1+ # -*- coding: utf-8 -*-
2+ """
3+
4+ @author: FaizMohammad
5+ """
6+
7+ #importing all the required Modules
8+ import numpy as np
9+ import pandas as pd
10+ import matplotlib .pyplot as plt
11+ from sklearn .datasets import load_iris
12+ from sklearn .metrics import confusion_matrix ,accuracy_score
13+ from sklearn .cross_validation import train_test_split
14+ from sklearn .tree import DecisionTreeClassifier
15+
16+
17+ #insert iris_data from sklearn.datasets and separate features and target
18+ #let's take X = features and y = Target
19+
20+ iris = load_iris ()
21+ X = iris .data
22+ y = iris .target
23+
24+ #Now let's divide the data for traning and testing with test-size= 20%
25+ X_train ,X_test ,y_train ,y_test = train_test_split (X ,y ,test_size = 0.2 ,random_state = 0 )
26+
27+ #Select Decision tree Classifier algorithm for model fitting
28+ classifier = DecisionTreeClassifier ()
29+ classifier .fit (X_train ,y_train )
30+
31+ #Now check the Model prediction with testing data
32+ predict = classifier .predict (X_test )
33+
34+ #and at last check the Model Accuracy
35+ cm = accuracy_score (pred ,y_test )
36+
37+ #plot (X VS y )graph where X-label is sepal length(cm) and y-label is sepal width(cm)
38+ feature1 = 0
39+ feature2 = 1
40+ formatter = plt .FuncFormatter (lambda i , * args : iris .target_names [int (i )])
41+ plt .figure (figsize = (5 ,4 ))
42+ plt .scatter (X [:,feature1 ],X [:,feature2 ],c = y )
43+ plt .colorbar (ticks = [0 ,1 ,2 ],format = formatter )
44+ plt .xlabel (iris .feature_names [0 ])
45+ plt .ylabel (iris .feature_names [1 ])
46+ plt .show ()
0 commit comments