|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Getting started with the Data API" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "### **Let's search & download some imagery of farmland near Stockton, CA. Here are the steps we'll follow:**\n", |
| 15 | + "\n", |
| 16 | + "1. Define an Area of Interest (AOI)\n", |
| 17 | + "2. Save our AOI's coordinates to GeoJSON format\n", |
| 18 | + "3. Create a few search filters\n", |
| 19 | + "4. Search for imagery using those filters\n", |
| 20 | + "5. Activate an image for downloading\n", |
| 21 | + "6. Download an image" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "### Requirements\n", |
| 29 | + "- Python 2.7 or 3+\n", |
| 30 | + "- requests\n", |
| 31 | + "- A [Planet API Key](https://www.planet.com/account/#/)" |
| 32 | + ] |
| 33 | + }, |
| 34 | + { |
| 35 | + "cell_type": "markdown", |
| 36 | + "metadata": {}, |
| 37 | + "source": [ |
| 38 | + "## Define an Area of Interest" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "markdown", |
| 43 | + "metadata": {}, |
| 44 | + "source": [ |
| 45 | + "An **Area of Interest** (or *AOI*) is how we define the geographic \"window\" out of which we want to get data.\n", |
| 46 | + "\n", |
| 47 | + "For the Data API, this could be a simple bounding box with four corners, or a more complex shape, as long as the definition is in [GeoJSON](http://geojson.org/) format. \n", |
| 48 | + "\n", |
| 49 | + "For this example, let's just use a simple box. To make it easy, I'll use [geojson.io](http://geojson.io/) to quickly draw a shape & generate GeoJSON output for our box:" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "metadata": {}, |
| 55 | + "source": [ |
| 56 | + "" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "markdown", |
| 61 | + "metadata": {}, |
| 62 | + "source": [ |
| 63 | + "We only need the \"geometry\" object for our Data API request:" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": { |
| 70 | + "scrolled": true |
| 71 | + }, |
| 72 | + "outputs": [], |
| 73 | + "source": [ |
| 74 | + "# Stockton, CA bounding box (created via geojson.io) \n", |
| 75 | + "geojson_geometry = {\n", |
| 76 | + " \"type\": \"Polygon\",\n", |
| 77 | + " \"coordinates\": [\n", |
| 78 | + " [ \n", |
| 79 | + " [-121.59290313720705, 37.93444993515032],\n", |
| 80 | + " [-121.27017974853516, 37.93444993515032],\n", |
| 81 | + " [-121.27017974853516, 38.065932950547484],\n", |
| 82 | + " [-121.59290313720705, 38.065932950547484],\n", |
| 83 | + " [-121.59290313720705, 37.93444993515032]\n", |
| 84 | + " ]\n", |
| 85 | + " ]\n", |
| 86 | + "}" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "markdown", |
| 91 | + "metadata": {}, |
| 92 | + "source": [ |
| 93 | + "## Create Filters" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "markdown", |
| 98 | + "metadata": {}, |
| 99 | + "source": [ |
| 100 | + "Now let's set up some **filters** to further constrain our Data API search:" |
| 101 | + ] |
| 102 | + }, |
| 103 | + { |
| 104 | + "cell_type": "code", |
| 105 | + "execution_count": null, |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [], |
| 108 | + "source": [ |
| 109 | + "# get images that overlap with our AOI \n", |
| 110 | + "geometry_filter = {\n", |
| 111 | + " \"type\": \"GeometryFilter\",\n", |
| 112 | + " \"field_name\": \"geometry\",\n", |
| 113 | + " \"config\": geojson_geometry\n", |
| 114 | + "}\n", |
| 115 | + "\n", |
| 116 | + "# get images acquired within a date range\n", |
| 117 | + "date_range_filter = {\n", |
| 118 | + " \"type\": \"DateRangeFilter\",\n", |
| 119 | + " \"field_name\": \"acquired\",\n", |
| 120 | + " \"config\": {\n", |
| 121 | + " \"gte\": \"2016-08-31T00:00:00.000Z\",\n", |
| 122 | + " \"lte\": \"2016-09-01T00:00:00.000Z\"\n", |
| 123 | + " }\n", |
| 124 | + "}\n", |
| 125 | + "\n", |
| 126 | + "# only get images which have <50% cloud coverage\n", |
| 127 | + "cloud_cover_filter = {\n", |
| 128 | + " \"type\": \"RangeFilter\",\n", |
| 129 | + " \"field_name\": \"cloud_cover\",\n", |
| 130 | + " \"config\": {\n", |
| 131 | + " \"lte\": 0.5\n", |
| 132 | + " }\n", |
| 133 | + "}\n", |
| 134 | + "\n", |
| 135 | + "# combine our geo, date, cloud filters\n", |
| 136 | + "combined_filter = {\n", |
| 137 | + " \"type\": \"AndFilter\",\n", |
| 138 | + " \"config\": [geometry_filter, date_range_filter, cloud_cover_filter]\n", |
| 139 | + "}\n" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "markdown", |
| 144 | + "metadata": {}, |
| 145 | + "source": [ |
| 146 | + "## Searching: Items and Assets" |
| 147 | + ] |
| 148 | + }, |
| 149 | + { |
| 150 | + "cell_type": "markdown", |
| 151 | + "metadata": {}, |
| 152 | + "source": [ |
| 153 | + "Planet's products are categorized as **items** and **assets**: an item is a single picture taken by a satellite at a certain time. Items have multiple asset types including the image in different formats, along with supporting metadata files.\n", |
| 154 | + "\n", |
| 155 | + "For this demonstration, let's get a satellite image that is best suited for visual applications; e.g., basemaps or visual analysis. Since we're not doing any spectral analysis outside of the visual range, we only need a 3-band (RGB) image. To get the image we want, we will specify an item type of `PSScene3Band`, and asset type `visual`.\n", |
| 156 | + "\n", |
| 157 | + "You can learn more about item & asset types in Planet's Data API [here](https://planet.com/docs/reference/data-api/items-assets/).\n", |
| 158 | + "\n", |
| 159 | + "Now let's search for all the items that match our filters:" |
| 160 | + ] |
| 161 | + }, |
| 162 | + { |
| 163 | + "cell_type": "code", |
| 164 | + "execution_count": null, |
| 165 | + "metadata": {}, |
| 166 | + "outputs": [], |
| 167 | + "source": [ |
| 168 | + "import os\n", |
| 169 | + "import json\n", |
| 170 | + "import requests\n", |
| 171 | + "from requests.auth import HTTPBasicAuth\n", |
| 172 | + "\n", |
| 173 | + "# API Key stored as an env variable\n", |
| 174 | + "PLANET_API_KEY = os.getenv('PL_API_KEY')\n", |
| 175 | + "\n", |
| 176 | + "item_type = \"PSScene3Band\"\n", |
| 177 | + "\n", |
| 178 | + "# API request object\n", |
| 179 | + "search_request = {\n", |
| 180 | + " \"interval\": \"day\",\n", |
| 181 | + " \"item_types\": [item_type], \n", |
| 182 | + " \"filter\": combined_filter\n", |
| 183 | + "}\n", |
| 184 | + "\n", |
| 185 | + "# fire off the POST request\n", |
| 186 | + "search_result = \\\n", |
| 187 | + " requests.post(\n", |
| 188 | + " 'https://api.planet.com/data/v1/quick-search',\n", |
| 189 | + " auth=HTTPBasicAuth(PLANET_API_KEY, ''),\n", |
| 190 | + " json=search_request)\n", |
| 191 | + "\n", |
| 192 | + "print(json.dumps(search_result.json(), indent=1))" |
| 193 | + ] |
| 194 | + }, |
| 195 | + { |
| 196 | + "cell_type": "markdown", |
| 197 | + "metadata": {}, |
| 198 | + "source": [ |
| 199 | + "Our search returns metadata for all of the images within our AOI that match our date range and cloud coverage filters. It looks like there are multiple images here; let's extract a list of just those image IDs:" |
| 200 | + ] |
| 201 | + }, |
| 202 | + { |
| 203 | + "cell_type": "code", |
| 204 | + "execution_count": null, |
| 205 | + "metadata": {}, |
| 206 | + "outputs": [], |
| 207 | + "source": [ |
| 208 | + "# extract image IDs only\n", |
| 209 | + "image_ids = [feature['id'] for feature in search_result.json()['features']]\n", |
| 210 | + "print(image_ids)" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "markdown", |
| 215 | + "metadata": {}, |
| 216 | + "source": [ |
| 217 | + "Since we just want a single image, and this is only a demonstration, for our purposes here we can arbitrarily select the first image in that list. Let's do that, and get the `asset` list available for that image:" |
| 218 | + ] |
| 219 | + }, |
| 220 | + { |
| 221 | + "cell_type": "code", |
| 222 | + "execution_count": null, |
| 223 | + "metadata": {}, |
| 224 | + "outputs": [], |
| 225 | + "source": [ |
| 226 | + "# For demo purposes, just grab the first image ID\n", |
| 227 | + "id0 = image_ids[0]\n", |
| 228 | + "id0_url = 'https://api.planet.com/data/v1/item-types/{}/items/{}/assets'.format(item_type, id0)\n", |
| 229 | + "\n", |
| 230 | + "# Returns JSON metadata for assets in this ID. Learn more: planet.com/docs/reference/data-api/items-assets/#asset\n", |
| 231 | + "result = \\\n", |
| 232 | + " requests.get(\n", |
| 233 | + " id0_url,\n", |
| 234 | + " auth=HTTPBasicAuth(PLANET_API_KEY, '')\n", |
| 235 | + " )\n", |
| 236 | + "\n", |
| 237 | + "# List of asset types available for this particular satellite image\n", |
| 238 | + "print(result.json().keys())\n" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "markdown", |
| 243 | + "metadata": {}, |
| 244 | + "source": [ |
| 245 | + " ## Activation and Downloading\n", |
| 246 | + " \n", |
| 247 | + "The Data API does not pre-generate assets, so they are not always immediately availiable to download. In order to download an asset, we first have to **activate** it.\n", |
| 248 | + "\n", |
| 249 | + "Remember, earlier we decided we wanted a color-corrected image best suited for *visual* applications. We can check the status of the visual asset we want to download like so:\n", |
| 250 | + " " |
| 251 | + ] |
| 252 | + }, |
| 253 | + { |
| 254 | + "cell_type": "code", |
| 255 | + "execution_count": null, |
| 256 | + "metadata": {}, |
| 257 | + "outputs": [], |
| 258 | + "source": [ |
| 259 | + "# This is \"inactive\" if the \"visual\" asset has not yet been activated; otherwise 'active'\n", |
| 260 | + "print(result.json()['visual']['status'])" |
| 261 | + ] |
| 262 | + }, |
| 263 | + { |
| 264 | + "cell_type": "markdown", |
| 265 | + "metadata": {}, |
| 266 | + "source": [ |
| 267 | + "Let's now go ahead and **activate** that asset for download:" |
| 268 | + ] |
| 269 | + }, |
| 270 | + { |
| 271 | + "cell_type": "code", |
| 272 | + "execution_count": null, |
| 273 | + "metadata": {}, |
| 274 | + "outputs": [], |
| 275 | + "source": [ |
| 276 | + "# Parse out useful links\n", |
| 277 | + "links = result.json()[u\"visual\"][\"_links\"]\n", |
| 278 | + "self_link = links[\"_self\"]\n", |
| 279 | + "activation_link = links[\"activate\"]\n", |
| 280 | + "\n", |
| 281 | + "# Request activation of the 'visual' asset:\n", |
| 282 | + "activate_result = \\\n", |
| 283 | + " requests.get(\n", |
| 284 | + " activation_link,\n", |
| 285 | + " auth=HTTPBasicAuth(PLANET_API_KEY, '')\n", |
| 286 | + " )" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "markdown", |
| 291 | + "metadata": {}, |
| 292 | + "source": [ |
| 293 | + "At this point, we wait for the activation status for the asset we are requesting to change from `inactive` to `active`. We can monitor this by polling the \"status\" of the asset:" |
| 294 | + ] |
| 295 | + }, |
| 296 | + { |
| 297 | + "cell_type": "code", |
| 298 | + "execution_count": null, |
| 299 | + "metadata": {}, |
| 300 | + "outputs": [], |
| 301 | + "source": [ |
| 302 | + "activation_status_result = \\\n", |
| 303 | + " requests.get(\n", |
| 304 | + " self_link,\n", |
| 305 | + " auth=HTTPBasicAuth(PLANET_API_KEY, '')\n", |
| 306 | + " )\n", |
| 307 | + " \n", |
| 308 | + "print(activation_status_result.json()[\"status\"])" |
| 309 | + ] |
| 310 | + }, |
| 311 | + { |
| 312 | + "cell_type": "markdown", |
| 313 | + "metadata": {}, |
| 314 | + "source": [ |
| 315 | + "Once the asset has finished activating (status is \"active\"), we can download it. \n", |
| 316 | + "\n", |
| 317 | + "*Note: the download link on an active asset is temporary*" |
| 318 | + ] |
| 319 | + }, |
| 320 | + { |
| 321 | + "cell_type": "code", |
| 322 | + "execution_count": null, |
| 323 | + "metadata": {}, |
| 324 | + "outputs": [], |
| 325 | + "source": [ |
| 326 | + "# Image can be downloaded by making a GET with your Planet API key, from here:\n", |
| 327 | + "download_link = activation_status_result.json()[\"location\"]\n", |
| 328 | + "print(download_link)" |
| 329 | + ] |
| 330 | + }, |
| 331 | + { |
| 332 | + "cell_type": "markdown", |
| 333 | + "metadata": {}, |
| 334 | + "source": [ |
| 335 | + "" |
| 336 | + ] |
| 337 | + }, |
| 338 | + { |
| 339 | + "cell_type": "markdown", |
| 340 | + "metadata": {}, |
| 341 | + "source": [ |
| 342 | + " " |
| 343 | + ] |
| 344 | + } |
| 345 | + ], |
| 346 | + "metadata": { |
| 347 | + "kernelspec": { |
| 348 | + "display_name": "Python 2", |
| 349 | + "language": "python", |
| 350 | + "name": "python2" |
| 351 | + }, |
| 352 | + "language_info": { |
| 353 | + "codemirror_mode": { |
| 354 | + "name": "ipython", |
| 355 | + "version": 2 |
| 356 | + }, |
| 357 | + "file_extension": ".py", |
| 358 | + "mimetype": "text/x-python", |
| 359 | + "name": "python", |
| 360 | + "nbconvert_exporter": "python", |
| 361 | + "pygments_lexer": "ipython2", |
| 362 | + "version": "2.7.14" |
| 363 | + } |
| 364 | + }, |
| 365 | + "nbformat": 4, |
| 366 | + "nbformat_minor": 1 |
| 367 | +} |
0 commit comments