|
22 | 22 | " \n", |
23 | 23 | "> Explore change detection datasets visually and against Planet imagery\n", |
24 | 24 | "\n", |
25 | | - "4. [4. Change Detections Tip & Cue Tasking](#4.-Change-Detections-Tip-&-Cue-Tasking)\n", |
| 25 | + "4. [Change Detections Tip & Cue Tasking](#4.-Change-Detections-Tip-&-Cue-Tasking)\n", |
26 | 26 | " \n", |
27 | 27 | "> Task high resolution collects using change detections\n" |
28 | 28 | ] |
|
181 | 181 | "outputs": [], |
182 | 182 | "source": [ |
183 | 183 | "# Define the Subscripton UUID\n", |
184 | | - "subscription_id = \"PASTE_YOUR_SUBSCRIPTION ID HERE\"\n", |
185 | | - "# Example subscription IDs:\n", |
186 | | - "#subscription_id = \"635c57d3-b921-453f-8e79-70929e50a470\" # Monthly Building Construction\n", |
187 | | - "#subscription_id = \"8869cf69-9596-47ab-8d94-52b94fcf528e\" # Monthly Road Construction\n", |
| 184 | + "#subscription_id = \"PASTE_YOUR_SUBSCRIPTION ID HERE\"\n", |
| 185 | + "\n", |
| 186 | + "# Define the Subscripton UUID\n", |
| 187 | + "#subscription_id = \"PASTE_YOUR_SUBSCRIPTION ID HERE\"\n", |
| 188 | + "\n", |
| 189 | + "# Example subcription IDs:\n", |
| 190 | + "\n", |
| 191 | + "# Melbourne, Australia:\n", |
| 192 | + "subscription_id = \"2f71f34a-c9f0-4348-9c5d-278b1d7a6b02\" # Monthly Road Construction\n", |
| 193 | + "#subscription_id = \"234e9cb1-49f1-418a-899e-52e4edfd55d4\" # Monthly Building Construction\n", |
| 194 | + "\n", |
| 195 | + "# Mckinney City, Texas, USA:\n", |
| 196 | + "#subscription_id = \"c84d91c5-2d04-4447-a0a6-806b2a297343\" # Monthly Building Construction\n", |
| 197 | + "\n", |
| 198 | + "# Old Baldy, New Mexico, USA:\n", |
| 199 | + "#subscription_id = \"c4ed4a53-dacf-4fa3-8570-5804f67c330b\"\n", |
188 | 200 | "\n", |
189 | 201 | "# Construct the URL for the Subscription\n", |
190 | 202 | "subscription_url = PAA_BASE_URL + 'subscriptions/' + subscription_id\n", |
|
688 | 700 | "detection_plot = gv.Shape(shape(single_detection['geometry'])).options(padding=3, fill_alpha=0, line_color='red', active_tools=['pan', 'wheel_zoom'])\n", |
689 | 701 | "\n", |
690 | 702 | "# Format dates\n", |
691 | | - "observed_date = single_detection['observed'].strftime('%B, %Y')\n", |
692 | 703 | "before_date = single_detection['date_before'].strftime('%B, %Y')\n", |
| 704 | + "observed_date = single_detection['observed'].strftime('%B, %Y')\n", |
693 | 705 | "\n", |
694 | 706 | "# Create plots for the imagery\n", |
695 | | - "observed_imagery_plot = gv.WMTS(get_mosaic_url(single_detection['source_mosaic_after'])).options(title=observed_date, width=400, height=400)\n", |
696 | 707 | "before_imagery_plot = gv.WMTS(get_mosaic_url(single_detection['source_mosaic_before'])).options(title=before_date, width=400, height=400)\n", |
| 708 | + "observed_imagery_plot = gv.WMTS(get_mosaic_url(single_detection['source_mosaic_after'])).options(title=observed_date, width=400, height=400)\n", |
697 | 709 | "\n", |
698 | 710 | "# Show the combined plots\n", |
699 | | - "detection_plot * (observed_imagery_plot + before_imagery_plot)\n" |
| 711 | + "detection_plot * (before_imagery_plot + observed_imagery_plot)\n" |
700 | 712 | ] |
701 | 713 | }, |
702 | 714 | { |
|
0 commit comments