Skip to content

Commit b5e2bd8

Browse files
committed
Added reshaping examples
1 parent 3ce7c8c commit b5e2bd8

File tree

1 file changed

+150
-55
lines changed

1 file changed

+150
-55
lines changed

Numpy and Pandas.ipynb

Lines changed: 150 additions & 55 deletions
Original file line numberDiff line numberDiff line change
@@ -2,10 +2,8 @@
22
"cells": [
33
{
44
"cell_type": "code",
5-
"execution_count": 4,
6-
"metadata": {
7-
"collapsed": true
8-
},
5+
"execution_count": 2,
6+
"metadata": {},
97
"outputs": [],
108
"source": [
119
"import pandas as pd\n",
@@ -22,10 +20,8 @@
2220
},
2321
{
2422
"cell_type": "code",
25-
"execution_count": 123,
26-
"metadata": {
27-
"collapsed": false
28-
},
23+
"execution_count": 3,
24+
"metadata": {},
2925
"outputs": [
3026
{
3127
"name": "stdout",
@@ -59,7 +55,8 @@
5955
"\n",
6056
"2d numpy array with different number of multiple elements in the second dimension\n",
6157
"\n",
62-
"[[5, 6] [10, 11] [15, 16] [20] [25] [30]]\n",
58+
"[list([5, 6]) list([10, 11]) list([15, 16]) list([20]) list([25])\n",
59+
" list([30])]\n",
6360
"Dimensions: 1\n",
6461
"Shape: (6,)\n",
6562
"<class 'numpy.ndarray'>\n",
@@ -139,10 +136,8 @@
139136
},
140137
{
141138
"cell_type": "code",
142-
"execution_count": 124,
143-
"metadata": {
144-
"collapsed": false
145-
},
139+
"execution_count": 4,
140+
"metadata": {},
146141
"outputs": [
147142
{
148143
"name": "stdout",
@@ -246,10 +241,8 @@
246241
},
247242
{
248243
"cell_type": "code",
249-
"execution_count": 112,
250-
"metadata": {
251-
"collapsed": false
252-
},
244+
"execution_count": 5,
245+
"metadata": {},
253246
"outputs": [
254247
{
255248
"name": "stdout",
@@ -298,33 +291,31 @@
298291
},
299292
{
300293
"cell_type": "code",
301-
"execution_count": 113,
302-
"metadata": {
303-
"collapsed": false
304-
},
294+
"execution_count": 6,
295+
"metadata": {},
305296
"outputs": [
306297
{
307298
"name": "stdout",
308299
"output_type": "stream",
309300
"text": [
310301
"Select single column by single value (df[])\n",
311-
"0 5\n",
312-
"1 10\n",
313-
"2 15\n",
314-
"3 20\n",
315-
"4 25\n",
316-
"5 30\n",
317-
"Name: 1, dtype: int64\n",
302+
"0 6\n",
303+
"1 11\n",
304+
"2 16\n",
305+
"3 21\n",
306+
"4 26\n",
307+
"5 31\n",
308+
"Name: 1, dtype: int32\n",
318309
"<class 'pandas.core.series.Series'>\n",
319310
"\n",
320311
"Select single (or multiple) columns by list (df[[]])\n",
321312
" 1\n",
322-
"0 5\n",
323-
"1 10\n",
324-
"2 15\n",
325-
"3 20\n",
326-
"4 25\n",
327-
"5 30\n",
313+
"0 6\n",
314+
"1 11\n",
315+
"2 16\n",
316+
"3 21\n",
317+
"4 26\n",
318+
"5 31\n",
328319
"<class 'pandas.core.frame.DataFrame'>\n"
329320
]
330321
}
@@ -351,10 +342,8 @@
351342
},
352343
{
353344
"cell_type": "code",
354-
"execution_count": 127,
355-
"metadata": {
356-
"collapsed": false
357-
},
345+
"execution_count": 7,
346+
"metadata": {},
358347
"outputs": [
359348
{
360349
"name": "stdout",
@@ -422,10 +411,8 @@
422411
},
423412
{
424413
"cell_type": "code",
425-
"execution_count": 126,
426-
"metadata": {
427-
"collapsed": false
428-
},
414+
"execution_count": 8,
415+
"metadata": {},
429416
"outputs": [
430417
{
431418
"name": "stdout",
@@ -471,10 +458,8 @@
471458
},
472459
{
473460
"cell_type": "code",
474-
"execution_count": 121,
475-
"metadata": {
476-
"collapsed": false
477-
},
461+
"execution_count": 9,
462+
"metadata": {},
478463
"outputs": [
479464
{
480465
"name": "stdout",
@@ -507,12 +492,12 @@
507492
"\n",
508493
"Adding single column DataFrame and 2d (x,1) arrays:\n",
509494
" 1\n",
510-
"0 10\n",
511-
"1 20\n",
512-
"2 30\n",
513-
"3 40\n",
514-
"4 50\n",
515-
"5 60\n",
495+
"0 11\n",
496+
"1 21\n",
497+
"2 31\n",
498+
"3 41\n",
499+
"4 51\n",
500+
"5 61\n",
516501
"<class 'pandas.core.frame.DataFrame'>\n",
517502
"\n",
518503
"Adding single column DataFrame and 1d np arrays:\n",
@@ -589,13 +574,123 @@
589574
"\n",
590575
"tt = t.reshape(-1)"
591576
]
577+
},
578+
{
579+
"cell_type": "markdown",
580+
"metadata": {},
581+
"source": [
582+
"### Reshaping\n",
583+
"1D -> 2D e.g. scikit-learn requires that 1D array of output variables be shaped as a 2D array with one column and outcomes for each column.\n"
584+
]
585+
},
586+
{
587+
"cell_type": "code",
588+
"execution_count": 14,
589+
"metadata": {},
590+
"outputs": [
591+
{
592+
"name": "stdout",
593+
"output_type": "stream",
594+
"text": [
595+
"1d numpy array:\n",
596+
"[ 5 10 15 20 25 30]\n",
597+
"(6,)\n",
598+
"reshaped to 2D:\n",
599+
"[[ 5]\n",
600+
" [10]\n",
601+
" [15]\n",
602+
" [20]\n",
603+
" [25]\n",
604+
" [30]]\n",
605+
"(6, 1)\n"
606+
]
607+
}
608+
],
609+
"source": [
610+
"print(\"1d numpy array:\")\n",
611+
"print(np_array1d)\n",
612+
"print(np_array1d.shape)\n",
613+
"\n",
614+
"# reshape\n",
615+
"print(\"reshaped to 2D:\")\n",
616+
"data = np_array1d.reshape((np_array1d.shape[0], 1))\n",
617+
"print(data)\n",
618+
"print(data.shape)"
619+
]
620+
},
621+
{
622+
"cell_type": "markdown",
623+
"metadata": {},
624+
"source": [
625+
"2D -> 3D e.g. scikit-learn requires that 1D array of output variables be shaped as a 2D array with one column and outcomes for each column.\n"
626+
]
627+
},
628+
{
629+
"cell_type": "code",
630+
"execution_count": 17,
631+
"metadata": {},
632+
"outputs": [
633+
{
634+
"name": "stdout",
635+
"output_type": "stream",
636+
"text": [
637+
"2d numpy array:\n",
638+
"[[ 5 6]\n",
639+
" [10 11]\n",
640+
" [15 16]\n",
641+
" [20 21]\n",
642+
" [25 26]\n",
643+
" [30 31]]\n",
644+
"(6, 2)\n",
645+
"reshaped to 2D:\n",
646+
"[[[ 5]\n",
647+
" [ 6]]\n",
648+
"\n",
649+
" [[10]\n",
650+
" [11]]\n",
651+
"\n",
652+
" [[15]\n",
653+
" [16]]\n",
654+
"\n",
655+
" [[20]\n",
656+
" [21]]\n",
657+
"\n",
658+
" [[25]\n",
659+
" [26]]\n",
660+
"\n",
661+
" [[30]\n",
662+
" [31]]]\n",
663+
"(6, 2, 1)\n"
664+
]
665+
}
666+
],
667+
"source": [
668+
"print(\"2d numpy array:\")\n",
669+
"print(np_array2d62)\n",
670+
"print(np_array2d62.shape)\n",
671+
"\n",
672+
"# reshape\n",
673+
"print(\"reshaped to 2D:\")\n",
674+
"data = np_array2d62.reshape((np_array2d62.shape[0], np_array2d62.shape[1], 1))\n",
675+
"print(data)\n",
676+
"print(data.shape)"
677+
]
678+
},
679+
{
680+
"cell_type": "code",
681+
"execution_count": null,
682+
"metadata": {
683+
"collapsed": true
684+
},
685+
"outputs": [],
686+
"source": []
592687
}
593688
],
594689
"metadata": {
595690
"kernelspec": {
596-
"display_name": "Python [default]",
691+
"display_name": "Anaconda",
597692
"language": "python",
598-
"name": "python3"
693+
"name": "anaconda"
599694
},
600695
"language_info": {
601696
"codemirror_mode": {
@@ -607,7 +702,7 @@
607702
"name": "python",
608703
"nbconvert_exporter": "python",
609704
"pygments_lexer": "ipython3",
610-
"version": "3.5.2"
705+
"version": "3.6.4"
611706
}
612707
},
613708
"nbformat": 4,

0 commit comments

Comments
 (0)