Skip to content

Commit aec0e0e

Browse files
committed
new exercise Time Series
1 parent fba6c1f commit aec0e0e

File tree

4 files changed

+2658
-40
lines changed

4 files changed

+2658
-40
lines changed
Lines changed: 203 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,203 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Investor - Flow of Funds - US"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"### Introduction:\n",
15+
"\n",
16+
"Special thanks to: https://github.com/rgrp for sharing the dataset.\n",
17+
"\n",
18+
"### Step 1. Import the necessary libraries"
19+
]
20+
},
21+
{
22+
"cell_type": "code",
23+
"execution_count": null,
24+
"metadata": {
25+
"collapsed": false
26+
},
27+
"outputs": [],
28+
"source": []
29+
},
30+
{
31+
"cell_type": "markdown",
32+
"metadata": {},
33+
"source": [
34+
"### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/datasets/investor-flow-of-funds-us/master/data/weekly.csv). "
35+
]
36+
},
37+
{
38+
"cell_type": "markdown",
39+
"metadata": {},
40+
"source": [
41+
"### Step 3. Assign it to a variable called "
42+
]
43+
},
44+
{
45+
"cell_type": "code",
46+
"execution_count": null,
47+
"metadata": {
48+
"collapsed": false
49+
},
50+
"outputs": [],
51+
"source": []
52+
},
53+
{
54+
"cell_type": "markdown",
55+
"metadata": {},
56+
"source": [
57+
"### Step 4. What is the frequency of the dataset?"
58+
]
59+
},
60+
{
61+
"cell_type": "code",
62+
"execution_count": null,
63+
"metadata": {
64+
"collapsed": false
65+
},
66+
"outputs": [],
67+
"source": []
68+
},
69+
{
70+
"cell_type": "markdown",
71+
"metadata": {},
72+
"source": [
73+
"### Step 5. Set the column Date as the index."
74+
]
75+
},
76+
{
77+
"cell_type": "code",
78+
"execution_count": null,
79+
"metadata": {
80+
"collapsed": false
81+
},
82+
"outputs": [],
83+
"source": []
84+
},
85+
{
86+
"cell_type": "markdown",
87+
"metadata": {},
88+
"source": [
89+
"### Step 6. What is the type of the index?"
90+
]
91+
},
92+
{
93+
"cell_type": "code",
94+
"execution_count": null,
95+
"metadata": {
96+
"collapsed": false
97+
},
98+
"outputs": [],
99+
"source": []
100+
},
101+
{
102+
"cell_type": "markdown",
103+
"metadata": {},
104+
"source": [
105+
"### Step 7. Set the index to a DatetimeIndex type"
106+
]
107+
},
108+
{
109+
"cell_type": "code",
110+
"execution_count": null,
111+
"metadata": {
112+
"collapsed": false
113+
},
114+
"outputs": [],
115+
"source": []
116+
},
117+
{
118+
"cell_type": "markdown",
119+
"metadata": {},
120+
"source": [
121+
"### Step 8. Change the frequency to monthly, sum the values and assign it to monthly."
122+
]
123+
},
124+
{
125+
"cell_type": "code",
126+
"execution_count": null,
127+
"metadata": {
128+
"collapsed": false
129+
},
130+
"outputs": [],
131+
"source": []
132+
},
133+
{
134+
"cell_type": "markdown",
135+
"metadata": {},
136+
"source": [
137+
"### Step 9. You will notice that it filled the dataFrame with months that don't have any data with NaN. Let's drop these rows."
138+
]
139+
},
140+
{
141+
"cell_type": "code",
142+
"execution_count": null,
143+
"metadata": {
144+
"collapsed": false
145+
},
146+
"outputs": [],
147+
"source": []
148+
},
149+
{
150+
"cell_type": "markdown",
151+
"metadata": {},
152+
"source": [
153+
"### Step 10. Good, now we have the monthly data. Now change the frequency to year."
154+
]
155+
},
156+
{
157+
"cell_type": "code",
158+
"execution_count": null,
159+
"metadata": {
160+
"collapsed": false
161+
},
162+
"outputs": [],
163+
"source": []
164+
},
165+
{
166+
"cell_type": "markdown",
167+
"metadata": {},
168+
"source": [
169+
"### BONUS: Create your own question and answer it."
170+
]
171+
},
172+
{
173+
"cell_type": "code",
174+
"execution_count": null,
175+
"metadata": {
176+
"collapsed": true
177+
},
178+
"outputs": [],
179+
"source": []
180+
}
181+
],
182+
"metadata": {
183+
"kernelspec": {
184+
"display_name": "Python 2",
185+
"language": "python",
186+
"name": "python2"
187+
},
188+
"language_info": {
189+
"codemirror_mode": {
190+
"name": "ipython",
191+
"version": 2
192+
},
193+
"file_extension": ".py",
194+
"mimetype": "text/x-python",
195+
"name": "python",
196+
"nbconvert_exporter": "python",
197+
"pygments_lexer": "ipython2",
198+
"version": "2.7.11"
199+
}
200+
},
201+
"nbformat": 4,
202+
"nbformat_minor": 0
203+
}

0 commit comments

Comments
 (0)