilV9GF6HYS28r6TO01kl72r5XZVRyU+9H+1cz4Fd0WcVC92nafpdVmNh23i9AMGLEGE0yZyig/W\nv1ilm+PdDcrlqDc7nM2MZ13mq72ySkIqQo9xUCPiQy2zzKp2l9QiCUEChyIEU1ZVoIk+8D5t4OLg\nTo+jgHTIRhuErXq03/3GI7oOg7I3XDyYunoOY2aDD60Fj+0TgSDGf3+eqQN8sUz0BikoIvCgjawr\nP67LQbnoFPDYwirALhtViHy5CqjAd/tMURcDfnetNEm42wTqOpACnNSBQYWI74h+3CkSFEyoinFe\nu9BjQBPc7XPIviBDgO1gnMXCHzaF68HdSNV0Xb/vjOXowkgKwqiZsSi/Pq08Rc/AxKPoTiqPNLsa\njL4UDuodP4/3mevRr/F174JMCO70ohIqMdoY2U29TCl4hN/3nXI6CZXPD5llcjGpn6K7bOrZ+LYr\nHIrHHO5yIZtQpcgKuBiKr/Ek7IrRVoGi7nYqU+zbeeVD9jYBJi74jSPjsuI/nXtf0Ofrin+9Hnl+\nKFx20AYoVwNlEo1WdeTzZQARfrWu+ON15pude9baFKinODnBxa4mHF2HwkVfaJM7kK56Y1BlMblQ\n1PyO2w1wVkc+b+G6GK0EejUuB+O8CR7dh/eMHH8LqyXvoypKCpHNqKzryHnj6sZBPY7yGEs3FKUv\n8C+XI+s60KsLzcfHQFeMXYbtYeQfzysetPGl7qEfIw4UcyH01Vg2m5yJu2ysk3CvjYQgnNfC/3dZ\n6LLyT6eB8+bl59zR9aBZicCq8hu0mL1RxL7Nu5wFR5HrbVwOrzsYUhAOxTh5y2vaFLjo7aYo8bgB\n4UlX+P3VyLODcjpdMzPj8UHJ2TivIqeNMBg3fVSLFOizenfV3j7K7XG8Bu/i1WjAFIQuG5P+9Rof\nE736Kr/0Xp1PiU/JrfO+e/pNfGy/28zMzMzMzMzMzMzMzMwsHs3M3HAocHfx/lvitnACPiD8MTta\nlRfRTsd3N/PujS67rcfMY9R8QA1VD4sIXy7jTVfLuhIuex8knjbCoPCmEYsA3Wis6qOQ9OLP1u/K\nPnoLt19xfUs4qqael6cHnbqZBKkiIRhLfEC7z3Yj7ESBe427US6y994sYsTwYeYxWvC8Mb7fGRdZ\nETzuSwQMpRShz4rgvTyXvQtrx+Mo5j1IYYoKa+M0mM9eKH8o7sxaV0LVRP79aUWYYgKzGXk65r9s\nM8skLGJgX+DRMjAYFJ16mSp4fvBzWlUeydcmYSjwfWfUQXnWKbtSSCmwHwQTd95sx8I2K4KwQbnK\n8OUiUtQ7pDD4vy6yu3umQbCvI8PMIATGqXeqy4KZkraZe4tIiC5edFmpQiCFwKNW+K/fZ77bZa6y\ni20yOVhG87V4GOEQRyREfr1MtJVwdSj8n98rZ4vIIrlwsc8u8m1G2OVCr5DV3RyXg7EdFTNfo8fY\nNTF3EW2y0mUXzFSVkiEnX//JDLHIMMKTrJw1gYALpLXASZP41TrSJGE5OWJGcxfMH0Z4atAWYxFc\nmBRgO7praZmE//luxf/9dLgRQJaVC8QS4SS9GKBmM+40EcFFkv2oPNkpn69rdqMRgzu7rgbvzbrO\nRj8aq0XkelAqEeoYqIKxGdyZI8HF3jYJ3eiRdcWUsQhtcHHCzLg8KL3i7iNjWtfKRVZUhGJGFL+u\n4J+rAHpbVJ66qdaVfLQ4YGY87RSFlyLlbu4xuOkPOookV4PHZe4ENqN3RX3WvhBKjg7PdeViczF4\ntPzwv568zVmgwLuezAUjvOEpaa+q7q++7pVvEPF1v66EO+q9dApsDsoCOFnHl8T6291KIXj8Yajk\no9weH9pbdbcJPO5eRLS+7Rw/Jnr1Np9Kr86nxKfk1nnfPf2u183MzMzMzMzMzMzMzMz8cGbxaGZm\n4ucaSgR8+LicYuaiwNNDYVTostFNPUJd8YF+CuIdMRl+e5n59anfxvfbyPf7gXUdOauFy4O+cUd6\nEHcfHIqxHYw7BpcD/PvGhakfMmN6NfpqOypDsZsdzpe9O0aKeeTdIh2dOn6+y+QdQKeLwJ0m0ATx\ngSruZChqdKPxq3Xk223hD/tCX9w9soz+eVyakVXR4qJBHeGLdaQb7Sbmazv6JP3uIvGsy3SjsQC2\nQ2GflcveGIs7ALpRudtGfr1KnDaBGIQTMx7vMpvR32ss8PDEh59hGhxHJncTwmEsGMbZAjDYjLhz\nTIQY4FCMgvKkN06Sf2YqwlWvZBVkOn8M+qxcDMK++ND5bAF/2bkY1GU/PzMfSms8CkkwKNRTbNl3\nu8xpI7QWudMIz3uP1VIzTI2LQcn4uazrwJCVy75wyB4taGaYwjgWslUcinI1Gl1WYvCOKEG4sxCe\n7AYG9fd/3hUG9XhFNaGoi3aH4gKRqV+bQX1YiYCEwCF7VGFEKIASSNEdVn02RlWKQpRAUwmHrFz3\nyqjKozZhB6WNcKXCSfLPZxECZ4sXLp48GPcXkb54J80qBULwqLEkwnkj7Ee/VoYLXZOhhC7DeRN4\n2AY2g1+j532mFuHLk0QTjc3g7sUB+G/PeiLCf7jjSq276IS1+foe1EXUaxV+vY4s6sDTrvCnbeGB\n+n207b3ryswj66zAfoRfnVYkETZj4XlnLCulioFFJbSTE0mne/HOIqK4W+/X648TB54elDp4j9Rt\njvf6Ucx80Qvn0YUi8GgZWdWBq77w/FA4b+JrDs/v99nvh/d08tzmbc6C951hfKO8Du9722NM3NFd\nsxuVv+wKm0Fpk3A2ZeEVdZHvVW53K1XT/z5tPs7t8aFXUUR42EYueo8TfVW4OUYD/hhh51Pp1fnU\n+JTcOh/bDvbxrWIzPzWzK3FmZmZmZmZmZmbml8UsHs3MTPxcQ4llEjajTTvDladdZjTvU8n48DGF\nwEGNsXhvkABfrCKbbPxpk/nVOmIIdxeRKD4oXNU+CD9GvJkZm+wxYuCDvDuLAHsYDBLCk67w2Q8Y\n6L0afXV7h7MXuU/OH9xJE0RokjDcGmZJcPfQgzbeDFTdxaJk9aH917vif1YHhuLF8/tiMLkVHi4T\nX28Kh1wIwaMH99mH6GpGP0Xk5clVUqwwFqVTeLotbMfCaMf4MaiAFOBJp7TRB/3XoyFTnuG9xndl\nh+CC123WlfDVYOxGj5QrxQWtJ51yUruzYpeN0yrQiPLtJrNV434daEKg1jDFCyqLFFg2iVHhss8s\n6sDjTXFnkEEVoc/G5ajsene+dKMPaJvJuVXAe4z2mfVZZJkCbRL2GTZD4fcbZVkJJoINSjfCoEIx\naJJHtZ3GwIhwsMLvNiOfZ19vMbhItIjC875w2bto8l/uR77pjCoKz4fC4wM8WEYXocz7knqdhFdz\nJ1wQv559USqBZRS6wW1Lx4quFIU6TnFmIt5PlI0xuZD4/U5ZRGU/GgQmgQkQj3E7mV5XTQLsXzaZ\nRRUYVXk6KKdV4N+tI7tB+WoHq1pYIZQpMu6qN8p0z36+qriziAy58KRTSgf3loHLXrkelC9WiRCE\nhRrPJFBM+derzGnlx+1ym7t3zqaoxUr8v8finVuIse39PkC82+jeIrJOwneDIlEYMuzUHUvLyqZn\nCsTgYvAq+XrYjC5srKvASSUfNbQ/xl+dLyJfb1906Ny+12+TgnDRKetaMIVV68PBO4tEX4yHy9ej\n6Nw8531OHxKheXNsb/ja8dn6tsH5eR14cigvCR1ZjVV6+2fTZeWzhT8rj+6a/SSIm7g4vhkLeYrL\nfBvereSRpcdj/xi3xzLJJM6//3tFxNdPJch0Lx6Ht8fOuh8zvP1UenU+NT4lt8777uk38WP63WZ+\nOmZX4szMzMzMzMzMzMwvk1k8mpmZ+LmGEqd14LLPpBS4vxC+3xlXgzGasZhi1YIItQgajYe151Yt\nKuFQYJ/dvfN3J4nP2sC/XGV2ow/CTxvhuje64gNtOA7Ova/mizbyLMJZgraOXOfMN7vMF6v03n+8\nv6kXoy/cfH670V1UasZ+9PPxqCSjV0VtivASF7j8PP11q8p7dLps/ONp4s+7wmiwiIEqwurWcVz1\nhYtOMVPutYlV5c6MobjzYT/Fo9URH7QXI0rkXmME3J10t3UXTzGPDztfCHESGfZFeXqpXB6U00Vg\nPxrNIvK8L6gqg3i/UTEXtfoCz/rM1SGzqiMyiXpmeA/Q5Op5dgjeVZWEOoMGYZO94+pBK5xUgXoa\nanc5kwSiGr+9Hokx8uRQUINtD5lCCpE2Be+KKcrVYAzFuNMIjQg9gf94lojhGA1W+G5b2GWliYlB\nM3UIWGXUQNZIUSOFeDPgvhwTm8NIBD5buYtmLMYuKwHh/jKRMB73LoREmSLwTBlGZV+MviiHbBwU\n1PzaB3GHTy3QFXe1mLnDJRsMphyyi1QmxjgqYwgUFFWIQdmNgWrq2flul7nsjFUKXI3e/RUGH4U+\naIVtdvdNVuPzytdhksKTbuRJlwkxYEUZp2vW1oHd4B1XJ5Wv2WNvz36Ee23ky1VkM0IM5n1Wg/Jo\nVbFcwKYvPD0ELgdjUwp360QlRjboVTETzpPw2VIYxYf5dfTot2UdOJ9cYo87YQD+fDVSxO/7EgPp\n6HyLkUNRVN0pJuICoBn+PKiF8ya+Frv2oRzF4Vc7dI73+psYpvv/7uJlYSKKOxVf7V0S8Ri/rthN\nNOiH8Cad5ubZ+pZn+meryDf7wm1zhRqs3qH6jFkJIdHdclh2kxge8NhNgOd9IYlwd8Ebn6W3u5WO\n7/Yxbo/TOkyRhT/g95DB351UP+ku/0+pV+dT41Ny67zvnn4TP6bfbeanYXYlzszMzMzMzMzMzPxy\nmcWjmZmJn2soEcT7R7riEVZ320i2QjGZIrO8u+TRMtCVo3smclYHllG5zspQpp8VAv/uJPL1VhGM\nvghni4B2RhUCh6Ls+sJnq8T/dr/itEmUZy+O5WEb+XpXeNyVd3aOvK0Xo0kvBqldVrbZOEzRJHoz\n4BSa4ELdLhfaCMtpWJuCsB2VOkbU4F4TSDHQRkXMBwvHjpgjbRX4dtdz0kT+6axiMxjXowsPJ3WE\nQ2Etged95mIwmiCsKiEgGMKdxl0YJ5UP98HYjcIiGo9WwsUhsEPd9RICewoiQpp6fAJwocWdOjES\ngu/yvuhhW5SzWtgM4v0wZlz1hkhwYUShqPCgjRzUWEY4bxJV9OFzv88UhO1gCIUUA49748uVcXXw\nwf2iEi4OUHRyTgWhmEevXQ8F1cA/rr0b6PuuUAV3dt1tAv/yfCAwDfIHMPGeoGJwUrkoUCfYFm46\ntFZ1YCjKbjTOauF6MM4WwudtJAZ3enXZzyVNLjgTF4GiwKZXNtldcSLuClNzZ5jGSBtc/MgKBe9u\nEiCaMlqmz+4+i9Pr6hioQ+DioNxrA5hxORqXfaE/9ioBdRCu+szlEKiA84WXbe167+l5vCuMZtxd\nBC66QlZfr5d9pjoIqsa6jgyl8HAZAWEoymjGWYwEjEUFJ01A28DX28Ky8vc+FEgRHkThyQGedZkq\nBs7ryEkVWUThSZcp+8CvViARdqOCKmHxQkCugK4ozwblvA408fUd2ikISiAGo03Co/aFENyXSaT9\nkAfTG7gdf3W7Q+dQ7K2dKoYxmnDevPyu/owwTuuXv79Nwna090bH3eZtIv7tZ+ub3DApeFzm9ai0\nycW6NspbxYwu6xSvGF76eZMhkUUQdsU/oyjeqXTdw9niHZ+NGie3nE4/1O0RRGijC/cfwptE/5+C\nT6lX51PjU3LrvO+efpW/1nqf+WHMrsSZmZmZmZmZmZmZXy6zeDQzM/FzDiXuLwLf7gubUemzkaKw\nCPKSwwagKcpuhEXweKW2ErZZ6M0dOG30qKp/OI3kqdj+qlM2o0emfVklzpvA379l17mI8OXKnRuH\nUYlTz8ztc35XL8ZpFdiOSjTvOlHz18cKnh5euBN8aItHx43GvYULcSIeufX5MtCPYepHUVIQzhbe\nPbQfJsEBH4K3AR4tE010183ZItAW2PdKr+4IEtyBdF57n1CaXEjyigFjKAUz4RrleixUAim5uCTi\nXTvgu2izGbn4MLmID56DGa0IuwwnjQ/H9wM0YqyrwPedH1ObApMRhja5utEEF1aKZb4rLrapGMsY\nGafgPx3g+WDsciYKLFMkTSJBHYRdPg7dXQRLEZoIT0doauObbWFdG8UMM+FxV/iP5xVdht9PvTuH\nYhwydKOSi0emZZOpQ0nICgEhiHFWBboIXy5fCBQyudvMYFkJYoVm2lF8Xgc2o3dgpfDC/RNjYJHs\nRogYpjNYRtACiwpGhaHHo/KKIShtjNTBj2ssUAfjXzeFflSaGBiNl3q89hnWFYwY3+wKiyT8+aDu\nTAoQ9dhHFLx3Rw0TX4OKcSfAnUXkeW98vx8xNe4tA5Uo14NREK6njqS+GN/uCstKqKMLwdvi9/Yy\nejThSe1ChXceBRYp8HQ07opwtxGGHIjiriNB+HwV+W7vAkdGaAP06rGUR5II3ajcWwaWSW66jnzd\n/rih8O34q9sdOoesN51Ut58Vpt41ta7fHJP3JgPUugpcDeUmqvCDjusdIv7x2TqqP382g/e9HZ8f\nDxqhK7AdlFUVXhO5jnTZ4xQftfG13w/HU1vVgc2uQPD7IAl0+iIu8VWEF6LkkY8R9u5U8NT8/nnX\n7663if4/BZ9Sr86nxqfm1rl9T/9c633mw5ldiTMzMzMzMzMzMzO/bGbxaGbmFj/XUEJE+HzpUWSP\nu/LaDu6shhq0MfDZMmB4vNth6tM5DMpmgLZN1EkIQaiBL9aR54dMncJUSi8s0rv/QS7i8WPr5ILa\nPn94L8a6CtRBedoVigrVpBYFcTFssJcH3RKEZQWnVeTh5HSyqUz5pIk8bCNXw0hRUPyarBthzYvh\ndJuEZSVc9MamdxdMHQNxISwVkijbrFQhIEwigfn/B+8luejLTW9IHQUVGAt8t8+cNIl9VhbRu3nq\nKHy3zxSFL9eJr7buWInBhZViLo7UEhgx7rX+vkWVLvuQdZECdTS2ozvLLg7KOok7bUSoKmGblcNg\n7IfCvng/ieGRclc93G29L0oMIspm6jqqArTJHU0QaJLwuBs5qQIpZp50wqNlpE4uWvxpoyyDcVJ5\n78Cgxmgw4KqLSEALGEpRF0VMfeqvuFPuKAxkM9pJGBlV+VUbuTwEvjt4bF22qf1KvNPKzOMBTZUO\naIOwqBNlElqYunRG8+v0cBXdMTbZ8US8Swc3tNGbELJhyI1oNBgspvjEoRjd5HYyPB5yMxpNFLIq\n/egi42erxLqKjOqxfwG4Ggu/fT6yqAr3FsIyen/X/Tbxh6vMxaicVIGzqfT7rBH+cj2yLUIS47L3\nXqJ15evETXF+/+ZinNSBOO267ooSJfCwTZwuXgxw1YzVEFhW3vlVFFSFnSqjuqCJiTvYaneCddl7\nxIIIIj9uKPzq0+7YoTMUYz8qh1ui7joKqzawG5Xt+OaYvDc9RoIIdfDYww/hfSK+iPBZG/jNVeZZ\nV6iiPwOPn8B1NpYiZDFqlEPx6MojXVZyMe61kUcLYVdef5+jWyoFf+1BfU11RQkC+9FY168/05vg\n8X/HY/9YYU8E7tfQRh+6hvDDRP+fgk+pV+dT41Nz6xz/vnTsz/k51vvMhzO7EmdmZmZmZmZmZmZ+\n2czi0czMLX7OoYSI8GDhA+tDZoqsc8fBKgWPWrtxd8BJLZwA9xrhXy5HEGHxhq6ObNBWwi4rowb+\nefn+Y66mPo4vVvEH92+cJPhGvZ9muNXFcVILl70LDGnqOYoIq1qQMDltzJ0yY4FHU+b9eR2ggd3w\n5uF0EOFJZzxshaveBYIgLhy0SegyPO0KAlQpsI7C1aA3osWoLqL44DdOET/epbMtyt0glGJ0BNQK\n0QJj9nizKgbayljcuHOM7WCkAIZwtvB8/93oIkibPGKtie7e+fqgKNCNhW6EJghNNA5Zyfg5lGkd\nRIFJT2EoEMzj+5oqMGZ3AlUSpkg/dxehypPsg+plEu43iYu+8HhfWCRjGQNqyh93hTZ5F5Z3RAmr\n6N04/WQPSZP4VgclRmii8OxgPFy+iKrrsmILYygem7cvLrBlRsbi0XAiik3upTS5iIq6a2M5ubye\n5oLhYlsKLhxhUMkkgkR3kK0q4awBMyEE5ao3zk8Cm1yoAxSFXHzBXI+FQY1o/lnusvHdrpCCsIhC\nmwIBdz39cZO53wZMocvCWBQjUCdlXbnLS8WdZU+6wl6NkyqS1Xjeu/g7FI8BXNfCfnShcBHheW9+\njQSuDnB3kVAMJlFT1QW2KH7f3mY3uBvwYRvZjIVnBxcXC9BE//wWUShmPOmMNqrf+4PSVr7ufsxQ\n+G3xV6tKMAInbxgQ1lGo9XXxKKuxfotQcla58PyqiK9mLzmHVN3R9+U7IjbNjO86dxWd1u6M7LLd\nRM2dN4H1OlEMMI9MfD7YTY/Q523gy3UihcA3uze7N45uqYT/vKeHgkXYZo9L7IuxfuU1fTEeLAJ3\nbzmdfoywJwIP2si9ReB60B8k+v8UfEq9Op8in5pbR0R+1vU+8+HMrsSZmZmZmZmZmZmZXzazeDQz\n8wo/51BimQQMTurAyQe+5tlBedgGwIeUUXjpH+qDemfManIfPR88Ju59fMyO8CDeI3RewxOF7zeF\nJD4IaKJw2sB1D/ustNGFo3YqSr7qlSTwq1Xlx3wUyiaHyUkT3/qZHLtGTmvhfhvZTQPi01roi1CK\ncK99MTQ3fFBb1MWJOrjr5yhetCmwSkaf3RnUpEA3KotKWCbhpHFHzqEYqwT7IlQKTfKeoHUlHLJH\n8G1HQzAGhRaPKhsyUw+Qd/uMaowK61boC2yykiS4UKTuRoriPT3ZCmszBoOihpj/7CYIZYpL68sL\nAcLdMxWKf453m8jTQ6GKsErwrxt1V1uCviiYf05NgkGFfngx+PfjVR6t443otR2UQb2/ZVEFKgmY\nGc8OhatR+WIZWKXA/3o/8c0+w5Xyp00hBuizsqqESo5dTWDq4l8jUOIkoCm0EWJw585unHqMIuwH\nIQWlCTCK9yA10UUDCR5dB3DVGetGEOBJV9hmF/qqZKySEAy/vjFwPRb+fJ1Z1cLdJnFQwdT7tvbZ\nOKkj9xbC/3PR8/UuQxCSBOrg7p9VFbjTJLDAWRWJBie1MhY/l+tcEAk8WETOmsBlX9gNyrXBaRNI\nuLLxeF+QUDzSLgr7oi7iJeOrrRED/ON5xWVvFCZRVo1VCh6VZ0YejCSBEIxHbeRuIzzvC92t59oy\nCaf1+0Wlt8Vf3RZPXsPg/iJO0XwvXlfMX/cq4xTjdn8RbkR8EXfF7ccXO9iLwTK5YPbVtrCq7I2C\n/qtdG6d1fK1nCXydjRpY1cI/nL1ZwHmbuyaIPxf6qe/o/iJy2SvBJnfoKxsQxmycN4HPbsU9/lRu\njyDCefPDRP+fgk+pV+dT5FN16/xc633mw5ldiTMzMzMzMzMzMzO/bGbxaGbmLfwcQ4nT2oe+o37Y\nEE7N2GXj81XkrAqs37Cz/iT5149DyX027rylg+M2H7Pv2MydK1eDD2u/XEWueu8d2mVlO/o5/v1J\nZD96HNmqdpEDM/7pvKKOwje7gokSgLEYIkYVb+3QN2M76E33EeZ9QaeNn2ebAg9aF/o+WyW+2hS6\nYsTobh1hEkLMBaKAoQqXQ6EOwjoFFI8lu9MEzmrh2cGvy7qCz5eJZwdjl71bZy3uvOmLccjGSS3U\nYgzmMXJVDHSD7+iuU6AfCpcHFzmG4hFXQZR99l6AOnh/Uzca+7Fwt40YQjQhItxvjH2BzeAijAS5\nuV77rCDGMrm41QbhwTJi0+UuwFkT+awNWBv5zeWBjPGsU7LCOk0X36AO0AfoilKFyCLCIIEmBqLB\nflS+3mUWKZACLCplMyjPeqMSWElgMxjPe0UX7qL7h9MGsZF6GjbXAR53hVx8zUiERzFwKMI58OTg\nsYAHhd9fjdyrjx06gad7WFaKFPhjl1lMLrGTOlAKfLGG5wKHDLky+iJc9oWCdy0V3MFWRbjojXtT\nzGIlgWXlPVTXWRGTqYMpUIvRZ+VPG+OqN/+cItQ1XA7KkI3L3kWsespGzAYPF5Gvdso6GZ8tEybu\nLlTzfqp1FagjXO4Lv90Z/+musMff96SCrPDkoKwqsGLEKFjxofB5A5sBd+aZxyL6eQiHony3y/yX\nhw11cKElToLtcaC3GY3LPr93cPy2+KtXxZMjoxrLyt01j7sXroejE+7VZ9Bt18NRxL/bCL+9Guny\ntD4mR+H6FaGlK8a3+8Lnyxcxij9118a7foqfo3eEpSDcWUROa+Gr68K2KMWMgEcoPlwnPrt1nB/q\n9tAp0vNV4e92r9fPxafWq/MpMrt1Zn4OZlfizMzMzMzMzMzMzC+bWTyameHtQ7l15QPuj9ml/zEE\nER61kd9fjaQPGKpd996Vg3EjEL26s76N7rI4zvSiwHbUdw7tPmZHuJkPbw/FxazLXsGEvgoE4abr\n6FCUZwfli1XkTuMD1KG46HDILugsK+8QkSAgxte7wlntvTxfbwvfd+oRZMHjus4q4eJQeNoVrnul\nTcI/niV0Esn+053En7eFQ34R53Y9eN/MMgVSiJgZm9EjsaJ498/d2scXCqjBKnjvVAjCaW387tLY\nFZsG2oHTymiC9x9tB1gGoW08omwbvS/JzMUM8FiyNgX6Ylwd/Gu5KHESHbrisXYCnFRe7LOqhDok\n6qJcDcqmLyybhCK0yaPNugxRlCZ45NYqCUX9nBbBnVPZoBb4YiX869bfa11Hj2QzYZeNQRUz73zp\nc7ZPPR0AACAASURBVEYw2gquB7iwghlcDMqvG4+Re7JX9iOA8VkbqAN8143sM3Q5kIJf0zRF8Im4\ns+reIjKoi1UpBoIpzzeFQb0fKE2fQS4uuDQaCGIMJXPRGyEEDtk4RGPcZv7pNLEdod8oCVhG6Cdn\nVVFISQjBOGuEZQoIQhWN/WhcHzJl6sRKIgjGuobLwSMRn41KEOV0ikHbDIDBUArFhLoSxmJ8vy98\n1oKZd5R1xZ1emXAzYG8q4bwJNFHYDIW/bBQVWCfhoMIqCbUI11kJWVzotMLlAOcNDJPTKAXhtBEW\nqqj6tVBzsW4ZA3XlfUwH5Y1CSprEpDcJMK/ytvirV8WToyByt3Eh6GEbueiV675QxZfj2t7lerjo\njWUVOWve/Tyqpvd8elAetP5s+6m7Nt7lrvFz9Mi6p11mUPPuuQT3k6BqHIpH/Akev9dMz+73iXZm\nduMYeZPw9+3BnXlm9rM5Rj61Xp1PmdmtM/NvyexKnJmZmZmZmZmZmfllM4tHM3/TvG0oZ2b8cZPZ\nDsq6Djxs4013z4fu0v9YHraRJ52yzUr7jh3zWT2u7LwJ3tfyluNY14Gr4cWO8BRkinR7+zF8yI7w\nVwW354dCmH6+iO+8P2sCJ33h8UHppi6i0xSokw+4s4FmZVeUdRVYVP6et2Ow6hg4rZSvtyNfbQuL\n5IX3dfR4tKdd5l+eu7vp7kI4qHK3Tjxslc0IiwhJ/PMyg8NYQIRlNJa1PwLL1Ld0XkeWlTsovtuN\nDApqyiII9xuwEPh6rx7DF4T7y8gDXNAYikfQnTeRNgU+W8FuVIr5UDuYMRRllVw8+XcnkQxcD8Yh\ne0RaikI3KuDnE+3YC+Nr08xY1YGixlICaqD48R2yiyshCvcquL9ILCuP9RrVuFcHFsHP9elB6bKy\nG13oOknCH3ZKGxOb7G4gMNSEUb1PqStGLR4/M2ogF+PBOjJk5bKHiLGqBUWpAmyy0ZXMwYR7dWBQ\no5h3OKUA16Oi4n08Z7U7l4pBUONZbxyKIGaYGSoey0fw6Lh1gqsRNqNH3YVJJFymwEGVP10r91dC\nLsJokEd4uAhsByMcIxstTOfoHWOlABF683XSSuD7rqBm3LdEm4Srg3I5GEG8UygICL52N527bEAI\nQRCDg7pzCXPhLkZhgXBvEdkOyiK506VNwh87ZVFBLYGmcqFolTzGLh8CBUMMvt8rVYTrMfBPp4Ft\nhkN+4XS6u/L7L6uv6UqgCu40uNu++1f+mwSYV3lb/NVRPHncFTZ9uXluHp+P2VwUe7CoqIOLaUc3\nzttcDz/WOfRTd228y11jZlz0OjkPA32BLivPe2UdPdLy7sIjHMF/j/TFeLSM7xWOvt17X9ehGIdB\nbzYytFFYVi40XozwX58OfNaGm36nf2th5lPr1ZmZmfnxzK7EmZmZmZmZmZmZmV82s3g08zfLcSiX\n7eXd+GbmMVoGJ00kq/G4814hEflBu/Q/BhHhn+8k/vvzkc2oNFFe+kd3nobw7oDyYeftXfyvEkRY\nVh5hdhzo2ev99Te8b0f4mwQ3MaMr7mq6OhQMuNf6MPh0kThdTIPgQT1aC+iy8aiFQeB6GqR+u883\nQ9FF9GM59vZ8sy30atQWiOLOim/3hT4rBFiI7+4vBEZVfvN8ZN1EAlAFj3WqoyASadV4PihjXzit\nhUX0TpnjOdcR/n5d0SZhn6EXWMTA3UVgGOGg7vq5GjzqbVW5u0QE/um0Iit8tyvsMoASEM4XguDC\nTwigIqyjsAhKNwgDUIeIqXdeqYGYiyYhBMbizqV7jfDtTqmj8CBBNwjrRjir4U4TeXZwQfFOk4iT\n4HTRu+jWT+6HoXi84Dh1S91bBL7dCpdDRk1ZV96R1FbCQj3+rEnCMgIhMhbjpBIOA2wHBQqLGOg6\npYlQi7jbrRhfnnqvSy2GmPuoHrSJ7WVmyC4kpejr+bp3B8U+wlklXI3eBdVEoZhQiccM/uvG1wnB\nP/eAUEePLjuf7tkhG1+cVuwP8IcOqs6FnyiTqzC6ADUCq8rvk95AEYrCbjSKCadV4HooXHXGxaDs\ninFWJYIY2VwI3AzGRTeyahJNENZ14LwRqhDoRneyZTMWEmiTO9nOm8hp4wJoCO5CCuIRZItJxNHi\noszdhXeFaRX4ep9pCZwGf1asksfrmfo1MnA3SwqsJiFU4Kb76X28L7oN3h1/9Q8nifXkHNxPTr83\nCUR3PuBYfqxz6Kfu2nibu+b274zj75IqGNvReNBGHi79r1p5ut+Ov0sAen3375EnXeFxVxiKvbbB\n4atdZjcYVz2cT3+bez4Yyl93g8Pb+FR7dWZm/pq8zfn+cwjAfw1mV+LMzMzMzMzMzMzML5tZPJr5\nm+XVIvUjF/3LX09TR8dFr9xbvBhFfsgu/Y8lhMD/dLfmcVf4fl+8S0RcnFhXQhM97sgscG/xfvHq\n1c6Rt337+3aEv01w245KFP+s7rSRr7YZOxTu3zq2IMJJEzmZXjMU5aIvPO18eH6vfTEs2GZjyIUn\nvbIfph39aqQobMdCscKfNj60jgIxwINFIIXAuhFOF4Grg6G9iyxntbtfVISLg9I2kV8LPO+VgtBG\nueWQ8AFnI8rvrgpPO+V8EXm0iIwauN8Kz4fA5aFQB9hlg1w4ryKrOjAqfLUdue4LKQa6bBQ17i0C\nbRV42hUXXrLSF+G8Fv75TsVfdspBgSSM6gPsVR0YC5gYNokeTYqsa9iOhSoFvjhxl8G68vizQd0R\nsxmVILDtlZOFO7WuRsPUJsHFHSkiPsA+XySaJDzbjxxyoQ5hipZzcTIJPM9KNyj7orTLimpaj9Hg\nWZ8ZsnJaB+41gfMUGFK8WTdd9si4VWRyeQV2FEY9DtsDq1ppo1CPwpAgjXBawa74eqmCsDmYR+4l\nWEalDgETX19DVk6rCGbcabxv6jIDOrnA1JDo1yhVflzrJKQQiGIcpg6jQQ1MCSIefzf996ZXiMI+\nK6O6K+qkjjTRo/AOxfuzhiJsBo8OFFU68R6ldeVOqYhwUvt6K2ZcH4yzOrLplRj9XAR3kYFfg7OF\ncGLG93thV4zPKmM/GPfayKp6vT8IuHEfNVF+UPn4u6LbXvq+d8RfnTf86FisH+sc+mt0bbzJXfPq\n7wyAp507HG//bnjT75J3/R4pqvxxkwlBXtvg8PTg7sR1E3imvs7/XqZOuwZSCn+1DQ7vYu7VmZl5\nP2rGVV/4y66wG5UUAie1d7mJyF/d4f5vzexKnJmZmZmZmZmZmfnlMotHM3+TvC0OSc3Yv+HraRpI\nnqlHfR3Ki4FYELjT+AD6p0REeLRMPGjja0O4467U60E9S/49c4VXO0dOX3EqZYU+63sHFUfBLQpc\n9eXmc3jWFdoorKadsuskPO0KV71y0gQvig8v/tymnbZXvUd3rW7F7pl5H0hX3HnzrC9sBu8P6bPy\nrFP2uVAMmhhJAdaVDx2uR8Mj34x1FTirA00SFkFoIxyych1cHEginNWB7Wg8PxRWdUCAffb3242G\n4FFkiwgD8NvLAdXAnUY4qwSLiToZu8HdVlGEb7bemTNoIE6dSjpFoeVRyWaMGRCoMAaN/Oo0sS2Z\nzaiYecfNInhnUMcUBTiJAAD3GmEoETOlmiL5xuKdTZUYdYjEAE/3GROP2PtuX2gCxBjYD4UmhZvX\n9EVRUy46A4kskq9rzPuN9qN/5mNxlwvARTeAuOvqwUI40cTlCKD0Cl1vqGWueiNIZF3B3TpyUgcG\ngxDcBbVIoKp0xZ062zETRMlZQYRFlRjJdHkSQ3Dn3Fg8eU6CR6IdVBHgap/5/CR6b9MIncJpDSdN\n4I5AscBgylj8miaFrD68q6N3WA1F2Y6Fu3XgoMZ1VsbiMYv368QiwLNeGbI7kYoZZ5U7ibrJ0VWZ\nH1cThHXwKLt9VhYpYCjPexeIsqqLXwTuLISAuxqb4D1PR0Y1TN0RN6ixmO63k/rNz52sRhRf92Fy\noH0o74pu+7fkxzqH/hpdG6+6axC/P6ooXA+F3WhkNa4H5e/WyR2Jt15//F1yZ4pahLe7vf5wnTFe\n3+Bw2fsz7kUUqT/DL3vlpA43nXZ/zQ0O72Pu1Zn5KVGD5335xbtzbpzbg/K0d4G5neJ6t6NxNRSW\nadqw8TMJwH8NZlfizMzMzMzMzMzMzC+XWTya+ZvkbXFI27d83cy47gvbvnC2iC8VlndZ+X8vRj5f\npb/KP3rfNYT7IVnyHk8WWUXhrJEb4ccwVhX8/Ul65xDmGDu3LS6wvVTcLrArxmZbOKhRi1HwLpbT\nxt97V4zNrtAmwXD3yKEoZ03FaS1c94VDUZ71iqrHbhlCJUJAGRWuBh86DAZnk8NFxKO5RoNu9Giy\nxQH+852avhjr2gf6y8pdNl+sErus7CXwuFNOax+wnkR4Pnh/zyJ6dNyq8sH8blTUoFdhXcG+KIMF\nWiukqWuny0qTBBWhjYFSZ657o06+4z5Nx32v9hi6x51SVwJmXBwUMRhzAYPzKoAJEgLD6NF4YFSB\nybEEy2hkhKucWePC1yJF6gV0xUXF3Wh8tvYB1DYb6yisxADvaDoU7z4yNeoYuRgGFgG2gzuY2gjZ\nvE9pO94sJM4r46BwGOEkeSTiozbSVv8/e2/WHMmRZWl+V1Vt8Q1bIIIRDDIzS6q7qrtkREZk/v8f\nGJmnmZZu6e6qyszK5BYbNoe726Kqdx6uucOBAGIhI5Jk0s4LGYDDYKZqpu44R885mZcb63GCDOLw\nWfjd3Gxzl71SepgE5XkdeLXuaJN1Kx15E6L+2go5O9TZfbrsIm2yKME0OIZiBuegz+CTUnpH02Ue\n10JdOKIqyyZTFdAOItOqVxYBkEwbbWy8KJshnm5RDdF3XeKqM1GuCo6rxubEIv5MlGkUai9MvEXy\nZc0ouovnqT2UQ3xdn5Q+JYosXHRwSKL2hcUyqvJmnbhOyrz0PJk4nLd7ZOosRm8b+zb3wmziWHUW\nCbjqMk3KxOwejLU8qRwvht3ei/cpzHef94969efBT3UOfa6ujX13zV+uOi7bbIK0s762nKHw3p67\ntQnrR9XNe4MXdgLP7pzvuL3y0KFUDqJUm2ytVoWrNnNY393gYFGghxW3Ou0+JIbwg8blFxKt9Us5\njxF/G6gqZ511pE0HIXj71Pza3Dn7zu1rs/XeElCCEwLQppuo5J9TAP7UGF2JI0aMGDFixIgRI0b8\nOjGKRyN+k3goDmmT3v667RRNRCCIvPX9enCW/Bw7RH9Mlvy8dJzsxe9tqptjvQuXbdrtlL3rzBIE\nL8plzHQZeiec1sJ5p+Y+KgeC29kYv1onTieOQgSP8mJt0XWrCKpC4YV1Vs42RppedIr3MC89MSqN\n95TOIugK7xAx4j44oY9w0WT+dJn5/YGV1IuDLiqrJMyDdSAVAoU38SA4YZXNkXRcCd45usxuHmeF\nddX0SSidJ6oJLqFwHNWesybRJOG8SQRnnTnBCd4LX82giUJ2cBocqyh4Ef75yLGMSp+gzxZj9tdr\nqL1SBU9rSWmUXlh1iV7hu3Vm4iGI47B2Fi2XI6pCykrX9fRqfUq1U45q6wSKyeLqzqJ1SwUPDutQ\nqYPjfJOYFDYuqwhlECqBVZ/wzlMFaJPFHToH552JOSe1Y157uqR0eRC5xESTVZcHodAEnDLAJAid\nKn0Hfzjw/OfDwH9cRVZJuWgzE690CY4nnj5HopoI6bBxWKsJI2AuL3U6/L8JcYe1x6nyw9oEwEod\nhYMErHvlqjNHz+kkMPGZ6wjLmLloMusu4x0cFrBJJsZd9omYldI5XKEoQhuV6ITjSmiSuaBUZUfe\nVx7ECdPCSD8H9AiHlee/zoQ2wVUT+T6Zk2hWQomw7jN/icqTWqgmgc7Bl1PHQXX7bXpWOpZ94qB2\nPKossm4TTVTYxlrO9/oiRCAP4tS7kAfH31ZUFoX5z0zK/1Tn0Ofu2hDsWTiZ+Fvn+GpzI1h5LPbw\ndZN3BHdwckvggbfdXpdt4qJJJJEhmlMQhOs+06jSbcy1ue+SEgerLu9E7y1u9UB9pPhyX8fdz0He\n/1LOY8TfDluxpU1C6XhrHfjc/ZOfGvvO7fsc7lvcjbf8VALwLwWjK3HEiBEjRowYMWLEiF8XRvFo\nxG8SD8Uh3ff1i70+i/xA9JPq5+1Aehf+Vlny36zSWztlt6i98P3KBLbKizk/OnM6pZyZDu4URemi\n9dp4UcrBXVEGG9sm3lzDVqi77BKXvVJnYV4Km2EOmmzXVAUroVe1Hbur3gSZyy5x2cGbZnBgbGyn\nq5t6vJiYMwuOLiWywrKJJLHeoLNNovKOaTABKWVI2XbNWjyhG6LelIMCrhphFoQ3mw4phJgddRBO\na2h7eLoIVN7G/ViVH1aJg8oDSgomMKTsOK5NZMsImpROQNgKKubEygrz0sZpFmAWCkQcDuVNq3w1\nEVoVztYRRTlvlE1KzAvPNAhNVDRaV0/phZNSOW+GiDUc6gUHNNl6e6al4sWZmgCU4rhG8QogOIEk\n8HqtTEpB1JxlItBlqIOJLDErUtqcpaG758k0cNXBY5QmK6JK5S1S8KASYjYX1EqweB+vrKKR9l28\ncbdlhZMSzjuliYlZcCyKQO2FDXDVw8ILC+8Iolz2mZisQ+t4EpgnpXRKzsKbNqKSmHnhshOmwRME\nNtk6k1SsS6lJdt+vYkZQMp6sJsoFhHUyJ5n1aSnnTaaaB0qnTApHq5Eec3XVwY5ZOaFHzLnVZQ5L\n6znaJ0SdCJNgIsJsbru1D8ob8WcTlXWfEDGxzokJb1vScV8k2i5nm6GrqfB2/2lWZsXP37vxKZxD\nn3N9fN1ketXds707B26/j+zI4CZROKHN1oMGNkdbsW/r9lJV/rxM5GHu9tEmpRoiUtuonOUb4bBw\nQpOV+Z3L9ALfXff89Tp+VL/KQx13+9f1tyDvfynnMeLT4n1C5lZseUBj2eHX4M7Zj0q+atO9Dvd9\n3I23/NAeuhEjRowYMWLEiBEjRoz41BjFoxG/STzERdz9elZlE5VyiHwS7v+Df8tT/Rw7RP8WWfJb\n4mObzX8XkwCrqLsd70GETVYjvhEWpWMxvPYVkfnQDfRs6naE6aZX7vIpgkWVASz7zKwwh8YqZnyy\nF191mcI5orL7eS9CnzNddLxYZb5fZh7PHIvCDTE4SspQeseTifBinXjTJoJT6knYkb2XnVJ7OKps\n9++2r+k6KquYKVB+WAkHtaNIcNU7DqvANDgWhQli/3aVOG8zUw+LUnbk/6rLHFWOZQffr3qOas/z\nWeCyh0WARpVlo+QEX84chXMWpVYIi8LxdOYJwL9dR9o+chAcEw+I43EpXDTCTIT5XPlmlclYB46K\nEgDvlFKELgtfTIV1hEusZ0kF+i6TsAg8R8ZjYok4mJcOh4kMOdu8NQpFgqSZyy4BwnKdmVWCRzgs\nHPMyoGpuvcteySQOS6FNQkHmTROpggmGfYJ1b+6jyguCssw2xw7o1HowSrH/RgSXLWbvslccmd8v\nHJWHKsJR7TgKwmVULtaRPsPBwEqKWLfTSS34TnhaF2TNFE44qgPrqEyS8GITuWxN+OuSkdoTBxIc\n6z5zXNvvf7HOTIOyiZHKe76aB5wTUIvP+6GJuCHCBzHBI6rs7juCCWhvNplSEieT22/V80LIWai8\n3Y9nrQmjXoZ+rOE5uGgzqiaa5Jw57/TW68BclW0ygnLi7Z5Myk7Q+JSk/Me6Xj6Fc+hd62NWE3Q2\n0TqkHtWOyy5/kNtquyaW95yX239Np7RZWbaZ66h8NfMc1g7vbC3e7zk5Lu1YW1FqXjhWd1yy+x1K\n2/tlGeGgsK91WZmEG/HnrM2s+8zrJvFkGj6qX2VL3r9v7D83ef9LOY8RnwYf4iKbBGHTK1XxYWLu\nL92dsx+VfJ/D/T7sx1v+UnroRowYMWLEiBEjRowY8dvDKB6N+E3ioTikibc+ke3XV11m2ORNzMrs\nni2wMSvzveign2OH6OfOkr/q8uC4uR+bXpkWRmRux86JRYXN7pTPq0KfMyJC6YRVsl36TTJxYx+V\nFxKZIGoReN66RQoRVEzKu2gTlYfCC7UXMtY9gkDwMvQLZEKjfPXI8/06o9xE4IgYCV8Hc+KseiPc\nRYRiINkfT/yOiL/sLQJu4k2IetNk8uBOmgRP7a3n5kKhcMpxac6q103k5Vo4rq176arPBA9VEE5q\nz5czz4tN5iBkEsJR4XlcKdd94PHEiOZNTHx3nfhhFVl1iRebzKwUnk7NEVU4YdlnvHOc1A5E6BI8\nx5FF2fSZw9KTsrLu4PGhUGAOmyZG6sK6jRxG6E2DxWWpKh6LgCuddTH12ciwVa9MghITnEd7HjbR\nHBMRixFUL2ySxQl6JzwrhIii6nhcC/920bOKiZeNclA6VtGIs01yeFGETBOVabB7ehlBE0yDCYAx\n2Zh1WXAI3kEPvGwSVw2UDnJUYuGYeuEPBwXfLiNdrzhvc+cwAlIZIsLU0SblostctQknQhWEOitd\nytZhlYWA3XMHARZFoE9KK8pVn0k5czIpKJyj8krWzItNog4mZEYFzeYECg6W2aIKVYV/OCzJwItN\n5qjWW89vl+FfTgqcCH+6iqjAZG9t2heMrfco8t/OOk5rv3PJZFW+WUaWUQdBTrlW5eXa3DcvnI3J\nxFsMYVR+NCn/UyLHPoVz6O76uOozr1vrvpoF4fn8pu/tQ91WWzL47nsGQCXw/caiJgW47swlV3vh\nMmbWK+WkdOjgNAwYSRzEkXLeiVL2PKfb13LnPIIT+mwCqg22CX+q1puS1ARD95H9Ko9qt3NKfAg+\nF3m/79j4Oc9jxKfBh7rIXjWRJipffkRX2y/ZnbMflfyQ8/0u7sZb/hJ66EaMGDFixIgRI0aMGPHb\nwygejfhN4qE4pHnpuOxuvt7siSFZeUsIAXa79Lf4OXeIfq4s+XVUFqXtkr9vx2yTlZPKcdbmnYAU\nxCK9HtW3l5mk1rtzWgudGjndZr21o36LOhjJvOrNLdFkpXTQC3TJukRACF5Iap0zphsp0+BRFVpV\nvIMuKf2Q06V3flGfldI7ZoWjz+Y26gamZkhrs76RaF1HbhgDBZZJOch28tPCEVWH3iPlTZtxmBNk\nUTgaMSJ0XjqCg5iFTUqc1p5Z6Zj3yqUKXqHySp+Uo8qO9f060eXMtBCEgA8wTUYo/fU6MS+VpxOL\n5DO3ltAntc6nIQotZjiuhVIctb8ZN5HEVa84hOlA1qUszItAVKGJmWnhyCjrPjMTEHUcVI6mTVz3\nGS+OPpuzal6YOysIVN5TBYuyazJMxASZR5Wn9MrLTeL7TU8TQcRRBeu3SCo0SXm1yYgK4qyvKOLw\nYsJb2IuS9AiIuSwq76g9g3MKDgLg4OUmMQ+OaRCezQObPhO847zNxAR9ylSF9R2V3pM1E1UpvbCJ\nmS5lUAYXl8XMBS90SXGFYxIsVvDQdDsCJSelp82ZPgtPp3BYCs45UlbaDE3KNL0yLwUQisLm7k2T\nqZ1QiHLd5SHmEDYxsyhMDPnjVUTE4h6XXab0dp8tgmO+JxhvBYaLLnNaCxeDG+WiU+pg4uCyU667\nhA5RaScTE12uo3LZRZv/wZ3zMaT8T40c+5TOSifCYem47vOuR6vL8GqTdvFxHxqBtiWD775nqCqb\nbHGKk8Jx1WYS5iRDzEk5KQTvudWD5LD17k9XkSq4nSi1XR+3x6+8sE7D8XZjZDGem5h5NLim3jSJ\npCYMLnvduZruG//7+lW86Hujtd4a389A3u87Nn7O8/il4GPde5/qZz8VPtRFtu3PO2s/XDL5Jbtz\n9gWjjwkO3k9K/nGBwyNGjBgxYsSIESNGjBjx0zCKRyN+k3goDsmJMC2sn6dwsvuDP2Yj8e4SLDEr\n0/D21//edohmTCC77NK9i0bGouJOKsdVb2S2ADmzi7KLWUkKh6WDNlF4R1LlqHK8bvJAdN4eRyeC\ntbGYEwAdnCZRidnIbieC602oSKJ4lKoIzINYP0gQcoLFxHPRKIeluc56NQfTFrW/cUwJQpcSqiZk\nfL+KqMJ5a5FWN7DuEnOhmFBz1mQQO87LJvFk4imcSVpFabFSR5VDcDyaeP56aU6xbhVBBFWLtXs6\n87zeWM/Od+tM6ZVFGVh2GZyy7nQYH3NdNb3yrSaeTz1tgsPK8XKTWEU4qf2uL6lyJnIcVY7z1kj9\nTVQ8QhSYeBPrGI6brOrKHEcCmx7W0XqsUGVWOioVrnu7ttpbZKAm5cnEUzqhU6VLSsyZaemZF8Iq\nKq8a5aqLTIrA6cSi33KGmKDLmQIGhxdMROhyZhMzZEwcUrN2WACbOaa8gBMTE7pszsEA1AHWrfJq\nE3GC3R9ZqVRoks1ZVTieBuGqM+FJBdre1oIVwqwIoMom2XletokimAtNxEj3da8clMJxHTgoHIV3\n1osDXLbK8SQgKC83Sqdq90aRCWIOsjaZoOQEOjXB7c06Wk9Sn0GV7IT/+2XL603mpHIcVCYUxWzP\nxdbxAkP0ZoKv54EXq8i313afRYXgB1fQxvrK5rVnEYSrXvlhHZl6E3gzcNZmKgcHJZxMig9eO15u\n0iBksOvm2e/52eJdkWP3OSujKqsuI4No22d9b+ScqvI/L3rO20zlTSRSTHh7sc70CjNvYtWi8u90\nW23fG+6+Z1y0ebdebrIOgvfN+cSk1BNn61hWLloTk6eFo/KOl+ue54XbiVLb9XEryk8LE5X2lXZz\n6Rm5/PUikAe3UeWFZZcQVWblw0LKff0qLzeJw+rjPiJ+DvJ+37Hxc57H3xoxZ/56HblorSNu+65z\nUApV8B/l3vspzr9PiY9xkW17JNd9ti65DzytX+pnr/0rvs+t+BC209Fn5eCezUsjRowYMWLEiBEj\nRowY8bkxikcjfrN4KA7pZCDd+2yETcwWp3ZU3SY8tl8/qd4mQv7edog6jMCdDoLMXdJje70iwmEp\nLArlskl0Cq82EQZB5HTimBeBs8aEge1xT2tH0zvOeuuZ2e6qz6pUzqKlnDNh46qDTYReEyLgC0//\nUgAAIABJREFUxYjUJmdyMnLttMbIVYGUzV2xKE3EKLJwUjuuWmWT1CLHCkeWxKozC9GrTcQ7ofYQ\nvBHTwRuBc95lKicWyxYzx5U5T2pv510PYkkzxNvdTd1xAss2MymEH1aRV22m9sJh6Xk280y9ssnZ\nSFyBH5rMOiUUT+Ey7XC/dtmirbIqGaEMQhczL5vMk9rEhKk3QWYevPUGiXUYHVbB5qpytFH589Dr\n5TKUHq67jJLJGph4E5yy2rUEp1w1mdIpq06Yl55JEM6bRBczlXPUoqxQc+uIkhBOauHZxNMkE6ei\nKl1MLCrPaeXps7m0mgTziSPmzKt1ZlEq1z1Ye5ZQOaXVrVgEXTQhyUnCS2BaDF1MauM/ddAC540J\nSqLKss80SakEIJNiZl45umgxgpU3UfAi2u/yWamc9ScJ5vwQMQEpp8wqWbRiF+Fx5Xk+98xCMHEL\ni6KbTxw/NJHTIKx6c5BMBxI1qUUk1oVDRKm8Y+IdXVIyme/WmaM6MQuAOCI273UQVklZrtJOEAzB\nhIyXGxMuzRVmz5n3QomJgt+uzH1z1WZKLzvHig737p/7yEnteTTxeMB7Exn/n5cd/9eT9xPNFpuW\n+NeLnsng6Nm+/G7fzvY474sc2zqH+pzpemVe+ltr0buIcFXl21XkvEnMSo+qcj70HTlnz3nABNA/\nrxLHXWZW+gfdVvtr/PY9o01515F3UMHlMtmNOiBmxXt2JHBwwlWfOSiFkz2XzFWbTIyMmTcNBAd9\nsp4272DihE3O1gsWM69bO5+jctujZHO+HZP5BzhL7varrCIc/gjx5T7y/ie5ZfiwiK8POY9fA3LO\n/K/LyJtNovRCFRyi8LpJbHrlrys4rjL/eBBwQ5Tsu9xyH+P8+3YVmQZbgz+HM+ljXGTbX+ecsMqw\n+MCb4Jf62Ws/KvmuW/Eh7Eci56wcvEMAHjFixIgRI0aMGDFixIjPhVE8GvGbxUNxSCLCk4nn5SZZ\neb3C6eyGjNk6aO4Sn1v8Pe4Q3RIfRpLmW91GALUzEjsM/Tjnm8wmwe/nnuPJzTKzjkbc91nJfeZ4\ncPGICM8XAVlFYjaBSlE2XeawdMyKgute+WFtDpHTWni58USxrpgmZiZeOZ4Z8dlEOKqErJmq8Hw1\nC+ZOUeWsSbTJY0F5is9wPBHSWjjParv0C8dp7bnsbnZ9xyxMCusz6lVpu0wVhKfTwLKDxRALtSiF\ns0ZZRotNapMyG4waqsqmV173mT8cBNpkY1t6z0WfkZX188wGF0ZS5brPTIInqfKmvRnjdW9RcjEP\nLh1ngsR1l3k0CJqLUmg39rVF6bjuHOe9lZEDOBwHpUVaLXsTtjZRmQfrgVIZulIEXm4yy43igcKZ\nk2cSlD4nvlslYoQnU6H2jqvehD5EiBj57QXOWghi/ViiCg5OBsLbieOLqXX8tClTiDApBO2Fo1K4\n7COraALhrDCRR8RRiFJ4Ydkpgs0fwNQrvQjXYtGSfTbRImPxlDEbiV8HaPoMauKKjac5UPqsqCqF\n88wL5SoqfQZUOW+g8Ozi4ZwzotMLrHph6i1i8TplJt7IVxFlHTNtvh3b5EVIaiJm5zOiJrbYo+M5\n3yR+dxBYR3bibZNuiNgsypsm8WKTOKocXiAM7resN/F+/cAIn5Sek8G9ErPFt23vz4s2EwWCOHo1\n4n9LHFfBOjhWMdOv9cFIty1hfd6knXC0j/v6drbHeVfk2E+JwHvdZC5bcz2YE8OOU4a3zy1mc2v5\npDQxc9iak2wf+2Tw9j3jP656krLnEnKDCyijYu7GL2qHApeNueiCwKpwLIvMLJgj702TeTL1HFee\n12rnWQz3ZhuVlDPnjckj88JzUNgzWXrh21Vi1SWOa0+f7Xm9u/HhPmz7VeaFObFer+Mg7t/vFHsI\nt3yZn8Dx8mPFgE8tIuwLYHFw0AjmegvDxoqfKrLknPl/3/S0WVns3f8XrUW9TYf3y2Wf+R/nkX85\nvhGQ4H733ofExKkqV0O327RwfDENn8WZ9DEuskmwmNzCCW36MPHol/zZaz8q+a5b8SFsI5H7IZZz\n7PAaMWLEiBEjRowYMWLEz4FRPBrxm8Z9cUjbHbd/WAT+5TjwP88jGdv5KQLz4t1E2t/jDtEd8REc\nTybWbbSO1vsSnDArHctVotfMm0YpPDwuHYf17XHYksaHpfCXZeKLyQ3x5USYBUebbac8wAtVpmWB\nR/njVc+XU0cUOGuUaWDothGmAQpnZHdSE1MOClhUgdo766oRExhAqQslq0WiTWuLfjushEXbcR1N\nLDAXFVz30KYhHssLS9XBBaAUCebBMwvmUCmweyp4i6aZBOGsscJ7VeWyU5pkQs8kmLMoOM8mKaUI\nCesuOaosLs+cEZk+QybzapXwAllsHI8qE2ZSD01S2mROmE2fYGLuotOJ9a70aq/vkhvElGzOpAhP\n54G6SayTcFoLVYAfBvL/qs+sk433JFhXT1LrROqjkZKnlbAOSo9wEIQDF/ACESAb2ZpUcCQue/DO\nUzkQ5/FD/08ZjFz+3dzxsjHnn/TWbSWSmXlHLIRcKEeVOalSUuYFiIPC2fU7AicViHMQzYDWKbxp\nE/PSM90KJVgHlHee04mjy+awalJmVsB1pxyUjsIptRNebUxIjjnRZSGJMvOCd47K2fHapCx75fmB\n0g7Oli6Bn5gzSwZxZlrcfi5SVm64YuHx9GZ9ebNOHNWONinraALh9vxRzEGXrdtGgVWnHNb2HP3p\nMjIr4bQOJpDLjSNDxF67xz2z7JQIFCK7qKh1D/Ny7xkWE3edyIORblvCuh+Eq4dwt28H3h059qF9\nKXdJ9G1c1vZ8zgfh6KHjbAWoQ4GE8M0qvSUe3e3NEzFx+XkBq8HZllAWpeNRbYLVKipNUq5WEckQ\nhn6tb9aRyzZx1mf6ZHFzi1J2IvZFa6KFE7hM1vP2z0cF563FJDqBxwUUflg3e2WTIl/PA48nH0b4\nqypnm0SXTeidFhbbGkQedIrdxT55/1O7rrbYF+k+FJ9SRNgXwJzAVW/C/Va4veoz0yDEbJGFP0Vk\n+V+XkTYrk73xyqo7N9sWdXA0MfPvV5H/fFTeOsa+ew94b0zc1iEYFWalbXbYF4w/dJ4+BB/jItuP\nyc363pfb8X/Bn73uRiXvO9zvW4e2kchJbSPAaf1L9VSNGDFixIgRI0aMGDHi7x2jeDRiBPaH/VHl\n7yUsn814qxvpIfy97hC9S3w8qj3HgytmE43EroNw1WZOattZW7m3u6C2mJWe04nSJEBuRKhtv0cT\n8+B4EY5rIasQvKO06iBUM1MvLAaRqYnmBvJq5/KoCvzTYcm8tJ3836wSE29umSaaCLT9/6suoxhZ\n06U8EFXGVhkhDMdV4KrPdEmZOCGlzKPK86gSFpXFqZ01mTaZwKgKjypHp9bD82YT6RUcyqLwfDE1\nh1SvdrxVtF6Uda88nXkyYl0Xg3NgHTNtzFz1mUkQJsExC0boydBllLNQBsgqnHfK16qImCtiUTkO\nSse6h+Mjh/fCulNOa+E6QSGBIDYWQQTvhMPSdqPX3lwXfogANIFGabP1S3UZuiy0mtBeqLyjdPa7\nNSri4Sh4MpCSmptGLDKwGsQo52A+iCLz0oTcTZ+57u3ecMO9VKbMsst0QwfZvLJxuOwySWFWOr4Y\nIu9WvfVuraLdc5rMyUZh0YKqQijguHQ49eTeIvkWznFcOf6qHYJynczZVgZBrBBr6N/QQVAE52Aa\nPIeFcN0n/vUicVLbnM6CqToyOBv/skw8nTmmgZtoKcw1ctlazNmZWDxe6eCqS/zTccHrJu9i7rY/\ndNaaQLHfqbNJykKNbK8LuGwSkNBBONHBmVV74VVKhEE9ymrCxtaFJHIjFM25cV3OC8cmWq/TfRFz\n+70mH0IW3+3bgYejzz60LwVuk+jbuKwMyD1k/H1wYvGKi9Kx6tMtQt2+/3Zv3rb7bVF6FsPrtnPc\np0zCiHDnBO9tk8Kyt3jHSzGRs3SwbjOnvbLsExNv6+JhBd8uI6iimDvry6lnUgj/fWlOv61L8qgS\n6uB2UaPv61fZCiRRTbjqs3Ja+51o8y6n2K052iPvf6zQdxd3RboPwacSEfYFsNLLTmTZvwe343KW\n4cnE/WiRJebMm0265TgCWHX5lsC7RR0c520m5rx7hrfYuveA98bEnbW352k/vnAf75unD8HHyB9u\nLyb3Q6b+1/DZ625U8pOJt404e853sHU2K8yGTSifu4tqxIgRI0aMGDFixIgRI96FUTwaMeI9eKgb\n6S76od/m73WH6N1xcCIclJ6DYePz40nmv72xqLViEILyIDAZJ25CRxDrJfrdomDZK8+mjnU0QtdE\nF6FJQ8wXJkJct5lnUxNXvt8oqy7hHKyjEUyVF0Rh5hyPSseicriBHH6zSRxWjke1p0uZ685I3DeN\nkVJeBME6RerCk7qMoFy1yY7rrKQ+qRCzldv/15OCr2ee79aZZZOY157jynaDL3tziJQeUPhq7llF\n5cUmMi88k2BEb5t01+1UO2GTMsEJiwDnrcVluYG4LcQafhYlIDALQnDmijqsjKDeRBPyam/OomVv\nBH9U60qZeOGk9DyfB35YJ8Is8MU08GIdd71T/34V+W6VcFnJg0DTZ5tHVCidMA+gIgS1a9pEWMVI\n7T3HU3fjWBmcaSS4yrZrf9VlZqVQZ8Eh5KQUE2HuhTi4xt40mTo4iqjMvbLxkHplmUwMmhfKQYBF\n4ZgEIWNxbDMPR7Xt1N5ENcJ8EPLaBFO1KMGr3kSZZ1NH5TyHlfVC1UHp+kxdOlZJuWihdI5/mAl/\nWdm89imzScIswKLwOISDyoMOopiDlB3OKbWH4zrQpowTczktSk/pI03OpN6xKAZBLivXnWNRWr/O\nlih8uY5skkXL9TndInTbqHRqHVP7EAfrTplXsiP+m6i83iTK4DCDT6QUi+fb8uCb/saFlLJSbx0k\ne6U9WWFWCIP+dG/E3H6vyYeuhF5MJBPEHDv6dt/Kx/SlbLE9v21clsP6vO4j4+/CogGVBeCduzdK\n76018c4xtnGeYIR8m40ULwcR76Kz5yw4c/JNvNCmTMrKZZs4nQbagbA/qSxW8YvSPrZ1UZmV9ryd\nFnBUwLOpfa9y8GKTeLVJPK4tavSw8syK+wX9i9aiIg8HMT5n5WAaSORb0Vr3OcW22Cfvf4rQ91a3\n1D0i3bvwKUWEl5vE2eBSO2sSbYZFIfg7x787Lj9GZPn2Ou6E2300+WHhLzhziH41vz3OW/fe9twe\nQh7iT2+JYUN84UH59uvf10n2Pnysi+ykcny7Svj33Ea/ls9e90UlPxo+O1x3mWVvQt4sCF/NPIeV\n/0WLYSNGjBgxYsSIESNGjPhtYBSPRox4Dx7qRtqiH4j2T9EJ8EvG+8bhss0clkJUoRTl1bBL24vt\nfo4ZNCvirD+ocFCI9Ug8qsNbZFUedtG/WEdeb0x0OKoczxfCuvP8aZn4dtVz3gq1CKdTx7w0Z0gp\nRnRdx0zwwmIXpWTHXveZ6g4j1WWl9I5q4vh67mn6xHWfabKR6Sel8KQOPF8Uu53eX80dP6wSX0zC\nsHsfgocuJbqsdKrUhaNw4F1BVthEOybD2ERV6gAqjomHZQcJJQTh4tocEqm37pzghC4pdTBHkY+Z\nZbSunMNK6KMwLxkElMwsQOWE07ljWljEX8bm0QjGTCFbgtLxnw4LFgH+uExsEpzUQuFhs3XviCLO\ncxCMoL7oMqcT4YSCTW8xgE1UHINjSBxZFI/gxHqsuqSk4AkBFkHRrFwm5axNHBTCtPCU3u6tZ4vA\nq01ipZkvKqHPmSYGntSOYoj0KbHXbgn5l5tEzuCGY5yU8KaHLA6nGZxSYN1E66j88TLSxkxS63ry\nwKazaEFQIp6TGpxkrlvoUqZJ0LeZ44lD1OG9CTHnrc3lcS2sI8yHXqIgsFJlubbxXveKd5GcBBWh\n9EaUzksjfbusxGQxh89nFkF32ShfTE1MzWrPkePttaYQsehHzDnRJmXdKcuonHhYDB1Tm2z9W21v\nsXhdvhEzMyY2gjmgwHbDT7yJD1tB6b6Iuf1ek4n/MNfLssv8sMo8ndlHknlh9/d+30qX3nZYvA/b\n89s6oCZe+CFaR9aHwKINTYTdXud+983WydRFJQp7z5IdvwrCmzazKIQuDQ46LErsTWMRdWCOt0lh\ntkoR4XTqOWuVgypTekfMyrcrZd8MIs5cZUd14DDcjOVZm1l1ynWnFEFos4kvl11i2cvOybR9n8pq\nLsCtSNNnZTqII/dFa93nFLtL3v8Uoe++rqu/9QaO7Tryrxc9k8LhxATocuik2neEbcdxf1x+jMhy\n1uq9Yttd915WZdXZGqHAsus5KN1bUbpb99675KvrB+ZJ9Z4XD3jXPL0PH+siE7FI1BiUNvPW/P8a\nP3vdF5Ws2Lr8xdT/5N6sESNGjBgxYsSIESNGjPjUGMWjESM+AO/qRjoozIHzW/iD/13j4B38/qBA\ngO9WkaaJrJMJGV5snJ5M/Y4A7gbBImeljW+LUWmIfjtrha8W/haxtqiE34t1Fa2i7dxXHA6Lcrsa\ndvlPAvzjQeCyV4u2y0bSaGeiTdibs16NeJ+XJnTVheekLvjn42JHSr1pEm26YdacWFRcn5XrLu/i\njU5qx1XMnDrPYe14s0k8CkKXMzl5spoL57DyTL1jWptA1SUjf6uwLZY3v5bnxiXlBjcWwLy0TqWN\ng6kTXFAuN5kkQpt7rnrHo9JzWArZZ+ZlGGJw/E6EuGgT/3oRue6s72RSeP7LETyfOl61mUVpsXia\nMlkU5xyqEJPyfB6IajvVz7EC+VkpJoCp0uc8CFZK5eDpLJCydfqs28zrjXI8yfQJCi8U3tMk6wpS\nrPdiUTh6VQ5LT5MctSQTXJyj8EITLcpvFTMvlwknQhCLWGp65bq3+3NWCDl71n2idxbJdzr1eAcZ\nZR0zfRZOJ4GjEmJ2bJI5L7pkrrgO2ZXWN2JF7puskE0gimruuotGqIL1HV1sLPbuqPZksR6lF03k\nqoVvovL1XPh6ViJOOGtv+ka8tx6uwguvNpk4jMvJxPqLgrPoxfYecSYzCAlNth6qSth0iT5lnNid\nFZzwdOr4ZpV4vUnIEE1m/UsmEkVVpoN44cXIcouue5uk3v/3llael47L7mGy2ATXIRZs6Lxqk0Xj\nbc9x27fyep14OpOPJoi369P2fNLQTfbOnxkI+jZnuqg8m3lizngxV5sfzssDiFAFE/sKZ05Lh0PE\nyPLKC6+HDq+YGNYPNaHDC33KLLvEWas4SRwVjlnhqb3FYF539rNnbeZ04pl4GUQkQcWi0v48OOy2\nsWp14ZgnpckWRXhaO6IqUdk5mbZk+6pXVJVpcLt+lZPKRkzk/mitrVMsZRMLqyCcVo7LLls85nsE\nw/vwrq6rv+UGjm1U3VmbmBSO4IRlm3Zute113R1HuB359rEii0UOvn3e23tXVW/1m4XBMRtVue6V\n8zaSVZnsbYqYBHM7PvTZZJPun6d3Dd+75ul9+DEusnnpOa3M9XhQyN/NZ693RSWPGDFixIgRI0aM\nGDFixC8Jo3g0YsRHYPyD37A/Dtud+N+vYd1H/rJKNH3msPacljekTszKy3VmEpSjyu2ifpwIv1uE\ne0W51jm+mAa+X6fdcba761OGr+eBszax6o2MPW+tq+O4chTe3FCFdxyKuRv6pCCOkxquWiP+80Da\nVc7i9BJGAD6fBWoPF62JKjp0IW16I0vLgaQ7KR2KHX8rLBQepDfSHm7I/EIcJ3MjwM8HoWrrgohY\nV0nhoUtwvokcFI6LXnHe8VUppKxcR3bj5jB3QK/Km0a5jhkQ/vFAUByXTaJPkIB/OfDU83CL7BQg\nqbnAEMfRINC92ihVAVVvnUAH1Q1pH7NSOPjuOrGOjmWfedlaH9RVysQMTVJmwdwseRDswLqS8kCw\nHtaeuDExLmZ4NNgqvFg3Tcai96YBShG6lNl0ypfzgKoARoZ32ZxYb1rrX5oE4bzNeG+OilKgEnOd\ndBgZmTJcR+UkK4XAUeloE7xqIkmEo8Lz1cxx1jniQJCn4dwUm59icBQJ1nm07jIZpQ6BQmwMl531\nG00G0jOp9W0dlYHHNVy1imjmP64zh2XkuHaUTqi9MA02r05MfJt4+Mu1RTA2A+l7UMBZNnfMPgns\nsGO3WTkoPJVXjieeNt62FMxKx/EQ8XfZJKbBUQa3c+r1SQmFUjm3c1mkfCPubH/XrbXhzjoxLdyt\n6LN9XOz1rajelMTfJYMLJyTk3ri092Ebf7eNy5qGrXD99vmkrPywTlx1SlbrmBrMUPz1OnHZKgeV\n56S6/bNbkctnYZaFRXmzPqgq/37e2+8fHJHrpEM0ZkaduQGdszVGBdZd4rKHiybyT8eBiw6WQ6fa\nJAjzIHw59xxUN706lxEqvYkA7LNyMQhztS84qRxXncWD9mQuWjiuPdd9tm43bz1YJ9Vt8UXkdrTW\nOmYu28wPK+UPB4Hn87Cbr61T7KozoevHCH0P4W+1gWPb1RTzjVB0X3Tc9v3ros0c1zeC7Dby7UNE\nln0X25tNwnsT2/dj92pn7r2r7u1+s6zW4/bnZT/E1CkH3vN07jgqPVGVv1z1LCr/1rzC264m4C1x\n+N7zfud3340f4yK7wKJQx89eH4+7Tsm7caAjRowYMWLEiBEjRowY8T6M4tGIESN+FLYl66veom8c\nyqs2cdllKm9E78TJTngITsAZEfe6SZzW3pwG0aiou8RQVuUvy8iTiWfZZa5668K56q3DZ0vmnVSe\nwlvHhih8vfD4odwbhZfrxJfzwKIwwqSJtiN/XglzFVI219Sqg02GWXBUhZHsrxrrazqq/bAbW6iD\nRU6JWBzVSeVRVRMIeruWReH4cqp0CqiSsu0I3xdhZqWw6jJHE7+LBLPoPHMWtMkxLR2LqHx3bb1E\nCHw1Cyx7c8s4YNkZSekECmc70ivvSVn5Yhb4P05KFGgw8SEpfDkw4tsy+KezwMtN3okQqja+pRca\nVWKjnNRucJEJBYoI9CnzepN4dd3TJKXJ9v3aO5wXSrHd7atNpBIT9pYx4ShYFFAWkBPWo6S3d7x7\nEZIqq96i5161yqwwNwcYudvGIQJOlE2fadJNDJNmOC48IUOn5lDbOmoKhSPJTAuL2Kq8iVHHhXAQ\n4KqNXHQwD0YGd0npszmwklrcYuFNdFv3mQz02RxP6z5TeCEC9RB3lTIc1Y7jITLuokucN4lpJZTY\ncyBOAHNwzCoj9q7bzHW0e2NROa6X1klVeUHECPWTyp6JJlonlApMBNaDWyo468H65yPPn68i6z5T\nensenQgT71AysbBIs1kBCsScOSkdX85uxIG74k6flYM7RPPdXpP7os+2z/cmWixjzErtBD9cz304\nKIWzTeK4+nDSc3t++3FZzyaeP1+nW4KbqpogsrY8yco7NnEQdx389/OehTenVpMs0uzJPeJI4Uw4\nuuqyucacPe8dJoD2atfdRmXZKyrKzMHrVvHOetJebHraaPfei6xkhS/mnkcze0iOaxMFvrvOXDTK\n04kf4jAthmyTdBcVejrxXLYmIp0JHBSOL6aOdW8CfOmhcMqzqQds/flhk3CY2DrfI5idCIvSXCMH\nlee4gpP69kfIrYjWNvnBMXoXPiRs7nNu4Njvatpfj+4TWYCdK+5wL8JvP/LtIZHl7ntncMJJ7XnV\npKGv7iYWb1Y6vln16OA22v78slOuuoh3wiRBPYiVy5S5Os/8n48dJ5VjFXnwnr1vvJNySxy+Dx8T\nCphVOW8TL9eJdbKYx0kY1nfn8P5vFwP8WxJS7rvHtvfwfhzoryXub8RvB7+l53TEiBEjRowYMeLX\nglE8GjFixEdjG+0TlV2cXBOtl6XyRgJ7gVaVswZOanYERTEIOxdtZl46ZuH+eJ9tb4aI8A8Hgf9x\n3tP02Rw+exF2EdudfTjxCCYmzAoTD76ceSrvOK4crzaJwpsjaXHPNeWJ8sMqUXh40yjirPujv9P/\nUHjH05l1sFw1ma9m5jI5rT3bS2iTlc6/aa075+uZZ5O5RdKUXlhjkWaVN2fHq03aEZa9GoF8XDle\nrxObPjErPd45DksjD79fJ676zLqHwiuT4Hg+MbdH7az/aCumxGxRbSZOGa25dX2AxV+dtXlwyJgb\nq/bmkthGND2dWATeHy8T66Qseyv5Dh5cNtdDnxSRTJUdzgkTlFWvQxl4ZhY8pVeaPjMvHBcxWywe\nJoDs76xPycgvLT2lwNeLArDemNLDk6ljUsA3Vz1dSvRJiD6zKByrpMwKIfZQZosbA6F0Spczm6wU\n3jErTTRZOsGJIyo8ngYTQZ3yZnBaOCfMC+Gys9gyi0w0snjihaQZVeH7dcahIDCdeJpeOamFo8J+\nBlUeV46sSp+UJsKzeUGflVk5uFCGm6AMAr3uRMfD0vOmzTybWj8OMHxdWBTmilv2meyMuL4r/vzh\nIKCIufCGMV+Ugu/NbdQnOB7ETC9yi1jcfm1f3MlZOShvP7d3e00eij5bdRnn7LhNVJ4deE5rhwJX\nbaIZxC8Rc5NNg/BGhOsuc/CBUWDb89uPy1pUnuMus0kmbApw1dl65BygFoV4UDlOa49i4l9Vu11M\nWVQedEGV3rEYOsE2MYNAl8z5lVVZtpnLJu26t7okLApYJlj10GSh7TPrZOJwq5lvV+ZYc6KANxEh\nmID8vy97mgiXCeaD+Lx7fhS+mDpmhWPVZa5jpm2EJ7XjuAo8mzq+XWeuexOv9gnmqz7zzXXEOZtT\nL8Kmz3gvVN6h7yjGOSiFizZ/lFPsPiHyb439rqZ9jvJdYokT67BaDM/B+37uvvdOgKczz3frRBVu\nx+KdVLZpQPd+/qLNRGCdhN9P3C1XlHeCOBOMXjeZydDHdt89e7eT7CHn3z4+dJ5Urffwm+tIm9kJ\n1mDvKV3MFF45LAUfHCry2aLoHhJSsirfXEfWUam98Ki2Z+XXTlI/dI9tsR8H+v068WweS8EeAAAg\nAElEQVT68S7BESM+NUbBc8SIESNGjBgx4peLUTwaMWLER2Mb7bMVHqynBTpVyr1S+zD0ply1cFjf\n/LFXDPE+E68cTDzfr+KtGKJpEK77vOtH8s5I8FfryCLZMbevnTlhWsvezm/lqPLUgzPkos1cd/kt\nZ8tdOBEmQfh2FZnsiC4j2O+DiPBo6qmD58nMyNW7eDobCuz7zOU6Ee7E+FVemHrHojRx4NYhFKaF\nXdc/LDz/sQInSpsybVQuu8QmZZZtZpWUx95zEMzRUPkMQQjOSONJYdfTJetAuWwjXhz13g7zXTyV\nWqTWmyZTBVj2cFB4gigHpcXDNarMg/CnzkjJ4JwJSKLUHgqxbpdaM3024rv0Beu+53dzR+kc65yZ\n4gke1snEoMcVbBR8tH4pcfDFxHFYezJC4RxJzY1RiPCocrzeKNkJi7Lgi5kbXDNw2SdWnUICUXNl\nXXWZwgmVE8Q5MoKq8qKJrFrlZGJiQZPt+halvabPCe9g05swpIBmE9eCCM6JRbN5peuNYK28sEmJ\n4IR5GTiubxN0h0l5o9l6dbLih/PeqDJJ5pqbBOHLuaPNNqYHlbBJ0EWlCHei6sT6t56XgSZlDp17\nS/zZdkiV3txqXhicZkZIf3Pds+yEo/Impi7mIW4v3I406wd3wF2S9b5ek7vRZ5uk9vuddew8Owic\n1n4nXm7Pa3vo61657HQQQNMHiUd3z28blxUVE2GTcijwzXWiH+agdEJwcFI7Hg3zddkkZsFcePsx\nZes+P+iCcl6ovMWs/XXZMw3Q5EwhjkcTzzpluiSkwT141TtizAQv5GzCX84W/dgmoUYhwHkHE592\ncY2nE8/LdeLVEmYlt+4HsJ6Y7RgsKs+iMmGw8CZK/8e1ieVOzEHXDjGTy96Eu1kpSIbzNnNSOd40\nJh4Vkvlq/vAczAvHZacPjlFWi/ls0s067gS+nL6vjerzYr+raRKE68FBVzth9UA/UBie/QW3I98e\nElnuvnfeHMc2OVz1mUm4iXX97jpzVFpUX6/KplMiEGOm9lCFm3mIqniEg9LWejds4ti6OO/Ox34n\n2X3i8H24TzDefW9wDKz7zPfrxOsm2caO+rYYFJwQSk+f7bmeBnj+mQSM+4SUbfTtdq2phojVV00m\nqX1m+DWT1A/dY3ex3cjzusk8nnxcHOiIEZ8SHyp4rmLm9XnkoLwRnEdX0ogRI0aMGDFixOfHKB6N\nGDHio7Af7bPFdZcJ3lE5oVfdxeuACUibrCz2on3ACsJNIBAE5ai+vcvw21ViXuiOsD6pHN+vhFnp\n7iXxtujzTem7Apeddd98yN+VB6Xw56WRx1vIPSXm2z6GJxPPqs8Ex73K1D5pnhQuO3utIMyCY1rD\n02nYEVlBbMe5AofFlgCEk4lnWjoE5f876znfGNmtCosSviiMnLvslUKE8y7xpoPfuWB/jPcwLRxT\nD21UXqpyWHBLPNrCifDlLKBYPFrl0nBOwnfXiSIIhQirPpPJFCLgBDeoNKU3Ic1nNdHDCb1m+mjd\nUUkdEw/BmyDUZUVEzHmUhce1IDgKB8+mgWnpuGiNWO8GctcL9DHxxyslDp1JXmQX55ayclwFkiqb\nZKLMoROmhRHqvcKBNwJ+FWEaHIe10mOOtadTx8QLLzeZR3Xg1TqRMSJeUMTJQPQr6w7mFRxVjstW\nEVGSCIUPxJTxlbDplYvOSOAtGWnErvB04kCtN6mJSlEKms2V1akJN5dtphBYVI4nE48TE1TqcCMY\nWEyjMg2OpLaLXm49b0bq74uE171Fw6ja+T+qS7zAKsqu42teCPM7ItF+H8l9eKjXxIlwUHkO2PaA\n2bw9qmysk+oQIXgbwQkBcAiv28yTlHedQvfhvvMTEZ5NPa+bTPbmLuoVgrNx0eH86iAcFCbm9lmJ\nqhxXFp3ZJWhzGoQmc0gd1W9/jLrpuxEK7/iX45J/v4xMShNzs9ozUThnzjqgCuYCASVl67maF46E\nCW0x2/m8bJXD0jMZnrNNyvzbGv6TMwJuXyyc+LddJGE4t6yJLme8c3y7StTBnquLoVtHgLNWmThh\nUtw8+8FZNOM6wkGp95LrTmTYAKC3nGI70v7OzvKYTaD/5joxK/RnI+334+lMAEsErBtsuUoPWpC2\nJqz9yLf7RJb73jv38Y+Dw3YTbwSk133iSeE5qW0dfNVbtGIWeDYZIjwHQX0/JrZJ5ircxMyXM8dF\nB1fJIgxPJnbPOjFRdNVnDkp3by/SPh4SjO86Bi4HJ5+I0Cr8sEpMguwE6S1MvLB42NJ/HgHjrpCi\nqveuNVsh5apXHtX+s7lyPnck1/vusbsonM3/o/rzke9jDNmI9+F9gue+4Ktq71GPhvf30ZU0YsSI\nESNGjBjx+TGKRyNGjPgo7Ef7bLEZdmUfVo7z1gjXfQHJdrbDvLR/98n+CFwURvjfTUAKzlwdbTKi\n58lkIL0r4aq33+fk9k77OPSD1J5dt4NgJMU6Zg5Lt9tJ/q5rez7zO2dUQjnaIwC3fQzT4oZocw5S\nzigPH9uJ8IdF4OUm7f5Ajtli1fbJ/KsO/u0iUgV4NvNctpnjiQlDZ5vI/z6PzILj5Chw0VmE30WT\nkIFgbhMUhcWpLQqGqDylSbDukgl0ldBlmL5j9d+Sv+3/z96b/EqSrVtev2/vbWbeni5ONJl5M9+9\n7916UVU8pJrUrCQGJebAhBEDRDEAqQQSYwQz/gCaASMQEoP6A1AxATGAmhYCVRHv1bt5m2yiPb27\nW7f3x+Az8+PHj59oMiLyRuazJaUy4sRxd2u2bXNba6+1onJQWFxXkxLnTeJRHiic8E1l5e5VUqRb\ncf+qTCTtiCsxIS+JclElnLcuqFVMNHgedS4f8FzURild1omjEfz5QcaqsdhDJ0JUOAzCWTL3CQJR\nLPqsz3QqgljHSCdIHIysi2pRw/PSHFLzzHFaRlQgISzayCR49nPHsjUnRCYWqzbNPfMI98aeXx9m\nnJaJV3VEG1vtGpOJVLPcjlcTYdEm8iDkKnhnv1O2sPDKPCqX7bUbofBC08WZCXA48sSUyJ1wWive\nd6KJwL2R46RM/O685Xjs+WrmuT8WTkuLN4sdqfvZxDPPfRd/ePPa2I6jcmLxUHv59XlX1bXAstiI\nmNse/28iaTaFmrvep43X19FJZWTu665NsMjIe7l2BNK7b5+IuYHujRz7lfAvTxua1nql9jLHuHP6\nNUnRaC46p0Zu9w6O0M0NGoTfXka+RHaS7mnj/3uFJw8mpi3bTmyO5viqOoFtHIwEq5O5HT0mZIEJ\n4EWAhyPHs1UkxcS9cWDRdIKHg8sWTsp0o5vs4A4XiaC8WESSOIKD/dxRJeWisjmvn7v76NG2tjn7\nQWbOpXkntp1U5mTpXUSbMYMHudAmx2Vj4pGR9rdXlrfJhKrCwVltXUnfXAm/nHv2i5uOlY9NQm8e\nrc05MDhzpZZbYuj6eMrNa+wukWXXvXPbhXWvEJ4ulcsqErzA+t4ppC6KcxwcDsU5iw+ceFm7VHv0\n91TnhEUniNi5iuiGc/erqeP7VWLVJp4m3dl3BXcLxtuOgdSJ0o1yHaG41XW4LSBVrbmDP7SAsUtI\ned1ck3XC6GHhPrgr58eK5No1xt4E53ZHB78vhhiyAW+DNwmetwVfueGiHGIYBwwYMGDAgAEDPj4G\n8WjAgAHvhM1onx79iu1xcCSNLBpzGzkx51EQI+FGyZwfVTSXj+sImnm4/aDX9zHEbsXhvZHHOeFw\n5JinxPNl4mUVu8g86VZOC3uZRfz0ZJyoUjWJrCNV75r0mqQ0Ce53wtO+2irtSaDrAIJ5EGZbfQyZ\nEyImBr2O/N7ufmkVHk2uyZqoMPaOXx9kTIKQe0cRrPvFifWblApF/xlqolWTEqVa3NU42DHtBZS6\nVaZeyJ1F/b1aKSKRvczdWebe46hw6wf245HjmyuLTWqTMsmFsoWEo/CRMtq2/2IKFzVUCZqUSEm7\nVfQCKjQKp1Xk86lHseM4zx1Z50hZNfDdMvFoKuwVcFJ2UUxix+8gd1y2Fl1mh0GoEuwFE8ouW4ub\nGwUTtarWSOlCzI0Wo3U+jbyJjI0Ihx1htpc7XJ2YFY7TOnVxi9ZvZES8sGiEMiRmwaEIL0uL0WuT\nOduKINC5P8ahW9nfRV4tWkVJzDqCOXjInXTimK2mPa9hr7A4Nyes3S7m+zJxdp7ZKt2/fRiIyXHs\n4GArFmqzy6SORrY7HE8X7Zrc3+Um6h03vcByUacbcZLv0kfypveZ7QfrjMLmlF2Oo200nZuj8MIv\nZp6rRn/Q9jkRDkeBX+7Bn+xl/KuzmkZ7N5Qy8xaFeVKZG22zh6ufy2a5I4rFQD5fxbVgvf6Mjf/3\nYtq3i2gdYU4onPUK9bstIox9381loghgomXV4lRxkjPLzLUY1aI9L2sTzZvEjW6ybZcHGEl3VSde\nlZFvL1seTT3jENjLhZelctUmCm+9Uk3ngBRsLNZJGVXCfuHXotR3i5arxoj2XTGDY28HoGoTZ/XN\nleVtMtGzjHbuFXuPItg94XdXkYPaRJh7hcVlfmwSehKEy40FBv0c2KZeRL/tpmuTUjjWkW+vc+Vt\n3jvvcmHhPQ+njroTVJzCojGRe547/uzQE5zj+ap97Tjv/ynrSNU9bNzPcm/O0o7Yv2h6MVDXMW5X\nrXJet0wy60LTLv5w1/HddgxcNRar2o9rI4a1c+0lvr9smReeUWbC+MgJebfA40MLGNtCSlK9c67p\nr42rVlm1NfuFty67KO8tav2YHUS7vp+9CddOyR/0kTsx9C4NeFu8SfDcJfg6d7v/cIhh/GljcCgO\nGDBgwIABnzYG8WjAgAHvhM1onx49NTDNhMtG2B8Jc1WWjVLFriMGZRoC42ARVZm3lfcpKbMdHQp9\nH0MRHMtWOVRzAnx71VJ3MV/HGw+ITVT+8qzl/shxPPZk3lkkksLhyHFWWj9QzIRJdoebaIMcSwr3\nJ+HtCt9FmGZyo+dl96+Zy2iWCW20Ffe9MNUT3wLryC8jLyNVTJyWyoOxY9lan1CdEk6E1tLKcGI9\nQEGsK6lWGKkd/3EwAa91yqtlYm/f3Vhlv6uDZOyF45FwVhsh5cTEs7JJLJNyWVtP1f2x53hu29FE\nR5LEPtaTEqMSEZx3jJx1DVURzisovAk5eed8aFRRJ1R14qpW9grH0QhelXbeq5govGMSIKijTrBI\nkVxgVDjmOCadeyh1xyOIsFRzZojAOHfMuvOQeyFHud9FOKkq55W5ubwTlg3Mi07YwfpmZpnF6S0i\nIImxN6HIid1MNXPEBNOguE50UjEHRwSWjVJmSh4gE8dnY+UiJnIRzspECOARLprUuUeMlBZM/AtY\nP9RBLoy84+8db7p7rgncWe54uaq5am2/jwpnomIHI/fjjR6j7ZgtJ8JB4d+bULzrfZIqF3XLMl0T\nzW9CP1dEtX143+1L2PHdL24Tl6dlJKoyC45l1BudZr1R0nFNWPUCN9zsu+kFiXsjc+389tIcaUUQ\nUm1uHeQ6eqwIwn7naDytlGerlsI79nK4V5hbbxnhuOs4WrQm8Jw1MA82Pve3hKO+02rVqsUjJqhF\n2Bt5Fq31pDVtpG4TJ5UJrYV368DOMiZerCKFwJ/u2fVibkSLjBxvif/mNE2clMlcdbmsu9dSsjE5\nDbBshamTW2R370bJvIkK31yZo+pjk9B7ueOsatfbY4K/W8clHXTu1VWriJkrKVvls73Aftcz9DoR\nq7933uXCurFPuScLjlGWKDx8Oc/5ftmux+GuONUebVKmG+dkc6GAYzexf89zI8rSdQ67IMrf2s/w\n7vZ27nIMrFql6ebf8zLZIhKUZWPuI02KD4lFFMZOaDPQRlkEi87cFo+SKueNLUgYL9p3IhS3hZSr\nDbG2h6pyUkZelbY4wotwgeKdCYFNtAUsf7af/eBx9WN2EO36fva2r/uQGHqXBrwtXid43iX4bori\n2z//2DGMAz4sBofigAEDBgwY8NPAIB4NGDDgnbArWGLT6TDuosyCE2a5MOt+R1WZ59Yd4sUI1pGz\nLp6dpfMiTDJHGY1cvqwjyxaWXdzVJvpV3IUXxAlntXI8MmI/KhyOQuc2iHxz2VJLxHsTUKYe1Fv3\nzssy4SURsKipN5WHbx6Tu3pettEkJXfCn8zCnQ9Cm5Ffh4Xju6vWiLwgTAIUHrxzPLtoaKNSZMJ+\n5iiCXHfqYCSeiUf9gTKxClUyec3qd/rV5+YaKpxyViZGwc7JVOAv7hV8fdEAmGMmF0LmuIdQp8Qy\nelatMHNGao+DCRSpE1K8QNkm1Dvuj4XzClat9cCcV4lZbnFLTVTujx3fXkZKMddTERwHQZgX1vuy\naKwDahKEy9bcTinCJIcXySL8xpknmCmLNiVm3nMwuS5QP60S00wAR8IiAD+bOk4qJXeOaWZiaBTH\ncQ4tQiFGcIO5U+51REcQcxEFb2JZHnr3XeKySXyeBfYKIRWBs7MGJ8pVgkfe3A1551jq0arFmB2O\nrCNkFISvL1rujdxOd4+oOZXmOUyz24Rc3yHUx0IeFnIrZuujR4SJfeaLy/Y63uo1aDqB13ViXb9S\n/n22s7+6N+cvsPdcRSX3gsvsWvDS/bxVqmjOtKl3jHxkmrkbMTqbQlwvSDhvUZwj5zhvEhHFiUUw\nNtHcKge5wzWJmMyRcdkoB0Wwa95117YqTUqcrAAnpJg4yK2r66SKFMFRnTfsFSbYTjLhpDIiN+8E\nhcsqMe0ccK6bB75emHvu0diZuBRZx9DNckch1hX2qlK8mLg5CjY/z7vjuBapOrckIhQC3y3sOmlV\n1oLlSfWGqM9uZXmj5qi6bJR7r+GWPwQJ3Y/JzUUA2x1hwSnzzK7zmJQHc8/xyL/VmOvHW38+3oZY\nT0E4XUW+nN+89446YW3Xiv3UOYU2Pzd1Iknm4OUqmmMzF/zGdb8rytKEUeX++Pb27XIMqELSxFkF\nEbvP9H/OndAI1C1Mc1lHIh6NzMn6bBn5fGr3xU1CcRVlLaTD2xOK20LKaoukTinxm8vIorGFDFkn\nkEWFZZu4bGxuOKkSo0XLJAhl5J3mmR+7g+jtPuXDvW4XPsXepQGfLl4neO4SfDdftwsfK4ZxwIfH\n4FAcMGDAgAEDfjoYxKMBAwa8E7ajfeDaJRScrDtyNmPc6qig8GLV8nIVjWBV5df72WsFmt550yp8\nv7RS73nm1uJUj5PSSud751CbjMSc5+5G18soeL7as4iWsRPOmsRlo2vhpHBGTI290MTESbW7z2QT\nm3FfP6Qv5i7y+97IrUWBk+A4Hjs7jhhp+0Acq0b5U+9YRdYiRg/fdW+MNn6uWPk7GCn2ptXvXuDb\nRUQxN8Pns7A+lrmDizbxahmpU+Kstli5SRAultC0Rvxan4tYTxEwC+CcsoyJifeMPVy1cFAIF7XQ\naOJZ2ZIFIxAnwVwz85E9aO5ljheriOJ4VbZc1krmrEMoqmMaQHCMgxGorzr+IPOYEKnmlHgwcYSO\nLDyvrYR+vyP8z2tFxZjzkbOOraPMUbXKqmkpgXnmcV7IvDDqiP0mKRIjB0XGXpF4sYyUrZ1TJ8ni\n8gT2u0grL3CcO66aSBDholFignknavVulLET9grpog0t0nClia8vWn59kN9y97xYRb6YB06r9Fox\n0/p7Ehe18NXs2oH1Y60CPR45/nBpcZFvElxD56DqEVV5sYrvtZ39XLY5fwEsmms3lBOh8PCqjLTJ\n4iNnwYEK01w6546R8ntVZJL7G0KcYOPnu2Wk8MLnM493Rrw3pV0TuYO94BhnjquzRHLmHly2yigT\nYoLMGZHWJOssmmQmUjUdUe/EyPcv59Cq7fMiKt8sIw6bG8FcKU1MfDG7/vp3Udl4F4RFhL3MrqNe\nLKtbJQJnpUV51qo87ErTtPNh9eMmqq7FwLpV9qee7xctn01t7qii8rQT2UevIZczJyzaRKvW8dOL\nc8DOjiVzBb4/CX3XIoBtYaUfk+9CZk2CcF6bWP+2xLoX2/8qphsip7l8b5OubbL7V7//dUy0Ufk2\nWWznL+aBi9pExl0OxG287pjucgyIwGVl4yWIcFGlGz1amdhCjWn37xYPis1vCC/LtD4H/b1pmzx+\nW0Jx+wj348X+rPzmomUVlfHWuXBgcaX0rrtEExPT3PNwEt5pnvmxO4h2fT97Ezadkh8Cn1Lv0sfC\nELH14fC6mXBb8H2b132MGMYBHweDQ3HAgAEDBgz46WAQjwYMGPBO2I72gZsuocwJxyPHWZVYthZB\ntozKw47gid1K8pkXYhf3dBdx1fcEvSwjZ2Vknrsb4pQCKdpK64fj6/cITqyoPXe3xKncO1KKOKdW\nXI91OqjaNo7qazLprj6TTWy6DN6lL+ZdSPr7E48It7bht5eRJkKj5oQIryEtTMyDSXDmiFHbv23i\nbBNnVQKxfRRYx8EBzHPPfh55tTSyb9kmFq0RnIUX9nPHSdWi4o1g6eLjpkHwTmgT7I9NdFk1CVGh\nUVsRnyKs6sQkE+a5udnu73l+exl5WSaeLiNKZC+37KiosIqgqWUBBBxfzBxtMufTKpkTKyjcnzhm\nmWOcezTBso0gcJh34zMp+4VnnsHECy6H5SJSijDzEAvHKgqrNjLOA3VUylZBlKn3PCw8tSbr+AqO\n3CXyrqcmqfKiShyVib3Cov7uTxy+tMjHb67S+nyoKhNvzhHXCaKCHX8Tz5RXq8jRyKKe+nG1uer7\nwVjWzrK7xMxZ5ph5MQngR14FKiI8nHhOa33tNk4ydx2vp8pFFfnDInJQOPLO7TjbIO3eZjuTKkmV\n7xdtJ1QoyzayX3RuR3d9nVo/Txf5hQmGY3ft3EmqnJeJZ8vI44OMzyaeswrmmfBslZgEoYpGftSt\ncl5FEOHBOFAmRRSiWE/YJLcoRzAXZVQTixo115EAI+/W+1AmoQXu5zDLhNNS2S8SbXI4sYg8dZjD\nLDcH4L2RW7uQkiqrpGTiEIGqVWJILFr7s+scHwpMM9bjKfcmFvfxaWdbvRRNsrhMJyYcLxplntt5\nOS1b2sRrxSOwaMJp1juA4PcXDd6bmHC7Yyky8ua6+8uzZN10vDuh+0MXAbwN9nLH76/adyLWo8KX\nc0/ZJkbBcV5bZ5aTmy5f4NYckTTxfJX4YuKZemVeeJbN9djediA+GO/en7uI/V2OgcJD0/W+2fjU\nGy7K/nU9gghXbeKgcOzlJlQl1bcmFKuY+OvzhknX47d5zreFlM1dOykji/b2/a9RZbpx7V/UShmh\nUaFOdr3ATQHzRZl4VbIz3u/H7iDa9f3sTdiOLH1ffCq9Sx8DQ8TWh8frBM9NwXcTd3Wl9vjQMYwD\nPjwGh+KAAQMGDBjw08IgHg0YMOCdsCvaB65dQv2K7YPCUScFEvMgBGcPgiNncWO9IPMmgUbEunK+\nmAXmwQjhw0K4qLoV717x/vpBvU2dW8NbxNuu9zxvLE7n3vj2FBg1UkV7kN3VZ7KJpiMRtx9k3tQX\n865RDaJGxF5tPWDPg0AhRBUu20QLNwSklCwrvk3WOjUNjsPCStBHDirvbjjENtG7Dpyz/pNp4Mbv\nOhE+G3v+cNnSRGWaeZqoZF6xpDTHJDgybz0nCWUsAgj3Cg8odTIHUtkkzh2crZREMheBWBdS1q2y\nf1UZCX9WGaFdJaVS62dxzmKcTlfmEnk0dTQqTDI4KGAa4fODjCDQJKFJiQxlb+R5vjQiPKntc+GF\nUYCJd8xyRx6VQCBinU6tJH45gr++SJQxgdoYm4hwmBtpcVnBKHM8CMJZbXFddUoEhCKzuKbvl4mj\n3PHFPHCUJ/6wTEwyeDB2ZP56TPROkTqZQ6XEVsUL1ovz/SJyUV+T2ZurvteRW4XjqrY4sZ5gnQcx\ngr1zTF3U5mr5sVeBTjOLCXzTNqoqr8rYdelERkEouuNkEYvtDZHpru3cJv960fuwcDxbtvzhyiIQ\nD3J7n4tGSSrcGwmndYKoiFonl6pyUVmcGWLnp/CCc47LRvnNeYNzJoDfHzn+8rwhAvPCU7XQSCK1\nNn6bqKQID8eel1WiahOCxRVGheBMxGm7MRqTEfNjp9RirsJR8LTRBMhpEF6uEojicQQHRYB57ogp\nUHfs2rKx6yn3wrK14/tyZfvinSP3wsgrmkzovKiV4B3nZaKJyi+m4UbMH1y7cg464T53ciPerlWL\nwEuqryWBqqjsF3buz2ulTYnPdpDcFmuaeLZIZEF4OHLsF/a+P4TQfZdFAO+Ky7p3u1pv0cjb/Lbr\n/drU973ZeapS4rSK+DpybxzWCynK1rqltueI09KEm2VUVqvIlzP7c9gSOIKze8Rd97m7iP27KL9J\nEK5acxzvmkp2vU6xTrkmKc9WkXsjz3kV7ftB56y7V8W1SLyOXG2VGBNfZe5WrN04CG1MBGf71N9D\nnZgIuu3WBYt/nIzs5xeVUiVzpK6iMgmJ318mvLspYOaYe/X/ftXw5SzcdBbz43YQ3fX97C7c9R3m\nffCp9C59aAwRWx8HrxM87zp8d3Wl9viQMYwDPg7+JjgUBwwYMGDAgJ8TBvFowIAB74xd0T69S6hf\nmX7RWGTW0djIlFbtgW8SArnjFsF7F3EFcNkk9gtnsUHdzz6fGvn4m/PGxImu52Ua3JqMK6Oyv/Ve\nSZUyKhdRabS9FX1kIth17F7m5EafSY+eID0evftj6rtGNdStxc+d13pj0p4EAbFYN7eCsyYZYefN\nDyAOVJSowr3C8WjqmWfmgAne8SCwJuB6MqzH6arlrErkTpgXwnkteFJHNNs+H448X80C3ywjVWtE\n9dNF1xXjhKORke/T3PpX5rkdz9M6gSrzpF1kVteJ4SHh+GqeUeSOs0ZZtJGXK4vbW7UwzoUv88B3\nl5GqsU6mpErVWjTXIiovuugjL469AC8jXNbKvZHnXzvyfDH1/P5KWbQJEBIWE9bHPdXRupWaZI6Y\nSW7k+1mZKAQuaqEQz7iw3pvgHQJclJE8CH/rILCoYRkThyPPXia8WBnxmymcrAL/iAoAACAASURB\nVMwlUYzN7dGoCWVfzTzL1hxhio3niRdWmGtrm1zJnL22CG5NWKneJoedCHuFv1UuvTnOrppEm3aT\nYne95oeuAt2M/GlVebqI7Ocm1u3teC9VXUcsZl6oEjzcIA960m6XEL25nQK3yL/NaMyHk8BZlfjd\nRUMdleORo2y1czgoM+94tCfkzgSnV2U0Z5AodTR3zT9/WfPVLHI8djQKXuH5KuLF3HoHBfirlgtJ\nLBvBieIU7o89J2Ui8457Bfx1HQkKIokkFrEYk4kOUS2GMSgULqCZkettUhKCdJ03ZVTmcj1jLBrr\nR/pi5vn2yubvKioeaGPiVWURZ40q4GhjJNbmApkH4fNJjnRdZGVURJQm2ephJzYnarK59GBDxBs5\nE7d7Slk7B2PvRtqFJim9abR3NbmdK9OVl6Wdv0luYvhpmXg0vTk2NgldhbeKnHrTIoC3xaZgmXXX\nsbm0bnbrbB6zJprINPHQeNuuB+PAvcLxr84avrlsmWbCUe4oo3DaxXdm3s7PRd3y7aJlL/OsGuHR\nNPCqjJRJeTSWW6R26ASiwzsEvV3E/i7HQBVhL/eUKXJeJoK/OZ80qkw2fr9VZeQER3fPbiPPly1l\nex0n22s8vUg8DtJFSJpY24gJz3vdnNCf8yopixacS+TeHKfndWTV2rjdnicbvY786wVRc1VDTMr3\nC6UI8Nn09veUUXBUnfu2WepaOPhjdBC9S//iD/0O8zp8Cr1LHwNDxNbHwesEz12Lpjb7D3fhQ8cw\nDvg4+Dk7FAcMGDBgwICfIwbxaMCAAe+Mu6J9eqfDJFh5+8RbVwtcuwjAenQ2cZdA06NVW5W8DSfC\n9A7CGYykvPl35feXDS/LRHCwX/hb0UeTINwfCac1a1GlL2/fK/x7xRbBD4tqiF2cmsVfXT9wHY4c\n55eR/dxEoftN4qxOXHQxYA9nni8nVug+76LNjECW9XtslsGvWtu38zrxqlIOR9cuGA80rfJilchd\n4rgj6H8xC3iBl1Xi6SJyWkcm3kSRw9xRNRFPIgueqGaREGxV+vMGxllHTCo8mgSqjnz2YqRhnRKv\nlonPUOoknbtB2B8pz5ctqOOzqWfZmOgyzYQmRusbipGstve/N3L8xb0MRXhWWsfSQeFpk3LR9nFP\nQqNGwrbRnBqpI56vVonMCb8+CHy7SCwbiCqcNbAvyr1CaNWbaIcwymzwCXBaJhbRBKOv5oGjUQCB\nJoImZewdF02Lk8A8l7VDA+DVquWiSiSui9oLJ+RBmAdZk7o9YXVWJu5P3p2Gu6gT83eMLnrXVaC7\nIn8yESaZclYnzut0yz0EJnD2pN1ZGZmF3U6NXUJ06sb2X57VVMkcPvPM4TuhYFv0nuWOX+0Hnl5F\nnq4iIGiEg6zvK+q6g8oWEeGyTp2zD+aZIzjhpExrkeqLqe+6bq57gn4xC+t+oK+Ab68iy6ioJlbR\nIhT/bA5OrJelCEobFe/hXm6xk2WjjJxFfZUCex7yYPNUEUxA6OWabTfmPPfMczWBPxrBHoGRh28W\nJua6QtdOjkIgIXyzaBl7x17hyBMcdgJV1ZHUIydMx7fn8Gnuul4xg4g5JDfdSNvoV5Zvupp0e0LH\nhKVNQjc4oWzTLVdT5oQ6Jv6/s4axlx8tcmrbrZB7x7G37V7Fa9dX1ZHNB7m5IBfdWOyF+pjS2omz\nlztUdN0rN889wVlE3beXLVeNueeOc8feyJMw4jt3sGwSZQu/nIdb++jFerV2RZj1M8pO4bcwYcYc\nQeY4a5LyYhk7wfP6czTBuPtO0KqJjYdjx35uTr4/XEXaJK91djxdtkRVHnXXU9bN0dvieNYtWLio\nE/uFfUeZBOGkjLfGaKO2MKP/vrKsTcCfONuvy0YpU2KSbUX3dfNLFe1eVUW7b3oxMfqP0UH0MaMX\n3wafQu/Sh8YQsfVxcZfg2Qu+PVmxq/9wGx86hnHAx8HP1aE4YMCAAQMG/FwxiEcDBgz4QXhdtI8H\n/s5hvia+trEtgsBNgWYTTVKmd5DF8PrVqpsvMffCNUG9TURu9j+8KC0+7LBgLaosmsQ8d+8dW/RD\nohq8F+pWmWe24rp3Rc1zT+6vXVKz3DPLPWVMTLzjz/ZvEoRtUkaOW3EffRn8PLNjtFcIDazJ4/V2\nOOHR2PNyFfluGXkwMrfIrLHuoZNVyyRY39HUWyTTfhB+t4iUTSIvHE6ckWzJXEUt3si/NvLSCX/3\nMCBd1F5wQtPFen1zFXkw9VhHlVK3CYcjd7b9zileYVlHXlWJUYCD3LPy8Pcm8NVRxkVtRHMCTpI5\nSR6OHfNW+e1l5FnVEhx8MQlMg42Zk9qEm2mXr/+yUkads2LRGHF+ViVeLTv3UoBvF4lJcOzljiBC\nVUb2s8DUw14WyLtYx1aNOJ51XSgvy8jxyEQ5VeWkjPz+KlIEIcg10b1MyukiUex5phvjOOvcN2+K\nA9uFKsLhR1wF+rrIn6PC0SaInStw0z2U1ITQIpirpE68djV3L0Qf5MJZJ6J6J9RJadWi7nbF3G3G\n+zkc0wLqKvLV9Fp47RFT4tvLaKKjWKxjk2xc9AKk68TP71eJsQhBrs+LiPXCnZSRV2Uic0qsE5e1\nCdjLwsb3fu74fOxpVMiCRUc6LErOS1pfnyL2X+GE+zPbj1WboPOv3XJjinQrt+F3Fy1VNFfPqlFw\nilPrOGqiReQVHgpnotVVVMpVy/HY84t5IHZCx/5rBMSk5lLsicGRt46pu4Zbv7I8c/B0Ya6tpuvJ\nu/m+Fq3Z9zeBzXGTILdEEFXltFKWTWRvL7t1fXysyKltt8LYC1etcjjy7HeEdBkVB7Qp0SRnMWLO\n5kVV5WXnXFM6wcsLRx6aKLxatXxdJQ5GJuIf5p6H08Blndbb7wC6LqKEiSeTILeiYoMTVq2yl98+\nH/NgPUo7hd8qcV7bcYfr7wbnZeRFbfN8VKgj5AKvSsV1/VgHI09CeVUlqthQJXPZ3oW+D0lEOKvM\n2Ql3E4q5d8wDFA5WbWKeWU9Z7K7FphOwxt1Cl/54LGIid469Qta9YEGue7ZUdS0AerF7Y+GdxalG\n+KuzBmDd//hjdxB9zOjFN+FT6F360Bgitj4u7hI8nch6Pnewc3HJJj5GDOOAj4Ofq0NxwIABAwYM\n+LliEI8GDBjwXtgV7fPdon0t8bYdDQe7Vw/3qwx/MfVc3RFx0JNx2//WJmW2sZL1pIs+8l3HyzYR\n2WO7/2Ev9+zlRjZ9Pn3/KfOHRjX4YMTWYQGXzbUr6uHI8XQV6RLYqKPt25/u+VvCUVL4k1mgvb2A\nH7g+RsHtjtsxklq4PwnU0WIJvRgRfLpKfDbN+Wxu3Uo9sX1eOVrnuKgiZasEZ70ql631FOXO4td8\n8BReOG3gfgDvTcgz4lF4toooMPYmPBVe+OVceLowl0cmXZyeGOEXkxIR6gjLFhPdFJpkkVmZd5w1\niRcXVmB/L/d8OfdkAlWCRQtfX7SMg+PzqeO87qL1nPUXTYIDlLYyYvSkiZQRJlngqDBHV5uU0zrh\nRJjlwtg5ikwok66FolVU9kS414lyZ5K6LpPIeZUYdS6sbex1MX6ZJLQrqAcTsM7KyNGOPq+70CSL\nY/oheNtVoHdF/iRVLuuEauKsspX7JgjC/XHgqk4oNhYmQbhX3I7c2oZId+4ytxaqLsrEJL92p+yK\nuVvH+xWe3EcTe9xt4fq7q8h5kyg7QrZN5oxZNcI4u/69INZR9LyMHBaORZ2YF35NPJdRiZizpooQ\nvHBRmUNtlAkXrbIXhGkwx93hBmlWdebNNtnxaq12iV/MA945pqETUbbmm15rPCocTzun3ihznK66\n8etNOMqwbUCsS8eJUpVKnRK5hy87cSWInZvXISp8NTNisCf3Lpu4c1xvrixX4KptGQUhtsp0fHNW\nWtSJreQxkpqjdFsE6ee2PLidixR6fMjIqV1uhVnuOK+NWHdiCwA23Vdlaw64cebXTr1VVH4xswv0\noopUSddxq4otxFDtxMsuFk+x8XBj30TQAGerxFVtkaSHW1GxO8xdxJhYdPGeu4VfE3SqqCwbZRyU\nzDseTj0tkYtKOGsSTmGcOWK0SNXgLa5OFUZBeLGKfLOKTIPrhFbHyNuCiVLhxarlqkqskjIJjiTK\nfudWfh2h6LxQeBNTLurEcSeunlXWxzifXJPN/X0yE+FwZHPNorZ7bVQTtvrzEvW652t9zrHjP8oc\nL1d2b5gEm/P/GB1EHyp68V0/84/du/ShMURsfXzcJXge5kIQd6PncBc+VgzjgI+Dn6NDccCAAQMG\nDPg5YxCPBgwY8MHxpjgCi4pyt/p2eiJ6O1bFOip2r2TdJOM2ETei7pIqy9YEBxHQyC0ichO7+h8+\n1OPoD41qUBE+71ZmqiZmmZGGDk/dkZ0uwWcTx4PxteOoTUpUK1J/NHa2Irwrbd88ZpvHCKynZLHh\nDms7B1iP3DsU62D51TygClXn5lkli0BKak6Ro8KTO8dF3bJojXA76MhTxdwboyB47zgtE15hXjgy\nYNEaUUoXqXQwCtS1EXzfLawnaZLZCt/LuuWsse2cBNvfJwrfVvB3vHA/82tCd9UqV61l6GUCeSYc\nFdeCW1LrtHFe+MNltN4jgYsqcRWtU2m/I7gn2PF9uUpIjCxbI37H3qLtXOdq6yOR1hFzVWKvi1/5\nauY5qxKXdSJhZGzU2+6vVhWPrZJvuo6izZi2w8Lz7VXL0TuMrZSUvR2xkG+Dt3nVLhJ9XXi/djI4\njsdGGl9Uia/PGlJH5B5sxGI9W75eqADWnTz98QYok7K3NUe8rm/tqHB8743cmG+IEDElfnfVclIl\ncm/9QsE75pmwSspiZQTzLAcwx1iTlDopy6jMOuK5TYmrVkkJVB2zQtkrHCeZ47gTHs3l0YmiqrxY\nRQ5GntwJ0kkDjZprxTv4fOrWsXoiu+fGfjiJCBNv+/ndIpk7qPBEVQ4LR5ssurJuEtPMPm+SCXPn\nWdaJF2ViXrYc5I4qJr5ftCCwahICjDK7XgJwNLa4vwdjWZ9zQck2xnY/52+uLBdg7GHVXrtPkypX\ntQnIL8qExxxXky7ubd1Zk67HyfbctivibHtcfIjIqV1uBde5vso7iPVVY2JpkyLPy8iiTkyC8O1V\na262ThzqN+tVFXlVQ5taJrnjQRfldtdW551zaRVNtNzfcilu726TlDKZ+3XX9m7HPnqnnFTKg7Gw\n6oT7ae45Hlsk52mVaGF97itVliulyhLnjXWEOeCsgsNC+X4R+XoBIwf3gVohOMcyKk2EpC0Pp/7O\n+at3Lr5aKfcnHodFmB6Ocp4vI41a3GlKdh+aBhM+Xm30Mpo4B3knipxtLLLYRr8VmTNXU6vYddC5\n5/4YHUR/DPyxe5c+NIaIrR8PuwTPzcjbHzuGccDHwc/RoThgwIABAwb8nDGIRwMGDPjgeBsaYB0V\ntdG3Q7IV1NuxKgJ3rmTdRcb10UX966+atC7dDgJ43kgKbvY/fMjVbu8T1bBrZeY0s4i9Vdfbs0pq\nZeKpj9QyN8E89+sH610PbZvHCKyn5HIR1xuc1M7BJgTl5Uq5N/YcFMJJab0rTau0ySLdnFifShGE\nA/WMfeKiMcJyFZU2wuHEk3tzgngRLmLi2bl1J+13D4pVTNQRzupk7x8TF21iHBwPnTAOjlW0eKcy\nKssWmtiiCXyAby5bDseeKkLUxLMrIw6L4GgSnHU9WPdGdltcNCaMOSwmjiaR1FxHs8yRdyT9QeG4\nrE3dCl4YO6FV4aAQLjuRayIm9ihwVdt+KMrLqHyJ52FHrn858/zhquXpInJv7G+4B1rtemucvVfs\niPLCuxt9YU6EIsgbSbse/arvzPHRVoFuk+gWIbk7ws6JRVlNMhNwL2vrr3m2jIhAikrZbXM/Hnsx\noe/OuqwS041OhDYpdyUH3dW3JiJ2Pi5bqtYIqyDw+8uWZZMIYi6NzAuzzhUYgCiKOht/I58IzuEQ\nqtbmudwJUZVlhJhg1ZqjzWHxbykpL1ZtF09p4hFN4iBzjL1wsopkDlYR2hR5MAq0ATJv4k+/v7Mu\npm5zbqxjQhWeLVtU4WUZmWSegzzRqLBYJbLQi1Jwr3Dkk5tfE1tVDgvPOHP85rRhnDsOMuu4WzRK\nk2xso5GpFx5MHeNGeCWRo8Kt4wELb26pKtox6TvxtuflWeaImpgEOC0jq1bX7pp+Tlwm5fwqMc0c\nD/bcuofm2bIlYQ6llJRsZO//NoTuh4icusutYM7b28R6TInfXbZctcp+LrwqE/NcaBDKLobOrv9r\nYaOOtoL7rE0sU+LeSLsINWEZLWptG/PcUTYmgCwaZZ5f3zc33bpNUhzK2O0Wjnpsxz5eVg1Ply0g\nPBg5vDfn3Hl5UzgC63xbRGXRKnuFZ+I9ldo4+91lYppLJ8Kbeyx17uEgQghw0Sp+lfhssu2guilO\nOzaEeBG+vbSxMQ6ys+ttc/GEojRJeTi13+s7uLax7WhO9O6TxJczz0mld5LfMVqHlA/Ct8sIqtfO\n7M5ZNQl27/6UHTo9/ti9Sx8aP5WIrc1Osj6m8Kc0bu7CHzOGccDHwc/RoThgwIABAwb8nDGIRwMG\nDPjgeJc4gr5vZxyMiL6LrHvdStZNMk4wkmizUHfVkXhNsrLxNr55Hzb7Hz7karcPEdVwVxRNUr31\nYL2LONj10LbaIjqdCOMubsccALfju6pojgowh82jiblxrmqLklvWRp7nXii8coojF0fZNkSxuLpJ\n6MrSMbI1cya6jL1jkWC5aLt4JogCMQkiytNV6lZ1J14sIQ+ORWOfF9UIz5dlpGqgBtxly9/2sEom\nFpy1FkFX1UrWRed9fd4C5pQqo0UjvVwZuf1qZe6jwhvR3UM6YaiMQhXN4bIfEk9XkX3v+GzqEeCi\nst4MLzY+BTE3VZ349uq6f+e8dMRkK+DPKhOMBBMAJ90Y6EnYw9zxYtV2jqjIQSd8HRcOeceV7gof\nbRXoNol+Uu2OsIObXSKoct4op3XkqNvGNimXtaKa+GYR0WT9MZm3TqirxsSlcpUYuchB4broKLeO\n/OqvjZETprm7s29tnnv2C+WLmcXnfbc0Yl/FzsVoR6RdAubB0ahyUSlHY+tpWLWRqnN7BAdl57gs\nY6JSqFulTYnCCad1Wkd5ocplpZwtaka5OYs+nwZyD2U0kr1WOPbXgsKm6/KocDxbtl1fjfL51Nx1\nIqACyzZx1ZqQdX9sAvEyQqHudhRo53qbZtZD1iJUTeKvVxbvB9b/FBMkMdH1pDSB17WJ50l5MPZE\nhc+nGccjd4Nc3jyWPbl8VDgejISvryJXDeSe9XYJ16LqLHOMA3x9EQmi7HcuQo/FUEaF5SIyDsJ+\n/uYx/iEip+5yK2y7daRbqPDdVTIxBKFMMM4ddVReLVucEya541yVi8rx+dyvu7y8WLRb4YRni8jn\n88Akk7Wz0tw3JoD0Yz+I3RvOq8goGLHfj5tNYj8IXL3l/vaxj39+CL+5aDkoPF5MpKy7sb8pujQx\n8WKVyER5WVn85qNJgAQnZaJSZd4dQS82RheNsr/pSEDJPJzVyr1R97Md4vRmx2HuHQcjz2UdOasS\nBwW3+hk3F0/U0Y7F0chz1Sg7dCP7jHTT0dz/yTm75+8iv0WVuuv/GgWbt087R3afIdjfGy4b5axq\nfzKCy8+J8P/UI7Y2nTl9J1k/9/zUxs3r8MeIYRzw8fBzcyi+D36uwu+AAQMGDPj54L3Fo8ePH/8j\n4B8Cz4B/+uTJk3+69e9/H4vP/xdPnjw5e9/PGzBgwKePjxFH8LqVrNYF5HhVJlDlcOsBuY4K9JFI\nRtrdFRu0CdUPv9rtY0Y1vMuD9fZDW9+hsYmDwvF0GUndn7dRRnPnNEmZBRObegJxnjscUKn111TR\n/u9FuIpdVJ2XGxFVhROqlIysC0LZRBygau6OiIIauQYwC8KihYsU+XJ2TT4nBcT26wo4b2DWKN+v\nImPvaVPXIyWCFyMxXeaY5sLzRaSO1vEyyYTVla2+L5MyUTjId5Mv3jlGAQqFX+4F2qSMctuvk1LX\nfUmbEIEsWC9PGZUXpTLJoE5C7h2PxoEqmZNA1Yj4Zdt1/2yM8Sopv72MfIkwz4T93AS5d1n1/Tp3\n3y68y3WxSaL3MVLbjiPgRpdI5uBVmcjESHzpxk5wwlUT+c1Fy/7Idw4R5Whk80AVTciYeBM+v1+0\nTIIQkwl7RXDrbVlE5bITFCwK8OY1FtXEl6gWATetHQ/HNp9U6bZ7MSaLRnMiFCJcEmliYhyEsxpi\nNJJ41dj/l03iqrGyMlElJoheOCw8F00ic3BRK6s2oWJjq4nK00XLV7PAo5FHvKNOcNrAn6iuO1a2\nt61NymgjiguMnIiYiHSYC+B4vrTox1FHphfeotLAxLJ5bsd7ktuccFK2CHBvJJzXNi4mmazF5laV\n56tEVNjP3bpjqh93byKXAf75y5p5bvPaorG5WxVyL6QE81F/nSXqZMLIlxvzldKRvs5iML3ojZ6w\n143b98HraK7erXOQC19fNDxfJXDWXzXyQu5hUZtIXgRzS13V5ki6iom/Pks8nASCM7eXqJ2ri0Z5\n1EXRjRy8KqP1vDnr4PLYOI0CVQtFgJmHqzZZrCs3if3vFnav6rvJ+mMvYq6d2Y45oE72HoXvBLjc\n8XQRSZ2jSDsBuFU7D+od42BjbpWgjYmzOtn8u1HQ198zm5TInKNOiapNqHp+d9lSx8Q0OKqug2nT\niTzbIvGtqwnA3GyqN+dJJ0LmLaZ0v3B8NrbxWsbbUYS2Tbq+//V/7xcZbAqRm/doVeX7ZSTvxDtd\nXyt9xKK9frObLQSbo79fRj6b+J+EEPBzIPw/5YitfhztcvLCdcffT23cDPj54+fmUPwh+Jsi/A4Y\nMGDAgJ8+3ks8evz48X8E/DdcJ+v848ePH/+fwL+NCUb/K/AX3b+lx48f/2/Af/nkyZN/9j6fO2DA\ngE8bHyuO4HVk437u+LIvFd8mInOLpunf/67YoG30fQUfcrXbpxLVsP3Q1ipsVLusH9q+6KN6urio\nGw920cSA0UR4NA58t0w33v9g5FGUZWPOGMFKx2eZ4J3gxTHeLJPPhMXSyN5lawyl0ZlKqcpx7ljE\nxFVtK9gVQECcdWlk3iLBTIRSIrZiXYFlSrxcCb/aEy7rdCPOKThHEihEmI2FwgkvVon9QiicCQX3\nx54g8tqHt96QZOdKKRvb381Ystr0TSJGLlrDyXX/znljMYBW7g5fX7QmmNXWEfPF7PZYCE6IYj0/\nyybxi85d8q6rvj/WKtDN37ra0QPTY7NL5LxOxCQcTRyLNrGslVnXYRQw0WNRJQ7HnlaViwrmBVw1\nkVUECuGqgVUXGfVgkvF0edNy2AsKZVLqlfJwclNQSEn51V7g2SpxWka8k66fy3Fy1aI33svcTfMN\nknqvEKoWRgJ5xwUHJ5zHhBfhpO6EIyyGLg8WxxVVOcw9iUSrFoeICmUSfrWXEQSORp69QjgpEy8T\nnLTwYtlyf5LdcF2eVIkqwaNJxvFIWDTmAElA4UwgezByLBoTEK4dT/b6VZsITtjPTDhqFFAlE8er\nVUvCcTxxTINwf2ziRdmaG8iJCRZ1UltNq4njwvFwfJME2UUu96twF03i2aJFnLlipplbx6wlVZ4u\nI06uI9E2OPc1hM3Put0Tdhfed9Z/G7fCWW2C5l5uYtiZ2Bh9USYWKTEKtvVlVMqYuGqEeeZQUWZd\nlGeVrvucAJa1Ms3t/tVyLRz1SMBBJuRBqCNcNIlZEPYLR8KcgpDYy83Feb7VTdi/1VWjnNeRSbhe\nBAB2r/De3YilPa0SDwKs6sRJMvGxjtL1uilBHE9Xkc/EuqsmmS04gNT9zvUxPa8joiY+fTZ2Xaec\nfc5Zlfj9RcssNxfsuBNmZtnNc33duwhnZeR47Ggi62sjJeX+yHF/ZMLBi9IuCEVvjCe4ng83F1ik\npMw2hINdQuTL8qYD8+SOLqXtbrb+7y/LxP3x0P/xY+BT+d62C9vj6C4M42bAp4ifk0PxXTEIvwMG\nDBgw4KeE93Ue/QfYM9F/ClwA/yHwD4B/AnwH/OvAKfAvgb8L/JvAP3z8+PF//OTJk//+PT97wIAB\nnzA+ZhzBm1aybv9bT+L1m7EdG7RrtVvdJh6M/Uf5sv6pRDVsPrQJDS/KLj4KbnWQtCnx/aLlealr\nMq9NiT/dzzgaeZJa7NZJaW4kQWijgiiz3HEQBScWLXc8ClzU1huz+VCo3edYx027XpF9kAmNGhl4\ncdmiaHdOwTtzpCxa5chDxPo1qmTv78V6QdoIrTfCOSpUbbKuiW7FeO490SkTPAcji9baywX2Mn5z\nEUkobUdQNvGaRMy9MA5dJ1QQRpm5LfqV5Jdtok2dI6Zzz0SUgBAcvNqIV8ucsKyVzyf9GA98NRee\nLloOCnktCe0wzjz3wkml3B93P3+HVd8faxXoJom+irvJ9KTXsVZJlas6sd+Nv1mw/pFZ93tlgodj\nz6sqUcWEA541iWW0cVCIkDDRIg/C9yslc5GRgzrtJmfrqDcEhSra+HjWOQGeLSOIcl4pV1UkqcXX\ngYmBkrpIvVaZBzuWuXOEkGgxIlq7Y2j6i7KsE5l3+C42MYhwVcd1F8uzzvUxLxz7meesTnjpus2i\nMkc4Gjm+d3BSw1+dtxwWjucr7UhzI8YPRn5N7u8VsNcf87Hnm8uG81JZRouXu3DC3DtQboh8jSpn\nleJIjHPPqk1UUbk/tXi7MirT3LGfC/NMWTUmZlpvl4lNe5lwNPZcNnfHwW2vwl02yv2J56w2Memy\nUcZeOOg6qsbextSqv76cEU6LJq27bEbeemeU3T1hu/AhIqfe5FboXXh1ur43jTITTpNAjCbkNMmc\nkH30qmJ9OM8XCfF2rzoufDfvmJgUKxNYj7tOtrL7DFE7RuPgWDWRJgkvVckmHueu7zOXjXJWtvzm\nomGvcBT+DmILiy99vko86ERB7YRDuI6lvTe2eL1TFymyxCrCZR3JvTlAHAc8EQAAIABJREFUJ5my\nKm1cn5aRIlgMYcCE2TrZ8fJOaFo4GIF3nr2RQ1VZ1MrLmOz85o4ac6iWrYloyyax30VUbjqm7o08\ns8ycf6PcMeVmXJBg5Pxp2XS9gjfnQ012rR5siGfmvrseW0mVyyryHVxHZnq4rBPjTtRKagsmNkXA\nTWx3s2XOxvi90RBp9GPhU/netomk1qO1i3jehWHcDPhU8XNwKL4rBuF3wIABAwb8lPC+4tFj4P94\n8uTJf9v9/X96/Pjx/wj8exgP+C+Af/DkyZOzx48fB+DfAf474L9+/PjxP3vy5Mn/856fP2DAgE8U\nn1IcwS4Sb7vku19x3AsneR74k73wUbbrUzo2YA9tX84zlPYWCXGzeNzxYHK9Lc8XDadl5FWZLGrJ\nmSBiq6eBrptoLwc6GnnRKiMnFCPfxQspHuuyqJKRnNNghHpMRvpdotwfWZyXqhWsL1sTcMBWr0c1\nYq8Qi79rXOeSgLUjwYnyfBm5bHQtOtE5SVZRaRs77o/GnnluDqVxEGZeeVFbbNNhYb0uPYl41UTO\na3MdTTPh86nnrDSito6Ji6rvVDJRqU66jv9qgZk3l9TLMnE8coy8iRA9DnLh91fc2bMBNl5GnTD1\nYOzeixz6GKtAN6+/u3pgFk1aE86rxrpaJln3+kKoSutsqRpzwIkYYVuIRbu1MVHimHkTMKZF11fl\nHa0qp5U5KRxcF9F3aJMyz4ycPciFl2WiatX6qsTcQPsjx/Oldbe0GPletuC8MgvXx7pulbOk63jD\nFuEwF/58zyIIn5dqXWGtMs2FaXCsmsRpTLSNRY/NM8cqJhL2+stKycScatPOiYLAZRlRLHrxyzHM\nRubSmnvrd3pVJusry8QEJS/MNvLznYjF73mQeP2zwkNSEzzpOpWaCHWyaLAvxSEk7o0dWSc4bLqw\nnIjt28bPVCF4R9UqS7dbPNq1CncVlcw7jkfKWWV/X7RGuBwVgkP57rzhIirz3HF/5PCdmDXv3nea\nCaeVMg5u7Q65q+eqx4eInHqTW6F34ZWNubvaZOfoEiF3iYs6rd1qvZ3KiXVdjYMjKRTAMgmTzNy0\nB4WnxeIN+36hvUKYqXJVd2PXaydeKF/OPaPgqVoT7fux0bv/EtZH9Gh8t+uy3/ZefG0V9sLN33Vc\ni2VX0SIavcgNkano5ofgbOHBQoWxt1i9SYDjsee8TByNrUvJd0eljwUNTjq3sAn3L1cR54Rfzj21\nwkmtHI/klmOq8CZAfT7d/Uh0f+w5KoS/Om8pm3Z9PmdemI5vzrO9cHBUuPW986yKeMzB2nbH4KLr\nfdvPrRdPef0cD7fHrEV2pjt7Igd8WHxq39vAXPZ3OXnvwjBuBgz442MQfgcMGDBgwE8N7yse5cCL\nrZ/9Z8C/i8XW/Vd9z9GTJ09a4J88fvz4d8D/BfwnwD96z88H4PHjx0fAfwH8W8BnwEvgfwH+8ydP\nnnz/lu/xa+B/Bv4+8O8/efLkf3iL1wjwvwP/xtu+ZsCAv0n4VOIIXkfi9R09exs/azoS72Nu26dy\nbHrsOka7isd7tEl5MPF8u4goSp2MMDkeCWdV6pwAwl6wVf6NKkGsA+bhLLCfW3TUWRl5WZlDySOM\ng62gdwJJlPtjx6OJZxqMIM1doEzCb88bK4pXiwSbFZ79wjHLHLXCVSMo5jISjLyuI4C5Mi5q6zYK\nXvCNkvvepaS8LCPHnQMld3DaGCH4xcTOSb1RPD8LjnFmRLsJIMK8MBHn/31Vk3vrGHFqrofNXgyN\nymTUdcMkIzsfTsONno9FqzwYOa6aa3fFtvBRtcrne2FNWDnHW5FDbyro/VCrQPuxtWgTV1Wk7rrg\nRcwVMs2s86nfr6s2MfPXD8gKFAKLOvF9F1M26ZwJJ5UyCnAUAiMn/GrP82yVKDuRCVhHwSVsrIjI\njWOZ1Pqeyjbxl2cNRyPPl/ObwvFZlVg25nzwWGTXUSEgznq9UILImkg/qxPTzBFQPpsE9keBzMFe\noTya2Ngok3BSRp4tE8GZ020c7BxedQKnqjkbypQQrDvlF7PANBNelYmDwrHXiWyHI48Dcicso6AI\nV03i/Lxhv3CoWpfO8chzPDLCeuSEOli3TKO9u0U4yIWUlLNWSYnu2HlCJmQusWzsvORe151Zr4Ni\n88oq6g1RaRO7VuH2YqOIcDjy7HeutO8WLc+XFt93b+LZV+tXu4zKYpXIHRyPtBOWjaSfhGsBpN+W\nvR3b8SEjp44K4S/P45psdrAW8XoXnnbitxchE+WgsHtClZTJ1rzrxVYgjxFaTez7gCsSVZOYZA5E\nWVaJ6ca133Zut8OxY+Jh5B3/P3tvFiPZtqd3/dZae4oph8qs6Yx9b/dV3JaFGGyMMA8YLJAsARKD\nLAwNAgnMYB5Qg0A8WPYDMgJZCGwx20g8IBA8GCQknpC6QS1DtyWw3bY7ffv2vX3uuVWnqrJyjGkP\na/15+O8duSMyIoeqOufUuWd/UqrOyYzYe+2111o74v+t7/uqIOylShzBdWKiIXoOehGfX1ac5YH9\nG2z+Iqtjc1+E1NbWhy30nOH5rFoSR2p/d7XOVSI8yBxlvaEgtpbCBxJjWQTouyt1ojU6hi3Cjy4q\nThYVOgOFxBgGsSGvM7EGTi1SmzX2rM4wmpWBk0Xgp1PDo8ySOsOT/vZnrrOW8V7Mfmr5wVlJFtuN\nxIHmKuo9ezHzvF54pqXwdGD1uVjbv15WourIud7nKqgtY1vBtI71MdvOUurw1eB9+9w2q262xdyE\nbtx06PD1oyN+O3To0KHDNw1vSx69AH6x/Yujo6Pj8Xj8G8AfAH5t/Q1HR0f/z3g8/nXgD77luQEY\nj8c94FeA76P5S38Z+B7wbwP/4Hg8/r1HR0entxzjXwT+7Buc/l9CiaMOHTrcgPfBjuB9tByB96Nv\nGqz30Um+2VKhCrLcNZ5YVdB4kWWBsSnyTku1FCtyg68CCw8fDqJlEfIgs8xLYRipBRZG2I0ML4tA\nZi2Jgw+GETux3gtfq46+uxNxMtcMGmeVGMicBrSrykWL8bNCs4YSA7MKhokw9y2LoEgt0QyQV5rV\n8mRgKYOSBbuJ5bzUXfrTQhj0tDC0XvyugpBFhtSqOuWDQaS5Hc7y4dBe7Yxv71CX6wRlEXTH+omE\n5T2YV6q82HfUfdrYgdVKK2t4uuN42Lt6nN9WHPqqA3pFBBHhxdRTBMFzZcE3rYTL0jMtAnuZxQtY\nDDupqgcucmFSCcMI9jJHLqrumVeei0KYlcL392MGSWO1Zuk54TT3S1UMKNHR2Ks96Vt2UbXbpAyk\ntiYYMQxjeNyPVtp+vPC8mPuafFESI0jFy4XHGYNzSgr4OiOtF9uaWITd2PGo5zisbetOFyVlqMmn\nzDGrPP3YEDtDKUJeBFXOecFaVdUlTv+NnNr/9WPDRa5F9nbh0Bn4fOrJYsus0nY3eUnTCnYTJR5+\n96LiZBF43NO2H0aq5Hg2DSBqHXmWWzxa0A7CUi33cg4ilp0Mnk88p7nQd0I/caSF0I/ZWDxt6KWm\n0LqObbtw119rgDzoWAgCj/uOVwslVZTwUBu13HtezT0fDx2jxGFwvJyHFdXZphyad7X+t+fYIDJ4\nscvcoEklnBcVl1VgN7Zqc1aroo4XHmdVLfUgsZwUgbS2dmtQSaAMaou4lxrA8Wxa8tHAMfdwVno8\nqoroxzCoCe4g2k+ZE34y0/n2Yl6pjZo19bzTlaBRRVljGCWWi1JJl5sK487Aae553HcrBDjAMLFM\nz5UkaZ4niYNFJfW9g36sGXeFF85LtRl0FvJKyaPLPFB64SA1OFTVelF4ImcpvCpC8ypwPvXEzvB4\nEGHq58AwVYXe81nFi5namzqjxH7phUc9x2eXN697xpjl2nA895SyqlZu27wezytezCu86Fp2UYpu\ndKhJNWMMiVE16slCiJ0QO7NUoDbnD3VmVF5bpYaaTG5s91RV6bduAOjw5eB9+dy2Tcl7l/d16NDh\n60NH/Hbo0KFDh28a3pY8+lXgnxmPx3/06Ojof2j9/sfA34fmHm3Cj4G//S3P3eDfRLOV/vjR0dF/\n3vxyPB7/FeAvAn8C+OVtbx6Px38M+K+APwf8Zv3ft2I8Hj8B/iPg/wX+zjdtfIcOHb4avI+WI+8b\n2n00KQIXuWeQrO5g96LFqb3E8GwmHPYcxwtVJ829sFtbH2nR0TFK4GFPOF5Ynk09u/GVbZigYe4H\nPUcQW+fdwPxCiZVR6thNVInUd2Zll/6jnuW01OyPStTezdTXMEwMZ7lagBUGpgF6VlgE3c2eOccg\ntiS1/RloMWUYWypvuCwEiYRh7OhHho8GET+oSsq1YPpmR38WGXbiRj0U6EVqCTVMVOnwIIOLHOZ1\n7oigD9+dVN8TalXSMFVbv4PMYkydqVErdIC6T83Sjuuq0H29fLStOPRVB/S2z/fxKOJ4YfjRRUUW\nXZ0L4NgH8hl80Lcc1IX740VgkgfyoJZn1dwvFRaDOGJaBYwJFMEwhMbZi73U8nyuhdWGsGuuwBol\njUaJKpeGccSjnhI7P536lS/zjfLuLPc8SB2vF1e9GltLQKDOz0qt2ip6lNzKEUbO8Pc8inncr1VM\nIkwrLRrspGrhhlArMEw9b6Coyc2egzhSK6/Y6HGrULdpEehHSpg0uMh1fp7mgcsiMKsCVDovpiUM\nIoisJUp0nP31E88v7MX1GI3YTQKfX1b81dcFu6nOn6RWy3mgDGpHNvOBaWVqC7XAFMNhZJj7wKSC\nntWCeTNuqtqKEtQOrh9dH0+bduEGEQofOMmVdDGmJhssakcYrghqvbeGYQKJB8ThRXg28TzoacH9\nMDOcFSxJnLZN2Ltc/zfNsQMH+zURoOoToySogZ8bOeZe+ysAi1rh9p3dCDmvVI0TlGCvagKIiDpr\nTbgodZ2IrGVkwdoYg6nz3ZQwja0hsprx9uxS55Bt9ffUqwoxcaqcaWeT7aWWhQ+c36I+EtTe8FFP\nnyFtFatdqv90rIOuebNSifDMXhHpD/uOMFMixALnAfbQuXvYs8QWvpgL8yD0Y4czhsIJh5llWhqe\nzyA2htfzoFlxKfSD4XcvlLDbSe1yQ4J1cLzw9Bz0Y4sxgecz4XHPclYEXs48GnempG1DBHtha1ZF\nqO+/F1M/L+Taa5sxGxlDZYXXC2EnEc7zwPnCM0gML2eBPCi57cXUWUeqRoxNnV3lDGYYf+kbADq8\nn3hTivur2RrVoUOHbeiI3w4dOnTo8E3D25JH/yHwR9Cso78f+O+B//vo6OifG4/Hf+Lo6KjY8r4P\n4FaXk7vinwemwF9Y+/3/CnwO/NJ4PP63jo6O5No7r/CPHx0d/S/j8fhfuMd5/xz6DP/TwP98j/d1\n6NDha8L7ZjnyPqLpI2eEmbcrBMYwvtrxfFH4uqBrOMwcZ3XB+jz37GdXj5amKPukH/HdkePlzPNq\nIdhI84yGkWG0tqN9UQamXpYFvmZXOuiO/GkhHPYiSvGUIWBRoqBXk0uDyPG9XcPMC3/9Ei4KiK1Q\nVmr3sJ9qEPp5IXhRAsgBWQT9yOIRzgolsPqJ5ckg4knf8uMLz9TrV7fYav5Ms6O/DNBzlvGeZeGh\n9JqXlNdE2W5m6HlhWgSMMYya64nMikXWRSE87jl2E8vxQhVIFm60SNpUHNxWHPoyAnpvsr97vXa+\nRiF1Uv++UVA9zBylqAVaZuG3zkoWlRKRmTPEy5348Grm6UWWPARGscOju/c/GGg7jTEcppbLQgvM\nIsKoHkuRVSu3xJll5okxhst6PLf7rVHeVQKxM/ScYR70HlYoaZfUQ/1kLpyXmp00Si09p8q6JXFU\n9/0oMVRieJAYfjivx4i3zLwW7qEmBxAWAQbWsCg1Q8wYOOhZzhcBMdoXL2eBy1qZMSkCl6VmJcW1\nPVljH7nwgc8mnoNEScssMryaCye556Cer85ang4jSq8T3qMfcgzajl5qOMnhtPTsxmrZN/N+2V/O\nqJojF+FkAQ8yvReqloCTha/JDl172wqJ9i7cds6aqfNrrFMy5CRXkqlnAzupEiOZNUy9EkIXuR7/\nSd8RO7WTFKhzbvScH/SVGIiMEtE3rf+3WTtuwrY5Zo2eQzPg9DhnRaCSWllWH3/hr9Q4wxh+90KV\nJ9aocmUUGzCqEPvBeWDgDB8MI9LI8uHAcV7bhs5KJV4tYGqCJo0tzlrWmx5ZvXcLr+SkbxOvxvCk\nH3GaB/Jq+8aLfqx5Y/pMuK70zZxh4a9IXWsMzkLwMOqtWhX2naWf6HmqM3gQg4sMhYdZLhgLvtI2\nV7JKPhnU3icE4aIQjBEuC88i6IYAv1Z9s8aQOEvuVYUkEvibrwP9xJG4huBWwvXotNR+7tvaqu96\nf7xeeCZF4EHm2EkML2ayVBw1SK1hFrQf1AYz8DsXgb1En6V+rmtjXsEiQOaE1EHPWlIbyEVVl497\njo+GV4Rccy/f5QaADm+2DnwV6EeqRr2PgqEMwk7cjYcOHb5OdMRvhw4dOnT4puGtyKOjo6PfHI/H\n/zTw3wF/DPiXgaJW/fxGbU/360dHR0fNe8bj8e9HVUlHm455H4zH4x3Uru7/Ojo6ytfaJvX5/wng\nO8DvbLmG//oNzvuPAf8Ualt3fN/3d+jQ4evF+2I58r5gU2HkotDw9W2FkXmr2LvMI0ktk8IjN9j5\nfDyy7GbCaR7wdVG+QaPC+WQn4vm0QiOKlBRq3p84ywxPGhkGERTBkUUQAjwdXp2n8JbzwvMkgT5Q\nOUfkLPstoqofwyTX4t8gVvVJL9LxceEDk9LzcBDVGRYOjKUIQuFZsY5TAkjbWAZhaOGTkWNWCj++\n9Hgjy7540o9vLDb5ENhJ7AqJ93x6s0XSOrYVh951QO9t9neni4rT3PNkLYj+sLYcaxfYg1i+mHlV\nyyBcFoFebHGo2qrBMLEsghZPzxaBB3uqPJiWSsQ06DlDSGBkDOcLzbkKQTAG+hF8OFjtv3mlJEPP\nXdlFzeq+asjTndRwehEogqpytIAP+6llFEMRVBHX2IONYpbkW7vvH/VUtfPjS09iDDsYzi71fFIT\naInTMTbNhSw29GJLYmAUOS4KVY4M68Jl4WFSQZyXZM4u+8FGagvojFp6iSixc7wQUqPk7Q9OA9Wu\nFiEHsWVSBD7eibgolVhpFyXPF4EADJwhjgy+CPStJXaaRTOozxvVdloXOfRjIffwcq65PN/di5d2\ngm2FRENWbMpZ60XCIghFJSS1hVtDUO0lhkFmuZhUnFdQhMBObJfrSltpFqGWdscL2I0Nn+5sn4tv\nau14nzk2TCznhdp5Zk7nbVaTtosgLErNlsoSQxrAA/NSmABDAiZyPMiURJyUwn4aOMwSUmuYVLJi\nv/hqVrEIsOMsQsV6SpWqw8ySNL4sAg9a1n3GGPYSy6O+Y1IoObVpPZJaCbdJ6Zs5w04Cs1JzzQAO\nEyXrvQCNLZs1HO5YTnMh94JzLLPtIiNMgaQ+l0dW1ogqKGlaiqq3qiAcz0oGsaMfu/retq5bhGFk\nyQOMDDyfVlxUqnR9EK3aikbWECWay/STqZIyHw8dl6WsbERZVIGPRxGJs1zmHrthKPQTw2QmiNV8\ntNTBdCE4I6rCMwDaN5nTtWvi4eGu4XURqLzaUGLgb51XjGsFYRv32QDQYTO+aovX+0Jteqt7kUch\nCDtJNx46dPg60RG/HTp06NDhm4a3VR5xdHT0F8fj8V8C/lXgDwN/B/D7659/HWA8Hl+gWUS/BfwS\nukXuv3nbcwOf1v9+vuXvn9X/fpct5NF9MR6PR8B/BvyfwH/Ll5R59IMf/ODLOGyHDlvRjblvH0Tg\ntIS5v1INNPhiof9mDnYjru1Uf5VrYXYdXsC1SLkZ8Hrl78LjFEIOr6ZqXdcU3RIHPQuVAUp4nqsV\n0l4Mk1YBLvdwirZ7EEEueoxn51pI1SwmEK+5MxZ4dXnC3MCry6vXxBay+hrOA0iAKtJ+SR2cOuFg\nZrho9dd5BQuvD7GmPjwHXmlcDJmDkRNmVnNepISp19fO0XZvQxUgscIPL69+FwReLTRbalufrqMI\nwtMMXq3dn4sKZtXqfb4NVYDXsbCz9mlBBI4LqIIhsnUB22tuU9O/lej7P7dwkKyOoU19eVHpuFpU\nsABmBnYcvFhr78Tr+xYV/GiqY8YAP7iEWnxEqNtnDKQW8lb75wK/e7J6zFe5jt1HKbw2cOlhXtU5\nLgVQK33OCigEXoda4QDksR4jD3BqYT+BkdP7PY/1Xkz8hr6/hPMCZh58oe83Wg/GCZzmsHDwNIOp\ngRwIMbzO4WEGob7WyMLzGSy+OOHn+vDsTNUKZYBppfchc/qB79jp31Kr439aQrjQwvylh3kJTzK9\nf3m4ujcGOCn09xFwEfTvidW5cyLwIFnt03kFcb1+eIGeg8sZTNbuZxXgtBQOE8N5pfO7zb2IwFkF\nx7m2efk+gZcG8j58PofLCjILPl49h6y1beFhFAnVkI1oj21rro/r1MGgHvORFQ5bY/u+c+ys1Hu0\nE2l/FgF+cKF2nougfWOBWYDCq1WZdXrvPzvV9a0CDmN4eQ4/vqgVaa2+auYCwCzRc66v56XoMU7r\n358U+sFaqVy9/6mBaf/6ut+sR1WAQSxM19aKZm04mcJxYUjs1f2dBh0b0wrEqILOW5i07kPfKkE0\nefGcn86v2nReXt2LZo04K7Wtk0pfVwbtx/1YnxV6g6GIdfw4YDeGC+CFheOF9sVeAtPoaj1ZRxXg\nmYXHqVwb988uGvUgnJTbbRYuSng+1/XEGh3fh4n2Vyn6PHT1ujOvycPTk9ruyMKegw978NzD9MX1\n+degeR7cM17jW4/1Z9w2VOH6OnBfBNH169d+8wfLdSZzMHS337eTAnJ/cxvbbU2dUG4ZKx06fJno\nvmdeIQg8X/tsfxu2fbbv8P6gG+MdfpbRje9vNr73ve+99THemjwCODo6+gL4U8CfGo/HCUog/d2t\nnzHwh+of0O99/854PP4HgF8HfgP4jaOjo5vqapvQRD/Mtvx9uva6d4H/AHgE/EO1uukdHrpDhw4d\nvhq0CyPJhqJDrE495L4uDMerhZFtdYrbvgdZo8d5lMJ5KeTBrBAxoAWOnoXHmZI7JVo4bUimYQQf\nZVqo/Xyhx3zcKtxUNZGzk2hh8qi8KqwJXCvsVqIFyN20PoeB/UiJtTaMUSIrRFr0zP1VQbkf6zGa\nTKPMwazSwvmJNAWm7f1S1f5gj7Pr/dVz1wvqNx2nt6XgtPDXr/02RFbft04enZY6dpzRgu2ittVq\nZ8mcldoXi6C/228VrKS+Nmu0L6tCC7ll0HvwaaZkRpDrvvCZUYJxN1byo5fqfSn8VbHXGm27D0rk\nLPtHNheEQ1Dbwqbf8lZfJU6JyuY6hhaCVdKyrOoxgI7LzGhfNeexGCZervV9o36ILOxZnV8XdcG7\nKRh7tDD4ItfC9yhSItIZHWsNipooSqy2s6qVUs7o+yaVjsWZ1z4b1u3r1/fhNNf3Oqtkz6XXcRvX\n/Vd6nYNwRbD1nRICL3Mlosq64F0vG0itLEvrfwcRfNrbXFyNLETOcFzo8eO1cW4M7EVabC/WCK3m\nXoGeIzPXz9H2LFZlira5mbvrOC2h9IZp2Dyu5xVMa0JuIIbT8opAuO8ca4i1WQWPMvhsrvdi5rU/\nGzFdbCByeu8SowSo1HaZTzJV0zUEZ1N4btaMWbi6zrnXa5+Hq3ZWoqSbNXrMi0qJ2Tn1ul+/xht4\nWehrN20oCAjDDXPL1nPi44GOsU1r4WFakyReSTRB//+DDL470OL8T6ZQiCE1Ok5TW4+H9eeS0X6a\nBR37wtV886J9WYq+f+j0/SJ6Xz3atkpW15N1RFb7flbp2rMyjloucqpCXH2v1GTaPMCitb5FRv9/\nVul8e1zfuzzoa0b1cyepjzETnRM9Cyeb2rHsE12D1tfwDjejecbd9tyNrL6uvQ7cFZs28DTjZVap\nuqnnlPzcRkztx3AscmeSaz++Xxs7rKIh+vLAvYm+Dh0avMvP9h06dOjQocNXgXf+VaLOOfr1+geA\n8Xg8BH4fq4TSp8A/Cvwj9cvky2jPu8R4PP57gX8N+PePjo5+68s817tgBjt0uAuaXQTdmPt24dXc\nk7UCzddxUHgmtaVCGdQ656AVlt7+e4MyCKPIsJNurrg1lgt79d8f5V5tmypZsUHqOcMw0VyiJvuk\nyZWogjCMDb3IEoLwex1cFoHTQivXiTXL93uBH/7wR+xG8PTpB8ROi7KLSrS2Vxdbe9bQj0HQ9+6l\nlkrgkQ98WIeR3xXNNe4kls8uK9LI8mkI/OSy4qzQCqbm0ZjarotlXsjQGT7Zia5ZaUkdwH5bVlEZ\nhMiwNeOiN62WO+LvAy/CRy3ruSBCfFmROMPLuSfd0q50ruerguADfHKgNmHNPX1ozUrfni4qdgvh\nxczzeOh4arbfr14Ep3ng5Tzw8cCy14sIQXjUj5YZLD8X1efmKpMk93LNsq4MwoPS048scZ07lM2u\n+iqI8MXMc1nnVTVorL4GLfa1aUP7PI2NY7vvXy8835lXPPUwKzWb6RBhXsLCB04Wnn4aMJWQWlPb\nNFoiq0RBzzkGiVot/uTZF+zGEO8+oBdZRmuWRI9E+Om0oidqlRK7Oq/LGcqpx8XwMI1IIzhdCEEE\nm9hlhtT5IvA6D+xFkMWOxz23tGn0IfDTaeAs9+xnFq/+YyQOXiyEgTOM92MOs5tzVz4V4a+9zjnI\n3DL7aR39uUcQZoWQB/05TC2ZM3yaWGJrOMvVftPYqzEpAnupXckJq4SVtWh5/0SILyrOysDgjvNt\nL7bLefsmc+w7IhzPPcPYYOaB71nh157nTCqpCR3DKLE87NnlsU8XgQpBAnxvL8ILHGaWncSykzhE\nhC9mFeeFMJtX9GujutjAXmZ4NtUcLS9qZffJSC0QjxeBVISn1nC28Azqfi288KSv47kKmsn0qHdl\n1VUGzYhrLBo35cN8JzYcXHrOyqtMqCDCpNRMJ0EYoPZ2idO1fC8BGoqQAAAgAElEQVS25C9+jDXw\n+37xO+ycFhSt976ah5V7NCrVUi8yhlKEgyJwUQUGzrKbWqqg2WjDVlZNFQTxwszDUPTaRIT91HLY\ncyvtM3X7BrHmVPUsPB5GK+PIn+ZMK7W5682rlXEvovlsCcKwEoZVYF7BaV7xGBgljpOFPhfnxtCP\nDQ8iSz8yGpSee0aR5WHP4VH7vlGiOVgPd+OtdmQiwgeD9/or1nuF5hl3V4tXgLwKfDK6/vzehua5\nngl8/uMfA/Cd737n2utue64DfK9lr7ctk+zrtNf7WUDbwrC/9tlFP+N0fbwN3ffMzXhXn+07fP3o\nxniHn2V047tDg6/km8TR0dEE+JX6B4DxeHzIFZH0+1Fy6b5o3IQGW/4+XHvdG6NWVP154LeBP/22\nx+vQoUOHrwt3yeUYxpoZFKFfamZlWMkLav99edwgDG/w0l/32le//sBO6tjZ8p6DzLGf2mXORhmE\nQWQZtgLunww0PP7zScVpLlyWgVklPEgNTzLd1Zf0rO7kt8LAKSEBkMUGZ+yyINhcX/CBDwYOH+7u\nSR5EOM09FsukEi4Kz/llSeIsSWR5EsO0CCyCcFlqiPteYvh4FBFq4mpT4WlTfsibFIfeVUDvRaH5\nDyd5uPFLb/O+yBqqEPjssqIf25U8mzYqgX5i6ZVBC69Od1IPosCilr5kMcv79WQQ8WThOVlc5WyJ\nyLUMloasCui4ta2Cd9NvH/ZjfjLxG6/ZGm3LiQhJuxAM9Nb8543RQlK/lZcS1o7X5Cntpo751LOb\nWUYizEpwJpDPdZfpTuw4SITUOfIgHKRGLbUyw+uFYArhycBy6lSZUBjq7JhVCBA5y5PUUATNzZkZ\nmBSeQQxiDa7OFctcYB7gtAhclgGDYTe15FXAWcvjxDCrApclS6L1g4HjF3YdFrMkgadFoO+EQWp5\n2Lv9o6atd93PSmHbEpI5w6wShqklC0qq7WeOl7NqSTjtZ45dkeU8K4Iwiuy1nLDYwKySa7l3F0VY\nITduQpMpc1YG9oqgGXG3Xul1GGM47Dkyp9lbpRie9B1necAZQy+xK9Y2pQhFCPScJcsMkzzwoKek\n27wSRrGO+SromlvW9nvzUrisPC/mhkkZiCwMI0eWCl/M1BIncywJ1GFicUbXykFrPEc1iX+SBw4y\ntyxsHaSGV3N/Qz5MYB6EvUSzHp5NSnLR++qswVD35yKQRIaHmaUfG8r60i2aL/Y6D5RBNz5kkSFv\n5e/1IsO0EkqECF1PArCbWEaJJY2U2G8jCJqrVLFCGF/U48AZlu0DVsa/S8y1cfSo5zg60xyazBqm\n/qp9F7no/fPC8fzKFDAEeDywLLzKBkd1Bl8SGfq1/Cxzhv3EYq2u8RE63ys012teCTtblC/hfkPy\nW4/mGXcfWGu4qNeBu+B4cb915qbsqiYj8SCzXBRhJYNrp/VZqcOboV3k3/TZJarXu7nX13VF/g53\nwbv6bN+hQ4cOHTp8FfjatqEdHR0dA/97/fOm+BH6zeujLX//tP73XRg0/rvALwJ/FHjYsqt7WP+7\nPx6PPwJOjo6OttnodejQocPXjrsURqzRolVeF76sNUyKsFQVrf+9rHf1bytQlPUXoPbfrVH1zfwG\nBVTzup3U0Wvtbm+wGmhteTJY3Q36IldSYujMSrD6TSiDkDgtuJSBW9vXEBQXuacfW5y1GuYuhotK\nCIVnlFj2UssodSs+qmVQVcvTvuMw2150ehfFoXcV0DurFRGzWwjIduE0iyy/O6n4+d2YdIuyJAAS\nhIPU6j2wzb3e3i8PMkcpSgrtJ/aa6s0YVcwNY8OiEkaxwYts7LdBLMt73XOGSasovZdaXswNlaiq\noQpCFq2SfVUQUqsF6Afp1TU2youm7yf1/LPG0IsMi7oQPkzALwz7PYezBhElNweRpQiBEODAGXYy\nS2YCXpSk6tU5Rpm1FOE6ezSthJ6FyF4plxaV57UXngxidiJDwDAPQhwZpovAvBDiWC3STheBfqx9\nImgh3QF5XdAcxYadRHfcNyTwC1RxIbKBzbrhXp4shGoLYTuIDZeljhFnlLiC64SZNWY5zzYpzRps\nKqhPykDhZeu4XlfKGAxWlKjeS91bzbFZJTyoibYQhJNCyfKiUpVVM98H1mB7TlV9IpSw7IsQhJdz\nHRtpZEkjSyUlzyaek0WgCEKSWfYSh0fox4Ycw3ThuSgChz3HQSYYo1SJA+ZlQMSw8MKwVtpFdaG8\n71Qtc5AavpiHW4urxgRez7UI+6DnyCthEWQ5J4fOMOg5vKjisQyC1DaM/cioGimxTGqypOeUaG3G\njK/bbOs+OZ57MgeI4CzX1rKqfqYUAoKSpc16/rjnSDZ4ELbH/8uFcNhbHYB7qSO1lSoTE8vl1IMF\nH4QXc7+0pgRdn7wIHsEaizNq/WdjQ+xUKbXTUkkVXlZ8GAUhNpbcq/JhG95048C3FbPqfnMY6k02\nGwjpTbjLBp71Y0/LwEG2/TMW6Nq3l7o7taHD3fEuib4OHdroiN8OHTp06PBNwTf6+8TR0dEU+KvA\n3zUej1eSIsbjsQP+APCTo6Ojz97B6f4Q6mL+PwI/af38T/Xf/+P6///IOzhXhw4dOnxpuGth5EFq\nl7Zjcb2rctPf51UgMqwUzNtodqYfZtf/fphZIqOvuQmbjtHsBp3Xxd71a4qsFhsjDEUFDrnzefZi\ntYC6rX0iwsu5Z1IG+rHjUV0wOMlV6fLhIGKUWC7KwBezaqWYXgUhiLYztuZOuwqb4tAHg4iPBhEf\nDNQy6S5fLncSe2OBcRNCXbxc+R0sCZCbMEgsoa7QBxHySnNEtsGiKoCHtT3W3KuF2k0wxvAosyS1\nZeH6fSqDkFeBQWQZ78V8OIy39lv7Xg/X+soYwwc9q8X0ShUD7UJ0FYRFJTzI3DU7r36tdmiON/er\npFRzziBqXxfVhfuAqhua8yfO8PN7MY96ET+/F/OgFzGthEXQvJTdTM/RFCbPcs/rRcXZoiKyrPTl\n67nXgroxDFLLbmZ51LMMI7UoqxC8h1Fs2csMqVUlxLy8OkZkDbkP5F42WC1eWZndFc4YDlJD6pSU\nrtbuZZMt5ep71fTxtlOsK8DWsWm12kasiwinC88XM6+2eEbnojEwD8LfOit5NfdKTr7hHGuTWdYa\nDjNLzxmSSNVfD3uOg55jmOp4n1eBtCbRmr44L5WIaa+FRSVMvdCLDR8NIx72HLuZYxRbJU1EVUfB\nqJ3i2SLwYlZxvPB44Bf2Yj4cRgxjJVSfTSpOFhU7kY7fhz3H61zuVFxNnMUYJemUHFVl2uNexMNe\nRBZbSq82qR8MIjxmmT23k1j6kSWIKsyeDByjyLKfGCIHhQ+kwHd3I7UeRcdKVtuYPkhXd2439nt7\nqcXCUll0mgecwM6W51mDyCrRdJav0pDWaD8HqW026zn1bOLxoqS4MwaMEmQS4DBzpE6tFc8Lv8y3\nMSgB2iB1htBijwxKIPacPtc3oVmDOtwdb6rUuuv73kbZ9L6iUV4/m1Z8Pq14Nq04y/2tz/D3Hc3z\n9La1rUFD9H3Tr7vDV4u3+WzfoUOHDh06fBX4WTDA/gvAnwX+FeA/bf3+l4BHwJ9sfjEej78P5EdH\nRz96g/P8e8DBht//baiN3X8C/B/A//cGx+7QoUOHrwyBm7QcVzB1rsVJHurC1OqX4UpgN4bUWXrW\naPGw9T3nLpYLb2PbcNfdoImDNNZCX+bMSobS+nn6sWUUG/rR1Q7fm9r3cu6ZVVr8bYqTQYRZJaR1\nVXs/c+ymlvM8cJoH9hItoA5js7RRm1WBKgQu6x317ayQ9s7zt8FdlV7tPllXi1G3q02A3HS+RlmT\nl0ISwcLLivKqjQjAqEKm54RpFZiWcqNarAxCzxoe9aOVnZtVXfAxQD9WJdN5EW7sy/WxmDiztMcC\nLXSnhXCYaQ6MBmbXOSjW8HTHXbNoa6wa233fnn/GGA4ztSg7nvuaXFQLNzE6x2a5xxhDP4LjhV/m\nZR1mluO5MKmUPOo5LTC+mHkiBxYlfWys4d7zPGh+koN5gEeZW7FKtEazvx71IqaVWoNlkWFeybLY\nPy2Fp6hdXxCd+5nTMd/uV2Mg+FUbyyDCZRFYbMg3a6wBL0NtVVkrfObVlfJkGBse92KOFzVBUpNu\ne4m5plZqiIGbCO11FQo04dXrRJjuJPciG5UoWZ2/NvfCi7kW6hfh/nOs3dJeZJiUcmXDV2q/NX1x\n2LOkJWTRlbqr8HqP2u0PIlx6zXNzRl/fIHYWgnCQGb6YGlKjJNJvX1R8MrCMHyREVltlUIXRKLlq\nd4Xa7N1HRRFEbfmGseXpwGneV2s8bLIXnPsmmF7Hynl5ZVunCjPHI5oir7Dwwl5qOF2o1Wo/1mMu\nghCbK9K+sV00RudvZIRFUIvLj4fbs2ua80wrITXCK1txsnBLu7LzQttnEE7mHmfgbBG4rAJZrbr0\nQbDoON7PLIm1zCphlDrOcyUoR4mqnHIvNMtKZK7C1ZU0UjKtd8MauW4X21zDplyqd/WseVf4utr5\nrixet+HLUjZ9Hf21qv7eZFdZfaNtt74KC8MOHTp06NChQ4f3HT8L5NF/CfyzwJ8Zj8efAn8Z+D3A\nLwN/Dfgzrdf+TeAI+H7zi/F4/Ie5ykxqcpd+33g8ntT//ero6OhXj46O/tKmk7de91eOjo7+t3dw\nPR06dOjwpeI+hZHG9mtfNKOnyZZZWioMYmxNmLyp5cKb2DbcVrBsCtXHhRYePxXhNA/83I5lP42W\nGUrrRUsvXFM4bWsftdXSp2sh2ZMyXFNDWKP5LHkVeNRfvR4R4awIXJwE9jP3pRZfDjPL85lfIUU2\n4Sa1WD8yS2u/27CXWo4XnldlYDexCJt34xY+YIwhLz0v5xUIVB4uCs8gNltD64sq8GQULftmN7GU\nIVCUwjB2KwW6u/Rl+17v5p4fX3ryKtQ2hpbUaW5QvIGoaPqqGXuTMhA7wxczTz8yPEgNL+ZKUrpW\n35l6bBRBiEslzbLIcL7wzEUVXHFtY2eMZrpclp6e06ycgxhmHs5ytWh7NQ9UCDuRWl+d5Q2xI8y8\nMKuUaOpFhp10tQ9mhWAd7FrD80ng+dTjnBISvlYDXVSBkwL2EsunQ0tA70+7QK3T0lzLnVovLk4q\n4bzQLKxBBEmtTLNG5/2mDJdHPVkS2pUPfDyKeD71yyweL9T9vX2+bCqoA6SREiLtcXOWh2tqnjaq\nJiuoVr5FhiWxddMcy31gXgZcYvl8KkwKTxlUSbWoszMyp8TGILHXSNQgnmkl7NYk2KQIjNZUgpe5\nx3shNYDl2jpqgLxSUqkfWy7ywKKslgTORe7JW9ZxDXHZXOvrRWAQ37242qyNYgyzUq7l3bUJxuac\ns0rtP0HXo8I3a9jqPLRGbUlHQBUs+yk86ald5WkhFEWgqNV07Xw70DmWFoHnM08/sextWPdEhItc\n1YFOpxP92DFKLM+mulYgwmHPETvLBwO163w9LzlfeI7ngcQGrDMMYzjIDHnQ/D4C5FZ4kFouM8eL\neWAYy/Xxawy7iaGsn12xg541gLmWvwbXNwB8Uwr9X3c739R+chjBaU3+3UTe3HUDzzq26Y6+rv76\nWckCuol0+7ItDG87//tE5nbo0KFDhw4dvr34xpNHR0dH5Xg8/oeBPwX8k8C/AbwE/jzwJ++QP/Rf\ncJWN1OCP1z8Avwr8wXfV3g4dOnT4uvEmhREv8KQfbd1J+S689u9zjJvspdqFaoMWY6219CPh84uK\nYarkQDsfpwxC6W9WSa237yz3CNdtsdaLzyvHWMuOamzvKml2la++710XX95U6dUublQivJx5dhPN\n9LipuNEoa17OPc6CX6t+lT7wehEwRm0PBbdUbaRO+GxScbwIHKSGLHZLa6mLwvNyDo97lg/qPnmX\nhSwl+3S8t/tqFKvaTJUFrBAVoLZfs1KNpWJrSEz9eq+02X5qGEVwUigh1b7fPghJpKqM8zwwcZZc\nhFAI1siSnGre02QOWaNF9v3M8bjv+HAonC0Cp0WgFO3L3KuKaBDDyawiMpaD3vXrz4NgRPh8otZZ\nvQiKUiiMENV5Tn1rGPVU8fA6Fw4zVSfttFQpe4ml8qvj+6Z7svDCrBQ+GdYk2ob5s04sNEpCg5Ia\nuRd2kis13zZsU9QB7MSWSRmWH46DqDLmJqI0iBIS0BQNAx8PHSe5bJxjhdfcH2rC0dYZaUWA3z4r\niZ1RgqPO4pl64XLq6UWrFnV7qWVWepLILC3+krU8sZM8YKxaGgLLzK52/y+8juUgwswHsthylisZ\ntygDFSwLmhGQxaqu2kstC68KsUahdBvaa+Pcy5I4Wq7blRIzmo9U95fAZ3P4ubnnMLN8MIiIreHz\nqWdaeJLILvu3CqJj3cKntUUfwPOZ53FwnBeBVzPPZanrbUOIJU7Pl1jDR4Pr80JEOFloNlFiTT2v\noB/rvX0+8+xn+r6TXHjUykGqBA76Ed54DNCzEExtRWkhBXYHjl4uLERJzctcuKw8O/HV17QqCGlk\nGEWG195jBOJaLZg5s3Jf4foGgG9Kof99aOdOYjnLqzt/RhIRjueeKlHC/jby5rbZsolE7UWGwQb7\nwa+zv77uLKC3JV3uQro1WXD37bO7GAx+3SRphw4dOnTo0KHDXfGNJ48Ajo6OLlCl0S/f8rprn7yO\njo5+7i3P/StA94muQ4cO3xjctzAC23fqf13YtBv0tkJ1L3ZkkbCX2mVOk9SFnDcJpt22I7Up9mxC\nkx3VFE1P8qviS7ghK+VdFl/uo/TaVNyIjeFBZjmeq83eelF7HV7gac8xTK6KmOq01eQE2WXRe88K\nxwtP4YXLEoaJZT/VQPgkBECLvP3I8KRvOcgcX8wDT/vmSylkbeqrg8xylqtF2EFmSZ1djr2mEJ/X\n/87QPkvqot9JHhARYmAQmZXi4DCylCK8XAg+GPZTw1muKqLg1Z4uCOykmo/VKG1mARIDDzO7tG/b\n7zl2M8usEOYh1KoHLUwd9iNsbfvWhohwXgZOF4GFDzzuqaIuSjSbpagCn+xEDBPDogJj9fdneagV\nX23iUUm3n06rO90TAyS1hV7EqmpnE7FQidpCPkgtVYAnfUcZBL+BzG3jJkUdwDC2JDYs+3FaytZM\nJaDOg4NBa72xVsn5TXPMiNpSPuhpxk1zfc269SBz5EHIg6oaLVqETCLDzAfOLjyD2IKBKsBealTl\n5K/n2pRBuCz0fjQKs0Y5Yw1LskFQe7hX80Bq9P+fTUryCkpUVWfQvJ3Iqf3hpNTMpY+GERdFYH9L\nf66jvTaG5e+El3NVd6UbOltVPqvF70f9iMOe4yz3ah1aBsQYBhF8Z3Q9K+JJz3J0XnGRB/qxIQ2w\nCHpPzvJAZOHToeNhCsfFdRvEi1yJo8gocYTAfmbZS3UtaEjaZky8Xni8GM00wvCgZ0mcWhH2nFmS\neaUPXBSCD8JOaqgWOj4f1wrCWeUZRjqvnVWFbBGEUWLpO0NsAaMqzCZfbNsGgK+70H9XvA/tvI/F\nq4jwbKqfp3rx9XZsIm+2beC5iUQ9ywO5N6TOvxf39T52lc35p2XgIHt7Nc27IF3uSrrli8DLuefR\nPQmk23rlfSBJO3To0KFDhw4d7oqfCfKoQ4cOHTrcHe8q++brxCbblzYRsw1S57RYo7vN36aIss16\n5rZuaoqmQYRZq/hy2/veZfEFbld63VTc+HgYcVqUWKNF2OOF5zC7XtxoLN2e9h2nhfBJy+Lv9cLT\nY7WA1iiVfnRRMSk8e6kSS9boWB0mdplN1diSlUGL7/NKvrRC1npffTxkxarxeK42WnuJYVZdFX7W\nkUVKslzkHrHw4eBKNXVZBGal4ANLpcteajlbBIIxWGvIRThZwINMFQ1lJcRG2I10LJ/lasdo68Lj\nMDUMsViU2GoIqlkV8C2yslFW5GWgCDCMVovvzhgt0jmDF8PjvtqOLYIwqQKj2FwjHh+kht85F6Jb\n7A2bMfKopxZBbdWOMXCay5JYKIOQV2Hl/oOOQQdkFmbV/bLT2thJLLux4bzUdi28bLVka9o9ipTk\nbKsFXs3haV+Wu+D3avLm1dzTZ3Xdba9bavOoREpASUGAF3MlVI3VcddPlNAxAmD4dGQ5rS3m2lac\nh323oprazQyDIBzPAyelhtkbY/h46MhitUP77NKTB9jrQWyu5tPcC6FSaz8MvFwEPhg4qnD3tajd\n7c2RT26wBQwiTDwUXvO+QtA187u7apf6IIt4kN38VUZE+GIelERL7DJLa9BSdAxjixfNvPqwD1/M\ndC4mDqyBeRCMgXkZSCLD475lP3UIqqZqK74ia3g+q9hPLdbAi4ln0lg+FoFBZOjFMYmzxM6ykwQW\nXhVIO4nBGstk4jnIDPM6w6kInmEM54WqLZ/0HRhL5iCxcFEIvTrXb9NGiK+z0H8fvE/tvKvF68u5\nKpAf3fJZok3e6AaE1Q08ItxIoho0D65NJgjc2l/rWXOVF5yRawTrTe/fpO4Jsn1t3IZ3kQV0X9Ll\ncc9ysSFLMvdyJ9JtJ9FNHCd54CC7W7u3Zeq18T6QpN92dHaBHTp06NChw93RkUcdOnTo8C3E22Tf\nvA9fuNZLButEzDY0zdtWdLrPtW07UxN2v9W6rv530rLeq4Jo9sUt+CqDmG8qbjhr+XjgeDHzlKLF\n+7NcM5uAa9kzRRDSyi/7MIgwqzYXyQTNYHnSjxjGUIjU2SeBxz3LTn81Yyq2hhfzit3kbgXHBm/b\nlw2htJMIhVfi6vXCI9xsCRlbtR8SCWq91484yQNpZFjMhLYDmAf2MsdeqoXkPAilBM4Xhsd9R5xY\n8kTzkLyodd1uXYBtq5qe9i1zr307qdUozrBUWDTKChGwRhjGq32Ze1UXJc7URXA91whVoBxm9lo/\nXpbC04HjopSVnfQNNuUTWcuKaud3zkuqoGSQiCyzydbnohbYIDGGT0bujfPXrKmPbwOXJSx8IF4j\nAqsgBIFenbuVOcPpWqaTrUmZ9i74B6m5Vui9TiCrlV1DAl5WgSyy7CaGwlumVeAs9+ylER8MHKO6\nAFwEwRg9R9wiMobzipnXe9zO7LFWVU5VEAaRqcdAxQ/PPWlkGEYGt9ZXzhicgaJSkjF1hr9xWvI4\ns3gRRrFleMszoFkbBSW3tq0DUiva5l6YljCI6/M7w6tFwJqSUeLuZOe0vo5ty9KyhtoCEH7PQcJF\n7jWvbS4QhH5seDC66nOASe4JCJlbvaeLMnA091QBJqUndUripQ7OSs9ffVXwaBDx0UDzkQThUc8y\nr8CZwGkUOJ4FHo8invYtRaXnixyAoRLDJwOLs0pGH2Q3b4TYZvN6E77KZ02Dd9nOt/2ccheLV++V\nlP5wEN1JFdL+3LG+gee8gmwLiVrWGyasMVjDkkyILVv7a1vWnFi1cbwobibTb1P3PJ9W10j8NtZJ\nK4uumRbzVmPqrqRLZJTY+2LmedhbzZI8LwI/uazYy9yN2XigatTzQtdpJYTvQLjdotR/n0jSbyM6\nu8AOHTp06NDh/ujIow4dOnT4FuJNsm/epy9c67YvkzsUndYJmnbR6U2ubZv1TD8y/HRSEbiyaWqC\n5r1o0RR0J3/zXi9cK9hvwn2DmN8UdyluHGQOL4YyBHIP57lnFKtCZRhfZc+UQXNCPhpGyzyjSRm2\n2oFNS7WE68eG3dZO3yoI1m62JSu87tC/j7Piu+rLpuB5EyG2DucsQwczD7PCc5F7BonDWMCjVnUC\nPWuWNnWqIlIoWWXoRZbIaGHOmSu7rVGixE4bozqXI4sMvs5PccZQ+MCk0mvIYou1sjJ/qzrf6XFf\nO7fZ1b0rosVMNhcwZ5UQO8uBg32RpeJjadMXX88nWr8nzuhrmgLk3AsUaj02rVUZ7UyQyquV4Nvk\nrymxrvlJH/QjZtUqETeIruayQxUlntVd8M0ltXfB/+DcX7OW27RuGWOWJODvXgYu8sBuaoljnXOJ\ni9iNVzPbYmvIIsPx3PN0eNWOw8zxwwuPM6uZPQ0E6MU6pyqBPATywvB4i5pHRJj4QF4KD3uGUqOb\nCBgmlXBe3FxQ1kKsBxGGidu4DjRrsRdZZhFlFi5qZVURtM8fVELu7Y2F+/sWafdTx4/OSx72HHtZ\nxF4WMUqqrcdfBKmVvFek+LPLkr9xWuADPOxHGKPkeVKvi14cvm7Xjy6E7+xEqm6qdE4sPDzsWR5m\nlg9H0bUcK9A5ebwQ9lMlN7fZMDbYZrF6E952fXwT8uZdtPNdfk65zeI1RBC5uxFHDZrPHe0NPEFg\nEa5nHsLVBp4mV6+55mmpdovWGM5zv7JGZY66reba2I9qJUsa2a2WaHdR98RWbVfXLd22kVYAk0o4\nzT2p0/4XuNcYuet8vrLC1CzB9W5dVEIvVjvcl/PAo972sWCNoV+T3u28ym24i1L/m0Lm/iyiswvs\n0KFDhw4d3gwdedShQ4cO31LcN/vmffrCtZ7b1CZitmGdoGmKTrvJm13behvaeQVBVDXS/G1aCZel\nxwFPHsTAle1dFdTe6q47Su8SxPw2CCJ8dllyvBCcCSvWTu02mtpq7CQHQTjoOYatonYZhNKHZaEO\nWBbL5jcUCS9ru6i99HrRa17JZtXADX+78Vrv9/KNaAqeF4VfFsKDaKEpD3KNQLSmLrwF4bDn8N6z\nm6qCoB+BD0qa7GTbx0QQIa+EDwdqjSVQ34two8rnySBiLzF8NvGc556HPcNPp5BazVKKjGVSCLkI\nRqNdiCw8StxKscsaJfmyyNKP7UbPxbatozVmq+Jj0/tEhN85L3k19yTRVQC9iPCTScW0EoaR4aDn\nsA2BXAq5F4KU/Pxu/MbrT5tYj4yuE6MWK6njWpUAIpCH1V3wm1SEzsCzaYlBCdFmF/60CkR2eyE0\ndZZhDA97qx/X27lp7ddiArkPyzylndSRWM/JIuh6tEYKZvW6o0VZw05sySuhFCUY2/e88oGzUgvZ\nj3qOSgCDkh21DVQa2Y0F5QbWGFQgqOfdtA6ctWzsCi/kAfSudXcAACAASURBVE4K6NdrfOoMedBi\n+/llxWUpfH9v8/2+b5FWlWeWs4XnQd3n2+xJAYog9J3FAKcLz9wLv3VeETDEkRakjWgG0iCyDGPD\nbmK4KAWDYe4Dn089n4wiFl5Y+MC8gn5s+cW9iPMSZhs2dwgwqxVN39+7nbzYdA3blCFt9dibrI+b\nyBtTW3w+mwpV0GfCRwPH7pp12k19fdv1Nef+Mj6nbLN4bbKOtrar1cdtkrtR3zTrzFkphDX7x2YD\nzzYy1hj48WVF4uy1fKSfTiqmXtiJ7cY8QqkdS7dZoh0vAkXQTML1tjefA4yBuN4c0li63ZY7GVmD\nM5ZZFfjrJ55BBJGzdyb47jqf21aYqrZdJX3anxerVvu3ocnWuyxvJo9uy9Rr8HWQuR0UnV1ghw4d\nOnTo8GboyKMOHTp0+JbjtuwbeP++cK3nNt1WdNpG0ATe/NrabVCLlKu8gsOeFoUaJUiz29caPd+j\nnio2mtyUB+nddsbD7UHMb4p20e94EVbsryalcF74FYsx0EL7QeaWypJZKQwS2WoV1hTLFlUgcnaj\n2i2tLbU2W+lsbru94W834V30ZTP25jVp0xSR7VpBryEQe06zbQI6pl7PldRp8LRPK7tIrpFAQWAQ\nWQaxKpJSB/Py+r24SeXz4UALYv3YqiUcMC2Fi6JikECVK3HQiw2xsexmq/cisqq6G8ZsHbtv2rem\nLgCfFkK/RdosFSloxlC5lrXVzLOzIrw1gd0Q6/upWrMFWc0SGtbt+umkulYkbZPU7V34uTdgYK8+\n/qQSvpgFBpFsLPBOSx1Pm8b1tqL+QWaZV2FJUFqj+TzP534l+6gKgrMscznmpYAEMIaPRxGJMyQR\nVOFKPVkZfX2jhLGiNooGHQMv57reNevkpoJsGYSHdWG1bBGrV+0KvJp7BCVmJnUGmKuzhy5zLWpX\nIoAjs4bXC89Pp2ajAumuRdp2kd/XqgVQy8ht47gKQmyUDGqUUtboPO9HVhkeGptKy8IHvKgF4U5s\n2U0t89JwXngKrwRUYg1P+lYVhc6pai+1TApdD1bGYD+m9GoBeNsVtq/hNmVIWz123zm8Tt5ITZw1\nhHbsDLFz5EH44UXFYSoMkiuS4E3XjOZ9X/XnlG2fO9obSdaJnUkpnOZhqb552HPsxhA7fd/6OrNp\nA4GIHuOyCHwwvG7XVwQYxJa8vsZ1EqZ9yEbFtJ/qmj4pPL/5ukRqleVOukrQN58DMqdjPbZmael2\nekvupNpkwmmucw1jOYivP1u2EXw3zedmDs+qwPOp2m82GzbWyfb2fYtqUma/VtJuQrNR5tVCM/fu\nmqm3TX1Xia4d98WXvXHoZx2dXWCHDh06dOjw5ujIow4dOnTocCPe1y9cbduXm1pWCdsJGhGmpbzx\ntTVteDn3eLlSe6xnl3gRMmc4zHTH/su5X1qp3GSZso67BDG/CdaLftaulikia4hgq81LoywZxMJH\ng+0fLZqifO4jpqVcL4gmjldzv7U/tnVTz2nh6z54V33ZjJwQhJNClnZb62jGRlPQO0j1/32LHeg5\nJRWusovqnd+oUqEhjawxhKDvS4HSXh3jLiofEfjebsRJLksib5RYPkRt2nYTx3kRQGCUmJX7UQZB\nAqTuSoGyE18vlp0Vnll5tyyc9rGLSkgiw5rD24oiBa4KwO2sLVAVWiW8EwI7span/Wglm6TBRe6v\n7YJvk9Tru/BjpzZK01IYJaZW0bC1wLvwSuDJBvZo22qVOLUxTJxZ2pGm1vAoa0LjdV4PE8tOTT5W\nQbgsA1FkeBQbepEBY7CixMisUpXbZR6IraUSIXMgBqwYjDUtFeJVwbydEbJaXNV7crwIy7U7Mnp/\nj2viVe0UYZRYXgr8ZA7zs4rd1BBbS4SuJVOv40WkIrGGR/1aLVSPw+czj+W6aqLBJiIlMobDFEqB\nH52XiKjFVUOmt7O6Ph44Pp9drf0vpp7YslzvG6hdnaUMgfPC8DCrNx8kZpljNIgMidPraz+rrNEC\n/rrSDMBa7mRl1VisOsOtypCotiN7Nq34+Z37fU1skzdX1mHXrTybjLKJF2yLJGhbwd5FGQVX6/i7\n+pzytrmHN103NOobVsgRgJHT/LtNWO+L89xjgJ67yq1rMC3CMjcvsjq/1/MI28pIEeGsCFycBvYS\ny2cXnmAgiyyLIMxmVxse2p8DCtQSLrJGLdVyXe9v6v/adZRKoBfZG0mbTQRfQ/qsk70Xua5ro8Sy\n8EpSGmOWGzaS+lnVrK/rLXQGJmXYmFO00vdBiFLwIeCp10k2K/Vvsk78Yurpx3Jr3tI6vqyNQ98W\ndHaBHTp06NChw5ujI486dOjQocONeF+/cLXtpayBeR0u36AKQimal7GJoNEiuOBusI3ahPa1GWN4\n3LN8MfP4oLvAmyKzqS2QMh8IWHrOIMIyo+b7exHPpuFexYPbgpjfFOs7trf1SFOM2mbzcteeHMYa\nEr+TXr/2hkBZ32G8yQ6sQVrbZt0H76ovm4LneSkr5MY2RNaoHVCl/+9a93+YWM4LtUKyxjBKzLXs\nogbLtxnhINHxfNuOe7jKZHDW8rDHCpGXRXBRqN3Rk77aK06LwCJcFVKHzjDoqVLCGEPwgVFseTX3\nK8Wy3cQxKf2dsnAa+FqxFbd26oMW8Ob+OikXW7U+220VIC2rhWG4X67GOtokdbt/160yGxXhXqIZ\nJM9nlRYyLWRW7drmXkmh5p5mVgkQL9dJMEFVN4Po+ro1WmfWWpA1O9LXc3jcc2SR4L0SSgGDoL6E\nqTXsxIYPehGRhUkJlQReF4HMqyVWXo9rYyD3gUkpZNYy6hvq2vc15dtFoUXuvdRtVCE+7DmcEZ5N\nKp7PA6UoKbMbW7LYcDwPxAZmjfoJbdswCktlV2QNUaLrxY8vKx78/+y915MjSZrt93P3ENApSrYc\ncXeNvGaXD+Q7/38zPvFe0nhtbXe2Z3paVJdMARXC/ePDFwEEkIFMZFZ1dVeXH5sxq04AIVwF8B0/\n5+SGdyWbcegMm/G2r56Em0RKaK59XQuPB45RquPrxaLm+cix8nrtw9RQB7BWSbVZ02/XVWCUqvXj\nIOsqPQwnGcwry1Xp+XK87efcWV4tPfnYcTZw9yooH2tl1VqsXtZytDJnUamC5Vjskzdv98je3mtv\nCMaW7H00sFysay7L45RRpiHRZ5l77+8pHyr38G0RqIKOoT7b0jb3sEuOHLrsPnLTiLD2qsSrayiD\n52lHnbPeI5P2M+r2lZFtNhDAVaWZZu33qP0ND+29t98DlODWdfH1umaUHn6e1kFJ53W9JZhuI23g\nJsFnRHjTaQ9n4F0hm+t/tdLXTga711/tWWnuf8fos8TdV48JMG2em9Jk3Y1Tc4P0P8Y68STXjUV1\nkF57zz78WhuHPidEu8CIiIiIiIiHI5JHERERERG34vf8g2vHXuqt2kt1rbqeZlpk6ftxHpoiy30L\nTvv3dl1JY2PHQXuh/SJ1FYRlzY713l04Joj5IejbsX2IwIHDNi/3KW7s50V10SVQutjPrNqBwLOR\n2iF97LacZZa362pT4D4GFlUUFD5wnpvN7nFrDKNUc2Nuu4+WSKuCMHRwliopeReB1JfJsE/kDZwG\nibdtM83dDQKrJTCqRmnzyyrcKJa1QePHZOG0x/SyLSwOm5DypClk92ziB8BYJbimudshVoyB/7ys\nNnP82FyNG8fvkNStmqdrldkqUXRzvDSEsGYBtWTXwgu1F65r4Tw3tKZJ48xyvfBkyW6BF8Cgaorx\n3pgPQZhk7qAyY9zMwdaO9MlISa0v2GZxrfY+M8ssJ7nn79eek9zww1xY1oFRYhsVUFt4VtvEobMM\nEsObdeD/eJLuXF9X+SYifHmLEvE0d/z9quZ84FS5Y2ucMcwLVU9cl41tnQVnNYfpqoIno93+Shq1\nz//1S8nXs3Q7hjrrmG3UUG/XgZ8WqmyzRgu50pB3Ky+ICLPMglGV2LwU/j73/HPu+a9nqWZWNX30\ncuVZeqFceR4NLEGEFCUMN7lBohlvVRDqoITDqtKiO7Rkp/DX04TUKuF3KGemD8fwO9aoouynRc34\nCMK8DtoGq1oIt9h5ddElb4IIy7pfebNzXdZs8mgWla6F13VgUQvDO5RRL1ees9xu1vH3+Z7yoXIP\nfQj8tKjxwkHb0m7uYUuOZFbXiy4O5Qctqi3ZdDJwrP2uTWeflZ5txvIwYce+t0vwVSFQ1mws6vbv\nf1/B1OaPGXS8LD29m0FgS6xnRqj2ia07sgpbgu8ks1xXgUUlG3Lr3drvEpQW3haCXwfOm3W9CpqP\nVwubTS993zG6As8+9VhRh41d6W3WesdYJ05Sy2UpO9d0F36tjUOfE943Uy0iIiIiIuJzRlRAR0RE\nRETciof+cPqYP7gSa/linHA+cDwfJzwbJc1O9/73t+TBQR+0O9C9t2W9LfzPcsezUcIXo+Ya8v7M\ngrZo9XhgN0X/23BsEPND0Ldje5JZ/C3X1O4Y7iI0Bcdj0OZF9d13S6B0XzuUWQXbvnw6dL9JW1pj\ntKCesNkBfdf5h4nBOS2KfTVJdtr6PL97THiB3GkB/CzVYfzFyDF0hqIONz5bBc1qGDpzIwtottfX\n57kSBvUt5w9ByDvWcoeKZd1jpXZbwOtrk6QplLcFvUmzSx+2Fm59SK1h3VyrEit2kwnyrlQyar+o\nnFhDnthN8a/PGq6LlqT+dpowSxsruaBEwyQ1fDnSay2CFnqLRkHVPd8gVbXWq1XYnK8t6rd5aIvO\nnEoNZIYbBG3u4B9XFf/jdcl31zWv155lGRDgolRy5NVqe0/dUd6uUU+GjlFTFF3WSh77oATd5VrV\nM0+GSaOWVLsmaazYznO1OAwijBKo5fAaetQzwJg2HmhzrUVjZ6f9vn2r0L9kGwyFhzdF2CEZJ5ml\n9oF3a8+LpRI9qbObXKMyCD8vav52WbH2YUP2lV70/VVoCD9LFeD7ec2LuefdWtu3bkhrL8LLddAN\nCU5VMbXXTJq3RaAIgkdJrtPcUQr4AJkxzDLD04HjuhR+XHgWtWj+j1XrrXmlf3+z7h+nx65imVVb\nw9vmNezm8LWF+2PQJW/mVThI9naRNgV4UJLgu6uaWWYZ3HGdaUMgXZeyWcff53vKfbKSWpUU7D7H\nRITvrjx1UIVk35pjjFoNvl531oCWeNrr27cH8oPWvrX1o1G+OAzwumGf+sZDYk3TJ1vVXUvwtde5\nagj621THK69kYvdvo0SfRVUtN/qsDqKbB5zaWq4DN9rlrqzC9rvS67Uqorp5Qvvqz/b9NXBV6IEl\nKEnfKt1aMnT/O0Z3XdlXzVVBNB/Q9JyrMx7ajTh3jaN2Y4WBzTXdhl9r49DnhvfNVIuIiIiIiPic\nEZ+HERERERG34lP5wfUQIuZD3Nv7FK1aVcNDiv4fCn07tvuKK120O4a713nf4sZt/dUlULrFzH10\n+/K3bMthYjTk3nBr0bO93tO8sX1Dic8ukab5MY7BgftY1YEEYZzY5j7YfG6f4PDSKClSw7fThCc9\nqp99Iq/Nr8mdqob272dVBxKr+UvPhppbcahYtn+s/WLZfp9I59raAlsdNPPpNgR2C3xt4fUWdzfg\nZvHvLrRqni/HCX89SXk0cMwyx0W5awe27ilqApxkGuL+erWVGZw2Y12az4GOoWmmJE2L0geuCs+P\n14GLUnOhsjbbw2uOxmWpO+67pFjbhqA76t+s/Q2SYpJZ5jWAvl4HYWB1XJwNHGe55TR3jBJt31qU\nDPnrScK6loPFz7vW16sy7KwDg0bhENBidtdRtA5KJE0b5U7372oJqG0+75AdBrUKXNTbgn4Q4e06\n8MtKCZmfFp7XK89FKZS12htW0uRGeSV5Umd5NLIEgcsqMK81n8mLjvHz3CJebQAzG5imhnkF66Aq\ntNAQRSeZrlPOtMcP/LLwmmOGkvK9RGczf152iEdgo/wDLVy/Kzw/LWp+WNT8tKi5KPymb1Yevhy7\ng/N6v9BvjNkU7o9Bdwat7qECaj/njBbtM2dvXX/a65yklnHCDeLx3jiy4N+iVQu17dqO35crz6I+\nnLm0fVa5HRI9tYYyqHKxXYODCMsD1ySibTB0upnCGMPzkSMIrCt/4xlUB6H0Oke69r1dgq89b2LN\nZg72YZ/gVhWYbkD464ljku6SzZPU8NXY8WiwVUXtY/8xHES4LDy/LGteLGp+Wda8LTzXpSd3drOe\nHVKjDpzOpZXX+x52Np3YzvpwmhmWpc6Xn+YV12XgqvTUIex8J2r7rTczk93xcB/rxHZjRYCdNWsf\nv+bGoc8N3WfhseiusREREREREZ8zom1dRERERMSt6PP1vwu/hT97n73U/jVtQ9u1iPIh7u19Cai2\n6N9mlCw72Sx9WSEfGoesPM5zy8uVZr20SqPCaxaLwZAbeDJUy66HFDcO2YG1r53lljdrDTw527MW\n6+vL9nO/RVtKQ/g4A/+c1426aNsemq+lJNNprioVZwynjc3Pfq7OJj8mtzs2YyEIp5nlX0+Sg1ld\nLcFxH8vIg+dvMmBWtdpo1aJFt389SXHWclH4O4tl98nC2b8jHYMBH8De4jcTApsCX1t4zRN7p6II\nbuZqHIvWsqq1Q+sWjVvLsX0Ihr/MHK+WnnVDwiVW1QMXReCy8IySwCxT9crbIjCvAkaElVfFmUv6\nCYYaaRQIgadDt5sjU9Q4ww0rphbWGKappaiFSR64LjynmaUWITFKXqy8UnhBwIjw1cjxaJBQCxvr\nsS6OeQYsa1UCPR0q4ee9oSyCqo5CoPRwUWl7ZrVn6AxXwXJVec59o76zgnFKyNiGRJo1x39bBMap\nkl2lF1ZNttdlKeSNkqIMOkZfLGpeGsO/niQbkmndIUYza0lTYZwYZqllXgvz0nM2SJikqjhdVp6/\nX9VcV8IwBVerqmqYGdKOhCoE2RDul74mcYbTgePHeb+V56aPw27eXAjSmzfWZ8+oSgrbO69bm9c+\ne7xjN0d05+6h8X/b5+Zl2Nh+Hlp/9q+zCrLJLHros/xD5h7WQb1Lu6TP/tpvjNEsrybvqVWunmVb\n69FVdZiEaPvxtENmGGM4HzjGDmbA3689AcEYzUwbp9uMuhZdgi90CuStlWbfF5vWMrBrYyqin38+\nSljUMMsOt//+Ibs5hvsZQ13Lv9fLijxxTD2cZYZXa5hXnrSHPRqmalUpQFELX4y265KSoYFK1Oo0\niPbDVRl4OoKwUGtJAJNbRDgqq68dD/exTmw3VrwtNJNvmNob46bvO07Ew3GbXfIhRLvAiIiIiIgI\nRSSPIiIiIiJuxaf0g2ufPBA0o6NVX+yTBx/i3j4UufaQov+HwKGymTGGJwPL365q3hWBxKK2MU2J\n77IKfHdZ8Wjo+F9OkgcVN24je04yyzcT/ZpyXyLoY7elbe7l8TDhLLf887rmXRnAQGYNE2cYD1W5\nUDa5J+d7xb8+Iq21GRv+yoWkW8+fOYZJ//nvKpZ1c3na4u8sM4wT05uFsz+X2gLbsra8XWuxsHs+\n3VUPj3OzyVK6bgitbmHyLnSLwceiVWy9XNY3Cr193dOqBZy1PBoZxk7P2xbGT3NVXDwfOdZei/Zn\nmSExlmUdMBberIXEwnWhlmuCqmucgWlmeTJ0OzkaLSk2Ti0/Nlksh/rrtCGLTzLH0FqcgdyoMitL\nYF7prv7EaubSX2fJphDeJWxaHPMMaInrLlnqJfBvb2tergK5U5LaA3UwXAfBoKTbea7EgrOGdeUZ\nZ6pKaMmOLon4KIf/vKpZ1JA6VVA4o32eWDCiSrrrMnBZCY+dEk37TRUA1+S8fDlOeONgmhqyhhga\nJI6TLFCuAs9GyeY6VAWhhXaPcJpbngwt61oVhKFZhe/KO+vmzXnhYN5Y9/2t3dibVeDZSInhbi7V\nXTiWVunO3duWpzZ3qwhCFWCSQG7hl5WnCmDnVaOKg5HTvLJDuU/d/MGHPss/ZO4hKBmxDttnVbv2\n7197N+/Jmq316Ot14MXiJnnUZqudNBZs+8+A1BqKIDwbJXyD2RlHfWthux63is1WkdFaaa5D/zjc\n5+Nr0ezG09xy1ZNV2MV+lmKbY9iXMdSiCmpZOkrVDvTVGp4MDG/XbOxBu+cM0uRNobZ+3XYSEV4u\nPc4FKq9k8ySznOWWzOq1vVp7Mqu5ZX9tNknchXY83DdTp133ZplhlpqPvnHoc0P7zP6tc0YjIiIi\nIiI+RUTyKCIiIiLiVnyKP7ha8uBpU9w5FNr+Ie7tUyLX+nCI/BIRXq31fqeZZVFui2IhwLOh5ctJ\nihd4sQp8MbpZ0DoWd5E9vwWpdh9029BZy59PMr7d3zXPzV3zXQLxt1agPeT8h4plt+0in1eaR5S7\nm0RY31wyxvCnaYJrCp1dImqcGE5T+Hqabo7T2pe11lbHYL8YfCweDyw/zG/+feAMi06RtLVebNUC\nm0LvYFvAb8fDPoHlQ+C/vy6Zl56LdSAYo8VRY/ANgYRhE2h/mtutqqEhxc5zw3dXckON2YUxhnEK\nzhoeDyy1h9PcUAoEHDZ4BHg60my5br/tq1PaXK/LUsd/O45GiWGWbdfPtndaknFVB64qSBPLwKgC\n611zfF2fm6KzF96sA+cDw6OB5ZelZ10Eng6THSVLW4C/LIVxZpnlsKyEq+acRQ2nI8cw0XGTiWFR\nCpkRatE+68KyzdiaooXv6zLwaKhnTawWga9qQ+F1jFujZGn7CCqD8GRoKb3gvfCXWYI1quzsqj0P\nPY+cgXeF57wZJ8dm9WRWrdVaUusY3EdB3J27w0SzmrrzWETH56pWO8LEGhC1CPzbpdqTDRr7zMSq\nYmteKeFaB8NlKRvSvW/sPfRZXtzTxmr/vLAl0cepQbBMjzh/m/c0DEIjJNuswSuvJP7rlWflA4Jh\n5HReTrKEn5f9erD2r/vjqCVpumiJo1axeV2FTZ+d5pbX6/5x2J0SqzpwmpnNOn5X+08yy2VDMHVz\nDN+s/U7G0M49BWGYbudXHYR3JZwPHILa6O0/E54MEt4WQhl22+ld4XldBB4NHVljYeaM4by5/mkO\nziqptfTwrgg8Hh73DGnXuIcg+Y02Dn2O2FdZH0K0C4yIiIiIiNhFJI8iIiIiIu7EH/kH1/ve26dI\nrnVxiPzaD42e5m5jV1PUgS8nCbYpZFdBA63b3defG/ra8K7d/YcIxN9KgfaQ8/fN8tt2kYMWAF2j\nVvl56Xfypw7NpfbvhRemHVukKohmXOwVk6VTmDwWD8kuU7WZ5bKUHaJsnFquK7WxCqI77k8PFL03\n/31gPFxXwuOh49ValTi1RusgohZqw3R7n0UzD0+yraqhzax5PnJcVarG6VpEwtYiaZQ4vhpbBLgs\nNK/nUWYxBr4dO5a1nvtGblbn36UPXJfCOIEy2Bs2am/XlbZJYrgoPD8tAw6Y5pZFpYqT52PHReH5\n20XFooJZsnv8zBmcbUlJJSYTo2vWNw1L05KIQYRVrRlRAJPM8FxgGQRBbe30uEJu1VJyFQSLWvZt\n2kiEcWvz1fwtd5aFCTvPjrXAfz1N+cfcc1EGEqPvA6hFMCIsK+Est0yG4Jy2zqoWZpkq6N4W4dZ+\nEqtWaf+c+4MZO/s4HTi+u6x4MpSj58V9Njl05+4ktVyWfvMjU0R4vfaNik3PXXkdi8ZaBmmjdBFh\nXsH5YDvGiiDUJTwebHOfutk93bt/yLP856U/+L5b77fz75ZEb+/bdtRVLakxcObGc7+1Ip10mlhE\nuGxItlFqd+wgl164XnjWXrDsWiF2r6nNzXtbaE7aaO+8VRAsOmdaxWa3z4zZWmmuasHYJh8u6JrT\njsPMqoVp2xd3tX+bpTivAgNntzajdf+zYl8VBVv13TSFZQ3TzO3Y6LV4PBDerTUfyxlVI/208Ayd\nWviVXnrXZYMhtXrun5ee88FxmzZacvxTsHj+nHGbXTJEu8CIiIiIiIhDiORRRERERMSd+CP/4PoQ\n9/Ypk2t9BftjCjrdgspDc2M+dQSRjbrisgpUa880tUyy29vh90YgPhR9xbJ90nEfVRDGTu2d5lXg\n1drzZOA2qpRDc6nNP6obZcKhIHO1orIHA84P4aEz0hlVv3TzWRAtFiOqsqhEeLXyu0Xk/TY5MB6W\ntXBVCQHhZHB7Ib/dmb+oILVqJRfYZgs9ctzI0bLANDFMMse8oz44GzhEZEepMstuKsqqIEzbgrIX\nrmtVDGV7hW1p5sqyFkSErNL5s/aQO1XFXFeyWWP/9TTlTRFYG1h4OA8BYwwDa/hi7EiskomlD4yd\nZZDAohRGp1uCx6HZJvvOU6PMcDkP5DtFey3yC0quFDV0eRkJMBrcJCxmmd2o4lJrEAzWWv4ys9Qh\n8GoZdG0ISkb9l5OEL8YJibX8vKx3zg+7Fn6H+klQIu4+dmvWGCaZ5V3heTS4++ffQ9aodu7WjaVe\n0RB4F0XYUUjpGBVGjQXbm6Vn5Cyps3iEqwJOmrZux/RFETgbuJ3cpz715n2f5R8y99AA6zrwS6kE\nZ1dxuaiF68rvEBa1D1TB8LpUu7XRvOK6UjVhm1/VRWtDaEzgXRE4y9kQSO087LbFLLOcNjah3XE0\nSw1fjlJ+mPsd4r7bZ8boGnAislEd143l6jgx5IllnNgdW7dj2n/iDCKGWabnuC49PV8zdlVRZdix\nu2vf7+VwIaMWVZxPMiWrflnUrCrhydAwSuyGNL7ey3KsvYDR9XJZKvl2esd8acfDp65C/1zwW6u8\nIyIiIiIiPkVE8igiIiIi4ij8kX9wve+9ferk2n7Bfl6FOws6+3hIbsynCt1JH3ZC6p8MHC9XgYsy\ncFmGg0Hbv0cC8aHYL5bdRjpCY2e38vjMkjgtfBZeNsXwi6JmnFqeDy1vCtmZS23+0cuV57rwTDK7\n2TUP2zl2mlkydz8LxffZ/d0tPrdKMxHNJvrnwiMimhXWKSK/KzyPc4OIUAu3joe6adP0iOwNYJNx\nM2nYCMuuvWCbo7WfUQTcUIzsq6M2xEaHKKt9YDxM06YgMAAAIABJREFUmKSGwoJ17gaBflONZni1\nUuJkmqqFX+mFq5XnsgjMMsO6Fk5Sw8JCDRhrmCa2yb2y1CKaA+MN30wdPyw848ywrIRZvi3or8NN\nYsAao+olA76xp2v7x2BIjGFN2LxWiaoUWrvJSWd8u47K43LtKSrPq9XWxmrg4GyQMO5ZD7o9uj9c\nb+snacbEfYrUoCqTX37FTQ7d56B3sKpVKdYqv1olXu5g6CBzhtIHKhG+mjperYTMGVZBmMpWIdWO\n6ZOGlG5zn/oK7/d9ln+o3MOrMvC2UMVjGSx+LxyoPX4RlEiug97r85HBoGPxXalrnogSxt31rYvM\nWU5zJYUHKJEbgmaRwf73DT3GWc99jFPZ2TSyT9Dv51ONEhgnljwxZI295T7ubP+xktLfXdX8sqx4\ntfLkidmQ6l70XrrPz67dXduWhZcdsquvjyZNX88yx0/zij/PEp6MEnwI/DCvuSoFY4TEWHJnGKVK\nHL1YBWaZjtHX67vJo3Y8fOoq9M8Nv7XKOyIiIiIi4lNCJI8iIiIiIu6FP/IPrve5t0+ZXNsnv65K\nLWy12NhaHSBE4OG5MZ8aRGSzu75rGdWSG28LLerNKy3CtQXAhxKIXXVTNztmkipp8bLQXevjRX0j\nU+ZD4dA1zDK7Uyw7RDrCtt1SC4NO/oYzmvcyy9ymSPxiJXwx6p9Lf54qUTGvtIDuRXbmGMD313Xv\nNRy8v/fY/b1ffN4SJfDlqLF+6gS7J9ao9ZiBH+Y1f54mPDlQJAZVaLlGsbSsw1FqE2tg1ahdNkHs\nTa5QNx9kmGwzuPRzu+qDQ9RBW5AdJsLQ6fUHEb6/rntt1PbVaEG0GI3A2RDeXAs/zmvSxGJE7ah8\ngCxxiAEXYFHW+OCYpZa3QZimhmcjizOWWvRYlRf+cV3z1AuVD2BMby5XHYRnQ0slwo8Lj0HbdlkF\nxqklryCzOq8CQgLM8qZ/A4yH/WoPL8KjoeO60uwUUFJK9oiEFkNnmDe2gpMjycu2T+e19OaN3YbW\nZnHgzK+2yaH7HDwtPP/zXUkVBNPY2Y1Tzc9bGSUMfVCSylnL0AXWonNlWcGkY/lpjebbTDO3yX16\nNkwOrnXHPss/VO7hf15WiFEruccDuTHvW4gIP60CmYH/88vBRrkTpCGDmvlzXdX8tKiZJG3uWENG\nWsO4UfaJBL4YWS7LgDQ5USJy9PeN/U0j7TPszdrz87Km6Ng9ptYwTQ1vi0BewdeT20sIfe3f3XSR\nJ5avUsu6DpSimweuS89pZvhmmuwomlq7u3Wnj0R2yS5r2BJdHgaJ/vckU0KqDOjzeVXzU2NVqOpI\nPd7KB+Y1DK1h6gzLKlAHg70jEmt/PHzKKvSIiIiIiIiIiEOI5FFERERERMQHxKdKrnWLfsu6pAw3\n7ZLuKkY9JDfmU8PrdTgYUr+vzLgqhdcrz+OhuzeB2Kducs3f/35dbwpjiO5aN8bsqHc+hMLt0DXA\nVik0SgwOJQNWt6ghXq89Bni8Z72WWNPkveh/p40VWpuhdWguneYcnGMfc/f3fvF5nyjZWD9Vwtpr\niPswsTwaOHLXZvbcfe5xapSUOOKa2npnCMI0tbxeeV6tb1ppzSvhsvSMErMhhduC7KoOnGWHC5v7\nxc+rsp/Y6lOjLaqANbpe/HMeGKWGUWYpm/iZwgumyRwyAhceXAVfjSynQ/3p4kX4eRlYlTV/PUm0\niF5B2djbYQw/zVXhcdKZC3VQNdFp3tipBVhUnsQZPKqAWHmhqISB8ZzmlvMOATzsZGm1RMvLlebQ\nnA8TznLLjwt/Q3239sLLld9Rk0wyy0VRsagFg2XZZD7tk3o77dkQncv6YVk97iNtcrDGcDZI+PMM\n/jRjo1QT0Tyqk8wxTg1v1mEzHme5oV4LNToGJmyvI7GGtRem6Piu/IcrvH+Qgr8xm3m3Y/nWzPut\nLZqSHvmeOnLpYdj8p4ie56dl4MLBs3GymfeLJvdomBjGqeGqCJwP3E523LHoU0wnRu3gTnPLygrz\nWhg2dpejdDsu1+FmZt1tOLTpYpbvfr5d+58Od9tH16Uu0dV8ZxkY/nbleVcEEqt2f6mDs9xxUQZe\nrTyPho6zzPCmUMtDa25aAjqjz9Gi2YyQWkPphctb7qlvPHzqKvSIiIiIiIiIiD5E8igiIiIiIiJi\ng5b8ekhR44++hzaIbHZN34ZWmTHLoKgDz0f3K8geKrR1VS3TXDM/3lZwnurrrbJl5e9X2LvPNbRo\nz7UOqoAYWM37SJy9USzzPhAEnh+4nn1hxvtmaH3s3d/t+Qofem37rDFMM8MgqEVSl0C46z5HqeWq\n9CSJZejU4u0uiy0JkGaqIvplFUgai7beDBW0UP9yFXg6tBv1wYtFIGuIvGOKn4ds1PrUaOtG2XS5\n1iyVaW6ZpQ5JhXUtLKvAsg4ELImFb4dwdpJReLX0CjR6Aa+kmrOal/PYwbu1UHgliE5yy8tVzct1\n4DzTPKKhM5w0hWQv8JdZwut14GrlmVoll4wxPM6t5g5Vao+HUXvB03yrOhqllotSyYHMKon6auWZ\nF563slXaWGM2pGib1yMivCsCb4qAhR2lRR+p156zPd77ZvV8rE0OAS3Mt+shgEdYVcKbdeDlypMY\nQ24No8xwPrBcFcKi1jygnbHndT0dpZaT7H7WlLfhfQv+V2Xg8cDytgg786Wd99O2LUT4oRaGCZw2\nWTyt4rHwOh+VsNd196upXtO6Dpv1NrEGLMzrwLKGr8cPI466994lE/85rym9Ko9PxvYgiblP8veh\nq1h9vfIUAWaZwXWOOUzMJmete9x2nnSvs7WHvCo8s9wiIrxaa78MEsO8CBhrOGnG+Gmu1+8F/v1C\nydZ6b0ztIzGGWoQMtcr0PlD4QN7JcLtrPHzKKvSIiIiIiIiIiD5E8igiIiIiIiJiBx8iRPyPiEPq\nitvwkCyoQ+qmfVVLag11gMs9l7ZjCntd9NnSLSslHbpFsz7ouSAzhq8nCYtKdsLZp4khOM04OlTg\n7Pvz+2Rofezd3+35/nZZ4X2gMjcJtEO2j3fdZ9KxbDrNrY6NWwgkLV5D3pARtUDuLKNUdmyfds5h\nNY+mLdjWAt9M053iZy3ColSVyCi1VEHHTGuT2GcPB/1qNN+ofX5eeoxRtUPtBawee5RafpxXeAmI\nwLyGvBYQ4SS3G+KpSoRpmuBFbcImmeXLccKkKcxbLGtvVYHkHF9NtWj7bu135tFpZkkxfJ3AZRWo\nPDxtCN8ggetSOMkNp5ndKJASA+MEfriuEWMwgKDF/fOhjr3LMnBdaV7Saa5jYlkFTjOjpIAXvhgl\ngOyQDn2k3n421ofI6vkQuM3S0ppd60MRHWOvlgFrm/tslHfLIMyX2lazXJWuI6fkdHvcSQpfTdSq\n7pAV4EPxPgX/ZS2kzvJ0qMrD5YE156rwDBM2OURdxWWr2r0odtf+s9wydGCN3VEwnWYO7coPQ6Lp\nhgfLNLU8Hh5Hph8i+fcVq9YoYZwn9gYxup+z1h53WQXO8t3jtsresTOc5IYfF54yKHE7SSxfjQ/Z\nGAqZs/xz7plmd7dV0iirJonhz6cpRmRDWt+HAPpUVegREREREREREfuI5FFERERERETEDn4vhcnf\nGx4SUn/fLKhD6qY++y+AxMLa6+vdYtYx6p1DtnRBhFdrVYyMUjmYc7V/rlmj7mjzYVr8sjw8luog\nvXkv75uh9bF3f5uG5Pk2tczLcINAO2T7eNd9jhJDHZTcqUXJg0N5KqtaVSyPRo5vJ5brSjbjaN/2\naR9Jcx0Tr4qjllQ7ySxVCJSVBtB3z9e1STRtkFIHQYTLwlPJVl229vBuXVMFo4Xlpu3ECq9XgbET\nxCgh4awB/R8GWAf451XNaW4pGoXQKNUi7coLAx+YjNId5d+zkWOUVB3STW3TMqdtGkSzh56fOgQY\nrmsuK1UvJUY4zSxPBoYvJ47LUomBgTM8Glgqr/O0nTvdsaD9pOda1GHTd9YavruscM4yy5RMBHpJ\nB7V0DLxYBL6ZpjtE54fI6rnRV7eQQPs4xtJynCrxMa8FZ+DlShU108ywaLKeBs6w9GpRiIO1COtV\n4JuxY5q7jWqnzZeyDXn3a21UeEjBvyVON7alef8aYLE7CrMu/2XRPlh1coZAx0AZhCdDu2mLLtZ1\n2Fn779uPXXyIzRF9itWrwm+O20eMdnPWusedl4HZHqleBWGSWU5zy1UpRxFd81JJ8X+/qBmlqkq8\nCyJC8PB4mGKAL8c3Sybv09YRER8TcaxGRERERLwvInkUERERERERsYMPXZj8o+CQuuKYzx2LQwW8\nPvuvFgZ6C223qVpus6WbV9t8nL6slj7Y5pp9jyrmtnbzApO0vwD4ITK0Pubu741FV+6Y3fNzh6BE\nbthYNi0rVdicGHZylCTA+cDx7cRRBy1kd0VjXdunQ8qI2gdqb/jTJFFCZ2+MtGTQ2mt2TZvPQx1Y\n18IoCaTObhQmy1pYeUid6nLergNlEMpgeFd4xqlh0Iy9zFrGqfDL0lP5wMBZMme5EnBGM46mqSMA\nF2Wj2hluCTkvQuDmGmSM4V9OUgauogpqi6dKAhgnhmFiWFZqFVYFVR38rycJ40a99HoVeF141j7w\nbOT4l5OE01zP+/+8KW4QR93zdnNv5lXg7dpzmjuqAH893VVJHCIdzjJLZpWs2p9/H8Ke8VgSqEtc\nHWtpuaj1uPMyMPdC5WGSGIapKlsBhqnZkEsAqVEyqdoTFoWg5GX779/TRoX9FrAH1oCF372pbnfm\nDq7WHtuzFB4SWdVBGKW6xp9k9t79uI++zRFBhOtmvnXn/KRjx9glv/tUsyt/87hdtWObs9ZVVKaN\n/Wq3Dbvj+PIeRJeSxXrvi1KwuZKVLVlXBjb3ljlIrc7fk2bjhd/rgIfMmYib+C0Ijc+NRIljNSIi\nIiLiQyGSRxERERERERE38LFzYz4FPPQO7/O5Q+qmPvuvFq2aYtIp9G3t5+gtjByyxts/16EMin2k\nDdHURzoeuv86CKNGTdCHT21E/Rrjo0vk7hMMGmBvGDrHpOljJXLNJleoi7uUEZOR7rJvi0jtGEkM\nvFl7lk2RP7FmU/hWGypV6SxK4YtJystVoAqBwgtFLbwtPMtSc4OmmSXN4OdFoBbL+WD3fhMDl7WQ\nWZikqkzyAkFg4JRoq4Ng2SW+Bk7zjPpgjOHrScqbtWdVC8M0ITFqEfZyGRCaonhjLzevhX9clxjb\nWGtlCdelZ+3hb1c1IjWnmeGq9Ewy/SkVRJiXgSJsi+wDp303zfT/hde8G5/3FyoPkQ5VkF4S+H3t\nGY8lgfYz1G5bO9rjtiSloGvTslLbxoUXrhvS06DE4iAxFM2aU4swTSxFvVVTtvlS2/H9+yr0Hmvz\n2m3hfcXlyMGVl95+OHSrXuAsdyyq1lrybjLv9buaWWaRxlKwWzjvkvxdArh/zm+t51ry+6Bqlv7N\nA63a8SyHp0O7OZ9BSd62wB+CKgWfDd1mE8NtKuCw9xx8tfKME83TMiZgRHjd5FNl1uCM3lstwlWp\nGX7PRo5ZY3G3b734kDkTscVvQWh8biRKEOGi8Pzj2lOJjvOhM5vvCXC/sfohSbfPjcCLiIiI+KMg\nkkcRERERERERN/Cxc2M+BXyMLKhDhbYeV7Cd196uPaWXm4WRMvD99W5h5FCR79C5DmVQ9F17H+k4\ndKou6LZbHdQ+qLXt2senmKH1a42P/TY9pGzqErk/Lv1BtdchkgLY7LJvx0jmDC9XmrW1b5kIWxuq\nOsDrMiDzkosSqkYxNMoM10soAjgLb9aBPDHkziBBWNQwS/V8pddi+FWthdxKhEkCC68Fpioo4ZBb\nw2xgmXthUAXGqdpYtQKBViH1Zh1Y+QCiCqOzgeHZyLKqhH8uPHWA1G1JnjZL56IUsAYv8I/rmpGz\nDfGFFrW98P++LvlhFfh2ZBllDotlnBkyty2yL2rhuvIbUsoZJeSmB5R2h3CbteH72DPeRQJ1z99m\nqD0a2DvWDtnY07XvWVQeZ9kqSyxg4LJRzMxSw9sgFD6QWcssN9QCizIwSC2JUdvF39tGhSDCu8Lz\nYlHz3bUnczB0mhnU1+7ddXBfcWmNKl7erbwSJmgzJcDj0c377RLvr1ae04G7m8yrNbvHIzxq2rDP\nelL78PY5b0V4vfL8vPCcZ8389KH3e8BtveWMKl1nmVMiSjyvlwGdgoIFxpll4DQj6vU68Hhge5+T\nXdKy+xx0ppmLpSASSJxlbKEypiGmdV3JjG60GCaWUQrvCuHJUMdoi4fMmWNyBz8X/Bbk2+dE+HVJ\nsosyEGCTWzmvhcuyvpG9eNtY/ZCk2+dG4EVERET80RDJo4iIiIiIiIhefOzcmN87PkYW1KFC223E\n0UUNaYBHPYWR1BnyxO4URu7Ktug716EMiv1r7yMdJ5nlsqw3VkVe2OxaP7jT9XdmTXUMfq3x8RAi\n931VUO0YeVtoEfmue0qsYeyE//tNzfNxwrAzFkMAQXBGCZRVFUisJU9FbfgSw7rWDKcg8Ciz5AkY\n0SL60MK300TzThJD0ZBEU2eYZoaTTt7K61XNz0slUlNnSBofsJUX3l0GcusZJErmZO5mK1009+sM\nXBZqaaVXYXix8MwrLWyvxTC08N/fVuRJ4CwzjFPDSep4NnY7dnZF2Ba9r8rA01sUfIdwl4Xjfe0Z\n7yKQ99Hmmjkjt64db4ubxfUywDSxeGGT1ZU53WmuKkcYWLUuzKyO52UpvPbCFxPHLDG8XrOjPPkt\nISK8Wnl+mNesvFA1CruLQljXnv/vrTDOLF8OLV+OE6aNzWG7DgI7iksRuKwBD5UIsB078zqQl0IQ\nz2mzXnaJ9yCq4rqNONolgnY3AnQL58tKrSevKjk450Vkk7nmDFQBymAwxvBqLQQJN3Ly+jYPtNBc\nL2GabknHR6Nko8zaXxvb59h+xlofadliYA0LL5wMLP/2znOW0/SFUElAMAys4TQzTPKtwi018Gbl\n+WayVRc+ZM7cljv4ueG3IN8+F8KvS5KlzlAGdsjfdq73WRH3jdUPSbp9TgReRERExB8VkTyKiIiI\niIiIuBUfMzfm94yPkQV1SL0yTAzznr9feyg8THvUK11rpG5hpOrJJbrrXH0ZFF10FTR9pOPAaSj6\nLNvmZRzC79Ga6hj8muPjvkTu+6qglg2Zs6z71Qd9uCjBNcRgUQvG6rjJHWTBUjTKhKGznOVwVQop\ncF0ESlErOmsNZwNVCgA8ymDi4OnIUdbC87FjUQYWjS1fGfR9lQ+sKmHhRS3o9tQ9ga165W9XFd9M\nUp4MzU6BKog0+SiGy3XAo/Z5Py1qvhg5riuLB1KjdpCXlbCqYZSqgspaC3iuLoTnQ8tJQ+S1pOlF\nEZAmp6bNjmr7cN9SaB8fWmtzF4Hcew3W8HLlOcn7fz4GUTJwvzjojKEI8GS4zYBSW0XILPx5lmAN\nrGt4s655uw4kRnOeHuWOYWJuKE9+q8KiiPDToubHheeqDFTqxgiokkrQQui7IrAohCII52Vg3Chr\nMmeoAhvFpYjwtlLl3pPcYi0svSrcggiTxDJILesgvFjWnOduoxwQ4PuriiIILxb1jTwioJf87dsI\nkFq1D3y5rAnG9s75VjngRecIaMadbdSszkDq7I3idHfzQBet1ePKax5YEWCaWlx6OAuvfY6VtZAn\n2/vqIy1bjDPL9cLjCdReib9RYjkbOCbNzKpFWAaQQpjlIAFGQ7tDUD10zhzKHfzc0CXf7srSgg9D\nvn1OhF+XJLsq/cGMzENWxPtj9b6k28uVJ2vW6X07ujefCYEXERER8UdGJI8iIiIiIiIiIo7Er50F\ndUi9Mkktl6Xf+eKmu87BWhj3FNr2C3BtYcRaDaY/hL5zwe3qhz4FTZd0/GLkNjtP7yKOfk/WVPfF\nrz0+jiVy31cFFaBRmhz5WdHsoyxzZMZwNrYsysA6CB7DSSoUzmKNkgmJNRg849yAQKj03iYpgMUH\nYZQZ6qUevwrCsFFrtMVgLBurureFpt63ZM0+JMB4aLkuPMZocT+1hrNO8WxRaQE8iLBq8lCuikDd\nvJalmodyUahiIYiqjYrmvd4HSmMZJmrP5zGcD9hc01UZcMAP1zVZYndsew5ZCrX3/qEtHG/LjDmE\n1BoWNZwcGHvzA8V1Y1R5BtrH08wwbV7TeWCaTCjP6SDhyWi78/3ZaHcV+q13pr9eB16uPG+LgGms\n5t6udYw8GTqua1UhJcZQifD9dWDgLGLUTu1PE0ctaCHVNKRH0Ny6cWq5roSTzDB0gbI2jFIlZpJm\nDA0axWZrQ/dmHfhqmmzW1G4e0WlmesnfdiNAX0bei4XnfCjk7maJ4GKPiGrnpHNKRrXdsV+ctsYw\nSu1GIdVVL1kDBkPhIUsMyzrwrhBOMovBHSQZHELdEMiHSMsW1hgGCfzPC8/50LD2upGhzdQCSIwB\nA4UIv6yEpwNLZg1nud0U1B86Zw5ZTn5uuCoD1tyVn+d3VMnvS759LoTfPkl2W0Ym9FsRd8fqfUg3\nEc3ku1h7vpkmZM7u2NG9XVdclMLz0XHt+SkTeBERERF/ZETyKCIiIiIiIiLiSPzaWVCH1CvWGFV0\n+G1RYNHsdB/am4RMNxNj5/jWsKw8Jweyhg6dCw6rH45R0HwuGVq/l/t8XxWU5e4CVBeLSjBGi9zr\nIEyNYZq7hiSoN/cZRFg1ypNpZqhqmKTwZJbsFPmyMrCulK6sAyQGTpsxa41mGK0bAq70gRAEMYas\n53q7xFMpcJI75mVgUQsnnQLyuskMmzdFziDC0mtG0bwWnmZKJnkEI4DRNptXATFCJRa8ME4MFVBJ\n4KqwnAwMpdfC6F8mDufsjXZNrMEa1HZvAecDizMacp5Zw2z8YQuZh7LV7oJp2boerHz/eBk4VTL2\noSUyqj3lSFc1uf/+32pnuhIZnldrJUoSqwq1mi0ZP0sNIRHWtVD4Ldn1vz9xDBOLtZYvB5bX68C8\nDFwVnrY+a41pVG065r4Y3VwfVpXnRQBBc5KG2e4a32aQFV74+5VaNG61UQoROZiRh4Ef54GzYc3j\ngdudt36rOGrJ79ZKb+VlR7G6X5w+zy0vV57SBy5L2aiX6iAEL9jmuAIME8vQwb9dVIySrbVel2Qo\nvJBQ88wmrOvbrRRBx5PFkDjLqYOLMnBdCuOsIY467wsBcstGObUpqPOwOXOX5eTngkUVeFvInfl5\nhVerxadD+97kW6ugvY/S81Mk/PZJstsyMlv0KRDbsXos6da1ixw2BHF3D1FiDcuajTLpWNvRT5HA\ni4iIiPijI5JHERERERERERH3wK+dBXVIvaIFuLAJnp/Xmssw3ft93c3E2Ee3OHsbMbB/rioI06S/\nMH+sguZzydB6yH2qcif0Wr48tE3eRwU1SgyVF7KePu/D2guCIbfmRrG0zRxRgsQwzgzj5rXQjC8R\nWNfbnc5Dp2qhuYdxwk4hG7Ro/WLpAVV6DBybLKS+e2uJp4D2QVEr+brIDNOm2qV30JCmxnDZFNi9\nF5Yh4NZKkqm1kiomjDGMkrbI6Zk0FmOZNVTeUIdAXmnuz0nmGGWOzO0SsxslRi00EU1cl8LZwHJR\nBlIDk/WHJRsfqusbpebg2nGouJ47Q+kPH7MWoaxkZ5f7Idsy+HV2ph8z/64awrH0wjC1NwiVFqq0\nMYxSmIpgG2vF3NnNdT8ZOpwRlt7ypsn2EhG+njiWtZIofX19VQlp7ZnkjsTAedbfRvp8CNRiOet0\nilrPeaoDGXl5qnljAD8vPI+Hmg3WqvKqIEhQ9U9LHIVGeRDE8vOyZuAsA2fIHJvitDGGp0PHf1xW\nrKpAmrSkFDin91t6YegMJ5nhTSFqc4nlbO/Z0pJJZe1V9RUCWXK4yFz6QBXgL1PHolJCb5LZhkSw\nFL7JPgpwmju+GlvqhqAzbAvq75sjt49fY83/PeN1EfDCUfl5dUe59lDyTTPw/GZTwLFKT/j0CL99\nVdwxw6fPirgdq8eq7PbtIle1MMt237OqhUFie63ybru2T43Ai4iIiPijI5JHEREREREREREPwK+V\nBXVIvaIFON3BrfZbwlm6LRTUQfBN5kxfQaTFKFVbsNuKA+25Wnuk2gcmo3Tz+vsoaD6XDK1j7rPN\nEVlU4UaB67oSLor6wSql91FBzTLLYY3Jbl7JvBJ+WXqKEJA8QTCEwVbR07WZ20ctwrfjhFFi+I+L\nCi9qTxUCfDWyzC0sa3ixrJkklnFTWPUCE2c4Hzquy8B1bXaK+H1FbtBLaMm9y1KL3sNEyaBFESgF\nXi5rlpWwDlroWtaQGkvpoQhCWQTWtZAZqBrl0jjVgvnAGc1jyQyFDzzJLePUECphmmqGSpeYdQZe\nr3XndpeoW3lh7AO5szweGF4sa36Yw+OhKpLet8j80Eysp0PHVdn/uUNFcsHweGgOZq2tqsAo3RYU\nW9UkbBUDN3JRPtDO9PvMv2UtSuY142xZbsm+FkGEZS1UfktGWjRn5zRPdq577eF8kHDZrA+tRd8s\nk82621p7tcdee6E2hsdOx9F1GZgfKPS6RhHUVdddFIHCw0nW3+8GgyA8GSYUXjOCUitcV15zzAQG\nmaEWw3Wp+XlFAItwmjsmiaUI2gbXlRK000znn6AqtOk0YVEG5nUgs3qscWI2ysd3a48XLTjvX//O\n/Tkt/H936RGz21awfR56r+P2ohROBkroLUthFQLDFMapYWCTzdoCEJAN8dV2cXfOHJPZA/2Wk7/m\nmv97RRAoajk6eyhpyIMzkQeRdiKq+CsCvedsCcj9fK4Wn5pp7j5xfygjs+9zLbpj9RiVXZ9dZJ8w\ntZ0ffVZ5x15bRERERMRvj0geRURERERERET8znCbeuXP04RJaviPy4p/f6mFGRG1edovXvUhMYY0\nNXdamhljeDRwTHyg9gYD+KaYc5tS6HPbUf1QtAWuWm4vcL1PzstD1V6t1dSbIjDYKQ6pSmZZBeZe\nqIPaZ4kxDKwSm7W35NYzTJW46drM7Y+3INtVr0yhAAAgAElEQVQx+2SUsK7DpkCfJo7zTMf3JHXM\nq8BFuS2sfn2W8myU8P28Yn1ZUcn23ibOMB7eHG9dFdQsg7NUVUDvikAtQi1QAePcEkq4rmBeeR7n\njsILWcMWzEVtsEQE59o2U2J2IML5QPNapgPLP65qksSQO3izUlu7xwPDRQk/LWrKIAw7bVwHoQ5C\n5QMDZ/hpqYVxAS5L4dHAvneR+aGZWKd5gpfQu3YMnblBZNRBVWGpgV/WgVoCqVWibZwqCQjbor/a\ni+k4+3Hhb81FcZj3Io/uO/+8CKs6kDRjoGjymtpjXZfCuiEEnTGYxi6u9MLfrz3nA895bu+0QWvX\n3TMR5pWuoyIwrwKzVDO/2t37k8xyWfb3ozE6FxaVWkQGEVW3mf6MPFByZ9HYRebOsg5eLRyDju3W\nykpE+GGh5FGeGL5s1EGnuVrytbZ0Kx82FmRtJpY1hmFqmWRusxnikD2eNdvr34cFMmcZNRZ/y1o2\nbWUMm+fhq5W26cAFlrVewyQ3jMXwZNhfCmlVGcNOQX2WWd6tKy5Ljs7s2c8C/Bhr/u8RqiBtrEaP\nXHOcgXeF5+vx/ctVr9eqiJllt5Mo+/lc8OtkzP3a2B9Jh3Irb/tcd6weQ571Zdz1DdXu3/qs8o65\ntoiIiIiI3x6RPIqIiIiIiIiI+J3iNvXK81HCq0yLLPvB8ofQFkZOsuMtzTJr+NMkubOI9TnuqH4f\ntAWuuzKJPkTOSzuOZtmW2JvXwrL2B4m9v8wS3r4qN2Nka3klzL3gg15bLWo3NXAGjOaXXNcBrKVe\nex4PXFNU3h1v6zpwlm/Jq7PM8D/mAR+ErzvjzRqYZpZp1oaBB+oAT5qCdWIMJ/lxRdYdFZTAu1I4\nH1i+niQEcfzbu4pZYimlIQCMoQ5QNQRte46BtSx9wGGYJpalF9opaND3vlt7Vl7VIv8yTagbtZQW\nmZVUmSbgcY3tnypVxonlyQDerIU8YScfpN25/b5F5vfJxDpkh7hPZFS+yZVJDZU1PBlaLgpVVZU+\ncF0ZrAjnQ7tRiQydZlyVgTtzUV6shC/H8uC15L7z77IIINv3tuSPEqqCR3oztxKrFm5tlsujwVYF\ndxusUXK3tYH6ZanZYT6EnQyXRa2kyEm+SwQPnGFRN/libDPyRu5mFl6L3EHltwTRu0pY1Z48MTvt\nfFUIGM0nWlWBVaaKHtOMj4tCCUaLwYsW5+vGvq/wskOwdEnHRaV5Y922a6+/i66N6ijVLLLzYXLD\nMgu2/TRODdeV/rsOSuLehsBuQd0Aixrmddghe7vX2s3sOcvNjSzAj7nm/56w9vB84PhxfjxhnTRK\nldmeNeNdm1OCCItGEeOOIFH2FTH7hN+ngH0l6aHcyi66c2g/8/AYZep+xt2hnLr9LLR9q7xD1/ap\nEXgRERERf3REUj8iIiIiIiIi4hPELLP4WwLs+6CFEbuxNBs6Q1HrDvIuqiAUdSC3WtD9een5YVHz\n06LmovCEvfO2O6pXXq1p9osOiTXkjQ3Rz0uP3PO6/2hoC1zHFO5hm/Oy3+7HQkSts76/rplXWuRt\nyZHrSvj+uubVardfnLX8eZqQGCjqsLFXW3nwATBQBiE3hq/GlirAk9wycGpdtapUyXNRhKao7BhY\ntXVb10qUfDvZ7vb+Zel5PrT8aZpQBjbF5hZ1EAqvmUPnA8ubJuRolBhSc/P9fWhVUKtaVVip3cvg\naOyngjRZPSEwS5XcWNXb4w+a92CUkDrJVGXVZiy9XnvGieGrseO0IUsl6HsTa8id4e3Kc1mrQuLJ\n0PF0mPBk6JhmlqtSqCXcmEftzu0WSt5pUfq+eDywJIYbc38f+5lYh9YOzfqxrOrAug5cN4qRdj0w\nxnA2cDwfuU1B2Bh4VwjjBL4aKwEWOC4XpSWrH4KHzD8BEgO+vd/mtetSiaOkh5CpRRUqQ6tt4Bvl\nHui4PWbMbq45CK9WNRdN9lI7h88aC7wf5p536+0cHqdWVamNAeW8VkXPaU8WXgvB8GjoqINepwFq\nlIhqrzWIsGpUV5XofBTY3Ffbz48Glke5wRlVTVVNcfmrseNRJ8NsktlNm657it3SY6AZguYWAZzl\njkV9uB3bu7UNUVUHIchh9VX3HN2C+ut1YJopSX7bnFHCK3BVhp0cuY+95v+eEGS7Pty13rSogjDo\nEJ3HPsMuC79RxLQkyl3zrF1X90mUTwWzzhxqcZ6rxemhe2/nUF/mYd/xbnx+778P5dRNUrtRmPZ9\n7tC17ZOGERERERG/LeKqHBERERERERHxCUKLYbpT/xjsF0ZaS7NvpwmzVIuxmjkjTBOaIrswr7mT\nbLjPjuqHFrv/SLjqsXy5C21eyn3xPsSekhqOx0MNmLcIyzLgjCoYng4tJwOLoLvsx5nhfGAYO8tV\nFRDRwOzQqBImmeaUzBL4eqwZQCLCJNEi8PNxyuNhwldjp7uYZdeWsS08Z85uCquzzDJK7i52tTjN\nLYhQBeGkY5+zqAKnmSFxhhQlNozA+dBtvHfqoO0fgKGzDJ3aao2cZZqqwmo2sExSy/NJQhAYOC3Q\nDZNdxUeNqhnaonuL1ror3Q/UYWuntf+3hxSZjyWQh87cUDYdWjvOMsNpZkitFiBTd/MerDEMEssX\nI8d/e5Tz1UjJDzg+qL0KmiH10OL6Q+bfLLOkVpUlALk1lEGt6vqII9Cx6xycNYVZaf7fjttjx6yI\n8KZQQvYsdzttZIzh+cgxTTWHqJ3DLVlS1NqPqeNW1WebNfV44DDAdaXkZS1KmL1eeV6tPD9e16yr\nQBmEBJjlWxXcTl8IfDlRa8kvxwnTjk1mEOGy8PyyrHm59CxqVer1tUdr/9eiCsKo8xyzxpAnhwmd\nYYf4Os2V6EoNtxIEqzowaVSysCV+Mmd5OnRkFl4vdTPFy2XNq1XNdekpfKBoPjtNdnPjPuaa/3tD\ne9vn+f0I60ftvLnHM+zv12p32eIuEgV0Db2uwg0S5VNBqyTttmubW5k7VSB1778KSiRXXnrX977j\n3Thn59/t2nHIArdL4N3Vup8qgRcRERHxR8en93SMiIiIiIiIiIgA4CyFxMq91QNdtJZmX44Tvh4n\nfDFyrDybsOm7yAYfwme7o/qhOLZI3kXahIjfF+9D7LUEQwhqUZVby9OR49HQMclU2VB6IbeGv04d\nidVdxicDy7OR00q5gavCN6Sk4dnY8V9OM/63Rzlfj7WwbI2SNi1ay65HOTzJ1ZZxP5+pLazahpTK\n7lAEtPACJ6nlUW6p/HburL2QOss0NUwzQ2aMEiMoUeCsWlbVQciM4YuRxVlL4VVhUwchc7CshEnS\nWihp7gbCDcVHq7DZL7q3c2PQY9vWfm4fDy0y30Ygz1LDt1NVQx0iHPbXjq8mKf96kgIGH26uSy0h\nNXBmE1J/OnDMy8BVuVv0vQ3trvmH3vdD5l/uLCe529iejTLDqiFS+1CLkKLkYWu52O6ob8ftOLVH\nkf9vi4DhcIG2Vft8PU0YOs2K8aKKrqdDp3P2FmvH0geWZaDygRcrz6L0eB+U3Fl41kHJUgGWXlh5\nuC629x5EWJSB768qXjakSpcIateeygferD0/LvxGPWWt4Sy3FD7w8ypwWYYNgV2H3XnQPsfO9+bS\n41tIia6yyQs8GziejdyNgnp7vsILmYF/PdlaZ7bEjzQWfOtamOWWaaKZRwHNPJpXgUFjyWfd7tj8\nmGv+7w0Dp22rhIZjcAdhPXA6Jlp12H3t/t4Wu8+wQyQKbPs87SFRPiX0KUnb/LR2M4aItq8D/jRx\nt67vdylTW1K2DoIz5sac7KIl8FbNZoRDuO17akRERETEb4uYeRQRERERERER8YnCGHic6Q/5RRWw\nja98iyrIxn7n2Kyh+xZqvruqe8O/b0Nb9H2fwPtPGW0Ox0M+d6/3d/IfjkFL7D0a7CrURqnl29Ty\nn1cVVrQIboyGoHd3CT8eyDbvxICz8GSYICKcD5yOxeTmWHyfwupprsWm0rdZPIfHbtey6vk4QdDg\n75UX6qBE7DSxPD/Xa/5xXvP93OMs5NYh4pmmBmM1C+nxwCAC61pIHJjm3LPcsK6F1MDjgWNd3czm\n2dppqXppmunray8NsXCAsLmjLR6C27LV7ovrSngydFizbds2m2SaGCb7JGBD/r1YBFV53YGu8sQa\nHnTfD51/qiByfL/wOsYaFc3+sWoRCDDJDc+audRed+7szrhNrFCHw2M/iHBReFKrBMXLVY1B7dPG\nqbnRlmeDhKIOPBs6Km/5ZuJ4vQ78UAUui0CWmM3nMytclIIE4dHQYRu12zrAMmgWzCS1jWRKuFx7\nFmVgmjsGzrL2wrvLmmFqsRZCgBxILaTO8OO8ZpSq2nCYGH5eeBJnbuRZGWN4NkqofM3rlWddK8mg\nc9VsnmPtsbpzSfNRLCeZ3WTudZ+D1hiy5vk4y7afD6Jkz6oWRPRZOkn12saJEsMtlrXaD75cqXVn\nu55mjht5TGUQXq48T4duZ2x+rDX/94iJU/Vaa1/5aOA4y+2t60NRa3/d9xmWud0MI9iSKGcH+nyS\nWkzzvk8V7UaPQ3NAN38c/13wtuMB5Inh1cpzOnA35mTfsZ4OdY3Pmu+N7/s9NSIiIiLi4yKSRxER\nERERERERnzCMUXuxRwPd0b7sBEnPOlZBx+AhZMOLIvDVHfkRfZ97n2L3p46H7qu97+fexyqpS+wF\nwBnDJLGqpDmAVgFxIsKiEhZ1IAQdj7eNxfctrBpj+HKckFrDDwtVTmSJ3RSo2t3lAwt/miQUzS54\nA8xytwnw3ilaGcO3s4yvJoGf5p6LMnBZaAJLGoSTprgdRBoSAN6tA+cDVZPMUsNfZgnOWt4Yr8qm\nTl8MrGHRZLysvTBFj/V25XHO8Gqt/T2whnG2JSDakPNDbfFbo0sEdtv2NjwdOn5Z1FTB3kpa9ylP\nHnLfD51/zhj+23mGoeKf81pVn5VQWUiNoRahapR4p0PDee44G7id627JoPbag0AlwqryJG73/ksf\n+O6yYumFp0OHIBRBSCws68B1pRsHTveKt9YaLtaeJ0P3/7P3LjGSLet+1++LWGvls57du/fr7H3O\nufcc1bHBiOcAPDACBGKAxGuGZWGBLggzQNdIDJAxQh4hjzAyYNkCJiAhIWBiS4iBLRADy5IN9sUu\nn3vPufucvXfv3V1dXY98rUfExyDWysrKyszKrKqurqqOn9Tq7qxca8WKFRGZ9f3j/30c56Fe1+c9\nS1EH6lWVQRHqUm1nwse95NLxbyeOUalMXEhPdzTxfNYRfmMn5VdnFbnCoHScFwqifAR0W4bCKW1z\nuT0TF8QUQwg4LzPSiAifbwUX4rgKDqUmhd4i0bEhuLns1EW36HPwh/1QF8kj03Y17sbt7OJcy5wP\nnpBeclP3y6zb8L7W/IeIkSDYj2fWQCOydH2YTV12MlPDaB06SXAYDQrP9tzmlEXPvLne9hKx/jGx\nag5s+l3wuvPtZobObkru1xPdKoUvttI7a1skEolE7pcoHkUikUgkEok8Ae7CPXATsQEJBdG3s83C\n/w8l2P0+6CahdtQmbpubBLhu6+hpaAKY68Z2jITUb/00OApUdaXL7C4CqyLCi27C847lJHe8GjtG\npUdF6CXw462E3VYIUH07rK6cq2OFwYL+ssbwxbbh83rXetcK3wwrzspQ8+UHPcMn3ZR+ZvhmEM47\n75DYbxlejd2lHde9zHA+dGDAq+ftBM6LEKDezy6OHTrlfOjoJELXCv3u4n58KEHmmwiBIsLzdkgt\nNVrhoFzkPLnJfd9m/hlj+AefZbzoWv72mwknE+VtoeSV0kngo66hkxp6iaGXCoUL7d7LhOPch/uT\nUBvMUjtjTKjtU1QemwgqgmgQfbqpsNcJv7LvmiDkVLWLwwJ5Le7M7tgXQm2m0iuOC6fMiy5TEfPt\nxIG5qFnXCCbHE8e3I09ilNyFeiXWwJtcGflQl0hRTnJl7DypgVdj5WftjH43iGWzBDejo3Lwk930\nyjyYxYjQTQWV4AQ52E0vOYAavCrntfjVMvDdyNFNhO1aZF30ObirutRFca3zQZXRhpsqRnUNtYb7\nWvMfKs/bjTN08bNvmBfwNv0M66eG0yLUjVtHuIYLAfKpcJdO0lXna2pRbfJM5Y7bFolEIpH7IYpH\nkUgkEolEIhHgZmJDZoRxpVd2817HQwl2vw+2M8NJXm3U1zcJcN1VqqQm8NlJhMGaAdDGJbNOAPQu\nA6shMJ+w3774Ncerclp4vhu5UJ+kcDhlKiZBqI1yWix/Jl6DQ2Y7s3zWT/GqvBk79tsGGhdTJmwt\n2EHd1PqYigd18LqThJpHxxPPVhbGxW4r7NBvMnslRsDAsApB+0Wte0hB5pvO614Wapxcl85qlpve\n923nX5NmLTXtaapE53Van6aTCokIHRtS8gkXKc+sCaLqLFagXReoF4HP6nRRXZSRu1zD5HnbXEoN\nmZhQe+Qk92xloeZYU6DecVkkaUTM3IXUXVly4cx7O3E4hNOJp5vCaQ69JJxfVTkuPD0vKMpZEeqc\n7LUSvAaH0teDin/ko8UR4bxSsjr73aJ50FB6pWvDNdpWGM59rjQ1h0ZVqMvVssLzumbLeamc5NVS\nAeg2roymZpKvHVu5vzh21hl4abzMHAf3t+Y/VK5Lg7ZMwNv0M8xIEDxH6xQT47LLKbIZN32mkUgk\nEnl8RPEoEolEIpFIJALcTGzo2M2L1j+kYPf7INS0uZzGZxU3DXDdVaqkJvAZdnW7tX6B8F7pZ5bS\nXR8AfVeBVZ1xG1gjU7fGVmb51VnJsAqB9v26PkY3NVfSyzU4DbvaZ///aS8UHG9oRLBFt7Go1sdW\nJnz/1tG3whf9kLLLqzIYuUvzsPIhUN5Pg3vl2Zy74yEFmW8qBL7oWM4KJUnM2unubnrfdzX/dluh\nzdc5Ut5M3DTlWe700jhq8LW7ZVB6vh9XlA52MsO0OEvN5dSQPtTIIqSx+7hrpv3xzcBfubdGxPzq\nrMQpUwdTYoTvR45eChOv7KaGUelIrUFVOS0V5xWnQjexvPUVY+/YtUkdrLe8LRzDKghYs0HiUGdM\nKdTwi9My1JcRQo0v5ZIQs5UEZ50Ax3mo0dSp00867/nlacVp6UMdtgR2UosSnFbNfYxdcEN82rUL\ng9U3cWUYgZPC4zwYw3QdgcvOwNl0fUbkkov3vtb8h8xNBLxFM6txnk3cRe2iThJqFxkJ63lZO+82\ncTk9FZrNEuOZ/p115t0ld50qLxKJRCIPkygeRSKRSCQSiUSAm4kNwbGxmXj0kILd74ubpvHZhLty\n9MwGPrt1TYlV5yzrFGNOWSsA+i4Cq01KndkC97PX22pZJi7UQno19rzomIXp5SAEwLuJTK+37Jms\nI4LN1vrwqowKz07bMnFgJfRrxwr51O1wua7NfDH4hxZkvqkQuNtKcOpXjoHZoHHhdSpc3yQoehfz\nb51x62dSns2PIwja0GkFyaDCGiG1hjdjx3YW0iie5h6PD/V/5LIYsZVZtur/V14xEs79ZlLRW1Ib\nS0TopIbPU6bik/OhvtJuZnnWMRSV0k2DYDRyinols6GmUTcJ43HshMp5EmtwqrQTYVQGB1STuq50\nIbVccDkpTmC77qdRpVOX1HwqQoBnbRucfAl8Paz4+rzCAbstMx3vQ6ecDapL6QybmkNHE39J2L0p\nqsrrsUe4EI7CMw1rRyNejSoovOdFJ5ne13yez/tY8x8Dmwh4s59hs84zW7vumi4elMppEdIXbqXC\nj7YslcoH5YhZtlkCuNaZd1vuOlVeJBKJRB4WT/MbSSQSiUQikUhkY5p0R5vgNKRDKtc87qEFu98X\nTcqXjhXyyl/pv9IreeXpWFm6i/46tjNzKXXSOgRh7+qvCM/bhkRgKxWsLB8nTeBzK5WNAqDN+a8b\nR+sGVo8mqwvc77fC9RRwdVCycWa0Z55J5UOKrmaMr3omjZiw7lw4mTi2WpaPOgmfdg3Oe16NKiaV\n5+3EUVZB1NqbEQ6MEQa1WPsQg8yb9sHserBsDKgqbyaObwYVw1p0yIzhWdtyXiq/Oq94PXaorj/W\n72r+XTduB3UdudlxNHtfxyXkLgicjeBWeGVSC7R7bcu4gqPJ6vtL6vShAKNS2Z13p6lymju+H1V8\nN3K8mTggiDS9VPi4l5DYcC8Tp+xmwSE0rkLw/XLnwXYtPh1NKk4nHvFwWnqGladwnrzynBfKViq0\nU4M1cikdZmKElpWpeLvo3iwwdrCVGZ51E77YSi+lhUyM0EqCW/DVzPMPdZY8foPxsIyjiccR3BWG\n4CJ7PQ4ip9RinYhQKrwceX7vtMQQ1pf5WXkfa/5To/kMUw3jJHfBhTkvTs+Op++Gju3M8FHH8uVW\nwnYahCen4TzbqfDlVnCNPpU+bjZLjJ1eWksamrnSOPM2WSsjYf18mzu+HVZ8Paz4dlhxkrs7WWOe\nctsikcjTITqPIpFIJBKJRCLAzV0DP95O+H7sP/gd1ZvyrlO+3KWjZ7a+gfeO0xJyd7EDvNnNnVlh\nNzV0k812OC+qnzDftnV3i/s6pdeqdGLzdYjOnE4dPc/aln4aXC0C7LbCtdZ5Jpu4CwoPLzqGNxMX\ndtMbw4tuOOaTuqbS1wNHL/HT2i6pEc5LT8vKg905f1OHxaIxkMjlekHzbpWkHn/XpStbxF3Mv+vq\nfpyXHo8sdNgc557Kw/wwtSYIOFvUDqM01P+ZdfUsQjX0adteuJumbo0ZN0JiQruHlXJeutr9ZlCU\nTj2XM2vILLRq4Usk9IuqMiyViQcUnncsiJJiGBaeIxFSgY/r5zCulEGhjCqHNULXuEs1gpqaTfPp\nGEuvFHVdpmadWUbjNpo9hzFh/u62bu4+ataR7Uw4b9y1PgjO82FZre9lXItWpdeQdnCOmObreubT\nrp2XnpOBp50ImTXT9wxKT+6oa8EJbSthzCbCca581PlwHDGLNkvMOjWbMdaxQiuRO3PmPXXWcXMd\nF7CXPsy2PdTvCJFI5PERxaNIJBKJRCKRCHBzscEaw6ddiYWTb8i7DHDdZaqk+cDnoPSclZ68UroW\ntjuWfmpuXFth/vyK4pXpbvF1A6tntdtjnes1dYhOJo7zwtHPgsNgNzN8Wdch2vQe1i0i/qwtvJ6E\nHfGtuei4iPC8m7BfO0Zejx3PWgZjhG69c/6hBplvU0h9fgz8elBRuCBKztY1mec26cpuO/9WCQLd\nVNhZMG6bdHaL9E1BLjkDdluGSj3nhWentXxuVQqJwLN6Dge3xtXUjW0TUr41mwSOveImyl5L6M0I\nHqUXdlo2BOorj1E4yUOqto6FtjXsZJbCKc87BgGedSyT0vN335ZsZ8Fx1MuE0xJ69XXnawQlRhhV\nyp7q9N6cC7XDUiMcV9en3kzN5ZSOaX3O26ypzTrSt8Lvn1Ug8Kxr62dHnbYuCBdda+im4NRwXovO\nX/SXh1o+FFFjEctq8mylQfSZD4bvtQxfnVW8LWArCSLexIOVICgLYWycFm7a74PC8az9YTic5zdL\nLBKMmxVxUIW+T4xnvyVYEzfyLGNV6lu4qLOWO+FIlZ+q3tt323XbdpNNFZFIJLKIKB5FIpFIJBKJ\nRKbcxjUQd1Q/PG4TyF/GReDz3excbs7/og6sftbb7FeW0RrB5vnr7XcSVHXjay1i3bnwt99UOOXa\nGkl77YSqdnU9a1t0Jsj+ULntemAkFHjfSg3PO+sFOJt0Ze8jaLwsIO51cVsGKwTOtg330SB1Sr8j\nQnqi7cxemcNF5XnRsXzatZwWodbQabE4dWMvM5wP3TSBfWqEwnvyKrR1JzW8rTyqoWyPEaFtDZkB\n52GnFRx7RqDU4HTyQNcG0ev7kSMxIcC/U9deygSypE43ZmDilaOJm9ZysgKD0rOdWUpfC6rTYPiV\n8kELaVI6btfr0maV+K7SrCNeg/OqkfOMCP0M+lxtlKnT/m0/8Pn5PljllDgrPH//xJHZ4Aid/Rwa\nlsonvTCu/95xQYnwohPGassKmQ0Pp5cYdluGwsNRruzmjr320w93zW6WWCYYN0xFhcrz89OSg90s\nigpLuC71bUNioPL36+Zat213XQMuEol8uDz9T9NIJBKJRCKRyNrcVmz4kHdUP1Q+NGHPA+uESebT\n+uCVbiI3dk7Ns2oueNUrqa9W0bgz+s6zuyAd1kPlNuvBug6yS9e7g3Rlm3Bd6qC3ucervxIQH7vl\nAmfLQumuOtE+6iQ47+klYUd5M4e3EiHLEn64nSC16PZ2UjFakLqxSfc1Kj3HedggUNW1vcSEn3/W\nt5y+9TgUg1CpkgmU/iJYGTQhJQG2slDzp5sKZ7kydsqLVsKkUrbSUKPqk57FabhWUn+mhFRzjlSE\n3CtHE3jW8vRTQy+5EFXXnYppvdN+u/7/bWdJs44MSs9+y3BS6LT9y2hS/DVr7X2Nw4fOdU6Js1Ix\ndVrKV+NQ662ZL6PKMyiVVyNHr2UpK2VQKv0spF4svbLfNhdONgnP4evhhyEezW6WOM7XExU6ieG8\njKLCMtZJfTtLYri3jQubtu19bqqIRCJPh6f/aRqJRCKRSCQS2YgPTWz4UPhQhL3rQirL0vqoebe1\nAmbdKSe5Y1Ipg8Kz11lvPlmBs9zz5Yp0WE+JTR1kwJ2kK1uXdVIHPWtbvjoreVW7JZrxtErgVIRn\nneDAuXL/Imy37FQggSDod2bqHBkR3Jw4qRpqJo3r+kE7bYObeCqgQjkvlW6qU+fOZ11LcV5xWjhS\na0gScK6+niqpQD+1dDKDAzp1OweVp1P3hRDG607LsFeLKE0bBBiVyneF5+OeDS4mr7QTQzcRvhk5\n+instwydRBiU642Fxm1U+pDq8jY0T3RcKak1PG9f9KGRy47ByocUmx0r7GShNs99jcPHwCqnRJPC\nsZlDszWwVJXXY48DvAgdK3SS8Hxng+HFnJMtMcKwCvWnHuJ3lWVOxZtsXGjWkvl+vI5ELgQPYK32\n3GW7HzIPeePCQ25bJBJ5unwYv3lEIuSG+hQAACAASURBVJFIJBKJRDbmQxEbIk+LbiKcLwk2L0vr\nU3mln8o7qRWwyJ1S+HD987quz3Z6sXN+6Xm4SCP2IbCug2zRcTe+5gbB0XVSB5la7BmUnuMcnrXD\nHS0L71a1+22/ZXg19lecLvPHLatV1kmEVmWofBCLjiYepyH1YcN+23A88SjCi45Q1GN+KzP0M8NH\nHUNiYCsxfD8JvaqqtARebCXstsLxpYNORxiVQa7qpkKpiiqgTAP6AHtty7b3/OrcM/FKmkBehZpJ\n3cRO+6dtPblTXo09z9vCaaFrBS6aXvBe2c5uFyht1pEmbZ6IsNe27NQ7/yfu4me9JNQLdBqOg9un\nzXsqeGWlU2I+heNsDay3eRCOChfE8wYBxqXSy8KLjZPtJPfs1WMoER5cwPw6p+JNNi40vboqFeYi\nwpiGX5yWoR1L2tNJhFSUb0ah3YkxbGWh/pyIvNMNF++Lh7xx4SG3LRKJPF2ieBSJRCKRSCQSiUSe\nDNuZ4SSvFgZYlqX1cQr99CK4eVe1Apa5Uxph5FnHohPHoArtWhZ8a0SC3dbjSVl3W256pzc5btOg\n7iapg/ZbQcQ5Kzx7rSBCdawwqC4nLgxCTxCORIJT6TgPzs+6rAtbtTBxXfpQlSAIHeeebwYVlQZX\nz+y1vMKLjmU7E4aF59uxZ1R53k4cn/USPn3e4hdnFaeFp58GN02pQcTppYbSXRw/KpWvJo6ODSnp\nvFe2uhf18GY5K5ROClt1UF9V6SSGTgKnuWPilNPcMXbQtmDE0k2EfEWqv6ZPtpIwb3vp7Z0QzToy\nfxojwlZm2VrUBufpZ6sFwg+NgYPuiue2KIWjFTgrHKNS2UqFX+Xu0pqdGGHilN7MMakRxpWyoyFV\nYi8RXo6qS87p9+mSWcepuOnGBa9K4TxHE8/xxGNMqJl23fivvNJL4G2uVN7zeT+98h4rcFop3wwr\nzgvPs46lk4axPSiV08JNhe4kMXe64eJ98z42LmxyjYfatkgk8nSJ4lEkEolEIpFIJBJ5MhgJwbOx\n00sBx8p7vh9XqDINJraN0EqEbnI12HYXtQKWuVOa0KGI8LxtOck954XntSovuhe/ojUiQTc17H9A\nwhFcdZDN1qhqHB+dJOyAb57PTdKV3SSou0nqoCAEWV6NHW/Gjt22pZ8ZTosKgEohdxeOoybwKhLS\n3u3VdYpOc08nNajqtelDTX38XsswLA2l14VOmeb47bZhq6W8rWsQtRLBGsNPdlK+GzlGZUHhlJaB\nnZahY4XeTBC+nSrPO5aPOxYFvhs5jEhwH83gVWuxAM5zT+FDzZrXY8dHHcNOZsmsYbtlGQ0duYdf\nnlX8aMuG+ksrag55r7QSs9CJdROadWRQ+alw1dSMyh0oiiB1sD7U6+nWfTo7Dj+UVF/LmDhWin6L\nguGJEY7Gjm5q6FnBaUXKnEC64FxiYJA7hpVyIkKhyqfdi7Wi9MJJ7t+LS+Y6p+Ls+lZ45c3E8UU/\nWThOZsVuEcEjYMKcH1bKeRmE3GVuVqdQeHAaak3NExy6wa1YenAIw1JpzHyJERKYugNfdMydbbh4\nCNznxoX7usaH9e0hEoncNVE8ikQikUgkEolEIk+K523Dy5GbOnaOc8+rUUXhIEsuXCWnpUdK+KIv\nqOqVQNttagWscqc0zpPEyEU6rJbhZOJw3oMIhuA06dciwV3UcXlMNM4PWz+/xoET+iy8Z34H/E3S\nla2Tfg4uu9EW1iNagYjwcTfB+eDiGVVK2wqVg14Kn/dWCEEidBLDfsuuHZRthLdR5UmM0E7MQqfM\nLJXCZ92EViKIKqpB7Pi4Y0BTJpWSpeZSP82Kmy/qYLwQxvew8uzMPYtB4RgUnsKDMUE0OM2V512D\nU+Fo7Okkym5d62jilXYinOTKdiZkhmndptn+H1eezAi95G5FgedtQ+4MX51XlP7i2tYIUosZo8pz\nnAfX06e7wcHhvbKVGl6P3Z2mKHuM+EUqzwzLgtpjF+pvAXStoVAlmemnRT1mgf/vpKSfGp53LJkx\nU3EkrBVBpBXxvBzpvblkVn0WLKrB17JBrD4t/BWxa5HY3U2U44lirUznRV6vVbNuyUHpGZZKYpTX\nTtjJDN0FEcHjPAhHRkLNr3YS2rMzV0MqMXKpRtVdbLh4CKxKfbuM+/p8fshti0QiT5coHkUikUgk\nEolEIpEnhYjwadfyeuz4/fMKT9jhntVpv5q0Xb0k1BrKPbwaO150LgcTb1MrYJU7pXGeXKpnU9fH\n6dWuknnuoo7LY8KI0E2ErwYOI9CyV/tydgf8N0PHD/vLRZhFbJJ+Di7caMZAepPg6EwduU+7lsF3\nSuVlZZuX1TVaRSO8jTeoj+G9ToVKVeWz3kWo4NNewldnFYUPzqHGQTMrbp7lTAXR3ZZhVCmzmquq\n8u0o1LBpai8djSoyay4cVwYmXjmaOJ61DFWuVApl7RYUET7vGQZlcPKoBtFrNxN+upNizd3urxcR\nPutafnFa8Xbi6GTm0pwuvaIetlNDPxVeT5S9lqebCN+P/Z2mKHusNN0166xpxk/HCi0DowWp63RG\nHnrREb4eKhVBQApp1666cX55WpJ75Td3LE5DCreG2bWi8rDX4t5cMss+C5bV4IOQNm7iwpo/O04W\nid37LcPJ2HBa+Wl6ykbYeTtxiISxpqpk1tAywX10WjhKJ2TWTeegV63nrnCeO5opZSTUrtqa+wwy\nAt+PHIULT6xSEEq+2EofrYC0KvXtMu7r8/khty0SiTxdongUiUQikUgkEolEnhwiwdXzomvJnXKW\ne8SEVFO9xNBLL4L2qYRAcLODepab1gpYVdjaiNBNDZO51HpJXbdjO7v8/ruq4/IYkTpB2Cq0ft+m\nbJJ+rsEYYVQ6dm6QRnD2CBHheQZvSyWvPMbIQlfPJu6U2RRpZ0Wod7RTC5LXCVTdmfE1P+aNCP0s\npILcbl0viDqFL/pBEBlViqB8P3S8HrtpTSRrgij0m1vmimBb+uASaVI6DkqP1oLUXgu2M0sn2bx/\nbsKbXPnhdkI/Cy7ESi/Ej74Vep2LfhtXnrNC6HTsxm62x57qaxktA9+PKgqnVxxYg0qpnOe01EvC\nfeWV7ozw088su2VwwYy94rzSmalRV3nlaOwoFT7uJkEE8UpvgduiEVXOS1C9H5fMss+CZTX4mnY2\nnwXNOHk1dowrJbUyrQ/WpKLc7wjnZ1C44BhKjGAFvh05tjNDYkJ61t2W4WjiQhpGD7tteyn93KD0\nNF0/mXFYNnWmGgejqnKS+6koNapgK7NkwOuJR3m8zrplqW+XUXnu7fN507Z9yN8dIov50FOpRm5G\nFI8ikUgkEolEIpHIk2PWVdKy8KJ7NS3dLKkRRqVnr3X5F+ibehmuK2y93zK8GofUerNBoPk6MTdx\nnjwFmh3wn/WSaVqnZQJLqAllGVWKn0uttIpVAt8ymuuvqr+ziEWpg0RgP4MvtxLOipCarwnmXFfX\naJbZGihNgP55x/L92HFaOM5LWVoDpRlfszW1Fo202VSQi4KWjSA6KD1ta3hWj1evjtdDz3HuSWpB\nt5MJkyLURRoUsN3SKwLSuFJ2WrDXtmxnhl4inJee08Kxm9mN+uemzK4hn3SFzK4eh/3U0DUwKD2d\ndD0x6Kmk+lqEaqh5ZKoQwJ4nOLAs51XFdyPHJ7UDy2kYb40jKaRuFIyBjoLzIWmg9xrqGVnIDOy2\nLO1aHOrY5YJpUjtK++nN05JuwqLPAq/K6BrX4+xnQWqE74YlHihVrqTwHDuwNrgGuza4aU8Kj9fw\nvk+6F3MlOPY09KkIRpimn5td1+bb3bSnWW+cau0ivCwsGSO0EvOonXXXrXcNlYfE6L1+Pq/btg/1\nu0NkMYu+J3yIqVQjNyOKR5FIJBKJRCKRSOTJMe8q6STC4JpaAcYIg+Ki1sZtagVcF64REV507BVh\npPmd/SbOk6dE8/xEhGdty17LMCj80rRpEOrobBIMvk7gW0Y3NbgNxaNVqYPMTDq7TVlUAwXC+Pqi\nZ/l65CgdDKrgcmjG0mXh7WJ8LRvzTSrIJvi0SEDpW0FV2M7C6xcpuYSPe5a8UkZOUaAwwouWJVfl\neAL7bS6NcTEwLDydOiXcdmbZbtkrKfXeJbNryLrj8HhcgUAnXf86t6mt9pB5W4JXYTcz5AtS0zU8\nb1tejhxHE8dey4Zd8C3D+eAiPdduy/DdKKRg+0H/shhxXoRxBpAlYCUIpauwElLY3TQt6SYsaslg\nDdfj7JKvqnw79nQM7HWujv/EhM+T70YVQ6e8aBtKb9hrBUFpVkgLbicu9VEjqFmUxNbp6+r6ZMHZ\nGVxkXpXTuibS7POcFbqasz5mZ9066533Sssqeyn3+vm8bts+1O8Okass+57Q8CGlUo3cjCchHh0c\nHOwDfxr4l4FPgSPgLwN/6vDw8OWa5/gJ8D8A/wTwxw8PD/+7Je/7Q8B/BvwRoA+8BP4K8J8cHh6+\nut2dRCKRSCQSiUQikbtg3lXSTw2nhVv5C1Ba//K8Xf//NrUC1ilsPR+QPi893TQE++7DWfGQmX9+\nTU2o7RXHbFqj6qb7sRMR0lQeROqgRTVQGrZalu1SsS14NXR8P6p4M4b9tmU3M3zasyRzdYJWjXkR\n4aOO5VnbLHZK9SxSt+nXg1AjqZMYTmqhzVtlUijbiUGyENRMCC6Isxx22pfdRxOvZBrm7rR9d9Bn\n67LImXbdOCwVNs2geJvaag8Vr8rYBUdQcFn6pW69Jhj+7aCitMHFMZvaUwg1ej7vhXE5dmDl4lwT\np5QOMgsdaxY67OZp0sL1NhD5bsqiz4LxCjENghOoPyPiHuceVKmWpPD0qkGQEuFo4vhmULGdCrtt\nOx2PjaiwmwqplSt9ZAVGhceVdW0zBUdY7ypVnMK3w4rz8rLTJjj0lNfjitJBPw31rPqZedTOumvX\nu8xSZted5f217bH1d+Tdsep7wiyPWfCNvFsevXh0cHDQAf4q8DPgvwT+BvBT4D8E/pmDg4N/7PDw\n8O015/jjwH+xxrX+CPB/AN8D/zlBOPojwG8B/9zBwcE/fHh4OLj53UQikUgkEolEIpG7YN5VYkTo\nJrJyB3xzHNw+4L9JYesmIN2ywpdbSQz6cHNX0CbiwjoC3zyNM2cne/+pg2bTqs2/fl54xpXn61HF\neaFsJaH+V+XhecfiFV6OPN1Ep86jdcf8dU6pZ23DeSGUGgL0lSoJwlZqaRmhVKjymVpfIoy90vPK\nuFIKB4qG9iTC7Ei4zwRMNxmDHpDNy2/dqyh2H5zVQgY0LksTXJaVTlOuNVQ+CBOf9RO+6BmsCfWt\ndjKhHCuphb3WRTDcqzIoQ80OVcirMCe/3E6wZv0Rono/42nRZ8F1Y8vNiKZNCs/UypVxMq09VCnG\n1A6kbsK3wyAzvRp5MgPP256txNCvheFvBtWVa1qB44knSYR2YkiMYTzyYMErbLUNoxKcD2ko9zLh\ntFCORo7UQO7D+tJLDGel57TwdFPD1hrpAR9yHZbbOEPfNQ+5bZGHwbLvCcuYFXwjkYZHLx4B/wHw\nh4A/cXh4+OebFw8ODv4f4H8B/hTw28sOPjg4+C3gvwH+HPB36n8v4y8AE+APHx4eflW/9t8fHByc\n1u34Y8CfX3ZwJBKJRCKRSCQSuR8W/dp73Q745ri7CPjHwta346Y9v8lxmwh8DY0z5yGkDppPzaiq\nF2kQBU4KpWuFwsBR7nk58iFdV+l43k3ppUFMfTX27LVC++9C5DorPKk1dIywXe/Mb+5fVTiahHYU\nqiQSnHbD0jMulX4mWBGcD66V1AjfDB3dRNiqRbu7ZGXQ+gbnM8ASc8j1xz0hGpGoYeqynBN+RKCf\nCv167cu98lnnIhj+g57OzLEwHowEZ0UnCXMsMQmpwNBt1sZKw7N+1yz6LFj1vCuvdJOLmk2DMsyX\ntg2pVxtCDZOQiiqbuw8DpNay1Qrp5kSEXiqc5o6jseO7sad0SieBthGSxHCWe8Ze6ShkNqS661hh\n5MI6YkTInSezhtJ5fueNw9Z60F7L4giOo7GH4djTSQQRT+WFRFgoHjV1WAaFZ1in1mzmYSrwNjH0\ns5h+LRK5KfPfE9ahSaUaiTQ8BfHojwFD4C/Nvf6/AV8Df/Tg4OBPHh4ertr/868cHh7+rwcHB//m\nsjccHBxsAf8X8NWMcNTwlwni0T+0aeMjkUgkEolEIpHI3bPIVXLdDvhx5ekmIWB2F8GqWNj65tzG\nFbQutxX43nfqoNm0aqo6U2PI8HbiqLxn5MCpTguXVArfT5RO6jgvQ1C3a6FlE362m1wa8zd1A8yn\ne+tYYVC/JhLmlkH51dChogwqxfnQPlUoVbEGPm1bUhvmRO6UYeH5Qe9uUumsUzy88kpmZdqGdUiF\njcWj29RWe6gsCzs2ws/2knRf88etM8fOiuByOSvd2utF5ZWWCQLyXbNo3nQsGJTSBwFsdk7Mt8uK\nsD9Tj2hcvy+zQuYvwlon+fJUVKkJwnBmw3x9PXb8/KSkZYXKKV49340cQwct0bpmV0hpqcDLoaOf\nGdpJSMXYSaV2NIY15ptRxaT0fNy27HSCcJQA2606HZ6BiVeqQtnJDG8mns/7l9uoqnw7rHg98RRO\nr8zDiVeGE8dp6Smc4bNeEgWkSGRDFqVfvY4mlWok0vCoxaODg4NtQrq6//Pw8DCf/dnh4aEeHBz8\ndeBfBX4M/GLROQ4PD//COtc6PDw8B/6tJT/eqf8+W+dckUgkEolEIpFI5N2yzFWyagd81wp/cC+9\nUgfmpjwEd8pj5TauoE24C4HvfaUOmk19dTwTSA5prvxUlMmsIbN1HZoqjPvzQtluCZPK4xFM7vhm\nGBwgW6lwnOtKYWXVmJ1PydXPDKfFxbMUEZ51Qijiq2FF5cGK4FF6iaGTCpWD/oxTQYFWEtr1Ued2\n/bZu8XBcCLD/oH+1PswyuolBNyx6dJvaag+Vu3YOrppjYa3wtBPhzaTCKdM1vW1loaMzd8oPtu82\nRegqQXJQKc7B2HvaJozl08JP50STuq+byDSN5MV5w72g8LxtKXzY+DAqPYWHM+8bbZiWFbqp0LbC\nSen4yCa8mXheTxzHY8deO0FEGZRCNzGIhXHp+WZYoSgtEb7YTigmntOxQ1uGn2wZvhp4Xo4dJxNP\nrp7jsdKycFK7GgzCF317qd1N/ZRhqWgS1p/Z/n49drwcORBZOQ9LH+ZrWqfki0Qi63MfKYAjT5/H\nvvL+sP776yU//1X992+wRDy6I/5dwvfZ//GuTvjzn//8rk4ViaxFHHORp0wc35GnThzjkYeMVziv\nIPfh30agbaFvw7+v4zbj+7iA3AnrpHqvPLSs8suV1VJvjlcYOJi4q/1QCpy8m8u+d27z/G/y/G5S\nwFwV3pYwdmC4fL3Kg0fpWNhL4Xffgb530zH+KgdB8Br+XZdIYViF/3u4lDqsQT18fRKeQWOqeQmc\nt6Ft4KgMNYqeZXXQegGVh8Qozxe8p2nXLCcl5I5Lfes8vB2CGEhq19HJAI48tCxUyey1YD+F31Hl\n0/Z6a8cyNhlXRzl8J/B8jXHVjEG4n3G7jNuuuXfBWQVOBSvwy1/8cq1jKg+9VBluGKVShV8M4bQU\nRj78v+l7V6dBaxvYsmGsThz0EuX0DM7uqD9U4aggpGhb8dwrD0aUtoXXE5g4ITNhvHctVHJ1R/Kb\nPDgGWxZ2EnhTwNcTGLkwb2bneHO/trlWOxx/6sLPhgl4ByUXx3mFUQGjCqpTGHVhvw2Jh6O3cFhA\nasM5ixK+GoIKJBYKoNMFb2D4BraTq+vBxMFnLfibx8p2cnHNv3se0liuO0++FuUPbN3fGN6E+D08\n8lBZ9Hm8Doryohbr4/h+3Pz0pz+99Tkeu3i0Vf89WvLz4dz77pyDg4M/A/yzwJ87PDz8m+/qOpFI\nJBKJRCKRyGNiNiBvJQQRm2DVqAoOhiYg/64MN3spHKmuFdBLjLKXvpt2QAh4bSdMg2dPnbt4/vf1\n/ERgP2sEPr0k8PXS+w26b0Lbhr4c+cvtG9eB4kV9Vvrwx5oQQM7k4vVxBZUFUcFJCFIvE5ASEwLl\nb0tlf074aNo1G9TeSeBYL4QggImH3QzGPgTCO+bi51s2/Fvr8+3UQWmjwsDpjeeR19A/62Yre5bB\nd7lSOGGVOWh+DL6PdechrLkNfRuuZze4kEfpb7hFvhFtOkYobBBQxz4IFkIYS5YgpOUOehb6ifKb\n3bvtg7fl9cIRXMwbp8pP+3BUXD9OrIAjzIGG0q9wd2l4f0dgUMFpBUgY80W9NlSAqy7qCznCWE9t\nWBd6Joi6pyUUPghbUouQW1noRyNhflYexvWlBw625uemgrXhmTTz9qyC0gvtNZ93YmDshLNK2X2H\nn9ORxTwEQTpyMxZ9Hl9HEPLfXZsij48P5FeXu+fg4MAAfw749wj1lX77Ls9/F8pgJLIOzS6COOYi\nT5E4viNPnTjGIw+VJi1Ue0k9hoYmFdinXXslLdRdje+fqsa0cffMXTz/hqf8/G47xr0qvzqvOCn8\npXt3pwWdOhXcPG8mjq3MkBlBVXnWCdHbyittgU5qpimkKq+0bEjzuIy88ny5dTn9V9Ou+VRUP1YN\n9cbqZ3mS+2kAf1B4eolg6zo0VkJdmP6C+kqqyme9m4UyTnJH95paWqG2i2fiQs2aL50nEdhtJVi7\n3hi873F7l3Purjj5nZ+TO/jpT3587XtLr3RsqG+0Ca/HjnZds0yb8VUpgpJXysSHZ+i9YoHP+wl/\nYC+703v3qqQLxvsqmnnzU7h2nPxmIoxLpZUa3kwcaeWpBo7CK+M6dV1qQrq6jjV009rRJsrvn1Vs\nV0ovtaEu2qgKNZeMTNcH7xUpPf0kXL+dCnt7KRWwPfA8M9BLhF5meDP2pIMS78HU6tFOy1BqSHnX\nToQX3Ys5G2pLCbstw/OO5Qf1vP17b3N+o2LlPJyn9Eo/gZ/u3XN+0BU89e/hs6kYu006z5rKK+4R\nf/5+KCz7PF5Fsz793u/+LvB0x3dkfR67eNQ4entLft6fe9+dcHBw0COkqPuXgP8W+K3Dw8PqLq8R\niUQikUgkEok8Vo4mywt5z9LURDia+I2DhuuyTsH1u6x7Ebnb5x+f33KMhHouryaOlg21jgaF57ux\nQ+pENZkVOolgRCh8qO+V1c9ltqZBYoS3E3epzlBSF83em6tVcqkNRjgrPLszxzXtGrvLdaSm9cZa\nhkHhOZ54QPAeXrQNX26naz3LVbUYvCqnRahl1oyTbiJs1yLUsuLhXpXz3PFy7BgWSu4UWwfSEwmB\nk+1McZViE0FFVo7B+x63D2nNbWicg7epJ7YKr6EuVxMUvVLPzii9ul5QJwn1vEqn0/pAd8VZXfdn\nE2bnzaJxggbhKDFCqXBeec7KipdDxQvkzpMYQ7+2wzkNNZOcD3XOOtZQqVAptBOhcJ7zUhk5ZT8N\nx/haWMus8CIxFC7MrZPcczTxeA1OpESEiVN6hFRWW4kE55DzdFODV6V0ymkZhOnCKfvtUGctNYbd\nlpmO/YZRqSR2s+edGmFUPr5KLLNrUqXKsAiieTc1JCKX1qeHxLq14cYuvO8+BOnI5iz7PF5GWQuC\nD208Rt4vj108+iXBKfuDJT9vaiLdWYLGWjj634F/CvhTh4eHf+auzh2JRCKRSCQSiTx25gN615Ea\nYVh6nrXf7S+rqwquR+6Od/X8H/PzWyZoNOl/bsPztuHX5/B6VFHW52sZQ+6D4DN2yrBSUoFUgkug\nYfYJVV5xqoxKT16LTCKhpspZEVw3i0hrgWn+uTxvG16O3ELhwIiw3bK8cEql4RovOusHHheNrNkd\n8rYOajbSyHmpnOQVvdTgVElmrjN1qxSe49xxVmpICWZAvDKcKB0jtBN4k/upGPf5moHS+xi3D3XN\nlbpWVMfKnTmwZufSSeEYlcpWqpccakaCOLe9oI6UMVwRO2/LMkFyFfPzphknO1kzjhVrzFSU2m8Z\n/u/vCl4OK7ppgqgnV6WbGDrJRZrCkfNUKny0Db8aON5MPO3U4JxSOEcqgtbqWSsV2iYIy16VSeVJ\njOAFfj2o+KibTJ+X1u0WhHZi8HjOvDCpPIMy3I8YwXmYVJ7TIohSH7fDkd4r3WRm3tXXHJSe3AVR\nShDaVuilsnRc6iMKaM+uSUbgrFRGlU7Th50Vjm5qqHxwYT40B89DFKQjN2PV5/EsNxXyI0+fRy0e\nHR4eDg8ODv5f4B89ODhoHx4eTpqfHRwcWILA8+vDw8Nf3cX1Dg4OEuB/Bv5J4N8+PDz8S3dx3kgk\nEolEIpFI5Klw213YkcfNh/r8FwlEHRvqhYwrXShovJyE96jqrQKGnUSoxjot4tJJYTy5WuMg99Br\nahyp0msCw6q8zUMQt+9CILxpTu6VX5w5frgl7LcWBzYXeQFEhE+7dmVKLsPmwlHuPKjy7bC61M/D\nSvHItTvk34w9H3cFkZDm7NU47KwfOs9xoaE2zEzHWYFclbKEz3rByfFy5EiN8KL7MMIpD23ONXPh\nVR7qo/S9sl0X12pSAW7qwFokDhYOUmsYVMppUdFNzdIx2rBM7LwNHrhJL87Pm2VOD1Xl984qRqWn\nnVqGzteBPGXiPMMKUqCXBWGzcJ6/deTJvWdQKUNXkRghFSGxITVkP5FL/WREyKxQuRA8HlTKi5m2\nNe9s2TAHylxJDbSsCf934eeFU/otw6c9O3U7vhw5PusatutCY6pKXjne5CEtpjWNTxJGlee8DILj\n7tyzrLxyw2yV987ss8ys8GrscRrutyExwdFVeeVFxz4oB89DFaQjN2Odz+PHnAL4Osdx5PY8BTnx\nLwFd4N+Ze/2PAi+Av9i8cHBw8LODg4PrE+4u5z8G/gXgT0bhKBKJRCKRSCQSucptdmFHHj8f2vNX\nVV6PHb86rxiUQQRqaon83pnj905LBjO7zRsSI2RGyJ3wcuRQvdn9H008ndSw37Z80rX0EkPHGKwJ\nqaQ6NgSD9toWh3JehOuoh252AhEOvwAAIABJREFUIaB4r+ymcuXZJUbILOROeTX2C9u5LKjQpG77\ncithOw3XcqqoKtup8Af3U3bSkK7r+1HFy1HF96OKs9xRec9p7qavfzcs+f3Tgl+fVYjItJ9FhK8G\nof/PisXta0iNkFp4NQ6R7uM87Ky3At+PPQikiwJNGlxbJ7kPATcRvh46/A2f2V3zUObclbnAxTMa\nVnBWhF3vn3ctn/USdlvrC0cvR46xU1qJmd5r0/2JCaLhxIWxfN1cuuvEZzcNqs0ft8jpoap8N3Kc\nFkE42mtZPulYWqmQO3D1+20CgvJ27Hk9DunpOtaQ2iDY5U6Z1Deel47TUi/1k1fFoJyUnpPckVee\n40kY45VXMgPnhWfsPK9HjrelUrrgVOomhp2WYa9l2GoZtpKLgG1ihEkZ5o2pBduXI8dWasL4mBu3\n1gQRK6+dLLNtzF0QWR4Ds8/yOA/C0aI5mpogxh3Xa0ul4dj3zW0E6cjD5LrP4y+3Ej7aYCPHQ2DZ\n9y8R4bwMtZ5er/GZELmeR6Lbr+S/Bv4N4M8eHBz8EPgbwD8A/Dbwt4E/O/PevwscAj9rXjg4OPgX\nuaiZ9I83fx8cHAzqf78+PDz8awcHBx8D/xHwCvj64ODgX1/QluHh4eFfuZvbikQikUgkEolEHh93\ntQs78jj5kJ7/qpoQx3moa9HL7DSovchhkximAcNNU/7M7g7vpsrEKVuZoZcGkWRQguOiXlEqholX\n2l7p2BDMfTN2IMJuJvQTYeyvBjmFICpVPqR4e9a+aGfpQ+BpFYtStzVOkre5o1RoJwZbv/7rYcWw\nUHqZ8LxtMcBRHlLqtUxwbe2bECjyqhT++n5u2GtZfnla8qztw/kSw+mkoqyUdrpYBlBgqxVqRuxo\nEECGheMkd+y3339I5SHMuXdZH2VZ+qz5w5v0WfNjdJ673kHdTUKgchMBb37eVN7z7aBE67RyTZ2m\n3CnnhadlhXEt9hkRdlJLRxRrw3NMEH7/rMKL8qyVUPnw3l4qvBrD87awlRoqVc4L2BHPQAz9JLiM\nCqcYgb4VQEgNjErP9xrcRB93gyAkEs7jqTjN4e1ZScsKXQseAYVMBHC0rYAou21Lp67J9qZ+lvud\nhJejgmrBegNM15uT3LPXtlReaRsehTt1dl32GlLVteZ3D8zQ1HLaa5kH4+C5i1SMkYfJY04BPEus\nyXW/vP9vOrfk8PCwPDg4+OeB/xT414B/nyDw/EXgTx8eHo6uOcV/xUVtpIY/Uf8B+GvAPw38AaBT\n//mflpzrK+BHG91AJBKJRCKRSCTyhLirXdiRx8mH9PyXBbXnA4bXBbVvGjCc3R2+3zK8Gl/UNOgm\nBiOeURkEIVOnY5sUnqLyPOsl5JXifChu37bBNTAcuksPI6SKCi8kdXBwTy8EKe+V7WyzgO5s0OeT\nXsKrsafywZ11NAmv91uGqnYfWAnOiW6dUmdWJBqUfurqWkc8MCL0M8PX5yVZEt5znHuSZHG/V15p\nJ0FoM6IMS2UrE7Ik9PdDEI8ewpx7V/VRVqXP6iTCYE60mQ3EL5pL64idm7KdGU7yaqNgezNvGhH1\n5agi99BKLlJGnhWeb4eOyik7bUPLCiN3UbNLLLQliDbfjSomHjITRJrECCPnaZtQ16hng/CTimCN\nY+iUDp7KB8EnMUJVC6P9zPBxWziaOF7lHguMHHzSFjqp8F0FwxJSE4Tl49xxrEI3Cef5iFDL7Cj3\ndIzwo75gjHCSO4alTp/lx13Dz08chYY5LEgQotIwT5vAb895QPhhP3kUKahm1+XZ9WkVxgiDwrPd\nsg8ijetDEKQfAjEd2sMl1uS6X97/N5074PDw8IzgNPrta953ZVQdHh7+aM1r/FUuUr1GIpFIJBKJ\nRCKRBdzFLuzI4+VDef6rgtqLAobXBbVvEjCc3R0uIrzoWI7z4KjppUKlhl6mbIlwnisVjqR2NPRT\nwXtFMSTGTOuLdBJhMlNU22twLzQIyjeDkswaCqd0ktDuTYJp80GfFx3Dce75dlhReKUzK1aVnre5\n58t+Mm1jKkxFonnnwnX9HK5n+Ttjx7M6GjJxLByvlVesYTo2mxolWzPX2ZR3EYx833PuXdZHWZU+\nq58aTgt3Jag1G4i/0tYbiJ3XYUTopcGZdl0gE0Lf91KDwFRE9Qt2z+cuzNXXpcdNlN2WMKh0GpVK\nRShU2WsLbyZCPwkOolHl6/SVwsf9hMwIb3KPOk/hAVXeFp4ToJeElJeVhkb0WoYXnSAkfzt0fNS2\nbGWhJlEFnOTKuVNedBLOK8/xxNNOBKfCpFI+71uOJo5i6HnRtrTbCX//pORFJzzv7VaCapi7eQX9\nFM5KKBWMKGOnDCroGKGbBvfRpFJ+Y9suDPw+xOD+7Lo8XtPBk9ZCWV+Dw/LNWPmoq+/tfh6CIP0+\nWVRjbbZe4UlePdr6QE+BWJPr/nkS4lEkEolEIpFIJBJ5GNxmF3bk8fOhPP9VQe1lAcNVQe2bpPyZ\n3x0uIjxrW/ZahkHhScRznAfXzn5L+PFOi9PcM3ZBoPl+VNFLzKXC9Lstw9EkOJgEpuntVEMKqbEL\ntVGedQyZDdfbJJi2KOgjInWbg+A1cYoSauakAjuZsNO6fN5GvLECyZxSt6qfp9fLgsthVCmVKnZm\nn2jlFQXaibCdyqXrhp/U/94gCPUug5Hve87dpj7KdWLpqvRZRoRundptXkAcO2V77v2NaPMugofP\n24aXowvn3zJKryQS3j8roi5yekycYuvC9g5lUARRZeyVolJKHxw+w9JzVnj6mWErC2nv9tpmer8/\n20v5669yXte1dDIbxOOziXLmlcKHsfdZx7LXtvRSYVQq/dTwomen6S+PRp5eS0jq9HVGha1UqLxl\nWHkqI1Q+1O7ZbyekNqRhKxV+ceb4nbclf/iTUKfJIbRSwyeJ0K4F74kL9yMCE+/RUvi8a+hlhs96\nyeV5ODefjMCgCOcoXZil+y3Dj7cTrLlfSWP2WTYpCK9DVXmTO4r6mRuY1s57H2LFTQTp3HlQ5dth\n9WCEvJsQ06E9fN7lZ05kMVE8ikQikUgkEolEInfGTXdhP6bgQmQ5H8rzXxXUXhYwXBbUbtjUx7Is\nJGpE2G5ZtluWT3pBsBmUYXf+dioUTmlZeNG1pHOBVZFQZ+ho7ChqJ0ITqHWqiEDloG2F/VrQSYS1\ng2nLgj6DwpPa4JbYmnn99VgRI9N0cZfusxaQtudiQdf1M0BiTBDaVHkzEt6WPhTaBnpJSM+1aExK\nLTKFdH4rLjDDuw5Gvu859y7ro1yXPiuka7zqQJufS7OizbtARPi0a6eChqlFn9nr+7rfn7cNCpdE\n1EWtagTUdp2ubuyUzMDJxKFAyxoSlNJDoXA88dO0b7mDfmLZyYTXE+VFLQy9nXjOC8dZoeQKO4my\n1zJYQrq8vUzoppZEHJ8+SzkrlS2BYakMnSdxwTHlVcm91uPUkwn0WkI7M2zV6SAntZMmESHJhJOB\n4+8cl+y1DJ/Wk0dE2GtbdlqGYeGZ+AsHUSLQzUK754WjZj5lVoLbsgppLxMjZHUKyje55/h1wY+2\nEj5aUQftrpl9lusKR0cTT+WhVY9P1QuR+n2IFZsI0o2T7GTi+GIriHyP2aXzauw4rtOnNmOxY0M6\nx9k1M6ZDe3/Emlz3TxSPIpFIJBKJRCKRyJ1yk13YkafDh/D8VwW1V8XHVglEm/bCurvDjQjbmWU7\nC33+422oVPjlWUnF5eMrr7i6FtFuFkSbJp1cVtdP6bbN0tpN1wXTlgV9xm7x66qX08XNX29ct3n+\n2FX9XPrgxGqO+9F2ijtzdK5J4zZb/yl3yo+31gun3Edthvc55+bnglflvPAcFSEdW3dULQy+riOW\nXtfKkK7RXBEQmuPmRZtlweu7SH8mInzUsTxrG86K0J7mXNtpmIPNuU5zd0lE7diQkm52HDdCZScV\nzkvPaeFpGcNHHct5oYycp2sljC0RMDBxnomDnczw5ZbhtAgunK3UMvEe2gZjgvOnD7SN0M+CADxR\neD32/KRlKI3QSizPbXAcDkv4qG1xCtbAUV6FVHtiSBODs4pHcH6m/QbGpdLLQj2lnhXOSk9ihE7u\n2ZtZQ4wIWy17ZY5PquBmmaWZT4nAq3EQtVsLCgu1k+C++rYWmu7LITK7Li+qyzXPSe7JnbKTXgjT\n/QVr0X2KFesK0qqh/tzEKbttS2Yvz9jH5NJp7uXnJyWd1Fxyhw4q5bSo6KZmumkCHn46tIeY1vEu\niDW57p/H9y09EolEIpFIJBKJPGiaXdgdK+SVp/SXgz+lV/LK07HyoIMJkZvxITz/Vb9Id5IgTGxy\nXOmVbrJ5ujK35DrL8F7ZaYX6IT/ZSWjbEDTzXlENQcvPe5ZnbYs1hn5m6GWWz3spH3US2qmZCiiL\naIJpXhe3a1nwZtnrzdCYTRc3SycV3IIfrXo+3iuf95Np3223LJlh6TObHlfXf6q80jaslf6mSdO3\njiMIru+/ZbzPOdf0taryZuL4ZlAxrELaQyuhbYNK+WZQ8Wbipq6KdYJR3RVzqaFJ1/h5z9KvnXWZ\nCe3ZToUvVzhPVJXXY8evzisGZXDS2Dot23mp/Oq84vXYXXKCXNsfIuy2LJ/1En7QS/isl7DbspeC\ntfMian/BXG5bwXnFiFC6Ot2bhvvdbhn2Wpb9WgS0RnFeaVnDfmZo2xDgbkTZrUwYFKF+0FZiSERw\n3tPLhF5iaVlL1xq+G1b8/bcVzoX1oHEGbWeG7czQtvBx16AK3cTQSYW8gkEZ6vPMTtNUhKK+J6/Q\nTQ1OQ32j0Zpj3MOlfpmdT8d5EI5WCTOpCeOhqEWX+2B2Xe7X97wMr1qnAoVeFp6l03DcIm66PtyE\n521DIlxZS2Y5zkOqwLYNosoyUhNEzvt6BpvSuNleT9xUOJolMUIrCSlVX82tB006tIfEu1jXHhIf\nek2u90Hsu0gkEolEIpFIJHLnNLuwv9xK2E5DzRSnulZAL/L4eerPf1VQe1nAsPRKZ8EOeWhq0Gz2\n63mzO3xVcG/++rPpynZbll5i+Lib8Ekv4eNucskdATCo6wrNtrN/TTtXBdOWptpb8nrbhn4WFvdb\nUte9mX0Wq/q56YPEmGnfGRE+7Vm8LheQqvqcXkMg/Af9ZK2d27epzbAp72vOdROhdH7qQGgl1wdf\nC+fXEks3EUgbh91HbcPP9rKFos0sTcB4fE2bG9fEXQZa55+uEaE7N5d7tTDqVUlMSFNX+XBkpUrX\nhvSUn3QtL7qWrcyQWdjtWFoGzgtHc0vnhdLPgnPwzcQzqTwda+nXQnClQWDptyzdBN4UytGM0IeE\n9qTWgAjbqaGVBCdMoZ5SlZNCGVb+Uj/5+twdI1groKE+0cQpwzXGuBG5NH+a+eRV105dZYyQV3pv\nosvsumwWrE+zDEuPathwYCS8r5ssTpk5Pf89iRXXCdK5C6nq+qnhRef6lHT3KXxtSuNmqzzXipGV\nBtFs9rVR9XDu6X2ua/fFOpsK5rnJBp3IBVE8ikQikUgkEolEIu+MdXZhR54uT/X5rwpqLwsYLhNe\nblODZp3d4c015tOVrSM+jWcCtKVXumu0c1UwbVnQp2MXv95LDYVT2gvEoEYk2m8ZrFwcv6qfZ/tg\ntu+etS2fdAxWoHB6qS2VD76nTiJYgc+6Zu20UbepzXBT7nvObWdmo9R8lcKbiV9LLL2tQLqKTdt8\nl66JRXe+37o8l40IHSucTTzWCruZkFnDuPKoh+1WaHc3FZwH5z3eB8fX29LzeycVkyqM37FXUmNq\n15LQTaCThuuqQseGtH77bYtDsAiTKqSsA5DayUBdZ2i3bbEI48rjFFJjMCiIclboNCDtvWIJ1xSg\nnQooVAqTa55pI6TM5gFt5tO8qL2KpgbafTpEZteW+fVplvNSg+DXMlResSIrHTxwv2LFKkFaVPli\nK+FZe31B+iG6dGbdbOvoKGlda8/PiaQPhfe5rt0XN3Vdb7pBJ3JB7LlIJBKJRCKRSCQSiUQ24Lqg\n9nzAcJnwUnluVYPmtunKrhOfmvhYI7xcF9hsWBaOWhb0WZS2C0I/t6ywKENcIxI1dW9aNuxsz+zl\nnfvL+mC27wqn7Lctn3QT9jOhZaB0nknpyYT/n707D5dtK+t7/xtzzupWt9duT8Pp5HIcKJooIBjs\nCPca5YmJmFwVIypcG/SCgojEqAgxkHhveOxAo0bEXp+YKGITJVGaKCiXEFBUhkh3OHCavc8+e+/V\nVtWcY9w/xpy1atWqqlW1Vq12fz/PA3VO1ZyzZs01apy1xjvf99Vj5hJdbCZ6TBmMmXSxdK/Lcidu\nOS+EEblhO5ly+0ntJ0A6ymGVExxlWBA1juNUzb7v8nIjUaEgBanjg5brie6YT3XnQiopZuAoSPIx\ns+hSK2bQ1ZNE7RC0UXh9fKXQeterCF6bPsgH6fb5mu6Yz3SumepsM9F8LX5nfAha6Xq1vdcn13J9\nYq3QoxtdXV4v9OBaoY73emSjUOGl+VpQzcTso8LHnirzaTzf6x2vjcJrsZboXDOWyyq8dKFulJYl\nIseN8f5ASv9Ps9pnY8qgrNfhB13655azjTiPtcvAdDUnNRJpuZ6o46VGaibK4JEOf34YFpCupcmO\nHke7OW5ZOtL27NBJ4+tJYrTaFwQ7LgvrRz2vHZaDvKkAw03W4REAAAAAAPRcaCZ6YL1Q1+9sKl4F\nNK62vW50vOqJdK4vAtL1sUxUK91/I/fq7vDzzUQ3Ol7rfc2xl2pmRym6wX1vm0t1ZdNrreuVJGbb\nZ8mDFHK/o1H4bkaWpxvRiL0q27U58Hzug26bS1WEuNg+KgvKmNgEfLluNJ/FTINJrsHgtaslQUv1\neGe5FPu0VKXx9tJk/GbozXCj43WhlepqO2z7GQ1TBQXOltd7kr5Ru43Rro89u+ZrMXtmkjG6n3KC\nk5zzbpbqia6189618iFopRP7x3hJWVJmEiVGi7VE60VQJ5fuXEzUzPrmkcLr4U2v28pgUhGC1gtp\nMw/KvZSWAaEiSJ9YLZQqBmrvXky1kkvtMggTQtBKHtTOg4yCluqp1nOva51CN9phR98UGa/LGzFg\nuFw3ahdbAY1EsZn9cs3o1oWtua2eGjUyaT4xut7xyoud4yX38Vznshg4ykP8/qrv2FKMPU7zVaz2\nO8ygy/C5JfTNLake2TCaqxktTLmwfRzmB6/4c97LfsdJf3ZoKzNa7e4emKyy2ZYU55/+MXqUjnpe\nO0zjfv/qN81NBRiN4BEAAAAAAFOaJPCykBldbGaqJ9JGIRUh9AIatzWlxGhmPWiqu8OXG9N/jlHB\np0tNI5np7jDfbTFt1KLPuUaihze2nq8CDefLRZ+r7fLcQixjV2VBbQ8exMXqs9Ndgj1fu93MZbFB\n+TRZEsdpMXIS63lQLU10qRV6P6PBkmKDQQFjYgbCpNd7PwHSUee813KCo87ZhzLjpu/cRgUdqyDq\neu610o0BhTQxyhITF+SNUVAMrtRTqZkm8nWpXQTd6ORqJkbz9Zj1c7EZv58hxDJzQTEoHUKirvex\nzJiJgaazrUx3LcXMuaVa0FUf1C28VvOgwksyUiuJxyq8lASj1bzQQj1TYoIub3pdbCaqJYkWM+mR\nItdaN5aXO9fcysjbLLyM2coAzH3QuYZR20tFkM43Et3SSpUkRht56AWDFgYCKb7wWqpvLWpX36dp\npsyuD1ose50cxfLxuLllqVZopRumGrvHZX44LYHx/iDYQi3R9U4x0UJ5FQSL5dCOR+DlIOa14+og\nbirAaASPAAAAAADYg2kWtQcDGpeP2VrGsEVOH4LuW8mnOs5ui2mjFn2qsl0PbxRaaRdaqG9vxL5U\nTzSXevlg1MpMvM4h7Cl4cFgGM0wmcZwWIydRLb4aY3S+mepsCFrteinE10IIO4IC1X7TmlWQb5ZZ\nEyGE3ljeFgBS7GlzrZ0PXcA83zC6f9Wr7YNa2c4l9dRIK3nQg2uFvDH6jLM1JUncLi8zF1e6QZda\n8TljjM42U50JQdfbhR4zn+ihDS+joLoxWmrEknZFCMrKDKJzjUT3rxXazIPqiZH3UqsRAzTdIuhc\nK9GGT7RUT2SMdK3tda3tdbaZqlUzmisStfMYKKo+WzcENRKjagj3StA1E11re610vZZriZbKPlxL\n9eHXelipqer7NGmGiFSVt0yPTdCl30meH05LYLz/m1f1K2wXu3+uRMevHNppyQab1KxvKsBoBI8A\nAAAAANiHg8pcOWqjysyNMuli2rhFn3sWMy3U4uLweh62ZWstzddO1GLQQV2/42Qw7BEDAqnOl9+F\nW+aGLzsdZQbCrLImQgh6YL1QHqTGkABQVgaTNoq4XX+JykfaQeeaScw8KrO1qgXrEIIe3CjULYJu\nW8i02va63gk629w67kYeM5OubPptgSkjqVNIZ+qpzjeNaiZRJwQV7aBN73XfSqHzDWmpYRQk1ROj\nW+ZSreReNR/L3K12C11spbo4lypNpPPNROvdoNQkemSzUDuPvcXO1KSrm9LHbuS6slHoTCPRpVaq\n5UYM1nSKoFZqtFxmmy3UjLreqJGNH+OjSk1V3yfl8XrstqDZX96yO5DFdByc5PmhCnwlRr2Si1UG\nWSsbXorvqAJf47ICB4NgMQPWjy3B2fVBrWR//QoPwmnJBpvWaf396zgheAQAAAAAAIY6yN4C4xZ9\nlhs6FYtBp703w0nMQJjVOV/Z9MqDdl34ryWxxNyVTa+LrbTX2L6RJTqfqpetVZVwu9Yu1EykW1qZ\nEmOUKJY3O9PYKnG2WQQ1skS5D71soMJ7ffh6rkJBSiQTJBNiL6N6ahTzkIw2Q1C+GdRIYunMQtJS\nluhcGSQ625QuzqUqgtRMYhBgoW60oBjEfWSz0JVNLx+ki3M1pUlXG50gH6QHN7zWC+meuUS3zm3d\n+Z/7oCCjT1vOVE9jyb69lJq60EzUXQ+qJ9p1gT8zMRhwnIIug07q/GAkbRRBn1wv1EhjkLS6vKvd\noOudYluZyqP4GUySFdjKjPLCK0viK/39CgeDulIcc5tdrzuXa7rU2l+/wlk7rnPxNCU9cTwRPAIA\nAAAAAEPRW2B/Tvv1O4mltyY9Zx9CL6tiswhK5tPe/pJ6AaBJ1BKjta7vZdv1N7avsrWW6vE9u0Fq\n9DWOWm4k2iwKXW8XOtuMy3gxFGN6WUh+M9cDq4W8pNvmy0VtI7XqiS5vdtUJQT4YNVKjmjHqhqBH\nN7wWaolaqdFSI5aeW80LLaRxUTcvgs41Y+ZUlhh5H3TfaqGOD7q1L6PsfCN+pjxI3SIoD0GP5kF3\nh6A8xF5NzUS6eyHTxXLB3Yewp1JT1fcpM9JHbuQxC6TvZ1B9n+Zqic41EuXh+GWI9Jv1/HAYC/VV\nxl0s8WaUh+2vZ4lRpvhzf3jD62wjfqbD/BlMmhXY9kFruZQkvtfbb7AEZ39frkYq3TFfG5lReZSO\n21y815KeOH6O32gHAAAAAADHBr0F9uc0X7/DLL01q4Xx3c45hBAzD7pbQZ6FWqI0SXqLnrmP2TzT\nSBLT+/mPWuBd7XoNHtYYo1vnUj3ajiXjksTIaKvE3eXNQpmC0jTRLQMLsbXU6LHLNT20UejyWqHc\nxL5hmWJm0oVW0juX3AclioGkGJQxWqwnWlsvJEkfX40ZMvWBczcmbneumWi143Vlw8uEoA+v5HrC\n2Zo+ZTHTcmP7GN9PqSljjC7NZTrfTPSRG7mutr1kYgm+xcxooR6zpjrFyQjKzmJ+OMyF+irjrp4m\nutQyve/KYOArSFrvFmqkqR6/nB3qz2CarMDFevxenmlsP//+oK60lf11qXW8yh9WjlMZxP2U9MTx\nQ/AIAAAAAADsit4C+3Nar99Bl946iIXxUeccQtDDG1uLnrkPSk0svyVtLXpeXs1VS4IutczE71lL\nTC8wMGr5eWNEYMkYozONVLe0Uq12vDa60mrutd4NWsjiOTQzo7VuULvwCoqlxZqpUatmdEsrlXzQ\nppcWakbNLFE3BG12g5o1yQeplRqdb25l61S9ilqp0XrutdL1mssShRB2np/i+J6rJbq3kepsM9VK\nu9DjztSUJQeTcZImiR63XN+RxWR0MoOye50fDnOhvr/kotSXpdOIgcONYivwtZgZLczV1C1Cbzwe\nhsFz3E09TbSYSY1E2ugrp1hlHq52YyBqPjO6Yz491M8yreNSBnGvJT1xPBE8AgAAAAAAwJ4MK73V\nbz+l+Q5qYXxUubCr7bjoaRTLbvX3bdn2vkbKg3S17XW+OfmiZ7WwPvrzSqNOP1GZDdFItVBPdP9q\nLgWvWip9+EZXC7VUiZFSY3qL2+tF0Goe1MyMzjZTnalJMomudYIaRlorvM63Ms3XEhVBurFZKJF0\nvrl1HZcbiT6xlitRLEnXGkiNyn3QfGZ6gbblKtCWGn1iNdfdVerGATmtQdlJHeZC/WDJxUo1LpeG\n7JMkcb/lxuEEB0ad4zhJGks6Xmylut4udP9arrWuV5YkWqwnWigzdFbzoOud41tu7aDKpE6T9Tlt\n8K6/pOdJCvbeTAgeAQAAAAAAYM8GS28FBfkQgz/7yQI5yIXxwXNe7Xqtdgo1s0StzPQWjIfvK9WM\n0XrX62xj8kXPatF1VGP7UYfp+qDFbHtJLe+DiuC10pa6uVRr7Nw5NUapkda7XiE1utjKtFRLdM9S\nohudQn93PddcLZFRzBS55WxND6z7bYvKpjzGXD3Vatdrqb4zOJgmRo3E9LKVJKmVJbraDrp7oiuD\nvTjshfpxJRfHved6Hg4tuLefczxTlzYK6Uwj1YXWziXzk1BubZZlUkOQLm8UU2V97il4V5b0PKwA\nI6ZD8AgAAAAAAAD7VmWBXCoXim+f3/uy02EtjFfnLEmPWahNtPDcyoxWu0FJYrTa8VqaYNGz66tA\n2ujG9tVxB1/zPmhhoLF9MzNqbxhtdAvN1UZfozwE1ZNE8zVprRtUS4KWjNFyI9M9i3GhvD84N5cF\ntYvt5+BNDHqdyVLV0kRG2rAeAAAgAElEQVTtIigoqPDSuUai2+ezoRkIj7ZzfXIt3VePKox2UAv1\nozJN8hBU20u/sqn32LtxZSF32+8klVvbLRtovxl5IUhXOlKzCFNlfZ6EACOmQ/AIAAAAAAAAx0K1\nKPrQeq6VTlAt9btmAlX2cwf7NIueC7VE1zuFGmlcPB1WrmuQ96F31/+oxvbVcfsX67o+aG7IZy8k\ntVKpkybKTNBG7lUEqVuoF9ipp0bLdaPlZuyLtFEELZQ9i7o+6I75VBuFtvVIOddI9PCGV+63rkfw\ncbG4Os6CtsrUDZa/CiHoWjv2v1EoM5fK1/bao2ro9ZyilNZpNeuF+t36iz24VmiuFoaWchznYDrr\nzPi9QtBad3igZJijKrd2ED3ghnm0K+XeTB1I20/wDscTwSMAAAAAAAAcqcFF0c1CqpcLuavdoOud\nYmQPosp+7mCfZtEzMUZzmVG7CCNLzfXrln1GqkXmUY3t+4+blYuymYkBnUEb3RgEunUu9iu6/GhX\nxsRjxLwgqV14PbhhdK3rdaGeqFEzvf28DzrTyLQs7eiRcqmV6Grb60bHSyHoYjNV7oOMiUEjH6RW\nur1MnbT1MyxCUBGCbhnoBzWLsl+HtXh+EsxyoX6S/mJn6omudbxyL11qTXZ9q4y7wzKuLOQoXR8U\nfFCaDA8c+RC00vHaLEKvL1krM6ol0n0rXdXT5FACmAfVA26QD0EbhVSfMBK3LZA29btFhxlgxHQI\nHgEAAAAAAODIDFsU7V8YzxKjTFK7CHp4w49duN7rHezTLl5uZeiMf8cqAHShufUO4xrbn2sk+sRa\nobVOoaVGOjJYVvggI6Pcx89861ymTR+00Q3aLKQkkTIT37NbBD2wUWiuY1Q0gjqF3xbMGtYj5Vwj\n0e1zVfDO638+3FE9k+azRPM1M3Rx/Fo7Bo6yxGgzD7p1fnhoIzXS1c1Cj2wWOttMJ150P6zF85Ni\nlgv1k5RsW6gnut6JP+Orba/zzd1DV1XG3WEZVxZyFF9m2Q2WAAzl51zPg1ITx5cx8fn7V3Kt5kFz\nqfSE8w2l5TgbDGAGaWYZcodVVu9Gx/c+z6SqrM+9Bu8OM8CI6RA8AgAAAAAAwJEZtig6bIE7S2Lm\ny7iF670uqE+76GmM0dmGUbdI1M63B4CkuCDqy4yjYVkw4xrbP24pVcen2shDvC59u1bHXW4kaq8X\n8ooBk8W6dPlGzGZqpNuvQrxu0oaXCiNd3fS68/z26zeuR8q5prSWx0Xw1oiyXjFbIaieGm3kXmcb\nibKBTI7eYnyZNVQE6Vx5LSbJGjpJPWkOw6wW6iftL5YYo7laos0iaD0POhvC2ADIYMbdYRhXFnKY\n6hzbPmx7PoQYqC5CUCMdkl2nGExrF35bQLsKYK7nXn91tdB8JmVpsu8MucPqASepFyybRpX1eetc\nuqfg3WEGGDEdssIAAAAAAABwJKpF0cGF3lYaA0WDsnKR0oedr3V90Fy2t4XqpXqiYsj7jROC9Ngz\nNd21mGmpZhTKcm0hxAX6uxYzXWyNz36pgja3z2e6Yz7T7fOZzjYz3TKXjT3uhVYqkxhVZ7zSCVqo\nJ2qliTo+KB+4PkUIyn3QQi3RuWaiR9rTfVZ7JlMjiYGhfj4E3WgX+tiNXFfbhT65mqtbBH3K4vbF\n4LgYX2iziH1lssQoNTGrSYo/10aW9LKGwsD5jxono1SL58PGyWmxlzEbF+q3Lwff6PgdWTejnGsk\nykz8eVQ/u2GGZdwdlgvNeI7dXa5N/zkOnuXVviy6ftcGnq8nppeJVQkh6NG212rutVZoxzF2G+sV\nH4IebRf65FquD1zr6MpmoRvtYuIxXWUDTWuv2ZteW8G73a595SgCjJgOmUcAAAAAAAA4EqMWrmOJ\nrOF3sFdBh8G71fdzB/teMxaqRc9RWTv7MS4bqPBBZ2pGK3lQp9jK+qk3jBZC0EYudYrY/agI0nyW\n6kIzBhzqaTJ1VkKSJPr752ty13M9slEoTaR2IW3kQUkirXRjNsZyPdFj5hI9sO41V1Ov7N7V9s6s\noSwx2siDlupb7zMqa2iaAMfWOcfF8+XG6cxq2O+Yrazn02XcXWqlutr2ut6OmWjTZNwdhnFlIUed\nY38Wlw8xs6oxkH7Tn11XHWchNb2AdpWJdWWz0KNtryJIVza76hRB8zWjhYFrP2qsD+vr1SmkWppo\nNQ+63sk1V0vG9n+rjr+XHnD7LYc4qqfboKMMMGJyBI8AAAAAAMC++BBm1tcBN5dRC9f9JbIGFyCH\nBR1mcQf7SVr0TBMjkyS60JTuX8nlg5SHoMyYMqggNTLJB6NWYrTUMOp69cpR7SWwkiSJPu1sXd2l\nQv/rSqcsbxWUyOh8w+iW+WxbqbrNImYbXWgmWh9RcmtYEsWwklvTBDj6j7OXxfOTZNyY9SFopeO1\nWcQAYy0xumcxlR8oN9ffX2wSxhidb6Zaqhst1cy2kotLNaOlenrk8/64spDDzrG/V9Jq1w8t27bW\n9eq/xMFL8604plMjrXQKdbz0kRu5WlnsoVQrS9gFJbreKTSXmW1Bn8GxPqqvVwiSMVt9varv1qVd\nMhv3kkU0l8WSktOUrusvh7iX4B2OL4JHAAAAAABgT4bdIb2fvg64+YxbuD7XSPTwxvCF8f6gw6yC\nOSdq0bPMlmgXQc2a0a01o/VuULsICpKMpLnUaK4Wg0m5D2qlRkZbi9Z7Daxc60i3ztd05+LW539o\nPd9xParMio+v5KqP6NUy6hIOBrcGx0l/YKRaWG9lO7M79lqC66QYNmYzE8uureex1KGRepkqq7l0\nvbN9Xt7rtyYbkxl3XIzL3hvcrsri2hgRqNwstp7v+qBWZnpjLTXSx1e9aiaoWQaOJPUCPYt1o0xS\nuwjbeiRJ28f6qL5eg9+T6rs1rv+btLcsoqV6oiIEpVPMb4NZnzHAmCgxQZc3Cq3lkglBc7WYubbc\nyI48wIjJEDwCAAAAAABTG3WHdKW6Q7rq63Db3Pg7pHFzGre42V8ia30gmGPMwQRzps1YOCqJquCa\nV8cHNdJEC3WjhSHb5j4uBC83tl/tvQRWqt5Dg9/5Vma02t256F5LjC53gm6tDT+vhdrwazkY3Kre\nLZT9ZWLWU5xnqh/HajfsyO64GQpi9Y/Z6+1CH10p1A1B9cSolSZa6MsAzcpr1j8v95dsm1R/pslp\nUWVxdYqgxpDeaVWQsgpW93+frrW98uBljNlxHfsD3VkSA7n9QZ9qrC/Vh3+3pOHfr1pitN71OtsY\nnnG5159RYoxaaSxLOYnBrM/Bm0rONDKdKb/HuQ+60Qkqgj/6ADwmQvAIAAAAAABMbdQd0oNG9XUA\nJO26cF2VyDrbSLTa8doogjrlouhBBnMmzVg4KtV1u9RK9OhmzG5IysBAJfdBPkitNAaOiqBtwZq9\nBFZG9qiqxbJcoxYa1zpeiwMl8uL5bJ3FYDaR11b5y7ksZmdcbQcVYWc/GqkMWGsru+Nsw+hM/WYI\nH0WJMcqD0flWOtW8fL65VbJtUvvpL3ZcVVlcj2wW2sh3Zh7mIf5fK4vfpyrwUfVCqiWJvMKOTMrB\n6WmwR5IUx/q4vl7V9ysJQasdr7aPQW3vJaOubl+o7ZgH9/MzOluTroQwdQlPbio5fQgeAQAAAACA\nqYzKPhhlWA8TQNrea2ScxBgtNVItSWrnXnct3txlj3rXLUt0+3ymG12vdhFLawUFGRnNZ4nma1ul\ntQofesGavWYljO1RVZbR25F9lEqbPmix77ncB82VZb9GZROZEHrlL1uZ0eX1XEqSXcdKld3xyIbX\nnQs3z9LnfublqmTbbkEnaTb9xY4rY4zuXMh0veO1mcegUJV5eKFhJGNUT7df37Wulw9BzTT2aOuX\n+6D5IVlMqZFWu74X3Ek0vq+XkbSZez3U9qpnWyVi01R6pB0UlPdKExpj9v0zMka6UI+B52lKeHJT\nyelz88ygAAAAAABgJsbdIT3KYA8TQNrea+RmX7ieRv91W6gnut7xWqwn2wI0/fqDNdLesxJ271Hl\n1SniwnvbxwyitTyoKILON0Ov/1JqYmm5EGKW0GA2UdcHLZaL5DFTwetKJ+hco+roNF6QbrqMhv3M\ny1XJtmkzTU6jGJj1vWB1xYegT6zmO7aPWX9G8zUjBaO1vgCqD9J8bXgGzkYetFTfCuSu5juzliSV\n35FCrcyo42M/on6piVk+m0Xc7mwjUS0xM+gBp6lKeHJTyel0er/pAAAAAADgQIy7Q3qUqq8DMOhC\nM1FW9hIZ52ZYuJ5Gdd2KIM3VkpHXrz9YI+0vANd/5X0Iut4u9NB6rgfWcz20nmu9k+uRjULXOl5F\niMGJ+Vr87t+/GrepJ9KlVsxWuNqOgaPB+cT7GBSrtPOgMzWj1Y6feJxUi943i/3My1XJtlZq1M53\nXuOuD2rnXq3UnPpSY1VgdvAaJMYM/Z51i6BWGgOz8/VEvhxyud96fpgqBhQDucnIRfqr7ZjNU09j\nlk8jMeoUQXl5HtXhjeIYWM/DTH9GVQnP2+cz3TGf6fb5TMuNneVC9xO8xPHFf20BAAAAAMBU9rrU\nwxIRhmHhem/6r9tCaqSyR0kl90HtImb0VMGa/Qbg5jKjbuH1yGahT6zmWisDD4li+axHu7Fo3nxm\nNJcahRB/fmfrRou1RGcbiYqw1StmWMCj64PmBoJbG0VQq5ZqvpaonmjsOGmmRpdaqeppclMFrPc7\nLxtjdLGV6q7FTEu1WE6wCEEhxMyYuxYzXWzdHN+/UQHtc43tz+c+jt/lMjCbGKNWZrSZx4Bt9fww\nxmwP5M5lphcQqvgQtN71vWwwY4zONlPdOpdqPkvULYLqScxOWqgZ3b2YqZUaHcWo56aS04mydQAA\nAAAAYCp7vROVO1gxSrVwPWmJJET91+1M2+j+tUJr3UJpkmipbrRQLkx3fZAv/I4eJdNarBn97bVC\nSWK2lae6VmYQNcvnOmVPlAvNVJ3C6PZzaa8fSlH2OKolseRWvyq4dW5g0b0ql5cmRo3U6Hwz1WrH\nb+tJs5gZLQyW0trTpzyZBrPCVjpem33Xp5UaLdR3ZpwNzstVpsly44BP+BirArNXNv22nj/GxMDk\nwxuFVtqFFuqJ7lxItZarF1SaS42CYjBn1Pcs90GNVNsCucP6v62OyOZJjNFi3aieGj1mfvuYTxId\nSYnYcSUtd9sPxxfBIwAAAAAAMJW5zGilO91dxlVfB2AcFq73JjFGZ5uZzjYz+RC2BeCqzJFZBOCu\ntoPqqVHRlyzgQ9BGEZ+v1JIYsLqyWejWuUxpkuhSK5apW+963SiCmqnpzSHdMtg0V0t0rrEzuFUF\nOLZ6xZgdPWmGXpd9fdqTZS6LJcBudGO2Slr2i6oW9FfzoOudfNs1Zl6OfAi63vHa6Ataz2VG55vJ\n0ID2PYuZFmpGq92g1a7XtU6h1JQBzLlURuqN9SrwVOn6oM2u1x3zNV3qy+Qa1v9toxj939nBPmaV\nKpvnsOdQbio5nQgeAQAAAACAqQy7Q3o3sa/D4d4JDdyMDioA50PQWteXmRe+V7JrrRt2ZBBJsQdL\nJ5eW61slt843U51tJLq2WejKZq7FRjYya6hfKzVaLctihQmrXM06MNIfYHhwU0qMdLFdxH41xyAr\nblRWWCUrg0mbRdDDG4UutdKbfl4OIfSyiwaDbSvdoGvtvJett9zY+TNebkjLjVSNdHvQR1JvrA9m\nyLUS6c7lmm6Z27ksf6GZ6IH1Ql0fjzUqm2ewj9mgo8jm4aaS04ngEQAAAAAAmMqwO6TH6e/rAOBk\nulGW0Iqlu5KYWZHHzItaX/Qo90E+xIDPfCMGl5b6AlmJMTrXytTx0q1DFtCHWagnut6JAetJp5FZ\nBUaGBhjKkxgMMBxlP6BhWWHDVFlhD28Uesx8dtPOyyEEPbBeKA8aG2zbKOJ24/qtDQZ9KonZniFX\nlWW81Bo+LgfL5XkflA58t4oQAzXDMvR67zvhNZglbio5ncgMAwAAAAAAUxvVUHxQtVhW9XUAcDKt\n51tZBVUW0WPmU81lcSHe+6AQguYzo1vnUp1tpqqXGRnDNLK4GD6JxBjN1RJt5F6t7PAC1lWAYaMI\namTJjoXxrMzyqQIMYdK0qBnrzwpLjdn1uhpJ7Tzo3JBsmptF1YNrtxsgaolRHuL2o1RBn1Zq1M79\njv8udn1QO/dqpWZsEKo61sVWqrsWM11sJuoWW9+thVrscXS+OfoY3bKc3WGrbirZ7XeCCjeVnAxk\nHgEAAAAAgKmNaiheqXqYHIc78gHs37ASWomJvZTGfb9HLbkv1ZJe6btJnGskWu96NYbVyOszy4D1\nNAGG2OPJ6+KIrJKDNCorLDXadn37M1cuNBOtdA+/N85xUAXbhmUcDVNLjNa6Xuebo4MdVdBnWI+k\nvfQcS4zRnYs1BeUTn6d0tNk8ozKwBnFTyclB8AgAAAAAAOzJrBfLABxfo5Z5W5nR6pheJ8P2i71O\nEnW9Ji5/mQfpnsVMxphDCVgfRIDhoAzLCjsbYknBjTwoBMkYaaFmtNCX7bGe35zBoyrYNo0kMbrR\n8VpujA/MzLLn2EkrEctNJacPwSMAAAAAALAvs1wsA3A8zWVGK0OCRAu1RNc7xdBFxq4PWhxSQqvK\njjDSVJkKF1tpGRw5+ID1QQYYZm1cVthSffx+N6P+YNukaok5kmDbScvm4aaS04XgEQAAAAAAAICx\nluqJrrXzHYvuiTGay4zaxc4Fee+DFgZKaA1mR+wlU+EwAtYnKcCw13DBzVo0bFiwbdL9DttJzebh\nppLTgeARAAAAAAAAgLHGldA610j08Ibf1sOo64PmBkpoDcuOOK6ZCicpwDAqK2ycWDrweAQaDtu4\noJkPQSsdr81iq9xfKyvL/R3aGW53XL8jOP0IHgEAAAAAAADY1agSWsYYXWolutouF7ZDUDM1OteI\ny+2TZEcct0yFk5TNMyorbJyqdODNaFiwLYTQG7+pkbLEqBqmq92gRzZzXWomCiEcWXbPcfuO4PS7\nWbMTAQAAAAAAAEyhKqHVSo3auVfXh22vLdUTXWgYXWgkuthM5BUX5ZdqRnctZr2eRSfBXGaU932+\nSXR90NyQHk8HrcoK6054voOlA282S/VERd+1CiHo4Q2vdhHUSM2OIFyWGGVGylKjB9YLhTDduABO\nKjKPAAAAAAAAAExkWAmtPAStdbyMkeZqibKyD9JS/eQGKE5aNs+orLBBw0oH3mwGSzBebXsVYXTZ\nv6oEYyONAborm14XWzdn1hZuLjfvLAEAAAAAAABgTxJjdKaeqJYYeS8t1FOdaWSqJbEs3Uo36L6V\nXJc3TmamxknL5hmXFVadXzv3aqVxu5OSAXZQLjQTZUZqFzEAOi5wlBn1SjDWEqO1rpc/gWMamBbB\nIwAAAAAAAABTCSHogfVCG0VQI0uGlvpqZDG746SW+qoCDLsFkI5LNk+VFXbXYqalmlEIQUUIJ7Z0\n4EGqgm15EVQUo4NtzdTo0sA1SxKjGx1/2KcMHDrK1gEAAAAAAACYypVNrzxobIk0Kb5+Ukt9VQGG\nK5tea12vJDHbPm/XB/ky4+hCMzk2QZnEGC03Ui03jvpMjjdjjOZqie6qJVrteG0UQV4x22IxM1qo\np0MzyWqJ0XoeuL5j+BB0veO1kW9d05NeyvJmRPAIAAAAAAAAwMR8CFrrejWyyTJtqlJf55snb+F4\nWI+nIgQlRlqqGS2NCDBMggX2o+clpcZoqZFqacr9sFMIoRdsTROjLDGqQsYr3aBr7fzYBVsxGsEj\nAAAAAAAAABO70YkLw9OoSn0tN05W9lGlP5tnrRmf2+tnYYH9+NhroUF6wexUlbLMg4YGlrNyrFel\nLOm9dfwRPAIAAAAAAAAwsfU87OhxtBtKfUUssB8vc5nRSne68dz1sYcUtttLKcvzzYTsu2OMICkA\nAAAAAACAie21ZBelvqZbYM9D3B4HZ6meqPBhqn28D1qqs6zerypludu4rmRG+vhKVx+7kWu1G2SM\nUWqMjInBvPtWcl3eKBTCdD8bzBajHAAAAAAAAMDEKPW1N9MusFe9ojwL6AcmMUbztUTdCQNIXR80\nXyMrZtA0pSxDCHp4w6sTpI7fmfWVJUaNLOll3xFAOjo3+5wNAAAAAAAAYApzmVE+ZbZG1wfNZTf3\ngvt+ekXh4FxoJsqMdg0gdX1QZuL22G6aUpZX215FCGqVAaJRyL47eox0AAAAAAAAABOj1Nfe7KdX\nFA6OMUa3zaVqpUbt3O8IInV9UDv3aqWGHlQjTBre8SFs+x7sth/Zd0crO+oTmAVr7TlJr5D0LEm3\nSboi6fclvdw598CEx3icpF+V9DmSnuec+/kR2326pB+U9EWSliR9TNIvS/oh51xnf58EAAAAAAAA\nON6qUl8bRZioBBulviIvKd3jfjhYxhhdbKU630x0o+O1ngd5xcyLpZrRUj296cfvOJOGhVe7Xmnf\nZZxkvyr7brmxl28P9uPEB4+stS1Jb5X0eEmvk/RuSfdKeqmkZ1hrn+Sce3SXYzxP0o9P8F5PkPQO\nSRuSXiPpfklPl/RKSU9UDF4BAAAAAAAAp9qFZqIH1gt1/fgAEqW+ttAr6vhLjNFyI9Vy46jP5GSZ\ny4xWurtn1m30ZR11fdDiBKUsq+w7fiaH78QHjyS9WNJnSnqBc+4nqyette+T9FuSXi7pJaN2ttZ+\ni6SflvRaSe8v/3mUH5a0IOnznXN/WT73K9baNUkvstb+U+fcm/bzYQAAAAAAAIDjrir1dWXTa63r\nlSRmWxCp64N8mXF0oZlQ6kuTL7D36/qgpRrXDsfbUj3RtXa+69gOQaqmAu+DFuqTZRORfXc0TkPg\n+uslrUl6/cDzv62YGfQca+1uM+xXOOe+Q9LIsnPW2tskfbGkP+4LHFVeVz5+3cRnDQAAAAAAAJxg\nVamvuxYzLdWMQggqQlAIMeBx12Kmiy16xFToFYXTqiplOdgvalA1FXR90NwUpSz5BhyNE33drbVL\niuXq3uOca/e/5pwLkt4l6aKkTxl1DOfczzjn3jjB2z1ZkpH0ziHH+DtJVyU9dfKzBwAAAAAAAE6+\nqtTX7fOZ7pjPdPt8puUGPWIGTbrAXqFXFE6SC81EmdHY8d3KjDZzr8xI5xqThSa6PmhugvJ2mL2T\nXrbu7vLx/hGv31c+PlbSh/f5XvdM8F6fZa3NnHP5Pt9LH/zgB/d7CGAqjDmcZoxvnHaMcZxmjG+c\ndoxxnGaMb5x2exnjIUhXOlLujbIxa+e5l7Ik6EJdusa6OY7AXsf3o11po5ASbR/juZfyEHQjly7W\njT464bju+KDbmtJlvgdTuffee/d9jJMePFosH9dHvL42sN1hvdejM3g/AAAAAAAAAKeIMdKFuvRo\nN4xcYPcKaqXS2dpWmS/gJDBGOleXfJBWi6DNIv5zYqT5mrSQSvNdqV1IkyQT5V5qpXF/HL6THjw6\ntWYRGQQmUd1FwJjDacT4xmnHGMdpxvjGaccYx2nG+MZpN6sx7kPQjY7Xeh7kFfuLzGVGS3VK1eHo\nHPQcHkLQA+uF8iDVxkSFuj4oM9Jtc/RNOyonPXh0o3ycH/H6wsB2h/FeKzN4LwAAAAAAAACnWNUr\narlx1GcCHB5jjG6bS3Vl02ut65UkZlsQqeuDfNnv60IzIXB0hE568OgjkoKkO0a8XvVEmkWR3apn\n0rj3+sgs+h0BAAAAAAAAAHAaGWN0sZXqfDPZkX23VDNaqqdk3x0DY9qyHX/OuTVJfyHpidbaZv9r\n1tpU0tMkfdw5d98M3u5dknJJnzf4grX2MyQtS/qTGbwPAAAAAAAAAACnWpV9d/t8pjvmM90+n2m5\nQeDouDjRwaPS6yXNSXr+wPPPkXRJ0s9WT1hrH2+t/ZS9vIlz7oqkN0l6urX2swde/q7y8WcFAAAA\nAAAAAABwgp30snWS9FOSvlbSa6y1d0t6t6QnSHqJpL+U9Jq+bf9GkpP0+OoJa+0ztdXH6MnVo7V2\ntfzny865t5X//N2SvlDSH1prXyPpk5K+tHz/1zvn3j7jzwYAAAAAAAAAAHCoTnzwyDnXtdb+I0mv\nlPTPJb1Q0sOKWUCvcM6t73KI/6Ct3kiVF5T/k6S3SXp6+V4fttY+TdKrJb1M0qKkD0l6qaQf3e9n\nAQAAAAAAAAAAOGonPngkSc65G4qZRi/ZZbsdxRKdc/dM+V4flPRV0+wDAAAAAAAAAABwUpyGnkcA\nAAAAAAAAAACYEYJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAA\nAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAA\nAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA\n6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAA\nAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAe\ngkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAA\nAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4\nBAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAA\nAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcA\nAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAA\nAOgheAQAAAAAAEy/3mkAABTBSURBVAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAA\nAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADo\nIXgEAAAAAAAAAACAnuyoT2AWrLXnJL1C0rMk3SbpiqTfl/Ry59wDE+z/NEkvl/S5klqS/lbSf5T0\nOudcGNj2H0t6kaTPkTQv6QFJb5b0Kufcx2b1mQAAAAAAAAAAAI7Cic88sta2JL1V0rdJ+i+Snivp\npyV9taQ/tdae3WX/Z0h6i6R7Jb1S0jcrBo9+XNKPDGz7LZJ+V9Jdkl4l6ZvK93yOpHdba++ezacC\nAAAAAAAAAAA4Gqch8+jFkj5T0guccz9ZPWmtfZ+k31LMKHrJmP1/UtKmpC/oy1L6JWvtGyV9h7X2\nDc6591lrE0mvlrQi6fOdc1fKbX/RWusk/VR5Lt85w88GAAAAAAAAAABwqE585pGkr5e0Jun1A8//\ntqT7JT3HWmuG7WitfaokK+k/DSlv9zpJRjGrSJKWJF2Q9Dd9gaPK28vHe/byAQAAAAAAAAAAAI6L\nEx08stYuSXq8pPc459r9r5W9it4l6aKkTxlxiKeUj+8c8tqfl49PLY93TdKDku621tYHtr2nfHz/\nNOcPAAAAAAAAAABw3Jz0snVVj6H7R7x+X/n4WEkfHvL6PaP2d86tWGuvlftWXibp5yX9srX2FZKu\nSHqCpNeU7/XaKc4dOBbuvffeoz4F4MAwvnHaMcZxmjG+cdoxxnGaMb5x2jHGcZoxvlE50ZlHkhbL\nx/URr68NbLeX/Xv7Oud+SdKXS/piSX8t6WFJb5F0XbFn0sOTnTYAAAAAAAAAAMDxdNKDR4fKWvss\nSb8u6QOSvlHSl0h6iaR7Jb3ZWnvXEZ4eAAAAAAAAAADAvp30snU3ysf5Ea8vDGy3l/1vSJK19pxi\nybqPKmYZ5eU2b7bWvkXS/1IsX/dVk5w4AAAAAAAAAADAcXTSM48+IilIumPE61VPpA+OeL3qg7Rj\nf2vtGUln+vZ9avnvb+oLHEmSnHPvlfRJSf9w4jMHAAAAAAAAAAA4hk508Mg5tybpLyQ90Vrb7H/N\nWptKepqkjzvn7htxiHeUj5835LUvKB//pHysspOaQ7atnh/1GgAAAAAAAAAAwIlw0svWSdLrJf24\npOdL+rG+558j6ZKkV1RPWGsfL6ntnPuIFDOGrLXvkfSV1tofcM7dX25nJH2npK6kXyh3/3NJXtKz\nrLXf65zb7DvuMySdk/TmaU/+zJkzZtp9AAAAAAAAAAAADooJIRz1OeyLtbYm6X9IepKk10p6t6Qn\nSHqJYsm5z3XOrZfbBknOOff4vv2fKuktkh6U9KOSrkl6tqRnSnq5c+5Vfdv+v5K+W9JfKfY/+oSk\nT1MMNBlJX+ice88BflwAAAAAAAAAAIADdeKDR5JkrV2S9EpJ/1zSbZIelvRbkl7hnLvat92O4FH5\n/JMl/aBimbuGpL+R9Frn3BuGvNfXSvpWSX9P0lz5Xm+R9Crn3Adm/uEAAAAAAAAAAAAO0akIHgEA\nAAAAAAAAAGA2kqM+AQAAAAAAAAAAABwfBI8AAAAAAAAAAADQQ/AIAAAAAAAAAAAAPQSPAAAAAAAA\nAAAA0EPwCAAAAAAAAAAAAD0EjwAAAAAAAAAAANBD8AgAAAAAAAAAAAA9BI8AAAAAAAAAAADQkx31\nCQA4ONbax0n6VUmfI+l5zrmfH7Hdp0v6QUlfJGlJ0sck/bKkH3LOdSZ8r2+Q9EJJny7JS/qfkv6t\nc+7N+/wYwMSstc+W9O2S/n751Psk/Tvn3O9OsO8rJb1izCY/5px78b5PEtij/Yzvcv+WpH8l6dmS\n7pZ0Q9IfS3q5c+5vZ3/GwHSstc+R9K2KY7wu6T5JvyvpVc65R3bZ97mS3jBmk992zj1rRqcKTG0/\n47vcP5H0YknPk3SvpE1Jfyrplc65/++gzhsYZ4K5V5Le5px7+j6OwfyNIzOLMV4ehzkcx5a1tiHp\neyQ9R9Kdkq5I+j1J3+ecu7LLvs8Vc/ipRvAIOKWstc+T9OMTbPcESe+QtCHpNZLul/R0Sa+U9ERJ\nu07y1trvl/RvJL1FcWEzk/R8Sf/VWvtVzrn/sqcPAUyhL/jzAUk/IOm6pP9b0u9Ya/+Fc+7XJjzU\nKyX91ZDnPziD0wT2ZL/j21prJP22pP9D8Zf7fy3pdkkvlfROa+1TnHMfOrhPAIxnrf23isHNd0n6\nXkmrkp6m+HvFl1lrn+ScuzHBoX5C0luHPP+JGZ0qMLUZje+fkfSNkn5T0r+XdEbSiyS93Vr7DOfc\nOw/q/IEx3iLpK0e8doekH9Hw36uHYf7GcTSrMc4cjmPJWpspBoq+SNLrFG8Ef7LizeGfb6397Alv\nKmcOP6UIHgGnkLX2WyT9tKTXSnp/+c+j/LCkBUmf75z7y/K5X7HWrkl6kbX2nzrn3jTmve5SXMj8\nM0lf7Jwryud/TdJfS/oJa+2bnHPd/X4uYBRr7Z2Svk/xF5OnOOdWyud/XdKfS/pxa+1vO+fWJzjc\n25xzbz2wkwWmNKPx/WxJXyzp3zvnXtZ37D+S9G7FP2L/2QF9BGAsa+05Sd8t6aOSvtA51y5feoO1\n9orinZDPk/RjExzu3c65/3wgJwrswSzGt7X2HyguOv6Gc+6r+p7/TUl/q7hg88QD+QDAGM65jylW\nrdjBWvtGSY8o/q04CeZvHDuzGOPM4TjmvlXS/y7pG5xzv1g+98vl7yj/l6SnSvofExyHOfyUoucR\ncHp9hXPuOySNvEPAWnub4mLiH/cFjiqvKx+/bpf3+RpJNUmvqwJHklQubv6CpFsk/aMpzx2Y1hcr\n3hDxc9XCuiQ559Yk/aikC5KeeUTnBuzXLMb315eP2zJSnXPvUcw+/TJr7fLMzhiYzl2KY/xdfQvr\nlbeXj/cc6hkBszOL8V3N4dsCTM65T0j6LUmfXVYTAI4Fa+1XSPpySf9ykrKMwEkz5RhnDsdx9gLF\nKiu/1P+kc+5VzrnHOucmCRzhFCN4BJxCzrmfcc69cYJNnyzJSNqRIu2c+ztJVxXvMhjnKeXjsDTr\nPy8fdzsGsF+3lY8fHvLae8vHpwx5bSRrbd1aW9/XWQGzMYvx/RRJH3fO3T/ktT9XvAmAOx5xVD4i\nqa3YA2DQPeXj+6c5oLW2Zq1t7vO8gFmYxfh+iqRCsezdIH7fxrFS9s74McXx+nN72J/5G8faHsY4\ncziOJWvtHZIeL+nNzrlQPtcsS57v9ZjM4acMwSPg5nZP+ThsMVGKjXzvLGug7uUY95WPj536zIDp\nXC8fLw55baN8vHvCY32VtfavFBd62tbav7TW7paBBxykfY1va+2ipHMaP9dLzNU4Is6564q9Ez/b\nWvtaa+3/Zq29ZK39MsWSje+V9CsTHu4Z1tp3Kc7hG9baD1lrv3M/fwQD+zGj8X2PpIdHlIFmDsdx\n882KDddfVi1GToj5GyfFtGP8HjGH43h6fPn4IWvti6y1H1X8+3LDWvtGa+3jpjgWc/gpRc8j4ASw\n1j5ngs0+6Zz74ykPvVg+juqTsda33aNjjlGMaKDXvz8wlSnH/TvKf/8/FXu39Ht2+bgw4Vs/U7EX\n2Aclfaqkl0r6RWvt7c65/2fCYwBjHfL4nmauB2Zi2t9dnHOvttY+pNiv8YV92/yupK93zm1O+NZf\nqjiH/4BiubDvKP/9UyV924THAMY6gvE97ndx5nDM1H7+9iwzMr5H0tudc2+b8q2Zv3EojmCMM4fj\n0Ew5vs+V//4NkuqSXi3pIcUeSC+U9A+stZ/lnHtggmMyh59SBI+Ak+GXdt9Efyhp2uARcJxNPO6d\nc++x1v6hpC+x1r5B0qvK17+2/J9XvANmnF+W9GeS3lneJSxJf2Ct/XVJH5D0CmvtTzvnrk37QYAh\nDnt8A4dtqt9drLXfptiT682Sfk3SZcUSLi+T9PvW2mfuMv/+N8Xg/3udcw9WT1prf0nSX0h6vrX2\nx5xzH9jLhwEGHPb4Bg7Tfv72fK6kx0j69inej/kbh+2wxzhwmKYZ31WZ/lskfUZf/643lTe9vFrS\ndyneUDsKc/gpR/AIOBnOTrDNsBTo3dwoH+dHvF7dyb4y4vXqGKm1tjGkCfBC3zbAtKYd98+W9AbF\nX+ifWz73HklfKendij28Rir7fP3dkOcfttb+Z8XyBJ8n6fcmOC9gN4c5vied65mrMUsTj3FrrVVc\nWP8j59w/7nv9D62175P0Rknfq7jQPlTZdPoTQ57fKIOur1a8i5I/XDELhzq+Fedn5nAclv387flN\nkh5RzKqbCPM3jsChjnExh+NwTTO+V8vHN/UFjiqvV5x/nz7uQMzhpx/BI+AEOMA7Eavm63eMeP1u\nSR9xzuW7HONJ5TE+NGR/KZb/AqYy7bgvt/8Ka+1tinWlH3LOfdha+5nlJn+zj9N5qHxc2scxgJ7D\nHN/OuVVr7WWNn+sl5mrM0JRj/BmKf5f85pDX/qukIOkf7uN0mMMxU0cwvj8s6UnW2vqQUtHM4Zip\nvf7taa29R9KTJf3iiN4ue8H8jZk7gjHOHI5DM+X4/mj5mA557Yri7yj7mX+Zw08BgkfAze1dknLF\nbIptrLWfIWlZ0u/scox3KN75/nnaGTz6gvLxT/Z3msDkynq8/TV5n1k+/vdR+1hra5L+mSTvnPuN\nYZuUj/cNeQ04NHsZ36V3SPpya+1dzrnBcfwFio1R3zObswSmVt2N2xzyWkOSGfFaj7X2WZLOOed+\nbtjL5SNzOI7Cvse34hz+OZI+V9LbB16rft/+072eIDAjX1I+TlVKnfkbJ8iexriYw3F8/bWk65I+\na8hrdyr+jnL/uAMwh59+yVGfAICj45y7IulNkp5urf3sgZe/q3z82eoJa+2ctfbx1tpb+rb7NcVF\nx2+31mZ9255XbLr3IUlvPYDTB3qstQvW2g9Ya99qrTV9z1+U9J2S/tQ59xd9z18ox/KiJJV3jv1r\nSb9orb134NifLulZir80vesQPg6wzX7Hd+n15eN3Dhz7ixSzR3/dObcq4Gi8o3z86v4xXvrKgW1k\nrT1TjvFzfdt9m6TXW2u/oH/n8neWb5S0rljfHThssxjfb1C8+3dwDr9X0j+R9Bbn3OBNXMBhe1L5\n+P5RGzB/44Tb6xhnDsexVGbC/apiZtw/GXj5heVj74Zy5vCbE5lHwClkrX2mtu5yfHL1aK2tFgYv\nO+feVv7zd0v6QsW666+R9ElJX6rYhP31zrn+O2OeIuktkn5a0rdKknPuIWvtv1Ss5f7frbW/oHj3\n5AsVU1O/2jnnD+BjAj1lWa7/pjjuftda+58UM+depDgenz+wywslvULS10j69fK5F0j6A0l/Yq39\nCUkfUbxT5tsleUnfPMMSHMDEZjG+nXO/Y639TUkvttYuKd4xebdi89P7FfttAEfCOfcOa+1vKC6k\n/0k5xi8r3qX7AsWSF6/u2+UrFBdi/pWkHyqf+y7FBfjfs9b+pOKdlHcqfh/OSvqm8qYZ4FDNYnw7\n595nrf0RSS+x1v6WYgm8C5JeovImrkP6OMA4n1o+fnTMNszfOMn2NMaZw3HMvUIxq+43rLU/pDi+\nnyHp6yS9V9JP9W3LHH4TIngEnE7/QVu1cysvKP8nSW9T2fSu7JnxNMU/Wl8maVExW+ilkn50kjdz\nzr3WWntF8U6an1Ashfdniovt7xi7MzA7L1YMfn6D4i84q5L+SNL3TXInl3Puj6y1T5X0/ZK+Q9IZ\nxWaofyDp3znn3ntQJw5MYF/ju/Q1kr5H0nMU/xh4VLHZ7/c55x6c+RkD0/kaxVIuz1X8naSuOOZ/\nTtK/KZvxjuSce7+19omSXl4e47xi8+l3SnqNc+6tB3XiwAT2Nb5LL1W8seX5kv6j4p28b5X0/c65\nv579KQNTq5q0r0yzE/M3TpA9jfEScziOJefcZWvt50p6laRvUQxsPiDphyX9oHNuY5f9mcNPORNC\nOOpzAPD/t3c/L5dPcQDH34+oUaSmbCxYUGeBhfIPUChSoixMZGdhtnY2shdZqFlY+BGaNOUPoGyn\nZkHUiYVJWVhbWMzMY/Hc5zTJsNFzr+v12pz7/Z7NZ3t7d74HAAAAAAB2hDuPAAAAAAAAWMQjAAAA\nAAAAFvEIAAAAAACARTwCAAAAAABgEY8AAAAAAABYxCMAAAAAAAAW8QgAAAAAAIBFPAIAAAAAAGAR\njwAAAAAAAFjEIwAAAAAAABbxCAAAAAAAgEU8AgAAAAAAYBGPAAAAAAAAWMQjAAAAAAAAFvEIAAAA\nAACA5eZtDwAAAMA/G2PcX71WPVadri5X78053xljHFSXqjur++acv29vUgAA4L/u4PDwcNszAAAA\n8DfGGGert6pr1VfVleqJ6pbq+epq9Xn1ypzz3LbmBAAA9oOTRwAAADtsjPFC9W71a/XInPP7zfsX\nqw+qZ6oHqx+r97c1JwAAsD/EIwAAgB01xri1envzePY4HG1c2KzPVqeqM3POKyc5HwAAsJ9u2vYA\nAAAA3NBzHd1jdHHOef76jTnnbx19xu5U9W31ycmPBwAA7CPxCAAAYHc9uVnP32D/+D/d63NOF9oC\nAAD/CvEIAABgdz28Wb/+88YY447Nz2/mnF+c3EgAAMC+E48AAAB2192b9Ze/2Htjs/58QrMAAAD/\nE+IRAADA7jr+FN3p61+OMR6qXt08Xj3RiQAAgL0nHgEAAOyu7zbrcShqjHFX9Wl1bfPq3jHGwUkP\nBgAA7K+Dw0N3qgIAAOyiMcaZ6qPN48XqcvV4dVv1cvVmdU/1ZXVuzvnZFsYEAAD2jJNHAAAAO2rO\n+XH1UnWpeqB6qvqpenrO+WFHAemH6tHq9u1MCQAA7BsnjwAAAAAAAFicPAIAAAAAAGARjwAAAAAA\nAFjEIwAAAAAAABbxCAAAAAAAgEU8AgAAAAAAYBGPAAAAAAAAWMQjAAAAAAAAFvEIAAAAAACARTwC\nAAAAAABgEY8AAAAAAABYxCMAAAAAAAAW8QgAAAAAAIBFPAIAAAAAAGARjwAAAAAAAFjEIwAAAAAA\nABbxCAAAAAAAgEU8AgAAAAAAYBGPAAAAAAAAWP4AgExsfvB7hpMAAAAASUVORK5CYII=\n", - "text/plain": [ - "" + }, + { + "metadata": { + "id": "etHuMg8OIA0u", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "In the random model, we can see that as the probability increases there is no clustering of defects to the right-hand side. Similarly for the constant model.\n", + "\n", + "In the perfect model, the probability line is not well shown, as it is stuck to the bottom and top of the figure. Of course the perfect model is only for demonstration, and we cannot infer any scientific inference from it." + ] + }, + { + "metadata": { + "id": "_I_3h7lsIA0v", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## Exercises\n", + "\n", + "1\\. Try putting in extreme values for our observations in the cheating example. What happens if we observe 25 affirmative responses? 10? 50? " + ] + }, + { + "metadata": { + "id": "_B-K0Neyx7pZ", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "#type your code here." + ], + "execution_count": 0, + "outputs": [] + }, + { + "metadata": { + "id": "ulECHYwMIA0v", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "2\\. Try plotting $\\alpha$ samples versus $\\beta$ samples. Why might the resulting plot look like this?" + ] + }, + { + "metadata": { + "id": "21v-EuHZIA0v", + "colab_type": "code", + "outputId": "ac7f87d4-4b14-45c4-ace4-dd2e7aa2eb28", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 294 + } + }, + "cell_type": "code", + "source": [ + "#type your code here.\n", + "plt.figure(figsize(12.5, 4))\n", + "\n", + "plt.scatter(alpha_samples_, beta_samples_, alpha=0.1)\n", + "plt.title(\"Why does the plot look like this?\")\n", + "plt.xlabel(r\"$\\alpha$\")\n", + "plt.ylabel(r\"$\\beta$\");" + ], + "execution_count": 0, + "outputs": [ + { + "output_type": "display_data", + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABo8AAAIqCAYAAAD1mNOkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAWJQAAFiUBSVIk8AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XmYZFld5//3vRGRW1Vl7900zdIg\neFDUAVEYcWtRQNBHcdzGAVnckMEFURhHh5+i8IyOPYwoyjjC2CqijjsjgoACLqjIqAiDc2xpoKEX\nqqu7a8k94t7z++PciIqKisitMiuXer+ehycqI+5y7pIB3E9+v6dIKSFJkiRJkiRJkiQBlHs9AEmS\nJEmSJEmSJO0fhkeSJEmSJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmSJEmSBgyPJEmSJEmSJEmS\nNGB4JEmSJEmSJEmSpAHDI0mSJEmSJEmSJA0YHkmSJEmSJEmSJGnA8EiSJEmSJEmSJEkDhkeSJEmS\nJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmSJEmSBgyPJEmSJEmSJEmSNNDe6wFIkiRJ+0UI4Z3A\nTcBrYozfvc5ytwKPAP5bjPHF6yx3B/BA4EUxxleHEN4FfDHw9THG397Jse+EEMJHgYcCXxJjfNee\nDmaXhBBuAZ4DvCTGePMeD2dLQgip+efDYowfvQT3/1F24P4MIdwEvBP4WIzxxvW2H0L4UeBHgF+O\nMT53u/vcDUPj/dwY4/s2uc4t5Pv/5THGH73A/T8B+G7gC4HrgB7wEeCtwKtjjJ+4kO1LkiRpb1l5\nJEmSJJ31lub1KZMWCCHcSA6OAJ68znKPJgdHAH+0E4PT5oUQnh9CSM310gjPz1j/E3g1sK9CjxDC\nrzdB0U54G/kY//pCNhJCeAnwHuCZwD3AG4E3AXPADwAfDCF80YUNVZIkSXvJyiNJkiTprLcAPwl8\nagjhoTHGj41Zph8sLQGfEUK4PsZ415jl+sHSh2OMt+7CWLW+z93rAexznp8RMcYf2+sxTLBj1yrG\n+EZy0LNtIYQvAf4L0AW+Lsb4e0OftYAfA34I+I0QwiNijEsXsj9JkiTtDSuPJEmSpEaM8QPAHc2P\nT52wWD8UesPIz5OWs+pobxiOrM/zcwCEEK4EPmWvxzHiB5rXm4eDI4AYYwX8J+D/AtcDX36RxyZJ\nkqQdYuWRJEmSdK63AN9GrjD6H8MfhBBK4EuB+4BfA76jWe5XRpabIs9t1N/eeUIIDwZeSQ6ZrgI+\nCfwe8MMxxjPNvj4GPAj4phjjb0zYzuuAbwVeF2P89o0OLoTwOODlwBOBGeA24JeBV22w3lcALyCH\nDlcAZ4APkEO0W2KMvTHrPID8oPkrgBvJlQq3Ab8FvCrGuDyyfAk8lzwny2cCx4ATwD+Tz/H/jDEm\n1jE0R03fR0IIAM+LMd4ysuzlwCuArwIeQL6ubwV+MMZ495htPxZ4MfnaXgcsAP9IPve/tt64Rrbz\nXOCXyNf7WeTr8bXkNodngHcBL4sx/r9Nbq8gtw97HvAY8nk7Cfwf4PXD82tt5fxs4Xg2vf+R9T6D\nfH/cRA4aVsn3xx8APx1jvH8LY7iFfN+8F/jSGOPCNo7jo2xhTqUQwpOBNwMV8NQY458NfXYT8D3A\n55F/v08Cfwv8XIxxU4Hy0BxpAA9db86ppk3mj5PnH5oHPk6uMPrxGGN3aLlbGDPnUQjh4cAPAk8i\nf+f0gDuBd5CvxT8P7S4B7wbGfifFGFMI4QPAo4FHbuZYJUmStP9YeSRJkiSdqx/2fGnTgmnY55CD\nk/eQHwSvAV/WPDwf9nnAEWAZeOeYfTwA+BvgUeQA4feBa8mTz/8GQIyxBm5pln/euIGGEDrA1zQ/\n/tJGB9ZMcP8X5DDnE+TQ6P3Af1xv/RDCTwJ/SK7G+r/NuP4KeBzwi8Dvj56rJhj4B+D7yf+/4zeA\nP26O/RXAX4cQrhjZ1WuA1wP/ivzQ+heBvyQHEq/bzDGS53J59dDPv9T8/KGR5ebI5+JJ5Oqw/9W8\n9xzgj0MI5/yhXQjh35Gv2bM4e+7+GngC8IYQwi1j7oONzJDDqm8G3tds837g64C/CSF8+kYbaPb5\nRuBXyffd35Kvz983x/ZbIYTXDq2y2fOzKdvYf3+9ryaHS88hh3ZvJJ+Lq4H/D/jbEMIDR9ebMIYf\nb7bzT8DTtxMcbVUI4THA7wAF8I0jwdFLgD8Fvpp8Xm8h/549FXhzCGGz7fF+u9kH5FDx1c1/To8s\n9xnk38cryMHsHwMPB14G/PQmjuVTydfi28nX4g3Arzf7fAH5Xnxsf/kY41fGGG+KMf7jOpu9sXm9\nd6P9S5IkaX+y8kiSJEk619vJFTKXA48nP5Tt68939K4Y43II4T3kqonPIj8c7nvy0HIrY/bxcuCn\nYow/0X8jhPAU8kPfp4cQHh5jvI38YP+HyQHVg2KMnxjZzlOAK4F/jjG+ZxPH9rPkwOINwHOagIoQ\nwtXAn5MrDs7RjOulwApwU4zxb4Y+ewg5UOlXJb2meb8EfpNcnfOzwIuG9nUZOah5CnAzuWqKEML1\nwHeSKzQ+bbjyJ4RwHTlEek4I4VXrPbSOMb4VeGsI4Xubt35stEqj8b3kQOt7+1VTTVjzfvL1/CJy\nAEAI4WHkUKsF/NsY428OjS0AbyOHF39CDlE268vIIcsj+oFHU7X2JnLQcDPw9A228e3AvwWOA58f\nY/yXobE9hnzevjOE8OYY4x9u4fxs1pb237x/DTkomyKf/58ZWmeaHOB+CfAz5CBtohDCt5HbpN0O\nPCXGuOthRXPf/xFwlFyx9aahz55InjdtBfjykVDpCeR75WUhhLfHGP98vf3EGF8TQvgguSrtvhjj\niyYsejPwnc18Rv19fQfwC8C3hhBessG8Qy8mf9/9RIzxP44c6/c3238Z8G/WG+/QOp9L/u5M5KBd\nkiRJB5CVR5IkSdKQGOMZ8gNvOBsW9fVDobc3r38y8v7ocmNb1gEfHg6Omv2+jfwAHJpWT02A9E7y\n/25/zpjtfGPzesuE/QyEEB5BbjmXyG3Z6qF9nyC3rBqttIJcDQXw2uHgqFnvdqB/HM8f+ugrgU8H\nPgq8eGRfp8jt/hLwrBDCfPPRjeQqjttGW8bFGD9JDlE+i9zCbicsNmMbtNuLMX6Isw+7h9ttfTc5\ndPv14eCoWSeSwwuAF25xDB3g+4YrZWKMa5xtK/eUprXeevrX55XDwU2zrX/gbOvF57M7trP/ZwOX\nAX8/HBw166wC39f8+IwQwrWTdhxCeBrwWuAecnA0Gq7uuOZ6vIXcZu8HYoy/PLLID5Dv41cNB0cA\nze/Pzc2PW71X1vOnw8FR4xZyCD4NPHiD9R/WvI4Lel5NboX33WM+O09TcfgH5O+s1zW/U5IkSTqA\nDI8kSZKk8/VDn6f23wghHCW35TpOnusHzoZHTxla7gpyezvI1QnjvHXC+3c2r8MPzF/fvD53eMGm\nQuOrgZqROZcm6I/pthjjHWM+fzs50BneR0F+cAyTj+Udzeujh4KgJ/W3OW4upBjjx4APkitPPr95\n+8PkeVYeG0L4oeZ8D6/zzzHGD0yo5NqOdzVBxahx16B/PJPOwZub18eHEI5sYQwnJ1SMvY88/0+L\n3JJsrBDClUOfb3R9Pm8L49qUC9j/F623Tozx/eS5rlrkCpZx+34cuUXbMvC0JsTbVU1V2O+Tg9H/\nHGN81cjnBbliCja+V75kwufbcd73SRNC9quwJgZw/cWb11eGED57ZDu9GONfTPjOOEcI4RvIbRGv\nJ1c3/vuN1pEkSdL+Zds6SZIk6XxvIbeeenwI4bKmWuYmcqXIO2KM/ZDlveT5R74whDDTBBtPIv+R\n1q0xxg9P2P7HJrzfDzOGK4B+l9zK7REhhC8canX1dGAe+OPNPNgFbmhexy4bY1wKIZwArhl6+wpy\nhQjARyZs96PNa0Fue/chzs538tgQwqQ5V/rh0COBt8QYj4cQvgf4eeCVwA+HEP6cHD68Ocb4TxO2\ns11buQY3Nq9fH0IYG2aQqzw6wKcA680FM+y2cW/GGKsQwieBh5AfxE9y49C/N7o+V4UQ5jZoX7ZV\n291/v9Jl0jr99a4mn4Nx+/0J8rxiz44x/p/NDfeCFORWe18M/EmM8YfGLHMZuf0bwPObMGXUTPN6\nbQhhPsY4On/RdmzlXh7nx8jfW58J/J8Qwq3k37u3kb9fljcaQAjhu8ltBteA74ox/txmBi5JkqT9\ny/BIkiRJGhFj/EAI4Q5y4PKl5ACn34ruHUPLVSGEdwFfRa7QeTt5HhuYXHkAUG1hLCshhF8jt7l6\nHnluIjjbsu6XNrmpueZ1vcqd0UqcuaF/T3qAPLy92ea1Hwx9DmcrnibpVysRY3xtCOHvyK2/njr0\nn58KIfwV8MIY499vsL3N2vQ14OzxPGMTy85vvMjA4jqfrTWvU+ss078+3RjjpOMZvT47GR5td//9\n9dYLJfrrzY757OeGtvHCEMKvj6tw22FfN7TPLwwhPG5MaDVcLffsTWxznhw+X6it3MvniTGeCCH8\na/K8Zc8BHk0OdV8AnGkC4JdPusYhhM8Efpp8zz4txvinFzIeSZIk7Q+GR5IkSdJ4bwG+jfwX+b/L\n2VDo7SPLvYMcHj2p+Wyj+Y624/Xk8OjrQgj/nlxJ8JXkiqTf3+Q2+g/jp9dZZm7k58V1Phv3/sLI\n63+eUKExUTMvzNeHEDrAE4GnAc8ktz37sxDCp12MuW1GLJCrSp7azE21U2bW+axf8XVinWX616cT\nQmhPCFDGXZ+dst39L475bNJ6k8b8zeS5pp4AvII8Z9dumiO3h7wL+A/Ab4QQHjs8XxXnjjXEGHdq\nfq5d1xzHT5GD2hvIrTi/nhzevowcdL1owurfSq62/BmDI0mSpMPDOY8kSZKk8fqVQ1/UzO3y6UAc\nE1y8Y2i5G8hty5aAd+/UQJpqm78DjpHb1X01uWXXr0+Yt2ecu5rXB4z7MIRwGXDlyH7vB+5vfnz4\nhO3236+Ajzf//pfmdVzLsU2JMXZjjO+OMf4gEMjzSx1lZO6ni+SCj2eCsdsLIbTJLQMBPrnO+h/h\n7DxVG12fu7Zwr2zWdvd/28hn46zX2u65McY3AN9ErnZ5aQjhyWOW20lvjjE+hxxY/RXwCOC1wwvE\nGE9ydp6hnb5XLpoY4x0xxl+KMT4d+AryNf7O5r4c527gd8hzUEmSJOmQMDySJEmSxnsHeR6bzyA/\nQIXzq45o5uK5k9ye7abm7Xc28x/tpNc3r/+OXIkDcMsW1v+H5vWRIYRrx3z+tAnr9UOwr5zw+Zc3\nr+8dmk+nX33w9BDCkXErhRC+JoTw8KGfHx1CeEETwJ2j2W6/wuq8zzdQbHH5cfrHM24OG0IIsyGE\nbwwhXLXF7V4XQnjMmPcfT+4SsQbcOmnlJqx4f/PjRtfnXRM+3/b5uYD99//9FYwRQngCOTxbAf5m\nzCL3NPv/e3LFUQH8agjhuk0OfTtONPvskX8HTwHPCiE8Z2S5je6V60IIXx1COLbF/e/EfTxuPHPN\neMaON8b4VuA+csXi2Ps7xvgTMcavizG+dzfGKEmSpL1heCRJkiSNEWM8A/wl+aHt9zZvv2PC4n9C\nnpvmhc3PO9myru+N5IfpTye3lPrQVh7Wxhg/CPwT+f8DvHz4s+ah+ys4O8/OsP9Grjz49hDC40fW\nC8BLmh9fPfTRW4EPkQOA/xpCaI2s9y3kVoDvDiH05/R5FvDzwKublnXDy3eAr2l+/Ac2p99C7KGb\nXH49ryXPz/PkEMI3j4ytDbwG+A3y+LeiSz7eQfu25nz8WPPj/44xrjcvEsCrmtcfDCF8ysjYngh8\nC/n6/czIejt1fraz/18mV+h8Vgjhe0bWOUqePwfglhjjqQ32/9Pk37frgF8JIexKyDIsxvhR4PnN\nj68JIXzqyHgS8OwQwpcNr9cEqbeQg9D/tMndnWlerwkhjJv/6UJNke/dXw4hfP7ohyGELyWHRnfS\nhHZjlvmUEMKjthGISZIkaR9zziNJkiRpsreQq4keB/SAd05Y7h3kOVg+r/n5jyYst20xxpMhhN9h\ne1VHfS8C3kxuQfU44H3kgOdpzfsLwL8a2e+fhRBeDvwo8BchhD8FPkZuy3UTed6e18YYf3NonTqE\n8I3k8/J84MtCCO8iB3GPa/axDHxrjLEfWN1MrkT5WuDjzfL3kuf++SLgweQqlM0e9/ua8f1WCOFv\ngb+JMb58/VXGizF+JITwreQ5b34lhPACcsXNsWYfNwAfBb5/i5t+DzlouDWE8HZglTx31iPI7QL/\nwybG9qshhCeR2/m9P4TwTnKLwk8Bvpg8P9YPxhj/emTVHTk/29l/cy8/C/g9cnj2TOAfyW0TvwC4\nlnytX7qJ/acQwnOb9Z9CDjP/y1aPY6tijL8ZQngq8DzgN0MI/zrGuBpjfE8I4T80Y/jj5nz8M/nY\nnty8/h3wyk3u6p/JAdIx4B9CCB8Bfj7G+KYdOo6TIYQXkYPPPwsh/CUQyW0oH0G+hj3ge2KM9YTN\n/Ak5hPwmchAlSZKkQ8DKI0mSJGmy4Qqiv40xnp6w3HBFUowxjpunZSf0W9dVwK9udeUY49uALyWP\nN5AffP8r4CeBZ5PDi3HrvZwcML2NHP58C/C55PZj/ybG+O/HrPPBZtv/lVxh8+/I1UXHgF8EHtOM\np7/8veTg4GXAHcCXAd9Bbod2BzmYuWkL8/Z8F/C3zf4eD0x68L0pMcZfJ7cmfAM5yPpWcjXUCXKl\n0GPHzIe1GU8nB2JPBJ4DXA78NvD4GOOHN7mNbyGHiu8FPp98XR8NvAn4khjjT45ZZyfPz5b337RD\n+2zysT+AfOxPJs9x9H3ka31mdL1xYozHyfdvAl7RtL27GL6bHO48BvipofH8FDmY+wPyefh28nX+\nF+AHgM9f57vkHM05eB75vDyM3EZzXIXgtsUYf4H8+/Zb5BDomc0+H0EOg/51jPF3dnKfkiRJ2v+K\nlNLGS0mSJEnacyGEp5MrhH47xvj1ez0ebU9TKfNLwLtjjDft7WgkSZIk6XxWHkmSJEkHxw83rz+9\n7lKSJEmSJF0AwyNJkiTpAGjmHXoi8Ccxxr/c6/FIkiRJkg6v9l4PQJIkSdJ4IYTPI88V9ATyHEP3\nAN+2p4OSJEmSJB16Vh5JkiRJ+9eNwAuBTwf+EHhijPGjezkgSZIkSdLhV6SU9noMkiRJkiRJkiRJ\n2iesPJIkSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI00N7rAVzqTp065aRTkiRJkiRJ\nkiRpV1122WXFZpe18kiSJEmSJEmSJEkDhkeSJEmSJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmS\nJEmSBgyPJEmSJEmSJEmSNGB4JF3ibr31Vm699da9Hoa0K7y/ddh5j+sw8/7WYec9rsPM+1uHnfe4\nDjPvb/UZHkmSJEmSJEmSJGnA8EiSJEmSJEmSJEkDhkeSJEmSJEmSJEkaaO/1AHZCCOFK4EeAZwDX\nAyeAPwJeFmO8axPrf0Gz/uOBGeDjwO8APx5jXBhZ9tOBHwO+GJgHPga8AfiJGOPaTh2TJEmSJEmS\nJEnSXjjwlUchhFngXcALyIHPc4FfAL4R+MsQwhUbrP9M4M+BB5MDpBcA/wi8FHhbCKEcWvbRwF8B\nXwDcDHwL8G7gR4H/tXNHJUmSJEmSJEmStDcOQ+XRi4DPBF4YY/z5/pshhPcDvwe8DHjxuBVDCNPA\na8mVRk+IMZ5qPvqfIYTfI1cyfTm5igngVcBR4AtijB9o3vu1EMIi8L0hhK+KMb5pR49OkiRJkiRJ\nkiTpIjrwlUfAs4FF4PUj7/8B8AngWSGEYsK6DwB+F/jPQ8FRXz8w+iyAEML1wJOBPx0Kjvpe07x+\n89aHL0mSJEmSJEmStH8c6PAohDAPPAr4uxjj6vBnMcYEvBe4BnjYuPVjjB+LMT43xvjaMR9f1rye\nbl4/ByjIbetGt/MvwH3AE7ZzHJIkSZIkSZIkSfvFQW9b99Dm9RMTPr+9eX04cNtmNxpCmCLPZ7QE\n/H7z9o2b2NdjQgjtGGNvs/ua5NZbb73QTUhb4j2nw8z7W4ed97gOM+9vHXbe4zrMvL912HmP6zDz\n/j7YHvnIR17wNg505RFwrHldmvD54shyGwohlMAvAp8GvCzGeOdu7UuSJEmSJEmSJGm/OeiVRzsq\nhDALvBF4BvBzMcZX7dVYdiIZlDaj/1cE3nM6jLy/ddh5j+sw8/7WYec9rsPM+1uHnfe4DjPvb/Ud\n9Mqj/nxERyZ8fnRkuYlCCNcAf0oOjn48xvhd29zXmY32JUmSJEmSJEmStF8d9MqjjwAJeNCEz/tz\nIq3boDGEcB3w58DDgOfFGG8Zs1h/zqT19vWRnZjvSJIkSZIkSZIkaa8c6MqjGOMi8I/AZ4cQZoY/\nCyG0gCcCH48x3j5pGyGEeeCtwEOAr5oQHAG8F+gBnz9mG58BXA78xTYOQ5IkSZIkSZIkad840OFR\n4/XAHPD8kfefBVwLvK7/RgjhUSGEh40s92rgMcA3xRjfMmknMcYTwJuAm0IIjx35+Pub19chSZIk\nSZIkSZJ0gB30tnUA/x14JnBzCOGhwPuARwMvBj4A3Dy07D8BEXgUQAjhs4DnAB8CWiGErxuz/Xti\njO9u/v0S4IuAPw4h3AzcCXx5s//Xxxj/bIePTZIkSZIkSZIk6aI68OFRjLEbQngK8KPA1wLfBRwn\nVwH9SIxxaZ3VPxsogE8HfmvCMu8Gbmr2dVsI4YnAK4GXAseADwM/APz0hR6LJEmSJEmSJEnSXjvw\n4RFAjPE0udLoxRssV4z8fAtwyxb3dSvwDVsboSRJkiRJkiRJ0sFwGOY8kiRJkiRJkiRJ0g4xPJIk\nSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIk\nDRgeSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIk\nSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkacDw\nSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIk\nSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5Ik\nSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKk\nAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIk\nSZIkSdKA4ZEkSZIkSZIkSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRge\nSZIkSZIkSZIkacDwSJIkSZIkSZIkSQOGR5IkSZIkSZIkSRowPJIkSZIkSZIkSdKA4ZEkSZIkSZIk\nSZIGDI8kSZIkSZIkSZI0YHgkSZIkSZIkSZKkAcMjSZIkSZIkSZIkDRgeSZIkSZIkSZIkaaC91wOQ\nJO2NOiVOrdUs9xI1+a8J5toF81MlZVHs9fAkSZIkSZIk7RHDI0m6xKSUOLFSs9itaZUF7bKg1Xx2\npps4udrjSKfk6pmSwhBJkiRJkiRJuuTYtk6SLiEpJe5aqliuEtPtknZ5bjjULgum2yXLVV4upbRH\nI5UkSZIkSZK0VwyPJOkScmKlppegU65fUdQpC3opLy9JkiRJkiTp0mLbOkmXrEttzp86JRa7NdPt\nzf3dQKcsWOzWXDVzOM+HJEmSJEmSpPEMjyRdci7VOX9Or+Xj3YqyLDi9VnP5dGvjhSVJkiRJkiQd\nCratk3RJuZTn/FnqpfOOdyOdsmCpd3jOgSRJkiRJkqSNGR5JuqRcynP+bPdIDs8ZkCRJkiRJkrQZ\nh6JtXQjhSuBHgGcA1wMngD8CXhZjvGuT23gE8Ebgc4HnxRhvmbDcVwDf2yx3BLgLeBvwihjjxy7s\nSCTtpkt9zp/t/rWAf2UgSZIkSZIkXVoO/DPBEMIs8C7gBcDvAM8FfgH4RuAvQwhXbGIbzwP+Hvi0\nDZb7DuAPgYcArwC+rdnns4D3hRAeut3jkLT7LmTOn8Ngrl3Qq7fWgq5bJ+baBz84kyRJkiRJkrR5\nh6Hy6EXAZwIvjDH+fP/NEML7gd8DXga8eNLKTSD0C8DPAh9s/j1uuRJ4JXAG+IIY44nmo18JIUTg\nvzdj+b4LPSBJu+NC5vy5fHqXBnURzU+VnFztbekc1HVifqq1i6OSJEmSJEmStN8c+Moj4NnAIvD6\nkff/APgE8KwQwkZPSr8mxvg9wNo6y8wDVwP/NBQc9f1Z83rjpkYsaU9c6nP+lEXBkU5Jd5PVR906\ncaRzOFr2SZIkSZIkSdq8Ax0ehRDmgUcBfxdjXB3+LMaYgPcC1wAPm7SNGOP/iDH+/kb7ijGeBO4G\nHhpCmBr5+Mbm9YObH72ki805f+DqmZJ2wYYBUrdOtIu8vCRJkiRJkqRLy0FvW9efY+gTEz6/vXl9\nOHDbDuzvpcAtwBtCCD8CnAAeDdzc7Otnd2AfANx66607tSlpUy6Fe+50D5Z6Ba0tFNL0ajjSSSwe\n9G/LISnB/V1YrqCkoD2UD/VqqEnMtuCKDvzLISk6uhTub13avMd1mHl/67DzHtdh5v2tw857XIeZ\n9/fB9shHPvKCt3HQ/6T8WPO6NOHzxZHlLkiM8VeBrwaeDHwIOA68EzgFfGGM8fhO7EfS7jjagipt\nrmVbX03i6CGb8qco4MopuH4mB2OJRJXy65FO4vqZ/Lnd6iRJkiRJkqRL0yH6W/rdF0J4BvAG4APA\nL5Irnh4N/BDwthDCU2KMt6+ziU3biWRQ2oz+XxFcKvfclcsVy1WiU26cjHTrxGyr4JrZQ5YeXUIu\ntftblx7vcR1m3t867LzHdZh5f+uw8x7XYeb9rb6DHh6dbl6PTPj86Mhy2xZCuJLcsu6j5CqjXvPR\n20II7wT+nty+7hsudF+Sds/nWMONAAAgAElEQVTVMyV3LVV06/UDJOf8kSRJkiRJknSpOuhPRT8C\nJOBBEz7vz4m0Ew0anwBcBrxpKDgCIMb4D8CdwJfswH4k7aKiKLh+rsVsq2C1V9Otz21j160Tq72a\n2VZerrB3myRJkiRJkqRLzIEOj2KMi8A/Ap8dQpgZ/iyE0AKeCHx8h1rJ9aubZiZ8PrPOZ5L2kaLI\nregecqzNfKcgpWbOn5SY7xQ85Fiba2YNjiRJkiRJkiRdmg50eNR4PTAHPH/k/WcB1wKv678RQnhU\nCOFh29zP3wA18IwxQdWTgCuB92xz25L2QFkUXD7d4oFH2jzoSJsHHmlz+XSL0tBIkiRJkiRJ0iXs\noM95BPDfgWcCN4cQHgq8D3g08GLgA+R5iPr+CYjAo/pvhBCextmqos/pv4YQFpp/3xNjfHeM8eMh\nhP8KvAR4XwjhFuAO4NOA7wMWgf+484cnSZIkSZIkSZJ08Rz48CjG2A0hPAX4UeBrge8CjpMrjn4k\nxri0wSZey9m5kfpe2PwH4N3ATc2+XhpCeD/wncDLyBVPx4E/AF4RY/x/F3o8kiRJkiRJkiRJe+nA\nh0cAMcbT5EqjF2+w3Hm9qGKMN25xX78G/NpW1pEkSZIkSZIkSTooDsOcR5IkSZIkSZIkSdohhkeS\nJEmSJEmSJEkaMDySJEmSJEmSJEnSgOGRJEmSJEmSJEmSBgyPJEmSJEmSJEmSNGB4JEmSJEmSJEmS\npAHDI0mSJEmSJEmSJA0YHkmSJEmSJEmSJGmgvdcDkA6qOiVOrdUs9xI1OYmdaxfMT5WURbHXw9MY\nB+2aHbTxXqhL7XglSZIkSZKk/crwSNqilBInVmoWuzWtsqBdFrSaz850EydXexzplFw9U1L4wHtf\nOGjX7KCN90JdascrSZIkSZIk7XeGR9IWpJS4a6mil2C6fX7Xx3bz4Hu5ystdP9fyYfceO2jX7KCM\nd6eqhA7K8UqSJEmSJEmXEuc8krbgxEpNL0GnXP/hdacs6KW8vPbWQbtm+328KSXuWa64/UyPhW6i\nKApaRUFRFJzpJm4/0+Oe5YqU0qa2t9+PV5IkSZIkSboUGR5Jm1SnxGK33vAhd1+nLFjs1tSbfIh+\nKatT4v7VijsXe3xiscediz1OrlYXfO4O2jXb7+PtVwktV4npdkl7ZJztsmC6XQ6qhDYKkPb78UqS\nJEmSJEmXKsMjaZNOr+X5WLaiLAtOr1kpMclOV7GMOkjXrE6J2890ObFSc/dij08u9Ti9tnGAdjHH\nu9NVQgfp+kiSJEmSJEmXEsMjaZOWeum8SouNdMqCpZ5VEuPsdBXLOAfhmg0HaCdWajqtgrLMAdpC\nN3HHYsW9K5OP/2KNdzeqhA7C9ZEkSZIkSZIuRYZH0iZtt9bBGonxLsZcN/v9mo0GaOW4AK1VsFol\nji/XEwOkizHe3agS2u/XR5IkSZIkSbpUtfd6ANJBsd2k9bAktHVKnFqrWe4lavJxzbUL5qdKymJr\noUK/imW6Pf7s1ClxZq1mpTq7r7KAK6YL2uXmz+h+v2ajAdqk/bbLgl6duG+15qqZ1nmfX4zxXkiV\n0OXT4z/f79dHkiRJkiRJulT5DE7apLl2foC/Fd06Mdfe2gP3/WY35iWaVMWSUuLelYo7Fnos9s7d\n13Iv8aH7ulva136+ZuPawM22Jo+33QQxo23gLtp4d2G9/Xx9JEmSJEmSpEuZ4ZG0SfNTJdUWH3TX\ndWJ+6uD+mu3WvETjqlhSShxfrliZsK+ZdkkNW9rXfr5m4wK0oxuMt1XAQvfcOOZijXc3qoT28/WR\nJEmSJEmSLmU+gZM2qSwKjnRKupt82N2tE0c6W2/ptp9sZl6iOiWWujV3LFZ84N417lzscXK1Oq9C\n5px1xrx33+rG+0ppa3Mg7edrNi5AK4uCuXXG2y5zBVbfxRzvblQJ7efrI0mSJEmSJF3KDI+kLbh6\npqRdsOHD7m6daBd5+YNqXFu1YYMWc4sVi73EVKtgpUok2LCd3ehZ6QdQ6wVHAP3MoFMWLHbrdQOq\nvv16zSZFX1dOrz/e/iFf7PHuVpXQfr0+kiRJkiRJ0qXMp3DSFhRFwfVzLWZbBau9+rwH3t06sdqr\nmW3l5Yp9WCFRp8T9qxV3Lvb4xGKP46twusd5QcykeYmg32KuZrVKTLeKQQVNWRYsrNUbtrMbrWJZ\nWGdffb06MTtUxVKWBafXNq4+2q/XbNKXb1EUXDvbYmbCeHuJvRnvLlUJ7dfrI0mSJEmSJF3K2ns9\nAOmgKYqCa2ZbXDVTcnqtZqmXqMlhwHynYH6qtS/baqWUOLFSs9jNQU27LGgBBQVLPbj9TI8jnZKr\nZ0qKohjbVq3vvtWaKp3/eacsWK4S80M/d+u832tmW4Pl5qdKTq72KAs4s1bz8YUekCuLZlrF2NCh\nSnC0czZy6ZR5jJdPb3zs+/GazbULznTHn+OiKLhqpsUV0yULazXLVR5vXSeunSl58LH2ntxjV8+U\n3LVU0a3TulViW60S2o/XR5IkSZIkSbqUGR5J21QWBZdPtzYVXuy1lHIFUC/BdPv8B/qtgnMqha6f\na1EDrfM3lVvM9XLF0TijtUD9FnNXzZwNhApguUrcudhjul2SCmg1ny32Eme6FbOtgsunc5DVa+bO\nGQ0QNq47OjvmU2s1y0OhxNF2wfzU+pUx49ab28R6m9EP0CYFdJDvsfnp1iCMW+3VexYcwdkqoX4I\nWZbFOSFSt07UTcVRP4TcioP0OyVJkiRJkiQdZoZH0iXgxEpNL+Ugp06JM2t1np8owb2rMN3KQclw\npdCkmpGFbs2E3AiY0I6tgNvPdJlqlVQpcWK5plMkZtolaWSdfpiy2ozj8qmCdlly5fT5W96ormVS\ntRXkeZlOrvbGBh3bXW8r+m3glqv1q3j6NtsGbpydDMGsEpIkSZIkSZIOP8Mj6ZCrU2KxWzPVKrh3\npWKpl2gVOaQpCqCApQruWKyYaxdcOV2y2K2ZnypYHNO6bnmddnbdOnGsfW4Ic99qzVK3piwKbjha\ncGq1pgZWU0GvqlmtoUyJ5SqHSefuq2aqLHnEZeeHNN06Md+ZHFKMVlvVKXFqtWKlOht2zLYKKGq6\nS4nrZktOdxNL3Zq7l2tSShzrlBwdScraTZg0XKW13QBpt9rA9e1mCGaV0NbtZiWbJEmSJEmStJMM\nj6RD7vRaTVnA8eU8T9G4dnOtAqZbBatV4vhyzRXTeZmqPj8oSinPTTROXSeOTrWa5RLHl4fCmzqd\n1/KuXbZo1Sl/E60k6gSJREHBkXbJtbMF3RoSudXd6L7mp8Y11sv61VbtghyajQlQFnqJk6sVi73E\n3Qsl1xxpc2otAdBplSz0EqfWesx1cuXTcMAyaT6nrdjNNnAbtSrcyRBM67sYlWySJEmSJEnSTjI8\nki6Svao6WOolTncTVZpcMdTXLvP8Qme6ORwZ11Zt0lC7dWJuqK3afatnW+X11xvX8i6HMCXtds1c\npzyvAqdVJBa69TlB0UYt3IarrYYDrFGtAu7vwWoFK1XF1XPlSLiVH/SvVDkIu3a2dV6ANDqf01bt\nVhu44VaF69mJEEyTGeJJkiRJkiTpIDI8knbZXlcd9EaqfTbSLguWeon5qcT1M63z2qrNtgsWuucG\nUf22av15ieqU27/1H5b36sTRTjGx5V2nLJguoSTRrc8NPNplXm9+6uy+SvL+7lzsjQ3iTq/lcz0a\nYI06uZqrsWbaeR//7/4eV40JUPoBy32rNVfNnPt5Web9XT59YcHLTraB64dn48KKcXYiBLtYDlrr\nN0M8SZIkSZIkHUSGR9Iu2g9VB0tjqn020iryeuPaqh3tlJxaq2hztq3aaFu3hSa86asSHO2ULHWr\niZVLrVbJXAt6FHmOpKEWbinlfVVVzUoNs2XBAkwM4taqPMfS0joBSt3MszTV6odiJXcu9LhmbvyD\n+06Zt3fF9LkhRacJ2/bT3D+nR87/ZuxUCLYTxgVEsy1Yq/OcWwel9dthDvEkSZIkSZJ0uBkeSbvo\noFYdpKF/j2urNt2CblVzrFNydExbteXqbIVRr07MtQvKopgYHEE+Byt14rq5FldMlyys1SxXOTwo\ngGNtWKSg1SrGns/hIO7EUsVcu1g3QFns5rmgzlHA4lrNsZEApU6JhbWaxV5iuVrjsqkWs62Co021\nSz35sPbE0oQKr/XshxBsUpVeSokPn65Yq2rmp1tcOX3use3X1m8HPcTTxXfQKuskSZIkSdLhZXgk\n7ZL9UnUw1yk5vVZtKUzI1UQj7dmG2qpdP9caVFSNG2sNtMjBUasoBu3sxrW8G12vv6/56Rbz5Iqj\n+U5Bt86fbyaIqyi4a7niypnJX3Er1fnjmGoCrGPNzyklTq7mB7llCZ1WDvmKomChlzi11mOuU3LF\n1P56qNs//9tZb6+sV6V332pNUcCRqdbE+adg/4Wwux3iGTQcHnvd3lSSJEmSJGnU5p5qS9qyC6k6\n2EntomCuU9Kt08YLk8OauU5Je50HlP12drOtgtVefd626zqxWuV5lq6dPfuw82inpFpnGOO+kOpm\nvqTFbr1hcNQ3P1VwZi1Rp8k7G/2oVycuGzpP+WFuxUqdmGoXgxCgv167LJhulyx0a850a9I6+7rY\ntvvFvt56dUrcv1px52KPTyz2uHOxx8nVat1zvBWTqvTqZs6u/vnvlAW9lAOlcfoh7E6N60Js9zd5\no/VSStyzXHH7mR4L3RxmtoqCoig4003cfqbHPcvVvronNVk/OF2uEtPt8rzAsf9d06+s87pKkiRJ\nkqSLwcojaZfsl9Zhc+2CXl3QqxPdOq0bwHTrRLuAY52Cufb6Yx/Xzq5f/XDNTAlFwVTr3DiiLPJ2\nV8dU/XTrxLH2+e8d6ZQsdNOWgrijnbzfxW7NsanzK1D6VWFrdW7RVzTjfuh8i3uW84PZk6vjw4zR\nTK0sCmba5Z5Vu4yrPulW9djzv55+hdeoi1ERsV6V3sKYObsmzT/Vt19avw0fTZ0SZ9ZqVqpESvk+\nmm3nOcRGj2G9q7Yf5lHTzjqo7U0lSZIkSdLhZuWRtEt2q+pgq+anSuoE1862mJlQKdSrYbVXM9Mq\nuHa2RUpwtFNsqtKk387ugUfaPOhImwceafPgY53zKnv6rpwuaRU5zBpW14mjU2e/kvpB1tUz5ZaD\nuLIouGam5ORIdUpKiftXKu5eqqgTVM2yFTlEumspp0mrvYrl3vlBW69OzAwlGf35nKZb5UWvdlmv\n+oSi4ONnety7svkqhbpOzE+d+18JF6siYr0qveUJ174sCxYmVOn1Q9i9Ntcu6FY1965U3LFYsdjL\n16ks83Va6CbuWKzOuU7d5p6aZCtBQy/l5bV/9YPTzVZV7qfKOkmSJEmSdLgZHkm7ZDdah21re0XB\nkU5JL8FVMy1uONrmWLsgpUSVEgmY68ANR9tcNdOiWyeWq8QnFqpNt8QabWl291JFr06sVuc/uC6K\n3MpuulWw3Ku5fyWvt9CtuWe54t6VHsvditlWMaia2M7j7wcfawNpEFL1K2hW68RUq+DYdA7VeinR\nouCy6YLVbiKR+MCJLves9FhcO/chbZ3gSFPVNDqf0260HJxko1BnqlVy+UyLhW7N8eWNW+r1K7xG\nK2AuVlCxXjg4aeidprpmkv0QmRzrFNy1WA1aOI4N31q5Eq9/ncaFeH0GDYfPfmlvKkmSJEmSNMq2\nddIumWvnsGUrFTOTWoddqKtnSu5aqgZt6+anW8w3n61M5deyKFirau5bqblyphzb8my0JdYDZkvu\nXU1jW5pNtQruXqqYatVcOzu+dVYBVHVNuyi4rAlhigQFm2/jNUmrLHnI0TY1sFolTq9WVM0xQA6C\nWgUUKdFqwV1LiblWwUynxUwnsVbDyW7NyTU4OlUy14LZVg6c+tUhV06fbdW2Gy0HJ9lMqHPldEmv\nTqxUNfet5uBwnOEKr2HrtZIbpx9UXDUzvpXcJP3gsVszaLs32yo4OpW3s96m1nt8vp17ZlwLwLl2\nwfzU1o6p777VxHQ7B2vraZe5Eu/4csUNR9oT93UhQcNet/DTePulvakkSZIkSdIowyNpl8xPlZxc\n7W3pwWCuOtj5h7xFkat4+nPXlGVxTvDQb1u3XKWJwdGwTpmDpg/d32N+uhwbMHRaJQ86WnB8ueLj\nZ3o84EiLqVZJSrnKYqWqKYHrjnTOCWH6huds2W4Q9+CjbZYrWKlqFtfy+3WdKAo40i64errFh09X\nLKwlZtsFV8yU1CmxUiVWKrh8qqCb4J6lHsc6BZ96WZnDrrKkW+WH/cPz1kwKM3YylBgX6gzPpzMc\nwFw9U3JyLXFypeJoJ7fXGz4/dVNxNG6+ot0OKobnUlruQad1Nnhc6CVOrfWY65TMtGBxUuu6Cdve\nagg7bl6nIiVOr9XcuZiDuiPtggcdaXHZdGtT16x/na6dbXF8udpwvrEErFWJK6cnL2PQcPjUwHa+\n8a07kiRJkiRJu83wSNol/XZxy9X6D437JrUO2wn98KJbJ8oSlroVAHOdkkTiSAcedLTFJxaqscHR\nuHBiuVtTJ7hiZnLQVBQF1821Wa1qulWiUybuWckt7a6YKgfVJeMMTw5/1cz2grjLpttcDnz4VJ7P\nqdMuz7kWx5d6zJTQmSqZLuDe1Zqqzg/xy6JgpQcznYK5dslalbjtTMXD59vnhCoL3cSptYq5dsEV\nU+eOb1wo0X9QfKabOLna40in5MrpgtPdxHIv0WtCh4J8fdpFcU7QNBzqpJS4b7Vmacz2cwBTM9cp\nueFoiyKl3BatuX7znYL5qclByG4GFf22e70E0+2SY1OJhaFwsF/htlIlShJVzXlj6daJYxPmBtpK\nCDs6lpQS965Ug3PaaZV0gLU68eHTFVdMVSQKZtsFqSgmBoH965TbNLYG12k0uO2HeHOdkmMzJWe6\nk8+fQcPhs1/am0pbtdOVmpIkSZKk/cfwSNpFo+3iJpnUOuxCjYYXZQFL3VxV060Tp9cqliu4qpND\nkNFKk0nhRJ0SJ1ZrSFCe7vLQ+c7YtnTDodNKlXhgK7equ36d1lzDWgXcudRjtSo51a3prlQc66wf\nOsH5Qdxcp+QhnZKFtVxdVeeDo13ADcfaLK7V3LlUcXqtJlHkOWJSQdmBa2ZKTq4mWq18DPet1lw7\nWwyOt10WtIGFbk1JwdxKj8Ve4uRqxZ2LNe0SLp8uOdI+d9ztsqBVwB2LPW47lXjAXMmZHoNzDXC6\nWzPXLujVBSdXa450StaqXPmUK7jOhh6jhgOYXp2P44FHNv+Vv5tBxWjbvaOdklNr1Xn/hdQq4ORq\nfkA5XVZ0WgUzrRzK1nXi6JiAaKsh7PBY1junrQJOrFTctwqXTZVM94pBO8bhILBfxTUcvhVFwVUz\nLa6YPvceLIFj7YKjQyHeeuGbQcPhs5/am0qbsdk/ihhX0SpJkiRJOlgMj6RdtFG7uI1ah12I4YqK\nqVZxXgg01cr7OtktONVNrJ3pcfVs65z1Jz1IX+wmplsFrbLgZDcxu1ydM6/RuNCpU8Inl2tSgjsW\nckuyce3qRtdPwGIrcc1Mi+PLNSfX6kFFzbj1h4O4/l9G373Yg7I4Zz6dM2sV96/A8aWaM70cGl0x\nk78S1+qSE0sVVQVn1uo8V1JRQAvOrCWmyporZs49V6dWKrpVwSeXKo50Sk53a1IBvZSPu1PUHOsU\nHJlqcWUzv1P//LZKuO10j2PTrXPOdZs8X9N9NVw7m6vYTixVPOBIvp4bzXsEZyu47l2pueHououe\nY6eCitG/Ticl7lupuWroXiub6qrVKj9ETylxcjWHLK0CpgpolQVVyi3s7l+tuGxqdGasrYewoy0A\nJ53T/sPSijxX1lQrz2N032rNVTOt8+YCu36uNTZ8K4tz5xsbO6Yx56z/F/3rtfCbxKBhf9tP7U2l\njYxWao4a911ogCRJkiRJB5fhkfa9g94apSgKrpltcdVMyem1mqXe5luHXYh+RUW7YN0KlekSeqng\n7uUeNQxCoPXCiZXqbJVSuwlI+g/SJ4VO7bLg+FLFtXPtwTaOj4ROMD60Wu4l5qcKrp0tuW81V2cs\ndGt6dRqsPxzEXTVdnFtxVZ6tFFroJU6t9rh9ocuRqRbtFvTWzj3OqTLPY7TUq1hdSlzTBB3tIgcY\ny1XispRb26WUuHu5olXCal2w3K2Zn4ZuzSCgawG9OnGmB2VZc7zOoUj//N6/UnOml7h85vzr2C4L\nenUanN+KghMrFSu9NPZ6jtMpC1Z6NXUz5s240IqISX+dfrqpRLtjMbf66weAV06XHF+u6VY1J9cS\nVUqD81cDsyVUFJzu1kyVMNsuB/dPL7GtEHa4BWCdEksjc0n1nVytqVIaXIvFbs2xqRZL3Zorps9+\nDw23WtxO+JZS4v6Vil7z+zX6F/39c/OALTyQNWjY3/ZTe1NpI6NVo5MMfxdeM+v3jyRJkiQdVHaz\n0b6VUuKe5Yrbz/RY6CaKoqBVFIM2Ubef6XHPckVKaa+HuillUXD5dIsHHmnzoCNtHnikzeXTuxMc\n9SsqOuXmKlTaBXTrgrUmpOg/SJ+0TuLsOS+KZq6bbl5vvf3VQ9eqU56t3hg2bv3+av32XzccyS3A\nujWcaO6B+U7BQ461uXqm5O7lXLUy3S5pl3l+ml6dN9IuC5aqxFKVq4iW1mrGHeZsp6AsSqqUlxs+\n9rLI1VcA9yxXuQVeWVClRKddcHzp/G32P1/sJtbqxF2LFZ0yt8hb7uVKrv42R7WbuYTqlEO0Ty71\n2Mpt06sTc508X9JmzU+VVPX48dQpcWq14pNLPe5a6vHJpR6nVyuqKjE/VQ7+On34GvT135tu5Uqj\n48s1KaVmbqCSpV5iuXfuODtlwWKVA60bj7W58VibTlmwVuX5ifrX/prZrf2V+3BruYWhIGn0WJer\nc+djWqnyeSnLgoW1MWPt1sy0GNxzm5FSDtRKOO+c9fc722lRFnDnYm9T33sGDQfD1TNl8x28/jXd\nrfam0mYM/++Kzeh/F9YH5H+jSZIkSZLOZ+WR9iVbo1yYfkXFetUUo462c9UMCVqcP//RsH7DsF6d\nONLO/y7LgtOrFUvdyRUxow+x+6FTv3qjTonFtZq1OnGyPluhNd0cS3/9ssgVW/NTsNqruXa25Ew3\ncfdSxYnlitUa5qcKWs2D8+E5dfphzUyroCJxYiUxP33+eBNw5UzJUjdXOc10CqbKgoJ8753p1rSL\nHKNdO9vik8v1oFLmxGp1TgvAvv49W5JYqxkcb1meDSWOTTjnrSLPq3S0U7Lcg9l2YrMFJVWCK6Zb\n686nM2pcRcSkObAATq7VdAo4upLDo34AODzvVS8lPna6R7uAmU5BqyjpFFAWiWtm2yRgpl1ybKpk\nsZvXSSkHlLNtuOHo2bmyLmv2u9qrt12FONxabjggGrbYzVViw/rPQjvN9Zzn3Pm91qrEUq+gV8NV\ns5sLiO9bzVVXlx/prLvctbMt7lisOL5ccd3c5P8KN2g4OPayvam0WacnBOzrKcv8RwuXT1t9JEmS\nJEkHkeGR9iVbo1yYfkXF6dVqYjXFQrdmtYJ716AALivg9Nr/z96bxFi6relZz7fW3+0ummxPd++t\nW1X3RllWqRBgCzGyCwkJiQGdGIBl4YktVB4ggzyiVAgJCQsPoIzoZMseGJCYAAIxAokCxADZVlUZ\nbMe9dZvT5snMyGh38zdrrY/B9+8dOyIjMvM099zMvP8jHUWeiL333639R+b37vd9lUlhsWg75e23\nh8oLy5BICpPchtO5E47qwDh//jokVU77OK7PFh25EyonTAq3cW/MCsdH5x3P6kSeXQoTISnplp4k\nVeW0TZyfJPZLc2XUvbNl3iln7WU02rpTZ9WZWFN5cyCtojK9FucWVBk5oVMTlqpcQJUuKSNv4sjE\nw27pyD0sw1WnUeT2T1o7gZMmUeW9QJIuRQt9wfMyJ5v4vkkuzPvotJcRkjLOBCfmfPoi3CmFH5xF\nFl1CBI7rRO5g95pjLiSl9I4HI8ciJB4vIh9MPc9qE5qcwLyzc90mpRVhXisjl5jk8JNzc+8UzkQy\nJ8Ks8FeENL0tck/go4uOwrsvHGu5Lavc1FEEVyMaTYxV6phATETNRft1Z/ueOaHMzMUH8OFFYKe4\nvd9r/brnbWLnFZyIIsL7E8/ni0DdJbwfhIa3gZ9XvOnAwKuy7dR8VfLeNfuqH1oYGBgYGBgYGBgY\nGBgYeL0YxKOB147rJfYvYx2Ncrca4pnWrAfh190UqsppY5FuXrA+oP7HdbQBduUjMSk7Lxj2THLh\npFFm1yKxlhF2yhu2F0x4meXw2TIhTlg2CcUEmN1cGOfCRQej4up1Two7vTNpuycJ4Mkq0SeIkTnh\ntA4sQ+K8S5vB67KFNnoejhxPa5iHRO4dLrf+I+esU2nSd/UEVTzCTikc1/bihRNUYVY43hn7TddR\nEy8dQ9vn2bN2UZlYsu2gGhfCMinT/nnbosXa0XUba+3nTul4Wlvn04uGeSEpvu8TWr/ASRNf2h+2\n3Vc08nBSKx9eBDpVMuc4qhN3KsdO7kjIle6iJiQU5QenHbPSU3jrn1p3GI29Y5mUwgmNKqEVdgrh\nuI50iRtF4C4ps+zqcW5cUMGcXO9P/ZV+oNMmMMndxrl0E9u9TleEpC1x9ekq4BCaZA4pBGaZ26yB\nzxaR887eC3tbDrYEvDPyPFnFvp8LHoxuFnNOmkjhuLxOL0FEuDfOmGYmtA1Cw5vFdo9f6H/fCTDO\nHZnY+2l9nxkYeF24TWB/lecNDAwMDAwMDAwMDAwMvJkM4tHAa8cQjfI828PGV3FXrEfQ28OetSCw\nHuJfxzvh/sgRgKdN4uFEX+CUgGnmmOZXfy5bxhbbngkCF62JOYV3dBHO60jhBQUeLyMfRzjY85y2\nyjhz7JTWbRWSMvKyOUbfu3ZOGuvJaRNMc0fprfvm44u4iYBbH3eTlE/ngXnn+JWdjGe1deU4gSoT\nygCrkCgzISmMnGy2XxZflKwAACAASURBVPbupEzMhbTeF3PzwJNlpFPrPfLiKBx0KXGySjxeRRsE\ne2GU2+stkzJfWu/R/coi2dZL3SIArwtnyrxNNL0AJWrXvfLCfmG9QcugG8fLmpCU2D92LUg8Xgac\ngHI1bm5baFlHnD1aRrqkzEPffeWFndIRk4mMTVQ+vojcLZXfuJeT+cv33SoqdYSLoOxVcNrYmlvv\n37gQ5ksFD5kIQZVlZ/sfkomN+9XV93FKynTLZaWqvXBoXVHxmqFqO9byqIV7xfX1a++nRZf4dB6o\nMkcXFSWxDFwVV4GzTuliArH/f1DZsTxrEoUTxrmj6R2Qa7ePg77HyXPcJM6byBP0StTc2iWkCu9N\nsi/kEsp78fG9iR8+1f+GsC3KOoHzTjcRkADnXWKcCSEJp00a3GMDrxUvk7ZDSny2CJy39vvHC+wV\nwsPx2/n3soGBgYGBgYGBgYGBgV8EBvFo4LVjiEa5ZHvYeL1j5vrQf3vAuHZUbA97rg/xr7MWL6a5\no+4iny0CD8fZraLE9/cynta6cb90SRlt3VFOm0SX4KSOIHC/cpw0SpFBpY7UP895OK4Dny8ds9Lc\nKMc17BTmctkr3XOOqS6asFVmwqKL/PQ88XCseFG8uzriypyQFcJpa4LOndKBCItOcSSaDC4aZezN\n/bQtxo1zYR6UgAlI6315Vke6wrGKkPeC0kWbWIbIcZ24P/b4PnZxlZTFyjqWZoWQeaEO5pq6Xzkq\nJyyi9hGAW3F8vWNrLYZpMmFtHpS6S8SkvD/N2C+tC2kVLvuBprn1PK3dMU9WFh/3nZ38ObHxen9Y\nJtDExMfzyCIomYNlPwyclRY1uKYOyh+dBw72Ltdf6DulSm+xiU9X5jDbdl+VHlpVchEysXM0SULu\nbT92tyLquqSMrzncjq+t5duGmrmzQfxJp5vzevX95JgWnjoqoPyDk+65aMQ2QRcThXe9Kw1OG2Wv\nVFadOZ7W53Etfk0Lt3FKiQh3K89+6XhWR2K6FKHWLqHPlvFLCQTDJ/rfHLZ7/AovPFk93+mXAU1U\njnuX2tDpN/A6se3U3CalxI/OAye19f4V2aWT8/Nl4tkqsQhwsJvh3Ku5KwcGBgYGBgYGBgYGBgZe\nDwbxaOC1Y4hGMbaHjTdF+F0f+m8PGHcKx2kTGHkTP5yYm+Imx9GadX9RUDjYK3i6iowzG2beJEoA\nPBhdRoeFmLhXeZa9q+eiTSyC4r1wt3ScN0pEyZ1jr1AuOnvtRRuZVY5VSmTBkTnoVCmi45fGdtzX\nHVPzVkETZeY5a63TJwFnbeJOJTcOWksvnLdK6aDIhFnhmBWO+yPPyHc4sXOwPRdL/aenY1I+mNiq\n/LwXWEaZIyRYdJFlp6xioo4WPSUIq5QQTKRoVXlSR57V5pTaLR3LLlHnjnsjx8lFYFZcij1HdT9k\n3opqSwqjjD6Wz4Sy3z9q+eUdz6zw7BQ3X9vjJlHHl/fp5E6oQ+QfnnZEMTGw6tddk8w59mSlV5xZ\nVSbMO9vf+71yuOr7kRat8lETGOWO0rnNe3qZlNS7kzS3SMD1+ryXO5qYWHTKrLB9yORqnNs61rKN\nSpOULsE0g5EXpjc48TIHqwgxJR6v0nPvp71C+PFZ4NEqUXfKeRtYtp73piYgiZgAtI4z3CuFiPLp\nIjHNrm5v/X4cxcR0nD93jh0m9E2vdVV92XHqMIZ9PbnJKbrsEpkXSm8i4m2dfmsR8rhJ3K380Ok3\n8Nqw/nvFtniUUuIfnHTmAr4hdjPz5jw6axN/8KzjN+7mg4A0MDAwMDAwMDAwMDDwBjGIRwOvHcMg\n1Tiq060Dxm3y3vWzPWB0IkxyB5JsiJlMBLmNoGwi2bqY2BlnNAmiciVm6zoKZGJCl6q5xk7aSCHC\nNDdRoModSZVV33MDNozfKfpeoC4y9o6kJiZNvGNvbMKMAmc3OKZCH1OWVFl2yvszE0a8yGboep3M\niR2nCCEmMmePiQq/tp+zDHDeRoJeimWTTLhfZXy+SJS542hlLqp7/Xme5MInc6XIrK8pKNztXSuV\nwlGT8Jg7KXfmXJl3FudWR+W0Djwcmeixdh2dNs9f9y5a/86TlcX1TTLHXun5fBn58CKwX3Gld2hN\nUuux2o6vu/VaqvLJPHIelMLZddu+zl4EL2ycYXcqu46Fh6NV5G617oKyDh8VIapQXneCidiiccqq\nS+AdSUy1m+SOi0656BKF4zkXkKp1Lx2vInkm/ZqwSLt5UM7a8NxzABzCT84DReY253XTmdQlqswi\nFGeF56xLnHWR+nzdg2ViqFPY64VJ7aP23p88f06TrkXI57fj+zW42/9s7R4MyYTR3L/6XaxLyk7+\n4nvDwDfLbU7RpMrTOuEFqsxEyjK//VpnvZN2X3Xo9Bt4bVj/vWIVdXMf/dF5oE0WAXud7djZUSas\nQuLwLPDH9ovnHjswMDAwMDAwMDAwMDDwejKIRwOvHbdFo7yIt22QunZX3OQ4uombBoz3Kke3tKH0\nsybe6joKVj/DXumuRIQ9GHke99031wWszUA8KNr3znxrap0tfil8fBEQ7FPHAMvuZvEqKeyWnv2+\nq6pLyiiXjQPook03OqYURYGLJl2JmtspHZ8uIvtbsWfb5/SiSXTJ0YZEkSmzXMidMCsydgqLk7re\nIdQl5d2JI6rFtD2cXI2QCn0fkReY5VviQgRRGxK3UWlToksKCpNamDhoEnw6D3x/N+OzVaJJkbMm\nMcsdPmcj5p23yk5hLhjfR/mJCO+MPU9WEU2JeSeEPu5KeufQaR0ZZ3YtXxZ7ddyYUywlE4iqLePM\n9jPXPUXnDexWNiBvonUz7ZSeNlnU2zgTU51uoXCCFI5CQFSovD288ra+3p9mV66hxe9FztrEqI/O\n2x5Ouv6a1dEet33MTuz4vtU7ftavtXYhXTSR/dLhBCYNHDUwbxN1gN3S8d2Z56w1B5bDhNbdUlh1\nyrTcEvmSUnooPJzWgaeryKfLSOy7ue5UcqXXau0eJCY+X0Y+mN7smruJlJSdYnCjvC68yCk67yzO\nK3PCcR2oI7yTvfhae7Hn7RT+re/0G3hzuFe5TSeeoJzU6UbHUUiK76Ne14wyx7NVJOwmssF9NDAw\nMDAwMDAwMDAw8EYwiEcDrx03RaO8jLdtkHreXpaovyrXB4wiwrtjTybwyTxQ69VPB4dkPTulg5k3\nEWkdEZZUuWjN8XNaR+qojHNhv/QI5oCpow3SJ9ecHg9GnseryJNloPSeO5U5ivy1QWlIinewuyX6\nebF4OREhqg2mRjeIggrMm0hA2C1tIFU6YVwIYydcNInd6lIoOG/M+SQou17IxCECx3Wi9MIkT9wp\nnXXTqG46hOqYaINyf+SJKA/HDlQ3vTWLNvL+xNGpkAnMu77zJ5oIUzihCQqCuadw5F5po/Kwsq6d\nR4tI6Rz3J57Hi0hS4TwkTlsTs0oH4wwUoXKyEY7W1/hO5Zl4E5ouusTTWrlfeXZyweGe64C6CXNw\nJZyDuD7BW1ReWG5dw3VP0awX6bI+dm6qFiM3yxzLmBjd8Gn0bXIRll3ig5nnTul5OM54UDl+fB54\ntAg4J6DWq3XRKW2EszYyypw5ddzV4SRcOvG2HWiLBNt1aMfX3F11uhSrZ5VnVnnamDheJsTDeavs\nl44mOJwTvIPQCE1SpphopAmqDFTh8CywkzmWUdG+m6tOyk8vEpmYkHu3uhS3Su8ofOLJKr7Q6bem\nS8okH5worxMvcoqutnr8ggJiDsP9GxySazInrIKyU7y9nX4Dbx7rv1cc1YkfnLRcX+7rv1eM/NXf\nVWsyL3w6D3xnZ3AfDQwMDAwMDAwMDAwMvAkM4tHAa8dN0Sgv4m0cpC7DF3Newc0DRhHhwTjjN+4m\nPplHTltTBXJvkWyT3FE7G2hWXtgvZOMocijLkMgKj3NwtAw8WZqjaJo7dvN1H47y+SpuHBnTwvGg\ncpx3jlWXOF4JKiC9fyUkcw1VmbCTC4tWWSYlE9k85l7lOG0Sj0Okyi8HrKrKcZ04WgUqL+zlbiNo\nLJMyXyqVhzZp/8lnOK6ta8nBxvWhAvuFw4sy9vYJ/7Vrx4lQeWHRJgrneG/HkXvH42Ug88JZE1kF\nc5iEZNFqu5kJdxOUeWOusVxgGaFNib3Cs5N7xplQ5Y6JV5I4fKbsOkcSmHgoM+GBt94cFLwoZ63y\nnZlnWtzcWZQ7EzEejj07pacJiXfG9th5eIH1Z4t5L1Y6rDvs+lZGub3WtgHMiTnKpoVF/KX+dUaZ\nrbtVFCaZWlfQLe/NoEqWCU6hcvCsjpw3kb1CuGgTHy0ibQSHxf3drRwXbeJJbXGAD0ee0ummQ2je\nJppksYMhgUf7OESLDoRLoWzbHXJTz1rhHVmm3Bt52mhfncjGFVh3cN4776ZeGFfCszrxtE4oQpkL\nZ92la86LkDsTaz9dRkKCh1s9ZQ9Gno8vAk1MlC+Ir1v3QN2rhk/uvy68zCm6jsFc/znvhaHdGxyS\n15+32cbXucMDA18BEeH+yPPRhWNfLIJVUQRzVk623MDXGWWO40b5zje8zwMDAwMDAwMDAwMDAwNf\njkE8Gngt2Y5GeZGA9LYOUm8aZr/q825iVng+mDm+LTZgX0XdiATjHCbOHEdPVomQEsvOnEezwlxA\nuQj7I0cbEx+dd5w28N4Yssxtej2ATe9MTDZQ3yscZ3Wi66eggolWo63h0riA+VIJThl7cwSJCPuV\np46JSWZRZCnBSZvIRfjOLMeLMO8ujzgTAW+Ra6JQOHi8SoSklN7RqUXihaTEpFSZ472JMxdTmzau\nnXulYxWUvcrRRnOppBT50Xlnw7FCKDJHm5STNpGwnh5RuD9yCEIUOOnP5cgJe4UwyhxVZsd92kam\nuQlm6kxM+2QeUWfxa9PcBKykinNK1NuHcdev+7YD7VXfFatoYmXlLDLwumHIiVBl5qJai5qZWFxd\nEQGFZ6vI0dpVUSfeGQkijo8WkdL316cnaP/pdCfslCZ6LqMSVZkHc4hdhD5KMdprn7XK4zpQ+sS3\npjml93SqfDyPiERA2C8dubd4P0F5vIocN3Ae4Pv9Ip3f4Oq77TyVDmKyzqNFl5j1At6s8Exyx6NF\n4P7Ifo2e1JGTvp9rJ/csW+W66UuBWWn9Xs/qSN47kNZOPyfKJ/OOwjlGHrwT2mQiQuhdgg/H/pVi\nCH9WJFXrUQt2D3FYROFO8XYJ+F+ElzlFt0/L+s/iYNEmZi+Iott+3tv1G27gbcB64hyzL/i8qK/2\noYaBgYGBgYGBgYGBgYGBnz+DeDTwWrIdjbLoEs7JFRGpS0rqHUf3quejUd50vuyg8LbnbaIAM8dO\n6dnZ+tmyn10eNyZ2nLYWv5R5YffaYLMOSqtCExJpqfzK7tUtrjtcmpiYd8pMhFnp0ATOceOA1YlQ\neni6SqRCSSpAIBMbSs8Kzwwbzu8UjlUfX6aaOG8iIuZ2Wg+ucxFaMUFmljtCssF/kZn7qXTwcOLZ\n6yOjBOyc9K4d33+S+rzvafICx63SqQk7J41SZYmdXFCFZafsVo6VwFFjUXx3K48iPHAZCuwW1kn1\naGFxf6eNuYPG3oSoLtlA7Z2x9ZsALILydJUYe0FI7Ortw/ntq+AFHi0Dy6CctpFlp8xyd+UcXSeo\nsupFxbM6kGduEwO46ZPKhePe0ZU56eMAE8sg3KtcH1Vnrh8nyiLYuvvW2HHagpmp7NPpY+8Y951O\nISl1VGIvqHgRmiSIKLlz5E55tDQhyTthFSKfLhLfnTk8cNSagDwrhfNWuVPZ/SN31s2UO2iDufl2\nCt0IZdtUTljc8P1xbl1XhTcBc3tIGtXca6EXl5adRfY5EcY5nNR6VTBLuhEPnUAblXkbSarUQfFO\nKDJPlkyI+HwZaAJ9XKRjJzfxcRWsryl3UEe+MQFHVTf3Y9+/z9d3h4tOOW3CW3s/fhkvc4qOMmHe\n9/hVXlgE+1BEnfTWwXtIyjS/7F17mzr9Bt4ObnOU/qyeNzAwMDAwMDAwMDAwMPDN81aIRwcHB3eA\n3wH+BeBd4Aj4X4DfPjw8fPSKr/GrwH8D/Angzx0eHv6tWx7ngL8I/HngV4Ez4H8D/t3Dw8Mff7Uj\nGdhmHY1yt3Kctxalth6U7uRiReJv6RBinAkX3atF161dC/MuMe4HjNcHyS+LAkxqA9Blp/QVPVT+\nebfLk2UEsZ6jRVCOm8jd6vnbSOkdu6Xj6TLyzjQjYuLA9c/Yr/uIlp3iRYlqIof0/T0jLxwtA3ul\n8GgR6PrIp/sjBwgBbMieLPJtlglRrXPneJWYFo4sg0nuN0PtJiR2bvm0v6L8f8eBvcpT9nFjJ3Uk\nqjLJHKuYLCYuKMdJGTu4CNb9Mysd80XcRPA5gTZE5iHx8ULoQiLzQogWeddE5ZN5YH/keTjyjLwQ\nk+2DExPq5l3ivAUUROGdafbcNemSMstMzDluEssuIcBeKewWnnkXN46w8bV+qvVzni6t7yhzwl7l\naaJFCc4XiaRQZIICokoXbbA9bxMBeL/yeCeU3hxP48zxvb2cZ42yCInCCTuFiRzXS9JD0s1aO2us\nR+pu5Xi8Spu4t/POBKuij3IbZZ5FCJysIlnvVOvU7gsR5byB3aqPqMMcO/sldKl3kfH8OpwUjotF\nvKLChWTXPCSlSfqcMJuS8q1ZxlGtnNaBOiYUZezsfbe9nXW/17YAICifziN3R9mm+0ZVeVpbV9OD\ncb65viL2CX+wY/hsESi8472J3wxif5YCjqryaBnN/XRDNNtaNF5Fe9y745+fM+rnwcucotPccdZG\nMuzeedHFzfNuI6o9D96+Tr+Bt4M7pfB4dXtc402sQuLd0eCjGxgYGBgYGBgYGBgYeFN448Wjg4OD\nEfC/A78G/KfA3wG+B/w7wG8eHBz8E4eHhycveY0/B/zuK27ybwJ/tv/6V4DvA38J+NMHBwe/fnh4\nePRljmPgdpwIe6X/hSoL3ziFXiAerQf/izaxiiauPRBPGyO5wElmQsx6kPyiKMBlhAplFSxqy4uV\nXW+TVFlEJSbokkXR/fg0ke3BrHxeyHsw8hzXJmZUmTDqu3nWx2T9RUqbElXmuD9y1BFChEhilpsA\n9fFF4MdnHU1SqsxTODiuE6UX7pSOZedZhMSqU2KSPhbPcdomaBP3Rn5T3N0lZdwPZM+aaF0NfR/J\nKDOhahWVe+6yH2cVrbdmnCvzYM6ezJljJng7jnmbEIRVSBweB5YhsIxQB4vd2x9nTDPbh/MuISIs\nV4lRJmQiHC0Te5VwtxRO6t5NIuAQvDNn0EfzAE6eKyJfO/CerC6H+9rHAjkRxpnFy5WZo47mWnkw\nskH0+jmzwtwQISkPKsfHi8iHpy2p38YkEx5OMpxz5KKcrCIXbeTBKKPKTPzZKRzTTFhGi867Vymn\nDVx0icqZoLiKJowltcguwTqhUKgKx3emmfVtyeWaq8Pz63U3d1y0Sp4lxrkjoKwCTHJhlUzMcyKk\npHjgXmli9LJLZI6reWD9eRpl5gTJN9feXk8Qjmpz5a1ZryPvHA9GykkNFyGRi2On7AVbnu/32hZU\nlh3UfRzdmtMmkfSqaJw7W7fP6kjsHz8pPCHZ+/9uLzz9LAWco9rciC/roFvv61GduD/6xRE7XjYK\n334fZv17uElXO8S2CUkZ9y61t7HTb+Dt4P1pxsfzhvIL/EsiROX96Rv/T4+BgYGBgYGBgYGBgYFf\nGN6Gf8H9W8CvA791eHj4n62/eXBw8AfAfw/8Nibu3MjBwcGfB/5L4K8B/2//59se+89jwtHvHB4e\n/vtb3z8E/kPgN4H/7qsczMAAvNwppKo8XgaeNYkuQsJcEnnv7KiTsqgjZ12ijY73JtkLowCbCBdt\n4qyN5CLMCsdRHam87YcAn14ETptE7qUfjNvAnNOOKovslp73JzZQBxvW//KO5/EyUXfK/sQRWjax\nZ8d1oo7KNHOMciF38O7E0yWl6ZRJYZ0/J03k82XHg0nO7pagtYzWj7NbCKPMs+x0Iw4INqwf57Jx\ndXRJ8ZhY9OkibkSg9Uz2vE388DwwzRwxJXNWrcy1k/dxU6VAp+Ysypyw6uyc/fTCupVOG+Wk6Zh3\nCXHWmRQFFheRUa7sF3acIkIdE6Pc2blEWXXKxwthN3ckMQGv8FDHRCYmbKy6xEmtPF7CncqRO+FO\n5TltdTPc3467gu0uK90M948bE0LWz/G546QOtEkZeSEXcJkjRKUQi3T76Dxwt/JUGXTApPQ8GAvv\njjMe9kJFUuViHvrzaud+t3Sc1pGdQpgmeLRMLLtIX27FWQN3R3CyijxeRi6axKT0jDy2H04onIlC\n6xi43DvEBVTteBwWA2dF7XDeKLlX7peOVNimxn10WExW7n5dmN0rbc13vRtqtOW82yuELjmaqCRV\nql64XJ/DUe54b+ypvKNJEFKii8oqJXMvRVgCoz6qL6myDIk2wVEd0H5dntSJdyfPSxG5M+fdXuUo\newdW5qwrar8XyrYf+3UKOEmVRffq7oLcWUTj3eoXR/B4Fafo9vtwrzQhv7zhlIakeLH19bZ2+g28\nHWTOcXfkOWsTo1e4P6xC4u7IP+dAHRgYGBgYGBgYGBgYGHh9eRvEoz8LLIC/ce37/yPwCfBnDg4O\n/u3Dw8MXNfT+i4eHh//DwcHBv/GSbf0WcA78R9vfPDw8/NvA3/5Cez3w2vGqRfDfVGH8i5xCz+rI\n41UCsS6hXNwVp9DahdAlcyHkTngwzm6MAoxJOemgqRO7pd/EhYH17ly0kWWXrJ+jEJ7ViZDMGeMF\nEkKZWSzTeRt5b+LZL01MKDPPO2PYLR11gJ0c5q2JPClhw221Qf00F9oE48zxfj9A/3wZ2S8dq0mx\nGdyvz3EmAgKtmlNlmkOVOWa5RZ+BiWrrfqxRJoRk2yhv+Mh/EyFz8LQOHDeJaWExbA5H4SFoQhVW\nAUZZYhVs/wpJHK+UDiicCVmfXiTEJ3IBEY8XcCHxJNh1LaKyUzrrTApK2TsRXBf5zizjtDFn1yiD\nRacso4kNYy/slL3rpFV2c2HVJs6CbtxE23FXYELVg5GzSLtgbodFmwClyu21YrJYwdJbj47zjl+a\nOs6bxGlIuCSEaEJWHZWZh3GRUXhnYt1WPOI4N4fTes06sX0eZ3buqkzIfGZrR2HeRX5yrtQx4Zyj\n7pI1IxXCp42Si8UjpQTbVo0ugc/AYe6wNiqZyxjntjYeVI5vzXI+fGaPv1Na/1UbIzE9P+g3d57n\naBVpkzLZej8lhHcnnpSsk2uUWSydU+uicRPPUb9vsUl0Sbg7cjyrZbOdtdhZelg0ds0yJ0wx196i\nMwfhvHMkjVfdZao0Cdr++Wu8wLxLz0WafZ0CznmbbuwqexHO2Xtn75Z4yBfxTd1fv05exSl6/X24\nk5ljsw4m5Av23h1nwiyXXgz9xeyQGnhzONjN+INnHavwYgFpFRKlEw5234Z/dgwMDAwMDAwMDAwM\nDPzi8Eb/K+7g4GAHi6v7Pw8PD5vtnx0eHurBwcH/A/xLwHeBG/uIDg8P/6tX3JYH/jTwvx4eHq76\n7xVAPDw8jF/+KAZ+3rxqEfzdUqzH5RsqjL/NKZQ2/SOKxxwx24PmbcyFAJ8sIvdGl9Fy6yjA3UL5\nqYOZFyaVe67IOnPCWZus/6ax4p0mXoovqrBWZUvv6FR5ukpElc15iAi/ulsAbASro7rjo7NI0yXK\nTGhi3+tRCm2yCLZVZ0JFlTn2C+W0M3fUJHdXh7QKTVJ2Csf3pp7zNjFvE6WY+DXLhGnhOWkS6QbH\nyZplF/lsnkCUSaasOossEzHRZBGgcsLIK58vlSZEnAhHjcXMlQ7Ou8hZHSly6CK0CjFEFEjRsV95\nEtCoMlu7xKL1BK1iH7sWzFV03iirkFhGpe4SO5UnqjmfVEESPBg5lkEJCY7qyF7hGGfPD9lFhLuV\nZ1+tR+lRE0lYlN00t/P/wdRz3CSOm7gZAu5Wnpk6VgEWITFyJmZluef7uxneOVYhXRH1zGFxVfTM\nnPDZItD2fVqFF7qonLaJOigRZZz7/jooj+vAonNEhJUoqwQTZ06lXGAeTWCw/q2MqQPNYJxb59Uy\nJEaZ56JNPOuvz3gVMROakFSeG3a2MXHRJrzAg8qxCkodIrmHSebYK9wLBYzTOvLJKm2OD4SRT9Sq\n5CJ4ERzKk0XitDFxqPCX76V5SOzk3t4PvXNo/R5adMlcaEmZXXt/roKyUzy/P19FwNlmGV6te22b\nvHdFfZGo0Ve9D7+OYsraKboItp6vx2FO+9i59ftwGhMhmtAa1MR0gHHuyPqIu9dZLBsYWOOc4zfu\n5hyeBZ6tIpmXK/fVVUiEqNwdeQ52Lfp0YGBgYGBgYGBgYGBg4M3hjRaPgO/0Xz+55ecf9V9/mVvE\noy/Ad4ES+OHBwcG/hsXh/RoQDw4Ofg/4y4eHh3/3K25jww9/+MOv66UGXoAqHLUQkvCi1JUuwllQ\ndjMhf8EsNiTInHKveK5W5SuRFObRXCGnHXy6EnYyGHkIAhcvef4qQnyq7OVXv3/cH/skh08++Yzs\n2j4ntcfkDj5ZmVCUOTjr619KB62Ddut1uwTnOTz2MPZQOOVH5/YzVTjp4JMaPBZ/d9wfl2LCQulg\n6uFpC+cBKm/nso0gCiGDNkFM0OtZFA6OgGUFE29uhVlmUXXPLoSnCk9ai0G7CVX4w3M4DTDz0DmL\nI3Nqzq6ktq02QJ3AA0lg7ODjhcWRoTDvTDBK/TEJkHs7pgY4b2HhoBBoSztmBToBFSAHPYW9Xgw4\n76ALcNZBcOAd3C9h5KAFfnBi5wIx59TIw3fHcP6StXfe2nmrSphvnZt5gNMGjpL18azFQcGcZrXY\nuW69HbcTW/MnuZ237fN5Fi7PgRP48Rz2to65jbZW5sHWtBNbp4tkx3Ls+mvZbyP2w3hJdq5UYZVB\nV9jrVQ4ab6+5CLB4BndzW68O+Pijj4kKEeXdAi4CPAomDs779Tfxttbn/XE0EZxT3ivhSQFPt85r\nUnsNi6mDP1rADCIG5AAAIABJREFURRT2MjadTaq2hu2+YI8Patf1xMGDHOpsfX+B/QyeZHYsCXjs\nYCeDk9YuQlRYXROKksK8gEW0c7p265QeRl55p3rxWngZn9c8Jyq/ClGVxQ3b3j5vSe1clc7WStIX\n34d/VvfXr4r298nPGkhJrrjDoto1qRzsZvb/62NY9MewfnjT/7cAnn6J/Rj+3jDw8yID7ib7XfKk\ntftcJrBbwIMCsgX86Cs2gg7re+BtZ1jjA28zw/oeeNsZ1vjA28ywvt9svve9733l13jTxaP1h7CX\nt/x8ce1xX4U7/dffBP4VLLrux8CfBP4y8H8cHBz8U4eHh3//a9jWwDfESfdy4Qj6gXYSFgn2XiAe\nZc5e76RT7tzgBviyOLEh8k5mg9cHJbeWrd9ELvCs5Yp4lNSG9YWDsdi+x3T1dVd9PF3qB/chmrCz\npI8N8zwnpgnQ9QJKJfBwZN/fFuo8NuA+7QfrWylrdAqfN7ZfWS8auX5w7lhHnZlI44CqH9YrNmRf\nZSbOTDPlXm77WafnS+2TwjKa+HLawtPaBl1rJ5VgQ99lP/AXehGrV1NSgLr/3khgmUzcGYttP3P2\n2O3ndtjxNmqi2Cw3Ieisg/3SHqdb+9eqCXA73rbZJBu0r8WJJtnrW/SfvdZa7HkRSS8fs4yX56YO\nJpjMk50XVVsPpbevkUsxaBVhktlxNvGqeCRiay1l9t552tixezC3jcAzvXyN885EFhEbssdeWIi9\ngNWqrQNV216OnYfYCzECTErb52U08c2LCSq7WxdeFaa5ENTWx06mfNZA6aR3Jdl2z6Od20JgJsJH\nK3hUK3cLO/Ym9cJgHze2iHDRmQh23Jpwea/fh53sUvitIxthYRFgbgYlKmfny1xudgy5mIjVJVvX\n3tn7ZC24rI/norPr4rDtrQ932QtShYP9/MuLLV/QdHTr89bC8SqaGOXl8l7zqLbvTzPYldv39Wd1\nf/0qbN/XHhZXRdPM2TF67HqvovJ+BXd+zuLXTQJe5e3e/mWv98BA5uC9yv4bGBgYGBgYGBgYGBgY\neDt408Wjb5L1qOpXgd84PDz8o/7//+eDg4N/BPzXwO9gwtJX5utQBgdeTFIlvwgvLYJPqmTzwPuZ\no4nK+xP/0jihJiS+Pct+JrFDZ49XrHp3hlo7DJUXJrm8cHsxJr734HKqc9pExp3y8U9/ihP4x37l\nW3x4HhgXl+fj2SpabFZI5F3iuEnMcs89p7QBcBbxlfvL54Rk3UQPR577lePX75U4EZ6uIlXfhfN4\nGThtEsUNfU4AjxeRKhemURER2qQ8W12qB/v0nUdAUCWpRcpNC+HeyLNsI2Xl+dbU82SVmK8S9wrH\nJLdh/2mTWIREERRJyvIisF8lJpnF7AkwdsJRHUl9J1PRRwbmCheNMi3g6TKy66GLwm4ulNEcFw5l\nHC1SLGjCYdFWisWUhRh5uFuwV3qSQlhG9icWaVcVwu4os4i9oBTOcacywWPsLI5sHYulKCPvmPYR\nV11ax/Q5Ltp0a3zWeBkAeDjOeNz/+aSO/OS4Q1Niqo61DOWdCRCj3DHN7Ly3SblbeR6M7VdIVOXd\n8e2/Tg6PG74lsFfZYy7aiC4ik/46pnlHWkRGvYo4CokmKKVX2uhMXFRlERKz3CLkRpmjS7oZ0t8t\nMyaFsIrKu/17tI1K+/QznMC3v/NtmpB4f5ptztWiS7ybCU2wTqmTJtFE+FZmPTbnrbIKStWvM82F\nSeHIe/GojkrhYBLh4E7i0TLyZBlZJXjk4INJxrsTj3fCeRM5XiWapDSLwI6DX9kreDDuO49aiyh0\nWEzbIlgE3t7EM04QMDG2yB0jL+wWwuM68YGD/erquU+qzPvrL6VjIcIvzTy75cvvXde530Quui8W\nXdcl64JaR+ZpH7VZKc+939f31zJzhKT4vhvoRdF0P8v76xdl+762Zn3+V/Gyt2nkhTITJpmzrrev\nkfUnwV7294btaMCxkyvXdN199rpGAw784vKq63tg4E1lWOMDbzPD+h542xnW+MDbzLC+B9a86eJR\nH4bF5JafT6897quwTjL6v7aEozX/LfDXgT/1NWxn4BviVYvg51uPu62g/jpftW/kptL4kTdnxaNV\novSCd9LLHNbxctHZgPKm/qOkynmX+GwRNq933kZmW8dxr/I8q01UWXcWJOxT822E3DnGGcybyP1x\nxt5EKMT6XeqoG8fLJBOKTNirPM6ZaJLUBvVroa50dl5Hxc3CnXdQB2XsYRUTi1YJScmcdSOVW2JV\nJgICrSrHq0SIicIJTswJ8s4k47RtOa0jz2qli0pMENbnLioZwv4442kdaYOdewEmhTDOrMupScp5\nk/o+G6WOQojKLHMca/8pfpRc7Po3SSk9SLJekzJzdh1zYRXMzrUMiTYomTddLPdQecdFSBytIrul\n5+HIulI0KrO+t2ptpVRVRpkw7xQn5tT6bBGYdB4v1omzXgrzTjlrI+NMyFCkX9MpKc+axIfngfM2\nUnjXP6cX55L1XM3bgIwc700znp5FLjpTUAShdJBGeuswfx6U96eXv27qqIT+2iVVCieMc6GJicI7\nKgdLhc8XiVEOEi2qLiXsDwL7hSNhosq90tEpPF5G3tsSFbYdUl1Sxvllj4wXE0e/u5tT9KLTTunJ\nnfRD9khQKPosxwLhk3lgf6S8O/I8a0ycKZ1w1kQaFUaZcG/sOVklVjHxyaLjoku8M/bUUfFe6ILy\nzsRvHHTTDsa5MsqFiy5xHuyajLytm6NauT9yNE1iNrXr3yTlxxeJXODh7PK8qiqnjYkWqrCTC6U3\nUebDeWSv/eLiwE7hOG3CFxKPUtIr98ijOhFuEI7g6v01c0JIynGTuFvdfu/8uvqcvirX72trnAg7\npWfnhucsusTd6pvvM1oLeEG58QMTWS8mraI97t2xHwSkgYGBgYGBgYGBgYGBgYFfcN508egn2Mfj\nP7jl5+tOpK8joPGn/dfnplWHh4d6cHDwFHj3a9jOwDfEqxbBr+Ll415UUL/NlymMh9tL41WVH51H\n2mhZYknlykL0/eOaZM+/VzmiKo8Xgc8WiYuQmObCJBPemWSIc1x0ynkXOe2si0NE+P5uxg9ObeBd\netlEYKmau6R0kAph1DtQ9ioTNq6rt11UMoG90l7hRqFuIyqpRZL1LqrSy5XotfNGicLGARMSHK0s\nFypzQuHNdZRUOa4TiuNPPsxZRfjwvKMZe6LCbuk4rgOPFhHnhHsjR+Ud3gkpeQRzMAWUaSE8XSZE\nYFYIMZgw5J3QRGXZwRRlr/Q0alFsXVRKp+TeHGBZH/NWZdaDkvfReyjkKKsgvDfzeGwtrqIVSS2D\nDfwLL8SkPGsiu4VnlF11loWkTHNzE521EUmJDy8Ci6A8oI/0c+aUcWJrKQOaqHQB7vdxgsd15Cdn\ngSdtIqlw3kZK76i8XVsnJsTVXeKoTjTJhIRlsIC9oEqe4NOFCVN3romXXVJGGVf2XfVSmFwFW7/v\njjM+XXQ8Xga6CIKyisqkgC4o82DlTp5E7oTTLPKg8uReCNj+JSz6bE3mxKL+kglrd8rLofm8S+Re\nmLeJro8XXIsbx03krFGLzSMhSL/2lLpTPoyRKjPH39NV5KxW7o4dIOwWMMsdyy7xrDZR9fEy0EYT\njVwhjIqM8yZRJ7vu8wAjZ46uNpjQmFRpo3LcRUrvmQdl2XnGuQmF521kr7h0Eq3vHVGVwgttUCa9\nOJv16zb3X1wccCJMcscq3uwSvE7Xu1fW+3WbwLJm+/663tdlUPb1djHyy95fv25e9QMI2/y8hK8X\nCXjb5M5ceUd1+todUgMDAwMDAwMDAwMDAwMDA28WL2l6eb05PDxcAH8I/OMHBwdXUtYPDg488E8D\nHx8eHn70NWzrFPhHwB8/ODi4IrodHBzkmHD0yVfdzsA3R/qSj1O98WFf+vUvX9eGuqtow+Ptgepx\nY0LGpPBMc8fny8B5HXm2ihyt7Ou8TTiBLiZ+/6jlD5+2/OQiWteMCPcrz1Gt/L0nLT88bfEopbfh\n+rPWtu+c42C/4JdmGV6Vuos8WQZOm0gblSKD+6VjmjtmuZgYskVIyrJTdnPhwcjjZe2MujogrqPS\nJeXRIlq0ltiQWsScRvNWmXeXsU8xJpatDTQzL9ypHGMvoMqySxzXkZNV5F5hw+fHK3NteW9i38gL\nZ23ko3miyB37lSMXi3sTbLvz3kVSOEeboMqEzFsfzSw3cS4kc8lMc8uCu1c5mpjMFSXKOBfAxJPC\ngYiSormmumhDf3NQCbNSKJ0jABMPirBfZdwbZcwKRyaOoPD5MvH5MrJbXB36RoVp7kw0WAb+788b\nPplHFp0JHAosovL5InJSR7RfuApUuZiLbdHxo7PASYgUzpwzCXO2nLQmYqoqbUwsOuWkSXwyjzQp\n4VQ5qxOaYKfytpai8mSVNtvqkomI740zQrpcLLLVzdP2UW3zNtElqETIM6GLMM4cpbMHm1alqCQm\nuWOSOYrM0UVl0SaaqOyVvaurp0tKm6xn6MHoqliyCkqVORYhsezSxnH0rA58dBHp9HJdKson846P\nF5EfnQd+ctZRd4nT1gStKCaSrHEiTAvP+zPPBxOLi7tTeboo5H0036wwgTEBhRNWyRx2uVNOm9hH\n6FksX0i2/xdd5Mkq8ck8UHoTr9bbPW1MOMr64f91sXHtmsydRSAe1a9+h7pXOTKx83kTSZWzJvLp\nvOPpykTu0yaa4/ElAstNe7He1xfxRe+vPwte9QMI2+Rbwus3xVrAexXxD2wfF126sqYHBgYGBgYG\nBgYGBgYGBgZ+8XjTnUcAfwP4XeAvAP/J1vf/DPAA6yEC4ODg4NeA5vDw8Cdfclt/E/grwL8J/LWt\n7/8FrMP9f/qSrzvwc+BVldPrj3vVJJ8vqsyuPxnuBc4aE1USgCpnTWKv8qgqKnBWJ5ZBuT/KNg6d\nZbSejc9XEQ/26X8niFq03NqBUmTCRaccr5T3p+bICMqVqCgnwqz0fEvgs5Uy9uaS0ASjUtgvHTuF\nDUG3e3UmmbCXwweznNDHZsGly8QOR3lSJ0aZ0CVH5OqA0oswK+DJKnHRKndL5VEDixgRHBetgpjb\nZydzm1i8T+ct5zHjnRJCNPHHA3Xfz/NoYVtKySLcNEvMVPrOHKXuLDJt6pRFZ2KOqG1rr/DslZ5Z\nFjjrFCeeeRO5N8l5VAsoKNaR40hEwA5duehMdMvkUmCxAT+klGhDIorwoDJn2OV5MGFlZll9/OQ8\nMOudJFGtU+ZopXy6sCGvICAmgC2jMg9KlQk7uVAni2HbLRy5E+5Xjk/mgYs24jNIrSP3tu3SCZ2a\ny6RNyuki9d1KQpGZWLaKynvjjMfLyIMxhGROqXXs2JNVZK9wm4i00il/90mL84IqLDqlCYrzkEhc\ntHAREl6E3ZFjR5XPkzLLLXbOizByQuaVncKxjIlPF8Ios/6jMhNOGutxqWNipBYROPXCgwL2cp5z\n2azX7EWbmBZ+49w5rxNlJngxMeki2L4uerHpoomUmfB0FVhGc36VXpl3ys41gS8T4aiJlF7IRHjW\nJh5kvr+G8M7IEdXcQKukqCjzDuhFxhSV/SpjnDt2S0ezSoRkMZKVFxZd5MNzE4qe1tYHVXgld5eu\nv82+bLkm1+LAq8aniQjvjv3GFemcbMS24yZx3lg32qxwG+fZRaecNoGL7iURdDd871Ucnl/mky83\nxYGOM2GnvzeGlPh4HjhtlKjWv3SnFN6fZmTu+S1u39e+0H58iee88mvfcIxdTF84gu51iQYcGHgR\nL3tPDwwMDAwMDAwMDAwMDHw13gbx6L8A/nXgrx4cHHwH+DvAHwf+EvD3gb+69dh/CBwCv7b+xsHB\nwT/HZWfSP7n+enBwsO44enp4ePh7/Z9/F/iXgf/44ODgu8DvA38CE5M+Bv6Dr/fQBn6WjHsR5bZP\njidVLtrERRuZd9ZHkwk8HL98mLYujH9Vkpp7Yh7NSbMdWXfRWXxXPY8sY2KcOz6YZXy6jLQpUfRD\nzUyET+rIKiiZU9pW2ck9CjwYXR2kVJkJLj+9iFTYcS2DspcSR7UNTqvMUWUOcZFVdBw3NvLcrxxN\nUo4bcyTMtgbmXVKqPrati5fdUNtj1+Mm9f0+wp0KzhtYpXVnz7qrRiidcLxqaYJnlFmcW9A+Pg6h\nCcpKFe/s/GVinUxdhGdNoknmvklYfNuyFyfWAsciWPxc5YXz1kLzwAblRWY9OXWCR4vI3aofSuUm\nvuXOscgde7lnJ4t8ukrkzo5hlAmLTjnrlBRt3eRYLF8b+zg5b3F7R01itxD+2F5G4YXPV4kuJjIn\n3KmERedoIlxE6JYRECaFCRvnnfKTi47cCUX/+NPaoskUEwiaoBz3a3EVhcIp7+9mdg3EXGe7ueeI\nQNv3Ddn7AtqYWHa6dU7sKgrQBhsu3x15vj3z1CGRCagIXqxr6IOpOc+OahMBW4W6Tpw1keM28XiV\naCOgyl4BHULhL8UxB0S1qD2cIF5IaqKeEwdqLp1FtO+jSnKOO5nwYGS/2kIfmXcT67dDm0ysOKkj\nUS+7mFSV0zYRk53L9fA99T9/vErcG2V00VSoEBM71zq8kip1UGa5iU4ndSRGW0dO4E7lyZxjpsqn\nF7Y+liFxf5xxtzCBaVa6jcPvW2NHq3B4Ym60SSbslSC9Q+m8ieSZ8HB0s7SybST5ouKAiHB/5Llb\nOc57V9rjZSRi62CaX73HrDt0nqwiT1bxOefXmpEX5jc4eF5kevmi99fb4kDB7q8nq47PVtH61DLX\n95PZ6z9eJT6eN9wdeQ52M9yWiPRlrds/C8u3KjxdxRuP8WmdSAjjTJ+LlbyN1yUacGDgJl72nj5t\nwhfudxsYGBgYGBgYGBgYGBh4njdePDo8POwODg7+WeDfw4Sdvwg8Af468DuHh4fLl7zEf85lN9Ka\n3+r/A/g94E/126oPDg7+GeC3gX+139Yz4G8Bv314ePjkKx7OwDfIbUXw60/Tr0WcaeGZd7H/NH2i\napWo8YVDuOuF8S/jrIkcNRFEnusGqfsYu7M6sYo2WN8vHXVU2k6h70ABuGhtPx8vlU4T354I98bC\n7IZB6zh3nNYBiRbr5QU+ngcKfzUyb690hDr2w/rLDpyQlNMmsd+7CtYRZXdKt+k9AThpIudt5KJT\nvMBpm6i8de0EtRg13/cBxV7CEWC/gLPOMW8Td/KccRJKTy9MAfSxX5rQaKJWh3BaR/YLx6wwV5ao\nsojmAOpP8abXYxXNfdHMYeyFVhVVpQm2U4UXQLlTrd0iyqJJnKXA93czjlvlg6njrEvUAZKj7wmy\nY1UPRYJp4Rl5pU6QoWSSeFhl3Ks8O5Un847dyrNT2jldRUVQntVqThrvCDFxHmzYL/QxbiJE4PEq\nMi0cD8cZs1JYdkqzjsmLSvDCB1NPF00YXPadVo+WkZ3Cs1OYyNPEwChzTDJ4vLAOqC4pXUoUDnJn\n10qBUix6r8o8vu96uru1Fi5aW69dL9Qt2sgPzoPF5nnHTu44ioGPFh2Hp8o4c+wUnpEHnFCZ4Yr/\nn703a5IcybL0vquqAAxm5kvsuVR39XTPItNCCimcf8YX/klyhCPCIaW6qrqWrNxi8XB3W2AAVO/l\nw4V5eOyRkVmdk1H4RFq60sPNDTAo4BH36Dlnk737R8SAQJehSUYI8KQzvlhBb35tRyus04v7rhi8\nTettk3DZK3V0kacr3hV0dJNcj8pm8KE75q6+ECCJEYKwG+ABLsIU9RjGYyThkW5UulF5Kr6qV1Wg\nL0Yd3T3028vCIhROmkA2j5FcVolFFJokNCKcLTya8EGbpoFp4awRxiLssjKaYkVYJ2E57bYfbnWf\n3X5G3X5cfaw4EEQ4byKjwv2lvDcKrY7ymrPxNus6cDW8/hw+HutRxL/tcAzAF8vqg473GAeajTf2\nLgWM320y++zPrJP48nG4mARXg/Lfno38L/eqGwHpQzcg3D72FOCLD9iA8EMwg6cDLKbfFa+dYxAq\neREr+bD9sIH6/wjRgDM/Pb90t8777umjcP1D+91mZmZmZmZmZmZmZmZmXucXLx4B/OY3v7nGnUb/\n+3u+77V/Pf7mN7/5hx/4Xlvg/5j+b+YXzJuK4M08cuvVoUSbhG32WKg2hXcO4V4tjP8Q/rJzVeNN\ng1jDB49d8eFyNmMzuAPqqjcWEQ7Z+N31yHaEOk0OGIG7baCNwtODsUjKaSUvHe+dReD753B3cos8\n75Uv1y8PNkWEszoQgf3oTopFejGcWRYFczHqbuM9PXE65j9vMjEIJ3XkeizsxsL3+8JhhH3xQvbj\n52QYxaANwmkjPD3AWQxonAb3Bk302DUSZHNxYxESz7qRpwdlmSJ1EPI09RzNWE2DpBAFSuHxXqmD\nu3PUAvcWtYsG5r1KfTHWFZRpjdzudYoiLCugCBcHRQKkEFnGwmEoDGo8V+WQxRUwhSZ5PF2Mgf98\nnhgLtCnwxco/5+PneGZGEOHOInJmxtebTJs8Em40o6ncUZKCsMuTi2lya/VqxEF5dJYQEda1sL51\nDYfpJEIQvt2OXI8wmvf+nDUuOjwQ7x26GFy4apKwjsLFwYXIy15ZVh55d94EVrXHxsEkRIzKncbX\nfRWEv+wyp3Xg4lD4bq9kcXFpN04dUFm5GoyiLnZY9j6j3QjrBFsTuskN5efpa+T5QdkO8OUqsg/K\nZgicNoE6CU/3hUeTQJHVWCYhC6i9iII8DvGbCH1WTurgUWzTbSH4YPXbncfNhUnNrII/AwJgo4J5\nlOMyCnGKcQti5MnJZGZ8d/C1Vk//3VbCbw8jg0XvEZoiAq9643p0kWEZA6rGMiVOGxc515Ogcdl7\ntOVJFdgHo6kibRSWlbvR1IxNrwxq/nMPwqNlZFUH1GD9ioj8seLAsUPnTYPbV2mTsB3tpfVxmyDC\nsnIx/Pj8y2qsEjw7FPbZhdgUvJvsKFL/ZVtYVfZeZ8ExDvRtItfvrzO9Gus6vCaIv3wegS4rv7nK\n/Oc7nqf33g0Irxw7wKYvXMVAsfKTuSKej5D17ULe8SodXZdvE/Le9rqZT4NPxa3zvnv6yHGTyNOD\n/11jZmZmZmZmZmZmZmZm5ofzSYhHMzMfy/1F4Nt9YVQfXF70bx5KrCthVGE1DV/fNoQ7DjbvLz58\n7HYcxLbVm4cbgrCbXA/gYkGnxgnCaS3cWwS+ui6owoM2AEIthUoClchNV8cxwuy2Y6qtXBRqIjzv\n/GfcZlTzQXYV+HKVUDO+2mQup94hwRCDL9aJYi5SLJP3+RzUo+mOO++v+8xvno8sYmDdBMbee1oe\nTIOqJC649GZ8t1OiQB0Dpwt3cq2rwGa0m36fNgba5MPnr3YewbYWF32OHDuarg7KbvBr21aRBKQY\n2AyF7/YFzDuikijXGbYDXPaFJO4+2o9KFfxntzHwoIHfXGVSgF+fJr5YR64Gj8W77DN9MU6rwHmb\naJNH1Kl/YAzFOF8IV4N3IXWdkgIseyOEQJeN677wfae0lbjLRAMBQ0R4fvCv98Vj+fpR2Q/KFugn\n58s6+bD76OwqaogZD5eR328K54tIHYV1ChTzPqPdAEjgtFaue3drNQrDFEWYgFUlXI/KqHBWB9oT\nUJvcaEHYDsppE2/WtIjwrFc2oxJEuL+I1MF7uXZq1MDd2nuU+mK0UbEQsBAmcUlZVcZJFScRSVAU\nMdgr7PZKDIVVBXUIxKBkc3EqinCnFv48+lpsp2i040z0elBGw+Mis1End/jsR+N5dxSOXjwHqghV\nEZoobHJBpujEZXQhs02BRRCKCIdsbHtlLMadNjKaUZuxM+9hetB6P1a2cuO62w1Km6Ar7na607jQ\na8VYtcHdUdmokxAr2GbzczEQg6vJsebuKKEW77raZGMzFmKAR+3Lbp2PFQeuBx8+fwjrKnA1lJv1\nsa7DzTPh6HpYBHcAjVNEYFZjnwXDBfMjx+frMQLvfc6C94lcWZXnvR8TvC7kvkqbAs+6Qj5TUghv\n3YDw3b5wPT1vPBBTaILfS0GEy0F52ivPDvAfziriG/qUPhR3zUH9jh9xOxowTY6zO285xyM/NBpw\n5n9sPhW3zg8RruGH97vNzMzMzMzMzMzMzMzMvMwsHs38TXO7CH47ePH76lbcXFZ3wyxT4J+XkeeD\n76A/FsYfh3DFXOD4mF2714O+sYz9yCIKT8rL3xPEXUCryvt6FrVwtog3A8xiRptcYDimOx0Fr+vR\nOLvVU1SA8woWi0g1FsxeDHVPksf2HYcuUYR/OKvRKcarK37uApxWwmkdeXbwAf5m1Jf6mwTYF+My\nF6RTmuSD1YuDce92MY1Br8pJCjS1sNkrVRS+XEeue6M3u+lGAh8mKUYQ41D8z5rKHR2LOLk1gHtN\n4JvOu3mus7JQH0w3IUBS1JRdhn6K8TupAtejcp4Cu+zOlPuLwLoWNr1H2Q3Z2B4ym0F5sIw3w+Qk\nLk7dSbArsC0Kalz1yq9WiUXlkWn7IqTga+93F/4ziwiq3uU0FHeVCcbdRsjZ2GWlqSLXfeb7zju5\nNtnIxQf1dSWIecTceZP4YhWpYuBiUC5H46Ir3GsjWY1HK1/7bQqMBXp1AfFyVA7ZGKJQBXfu7BRk\nhF6FJhhj8aH1bl9oo3De+BD9FHcwBRF2Q5ni5KC+Ga5DUXfwSBAWEe4p7EYYi9HnwlCUgPce5SJY\nJZNw5E4fBAJCEeN6LHyzg9NKEYw/bwpNEH61inzfuahYTe6PI+N07X+1qvh6l/nddebvToTr3sWZ\nVwXkMnVq3Wm8u0myH/dmUO400V09jb/XvTawSsr14C4iEEyNqhIqIJA4qPcejeodXUG8Y0olcLcW\nFlHYDMaydudOEGHTlxsBOYiwSC7G3KlcoH168E4sw+/HOgrVFI+3SP61pwflYeui1I8RB/aTEPGm\nWLY2Ccup9+v49d2oyOSwOhnia66HXTFKgYMqEWNQOG3izTW7LWLfFr/f5yx4n8j13a5QvfLoDeLH\ne/KW2NFayx7NAAAgAElEQVQUha+3mV+fuvvo9gaEJPC7q5GrwWMhY/CMx+teuRwLSeDvVgkRvx+O\nUXh/t04f7fa4nkTrd/FqNGAU2I76zmjVHxq9OvM/Np+KW+eHCNdHfmi/28zMzMzMzMzMzMzMzMwL\nZvFo5m+eYxF8FGNfvK/nOAhdV/JSEfy9Bdxpwo1wAsZmKHy2TJzeEll+CPtsnNQe7fRq/JGaUVR5\n2ilV9GF6HYS28r6TO01kl72r5XZVRyU+9H+1cz4Fd0WcVC92nafpdVmNh23i9AMGLEGE0yZyig/W\nv1ilm+PdDcrlqDc7nM2MZ13mq72ySkIqQo9xUCPiQy2zzKp2l9QiCUEChyIEU1ZVoIk+8D5t4OLg\nTo+jgHTIRhuErXq03/3GI7oOg7I3XDyYunoOY2aDD60Fj+0TgSDGf3+eqQN8sUz0BikoIvCgjawr\nP67LQbnoFPDYwirALhtViHy5CqjAd/tMURcDfnetNEm42wTqOpACnNSBQYWI74h+3CkSFEyoinFe\nu9BjQBPc7XPIviBDgO1gnMXCHzaF68HdSNV0Xb/vjOXowkgKwqiZsSi/Pq08Rc/AxKPoTiqPNLsa\njL4UDuodP4/3mevRr/F174JMCO70ohIqMdoY2U29TCl4hN/3nXI6CZXPD5llcjGpn6K7bOrZ+LYr\nHIrHHO5yIZtQpcgKuBiKr/Ek7IrRVoGi7nYqU+zbeeVD9jYBJi74jSPjsuI/nXtf0Ofrin+9Hnl+\nKFx20AYoVwNlEo1WdeTzZQARfrWu+ON15pude9baFKinODnBxa4mHF2HwkVfaJM7kK56Y1BlMblQ\n1PyO2w1wVkc+b+G6GK0EejUuB+O8CR7dh/eMHH8LqyXvoypKCpHNqKzryHnj6sZBPY7yGEs3FKUv\n8C+XI+s60KsLzcfHQFeMXYbtYeQfzysetPGl7qEfIw4UcyH01Vg2m5yJu2ysk3CvjYQgnNfC/3dZ\n6LLyT6eB8+bl59zR9aBZicCq8hu0mL1RxL7Nu5wFR5HrbVwOrzsYUhAOxTh5y2vaFLjo7aYo8bgB\n4UlX+P3VyLODcjpdMzPj8UHJ2TivIqeNMBg3fVSLFOizenfV3j7K7XG8Bu/i1WjAFIQuG5P+9Rof\nE736Kr/0Xp1PiU/JrfO+e/pNfGy/28zMzMzMzMzMzMzMzMwsHs3M3HAocHfx/lvitnACPiD8MTta\nlRfRTsd3N/PujS67rcfMY9R8QA1VD4sIXy7jTVfLuhIuex8knjbCoPCmEYsA3Wis6qOQ9OLP1u/K\nPnoLt19xfUs4qqael6cHnbqZBKkiIRhLfEC7z3Yj7ESBe427US6y994sYsTwYeYxWvC8Mb7fGRdZ\nETzuSwQMpRShz4rgvTyXvQtrx+Mo5j1IYYoKa+M0mM9eKH8o7sxaV0LVRP79aUWYYgKzGXk65r9s\nM8skLGJgX+DRMjAYFJ16mSp4fvBzWlUeydcmYSjwfWfUQXnWKbtSSCmwHwQTd95sx8I2K4KwQbnK\n8OUiUtQ7pDD4vy6yu3umQbCvI8PMIATGqXeqy4KZkraZe4tIiC5edFmpQiCFwKNW+K/fZ77bZa6y\ni20yOVhG87V4GOEQRyREfr1MtJVwdSj8n98rZ4vIIrlwsc8u8m1G2OVCr5DV3RyXg7EdFTNfo8fY\nNTF3EW2y0mUXzFSVkiEnX//JDLHIMMKTrJw1gYALpLXASZP41TrSJGE5OWJGcxfMH0Z4atAWYxFc\nmBRgO7praZmE//luxf/9dLgRQJaVC8QS4SS9GKBmM+40EcFFkv2oPNkpn69rdqMRgzu7rgbvzbrO\nRj8aq0XkelAqEeoYqIKxGdyZI8HF3jYJ3eiRdcWUsQhtcHHCzLg8KL3i7iNjWtfKRVZUhGJGFL+u\n4J+rAHpbVJ66qdaVfLQ4YGY87RSFlyLlbu4xuOkPOookV4PHZe4ENqN3RX3WvhBKjg7PdeViczF4\ntPzwv568zVmgwLuezAUjvOEpaa+q7q++7pVvEPF1v66EO+q9dApsDsoCOFnHl8T6291KIXj8Yajk\no9weH9pbdbcJPO5eRLS+7Rw/Jnr1Np9Kr86nxKfk1nnfPf2u183MzMzMzMzMzMzMzMz8cGbxaGZm\n4ucaSgR8+LicYuaiwNNDYVTostFNPUJd8YF+CuIdMRl+e5n59anfxvfbyPf7gXUdOauFy4O+cUd6\nEHcfHIqxHYw7BpcD/PvGhakfMmN6NfpqOypDsZsdzpe9O0aKeeTdIh2dOn6+y+QdQKeLwJ0m0ATx\ngSruZChqdKPxq3Xk223hD/tCX9w9soz+eVyakVXR4qJBHeGLdaQb7Sbmazv6JP3uIvGsy3SjsQC2\nQ2GflcveGIs7ALpRudtGfr1KnDaBGIQTMx7vMpvR32ss8PDEh59hGhxHJncTwmEsGMbZAjDYjLhz\nTIQY4FCMgvKkN06Sf2YqwlWvZBVkOn8M+qxcDMK++ND5bAF/2bkY1GU/PzMfSms8CkkwKNRTbNl3\nu8xpI7QWudMIz3uP1VIzTI2LQcn4uazrwJCVy75wyB4taGaYwjgWslUcinI1Gl1WYvCOKEG4sxCe\n7AYG9fd/3hUG9XhFNaGoi3aH4gKRqV+bQX1YiYCEwCF7VGFEKIASSNEdVn02RlWKQpRAUwmHrFz3\nyqjKozZhB6WNcKXCSfLPZxECZ4sXLp48GPcXkb54J80qBULwqLEkwnkj7Ee/VoYLXZOhhC7DeRN4\n2AY2g1+j532mFuHLk0QTjc3g7sUB+G/PeiLCf7jjSq276IS1+foe1EXUaxV+vY4s6sDTrvCnbeGB\n+n207b3ryswj66zAfoRfnVYkETZj4XlnLCulioFFJbSTE0mne/HOIqK4W+/X648TB54elDp4j9Rt\njvf6Ucx80Qvn0YUi8GgZWdWBq77w/FA4b+JrDs/v99nvh/d08tzmbc6C951hfKO8Du9722NM3NFd\nsxuVv+wKm0Fpk3A2ZeEVdZHvVW53K1XT/z5tPs7t8aFXUUR42EYueo8TfVW4OUYD/hhh51Pp1fnU\n+JTcOh/bDvbxrWIzPzWzK3FmZmZmZmZmZmbml8UsHs3MTPxcQ4llEjajTTvDladdZjTvU8n48DGF\nwEGNsXhvkABfrCKbbPxpk/nVOmIIdxeRKD4oXNU+CD9GvJkZm+wxYuCDvDuLAHsYDBLCk67w2Q8Y\n6L0afXV7h7MXuU/OH9xJE0RokjDcGmZJcPfQgzbeDFTdxaJk9aH917vif1YHhuLF8/tiMLkVHi4T\nX28Kh1wIwaMH99mH6GpGP0Xk5clVUqwwFqVTeLotbMfCaMf4MaiAFOBJp7TRB/3XoyFTnuG9xndl\nh+CC123WlfDVYOxGj5QrxQWtJ51yUruzYpeN0yrQiPLtJrNV434daEKg1jDFCyqLFFg2iVHhss8s\n6sDjTXFnkEEVoc/G5ajsene+dKMPaJvJuVXAe4z2mfVZZJkCbRL2GTZD4fcbZVkJJoINSjfCoEIx\naJJHtZ3GwIhwsMLvNiOfZ19vMbhItIjC875w2bto8l/uR77pjCoKz4fC4wM8WEYXocz7knqdhFdz\nJ1wQv559USqBZRS6wW1Lx4quFIU6TnFmIt5PlI0xuZD4/U5ZRGU/GgQmgQkQj3E7mV5XTQLsXzaZ\nRRUYVXk6KKdV4N+tI7tB+WoHq1pYIZQpMu6qN8p0z36+qriziAy58KRTSgf3loHLXrkelC9WiRCE\nhRrPJFBM+derzGnlx+1ym7t3zqaoxUr8v8finVuIse39PkC82+jeIrJOwneDIlEYMuzUHUvLyqZn\nCsTgYvAq+XrYjC5srKvASSUfNbQ/xl+dLyJfb1906Ny+12+TgnDRKetaMIVV68PBO4tEX4yHy9ej\n6Nw8531OHxKheXNsb/ja8dn6tsH5eR14cigvCR1ZjVV6+2fTZeWzhT8rj+6a/SSIm7g4vhkLeYrL\nfBvereSRpcdj/xi3xzLJJM6//3tFxNdPJch0Lx6Ht8fOuh8zvP1UenU+NT4lt8777uk38WP63WZ+\nOmZX4szMzMzMzMzMzMwvk1k8mpmZ+LmGEqd14LLPpBS4vxC+3xlXgzGasZhi1YIItQgajYe151Yt\nKuFQYJ/dvfN3J4nP2sC/XGV2ow/CTxvhuje64gNtOA7Ova/mizbyLMJZgraOXOfMN7vMF6v03n+8\nv6kXoy/cfH670V1UasZ+9PPxqCSjV0VtivASF7j8PP11q8p7dLps/ONp4s+7wmiwiIEqwurWcVz1\nhYtOMVPutYlV5c6MobjzYT/Fo9URH7QXI0rkXmME3J10t3UXTzGPDztfCHESGfZFeXqpXB6U00Vg\nPxrNIvK8L6gqg3i/UTEXtfoCz/rM1SGzqiMyiXpmeA/Q5Op5dgjeVZWEOoMGYZO94+pBK5xUgXoa\nanc5kwSiGr+9Hokx8uRQUINtD5lCCpE2Be+KKcrVYAzFuNMIjQg9gf94lojhGA1W+G5b2GWliYlB\nM3UIWGXUQNZIUSOFeDPgvhwTm8NIBD5buYtmLMYuKwHh/jKRMB73LoREmSLwTBlGZV+MviiHbBwU\n1PzaB3GHTy3QFXe1mLnDJRsMphyyi1QmxjgqYwgUFFWIQdmNgWrq2flul7nsjFUKXI3e/RUGH4U+\naIVtdvdNVuPzytdhksKTbuRJlwkxYEUZp2vW1oHd4B1XJ5Wv2WNvz36Ee23ky1VkM0IM5n1Wg/Jo\nVbFcwKYvPD0ELgdjUwp360QlRjboVTETzpPw2VIYxYf5dfTot2UdOJ9cYo87YQD+fDVSxO/7EgPp\n6HyLkUNRVN0pJuICoBn+PKiF8ya+Frv2oRzF4Vc7dI73+psYpvv/7uJlYSKKOxVf7V0S8Ri/rthN\nNOiH8Cad5ubZ+pZn+meryDf7wm1zhRqs3qH6jFkJIdHdclh2kxge8NhNgOd9IYlwd8Ebn6W3u5WO\n7/Yxbo/TOkyRhT/g95DB351UP+ku/0+pV+dT41Ny67zvnn4TP6bfbeanYXYlzszMzMzMzMzMzPxy\nmcWjmZmJn2soEcT7R7riEVZ320i2QjGZIrO8u+TRMtCVo3smclYHllG5zspQpp8VAv/uJPL1VhGM\nvghni4B2RhUCh6Ls+sJnq8T/dr/itEmUZy+O5WEb+XpXeNyVd3aOvK0Xo0kvBqldVrbZOEzRJHoz\n4BSa4ELdLhfaCMtpWJuCsB2VOkbU4F4TSDHQRkXMBwvHjpgjbRX4dtdz0kT+6axiMxjXowsPJ3WE\nQ2Etged95mIwmiCsKiEgGMKdxl0YJ5UP98HYjcIiGo9WwsUhsEPd9RICewoiQpp6fAJwocWdOjES\ngu/yvuhhW5SzWtgM4v0wZlz1hkhwYUShqPCgjRzUWEY4bxJV9OFzv88UhO1gCIUUA49748uVcXXw\nwf2iEi4OUHRyTgWhmEevXQ8F1cA/rr0b6PuuUAV3dt1tAv/yfCAwDfIHMPGeoGJwUrkoUCfYFm46\ntFZ1YCjKbjTOauF6MM4WwudtJAZ3enXZzyVNLjgTF4GiwKZXNtldcSLuClNzZ5jGSBtc/MgKBe9u\nEiCaMlqmz+4+i9Pr6hioQ+DioNxrA5hxORqXfaE/9ioBdRCu+szlEKiA84WXbe167+l5vCuMZtxd\nBC66QlZfr5d9pjoIqsa6jgyl8HAZAWEoymjGWYwEjEUFJ01A28DX28Ky8vc+FEgRHkThyQGedZkq\nBs7ryEkVWUThSZcp+8CvViARdqOCKmHxQkCugK4ozwblvA408fUd2ikISiAGo03Co/aFENyXSaT9\nkAfTG7gdf3W7Q+dQ7K2dKoYxmnDevPyu/owwTuuXv79Nwna090bH3eZtIv7tZ+ub3DApeFzm9ai0\nycW6NspbxYwu6xSvGF76eZMhkUUQdsU/oyjeqXTdw9niHZ+NGie3nE4/1O0RRGijC/cfwptE/5+C\nT6lX51PjU3LrvO+efpW/1nqf+WHMrsSZmZmZmZmZmZmZXy6zeDQzM/FzDiXuLwLf7gubUemzkaKw\nCPKSwwagKcpuhEXweKW2ErZZ6M0dOG30qKp/OI3kqdj+qlM2o0emfVklzpvA379l17mI8OXKnRuH\nUYlTz8ztc35XL8ZpFdiOSjTvOlHz18cKnh5euBN8aItHx43GvYULcSIeufX5MtCPYepHUVIQzhbe\nPbQfJsEBH4K3AR4tE010183ZItAW2PdKr+4IEtyBdF57n1CaXEjyigFjKAUz4RrleixUAim5uCTi\nXTvgu2izGbn4MLmID56DGa0IuwwnjQ/H9wM0YqyrwPedH1ObApMRhja5utEEF1aKZb4rLrapGMsY\nGafgPx3g+WDsciYKLFMkTSJBHYRdPg7dXQRLEZoIT0doauObbWFdG8UMM+FxV/iP5xVdht9PvTuH\nYhwydKOSi0emZZOpQ0nICgEhiHFWBboIXy5fCBQyudvMYFkJYoVm2lF8Xgc2o3dgpfDC/RNjYJHs\nRogYpjNYRtACiwpGhaHHo/KKIShtjNTBj2ssUAfjXzeFflSaGBiNl3q89hnWFYwY3+wKiyT8+aDu\nTAoQ9dhHFLx3Rw0TX4OKcSfAnUXkeW98vx8xNe4tA5Uo14NREK6njqS+GN/uCstKqKMLwdvi9/Yy\nejThSe1ChXceBRYp8HQ07opwtxGGHIjiriNB+HwV+W7vAkdGaAP06rGUR5II3ajcWwaWSW66jnzd\n/rih8O34q9sdOoesN51Ut58Vpt41ta7fHJP3JgPUugpcDeUmqvCDjusdIv7x2TqqP382g/e9HZ8f\nDxqhK7AdlFUVXhO5jnTZ4xQftfG13w/HU1vVgc2uQPD7IAl0+iIu8VWEF6LkkY8R9u5U8NT8/nnX\n7663if4/BZ9Sr86nxqfm1rl9T/9c633mw5ldiTMzMzMzMzMzMzO/bGbxaGbmFj/XUEJE+HzpUWSP\nu/LaDu6shhq0MfDZMmB4vNth6tM5DMpmgLZN1EkIQaiBL9aR54dMncJUSi8s0rv/QS7i8WPr5ILa\nPn94L8a6CtRBedoVigrVpBYFcTFssJcH3RKEZQWnVeTh5HSyqUz5pIk8bCNXw0hRUPyarBthzYvh\ndJuEZSVc9MamdxdMHQNxISwVkijbrFQhIEwigfn/B+8luejLTW9IHQUVGAt8t8+cNIl9VhbRu3nq\nKHy3zxSFL9eJr7buWInBhZViLo7UEhgx7rX+vkWVLvuQdZECdTS2ozvLLg7KOok7bUSoKmGblcNg\n7IfCvng/ieGRclc93G29L0oMIspm6jqqArTJHU0QaJLwuBs5qQIpZp50wqNlpE4uWvxpoyyDcVJ5\n78Cgxmgw4KqLSEALGEpRF0VMfeqvuFPuKAxkM9pJGBlV+VUbuTwEvjt4bF22qf1KvNPKzOMBTZUO\naIOwqBNlElqYunRG8+v0cBXdMTbZ8US8Swc3tNGbELJhyI1oNBgspvjEoRjd5HYyPB5yMxpNFLIq\n/egi42erxLqKjOqxfwG4Ggu/fT6yqAr3FsIyen/X/Tbxh6vMxaicVIGzqfT7rBH+cj2yLUIS47L3\nXqJ15evETXF+/+ZinNSBOO267ooSJfCwTZwuXgxw1YzVEFhW3vlVFFSFnSqjuqCJiTvYaneCddl7\nxIIIIj9uKPzq0+7YoTMUYz8qh1ui7joKqzawG5Xt+OaYvDc9RoIIdfDYww/hfSK+iPBZG/jNVeZZ\nV6iiPwOPn8B1NpYiZDFqlEPx6MojXVZyMe61kUcLYVdef5+jWyoFf+1BfU11RQkC+9FY168/05vg\n8X/HY/9YYU8E7tfQRh+6hvDDRP+fgk+pV+dT41Nz6xz/vnTsz/k51vvMhzO7EmdmZmZmZmZmZmZ+\n2czi0czMLX7OoYSI8GDhA+tDZoqsc8fBKgWPWrtxd8BJLZwA9xrhXy5HEGHxhq6ObNBWwi4rowb+\nefn+Y66mPo4vVvEH92+cJPhGvZ9muNXFcVILl70LDGnqOYoIq1qQMDltzJ0yY4FHU+b9eR2ggd3w\n5uF0EOFJZzxshaveBYIgLhy0SegyPO0KAlQpsI7C1aA3osWoLqL44DdOET/epbMtyt0glGJ0BNQK\n0QJj9nizKgbayljcuHOM7WCkAIZwtvB8/93oIkibPGKtie7e+fqgKNCNhW6EJghNNA5Zyfg5lGkd\nRIFJT2EoEMzj+5oqMGZ3AlUSpkg/dxehypPsg+plEu43iYu+8HhfWCRjGQNqyh93hTZ5F5Z3RAmr\n6N04/WQPSZP4VgclRmii8OxgPFy+iKrrsmILYygem7cvLrBlRsbi0XAiik3upTS5iIq6a2M5ubye\n5oLhYlsKLhxhUMkkgkR3kK0q4awBMyEE5ao3zk8Cm1yoAxSFXHzBXI+FQY1o/lnusvHdrpCCsIhC\nmwIBdz39cZO53wZMocvCWBQjUCdlXbnLS8WdZU+6wl6NkyqS1Xjeu/g7FI8BXNfCfnShcBHheW9+\njQSuDnB3kVAMJlFT1QW2KH7f3mY3uBvwYRvZjIVnBxcXC9BE//wWUShmPOmMNqrf+4PSVr7ufsxQ\n+G3xV6tKMAInbxgQ1lGo9XXxKKuxfotQcla58PyqiK9mLzmHVN3R9+U7IjbNjO86dxWd1u6M7LLd\nRM2dN4H1OlEMMI9MfD7YTY/Q523gy3UihcA3uze7N45uqYT/vKeHgkXYZo9L7IuxfuU1fTEeLAJ3\nbzmdfoywJwIP2si9ReB60B8k+v8UfEq9Op8in5pbR0R+1vU+8+HMrsSZmZmZmZmZmZmZXzazeDQz\n8wo/51BimQQMTurAyQe+5tlBedgGwIeUUXjpH+qDemfManIfPR88Ju59fMyO8CDeI3RewxOF7zeF\nJD4IaKJw2sB1D/ustNGFo3YqSr7qlSTwq1Xlx3wUyiaHyUkT3/qZHLtGTmvhfhvZTQPi01roi1CK\ncK99MTQ3fFBb1MWJOrjr5yhetCmwSkaf3RnUpEA3KotKWCbhpHFHzqEYqwT7IlQKTfKeoHUlHLJH\n8G1HQzAGhRaPKhsyUw+Qd/uMaowK61boC2yykiS4UKTuRoriPT3ZCmszBoOihpj/7CYIZYpL68sL\nAcLdMxWKf453m8jTQ6GKsErwrxt1V1uCviiYf05NgkGFfngx+PfjVR6t443otR2UQb2/ZVEFKgmY\nGc8OhatR+WIZWKXA/3o/8c0+w5Xyp00hBuizsqqESo5dTWDq4l8jUOIkoCm0EWJw585unHqMIuwH\nIQWlCTCK9yA10UUDCR5dB3DVGetGEOBJV9hmF/qqZKySEAy/vjFwPRb+fJ1Z1cLdJnFQwdT7tvbZ\nOKkj9xbC/3PR8/UuQxCSBOrg7p9VFbjTJLDAWRWJBie1MhY/l+tcEAk8WETOmsBlX9gNyrXBaRNI\nuLLxeF+QUDzSLgr7oi7iJeOrrRED/ON5xWVvFCZRVo1VCh6VZ0YejCSBEIxHbeRuIzzvC92t59oy\nCaf1+0Wlt8Vf3RZPXsPg/iJO0XwvXlfMX/cq4xTjdn8RbkR8EXfF7ccXO9iLwTK5YPbVtrCq7I2C\n/qtdG6d1fK1nCXydjRpY1cI/nL1ZwHmbuyaIPxf6qe/o/iJy2SvBJnfoKxsQxmycN4HPbsU9/lRu\njyDCefPDRP+fgk+pV+dT5FN16/xc633mw5ldiTMzMzMzMzMzMzO/bGbxaGbmLfwcQ4nT2oe+o37Y\nEE7N2GXj81XkrAqs37Cz/iT5149DyX027rylg+M2H7Pv2MydK1eDD2u/XEWueu8d2mVlO/o5/v1J\nZD96HNmqdpEDM/7pvKKOwje7gokSgLEYIkYVb+3QN2M76E33EeZ9QaeNn2ebAg9aF/o+WyW+2hS6\nYsTobh1hEkLMBaKAoQqXQ6EOwjoFFI8lu9MEzmrh2cGvy7qCz5eJZwdjl71bZy3uvOmLccjGSS3U\nYgzmMXJVDHSD7+iuU6AfCpcHFzmG4hFXQZR99l6AOnh/Uzca+7Fwt40YQjQhItxvjH2BzeAijAS5\nuV77rCDGMrm41QbhwTJi0+UuwFkT+awNWBv5zeWBjPGsU7LCOk0X36AO0AfoilKFyCLCIIEmBqLB\nflS+3mUWKZACLCplMyjPeqMSWElgMxjPe0UX7qL7h9MGsZF6GjbXAR53hVx8zUiERzFwKMI58OTg\nsYAHhd9fjdyrjx06gad7WFaKFPhjl1lMLrGTOlAKfLGG5wKHDLky+iJc9oWCdy0V3MFWRbjojXtT\nzGIlgWXlPVTXWRGTqYMpUIvRZ+VPG+OqN/+cItQ1XA7KkI3L3kWsespGzAYPF5Gvdso6GZ8tEybu\nLlTzfqp1FagjXO4Lv90Z/+musMff96SCrPDkoKwqsGLEKFjxofB5A5sBd+aZxyL6eQiHony3y/yX\nhw11cKElToLtcaC3GY3LPr93cPy2+KtXxZMjoxrLyt01j7sXroejE+7VZ9Bt18NRxL/bCL+9Guny\ntD4mR+H6FaGlK8a3+8Lnyxcxij9118a7foqfo3eEpSDcWUROa+Gr68K2KMWMgEcoPlwnPrt1nB/q\n9tAp0vNV4e92r9fPxafWq/MpMrt1Zn4OZlfizMzMzMzMzMzMzC+bWTyameHtQ7l15QPuj9ml/zEE\nER61kd9fjaQPGKpd996Vg3EjEL26s76N7rI4zvSiwHbUdw7tPmZHuJkPbw/FxazLXsGEvgoE4abr\n6FCUZwfli1XkTuMD1KG46HDILugsK+8QkSAgxte7wlntvTxfbwvfd+oRZMHjus4q4eJQeNoVrnul\nTcI/niV0Esn+053En7eFQ34R53Y9eN/MMgVSiJgZm9EjsaJ498/d2scXCqjBKnjvVAjCaW387tLY\nFZsG2oHTymiC9x9tB1gGoW08omwbvS/JzMUM8FiyNgX6Ylwd/Gu5KHESHbrisXYCnFRe7LOqhDok\n6qJcDcqmLyybhCK0yaPNugxRlCZ45NYqCUX9nBbBnVPZoBb4YiX869bfa11Hj2QzYZeNQRUz73zp\nc7ZPPR0AACAASURBVEYw2gquB7iwghlcDMqvG4+Re7JX9iOA8VkbqAN8143sM3Q5kIJf0zRF8Im4\ns+reIjKoi1UpBoIpzzeFQb0fKE2fQS4uuDQaCGIMJXPRGyEEDtk4RGPcZv7pNLEdod8oCVhG6Cdn\nVVFISQjBOGuEZQoIQhWN/WhcHzJl6sRKIgjGuobLwSMRn41KEOV0ikHbDIDBUArFhLoSxmJ8vy98\n1oKZd5R1xZ1emXAzYG8q4bwJNFHYDIW/bBQVWCfhoMIqCbUI11kJWVzotMLlAOcNDJPTKAXhtBEW\nqqj6tVBzsW4ZA3XlfUwH5Y1CSprEpDcJMK/ytvirV8WToyByt3Eh6GEbueiV675QxZfj2t7lerjo\njWUVOWve/Tyqpvd8elAetP5s+6m7Nt7lrvFz9Mi6p11mUPPuuQT3k6BqHIpH/Akev9dMz+73iXZm\nduMYeZPw9+3BnXlm9rM5Rj61Xp1PmdmtM/NvyexKnJmZmZmZmZmZmfllM4tHM3/TvG0oZ2b8cZPZ\nDsq6Djxs4013z4fu0v9YHraRJ52yzUr7jh3zWT2u7LwJ3tfyluNY14Gr4cWO8BRkinR7+zF8yI7w\nVwW354dCmH6+iO+8P2sCJ33h8UHppi6i0xSokw+4s4FmZVeUdRVYVP6et2Ow6hg4rZSvtyNfbQuL\n5IX3dfR4tKdd5l+eu7vp7kI4qHK3Tjxslc0IiwhJ/PMyg8NYQIRlNJa1PwLL1Ld0XkeWlTsovtuN\nDApqyiII9xuwEPh6rx7DF4T7y8gDXNAYikfQnTeRNgU+W8FuVIr5UDuYMRRllVw8+XcnkQxcD8Yh\ne0RaikI3KuDnE+3YC+Nr08xY1YGixlICaqD48R2yiyshCvcquL9ILCuP9RrVuFcHFsHP9elB6bKy\nG13oOknCH3ZKGxOb7G4gMNSEUb1PqStGLR4/M2ogF+PBOjJk5bKHiLGqBUWpAmyy0ZXMwYR7dWBQ\no5h3OKUA16Oi4n08Z7U7l4pBUONZbxyKIGaYGSoey0fw6Lh1gqsRNqNH3YVJJFymwEGVP10r91dC\nLsJokEd4uAhsByMcIxstTOfoHWOlABF683XSSuD7rqBm3LdEm4Srg3I5GEG8UygICL52N527bEAI\nQRCDg7pzCXPhLkZhgXBvEdkOyiK506VNwh87ZVFBLYGmcqFolTzGLh8CBUMMvt8rVYTrMfBPp4Ft\nhkN+4XS6u/L7L6uv6UqgCu40uNu++1f+mwSYV3lb/NVRPHncFTZ9uXluHp+P2VwUe7CoqIOLaUc3\nzttcDz/WOfRTd228y11jZlz0OjkPA32BLivPe2UdPdLy7sIjHMF/j/TFeLSM7xWOvt17X9ehGIdB\nbzYytFFYVi40XozwX58OfNaGm36nf2th5lPr1ZmZmfnxzK7EmZmZmZmZmZmZmV82s3g08zfLcSiX\n7eXd+GbmMVoGJ00kq/G4814hEflBu/Q/BhHhn+8k/vvzkc2oNFFe+kd3nobw7oDyYeftXfyvEkRY\nVh5hdhzo2ev99Te8b0f4mwQ3MaMr7mq6OhQMuNf6MPh0kThdTIPgQT1aC+iy8aiFQeB6GqR+u883\nQ9FF9GM59vZ8sy30atQWiOLOim/3hT4rBFiI7+4vBEZVfvN8ZN1EAlAFj3WqoyASadV4PihjXzit\nhUX0TpnjOdcR/n5d0SZhn6EXWMTA3UVgGOGg7vq5GjzqbVW5u0QE/um0Iit8tyvsMoASEM4XguDC\nTwigIqyjsAhKNwgDUIeIqXdeqYGYiyYhBMbizqV7jfDtTqmj8CBBNwjrRjir4U4TeXZwQfFOk4iT\n4HTRu+jWT+6HoXi84Dh1S91bBL7dCpdDRk1ZV96R1FbCQj3+rEnCMgIhMhbjpBIOA2wHBQqLGOg6\npYlQi7jbrRhfnnqvSy2GmPuoHrSJ7WVmyC4kpejr+bp3B8U+wlklXI3eBdVEoZhQiccM/uvG1wnB\nP/eAUEePLjuf7tkhG1+cVuwP8IcOqs6FnyiTqzC6ADUCq8rvk95AEYrCbjSKCadV4HooXHXGxaDs\ninFWJYIY2VwI3AzGRTeyahJNENZ14LwRqhDoRneyZTMWEmiTO9nOm8hp4wJoCO5CCuIRZItJxNHi\noszdhXeFaRX4ep9pCZwGf1asksfrmfo1MnA3SwqsJiFU4Kb76X28L7oN3h1/9Q8nifXkHNxPTr83\nCUR3PuBYfqxz6Kfu2nibu+b274zj75IqGNvReNBGHi79r1p5ut+Ov0sAen3375EnXeFxVxiKvbbB\n4atdZjcYVz2cT3+bez4Yyl93g8Pb+FR7dWZm/pq8zfn+cwjAfw1mV+LMzMzMzMzMzMzML5tZPJr5\nm+XVIvUjF/3LX09TR8dFr9xbvBhFfsgu/Y8lhMD/dLfmcVf4fl+8S0RcnFhXQhM97sgscG/xfvHq\n1c6Rt337+3aEv01w245KFP+s7rSRr7YZOxTu3zq2IMJJEzmZXjMU5aIvPO18eH6vfTEs2GZjyIUn\nvbIfph39aqQobMdCscKfNj60jgIxwINFIIXAuhFOF4Grg6G9iyxntbtfVISLg9I2kV8LPO+VgtBG\nueWQ8AFnI8rvrgpPO+V8EXm0iIwauN8Kz4fA5aFQB9hlg1w4ryKrOjAqfLUdue4LKQa6bBQ17i0C\nbRV42hUXXrLSF+G8Fv75TsVfdspBgSSM6gPsVR0YC5gYNokeTYqsa9iOhSoFvjhxl8G68vizQd0R\nsxmVILDtlZOFO7WuRsPUJsHFHSkiPsA+XySaJDzbjxxyoQ5hipZzcTIJPM9KNyj7orTLimpaj9Hg\nWZ8ZsnJaB+41gfMUGFK8WTdd9si4VWRyeQV2FEY9DtsDq1ppo1CPwpAgjXBawa74eqmCsDmYR+4l\nWEalDgETX19DVk6rCGbcabxv6jIDOrnA1JDo1yhVflzrJKQQiGIcpg6jQQ1MCSIefzf996ZXiMI+\nK6O6K+qkjjTRo/AOxfuzhiJsBo8OFFU68R6ldeVOqYhwUvt6K2ZcH4yzOrLplRj9XAR3kYFfg7OF\ncGLG93thV4zPKmM/GPfayKp6vT8IuHEfNVF+UPn4u6LbXvq+d8RfnTf86FisH+sc+mt0bbzJXfPq\n7wyAp507HG//bnjT75J3/R4pqvxxkwlBXtvg8PTg7sR1E3imvs7/XqZOuwZSCn+1DQ7vYu7VmZl5\nP2rGVV/4y66wG5UUAie1d7mJyF/d4f5vzexKnJmZmZmZmZmZmfnlMotHM3+TvC0OSc3Yv+HraRpI\nnqlHfR3Ki4FYELjT+AD6p0REeLRMPGjja0O4467U60E9S/49c4VXO0dOX3EqZYU+63sHFUfBLQpc\n9eXmc3jWFdoorKadsuskPO0KV71y0gQvig8v/tymnbZXvUd3rW7F7pl5H0hX3HnzrC9sBu8P6bPy\nrFP2uVAMmhhJAdaVDx2uR8Mj34x1FTirA00SFkFoIxyych1cHEginNWB7Wg8PxRWdUCAffb3242G\n4FFkiwgD8NvLAdXAnUY4qwSLiToZu8HdVlGEb7bemTNoIE6dSjpFoeVRyWaMGRCoMAaN/Oo0sS2Z\nzaiYecfNInhnUMcUBTiJAAD3GmEoETOlmiL5xuKdTZUYdYjEAE/3GROP2PtuX2gCxBjYD4UmhZvX\n9EVRUy46A4kskq9rzPuN9qN/5mNxlwvARTeAuOvqwUI40cTlCKD0Cl1vqGWueiNIZF3B3TpyUgcG\ngxDcBbVIoKp0xZ062zETRMlZQYRFlRjJdHkSQ3Dn3Fg8eU6CR6IdVBHgap/5/CR6b9MIncJpDSdN\n4I5AscBgylj8miaFrD68q6N3WA1F2Y6Fu3XgoMZ1VsbiMYv368QiwLNeGbI7kYoZZ5U7ibrJ0VWZ\nH1cThHXwKLt9VhYpYCjPexeIsqqLXwTuLISAuxqb4D1PR0Y1TN0RN6ixmO63k/rNz52sRhRf92Fy\noH0o74pu+7fkxzqH/hpdG6+6axC/P6ooXA+F3WhkNa4H5e/WyR2Jt15//F1yZ4pahLe7vf5wnTFe\n3+Bw2fsz7kUUqT/DL3vlpA43nXZ/zQ0O72Pu1Zn5KVGD5335xbtzbpzbg/K0d4G5neJ6t6NxNRSW\nadqw8TMJwH8NZlfizMzMzMzMzMzMzC+XWTya+ZvkbXFI27d83cy47gvbvnC2iC8VlndZ+X8vRj5f\npb/KP3rfNYT7IVnyHk8WWUXhrJEb4ccwVhX8/Ul65xDmGDu3LS6wvVTcLrArxmZbOKhRi1HwLpbT\nxt97V4zNrtAmwXD3yKEoZ03FaS1c94VDUZ71iqrHbhlCJUJAGRWuBh86DAZnk8NFxKO5RoNu9Giy\nxQH+852avhjr2gf6y8pdNl+sErus7CXwuFNOax+wnkR4Pnh/zyJ6dNyq8sH8blTUoFdhXcG+KIMF\nWiukqWuny0qTBBWhjYFSZ657o06+4z5Nx32v9hi6x51SVwJmXBwUMRhzAYPzKoAJEgLD6NF4YFSB\nybEEy2hkhKucWePC1yJF6gV0xUXF3Wh8tvYB1DYb6yisxADvaDoU7z4yNeoYuRgGFgG2gzuY2gjZ\nvE9pO94sJM4r46BwGOEkeSTiozbSVv8/e2/WHMmRZWl+V1Vt8Q1bIIIRDDIzS6q7qrtkREZk/v8f\nGJmnmZZu6e6qyszK5BYbNoe726Kqdx6uucOBAGIhI5Jk0s4LGYDDYKZqpu44R885mZcb63GCDOLw\nWfjd3Gxzl71SepgE5XkdeLXuaJN1Kx15E6L+2go5O9TZfbrsIm2yKME0OIZiBuegz+CTUnpH02Ue\n10JdOKIqyyZTFdAOItOqVxYBkEwbbWy8KJshnm5RDdF3XeKqM1GuCo6rxubEIv5MlGkUai9MvEXy\nZc0ouovnqT2UQ3xdn5Q+JYosXHRwSKL2hcUyqvJmnbhOyrz0PJk4nLd7ZOosRm8b+zb3wmziWHUW\nCbjqMk3KxOwejLU8qRwvht3ei/cpzHef94969efBT3UOfa6ujX13zV+uOi7bbIK0s762nKHw3p67\ntQnrR9XNe4MXdgLP7pzvuL3y0KFUDqJUm2ytVoWrNnNY393gYFGghxW3Ou0+JIbwg8blFxKt9Us5\njxF/G6gqZ511pE0HIXj71Pza3Dn7zu1rs/XeElCCEwLQppuo5J9TAP7UGF2JI0aMGDFixIgRI0b8\nOjGKRyN+k3goDmmT3v667RRNRCCIvPX9enCW/Bw7RH9Mlvy8dJzsxe9tqptjvQuXbdrtlL3rzBIE\nL8plzHQZeiec1sJ5p+Y+KgeC29kYv1onTieOQgSP8mJt0XWrCKpC4YV1Vs42RppedIr3MC89MSqN\n95TOIugK7xAx4j44oY9w0WT+dJn5/YGV1IuDLiqrJMyDdSAVAoU38SA4YZXNkXRcCd45usxuHmeF\nddX0SSidJ6oJLqFwHNWesybRJOG8SQRnnTnBCd4LX82giUJ2cBocqyh4Ef75yLGMSp+gzxZj9tdr\nqL1SBU9rSWmUXlh1iV7hu3Vm4iGI47B2Fi2XI6pCykrX9fRqfUq1U45q6wSKyeLqzqJ1SwUPDutQ\nqYPjfJOYFDYuqwhlECqBVZ/wzlMFaJPFHToH552JOSe1Y157uqR0eRC5xESTVZcHodAEnDLAJAid\nKn0Hfzjw/OfDwH9cRVZJuWgzE690CY4nnj5HopoI6bBxWKsJI2AuL3U6/L8JcYe1x6nyw9oEwEod\nhYMErHvlqjNHz+kkMPGZ6wjLmLloMusu4x0cFrBJJsZd9omYldI5XKEoQhuV6ITjSmiSuaBUZUfe\nVx7ECdPCSD8H9AiHlee/zoQ2wVUT+T6Zk2hWQomw7jN/icqTWqgmgc7Bl1PHQXX7bXpWOpZ94qB2\nPKossm4TTVTYxlrO9/oiRCAP4tS7kAfH31ZUFoX5z0zK/1Tn0Ofu2hDsWTiZ+Fvn+GpzI1h5LPbw\ndZN3BHdwckvggbfdXpdt4qJJJJEhmlMQhOs+06jSbcy1ue+SEgerLu9E7y1u9UB9pPhyX8fdz0He\n/1LOY8TfDluxpU1C6XhrHfjc/ZOfGvvO7fsc7lvcjbf8VALwLwWjK3HEiBEjRowYMWLEiF8XRvFo\nxG8SD8Uh3ff1i70+i/xA9JPq5+1Aehf+Vlny36zSWztlt6i98P3KBLbKizk/OnM6pZyZDu4URemi\n9dp4UcrBXVEGG9sm3lzDVqi77BKXvVJnYV4Km2EOmmzXVAUroVe1Hbur3gSZyy5x2cGbZnBgbGyn\nq5t6vJiYMwuOLiWywrKJJLHeoLNNovKOaTABKWVI2XbNWjyhG6LelIMCrhphFoQ3mw4phJgddRBO\na2h7eLoIVN7G/ViVH1aJg8oDSgomMKTsOK5NZMsImpROQNgKKubEygrz0sZpFmAWCkQcDuVNq3w1\nEVoVztYRRTlvlE1KzAvPNAhNVDRaV0/phZNSOW+GiDUc6gUHNNl6e6al4sWZmgCU4rhG8QogOIEk\n8HqtTEpB1JxlItBlqIOJLDErUtqcpaG758k0cNXBY5QmK6JK5S1S8KASYjYX1EqweB+vrKKR9l28\ncbdlhZMSzjuliYlZcCyKQO2FDXDVw8ILC+8Iolz2mZisQ+t4EpgnpXRKzsKbNqKSmHnhshOmwRME\nNtk6k1SsS6lJdt+vYkZQMp6sJsoFhHUyJ5n1aSnnTaaaB0qnTApHq5Eec3XVwY5ZOaFHzLnVZQ5L\n6znaJ0SdCJNgIsJsbru1D8ob8WcTlXWfEDGxzokJb1vScV8k2i5nm6GrqfB2/2lWZsXP37vxKZxD\nn3N9fN1ketXds707B26/j+zI4CZROKHN1oMGNkdbsW/r9lJV/rxM5GHu9tEmpRoiUtuonOUb4bBw\nQpOV+Z3L9ALfXff89Tp+VL/KQx13+9f1tyDvfynnMeLT4n1C5lZseUBj2eHX4M7Zj0q+atO9Dvd9\n3I23/NAeuhEjRowYMWLEiBEjRoz41BjFoxG/STzERdz9elZlE5VyiHwS7v+Df8tT/Rw7RP8WWfJb\n4mObzX8XkwCrqLsd70GETVYjvhEWpWMxvPYVkfnQDfRs6naE6aZX7vIpgkWVASz7zKwwh8YqZnyy\nF191mcI5orL7eS9CnzNddLxYZb5fZh7PHIvCDTE4SspQeseTifBinXjTJoJT6knYkb2XnVJ7OKps\n9++2r+k6KquYKVB+WAkHtaNIcNU7DqvANDgWhQli/3aVOG8zUw+LUnbk/6rLHFWOZQffr3qOas/z\nWeCyh0WARpVlo+QEX84chXMWpVYIi8LxdOYJwL9dR9o+chAcEw+I43EpXDTCTIT5XPlmlclYB46K\nEgDvlFKELgtfTIV1hEusZ0kF+i6TsAg8R8ZjYok4mJcOh4kMOdu8NQpFgqSZyy4BwnKdmVWCRzgs\nHPMyoGpuvcteySQOS6FNQkHmTROpggmGfYJ1b+6jyguCssw2xw7o1HowSrH/RgSXLWbvslccmd8v\nHJWHKsJR7TgKwmVULtaRPsPBwEqKWLfTSS34TnhaF2TNFE44qgPrqEyS8GITuWxN+OuSkdoTBxIc\n6z5zXNvvf7HOTIOyiZHKe76aB5wTUIvP+6GJuCHCBzHBI6rs7juCCWhvNplSEieT22/V80LIWai8\n3Y9nrQmjXoZ+rOE5uGgzqiaa5Jw57/TW68BclW0ygnLi7Z5Myk7Q+JSk/Me6Xj6Fc+hd62NWE3Q2\n0TqkHtWOyy5/kNtquyaW95yX239Np7RZWbaZ66h8NfMc1g7vbC3e7zk5Lu1YW1FqXjhWd1yy+x1K\n2/tlGeGgsK91WZmEG/HnrM2s+8zrJvFkGj6qX2VL3r9v7D83ef9LOY8RnwYf4iKbBGHTK1XxYWLu\nL92dsx+VfJ/D/T7sx1v+UnroRowYMWLEiBEjRowY8dvDKB6N+E3ioTikibc+ke3XV11m2ORNzMrs\nni2wMSvzveign2OH6OfOkr/q8uC4uR+bXpkWRmRux86JRYXN7pTPq0KfMyJC6YRVsl36TTJxYx+V\nFxKZIGoReN66RQoRVEzKu2gTlYfCC7UXMtY9gkDwMvQLZEKjfPXI8/06o9xE4IgYCV8Hc+KseiPc\nRYRiINkfT/yOiL/sLQJu4k2IetNk8uBOmgRP7a3n5kKhcMpxac6q103k5Vo4rq176arPBA9VEE5q\nz5czz4tN5iBkEsJR4XlcKdd94PHEiOZNTHx3nfhhFVl1iRebzKwUnk7NEVU4YdlnvHOc1A5E6BI8\nx5FF2fSZw9KTsrLu4PGhUGAOmyZG6sK6jRxG6E2DxWWpKh6LgCuddTH12ciwVa9MghITnEd7HjbR\nHBMRixFUL2ySxQl6JzwrhIii6nhcC/920bOKiZeNclA6VtGIs01yeFGETBOVabB7ehlBE0yDCYAx\n2Zh1WXAI3kEPvGwSVw2UDnJUYuGYeuEPBwXfLiNdrzhvc+cwAlIZIsLU0SblostctQknQhWEOitd\nytZhlYWA3XMHARZFoE9KK8pVn0k5czIpKJyj8krWzItNog4mZEYFzeYECg6W2aIKVYV/OCzJwItN\n5qjWW89vl+FfTgqcCH+6iqjAZG9t2heMrfco8t/OOk5rv3PJZFW+WUaWUQdBTrlW5eXa3DcvnI3J\nxFsMYVR+NCn/UyLHPoVz6O76uOozr1vrvpoF4fn8pu/tQ91WWzL47nsGQCXw/caiJgW47swlV3vh\nMmbWK+WkdOjgNAwYSRzEkXLeiVL2PKfb13LnPIIT+mwCqg22CX+q1puS1ARD95H9Ko9qt3NKfAg+\nF3m/79j4Oc9jxKfBh7rIXjWRJipffkRX2y/ZnbMflfyQ8/0u7sZb/hJ66EaMGDFixIgRI0aMGPHb\nwygejfhN4qE4pHnpuOxuvt7siSFZeUsIAXa79Lf4OXeIfq4s+XVUFqXtkr9vx2yTlZPKcdbmnYAU\nxCK9HtW3l5mk1rtzWgudGjndZr21o36LOhjJvOrNLdFkpXTQC3TJukRACF5Iap0zphsp0+BRFVpV\nvIMuKf2Q06V3flGfldI7ZoWjz+Y26gamZkhrs76RaF1HbhgDBZZJOch28tPCEVWH3iPlTZtxmBNk\nUTgaMSJ0XjqCg5iFTUqc1p5Z6Zj3yqUKXqHySp+Uo8qO9f060eXMtBCEgA8wTUYo/fU6MS+VpxOL\n5DO3ltAntc6nIQotZjiuhVIctb8ZN5HEVa84hOlA1qUszItAVKGJmWnhyCjrPjMTEHUcVI6mTVz3\nGS+OPpuzal6YOysIVN5TBYuyazJMxASZR5Wn9MrLTeL7TU8TQcRRBeu3SCo0SXm1yYgK4qyvKOLw\nYsJb2IuS9AiIuSwq76g9g3MKDgLg4OUmMQ+OaRCezQObPhO847zNxAR9ylSF9R2V3pM1E1UpvbCJ\nmS5lUAYXl8XMBS90SXGFYxIsVvDQdDsCJSelp82ZPgtPp3BYCs45UlbaDE3KNL0yLwUQisLm7k2T\nqZ1QiHLd5SHmEDYxsyhMDPnjVUTE4h6XXab0dp8tgmO+JxhvBYaLLnNaCxeDG+WiU+pg4uCyU667\nhA5RaScTE12uo3LZRZv/wZ3zMaT8T40c+5TOSifCYem47vOuR6vL8GqTdvFxHxqBtiWD775nqCqb\nbHGKk8Jx1WYS5iRDzEk5KQTvudWD5LD17k9XkSq4nSi1XR+3x6+8sE7D8XZjZDGem5h5NLim3jSJ\npCYMLnvduZruG//7+lW86Hujtd4a389A3u87Nn7O8/il4GPde5/qZz8VPtRFtu3PO2s/XDL5Jbtz\n9gWjjwkO3k9K/nGBwyNGjBgxYsSIESNGjBjx0zCKRyN+k3goDsmJMC2sn6dwsvuDP2Yj8e4SLDEr\n0/D21//edohmTCC77NK9i0bGouJOKsdVb2S2ADmzi7KLWUkKh6WDNlF4R1LlqHK8bvJAdN4eRyeC\ntbGYEwAdnCZRidnIbieC602oSKJ4lKoIzINYP0gQcoLFxHPRKIeluc56NQfTFrW/cUwJQpcSqiZk\nfL+KqMJ5a5FWN7DuEnOhmFBz1mQQO87LJvFk4imcSVpFabFSR5VDcDyaeP56aU6xbhVBBFWLtXs6\n87zeWM/Od+tM6ZVFGVh2GZyy7nQYH3NdNb3yrSaeTz1tgsPK8XKTWEU4qf2uL6lyJnIcVY7z1kj9\nTVQ8QhSYeBPrGI6brOrKHEcCmx7W0XqsUGVWOioVrnu7ttpbZKAm5cnEUzqhU6VLSsyZaemZF8Iq\nKq8a5aqLTIrA6cSi33KGmKDLmQIGhxdMROhyZhMzZEwcUrN2WACbOaa8gBMTE7pszsEA1AHWrfJq\nE3GC3R9ZqVRoks1ZVTieBuGqM+FJBdre1oIVwqwIoMom2XletokimAtNxEj3da8clMJxHTgoHIV3\n1osDXLbK8SQgKC83Sqdq90aRCWIOsjaZoOQEOjXB7c06Wk9Sn0GV7IT/+2XL603mpHIcVCYUxWzP\nxdbxAkP0ZoKv54EXq8i313afRYXgB1fQxvrK5rVnEYSrXvlhHZl6E3gzcNZmKgcHJZxMig9eO15u\n0iBksOvm2e/52eJdkWP3OSujKqsuI4No22d9b+ScqvI/L3rO20zlTSRSTHh7sc70CjNvYtWi8u90\nW23fG+6+Z1y0ebdebrIOgvfN+cSk1BNn61hWLloTk6eFo/KOl+ue54XbiVLb9XEryk8LE5X2lXZz\n6Rm5/PUikAe3UeWFZZcQVWblw0LKff0qLzeJw+rjPiJ+DvJ+37Hxc57H3xoxZ/56HblorSNu+65z\nUApV8B/l3vspzr9PiY9xkW17JNd9ti65DzytX+pnr/0rvs+t+BC209Fn5eCezUsjRowYMWLEiBEj\nRowY8bkxikcjfrN4KA7pZCDd+2yETcwWp3ZU3SY8tl8/qd4mQv7edog6jMCdDoLMXdJje70iwmEp\nLArlskl0Cq82EQZB5HTimBeBs8aEge1xT2tH0zvOeuuZ2e6qz6pUzqKlnDNh46qDTYReEyLgC0//\nUgAAIABJREFUxYjUJmdyMnLttMbIVYGUzV2xKE3EKLJwUjuuWmWT1CLHCkeWxKozC9GrTcQ7ofYQ\nvBHTwRuBc95lKicWyxYzx5U5T2pv510PYkkzxNvdTd1xAss2MymEH1aRV22m9sJh6Xk280y9ssnZ\nSFyBH5rMOiUUT+Ey7XC/dtmirbIqGaEMQhczL5vMk9rEhKk3QWYevPUGiXUYHVbB5qpytFH589Dr\n5TKUHq67jJLJGph4E5yy2rUEp1w1mdIpq06Yl55JEM6bRBczlXPUoqxQc+uIkhBOauHZxNMkE6ei\nKl1MLCrPaeXps7m0mgTziSPmzKt1ZlEq1z1Ye5ZQOaXVrVgEXTQhyUnCS2BaDF1MauM/ddAC540J\nSqLKss80SakEIJNiZl45umgxgpU3UfAi2u/yWamc9ScJ5vwQMQEpp8wqWbRiF+Fx5Xk+98xCMHEL\ni6KbTxw/NJHTIKx6c5BMBxI1qUUk1oVDRKm8Y+IdXVIyme/WmaM6MQuAOCI273UQVklZrtJOEAzB\nhIyXGxMuzRVmz5n3QomJgt+uzH1z1WZKLzvHig737p/7yEnteTTxeMB7Exn/n5cd/9eT9xPNFpuW\n+NeLnsng6Nm+/G7fzvY474sc2zqH+pzpemVe+ltr0buIcFXl21XkvEnMSo+qcj70HTlnz3nABNA/\nrxLHXWZW+gfdVvtr/PY9o01515F3UMHlMtmNOiBmxXt2JHBwwlWfOSiFkz2XzFWbTIyMmTcNBAd9\nsp4272DihE3O1gsWM69bO5+jctujZHO+HZP5BzhL7varrCIc/gjx5T7y/ie5ZfiwiK8POY9fA3LO\n/K/LyJtNovRCFRyi8LpJbHrlrys4rjL/eBBwQ5Tsu9xyH+P8+3YVmQZbgz+HM+ljXGTbX+ecsMqw\n+MCb4Jf62Ws/KvmuW/Eh7Eci56wcvEMAHjFixIgRI0aMGDFixIjPhVE8GvGbxUNxSCLCk4nn5SZZ\neb3C6eyGjNk6aO4Sn1v8Pe4Q3RIfRpLmW91GALUzEjsM/Tjnm8wmwe/nnuPJzTKzjkbc91nJfeZ4\ncPGICM8XAVlFYjaBSlE2XeawdMyKgute+WFtDpHTWni58USxrpgmZiZeOZ4Z8dlEOKqErJmq8Hw1\nC+ZOUeWsSbTJY0F5is9wPBHSWjjParv0C8dp7bnsbnZ9xyxMCusz6lVpu0wVhKfTwLKDxRALtSiF\ns0ZZRotNapMyG4waqsqmV173mT8cBNpkY1t6z0WfkZX188wGF0ZS5brPTIInqfKmvRnjdW9RcjEP\nLh1ngsR1l3k0CJqLUmg39rVF6bjuHOe9lZEDOBwHpUVaLXsTtjZRmQfrgVIZulIEXm4yy43igcKZ\nk2cSlD4nvlslYoQnU6H2jqvehD5EiBj57QXOWghi/ViiCg5OBsLbieOLqXX8tClTiDApBO2Fo1K4\n7COraALhrDCRR8RRiFJ4Ydkpgs0fwNQrvQjXYtGSfTbRImPxlDEbiV8HaPoMauKKjac5UPqsqCqF\n88wL5SoqfQZUOW+g8Ozi4ZwzotMLrHph6i1i8TplJt7IVxFlHTNtvh3b5EVIaiJm5zOiJrbYo+M5\n3yR+dxBYR3bibZNuiNgsypsm8WKTOKocXiAM7resN/F+/cAIn5Sek8G9ErPFt23vz4s2EwWCOHo1\n4n9LHFfBOjhWMdOv9cFIty1hfd6knXC0j/v6drbHeVfk2E+JwHvdZC5bcz2YE8OOU4a3zy1mc2v5\npDQxc9iak2wf+2Tw9j3jP656krLnEnKDCyijYu7GL2qHApeNueiCwKpwLIvMLJgj702TeTL1HFee\n12rnWQz3ZhuVlDPnjckj88JzUNgzWXrh21Vi1SWOa0+f7Xm9u/HhPmz7VeaFObFer+Mg7t/vFHsI\nt3yZn8Dx8mPFgE8tIuwLYHFw0AjmegvDxoqfKrLknPl/3/S0WVns3f8XrUW9TYf3y2Wf+R/nkX85\nvhGQ4H733ofExKkqV0O327RwfDENn8WZ9DEuskmwmNzCCW36MPHol/zZaz8q+a5b8SFsI5H7IZZz\n7PAaMWLEiBEjRowYMWLEz4FRPBrxm8Z9cUjbHbd/WAT+5TjwP88jGdv5KQLz4t1E2t/jDtEd8REc\nTybWbbSO1vsSnDArHctVotfMm0YpPDwuHYf17XHYksaHpfCXZeKLyQ3x5USYBUebbac8wAtVpmWB\nR/njVc+XU0cUOGuUaWDothGmAQpnZHdSE1MOClhUgdo766oRExhAqQslq0WiTWuLfjushEXbcR1N\nLDAXFVz30KYhHssLS9XBBaAUCebBMwvmUCmweyp4i6aZBOGsscJ7VeWyU5pkQs8kmLMoOM8mKaUI\nCesuOaosLs+cEZk+QybzapXwAllsHI8qE2ZSD01S2mROmE2fYGLuotOJ9a70aq/vkhvElGzOpAhP\n54G6SayTcFoLVYAfBvL/qs+sk433JFhXT1LrROqjkZKnlbAOSo9wEIQDF/ACESAb2ZpUcCQue/DO\nUzkQ5/FD/08ZjFz+3dzxsjHnn/TWbSWSmXlHLIRcKEeVOalSUuYFiIPC2fU7AicViHMQzYDWKbxp\nE/PSM90KJVgHlHee04mjy+awalJmVsB1pxyUjsIptRNebUxIjjnRZSGJMvOCd47K2fHapCx75fmB\n0g7Oli6Bn5gzSwZxZlrcfi5SVm64YuHx9GZ9ebNOHNWONinraALh9vxRzEGXrdtGgVWnHNb2HP3p\nMjIr4bQOJpDLjSNDxF67xz2z7JQIFCK7qKh1D/Ny7xkWE3edyIORblvCuh+Eq4dwt28H3h059qF9\nKXdJ9G1c1vZ8zgfh6KHjbAWoQ4GE8M0qvSUe3e3NEzFx+XkBq8HZllAWpeNRbYLVKipNUq5WEckQ\nhn6tb9aRyzZx1mf6ZHFzi1J2IvZFa6KFE7hM1vP2z0cF563FJDqBxwUUflg3e2WTIl/PA48nH0b4\nqypnm0SXTeidFhbbGkQedIrdxT55/1O7rrbYF+k+FJ9SRNgXwJzAVW/C/Va4veoz0yDEbJGFP0Vk\n+V+XkTYrk73xyqo7N9sWdXA0MfPvV5H/fFTeOsa+ew94b0zc1iEYFWalbXbYF4w/dJ4+BB/jItuP\nyc363pfb8X/Bn73uRiXvO9zvW4e2kchJbSPAaf1L9VSNGDFixIgRI0aMGDHi7x2jeDRiBPaH/VHl\n7yUsn814qxvpIfy97hC9S3w8qj3HgytmE43EroNw1WZOattZW7m3u6C2mJWe04nSJEBuRKhtv0cT\n8+B4EY5rIasQvKO06iBUM1MvLAaRqYnmBvJq5/KoCvzTYcm8tJ3836wSE29umSaaCLT9/6suoxhZ\n06U8EFXGVhkhDMdV4KrPdEmZOCGlzKPK86gSFpXFqZ01mTaZwKgKjypHp9bD82YT6RUcyqLwfDE1\nh1SvdrxVtF6Uda88nXkyYl0Xg3NgHTNtzFz1mUkQJsExC0boydBllLNQBsgqnHfK16qImCtiUTkO\nSse6h+Mjh/fCulNOa+E6QSGBIDYWQQTvhMPSdqPX3lwXfogANIFGabP1S3UZuiy0mtBeqLyjdPa7\nNSri4Sh4MpCSmptGLDKwGsQo52A+iCLz0oTcTZ+57u3ecMO9VKbMsst0QwfZvLJxuOwySWFWOr4Y\nIu9WvfVuraLdc5rMyUZh0YKqQijguHQ49eTeIvkWznFcOf6qHYJynczZVgZBrBBr6N/QQVAE52Aa\nPIeFcN0n/vUicVLbnM6CqToyOBv/skw8nTmmgZtoKcw1ctlazNmZWDxe6eCqS/zTccHrJu9i7rY/\ndNaaQLHfqbNJykKNbK8LuGwSkNBBONHBmVV74VVKhEE9ymrCxtaFJHIjFM25cV3OC8cmWq/TfRFz\n+70mH0IW3+3bgYejzz60LwVuk+jbuKwMyD1k/H1wYvGKi9Kx6tMtQt2+/3Zv3rb7bVF6FsPrtnPc\np0zCiHDnBO9tk8Kyt3jHSzGRs3SwbjOnvbLsExNv6+JhBd8uI6iimDvry6lnUgj/fWlOv61L8qgS\n6uB2UaPv61fZCiRRTbjqs3Ja+51o8y6n2K052iPvf6zQdxd3RboPwacSEfYFsNLLTmTZvwe343KW\n4cnE/WiRJebMm0265TgCWHX5lsC7RR0c520m5rx7hrfYuveA98bEnbW352k/vnAf75unD8HHyB9u\nLyb3Q6b+1/DZ625U8pOJt404e853sHU2K8yGTSifu4tqxIgRI0aMGDFixIgRI96FUTwaMeI9eKgb\n6S76od/m73WH6N1xcCIclJ6DYePz40nmv72xqLViEILyIDAZJ25CRxDrJfrdomDZK8+mjnU0QtdE\nF6FJQ8wXJkJct5lnUxNXvt8oqy7hHKyjEUyVF0Rh5hyPSseicriBHH6zSRxWjke1p0uZ685I3DeN\nkVJeBME6RerCk7qMoFy1yY7rrKQ+qRCzldv/15OCr2ee79aZZZOY157jynaDL3tziJQeUPhq7llF\n5cUmMi88k2BEb5t01+1UO2GTMsEJiwDnrcVluYG4LcQafhYlIDALQnDmijqsjKDeRBPyam/OomVv\nBH9U60qZeOGk9DyfB35YJ8Is8MU08GIdd71T/34V+W6VcFnJg0DTZ5tHVCidMA+gIgS1a9pEWMVI\n7T3HU3fjWBmcaSS4yrZrf9VlZqVQZ8Eh5KQUE2HuhTi4xt40mTo4iqjMvbLxkHplmUwMmhfKQYBF\n4ZgEIWNxbDMPR7Xt1N5ENcJ8EPLaBFO1KMGr3kSZZ1NH5TyHlfVC1UHp+kxdOlZJuWihdI5/mAl/\nWdm89imzScIswKLwOISDyoMOopiDlB3OKbWH4zrQpowTczktSk/pI03OpN6xKAZBLivXnWNRWr/O\nlih8uY5skkXL9TndInTbqHRqHVP7EAfrTplXsiP+m6i83iTK4DCDT6QUi+fb8uCb/saFlLJSbx0k\ne6U9WWFWCIP+dG/E3H6vyYeuhF5MJBPEHDv6dt/Kx/SlbLE9v21clsP6vO4j4+/CogGVBeCduzdK\n76018c4xtnGeYIR8m40ULwcR76Kz5yw4c/JNvNCmTMrKZZs4nQbagbA/qSxW8YvSPrZ1UZmV9ryd\nFnBUwLOpfa9y8GKTeLVJPK4tavSw8syK+wX9i9aiIg8HMT5n5WAaSORb0Vr3OcW22Cfvf4rQ91a3\n1D0i3bvwKUWEl5vE2eBSO2sSbYZFIfg7x787Lj9GZPn2Ou6E2300+WHhLzhziH41vz3OW/fe9twe\nQh7iT2+JYUN84UH59uvf10n2Pnysi+ykcny7Svj33Ea/ls9e90UlPxo+O1x3mWVvQt4sCF/NPIeV\n/0WLYSNGjBgxYsSIESNGjPhtYBSPRox4Dx7qRtqiH4j2T9EJ8EvG+8bhss0clkJUoRTl1bBL24vt\nfo4ZNCvirD+ocFCI9Ug8qsNbZFUedtG/WEdeb0x0OKoczxfCuvP8aZn4dtVz3gq1CKdTx7w0Z0gp\nRnRdx0zwwmIXpWTHXveZ6g4j1WWl9I5q4vh67mn6xHWfabKR6Sel8KQOPF8Uu53eX80dP6wSX0zC\nsHsfgocuJbqsdKrUhaNw4F1BVthEOybD2ERV6gAqjomHZQcJJQTh4tocEqm37pzghC4pdTBHkY+Z\nZbSunMNK6KMwLxkElMwsQOWE07ljWljEX8bm0QjGTCFbgtLxnw4LFgH+uExsEpzUQuFhs3XviCLO\ncxCMoL7oMqcT4YSCTW8xgE1UHINjSBxZFI/gxHqsuqSk4AkBFkHRrFwm5axNHBTCtPCU3u6tZ4vA\nq01ipZkvKqHPmSYGntSOYoj0KbHXbgn5l5tEzuCGY5yU8KaHLA6nGZxSYN1E66j88TLSxkxS63ry\nwKazaEFQIp6TGpxkrlvoUqZJ0LeZ44lD1OG9CTHnrc3lcS2sI8yHXqIgsFJlubbxXveKd5GcBBWh\n9EaUzksjfbusxGQxh89nFkF32ShfTE1MzWrPkePttaYQsehHzDnRJmXdKcuonHhYDB1Tm2z9W21v\nsXhdvhEzMyY2gjmgwHbDT7yJD1tB6b6Iuf1ek4n/MNfLssv8sMo8ndlHknlh9/d+30qX3nZYvA/b\n89s6oCZe+CFaR9aHwKINTYTdXud+983WydRFJQp7z5IdvwrCmzazKIQuDQ46LErsTWMRdWCOt0lh\ntkoR4XTqOWuVgypTekfMyrcrZd8MIs5cZUd14DDcjOVZm1l1ynWnFEFos4kvl11i2cvOybR9n8pq\nLsCtSNNnZTqII/dFa93nFLtL3v8Uoe++rqu/9QaO7Tryrxc9k8LhxATocuik2neEbcdxf1x+jMhy\n1uq9Yttd915WZdXZGqHAsus5KN1bUbpb99675KvrB+ZJ9Z4XD3jXPL0PH+siE7FI1BiUNvPW/P8a\nP3vdF5Ws2Lr8xdT/5N6sESNGjBgxYsSIESNGjPjUGMWjESM+AO/qRjoozIHzW/iD/13j4B38/qBA\ngO9WkaaJrJMJGV5snJ5M/Y4A7gbBImeljW+LUWmIfjtrha8W/haxtqiE34t1Fa2i7dxXHA6Lcrsa\ndvlPAvzjQeCyV4u2y0bSaGeiTdibs16NeJ+XJnTVheekLvjn42JHSr1pEm26YdacWFRcn5XrLu/i\njU5qx1XMnDrPYe14s0k8CkKXMzl5spoL57DyTL1jWptA1SUjf6uwLZY3v5bnxiXlBjcWwLy0TqWN\ng6kTXFAuN5kkQpt7rnrHo9JzWArZZ+ZlGGJw/E6EuGgT/3oRue6s72RSeP7LETyfOl61mUVpsXia\nMlkU5xyqEJPyfB6IajvVz7EC+VkpJoCp0uc8CFZK5eDpLJCydfqs28zrjXI8yfQJCi8U3tMk6wpS\nrPdiUTh6VQ5LT5MctSQTXJyj8EITLcpvFTMvlwknQhCLWGp65bq3+3NWCDl71n2idxbJdzr1eAcZ\nZR0zfRZOJ4GjEmJ2bJI5L7pkrrgO2ZXWN2JF7puskE0gimruuotGqIL1HV1sLPbuqPZksR6lF03k\nqoVvovL1XPh6ViJOOGtv+ka8tx6uwguvNpk4jMvJxPqLgrPoxfYecSYzCAlNth6qSth0iT5lnNid\nFZzwdOr4ZpV4vUnIEE1m/UsmEkVVpoN44cXIcouue5uk3v/3llael47L7mGy2ATXIRZs6Lxqk0Xj\nbc9x27fyep14OpOPJoi369P2fNLQTfbOnxkI+jZnuqg8m3lizngxV5sfzssDiFAFE/sKZ05Lh0PE\nyPLKC6+HDq+YGNYPNaHDC33KLLvEWas4SRwVjlnhqb3FYF539rNnbeZ04pl4GUQkQcWi0v48OOy2\nsWp14ZgnpckWRXhaO6IqUdk5mbZk+6pXVJVpcLt+lZPKRkzk/mitrVMsZRMLqyCcVo7LLls85nsE\nw/vwrq6rv+UGjm1U3VmbmBSO4IRlm3Zute113R1HuB359rEii0UOvn3e23tXVW/1m4XBMRtVue6V\n8zaSVZnsbYqYBHM7PvTZZJPun6d3Dd+75ul9+DEusnnpOa3M9XhQyN/NZ693RSWPGDFixIgRI0aM\nGDFixC8Jo3g0YsRHYPyD37A/Dtud+N+vYd1H/rJKNH3msPacljekTszKy3VmEpSjyu2ifpwIv1uE\ne0W51jm+mAa+X6fdcba761OGr+eBszax6o2MPW+tq+O4chTe3FCFdxyKuRv6pCCOkxquWiP+80Da\nVc7i9BJGAD6fBWoPF62JKjp0IW16I0vLgaQ7KR2KHX8rLBQepDfSHm7I/EIcJ3MjwM8HoWrrgohY\nV0nhoUtwvokcFI6LXnHe8VUppKxcR3bj5jB3QK/Km0a5jhkQ/vFAUByXTaJPkIB/OfDU83CL7BQg\nqbnAEMfRINC92ihVAVVvnUAH1Q1pH7NSOPjuOrGOjmWfedlaH9RVysQMTVJmwdwseRDswLqS8kCw\nHtaeuDExLmZ4NNgqvFg3Tcai96YBShG6lNl0ypfzgKoARoZ32ZxYb1rrX5oE4bzNeG+OilKgEnOd\ndBgZmTJcR+UkK4XAUeloE7xqIkmEo8Lz1cxx1jniQJCn4dwUm59icBQJ1nm07jIZpQ6BQmwMl531\nG00G0jOp9W0dlYHHNVy1imjmP64zh2XkuHaUTqi9MA02r05MfJt4+Mu1RTA2A+l7UMBZNnfMPgns\nsGO3WTkoPJVXjieeNt62FMxKx/EQ8XfZJKbBUQa3c+r1SQmFUjm3c1mkfCPubH/XrbXhzjoxLdyt\n6LN9XOz1rajelMTfJYMLJyTk3ri092Ebf7eNy5qGrXD99vmkrPywTlx1SlbrmBrMUPz1OnHZKgeV\n56S6/bNbkctnYZaFRXmzPqgq/37e2+8fHJHrpEM0ZkaduQGdszVGBdZd4rKHiybyT8eBiw6WQ6fa\nJAjzIHw59xxUN706lxEqvYkA7LNyMQhztS84qRxXncWD9mQuWjiuPdd9tm43bz1YJ9Vt8UXkdrTW\nOmYu28wPK+UPB4Hn87Cbr61T7KozoevHCH0P4W+1gWPb1RTzjVB0X3Tc9v3ros0c1zeC7Dby7UNE\nln0X25tNwnsT2/dj92pn7r2r7u1+s6zW4/bnZT/E1CkH3vN07jgqPVGVv1z1LCr/1rzC264m4C1x\n+N7zfud3340f4yK7wKJQx89eH4+7Tsm7caAjRowYMWLEiBEjRowY8T6M4tGIESN+FLYl66veom8c\nyqs2cdllKm9E78TJTngITsAZEfe6SZzW3pwG0aiou8RQVuUvy8iTiWfZZa5668K56q3DZ0vmnVSe\nwlvHhih8vfD4odwbhZfrxJfzwKIwwqSJtiN/XglzFVI219Sqg02GWXBUhZHsrxrrazqq/bAbW6iD\nRU6JWBzVSeVRVRMIeruWReH4cqp0CqiSsu0I3xdhZqWw6jJHE7+LBLPoPHMWtMkxLR2LqHx3bb1E\nCHw1Cyx7c8s4YNkZSekECmc70ivvSVn5Yhb4P05KFGgw8SEpfDkw4tsy+KezwMtN3okQqja+pRca\nVWKjnNRucJEJBYoI9CnzepN4dd3TJKXJ9v3aO5wXSrHd7atNpBIT9pYx4ShYFFAWkBPWo6S3d7x7\nEZIqq96i5161yqwwNwcYudvGIQJOlE2fadJNDJNmOC48IUOn5lDbOmoKhSPJTAuL2Kq8iVHHhXAQ\n4KqNXHQwD0YGd0npszmwklrcYuFNdFv3mQz02RxP6z5TeCEC9RB3lTIc1Y7jITLuokucN4lpJZTY\ncyBOAHNwzCoj9q7bzHW0e2NROa6X1klVeUHECPWTyp6JJlonlApMBNaDWyo468H65yPPn68i6z5T\nensenQgT71AysbBIs1kBCsScOSkdX85uxIG74k6flYM7RPPdXpP7os+2z/cmWixjzErtBD9cz304\nKIWzTeK4+nDSc3t++3FZzyaeP1+nW4KbqpogsrY8yco7NnEQdx389/OehTenVpMs0uzJPeJI4Uw4\nuuqyucacPe8dJoD2atfdRmXZKyrKzMHrVvHOetJebHraaPfei6xkhS/mnkcze0iOaxMFvrvOXDTK\n04kf4jAthmyTdBcVejrxXLYmIp0JHBSOL6aOdW8CfOmhcMqzqQds/flhk3CY2DrfI5idCIvSXCMH\nlee4gpP69kfIrYjWNvnBMXoXPiRs7nNu4Njvatpfj+4TWYCdK+5wL8JvP/LtIZHl7ntncMJJ7XnV\npKGv7iYWb1Y6vln16OA22v78slOuuoh3wiRBPYiVy5S5Os/8n48dJ5VjFXnwnr1vvJNySxy+Dx8T\nCphVOW8TL9eJdbKYx0kY1nfn8P5vFwP8WxJS7rvHtvfwfhzoryXub8RvB7+l53TEiBEjRowYMeLX\nglE8GjFixEdjG+0TlV2cXBOtl6XyRgJ7gVaVswZOanYERTEIOxdtZl46ZuH+eJ9tb4aI8A8Hgf9x\n3tP02Rw+exF2EdudfTjxCCYmzAoTD76ceSrvOK4crzaJwpsjaXHPNeWJ8sMqUXh40yjirPujv9P/\nUHjH05l1sFw1ma9m5jI5rT3bS2iTlc6/aa075+uZZ5O5RdKUXlhjkWaVN2fHq03aEZa9GoF8XDle\nrxObPjErPd45DksjD79fJ676zLqHwiuT4Hg+MbdH7az/aCumxGxRbSZOGa25dX2AxV+dtXlwyJgb\nq/bmkthGND2dWATeHy8T66Qseyv5Dh5cNtdDnxSRTJUdzgkTlFWvQxl4ZhY8pVeaPjMvHBcxWywe\nJoDs76xPycgvLT2lwNeLArDemNLDk6ljUsA3Vz1dSvRJiD6zKByrpMwKIfZQZosbA6F0Spczm6wU\n3jErTTRZOsGJIyo8ngYTQZ3yZnBaOCfMC+Gys9gyi0w0snjihaQZVeH7dcahIDCdeJpeOamFo8J+\nBlUeV46sSp+UJsKzeUGflVk5uFCGm6AMAr3uRMfD0vOmzTybWj8OMHxdWBTmilv2meyMuL4r/vzh\nIKCIufCGMV+Ugu/NbdQnOB7ETC9yi1jcfm1f3MlZOShvP7d3e00eij5bdRnn7LhNVJ4deE5rhwJX\nbaIZxC8Rc5NNg/BGhOsuc/CBUWDb89uPy1pUnuMus0kmbApw1dl65BygFoV4UDlOa49i4l9Vu11M\nWVQedEGV3rEYOsE2MYNAl8z5lVVZtpnLJu26t7okLApYJlj10GSh7TPrZOJwq5lvV+ZYc6KANxEh\nmID8vy97mgiXCeaD+Lx7fhS+mDpmhWPVZa5jpm2EJ7XjuAo8mzq+XWeuexOv9gnmqz7zzXXEOZtT\nL8Kmz3gvVN6h7yjGOSiFizZ/lFPsPiHyb439rqZ9jvJdYokT67BaDM/B+37uvvdOgKczz3frRBVu\nx+KdVLZpQPd+/qLNRGCdhN9P3C1XlHeCOBOMXjeZydDHdt89e7eT7CHn3z4+dJ5Urffwm+tIm9kJ\n1mDvKV3MFF45LAUfHCry2aLoHhJSsirfXEfWUam98Ki2Z+XXTlI/dI9tsR8H+v068WweS8EeAAAg\nAElEQVT68S7BESM+NUbBc8SIESNGjBgx4peLUTwaMWLER2Mb7bMVHqynBTpVyr1S+zD0ply1cFjf\n/LFXDPE+E68cTDzfr+KtGKJpEK77vOtH8s5I8FfryCLZMbevnTlhWsvezm/lqPLUgzPkos1cd/kt\nZ8tdOBEmQfh2FZnsiC4j2O+DiPBo6qmD58nMyNW7eDobCuz7zOU6Ee7E+FVemHrHojRx4NYhFKaF\nXdc/LDz/sQInSpsybVQuu8QmZZZtZpWUx95zEMzRUPkMQQjOSONJYdfTJetAuWwjXhz13g7zXTyV\nWqTWmyZTBVj2cFB4gigHpcXDNarMg/CnzkjJ4JwJSKLUHgqxbpdaM3024rv0Beu+53dzR+kc65yZ\n4gke1snEoMcVbBR8tH4pcfDFxHFYezJC4RxJzY1RiPCocrzeKNkJi7Lgi5kbXDNw2SdWnUICUXNl\nXXWZwgmVE8Q5MoKq8qKJrFrlZGJiQZPt+halvabPCe9g05swpIBmE9eCCM6JRbN5peuNYK28sEmJ\n4IR5GTiubxN0h0l5o9l6dbLih/PeqDJJ5pqbBOHLuaPNNqYHlbBJ0EWlCHei6sT6t56XgSZlDp17\nS/zZdkiV3txqXhicZkZIf3Pds+yEo/Impi7mIW4v3I406wd3wF2S9b5ek7vRZ5uk9vuddew8Owic\n1n4nXm7Pa3vo61657HQQQNMHiUd3z28blxUVE2GTcijwzXWiH+agdEJwcFI7Hg3zddkkZsFcePsx\nZes+P+iCcl6ovMWs/XXZMw3Q5EwhjkcTzzpluiSkwT141TtizAQv5GzCX84W/dgmoUYhwHkHE592\ncY2nE8/LdeLVEmYlt+4HsJ6Y7RgsKs+iMmGw8CZK/8e1ieVOzEHXDjGTy96Eu1kpSIbzNnNSOd40\nJh4Vkvlq/vAczAvHZacPjlFWi/ls0s067gS+nL6vjerzYr+raRKE68FBVzth9UA/UBie/QW3I98e\nElnuvnfeHMc2OVz1mUm4iXX97jpzVFpUX6/KplMiEGOm9lCFm3mIqniEg9LWejds4ti6OO/Ox34n\n2X3i8H24TzDefW9wDKz7zPfrxOsm2caO+rYYFJwQSk+f7bmeBnj+mQSM+4SUbfTtdq2phojVV00m\nqX1m+DWT1A/dY3ex3cjzusk8nnxcHOiIEZ8SHyp4rmLm9XnkoLwRnEdX0ogRI0aMGDFixOfHKB6N\nGDHio7Af7bPFdZcJ3lE5oVfdxeuACUibrCz2on3ACsJNIBAE5ai+vcvw21ViXuiOsD6pHN+vhFnp\n7iXxtujzTem7Apeddd98yN+VB6Xw56WRx1vIPSXm2z6GJxPPqs8Ex73K1D5pnhQuO3utIMyCY1rD\n02nYEVlBbMe5AofFlgCEk4lnWjoE5f876znfGNmtCosSviiMnLvslUKE8y7xpoPfuWB/jPcwLRxT\nD21UXqpyWHBLPNrCifDlLKBYPFrl0nBOwnfXiSIIhQirPpPJFCLgBDeoNKU3Ic1nNdHDCb1m+mjd\nUUkdEw/BmyDUZUVEzHmUhce1IDgKB8+mgWnpuGiNWO8GctcL9DHxxyslDp1JXmQX55ayclwFkiqb\nZKLMoROmhRHqvcKBNwJ+FWEaHIe10mOOtadTx8QLLzeZR3Xg1TqRMSJeUMTJQPQr6w7mFRxVjstW\nEVGSCIUPxJTxlbDplYvOSOAtGWnErvB04kCtN6mJSlEKms2V1akJN5dtphBYVI4nE48TE1TqcCMY\nWEyjMg2OpLaLXm49b0bq74uE171Fw6ja+T+qS7zAKsqu42teCPM7ItF+H8l9eKjXxIlwUHkO2PaA\n2bw9qmysk+oQIXgbwQkBcAiv28yTlHedQvfhvvMTEZ5NPa+bTPbmLuoVgrNx0eH86iAcFCbm9lmJ\nqhxXFp3ZJWhzGoQmc0gd1W9/jLrpuxEK7/iX45J/v4xMShNzs9ozUThnzjqgCuYCASVl67maF46E\nCW0x2/m8bJXD0jMZnrNNyvzbGv6TMwJuXyyc+LddJGE4t6yJLme8c3y7StTBnquLoVtHgLNWmThh\nUtw8+8FZNOM6wkGp95LrTmTYAKC3nGI70v7OzvKYTaD/5joxK/RnI+334+lMAEsErBtsuUoPWpC2\nJqz9yLf7RJb73jv38Y+Dw3YTbwSk133iSeE5qW0dfNVbtGIWeDYZIjwHQX0/JrZJ5ircxMyXM8dF\nB1fJIgxPJnbPOjFRdNVnDkp3by/SPh4SjO86Bi4HJ5+I0Cr8sEpMguwE6S1MvLB42NJ/HgHjrpCi\nqveuNVsh5apXHtX+s7lyPnck1/vusbsonM3/o/rzke9jDNmI9+F9gue+4Ktq71GPhvf30ZU0YsSI\nESNGjBjx+TGKRyNGjPgo7Ef7bLEZdmUfVo7z1gjXfQHJdrbDvLR/98n+CFwURvjfTUAKzlwdbTKi\n58lkIL0r4aq33+fk9k77OPSD1J5dt4NgJMU6Zg5Lt9tJ/q5rez7zO2dUQjnaIwC3fQzT4oZocw5S\nzigPH9uJ8IdF4OUm7f5Ajtli1fbJ/KsO/u0iUgV4NvNctpnjiQlDZ5vI/z6PzILj5Chw0VmE30WT\nkIFgbhMUhcWpLQqGqDylSbDukgl0ldBlmL5j9d+Sv+3/z96b/EqSrVtev2/vbWbeni5ONJl5M9+9\n7916UVU8pJrUrCQGJebAhBEDRDEAqQQSYwQz/gCaASMQEoP6A1AxATGAmhYCVRHv1bt5m2yiPb27\nW7f3x+Az8+PHj59oMiLyRuazJaUy4sRxd2u2bXNba6+1onJQWFxXkxLnTeJRHiic8E1l5e5VUqRb\ncf+qTCTtiCsxIS+JclElnLcuqFVMNHgedS4f8FzURild1omjEfz5QcaqsdhDJ0JUOAzCWTL3CQJR\nLPqsz3QqgljHSCdIHIysi2pRw/PSHFLzzHFaRlQgISzayCR49nPHsjUnRCYWqzbNPfMI98aeXx9m\nnJaJV3VEG1vtGpOJVLPcjlcTYdEm8iDkKnhnv1O2sPDKPCqX7bUbofBC08WZCXA48sSUyJ1wWive\nd6KJwL2R46RM/O685Xjs+WrmuT8WTkuLN4sdqfvZxDPPfRd/ePPa2I6jcmLxUHv59XlX1bXAstiI\nmNse/28iaTaFmrvep43X19FJZWTu665NsMjIe7l2BNK7b5+IuYHujRz7lfAvTxua1nql9jLHuHP6\nNUnRaC46p0Zu9w6O0M0NGoTfXka+RHaS7mnj/3uFJw8mpi3bTmyO5viqOoFtHIwEq5O5HT0mZIEJ\n4EWAhyPHs1UkxcS9cWDRdIKHg8sWTsp0o5vs4A4XiaC8WESSOIKD/dxRJeWisjmvn7v76NG2tjn7\nQWbOpXkntp1U5mTpXUSbMYMHudAmx2Vj4pGR9rdXlrfJhKrCwVltXUnfXAm/nHv2i5uOlY9NQm8e\nrc05MDhzpZZbYuj6eMrNa+wukWXXvXPbhXWvEJ4ulcsqErzA+t4ppC6KcxwcDsU5iw+ceFm7VHv0\n91TnhEUniNi5iuiGc/erqeP7VWLVJp4m3dl3BXcLxtuOgdSJ0o1yHaG41XW4LSBVrbmDP7SAsUtI\ned1ck3XC6GHhPrgr58eK5No1xt4E53ZHB78vhhiyAW+DNwmetwVfueGiHGIYBwwYMGDAgAEDPj4G\n8WjAgAHvhM1onx79iu1xcCSNLBpzGzkx51EQI+FGyZwfVTSXj+sImnm4/aDX9zHEbsXhvZHHOeFw\n5JinxPNl4mUVu8g86VZOC3uZRfz0ZJyoUjWJrCNV75r0mqQ0Ce53wtO+2irtSaDrAIJ5EGZbfQyZ\nEyImBr2O/N7ufmkVHk2uyZqoMPaOXx9kTIKQe0cRrPvFifWblApF/xlqolWTEqVa3NU42DHtBZS6\nVaZeyJ1F/b1aKSKRvczdWebe46hw6wf245HjmyuLTWqTMsmFsoWEo/CRMtq2/2IKFzVUCZqUSEm7\nVfQCKjQKp1Xk86lHseM4zx1Z50hZNfDdMvFoKuwVcFJ2UUxix+8gd1y2Fl1mh0GoEuwFE8ouW4ub\nGwUTtarWSOlCzI0Wo3U+jbyJjI0Ihx1htpc7XJ2YFY7TOnVxi9ZvZES8sGiEMiRmwaEIL0uL0WuT\nOduKINC5P8ahW9nfRV4tWkVJzDqCOXjInXTimK2mPa9hr7A4Nyes3S7m+zJxdp7ZKt2/fRiIyXHs\n4GArFmqzy6SORrY7HE8X7Zrc3+Um6h03vcByUacbcZLv0kfypveZ7QfrjMLmlF2Oo200nZuj8MIv\nZp6rRn/Q9jkRDkeBX+7Bn+xl/KuzmkZ7N5Qy8xaFeVKZG22zh6ufy2a5I4rFQD5fxbVgvf6Mjf/3\nYtq3i2gdYU4onPUK9bstIox9381loghgomXV4lRxkjPLzLUY1aI9L2sTzZvEjW6ybZcHGEl3VSde\nlZFvL1seTT3jENjLhZelctUmCm+9Uk3ngBRsLNZJGVXCfuHXotR3i5arxoj2XTGDY28HoGoTZ/XN\nleVtMtGzjHbuFXuPItg94XdXkYPaRJh7hcVlfmwSehKEy40FBv0c2KZeRL/tpmuTUjjWkW+vc+Vt\n3jvvcmHhPQ+njroTVJzCojGRe547/uzQE5zj+ap97Tjv/ynrSNU9bNzPcm/O0o7Yv2h6MVDXMW5X\nrXJet0wy60LTLv5w1/HddgxcNRar2o9rI4a1c+0lvr9smReeUWbC+MgJebfA40MLGNtCSlK9c67p\nr42rVlm1NfuFty67KO8tav2YHUS7vp+9CddOyR/0kTsx9C4NeFu8SfDcJfg6d7v/cIhh/GljcCgO\nGDBgwIABnzYG8WjAgAHvhM1onx49NTDNhMtG2B8Jc1WWjVLFriMGZRoC42ARVZm3lfcpKbMdHQp9\nH0MRHMtWOVRzAnx71VJ3MV/HGw+ITVT+8qzl/shxPPZk3lkkksLhyHFWWj9QzIRJdoebaIMcSwr3\nJ+HtCt9FmGZyo+dl96+Zy2iWCW20Ffe9MNUT3wLryC8jLyNVTJyWyoOxY9lan1CdEk6E1tLKcGI9\nQEGsK6lWGKkd/3EwAa91yqtlYm/f3Vhlv6uDZOyF45FwVhsh5cTEs7JJLJNyWVtP1f2x53hu29FE\nR5LEPtaTEqMSEZx3jJx1DVURzisovAk5eed8aFRRJ1R14qpW9grH0QhelXbeq5govGMSIKijTrBI\nkVxgVDjmOCadeyh1xyOIsFRzZojAOHfMuvOQeyFHud9FOKkq55W5ubwTlg3Mi07YwfpmZpnF6S0i\nIImxN6HIid1MNXPEBNOguE50UjEHRwSWjVJmSh4gE8dnY+UiJnIRzspECOARLprUuUeMlBZM/AtY\nP9RBLoy84+8db7p7rgncWe54uaq5am2/jwpnomIHI/fjjR6j7ZgtJ8JB4d+bULzrfZIqF3XLMl0T\nzW9CP1dEtX143+1L2PHdL24Tl6dlJKoyC45l1BudZr1R0nFNWPUCN9zsu+kFiXsjc+389tIcaUUQ\nUm1uHeQ6eqwIwn7naDytlGerlsI79nK4V5hbbxnhuOs4WrQm8Jw1MA82Pve3hKO+02rVqsUjJqhF\n2Bt5Fq31pDVtpG4TJ5UJrYV368DOMiZerCKFwJ/u2fVibkSLjBxvif/mNE2clMlcdbmsu9dSsjE5\nDbBshamTW2R370bJvIkK31yZo+pjk9B7ueOsatfbY4K/W8clHXTu1VWriJkrKVvls73Aftcz9DoR\nq7933uXCurFPuScLjlGWKDx8Oc/5ftmux+GuONUebVKmG+dkc6GAYzexf89zI8rSdQ67IMrf2s/w\n7vZ27nIMrFql6ebf8zLZIhKUZWPuI02KD4lFFMZOaDPQRlkEi87cFo+SKueNLUgYL9p3IhS3hZSr\nDbG2h6pyUkZelbY4wotwgeKdCYFNtAUsf7af/eBx9WN2EO36fva2r/uQGHqXBrwtXid43iX4bori\n2z//2DGMAz4sBofigAEDBgwY8NPAIB4NGDDgnbArWGLT6TDuosyCE2a5MOt+R1WZ59Yd4sUI1pGz\nLp6dpfMiTDJHGY1cvqwjyxaWXdzVJvpV3IUXxAlntXI8MmI/KhyOQuc2iHxz2VJLxHsTUKYe1Fv3\nzssy4SURsKipN5WHbx6Tu3pettEkJXfCn8zCnQ9Cm5Ffh4Xju6vWiLwgTAIUHrxzPLtoaKNSZMJ+\n5iiCXHfqYCSeiUf9gTKxClUyec3qd/rV5+YaKpxyViZGwc7JVOAv7hV8fdEAmGMmF0LmuIdQp8Qy\nelatMHNGao+DCRSpE1K8QNkm1Dvuj4XzClat9cCcV4lZbnFLTVTujx3fXkZKMddTERwHQZgX1vuy\naKwDahKEy9bcTinCJIcXySL8xpknmCmLNiVm3nMwuS5QP60S00wAR8IiAD+bOk4qJXeOaWZiaBTH\ncQ4tQiFGcIO5U+51REcQcxEFb2JZHnr3XeKySXyeBfYKIRWBs7MGJ8pVgkfe3A1551jq0arFmB2O\nrCNkFISvL1rujdxOd4+oOZXmOUyz24Rc3yHUx0IeFnIrZuujR4SJfeaLy/Y63uo1aDqB13ViXb9S\n/n22s7+6N+cvsPdcRSX3gsvsWvDS/bxVqmjOtKl3jHxkmrkbMTqbQlwvSDhvUZwj5zhvEhHFiUUw\nNtHcKge5wzWJmMyRcdkoB0Wwa95117YqTUqcrAAnpJg4yK2r66SKFMFRnTfsFSbYTjLhpDIiN+8E\nhcsqMe0ccK6bB75emHvu0diZuBRZx9DNckch1hX2qlK8mLg5CjY/z7vjuBapOrckIhQC3y3sOmlV\n1oLlSfWGqM9uZXmj5qi6bJR7r+GWPwQJ3Y/JzUUA2x1hwSnzzK7zmJQHc8/xyL/VmOvHW38+3oZY\nT0E4XUW+nN+89446YW3Xiv3UOYU2Pzd1Iknm4OUqmmMzF/zGdb8rytKEUeX++Pb27XIMqELSxFkF\nEbvP9H/OndAI1C1Mc1lHIh6NzMn6bBn5fGr3xU1CcRVlLaTD2xOK20LKaoukTinxm8vIorGFDFkn\nkEWFZZu4bGxuOKkSo0XLJAhl5J3mmR+7g+jtPuXDvW4XPsXepQGfLl4neO4SfDdftwsfK4ZxwIfH\n4FAcMGDAgAEDfjoYxKMBAwa8E7ajfeDaJRScrDtyNmPc6qig8GLV8nIVjWBV5df72WsFmt550yp8\nv7RS73nm1uJUj5PSSud751CbjMSc5+5G18soeL7as4iWsRPOmsRlo2vhpHBGTI290MTESbW7z2QT\nm3FfP6Qv5i7y+97IrUWBk+A4Hjs7jhhp+0Acq0b5U+9YRdYiRg/fdW+MNn6uWPk7GCn2ptXvXuDb\nRUQxN8Pns7A+lrmDizbxahmpU+Kstli5SRAultC0Rvxan4tYTxEwC+CcsoyJifeMPVy1cFAIF7XQ\naOJZ2ZIFIxAnwVwz85E9aO5ljheriOJ4VbZc1krmrEMoqmMaQHCMgxGorzr+IPOYEKnmlHgwcYSO\nLDyvrYR+vyP8z2tFxZjzkbOOraPMUbXKqmkpgXnmcV7IvDDqiP0mKRIjB0XGXpF4sYyUrZ1TJ8ni\n8gT2u0grL3CcO66aSBDholFignknavVulLET9grpog0t0nClia8vWn59kN9y97xYRb6YB06r9Fox\n0/p7Ehe18NXs2oH1Y60CPR45/nBpcZFvElxD56DqEVV5sYrvtZ39XLY5fwEsmms3lBOh8PCqjLTJ\n4iNnwYEK01w6546R8ntVZJL7G0KcYOPnu2Wk8MLnM493Rrw3pV0TuYO94BhnjquzRHLmHly2yigT\nYoLMGZHWJOssmmQmUjUdUe/EyPcv59Cq7fMiKt8sIw6bG8FcKU1MfDG7/vp3Udl4F4RFhL3MrqNe\nLKtbJQJnpUV51qo87ErTtPNh9eMmqq7FwLpV9qee7xctn01t7qii8rQT2UevIZczJyzaRKvW8dOL\nc8DOjiVzBb4/CX3XIoBtYaUfk+9CZk2CcF6bWP+2xLoX2/8qphsip7l8b5OubbL7V7//dUy0Ufk2\nWWznL+aBi9pExl0OxG287pjucgyIwGVl4yWIcFGlGz1amdhCjWn37xYPis1vCC/LtD4H/b1pmzx+\nW0Jx+wj348X+rPzmomUVlfHWuXBgcaX0rrtEExPT3PNwEt5pnvmxO4h2fT97Ezadkh8Cn1Lv0sfC\nELH14fC6mXBb8H2b132MGMYBHweDQ3HAgAEDBgz46WAQjwYMGPBO2I72gZsuocwJxyPHWZVYthZB\ntozKw47gid1K8pkXYhf3dBdx1fcEvSwjZ2Vknrsb4pQCKdpK64fj6/cITqyoPXe3xKncO1KKOKdW\nXI91OqjaNo7qazLprj6TTWy6DN6lL+ZdSPr7E48It7bht5eRJkKj5oQIryEtTMyDSXDmiFHbv23i\nbBNnVQKxfRRYx8EBzHPPfh55tTSyb9kmFq0RnIUX9nPHSdWi4o1g6eLjpkHwTmgT7I9NdFk1CVGh\nUVsRnyKs6sQkE+a5udnu73l+exl5WSaeLiNKZC+37KiosIqgqWUBBBxfzBxtMufTKpkTKyjcnzhm\nmWOcezTBso0gcJh34zMp+4VnnsHECy6H5SJSijDzEAvHKgqrNjLOA3VUylZBlKn3PCw8tSbr+AqO\n3CXyrqcmqfKiShyVib3Cov7uTxy+tMjHb67S+nyoKhNvzhHXCaKCHX8Tz5RXq8jRyKKe+nG1uer7\nwVjWzrK7xMxZ5ph5MQngR14FKiI8nHhOa33tNk4ydx2vp8pFFfnDInJQOPLO7TjbIO3eZjuTKkmV\n7xdtJ1QoyzayX3RuR3d9nVo/Txf5hQmGY3ft3EmqnJeJZ8vI44OMzyaeswrmmfBslZgEoYpGftSt\ncl5FEOHBOFAmRRSiWE/YJLcoRzAXZVQTixo115EAI+/W+1AmoQXu5zDLhNNS2S8SbXI4sYg8dZjD\nLDcH4L2RW7uQkiqrpGTiEIGqVWJILFr7s+scHwpMM9bjKfcmFvfxaWdbvRRNsrhMJyYcLxplntt5\nOS1b2sRrxSOwaMJp1juA4PcXDd6bmHC7Yyky8ua6+8uzZN10vDuh+0MXAbwN9nLH76/adyLWo8KX\nc0/ZJkbBcV5bZ5aTmy5f4NYckTTxfJX4YuKZemVeeJbN9djediA+GO/en7uI/V2OgcJD0/W+2fjU\nGy7K/nU9gghXbeKgcOzlJlQl1bcmFKuY+OvzhknX47d5zreFlM1dOykji/b2/a9RZbpx7V/UShmh\nUaFOdr3ATQHzRZl4VbIz3u/H7iDa9f3sTdiOLH1ffCq9Sx8DQ8TWh8frBM9NwXcTd3Wl9vjQMYwD\nPjwGh+KAAQMGDBjw08IgHg0YMOCdsCvaB65dQv2K7YPCUScFEvMgBGcPgiNncWO9IPMmgUbEunK+\nmAXmwQjhw0K4qLoV717x/vpBvU2dW8NbxNuu9zxvLE7n3vj2FBg1UkV7kN3VZ7KJpiMRtx9k3tQX\n865RDaJGxF5tPWDPg0AhRBUu20QLNwSklCwrvk3WOjUNjsPCStBHDirvbjjENtG7Dpyz/pNp4Mbv\nOhE+G3v+cNnSRGWaeZqoZF6xpDTHJDgybz0nCWUsAgj3Cg8odTIHUtkkzh2crZREMheBWBdS1q2y\nf1UZCX9WGaFdJaVS62dxzmKcTlfmEnk0dTQqTDI4KGAa4fODjCDQJKFJiQxlb+R5vjQiPKntc+GF\nUYCJd8xyRx6VQCBinU6tJH45gr++SJQxgdoYm4hwmBtpcVnBKHM8CMJZbXFddUoEhCKzuKbvl4mj\n3PHFPHCUJ/6wTEwyeDB2ZP56TPROkTqZQ6XEVsUL1ovz/SJyUV+T2ZurvteRW4XjqrY4sZ5gnQcx\ngr1zTF3U5mr5sVeBTjOLCXzTNqoqr8rYdelERkEouuNkEYvtDZHpru3cJv960fuwcDxbtvzhyiIQ\nD3J7n4tGSSrcGwmndYKoiFonl6pyUVmcGWLnp/CCc47LRvnNeYNzJoDfHzn+8rwhAvPCU7XQSCK1\nNn6bqKQID8eel1WiahOCxRVGheBMxGm7MRqTEfNjp9RirsJR8LTRBMhpEF6uEojicQQHRYB57ogp\nUHfs2rKx6yn3wrK14/tyZfvinSP3wsgrmkzovKiV4B3nZaKJyi+m4UbMH1y7cg464T53ciPerlWL\nwEuqryWBqqjsF3buz2ulTYnPdpDcFmuaeLZIZEF4OHLsF/a+P4TQfZdFAO+Ky7p3u1pv0cjb/Lbr\n/drU973ZeapS4rSK+DpybxzWCynK1rqltueI09KEm2VUVqvIlzP7c9gSOIKze8Rd97m7iP27KL9J\nEK5acxzvmkp2vU6xTrkmKc9WkXsjz3kV7ftB56y7V8W1SLyOXG2VGBNfZe5WrN04CG1MBGf71N9D\nnZgIuu3WBYt/nIzs5xeVUiVzpK6iMgmJ318mvLspYOaYe/X/ftXw5SzcdBbz43YQ3fX97C7c9R3m\nffCp9C59aAwRWx8HrxM87zp8d3Wl9viQMYwDPg7+JjgUBwwYMGDAgJ8TBvFowIAB74xd0T69S6hf\nmX7RWGTW0djIlFbtgW8SArnjFsF7F3EFcNkk9gtnsUHdzz6fGvn4m/PGxImu52Ua3JqMK6Oyv/Ve\nSZUyKhdRabS9FX1kIth17F7m5EafSY+eID0evftj6rtGNdStxc+d13pj0p4EAbFYN7eCsyYZYefN\nDyAOVJSowr3C8WjqmWfmgAne8SCwJuB6MqzH6arlrErkTpgXwnkteFJHNNs+H448X80C3ywjVWtE\n9dNF1xXjhKORke/T3PpX5rkdz9M6gSrzpF1kVteJ4SHh+GqeUeSOs0ZZtJGXK4vbW7UwzoUv88B3\nl5GqsU6mpErVWjTXIiovuugjL469AC8jXNbKvZHnXzvyfDH1/P5KWbQJEBIWE9bHPdXRupWaZI6Y\nSW7k+1mZKAQuaqEQz7iw3pvgHQJclJE8CH/rILCoYRkThyPPXia8WBnxmymcrAL/iAoAACAASURB\nVMwlUYzN7dGoCWVfzTzL1hxhio3niRdWmGtrm1zJnL22CG5NWKneJoedCHuFv1UuvTnOrppEm3aT\nYne95oeuAt2M/GlVebqI7Ocm1u3teC9VXUcsZl6oEjzcIA960m6XEL25nQK3yL/NaMyHk8BZlfjd\nRUMdleORo2y1czgoM+94tCfkzgSnV2U0Z5AodTR3zT9/WfPVLHI8djQKXuH5KuLF3HoHBfirlgtJ\nLBvBieIU7o89J2Ui8457Bfx1HQkKIokkFrEYk4kOUS2GMSgULqCZkettUhKCdJ03ZVTmcj1jLBrr\nR/pi5vn2yubvKioeaGPiVWURZ40q4GhjJNbmApkH4fNJjnRdZGVURJQm2ephJzYnarK59GBDxBs5\nE7d7Slk7B2PvRtqFJim9abR3NbmdK9OVl6Wdv0luYvhpmXg0vTk2NgldhbeKnHrTIoC3xaZgmXXX\nsbm0bnbrbB6zJprINPHQeNuuB+PAvcLxr84avrlsmWbCUe4oo3DaxXdm3s7PRd3y7aJlL/OsGuHR\nNPCqjJRJeTSWW6R26ASiwzsEvV3E/i7HQBVhL/eUKXJeJoK/OZ80qkw2fr9VZeQER3fPbiPPly1l\nex0n22s8vUg8DtJFSJpY24gJz3vdnNCf8yopixacS+TeHKfndWTV2rjdnicbvY786wVRc1VDTMr3\nC6UI8Nn09veUUXBUnfu2WepaOPhjdBC9S//iD/0O8zp8Cr1LHwNDxNbHwesEz12Lpjb7D3fhQ8cw\nDvg4+Dk7FAcMGDBgwICfIwbxaMCAAe+Mu6J9eqfDJFh5+8RbVwtcuwjAenQ2cZdA06NVW5W8DSfC\n9A7CGYykvPl35feXDS/LRHCwX/hb0UeTINwfCac1a1GlL2/fK/x7xRbBD4tqiF2cmsVfXT9wHY4c\n55eR/dxEoftN4qxOXHQxYA9nni8nVug+76LNjECW9XtslsGvWtu38zrxqlIOR9cuGA80rfJilchd\n4rgj6H8xC3iBl1Xi6SJyWkcm3kSRw9xRNRFPIgueqGaREGxV+vMGxllHTCo8mgSqjnz2YqRhnRKv\nlonPUOoknbtB2B8pz5ctqOOzqWfZmOgyzYQmRusbipGstve/N3L8xb0MRXhWWsfSQeFpk3LR9nFP\nQqNGwrbRnBqpI56vVonMCb8+CHy7SCwbiCqcNbAvyr1CaNWbaIcwymzwCXBaJhbRBKOv5oGjUQCB\nJoImZewdF02Lk8A8l7VDA+DVquWiSiSui9oLJ+RBmAdZk7o9YXVWJu5P3p2Gu6gT83eMLnrXVaC7\nIn8yESaZclYnzut0yz0EJnD2pN1ZGZmF3U6NXUJ06sb2X57VVMkcPvPM4TuhYFv0nuWOX+0Hnl5F\nnq4iIGiEg6zvK+q6g8oWEeGyTp2zD+aZIzjhpExrkeqLqe+6bq57gn4xC+t+oK+Ab68iy6ioJlbR\nIhT/bA5OrJelCEobFe/hXm6xk2WjjJxFfZUCex7yYPNUEUxA6OWabTfmPPfMczWBPxrBHoGRh28W\nJua6QtdOjkIgIXyzaBl7x17hyBMcdgJV1ZHUIydMx7fn8Gnuul4xg4g5JDfdSNvoV5Zvupp0e0LH\nhKVNQjc4oWzTLVdT5oQ6Jv6/s4axlx8tcmrbrZB7x7G37V7Fa9dX1ZHNB7m5IBfdWOyF+pjS2omz\nlztUdN0rN889wVlE3beXLVeNueeOc8feyJMw4jt3sGwSZQu/nIdb++jFerV2RZj1M8pO4bcwYcYc\nQeY4a5LyYhk7wfP6czTBuPtO0KqJjYdjx35uTr4/XEXaJK91djxdtkRVHnXXU9bN0dvieNYtWLio\nE/uFfUeZBOGkjLfGaKO2MKP/vrKsTcCfONuvy0YpU2KSbUX3dfNLFe1eVUW7b3oxMfqP0UH0MaMX\n3wafQu/Sh8YQsfVxcZfg2Qu+PVmxq/9wGx86hnHAx8HP1aE4YMCAAQMG/FwxiEcDBgz4QXhdtI8H\n/s5hvia+trEtgsBNgWYTTVKmd5DF8PrVqpsvMffCNUG9TURu9j+8KC0+7LBgLaosmsQ8d+8dW/RD\nohq8F+pWmWe24rp3Rc1zT+6vXVKz3DPLPWVMTLzjz/ZvEoRtUkaOW3EffRn8PLNjtFcIDazJ4/V2\nOOHR2PNyFfluGXkwMrfIrLHuoZNVyyRY39HUWyTTfhB+t4iUTSIvHE6ckWzJXEUt3si/NvLSCX/3\nMCBd1F5wQtPFen1zFXkw9VhHlVK3CYcjd7b9zileYVlHXlWJUYCD3LPy8Pcm8NVRxkVtRHMCTpI5\nSR6OHfNW+e1l5FnVEhx8MQlMg42Zk9qEm2mXr/+yUkads2LRGHF+ViVeLTv3UoBvF4lJcOzljiBC\nVUb2s8DUw14WyLtYx1aNOJ51XSgvy8jxyEQ5VeWkjPz+KlIEIcg10b1MyukiUex5phvjOOvcN2+K\nA9uFKsLhR1wF+rrIn6PC0SaInStw0z2U1ITQIpirpE68djV3L0Qf5MJZJ6J6J9RJadWi7nbF3G3G\n+zkc0wLqKvLV9Fp47RFT4tvLaKKjWKxjk2xc9AKk68TP71eJsQhBrs+LiPXCnZSRV2Uic0qsE5e1\nCdjLwsb3fu74fOxpVMiCRUc6LErOS1pfnyL2X+GE+zPbj1WboPOv3XJjinQrt+F3Fy1VNFfPqlFw\nilPrOGqiReQVHgpnotVVVMpVy/HY84t5IHZCx/5rBMSk5lLsicGRt46pu4Zbv7I8c/B0Ya6tpuvJ\nu/m+Fq3Z9zeBzXGTILdEEFXltFKWTWRvL7t1fXysyKltt8LYC1etcjjy7HeEdBkVB7Qp0SRnMWLO\n5kVV5WXnXFM6wcsLRx6aKLxatXxdJQ5GJuIf5p6H08Blndbb7wC6LqKEiSeTILeiYoMTVq2yl98+\nH/NgPUo7hd8qcV7bcYfr7wbnZeRFbfN8VKgj5AKvSsV1/VgHI09CeVUlqthQJXPZ3oW+D0lEOKvM\n2Ql3E4q5d8wDFA5WbWKeWU9Z7K7FphOwxt1Cl/54LGIid469Qta9YEGue7ZUdS0AerF7Y+GdxalG\n+KuzBmDd//hjdxB9zOjFN+FT6F360Bgitj4u7hI8nch6Pnewc3HJJj5GDOOAj4Ofq0NxwIABAwYM\n+LliEI8GDBjwXtgV7fPdon0t8bYdDQe7Vw/3qwx/MfVc3RFx0JNx2//WJmW2sZL1pIs+8l3HyzYR\n2WO7/2Ev9+zlRjZ9Pn3/KfOHRjX4YMTWYQGXzbUr6uHI8XQV6RLYqKPt25/u+VvCUVL4k1mgvb2A\nH7g+RsHtjtsxklq4PwnU0WIJvRgRfLpKfDbN+Wxu3Uo9sX1eOVrnuKgiZasEZ70ql631FOXO4td8\n8BReOG3gfgDvTcgz4lF4toooMPYmPBVe+OVceLowl0cmXZyeGOEXkxIR6gjLFhPdFJpkkVmZd5w1\niRcXVmB/L/d8OfdkAlWCRQtfX7SMg+PzqeO87qL1nPUXTYIDlLYyYvSkiZQRJlngqDBHV5uU0zrh\nRJjlwtg5ikwok66FolVU9kS414lyZ5K6LpPIeZUYdS6sbex1MX6ZJLQrqAcTsM7KyNGOPq+70CSL\nY/oheNtVoHdF/iRVLuuEauKsspX7JgjC/XHgqk4oNhYmQbhX3I7c2oZId+4ytxaqLsrEJL92p+yK\nuVvH+xWe3EcTe9xt4fq7q8h5kyg7QrZN5oxZNcI4u/69INZR9LyMHBaORZ2YF35NPJdRiZizpooQ\nvHBRmUNtlAkXrbIXhGkwx93hBmlWdebNNtnxaq12iV/MA945pqETUbbmm15rPCocTzun3ihznK66\n8etNOMqwbUCsS8eJUpVKnRK5hy87cSWInZvXISp8NTNisCf3Lpu4c1xvrixX4KptGQUhtsp0fHNW\nWtSJreQxkpqjdFsE6ee2PLidixR6fMjIqV1uhVnuOK+NWHdiCwA23Vdlaw64cebXTr1VVH4xswv0\noopUSddxq4otxFDtxMsuFk+x8XBj30TQAGerxFVtkaSHW1GxO8xdxJhYdPGeu4VfE3SqqCwbZRyU\nzDseTj0tkYtKOGsSTmGcOWK0SNXgLa5OFUZBeLGKfLOKTIPrhFbHyNuCiVLhxarlqkqskjIJjiTK\nfudWfh2h6LxQeBNTLurEcSeunlXWxzifXJPN/X0yE+FwZHPNorZ7bVQTtvrzEvW652t9zrHjP8oc\nL1d2b5gEm/P/GB1EHyp68V0/84/du/ShMURsfXzcJXge5kIQd6PncBc+VgzjgI+Dn6NDccCAAQMG\nDPg5YxCPBgwY8MHxpjgCi4pyt/p2eiJ6O1bFOip2r2TdJOM2ETei7pIqy9YEBxHQyC0ichO7+h8+\n1OPoD41qUBE+71ZmqiZmmZGGDk/dkZ0uwWcTx4PxteOoTUpUK1J/NHa2Irwrbd88ZpvHCKynZLHh\nDms7B1iP3DsU62D51TygClXn5lkli0BKak6Ro8KTO8dF3bJojXA76MhTxdwboyB47zgtE15hXjgy\nYNEaUUoXqXQwCtS1EXzfLawnaZLZCt/LuuWsse2cBNvfJwrfVvB3vHA/82tCd9UqV61l6GUCeSYc\nFdeCW1LrtHFe+MNltN4jgYsqcRWtU2m/I7gn2PF9uUpIjCxbI37H3qLtXOdq6yOR1hFzVWKvi1/5\nauY5qxKXdSJhZGzU2+6vVhWPrZJvuo6izZi2w8Lz7VXL0TuMrZSUvR2xkG+Dt3nVLhJ9XXi/djI4\njsdGGl9Uia/PGlJH5B5sxGI9W75eqADWnTz98QYok7K3NUe8rm/tqHB8743cmG+IEDElfnfVclIl\ncm/9QsE75pmwSspiZQTzLAcwx1iTlDopy6jMOuK5TYmrVkkJVB2zQtkrHCeZ47gTHs3l0YmiqrxY\nRQ5GntwJ0kkDjZprxTv4fOrWsXoiu+fGfjiJCBNv+/ndIpk7qPBEVQ4LR5ssurJuEtPMPm+SCXPn\nWdaJF2ViXrYc5I4qJr5ftCCwahICjDK7XgJwNLa4vwdjWZ9zQck2xnY/52+uLBdg7GHVXrtPkypX\ntQnIL8qExxxXky7ubd1Zk67HyfbctivibHtcfIjIqV1uBde5vso7iPVVY2JpkyLPy8iiTkyC8O1V\na262ThzqN+tVFXlVQ5taJrnjQRfldtdW551zaRVNtNzfcilu726TlDKZ+3XX9m7HPnqnnFTKg7Gw\n6oT7ae45Hlsk52mVaGF97itVliulyhLnjXWEOeCsgsNC+X4R+XoBIwf3gVohOMcyKk2EpC0Pp/7O\n+at3Lr5aKfcnHodFmB6Ocp4vI41a3GlKdh+aBhM+Xm30Mpo4B3knipxtLLLYRr8VmTNXU6vYddC5\n5/4YHUR/DPyxe5c+NIaIrR8PuwTPzcjbHzuGccDHwc/RoThgwIABAwb8nDGIRwMGDPjgeBsaYB0V\ntdG3Q7IV1NuxKgJ3rmTdRcb10UX966+atC7dDgJ43kgKbvY/fMjVbu8T1bBrZeY0s4i9Vdfbs0pq\nZeKpj9QyN8E89+sH610PbZvHCKyn5HIR1xuc1M7BJgTl5Uq5N/YcFMJJab0rTau0ySLdnFifShGE\nA/WMfeKiMcJyFZU2wuHEk3tzgngRLmLi2bl1J+13D4pVTNQRzupk7x8TF21iHBwPnTAOjlW0eKcy\nKssWmtiiCXyAby5bDseeKkLUxLMrIw6L4GgSnHU9WPdGdltcNCaMOSwmjiaR1FxHs8yRdyT9QeG4\nrE3dCl4YO6FV4aAQLjuRayIm9ihwVdt+KMrLqHyJ52FHrn858/zhquXpInJv7G+4B1rtemucvVfs\niPLCuxt9YU6EIsgbSbse/arvzPHRVoFuk+gWIbk7ws6JRVlNMhNwL2vrr3m2jIhAikrZbXM/Hnsx\noe/OuqwS041OhDYpdyUH3dW3JiJ2Pi5bqtYIqyDw+8uWZZMIYi6NzAuzzhUYgCiKOht/I58IzuEQ\nqtbmudwJUZVlhJhg1ZqjzWHxbykpL1ZtF09p4hFN4iBzjL1wsopkDlYR2hR5MAq0ATJv4k+/v7Mu\npm5zbqxjQhWeLVtU4WUZmWSegzzRqLBYJbLQi1Jwr3Dkk5tfE1tVDgvPOHP85rRhnDsOMuu4WzRK\nk2xso5GpFx5MHeNGeCWRo8Kt4wELb26pKtox6TvxtuflWeaImpgEOC0jq1bX7pp+Tlwm5fwqMc0c\nD/bcuofm2bIlYQ6llJRsZO//NoTuh4icusutYM7b28R6TInfXbZctcp+LrwqE/NcaBDKLobOrv9r\nYaOOtoL7rE0sU+LeSLsINWEZLWptG/PcUTYmgCwaZZ5f3zc33bpNUhzK2O0Wjnpsxz5eVg1Ply0g\nPBg5vDfn3Hl5UzgC63xbRGXRKnuFZ+I9ldo4+91lYppLJ8Kbeyx17uEgQghw0Sp+lfhssu2guilO\nOzaEeBG+vbSxMQ6ys+ttc/GEojRJeTi13+s7uLax7WhO9O6TxJczz0mld5LfMVqHlA/Ct8sIqtfO\n7M5ZNQl27/6UHTo9/ti9Sx8aP5WIrc1Osj6m8Kc0bu7CHzOGccDHwc/RoThgwIABAwb8nDGIRwMG\nDPjgeJc4gr5vZxyMiL6LrHvdStZNMk4wkmizUHfVkXhNsrLxNr55Hzb7Hz7karcPEdVwVxRNUr31\nYL2LONj10LbaIjqdCOMubsccALfju6pojgowh82jiblxrmqLklvWRp7nXii8coojF0fZNkSxuLpJ\n6MrSMbI1cya6jL1jkWC5aLt4JogCMQkiytNV6lZ1J14sIQ+ORWOfF9UIz5dlpGqgBtxly9/2sEom\nFpy1FkFX1UrWRed9fd4C5pQqo0UjvVwZuf1qZe6jwhvR3UM6YaiMQhXN4bIfEk9XkX3v+GzqEeCi\nst4MLzY+BTE3VZ349uq6f+e8dMRkK+DPKhOMBBMAJ90Y6EnYw9zxYtV2jqjIQSd8HRcOeceV7gof\nbRXoNol+Uu2OsIObXSKoct4op3XkqNvGNimXtaKa+GYR0WT9MZm3TqirxsSlcpUYuchB4broKLeO\n/OqvjZETprm7s29tnnv2C+WLmcXnfbc0Yl/FzsVoR6RdAubB0ahyUSlHY+tpWLWRqnN7BAdl57gs\nY6JSqFulTYnCCad1Wkd5ocplpZwtaka5OYs+nwZyD2U0kr1WOPbXgsKm6/KocDxbtl1fjfL51Nx1\nIqACyzZx1ZqQdX9sAvEyQqHudhRo53qbZtZD1iJUTeKvVxbvB9b/FBMkMdH1pDSB17WJ50l5MPZE\nhc+nGccjd4Nc3jyWPbl8VDgejISvryJXDeSe9XYJ16LqLHOMA3x9EQmi7HcuQo/FUEaF5SIyDsJ+\n/uYx/iEip+5yK2y7daRbqPDdVTIxBKFMMM4ddVReLVucEya541yVi8rx+dyvu7y8WLRb4YRni8jn\n88Akk7Wz0tw3JoD0Yz+I3RvOq8goGLHfj5tNYj8IXL3l/vaxj39+CL+5aDkoPF5MpKy7sb8pujQx\n8WKVyER5WVn85qNJgAQnZaJSZd4dQS82RheNsr/pSEDJPJzVyr1R97Md4vRmx2HuHQcjz2UdOasS\nBwW3+hk3F0/U0Y7F0chz1Sg7dCP7jHTT0dz/yTm75+8iv0WVuuv/GgWbt087R3afIdjfGy4b5axq\nfzKCy8+J8P/UI7Y2nTl9J1k/9/zUxs3r8MeIYRzw8fBzcyi+D36uwu+AAQMGDPj54L3Fo8ePH/8j\n4B8Cz4B/+uTJk3+69e9/H4vP/xdPnjw5e9/PGzBgwKePjxFH8LqVrNYF5HhVJlDlcOsBuY4K9JFI\nRtrdFRu0CdUPv9rtY0Y1vMuD9fZDW9+hsYmDwvF0GUndn7dRRnPnNEmZBRObegJxnjscUKn111TR\n/u9FuIpdVJ2XGxFVhROqlIysC0LZRBygau6OiIIauQYwC8KihYsU+XJ2TT4nBcT26wo4b2DWKN+v\nImPvaVPXIyWCFyMxXeaY5sLzRaSO1vEyyYTVla2+L5MyUTjId5Mv3jlGAQqFX+4F2qSMctuvk1LX\nfUmbEIEsWC9PGZUXpTLJoE5C7h2PxoEqmZNA1Yj4Zdt1/2yM8Sopv72MfIkwz4T93AS5d1n1/Tp3\n3y68y3WxSaL3MVLbjiPgRpdI5uBVmcjESHzpxk5wwlUT+c1Fy/7Idw4R5Whk80AVTciYeBM+v1+0\nTIIQkwl7RXDrbVlE5bITFCwK8OY1FtXEl6gWATetHQ/HNp9U6bZ7MSaLRnMiFCJcEmliYhyEsxpi\nNJJ41dj/l03iqrGyMlElJoheOCw8F00ic3BRK6s2oWJjq4nK00XLV7PAo5FHvKNOcNrAn6iuO1a2\nt61NymgjiguMnIiYiHSYC+B4vrTox1FHphfeotLAxLJ5bsd7ktuccFK2CHBvJJzXNi4mmazF5laV\n56tEVNjP3bpjqh93byKXAf75y5p5bvPaorG5WxVyL6QE81F/nSXqZMLIlxvzldKRvs5iML3ojZ6w\n143b98HraK7erXOQC19fNDxfJXDWXzXyQu5hUZtIXgRzS13V5ki6iom/Pks8nASCM7eXqJ2ri0Z5\n1EXRjRy8KqP1vDnr4PLYOI0CVQtFgJmHqzZZrCs3if3vFnav6rvJ+mMvYq6d2Y45oE72HoXvBLjc\n8XQRSZ2jSDsBuFU7D+od42BjbpWgjYmzOtn8u1HQ198zm5TInKNOiapNqHp+d9lSx8Q0OKqug2nT\niTzbIvGtqwnA3GyqN+dJJ0LmLaZ0v3B8NrbxWsbbUYS2Tbq+//V/7xcZbAqRm/doVeX7ZSTvxDtd\nXyt9xKK9frObLQSbo79fRj6b+J+EEPBzIPw/5YitfhztcvLCdcffT23cDPj54+fmUPwh+Jsi/A4Y\nMGDAgJ8+3ks8evz48X8E/DdcJ+v848ePH/+fwL+NCUb/K/AX3b+lx48f/2/Af/nkyZN/9j6fO2DA\ngE8bHyuO4HVk437u+LIvFd8mInOLpunf/67YoG30fQUfcrXbpxLVsP3Q1ipsVLusH9q+6KN6urio\nGw920cSA0UR4NA58t0w33v9g5FGUZWPOGMFKx2eZ4J3gxTHeLJPPhMXSyN5lawyl0ZlKqcpx7ljE\nxFVtK9gVQECcdWlk3iLBTIRSIrZiXYFlSrxcCb/aEy7rdCPOKThHEihEmI2FwgkvVon9QiicCQX3\nx54g8tqHt96QZOdKKRvb381Ystr0TSJGLlrDyXX/znljMYBW7g5fX7QmmNXWEfPF7PZYCE6IYj0/\nyybxi85d8q6rvj/WKtDN37ra0QPTY7NL5LxOxCQcTRyLNrGslVnXYRQw0WNRJQ7HnlaViwrmBVw1\nkVUECuGqgVUXGfVgkvF0edNy2AsKZVLqlfJwclNQSEn51V7g2SpxWka8k66fy3Fy1aI33svcTfMN\nknqvEKoWRgJ5xwUHJ5zHhBfhpO6EIyyGLg8WxxVVOcw9iUSrFoeICmUSfrWXEQSORp69QjgpEy8T\nnLTwYtlyf5LdcF2eVIkqwaNJxvFIWDTmAElA4UwgezByLBoTEK4dT/b6VZsITtjPTDhqFFAlE8er\nVUvCcTxxTINwf2ziRdmaG8iJCRZ1UltNq4njwvFwfJME2UUu96twF03i2aJFnLlipplbx6wlVZ4u\nI06uI9E2OPc1hM3Put0Tdhfed9Z/G7fCWW2C5l5uYtiZ2Bh9USYWKTEKtvVlVMqYuGqEeeZQUWZd\nlGeVrvucAJa1Ms3t/tVyLRz1SMBBJuRBqCNcNIlZEPYLR8KcgpDYy83Feb7VTdi/1VWjnNeRSbhe\nBAB2r/De3YilPa0SDwKs6sRJMvGxjtL1uilBHE9Xkc/EuqsmmS04gNT9zvUxPa8joiY+fTZ2Xaec\nfc5Zlfj9RcssNxfsuBNmZtnNc33duwhnZeR47Ggi62sjJeX+yHF/ZMLBi9IuCEVvjCe4ng83F1ik\npMw2hINdQuTL8qYD8+SOLqXtbrb+7y/LxP3x0P/xY+BT+d62C9vj6C4M42bAp4ifk0PxXTEIvwMG\nDBgw4KeE93Ue/QfYM9F/ClwA/yHwD4B/AnwH/OvAKfAvgb8L/JvAP3z8+PF//OTJk//+PT97wIAB\nnzA+ZhzBm1aybv9bT+L1m7EdG7RrtVvdJh6M/Uf5sv6pRDVsPrQJDS/KLj4KbnWQtCnx/aLlealr\nMq9NiT/dzzgaeZJa7NZJaW4kQWijgiiz3HEQBScWLXc8ClzU1huz+VCo3edYx027XpF9kAmNGhl4\ncdmiaHdOwTtzpCxa5chDxPo1qmTv78V6QdoIrTfCOSpUbbKuiW7FeO490SkTPAcji9baywX2Mn5z\nEUkobUdQNvGaRMy9MA5dJ1QQRpm5LfqV5Jdtok2dI6Zzz0SUgBAcvNqIV8ucsKyVzyf9GA98NRee\nLloOCnktCe0wzjz3wkml3B93P3+HVd8faxXoJom+irvJ9KTXsVZJlas6sd+Nv1mw/pFZ93tlgodj\nz6sqUcWEA541iWW0cVCIkDDRIg/C9yslc5GRgzrtJmfrqDcEhSra+HjWOQGeLSOIcl4pV1UkqcXX\ngYmBkrpIvVaZBzuWuXOEkGgxIlq7Y2j6i7KsE5l3+C42MYhwVcd1F8uzzvUxLxz7meesTnjpus2i\nMkc4Gjm+d3BSw1+dtxwWjucr7UhzI8YPRn5N7u8VsNcf87Hnm8uG81JZRouXu3DC3DtQboh8jSpn\nleJIjHPPqk1UUbk/tXi7MirT3LGfC/NMWTUmZlpvl4lNe5lwNPZcNnfHwW2vwl02yv2J56w2Memy\nUcZeOOg6qsbextSqv76cEU6LJq27bEbeemeU3T1hu/AhIqfe5FboXXh1ur43jTITTpNAjCbkNMmc\nkH30qmJ9OM8XCfF2rzoufDfvmJgUKxNYj7tOtrL7DFE7RuPgWDWRJgkvVckmHueu7zOXjXJWtvzm\nomGvcBT+DmILiy99vko86ERB7YRDuI6lvTe2eL1TFymyxCrCZR3JvTlAHAc8EQAAIABJREFUJ5my\nKm1cn5aRIlgMYcCE2TrZ8fJOaFo4GIF3nr2RQ1VZ1MrLmOz85o4ac6iWrYloyyax30VUbjqm7o08\ns8ycf6PcMeVmXJBg5Pxp2XS9gjfnQ012rR5siGfmvrseW0mVyyryHVxHZnq4rBPjTtRKagsmNkXA\nTWx3s2XOxvi90RBp9GPhU/netomk1qO1i3jehWHcDPhU8XNwKL4rBuF3wIABAwb8lPC+4tFj4P94\n8uTJf9v9/X96/Pjx/wj8exgP+C+Af/DkyZOzx48fB+DfAf474L9+/PjxP3vy5Mn/856fP2DAgE8U\nn1IcwS4Sb7vku19x3AsneR74k73wUbbrUzo2YA9tX84zlPYWCXGzeNzxYHK9Lc8XDadl5FWZLGrJ\nmSBiq6eBrptoLwc6GnnRKiMnFCPfxQspHuuyqJKRnNNghHpMRvpdotwfWZyXqhWsL1sTcMBWr0c1\nYq8Qi79rXOeSgLUjwYnyfBm5bHQtOtE5SVZRaRs77o/GnnluDqVxEGZeeVFbbNNhYb0uPYl41UTO\na3MdTTPh86nnrDSito6Ji6rvVDJRqU66jv9qgZk3l9TLMnE8coy8iRA9DnLh91fc2bMBNl5GnTD1\nYOzeixz6GKtAN6+/u3pgFk1aE86rxrpaJln3+kKoSutsqRpzwIkYYVuIRbu1MVHimHkTMKZF11fl\nHa0qp5U5KRxcF9F3aJMyz4ycPciFl2WiatX6qsTcQPsjx/Oldbe0GPletuC8MgvXx7pulbOk63jD\nFuEwF/58zyIIn5dqXWGtMs2FaXCsmsRpTLSNRY/NM8cqJhL2+stKycScatPOiYLAZRlRLHrxyzHM\nRubSmnvrd3pVJusry8QEJS/MNvLznYjF73mQeP2zwkNSEzzpOpWaCHWyaLAvxSEk7o0dWSc4bLqw\nnIjt28bPVCF4R9UqS7dbPNq1CncVlcw7jkfKWWV/X7RGuBwVgkP57rzhIirz3HF/5PCdmDXv3nea\nCaeVMg5u7Q65q+eqx4eInHqTW6F34ZWNubvaZOfoEiF3iYs6rd1qvZ3KiXVdjYMjKRTAMgmTzNy0\nB4WnxeIN+36hvUKYqXJVd2PXaydeKF/OPaPgqVoT7fux0bv/EtZH9Gh8t+uy3/ZefG0V9sLN33Vc\ni2VX0SIavcgNkano5ofgbOHBQoWxt1i9SYDjsee8TByNrUvJd0eljwUNTjq3sAn3L1cR54Rfzj21\nwkmtHI/klmOq8CZAfT7d/Uh0f+w5KoS/Om8pm3Z9PmdemI5vzrO9cHBUuPW986yKeMzB2nbH4KLr\nfdvPrRdPef0cD7fHrEV2pjt7Igd8WHxq39vAXPZ3OXnvwjBuBgz442MQfgcMGDBgwE8N7yse5cCL\nrZ/9Z8C/i8XW/Vd9z9GTJ09a4J88fvz4d8D/BfwnwD96z88H4PHjx0fAfwH8W8BnwEvgfwH+8ydP\nnnz/lu/xa+B/Bv4+8O8/efLkf3iL1wjwvwP/xtu+ZsCAv0n4VOIIXkfi9R09exs/azoS72Nu26dy\nbHrsOka7isd7tEl5MPF8u4goSp2MMDkeCWdV6pwAwl6wVf6NKkGsA+bhLLCfW3TUWRl5WZlDySOM\ng62gdwJJlPtjx6OJZxqMIM1doEzCb88bK4pXiwSbFZ79wjHLHLXCVSMo5jISjLyuI4C5Mi5q6zYK\nXvCNkvvepaS8LCPHnQMld3DaGCH4xcTOSb1RPD8LjnFmRLsJIMK8MBHn/31Vk3vrGHFqrofNXgyN\nymTUdcMkIzsfTsONno9FqzwYOa6aa3fFtvBRtcrne2FNWDnHW5FDbyro/VCrQPuxtWgTV1Wk7rrg\nRcwVMs2s86nfr6s2MfPXD8gKFAKLOvF9F1M26ZwJJ5UyCnAUAiMn/GrP82yVKDuRCVhHwSVsrIjI\njWOZ1Pqeyjbxl2cNRyPPl/ObwvFZlVg25nzwWGTXUSEgznq9UILImkg/qxPTzBFQPpsE9keBzMFe\noTya2Ngok3BSRp4tE8GZ020c7BxedQKnqjkbypQQrDvlF7PANBNelYmDwrHXiWyHI48Dcicso6AI\nV03i/Lxhv3CoWpfO8chzPDLCeuSEOli3TKO9u0U4yIWUlLNWSYnu2HlCJmQusWzsvORe151Zr4Ni\n88oq6g1RaRO7VuH2YqOIcDjy7HeutO8WLc+XFt93b+LZV+tXu4zKYpXIHRyPtBOWjaSfhGsBpN+W\nvR3b8SEjp44K4S/P45psdrAW8XoXnnbitxchE+WgsHtClZTJ1rzrxVYgjxFaTez7gCsSVZOYZA5E\nWVaJ6ca133Zut8OxY+Jh5B3/P3tvFiPZtqd3/dZae4oph8qs6Yx9b/dV3JaFGGyMMA8YLJAsARKD\nLAwNAgnMYB5Qg0A8WPYDMgJZCGwx20g8IBA8GCQknpC6QS1DtyWw3bY7ffv2vX3uuVWnqrJyjGkP\na/15+O8duSMyIoeqOufUuWd/UqrOyYzYe+2111o74v+t7/uqIOylShzBdWKiIXoOehGfX1ac5YH9\nG2z+Iqtjc1+E1NbWhy30nOH5rFoSR2p/d7XOVSI8yBxlvaEgtpbCBxJjWQTouyt1ojU6hi3Cjy4q\nThYVOgOFxBgGsSGvM7EGTi1SmzX2rM4wmpWBk0Xgp1PDo8ySOsOT/vZnrrOW8V7Mfmr5wVlJFtuN\nxIHmKuo9ezHzvF54pqXwdGD1uVjbv15WourIud7nKqgtY1vBtI71MdvOUurw1eB9+9w2q262xdyE\nbtx06PD1oyN+O3To0KHDNw1vSx69AH6x/Yujo6Pj8Xj8G8AfAH5t/Q1HR0f/z3g8/nXgD77luQEY\nj8c94FeA76P5S38Z+B7wbwP/4Hg8/r1HR0entxzjXwT+7Buc/l9CiaMOHTrcgPfBjuB9tByB96Nv\nGqz30Um+2VKhCrLcNZ5YVdB4kWWBsSnyTku1FCtyg68CCw8fDqJlEfIgs8xLYRipBRZG2I0ML4tA\nZi2Jgw+GETux3gtfq46+uxNxMtcMGmeVGMicBrSrykWL8bNCs4YSA7MKhokw9y2LoEgt0QyQV5rV\n8mRgKYOSBbuJ5bzUXfrTQhj0tDC0XvyugpBFhtSqOuWDQaS5Hc7y4dBe7Yxv71CX6wRlEXTH+omE\n5T2YV6q82HfUfdrYgdVKK2t4uuN42Lt6nN9WHPqqA3pFBBHhxdRTBMFzZcE3rYTL0jMtAnuZxQtY\nDDupqgcucmFSCcMI9jJHLqrumVeei0KYlcL392MGSWO1Zuk54TT3S1UMKNHR2Ks96Vt2UbXbpAyk\ntiYYMQxjeNyPVtp+vPC8mPuafFESI0jFy4XHGYNzSgr4OiOtF9uaWITd2PGo5zisbetOFyVlqMmn\nzDGrPP3YEDtDKUJeBFXOecFaVdUlTv+NnNr/9WPDRa5F9nbh0Bn4fOrJYsus0nY3eUnTCnYTJR5+\n96LiZBF43NO2H0aq5Hg2DSBqHXmWWzxa0A7CUi33cg4ilp0Mnk88p7nQd0I/caSF0I/ZWDxt6KWm\n0LqObbtw119rgDzoWAgCj/uOVwslVZTwUBu13HtezT0fDx2jxGFwvJyHFdXZphyad7X+t+fYIDJ4\nscvcoEklnBcVl1VgN7Zqc1aroo4XHmdVLfUgsZwUgbS2dmtQSaAMaou4lxrA8Wxa8tHAMfdwVno8\nqoroxzCoCe4g2k+ZE34y0/n2Yl6pjZo19bzTlaBRRVljGCWWi1JJl5sK487Aae553HcrBDjAMLFM\nz5UkaZ4niYNFJfW9g36sGXeFF85LtRl0FvJKyaPLPFB64SA1OFTVelF4ImcpvCpC8ypwPvXEzvB4\nEGHq58AwVYXe81nFi5namzqjxH7phUc9x2eXN697xpjl2nA895SyqlZu27wezytezCu86Fp2UYpu\ndKhJNWMMiVE16slCiJ0QO7NUoDbnD3VmVF5bpYaaTG5s91RV6bduAOjw5eB9+dy2Tcl7l/d16NDh\n60NH/Hbo0KFDh28a3pY8+lXgnxmPx3/06Ojof2j9/sfA34fmHm3Cj4G//S3P3eDfRLOV/vjR0dF/\n3vxyPB7/FeAvAn8C+OVtbx6Px38M+K+APwf8Zv3ft2I8Hj8B/iPg/wX+zjdtfIcOHb4avI+WI+8b\n2n00KQIXuWeQrO5g96LFqb3E8GwmHPYcxwtVJ829sFtbH2nR0TFK4GFPOF5Ynk09u/GVbZigYe4H\nPUcQW+fdwPxCiZVR6thNVInUd2Zll/6jnuW01OyPStTezdTXMEwMZ7lagBUGpgF6VlgE3c2eOccg\ntiS1/RloMWUYWypvuCwEiYRh7OhHho8GET+oSsq1YPpmR38WGXbiRj0U6EVqCTVMVOnwIIOLHOZ1\n7oigD9+dVN8TalXSMFVbv4PMYkydqVErdIC6T83Sjuuq0H29fLStOPRVB/S2z/fxKOJ4YfjRRUUW\nXZ0L4NgH8hl80Lcc1IX740VgkgfyoJZn1dwvFRaDOGJaBYwJFMEwhMbZi73U8nyuhdWGsGuuwBol\njUaJKpeGccSjnhI7P536lS/zjfLuLPc8SB2vF1e9GltLQKDOz0qt2ip6lNzKEUbO8Pc8inncr1VM\nIkwrLRrspGrhhlArMEw9b6Coyc2egzhSK6/Y6HGrULdpEehHSpg0uMh1fp7mgcsiMKsCVDovpiUM\nIoisJUp0nP31E88v7MX1GI3YTQKfX1b81dcFu6nOn6RWy3mgDGpHNvOBaWVqC7XAFMNhZJj7wKSC\nntWCeTNuqtqKEtQOrh9dH0+bduEGEQofOMmVdDGmJhssakcYrghqvbeGYQKJB8ThRXg28TzoacH9\nMDOcFSxJnLZN2Ltc/zfNsQMH+zURoOoToySogZ8bOeZe+ysAi1rh9p3dCDmvVI0TlGCvagKIiDpr\nTbgodZ2IrGVkwdoYg6nz3ZQwja0hsprx9uxS55Bt9ffUqwoxcaqcaWeT7aWWhQ+c36I+EtTe8FFP\nnyFtFatdqv90rIOuebNSifDMXhHpD/uOMFMixALnAfbQuXvYs8QWvpgL8yD0Y4czhsIJh5llWhqe\nzyA2htfzoFlxKfSD4XcvlLDbSe1yQ4J1cLzw9Bz0Y4sxgecz4XHPclYEXs48GnempG1DBHtha1ZF\nqO+/F1M/L+Taa5sxGxlDZYXXC2EnEc7zwPnCM0gML2eBPCi57cXUWUeqRoxNnV3lDGYYf+kbADq8\nn3hTivur2RrVoUOHbeiI3w4dOnTo8E3D25JH/yHwR9Cso78f+O+B//vo6OifG4/Hf+Lo6KjY8r4P\n4FaXk7vinwemwF9Y+/3/CnwO/NJ4PP63jo6O5No7r/CPHx0d/S/j8fhfuMd5/xz6DP/TwP98j/d1\n6NDha8L7ZjnyPqLpI2eEmbcrBMYwvtrxfFH4uqBrOMwcZ3XB+jz37GdXj5amKPukH/HdkePlzPNq\nIdhI84yGkWG0tqN9UQamXpYFvmZXOuiO/GkhHPYiSvGUIWBRoqBXk0uDyPG9XcPMC3/9Ei4KiK1Q\nVmr3sJ9qEPp5IXhRAsgBWQT9yOIRzgolsPqJ5ckg4knf8uMLz9TrV7fYav5Ms6O/DNBzlvGeZeGh\n9JqXlNdE2W5m6HlhWgSMMYya64nMikXWRSE87jl2E8vxQhVIFm60SNpUHNxWHPoyAnpvsr97vXa+\nRiF1Uv++UVA9zBylqAVaZuG3zkoWlRKRmTPEy5348Grm6UWWPARGscOju/c/GGg7jTEcppbLQgvM\nIsKoHkuRVSu3xJll5okxhst6PLf7rVHeVQKxM/ScYR70HlYoaZfUQ/1kLpyXmp00Si09p8q6JXFU\n9/0oMVRieJAYfjivx4i3zLwW7qEmBxAWAQbWsCg1Q8wYOOhZzhcBMdoXL2eBy1qZMSkCl6VmJcW1\nPVljH7nwgc8mnoNEScssMryaCye556Cer85ang4jSq8T3qMfcgzajl5qOMnhtPTsxmrZN/N+2V/O\nqJojF+FkAQ8yvReqloCTha/JDl172wqJ9i7cds6aqfNrrFMy5CRXkqlnAzupEiOZNUy9EkIXuR7/\nSd8RO7WTFKhzbvScH/SVGIiMEtE3rf+3WTtuwrY5Zo2eQzPg9DhnRaCSWllWH3/hr9Q4wxh+90KV\nJ9aocmUUGzCqEPvBeWDgDB8MI9LI8uHAcV7bhs5KJV4tYGqCJo0tzlrWmx5ZvXcLr+SkbxOvxvCk\nH3GaB/Jq+8aLfqx5Y/pMuK70zZxh4a9IXWsMzkLwMOqtWhX2naWf6HmqM3gQg4sMhYdZLhgLvtI2\nV7JKPhnU3icE4aIQjBEuC88i6IYAv1Z9s8aQOEvuVYUkEvibrwP9xJG4huBWwvXotNR+7tvaqu96\nf7xeeCZF4EHm2EkML2ayVBw1SK1hFrQf1AYz8DsXgb1En6V+rmtjXsEiQOaE1EHPWlIbyEVVl497\njo+GV4Rccy/f5QaADm+2DnwV6EeqRr2PgqEMwk7cjYcOHb5OdMRvhw4dOnT4puGtyKOjo6PfHI/H\n/zTw3wF/DPiXgaJW/fxGbU/360dHR0fNe8bj8e9HVUlHm455H4zH4x3Uru7/Ojo6ytfaJvX5/wng\nO8DvbLmG//oNzvuPAf8Ualt3fN/3d+jQ4evF+2I58r5gU2HkotDw9W2FkXmr2LvMI0ktk8IjN9j5\nfDyy7GbCaR7wdVG+QaPC+WQn4vm0QiOKlBRq3p84ywxPGhkGERTBkUUQAjwdXp2n8JbzwvMkgT5Q\nOUfkLPstoqofwyTX4t8gVvVJL9LxceEDk9LzcBDVGRYOjKUIQuFZsY5TAkjbWAZhaOGTkWNWCj++\n9Hgjy7540o9vLDb5ENhJ7AqJ93x6s0XSOrYVh951QO9t9neni4rT3PNkLYj+sLYcaxfYg1i+mHlV\nyyBcFoFebHGo2qrBMLEsghZPzxaBB3uqPJiWSsQ06DlDSGBkDOcLzbkKQTAG+hF8OFjtv3mlJEPP\nXdlFzeq+asjTndRwehEogqpytIAP+6llFEMRVBHX2IONYpbkW7vvH/VUtfPjS09iDDsYzi71fFIT\naInTMTbNhSw29GJLYmAUOS4KVY4M68Jl4WFSQZyXZM4u+8FGagvojFp6iSixc7wQUqPk7Q9OA9Wu\nFiEHsWVSBD7eibgolVhpFyXPF4EADJwhjgy+CPStJXaaRTOozxvVdloXOfRjIffwcq65PN/di5d2\ngm2FRENWbMpZ60XCIghFJSS1hVtDUO0lhkFmuZhUnFdQhMBObJfrSltpFqGWdscL2I0Nn+5sn4tv\nau14nzk2TCznhdp5Zk7nbVaTtosgLErNlsoSQxrAA/NSmABDAiZyPMiURJyUwn4aOMwSUmuYVLJi\nv/hqVrEIsOMsQsV6SpWqw8ySNL4sAg9a1n3GGPYSy6O+Y1IoObVpPZJaCbdJ6Zs5w04Cs1JzzQAO\nEyXrvQCNLZs1HO5YTnMh94JzLLPtIiNMgaQ+l0dW1ogqKGlaiqq3qiAcz0oGsaMfu/retq5bhGFk\nyQOMDDyfVlxUqnR9EK3aikbWECWay/STqZIyHw8dl6WsbERZVIGPRxGJs1zmHrthKPQTw2QmiNV8\ntNTBdCE4I6rCMwDaN5nTtWvi4eGu4XURqLzaUGLgb51XjGsFYRv32QDQYTO+aovX+0Jteqt7kUch\nCDtJNx46dPg60RG/HTp06NDhm4a3VR5xdHT0F8fj8V8C/lXgDwN/B/D7659/HWA8Hl+gWUS/BfwS\nukXuv3nbcwOf1v9+vuXvn9X/fpct5NF9MR6PR8B/BvyfwH/Ll5R59IMf/ODLOGyHDlvRjblvH0Tg\ntIS5v1INNPhiof9mDnYjru1Uf5VrYXYdXsC1SLkZ8Hrl78LjFEIOr6ZqXdcU3RIHPQuVAUp4nqsV\n0l4Mk1YBLvdwirZ7EEEueoxn51pI1SwmEK+5MxZ4dXnC3MCry6vXxBay+hrOA0iAKtJ+SR2cOuFg\nZrho9dd5BQuvD7GmPjwHXmlcDJmDkRNmVnNepISp19fO0XZvQxUgscIPL69+FwReLTRbalufrqMI\nwtMMXq3dn4sKZtXqfb4NVYDXsbCz9mlBBI4LqIIhsnUB22tuU9O/lej7P7dwkKyOoU19eVHpuFpU\nsABmBnYcvFhr78Tr+xYV/GiqY8YAP7iEWnxEqNtnDKQW8lb75wK/e7J6zFe5jt1HKbw2cOlhXtU5\nLgVQK33OCigEXoda4QDksR4jD3BqYT+BkdP7PY/1Xkz8hr6/hPMCZh58oe83Wg/GCZzmsHDwNIOp\ngRwIMbzO4WEGob7WyMLzGSy+OOHn+vDsTNUKZYBppfchc/qB79jp31Kr439aQrjQwvylh3kJTzK9\nf3m4ujcGOCn09xFwEfTvidW5cyLwIFnt03kFcb1+eIGeg8sZTNbuZxXgtBQOE8N5pfO7zb2IwFkF\nx7m2efk+gZcG8j58PofLCjILPl49h6y1beFhFAnVkI1oj21rro/r1MGgHvORFQ5bY/u+c+ys1Hu0\nE2l/FgF+cKF2nougfWOBWYDCq1WZdXrvPzvV9a0CDmN4eQ4/vqgVaa2+auYCwCzRc66v56XoMU7r\n358U+sFaqVy9/6mBaf/6ut+sR1WAQSxM19aKZm04mcJxYUjs1f2dBh0b0wrEqILOW5i07kPfKkE0\nefGcn86v2nReXt2LZo04K7Wtk0pfVwbtx/1YnxV6g6GIdfw4YDeGC+CFheOF9sVeAtPoaj1ZRxXg\nmYXHqVwb988uGvUgnJTbbRYuSng+1/XEGh3fh4n2Vyn6PHT1ujOvycPTk9ruyMKegw978NzD9MX1\n+degeR7cM17jW4/1Z9w2VOH6OnBfBNH169d+8wfLdSZzMHS337eTAnJ/cxvbbU2dUG4ZKx06fJno\nvmdeIQg8X/tsfxu2fbbv8P6gG+MdfpbRje9vNr73ve+99THemjwCODo6+gL4U8CfGo/HCUog/d2t\nnzHwh+of0O99/854PP4HgF8HfgP4jaOjo5vqapvQRD/Mtvx9uva6d4H/AHgE/EO1uukdHrpDhw4d\nvhq0CyPJhqJDrE495L4uDMerhZFtdYrbvgdZo8d5lMJ5KeTBrBAxoAWOnoXHmZI7JVo4bUimYQQf\nZVqo/Xyhx3zcKtxUNZGzk2hh8qi8KqwJXCvsVqIFyN20PoeB/UiJtTaMUSIrRFr0zP1VQbkf6zGa\nTKPMwazSwvmJNAWm7f1S1f5gj7Pr/dVz1wvqNx2nt6XgtPDXr/02RFbft04enZY6dpzRgu2ittVq\nZ8mcldoXi6C/228VrKS+Nmu0L6tCC7ll0HvwaaZkRpDrvvCZUYJxN1byo5fqfSn8VbHXGm27D0rk\nLPtHNheEQ1Dbwqbf8lZfJU6JyuY6hhaCVdKyrOoxgI7LzGhfNeexGCZervV9o36ILOxZnV8XdcG7\nKRh7tDD4ItfC9yhSItIZHWsNipooSqy2s6qVUs7o+yaVjsWZ1z4b1u3r1/fhNNf3Oqtkz6XXcRvX\n/Vd6nYNwRbD1nRICL3Mlosq64F0vG0itLEvrfwcRfNrbXFyNLETOcFzo8eO1cW4M7EVabC/WCK3m\nXoGeIzPXz9H2LFZlira5mbvrOC2h9IZp2Dyu5xVMa0JuIIbT8opAuO8ca4i1WQWPMvhsrvdi5rU/\nGzFdbCByeu8SowSo1HaZTzJV0zUEZ1N4btaMWbi6zrnXa5+Hq3ZWoqSbNXrMi0qJ2Tn1ul+/xht4\nWehrN20oCAjDDXPL1nPi44GOsU1r4WFakyReSTRB//+DDL470OL8T6ZQiCE1Ok5TW4+H9eeS0X6a\nBR37wtV886J9WYq+f+j0/SJ6Xz3atkpW15N1RFb7flbp2rMyjloucqpCXH2v1GTaPMCitb5FRv9/\nVul8e1zfuzzoa0b1cyepjzETnRM9Cyeb2rHsE12D1tfwDjejecbd9tyNrL6uvQ7cFZs28DTjZVap\nuqnnlPzcRkztx3AscmeSaz++Xxs7rKIh+vLAvYm+Dh0avMvP9h06dOjQocNXgXf+VaLOOfr1+geA\n8Xg8BH4fq4TSp8A/Cvwj9cvky2jPu8R4PP57gX8N+PePjo5+68s817tgBjt0uAuaXQTdmPt24dXc\nk7UCzddxUHgmtaVCGdQ656AVlt7+e4MyCKPIsJNurrg1lgt79d8f5V5tmypZsUHqOcMw0VyiJvuk\nyZWogjCMDb3IEoLwex1cFoHTQivXiTXL93uBH/7wR+xG8PTpB8ROi7KLSrS2Vxdbe9bQj0HQ9+6l\nlkrgkQ98WIeR3xXNNe4kls8uK9LI8mkI/OSy4qzQCqbm0ZjarotlXsjQGT7Zia5ZaUkdwH5bVlEZ\nhMiwNeOiN62WO+LvAy/CRy3ruSBCfFmROMPLuSfd0q50ruerguADfHKgNmHNPX1ozUrfni4qdgvh\nxczzeOh4arbfr14Ep3ng5Tzw8cCy14sIQXjUj5YZLD8X1efmKpMk93LNsq4MwoPS048scZ07lM2u\n+iqI8MXMc1nnVTVorL4GLfa1aUP7PI2NY7vvXy8835lXPPUwKzWb6RBhXsLCB04Wnn4aMJWQWlPb\nNFoiq0RBzzkGiVot/uTZF+zGEO8+oBdZRmuWRI9E+Om0oidqlRK7Oq/LGcqpx8XwMI1IIzhdCEEE\nm9hlhtT5IvA6D+xFkMWOxz23tGn0IfDTaeAs9+xnFq/+YyQOXiyEgTOM92MOs5tzVz4V4a+9zjnI\n3DL7aR39uUcQZoWQB/05TC2ZM3yaWGJrOMvVftPYqzEpAnupXckJq4SVtWh5/0SILyrOysDgjvNt\nL7bLefsmc+w7IhzPPcPYYOaB71nh157nTCqpCR3DKLE87NnlsU8XgQpBAnxvL8ILHGaWncSykzhE\nhC9mFeeFMJtX9GujutjAXmZ4NtUcLS9qZffJSC0QjxeBVISn1nC28Azqfi288KSv47kKmsn0qHdl\n1VUGzYhrLBo35cN8JzYcXHrOyqtMqCDCpNRMJ0EYoPZ2idO1fC8BGoqQAAAgAElEQVS25C9+jDXw\n+37xO+ycFhSt976ah5V7NCrVUi8yhlKEgyJwUQUGzrKbWqqg2WjDVlZNFQTxwszDUPTaRIT91HLY\ncyvtM3X7BrHmVPUsPB5GK+PIn+ZMK7W5682rlXEvovlsCcKwEoZVYF7BaV7xGBgljpOFPhfnxtCP\nDQ8iSz8yGpSee0aR5WHP4VH7vlGiOVgPd+OtdmQiwgeD9/or1nuF5hl3V4tXgLwKfDK6/vzehua5\nngl8/uMfA/Cd737n2utue64DfK9lr7ctk+zrtNf7WUDbwrC/9tlFP+N0fbwN3ffMzXhXn+07fP3o\nxniHn2V047tDg6/km8TR0dEE+JX6B4DxeHzIFZH0+1Fy6b5o3IQGW/4+XHvdG6NWVP154LeBP/22\nx+vQoUOHrwt3yeUYxpoZFKFfamZlWMkLav99edwgDG/w0l/32le//sBO6tjZ8p6DzLGf2mXORhmE\nQWQZtgLunww0PP7zScVpLlyWgVklPEgNTzLd1Zf0rO7kt8LAKSEBkMUGZ+yyINhcX/CBDwYOH+7u\nSR5EOM09FsukEi4Kz/llSeIsSWR5EsO0CCyCcFlqiPteYvh4FBFq4mpT4WlTfsibFIfeVUDvRaH5\nDyd5uPFLb/O+yBqqEPjssqIf25U8mzYqgX5i6ZVBC69Od1IPosCilr5kMcv79WQQ8WThOVlc5WyJ\nyLUMloasCui4ta2Cd9NvH/ZjfjLxG6/ZGm3LiQhJuxAM9Nb8543RQlK/lZcS1o7X5Cntpo751LOb\nWUYizEpwJpDPdZfpTuw4SITUOfIgHKRGLbUyw+uFYArhycBy6lSZUBjq7JhVCBA5y5PUUATNzZkZ\nmBSeQQxiDa7OFctcYB7gtAhclgGDYTe15FXAWcvjxDCrApclS6L1g4HjF3YdFrMkgadFoO+EQWp5\n2Lv9o6atd93PSmHbEpI5w6wShqklC0qq7WeOl7NqSTjtZ45dkeU8K4Iwiuy1nLDYwKySa7l3F0VY\nITduQpMpc1YG9oqgGXG3Xul1GGM47Dkyp9lbpRie9B1necAZQy+xK9Y2pQhFCPScJcsMkzzwoKek\n27wSRrGO+SromlvW9nvzUrisPC/mhkkZiCwMI0eWCl/M1BIncywJ1GFicUbXykFrPEc1iX+SBw4y\ntyxsHaSGV3N/Qz5MYB6EvUSzHp5NSnLR++qswVD35yKQRIaHmaUfG8r60i2aL/Y6D5RBNz5kkSFv\n5e/1IsO0EkqECF1PArCbWEaJJY2U2G8jCJqrVLFCGF/U48AZlu0DVsa/S8y1cfSo5zg60xyazBqm\n/qp9F7no/fPC8fzKFDAEeDywLLzKBkd1Bl8SGfq1/Cxzhv3EYq2u8RE63ys012teCTtblC/hfkPy\nW4/mGXcfWGu4qNeBu+B4cb915qbsqiYj8SCzXBRhJYNrp/VZqcOboV3k3/TZJarXu7nX13VF/g53\nwbv6bN+hQ4cOHTp8FfjatqEdHR0dA/97/fOm+BH6zeujLX//tP73XRg0/rvALwJ/FHjYsqt7WP+7\nPx6PPwJOjo6OttnodejQocPXjrsURqzRolVeF76sNUyKsFQVrf+9rHf1bytQlPUXoPbfrVH1zfwG\nBVTzup3U0Wvtbm+wGmhteTJY3Q36IldSYujMSrD6TSiDkDgtuJSBW9vXEBQXuacfW5y1GuYuhotK\nCIVnlFj2UssodSs+qmVQVcvTvuMw2150ehfFoXcV0DurFRGzWwjIduE0iyy/O6n4+d2YdIuyJAAS\nhIPU6j2wzb3e3i8PMkcpSgrtJ/aa6s0YVcwNY8OiEkaxwYts7LdBLMt73XOGSasovZdaXswNlaiq\noQpCFq2SfVUQUqsF6Afp1TU2youm7yf1/LPG0IsMi7oQPkzALwz7PYezBhElNweRpQiBEODAGXYy\nS2YCXpSk6tU5Rpm1FOE6ezSthJ6FyF4plxaV57UXngxidiJDwDAPQhwZpovAvBDiWC3STheBfqx9\nImgh3QF5XdAcxYadRHfcNyTwC1RxIbKBzbrhXp4shGoLYTuIDZeljhFnlLiC64SZNWY5zzYpzRps\nKqhPykDhZeu4XlfKGAxWlKjeS91bzbFZJTyoibYQhJNCyfKiUpVVM98H1mB7TlV9IpSw7IsQhJdz\nHRtpZEkjSyUlzyaek0WgCEKSWfYSh0fox4Ycw3ThuSgChz3HQSYYo1SJA+ZlQMSw8MKwVtpFdaG8\n71Qtc5AavpiHW4urxgRez7UI+6DnyCthEWQ5J4fOMOg5vKjisQyC1DaM/cioGimxTGqypOeUaG3G\njK/bbOs+OZ57MgeI4CzX1rKqfqYUAoKSpc16/rjnSDZ4ELbH/8uFcNhbHYB7qSO1lSoTE8vl1IMF\nH4QXc7+0pgRdn7wIHsEaizNq/WdjQ+xUKbXTUkkVXlZ8GAUhNpbcq/JhG95048C3FbPqfnMY6k02\nGwjpTbjLBp71Y0/LwEG2/TMW6Nq3l7o7taHD3fEuib4OHdroiN8OHTp06PBNwTf6+8TR0dEU+KvA\n3zUej1eSIsbjsQP+APCTo6Ojz97B6f4Q6mL+PwI/af38T/Xf/+P6///IOzhXhw4dOnxpuGth5EFq\nl7Zjcb2rctPf51UgMqwUzNtodqYfZtf/fphZIqOvuQmbjtHsBp3Xxd71a4qsFhsjDEUFDrnzefZi\ntYC6rX0iwsu5Z1IG+rHjUV0wOMlV6fLhIGKUWC7KwBezaqWYXgUhiLYztuZOuwqb4tAHg4iPBhEf\nDNQy6S5fLncSe2OBcRNCXbxc+R0sCZCbMEgsoa7QBxHySnNEtsGiKoCHtT3W3KuF2k0wxvAosyS1\nZeH6fSqDkFeBQWQZ78V8OIy39lv7Xg/X+soYwwc9q8X0ShUD7UJ0FYRFJTzI3DU7r36tdmiON/er\npFRzziBqXxfVhfuAqhua8yfO8PN7MY96ET+/F/OgFzGthEXQvJTdTM/RFCbPcs/rRcXZoiKyrPTl\n67nXgroxDFLLbmZ51LMMI7UoqxC8h1Fs2csMqVUlxLy8OkZkDbkP5F42WC1eWZndFc4YDlJD6pSU\nrtbuZZMt5ep71fTxtlOsK8DWsWm12kasiwinC88XM6+2eEbnojEwD8LfOit5NfdKTr7hHGuTWdYa\nDjNLzxmSSNVfD3uOg55jmOp4n1eBtCbRmr44L5WIaa+FRSVMvdCLDR8NIx72HLuZYxRbJU1EVUfB\nqJ3i2SLwYlZxvPB44Bf2Yj4cRgxjJVSfTSpOFhU7kY7fhz3H61zuVFxNnMUYJemUHFVl2uNexMNe\nRBZbSq82qR8MIjxmmT23k1j6kSWIKsyeDByjyLKfGCIHhQ+kwHd3I7UeRcdKVtuYPkhXd2439nt7\nqcXCUll0mgecwM6W51mDyCrRdJav0pDWaD8HqW026zn1bOLxoqS4MwaMEmQS4DBzpE6tFc8Lv8y3\nMSgB2iB1htBijwxKIPacPtc3oVmDOtwdb6rUuuv73kbZ9L6iUV4/m1Z8Pq14Nq04y/2tz/D3Hc3z\n9La1rUFD9H3Tr7vDV4u3+WzfoUOHDh06fBX4WTDA/gvAnwX+FeA/bf3+l4BHwJ9sfjEej78P5EdH\nRz96g/P8e8DBht//baiN3X8C/B/A//cGx+7QoUOHrwyBm7QcVzB1rsVJHurC1OqX4UpgN4bUWXrW\naPGw9T3nLpYLb2PbcNfdoImDNNZCX+bMSobS+nn6sWUUG/rR1Q7fm9r3cu6ZVVr8bYqTQYRZJaR1\nVXs/c+ymlvM8cJoH9hItoA5js7RRm1WBKgQu6x317ayQ9s7zt8FdlV7tPllXi1G3q02A3HS+RlmT\nl0ISwcLLivKqjQjAqEKm54RpFZiWcqNarAxCzxoe9aOVnZtVXfAxQD9WJdN5EW7sy/WxmDiztMcC\nLXSnhXCYaQ6MBmbXOSjW8HTHXbNoa6wa233fnn/GGA4ztSg7nvuaXFQLNzE6x2a5xxhDP4LjhV/m\nZR1mluO5MKmUPOo5LTC+mHkiBxYlfWys4d7zPGh+koN5gEeZW7FKtEazvx71IqaVWoNlkWFeybLY\nPy2Fp6hdXxCd+5nTMd/uV2Mg+FUbyyDCZRFYbMg3a6wBL0NtVVkrfObVlfJkGBse92KOFzVBUpNu\ne4m5plZqiIGbCO11FQo04dXrRJjuJPciG5UoWZ2/NvfCi7kW6hfh/nOs3dJeZJiUcmXDV2q/NX1x\n2LOkJWTRlbqr8HqP2u0PIlx6zXNzRl/fIHYWgnCQGb6YGlKjJNJvX1R8MrCMHyREVltlUIXRKLlq\nd4Xa7N1HRRFEbfmGseXpwGneV2s8bLIXnPsmmF7Hynl5ZVunCjPHI5oir7Dwwl5qOF2o1Wo/1mMu\nghCbK9K+sV00RudvZIRFUIvLj4fbs2ua80wrITXCK1txsnBLu7LzQttnEE7mHmfgbBG4rAJZrbr0\nQbDoON7PLIm1zCphlDrOcyUoR4mqnHIvNMtKZK7C1ZU0UjKtd8MauW4X21zDplyqd/WseVf4utr5\nrixet+HLUjZ9Hf21qv7eZFdZfaNtt74KC8MOHTp06NChQ4f3HT8L5NF/CfyzwJ8Zj8efAn8Z+D3A\nLwN/Dfgzrdf+TeAI+H7zi/F4/Ie5ykxqcpd+33g8ntT//ero6OhXj46O/tKmk7de91eOjo7+t3dw\nPR06dOjwpeI+hZHG9mtfNKOnyZZZWioMYmxNmLyp5cKb2DbcVrBsCtXHhRYePxXhNA/83I5lP42W\nGUrrRUsvXFM4bWsftdXSp2sh2ZMyXFNDWKP5LHkVeNRfvR4R4awIXJwE9jP3pRZfDjPL85lfIUU2\n4Sa1WD8yS2u/27CXWo4XnldlYDexCJt34xY+YIwhLz0v5xUIVB4uCs8gNltD64sq8GQULftmN7GU\nIVCUwjB2KwW6u/Rl+17v5p4fX3ryKtQ2hpbUaW5QvIGoaPqqGXuTMhA7wxczTz8yPEgNL+ZKUrpW\n35l6bBRBiEslzbLIcL7wzEUVXHFtY2eMZrpclp6e06ycgxhmHs5ytWh7NQ9UCDuRWl+d5Q2xI8y8\nMKuUaOpFhp10tQ9mhWAd7FrD80ng+dTjnBISvlYDXVSBkwL2EsunQ0tA70+7QK3T0lzLnVovLk4q\n4bzQLKxBBEmtTLNG5/2mDJdHPVkS2pUPfDyKeD71yyweL9T9vX2+bCqoA6SREiLtcXOWh2tqnjaq\nJiuoVr5FhiWxddMcy31gXgZcYvl8KkwKTxlUSbWoszMyp8TGILHXSNQgnmkl7NYk2KQIjNZUgpe5\nx3shNYDl2jpqgLxSUqkfWy7ywKKslgTORe7JW9ZxDXHZXOvrRWAQ37242qyNYgyzUq7l3bUJxuac\ns0rtP0HXo8I3a9jqPLRGbUlHQBUs+yk86ald5WkhFEWgqNV07Xw70DmWFoHnM08/sextWPdEhItc\n1YFOpxP92DFKLM+mulYgwmHPETvLBwO163w9LzlfeI7ngcQGrDMMYzjIDHnQ/D4C5FZ4kFouM8eL\neWAYy/Xxawy7iaGsn12xg541gLmWvwbXNwB8Uwr9X3c739R+chjBaU3+3UTe3HUDzzq26Y6+rv76\nWckCuol0+7ItDG87//tE5nbo0KFDhw4dvr34xpNHR0dH5Xg8/oeBPwX8k8C/AbwE/jzwJ++QP/Rf\ncJWN1OCP1z8Avwr8wXfV3g4dOnT4uvEmhREv8KQfbd1J+S689u9zjJvspdqFaoMWY6219CPh84uK\nYarkQDsfpwxC6W9WSa237yz3CNdtsdaLzyvHWMuOamzvKml2la++710XX95U6dUublQivJx5dhPN\n9LipuNEoa17OPc6CX6t+lT7wehEwRm0PBbdUbaRO+GxScbwIHKSGLHZLa6mLwvNyDo97lg/qPnmX\nhSwl+3S8t/tqFKvaTJUFrBAVoLZfs1KNpWJrSEz9eq+02X5qGEVwUigh1b7fPghJpKqM8zwwcZZc\nhFAI1siSnGre02QOWaNF9v3M8bjv+HAonC0Cp0WgFO3L3KuKaBDDyawiMpaD3vXrz4NgRPh8otZZ\nvQiKUiiMENV5Tn1rGPVU8fA6Fw4zVSfttFQpe4ml8qvj+6Z7svDCrBQ+GdYk2ob5s04sNEpCg5Ia\nuRd2kis13zZsU9QB7MSWSRmWH46DqDLmJqI0iBIS0BQNAx8PHSe5bJxjhdfcH2rC0dYZaUWA3z4r\niZ1RgqPO4pl64XLq6UWrFnV7qWVWepLILC3+krU8sZM8YKxaGgLLzK52/y+8juUgwswHsthylisZ\ntygDFSwLmhGQxaqu2kstC68KsUahdBvaa+Pcy5I4Wq7blRIzmo9U95fAZ3P4ubnnMLN8MIiIreHz\nqWdaeJLILvu3CqJj3cKntUUfwPOZ53FwnBeBVzPPZanrbUOIJU7Pl1jDR4Pr80JEOFloNlFiTT2v\noB/rvX0+8+xn+r6TXHjUykGqBA76Ed54DNCzEExtRWkhBXYHjl4uLERJzctcuKw8O/HV17QqCGlk\nGEWG195jBOJaLZg5s3Jf4foGgG9Kof99aOdOYjnLqzt/RhIRjueeKlHC/jby5rbZsolE7UWGwQb7\nwa+zv77uLKC3JV3uQro1WXD37bO7GAx+3SRphw4dOnTo0KHDXfGNJ48Ajo6OLlCl0S/f8rprn7yO\njo5+7i3P/StA94muQ4cO3xjctzAC23fqf13YtBv0tkJ1L3ZkkbCX2mVOk9SFnDcJpt22I7Up9mxC\nkx3VFE1P8qviS7ghK+VdFl/uo/TaVNyIjeFBZjmeq83eelF7HV7gac8xTK6KmOq01eQE2WXRe88K\nxwtP4YXLEoaJZT/VQPgkBECLvP3I8KRvOcgcX8wDT/vmSylkbeqrg8xylqtF2EFmSZ1djr2mEJ/X\n/87QPkvqot9JHhARYmAQmZXi4DCylCK8XAg+GPZTw1muKqLg1Z4uCOykmo/VKG1mARIDDzO7tG/b\n7zl2M8usEOYh1KoHLUwd9iNsbfvWhohwXgZOF4GFDzzuqaIuSjSbpagCn+xEDBPDogJj9fdneagV\nX23iUUm3n06rO90TAyS1hV7EqmpnE7FQidpCPkgtVYAnfUcZBL+BzG3jJkUdwDC2JDYs+3FaytZM\nJaDOg4NBa72xVsn5TXPMiNpSPuhpxk1zfc269SBz5EHIg6oaLVqETCLDzAfOLjyD2IKBKsBealTl\n5K/n2pRBuCz0fjQKs0Y5Yw1LskFQe7hX80Bq9P+fTUryCkpUVWfQvJ3Iqf3hpNTMpY+GERdFYH9L\nf66jvTaG5e+El3NVd6UbOltVPqvF70f9iMOe4yz3ah1aBsQYBhF8Z3Q9K+JJz3J0XnGRB/qxIQ2w\nCHpPzvJAZOHToeNhCsfFdRvEi1yJo8gocYTAfmbZS3UtaEjaZky8Xni8GM00wvCgZ0mcWhH2nFmS\neaUPXBSCD8JOaqgWOj4f1wrCWeUZRjqvnVWFbBGEUWLpO0NsAaMqzCZfbNsGgK+70H9XvA/tvI/F\nq4jwbKqfp3rx9XZsIm+2beC5iUQ9ywO5N6TOvxf39T52lc35p2XgIHt7Nc27IF3uSrrli8DLuefR\nPQmk23rlfSBJO3To0KFDhw4d7oqfCfKoQ4cOHTrcHe8q++brxCbblzYRsw1S57RYo7vN36aIss16\n5rZuaoqmQYRZq/hy2/veZfEFbld63VTc+HgYcVqUWKNF2OOF5zC7XtxoLN2e9h2nhfBJy+Lv9cLT\nY7WA1iiVfnRRMSk8e6kSS9boWB0mdplN1diSlUGL7/NKvrRC1npffTxkxarxeK42WnuJYVZdFX7W\nkUVKslzkHrHw4eBKNXVZBGal4ANLpcteajlbBIIxWGvIRThZwINMFQ1lJcRG2I10LJ/lasdo68Lj\nMDUMsViU2GoIqlkV8C2yslFW5GWgCDCMVovvzhgt0jmDF8PjvtqOLYIwqQKj2FwjHh+kht85F6Jb\n7A2bMfKopxZBbdWOMXCay5JYKIOQV2Hl/oOOQQdkFmbV/bLT2thJLLux4bzUdi28bLVka9o9ipTk\nbKsFXs3haV+Wu+D3avLm1dzTZ3Xdba9bavOoREpASUGAF3MlVI3VcddPlNAxAmD4dGQ5rS3m2lac\nh323oprazQyDIBzPAyelhtkbY/h46MhitUP77NKTB9jrQWyu5tPcC6FSaz8MvFwEPhg4qnD3tajd\n7c2RT26wBQwiTDwUXvO+QtA187u7apf6IIt4kN38VUZE+GIelERL7DJLa9BSdAxjixfNvPqwD1/M\ndC4mDqyBeRCMgXkZSCLD475lP3UIqqZqK74ia3g+q9hPLdbAi4ln0lg+FoFBZOjFMYmzxM6ykwQW\nXhVIO4nBGstk4jnIDPM6w6kInmEM54WqLZ/0HRhL5iCxcFEIvTrXb9NGiK+z0H8fvE/tvKvF68u5\nKpAf3fJZok3e6AaE1Q08ItxIoho0D65NJgjc2l/rWXOVF5yRawTrTe/fpO4Jsn1t3IZ3kQV0X9Ll\ncc9ysSFLMvdyJ9JtJ9FNHCd54CC7W7u3Zeq18T6QpN92dHaBHTp06NChw93RkUcdOnTo8C3E22Tf\nvA9fuNZLButEzDY0zdtWdLrPtW07UxN2v9W6rv530rLeq4Jo9sUt+CqDmG8qbjhr+XjgeDHzlKLF\n+7NcM5uAa9kzRRDSyi/7MIgwqzYXyQTNYHnSjxjGUIjU2SeBxz3LTn81Yyq2hhfzit3kbgXHBm/b\nlw2htJMIhVfi6vXCI9xsCRlbtR8SCWq91484yQNpZFjMhLYDmAf2MsdeqoXkPAilBM4Xhsd9R5xY\n8kTzkLyodd1uXYBtq5qe9i1zr307qdUozrBUWDTKChGwRhjGq32Ze1UXJc7URXA91whVoBxm9lo/\nXpbC04HjopSVnfQNNuUTWcuKaud3zkuqoGSQiCyzydbnohbYIDGGT0bujfPXrKmPbwOXJSx8IF4j\nAqsgBIFenbuVOcPpWqaTrUmZ9i74B6m5Vui9TiCrlV1DAl5WgSyy7CaGwlumVeAs9+ylER8MHKO6\nAFwEwRg9R9wiMobzipnXe9zO7LFWVU5VEAaRqcdAxQ/PPWlkGEYGt9ZXzhicgaJSkjF1hr9xWvI4\ns3gRRrFleMszoFkbBSW3tq0DUiva5l6YljCI6/M7w6tFwJqSUeLuZOe0vo5ty9KyhtoCEH7PQcJF\n7jWvbS4QhH5seDC66nOASe4JCJlbvaeLMnA091QBJqUndUripQ7OSs9ffVXwaBDx0UDzkQThUc8y\nr8CZwGkUOJ4FHo8invYtRaXnixyAoRLDJwOLs0pGH2Q3b4TYZvN6E77KZ02Dd9nOt/2ccheLV++V\nlP5wEN1JFdL+3LG+gee8gmwLiVrWGyasMVjDkkyILVv7a1vWnFi1cbwobibTb1P3PJ9W10j8NtZJ\nK4uumRbzVmPqrqRLZJTY+2LmedhbzZI8LwI/uazYy9yN2XigatTzQtdpJYTvQLjdotR/n0jSbyM6\nu8AOHTp06NDh/ujIow4dOnT4FuJNsm/epy9c67YvkzsUndYJmnbR6U2ubZv1TD8y/HRSEbiyaWqC\n5r1o0RR0J3/zXi9cK9hvwn2DmN8UdyluHGQOL4YyBHIP57lnFKtCZRhfZc+UQXNCPhpGyzyjSRm2\n2oFNS7WE68eG3dZO3yoI1m62JSu87tC/j7Piu+rLpuB5EyG2DucsQwczD7PCc5F7BonDWMCjVnUC\nPWuWNnWqIlIoWWXoRZbIaGHOmSu7rVGixE4bozqXI4sMvs5PccZQ+MCk0mvIYou1sjJ/qzrf6XFf\nO7fZ1b0rosVMNhcwZ5UQO8uBg32RpeJjadMXX88nWr8nzuhrmgLk3AsUaj02rVUZ7UyQyquV4Nvk\nrymxrvlJH/QjZtUqETeIruayQxUlntVd8M0ltXfB/+DcX7OW27RuGWOWJODvXgYu8sBuaoljnXOJ\ni9iNVzPbYmvIIsPx3PN0eNWOw8zxwwuPM6uZPQ0E6MU6pyqBPATywvB4i5pHRJj4QF4KD3uGUqOb\nCBgmlXBe3FxQ1kKsBxGGidu4DjRrsRdZZhFlFi5qZVURtM8fVELu7Y2F+/sWafdTx4/OSx72HHtZ\nxF4WMUqqrcdfBKmVvFek+LPLkr9xWuADPOxHGKPkeVKvi14cvm7Xjy6E7+xEqm6qdE4sPDzsWR5m\nlg9H0bUcK9A5ebwQ9lMlN7fZMDbYZrF6E952fXwT8uZdtPNdfk65zeI1RBC5uxFHDZrPHe0NPEFg\nEa5nHsLVBp4mV6+55mmpdovWGM5zv7JGZY66reba2I9qJUsa2a2WaHdR98RWbVfXLd22kVYAk0o4\nzT2p0/4XuNcYuet8vrLC1CzB9W5dVEIvVjvcl/PAo972sWCNoV+T3u28ym24i1L/m0Lm/iyiswvs\n0KFDhw4d3gwdedShQ4cO31LcN/vmffrCtZ7b1CZitmGdoGmKTrvJm13behvaeQVBVDXS/G1aCZel\nxwFPHsTAle1dFdTe6q47Su8SxPw2CCJ8dllyvBCcCSvWTu02mtpq7CQHQTjoOYatonYZhNKHZaEO\nWBbL5jcUCS9ru6i99HrRa17JZtXADX+78Vrv9/KNaAqeF4VfFsKDaKEpD3KNQLSmLrwF4bDn8N6z\nm6qCoB+BD0qa7GTbx0QQIa+EDwdqjSVQ34two8rnySBiLzF8NvGc556HPcNPp5BazVKKjGVSCLkI\nRqNdiCw8StxKscsaJfmyyNKP7UbPxbatozVmq+Jj0/tEhN85L3k19yTRVQC9iPCTScW0EoaR4aDn\nsA2BXAq5F4KU/Pxu/MbrT5tYj4yuE6MWK6njWpUAIpCH1V3wm1SEzsCzaYlBCdFmF/60CkR2eyE0\ndZZhDA97qx/X27lp7ddiArkPyzylndSRWM/JIuh6tEYKZvW6o0VZw05sySuhFCUY2/e88oGzUgvZ\nj3qOSgCDkh21DVQa2Y0F5QbWGFQgqOfdtA6ctWzsCi/kAfSudXcAACAASURBVE4K6NdrfOoMedBi\n+/llxWUpfH9v8/2+b5FWlWeWs4XnQd3n2+xJAYog9J3FAKcLz9wLv3VeETDEkRakjWgG0iCyDGPD\nbmK4KAWDYe4Dn089n4wiFl5Y+MC8gn5s+cW9iPMSZhs2dwgwqxVN39+7nbzYdA3blCFt9dibrI+b\nyBtTW3w+mwpV0GfCRwPH7pp12k19fdv1Nef+Mj6nbLN4bbKOtrar1cdtkrtR3zTrzFkphDX7x2YD\nzzYy1hj48WVF4uy1fKSfTiqmXtiJ7cY8QqkdS7dZoh0vAkXQTML1tjefA4yBuN4c0li63ZY7GVmD\nM5ZZFfjrJ55BBJGzdyb47jqf21aYqrZdJX3anxerVvu3ocnWuyxvJo9uy9Rr8HWQuR0UnV1ghw4d\nOnTo8GboyKMOHTp0+JbjtuwbeP++cK3nNt1WdNpG0ATe/NrabVCLlKu8gsOeFoUaJUiz29caPd+j\nnio2mtyUB+nddsbD7UHMb4p20e94EVbsryalcF74FYsx0EL7QeaWypJZKQwS2WoV1hTLFlUgcnaj\n2i2tLbU2W+lsbru94W834V30ZTP25jVp0xSR7VpBryEQe06zbQI6pl7PldRp8LRPK7tIrpFAQWAQ\nWQaxKpJSB/Py+r24SeXz4UALYv3YqiUcMC2Fi6JikECVK3HQiw2xsexmq/cisqq6G8ZsHbtv2rem\nLgCfFkK/RdosFSloxlC5lrXVzLOzIrw1gd0Q6/upWrMFWc0SGtbt+umkulYkbZPU7V34uTdgYK8+\n/qQSvpgFBpFsLPBOSx1Pm8b1tqL+QWaZV2FJUFqj+TzP534l+6gKgrMscznmpYAEMIaPRxGJMyQR\nVOFKPVkZfX2jhLGiNooGHQMv57reNevkpoJsGYSHdWG1bBGrV+0KvJp7BCVmJnUGmKuzhy5zLWpX\nIoAjs4bXC89Pp2ajAumuRdp2kd/XqgVQy8ht47gKQmyUDGqUUtboPO9HVhkeGptKy8IHvKgF4U5s\n2U0t89JwXngKrwRUYg1P+lYVhc6pai+1TApdD1bGYD+m9GoBeNsVtq/hNmVIWz123zm8Tt5ITZw1\nhHbsDLFz5EH44UXFYSoMkiuS4E3XjOZ9X/XnlG2fO9obSdaJnUkpnOZhqb552HPsxhA7fd/6OrNp\nA4GIHuOyCHwwvG7XVwQYxJa8vsZ1EqZ9yEbFtJ/qmj4pPL/5ukRqleVOukrQN58DMqdjPbZmael2\nekvupNpkwmmucw1jOYivP1u2EXw3zedmDs+qwPOp2m82GzbWyfb2fYtqUma/VtJuQrNR5tVCM/fu\nmqm3TX1Xia4d98WXvXHoZx2dXWCHDh06dOjw5ujIow4dOnTocCPe1y9cbduXm1pWCdsJGhGmpbzx\ntTVteDn3eLlSe6xnl3gRMmc4zHTH/su5X1qp3GSZso67BDG/CdaLftaulikia4hgq81LoywZxMJH\ng+0fLZqifO4jpqVcL4gmjldzv7U/tnVTz2nh6z54V33ZjJwQhJNClnZb62jGRlPQO0j1/32LHeg5\nJRWusovqnd+oUqEhjawxhKDvS4HSXh3jLiofEfjebsRJLksib5RYPkRt2nYTx3kRQGCUmJX7UQZB\nAqTuSoGyE18vlp0Vnll5tyyc9rGLSkgiw5rD24oiBa4KwO2sLVAVWiW8EwI7span/Wglm6TBRe6v\n7YJvk9Tru/BjpzZK01IYJaZW0bC1wLvwSuDJBvZo22qVOLUxTJxZ2pGm1vAoa0LjdV4PE8tOTT5W\nQbgsA1FkeBQbepEBY7CixMisUpXbZR6IraUSIXMgBqwYjDUtFeJVwbydEbJaXNV7crwIy7U7Mnp/\nj2viVe0UYZRYXgr8ZA7zs4rd1BBbS4SuJVOv40WkIrGGR/1aLVSPw+czj+W6aqLBJiIlMobDFEqB\nH52XiKjFVUOmt7O6Ph44Pp9drf0vpp7YslzvG6hdnaUMgfPC8DCrNx8kZpljNIgMidPraz+rrNEC\n/rrSDMBa7mRl1VisOsOtypCotiN7Nq34+Z37fU1skzdX1mHXrTybjLKJF2yLJGhbwd5FGQVX6/i7\n+pzytrmHN103NOobVsgRgJHT/LtNWO+L89xjgJ67yq1rMC3CMjcvsjq/1/MI28pIEeGsCFycBvYS\ny2cXnmAgiyyLIMxmVxse2p8DCtQSLrJGLdVyXe9v6v/adZRKoBfZG0mbTQRfQ/qsk70Xua5ro8Sy\n8EpSGmOWGzaS+lnVrK/rLXQGJmXYmFO00vdBiFLwIeCp10k2K/Vvsk78Yurpx3Jr3tI6vqyNQ98W\ndHaBHTp06NChw5ujI486dOjQocONeF+/cLXtpayBeR0u36AKQimal7GJoNEiuOBusI3ahPa1GWN4\n3LN8MfP4oLvAmyKzqS2QMh8IWHrOIMIyo+b7exHPpuFexYPbgpjfFOs7trf1SFOM2mbzcteeHMYa\nEr+TXr/2hkBZ32G8yQ6sQVrbZt0H76ovm4LneSkr5MY2RNaoHVCl/+9a93+YWM4LtUKyxjBKzLXs\nogbLtxnhINHxfNuOe7jKZHDW8rDHCpGXRXBRqN3Rk77aK06LwCJcFVKHzjDoqVLCGEPwgVFseTX3\nK8Wy3cQxKf2dsnAa+FqxFbd26oMW8Ob+OikXW7U+220VIC2rhWG4X67GOtokdbt/160yGxXhXqIZ\nJM9nlRYyLWRW7drmXkmh5p5mVgkQL9dJMEFVN4Po+ro1WmfWWpA1O9LXc3jcc2SR4L0SSgGDoL6E\nqTXsxIYPehGRhUkJlQReF4HMqyVWXo9rYyD3gUkpZNYy6hvq2vc15dtFoUXuvdRtVCE+7DmcEZ5N\nKp7PA6UoKbMbW7LYcDwPxAZmjfoJbdswCktlV2QNUaLrxY8vKx78/+y915MjSZrt93P3ENApSrYc\ncXeNvGaXD+Q7/38zPvFe0nhtbXe2Z3paVJdMARXC/ePDFwEEkIFMZFZ1dVeXH5sxq04AIVwF8B0/\n5+SGdyWbcegMm/G2r56Em0RKaK59XQuPB45RquPrxaLm+cix8nrtw9RQB7BWSbVZ02/XVWCUqvXj\nIOsqPQwnGcwry1Xp+XK87efcWV4tPfnYcTZw9yooH2tl1VqsXtZytDJnUamC5Vjskzdv98je3mtv\nCMaW7H00sFysay7L45RRpiHRZ5l77+8pHyr38G0RqIKOoT7b0jb3sEuOHLrsPnLTiLD2qsSrayiD\n52lHnbPeI5P2M+r2lZFtNhDAVaWZZu33qP0ND+29t98DlODWdfH1umaUHn6e1kFJ53W9JZhuI23g\nJsFnRHjTaQ9n4F0hm+t/tdLXTga711/tWWnuf8fos8TdV48JMG2em9Jk3Y1Tc4P0P8Y68STXjUV1\nkF57zz78WhuHPidEu8CIiIiIiIiHI5JHERERERG34vf8g2vHXuqt2kt1rbqeZlpk6ftxHpoiy30L\nTvv3dl1JY2PHQXuh/SJ1FYRlzY713l04Joj5IejbsX2IwIHDNi/3KW7s50V10SVQutjPrNqBwLOR\n2iF97LacZZa362pT4D4GFlUUFD5wnpvN7nFrDKNUc2Nuu4+WSKuCMHRwliopeReB1JfJsE/kDZwG\nibdtM83dDQKrJTCqRmnzyyrcKJa1QePHZOG0x/SyLSwOm5DypClk92ziB8BYJbimudshVoyB/7ys\nNnP82FyNG8fvkNStmqdrldkqUXRzvDSEsGYBtWTXwgu1F65r4Tw3tKZJ48xyvfBkyW6BF8Cgaorx\n3pgPQZhk7qAyY9zMwdaO9MlISa0v2GZxrfY+M8ssJ7nn79eek9zww1xY1oFRYhsVUFt4VtvEobMM\nEsObdeD/eJLuXF9X+SYifHmLEvE0d/z9quZ84FS5Y2ucMcwLVU9cl41tnQVnNYfpqoIno93+Shq1\nz//1S8nXs3Q7hjrrmG3UUG/XgZ8WqmyzRgu50pB3Ky+ICLPMglGV2LwU/j73/HPu+a9nqWZWNX30\ncuVZeqFceR4NLEGEFCUMN7lBohlvVRDqoITDqtKiO7Rkp/DX04TUKuF3KGemD8fwO9aoouynRc34\nCMK8DtoGq1oIt9h5ddElb4IIy7pfebNzXdZs8mgWla6F13VgUQvDO5RRL1ees9xu1vH3+Z7yoXIP\nfQj8tKjxwkHb0m7uYUuOZFbXiy4O5Qctqi3ZdDJwrP2uTWeflZ5txvIwYce+t0vwVSFQ1mws6vbv\nf1/B1OaPGXS8LD29m0FgS6xnRqj2ia07sgpbgu8ks1xXgUUlG3Lr3drvEpQW3haCXwfOm3W9CpqP\nVwubTS993zG6As8+9VhRh41d6W3WesdYJ05Sy2UpO9d0F36tjUOfE943Uy0iIiIiIuJzRlRAR0RE\nRETciof+cPqYP7gSa/linHA+cDwfJzwbJc1O9/73t+TBQR+0O9C9t2W9LfzPcsezUcIXo+Ya8v7M\ngrZo9XhgN0X/23BsEPND0Ldje5JZ/C3X1O4Y7iI0Bcdj0OZF9d13S6B0XzuUWQXbvnw6dL9JW1pj\ntKCesNkBfdf5h4nBOS2KfTVJdtr6PL97THiB3GkB/CzVYfzFyDF0hqIONz5bBc1qGDpzIwtottfX\n57kSBvUt5w9ByDvWcoeKZd1jpXZbwOtrk6QplLcFvUmzSx+2Fm59SK1h3VyrEit2kwnyrlQyar+o\nnFhDnthN8a/PGq6LlqT+dpowSxsruaBEwyQ1fDnSay2CFnqLRkHVPd8gVbXWq1XYnK8t6rd5aIvO\nnEoNZIYbBG3u4B9XFf/jdcl31zWv155lGRDgolRy5NVqe0/dUd6uUU+GjlFTFF3WSh77oATd5VrV\nM0+GSaOWVLsmaazYznO1OAwijBKo5fAaetQzwJg2HmhzrUVjZ6f9vn2r0L9kGwyFhzdF2CEZJ5ml\n9oF3a8+LpRI9qbObXKMyCD8vav52WbH2YUP2lV70/VVoCD9LFeD7ec2LuefdWtu3bkhrL8LLddAN\nCU5VMbXXTJq3RaAIgkdJrtPcUQr4AJkxzDLD04HjuhR+XHgWtWj+j1XrrXmlf3+z7h+nx65imVVb\nw9vmNezm8LWF+2PQJW/mVThI9naRNgV4UJLgu6uaWWYZ3HGdaUMgXZeyWcff53vKfbKSWpUU7D7H\nRITvrjx1UIVk35pjjFoNvl531oCWeNrr27cH8oPWvrX1o1G+OAzwumGf+sZDYk3TJ1vVXUvwtde5\nagj621THK69kYvdvo0SfRVUtN/qsDqKbB5zaWq4DN9rlrqzC9rvS67Uqorp5Qvvqz/b9NXBV6IEl\nKEnfKt1aMnT/O0Z3XdlXzVVBNB/Q9JyrMx7ajTh3jaN2Y4WBzTXdhl9r49DnhvfNVIuIiIiIiPic\nEZ+HERERERG34lP5wfUQIuZD3Nv7FK1aVcNDiv4fCn07tvuKK120O4a713nf4sZt/dUlULrFzH10\n+/K3bMthYjTk3nBr0bO93tO8sX1Dic8ukab5MY7BgftY1YEEYZzY5j7YfG6f4PDSKClSw7fThCc9\nqp99Iq/Nr8mdqob272dVBxKr+UvPhppbcahYtn+s/WLZfp9I59raAlsdNPPpNgR2C3xt4fUWdzfg\nZvHvLrRqni/HCX89SXk0cMwyx0W5awe27ilqApxkGuL+erWVGZw2Y12az4GOoWmmJE2L0geuCs+P\n14GLUnOhsjbbw2uOxmWpO+67pFjbhqA76t+s/Q2SYpJZ5jWAvl4HYWB1XJwNHGe55TR3jBJt31qU\nDPnrScK6loPFz7vW16sy7KwDg0bhENBidtdRtA5KJE0b5U7372oJqG0+75AdBrUKXNTbgn4Q4e06\n8MtKCZmfFp7XK89FKZS12htW0uRGeSV5Umd5NLIEgcsqMK81n8mLjvHz3CJebQAzG5imhnkF66Aq\ntNAQRSeZrlPOtMcP/LLwmmOGkvK9RGczf152iEdgo/wDLVy/Kzw/LWp+WNT8tKi5KPymb1Yevhy7\ng/N6v9BvjNkU7o9Bdwat7qECaj/njBbtM2dvXX/a65yklnHCDeLx3jiy4N+iVQu17dqO35crz6I+\nnLm0fVa5HRI9tYYyqHKxXYODCMsD1ySibTB0upnCGMPzkSMIrCt/4xlUB6H0Oke69r1dgq89b2LN\nZg72YZ/gVhWYbkD464ljku6SzZPU8NXY8WiwVUXtY/8xHES4LDy/LGteLGp+Wda8LTzXpSd3drOe\nHVKjDpzOpZXX+x52Np3YzvpwmhmWpc6Xn+YV12XgqvTUIex8J2r7rTczk93xcB/rxHZjRYCdNWsf\nv+bGoc8N3WfhseiusREREREREZ8zom1dRERERMSt6PP1vwu/hT97n73U/jVtQ9u1iPIh7u19Cai2\n6N9mlCw72Sx9WSEfGoesPM5zy8uVZr20SqPCaxaLwZAbeDJUy66HFDcO2YG1r53lljdrDTw527MW\n6+vL9nO/RVtKQ/g4A/+c1426aNsemq+lJNNprioVZwynjc3Pfq7OJj8mtzs2YyEIp5nlX0+Sg1ld\nLcFxH8vIg+dvMmBWtdpo1aJFt389SXHWclH4O4tl98nC2b8jHYMBH8De4jcTApsCX1t4zRN7p6II\nbuZqHIvWsqq1Q+sWjVvLsX0Ihr/MHK+WnnVDwiVW1QMXReCy8IySwCxT9crbIjCvAkaElVfFmUv6\nCYYaaRQIgadDt5sjU9Q4ww0rphbWGKappaiFSR64LjynmaUWITFKXqy8UnhBwIjw1cjxaJBQCxvr\nsS6OeQYsa1UCPR0q4ee9oSyCqo5CoPRwUWl7ZrVn6AxXwXJVec59o76zgnFKyNiGRJo1x39bBMap\nkl2lF1ZNttdlKeSNkqIMOkZfLGpeGsO/niQbkmndIUYza0lTYZwYZqllXgvz0nM2SJikqjhdVp6/\nX9VcV8IwBVerqmqYGdKOhCoE2RDul74mcYbTgePHeb+V56aPw27eXAjSmzfWZ8+oSgrbO69bm9c+\ne7xjN0d05+6h8X/b5+Zl2Nh+Hlp/9q+zCrLJLHros/xD5h7WQb1Lu6TP/tpvjNEsrybvqVWunmVb\n69FVdZiEaPvxtENmGGM4HzjGDmbA3689AcEYzUwbp9uMuhZdgi90CuStlWbfF5vWMrBrYyqin38+\nSljUMMsOt//+Ibs5hvsZQ13Lv9fLijxxTD2cZYZXa5hXnrSHPRqmalUpQFELX4y265KSoYFK1Oo0\niPbDVRl4OoKwUGtJAJNbRDgqq68dD/exTmw3VrwtNJNvmNob46bvO07Ew3GbXfIhRLvAiIiIiIgI\nRSSPIiIiIiJuxaf0g2ufPBA0o6NVX+yTBx/i3j4UufaQov+HwKGymTGGJwPL365q3hWBxKK2MU2J\n77IKfHdZ8Wjo+F9OkgcVN24je04yyzcT/ZpyXyLoY7elbe7l8TDhLLf887rmXRnAQGYNE2cYD1W5\nUDa5J+d7xb8+Iq21GRv+yoWkW8+fOYZJ//nvKpZ1c3na4u8sM4wT05uFsz+X2gLbsra8XWuxsHs+\n3VUPj3OzyVK6bgitbmHyLnSLwceiVWy9XNY3Cr193dOqBZy1PBoZxk7P2xbGT3NVXDwfOdZei/Zn\nmSExlmUdMBberIXEwnWhlmuCqmucgWlmeTJ0OzkaLSk2Ti0/Nlksh/rrtCGLTzLH0FqcgdyoMitL\nYF7prv7EaubSX2fJphDeJWxaHPMMaInrLlnqJfBvb2tergK5U5LaA3UwXAfBoKTbea7EgrOGdeUZ\nZ6pKaMmOLon4KIf/vKpZ1JA6VVA4o32eWDCiSrrrMnBZCY+dEk37TRUA1+S8fDlOeONgmhqyhhga\nJI6TLFCuAs9GyeY6VAWhhXaPcJpbngwt61oVhKFZhe/KO+vmzXnhYN5Y9/2t3dibVeDZSInhbi7V\nXTiWVunO3duWpzZ3qwhCFWCSQG7hl5WnCmDnVaOKg5HTvLJDuU/d/MGHPss/ZO4hKBmxDttnVbv2\n7197N+/Jmq316Ot14MXiJnnUZqudNBZs+8+A1BqKIDwbJXyD2RlHfWthux63is1WkdFaaa5D/zjc\n5+Nr0ezG09xy1ZNV2MV+lmKbY9iXMdSiCmpZOkrVDvTVGp4MDG/XbOxBu+cM0uRNobZ+3XYSEV4u\nPc4FKq9k8ySznOWWzOq1vVp7Mqu5ZX9tNknchXY83DdTp133ZplhlpqPvnHoc0P7zP6tc0YjIiIi\nIiI+RUTyKCIiIiLiVnyKP7ha8uBpU9w5FNr+Ie7tUyLX+nCI/BIRXq31fqeZZVFui2IhwLOh5ctJ\nihd4sQp8MbpZ0DoWd5E9vwWpdh9029BZy59PMr7d3zXPzV3zXQLxt1agPeT8h4plt+0in1eaR5S7\nm0RY31wyxvCnaYJrCp1dImqcGE5T+Hqabo7T2pe11lbHYL8YfCweDyw/zG/+feAMi06RtLVebNUC\nm0LvYFvAb8fDPoHlQ+C/vy6Zl56LdSAYo8VRY/ANgYRhE2h/mtutqqEhxc5zw3dXckON2YUxhnEK\nzhoeDyy1h9PcUAoEHDZ4BHg60my5br/tq1PaXK/LUsd/O45GiWGWbdfPtndaknFVB64qSBPLwKgC\n611zfF2fm6KzF96sA+cDw6OB5ZelZ10Eng6THSVLW4C/LIVxZpnlsKyEq+acRQ2nI8cw0XGTiWFR\nCpkRatE+68KyzdiaooXv6zLwaKhnTawWga9qQ+F1jFujZGn7CCqD8GRoKb3gvfCXWYI1quzsqj0P\nPY+cgXeF57wZJ8dm9WRWrdVaUusY3EdB3J27w0SzmrrzWETH56pWO8LEGhC1CPzbpdqTDRr7zMSq\nYmteKeFaB8NlKRvSvW/sPfRZXtzTxmr/vLAl0cepQbBMjzh/m/c0DEIjJNuswSuvJP7rlWflA4Jh\n5HReTrKEn5f9erD2r/vjqCVpumiJo1axeV2FTZ+d5pbX6/5x2J0SqzpwmpnNOn5X+08yy2VDMHVz\nDN+s/U7G0M49BWGYbudXHYR3JZwPHILa6O0/E54MEt4WQhl22+ld4XldBB4NHVljYeaM4by5/mkO\nziqptfTwrgg8Hh73DGnXuIcg+Y02Dn2O2FdZH0K0C4yIiIiIiNhFJI8iIiIiIu7EH/kH1/ve26dI\nrnVxiPzaD42e5m5jV1PUgS8nCbYpZFdBA63b3defG/ra8K7d/YcIxN9KgfaQ8/fN8tt2kYMWAF2j\nVvl56Xfypw7NpfbvhRemHVukKohmXOwVk6VTmDwWD8kuU7WZ5bKUHaJsnFquK7WxCqI77k8PFL03\n/31gPFxXwuOh49ValTi1RusgohZqw3R7n0UzD0+yraqhzax5PnJcVarG6VpEwtYiaZQ4vhpbBLgs\nNK/nUWYxBr4dO5a1nvtGblbn36UPXJfCOIEy2Bs2am/XlbZJYrgoPD8tAw6Y5pZFpYqT52PHReH5\n20XFooJZsnv8zBmcbUlJJSYTo2vWNw1L05KIQYRVrRlRAJPM8FxgGQRBbe30uEJu1VJyFQSLWvZt\n2kiEcWvz1fwtd5aFCTvPjrXAfz1N+cfcc1EGEqPvA6hFMCIsK+Est0yG4Jy2zqoWZpkq6N4W4dZ+\nEqtWaf+c+4MZO/s4HTi+u6x4MpSj58V9Njl05+4ktVyWfvMjU0R4vfaNik3PXXkdi8ZaBmmjdBFh\nXsH5YDvGiiDUJTwebHOfutk93bt/yLP856U/+L5b77fz75ZEb+/bdtRVLakxcObGc7+1Ip10mlhE\nuGxItlFqd+wgl164XnjWXrDsWiF2r6nNzXtbaE7aaO+8VRAsOmdaxWa3z4zZWmmuasHYJh8u6JrT\njsPMqoVp2xd3tX+bpTivAgNntzajdf+zYl8VBVv13TSFZQ3TzO3Y6LV4PBDerTUfyxlVI/208Ayd\nWviVXnrXZYMhtXrun5ee88FxmzZacvxTsHj+nHGbXTJEu8CIiIiIiIhDiORRRERERMSd+CP/4PoQ\n9/Ypk2t9BftjCjrdgspDc2M+dQSRjbrisgpUa880tUyy29vh90YgPhR9xbJ90nEfVRDGTu2d5lXg\n1drzZOA2qpRDc6nNP6obZcKhIHO1orIHA84P4aEz0hlVv3TzWRAtFiOqsqhEeLXyu0Xk/TY5MB6W\ntXBVCQHhZHB7Ib/dmb+oILVqJRfYZgs9ctzI0bLANDFMMse8oz44GzhEZEepMstuKsqqIEzbgrIX\nrmtVDGV7hW1p5sqyFkSErNL5s/aQO1XFXFeyWWP/9TTlTRFYG1h4OA8BYwwDa/hi7EiskomlD4yd\nZZDAohRGp1uCx6HZJvvOU6PMcDkP5DtFey3yC0quFDV0eRkJMBrcJCxmmd2o4lJrEAzWWv4ys9Qh\n8GoZdG0ISkb9l5OEL8YJibX8vKx3zg+7Fn6H+klQIu4+dmvWGCaZ5V3heTS4++ffQ9aodu7WjaVe\n0RB4F0XYUUjpGBVGjQXbm6Vn5Cyps3iEqwJOmrZux/RFETgbuJ3cpz715n2f5R8y99AA6zrwS6kE\nZ1dxuaiF68rvEBa1D1TB8LpUu7XRvOK6UjVhm1/VRWtDaEzgXRE4y9kQSO087LbFLLOcNjah3XE0\nSw1fjlJ+mPsd4r7bZ8boGnAislEd143l6jgx5IllnNgdW7dj2n/iDCKGWabnuC49PV8zdlVRZdix\nu2vf7+VwIaMWVZxPMiWrflnUrCrhydAwSuyGNL7ey3KsvYDR9XJZKvl2esd8acfDp65C/1zwW6u8\nIyIiIiIiPkVE8igiIiIi4ij8kX9wve+9ferk2n7Bfl6FOws6+3hIbsynCt1JH3ZC6p8MHC9XgYsy\ncFmGg0Hbv0cC8aHYL5bdRjpCY2e38vjMkjgtfBZeNsXwi6JmnFqeDy1vCtmZS23+0cuV57rwTDK7\n2TUP2zl2mlkydz8LxffZ/d0tPrdKMxHNJvrnwiMimhXWKSK/KzyPc4OIUAu3joe6adP0iOwNYJNx\nM2nYCMuuvWCbo7WfUQTcUIzsq6M2xEaHKKt9YDxM06YgMAAAIABJREFUmKSGwoJ17gaBflONZni1\nUuJkmqqFX+mFq5XnsgjMMsO6Fk5Sw8JCDRhrmCa2yb2y1CKaA+MN30wdPyw848ywrIRZvi3or8NN\nYsAao+olA76xp2v7x2BIjGFN2LxWiaoUWrvJSWd8u47K43LtKSrPq9XWxmrg4GyQMO5ZD7o9uj9c\nb+snacbEfYrUoCqTX37FTQ7d56B3sKpVKdYqv1olXu5g6CBzhtIHKhG+mjperYTMGVZBmMpWIdWO\n6ZOGlG5zn/oK7/d9ln+o3MOrMvC2UMVjGSx+LxyoPX4RlEiug97r85HBoGPxXalrnogSxt31rYvM\nWU5zJYUHKJEbgmaRwf73DT3GWc99jFPZ2TSyT9Dv51ONEhgnljwxZI295T7ubP+xktLfXdX8sqx4\ntfLkidmQ6l70XrrPz67dXduWhZcdsquvjyZNX88yx0/zij/PEp6MEnwI/DCvuSoFY4TEWHJnGKVK\nHL1YBWaZjtHX67vJo3Y8fOoq9M8Nv7XKOyIiIiIi4lNCJI8iIiIiIu6FP/IPrve5t0+ZXNsnv65K\nLWy12NhaHSBE4OG5MZ8aRGSzu75rGdWSG28LLerNKy3CtQXAhxKIXXVTNztmkipp8bLQXevjRX0j\nU+ZD4dA1zDK7Uyw7RDrCtt1SC4NO/oYzmvcyy9ymSPxiJXwx6p9Lf54qUTGvtIDuRXbmGMD313Xv\nNRy8v/fY/b1ffN4SJfDlqLF+6gS7J9ao9ZiBH+Y1f54mPDlQJAZVaLlGsbSsw1FqE2tg1ahdNkHs\nTa5QNx9kmGwzuPRzu+qDQ9RBW5AdJsLQ6fUHEb6/rntt1PbVaEG0GI3A2RDeXAs/zmvSxGJE7ah8\ngCxxiAEXYFHW+OCYpZa3QZimhmcjizOWWvRYlRf+cV3z1AuVD2BMby5XHYRnQ0slwo8Lj0HbdlkF\nxqklryCzOq8CQgLM8qZ/A4yH/WoPL8KjoeO60uwUUFJK9oiEFkNnmDe2gpMjycu2T+e19OaN3YbW\nZnHgzK+2yaH7HDwtPP/zXUkVBNPY2Y1Tzc9bGSUMfVCSylnL0AXWonNlWcGkY/lpjebbTDO3yX16\nNkwOrnXHPss/VO7hf15WiFEruccDuTHvW4gIP60CmYH/88vBRrkTpCGDmvlzXdX8tKiZJG3uWENG\nWsO4UfaJBL4YWS7LgDQ5USJy9PeN/U0j7TPszdrz87Km6Ng9ptYwTQ1vi0BewdeT20sIfe3f3XSR\nJ5avUsu6DpSimweuS89pZvhmmuwomlq7u3Wnj0R2yS5r2BJdHgaJ/vckU0KqDOjzeVXzU2NVqOpI\nPd7KB+Y1DK1h6gzLKlAHg70jEmt/PHzKKvSIiIiIiIiIiEOI5FFERERERMQHxKdKrnWLfsu6pAw3\n7ZLuKkY9JDfmU8PrdTgYUr+vzLgqhdcrz+OhuzeB2Kducs3f/35dbwpjiO5aN8bsqHc+hMLt0DXA\nVik0SgwOJQNWt6ghXq89Bni8Z72WWNPkveh/p40VWpuhdWguneYcnGMfc/f3fvF5nyjZWD9Vwtpr\niPswsTwaOHLXZvbcfe5xapSUOOKa2npnCMI0tbxeeV6tb1ppzSvhsvSMErMhhduC7KoOnGWHC5v7\nxc+rsp/Y6lOjLaqANbpe/HMeGKWGUWYpm/iZwgumyRwyAhceXAVfjSynQ/3p4kX4eRlYlTV/PUm0\niF5B2djbYQw/zVXhcdKZC3VQNdFp3tipBVhUnsQZPKqAWHmhqISB8ZzmlvMOATzsZGm1RMvLlebQ\nnA8TznLLjwt/Q3239sLLld9Rk0wyy0VRsagFg2XZZD7tk3o77dkQncv6YVk97iNtcrDGcDZI+PMM\n/jRjo1QT0Tyqk8wxTg1v1mEzHme5oV4LNToGJmyvI7GGtRem6Piu/IcrvH+Qgr8xm3m3Y/nWzPut\nLZqSHvmeOnLpYdj8p4ie56dl4MLBs3GymfeLJvdomBjGqeGqCJwP3E523LHoU0wnRu3gTnPLygrz\nWhg2dpejdDsu1+FmZt1tOLTpYpbvfr5d+58Od9tH16Uu0dV8ZxkY/nbleVcEEqt2f6mDs9xxUQZe\nrTyPho6zzPCmUMtDa25aAjqjz9Gi2YyQWkPphctb7qlvPHzqKvSIiIiIiIiIiD5E8igiIiIiIiJi\ng5b8ekhR44++hzaIbHZN34ZWmTHLoKgDz0f3K8geKrR1VS3TXDM/3lZwnurrrbJl5e9X2LvPNbRo\nz7UOqoAYWM37SJy9USzzPhAEnh+4nn1hxvtmaH3s3d/t+Qofem37rDFMM8MgqEVSl0C46z5HqeWq\n9CSJZejU4u0uiy0JkGaqIvplFUgai7beDBW0UP9yFXg6tBv1wYtFIGuIvGOKn4ds1PrUaOtG2XS5\n1iyVaW6ZpQ5JhXUtLKvAsg4ELImFb4dwdpJReLX0CjR6Aa+kmrOal/PYwbu1UHgliE5yy8tVzct1\n4DzTPKKhM5w0hWQv8JdZwut14GrlmVoll4wxPM6t5g5Vao+HUXvB03yrOhqllotSyYHMKon6auWZ\nF563slXaWGM2pGib1yMivCsCb4qAhR2lRR+p156zPd77ZvV8rE0OAS3Mt+shgEdYVcKbdeDlypMY\nQ24No8xwPrBcFcKi1jygnbHndT0dpZaT7H7WlLfhfQv+V2Xg8cDytgg786Wd99O2LUT4oRaGCZw2\nWTyt4rHwOh+VsNd196upXtO6Dpv1NrEGLMzrwLKGr8cPI466994lE/85rym9Ko9PxvYgiblP8veh\nq1h9vfIUAWaZwXWOOUzMJmete9x2nnSvs7WHvCo8s9wiIrxaa78MEsO8CBhrOGnG+Gmu1+8F/v1C\nydZ6b0ztIzGGWoQMtcr0PlD4QN7JcLtrPHzKKvSIiIiIiIiIiD5E8igiIiIiIiJiBx8iRPyPiEPq\nitvwkCyoQ+qmfVVLag11gMs9l7ZjCntd9NnSLSslHbpFsz7ouSAzhq8nCYtKdsLZp4khOM04OlTg\n7Pvz+2Rofezd3+35/nZZ4X2gMjcJtEO2j3fdZ9KxbDrNrY6NWwgkLV5D3pARtUDuLKNUdmyfds5h\nNY+mLdjWAt9M053iZy3ColSVyCi1VEHHTGuT2GcPB/1qNN+ofX5eeoxRtUPtBawee5RafpxXeAmI\nwLyGvBYQ4SS3G+KpSoRpmuBFbcImmeXLccKkKcxbLGtvVYHkHF9NtWj7bu135tFpZkkxfJ3AZRWo\nPDxtCN8ggetSOMkNp5ndKJASA+MEfriuEWMwgKDF/fOhjr3LMnBdaV7Saa5jYlkFTjOjpIAXvhgl\ngOyQDn2k3n421ofI6vkQuM3S0ppd60MRHWOvlgFrm/tslHfLIMyX2lazXJWuI6fkdHvcSQpfTdSq\n7pAV4EPxPgX/ZS2kzvJ0qMrD5YE156rwDBM2OURdxWWr2r0odtf+s9wydGCN3VEwnWYO7coPQ6Lp\nhgfLNLU8Hh5Hph8i+fcVq9YoYZwn9gYxup+z1h53WQXO8t3jtsresTOc5IYfF54yKHE7SSxfjQ/Z\nGAqZs/xz7plmd7dV0iirJonhz6cpRmRDWt+HAPpUVegREREREREREfuI5FFERERERETEDn4vhcnf\nGx4SUn/fLKhD6qY++y+AxMLa6+vdYtYx6p1DtnRBhFdrVYyMUjmYc7V/rlmj7mjzYVr8sjw8luog\nvXkv75uh9bF3f5uG5Pk2tczLcINAO2T7eNd9jhJDHZTcqUXJg0N5KqtaVSyPRo5vJ5brSjbjaN/2\naR9Jcx0Tr4qjllQ7ySxVCJSVBtB3z9e1STRtkFIHQYTLwlPJVl229vBuXVMFo4Xlpu3ECq9XgbET\nxCgh4awB/R8GWAf451XNaW4pGoXQKNUi7coLAx+YjNId5d+zkWOUVB3STW3TMqdtGkSzh56fOgQY\nrmsuK1UvJUY4zSxPBoYvJ47LUomBgTM8Glgqr/O0nTvdsaD9pOda1GHTd9YavruscM4yy5RMBHpJ\nB7V0DLxYBL6ZpjtE54fI6rnRV7eQQPs4xtJynCrxMa8FZ+DlShU108ywaLKeBs6w9GpRiIO1COtV\n4JuxY5q7jWqnzZeyDXn3a21UeEjBvyVON7alef8aYLE7CrMu/2XRPlh1coZAx0AZhCdDu2mLLtZ1\n2Fn779uPXXyIzRF9itWrwm+O20eMdnPWusedl4HZHqleBWGSWU5zy1UpRxFd81JJ8X+/qBmlqkq8\nCyJC8PB4mGKAL8c3Sybv09YRER8TcaxGRERERLwvInkUERERERERsYMPXZj8o+CQuuKYzx2LQwW8\nPvuvFgZ6C223qVpus6WbV9t8nL6slj7Y5pp9jyrmtnbzApO0vwD4ITK0Pubu741FV+6Y3fNzh6BE\nbthYNi0rVdicGHZylCTA+cDx7cRRBy1kd0VjXdunQ8qI2gdqb/jTJFFCZ2+MtGTQ2mt2TZvPQx1Y\n18IoCaTObhQmy1pYeUid6nLergNlEMpgeFd4xqlh0Iy9zFrGqfDL0lP5wMBZMme5EnBGM46mqSMA\nF2Wj2hluCTkvQuDmGmSM4V9OUgauogpqi6dKAhgnhmFiWFZqFVYFVR38rycJ40a99HoVeF141j7w\nbOT4l5OE01zP+/+8KW4QR93zdnNv5lXg7dpzmjuqAH893VVJHCIdzjJLZpWs2p9/H8Ke8VgSqEtc\nHWtpuaj1uPMyMPdC5WGSGIapKlsBhqnZkEsAqVEyqdoTFoWg5GX779/TRoX9FrAH1oCF372pbnfm\nDq7WHtuzFB4SWdVBGKW6xp9k9t79uI++zRFBhOtmvnXn/KRjx9glv/tUsyt/87hdtWObs9ZVVKaN\n/Wq3Dbvj+PIeRJeSxXrvi1KwuZKVLVlXBjb3ljlIrc7fk2bjhd/rgIfMmYib+C0Ijc+NRIljNSIi\nIiLiQyGSRxERERERERE38LFzYz4FPPQO7/O5Q+qmPvuvFq2aYtIp9G3t5+gtjByyxts/16EMin2k\nDdHURzoeuv86CKNGTdCHT21E/Rrjo0vk7hMMGmBvGDrHpOljJXLNJleoi7uUEZOR7rJvi0jtGEkM\nvFl7lk2RP7FmU/hWGypV6SxK4YtJystVoAqBwgtFLbwtPMtSc4OmmSXN4OdFoBbL+WD3fhMDl7WQ\nWZikqkzyAkFg4JRoq4Ng2SW+Bk7zjPpgjOHrScqbtWdVC8M0ITFqEfZyGRCaonhjLzevhX9clxjb\nWGtlCdelZ+3hb1c1IjWnmeGq9Ewy/SkVRJiXgSJsi+wDp303zfT/hde8G5/3FyoPkQ5VkF4S+H3t\nGY8lgfYz1G5bO9rjtiSloGvTslLbxoUXrhvS06DE4iAxFM2aU4swTSxFvVVTtvlS2/H9+yr0Hmvz\n2m3hfcXlyMGVl95+OHSrXuAsdyyq1lrybjLv9buaWWaRxlKwWzjvkvxdArh/zm+t51ry+6Bqlv7N\nA63a8SyHp0O7OZ9BSd62wB+CKgWfDd1mE8NtKuCw9xx8tfKME83TMiZgRHjd5FNl1uCM3lstwlWp\nGX7PRo5ZY3G3b734kDkTscVvQWh8biRKEOGi8Pzj2lOJjvOhM5vvCXC/sfohSbfPjcCLiIiI+KMg\nkkcRERERERERN/Cxc2M+BXyMLKhDhbYeV7Cd196uPaWXm4WRMvD99W5h5FCR79C5DmVQ9F17H+k4\ndKou6LZbHdQ+qLXt2senmKH1a42P/TY9pGzqErk/Lv1BtdchkgLY7LJvx0jmDC9XmrW1b5kIWxuq\nOsDrMiDzkosSqkYxNMoM10soAjgLb9aBPDHkziBBWNQwS/V8pddi+FWthdxKhEkCC68Fpioo4ZBb\nw2xgmXthUAXGqdpYtQKBViH1Zh1Y+QCiCqOzgeHZyLKqhH8uPHWA1G1JnjZL56IUsAYv8I/rmpGz\nDfGFFrW98P++LvlhFfh2ZBllDotlnBkyty2yL2rhuvIbUsoZJeSmB5R2h3CbteH72DPeRQJ1z99m\nqD0a2DvWDtnY07XvWVQeZ9kqSyxg4LJRzMxSw9sgFD6QWcssN9QCizIwSC2JUdvF39tGhSDCu8Lz\nYlHz3bUnczB0mhnU1+7ddXBfcWmNKl7erbwSJmgzJcDj0c377RLvr1ae04G7m8yrNbvHIzxq2rDP\nelL78PY5b0V4vfL8vPCcZ8389KH3e8BtveWMKl1nmVMiSjyvlwGdgoIFxpll4DQj6vU68Hhge5+T\nXdKy+xx0ppmLpSASSJxlbKEypiGmdV3JjG60GCaWUQrvCuHJUMdoi4fMmWNyBz8X/Bbk2+dE+HVJ\nsosyEGCTWzmvhcuyvpG9eNtY/ZCk2+dG4EVERET80RDJo4iIiIiIiIhefOzcmN87PkYW1KFC223E\n0UUNaYBHPYWR1BnyxO4URu7Ktug716EMiv1r7yMdJ5nlsqw3VkVe2OxaP7jT9XdmTXUMfq3x8RAi\n931VUO0YeVtoEfmue0qsYeyE//tNzfNxwrAzFkMAQXBGCZRVFUisJU9FbfgSw7rWDKcg8Ciz5AkY\n0SL60MK300TzThJD0ZBEU2eYZoaTTt7K61XNz0slUlNnSBofsJUX3l0GcusZJErmZO5mK1009+sM\nXBZqaaVXYXix8MwrLWyvxTC08N/fVuRJ4CwzjFPDSep4NnY7dnZF2Ba9r8rA01sUfIdwl4Xjfe0Z\n7yKQ99Hmmjkjt64db4ubxfUywDSxeGGT1ZU53WmuKkcYWLUuzKyO52UpvPbCFxPHLDG8XrOjPPkt\nISK8Wnl+mNesvFA1CruLQljXnv/vrTDOLF8OLV+OE6aNzWG7DgI7iksRuKwBD5UIsB078zqQl0IQ\nz2mzXnaJ9yCq4rqNONolgnY3AnQL58tKrSevKjk450Vkk7nmDFQBymAwxvBqLQQJN3Ly+jYPtNBc\nL2GabknHR6Nko8zaXxvb59h+xlofadliYA0LL5wMLP/2znOW0/SFUElAMAys4TQzTPKtwi018Gbl\n+WayVRc+ZM7cljv4ueG3IN8+F8KvS5KlzlAGdsjfdq73WRH3jdUPSbp9TgReRERExB8VkTyKiIiI\niIiIuBUfMzfm94yPkQV1SL0yTAzznr9feyg8THvUK11rpG5hpOrJJbrrXH0ZFF10FTR9pOPAaSj6\nLNvmZRzC79Ga6hj8muPjvkTu+6qglg2Zs6z71Qd9uCjBNcRgUQvG6rjJHWTBUjTKhKGznOVwVQop\ncF0ESlErOmsNZwNVCgA8ymDi4OnIUdbC87FjUQYWjS1fGfR9lQ+sKmHhRS3o9tQ9ga165W9XFd9M\nUp4MzU6BKog0+SiGy3XAo/Z5Py1qvhg5riuLB1KjdpCXlbCqYZSqgspaC3iuLoTnQ8tJQ+S1pOlF\nEZAmp6bNjmr7cN9SaB8fWmtzF4Hcew3W8HLlOcn7fz4GUTJwvzjojKEI8GS4zYBSW0XILPx5lmAN\nrGt4s655uw4kRnOeHuWOYWJuKE9+q8KiiPDToubHheeqDFTqxgiokkrQQui7IrAohCII52Vg3Chr\nMmeoAhvFpYjwtlLl3pPcYi0svSrcggiTxDJILesgvFjWnOduoxwQ4PuriiIILxb1jTwioJf87dsI\nkFq1D3y5rAnG9s75VjngRecIaMadbdSszkDq7I3idHfzQBet1ePKax5YEWCaWlx6OAuvfY6VtZAn\n2/vqIy1bjDPL9cLjCdReib9RYjkbOCbNzKpFWAaQQpjlIAFGQ7tDUD10zhzKHfzc0CXf7srSgg9D\nvn1OhF+XJLsq/cGMzENWxPtj9b6k28uVJ2vW6X07ujefCYEXERER8UdGJI8iIiIiIiIiIo7Er50F\ndUi9Mkktl6Xf+eKmu87BWhj3FNr2C3BtYcRaDaY/hL5zwe3qhz4FTZd0/GLkNjtP7yKOfk/WVPfF\nrz0+jiVy31cFFaBRmhz5WdHsoyxzZMZwNrYsysA6CB7DSSoUzmKNkgmJNRg849yAQKj03iYpgMUH\nYZQZ6qUevwrCsFFrtMVgLBurureFpt63ZM0+JMB4aLkuPMZocT+1hrNO8WxRaQE8iLBq8lCuikDd\nvJalmodyUahiIYiqjYrmvd4HSmMZJmrP5zGcD9hc01UZcMAP1zVZYndsew5ZCrX3/qEtHG/LjDmE\n1BoWNZwcGHvzA8V1Y1R5BtrH08wwbV7TeWCaTCjP6SDhyWi78/3ZaHcV+q13pr9eB16uPG+LgGms\n5t6udYw8GTqua1UhJcZQifD9dWDgLGLUTu1PE0ctaCHVNKRH0Ny6cWq5roSTzDB0gbI2jFIlZpJm\nDA0axWZrQ/dmHfhqmmzW1G4e0WlmesnfdiNAX0bei4XnfCjk7maJ4GKPiGrnpHNKRrXdsV+ctsYw\nSu1GIdVVL1kDBkPhIUsMyzrwrhBOMovBHSQZHELdEMiHSMsW1hgGCfzPC8/50LD2upGhzdQCSIwB\nA4UIv6yEpwNLZg1nud0U1B86Zw5ZTn5uuCoD1tyVn+d3VMnvS759LoTfPkl2W0Ym9FsRd8fqfUg3\nEc3ku1h7vpkmZM7u2NG9XVdclMLz0XHt+SkTeBERERF/ZETyKCIiIiIiIiLiSPzaWVCH1CvWGFV0\n+G1RYNHsdB/am4RMNxNj5/jWsKw8Jweyhg6dCw6rH45R0HwuGVq/l/t8XxWU5e4CVBeLSjBGi9zr\nIEyNYZq7hiSoN/cZRFg1ypNpZqhqmKTwZJbsFPmyMrCulK6sAyQGTpsxa41mGK0bAq70gRAEMYas\n53q7xFMpcJI75mVgUQsnnQLyuskMmzdFziDC0mtG0bwWnmZKJnkEI4DRNptXATFCJRa8ME4MFVBJ\n4KqwnAwMpdfC6F8mDufsjXZNrMEa1HZvAecDizMacp5Zw2z8YQuZh7LV7oJp2boerHz/eBk4VTL2\noSUyqj3lSFc1uf/+32pnuhIZnldrJUoSqwq1mi0ZP0sNIRHWtVD4Ldn1vz9xDBOLtZYvB5bX68C8\nDFwVnrY+a41pVG065r4Y3VwfVpXnRQBBc5KG2e4a32aQFV74+5VaNG61UQoROZiRh4Ef54GzYc3j\ngdudt36rOGrJ79ZKb+VlR7G6X5w+zy0vV57SBy5L2aiX6iAEL9jmuAIME8vQwb9dVIySrbVel2Qo\nvJBQ88wmrOvbrRRBx5PFkDjLqYOLMnBdCuOsIY467wsBcstGObUpqPOwOXOX5eTngkUVeFvInfl5\nhVerxadD+97kW6ugvY/S81Mk/PZJstsyMlv0KRDbsXos6da1ixw2BHF3D1FiDcuajTLpWNvRT5HA\ni4iIiPijI5JHERERERERERH3wK+dBXVIvaIFuLAJnp/Xmssw3ft93c3E2Ee3OHsbMbB/rioI06S/\nMH+sguZzydB6yH2qcif0Wr48tE3eRwU1SgyVF7KePu/D2guCIbfmRrG0zRxRgsQwzgzj5rXQjC8R\nWNfbnc5Dp2qhuYdxwk4hG7Ro/WLpAVV6DBybLKS+e2uJp4D2QVEr+brIDNOm2qV30JCmxnDZFNi9\nF5Yh4NZKkqm1kiomjDGMkrbI6Zk0FmOZNVTeUIdAXmnuz0nmGGWOzO0SsxslRi00EU1cl8LZwHJR\nBlIDk/WHJRsfqusbpebg2nGouJ47Q+kPH7MWoaxkZ5f7Idsy+HV2ph8z/64awrH0wjC1NwiVFqq0\nMYxSmIpgG2vF3NnNdT8ZOpwRlt7ypsn2EhG+njiWtZIofX19VQlp7ZnkjsTAedbfRvp8CNRiOet0\nilrPeaoDGXl5qnljAD8vPI+Hmg3WqvKqIEhQ9U9LHIVGeRDE8vOyZuAsA2fIHJvitDGGp0PHf1xW\nrKpAmrSkFDin91t6YegMJ5nhTSFqc4nlbO/Z0pJJZe1V9RUCWXK4yFz6QBXgL1PHolJCb5LZhkSw\nFL7JPgpwmju+GlvqhqAzbAvq75sjt49fY83/PeN1EfDCUfl5dUe59lDyTTPw/GZTwLFKT/j0CL99\nVdwxw6fPirgdq8eq7PbtIle1MMt237OqhUFie63ybru2T43Ai4iIiPijI5JHEREREREREREPwK+V\nBXVIvaIFON3BrfZbwlm6LRTUQfBN5kxfQaTFKFVbsNuKA+25Wnuk2gcmo3Tz+vsoaD6XDK1j7rPN\nEVlU4UaB67oSLor6wSql91FBzTLLYY3Jbl7JvBJ+WXqKEJA8QTCEwVbR07WZ20ctwrfjhFFi+I+L\nCi9qTxUCfDWyzC0sa3ixrJkklnFTWPUCE2c4Hzquy8B1bXaK+H1FbtBLaMm9y1KL3sNEyaBFESgF\nXi5rlpWwDlroWtaQGkvpoQhCWQTWtZAZqBrl0jjVgvnAGc1jyQyFDzzJLePUECphmmqGSpeYdQZe\nr3XndpeoW3lh7AO5szweGF4sa36Yw+OhKpLet8j80Eysp0PHVdn/uUNFcsHweGgOZq2tqsAo3RYU\nW9UkbBUDN3JRPtDO9PvMv2UtSuY142xZbsm+FkGEZS1UfktGWjRn5zRPdq577eF8kHDZrA+tRd8s\nk82621p7tcdee6E2hsdOx9F1GZgfKPS6RhHUVdddFIHCw0nW3+8GgyA8GSYUXjOCUitcV15zzAQG\nmaEWw3Wp+XlFAItwmjsmiaUI2gbXlRK000znn6AqtOk0YVEG5nUgs3qscWI2ysd3a48XLTjvX//O\n/Tkt/H936RGz21awfR56r+P2ohROBkroLUthFQLDFMapYWCTzdoCEJAN8dV2cXfOHJPZA/2Wk7/m\nmv97RRAoajk6eyhpyIMzkQeRdiKq+CsCvedsCcj9fK4Wn5pp7j5xfygjs+9zLbpj9RiVXZ9dZJ8w\ntZ0ffVZ5x15bRERERMRvj0geRURERERERET8znCbeuXP04RJaviPy4p/f6mFGRG1edovXvUhMYY0\nNXdamhljeDRwTHyg9gYD+KaYc5tS6HPbUf1QtAWuWm4vcL1PzstD1V6t1dSbIjDYKQ6pSmZZBeZe\nqIPaZ4kxDKwSm7W35NYzTJW46drM7Y+3INtVr0yhAAAgAElEQVQx+2SUsK7DpkCfJo7zTMf3JHXM\nq8BFuS2sfn2W8myU8P28Yn1ZUcn23ibOMB7eHG9dFdQsg7NUVUDvikAtQi1QAePcEkq4rmBeeR7n\njsILWcMWzEVtsEQE59o2U2J2IML5QPNapgPLP65qksSQO3izUlu7xwPDRQk/LWrKIAw7bVwHoQ5C\n5QMDZ/hpqYVxAS5L4dHAvneR+aGZWKd5gpfQu3YMnblBZNRBVWGpgV/WgVoCqVWibZwqCQjbor/a\ni+k4+3Hhb81FcZj3Io/uO/+8CKs6kDRjoGjymtpjXZfCuiEEnTGYxi6u9MLfrz3nA895bu+0QWvX\n3TMR5pWuoyIwrwKzVDO/2t37k8xyWfb3ozE6FxaVWkQGEVW3mf6MPFByZ9HYRebOsg5eLRyDju3W\nykpE+GGh5FGeGL5s1EGnuVrytbZ0Kx82FmRtJpY1hmFqmWRusxnikD2eNdvr34cFMmcZNRZ/y1o2\nbWUMm+fhq5W26cAFlrVewyQ3jMXwZNhfCmlVGcNOQX2WWd6tKy5Ljs7s2c8C/Bhr/u8RqiBtrEaP\nXHOcgXeF5+vx/ctVr9eqiJllt5Mo+/lc8OtkzP3a2B9Jh3Irb/tcd6weQ571Zdz1DdXu3/qs8o65\ntoiIiIiI3x6RPIqIiIiIiIiI+J3iNvXK81HCq0yLLPvB8ofQFkZOsuMtzTJr+NMkubOI9TnuqH4f\ntAWuuzKJPkTOSzuOZtmW2JvXwrL2B4m9v8wS3r4qN2Nka3klzL3gg15bLWo3NXAGjOaXXNcBrKVe\nex4PXFNU3h1v6zpwlm/Jq7PM8D/mAR+ErzvjzRqYZpZp1oaBB+oAT5qCdWIMJ/lxRdYdFZTAu1I4\nH1i+niQEcfzbu4pZYimlIQCMoQ5QNQRte46BtSx9wGGYJpalF9opaND3vlt7Vl7VIv8yTagbtZQW\nmZVUmSbgcY3tnypVxonlyQDerIU8YScfpN25/b5F5vfJxDpkh7hPZFS+yZVJDZU1PBlaLgpVVZU+\ncF0ZrAjnQ7tRiQydZlyVgTtzUV6shC/H8uC15L7z77IIINv3tuSPEqqCR3oztxKrFm5tlsujwVYF\ndxusUXK3tYH6ZanZYT6EnQyXRa2kyEm+SwQPnGFRN/libDPyRu5mFl6L3EHltwTRu0pY1Z48MTvt\nfFUIGM0nWlWBVaaKHtOMj4tCCUaLwYsW5+vGvq/wskOwdEnHRaV5Y922a6+/i66N6ijVLLLzYXLD\nMgu2/TRODdeV/rsOSuLehsBuQd0Aixrmddghe7vX2s3sOcvNjSzAj7nm/56w9vB84PhxfjxhnTRK\nldmeNeNdm1OCCItGEeOOIFH2FTH7hN+ngH0l6aHcyi66c2g/8/AYZep+xt2hnLr9LLR9q7xD1/ap\nEXgRERERf3REUj8iIiIiIiIi4hPELLP4WwLs+6CFEbuxNBs6Q1HrDvIuqiAUdSC3WtD9een5YVHz\n06LmovCEvfO2O6pXXq1p9osOiTXkjQ3Rz0uP3PO6/2hoC1zHFO5hm/Oy3+7HQkSts76/rplXWuRt\nyZHrSvj+uubVardfnLX8eZqQGCjqsLFXW3nwATBQBiE3hq/GlirAk9wycGpdtapUyXNRhKao7BhY\ntXVb10qUfDvZ7vb+Zel5PrT8aZpQBjbF5hZ1EAqvmUPnA8ubJuRolBhSc/P9fWhVUKtaVVip3cvg\naOyngjRZPSEwS5XcWNXb4w+a92CUkDrJVGXVZiy9XnvGieGrseO0IUsl6HsTa8id4e3Kc1mrQuLJ\n0PF0mPBk6JhmlqtSqCXcmEftzu0WSt5pUfq+eDywJIYbc38f+5lYh9YOzfqxrOrAug5cN4qRdj0w\nxnA2cDwfuU1B2Bh4VwjjBL4aKwEWOC4XpSWrH4KHzD8BEgO+vd/mtetSiaOkh5CpRRUqQ6tt4Bvl\nHui4PWbMbq45CK9WNRdN9lI7h88aC7wf5p536+0cHqdWVamNAeW8VkXPaU8WXgvB8GjoqINepwFq\nlIhqrzWIsGpUV5XofBTY3Ffbz48Glke5wRlVTVVNcfmrseNRJ8NsktlNm657it3SY6AZguYWAZzl\njkV9uB3bu7UNUVUHIchh9VX3HN2C+ut1YJopSX7bnFHCK3BVhp0cuY+95v+eEGS7Pty13rSogjDo\nEJ3HPsMuC79RxLQkyl3zrF1X90mUTwWzzhxqcZ6rxemhe2/nUF/mYd/xbnx+778P5dRNUrtRmPZ9\n7tC17ZOGERERERG/LeKqHBERERERERHxCUKLYbpT/xjsF0ZaS7NvpwmzVIuxmjkjTBOaIrswr7mT\nbLjPjuqHFrv/SLjqsXy5C21eyn3xPsSekhqOx0MNmLcIyzLgjCoYng4tJwOLoLvsx5nhfGAYO8tV\nFRDRwOzQqBImmeaUzBL4eqwZQCLCJNEi8PNxyuNhwldjp7uYZdeWsS08Z85uCquzzDJK7i52tTjN\nLYhQBeGkY5+zqAKnmSFxhhQlNozA+dBtvHfqoO0fgKGzDJ3aao2cZZqqwmo2sExSy/NJQhAYOC3Q\nDZNdxUeNqhnaonuL1ror3Q/UYWuntf+3hxSZjyWQh87cUDYdWjvOMsNpZkitFiBTd/MerDEMEssX\nI8d/e5Tz1UjJDzg+qL0KmiH10OL6Q+bfLLOkVpUlALk1lEGt6vqII9Cx6xycNYVZaf7fjttjx6yI\n8KZQQvYsdzttZIzh+cgxTTWHqJ3DLVlS1NqPqeNW1WebNfV44DDAdaXkZS1KmL1eeV6tPD9e16yr\nQBmEBJjlWxXcTl8IfDlRa8kvxwnTjk1mEOGy8PyyrHm59CxqVer1tUdr/9eiCsKo8xyzxpAnhwmd\nYYf4Os2V6EoNtxIEqzowaVSysCV+Mmd5OnRkFl4vdTPFy2XNq1XNdekpfKBoPjtNdnPjPuaa/3tD\ne9vn+f0I60ftvLnHM+zv12p32eIuEgV0Db2uwg0S5VNBqyTttmubW5k7VSB1778KSiRXXnrX977j\n3Thn59/t2nHIArdL4N3Vup8qgRcRERHxR8en93SMiIiIiIiIiIgA4CyFxMq91QNdtJZmX44Tvh4n\nfDFyrDybsOm7yAYfwme7o/qhOLZI3kXahIjfF+9D7LUEQwhqUZVby9OR49HQMclU2VB6IbeGv04d\nidVdxicDy7OR00q5gavCN6Sk4dnY8V9OM/63Rzlfj7WwbI2SNi1ay65HOTzJ1ZZxP5+pLazahpTK\n7lAEtPACJ6nlUW6p/HburL2QOss0NUwzQ2aMEiMoUeCsWlbVQciM4YuRxVlL4VVhUwchc7CshEnS\nWihp7gbCDcVHq7DZL7q3c2PQY9vWfm4fDy0y30Ygz1LDt1NVQx0iHPbXjq8mKf96kgIGH26uSy0h\nNXBmE1J/OnDMy8BVuVv0vQ3trvmH3vdD5l/uLCe529iejTLDqiFS+1CLkKLkYWu52O6ob8ftOLVH\nkf9vi4DhcIG2Vft8PU0YOs2K8aKKrqdDp3P2FmvH0geWZaDygRcrz6L0eB+U3Fl41kHJUgGWXlh5\nuC629x5EWJSB768qXjakSpcIateeygferD0/LvxGPWWt4Sy3FD7w8ypwWYYNgV2H3XnQPsfO9+bS\n41tIia6yyQs8GziejdyNgnp7vsILmYF/PdlaZ7bEjzQWfOtamOWWaaKZRwHNPJpXgUFjyWfd7tj8\nmGv+7w0Dp22rhIZjcAdhPXA6Jlp12H3t/t4Wu8+wQyQKbPs87SFRPiX0KUnb/LR2M4aItq8D/jRx\nt67vdylTW1K2DoIz5sac7KIl8FbNZoRDuO17akRERETEb4uYeRQRERERERER8YnCGHic6Q/5RRWw\nja98iyrIxn7n2Kyh+xZqvruqe8O/b0Nb9H2fwPtPGW0Ox0M+d6/3d/IfjkFL7D0a7CrURqnl29Ty\nn1cVVrQIboyGoHd3CT8eyDbvxICz8GSYICKcD5yOxeTmWHyfwupprsWm0rdZPIfHbtey6vk4QdDg\n75UX6qBE7DSxPD/Xa/5xXvP93OMs5NYh4pmmBmM1C+nxwCAC61pIHJjm3LPcsK6F1MDjgWNd3czm\n2dppqXppmunray8NsXCAsLmjLR6C27LV7ovrSngydFizbds2m2SaGCb7JGBD/r1YBFV53YGu8sQa\nHnTfD51/qiByfL/wOsYaFc3+sWoRCDDJDc+audRed+7szrhNrFCHw2M/iHBReFKrBMXLVY1B7dPG\nqbnRlmeDhKIOPBs6Km/5ZuJ4vQ78UAUui0CWmM3nMytclIIE4dHQYRu12zrAMmgWzCS1jWRKuFx7\nFmVgmjsGzrL2wrvLmmFqsRZCgBxILaTO8OO8ZpSq2nCYGH5eeBJnbuRZGWN4NkqofM3rlWddK8mg\nc9VsnmPtsbpzSfNRLCeZ3WTudZ+D1hiy5vk4y7afD6Jkz6oWRPRZOkn12saJEsMtlrXaD75cqXVn\nu55mjht5TGUQXq48T4duZ2x+rDX/94iJU/Vaa1/5aOA4y+2t60NRa3/d9xmWud0MI9iSKGcH+nyS\nWkzzvk8V7UaPQ3NAN38c/13wtuMB5Inh1cpzOnA35mTfsZ4OdY3Pmu+N7/s9NSIiIiLi4yKSRxER\nERERERERnzCMUXuxRwPd0b7sBEnPOlZBx+AhZMOLIvDVHfkRfZ97n2L3p46H7qu97+fexyqpS+wF\nwBnDJLGqpDmAVgFxIsKiEhZ1IAQdj7eNxfctrBpj+HKckFrDDwtVTmSJ3RSo2t3lAwt/miQUzS54\nA8xytwnw3ilaGcO3s4yvJoGf5p6LMnBZaAJLGoSTprgdRBoSAN6tA+cDVZPMUsNfZgnOWt4Yr8qm\nTl8MrGHRZLysvTBFj/V25XHO8Gqt/T2whnG2JSDakPNDbfFbo0sEdtv2NjwdOn5Z1FTB3kpa9ylP\nHnLfD51/zhj+23mGoeKf81pVn5VQWUiNoRahapR4p0PDee44G7id627JoPbag0AlwqryJG73/ksf\n+O6yYumFp0OHIBRBSCws68B1pRsHTveKt9YaLtaeJ0P3/7P3LjGSLet+1++LWGvls57du/fr7H3O\nufcc1bHBiOcAPDACBGKAxGuGZWGBLggzQNdIDJAxQh4hjzAyYNkCJiAhIWBiS4iBLRADy5IN9sUu\nn3vPufucvXfv3V1dXY98rUfExyDWysrKyszKrKqurqqOn9Tq7qxca8WKFRGZ9f3j/30c56Fe1+c9\nS1EH6lWVQRHqUm1nwse95NLxbyeOUalMXEhPdzTxfNYRfmMn5VdnFbnCoHScFwqifAR0W4bCKW1z\nuT0TF8QUQwg4LzPSiAifbwUX4rgKDqUmhd4i0bEhuLns1EW36HPwh/1QF8kj03Y17sbt7OJcy5wP\nnpBeclP3y6zb8L7W/IeIkSDYj2fWQCOydH2YTV12MlPDaB06SXAYDQrP9tzmlEXPvLne9hKx/jGx\nag5s+l3wuvPtZobObkru1xPdKoUvttI7a1skEolE7pcoHkUikUgkEok8Ae7CPXATsQEJBdG3s83C\n/w8l2P0+6CahdtQmbpubBLhu6+hpaAKY68Z2jITUb/00OApUdaXL7C4CqyLCi27C847lJHe8GjtG\npUdF6CXw462E3VYIUH07rK6cq2OFwYL+ssbwxbbh83rXetcK3wwrzspQ8+UHPcMn3ZR+ZvhmEM47\n75DYbxlejd2lHde9zHA+dGDAq+ftBM6LEKDezy6OHTrlfOjoJELXCv3u4n58KEHmmwiBIsLzdkgt\nNVrhoFzkPLnJfd9m/hlj+AefZbzoWv72mwknE+VtoeSV0kngo66hkxp6iaGXCoUL7d7LhOPch/uT\nUBvMUjtjTKjtU1QemwgqgmgQfbqpsNcJv7LvmiDkVLWLwwJ5Le7M7tgXQm2m0iuOC6fMiy5TEfPt\nxIG5qFnXCCbHE8e3I09ilNyFeiXWwJtcGflQl0hRTnJl7DypgVdj5WftjH43iGWzBDejo3Lwk930\nyjyYxYjQTQWV4AQ52E0vOYAavCrntfjVMvDdyNFNhO1aZF30ObirutRFca3zQZXRhpsqRnUNtYb7\nWvMfKs/bjTN08bNvmBfwNv0M66eG0yLUjVtHuIYLAfKpcJdO0lXna2pRbfJM5Y7bFolEIpH7IYpH\nkUgkEolEIhHgZmJDZoRxpVd2817HQwl2vw+2M8NJXm3U1zcJcN1VqqQm8NlJhMGaAdDGJbNOAPQu\nA6shMJ+w3774Ncerclp4vhu5UJ+kcDhlKiZBqI1yWix/Jl6DQ2Y7s3zWT/GqvBk79tsGGhdTJmwt\n2EHd1PqYigd18LqThJpHxxPPVhbGxW4r7NBvMnslRsDAsApB+0Wte0hB5pvO614Wapxcl85qlpve\n923nX5NmLTXtaapE53Van6aTCokIHRtS8gkXKc+sCaLqLFagXReoF4HP6nRRXZSRu1zD5HnbXEoN\nmZhQe+Qk92xloeZYU6DecVkkaUTM3IXUXVly4cx7O3E4hNOJp5vCaQ69JJxfVTkuPD0vKMpZEeqc\n7LUSvAaH0teDin/ko8UR4bxSsjr73aJ50FB6pWvDNdpWGM59rjQ1h0ZVqMvVssLzumbLeamc5NVS\nAeg2roymZpKvHVu5vzh21hl4abzMHAf3t+Y/VK5Lg7ZMwNv0M8xIEDxH6xQT47LLKbIZN32mkUgk\nEnl8RPEoEolEIpFIJALcTGzo2M2L1j+kYPf7INS0uZzGZxU3DXDdVaqkJvAZdnW7tX6B8F7pZ5bS\nXR8AfVeBVZ1xG1gjU7fGVmb51VnJsAqB9v26PkY3NVfSyzU4DbvaZ///aS8UHG9oRLBFt7Go1sdW\nJnz/1tG3whf9kLLLqzIYuUvzsPIhUN5Pg3vl2Zy74yEFmW8qBL7oWM4KJUnM2unubnrfdzX/dluh\nzdc5Ut5M3DTlWe700jhq8LW7ZVB6vh9XlA52MsO0OEvN5dSQPtTIIqSx+7hrpv3xzcBfubdGxPzq\nrMQpUwdTYoTvR45eChOv7KaGUelIrUFVOS0V5xWnQjexvPUVY+/YtUkdrLe8LRzDKghYs0HiUGdM\nKdTwi9My1JcRQo0v5ZIQs5UEZ50Ax3mo0dSp00867/nlacVp6UMdtgR2UosSnFbNfYxdcEN82rUL\ng9U3cWUYgZPC4zwYw3QdgcvOwNl0fUbkkov3vtb8h8xNBLxFM6txnk3cRe2iThJqFxkJ63lZO+82\ncTk9FZrNEuOZ/p115t0ld50qLxKJRCIPkygeRSKRSCQSiUSAm4kNwbGxmXj0kILd74ubpvHZhLty\n9MwGPrt1TYlV5yzrFGNOWSsA+i4Cq01KndkC97PX22pZJi7UQno19rzomIXp5SAEwLuJTK+37Jms\nI4LN1vrwqowKz07bMnFgJfRrxwr51O1wua7NfDH4hxZkvqkQuNtKcOpXjoHZoHHhdSpc3yQoehfz\nb51x62dSns2PIwja0GkFyaDCGiG1hjdjx3YW0iie5h6PD/V/5LIYsZVZtur/V14xEs79ZlLRW1Ib\nS0TopIbPU6bik/OhvtJuZnnWMRSV0k2DYDRyinols6GmUTcJ43HshMp5EmtwqrQTYVQGB1STuq50\nIbVccDkpTmC77qdRpVOX1HwqQoBnbRucfAl8Paz4+rzCAbstMx3vQ6ecDapL6QybmkNHE39J2L0p\nqsrrsUe4EI7CMw1rRyNejSoovOdFJ5ne13yez/tY8x8Dmwh4s59hs84zW7vumi4elMppEdIXbqXC\nj7YslcoH5YhZtlkCuNaZd1vuOlVeJBKJRB4WT/MbSSQSiUQikUhkY5p0R5vgNKRDKtc87qEFu98X\nTcqXjhXyyl/pv9IreeXpWFm6i/46tjNzKXXSOgRh7+qvCM/bhkRgKxWsLB8nTeBzK5WNAqDN+a8b\nR+sGVo8mqwvc77fC9RRwdVCycWa0Z55J5UOKrmaMr3omjZiw7lw4mTi2WpaPOgmfdg3Oe16NKiaV\n5+3EUVZB1NqbEQ6MEQa1WPsQg8yb9sHserBsDKgqbyaObwYVw1p0yIzhWdtyXiq/Oq94PXaorj/W\n72r+XTduB3UdudlxNHtfxyXkLgicjeBWeGVSC7R7bcu4gqPJ6vtL6vShAKNS2Z13p6lymju+H1V8\nN3K8mTggiDS9VPi4l5DYcC8Tp+xmwSE0rkLw/XLnwXYtPh1NKk4nHvFwWnqGladwnrzynBfKViq0\nU4M1cikdZmKElpWpeLvo3iwwdrCVGZ51E77YSi+lhUyM0EqCW/DVzPMPdZY8foPxsIyjiccR3BWG\n4CJ7PQ4ip9RinYhQKrwceX7vtMQQ1pf5WXkfa/5To/kMUw3jJHfBhTkvTs+Op++Gju3M8FHH8uVW\nwnYahCen4TzbqfDlVnCNPpU+bjZLjJ1eWksamrnSOPM2WSsjYf18mzu+HVZ8Paz4dlhxkrs7WWOe\nctsikcjTITqPIpFIJBKJRCLAzV0DP95O+H7sP/gd1ZvyrlO+3KWjZ7a+gfeO0xJyd7EDvNnNnVlh\nNzV0k812OC+qnzDftnV3i/s6pdeqdGLzdYjOnE4dPc/aln4aXC0C7LbCtdZ5Jpu4CwoPLzqGNxMX\ndtMbw4tuOOaTuqbS1wNHL/HT2i6pEc5LT8vKg905f1OHxaIxkMjlekHzbpWkHn/XpStbxF3Mv+vq\nfpyXHo8sdNgc557Kw/wwtSYIOFvUDqM01P+ZdfUsQjX0adteuJumbo0ZN0JiQruHlXJeutr9ZlCU\nTj2XM2vILLRq4Usk9IuqMiyViQcUnncsiJJiGBaeIxFSgY/r5zCulEGhjCqHNULXuEs1gpqaTfPp\nGEuvFHVdpmadWUbjNpo9hzFh/u62bu4+ataR7Uw4b9y1PgjO82FZre9lXItWpdeQdnCOmObreubT\nrp2XnpOBp50ImTXT9wxKT+6oa8EJbSthzCbCca581PlwHDGLNkvMOjWbMdaxQiuRO3PmPXXWcXMd\nF7CXPsy2PdTvCJFI5PERxaNIJBKJRCKRCHBzscEaw6ddiYWTb8i7DHDdZaqk+cDnoPSclZ68UroW\ntjuWfmpuXFth/vyK4pXpbvF1A6tntdtjnes1dYhOJo7zwtHPgsNgNzN8Wdch2vQe1i0i/qwtvJ6E\nHfGtuei4iPC8m7BfO0Zejx3PWgZjhG69c/6hBplvU0h9fgz8elBRuCBKztY1mec26cpuO/9WCQLd\nVNhZMG6bdHaL9E1BLjkDdluGSj3nhWentXxuVQqJwLN6Dge3xtXUjW0TUr41mwSOveImyl5L6M0I\nHqUXdlo2BOorj1E4yUOqto6FtjXsZJbCKc87BgGedSyT0vN335ZsZ8Fx1MuE0xJ69XXnawQlRhhV\nyp7q9N6cC7XDUiMcV9en3kzN5ZSOaX3O26ypzTrSt8Lvn1Ug8Kxr62dHnbYuCBdda+im4NRwXovO\nX/SXh1o+FFFjEctq8mylQfSZD4bvtQxfnVW8LWArCSLexIOVICgLYWycFm7a74PC8az9YTic5zdL\nLBKMmxVxUIW+T4xnvyVYEzfyLGNV6lu4qLOWO+FIlZ+q3tt323XbdpNNFZFIJLKIKB5FIpFIJBKJ\nRKbcxjUQd1Q/PG4TyF/GReDz3excbs7/og6sftbb7FeW0RrB5vnr7XcSVHXjay1i3bnwt99UOOXa\nGkl77YSqdnU9a1t0Jsj+ULntemAkFHjfSg3PO+sFOJt0Ze8jaLwsIO51cVsGKwTOtg330SB1Sr8j\nQnqi7cxemcNF5XnRsXzatZwWodbQabE4dWMvM5wP3TSBfWqEwnvyKrR1JzW8rTyqoWyPEaFtDZkB\n52GnFRx7RqDU4HTyQNcG0ev7kSMxIcC/U9deygSypE43ZmDilaOJm9ZysgKD0rOdWUpfC6rTYPiV\n8kELaVI6btfr0maV+K7SrCNeg/OqkfOMCP0M+lxtlKnT/m0/8Pn5PljllDgrPH//xJHZ4Aid/Rwa\nlsonvTCu/95xQYnwohPGassKmQ0Pp5cYdluGwsNRruzmjr320w93zW6WWCYYN0xFhcrz89OSg90s\nigpLuC71bUNioPL36+Zat213XQMuEol8uDz9T9NIJBKJRCKRyNrcVmz4kHdUP1Q+NGHPA+uESebT\n+uCVbiI3dk7Ns2oueNUrqa9W0bgz+s6zuyAd1kPlNuvBug6yS9e7g3Rlm3Bd6qC3ucervxIQH7vl\nAmfLQumuOtE+6iQ47+klYUd5M4e3EiHLEn64nSC16PZ2UjFakLqxSfc1Kj3HedggUNW1vcSEn3/W\nt5y+9TgUg1CpkgmU/iJYGTQhJQG2slDzp5sKZ7kydsqLVsKkUrbSUKPqk57FabhWUn+mhFRzjlSE\n3CtHE3jW8vRTQy+5EFXXnYppvdN+u/7/bWdJs44MSs9+y3BS6LT9y2hS/DVr7X2Nw4fOdU6Js1Ix\ndVrKV+NQ662ZL6PKMyiVVyNHr2UpK2VQKv0spF4svbLfNhdONgnP4evhhyEezW6WOM7XExU6ieG8\njKLCMtZJfTtLYri3jQubtu19bqqIRCJPh6f/aRqJRCKRSCQS2YgPTWz4UPhQhL3rQirL0vqoebe1\nAmbdKSe5Y1Ipg8Kz11lvPlmBs9zz5Yp0WE+JTR1kwJ2kK1uXdVIHPWtbvjoreVW7JZrxtErgVIRn\nneDAuXL/Imy37FQggSDod2bqHBkR3Jw4qRpqJo3r+kE7bYObeCqgQjkvlW6qU+fOZ11LcV5xWjhS\na0gScK6+niqpQD+1dDKDAzp1OweVp1P3hRDG607LsFeLKE0bBBiVyneF5+OeDS4mr7QTQzcRvhk5\n+instwydRBiU642Fxm1U+pDq8jY0T3RcKak1PG9f9KGRy47ByocUmx0r7GShNs99jcPHwCqnRJPC\nsZlDszWwVJXXY48DvAgdK3SS8Hxng+HFnJMtMcKwCvWnHuJ3lWVOxZtsXGjWkvl+vI5ELgQPYK32\n3GW7HzIPeePCQ25bJBJ5unwYv3lEIuSG+hQAACAASURBVJFIJBKJRDbmQxEbIk+LbiKcLwk2L0vr\nU3mln8o7qRWwyJ1S+HD987quz3Z6sXN+6Xm4SCP2IbCug2zRcTe+5gbB0XVSB5la7BmUnuMcnrXD\nHS0L71a1+22/ZXg19lecLvPHLatV1kmEVmWofBCLjiYepyH1YcN+23A88SjCi45Q1GN+KzP0M8NH\nHUNiYCsxfD8JvaqqtARebCXstsLxpYNORxiVQa7qpkKpiiqgTAP6AHtty7b3/OrcM/FKmkBehZpJ\n3cRO+6dtPblTXo09z9vCaaFrBS6aXvBe2c5uFyht1pEmbZ6IsNe27NQ7/yfu4me9JNQLdBqOg9un\nzXsqeGWlU2I+heNsDay3eRCOChfE8wYBxqXSy8KLjZPtJPfs1WMoER5cwPw6p+JNNi40vboqFeYi\nwpiGX5yWoR1L2tNJhFSUb0ah3YkxbGWh/pyIvNMNF++Lh7xx4SG3LRKJPF2ieBSJRCKRSCQSiUSe\nDNuZ4SSvFgZYlqX1cQr99CK4eVe1Apa5Uxph5FnHohPHoArtWhZ8a0SC3dbjSVl3W256pzc5btOg\n7iapg/ZbQcQ5Kzx7rSBCdawwqC4nLgxCTxCORIJT6TgPzs+6rAtbtTBxXfpQlSAIHeeebwYVlQZX\nz+y1vMKLjmU7E4aF59uxZ1R53k4cn/USPn3e4hdnFaeFp58GN02pQcTppYbSXRw/KpWvJo6ODSnp\nvFe2uhf18GY5K5ROClt1UF9V6SSGTgKnuWPilNPcMXbQtmDE0k2EfEWqv6ZPtpIwb3vp7Z0QzToy\nfxojwlZm2VrUBufpZ6sFwg+NgYPuiue2KIWjFTgrHKNS2UqFX+Xu0pqdGGHilN7MMakRxpWyoyFV\nYi8RXo6qS87p9+mSWcepuOnGBa9K4TxHE8/xxGNMqJl23fivvNJL4G2uVN7zeT+98h4rcFop3wwr\nzgvPs46lk4axPSiV08JNhe4kMXe64eJ98z42LmxyjYfatkgk8nSJ4lEkEolEIpFIJBJ5MhgJwbOx\n00sBx8p7vh9XqDINJraN0EqEbnI12HYXtQKWuVOa0KGI8LxtOck954XntSovuhe/ojUiQTc17H9A\nwhFcdZDN1qhqHB+dJOyAb57PTdKV3SSou0nqoCAEWV6NHW/Gjt22pZ8ZTosKgEohdxeOoybwKhLS\n3u3VdYpOc08nNajqtelDTX38XsswLA2l14VOmeb47bZhq6W8rWsQtRLBGsNPdlK+GzlGZUHhlJaB\nnZahY4XeTBC+nSrPO5aPOxYFvhs5jEhwH83gVWuxAM5zT+FDzZrXY8dHHcNOZsmsYbtlGQ0duYdf\nnlX8aMuG+ksrag55r7QSs9CJdROadWRQ+alw1dSMyh0oiiB1sD7U6+nWfTo7Dj+UVF/LmDhWin6L\nguGJEY7Gjm5q6FnBaUXKnEC64FxiYJA7hpVyIkKhyqfdi7Wi9MJJ7t+LS+Y6p+Ls+lZ45c3E8UU/\nWThOZsVuEcEjYMKcH1bKeRmE3GVuVqdQeHAaak3NExy6wa1YenAIw1JpzHyJERKYugNfdMydbbh4\nCNznxoX7usaH9e0hEoncNVE8ikQikUgkEolEIk+K523Dy5GbOnaOc8+rUUXhIEsuXCWnpUdK+KIv\nqOqVQNttagWscqc0zpPEyEU6rJbhZOJw3oMIhuA06dciwV3UcXlMNM4PWz+/xoET+iy8Z34H/E3S\nla2Tfg4uu9EW1iNagYjwcTfB+eDiGVVK2wqVg14Kn/dWCEEidBLDfsuuHZRthLdR5UmM0E7MQqfM\nLJXCZ92EViKIKqpB7Pi4Y0BTJpWSpeZSP82Kmy/qYLwQxvew8uzMPYtB4RgUnsKDMUE0OM2V512D\nU+Fo7Okkym5d62jilXYinOTKdiZkhmndptn+H1eezAi95G5FgedtQ+4MX51XlP7i2tYIUosZo8pz\nnAfX06e7wcHhvbKVGl6P3Z2mKHuM+EUqzwzLgtpjF+pvAXStoVAlmemnRT1mgf/vpKSfGp53LJkx\nU3EkrBVBpBXxvBzpvblkVn0WLKrB17JBrD4t/BWxa5HY3U2U44lirUznRV6vVbNuyUHpGZZKYpTX\nTtjJDN0FEcHjPAhHRkLNr3YS2rMzV0MqMXKpRtVdbLh4CKxKfbuM+/p8fshti0QiT5coHkUikUgk\nEolEIpEnhYjwadfyeuz4/fMKT9jhntVpv5q0Xb0k1BrKPbwaO150LgcTb1MrYJU7pXGeXKpnU9fH\n6dWuknnuoo7LY8KI0E2ErwYOI9CyV/tydgf8N0PHD/vLRZhFbJJ+Di7caMZAepPg6EwduU+7lsF3\nSuVlZZuX1TVaRSO8jTeoj+G9ToVKVeWz3kWo4NNewldnFYUPzqHGQTMrbp7lTAXR3ZZhVCmzmquq\n8u0o1LBpai8djSoyay4cVwYmXjmaOJ61DFWuVApl7RYUET7vGQZlcPKoBtFrNxN+upNizd3urxcR\nPutafnFa8Xbi6GTm0pwuvaIetlNDPxVeT5S9lqebCN+P/Z2mKHusNN0166xpxk/HCi0DowWp63RG\nHnrREb4eKhVBQApp1666cX55WpJ75Td3LE5DCreG2bWi8rDX4t5cMss+C5bV4IOQNm7iwpo/O04W\nid37LcPJ2HBa+Wl6ykbYeTtxiISxpqpk1tAywX10WjhKJ2TWTeegV63nrnCeO5opZSTUrtqa+wwy\nAt+PHIULT6xSEEq+2EofrYC0KvXtMu7r8/khty0SiTxdongUiUQikUgkEolEnhwiwdXzomvJnXKW\ne8SEVFO9xNBLL4L2qYRAcLODepab1gpYVdjaiNBNDZO51HpJXbdjO7v8/ruq4/IYkTpB2Cq0ft+m\nbJJ+rsEYYVQ6dm6QRnD2CBHheQZvSyWvPMbIQlfPJu6U2RRpZ0Wod7RTC5LXCVTdmfE1P+aNCP0s\npILcbl0viDqFL/pBEBlViqB8P3S8HrtpTSRrgij0m1vmimBb+uASaVI6DkqP1oLUXgu2M0sn2bx/\nbsKbXPnhdkI/Cy7ESi/Ej74Vep2LfhtXnrNC6HTsxm62x57qaxktA9+PKgqnVxxYg0qpnOe01EvC\nfeWV7ozw088su2VwwYy94rzSmalRV3nlaOwoFT7uJkEE8UpvgduiEVXOS1C9H5fMss+CZTX4mnY2\nnwXNOHk1dowrJbUyrQ/WpKLc7wjnZ1C44BhKjGAFvh05tjNDYkJ61t2W4WjiQhpGD7tteyn93KD0\nNF0/mXFYNnWmGgejqnKS+6koNapgK7NkwOuJR3m8zrplqW+XUXnu7fN507Z9yN8dIov50FOpRm5G\nFI8ikUgkEolEIpHIk2PWVdKy8KJ7NS3dLKkRRqVnr3X5F+ibehmuK2y93zK8GofUerNBoPk6MTdx\nnjwFmh3wn/WSaVqnZQJLqAllGVWKn0uttIpVAt8ymuuvqr+ziEWpg0RgP4MvtxLOipCarwnmXFfX\naJbZGihNgP55x/L92HFaOM5LWVoDpRlfszW1Fo202VSQi4KWjSA6KD1ta3hWj1evjtdDz3HuSWpB\nt5MJkyLURRoUsN3SKwLSuFJ2WrDXtmxnhl4inJee08Kxm9mN+uemzK4hn3SFzK4eh/3U0DUwKD2d\ndD0x6Kmk+lqEaqh5ZKoQwJ4nOLAs51XFdyPHJ7UDy2kYb40jKaRuFIyBjoLzIWmg9xrqGVnIDOy2\nLO1aHOrY5YJpUjtK++nN05JuwqLPAq/K6BrX4+xnQWqE74YlHihVrqTwHDuwNrgGuza4aU8Kj9fw\nvk+6F3MlOPY09KkIRpimn5td1+bb3bSnWW+cau0ivCwsGSO0EvOonXXXrXcNlYfE6L1+Pq/btg/1\nu0NkMYu+J3yIqVQjNyOKR5FIJBKJRCKRSOTJMe8q6STC4JpaAcYIg+Ki1sZtagVcF64REV507BVh\npPmd/SbOk6dE8/xEhGdty17LMCj80rRpEOrobBIMvk7gW0Y3NbgNxaNVqYPMTDq7TVlUAwXC+Pqi\nZ/l65CgdDKrgcmjG0mXh7WJ8LRvzTSrIJvi0SEDpW0FV2M7C6xcpuYSPe5a8UkZOUaAwwouWJVfl\neAL7bS6NcTEwLDydOiXcdmbZbtkrKfXeJbNryLrj8HhcgUAnXf86t6mt9pB5W4JXYTcz5AtS0zU8\nb1tejhxHE8dey4Zd8C3D+eAiPdduy/DdKKRg+0H/shhxXoRxBpAlYCUIpauwElLY3TQt6SYsaslg\nDdfj7JKvqnw79nQM7HWujv/EhM+T70YVQ6e8aBtKb9hrBUFpVkgLbicu9VEjqFmUxNbp6+r6ZMHZ\nGVxkXpXTuibS7POcFbqasz5mZ9066533Sssqeyn3+vm8bts+1O8Okass+57Q8CGlUo3cjCchHh0c\nHOwDfxr4l4FPgSPgLwN/6vDw8OWa5/gJ8D8A/wTwxw8PD/+7Je/7Q8B/BvwRoA+8BP4K8J8cHh6+\nut2dRCKRSCQSiUQikbtg3lXSTw2nhVv5C1Ba//K8Xf//NrUC1ilsPR+QPi893TQE++7DWfGQmX9+\nTU2o7RXHbFqj6qb7sRMR0lQeROqgRTVQGrZalu1SsS14NXR8P6p4M4b9tmU3M3zasyRzdYJWjXkR\n4aOO5VnbLHZK9SxSt+nXg1AjqZMYTmqhzVtlUijbiUGyENRMCC6Isxx22pfdRxOvZBrm7rR9d9Bn\n67LImXbdOCwVNs2geJvaag8Vr8rYBUdQcFn6pW69Jhj+7aCitMHFMZvaUwg1ej7vhXE5dmDl4lwT\np5QOMgsdaxY67OZp0sL1NhD5bsqiz4LxCjENghOoPyPiHuceVKmWpPD0qkGQEuFo4vhmULGdCrtt\nOx2PjaiwmwqplSt9ZAVGhceVdW0zBUdY7ypVnMK3w4rz8rLTJjj0lNfjitJBPw31rPqZedTOumvX\nu8xSZted5f217bH1d+Tdsep7wiyPWfCNvFsevXh0cHDQAf4q8DPgvwT+BvBT4D8E/pmDg4N/7PDw\n8O015/jjwH+xxrX+CPB/AN8D/zlBOPojwG8B/9zBwcE/fHh4OLj53UQikUgkEolEIpG7YN5VYkTo\nJrJyB3xzHNw+4L9JYesmIN2ywpdbSQz6cHNX0CbiwjoC3zyNM2cne/+pg2bTqs2/fl54xpXn61HF\neaFsJaH+V+XhecfiFV6OPN1Ep86jdcf8dU6pZ23DeSGUGgL0lSoJwlZqaRmhVKjymVpfIoy90vPK\nuFIKB4qG9iTC7Ei4zwRMNxmDHpDNy2/dqyh2H5zVQgY0LksTXJaVTlOuNVQ+CBOf9RO+6BmsCfWt\ndjKhHCuphb3WRTDcqzIoQ80OVcirMCe/3E6wZv0Rono/42nRZ8F1Y8vNiKZNCs/UypVxMq09VCnG\n1A6kbsK3wyAzvRp5MgPP256txNCvheFvBtWVa1qB44knSYR2YkiMYTzyYMErbLUNoxKcD2ko9zLh\ntFCORo7UQO7D+tJLDGel57TwdFPD1hrpAR9yHZbbOEPfNQ+5bZGHwbLvCcuYFXwjkYZHLx4B/wHw\nh4A/cXh4+OebFw8ODv4f4H8B/hTw28sOPjg4+C3gvwH+HPB36n8v4y8AE+APHx4eflW/9t8fHByc\n1u34Y8CfX3ZwJBKJRCKRSCQSuR8W/dp73Q745ri7CPjHwta346Y9v8lxmwh8DY0z5yGkDppPzaiq\nF2kQBU4KpWuFwsBR7nk58iFdV+l43k3ppUFMfTX27LVC++9C5DorPKk1dIywXe/Mb+5fVTiahHYU\nqiQSnHbD0jMulX4mWBGcD66V1AjfDB3dRNiqRbu7ZGXQ+gbnM8ASc8j1xz0hGpGoYeqynBN+RKCf\nCv167cu98lnnIhj+g57OzLEwHowEZ0UnCXMsMQmpwNBt1sZKw7N+1yz6LFj1vCuvdJOLmk2DMsyX\ntg2pVxtCDZOQiiqbuw8DpNay1Qrp5kSEXiqc5o6jseO7sad0SieBthGSxHCWe8Ze6ShkNqS661hh\n5MI6YkTInSezhtJ5fueNw9Z60F7L4giOo7GH4djTSQQRT+WFRFgoHjV1WAaFZ1in1mzmYSrwNjH0\ns5h+LRK5KfPfE9ahSaUaiTQ8BfHojwFD4C/Nvf6/AV8Df/Tg4OBPHh4ertr/868cHh7+rwcHB//m\nsjccHBxsAf8X8NWMcNTwlwni0T+0aeMjkUgkEolEIpHI3bPIVXLdDvhx5ekmIWB2F8GqWNj65tzG\nFbQutxX43nfqoNm0aqo6U2PI8HbiqLxn5MCpTguXVArfT5RO6jgvQ1C3a6FlE362m1wa8zd1A8yn\ne+tYYVC/JhLmlkH51dChogwqxfnQPlUoVbEGPm1bUhvmRO6UYeH5Qe9uUumsUzy88kpmZdqGdUiF\njcWj29RWe6gsCzs2ws/2knRf88etM8fOiuByOSvd2utF5ZWWCQLyXbNo3nQsGJTSBwFsdk7Mt8uK\nsD9Tj2hcvy+zQuYvwlon+fJUVKkJwnBmw3x9PXb8/KSkZYXKKV49340cQwct0bpmV0hpqcDLoaOf\nGdpJSMXYSaV2NIY15ptRxaT0fNy27HSCcJQA2606HZ6BiVeqQtnJDG8mns/7l9uoqnw7rHg98RRO\nr8zDiVeGE8dp6Smc4bNeEgWkSGRDFqVfvY4mlWok0vCoxaODg4NtQrq6//Pw8DCf/dnh4aEeHBz8\ndeBfBX4M/GLROQ4PD//COtc6PDw8B/6tJT/eqf8+W+dckUgkEolEIpFI5N2yzFWyagd81wp/cC+9\nUgfmpjwEd8pj5TauoE24C4HvfaUOmk19dTwTSA5prvxUlMmsIbN1HZoqjPvzQtluCZPK4xFM7vhm\nGBwgW6lwnOtKYWXVmJ1PydXPDKfFxbMUEZ51Qijiq2FF5cGK4FF6iaGTCpWD/oxTQYFWEtr1Ued2\n/bZu8XBcCLD/oH+1PswyuolBNyx6dJvaag+Vu3YOrppjYa3wtBPhzaTCKdM1vW1loaMzd8oPtu82\nRegqQXJQKc7B2HvaJozl08JP50STuq+byDSN5MV5w72g8LxtKXzY+DAqPYWHM+8bbZiWFbqp0LbC\nSen4yCa8mXheTxzHY8deO0FEGZRCNzGIhXHp+WZYoSgtEb7YTigmntOxQ1uGn2wZvhp4Xo4dJxNP\nrp7jsdKycFK7GgzCF317qd1N/ZRhqWgS1p/Z/n49drwcORBZOQ9LH+ZrWqfki0Qi63MfKYAjT5/H\nvvL+sP776yU//1X992+wRDy6I/5dwvfZ//GuTvjzn//8rk4ViaxFHHORp0wc35GnThzjkYeMVziv\nIPfh30agbaFvw7+v4zbj+7iA3AnrpHqvPLSs8suV1VJvjlcYOJi4q/1QCpy8m8u+d27z/G/y/G5S\nwFwV3pYwdmC4fL3Kg0fpWNhL4Xffgb530zH+KgdB8Br+XZdIYViF/3u4lDqsQT18fRKeQWOqeQmc\nt6Ft4KgMNYqeZXXQegGVh8Qozxe8p2nXLCcl5I5Lfes8vB2CGEhq19HJAI48tCxUyey1YD+F31Hl\n0/Z6a8cyNhlXRzl8J/B8jXHVjEG4n3G7jNuuuXfBWQVOBSvwy1/8cq1jKg+9VBluGKVShV8M4bQU\nRj78v+l7V6dBaxvYsmGsThz0EuX0DM7uqD9U4aggpGhb8dwrD0aUtoXXE5g4ITNhvHctVHJ1R/Kb\nPDgGWxZ2EnhTwNcTGLkwb2bneHO/trlWOxx/6sLPhgl4ByUXx3mFUQGjCqpTGHVhvw2Jh6O3cFhA\nasM5ixK+GoIKJBYKoNMFb2D4BraTq+vBxMFnLfibx8p2cnHNv3se0liuO0++FuUPbN3fGN6E+D08\n8lBZ9Hm8Doryohbr4/h+3Pz0pz+99Tkeu3i0Vf89WvLz4dz77pyDg4M/A/yzwJ87PDz8m+/qOpFI\nJBKJRCKRyGNiNiBvJQQRm2DVqAoOhiYg/64MN3spHKmuFdBLjLKXvpt2QAh4bSdMg2dPnbt4/vf1\n/ERgP2sEPr0k8PXS+w26b0Lbhr4c+cvtG9eB4kV9Vvrwx5oQQM7k4vVxBZUFUcFJCFIvE5ASEwLl\nb0tlf074aNo1G9TeSeBYL4QggImH3QzGPgTCO+bi51s2/Fvr8+3UQWmjwsDpjeeR19A/62Yre5bB\nd7lSOGGVOWh+DL6PdechrLkNfRuuZze4kEfpb7hFvhFtOkYobBBQxz4IFkIYS5YgpOUOehb6ifKb\n3bvtg7fl9cIRXMwbp8pP+3BUXD9OrIAjzIGG0q9wd2l4f0dgUMFpBUgY80W9NlSAqy7qCznCWE9t\nWBd6Joi6pyUUPghbUouQW1noRyNhflYexvWlBw625uemgrXhmTTz9qyC0gvtNZ93YmDshLNK2X2H\nn9ORxTwEQTpyMxZ9Hl9HEPLfXZsij48P5FeXu+fg4MAAfw749wj1lX77Ls9/F8pgJLIOzS6COOYi\nT5E4viNPnTjGIw+VJi1Ue0k9hoYmFdinXXslLdRdje+fqsa0cffMXTz/hqf8/G47xr0qvzqvOCn8\npXt3pwWdOhXcPG8mjq3MkBlBVXnWCdHbyittgU5qpimkKq+0bEjzuIy88ny5dTn9V9Ou+VRUP1YN\n9cbqZ3mS+2kAf1B4eolg6zo0VkJdmP6C+kqqyme9m4UyTnJH95paWqG2i2fiQs2aL50nEdhtJVi7\n3hi873F7l3Purjj5nZ+TO/jpT3587XtLr3RsqG+0Ca/HjnZds0yb8VUpgpJXysSHZ+i9YoHP+wl/\nYC+703v3qqQLxvsqmnnzU7h2nPxmIoxLpZUa3kwcaeWpBo7CK+M6dV1qQrq6jjV009rRJsrvn1Vs\nV0ovtaEu2qgKNZeMTNcH7xUpPf0kXL+dCnt7KRWwPfA8M9BLhF5meDP2pIMS78HU6tFOy1BqSHnX\nToQX3Ys5G2pLCbstw/OO5Qf1vP17b3N+o2LlPJyn9Eo/gZ/u3XN+0BU89e/hs6kYu006z5rKK+4R\nf/5+KCz7PF5Fsz793u/+LvB0x3dkfR67eNQ4entLft6fe9+dcHBw0COkqPuXgP8W+K3Dw8PqLq8R\niUQikUgkEok8Vo4mywt5z9LURDia+I2DhuuyTsH1u6x7Ebnb5x+f33KMhHouryaOlg21jgaF57ux\nQ+pENZkVOolgRCh8qO+V1c9ltqZBYoS3E3epzlBSF83em6tVcqkNRjgrPLszxzXtGrvLdaSm9cZa\nhkHhOZ54QPAeXrQNX26naz3LVbUYvCqnRahl1oyTbiJs1yLUsuLhXpXz3PFy7BgWSu4UWwfSEwmB\nk+1McZViE0FFVo7B+x63D2nNbWicg7epJ7YKr6EuVxMUvVLPzii9ul5QJwn1vEqn0/pAd8VZXfdn\nE2bnzaJxggbhKDFCqXBeec7KipdDxQvkzpMYQ7+2wzkNNZOcD3XOOtZQqVAptBOhcJ7zUhk5ZT8N\nx/haWMus8CIxFC7MrZPcczTxeA1OpESEiVN6hFRWW4kE55DzdFODV6V0ymkZhOnCKfvtUGctNYbd\nlpmO/YZRqSR2s+edGmFUPr5KLLNrUqXKsAiieTc1JCKX1qeHxLq14cYuvO8+BOnI5iz7PF5GWQuC\nD208Rt4vj108+iXBKfuDJT9vaiLdWYLGWjj634F/CvhTh4eHf+auzh2JRCKRSCQSiTx25gN615Ea\nYVh6nrXf7S+rqwquR+6Od/X8H/PzWyZoNOl/bsPztuHX5/B6VFHW52sZQ+6D4DN2yrBSUoFUgkug\nYfYJVV5xqoxKT16LTCKhpspZEVw3i0hrgWn+uTxvG16O3ELhwIiw3bK8cEql4RovOusHHheNrNkd\n8rYOajbSyHmpnOQVvdTgVElmrjN1qxSe49xxVmpICWZAvDKcKB0jtBN4k/upGPf5moHS+xi3D3XN\nlbpWVMfKnTmwZufSSeEYlcpWqpccakaCOLe9oI6UMVwRO2/LMkFyFfPzphknO1kzjhVrzFSU2m8Z\n/u/vCl4OK7ppgqgnV6WbGDrJRZrCkfNUKny0Db8aON5MPO3U4JxSOEcqgtbqWSsV2iYIy16VSeVJ\njOAFfj2o+KibTJ+X1u0WhHZi8HjOvDCpPIMy3I8YwXmYVJ7TIohSH7fDkd4r3WRm3tXXHJSe3AVR\nShDaVuilsnRc6iMKaM+uSUbgrFRGlU7Th50Vjm5qqHxwYT40B89DFKQjN2PV5/EsNxXyI0+fRy0e\nHR4eDg8ODv5f4B89ODhoHx4eTpqfHRwcWILA8+vDw8Nf3cX1Dg4OEuB/Bv5J4N8+PDz8S3dx3kgk\nEolEIpFI5Klw213YkcfNh/r8FwlEHRvqhYwrXShovJyE96jqrQKGnUSoxjot4tJJYTy5WuMg99Br\nahyp0msCw6q8zUMQt+9CILxpTu6VX5w5frgl7LcWBzYXeQFEhE+7dmVKLsPmwlHuPKjy7bC61M/D\nSvHItTvk34w9H3cFkZDm7NU47KwfOs9xoaE2zEzHWYFclbKEz3rByfFy5EiN8KL7MMIpD23ONXPh\nVR7qo/S9sl0X12pSAW7qwFokDhYOUmsYVMppUdFNzdIx2rBM7LwNHrhJL87Pm2VOD1Xl984qRqWn\nnVqGzteBPGXiPMMKUqCXBWGzcJ6/deTJvWdQKUNXkRghFSGxITVkP5FL/WREyKxQuRA8HlTKi5m2\nNe9s2TAHylxJDbSsCf934eeFU/otw6c9O3U7vhw5PusatutCY6pKXjne5CEtpjWNTxJGlee8DILj\n7tyzrLxyw2yV987ss8ys8GrscRrutyExwdFVeeVFxz4oB89DFaQjN2Odz+PHnAL4Osdx5PY8BTnx\nLwFd4N+Ze/2PAi+Av9i8cHBw8LODg4PrE+4u5z8G/gXgT0bhKBKJRCKRSCQSucptdmFHHj8f2vNX\nVV6PHb86rxiUQQRqaon83pnj905LBjO7zRsSI2RGyJ3wcuRQvdn9H008ndSw37Z80rX0EkPHGKwJ\nqaQ6NgSD9toWh3JehOuoh252AhEOvwAAIABJREFUIaB4r+ymcuXZJUbILOROeTX2C9u5LKjQpG77\ncithOw3XcqqoKtup8Af3U3bSkK7r+1HFy1HF96OKs9xRec9p7qavfzcs+f3Tgl+fVYjItJ9FhK8G\nof/PisXta0iNkFp4NQ6R7uM87Ky3At+PPQikiwJNGlxbJ7kPATcRvh46/A2f2V3zUObclbnAxTMa\nVnBWhF3vn3ctn/USdlvrC0cvR46xU1qJmd5r0/2JCaLhxIWxfN1cuuvEZzcNqs0ft8jpoap8N3Kc\nFkE42mtZPulYWqmQO3D1+20CgvJ27Hk9DunpOtaQ2iDY5U6Z1Deel47TUi/1k1fFoJyUnpPckVee\n40kY45VXMgPnhWfsPK9HjrelUrrgVOomhp2WYa9l2GoZtpKLgG1ihEkZ5o2pBduXI8dWasL4mBu3\n1gQRK6+dLLNtzF0QWR4Ds8/yOA/C0aI5mpogxh3Xa0ul4dj3zW0E6cjD5LrP4y+3Ej7aYCPHQ2DZ\n9y8R4bwMtZ5er/GZELmeR6Lbr+S/Bv4N4M8eHBz8EPgbwD8A/Dbwt4E/O/PevwscAj9rXjg4OPgX\nuaiZ9I83fx8cHAzqf78+PDz8awcHBx8D/xHwCvj64ODgX1/QluHh4eFfuZvbikQikUgkEolEHh93\ntQs78jj5kJ7/qpoQx3moa9HL7DSovchhkximAcNNU/7M7g7vpsrEKVuZoZcGkWRQguOiXlEqholX\n2l7p2BDMfTN2IMJuJvQTYeyvBjmFICpVPqR4e9a+aGfpQ+BpFYtStzVOkre5o1RoJwZbv/7rYcWw\nUHqZ8LxtMcBRHlLqtUxwbe2bECjyqhT++n5u2GtZfnla8qztw/kSw+mkoqyUdrpYBlBgqxVqRuxo\nEECGheMkd+y3339I5SHMuXdZH2VZ+qz5w5v0WfNjdJ673kHdTUKgchMBb37eVN7z7aBE67RyTZ2m\n3CnnhadlhXEt9hkRdlJLRxRrw3NMEH7/rMKL8qyVUPnw3l4qvBrD87awlRoqVc4L2BHPQAz9JLiM\nCqcYgb4VQEgNjErP9xrcRB93gyAkEs7jqTjN4e1ZScsKXQseAYVMBHC0rYAou21Lp67J9qZ+lvud\nhJejgmrBegNM15uT3LPXtlReaRsehTt1dl32GlLVteZ3D8zQ1HLaa5kH4+C5i1SMkYfJY04BPEus\nyXW/vP9vOrfk8PCwPDg4+OeB/xT414B/nyDw/EXgTx8eHo6uOcV/xUVtpIY/Uf8B+GvAPw38AaBT\n//mflpzrK+BHG91AJBKJRCKRSCTyhLirXdiRx8mH9PyXBbXnA4bXBbVvGjCc3R2+3zK8Gl/UNOgm\nBiOeURkEIVOnY5sUnqLyPOsl5JXifChu37bBNTAcuksPI6SKCi8kdXBwTy8EKe+V7WyzgO5s0OeT\nXsKrsafywZ11NAmv91uGqnYfWAnOiW6dUmdWJBqUfurqWkc8MCL0M8PX5yVZEt5znHuSZHG/V15p\nJ0FoM6IMS2UrE7Ik9PdDEI8ewpx7V/VRVqXP6iTCYE60mQ3EL5pL64idm7KdGU7yaqNgezNvGhH1\n5agi99BKLlJGnhWeb4eOyik7bUPLCiN3UbNLLLQliDbfjSomHjITRJrECCPnaZtQ16hng/CTimCN\nY+iUDp7KB8EnMUJVC6P9zPBxWziaOF7lHguMHHzSFjqp8F0FwxJSE4Tl49xxrEI3Cef5iFDL7Cj3\ndIzwo75gjHCSO4alTp/lx13Dz08chYY5LEgQotIwT5vAb895QPhhP3kUKahm1+XZ9WkVxgiDwrPd\nsg8ijetDEKQfAjEd2sMl1uS6X97/N5074PDw8IzgNPrta953ZVQdHh7+aM1r/FUuUr1GIpFIJBKJ\nRCKRBdzFLuzI4+VDef6rgtqLAobXBbVvEjCc3R0uIrzoWI7z4KjppUKlhl6mbIlwnisVjqR2NPRT\nwXtFMSTGTOuLdBJhMlNU22twLzQIyjeDkswaCqd0ktDuTYJp80GfFx3Dce75dlhReKUzK1aVnre5\n58t+Mm1jKkxFonnnwnX9HK5n+Ttjx7M6GjJxLByvlVesYTo2mxolWzPX2ZR3EYx833PuXdZHWZU+\nq58aTgt3Jag1G4i/0tYbiJ3XYUTopcGZdl0gE0Lf91KDwFRE9Qt2z+cuzNXXpcdNlN2WMKh0GpVK\nRShU2WsLbyZCPwkOolHl6/SVwsf9hMwIb3KPOk/hAVXeFp4ToJeElJeVhkb0WoYXnSAkfzt0fNS2\nbGWhJlEFnOTKuVNedBLOK8/xxNNOBKfCpFI+71uOJo5i6HnRtrTbCX//pORFJzzv7VaCapi7eQX9\nFM5KKBWMKGOnDCroGKGbBvfRpFJ+Y9suDPw+xOD+7Lo8XtPBk9ZCWV+Dw/LNWPmoq+/tfh6CIP0+\nWVRjbbZe4UlePdr6QE+BWJPr/nkS4lEkEolEIpFIJBJ5GNxmF3bk8fOhPP9VQe1lAcNVQe2bpPyZ\n3x0uIjxrW/ZahkHhScRznAfXzn5L+PFOi9PcM3ZBoPl+VNFLzKXC9Lstw9EkOJgEpuntVEMKqbEL\ntVGedQyZDdfbJJi2KOgjInWbg+A1cYoSauakAjuZsNO6fN5GvLECyZxSt6qfp9fLgsthVCmVKnZm\nn2jlFQXaibCdyqXrhp/U/94gCPUug5Hve87dpj7KdWLpqvRZRoRundptXkAcO2V77v2NaPMugofP\n24aXowvn3zJKryQS3j8roi5yekycYuvC9g5lUARRZeyVolJKHxw+w9JzVnj6mWErC2nv9tpmer8/\n20v5669yXte1dDIbxOOziXLmlcKHsfdZx7LXtvRSYVQq/dTwomen6S+PRp5eS0jq9HVGha1UqLxl\nWHkqI1Q+1O7ZbyekNqRhKxV+ceb4nbclf/iTUKfJIbRSwyeJ0K4F74kL9yMCE+/RUvi8a+hlhs96\nyeV5ODefjMCgCOcoXZil+y3Dj7cTrLlfSWP2WTYpCK9DVXmTO4r6mRuY1s57H2LFTQTp3HlQ5dth\n9WCEvJsQ06E9fN7lZ05kMVE8ikQikUgkEolEInfGTXdhP6bgQmQ5H8rzXxXUXhYwXBbUbtjUx7Is\nJGpE2G5ZtluWT3pBsBmUYXf+dioUTmlZeNG1pHOBVZFQZ+ho7ChqJ0ITqHWqiEDloG2F/VrQSYS1\ng2nLgj6DwpPa4JbYmnn99VgRI9N0cZfusxaQtudiQdf1M0BiTBDaVHkzEt6WPhTaBnpJSM+1aExK\nLTKFdH4rLjDDuw5Gvu859y7ro1yXPiuka7zqQJufS7OizbtARPi0a6eChqlFn9nr+7rfn7cNCpdE\n1EWtagTUdp2ubuyUzMDJxKFAyxoSlNJDoXA88dO0b7mDfmLZyYTXE+VFLQy9nXjOC8dZoeQKO4my\n1zJYQrq8vUzoppZEHJ8+SzkrlS2BYakMnSdxwTHlVcm91uPUkwn0WkI7M2zV6SAntZMmESHJhJOB\n4+8cl+y1DJ/Wk0dE2GtbdlqGYeGZ+AsHUSLQzUK754WjZj5lVoLbsgppLxMjZHUKyje55/h1wY+2\nEj5aUQftrpl9lusKR0cTT+WhVY9P1QuR+n2IFZsI0o2T7GTi+GIriHyP2aXzauw4rtOnNmOxY0M6\nx9k1M6ZDe3/Emlz3TxSPIpFIJBKJRCKRyJ1yk13YkafDh/D8VwW1V8XHVglEm/bCurvDjQjbmWU7\nC33+422oVPjlWUnF5eMrr7i6FtFuFkSbJp1cVtdP6bbN0tpN1wXTlgV9xm7x66qX08XNX29ct3n+\n2FX9XPrgxGqO+9F2ijtzdK5J4zZb/yl3yo+31gun3Edthvc55+bnglflvPAcFSEdW3dULQy+riOW\nXtfKkK7RXBEQmuPmRZtlweu7SH8mInzUsTxrG86K0J7mXNtpmIPNuU5zd0lE7diQkm52HDdCZScV\nzkvPaeFpGcNHHct5oYycp2sljC0RMDBxnomDnczw5ZbhtAgunK3UMvEe2gZjgvOnD7SN0M+CADxR\neD32/KRlKI3QSizPbXAcDkv4qG1xCtbAUV6FVHtiSBODs4pHcH6m/QbGpdLLQj2lnhXOSk9ihE7u\n2ZtZQ4wIWy17ZY5PquBmmaWZT4nAq3EQtVsLCgu1k+C++rYWmu7LITK7Li+qyzXPSe7JnbKTXgjT\n/QVr0X2KFesK0qqh/tzEKbttS2Yvz9jH5NJp7uXnJyWd1Fxyhw4q5bSo6KZmumkCHn46tIeY1vEu\niDW57p/H9y09EolEIpFIJBKJPGiaXdgdK+SVp/SXgz+lV/LK07HyoIMJkZvxITz/Vb9Id5IgTGxy\nXOmVbrJ5ujK35DrL8F7ZaYX6IT/ZSWjbEDTzXlENQcvPe5ZnbYs1hn5m6GWWz3spH3US2qmZCiiL\naIJpXhe3a1nwZtnrzdCYTRc3SycV3IIfrXo+3iuf95Np3223LJlh6TObHlfXf6q80jaslf6mSdO3\njiMIru+/ZbzPOdf0taryZuL4ZlAxrELaQyuhbYNK+WZQ8Wbipq6KdYJR3RVzqaFJ1/h5z9KvnXWZ\nCe3ZToUvVzhPVJXXY8evzisGZXDS2Dot23mp/Oq84vXYXXKCXNsfIuy2LJ/1En7QS/isl7DbspeC\ntfMian/BXG5bwXnFiFC6Ot2bhvvdbhn2Wpb9WgS0RnFeaVnDfmZo2xDgbkTZrUwYFKF+0FZiSERw\n3tPLhF5iaVlL1xq+G1b8/bcVzoX1oHEGbWeG7czQtvBx16AK3cTQSYW8gkEZ6vPMTtNUhKK+J6/Q\nTQ1OQ32j0Zpj3MOlfpmdT8d5EI5WCTOpCeOhqEWX+2B2Xe7X97wMr1qnAoVeFp6l03DcIm66PtyE\n521DIlxZS2Y5zkOqwLYNosoyUhNEzvt6BpvSuNleT9xUOJolMUIrCSlVX82tB006tIfEu1jXHhIf\nek2u90Hsu0gkEolEIpFIJHLnNLuwv9xK2E5DzRSnulZAL/L4eerPf1VQe1nAsPRKZ8EOeWhq0Gz2\n63mzO3xVcG/++rPpynZbll5i+Lib8Ekv4eNucskdATCo6wrNtrN/TTtXBdOWptpb8nrbhn4WFvdb\nUte9mX0Wq/q56YPEmGnfGRE+7Vm8LheQqvqcXkMg/Af9ZK2d27epzbAp72vOdROhdH7qQGgl1wdf\nC+fXEks3EUgbh91HbcPP9rKFos0sTcB4fE2bG9fEXQZa55+uEaE7N5d7tTDqVUlMSFNX+XBkpUrX\nhvSUn3QtL7qWrcyQWdjtWFoGzgtHc0vnhdLPgnPwzcQzqTwda+nXQnClQWDptyzdBN4UytGM0IeE\n9qTWgAjbqaGVBCdMoZ5SlZNCGVb+Uj/5+twdI1groKE+0cQpwzXGuBG5NH+a+eRV105dZYyQV3pv\nosvsumwWrE+zDEuPathwYCS8r5ssTpk5Pf89iRXXCdK5C6nq+qnhRef6lHT3KXxtSuNmqzzXipGV\nBtFs9rVR9XDu6X2ua/fFOpsK5rnJBp3IBVE8ikQikUgkEolEIu+MdXZhR54uT/X5rwpqLwsYLhNe\nblODZp3d4c015tOVrSM+jWcCtKVXumu0c1UwbVnQp2MXv95LDYVT2gvEoEYk2m8ZrFwcv6qfZ/tg\ntu+etS2fdAxWoHB6qS2VD76nTiJYgc+6Zu20UbepzXBT7nvObWdmo9R8lcKbiV9LLL2tQLqKTdt8\nl66JRXe+37o8l40IHSucTTzWCruZkFnDuPKoh+1WaHc3FZwH5z3eB8fX29LzeycVkyqM37FXUmNq\n15LQTaCThuuqQseGtH77bYtDsAiTKqSsA5DayUBdZ2i3bbEI48rjFFJjMCiIclboNCDtvWIJ1xSg\nnQooVAqTa55pI6TM5gFt5tO8qL2KpgbafTpEZteW+fVplvNSg+DXMlResSIrHTxwv2LFKkFaVPli\nK+FZe31B+iG6dGbdbOvoKGlda8/PiaQPhfe5rt0XN3Vdb7pBJ3JB7LlIJBKJRCKRSCQSiUQ24Lqg\n9nzAcJnwUnluVYPmtunKrhOfmvhYI7xcF9hsWBaOWhb0WZS2C0I/t6ywKENcIxI1dW9aNuxsz+zl\nnfvL+mC27wqn7Lctn3QT9jOhZaB0nknpyYT/n707D5dtK+t7/xtzzupWt9duT8Pp5HIcKJooIBjs\nCPca5YmJmFwVIypcG/SCgojEqAgxkHhveOxAo0bEXp+YKGITJVGaKCiXEFBUhkh3OHCavc8+e+/V\nVtWcY9w/xpy1atWqqlW1Vq12fz/PA3VO1ZyzZs01apy1xjvf99Vj5hJdbCZ6TBmMmXSxdK/Lcidu\nOS+EEblhO5ly+0ntJ0A6ymGVExxlWBA1juNUzb7v8nIjUaEgBanjg5brie6YT3XnQiopZuAoSPIx\ns+hSK2bQ1ZNE7RC0UXh9fKXQeterCF6bPsgH6fb5mu6Yz3SumepsM9F8LX5nfAha6Xq1vdcn13J9\nYq3QoxtdXV4v9OBaoY73emSjUOGl+VpQzcTso8LHnirzaTzf6x2vjcJrsZboXDOWyyq8dKFulJYl\nIseN8f5ASv9Ps9pnY8qgrNfhB13655azjTiPtcvAdDUnNRJpuZ6o46VGaibK4JEOf34YFpCupcmO\nHke7OW5ZOtL27NBJ4+tJYrTaFwQ7LgvrRz2vHZaDvKkAw03W4REAAAAAAPRcaCZ6YL1Q1+9sKl4F\nNK62vW50vOqJdK4vAtL1sUxUK91/I/fq7vDzzUQ3Ol7rfc2xl2pmRym6wX1vm0t1ZdNrreuVJGbb\nZ8mDFHK/o1H4bkaWpxvRiL0q27U58Hzug26bS1WEuNg+KgvKmNgEfLluNJ/FTINJrsHgtaslQUv1\neGe5FPu0VKXx9tJk/GbozXCj43WhlepqO2z7GQ1TBQXOltd7kr5Ru43Rro89u+ZrMXtmkjG6n3KC\nk5zzbpbqia6189618iFopRP7x3hJWVJmEiVGi7VE60VQJ5fuXEzUzPrmkcLr4U2v28pgUhGC1gtp\nMw/KvZSWAaEiSJ9YLZQqBmrvXky1kkvtMggTQtBKHtTOg4yCluqp1nOva51CN9phR98UGa/LGzFg\nuFw3ahdbAY1EsZn9cs3o1oWtua2eGjUyaT4xut7xyoud4yX38Vznshg4ykP8/qrv2FKMPU7zVaz2\nO8ygy/C5JfTNLake2TCaqxktTLmwfRzmB6/4c97LfsdJf3ZoKzNa7e4emKyy2ZYU55/+MXqUjnpe\nO0zjfv/qN81NBRiN4BEAAAAAAFOaJPCykBldbGaqJ9JGIRUh9AIatzWlxGhmPWiqu8OXG9N/jlHB\np0tNI5np7jDfbTFt1KLPuUaihze2nq8CDefLRZ+r7fLcQixjV2VBbQ8exMXqs9Ndgj1fu93MZbFB\n+TRZEsdpMXIS63lQLU10qRV6P6PBkmKDQQFjYgbCpNd7PwHSUee813KCo87ZhzLjpu/cRgUdqyDq\neu610o0BhTQxyhITF+SNUVAMrtRTqZkm8nWpXQTd6ORqJkbz9Zj1c7EZv58hxDJzQTEoHUKirvex\nzJiJgaazrUx3LcXMuaVa0FUf1C28VvOgwksyUiuJxyq8lASj1bzQQj1TYoIub3pdbCaqJYkWM+mR\nItdaN5aXO9fcysjbLLyM2coAzH3QuYZR20tFkM43Et3SSpUkRht56AWDFgYCKb7wWqpvLWpX36dp\npsyuD1ose50cxfLxuLllqVZopRumGrvHZX44LYHx/iDYQi3R9U4x0UJ5FQSL5dCOR+DlIOa14+og\nbirAaASPAAAAAADYg2kWtQcDGpeP2VrGsEVOH4LuW8mnOs5ui2mjFn2qsl0PbxRaaRdaqG9vxL5U\nTzSXevlg1MpMvM4h7Cl4cFgGM0wmcZwWIydRLb4aY3S+mepsCFrteinE10IIO4IC1X7TmlWQb5ZZ\nEyGE3ljeFgBS7GlzrZ0PXcA83zC6f9Wr7YNa2c4l9dRIK3nQg2uFvDH6jLM1JUncLi8zF1e6QZda\n8TljjM42U50JQdfbhR4zn+ihDS+joLoxWmrEknZFCMrKDKJzjUT3rxXazIPqiZH3UqsRAzTdIuhc\nK9GGT7RUT2SMdK3tda3tdbaZqlUzmisStfMYKKo+WzcENRKjagj3StA1E11re610vZZriZbKPlxL\n9eHXelipqer7NGmGiFSVt0yPTdCl30meH05LYLz/m1f1K2wXu3+uRMevHNppyQab1KxvKsBoBI8A\nAAAAANiHg8pcOWqjysyNMuli2rhFn3sWMy3U4uLweh62ZWstzddO1GLQQV2/42Qw7BEDAqnOl9+F\nW+aGLzsdZQbCrLImQgh6YL1QHqTGkABQVgaTNoq4XX+JykfaQeeaScw8KrO1qgXrEIIe3CjULYJu\nW8i02va63gk629w67kYeM5OubPptgSkjqVNIZ+qpzjeNaiZRJwQV7aBN73XfSqHzDWmpYRQk1ROj\nW+ZSreReNR/L3K12C11spbo4lypNpPPNROvdoNQkemSzUDuPvcXO1KSrm9LHbuS6slHoTCPRpVaq\n5UYM1nSKoFZqtFxmmy3UjLreqJGNH+OjSk1V3yfl8XrstqDZX96yO5DFdByc5PmhCnwlRr2Si1UG\nWSsbXorvqAJf47ICB4NgMQPWjy3B2fVBrWR//QoPwmnJBpvWaf396zgheAQAAAAAAIY6yN4C4xZ9\nlhs6FYtBp703w0nMQJjVOV/Z9MqDdl34ryWxxNyVTa+LrbTX2L6RJTqfqpetVZVwu9Yu1EykW1qZ\nEmOUKJY3O9PYKnG2WQQ1skS5D71soMJ7ffh6rkJBSiQTJBNiL6N6ahTzkIw2Q1C+GdRIYunMQtJS\nluhcGSQ625QuzqUqgtRMYhBgoW60oBjEfWSz0JVNLx+ki3M1pUlXG50gH6QHN7zWC+meuUS3zm3d\n+Z/7oCCjT1vOVE9jyb69lJq60EzUXQ+qJ9p1gT8zMRhwnIIug07q/GAkbRRBn1wv1EhjkLS6vKvd\noOudYluZyqP4GUySFdjKjPLCK0viK/39CgeDulIcc5tdrzuXa7rU2l+/wlk7rnPxNCU9cTwRPAIA\nAAAAAEPRW2B/Tvv1O4mltyY9Zx9CL6tiswhK5tPe/pJ6AaBJ1BKjta7vZdv1N7avsrWW6vE9u0Fq\n9DWOWm4k2iwKXW8XOtuMy3gxFGN6WUh+M9cDq4W8pNvmy0VtI7XqiS5vdtUJQT4YNVKjmjHqhqBH\nN7wWaolaqdFSI5aeW80LLaRxUTcvgs41Y+ZUlhh5H3TfaqGOD7q1L6PsfCN+pjxI3SIoD0GP5kF3\nh6A8xF5NzUS6eyHTxXLB3Yewp1JT1fcpM9JHbuQxC6TvZ1B9n+Zqic41EuXh+GWI9Jv1/HAYC/VV\nxl0s8WaUh+2vZ4lRpvhzf3jD62wjfqbD/BlMmhXY9kFruZQkvtfbb7AEZ39frkYq3TFfG5lReZSO\n21y815KeOH6O32gHAAAAAADHBr0F9uc0X7/DLL01q4Xx3c45hBAzD7pbQZ6FWqI0SXqLnrmP2TzT\nSBLT+/mPWuBd7XoNHtYYo1vnUj3ajiXjksTIaKvE3eXNQpmC0jTRLQMLsbXU6LHLNT20UejyWqHc\nxL5hmWJm0oVW0juX3AclioGkGJQxWqwnWlsvJEkfX40ZMvWBczcmbneumWi143Vlw8uEoA+v5HrC\n2Zo+ZTHTcmP7GN9PqSljjC7NZTrfTPSRG7mutr1kYgm+xcxooR6zpjrFyQjKzmJ+OMyF+irjrp4m\nutQyve/KYOArSFrvFmqkqR6/nB3qz2CarMDFevxenmlsP//+oK60lf11qXW8yh9WjlMZxP2U9MTx\nQ/AIAAAAAADsit4C+3Nar99Bl946iIXxUeccQtDDG1uLnrkPSk0svyVtLXpeXs1VS4IutczE71lL\nTC8wMGr5eWNEYMkYozONVLe0Uq12vDa60mrutd4NWsjiOTQzo7VuULvwCoqlxZqpUatmdEsrlXzQ\nppcWakbNLFE3BG12g5o1yQeplRqdb25l61S9ilqp0XrutdL1mssShRB2np/i+J6rJbq3kepsM9VK\nu9DjztSUJQeTcZImiR63XN+RxWR0MoOye50fDnOhvr/kotSXpdOIgcONYivwtZgZLczV1C1Cbzwe\nhsFz3E09TbSYSY1E2ugrp1hlHq52YyBqPjO6Yz491M8yreNSBnGvJT1xPBE8AgAAAAAAwJ4MK73V\nbz+l+Q5qYXxUubCr7bjoaRTLbvX3bdn2vkbKg3S17XW+OfmiZ7WwPvrzSqNOP1GZDdFItVBPdP9q\nLgWvWip9+EZXC7VUiZFSY3qL2+tF0Goe1MyMzjZTnalJMomudYIaRlorvM63Ms3XEhVBurFZKJF0\nvrl1HZcbiT6xlitRLEnXGkiNyn3QfGZ6gbblKtCWGn1iNdfdVerGATmtQdlJHeZC/WDJxUo1LpeG\n7JMkcb/lxuEEB0ad4zhJGks6Xmylut4udP9arrWuV5YkWqwnWigzdFbzoOud41tu7aDKpE6T9Tlt\n8K6/pOdJCvbeTAgeAQAAAAAAYM8GS28FBfkQgz/7yQI5yIXxwXNe7Xqtdgo1s0StzPQWjIfvK9WM\n0XrX62xj8kXPatF1VGP7UYfp+qDFbHtJLe+DiuC10pa6uVRr7Nw5NUapkda7XiE1utjKtFRLdM9S\nohudQn93PddcLZFRzBS55WxND6z7bYvKpjzGXD3Vatdrqb4zOJgmRo3E9LKVJKmVJbraDrp7oiuD\nvTjshfpxJRfHved6Hg4tuLefczxTlzYK6Uwj1YXWziXzk1BubZZlUkOQLm8UU2V97il4V5b0PKwA\nI6ZD8AgAAAAAAAD7VmWBXCoXim+f3/uy02EtjFfnLEmPWahNtPDcyoxWu0FJYrTa8VqaYNGz66tA\n2ujG9tVxB1/zPmhhoLF9MzNqbxhtdAvN1UZfozwE1ZNE8zVprRtUS4KWjNFyI9M9i3GhvD84N5cF\ntYvt5+BNDHqdyVLV0kRG2rAeAAAgAElEQVTtIigoqPDSuUai2+ezoRkIj7ZzfXIt3VePKox2UAv1\nozJN8hBU20u/sqn32LtxZSF32+8klVvbLRtovxl5IUhXOlKzCFNlfZ6EACOmQ/AIAAAAAAAAx0K1\nKPrQeq6VTlAt9btmAlX2cwf7NIueC7VE1zuFGmlcPB1WrmuQ96F31/+oxvbVcfsX67o+aG7IZy8k\ntVKpkybKTNBG7lUEqVuoF9ipp0bLdaPlZuyLtFEELZQ9i7o+6I75VBuFtvVIOddI9PCGV+63rkfw\ncbG4Os6CtsrUDZa/CiHoWjv2v1EoM5fK1/bao2ro9ZyilNZpNeuF+t36iz24VmiuFoaWchznYDrr\nzPi9QtBad3igZJijKrd2ED3ghnm0K+XeTB1I20/wDscTwSMAAAAAAAAcqcFF0c1CqpcLuavdoOud\nYmQPosp+7mCfZtEzMUZzmVG7CCNLzfXrln1GqkXmUY3t+4+blYuymYkBnUEb3RgEunUu9iu6/GhX\nxsRjxLwgqV14PbhhdK3rdaGeqFEzvf28DzrTyLQs7eiRcqmV6Grb60bHSyHoYjNV7oOMiUEjH6RW\nur1MnbT1MyxCUBGCbhnoBzWLsl+HtXh+EsxyoX6S/mJn6omudbxyL11qTXZ9q4y7wzKuLOQoXR8U\nfFCaDA8c+RC00vHaLEKvL1krM6ol0n0rXdXT5FACmAfVA26QD0EbhVSfMBK3LZA29btFhxlgxHQI\nHgEAAAAAAODIDFsU7V8YzxKjTFK7CHp4w49duN7rHezTLl5uZeiMf8cqAHShufUO4xrbn2sk+sRa\nobVOoaVGOjJYVvggI6Pcx89861ymTR+00Q3aLKQkkTIT37NbBD2wUWiuY1Q0gjqF3xbMGtYj5Vwj\n0e1zVfDO638+3FE9k+azRPM1M3Rx/Fo7Bo6yxGgzD7p1fnhoIzXS1c1Cj2wWOttMJ150P6zF85Ni\nlgv1k5RsW6gnut6JP+Orba/zzd1DV1XG3WEZVxZyFF9m2Q2WAAzl51zPg1ITx5cx8fn7V3Kt5kFz\nqfSE8w2l5TgbDGAGaWYZcodVVu9Gx/c+z6SqrM+9Bu8OM8CI6RA8AgAAAAAAwJEZtig6bIE7S2Lm\ny7iF670uqE+76GmM0dmGUbdI1M63B4CkuCDqy4yjYVkw4xrbP24pVcen2shDvC59u1bHXW4kaq8X\n8ooBk8W6dPlGzGZqpNuvQrxu0oaXCiNd3fS68/z26zeuR8q5prSWx0Xw1oiyXjFbIaieGm3kXmcb\nibKBTI7eYnyZNVQE6Vx5LSbJGjpJPWkOw6wW6iftL5YYo7laos0iaD0POhvC2ADIYMbdYRhXFnKY\n6hzbPmx7PoQYqC5CUCMdkl2nGExrF35bQLsKYK7nXn91tdB8JmVpsu8MucPqASepFyybRpX1eetc\nuqfg3WEGGDEdssIAAAAAAABwJKpF0cGF3lYaA0WDsnKR0oedr3V90Fy2t4XqpXqiYsj7jROC9Ngz\nNd21mGmpZhTKcm0hxAX6uxYzXWyNz36pgja3z2e6Yz7T7fOZzjYz3TKXjT3uhVYqkxhVZ7zSCVqo\nJ2qliTo+KB+4PkUIyn3QQi3RuWaiR9rTfVZ7JlMjiYGhfj4E3WgX+tiNXFfbhT65mqtbBH3K4vbF\n4LgYX2iziH1lssQoNTGrSYo/10aW9LKGwsD5jxono1SL58PGyWmxlzEbF+q3Lwff6PgdWTejnGsk\nykz8eVQ/u2GGZdwdlgvNeI7dXa5N/zkOnuXVviy6ftcGnq8nppeJVQkh6NG212rutVZoxzF2G+sV\nH4IebRf65FquD1zr6MpmoRvtYuIxXWUDTWuv2ZteW8G73a595SgCjJgOmUcAAAAAAAA4EqMWrmOJ\nrOF3sFdBh8G71fdzB/teMxaqRc9RWTv7MS4bqPBBZ2pGK3lQp9jK+qk3jBZC0EYudYrY/agI0nyW\n6kIzBhzqaTJ1VkKSJPr752ty13M9slEoTaR2IW3kQUkirXRjNsZyPdFj5hI9sO41V1Ov7N7V9s6s\noSwx2siDlupb7zMqa2iaAMfWOcfF8+XG6cxq2O+Yrazn02XcXWqlutr2ut6OmWjTZNwdhnFlIUed\nY38Wlw8xs6oxkH7Tn11XHWchNb2AdpWJdWWz0KNtryJIVza76hRB8zWjhYFrP2qsD+vr1SmkWppo\nNQ+63sk1V0vG9n+rjr+XHnD7LYc4qqfboKMMMGJyBI8AAAAAAMC++BBm1tcBN5dRC9f9JbIGFyCH\nBR1mcQf7SVr0TBMjkyS60JTuX8nlg5SHoMyYMqggNTLJB6NWYrTUMOp69cpR7SWwkiSJPu1sXd2l\nQv/rSqcsbxWUyOh8w+iW+WxbqbrNImYbXWgmWh9RcmtYEsWwklvTBDj6j7OXxfOTZNyY9SFopeO1\nWcQAYy0xumcxlR8oN9ffX2wSxhidb6Zaqhst1cy2kotLNaOlenrk8/64spDDzrG/V9Jq1w8t27bW\n9eq/xMFL8604plMjrXQKdbz0kRu5WlnsoVQrS9gFJbreKTSXmW1Bn8GxPqqvVwiSMVt9varv1qVd\nMhv3kkU0l8WSktOUrusvh7iX4B2OL4JHAAAAAABgT4bdIb2fvg64+YxbuD7XSPTwxvCF8f6gw6yC\nOSdq0bPMlmgXQc2a0a01o/VuULsICpKMpLnUaK4Wg0m5D2qlRkZbi9Z7Daxc60i3ztd05+LW539o\nPd9xParMio+v5KqP6NUy6hIOBrcGx0l/YKRaWG9lO7M79lqC66QYNmYzE8uureex1KGRepkqq7l0\nvbN9Xt7rtyYbkxl3XIzL3hvcrsri2hgRqNwstp7v+qBWZnpjLTXSx1e9aiaoWQaOJPUCPYt1o0xS\nuwjbeiRJ28f6qL5eg9+T6rs1rv+btLcsoqV6oiIEpVPMb4NZnzHAmCgxQZc3Cq3lkglBc7WYubbc\nyI48wIjJEDwCAAAAAABTG3WHdKW6Q7rq63Db3Pg7pHFzGre42V8ia30gmGPMwQRzps1YOCqJquCa\nV8cHNdJEC3WjhSHb5j4uBC83tl/tvQRWqt5Dg9/5Vma02t256F5LjC53gm6tDT+vhdrwazkY3Kre\nLZT9ZWLWU5xnqh/HajfsyO64GQpi9Y/Z6+1CH10p1A1B9cSolSZa6MsAzcpr1j8v95dsm1R/pslp\nUWVxdYqgxpDeaVWQsgpW93+frrW98uBljNlxHfsD3VkSA7n9QZ9qrC/Vh3+3pOHfr1pitN71OtsY\nnnG5159RYoxaaSxLOYnBrM/Bm0rONDKdKb/HuQ+60Qkqgj/6ADwmQvAIAAAAAABMbdQd0oNG9XUA\nJO26cF2VyDrbSLTa8doogjrlouhBBnMmzVg4KtV1u9RK9OhmzG5IysBAJfdBPkitNAaOiqBtwZq9\nBFZG9qiqxbJcoxYa1zpeiwMl8uL5bJ3FYDaR11b5y7ksZmdcbQcVYWc/GqkMWGsru+Nsw+hM/WYI\nH0WJMcqD0flWOtW8fL65VbJtUvvpL3ZcVVlcj2wW2sh3Zh7mIf5fK4vfpyrwUfVCqiWJvMKOTMrB\n6WmwR5IUx/q4vl7V9ysJQasdr7aPQW3vJaOubl+o7ZgH9/MzOluTroQwdQlPbio5fQgeAQAAAACA\nqYzKPhhlWA8TQNrea2ScxBgtNVItSWrnXnct3txlj3rXLUt0+3ymG12vdhFLawUFGRnNZ4nma1ul\ntQofesGavWYljO1RVZbR25F9lEqbPmix77ncB82VZb9GZROZEHrlL1uZ0eX1XEqSXcdKld3xyIbX\nnQs3z9LnfublqmTbbkEnaTb9xY4rY4zuXMh0veO1mcegUJV5eKFhJGNUT7df37Wulw9BzTT2aOuX\n+6D5IVlMqZFWu74X3Ek0vq+XkbSZez3U9qpnWyVi01R6pB0UlPdKExpj9v0zMka6UI+B52lKeHJT\nyelz88ygAAAAAABgJsbdIT3KYA8TQNrea+RmX7ieRv91W6gnut7xWqwn2wI0/fqDNdLesxJ271Hl\n1SniwnvbxwyitTyoKILON0Ov/1JqYmm5EGKW0GA2UdcHLZaL5DFTwetKJ+hco+roNF6QbrqMhv3M\ny1XJtmkzTU6jGJj1vWB1xYegT6zmO7aPWX9G8zUjBaO1vgCqD9J8bXgGzkYetFTfCuSu5juzliSV\n35FCrcyo42M/on6piVk+m0Xc7mwjUS0xM+gBp6lKeHJTyel0er/pAAAAAADgQIy7Q3qUqq8DMOhC\nM1FW9hIZ52ZYuJ5Gdd2KIM3VkpHXrz9YI+0vANd/5X0Iut4u9NB6rgfWcz20nmu9k+uRjULXOl5F\niMGJ+Vr87t+/GrepJ9KlVsxWuNqOgaPB+cT7GBSrtPOgMzWj1Y6feJxUi943i/3My1XJtlZq1M53\nXuOuD2rnXq3UnPpSY1VgdvAaJMYM/Z51i6BWGgOz8/VEvhxyud96fpgqBhQDucnIRfqr7ZjNU09j\nlk8jMeoUQXl5HtXhjeIYWM/DTH9GVQnP2+cz3TGf6fb5TMuNneVC9xO8xPHFf20BAAAAAMBU9rrU\nwxIRhmHhem/6r9tCaqSyR0kl90HtImb0VMGa/Qbg5jKjbuH1yGahT6zmWisDD4li+axHu7Fo3nxm\nNJcahRB/fmfrRou1RGcbiYqw1StmWMCj64PmBoJbG0VQq5ZqvpaonmjsOGmmRpdaqeppclMFrPc7\nLxtjdLGV6q7FTEu1WE6wCEEhxMyYuxYzXWzdHN+/UQHtc43tz+c+jt/lMjCbGKNWZrSZx4Bt9fww\nxmwP5M5lphcQqvgQtN71vWwwY4zONlPdOpdqPkvULYLqScxOWqgZ3b2YqZUaHcWo56aS04mydQAA\nAAAAYCp7vROVO1gxSrVwPWmJJET91+1M2+j+tUJr3UJpkmipbrRQLkx3fZAv/I4eJdNarBn97bVC\nSWK2lae6VmYQNcvnOmVPlAvNVJ3C6PZzaa8fSlH2OKolseRWvyq4dW5g0b0ql5cmRo3U6Hwz1WrH\nb+tJs5gZLQyW0trTpzyZBrPCVjpem33Xp5UaLdR3ZpwNzstVpsly44BP+BirArNXNv22nj/GxMDk\nwxuFVtqFFuqJ7lxItZarF1SaS42CYjBn1Pcs90GNVNsCucP6v62OyOZJjNFi3aieGj1mfvuYTxId\nSYnYcSUtd9sPxxfBIwAAAAAAMJW5zGilO91dxlVfB2AcFq73JjFGZ5uZzjYz+RC2BeCqzJFZBOCu\ntoPqqVHRlyzgQ9BGEZ+v1JIYsLqyWejWuUxpkuhSK5apW+963SiCmqnpzSHdMtg0V0t0rrEzuFUF\nOLZ6xZgdPWmGXpd9fdqTZS6LJcBudGO2Slr2i6oW9FfzoOudfNs1Zl6OfAi63vHa6Ataz2VG55vJ\n0ID2PYuZFmpGq92g1a7XtU6h1JQBzLlURuqN9SrwVOn6oM2u1x3zNV3qy+Qa1v9toxj939nBPmaV\nKpvnsOdQbio5nQgeAQAAAACAqQy7Q3o3sa/D4d4JDdyMDioA50PQWteXmRe+V7JrrRt2ZBBJsQdL\nJ5eW61slt843U51tJLq2WejKZq7FRjYya6hfKzVaLctihQmrXM06MNIfYHhwU0qMdLFdxH41xyAr\nblRWWCUrg0mbRdDDG4UutdKbfl4OIfSyiwaDbSvdoGvtvJett9zY+TNebkjLjVSNdHvQR1JvrA9m\nyLUS6c7lmm6Z27ksf6GZ6IH1Ql0fjzUqm2ewj9mgo8jm4aaS04ngEQAAAAAAmMqwO6TH6e/rAOBk\nulGW0Iqlu5KYWZHHzItaX/Qo90E+xIDPfCMGl5b6AlmJMTrXytTx0q1DFtCHWagnut6JAetJp5FZ\nBUaGBhjKkxgMMBxlP6BhWWHDVFlhD28Uesx8dtPOyyEEPbBeKA8aG2zbKOJ24/qtDQZ9KonZniFX\nlWW81Bo+LgfL5XkflA58t4oQAzXDMvR67zvhNZglbio5ncgMAwAAAAAAUxvVUHxQtVhW9XUAcDKt\n51tZBVUW0WPmU81lcSHe+6AQguYzo1vnUp1tpqqXGRnDNLK4GD6JxBjN1RJt5F6t7PAC1lWAYaMI\namTJjoXxrMzyqQIMYdK0qBnrzwpLjdn1uhpJ7Tzo3JBsmptF1YNrtxsgaolRHuL2o1RBn1Zq1M79\njv8udn1QO/dqpWZsEKo61sVWqrsWM11sJuoWW9+thVrscXS+OfoY3bKc3WGrbirZ7XeCCjeVnAxk\nHgEAAAAAgKmNaiheqXqYHIc78gHs37ASWomJvZTGfb9HLbkv1ZJe6btJnGskWu96NYbVyOszy4D1\nNAGG2OPJ6+KIrJKDNCorLDXadn37M1cuNBOtdA+/N85xUAXbhmUcDVNLjNa6Xuebo4MdVdBnWI+k\nvfQcS4zRnYs1BeUTn6d0tNk8ozKwBnFTyclB8AgAAAAAAOzJrBfLABxfo5Z5W5nR6pheJ8P2i71O\nEnW9Ji5/mQfpnsVMxphDCVgfRIDhoAzLCjsbYknBjTwoBMkYaaFmtNCX7bGe35zBoyrYNo0kMbrR\n8VpujA/MzLLn2EkrEctNJacPwSMAAAAAALAvs1wsA3A8zWVGK0OCRAu1RNc7xdBFxq4PWhxSQqvK\njjDSVJkKF1tpGRw5+ID1QQYYZm1cVthSffx+N6P+YNukaok5kmDbScvm4aaS04XgEQAAAAAAAICx\nluqJrrXzHYvuiTGay4zaxc4Fee+DFgZKaA1mR+wlU+EwAtYnKcCw13DBzVo0bFiwbdL9DttJzebh\nppLTgeARAAAAAAAAgLHGldA610j08Ibf1sOo64PmBkpoDcuOOK6ZCicpwDAqK2ycWDrweAQaDtu4\noJkPQSsdr81iq9xfKyvL/R3aGW53XL8jOP0IHgEAAAAAAADY1agSWsYYXWolutouF7ZDUDM1OteI\ny+2TZEcct0yFk5TNMyorbJyqdODNaFiwLYTQG7+pkbLEqBqmq92gRzZzXWomCiEcWXbPcfuO4PS7\nWbMTAQAAAAAAAEyhKqHVSo3auVfXh22vLdUTXWgYXWgkuthM5BUX5ZdqRnctZr2eRSfBXGaU932+\nSXR90NyQHk8HrcoK6054voOlA282S/VERd+1CiHo4Q2vdhHUSM2OIFyWGGVGylKjB9YLhTDduABO\nKjKPAAAAAAAAAExkWAmtPAStdbyMkeZqibKyD9JS/eQGKE5aNs+orLBBw0oH3mwGSzBebXsVYXTZ\nv6oEYyONAborm14XWzdn1hZuLjfvLAEAAAAAAABgTxJjdKaeqJYYeS8t1FOdaWSqJbEs3Uo36L6V\nXJc3TmamxknL5hmXFVadXzv3aqVxu5OSAXZQLjQTZUZqFzEAOi5wlBn1SjDWEqO1rpc/gWMamBbB\nIwAAAAAAAABTCSHogfVCG0VQI0uGlvpqZDG746SW+qoCDLsFkI5LNk+VFXbXYqalmlEIQUUIJ7Z0\n4EGqgm15EVQUo4NtzdTo0sA1SxKjGx1/2KcMHDrK1gEAAAAAAACYypVNrzxobIk0Kb5+Ukt9VQGG\nK5tea12vJDHbPm/XB/ky4+hCMzk2QZnEGC03Ui03jvpMjjdjjOZqie6qJVrteG0UQV4x22IxM1qo\np0MzyWqJ0XoeuL5j+BB0veO1kW9d05NeyvJmRPAIAAAAAAAAwMR8CFrrejWyyTJtqlJf55snb+F4\nWI+nIgQlRlqqGS2NCDBMggX2o+clpcZoqZFqacr9sFMIoRdsTROjLDGqQsYr3aBr7fzYBVsxGsEj\nAAAAAAAAABO70YkLw9OoSn0tN05W9lGlP5tnrRmf2+tnYYH9+NhroUF6wexUlbLMg4YGlrNyrFel\nLOm9dfwRPAIAAAAAAAAwsfU87OhxtBtKfUUssB8vc5nRSne68dz1sYcUtttLKcvzzYTsu2OMICkA\nAAAAAACAie21ZBelvqZbYM9D3B4HZ6meqPBhqn28D1qqs6zerypludu4rmRG+vhKVx+7kWu1G2SM\nUWqMjInBvPtWcl3eKBTCdD8bzBajHAAAAAAAAMDEKPW1N9MusFe9ojwL6AcmMUbztUTdCQNIXR80\nXyMrZtA0pSxDCHp4w6sTpI7fmfWVJUaNLOll3xFAOjo3+5wNAAAAAAAAYApzmVE+ZbZG1wfNZTf3\ngvt+ekXh4FxoJsqMdg0gdX1QZuL22G6aUpZX215FCGqVAaJRyL47eox0AAAAAAAAABOj1Nfe7KdX\nFA6OMUa3zaVqpUbt3O8IInV9UDv3aqWGHlQjTBre8SFs+x7sth/Zd0crO+oTmAVr7TlJr5D0LEm3\nSboi6fclvdw598CEx3icpF+V9DmSnuec+/kR2326pB+U9EWSliR9TNIvS/oh51xnf58EAAAAAAAA\nON6qUl8bRZioBBulviIvKd3jfjhYxhhdbKU630x0o+O1ngd5xcyLpZrRUj296cfvOJOGhVe7Xmnf\nZZxkvyr7brmxl28P9uPEB4+stS1Jb5X0eEmvk/RuSfdKeqmkZ1hrn+Sce3SXYzxP0o9P8F5PkPQO\nSRuSXiPpfklPl/RKSU9UDF4BAAAAAAAAp9qFZqIH1gt1/fgAEqW+ttAr6vhLjNFyI9Vy46jP5GSZ\ny4xWurtn1m30ZR11fdDiBKUsq+w7fiaH78QHjyS9WNJnSnqBc+4nqyette+T9FuSXi7pJaN2ttZ+\ni6SflvRaSe8v/3mUH5a0IOnznXN/WT73K9baNUkvstb+U+fcm/bzYQAAAAAAAIDjrir1dWXTa63r\nlSRmWxCp64N8mXF0oZlQ6kuTL7D36/qgpRrXDsfbUj3RtXa+69gOQaqmAu+DFuqTZRORfXc0TkPg\n+uslrUl6/cDzv62YGfQca+1uM+xXOOe+Q9LIsnPW2tskfbGkP+4LHFVeVz5+3cRnDQAAAAAAAJxg\nVamvuxYzLdWMQggqQlAIMeBx12Kmiy16xFToFYXTqiplOdgvalA1FXR90NwUpSz5BhyNE33drbVL\niuXq3uOca/e/5pwLkt4l6aKkTxl1DOfczzjn3jjB2z1ZkpH0ziHH+DtJVyU9dfKzBwAAAAAAAE6+\nqtTX7fOZ7pjPdPt8puUGPWIGTbrAXqFXFE6SC81EmdHY8d3KjDZzr8xI5xqThSa6PmhugvJ2mL2T\nXrbu7vLx/hGv31c+PlbSh/f5XvdM8F6fZa3NnHP5Pt9LH/zgB/d7CGAqjDmcZoxvnHaMcZxmjG+c\ndoxxnGaMb5x2exnjIUhXOlLujbIxa+e5l7Ik6EJdusa6OY7AXsf3o11po5ASbR/juZfyEHQjly7W\njT464bju+KDbmtJlvgdTuffee/d9jJMePFosH9dHvL42sN1hvdejM3g/AAAAAAAAAKeIMdKFuvRo\nN4xcYPcKaqXS2dpWmS/gJDBGOleXfJBWi6DNIv5zYqT5mrSQSvNdqV1IkyQT5V5qpXF/HL6THjw6\ntWYRGQQmUd1FwJjDacT4xmnHGMdpxvjGaccYx2nG+MZpN6sx7kPQjY7Xeh7kFfuLzGVGS3VK1eHo\nHPQcHkLQA+uF8iDVxkSFuj4oM9Jtc/RNOyonPXh0o3ycH/H6wsB2h/FeKzN4LwAAAAAAAACnWNUr\narlx1GcCHB5jjG6bS3Vl02ut65UkZlsQqeuDfNnv60IzIXB0hE568OgjkoKkO0a8XvVEmkWR3apn\n0rj3+sgs+h0BAAAAAAAAAHAaGWN0sZXqfDPZkX23VDNaqqdk3x0DY9qyHX/OuTVJfyHpidbaZv9r\n1tpU0tMkfdw5d98M3u5dknJJnzf4grX2MyQtS/qTGbwPAAAAAAAAAACnWpV9d/t8pjvmM90+n2m5\nQeDouDjRwaPS6yXNSXr+wPPPkXRJ0s9WT1hrH2+t/ZS9vIlz7oqkN0l6urX2swde/q7y8WcFAAAA\nAAAAAABwgp30snWS9FOSvlbSa6y1d0t6t6QnSHqJpL+U9Jq+bf9GkpP0+OoJa+0ztdXH6MnVo7V2\ntfzny865t5X//N2SvlDSH1prXyPpk5K+tHz/1zvn3j7jzwYAAAAAAAAAAHCoTnzwyDnXtdb+I0mv\nlPTPJb1Q0sOKWUCvcM6t73KI/6Ct3kiVF5T/k6S3SXp6+V4fttY+TdKrJb1M0qKkD0l6qaQf3e9n\nAQAAAAAAAAAAOGonPngkSc65G4qZRi/ZZbsdxRKdc/dM+V4flPRV0+wDAAAAAAAAAABwUpyGnkcA\nAAAAAAAAAACYEYJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAA\nAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAA\nAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA\n6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAA\nAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAe\ngkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAA\nAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4\nBAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAA\nAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcA\nAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAAAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAA\nAOgheAQAAAAAAEy/3mkAABTBSURBVAAAAIAegkcAAAAAAAAAAADoIXgEAAAAAAAAAACAHoJHAAAA\nAAAAAAAA6CF4BAAAAAAAAAAAgB6CRwAAAAAAAAAAAOgheAQAAAAAAAAAAIAegkcAAAAAAAAAAADo\nIXgEAAAAAAAAAACAnuyoT2AWrLXnJL1C0rMk3SbpiqTfl/Ry59wDE+z/NEkvl/S5klqS/lbSf5T0\nOudcGNj2H0t6kaTPkTQv6QFJb5b0Kufcx2b1mQAAAAAAAAAAAI7Cic88sta2JL1V0rdJ+i+Snivp\npyV9taQ/tdae3WX/Z0h6i6R7Jb1S0jcrBo9+XNKPDGz7LZJ+V9Jdkl4l6ZvK93yOpHdba++ezacC\nAAAAAAAAAAA4Gqch8+jFkj5T0guccz9ZPWmtfZ+k31LMKHrJmP1/UtKmpC/oy1L6JWvtGyV9h7X2\nDc6591lrE0mvlrQi6fOdc1fKbX/RWusk/VR5Lt85w88GAAAAAAAAAABwqE585pGkr5e0Jun1A8//\ntqT7JT3HWmuG7WitfaokK+k/DSlv9zpJRjGrSJKWJF2Q9Dd9gaPK28vHe/byAQAAAAAAAAAAAI6L\nEx08stYuSXq8pPc459r9r5W9it4l6aKkTxlxiKeUj+8c8tqfl49PLY93TdKDku621tYHtr2nfHz/\nNOcPAAAAAAAAAABw3Jz0snVVj6H7R7x+X/n4WEkfHvL6PaP2d86tWGuvlftWXibp5yX9srX2FZKu\nSHqCpNeU7/XaKc4dOBbuvffeoz4F4MAwvnHaMcZxmjG+cdoxxnGaMb5x2jHGcZoxvlE50ZlHkhbL\nx/URr68NbLeX/Xv7Oud+SdKXS/piSX8t6WFJb5F0XbFn0sOTnTYAAAAAAAAAAMDxdNKDR4fKWvss\nSb8u6QOSvlHSl0h6iaR7Jb3ZWnvXEZ4eAAAAAAAAAADAvp30snU3ysf5Ea8vDGy3l/1vSJK19pxi\nybqPKmYZ5eU2b7bWvkXS/1IsX/dVk5w4AAAAAAAAAADAcXTSM48+IilIumPE61VPpA+OeL3qg7Rj\nf2vtGUln+vZ9avnvb+oLHEmSnHPvlfRJSf9w4jMHAAAAAAAAAAA4hk508Mg5tybpLyQ90Vrb7H/N\nWptKepqkjzvn7htxiHeUj5835LUvKB//pHysspOaQ7atnh/1GgAAAAAAAAAAwIlw0svWSdLrJf24\npOdL+rG+558j6ZKkV1RPWGsfL6ntnPuIFDOGrLXvkfSV1tofcM7dX25nJH2npK6kXyh3/3NJXtKz\nrLXf65zb7DvuMySdk/TmaU/+zJkzZtp9AAAAAAAAAAAADooJIRz1OeyLtbYm6X9IepKk10p6t6Qn\nSHqJYsm5z3XOrZfbBknOOff4vv2fKuktkh6U9KOSrkl6tqRnSnq5c+5Vfdv+v5K+W9JfKfY/+oSk\nT1MMNBlJX+ice88BflwAAAAAAAAAAIADdeKDR5JkrV2S9EpJ/1zSbZIelvRbkl7hnLvat92O4FH5\n/JMl/aBimbuGpL+R9Frn3BuGvNfXSvpWSX9P0lz5Xm+R9Crn3Adm/uEAAAAAAAAAAAAO0akIHgEA\nAAAAAAAAAGA2kqM+AQAAAAAAAAAAABwfBI8AAAAAAAAAAADQQ/AIAAAAAAAAAAAAPQSPAAAAAAAA\nAAAA0EPwCAAAAAAAAAAAAD0EjwAAAAAAAAAAANBD8AgAAAAAAAAAAAA9BI8AAAAAAAAAAADQkx31\nCQA4ONbax0n6VUmfI+l5zrmfH7Hdp0v6QUlfJGlJ0sck/bKkH3LOdSZ8r2+Q9EJJny7JS/qfkv6t\nc+7N+/wYwMSstc+W9O2S/n751Psk/Tvn3O9OsO8rJb1izCY/5px78b5PEtij/Yzvcv+WpH8l6dmS\n7pZ0Q9IfS3q5c+5vZ3/GwHSstc+R9K2KY7wu6T5JvyvpVc65R3bZ97mS3jBmk992zj1rRqcKTG0/\n47vcP5H0YknPk3SvpE1Jfyrplc65/++gzhsYZ4K5V5Le5px7+j6OwfyNIzOLMV4ehzkcx5a1tiHp\neyQ9R9Kdkq5I+j1J3+ecu7LLvs8Vc/ipRvAIOKWstc+T9OMTbPcESe+QtCHpNZLul/R0Sa+U9ERJ\nu07y1trvl/RvJL1FcWEzk/R8Sf/VWvtVzrn/sqcPAUyhL/jzAUk/IOm6pP9b0u9Ya/+Fc+7XJjzU\nKyX91ZDnPziD0wT2ZL/j21prJP22pP9D8Zf7fy3pdkkvlfROa+1TnHMfOrhPAIxnrf23isHNd0n6\nXkmrkp6m+HvFl1lrn+ScuzHBoX5C0luHPP+JGZ0qMLUZje+fkfSNkn5T0r+XdEbSiyS93Vr7DOfc\nOw/q/IEx3iLpK0e8doekH9Hw36uHYf7GcTSrMc4cjmPJWpspBoq+SNLrFG8Ef7LizeGfb6397Alv\nKmcOP6UIHgGnkLX2WyT9tKTXSnp/+c+j/LCkBUmf75z7y/K5X7HWrkl6kbX2nzrn3jTmve5SXMj8\nM0lf7Jwryud/TdJfS/oJa+2bnHPd/X4uYBRr7Z2Svk/xF5OnOOdWyud/XdKfS/pxa+1vO+fWJzjc\n25xzbz2wkwWmNKPx/WxJXyzp3zvnXtZ37D+S9G7FP2L/2QF9BGAsa+05Sd8t6aOSvtA51y5feoO1\n9orinZDPk/RjExzu3c65/3wgJwrswSzGt7X2HyguOv6Gc+6r+p7/TUl/q7hg88QD+QDAGM65jylW\nrdjBWvtGSY8o/q04CeZvHDuzGOPM4TjmvlXS/y7pG5xzv1g+98vl7yj/l6SnSvofExyHOfyUoucR\ncHp9hXPuOySNvEPAWnub4mLiH/cFjiqvKx+/bpf3+RpJNUmvqwJHklQubv6CpFsk/aMpzx2Y1hcr\n3hDxc9XCuiQ559Yk/aikC5KeeUTnBuzXLMb315eP2zJSnXPvUcw+/TJr7fLMzhiYzl2KY/xdfQvr\nlbeXj/cc6hkBszOL8V3N4dsCTM65T0j6LUmfXVYTAI4Fa+1XSPpySf9ykrKMwEkz5RhnDsdx9gLF\nKiu/1P+kc+5VzrnHOucmCRzhFCN4BJxCzrmfcc69cYJNnyzJSNqRIu2c+ztJVxXvMhjnKeXjsDTr\nPy8fdzsGsF+3lY8fHvLae8vHpwx5bSRrbd1aW9/XWQGzMYvx/RRJH3fO3T/ktT9XvAmAOx5xVD4i\nqa3YA2DQPeXj+6c5oLW2Zq1t7vO8gFmYxfh+iqRCsezdIH7fxrFS9s74McXx+nN72J/5G8faHsY4\ncziOJWvtHZIeL+nNzrlQPtcsS57v9ZjM4acMwSPg5nZP+ThsMVGKjXzvLGug7uUY95WPj536zIDp\nXC8fLw55baN8vHvCY32VtfavFBd62tbav7TW7paBBxykfY1va+2ipHMaP9dLzNU4Is6564q9Ez/b\nWvtaa+3/Zq29ZK39MsWSje+V9CsTHu4Z1tp3Kc7hG9baD1lrv3M/fwQD+zGj8X2PpIdHlIFmDsdx\n882KDddfVi1GToj5GyfFtGP8HjGH43h6fPn4IWvti6y1H1X8+3LDWvtGa+3jpjgWc/gpRc8j4ASw\n1j5ngs0+6Zz74ykPvVg+juqTsda33aNjjlGMaKDXvz8wlSnH/TvKf/8/FXu39Ht2+bgw4Vs/U7EX\n2Aclfaqkl0r6RWvt7c65/2fCYwBjHfL4nmauB2Zi2t9dnHOvttY+pNiv8YV92/yupK93zm1O+NZf\nqjiH/4BiubDvKP/9UyV924THAMY6gvE97ndx5nDM1H7+9iwzMr5H0tudc2+b8q2Zv3EojmCMM4fj\n0Ew5vs+V//4NkuqSXi3pIcUeSC+U9A+stZ/lnHtggmMyh59SBI+Ak+GXdt9Efyhp2uARcJxNPO6d\nc++x1v6hpC+x1r5B0qvK17+2/J9XvANmnF+W9GeS3lneJSxJf2Ct/XVJH5D0CmvtTzvnrk37QYAh\nDnt8A4dtqt9drLXfptiT682Sfk3SZcUSLi+T9PvW2mfuMv/+N8Xg/3udcw9WT1prf0nSX0h6vrX2\nx5xzH9jLhwEGHPb4Bg7Tfv72fK6kx0j69inej/kbh+2wxzhwmKYZ31WZ/lskfUZf/643lTe9vFrS\ndyneUDsKc/gpR/AIOBnOTrDNsBTo3dwoH+dHvF7dyb4y4vXqGKm1tjGkCfBC3zbAtKYd98+W9AbF\nX+ifWz73HklfKendij28Rir7fP3dkOcfttb+Z8XyBJ8n6fcmOC9gN4c5vied65mrMUsTj3FrrVVc\nWP8j59w/7nv9D62175P0Rknfq7jQPlTZdPoTQ57fKIOur1a8i5I/XDELhzq+Fedn5nAclv387flN\nkh5RzKqbCPM3jsChjnExh+NwTTO+V8vHN/UFjiqvV5x/nz7uQMzhpx/BI+AEOMA7Eavm63eMeP1u\nSR9xzuW7HONJ5TE+NGR/KZb/AqYy7bgvt/8Ka+1tinWlH3LOfdha+5nlJn+zj9N5qHxc2scxgJ7D\nHN/OuVVr7WWNn+sl5mrM0JRj/BmKf5f85pDX/qukIOkf7uN0mMMxU0cwvj8s6UnW2vqQUtHM4Zip\nvf7taa29R9KTJf3iiN4ue8H8jZk7gjHOHI5DM+X4/mj5mA557Yri7yj7mX+Zw08BgkfAze1dknLF\nbIptrLWfIWlZ0u/scox3KN75/nnaGTz6gvLxT/Z3msDkynq8/TV5n1k+/vdR+1hra5L+mSTvnPuN\nYZuUj/cNeQ04NHsZ36V3SPpya+1dzrnBcfwFio1R3zObswSmVt2N2xzyWkOSGfFaj7X2WZLOOed+\nbtjL5SNzOI7Cvse34hz+OZI+V9LbB16rft/+072eIDAjX1I+TlVKnfkbJ8iexriYw3F8/bWk65I+\na8hrdyr+jnL/uAMwh59+yVGfAICj45y7IulNkp5urf3sgZe/q3z82eoJa+2ctfbx1tpb+rb7NcVF\nx2+31mZ9255XbLr3IUlvPYDTB3qstQvW2g9Ya99qrTV9z1+U9J2S/tQ59xd9z18ox/KiJJV3jv1r\nSb9orb134NifLulZir80vesQPg6wzX7Hd+n15eN3Dhz7ixSzR3/dObcq4Gi8o3z86v4xXvrKgW1k\nrT1TjvFzfdt9m6TXW2u/oH/n8neWb5S0rljfHThssxjfb1C8+3dwDr9X0j+R9Bbn3OBNXMBhe1L5\n+P5RGzB/44Tb6xhnDsexVGbC/apiZtw/GXj5heVj74Zy5vCbE5lHwClkrX2mtu5yfHL1aK2tFgYv\nO+feVv7zd0v6QsW666+R9ElJX6rYhP31zrn+O2OeIuktkn5a0rdKknPuIWvtv1Ss5f7frbW/oHj3\n5AsVU1O/2jnnD+BjAj1lWa7/pjjuftda+58UM+depDgenz+wywslvULS10j69fK5F0j6A0l/Yq39\nCUkfUbxT5tsleUnfPMMSHMDEZjG+nXO/Y639TUkvttYuKd4xebdi89P7FfttAEfCOfcOa+1vKC6k\n/0k5xi8r3qX7AsWSF6/u2+UrFBdi/pWkHyqf+y7FBfjfs9b+pOKdlHcqfh/OSvqm8qYZ4FDNYnw7\n595nrf0RSS+x1v6WYgm8C5JeovImrkP6OMA4n1o+fnTMNszfOMn2NMaZw3HMvUIxq+43rLU/pDi+\nnyHp6yS9V9JP9W3LHH4TIngEnE7/QVu1cysvKP8nSW9T2fSu7JnxNMU/Wl8maVExW+ilkn50kjdz\nzr3WWntF8U6an1Ashfdniovt7xi7MzA7L1YMfn6D4i84q5L+SNL3TXInl3Puj6y1T5X0/ZK+Q9IZ\nxWaofyDp3znn3ntQJw5MYF/ju/Q1kr5H0nMU/xh4VLHZ7/c55x6c+RkD0/kaxVIuz1X8naSuOOZ/\nTtK/KZvxjuSce7+19omSXl4e47xi8+l3SnqNc+6tB3XiwAT2Nb5LL1W8seX5kv6j4p28b5X0/c65\nv579KQNTq5q0r0yzE/M3TpA9jfEScziOJefcZWvt50p6laRvUQxsPiDphyX9oHNuY5f9mcNPORNC\nOOpzAPD/t3c/L5dPcQDH34+oUaSmbCxYUGeBhfIPUChSoixMZGdhtnY2shdZqFlY+BGaNOUPoGyn\nZkHUiYVJWVhbWMzMY/Hc5zTJsNFzr+v12pz7/Z7NZ3t7d74HAAAAAAB2hDuPAAAAAAAAWMQjAAAA\nAAAAFvEIAAAAAACARTwCAAAAAABgEY8AAAAAAABYxCMAAAAAAAAW8QgAAAAAAIBFPAIAAAAAAGAR\njwAAAAAAAFjEIwAAAAAAABbxCAAAAAAAgEU8AgAAAAAAYBGPAAAAAAAAWMQjAAAAAAAAFvEIAAAA\nAACA5eZtDwAAAMA/G2PcX71WPVadri5X78053xljHFSXqjur++acv29vUgAA4L/u4PDwcNszAAAA\n8DfGGGert6pr1VfVleqJ6pbq+epq9Xn1ypzz3LbmBAAA9oOTRwAAADtsjPFC9W71a/XInPP7zfsX\nqw+qZ6oHqx+r97c1JwAAsD/EIwAAgB01xri1envzePY4HG1c2KzPVqeqM3POKyc5HwAAsJ9u2vYA\nAAAA3NBzHd1jdHHOef76jTnnbx19xu5U9W31ycmPBwAA7CPxCAAAYHc9uVnP32D/+D/d63NOF9oC\nAAD/CvEIAABgdz28Wb/+88YY447Nz2/mnF+c3EgAAMC+E48AAAB2192b9Ze/2Htjs/58QrMAAAD/\nE+IRAADA7jr+FN3p61+OMR6qXt08Xj3RiQAAgL0nHgEAAOyu7zbrcShqjHFX9Wl1bfPq3jHGwUkP\nBgAA7K+Dw0N3qgIAAOyiMcaZ6qPN48XqcvV4dVv1cvVmdU/1ZXVuzvnZFsYEAAD2jJNHAAAAO2rO\n+XH1UnWpeqB6qvqpenrO+WFHAemH6tHq9u1MCQAA7BsnjwAAAAAAAFicPAIAAAAAAGARjwAAAAAA\nAFjEIwAAAAAAABbxCAAAAAAAgEU8AgAAAAAAYBGPAAAAAAAAWMQjAAAAAAAAFvEIAAAAAACARTwC\nAAAAAABgEY8AAAAAAABYxCMAAAAAAAAW8QgAAAAAAIBFPAIAAAAAAGARjwAAAAAAAFjEIwAAAAAA\nABbxCAAAAAAAgEU8AgAAAAAAYBGPAAAAAAAAWP4AgExsfvB7hpMAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": { + "tags": [], + "image/png": { + "width": 839, + "height": 277 + } + } + } + ] + }, + { + "metadata": { + "id": "e6RYS1_jIA0y", + "colab_type": "text" + }, + "cell_type": "markdown", + "source": [ + "## References\n", + "\n", + "[1] Dalal, Fowlkes and Hoadley (1989),JASA, 84, 945-957.\n", + "\n", + "[2] Cronin, Beau. \"Why Probabilistic Programming Matters.\" 24 Mar 2013. Google, Online Posting to Google . Web. 24 Mar. 2013. .\n", + "\n", + "[3] Gelman, Andrew. \"Philosophy and the practice of Bayesian statistics.\" British Journal of Mathematical and Statistical Psychology. (2012): n. page. Web. 2 Apr. 2013.\n", + "\n", + "[4] Greenhill, Brian, Michael D. Ward, and Audrey Sacks. \"The Separation Plot: A New Visual Method for Evaluating the Fit of Binary Models.\" American Journal of Political Science. 55.No.4 (2011): n. page. Web. 2 Apr. 2013.\n" ] - }, - "metadata": { - "image/png": { - "height": 277, - "width": 839 - }, - "tags": [] - }, - "output_type": "display_data" + }, + { + "metadata": { + "id": "TxfPXLi0IA0z", + "colab_type": "code", + "colab": {} + }, + "cell_type": "code", + "source": [ + "from IPython.core.display import HTML\n", + "def css_styling():\n", + " styles = open(\"../styles/custom.css\", \"r\").read()\n", + " return HTML(styles)\n", + "css_styling()\n" + ], + "execution_count": 0, + "outputs": [] } - ], - "source": [ - "#type your code here.\n", - "plt.figure(figsize(12.5, 4))\n", - "\n", - "plt.scatter(alpha_samples_, beta_samples_, alpha=0.1)\n", - "plt.title(\"Why does the plot look like this?\")\n", - "plt.xlabel(r\"$\\alpha$\")\n", - "plt.ylabel(r\"$\\beta$\");" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "colab_type": "text", - "id": "e6RYS1_jIA0y" - }, - "source": [ - "## References\n", - "\n", - "[1] Dalal, Fowlkes and Hoadley (1989),JASA, 84, 945-957.\n", - "\n", - "[2] Cronin, Beau. \"Why Probabilistic Programming Matters.\" 24 Mar 2013. Google, Online Posting to Google . Web. 24 Mar. 2013. .\n", - "\n", - "[3] Gelman, Andrew. \"Philosophy and the practice of Bayesian statistics.\" British Journal of Mathematical and Statistical Psychology. (2012): n. page. Web. 2 Apr. 2013.\n", - "\n", - "[4] Greenhill, Brian, Michael D. Ward, and Audrey Sacks. \"The Separation Plot: A New Visual Method for Evaluating the Fit of Binary Models.\" American Journal of Political Science. 55.No.4 (2011): n. page. Web. 2 Apr. 2013.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 0, - "metadata": { - "colab": {}, - "colab_type": "code", - "id": "TxfPXLi0IA0z" - }, - "outputs": [], - "source": [ - "from IPython.core.display import HTML\n", - "def css_styling():\n", - " styles = open(\"../styles/custom.css\", \"r\").read()\n", - " return HTML(styles)\n", - "css_styling()\n" - ] - } - ], - "metadata": { - "accelerator": "GPU", - "colab": { - "collapsed_sections": [], - "name": "Ch2_MorePyMC_TFP.ipynb", - "provenance": [], - "version": "0.3.2" - }, - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} + ] +} \ No newline at end of file