Skip to content

Commit 85dc1cb

Browse files
authored
code for Iris data
1 parent 55455bc commit 85dc1cb

File tree

1 file changed

+46
-0
lines changed

1 file changed

+46
-0
lines changed

Iris-Model/irismodel.py

Lines changed: 46 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,46 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
4+
@author: FaizMohammad
5+
"""
6+
7+
#importing all the required Modules
8+
import numpy as np
9+
import pandas as pd
10+
import matplotlib.pyplot as plt
11+
from sklearn.datasets import load_iris
12+
from sklearn.metrics import confusion_matrix,accuracy_score
13+
from sklearn.cross_validation import train_test_split
14+
from sklearn.tree import DecisionTreeClassifier
15+
16+
17+
#insert iris_data from sklearn.datasets and separate features and target
18+
#let's take X = features and y = Target
19+
20+
iris = load_iris()
21+
X = iris.data
22+
y= iris.target
23+
24+
#Now let's divide the data for traning and testing with test-size= 20%
25+
X_train,X_test,y_train,y_test= train_test_split(X,y,test_size=0.2,random_state=0)
26+
27+
#Select Decision tree Classifier algorithm for model fitting
28+
classifier = DecisionTreeClassifier()
29+
classifier.fit(X_train,y_train)
30+
31+
#Now check the Model prediction with testing data
32+
predict = classifier.predict(X_test)
33+
34+
#and at last check the Model Accuracy
35+
cm= accuracy_score(pred,y_test)
36+
37+
#plot (X VS y )graph where X-label is sepal length(cm) and y-label is sepal width(cm)
38+
feature1=0
39+
feature2=1
40+
formatter = plt.FuncFormatter(lambda i, *args: iris.target_names[int(i)])
41+
plt.figure(figsize=(5,4))
42+
plt.scatter(X[:,feature1],X[:,feature2],c=y)
43+
plt.colorbar(ticks=[0,1,2],format=formatter)
44+
plt.xlabel(iris.feature_names[0])
45+
plt.ylabel(iris.feature_names[1])
46+
plt.show()

0 commit comments

Comments
 (0)