|  | 
| 2 | 2 |  "cells": [ | 
| 3 | 3 |   { | 
| 4 | 4 |    "cell_type": "code", | 
| 5 |  | -   "execution_count": 4, | 
| 6 |  | -   "metadata": { | 
| 7 |  | -    "collapsed": true | 
| 8 |  | -   }, | 
|  | 5 | +   "execution_count": 2, | 
|  | 6 | +   "metadata": {}, | 
| 9 | 7 |    "outputs": [], | 
| 10 | 8 |    "source": [ | 
| 11 | 9 |     "import pandas as pd\n", | 
|  | 
| 22 | 20 |   }, | 
| 23 | 21 |   { | 
| 24 | 22 |    "cell_type": "code", | 
| 25 |  | -   "execution_count": 123, | 
| 26 |  | -   "metadata": { | 
| 27 |  | -    "collapsed": false | 
| 28 |  | -   }, | 
|  | 23 | +   "execution_count": 3, | 
|  | 24 | +   "metadata": {}, | 
| 29 | 25 |    "outputs": [ | 
| 30 | 26 |     { | 
| 31 | 27 |      "name": "stdout", | 
|  | 
| 59 | 55 |       "\n", | 
| 60 | 56 |       "2d numpy array with different number of multiple elements in the second dimension\n", | 
| 61 | 57 |       "\n", | 
| 62 |  | -      "[[5, 6] [10, 11] [15, 16] [20] [25] [30]]\n", | 
|  | 58 | +      "[list([5, 6]) list([10, 11]) list([15, 16]) list([20]) list([25])\n", | 
|  | 59 | +      " list([30])]\n", | 
| 63 | 60 |       "Dimensions: 1\n", | 
| 64 | 61 |       "Shape: (6,)\n", | 
| 65 | 62 |       "<class 'numpy.ndarray'>\n", | 
|  | 
| 139 | 136 |   }, | 
| 140 | 137 |   { | 
| 141 | 138 |    "cell_type": "code", | 
| 142 |  | -   "execution_count": 124, | 
| 143 |  | -   "metadata": { | 
| 144 |  | -    "collapsed": false | 
| 145 |  | -   }, | 
|  | 139 | +   "execution_count": 4, | 
|  | 140 | +   "metadata": {}, | 
| 146 | 141 |    "outputs": [ | 
| 147 | 142 |     { | 
| 148 | 143 |      "name": "stdout", | 
|  | 
| 246 | 241 |   }, | 
| 247 | 242 |   { | 
| 248 | 243 |    "cell_type": "code", | 
| 249 |  | -   "execution_count": 112, | 
| 250 |  | -   "metadata": { | 
| 251 |  | -    "collapsed": false | 
| 252 |  | -   }, | 
|  | 244 | +   "execution_count": 5, | 
|  | 245 | +   "metadata": {}, | 
| 253 | 246 |    "outputs": [ | 
| 254 | 247 |     { | 
| 255 | 248 |      "name": "stdout", | 
|  | 
| 298 | 291 |   }, | 
| 299 | 292 |   { | 
| 300 | 293 |    "cell_type": "code", | 
| 301 |  | -   "execution_count": 113, | 
| 302 |  | -   "metadata": { | 
| 303 |  | -    "collapsed": false | 
| 304 |  | -   }, | 
|  | 294 | +   "execution_count": 6, | 
|  | 295 | +   "metadata": {}, | 
| 305 | 296 |    "outputs": [ | 
| 306 | 297 |     { | 
| 307 | 298 |      "name": "stdout", | 
| 308 | 299 |      "output_type": "stream", | 
| 309 | 300 |      "text": [ | 
| 310 | 301 |       "Select single column by single value (df[])\n", | 
| 311 |  | -      "0     5\n", | 
| 312 |  | -      "1    10\n", | 
| 313 |  | -      "2    15\n", | 
| 314 |  | -      "3    20\n", | 
| 315 |  | -      "4    25\n", | 
| 316 |  | -      "5    30\n", | 
| 317 |  | -      "Name: 1, dtype: int64\n", | 
|  | 302 | +      "0     6\n", | 
|  | 303 | +      "1    11\n", | 
|  | 304 | +      "2    16\n", | 
|  | 305 | +      "3    21\n", | 
|  | 306 | +      "4    26\n", | 
|  | 307 | +      "5    31\n", | 
|  | 308 | +      "Name: 1, dtype: int32\n", | 
| 318 | 309 |       "<class 'pandas.core.series.Series'>\n", | 
| 319 | 310 |       "\n", | 
| 320 | 311 |       "Select single (or multiple) columns by list (df[[]])\n", | 
| 321 | 312 |       "    1\n", | 
| 322 |  | -      "0   5\n", | 
| 323 |  | -      "1  10\n", | 
| 324 |  | -      "2  15\n", | 
| 325 |  | -      "3  20\n", | 
| 326 |  | -      "4  25\n", | 
| 327 |  | -      "5  30\n", | 
|  | 313 | +      "0   6\n", | 
|  | 314 | +      "1  11\n", | 
|  | 315 | +      "2  16\n", | 
|  | 316 | +      "3  21\n", | 
|  | 317 | +      "4  26\n", | 
|  | 318 | +      "5  31\n", | 
| 328 | 319 |       "<class 'pandas.core.frame.DataFrame'>\n" | 
| 329 | 320 |      ] | 
| 330 | 321 |     } | 
|  | 
| 351 | 342 |   }, | 
| 352 | 343 |   { | 
| 353 | 344 |    "cell_type": "code", | 
| 354 |  | -   "execution_count": 127, | 
| 355 |  | -   "metadata": { | 
| 356 |  | -    "collapsed": false | 
| 357 |  | -   }, | 
|  | 345 | +   "execution_count": 7, | 
|  | 346 | +   "metadata": {}, | 
| 358 | 347 |    "outputs": [ | 
| 359 | 348 |     { | 
| 360 | 349 |      "name": "stdout", | 
|  | 
| 422 | 411 |   }, | 
| 423 | 412 |   { | 
| 424 | 413 |    "cell_type": "code", | 
| 425 |  | -   "execution_count": 126, | 
| 426 |  | -   "metadata": { | 
| 427 |  | -    "collapsed": false | 
| 428 |  | -   }, | 
|  | 414 | +   "execution_count": 8, | 
|  | 415 | +   "metadata": {}, | 
| 429 | 416 |    "outputs": [ | 
| 430 | 417 |     { | 
| 431 | 418 |      "name": "stdout", | 
|  | 
| 471 | 458 |   }, | 
| 472 | 459 |   { | 
| 473 | 460 |    "cell_type": "code", | 
| 474 |  | -   "execution_count": 121, | 
| 475 |  | -   "metadata": { | 
| 476 |  | -    "collapsed": false | 
| 477 |  | -   }, | 
|  | 461 | +   "execution_count": 9, | 
|  | 462 | +   "metadata": {}, | 
| 478 | 463 |    "outputs": [ | 
| 479 | 464 |     { | 
| 480 | 465 |      "name": "stdout", | 
|  | 
| 507 | 492 |       "\n", | 
| 508 | 493 |       "Adding single column DataFrame and 2d (x,1) arrays:\n", | 
| 509 | 494 |       "    1\n", | 
| 510 |  | -      "0  10\n", | 
| 511 |  | -      "1  20\n", | 
| 512 |  | -      "2  30\n", | 
| 513 |  | -      "3  40\n", | 
| 514 |  | -      "4  50\n", | 
| 515 |  | -      "5  60\n", | 
|  | 495 | +      "0  11\n", | 
|  | 496 | +      "1  21\n", | 
|  | 497 | +      "2  31\n", | 
|  | 498 | +      "3  41\n", | 
|  | 499 | +      "4  51\n", | 
|  | 500 | +      "5  61\n", | 
| 516 | 501 |       "<class 'pandas.core.frame.DataFrame'>\n", | 
| 517 | 502 |       "\n", | 
| 518 | 503 |       "Adding single column DataFrame and 1d np arrays:\n", | 
|  | 
| 589 | 574 |     "\n", | 
| 590 | 575 |     "tt = t.reshape(-1)" | 
| 591 | 576 |    ] | 
|  | 577 | +  }, | 
|  | 578 | +  { | 
|  | 579 | +   "cell_type": "markdown", | 
|  | 580 | +   "metadata": {}, | 
|  | 581 | +   "source": [ | 
|  | 582 | +    "### Reshaping\n", | 
|  | 583 | +    "1D -> 2D e.g. scikit-learn requires that 1D array of output variables be shaped as a 2D array with one column and outcomes for each column.\n" | 
|  | 584 | +   ] | 
|  | 585 | +  }, | 
|  | 586 | +  { | 
|  | 587 | +   "cell_type": "code", | 
|  | 588 | +   "execution_count": 14, | 
|  | 589 | +   "metadata": {}, | 
|  | 590 | +   "outputs": [ | 
|  | 591 | +    { | 
|  | 592 | +     "name": "stdout", | 
|  | 593 | +     "output_type": "stream", | 
|  | 594 | +     "text": [ | 
|  | 595 | +      "1d numpy array:\n", | 
|  | 596 | +      "[ 5 10 15 20 25 30]\n", | 
|  | 597 | +      "(6,)\n", | 
|  | 598 | +      "reshaped to 2D:\n", | 
|  | 599 | +      "[[ 5]\n", | 
|  | 600 | +      " [10]\n", | 
|  | 601 | +      " [15]\n", | 
|  | 602 | +      " [20]\n", | 
|  | 603 | +      " [25]\n", | 
|  | 604 | +      " [30]]\n", | 
|  | 605 | +      "(6, 1)\n" | 
|  | 606 | +     ] | 
|  | 607 | +    } | 
|  | 608 | +   ], | 
|  | 609 | +   "source": [ | 
|  | 610 | +    "print(\"1d numpy array:\")\n", | 
|  | 611 | +    "print(np_array1d)\n", | 
|  | 612 | +    "print(np_array1d.shape)\n", | 
|  | 613 | +    "\n", | 
|  | 614 | +    "# reshape\n", | 
|  | 615 | +    "print(\"reshaped to 2D:\")\n", | 
|  | 616 | +    "data = np_array1d.reshape((np_array1d.shape[0], 1))\n", | 
|  | 617 | +    "print(data)\n", | 
|  | 618 | +    "print(data.shape)" | 
|  | 619 | +   ] | 
|  | 620 | +  }, | 
|  | 621 | +  { | 
|  | 622 | +   "cell_type": "markdown", | 
|  | 623 | +   "metadata": {}, | 
|  | 624 | +   "source": [ | 
|  | 625 | +    "2D -> 3D e.g. scikit-learn requires that 1D array of output variables be shaped as a 2D array with one column and outcomes for each column.\n" | 
|  | 626 | +   ] | 
|  | 627 | +  }, | 
|  | 628 | +  { | 
|  | 629 | +   "cell_type": "code", | 
|  | 630 | +   "execution_count": 17, | 
|  | 631 | +   "metadata": {}, | 
|  | 632 | +   "outputs": [ | 
|  | 633 | +    { | 
|  | 634 | +     "name": "stdout", | 
|  | 635 | +     "output_type": "stream", | 
|  | 636 | +     "text": [ | 
|  | 637 | +      "2d numpy array:\n", | 
|  | 638 | +      "[[ 5  6]\n", | 
|  | 639 | +      " [10 11]\n", | 
|  | 640 | +      " [15 16]\n", | 
|  | 641 | +      " [20 21]\n", | 
|  | 642 | +      " [25 26]\n", | 
|  | 643 | +      " [30 31]]\n", | 
|  | 644 | +      "(6, 2)\n", | 
|  | 645 | +      "reshaped to 2D:\n", | 
|  | 646 | +      "[[[ 5]\n", | 
|  | 647 | +      "  [ 6]]\n", | 
|  | 648 | +      "\n", | 
|  | 649 | +      " [[10]\n", | 
|  | 650 | +      "  [11]]\n", | 
|  | 651 | +      "\n", | 
|  | 652 | +      " [[15]\n", | 
|  | 653 | +      "  [16]]\n", | 
|  | 654 | +      "\n", | 
|  | 655 | +      " [[20]\n", | 
|  | 656 | +      "  [21]]\n", | 
|  | 657 | +      "\n", | 
|  | 658 | +      " [[25]\n", | 
|  | 659 | +      "  [26]]\n", | 
|  | 660 | +      "\n", | 
|  | 661 | +      " [[30]\n", | 
|  | 662 | +      "  [31]]]\n", | 
|  | 663 | +      "(6, 2, 1)\n" | 
|  | 664 | +     ] | 
|  | 665 | +    } | 
|  | 666 | +   ], | 
|  | 667 | +   "source": [ | 
|  | 668 | +    "print(\"2d numpy array:\")\n", | 
|  | 669 | +    "print(np_array2d62)\n", | 
|  | 670 | +    "print(np_array2d62.shape)\n", | 
|  | 671 | +    "\n", | 
|  | 672 | +    "# reshape\n", | 
|  | 673 | +    "print(\"reshaped to 2D:\")\n", | 
|  | 674 | +    "data = np_array2d62.reshape((np_array2d62.shape[0], np_array2d62.shape[1], 1))\n", | 
|  | 675 | +    "print(data)\n", | 
|  | 676 | +    "print(data.shape)" | 
|  | 677 | +   ] | 
|  | 678 | +  }, | 
|  | 679 | +  { | 
|  | 680 | +   "cell_type": "code", | 
|  | 681 | +   "execution_count": null, | 
|  | 682 | +   "metadata": { | 
|  | 683 | +    "collapsed": true | 
|  | 684 | +   }, | 
|  | 685 | +   "outputs": [], | 
|  | 686 | +   "source": [] | 
| 592 | 687 |   } | 
| 593 | 688 |  ], | 
| 594 | 689 |  "metadata": { | 
| 595 | 690 |   "kernelspec": { | 
| 596 |  | -   "display_name": "Python [default]", | 
|  | 691 | +   "display_name": "Anaconda", | 
| 597 | 692 |    "language": "python", | 
| 598 |  | -   "name": "python3" | 
|  | 693 | +   "name": "anaconda" | 
| 599 | 694 |   }, | 
| 600 | 695 |   "language_info": { | 
| 601 | 696 |    "codemirror_mode": { | 
|  | 
| 607 | 702 |    "name": "python", | 
| 608 | 703 |    "nbconvert_exporter": "python", | 
| 609 | 704 |    "pygments_lexer": "ipython3", | 
| 610 |  | -   "version": "3.5.2" | 
|  | 705 | +   "version": "3.6.4" | 
| 611 | 706 |   } | 
| 612 | 707 |  }, | 
| 613 | 708 |  "nbformat": 4, | 
|  | 
0 commit comments