|
| 1 | +import java.util.LinkedList; |
| 2 | +import java.util.Queue; |
| 3 | +import java.util.Stack; |
| 4 | + |
| 5 | +public class BST<E extends Comparable<E>> { |
| 6 | + private class Node { |
| 7 | + public E e; |
| 8 | + public Node left, right; |
| 9 | + |
| 10 | + public Node(E e) { |
| 11 | + this.e = e; |
| 12 | + left = null; |
| 13 | + right = null; |
| 14 | + } |
| 15 | + } |
| 16 | + |
| 17 | + private Node root; |
| 18 | + private int size; |
| 19 | + |
| 20 | + public BST() { |
| 21 | + root = null; |
| 22 | + size = 0; |
| 23 | + } |
| 24 | + |
| 25 | + public int size() { |
| 26 | + return size; |
| 27 | + } |
| 28 | + |
| 29 | + public boolean isEmpty() { |
| 30 | + return size == 0; |
| 31 | + } |
| 32 | + |
| 33 | + // 向二分搜索树中添加新的元素e |
| 34 | + public void add(E e) { |
| 35 | + root = add(root, e); |
| 36 | + } |
| 37 | + |
| 38 | + // 向以node为根的二分搜索树中插入元素e,递归算法 |
| 39 | + private Node add(Node node, E e) { |
| 40 | + if (node == null) { |
| 41 | + size++; |
| 42 | + return new Node(e); |
| 43 | + } |
| 44 | + |
| 45 | + if (e.compareTo(node.e) > 0) |
| 46 | + node.left = add(node.left, e); |
| 47 | + else if (e.compareTo(node.e) < 0) |
| 48 | + node.right = add(node.right, e); |
| 49 | + |
| 50 | + return node; |
| 51 | + } |
| 52 | + |
| 53 | + // 查看二分搜索树种是否包含元素e |
| 54 | + private boolean contains(E e) { |
| 55 | + return contains(root, e); |
| 56 | + } |
| 57 | + |
| 58 | + // 以node 为根的二分搜索树中是否包含元素e,递归算法 |
| 59 | + private boolean contains(Node node, E e) { |
| 60 | + if (node == null) |
| 61 | + return false; |
| 62 | + |
| 63 | + if (e.compareTo(node.e) == 0) |
| 64 | + return true; |
| 65 | + else if (e.compareTo(node.e) < 0) |
| 66 | + return contains(node.left, e); |
| 67 | + else// e.compareTo(node.e) > 0 |
| 68 | + return contains(node.right, e); |
| 69 | + } |
| 70 | + |
| 71 | + // 二分搜索树的递归前序遍历 |
| 72 | + public void preOrder() { |
| 73 | + preOrder(root); |
| 74 | + } |
| 75 | + |
| 76 | + private void preOrder(Node node) { |
| 77 | + if (node == null) |
| 78 | + return; |
| 79 | + |
| 80 | + System.out.println(node.e); |
| 81 | + preOrder(node.left); |
| 82 | + preOrder(node.right); |
| 83 | + } |
| 84 | + |
| 85 | + |
| 86 | + // 二分搜索树的中序遍历 |
| 87 | + public void inOrder() { |
| 88 | + inOrder(root); |
| 89 | + } |
| 90 | + |
| 91 | + private void inOrder(Node node) { |
| 92 | + if (node == null) |
| 93 | + return; |
| 94 | + |
| 95 | + preOrder(node.left); |
| 96 | + System.out.println(node.e); |
| 97 | + preOrder(node.right); |
| 98 | + } |
| 99 | + |
| 100 | + // 二分搜索树的后序遍历 |
| 101 | + public void postOrder() { |
| 102 | + postOrder(root); |
| 103 | + } |
| 104 | + |
| 105 | + private void postOrder(Node node) { |
| 106 | + if (node == null) |
| 107 | + return; |
| 108 | + |
| 109 | + preOrder(node.left); |
| 110 | + preOrder(node.right); |
| 111 | + System.out.println(node.e); |
| 112 | + } |
| 113 | + |
| 114 | + |
| 115 | + // 二分搜索树的非递归前序遍历 |
| 116 | + public void preOrderNR() { |
| 117 | + Stack<Node> stack = new Stack<>(); |
| 118 | + stack.push(root); |
| 119 | + while (!stack.isEmpty()) { |
| 120 | + Node cur = stack.pop(); |
| 121 | + System.out.println(cur.e); |
| 122 | + |
| 123 | + if (cur.right != null) { |
| 124 | + stack.push(cur.right); |
| 125 | + |
| 126 | + } |
| 127 | + if (cur.left != null) { |
| 128 | + stack.push(cur.left); |
| 129 | + |
| 130 | + } |
| 131 | + } |
| 132 | + } |
| 133 | + |
| 134 | + // 二分搜索树的层序遍历 |
| 135 | + public void levelOrder() { |
| 136 | + Queue<Node> q = new LinkedList<>(); |
| 137 | + ((LinkedList<Node>) q).add(root); |
| 138 | + while (!q.isEmpty()) { |
| 139 | + Node cur = q.remove(); |
| 140 | + System.out.println(cur.e); |
| 141 | + |
| 142 | + if (cur.right != null) { |
| 143 | + ((LinkedList<Node>) q).add(cur.right); |
| 144 | + |
| 145 | + } |
| 146 | + if (cur.left != null) { |
| 147 | + ((LinkedList<Node>) q).add(cur.left); |
| 148 | + |
| 149 | + } |
| 150 | + } |
| 151 | + } |
| 152 | + |
| 153 | + // 寻找二分搜索树的最小元素 |
| 154 | + public E minmum() { |
| 155 | + if (size == 0) |
| 156 | + throw new IllegalArgumentException("BST is empty!"); |
| 157 | + |
| 158 | + return minmum(root).e; |
| 159 | + } |
| 160 | + |
| 161 | + private Node minmum(Node node) { |
| 162 | + if (node.left == null) |
| 163 | + return node; |
| 164 | + return minmum(node); |
| 165 | + } |
| 166 | + |
| 167 | + // 寻找二分搜索树的最大元素 |
| 168 | + public E maxmum() { |
| 169 | + if (size == 0) |
| 170 | + throw new IllegalArgumentException("BST is empty!"); |
| 171 | + |
| 172 | + return maxmum(root).e; |
| 173 | + } |
| 174 | + |
| 175 | + private Node maxmum(Node node) { |
| 176 | + if (node.right == null) |
| 177 | + return node; |
| 178 | + return maxmum(node); |
| 179 | + } |
| 180 | + |
| 181 | + // 删除二分搜索树的最小元素所在节点,返回最小值 |
| 182 | + public E removeMin() { |
| 183 | + E ret = minmum(); |
| 184 | + root = removeMin(root); |
| 185 | + return ret; |
| 186 | + } |
| 187 | + |
| 188 | + // 删除以node为根的二分搜索树中的最小节点 |
| 189 | + // 返回删除节点后新的二分搜索树的根 |
| 190 | + private Node removeMin(Node node) { |
| 191 | + if (node.left == null) { |
| 192 | + Node rightNode = node.right; |
| 193 | + node.right = null; |
| 194 | + size--; |
| 195 | + return rightNode; |
| 196 | + } |
| 197 | + |
| 198 | + node.left = removeMin(node.left); |
| 199 | + return node; |
| 200 | + } |
| 201 | + |
| 202 | + public E removeMax() { |
| 203 | + E ret = maxmum(); |
| 204 | + root = removeMax(root); |
| 205 | + return ret; |
| 206 | + } |
| 207 | + |
| 208 | + public Node removeMax(Node node) { |
| 209 | + if (node.right == null) { |
| 210 | + Node nodeLeft = node.left; |
| 211 | + node.left = null; |
| 212 | + return nodeLeft; |
| 213 | + } |
| 214 | + |
| 215 | + node.right = removeMax(node.right); |
| 216 | + return node; |
| 217 | + } |
| 218 | + |
| 219 | + // 从二分搜索树中删除元素为e的节点 |
| 220 | + public void remove(E e) { |
| 221 | + root = remove(root, e); |
| 222 | + } |
| 223 | + |
| 224 | + private Node remove(Node node, E e) { |
| 225 | + if (node == null) |
| 226 | + return null; |
| 227 | + |
| 228 | + if (e.compareTo(node.e) < 0) { |
| 229 | + node.left = remove(node.left, e); |
| 230 | + return node; |
| 231 | + } else if (e.compareTo(node.e) > 0) { |
| 232 | + node.right = remove(node.right, e); |
| 233 | + return node; |
| 234 | + } else { // e.equals(node.e) |
| 235 | + |
| 236 | + // 待删除节点左子树为空 |
| 237 | + if (node.left == null) { |
| 238 | + Node rightNode = node.right; |
| 239 | + node.right = null; |
| 240 | + size--; |
| 241 | + return rightNode; |
| 242 | + } |
| 243 | + // 待删除节点右子树为空 |
| 244 | + if (node.right == null) { |
| 245 | + Node leftNode = node.left; |
| 246 | + node.left = null; |
| 247 | + size--; |
| 248 | + return leftNode; |
| 249 | + } |
| 250 | + |
| 251 | + // 待删除节点左右子树均不为空 |
| 252 | + // 找到比待删除节点大的最小节点,即待删除节点右子树的最小节点 |
| 253 | + // 用这个节点顶替待删除节点的位置 |
| 254 | + Node successor = minmum(node.right); |
| 255 | + successor.right = removeMin(node.right); |
| 256 | + successor.left = node.left; |
| 257 | + |
| 258 | + node.left = node.right = null; |
| 259 | + |
| 260 | + return successor; |
| 261 | + } |
| 262 | + } |
| 263 | + |
| 264 | + @Override |
| 265 | + public String toString() { |
| 266 | + StringBuilder res = new StringBuilder(); |
| 267 | + generateBSTString(root, 0, res); |
| 268 | + return res.toString(); |
| 269 | + } |
| 270 | + |
| 271 | + private void generateBSTString(Node node, int depth, StringBuilder res) { |
| 272 | + if (node == null) { |
| 273 | + res.append(generateBSTString(depth) + "null\n"); |
| 274 | + return; |
| 275 | + } |
| 276 | + |
| 277 | + res.append(generateBSTString(depth) + node.e + "\n"); |
| 278 | + generateBSTString(node.left, depth + 1, res); |
| 279 | + generateBSTString(node.right, depth + 1, res); |
| 280 | + } |
| 281 | + |
| 282 | + private String generateBSTString(int depth) { |
| 283 | + StringBuilder res = new StringBuilder(); |
| 284 | + for (int i = 0; i < depth; i++) { |
| 285 | + res.append("--"); |
| 286 | + } |
| 287 | + return res.toString(); |
| 288 | + |
| 289 | + } |
| 290 | +} |
0 commit comments