diff --git a/.circleci/config.yml b/.circleci/config.yml new file mode 100644 index 0000000000..f6eff674de --- /dev/null +++ b/.circleci/config.yml @@ -0,0 +1,28 @@ +version: 2.1 + +orbs: + python: circleci/python@1.4.0 + +jobs: + build_doc: + docker: + - image: cimg/python:3.13 + steps: + - checkout + - run: + name: doc_build + command: | + python --version + python -m venv venv + . venv/bin/activate + pip install -r requirements/requirements.txt + pip install -r docs/doc_requirements.txt + cd docs;make html + - store_artifacts: + path: docs/_build/html/ + destination: html + +workflows: + main: + jobs: + - build_doc diff --git a/.github/FUNDING.yml b/.github/FUNDING.yml index 24f0926299..0d943696cc 100644 --- a/.github/FUNDING.yml +++ b/.github/FUNDING.yml @@ -1,4 +1,4 @@ # These are supported funding model platforms github: AtsushiSakai patreon: myenigma -custom: https://www.paypal.me/myenigmapay/ +custom: https://www.paypal.com/paypalme/myenigmapay/ diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md index a643b49571..4f13bd074f 100644 --- a/.github/ISSUE_TEMPLATE/bug_report.md +++ b/.github/ISSUE_TEMPLATE/bug_report.md @@ -17,5 +17,6 @@ A clear and concise description of what you expected to happen. If applicable, add screenshots to help explain your problem. **Desktop (please complete the following information):** - - Python version (This repo only supports Python 3.7.x or higher). + - Python version (This repo only supports Python 3.9.x or higher). - Each library version + - OS version diff --git a/.github/dependabot.yml b/.github/dependabot.yml new file mode 100644 index 0000000000..6ffedf6f3b --- /dev/null +++ b/.github/dependabot.yml @@ -0,0 +1,13 @@ +version: 2 +updates: +- package-ecosystem: pip + directory: "/requirements" + schedule: + interval: weekly + time: "20:00" + open-pull-requests-limit: 10 + +- package-ecosystem: github-actions + directory: "/" + schedule: + interval: weekly diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md new file mode 100644 index 0000000000..c0d9f7eab2 --- /dev/null +++ b/.github/pull_request_template.md @@ -0,0 +1,24 @@ + + +#### Reference issue + + +#### What does this implement/fix? + + +#### Additional information + + +#### CheckList +- [ ] Did you add an unittest for your new example or defect fix? +- [ ] Did you add documents for your new example? +- [ ] All CIs are green? (You can check it after submitting) diff --git a/.github/workflows/Linux_CI.yml b/.github/workflows/Linux_CI.yml index 293c5621e2..152a3b0682 100644 --- a/.github/workflows/Linux_CI.yml +++ b/.github/workflows/Linux_CI.yml @@ -1,6 +1,10 @@ name: Linux_CI -on: [push, pull_request] +on: + push: + branches: + - master + pull_request: jobs: build: @@ -8,43 +12,26 @@ jobs: runs-on: ubuntu-latest strategy: matrix: - python-version: ['3.8'] + python-version: [ '3.13' ] name: Python ${{ matrix.python-version }} CI steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v5 - run: git fetch --prune --unshallow - name: Setup python - uses: actions/setup-python@v2 + uses: actions/setup-python@v6 with: python-version: ${{ matrix.python-version }} - name: Install dependencies run: | + python --version python -m pip install --upgrade pip - pip install -r requirements.txt - - name: install coverage - run: pip install coverage - - name: install mypy - run: pip install mypy - - name: install pycodestyle - run: pip install pycodestyle - - name: mypy check - run: | - find AerialNavigation -name "*.py" | xargs mypy - find ArmNavigation -name "*.py" | xargs mypy - find Bipedal -name "*.py" | xargs mypy - find InvertedPendulumCart -name "*.py" | xargs mypy - find Localization -name "*.py" | xargs mypy - find Mapping -name "*.py" | xargs mypy - find PathPlanning -name "*.py" | xargs mypy - find PathTracking -name "*.py" | xargs mypy - find SLAM -name "*.py" | xargs mypy - - name: do diff style check - run: bash rundiffstylecheck.sh + python -m pip install -r requirements/requirements.txt - name: do all unit tests run: bash runtests.sh + diff --git a/.github/workflows/MacOS_CI.yml b/.github/workflows/MacOS_CI.yml index 3a28347b18..ab04dc01dc 100644 --- a/.github/workflows/MacOS_CI.yml +++ b/.github/workflows/MacOS_CI.yml @@ -4,55 +4,36 @@ name: MacOS_CI # Controls when the action will run. Triggers the workflow on push or pull request # events but only for the master branch -on: [push, pull_request] +on: + push: + branches: + - master + pull_request: + jobs: build: - runs-on: ubuntu-latest + runs-on: macos-latest strategy: matrix: - python-version: [ '3.8' ] + python-version: [ '3.13' ] name: Python ${{ matrix.python-version }} CI steps: - - uses: actions/checkout@v2 + - uses: actions/checkout@v5 - run: git fetch --prune --unshallow + - name: Update bash + run: brew install bash + - name: Setup python - uses: actions/setup-python@v2 + uses: actions/setup-python@v6 with: python-version: ${{ matrix.python-version }} - name: Install dependencies run: | + python --version python -m pip install --upgrade pip - pip install -r requirements.txt - - name: install coverage - run: pip install coverage - - - name: install mypy - run: pip install mypy - - - name: install pycodestyle - run: pip install pycodestyle - - - name: mypy check - run: | - find AerialNavigation -name "*.py" | xargs mypy - find ArmNavigation -name "*.py" | xargs mypy - find Bipedal -name "*.py" | xargs mypy - find InvertedPendulumCart -name "*.py" | xargs mypy - find Localization -name "*.py" | xargs mypy - find Mapping -name "*.py" | xargs mypy - find PathPlanning -name "*.py" | xargs mypy - find PathTracking -name "*.py" | xargs mypy - find SLAM -name "*.py" | xargs mypy - - - name: do diff style check - run: bash rundiffstylecheck.sh - + pip install -r requirements/requirements.txt - name: do all unit tests run: bash runtests.sh - - - - diff --git a/.github/workflows/Windows_CI.yml b/.github/workflows/Windows_CI.yml new file mode 100644 index 0000000000..a4385e595b --- /dev/null +++ b/.github/workflows/Windows_CI.yml @@ -0,0 +1,36 @@ +# This is a basic workflow to help you get started with Actions + +name: Windows_CI + +# Controls when the action will run. Triggers the workflow on push or pull request +# events but only for the master branch +on: + push: + branches: + - master + pull_request: + + +jobs: + build: + runs-on: windows-latest + strategy: + matrix: + python-version: [ '3.13' ] + name: Python ${{ matrix.python-version }} CI + steps: + - uses: actions/checkout@v5 + - run: git fetch --prune --unshallow + + - name: Setup python + uses: actions/setup-python@v6 + with: + python-version: ${{ matrix.python-version }} + + - name: Install dependencies + run: | + python --version + python -m pip install --upgrade pip + pip install -r requirements/requirements.txt + - name: do all unit tests + run: bash runtests.sh diff --git a/.github/workflows/circleci-artifacts-redirector.yml b/.github/workflows/circleci-artifacts-redirector.yml new file mode 100644 index 0000000000..0e64bab96c --- /dev/null +++ b/.github/workflows/circleci-artifacts-redirector.yml @@ -0,0 +1,14 @@ +name: circleci-artifacts-redirector-action +on: [status] +jobs: + circleci_artifacts_redirector_job: + runs-on: ubuntu-latest + name: Run CircleCI artifacts redirector!! + steps: + - name: run-circleci-artifacts-redirector + uses: larsoner/circleci-artifacts-redirector-action@v1.3.1 + with: + repo-token: ${{ secrets.GITHUB_TOKEN }} + api-token: ${{ secrets.CIRCLECI_TOKEN }} + artifact-path: 0/html/index.html + circleci-jobs: build_doc diff --git a/.github/workflows/codeql.yml b/.github/workflows/codeql.yml index 526b465eec..0ed1d7e90d 100644 --- a/.github/workflows/codeql.yml +++ b/.github/workflows/codeql.yml @@ -2,6 +2,8 @@ name: "Code scanning - action" on: push: + branches: + - master pull_request: schedule: - cron: '0 19 * * 0' @@ -14,20 +16,15 @@ jobs: steps: - name: Checkout repository - uses: actions/checkout@v2 + uses: actions/checkout@v5 with: # We must fetch at least the immediate parents so that if this is # a pull request then we can checkout the head. fetch-depth: 2 - # If this run was triggered by a pull request event, then checkout - # the head of the pull request instead of the merge commit. - - run: git checkout HEAD^2 - if: ${{ github.event_name == 'pull_request' }} - # Initializes the CodeQL tools for scanning. - name: Initialize CodeQL - uses: github/codeql-action/init@v1 + uses: github/codeql-action/init@v3 with: config-file: ./.github/codeql/codeql-config.yml # Override language selection by uncommenting this and choosing your languages @@ -37,7 +34,7 @@ jobs: # Autobuild attempts to build any compiled languages (C/C++, C#, or Java). # If this step fails, then you should remove it and run the build manually (see below) - name: Autobuild - uses: github/codeql-action/autobuild@v1 + uses: github/codeql-action/autobuild@v3 # ℹ️ Command-line programs to run using the OS shell. # 📚 https://git.io/JvXDl @@ -51,4 +48,4 @@ jobs: # make release - name: Perform CodeQL Analysis - uses: github/codeql-action/analyze@v1 + uses: github/codeql-action/analyze@v3 diff --git a/.github/workflows/gh-pages.yml b/.github/workflows/gh-pages.yml new file mode 100644 index 0000000000..84165b9cd2 --- /dev/null +++ b/.github/workflows/gh-pages.yml @@ -0,0 +1,30 @@ +name: GitHub Pages site update +on: + push: + branches: + - master +jobs: + build: + runs-on: ubuntu-latest + environment: + name: github-pages + url: ${{ steps.deployment.outputs.page_url }} + permissions: + id-token: write + pages: write + steps: + - name: Setup python + uses: actions/setup-python@v6 + - name: Checkout + uses: actions/checkout@master + with: + fetch-depth: 0 # otherwise, you will fail to push refs to dest repo + - name: Install dependencies + run: | + python --version + python -m pip install --upgrade pip + python -m pip install -r requirements/requirements.txt + - name: Build and Deploy + uses: sphinx-notes/pages@v3 + with: + requirements_path: ./docs/doc_requirements.txt diff --git a/.lgtm.yml b/.lgtm.yml deleted file mode 100644 index b06edf3510..0000000000 --- a/.lgtm.yml +++ /dev/null @@ -1,4 +0,0 @@ -extraction: - python: - python_setup: - version: 3 diff --git a/.travis.yml b/.travis.yml deleted file mode 100644 index 99d239217b..0000000000 --- a/.travis.yml +++ /dev/null @@ -1,35 +0,0 @@ -language: python - -matrix: - include: - - os: linux - -python: - - 3.8 - -before_install: - - sudo apt-get update - - wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh - - chmod +x miniconda.sh - - bash miniconda.sh -b -p $HOME/miniconda - - export PATH="$HOME/miniconda/bin:$PATH" - - hash -r - - conda config --set always_yes yes --set changeps1 no - - conda update -q conda - # Useful for debugging any issues with conda - - conda info -a - -install: - - conda install numpy - - conda install scipy - - conda install matplotlib - - conda install pandas - - pip install cvxpy - - conda install coveralls - -script: - - python --version - - ./runtests.sh - -after_success: - - coveralls diff --git a/PathPlanning/ClosedLoopRRTStar/__init__.py b/AerialNavigation/__init__.py similarity index 100% rename from PathPlanning/ClosedLoopRRTStar/__init__.py rename to AerialNavigation/__init__.py diff --git a/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py b/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py index 413a8625a5..c379e5eda0 100644 --- a/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py +++ b/AerialNavigation/drone_3d_trajectory_following/Quadrotor.py @@ -56,7 +56,7 @@ def transformation_matrix(self): [[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll), x], [sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) * sin(roll), -cos(yaw) * sin(roll) + sin(yaw) * sin(pitch) * cos(roll), y], - [-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(yaw), z] + [-sin(pitch), cos(pitch) * sin(roll), cos(pitch) * cos(roll), z] ]) def plot(self): # pragma: no cover diff --git a/AerialNavigation/drone_3d_trajectory_following/__init__.py b/AerialNavigation/drone_3d_trajectory_following/__init__.py new file mode 100644 index 0000000000..2194d4c303 --- /dev/null +++ b/AerialNavigation/drone_3d_trajectory_following/__init__.py @@ -0,0 +1,3 @@ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent)) diff --git a/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py b/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py index e00b3fff48..029e82be62 100644 --- a/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py +++ b/AerialNavigation/drone_3d_trajectory_following/drone_3d_trajectory_following.py @@ -8,7 +8,6 @@ import numpy as np from Quadrotor import Quadrotor from TrajectoryGenerator import TrajectoryGenerator -from mpl_toolkits.mplot3d import Axes3D show_animation = True @@ -128,7 +127,7 @@ def calculate_position(c, t): Calculates a position given a set of quintic coefficients and a time. Args - c: List of coefficients generated by a quintic polynomial + c: List of coefficients generated by a quintic polynomial trajectory generator. t: Time at which to calculate the position @@ -143,7 +142,7 @@ def calculate_velocity(c, t): Calculates a velocity given a set of quintic coefficients and a time. Args - c: List of coefficients generated by a quintic polynomial + c: List of coefficients generated by a quintic polynomial trajectory generator. t: Time at which to calculate the velocity @@ -158,7 +157,7 @@ def calculate_acceleration(c, t): Calculates an acceleration given a set of quintic coefficients and a time. Args - c: List of coefficients generated by a quintic polynomial + c: List of coefficients generated by a quintic polynomial trajectory generator. t: Time at which to calculate the acceleration @@ -168,7 +167,7 @@ def calculate_acceleration(c, t): return 20 * c[0] * t**3 + 12 * c[1] * t**2 + 6 * c[2] * t + 2 * c[3] -def rotation_matrix(roll, pitch, yaw): +def rotation_matrix(roll_array, pitch_array, yaw): """ Calculates the ZYX rotation matrix. @@ -180,6 +179,8 @@ def rotation_matrix(roll, pitch, yaw): Returns 3x3 rotation matrix as NumPy array """ + roll = roll_array[0] + pitch = pitch_array[0] return np.array( [[cos(yaw) * cos(pitch), -sin(yaw) * cos(roll) + cos(yaw) * sin(pitch) * sin(roll), sin(yaw) * sin(roll) + cos(yaw) * sin(pitch) * cos(roll)], [sin(yaw) * cos(pitch), cos(yaw) * cos(roll) + sin(yaw) * sin(pitch) * @@ -190,7 +191,7 @@ def rotation_matrix(roll, pitch, yaw): def main(): """ - Calculates the x, y, z coefficients for the four segments + Calculates the x, y, z coefficients for the four segments of the trajectory """ x_coeffs = [[], [], [], []] diff --git a/AerialNavigation/rocket_powered_landing/figure.png b/AerialNavigation/rocket_powered_landing/figure.png deleted file mode 100644 index 0be109ed2b..0000000000 Binary files a/AerialNavigation/rocket_powered_landing/figure.png and /dev/null differ diff --git a/AerialNavigation/rocket_powered_landing/rocket_powered_landing.ipynb b/AerialNavigation/rocket_powered_landing/rocket_powered_landing.ipynb deleted file mode 100644 index 308512bfd7..0000000000 --- a/AerialNavigation/rocket_powered_landing/rocket_powered_landing.ipynb +++ /dev/null @@ -1,482 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from IPython.display import Image\n", - "Image(filename=\"figure.png\",width=600)\n", - "from IPython.display import display, HTML\n", - "\n", - "display(HTML(data=\"\"\"\n", - "\n", - "\"\"\"))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![gif](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/AerialNavigation/rocket_powered_landing/animation.gif)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Equation generation" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import sympy as sp\n", - "import numpy as np\n", - "from IPython.display import display\n", - "sp.init_printing(use_latex='mathjax')" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# parameters\n", - "# Angular moment of inertia\n", - "J_B = 1e-2 * np.diag([1., 1., 1.])\n", - "\n", - "# Gravity\n", - "g_I = np.array((-1, 0., 0.))\n", - "\n", - "# Fuel consumption\n", - "alpha_m = 0.01\n", - "\n", - "# Vector from thrust point to CoM\n", - "r_T_B = np.array([-1e-2, 0., 0.])\n", - "\n", - "\n", - "def dir_cosine(q):\n", - " return np.matrix([\n", - " [1 - 2 * (q[2] ** 2 + q[3] ** 2), 2 * (q[1] * q[2] +\n", - " q[0] * q[3]), 2 * (q[1] * q[3] - q[0] * q[2])],\n", - " [2 * (q[1] * q[2] - q[0] * q[3]), 1 - 2 *\n", - " (q[1] ** 2 + q[3] ** 2), 2 * (q[2] * q[3] + q[0] * q[1])],\n", - " [2 * (q[1] * q[3] + q[0] * q[2]), 2 * (q[2] * q[3] -\n", - " q[0] * q[1]), 1 - 2 * (q[1] ** 2 + q[2] ** 2)]\n", - " ])\n", - "\n", - "def omega(w):\n", - " return np.matrix([\n", - " [0, -w[0], -w[1], -w[2]],\n", - " [w[0], 0, w[2], -w[1]],\n", - " [w[1], -w[2], 0, w[0]],\n", - " [w[2], w[1], -w[0], 0],\n", - " ])\n", - "\n", - "def skew(v):\n", - " return np.matrix([\n", - " [0, -v[2], v[1]],\n", - " [v[2], 0, -v[0]],\n", - " [-v[1], v[0], 0]\n", - " ])\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "f = sp.zeros(14, 1)\n", - "\n", - "x = sp.Matrix(sp.symbols(\n", - " 'm rx ry rz vx vy vz q0 q1 q2 q3 wx wy wz', real=True))\n", - "u = sp.Matrix(sp.symbols('ux uy uz', real=True))\n", - "\n", - "g_I = sp.Matrix(g_I)\n", - "r_T_B = sp.Matrix(r_T_B)\n", - "J_B = sp.Matrix(J_B)\n", - "\n", - "C_B_I = dir_cosine(x[7:11, 0])\n", - "C_I_B = C_B_I.transpose()\n", - "\n", - "f[0, 0] = - alpha_m * u.norm()\n", - "f[1:4, 0] = x[4:7, 0]\n", - "f[4:7, 0] = 1 / x[0, 0] * C_I_B * u + g_I\n", - "f[7:11, 0] = 1 / 2 * omega(x[11:14, 0]) * x[7: 11, 0]\n", - "f[11:14, 0] = J_B ** -1 * \\\n", - " (skew(r_T_B) * u - skew(x[11:14, 0]) * J_B * x[11:14, 0])\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$\\left[\\begin{matrix}- 0.01 \\sqrt{ux^{2} + uy^{2} + uz^{2}}\\\\vx\\\\vy\\\\vz\\\\\\frac{- 1.0 m - ux \\left(2 q_{2}^{2} + 2 q_{3}^{2} - 1\\right) - 2 uy \\left(q_{0} q_{3} - q_{1} q_{2}\\right) + 2 uz \\left(q_{0} q_{2} + q_{1} q_{3}\\right)}{m}\\\\\\frac{2 ux \\left(q_{0} q_{3} + q_{1} q_{2}\\right) - uy \\left(2 q_{1}^{2} + 2 q_{3}^{2} - 1\\right) - 2 uz \\left(q_{0} q_{1} - q_{2} q_{3}\\right)}{m}\\\\\\frac{- 2 ux \\left(q_{0} q_{2} - q_{1} q_{3}\\right) + 2 uy \\left(q_{0} q_{1} + q_{2} q_{3}\\right) - uz \\left(2 q_{1}^{2} + 2 q_{2}^{2} - 1\\right)}{m}\\\\- 0.5 q_{1} wx - 0.5 q_{2} wy - 0.5 q_{3} wz\\\\0.5 q_{0} wx + 0.5 q_{2} wz - 0.5 q_{3} wy\\\\0.5 q_{0} wy - 0.5 q_{1} wz + 0.5 q_{3} wx\\\\0.5 q_{0} wz + 0.5 q_{1} wy - 0.5 q_{2} wx\\\\0\\\\1.0 uz\\\\- 1.0 uy\\end{matrix}\\right]$$" - ], - "text/plain": [ - "⎡ _________________ \n", - "⎢ ╱ 2 2 2 \n", - "⎢ -0.01⋅╲╱ ux + uy + uz \n", - "⎢ \n", - "⎢ vx \n", - "⎢ \n", - "⎢ vy \n", - "⎢ \n", - "⎢ vz \n", - "⎢ \n", - "⎢ ⎛ 2 2 ⎞ \n", - "⎢-1.0⋅m - ux⋅⎝2⋅q₂ + 2⋅q₃ - 1⎠ - 2⋅uy⋅(q₀⋅q₃ - q₁⋅q₂) + 2⋅uz⋅(q₀⋅q₂ + q₁⋅q₃)\n", - "⎢─────────────────────────────────────────────────────────────────────────────\n", - "⎢ m \n", - "⎢ \n", - "⎢ ⎛ 2 2 ⎞ \n", - "⎢ 2⋅ux⋅(q₀⋅q₃ + q₁⋅q₂) - uy⋅⎝2⋅q₁ + 2⋅q₃ - 1⎠ - 2⋅uz⋅(q₀⋅q₁ - q₂⋅q₃) \n", - "⎢ ──────────────────────────────────────────────────────────────────── \n", - "⎢ m \n", - "⎢ \n", - "⎢ ⎛ 2 2 ⎞ \n", - "⎢ -2⋅ux⋅(q₀⋅q₂ - q₁⋅q₃) + 2⋅uy⋅(q₀⋅q₁ + q₂⋅q₃) - uz⋅⎝2⋅q₁ + 2⋅q₂ - 1⎠ \n", - "⎢ ───────────────────────────────────────────────────────────────────── \n", - "⎢ m \n", - "⎢ \n", - "⎢ -0.5⋅q₁⋅wx - 0.5⋅q₂⋅wy - 0.5⋅q₃⋅wz \n", - "⎢ \n", - "⎢ 0.5⋅q₀⋅wx + 0.5⋅q₂⋅wz - 0.5⋅q₃⋅wy \n", - "⎢ \n", - "⎢ 0.5⋅q₀⋅wy - 0.5⋅q₁⋅wz + 0.5⋅q₃⋅wx \n", - "⎢ \n", - "⎢ 0.5⋅q₀⋅wz + 0.5⋅q₁⋅wy - 0.5⋅q₂⋅wx \n", - "⎢ \n", - "⎢ 0 \n", - "⎢ \n", - "⎢ 1.0⋅uz \n", - "⎢ \n", - "⎣ -1.0⋅uy \n", - "\n", - "⎤\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎥\n", - "⎦" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "display(sp.simplify(f)) # f" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$\\left[\\begin{array}{cccccccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\\\frac{ux \\left(2 q_{2}^{2} + 2 q_{3}^{2} - 1\\right) + 2 uy \\left(q_{0} q_{3} - q_{1} q_{2}\\right) - 2 uz \\left(q_{0} q_{2} + q_{1} q_{3}\\right)}{m^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & \\frac{2 \\left(q_{2} uz - q_{3} uy\\right)}{m} & \\frac{2 \\left(q_{2} uy + q_{3} uz\\right)}{m} & \\frac{2 \\left(q_{0} uz + q_{1} uy - 2 q_{2} ux\\right)}{m} & \\frac{2 \\left(- q_{0} uy + q_{1} uz - 2 q_{3} ux\\right)}{m} & 0 & 0 & 0\\\\\\frac{- 2 ux \\left(q_{0} q_{3} + q_{1} q_{2}\\right) + uy \\left(2 q_{1}^{2} + 2 q_{3}^{2} - 1\\right) + 2 uz \\left(q_{0} q_{1} - q_{2} q_{3}\\right)}{m^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & \\frac{2 \\left(- q_{1} uz + q_{3} ux\\right)}{m} & \\frac{2 \\left(- q_{0} uz - 2 q_{1} uy + q_{2} ux\\right)}{m} & \\frac{2 \\left(q_{1} ux + q_{3} uz\\right)}{m} & \\frac{2 \\left(q_{0} ux + q_{2} uz - 2 q_{3} uy\\right)}{m} & 0 & 0 & 0\\\\\\frac{2 ux \\left(q_{0} q_{2} - q_{1} q_{3}\\right) - 2 uy \\left(q_{0} q_{1} + q_{2} q_{3}\\right) + uz \\left(2 q_{1}^{2} + 2 q_{2}^{2} - 1\\right)}{m^{2}} & 0 & 0 & 0 & 0 & 0 & 0 & \\frac{2 \\left(q_{1} uy - q_{2} ux\\right)}{m} & \\frac{2 \\left(q_{0} uy - 2 q_{1} uz + q_{3} ux\\right)}{m} & \\frac{2 \\left(- q_{0} ux - 2 q_{2} uz + q_{3} uy\\right)}{m} & \\frac{2 \\left(q_{1} ux + q_{2} uy\\right)}{m} & 0 & 0 & 0\\\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 0.5 wx & - 0.5 wy & - 0.5 wz & - 0.5 q_{1} & - 0.5 q_{2} & - 0.5 q_{3}\\\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 wx & 0 & 0.5 wz & - 0.5 wy & 0.5 q_{0} & - 0.5 q_{3} & 0.5 q_{2}\\\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 wy & - 0.5 wz & 0 & 0.5 wx & 0.5 q_{3} & 0.5 q_{0} & - 0.5 q_{1}\\\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.5 wz & 0.5 wy & - 0.5 wx & 0 & - 0.5 q_{2} & 0.5 q_{1} & 0.5 q_{0}\\\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\\\0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\end{array}\\right]$$" - ], - "text/plain": [ - "⎡ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ ⎛ 2 2 ⎞ \n", - "⎢ux⋅⎝2⋅q₂ + 2⋅q₃ - 1⎠ + 2⋅uy⋅(q₀⋅q₃ - q₁⋅q₂) - 2⋅uz⋅(q₀⋅q₂ + q₁⋅q₃) \n", - "⎢──────────────────────────────────────────────────────────────────── 0 0 \n", - "⎢ 2 \n", - "⎢ m \n", - "⎢ \n", - "⎢ ⎛ 2 2 ⎞ \n", - "⎢-2⋅ux⋅(q₀⋅q₃ + q₁⋅q₂) + uy⋅⎝2⋅q₁ + 2⋅q₃ - 1⎠ + 2⋅uz⋅(q₀⋅q₁ - q₂⋅q₃) \n", - "⎢───────────────────────────────────────────────────────────────────── 0 0 \n", - "⎢ 2 \n", - "⎢ m \n", - "⎢ \n", - "⎢ ⎛ 2 2 ⎞ \n", - "⎢2⋅ux⋅(q₀⋅q₂ - q₁⋅q₃) - 2⋅uy⋅(q₀⋅q₁ + q₂⋅q₃) + uz⋅⎝2⋅q₁ + 2⋅q₂ - 1⎠ \n", - "⎢──────────────────────────────────────────────────────────────────── 0 0 \n", - "⎢ 2 \n", - "⎢ m \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎢ 0 0 0 \n", - "⎢ \n", - "⎣ 0 0 0 \n", - "\n", - "0 0 0 0 0 0 0 \n", - " \n", - "0 1 0 0 0 0 0 \n", - " \n", - "0 0 1 0 0 0 0 \n", - " \n", - "0 0 0 1 0 0 0 \n", - " \n", - " \n", - " 2⋅(q₂⋅uz - q₃⋅uy) 2⋅(q₂⋅uy + q₃⋅uz) 2⋅(q₀⋅uz + q₁⋅uy\n", - "0 0 0 0 ───────────────── ───────────────── ────────────────\n", - " m m m \n", - " \n", - " \n", - " \n", - " 2⋅(-q₁⋅uz + q₃⋅ux) 2⋅(-q₀⋅uz - 2⋅q₁⋅uy + q₂⋅ux) 2⋅(q₁⋅ux + \n", - "0 0 0 0 ────────────────── ──────────────────────────── ───────────\n", - " m m m \n", - " \n", - " \n", - " \n", - " 2⋅(q₁⋅uy - q₂⋅ux) 2⋅(q₀⋅uy - 2⋅q₁⋅uz + q₃⋅ux) 2⋅(-q₀⋅ux - 2⋅q₂\n", - "0 0 0 0 ───────────────── ─────────────────────────── ────────────────\n", - " m m m \n", - " \n", - " \n", - "0 0 0 0 0 -0.5⋅wx -0.5⋅w\n", - " \n", - "0 0 0 0 0.5⋅wx 0 0.5⋅w\n", - " \n", - "0 0 0 0 0.5⋅wy -0.5⋅wz 0 \n", - " \n", - "0 0 0 0 0.5⋅wz 0.5⋅wy -0.5⋅w\n", - " \n", - "0 0 0 0 0 0 0 \n", - " \n", - "0 0 0 0 0 0 0 \n", - " \n", - "0 0 0 0 0 0 0 \n", - "\n", - " 0 0 0 0 ⎤\n", - " ⎥\n", - " 0 0 0 0 ⎥\n", - " ⎥\n", - " 0 0 0 0 ⎥\n", - " ⎥\n", - " 0 0 0 0 ⎥\n", - " ⎥\n", - " ⎥\n", - " - 2⋅q₂⋅ux) 2⋅(-q₀⋅uy + q₁⋅uz - 2⋅q₃⋅ux) ⎥\n", - "─────────── ──────────────────────────── 0 0 0 ⎥\n", - " m ⎥\n", - " ⎥\n", - " ⎥\n", - " ⎥\n", - "q₃⋅uz) 2⋅(q₀⋅ux + q₂⋅uz - 2⋅q₃⋅uy) ⎥\n", - "────── ─────────────────────────── 0 0 0 ⎥\n", - " m ⎥\n", - " ⎥\n", - " ⎥\n", - " ⎥\n", - "⋅uz + q₃⋅uy) 2⋅(q₁⋅ux + q₂⋅uy) ⎥\n", - "──────────── ───────────────── 0 0 0 ⎥\n", - " m ⎥\n", - " ⎥\n", - " ⎥\n", - "y -0.5⋅wz -0.5⋅q₁ -0.5⋅q₂ -0.5⋅q₃⎥\n", - " ⎥\n", - "z -0.5⋅wy 0.5⋅q₀ -0.5⋅q₃ 0.5⋅q₂ ⎥\n", - " ⎥\n", - " 0.5⋅wx 0.5⋅q₃ 0.5⋅q₀ -0.5⋅q₁⎥\n", - " ⎥\n", - "x 0 -0.5⋅q₂ 0.5⋅q₁ 0.5⋅q₀ ⎥\n", - " ⎥\n", - " 0 0 0 0 ⎥\n", - " ⎥\n", - " 0 0 0 0 ⎥\n", - " ⎥\n", - " 0 0 0 0 ⎦" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "display(sp.simplify(f.jacobian(x)))# A " - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "text/latex": [ - "$$\\left[\\begin{matrix}- \\frac{0.01 ux}{\\sqrt{ux^{2} + uy^{2} + uz^{2}}} & - \\frac{0.01 uy}{\\sqrt{ux^{2} + uy^{2} + uz^{2}}} & - \\frac{0.01 uz}{\\sqrt{ux^{2} + uy^{2} + uz^{2}}}\\\\0 & 0 & 0\\\\0 & 0 & 0\\\\0 & 0 & 0\\\\\\frac{- 2 q_{2}^{2} - 2 q_{3}^{2} + 1}{m} & \\frac{2 \\left(- q_{0} q_{3} + q_{1} q_{2}\\right)}{m} & \\frac{2 \\left(q_{0} q_{2} + q_{1} q_{3}\\right)}{m}\\\\\\frac{2 \\left(q_{0} q_{3} + q_{1} q_{2}\\right)}{m} & \\frac{- 2 q_{1}^{2} - 2 q_{3}^{2} + 1}{m} & \\frac{2 \\left(- q_{0} q_{1} + q_{2} q_{3}\\right)}{m}\\\\\\frac{2 \\left(- q_{0} q_{2} + q_{1} q_{3}\\right)}{m} & \\frac{2 \\left(q_{0} q_{1} + q_{2} q_{3}\\right)}{m} & \\frac{- 2 q_{1}^{2} - 2 q_{2}^{2} + 1}{m}\\\\0 & 0 & 0\\\\0 & 0 & 0\\\\0 & 0 & 0\\\\0 & 0 & 0\\\\0 & 0 & 0\\\\0 & 0 & 1.0\\\\0 & -1.0 & 0\\end{matrix}\\right]$$" - ], - "text/plain": [ - "⎡ -0.01⋅ux -0.01⋅uy -0.01⋅uz ⎤\n", - "⎢──────────────────── ──────────────────── ────────────────────⎥\n", - "⎢ _________________ _________________ _________________⎥\n", - "⎢ ╱ 2 2 2 ╱ 2 2 2 ╱ 2 2 2 ⎥\n", - "⎢╲╱ ux + uy + uz ╲╱ ux + uy + uz ╲╱ ux + uy + uz ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 2 2 ⎥\n", - "⎢- 2⋅q₂ - 2⋅q₃ + 1 2⋅(-q₀⋅q₃ + q₁⋅q₂) 2⋅(q₀⋅q₂ + q₁⋅q₃) ⎥\n", - "⎢─────────────────── ────────────────── ───────────────── ⎥\n", - "⎢ m m m ⎥\n", - "⎢ ⎥\n", - "⎢ 2 2 ⎥\n", - "⎢ 2⋅(q₀⋅q₃ + q₁⋅q₂) - 2⋅q₁ - 2⋅q₃ + 1 2⋅(-q₀⋅q₁ + q₂⋅q₃) ⎥\n", - "⎢ ───────────────── ─────────────────── ────────────────── ⎥\n", - "⎢ m m m ⎥\n", - "⎢ ⎥\n", - "⎢ 2 2 ⎥\n", - "⎢ 2⋅(-q₀⋅q₂ + q₁⋅q₃) 2⋅(q₀⋅q₁ + q₂⋅q₃) - 2⋅q₁ - 2⋅q₂ + 1 ⎥\n", - "⎢ ────────────────── ───────────────── ─────────────────── ⎥\n", - "⎢ m m m ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 0 ⎥\n", - "⎢ ⎥\n", - "⎢ 0 0 1.0 ⎥\n", - "⎢ ⎥\n", - "⎣ 0 -1.0 0 ⎦" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sp.simplify(f.jacobian(u)) # B" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ref\n", - "\n", - "- Python implementation of 'Successive Convexification for 6-DoF Mars Rocket Powered Landing with Free-Final-Time' paper\n", - "by Michael Szmuk and Behçet Açıkmeşe.\n", - "\n", - "- inspired by EmbersArc/SuccessiveConvexificationFreeFinalTime: Implementation of \"Successive Convexification for 6-DoF Mars Rocket Powered Landing with Free-Final-Time\" https://github.com/EmbersArc/SuccessiveConvexificationFreeFinalTime\n", - "\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py b/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py index eb9d7ba4a7..e8ba8fa220 100644 --- a/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py +++ b/AerialNavigation/rocket_powered_landing/rocket_powered_landing.py @@ -5,20 +5,19 @@ author: Sven Niederberger Atsushi Sakai -Ref: +Reference: - Python implementation of 'Successive Convexification for 6-DoF Mars Rocket Powered Landing with Free-Final-Time' paper by Michael Szmuk and Behcet Acıkmese. - EmbersArc/SuccessiveConvexificationFreeFinalTime: Implementation of "Successive Convexification for 6-DoF Mars Rocket Powered Landing with Free-Final-Time" https://github.com/EmbersArc/SuccessiveConvexificationFreeFinalTime """ - +import warnings from time import time import numpy as np from scipy.integrate import odeint import cvxpy import matplotlib.pyplot as plt -from mpl_toolkits import mplot3d # Trajectory points K = 50 @@ -32,6 +31,7 @@ W_DELTA_SIGMA = 1e-1 # difference in flight time W_NU = 1e5 # virtual control +print(cvxpy.installed_solvers()) solver = 'ECOS' verbose_solver = False @@ -43,7 +43,7 @@ class Rocket_Model_6DoF: A 6 degree of freedom rocket landing problem. """ - def __init__(self): + def __init__(self, rng): """ A large r_scale for a small scale problem will ead to numerical problems as parameters become excessively small @@ -92,7 +92,7 @@ def __init__(self): # Vector from thrust point to CoM self.r_T_B = np.array([-1e-2, 0., 0.]) - self.set_random_initial_state() + self.set_random_initial_state(rng) self.x_init = np.concatenate( ((self.m_wet,), self.r_I_init, self.v_I_init, self.q_B_I_init, self.w_B_init)) @@ -102,29 +102,32 @@ def __init__(self): self.r_scale = np.linalg.norm(self.r_I_init) self.m_scale = self.m_wet - def set_random_initial_state(self): + def set_random_initial_state(self, rng): + if rng is None: + rng = np.random.default_rng() + self.r_I_init = np.array((0., 0., 0.)) - self.r_I_init[0] = np.random.uniform(3, 4) - self.r_I_init[1:3] = np.random.uniform(-2, 2, size=2) + self.r_I_init[0] = rng.uniform(3, 4) + self.r_I_init[1:3] = rng.uniform(-2, 2, size=2) self.v_I_init = np.array((0., 0., 0.)) - self.v_I_init[0] = np.random.uniform(-1, -0.5) - self.v_I_init[1:3] = np.random.uniform( - -0.5, -0.2, size=2) * self.r_I_init[1:3] + self.v_I_init[0] = rng.uniform(-1, -0.5) + self.v_I_init[1:3] = rng.uniform(-0.5, -0.2, + size=2) * self.r_I_init[1:3] self.q_B_I_init = self.euler_to_quat((0, - np.random.uniform(-30, 30), - np.random.uniform(-30, 30))) + rng.uniform(-30, 30), + rng.uniform(-30, 30))) self.w_B_init = np.deg2rad((0, - np.random.uniform(-20, 20), - np.random.uniform(-20, 20))) + rng.uniform(-20, 20), + rng.uniform(-20, 20))) def f_func(self, x, u): - m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[ + m, _, _, _, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[ 2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13] ux, uy, uz = u[0], u[1], u[2] - return np.matrix([ + return np.array([ [-0.01 * np.sqrt(ux**2 + uy**2 + uz**2)], [vx], [vy], @@ -145,11 +148,11 @@ def f_func(self, x, u): ]) def A_func(self, x, u): - m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[ + m, _, _, _, _, _, _, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[ 2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13] ux, uy, uz = u[0], u[1], u[2] - return np.matrix([ + return np.array([ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], @@ -173,11 +176,11 @@ def A_func(self, x, u): [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]) def B_func(self, x, u): - m, rx, ry, rz, vx, vy, vz, q0, q1, q2, q3, wx, wy, wz = x[0], x[1], x[ + m, _, _, _, _, _, _, q0, q1, q2, q3, _, _, _ = x[0], x[1], x[ 2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10], x[11], x[12], x[13] ux, uy, uz = u[0], u[1], u[2] - return np.matrix([ + return np.array([ [-0.01 * ux / np.sqrt(ux**2 + uy**2 + uz**2), -0.01 * uy / np.sqrt(ux ** 2 + uy**2 + uz**2), -0.01 * uz / np.sqrt(ux**2 + uy**2 + uz**2)], @@ -219,14 +222,14 @@ def euler_to_quat(self, a): return q def skew(self, v): - return np.matrix([ + return np.array([ [0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0] ]) def dir_cosine(self, q): - return np.matrix([ + return np.array([ [1 - 2 * (q[2] ** 2 + q[3] ** 2), 2 * (q[1] * q[2] + q[0] * q[3]), 2 * (q[1] * q[3] - q[0] * q[2])], [2 * (q[1] * q[2] - q[0] * q[3]), 1 - 2 @@ -236,7 +239,7 @@ def dir_cosine(self, q): ]) def omega(self, w): - return np.matrix([ + return np.array([ [0, -w[0], -w[1], -w[2]], [w[0], 0, w[2], -w[1]], [w[1], -w[2], 0, w[0]], @@ -304,7 +307,7 @@ def get_constraints(self, X_v, U_v, X_last_p, U_last_p): ] # linearized lower thrust constraint - rhs = [U_last_p[:, k] / cvxpy.norm(U_last_p[:, k]) * U_v[:, k] + rhs = [U_last_p[:, k] / cvxpy.norm(U_last_p[:, k]) @ U_v[:, k] for k in range(X_v.shape[1])] constraints += [ self.T_min <= cvxpy.vstack(rhs) @@ -460,11 +463,11 @@ def __init__(self, m, K): # x_t+1 = A_*x_t+B_*U_t+C_*U_T+1*S_*sigma+zbar+nu constraints += [ self.var['X'][:, k + 1] == - cvxpy.reshape(self.par['A_bar'][:, k], (m.n_x, m.n_x)) * + cvxpy.reshape(self.par['A_bar'][:, k], (m.n_x, m.n_x), order='F') @ self.var['X'][:, k] + - cvxpy.reshape(self.par['B_bar'][:, k], (m.n_x, m.n_u)) * + cvxpy.reshape(self.par['B_bar'][:, k], (m.n_x, m.n_u), order='F') @ self.var['U'][:, k] + - cvxpy.reshape(self.par['C_bar'][:, k], (m.n_x, m.n_u)) * + cvxpy.reshape(self.par['C_bar'][:, k], (m.n_x, m.n_u), order='F') @ self.var['U'][:, k + 1] + self.par['S_bar'][:, k] * self.var['sigma'] + self.par['z_bar'][:, k] + @@ -531,8 +534,10 @@ def get_variable(self, name): def solve(self, **kwargs): error = False try: - self.prob.solve(verbose=verbose_solver, - solver=solver) + with warnings.catch_warnings(): # For User warning from solver + warnings.simplefilter('ignore') + self.prob.solve(verbose=verbose_solver, + solver=solver) except cvxpy.SolverError: error = True @@ -566,10 +571,10 @@ def axis3d_equal(X, Y, Z, ax): def plot_animation(X, U): # pragma: no cover fig = plt.figure() - ax = fig.gca(projection='3d') + ax = fig.add_subplot(projection='3d') # for stopping simulation with the esc key. fig.canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + lambda event: [exit(0) if event.key == 'escape' else None]) for k in range(K): plt.cla() @@ -606,9 +611,9 @@ def plot_animation(X, U): # pragma: no cover plt.pause(0.5) -def main(): +def main(rng=None): print("start!!") - m = Rocket_Model_6DoF() + m = Rocket_Model_6DoF(rng) # state and input list X = np.empty(shape=[m.n_x, K]) diff --git a/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation.py b/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation.py index f3bd25577c..9047c13851 100644 --- a/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation.py +++ b/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation.py @@ -34,7 +34,7 @@ def detect_collision(line_seg, circle): """ Determines whether a line segment (arm link) is in contact with a circle (obstacle). - Credit to: http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html + Credit to: https://web.archive.org/web/20200130224918/http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html Args: line_seg: List of coordinates of line segment endpoints e.g. [[1, 1], [2, 2]] circle: List of circle coordinates and radius e.g. [0, 0, 0.5] is a circle centered @@ -105,7 +105,7 @@ def astar_torus(grid, start_node, goal_node): Args: grid: An occupancy grid (ndarray) - start_node: Initial joint configuation (tuple) + start_node: Initial joint configuration (tuple) goal_node: Goal joint configuration (tuple) Returns: @@ -158,7 +158,7 @@ def astar_torus(grid, start_node, goal_node): while parent_map[route[0][0]][route[0][1]] != (): route.insert(0, parent_map[route[0][0]][route[0][1]]) - print("The route found covers %d grid cells." % len(route)) + print(f"The route found covers {len(route)} grid cells.") for i in range(1, len(route)): grid[route[i]] = 6 plt.cla() @@ -203,16 +203,16 @@ def calc_heuristic_map(M, goal_node): for i in range(heuristic_map.shape[0]): for j in range(heuristic_map.shape[1]): heuristic_map[i, j] = min(heuristic_map[i, j], - i + 1 + heuristic_map[M - 1, j], - M - i + heuristic_map[0, j], - j + 1 + heuristic_map[i, M - 1], - M - j + heuristic_map[i, 0] + M - i - 1 + heuristic_map[M - 1, j], + i + heuristic_map[0, j], + M - j - 1 + heuristic_map[i, M - 1], + j + heuristic_map[i, 0] ) return heuristic_map -class NLinkArm(object): +class NLinkArm: """ Class for controlling and plotting a planar arm with an arbitrary number of links. """ diff --git a/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation_2.py b/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation_2.py index 429cd4d211..f5d435082a 100644 --- a/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation_2.py +++ b/ArmNavigation/arm_obstacle_navigation/arm_obstacle_navigation_2.py @@ -34,7 +34,7 @@ def main(): goal = (58, 56) grid = get_occupancy_grid(arm, obstacles) route = astar_torus(grid, start, goal) - if len(route) >= 0: + if route: animate(grid, arm, route) @@ -66,7 +66,7 @@ def detect_collision(line_seg, circle): """ Determines whether a line segment (arm link) is in contact with a circle (obstacle). - Credit to: http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html + Credit to: https://web.archive.org/web/20200130224918/http://doswa.com/2009/07/13/circle-segment-intersectioncollision.html Args: line_seg: List of coordinates of line segment endpoints e.g. [[1, 1], [2, 2]] circle: List of circle coordinates and radius e.g. [0, 0, 0.5] is a circle centered @@ -105,7 +105,7 @@ def get_occupancy_grid(arm, obstacles): Args: arm: An instance of NLinkArm obstacles: A list of obstacles, with each obstacle defined as a list - of xy coordinates and a radius. + of xy coordinates and a radius. Returns: Occupancy grid in joint space @@ -136,7 +136,7 @@ def astar_torus(grid, start_node, goal_node): Args: grid: An occupancy grid (ndarray) - start_node: Initial joint configuation (tuple) + start_node: Initial joint configuration (tuple) goal_node: Goal joint configuration (tuple) Returns: @@ -189,7 +189,7 @@ def astar_torus(grid, start_node, goal_node): while parent_map[route[0][0]][route[0][1]] != (): route.insert(0, parent_map[route[0][0]][route[0][1]]) - print("The route found covers %d grid cells." % len(route)) + print(f"The route found covers {len(route)} grid cells.") for i in range(1, len(route)): grid[route[i]] = 6 plt.cla() @@ -234,16 +234,16 @@ def calc_heuristic_map(M, goal_node): for i in range(heuristic_map.shape[0]): for j in range(heuristic_map.shape[1]): heuristic_map[i, j] = min(heuristic_map[i, j], - i + 1 + heuristic_map[M - 1, j], - M - i + heuristic_map[0, j], - j + 1 + heuristic_map[i, M - 1], - M - j + heuristic_map[i, 0] + M - i - 1 + heuristic_map[M - 1, j], + i + heuristic_map[0, j], + M - j - 1 + heuristic_map[i, M - 1], + j + heuristic_map[i, 0] ) return heuristic_map -class NLinkArm(object): +class NLinkArm: """ Class for controlling and plotting a planar arm with an arbitrary number of links. """ diff --git a/ArmNavigation/n_joint_arm_3d/NLinkArm3d.py b/ArmNavigation/n_joint_arm_3d/NLinkArm3d.py index b411cd7114..0459e234b2 100644 --- a/ArmNavigation/n_joint_arm_3d/NLinkArm3d.py +++ b/ArmNavigation/n_joint_arm_3d/NLinkArm3d.py @@ -43,8 +43,6 @@ def basic_jacobian(trans_prev, ee_pos): class NLinkArm: def __init__(self, dh_params_list): - self.fig = plt.figure() - self.ax = Axes3D(self.fig) self.link_list = [] for i in range(len(dh_params_list)): self.link_list.append(Link(dh_params_list[i])) @@ -64,6 +62,10 @@ def forward_kinematics(self, plot=False): alpha, beta, gamma = self.euler_angle() if plot: + self.fig = plt.figure() + self.ax = Axes3D(self.fig, auto_add_to_figure=False) + self.fig.add_axes(self.ax) + x_list = [] y_list = [] z_list = [] @@ -125,7 +127,8 @@ def inverse_kinematics(self, ref_ee_pose, plot=False): if plot: self.fig = plt.figure() - self.ax = Axes3D(self.fig) + self.ax = Axes3D(self.fig, auto_add_to_figure=False) + self.fig.add_axes(self.ax) x_list = [] y_list = [] diff --git a/ArmNavigation/n_joint_arm_3d/__init__.py b/ArmNavigation/n_joint_arm_3d/__init__.py new file mode 100644 index 0000000000..2194d4c303 --- /dev/null +++ b/ArmNavigation/n_joint_arm_3d/__init__.py @@ -0,0 +1,3 @@ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent)) diff --git a/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py b/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py index 3972474b8d..a237523336 100644 --- a/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py +++ b/ArmNavigation/n_joint_arm_to_point_control/n_joint_arm_to_point_control.py @@ -4,9 +4,14 @@ Author: Daniel Ingram (daniel-s-ingram) Atsushi Sakai (@Atsushi_twi) """ -import numpy as np -from NLinkArm import NLinkArm +import sys +from pathlib import Path +sys.path.append(str(Path(__file__).parent.parent.parent)) + +import numpy as np +from ArmNavigation.n_joint_arm_to_point_control.NLinkArm import NLinkArm +from utils.angle import angle_mod # Simulation parameters Kp = 2 @@ -155,9 +160,9 @@ def ang_diff(theta1, theta2): """ Returns the difference between two angles in the range -pi to +pi """ - return (theta1 - theta2 + np.pi) % (2 * np.pi) - np.pi + return angle_mod(theta1 - theta2) if __name__ == '__main__': # main() - animation() \ No newline at end of file + animation() diff --git a/ArmNavigation/rrt_star_seven_joint_arm_control/rrt_star_seven_joint_arm_control.py b/ArmNavigation/rrt_star_seven_joint_arm_control/rrt_star_seven_joint_arm_control.py new file mode 100755 index 0000000000..3bc2a5ec1d --- /dev/null +++ b/ArmNavigation/rrt_star_seven_joint_arm_control/rrt_star_seven_joint_arm_control.py @@ -0,0 +1,405 @@ +""" +RRT* path planner for a seven joint arm +Author: Mahyar Abdeetedal (mahyaret) +""" +import math +import random +import numpy as np +import matplotlib.pyplot as plt +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) + +from n_joint_arm_3d.NLinkArm3d import NLinkArm + +show_animation = True +verbose = False + + +class RobotArm(NLinkArm): + def get_points(self, joint_angle_list): + self.set_joint_angles(joint_angle_list) + + x_list = [] + y_list = [] + z_list = [] + + trans = np.identity(4) + + x_list.append(trans[0, 3]) + y_list.append(trans[1, 3]) + z_list.append(trans[2, 3]) + for i in range(len(self.link_list)): + trans = np.dot(trans, self.link_list[i].transformation_matrix()) + x_list.append(trans[0, 3]) + y_list.append(trans[1, 3]) + z_list.append(trans[2, 3]) + + return x_list, y_list, z_list + + +class RRTStar: + """ + Class for RRT Star planning + """ + + class Node: + def __init__(self, x): + self.x = x + self.parent = None + self.cost = 0.0 + + def __init__(self, start, goal, robot, obstacle_list, rand_area, + expand_dis=.30, + path_resolution=.1, + goal_sample_rate=20, + max_iter=300, + connect_circle_dist=50.0 + ): + """ + Setting Parameter + + start:Start Position [q1,...,qn] + goal:Goal Position [q1,...,qn] + obstacleList:obstacle Positions [[x,y,z,size],...] + randArea:Random Sampling Area [min,max] + + """ + self.start = self.Node(start) + self.end = self.Node(goal) + self.dimension = len(start) + self.min_rand = rand_area[0] + self.max_rand = rand_area[1] + self.expand_dis = expand_dis + self.path_resolution = path_resolution + self.goal_sample_rate = goal_sample_rate + self.max_iter = max_iter + self.robot = robot + self.obstacle_list = obstacle_list + self.connect_circle_dist = connect_circle_dist + self.goal_node = self.Node(goal) + self.node_list = [] + if show_animation: + self.ax = plt.axes(projection='3d') + + def planning(self, animation=False, search_until_max_iter=False): + """ + rrt star path planning + + animation: flag for animation on or off + search_until_max_iter: search until max iteration for path + improving or not + """ + + self.node_list = [self.start] + for i in range(self.max_iter): + if verbose: + print("Iter:", i, ", number of nodes:", len(self.node_list)) + rnd = self.get_random_node() + nearest_ind = self.get_nearest_node_index(self.node_list, rnd) + new_node = self.steer(self.node_list[nearest_ind], + rnd, + self.expand_dis) + + if self.check_collision(new_node, self.robot, self.obstacle_list): + near_inds = self.find_near_nodes(new_node) + new_node = self.choose_parent(new_node, near_inds) + if new_node: + self.node_list.append(new_node) + self.rewire(new_node, near_inds) + + if animation and i % 5 == 0 and self.dimension <= 3: + self.draw_graph(rnd) + + if (not search_until_max_iter) and new_node: + last_index = self.search_best_goal_node() + if last_index is not None: + return self.generate_final_course(last_index) + if verbose: + print("reached max iteration") + + last_index = self.search_best_goal_node() + if last_index is not None: + return self.generate_final_course(last_index) + + return None + + def choose_parent(self, new_node, near_inds): + if not near_inds: + return None + + # search nearest cost in near_inds + costs = [] + for i in near_inds: + near_node = self.node_list[i] + t_node = self.steer(near_node, new_node) + if t_node and self.check_collision(t_node, + self.robot, + self.obstacle_list): + costs.append(self.calc_new_cost(near_node, new_node)) + else: + costs.append(float("inf")) # the cost of collision node + min_cost = min(costs) + + if min_cost == float("inf"): + print("There is no good path.(min_cost is inf)") + return None + + min_ind = near_inds[costs.index(min_cost)] + new_node = self.steer(self.node_list[min_ind], new_node) + new_node.parent = self.node_list[min_ind] + new_node.cost = min_cost + + return new_node + + def search_best_goal_node(self): + dist_to_goal_list = [self.calc_dist_to_goal(n.x) + for n in self.node_list] + goal_inds = [dist_to_goal_list.index(i) + for i in dist_to_goal_list if i <= self.expand_dis] + + safe_goal_inds = [] + for goal_ind in goal_inds: + t_node = self.steer(self.node_list[goal_ind], self.goal_node) + if self.check_collision(t_node, self.robot, self.obstacle_list): + safe_goal_inds.append(goal_ind) + + if not safe_goal_inds: + return None + + min_cost = min([self.node_list[i].cost for i in safe_goal_inds]) + for i in safe_goal_inds: + if self.node_list[i].cost == min_cost: + return i + + return None + + def find_near_nodes(self, new_node): + nnode = len(self.node_list) + 1 + r = self.connect_circle_dist * math.sqrt(math.log(nnode) / nnode) + # if expand_dist exists, search vertices in + # a range no more than expand_dist + if hasattr(self, 'expand_dis'): + r = min(r, self.expand_dis) + dist_list = [np.sum((np.array(node.x) - np.array(new_node.x)) ** 2) + for node in self.node_list] + near_inds = [dist_list.index(i) for i in dist_list if i <= r ** 2] + return near_inds + + def rewire(self, new_node, near_inds): + for i in near_inds: + near_node = self.node_list[i] + edge_node = self.steer(new_node, near_node) + if not edge_node: + continue + edge_node.cost = self.calc_new_cost(new_node, near_node) + + no_collision = self.check_collision(edge_node, + self.robot, + self.obstacle_list) + improved_cost = near_node.cost > edge_node.cost + + if no_collision and improved_cost: + self.node_list[i] = edge_node + self.propagate_cost_to_leaves(new_node) + + def calc_new_cost(self, from_node, to_node): + d, _, _ = self.calc_distance_and_angle(from_node, to_node) + return from_node.cost + d + + def propagate_cost_to_leaves(self, parent_node): + + for node in self.node_list: + if node.parent == parent_node: + node.cost = self.calc_new_cost(parent_node, node) + self.propagate_cost_to_leaves(node) + + def generate_final_course(self, goal_ind): + path = [self.end.x] + node = self.node_list[goal_ind] + while node.parent is not None: + path.append(node.x) + node = node.parent + path.append(node.x) + reversed(path) + return path + + def calc_dist_to_goal(self, x): + distance = np.linalg.norm(np.array(x) - np.array(self.end.x)) + return distance + + def get_random_node(self): + if random.randint(0, 100) > self.goal_sample_rate: + rnd = self.Node(np.random.uniform(self.min_rand, + self.max_rand, + self.dimension)) + else: # goal point sampling + rnd = self.Node(self.end.x) + return rnd + + def steer(self, from_node, to_node, extend_length=float("inf")): + new_node = self.Node(list(from_node.x)) + d, phi, theta = self.calc_distance_and_angle(new_node, to_node) + + new_node.path_x = [list(new_node.x)] + + if extend_length > d: + extend_length = d + + n_expand = math.floor(extend_length / self.path_resolution) + + start, end = np.array(from_node.x), np.array(to_node.x) + v = end - start + u = v / (np.sqrt(np.sum(v ** 2))) + for _ in range(n_expand): + new_node.x += u * self.path_resolution + new_node.path_x.append(list(new_node.x)) + + d, _, _ = self.calc_distance_and_angle(new_node, to_node) + if d <= self.path_resolution: + new_node.path_x.append(list(to_node.x)) + + new_node.parent = from_node + + return new_node + + def draw_graph(self, rnd=None): + plt.cla() + self.ax.axis([-1, 1, -1, 1, -1, 1]) + self.ax.set_zlim(0, 1) + self.ax.grid(True) + for (ox, oy, oz, size) in self.obstacle_list: + self.plot_sphere(self.ax, ox, oy, oz, size=size) + if self.dimension > 3: + return self.ax + if rnd is not None: + self.ax.plot([rnd.x[0]], [rnd.x[1]], [rnd.x[2]], "^k") + for node in self.node_list: + if node.parent: + path = np.array(node.path_x) + plt.plot(path[:, 0], path[:, 1], path[:, 2], "-g") + self.ax.plot([self.start.x[0]], [self.start.x[1]], + [self.start.x[2]], "xr") + self.ax.plot([self.end.x[0]], [self.end.x[1]], [self.end.x[2]], "xr") + plt.pause(0.01) + return self.ax + + @staticmethod + def get_nearest_node_index(node_list, rnd_node): + dlist = [np.sum((np.array(node.x) - np.array(rnd_node.x))**2) + for node in node_list] + minind = dlist.index(min(dlist)) + + return minind + + @staticmethod + def plot_sphere(ax, x, y, z, size=1, color="k"): + u, v = np.mgrid[0:2*np.pi:20j, 0:np.pi:10j] + xl = x+size*np.cos(u)*np.sin(v) + yl = y+size*np.sin(u)*np.sin(v) + zl = z+size*np.cos(v) + ax.plot_wireframe(xl, yl, zl, color=color) + + @staticmethod + def calc_distance_and_angle(from_node, to_node): + dx = to_node.x[0] - from_node.x[0] + dy = to_node.x[1] - from_node.x[1] + dz = to_node.x[2] - from_node.x[2] + d = np.sqrt(np.sum((np.array(to_node.x) - np.array(from_node.x))**2)) + phi = math.atan2(dy, dx) + theta = math.atan2(math.hypot(dx, dy), dz) + return d, phi, theta + + @staticmethod + def calc_distance_and_angle2(from_node, to_node): + dx = to_node.x[0] - from_node.x[0] + dy = to_node.x[1] - from_node.x[1] + dz = to_node.x[2] - from_node.x[2] + d = math.sqrt(dx**2 + dy**2 + dz**2) + phi = math.atan2(dy, dx) + theta = math.atan2(math.hypot(dx, dy), dz) + return d, phi, theta + + @staticmethod + def check_collision(node, robot, obstacleList): + + if node is None: + return False + + for (ox, oy, oz, size) in obstacleList: + for x in node.path_x: + x_list, y_list, z_list = robot.get_points(x) + dx_list = [ox - x_point for x_point in x_list] + dy_list = [oy - y_point for y_point in y_list] + dz_list = [oz - z_point for z_point in z_list] + d_list = [dx * dx + dy * dy + dz * dz + for (dx, dy, dz) in zip(dx_list, + dy_list, + dz_list)] + + if min(d_list) <= size ** 2: + return False # collision + + return True # safe + + +def main(): + print("Start " + __file__) + + # init NLinkArm with Denavit-Hartenberg parameters of panda + # https://frankaemika.github.io/docs/control_parameters.html + # [theta, alpha, a, d] + seven_joint_arm = RobotArm([[0., math.pi/2., 0., .333], + [0., -math.pi/2., 0., 0.], + [0., math.pi/2., 0.0825, 0.3160], + [0., -math.pi/2., -0.0825, 0.], + [0., math.pi/2., 0., 0.3840], + [0., math.pi/2., 0.088, 0.], + [0., 0., 0., 0.107]]) + # ====Search Path with RRT==== + obstacle_list = [ + (-.3, -.3, .7, .1), + (.0, -.3, .7, .1), + (.2, -.1, .3, .15), + ] # [x,y,size(radius)] + start = [0 for _ in range(len(seven_joint_arm.link_list))] + end = [1.5 for _ in range(len(seven_joint_arm.link_list))] + # Set Initial parameters + rrt_star = RRTStar(start=start, + goal=end, + rand_area=[0, 2], + max_iter=200, + robot=seven_joint_arm, + obstacle_list=obstacle_list) + path = rrt_star.planning(animation=show_animation, + search_until_max_iter=False) + + if path is None: + print("Cannot find path.") + else: + print("Found path!") + + # Draw final path + if show_animation: + ax = rrt_star.draw_graph() + + # Plot final configuration + x_points, y_points, z_points = seven_joint_arm.get_points(path[-1]) + ax.plot([x for x in x_points], + [y for y in y_points], + [z for z in z_points], + "o-", color="red", ms=5, mew=0.5) + + for i, q in enumerate(path): + x_points, y_points, z_points = seven_joint_arm.get_points(q) + ax.plot([x for x in x_points], + [y for y in y_points], + [z for z in z_points], + "o-", color="grey", ms=4, mew=0.5) + plt.pause(0.1) + + plt.show() + + +if __name__ == '__main__': + main() diff --git a/ArmNavigation/two_joint_arm_to_point_control/Planar_Two_Link_IK.ipynb b/ArmNavigation/two_joint_arm_to_point_control/Planar_Two_Link_IK.ipynb deleted file mode 100644 index a96f0ea2f4..0000000000 --- a/ArmNavigation/two_joint_arm_to_point_control/Planar_Two_Link_IK.ipynb +++ /dev/null @@ -1,423 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Two joint arm to point control\n", - "\n", - "![TwoJointArmToPointControl](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/ArmNavigation/two_joint_arm_to_point_control/animation.gif)\n", - "\n", - "This is two joint arm to a point control simulation.\n", - "\n", - "This is a interactive simulation.\n", - "\n", - "You can set the goal position of the end effector with left-click on the ploting area.\n", - "\n", - "\n", - "\n", - "### Inverse Kinematics for a Planar Two-Link Robotic Arm\n", - "\n", - "A classic problem with robotic arms is getting the end-effector, the mechanism at the end of the arm responsible for manipulating the environment, to where you need it to be. Maybe the end-effector is a gripper and maybe you want to pick up an object and maybe you know where that object is relative to the robot - but you cannot tell the end-effector where to go directly. Instead, you have to determine the joint angles that get the end-effector to where you want it to be. This problem is known as inverse kinematics.\n", - "\n", - "Credit for this solution goes to: https://robotacademy.net.au/lesson/inverse-kinematics-for-a-2-joint-robot-arm-using-geometry/\n", - "\n", - "First, let's define a class to make plotting our arm easier.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%matplotlib inline\n", - "from math import cos, sin\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "class TwoLinkArm:\n", - " def __init__(self, joint_angles=[0, 0]):\n", - " self.shoulder = np.array([0, 0])\n", - " self.link_lengths = [1, 1]\n", - " self.update_joints(joint_angles)\n", - " \n", - " def update_joints(self, joint_angles):\n", - " self.joint_angles = joint_angles\n", - " self.forward_kinematics()\n", - " \n", - " def forward_kinematics(self):\n", - " theta0 = self.joint_angles[0]\n", - " theta1 = self.joint_angles[1]\n", - " l0 = self.link_lengths[0]\n", - " l1 = self.link_lengths[1]\n", - " self.elbow = self.shoulder + np.array([l0*cos(theta0), l0*sin(theta0)])\n", - " self.wrist = self.elbow + np.array([l1*cos(theta0 + theta1), l1*sin(theta0 + theta1)])\n", - " \n", - " def plot(self):\n", - " plt.plot([self.shoulder[0], self.elbow[0]],\n", - " [self.shoulder[1], self.elbow[1]],\n", - " 'r-')\n", - " plt.plot([self.elbow[0], self.wrist[0]],\n", - " [self.elbow[1], self.wrist[1]],\n", - " 'r-')\n", - " plt.plot(self.shoulder[0], self.shoulder[1], 'ko')\n", - " plt.plot(self.elbow[0], self.elbow[1], 'ko')\n", - " plt.plot(self.wrist[0], self.wrist[1], 'ko')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's also define a function to make it easier to draw an angle on our diagram." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "from math import sqrt\n", - "\n", - "def transform_points(points, theta, origin):\n", - " T = np.array([[cos(theta), -sin(theta), origin[0]],\n", - " [sin(theta), cos(theta), origin[1]],\n", - " [0, 0, 1]])\n", - " return np.matmul(T, np.array(points))\n", - "\n", - "def draw_angle(angle, offset=0, origin=[0, 0], r=0.5, n_points=100):\n", - " x_start = r*cos(angle)\n", - " x_end = r\n", - " dx = (x_end - x_start)/(n_points-1)\n", - " coords = [[0 for _ in range(n_points)] for _ in range(3)]\n", - " x = x_start\n", - " for i in range(n_points-1):\n", - " y = sqrt(r**2 - x**2)\n", - " coords[0][i] = x\n", - " coords[1][i] = y\n", - " coords[2][i] = 1\n", - " x += dx\n", - " coords[0][-1] = r\n", - " coords[2][-1] = 1\n", - " coords = transform_points(coords, offset, origin)\n", - " plt.plot(coords[0], coords[1], 'k-')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Okay, we now have a TwoLinkArm class to help us draw the arm, which we'll do several times during our derivation. Notice there is a method called forward_kinematics - forward kinematics specifies the end-effector position given the joint angles and link lengths. Forward kinematics is easier than inverse kinematics." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEbCAYAAAAh9sTfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl4VEXa9/HvTRKyAqJhR4JA2AKIEtlkGxAVUZRlAAk4jCCPKPLgNgr4jBsoo/iOijoalEElgAioCCgq4oBssphA2AQGISBKIKwJ2ev94yQhIQnpJJ3u0537c119kT5d6b67CT8qdepUiTEGpZRS3qWKuwtQSinlfBruSinlhTTclVLKC2m4K6WUF9JwV0opL6ThrpRSXkjDXSkvIiL/FJFJ+e6vEpH3891/TUQeK+L7NpTwvFOcW6mqaBruSnmX9UBXABGpAoQCEfke7wrkBbmI+AIYY7qW8Lwa7h5Gw10p77IB6JLzdQQQD5wXkZoi4g+0AqqLyDoRWQbsBhCRCzl/1hORtSISKyLxItJdRGYAgTnHYlz/llRZ+Lq7AKWU8xhjfhORTBFphNVL3wg0wAr8s8BOIB24EWhjjDl02VOMAFYZY6aLiA8QZIxZJyITjDHtXfdOVHlpuCvlfTZgBXtX4P9hhXtXrHBfn9PmpyKCHWALMEdE/IDPjTGxLqhXVQAdllHK++SOu7fFGpbZhNVzzz/enlzUNxpj1gI9gGPAXBG5r8KrVRVCw10p77MBuBNIMsZkGWOSgKuwAr6kWTFhwB/GmNnA+1jDNwAZOb155SE03JXyPjuxZslsuuzYWWPMyRK+txcQJyI/A8OAN3KORwM79ISq5xBd8lcppbyP9tyVUsoLabgrpZQX0nBXSikvpPPclfJgIjIIyAK2AceMnkRTOfSEqlIeKucK0hQgFaiKdeXpRqC/MSbLnbUp99Oeu1KeqyVWoFfPuR+AdQFSttsqUrahY+5Kea4ORRzbrUMzCjTclfJkXYCQfPcN8B831aJsRsNdKc/V/bL754HN7ihE2Y+Gu1IeKOdkavhlh32xZs0opeGulIfKPZmanwD/dUMtyoY03JXyTEWdTN2lJ1NVLg13pTxTUSdT17qpFmVDGu5KeSY9maquSMNdKQ+jJ1OVIzTclfI8ejJVlUjDXSnPoydTVYk03JXyPHoyVZVIw10pz6MnU1WJNNyV8iBXOJm61Q3lKBvTJX+VsjERCQfWAPuxFgX7HetkatXLmh5ycWnK5nSzDqVsTERCgDOAD5AJJAP+WGu35/oF6G6MOeH6CpVd6bCMUjZmjLkAxOXc9QVqUDDYAeoBR0TklIisFpGOrqxR2ZOGu1L2t5TC89rzq4bVm78a6OmSipTtabgrZX+rgDQH2iUDTxhjfqrgepQHcNuYe2hoqGncuLFbXlspT2KMITY2luzs4rdGFRGqV69O06ZNEREXVqdcbdu2bSeNMbVKaue22TKNGzdm61advaWUI+68805WrFhR5GMiQlhYGPHx8QQHB7u4MuVqInLYkXY6LKOUBxg4cGCxwR0UFMSqVas02FUBGu5KeYBbb72VrKysQscDAwP56KOPaN68uRuqUnam4a6UB7j22msJDQ0tcCwoKIhx48YxaNAgN1Wl7EzDXSkPceedd+adLPX19aVNmzbMnDnTzVUpu9JwV8pD3HnnnVSrVg2A6tWrs2zZMnx9dQURVTQNd6U8QExMDOPHj+fcuXOICBMmTKBOnTruLkvZmIa7UjYXExPDuHHjSEhIAKx57zNnziQmJsbNlSk703BXyuamTp1KSkpKgWMpKSlMnTrVTRUpT6DhrpTNHTlypFTHlQINd6Vsr1GjRqU6rhRouCtle9OnTycoKKjAsaCgIKZPn+6mipQn0HBXyuaioqKIjo4mrFo1BAgLCyM6OpqoqCh3l6ZsTCfJKuUBoqKiiPruO1i9Gn791d3lKA+gPXelPMWpU3DNNe6uQnkIDXelPEVSElx9tburUB6ixHAXkTkickJE4ktod5OIZIrIEOeVp5TKo+GuSsGRnvtc4PYrNRARH+AfwDdOqEkpVRQNd1UKJYa7MWYtkFRCs0eAJcAJZxSllLqMMRruqlTKPeYuIg2AgcC/yl+OUqpIycmQkaHhrhzmjBOqrwNPGWOK3703h4iME5GtIrI1MTHRCS+tVCVx6pT1p4a7cpAz5rlHAgtzNhEIBe4QkUxjzOeXNzTGRAPRAJGRkcYJr61U5ZCUMzKqUyGVg8od7saY63K/FpG5wPKigl0pVQ654a49d+WgEsNdRBYAvYBQETkKPAv4ARhj3q3Q6pRSFg13VUolhrsx5l5Hn8wYM7pc1SiliqbhrkpJr1BVyhPkhnvNmu6tQ3kMDXelPEFSEgQGWjelHKDhrpQn0EXDVClpuCvlCfTqVFVKGu5KeQINd1VKGu5KeQINd1VKGu5KeQINd1VKGu5K2Z2uCKnKQMNdKbtLSYG0NA13VSoa7krZnS4apspAw10pu9OlB1QZaLgrZXca7qoMNNyVsjsNd1UGGu5K2Z2GuyoDDXel7E7DXZWBhrtSdnfqFAQEQFCQuytRHkTDXSm70wuYVBlouCtldxruqgxKDHcRmSMiJ0QkvpjHo0Rkh4jsFJENInK988tUqhLTcFdl4EjPfS5w+xUePwT0NMa0BV4Eop1Ql1Iql4a7KoMSw90YsxZIusLjG4wxp3PubgIaOqk2pRRouKsycfaY+xjgq+IeFJFxIrJVRLYmJiY6+aWV8lKnTmm4q1JzWriLyJ+wwv2p4toYY6KNMZHGmMhatWo566WV8l4XL0Jqqi4apkrN1xlPIiLtgPeBfsaYU854TqUUegGTKrNy99xFpBGwFBhljPml/CUppfJouKsyKrHnLiILgF5AqIgcBZ4F/ACMMe8CfweuAd4REYBMY0xkRRWsVKWi4a7KqMRwN8bcW8LjY4GxTqtIKXWJhrsqI71CVSk703BXZaThrpSdncqZn6CzZVQpabgrZWdJSVC1qq4IqUpNw10pO8u9OtWarKCUwzTclbIzXXpAlZGGu1J2puGuykjDXSk703BXZaThrpSd6aJhqow03JWys6QknQapykTDXSlXWrjQmtqYnl5y29RUSEnRnrsqEw13pVwpLg5at7YCviSnc/bA0XBXZaDhrpQrxcXB9Q5uM6xLD6hy0HBXypViYzXclUtouCvlKomJcPw4tG/vWHsNd1UOGu5KuUpcnPWnoz13XTRMlYOGu1KuEhsLDRpcCuvx4637xa0boz13VQ4a7kq5SlxcwSGZe++F7duLb5+UBL6+EBJS8bUpr6PhrpSrXD5TpkcPqFOn+Pa6IqQqhxLDXUTmiMgJEYkv5nERkTdF5ICI7BCRG51fplIeLi0N9u51fLwddF0ZVS6O9NznArdf4fF+QHjObRzwr/KXpZSX2b0bMjIcnykDGu6qXEoMd2PMWiDpCk3uBj4ylk3AVSJSz1kFKuUV4uKs3ZSaNXP8e3TRMFUOzhhzbwAk5Lt/NOdYISIyTkS2isjWxMREJ7y0Uh5i9GhIToYqpfgnp4uGqXJw6QlVY0y0MSbSGBNZq1YtV760UvYzdiw0bGh93bChdT8/HZZR5eDrhOc4Blyb737DnGNKqSt5//3iH0tPhwsXNNxVmTmj574MuC9n1kxn4Kwx5rgTnlepyktXhFTlVGLPXUQWAL2AUBE5CjwL+AEYY94FVgJ3AAeAFOCvFVWsUpWGXp2qyqnEcDfG3FvC4wZ42GkVKaU03FW56RWqStmRLhqmyknDXSk70p67KicNd6XsSMNdlZOGu1J2lJQEPj5Qvbq7K1EeSsNdKTtKSoKaNXVFSFVmGu5K2ZFenarKScNdKTs6dUpnyqhy0XBXyo60567KScNdKTvScFflpOGulB05Idw3b95Mz549CQoKokmTJixatMhJxSlPoOGulN1kZMC5c+UK9zVr1tC7d2+6d+/OihUr6NGjB6NGjeLQoUNOLFTZmYa7UnZz5oz1ZxnDPTk5maioKJ5++mmmTZvGn/70J9577z38/Pz4/PPPnViosjMNd6XsJnddmTKG++zZs8nIyOCJJ57IO+bv70+tWrU4fPiwMypUHsAZm3UopZwpd+mBMk6FjImJYdCgQfj5+ZGZmZl3PDk5GT8/P2dUqDyA9tyVsptyrCtz5swZtm3bRnR0NH5+fgVuiYmJNGrUyMnFKrvSnrtSdlOOcI+Li8MYwxdffEH9+vXzjv/00088/PDDtG/fHoDx48ezbNkyfvvtN6wtGZS30Z67UnZTjnBPSEgAoHfv3kRGRubdfv/9d6pVq0bHjh0BuPfee9m+fbvTSlb241C4i8jtIrJPRA6IyNNFPN5IRNaIyM8iskNE7nB+qUpVEklJ1oJhNWqU+ltzx9h9fS/9Um6MYeHChQwdOhR/f38AevToQZ06dZxTr7KlEsNdRHyAt4F+QGvgXhFpfVmzZ4BFxpgbgOHAO84uVKlKI3dFyCql/8U6LCwMgH379uUdmzNnDgkJCUyePNlpJSr7c+SnpyNwwBjzX2NMOrAQuPuyNgbIXXi6BvCb80pUqpIpx6JhN998Mw0aNODhhx9m9erVzJw5kwkTJjBr1iyaNm3q5EKVnTkS7g2AhHz3j+Ycy+85YKSIHAVWAo84pTqlKqNyLD1QtWpVFi9ezPnz5+nfvz/z5s0jJiaGsWPHOrlIZXfOmi1zLzDXGPOaiHQBPhaRNsaY7PyNRGQcMA7QKVlKFScpCWrVKvO3d+7cmbi4OCcWpDyRIz33Y8C1+e43zDmW3xhgEYAxZiMQAIRe/kTGmGhjTKQxJrJWOX54lfJqLlgRcuzYsTRs2BCAhg0bas/eCznSc98ChIvIdVihPhwYcVmbI0AfYK6ItMIK90RnFqpUpeGCcH///fcr9PmV+5XYczfGZAITgFXAHqxZMbtE5AURGZDT7HHgARGJAxYAo41eGaFU6WVlWQuH6VruqpwcGnM3xqzEOlGa/9jf8329G7jZuaUpVQmdPm39qeGuykmvUFXKTsq5aJhSuTTclbKTciw9oFR+Gu5K2YmGu3ISXRVSKRvZs3MnW4A6u3bRqHp1mjRpkrcejFKloeGulI18s3kzkwDGjAHAx8eHFi1a0LFjR3r06EHfvn3z5qcrdSUa7krZyAOtWtH/s8/4/Ycf+DUhgb179xIbG8vy5cuZO3cuADfeeCPDhw9n5MiR1KtXz70Fl8Lp06d5+eWXSU1N5c0333R3OV5Pw10pGwk6d45mNWvSrGdPuuU7bowhPj6elStXsnTpUv72t78xefJkBg4cyGOPPUaXLl3cVrMjvvrqK6Kiojhz5gz3338/xhhExN1leTU9oaqUnRRzdaqI0LZtW5566ik2b97Mvn37eOyxx1i9ejVdu3alb9++bN261Q0FFy87O5uknBPErVq1olu3bsTGxvL+++9rsLuAhrtSduLg0gPNmzfnlVde4ciRI8ycOZPY2FhuuukmRo8eTWKi+1f+WL16NZGRkYwYYa1U0rhxY5YtW0a7du3cXFnloeGulJ2Ucl2ZkJAQHn/8cQ4ePMhTTz3F/PnzadWqFYsWLarAIou3Y8cO+vXrxy233EJSUhKjRo3SPVrdRMNdKTsp46Jh1atXZ8aMGfz88880adKEYcOGMWbMGC5evFgBRRZtyZIltG/fns2bN/Paa6+xd+9eoqKidAjGTTTclbKTcq4IGRERwfr165kyZQpz5syhe/fuHDt2+QrdznPmzBni4+MB6Nu3L1OnTuXgwYM89thjBAQEVNjrqpJpuCtlF1lZ1sJh5bw61c/Pj+nTp7Ns2TL27dtH586d2bNnj5OKtKSlpfH666/TtGlThg8fjjGG6tWr8+KLL1KzZk2nvpYqGw13pezi7FkwxmmLht11112sW7eOjIwMevTowc6dO8v9nNnZ2SxYsIBWrVrx6KOP0qFDBz7++GMderEhDXel7KIC1pVp374969atw9/fn1tuuYX9+/eX6/mWLl3KiBEjqF69OqtWreKbb77hhhtucFK1ypk03JWyiwpaNCw8PJzVq1djjOG2224r9VTJ+Ph4li9fDsDAgQP59NNP2b59O7feeqtT61TOpeGulF1U4IqQLVq0YPny5Rw/fpwhQ4aQkZFR4vccO3aMMWPGcP311/Poo4+SnZ2Nj48PQ4YMoUoVjQ67078hpeyigpf77dixI7Nnz2bt2rU888wzxbY7e/YsU6dOJTw8nHnz5jFp0iQ2bdqkge5hHPrbEpHbRWSfiBwQkaeLaTNURHaLyC4Rme/cMpWqBFywlvvIkSN54IEHePXVV1m7dm2RbbZt28ZLL73EoEGD2LdvH6+99hrX6M5QHkdKunpMRHyAX4C+wFFgC3Bvzr6puW3CgUVAb2PMaRGpbYw5caXnjYyMNHZbC0Mpt3r+eXjuOcjIAN+KW9MvOTmZtm3bEhAQQGxsLH5+fnz66accPnyYJ598EoBffvmF5s2bV1gNquxEZJsxJrKkdo703DsCB4wx/zXGpAMLgbsva/MA8LYx5jRAScGulCpCUhLUqFGhwQ4QHBzMrFmz2LNnDxMmTKBTp04MGzaMRYsWkZmZCaDB7gUcCfcGQEK++0dzjuXXHGguIutFZJOI3O6sApWqNMp5dWpptGzZkrp16zJ79mwSEhKYO3cumzZtwreC/2NRruOsv0lfIBzoBTQE1opIW2PMmfyNRGQcMA6gUaNGTnpppbyEC8I9dx31zMxMUlNTue2221i4cCFXXXVVhb6ucj1Hwv0YcG2++w1zjuV3FNhsjMkADonIL1hhvyV/I2NMNBAN1ph7WYtWyitVYLifO3eOV199lUOHDjFv3jxatGjB8ePHdf0XL+bIsMwWIFxErhORqsBwYNllbT7H6rUjIqFYwzT/dWKdSnm/Cgj39PR03nrrLZo1a8a0adPIysrKm+Ouwe7dSgx3Y0wmMAFYBewBFhljdonICyIyIKfZKuCUiOwG1gBPGmNOVVTRSnmlU6ecGu6xsbFERETwyCOPEBERwZYtW1iwYAF+fn5Oew1lXw6NuRtjVgIrLzv293xfG+CxnJtSqrSys60VIZ0wn/zChQuEhITQqFEj6tatyxtvvEG/fv10ca9KRk+NK2UH585ZAV+OnvvevXt5+umnSUhIYMuWLVx99dWsW7fOiUUqT6LXE6s806dPJyIignbt2uXtqNO4cWNOnjzplOcPCQkp8vjo0aNZvHixU17DY5Xj6tTjx4/z4IMP0qZNG77//nsGDx6cN19dVV7ac1cAbNy4keXLl7N9+3b8/f05efIk6enp7i6rSJmZmd43H7uM4b5582b69OlDWloaDz30EP/3f/9HrVq1KqBA5Wm0564Aq/cXGhqKv78/AKGhodSvXx+AWbNmceONN9K2bVv27t0LQFJSEvfccw/t2rWjc+fO7NixA4DnnnuOmTNn5j1vmzZt+PXXXwu8ljGGCRMm0KJFC2655RZOnLh0QfO2bdvo2bMnHTp04LbbbuP48eMA9OrVi0mTJhEZGckbb7xRYZ+D25Qi3DMyMvJ2Vrrhhhv461//yp49e3jzzTc12FUeDXcFwK233kpCQgLNmzfnoYce4j//+U/eY6GhoWzfvp3x48fnBfezzz7LDTfcwI4dO3jppZe47777HH6tzz77jH379rF7924++ugjNmzYAFih9cgjj7B48WK2bdvG/fffz9SpU/O+Lz09na1bt/L444876V3biAPhbozhs88+o02bNvTp04eLFy9StWpVZs2aRbNmzVxUqPIUXva7rSqrkJAQtm3bxrp161izZg3Dhg1jxowZAAwaNAiADh06sHTpUgB+/PFHlixZAkDv3r05deoU586dc+i11q5dy7333ouPjw/169end+/eAOzbt4/4+Hj69u0LQFZWFvXq1cv7vmHDhjnnzdrRqZyZw8XMltmwYQNPPvkkGzZsoFWrVkRHR+s8dXVFGu4qj4+PD7169aJXr160bduWDz/8ECBvqMbHx6fEE3W+vr5kZ2fn3U9NTXX49Y0xREREsHHjxiIfDw4Odvi5PE5uz72IzaV/+uknbr75ZurVq8fs2bMZPXq0951zUE6nwzIKsHrN+ffXjI2NJSwsrNj23bt3JyYmBoAffviB0NBQqlevTuPGjdm+fTsA27dv59ChQ4W+t0ePHnzyySdkZWVx/Phx1qxZA1i7BSUmJuaFe0ZGBrt27XLae7S1pCSoVg1yLjD6448/+PLLLwG46aab+OCDD9i/fz9jx47VYFcO0Z8SBVgXvjzyyCOcOXMGX19fmjVrRnR0dN7emZd77rnnuP/++2nXrh1BQUF5vfzBgwfz0UcfERERQadOnYpcOnbgwIF8//33tG7dmkaNGtGlSxcAqlatyuLFi5k4cSJnz54lMzOTSZMmERERUXFv3AZiYmKYOns2R5KTadioETfddBOrVq3Cx8eHY8eOERISwv333+/uMpWHKXGzjoqim3UoZQX7uHHjSElJKXC8Y8eOzJs3j/DwcDdVpuzKmZt1KOUZFi6EqlXBpvPzizJ1ypRCwQ7WsIwjwZ6Zmcn58+dJTEzEXR01ZU86LKO8R1wctG5tBbwn2LSJI0eOFPnQ4cOH6dWrFykpKVy8eJGLFy+SmppKWloa6enppKWlkZGRgTEGX19fMjIy+O677+jTp4+L34SyKw135T3i4uD6691dRcl++QWmTIElS2hUpQqH880uyi//tQZXkpGRQc2aNenevbszq1QeTodllPeIjbV3uJ84ARMmQEQEfP01PP8802fPJigoqECzwMBAQkNDHV7FMTAwkCeeeIKqnvIbi3IJDfdKaP78+XTq1Ik33niDw4cPu7sc50hMhOPHoX17d1dSWHIyvPgiNG0K774LDzwABw/C3/9O1P33Ex0dTVhYGCJCWFgYs2fPZuPGjQ7P68/MzGTs2LEV/CaUxzHGuOXWoUMHo9wjZ4tDExgYaAICAkzTpk3Njh073F1W+Xz7rTFgzMmT7q7kkowMY6KjjalXz6pt0CBj9u51+Nu/+uorExgYaIAr3oKDg81VV11lpk2bZk6fPl2Bb0jZAbDVOJCx2nOvZE6fPs3OnTsB8k7SHTt2zPOXiI2NhQYNLl2+Hx8PN94I4eEwYACcP++6WoyBL7+Edu1g3Di47jpYvx6WLIEWLRx+mttvv52pU6cWGra5XHJyMmfOnGH69OnUr1+fhx9+2Ht+I1NlpuFeyaxcubLQNmvBwcG0t+NwRmnExRUcknnwQZg2Dfbvh5Yt4ZVXXFPH5s3Qq5f1H0pWFixdCj/+CF27lunppkyZQt++fR1aRyZ3Vs3s2bNp2bIlAwcO5Oeffy7T6yrP51C4i8jtIrJPRA6IyNNXaDdYRIyIlDjBXrlHTEwMFy5cyLsvIgwePNjzt2DLP1Pmjz/g0CG44w7r/pgxVq+5Ih04AEOHQufOsHcvvPOO9dvDwIFQjs9WRJg/fz6NGjWiSpWC/1wDAgKK/HvLyMggNTWVZcuW0a1bNzp16sSqVat0HnwlU2K4i4gP8DbQD2gN3CsirYtoVw34X2Czs4tUzpGWlpa3jkuukJAQhg4d6qaKnCQtzQrU3HA/ehQaNrz0eKNGkJBQMa+dmAgTJ0KrVrBiBTz7rBX048fnrRNTXkFBQXzzzTdUq1atwPHw8HD69etHQEBAkevNZGdnk5KSwk8//cSQIUNo2rQpH374oW03YVHO5UjPvSNwwBjzX2NMOrAQuLuIdi8C/wAcXwZQudT3339faLpcVlYWPXr0cFNFTrJ7N2RkXBqWcUUPNSUFXnrJmgHzzjvWbwcHDsBzz1kLgDlZWFgYX3zxBYGBgYA1lDZz5kxWrFjBrl27GD16NIGBgcUO31y4cIFDhw4xYcIE6taty4wZMzh79qzT61T24Ui4NwDyd3uO5hzLIyI3AtcaY1Zc6YlEZJyIbBWRrYmJiaUuVpXPwoULOX/ZicW+ffsWGoP3OHFxEBQEuRtWNGxo9d5zHTlSsCdfHllZMGeOdaJ26lTo3Rt27rSmOOZbe74i9OzZkxkzZuDn50edOnXy1r1v0qQJs2fPJiEhgaeeeorq1asXO43ywoULnD59mhdeeIH69eszceJEjub/rJT3KGk6DTAEeD/f/VHAW/nuVwF+ABrn3P8BiCzpeXUqpGtlZWWZGjVqFJhCV61aNfPJJ5+4u7SK0bWrMStWWF8/+aQxU6aU7/mys41ZvtyYiAhrWmPnzsasW1f+OktdRraZNGmS+fLLL4ttc/HiRfPuu++aBg0amJCQkCtOo6xataoJCAgwgwcPNnFxcS58J6qscHAqpCPh3gVYle/+ZGByvvs1gJPArzm3VOC3kgJew921Nm/eXOgfetWqVc3Zs2fdXVrFiIszpn17Y5o1M6Z/f2POnCn7c23ZYkyvXtY/l2bNjFm82Ap7m8vKyjKff/65uf76601QUNAVQ75KlSomMDDQdOnSxXz77bcm2wPeX2XlzHD3Bf4LXAdUBeKAiCu01567DT355JPG19e3wD/orl27urssezt40Jjhw61/JrVqGfPWW8akp7u7qjLZuHGjue2220xAQEChn4PLb8HBwaZp06bm448/Nuke+n69maPhXuKYuzEmE5gArAL2AIuMMbtE5AURGVDS9yt7WLhwYYELlYKCghg5cqQbK7KxU6fg0Uet+fHLlsEzz1gnSx9+2GkzYFytc+fOfP311+zcuZNRo0YREBBQ7MnX5ORkDh48yPjx46lXrx6vvvpqoXM1ygM48j9ARdy05+46+/fvL3QZu7+/vzl27Ji7S7OXlBRjXn7ZmBo1jKlSxZgHHjDGSz+jEydOmKlTp5pq1aqZ4ODgK/bkg4KCTFBQkJk0aZL+zNgAuvyAyvXZZ58VuoClcePG1K9f300V2UxWFsydC82bw+TJ0KOHNQMmOhq89DOqVasW06ZN4/fff+eVV16hXr16hISEFNk2JSWFlJQU3nnnHZo2bcqwYcOIj493ccWqtDTcK4GYmBhSUy9dflC1alVGjBjhxopswhhr6d0bboC//tWayvjDD9ZQTOtC1+l5paCgIB566CESEhL48MMPiYiIKHYaZXp6OqlI7UCuAAATf0lEQVSpqSxevJiOHTvSo0cP1qxZo1e+2pSGu5c7efIke/fuLXDM19eXwYMHu6kim9i+Hfr2hX79rCV5P/nEWhemZ093V+YWPj4+DBo0iPj4eFatWkWfPn0ICAjAx8enUNvs7GwuXrzIunXr6N+/P1OmTHFDxaokGu5e7ssvvyx0aXq1atVoXUl6poX8+itERUGHDtbFT2++CXv2WOvCePr6Ok5y880389133xEbG8uIESMICAjA39+/yLY+Pj70rKT/IdqdhruXmzdvHsnJyXn3q1Spwp///GfPXyistJKS4PHHrSV3ly61trk7cAAeecRz9lx1sRYtWvDRRx9x+PBhHn30UUJCQgoN2YSGhnLbbbe5qUJ1JRruXiwlJYX169cXOBYcHMyf//xnN1XkBqmp8Oqr1howr78OI0daywBPnw41ari7Oo9Qu3ZtXn75ZX7//XdeeuklateuTUhICAEBATz77LOVr6PgITTcvdh3331X6NdpYwxdy7i2uEfJzoaPPrJmwPztb9Z66rGx8MEHzltnppIJDg5m4sSJ/Pbbb3zwwQcMHDhQT8zbmIa7F1uwYAHnzp0rcKxfv35FLg/rVb75xtqF6S9/gdq14fvvreV427Z1d2VewcfHh6FDhzJ//vxiN+X28fGhffv2ebcZM2YA0KtXL7Zu3QpQ7NRL5Rxe/q+88srKymLFioKLdFarVs27e1qxsVYv/dtvra3tFiywTpRW0T6MqwUGBhIbG+vuMio1/an3Uhs3bix0LD09PW+ZWK9y+DDcd5/VW9+2Df75T2sGzPDhGuw29+ijjxIREUGfPn3IXQY8NjaWzp07065dOwYOHMjp06c5ceIEHTp0ACAuLg4R4ciRIwA0bdqUlJQUt70Hu9KffC/16aefFpglA9ClS5diL1DxSKdPw5NPWjNgPv3U6rUfPAiTJkExU/eUa1y8eLHAsMwnn3xSqE1ycjKRkZHs2rWLnj178vzzzwNw33338Y9//IMdO3bQtm1bnn/+eWrXrk1qairnzp1j3bp1REZGsm7dOg4fPkzt2rVL3ES8MtJhGS9kjOHTTz8lOzs771hwcDBRUVFurMqJUlPh7betGS9nzlhj6y+8ANde6+7KVA5HhmWqVKnCsGHDABg5ciSDBg3i7NmznDlzJm/u/F/+8pe82V1du3Zl/fr1rF27lilTpvD1119jjKF79+4V+2Y8lPbcvdDevXsLbaGWmZnJXXfd5aaKnCQ7G2JirNUan3gCOnWyxtn//W8Ndi9Q0pTKHj165PXW7777buLi4vjxxx813Iuh4e6Fli5dWmB5X4DmzZtTp04dN1XkBKtXQ2SkNU/96qutk6ZffQXt2rm7MlVG2dnZLF68GID58+fTrVs3atSoQc2aNVm3bh0AH3/8cV4vvnv37sybN4/w8HCqVKnC1VdfzcqVK+nWrZvb3oOd6bCMF4qJiSmww72/v7/nDsns2AFPPWUt8BUWZvXc9USp7eWOuee6/fbb86ZD5goODuann35i2rRp1K5dO29c/sMPP+TBBx8kJSWFJk2a8O9//xuwVjI1xuRt6N6tWzeOHj1KzZo1XfSuPIu4a0W3yMhIkzvfVTnP8ePHue6660hLS8s7ljv+2bx5czdWVkoJCfB//2ddiHTVVdaGGQ89BMVsMKFUZSEi24wxkSW10567l1m2bFmhlfyuvvpqzwn2M2dgxgxrqQCwxtYnTwbtnSlVKhruXmbevHkF5vz6+PjkzUiwtbQ0eOcdmDbNmuI4ciS8+KI1FKOUKjWHBi5F5HYR2SciB0Tk6SIef0xEdovIDhFZLSL6L9INLly4wJYtWwocCwoKYsiQIW6qyAHZ2daVpC1bwmOPWSdNt2+3hmM02JUqsxLDXUR8gLeBfkBr4F4RuXwx8J+BSGNMO2Ax8IqzC1UlW7VqVaG1PkSETp06uamiEqxZAx07wogR1gqNq1ZZt3wn4pRSZeNIz70jcMAY819jTDqwELg7fwNjzBpjTO5YwCZAl91zg/nz5xfapX7AgAFUsdvMkp07oX9/6N0bTpyweunbt8Ott7q7MqW8hiP/6hsACfnuH805VpwxwFdFPSAi40Rkq4hszV1HQjlHRkYGX3/9dYFj1atXZ/jw4W6qqAhHj8L998P118P69fDKK/DLLzBqlE5tVMrJnHpCVURGApFAkftuGWOigWiwpkI687Urux9//LHQLJm0tDT69OnjporyOXsW/vEPa0Gv7GxrbH3KFOtiJKVUhXAk3I8B+a/tbphzrAARuQWYCvQ0xqRd/riqWIsWLSq0UFiPHj0IcOe88PR0ePdda92XU6esvUunTYPGjd1Xk1KVhCO/C28BwkXkOhGpCgwHluVvICI3AO8BA4wxJ5xfproSYwxLliwpsFBYSEgII0eOdFdBsGgRtGoF//u/1jDMtm0wb54Gu1IuUmK4G2MygQnAKmAPsMgYs0tEXhCRATnNXgVCgE9FJFZElhXzdKoC7Ny5s9B61unp6fTv39/1xfznP9aCXsOGQXCwtf7Ld99Za60rpVzGoTF3Y8xKYOVlx/6e7+tbnFyXKoUlS5YUWEsGoE2bNlxzzTWuK2LXLnj6aVi+3NqjdO5c60Kky84DKKVcQ6coeIH58+eTkZGRdz8gIMB1QzK//QYPPGCtzrh2rbV0wC+/WGusa7Ar5Ta6/ICHS0hI4OjRo4WO33PPPRX7wufOwauvwmuvQWYmTJwIU6dCaGjFvq5SyiHac/dwX3zxRaFNDurWrct1111XMS+Yng5vvQXNmlkzX+65B/butaY5liHYN2/eTM+ePQkKCqJJkyYsWrSoAopWqvLRcPcw+WfEgLVQ2MWLF/Pu+/r6VshCYSY7m/QFCyAiAh55xPpzyxaYPx+aNCnTc65Zs4bevXvTvXt3VqxYQY8ePRg1ahSHDh1ycvVKVT4a7h7k2LFj+Pv706lTJ2bNmkV8fDw///xzgTb+/v55e046S9rq1dxcowbPjxhhbTy9YgV8/721yFcZJScnExUVxdNPP820adP405/+xHvvvYefnx+ff/65E6tXqnLSMXcPEhoaSnZ2Nj/99BM7d+4kOzsbX1/fQrsu3eisaYd79sDkyfh/8QWNAwP5Z9WqTPzmG+rUr1/up549ezYZGRk88cQTecf8/f2pVasWhw8fLvfzK1XZac/dg/j7+1O3bl3A2sYsLS2t0Pz2WrVqsWbNmgKzZ0rt+HH4n/+BNm2sHvpLL/Hcxo2kZWbyzzffLM9byBMTE8OgQYPw8/MjMzMz75acnIyfn59TXkOpykzD3cO0bn35assF7d+/n3vuuYerrrqKgQMHcvLkScef/Px5ePZZ62TpnDkwYQIcPAiTJ9P8+usZPHgw7777bqFlDkrrzJkzbNu2jejoaPz8/ArcEhMTadSoUbmeXyml4e5xIiMjC82OyS87O5vz589z8eJFNmzYcMW2eTIy4F//skL9hRfgzjutIZk33oBatfKaTZw4kbNnz7Jw4cJyvYe4uDiMMXzxxRds2bIl7/b2228D5G2sHB8fz4033kh4eDgDBgwotJyxUqp4Gu4epl27doSEhJTYrmbNmmzcuPHKV6kaA599Zg2/PPSQtRvSpk3wySdW0F/m5ptvpmXLlnz44YfleQskJFgrSPfu3ZvIyMi82++//061atXo2LEjAA8++CDTpk1j//79tGzZklde0T1glHKUhruHiYiIKLFNjRo1WL9+PU2uNEVx/Xro1g0GDbKuJF22DH74wVoXphgiwogRI1i3bh2//fZbGaq3ZGZmAta0zVzGGBYuXMjQoUPx9/fnjz/+4NChQ9xxxx0AjBkzhiVLlpT5NZWqbDTcPUzz5s0LzGu/XLVq1Vi7di0tW7YsusG+fVagd+sGhw7B7NmwYwfcdRc4MIQzcOBAAJYvX16m+gHCcvZG3bdvX96xOXPmkJCQwOTJkwE4evQoDRte2tCrUaNGeT1+pVTJNNw9TEBAAKHFXAkaHBzM6tWradeuXeEH//jDGnqJiIBvv4UXX4T9+2HsWPB1fEZsREQEDRs25Ntvvy3rW+Dmm2+mQYMGPPzww6xevZqZM2cyYcIEZs2aRdOmTQGrJ6+UKjsNdw/UqlWrQseCgoL46quvuOmmmwo+cOECPP88NG1q9dIffNCaAfPMM9aSvKUkIvTq1Yt169aVOYCrVq3K4sWLOX/+PP3792fevHnExMQwduzYvDYNGzYssGbOkSNHCvTklVJXpuHugW666aYCs2ACAwP57LPP6N69+6VGmZnw3nvWidHnnoN+/WD3bmtdmNq1y/X6nTp14o8//uDYsUIbcjmsc+fOxMXFkZqaSmxsLIMGDSrweN26dWncuDErV1orTX/wwQeF2iiliqfh7oHyz5gJDAxk4cKF3HrrrdaDxsAXX0DbtlYvPTwcNmyATz+1vnaC66+/HrA2CalI//rXv5g6dSrh4eHs3r2bv/3tbxX6ekp5E11+wAO1bt2azMxMAgMDmTNnDgMG5GyItWkTPPkk/PgjtGgBn38OAwY4dKK0NFq0aAHAL7/8Qr9+/Zz63Pm1a9eu0No5SinHONRzF5HbRWSfiBwQkaeLeNxfRD7JeXyziDR2dqHqkpYtW5Kdnc1bb73F8OHDrROjf/4zdOliff3eexAfD3ff7fRgB2uJg4CAAJ29opSNlRjuIuIDvA30A1oD94rI5dfAjwFOG2OaAf8E/uHsQpUlJiaGVq1akZaWxgvPPkvMrbdC69bWXqXPPw8HDsC4caWaAVNaIkKdOnVITEyssNdQSpWPIwnQEThgjPkvgIgsBO4GdudrczfwXM7Xi4G3RESMzmdzqpiYGMaNG5e3WNjho0cZd/Qo9OlDVEwM1KnjslqqVavGuXPnXPZ6SqnScSTcGwD5f/8+Clx+GWNeG2NMpoicBa4BSrFqlSrJ1KlTC60CmQKM+fFHZg8bxtChQ3nooYdISUnJu7Izv9GjRzN69GhOnjzJkCFDCj0+fvx4hg0bRkJCAqNGjSr0+OOPP85dd93Fvn37+PXXX/ntt9/o1atX3uPPPPMMt9xyC7GxsUyaNKnQ97/00kt07dqVDRs2MGXKlEKPv/7667Rv357vvvuOadOmFXr8vffeo0WLFnz55Ze89tprAPzwww+F2imlXHxCVUTGAeMAXfmvDI4cOVLk8bS0NBdXYq1d46MbYCtlW1LSyImIdAGeM8bclnN/MoAx5uV8bVbltNkoIr7A70CtKw3LREZGmq1btzrhLVQejRs3LnIji7CwMH799VfXF6SUcjkR2WaMKXEbNEdmy2wBwkXkOhGpCgwHll3WZhnwl5yvhwDf63i7802fPp2goKACx4KCgpg+fbqbKlJK2VWJ4W6MyQQmAKuAPcAiY8wuEXlBRHImWPMBcI2IHAAeAwpNl1TlFxUVRXR0NGFhYYgIYWFhREdHExUV5e7SlFI2U+KwTEXRYRmllCo9Zw7LKKWU8jAa7kop5YU03JVSygtpuCullBfScFdKKS/kttkyIpIIFL4i58pC0SUNculnYdHP4RL9LC7x5s8izBhTq6RGbgv3shCRrY5MAaoM9LOw6OdwiX4Wl+hnocMySinllTTclVLKC3lauEe7uwAb0c/Cop/DJfpZXFLpPwuPGnNXSinlGE/ruSullHKArcNdRK4WkW9FZH/OnzWLaZclIrE5t8uXI/ZYujH5JQ58FqNFJDHfz8FYd9TpCiIyR0ROiEh8MY+LiLyZ81ntEJEbXV2jKzjwOfQSkbP5fib+7uoa3cnW4Y61dPBqY0w4sJrilxK+aIxpn3MbUEwbj6Ibk1/i4GcB8Em+n4P3XVqka80Fbr/C4/2A8JzbOOBfLqjJHeZy5c8BYF2+n4kXXFCTbdg93O8GPsz5+kPgHjfW4mp5G5MbY9KB3I3J88v/+SwG+oiIuLBGV3Hks6g0jDFrgaQrNLkb+MhYNgFXiUg911TnOg58DpWa3cO9jjHmeM7XvwN1imkXICJbRWSTiHjLfwBFbUzeoLg2OZuq5G5M7m0c+SwABucMQywWkWtdU5otOfp5VQZdRCRORL4SkQh3F+NKLt0guygi8h1Qt4iHpua/Y4wxIlLc1J4wY8wxEWkCfC8iO40xB51dq7K1L4EFxpg0EfkfrN9oeru5JuVe27Gy4YKI3AF8jjVUVSm4PdyNMbcU95iI/CEi9Ywxx3N+rTxRzHMcy/nzvyLyA3AD4OnhfgzI3/tsmHOsqDZHczYmrwGcck15LlXiZ2GMyf++3wdecUFdduXIz47XM8acy/f1ShF5R0RCjTHeuuZMAXYflsm/8fZfgC8ubyAiNUXEP+frUOBmYLfLKqw4ujH5JSV+FpeNKQ/A2u+3sloG3Jcza6YzcDbf8GalISJ1c89BiUhHrLzzxs5Pkdzecy/BDGCRiIzBWkFyKICIRAIPGmPGAq2A90QkG+svb4YxxuPD3RiTKSK5G5P7AHNyNyYHthpjlmFtTP5xzsbkSVih53Uc/Cwm5mzYnon1WYx2W8EVTEQWAL2AUBE5CjwL+AEYY94FVgJ3AAeAFOCv7qm0YjnwOQwBxotIJnARGO6lnZ8i6RWqSinlhew+LKOUUqoMNNyVUsoLabgrpZQX0nBXSikvpOGulFJeSMNdKaW8kIa7Ukp5IQ13pZTyQv8fMWT1bkn8TrcAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "arm = TwoLinkArm()\n", - "\n", - "theta0 = 0.5\n", - "theta1 = 1\n", - "\n", - "arm.update_joints([theta0, theta1])\n", - "arm.plot()\n", - "\n", - "def label_diagram():\n", - " plt.plot([0, 0.5], [0, 0], 'k--')\n", - " plt.plot([arm.elbow[0], arm.elbow[0]+0.5*cos(theta0)],\n", - " [arm.elbow[1], arm.elbow[1]+0.5*sin(theta0)],\n", - " 'k--')\n", - " \n", - " draw_angle(theta0, r=0.25)\n", - " draw_angle(theta1, offset=theta0, origin=[arm.elbow[0], arm.elbow[1]], r=0.25)\n", - " \n", - " plt.annotate(\"$l_0$\", xy=(0.5, 0.4), size=15, color=\"r\")\n", - " plt.annotate(\"$l_1$\", xy=(0.8, 1), size=15, color=\"r\")\n", - " \n", - " plt.annotate(r\"$\\theta_0$\", xy=(0.35, 0.05), size=15)\n", - " plt.annotate(r\"$\\theta_1$\", xy=(1, 0.8), size=15)\n", - "\n", - "label_diagram()\n", - "\n", - "plt.annotate(\"Shoulder\", xy=(arm.shoulder[0], arm.shoulder[1]), xytext=(0.15, 0.5),\n", - " arrowprops=dict(facecolor='black', shrink=0.05))\n", - "plt.annotate(\"Elbow\", xy=(arm.elbow[0], arm.elbow[1]), xytext=(1.25, 0.25),\n", - " arrowprops=dict(facecolor='black', shrink=0.05))\n", - "plt.annotate(\"Wrist\", xy=(arm.wrist[0], arm.wrist[1]), xytext=(1, 1.75),\n", - " arrowprops=dict(facecolor='black', shrink=0.05))\n", - "\n", - "plt.axis(\"equal\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "It's common to name arm joints anatomically, hence the names shoulder, elbow, and wrist. In this example, the wrist is not itself a joint, but we can consider it to be our end-effector. If we constrain the shoulder to the origin, we can write the forward kinematics for the elbow and the wrist.\n", - "\n", - "$elbow_x = l_0\\cos(\\theta_0)$ \n", - "$elbow_y = l_0\\sin(\\theta_0)$ \n", - "\n", - "$wrist_x = elbow_x + l_1\\cos(\\theta_0+\\theta_1) = l_0\\cos(\\theta_0) + l_1\\cos(\\theta_0+\\theta_1)$ \n", - "$wrist_y = elbow_y + l_1\\sin(\\theta_0+\\theta_1) = l_0\\sin(\\theta_0) + l_1\\sin(\\theta_0+\\theta_1)$ \n", - "\n", - "Since the wrist is our end-effector, let's just call its coordinates $x$ and $y$. The forward kinematics for our end-effector is then\n", - "\n", - "$x = l_0\\cos(\\theta_0) + l_1\\cos(\\theta_0+\\theta_1)$ \n", - "$y = l_0\\sin(\\theta_0) + l_1\\sin(\\theta_0+\\theta_1)$ \n", - "\n", - "A first attempt to find the joint angles $\\theta_0$ and $\\theta_1$ that would get our end-effector to the desired coordinates $x$ and $y$ might be to try solving the forward kinematics for $\\theta_0$ and $\\theta_1$, but that would be the wrong move. An easier path involves going back to the geometry of the arm." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4FNX6wPHvIYRACCBIRCA0le6lhiIIAsJPQBFBQJqKEqMIIk1aLoI0kV5sVEGJFEGlBIQr6pUrgkFICCX0Ki0QaiD9/P6YJISQssnO7mY37+d55tns7NmZlyW8nD1z5j1Ka40QQgjXks/RAQghhDCfJHchhHBBktyFEMIFSXIXQggXJMldCCFckCR3IYRwQZLchRDCBUlyF0IIFyTJXQghXFB+R524ZMmSumLFio46vRBCOKW///77itbaO6t2DkvuFStWZPfu3Y46vRBCOCWl1GlL2smwjBBCuCBJ7kII4YIkuQshhAuS5C6EEC5IkrsQQrggSe5COIHAwEAqVqxIvnz5qFixIoGBgY4OSeRyDpsKKYSwTGBgIP7+/ty5cweA06dP4+/vD0CvXr0cGZrIxaTnLkQuFxAQkJLYk925c4eAgAAHRSScgSR3IXK5M2fOZGu/ECDJXYhcr3z58kk/PZu0pd0vxIMkuQuRy40ZMwalFPDvpA08PT2ZNGmSQ+MSuZskdyFyOW9vb/Lly4d7PuOfa4UKFViwYIFcTBWZktkyQuRyL774IidPnuTVBlFw/Rq/nTrl6JCEE5CeuxC5VGxsLDt27ACgXLlyEB8H+d0dHJVwFpLchcilpk2bRtOmTQkNDTV2xMWDu3zZFpbJMrkrpZYopS4rpfZn0a6BUipeKdXFvPCEyJvCw8MZP348Xbt2pXbt2gDMLxnA/EZfOTgy4Sws6bkvBdpm1kAp5QZ8Amw1ISYh8rTExET8/f0pXLgwc+fOTdlfNWoPVStEOzAy4Uyy/I6ntf5dKVUxi2bvAWuBBibEJESetmDBArZv386SJUt49NFHjZ1as+HKU3C1CR0cG55wElYP4CmlygKdgJZIchfCavnz56djx4706dPn3s6oKGYkvA97H5PkLixixgXV2cAIrXViVg2VUv5Kqd1Kqd0REREmnFoI1+Pn58cPP/yQdONSkqtXjUeZLSMsZEZy9wVWKqVOAV2Az5VSL6XXUGu9QGvtq7X29fbOcvFuIfKUdevW8fXXX6O1vj+xA0RGGo/uktyFZaweltFaV0r+WSm1FNiotf7R2uMKkZdERkbi7+9PuXLl6NmzJ/nz50/bAHCTqZDCYln+piilVgAtgJJKqXPAWMAdQGv9pU2jEyKPGDZsGFevXmXLli0PJnZISu7eMiwjLGbJbJkelh5Ma93HqmiEyIN+/vlnvvrqK0aOHEmdOnXSbxQZyTcMgc+DgcJ2jU84J/mOJ4QDxcTE8Pbbb1O5cmU+/PDDjBtGRlKOc/BkMfsFJ5yaJHchHMjDw4OZM2fy8MMPU6hQoYwbRkayyr03rC/EK6/YLz7hvCS5C+EgCQkJuLm50bFjx6wbX73KF+pd+AJJ7sIiUjhMCAeIi4ujadOmfPbZZ5a9ITJSZsqIbJHkLoQDzJgxg127dlG2bFnL3hAZKTNlRLZIchfCzo4ePcq4ceN4+eWXeemldO/3e5D03EU2SXIXwo4SExN56623KFiwIPPmzbP8jdJzF9kkyV0IOwoODmb79u1Mnz6d0qVLW/YmrSEykjVdVrJmjW3jE65DvucJYUeNGjUiLCyM6tWrW/6mO3cgJoaSPgWhpO1iE65Feu5C2Mm+ffsAqFGjxoOFwTKTVDRsaXhjli61QWDCJUlyF8IOvv/+e2rXrs3mzZuz/+bk5B5cQ5K7sJgkdyFs7Pr16/Tv35+6devSpk2b7B8gudyvXFAV2SBj7kLY2AcffEBERARBQUHpV3zMSkotd/nnKiwnPXchbOjXX39l0aJFDB06lHr16uXsINJzFzkgyV0IG7pw4QJ16tRh7NixOT+I9NxFDshvixA21LNnT7p3706+fFb0o65ehYIF2fSTm3mBCZcnPXchbCAkJIRly5ahtbYusYPRcy9RAk9P8PQ0Jz7h+qTnLoTJ4uPj6du3L+fPn6dTp04ULVrUugMmJffPPzeevvuu9TEK15dll0IptUQpdVkptT+D13sppfYppcKUUjuUUrXND1MI5zFz5kz27NnDp59+an1ih5Tkvno1rF5t/eFE3mDJ98WlQNtMXj8JPKO1/hcwAVhgQlxCOKVjx44xduxYXnrpJTp37mzOQZOSuxDZkWVy11r/DkRm8voOrfW1pKc7AR+TYhPCqWit8ff3p0CBAnz22WfZKzGQGUnuIgfMHnPvC2R4f7VSyh/wByhfvrzJpxbCsZRSDBo0iKioKMqUKWPega9eNZL7cfMOKVyfacldKdUSI7k/nVEbrfUCkoZtfH19tVnnFsLRtNYopXjxxRfNPfDduxAdDQ8/bO5xhcszZSqkUqoWsAjoqLW+asYxhXAmvXv35pNPPjH/wMk3MJUowW+/wW+/mX8K4ZqsTu5KqfLA98CrWusj1ockhHP54Ycf+Pbbb0lMTDT/4KmSuxDZkeWwjFJqBdACKKmUOgeMBdwBtNZfAh8CDwOfJ11Aitda+9oqYCFyk+SKj7Vr12bYsGHmnyBVcp8+3fjRFqcRrifL5K617pHF636An2kRCeFERo4cyaVLl1i/fj3u7jYo7JUquW/caPwoyV1YQsoPCJFDp0+fZvHixQwePBhfXxt9WZVhGZFDUn5AiByqUKECf/31F1WqVLHdSa4mzU+Q2TIim6TnLkQOnDp1CoC6detSuHBh250oMhIKFJCKYSLbJLkLkU2hoaFUrlyZpfZY0DT57lSlKFQIChWy/SmFa5BhGSGyIT4+Hj8/P0qUKGH+DUvpSVV6ICdra4u8S5K7ENkwZ84cdu/ezapVqyhhj4ucUldG5JAMywhhoRMnTjBmzBg6dOhA165d7XPSVMl9wgRjE8ISktyFsNCBAwcoUaIEn3/+uXkVH7OSXDQM2LbN2ISwhCR3ISzUoUMHjh8/jo+PHataR0bKNEiRI5LchcjCpUuX+Prrr9Fa4+HhYd3BVq40pjbGxmbdNjoa7tyRMXeRI5LchcjCwIEDeeuttzh9+rT1BwsNhRo1jASflWtJa+BIchc5ILNlhMjE+vXrWb16NRMmTKBixYrWHzA0FGpbuMxwmtIDMjojskOSuxAZuHHjBu+++y5PPvkkw4cPN+egISGWV/5Kk9zXrjUnBJE3SHIXIgOjRo3i/PnzrF27lgKWDKNkJSICLlyAOnUsay9Fw4QVJLkLkYH27dvj4+NDo0aNzDlgaKjxaOmwTJqiYaNGGU8//ticcIRrk+QuRAZeeOEFXnjhBfMOGBICZcveGzzv1w/Wr4fz50Gns6Rwmp77n3+aF4pwfTJbRog0JkyYwEcffYROL+FaIzT0/iGZHj1gz56M20dGQv784OVlbhwiT8gyuSulliilLiul9mfwulJKzVVKHVNK7VNK1TM/TCHsIywsjPHjx3P8+HHz70JNO1OmeXMoVSrj9qkqQgqRXZb03JcCbTN5vR1QOWnzB76wPiwh7C8hIQE/Pz8eeughZs6cae7BY2IgPNzy8XaQomHCKpasofq7UqpiJk06Al9r4zvsTqXUQ0qp0lrrCybFKIRdfPrpp/z11198++23lCxZ0tyDHzwIcXGWz5SBB5K7PaseCOdnxgXVssDZVM/PJe2T5C6cxq1btxg7dizt27ene/fu5p8gNNRYTemJJyx/z9Wr92X05cvND0u4LrvOllFK+WMM3VC+fHl7nlqITBUpUoRffvkFb29v21R87NPH2LIjMjJ7wzhCpGLGbJl/gHKpnvsk7XuA1nqB1tpXa+3r7e1twqmFsN6VK1cAqFevHuXKlcuitYn8/O71zH18jOeppRmWGTTI2ISwhBnJfT3wWtKsmcbADRlvF87i8uXLVKtWjWnTptn/5IsWwblzxhz3c+eM58liY+H27fuSe0iIsQlhiSyHZZRSK4AWQEml1DlgLOAOoLX+EtgEtAeOAXeAN2wVrBBmGzRoEDdv3uT55593dCj3k4qQwkqWzJbpkcXrGuhvWkRCZFNsbGyOar8EBQWxYsUKxo0bR40aNWwQmRWkroywktyhKpxKYmIiXl5ezJ49m4EDB+Lt7U2d7EwvTHLr1i369etHzZo1GZVctCU3keQurCS1ZYRTOXHiBFFRUUydOpVOnTrx7bff5qjXvnfvXm7evMmqVavMqfhotjRFwwCqVHFQLMIpSXIXTiUsLAyAN998k4kTJ+b4OM2bN+fMmTMULVrUrNDMlU7PfcECB8UinJIMywinsm/fPjw9PQkICMjR+2NiYli1ahVa69yb2EGGZYTVJLkLpxIWFkaLFi0oVKhQjt7/8ccf0717d3bu3GlyZCaLjAQ3N0j1H5C/v7EJYQlJ7sKphIWFUa9ezgqPHjhwgMmTJ9OrVy+eeuopkyMzWWQkFC9+X0XII0eMTQhLSHIXTuPu3bscO3aM2jm4JT+54mPRokWZNWuWDaIzmVSEFFaSC6rCaRw4cIDExMQcJfcvvviCnTt38s033+AUpS+uXr1vpowQ2SU9d+E0wsLCKFy4MI8//ni23/v444/Tt29fevXqZYPIbEB67sJKktyF03jjjTe4ffs2+fJl/9e2Xbt2LFq0yDYVH20hneRep072ysGLvE2Su3Bpq1atYty4ccTFxTk6lOxJJ7nPnm1sltq1axfPPPMMnp6ePPbYY6xevdrkIEVuJslduKwrV64wYMAAfvrppxz19h0mLg5u3rRqWObXX3+lVatWNGvWjKCgIJo3b86rr77KyZMnTQxU5GZO9BsvRPYMHjyY69evs2jRItzc3BwdjuWuXzce0yT33r2NLStRUVH06tWLkSNHMnHiRFq2bMn8+fNxd3fnxx9/tEHAIjeS2TLCJf30008sX76cMWPG8OSTTzo6nOxJriuTJrmfO2fZ2xcuXEhcXBzDhg1L2efh4YG3tzenT582K0qRy0lyFy4nISGBAQMGUK1atRyXKXCo5NIDOZwKGRgYSOfOnXF3dyc+Pj5lf1RUFO7u7mZEKJyAJHfhctzc3Pjuu+9ISEjAw8PD0eFknxV1Za5fv87ff//N7t27WZBOpTFZuzjvkOQuXEpUVBSFCxembt26jg4l56xI7qGhoWitWbduHWXKlEnZ/9dff9G/f/+U2vf9+vVj/fr1nD9/HmO9HeFq5IKqcBmxsbE0btyY0aNHOzoU62SQ3J96ytgyc/bsWQBatWqFr69vynbx4kWKFClCw4YNAejRowd79uwxPXSRe1iU3JVSbZVSh5VSx5RSI9N5vbxS6lel1F6l1D6lVHvzQxUic5988gn79++nSZMmjg7FOpGRRsGwYsXu2/3xx8aWmeQx9vz5730p11qzcuVKunXrljJM1bx5c0qVKmVu3CJXyTK5K6XcgM+AdkANoIdSKu2Ck/8GVmut6wLdgc/NDlSIzBw6dIiJEyfSvXt3XnjhBUeHY53kipA5mJtfoUIFAA4fPpyyb8mSJZw9ezZ3LicobMaS356GwDGt9QmtdSywEuiYpo0GkgtPFwPOmxeiEJlLTEzEz88PLy8v5syZ4+hwrJdB0bCXXza2zDRt2pSyZcvSv39/tm3bxvTp0xkwYADz5s3LUU0e4bwsuaBaFjib6vk5oFGaNuOArUqp94DCQGtTohPCAocOHSIsLIxPP/2URx55xNHhWC+DomHJ098zU6BAAdasWcPbb7/N888/T7Vq1VKmRoq8xazZMj2ApVrrGUqpp4BvlFJPaq0TUzdSSvkD/iBTsoR5atasydGjR10jsYOR3K0oS9y4cWNCQ0NNDEg4I0uGZf4ByqV67pO0L7W+wGoArfWfQEGgZNoDaa0XaK19tda+TlFTW+RqWmu2bNmC1ppSpUo5T8XHrNih3K+fnx8+Pj4A+Pj44OfnZ9PzCfuzpOceDFRWSlXCSOrdgZ5p2pwBngWWKqWqYyT3CDMDFSKtVatW0aNHD1auXMkrr7zi6HDMY4fkvmjRIpseXzhelsldax2vlBoAbAHcgCVa6wNKqfHAbq31emAosFApNRjj4mofLXdGCBu6evUqAwcOpEGDBnTp0sXR4ZgnIcEoHJZOcn/2WQfEI5yWRWPuWutNwKY0+z5M9fNBoKm5oQmRsaFDh3Lt2jV+/vln56r4mJVr14zHdJL7mDF2jkU4NblDVTidrVu3smzZMkaMGEGtWrUcHY65rCwaJkQySe7C6eTPn582bdrw73//29GhmC+TujLt2hmbEJaQwmHC6bRq1YpWrVo5OgzbyCS5371r51iEU5Oeu3AawcHBjB07lpiYGEeHYjOHwsL4Gthy4ACHDh1y6T+rsC3puQunEBcXR9++fbl69SpDhgxxzjrtFti6axeDAPr2BYza9FWrVqVhw4ZcvDiZ4sVLAK75ZxfmkuQunMK0adMICwtj3bp1FEtTLdGVvFW9Os//8AMXf/uNU2fPEh4eTkhICBs3buTKldcBqF9/KN27d6d3796ULl3awRFb7tq1a3z88cdER0czd+5cR4fj+rTWDtnq16+vhbBEeHi49vDw0F27dnV0KLY3YIDWxYs/sDsxMVEPGXJet2//i27YsKEGtJubm+7SpYvesWOHAwLNnk2bNunixYtrpZTu27evTkxMdHRITgvj/qIsc6yMuYtc791338XT05N58+Y5OhTby+DuVKUUM2aUJiioJbt27eLw4cMMGTKEbdu20aRJE9q0acPu3bsdEHDGEhMTiUy6QFy9enWefvppQkJCWLRokeuUisjFJLmLXG/GjBksW7YsbywuYWHpgSpVqjB16lTOnDnD9OnTCQkJoUGDBvTp04eICMdX/ti2bRu+vr707GlUKqlYsSLr1693vfsScjFJ7iLXiouLA6BOnTp06NDBwdHYSSbJvUULY0vNy8uLoUOHcvz4cUaMGMG3335L9erVWb16tc1DTc++ffto164drVu3JjIykldffVXWaHUQSe4iV9Ja07VrV/r37+/oUOwrh0XDihYtypQpU9i7dy+PPfYYr7zyCn379uWuHSfHr127ljp16rBr1y5mzJhBeHg4vXr1kiEYB5HkLnKlNWvWsG7dOipVquToUOzLyoqQNWvW5I8//mD06NEsWbKEZs2a8c8/aSt0m+f69evs378fgDZt2hAQEMDx48cZMmQIBQsWtNl5RdYkuYtcJzIykgEDBlC/fn0GDRrk6HDsJyHBKBxmZblfd3d3Jk2axPr16zl8+DCNGzfm0KFDJgVpiImJYfbs2Tz++ON0794drTVFixZlwoQJFC9e3NRziZyR5C5ynWHDhnH16lUWLVpE/vzOdytGZGQkb7/9NiVLlqREiRKMGDECgKeffjrzGT83boDWphUN69ChA9u3bycuLo7mzZsTFhZm9TETExNZsWIF1atXZ/DgwdSvX59vvvlGhl5yIef7lyNc2qVLl1i7di0ffPABderUcXQ42Xb9+nWaNGmCl5cXS5YsYf/+/QQEBFCxYkWOHz/OW2+9lfGbM6krA9CtW/bjqVOnDtu3b6dly5a0bt2a//3vf1SuXDn7B0ry/fff07NnT2rXrs2WLVv4v//7vxwfS9iYJZPhbbHJTUwiI2fPntV37txxdBg5MmzYMF2sWDEdERGRsq9kyZK6WLFievr06Zm/edcurUHrjRtNjys8PFx7e3vrSpUq6cuXL2frvWFhYXrDhg1aa63j4+P1d999pxMSEkyPUVgGuYlJOJvg4GC01vj4+FCoUCFHh5NtWmuWLVvGW2+9RcmS95YQLlasGO7u7rzzzjuZHyCLnvudO8aWE1WrVmXjxo1cuHCBLl26pEwzzcw///xD3759qV27NoMHDyYxMRE3Nze6dOlCvnySOnI7+RsSucKePXto3LgxM2fOdHQoOXb48GEiIiJo06bNffsTEhJ4//33KVy4cOYHyCK5t29vbDnVsGFDFi5cyO+//55pLfwbN24QEBBA5cqVWb58OYMGDWLnzp2S0J2MRX9bSqm2SqnDSqljSqmRGbTpppQ6qJQ6oJT61twwhStLrvhYqlQp+iZVQ3RGJ0+eBKBChQop+3bs2MGpU6csu36QRXI3Q+/evXnrrbeYNm0av//+e7pt/v77byZPnkznzp05fPgwM2bM4GFZGcrpZHlBVSnlBnwGtAHOAcFKqfXaWDc1uU1lYBTQVGt9TSn1iK0CFq5n5syZhISE8P333/PQQw85OpwcS17LNbmeitaa4cOHp/ycpatXjUcbTyWcNWsWP//8M++88w4hISG4u7vz3Xffcfr0aT744ANatWrF4cOHqVKlik3jELZlSc+9IXBMa31Cax0LrAQ6pmnzFvCZ1voagNb6srlhCld19OhRxo0bR+fOnenUqZOjw7FK/fr1KViwIMOHD+enn37izTffJDIyksqVK7Ny5UpOnTqV+QEiI6FYMbDx9M/ChQszb948Dh06xIABA2jUqBGvvPIKq1evJj4+HkASuwuwJLmXBc6men4uaV9qVYAqSqk/lFI7lVJtzQpQuLaIiAiqVKniEhUfH374YZYtW8a5c+d48cUX2bdvH0FBQQQEBLBu3bqs671YeXdqdlSrVo1HH32UhQsXcvbsWZYuXcrOnTud8r4CkT6z/ibzA5WBFoAP8LtS6l9a6+upGyml/AF/gPLly5t0auHMmjRpQkhIiMvcBNOtWze6pZmQXqlSJV5//fWs35xFcu/Tx8rgMIaHlFLEx8cTHR3Nc889x8qVK516OEykz5Lk/g9QLtVzn6R9qZ0Ddmmt44CTSqkjGMk+OHUjrfUCYAGAr6+vlIrLw86fP8/ixYsZPny4yy6Zl5WEhAQOHz7MiRMniI6OJu7IEco99BBPZ9DemuR+8+ZNpk2bxsmTJ1m+fDlVq1blwoULUv/FhVmS3IOBykqpShhJvTvQM02bH4EewFdKqZIYwzQnzAxUuJYBAwawefNmevTowRNPPOHocOwmMTGRLVu2sHTpUrZs2cKNGzfue71ruXIZJvcrV4zHVFPosxQbG8uCBQsYP348ERERdO/enbi4ONzd3SWxu7gsk7vWOl4pNQDYArgBS7TWB5RS4zHulFqf9Nr/KaUOAgnAB1rrq7YMXDiv77//nh9++IEpU6bkqcT+66+/MnjwYEJDQ/H29qZr1640a9aMqlWrUrhwYfI3a0axli0zfH+XLsbjb79Zdr6QkBC6du3KsWPHaNGiBdOmTcPX19f6P4hwChaNuWutNwGb0uz7MNXPGhiStAmRoevXr9O/f3/q1q3L0KFDHR2OXcTFxTFs2DDmzp1LpUqVWLZsGd27d6dAgQL3GiUmws2bYMK1qNu3b+Pl5UX58uV59NFHmTNnDu3atXOZ6xrCMnJpXNjViBEjiIiIICgoKE/MzLhz5w6dOnVi69atDBw4kClTpqRfWuHmTSPBWzFbJjw8nJEjR3L27FmCg4MpUaIE27dvtyJ64cxc/1+XyFX69etHnTp1qFevnqNDsbmEhAS6du3Kf/7zHxYvXsybb76ZcWMr7k69cOECH330EYsWLcLT05ORI0cSHx9//zcDkedIchd2kTwFr06dOk5Zyjcnxo0bx6ZNm/jiiy8yT+yQ4+S+a9cunn32WWJiYnj33XcZM2YM3t7eOYxYuBJJ7sIuRo8ezYULF1i8eHHKbfquLDQ0lI8//pjXX38962qQYFFy79fPeIyLi+PYsWNUr16dunXr8sYbb/D+++/nqYvTImtS5k3Y3N69e5k2bRr58+fPE4kdYNSoURQrVoxZs2ZZ9gYLknu3bpoCBX7gySef5Nlnn+Xu3bsUKFCAefPmSWIXD5DkLmwqPj4ePz8/SpYsybRp0xwdjl0cOnSIzZs3M3ToUMvXE00uGpZB9cUdO3bQoEFnOnceiJubGwsWLJB56iJTMiwjbGrWrFns2bOH7777Ls8snBwYGIibm1v2yhcn99zT+Yz++usvmjZtSoECf1ClSiX27fPOEzONhHWk5y5sJjo6mpkzZ9KxY0defvllR4djN1u3buWpp56iVKlSlr8pMhKKFAF3d8BYS3bDhg0ANGjQgMWLF9OwYSNKly4tiV1YRH5LhM0ULFiQ3bt3ky9fvjxzA018fDyhoaEMGjTI4vcEBgYSsHAhZ6Ki8ClfngYNGrBlyxbc3Nz4559/8PLy4s033+Trr20YuHA50nMXNnH06FG01pQtW5bSpUvb56QrV0KBAhAba5/zpePChQvExsby+OOPW9Q+MDAQf39/TkdFoYGzZ8/y/fffU7NmTXbv3o2Xl5dtAxYuS5K7MN3Fixdp2LBhyipEdhMaCjVqGAneQW7dugUYi2JbImD0aO6ks+r1pUuXqFy5sqmxibxFhmWE6d577z3u3r2Ln5+ffU8cGgq1a9v3nGkkj4cnr2iUqZ07OXPmTLovpbc/j5TiESaRnrsw1Y8//siaNWv48MMPqVq1qn1PHhLi8OT+yCPG8sHnz5/PuNGRI0aJx6eeony+9P8JpreYTYcOxiaEJSS5C9PcuHGD/v37U6tWLT744AP7njwiAi5cAAeXNnjooYcoXbo0oaGhD754+TIMGAA1a8JPP8FHHzFp4UI8PT3va+bp6cmkSZMeePvhw8YmhCVkWEaY5tSpU3h4eLB48WLck6b02U1yMnVwzx2gWbNm/PLLLyQmJpIvXz6IioKZM2HqVLh7F/z9YexYKFWKXgAeHgQEBHDmzBnKly/PpEmT6NWr1wPHfftt49HSeu4ib5PkLkxTu3Ztjhw54ph52CEhULbsvTs89++H116DW7egenUIDDTmkdtBp06dWL16Nb/85z+0PnPGSOQXLkDnzjB5MqQZrurVq1e6yVwIa8iwjLBadHQ0M2bMICYmxnE32ISG3j8k8847MHEiHD0K1aoZvWY7ealjR7yLFWP6yy8bvfRKleCPP2Dt2gcSuxC2IsldWG3ChAkMGzaMnTt3Oi6I1DNlLl2CkyehfXvjed++RmK1h127KNi2LcNv3OBEbCzXvv4a/vc/aNLEPucXIok7ywlXAAAWCklEQVRFyV0p1VYpdVgpdUwpNTKTdi8rpbRSShZqzCNCQ0OZOnUqffr04ZlnnnFMEDExEB5+L7mfOwc+PvdeL18ezp61bQzHjkG3btC4MYSHM3DuXA5cv07xV1+FPHJ3rshdsvwOrZRyAz4D2gDngGCl1Hqt9cE07YoA7wO7bBGoyH2SKz6WKFGCGTNmOC6QgwchLu7esIzW9jt3RARMmABffGHcPDV2LAwdSgEbjO//+9+mH1K4MEsGSBsCx7TWJwCUUiuBjsDBNO0mAJ8Adp4DJxxlzpw57N69m1WrVlHCirU/rRYaCp6ekFzT3MfH6L0nO3Pm/p68Ge7cgdmzYcoU42c/PyOx27DUQuvWNju0cEGWDMuUBVJ/pz2XtC+FUqoeUE5rHZTZgZRS/kqp3Uqp3REREdkOVuQurVu3ZsSIEXTt2tWxgfTpY0w3TL4h6NFHoWJF2LTJeL54sTFTxQwJCbBkCVSuDAEB0KoVhIXBl1/aNLGDMSEoJMSmpxAuxOqpDUqpfMBMoE9WbbXWC4AFAL6+vnb87ixsoXbt2tTOBfPK0/XFF/D66/D++8YMlcBA646ntfGfxYgRcOCAMba+ahU8/bQ58VogudCkzHMXlrCk5/4PUC7Vc5+kfcmKAE8CvymlTgGNgfVyUdV1LV26lNdee42oqChHh5KxWrVg715jKuTGjWBhIa907d5t9NBfeMG4eLtmDezYYdfELkR2WZLcg4HKSqlKSqkCQHdgffKLWusbWuuSWuuKWuuKwE7gRa31bptELBzq0qVLDBkyhBMnTlCoUCFHh2NbJ05Ajx7QoIHRW//0U+Pi7csvywwYketlmdy11vHAAGALcAhYrbU+oJQar5R60dYBitzl/fffJyoqioULFxq31ruiq1dh8GDj5qf1641pKseOQf/+KSslCZHbWTTmrrXeBGxKs+/DDNq2sD4skRtt2LCBVatWMX78eKpXr+7ocMx39y7MmWPMgLl1y7j5adw4KFPG0ZEJkW1K23NOcCq+vr56924ZuXEWWmtq1aoFwN9//00BBy6IYbqEBPjmGxgzxphC2aGDkeBr1HB0ZPfZscN4lJtd8zal1N9a6yyvaUrhMGERpRRbtmzh2rVrrpPYtYYtW2D4cGM6Y4MGsHw5OOpO2yxIUhfZ4aKDpsJMFy9eJDExkTJlylCzZk1Hh2OOPXugTRto186YI79qFezalWsTOxg99+TeuxBZkeQuMhUdHU3Lli154403HB2KOU6dgl69oH59487WuXPh0CGjLkwunwEzerSxCWEJSe4iU5MnTyY8PJyePXs6OhTrREYai5BWrQrff29kyWPH4L33HLqgthC2ImPuIkNhYWF8/PHHvPrqqzz33HOODidnoqNh3jxjkYybN41SBR99ZH6tGSFyGem5i3QlJCTg5+dH8eLFmTVrlqPDyb7ERPj6a6hSxbhg2qSJUZhl8WJJ7CJPkOQu0nXmzBkuXbrEnDlzeDh56TpnsXUr1Ktn1JZ55BH45RcICoJ//cvRkQlhNzIsI9JVqVIlDh486FwlBkJCjF76f/5jLG23YoVxodRF7qSdPdvREQhn4hq/9cI0Wmu++uoroqOj8fT0ROXyGSQAnD5tLIZdrx78/TfMmmXMgOne3WUSOxhrkaReJlaIzEjPXdxn+fLlvPnmmwC5f/rjtWvGhdJ584xpjMOHw8iR8NBDjo7MJn7+2XiURTuEJaT8gEhx+fJlqlevTtWqVdm+fTtubm6ODil90dHw2WcwaRJcv26MrY8fD+XKZf1eJ9aihfEo9dzzNkvLD7jOd1ZhtUGDBnHr1i0WLlyYOxN7YqKx6Ea1ajBsGDRqZIyzf/WVyyf27KhTB/z9H9zfuzc0a2b/eIRjyLCMACAoKIgVK1Ywbty43FliYNs2+OADYwGOunVh0SIZn8hAo0YQHHz/vr/+Mq4v79zpmJiE/UnPXQBQvnx5evXqxciRIx0dyv327TPqv7RubdxlGhhorIwkiT1DjRrB/v3G6FWywYPvrTsi8gZJ7gKAf/3rXyxfvhwPDw9Hh2I4e9a4m7ROHaOg14wZEB4OPXu61AwYW2jcGOLi7i2mvWqVUSdt8mTHxiXsS/6V5HF//vknr732GteuXXN0KIbr140ZL5Urw8qVxtj68eMwZAgULOjo6Bxq/nxjy0q1alC0qDE0Ex1trOk9ZAiUL2/7GEXuYdGYu1KqLTAHcAMWaa2npHl9COAHxAMRwJta69MmxypMFhMTg5+fH7du3SJ/fgdffomJgc8/h4kTjSmOvXvDhAlQoYJj48pFqla1rF2+fNCwoZHcb982EnxuG20Ttpflv2illBvwGdAGOAcEK6XWa60Ppmq2F/DVWt9RSvUDpgKv2CJgYZ4pU6Zw8OBBgoKCKFKkiGOCSEw0xg1GjzbK8f7f/8Enn8jdOunYsMF47NAh67aNGsGyZfDjjzB9Ojjqr1c4jiXDMg2BY1rrE1rrWGAl0DF1A631r1rrO0lPdwJSmSmXO3DgAJMmTaJnz560b9/eMUH8+qvRxezZE4oVM1ZF2rJFEnsGZswwNks0amSsGFihgrEUrMh7LEnuZYGzqZ6fS9qXkb7AZmuCErY3bNgwihYtymxHFCwJC4Pnn4dWreDyZaN64549Rq9dmMLb23icPh1y4y0LwvZMHWhVSvUGfIF01ypTSvkD/mBMvROOs3jxYo4cOYJ3chawh3Pn4MMPYelS44rf1KnGYhl5/EKpLUyebMwgddYy/MJ6liT3f4DUt//5JO27j1KqNRAAPKO1jknvQFrrBcACMMoPZDtaYbWbN2/i5eVFmTJlKFOmjH1OeuOGMY4+a5Yxxj5kiDHGXqKEfc6fR0RHG7cFrFlj3PMVGuroiIQjWZLcg4HKSqlKGEm9O3DfmmtKqbrAfKCt1vqy6VEKU2it6dGjB0opNmzYYPuKj7Gx8OWXRt2Xq1eNtUsnToSKFW173jzqv/81euuVKhnXqJ94wtERCUfKMrlrreOVUgOALRhTIZdorQ8opcYDu7XW64FpgBfwXVLCOKO1ftGGcYscWLFiBZs2bWL27Nm2Texaw3ffwahRcOKEMbY+bZpRklfk2DffZP76c88ZX4yEAKkKmWdcuXKF6tWr8/jjj/PHH3/YrjDYf/9r1IAJDjZWPpo61cg6zlAXXggnIFUhxX0GDx7M9evXWbRokW0S+4EDxgTsFi3gwgXjounevdC2rSR2k6xaZWxCWEKqQuYB165d43//+x+jRo3iySefNPfg58/D2LGwZAl4ecGUKTBwIDjT8nxO4osvjMdX5PZAYQFJ7nlA8eLFCQsLw93d3byD3rxpjKPPmAHx8UZCDwiAkiXNO4cQIsdkWMbFBQUFER0djZeXlzkVH2Nj4dNPjakYEyfCSy8Z1RpnzcpRYt+1axfPPPMMnp6ePPbYY6xevdr6GIUQktxd2a5du+jQoQNTpkzJunEWdGIisStWQM2axo1HNWsaF02//RYeeyxHx/z1119p1aoVzZo1IygoiObNm/Pqq69y8uRJq+MVIq+T5O6iYmNj8fPzo2zZsgwZMsSqY8Vs20bTYsX4qGdP8PCAoCD45RfwzfKCfYaioqJSFgeZOHEiLVu2ZP78+bi7u/Pjjz9aFa8QQsbcXdYnn3zC/v372bBhA0WLFs3ZQQ4dglGj8Fi3joqFCjGrQAEGbt1KKRPubF24cCFxcXEMGzYsZZ+Hhwfe3t6cPi3VotOzZo2jIxDORHruLujQoUNMnDiR7t2788ILL2T/ABcuwNtvw5NPGj30yZMZ9+efxMTHM2vuXFNiDAwMpHPnzri7uxMfH5+yRUVFmXvhNwv//a8xU3PTpnv7Tp6ERx4xrhHnJiVLyvVqkQ1aa4ds9evX18I2Dh06pNu2basvXryYvTfevKn1hx9q7empdf78Wg8cqPXlyykvd+3aVRcrVkzfvn3bqviuXbumlVIaSHebO3euVcfPrpYttW7SxPj5+nWta9TQ+vnntY6Pt2sYWfrqK2MTeRtGZYAsc6z03F1QtWrV2Lx5M6VKlbLsDXFxxiTqJ54w6sC88IIxJDNnzr3ascDAgQO5ceMGK1eutCq+0NBQtNasW7eO4ODglO2zzz4DoE5SPff9+/dTr149KleuzIsvvsitW7esOm9GPvoIduyArVuhWzdwdzdW+MttpXKXLjU2ISwhyd2FnDt3Dj8/P65cuWLZG7SGH34whl/efddYfHPnzgyrTjVt2pRq1aqxbNkyq+I8e9ZYHqBVq1b4+vqmbBcvXqRIkSI0bNgQgHfeeYeJEydy9OhRqlWrxtSpU606b0aaNYPWraFTJ9i/HzZuNO7HEsKZSXJ3EVpr+vXrx4oVKyzr4f7xBzz9NHTubHRR16+H334zlvDJgFKKnj17sn37ds6fP5/jWOPj4wHuW7dVa83KlSvp1q0bHh4eXLp0iZMnT6asEtW3b1/Wrl2b43Nm5Ykn4M4doxfvI+uICRcgyd1FrF69mo0bNzJhwgQqVaqUccPDh42E/vTTxpXDhQuNIuAdOlhUA6ZTp04AbNy4McexVkha9Prw4cMp+5YsWcLZs2cZNWoUYHwL8UmVZcuXL5/S4zfbggVG9YTatWHxYpucQgj7s2Rg3habXFA1z5UrV7S3t7du0KCBjs/oKuDFi1r366e1m5vWXl5aT5igdQ4ujCYmJmofHx/dpUuXHMcbExOjy5Ytq5s2bap//vlnPW3aNF2wYEG9cOHClDbBwcG6YcOGKc/v3Lmjvby8cnzOjGzdalw7XrZM6z//1Bq03rTJ9NOY4plnjE3kbVh4QVWSuwt45513dP78+XVISMiDL966pfW4cVoXLmxksf79tb50yarz9e7dW5cqVUonJibm+Bh//vmnrlWrlvbw8NC1a9fWa9euve/1Cxcu6DJlyqQ8Dw8P19WqVcvx+dKzf7/WxYppHRBwb1/r1lqn+j8lV4mKMjaRt0lyz0POnz+vV6xYcf/OuDitv/xS61KljL/mLl20PnLElPPNmzdPA/rs2bOmHC8jTZo00UFBQVprrT/44AM9evRo04596ZLWFStq3bWr1qn/j/rvf42Pa+NG004lhKksTe6yWIcTi4mJwd3dnXz5Ul060dq4ODpypFHQ6+mnjQUznnrKtPNu376d5s2bs2nTJtq1a2facdPat28fr7/+Ordv36Zq1aoEBgZSrFgxm50vt/v8c+Px3XcdG4dwLFmsIw8YPXo0rVq1IjY21tixcyc0b25UatQafvwRfv/d1MQOULVqVQCOHDli6nHTqlWrFnv37uXo0aNs3LgxTyd2gNWrjU0IS1iU3JVSbZVSh5VSx5RSI9N53UMptSrp9V1KqYpmByruFxwczOzZs6levToFTp+Grl2NJH70KMyfb0zY7tjRJqsgeXt7U7BgQZvNXhFCWC/L5K6UcgM+A9oBNYAeSqkaaZr1Ba5prZ8AZgGfmB2oMAQGBlKhQgUaNmyIAuqFh0ONGrB5szFJ+9gx8PeH/LarCaeUolSpUkRERNjsHEII61iSARoCx7TWJwCUUiuBjsDBVG06AuOSfl4DfKqUUtpRA/ouKjAwEH9/f+7cuQNAQmIig377Dc9nn6VXYCBYWm7ABEWKFOHmzZt2O58QInssSe5lgdTfv88BaW9jTGmjtY5XSt0AHgYsvA9eWCIgICAlscOvANwBXv0lH/2rXqBt23BWrnyGK1fu8MQTD46Hd+lym0WLnubw4as0avTgkMrrr99hzpwm7Np1nueeu/zA6++9F8uECQ3ZvPkEBw9+Tni44qGHQlJeHz06keHD67Fq1WHefvvuA+//5BM33n77X8yfH8aIEQkPvD5/fiFeeaUqU6fuYfLkB79UrlhRlHbtHmPMmL+YN68AcK8ODcA330C5ckb1hOT1RlNbs8aoqphRjZZNm8DT07hwmd7Y9m+/GY/TpxslClIrVMj48gQwYQJs23b/6w8/DMk32I4aBX/+ef/rPj6wfLnx86BBEBJy/+tVqjwYjxCZsWs9d6WUP+APxh2HInvOnDmT7n6tE+0cCbi75wfMH88XGUv+z0UIS2Q5FVIp9RQwTmv9XNLzUQBa649TtdmS1OZPpVR+4CLgndmwjEyFzL6KFSumu5BFhQoVOHXqlP0DEkLYnZlTIYOBykqpSkqpAkB3YH2aNuuB15N+7gL8IuPt5ps0aRKenp737fP09GTSpEkOikgIkVtlmdy11vHAAGALcAhYrbU+oJQar5R6ManZYuBhpdQxYAjwwHRJYb1evXqxYMECKlSogFKKChUqsGDBAnr16uXo0IQQuYzcoSqEEE5E7lAVQog8TJK7EEK4IEnuQgjhgiS5CyGEC5LkLoQQLshhs2WUUhHAg3fkZK4kUtIgmXwWBvkc7pHP4h5X/iwqaK29s2rksOSeE0qp3ZZMAcoL5LMwyOdwj3wW98hnIcMyQgjhkiS5CyGEC3K25L7A0QHkIvJZGORzuEc+i3vy/GfhVGPuQgghLONsPXchhBAWyNXJXSlVQin1H6XU0aTH4hm0S1BKhSRtacsROy1ZmPweCz6LPkqpiFS/B36OiNMelFJLlFKXlVL7M3hdKaXmJn1W+5RS9ewdoz1Y8Dm0UErdSPU78aG9Y3SkXJ3cMUoHb9NaVwa2kXEp4bta6zpJ24sZtHEqsjD5PRZ+FgCrUv0eLLJrkPa1FGibyevtgMpJmz+QzqKDLmEpmX8OANtT/U6Mt0NMuUZuT+4dgWVJPy8DXnJgLPaWsjC51joWSF6YPLXUn88a4FmllCuufWfJZ5FnaK1/ByIzadIR+FobdgIPKaVK2yc6+7Hgc8jTcntyL6W1vpD080WgVAbtCiqldiuldiqlXOU/gPQWJi+bUZukRVWSFyZ3NZZ8FgAvJw1DrFFKlbNPaLmSpZ9XXvCUUipUKbVZKVXT0cHYk10XyE6PUupn4NF0XgpI/URrrZVSGU3tqaC1/kcp9Rjwi1IqTGt93OxYRa62AVihtY5RSr2N8Y2mlYNjEo61ByM33FZKtQd+xBiqyhMcnty11q0zek0pdUkpVVprfSHpa+XlDI7xT9LjCaXUb0BdwNmT+z9A6t6nT9K+9NqcS1qYvBhw1T7h2VWWn4XWOvWfexEw1Q5x5VaW/O64PK31zVQ/b1JKfa6UKqm1dtWaM/fJ7cMyqRfefh1Yl7aBUqq4Usoj6eeSQFPgoN0itB1ZmPyeLD+LNGPKL2Ks95tXrQdeS5o10xi4kWp4M89QSj2afA1KKdUQI9+5YucnXQ7vuWdhCrBaKdUXo4JkNwCllC/wjtbaD6gOzFdKJWL85U3RWjt9ctdaxyulkhcmdwOWJC9MDuzWWq/HWJj8m6SFySMxkp7LsfCzGJi0YHs8xmfRx2EB25hSagXQAiiplDoHjAXcAbTWXwKbgPbAMeAO8IZjIrUtCz6HLkA/pVQ8cBfo7qKdn3TJHapCCOGCcvuwjBBCiByQ5C6EEC5IkrsQQrggSe5CCOGCJLkLIYQLkuQuhBAuSJK7EEK4IEnuQgjhgv4fRQ8XBIsqwCIAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from math import pi\n", - "\n", - "arm.plot()\n", - "label_diagram()\n", - "\n", - "plt.plot([0, arm.wrist[0]],\n", - " [0, arm.wrist[1]],\n", - " 'k--')\n", - "\n", - "plt.plot([arm.wrist[0], arm.wrist[0]],\n", - " [0, arm.wrist[1]],\n", - " 'b--')\n", - "plt.plot([0, arm.wrist[0]],\n", - " [0, 0],\n", - " 'b--')\n", - "\n", - "plt.annotate(\"$x$\", xy=(0.6, 0.05), size=15, color=\"b\")\n", - "plt.annotate(\"$y$\", xy=(1, 0.2), size=15, color=\"b\")\n", - "plt.annotate(\"$r$\", xy=(0.45, 0.9), size=15)\n", - "plt.annotate(r\"$\\alpha$\", xy=(0.75, 0.6), size=15)\n", - "\n", - "alpha = pi-theta1\n", - "draw_angle(alpha, offset=theta0+theta1, origin=[arm.elbow[0], arm.elbow[1]], r=0.1)\n", - "\n", - "plt.axis(\"equal\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The distance from the end-effector to the robot base (shoulder joint) is $r$ and can be written in terms of the end-effector position using the Pythagorean Theorem.\n", - "\n", - "$r^2$ = $x^2 + y^2$\n", - "\n", - "Then, by the law of cosines, $r$2 can also be written as:\n", - "\n", - "$r^2$ = $l_0^2 + l_1^2 - 2l_0l_1\\cos(\\alpha)$\n", - "\n", - "Because $\\alpha$ can be written as $\\pi - \\theta_1$, we can relate the desired end-effector position to one of our joint angles, $\\theta_1$.\n", - "\n", - "$x^2 + y^2$ = $l_0^2 + l_1^2 - 2l_0l_1\\cos(\\alpha)$ \n", - " \n", - "$x^2 + y^2$ = $l_0^2 + l_1^2 - 2l_0l_1\\cos(\\pi-\\theta_1)$ \n", - " \n", - "$2l_0l_1\\cos(\\pi-\\theta_1) = l_0^2 + l_1^2 - x^2 - y^2$ \n", - " \n", - "$\\cos(\\pi-\\theta_1) = \\frac{l_0^2 + l_1^2 - x^2 - y^2}{2l_0l_1}$ \n", - "$~$ \n", - "$~$ \n", - "$\\cos(\\pi-\\theta_1) = -cos(\\theta_1)$ is a trigonometric identity, so we can also write\n", - "\n", - "$\\cos(\\theta_1) = \\frac{x^2 + y^2 - l_0^2 - l_1^2}{2l_0l_1}$ \n", - "\n", - "which leads us to an equation for $\\theta_1$ in terms of the link lengths and the desired end-effector position!\n", - "\n", - "$\\theta_1 = \\cos^{-1}(\\frac{x^2 + y^2 - l_0^2 - l_1^2}{2l_0l_1})$ \n", - "\n", - "This is actually one of two possible solutions for $\\theta_1$, but we'll ignore the other possibility for now. This solution will lead us to the \"arm-down\" configuration of the arm, which is what's shown in the diagram. Now we'll derive an equation for $\\theta_0$ that depends on this value of $\\theta_1$." - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmcT9X/wPHXmTFjlyypLKOQUIihoohUKPVNUkIpW0IUirTIlqXkh4qxtBlJlKVIZUnflK8hYwiRrEW2kcYYs7x/f5wZs898Zuazz/v5eHweM59z7+fc99z0njvnnvs+RkRQSinlXwI8HYBSSinn0+SulFJ+SJO7Ukr5IU3uSinlhzS5K6WUH9LkrpRSfkiTu1JK+SFN7kop5Yc0uSullB8q4qkDV6hQQapXr+6pwyullE/asmXLSRGpmNt+Hkvu1atXJyIiwlOHV0opn2SMOejIfjoso5RSfkiTu1JK+SFN7kop5Yc0uSullB/S5K6UUn5Ik7tSXiw8PJzq1asTEBBA9erVCQ8P93RIykd4bCqkUipn4eHh9OnTh/PnzwNw8OBB+vTpA0DXrl09GZryAcZTy+yFhoaKznNXKnvVq1fn4MGUKc1lgZeAM4SELODAgQOeC0x5lDFmi4iE5rafXrkr5aUOHToEFAX6AyOBckAMBw9+4MmwlI/Q5K6Ul6patQaHDn0J1E7TWpJSpd70VEjKh+gNVaW81KOPdgS+zNQeE/Mou3a5Px7lWzS5K+WlDh06xJVXvo8hOl27SAAjRngoKOUzNLkr5aXmz59PxP9WMcG8kWnbsmXwww8eCEr5DE3uSnmZXbt28ffffxMYGEjl0qUZKNOoWvafTPsNGwYemuymfIAmd6W8yMWLF+ncuTN33303IgKnT1OcC4x9ODLTvps2wZIlHghS+YRck7sxZp4x5m9jzI5c9mtijEkwxnRyXnhKFS4TJ05kx44djB07FmMMnD4NQNf20TRokHn/ESPg4kU3B6l8giNX7h8AbXPawRgTCEwEvnFCTEoVSrt27WLs2LE88sgj3HfffbYxObkHVizHpEmZP7NvH4SFuTFI5TNyTe4isgE4nctuA4ElwN/OCEqpwiYpKYnevXtTqlQppk2blrohOblTrhx33w133ZX5s6+/Dv9kHpJXhVyBx9yNMZWBB4H3Ch6OUoXT+fPnufrqq5kyZQpXXHFF6oY0yR1g4kQwJv1nT54ky6t6Vbg544bqVOBFEUnKbUdjTB9jTIQxJuLEiRNOOLRS/qFUqVIsWrSIxx9/PP2GU6fs18svB+Cmm6Bbt8yfnzIFjh51cZDKpzgjuYcCC40xB4BOwLvGmP9ktaOIhIlIqIiEVqyY6+LdSvk9EeHll19m9+7dAPYmalqnT0Pp0hAcfKlpzJh0bwGIjYVRo1wcrPIpBU7uInKNiFQXkerAYuAZEVla4MiUKgQWLVrEuHHjWLlyZdY7nD59aUgmRUgIPPts5l3nzYOdO10QpPJJjkyF/AT4CahtjDlijOlpjHnaGPO068NTyn+dOnWKgQMH0qRJEwYNGpT1Tlkkd4CXXro0UnNJUhIMH+6CQJVPyrUqpIh0cbQzEelRoGiUKkSGDBnCmTNn+O677wgMDMx6p2yS++WXw8iRMHRoapsxUKECxMdDUJCLglY+Q59QVcoD1q5dy4cffsiLL75I/fr1s98xm+QO0L+/HaIBaNcOtm2D99/XxK4sreeulAfccsstjB8/nueeey7nHXNI7sWKwcyZNpnfeacLglQ+TZO7Um6WmJhIiRIlGJFb3d7k2jKUL5/tLm1zfHZcFWY6LKOUG23evJl69eqx05FpLefOQUJCtlfuSuVEk7tSbhIfH0/Pnj35999/qVKlSu4fyPB0qlJ5ocMySrnJ5MmTiYqKYtmyZVx22WW5f0CTuyoAvXJXyg327NnD6NGjefjhh7n//vsd+1ABk/uFC/DWW3D4cL4+rnycJnel3ODdd9+lePHi6Ss+5iafyT0pCcLD4frr7Tz4117L08eVn9DkrpQbvP3222zcuJErr7zS8Q+lFA3LQ3LfvRtCQ21xsYMHbdsHH0BUlOOHVf5Bk7tSLnTs2DGOHz9OQEAAderUyduH83HlXqkSHDiQvk0EXnwxb4dWvk+Tu1IuIiL07duX0NBQ4uLi8t7B6dNQsiQULerwRy6/HF5+OXP7qlWwZk3eQ1C+S5O7Ui6yZMkSli9fzqBBgyiahwR9SQ5Pp+akf3+oXj1z+wsv2PF4VThoclfKBU6fPs2AAQNo3LgxgwcPzm8n+UruRYvCuHGZ27duhU8/zV8oyvdoclfKBYYNG8bJkyeZM2cORYrk83GSfCZ3gEcfhUaNMre/9BLkZ4RI+R5N7ko5WUJCAjExMQwbNoyGDRvmv6MCJPeAAJg8OXP7gQPw7rv5D0n5Dn1CVSknK1KkCAsXLiSpoAPcp07lWDQsN61b21LAq1albx8zBnr0yLzYh/IveuWulBOFhYWxa9cuAAICCvC/V0pFyAKWHpg40S7ikdaZMzBhQoG6VT5Ak7tSTrJlyxb69euXt6dQsxMTY5dUKmByv/FGe5We0f/9Hxw6VKCulZdzZA3VecaYv40xO7LZ3tUYs90YE2WM2WiMaeD8MJXybikVHytVqsQbb7xR8A6dWDRs9Gi7sEdacXHw6qsF7lp5MUeu3D8AcloS4A+gpYjcCIwBwpwQl1I+5a233iIyMpJ33nmHsmXLFrxDJyb3KlUgq9mYH30EkZEF7l55qVyTu4hsAE7nsH2jiJxJfvsz4EChaqX8x969exk1ahQdO3bkwQcfdE6nTi73O3x45nuzWpbAvzl7zL0nsCq7jcaYPsaYCGNMxIkTJ5x8aKU8o3LlygwdOpTp06c7r9N8FA3LyWWXwSuvZG5fvRq+/dYph1BexmnJ3RjTCpvcs70WEJEwEQkVkdCKFSs669BKeYyIUKJECcaOHcvVV1/tvI5TrtwLMBUyo3794NprM7evXOm0Qygv4pTkboypD8wBHhCRU87oUylv9+eff9KkSRP+97//Ob/zlOTuxMnowcEwfnzq+5tuslftb7/ttEMAsHChPdbFiwXva948+1dHQoLjnxGBhg3hww8zb9u0CVq2hBIl7C+6RYsc63PAAOjZ0/EYvEGBk7sxphrwOdBdRH4reEhK+YYBAwawc+dOLnfF00CnT0Px4vblRA8/DA89BPPnQ0QEtGnj1O4Be5O2bl2b4AuqTRv48UfISwWHRYvs6XvssfTt69bZB7tuvx2++gpatIDu3eGPP3Lvc+hQuwDKvn15i9+Tcj1lxphPgDuACsaYI8BrQBCAiMwEXgXKA+8a+7REgoiEuipgpbzB559/zhdffMGECROoVauW8w/ghAeYshIQAIsXO73bdCIjoYGTJkRXq5b3z0ybZpN2UFBqW0wMdO1qbyyn3Hto1syei6VL4bnncu6zenW47TZ47z27dKEvcGS2TBcRuUpEgkSkiojMFZGZyYkdEeklIpeLSMPklyZ25deio6Pp378/DRs25Pnnn3fNQVyU3N1h2zbHk/vXX9ukWbYslCljV5FKucGblASlSsHs2enfz5xpa9ZXqWKHbHr3Ti1lvG8fbNwInTqlP87s2faZsKFDU9uKFoWKFVNXrMrNQw/Zq3dfKZusT6gqlUczZ87kxIkTzJ07l6C0l4fO5KPJ/cQJ+OsvO+adm/Xr4T//gbvugs8/hwUL7DBMyhDM/v32irt+/fTv33wTYmPh/fdtsp4zB5Yts/usWWPXN8n4yyU8HDp2tFfzCQmpr5iY9Ff4OWnWDI4f950lC7VwmFJ59MILL9CiRQsaZVVT11lOnYLatV3Xv4ukPBTlyJV7eDjce2/6Bbzvuy/1+6goO4x0ww2p7wGeeQZS/mC66y47VLJ3r32/ZQvUqWM/lyI62rZHREBYFo9YOjr0U68eBAbC//7nvGEnV9Ird6UcFBsbe2k91GbNmrn2YB66ck9Ksjcw82vbNqhcOXUGZ79+9n3G4mVg7xWvXg1Tp8KxY5m3b99uZ7SULJn6vkwZO3MlhYhN3hUq2PfHjqV+nyIy0u63bBls3pz6eucduz3lr4ycYgX7F0XZslnH6o00uSvloNdff526devi8gfwnFQRMq/WrLFj3rffDr/8kr8+IiPTD8l06WJXgMpKSunh0aNtUr3nHti5M3V7VFTqkEzK+9tvTz8L5/ff7RBNvXr2/YULmZecPXzYfm3d2v58Ka9jx6B0aWjaNPdYUxQtao/hCzS5K+WAX375hTfffJMHH3wQlz+AFxtrK3u5KblHRdm6723a2KRekLIEGWfKtGgBlSplve9ll8GMGXacftUqO7SSdi55VJStapn2fcbhkMjI9EM35crZK/m0UubIp51OKWLn43funPrLIKdYU0RH+86tEE3uSuUiISGBXr16UaFCBSZntbyRszm5rkxuvv/ezlpJ69tv4Ztv8tZPXBzs3p338ejAQLj7bnvlnpho22Jj7cyXlCv3lPcZb9RmHLqpXTvzvPWQEPt1z57Utnnz7BX9iBGOx3niBJw/D9dd5/hnPEmTu1K5ePvtt9m6dSszZsxwzQNLGbk5uffpAzVrZm5/4YXUZOuIX3+10w0dmSnTt68dO1+82D5cNHo0zJ0L/fvb7Tt32vH/lOSe8j7jL47t29MP3TRvbuvUpx05a97cDvv072+Hnt580x57+nSoUcPxny8iwo7Hu/p2i7NoclcqF7t27eI///kPDz30kHsO6OSiYbkJDoasStBHRtoZLY6KjLSP9Wf1iyKj2rXtrJNeveCBB+ywzGefpS4sEhVlr8ZTkm9UVNZ9Z0zud9xhT1vav0SCg+0vkXPn7Oyc+fPtz9Wrl+M/G9g+W7Z0arkflzIi4pEDh4aGSkREhEeOrVRexcXFUTTjnTpXWbLEPoUTGZk+c7mQCNx6q629klbVqnY4o6BVEIyxx3CHQYPsEM5XX+Xv81nFmphoh3cmTIBu3QoeY0EYY7Y48rCoXrkrlY0vv/ySX3/9FaBgiT2vlbTcPCwDNqFNmpS5/fBhO3yRX7162SdJwX7N69VyfgwbZod6fstjpaucYv3sM/sL7tFHnRenq+lDTEpl4dixY3Tv3p3Q0FC+LWjB87xW0vJAcgc7W+T++2H58vTt48fbWSz5GY6YM8c5seVFlSr2hulff+Xt5mdOsYrYewJ5KWDmaXrlrlQWBg4cSGxsLDNmzCh4Z3mtpHX6tJ2f5+SKkI6YMCH9050AZ8+mLxXsCx591I6PO0uXLvaXny/R5K5UBkuXLmXx4sW8+uqr1HZGCYC8VNKC1AeYsntU0oXq1Ml66GTGDMdK4yrvocldqTTOnj1L//79qV+/PsOGDSt4h3mppJXCw0XDRo2yM1PSunjRVmJUvkOTu1JpBAcH061bN+bMmeOcio95qaSV4tQpj863u+oqGDIkc/uCBbYAl/INmtyVSqN48eJMnDiRJk2aOKfDvFTSSuEF5X6HDbO1zrNq99DsaZVHmtyVAi5cuED79u3ZsGGDczvOSyWtFF6Q3EuXtsMzGa1bl7lUgfJOuSZ3Y8w8Y8zfxpgd2Ww3xphpxph9xpjtxhgXFrlWyjXGjBnDqlWriIuLc27HeamklcILkjvYFY6yWkEwr2UJlGc4cuX+AdA2h+3tgFrJrz7AewUPSyn3iYyMZNKkSTzxxBPcddddzus4P5W0YmPtywuSe1CQnRqZ0Y4d8MUX7o9H5Y0ja6huAE7nsMsDwEdi/QyUNcZc5awAlXKlxMREevXqRbly5XjL2Ssf56WSVoozZ+xXL0juAA8+aMsSpAgJsbVZOnb0XEzKMc4Yc68MHE7z/khym1Jeb+HChURERDBt2jTKO3uGSl4qaaVwc9Gw3KSUJbj8cltNcfdu6No184NOyvu49WFaY0wf7NAN1RxduFApF+rSpQtlypThvrSLdzpLjx6pZQ4dlVJ6wItKD952m60xk1IzXfkGZ/z+PQpUTfO+SnJbJiISJiKhIhLq8tVslMqBiHDq1CkCAgLo0KEDxl1Pg+ZWSctDdWVyo4nd9zgjuS8HHk+eNXMLcFZE/nJCv0q5zEcffUStWrXYvXu3ew88Zw4cOWInix85krlalZcmd+V7ch2WMcZ8AtwBVDDGHAFeA4IARGQmsBJoD+wDzgNPuipYpZzh+PHjPPfcc9StW5frvG3NNE3uyklyTe4i0iWX7QL0d1pESjng4sWLBDtaQjeDQYMGERMTw5w5cwjwtjuDp0/bOYg+Ng4SE+NzIfs9L/uXrVRmSUlJlCpViqlTp/Lss89SsWJFGuZlemEaK1as4NNPP+WVV17h+uuvd3KkTuDBipD5ERUF7dvb5eu0LIF38aHS86qw2r9/PzExMUyaNIkHH3yQBQsW5Puqfd26ddx444288MILTo7SSTxcNMxRhw/Dq6/Chx+mJvWvvgJXTDpS+aPJXXm9qKgoAJ566inGjh1boL6mTJnCP//8k+9fDi7nJaUHciJiV2zati19+4svQtu2vrVakT/TYRnl9bZv306JEiUYOXJkvvvYsmULO3fuBKBMmTLOCs35fCC5GwOvvZa5/ddf7ZW88g6a3JXXi4qK4o477qB4Ppedu3DhAt26daNjx44kenvFKx9I7gAPPADNm2duf/VVe3NVeZ4md+X1oqKiaNQo/8VGx48fz+7du5k2bRqBgYFOjMwFfCS5GwOTJ2du//NPmDrV/fGozDS5K68WGxvLvn37aJCXyoppREVF8cYbb9C9e3fuueceJ0fnZHFx9rLXB5I72IJiWRUQmzgR/v7b/fGo9DS5K6+2c+dOkpKS8pXcExMT6d27N2XLlmXKlCkuiM7JvLCuTG7eeAMy/jF07hyMGeOZeFQqTe7Kq0VFRVGyZElq1KiR588mJibSqlUrpk+fToUKFVwQnZP54NOp110Hfftmbp85E/btc388KpURDz15EBoaKhERER45tlJe6Ycf7EpN334Lbdp4OhqHHT9uqxr/+2/69ocfhkWLPBOTPzPGbBGR0Nz20yt35XdEhL59+7JmzRpPh5I3Trpy37RpEy1btqREiRJce+21LHJxhq1UyS69l9Fnn8GmTS49tMqBJnfld8LDwwkLC2PXrl2eDiVvnJDc161bR+vWrbn99tv56quvaNGiBd27d+ePP/5wUpBZe/55uPLKzO3DhmlZAk/R5K78yokTJxg8eDC33nor/fr183Q4eVPA5B4TE0PXrl0ZPnw4Y8eOpVWrVsyaNYugoCCWLl3qxEAzK1kSRo/O3P7DD7BihUsPrbKhyV35lcGDB/PPP/8we/Zs75/TntGpU/bZ/dKl8/Xx2bNnEx8fz9ChQy+1FS1alIoVK3Lw4EFnRZmtJ5+EOnUytw8fDgkJLj+8ykCTu/IbP/zwAwsWLGDkyJHUq1fP0+HkXQErQoaHh9OxY0eCgoJISEi49IqJiSEoKMjJwWZWpIid457Rrl3w/vsuP7zKQJO78hvNmzfno48+Yvjw4Z4OJX8K8HRqdHQ0W7ZsISwsjKCgoHSvEydOuG3N4vvug9tvz9yuZQncT5O78gsxMTEEBATQvXt3ihYt6ulw8qcAyT0yMhIRYdmyZWzevPnS65133gG4VP++X79+VK5c2WVrxmZVlqBsWRg6VKtFupsmd+XzNm7cSLVq1fjpp588HUrBFCC5Hz58GIDWrVsTGhp66XXs2DFKly5N06ZNAejSpQtbt251WshZuflmO8c9ONgm9d9/hyFDwFd/5/oqh5K7MaatMWaPMWafMSbT37zGmGrGmHXGmF+MMduNMe2dH6pSmcXFxdGrVy9KlizJDTfc4OlwCqYAyT0h+Y5lkTSXxyLCwoUL6dy586W/Zlq0aEGlSpUKHmsu3noL9uyxV/E+9MCtX8k1uRtjAoF3gHZAXaCLMaZuht1eBhaJyE3Ao8C7zg5Uqay88cYb7Nq1i1mzZlE6n7NMvEYBkntISAgAe/bsudQ2b948Dh8+zIgRI5wSXl5UrQrVq7v9sCoNR67cmwL7RGS/iFwEFgIPZNhHgJQVEC4D/nReiEplbefOnYwfP57HHnuMdu3aeTqcgrl40VbcymfRsObNm1O5cmX69+/PmjVrePPNNxkwYADTp0/PV10e5fscSe6VgcNp3h9JbktrFNDNGHMEWAkMdEp0SuVg6dKllClThqn+UED8zBn7NZ9X7sHBwSxevJhz585x7733Mn/+fMLDw+nVq5cTg1S+xFn3r7sAH4jIW8aYW4GPjTE3iEhS2p2MMX2APoDbpmYp/zVy5Eh69epFxYoVPR1KwTmh9MAtt9xCZGSkkwJSvs6RK/ejQNU076skt6XVE1gEICI/AcWATDVWRSRMREJFJNQv/odUHnH48OFL66G64+agW7ip3G+vXr2oUqUKAFWqVPHIlf2RI/DUU7BsmdsPXag4cuW+GahljLkGm9QfBR7LsM8h4E7gA2NMHWxyP+HMQJWC1IqPP//8M4cOHaJUqVKeDsk53JTc58yZ49L+c3L2LEyYYJfhu3ABNm6Ee+/V+e+ukutpFZEEY8wAYDUQCMwTkZ3GmNFAhIgsB4YAs40xz2FvrvYQTxWKV37tk08+YdWqVUydOtV/Ejv45EIdeXHoEDRqZMvnpNizB+bOzXqxD1VwuliH8hknT56kTp061KhRgx9//NH3CoPlZMoU+6TPmTP2kU4/IwKtW8P69enbK1WyKzb50+9pV9PFOpTfee6554iOjmbOnDn+ldjBXrkHBsJll3k6EpcwBiZNytx+/Lh94Ek5nyZ35RNEhKpVq/LKK6/4/pOoWTl9Gi6/PN8VIX1BkybwyCOZ2ydPhpMn3R+Pv9NbGconGGMYP368p8NwnQI8neoLRGD1ati2LX17vXq2THA+n91SOdArd+X1JkyYwLfffuvpMFxq+e7dfJqUxA8//MCRI0fwp/kIW7fCXXdBu3b2JmqKXr0gMtLOmPHjP1g8Rq/clVfbtGkTL730Ev369eOuu+7ydDgu8/revWw9fx5atACgdOnSNGzYkFtvvZVWrVrRsmVLihcv7uEo8+bAARg5EhYsyHr7N99AfLy91aCcT2fLKK918eJFGjduTHR0NDt37qRMmTK5f8hHnQgJ4Xj9+hwdMID9+/ezc+dOtmzZwpYtW4iPj6d48eK0bduWrl270qFDB4KDgz0dcrZOn4Zx42DGDFsyByKAF4DRwG3p9l2yBDp2dH+MvszR2TJ65a681sSJE9mxYwcrVqzw68QOUDE6moo1anDDPfekaz9//jw//PADK1asYMmSJXzxxRdcccUV9O3blwEDBnDFFVd4KOLMLlyA6dNh/HiIjk5pfQZ4D/vA+t+X9r3lFnsj9bbbMvejnEREPPJq3LixKJWdffv2SXBwsDz66KOeDsX1Ll4UAZHXX89xt4SEBFm5cqV06NBBjDFSvHhxGTZsmJw6dcpNgWYtMVHkww9Fqla1PwacEkhM/v7/BEYKnBUQqVlTZPFikaQkj4bs07APj+aaYzW5K6+UmJgoYWFhcvz4cU+H4np//23/V5w+3eGP7N69W7p37y7GGClXrpzMnDlTEhMTXRhk1lavFmnQICWpnxeYIHCZQHhym31VrCgyY4b9PaYKxtHkrrNllNeJj48nICCA3r17e9Wwg8vko/RA7dq1+eijj9i2bRv169fn6aef5o477mD//v0uCjK9X36Bu++Ge+6ByMhE4EPgOmA4cDtg12wtUQJeftk+hdq/PwQFuSU8hU6FVF7m8OHD1KxZk6+//trTobhPAerK1K9fn7Vr1zJv3jwiIyNp2LAhn332mZMDTC8xETp1gtTZqQ8DPYCrgHXACgIC6tK7N+zdC2PGgJ/fMvFKmtyV1xARnnnmGU6ePEnt2rU9HY77FLBomDGGJ598ku3bt3PDDTfQuXNnhg8fTlJSUu4fzofAQOjZ8xcgJrmlN3aBtk3AHXToAFFREBYGV1/tkhCUAzS5K6+xaNEivvzyS8aOHcs111zj6XDcJ6VUYgGfUA0JCWH9+vX07duXiRMn8thjj3HRzkV0moMHD9KtWzdGjmzE1VfPSG5tBzxCkyaG9eth+XKom3GVZeV+jgzMu+KlN1RVWidPnpSKFStKkyZNJCEhwdPhuNfbb9u7jqdPO6W7pKQkmThxogBy3333yYULF/LRR/r3p06dkiFDhkhwcLAUK1ZMRowYIcuWRQuIXHutyKef6gwYd0FnyyhfEhYWJkWKFJFt27Z5OhT3e+UVEWPsnEIneu+99wSQjh075ukX5nffiYSGiqT9T5Ey/fLJJ5+Uw4cPX2pfskQkLs6ZUavcaHJXPmfv3r2eDsEz+vcXKVfOJV1PnTpVAHnmmWdy3TcyUqRt25Tpi4ly440fy5EjR0REJCoqSrZv3+6SGFXeOJrcdcxdeVRMTAw7duwAoGbNmh6OxkNcWBFy0KBBDB06lHfffZdZs2Zluc/hw9CjBzRsCHaS0ndAKFFR3XnpJbss3w033MCNN97okhiVa2hyVx712muv0bhxYw4fPuzpUDzHxeV+J0yYQNu2bXn22WfZunXrpfboaBg+HK67Dj78EEQigXuAu4AzQDjbt7+CiybdKBdzKLkbY9oaY/YYY/YZY4Zns09nY8yvxpidxphs6sAplWrz5s28/fbbPPnkk1StWtXT4XiOi5N7YGAg8+fPp0KFCnTt2pWzZy8wdSrUqGFrqV+4kLLnFGBz8tfdwGMEBgbw99/Z9ay8Wm7jNthFsX8HrgWCgUigboZ9agG/AJcnv78it351zL1wu3jxotSvX1+uvvpqiY6O9nQ4nnXttSJdu7r8MCtXfi2AlC07Onlc/bTAMIEtye+PJ7eJXHONyCefOP0er3ICHBxzd6QqZFNgn4jsBzDGLAQeAH5Ns09v4B0ROZP8C0N/16scTZ48me3bt7N06VIu89N1Qx3mhlWY1q2DV165B+hMdPQ4IBaYCUQDVwKNgCsoVw5eeQX69YOiRV0aknIxR4ZlKgNpB0SPJLeldR1wnTHmR2PMz8aYts4KUPmnhIQEunTpwgMPPODpUDwrMdEOfrsoue/YYVc6at0atmwBuBO4CLyBvW77BXieYsXs+PunQFKvAAAgAElEQVTvv8PgwZrY/YGz6rkXwQ7N3AFUATYYY24Ukei0Oxlj+gB9AKpVq+akQytf9Oqrr6YM6RVuKYXPnZzcT56EF1+EDz4g+YaoAAb4E6gG9AeGYQw88QSMHg2F+baHP3Lkyv0okPY/e5XktrSOAMtFJF5E/gB+wyb7dEQkTERCRSS0YsWK+Y1Z+bCFCxfyzTffALYmSqFXwLoy2QkMhC++gKSkKKA9sCx5ywhgPzCMdu3sgtXvv6+J3R85ktw3A7WMMdcYY4KBR4HlGfZZir1qxxhTATtM457ao8pnHD16lL59+zJp0iS9ak/houT+77+HqVnzSaAB8BPwT/KWojRqFMB338HKlVC/vlMPq7xIrsldRBKAAcBqYBewSER2GmNGG2PuT95tNXDKGPMrtubnMBE55aqgle8RsRUf4+PjmTVrll61p3BS0bC0pkyZwnXXXUdk5ALKlBmCnez2OCEhEB4OmzfDnXc67XDKSzk05i4iK4GVGdpeTfO9AM8nv5TKZMmSJSxfvpzJkydTo0YNT4fjPVKu3MuXz/NHDx2ClFtXKdUfg4ODqVChAp06dWLs2LH8978hDBxoF8zo319vlBYm+oSqcrno6GgGDBhA48aNGTx4sKfD8S75GJbZuRM6dIDateHgwSQ+/fRT6tSpw7vvvgvA448/zscff0xISAhdusD+/fD885rYCxtnzZZRKltlypTh9ddf5+abb6ZIEf0nl05Kci9bNtdd//wTXnsN5s1LmQGznsaNh3HqVAT169fPsvZLQIBDXSs/pP+nKZcSEQICAujbt6+nQ/FOp0/b7BsYmO0u//wDkyfDW29BbGxK64vAJE6dqsrYsR8yfHhXAnPoQxU+OiyjXOb8+fM0adKExYsXezoU75XD06kXL8KMGVCzJowdC7GxR4GUeQr3AROBPfz3v49rYleZaHJXLjNq1Ci2bNmCPtOQgyySuwgsXgz16sHAgXDixFlgJPbRkTHJe90OvEDVqsV57DH7GaXS0mEZ5RJbt27lrbfeonfv3rRs2dLT4XivU6fSzZT54Qd44QX4+WewZQJmAaOBk8BjwCDAjuSMHAkDBkCxYm6PWvkATe7K6eLj4+nZsydXXHEFkyZN8nQ43u30aahRg127YMQIWLYs7cYhwAygFTAZaExwsL2af+kll9caUz5Ok7tyuq+//ppt27axZMkSyupUjRz9dTKIUZHPMOeGlBkwG7BVGq8DBmNLB7QFDF272rH36tU9Fq7yIZrcldN16NCBiIgIGjdu7OlQvNrgwd8zLXozEl0SW0F7OLACeBKYB9QAatC6tZ0t06iRB4NVPkdvqCqnERH27t0L4N7EvnAhBAfb6SU+Ijw8nFkz+yAcxxZKvRH4HluK9x0AbrwRVq2C775zbWL3ttMnYtdz/fDDzNs2bYKWLaFECbj2Wli0yLE+BwyAnj2dG6e30+SunGbu3LnUrVuXLbZwuPtERkLdujZD+YiRI0ZwIe43oCfwATAQWwNmOFWqFOeDD+CXX6BtW3B1GR5vO32LFtlbEY89lr593Tpbl/722+Grr6BFC+jeHf74I/c+hw61dXX27XNNzN5Ik7tyij///JOhQ4dy22230cjd4weRkdCggXuPmV/x8fDOOxy6tCD4VuBnYCoQBAznt99sjXV3TV33ttM3bZpN2kFBqW0xMdC1q11QZOxYaNUKZs2y+yxdmnuf1avDbbfBe++5LGyvo8ldOcXAgQOJi4sjLCzM/RUft23zruyUlbST1wcMoNqlQi//YK/c3wZqEBKykOLF3RtaXk5fYiK8/bYtFVysGFx1lU26KfPsz5+3UzmrVYNSpezVdWRk+j6+/tom2rJloUwZCA2Fb7+12/btg40boVOn9J+ZPdv+Xhw6NLWtaFGoWBEOHnQs9oceslfv9sa1/9Pkrgrs888/5/PPP2fUqFHUqpVpjRbXOnEC/vrLDtJ6q//+F5o1g4cftmMfX33FuLlzKVGiRPIO04HnKVEilnHjxrk1tLycvqQkm3RHj4Zu3eDLL2H8eJt0jbGlEVq1guXLYcIE+PxzOzZ+991w5oztY/16+M9/4K677PYFC6BNG0gpObRmDZQsmfmXTXg4dOxor9QTElJfMTHpr/Bz0qwZHD8OUVEOnx7f5sgq2q54NW7c2DlLgSuPe+utt6Rp06Zy8eJF9x/8229FQOTkSfcfOze7dok88ICN7+qrRebOFUlIuLR5/vz5EhISIsYYCQkJkfnz57s9xLycvjffFClZUuTXX7PePmyYyJVXipw4kdp28qSIMSLh4fZ9r14iHTtmf4zevUVCQ9O3nTlj+7B/H2R+TZuWe+wiIvHxIoGBImFhju3vrYAIcSDH6pW7KrDnn3+eH3/8kSBHL6Gcads2qFw59SnPHTvs1JJateD+++HcOffHdOwYPP003HADrF0L48bB3r3w1FPpBtK7du3KgQMHSEpK4sCBA3Tt2tXtoWY8ff362fcZR9aSkmDiRDvrpE6dzP1cvAhhYbZmfIUKqe3ly9uhl6PJC3MWLw6rV8PUqfY0ZXTsWPrPgx3WEbEPeG3enPp6x04quvRXR3axpyhSxA4FZXVcf6TJXeXbjz/+yOrVqwHyXMo3KiqK9u3bU758ecqXL8+DDz7I33//nfcgIiPTjyk8/bS947Z3L1x/PbjzCdlz52DUKFvpa+5ceOYZ+P13+zjppSEY75Lx9HXpAlu3Zt5v+3Y7hPPgg9n3c/asHW5JKybGtl95pX0/Zgz06GGHdipXhnvusfXpU1y4kLnufMq959at7fh8yuvYMShdGpo2zTn2tIoWtccoDDS5q3yJjY2lR48e9O/fn/j4+Dx99ujRo7Rq1QpjDOHh4bz33nts2LCBt99+O++BpJ3qcfy4nRfXvr1937MnLFmS9z7zKj7eTsOoWRNefx3uvRd27bLTPry8aFrGmTItWkClSpn3++sv+zUlSWd08mTW29evt19vu81+vewyW+nyxAk7h3/v3vTzz8uVg+jo9H0kJNivaa8fROz8/M6dU38ZZBd7WtHRhadsg0PJ3RjT1hizxxizzxgzPIf9HjLGiDEm1HkhKm/0+uuvs2/fPsLCwvI8HDNt2jTKlCnD559/Ttu2bencuTNNmjThXF6HUOLiYPfu1Ox05AhUqZK6vVq11Ms+VxCBL76wwy/PPGOXRvr5Z/j0U5vovVzG05eTlKS9e3fW26tWtV/3709tS0iwV+ht28I116TfPzDQ3mi95x47AydF7dqZ562HhNive/akts2bZ//TjhiRe+wpTpyws3muu87xz/i03AblgUDs0xXXAsFAJFA3i/1KYwtj/AyE5tav3lD1XVu3bpXAwEB56qmn8vX5evXqyfPPP3/p/enTp6VkyZLywQcf5DUQe0dtzx77fvNmkaZNU7efPy9SqlS+YszVjz+KNGtmj1+njsjy5SJJSa45lotkPH1p2ZWRU8XHi9SrJ3LNNSIffyyyZo3I9OkiL7xgtycmitx0k8iNN4osWyayYoVI69b2PvKhQ3afPn1E+vcX+ewzkbVrRV5/XSQoSOT991OPs3q1Pfbff6e2xcWJVK4s0ry5yHffiUyeLFKsmMjs2Vn/XBljT7Fypb0x64333vMCB2+oOpLcbwVWp3k/AhiRxX5TgXuB9Zrc/Vd8fLw0atRIKlWqJKdOncrz5//9918JCAiQTz75RP755x/ZsGGDNG3aVGrXri2xsbF56+z990VKlLCZRUTkr79sNkmxe7fI9dfnOcYc7dljp3uAnRoSFmYznw/KePrSyipB7t9vf/QKFeznGjQQ+eST1O0HDojcd5/IZZeJlC8v0rWryJEjqdvfekukSRO7vXRpkVtuEVm6NP0x4uJEypUT+eij9O0//SRSv75I0aL2uEuWZP9zZZfcn31W5I47sv+cr3Bmcu8EzEnzvjswI8M+jYAlyd9nm9yxRTQigIhq1aq550wop0pMTJSwsDD54osv8vX5jRs3CiC7d++Wyy+/XAApWrSo/PTTT84JsFkzka++st8PGyby0kvO6ffYMZF+/exculKlREaPFvn3X+f07YWyS5Du8OyzIu3b5//zWcWekGCv/j/+OP/9egu3JXfsuP16oLrkktzTvvTKvXB69913pVSpUnLx4kVZs2aNzJw5U66//nopV66c/PXXXwU/QGSkSMOGIjVritx7r0h0dMH6O3fOjh+UKiVSpIgdVzh+vOBxeqmePW0SBPu1Z0/3x3D4sEjx4lkPF+Ukp9g/+cT+k/DRP7LScduwDHAZdpmYA8mvC8CfuSV4Te6+JTExUWrVqiVvvPFGgfrp3bu3NG/ePF3bb7/9JoAsXLiwQH07VXy8yKxZdugFRB56KO/ZRuXbJ5+IrF/vvP4WLBD5/nvn9edJjiZ3RyYnbwZqGWOuAY4Cj2LX+0q5IXsWuPTYgTFmPTBURCIc6Fv5iEmTJrF3715eeeUVAgICGDJkSL4WZd62bRs333xzurZiyevEVcptHps7iNjn54cPt1NDmje3z8nfequnIytUHn3Uuf116eLc/nxBrlMhRSQBGACsBnYBi0RkpzFmtDHmflcHqDzv2LFjTJw4kZtvvpkOHTrw4osv0rp1aw7ncZphYmIiO3bs4IorrkjXHh4eTrly5bgtZTK0p/z8s50s/Z//2CS/dKld1FQTu/JFjlzeu+KlwzK+4+GHH5aiRYvK7t27JSkpST788EMpVaqUlCtXTlauXOlwPzt27BBASpUqJe+8846sXbtWRo8eLUWLFpV58+a58CfIxW+/iXTqZIdfKlUSmTnTPwZnlV/CWWPurnppcvcNERERAsi4cePStf/222/SoEEDMcbI6NGjJcmBOd7z58+XoKAg6d69u5QuXVrKlCkjN998syxevNhV4efs+HGRAQPsjdKSJUVGjbI3UJXyYprcldOsW7cuy4qPMTEx0q1bNwHkkUceyXWe+tChQ6V+/fquCtNx//4rMmaMnQETGCjy9NN2jrxSPsDR5K61ZVS2/kouKHLHHXdkWWKgRIkSfPTRR0yYMIFPP/2UNm3acCalcHcWfvnlF2666SaXxZurhASYM8dWjHzlFVvlaudOWxcmu6IpSvkoTe4qSxs2bCAkJIRVq1bluJ8xhhdffJFPP/2UzZs306JFi0u/FDKKjIykoScW1RCxK0s0aAC9e9s11/77XzsLpnZt98ejlBsYe5XvfqGhoRIRobMlvdGFCxdo0KAB8fHxREVFUbJkSYc+t3btWu6//36uvvpq1q5dS5W0Rbw85X//s+u+ff+9vWKfMMHWrXX3UoBKOYkxZouI5FqcUa/cVSZjxozht99+IywszOHEDtC6dWu++eYbjh07RqtWrbK9gneL33+HRx6Bm2+GX3+1Kzvs3GnXatPErgoBTe4qncjISCZNmkSPHj1o06ZNnj/frFkzvv76a/766y/uuusuTp8+7YIoc3DyJAwaZJcL+vJLO7b++++2JK8nVopSykM0uat0Nm/eTKVKlXjzzTfz3UezZs1YsWIFe/fupUOHDsTGxjoxwmycPw9vvAE1atjVIJ58EvbtswXFS5d2/fGV8jKa3FU6vXr14rfffqN8yqKa+dSqVSvCw8PZuHEjPXr0ICkpyUkRZpCYCO+/b1dgeOkluOMOu47qrFlw1VWuOaZSPkCTuwJg//79fP3114Cd4ugMnTp1YtKkSSxatIgxY8Y4pc9LRGDlSrsA6FNP2QU5v//erqKc1QrOShUymtwVIkLfvn3p3Lmz08fIhw4dyuOPP86oUaP48ssvndNpRATceaddqzQ2Fj77LLUujFIK0OSugI8++ojvvvuOCRMmUM7JqwcbY5g5cyY33XQT3bt35+DBg/nv7I8/4LHHoEkTiIqC6dPtTJhOnXQGjFIZaHIv5I4fP85zzz1H8+bNefrpp11yjOLFi/PZZ5+RmJhI165dSUhZzt5Rp07Bc8/ZB46WLoWRI+0MmAEDIDjYJTEr5es0uRdygwcPJiYmhtmzZxMQ4Lp/DjVq1OC9997jxx9/ZNKkSY59KDYWJk60M2CmTYMnnoC9e2HsWChTxmWxKuUPHFmsQ/kpEeHOO++kSZMm1HHDTcjHHnuM5cuXM2rUKDp06MCNN96Y9Y6JiTB/Prz8Mhw5AvfdZ58srVfP5TEq5S+0/IByq5MnT1KnTh1q1KjBxo0b0/+1IAKrV8OLL8L27RAaCpMn2+mNSilAyw+oXIwYMYLZs2e7/bgVKlRgypQpbNq0iXnz5qVu2LrVVmls1w7OnYOFC2HTJk3sSuWTQ8ndGNPWGLPHGLPPGDM8i+3PG2N+NcZsN8asMcaEOD9U5Sw//vgjEydOZOfOnR45frdu3WjevDkjR47k7Pbt0K0bNG4M27bB1Kmwa5etC+PCewBK+btch2WMMYHAb8BdwBHsgtldROTXNPu0AjaJyHljTD/gDhF5JKd+dVjGM+Li4mjYsCGxsbHs2LGDUqVKeSSOLWvX0uTOO3k+IIA3g4PtbJgXX4TLLvNIPEr5CkeHZRy5odoU2Cci+5M7Xgg8AFxK7iKyLs3+PwPd8haucpdx48axe/duVq1a5ZnEfuECzJhB43Hj6AX8W6sW8u23mKpV3R+LUn7Mkb97KwNpl7k/ktyWnZ5Azis8KI84evQoEyZMoFu3brRt29a9B09Kgo8/tnPVhw2DW29l5rZtzNy9WxO7Ui7g1KmQxphuQCjQMpvtfYA+ANWqVXPmoZUDKleuzJdffkmjRo3ce+Bvv7ULZmzbBo0a2UJfrVvr3XylXMiR/7+OAmkvraokt6VjjGkDjATuF5G4rDoSkTARCRWR0IoVK+YnXpVPZ8+eBeDuu++mQoUK7jnotm1wzz1w990QHQ0LFsDmzdC6tXuOr1Qh5khy3wzUMsZcY4wJBh4FlqfdwRhzEzALm9j/dn6YqiAOHDhA9erVmT9/vnsOeOiQfZq0USObzKdMgd27oUsXnQGjlJvkOiwjIgnGmAHAaiAQmCciO40xo4EIEVkOTAZKAZ8ZW8DpkIjc78K4lYNEhKeffpqEhARauLpq4pkzdsGMadPs+2HDYPhwuPxy1x5XKZWJQ2PuIrISWJmh7dU03+d9PTblFuHh4axevZrp06e77j5HXJxdo3TsWDv88vjjdgUkva+ilMfo38h+7MSJEwwePJhbb72Vfv36Of8ASUl2HP3662HIEGjaFH75BT74QBO7Uh6myd2PbdiwgQsXLjB79mwCAwOd2/maNbaueteuULYsfPMNfP01NGjg3OMopfJFk7sfe+ihhzh48CD1nFlNcft2W/+lTRs4edLOXd+yxdaFUUp5DU3ufujcuXN88803AAVe6PqSw4fhySftmqU//wxvvgl79ti6MPmYAbNp0yZatmxJiRIluPbaa1m0aJFz4lRKAZrc/dLIkSNp27Yte/fuLXBfccePw4gRcN11dnx9yBC7CtKQIVCsWL76XLduHa1bt+b222/nq6++okWLFnTv3p0//vijwPEqpZKJiEdejRs3FuV8GzduFGOMDBw4sGAdXbgg3w8YIFcYIztApFs3kT/+KHB8//77r1x11VUyevToNIe6ICVLlpQpU6YUuH+l/B12CnquOVav3P1IXFwcvXr1okqVKowbNy5/nSQl2VrqdepQb8YMLgQE8EqrVnZsvXr1Asc4e/Zs4uPjGTp06KW2okWLUrFixYItnq2USkeTux+ZMGECv/76K7NmzaJ06dJ572D9erj5ZvskaenSlP/6a54bOZIv1q1jx44dTokxPDycjh07EhQUREJCwqVXTEwMQUFBTjmGUkqTu18JCQmhX79+tGvXLm8f3LHDrlPaqhUcPw4ffmhXRrrnHgY++yzFixdn6tSpBY4vOjqaLVu2EBYWRlBQULrXiRMntJicUk6kyd2P9OjRg3fffdfxDxw9Cj172rnp//0vTJxoZ8A8/jgkz4svX7483bp1Y8GCBZeKj+VXZGQkIsKyZcvYvHnzpdc777wDQMOGDQHYsWMHjRo1olatWtx///2cO3euQMdVqjDS5O4H5s6dy6xZsxBHFzs/exZGjoRatWD+fBg0yM6AeeEFKF480+69evUiNjaWzz77rEBxHj5slwVo3bo1oaGhl17Hjh2jdOnSNG3aFICnn36asWPHsnfvXq6//nomTZpUoOMqVRhpcvdxhw4dYvDgwXzxxRe573zxIkyfDjVrwvjx8OCDtlrjlCmQw3z4Jk2aULNmzQLPRU9ISACgSJHUkkYiwsKFC+ncuTNFixbl+PHj/PHHH7Rv3x6Anj17smTJkgIdV6nCSJO7DxMR+vXrh4gwc+ZMkityZrUjfPYZ1K0Lzz4LN94IEREQHg7XXJPrcYwxPPjgg6xbt45//vkn3/GGhNh10/fs2XOpbd68eRw+fJgRI0YAcOTIEapUqXJpe7Vq1S5d8SulHKfJ3Yd98sknrFy5knHjxlE9u2mKGzbALbdA5852yGXlSlsXpnHjPB2rXbt2JCQk8P333+c73ubNm1O5cmX69+/PmjVrePPNNxkwYADTp0+nRo0aAI4PLSmlcqTJ3UfFxMQwePBgmjZtyoABAzLv8OuvcP/90LKlvXE6b55dGaldO8juCj8Ht956K8HBwfzwww/5jjk4OJjFixdz7tw57r33XubPn094eDi9evW6tE+VKlU4cuTIpfeHDh1KdyWvlHKMU9dQVe5TsmRJ5s+fz9VXX52+4uOff8KoUTB3LpQqZRfPePZZKFGiQMcrVqwYDRo0ICIiokD93HLLLURGRma7/corr6R69eqsXLmS9u3bM3fuXDp27FigYypVGGly90EXLlygWLFi3H333amN//wDkyfbm6Px8TBwILz8MjhxvdQGDRo4duO2gN577z2eeOIJBg0aRO3atQkPD3f5MZXyN5rcfcy///7LTTfdxKBBg+xwTHw8hIXB66/DiRPwyCMwbhwkj2E7U+3atTl16hRnzpzhchcunVe/fn1++eUXl/WvVGHg0Ji7MaatMWaPMWafMWZ4FtuLGmM+Td6+yRhT3dmBKuvll19m37593NSwISxZAvXqwYABdibM//5n68K4ILFD6mwXnb2ilPfLNbkbYwKBd4B2QF2gizGmbobdegJnRKQm8DYw0dmBFmbh4eFUr14dYwz/93//R5vQUJoPGwadOkFQEKxYAevW2ZWRXKhSpUqAXb5PKeXdHLlybwrsE5H9InIRWAg8kGGfB4APk79fDNxpsp10rfIiPDycPn36pKuY+GNEBOG7dsGcORAZaevCuOF0pxQjK8hcd6WUezgy5l4ZSPt3+BHg5uz2EZEEY8xZoDxw0hlBFmYjR47k/Pnz6dpigZ4XLjD744/pHBfHM888w/nz5y891ZlWjx496NGjBydPnqRTp06Ztvfr149HHnmEw4cP071790zbhwwZQocOHdizZw99+vS5FNP//d//AXaYqE2bNmzbto3Bgwdn+vz48eNp1qwZGzdu5KWXXsq0ferUqTRs2JDvvvuOsWPHZto+a9YsateuzYoVK3jrrbcuta9fvz7TvkqpVG6d526M6WOMiTDGROif9o45dOhQlu1xcXFujsSWDahQoQLBwcFuP7ZSKm9Mbk8EGmNuBUaJyD3J70cAiMgbafZZnbzPT8aYIsAxoKLk0HloaKgUdM50YVC9evUsF7EICQnhwIED7g9IKeVRxpgtIhKa236OXLlvBmoZY64xxgQDjwLLM+yzHHgi+ftOwNqcErty3Lhx4yiR4QGkEiVK5H+lJaVUoZBrcheRBGAAsBrYBSwSkZ3GmNHGmPuTd5sLlDfG7AOeBzJNl1T507VrV8LCwggJCcEYQ0hICGFhYXTt2tXToSmlvFiuwzKuosMySimVd84cllFKKeVjNLkrpZQf0uSulFJ+SJO7Ukr5IU3uSinlhzw2W8YYcwLI/HROZhXQMgYp9Fyk0nORSs9FqsJwLkJEpGJuO3ksuTvKGBPhyLSfwkDPRSo9F6n0XKTSc5FKh2WUUsoPaXJXSik/5AvJPczTAXgRPRep9Fyk0nORSs9FMq8fc1dKKZV3vnDlrpRSKo+8LrkbY8oZY741xuxN/np5NvslGmO2Jb8yliD2abogeSoHzkUPY8yJNP8WenkiTlczxswzxvxtjNmRzXZjjJmWfJ62G2MauTtGd3HgXNxhjDmb5t/Eq+6O0Rt4XXLHlgteIyK1gDVkXz44VkQaJr/uz2Yfn6MLkqdy8FwAfJrm38IctwbpPh8AbXPY3g6olfzqA7znhpg85QNyPhcAP6T5NzHaDTF5HW9M7mkX2/4Q+I8HY/EEXZA8lSPnolAQkQ3A6Rx2eQD4SKyfgbLGmKvcE517OXAuFN6Z3CuJyF/J3x8DKmWzX7Hk9Vh/Nsb40y+ArBYkr5zdPsmLqaQsSO5vHDkXAA8lD0UsNsZUdU9oXsfRc1VY3GqMiTTGrDLG1PN0MJ5QxBMHNcZ8B1yZxaaRad+IiBhjspvOEyIiR40x1wJrjTFRIvK7s2NVXm8F8ImIxBlj+mL/omnt4ZiUZ23F5od/jTHtgaXY4apCxSPJXUTaZLfNGHPcGHOViPyV/Gfl39n0cTT5635jzHrgJsAfkvtRIO3VZ5Xktqz2OZK8IPllwCn3hOdWuZ4LEUn7c88BJrkhLm/kyL+bQkFE/knz/UpjzLvGmAoi4u81Z9LxxmGZtIttPwEsy7iDMeZyY0zR5O8rAM2BX90WoWvpguSpcj0XGcaV78eu81sYLQceT541cwtwNs3wZqFijLky5R6UMaYpNs/548VPjjxy5Z6LCcAiY0xPbNXIzgDGmFDgaRHpBdQBZhljkrD/4SaIiF8kdxFJMMakLEgeCMxLWZAciBCR5dgFyT9OXpD8NDbp+R0Hz8WzyQu1J2DPRQ+PBexCxphPgDuACsaYI8BrQBCAiMwEVgLtgX3AeeBJz9U/gDEAAABVSURBVETqeg6ci05AP2NMAhALPOqnFz850idUlVLKD3njsIxSSqkC0uSulFJ+SJO7Ukr5IU3uSinlhzS5K6WUH9LkrpRSfkiTu1JK+SFN7kop5Yf+H0Pm5tsi8hAoAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from math import atan2\n", - "\n", - "arm.plot()\n", - "plt.plot([0, arm.wrist[0]],\n", - " [0, arm.wrist[1]],\n", - " 'k--')\n", - "\n", - "p = 1 + cos(theta1)\n", - "plt.plot([arm.elbow[0], p*cos(theta0)],\n", - " [arm.elbow[1], p*sin(theta0)],\n", - " 'b--', linewidth=5)\n", - "plt.plot([arm.wrist[0], p*cos(theta0)],\n", - " [arm.wrist[1], p*sin(theta0)],\n", - " 'b--', linewidth=5)\n", - "\n", - "beta = atan2(arm.wrist[1], arm.wrist[0])-theta0\n", - "draw_angle(beta, offset=theta0, r=0.45)\n", - "\n", - "plt.annotate(r\"$\\beta$\", xy=(0.35, 0.35), size=15)\n", - "plt.annotate(\"$r$\", xy=(0.45, 0.9), size=15)\n", - "plt.annotate(r\"$l_1sin(\\theta_1)$\",xy=(1.25, 1.1), size=15, color=\"b\")\n", - "plt.annotate(r\"$l_1cos(\\theta_1)$\",xy=(1.1, 0.4), size=15, color=\"b\")\n", - "\n", - "label_diagram()\n", - "\n", - "plt.axis(\"equal\")\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Consider the angle between the displacement vector $r$ and the first link $l_0$; let's call it $\\beta$. If we extend the first link to include the component of the second link in the same direction as the first, we form a right triangle with components $l_0+l_1cos(\\theta_1)$ and $l_1sin(\\theta_1)$, allowing us to express $\\beta$ as\n", - " \n", - "$\\beta = \\tan^{-1}(\\frac{l_1\\sin(\\theta_1)}{l_0+l_1\\cos(\\theta_1)})$ \n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now have an expression for this angle $\\beta$ in terms of one of our arm's joint angles. Now, can we relate $\\beta$ to $\\theta_0$? Yes!" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4FFX3wPHvJYRIlyYiIaH3lxq6oiL+FBAQBOnKKyHSVFQQBFGkqhRFmlRRiRQBNVJEAVFekSYkgBAElQ4REzompJzfH5NAgJRNtiWb83meeZKdvXvnZAkns3funGtEBKWUUp4ll7sDUEop5Xia3JVSygNpcldKKQ+kyV0ppTyQJnellPJAmtyVUsoDaXJXSikPpMldKaU8kCZ3pZTyQLnddeDixYtL2bJl3XV4pZTKln799dd/RKREeu3cltzLli3Lrl273HV4pZTKlowxx2xpp8MySinlgTS5K6WUB9LkrpRSHkiTu1JKeSBN7kop5YE0uSuVDQQHB1O2bFly5cpF2bJlCQ4OdndIKotz21RIpZRtgoODCQoK4tq1awAcO3aMoKAgAHr06OHO0FQWpmfuSmVxI0eOvJHYk1y7do2RI0e6KSKVHWhyVyqLO378eIb2KwWa3JXK8vz8/BK/eyRxu32/UnfS5K5UFjdq1CiMMcAbiRvky5eP8ePHuzUulbVpclcqiytRogS5cuXCO5f139Xf35+5c+fqxVSVJp0to1QW165dO/766y96NbgKF86z+ehRd4eksgE9c1cqi7p+/Tpbt24FoEyZMhAXC7m93RyVyi40uSuVRU2aNIlmzZoRFhZm7YiNA2/9sK1sk25yN8YsNMb8bYzZn067BsaYOGNMJ8eFp1TOFB4ezpgxY+jcuTO1a9cGYE7xkcxp9LGbI1PZhS1n7ouAx9NqYIzxAt4FvnNATErlaAkJCQQFBZE/f34+/PDDG/urXN1NFf9oN0amspN0P+OJyE/GmLLpNHsBWAk0cEBMSuVoc+fOZcuWLSxcuJB7773X2inCN/80gcimtHVveCqbsHsAzxhTGugAPIwmd6Xsljt3btq3b0/v3r1v7rx6lSnxL8Ge8prclU0ccUH1A2CYiCSk19AYE2SM2WWM2XXu3DkHHFopzxMYGMiXX36ZeONSoshI66vOllE2ckRyDwCWGmOOAp2AWcaYJ1NqKCJzRSRARAJKlEh38W6lcpSvv/6aTz/9FBG5NbEDREVZX701uSvb2D0sIyLlkr43xiwCVovIV/b2q1ROEhUVRVBQEGXKlKF79+7kzp379gaAl06FVDZL9zfFGLMEeAgobow5CbwFeAOIyEdOjU6pHGLIkCFERkayfv36OxM7JCb3Ejoso2xmy2yZbrZ2JiK97YpGqRxow4YNfPzxxwwfPpw6deqk3Cgqis94BWbtBPK7ND6VPelnPKXcKCYmhueff55KlSrx5ptvpt4wKooynISahV0XnMrWNLkr5UY+Pj5MnTqVYsWKkTdv3tQbRkWxzLsnhOSlSxfXxaeyL03uSrlJfHw8Xl5etG/fPv3GkZHMNgNgNprclU20cJhSbhAbG0uzZs2YOXOmbS+IitKZMipDNLkr5QZTpkxh+/btlC5d2rYXREXpTBmVIZrclXKxw4cPM3r0aJ566imefDLF+/3upGfuKoM0uSvlQgkJCfTt25e77rqL6dOn2/5CPXNXGaTJXSkX2rlzJ1u2bGHy5MmUKlXKtheJQFQUKzotZcUK58anPId+zlPKhRo1asS+ffuoVq2a7S+6dg1iYijuexcUd15syrPombtSLrJ3714AqlevfmdhsLQkFg1bFN6YRYucEJjySJrclXKBVatWUbt2bdatW5fxFycl953VNbkrm2lyV8rJLly4wMCBA6lbty6PPvpoxjtIKverF1RVBuiYu1JONnToUM6dO8eaNWtSrviYnhu13PW/q7Kdnrkr5UQ//PAD8+fP59VXX6VevXqZ60TP3FUmaHJXyonOnDlDnTp1eOuttzLfiZ65q0zQ3xalnKh79+507dqVXLnsOI+KjIS77mLtt16OC0x5PD1zV8oJQkND+eSTTxAR+xI7WGfuRYuSLx/ky+eY+JTn0zN3pRwsLi6OPn36cPr0aTp06EChQoXs6zAxuc+aZT0cMMD+GJXnS/eUwhiz0BjztzFmfyrP9zDG7DXG7DPGbDXG1HZ8mEplH1OnTmX37t3MmDHD/sQON5L78uWwfLn93amcwZbPi4uAx9N4/i/gQRH5DzAWmOuAuJTKlo4cOcJbb73Fk08+SceOHR3TaWJyVyoj0k3uIvITEJXG81tF5Hziw22Ar4NiUypbERGCgoLIkycPM2fOzFiJgbRocleZ4Ogx9z5AqvdXG2OCgCAAPz8/Bx9aKfcyxjB48GCuXr3Kfffd57iOIyOt5P6H47pUns9hyd0Y8zBWcr8/tTYiMpfEYZuAgABx1LGVcjcRwRhDu3btHNvxv/9CdDQUK+bYfpXHc8hUSGNMLWA+0F5EIh3Rp1LZSc+ePXn33Xcd33HSDUxFi7J5M2ze7PhDKM9kd3I3xvgBq4BeIvK7/SEplb18+eWXfP755yQkJDi+82TJXamMSHdYxhizBHgIKG6MOQm8BXgDiMhHwJtAMWBW4gWkOBEJcFbASmUlSRUfa9euzZAhQxx/gGTJffJk61tnHEZ5nnSTu4h0S+f5QCDQYREplY0MHz6ciIgIQkJC8PZ2QmGvZMl99WrrW03uyhZafkCpTDp27BgLFizg5ZdfJiDASR9WdVhGZZKWH1Aqk/z9/dmxYweVK1d23kEiE+cn6GwZlUF65q5UJhw9ehSAunXrkj9/fucdKCoK8uTRimEqwzS5K5VBYWFhVKpUiUWuWNA06e5UY8ibF/Lmdf4hlWfQYRmlMiAuLo7AwECKFi3q+BuWUpKs9EBm1tZWOZcmd6UyYNq0aezatYtly5ZR1BUXObWujMokHZZRykZ//vkno0aNom3btnTu3Nk1B02W3MeOtTalbKHJXSkb/fbbbxQtWpRZs2Y5ruJjepKKhgEbN1qbUrbQ5K6Ujdq2bcsff/yBr68Lq1pHRek0SJUpmtyVSkdERASffvopIoKPj499nS1dak1tvH49/bbR0XDtmo65q0zR5K5UOl588UX69u3LsWPH7O8sLAyqV7cSfHrOJ66Bo8ldZYLOllEqDSEhISxfvpyxY8dStmxZ+zsMC4PaNi4zfFvpAR2dURmhyV2pVFy8eJEBAwZQs2ZNXnvtNcd0Ghpqe+Wv25L7ypWOCUHlDJrclUrF66+/zunTp1m5ciV5bBlGSc+5c3DmDNSpY1t7LRqm7KDJXalUtG7dGl9fXxo1auSYDsPCrK+2DsvcVjTs9dethxMnOiYc5dk0uSuViieeeIInnnjCcR2GhkLp0jcHz/v3h5AQOH0aJIUlhW87c//lF8eFojyfzpZR6jZjx47l7bffRlJKuPYIC7t1SKZbN9i9O/X2UVGQOzcUKODYOFSOkG5yN8YsNMb8bYzZn8rzxhjzoTHmiDFmrzGmnuPDVMo19u3bx5gxY/jjjz8cfxfq7TNlmjeHkiVTb5+sIqRSGWXLmfsi4PE0nm8FVErcgoDZ9oellOvFx8cTGBjI3XffzdSpUx3beUwMhIfbPt4OWjRM2cWWNVR/MsaUTaNJe+BTsT7DbjPG3G2MKSUiZxwUo1IuMWPGDHbs2MHnn39O8eLFHdv5gQMQG2v7TBm4I7m7suqByv4ccUG1NHAi2eOTifs0uats4/Lly7z11lu0bt2arl27Ov4AYWHWakoVK9r+msjIWzL64sWOD0t5LpfOljHGBGEN3eDn5+fKQyuVpoIFC7Jp0yZKlCjhnIqPvXtbW0ZERWVsGEepZBwxW+YUUCbZY9/EfXcQkbkiEiAiASVKlHDAoZWy3z///ANAvXr1KFOmTDqtHSgw8OaZua+v9Ti524ZlBg+2NqVs4YjkHgI8kzhrpjFwUcfbVXbx999/U7VqVSZNmuT6g8+fDydPWnPcT560Hie5fh2uXLkluYeGWptStkh3WMYYswR4CChujDkJvAV4A4jIR8BaoDVwBLgG/NdZwSrlaIMHD+bSpUu0adPG3aHcSitCKjvZMlumWzrPCzDQYREp5SJr1qxhyZIljB49murVq7s7nFtpXRllJ71DVeVIly9fpn///tSoUYPXk4q2ZCWa3JWdtLaMypH27NnDpUuXWLZsmWMqPjrabUXDACpXdlMsKlvS5K5ypObNm3P8+HEKFSrk7lBSlsKZ+9y5bopFZUs6LKNylJiYGJYtW4aIZN3EDjoso+ymyV3lKBMnTqRr165s27bN3aGkLSoKvLwg2R+goCBrU8oWOiyjcozffvuNCRMm0KNHD5o0aeLucNIWFQVFitxSEfL3390Yj8p29Mxd5QhJFR8LFSrE+++/7+5w0qcVIZWd9Mxd5QizZ89m27ZtfPbZZ2SL0heRkbfMlFEqo/TMXeUIFSpUoE+fPvTo0cPdodhGz9yVnfTMXeUIrVq1olWrVu4Ow3ZRUVCjxi27MlIKXik9c1cebdmyZYwePZrY2Fh3h5IxKZy5f/CBtdlq+/btPPjgg+TLl4/y5cuzfPlyBwepsjJN7spj/fPPPwwaNIhvv/2WXLmy0a96bCxcumTXsMwPP/xAixYteOCBB1izZg3NmzenV69e/PXXXw4MVGVl2eg3XqmMefnll7lw4QLz58/Hy8vL3eHY7sIF6+ttyb1nT2tLz9WrV+nRowfDhw9n3LhxPPzww8yZMwdvb2+++uorJwSssiIdc1ce6dtvv2Xx4sWMGjWKmjVrujucjEmqK3Nbcj950raXz5s3j9jYWIYMGXJjn4+PDyVKlODYsWOOilJlcZrclceJj49n0KBBVK1alZEjR7o7nIxLKj2QyamQwcHBdOzYEW9vb+Li4m7sv3r1Kt7e3o6IUGUDmtyVx/Hy8uKLL74gPj4eHx8fd4eTcXbUlblw4QK//voru3btYm4KlcZ07eKcQ5O78ihXr14lf/781K1b192hZJ4dyT0sLAwR4euvv+a+++67sX/Hjh0MHDiQOonzKfv3709ISAinT5/GWm9HeRq9oKo8xvXr12ncuDEjRoxwdyj2SSW5N2libWk5ceIEAC1atCAgIODGdvbsWQoWLEjDhg0B6NatG7t373Z46CrrsCm5G2MeN8YcMsYcMcYMT+F5P2PMD8aYPcaYvcaY1o4PVam0vfvuu+zfv5+mTZu6OxT7REVZBcMKF75l98SJ1paWpDH23LlvfigXEZYuXcrTTz99Y5iqefPmlCxZ0rFxqywl3eRujPECZgKtgOpAN2PM7QtOvgEsF5G6QFdglqMDVSotBw8eZNy4cXTt2pUnnnjC3eHYJ6kiZCbm5vv7+wNw6NChG/sWLlzIiRMnsuZygsppbPntaQgcEZE/ReQ6sBRof1sbAZIKTxcGTjsuRKXSlpCQQGBgIAUKFGDatGnuDsd+qRQNe+opa0tLs2bNKF26NAMHDmTjxo1MnjyZQYMGMX36dCpUqOCkgFVWZMsF1dLAiWSPTwKNbmszGvjOGPMCkB9o6ZDolLLBwYMH2bdvHzNmzOCee+5xdzj2S6VoWNL097TkyZOHFStW8Pzzz9OmTRuqVq16Y2qkylkcNVumG7BIRKYYY5oAnxljaopIQvJGxpggIAh0SpZynBo1anD48GHPSOxgJXc7yhI3btyYsLAwBwaksiNbhmVOAWWSPfZN3JdcH2A5gIj8AtwFFL+9IxGZKyIBIhKQLWpqqyxNRFi/fj0iQsmSJTHJVi3K1lxQ7jcwMBBfX18AfH19CQwMdOrxlOvZcua+E6hkjCmHldS7At1va3MceARYZIyphpXczzkyUKVut2zZMrp168bSpUvp0qWLu8NxHBck9/nz5zu1f+V+6SZ3EYkzxgwC1gNewEIR+c0YMwbYJSIhwKvAPGPMy1gXV3uL3hmhnCgyMpIXX3yRBg0a0KlTJ3eH4zjx8VbhsBSS+yOPuCEelW3ZNOYuImuBtbftezPZ9weAZo4NTanUvfrqq5w/f54NGzZkr4qP6Tl/3vqaQnIfNcrFsahsTe9QVdnOd999xyeffMKwYcOoVauWu8NxLDuLhimVRJO7ynZy587No48+yhtvvOHuUBwvjboyrVpZm1K20MJhKttp0aIFLVq0cHcYzpFGcv/3XxfHorI1PXNX2cbOnTt56623iImJcXcoTnNw3z4+Bdb/9hsHDx706J9VOZeeuatsITY2lj59+hAZGckrr7ySPeu02+C77dsZDNCnD2DVpq9SpQoNGzbk7NkJFClSFPDMn105liZ3lS1MmjSJffv28fXXX1P4tmqJnqRvtWq0+fJLzm7ezNETJwgPDyc0NJTVq1fzzz/PAlC//qt07dqVnj17UqpUKTdHbLvz588zceJEoqOj+fDDD90djucTEbds9evXF6VsER4eLj4+PtK5c2d3h+J8gwaJFClyx+6EhAR55ZXT0rr1JmnYsKEA4uXlJZ06dZKtW7e6IdCMWbt2rRQpUkSMMdKnTx9JSEhwd0jZFtb9RenmWB1zV1negAEDyJcvH9OnT3d3KM6Xyt2pxhimTCnFmjUPs337dg4dOsQrr7zCxo0badq0KY8++ii7du1yQ8CpS0hIICrxAnG1atW4//77CQ0NZf78+Z5TKiIL0+SusrwpU6bwySef5IzFJWwsPVC5cmXee+89jh8/zuTJkwkNDaVBgwb07t2bc+fcX/lj48aNBAQE0L27VamkbNmyhISEeN59CVmYJneVZcXGxgJQp04d2rZt6+ZoXCSN5P7QQ9aWXIECBXj11Vf5448/GDZsGJ9//jnVqlVj+fLlTg81JXv37qVVq1a0bNmSqKgoevXqpWu0uokmd5UliQidO3dm4MCB7g7FtTJZNKxQoUK888477Nmzh/Lly9OlSxf69OnDvy6cHL9y5Urq1KnD9u3bmTJlCuHh4fTo0UOHYNxEk7vKklasWMHXX39NuXLl3B2Ka9lZEbJGjRr8/PPPjBgxgoULF/LAAw9w6tTtFbod58KFC+zfvx+ARx99lJEjR/LHH3/wyiuvcNdddzntuCp9mtxVlhMVFcWgQYOoX78+gwcPdnc4rhMfbxUOs7Pcr7e3N+PHjyckJIRDhw7RuHFjDh486KAgLTExMXzwwQdUqFCBrl27IiIUKlSIsWPHUqRIEYceS2WOJneV5QwZMoTIyEjmz59P7tw56FaMixdBxGFFw9q2bcuWLVuIjY2lefPm7Nu3z+4+ExISWLJkCdWqVePll1+mfv36fPbZZzr0kgVpcldZSkREBCtXrmTo0KHUqVPH3eG4Vhp1ZQCeftraMqJOnTps2bIFHx8fWrZsyeHDh+0KcdWqVXTv3p1ChQqxfv16vvvuO+rWrWtXn8o5jLuuZAcEBEhWm5ersoaTJ09SrFgx8ubN6+5QXGvHDmjUCFavhjZtHNr1oUOHeOCBByhQoADbt28nI8tc7t+/n6NHj/LEE08QHx/Pl19+SceOHcmVS88N3cEY86uIBKTXTv91VJaxc+dORARfX9+cl9gh3TP3a9esLTOqVKnC6tWrOXPmDJ06dboxzTQtp06dok+fPtSuXZuXX36ZhIQEvLy86NSpkyb2bED/hVSWsHv3bho3bszUqVPdHYr7pJPcW7e2tsxq2LAh8+bN46effkqzFv7FixcZOXIklSpVYvHixQwePJht27ZpQs9mbPrXMsY8bow5ZIw5YowZnkqbp40xB4wxvxljPndsmMqTJVV8LFmyJH0SqyHmSOkkd0fo2bMnffv2ZdKkSfz0008ptvn111+ZMGECHTt25NChQ0yZMoViujJUtpPuVARjjBcwE3gUOAnsNMaEiLVualKbSsDrQDMROW+MucdZASvPM3XqVEJDQ1m1ahV33323u8Nxn8hI66uTpxK+//77bNiwgX79+hEaGoq3tzdffPEFx44dY+jQobRo0YJDhw5RuXJlp8ahnMuWM/eGwBER+VNErgNLgfa3tekLzBSR8wAi8rdjw1Se6vDhw4wePZqOHTvSoUMHd4fjXlFRULgwOHn6Z/78+Zk+fToHDx5k0KBBNGrUiC5durB8+XLi4uIANLF7AFuSe2ngRLLHJxP3JVcZqGyM+dkYs80Y87ijAlSe7dy5c1SuXDlnVHxMj513p2ZE1apVuffee5k3bx4nTpxg0aJFbNu2LWfdV+DhHPUvmRuoBDwE+AI/GWP+IyIXkjcyxgQBQQB+fn4OOrTKzpo2bUpoaKjeBAPpJvfeve0/hIhgjCEuLo7o6Ggee+wxli5dmrOHwzyULWfup4AyyR77Ju5L7iQQIiKxIvIX8DtWsr+FiMwVkQARCcjIPFvleU6fPs3YsWOJiYnRxJ7EhuSe2QR/6dIlRo0aRa9evQBrauSZM2f49ttvNbF7KFuS+06gkjGmnDEmD9AVCLmtzVdYZ+0YY4pjDdP86cA4lYcZNGgQEyZM4MSJE+k3zinSSe7//GNtGXH9+nVmzJhBxYoVGTduHPHx8TfmuGthL8+W7rCMiMQZYwYB6wEvYKGI/GaMGYO13FNI4nP/Z4w5AMQDQ0Uk0pmBq+xr1apVfPnll7zzzjtUrFjR3eFkHZGRaSb3Tp2sr5s329ZdaGgonTt35siRIzz00ENMmjSJgIB0b2xUHsKmMXcRWQusvW3fm8m+F+CVxE2pVF24cIGBAwdSt25dXn31VXeHk3UkJFgVIR0wn/zKlSsUKFAAPz8/7r33XqZNm0arVq10+CuH0UvjyqWGDRvGuXPnWLNmjc7MSO7SJSvB2zFbJjw8nOHDh3PixAl27txJ0aJF2bJliwODVNmJ3k+sXKp///5Mnz6devXquTuUrMWOu1PPnDlDv379qFmzJps2beKpp566MV9d5Vx66qRcImkKXp06dXJeKV9bZDK5b9++nUceeYSYmBgGDBjAqFGjMlTxUXkuTe7KJUaMGMGZM2dYsGABXl5e7g4n67Ehuffvb32NjY3lyJEjVKtWjbp16/Lf//6Xl156SS9Oq1vosIxyuj179jBp0iRy586tiT01NiT3p58W8uT5kpo1a/LII4/w77//kidPHqZPn66JXd1Bk7tyqri4OAIDAylevDiTJk1ydzhZV1LRsFRmy2zdupUGDTrSseOLeHl5MXfuXJ2nrtKkwzLKqZ555hl2797NF198oQsnpyXpzD2F92jHjh00a9aMPHl+pnLlcuzdW0JnGql06Zm7cppLly6xfPlyjDHs3buX69evuzukrCsqCgoWBG9vwFpL9ptvvgGgQYMGLFiwgIYNG1GqVClN7MommtyV0xQqVIjQ0FA6duzI2LFjady4MQcOHEj/hTlMcHAwZefNI9fly/j5+fHUU09RoUIFevbsyZUrVzDG8Nxzz+n1CpUhmtyVUxw+fBgRoWbNmqxYsYKvvvqKkydPUr9+febMmYNTFmZfuhTy5IFs9AkhODiYoKAgjl29igAnTpxg1apV1KhRg127dlGgQAF3h6iyKU3uyuHOnj1Lw4YNee21127sa9++PXv37qV58+b069ePbt26cfnyZcceOCwMqle3Enw2MXLECK6lsOp1REQElSrdUVhVKZtpclcO98ILL/Dvv/8SGBh4y/57772XdevWMXHiRL744gsaNWrEoUOHHHfgsDCoXdtx/Tnbtm0cP348xadS2v/qq9amlC00uSuH+uqrr1ixYgVvvvkmVapUueP5XLlyMXz4cDZs2MC5c+do2LAh3377rWMOHhqaPZL7779bJR6bNMEvV8r/BVNazKZtW2tTyhaa3JXDXLx4kYEDB1KrVi2GDh2aZtuHH36YXbt2Ua5cOdq0acPMmTPtO/i5c3DmDGTl0gZ//w2DBkGNGvDtt/D224yfN498+fLd0ixfvnyMHz/+jpcfOmRtStlERNyy1a9fX5RnCQ0NlXLlysnOnTttfs3ly5elbdu2AsjQoUMlPj4+cwf//nsREPnnn8y93pmuXBEZM0akQAERLy+R/v1Fzp698fTixYvF399fjDHi7+8vixcvTrGbBx+0NpWzYa2jkW6O1eSuHCo2NjbDr4mLi5P+/fsLIM8++2ym+pBJk0RKl775eN8+kbp1RSpWFGnbVuTSpYz3aa/YWJG5c0VKlbL+q3XsKBIenunuNLkrEduTuw7LKLtFR0czZcoUYmJiMnWDjZeXFzNnzuTtt9/mk08+oUuXLhm/4Sks7NYhmX79YNw4OHwYqlaF997LcFyZJgLffAO1akFQEJQrBz//DCtXQgrXIZRyBk3uym5jx45lyJAhbNu2LdN9GGN48803+eCDD1i1ahWdOnUiJibG9g6Sz5SJiIC//oLWra3HffpYidUVtm+Hhx6Cdu0gPh5WrYL//Q+aNnXN8ZVKZFNyN8Y8bow5ZIw5YowZnka7p4wxYozRhRpziLCwMN577z169+7Ngw8+aHd/L730ErNmzeKbb76hS5cuNxZzTlNMDISH30zuJ0+Cr+/N5/38wNkLcR85Ak8/DY0bW7HMmgX790OHDqDL2yk3SPcztDHGC5gJPAqcBHYaY0JE5MBt7QoCLwHbnRGoynqSKj4WLVqUKVOmOKzf/v37Ex8fzwsvvMAzzzzD4sWL0771/sABiI29OSzjjLtfU3PuHIwdC7NnWzdPvfWWNRm9YEGHH+qNNxzepfJgtgyQNgSOiMifAMaYpUB74PYiIWOBd4G058ApjzFt2jR27drFsmXLKGrH2p8pGTRoEFevXmX48OEUK1aM6dOnp77Ac1gY5MsHSTXNfX2ts/ckx4/feibvCNeuwQcfwDvvWN8HBlqJvVQpxx4nmZYtnda18kC2DMuUBpJ/pj2ZuO8GY0w9oIyIrEmrI2NMkDFmlzFm17lz5zIcrMpaWrZsybBhw+jcubNT+h82bBhDhgxh5syZvPPOO6k37N0brl6FpBuC7r0XypaFtWutxwsWQMeOjgkqPh4WLoRKlWDkSGjRAvbtg48+cmpiB+serdBQpx5CeZL0ptMAnYD5yR73AmYke5wL2AyUTXy8GQhIr1+dCqlsER8fL926dRNAli5davsLw8JE6tSxpkK2aSNy4YIRYWyyAAAZgklEQVR9gSQkiKxeLVKjhjWtsXFjkS1b7Oszg3QqpBJx7FTIU0CZZI99E/clKQjUBDYbY44CjYEQvajquRYtWsQzzzzD1atXnX6sXLly8fHHH3P//ffTu3dvdu7cadsLa9WCPXusqZCrV0PhwpkPYtcu6wz9iSesi7crVsDWrXD//ZnvUyknsyW57wQqGWPKGWPyAF2BkKQnReSiiBQXkbIiUhbYBrQTkV1OiVi5VUREBK+88gp//vknefPmdckxfXx8WLVqFSVLlqRDhw5ERES45Lj8+Sd06wYNGsBvv8GMGdbF26ee0hkwKstLN7mLSBwwCFgPHASWi8hvxpgxxph2zg5QZS0vvfQSV69eZd68eeRKpeiVM5QoUYKvvvqKyMhIunXrRlxcnPMOFhkJL79s3fwUEmJNUzlyBAYOvLFSklJZni1jN87YdMw9+wkJCRFAxowZ47YYFi1aJIC88cYbju/82jWRiRNFChcWyZVLpG9fkVOnHH+cTNIxdyVi+5i7EVfOCU4mICBAdu3SkZvsQkSoVasWAL/++it53LggxnPPPceiRYvYsGEDLVq0sL/D+Hj47DMYNcqaQtm2rTXFsXp1+/t2oK1bra96s2vOZoz5VUTSvaapyV3Z7PTp05w/f54aNWq4NY6rV69Sv359rly5wt69ezM/x14E1q+H116zpjM2aACTJoED7rRVyllsTe5aW0al6+zZsyQkJHDfffe5PbED5M+fn+DgYCIiInjhhRcy18nu3fDoo9CqlTVHftkyqy5MFk7sW7fePHtXKj2a3FWaoqOjefjhh/nvf//r7lBuUb9+fd544w0+//xzvvrqK9tfePQo9OgB9etbd7Z++CEcPGjVhcniM2BGjLA2pWyhyV2lacKECYSHh9O9e3d3h3KH119/ndq1azNgwAAuXryYduOoKKvmS5UqVqXGESOsGTAvvJCtFtRWylaa3FWq9u3bx8SJE+nVqxePPfaYu8O5Q548eZg/fz4RERGMHDky5UbR0dY4eoUKVi2Ynj2tG5vGj7fvxialsjhN7ipF8fHxBAYGUqRIEd5//313h5OqgIAABgwYwKxZs9i9e/fNJxIS4NNPoXJl64Jp06ZWYZYFCxxfREypLEiTu0rR8ePHiYiIYNq0aRQrVszd4aRp7NixFC9enBdffNGqd/Tdd1CvHjz7LNxzD2zaBGvWwH/+4+5QlXKZjK+JpnKEcuXKceDAAZeVGLDH3Xffzfjx4wkKCmJFnTp03rvXWtpuyRLrQqkL76R1pg8+cHcEKjvxjN965TAiwscff0x0dDT58uW7o4b6vn37aN26NcWKFaNYsWJ06NCBv//+203RJjp2jOd+/JH/AK/v38/1SZOsGTBdu3pMYgdrLZLky8QqlRbP+c1XDrF48WKee+45lixZcsdzp06d4uGHH8YYQ3BwMLNnz+ann35y35j8+fMwdChUqYLXypW806kTfyQksCB/fvDxcU9MTrRhg7UpZRNbahQ4Y9PaMllPRESEFC1aVJo0aSJxcXF3PP/aa69JuXLlJDo6+sa+xx57TAYOHOjKMEX+/Vdk8mSRIkVEjBHp3Vvk+HFJSEiQZs2ayX333Sf//vuva2NyAa0to0QcW89d5RCDBw/m8uXLzJs3L8U1S9esWUOHDh3wSTwrPn/+PP/73/9o0KCBawJMSIDgYKta45Ah0KiRNQPm44+hTBmMMbz99tucPn2ahQsX2tRl8+bNqVixIocPH75lf1hYGF5eXmzevNkJP4hz1akDQUF37u/ZEx54wPXxKDex5S+AMzY9c89aVq9eLYCMHj06xeevXLkiuXLlkiVLlsilS5fkp59+koYNG0qVKlVcc5a8YYNI3brWKkh164p8/32KzRISEqRJkybi5+cn169fT7fbH374QYoWLSqjRo26Zf8jjzwiHTp0cEjojmLrmXtQkPUWJbd9u1XocscOZ0SmXAkbz9w1uSsREdm7d6/06NHjliGX5LZu3SqAhIeHS5EiRQQQHx8f+eWXX5wbWFiYyOOPW7+q/v4iwcEi8fFpviSpNHFwcLBNh+jevbt06tTpltfnyZNHDh8+bE/kDmdrcl+wQMTb2xq9StK0qUiPHs6KTLmSrcldh2UUAP/5z39YvHjxjSGX24WGhlKgQAHKly/PihUr+OijjyhXrhxt2rTh7Nmzjg/oxAlr4es6dayCXlOmQHg4dO+e7gyYNm3aULVqVaZOnWqdwaSjSpUqHDp0CIC4uDiGDh3KoEGDqFixoiN+Epdr3BhiY28upr1smVUnbcIE98alXMyWvwDO2PTMPWvYunWr9OrVS6KiotJs17dvX2nWrNkt+37//feML1ydnvPnRYYNE/HxsbahQ0XSiS0ls2fPFkB+/vnndNsuWbJE7rrrLklISJBp06ZJsWLF5Pz585mJ3qnCw60tPfHxIoUKiXz4oXX27u8vMmKE08NTLoIjz9yNMY8bYw4ZY44YY4an8PwrxpgDxpi9xpiNxhh/B/8NUk4QExNDYGAgmzdvJnfutO9nCw0NpW7durfsu+uuuwAoWbKkI4KB99+3asC8955189GhQ9b3RYpkuLuePXtSqFAhZs+enW7bypUrEx0dTVhYGG+//TajR4/m7rvvzsxP4VRVqlhbenLlgoYNYedO6y2Njobhd/yvVR4vvewPeAF/AOWBPEAYUP22Ng8D+RK/7w8sS69fPXN3v9GjRwsga9asSbNdXFyc5M2b947l9SZOnChFixaV2NjYzAcRHy/y+eciZcta4+r/938ie/Zkvr9kBgwYID4+PhIZGZlmu8uXLwsgdevWlapVq9r38zhRSIi12WLkSBFfX5GCBUXmzHFuXMq1cNQFVaAJsD7Z49eB19NoXxf4Ob1+Nbm71/79+8Xb21u6d+9uU1tAChQoIDNnzpRNmzbJmDFjxMfHRxYuXJj5IDZtEqlf3/o1rF1bZP36zPeVgt27dwsgM2bMSLdtqVKlBJDVq1c7NAZHysg895AQ622tWVMkhVsWVDZma3K3pbZMaeBEsscngUZptO8DrLOhX+VGQ4YMoVChQnxgQ8GS0NBQvL296dChA8OHD8cYQ7Vq1QgODuapp57K+MH37bPGCdauhTJlrOqNPXo4vFRA3bp1qVWrFp9++ikDBw5Ms22FChWoUqUKbdq0cWgM7lKihPV18mRI4ZYFlQM4tHCYMaYnEACkuFaZMSYICALw8/Nz5KFVBi1YsIDff/+dEklZIA2hoaFUq1aNTz/91L6DnjwJb74JixZBoULWePoLL0Di2L0z9OzZk9dee40jR46kOfvl1KlT9O3b12lxuNqECdYKglmwDL9yEVtOlU4BZZI99k3cdwtjTEtgJNBORGJS6khE5opIgIgE2JJUlONdunTpxnqoDz30kE2v2bNnzx0XUzPk4kVr5aNKlaw7TF95Bf7806oL48TEDtClSxcAvvjii1TbXLp0iaNHj1K7dm2nxuJs0dGwY4dVvn7jRmsFQZVz2ZLcdwKVjDHljDF5gK5ASPIGxpi6wBysxO7mEoEqNSJCt27daNeunU3zv5OEhYVRJzPlCK9ftzJMhQowcSI89ZQ1A2byZChaNOP9ZYKfnx+NGjVi5cqVqbbZu3cvIpLtk/uPP1pz3FeutOa2Z9Np+spRbBmYB1oDv2PNmhmZuG8MVjIH2ABEAKGJW0h6feoFVdd77bXXBJAPPvjAuQdKSBBZtkykfHnrql6LFiK//urcY6Zh4sSJAsiJEyfcFoMjHD9ubSpnw5Hz3EVkrYhUFpEKIjI+cd+bIhKS+H1LESkpInUSt3YO/PujHODvv/9mypQpGGO4fPky8fHxzjnQjz9aBb26dIH8+WHdOqtObb16zjmeDdq1s34d163L3tf5y5SxNqVsoeUHcohXX30VgMcee4xRo0bRpk0bzp8/77gD/PYbtG0LDz0EZ85YF0337IHHH4fbFvxwtWrVquHn55ftk/uyZdamlC00uecASaV5R4wYwdq1a5kzZw6bNm2iadOmHD9+3L7OT5+Gvn2hVi346Sd45x34/Xdr/dIsMgfPGMOjjz7Kpk2bnPeJxQVmz7Y2pWyhyT0HKFKkCPv27WPkyJEYYwgKCuL777/nzJkzPPDAA/z1118Z7/TSJRg1yrpq98kn8OKL8McfMGwYZMF1V1u0aMHFixcJTaqmpZSH0+Tu4dasWUN0dDQFChS4peLjgw8+yA8//MDly5dp2bIlERERtnV4/TrMmGEl9XHj4MknrWqN778PxYtnOL7t27fz4IMPki9fPsqXL8/y5csz3IctHnzQuvViy5YtTulfqaxGk7sH2759O23btuWdd95J8fm6deuybt06zp49S/v27YmOjk61L0lI4PqSJVCjhnXjUY0aVmWqzz+H8uUzFd8PP/xAixYteOCBB1izZg3NmzenV69emfskkY7SpUvj7+/Pzz//7PC+lcqSbJlS44xNp0I6V0xMjNSsWVN8fX3l4sWLabZdtWqVANKvX78Un4/esEGaFCggI0CkRg2RNWus6Y52uHLlipQqVeqWYmTR0dGSP39+mTp1ql19p6ZLly7i7+/vlL5dQddQVSIOngqpsp93332X/fv3M3v2bAoVKpRm2w4dOjB06FA++ugjvvnmm5tPHDwITz6JT8uWlI2P5/08eYj47jto3druGTDz5s0jNjaWIUOG3Njn4+NDiRIlOHbsmF19p6ZBgwYcO3aMc+fOOaV/Z1uxwtqUsoUmdw908OBBxo0bR9euXXniiSdses24ceOoVasW/fr14/Lhw/D881CzJmzaBBMmMPqXX4iJi+N9B93THhwcTMeOHfH29iYuLu7GdvXqVby9vR1yjNsl3WW7d+9eu/r58Ufrb9vatTf3/fUX3HOPdV3ZWYoXz9RlDZVT2XJ674xNh2Wc5+DBg/L444/L2bNnM/S6bRs3CiDDc+cWyZ1b5MUXRf7++8bznTt3lsKFC8uVK1fsiu/8+fNijBEgxe3DDz+0q//URERECOCQYZ+HH7bWJRURuXBBpHp1kTZtnFte9+OPrU3lbOiwTM5VtWpV1q1bZ/sKSbGxMHs2jbp14xngVOnSyIEDMG3azdqxwIsvvsjFixdZunSpXfGFhYUhInz99dfs3LnzxjZz5kzg5hn2/v37qVevHpUqVaJdu3ZcvnzZruPec889FC1alPDwcLv6AXj7bdi6Fb77zlo0ytsbli517tT+RYusTSlbaHL3ICdPniQwMJB//vnHtheIwJdfWsMvAwZA1aos+N//+PToUUylSnc0b9asGVWrVuWTTz6xK84TJ6zlAVq0aEFAQMCN7ezZsxQsWJCGDRsC0K9fP8aNG8fhw4epWrUq7733nl3HBesPX9Ji2PZ44AFo2RI6dID9+2H1aihQwO5ulXIYTe4eQkTo378/S5Ysse0M9+ef4f77oWNH63QzJAQ2byZ3s2apvsQYQ/fu3dmyZQunT5/OdKxxcXEAt6zbKiIsXbqUp59+Gh8fHyIiIvjrr79o3bo1AH369EmzsqOtKlSo4LCplhUrwrVr1lm8r69DulTKYTS5e4jly5ezevVqxo4dS7ly5VJveOiQldDvv9+6CjhvHuzda9WFsWEGTIcOHQBYvXp1pmP19/dPDOXmGfTChQs5ceIEr7/+OmB9CvFNljH9/PxunPHbw8/Pj1OnTt34A5NZc+fCwoVQuzYsWGB3WEo5nCZ3DxAZGckLL7xAgwYNeOmll1JuFBFhDb3UqAHffw9jx8LhwxAYCLltX5CrRo0a+Pr68v3332c63mbNmlG6dGkGDhzIxo0bmTx5MoMGDWL69OlUqFABIEP15jPCz8+P+Ph4zpw5k+k+vv8eBg60/i5+9BFs22YVv1QqS7HlqqszNp0t4zj9+vWT3LlzS2ho6J1PXr4sMnq0SP781gyYgQNFIiLsOl7Pnj2lZMmSkmDHjUy//PKL1KpVS3x8fKR27dqycuXKW54/c+aM3HfffTceh4eHS9WqVTN9vCQhISECyI4dOzL1+v37RQoXFhk58ua+li1FGja0O7R0Xb1qbSpnw8bZMprcPcDp06dlyZIlt+6MjRX56CORkiWtf+ZOnUR+/90hx5s+fbpLFr9o2rSprFmzRkREhg4dKiNGjLC7zx9++EEA2bRpU4ZfGxEhUrasSOfOt96g++OP1lu8erXd4SmVLluTu0MXyFauFRMTg7e3N6VKlaJr167WThHr4ujw4VZBr/vvt2bENGnisOMmLUe3b9++W8bFHW327Nk8++yzvPTSS1SpUoXg4GC7+yyQOKXlypUrGX7tPfdYlylu17y59bY726xZ1tcBA5x/LJX96Zh7NjZixAhatGjB9evXrR3btlmZ5sknrWzz1VdWjXUHJnaAKlWqAPD77787tN/b1apViz179nD48GFWr15N4cKF7e7TnuTubsuXW5tStrApuRtjHjfGHDLGHDHGDE/heR9jzLLE57cbY8o6OlB1q507d/LBBx9QrVo18hw7Bp07W0n88GGYM8eafN2+vVNWQSpRogR33XWXQ2avuFrBggUB7L4hSqmsLt3kbozxAmYCrYDqQDdjTPXbmvUBzotIReB94F1HB6oswcHB+Pv707BhQwxQLzwcqle3pmu8/TYcOQJBQRmaAZNRxhhKliyZLQtwZeczd6UywpYM0BA4IiJ/AhhjlgLtgQPJ2rQHRid+vwKYYYwxiYP/ykGCg4MJCgri2rVrAMQnJDB482byPfIIPYKDwdZyAw5QsGBBLl265LLjOUr+/PkBTe7K89mS3EsDyT9/nwQapdZGROKMMReBYoCN98ErW4wcOfJGYocfALgG9NqUi4FVzvD44+EsXfog//xzjYoV7xwP79TpCvPn38+hQ5E0anTnkMqzz15j2rSmbN9+msce+/uO51944TpjxzZk3bo/OXBgFuHhhrvvvrls3YgRCbz2Wj2WLTvE88//e8fr333Xi+ef/w9z5uxj2LA71zKdMycvXbpU4b33djNhwp0fKpcsKUSrVuUZNWoH06fnAW7WoQH47DMoU8ZaRDqltUZXrIDixXOTJ09e5s27zKZNtz6/di3ky2dduExpbHvzZuvr5MlWuYHk8ua9Odd97FjYuPHW54sVg6QbbF9/HX755dbnfX1h8WLr+8GD4fbVACtXvjMepdLi0tkyxpggIAism0lUxqS2mLVIgosjAW/v3IDjx/NdISCgM5GRNdwdRoYl/XFRyhYmvZETY0wTYLSIPJb4+HUAEZmYrM36xDa/GGNyA2eBEmkNywQEBMiuXbsc8CPkHGXLlk1xIQt/f3+OHj3q+oCUUi5njPlVRALSa2fLbJmdQCVjTDljTB6gKxByW5sQ4NnE7zsBm3S83fHGjx9Pvnz5btmXL18+xo8f76aIlFJZVbrJXUTigEHAeuAgsFxEfjPGjDHGtEtstgAoZow5ArwC3DFdUtmvR48ezJ07F39/f4wx+Pv7M3fuXHr06OHu0JRSWUy6wzLOosMySimVcY4cllFKKZXNaHJXSikPpMldKaU8kCZ3pZTyQJrclVLKA7lttowx5hxw5x05aSuOljRIou+FRd+Hm/S9uMmT3wt/ESmRXiO3JffMMMbssmUKUE6g74VF34eb9L24Sd8LHZZRSimPpMldKaU8UHZL7nPdHUAWou+FRd+Hm/S9uCnHvxfZasxdKaWUbbLbmbtSSikbZOnkbowpaoz53hhzOPFrkVTaxRtjQhO328sRZ1u6MPlNNrwXvY0x55L9HgS6I05XMMYsNMb8bYzZn8rzxhjzYeJ7tdcYU8/VMbqCDe/DQ8aYi8l+J950dYzulKWTO1bp4I0iUgnYSOqlhP8VkTqJW7tU2mQrujD5TTa+FwDLkv0ezHdpkK61CHg8jedbAZUStyAghUUHPcIi0n4fALYk+50Y44KYsoysntzbA58kfv8J8KQbY3G1GwuTi8h1IGlh8uSSvz8rgEeMMdlz7bu02fJe5Bgi8hMQlUaT9sCnYtkG3G2MKeWa6FzHhvchR8vqyb2kiJxJ/P4sUDKVdncZY3YZY7YZYzzlD0BKC5OXTq1N4qIqSQuTexpb3guApxKHIVYYY8q4JrQsydb3KydoYowJM8asM8Zkv4Vz7eDSBbJTYozZANybwlMjkz8QETHGpDa1x19EThljygObjDH7ROQPR8eqsrRvgCUiEmOMeR7rE00LN8ek3Gs3Vm64YoxpDXyFNVSVI7g9uYtIy9SeM8ZEGGNKiciZxI+Vf6fSx6nEr38aYzYDdYHsntxPAcnPPn0T96XU5mTiwuSFgUjXhOdS6b4XIpL8554PvOeCuLIqW353PJ6IXEr2/VpjzCxjTHER8dSaM7fI6sMyyRfefhb4+vYGxpgixhifxO+LA82AAy6L0Hl0YfKb0n0vbhtTboe13m9OFQI8kzhrpjFwMdnwZo5hjLk36RqUMaYhVr7zxJOfFLn9zD0d7wDLjTF9sCpIPg1gjAkA+olIIFANmGOMScD6x3tHRLJ9cheROGNM0sLkXsDCpIXJgV0iEoK1MPlniQuTR2ElPY9j43vxYuKC7XFY70VvtwXsZMaYJcBDQHFjzEngLcAbQEQ+AtYCrYEjwDXgv+6J1LlseB86Af2NMXHAv0BXDz35SZHeoaqUUh4oqw/LKKWUygRN7kop5YE0uSullAfS5K6UUh5Ik7tSSnkgTe5KKeWBNLkrpZQH0uSulFIe6P8BmtP7wWGa3A8AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "arm.plot()\n", - "label_diagram()\n", - "plt.plot([0, arm.wrist[0]],\n", - " [0, arm.wrist[1]],\n", - " 'k--')\n", - "\n", - "plt.plot([arm.wrist[0], arm.wrist[0]],\n", - " [0, arm.wrist[1]],\n", - " 'b--')\n", - "plt.plot([0, arm.wrist[0]],\n", - " [0, 0],\n", - " 'b--')\n", - "\n", - "gamma = atan2(arm.wrist[1], arm.wrist[0])\n", - "draw_angle(beta, offset=theta0, r=0.2)\n", - "draw_angle(gamma, r=0.6)\n", - "\n", - "plt.annotate(\"$x$\", xy=(0.7, 0.05), size=15, color=\"b\")\n", - "plt.annotate(\"$y$\", xy=(1, 0.2), size=15, color=\"b\")\n", - "plt.annotate(r\"$\\beta$\", xy=(0.2, 0.2), size=15)\n", - "plt.annotate(r\"$\\gamma$\", xy=(0.6, 0.2), size=15)\n", - "\n", - "plt.axis(\"equal\")\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Our first joint angle $\\theta_0$ added to $\\beta$ gives us the angle between the positive $x$-axis and the displacement vector $r$; let's call this angle $\\gamma$.\n", - "\n", - "$\\gamma = \\theta_0+\\beta$ \n", - "\n", - "$\\theta_0$, our remaining joint angle, can then be expressed as \n", - "\n", - "$\\theta_0 = \\gamma-\\beta$ \n", - "\n", - "We already know $\\beta$. $\\gamma$ is simply the inverse tangent of $\\frac{y}{x}$, so we have an equation of $\\theta_0$! \n", - "\n", - "$\\theta_0 = \\tan^{-1}(\\frac{y}{x})-\\tan^{-1}(\\frac{l_1\\sin(\\theta_1)}{l_0+l_1\\cos(\\theta_1)})$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We now have the inverse kinematics for a planar two-link robotic arm. If you're planning on implementing this in a programming language, it's best to use the atan2 function, which is included in most math libraries and correctly accounts for the signs of $y$ and $x$. Notice that $\\theta_1$ must be calculated before $\\theta_0$.\n", - "\n", - "$\\theta_1 = \\cos^{-1}(\\frac{x^2 + y^2 - l_0^2 - l_1^2}{2l_0l_1})$ \n", - "$\\theta_0 = atan2(y, x)-atan2(l_1\\sin(\\theta_1), l_0+l_1\\cos(\\theta_1))$" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/ArmNavigation/two_joint_arm_to_point_control/two_joint_arm_to_point_control.py b/ArmNavigation/two_joint_arm_to_point_control/two_joint_arm_to_point_control.py index 75e7cf301f..09969c30be 100644 --- a/ArmNavigation/two_joint_arm_to_point_control/two_joint_arm_to_point_control.py +++ b/ArmNavigation/two_joint_arm_to_point_control/two_joint_arm_to_point_control.py @@ -5,16 +5,20 @@ Author: Daniel Ingram (daniel-s-ingram) Atsushi Sakai (@Atsushi_twi) -Ref: P. I. Corke, "Robotics, Vision & Control", Springer 2017, ISBN 978-3-319-54413-7 p102 -- [Robotics, Vision and Control \| SpringerLink](https://link.springer.com/book/10.1007/978-3-642-20144-8) +Reference: P. I. Corke, "Robotics, Vision & Control", Springer 2017, + ISBN 978-3-319-54413-7 p102 +- [Robotics, Vision and Control] +(https://link.springer.com/book/10.1007/978-3-642-20144-8) """ import matplotlib.pyplot as plt import numpy as np +import math +from utils.angle import angle_mod -# Similation parameters +# Simulation parameters Kp = 15 dt = 0.01 @@ -34,34 +38,50 @@ def two_joint_arm(GOAL_TH=0.0, theta1=0.0, theta2=0.0): """ Computes the inverse kinematics for a planar 2DOF arm + When out of bounds, rewrite x and y with last correct values """ + global x, y + x_prev, y_prev = None, None while True: try: - theta2_goal = np.arccos( - (x**2 + y**2 - l1**2 - l2**2) / (2 * l1 * l2)) - theta1_goal = np.math.atan2(y, x) - np.math.atan2(l2 * - np.sin(theta2_goal), (l1 + l2 * np.cos(theta2_goal))) + if x is not None and y is not None: + x_prev = x + y_prev = y + if np.hypot(x, y) > (l1 + l2): + theta2_goal = 0 + else: + theta2_goal = np.arccos( + (x**2 + y**2 - l1**2 - l2**2) / (2 * l1 * l2)) + tmp = math.atan2(l2 * np.sin(theta2_goal), + (l1 + l2 * np.cos(theta2_goal))) + theta1_goal = math.atan2(y, x) - tmp if theta1_goal < 0: theta2_goal = -theta2_goal - theta1_goal = np.math.atan2( - y, x) - np.math.atan2(l2 * np.sin(theta2_goal), (l1 + l2 * np.cos(theta2_goal))) + tmp = math.atan2(l2 * np.sin(theta2_goal), + (l1 + l2 * np.cos(theta2_goal))) + theta1_goal = math.atan2(y, x) - tmp theta1 = theta1 + Kp * ang_diff(theta1_goal, theta1) * dt theta2 = theta2 + Kp * ang_diff(theta2_goal, theta2) * dt except ValueError as e: - print("Unreachable goal") + print("Unreachable goal"+e) + except TypeError: + x = x_prev + y = y_prev wrist = plot_arm(theta1, theta2, x, y) # check goal - d2goal = np.hypot(wrist[0] - x, wrist[1] - y) + d2goal = None + if x is not None and y is not None: + d2goal = np.hypot(wrist[0] - x, wrist[1] - y) if abs(d2goal) < GOAL_TH and x is not None: return theta1, theta2 -def plot_arm(theta1, theta2, x, y): # pragma: no cover +def plot_arm(theta1, theta2, target_x, target_y): # pragma: no cover shoulder = np.array([0, 0]) elbow = shoulder + np.array([l1 * np.cos(theta1), l1 * np.sin(theta1)]) wrist = elbow + \ @@ -77,8 +97,8 @@ def plot_arm(theta1, theta2, x, y): # pragma: no cover plt.plot(elbow[0], elbow[1], 'ro') plt.plot(wrist[0], wrist[1], 'ro') - plt.plot([wrist[0], x], [wrist[1], y], 'g--') - plt.plot(x, y, 'g*') + plt.plot([wrist[0], target_x], [wrist[1], target_y], 'g--') + plt.plot(target_x, target_y, 'g*') plt.xlim(-2, 2) plt.ylim(-2, 2) @@ -91,7 +111,7 @@ def plot_arm(theta1, theta2, x, y): # pragma: no cover def ang_diff(theta1, theta2): # Returns the difference between two angles in the range -pi to +pi - return (theta1 - theta2 + np.pi) % (2 * np.pi) - np.pi + return angle_mod(theta1 - theta2) def click(event): # pragma: no cover @@ -115,8 +135,8 @@ def main(): # pragma: no cover fig = plt.figure() fig.canvas.mpl_connect("button_press_event", click) # for stopping simulation with the esc key. - fig.canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + fig.canvas.mpl_connect('key_release_event', lambda event: [ + exit(0) if event.key == 'escape' else None]) two_joint_arm() diff --git a/Bipedal/bipedal_planner/bipedal_planner.py b/Bipedal/bipedal_planner/bipedal_planner.py index 01df63034f..c34357df67 100644 --- a/Bipedal/bipedal_planner/bipedal_planner.py +++ b/Bipedal/bipedal_planner/bipedal_planner.py @@ -47,10 +47,10 @@ def walk(self, t_sup=0.8, z_c=0.8, a=10, b=1, plot=False): return # set up plotter - com_trajectory_for_plot, ax = None, None if plot: fig = plt.figure() ax = Axes3D(fig) + fig.add_axes(ax) com_trajectory_for_plot = [] px, py = 0.0, 0.0 # reference footstep position @@ -110,83 +110,88 @@ def walk(self, t_sup=0.8, z_c=0.8, a=10, b=1, plot=False): # plot if plot: - # for plot trajectory, plot in for loop - for c in range(len(self.com_trajectory)): - if c > len(com_trajectory_for_plot): - # set up plotter - plt.cla() - # for stopping simulation with the esc key. - plt.gcf().canvas.mpl_connect( - 'key_release_event', - lambda event: - [exit(0) if event.key == 'escape' else None]) - ax.set_zlim(0, z_c * 2) - ax.set_xlim(0, 1) - ax.set_ylim(-0.5, 0.5) - - # update com_trajectory_for_plot - com_trajectory_for_plot.append(self.com_trajectory[c]) - - # plot com - ax.plot([p[0] for p in com_trajectory_for_plot], - [p[1] for p in com_trajectory_for_plot], [ - 0 for _ in com_trajectory_for_plot], - color="red") - - # plot inverted pendulum - ax.plot([px_star, com_trajectory_for_plot[-1][0]], - [py_star, com_trajectory_for_plot[-1][1]], - [0, z_c], color="green", linewidth=3) - ax.scatter([com_trajectory_for_plot[-1][0]], - [com_trajectory_for_plot[-1][1]], - [z_c], color="green", s=300) - - # foot rectangle for self.ref_p - foot_width = 0.06 - foot_height = 0.04 - for j in range(len(self.ref_p)): - angle = self.ref_p[j][2] + \ - math.atan2(foot_height, - foot_width) - math.pi - r = math.sqrt( - math.pow(foot_width / 3., 2) + math.pow( - foot_height / 2., 2)) - rec = pat.Rectangle(xy=( - self.ref_p[j][0] + r * math.cos(angle), - self.ref_p[j][1] + r * math.sin(angle)), - width=foot_width, - height=foot_height, - angle=self.ref_p[j][ - 2] * 180 / math.pi, - color="blue", fill=False, - ls=":") - ax.add_patch(rec) - art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z") - - # foot rectangle for self.act_p - for j in range(len(self.act_p)): - angle = self.act_p[j][2] + \ - math.atan2(foot_height, - foot_width) - math.pi - r = math.sqrt( - math.pow(foot_width / 3., 2) + math.pow( - foot_height / 2., 2)) - rec = pat.Rectangle(xy=( - self.act_p[j][0] + r * math.cos(angle), - self.act_p[j][1] + r * math.sin(angle)), - width=foot_width, - height=foot_height, - angle=self.act_p[j][ - 2] * 180 / math.pi, - color="blue", fill=False) - ax.add_patch(rec) - art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z") - - plt.draw() - plt.pause(0.001) + self.plot_animation(ax, com_trajectory_for_plot, px_star, + py_star, z_c) if plot: plt.show() + def plot_animation(self, ax, com_trajectory_for_plot, px_star, py_star, + z_c): # pragma: no cover + # for plot trajectory, plot in for loop + for c in range(len(self.com_trajectory)): + if c > len(com_trajectory_for_plot): + # set up plotter + plt.cla() + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: + [exit(0) if event.key == 'escape' else None]) + ax.set_zlim(0, z_c * 2) + ax.set_xlim(0, 1) + ax.set_ylim(-0.5, 0.5) + + # update com_trajectory_for_plot + com_trajectory_for_plot.append(self.com_trajectory[c]) + + # plot com + ax.plot([p[0] for p in com_trajectory_for_plot], + [p[1] for p in com_trajectory_for_plot], [ + 0 for _ in com_trajectory_for_plot], + color="red") + + # plot inverted pendulum + ax.plot([px_star, com_trajectory_for_plot[-1][0]], + [py_star, com_trajectory_for_plot[-1][1]], + [0, z_c], color="green", linewidth=3) + ax.scatter([com_trajectory_for_plot[-1][0]], + [com_trajectory_for_plot[-1][1]], + [z_c], color="green", s=300) + + # foot rectangle for self.ref_p + foot_width = 0.06 + foot_height = 0.04 + for j in range(len(self.ref_p)): + angle = self.ref_p[j][2] + \ + math.atan2(foot_height, + foot_width) - math.pi + r = math.sqrt( + math.pow(foot_width / 3., 2) + math.pow( + foot_height / 2., 2)) + rec = pat.Rectangle(xy=( + self.ref_p[j][0] + r * math.cos(angle), + self.ref_p[j][1] + r * math.sin(angle)), + width=foot_width, + height=foot_height, + angle=self.ref_p[j][ + 2] * 180 / math.pi, + color="blue", fill=False, + ls=":") + ax.add_patch(rec) + art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z") + + # foot rectangle for self.act_p + for j in range(len(self.act_p)): + angle = self.act_p[j][2] + \ + math.atan2(foot_height, + foot_width) - math.pi + r = math.sqrt( + math.pow(foot_width / 3., 2) + math.pow( + foot_height / 2., 2)) + rec = pat.Rectangle(xy=( + self.act_p[j][0] + r * math.cos(angle), + self.act_p[j][1] + r * math.sin(angle)), + width=foot_width, + height=foot_height, + angle=self.act_p[j][ + 2] * 180 / math.pi, + color="blue", fill=False) + ax.add_patch(rec) + art3d.pathpatch_2d_to_3d(rec, z=0, zdir="z") + + plt.draw() + plt.pause(0.001) + if __name__ == "__main__": bipedal_planner = BipedalPlanner() diff --git a/CODE_OF_CONDUCT.md b/CODE_OF_CONDUCT.md new file mode 100644 index 0000000000..e8c4702596 --- /dev/null +++ b/CODE_OF_CONDUCT.md @@ -0,0 +1,76 @@ +# Contributor Covenant Code of Conduct + +## Our Pledge + +In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to making participation in our project and +our community a harassment-free experience for everyone, regardless of age, body +size, disability, ethnicity, sex characteristics, gender identity and expression, +level of experience, education, socio-economic status, nationality, personal +appearance, race, religion, or sexual identity and orientation. + +## Our Standards + +Examples of behavior that contributes to creating a positive environment +include: + +* Using welcoming and inclusive language +* Being respectful of differing viewpoints and experiences +* Gracefully accepting constructive criticism +* Focusing on what is best for the community +* Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +* The use of sexualized language or imagery and unwelcome sexual attention or + advances +* Trolling, insulting/derogatory comments, and personal or political attacks +* Public or private harassment +* Publishing others' private information, such as a physical or electronic + address, without explicit permission +* Other conduct which could reasonably be considered inappropriate in a + professional setting + +## Our Responsibilities + +Project maintainers are responsible for clarifying the standards of acceptable +behavior and are expected to take appropriate and fair corrective action in +response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, or +reject comments, commits, code, wiki edits, issues, and other contributions +that are not aligned to this Code of Conduct, or to ban temporarily or +permanently any contributor for other behaviors that they deem inappropriate, +threatening, offensive, or harmful. + +## Scope + +This Code of Conduct applies both within project spaces and in public spaces +when an individual is representing the project or its community. Examples of +representing a project or community include using an official project e-mail +address, posting via an official social media account, or acting as an appointed +representative at an online or offline event. Representation of a project may be +further defined and clarified by project maintainers. + +## Enforcement + +Instances of abusive, harassing, or otherwise unacceptable behavior may be +reported by contacting the project team at asakaig@gmail.com. All +complaints will be reviewed and investigated and will result in a response that +is deemed necessary and appropriate to the circumstances. The project team is +obligated to maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted separately. + +Project maintainers who do not follow or enforce the Code of Conduct in good +faith may face temporary or permanent repercussions as determined by other +members of the project's leadership. + +## Attribution + +This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4, +available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html + +[homepage]: https://www.contributor-covenant.org + +For answers to common questions about this code of conduct, see +https://www.contributor-covenant.org/faq diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index fd41946b65..3bcc499e6a 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -1,23 +1,5 @@ -# Contributing to Python +# Contributing -:+1::tada: First of off, thanks very much for taking the time to contribute! :tada::+1: +:+1::tada: First of all, thank you very much for taking the time to contribute! :tada::+1: -The following is a set of guidelines for contributing to PythonRobotics. - -These are mostly guidelines, not rules. - -Use your best judgment, and feel free to propose changes to this document in a pull request. - -# Before contributing - -## Taking a look at the paper. - -Please check this paper to understand the philosophy of this project. - -- [\[1808\.10703\] PythonRobotics: a Python code collection of robotics algorithms](https://arxiv.org/abs/1808.10703) ([BibTeX](https://github.com/AtsushiSakai/PythonRoboticsPaper/blob/master/python_robotics.bib)) - -## Check your Python version. - -We only accept a PR for Python 3.6.x or higher. - -We will not accept a PR for Python 2.x. +Please check this document for contribution: [How to contribute — PythonRobotics documentation](https://atsushisakai.github.io/PythonRobotics/modules/0_getting_started/3_how_to_contribute.html) diff --git a/Introduction/introduction.ipynb b/Introduction/introduction.ipynb deleted file mode 100644 index c2fcc709a5..0000000000 --- a/Introduction/introduction.ipynb +++ /dev/null @@ -1,44 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Introduction" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Ref" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.7" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/InvertedPendulum/inverted_pendulum_lqr_control.py b/InvertedPendulum/inverted_pendulum_lqr_control.py new file mode 100644 index 0000000000..c4380530b8 --- /dev/null +++ b/InvertedPendulum/inverted_pendulum_lqr_control.py @@ -0,0 +1,192 @@ +""" +Inverted Pendulum LQR control +author: Trung Kien - letrungkien.k53.hut@gmail.com +""" + +import math +import time + +import matplotlib.pyplot as plt +import numpy as np +from numpy.linalg import inv, eig + +# Model parameters + +l_bar = 2.0 # length of bar +M = 1.0 # [kg] +m = 0.3 # [kg] +g = 9.8 # [m/s^2] + +nx = 4 # number of state +nu = 1 # number of input +Q = np.diag([0.0, 1.0, 1.0, 0.0]) # state cost matrix +R = np.diag([0.01]) # input cost matrix + +delta_t = 0.1 # time tick [s] +sim_time = 5.0 # simulation time [s] + +show_animation = True + + +def main(): + x0 = np.array([ + [0.0], + [0.0], + [0.3], + [0.0] + ]) + + x = np.copy(x0) + time = 0.0 + + while sim_time > time: + time += delta_t + + # calc control input + u = lqr_control(x) + + # simulate inverted pendulum cart + x = simulation(x, u) + + if show_animation: + plt.clf() + px = float(x[0, 0]) + theta = float(x[2, 0]) + plot_cart(px, theta) + plt.xlim([-5.0, 2.0]) + plt.pause(0.001) + + print("Finish") + print(f"x={float(x[0, 0]):.2f} [m] , theta={math.degrees(x[2, 0]):.2f} [deg]") + if show_animation: + plt.show() + + +def simulation(x, u): + A, B = get_model_matrix() + x = A @ x + B @ u + + return x + + +def solve_DARE(A, B, Q, R, maxiter=150, eps=0.01): + """ + Solve a discrete time_Algebraic Riccati equation (DARE) + """ + P = Q + + for i in range(maxiter): + Pn = A.T @ P @ A - A.T @ P @ B @ \ + inv(R + B.T @ P @ B) @ B.T @ P @ A + Q + if (abs(Pn - P)).max() < eps: + break + P = Pn + + return Pn + + +def dlqr(A, B, Q, R): + """ + Solve the discrete time lqr controller. + x[k+1] = A x[k] + B u[k] + cost = sum x[k].T*Q*x[k] + u[k].T*R*u[k] + # ref Bertsekas, p.151 + """ + + # first, try to solve the ricatti equation + P = solve_DARE(A, B, Q, R) + + # compute the LQR gain + K = inv(B.T @ P @ B + R) @ (B.T @ P @ A) + + eigVals, eigVecs = eig(A - B @ K) + return K, P, eigVals + + +def lqr_control(x): + A, B = get_model_matrix() + start = time.time() + K, _, _ = dlqr(A, B, Q, R) + u = -K @ x + elapsed_time = time.time() - start + print(f"calc time:{elapsed_time:.6f} [sec]") + return u + + +def get_numpy_array_from_matrix(x): + """ + get build-in list from matrix + """ + return np.array(x).flatten() + + +def get_model_matrix(): + A = np.array([ + [0.0, 1.0, 0.0, 0.0], + [0.0, 0.0, m * g / M, 0.0], + [0.0, 0.0, 0.0, 1.0], + [0.0, 0.0, g * (M + m) / (l_bar * M), 0.0] + ]) + A = np.eye(nx) + delta_t * A + + B = np.array([ + [0.0], + [1.0 / M], + [0.0], + [1.0 / (l_bar * M)] + ]) + B = delta_t * B + + return A, B + + +def flatten(a): + return np.array(a).flatten() + + +def plot_cart(xt, theta): + cart_w = 1.0 + cart_h = 0.5 + radius = 0.1 + + cx = np.array([-cart_w / 2.0, cart_w / 2.0, cart_w / + 2.0, -cart_w / 2.0, -cart_w / 2.0]) + cy = np.array([0.0, 0.0, cart_h, cart_h, 0.0]) + cy += radius * 2.0 + + cx = cx + xt + + bx = np.array([0.0, l_bar * math.sin(-theta)]) + bx += xt + by = np.array([cart_h, l_bar * math.cos(-theta) + cart_h]) + by += radius * 2.0 + + angles = np.arange(0.0, math.pi * 2.0, math.radians(3.0)) + ox = np.array([radius * math.cos(a) for a in angles]) + oy = np.array([radius * math.sin(a) for a in angles]) + + rwx = np.copy(ox) + cart_w / 4.0 + xt + rwy = np.copy(oy) + radius + lwx = np.copy(ox) - cart_w / 4.0 + xt + lwy = np.copy(oy) + radius + + wx = np.copy(ox) + bx[-1] + wy = np.copy(oy) + by[-1] + + plt.plot(flatten(cx), flatten(cy), "-b") + plt.plot(flatten(bx), flatten(by), "-k") + plt.plot(flatten(rwx), flatten(rwy), "-k") + plt.plot(flatten(lwx), flatten(lwy), "-k") + plt.plot(flatten(wx), flatten(wy), "-k") + plt.title(f"x: {xt:.2f} , theta: {math.degrees(theta):.2f}") + + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) + + plt.axis("equal") + + +if __name__ == '__main__': + main() diff --git a/InvertedPendulumCart/inverted_pendulum_mpc_control.py b/InvertedPendulum/inverted_pendulum_mpc_control.py similarity index 79% rename from InvertedPendulumCart/inverted_pendulum_mpc_control.py rename to InvertedPendulum/inverted_pendulum_mpc_control.py index e7b3077740..c45dde8acc 100644 --- a/InvertedPendulumCart/inverted_pendulum_mpc_control.py +++ b/InvertedPendulum/inverted_pendulum_mpc_control.py @@ -17,14 +17,16 @@ m = 0.3 # [kg] g = 9.8 # [m/s^2] -Q = np.diag([0.0, 1.0, 1.0, 0.0]) -R = np.diag([0.01]) nx = 4 # number of state nu = 1 # number of input +Q = np.diag([0.0, 1.0, 1.0, 0.0]) # state cost matrix +R = np.diag([0.01]) # input cost matrix + T = 30 # Horizon length delta_t = 0.1 # time tick +sim_time = 5.0 # simulation time [s] -animation = True +show_animation = True def main(): @@ -36,8 +38,10 @@ def main(): ]) x = np.copy(x0) + time = 0.0 - for i in range(50): + while sim_time > time: + time += delta_t # calc control input opt_x, opt_delta_x, opt_theta, opt_delta_theta, opt_input = \ @@ -49,18 +53,22 @@ def main(): # simulate inverted pendulum cart x = simulation(x, u) - if animation: + if show_animation: plt.clf() - px = float(x[0]) - theta = float(x[2]) + px = float(x[0, 0]) + theta = float(x[2, 0]) plot_cart(px, theta) plt.xlim([-5.0, 2.0]) plt.pause(0.001) + print("Finish") + print(f"x={float(x[0, 0]):.2f} [m] , theta={math.degrees(x[2, 0]):.2f} [deg]") + if show_animation: + plt.show() + def simulation(x, u): A, B = get_model_matrix() - x = np.dot(A, x) + np.dot(B, u) return x @@ -77,15 +85,15 @@ def mpc_control(x0): for t in range(T): cost += cvxpy.quad_form(x[:, t + 1], Q) cost += cvxpy.quad_form(u[:, t], R) - constr += [x[:, t + 1] == A * x[:, t] + B * u[:, t]] + constr += [x[:, t + 1] == A @ x[:, t] + B @ u[:, t]] constr += [x[:, 0] == x0[:, 0]] prob = cvxpy.Problem(cvxpy.Minimize(cost), constr) start = time.time() - prob.solve(verbose=False) + prob.solve(verbose=False, solver=cvxpy.CLARABEL) elapsed_time = time.time() - start - print("calc time:{0} [sec]".format(elapsed_time)) + print(f"calc time:{elapsed_time:.6f} [sec]") if prob.status == cvxpy.OPTIMAL: ox = get_numpy_array_from_matrix(x.value[0, :]) @@ -165,8 +173,12 @@ def plot_cart(xt, theta): plt.plot(flatten(rwx), flatten(rwy), "-k") plt.plot(flatten(lwx), flatten(lwy), "-k") plt.plot(flatten(wx), flatten(wy), "-k") - plt.title("x:" + str(round(xt, 2)) + ",theta:" + - str(round(math.degrees(theta), 2))) + plt.title(f"x: {xt:.2f} , theta: {math.degrees(theta):.2f}") + + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) plt.axis("equal") diff --git a/LICENSE b/LICENSE index 9d60d1828f..1c9b928b54 100644 --- a/LICENSE +++ b/LICENSE @@ -1,6 +1,7 @@ The MIT License (MIT) -Copyright (c) 2016 Atsushi Sakai +Copyright (c) 2016 - now Atsushi Sakai and other contributors: +https://github.com/AtsushiSakai/PythonRobotics/contributors Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/Localization/Kalmanfilter_basics.ipynb b/Localization/Kalmanfilter_basics.ipynb deleted file mode 100644 index c501b117de..0000000000 --- a/Localization/Kalmanfilter_basics.ipynb +++ /dev/null @@ -1,769 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## KF Basics - Part I\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Introduction\n", - "#### What is the need to describe belief in terms of PDF's?\n", - "This is because robot environments are stochastic. A robot environment may have cows with Tesla by side. That is a robot and it's environment cannot be deterministically modelled(e.g as a function of something like time t). In the real world sensors are also error prone, and hence there'll be a set of values with a mean and variance that it can take. Hence, we always have to model around some mean and variances associated." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### What is Expectation of a Random Variables?\n", - " Expectation is nothing but an average of the probabilites\n", - " \n", - "$$\\mathbb E[X] = \\sum_{i=1}^n p_ix_i$$\n", - "\n", - "In the continous form,\n", - "\n", - "$$\\mathbb E[X] = \\int_{-\\infty}^\\infty x\\, f(x) \\,dx$$\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.4000000000000001\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "import random\n", - "x=[3,1,2]\n", - "p=[0.1,0.3,0.4]\n", - "E_x=np.sum(np.multiply(x,p))\n", - "print(E_x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### What is the advantage of representing the belief as a unimodal as opposed to multimodal?\n", - "Obviously, it makes sense because we can't multiple probabilities to a car moving for two locations. This would be too confusing and the information will not be useful." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Variance, Covariance and Correlation\n", - "\n", - "#### Variance\n", - "Variance is the spread of the data. The mean does'nt tell much **about** the data. Therefore the variance tells us about the **story** about the data meaning the spread of the data.\n", - "\n", - "$$\\mathit{VAR}(X) = \\frac{1}{n}\\sum_{i=1}^n (x_i - \\mu)^2$$" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "1.0224618077401504" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x=np.random.randn(10)\n", - "np.var(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Covariance\n", - "\n", - "This is for a multivariate distribution. For example, a robot in 2-D space can take values in both x and y. To describe them, a normal distribution with mean in both x and y is needed.\n", - "\n", - "For a multivariate distribution, mean $\\mu$ can be represented as a matrix, \n", - "\n", - "$$\n", - "\\mu = \\begin{bmatrix}\\mu_1\\\\\\mu_2\\\\ \\vdots \\\\\\mu_n\\end{bmatrix}\n", - "$$\n", - "\n", - "\n", - "Similarly, variance can also be represented.\n", - "\n", - "But an important concept is that in the same way as every variable or dimension has a variation in its values, it is also possible that there will be values on how they **together vary**. This is also a measure of how two datasets are related to each other or **correlation**.\n", - "\n", - "For example, as height increases weight also generally increases. These variables are correlated. They are positively correlated because as one variable gets larger so does the other.\n", - "\n", - "We use a **covariance matrix** to denote covariances of a multivariate normal distribution:\n", - "$$\n", - "\\Sigma = \\begin{bmatrix}\n", - " \\sigma_1^2 & \\sigma_{12} & \\cdots & \\sigma_{1n} \\\\\n", - " \\sigma_{21} &\\sigma_2^2 & \\cdots & \\sigma_{2n} \\\\\n", - " \\vdots & \\vdots & \\ddots & \\vdots \\\\\n", - " \\sigma_{n1} & \\sigma_{n2} & \\cdots & \\sigma_n^2\n", - " \\end{bmatrix}\n", - "$$\n", - "\n", - "**Diagonal** - Variance of each variable associated. \n", - "\n", - "**Off-Diagonal** - covariance between ith and jth variables.\n", - "\n", - "$$\\begin{aligned}VAR(X) = \\sigma_x^2 &= \\frac{1}{n}\\sum_{i=1}^n(X - \\mu)^2\\\\\n", - "COV(X, Y) = \\sigma_{xy} &= \\frac{1}{n}\\sum_{i=1}^n[(X-\\mu_x)(Y-\\mu_y)\\big]\\end{aligned}$$" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.08868895, 0.05064471, 0.08855629],\n", - " [0.05064471, 0.06219243, 0.11555291],\n", - " [0.08855629, 0.11555291, 0.21534324]])" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x=np.random.random((3,3))\n", - "np.cov(x)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Covariance taking the data as **sample** with $\\frac{1}{N-1}$" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0.1571437 , -0.00766623],\n", - " [-0.00766623, 0.13957621]])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "x_cor=np.random.rand(1,10)\n", - "y_cor=np.random.rand(1,10)\n", - "np.cov(x_cor,y_cor)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Covariance taking the data as **population** with $\\frac{1}{N}$" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 0.14142933, -0.0068996 ],\n", - " [-0.0068996 , 0.12561859]])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.cov(x_cor,y_cor,bias=1)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Gaussians \n", - "\n", - "#### Central Limit Theorem\n", - "\n", - "According to this theorem, the average of n samples of random and independent variables tends to follow a normal distribution as we increase the sample size.(Generally, for n>=30)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(array([ 1., 4., 9., 12., 12., 20., 16., 16., 4., 6.]),\n", - " array([5.30943011, 5.34638597, 5.38334183, 5.42029769, 5.45725355,\n", - " 5.49420941, 5.53116527, 5.56812114, 5.605077 , 5.64203286,\n", - " 5.67898872]),\n", - " )" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAD8CAYAAABw1c+bAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFfFJREFUeJzt3XGQnHV9x/H3pyAaOQxBZIWAjVbKCJyg2QYd2s6eSIiRKTrFCmUwVJhTRxk7k7bSdgQHdEqnRmsHK6aQAVvlnKlQKSCQQc7IFJQLE7ggYACvmoRJBoPRg3Tswbd/3JO6bJ7NbfZ5dve5+X1eMzu3z/P8nn0+99ze5/ae3X1WEYGZmaXjtwYdwMzM+svFb2aWGBe/mVliXPxmZolx8ZuZJcbFb2aWGBe/mVliXPxmZolx8ZuZJebgQQfIc+SRR8aSJUtylz3//PMceuih/Q10gJyxPPMhpzOWwxmL2bhx47MR8bqOBkdE5S5Lly6Ndu699962y6rCGcszH3I6YzmcsRhgIjrsWB/qMTNLjIvfzCwxLn4zs8S4+M3MEuPiNzNLzJzFL+k4SfdKekzSo5I+mc0/QtJ6SVuyr4varL8qG7NF0qqyvwEzMzswnTzinwFWR8RbgHcAH5d0InAZcE9EHA/ck02/jKQjgCuA04BlwBXt/kCYmVl/zFn8EfFMRDyUXf8V8BiwGDgHuDEbdiPwvpzVzwLWR8SuiHgOWA+sKCO4mZl154CO8UtaArwN+AFQi4hnYPaPA3BUziqLgZ81TW/N5pmZ2YAoOvywdUlDwPeAz0XEzZJ+ERGHNy1/LiIWtazzl8ArI+Kz2fSngRciYk3O7Y8CowC1Wm3p2NhYbo7p6WmGhoY6yjwozliequWc3LZ7n3m1BbBjT2+3O7x4YaH1q7Yf8zhjMSMjIxsjot7J2I7O1SPpFcC3gK9HxM3Z7B2Sjo6IZyQdDezMWXUr0GiaPhYYz9tGRKwF1gLU6/VoNBp5wxgfH6fdsqpwxvJULedFl92+z7zVwzOsmeztaa+mLmgUWr9q+zGPM/ZPJ6/qEXA98FhEfKFp0a3A3lfprAK+nbP6XcBySYuyJ3WXZ/PMzGxAOjnGfzpwIfAuSZuyy0rgauBMSVuAM7NpJNUlXQcQEbuAq4AHs8uV2TwzMxuQOf8/jYj7ALVZfEbO+AngkqbpdcC6bgOamVm5/M5dM7PEuPjNzBLj4jczS4yL38wsMS5+M7PEuPjNzBLj4jczS4yL38wsMS5+M7PEuPjNzBLj4jczS4yL38wsMS5+M7PEuPjNzBLj4jczS4yL38wsMS5+M7PEzPkJXJLWAWcDOyPi5GzeN4ETsiGHA7+IiFNz1p0CfgW8CMx0+gnwZmbWO3MWP3ADcA3wtb0zIuKDe69LWgPs3s/6IxHxbLcBzcysXJ185u4GSUvylkkS8CfAu8qNZWZmvVL0GP8fADsiYkub5QHcLWmjpNGC2zIzsxIoIuYeNPuI/7a9x/ib5n8FeDIi1rRZ75iI2C7pKGA9cGlEbGgzdhQYBajVakvHxsZys0xPTzM0NDRn5kFyxvJULefktn2PatYWwI49vd3u8OKFhdav2n7M44zFjIyMbOz0edSui1/SwcA2YGlEbO3gNj4DTEfE5+caW6/XY2JiInfZ+Pg4jUZjzsyD5IzlqVrOJZfdvs+81cMzrJns5Omy7k1d/d5C61dtP+ZxxmIkdVz8RQ71vBt4vF3pSzpU0mF7rwPLgc0FtmdmZiWYs/gl3QTcD5wgaauki7NF5wE3tYw9RtId2WQNuE/Sw8APgdsj4s7yopuZWTc6eVXP+W3mX5QzbzuwMrv+NHBKwXxmZlYyv3PXzCwxLn4zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8T09pSCZlaKvLOCHojVwzNcVPA2eq01Y9Ezklp7fsRvZpYYF7+ZWWJc/GZmiXHxm5klxsVvZpYYF7+ZWWI6+ejFdZJ2StrcNO8zkrZJ2pRdVrZZd4WkJyQ9KemyMoObmVl3OnnEfwOwImf+FyPi1OxyR+tCSQcBXwbeA5wInC/pxCJhzcysuDmLPyI2ALu6uO1lwJMR8XRE/BoYA87p4nbMzKxEioi5B0lLgNsi4uRs+jPARcAvgQlgdUQ817LOucCKiLgkm74QOC0iPtFmG6PAKECtVls6NjaWm2V6epqhoaG5v7MBcsbyVC3n5Lbd+8yrLYAdewYQ5gDMx4zDixcOLkwbVbs/NhsZGdkYEfVOxnZ7yoavAFcBkX1dA3y4ZYxy1mv7VyYi1gJrAer1ejQajdxx4+PjtFtWFc5YnqrlzDvtwerhGdZMVvvsJ/Mx49QFjcGFaaNq98dudfWqnojYEREvRsRLwL8we1in1VbguKbpY4Ht3WzPzMzK01XxSzq6afL9wOacYQ8Cx0t6o6RDgPOAW7vZnpmZlWfO//0k3QQ0gCMlbQWuABqSTmX20M0U8JFs7DHAdRGxMiJmJH0CuAs4CFgXEY/25LswM7OOzVn8EXF+zuzr24zdDqxsmr4D2OelnmZmNjh+566ZWWJc/GZmiXHxm5klxsVvZpYYF7+ZWWJc/GZmiXHxm5klxsVvZpYYF7+ZWWJc/GZmiXHxm5klxsVvZpYYF7+ZWWJc/GZmiXHxm5klxsVvZpYYF7+ZWWLmLH5J6yTtlLS5ad4/SHpc0iOSbpF0eJt1pyRNStokaaLM4GZm1p1OHvHfAKxombceODki3gr8GPjr/aw/EhGnRkS9u4hmZlamOYs/IjYAu1rm3R0RM9nkA8CxPchmZmY9oIiYe5C0BLgtIk7OWfafwDcj4t9ylv0EeA4I4KsRsXY/2xgFRgFqtdrSsbGx3HHT09MMDQ3NmXmQnLE8Vcs5uW33PvNqC2DHngGEOQDzMePw4oWDC9NG1e6PzUZGRjZ2emTl4CIbkvS3wAzw9TZDTo+I7ZKOAtZLejz7D2If2R+FtQD1ej0ajUbuDY6Pj9NuWVU4Y3mqlvOiy27fZ97q4RnWTBb6Veq5+Zhx6oLG4MK0UbX7Y7e6flWPpFXA2cAF0ebfhojYnn3dCdwCLOt2e2ZmVo6uil/SCuBTwB9FxAttxhwq6bC914HlwOa8sWZm1j+dvJzzJuB+4ARJWyVdDFwDHMbs4ZtNkq7Nxh4j6Y5s1Rpwn6SHgR8Ct0fEnT35LszMrGNzHvSLiPNzZl/fZux2YGV2/WnglELpzMysdNV+tscqbUnOE51lWz08k/uEqpl1z6dsMDNLjIvfzCwxLn4zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8S4+M3MEtNR8UtaJ2mnpM1N846QtF7SluzrojbrrsrGbMk+oN3MzAao00f8NwArWuZdBtwTEccD92TTLyPpCOAK4DRgGXBFuz8QZmbWHx0Vf0RsAHa1zD4HuDG7fiPwvpxVzwLWR8SuiHgOWM++f0DMzKyPFBGdDZSWALdFxMnZ9C8i4vCm5c9FxKKWdf4CeFVEfDab/jSwJyI+n3P7o8AoQK1WWzo2NpabY3p6mqGhoY4yD0oqGSe37S4pTXu1BbBjT883U4gzlqM14/DihYML00aVf7dHRkY2RkS9k7G9/rB15czL/UsTEWuBtQD1ej0ajUbuDY6Pj9NuWVWkkrEfH4K+eniGNZO9vpsW44zlaM04dUFjcGHamA+/250o8qqeHZKOBsi+7swZsxU4rmn6WGB7gW2amVlBRYr/VmDvq3RWAd/OGXMXsFzSouxJ3eXZPDMzG5BOX855E3A/cIKkrZIuBq4GzpS0BTgzm0ZSXdJ1ABGxC7gKeDC7XJnNMzOzAenooF9EnN9m0Rk5YyeAS5qm1wHrukpnZmal8zt3zcwS4+I3M0uMi9/MLDEufjOzxLj4zcwSU+238llHlnTxDtrVwzN9eeetmVWPH/GbmSXGxW9mlhgXv5lZYlz8ZmaJcfGbmSXGxW9mlhgXv5lZYlz8ZmaJcfGbmSXGxW9mlpiui1/SCZI2NV1+KenPW8Y0JO1uGnN58chmZlZE1+fqiYgngFMBJB0EbANuyRn6/Yg4u9vtmJlZuco61HMG8FRE/HdJt2dmZj1SVvGfB9zUZtk7JT0s6TuSTippe2Zm1iVFRLEbkA4BtgMnRcSOlmWvAV6KiGlJK4EvRcTxbW5nFBgFqNVqS8fGxnK3Nz09zdDQUKHMvdbvjJPbdh/wOrUFsGNPD8KUbD7kdMZytGYcXrxwcGHaqHL/jIyMbIyIeidjyyj+c4CPR8TyDsZOAfWIeHZ/4+r1ekxMTOQuGx8fp9FodJG0f/qdsdvz8a+ZrP7HMcyHnM5YjtaMU1e/d4Bp8lW5fyR1XPxlHOo5nzaHeSS9XpKy68uy7f28hG2amVmXCj0EkPRq4EzgI03zPgoQEdcC5wIfkzQD7AHOi6L/YpiZWSGFij8iXgBe2zLv2qbr1wDXFNmGmZmVy+/cNTNLjIvfzCwxLn4zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8RU+zytZmYD0O5U56uHZ7ioi9Ogd6pfp6L2I34zs8S4+M3MEuPiNzNLjIvfzCwxLn4zs8QULn5JU5ImJW2StM8npGvWP0l6UtIjkt5edJtmZta9sl7OORIRz7ZZ9h7g+OxyGvCV7KuZmQ1APw71nAN8LWY9ABwu6eg+bNfMzHKUUfwB3C1po6TRnOWLgZ81TW/N5pmZ2QAoIordgHRMRGyXdBSwHrg0IjY0Lb8d+LuIuC+bvgf4q4jY2HI7o8AoQK1WWzo2Npa7venpaYaGhgpl7rV+Z5zctvuA16ktgB17ehCmZPMhpzOWozXj8OKFA8vS7neq1/uxyPc8MjKyMSLqnYwtfIw/IrZnX3dKugVYBmxoGrIVOK5p+lhge87trAXWAtTr9Wg0GrnbGx8fp92yquh3xm7eQr56eIY1k9U/Y8d8yOmM5WjNOHVBY2BZ2v1O9Xo/9ut7LnSoR9Khkg7bex1YDmxuGXYr8KHs1T3vAHZHxDNFtmtmZt0r+qerBtwiae9tfSMi7pT0UYCIuBa4A1gJPAm8APxZwW2amVkBhYo/Ip4GTsmZf23T9QA+XmQ7ZmZWHr9z18wsMS5+M7PEuPjNzBLj4jczS4yL38wsMdV+R8c80vwZnb3+XE6zFLT73Fsrzo/4zcwS4+I3M0uMi9/MLDEufjOzxLj4zcwS4+I3M0uMi9/MLDEufjOzxLj4zcwS4+I3M0uMi9/MLDFdF7+k4yTdK+kxSY9K+mTOmIak3ZI2ZZfLi8U1M7OiipykbQZYHREPZR+4vlHS+oj4Ucu470fE2QW2Y2ZmJer6EX9EPBMRD2XXfwU8BiwuK5iZmfVGKcf4JS0B3gb8IGfxOyU9LOk7kk4qY3tmZtY9RUSxG5CGgO8Bn4uIm1uWvQZ4KSKmJa0EvhQRx7e5nVFgFKBWqy0dGxvL3d709DRDQ0OFMvfC5Lbd/3+9tgB27BlgmA7Mh4wwP3I6YzmcEYYXL+x63ZGRkY0RUe9kbKHil/QK4Dbgroj4Qgfjp4B6RDy7v3H1ej0mJiZyl42Pj9NoNA48bI+1fhDLmslqf8bNfMgI8yOnM5bDGWHq6vd2va6kjou/yKt6BFwPPNau9CW9PhuHpGXZ9n7e7TbNzKy4In+6TgcuBCYlbcrm/Q3wBoCIuBY4F/iYpBlgD3BeFD22ZGZmhXRd/BFxH6A5xlwDXNPtNszMrHx+566ZWWJc/GZmiXHxm5klxsVvZpYYF7+ZWWJc/GZmiXHxm5klxsVvZpYYF7+ZWWJc/GZmian2qfC60HyWTDMz25cf8ZuZJcbFb2aWGBe/mVliXPxmZolx8ZuZJcbFb2aWmELFL2mFpCckPSnpspzlr5T0zWz5DyQtKbI9MzMrrsiHrR8EfBl4D3AicL6kE1uGXQw8FxFvBr4I/H232zMzs3IUecS/DHgyIp6OiF8DY8A5LWPOAW7Mrv87cIak/X5Or5mZ9VaR4l8M/Kxpems2L3dMRMwAu4HXFtimmZkVpIjobkXpA8BZEXFJNn0hsCwiLm0a82g2Zms2/VQ25uc5tzcKjGaTJwBPtNn0kcCzXYXuH2csz3zI6YzlcMZifjsiXtfJwCLn6tkKHNc0fSywvc2YrZIOBhYCu/JuLCLWAmvn2qikiYiod5W4T5yxPPMhpzOWwxn7p8ihngeB4yW9UdIhwHnArS1jbgVWZdfPBb4b3f6LYWZmpej6EX9EzEj6BHAXcBCwLiIelXQlMBERtwLXA/8q6UlmH+mfV0ZoMzPrXqHTMkfEHcAdLfMub7r+P8AHimwjx5yHgyrAGcszH3I6YzmcsU+6fnLXzMzmJ5+ywcwsMZUqfklTkiYlbZI0kbP8HEmP7F0u6feblq2StCW7rGpdtyIZX8zmb5LU+kR43zI2jfu9LNO5TfMqsR/nyFiJ/SipIWl3U5bLm5bt93QmFcrZ0c+h1xmbcm6S9Kik7zXN78u+LJixL/uxNBFRmQswBRy5n+VD/Obw1FuBx7PrRwBPZ18XZdcXVSljNj1dhf2YjTkI+C6zz9GcW7X92C5jlfYj0ABua5P7KeBNwCHAw8CJVcvZ6c+hTxkPB34EvCGbPqrf+7LbjP3cj2VdKvWIfy4RMR3ZXgYOBfZePwtYHxG7IuI5YD2womIZq+ZS4FvAzqZ5ldmPmbyM80EnpzOxl/tT4OaI+ClAROz9mVdpX7bLOO9UrfgDuFvSxuydvPuQ9H5JjwO3Ax/OZndy+ohBZwR4VXb45wFJ7+tRvjkzSloMvB+4tmVRZfbjfjJCRfZj5p2SHpb0HUknZfP6uR+L5Ox03X5k/F1gkaTxbMyHsvmVuU/uJ2Mn61ZKoZdz9sDpEbFd0lHAekmPR8SG5gERcQtwi6Q/BK4C3g3knfitV4+0u80Is/8ibpf0JuC7kiYj4qkBZPxH4FMR8aJefs68Ku3HdhmhOvvxIWbfJj8taSXwH8Dx9Hc/FsnZybr9yngwsBQ4A1gA3C/pAap1n8zNGBE/7mDdSqnUI/6I2J593Qncwuy/ee3GbgB+R9KRdHb6iEFnbF73aWAceNuAMtaBMUlTzL6j+p+zR85V2o/tMlZmP0bELyNiOrt+B/CKft8fC+Y8oPtzLzMyu8/ujIjnI+JZYANwCtW6T7bL2Lf9WJpBP8mw98Ls8fDDmq7/F7CiZcyb+c0Tp28HtjH7iOAI4CfMPiG5KLt+RMUyLgJemc0/EthCD56k6iRjy/gbePmTu5XYj/vJWJn9CLy+6We9DPhp9rM+mNknxt/Ib56QPKnsjCXkPKCfQ48zvgW4J9t3rwY2Ayf3a18WzNiX/VjmpUqHemrMHh6B2R37jYi4U9JHASLiWuCPgQ9J+l9gD/DBmN3buyRdxez5gwCujIjck8ENKqOktwBflfQSs/9pXR0RPxpQxlwRUaX92E6V9uO5wMckzTD7sz4vuz/mns6kBxkL5ZSUu+4gMkbEY5LuBB4BXgKui4jNAH3al11nzA459mM/lsbv3DUzS0yljvGbmVnvufjNzBLj4jczS4yL38wsMS5+M7PEuPjNzBLj4jczS4yL38wsMf8HMw+Pb+Wv2e0AAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import random\n", - "a=np.zeros((100,))\n", - "for i in range(100):\n", - " x=[random.uniform(1,10) for _ in range(1000)]\n", - " a[i]=np.sum(x,axis=0)/1000\n", - "plt.hist(a)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Gaussian Distribution\n", - "A Gaussian is a *continuous probability distribution* that is completely described with two parameters, the mean ($\\mu$) and the variance ($\\sigma^2$). It is defined as:\n", - "\n", - "$$ \n", - "f(x, \\mu, \\sigma) = \\frac{1}{\\sigma\\sqrt{2\\pi}} \\exp\\big [{-\\frac{(x-\\mu)^2}{2\\sigma^2} }\\big ]\n", - "$$\n", - "Range is $$[-\\inf,\\inf] $$\n", - "\n", - "\n", - "This is just a function of mean($\\mu$) and standard deviation ($\\sigma$) and what gives the normal distribution the charecteristic **bell curve**. " - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8HOWZ6Pvf063NkmzLkmx5kW3JlncbDJZ3MAICmCyYJBDgkAQmzHCSCTlzJie5Q+7MYXJIcm+Sk7nM5A6TwYQ1m+NASBwwmMXIjldsg/dVkmVLlmxZki1bu1r9nD+6RdpCQi2p1dXL8/182t1d9VbV069L/XS9b9VboqoYY4wxLqcDMMYYExksIRhjjAEsIRhjjPGzhGCMMQawhGCMMcbPEoIxxhjAEoIxxhg/SwjGGGMASwjGGGP8EpwOoD+ys7M1Ly/PkW03NTWRlpbmyLYjkdXHlaw+rmT1cSWn62PPnj21qjq6r3JRlRDy8vLYvXu3I9suLi6mqKjIkW1HIquPK1l9XMnq40pO14eInAqmnDUZGWOMASwhGGOM8bOEYIwxBrCEYIwxxs8SgjHGGMASgjHGGD9LCMYYY4Aouw7BmEjS2tHJmvdOU9/UTvmpdj7oOM5tc8Yye/wIp0MzZkCCSggishL4N8AN/FxVf9ht/grgX4GrgHtV9SX/9BuBJwKKzvTP/4OIPA/cADT45z2oqnsH8VmMCZv3Ttbz6Mv7KattQgRQ0NIT/Pu7JXz1hil846ZppCS6nQ7TmH7pMyGIiBt4ErgFqAR2icg6VT0cUOw08CDwrcBlVfVdYL5/PZlACfBmQJFvdyUPY6KBp9PL9187wvPbypmYOYxf/fVilhdkU1xczDWLlvO91w7z5LulvHHwLD+97xrmjB/pdMjGBC2YPoRFQImqlqlqO7AGWBVYQFXLVXU/4P2Y9dwFvK6qzQOO1hiH/e83j/H8tnIeXJbHhv++guUF2R/OG5mayE/uvpoXvrKIxjYPX3l+F+cvtzkYrTH9E0xCmABUBLyv9E/rr3uB33Sb9gMR2S8iT4hI8gDWaUzYvHGwmqc2lXH/4kl89445pCb1fIB9w/TRPPfgIhpaOvjGb97H0/lxv5OMiRyiqh9fQORu4DZV/Wv/+y8Bi1T1Gz2UfR54tXszkIiMA/YD41W1I2DaWSAJWA2UqurjPazzYeBhgJycnAVr1qzp72cMicbGRtLT0x3ZdiSKt/qobvTyv7a3MD7dxXcWp5Dokivm91QfW8908PSBdm7PT+SeGUnhDNdx8bZ/9MXp+rjxxhv3qGphX+WC6VSuBCYGvM8FqvoZzxeAV7qSAYCqVvtftonIc3TrfwgotxpfwqCwsFCdGjHQ6dEKI0081UdLeyerntzCsOREfvG165mQMewjZXqqjyKg+ZUD/GrnaVYtv4qVc8eGJd5IEE/7RzCipT6CaTLaBUwTkXwRScLX9LOun9u5j27NRf4jBEREgDuBg/1cpzFh8ezWkxw/18gT98zvMRl8nMc+M5s540fwv/50iNaOziGK0JjQ6DMhqKoHeATYABwB1qrqIRF5XETuABCRhSJSCdwNPCUih7qWF5E8fEcYm7qt+lcicgA4AGQD3x/8xzEmtC42t/Ofm0q5eeYYimaM6ffyyQlu/vFTs6huaOUX24Makt4YxwR1HYKqrgfWd5v2WMDrXfiaknpatpweOqFV9ab+BGqME362qZTGNg/fXjljwOtYNjWb66dl82RxCfcsmsiIlMQQRmhM6NjQFcb0orqhhee3lvPZ+ROYOXZwVx//w8qZXGzuYPWmshBFZ0zoWUIwphc/fecEXlX+/pbpg17X3Akj+fRV43hmy0lqLreGIDpjQs8SgjE9KK9tYu3uSu5fPJmJmakhWef/uHUGHZ1entxYEpL1GRNqlhCM6cEL28txCfztjVNDts787DTuvGYCa3dXcqm1o+8FjAkzSwjGdNPc7uGlPZXcPnccY4anhHTdX146mZaOTn6/pzKk6zUmFCwhGNPNur1VXG718KWlk0O+7qtyM7g6dyS/3HmavkYJMCbcLCEYE0BVeXH7KWaOHU7h5FFDso0vLplMSU0jO8rqh2T9xgyUJQRjAnxQcZHD1Zf44pLJ+C6iD73PXD2ekcMS+eUOu1DNRBZLCMYE+OWOU6QnJ3DnNQMZ0Dc4KYluvlCYy4ZDZzl3yU5BNZHDEoIxfvVN7by6v5rPXTuB9OShvbvs/Ysn4/Eqa96r6LuwMWFiCcEYvz98cIZ2j5f7F4e+M7m7vOw0rp+WzdrdFXi91rlsIoMlBGP81u2rYs74EcwYOzws2/vctRM4c7GFDyouhGV7xvTFEoIxwOm6ZvZWXOQzV48P2zZvmT2W5AQX6/b29/YixgwNSwjGAH/a7/tS/vRV48K2zfTkBG6eNYbXDlTbbTZNRLCEYAzwp31VLJg8itxRoRm3KFh3XD2e2sZ2uybBRARLCCbuHT93maNnL3NHGJuLuhTNGEN6cgLr9p0J+7aN6c4Sgol76/ZW4RL45LzwNRd1SUl0c+ucHF4/eJY2j91i0zjLEoKJa6rKn/ZXsWxqNqOHJzsSw2euHs/lVg+bj9c6sn1julhCMHFtf2UDp+qaHWku6nJdQTajUhNZt8/ONjLOCiohiMhKETkmIiUi8mgP81eIyPsi4hGRu7rN6xSRvf7HuoDp+SKyU0ROiMhvRSRp8B/HmP5Zf7CaBJdw25yxjsWQ6HZx+7xxvHPkHK0d1mxknNNnQhARN/AkcDswG7hPRGZ3K3YaeBD4dQ+raFHV+f7HHQHTfwQ8oarTgAvAQwOI35hBefvwOZZMyWJkqrM3vr9ldg7N7Z1sL6tzNA4T34I5QlgElKhqmaq2A2uAVYEFVLVcVfcDQZ1MLb5hJG8CXvJPegG4M+iojQmBsvONlJ5v4pbZOU6HwrKpWaQluXn78DmnQzFxLJiEMAEIHIGr0j8tWCkisltEdohI15d+FnBRVT0DXKcxg/bOkRoAbp41xuFIIDnBzYrpo3n7yDm7cY5xTDBDOvY0KHx/9thJqlolIlOAjSJyALgU7DpF5GHgYYCcnByKi4v7senQaWxsdGzbkSgW6uOlnS1MHO6iZN97DPa296Goj1zp4PVL7bywbiN5I92DjMhZsbB/hFK01EcwCaESmBjwPhcI+nQIVa3yP5eJSDFwDfAykCEiCf6jhF7XqaqrgdUAhYWFWlRUFOymQ6q4uBinth2Jor0+LjS1c2LDWzxyYwFFRTMGvb5Q1MdVTe08c/At6ofl8mAIYnJStO8foRYt9RFMk9EuYJr/rKAk4F5gXR/LACAio0Qk2f86G1gOHFbfMfG7QNcZSQ8Af+xv8MYM1LvHavAqfCIC+g+6ZKYlUTg5k7f8TVnGhFufCcH/C/4RYANwBFirqodE5HERuQNARBaKSCVwN/CUiBzyLz4L2C0i+/AlgB+q6mH/vH8AvikiJfj6FJ4J5Qcz5uO8feQcOSOSmTt+pNOhXOETs8dwpPoSlReanQ7FxKGgbgulquuB9d2mPRbwehe+Zp/uy20D5vWyzjJ8ZzAZE1Ztnk42HTvPqmsm4HINzX2TB+oTs3L4f9Yf5Z0jNTywLM/pcEycsSuVTdzZUVZPU3snt8yKnOaiLlNGpzNldBpvH7HTT034WUIwcWfjkXMMS3SzdGqW06H06JZZOewoq6OxzdN3YWNCyBKCiTubjp9n6dQsUhIj89TOG6aPpqNT2V5qVy2b8LKEYOLKqbomyuuauWH6aKdD6dWCvFGkJrnZfPy806GYOGMJwcSVri/ZFRGcEJIT3CydkkXx8Rq7atmElSUEE1c2HT/PpMxU8rLCe6vM/rphxmgq6lsor7PTT034WEIwcaPd42VbaR0rpmfjG18xcq2Y5juCsWYjE06WEEzc2H2qnub2Tm6Y7vxgdn3Jy05jclYqmywhmDCyhGDixubjtSS6JWJPN+3uhumj2V5aZ/daNmFjCcHEjU3Hz7Ng8ijSk4O6QN9xK6aNpqWjk93lF5wOxcQJSwgmLtRcauVI9aWoaC7qsnRqFolusX4EEzaWEExc2HyiFoAV07MdjiR4ackJFE7OtH4EEzaWEExc+POJ82SnJzNr7AinQ+mXFdNHc/TsZWoutTodiokDlhBMzFNVtpbUcV1BVsSNbtqX66f5jmi2ltY6HImJB5YQTMw7fq6R2sY2lhVET3NRl9njRpCRmsjWEhvXyAw9Swgm5m0p8f26Xh6FCcHlEpZNzWJrSa0NY2GGnCUEE/O2ltSSn53GhIxhTocyIMsLsqluaOVkbZPToZgYZwnBxLSOTi87y+pYXhAdF6P1ZPlUfz9CifUjmKFlCcHEtH0VF2lq7/zwSzUaTc5KZULGMOtHMEMuqIQgIitF5JiIlIjIoz3MXyEi74uIR0TuCpg+X0S2i8ghEdkvIvcEzHteRE6KyF7/Y35oPpIxf7GlpBYRoma4ip6ICNcVZLOttJZOr/UjmKHTZ0IQETfwJHA7MBu4T0Rmdyt2GngQ+HW36c3Al1V1DrAS+FcRyQiY/21Vne9/7B3gZzCmV9tK6pg7fiQZqUlOhzIoywqyuNTq4VBVg9OhmBgWzBHCIqBEVctUtR1YA6wKLKCq5aq6H/B2m35cVU/4X1cBNUDk3pnExJSmNg/vn74QlWcXdbfM3+S1xfoRzBAKZpSvCUBFwPtKYHF/NyQii4AkoDRg8g9E5DHgHeBRVW3rYbmHgYcBcnJyKC4u7u+mQ6KxsdGxbUeiaKiP/ec9eLxKetMZiovPDum2wlEfuenCq7tOMJvKId1OKETD/hFO0VIfwSSEni7t7FdDpoiMA34BPKCqXUcR3wHO4ksSq4F/AB7/yIZUV/vnU1hYqEVFRf3ZdMgUFxfj1LYjUTTUx5ZXD5OUcIq/XlVESqJ7SLcVjvq4rfEwv9hxiiXLrx/yzzNY0bB/hFO01EcwTUaVwMSA97lAVbAbEJERwGvAP6nqjq7pqlqtPm3Ac/iapowJmW2ldVw7KSPivzyDtbwgi3aPl/dP23DYZmgEkxB2AdNEJF9EkoB7gXXBrNxf/hXgRVX9Xbd54/zPAtwJHOxP4MZ8nAtN7RyuvhTVp5t2tzAvE7dL2F5qp5+aodFnQlBVD/AIsAE4AqxV1UMi8riI3AEgIgtFpBK4G3hKRA75F/8CsAJ4sIfTS38lIgeAA0A28P2QfjIT13ae9H1pRvPppt0NT0lk3oSRlhDMkAnq1lGquh5Y323aYwGvd+FrSuq+3C+BX/ayzpv6Fakx/bCttI7UJDdX5Wb0XTiKLJ2axdOby2hq85AWJXd+M9HDrlQ2MWl7aR2FeZkkJcTWLr5sahYer7KrvN7pUEwMiq2/FmOAmsutnKhpZFkMNRd1KZycSaJb2F5mzUYm9CwhmJizo8z363nplNhLCMOS3FwzcZT1I5ghYQnBxJztpbUMT0lgzvjoul1msJZMzeLgmQYaWjqcDsXEGEsIJuZsL61jcX4mCe7Y3L2XTc3Cq/DeSetHMKEVm38xJm5VXWyhvK6ZpTF0/UF310zKIDnBxTa7z7IJMUsIJqZ0ta3HYv9Bl+QENwsmWz+CCT1LCCambCutY1RqIjPHDnc6lCG1bGoWR89epq7xI+NBGjNglhBMzFBVdpTVsWRKFi5XT2Myxo6uK7B3Wj+CCSFLCCZmVNS3cOZiS0wNV9Gbq3IzSE1yW7ORCSlLCCZmbC/zdbLGcv9Bl0S3i8K8TLtAzYSUJQQTM7aX1pGdnkzBmHSnQwmLpVOyKKlppOZyq9OhmBhhCcHEBFVle1kdS6Zk4htRPfZ1NY11XZltzGBZQjAx4WRtE+cutcVF/0GXueNHkJ6cYP0IJmQsIZiY0NWWHg/9B10S3C4W5Weyw/oRTIhYQjAxYXtpHTkjksnPTnM6lLBaOiWLk7VNnG2wfgQzeJYQTNTzXX9Qz9IpWXHTf9Clq4ms6wwrYwbDEoKJeiU1jdQ2xlf/QZdZ40YwIsX6EUxoBJUQRGSliBwTkRIRebSH+StE5H0R8YjIXd3mPSAiJ/yPBwKmLxCRA/51/lTi7aedCZm/9B/E7oB2vXG7hMVTsux6BBMSfSYEEXEDTwK3A7OB+0Rkdrdip4EHgV93WzYT+GdgMbAI+GcRGeWf/TPgYWCa/7FywJ/CxLXtpXVMyBjGxMxhTofiiKVTsqiob6HyQrPToZgoF8wRwiKgRFXLVLUdWAOsCiygquWquh/wdlv2NuAtVa1X1QvAW8BKERkHjFDV7aqqwIvAnYP9MCb+eL1/Gb8oXg8yP+xHsGYjM0jBJIQJQEXA+0r/tGD0tuwE/+uBrNOYDx09e5kLzR0xef/kYM3IGU5mWpI1G5lBSwiiTE8/uzTI9fe2bNDrFJGH8TUtkZOTQ3FxcZCbDq3GxkbHth2JIqU+NpT7byNZc5zi4hLH4nC6PqYO76T4cBXvvnshIo6UnK6PSBMt9RFMQqgEJga8zwWqglx/JVDUbdli//TcYNapqquB1QCFhYVaVFTUU7EhV1xcjFPbjkSRUh+/fGEX+dlNfP52Z2Nxuj4qU07xT384SN68RRFxLYbT9RFpoqU+gmky2gVME5F8EUkC7gXWBbn+DcCtIjLK35l8K7BBVauByyKyxH920ZeBPw4gfhPHPJ1edpbVsySOrk7ujfUjmFDoMyGoqgd4BN+X+xFgraoeEpHHReQOABFZKCKVwN3AUyJyyL9sPfA9fEllF/C4fxrA14CfAyVAKfB6SD+ZiXkHqy5xuc0T1/0HXaZkp5EzItnus2wGJZgmI1R1PbC+27THAl7v4somoMByzwLP9jB9NzC3P8EaE6jr17AdIYCIsGxqNn8+cR5VjYh+BBN97EplE7W2ldYyI2c4o4cnOx1KRFg6NYvaxnZO1DQ6HYqJUpYQTFRq93jZXX4hLoer6E1X09m2Ems2MgNjCcFEpX2VF2np6LSEECB3VCoTM4exzTqWzQBZQjBRaVtJHSKwJN8SQqBlU7LZebKeTm+wlwoZ8xeWEExU2lZay9zxIxmZmuh0KBFlWUEWDS0dHK665HQoJgpZQjBRp7ndwwenL9rppj3oumOcnX5qBsISgok6u8ov0N7pZXlB/A133ZcxI1KYnpPOFutYNgNgCcFEnW0ltSS5XSzMy3Q6lIi0bGo2u8rrafN0Oh2KiTKWEEzU2VJSy7WTMxiW5HY6lIh0XUE2rR1e3j910elQTJSxhGCiSn1TO4eqLnGdNRf1avGUTNwuYas1G5l+soRgokpXZ6n1H/RueEoi8ydmWD+C6TdLCCaqbC2pZXhyAvMmjHQ6lIi2fGoW+ysv0tDS4XQoJopYQjBRZWtJHUumZpHgtl334ywvyMarsNPuomb6wf6qTNQ4XdfM6fpm6z8IwjWTRjEs0W39CKZfLCGYqLH1w/4DuyCtL0kJLhblZ1o/gukXSwgmamwpqSVnRDJTR6c7HUpUuK4gm9LzTZxtaHU6FBMlLCGYqOD1KttL61g+Ndtu/hKkrjOx7CjBBMsSgokKB6saqG9q5/rp1n8QrJljh5OdnsTm4+edDsVECUsIJip0faldP220w5FED5dLuH7aaLaU1OK14bBNEIJKCCKyUkSOiUiJiDzaw/xkEfmtf/5OEcnzT79fRPYGPLwiMt8/r9i/zq55Y0L5wUxs2Xy8ljnjR5CdbrfL7I8V07Opb2rnYFWD06GYKNBnQhARN/AkcDswG7hPRGZ3K/YQcEFVC4AngB8BqOqvVHW+qs4HvgSUq+regOXu75qvqjUh+DwmBl1u7eD90xdYMd2ODvqr64jKmo1MMII5QlgElKhqmaq2A2uAVd3KrAJe8L9+CbhZPtrzdx/wm8EEa+LTttI6PF5lhTUX9Vt2ejJzxo9g83HrWDZ9CyYhTAAqAt5X+qf1WEZVPUAD0P1k8Xv4aEJ4zt9c9D97SCDGAL5ft2lJbhZMHuV0KFFpxfTRvH/6ApdbbRgL8/ESgijT0xd19x6qjy0jIouBZlU9GDD/flU9IyLDgZfxNSm9+JGNizwMPAyQk5NDcXFxECGHXmNjo2PbjkThqg9V5c39LUwb6WLbls1Dvr2BiuT9Y0RTJx6vsvqPm1iQE8yf/OBFcn04IVrqI5i9oxKYGPA+F6jqpUyliCQAI4H6gPn30u3oQFXP+J8vi8iv8TVNfSQhqOpqYDVAYWGhFhUVBRFy6BUXF+PUtiNRuOrjZG0T5zcU841bZ1K0NG/ItzdQkbx/LPN4+fd9b1KflENR0bywbDOS68MJ0VIfwTQZ7QKmiUi+iCTh+3Jf163MOuAB/+u7gI2qqgAi4gLuxtf3gH9agohk+18nAp8GDmJMN12doTdYh/KAJSW4WDo1m80nzuP/szSmR30mBH+fwCPABuAIsFZVD4nI4yJyh7/YM0CWiJQA3wQCT01dAVSqalnAtGRgg4jsB/YCZ4CnB/1pTMzZfPw8k7NSmZyV5nQoUe2G6dlU1LdQXtfsdCgmggXVoKiq64H13aY9FvC6Fd9RQE/LFgNLuk1rAhb0M1YTZ9o8nWwvq+Pz1+Y6HUrU6zpld9OxGvKz8x2OxkQqu1LZRKz3TtbT3N5J0QxrLhqsyVlp5Gen8e4xux7B9M4SgolY7xypITnBxbKpNn5RKNw0cwzby+pobvc4HYqJUJYQTERSVTYerWF5QTbDktxOhxMTbp45hnaPl60ldhc10zNLCCYilZ5v4nR9MzfOtCGuQqUwL5P05AQ2Hj3ndCgmQllCMBGp60vrJksIIZOU4GLF9Gw2Hq2x009NjywhmIi08WgNM8cOZ0LGMKdDiSk3zczh3KU2DlVdcjoUE4EsIZiI09DSwa7yC3Z0MASKZoxGxJdwjenOEoKJOJuPn6fTq9w8yxJCqGWnJ3N1bgbvWEIwPbCEYCLOxqM1jEpNZP5EG910KNw8cwz7Ki5y/nKb06GYCGMJwUSUTq9SfKyGG2eMwe2yEdGHwk3+I693j9lRgrmSJQQTUfacusCF5o4Pv7RM6M0eN4JxI1N4+7CdfmquZAnBRJQ3Dp4lKcFF0QxLCENFRLhtzlg2HT9vVy2bK1hCMBFDVdlw6CzXF2STnhyeG7nEq9vmjKXN42WTjW1kAlhCMBHj4JlLnLnYwm1zxzodSsxbmDeKzLQk3jh01ulQTASxhGAixhuHqnG7hE/MynE6lJiX4HZxy6wcNh6poc3T6XQ4JkJYQjAR442DZ1mcn0lmWpLTocSFlXPHcrnNw7ZSG+zO+FhCMBGhpOYypeebWGnNRWGzrCCL9OQENhy0ZiPjYwnBRIQ3/F9Kt862hBAuyQlubpw5hjcPn6PTa4PdGUsIJkK8cegs10zKYOzIFKdDiSsr54ylvqmdXeX1TodiIkBQCUFEVorIMREpEZFHe5ifLCK/9c/fKSJ5/ul5ItIiInv9j/8MWGaBiBzwL/NTEbHLUuNURX0zB89c4rY5dnQQbkUzRpOU4PrwCM3Etz4Tgoi4gSeB24HZwH0iMrtbsYeAC6paADwB/ChgXqmqzvc/vhow/WfAw8A0/2PlwD+GiWZ/2l8FwCfnjnM4kviTlpzATTPG8Or+ams2MkEdISwCSlS1TFXbgTXAqm5lVgEv+F+/BNz8cb/4RWQcMEJVt6vvTh0vAnf2O3oTE9btreLaSRlMykp1OpS4tGr+eGob29huZxvFvWAuB50AVAS8rwQW91ZGVT0i0gBk+efli8gHwCXgn1T1z/7yld3WOaGnjYvIw/iOJMjJyaG4uDiIkEOvsbHRsW1HolDVR8VlL0fPtvDFWUlRXb/RvH+4O5VhCfDUG3vwnEkOyTqjuT6GQrTURzAJoadf+t2PLXsrUw1MUtU6EVkA/EFE5gS5Tt9E1dXAaoDCwkItKioKIuTQKy4uxqltR6JQ1ceP3ziK21XG331uBaOHh+bLyAnRvn98qn4fGw6eZcny60lJdA96fdFeH6EWLfURTJNRJTAx4H0uUNVbGRFJAEYC9arapqp1AKq6BygFpvvL5/axThPjVJV1+6pYXpAd1ckgFqyaP57LbR6KbWyjuBZMQtgFTBORfBFJAu4F1nUrsw54wP/6LmCjqqqIjPZ3SiMiU/B1HpepajVwWUSW+Psavgz8MQSfx0SR909fpPJCC6uuHu90KHFv6ZQsstOTWbfvjNOhGAf1mRBU1QM8AmwAjgBrVfWQiDwuInf4iz0DZIlICfBNoOvU1BXAfhHZh6+z+auq2nXC89eAnwMl+I4cXg/RZzJRYt3eMyQnuLh1jo1d5LQEt4tPXzWOt4/UcLm1w+lwjEOCGmNYVdcD67tNeyzgdStwdw/LvQy83Ms6dwNz+xOsiR2eTi+v7q/mE7NyGJ6S6HQ4Brhj/nie31bOhkPnuGtBbt8LmJhjVyobR/z5RC11Te3cMd+aiyLFNRMzmJSZyisfVPZd2MQkSwjGEb/dVUFWWhI32p3RIoaIcNeCXLaW1FFR3+x0OMYBlhBM2J2/3MbbR87x+QW5JCXYLhhJ7lqQi0tg7e6KvgubmGN/jSbsXn6/Eo9X+ULhxL4Lm7AanzGMG6aPZu3uCjydXqfDMWFmCcGElary210VLMwbRcGYdKfDMT24d9Ekzl1qY9NxuyYh3lhCMGH13sl6TtY2cc/CSU6HYnpx08wxZKcns2aXNRvFG0sIJqx+u6uC4ckJfHKeDXUdqRLdLu5akMvGozXUXGp1OhwTRpYQTNg0tHTw2oFq7pg/ntSkoC6BMQ65Z+FEOr3KS+/bKajxxBKCCZuX91TS5vFyrzUXRbz87DSWTMnk1ztP230S4oglBBMWnV7luW0nWTB5FPNyRzodjgnCg8vyqLzQwluH7W5q8cISggmLtw6fo6K+hYeuy3c6FBOkW2aPZWLmMJ7ZctLpUEyYWEIwYfHslpNMyBjGrbNtILto4XYJDy7LZ1f5BfZXXnQ6HBMGlhDMkDtQ2cB75fX81fI8Ety2y0WTLxTmkp6cYEcJccL+Os2Qe2ZLGWlJbr6w0K5MjjbDUxK5Z+FEXttfzdkGOwU11llCMEPqbEMrr+6v5p6Fkxhhw1xHpQeX5eFV5YXt5U6HYoaYJQQzpH7+5zK8qjy4LM/pUMwATcxMZeXjvqoRAAAO9UlEQVTcsfxyxykaWuzmObHMEoIZMjWXWvnFjlN89ppcJmWlOh2OGYSv31jA5VaP9SXEOEsIZsj8bFMpHq/y324ucDoUM0hzxo9k5ZyxPLflJBeb250OxwwRSwhmSJy71Mqvdp7m89dOYHJWmtPhmBD477dM43Kbh5//2Y4SYlVQCUFEVorIMREpEZFHe5ifLCK/9c/fKSJ5/um3iMgeETngf74pYJli/zr3+h9266wY8h/vluD1Kt+4aZrToZgQmTl2BJ+aN47ntp7kQpMdJcSiPhOCiLiBJ4HbgdnAfSIyu1uxh4ALqloAPAH8yD+9FviMqs4DHgB+0W25+1V1vv9RM4jPYSJIdUMLv3mvgrsW5DIx0/oOYsnffWIazR2drP5zmdOhmCEQzBHCIqBEVctUtR1YA6zqVmYV8IL/9UvAzSIiqvqBqlb5px8CUkQkORSBm8j1xFvHUZSv32h9B7Fmes5wPn3VeJ7fWk51Q4vT4ZgQC2YM4glA4J0yKoHFvZVRVY+INABZ+I4Qunwe+EBV2wKmPScincDLwPdV9SPDKorIw8DDADk5ORQXFwcRcug1NjY6tu1I1Ft9lF3sZO3uVm7PT6R0/3uUhj80R8TT/rFipJfXOzv5++c38dWrU3osE0/1EYxoqY9gEoL0MK37F/fHlhGROfiakW4NmH+/qp4RkeH4EsKXgBc/shLV1cBqgMLCQi0qKgoi5NArLi7GqW1Hop7qw+tV/vVn2xg9XPnxAzcwPI4uRIu3/aMi4Rg/3VjC/1h1FQvzMj8yP97qoy/RUh/BNBlVAoFjDuQCVb2VEZEEYCRQ73+fC7wCfFlVP/zBqKpn/M+XgV/ja5oyUez3H5xhb8VFHl05M66SQTz6WlEB40em8M9/PGT3S4ghwSSEXcA0EckXkSTgXmBdtzLr8HUaA9wFbFRVFZEM4DXgO6q6tauwiCSISLb/dSLwaeDg4D6KcdLl1g5++PpRrpmUwWevmeB0OGaIDUty839/ahaHqy+xZtdpp8MxIdJnQlBVD/AIsAE4AqxV1UMi8riI3OEv9gyQJSIlwDeBrlNTHwEKgP/Z7fTSZGCDiOwH9gJngKdD+cFMeP3Lm8epa2rju5+Zg8vVUwuiiTWfmjeOxfmZ/O8Nxzh/ua3vBUzEC+rGtqq6HljfbdpjAa9bgbt7WO77wPd7We2C4MM0kWxbaS3PbyvngaWTuXpihtPhmDAREX7w2bl88qdb+M7v9/P0lwsRsR8D0cyuVDaDcqm1g2//bj9TstN49PZZTodjwqxgzHD+r9tm8PaRGn63p9LpcMwgWUIwg/L4nw5T3dDCv3zhaoYluZ0OxzjgK8vzWZyfyeN/OkxFfbPT4ZhBsIRgBuyNg2d5aU8lX7+xgGsmjXI6HOMQl0v4yd1XA/Ct3+2zs46imCUEMyBVjV6+/bt9zJsw0sYrMkzMTOW7d8xh58l6fvTGUafDMQMUVKeyMYEamjv4t/dbSU5M5D+/tICkBPtdYeCuBbnsq7jI6s1l6LwkipwOyPSb/SWbfun0Kt9Y8wG1LcrPvriACRnDnA7JRJDHPjObJVMyee5QO3srLjodjuknSwgmaKrK9149zObj5/nS7KQehyww8S3R7eI/7l9ARrLwX3+x2zqZo4wlBBMUVeWHbxzl+W3lPHRdPkUTbWgK07PMtCT+7toUWto7+S8/30HVRRsVNVpYQjB9UlV+8uYxntpUxheXTOKfPmXXG5iPN3G4i1/+9WIuNndw39M7ONvQ6nRIJgiWEMzH6koGT75byn2LJvL4HXPtalQTlKtyM3jxK4uoa2znvqd3UHnBmo8inSUE06vWjk6+8ZsPePLdUu5dOJEf3DnPxiky/XLNpFG88JWF1Da2ceeTW9lzqt7pkMzHsIRgenTuUiv3PLWd1w5U8+jtM/l/P2fJwAzMgsmZvPK3y0lPTuC+1Tv5/fs2xEWksoRgPuKtw+f41E+3cKKmkae+uICv3jDVmonMoBSMSecPX1/Ogsmj+ObafTz68n4ut3Y4HZbpxhKC+dCl1g6+9bt9/M2Lu8lOT+L3f7uMW+eMdTosEyMyUpN48aFFfPWGqazdXcHKf/0z20pr+17QhI0lBIOn08tv3jvNJ/5lE698cIZv3FTAukeuY+bYEU6HZmJMotvFo7fP5HdfXUqiW/gvT+/k73+71zqcI4QNXRHHvF7lzcPn+MmbxyipaeTaSRk8/eVCu6eBGXILJmfy+t+t4KcbT/DslpO8tr+aLy+dzFeLppKdnux0eHHLEkIcutzawe92V/LC9nJO1TUzJTuN//ziAm6bk2N9BSZshiW5+YeVM/nSksn8f28d55mtJ3lx+yk+c/V4/mp5HnMnjHQ6xLhjCSFOtHZ0Unyshlf3V/POkRpaOjpZMHkU37p1BivnjiXRba2HxhnjM4bxk7uv5mtFU3lhWzkv7ank5fcrmT1uBJ++ehyfnjeeSVmpTocZF4JKCCKyEvg3wA38XFV/2G1+MvAivtti1gH3qGq5f953gIeATuC/qeqGYNZpBsfT6eXo2ctsL61ja2kt752sp7m9k6y0JD577QTuXTiRq3KtachEjqmj03l81Vy+ddsMXt5Tybp9Vfz4jWP8+I1jTM9JZ9nUbJYXZLMwbxQZqUlOhxuT+kwIIuIGngRuASqBXSKyTlUPBxR7CLigqgUici/wI+AeEZkN3AvMAcYDb4vIdP8yfa3TBKHTq5y71ErZ+SZKzzdSUtPIgTMNHKm+RJvHC8DU0WnctSCXW2ePZcmUTBLsaMBEsBEpifzV8nz+ank+lReaef3AWTafOM+aXad5fls5ALmjhjFvwkhmjRvBlNFpTMlOJy87ldQka/QYjGBqbxFQoqplACKyBlgFBH55rwK+63/9EvDv4muMXgWsUdU24KSIlPjXRxDrjHmqSken0tHppd3jpc3jpc3TSUtHJ83tnTS3ddLY5uFyaweXWj00NLdT19ROXWM75xvbONvQyrlLrXgC7lCVnpzA7PEj+NKSyczLHcni/CzGjkxx8FMaM3C5o1L5mxVT+JsVU2jzdPLB6YvsrbjIgcoGDpxp4PWDZ68oP3JYIuNGppAzIoWs9CSy05MZlZrEiGEJDE9JZHhKAmlJCaQmuRmW5CY5wUVKopukBBdJbheJbhfuOL4AM5iEMAGoCHhfCSzurYyqekSkAcjyT9/RbdkJ/td9rTNk/vGVA+w82fcl86o93/pPgebmZlL3FPve+Kepqv8ZFPU961+me1Xxqu9snk5VOr2K16t4vL7Xnn7ealAEMlOTyEzz7eiL8zMZnzGM8RnDyM9OY8roNMYMT7aOYROTkhPcLJmSxZIpWR9Oa2nv5GRtE2W1jVTUt1Dd0ELVRd8PpZKaRmob2z48Ug6WSyDB5UsMCS7B5RLcLsElgkv48Lnr78zlAkEQAeEv0+XDf/7y/dHbX2Ywf7PPPrBwyPtSgkkIPUXa/ZustzK9Te+pzaLHb0cReRh4GCAnJ4fi4uJeA+1NW307o1zB7RS9/bd4hnlJcLdeUabr/7DrP14Q/w7BFc++nYgPdya3uHAJuAXcLkhwQYIISW5IdEGiW0hxQ7JbSEmA1AQhNVEYluBb3ldVrf7HRWiBtgo4UgFH+l07A9PY2Dig/4tYZfVxpXDXRzowC5g1Evjw5CQXqim0d0KzR2n2QEuH0tYJbZ2+5w6v0uGF9k78P9rA4wWvQqf6pnlVUf+POwX/jz3fjz8AL74ZgV9g2u194PdHd8H+LNyzawdlKUPb3BtMQqgEJga8zwWqeilTKSIJ+P5L6vtYtq91AqCqq4HVAIWFhVpUVBREyFcawCIfUVxczEC2HausPq5k9XElq48rRUt9BJNudgHTRCRfRJLwdRKv61ZmHfCA//VdwEb1tb+sA+4VkWQRyQemAe8FuU5jjDFh1OcRgr9P4BFgA75TRJ9V1UMi8jiwW1XXAc8Av/B3Gtfj+4LHX24tvs5iD/B1Ve0E6Gmdof94xhhjghXUOVqquh5Y323aYwGvW4G7e1n2B8APglmnMcYY59gJ6cYYYwBLCMYYY/wsIRhjjAEsIRhjjPGzhGCMMQYA6W24hkgkIueBUw5tPhuw+/39hdXHlaw+rmT1cSWn62Oyqo7uq1BUJQQnichuVS10Oo5IYfVxJauPK1l9XCla6sOajIwxxgCWEIwxxvhZQgjeaqcDiDBWH1ey+riS1ceVoqI+rA/BGGMMYEcIxhhj/Cwh9EFE7haRQyLiFZHCbvO+IyIlInJMRG5zKkaniMh3ReSMiOz1Pz7pdExOEJGV/n2gREQedToep4lIuYgc8O8Tu52OJ9xE5FkRqRGRgwHTMkXkLRE54X8e5WSMvbGE0LeDwOeAzYETRWQ2vmG+5wArgf8QEXf4w3PcE6o63/+Iu9Fr/f/nTwK3A7OB+/z7Rry70b9PRPyplkPgeXzfCYEeBd5R1WnAO/73EccSQh9U9YiqHuth1ipgjaq2qepJoARYFN7oTARYBJSoapmqtgNr8O0bJk6p6mZ894UJtAp4wf/6BeDOsAYVJEsIAzcBqAh4X+mfFm8eEZH9/sPkiDwMHmK2H3yUAm+KyB7/PdEN5KhqNYD/eYzD8fQoqBvkxDoReRsY28Osf1TVP/a2WA/TYu6UrY+rG+BnwPfwfe7vAf8CfCV80UWEuNgP+mm5qlaJyBjgLRE56v/VbCKcJQRAVT8xgMUqgYkB73OBqtBEFDmCrRsReRp4dYjDiURxsR/0h6pW+Z9rROQVfM1q8Z4QzonIOFWtFpFxQI3TAfXEmowGbh1wr4gki0g+MA14z+GYwsq/Y3f5LL4O+HizC5gmIvkikoTvRIN1DsfkGBFJE5HhXa+BW4nP/aK7dcAD/tcPAL21PDjKjhD6ICKfBf5/YDTwmojsVdXbVPWQiKwFDgMe4Ouq2ulkrA74sYjMx9dEUg78V2fDCT9V9YjII8AGwA08q6qHHA7LSTnAKyICvu+XX6vqG86GFF4i8hugCMgWkUrgn4EfAmtF5CHgNL3cg95pdqWyMcYYwJqMjDHG+FlCMMYYA1hCMMYY42cJwRhjDGAJwRhjjJ8lBGOMMYAlBGOMMX6WEIwxxgDwfwCfcYbu+1TrwgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.mlab as mlab\n", - "import math\n", - "import scipy.stats\n", - "\n", - "mu = 0\n", - "variance = 5\n", - "sigma = math.sqrt(variance)\n", - "x = np.linspace(mu - 5*sigma, mu + 5*sigma, 100)\n", - "plt.plot(x,scipy.stats.norm.pdf(x, mu, sigma))\n", - "plt.show()\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Why do we need Gaussian distributions?\n", - "Since it becomes really difficult in the real world to deal with multimodal distribution as we cannot put the belief in two seperate location of the robots. This becomes really confusing and in practice impossible to comprehend. \n", - "Gaussian probability distribution allows us to drive the robots using only one mode with peak at the mean with some variance." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Gaussian Properties\n", - "\n", - "**Multiplication**\n", - "\n", - "\n", - "For the measurement update in a Bayes Filter, the algorithm tells us to multiply the Prior P(X_t) and measurement P(Z_t|X_t) to calculate the posterior:\n", - "\n", - "$$P(X \\mid Z) = \\frac{P(Z \\mid X)P(X)}{P(Z)}$$\n", - "\n", - "Here for the numerator, $P(Z \\mid X),P(X)$ both are gaussian.\n", - "\n", - "$N(\\mu_1, \\sigma_1^2)$ and $N(\\mu_2, \\sigma_2^2)$ are their mean and variances.\n", - "\n", - "New mean is \n", - "\n", - "$$\\mu_\\mathtt{new} = \\frac{\\mu_1 \\sigma_2^2 + \\mu_2 \\sigma_1^2}{\\sigma_1^2+\\sigma_2^2}$$\n", - "New variance is\n", - "$$\\sigma_\\mathtt{new} = \\frac{\\sigma_1^2\\sigma_2^2}{\\sigma_1^2+\\sigma_2^2}$$" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "New mean is at: 5.0\n", - "New variance is: 1.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl4lNXZ+PHvPQlJIBsBsodA2AKBQMIqsi+v4oa+FlutC9attnrZ2uWttZu1y09ra+vbupRW3Frqq9LaaFFUJIrsgQAhhCVAgJCFQMgyhOzn98fMhBASMpPMM8/M5HyuK1dmnnmW+zBk7jnLc44opdA0TdP6HovZAWiapmnm0AlA0zStj9IJQNM0rY/SCUDTNK2P0glA0zStj9IJQNM0rY/SCUDTNK2P0glA0zStj9IJQNM0rY8KNDuAjgYOHKhGjRpldhiGOXfuHKGhoWaHYRhdPt/mz+Xz57IB7Nix47RSKtqVY7wuAcTGxpKTk2N2GIbJzs5m/vz5ZodhGF0+3+bP5fPnsgGIyDFXj9FNQJqmaX2UTgCapml9lE4AmqZpfZTX9QF0pqmpieLiYurr680OpdciIyMpKCgwOwy3CwkJISkpyewwNE1zgVMJQESWAM8BAcBflVJPdbHfMuBtYJpSKse+7YfAvUAL8IhSaq2rQRYXFxMeHs7w4cMREVcP9yq1tbWEh4ebHYZbKaU4c+YMxcXFZoeiaZoLum0CEpEA4HngGiANuE1E0jrZLxx4BNjablsacCswHlgCvGA/n0vq6+sZPHiwz3/4+ysRYfDgwX5RQ9O0vsSZPoDpQKFS6ohSqhF4E7ixk/1+AfwGaP8pcCPwplKqQSl1FCi0n89l+sPfu+n3R9N8jzMJIBE40e55sX1bGxHJBIYqpd539VhN8wkNVtj4v8SUf252JJrmNs70AXT21a5tIWERsQC/B+529dh253gAeAAgOjqa7Ozsi16PjIyktrbWiVDN98tf/pJZs2axYMGCTl9vaWnxmbK4qr6+HqvVesn75/OUIj3vlwyuzCENOLDqPKUJV5sdlSH88v2z8+ey9ZQzCaAYGNrueRJQ0u55ODAByLY3A8QBWSKy1IljAVBKrQBWAKSmpqqOd+sVFBT4RMdpS0sLTz/99GX36dgJ3NLSQkCAy90iXikkJISwsDD/u9vy2Cb4LAcWP8HZnHdIPfkOqbf8DPqFmB2Z2/nz3bL+XLaecqYJaDswWkRSRCQIW6duluNFpVS1UmqIUmq4Umo4sAVYah8FlAXcKiLBIpICjAa2ub0UHlBUVMTYsWNZvnw5EydOZNmyZdTV1TF8+HCefPJJZs+ezdtvv83dd9/NO++8A8C6devIzMwkPT2de+65h4aGBoBLjtG83PaXof8gmP51jg37Mpw7Bfs7tnZqmu/ptgaglGoWkYeBtdiGga5USuWLyJNAjlIq6zLH5ovIW8A+oBl4SCnV0puAf/5ePvtKanpzikukJUTwsxvGd7vfgQMHePnll5k1axb33HMPL7zwAmD75vvFF18A8OGHHwK25pC7776bdevWMWbMGO666y5efPFF7r333kuO0bxYcwMcXAsT/huCBlA1MB1CY6DgPUhfZnZ0mtYrTt0JrJRao5Qao5QaqZT6lX3bTzv78FdKzXfcA2B//iv7calKqQ/cF7rnDR06lFmzZgFwxx13tH2Af+UrX7lk3wMHDpCSksKYMWMAWL58OZ9/fqEDsbNjNC90bBM01kLqdbbnYoHUa6DwE2hpMjc2Tesln7gTuD1nvqkbpeNQR8fzzqaYVeqSvu6L+PO0tH7l2Cbbh/7wWRe2jZgHO1+DsjxInGxebJrWS3ouIBccP36czZs3A/CPf/yD2bNnd7nv2LFjKSoqorCwEIA33niDefPmeSROzY2Ob4a4iRDcbhBC8pUXXtM0H6YTgAvGjRvHa6+9xsSJE6msrOQb3/hGl/uGhITwyiuvcMstt5Ceno7FYuHBBx/0YLRar7U0Q3EOJM+8eHtEPAwcBie2dn6cpvkIn2sCMpPFYuGll166aFtRUdFFz1999dW2x4sWLSI3N/ei1xsbGy85RvNSZw5B83lIyLz0tYRMKN3l+Zg0zY10DUDTulK6x/Y7fuKlr8VPhLNFcL7KoyFpmjvpBOCk4cOHs3fvXrPD0DypdDcE9ofBoy99LX6S7XdZnmdj0jQ30glA07pyah9Ep0JAJy2lsRPs+/jf2g5a36ETgKZ1pWI/xIzr/LWwWAiJhAqdADTfpROApnXmfBXUltpqAJ0RgeixUHHAs3FpmhvpBKBpnTl90PY7emzX+0Sn6iYgzafpBKA5raioiFWrVpkdhmecPmT7PWRM1/sMGQPnK6Gu0jMxaZqb6QTgo5qbmz1+zT6VACoPgwTAwOSu9xk00r7vEc/EpGluphOAkxzTQd93331MmDCB22+/nU8++YRZs2YxevRotm3bxrlz57jnnnuYNm0amZmZ/Pvf/247ds6cOUyePJk5c+awadMmAEpLS5k7dy4ZGRlMmDCBDRs2ABAWFtZ23XfeeYe7774bgLvvvpvvfOc7LFiwgB/84AddXu/VV1/lpptu4oYbbiAlJYU//elPPPvss2RmZnLFFVdQWWn7xnr48GGWLFnClClTmDNnDvv372+7ziOPPMKVV17JiBEj2qa3fuyxx9iwYQMZGRn8/ve/N/4f3UxnDkPUMAjo1/U+g0de2FfTfJDP3Qn87Q+/za4y996BmRGXwR+W/KHb/QoLC3n77bdZsWIF06ZNY9WqVXzxxRdkZWXx61//mrS0NBYuXMjKlSupqqpi+vTpLF68mJiYGD7++GNCQkLIzc3l/vvvJycnh1WrVnH11Vfzox/9iJaWFurq6rqN4eDBg3zyyScEBATw+OOPd3o9gL1795Kbm0t9fT2jRo3i6aefJjc3l0cffZTXX3+db3/72zzwwAO89NJLjB49mq1bt/LNb36TTz/9FLAlpy+++IL9+/ezdOlSli1bxlNPPcVvf/tb3n+/D8yFX3n4wjf8rkQNt00UV6kTgOabfC4BmCklJYX09HQAxo8fz6JFixAR0tPTKSoqori4mKysLH77298CtjUBjh8/TkJCAg8//DC7du1CRNomiJs2bRr33HMPTU1N3HTTTWRkZHQbwy233NK2gthHH33U6fUAFixYQHh4OOHh4URGRnLDDTcAkJ6ezp49e7BarWzatIlbbrml7dyOBWsAbrrpJiwWC2lpaZSXl/f2n863KAWVR2HYrMvvFxgMkUm6BqD5LJ9LAM58UzdKcHBw22OLxdL23GKx0NzcTEBAAKtXryY19eKhg0888QSxsbHs3r2b6upqoqOjAZg7dy6ff/45//nPf7jzzjv5/ve/z1133XXRtNP19fUXnav9NNJKqU6vt3Xr1m5jbW1tZeDAgeza1Xltqv3x3U1t7XfqzkCjFaJSut83KgWqjhkfk6YZwKk+ABFZIiIHRKRQRB7r5PUHRSRPRHaJyBcikmbfPlxEztu37xKRly49u/+4+uqr+eMf/9j2gemYCK66upr4+HgsFgtvvvkmLS22RdGOHTtGTEwM999/P/feey87d+4EIDY2loKCAlpbW/nXv/7l8vWcERERQUpKStuSlEopdu/efdljwsPD/XZB+4ucLbL9jhrW/b5Rwy7sr2k+ptsEICIBwPPANUAacJvjA76dVUqpdKVUBvAb4Nl2rx1WSmXYf/x6PuSf/OQnNDU1MXHiRCZMmMBPfvITAL75zW/y2muvccUVV1BYWNj2LT47O5uMjAwyMzNZvXo13/rWtwB46qmnuP7661m4cCHx8fEuX89Zf//733n55ZeZNGkS48ePb+tE7srEiRMJDAxk0qRJ/t0J7PhAH+hEAhg4DM5VQOM5Q0PSNEMopS77A8wE1rZ7/kPgh5fZ/zbgA/vj4cDe7q7R/mfMmDGqo3379l2yzVfV1NSYHYJh9u3bp9avX292GL332TNK/SxCqQbrJS9dUr49b9v2Lcv3TGwG84v3rwv+XDallMK2RrvTn7VKKaeagBKBE+2eF9u3XUREHhKRw9hqAI+0eylFRHJF5DMRmeNiftI0z6s6BqHREOTEsp1Rwy8co2k+xplOYOlk2yW9gkqp54HnReSrwI+B5UApkKyUOiMiU4B3RWS8UqrmoguIPAA8ABAdHU12dvZF546MjPSbtueWlha/KUtH9fX1WK3WS94/XzPx6B4CLQPZ2Uk5OpavX2MVs4BD2z/lZGl/j8VoFH94/7riz2XrKWcSQDEwtN3zJKDkMvu/CbwIoJRqABrsj3fYawhjgJz2ByilVgArAFJTU9X8+fMvOmFBQQHh4eH4g9raWr8pS0chISGEhYXR8f3zOXlWGDqh03JkZ2dfvF0p2BrM6JhgRvt6uemkfH7En8vWU840AW0HRotIiogEAbcCWe13EJH2K2ZcBxyyb4+2dyIjIiOA0YC+b17zXkpBdbFtfL8zRGz7VhcbG5emGaDbGoBSqllEHgbWAgHASqVUvog8ia3TIQt4WEQWA03AWWzNPwBzgSdFpBloAR5USumZszTvVXcGmusvPwdQRwOH6gSg+SSnbgRTSq0B1nTY9tN2j7/VxXGrgdW9CVDTPKrKdie10zUAx76HPjEmHk0zkJ4MzoPefffdtgnXXJGVlcVTTz1lQETaJRzf5F1KAMlgLYPmhu731TQvohOAB/UkATQ3N7N06VIee+ySG7Ave4zWQzUnbb8jXEgAEQm237Wl7o9H0wzkc3MBmaWoqIglS5YwY8YMcnNzGTNmDK+//jqbN2/me9/7Hs3NzUybNo0XX3yR4OBgHnvsMbKysggMDOSqq67i5ptvJisri+zsbH73u9+xerWtZeyhhx6ioqKCAQMG8Je//IWxY8dy9913M2jQIHJzc5k8eTLp6enk5OTwpz/9iWPHjnHPPfdQUVFBdHQ0r7zyCsnJyZcc87vf/c7kfzEfVXMSAkNgwCDnj4m03xZTffLCfQGa5gN8LwF88BiU5bn3nHHpcE33TSwHDhzg5ZdfZtasWdxzzz08++yz/PnPf2bdunWMGTOGu+66ixdffJG77rqLf/3rX+zfvx8RoaqqioEDB7J06VIWLVrEnXfeCcCiRYu6nI65/bTPr776alsMDz/8MHfddRfLly9n5cqVPPLII7z77ruXHKP1UE2J7Ru9dHb7SxciEi8cq2k+RDcBuWDo0KHMmmWbIviOO+5g3bp1pKSkMGaMbdnA5cuX8/nnnxMREUFISAj33Xcf//znPxkwYMAl52o/HXNGRgZf//rXKS290ITQftrn9jZv3sxXv/pVAO68806++OKLbo/RXFB98sIHurMcTUA1eiSQ5lt8rwbgxDd1o4iT3woDAwPZtm0b69at48033+RPf/pT2zd7h+6mY24/7bOzMTl7jHYZNSUw7ErXjgkOh+BIXQPQfI6uAbjg+PHjbN68GYB//OMfLF68mKKiorYFXt544w3mzZuH1Wqlurqaa6+9lj/84Q9tH/Lh4eFYrVagZ9MxA1x55ZW8+eabgG02z9mzZ7u9nH1WayvUllz4Ru+KyERb7UHTfIhOAC4YN24cr732GhMnTqSyspJHH32UV155hVtuuYX09HQsFgsPPvggtbW1XH/99UycOJF58+a1TZ1866238txzz5GZmcnhw4ddno4Z4H//93955ZVXmDhxIm+88QbPPfec0cXuO85VQGtzzxJAeLwteWiaD/G9JiATWSwWXnrp4jVtFi1adMlCLPHx8Wzbtu2S42fNmsX27dsvmgvoww8/vGS/9p2+YFuk3bEw/PDhwy9pTursGK0HHB/gPUkAEfFQnu/eeDTNYLoGoGkONfZO+PA4148Nj4dzp6BF34Oh+Q6dAJw0fPhw9u7da3YYmpEcNYDwHjYBqVZbEtA0H+EzCUD1tYXJfYxfvD81pSABEBbj+rFtQ0H13cCa7/CJBBASEsKZM2f840PGDymlOHPmDCEhIWaH0ju1pRAWC5Ye3EsRbl+7WXcEaz7EJzqBk5KSKC4upqKiwuxQeq2+vt73Pyg7ERISQlJSEseO+fDSiLWlPWv/B10D0HySTySAfv36kZKSYnYYbpGdnU1mZqbZYWidqS2DqB7+PxswxNZ8ZC1zb0yaZiCfaALSNI+oLet5DcBisTUf1Za7NyZNM5BTCUBElojIAREpFJFL5iUWkQdFJE9EdonIFyKS1u61H9qPOyAiV7szeE1zm+YGOF95oS2/J8Lj9JTQmk/pNgHY1/R9HrgGSANua/8Bb7dKKZWulMoAfgM8az82DdsawuOBJcALjjWCNc2r1NqbbsJje36O8LgL59E0H+BMDWA6UKiUOqKUagTeBG5sv4NSqqbd01DAMVznRuBNpVSDUuooUGg/n6Z5F6u96aa3NQDdB6D5EGc6gROBE+2eFwMzOu4kIg8B3wGCgIXtjt3S4VgX59rVNA9wNN2E9aYGEG9fVL4BAoPdE5emGciZBNDZHMiXDMhXSj0PPC8iXwV+DCx39lgReQB4ACA6Oprs7GwnwvJNVqtVl88LJRZ/wWhgY94Rmg5Udrnf5coXX1JFKrD5kywaQqINidNovvr+OcOfy9ZTziSAYmBou+dJwOXudnkTeNGVY5VSK4AVAKmpqWr+/PlOhOWbsrOz0eXzQus+h8MBzFq81DaipwuXLd/BBjj4PDMnpEDSVGPiNJjPvn9O8Oey9ZQzfQDbgdEikiIiQdg6dbPa7yAio9s9vQ44ZH+cBdwqIsEikgKMBi6dJlPTzFZbbpsC4jIf/t1yTCGhO4I1H9FtDUAp1SwiDwNrgQBgpVIqX0SeBHKUUlnAwyKyGGgCzmJr/sG+31vAPqAZeEgp1WJQWTSt56xlvWv/BwiLu3AuTfMBTt0JrJRaA6zpsO2n7R5/6zLH/gr4VU8D1DSPsJa7vhZwR6HRgIBVzwiq+QZ9J7Cmgb0JqJc1gIBAWxLQTUCaj9AJQNNamm3LQfY2AYDtRjKrng5C8w0+MRmc5htKq89TUddqdhiuqzsNqN7dBewQ5psJoKmliSNnj2BttpodiuZBOgFovWZtaOZ/3tnNmjxb00dW6Vae/XIG0eE+cjOU4wM7rIcTwbUXFgenCnp/Hg/6rOgz7v733RRVFRFiCeHJ/k/y/VnfNzsszQN0E5DWK80trTzweg5r88t5ZOEolo3px/aiSpav3Ma5Bh9ZH9fRaeuOJqCwGNv5Wn2jJrSjZAfXrbqOoIAg/nrDX5kaNZX/+eR/+O2m35odmuYBOgFovbJy41E2HT7D/7s5ne9clcr1I4J48Y4p7Cut4fcfHzQ7POc4Om17shRkR2Gx0NoE58/2/lwGa2xp5K5372JQ/0F8dvdn3Dv5Xn4+/ucsS1vGD9f9kL2n9BrY/k4nAK3HKmob+P3Hh1g8LpZbpiS1bV+QGsNt05NZufEohad8oE25rQnIHQkg5uJzerHntz3Pvop9vHDdC8TZm78sYuHF614kMjiSRz54xOQINaPpBKD12MqNR2lobuHxa8cicvG0T9+7agxBgRZe+uywSdG5wHoKgiOhX//en8vRjOTlCaC+uZ5nNj3DwpSFXD/m+oteGzJgCD+e+2PWF61n04lNJkWoeYJOAFqPnGto5m+bj3FNejwjosMueX1wWDC3Tkvm3dyTlFXXmxChC6zl7hkBBBdWFPPyBPD3PX+n1FrK47Mf7/T1+yffz+D+g3lm0zMejkzzJJ0AtB75z55Sahua+dqVw7vc5+4rh9Pcqli9s9hzgfWE9RSEuqH5B9o1AXn33cB/2fkX0qLTWJiysNPXQ4NCuTfzXt478B6lepUzv6UTgNYjb+WcYER0KFOGRXW5z/AhoVwxYhBv5ZxAqUtmAfce1nL3tP8DBIVBYH+vrgHkn8pn68mt3Jd53yVNd+3dk3kPLaqF13e/7sHoNE/SCUBzWfHZOnKOnWXZlKTLfoAALJsylGNn6th1ospD0fWA9ZR7hoACiFwYCuql/rH3HwRIAHdMvOOy+6UOSWVm0kxW7V3locg0T9MJQHPZh3ttwyavS+9++cT/SoulX4DwwV4vnR+nsQ4aa91XAwCvvhtYKcXb+95mQcoCokO7X7Tmy+O/zJ7yPRw84yNDejWX6ASguWxNXinjEyIYNji0230j+/dj9qghrMkr9c5moHNuvAnMwYtrAHtP7eXgmYMsG7fMqf2/NO5LALyz7x0jw9JMohOA5pKK2gZ2Hq/i6vHOT5tw9fg4is+e50B5rYGR9ZA77wJ28OIaQNYB21pON4690an9h0YOZVrCNN47+J6RYWkm0QlAc8nnBysAWDjW+SaTBfZ9sw9UGBJTr7jzJjCHsFg4XwnNje47p5t8UPgBUxOmtt345YzrRl/H1uKtnK47bWBkmhmcSgAiskREDohIoYg81snr3xGRfSKyR0TWiciwdq+1iMgu+09Wx2M137L+wCmiw4NJi49w+pjYiBDS4iNYv98Lm0UMSQD2tvVz3lXeyvOVbC7ezLWjrnXpuGtHX4tC8dHhjwyKTDNLtwlARAKA54FrgDTgNhFJ67BbLjBVKTUReAf4TbvXziulMuw/S90Ut2aCllbFhkOnmTcmGovl8qN/OpqfGk3OsbNYvW2COOspQGDAEPeds+1uYO9KAJ8c+YRW1cqSUUtcOm5KwhSGDBjCh4UfGhSZZhZnagDTgUKl1BGlVCPwJnBRA6JSar1Sqs7+dAuQhOZ3CkprqD7fxOxRrn9Yzho1hJZWxbajZwyIrBespyB0iG01L3dxJIBz3tXk9enRT4kIjmBa4jSXjrOIhYUpC/n06Kfe2ZGv9ZgzCSARONHuebF9W1fuBT5o9zxERHJEZIuI3NSDGDUvsbHQ1gZ85cjBLh87ZVgUQYEWNhZ6YwJwY/MP2NcGxus6gtcdXce8YfMItLie7BalLOJk7Uk9HNTPOPM/obO6fqdfA0TkDmAqMK/d5mSlVImIjAA+FZE8pdThDsc9ADwAEB0dTXZ2tjOx+ySr1eqz5Xs/p56EUGHfzi3s62Kfy5VvZAR8tPsYc8K8p2lkcskhmgMHsMfJ98SZ98/S0sBc4EjeVo7XJPc6Rncory+nsLKQq6Ouvmz8XZUv9LxtyO+La1/kpkTf/B7ny397hlFKXfYHmAmsbff8h8APO9lvMVAAxFzmXK8Cyy53vTFjxih/tn79erND6JGm5haV9pMP1I/+teey+12ufM99clAN+8H7qupco5uj64VnJyi1+n6nd3f6/ft1klL/+X7PYjLA67teVzyB2lW667L7dVW+1tZWlfRskvry2182IDrP8NW/PWcBOaqbz/OOP840AW0HRotIiogEAbcCF43mEZFM4M/AUqXUqXbbo0Qk2P54CDALuvzyqHmxfaU1nGtsYdrwQT0+h+PYnGOV7gqrd5Ry7zxA7YXFeFUT0IbjG4gMjmRCzIQeHS8izEmew4ZjG3Q/gB/pNgEopZqBh4G12L7hv6WUyheRJ0XEMarnGSAMeLvDcM9xQI6I7AbWA08ppXQC8EHbjto+tKen9DwBZCYPpF+AsK3ISxJAQw20NLi/DwDsN4N5T1PXhuMbmJU8iwBLQI/PMSd5DqXWUo6cPeLGyDQzOdUbpJRaA6zpsO2n7R4v7uK4TUB6bwLUvMP2okqSovoTH9nzRVNC+gWQnhjJ9qNekgCMuAvYISwGyvLcf94eqDhXwf7T+1k+aXmvzjNn2BzAlkxGDhrpjtA0k+k7gbVuKaXYcayqV80/DtOGDyLvZDX1TS1uiKyXjLgJzCHUe+YD2ly8GYDZybN7dZ606DSiQqL0KmF+RCcArVvFZ89z2trA5OSBvT5XZnIUTS2K/JIaN0TWS0bXABpqoOm8+8/tos0nNhNoCWRK/JRencciFmYkzWhLKJrv0wlA69bO42cB24d3b00eZksiufZzmqotARjUB9D+GibaXLyZzLhM+rthzeOZSTPJP5VPdX21GyLTzKYTgNatncfOMiAogLFx4b0+V0x4CElR/duSiqms5SAB0L/3TVuX8JIE0NzazPaS7cxMmumW881MmolCse3kNrecTzOXTgBat3adqGJiUiSBAe7575KZHMXOY16wQti5U7Zv/xYD/gy8ZEK4vaf2UtdUxxVJV7jlfNMTpyMIW4q3uOV8mrl0AtAuq6G5hX2lNUwa2vv2f4eMoQMpq6nnVE29287ZI9ZTF6ZtcLe2GoC59wI4vqnPSJrhlvNFhkSSOiSV7SXb3XI+zVw6AWiXtb+0lqYWRUaSOxNAJAC7i01uR3bnWsAdtc0HZO6EcNtObmNw/8GkDExx2zmnJ05n28lt+oYwP6ATgHZZu4ttTTXurAGkxUcSYBF2m71QvJEJIKAfDBjsFTWAaYnTEHFt+u7LmZ4wnfJz5RTXFLvtnJo5dALQLmvXiSqGhAUTHxnitnP2DwogNTa8LbmYorX1Qh+AUUxeGvJc4znyK/KZnjDdred1TCetO4J9n04A2mXlFVczMSnSrd8gASYNjWRPcbV5zQjnz0Jrs7EJIDTa1FFAuWW5tKpWpiZMdet5J8VOop+lHzklOW49r+Z5OgFoXTrX0MzhCivpiZFuP/eExEiqzzdRfNakG6WMvAvYweQawI6SHQBuTwDBgcFMiJlATqlOAL5OJwCtS/tKa2hVMDHJ/QnAkVT2mNUR3JYADOoDAPuMoKdss46aIKc0h/iweOLD491+7qkJU9lRskN3BPs4nQC0LuXZP5yNqAGkxoXTL0DIO2lSAnAs12hoAoiF5vPQaDXuGpexo2QHUxJ6N/1DV6bET+Fs/VmOVh015PyaZ+gEoHVp78lqYsKDiYlwXwewQ3BgAKlx4ew1KwE4agBG3QcAF5JLreebgayNVvaf3t/r+X+64mhWcjQzab5JJwCtS3tLqg359u8wISGSvSUmdQRbyyEwBEKMK19b/4IJdwPvLtuNQhmWACbETCDQEsjO0p2GnF/zDJ0AtE6db2yh8JSV8QkRhl1jfGIkVXVNlFSbcEdwrX0lMDePbrpIWw2gzLhrdCG3LBeAyfGTDTm/oyPYcR3NNzmVAERkiYgcEJFCEXmsk9e/IyL7RGSPiKwTkWHtXlsuIofsP71bkUJwh7YFAAAgAElEQVTzmIIyWwfweENrALbkYkozkLUcwuKMvYaJE8LtLN1JTGgMCeEJhl1jctxkdpbu1B3BPqzbBCAiAcDzwDVAGnCbiKR12C0XmKqUmgi8A/zGfuwg4GfADGA68DMR6f2cwprhHPP1G1kDGBsXgUUg35QEYPBNYAD9o8ASaMpQ0J2lO8mMy3T7/RvtZcZnUlFXwcnak4ZdQzOWMzWA6UChUuqIUqoReBO4sf0OSqn1Sqk6+9MtQJL98dXAx0qpSqXUWeBjYIl7QteMlH+ymoED+pE4sPdzyHelf1AAo2LC2GvG4jDWcmNHAIFtllETVgZraG4gvyKfzLhMQ6/jaF7S/QC+y5kEkAicaPe82L6tK/cCH/TwWM1L5JfUMD4hwtBvkADjEyLZ5+kE0NwI5yuNTwAA4Z6/GSy/Ip/m1mbD2v8dJsZORBB2le0y9DqacZxZFL6zT4BOG/1E5A5gKjDPlWNF5AHgAYDo6Giys7OdCMs3Wa1Wry9fc6uioLSOxcmBLsfqavmC6pooq2kk66P1RAQZm2wcgusrmAkcKKmi1ODyTWgIJLimkB0efM/XlK4BoOFYA9kVrl3X1fIl9U/ik72fMFfNdek6ZvCFvz1PcyYBFAND2z1PAko67iQii4EfAfOUUg3tjp3f4djsjscqpVYAKwBSU1PV/PnzO+7iN7Kzs/H28u0vq6H5ow0smTGB+ZmuVdhcLV9Q0mn+78BWolImMGe0gWPy2zu5A7ZA6pS5pKbOd+lQl9+/mtVwcK1H3/PVa1YTFhTGV6/5KhZxbaCfq+WbeXom205u8/r/0+Abf3ue5sz/ju3AaBFJEZEg4FYgq/0OIpIJ/BlYqpRq3+C5FrhKRKLsnb9X2bdpXszRJJNmYAewg+MaHm0GqvXANBAOYXG2u45bW4y/lt2u8l1Mip3k8od/T2TGZVJUVURVvRes8Ka5rNv/IUqpZuBhbB/cBcBbSql8EXlSRJbad3sGCAPeFpFdIpJlP7YS+AW2JLIdeNK+TfNi+0pqCA60MGJIqOHXGjggiMSB/dtGHXmE1T4u3yMJIAZU64WpJwzWqlrZXbabjLgMj1zPcR3dD+CbnGkCQim1BljTYdtP2z1efJljVwIrexqg5nn7SmsYGxfutjWAuzMuPoKCUk8mgFOAGD8MFCDcfq+BtfzCYwMdPXuU2sZaw0cAOTgSwO6y3cwfPt8j19TcR98JrF1EKcW+0hrGxRvf/OOQFh/O4Qor9U0eaiapLbOt1hXQz/hrOW4289B8QI5v4pPiJnnkenFhccSExrCrXNcAfJFOANpFymrqqapr8kj7v0NaQgStCg6U1XrmgkYuBdmRo5bhoaGgu8p2ESABjI8e75Hrga0WoJuAfJNOANpF2jqAPVoDsE034bFmIGuZbXy+J3h4PqDd5btJHZJK/37G3cDXUUZsBvsq9tHY0uixa2ruoROAdhHHh/BYDyaApKj+hAcHeq4juLbM+HmAHPqFQMjACx3PBttVZhsB5EkZcRk0tjRSUFHg0etqvacTgHaRfaU1DBs8gLBgp8YHuIXFIoyND/dMDaC11WMdsm3C4z1SA6g8X8mJmhMeGwHk4Ohv2F2+26PX1XpPJwDtIgWltYyL89y3f4dx8RHsL6ultdXgmSXPV9oWg/doAvDMdBC7y2wfwJ6uAYwZPIbggOC262u+QycArc25hmaKzpzzaAeww7j4CKwNzcYvEl9bavvtqU5gsDU3eaAG4PgG7ukaQKAlkPTYdF0D8EE6AWht9pfVohQeHQLq4LjmvlKDp4Z2DMc0owZg8Lz5u8p2ERsaS6wnk5vdpNhJ7CrbpdcG8DE6AWhtHG3w4+LDPX7t1NhwLAL7Sg0eCurojPV0H0BLI5w/a+hldpfv9tj4/44mxU7izPkzlNReMk2Y5sV0AtDaFJTWEBESaOgaAF3pHxRAypBQ4zuCaz04DYRD21DQUsMu0djSyL6KfR5v/3douyNYNwP5FJ0AtDaOO4CNXgOgK+PiI4yfFK621LZSlwfHyRORcOHaBtl/ej+NLY0eb/93mBg7EUB3BPsYnQA0AFpbFQfKak1p/3cYFx/ByarzVJ9vMu4itWW2JhlPcjQ3GdgRbNYIIIfIkEiGDxyup4TwMToBaAAcq6yjrrHFlBFADo5r7zeyGai21LPt/9BuPiDjagC7y3cTHBBM6pBUw67RnYy4DF0D8DE6AWiAOVNAdJTWNhLIyARgQg2gX4it2cnAGsCusl1MiJlAoMVzN/B1NCl2EocqD1HXVNf9zppX0AlAA2wdwAEWYVRMmGkxxIQHMzg0yLh+gNZWewLwcA0ADL0bWCllGwFkUvOPQ0ZcBq2qlbzyPFPj0JynE4AG2L51j4oOI6RfgGkxiIhtbYAygxLAuQpQLZ6bB6i98DioMWaIZEltCafrTpvWAezgSEB6JJDvcCoBiMgSETkgIoUi8lgnr88VkZ0i0iwiyzq81mJfJaxtpTDN+xSU1pja/u+QlhDBwXIrTS2t7j+5Y4y6Y1SOJ4UnGNYHYNYdwB0NHziciOAI3Q/gQ7pNACISADwPXAOkAbeJSFqH3Y4DdwOrOjnFeaVUhv1naSevayarPNdIaXW9qe3/DmnxETQ2t3Kk4pz7T15j/wCO8HAfgOOa1nJoaXb7qR1z8TuGYppFRGxrA+iRQD7DmRrAdKBQKXVEKdUIvAnc2H4HpVSRUmoPYMDXNs1oF+4ANj8BGDolhKMGEG5GDSDevjbwKbefenf5blIGphAZEun2c7tqUuwkdpftplXpjwJf4EwCSAROtHtebN/mrBARyRGRLSJyk0vRaR7h6HQ1YwqIjkZEhxIUaDGmI7imFCTAM2sBdxSReCEGN9tVtsu0KSA6yojL4FzTOQ5XHjY7FM0JzowZ6+y2UFdmfEpWSpWIyAjgUxHJU0pd9L9DRB4AHgCIjo4mOzvbhdP7FqvV6nXl+3RPPVHBQl7O5l6fyx3lSxgAG/cdIzvUvd+WUw/tJCpoIFs+39Djc/S0fGG1JUwF9m7+iNPR7pvv6HzLeQ6dOcSVYVe65f9Vb9+/5lpbE9ffP/0786Pn9zoed/LGvz2zOZMAioGh7Z4nAU4PZ1BKldh/HxGRbCATONxhnxXACoDU1FQ1f/58Z0/vc7Kzs/G28v2/3M+ZnNKf+fOn9fpc7ijfFWf2sDa/jHnz5rl3Worjf4CAlF7F1+PyWcfDjkeZkDwYZvT8+h1tPrEZ9YXi5pk3Mz+19+ft7fs3s3kmD+16iKZBTV73/9wb//bM5kwT0HZgtIikiEgQcCvg1GgeEYkSkWD74yHALGBfT4PV3K++qYXCCqtXjABySEuI4GxdE2U19e49cU2JOR3AAAMGQ0AQ1Jx062lzy3IB80cAOQQHBpMWndYWl+bduk0ASqlm4GFgLVAAvKWUyheRJ0VkKYCITBORYuAW4M8ikm8/fByQIyK7gfXAU0opnQC8yMHyWlpalVeMAHJouyPY3f0ANSUQkeTeczrLYrF1BLv5XoBdZbsY1H8QSWaVqxMZcRltI5M07+bUfeNKqTXAmg7bftru8XZsTUMdj9sEpPcyRs1AjoXYvakGYJuR1BbbonFumra5vhoaayHSlfELbhaZZEgNICMuw7QZXDuTGZfJ67tfp9xabsriNJrz9J3AfVx+STXhIYEkDxpgdihtQoMDSRkcSn6JG4eC1ph4E5hDRAJUF7vtdE0tTeSV5zE5brLbzukOmXGZALoZyAfoBNDH5ZfUkGbiGgBdSUuIYO9JNzYBOb55R5hYA4iw3w3c6p4x8gWnC2hoaSAzPtMt53MXR3/EztKdJkeidUcngD6spVVRUFrD+ATzbyDqaHxCJCerzlNV1+ieE1Z7QwJIsi0NWXfaLafLLbV9w3Z84/YWkSGRjIgaoWsAPkAngD7sSIWV+qZWJiR6T/u/gyMmt3UE15wExJyZQB0czU9uagbKLctlQL8BjBk8xi3nc6fJ8ZPbEpTmvXQC6MMcHcDeWgMAyDvppn6A6pO2UTgB/dxzvp6ItI+TcFNH8M7SnUyKnUSAxbwZXLuSGZfJ4bOHqaqvMjsU7TJ0AujD8k5WE9LPwsjoULNDucSg0CASB/Znr7tqANUnLnwAmyXSfj+lG2oAraqV3LJcpsRP6fW5jOCIS9cCvJtOAH1Y3slqxsVHEBjgnf8NxidEsNdtNYBic4eAAgwYBIEhbkkAB88cxNpoZXK8d40AcnDEpTuCvZt3/uVrhmttVewrqSE90fuafxzSEyM5evoctfW9XCReKVuzi9k1ABFbDNUnut+3G44P1ikJ3lkDiA6NZmjEUHaU7jA7FO0ydALoo4rOnMPa0MwEL2z/d5hgT075vW0GqjsDzfUXmmDMFJl0YURSL+wo2UFwQDDjhoxzQ1DGmBw/WdcAvJxOAH2Uo3N1ghfXAByx5RX3shmo6rjtt9k1AEcMjnh6YUfpDibFTaKfmZ3a3ZiaMJWDZw5S02DQEp9ar+kE0EftKa4mONDCmFjzFoHvTnR4MAmRIb0fCdSWALygBjBwmG1RmKaeT3TXqlrZUbqDaQm9n73VSFMTpqJQuhbgxXQC6KPyiqsZn+C9HcAO6UmR7Cnu5VBCR5v7wOTeB9RbbhgJdOD0AayNVqYmTHVTUMZwjATKKckxORKtK979168ZoqVVsbekmolJA80OpVsTkwZSdKaO6rpedARXHYfgCOjvBeV1JKGqYz0+heMD1dsTQHRoNMMih7G9ZLvZoWhd0AmgDzpcYaWusYWJSd7b/u/giLFXzUBVJ7zj2z9ciKMXI4FySnIY0G+AV3cAO0xLnMb2kzoBeCudAPqgXSdsTSo+kQASbd/ad/emGajquHe0/4PtbmRLYK86greVbGNy/GSvvAO4o2kJ0zhadZTTbpr/SHMvnQD6oN0nqggPDmTEEO/tAHaIHNCPlCGhbUnLZUrZmluihrk3sJ4KCLRNSHe2Z01AjS2N5JbmMiNxhpsDM8b0xOkAuhbgpZxKACKyREQOiEihiDzWyetzRWSniDSLyLIOry0XkUP2n+XuClzrud3FVUwcGonF4l1TQHclY+hAdp2oQinl+sF1Z6DRClHD3R5Xj0UN63EfwJ7yPTS0NLR9sHq7KfFTEIRtJ7eZHYrWiW4TgIgEAM8D1wBpwG0iktZht+PA3cCqDscOAn4GzACmAz8Tkajeh631VH1TC/tLa8kY6gUdok6alBRJRW1Dz9YIdnzTHuglNQCwJaMe1gAcH6S+UgMIDw5nfMx4tpXoBOCNnKkBTAcKlVJHlFKNwJvAje13UEoVKaX2AB1Xurga+FgpVamUOgt8DCxxQ9xaD+09WU1zq2KSD4wAcshItn1nyD3eg2agqiLbb2+qATjuBWg85/KhW4q3EBMaQ3Kkl3RqO2F6wnS2FG/pWQ1OM5QzCSARaD9kodi+zRm9OVYzwM7jZwHITPadilhafARBgRZy7bG75GyR7be3jAKCC8moBx3BW4q3MDNpptet4HY5M4fOpPJ8JYcqD5kditaBM4vCd/Y/zdlU7tSxIvIA8ABAdHQ02dnZTp7e91itVlPLtza3nuj+Qv6OzYac36jyJYfB+rxjzAo95dJxqfs3MbjfQDZtds/NSO4oX3hNJVOAvM+zODOk3OnjqpuqOVR5iAWRCwz7P2TE+xdwzjZaaeXHK1kSZ14DgNl/e97ImQRQDLQfQ5cElDh5/mJgfodjszvupJRaAawASE1NVfPnz++4i9/Izs7GrPIppfifjeu4MnUw8+cbs4ygUeXbeG4fr20+xpWz5xIU6MLgtaPPQNxYt8XklvLVTYSd3yc9IRSudP5c7x98HzbB7fNuZ+6wub2LoQtGvH9z1Vy+nfdtqsOqTfu/D+b+7XkrZ/6StgOjRSRFRIKAW4EsJ8+/FrhKRKLsnb9X2bdpJiiprudUbQOZPtQB7DA5OYrG5lbyS1y8IezsURg0wpigemrAIAgZaIvNBZtPbCZAArx2EZiuWMTCjMQZbCreZHYoWgfdJgClVDPwMLYP7gLgLaVUvog8KSJLAURkmogUA7cAfxaRfPuxlcAvsCWR7cCT9m2aCXKKbP/0U4cPMjkS100ZZuuz2HHMhX6ApvO2dQAGpRgUVS8MSoHKIy4dsvHERjLjMwkN8r4V3Loza+gs8srzqK530wI/mls4VZdWSq1RSo1RSo1USv3Kvu2nSqks++PtSqkkpVSoUmqwUmp8u2NXKqVG2X9eMaYYmjNyis4SGhTA2Lhws0NxWUxECMmDBpBT5EICcHQAR3ljAhjhUgJobGlk28ltzB4628CgjDMreRYKxZbiLWaHorWj7wTuQ7YXVTJ5WJTXzwDalanDosg5Vun8cMIzhbbfg0caF1RPDRppGwXU3ODU7rmluZxvPs+s5FkGB2aMGYkzCJAAvjj+hdmhaO345ieB5rKa+iYOlNe2NaX4oqnDB3Ha2sjR006On29LAKOMC6qnhowG1XqhltINxwfnrKG+mQDCg8PJiMvgixM6AXgTnQD6iJyiSpSC6Sm+1/7vMD3Flry2HXWyG+lMIYTFQkiEgVH1kKNW4khS3fjs2GeMGjSK+PB4A4My1pzkOWwp3kKDk7UezXg6AfQRW49UEhRgYbIP3QDW0cjoMIaEBbHV6QRw2Du//cOFuJxIAC2tLWw4voF5w+YZHJSx5g2fR31zvV4fwIvoBNBHbDlayaShkYT08/4phLsiIsxIGczWI2ec6wc4fdB7E0BIJITG2GLsRt6pPKrqq5g/fL7xcRloTvIcAD4r+szkSDQHnQD6AGtDM3tPVjMjZbDZofTajBGDKKmu50Tl+cvveO60bSbQ6FTPBNYT0alQ0X0CcHxg+noNYPCAwaTHpLO+aL3ZoWh2OgH0AduOnqGlVTFzpO8ngJkjbGXYfKSbBUYqDth+D/HiBDBkjC3ObmoznxZ9ysiokQz1lkVtemHB8AVsPLFR9wN4CZ0A+oCNhWcICrT49Aggh1ExYUSHB7Ox8MzldzxtTwDRY4wPqqeiU6GhGqxdzwfU3NpMdlE2i1IWeTAw4ywasYj65no2FxszF5XmGp0A+oCNhaeZOizKp9v/HUSEK0cOZtPhbvoBKg5Av1CISPJccK5yNE9V7O9ylx0lO6hpqGFhykIPBWWsecPmYREL646sMzsUDZ0A/F5FbQP7y2qZNWqI2aG4zaxRQzhttZWrS+X5EDMWLF78XzzGvq5S+b4ud/n4yMcALEhZ4ImIDBcZEsn0xOlt5dLM5cV/HZo7bDhUAcDc0dEmR+I+c0bbktnnByu63ulUwYUPWG8VFgMDhsCprhPA2sNrmRw/mZjQGA8GZqyrRlzF9pLtVJ7X04KZTScAP/f5wQoGhwYxPsELb4bqofjI/qTGhvP5oS4SgPUU1J32/gQAEDOuywRQXV/N5hObWTLSvxbRWzJqCa2qlU+OfGJ2KH2eTgB+rLVV8UXhaeaMHuIzC8A7a+6YIWw/epZzDc2Xvli+1/Y71gcSQOwEW22lteWSl9YdXUeLauHqUVebEJhxpiVOY2DIQD4s/NDsUPo8nQD82J6T1Zy2NrJgrP80HzgsSI2hsaWVjYWdDActy7P9jpvo2aB6Ii4dmuo6nRn0Pwf/Q2RwJDOTZpoQmHECLYFcPfJq1hxaQ6vquIy45kk6AfixdQXlWATmjfGf9n+HqcMHER4cyLqCTpaILMuzjf4Z4APzHsWl236X7bloc6tq5T+H/sOSUUvoF9DPhMCMdf2Y6yk/V86Okh1mh9Kn6QTgxz4pOMXUYYMYOCDI7FDcLijQwtzUaNbtP0Vra4fhoKV7IG6COYG5KnosWPrZYm5n+8ntlJ8r54YxN5gUmLGuGXUNFrHw3sH3zA6lT3MqAYjIEhE5ICKFIvJYJ68Hi8j/2V/fKiLD7duHi8h5Edll/3nJveFrXTlRWUdBaQ2L0/yv+cfhv8bFctraQO6JqgsbG2pt8+skGLPmsdsFBkHseCjJvWjzu/vfJUACuGb0NSYFZqzBAwYzO3k27+5/1+xQ+rRuE4CIBADPA9cAacBtItKxd+1e4KxSahTwe+Dpdq8dVkpl2H8edFPcWjc+3FsGwJLxvjt9cHcWjI2hX4CwNr/swsbS3YCChMmmxeWyhEwo2QWttvZwpRSrC1azIGUBg/r7QDNWD9089mbyTuVx6Mwhs0Pps5ypAUwHCpVSR5RSjcCbwI0d9rkReM3++B1gkYj417ATH/PB3lLS4iNIHjzA7FAME9m/H7NGDeGDvaUX7go+udP2O9GHEkDiZNuUEPaO4PyKfA5VHuJL475kcmDGunnczQCsLlhtciR9V6AT+yQCJ9o9LwZmdLWPUqpZRKoBx8xjKSKSC9QAP1ZKbeh4ARF5AHgAIDo6muzsbFfK4FOsVqvh5TtzvpWdx8/zpdH9PP5v6YnytTeiXxPZlY28kvUpIyIDGL93DWEhMWzdvteQ6xlRvlBrK9OAgk9epzxuISuPrsSChZjKGL9//8aFj+PlrS9zRfMVhl/L02XzCUqpy/4AtwB/bff8TuCPHfbJB5LaPT+MLQEEA4Pt26ZgSxIRl7vemDFjlD9bv3694dd4MbtQDfvB++rY6XOGX6sjT5Svvaq6RjX68TXq51n5SrW2KvXMaKXeudew6xlSvpZmpX6dpFTWt1Rra6sa+dxItfj1xe6/jhM8/f79YfMfFE+gCioKDL+Wp8vmaUCO6ubzvOOPM01AxUD7eWiTgJKu9hGRQCASqFRKNSilztgTzQ57YvDi6Rn9w793lZAxdKBfN/84RPbvx/zUaN7bU0Jz5THbzJpDO1ZQvZwlAJKmwomtbC/ZzuGzh7ltwm1mR+URXx7/ZSxi4e97/m52KH2SMwlgOzBaRFJEJAi4FcjqsE8WsNz+eBnwqVJKiUi0vRMZERkBjAYuveNFc5u9J6spKK3h5smJZofiMTdPTqSitoGD2z6ybUg2vjnB7ZJnwqkC/m/7S/QP7M+ytGVmR+QR8eHxLB6xmNf3vK5vCjNBtwlAKdUMPAysBQqAt5RS+SLypIgste/2MjBYRAqB7wCOoaJzgT0ishtb5/CDSik9A5SB3tlRTFCAhaWTEswOxWMWjo1lUGgQVQWfQv8oiBlvdkiuGz4bUJTmr+ZLaV8iIth/5m7qztcyvsbx6uN8evRTs0Ppc5zpBEYptQZY02HbT9s9rsfWV9DxuNWA7uL3kPONLfwr9yRXjY/1y5u/uhIUaOGmjESG5uygYfQVBHvzFNBdSZxCc0A/ZjRZSc/4mtnReNRNY28iKiSKv+z8C4tHLDY7nD7FB/9StK68t6eE6vNN3HHFMLND8bjlY1sYKqfYgg/M/9OZwGBy+gVxXUAoC4b7x9z/zgoJDOFrGV/jnwX/pLS21Oxw+hSdAPyEUorXNhUxOiaMGSn+e/NQV4ad3QLAn44n09Tie23J209u5636M4xqaUZqTpodjsc9OPVBmlubeSlHTxbgSToB+InNh8+QX1LDvbNT6JP34B1cS11YMttroliT53vfIn+3+XdsDAqxPTm41txgTDB68GhuGHMDL+S8QF1Tndnh9Bk6AfiJFz87zJCwIG7K7Dujf9o01MLRz+g//npGxYTxYvbhSyeI82KHKw/z9r63mTf1AYhKgQNruj/ID33vyu9xuu40K3NXmh1Kn6ETgB/YcewsGw6d5v45I/xi4XeXHfoIWhqRcdfxzfkj2V9Wy0f7ys2Oymm/2vArggKCeHTmd2DsdXDkMzhf1f2BfmZO8hxmJ8/mqS+eor653uxw+gSdAHycUorffXSAQaFB3Dmz73X+ArD3nxAWB8kzWTopgZQhoTz78QFafKAWsP/0fl7f/ToPTnmQ+PB4GH8ztDbB/vfNDs3jRIQn5j3BydqTui/AQ3QC8HHrD5xi0+EzPLJwFAOCnBrV61/qKm01gPH/DZYAAgMsfP/qVA6WW3lnx4nujzfZDz75AQP6DeDxOY/bNiROhqjhsPtNU+Myy8KUhSwesZhffP4Lzp4/a3Y4fk8nAB9W39TCk+/tI2VIKF+d0Ue//e95C1oaIfP2tk3XTIhjyrAofvPhAarrmkwM7vI+OPQBWQeyeHzO40SH2ldtE4GM26FoQ6fLRPo7EeGZ/3qGqvoqfrL+J2aH4/d0AvBhz68vpOhMHb+4cQJBgX3wrWxthe1/tc3971haEduHyC9unEDV+SZ+vabAxAC7Zm208tCahxg7ZCyPXvHoxS9m3A4SANtfNic4k2XEZfDQtId4YfsLbD6x2exw/Fof/NTwD7nHz/JC9mG+NDmJ2aOHmB2OOQ59BGcOwRXfuOSltIQIHpg7gv/LOcG6Au/rEP7u2u9SVFXEiutXEBwYfPGLkYmQdiPsfAPqq80J0GS/XPhLkiOTuevdu7A2Ws0Ox2/pBOCDzp5r5OFVucRFhPCzpR0XZ+sjlILPnoaBybb2/058e/FoxsVH8N23d1N81nvGlv8j7x+s2LmC71/5feYMm9P5TrO+ZVskZuufPRucl4gIjuDVm17lcOVhvv7+1y8s+KO5lU4APqahuYUH/7aDitoGXrh9MhEh/cwOyRz5/4KSnTD3+xDQ+b9BcGAAL9w+mZYWxX2v5VBbb35/wNbirdybdS+zk2fzy4W/7HrHhAxIvQ42/i9YT3kuQC8yf/h8nlzwJKvyVvH0xqe7P0BzmU4APqSppZVH/pHL1qOVPHPLRCYNHWh2SOaor4a1P4LYdFt7+WWkDAnl+dsnc+iUlXtfy6GusdlDQV4qrzyP61ZdR3x4PKu/vJp+XSSuNv/1JDTXw9rHPROgF3p8zuPcNuE2frjuh6zYscLscPyOTgA+4lxDM/e/nsPa/HJ+dkMaN2b0wTt+wdb085/vgrUMbnjOtphKN+aOieb3X8kgp6iS2/+6lTPWBg8EerGNxzcy/7X5hASG8NEdHxETGtP9QUNGwZzvQt7bkOzkRjQAAAgTSURBVPeO8UF6IYtYeOXGV7hu9HV8/f2v85uNv9HNQW6kE4AP2F9Ww43Pb+TzgxX8+r/T+dqsFLNDMs+G39k+EBc8DklTnD5s6aQEXrh9CvklNdzwxy/IKfLMshStqpXntjzHgtcWMLj/YD7/2ueMHDTS+RPM/Z5thbN/PwzFOcYF6sWCA4NZ/eXVfGX8V/jBJz/g9n/eTlV937tT2gg6AXixmvomfvPhfm744xdU1TXyt3tn8NUZyWaHZQ6l4LPfwKe/gPRbYM73XD7FkglxvPPgTCwW4ct/3sxP/73X0NrAztKdzH91Pt9e+22uHnU1W+/byoioEa6dJKAffOVvEB4Lb9wMRz83JlgvFxwYzKovreKXC37JW/lvMf6F8azKW6VXEeslpxKAiCwRkQMiUigij3XyerCI/J/99a0iMrzdaz+0bz8gIle7L3T/dfT0OZ7+cD9znl7PC9mHuWFiAh89Oo8rR/XR4Z5Vx+FvX4L1v4KJt8JNL9pumOqBiUkD+fDbc7lr5nD+tuUYc36zniey8tlfVuOWUJtbm1lzaA3Xr7qeKSumsK9iHy8vfZmsW7OI6h/Vs5OGxcDy9yE8Dl6/EdY9CU19b64ci1j40dwfsfnezcSFxXH7P28n/cV0Xsp5SdcIeqjbBGBf0/d54BogDbhNRDqOPbwXOKuUGgX8HnjafmwatjWExwNLgBccawRrlzpVU881z21gwW+z+fNnh5k5YjDvPTybZ7+SwaDQvrPC1yWOboDjW+Da38J/v9TlqB9nhQUH8sTS8Xz06DyWjI/j71uPseQPG1j0u2wOldf2+Lwrc1cS+9tYrlt1HdtObuPn83/O4UcOc0/mPb2fonvgULh/HUy6zTY09FzfHBkEMC1xGtvu28aqm1cRFBDEN/7zDWKeieHud+82OzSf48zkMdOBQqXUEQAReRO4EdjXbp8bgSfsj98B/iS2//E3Am8qpRqAo/Y1g6cD+va+TgwJCyYpqj83ZyZyw6QE4iJDzA7JO2R8FUYuhIh4t552VEwYz34lgx9dN441eaV8UnCKxKj+PT5fUkQS14y6hmVpy7h29LUEBbg5aQeHw00vwMIfQ0TfWfO5MwGWAG5Lv41bJ9xKTkkOb+W/RVhQmNlh+RzprkddRJYBS5RS99mf3wnMUEo93G6fvfZ9iu3PDwMzsCWFLUqpv9m3vwx8oJR6p8M1HgAeAIiOjp7y1ltvuad0XshqtRIW5r//UXX5fJs/l8+fywawYMGCHUqpqa4c40wNoLO6a8es0dU+zhyLUmoFsAIgNTVVzZ8/34mwfFN2dja6fL5Ll893+XPZesqZTuBiYGi750lASVf7iEggEAlUOnmspmmaZgJnEsB2YLSIpIhIELZO3awO+2QBy+2PlwGfKlvbUhZwq32UUAowGtjmntA1TdO03ui2CUgp1SwiDwNrgQBgpVIqX0SeBHKUUlnAy8Ab9k7eSmxJAvt+b2HrMG4GHlJKtRhUFk3TNM0FTi0hpZRaA6zpsO2n7R7XA7d0ceyvgF/1IkZN0zTNAPpOYE3TtD5KJwBN07Q+SicATdO0PqrbG8E8TURqgQNmx2GgIcBps4MwkC6fb/Pn8vlz2QBSlVLhrhzgVCewhx1w9W42XyIiObp8vkuXz3f5c9nAVj5Xj9FNQJqmaX2UTgCapml9lDcmAH9f+FOXz7fp8vkufy4b9KB8XtcJrGmapnmGN9YANE3TNA/wmgQgIreISL6ItIrI1A6v+dWykiLyhIicFJFd9p9rzY7JHbpbOtSXiUiRiOTZ3y+fX51dRFaKyCn7Wh6ObYNE5GMROWT/3cM1LM3XRfn85u9ORIaKyHoRKbB/bn7Lvt2l99BrEgCwF7gZuGjVaz9eVvL3SqkM+8+a7nf3bk4uHerrFtjfL38YSvgqtr+n9h4D1imlRgPr7M991atcWj7wn7+7ZuC7SqlxwBXAQ/a/N5feQ69JAEqpAqVUZzeAtS0rqZQ6CjiWldS8S9vSoUqpRsCxdKjmhZRSn2Obube9G4HX7I9fA27yaFBu1EX5/IZSqlQptdP+uBYoABJx8T30mgRwGYnAiXbPi+3bfN3DIrLHXlX12ap2O/76Pjko4CMR2WFfwtQfxSqlSvn/7d0xaxRBGMbx/wNaqaVCmiD6BdRWkRQS6xTWgo2FTWot/ASKYGFhKSoIJgqCjZVWdoKCrVgYLpX4AXwsZg9D0Lgrd7c3u88PjtvbZWGGl9n3duZuX8oFBjjRc3vmYWjjDkkngbPAezrGcKEJQNIbSZ/+8Drom2KrspLL5h99fQCcBs4AO8CdXhs7G1XGqYPzts9RprhuSLrYd4Ois8GNO0lHgefApu0fXc9f6KMgbF/6j9OqLCvZtq+SHgKv5tycRagyTm3Z/ta870rapkx5vT34rOpMJK3Y3pG0Auz23aBZsj2Zbg9h3Ek6TLn4P7a91ezuFMMapoAGV1ayCczUBmUBvHZtSodWSdIRScem28A6w4jZfntLu14FXvbYlpkb0riTJEolxs+27+451CmGS/NHMEkbwH3gOPAd+GD7cnPsFnCNsvK9aft1bw2dAUmPKLehBr4A16fzdjVrflZ3j9+lQwdRCU7SKWC7+XgIeFJ73yQ9BdYoT8icALeBF8AzYBX4ClyxXeVC6l/6t8ZAxp2kC8A74CPws9l9k7IO0DqGS5MAIiJisWqYAoqIiDlIAoiIGKkkgIiIkUoCiIgYqSSAiIiRSgKIiBipJICIiJFKAoiIGKlfV7zr5nu2oBUAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.mlab as mlab\n", - "import math\n", - "mu1 = 0\n", - "variance1 = 2\n", - "sigma = math.sqrt(variance1)\n", - "x1 = np.linspace(mu1 - 3*sigma, mu1 + 3*sigma, 100)\n", - "plt.plot(x1,scipy.stats.norm.pdf(x1, mu1, sigma),label='prior')\n", - "\n", - "mu2 = 10\n", - "variance2 = 2\n", - "sigma = math.sqrt(variance2)\n", - "x2 = np.linspace(mu2 - 3*sigma, mu2 + 3*sigma, 100)\n", - "plt.plot(x2,scipy.stats.norm.pdf(x2, mu2, sigma),\"g-\",label='measurement')\n", - "\n", - "\n", - "mu_new=(mu1*variance2+mu2*variance1)/(variance1+variance2)\n", - "print(\"New mean is at: \",mu_new)\n", - "var_new=(variance1*variance2)/(variance1+variance2)\n", - "print(\"New variance is: \",var_new)\n", - "sigma = math.sqrt(var_new)\n", - "x3 = np.linspace(mu_new - 3*sigma, mu_new + 3*sigma, 100)\n", - "plt.plot(x3,scipy.stats.norm.pdf(x3, mu_new, var_new),label=\"posterior\")\n", - "plt.legend(loc='upper left')\n", - "plt.xlim(-10,20)\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**Addition**\n", - "\n", - "The motion step involves a case of adding up probability (Since it has to abide the Law of Total Probability). This means their beliefs are to be added and hence two gaussians. They are simply arithmetic additions of the two.\n", - "\n", - "$$\\begin{gathered}\\mu_x = \\mu_p + \\mu_z \\\\\n", - "\\sigma_x^2 = \\sigma_z^2+\\sigma_p^2\\, \\square\\end{gathered}$$" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "New mean is at: 15\n", - "New variance is: 2\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD8CAYAAAB+UHOxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsnXl8lNW9/9/fyTaQPSEJIQkkQBIIhEXBDdG4VLFWtK1YtCpcrNRWr63e21tbf12uXa52cWnrUlpxa5GqVKUWpRaNiBsgi+wQIJCQnZBlsmdyfn88MzGELJNkZp5Zzvv1yiszz3POeb4nk3k+z/d7zvkeUUqh0Wg0muDDYrYBGo1GozEHLQAajUYTpGgB0Gg0miBFC4BGo9EEKVoANBqNJkjRAqDRaDRBihYAjUajCVK0AGg0Gk2QogVAo9FogpRQsw3oTVxcnJo8ebLZZniMpqYmIiMjzTbDY+j++TeB3L9A7hvAp59+WqOUShpKHZ8TgJSUFLZu3Wq2GR6jsLCQgoICs83wGLp//k0g9y+Q+wYgIseGWkeHgDQajSZI0QKg0Wg0QYoWAI1GowlSfG4MoC86OjooLS2ltbXVbFNGTGxsLPv27TPbDLdjtVpJT0832wyNRjMEXBIAEVkAPAaEAH9WSj3YT7nrgZeBuUqprY5jPwBuA+zA3Uqp9UM1srS0lOjoaDIzMxGRoVb3KRobG4mOjjbbDLeilOLkyZOUlpaabYpGoxkCg4aARCQEeBy4CsgDbhSRvD7KRQN3A5/0OJYHLAamAQuAJxztDYnW1lYSExP9/uYfqIgIiYmJAeGhaTTBhCtjAOcARUqpI0qpdmA1cG0f5X4G/AroeRe4FlitlGpTSh0FihztDRl98/dt9Oej0fgfrghAGlDS432p41g3IjIbyFBKvTHUuhqNP9DU1smKjYf5uLzTbFM8QmlDKT9772fsrNtptikaL+LKGEBfj3bdGwmLiAV4BFg61Lo92lgOLAdISkqisLDwtPOxsbE0Nja6YKr5/PznP2fevHlccsklfZ632+1+05eh0trais1mO+Pz83eUUjy6rY2d1XYAWjvfpiAjzGSr3EeLvYXbP72dEy0nCJVQQiWUabHTzDbL7QTi/+ZIcUUASoGMHu/TgbIe76OB6UChIwwwFlgrIgtdqAuAUmoFsAIgNzdX9V6tt2/fPr8YOLXb7Tz00EMDluk9CGy32wkJGfKwiE9itVqJiooKuNWWm4/WsnP9R3x/wRRe33yQN44J9y2ejzUsMD63Rz9+lBMtJ/j7DX/n9tdu59X6V7nz2jvNNsvtBPpK4OHgSghoC5AtIlkiEo4xqLvWeVIpVa+UGqOUylRKZQIfAwsds4DWAotFJEJEsoBsYLPbe+EFiouLmTJlCkuWLGHGjBlcf/31NDc3k5mZyQMPPMCFF17Iyy+/zNKlS3nllVcA2LBhA7NnzyY/P59ly5bR1tYGcEYdjW/zl4+PETc6jKUXZHLNxHBqbG2s31NhtlluQSnFE1ue4MLxF/LlqV/mq2lfZcPRDRw8edBs0zReYFAPQCnVKSJ3AesxpoGuVErtEZEHgK1KqbUD1N0jIi8Be4FO4E6llH0kBv/vP/awt6xhJE2cQd64GH5yzeAu74EDB3j66aeZN28ey5Yt44knngCMJ99NmzYB8NZbbwFGOGTp0qVs2LCBnJwcbr31Vp588kluu+22M+pofJf2zi7e3V/FF/NTGRUewtREC2OiIvjX3kquneX/w1n7avZxqPYQ95x3DwCXJl/KiqMreG3/a/zPvP8x2TqNp3FpJbBSap1SKkcpNUkp9QvHsR/3dfNXShU41wA43v/CUS9XKfWm+0z3PhkZGcybNw+Am2++ufsG/rWvfe2MsgcOHCArK4ucnBwAlixZwsaNG7vP91VH43tsKa6lsa2TL+SlAGAR4fKpybx3oJpOe5fJ1o2cNw4a8zYW5i4EIMWawuyxs/nHwX+YaZbGS/jFSuCeuPKk7il6T3V0vu8rxaxSZ4x1n0Ygp6UNJD45WotF4NyJCd3HLpg8htVbSthb3sCM9DgTrRs57x17jyljppAW87k3c1nWZfxu8+9o7WzFGmo10TqNp9G5gIbA8ePH+eijjwB48cUXufDCC/stO2XKFIqLiykqKgLghRde4OKLL/aKnRr3seVoLXnjYoi2fj7rZ25mvHGu+JRZZrmFLtXFB8c/YP74+acdnz9hPu32drac2GKSZRpvoQVgCEydOpXnnnuOGTNmUFtby7e+9a1+y1qtVp555hkWLVpEfn4+FouFO+64w4vWakaKvUuxo6SOORMSTjueGjuK9PhRfHqs1iTL3MO+6n3Ut9UzL2Peaced7z8s+dAMszRexO9CQGZisVh46qmnTjtWXFx82vtnn322+/Vll13G9u3bTzvf3t5+Rh2Nb3K0xkZLh538tNgzzuWnxbLHzZMRvM228m0AzBk357TjiaMTyYzLZHvF9r6qaQII7QFoNP2w+4Rxg5/ehwBMT4vl2MlmGlo7vG2W29hesZ1RoaPIHZN7xrmzUs/qFghN4KIFwEUyMzPZvXu32WZovMiesnoiQi1MSjpzwD5vXAyA26cke5Nt5duYkTKDUMuZgYDZY2dzqPYQDW3+2z/N4GgB0Gj6YX9FI9kpUYSGnPk1yUs1BOBgpX+m9VBKsatqFzNSZvR5fmbKTAD2Vu/1plkaL6MFQKPph6IqGznJfacgSY6OINoayqFKm5etcg/VzdXUttQyLanvadV5SUbGdy0AgY0WAI2mDxpbOyivb2VSclSf50WEyclRHKryTw/AeWOfmjS1z/OZcZlEhERoAQhwtABoNH1QVGU82Wf3IwDOc/7qAThv7M4n/d6EWEKYMmYKe6r3eNMsjZfRAqBxmeLiYlatWmW2GV7hSHUTQL8eAMCkpChONrVT3+x/M4EO1BwgMiyStOj+8xlNGTNFJ4ULcLQA+Cmdnd7fmCSYBKD4ZBMWgYz40f2WyRwT2V3W3zhUe4jsxOwBd3LLTsimuK6Ydnu7Fy3TeBMtAC7iTAf9jW98g+nTp/P1r3+df//738ybN4/s7Gw2b95MU1MTy5YtY+7cucyePZvXX3+9u+78+fM566yzmD9/Ph9+aKywLC8v56KLLmLWrFlMnz6d999/H4CoqM+fOl955RWWLl0KwNKlS7n33nu55JJL+P73v9/v9Z599lmuu+46rrnmGrKysvjDH/7Aww8/zOzZsznvvPOorTVWsB4+fJgFCxZw9tlnM3/+fPbv3999nbvvvpsLLriAiRMndqe3vu+++3j//feZNWsWjzzyiOf/6CZytKaJ9PjRhIf2/xXJ8ncBSMgesEx2YjZdqoujp456ySqNt/G7lcDffeu77KjY4dY2Z42dxaMLHh20XFFRES+//DIrVqxg7ty5rFq1ik2bNrF27Vp++ctfkpeXx6WXXsrKlSupq6vjnHPO4fLLLyc5OZm3334bq9XK9u3buf3229m6dSurVq3iyiuv5P7778dut9Pc3DyoDQcPHuTf//43ISEh/PCHP+zzegC7d+9m+/bttLa2MnnyZB566CG2b9/OPffcw/PPP893v/tdli9fzlNPPUV2djaffPIJ3/72t3nnnXcAQ5w2bdrE/v37WbhwIddffz0PPvggv/nNb3jjjd47fwYexSebup/w+2N8wmhEDLHwJzrsHRw9dZQb8m4YsJxTIA7VHupzsZjG//E7ATCTrKws8vPzAZg2bRqXXXYZIkJ+fj7FxcWUlpaydu1afvOb3wDGngDHjx9n3Lhx3HXXXezYsQMR6U4QN3fuXJYtW0ZHRwfXXXcds2bNGtSGRYsWde8g9q9//avP6wFccsklREdHEx0dTWxsLNdccw0A+fn5fPbZZ9hsNj788EMWLVrU3bZzwxqA6667DovFQl5eHpWVlSP90/kVSimO1TRz9vj4ActZw0IYFzuKYj8TgGP1x7ArO9mJg3sAAIdOHvKGWRoT8DsBcOVJ3VNERER0v7ZYLN3vLRYLnZ2dhISEsGbNGnJzT39a+ulPf0pKSgo7d+6kvr6epKQkAC666CI2btzIP//5T2655Ra+973vceutt54Wl21tbT2trZ5ppJVSfV7vk08+GdTWrq4u4uLi2LGjb2+qZ/3BUlsHGnXNHTS2dTI+cfCU3eMTRlNyqsULVrmPI6eOADApftKA5RJHJRITEcPROh0CClRcGgMQkQUickBEikTkvj7O3yEiu0Rkh4hsEpE8x/FMEWlxHN8hIk+d2XrgcOWVV/L73/+++4bpTARXX19PamoqFouF1atXY7cbm6IdO3aM5ORkbr/9dm677Ta2bTNyr6SkpLBv3z66urp49dVXh3w9V4iJiSErK6t7S0qlFDt37hywTnR0dMBuaN+TklNGKC4jftSgZTMSRlFSO3jozpdwxvSz4rMGLCciZMVlaQEIYAYVABEJAR4HrgLygBudN/gerFJK5SulZgG/Ah7uce6wUmqW4yeg8yH/6Ec/oqOjgxkzZjB9+nR+9KMfAfDtb3+b5557jvPOO4+ioqLup/jCwkJmzZrF7NmzWbNmDd/5zncAePDBB/nSl77EpZdeSmpq6pCv5yp//etfefrpp5k5cybTpk3rHkTujxkzZhAaGsrMmTMDehD4uOOGnpHQ/wwgJxnxo6lqbKO1Y0Q7nXqVI6eOEB4SzrjocYOWzYrP6vYYNAGIUmrAH+B8YH2P9z8AfjBA+RuBNx2vM4Hdg12j509OTo7qzd69e8845q80NDSYbYLH2Lt3r3r33XfNNmPEPPFukZrw/TdUY2vHGed69+/VbaVqwvffUIcq/edzXfTSIpX9u+w+z/Xu3z1v3aNG/2K06urq8oJlniUQ/jcHAmOPdpfvtUopl0JAaUBJj/eljmOnISJ3ishhDA/g7h6nskRku4i8JyLze9fTaHyNklPNxI8OIypi8CGyjAQjTFRS6z/jAEfrjg4a/nGSFZdFc0czVU1VHrZKYwauDAL3tVLkjFFBpdTjwOMichPw/4AlQDkwXil1UkTOBl4TkWlKqdNyzIrIcmA5QFJSEoWFhae1HRsbGzCxZ7vdHjB96U1rays2m+2Mz8/f+OxwK7Ghqs9+9O5fXauxMfw7m3ciFWFnlPdFDlUfYv6Y+S71z3bSSHWx5p015MX0nTbCXwiE/01344oAlAIZPd6nA2UDlF8NPAmglGoD2hyvP3V4CDnA1p4VlFIrgBUAubm5qqCg4LQG9+3bR3R031kZ/Y3GxsaA6UtvrFYrUVFR9P78/I2fb3uPKRlRFBScfca5wsLC0/rX1aX43vtvEpmUQUHBFC9aOTyaO5qpf6+e86eeT8H8gjPO9+5fQmUCP9z9Q5ImJVEw7czy/kTvvmlcmwW0BcgWkSwRCQcWA2t7FhCRnhOKrwYOOY4nOQaREZGJQDagR5Q0PotSirK6FsbFDT4DCMBiEVJjR1FW5x8hoJJ6I5o7Pna8S+Wd5Y7XH/eYTRrzGNQDUEp1ishdwHogBFiplNojIg9gDDqsBe4SkcuBDuAURvgH4CLgARHpBOzAHUop/95JWxPQ1DV30NxuJ82FKaBO0uJGccJPBOBY/TEAJsROcKl8nDWOmIiY7nqawMKlhWBKqXXAul7Hftzj9Xf6qbcGWDMSAzUab+K8kafFWV2uMy5uFB8ervGUSW7F+STvqgfgLKs9gMBEJ4PzIq+99lp3wrWhsHbtWh588EEPWKTpjTOU42oICCAtfhSVDa102Ls8ZZbbOF5/HItYSIvpPw10bybETtAeQICiBcCLDEcAOjs7WbhwIffdd8YC7AHraIZHeb2RemMoAjAu1kqXgqrGtsELm0xJQwnjosf1uRF8f2TEZFDaUOpBqzRm4Xe5gMyiuLiYBQsWcO6557J9+3ZycnJ4/vnn+eijj/jv//5vOjs7mTt3Lk8++SQRERHcd999rF27ltDQUK644gq+8pWvsHbtWgoLC/ntb3/LmjVGZOzOO++kurqa0aNH86c//YkpU6awdOlSEhIS2L59O2eddRb5+fls3bqVP/zhDxw7doxly5ZRXV1NUlISzzzzDOPHjz+jzm9/+1uT/2L+SXl9K+EhFhJGh7tcZ2ysES6qqG8hbQjCYQalDaWkx6QPqU56TDo1zTW0drZiDXU9NKbxffxPAN68Dyp2ubfNsflw1eAhlgMHDvD0008zb948li1bxsMPP8wf//hHNmzYQE5ODrfeeitPPvkkt956K6+++ir79+9HRKirqyMuLo6FCxdy2WWXccsttwBw2WWX9ZuOuWfa52effbbbhrvuuotbb72VJUuWsHLlSu6++25ee+21M+pohkdFfQspsRFYLP1vlNKb1Fjjpl9W18rZro2tmkZJfQn5KflDquMUjBMNJ5iUMHACOY1/oUNAQyAjI4N58+YBcPPNN7NhwwaysrLIyckBYMmSJWzcuJGYmBisVivf+MY3+Pvf/87o0WfmlOmZjnnWrFl885vfpLy8vPt8z7TPPfnoo4+46aabALjlllvYtGnToHU0rlNW39p9Q3eV1DinB9A6SElzUUpR2lBKRkzG4IV7kBFrlC9pKBmkpMbf8D8PwIUndU8x0PZ5PQkNDWXz5s1s2LCB1atX84c//KH7yd7JYOmYe6Z9dtUmV+to+qeivpXZ4+OGVCc6IpTI8BDK6n17Kmhdax1NHU3DCgEBehwgANEewBA4fvw4H330EQAvvvgil19+OcXFxd0bvLzwwgtcfPHF2Gw26uvr+eIXv8ijjz7afZOPjo7GZjOW1g8nHTPABRdcwOrVqwEjm+eFF17o9n4GK0opKhpau2P6riIijI21Ul7n2x6A8wY+XAFwLiLTBA5aAIbA1KlTee6555gxYwa1tbXcc889PPPMMyxatIj8/HwsFgt33HEHjY2NfOlLX2LGjBlcfPHF3amTFy9ezGOPPcbs2bM5fPjwkNMxA/zud7/jmWeeYcaMGbzwwgs89thjnu520FDb1E57ZxdjY4Y+0Dk21kpFg38IQFq061NAAUaHjSbOGseJxhOeMEtjIv4XAjIRi8XCU0+dvqfNZZdddsZGLKmpqWzevPmM+vPmzWPLli2n5QJ66623zijXc9AXjE3anRvDZ2ZmnhFO6quOZug4b+DDEYCUGCsfHz7pbpPcSlmjkcJrKGsAnKRFp2kBCEC0B6DROKhqMObxpwwxBASGaFQ1ttHV5bvbZzpv4K5sBNObtJi0bgHRBA5aAFwkMzOT3bt3m22GxoOMxAMYG2uls0tR0+S7i8FONJwgaXQS4SGur3FwkhadxokG7QEEGn4jACrINib3NwLh86mob0UEkqIjhlw3xSEaTi/CFymzlQ0r/AOGAFTYKrB3+c/Wl5rB8QsBsFqtnDx5MiBuMoGIUoqTJ09itfr3KtHKhlYSIyMICxn618IpAL68FuBEw4lhhX/ACBvZlZ3Kpko3W6UxE78YBE5PT6e0tJTq6mqzTRkxra2tfn+j7Aur1Up6ejrHjvlv0rDKhlZSYob+9A+fh418eSZQWWMZZ6eeucmNKzg9h5GIiMb38AsBCAsLIyvLtT1MfZ3CwkJmz55tthmaPqhsaCN1GAPAAGOiwhHx3YRwHfYOqpqqhh0Cct70y23lg5TU+BN+EQLSaLxBVWMrycP0AEJDLCRGRlDlox5AZVMlCkVqVOqw6jvr6ZlAgYVLAiAiC0TkgIgUicgZeYlF5A4R2SUiO0Rkk4jk9Tj3A0e9AyJypTuN12jcRYe9i5NN7SRHDz88lxIT4bMeQHmj8eQ+3PBNSlQKgnS3owkMBhUAx56+jwNXAXnAjT1v8A5WKaXylVKzgF8BDzvq5mHsITwNWAA84dwjWKPxJWpsbSjFsD0AgOToCCp91ANwPrmnRg/PAwi1hJIcmaw9gADDFQ/gHKBIKXVEKdUOrAau7VlAKdXQ420k4Jyucy2wWinVppQ6ChQ52tNofIruRWAj8gCsvusB2EbmATjr6jGAwMKVQeA0oGcWqFLg3N6FRORO4F4gHLi0R92Pe9Ud3iiURuNBnE/uKcNYBOYkOcZKja2NTnsXocOYSupJyhrLsIiF5MjkYbcxLnqc9gACDFcEoK8cyGdMyFdKPQ48LiI3Af8PWOJqXRFZDiwHSEpKorCw0AWz/BObzab754NsOt4BQNHuTzlZ1P/Ne6D+1ZV3oBT84+1C4q2+JQDbDm4jNjSWTRs3DVhuwM+vEY7VHvPLzxf893/Tk7giAKVAzx0k0oGBHgNWA08Opa5SagWwAiA3N1cVFBS4YJZ/UlhYiO6f77Ht7YPIvkNc84WCAZ/eB+pf254Knt/7KZOnn01+eqyHLB0evyn7DROYMOhnM1D/NnRt4M1NbzL/ovmEWPxvKM9f/zc9iSuPKVuAbBHJEpFwjEHdtT0LiEh2j7dXA4ccr9cCi0UkQkSygGzgzDSZGo3JVDe2kRgZPqLQTbIjhUS1zfcGgitsFcOeAuokNTqVLtVFdbP/L8jUGAzqASilOkXkLmA9EAKsVErtEZEHgK1KqbXAXSJyOdABnMII/+Ao9xKwF+gE7lRK6WQiGp+jurGVpBEMAIMxBgC+mQ+o3FbOzJSZI2rDKSDljeWMjRrrDrM0JuPSSmCl1DpgXa9jP+7x+jsD1P0F8IvhGqjReIOqxrbuJ/jhMiYqvLstX8LeZafSVjnsKaBOnPXLbeXMRq9mDwR8a6RKozGJqoa2YWUB7UlEaAhxo8OoavStEFBNcw12ZR/xU7uzvl4MFjhoAdAEPV1dihrbyD0AMMYBfC0EVGGrABjxGEC3AOi1AAGDFgBN0FPX0kFnlxqxBwCQHG2sBfAlnAIwUg/AGmol3hpPpU2nhA4UtABogp5qR8x+JHmAnCRFR1DtowIw0jEAMESkoqlixO1ofAMtAJqgxxmzd4cHkOQIAfnS5kXOkE1KZMqI2xobNVaPAQQQWgA0QY/TA3CLAERF0NbZRWNb54jbchcVtgqiw6OJDI8ccVtjo8Z2exQa/0cLgCbocasAOBeD+dBU0Apbhdvm7WsBCCy0AGiCnurGNkaFhRAZPvL0BsEgAE0dTdjabW5pT2MuWgA0QU+1rY3kmAhE+spdODSSfVQA3DEADJ9PJdVeQGCgBUAT9FQ3tjEmauThH/jcA/Cl1cAVtgq3DACDXgwWaGgB0AQ91Y1tJLlJAGJHhREWIj6zFqClo4X6tnq3hYBSogwhqWzSawECAS0AmqCn2jbyNBBORIQxURE+EwJy3qjdOQYAOgQUKGgB0AQ17Z1d1DV3uE0AwLEYzEcEwF2rgJ0kjkokREL0auAAQQuAJqg52eS+KaBOknzIA3C3AIRYQkiOTNYeQICgBUAT1Dhv1O4aBHa25SvpIJxP6u4aBAZjHECngwgMtABoghp3LgJzkhQdQW1TO/Yu89NBOJ/UR7IZfG/0YrDAwSUBEJEFInJARIpE5L4+zt8rIntF5DMR2SAiE3qcs4vIDsfP2t51NRozcc7WcW7m4g6SoiOwdylqm9rd1uZwqbBVkDgqkbCQMLe1qQUgcBhUAEQkBHgcuArIA24UkbxexbYDc5RSM4BXgF/1ONeilJrl+FnoJrs1GrfgqRAQ4BNTQSua3LcK2ElKZAqVtkqfSninGR6ueADnAEVKqSNKqXZgNXBtzwJKqXeVUs2Otx8D6e41U6PxDNWNbcRYQ7GGjTwNhBNfSgfhzjQQTsZGjaWjq4NTrafc2q7G+7giAGlASY/3pY5j/XEb8GaP91YR2SoiH4vIdcOwUaPxGDW2dsa4Mf4Pn4eTfMEDqLRVdi/echfOAWU9FdT/cWVT+L4SpPTp+4nIzcAc4OIeh8crpcpEZCLwjojsUkod7lVvObAcICkpicLCQlds90tsNpvunw9xqLSFMHDZZlf619JpfD0+3rmXhIaikRk4ApRSlDWU0XGqw639qzhlxP/f2vQWlfH+IwL+9r/pDVwRgFIgo8f7dKCsdyERuRy4H7hYKdX96KOUKnP8PiIihcBs4DQBUEqtAFYA5ObmqoKCgiF1wp8oLCxE9893+N+thUwbF0NBwVkulXelf0oprO+9RWxyOgUFvYfLvEdjWyNtG9uYO2UuBfMKXKrjSv9SqlO497N7GTt5LAX5rrXrC/jb/6Y3cCUEtAXIFpEsEQkHFgOnzeYRkdnAH4GFSqmqHsfjRSTC8XoMMA/Y6y7jNZqR4s5EcE58JR2Ec6aO20NAjvb0TCD/Z1APQCnVKSJ3AeuBEGClUmqPiDwAbFVKrQV+DUQBLztS6h53zPiZCvxRRLowxOZBpZQWAI1P0Nphx9bW6dY1AE58YW9gZx4gdy4CA4i3xhNmCdMCEAC4EgJCKbUOWNfr2I97vL68n3ofAvkjMVCj8RTdi8Dc7AGAMRX0+MnmwQt6EHengXAiIqREpeiMoAGAXgmsCVqcT+ie8gDMngXknKXjbgFwtqkFwP/RAqAJWjyxCMxJUlQEtc3tdNi73N62q1TYKrCIhTGjx7i97ZTIFB0CCgC0AGiCFk/kAXIyJjoCpTA1HUSFrYKk0UmEWNy3yM2JTgcRGGgB0AQtzhBNohvzADlxjiuYOROosqnSI+EfMDyA6qZq7F12j7Sv8Q5aADRBS3VjG/GjwwgLcf/XoDsdhInjAJ5IA+FkbNRY7MrOyZaTHmlf4x20AGiClho3bgXZm2RHuzUB6gE429XpIPwbLQCaoMUTi8CcONutMkkAlFJU2CrcvgbAiXMxWLmt3CPta7yDFgBN0OLOzeB7Myo8hKiIUNOmgta11tFub9cegGZAtABoghKlFDWN7R5ZBObEWAtgziwg5xx9jwuAXgvg12gB0AQlTe12Wjrsbk8F3ZMxUeFUN7Z6rP2B8FQeICfR4dFYQ616KqifowVAE5R4Mg2Ek6Ro8xLCeSoNhBMR0WsBAgAtAJqgpMaDaSCcJEWZGALyYBoIJzodhP+jBUATlHhyFbCTpOgI6ls6aOv0/mKpClsFYZYw4q3xHruG9gD8Hy0AmqDEk3mAnIwxcTVwRVMFKVEpONKze4SUyBTKG/U0UH9GC4AmKKlubCPEIiREuj8NhBOnd2FGGMiTq4CdpEalcrLlJB32Do9eR+M5tAA4zGaIAAAgAElEQVRogpLqxjYSI8MJsXjuCTk52tp9LW9TYasgNSrVo9dwCkxVU9UgJTW+iksCICILROSAiBSJyH19nL9XRPaKyGciskFEJvQ4t0REDjl+lrjTeI1muHhyEZiT7nxAJgmApz0AZ/t6HMB/GVQARCQEeBy4CsgDbhSR3jtdbwfmKKVmAK8Av3LUTQB+ApwLnAP8REQ8Nyql0bhIdaPnBcCZZdTbAmDvslPVVKUFQDMorngA5wBFSqkjSql2YDVwbc8CSql3lVLO/e8+BtIdr68E3lZK1SqlTgFvAwvcY7pGM3yqG9s8ugYAICzEQkJkONU27y4Gq2muoUt1aQHQDIorewKnASU93pdiPNH3x23AmwPUTRuKgRqNu+nqUtTY2kiO8awAgLEWwNsegKcXgTnxCwHo6oJjm+Do+2QX7QI+gUmXQvoc8OAMKX/BFQHo66+k+iwocjMwB7h4KHVFZDmwHCApKYnCwkIXzPJPbDab7p/JNLYrOrsUdeUlFBYO7eY11P6FdrZQVNrk1b/J5trNAJw4eILCyqFdd6j9iw6NZuuBrRR2De063iCmfh85B58iqqkYhYWk0NFQ9iYU/pL6mCkczPkWTVGZZptpKq4IQCmQ0eN9OlDWu5CIXA7cD1yslGrrUbegV93C3nWVUiuAFQC5ubmqoKCgd5GAobCwEN0/c9lf0QDvvM8FZ02nYMbQZsoMtX+vV+5gS3GtV/8mxTuKYRdcfdHVTIyfOKS6Q+1f+p50QmJDfO8z//gpeO+HEJMO1z2F5C3kww+3UHDebPjsJWLfe4i5O74P1z4O+debba1puDIGsAXIFpEsEQkHFgNrexYQkdnAH4GFSqmec8LWA1eISLxj8PcKxzGNxjSqGoznE2+EgJKjI6hqbEOpPp1mj+BcnOXpEBBAanSq7+0J8P7D8Nb3IfeL8K0PYNaNEB5pnLPGwjm3w7c+grSzYc03YMcqc+01kUEFQCnVCdyFcePeB7yklNojIg+IyEJHsV8DUcDLIrJDRNY66tYCP8MQkS3AA45jGo1peCMRnJOk6AjaO7toaO30+LWcVNgqiImIYXTYaI9fy+fSQez8G2z4X5h+PSx6DqwxfZeLSoKb18DEAnj9Lija4E0rfQZXQkAopdYB63od+3GP15cPUHclsHK4Bmo07qbKC3mAnHy+FqCV2FFhHr8eGLt0eXoRmJPUqFTKG8tRSnk07YRLVOyCf9wNmfPhuichZJDbW9go+NoL8PSVsOY2+OZGiBvvHVt9BL0SWBN0VDe2ERkeQmSES88/I8IpAN7cGtIbi8CcjI0aS0tnC43tjV65Xr90tBrhHGscXP8MhLqY4iMi2hABeye8+i1j1lAQoQVAE3RUNbaSHGP1yrXMSAdRbisnNdp7HgBgflK49x6E6v1w3eNGeGcoJE6Cqx40potu+ZNn7PNRtABogo4qLywCc9LtATR4UQAayxkb6T0PAEzeHL5qH3z4e5h1M0zuNxo9MLO+bqwP2PAzaPCxQW0PogVAE3RUN7aR5IUZQAAx1lAiQi1UeWlryMa2Rpo6mrznAUSb7AEoBW9+3wjlfOGB4bcjAlc/DPZ2YxA5SNACoAk6qhpaSfbCADAYWycmx0R4bQzA+STuzUHgntf1OgfXw9H3oOCHEJk4srYSsuD8b8POF+HENvfY5+NoAdAEFU1tnTS120nx0hgAQEq01WshIOeT+LjocV65Xpw1Dmuo1RwPoMtuPK0nTII5/+GeNi+8F0YlwIYReBN+hBYATVDhfBL3lgcAODwA74SAuj0AL4WARMSYCmqGB7D771C1Fy69H0LcNMXWGgPz/wuOvAvFm9zTpg+jBUATVFQ2GDdi5+wcb5DsRQ+grNHI0uKtEBAYYuO8rtfossPGX0FyHuR92b1tz70NolKg8EH3tuuDaAHQBBXdHoCXBoHBmAnU2NZJS7vnN4cvbywnIiSCOGucx6/lxBQPYN9aqDkIF30PLG6+jYWNgnnfgeL34fjH7m3bx9ACoAkqqro9AO8JgHO8wel9eBLnGgBvrsodFz3Oux6AUrDpEUicDHnXDl5+OJy91BgL2PSoZ9r3EbQAaIKKqsY2IkItXkvLAJAS473VwGWNZaRFe3fLjXHR42hoa6Cpvck7Fzz6HpTvhAvuBkuIZ64RHgnnfhMOvmmsMwhQtABogorKhlZSYqxefUL2pgdQ1ljmtRlATpzX81oY6KPHITIZZi727HXm3g6hVvj4Cc9ex0S0AGiCCkMAvBf+AWMaqPPansZMAfBKGKj6IBz6F8z9BoR6+HOMTISZNxoZRptqPHstk9ACoAkqqhravJYHyEnMKOdqYM+GgBrbGmlsbwxsAdi8AkLCYc4yz18L4Lxvgb0NPn3WO9fzMloANEFFZUNr9xO5txARUmKsHvcAnCGYgBWA1gZjle70rw494dtwSco19gzYutLIGBpgaAHQBA227lXA3g0BgTEQ7GkBcN6AvS0AsRGxjAod5XkB+Oxv0G4zdvTyJud8ExpOGAPCAYZLAiAiC0TkgIgUich9fZy/SES2iUiniFzf65zdsUtY905hGo0ZVNQbN2BvpoFwkhxjpdLDi8FONJwAvC8AIsK46HGcaDzhuYsoBVv+DONmG1s5epOcK429hbf82bvX9QKDCoCIhACPA1cBecCNIpLXq9hxYCnQ1+aaLUqpWY6fhX2c12i8gvMJ3AwBGBtjpaK+1aN7AztvwN6eBgqQFpPWLUAe4fhHRr7/Obd57hr9YQkx1gUcKYSTh71/fQ/iigdwDlCklDqilGoHVgOnrb5QShUrpT4Dgms7HY1f4fQAxsaaIwAtHXaP7g18ouEE0eHRREdEe+wa/ZEWneZZD+DTZyEiBqZ/xXPXGIjZN4OEwLbnzbm+h3BFANKAkh7vSx3HXMUqIltF5GMRuW5I1mk0bqTC4QGMNcEDSIn1/FTQE40nSIvx/tM/OASg4YRnPJzmWtjzGuQvMhZomUFMKuReBTv+Cp3t5tjgAVzZFLWvFTND+ZTHK6XKRGQi8I6I7FJKneZHichyYDlAUlIShYWFQ2jev7DZbLp/JrFtXxuRYfDJh+8Pu43h9q/ilJEH6F/vf0LZGM/sRbyvdB+RIZEj+vsPt38tVS202dtY+++1xIbFDvv6fZFW+gbZ9ja2qunYTOibk4Sw2cxoeoPdr/6WmqTzh92OL+HKf2IpkNHjfTrg8nC/UqrM8fuIiBQCs4HDvcqsAFYA5ObmqoKCAleb9zsKCwvR/TOHVce3kp7QTEHBRcNuY7j9m1TbzC8/eZfkzFwK5mQMXmEYNG5vZO6EuSP6+w+3fzV7a3j88ONkzchiRsqMYV//DJSCp+6H1FnMuWZkc/9H/L/ZNR+Kn2Z626dQ8IMR2eIruBIC2gJki0iWiIQDiwGXZvOISLyIRDhejwHmAXuHa6xGMxIqG1q7QzHexpl91DkO4W7sXXbKbeWmDADD5wPPpQ2l7m24fAdU7oazbnFvu8PBEgKzvw6HN0C9B8c7vMigAqCU6gTuAtYD+4CXlFJ7ROQBEVkIICJzRaQUWAT8UUT2OKpPBbaKyE7gXeBBpZQWAI0plNe3kmpC/B8gIjSExMjw7nEId1PVVEVnVyfpMekeaX8wnNd1+0yg7X8x8vFMv37wst5g1k2guowFaQGAS8FIpdQ6YF2vYz/u8XoLRmiod70PgfwR2qjRjJgOexfVtjZS48wRAIDUOCvldS0eabukwZinkRHrmfDSYKRGp2IRi3s9gI5W2PUyTPkSjPLe/gYDkjARMucbwjT/v4zN5P0YvRJYExRUNrSiFKSaFAICGBszinIPhYCcN16zPIBQSyipUandQuQWDqyD1npjCqYvMevrcOpoQGwWowVAExR8vgZglGk2pMZaPSYAJfXGjdcsAXBe260ewI6/Gitws4Y/aO8R8hZCeBTs+IvZlowYLQCaoMB54zXVA4i1Ut/SQXO7+xeDlTaUYg21kjgq0e1tu4pbBaChHA6/Y+T899SmL8MlPBLyrjPWJnhrExwPoQVAExSU1xuxdzNWATsZ5xh/8IQXUNJQQlp0mlc3uulNRkwGJQ0l7lkM9tnfjMHWmTeOvC1PMOtGIzHdvjfMtmREaAHQBAVlda1ER4QSY/XeVpC9SXWEn8rrPCMA42PHu73doZARm4Gt3UZ9W/3IGlIKdqyC9HNgzGT3GOduxl8AcRNgZ1/pz/wHLQCaoKCsrsXUGUAA4xwCUOaBmUDH64+bNgPISUZMRrctI6JsO9QcMJ6yfRWLxQhPHXnPr9cEaAHQBAVl9S2MizNvABggJTYCETjhZgHo7OqkrLGM8THmegBOD2TEArDzRQiJgGlfdoNVHmTmYkAZ4So/RQuAJigor2s1XQAiQkNIioroHo9wF2WNZXSpLtNDQM7rO2ckDYvOdtj1ipF4bVS8myzzEAkTIeM82LnaCFv5IVoANAFPa4edk03tjDNxANhJatwoytw8BuB84jY7BJQSlUKYJWxkHkDR29BSa6y49Qdm3WiEq8q2m23JsNACoAl4nDF3sz0AgLQ4q9tDQM4brtkegEUspMekc6z+2PAb2fkiRCbBpEvdZ5gnybvOCFf5aWoILQCagMd5w03zCQEYRVldi1vz5h+rM264E2InuK3N4TIhbsLwPYDmWjjwlpH3P8S82VpDYlQcTPmiEbbyw30CtABoAp7SUw4BiDdfANLjR9PWaeQlchfFdcWMGT2GSLM2S+nBhNgJFNcVD6/ynr9DV4fvzv3vj5k3GmGrorfNtmTIaAHQBDwnTrUQYhFTdgLrjdMLOXHKfWGgY/XHfOLpHyAzLpOyxjLa7cN4Gt7xIiRPg7F+lj9y0qVG2GqH/60J0AKgCXhO1LUwNsZKaIj5/+7pCQ4BcOM4wLH6Y2TGZbqtvZEwIXYCCjX0lBA1h+DEVmNQ1d8ybIaEQf4NcHC9EcbyI8z/Rmg0Hqb0VLNPhH/gcw+g1E0egFKKY3W+4wFMiDPsGHIYaMcqEIsR//dHZi42wle715htyZDQAqAJeEpPtZDuIwIQbQ0jdlQYpaea3dJeVVMVLZ0tPuMBOO0YkgB02Y3FVJMug+ixHrHL46TOgJTpfhcGckkARGSBiBwQkSIRua+P8xeJyDYR6RSR63udWyIihxw/S9xluEbjCm2ddioaWhmfMNpsU7rJSBhFSa17PICjdUcByIrPckt7IyUjJoMQCeHIqSOuVzq6ERpO+M/c//6YdROUbYOq/WZb4jKDCoCIhACPA1cBecCNIpLXq9hxYCmwqlfdBOAnwLnAOcBPRMTHl/dpAokTp1pQCjLifUcAxieMpsRNHsDRU4YATIyf6Jb2RkpYSBgZsRndwuQSO1aBNRZyv+g5w7xB/g0gIX6VIM4VD+AcoEgpdUQp1Q6sBq7tWUApVayU+gzo6lX3SuBtpVStUuoU8DawwA12azQuUeKItY9P9B0ByIgfTWltC11dI18L4HzS9pUQEBhi5BSmQWmth33/gOlfhTDzZ2mNiKgkyL7CSA1hd/+eD57AFQFIA3om9yh1HHOFkdTVaEZMSa3xpO1LHkB6wmja7V1UNY58LcDRuqOkRKYwOsx3+pcVl+W6B7DnNehsgVk+tu3jcJn9dbBVwuENZlviEq5sCt/XnCxXH11cqisiy4HlAElJSRQWFrrYvP9hs9l0/7zIBwfaCbXA3m0fsd8N0wvd0b+6auPp8PUNH5CbMLLdrrYd3caYkDFu+5u75fM7BRW2Ct7c8CajQgYefJ+97QlCR6ez5VADFI3wuoPgjf9N6bJyflgMdW8/yt6yCI9eyx24IgClQM8sU+lAmYvtlwIFveoW9i6klFoBrADIzc1VBQUFvYsEDIWFhej+eY8XS7aSOaaJSy+52C3tuaN/mTVN/PbTQhLG51AwZ2QJ3E7uOMlFmRe57W/ujv5V7q7k6eKnSZ+eTn7KAIu6qg9A4X74ws8omHfJiK7pCl7732y/heTNK0iemw+R5m3R6QquhIC2ANkikiUi4cBiYK2L7a8HrhCReMfg7xWOYxqNVzh2splMH4r/g5GSIsQiHK8d2UBwW2cbJfUlTI73rV2zJicY9hw+dXjggtv/YgyazviaF6zyIrO/bqwJ8IN9AgYVAKVUJ3AXxo17H/CSUmqPiDwgIgsBRGSuiJQCi4A/isgeR91a4GcYIrIFeMBxTKPxOEopjp1sZnyC+TlyehIWYiEtbhTFJ0cmAEfrjqJQTEqY5CbL3IPTnqLaov4L2TuMDJo5CyA6xUuWeYmUaTDuLNj+gs/vE+BKCAil1DpgXa9jP+7xegtGeKevuiuBlSOwUaMZFtWNbbR02Mkc41seAMCExNEcO9k0ojacN1jnE7evEGeNI3FU4sACcPAtaKqGs271nmHe5Kxb4Y3vwolPIX2O2db0i14JrAlYnE/YvrQIzElmYiRHa5pGlBbaeYOdFO9bHgAYonSo9lD/BbY9D9GpMPly7xnlTaZ/FcJGw7bnzLZkQLQAaAKWozU2ACYlRZlsyZlkjYmksbWT2qbh55A/ePIg8dZ4xowe40bL3ENOYg6HTvYjAHUlcOhtmH0zhLgUhPA/rDEw/Suwaw20NZptTb9oAdAELEdqmggPtfjETmC9yUoyxiWO1gw/DHTw5EFyEnMQH8yemZOYQ0lDCc0dfYxzbHve+D37Fu8a5W3O/g/oaIJdL5ttSb9oAdAELEerm8hMHE2IxfdukJPGGF7JkREKQO6YXHeZ5FZyEw27zhgHsHcYAjD5coj3jQymHiPtbEjJh63P+OxgsBYATcBypKaJzETfmgHkJC1+FOEhFo5UD08AmtqbKGkoITsh282WuYecxBwADtQcOP3EwbfAVgFzlplglZcRgTn/ARWfGYPBPogWAE1A0mHvorimiUnJvhf/BwixCBMSR1NUZRtW/QMnjRvrlDFT3GmW28hOzEYQ9tXsO/3E5j9BTLqRMycYmHEDhEfBlj+bbUmfaAHQBCTHTjbT2aWY7IMDwE4mJ0dxuHp4ArCv2rixTh0z1Z0muY3RYaOZEDfhdAGoOQRH3zOeigN18Lc3EdHGZjG7/w5NJ8225gy0AGgCEueT9WQf9QDAsO3YySbaOu1DrruvZh8hEkJ2om+GgMAQJ6dQAcbTvyUscOf+98fcb4C9DbY/b7YlZ6AFQBOQOJ+sfTUEBIYAdCkorhn6iuB9NfuYlDCJ8JBwD1jmHqaOmcqBkwewd9mhtQF2/NWYHx+VbLZp3iV5KmRdBJv/7HNporUAaAKSg5WNjIu1EhXhu6GG7ORowLB1qOyp2kNeUu99mXyLacnTaO1sNVJD7/grtNvg3OVmm2UO594BDaWw/x9mW3IaWgA0AcmBikZyx0abbcaATEqOJMQiHKgYmgC0dLRwqPYQ+ckDZNr0AaYnTwdgV/lO+PhJyDjPmBoZjOQsgPhM+OgJsy05DS0AmoCjw97F4WobuWNjzDZlQCJCQ8gaE8mBIXoA+2v206W6fF4ApiVNA6Bz72tQdwzO/7bJFpmIJQTO+zaUboaSzWZb040WAE3AcbSmiQ67Ines78b/neSmRA/ZA9hVtQv4/AnbV4kMj2RiXBazjrwH8Vkw5Utmm2Qus74O1jj44DGzLelGC4Am4NhX3gDA1FTf9gAApqZGc7y2mcbWDpfr7KzYiTXU6tMzgJzcGD2B7JZ6uOAu4yk4mImIMmYE7f+nMSXWB9ACoAk49pY1EB5i8ckkcL2ZNi4WgP1D8AJ2VO5gRsoMQi2+O8DtZKmtlkq6sOVda7YpvsG5d0BoBHzwqNmWAFoANAHI3vIGcsZGERbi+//eeeMML2VvWYNL5ZVS7KjYwayUWZ40yz2UbWdybTGP0M6ugfYGCCaikox1EDtXG1lRTcalb4iILBCRAyJSJCL39XE+QkT+5jj/iYhkOo5nikiLiOxw/DzlXvM1mtNRSrH7RD3TUmPNNsUlkqMjGBMVzu4T9S6VP15/nNqWWmaN9QMBeO9X2CNieIJ2tpVvM9sa32HedwCBTY+YbcngAiAiIcDjwFVAHnCjiPSegHwbcEopNRl4BHiox7nDSqlZjp873GS3RtMnpadaONXcQX66fwiAiJCfFstnpa4JwJayLQDMTZvrSbNGTtkOOLAOy/l3MioqudtuDRCbbuyFsP0F070AVzyAc4AipdQRpVQ7sBroHdC7FnBuffMKcJn4YpJyTcCzs7QOgJnpcSZb4jr56XEcqmqkuX3wVaJbTmwhzBLm81NAefeXYI1DzvsWc8fN1QLQm/n/Zfx+/zemmuGKAKQBPWWq1HGszzKOTeTrgUTHuSwR2S4i74nI/BHaq9EMyGel9YSHWHx+EVhPZqbH0qVglwtewJayLcxImUFEaIQXLBsmxz+GQ+th3t1gjWXOuDnsq95How/vjOV14jKMDWO2vQA15o2PuDKNoK8n+d67G/RXphwYr5Q6KSJnA6+JyDSl1GkjXiKyHFgOkJSURGFhoQtm+Sc2m033z4O8+1kL46Phw00bPdK+J/rX1G58ndYUfkrL8f5z+9iVnY+Of8RVY6/y2N94xP1Titnb78MaHs8n7dPoKixkdO1oFIoV61Zwdrx5K4HN/t/sTVjoBZwnz3Hyb//J3mnfN8cIpdSAP8D5wPoe738A/KBXmfXA+Y7XoUANIH20VQjMGeh6OTk5KpB59913zTbBo5jZv9aOTpV9/zr18zf2eOwanupfwa/fVd94bsuAZbaVbVP8FLXqs1UesUEpN/Rvz2tK/SRGqS0ruw+dajml5KeiHih8YGRtjxCf/O69+3/G3+vYxyNuCtiqBrmf9/5xJQS0BcgWkSwRCQcWA2t7lVkLLHG8vh54RymlRCTJMYiMiEwEsoEjwxEqjWYwdp9ooL2zi7PGx5ttypA5a3w8nx475XxQ6pMPSj4A4PyM871l1tDoaIW3fwzJeaft9xtnjWNa8rRu+zU9uOA/IWosrP8BdHV5/fKDCoAyYvp3YTzl7wNeUkrtEZEHRGSho9jTQKKIFAH3As6pohcBn4nITozB4TuUUrXu7oRGA/DJUWPDjblZCSZbMnTOzUqgtql9wB3C3jv2HuNjxzMh1kf30v3w93CqGK785Rkbvlw0/iI+KPmADrvrK56DgvBIuPynxpaRO1d5/fIurQNQSq1TSuUopSYppX7hOPZjpdRax+tWpdQipdRkpdQ5SqkjjuNrlFLTlFIzlVJnKaV8KxeqJqD4+Egt2clRjIny4QHSfjhvojFn4uMjfe8apZSisLiQgswCfHKC3alieP+3MHUhTLrkjNMXZ16Mrd2m1wP0xYyvQca58PZPoNm7z8e+v1RSo3GB9s4uthbXdt9I/Y2MhFGkxY3ig6K+BWB31W5qmmsomFDgXcNcQSn4538ZuX4W/F+fRS6ecDEAG45u8KZl/oHFAlc/DC2n4F8/8u6lvXo1jcZDbD1WS3O7nfnZY8w2ZViICBdOHsMHh2votJ8ZC15/eD0AX5j0BW+bNjg7X4Sif8OlPzIWOfVBSlQKM1Nm8q/D//KycX7C2OnGeMCOv0CR90RSC4AmINh4sIZQi3D+JP/0AAAuykmisbWTHSV1Z5xbf3g905KmkR7T9w3WNOpL4a37jM1ezhl4t68rJ13JByUf0NDmWt6joKPgB5CYDWv/E1rO/B/wBFoANAHBhn2VzM1MINoaZrYpw+bC7DGEWoQN+6tOO17fWs97xe9x1eSrTLKsH7rs8Oodxj63X37SCGUMwNU5V9PZ1am9gP4Is8KX/wiNFfDPe43QmofRAqDxe4prmjhUZeMLeSlmmzIiYkeFcU5WAm/vrTzt+FtFb9HR1cG1U3wspfLG30Dx+/DFX0HCxEGLX5BxAQmjEnj9wOteMM5PST/b8AR2r4Ftz3v8cloANH7PP3eVA3DFNP8WAIAF08dSVGU7bZewl/e+TEpkCuen+9D8/0P/hsL/gxmLjZ2uXCDUEsq1udey9sBaWjtbPWygHzP/XphYAOu+B2XbPXopLQAav+cfO8s4e0I86fGjzTZlxFw1PRWLGH0CaGhr4J+H/skN024gxFd21Ko+CK8sg5Rp8KVHYAjTUhdPX0xDWwNvHnrTgwb6OZYQ+OpKiEqGF2+ChnLPXcpjLWs0XmD3iXr2VzRy7axxZpviFpKiI7gwO4lXt5/A3qV4ac9LtHa2clP+TWabZtBYCX+9HkLDYfEqCB+a6F6adSkpkSk8t/O5wQsHM5GJcOOL0FoPq26AVs8MnGsB0Pg1f9tSQniohWtn9k5Q67/cMCedE3UtvH+omj9t+xN5SXmcm3au2WYZi5T+8hVoqoYb/wbxQ1+RHGoJZcnMJbxx8A3KGz33ZBsQjM2HG56Hqr2w+iZob3b7JbQAaPyW+pYO1mwr5ZoZ44gd7b+zf3pzRd5YkqIj+PW7b7D5xGbuOPsO31j9++odUHMQFv/VGKwcJsvPXk6X6uKJLU+40bgAJftyuO4pKN5kTLd1M1oANH7LXz4+RnO7nWUXZpptilsJD7Vwy3kTKCx7mujwWJbOWmq2SQZX/NwI+0y6dETNTEqYxMLchTyx9Qm9R4ArzFgE16+EAi0AGg1gPP3/6f0jXDolmWnj/GP7x6Ewa+IpmkM+JHv0IqIjfGRzm6QcyHbPSuT7599PbUstj33ymFvaC3imfwVi3D/OpQVA45f8fsMh6ls6uPcLOWab4naUUvxk4/eJDI2juvxyPjrcd34gf2Zu2lyum3IdD33wEGWNZWabE7RoAdD4HTtL6lj5wVEWz81gelrgPf0/vf1pCosL+b/Lf8mEhCTuf3WXS/sF+xu//sKv6ezq5Nv//PaA+yBoPIcWAI1fUdfczn++uJ2xMVbuu2qq2ea4nV2Vu/jOW9/hksxLuPOcb/LQV2Zw9GQTP3ptT8DdJCcnTObnl/yc1w+8zu83/95sc4ISLQAav6GprZNvPLeVik7X5OIAAAZdSURBVPpWfn/TbGJHBc7MH4Cjp45y9aqribPG8Zev/AWLWLhg8hjuvjSbNdtKeeTtgwEnAvecfw/X5FzDPevvYc3eNWabE3S4JAAiskBEDohIkYicMRQtIhEi8jfH+U9EJLPHuR84jh8QkSvdZ7ommCipbeZrKz5i2/FTPPK1WZw9wf92/RqID0s+ZN7Kedjabay7aR3joj8f8Pvu5dl8bU4Gv3uniPtf201rh91ES92LRSys+uoqzks/jxteuYHHPn4s4ETOlxlUABx7+j4OXAXkATeKSF6vYrcBp5RSk4FHgIccdfMw9hCeBiwAnnDuEazRuMpbu8tZ8OhGjtU08+clc7h6RqrZJrmVX2z8BfOfmY811Mr7//E+M8fOPO28iPB/X8nnjosnseqT41z9u/cpqXX/oiCziAqPYv3N6/lSzpf47vrv8oUXvqBzBXkJVzyAc4AipdQRpVQ7sBronZbwWsC5tvsV4DIxVq5cC6xWSrUppY4CRY72NBqXyRoTxbkTE1n3nflcOsX/E771ZlLCJG4/63a2f3M705Kn9VnGYhHuu2oKzy87h8zESFJirF620rNEhUfx2tde46mrnyI7IRtraGD1z1cJHbwIaUBJj/elQO916d1llFKdIlIPJDqOf9yrbuCs2dd4hdyx0axcOtdsMzzG4umLWTx9sUtlL8pJ4qKcJA9bZA4iwjfnfNNsM4IKVwSgrzXovYN0/ZVxpS4ishxYDpCUlERhYaELZvknNptN98+P0f3zXwK5b8PFFQEoBTJ6vE8Heq/ccJYpFZFQIBaodbEuSqkVwAqA3NxcVVBQ4KL5/kdhYSG6f/6L7p//Esh9Gy6ujAFsAbJFJEtEwjEGddf2KrMWWOJ4fT3wjjKG8tcCix2zhLKAbGCze0zXaDQazUgY1ANwxPTvAtYDIcBKpdQeEXkA2KqUWgs8DbwgIkUYT/6LHXX3iMhLwF6gE7hTKRU4c9g0Go3Gj3ElBIRSah2wrtexH/d43Qos6qfuL4BfjMBGjUaj0XgAvRJYo9FoghQtABqNRhOkaAHQaDSaIEV8Le+GiDQCB8y2w4OMAWrMNsKD6P75N4Hcv0DuG0CuUmpIuwe5NAjsZQ4opeaYbYSnEJGtun/+i+6f/xLIfQOjf0Oto0NAGo1GE6RoAdBoNJogxRcFYIXZBngY3T//RvfPfwnkvsEw+udzg8AajUaj8Q6+6AFoNBqNxgv4jACIyCIR2SMiXSIyp9e5gNpWUkR+KiInRGSH4+eLZtvkDgbbOtSfEZFiEdnl+LyGPNvC1xCRlSJSJSK7exxLEJG3ReSQ43e8mTaOhH76FzDfOxHJEJF3RWSf4775HcfxIX2GPiMAwG7gK8DGngcDeFvJR5RSsxw/6wYv7tu4uHWov3OJ4/MKhKmEz2J8n3pyH7BBKZUNbHC891ee5cz+QeB87zqB/1JKTQXOA+50fN+G9Bn6jAAopfYppfpaAKa3lfQPXNk6VOMjKKU2YmTu7UnPrV2fA67zqlFupJ/+BQxKqXKl1DbH60ZgH8Zui0P6DH1GAAagry0pA2FbybtE5DOHq+q3rnYPAvVzcqKAf4nIp44d7AKRFKVUORg3GCDZZHs8QaB97xCRTGA28AlD/Ay9KgAi8m8R2d3Hz0BPii5tK+lrDNLXJ4FJwCygHPitqca6B7/8nIbAPKXUWRghrjtF5CKzDdIMmYD73olIFLAG+K5SqmGo9b2aCkIpdfkwqrm0raSv4WpfReRPwBseNscb+OXn5CpKqTLH7yoReRUj5LVx4Fp+R6WIpCqlykUkFagy2yB3opSqdL4OhO+diIRh3Pz/qpT6u+PwkD5DfwgBBdy2ko4PxsmXMQbA/R1Xtg71S0QkUkSina+BKwiMz6w3Pbd2XQK8bqItbieQvnciIhg7Me5TSj3c49SQPkOfWQgmIl8Gfg8kAXXADqXUlY5z9wPLMEa+v6uUetM0Q92AiLyA4YYqoBj4pjNu5884ptU9yudbhwbETnAiMhF41fE2FFjl730TkReBAowMmZXAT4DXgJeA8cBxYJFSyi8HUvvpXwEB8r0TkQuB94FdQJfj8A8xxgFc/gx9RgA0Go1G4138IQSk0Wg0Gg+gBUCj+f/t1YEAAAAAgCB/60EuiWBKAABTAgCYEgDAlAAApgQAMCUAgKkADgblcQy6U3EAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.mlab as mlab\n", - "import math\n", - "mu1 = 5\n", - "variance1 = 1\n", - "sigma = math.sqrt(variance1)\n", - "x1 = np.linspace(mu1 - 3*sigma, mu1 + 3*sigma, 100)\n", - "plt.plot(x1,scipy.stats.norm.pdf(x1, mu1, sigma),label='prior')\n", - "\n", - "mu2 = 10\n", - "variance2 = 1\n", - "sigma = math.sqrt(variance2)\n", - "x2 = np.linspace(mu2 - 3*sigma, mu2 + 3*sigma, 100)\n", - "plt.plot(x2,scipy.stats.norm.pdf(x2, mu2, sigma),\"g-\",label='measurement')\n", - "\n", - "\n", - "mu_new=mu1+mu2\n", - "print(\"New mean is at: \",mu_new)\n", - "var_new=(variance1+variance2)\n", - "print(\"New variance is: \",var_new)\n", - "sigma = math.sqrt(var_new)\n", - "x3 = np.linspace(mu_new - 3*sigma, mu_new + 3*sigma, 100)\n", - "plt.plot(x3,scipy.stats.norm.pdf(x3, mu_new, var_new),label=\"posterior\")\n", - "plt.legend(loc='upper left')\n", - "plt.xlim(-10,20)\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 188, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWQAAADuCAYAAAAOR30qAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzsvXlwJOl53vnLrPu+cN830N3T3dMX5yAlkVyPSZHhkSiblihRkjVrL7WmZVnmSsGQJVFkiFJoTWvtla2xrWNNizYpx/ogJdsjiloe4gzn6AYaRzeOBhoNNI5C3fedlfsHOqurClVAVTcwDQzyiajAUZlfHpX15Jvv97zPK8iyjAoVKlSoePIQn/QOqFChQoWKXaiErEKFChXHBCohq1ChQsUxgUrIKlSoUHFMoBKyChUqVBwTqISsQoUKFccEKiGrUKFCxTGBSsgqVKhQcUygErIKFSpUHBNom1xeLetToUKFiuYhNLKQGiGrUKFCxTGBSsgqVKhQcUygErIKFSpUHBOohKxChQoVxwQqIatQoULFMYFKyCpUqFBxTKASsgoVKlQcE6iErEKFChXHBCohq1ChQsUxgUrIKlSoUHFMoBKyChUqVBwTqISsQoUKFccEKiGrUKFCxTGBSsgqVKhQcUygErIKFSpUHBOohKxChQoVxwQqIatQccwhyzKyLFMsFp/0rqg4YjTbMUSFChWHBFmWSz+V3xXSVf5XTsaFQgGLxYJWq35t36kQlAuhQagtnFSoOAD7EW2xWCz9L51OEwqF6Orq2jOGIFR2/CkWi2SzWQAMBgNGoxFRVB9wTxAaauGk3mpVqGgA5SSr/Kz1Kl+mFsqJNpfLEYlE6OnpQZIkstls6ZXJZCr+zuVyOBwOBgcHyeVy5PN5jEYjer1+D3mrOLlQI2QVpxqNEm0sFiOfz+N2uxEEYQ/pVpOiskyhUKgg1vJXMpkknU5jNBrRaDQYDIa6L1EU2djYYHNzk4GBAdxuN3Nzc1y6dAmTyYRGo3l7TpiKR0VDd02VkFW8I9FMfrYeyknW6/WSSqUYHh5GlmXy+fwegi2PaiVJAkCr1ZZI1Wg0VpBsKpUiEAhw9uzZA4+nUCiUXsvLy6Uo+fLly8DDNIYaLR9bqISs4p2HRvKzfr8fu92OXq+vOUataFYZs140G41GyeVy6HQ6BEFAp9PtG9E2MvEWDAbx+/1MTEwcuKxCxkre2O/3c/v2bQYGBujp6Skdh9lsRqvVqsR8/KDmkFWcDOyXNoDKibBGIlqv14vRaMRoNJbWr0e0ykuWZQRBQK/XVxCr1WrF4/FgtVopFAoMDw8f6nE3Q5zlyzocDhwOB7IsMzk5yejoKHa7nUQigU6nw2w2q5N+JxAqIas4MhyUny0UCkQiEVwuV2mdg/KzgiCU/q43ERaJRLh9+3aJyEVRRK/XV6QMHA5H6Xe9Xn8geaXT6UPXATdLyOUoFouIosjAwADt7e0sLS2h1+sZGhpCEARisVjpeNVo+eRAJWQVTeOw8rP5fJ7V1dXSRJmyfjXRVr/y+TxAzYkwi8VCMpmkv7+/YtzDwGETm3KzeBQohAxgMpm4cOECfr+f6elpenp66OjoIJPJkMvlSmkMFccf6qekooT9iDYajZYegxudCCuPZmtNhCWTSRKJBNPT06WJMFmWa06E2e32ivzsfuTo9XoPXQ7W5FxLQygWiw3vY/X2q6NrQRBoa2vD7XZz9+5dbt68ydjYGGazmZWVFdrb27Hb7Woa45hDJeR3OA4rPzs/P8/TTz+NKIp7iDaXy9XUzpbnZ4E9E2Emkwm9Xs/o6GjDE2FPCo+TXjiKMcsj5HJotVrGxsaIx+MsLi7idDpJJBI4HA4EQVC1y8ccx/cboGJf1CPaXC6HIAilSPagyK5eRFtrIuzu3bsVuloF9SbClL/raWTz+Tzb29tYLJbHOhdvF44TIR+0rs1m4/Lly2xubrKxsUE8HsdsNpNKpcjn86p2+ZhCJeRjhsfNzy4uLtLe3o7b7QYqSRbqT4RV52erFQeCIGC1WrHZbA1PhB2EkxSlHVXK4jByyPUgCAI9PT14vV78fj9+v5+RkREEQSAej6va5WMIlZDfJjTqb/Co+VlJkkrkGgwGicVie4hWiZxrTYSVKw5qfUHj8TgejweTyXQ4J+QBjoLojgInJWVRC4IgcPbsWSKRCLOzs3R2dtLV1VUqyTaZTCV9tYonC5WQHwO10gbQGNEqkazT6WxqIqz6pVSEKYqDdDqNVqvFYrFgs9lKk2KPWyxQS472uDiKMY8Sx4mQm1lXIW+Px4PT6WRtbY2pqSnGxsawWq0kk0lVu3xMoBJyDTTqb/Co+VlZ3rVTTCQSNSVemUxm34kwp9NZtyJseXkZq9VKR0fHoZ0PAFEUD12He5IisqNKWTQ6kVm9/WbTHcq51mg0DA0NlbTLZrOZwcFBCoUC0Wi0VFBzkj6bdxJOJSGX52QPys/eunWLM2fOVFz8ysVanZ89qCIsl8uVxs7n86RSqVKBgsViwe12HzgRdhA0Gs2RGJkfVTR7VBHyUYx7nHTIj5tCsVgsPP300+zs7HDz5k36+vpwu928+eabXLp0SdUuPyGcyjOez+f3kFa9aDaTyZDP5/f1OcjlcqX1qhUH9SrC7t69i8lkorOz81CPTRCEIyHkg/THj4KTlLI4yptRLpermFytnmgtFotIkkR7ezv9/f2lp5XDmFTt6OjA4/GwsrLC1tZWab8SiUSpulFNY7x9OJWErFxghUKhrnY2m81SKBRIpVJMTU1hMpkqiNblch04EXbQPhwVcR5VhHyaWwg1G5GW5/9rXWOZTIZMJoMoimxublaUdVutVlpaWiqsNzOZDOvr69y4cYOxsbFDnWTU6XRMTEzg8/lYWFhgbW2N3t5e1Xf5CeBUEvLCwgKBQKBm6a0i6zIYDOh0OmZnZxkcHMRmsx3qPmg0mtKE3GFCFEUKhcKhj3tUk3onDYoHRzXJlv+t3Liq8//VaanV1VXsdjttbW0HblcURfr7+2lra2NxcRFZlmltbT3UY1P2T6PRMDk5ycjICC6XS9Uuv404lYQ8MTHRcLR3VMSp0WgqiisOC0eRWoB3foRcLR2sJtloNIosy6yurpaIVolqlYlW5e9GSavR0unyeQ2z2czTTz/N7du3WV9fx2Qy0dLS8ljHXr4/Go2Gvr4+2trauHPnDtvb2wwPD6va5bcJp5KQm7mYtFrtkUWyJyllcVRE/3ZAqS6sF9UqTxRarbYidWA0GkuKlu3t7UNXrzyq/aYgCNhsNhwOB16vF6/XWyo/r7WNRlGelzYajZw/f55AIMDMzAxdXV2qdvltwKkk5GZwlBHySSL64zgBVx3RKiQbCoWIx+MlwitPTVWbFSntkw4ilqMgnsctDDEajTz11FMEAgGmp6fp7u6mq6urYsxm9crV0X1LSwsul4vV1dWSdtlisRCNRsnn87S3t6tpjEOESsgHQKPRHElOViXk+mikvFuW5RLRVk+IpVIpBgYGcLlc7xj7zeptlxNtS0sLTqezRJrj4+Mlf5Bm1BiSJNVcVqPRMDIyQiKRYGlpCZvNRktLC9vb25jNZtV3+RBxKgm5mQvnKCPkk5ayeNxxFZ12dZ52ZmamgmhFUdzTf85qtVZMtu73GW5vbx96G6OjKJ1uxn6z1rrl5KnVahkdHSUWizE/P4/H46G/v78pQj5oWavVyqVLl9je3mZhYQGz2YwgCKTTadV3+ZCgnr0DoNVqj2zy7Z0SIdcqiCkn3XKddnXqQKvVMjg42BDRPkkclQ65GT/kRlIRdrudy5cvc//+fW7cuMHAwMChETLsfoZdXV1otVpWV1eZnZ1lbGwMURRV7fIhQCXkA3Cac8jFYrHkdZxMJkuG8tVex7VaJJWrDvbTsK6vrx+6pPCocJy8LPYjT0Ui19rayvz8PLlcjkKhcGD02kw0LYoibW1tOJ1O5ubmaG1tpbe3t/Sko2qXHw2nkpBPu8pC8U3eT0urkIVCsNlsFr1eX1F5eJryhk86Qq617kHkaTabGR8fZ2FhgcnJSQYHB/fVLj9KvtnlcnHlyhXW19dLzVYdDgepVKqUxlAn/RrHqSTkZnCSImSlaCGbzeL3+2tOiCnEopR4K1GszWajtbW1rtfx+vp6qU3QacRR5ZAfxw+5UQ2zxWJheHiYO3fu4PV6GRsbqymRa8bsSJKkEtHu12xV1S43B5WQD8BxUFk0UoarEK1GoyGVShEOh0tEW12G+yg4jrK3txsnJWVRazm9Xs+5c+cIBoN1JXLlJPso29+v2er6+jqDg4PHep7gOOBUEvJxUFkolW/5fH7f1IEkSQiCcGAZrvJFyuVyTE9PMzY2dqj7K4piqZvIacRxTFk0sm41cXo8HhwOx2NL5OpF07WarY6MjLC1tUV7eztarVYtwd4Hp5KQm4FWq206Qi5PHdQi2UwmQ7FYJJlMMjU1VTEZZjKZKoyLmr1w3wk65OOIJ9ExRNFjp9NpZFnGbreX3ms2Qi7HYUjkDoqmy5utLiwslCSNhUKBeDyuapfrQCXkA1AdIdcqwy3/vVAolKrDqom22lj+tdde413veteh7q9KyEeHwyIPxco1l8sRDAYrKg7L7V7LKwyVJqXDw8NotdpHjpDLUS2Rayal1Sh522w2zp07x9zcHJOTkwwNDeHxeFTtch2cyjNR60KuV4abzWaJx+O8+uqrwO6df78y3Cd9cR2V58RREf1JQSPntNoJrtZNWxnHYDCQyWRIJBKYzeZ9ZYIKgXu9XiYnJxkeHm6YEA8i7nKJ3OTkJOvr65w5c+bA67jZfLPFYmFkZITl5WW2t7cZHR1Vtcs1cCoJGeD27dskEolSOqJWdZhixZlIJHj++edP9ePVaY+QFVIMh8N7CDeTyZSuo2onOCXXr/xdTjpvvPFGKeI9CEpBhsfjYXFxkWQySaFQQKfT7bteo8St3BSsVuuhS+QUjwyDwcC5c+cIhULMzMzQ0dFBd3e3ql0uw6kl5IGBAbRabUOzvtWtmg4TR5GbPAq8Uwm5WpNd/VNpu6UUx1it1gqp4OM8GT2K7M1gMHD+/Hlef/11ZmZmGBoaOjTilGWZ9vZ2urq6DpTINRMhVy/rdru5cuVKqdnq6Ogodrtd1S5zignZYrE8cYJR0gAn4eI7aSmLWlLBWhOrStut8qcjh8NBW1tbRcQ2NzdHb28vDofjUPexUS1xOQRBQKvVcuHCBe7cucPOzg5jY2Po9fo96z5KJNuIRO5xJwCVZqsdHR0sLi6Wmq1KksTGxgY2m+3QzaFOAk4tITcb8R1FJKtMGJ4EQj5OEXKxWKyZny3P+UcikQqiNRqNmM3mx2okexTk8DhjGgwGnnrqKfx+f6lRaXt7+x7ibKbYo1oiV89FrtkIuR55K4b75c1Ww+FwaWL8tPkun1pCbgYKcR72hN1ROb4dBd4OQlbSB7VINpPJlNIHoihW5GmNRmNFKmFhYYH+/v4Kmdhh7NtxRWtrK06nk+XlZXw+H+Pj46U0w+O6vSnWm/F4nPn5edxuNwMDA4cqkStvtnr37l2CwWCpC0oqlTpV2mWVkBuA4mdx2IR8VI5vR4HHTVnUUh9kMhlSqRTf+973KtIH5WT7KN4Zx81M/u3Yvk6n48yZM4RCoVKVXGdnZ9M55HrbsNlsXL58mY2NDW7cuEGhUGg6FXIQdDod4+PjJBIJVldXicfj9PX1nSrt8qkl5ONQrXdU48LhE0i9CLna47g6laCoD6rN5BVddigU4tq1a09cLvhOgdvt5vLly9y9e5fp6emmPSQOksj19fXR2trKm2++ydLSEsPDwwcqPSRJOnCZ6u2cP3++JPNTmq2eBu3yO/OoDhlH6WdxlI5vj/OIp0yKKQQbiUSIxWLMzc2VCBdqexxbLJbS7wfl/zQazYnQnz7pCLkZKFVykUiE2dlZRFHE7XYf2v6bTKbSDXVqaoqBgYF9TaeanSdRnkarm62OjIy847XLKiE3gKP0Lj5Ka896X4L9qg0V9QFUamqVSZbe3t66jnCPgpNCcnCy9hXA6XTS2tpKPp/fMyn3uFDyvm63m+XlZbxeb0Xuuhz7TerVQrm1aHmz1enp6VKz1VwuV2q2+k7SLp9aQm7WE/lJO741AsVQXpIkdnZ2Sl4ICtmWl+SWT4hV52prPQ6mUikSicShyr4UHOcJMwUnYR9rQZZl+vr6kGWZ27dv09raSl9f36FFlnq9nrNnz5Zy111dXXR3d+9RejzuhFytZqtK/8RIJILH43lHpDFO/hG8DXjSffX209SWl+Qq6YNsNksikcBqteJyuRpOH+yHo1JZHCc53X54kimL6vPTzPlSJvUsFkupGGNycpKJiQmsVuuh7aNS7LG6usrk5CTj4+Ol8Q9L2lmr2erAwABzc3Ncvny5NDdxkqNllZAbwFGmLPL5PMlksu7EmGJWVG6/qci86vkc37x5k97e3kN7PFX29ahMi1Q0h2ZuDuUqC1EUSyXRi4uLuFyuUs+9Zkm+FsolcgsLC7jdbvr7+w9da1/ebHVqaqqk+MjlcuTz+ROtXT61hHzUKYvyfnS1otp8Pk8ul0MQBAKBQEUKwW63VzQBbRZHQZ5HGcmqETIV6aXy60R5OZ1OBgcHS+T5KISsQCE0RcKm5JYPS8ZWLpGbnJwEaMqIqBEo3h4tLS28/vrrpWarBoOBVCrF7Owsw8PDdHV1NTTeccGpJeRmoNFoSp2T6zl6VfejA/aoDxSfY6PRiE6nY3t7m1wux8DAwKHu70ki5KMa96j29VH2ozzdVK3Bfu211wAqil3K8/qKT4aSahgfH29KXVBPh6xI2FpaWlhYWMBisTwWydcbv7W1lbfeeovl5WVGR0cbMkNqJprW6XSYTCb6+voqmq3+8R//MR//+MdVQj7JqJ4EU35Go1HS6TTb29slH4Fy74P9HL32w1GrLI77mHByUhb7abDrRbbKZ1uuVjEajaW2WpFIhOeee+7AcyBJEr29vSXytNvtDZ+3g6Jps9nMpUuXWFtbw+v1Eg6HcblcB+5Po6RpMpkwGo243e6SRK61tbXuPjXSHbscys2hvNnq1772NYLB4KFWar5dOLWEnM/nmZ2dLTl6wS45VKsP7HY7NpuNSCTCuXPnDnUfjjI3fdoj5MdF9VNQKpXizp07pWi3uiu3QrZKCfdBDnBKJNiMuZDFYikVfcRiMeLxODabbd91G4lmlbZL0WiUtbU1fD7fvragj+JSp5RGl7vIGY3GPcs9ima5utlqPp/nc5/7HJ///Od5+eWXS2XYJwGnlpC1Wi39/f01DcGrEY1GCYfDh74PRxV1niRChrc3h6z4ZSSSUyB9CQO3MIhRDMJuv8CiLFIAwjk3gWwX5D+CSXcVURTp6OjAarU+VrPY8v14lKcDJXcaj8dZWloqTZzV259mOoso5dflRvgej2fPso86SafT6UoSuZmZmZoSuWbHrhVRj46O0tXVxYc//GHeeOMNPvzhDze9r08Kp5aQRVFs+JHmpJVOHxUhHwUOk+iVlFM2myUQCBAKhSqiXKkooXN8ne6W/4xBTFKQRUBDoQhpQYdMkaJcREZAr9uhU7dDovgqkuDA3v4cNts/xWg0Hcq+Pm7HaZ1Ox4ULF1hfXz9QxtZMqydBEOjs7MTtdrO4uMjOzs6e3G+zEXL19g9TIldv+UQiwU/8xE80VbJ9HHBqCfmdWBii4CR5Fzf6yK6kEKrztOVl3MrEWDqdLpX2KgUv8eL/IJP5p5iIoKGIUdCgEUGWi2SwYRISD3ZI2eru5xKWzYSlPC22V9iJv4qQ/Rl67b/w2DeoxyE1ZV3lEV3JLbe0tDxy0Uf1/ihG+D6fj6mpqYoOIochYyuXyC0uLuJ0OhkYGDiUCFk5npNYKHLy9vgJ4EkXhjSLk0TIsizXJNnqiTFlIrW8W0dra2tNF7i5uTm6u7txOBzkpDDr4Z/GUJzBIpixCEXKuVQQQC4WyMgiRnHvOWvVSKwVWtgpONAJEmPF/5uZ9H+lxfF7dJvOP9ZxPyqpV69rtVq5fPlyqQPHxMRE0xr0WjcIQRBob2/H5XJVGOE36yC3H6olch6P57Ej5Ed54nrllVf4+Z//eSRJ4u/+3b/Lpz/96Yr3f+d3foc/+IM/QKvV0trayh/90R/R398PwBe/+EV+4zd+A4Bf+ZVf4ad/+qeb3r6CU03IjT4un1QviyeN6omxWtWF6XSaQqFQYUjU6MTYQQik/ifJxKcQZAGXBjRKFFwFs5hmNetg2BDb855OKGIqyuTEAkVgLj+AR4ywEf4p3op8nB/q+MePLId7nJRFNSEqRR8tLS3Mz8+XSqQfZ0wFSgeRQCDAzZs3S3K8RtBIxCsIQklFMjMzg0ajoaurq6F0w36qjEbPryRJfPKTn+Qv/uIv6Onp4dq1a7z44oucPXu2tMylS5e4fv06ZrOZl19+mV/6pV/iT/7kTwiFQnz2s5/l+vXrCILAlStXePHFFw9UqtTDqSbkRnFUnZxPGtEr2K8PnVL0ApWWm+UdO8rlgTdv3mR0dPRQqwoBrif+kGDhz3BpbJzRF9AI2X2X79IlSBc1mMS95+2cKch30i60ooRWSBIp6hAEB/n8n/F7q4t8vPe3cOj2Tn7th8eJMhvxLb537x6Tk5MN35gb2Z+WlhYcDgczMzNEIhHa29sPJOZmJXKdnZ2kUimmpqbo7++nra1tX2KtNX6hUGgqyn7zzTcZGRlhaGgIgB/7sR/jq1/9agUhv+997yv9/uyzz/KlL30JgD//8z/nhRdewO12A/DCCy/wyiuv8LGPfazh7ZdDJeQniKNMWSik2CzK2yOVV4opTT6VQoZyI3mj0YjD4Sh9QZspWz1s9YZUlJg2/C753AptujSSALM5HX2igyFDtGJZf8HGel5HWtZQRCAl6RAFEZuYp1ubZEC/G1HrhCJmWUvuQV5599CiaAQLyUKUf3vvk7zY8QuM255peD8PO0IuhyiKDA0NEY/HuXHjBuvr6/T29jZNbLWg0+lob28nk8kwMzNTs99e9bjN5LQlScLj8TA8PMzy8nIpTVKP+CVJ2tNLsBE5YDk2Nzfp7e0t/d3T08Mbb7xRd/k//MM/5Ad/8Afrrru5udnwtqtxqgn5SWtgBUF423LIjU6MVWuxy0u5k8kkzz///KHu62F+Bjkpx3/a/BSifol2TaqUKxYEmTVJT6ukIyrpWMzb0Ip5jGIexDw6dm9eaUkkhUBa1uHLO/leuhO9bOS8yccZQ4ypvB6xPHerSWIA/Hkn/837f/GuzMd4X+sPNbSvh5lDrger1YrZbC7Zb05MTGA2m2su22xLJpvNxuDgICsrK9y8eZOJiQlMpr0KlGYr75QbgyLBC4fDzMzM0NnZSU9Pz57jLhQKe44pFosdWVHIl770Ja5fv863v/3tIxn/VBPyk8ZhSckU3wyFYAOBAIlEgmQyWdG1o7zCUKkYqzcxdpT7exRIFpJ8cf1TtGiXsGtTe94PS0b+c3yIM6YtrDXeB3Dqk2zEumgx775v1KaBNLcKOr4d60eQdIw671esM2Bc582ddkxiJ7L8H7ib2OZ/HfzZA/f3KCPk8uU0Gg3Dw8PEYjFu3bpFR0dHTWJrRpWgjKvRaEpG+HNzczXHflwZm1KBp6RgyiVy9cZvNkLu7u7m/v2Hn+vGxgbd3d17lvvGN77B5z//eb797W+XfJ+7u7v51re+VbHue9/73oa3XQ2VkBuEEs2+3R0Kqs3kqyNc5YutdFBQJsIMBgODg4Olv48rmR5GhJyWUvyb1X/IgHELs5isek/PVt6JQcyjFSU2kk56LJG6Y+mpLW9sMSdYjLTz+sZzvNu5zJDVD4BJU6BXF2ZdauFmqJuLrr/kN27n+Cdnfm7fc15uwt4smiFkZTm73c7ly5dLfsLV0XKzEXL5sk6ns5S3fpzu1PWWV24qiUSiQiKndPKpvpHE4/GmIuRr165x584dVldX6e7u5itf+Qr/8T/+x4plpqam+MQnPsErr7xS0R3lAx/4AL/8y79cKhz7+te/zm/91m81vO1qnGpCfpS+eodFyIrpjCRJ+Hy+hibGFL/XcpOiWvsTCoXY2dlpKkp4UnhcQs5Iaf713Z+jTefDLIYq3tvJdZCliFGzey4FYC3Tsi8hD1jC+ApWtJq9+zRgC3Kv4OGN1DBToT7+RvdN9BqJKw4v66EWRB1Mhvu44Hydl94QefnqJzBqaysFlKautVCeWlJeHR0dpVxpM9V35deHov2NRqPcunWLzs7OUqVcs92p65Gm0p1a0UQ/Sg65HoEr8j7FpW50dLTm8s2mLLRaLf/yX/5LPvCBDyBJEi+99BLnzp3j137t17h69Sovvvgiv/iLv0gikeCjH/0oAH19fXzta1/D7Xbzq7/6q1y7dg2AX/u1XytN8D0KTjUhNwOl83QjUpxaE2Plv5e3SMrlckSj0ZK716NMjFXjKGVvx6m3XFbK8PLqP8Qu+mjR+Ur/z0siK+k+bIYo1V/tFkuSWN6MXVc7baHX5AnHzbRak3veM2gKtIoQQCZv0vKVrWd53r7EiMNPi5wjIOjR6YpMRzrpNc7xkb/6t3zl3S/h0O/mVsvz+OFwmGQyyZ07dypuwrIs79FcK2qUoaEhWlpaHilCLofD4ShFy0r+t5lIdj+SVVQeijtdS0vLoVTeKVAkcq2trSwtLRGLxfbc0JuNkAE+9KEP8aEPfajif5/73OdKv3/jG9+ou+5LL73ESy+91NT26kEl5Aah0WjI5/NoNJp9tbWw/8RYtcfxa6+9xsjIyKGS3FE6s71d3awPglSU+MLSb7CTNdKla8OiiePUpYnn9WxnOrAZozXX04pF5hPtPONarTu2W6hPdhY5REDYlbjpjQXeSA+znmqhW7NDoLg7267XFbmfsVIobvND33yZX3ZcxSJpKpwClWN2OBy0tbVhNBrreqrkcrmSqXwgEGi46/J+n5USLSv5X41GU9O3ohYaUXkolX2zs7OYTCZ6e3sbuok0emNQeu29/vrrzM3NMfCg0aogCI9EyMcFp5qQyy9WWZb3zdXG43FisVhF+qC8c4fyhWo2pXEYHaLrjXnYUMY9zDz6oxCyLMs/6UahAAAgAElEQVT8/PTvsZ0V0Gl1+AoOZtMXeJdtGw0FLMb4vuvb9PvfUNwmL0GpftpiLeaBB6dAo5HxYcebcCAbZARxd2y9TsKiKbCayPN5eYr/59mfYMj50HUsGAwSCAT27dZcDr1ez/nz5/F6vdy9e5fOzs4D12nks1Lyv9evX2dlZYVz587VVEuUo1HStFqtdHd3E4vFuHHjBmNjYwf2ZGwmxaHc4C5evMjKykrJRS4ejzdVFHOccKoJORAIMD8/X9NQXvFwVX5fXl6mra2t4SiiUSi56ZNAyEchE3yUaPtT019kIx3AqH+YVigWrXzH38+73SscZP9j0CVZDbYx6NlNc0hFyBe15CUtZm0Wkz5PzGfB7d5b2WfQ5zElC6RtlV8d0SqT9Lejs4QwGHYnBs22LJ6QjkAmw49/99/zmxf/Bu/vHX2wv5U55HQig5SXsLrqF8goxj+JRAK/348sy6UuIrXQ6M1To9Fgs9lwOp3Mzs4eqC1uNt/c1taG1WplcXERq9XK0NDQgWmJZqDX60sSuW9+85tMTk5y5syZpsY4LjjVhOxyuXjmmWcauriUHPJh46SZyT/p7h6/fftrLCXXsOjLouC8mSxZRD1Mhfp4r3lx3zHuBVq4F2xFCpxD0guIhof+FnIRpKyGYlxE4ysy6vQy0bpVES17xCQb7I30LCRZ2Oymt2UHqz0DgNXmx7/VTdqR5P+Y/K/8+H/tx7klEdwJEfFHCd2PEvJGSMcz6I06fvyffISP/PwPotHWJyytVsvg4CCZTGZfp7dmidPpdNLe3s7KygrT09NMTEw8tmexEvGazWaefvpptra2ShNyj1peXA8ul4sf+IEf4OWXX+Yzn/kMIyMjXLx48VC3cdQ41YSs1WobJoOTZMH5TvVZ/sOl7/Kt4DQ2Q6xEoPmUCVmfRRR3x0jrdaxF2uh3+irWTaZNvLXVT0KnR2MsIplFDMY8GrFy24IIWpNEUdTgzVvYSQ/z2soobYUU17qW6XaG6HKG2cjvJWSDM0ou7GB5p4WBRAhnVwqrO4NmJ0MmYMTgzPDHnfew/7cAzjd96E06Ri8PsbWyA0Auk+fLv/XfmPn2PD/52Y8yemkAWZb3nB8lxdXX14fH46nwrqjlCtcIlGUVbbFSkNHT00NnZ+djjauQtyAIdHd34/F4WFxcrGmE/7jzExaLhd7eXn72Z3+WtbW1E0fIb6+o9gTjqCLkoyifPkkRcvUXUJEDxuNx/H4/9+/f586dO7z86it8eeNbWHTREvnmEiZkfa70t4LlmAfl8KNJE3+59BTfjoyQtmnRGHff0BiKiKn66QHRkMOQ2t23oq6I12TkT4NP8aW3nieaMKGL7tUrizqZFjmDrIPVtJude04Aui0xZL1ANmYCQSD+kx2kfvYi3ee6yeUkRq+O8NT3n8VgNZLLSkx98zb/x3s/x8v/+I9JRFJ7zlP5ZJ3SRUSSJKampkilHqpHmtUWVxdkXL58mXg8zszMTGnCWkEzxj3V0bTRaOTChQvY7XYmJycJBoOl42oG9aSDiUSiZPJz0nCqI+RmoKgsDhtHYQR0XAlZIdtyfW0oFCIWi3H37t1SKy2dTlcxcXpPTvEn6Slc5hha7e5xyUkLGDN7yBggZ9Rwb7sNb9pB2GREdMoI1FguAvranu4AaJMSWXMZoYmQaNHyP1NnMd4F13AckzNXsU6bPomvaAYNbBWt5G8LdA1H0ERdSFoNubABvSVLsEXPqxcttP2nFXTp3c9//NoQEV+UfCaPwWzg9ut3+D9/5l/z3h99hvf8yLUS+VQTreJdoeiLu7q66Orqeuzu1FqtlvHxcUKhENPT0/T29tLR0dHQeArqpTfKjfCXlpbY2dlhcHDwULyQVZXFCUWzhSGZTObQ9+EoUhZH2f+uHtErKpVqUyLlVSgUEAShRLbKSyl06ezsrKm9Xo+H+M03/gSXMYFBvxuVZiJ6NNbaZAyQjBr4y/AEPQMhxBpErKBozdV9D8BizJGkhqmNCGmjyL21XjqWEgxc3kF88E2ydKYQ12WKGgFE8JstMK+lQ0yyiZ2iQSCfNGCyF8gLFgIvnaPz9QCmuzGWpu+j1WkYuzLI5tIm22sB1ha2mf7OAv/9D77FS7/xUcauDNYlWkVfvLKywszMDB6P57G7U8Nuh4/Lly+zvLyM3+9v6mZ/UL653Ah/enr6UIpImi0MOcgL+Tvf+Q7/6B/9I2ZmZvjKV77C3/pbf6v0nkaj4fz5XV9spVjkcXCqCbkZHGXXkOPebknprlwoFPD7/QQCgQqylSRpT/m20WjE4/Ec6GucyWQwm817HLsA4rkMf+/Nf0+LIYPGmAYgG9WhNRehBhkXixDYsJMyacEBaa8BU0d9203RVkTa0aJpr/25alpzCDEDcg2ZnNhZRLMN23ob6Rk7I907GNpjiMYi/XKBVR4WEPmdBtxeGcyABiSDQErQYsxLZB1atr6vje6RFs4GZAR5102u/8IAQ1oNUjZHIbe7f//hN79G92gH5z84WLe9vZIDDoVCzM/PNzVxtt91o9VqmZiYIBgMMjs7i9frpb29vaGO2Y2QbFtbGwaDgbm5OWZnZxkfH695TZSjXoScz+eb8ms+yAu5r6+Pf/fv/h1f+MIX9qxvMpm4efNmQ9tqBCohN4iT6l18EJSqwupXtVeG0hopnU7jcDiw2Ww1C10eBbIsUywWifii+NaC+NYDbN/38/uti4SzAgGLAaPUgtORRO/Ig3bvDayQFfCvOcm2PiSIeNS8LyEDaFJ6qONfIWjhQls70xHfnvdkDVzq8fDWVoiISWY60sH7HBOkDNe5+pSN1YXKp6lQh8D3C328kdwkK0sU9QK2bgMmr5ZtcxZfl0hSlBnzFzCkC2TTOXKpHIV8ga4BD5uL20R8MW6/cZdv/qc3+ODPvIe//QsfwmStTTxut5ve3l52dna4desWY2Njh9JfzuPxYDabCYfD+P3+A4mzGY29KIq43W5aW1u5efMmfX19+5L+YXQLacQLeWBgoLR/R41TTcjN9tU7KSoLBeXGRLUIVzG4KY9qjUYjTqez9Hv5RVjeGqlZZJIZAlthfGsB/PeD+O8H8d0PsL60QcQbJ+KN0jPeRSqewn8/hPfvD5MUnEguGXI6EgWZoN/EYCqCZbCyrDkb1OFL2JBaK7eZdghIWdAY6u9X65gdf752GTWAfZ8iErv54Zc/Xyzy9dUQZ91X8XTuICAgU7luzpRnLORhzRQhJuXY0WS52uGiU3YxGfDScsnJznqBIbMFy3aa1HaM0GaY2zPb6I06zr3/PFFvmEggyqv/fZYb31zixb/3Xt7/o++qSRaCINDT04NGo2FqaoqRkZHH8lmAh6mNM2fOlDqI9Pf3097evu/yjUAh2JaWFpxOZ8kPeXx8vGbEexjdQpr1Qq5GJpPh6tWraLVaPv3pT/PDP/zDDa9bC6eakOFktnHaz9s4k8nstrlPJLh+/XoF0Voslj0dO5rd11rpFUkqEtwMEdgIEfJG8K76CGwE8W/sEm9gI0gsmECj1XD2uTHmXl2k1im/N3cfi9NM+ueeJtWmo+iUdp/fJRmtJFOwitwtuBjakLH07JJo6p4Rv9GMXCNlKBug1zrCVn657jFtZvy0GGzECrWr+6KFYN11A1KQaqHS7VCI+3ELVx0e3optVLy3XgwT3inQ7bJjsKfxF9MkXAW23wjwzGgXbwS2uDLaQXS7iNxroqvXgT3SQXwzRDacIo+AvbcVfYsJXQHymTx/9kff4c2vz/Ij/+CvMXFlsGJ7Chm2tbXhcDhYWFggEAgwPDz8yIVI5QSrdBC5c+cOfr+fsbGxmtHyoygylBSJIr+rVaxyWP30Hgdra2t0d3dz9+5d3v/+93P+/HmGh4cfebxTT8iNQrH6O4pxy9UbtZQI5YSrKBHKDWjKvY2VEu7vfe97PPvss4+9f8VikchOFP9GiNk3FpmXVwhvxAhuhvBvhAhsBAl5IxSlXaJu7fVgMOvZWNzeM5ZUkJj9q3kmnhmhUCiiM+goSAUQBKRckWggzuIzTuKtOopWCVncJWNdukje9YD4BIH1hJPxSIbUjomgx4C8D7fEsroDxZ1t+ra6hBzIheg0drGd2Vu158tG6bV1cz9eGWHH8znIaXlGGmRKs17qNOLNxDnT18nd9Qj2lJ7BbjsLsQDn+1u4ubTF1YEOZgM+LlpaMaUFXvf7OO/xUMxacHU7kaNppGSedFYmkijQ2e1k88Zdtu4FufndZb7vhy7xk5/+MM4WW+mzU8jTYDBw4cIFtra2mJycbKiMuRaqSVCn03H27NlStKx4SjwKahGs4od89+5dbt68yfj4eMk2tFaEnEwmaxbJ1EOjXsj7rQ8wNDTEe9/7XqamplRCfjtwGBFyeS865RUMBkmn0/h8PvL5fIUSQZF9HZYLXK39CXsjBDZDu6+NEMHtMOl4mnuz9wlshghthynkK4/77LvHuHP9Lvns3huU/34QZ7udi+8/RzqRQW/QgwC5dJ54OEl4J8Li9VX0Jj1jV4e48+YaxcIumQd/oJP40x5k026OFVlGn5DJtVQyakGrwZ69wHrb+oHHOB/zM+62kCo+THOIiLjoRiM5KRR0hHN6SLqRAVEAk27XIEijS5HRePFYbDUJGWDIY9pDyAA7xTje5RQDLW0k2lJsSbtmR5Y2LaxDLJsjuy5xZaQTySHDPZi952Ww3UXQkCW3ksRtNLKVTdPeaiQdyLEVS9PXbqcQiBCOZCjIEbovDOCwGchGk3jXg/yzf/AlPvATz/Kev3Fpj05XKcxwuVwsLCyUfIWbuZ7qpSCUaHlpaakULet0uqYi1nopCI1Gw+joaEnW197eTm9vb832TbFYrCnb2Ua8kOshHA5jNpsxGAwEAgFeffVVfumXfqnhbdfCqSfkw0pZVHftqH7VUyLY7XYMBgNjY2OHaiQvF2UCG0GC25Hdn1thAhtBApshtHotc99dILS1l2wBrE4LHYOt+NYDe94TRAHvio+zz49RyEkIDxrAZtN5kpEk4Z0oEV+CiG+ekUsDbG7sENnZ67xmcZhJJzKMvWsQrV7HokMkctEIWgnJvHsOjGGZTHvl+RBkuOrs4fWtba6e6WQhuTcSL4ckF3FreikW17FLQ/iiWhYjUdKFArDri2zW6sjnJQrFWteBk6utHtxhHY4uLZvifXKUPdFoa0sh7yUi9Lqc3AtEsMR0XB7rYTK/wZ2sH40oIhVlsgWJ+QU/l0Y7aWu14PMnWd0JYzMZuHCxg6m/WkMjirhH2ynaNQibMgUEsm4zA247BmH33K+thWhpteJd8RMPJVicXONb/2WSD/5vV2qqLMxmM5cuXWJ9fb3UheNxCj0U6HQ6zp07h9/vZ2pqisHBwZrL7Tf2fhPEiqxP6R5isVj2tG9qVoPciBfyW2+9xUc+8hHC4TB/+qd/ymc+8xlu3brF/Pw8n/jEJ0qpvE9/+tMVk4GPAqHJnMuTa0B3RMjn8wfKzhQlwvXr1xkdHd1DtuXmRNUTZMr/6l1owWAQv9/PxMREw/ssSUXC22H8G6EHqYNdog1t7f4vnUiTSibx3wvXHWP0yhCbd7ZJxdIV/7e6LDha7VgcZuweG5lEBqkgkU5kCO1ESISSpfSE2W6i70wPC2+u1NyGxWmmc6gNm8dOoSBRyEskomkCmyGyqYca4NjlNvwf7EQrFsk88G5yx0VC7sqbhQaRi7ZOprxeAIZbbeyY9m8o2a9rp6Xo4bu+++T3+ZzPOVu5Hdx7AwKw6vTkggWKsoBFr+Nct4ucPcgm2xhEHVtbdnI1xn7G3Mv0rZ3S35dG2pnS3Oes1Mn8ncrc9PO9Pdxe3iGZe2CmL8APtPVwc36DXKGI225i0Gpl8foGOr2GkdF2iGdZfmsNAIfbQmuHHatBJB1JkoylSaUy/M3//b288KP1+yAmEgnm5+fJ5/M899xzBxJzLBZja2vrwOs1l8uxtLREOBzm2WefbUjhce/ePcxmc0Mpj3g8zvT0NB6Ph/Hx8VLU/tZbb/HlL3+Z3//93z9wjLcZDd3xTn2ELEkSqVSqbs62XIlQKBRIp9OlNIJCuI/j1FYdeRfyBYJbYULeCL61QEVkq+RtI74oZ54dZf71OyVyrIbOoGX8XcMslpGl2W7C2WbHbDejN+oYf9cICBD1xUhGUkT8URLhJInww8f7satDbCztJW6AdDzDzj0fVz9wgVQi+yDPLpGKpQh5d8damd7Nz/WMdWKym9ha3sHd5WLgvAe9xci0KUfwggm9VCD1QLJ2taOT67qtyuMRNJwxt5XIGGDFH+famS7mk5XLAgyI7RTiJm4FQojCJg6HgWBu7zGUzs0+0q1EPkefxcxWIksyl+fN1V0Z3GjrOO72As6WIjd9e7uQxKui56nlHQZa2rD27iWnKa+XkaKZrNPMaiSKLMM9KUGX1ozs1LAWiJLK5Dn/VBcRf5Tbt7YRBLj0vnGkUJJENM3KwjbIcOZ8F5vT95GlIn/463/G8vQWL/3qixhMe4/RarVy/vx5Jicn921WqqBRYyG9Xs/4+DiTk5NMTU2VzPX3QzOmRTabDbfbjSiKpSjfZrMdaYPTtwOnnpDX1taIRCKlSNZsNtdVIrz22mslveKjIJ/Nl/K1UX+M7ZUdtu/tsLGyRS7+FYJbISI7ux0QnG12bC4r9xf3kg3ArVcXGbrYj28tQCKSxGw37Ua2dhN6s4FkMoEgilz5wEU2l7aJ+KKkYuk9xGqyGekZ72JnzV9zO957fgaf6kPQCGSyWURBRJbYzQd7I0QCCW78xSytPW5sHht3Zx5OkIhaDe0DLTjbnGgNWtLJHN3jXbg6nKQzBW46Ze6PmXDoRPyuXTK+1NbBZKgyDWHSaBnSe5j17dUDx0IaKJO1dWk9FP165mJJYPdYi7LMkMVNMFc/mt5Kxuq+B2A2aqAqjXzHHwY/PNfVwzNaK9cLm0hlD5FL8SBOk5lE+uHTwL1AhEBczzmTnVvph9tM5wtYeix4r3t519lO3vJtcS8Q4V39bay8ucWlMx0shcKsyVkkX5KeFht2t4WZJS9nBlu4f2MNk9VA94AHWRC5+Nee4s4bd0hG0nzz/73O8sx9PvW7H6drsEob+ABWq5W+vj5mZ2dLJdK1ouVmZWwmk4mJiYmSmdDo6GjdaLlZG9piscjAwK4Bk5ITP+mEfOpTFoVCoeHJutdee63uY102nSvlav0bQULbEeLBOBt3tkuRbSxQOZP/1HsmmHt1oe5Z1Zv0DJ7vY2NxC0er7UFkq0fUCBSlItlUjqJUJJ8rsFGHuAHGrg6zPr9BJllZJKEzaHG2O7C7rbg6XGSSmd1x0zkSod0JuFwmX1q2/0IPK5P394wvaETaej04Wu3YPDakIgS2Ivg2QqUqM0EU6B7rxNnhIpHOs9JvQBo00WUxE8hk0Rt0tHVYmcOHN/2Q+SxaHT0aF0uh+vKzCxMGttIRhuUBrq/7kGpc0xOeFm6nd2qs/RDdRhtbydqTd106I75AbS+THpud4HKcTpcNR7+B6/kt5AeXyDV9N7OLe292T+ntGPNaljSJXVUG0Ga1kJ9OIBdlRgZa2BIzFAQZw3yabDqP3Wake9BNOBkjfH33fFhtRnoHPRhEgdm/XKjYhsNjwqIBQZYxW4wYLQY++JPPc+2FcxXLJZNJVldXeeqppygUCiwvL5PL5ZiYmNgzaebz+UilUqViif1QPq4sy/h8PtbW1hgeHq7pKz4/P09PT0/Dk3KKRajBYECWZRYXF/mpn/opPvCBD/DP//k/b2iMtxENpSxUQm6CkF9//XWuXbtWuou/8kff5M9e/jrBrTDx0N4vcmuvB0EU8K3Vzk0CnHluFN+mH3erC51RjygKFAtFMuksyXCSaCDOyOVB5v5qoe4YFoeZjsE2Vm7eK/1PEAUcrXYcLTZMViNmhxmKMoloinQ8TTQQJx5MVExojl4ZZGt5h2S0dqGE1WOl/6luRLQgiuSzBWLBBIGtcIl4AbR6LePXhshJMgabmXxBZmstgNVjp/1cJ6FOPeFCHqvFyM1tLzIw3OVhLRJB0Aj0XnIwFfVi1xpoE2ysROrnwgHe19fD7UCYneTePngKNIKAxa4lkq/vR3KttZvr3to3NgFwZ81EM7Ur//rzVnyh3e33tzkRuwVm8jtcdHSweDO0Z/lBm5XQTByPw4xtwMpMdJe0r5nbuDO9m5YxGXUMjrUCMst/9VDTbLfpGOttZf6NNQqFhymri091UgglkCTwbUeJhlNY7EbcNh33b+8+HQiCwI988v387Z//66XAIh6Ps7GxUWHqHggEuHv3bqkVkwKv10sul2uoI0etcbPZLIuLi+h0OkZHRyvmVubm5hgaGtozUVcPN27c4Omnn66Iqj//+c/zta99jR//8R/nV37lVxoa522CSsiNQJKkhvXF169f58KFC6WooVgs8vu/+CX+9Pe+XnN5m8dKW18LZpuJolREEAWkvEQmlSUZTRHxxcilc3j6XEjZYk01goIzz41x58ZdCrlCiWztHhtmqxGNfrdfm8lqxLcWIBaMEw3EKEqVH5fVaaF9oLWCuMuhN+kZONeL1qDdfSwVdosPEpEUwe0I2VS2NE7f2R7m37xbWtfd6aS1rwWdSU8ylmH7XoBsOkf3WCcdwx3kAP2gm4xDx/Sql+5eF7N+H1JRptttIZjPkcw+nNA690w7O8kU96L1z4lJo+WCsY25+z6M7bp9c8QAl7s7uB6un7Y452rjdqB26gbgsqOTmfW9aROAZzxdzNyuTLVM9LUQbcmxs5okm6u86QtAX8RAJLx7gzh3ppO5QogOuxX/65U38J4OB5aMzOrawxuTTqdh1GrCpNey6Y0Rjuwe+9nhFha/uwSAzWWitduNyWJAlArEfDESsTSJaIoL7x7j577wYxgtBqLRKF6vl/Hx8Yrt5vN5FhcXEUWxpALa3Nw9f41odSORCD6fj7GxsYr/y7LMzs4O6+vrFdWD09PTnDlz5kAPCwVvvfUWV69erXhi/e3f/m3Onz/PtWvXHiu9eARQJ/UOG0pxiHLBiKLIJ/7ZT9E92sGr/+VNCg/INhFOEvFFiQcTxIMJdAYtI5cGmX/1Ts1xg+thXO0OesY62Vz2lsjWZDWi0+9+RPlcgbErQ8RCcbZXfER2ojUJ/Oy7x9lY2tpDxvDAJCid48pfv0AmlUMQBAq5AsnYbsQcC8RZurGKVq9l4pkRbr26t/OGqNVg89goFmWeft9ZRL2W5dlNwuEk4chuFNc92sHoMyNEoxnQa8m7rYguE/5clsVlPwMDbmb9fqSiTKfLQjCXK6kLAFxmE7GlDLru+vnEMaubbKjAzZ3daHLM7OZ7++SIgT2kWI070SAmjZa0VOcGvc+3Jc5e57iF9QCaDYF3D/UyHfQRzD2MzmWgddBRIuRb89u4bCYcFh2GITcbdx9G1RveKOf72zjb5iAqy2z6Y+TzEiGtQHpui3w2z+BIGya7Ca8/zsi7hlh+8y7xcJr4gxuQIAqMn+vk3tzuZ3TjL+b4zI/+Kz718t9BZxVq5oUVGdvOzg6Tk5OMjo5SLBYb9i7Zz3qzo6MDl8tVyi2PjIxQKBSaniCvTh/GYjFcLtdxI+OGofn1X//1ZpZvauGTAMXYphH4/X4cDgcGQ6U5wtjVYYwWI//j336D4GaYVCxdoX4oSkWCm2HOf/8E+WyBtl4PHUPtdA620drnQW/VYjSbyCSzu6S8tE3Uv1sN51sP4FsPlORtepMeu9taoYSA3Ryvp9uFRhQZutiPyW2ktacFV7sTvUmPlJdIxzPEgnG2V3bwdLpYmV5j516AWCBeIUMrSkWigRjnv/8Mrg4XnUPtuLvcCDoN2VSeeDhFcCuC956f7ZUd+iY66Z3oonOsi5yoJRRJ4+j1YGl3YGyzkTNqSYgSc74Aw8OtJTLubXUQymUqyLjNZkGLyFYojiErUrDJFXI1EYFnHd3cWQsRL0sfSAWZhCa/7yNcOJPBYtSSLdYmZkmWOeNqw5eqnfpISXkK6drXSiSbwZLXUqhSvcgyuExG0vMJLnZ34JfSFB48lco6yO88PO+ZXIGgN8FQhxtjUSCafnh8/lgSmyziXw7Q3WLC0+bgvjfK6IVuQvdCRENJAttRMtE0eqOO0bOdaMQCBqOBVDILMgR8cc49O4x/LYBclAn7Ynz3q5MMPNWFxW2s6XMhCAJWqxWPx8PKygqJRAK73d5QNVwikaBQKNR1nNNqtbS1tVEoFFhcXKRQKNDb29uwJnpra2tPpP7Vr36Vd7/73fT09DQ0xiuvvMKHP/xh/sW/+BekUine8573VLz/ne98h4985CN88pOf5OzZsxU64y9+8Yt89KMf5Xd/93dxOBw8/fTT+23qs43sz6lPWRSLxYaN52/fvk1nZ2fdC2z+e0v8m0/9MRqdiE6/O5OczxXIJDIP0ghxJp4ZYfHNZaRC7S+2KAqcfX6cue8+zBlrtCKuNidWtwWj1YjBqENn0hHzJ0jF08QCMWLByhy2o92G0WRg5179/PXA+V40Oi06vRadQU9RkkjFM0T9McIPom+Lw0z/U33Mv/FQPufqctLe34bGoCMciOO9F0CWZTpH2mnpbcHvjdE60kFMKpLQg63XzuTqNufOdnJze4eiLNPT6iCcyxArI51up41cTiJQVvl27nwHbyR287ounZE+7Cxs1z6mscEWZmO1UwoKLnV3cKMqbWETddhEAxpBZNDmYjkcJFnMkyjmKVZd8uOGFlZ8tXPaV+wd3L6zd+LQpNdh3MyTzxdx2U20jbp4K+ZFAi6IbtZWKicsRVGgL6ujtdXGeiaF/8H5GO5y43v14aRqZ48LR7sNKZlh5UblZKvJrMdUzBK+H0Gn1+LpdGB1mtEZdBiNWlLhBJJUpCjJSFKB53/kAh/5ex/c99zJssz09DTpdJpz584dqGbY3t4mn883lJTVBA8AACAASURBVG/OZrO8/vrrdHR07GnrVA9vvfUW165dq/jfz/zMz/DZz36Wc+fO1VnrISRJYmxsrMJ688tf/nIF6d67d49YLMYXvvAFXnzxxZIXcigU4urVq1y/fh1BELhy5Qo3btzYz+5UTVkcNg6q1jvz3Bi/+MW/z2d+6J/iXa1NDLdfW2L46QG2Vryk4xk0WhGz04Snw43RYkCr3+3zd/mvXyCwESTq300lBLZCBLYePsaKGpEzz42ycb32JFR0J47QLvDU958hl86jN+h2S5gzeZLRFCFvhHtzmxgtBgbP91XcAMqhM+jIZ3Jc+l/OkStKrN/xEwmniDyQt7X0ujn3fROEwyl8W1Fcowbydgs5h4HNnQgtA24mV7c5f76b6/d393Www4UvlSJWFuEOtjgJx9NEU5WTZrfmthm56EYrCcT8GRaS9W8whvz+ciyLRoszZ+D7hF7yqSLhSJpwIk0mXyDB7nbXLJCKZhFkcGl0eOxmHDYjuWIaU6sFo1HPXTlcUlGUo1jHVS6dyzMx1sadW17CsTThG2kGHAYcQw4Eixaq6mqKRRnXqJuFb99DqxW5dKaDrXyGla0QF650s3pj94ayvRFmeyOMxWrgzJl2EASCoRQ+b4x0KgdWPZ4eN8GNEN61IKw9JP6xp3tZubGK9GAydvXmOrHNFB//1R9Go6l9HpVoua2tjTt37uB2u+nv79+363WjKQiDwYDJZMJms5XSI/t5Oddr3xSPxxv26Hgc680///M/54UXXig9Vbzwwgu88sorfOxjH2to2/WgEnITaMTPonu0ky986zN87m/+DstTqzjb7NjdNgxWA7oHZFvIFugd7yaTzrIxv0k8kCQe2PuYPHJpkFwmV7O0W6MV8a0HuPLBi6RjaUSNSLEok01lSUaShLwRIjsxor44594zwa06DmuZZJb51+9w8b1niYUSWJwWBI2GdCKDfzNMNJQgGnk4w9893k7/2BAas4mAL8H2epDM3QD9T/eT0BtICALFdgv+bBZtl5nNYJSnL/bw5vouiYx2eViLxUiXpSkGXTZ84SSpXI0nFVlgOGXjuzubFA5ILc1vBXC2GYjkH5J6l97KoMZBMpTl3k6EmdUtNFqBVK52njicTDPS7uauN0RBKrITTrATfvD0sZGkx2On32ekq9sBdpGVQpSdB/add6IhtBqBQo38faGq1iIUzRKa8tHT4eRiVyuzW37Kj+7Wpp9Wj5lYMMXS7BaiKHBhrA2t1YCoEynmHy6dTGRJtFjZfOsuslTE7jTT3u8hk8/gdLeh14n4NyrL5Jdu3mfg4gBb8xtkErt57D/9N/8f95e8/MLLfweLo7bSQZIkLBZLqfR6amqKiYkJLJa9/QlreU3sB0EQ6Orqwu12s7CwgN/vr+tMVy8/3QwhP471Zq11lQnPx8GpJ+Sj8ER2tjn4za//E77wd/4Vr3/tBqHtvVVcu8vZ6RrrZGOhMsoVNSLONjuFXIEzz44iFYpIeYlcNk8q9jBF4V8P4l8PVhSIVEOWZeb+ap6Ry4OEdqJY7GYsTjM6vRapUCQdTxPYCjPznXlaetyIOi2rtx5eWIIo0DncjqvdSTqdZXs1wNa9CHqjjjPPjdLW7aQoiAgCDAy3kJIk3P8/e+8d51h93vu/zznqfTSa3vvObF+W5lAch9jXTgzEGH6mucTEccOO7WvDNRcbF0xCfB2CSzBxwZVibOw45hKDfy4JhgDbZnd6731GbdR1zv1DI600I2mkXc3usszn9RIDmnO+5yuh+eg5n+d5Po9Rx8DQPEooSl1TMX3PjlKiV7PrYDWLmgiBJIloR2kRQ3POtD4SBrWaFqudlw5P0LGvjM657HXEEVlmt7GMo84ZdmsdhFaiDA+v0MlJCSQqw+6qMjonMq9lyWD6DjC55KZWb6K3/+T5e8qt2MqNjAtebLU6+kY2Vmr0zS1h1avx+1O/dCZnnZTUlNEU1mKusXJ8YYFwVCEUjlK+sxz3H0aBWNQ81Bu7ZmOdBRNqljxBZuZizSVjo0vsvKKN3t/24HH68KwNR51kgfJaO1qViFGvwmDRo9VrUK9V0rRe2ETAu0o0HEGr1RJaDfDVD3+PW+6+lurWig2vIx71iqJIfX09xcXFCSmvqqpqU3vMTEgOOnQ6HXv37mV6eppDhw7R2tqKzWZLOT6TEZHP58u5bO5cxGuekPNBPhacOr2GTz/6Ub758R/wq28+m3heEAVspbFmDJ1Ji1avRWtVo5JV+FcDuJe8uBfcLM84WZ5xMto1gdVhxuKwMNGb/ht4+NgYpbUOrGVWlKiM0WpAFhREUUBEYtXlY2Z4Hr1Zj4KS0k6djMXJZaIRmQv+bCcRGbyeALOji8yMrzAzHtNNLQ4jzRc0sby0SufLY5iLjNTsrqGvcwqL3Yi5wkZv1yhlVVZCNh0DwzFyam0p5dAr48iKwu42BzOGELV2C0eGZ9ImJmqLLLCq0D0aIyHPtA9JJaRt+oijXG/E6lZhnpDoDWeWNpRNcrhznvTNIXGUlpuZS2rymZx1MTkb09xb2sw4zOWMRr1M+U6uE4pGqWstp/fYRolpLuDHNe1idtpFeZGBipYS+t0uumYWKbLp8DpTa6fHplcpUWBpcoXSMgsltXZCwMSUk4YDdYwcHks5fnZ8merGMhYGpnAubLQZtTiMqEVYHD/pntf1/AAf/uo7ufgvUhNV60cymc1mDhw4wPDwcKJRI24mn+v4JtjYARh3potHyyaTicbGxgTBZyP7XK95OtabVVVV/O53v0s59/Wvf31O52bDaz6pF7fEzAXT09MEg8G8Xaz+77/+hl89/ByuRQ+uBfcG/wlBFOi4tDVtmVkcWqOG5n31rDr96ExrWrOsEAqGWXX6YuvKCtWtFQwcHs24jlqrovXCJoaPjeGocWCxmxBVEv7VIEtTK7jWiEZv1tG0v4Hh7mksJRZK6hw4V1aZHllCUWJ1x2Ut5Qz1zxEOR9lxYT0DI4sE/GFa91UzOL1MIBCOvbbdVXQmdRIKAuzdVcW4LsjI4sYE2f7KcgZHFgmEU7/82vaXp3hZxFFrslAuG+gdmicqy5SWG5jyZp4ColFJWWULgGqLmeml9B7JzWV2JgbSdw6a9BqE2SCRiExtrR19uZ4+v5PlUJDmUjuzR9N/Uey02RhNMiJSqUQa28ow2nQcf3F0gwzS2OBg4vmNxvulVTbKHHqioShOlxtB0OBe8eFx+altLmW2d5Lg6sbmFp1RS0VNEcNHT5K5IAhc+5E3cuP/emuC5Do7O2lra9tQaQQxO8qBgYHE6KWBgQFKS0s3RLfpEAqF6OnpYe/evRt+pygKU1NTzMzMJHyc09U4K4rCFVdcwZEjR3K6841EIrS2tvKb3/yGqqoqLrzwQn784x+nTQi++93v5i//8i9TknoXXHABhw8fBuDAgQMcOnQo20SW7caQXBEMZp+7Fsf8/Dwul4uWlpa8r/GfT77IV277JuFg+ooOc7GJloONeJe8aHQxD+FIKILfG8Cz7MU570aRFXZe1pa1a08UBTr+ZAcn/qsPSS3hqLZjsZvQGrSgKPhXg6zMuSitKWZqZJFV50biMhebqGwuR1JLOBe92CuLWFryMzftpKLFgbnUzmDvLNGoTH1HJX5FYXrKic6gpqajgq7+WIOE2azDUWlhMKlT0WjQUFlqZWB0Ab1RjdRiYMoViyQ1ksjukjI6B9NbapaVmBhXryai5GqjmUrZQM/QPHLS57i5ykpPloYSgD115Ryb2EjucVxQX8mRgQxdewKUC3qW07x3ALtLHQz2nCRXSRJpaHKgFKlYXlxlbn4j0e+oLWHihckNz2s0KspEAWuxiaAoMDrjJLxWobOzvpj+P2682ymvKWJleDaFeEVJxGjRUVZbTMiziiIriGvJu1A4hIiIKInYSy3MDM4QDkYIrAbxewN0vK6Vjz18G9YSC0eOHGHXrl0Z/SgikQgDAwMJu9na2tqcWqF9Ph/Dw8Ps2rUr4zF+v5/e3l7MZjNWqxW3251iBi/LMldeeWVeQ0effvpp/u7v/i5hvXnXXXdltN7U6XSUl5fT1dUFwHe+8x2+9KUvAXDXXXfxnve8J9ultgk5V+RKyKdilZmMruf7ePS+p4iEIkQjMoHVAN6VWAIuupZwaT3YyGjXJCF/5qi9/dIWBg6NIEdlisqsWIrN6ExaJJWEHJHxewOo9BITvbMEVzOvYyu1UFJbgt8XxlZiQRFgacbJ/ERqq29xVREVzeV4vQFEvRpF0hBWqVBb9AwOxqpJGjvKWfAFWFprH66tteMOh1lKqpeuKLGgALMLJ011LDYdrgoBk0aDPqJiPI1rWjJa95cxseKmRWOju3+OaJpEn14jEdArhDI44QF0VJfSNZ25RK7OYWMig/YPcEFNBSe60hP2rvoyhg6l/92+HZVE3QGWZT+T/nCixloQoEE0MDe+8Y6hvbWMwT/EmorUGglHtRlrmZ2gorAyNI9zbiPBN7WXM/TiAOkyuTWtZSwMz6Z18ANov7iRvhcHEp9JiN0Rfexbf4Nf49nQrpwOCwsL9PT00NTUlJMMkK7NOh3i0fL4+HjCejMOv9/P1VdfzYsvvrjp9c4Ctgk5V4RC6SsZ1sPpdDI1NZVTjWMmTPZP89lr/pG50cwtujVtlbiXPYQCYWylVoy2NVMhUYh1A3oDqLUq5seXcC1kdilz1NiR1Crm18qdbCUWiqvs6Ew6UMC15GF+fJGm/Q1Mjy7hSSLP0joHpXUleNx+JgbmE+9PWWMxZruN0YF5KlvKsFTaEC06XumdIrLWHr5rVxUnhmZTmiQ6mssZmVzCH9h4h9DeVkyf35fiipYOOpXEwdoKDo/P4s8iNwC0NTk4MZdZR1ZJIjqdGo8/85dxNtmisayIqYGNHhUAapWExQu+NF+GZpMWZcpLOBRBr9dQ01pKxCgxuOyisdLO8PMbp6AIokCNQcPM4MbPTH1rKYH5ZawOM5JGTURW8PnCrHoCmKwqJg5vjLoBKhscuOeWcS+m18ub99XiXnShUklodRpU2li9elmHnfd/6d05Jevi0oFOp6O5uTlrbXGmNutMGB0dZWZmhtLSUhoaGhBFkbm5OT7wgQ/w7LPPbr7Amcc2IeeKXAnZ6/UyPDzMnj17Tut6znkX997wAIszy5htJiJEMJoMiIJI0B9i1elDIZaUmx7MXA1QXFmE1qBlevDkrbfBosdeWYTWoAERtFoderOevleGM0ZEAKW1xVS1VxORBeamnSxOn4wOVRoVzfvr8K6GmByKkZyklmg7WM/wwDz+1RDGIj0NB+sI6CWOJunFKpVIR0s5nT0bI0atRkVjuZX+gQXaLq3llYn0UoWAwr7KchbGnSw7fTTtLONEhuaQOBorbPR5skfb++orODKeeeLIgboKjmaQTwBqNaaU5F7KubXl9BxJn4TdXV9C/8upxKtSidQ0lWDRqZlf9jE970qZWl1fV8zUSyNp/wI79lTS/YeetNfaeVEDk90TaPUaRJWEpBIR16a8qDUq1JLA/NQiAiKRYISQP4R/NYgiK1hLzFiKTYx3pZL6nte383cP34atNHt52eHDh9m1axdLS0tMTEykrZaIY2lpCafTmfM8uvHxcdRqNZFIJOHDMT8/zxe/+EV++tOf5rTGGcY2IeeKXAnZ7/fT09PDgQMHTvuaAV+Q+9/5NV761ZGMx+jNOqqayxk8Mpp4TqNTU1Ruw2w3odFrUKkkNHoNc2OLrMy5NrRUx7Hr8h30Hx6JjV2SRMobSigqtYIosjLnSnTbldeXYCkvYqh7hurWcswlFiaGFvCsmdcIkkDbgXoWFr0szroTz7UfqGNwIJbga35dPX0LTmwWPaIgMjm7kRjrKoqI+MPMrpVtCaJA8b4SRtZ1wTU5bGhWFcaSZJSG2mK6vdnJVhDAUWli2rUxAtSIIuUGI3U2KyF/GCkqQERBjsjIUTlWhSGAVqtCCURRRAVf0I/BaiIkKniiYRaDARrL7Bw/np5068pszHenT/xVV9hY6ExP9O0dFfT/5wBmm4Hy+mIkoxZPMMzM0ipNFVYGXhzZcI4oCdRUmBg7kT4a3rG/lu4MjT9muxGdQWJ+OP1eJZVI24WNdP1XasLZVmrhIw+9l31vyHy3+Morr3DgwAFEUUzRfxsbGzdUQuRj6wkwMjKCyWSipKQEn89Hb28vzzzzDNPT03zve9/LaY0zjG1CzhW5jHGCGHEfO3ZsQ7vmqSIalXn4E9/nV998LvGcxWHCWmzBYNGjXuuu0xl1zI3O41rY2CINsWz4zstiibz1sDjMOKrsGCwGVGqJiAKDR8cSPscp64gCdR3VmOwmQsEIikbDUF9MZ9Xo1dTvrGJ2xolr+WSkXddaRlSEidGllHX2XNTAvFphcN1cPkkU2N1UTnfPDNF1Gm95jY0R0U8kKmM36Gg0WujpnUnb0FK9o4SB+fSSQRx72yo5Mj1NvcVKqahH8UdxLq4yP+9JJAHLSszMpSkFi6OhvIjxsfRkVVpqRhdWMBUZkAwq/KLCYiDAjMeLDLSYrUyOpt9jtUHNwthGuUkUBSpNOmbW1TILokBZVREWk0goGEZrMBD0R/B4A7icfvRGLZLfn9ZwShAE2vZV053m8wGg0kjUt1cy+MowBrMevUWH3qhDY9Cg1sRqjtVaFSF/iIWZRYiAe9FLyB/iLz/459xyz9sTJljJeOmll7jooosS/60oCpOTk8zNzSUmfMQxMzOT8LLIBQMDAxQXFyeqGmRZ5mMf+xjPPPMMv/rVr9i/f39O65xBbLdOFxoqlSrnOuRcIEkiH3jg3ehLtPzukRdihLvoTavr7bpsR0YTer1Zh3PexcH/sYdQIEIkFMXjjPkUe1Z8eFZOVgNo9RqaL2ike60Wuay+BEeVnUhUZmponrH+OeCkTLLz0mb0Dhu9/fP0dZ2M6hwVVuwVVvq6U/dUUV2ESqPm2EujSGqJXa+r48RwbL2acitSVOD4ifRR5eyEk/2X1iJEFYb65+kOZJYLDOHMn+8irZo6kwXNbIjKWYmlwSUy2duXlViyErLJpoex9L+bn/fQWlNMf2fq63FoVZRW2igzGnBUC7hCEaZXvASTkmQRfXoNVpYVtKVmWEfIiqwwO7GMrrWE0aMbI+GwT4u9thiLQQIFRJVAMBTCZDKiANFgmAN/1oF7PjaRJhqRiYQjREIRvK5VpvpmaL+0he7n+/CupNeV7ZU2RDUsjp/8kvnl13/NiT/08rHv/O2GRpL1pWeCIFBTU4PdbqenpweHw0FdXR2CIOQ9LWT9QFRRFLnqqqvQaDQ88sgj7Nu3r2ADg88ktiNkco+QFUXhhRde4HWvyzw08lQwNDREz+8G+c7/fCxt5KrRa7CXW6lpq8K/GgBO2mauzLpSOvQqm8qIRGQWJjdGZgarnvL6UowWHZJaxeLiKtPDGxNFJpuB2vYqfKtBxnpjpFjXXklEq8XtC1LVWEZf93RKhGswamhoLaevazrFNB0Bmq5sQhRFunumN0TFydjRUIp/2Y9HBwuuzGbzcZQ2FzG2HIsyy81G6gwmPHOrTCTJG+0dlXQNZi5vsxcZWHH60kbhAAa9BsUfJhRM36G5o6WMwSPppQKVWsKCgmtpFVEUKKmwYi21IBnULHjcWLRGhrqnU7TiONrqixk8lP6boL7ZxmiayS0ADTsrGT06mvCoWI+OS5ro+kPmssnGvbXMDs+lLYcEEFUiO1/XyuLUIkaLAbU2lmwGhT+57mL+x3v/NHFsOvOfOGRZZnR0FKfTyY4dO1hYWECn01FWVpZxb8k4ceIEDQ0NKS3bP/7xj3G5XHzqU5/KaY0zjO0IOVfk+k26Vd+4kiRx4M27aWxv4NH7niIcCCfapF0LbjzLXmZHFpgdWaCqtQKfO5BwY1uP6aE5bKUW2i5qxOfzYy2yEgqEYoNTZ5yMHD+ZTDLZDLTtq6Xv6DiO6iLK6hwEfGHG+mboOTSasq6iKBgkELQwPb6UIFZJEmnbXcXE2DJdxzYSU0trOc4Tc1haHRnJuLRIT5FOz9DxWLTd0l7OAjkQskpHabkO/4Kfse4lutlYMuZP0wSRjOUVH61NpfQPpS+B8/lDdDSV0tedntQHhhcodphYTnNXEwlHqdpVieuPQ8iywtyUk7mpk9q3oQn0Lh+OShumIgMqrYYI4AtGCMgKWoMmxRY1jskxN1Wt5Uz1b9zTSNc0LQebGPjv9ANwu18cov2yNvr/ezClrE1SS5iKDARWAzTsqQUUlKgc814JRQmsBhJDFY7/vpuGPbUsTi7jnD8pu3Q938/hX3fywa+9B1tJdic4URRpbGzE7XbT1dWFRqOhsrIy6znJWB8hQ6x07tU8Tw+2I2Qg/7l6hY6Qx8fHE7dzU4Oz3HPN/cwMZ66RtZZYsJVZCayGMNtNsYoKBYK+IM55N8szKygK1O2vYuLEbNroz1ZqoayhFEklIUgikxMreFZSqzCMFj117ZW4V3xMJkXSBrOO2n11KDotCwseFuc2aqHllVZMRh2DPbEIW1KJlF9Yw1BSk4jdYqDcomewb27DHuv3VtI7tbGSQkChpbIYfVRkdGAOU5k5Y6VDHNX1xYxPZx4DlY2QAWoqbUyPZNar97RX0v1y+mhWr1ej9odZzVDh0tZWSv8ro2l/13GgjsnuCUxFBnSGWHdmVJFRFBmTxUTYF0CORFFkUFBif51rMYNWp8I5v4zRYEgEEgoKclRGjsioNSp87liHp2fFS8iXemem1qpoOVBP9x/7M75uU5GRisZSBg6NpDxX3VrB2z/1VqLWQE75lmg0yqFDhxBFkd27d6ftAlyPw4cPs2fPnhRS/vKXv8yOHTtydlx75pln+OhHP0o0GuW2227jzjvvTPl9MBjkne98J4cOHaK4uJjHH3+c+vp6RkdHaW9vT9RAX3LJJTz00EObXW47Qn61QJKkhCdzVXM5X/795/jSOx5gbmwh1vRh1CJKItFIFL83gGvezdzIPPW7aunN4EsBMHp4kuYDDbiWvFgdFvQWPZFwNDaEddaFcyn1D6l1TzVjgwvUd1ShKAIjPdN0r7ttVmlE6tsrmR9eoLjShnfdra2tyEBlVRG9xyeZTWr3jUZkVrrmKK234fOFaK4sYqB7loHp9HXUvlkvakkgvLaG1ailyWFjYdzJ+LGT2nKT1bApIZv12R3HBocXKHWYmM9Qkzsx7aSi3Mj8bPqofWhsEb1RjX91o9zk94dp3lVJd5qOOoDFFT8avZqQf+O53YfHaGwpYSipyiYZ1S1lzA7MEE4jcwHUtJfR9/JwRvmipMaOWqPeQMYA4WCE7hcGab2omYneSfzuAAaLDp1FS1FJERqdGkEUkKMKe/+0g4XJZRYnl/CurNL734N88bp/4sDVu9jzzT2xLtEskCQJs9mM2Wzm2LFj1NXVbSpdpNOc84mQo9EoH/rQh1K8kK+++uoU681vf/vbFBUVMTg4yGOPPcYdd9zB448/DkBTU1NeHYG5YpuQyV+KUBSloPKFJEkEAicNZKwOM1/49zv4ynsf4r9+9lLG83r/e4Bdl7cnqisMFj2OajsmmxFBFHAuOVmZcyIIAqFQmOE0rbkAZXUOSqqLCfhDNLSUMj44j8+beqtfWmPHUWFjuGeK7rWIbnHGSXldMSG7gQgCVVU2Brpm6F5Ir28qEZlmvZ4BZ5CuNImpZMzPudl9QQ2uYAgzEoM9s3SPbiTv/p4ZSsrNLCxnljgGBuaw2w0ZW51lRaGsxJKWkCVRQBQEtHoVGpVIVI5NmEnWfVd9IfZ0ZI6S+wfmsTpMuNKsvzTvYdcFG8vK4pif91JUZmElzV3I5MAcjbtqGT02miI/xDHRM0fDrhpm+qfxezdKNwsTy+iMWirbSwm5whhserQGLWq1lEi0BX0hSqsdiCqBkc4JfO4Ay5Mb5bLSOgelNcVMJskoh//tBJ/ovoe/+9f30Xwgu/9LNBrFbrdTVlZGf38/i4uLtLa2ZmzRho1/t/kQci5eyL/4xS+IT1R6+9vfzoc//OGcymNPB9uEnCfinsi5zhXLBaIobkgqanQa7vjh7ZT978f56Vf+PfG8qchIUZktYaEZicjsfX0HU4OzLE2vMNGbvhLDveSh4+Jmel4eoby+BHu5LaZrji0yP7nC/OTJW3p7hY2S5lKWFjzUtJbjXw0x2jvD/FSa2l9FodKqwxWS6TqSnogNRi1NzSWM9M5y5D8H2LG/FmcGcgTQaCRa6xz4x52sBsJMZWloiURkKoqyE3IkIlNTamXZ6UMSBUotBqx6DXpJhagoyKEo0SkPe4wmXMteAv4QoWCEcDCCvGYLujC8QnmJOfEeqNQSao0KjVaFRqcmMLzIjpJYgknSqBClmDeEIgrIChhNWlamnYTDUYKhKB6vD1mGYCBC94lJalrLmUijCXtdfqoaHXicPiLBjZHu8IlJWi5oZPCVIeSIjEanRm/SotJIqDQSggBtl7QQCYSRo1EUWSESjhD0hfB7AnhWvEz3zNPxJy30vpBed4aYxrzj0mZ6X9hoaATgWfZiL7ex76pdBFeDKCiselYRFYl/uOXr/Pm7r+C6T/xlRvP7eMQbn+M3Pz/PkSNHaGpqori4OOP/25Q95EHIuXghJx+jUqmwWq0sLcXqdUZGRti/fz8Wi4UvfvGLXH755TlddzNsE3KeiJe+FZKQMxnfC4LAe+59B/U7q3n8H3/J0tQKXqcfr3MjQVW3VVBUZk1J9okqkfL6UiwOM5JKwuf0036wkcGuydgEiTSwlZgpbyghFIhQ31zKiTSZflESaNpZjSzLDJ2YYnZ8Gb1RS31bJaNjJ7XWIruRqiobQ90znHh5NPF875Fxdl3SwInBVN22rMRMmVXPaO8svWvH79hXgzMLIQP0dU9TWmlhfl2NdpFJR3mREZ0oIs+v0q7VMTWyhCviJl1KdNf+WgZn0idLFQXs5dYEhryBBAAAIABJREFUIUfCUSLhaErScOf+GroyEJYgCNTW25no3ljyp9apUYwqSq1qlKiCpJZi1qlSbPI3qz7a99XinFkhFAqjKAoiInJUJhyKMNs7RfPuGoaOjhJ0+wi6N37ZWR1mzMXGtNcH6H5+gLqOKlxLbpyzqe+BSiNhK7Wy6vLR9ieNaNVawsEooUAIn8uHc8GN3xNgyjPL1MAs9btrcM67U2qiH7v35xx57gQf/eZtlDeUbrj+egmitLQUq9VKX18fi4uLNDc3b1oWl485/emgoqIi4aVx6NAhrr32Wrq6ugqSUNwmZPKTLHKZGpIvJEnKWnb3pzddhqXEwt/f8rW0v9eZYhpdTVslDXvqWHX5cS95mBtfZHponul1CavK5jIiMixOO9GbtFQ2l6MzalmedzMzvIDzv4cTx7Ze0MDEhIuAP0R5bTFqPbgXgwx0pkbD/tUgcz1T1LdXIgsSBr2Koa5pumbTE9zwkQkqmxzMLXmpLjOilSVG+mZZWndH2Ht0gobdVYyMZ6okjjXYlFr06CQJu0GDd9GFZzGAa3qBEU4mI3ceqEstyVuHkcE5DEZNWg8KgL6uKcpqipibSJ8gHOyZzSgvKIpCMKKg0qiIrNN0Q4Ewk0PztO2vpTdDEm2CGdovaszY3OFe8tKwu4bpgRkCaSpLXIsefB4/7Ze20vPCyWto9Gp0Zi32Uhs6gxZriZnGPbV4lryJobie5VUWk8oozXYjZfWlGbXt0eMT6C06anZXMnF8GqPVgLXEghyJ8s2PfZ/Lb7iUN9z0JynnpNOEtVotu3fvZmZmhsOHDyesNwsxvikXL+T4MdXV1UQiEVwuF8XFxQiCkEg8XnDBBTQ1NdHf38/BgwdzunY2bBNynsh1akg+EEVx0zUv+PM93P/c/+Y7dz1GOBCrCvGt1SG7lzxM9s0w2TeDRqemaX992ioNQRAorSnG6jCj1qqobqmg84VBho5n1nM9S17adpbjD8n0d2Y+Tm/U0LCjAp/Hh6zW0Jfm9jsZtiID1SYdkeVVprozGy0BRFx+JFEgum6qSGWpGYfFQNgbYPqVcWxlFnqzaNNDPTOYrXo8rvQR96onGItyM9T/ylEFs92UkZCDgTB1LVVpCRlgdmKZjgsb6X4+Pen2HRln5+U76Mpgr9rz0jBNF9YxlEGrHjk+QWVzGT7nKgFfEINFi9kWa7GXVDH5IhqJsvdPO1icWGJlzonP7SfkC+JO2rMgCHS8roXhY2Nph/F6llfxLI/Q8bpWhjvHMFoMmOxG9EYdkio2Sszn8eNZ9rLjkmbGuidT/FaO/babl351mA8++G4sxeaU665HfKxTUVERPT092Gw2qqqq0kbLXq83p2nYABdeeCEDAwOMjIxQVVXFY489xo9//OOUY66++mq+973vcemll/Lkk0/yhje8AUEQWFhYwG63I0kSw8PDDAwMJLTo08V22Rv5TZ7u6emhrKwsmxF13lhdXWVgYGCzMeIALE2v8PnrvsLQsQztY2vY9/qdTI3PUlZdiiAIrLp8zI0t4veeTB6KokDHZTvoSpITtAYNta3laHQa5ieXWFjTli3FJqxVDiZHTpaiiZJAw44K1GqJke4pgmuVAiabAUO5nbnZVGLS6tU0NpUQ8AQYXWs4abuglt7+7IQM0HFhPUOTy9RVWJHCMrOjSzjXSRSNOyoYylK+BtCxv5buNPXSiT3qYlOZXVk06aaWUoa7M3cRNrWVMnQsvZ6OokAoDBnuiARRoLmjgv6Xh1FrVegMWrR6dUwTVovISpSiEgvRQBRBIKEJx/2LfW7/2tRzidnhzAZM1a0VBLw+FqcylwNWt1XEfI0RMVj1ICrIsoJaUuHzBPAsedCb9SAozAxmft/tlUWY7cYNXhu2Miu3f+Ov2X/V7qxNJCffOoXx8XHm5uZQq9Ub2qMvv/zynM3pYXMv5EAgwK233sqRI0ew2+089thjNDY28tOf/pTPfOYzqNVqRFHkc5/7HG9961s3u9y2l0WuyGdqSH9/P0VFRZSUlBTs+oFAgO7u7pxNiwKrQe5/1zc49GwnjqqYAb3GoEGRFQKrAZamnbgW3FS2l7E85U5bUhWHqcjIjotbCEZk3Itepobm0kZFEGu7LmqwY7JY0GpVTAzOpbRlJ8NeZkU26HG5/TQ2l6IWBUa6pwmmKdGq6ihlciJ96VpVlY0imx6fy4fHG2ZxPrPdKEDLnmr6ezKTpUolYi+zMp9BKwbYsbuK3jVCFVDQ6FSoJAGDQYdWo8JmNxBw+2M6ryAgrkm93XGpR1FQ4i32SuIfJ/96FBklKq+RspL0fOxf9GYtthIjM/2ZSa7twkb6Xx7KmIRTa1VUt1cwfHijnWccRWVWyhscrCw5KbLbEFUxXTroC+F1ruKadyNIIvU7q+n97/TaePxaLQeb6F438UaQBIrKrJjtJvQmHQaLnoA3SNAXxOvy4ZxzE/QFedNfv57db2vmdZfnVt8/Pz9PX18fdXV11NTUIAhC3tNCzgK2CTlX5EPIw8PDGAwGysvLC3b9UzEtUhSFhz/5Q375jezer9WtFfhWYw0jJpuR0ppiDBY9kXCEpRknCxMxbbauo5qVFX9iOGYybKUWKuqKiUZkxvumqN9TT19n5gm7oiRQ31qO2W5katLNYgYdOQ6dQY2hzMbSoheNVkVdnR2NKDAzssBKks9E865qBtN4AifDUWZhxeMnEs6sFTftqGB2cgWrVYdBr0atEhFRkCNRIsEIQV8Qk1XPeO8MPk8AJc0AVhQlNjE1AxSATXxPlE0+c/UdlYwezxBpAw17apjuT68Z6y06TEVGapor8Hn8CKKAIssE/aG1QbmehB1r3d4qJrtn05bOxbHj4mZGjo+ndA7qTFqsJVZMNgManRqdUUskHMW96MG54MKz5EVeN3qqqrWCcCjC/OgCBquekppiHFXF2JvNfOBLf531/YjD5XIxOzuLSqXC7XYn5vhdccUVW1IbXCBsE3KuyIeQx8bGkCSJ6urqgl0/Go3y8ssvc8kll+R97i++9gzfvvPRRHkWgMluwlFZRFQIY7XZCIciIAgpHVXp4KiyozLqCAajlNXYkVQSS1PLzK1LqImiwI5LW+lJuvXXGjTUtZQhCjA5OJdoGGncXcPYuDNj1A1gseto7qjC7fIz1jsb228GtF/YSE8Gy8s46ttLGBlcRm9Q4yg2YTSoEVGIBMKsrvhYWXBT3VTKQCZZAWKEm+1vYxNCjh2iwCa5gc1IuXlPTcJ+VRDAbDdhtOrRm3SoNCq0ejUoMn7PWuS5sop7yUM4qUSutqMK97J3Q/VEMqpaK2Jubmtf0IIQ6wi1FJvRmXWo1RKhcBiVVoVz2o170cOqK834L7uRsoZShg6PYikxUVZXSklN8drDHvtZ68BRZcdojU2HjkajHD16lAsuuCDrexFHsneyy+Wir68PRVG44447OHToUE5rnAVsE3I+yHWM0+TkJNFolLq6uoJd+3RNi156+jA//+p/4Fr0sDzjTDEbikNr0FK3s3rDAFSdSUtZXQkmmyHmErfiRWPUJ0yFMkEQBfa+YSeRqILP7Weif5ZIhgir/aImerpOJnU0OhU19Q60GpH5iaWEjrnz0ha6jmYhSWJt2xqLHufSSTIQRYHScgtWiw4JBZ9nlUAwyOxwFs/k+Oc+2+3taZKyAjFZIoNerCgKCAJKMLhxH4oSW0FW2P/6dgYOj7C6spryxRuHyWbAUV2UNZo2242U1DoSQ0y1Rg1FpVZ0Zh2KIGMyGZFlBb1Zz1jXJM55V9qIWVSJtF/SwsChYYor1wi22h4j2Wp7gnxXo15MZmNOZkGhUIju7u6cciiw0Ts5Eonw0Y9+lN///ve89NJLORsUnWFsE3I+yJWQZ2dn8fl8BcuqxnG6Hhn9rwzxhesfwJlhpJMgCpTWOqhuqyDkjxAORViZd7EwvrSh+0ijU9Owt57+oyf1R0GAioZSRK2CXqtnenieVaePjsva6MmiU8bP3f+nHQSDUfxuHxP96aNgQRBoOlDPYJaEmSiJ7DxYSzgUhaiMd8nLZKapKoIA2UbCrxFi1t9v9vehKCiR6Lrj13RhRYm9t4oSI+Ukkk1ZVxJRQpsklVUqCEcydoqJkkjbRY30/LEflUbCZDdgLjJjtBiQ1BKKrBD0hzAVGRk8PJLRzQ1gxyUtzI8vYHVYKKktpqQ6RrJRdZialmqadzVsOi1keHgYs9mcU67F7/czODjI7t27Nz0WYtPfZVlOuUsdGRnhfe97HwC/+93v0Ol0Oa11BrHtZZEP4omBzSBJUkE9kQuF1oNN/ONvP8Pf3/JVIqEIBouBVZ8XvdaAZ9nLwuQSc6MLzI0usOuyHfS/MpSRa0KBMPNjC+y/ckfMdc4TYGZknqmBjUTZ/V99G0hZEKCizoHVYSISCDM1NMehZ47RfkkzwxmmWsDaAMu+GUoqrCysJd1KKqzMj87Hbv1lhaii0PncCRBFhGxkG1sw++8FISMpK3EClRWQo6nkuv4hiBDe5DMhkDFSJiojqNWxRGCmPUcioJIwGjUYzDpMVgNaoxaVSkJWFEKBEO4FN20XNzHRM41z1oNzNsM8wL11RKqimGwGrGUWdDYNbXuaKalxUFJjx1FdjM640X9iYGAAh8OBrWjzWl9ZlnP2Nz5dL2SI1SA3NzfzyCOPFLRp60zj1bvzs4StaAwpFMrrS/jCv32Ke9/xz3Rlcek68V+9tF3YxEjXJHJUxlFdjK3EgkotEfAFWZhYZnl6heXpFXZfsYPhzswRsKIoDB0eYe+lrYTDMfOj2ZEFpvpnmFq3hf5DIzTsqmYkQwSsKAo+1yq+FQ+IAigw70lv+IMsowjC5hl1Wd4QJStxGUFJilbj/50uKhYElGz/zxUZ1KrspKwQ20cm+SIaBZUKJRoBxNh3ReKXa3uKRFn1BNAbNSk2qutRt6saQSNgK7ZSUV+KozomKzhqinFU27FX2BIjlJaXl1leXqa5uTnz3tewVSSbLyFHIpENEbDb7cZisbyqyRi2CTmBXCPkrWgMKSTMdhNf+OWn+D+3fZPnn3o58bzOqKW4qgizzYhKrSIcjMSMZ0YXmB2eZzaD3efxP/Sy87I2ul+KlXSJkkBZnQObwwwKOOfdzI0tcvTXnex4XQvDnZl1zGg4yvCRsRh5CcJa9BknRzlVEBPFGClnI9xoFEWSNpByikwgKzFXyhTZYB3ikXImKAqCSjopTaSDnJ6U4zoxAicllLVrKXLSF4AsQyS6doyS+VqywuKcF7Rarrh2H5ZSM+YSIwa7Hn2RBp01NiFakiTa2towGAwb5telblvO+vtkRKPRvI7dygj5dJze4jhV+02A++67j29/+9tIksSDDz7Im970pryunQnbhJwntlKyKJSLnFqr5o7vf4gHPvZNBv84jmvejXPezWSaRF1ZfQmqChvLMxsTYOZiI44qO4oss//KNuYnV5gdWWBmYI6ZgY26bc/z/aBRb5ASUr7oZDl2+y2K2UU1WY5JAVneD0VRIBxeK/VVThJ8ugiXLC3ycdLMRspyKikniDYZUTn2JZKIvjN8AUgSSqZoWhRj741GDYKAIIkgSms/U2WaP/5uhC8/90F0Oh16vR6dTodWq0UQBGRZJhqNEo1GURQlI+HlQ8j5kvdWRsina05/Ovab3d3dPPbYY3R1dTE9Pc1VV11Ff39/Xq8hE7YJOU9slWQRj9BPl5CTye/177qYqppKfvjZzGPR50YXqG2vpKSmCUklggI+j5+l6RU8S6t4lpIqNlRSjJiykWQojKJWxY7JRkqKEotus72YqBw7VTh5TkpUHUdcCshGuKKY/f1VlDUyVTbeKcX148jaXjbTi1XSxhrkeHQcJ1WNJvZTFNOSba74n1d9g58O/eOG50VRTDziI8okSdpAqFtFsvmsm69ZV7p9xCWLXHE69pu/+MUveMc73oFWq6WhoYHm5mZeeuklLr300pyvnwnbhJwnCj3oNI440Wf7EK8nCkU5SR7rfwIUFxcTvjzM333rNr5395OYbEYMFj2SJHLixaGYTBCVGe+ZjhGGSoWQbbZgJBqL7uLXiLeoQWp0Go2iaNQxmSDzi4kdJ4on5aLkKDVBvmGQpNheM0GWY8dk27ssx6oZosma8slqiJhGu1aGtgnhKmYDeHzEJskBagk0atCoUbTJP1WoJ5fXyHbruseua/okQFpiltYknXA4nCC+5M9YPjLEuRwhe73ehJyQC07HfnNqaiqlZ6C6upqpqey18blim5DXkGtkulUR8nqf5c3Idj3i+xfWEl3xP9I4lJDM0vRU5tvytdt/NOrU2lqBNQJbo584McYJOBNCYRS1GoGNXyIxKSK2HNEoCkL2L4JodC063+QYSYr9jGu2yZeOe0iIAmRpPAFQLAbw+GPnqFWx90R7kmzRqlHqymGNdLOV1oVt5oy/A9D0ZjfqzwfXNX0yY7SsVqvTShjnQqIuGo1mNaLPZe3zYZ4ebBNy3jhVSWGz6FalUrG4uJi2qH0zss0FgkaNVGQl6nRvJLb47XQ8UpXEGEHKa4m2dEQoiptUpSsQjaDE/3CS5QbWfaGJYqxiIttykSioxJOSghBP+CVFuaFwbO/Z7mCiCrLZgODxxV6Ddl1Uq02NdLPWMRcAoR2pHZ+nS9DZSDmdhCHLMhpN9hFXceQrqeV6bCGSel6vNy9CPh37zVzOPVVsE3KBkEy4pxLdtrS00NnZiaIo3H75P23JHgWVCqnIiuxdjd26r0kWcfkgGbHoNrsEoAgCCOtux5N142h0LbpVZW8zXitNSyZlBdaV0isx7VYQNl1LthgRvT4UlbRGuJp1P9Wg0cSkhnMMyQR9quSci4QRiUQSw31zlSFgayav50vI6faRb4R8OvabV199NTfddBMf//jHmZ6eZmBggIsuuiiv/WfCNiGvIWuiKk10G4lEUkrlMhFuIaLbQkKQJESzCdnlQcniL0E4lpwjEolJAYJwUuKNR7tRGQQFBXET7TkSI+V4WVcyxORSsFiJGtFo9oqHOMELgCihWI0xktVpYqSr0yBr1TGZIw+4mjafdpwvrEO5dYCmw+mSc7poORwOEwgE8Pl8+Hw+lpeXc/YQ3iqcCiGvR77TQlQqFV/72td405velLDf3LlzZ4r95nvf+15uvfVWmpubE/abADt37uSGG26go6MDlUrF17/+9YJUWMB263QCTqczMQVgs+h2cHCQSCRCW1tbSnRxLhBurlAUBdntQQkE09f8xiWLuC6bTVAQBFBJCOuj7LXqhniJmyKIoMixZN/6uuPktQThpEwiiiBJKeVfiigS2VET03fzxFaQbr44VZI+1Yj5fz95U8IaQKVSodPpEqVyGo0Go9GIKIppqzCSkYtn8akc29XVRX19PUaj8ZTXvvbaa3n00UcpLd04HuocwXbrdD74xCc+wY4dO3j/+9+fEtXGfyZH0C0tLQwNDdHd3c3OnTu5vuWOs7Ln04EgCIgWM7IooPj8ZFQn4hFyOgvKOERhrYxNRUzTTeqAi8ZkkcTZKhVKNHry/RSEFMIlXgImSbGfSe/7er11MxSSfD11J/dhHju9uCR5X/mQc/z150vMX3x77FY8nYQBJwc0pKvCOBXkO5k533K6dNhO6p1n+MY3vsE73vEO/H4/n/jEJ7JKGIIg0NzczOjoKJ2dnWdwl4WFIAhIZjOyKCF7M7QoQ4xY19/+J7cfJ0sfanVMmjh5kViibY1sBUkClSFWc5umy249tpKEk0k2H+R6Xi7EHd9vvsRcKAkDNlZhpKt6yIdkC5Gky3ZsuprlcDicuMN9NWObkNeg1Wp54okneNe73sXnP/957r77bsS1ZoJQKEQgEEh5+P1+gsEgwWCQD3/rLXzttqfP9ks4ZYhGA4oooPjXxjslPB3k1EaMeDXG+rI/SYoR7dpPxSAiSqo1Is4/2sqHhHMl4FMl39NBPlF1vsS8FaScXIURCoVSouV8O/q2kpDXH5tvRH4uY5uQ16AoCj/4wQ9obm7mscce4+c//zmSJPHVr34VrVab0p5qsVgSbaqiKDI7O8udj5n4+3c8cbZfxilD0utRJImo07UxoZYgXBEkFYhCgnDXywqng1yJOBcSzpWAg7W5DSbYDNrx7KVjuZKzq0l7RkgZcmskkSQpUR63FZ4XEPvbK0RX3zk6uikvbBPyGuIfwgsuuIBrrrmGhx9+mEgkwkUXXbTpt3d5eTmSJPGpH7+d+2968gztuPAQNBokexFKJLKm4Uog5uCodpooFBFvRsKFIt9c1s5G0J46oWCkfDrIFi1rtVrC4TDRaDShMW9V510+SLe2LMvnBRnDdpVFRsiyzKc//WnGx8f5l3/5l5w6iZaXl+nv72fv3r3csuszZ2CXr27kQsSnQ8K5EnB99eZTr9NhdHJz8/VsxLyZjJErKZ9uM0mmZB/E/g5CoRCrq6tMTk6ya9euTdeLz7xra2vL6fr5VGQsLS2xsrKSYhfqdru58cYb+cMf/pDTGmcJ21UWpwNRFLnvvvv4whe+wHve8x6+/e1vb5o0sNvttLe3c/ToUb7feQ/v3HPPmdnsqwynS8SnSsKnSry5rJeJnOP7SUfMm0XKZwpxCePJwfsJh8P4/f5EniT+0+/3Y7fbc4p+tzpCXi9ZuN1uzObsLeqvFmwTchYIgsDdd9/NV77yFW6++WZ+8IMfoNfrs55jtVrZvXs3nZ2dfPfI3bxn/xfO0G7PfWwVEReKhP+8vHfDc8/O7sjp3Ph1shFzvqR8pqSLON7e/Ck+/cQ7ErkSvV6P1WpFr9ej1WoTnX2ZnOPiyNewKB+5Ia5rJ+N8KXmDbULeFIIg8PGPfxyDwcANN9zAo48+umlnk8lkYu/evXR2dvKtVz7NbQe/dIZ2e+7idMg4XyLejITTEW8+x2Yj6frqhZykjHMVX7rhsYwShlqtRpKkhLYMpCXeszG+aTtCfg1BEATe//73o9frefvb387jjz++aZumwWBgz549HDt2jP/zmw/xiT/7+hna7bmFrYiKT4WI8yHhzRBfKxMxv9pJOVsVRrxmOe6FEa/CSMZWTwtZLx3m64V8LmObkHOEIAi8+93vxmAw8La3vY0nnngCtVqNoigJf4DkGuV4BKHVahkbG+Oen7+Te679/ll+FWcWZyoqzkTEhSThTOvnKmmcCnKRKwpp37ke2aowNBpNgpTXSxiZmjfSoVDTQvLxsTiXsU3IeeALX/gCR44cYWlpiYMHD+JwOLj//vuprq5Gp9NhtVopLy9Hp9OlfGgikQhHjx7lq//5sS1zcjvXUGgyzjcqzoeM3245nPj3J90Hcj7vtYBMpAwkGkfWSxjpothMyIe848en05C3JYvXIP7iL/6CW265herqan77299y55130tLSQnV1dvJRqVTs37+fzs5O/um3t/OxP/3qGdrx2cHZJONciTiZhNM9f6aI+XSqLLYyOk5GvhJGPkm9dEm6zY5PV2VRXl6e8xrnMrbWffs8w4EDB2hoaECtVvPGN76RBx54gBtuuIGRkZFNz5Ukib179+J0OvnHZz9wBnZ7dvBqJuN8kUmuSKcfb9bJtx5nsroiV2RyMoxLGBqNBlmWiUQiWzLqKdPxXq/3vImQXzOEfPfdd7Nnzx727dvHG9/4Rqanp097zSuuuIKHH36YG2+8kd7ezclAFEV2796N3+/nvv/7N6d9/XMNW6EZp0Oh64nXI5fouBBknCk6PtvacTZc1/RJZFnG7/ezvLzM9PQ0Q0NDdHV1ceTIEY4ePYrb7UatVmd0ZktGITRkt9t93mjIr5lOveRM7IMPPkh3dzcPPfRQQdY+duwYt956K//6r//K7t27Nz1eURT6+/uJRqPc/dbvFmQPZxvnQjXFqerGkJ9E8Vol4/X40tO3pdQs63S6BBHHk31xn+VMiA8HzXUE0ssvv8zBgwdTapdvv/12PvCBD3DxxRef3gvaWuQUcbxmIuTkspjV1dWC9r7v3buXxx9/nPe973288sormx4vCAKtra1otVo++9StBdvHqxVnw4ntSfeBlEcueHZ2xzYZJ+HTb/kWtbW1lJaWYjabE/YCcQkjTs7xGX7pcDbGN53LeM0QMsBdd91FTU0NP/rRj/j85z9f0LXb29t56qmn+MhHPsLzzz+/6fGCINDY2IjJZOKOR68v6F7ONPL1LN4qbFUJ2mZEnCsZm8eU84aM48g2IUeSJDQaTWKGXzpSLtT4pvOFkM8ryeKqq65idnZ2w/P33nsv11xzTeK/77vvPgKBAJ/73OcKvoeJiQmuvfZaPve5z3HZZZfhdrsRRTGlRjkQCBAOhwESiZBAIMA/vesXBd/PmcCZbokuZCdeJmxG7pkaP/KNiuHVS8brkW0iSdz4fr2EMTg4iN1ux26353SNdEZEb3zjG3n22WfP+mzATZDTbeB5Rci5Ynx8nLe85S2cOHGioOv++7//O48//jj9/f309/fjcDi4+eabueaaa1LmmMW1tuRbr7m5OcbGxviHG39S0D2dCZwNs6DT9ahIRq6Rdbbuu9cyEScjm3NcNBpNBCLxRpK+vj4qKipyinAVReGVV17ZQMiXX345hw4d2jJDowJh2+0tGQMDA7S0tADwi1/8gh07Cn9729HRwZ133kltbS3BYJCrr76apqamnGwIy8rKEp7Ke/fu5eaddxd8f2cT1qFgRlI2jyl568hxcsyFmE9HytisBXqriBhefWQM2RtJks3v440khWqzPt05gOcKXjOEfOedd9LX14coitTV1RWswiIZjY2NiX83m808/fTTXHPNNfj9fm6++eZNE4kOhwNJkjh69Cg/OP45bt392YLv8dUG7bgmq5tbMmEWohxuKz2Oz2ciTkYujSRxCSMf4/t0JW/xO/xtg/rzDJ/85Cf55S9/iUajoampie9+97vYbLbTXnd1dZVrr72Wt771rbz3ve/N6YPjdrv3NaBlAAAWL0lEQVTp6upi9+7dvGtv4XXuQuN8mPiRDZs1dZwrRvPnIn469I8Jr5e4r3L8EQwGURSFPXv2oNFoNo1yV1dXGR0dZefOnYnnZFnmyiuv5OjRo1v9Uk4X2xpyPvj1r3/NG97wBlQqFXfccQcA//AP/1CQtf1+P9dffz2XXXYZt99+e06k7PV6OX78OB0dHfz1gS8WZB9bhUIPJc1FvthKcs6lqy6XlufXMhEn4389/v+l1CvHH1qtFkVREj7LyUNV0yHdJBKfz8e1117LCy+8cCZeyulgm5BPFU899RRPPvkkP/rRjwq2ZigU4uabb6a9vZ077rgjJ1L2+/0cO3aMtra2c95T+WyQcjrkQtT5tjHHUUgShvOfiNcjlyoMIOO4tOXlZZaXl1PGN83OzvKhD32IX//614XfcGGx3RhyqvjOd77Dm9/85oKuqdFoePTRRxkZGeGzn/1sTm2ler2e/fv309/fz9f+6+MF3U+hkQ+55EJa8ZrdfM13tOOaTR+5IPn6m+3DOhRMPHKBpnfyNUfGkN0LQ61WJ4g4UyPJ+T4tBF5jEXIudcr33nsvr7zyCj/72c+2JFEQjUb50Ic+hCAI3H///UiShKIoBIPBtLPMwuEwiqIQCASwWCx86YbHCr6nQuFUGkRyiZbToVDdfafqtpav+c9rkYAzYbOhqnFCXm9+PzMzQyQSoaamJvHc4cOHeeSRR/jud895C4JtySJfPPLII3zzm9/kN7/5DQaDoeDrR6NRfvjDHzIyMsJPfvITQqEQiqLwwAMPUFRUtMEXQK/XJ+qVI5EIx44do6ysjI9e+c8F31uhcDpde6dKzmcCp+q+tk3EmZGrhBGvWZ6YmECSJCorKxPH/u53v+O5557jn//53P2bWMN2HXI+eOaZZ7j//vv5/e9/vyVkDLFbM7fbzb59+7j66qt5/PHHGRkZ4fLLL8+om8WhUqnYt28fnZ2dfOX//zAff8PXtmSPp4s4AZ0KMSeT3tkk59O1vtwm4dyQbSJJ/BEOhxPlbumM77cli/MUzc3NBINBiouLAbjkkku2pFY5GYqi8Pd///e8+OKLfPe730Wn0216jizLnDhxAqPRyKfeuLX7KwQK7XNRCKIutNfwNgGfHnKVMMbGxrDb7Ym/UYAf/ehHeDwePvnJzJ4a5wi2JYtC4ic/+Qn33HMPPT09vPTSSxw8eLAg6yqKwoMPPsjTTz/Nj370o5yic0VR6OnpQRRF7vqLbxdkH1uNc8WAqBDYJuDCIh0hxz2X47kUr9fL4uIiO3bswGq1JsrjHnroISwWC3/7t397predL7Yli0Ji165d/OxnPyv4/3hBEPjIRz6CwWDg+uuv59FHH930FkwQBNrb2xkcHOTz//ZuPnP1IwXd01YgmcRebeS8TcCnh3SEG4lE6OnpIRgMMjExQSgUSjSMRKNRBEFI1CvrdDocDgfV1dWJcVHxmmWPx5OS5Hu1Y5uQc0R7e/uWrS0IAn/zN3+DXq/nuuuu44knnqCoqGjTc5qbmxkdHeUzP7uFz7/th1u2v0JjPcGdKwS9TbynjvWkG5/G7vf7mZ2dTenQixsM6XQ6RFFkZGSE2tpa6urq0Ov1WYeexs3vo9EoiqKcdxryNiGfQ7jlllvQ6/W87W1v44knnqCkJLuvgiAINDQ0MD4+zl0/uZF7r3/0DO20sMhGhIUk623CPXV865VPbwgSkluix8bGUlqiIVZ7n9ydZ7fbUyqH4lhdXeXEiRNIkrSphWbc/D4+VNXlcmE0Ggv/gs8Stgk5Cbn6KW8lrrvuuhRSrqio2HCMLMspdctx96wPf+stfO22p8/IPs8Utkn0zCCdrBCNRgkEArhcLrq6utDpdKhUqoQHhUqlSinRtFgsiZbofGr4jUYjBw8epK+vj87OTurq6hI+MrIss7S0xMjICGNjY4yOjjI2NsbY2BgLCwvMz89z8803F+x9ONvYJuQkPPfcc2d7C0DMcNvlcvHmN7+ZG2+8EUVReOtb35q43RMEIcVf2Ww2U1JSgtfr5Y5Hjezbt48b2+862y9jG+cQMiXO4l/sU1NTiQg3EAgkzOTjn7G6ujqWlpaQZZn9+/ej0Zxa+/l6KIqSMA0aHR3l+PHjfP/736e2thav14ssy9jtdhoaGqivr6epqYmrrrqKpqYmSktLzxvbzTi2qyzyxOtf/3q+/OUvF6zKYj1efvllPvjBD1JVVYVGo2FiYoLrr7+em266KaGvZYs+lpaWGBgYYN++feedp/I2MuMnA/9Ab28vsizT3t6e6ABNTpYlPyKRCIIgoNVqUwx/4o9MlpgzMzOMjY2xa9eunCZ0xLXk8fHxlAh3ZGSE8fFxQqEQRqORuro66uvraWhoQKVS8eCDD3Lvvffylre85Xyx1twueysknnrqKW6//XYWFhaw2Wzs27eP//iP/9jy6x46dIj3vOc9fOc736GjoyOnc5xOJ729vezZs2fbU/k8QrrEWSQSSSHahYUFvF4vWq02obemI9zNGpGywev1cuLECQKBAFdeeSWyLDM3N8fIyAijo6OMj48niNfpdKLRaKiurk4QbmNjIw0NDTQ0NGAwGNISrs/nIxQKFcQC9xzBNiGfLzhx4gQ33XQTDz30EPv27cvpHI/Hw4kTJ9i1axfv3lfYga7b2Bpk0nHTRbiBQAAgoeMmP8LhMIODg7S1teU8qy4bFEXB6XQmZIXR0VEmJyf54x//yOLiIna7ncrKyoSsECfdxsZG7Hb7+RLhni62CflM4JlnnuGjH/0o0WiU2267jTvvvHNLrtPf38/111/PAw88wMUXX5zTOaurq3R2dr4qPJVfC4gT7uzsLGNjY+zevRudTpfWvD0QCCQMdtb7CMcTZ9n002AwyPHjxykpKaG2tjYrKcbNq5LlhHjibHJykkgkgsViob6+PiW6bWxsTMyQfPjhhwv+fp1n2CbkrUY0GqW1tZVnn32W6upqLrzwQh599NGcpYV8MTo6yl/91V9x3333ccUVV+R0TtxTubW1lb+58L4t2dc2YkgX4SY7+SU/PB4PPp8PnU6HyWTaQLg6ne60h3bKskxfXx/PPfcct956Ky6XKyXKjROw3+9Hp9NRW1ubIN048dbW1m5aNREOh09LAnmNYJuQtxovvPAC99xzz/9r7+xjmrrXOP5tKWU4RsuQArYaWnkZA5WVFzFhZmYCVyEg00zYMl0w226iy5Q7Ekm3qNw1OCPEbF63f9y4ujtw250hY6zLprIle3NbBuiqmyS0tqW8bKLCpKXtOfcP7mlaAQFp6ak8n6SxjZ7fedKcfvP4/T3P83N7yXV144JXU1Pjt3taLBaUlpbilVdeQUFBwYyusdvt6OjogEqlwt9zD/kttnudqQSXa4C4PcMdGxsflj/Zxtl9990HhmHQ1dWFuLi4OXebMQyDwcFBL6HlXna7HXq9Ho888ggefvhhL0tBqVTigQceIFvB/1DrtL+xWCxePySFQoEffvjBr/eUy+Voa2tDSUkJbDYbSkpKpr0mLCwMarUaHR0dqD+zE/94/F9+jTGY8RRdrmIlNTUVQqEQAwMDE2ZWA+MnXHiK7VQNEJORmZkJvV6PkZERpKSkTGlDsCyLkZERGAwG9+YZJ7hWqxUMw2Dx4sVuHzcpKQmFhYVQqVSIiYnBjz/+iGPHjuHoUX5OCSTGIUEOQmQymdeJ1lu3bgUwniXZbDYvT5J7z80HMBqNQd3VN1fuNMhmdHQUJpPJ6/tzuVz4+eefIZFIIJVK3XXfXJY718xSKBQiLS0NRqMR1dXV2LJli1ddrtFo9CoP4zbNlEolcnJyoFQqsXTpUoSEhNwxltWrV89474EIHCTIc0Aul8NkMrk/m81myOVyv9+3r68Pn3/+OR599FHU1NTg8OHDkEgk0Gq1Xg0jEokEcXFx7g4rYNz3vnDhwj2bKU9lK3Ai29vb62Ut3N4AwWW43GehUIixsTF0dXVBLBZ7DUefDSzLgmEY9PX1TSgPMxgM7pkMp06dQlFREXJycvD444+7M97w8HCyFRYA5CHPAafTieTkZJw5cwZyuRzZ2dl4//33vY4p9wdXrlzBp59+CqVSidjYWOzfvx8FBQV44YUXZvSjZRgGer0eYWFh2Pu34Nodn0xwrVYrrl69CpVKBafT6ZXheg6y8fRvufd3GmTjicvlgl6vh1gsRnJy8qTfM8uyGBoamrTNt7+/HwKBAHFxcV5Z7vLly6FSqSCVSiEQCHD58mU0NTXhwIEDc/uiCL5Bm3rzQVtbG3bv3g2Xy4XKykpoNPPfsmyz2VBeXo6srCzs2bNnRqLMsiwuX74MgUDAq5nKUw0r9xxk4/niBtkIBAKMjo4iPj4eEonEqwHCV5klwzDo7OyEVqtFRUUF+vv73YJrsVjgdDohlUq9BJcT3fj4+HuuzZeYFSTIfKCyshKtra2QyWS4ePGi3+7jcDjwzDPPQKlUQqPRzOjHz7Isuru7Ybfbsa/0336L7Xama4C43QOfbJCNZz0uJ7hcB1lKSsq040sng+t8M5vN7gyXy3avXr3qLg+TSCT49ddfsWvXLmRmZrrLw8RiMdkKxFSQIPOBr7/+GhEREdi2bZtfBRkYt1Cee+45REZGQqvVzjgj6+npwY0bN/DPzf/xSRxTDSS/cOECQkNDIZVKvUSXYZgJPq6nvTCbzNJms7knhsXGxk74e4ZhMDAwMKE8zGAw4Nq1axCJRJDL5V7ND9z7iIgIt+B+++23GBoaQlFR0d1/UcRCggSZLxgMBhQXF/tdkIFxwXnxxRcxNjaGhoaGGTcXmEwmDA4Ozqj64k4NEJPZCp6DbEZHRxESEoKEhAQsWrTojoNs7gbOx33zzTfR29uL1NRUmEwmGAwG9PX1gWEYxMTEuDfLuHpclUqF6OhoshUIf0GCzBfmU5CBcVHeu3cvent7cezYsRlvXFmtVpjNZmRkZEzovJpskA334hogZjLIhmVZ9PT0YHh4GOnp6bMWY26CGZfZerb5mkwmOBwOd3nYpUuXEBUVhZqaGiQlJUGhUEAoFJKtEKS4XC5kZWVBLpejtbU10OHMFhJkvjDfggyMC1dtbS26urpw/PjxGc2vdblcsFgsMJlMiI+Pd3egcQPJQ0NDJ7UV7sY7NZvN6O/vx4oVK7xi48rDrFarVwME9+fIyAjEYrG7zdfTVkhISPCqDWZZFo2NjXjqqacmHB9PBB8NDQ346aefcPPmTRLk/0OCfBcEQpCBcUGqr6/HuXPncOLECQiFQjgcjgmzFW4fZAOMj/BMSkqCRCKZdpDNbGEYBteuXUNnZyc0Gg02bNiAP//8E0ajEQMDAxAKhYiLi5vg46pUKkgkEspwFyBmsxnbt2+HRqNBQ0PDPSvI1BhyjzI8PIyGhgb09PTg999/x4oVKxAZGYn6+nrI5XKEh4cjKioKS5YsmXSQzY0bN6DX67Fy5cpZizHLsrh169aEITZGoxG9vb1wOp2IiopCQkICVq9ejebmZhw8eBCPPfYYYmNjyccNUmw2G9auXQu73Q6n04ktW7b4rJ569+7dOHToEIaHh32yHl8hQfYzFRUVaG9vxx9//AGFQoEDBw5gx44dfr+vWCzGqlWrsGnTJhw5cgSnT59GY2Mj1Go1JBLJtNdLJBKkp6e7x3d6XsP5ySaTycvH5brP7HY7wsPDsWzZMneWu2nTJnd52O2nnnBdcJOdH0gED2FhYTh79iwiIiLgcDiQl5eHDRs2IDc3d07rcmWjmZmZaG9v902wPIUsiwVEc3Mz3njjDZw6dQrR0dF3/LdceVh3dzc0Gg3UarX7dOGhoSGEhoZOeQrE/fffT7bCAufWrVvIy8vDW2+9NecZGjU1NTh58iREIhFsNhtu3ryJJ554Au+9956Pop0XyEMOBkwmE7Zt2+ZurX3++efx0ksv+e1+LS0teO211/DBBx8gLCxs0npc7uRtmUwGpVKJ6OhoNDc3o6qqCuXl5XjwwQfJVghi/PnMuVwuZGZmoru7Gzt37sTrr7/uk3U52tvbcfjwYfKQCf8gEolQX18PtVqN4eFhZGZmIj8/329D7ktLSyEUCqFWq5GWlubV4rtmzRqoVCrI5fIJ5WF79uxBT08PFi9e7Je4iPnDn89cSEgIOjo6cP36dZSVlbmPESNmBmXIPKO0tBS7du1Cfn6+X+/DsizZCgQA/z1ztbW1WLRoEV5++WWfrhukzOjHRv/v5BEGgwG//PLLvMytJTEODiorKyGTyfyWZfrymRscHMT169cBjB8d9sUXX+Chhx6a87oLCRJknjAyMoLNmzfjyJEjiIyMDHQ4BE949tlnodPp/LK2r585q9WKdevWYeXKlcjOzkZ+fj6Ki4t9EOnCgSwLHuBwOFBcXIzCwkJUVVUFOhyCZ/ijsYieuXmHLItggGVZ7NixA6mpqfTDCGJ0Oh1SUlKQmJiIgwcPBjqcO0LPHH8hQQ4w33zzDU6ePImzZ88iIyMDGRkZaGtrC3RYxCxwuVzYuXMnPvvsM+j1ejQ1NUGv1wc6rCmhZ46/UNlbgMnLy8MsbSPCB3z44YfYv38/Ll26hPPnzyMrK+uu1zp//jwSExOhUqkAAOXl5WhpafFb6eJcoWeOv1CGHATYbDbk5ORg1apVSEtLw759+wIdUtCTnp6Ojz/+GGvXrp3zWhaLBUuXLnV/VigUsFgsc16XWHiQIAcB3IyAzs5OdHR0QKfT4fvvvw90WEFNamoqUlJSAh3GtFRUVGDNmjX47bffoFAocPw4f84/JHwPWRZBgEAgQEREBIDx3XGHw7Eg6oirq6vxySefQCwWY/ny5Xj33XchlUoDHdYE5HI5TCaT+7PZbIZcLvfJ2k1N05/gQtw7UIYcJLhcLmRkZEAmkyE/P39emkcCTX5+Pi5evIiuri4kJyejrq5uVtevX78e6enpE14tLS0+jTM7OxtXrlxBT08PxsbG0NzcjJKSEp/eg1gYUIYcJCzEGQEFBQXu97m5ufjoo49mdf2XX37p65AmRSQS4ejRoygsLITL5UJlZSXS0tLm5d7EvQUJcpAhlUqxbt066HQ6Xgjyq6++ipaWFgiFQshkMjQ2NmLJkiU+v88777yDrVu3+nxdX7Fx40Zs3Lgx0GEQQQ5ZFkEAn2cEVFdXo6urCx0dHSguLkZtbe2srp+JraDVaiESifD000/7LO7Tp09DoVDgu+++Q1FREQoLC322NkHcLZQhBwFWqxXbt2+Hy+UCwzB48skneTMjwHMGwl9//TXrzcbpbIXGxka0trbizJkzPt3ILCsrQ1lZmc/WIwhfQLMsiDmj0Whw4sQJSCQSnDt3DjExMT5ZV6fToaqqCl999ZXP1iSIAEEnhhC+Yf369e5TRDzRarUoLS11f66rq4PNZvPZwZaJiYmw2+3u46Zyc3Px9ttv+2Rtgphn/CLIBDElAoFgGYA2lmUDv9tIEEEIbeoRc0IgECR5fCwFcDlQsRBEsEMZMjEnBALBfwGkAGAAGAH8nWVZGuRAEHcBCTJBEARPIMuCIAiCJ5AgEwRB8AQSZIIgCJ5AgkwQBMETSJAJgiB4AgkyQRAETyBBJgiC4An/AyFGtDxl29wbAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#Example from:\n", - "#https://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from matplotlib import cm\n", - "from mpl_toolkits.mplot3d import Axes3D\n", - "\n", - "# Our 2-dimensional distribution will be over variables X and Y\n", - "N = 60\n", - "X = np.linspace(-3, 3, N)\n", - "Y = np.linspace(-3, 4, N)\n", - "X, Y = np.meshgrid(X, Y)\n", - "\n", - "# Mean vector and covariance matrix\n", - "mu = np.array([0., 1.])\n", - "Sigma = np.array([[ 1. , -0.5], [-0.5, 1.5]])\n", - "\n", - "# Pack X and Y into a single 3-dimensional array\n", - "pos = np.empty(X.shape + (2,))\n", - "pos[:, :, 0] = X\n", - "pos[:, :, 1] = Y\n", - "\n", - "def multivariate_gaussian(pos, mu, Sigma):\n", - " \"\"\"Return the multivariate Gaussian distribution on array pos.\n", - "\n", - " pos is an array constructed by packing the meshed arrays of variables\n", - " x_1, x_2, x_3, ..., x_k into its _last_ dimension.\n", - "\n", - " \"\"\"\n", - "\n", - " n = mu.shape[0]\n", - " Sigma_det = np.linalg.det(Sigma)\n", - " Sigma_inv = np.linalg.inv(Sigma)\n", - " N = np.sqrt((2*np.pi)**n * Sigma_det)\n", - " # This einsum call calculates (x-mu)T.Sigma-1.(x-mu) in a vectorized\n", - " # way across all the input variables.\n", - " fac = np.einsum('...k,kl,...l->...', pos-mu, Sigma_inv, pos-mu)\n", - "\n", - " return np.exp(-fac / 2) / N\n", - "\n", - "# The distribution on the variables X, Y packed into pos.\n", - "Z = multivariate_gaussian(pos, mu, Sigma)\n", - "\n", - "# Create a surface plot and projected filled contour plot under it.\n", - "fig = plt.figure()\n", - "ax = fig.gca(projection='3d')\n", - "ax.plot_surface(X, Y, Z, rstride=3, cstride=3, linewidth=1, antialiased=True,\n", - " cmap=cm.viridis)\n", - "\n", - "cset = ax.contourf(X, Y, Z, zdir='z', offset=-0.15, cmap=cm.viridis)\n", - "\n", - "# Adjust the limits, ticks and view angle\n", - "ax.set_zlim(-0.15,0.2)\n", - "ax.set_zticks(np.linspace(0,0.2,5))\n", - "ax.view_init(27, -21)\n", - "\n", - "plt.show()\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This is a 3D projection of the gaussians involved with the lower surface showing the 2D projection of the 3D projection above. The innermost ellipse represents the highest peak, that is the maximum probability for a given (X,Y) value.\n", - "\n", - "\n", - "\n", - "\n", - "** numpy einsum examples **" - ] - }, - { - "cell_type": "code", - "execution_count": 175, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[[ 0 1 2 3 4]\n", - " [ 5 6 7 8 9]\n", - " [10 11 12 13 14]\n", - " [15 16 17 18 19]\n", - " [20 21 22 23 24]]\n", - "[0 1 2 3 4]\n", - "[[0 1 2]\n", - " [3 4 5]]\n" - ] - } - ], - "source": [ - "a = np.arange(25).reshape(5,5)\n", - "b = np.arange(5)\n", - "c = np.arange(6).reshape(2,3)\n", - "print(a)\n", - "print(b)\n", - "print(c)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 204, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 30, 80, 130, 180, 230])" - ] - }, - "execution_count": 204, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "#this is the diagonal sum, i repeated means the diagonal\n", - "np.einsum('ij', a)\n", - "#this takes the output ii which is the diagonal and outputs to a\n", - "np.einsum('ii->i',a)\n", - "#this takes in the array A represented by their axes 'ij' and B by its only axes'j' \n", - "#and multiples them element wise\n", - "np.einsum('ij,j',a, b)" - ] - }, - { - "cell_type": "code", - "execution_count": 199, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0, 22, 76])" - ] - }, - "execution_count": 199, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "A = np.arange(3).reshape(3,1)\n", - "B = np.array([[ 0, 1, 2, 3],\n", - " [ 4, 5, 6, 7],\n", - " [ 8, 9, 10, 11]])\n", - "C=np.multiply(A,B)\n", - "np.sum(C,axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 197, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 0, 22, 76])" - ] - }, - "execution_count": 197, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "D = np.array([0,1,2])\n", - "E = np.array([[ 0, 1, 2, 3],\n", - " [ 4, 5, 6, 7],\n", - " [ 8, 9, 10, 11]])\n", - "\n", - "np.einsum('i,ij->i',D,E)" - ] - }, - { - "cell_type": "code", - "execution_count": 238, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 238, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD8CAYAAABjAo9vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAADXNJREFUeJzt3durpXUdx/HPZ8/BGZhxvFAR3FMjFYhkYAwWeVF4CKtBbwpKEsSLfZOgYEg2/0AQdICK2FgQJEhkUUQHR9KLLhR10sJDoTLqSKIRpFAog98u1t659551eA6/Zz1rfZ/3C4S91n727/nxMLz5+VuHxxEhAEAeK31PAABQFmEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJDM7j5Oundlf+zfdbCPUwPA0nrzzBv/jIgLZh3XS9j37zqoT5z/hT5ODQBL6/ev/eClKsexFQMAyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZIqF3fYu23+2/ZtSYwIA6iu5Yr9d0rMFxwMANFAk7LZXJX1O0j0lxgMANFdqxf4dSXdJerfQeACAhlqH3fYxSa9HxBMzjluz/bjtx995979tTwsAmKDEiv0qSTfYPiXpPklX2/7pzoMiYj0ijkbE0b0r+wucFgAwTuuwR8TdEbEaEUckfVHSHyPiy61nBgBohPexA0Ayu0sOFhEPS3q45JgAgHpYsQNAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJBM67DbPmz7IdvP2H7a9u0lJgYAaGZ3gTHOSLozIk7aPijpCdsnIuKZAmMDAGpqvWKPiH9ExMmNn9+S9Kyki9uOCwBopugeu+0jkq6Q9GjJcQEA1ZXYipEk2T4g6X5Jd0TEm2N+vyZpTZL2rRwodVoAwA5FVuy292gU9Xsj4hfjjomI9Yg4GhFH967sL3FaAMAYJd4VY0k/kvRsRHyr/ZQAAG2UWLFfJelmSVfbfnLjv88WGBcA0EDrPfaI+JMkF5gLAKAAPnkKAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIpdqMNAGjqnUtXW4+x97nTBWaSA2EH0LkS4a56DgJP2AEUNI+AV53DkANP2AHUtggBx2SEHcBMyxbyIa/WJcIOYIdlizjORtiBASsZ8X9/4JzGf3vohbeLzWPoq3WJsAOD0ibkbcJdZeyScR86wg4k1TTiXQZ81nnbxJ2V+nsIO5BEk5D3FfHSiPp2hB1YUnVD3ibib73flY47+FI0PkdTRP1shB1YEl2GvGq4q47TJPB1t2EI+mSEHVhQdUJeNeKlAl7lPHXiTtTLIuzAAqka8yohn1fE26oTdYJeDWEHetRXyN9+3zuVj5Wkc17eW+v4qqpGnaDXQ9iBOSsR8yoRrxvvKmNVDfysbRiC3i3CDnRsHiEvGfG2SkSdoLdD2IEOVIl505A3ifiR1Tf+//Op0xfU/ntp9mqdoC8Owg4U0HfIt4a7zrFNI7/TtKgT9Pkj7EBDXcV8WsjrBLyUaSt1gr6YCDtQw6yYZwj5VpOiTtAXG2EHZigd80khrxPx6y567qznTrx2aeW/n6WLoBPz+SHswA5ttljqrMpnhXxcvKscXyXwk/bWCXoORcJu+3pJ35W0S9I9EfGNEuMC81I65k1W5XVD3lSdqE8KOtsti6112G3vkvR9SddJOi3pMdu/john2o4NdGkeMZ8U8q4iPm21Pi7odVforM6XQ4kV+5WSno+IFyXJ9n2SbpRE2LFwmu6Xl9hi6XpFPinqBH14SoT9YkmvbHl8WtLHCowLFFEy5l2H/PPnntTP3/xorb9pG3Rins/cXjy1vSZpTZL2rRyY12kxUIsc88+fe/Ks5zZjXifqBB2TlAj7q5IOb3m8uvHcNhGxLmldkg7tuXD+t1lBek33zNvEfFbIx0V80nFVoz4u6MQcW5UI+2OSPmT7Eo2C/kVJNxUYF6ikyeq8y5V51ZjXVTrovLMlr9Zhj4gztm+T9AeN3u7444h4uvXMgCm63GqZZ8xnrdJZnaOJInvsEfFbSb8tMRYwSR/75l2tzKcFvereOTHHJHzyFAtt0WIuLc/qnJgPF2HHQlq0rRapWdDZakEfCDsWxiK/RVEaRXpW3Ku8s4WYo2uEHb3q62P9dT48NOmtiG3enigRc3SHsKMXXa/OpfZB37Q14MQcy4CwY276/NItqdvvauF7WrBICDs6twg3qugi6n2tyiVijukIOzozj29SlMrfsGKcul+HKxFz9Iewo6h53X1I6u5+oLPuQFTq7kPEHF0h7ChinkGX6kW97b1AJ4VcIuZYTIQdrXQRdKlc1Jsg5Fh2hB21VYm5VD7om06dvqBY3KdFXOrm5s4SMUe3CDsqaxt0qX3Um5oV8E2TQi4RcywPwo6Zug56E1VDPc20iEuEHMuLsGOiEkGXqkW9y9X6pq5DLhFzLAbCjrOUCrpUfqVexayAS9MjLhFyLDfCjv+rGnSpfNS3xnjW6r1KuHeaFXKJmCMPwg5J5aPeRpNwb1Uy4hIhx/Ih7AO3SEFvokrEJUKOYSHsA1Un6IugasA3EXIMGWEfoCZRb7JarxvjpupEfBMxR2aEfUCWbZU+DhEHZiPsA7GMUW8S8U3EHENG2AegRNQPvfB2Zy+etgm4RMSBnQh7ciVX6psBrhv4tuHeiZAD0xF21FY61NMQcaA+wp7Ysu2rE3GgDMKOXhBxoDuEHZ0i4MD8EfbENqM6jy0ZAg4sDsI+AFuj2yTyRBtYLoR9YIg0kN9K3xMAAJRF2AEgGcIOAMm0Crvtb9p+zvZfbP/S9nmlJgYAaKbtiv2EpA9HxEck/V3S3e2nBABoo1XYI+KBiDiz8fARScv1GXYASKjkHvutkn5XcDwAQAMz38du+0FJF4351fGI+NXGMcclnZF075Rx1iStSdK+lQONJgsAmG1m2CPi2mm/t32LpGOSromIiTe5jIh1SeuSdGjPhfO5GSYADFCrT57avl7SXZI+GRH/KTMlAEAbbffYvyfpoKQTtp+0/cMCcwIAtNBqxR4RHyw1EQBAGXzyFACSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMkQdgBIhrADQDKEHQCSIewAkAxhB4BkCDsAJEPYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGSKhN32nbbD9vklxgMANNc67LYPS/q0pJfbTwcA0FaJFfu3Jd0lKQqMBQBoqVXYbd8o6dWIeKrQfAAALe2edYDtByVdNOZXxyV9XaNtmJlsr0lak6R9KwdqTBEAUMfMsEfEteOet325pEskPWVbklYlnbR9ZUS8NmacdUnrknRoz4Vs2wBAR2aGfZKI+KukCzcf2z4l6WhE/LPAvAAADfE+dgBIpvGKfaeIOFJqLABAc6zYASAZwg4AyRB2AEiGsANAMoQdAJIh7ACQDGEHgGQIOwAkQ9gBIBnCDgDJEHYASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGUfM/77Stt+Q9NLcT3y28yVxj9YRrsV2XI/tuB7v6fNavD8iLph1UC9hXxS2H4+Io33PYxFwLbbjemzH9XjPMlwLtmIAIBnCDgDJDD3s631PYIFwLbbjemzH9XjPwl+LQe+xA0BGQ1+xA0A6hH2D7Ttth+3z+55LX2x/0/Zztv9i+5e2z+t7Tn2wfb3tv9l+3vbX+p5PX2wftv2Q7WdsP2379r7ntAhs77L9Z9u/6XsukxB2jf4BS/q0pJf7nkvPTkj6cER8RNLfJd3d83zmzvYuSd+X9BlJl0n6ku3L+p1Vb85IujMiLpP0cUlfGfC12Op2Sc/2PYlpCPvItyXdJWnQLzhExAMRcWbj4SOSVvucT0+ulPR8RLwYEe9Iuk/SjT3PqRcR8Y+IOLnx81saxezifmfVL9urkj4n6Z6+5zLN4MNu+0ZJr0bEU33PZcHcKul3fU+iBxdLemXL49MaeMwkyfYRSVdIerTfmfTuOxotAt/teyLT7O57AvNg+0FJF4351XFJX9doG2YQpl2LiPjVxjHHNfrf8HvnOTcsJtsHJN0v6Y6IeLPv+fTF9jFJr0fEE7Y/1fd8phlE2CPi2nHP275c0iWSnrItjbYeTtq+MiJem+MU52bStdhk+xZJxyRdE8N8L+yrkg5veby68dwg2d6jUdTvjYhf9D2fnl0l6Qbbn5W0T9K5tn8aEV/ueV5n4X3sW9g+JeloRAzyy45sXy/pW5I+GRFv9D2fPtjerdELx9doFPTHJN0UEU/3OrEeeLTa+Ymkf0XEHX3PZ5FsrNi/GhHH+p7LOIPfY8c235N0UNIJ20/a/mHfE5q3jRePb5P0B41eLPzZEKO+4SpJN0u6euPfw5Mbq1UsOFbsAJAMK3YASIawA0AyhB0AkiHsAJAMYQeAZAg7ACRD2AEgGcIOAMn8D8ZDxBUcCg2mAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from scipy.stats import multivariate_normal\n", - "x, y = np.mgrid[-5:5:.1, -5:5:.1]\n", - "pos = np.empty(x.shape + (2,))\n", - "pos[:, :, 0] = x; pos[:, :, 1] = y\n", - "rv = multivariate_normal([0.5, -0.2], [[2.0, 0.9], [0.9, 0.5]])\n", - "plt.contourf(x, y, rv.pdf(pos))\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### References:\n", - "\n", - "1. Roger Labbe's [repo](https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python) on Kalman Filters. (Majority of the examples in the notes are from this)\n", - "\n", - "\n", - "\n", - "2. Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard and Dieter Fox, MIT Press.\n", - "\n", - "\n", - "\n", - "3. Scipy [Documentation](https://scipython.com/blog/visualizing-the-bivariate-gaussian-distribution/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - }, - "pycharm": { - "stem_cell": { - "cell_type": "raw", - "source": [], - "metadata": { - "collapsed": false - } - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/Localization/Kalmanfilter_basics_2.ipynb b/Localization/Kalmanfilter_basics_2.ipynb deleted file mode 100644 index 43f34ec6f2..0000000000 --- a/Localization/Kalmanfilter_basics_2.ipynb +++ /dev/null @@ -1,381 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## KF Basics - Part 2\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Probabilistic Generative Laws\n", - " \n", - "#### 1st Law:\n", - "The belief representing the state $x_{t}$, is conditioned on all past states, measurements and controls. This can be shown mathematically by the conditional probability shown below:\n", - "\n", - "$$p(x_{t} | x_{0:t-1},z_{1:t-1},u_{1:t})$$\n", - "\n", - "1) $z_{t}$ represents the **measurement**\n", - "\n", - "2) $u_{t}$ the **motion command**\n", - "\n", - "3) $x_{t}$ the **state** (can be the position, velocity, etc) of the robot or its environment at time t.\n", - "\n", - "\n", - "'If we know the state $x_{t-1}$ and $u_{t}$, then knowing the states $x_{0:t-2}$, $z_{1:t-1}$ becomes immaterial through the property of **conditional independence**'. The state $x_{t-1}$ introduces a conditional independence between $x_{t}$ and $z_{1:t-1}$, $u_{1:t-1}$\n", - "\n", - "Therefore the law now holds as:\n", - "\n", - "$$p(x_{t} | x_{0:t-1},z_{1:t-1},u_{1:t})=p(x_{t} | x_{t-1},u_{t})$$\n", - "\n", - "#### 2nd Law:\n", - "\n", - "If $x_{t}$ is complete, then:\n", - "\n", - "$$p(z_{t} | x_{0:t},z_{1:t-1},u_{1:t})=p(z_{t} | x_{t})$$\n", - "\n", - "$x_{t}$ is **complete** means that the past states, controls or measurements carry no additional information to predict future.\n", - "\n", - "$x_{0:t-1}$, $z_{1:t-1}$ and $u_{1:t}$ are **conditionally independent** of $z_{t}$ given $x_{t}$ of complete.\n", - "\n", - "The filter works in two parts:\n", - "\n", - "$p(x_{t} | x_{t-1},u_{t})$ -> **State Transition Probability**\n", - "\n", - "$p(z_{t} | x_{t})$ -> **Measurement Probability**\n", - "\n", - "\n", - "### Conditional dependence and independence example:\n", - "\n", - "\n", - "$\\bullet$**Independent but conditionally dependent**\n", - "\n", - "Let's say you flip two fair coins\n", - "\n", - "A - Your first coin flip is heads\n", - "\n", - "B - Your second coin flip is heads\n", - "\n", - "C - Your first two flips were the same\n", - "\n", - "\n", - "A and B here are independent. However, A and B are conditionally dependent given C, since if you know C then your first coin flip will inform the other one.\n", - "\n", - "$\\bullet$**Dependent but conditionally independent**\n", - "\n", - "A box contains two coins: a regular coin and one fake two-headed coin ((P(H)=1). I choose a coin at random and toss it twice. Define the following events.\n", - "\n", - "A= First coin toss results in an H.\n", - "\n", - "B= Second coin toss results in an H.\n", - "\n", - "C= Coin 1 (regular) has been selected. \n", - "\n", - "If we know A has occurred (i.e., the first coin toss has resulted in heads), we would guess that it is more likely that we have chosen Coin 2 than Coin 1. This in turn increases the conditional probability that B occurs. This suggests that A and B are not independent. On the other hand, given C (Coin 1 is selected), A and B are independent.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Bayes Rule:\n", - "\n", - "\n", - "Posterior = $$\\frac{Likelihood*Prior}{Marginal} $$\n", - "\n", - "Here,\n", - "\n", - "**Posterior** = Probability of an event occurring based on certain evidence.\n", - "\n", - "**Likelihood** = How probable is the evidence given the event.\n", - "\n", - "**Prior** = Probability of the just the event occurring without having any evidence.\n", - "\n", - "**Marginal** = Probability of the evidence given all the instances of events possible.\n", - "\n", - "\n", - "\n", - "Example:\n", - "\n", - "1% of women have breast cancer (and therefore 99% do not).\n", - "80% of mammograms detect breast cancer when it is there (and therefore 20% miss it).\n", - "9.6% of mammograms detect breast cancer when its not there (and therefore 90.4% correctly return a negative result).\n", - "\n", - "We can turn the process above into an equation, which is Bayes Theorem. Here is the equation:\n", - "\n", - "$\\displaystyle{\\Pr(\\mathrm{A}|\\mathrm{X}) = \\frac{\\Pr(\\mathrm{X}|\\mathrm{A})\\Pr(\\mathrm{A})}{\\Pr(\\mathrm{X|A})\\Pr(\\mathrm{A})+ \\Pr(\\mathrm{X | not \\ A})\\Pr(\\mathrm{not \\ A})}}$\n", - "\n", - "\n", - "$\\bullet$Pr(A|X) = Chance of having cancer (A) given a positive test (X). This is what we want to know: How likely is it to have cancer with a positive result? In our case it was 7.8%.\n", - "\n", - "$\\bullet$Pr(X|A) = Chance of a positive test (X) given that you had cancer (A). This is the chance of a true positive, 80% in our case.\n", - "\n", - "$\\bullet$Pr(A) = Chance of having cancer (1%).\n", - "\n", - "$\\bullet$Pr(not A) = Chance of not having cancer (99%).\n", - "\n", - "$\\bullet$Pr(X|not A) = Chance of a positive test (X) given that you didn't have cancer (~A). This is a false positive, 9.6% in our case.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Bayes Filter Algorithm\n", - "\n", - "The basic filter algorithm is:\n", - "\n", - "for all $x_{t}$:\n", - "\n", - "1. $\\overline{bel}(x_t) = \\int p(x_t | u_t, x_{t-1}) bel(x_{t-1})dx$\n", - "\n", - "2. $bel(x_t) = \\eta p(z_t | x_t) \\overline{bel}(x_t)$\n", - "\n", - "end.\n", - "\n", - "\n", - "$\\rightarrow$The first step in filter is to calculate the prior for the next step that uses the bayes theorem. This is the **Prediction** step. The belief, $\\overline{bel}(x_t)$, is **before** incorporating measurement($z_{t}$) at time t=t. This is the step where the motion occurs and information is lost because the means and covariances of the gaussians are added. The RHS of the equation incorporates the law of total probability for prior calculation.\n", - "\n", - "$\\rightarrow$ This is the **Correction** or update step that calculates the belief of the robot **after** taking into account the measurement($z_{t}$) at time t=t. This is where we incorporate the sensor information for the whereabouts of the robot. We gain information here as the gaussians get multiplied here. (Multiplication of gaussian values allows the resultant to lie in between these numbers and the resultant covariance is smaller.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Bayes filter localization example:" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABBoAAAWMCAYAAACAlOW1AAAMKmlDQ1BJQ0MgUHJvZmlsZQAASImVlwdUU0kXx+eVJCQktEAoUkJvovQqNbQAAlIFGyEJJJQYA0HFjiwquBZURLGiqyKKrgWQRUUs2BYFe10sqCjrYsGGyjcpoOt+5Xz3nHnvd+67c+d/5703ZwYA9ViOWJyDagCQK8qXxIUFMcenpDJJDwECMEAFBGDP4eaJA2NjowC0ofvf7d11GA3tioMs1z+f/1fT5PHzuAAgsZDTeXncXMiHAMDduWJJPgCEXug3n54vhkyEKoG2BAqEbCHjTAV7yjhdwVHymIQ4FuQ0AFSoHI4kEwA1mS5mATcT5lFbCtlRxBOKIDdD9uMKODzInyGPzM2dClndBrJN+nd5Mv+WM304J4eTOcyKWuSmEizME+dwZv6f0/G/LTdHOjSGOWxUgSQ8TlazbN6yp0bKmAr5rCg9OgayFuSrQp48XsZPBNLwRGX8B24eC84ZYACAUnmc4EjIhpDNpNmJgUr240jkfWE8mirMZycoWSSZGqfMjxaJcqKjlHlWC/jsId7NzwuJH4rJEIayIcN3iLYUChKSFTrRywXCpGjIapDv5mXHRyr7Pi8UsKKHYiTSOJlm+M4xkCEJjVPEYBa5eUN1Yd4CITtayVFcjnxcPciT8wUJ4Yo8WAE/b3zUkB4ePzhEoQcr4osSlTqxcnF+UJyy73ZxTqwyHmvm54TJ/GaQ2/MK4of69uXDj00xJzjI4kTEKsbCtcX5sQkKnTgTRAEWCAZMIIUtHUwFWUDY3tvQC4aehAIOkIBMwAcOSs9Qj2T5ExG8xoNC8CckPsgb7hckf8oHBdD/ZdiruDqADPnTAnmPbPAEci5ugPvhPngUvAbA5ox74l5D/ZjqQ6MSQ4jBxHBiKNF2WAcXqs6BTQKE/8YXCe98WJ1Mi2iohm/5CE8IHYSHhGuELsItkAQey7Moo6YIiyQ/KGeCsaALZgtVVpf+fXW4FVTthgfhvlA/1I4zcAPggLvCSgJxf1ibG/R+r1A6rO3bXCpzkR3JKFmXHEC2+YcCWR3fV6j0q9mpuSl1pQ+/K9Zw1I9ZWN/NGg/eI3+MxBZjB7E27AR2DmvGGgATO441YhexozIe/jYey7+NodHi5NqyYR7hUIxjrWOP4+cfxuYox5fI3z/I58/Il/0srKnimRJhpiCfGQhXaz6TLeKOGsl0dnSCq6hs7VcsLW8Y8jUdYZz/5lvoAIDvvMHBweZvvii4lh6eDQCl/5vPGq4bNAIAZ+dwpZIChQ+XXQiAAtThn6IPjOHaZQMrcgbuwAcEgBAQAWJAAkgBk+GcC0AuVD0dzAYLQAkoAyvAGrAebAbbwC6wFxwADaAZnABnwAVwGVwDd+C30g1egD7wDgwgCEJCaAgd0UdMEEvEHnFGPBE/JASJQuKQFCQNyUREiBSZjSxEypByZD2yFalBfkWOICeQc0gHcgt5gPQgr5FPKIZSUW3UCLVCR6OeaCAaiSagk9BMdBpaiBajy9BKtBrdg9ajJ9AL6DW0C32B9mMAU8UYmCnmgHliLCwGS8UyMAk2FyvFKrBqrA5rgm/6CtaF9WIfcSJOx5m4A/xew/FEnItPw+fiS/H1+C68Hj+FX8Ef4H34VwKNYEiwJ3gT2ITxhEzCdEIJoYKwg3CYcBr+S92Ed0QikUG0JnrAfzWFmEWcRVxK3EjcR2whdhAfEftJJJI+yZ7kS4ohcUj5pBLSOtIe0nFSJ6mb9EFFVcVExVklVCVVRaRSpFKhslvlmEqnylOVAbIG2ZLsTY4h88gzycvJ28lN5EvkbvIARZNiTfGlJFCyKAsolZQ6ymnKXcobVVVVM1Uv1XGqQtX5qpWq+1XPqj5Q/UjVotpRWdSJVCl1GXUntYV6i/qGRqNZ0QJoqbR82jJaDe0k7T7tgxpdbZQaW42nNk+tSq1erVPtpTpZ3VI9UH2yeqF6hfpB9UvqvRpkDSsNlgZHY65GlcYRjRsa/Zp0TSfNGM1czaWauzXPaT7TImlZaYVo8bSKtbZpndR6RMfo5nQWnUtfSN9OP03v1iZqW2uztbO0y7T3ardr9+lo6bjqJOnM0KnSOarTxcAYVgw2I4exnHGAcZ3xSddIN1CXr7tEt063U/e93gi9AD2+XqnePr1rep/0mfoh+tn6K/Ub9O8Z4AZ2BuMMphtsMjht0DtCe4TPCO6I0hEHRtw2RA3tDOMMZxluM7xo2G9kbBRmJDZaZ3TSqNeYYRxgnGW82viYcY8J3cTPRGiy2uS4yXOmDjOQmcOsZJ5i9pkamoabSk23mrabDphZmyWaFZntM7tnTjH3NM8wX23eat5nYWIx1mK2Ra3FbUuypaelwHKtZZvleytrq2SrRVYNVs+s9azZ1oXWtdZ3bWg2/jbTbKptrtoSbT1ts2032l62Q+3c7AR2VXaX7FF7d3uh/Ub7jpGEkV4jRSOrR95woDoEOhQ41Do8GMUYFTWqaFTDqJejLUanjl45um30V0c3xxzH7Y53nLScIpyKnJqcXjvbOXOdq5yvutBcQl3muTS6vHK1d+W7bnK96UZ3G+u2yK3V7Yu7h7vEvc69x8PCI81jg8cNT23PWM+lnme9CF5BXvO8mr0+ert753sf8P7Lx8En22e3z7Mx1mP4Y7aPeeRr5svx3erb5cf0S/Pb4tflb+rP8a/2fxhgHsAL2BHwNNA2MCtwT+DLIMcgSdDhoPcsb9YcVkswFhwWXBrcHqIVkhiyPuR+qFloZmhtaF+YW9issJZwQnhk+MrwG2wjNpddw+6L8IiYE3EqkhoZH7k+8mGUXZQkqmksOjZi7Kqxd6Mto0XRDTEghh2zKuZerHXstNjfxhHHxY6rGvckziludlxbPD1+Svzu+HcJQQnLE+4k2iRKE1uT1JMmJtUkvU8OTi5P7ho/evyc8RdSDFKEKY2ppNSk1B2p/RNCJqyZ0D3RbWLJxOuTrCfNmHRussHknMlHp6hP4Uw5mEZIS07bnfaZE8Op5vSns9M3pPdxWdy13Be8AN5qXg/fl1/Of5rhm1Ge8SzTN3NVZo/AX1Ah6BWyhOuFr7LCszZnvc+Oyd6ZPZiTnLMvVyU3LfeISEuULTo11XjqjKkdYntxibhrmve0NdP6JJGSHXlI3qS8xnxtuMm+KLWR/iR9UOBXUFXwYXrS9IMzNGeIZlycaTdzycynhaGFv8zCZ3Fntc42nb1g9oM5gXO2zkXmps9tnWc+r3he9/yw+bsWUBZkL/i9yLGovOjtwuSFTcVGxfOLH/0U9lNtiVqJpOTGIp9Fmxfji4WL25e4LFm35Gspr/R8mWNZRdnnpdyl5392+rny58FlGcval7sv37SCuEK04vpK/5W7yjXLC8sfrRq7qn41c3Xp6rdrpqw5V+FasXktZa10bVdlVGXjOot1K9Z9Xi9Yf60qqGrfBsMNSza838jb2LkpYFPdZqPNZZs/bRFuubk1bGt9tVV1xTbitoJtT7YnbW/7xfOXmh0GO8p2fNkp2tm1K27XqRqPmprdhruX16K10tqePRP3XN4bvLexzqFu6z7GvrL9YL90//Nf0369fiDyQOtBz4N1hywPbThMP1xaj9TPrO9rEDR0NaY0dhyJONLa5NN0+LdRv+1sNm2uOqpzdPkxyrHiY4PHC4/3t4hbek9knnjUOqX1zsnxJ6+eGneq/XTk6bNnQs+cbAtsO37W92zzOe9zR857nm+44H6h/qLbxcO/u/1+uN29vf6Sx6XGy16XmzrGdBzr9O88cSX4ypmr7KsXrkVf67ieeP3mjYk3um7ybj67lXPr1e2C2wN35t8l3C29p3Gv4r7h/eo/bP/Y1+XedfRB8IOLD+Mf3nnEffTicd7jz93FT2hPKp6aPK155vysuSe05/LzCc+7X4hfDPSW/Kn554aXNi8P/RXw18W+8X3drySvBl8vfaP/Zudb17et/bH999/lvht4X/pB/8Ouj54f2z4lf3o6MP0z6XPlF9svTV8jv94dzB0cFHMkHPlWAIMNzcgA4PVOuE9IAYB+Ge4fJijOZnJDFOdJOYH/xIrzm9zcAaiDN9k2nNUCwH7YrALgNnw+ALLteEIAQF1chpvS8jJcnBW5qPCEQ/gwOPjGCABSEwBfJIODAxsHB79sh2JvAdAyTXEmlJnsDLpFnqOTUTA0/rD9C+JPcGnH6f4kAAAACXBIWXMAABYlAAAWJQFJUiTwAAABn2lUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMDUwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjE0MjA8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kg5quAgAAABxpRE9UAAAAAgAAAAAAAALGAAAAKAAAAsYAAALGAAlikDKHcuMAAEAASURBVHgB1L3Xs57HtafXyAABIgNExt7IgQkkSIAZgSQYRYlB6ZzRVI3tK9/50uUpV42rXPaF/wPX1LiOZ0YSJVEUM0iQIAgSIAgG5Jxzzjn5eX79vZsQD6Wj8dENG3j3931vWL169Uq9enW/nW5Qyr+yXL5yvVy5crV06tS5dO3atXTtXEpnjtKJ42ope3fuLGvXrC67d+0qR48eKdevXi1du3Quly9f5rnLpTP3deGB6zeulxvXb5T845zwOnmxUyfOlSKq3NH6J/xO1NO5dO7SjaNLAQAnC7D5Trki/MtXAhdIpVs37gPm9WvXAqsLOIjktY7fXQDJb/DoAowePXqk3nPnz6feW3r1yvmr3H/lypUcN67Xezulsan2L/75PkJbX6fOXUr3bl05upVr0ObChQvlGnBtG4iC/w3o0yW05QT4XqeOG9RYacNf7ue+Fi62Uxr4/CVocPHSpdC3e9duad8N2neVeq5evRb6dga2eFjSB9QXuvK8/dGc87r928C9cvVK6da9G3h3hy70AyCEaRsqTa8Dt3Pp0upHad+5qQdcxdd67Vfb66e/u0oLaG/fX7x0uVy9BhNZvA/cLaFNvlU41um5nj16po/tH2+1H6UTj+Z8F/C3TdLF4m/p3o065YsLFy+US9DLOm1T9x62DX6ibdLNI4W21HPQnv6wvd7XraFxixelqof8V2l+JXh27QIeIGXfdqad9q+c7W/p4iFMf3eiXV27Ahs8gz/wpNc1aO199rXyw83BD6ngjhvhT9vULf3Tpdhf4gCRQ1vhpg3ca/G39JeX/OzRnbbzeRVaSl/h5760HTmqD1F/18CTNtelxXXwEndwE5Pgrl6gDZYrXAsuwO0CcZQz++gKdShP1u1hfza84XNpI+dFI+3ni3LfFbqEH6CV/CecbtTXK3DhSeqz3bZBuI1+aOhvq3ze/pPXc7/4A09+l8cDn2fFz3Z1EpbyY//w/A3/5LOlq7zX31ztuJY7c1uFwTORVeoQL+FGX/HZI3zXGdorp9BFagPQaqRpp3yHTnw29dgf1ife0lhe6d27d9p1+fKlDh6lI6EF8gGPR+YaCOBQ5bOFO4CFxf/U2vBHpRE0RmZ6oROVU/FUDuQB5T20hA/UwfaJdJNPpKXXbK9yqJzZ7tQTPOx72gcMZU/6KKsXLl2MbPXojk4G3lX0us+3HhFBH6oHXxtZsn2i3/CTBJSe1inu8njlpSrXtj98xnPqzcvonzwb/aatEb+W3IQ29TnxVx5tv3SS/+Rry9lz50PDfn1vzXl1zGXwD5ahrV8rH9kG+/jm4m8upx1eFL58Lx09L7+Ls3pMOlea28YK0zZ1RS/ZX9Ij/OSDFPlaWKFX+oGT1KGsyj/S4Nz5C+jV7qX3LbeEhy5fvBjaS+7/1tL0g/Sx7kvoAPlD26oNPI+tPXfuXNomzsEv+hGag/J1+Mz+r30CjvCTSuQiPHJJOwFOncG90Qn6Jeoi6aPcqJ/o8MhNI0c3t0GqNPJ6HVh+r5QK6Mh77JjwONIXre/anHPnz4WX5auGruLqYd3qPXWKvBFfRBnhOfnBvlN2qk1FJ1K3fGp/hWfFhLoqJvStP/3FJ7fmk4+OIt7iHw7lszP0lTbyy2Vo2IXv3TjETUa6Bg7ycHfk1KMruHSCh+JH8UxXZRcY8npkFvh+xtaCW8+ePcG9e73OtQ649MtV2hmWa/Fdg6R4W2xDPutHiN5c0+eTlj169khb5Ed1UC/qs1+1kwL/VnIqbfwtfl63r7qDv+ek5WVoLt7C0fb2grf79Okd3X/q9JnoNHlSebH92sQORgDHBrcG5/q71QhubK5Hv/KjJ3Sx/vMXL5Wz+He90GO9e/UEP+CDT/SUtLEvKOrS69DMmsJjLXnxfnWmOtG2qd+lgzpMONoun+kFrbRz56nrIvJq+9UXlga3jvZYb1Cvn15P3+VuvqP77HeZTXn15l74Wd4XX4lzHfcHDrfSDunaoeuhs/0gjo1fo25XB3cG/hX4zjbYJv0/5cd+OnPubM5357e08XqDq31ZfUouWa/opy2V/l6XnF3g5cgi1/RNqk6p443GN5A/QyPo3DHmgNbaGD3IeJEAE/xl/Sju10fthl68wnfh2NY6/ql+8wV02aULFyNL3cRBfHg+9G3RVr0r6spodA0X1TtBnE/7vtEx8nrDj9LG4q2Ba0MBZBu6gYdtj84AN++yf9Ju7Rj3BD5XpMdldKS/tR+Ckb+qLQc3GmwdHhavf7eIv4TJJ19zCzfmOXjA/s14hHP239X4odU/9NHQHZz8zJiPBxsdE2g8Z1uksXDkBfWntL4Ab8vj3fmu762fo2zIWx55Tl3Hc8KPbwoOsQfgZntCf87Z1oZfQwN/a0s4umj3wVUf8rp6A1zUjeFz9KSfOWwD9wkzMgktua32I3S4wb1S1PaBEP/BgU9xvuuuu8vsWQ+UkSNHBteKs30HsB94wU+2xf+6coVAg46mTKIzSb9UbtMKopc2rl5V3nvzrbLik6Vlzzfry/i7p5Qx7W0Rumt0WhcdCagpKtV5rChFed1E5Q5W5pzKrxvKTgf0q2Wfl7fWry7jqO6OBx4so8aOLf37D6gdBCiZSzZRkGQ2mS8MI3OpTKhX5SLjirgGSOHoc+ut5dSpU+WN//h/lw1ceWLq7aV96uTSb+BAFGTPFr4oRwTnhozHPX9riXDB/Lt27ij/6d2FpQ8P/vzZp8vgobfFWMtkVBDBFH97SfgKqgZIWsf4InQOJC9hwM6dPRucfNbD+zauXlNe/+br8sT48WXGQw9lIK4A1GLb+RbgVZA0vNJE2DUQ4+VKo9AJ2uswXUKgjx87Xha/927ZCYiXH5tbJk+bmnoDG7jeL2yF0qCSzyn8DW7WYx9L+ypw1XDoiB89fLjsXL+xfLhjSxkMwFd+9vMybPhwDBJKXueRz87A7k4/dQLnyzjECnoPDJeCq+HSqMWI83wn22PdKKMzZ06XXTu2l68/XVb2cG322JHloccXlL639i060ddRDuLmINiA2HVgXQV/6Z/BsjSwXfTBdepSedAA+Kt7ru/fu68s+92rZTX3D+OYN/+JMnHy5LRbw6xDGdLYly1HR37TAEeZwoc6+RavW+ymKE54c+03q8obK5aXvpx7+M7by9gJE8vAQQO9rVxrOdZNX0lrnT+NvkG9GERgS6NrthNErKu57yw8tOz9hWXJ7n3lXuBNnftYuQ3Fdyu0EYng7nPgCmHi6EoTB9xxOIUHnTujByzVSFbDJwEP7t9ffv+nN8terv3qwQfK8FGjazAHHHSi8gw3Vtmv9UkXf1faSxPOS3fadqPVF7ZDPtu+ZUt5FT1zD4Ae/tnPcB77VMem5bj17Nkrzo33yzPRBfRDnCngKZcwErjYNzdwbnvG8TnP4OcIPLnstdfLOmA/f/u95e77Z5ZuncH7Cvhxr+rOT0t1nFsai3Zf50R1+sET0e7UDZpw6PxfgpcPHzlYtm1bXz76YnOe/4cfPVnaxrbTUO6H/wzOosjop2rImr7TKZOnIRD/qxGzbVe51/5SN+jw7Nu1s2z+cHFZCXT7dc4vfl4GDRqMEw0/AjuyyHNqAf8BMM/HIII4khm6yOfXEYxr/uyBMYe3DkuXN98pK08eDe7P3z+7TL/7rgxM48yH9pWP7Uf7ySM4S28L1Ul7D0ko3/dExzrY3LljR/nT739XDnHbPeAx45lnyugxo+MsOAgQd9ssfVOowxJd5nm+R89II+Crb2KrpD08sOqLFeXtr1eV4dw3854ZZezEidBmUPAL7Mhr7Vf54jJyJGwDIeJncMH6a6l1q4t0RE9jPxa/+p/LynPXyoLJE0rblKml74ABGZQJq9EFabQAeLzSvwWunkobUkfwt59xmqHrvj17yn9e+H6BA8or8+aWEaNGld59akBDudHORV9iC74t2Ft4vdq76hDJTzpXlVaVRuK3bfPm8tpny8qj7WPKPQ89UmVH+yOi3p0HvoX8F7+17pNePilPHjtypHzx7ntlDb9ffmBWmTx9evoltFVnoROkjzJ6GfumHDjA0WnXodQWqNeVXSxkdEI3Bli248iRw2XXlo3lg1WbSm/g/+NPXywjRowsV4DjgFocOoOTn2mDn5Q4+37hQgINrXPqHIMavW7pXU6jI9djV99Zttw7y+wxY8oD8+aV/v36xw4LUxxj96jPfjPIE90C4Oh52hSfA10p/pEF2wJv7tu3r3wEv28DTk+O5xdU++EA4gIDrxv0O7dV/FttaAYw/6wt3CfpbZe0sU1bNm0qv3n/I86W8tiUsWX6vbPKsGEjomMunj2HDcFpu4buAzdtGo9UGHzaNxkQ8ll9EAah9Kn2y+PsmbPl8w/fLx/t3Fvu5P475s8pw0ePxpfqW+0P9skizJtLfrfa4vmbr4u/9DHQcez48bLoN68WteTPH59bhg4b1qE3RLLRIQayHHjIw/pG8rcyGfkXFm3zyHV0AKciy7t37yr/6e1343O88KNnowekezxD+c12t/BUW6bfWvgFT7+3sI82FTCH+vsiA6KNX35V/rh9e/nxpEnlzlmzoiO+HdRhc5BZVYl6XfyEKb1zeAFc9M2adugT2IZjx46WPcBd+PmKco5n/s2CJ0v7hAmV1+xPijJ7M107dE4QB1s+Gz3Z0EoZPM9ged/ePWXT8i/KirMnyzRgzf/HfyxDhgyNDbV+9YlFfSN/K7c394dwpUPO8ymfGwAwqHb82LH4You3Vdv35F0zyr0Pzk4Q5YJBWvtOHKF91ZciWnlSuNH7fgYD/nbo9+rv76FP33rtjdiP8dxz3xNzS1t7e3jbIKd0sO3S0oGsfoEBAnnJc9oA25g2aJ+oS3PYDf2uf7kG//pPjEGkwIL7ZpRxk6eUwYOHBKay1BEcBWmt3Z/1Ab+1jOpz8Rf2jdzk+EZf9Uz58P/5p7KKa3Mnjy8T77ir9OvfP/YjtAC30ACdoH+nj23f6e+p36vOacHn3kb3ZEKA64cPHSr/8e23g9evnn4KH3sEckaQlHbGx7AfKVJX9mt4pmJrlyL31BfaiDv3S6vYYz63btxYfrf88/hjc//hl6UPwXbpyQMCa/3HX0Ev6CvEDw3f689VH8xqPZ+AkfQHkYsXzpeT6IIVb7wZ2vxszmPldgbqjnm0LWIsXtbj/Z5PH3Je2YnPCu7WKc/Gj4IfrcexyjEmxHdi+97fsBFYpfzi2adKe3u7CrD6vi2ecYxge+xn2y6/CF86689CCX7TF/B5Z+hNBeUMOnbXjh1lA7K6hcB01Yil/Id//7+Wn/3852U8YzWeQq9We8DXH3z5uwQawoCVHyv/NGRRYKDi5tWry/tvv1M2rlmLAe5c7sdBnzZpcqKu3uKgJY6nnSiwAJRHKgM3DmSYl/tzHjgOKs+hvJd/8UVZ8smSDFrGTxhfRuFsDR44KMIChDCZKNWIHUwAY+m8RCBgDiBG8SmYMrWMZh23Emg4duJ4ef+DRQxgNpf7Z88u7ePaGdQNKrcQARdPebkqj4r338oTDqxl6m07tpfX/vAH4PUujz32aBl222042L1iJBVmmbcxRFRYjTznxE9lYuQ3gQaUozNB0kgl4XWFaP2GDeWzJUvKveB+790zcJRqlN7rFu8VjorfUmnCYBH6ip8ldAeunz6n0dNBP3b8RFmxcmXZhEA+8dRTZeqUKS0a136TPvyP0Km8FT4dAOHGGHHR+oMD54IT8M8jfIcOEWhgcLR+7boy8LYhZe7ceUT6RkSxx5hh9LsAu1d3Bs0YIAME9qO003HrCDTIW9yXQIN1Y8BPniLQAOztGOZ9e/eWabffUWbffz+OYr868KJ9Im7wqyv46SSIv8pWB5Ivgam7fY17bkA/GpG225Y9OP9ffrGyHMRh1MGace89ZQr87oxGDTRUWsZQgLX0bwINBpV0xlV8Fgd6Df3lz0sYk7Vr15bln35aBg7sH6U0hkHXEAaNoAJvV4Wq8pOeGk6VnzSPUgW+zoMGQsNkXwo3s1vcd+r06bIMw/ANMjVpyuQyYfwEHPQRcaKFH6OL4c/A10AD+EVpg6vwIXXqq4GGKledOzUzpjfK3v37yvsMjOSzOXPnllEjRyZCLQ43BxqksfhLI4MjsmcNNNAfygEVXaXuaxwJ+tBe+WLL1q3low8+KO3gPRtHzlnkSj9xN1OgRwZL1q+cN3pA4+BsXyMLgQlfOViUdmfOnoEnD5Wvvv66rP1qVXnhhZfKfTPuyWzFtcuVDjorDgH9D7oUvvhXuvHvOoriBjdd4/e1fNJHBBsuXr1cDh46WLbv3IG8rufZTmXOY3PK+Lb26BY6CXrjEIGz/SlsB1k6/elbaCf/2afWDElCMz+lq8GjPbt2l23QZvvmLWXS1Cll3py5ZfhtQ3HCCaxBt/ALD0hz/7WQDu38HtjAv0FHiD+1E+hBB8Gn+w4cKCvhF2FL37vh9zuRKfWnfSKtq7xXuvjdw7rkez+94ndp3QxmhKVzsXXb1rL0k0/K6ZMnE+1Xj00cPz6yqVw2MgKQWgHwpLf97rV63jZwQCedLHlNWT2Pw/LNqlXlc+Rp8JAhZcKEiaW9vb0MHTo0uEjMOAzIjfDEWxkUx8zgyrdNHa3qrdEWOfNy/MSJ8sknS8vm9evK3ffcE/jDGBzdeqsBMGgIbRr59hlLpUf9/t2/4Xdwv4IM6uSqaz5Bvzuouu+++8pobF+/vv3oB2aWgS9/NxkO1mORxh4OWGxfBjG0SzkTcev3TmeeNsMzy6DNlGnTyj0zZkRHyoPNxEAA/jf8EbY01IE+RIBqNb7Bzu3by5z588v0qQSqoSe91AridM29yqmOvzLQG/1uZp561IBPE2jILCC86WDaWddDhw9hP3aVDevWZcAyF34fS0BAWfIIx9FIZbahu82w3VVeW59c1EPwXCd4sTuBx+MnTkYHr1+3vpykf6dBm/tn3hefw+wvODpyKu9fBG/7WDl0Eka62ycXmSCxrmT4qJ+5rg62nl306fLPl8c29WdS4x7kaRpB/J7Iw2X8HfVAlfQW/q02/MW2tNpgUNPZ2PU4/599ujT9Pw45mjZ1WvSwPthFBnZXL9WJkx7QOZkZ0SuQDZ4Pr8iz/LMtaRf4V/+hUzlx6mT5HF2wcvmyMhF/YDIB9lEEGgYQXJMO6oKbC6jVclM/5JzEaZXwjDJLnQfgmU/hxzOnT5X7Z80uw5GlStvqqzjD7f0GB5Q/9Zq8Ii/L/o2v4TUDhbbHDFLxUv9sJ/v2nbfeLoOGDikPMzEzdPDgBFx60DfdAKB+b4LJ4Rzqqp8d2HJHU6q+8Zd1nER/rV2/vnwNfWY+8FCZQTDWDMxKk5a+atFHP+nmQMMVeFb6a1fllehN9Jd9oN012Ku/tA5/yRneeY/PL5PQZdGD0CD+HH6GtKkI1vryPbQXayUPGnGP90krB51nsB9bkNENBKj27t2TwNFDDz4Y2puBp16JbQaEvN3ofGELJ0EFYPFDUrTOVdzF/xBBwW+++aZsWr8hNnnG/feV+2bORI/1TXBGXu/G89Hq0ME2pQjP5nhwImetInXWDBb97K3btpWPFy9m8upQGU6wUXltb2+PPKlT8ggPq0PFR5tiUMjvTbBKXS091DdxRnjIwKO65ht02OKPFpVB8MpkggwTkCn9eLOTDAo68y1ytiNyG0RtQctO8S2tsh22CT3mIY+eJFD9Efr9S+Rp9kMPl4kTJ+D3DUoQPwwdKHVi5ArZd01ATT9GuQjOwLSP5DN1fDJU+W77DuLTLIY23vfQww/F14vd5Vn1tLxg3/rZ2KlK6NqI2r9V5sA6trAJlmlnN27eXN7605+iCx55+OHYJm6jPu62rZIG3PRF5WP7K74v57Wx1baKA/LAIYcaSHasc4wA1Sps90Z0/LM//nGZcdddgo6sCdM2Nb6vbdEe2tmeb7JwYxu5FvjIlnJ1CToeJXC3a8/u2KeL1Dd3/rwyoX2cj6c/7Tn1rf2pXpOmjZ7XV7K+UIh2KrMJDkLvzujKk/jY+qnK01Ema7WD21etKf/jv/9fyssvvVKGtY1C2VpR6+Aj3/38gZa/S6AhFA1VoYKfHirM7nQDBNu6anVZ9O67ZceWraU/jv+jMPTtGLfuED7Rc+/lkDHhLDkv5AwTy4yUnOG8ghglyLM9GTSfJXq15LPPyocfflTGtI2NoLe1tZUhCH2TaqTyk/GajAYHY2EE66U09cgM3qdh0iF14Hnk+LHyp7fexFHcUB4hEDAR5T14yOAEGhRqcTWqpdz4vWIbsH/1TwQKAd60ZUv59W9+w2z6reXxefPLCGbtnUVVQMTFlmssUwCusqiGyTqrIDkwVWA0ZgqiwiIupr1+hSB+sHBheXTOnPIgAy9T7YQbyHwqdDEsfEoHlYSOtUrII/V7Pw/4nN0h7S4wS3AEYfx0+XLasLU896MfZXChE1rxbskJD4i/zqKwG+WnMfK+jnoETFEBmWp88OCBsg3j9g0Du0HDbivPPP10GYPDYoqR0U+AkdpJoAEadoIml8mCsCSjARxUqBpnU8h1Qo0memiknRXZtGVz2bxpc9nPwHfGPfeWR+DJAcxIGQ018OUAWv7RwPnbjAaVSm0fBtV+4Np1Z7SlG9e6dzedq0vZgbOynFnA/Xv2lFsxlvdD99uZrXN2yD6y2Nr0JTxfAw1moKhYm4F/TXOOgpT4FB0jefkrjPLHHy6CP/uWyZMmMnghGACN7L8EGmwzsCovVGOpo5FAA9caRyVOgYaQdsgzOrIatsUYNh3F6QwWp+Aojhw5qgwgii4TpG/B8cY1hpo4b5353s2Zeeo2TVlMM2uJwdB42lLh+ymv7dqzN/Kkg/LkE0+kTx2w+UzD1+JdZbLSSBrIHtI2PArYGmDgOpCVOpW89+lEv4Fhm4STO/fRR8sgHFzrFm95TrkyeOBv2x9+57s4youRHSqTf4SXWWscdAdGBw4eLCtwEr/+4qvy0ks/Kw/cN6v06EJ6Hm0x6CXP1FlSPxtdoKzxD/zNajDYcJVP4ujlKjd3ZWB0GVrug9+3bNtaVpH9JdmefvKpMoV+9fsN6apDhBzpgOq4XSY4kSVe/DZAUmurdPN7pSXOCjx3hlRgg2qboM1mAo+Tp00H/pNlJLrmEvwoHXiAinyy9a/lvdX+Fi6Ie1D3VdqCWU2QxNTRvQTUPkMHbwG2MnDf7FnlXmSqHzotKb7wmDMKFZbVVB0mzNCbHrI0fBg5AB+zT3Q6NoD3okWLymnk1kyGWQzqpk6chCziFBgo4d7AVqhkFApk4/g20OBv+U/+SX/QVnnh/PkL5fOVBKqxH8OQoSlTpuLMTYyj6P3qLnF3QCJ9/DTII4xku0D/OvNS5Q3yBRep2JO+PYYj8R6Brw3066zZD0Sehg0n0EDWQZVt4AqafxVzEAXHju/8TJEP+JKDiz7r4cDovfcWwhddGBg9XNoYTPdHVmvqMffQt1XOK/1tv7KqrUv70qaqL6ShfeAhbAfDDow+/PBDdOQ95SGC1QYx1NHCkB5/a/FO22TgyP4/efJUdO8XX35ZtuN0PfP88+WeO++KDOpcmgHQ4KETlwENfGQKusHexlk2qGx2k7Kgnu/es3u5yP0HCH5t274tjmgfaK39GN/WHn/DwUXkFKTEyaMpDX1v/hQuXRQnsXuvW5h8OJHg1Lo1a8rxo8fKHXfcWR4ik3IoExBmXhgKzAAFGhogUTep4+0jda/9Ycqvfd7MdCnDmUnkczsDxiUE1nbxaaDhfuTprjvuIJuDtuFga++iURv8/Wy+Nw3h0zaIu5+Kc1ftB7y8ikD1h8iTNmHiJGbWwd8gjHQx0OAMrH3bE51sO/yujEXnBmsrq/pcPsrMG7IsvBMMpvXHli/9hAD+7RnUjQa2gQblxEC6pYPmLbz/0rl6c5VZ+WEfAdmFyNNxfI/HHn2sjMUn6MFgXd8uLU1jq1+h7pOn9Y3kZy/FrsC/XtMOKNsOzG2f+n/ztm3lD6/9odw2bDj+2NwyjIBjDwaU3eV5AutdgCc29T+tUCcqCym5Yi2py09xtmj3T8A3XzEoXbZ0aXkUX+8BJjdcOiAOlugafEr530kJcfR7bBGfqCLgVRslXNuiPBlwMwi+fQdZml9/w+Tb+fLcc88lcCciPp92iy7/amWpMX3bQjZXvN6hI6jDjDUzeDYho2vQBTt27CgjyRieP29eGcWgXb9OeRYPW9341tLTmhqdWyut1Wm/5BvtuTo4dnXFF0V5MlPp/oceKg8+8ED8mwvhd/SBz0ADZck+bYIL0j7fqUwZ9XvaCi9qi7QvmzZvKe+TpXkU3hk1eky5m5nvydgPdaS8YeBI+VGv6N9pUwwQylMu1UtwDRrSGOhPffYpn/KPtP/8y5XlHbIChhK4v3367fhkk+PHC1P928Dn6egdadHqhZBePdDgLv62ybpcKnT85InYjxXI1CPwu5N5gxnb9Gn58QJQ7mSO+HfIsEX93PjaggzNaKdyID/42+t78H/ffued8P/jBHv1sWsmYQ00iKl+sCj5jPWJr//9ExsOLfz0HscOkbWWjV+LT/BHJlJvv/POMn/O3Iyp1AHyhbBjR3hOnaj/6Hn5Qr5XX1hN5fNqr/wufAMNR48eLdqP1YxxXnzlFfyCmaB0I/JsmyuP4R8B037wOZG0PbZdGapByOoX6lv5jEuNDMA48fM12cPXaN/T2I9JEyckcJRJNuqxBQaTaj8baEDvgLsy5CSAbRCeNsr+NVDtRKiBhnXQZTUBkiO0wUnVAzt3l5/99/9defHFF0v/MSNwsEJgK5BM9eDjh1r+LoGG60wvGvGTK6TJDRUnCqEbAwjLDgzbxx8sKvuZYdD5fBCHZSoG7ioD4XMQ3eGsM8cyiYrETzuvYV5hSHYZPUqEex2oOzt/FkdxKYOiTxZ/XNrHjStTmBUZx6fCKC4qPplJJlNxaEwaZSW2MrrKQ7gW2+H9Gv6BGPmjBBr+8PrrZRNtmPf443FCTTl2xihOLobBpR+dQVicK6b/Ml8k0AAumzBsr5JmP4i6DDQMQ1llTT31y7jipaA0hzSoSymojO85D7OLt8Jk+yKo/HZviRVffVne+OMfy5PPPlvmPPgQgQbW2QJX4+AzDmwtoQN1aSBidKGvsCzWmX/2Cb9VCucRRoXksxWflx2795Yfv/RSuZMBjPeq8OwwYQpDxzQDYGDrcElqgwXea9TeNmhsUy/CrlGOoO/YnsyAgcOGlueefa6MGTUqSsT15a4f1fh3B59O9MFlnGKLPKdw61Y4421A4AaC3gQa7NfD4L127bqygdnjo6Tv3gc/Pmq0Fd48jQNs8MuWdwNX137FwMFHnlNJ1cEG+GpcNVa01YBGZkn4vQMHMYGG3bsJNPSLo6gB0oi5BlkYGmYDVdKyBp1qBoN0lh4qQSO3WWNMH0nL3iwDoKryJcGXRe+9U/rc0jMzRs52jR45soPOjbHnVvqrRqSVJful0rj2rfTvMAxAdg32KVP1Pv64rMSwOQNroGE46XTOLtTBln0I1BsMYq5czKdrq8XZ67BW2qOboUHzN41JezXMe1g68RqBgDNklTyOPOko9sJ51+EQt6ZEzvmhrMYwwTPykrwjzon8o+rjeEkv/hk0WE2f/vbXvyaN7q6yAHkagvMvfYWtE2MJfQVEET2LDon3xZHgpEuDdCJ0Vpx1PI8DfpiZl89XrixfLF9Rnv/xK+WBe+8nWMq+KperA6oT2hnc8ilkftca+EQ5XGd0o+NvgOHSDfoehurZp3eyGw4cPsis0bbyJfKqPn3huR+VqROYkYLvrhFhh8HipMhj4nrxGjMAyEynruhN2mL7pJ50kN7STx5zdsJ05u3omQ3rNyT6P55ZlwWPP0FwalhHoMGZF/GVKsIIHLwedZAFLVRpA+zryjM3Kmu90Cf7Duwvn+I8b2KGV3mexWyXM1K34gw5kK8pmA09gAVuHQew4lRQj10i39sW+7w3WV46ugaPFrJE6wyO+lic3HuZWZ88fnxsxiXk3vurjqqwK8ZS3n82S37583rlAZ18+3nZihXlw/feS0BtGgHBBBqG3hbeUz7l69glYQHH3+JvEEqebAJ4nrNEb9Mu5cmg5pvAXkfK9GNk8BgYdEbKjLg4ZC3cfa4+7ZdQ31MdRVayNdEVyJv32K5tO1hW8uYb0YfO2rcRiHGZk05TI+/SR9jqgHwBVlBtwfC6RdrbHg/XsJsJ8/Wa1eXdt98qDxK0m4OO7EOfOMjvwDVP/st/xFX6ZE02cnYSB3rPnr1lOfZjK8H2l1kaN/Puu6PnlLum3xLECb2RUWrVxurgZeZauYf/vdflRw6iTWc248TBy3blCUe0Dzr4xwTCx49tSyDZYEBg8Zzwbm5L6m2dsK/9rczqvneGF3sRtDhOMHYN/sB6HMXjR46W2wnIPoJtHcxyTQdGnXnQgIiBQWcZ5R3xla46uPb7Rfgu/clvs4Tsge69ehIo71l2MJP2MRmaO3fuKLcSNLpv1n3lLuroQb9fwF8CQGxRg/vNn4DpKB34e4Y29ELX2MffrF0TedIOTUIX3EEQYywDMJcMXkJeO/Gg/pgZDd7jYDJ7igDD57Whyk8jczJTIw/Ofn/86dKyjGD1nWQeTcUfGz5ieOmL/VCWPFro5DPfJXKrUEUtN/WLl3XW5Z0D6OA/MvFjtuCCJ54s49vbszzOASEIRRdYh3D0o/zUjja+lMDl92Tw0UfKsgML71N3bdq2tfz2t78tI7BLT2GfhhNo6AqPdcbeXb/MferccIV/fYpDuWqdlRaer03iWuiE+oYnz6CHV5Jm/9H7H5QFBNYeYTDtPhDyuJwmXvo2flZfAtvCtRoogGOpR7gtlcy3ahMNfB7Bj3GCQ34/S6DhJy/qj00LLGU5egy+Ca+IdkUwNGu+t1qTvpRftTMGv5z42QbsDZs34zNtKCPb2soCAtVjRo5KMFL85W2LvK59ti/kCX0eSRRfk/rV9Z6X/rbRINFBMg2WM2G1lgGjvDb70UeSTdIPf0d/7Ab4G0ZyUkP4yk0oBtwsNeAzwUA/uRYepV71s76gWVkG1o4zc2ygYSa2aSp8b9bLRfi9CeJ3RS/J9+7Lc4UxgNkmCQQB0wwycW/qCz+iwz3/2RcryhuvvVZGjBxZ7iRYOqkVqNYfV9d0AllQi95Ss/sdkB0lLeKkpyKzuRn5Q5eZIbSQQO832KhH5swB78mMFcho0I+H7pAyGV7xv6Qv/kKjzxtfWzkNcOtI10gjg23dyi7k6HcE1sziePappwk4ErjLxE/VU8JqaN6Bc8BVmPal/n0dq2nL5eGKgz79Omz3G4yf7mWy7XHwv5U+NWNAvMMH9IG8I89Yl3ilLXxPkCbwnUiROPzlt2MXx14nyCxzkuCLzz8vL7Hk4AH6VTk3S7HRtT4m7Ib/xVW6GPAVB8d6BgUM6umDGrS5QJBJn2brtu1lDcGv7mQfPoe8TiJL1noz1gCmPrnBKf3hG6bYgqX6Uj4xMO7YQz6XV818MbOhL/r8LBnbBu3WMAYxaK2PcPzwkfLMKy+X5/H7+o4eZVp9DTKQsQ3QykA25gda/i6BhmxE2FKWKjIdfo2haYaWbRi2j99fVA7u3VsGQmhn1qdMmBgn9zRLE7qh1LIpEZ3XkoSWQqwGzHPpRj5lzkaR3MIAxaUTnzAoWvrR4tI+YUIi6ONwQs1o8CGdrYvMdjuwlZEyIw1O8FgYWngpVsBXmV3FrEPQh8H/KdJzXv3jH8pGsjLmo1wnT5qUFFujoc5+X2c2sqvCETDgJ5y/oTSDzU3bt5ZXf/sqezMMKQvmP15uI323GXzHyQeugucRXME3ioPGKXcqgXyhTlWYzypkCqmO4jIE8TUyJp4hUjbv4UcSCc3sD8+5Pq0qJYXGOloDFq7p0IpjmiP9raxVFFpnAQ4zm/MpKZ479+wrL7Ee/i4G0zpRKi0flLTiIuwENDiXgAZ4OpDwHo2Z7YpC47czmAYanJHaum1rlMjgkSNwFF9ItNVIptkFGoRuwO+G0nFjPteaW7rQL50Qbg2CzmHm2KmjboRVI5YHMTjfMMO4fs3acpxA0mzo8tgjjxQN2ylmZFzDq9k0mCFv+t2oNMPQ2ij41HZeh0cYCbUCDaTlw+8GoJxl/JQZqb07dkaxzH74oTiKKrhz586GHlFAOhHg3ihXqgn88Dj4J9DAdWlv/5sdIQorCTQsZHDhspEpU3UU2acBA6Gyt9+VP41QY2Aa3rEu+UXj2/CUVeY8ddxC+93n4/3FH5XPkacZzLhMw1F0cxodxWZgBCrQg1DOdQwGVHZmGYBR8rIJUsDsFyqAuhRpKkSemB3Aqdqz/wCG7Y/lJDO9TyJP4u2gS6ew8qIYpZk2FWA6LjhI0EMj4Lncp0W2b+RTFLh8ZX2rcP7/yz/9U7mTIMkzZEwMRZ6yjINr8qU09Xnbn1kYjYT18Tx/6ie/41zjHBocUW/IkwbWliNPy5cuK8+9+FMM2/0YGpxVAw00tKs8wqeBhsgkuIfJIwycUzkQZDCj4eINDBGM1atvn2Q5HMDZMtCwAodC0Xj5Jy+Wacy6XNdgXWSwcplAA7Cd6dLwXCZQ4fIFmdNaYtytFwqlb+ljZyPNFjl79lzZirO1gUDAenTxuElTylPQ3kCDMzc17Q8ZB770lcr+S+GcJb+htzQyg0e56k5/9oJnzD4yo2HT2vWR51kPPZhUcvv1PHXLN6FDBRUahyfpA8luf8ivVqluD/9yrjcDIwM96zduYGD0Xjl7nEBDextLwO7G6I+L3k2wl3s79JMAPVJjtRsa/tTP+fQzv6zH/Tu0DwZLF7G0zxTv6dOnl0noeNcfi4cDRfETUsMj/rIOHWVlV6fCYEqcLWDLh01g0BneN5jtWkuAat4T2A+c0P4D+lcHljZXXm4RhmctDY7117d/bYd0yyw4fK/N2Yqu+T2OIhJQniBdeix7nvTu3SeyksEhz0S/0Hd+Aj28Kb38l6Bd4MI38gy87qeycor09JVkT71JoHrOgifL/Ecey9IFZwH/W4v12S55QvincLB279lTPmOSYOvmLeUXv/pVlmYoN1dw5uSZ6Fho6XPaY3W+jrR8qh0XTvgFedLhl+4OjMzk24+jaHqqTmhfgo2vEAgf29ZWLjPYk+flcbg5RarYpSFNzvBTMrW+3xxo6EEwugYa1iXQcIzZKDfxeowgzOD+A8t54INIllTZFrMDFPvgC/4W+zyzitShrZKfrqIrEmiAPk2gYceO7eVWeOW+WfeXuwkG9IQG5wlydII2QkKVpAjfNqQdnvF8C3+/Nvzap9+t1Nc1qd6mM7v8ZTKD0bsIypoJY7Axa9M570ydOAvTpRQuubAfEmQI3dG34V9k2/O0rQeBxYv4RB8RJFlC1sHdOP4uhxnO0jvth7KmrWlKB76csA03l45rnJdPnSi4hcGVgYbf/fH1sm/njvLMM8+yPGBC6UfmqXpO/LV/6m6LPCPO8ZFaOIb23CPfeN1Bi3ISHoP3DTT8mkD1KLJjn3lyARkNZsaiN8hmuHaZIIy2qIVo9mbyF7RSczaH9LA5/m6CA7bdIMyKr74qH6APnmMG1omfWwgsxQfgbvH0PgM+HYEG+N2BUBcyJztzKEd1ppf7qcRJJXkpqd5MbHxBxp0ZCC8B3yxKOinyYB3aCHEHvfBI044A8nyuep3+bNGrG/r3DH26A9gbNm1J1sHw9raaYTqSQAOyKuz4dbZbpPzPp/5kMmKAnfrBJfqOirW9BgK69+zF3kcEGpDTdfjYBmRmPfJwAg23wE/nGEzeoD+7iw/0gUihrX+1Q6JslmBsoN+9St92Jjik7db/NBsjgQZmqUcTqL7//lllOpkB8vj5Myw3Bn+Dgvp7ntO/vIpNN8jQhcMG2SfxZ/iubrCOngxAaVD5FPvx+quvBrayZKD6NuyHetJAhrpGWav/gjIAvi3iLo+DeYVtu6BdDTScKu8RJPmaOh6bN69MA+/Bg2pGdfiGh6KzwUfaarPC78CKjaXW0Nx+EYfWod+tr7wXHfxfwd0A6QsMpp34kW7KRuABs5nYbPAXT3kmfd2qJ3UBW92sLfRZ9fdabPefCMLch35cMHdeJh/M5rKEz8DbPrJIgZsDFsHb+/iXOvnrWMJ65bvjjB2Xwe8rPv2svPIP/1AeZOmgdzo2qYEy4HKvYw/Hf7HL0FWf0fZJj5rRcCWZK9X2tQINZHps2Voz4nqgX1748U/wOcZnSY3LauJHg5s6UnjWE/oAXxrYN7bH/Wu0207Muuym/6CBycJfTaB6lRlx+Acep4+fLAt+8uPyLDrtVvoAhAEOYzMeyqc89wMuf5dAQ2WCFhX4oVCabu6gV0W3gUjlB++8Ww7t2RvH/6FWoOEqg0MzGhJooBMczDkykVliPBUKwAY+f8LYLUFRUblTsEz18WefliULWZc90UDD9KxbN9Dg/SpumdJPZ3kapq6KtGVIwdF7G2FRQBzw9iYocoLBxe9e/2NZ/9XXZd6TT2St/RCyDtzpV7huVHNzoEEqfNdotijzZx8OmmTSjVu3sXTi1zi2BBqYZTRVz2ib1xsnUNz8ZxHHOFjQwaLjpXH1vEpdw6MRdfBguvcyItyvE6F/+sWflHkPMSOF8pbxFTqFQepWga+DTwVIAU891MGtle6pTRzqANion5kBS5Z9Vrbu2FVe+cUvyt3T7+BeDTeGvvVch3zwW5QbYVQRWKIYudnAhnWqANy523TszZs2lc+XLSsatpcIlIzGiVYhGlHMwB88E2igDzJYsg8VTOhqZc3Mq791kHSy/EygAZ5cx2ydqa+zna0j0NCfmcCz8KO7ysYRBV4nnBcdOrHtCkwNka2QEteAew283acBdzhpURoHl3x8vHhx2b1la+mHYnmYjWruJtJtfxv8yYBOYgDfvlUR2tcp0gg62CdR9FzjltDGNe/etfLrr8q7b7yO49mFtdNTiKKb+mqgAeePPs1zwLMvfdbzlvQtJ/wlrVWQcdRxnuyPXsC/AH7vEUFfynIbAw0OvMaYjo3Dq2PpjEsGVQw1qR56iJH1yKEO9hVh20R90orDrAMVbndmCHaT0fBbUulOnzhFOtpTpY0ZBuVYJS/v2MAKSSoH6eANuuAr7eWZFr24VwcsS0GsG7ldTaT4v/y//1TuMNBA4M5AQxxKntPwy5vyvXrATIXQWXw7+N4BjNkkDnSuxtirx5pAwzJmLz5b8ll5/qe/ZOkEGQ1dSUfGKelKgz0MMhhsAGmO1mdoxHcZie9mNlzCcb3CeosefZiZoMX7Sevcsm1b+RyHginO8sqLL5fpDHiv4+RfvWCgAVmVF0MI2grtrwEneyZQl21Spm1PgoS2D7xdfiDPbQO2a8rXEWCbMO328vSCp/4s0GD7pX14g7/hGX7XNnieK8D2vJlCl6GPs8dm2RzAgVsB3lvWb0zfzSRD6H4GGb0JBJ8lsGZ/BZ6dZx0BBSza4nnrNgDkd3GPQwdP6mg66+JM2qL33y9nGZyOwVGcea8ZDRO4l0E+Ojh9J73FknOpizokv7woX9mUVMxHE+RUnuznZDS8+w4zUqPKtOnTmJGaVG5DD2sznN1SbvI4fJFgnvCAX5extDKFgBOHgxtti/LUl2WCJ5iRe4PU1HVfrixz0e8GGmpGgynTVdcqOxXBVFPxr1//7K9ykQLdoivp421kCf7+D7+PXnqSGdjRpDOb6ed1AyDSQl73t3SXRpFV6pbOfve87WpkQnnKjBEOkIGGt7B/c+CXx5lpNKPBAYvs0KATnP7FP+Ku80xwhgpdOrF3397yGRsqbt2yufyyCTSAk855+Bk6SpoMWJxxoh3NjF0GNrTJng1V7Hd+u2eIPsEeJjU2bdpYVjBTOpAlQj97+RWCVO3lKoEvB9PiYBMUzZClhX9gccLP5ru9Hw5AX3SHJ49Cl9U4iesIVB89eIg9FGaWeaQ1DxlAoMHAGjLr8gYHvh7i7bI0SzLUuCbRnRU10KD8m43RpQdLFbhvx97dZcnSpaXJaJj1wGzsB0sn0KEXsekGGhD/Dj+jaYfwv9sW+VQZgCFLb/gRZZj18K/DM+I4leUNd8+4p4xra4tNdQY2REeHNXDl0/CJPATOFmEmWMK1zHyra5CnK9B+0ZKPy6K33ip3QRcHu6NGs28IyxKVi/DOd/AUXvAOwf31z9uhXJvSvY/Azu//9HrZu307gYZnyuQJBu4GxB/Tl3BAoY5X5tX78rU96acyYFvMALDI77bLdkRO6ItNW7eR0fCbMnrcuBqoHmxGHOSTA1iuRodWXBUazoZKfMfzyHd/12w7rnsP9dosBzSn8S0SaEAf/IhAwGNkfvl2CH2XcJu4MdDWhtelE3XXfHkmdg6fV98hB09YbKP67DhB2D379mRpn8sff/LSy+UOMh2lh3U3ukOuD615NmYpUOqfnIce0iIDNRpu4O4MGQ070DPrWWq6jgHScIIw2g/3g9EHto7wjDBDF37KF7S99oE6tw48tdGWqmu6J0DkHg0GSDYyw2s200w2iX6QZWZ9kbUzBtagRw9wcXkigNMWgwwJBvKZJYkgrxxFTtUF9K1LD5zQ2biFpRP4M8fJchrT1p5AwzQyA/Tlzp0+k4wGTbOjAfWKwUH1TJZ04ufbtgQy6fv4NvYo+GRjQ1D6lMmBP5GVPGZsW4J2LmXV7zBYa1DTTAl1wPfRPk1q9U7aA7wEhMGjLp04Wd4haLeSfUnmMnFyO4E7N5o0o0H9Lj/XCRjwhraRddHj+arzq31tbJjnHD9If3Xl7j17y6/BXb/vRyy3GYOPrV/kxFB4hrYrI/KyMPliJ1QepC8sjWwJ23vtY7PanchcQ4bpHwhkGGh4et78VkaD/BiQ/hXEtx/W0dTFZ2yk/gN9qv+nf2AdTtg58aPt/hId/9Nf/ZvyEP6YOBrIiM6SB6U756o9wc8Fhm2vfMkS1JY/6MRxMsnRb45taqB6W1nJ+KkTwaafMP7I5DiwnbiObgcP0Gr1K73b+l4bxHnqMiNTKmmT5Bk38jzN+GbV6jXl61XfkNFwkqyVU2RrnizP/OyV8twzz5W+Y8eE52gwTAnQWkkD9gf5+a8ONMgwjfBFQck4KgOYTYeFHiZSuSp7NBxm8HgbQjKbyNNkhBEzwIyR6WgwkoaNjmsMv+YBSK2/Mru0D+tDdxgOBdIdp+cS0daPEcLFOKJt49nYiAj9OD6T0QAEBwtRhuDRbMYkMHHNjD3fE0Xm04GgjGktMmJPnGh3xn7tjT8RLFmdfQ5cI+VmXs7MOHC5zoCh8oGUAGfgNKXi3/z680+dUhneaOt/JdDgUo+ncERdOqGQh3Y84myuQlKzDypNZV4FxqJR8k0D4m4UvBF2jddZBuWfE0F/G/zns1mjhu3W3syg2kLwzKw338XTwE0NbuD8ItgKrMIdo3ZTmzyvYVaYzWhYQpBnEylGvhViBms9LToUgOXZalwysAYWbgq8UmGbqqQgagRVCgp6k8nhwMjZrjiKOKKjJowrL5MKOJxB6WWuXXI/BnDI/gAg3wWYCViIJzAdfNUUN+qDTK6p00HKHg04RIePHkHQVzO7i6NI/97H+lozGgYSubyAkys/GoF2LVbjNMorMUShFd+g11Wqu8S9vn1C2C4BML12JzPTHzFY34mB60+a26Pz5rJRDWnB3KNCtz+ljX0sD/g7wRlg67SpseTPHLaFevzujI60+oI+XfjWG+UWHNPJU8lowFnU6FuaTa8iKzwY2jewuC6sZkCfPgZ37xUPZ+uk73sfLiJwt5BN/ZiRun16ZgIHkN1j3cI3Xf0GfN+rJ/iDrufqIFd3TP6Qw+hvaCSdDDT46cB31559CTScxWF23XTbmLEZGDmgjHEIgkKBFjZIXqVeyF953r6+CnwH89zVpVOVI+/XiV2zYUP53e9+W6aSXfMEqepDBw2OrrD/5HcdOWewlPNkB0AbYel82g8xQuBiUQ8oU57TUJieaqDhU95W8vwrv2CN7SxktRVoAO8EGoDVFRxhdABoYsTTg+9RbnynLVfIp/TNDd16sc4TGd+PE2SgYQXwO93oQkbDS1lehodTrrUCDTd4u0+wkie60W9sUmIwLRF7ZE76ySfqgBhUdKTpn86kJdBAEEaenwBtnsFR9C0uDrqi/3hWNPM8dAVM+qAyDNVyURrTmfS1AyP5lywVHDGXOX1Nls22zVvCC/eg32fee28GpS4VsksdLAo/g35PBFTFU7x1TjJQBHftic5z9mhARtxP5ZOPl5QzpNubXeObIbQfAC3X4lS0HCz5nHq0DzbA/hOW/CNHtlqUurxmGqd61T79CH5Xr09l76DJOKEGGtShkcuKbodsOii0J+QL6STfKUNxXqCSzjKYZBb3JKmvb5GNYaD6EQKOUwhiuGmYe+UkYAaPVF5uVSKWAm2Vb8+GfKnHuprZwu0GGsxoQMaeSKBhRBxkHTJ5Wj4wAC3EOPl8kT7yTBxCKkjfiDHX1MEeBhp849KXBKbeYwb24Tlzy9xHHi59WTrQ8Fk6tkH0X/i0HeIgjcTfQZdZa58xk+nSiZ/98pflHjJV6HhsS10z730ePqd9MqMhhXPWnZRY+F5dn1k4MryUa/dt2s0M7MZNG8tKAmCDWG//CgOvMe3jynWuuXGw/SNcS/Pp94beOv3N7wzW/QFdumP3j+AUGmjwld1HDhws9957X5n32JzY8KvnGXhh0xywN9kMPbB1DlrE2aU60cnaI/kHGZU33f/AjWF1/reD+9LPDDTsZOlEPzaBe7Dcw0xpL+q/wMCoI9AQDMG/QZrf39eW8D40MhBgdHg1waM/CzSwxKG9rS18EZ8Gftb2aVPF2T5r/BH7Q96XB7TztsXBnE56dwIZ16HtBwTZF77xRrmTJU7JtgP2QIIw0bH4KpYOFv8LuOceu7lpkH2MLt6Hrvkj2XwH9uxmj58FZDSMzxvGpK++UHwl5FY8lU/5X6pUvWggvAZlrVZ/x2vhs1bPOyj9AzOwY9rbmfghUE2goRMETkAduUfbihoFxLSdfnI0r63zd87ZwA49VAMNp1guqO3+aNEH2dPqUfwx/Z4rV+pG0/qONdBwJbZJm+gg3iM+L7ZOLypF8NRh3+iPudHkHgJ3X5A5ZSr2C2yO56A0gQZ4rg4GW1zvs2LdQdwGpASvcEMv8O/MoPMcgQb1zAYCDRvWbyjDmNRolk7ov9mv6jKL9JYf9VuptPYBnzQtOic81Tov7voEbob3JZMnW9jh32ziGffNLLOY5OiHrjnPgLIzsJPRYAWxqZUv4uNp/0C6BhluDjS4xwGvP4UHEmhABx8nc8JAw0z8Gjfn1sczMNhkM4Qm8LP2AmQT5HbzPn9fwd+p45zaDhqat9JJsM8IkryBDnYvEvc7aQIN0t5gQ3xH6ZJ/NkLa108/6qFF8kKlv/DVaSeweW8ztlmJn22g+nbGN25UrP1QVuX3FPCVtyW0fdAc1hmby/VkhvI7fja8L23cePZV+F2d+Bz+mEtwlfXGFxenRt+nb6GZdcSmWh+lyha6i3ptRewa1xx7OfHzu9/8ls1PZ5enmPhxCa7+hrxhySSbvNNqd5XFaifkj0amM15Cz4iz+GQzYXSBLwJYBe+8zETngwYalAfoot1WlmI3eK7JvlIOxFPY4i0u2kH50MM2Ol7Up9m2fUcCYNe49ydkmE5h4sf786YucBCPRkeGNtKac8JtfHt9GkifQJXBL7OGXZ7s/gzfaD/I7D1C1vwpxlLP/JRAA8GeQW1toU2ca79Jqha96oUf3t+/S6DhMgxlap3Edc1yRIfoX9dOBBpQARvclfWDRRjl/Yn6z8QAudGZO0i7/t01yK6JUtFW1d+iLRSWxpzmgIH9QmkCDZ0w+tcYAHxM9P+jRYuSVtvs0TCU1CU7X2aQ6WSFd+eRAABAAElEQVQmmctzUSTAkgkyyIAhdVrMYpAx7VMZuiv4HYXh3nj7LTaDXF8eePChbMbiLvy9SZtqjLHRO4VZE2MR5++WnKuXc0n4VBIny80gfZ3aAiKW7larkGtUvW7GhMrcNqhUkoJOpNZ2WGR0BdtAg+2TWLZVB/rChfPly28I8ry/sDz02GPZzMt3RQdDGhmaQh9xTxAGgYwCieA3tFeptNpFI6xXhaYwHj5CRoMp01u3shnLT8sMZtYrfbmfe4XVCLKKQhrYBiE7O+G5OJXUZ5qaKcES/yzO1B4ciY0bN7FHw4oyqr2dzfdeKkNIKbrBoMm6zZpxVqendMwgpipZTkXZiXE2aRQPO5TDbAdnjEwzXIugb6BPfb2PA2o3KM1g2kGomEpflQqBh2TntPBPIIn+cckEhAZ/HEeUl5F/nVC0VdkLPT766KOyk08383Ijzrtw5vD4y1WCPxoI+8j1iXkdG78T4KAdypDoSsAofPuExqjAu3A/nkM2wPmAGdi+fW4pk3kzxNSpUxiAjUg/aahVdBb714ftkxw6PhR5xvqrzwRkbpN/upDRce3smbJwERkNHy4qd+D4u2Z9bHtbXukqWXSefSvI9etXCLbZhzpRONfAc+AJ4VCqOhnQBBp19hwOUuiPbO3cvYcZ2D9k/5BnWBPYxgy1M7DODmsIq2y2Ag1pBsjBR3ZxeAte1fjoJKkHDDRUTqU7OL9248byJmnBEyZO5M0NbgY5MHIufJ8XT3nSwZX0lc7yv/LloeyZleK9DlqVNyvP6y3hdyPoyxgcPfPST8tsNmmrgQZ0nzRETurSCfBVZkJ/jTHfPbJYk0+7AcL51oZOBIvEZz8DFjeDNIJudOzFH5GqhzPEiB4CY5gJONzwgBZJGe0OTU2tAzcdLfWc7bCP0v+hF6mr8KVG2Swb19du3MDrhc1oeGpBGcreG+5i38yyiq7BpxqACihg6jYD14sdRYcC3FtBHtfDr2XgtYM61FXu7XEvh4NSf9v3GvcMbh3EBFcgeF4dB2zPJZ2T3+piAw1N4NQU+GVkNp3Bmb4N/XjvjLvZlLcGGhzYCDd4Ak+Y6vUESUE5jkyrPmljSfYQ382kcSNPnZWPcf4N9k6ZMhUdP5XX5t2WmS77xscambI3r2HbMjCkLttmn3hdfKm9tpk29cap8k0Z7xLEWE+wfTYBTZfeDWWZXPZbQe81tIis3lRPgyunUhrqN4ET65OnHQC8hqOok/TE/Pl5e4ABGumqrnUwZaDBeuwLn9NOWJ86wN/SSpoof8qE9+ukyTff0K9mk9zPevJH2aTNVwCri+SRBucGx7/l0wCIuJxFz7gJ1ufodwMNzsDewy780lI8vU9+CL9zLoNz24wOUTbV//JtBu6cd5lNVwfztMVXNO7ea6B6U/kaeepPv774k59gR8a5K1+cf/upxQ4dn+Lf0DnfWzd4zn7vBI27E+w9mkDD6rJm9ZpyiGDJPTPuTaBhEPt6gBRZSMxkMjiTt7QlviWjLiMlQOdSHGgfHqV9CSzTHsd8WfIH/m4GuRS7umvXjtKH4PdDzAa6L4l74VxksKrdUYWIXlC8CekWylz5ti25zIVuOLkQj9cjsxyGrAD70LeJmBGnHgaZrIevg1vTx+uA3SWqblprvfKU8MI/8XuqrxQn3UAGPscHLLt7n30UpgNX2OPHjy+34t/cgC7K03fLzTh/tz25NyfhW/wDA7JvkhFwGLrPm8dO8OPGZelEBuzgZtAvg1we1L+IHqedFvlW3vNQbpURr/tdfWMAeuOWzeXNN99MGvzj8+cxYUWggX90FQC+9fF8hk4EorCRBY/W75xLncoW90Awl/MYXPuSQMMnZHwsYOLnEWbu7VMzNNOfjD6vIXfJpIPXnFm2PfaDDGKQIQMu8FZu0wbk1ftdr26gYSWBBmd6XVN+uxkNPJ+AI7ilrWLro/nHj6aAoy1pSq7Di/K8r5jcvnNXaOMG2sNGjUpQcxSfzWBXPG1o/FqANJNN4vlnfSDvc87glOeVc9+49DU86at0XSai32EwYCBBNgfqmfjhOccKIWZILr3TkNg/9THWMf8AGrnSjpvFuhm4ZjScYIJpNBMb95DB42aQ2iSXP2eJrH4/MOLr8mkgoOEN+cngcuNHRu9RtROR4rMcn8DJvJEjR5Xb77g9gYbb1AVcU14Q+HyPrm0ROIEGYHALOHv4l5I2QXdo3wX8T5PFZ6Dhy8+XlTlkBNw+bXpsoHs73YAvlKeMAeRr5NNelLbhfWClTupxjNDInuOcjKFo/849e8rr+Eu28SmWCo0i0GC7tWXCEb/0JZDjm4oj5zrkiB/yinbGOm2FeEgjPx1Qv0pG9YyZ9zGROj8bFTt+CG25Vxtkn1s8pxx6zvo9cp12Znwj3tQhXIPgB9EFK75cmcmTF7AfD9zP0gn1FLx4CT2UbBL63/bar9G71oMshP+gT/V9HBvWZfXKq/bnCLyykw0av1j5BUtUO5Ufu3SCCQgGA4z7pHO1n1eRV2mrHofMkVdpHt4DVvoHokg7X/tun/pmN9844T4NvkXHbNZDZPo+Qxuee/45MobagEShrSGogAPdzx9m+fsEGoj2GWwwy6AbwQXVLuzGBi410OC64A8R9EN79+J89smrLceTfnUrGQnu6u8MgO+3lqshLc8rINC5RdwwLddkFiE7SHA2oC6duJg1tks/WVJGMuM9cdJENgxrw2msr7f02SbFqAk0NIIgQ3g9xtO6NTwtJS7TyyyHmcVciBO6Y8uWMpMo66SJ7EjODElSlxBylTxSB151cNSwQROx7PjdfPFTxlMwqWvr9h3lddYcDhw0sMwlGFDxrhvZyPwKdLMxnXg6EHKWUtLI4DpiKjJhuWxCGmlY/PQ5NxxZwuZ+MxkU3ccso5kYFgXKIi0UQJ812NA4dl6Tv3VAaxClKi3p4v0O9o8QhVuOo7gNI+RbJ4y2SlNxDm1buIinu4jr2LgRjNddemJ/JGjA76Sp8dtiRkM289rGGilmSm/DoD3PZpYqwdM4vw5sxd6ItPyTNZR5EuEHtww8+K1zqHGo3Mi4DBzcbMtXzrmTvUszjqJQbicKbQR9YP8BjONxDoULPc0UcT2WEW+devlTesUZZxDtWy0uMDi1HgNU7ijrLIRphp+RZbMXh7EvKaOzGGDcQWaA9HVZiP0oDeQvD50QDZ5wVa6V37/NePC3hzRyoOzr+JZ8uIjslFsYUE9gQDoxr5rymrv8Kx9xcOw7/mlQq4MC1XBYbKM42E7/6Yz43TefuIHo4k+Wli+WfVqmQZdJkyeV4QQxTH3VGfa5pI6hcE37pCrwN1WNGQDaQsXggPEDbgINtNlzHrZv77795Q3Sap1JmDd/XvbdcEMs6atRuQFcgIX3ZNEEdnDwxM92JSWPfhHvakxrmxQqn9+8ZWt2mG4bN661S74DI+M/ZMzA49LdNliMMAtXZaPDJO3kyaR3U7k8rD6wuHTCNYFfMjNt+uv8535U7mEwrTxmxon2u0dDsxlkR8CBc5UD6QmUQv6Jsm1BB3Ql0HAZfA4ddjOvXThcXzPA7VSeffrZbHhoFsO1S+BrwCHyDgSfJcjg8+kA4Nou+TOEsx7rpWkGGly+4EZhW7ZuyaCubRJv5Jg3Nw6LaYIaep+XTqEzD9p2Z/ICE/pD+NoXVkBfOjNgoMF+UEc6qNtNHdLJHabvZgbWZVoGb4Slfqq0p49Tl/hVJ7Thb3WLjoT6RmfEwYv3uOfJVwwYTaM1GHAXGTzj29sj9zoF3p+mizO0kfd9zvZYZxOI8Lel0qZu1qgj4J4nS9GRA0nBdhf+yZMmJ+CrnDTLD4RnqZpebW9PVljC03kJ30APdZrnnL3RqVjEwGsjA/aZZHr46jPbUDMaHBTVvgJS4KWWVl2ASvkWb+ujZp6RVuoaZ6TeePMt9Ea32I8Rw4fxvQbKdBCTtqvDhowrtzKIdLVIG+klrDh06j76KTOpyJIBxXXMMi5ZzH4tLIVxl3wD1dZf6QtmDXItXAPYczf/zsn6R77RqTWw6syrr4vdhm19+rnn6dfpcWov4Qt0pO+Co86nzp19rAwr9/5Q31Xdcz0zRaYay4/qMJ3QHTu25/VkBnyeJqjZTkqqmQb2+V9A7yZM61ebot5Lk9ANboDqHg0b4Xff4nKIAOF0MoQeZnba/ZXE04Ghyz+ciJAvdJIN3ghFXRto4dUaYFCGI0+0rRPBx1179yYFfs+eXWmXby3yrRM96Lfz8JN6gEcyGKpY/vW/4m6J7efB1fgEHzD54EbHBmR1oLWt0lXdqHyGH5Atbbd+Vl6tCd1iN9A78QNyn9YPfqSN2o8LPLNk6acE7t4vU6dNT4ape2P41gk3482+ITzRsLh4pYDkX+0THpAnDqIn31+0KK8qfOThRxIgMTPJa3Hq1ZH8kw+0e1VP1f5TJvVdwvfAc3DQ+Hy2V39p89ZtZSG+6ih4JVmOA3lrEc/EpvL5bbEDbgo0AM9aPWxJMyi1fh8zy8lNeVet4a0Tny5lI+T5ZRb6QD/j0sXz6U83FDdYbhDNvtZnEi/ti04GGAdfcQ61qEq/Q/lw4LWf4ItvpHIixUCGG66nH4EZrCQ6R/75tWnM99C+3gMN4RHlaTc8uXX7dvb62VaGMtE2B191FJ/NBJg4Snd53WetN3o2vM0Z6GB96RtwCN1betqMBid+fM2t/DWFyY27sCEDCLKZLan/BVFifzpwbrVFoPa49iI9bxdRp32bLCfo495HHy/+mH2hjpaRo0blLTEGqJRN/S6Dl+o8O0p+tw7toP1WeaYVnGq1RR6yuMePdX6BT7DwnbfZNHs4PM+rM9t4PTK6wJL+BLcAA7KwPW4u0qRCbJ2lbm2Y9sS0+kXgvopNog04ujl37AcyKb9Lr4wDYgOrHaqDaPmuQk2QHxz0ve2BLBEI7QvBqf3lXbI9LPPn+crrYUFQvyYBae53MC7S+q/VDlYZqvVWW9D4mMJRv4du0HI9etLNIO9gom0eEz8uJ1Rvqz/kxfA3baiyyAbG9Lc8pY3SN0Zgc4/1Vh9Q+1GXTvjWCV8t6oThE/C7ExDJbKKt2mB9A/nMdlhCD0gCqJwXZgKT4KMcOSaTT9UDx8k02LN3b33rBPc9zTIts6fE10M6qkfsA21yxgcQKRuOU4d42IfVF6hvwzPQoF6wT/VpNsPvLj8/eORw2bN7Z3nxH39FJtILBMPahA40aCThOw6+/kDLvyrQIBt7RNBbBJAsEsnIT49OzPoSZ1xD+uXCt98qu7ZtyystRzArNZyMg54Q3iUoGk6PqGkAVmdX8noRUCoAmMuOtb5E+2AMZ8UvwpTfsFZyJQPeYexu3NbWHmUygDXlAQ3cZuDdRPIyuAaWjNYcTT3W5SGTyCxu1OHswj7SGR1YtBEgUdB1HHTgFXSVawZBYKdv3pSKff1183nPKJgK2x6Wkyzi1WpmNMy6j53aUV46/gqaitK22m6ZW4fZ4IOb6Phbh0ynQBWeiB8C5b1xBmibynfj1q3ls08+yeZ4d6LAdcZUlLbb0rRXYRRGaG1/hNL8BUbjWPqMgus9ppLrKPqqLKNy8594gvfMtqduFUV6jyqCH8LbZDCYSt0oEuurjnbtC/GxDhWE0X+dRdcE9iUrYM6jj2Y5jAZV4U6gAsWgIQKhluKQjapR4FQcRADWNnFCZ+QWglunzpzmlUeb81q108CbhHHQkeuD8naXfCmj4RH34Aqe8oK0NcIubOmQJQG0TcVpJoEBIO87QIRyNUttjvB5S+8+ZTqwx49rt3kEUc5FodVBVDUGCSRBM5/1aGZXGvPT8L28Ic/4buLlny5lZ/Nupa2tjQg6S4WYJdWJ0/H2Hh0/+cVu9Lf8pqGwGOnVAGamCufSDTalaf++zCDwqeHcuH5tXk/m6wRvxeCbhphNRAOzZVygrTLrYExF7Zp65eYcNLyscXJAAH3kBbMdDMQYnPqQgYubbs7GgXZgpAOsos7eLjFS8rR4+6QdqQGF5tSnEbM+zsYxbhyY9DM6wk2rDKy1jxsfw9ObbAn7R/5WZqWpzn6lqUa3psw5KJN+jWGKHHHOYl3SS4fLNyB8zUzmrLnsAE1qqo6Y8pbXW1J/3jgBvs2ngZK0IVCARDvUYmZ9OIBxJ3hp5Jr1fTiKpmRfvngtb6BpHzUmmxFevaizRXuhSgIf0EFTd02lwncx1NjBsPwW2/pb3aG8K6uuh9++Y0fZTfBrBLSZxbIPg5tm5DSBBh6M/Bm4i2Mtzg1ceF+4/pfmnQ0y0L8GBnxt206Ca/sY9BoknMIAw03geqmfMfhVb9QgprSSBj7nebGX1vJ84NLp0UGci77m9569+9j9eXU5h9y647ZLG8YwMNJOKI81kABY7g3v8xm9Ce2F7XX1TOjC3/AT97hHg+eddVlGoLo/wbTxEyZkRsq3laiHgj9YWhcIgjg4o3eyNwZ6Un60Dtvizve2x2CLbfCVsPLMJyy12USw3UCDrxH0FZG++jK48az38r+WVCMUivVR5Nl6vfXJD/nZwd9+9gh4h4GRM7qPkmI/GLzDI9xTbVN984h4Vqen0ZUVtveqG+QBr8v/TbDT9vu6v6VLPkmg4V4yDqzTe///FumkXhU3MyakvZtBPrFgActK2NWbOuVX22OQTCzDH8hLtdvqAjLi0Ec61AbKHMQpx8qiRZ19Gl4xY2I9TqgO3sNkY/g6V4NHynKYMHf/C39AoHIO9ykX1HEafbkPB30v/H4YHT+2bRx7KNyZja4NTgdP8JW7tXECaJzT6Ct5iDZoh9VNCR7x2/Zq23U812L39iGzbsY3/Q5emTdhIjaJvTPQrRAkz6cHG775q83wpqoLJKiD6c/ZhNMAr5My7pbvW68s4intxVs6qmvlNeUqr6qFj9Tz2jpl1gCt/G5qcn9moLW/K3nFojOwk1mGNK69PZtnG1izz0N72vrd8tfaIv/Lp3ldLDP3ZrAexTd4gCwbB7vZtE986Vt5RX6Obmnqqc1v0Rxdo/4Hpvc4oNLPUga1wzt27SYbcXEZid17YBbp+wyMbFvwa6lAv6vVAcA3tXv9ns/v/A6/c5c8oXy5se1nSz8pjz/xOK9zvTP+7wUCegYZYt+u1Rnq7iwDMhPGiazoTHV/S2dap3QWZ3le+qh3zWRwkzknUp7QH8Pn0NY5+GnuF5/osmAu/kJrlfASf/hv0+Rflz+6TNY3Q+zeQ7CBYPWQESN5nevsjn1s5IEaQKr2VF5xECpgvwun6mj1l3Q3YFJ1tcGtYwTwzTrYgw1RHiag312irL+jvCZjWHg8awnZBe5/fiR4pI7neoUv3lWPGZjcjf34gvGBr0ceyiShWc9ueui9ZirK3+pufyc4CM5pAzTOYLpVp3VZqXxv0X5oc9yA2gzTYWQImrFmpodBa2VJv0p6ttDlo4U3n/Zb/S/eAdnRJu2Xy4vPnDvLmxW+5G1Ra8sMJgrNPHJjVfEVtnpdXKWjujsHv6WF/aI82D51rrrVEt1Jv1IFvuphAhmLQ0c3tB2CHpBXAhPaVR1lEKnqMvFKf3KPshx6A1PetG4pZF2e97qTkIs/+rBMZ+nw7Jn3xn44sWaRdqEB35VBAyte0x+V1gZE9Atjn9BD8rF4WZft1lffsHlTWYs/dj/86Bs51J/pR3Cw7fV+vUnZp9JZHHOeOpQt+zj8CF9abwINx09kaZ8Tkp2h9dw5c5gUGxUZ9nrtVOQavrPdjkd81vGNPGuwP7AI7thOdSZfEog1UH2IyRnHTdqSk2dPl20bvyn/w//0P5cXX34J36aNHdCq/YCT+SfGHj/c8ncLNKiDmwKLRTn07Gyg4TqDxdWs83yLjcjYfO/IUYINnbPxXmajoZ+bssgK1SmHwWBwB0UZvCswGO84CDCOxY5TwRrxcjZwM4Pprz9bQcrJMHYLHsf7bHlPOUpAIY4xVFkBR8HVOXHg3DCKHajwRDBQDCoHBcU6hK8C95VBB7fsLDMefaC4bMJdjmWiU6dOxhjrmCnMwjFKKhNHgcjYCEQT+WsUvG3wHgVIhvvs7ffL0Ams70IYdZjc+d80QZnTAVwK9Qk/zgj1uUmZG6IozIq39WewBu46ghF6ntnpwOujpax7q6/d8T6Vufh72G5LM+BSiXhOwyjtgrv04F7bJlyVg86F68c2MSA9vPdIeewFMg5c842i8Bq355kKu3tmOxzoOaNvloAlMKGBKGSdP3VKo2YtvYOvTWu+Ym1p/3LvfbPqDCEDVJWMb2AQF5de6KhlPR6wGqc0CoR+Fg+VZRwo+rMPfOHeFdswmNvXriznTpYyeVbdKVjDbn+LUII84Ch9HSD7Lnbr0QmOAkc5STOXP2hkNVgqOfdpkC6+G/7k4f2lZ+++pY00veEYOHGwz8TV+/wdJ4A65MNbGHT2Iu1ZRXZz5kN1NErSznQ8d9GnX37wASl/pYy5nde54oT6KlYdAp9TNjykhe03OCXtlSnb4P4IpvCapeB5B/1G9h1oSStT7HetW1OmkYkxhPWArhvWKsUpBtM49fYbNKhjXWSle8+kL8tNp06fiRGAYQ05gkc1JMqk69OWLlmCU7GjPPzonMyqmx2kY6tT5VIh5Q8VQf8SHKEeqg5fKFRuRinvi2cGVDaQSpVXv7oE4ZP3F5cJd0wudzDT6EyvDnNowHceSz3ymHysk+ph2xy02g/KmTT3uegDaCavGhzYvp2NPr9cW+bMezBOtPX6rCazM+3sxL2meLpxqJvcijv/wbEaPulvGqb9DlQ2lOJVhOgl18GaGbDmS/YiOHKjPP7C82UEeuzSBQIBHMqeS9HsV9vtsw521SOByWDrGk5qiMFVzzlLEONNXYcYEEnz3Vt2lxHTJpY70DX2xwUCU+rQqgcICAFP50wdbMBBeL5Z5xrriKMX0yZprX6ugYYzZ8+Ug6T+7d+zs5zafwh5msXM/YQMWJ1FV6eod+RHg77ynPKlrFuvDpO05raqX5BbnZ1Gpx5mFnPz+jXlzKH9ZcDwUWXcRPbJIVjt88pidaKhCLirL5M9Fb1Z5V59GH0ATZqiLMRGAEP7sXTh4jKoXynjps8sbe3jCBL0S0AuuoyHpL+BIe2HafAOOIV75Sop5gbVaId2QD5RlmzXAOTJQLjv+v5m1YbyyKwZeb+6et1AZkfwHLyUm0YfZkAB7QERHfwtD2olKVxQBtUVR3GeF77xWrmF4MUDDz8aHRn9La2hq+3UsfScPCeRlTV53NIMfKW/elneykwS17S52o+3P/m8zL3/btZ8TwtfOOAU3s1FPqyBopZdoQ9rgKc6nakN2ljyLM/rVJoJs3bNprLg2SfYGHZ0HDXtnzirJ6WJxFFWtUXiJJ/4Zg1p4KvMknWW+it86WXbDTZs3bQBHrnExoSz8qrbyH2LD2LrgFsHPnWyQPzULTWoIb+0cBYNzssD6lkD4WbDHdi1qQwbPTmZMO5/pA5LrI/ntE/aZGVRG6E/ox6yTZEFcHSJivzrOfnKNruvhwO6g7u3sNyvRxk/ue7BI6yaRv8t7cWuw8kHhjhqH6XBd4v08kk3Wl63cmm5deCwMnzU6NgVg7016M+SH/jTQEKVy7qMxW64SFBS2H3hNXWmdTh4Pg2+fg5sBbnM9lj96Rdl6sw74y+5TEjZsM0eICnjRXdVfwngVhDcobH33SSrtkm9Z52+UcGNZw9u3lVmPf4oM8e8alynnv6PXfZe6F6DDfJk5ceAp0/sH9slze1a9ZBLjew0Z3yd+Hnt3Y/KHRPZCwafw8mHZKHICvqN/udIoJV6IqvohlwO3pXq3sP/HJ6R16x7K4G7hZ9/Wn7E5qHTWPaoz3vxO4EGfUYDeupuaVHtLn0rPP7In9W/wU5CF9shTxrwXb+apROHzpUFP36WfZtGYC9rpoY+tPWrMxt+kU48CswqW/Ztg3DoJt7Q1ckLgxcH2Il/3ZrNLEEawSu7H8iyRIN80j36G9w6fOHUU/1F+9zrBvOlg7DVFznAQVnaRQB83/b12dx3/B33l/Zx45iAwC6jY5vAnXLk8+oocfd5SyPvftoWz8eG6e9jA80WXLvqy3J676EyuH10GT9pavbjES8HtcqF9JYn9PcaH1t46psmSF1pclOgAb4WFzcQfeOdD8q4QWQITb83AQeze6R51bnKaOXFxof2t/0pzW1jgll0Rge/cl28DKSuwRfbsGpjuWf2jOCtblSH+5xA5AHprk2pmZvV1rp0Wl5XFtIH6FvhN3sfqY+OMnO/eOGbNRg758nYD5/xPmmsHNY3zlR8rMvxWg0yGhSrvkPTroaf5Fvp5+TJZ0uWlTtn3sXmpNMCUx9YPjYDPu0FP/W5S2jlEwPQPiuvaov0F9Tx5/Az1NX2T+NPmD28aunnZfoDNQjj5AQ3Vd4CrsJhHdJbeB2F+uUn+9u6OviSe2y/e54c4m1aW79aW3oM7l0eeMyNxQdjn85lfKM90oYKWx2iL2GfyE+XtKMGQ2ikPqU80sclh9zrROkxYOsHnzp3BtoSMLl0gQnhfeX//L/+9/Lzf/hlGXPbWJZr6MvRBwkzBLsO1H+IX/5VgQYbrLAYfXFzsDh6EAbVmMhgr66kvvBr4/p1WTqxnHW2b7/5p3Ls/LdGkJVMKZL1DIc7CLQNG1gGDB4aQXOG4AgO7LpTRM25ZujCF86weCCfvijlIMd3iwsEvEf8TrQuDuJz8ND+7Pw5EAb2qgqa1zTuwgHHzxVb2BTsEV4OVmCVwxzfLcb+e8DDF7AujFNTfG7cgG7Mvg/HWeiVeh10nzq6r2w9aesqPPH3l/j1ppLt35Ki4OfGYEkHC0lMsFqlC2GT0m9Yf3ZYHpJURmEfP3KAGZVT5bjXOAYB7zLwjvG95ZKWc3xvCi/8TPF+EzltL8Pq1DkWcgzEiXfGXwWjs3fi0G4G5eyYyj22z2c8pKntruECvrSKdLE51umn91ls8x0TWOfvQBahdvBxFifwJNHUcxDb+8W3OcTp+4r0EBf7R5jSxv4f4jF+dOmFslIkLyG4Jw4x23TyajnFtaaI++jB3crJo1dCs+b8933a3oYXxg3sXoaOHBcFp+E+ffIYyyIOhgb2i/iIlxwlTaXvd4v3CY/E1+Au/j6jgzJuwC1l0G0j4mTaqhNE+Lfv2pe+4XJHEb5Hw3PNBft12PB+rFs91cGvfTknXf0cO87Xiw2oPAntD+3YXnYx5vCa8JQPeVI6OhQRx6bIp16rHNyc/fZzFF+Ht7eF9rgr7K9xsmzcvf+f8YZPjIavDtD/0uvmoqyJh/jeXMRn+G2D2OdisLaD5Rany7njB+DNynvyl/j6nM+L6xGOm0tDB2W/D0Q/h5wf4rvnhw7sVQYNHRGedznO8aOHGeQTdKFT5C3xamjD1/Qbj3eUrigIbX2YsONs/TIKZhs8ijcAMKtvsMQ37Jw/dZw9X86Wfa175QH5Qln5bp96i/0qf9u+Rpb4mjK164AyYPzIGDn3t9m3aW3Z2br2t37YPuv+bhkCo45kNqw3TrazbGfPnCxrtu4ND6gTpfXNz0mj7xb1uP0hLzV9Yzv83d63Wxk+ZnwdfDB4PH6MGdy9h7lCf6MEXCWiDlM2/lIZyIVbuddMD2Eeb904lM/ho28r/QbUmX2dhqMHWa9/1Nq/LSREl9600xiB/PDdMoIT8rz8Je0bXWOfjJjURlCNjVOBrdN04uDecgRhljbqMGuSLaxD3JTzm4v39OcQpm1Uj6o3fL7/sAGl7wBeqYesOBA/cWx/2XZcLCqveJ/3+6z0rVTjS6sI1+ITjX4WD20mscDSb6hB+H5xyB2knzlxiKy9b/WhOMiT8t13+1W8lSP7Xjlo9Jd6bRjM1G/YEAKyBs4I7oH76VNHCbaeiUx6jzhIS5+Vtt/VA9qgA1TcyJht8X75Z8Bt/XDWBoRn9FK1IdrW7Wd0+WqxneLdtLt1uuPD+r3e0E57IB4DOTF03FgC+7Se7zqKR/dvL4hqdID3CLOph6/fW4Zwlr1dWepU5dm6lPHhOAuDRo8tPXCkdXZ9Beah7bvit0gD+1R9JF62/bt051SK991MM/tBGZ44CPsxbHRm57VPp44f4e0+Rztkr5EjZdI+PMrxfUVcPcTD+4QvP4xoG0lAlGw3BgHnz7MZs8fpswwwKw80+CobPXh433cIJY62TxpKE4v8oI7sz14ot8AzDmCUpws436cPHCrHaKg83PCCfSUuTV187Shes20W6aP8ycMDIFh/grV94HeL+4KcOrq/qArEQ/7qxcPd+8Cv56+UQ1TY1Of9f61Y59g+PYA/Grt9SwZC+qlnaYPN/z48vw+etG5kQzo1z03m+5AJ8Ax+qoPnU6dPlCNM6EhD+7PpU5+xzSc5vltG0InGa2zrKY7mGWkzZuQQXr09MIEwB9NHDzDQP3E5vCgP2D7bIS0bnPj6Z2VMn87l1Fk25uOs/CIu8syIWzrhL7XFrjrAc3C2a9O26Flpbnu9z8Oijvy+oo6XPt7X6FBlYHi/7mXgiDHVXwJJA13bduz9Mzjqo64oDmOrh28WGp632D4PaSN3qEsb/mwfPrAMHDo8g0j9bH3JncfJ9uIeadfQ/xZOOGDe1xCWa00ZyhdPCx81kqIMDKYBA8lUVNdIX18Hu2/rzrK/3hI6qqc8etMRp2HIm+kvzuoj6d3oDK97fgjEGozt64/9MMDspNOpE0fwOU5F5pURaW/xfuvY44+bijIsvupc71cejnBIn1FD+mBXhyRQ4cTgqRPHyskDx8N74uQ99pfkFj/LzX0rvtZ7zAsU5Vma278TGDsNHt5eAwgELwzwn8V+nD9xgQ3Xa/+Li3jJn9ZxM2x+Bl+vCU/aevjddgxm7NS3/yDsBx1Ap51Xz6ALLpxm8pDr8rD3q8PFvekPvnYU+7ThRfFuijwxceIY7GrfjG/crP7UiaMEuM52yOUwgHaF4IcRKNvxfeV/+z/+Q/m3/+7fltFDxtA+a5KeBEnyV8r+cMvfJdDg5li+B9oIj0SJdiPw4Dvm7ZqNa9eWD957lx2gV7Bh2M6sBxxJZoAzDa5ldAbKaJyRNwV7/WY2b1m+MlRt5++Dzy1IZNzoUWa7YcQa6awzAa5nczY6XQEThcFwYDWMRvKMDBsEUaEamV3JeqcNBxSfUh6eOjE71LuG0OtJiwKAyt1Il1EqI+niVmewWhFWNQw1JvWOwIIzdSdJ6/NtCR+s+CKw72CGfxqvpTKVyqi7wlOjZ1AF2EbTjNjp0Bu1PoMD4qy4s/U6yM7IiId1+Owxdid1Xej6/QeiZB55+CFeUTc8qVQKj+tP7QOd1IzMwKKutWIdILQw6u01HUHbaaQ+s4YQ7jSbTB1gVnL58s8jHLOJPk6ewIad4OY94vHtjKaUNqLnjKkpq0ZXmUWCBrZJmifoRF11RvlK2bVzZ1n58dIOxfb4zBm8SmdUZsHNNKmRRVVzjUiLo+lg1mRUVXo1mSGcwqoRMaStHseJiK9jFn7Vuk25NAhv79FHHsmrQnthqF2DR4PpXyLvRIhVwm4eZp+mH8DX9lm7UUiXCBjd9v3pRiEPkDb4h3cXBrZ/7r/nzrzPuC980Yl2Z5MiZzss3C9c6Sy/hhehtfVYR3OPnxph+9111q8v/qRe4+//R917QFtVXQ24U5AqioJgQYULUqSIDRUVpQhiR0VsYMcWe6/RJCYxJhqTqIkaCzZsgKKi9A5KEQlNOlJEBRXpVd73zc3xzxtvjPfeGH/eeCMbj/fec/ZZe63Z25qr81FHRFlZWfKE38jyMWDs+sVbET1GcplJYZ7udzazkJkjot1mzzbCW85BfrJB4iefT8vxm7G9yP3WdtVnsVmVkPMyA8lYzl9eFH8bGVO+NoJs+TFeZxE9J8smp2/n2I3vVn4foznHeMaiL6LZ7g3j4KNpLFZWD6FbLZ8tXbplxfXbl2FnMgy7URFkpsEsWGnri/fxaGiNjCrPKxyVVVmS33/Y4DSATmhFuSaZbBuxWr5uJt4+C47v3OUZ6Ubn3r83WvngmrjMHJiZkL9cj1Udy5cvj2mf04SKypm6lMgeBlwsPa9CRs+AmPJD/vQlHH25LrdjWCK3Zs2PuQ7HS8wKO+41P/0NNPPFnJkxefqifP5hB7MXmix/DRxgK2Tc9mR20kqQzN4iH7LiivWAhFyb68tsCuPmOlmbBsqmjZuzUeq7fQajqFfGnlVsdnc6ZcT7QHsulrlTgSD1WW4snQkbadp5Oqb9RWzUaWDRz0vrs2LkW+Y+ZdKk+Hzhgpz7MU0OzG1dVaEtq1+syNiZeRu1dzzlgxkVx/ESp6VeLNKRPOzlfVZZLEN+9f7of/ipc+sjs+zRDMs6aES+EY/KLukkeRQ+E07CNyuIoPliXzCGBzgtPV85Z3Paj9kn7uWzz+7UMbcsKIsyy8A9VsV4OWf5SzmfMkAYQYvSjU6bv8vPzsnMhNVQk6GZz+bOze8f1awJze6oKEJ/eJUyOf4u/9kjgWXlc/zbGUlb8r048XKdfk96s8LtvWHDUhY1Y1uRDfXsZu76zPyp97IhInDJ7CQyQLAzzUJm8YsVe8IyZdAO+JsZW736x+wDMobtOV4dKWW1bH53etOkDJdGoAszPWbGMpuEbjaDpe6z0ko5L0wcP3ELXJRLjm2/gs8/+SQ00ppTneD2GfWq9O4lHoVjVlMkwxSyzbGcn7izuknnynWa7ff+hAtB6Xmzv4iplEF7tTvyiKhfj9MMmLvGo86MJ6hIY7nuvIv/CRgvxhFQwkwaKPihaDpmFdsMtliM5/hXr32Yb3v20LudQBpwDvYzMOjGIjILzcD5nArQnn2BUr8SrPSnmbrKyAjxKvLdh/sJWex5SwoT+1gy/YfT8K4qdoN6fQu0aKd0aSXlDXyZOlc6QUYUGVX41rkzheLY4IKmXMuXS5ZGPyrcSlfn445lP/GBSdeuE4jnRykDwZW0Ls27LuEihKSZAr/YJMhPZZo84Ik17rMey3YIr1YND4yyBvQZqakzA21Dh8otHyHvirOiIoJjG50/kTx/luAlbpQb4tctA99SPjx+9NhYjsyoyV3KYI+wtWq0sOSYfU6/WIO/F1LGEf1MOkePMl5xws2OXkbgzcDCUuhl8MTCHutIj5G9CWyoJ52HgQ31qfRsJYmnOikPq2A/SNvygi/h/5OeDcCvQPLM9cqLS4H7zGmzYvKiqXF4g5ZxCFuL3C6lven4wkT54swL+wbehTZSVuWiqExgDsLM6kBXpO7zo6/RTXP+NT1GzJ6WzmrHw46Ihg3qJ26cm+v1ZYBGWVnKrjJIrkcZLdyzepcBtbHTnuJ3A4xfUtI+DhlZClCcS3PgfTl1RzkkztQHzsNKF+Vu9sHib2Hlc5N/GN/ne2XVAd91HvalmU1y8dN5X+ZnjffeE3vseComd0teTjtO7CFXhJPyNeHkA3dc0p7zN5vuqWHlgYv8K73bv6vfBx+Xbo12bCmwP5inVDiCJ+bksZXgTdgUL+bJ+H7fm7TrHN9jK4UVkCIQW+B9PrbqgCHDfx6/S6cTc6tF2ovAJnHJ/JQl2pLaS9otXumfiFNgVNAm9P7zZySpsDumzpgen30xJ+9vzfHkLVq2ZFtwraQF4V7wDATH/M3Qy0/SuNtulYVpjwE3ceUlDlyLWX/7XXw4fEQ64vvDKC2PPTb2p3edY2hTSQ/CXDw6lvO2l5I2pbKroJkdOhA9oM7zeVkxQ/XcgoUL41P69rjazoxdi14UVp5YdZB6AZi47oJ3pPei8lywW9GirBFH2iLZQ4jP3Z7zPWNbZTxm+gw+jWgEnzYDp9pju8CTSXfAVTopeKt4TtI1c9wED2XFFQ+SBr3Pl89XZ321/KuYhk0z+7sibNORnnX1aQyq7agcs9LMK7d2Ayf50Jf86nqy8oT5i1flUtoyjC38tAmsAh7+WaFXDaic0KZ1btUrJW619/yuNGjjeE+fkAbXozO+Bmfv9P8wHibQcPFlBBpqH/BzoEHpUfqXE/wv/d9/JNAg4H/+J3ECmmQ7ymshqZhJw6cBHEk0j/1p7gtXydYvq5eGwVoMlMoA3tIlkari/eSzKXHfY39NY6vrcUfF6Weczt6nhuBIg4cyWwjOPeAymkSrALVzrASRzA8BMKEs+dK4UVDmdzGUPPN9OEcmPtf3vWhFSO3Ert3pHn80mdO9CkXLuFB1ErbflQElRolW4SfBO7bObzrqzNuyGLNPyym1mYkAGciJA98vXRod6AJ+OEKwcaPGuR8yS9YVQPxTWMvoGr8KAcusVIwSpnunXeN333+Xz1MJGnRwX6jHxfR5p0+c0L4dx7kcEQ3qlVESShwSAaKx5Tw1cFRGXmnUAZd0JPJ57gOlTEym4RkKEeHmMY8LFSKU+Q4bMSquuuLyOIyma8V+MEv4ULbCg3GFpcaowE9GT2ZkCsDHNbk2BZTMqNOnkHKv7Gj2zg+mjKp+owZxJortoIYHZpVD7vtlLn5P2CrQVQ4+y/dSgLkeYF/an78zynw7z9jC28sx5CbRoO/jD/vFnOWro+tJHaN9m+OiDAHrue+VFILM3cyv3cA16GzkI60U+614Js/j0VmZk4qHZ7kHXlHucWMD6fz77vCRgjRuvfbKOAajpSblUjtxEoDHjTm+cEwhyD2p0PJuZQuA4r8MXkizrCWVq/OHnv81c1a82qtXTFz6dRx7wD5x5rnd8mgq4eKcCkVWBHs0jBTi0r7w8bJcS36oTl8Sy7KF93qiqgrPdRgV4yZOij/+459xIPd2Ovec3NtaD9gYxhGn21iDP4tLh0qFDv8gvD0eVKPZJmgALOGUx3iyR/+nzdtjGYbcuwM+iBfeei2uOfvi7LvgSRU6GNKjuJP/VM6WjQlzP1NAG/nV0BLKgCc/q8TeVNet0lzpXuVZM+Pt/u9xosO26NTO5pH7ZamvynUT33Vbh/whXFQ0OkyW/SqPVNjyaSop18lLw8nAof1FFtAkavLUqfH2+x/G2aefGkcfdlgen+geenlDg0ze9DvroRt7slgSWY1gQ0bECTRI/zoH2TCOtdk4zWfbs+AzGjuO+2Rcduzu1u2COKRF8+xMbed+jXK3RahELRusjOOucwexMF8UNfPeto01MGcdDNdlpdTuZKHcZvHJuE+j31vvxnujP4hzTjotLj7vwjzJpzzBII4GAX7rGWo7dG4gQeNyQ8oo8cqwid+KyGLLoDX87SVgyb/BuMWLv4xRdEZ//vXXMuNw5yUXxakntstzzT3i0y0kFZmLBgLEnIaOCl0kKgOEsy/hnrQvYfHMVOrcN2f+gnirT58YMOGzrNq69fZbcv+mPOG2I2WuvSUMzmpo2VMkcbEDVspK12MwQ54SnxkMhp98fxI4/f0fHs1MUOfDWsaZZ59T8BN04vwSFtBe6g3nzTyda86XqWo8KqN1AKShdKjkWe5dhb4aNm5cPNHr5QxSexJRc+SkTbRAU45flLfDN9CFPGppsesvNcB1Dso1DTtpxXVKv8LfLuAfDh0W03nGqWd3iSNwvOwFIg+tpL+Jpbgelyi8nY9yIB0Vxi8ZYCXZ4OcaqMJTZ1qnbgZBx34cPXgAgYDj2dfqFheP9VRWF4G/Qt5K09K983e+ygdp0XmnXtwBD/nZv90fvggD3SDM+8y/O3tNW7E9R8fOslKml9/1fuXfz/AWaHyoHPYZ3isuxbHveb/yTH6a9i9OrxqEg0Gw7vxzzo6WTZvlCR7yu45fbl9Djos/x3de8rFXBk126DppxrH93Pftw+RJMm+++FIs5t7z0U2nsIferYDOw0CLMrgCfASiCLDq5BVGb0X0G5PMwKDbkNaqg6FZkwUlx8VGeoOGDI0X+7yfc7n3hquzMVp1dJANAs1qmiQwWaLRb1CjHDLA4IPBE/WtzqlBdY9UdssUiEl8i5sZs7+IV197PcbNnhMNeMLVd90RRxxyaBrKhcPI/Vw6s645dTfjCCflSkE3ZBd5lvrbQG7igHW6f/6TyZ/FX/7+j2ix3z7Rus0J0RLHyOOU09jOuRVGuokSK038rvMtcKCjjnxnCt7v1iZlv8HCH+F1t+aMJLnxztChcQ4NNQ8/nBMBmjTJZnrSjF/M2fOzoEWcT/jesRMn4ptxxbM04LPU7f79A/us7THyHvvn5Z+T2rWjIShBDPSkvJH0Dt95KberEWxW3it7/NwLMQzMoKUtRbChckUdb04eWbGyOH570oR4742+ccaF53B8eBsagtJ7LNeP/cKc5T/XntsLsD+Uxc67MvaLPz1xwhJ39aNoLfZ6R57gM/HTT2IktuSsRfPimhtuiMObt8jtlQadlQOuUZ1hsEs5qyzRmRHHwko+S3yzDvFRkmM6uzNnzIjRI0bEu59OjBM4Lrj7uV2jYb2yvF8a0A53/ja0taRdHPxkQtHxfQE3MSPs87ng0/f8eyUJsQnYHB+/9mboNvY8p0uc1qkjR9tbeo6OYX7CRLrzfsfxu8oBfk257GcGAbSrf/I+8McHiV+PHbQB7kcjx/KFiAd/8Ytogw1vfwG3LZnQ+AH9bhNJ8e5YBXzydoIW0Iyw30YFDeNv4dlwNdtcq2YC43Ng8/if/0yFx5o46ZhWccapp0czaNLKRPk0E5LwkjJYHObFc4W5V0lGupa0g72H38WXsBlD4OuvvV6J5lV2is7dusfx9B8z6VaCuwEB5Y58Ko9q02nHS9/av9Ko9rHjpf5Aholnq5ANOg5ma+pAgg3ndOyQx0w3aXJQ4lE7Uf7QgYZ9klfVDeJXXegYymDv8aWcTPsKGaczbSLSpNV7+HKNG9FQmkCD8y71jJAnpRlfmXhEf/67/5S2AJ855/wcGZp0yVoMHs0gOKUdPwSavODMM6IVgbv9962TWxCdmzZh0gz3Cw/HK/k5BqQSZowtHoS7vOf4wmk+cmDipxNiBLpvZ3R1d47DbN6kcdqK4lEd4lXSIxlogK+0SQyy+VztVOllG1FHfShpSJtmFXjxtLAB77wW45atiVOPPgJbtW32rNNe1A6Xn7JJOnDfme9WI+im1buKyopF4GzIkEFxDDxyAVsn9t+nHl4zvhCf//u/nOB/6f/+14GGf1+3HePTyIEAoIDihbCYOeWz+AgEf/XlotgLo+Y4mvg0anhgHq1m2ZOddzWeKoE0G3yMYIvFvXffH18x+FWndopzz+uW+3skqiLIYObFagOUFu/tpOWsAcB7UMMOIcscuCS6QulZRrUxFrMH7wOaLz78/Atxyn57x6nnXRBt27bNpkIaNCoEGUZO5P8puBQSKvvCaCvG3crzNBSNtNosz+zpV0Sh/0VW5B266n+/ZAmd40+OYxCATZs2S4fXQEI6yjBwzg04ScC+HEtnRqbfnU7HCit7FGgIKGjct7kIQ+5TGPGF55+Pzhxf1AkB1RhD0Q63drteA8E7lhmJkjGnRNfpLQINGKkI3sKIKPZF6zSq+JcuXZoduofROHIkSv/m226PYzFyDWJ4j3jVuMoIOZNPBlSJ6tjokPO5ysL7BJ9CQCWi0heudtMfxLFUvd8fEIcQIOl54QVx8EFNcmwVoMJb4SMCUzjxXcdIR5TxFKwOrLARL5U0gq1TxShYhvMzAuH65msvx4T5S+IXF10UXU87NerjTFcoR8R/B41sAf/r1+zIquPsaUCmgcu4CiadRTHDKjJzBIGFR459gZB6q2+feLZPXz6NeOI3D0Xn9u2jBhH0LQh3iDK3CjmegrkwsDToEhA/Cz5pNvcpMh9hIx6kMgNrjz/2WAyZMy/OaNo4LrmyZ7TK48xQJtBBQSOF0SCMHFfYGEVOJwIHWPrbFeFlc0F5RAWtIFwNzQ0eNTpuffh30ZS5d+t5JceonhQN69ePbZsJdnFfHtfDVFU2PisNFOalQ7kJoarTuwk+XreZJpI8u7KwJ9CwjUBDniIx8KPo9U7vuLLLRdGKhncHgVf7PWSggXFsOiZ9mA2Xe6ozT4V74cjJywpVosQqBuacfQXAs8GvGQQn+w34MMpzz4l0uva4tLKysjTINMI1zh1f4yWNI2CroQgFpkFUCvgIE+nXXhsGCgw0zJ1LBJ39vs+/8EJ079EjOhx7XGa+s7oJuOvcml3VYXRsjSQDZx7L+xN787dh7KXRrn0BPkBqwkazZd6CBRzdNzGGElz7YuGiuOLSy+IoAhn7qZiBjc7ohvXImx10L6lI1yoWsJs8K6zFQb4PXtzDXX03GwziTE9EsfUfGO+O6B9dOp4cPQhkNAKnfBM5CG9vItDA79KYMlB6MKjl2IrLLfzPfh+WRPu5ctcAXA1wY0XD4EED4/UnHg9j9L/9xdXR7bRTYm8NRQyOLdDgViMW0LtGr4pUehYWOuYaKPyRMNGw9m9pXyPa/aEzZs+O5196KV4aMiyaM/4vH/tjdECWmTHWYdVQ+XcDUQPMl5lr5Zc41ajQWZEfrGjwfj+Xn0fhNP7ylpvDnFHPkzpH1/POyyBPwoHPdVSUK+oF5UrKLsaRDoW/+Fa3mBlTH7g2vytvrMQ5eh/5eN9fnoizyIqc2OHEOJKg43516iQuzU6LU+ncjLVrseLIjEg2X2UsZYCZcmGi3NGhV3auobfJ7Pnz4k0MuQkffxznXXJJHHfccenYSeNmqyzrl0fMqhqkVhYIG4nEoIxgT37iuZmp4V5/mmX8Ct03GWf95TfeyGZrJ6P3DGLYd0h+lMadu/MSNsLU8dVFXsoc4e7fPkve0CDzct//9OnTYiQBkg842vC6X1wfbTjXPCuQ0AHSht91DGHpy98dX+NW/SSdaJgVe3XVTzjf4hQ82IR1zJjR8f5rr0YVjP6rL76YQEbLqE0mUJqSLq2OdK2OK04d16CsRqnrEY/KMoOPWSXAfT7LPhcjRo6K3o//JcZsXBPXn3d+XEhwqoxKEuHBzUnPup6VmLd2hnNyXLdDsJh0WuzHYSUZgjTlgIEGey3NJ0jSp9+78dhLryWsHn/g7jjtpE7wWnUanLIFAedFuqmoUwHMrVjBMGMLBjDgM2FlFkztuAW+88g+9Yzy3bVM/te0+Puzz8QHkyZGO7ZoXHPrLRkIN4Cl46/OTp0hcXjt+NtfhZVOtc9IGQlt6nTrvIpnHSMDazf/9uE4kuedevElcQJy2NNTvISztCi95/5k8GjwRnh7+VzpyZ+FHisqKqUFEy8LCWp+SAXPc2/2ju4dOsYJ0KTBNQNU8rcy6+fvI598nj0DpHf5VP4VD2bJ5Wt/l8+8x6DotFmzove778Jvm6NL55M5/Yl+F+BVuaisUJbJe1kBwE/1v2PAuCl3AW+iH7AwhgErA9VVqeSjunTObByMSfE+SaszzzsbZ/fYtMXkG/lJoBSVAOoiZJW0xKWec+4ZaGAOBhrc666sMDDsd5csXRJTaaI+dMTwbHZ37733pj22O46/8lZ+ke/lw8xwY6eIXdctHoVL0jtwkffU6WlLwis6jZMIHn3U/714gUDG2cD82ksujWaNG+f8lHkGJoWppwR4ulTyE7aA9p2/CzNlZdplfCtlHjCrRtDcqqxByMiXHn8ipvDZ/T2viPPPPDP2pYrSRtzi0zU6P2nC8cQ1Ey1oxM94X52+XrkAvMozh3KJ63LAfW707v1m9Hqvf5b/P/HgQ9HphLaxJ9VNbrW2YWpWT7Jm+9hIm6mDnDewkHcyscQHW/BZNkHnBhuq7kalC599gtP4wK9+FTOXLIsLTzoxLsRHOBxZg8SKDQQxhI9ztlpW+ed6UiYyZ+W5f5doVriXjm0XRt+QPBmMHLvvz0/ECXX2jdO6nhvtCIDVLyuDRrTHCt1UVFIV/kvqKGCTQRruSd0IjFJfoYPVq85HnM1buDD6YGcPerdfdL+oe7TG/2hO4sdggI3PnZf84aUt7aVO1Z73M3GgTChVZpjQMwCn/khnnaRxb2zhZk2axinYwJ5ssheOu4EzfRsZ84hEEgAAQABJREFUU18pZS+8Vfrb52jrFgGAAkYGB1JvwwvLlpNEpYH6qPHj4g3svVuuvjra0SNsf3TTbmytEjYG4r2kY2Wfckv5p40s/OVhkyZ+7hqEfdqGfDYTOTACOfPhq6/EzvXK4vqeV0UrbEmDNsqv5NeEcXH8sbxpEsmeW8LEf0mnzFk/oRK+hzKuYuWKBGM5MGDs2Hjrxefiw/lfxeWnnpyB9ibYY85H2SevbjGhxzg7QzcGGuQgAw3zFlFB89GAqNeieVyAX7R/3Xq5FuGYvWCgvP/26z8TaACQwC8RgiTiFzAhd8N0QDi+gDg9/uVbjBGNmjYYTwc1bgRTbcyz0b3VgIEKSmNnOEh78JbbYxbv33T2GUWgAWaBen5Whj5ApWy2+icU8laygza4U9BIFApjDTiZSMWP1EI4b8yjo/rRpfvXf386zmzYME7t1i0Z3RJSjbhSeRGPTuWbRIKw83m53xriVsBK3Os1NjAKPOva7KpNy6bOnBm93+sXKxctiS6cidr6KAINGHM2iirKcsz4owiYn9sSvHQCjK6nMQ0MdIQkajNvGkK7YHzZnERG1zH6+z+eiVO7nBGntWtPFrNhnsag47KKbSEKpVIEVINcRlRoaADp2FVGyDimQk9lpQCSYeaTZRyPQTFo2NCYQMXHrXfdGScceVQ2MdwV58z5uNVFYeLvOoMyY26bYT2W7iv4UsEBE59tYGYXnCodMiN+H33wQTz7zjtxDNsabrvqqjgUuIhTx1Ow+lMjiLdS4RidVgFJH5aAS2NGbaWwqsCoEnMvX33X+BrnxIqDF559JkahhO7peXVcAl7L6uyXRtxOrL+8GSKMNg07Aw9mlZ2fMM8KAR5ipkjHaTvBk+LoQYxTnjtz3tzoRXb3cYxcr5dxMs48+ZRw68QGtg5sA0/boTvHM8OgElbZu5405BBY0qOCXOGqUWcktCp0g8SMyRMnxK8eeijeRxhegPC75sYbozUOu46/Roi05+ILx2rH93e2CqiI1mvgGcwxIl+JOaUjxhxU5D+gID7CmLjqgfujCaNcds110eWMLpTxN0ilaeBFQ1T+06hPw0FFwSN9rWXclau+j2XfLI+lKINvcbSKLB5ZFeD6LQbXRLYijfpkbBzf6lj2qh2YTpeGXFFh47GZ9s4oDFENLoV6ydCwgaEBNo0hacrnCx8NeZutLl6ylKqAT8hObIpDDz0izjj9zDgax26PXQjyMPfK5ckCkmGS9szKSzzSs3CXdxVLws5AXtI7MLcs18ZZ8+fPC4OaTz75F/bG9YyTMVbK6tWLPciMiDsVm3NROcovGhiK/ArguRr4M0C3DUNe2BuQKsd7FeGtzcB+3gKrgybFIGA/nUDDtT2vitaUqu+9N4qT5+9MAExZ9xVZgkWUsZohM5gIKtLIVUlmeSdjGXBQuUmbFcH5RnhiyZJlbJ+YF6Mmjo4jWxwSHdu2o3kk5ZcGg+A3gw02FXPtwsJ1pGEHvW0lyLB2vY6dRoaBCPoBID+bIJOPPPyINECGEDx654mnY9j6FfHba66K85Fl9akmYZCUpatXc+IOA3iEqeOWDENlbMH7RdDKsXUWhL3Z2l3gO4NH/3juuXhywIBozQx/jTw7sX07FsjpGwQ5nK9OUgYukLOl0nFu5TPxYbmlOCFjLT/xu/xl2b3G6QiMlfuuvS6W/LQ5rjj3fDo5d00HQ/yZzdOAllelUZ+jA5CGAJ/zhOx2rgEpfix5lFYLOigX3+J49R00MG7/8x/j4hPa5bGJxyHP9tu3DvvL1yUtZ7abNWjQaZza3Mpn+LeGtXMuyQZ1ng1BNeClycxOYySO6d83LrrsKpy646H7w5DpVenH801mvw2COD+dFS/nzmPS+HLcDGaDd5+lEyI/GORbTPb4U4L+z7/8Co3ujojT23fI8lR1svBT1jiWRpvrdd2pJ4QBfOlc1XvKIYN56hlLQLHs4iuMpU/JwA7GMRo8EEPxrvui7VGts/TVe3NefFeGzKwuc5JuDBT5DIMK3mNZu8ZnGtzAScdFmemRvgPJTL/11utRu2nzuP7yK+IoKib2wLkQDlluzDgQDbSvzsO5ZTz5KGkfGQzxZImt9FmCi2uwctCTcN785wvRd97MuLPHpXH5BRdGw7plP/O9tkF5xqvG3Mrxswiiopd2IdAAnD3eW2clAxngQptDZ91AhIbk62++FY+8+HLi668P3BtdTu6cGdgN6whCabMwXy0LgwxQW7EO3t+m/oPmNaq3MO9NPNvkRkVo16ya+n3i55/Hk08/GW+MHxPntTwiLr/u2jiGhqxJw8iwrOxi/KzgYa7aLwA71ya/JP8KH95Xzui86mgLw5XQpI7R1Q89kNUSl1xyRZx++hnRtHHjgjbga+lEntWGEZfaNiU57oIdp+SYJl1BSyW7avGypdGXbbV/e+HZuLD9SdGZ5Iz8tAcJKYP4GbyANrQPpGd1lTaaz/MkK3nBsTM5wbg+V92qTpFfPqdZ9avw08qly+LsM86IY485Jqy402bbxlzNmjvnFRx96LZXHR5lhJUpqT94jjYeHAF+qQyAh7WhzHzKT3Pmzo5xk8ZHxxPgJZqlunXCAKB0qBzwp2tW3qQzBw/IX8JMZ8nfC8e12IZQk1Jxt+cZDPDUrZFUxM2eMCUeuu8+9OuRUQt6F6/yR2l7pOO4btHq95S12r0GYIWX8CnxtE2j1YXj0an93nwznh42OHp0PAl+upIKoaYJT3lcp1R70Yq7ChVw+vnOTwQaXAsgSRnqLz5XXDh+BnyZ/1p0WT+CGH/+zW8y0PAIFQfdzzmHk+Zq5dZl+VznOL/LpP2uslZ4K6uEjc6i+sXjw7dCi3wQFcC3wXFP3XoFGfbkm29Efejr1w8/Ep3bdYg9sFM3aEvANyo3ZXsFeESlmttmWY/0ziLQ1cAf+Fh9tBE8bdiCfsL5M9usjX33fffEpAUL44rTTotLu18cRx56aI7pEcsGBcWrsHEd6gjtlRLtqa+EuetUh0uP/lTuGyz+mGrBex99JDo0bJwJwzZsK2lQVpZwzEQdcy/oRl5V3Rb4M0CdulUc8BJe8q56TF1pleTchQvj9f7vxrC33o5Lr7k2jkUOeOSmNrzHc+uwK1OVwVYKOkfHkH+UJQa7/FsdqV2jrVedxOcq1m0VzFhg05tqxIOaHBSnd+gQhyGD69UrS7yp//yeYzh/TZnkfZ7pGoSJ+DVAbeDHRsoGNa0AyiQtQfBhyJpn3+4dD91+V3SmYeq+tenhwuf6dfpPjmcgsETf6iL77CVeeaz2t/wgPLyskBNm09guOIjgfd+Xno8KZQ3ituuuj9boVSt2nJNXVnPsgL32jOsoAoRF8sBKBuWjwajS83cGPvZUM9H5+t+finfmL45bSIz/4tJLE6ebwIn0kT4GAMlAA3RZ1Xkx/o/ImTngrB8yqvaB9eOi7lQ0QAuuR3uvPPYtBk7O77/5f//7QIPUBNHkK61hMMF/UFoBIJTEXAhoOI7gtxjVZt+POeZojrJqmEhch1DPTDDEoyBWyA9nz/dv77wrG11d2q1rHvlhVM5xFYISqWRsBk6ljKiLclvJprF3WaEtM2l87kokrhxE7dy2KWRQKEuYQ9/Bg+JBAg3nNGgYp19wfrTH4KpVp05sR9hp8CicvVTMZqIkFC8NLYVJZukgSDMY27mnEgJHx/IHjLnps2fHy33fiS8nT4uu3c6hoqF1niW9Kw43E8ixVIJGut0m4aVAT6GUfxXwkzlkfA2vCiiedZYBzp0TozHmnn3+hejQ6cQ4tW17yn+aZJ8GDRWVgwaJClgloMBTOJWY3FVpnMhYBgacs0cIyZjz53EMJnA30PDZpMlxyx23o9gMNJRO8CCLCFObRVaB6vg7DrPMv7MyADgb3PF9I+sKhWoGGnjO51M/xwAdmA57MwJNd1x1NYGGpilcc9n+zzXznRL8/VsDQ4bX+JSk3NepCKmE4b0zRuJOwOYrosSDhgyJF599NkbNnxcPXHNdXEZWqi5O3QaMFawJggswK2NpuJk51akWRhBT4jhpigCD3eSzRJWHpWLDkPSI0F6vvxqPvPySs4wX//RYnMG5vTXA3xZ6W6C5lahJv35fp1cBKP58hvDVeCvhQ0GZ3fFZg5+b+f7tw7+J96Gdy9hqc/UNN+YZ2653PfOX3lQE6QwBS2nQKKxOnPdoKMkX9i1QcToHFZtbIOxw+xHGf89fPhCHMfeLrrk+upBdqA/tb11Lx3ZoUWdII06jzfkIC4VgJdZuoOELAi1Tpk3FYF7INpIvgQuKbWey5Ny3imqKL8nYLeL9OpRj19pzz+zY73g2DqvAfR6bmeeFQxMGF7eg1DVGVX7SyA+rVha0wt/CRbhpLGlk2lNlGVtK1hks53r84YdwqtvH3tVpbrluY1QtR08GYCHdGLBTmaUziixx/RpGrqlwZjCcyBhVhuZXraT0dc4cDLnx8fdnnopLLr0yFVtZPfZ9YyxpPAlv6U+llcY4c7MqZhvP2QU4awxhXXMfRgYw2YkXiElDeM6C+fEJewI/hi5nf/1t3HTddQQajoiawCedKeSSxtUs9jt+SmBvwQIa0hKQcP6ZcaH3icGLrSi33EdK5iXxAgzMam6ilHcNTsrsufNjv71qcMJGM/aoVs1mals3cmoNNGPVxYbVKxWbBPxsIotSrUSQkUDDj6s4GWSdBrs0xJaFJSviwusujdM6nwz/bYshgz6O/s+9FANXfBm/u/qq6HbKKexp3C92gvakuc1UY2xF5mrwlMqhC4ORbCM3SO9J99Ci2Uszq4Us2y3mEmh46h9/j79Q+XU8d9//5NPRsV3bDLqtJ7ss3yvH0uiCxpTl0lM6pdI5dO9xqUn/Sa/ABvxn9oL7hxtouO4amlj9FJece0GcRaDh4GbNU8ZqrEgrXiV57t/qDbfe8NAMQmpIbAa3vi/upSlp4uuVK6IPsLnl8UfjgqOOjdMwRM3w1qmzX8oas+o5f+CioSvs1R8+I3UH4yiTNRLVd2a73IaiIWyp94w5X8Tr778XE4DNeZdclkH5gykhdYuLQVa3fwkXZZj8yo+kC+cmjOQdZYEyVDmjLHadbltasnhJfDJlcjzHNi2zxmec2DF7Y+y99z55n/TuPNV5ft85qkuFrY65gU3p021a4sSx5SUAFMvmz4+xY8dmwHfkuOEY6g9FewINVgf5XWW4Os3x/FkEFYuy1uQznuHlmMJJWvL5bkHwO1PQHx8P+Cj69H4p9mx5WNx4ZZGRMmNpVVP2T4AuPZ5Oo9TvezmWfMpQGQSQlwpnGrgDF/XIKmhuOJVHb7/YK3rPnBJ3dL8kel7QPbKUXJ0BbsySlge2VXfYE5uQe1ohBnZhtgwy5Ckw0L19bdwzXB5HxmygR7y9hlP0q+deyDk9/cv7i0DDHjWyCgOABFyYpd5MMn/a9ycrNfmpfAbgWUxrsEEeNNigAyO+JxBo+JuBBvpAXHzEMdGDDHJrdLeJAGWM1REGF1LOJ90UGT8dDYMD0o1OovyqzBE/aehCPz9SETdozKjoee9dUcYcL7m0Z5x11tnRBLtjG3rPhnMZuOCzQm/7LEWucqF4jvSjfcOjk4eSTqUv3lvKdtN3Ph4Q9z/zZFzdmsDdGadT1XACTSL3js3oVsdPfgV/fi/pyLF8BvwjYsW1Msi94gbMvDwJx4o4Ez+vvtc3G0+fdeppuU32oKYHxS4EBLajN9OSZOwlBDwmTqYvDUkxj0X9hsBE8gBO9s7QyBbgohVYnt8NNLg1cQV2h+XkPqdxwwNz213R00pZpa2H08tc1UHSaQYI4LHEibwP3xROaVElIJ/UYutFDehCO0rcjieIP/eTz+JXd9xZ2GPopl2gQW03daRAVc8ljQMV5ayfyUe+AFjykTymjNiD72sHjyWp9Parr8UzI4fEee1OjKt7XByHNG2Wdpa4cxx1n1XGwlq9rV5IfuJ54jNtVuCfFzdZWVSeQMYG4NHnvXfjT9g0U/nwT9ffED2QwbWpaFiNPheuiStwJo87t6xU5ffkf2W7z/AzaGcrv2+X5qFR8TxzzmwCDa/G3956Iw5m/Pt+96c4uV372LXKLjQQXJ0BO2UC1JHjqy9AAluegJkyTjpkzByP9VmtuRFdaaIGocrWhglx/4MPxMSFC+NK9N4Vl15ONeLhCtpYS5VxsTXOSk37yWBLI9/lI+Wxes81CRVpS/zkezxTm3D5im/i45Ej4jYCDSc3aBwnn3lGtCGwdmBZ/aRvFp0Vpknzzp+/1ReOoxxXpvssaV79Jw0Z2FI3Gvy0ouF1Gu4Pf+ftuPjKq6MNgbXmLTi6nQD/ahxig47C3u9KB/Kml0k9Ea1O0u/xT59rJVUlZLzbnLSXPpk0Md7o1y8a1CuL0zqcGEfgrNevXx+5QXAPHeO8ddKlNYZL+lafJL0AF58rrWrLKGNMelqBbVDNYMDQMaPjObbh3n/rnXHy8VSaIwc8+UU4pD5m3eogA07KP+067T5pJfUdMJJGlfMGPfQBxce06fYJHBh9nn8mdqrXIO6+8eY4hgpTgy7CMPUS80lbBhg4d75Y+I7QTeoonlveAJU8Af2kXUJFg4GGkaPHEKh+Nt6YMz9uJcl5w2WXRT1wuo1Ag4EpZYCS0XUDgKxOVUOtg6/mfbko3iF4s1ejBtHj4h6xV1k9gI+ech7cq+z/b7/+I4GG7RC5Ct6AAVgrYCKSQAYYioUgeTSZveVLl2Z283D2hDVs0CCRqABTKFhOZtTUMsaRZBkf+83DOc7Z53eL04hEWxUg9tNQ4BMZpBS93IPSml3Y4/wTRCdSJQoZRaGv0a5AljlVUssRgu8OHRIPPP/P6Lbv/nF6j4uyl8I+dfbjGDkDDUW0spARRbZdhpRYZSCJUgLzKhyyYs0aX1YgzJqHU9rnnZg6+KM478JLM4LerGlzHDCdF5xF5mF2SafdsVSevlT0ClkFYWbdIEgVv9UNZl0sYfxi9hcxFiFoduSwww+LTgiow1q0zLN17VGhE65A0kgXVs5PozMVMXBwfBnEy/d9GZFVKCxctIgAw6QYSrR1ysTJ8Yubb4rjDj8iS1MtLxJ2Kh4VghkFhVsxniyJEMCw8rJCQkbXsNVR3I0osc+3dGnMmDHR55WXY68jWsX1lAUfAk4dQ4NIA8GZZWku8FZgCXNHN6CUz+IvDf8UKjx/G+vcxs/FZEFHjB4Vb/R6OcYvXRz3XHFV9DinK8fE7J1NgXZi3palVuKVjdQYU5r1cu1moRR6aSgiBLfw90bmYLSyCvCfvXB+vP7WW/GHV3vldx679744qW272IfsQgXWVkFSz7kWGSHhlFlLeYDxFazSoc9y7l7F//VTN8Z4soxP/u2vMRAcXEm2/tKeV9Nw8jBgQGaBcmrh6fozoMC8smQUeOnAmNlQwdlwyKoas+mW7LoP0cuM1BCE96O/+23sz99nXnVdZmEb129A0AWhLR2SXc+5AQPp2Ei2FR0196qdgnDMp+PZ190/FnG81ReL5scuBvCEP2vRoF69lv3RG9bl9ifLSnM7DjRtBoQlZ4ZCPBqA0Vjxd59XGJw8E0fdq0KF0pYfg1cGa2w+h8LgG9/SfdjrgTtvi840atu/Zu2ohLONacMxkoyIIlI2qMyFU4mnVPIK+SwFZCz5THh+/c3XROhnUmb/SbxGlvTC87tHB0r1PKe6Zs09CyMe/jFToUywYZ7r3rRmbawhA7ozsKroY1FCrmcXMmRorcS3JYxfzCdwRwBpwIAPYxkwvRVjyx4QZq+tItBI0eC0Me0H/fvnsWfuQxdgZhHKYeA6sMreYIOmiw6SSgdfhDmBJ/hQQ7wKyq9mjT3p8wBOtlJdsQ0nRyW1ne9uXpP6sjwVMOV2ho/LWylgmbTOOeMRaFizclV8vW193H3tjfSqODMdk2FDBsfHz78cY1Yvj19d1TPO7NQRpb9XymyVsSV96kwNHOErTMWv+7ydq3A3mCfdugbpPCvMMFqUBU898494GsXfhinc9LvfR/tjj2VLCgY8MJH3NUzSEYfHHUdZKR6kTTNdGixm082GGCDw9Ie8BxyPIuvywF23xVLGvu70s+KMs85i60SLNNRSJjKO8lcadO4l5yV7VPB9A2AZtICO1DMZgGMs11Xoj8Fx2xMYt/Uaxeldz44TyLy4VzVLW+FHg2hpbPEdxzZI6LMSEY6zQwak8cHvrtVqHPWCdGMgY8bo8XFG17PiqB0ZKQP00nSpbL/IMMoZhXxJp8sZQhvKGJ/hP/GigWpVhVsnJuKwP/fKK3Ew8LCiQT3sEbYGcjXmDGo6Vw2vhBHzFd+OI3yVW8rK1Cv8LKqqysX8BQsIVI8lazSIXgGfx4N3PxBtjzw6q4f8rk69+FQXq+N0uny/JNNKuEjY8HxJXT3mVgplwFS2ZQwdMiQ+7PVK7HZ4i/jFlVfFYQSPNJA1C1MmAp8tVjcyvnhzTNfl/NVPygcWKFKSt9TjWdGAoTgKGdn3ldfjrS+mxg0Ep67odn40qlsvcWOFhLaFWr8KclYcSCs6ghWQtSwMHoVeCQ5qNFvZ4DGMymC3QS5csjjeePudeOCZ57ID+p8euI89650o9d49xzFvqV7aDk+6jULdpC5Up2eAnM9BTRqe7lffJn7Ab8lgn0QQ+EkCd+9xhF/3w1vHeT26Rysco4rwoDrCoLTwdt7bCQ4m7IGt201sMKdTl0EX5q7NYabcl8G2DfwcMnY0/HR7nqJy7mVXxxnYYwc1bgI/wnca0sBbvDmuNKJM0LkoeKvIvPq5joD//F2alze+Qnf3oXrqgeeeju5ND4/OVGq2YRuVx9f+SD8U9ZsyRFpJeZC0CKwASG4T4HPpw+da9SPOlRNWHNice8bc2fEG2XUDeWd26px079YJ+1BIw8op+WMh1QkDBw+KIQSzfsTpXA6vuD3TgP12cC7Mt0o2zoNnqd83EEi3V8/mTWaJaepdrXrONfmU9ZsN5WvAQcerkAHCRTnp374vP4nbhAd/u44aBKObEDi2Gekk6H7+p5/FfTfcFG2wm/ZFN+2GnHTN6TQDy9I/+d5xHDNhz7wdL+3OHfaZTWvdZjmWYOw7BBr6jRtJ1rt1dD+ra7TEHnOrqxly5yZ+nL92iHqQX6CJYluZOJR33V7oM8WRvCZcvyZQ0/+jAfHXxx/LHg2/J7Pe/eyzo444JRCgJDXw4hzlU/GV4/NJgWfhxR/AKBt+s4bt4MnftwEs+8y8wfavZwlmHMFttz/8aLh1wgDMmh9+zCrnXRhfHjX5ZuXBrqzb+Wf2WxgpA6B7X4ab5NmdeIaVSQZ3Hnn0DzGF4FMPZGTPy6megp/s+WCTSWWjwbssuYce9Q+UlV7SX86dtSW989Pkj7gxGbfciobRI+OOPz8WJ+27f5xCpUduRapfP+1cnWODyQYvhK+wTTkGTmogSyA+TpX5PitXtMFLvohyVX62n5j6Y+QH78W5yLETqJY4DLvDShsbvpvUVD9Jo4JY+Psc8amd7ZwloKzA4T7hg5rPPjbL4Ikp0/4Vb/V/F1zuE6e0ax+HHtwy6mIzGZxYhRz9CePE4JQ6z8u5Jy0yjnSYSTie5zYHL/W3ATbtsekzZuD7jYtX3n07bux5XXQ8lq2sdYoeDc4tvwutGEhznq5dfe7Lxfgcq8ikeXlDHjWQ4Nps1jgCH/S9F1+LbfvXjrtvujmOphqjqJw0iWqQ/aekYf0R/Vn/tnpVPpBG0QIp37XN0n+CVnbG9voOG3scdmT/3q9H71lz4loqvq6m18JBBBoM7AjPithfEob29Vbmox+2mXlvAg4Lly7Jvnt1D20Rl156SVRny7e0ml8UjklQYuu/9/qPBBrANEqsYAiwX0ADJQzmSedsinkQ54ghQ+NrAGqG4yg6Rnuigd+xaZnZCJWITZA0uIbgkN5x9915jEtPylDMSDVtgmKDSTSuVQwyiozldomq/F0ZRKpIJY7koB04kcgUvP6UMb/BYX8LZXL3k3+L7i0PZgvCWdmMxfJRhZ0Ex83+l5foLaFY5eZVGGMoUOZt5lfDfwtEozCZg8H1zzd6xwSiij0ofT22detohtLYA0ckyzsh4J8jiTvGk2nSGMMgkIks25N5NCQ8MsVtAt/j3MgslnX1euXVaNPuhMzANmvUJJtWFRnjoqRQo7NgQODhWlhAlhTBFL6vkkrmZC0qB4XBkiVLskfDEDI7o8HVbffcnaV6lqYajEiFxToNMsh04ksDBdXGMwpml9Et+9NY0WjWaRDfPmv6jOkxasTIePOll6IO+8ZuvuIKAg1NUiCJS50JqzwU2ClgMVaEe5bRSVMihP+Yaq5JJjXQUAHn76vvVsbgYUPjhb/8NT5D2N2NEWqgoa44hZ5y6wSjZbBB4QmNWOKdNMuchZc4UPlkiRvr2YSQMkttidNsstOvgtM/vPwSM4r4K/v3TiGaWwvcbF/Pnmne25mJmb1QcDtGCmyeuR1LOHHA/H2OwtG/VSAaOTph49gv+ac/PhpDyWhfSqDhyuuui6OpbFChWbKWtIEwdmyDGKkEEEBG1m3kWDTkJKoNLjRAzUo5B/nPioZBBI9u+/Wvcz/8uVdfG6eecmo0rn9gBhm2YpireDQAxa3BCpWAJYQ19tk7MzcDhw+Np/7615g2d+b/5Ti9BMj/x/+rUY2TRdaCfK57bruZrPtJUY9j+ipvA6ewO1Kf2XOxZuEpD/l7BgahReEs/6sc0kkGz98ScJxLpcboCRPihV4vxmWXXl4oNoxQaVZ6l18NBkjvu6Ooza5uhjfXAlObU1biGUq7xCv3G9XH+sA435I0M37ipPjggw9iMbR27+23p7FiKafZ+N13d7vV5hhHUPXlF5/nRJaRscA1/P943UI5YXccLI2oD+mp8/Ljj8Zc5vPoLTdmz5O9CZauX7uGRnVFtl4RL2w0SpXJyoHitAmdPJQ+NGvGR/7XEFLWaFjY0PapZ56JZ9nCdiTj3/XHP8aJOBdmLkrwVg5I93lqhsqWS7llIFIaB+hF+SJywznodGQwjntGoPTvuuWm+JLv3Hp21+iCkdsSx1pjSNqQTzX4xa904bwMJuTWAfWLARKe7ZWOLHxU0iNWNLxLEOa2x+krsd8B0YWmUu3ZY1vvgLrJP/KnMgtgZFDWn+67dnydPnlauelclHvKAg0iAzEaR/O+tPSVioYB9GigA/WROBcNGzfKXjneb6bbMTKLBm2qi4Spl9+XEVJW55w1GHU2CCYRaFhODyEDDc9S0dCyxcFx+oknUlnYKGoTQKrMmoUvJF3IAsYqAsp0yMaxUfaIQ50s5bu8JNwTdvyt/viczPogqqf6Dx0Yv33gV9HhmGOzNNX5pEHM3IW/zykF7UuyMBfA/4SzVzFvnEfWZsbqXzhcw4YOi3d7/TP2pIT8JpyXw5q3AB7cDIy1HTSdhX/Rc6YImkgT8mc+F5yn/GWNGv1WftWstWfuPx4ybFi88ren4v3F8+Pmi3rENbwaYPDpSGt0urXMLXc2hLQZZPY+4NEZaOB9g4EgNeWm8nMduDHgu0fNGlkF9sprlAM/+0+XFlY0nOnWCeSM9K7zL8/9hCz3Wa4p4UMwr1SpIQ952oSBBoMavqrgWMtjE8Dp7+lz8iHVKl1bHBo9b7wht04Ilx8xgqVn95NbWajOqAKv+p6BAqsaRHoRDC8ydW5V0eFyfAPug3GMbrj1ljz6rftlV+7YOtEkdZiJB+lC+jDopI1V0lPymDpbXGpjqPO8/NvL975ie8NbAz6IB/7xZPyi0ynRoX2H7PNjN3uTFfKGNKDcNoAk37gFyzlr/4lHSSadDOhQp0Ca0gG254mBhpfZrmmgoSsVDSas9qbJpyXbjm2jY8urFxDk7dOvb7xAwH8FcyudxpAT/X/4n5JiR8Hd/8Od/+8/7n5x9zgAXfQZSbppwwn03HxL9jzZtyZbK4CHgXNpWphKG+o9152BAPmTz8z8ZgIHutTmFGbqMQOzBhqsaHhuzMg4h0DpNVQ0HIyNnUFSeUmcMV35qVQ+ztcTxyYFfWba49CPeDRgp6w202wZ/Idsh/n7o4/m1onfXHM1gYZzaHJH4setDfwzueiV40M7JYdauhehrg9k4pAhI5Ff23zfOcFrnoLyqtUY4KspYzzw+z9G57bt0w/4kaqwiuXZRgeMUn9j/ymPDZ6krAVOaRtRvWr/IwMM2RySzLT863Zok3m/+u3DMe2rr+IKKhp6XETgjq0T5aEztwdoN8pbRSU2Np0L4bOke8YUzsXcC9tS+1udVY7Kp++h6Q+HD4sb2FZyArLhXIIYJ9FH6MCyMnTr+qxgdWykTOpVYaGcFR/VwZ2y1yCa+iJ5lvcz8AV+5Yf5ZMffGvBhDOrbJy66qEccf9xxcYhbzJA19nBTrzqW9rt480q+5JleqRtZg2MaaBT+Jt5Mfq5YuTI+x47vRXXW/iTxDNxZSbnffvtlsNetf8JCWGtPqqeYfoJDOaU+l1/d3iMutMuscpRmlwHrKVQTuXWiV/9+cQ+BtY7Htsng1K4EijxZ0Ct1PWNYCcQjiupP5qreMMSWQT3opkT/+k/eZ1JpGIHqt557Jipg+/7yzjuj9SGHprzYitwVEr4yuMZvwoH/JY59X15yIRWgE+3rLduQpXxuYNlK9jFUCPV5tVe8Oe2LuOasLvGLiy8m0NAgdajyPWUehCDNKQXtN2IoAWskFhDQevvtt2MfTkC8hARsTWwJsMKLS7QknpzFf+/1nwk0CAxfpSv/5n8gHI7IUycGUgr6zdKlUWe/OtH2+DbZo8Fs6hqi1ipAI2CWXQvUgSNGROereuZo9xBkuJAIfXPK7D15YTUZxeq743xDfDK2gYHMYGA0OgkNuozIIjTsgmwErxCCZDZgnO9hllco/bn5949Ez/Y46yefHEfh+HpMpMxbis7LITKJDKkRLeM4loJRopZJZcJ0TCFKc0syp3uk/v5yr/is3wdx2U3XF80gmbvOuqWxjqdi86eMqOGswpOwFaJeKZgck5ell5UJUqzFgZ5FJHcUjslTTz4ZXTFwT+3QIRseGsQw+yFzZRCEeaVRzvgKI6N8aegxZ41RDQzhrAFotYJMYLRyOkrNEzPeI/vy69/+Ltq2JiMFoxq51YAoj+FjttHIojDIMlrGk+lyPASH63Q8hYn42RODQQdEITLwo4/jny+8FIe0PT7uYt9ey4PMihTVC0WgoViDpa8CP2GP4pL5DQIJj8zMAKM1BhB4Vg3oyQZt/aGvx+6+I2by1bvYlnFxt3MTNu5/3YnvMZk05gpjtDDUnZ+XJVjuG+OBhRHHfFUM7rc30ODWgRfYE/jHl17M+1964onocio9Goiar6EvRzngbKAnHQBwoEBVAJWCCgpXjeU0hhC4pcCMvQLK8fd4nN377rs/hs+dFxe0Oiyuv/U2mnm1Slj/SKme35O2hEmWWgp/lJ3ZriLjBfi5x60eRs89FtETI2x4ZI+GD4cOjWvuvT/2ZfbXX3ttnHVmF5qINsxy4E2UwGtcCGPp32yxBrIl0RVxLDeTKR48Ylg64/OJlk9duCBhIKUmm+df/+f/KRINvqgavMdaFyHtd3yxkhSjvg/U82xq71vDq6hb4BcucoXQder0n99/6J47CTR0jrrs3asEWsuZBdxh7Ki4pENp06yr+PU9s3XCXF7TydMJXgXNSPNmv//8xF/i+uuvD5vjHYBzYRWOQcV0ektGNLSmXFFm2QOhMvCuCG9B7LnIrdD7Wgy4ahgDZr3mETSyqdT70OVsnNMHqYI5+nDyLzwfhJJFrpX8Mw6D77VXexHk48jEBUty3W6oUs0IM1/+LkxL8Cu9z1v/t5fw350vAZJYxZeEd+lyPGaeYzu+17133R0XX3RR8tlbBNYeeuSRfP/Pv7wnenBaSU33ahKg+Ylqiooc8yYtWkEmbQobJymMlT3KBp0DK0jEhzJOp09ZMnXmjHj6mWfjhYGDM/j1B7KxJ3don1tPtmLQ6PzovMjrjqtcKxwiwU1AB/i5qFLZsc8Vp0WPhp9oXjc2bunZMxYx+zvILJxz7rkYRM1zTI2tNHqYs/iVRtynqTOt8+hzMrPP+Bq9yiBlfRpj/PwG/fEumc/bCAx2bNwwzmaLlg0h65eVpYOro5i6gvlreOn0ehSgMmEN+ssMrYZvdouHNh1boz2blPEseeyfZEY+7P1aXEvW5Ui2OBzYqBHNVaunkaUTWpF56TjYTE/ZoLHm/DwVRbgIM+lemDi+8Dc7/A3lqe7n//uLL3Ly06FxRqeOaSjWqVMndYENQQvjEOOW+asLPRHFqgIDFStZu8anzUx1Fgw2qIcNJnmixRwcgEEEzJ7p9WI8+vDvohPZNANqykFx6Nqdi0HY/MdP9bV/lxwO1yOP+r6/GyRRl0ydVlQ09HrtlTgQmNwBv9oMUgPUYFA66cp6fi8lLkqVJMqW7J3AnNXZBgJskqte3LtevQwefjBgQPzl1ltjFGu+i2a8N+AACJcfWNdm+pdURbZmMANaUweqj5x3Bnn4adCwaNyKXuQ5Gr3aHdU44WAhsuDZF16MR55/iZlEPEm/g3NoVlwb+erJM47lyRPSXQbD1besC+wVyRPeT1p3XIwDgwyOb+a7HLJq2mefxd0P/pJTXD6NTvXrxwN/+EP2OdgODr9iC4DZQAMN2kkmZgwqqae9pBtxouGfAQwlAutRTumE63gNHDkiukOLXvfTDPJ0KhqaNzko9by8rvEv3WhPZNAamnNc1yVerTbRJvA+n2W5tHzsljS3shpY+/VTf4sHLrsijj/22Ghx8MFkb2tkAEi6kZ61j1ajC/nSz4Fgm6zqYKcRz9zkZX8XJ25d8ESP6bO/iGdfey0DpBeSPfbI1dqUYzumARVxtCs48qSdPn37Re/nnopV28vH3O9WZfWJtKNlaSDB30uXusmX77ml4t8/B3opq5WvvpTbfu44u/KqwhubATOrAcOFPvRzL2X7gfUPiJM6n5a2sifojP3go/jNPffE8fTMqs1cdwGewlH+E28GdLTrnIs2hbaH1VXKNysddb5KVRTy48+Bhtdej39i712IM33PDTfkEZHbGCf5FHgLz9zWCw5dqfJQmSzdi5eSnFeeatOWY17qtm/QqwPYD//sr34Tn/DNX9Ljxx4NZqczMAQ9e0nvzl0ZJb+bQEl5yPOkFddWbGXFLoSx3WJmgGgWp6u8gAx76o030354/tE/cSpSx9gFml6FjS3fSOPOVTqzt5i04lOVi5a+CxdPiVmHvN9lt2qxK3CxokGY2ePntrvuillfLY/ru3WNrsz9MGjSwIJbqJhY2pLSZOlZynRh4kvcFIke+BcEp3PJ/G0a73GG/QcOisvZCnN09fJx6c33xlldukTtuvViNbyw4utvqFCkb490iVx324dHBzsv9ac8Jlxci8/xbyt5fMPqxrnzSYrh3/R79dW45jp6NLh1G5qXLuQH56dO097zMnCnbvJSp5Reymz5yK0TVreaALaB9hQCvk8De/ufdTu9kAOeWuR4JhfFoz6FsFGHO55BI30oxzMhoC4Sz/69G3AvD06XU/X1ySefxEBs1Wc+eD+eoCfJSSQf9mSLrPrOwwL0bbQvpCFh6mUw1GC3Mj3lEM8VPtof6o/dCbA4t6n/msbWuw/ZXv1c7Nm4cfzu/vvZOnF4ynIDUiW/xa2Pyi3liHrkJ4IErkVGze0S2nwEjNx+Iw3ZQNTAz3B81leefTr6TJ0d159/Xtzc88pogCy2j5g2tvJQGc7UsMtJwIgzvp+BhiVL4o233oxqdfaOHjQl379BfZHLA5UcBZ7+52cu+7/uf//7QINLVnCAC6jnfwAgoFRYCIzZO3o0LEXhepbu0UcdmRUNUCBROJqKcY/frI1BphE5aPToOPumG3OsG8m+XtTdQMNBaUh5rrPGTimDlmW2jCMxpGDime4VUxhqHBl11VgyaqYS1FB8C+P/gb/8LS445sjodNJJcSTlqR5PJhNoOEsUMq7LkXFU+oUA1Ig2+mqwgc+Zq/tozIRb1eCX5rLGFynr+hynujudU21cZ5mhhGyzRoWVne8duzC8LCE0QqxQx1CCqWV8HSMj1iqNKhhzHvu2cOHCGD95Ujz91FPR5dxu0Zm9wfWJetfA8JMkNQ41+nWc/a5rVwkILx+oUrYkUudeAaUTkJ/xXc9tno2hOBTYv9uvf/zyvnvjuFatUtgVgQaEHEKJxadhLAzSSGHNPyFES8JPZSSsfL6XEXSdDJt5DRlEw8Y334lWxxyNIXdZtOB4GZlPYMrYGp8ZxOA9hUM60uBMgWoZnDjWQPBajfGJ5I0a++4TK3+kDwHC+88PPhQL+ewmyo8uoFy6HsIwDX++lyX7jCudOY6GUYFnnp2w0BnFwPZ97lGImNU3Az0b4f3amzROYsuK19+Idp/asWNUZy7rUWweb+nsNW4U5MLUMnHHcEz3c6r4pRfx4SRUFdKlgSCPD3v44d/GuIVfxuktDoqr6Nh+FBUNCtaiUWISV36/NH/xUIHAj5UUGgTeYeMx9+5uAO8GGpy7cBpIJcnND/0mjZybgftpZHYaldVPA3ozilZl47WJHicqxowyk4WtwHgrV6+K0URr3+z7diwi8jpt3oK8l53ZUR2y2h2vuBooqWT0wAv5D2kA9+In5Aw8EK6MC2hRPNDpRtbP3xWwS6woK8d3iRegzPichVRgPA0xkok4BLzPexpzXveSXe/UoX3sX4tAA+/vpOJBOSS9QM/Stbwv/WlQCV8Vkc6cxpiGhvxlFNpmXmPZ3vDEc8/HTSiGE9scl2eJu35psVCShWxJvnJsnlkO3izHIt0uo/PhNoK14Hc9z7MXSzkUiRmyCZ9NgS4Hxsxvv6YS447MipQaUO2OwWiAbtKkidGv39sc/zojJs9elGvUGK0KSrDdcPIIxlSkTFA+A36giywMMEJP7STc+J1pwCuFUUsrB5wT0MC9gAFji/v4jNhAGrrCehOfU2EaK3jx9Xz54NtuuSW6EaCTP/r17Rt/eOxx347f3H5TnHfWGVEb4381csgtN4S++CJzwoiQdw3mpIyEFg3yKGukdz/zkteEu/iYRl+Kf774UrzJMbqN+OxXeepEm5SRbjuRh7JsEdj6HXnV9zQcxIMMlLwKjSszlXc+XzxrbHhc3s04Rl9z5/VnnRlnYyi2aNo0x9AZl0ak+Qw0MLZGmNvsxLdVBzrYGkeWniv/lT/OX+NrBQFfu+Tf95e/xvEN6sbpVEycgEFkRUPqINau8ake0fASOQYaLCd1G5TvO9+EC3hLkxE8iUMd7EVLl8ZLZDf6k5G67ir6ELQ6Iho2apTOvvOV7ysydwONbjt0TspEZcAa1uZclT/CzXU6vvgwwOLxmFOmT49/vsrRagS/T23fnmaQnjpBoIFxlFGlQIMOojLeJsY6EQbtDTSYUbM82vk6rjD3WX42HzlpI+cnCZQ8QkVie/YH16Aizu8UDqlcbCmtwQ9+Y90GmH22xqPVMM7Zl7jm1gzKaOROpwpm5MgRyOG3ol7LFnEjsDm8efM82SNlL981QG0gxuqDdFz4Kd4MGuc/Hmg2qhRoMChbZ786wG19fEx1zV/vuTf3lN+AvdGTgNsB++zL6QL0j4EuLL+WHsSxukR4y2Cu3bHVG27NUM6IAz8TL9WAnX1tXun9Rvz5ld6snwqhO29j68SJuS0xaQ69bTZSftI5qoRgLPbGQ+c8R1wIa4cFMPkMn1MdI9qeMxPRrQ/+/vcxnCDSMfvuFfegS9qwDcyxvyW45LaMDDQAI7dmaLSn8y+MubQ1DDBbxWCWTr21E+XBBmLWQnNDx4yJ6whUq3mvJ3DXGZupCTSZDizrlmbkF2WwdC1MQF3qLvk2M93g1GyqsJI+DYI5v8Vsx7NL/p96vRR3nH9BHENyoym8aqBBvAtnaUy4S8PKX080kkayjwCfO4+0l+Bb+VrHS3rT/ps5Z070gp9W0dC42xlnUl3aNANI2lVuwzKYIv8vhu8+pNz/PRrRfbeeyqIVVIKwBoO++gS7oMOqIHpSziZdpp/AGpCnoI4l4zjpuPEFLh4Prxv8kMd58Z188TkFYRIpdhPJsHVb49vv0XO8pbuHeI8myJXj23WMfaC/ydP+FaPf/yAexvHyFLAa0FNl1u56pQEvx08Hnp/VcdykO2HnS0Qol+UDYePnJj0+/XRC9MFOfW3s+DibrYi3X3NNNMcBSz6ERoSftCePitd8JV8Ba8ZSzspH2q467trj4kT8L8VhtkKo1x8fj8+Y022X9ojzCE4dUKdOMS7fd3xx6uX3tDF1gOUdP0sd4OfwkdtWsmcU69I5nT1vPlW9r8QL/d7L7z9HdcDJ7TtkRZzBqExUARWDDVbZOJbVaiU7T/vAoFom3UCgNFAVPvJzAwFjJ0yM+wjczf12ZVx22skZCHDrnfPTXrL6SF5VBotKn2HAM/lUuPHsfHGfssdj0l2Hz5CfBgwdFjc9+OtoxncvveMWGlyfzgk3dTMQvJLEVWVg4TbCrORhTiYGddoNLPloA7sZvGXu4laYSARW6S74km1aVCO+gpy88eLumehs1oz+TQTTdYitaDIokroauWIgN0/mYBz1njwqPwsjGz1b7aHMXAevfE+gwZ4nbr2rt+9+cfYpJxenTpD0kT4MfCf/MR9pRF1qMFFZXuijoqKhoEuqUVmHgT7ljKcWfTblsxiO//EivtOvb7wh9Uct+pVUQSZaAQMpphzUn9Bfkjhdu/LEQLL+jjjVJlCX+kx1lzTltoyhgwfHy71ejdoN6scv77gjjiRQLQ6124VB6kB0gYEGZWbqIZ+a6FaP8HISGLPCxO3Qyl+PvB6FjHyd/g8ff/FlXM72r6vQIZ46YWDX7XzqfWWkck8b3d4+bslSIi5E9lhNVbN+3biw+4VRv0GDpPe0sXhccfng/97rPxJoKClCHdGSYYkUKaQuEaFFs2bFeAhowdy5CIHNGWQoq3tARu+3o9wUaCLccieFwhiM71/syKZdclybOJfmGh69o2C1HF+GkqBSeCLYzGTJfH5XIZUBAIhLwhO5aQyAJ5/z9YoVMZC5/OPtvnHCfrWi0xln5REwRuUksIyKwYCiNQUna8Is4q9C2CocVfoqQI1dI66WTxph00i2oqEvjDJ7/KfsDe4SrXAYGzdqlAabwsJ1esnUGnYKKaPMMoOZG+cu45QCDRK3T1dIeDROnmqBIdeKSOXxBGyaUvq6L0ESJZDNwhT4KprMagOnItDgOe3FyRM6YM7dwItZfHg1YbmCzM3CBQQyaAQ5fNjIuKrnFXEEwnU3nC7HVDgpRApDy+gcAgTYZ/kmsM99ncBPeGtMKFxKAkbBMhPnYtzYMfHhkBHRpHnT6HYmfTcaHpiCxkCOuMltL8IUZiyeh8nO4hV8wk5AZCaGSZtpsRtxJQTJCgI4OsOv/eOZLJe+ous5KQTtWLsZJ5/J5jp1AFQMKoxS9Nyouv+8wf1TKmGzXmkM8VO4GTx6HyOk96Ahoi7uphSwDcGpWgRRyrNeu5Ab0HCe0oaw/fdAgwbNOhSdl0a3zpZ49vJ5n0+fEb2olpi07Jto2+CA6HZh9zyOz7UKZyOuJbquwHdTCPp96DT7kkBLzjOVAsJPWrTcTQW6jvFHjPskHvzz37Ki4bzzzo32bdsSoKqXe4GzsREwEPYG0Vy7fQTcb7wBAfzVyhXMzyY9Izl54uuYNf/LnHctrKK994jYi+qimruhFCtihSH8xWOW6Mp77HV1j1tR+ophyXhZrrsjoFGpsj1UsOBw1DchJ1TC23ZCCFflSFTW/M13P9CYi33AsIzVDl43XM6RfxijdfakuSF0Yv8NO8Kr6AysFApNx8VGZRgX4hKjUtmg7BAvKvwVK1ZyagONGNmP+cpHgznr+6w45vBDacRFF3vgXmrepUKWPHb8b0dWk2Ou4FUbjUqn8jCWBIakvEs2jfkuROF/hgPgsXlz2Ifc88or41D5iQCDneo1ztZtWAdfcJ75qGH0aJgbk2Yu9EFRwxctH2rXrBp77lGdTvcofJUcMF3Dc7OsWRwxhlt8thOBqETpB9wJHeKkb7X5IEYI49iTwYgEahkDl+qgigTHNm9jb/TKmLcYecn7vryuuOzS7N+hLPH89reeeSa+4f3re5xPxQE9SWrtybjcLa0whsGY8kQu5HPhlIY031V2Kc+Uj8KuxF/J0+DDPjavko0aMGFyBhp63sZ+SeSkR2SZVReHOlzOQ1mVzguGhs/xMohRBFILWWaGtNjzi7GDoTCeAM/Nv3sk7+1KMPlMMkZmMn2+4/nK0n94Q/63OZaOmJe6TD0gvXi/xoe8IR+KMyuEhtA09/fPvxBH1NmTprynZGPFOpRjF7LRklogz7gGkv2+R9K5Jqsl5OPUR4wnPfocDVxh5mdfYqS/S3Bq1KhRcX6XM/N0iMYEZDWYzLbIW8LfAKP6SUNROex3lSXCRl2VlTwY2sLeterIWlExY87ceL1P38wutj/umGh0YMM8glLHXMdNmGsMyU/OXV0ibJyn/KSB7vjKm5L+lT2saJg/fx76Y1K8OWp03EkJ6NGUG+9JqbfGoLjT6CyyOsyK5xhwSAeFZ2cGlucLG18ZgGbu4tXMs43I7JQ/mGMiqzVpFD3o3WSp9y7IEKsArFwrqtcK+GeVFs9MfCuXmCOLSn1tWNZsprrVoInnoI8ZNz56P/l0fMFtF1IxpRFtoCGD94zjUaXqDI1cKVoZ7lWM/z/0Lryle9enrNehN2v/MUH2l97pF/isyILL4vhjWhNoKCo4lZnSHF/dgdOC7sQBwyTspSX1b8KGN8VpBt1Y01Tk2LMvvBCfzpsfR+1bOy6iIsPj+LTHDNCbIXUeVmNtQfbmCUPyk3TKS6NdfAqXolEekoRxNajXkCUdh03wq8eeiAbMvXO3IrDWoKys4CPGzIs5ySfKAas/zCTbQ0t5X8rEur4C7wUcpX9hMwgjvRfJn25Ulh7NkbHNCCDtCWwKWBuMwrGCJnPrBD/Najt3bTXhIJDEgzzgerxfe8FTi+bMXxDvEkT6jlOTTmKrUEvgUoYDYPBjNYE5ZYv64CsCMqOZx6gRQ2PFKo7yIworhvcBYTUQxjWrkrVHlFYmkoVVkHpN/tCO24gcr4y+1Dl0W4H84PulbvimN7aj42DUDAxvAcjlK9HImij7SpyUefNXx9d8SdrwOqDufnHokZzYQmPIz2fOislUFD5w2215HN+u6Kas8pP/WLd0KG8pD5UhVQkMVkJfbAIvJs6EiXzqJT1aGaVunEQVzPs0oHvv8+nRHr13CQHmxvXLkt5SPnKP45qdlnbUJX4oX6rHHUOakR790OfwMbCvkCdRjaXy9p2XXskjhq/qSp+cTh2jDlsn0p5BxspXySPIMO2/rIThET4758tgBr+UZ1YHWGpudl15N3cBzfMIhL89bISzisfuvIMkQZsdJ7sVJ/8o79RPyhdxLO9q7+rcWrlpwlJ5IEyEY2bAuc/nfTZ9RjxFMm/O96vi5MMOjq5UxB2Ms56BBvkUGGiXGnDQptQes6LV58n/XgYYssoJnOhIG7gTXgaqR+IbPPrM81GX+8695MLo0L5d1KWS0sbc8kxqOb5vNZx85HHgyni3EonTrEIGbhl8UB8AH+Hms92K9MHQ4fH6RwOje7s2eTyyWyfUQSZXtPekfadZyDboH/2nbBGv8rB6TDynHANuBmTdCubpPDOQw+/0fz/qYFt3IsDe6MADs5+K39f/kE4MCohDdYa0Y9UbU0xeTd+Jz5xrQsq5AyO3si5ctDCs4OmLnX0hznpreksogz0GOPUw8PBe55VX4g/7A1gkDJBjhX9IMJU1mnCWHg1gu032E2T8R337R9X99o1rr7g8e5KIP9fr+MoY9as+jDrcqsOCp5FlwHbjzZ8AAEAASURBVF2fQ9trGzJAnBpoSJsAOTMBvff+m6/GuKU/xFnHH5f6o3FZGbIX2DJu6n50VJ6YxXydsz1f7NGwmIa4H7Gdv/HRh8d5VKqXNahf0HxKoGKp0tZ/8/W/DjSIco0PCV1mUInlteNvKC4WEGgYi+E0i2zKSkqDarM3aV8ce8/nNWtthsAGSEWfgc0xna7k/YlCL2Kgk+s3iLaUdtUHaYVAJVMEw+nUy/g6EUbFFELuw5O4k+kgRu9PR2EHkRugWEGPhs+psBg2cUocyPitTukYLemcqkGk4ioCDQQr+Mx9jBKfho60bfbS99OZYn0KJbuCmkk2m+GeQCPjn44fG99SBt3yiEOjcdNmUZdopWVQDqIhK4P7UnHawbjajkCDzovz1cmVcRxfYaUBqSFmadSXS5bExOFDM5PftFmLNBQNNDintTzfEyeEhwpY5pCgzaIKkzyeUsXDPLxPwWvWygZu33+3Msss586eFV/NWhCtOrXPfWPOW0eqxIiFEEJxAQ8FkP0jzPwrvI0aC38/k9EV8D7LzMKXXy6KmVOnxIyZ82MvPNRj27bPc8qt7lBZJd6Ym4yfjgXvIeJSgaUSY1w/U3EIG3sJ6Dzl8TKM7xnuwz4YEAt579SjW9Ew8ESctD0yymoAwP4PGif8x1pQDAggDWoFoi9pUOVpFlxacl7e7Mki4nQcwakhM2fHXozf8aROWWFTEwFodsGtGeJS3OYJBcyxIji0OkVl6rgakorWrJRgbSoQqzfE6bwFC2ne0zemEos4FJnZ9tyu0RABXk0BDQ1LK8LX+dqPQSdM5QaSKWNHYbO+NBaZ7zbWqVlhuVtpj+2kKVPjuT79s6LhtDatyZIehdLfNx0WezQIn214x85V47UyOAVIbAXYQLaFTCXZ+alfzOD373CEVjA6xhBB9Lq1ykdZ7do4/ZSeez9KUgPL4ILGkGpXZZyKAZqQd4yUKydcF2YpigP5wcsKhk3ajJTkV0BB/Mjxi3N57uzFBAv43kperqvbyZ2iJUq/FlkteyRYTWKDVXFrUM3tIkabrdrJ/i88S5qRj+QhHQv37dnzZO6c2TFz+r/iixnz4/BjWxGdb4xMwkgGBtV3q548m8pHGuE50omfmUHbSCOwjRiqKoAKZCDNzPrT44gMWH21/OuYO3tuTB/5WazY/l20ObVLHAhOq9dk3siL7SirdYyxePEieGIq2zi+jPkLV2blRl187L1rBY2/alMqu1tUx8itABxhhoyMq6zdq51ZRzJj+APMD4OMF5NMJVkJOuEbWRq6CcVplcVOlIqU59SJ1Ru3xryly2PqHI7T5J7SfuRToeuj2P8uHUzFEB1LptFAQ5fjj6bC5rAs9Va+65wbpZc/lZEGGLI81DkCD26BVossmnN1PPGt426mQRk2mDLGMYu+yj22bTnCuEmjhmlsSusGg8wgp7GOgSNedXjlx8Lpx+AQFuBU483PMqvDinWGs2Ki99uBKRkdG+4XrdsWWxuUM87FOZlNdQz/NnOjoauTwBvZ/0B+Vk4431KgwXm4ZcsjIl8eNDQOJt15aJsO0YiKNRu3Jf8n/MUJQHFsxjB7oSGmEaP8zIAHz1YuKqczY8vczSZqKI7HSJ87bwEdvVtE00MOIcNhQJatHQQa8tQJ6EtdZBWGvGR/oNR54N/xfOmASPdiRNmqUWogwQDYEIyt2vvXisOPOob9tfvnca5pRGOQMenUec7bQEbyFLBJPmZ8+UrZWwST8EWBj/SwAkNx0YL5MRs5vBTaOrp9O/o/QO/wqbhxrKQJDEVhAGgSn47vGtw6YMBQw188iSNvsr+F9y5Ef0wlKDjl00ls6aoa7TufHg3q1iPQQEaL+UEI2Ysnf3J/Pg+aU3eYeVX2sDAnTFM5bwdmzEV5bKBh1qyZ8Wn/j2I6t3VqfhAnYx0b+yDb1DnKWgM30p/GuOM4b+WaulnZIPwMnCgviqCR2sl5UAVDVYT8NG3MJ7l96agOJ3DcaoukmWwSzDPUBV5przhbniXP+HzxJ97VwfKbSNU2cA2bCOYqn0cMHBALVq6OFg3qxKGchlJWr25WLsjglZlr7olnnlYj5XMY12cJl9TprGUnBUkJPjxE18VAgz1VXnr3w9iHe9scd3S0ooS/Dv2PzH6ql3LtjCU/eRlsFf7KZflMelffcQuwEa1FRtzvrli5Iv5FttEG1PuytObtOkVTAg01sRGVo/KnMrfET/KRNAKAeF7Bw6m/JRL+8xlJT4xtI0CPrPx0zMhseNuSuTcB7nXLyhKfP/A5lJjyw4Zubh2dNm1KNndbuqZYy0F778IRe7Vjv90rRy32PFSgwe5PnCZRjrIxn6NuEoYSacoS+EGekH5t2MuUgCuyGr0gbDdSuree93euwvZZcLn8+x/ZFrQwlhDjg8KyomHvPXeP5oe0IsBRM2bNnRcTp0yK67qeG82QkVWhw510tuQh/ukMyesGGrTDrezS+fFz4aM9m/YTYxeBBk4Bgx9mgdMxH78XU5f9GE3r7RPHt6XBcp19maL2OHQN/LSfrfZQvvLI5COTEYXsLAJMBnXkA3Wr/KTsNik2heqaEUNHxhKeezZwb01ixsCa8JBOiqBmEUTKoKDPZRznqhOfW1GBYVZqgFT1unLBtS5d9lWeYjcIe8zrZoKOVoCWGizbhNzsunjR0fW70pB2tUENP3frpHLX5pfaZwYexJs8sWDRlzH8/X4xefXGaMkYJ1/eg1NFGiZ/G/CzKaSVU3o68mf+A1bqRnmhkHNFMNPm3Op7beUNmzipBP9jGsGj/gOHB2HGaNX2qDjkkMPTH3I8gJzJSBNX8o/4qA4diDtPN7AnikFn5ZG4Va5n0AdY6VSvwgeYMHlSTJ4wJZo12DcOQRYchA+iHLU5qrgTn8I4g5vMPvUTay9kJ3KAf+oTbSYbcJqB18k20GDD6smjhjKnvaJFy0OjrF4ZgeraRVCTuWWVBzCUhvQtHLsK/og6VP9LnIgLaVd6NRmsDLXSUL9u7nyO7B4/MQ5v0YRtfS1if+RMVmwzpnOXfnIQ5Kxy2EoXA1EZcGdwcetcM6GkfuQebfolSxbHjKlsT/3086xUOuWCbtGwrF7qZ3m3eDE3xpLufVC5cvg32CHO16039n1R3lrVULEqdqK8yPirCODPhJ/GvjsgA9Xt6bVwLBVlB1ApaJDeLedWkgmDPBUHnDrvzcpBXl9DE8OoWjrlykvjgosuiHpl9dMuYyYs1hUXcppf/muv/3WgQUNVlarYEyAFaCAjiQxEmW2bRSOOEUOGxBSiPl8gzMsjAD3qxuZfCgIJPLMRIFwhtJYI0RqAvw3C9ejI3emfsBvZ48Jw2p5bEIxYukexCg7zKoSEvRts1CShmPlT0VWnbNP95ipqI4EypkfArCGyt2Edx+BgoOwKE+9B5Fjm89lpmKDgFBhmYo2qfk3JkGVANXBSbDyZWwiYa5bwuGoITuKXsSx1X0XlwVaIssoudC8nwlyZNZQypEYpDSg4hpHJTTxzJftFVfbVUBoyTBoyPEch7jM0ntMoYk4bUHJrgI/GjfCosXuN7KOgEZsZVt6rDFxVJgqhNb4wCKoghHYh6i7hqhjM/qaSQCCYdVgNTFav/CbnUbEigQXmUplsUdGFmMyzjM33hI9w0giSwdeznjzbm/VnQ0TuURnIoApHnQGVkNm0tZQvbli7mozubrHXfuyFJ8rK15gr0U9wI2wyMrzjWUblVwEr6aMmsBL2AlpKc30KwCqMYZTRM7OXzZ8b87/6Jg48YJ9oeeTR6TT+gHDcoEPIfCGPVCbF98EfMNyCYNe+qoTDJg40pMXXrjiaChgVq0pp+aJFse67b6PyHrWiBh13Le3UwLWaIR194O9aDAZ4XNJ6/rYMlTcw+HDegYUOmZFu4ePYzkmj9EcUwLfLl8SGH75BgO0WtQ9okMcgplHJmCoXj7lUeDOcuggYULbPQqqgIGwOZVnvGmhuDc7EztC856zbs8E1LsZInz15ZgrYOg3rRr0G7vmmdN/9wRyRmLAHxpbUGqBYAy42oomMdEt3XxOE+nL50viObRTfrS0MjEY4WQ32Kh+NUQT196kRlfneCspNN8Ff1dhLURVaM+Cgwlq7tjjLvSJVD0UgDKeRtW/E4NpI7f9mog32dN+uvNgZwUwUeOWa9TGF4Ma4RZsyuAMVxA+8jmnSEAeDwB0C3N4YaJ+s6lA5yPPr4d0fUArlmH81aF7DQiWvDJDOK0NHblnR0FkFbaxlTZvhqSrVqBzYtXrysLy1R409M9ggrUu/vudafiQotxb41CTLkMdJ8pkNrqpiOFapxJFkrGUzTvhG9uWtX7OBLtU0rAXn1fbiWDKqP3YCBkZhctsDlQffEchZtmx+/LDyezJs0AdrrEeMa/9a5Qjg7EPFyK6xRxXwCb53htYMauWcdAohht12pSEccJZGtm7GOOT7lYB9Naom5POVP3Am/Eb6I2jsVEZpMscfNnAKzMKlMWGWB0CyRYWX8G1Rv0GU1SvLMVYsXRarFy/FINnKcUt1Yp99DQwTAIUeVJjZhBRDWeNuEzC3T4qNeqXpajxrVwwb1WNRVYbLAt0qb5VvGoHfLlsSG1f/AI3umvxksyp5R+PYU0s0As3G2txLOSOv6+BKq7sx9m443josOtWl4JXj+963VJAs+2Iya941qteqQyAX+mTMQraTGcbpKaoV4D94ajW4WgcvKCOr8hyPBlWWpcEBXMS99xm01fhatmxxrMAYrU7msUbtfdgHyvjQo3Nzj7N8qh6qTOBJHPzAHiADlrtAi1V4ZcADGK5D7gsvS+CVCRpc9iEy+7p+9fdUa1Vn/nsRnKqZ38ngNPf8xEsDxnJYj39b7vYt5lmTfTaGGa2MkzYyYM376ZRyn/LNrS8rF3wRVWrU4khnuu+jowys+n2N23RglDP+48210PKP0Nru6JSa1dAryEMNucK4w3hnHvLdanTSCsrgPbnJwPMuyBdPBdEZcyx/Ck/H1KEQnsrwdchb8VqFMXx5g7LN52gk2g9Co3oFOF26YC6lzWSaq+0e1ffcCxqjUgQ9WhG5oSyuAP2UA67qER09desG8cE/929bDbYR+rJk1SCs+mkrDqMVZ+6Dtg/SJnBSmWPyatbiWDXkRAYxmK9ZsVJgIo8/hs428N4acCu97IFtUA0aM+ConNA+kR5cr+XWHv32f1D3ntF1XVeC5mECEwCCBEiQBEgiMQeJpCiJSWIQKdGSbEl2ydluV1VPu6tW9cz0TE2vmanuWj3VPVUzy71Wr179o+vXrDXlKlm2bEuyEhVIiknMOSKTAAgSYM4J4Hzfvrgstkqa8oz8R1d6fA/v3XvCPjvvffa5Dr+5RR9DcfKWUIF/KPCxeF4Yh8xR+So+m6bsdg77E1fco1wA7GJ+vKs7SCt30K3MJPQoR/mYfH8YTlTnFTiug4R75Qn9IcDBtIPrLKKTbqkTr21T2aQu4fM6L8WpG/AmHQ1uwes6cyqdOtxMK2RZVZalmumzqWLP6QXQp/PUuaK+pI7g2sofb7MGsabMKxx2/K6sE7/kH66JTryAFbJNneZSRyv7lCelmmkcPwnsnZe8N+QefUdtEnGYrAxxZzj44nde6jLyjdzIV/fxFC7bVa/hh1RUiuwmwBVHPDJHo6iOyTpYRmx1SrS1NJJZlzm2bXd+VRlp4uWphuyycYXAD7jcAtYwW/BTx48ZbTiXoRPlgHCQ/woHdQvx3sr0Onr5J5wMV3H0DoDv6fRt676YdpFV0IpwUy/RjV/Ca8HipVEA1sy79sPHUw3OgLFj2IIFrrl1T7jJW1w3nWUam9Kl8s+tBiXQ6jACTBpn/qbscyyjSsuCXqWn7vZWYMvWFPSx4pHIJ4IrbmFwJEanpUGd8kZhhc9VjS3gKk6NhAcbKNSJoo6cbU1wa8bIkLUnWprSmfrDqQBHxYjR49NIMxDhIfIA8U4jWoNcHUf9z1oJ8j/pVn1mVJ9uGNvb+E4+GduIWeOr4EV7U2M619DCWJGVC+ZxtPbEaM/Th2KLDjBShujkdEujTiWNdmXYLfSkm8xvNAE6j7K2D/VEHR4GyNS1zqNPXqAw7J1rPanysYdTmVnDwEWa1skgVzOTys8XWfdL6DjDwcFiZJ/Z1fYV25TJLBwgnMBV/75K9svVax4tzRYPeNFAHFBDwIVC+HDRME78AB46dfsjmFnqgK30dF15z/0F0Ix2g5kZ3Bawtj1xQZ1VujrH2l5DfgwCv1zXkX1r7rzkjfIomuYzNgPtXoKepOGRGM/D+E0+aVTfQKW8zqLo4pB68DWcSD4XJ+OAB6PHjo9Ti8QJCxSLb66vgR/X+ib4qA0ColGbBF5DW66j6xmOUmBi5o/6cGQHYGudajyUCkvHsT7jgAnZ6u6vpU11OAcu3ih/1K/Vx2y/DN1qhM542jKrQRtIm04a1Tl8AXvyLPzl2plu5tM/jamiQD+2n/ph6Cngo04S7R1pQFvxBnC5FbIEBwGwFmZISE5AIbOMNfXkNZ2z2pZdyOxzHY2cHHQ7jR4/lZM4qsMJfvUS2/fRL4SP7UZwl7F7bPw1xmVWgycUvbdnZ/o//v2/S9/9/vfA5UmxjlmPmSym6y/19YUcDcAegICwfS8/uxheqBIYNiATgvzwQaLNpIMePXwohO6U2to0iUiKRpqeegnLlwga3kyEk0aPQtYGzV7QoyRTNZIgEXhZMEWE8PzjzT/9aZqxenWqnTw5EN9jIVWs4uXNLK6NqZTGJxBdZqCgiWrgGIcKRAlAYehvOkJkUOs3fJyadu1Ojz21Io6/G4mRaVqOwi48x4xbAvcZiUth45ULVecVWyboS8RXMYsoCUzD6N5bHJ1YWlkZxzrprZTZek8eRdE4dZwCO9+PbN/u+zGKqYfVaIfPaNgrZBUqKvdHjh1P7/3ff5uWf+flNH/u3GhT77eC0AYV4n4Srj7vOHOF0zmoMKtAyDi8vF/nh8zcExF24Tw6vm1r+so//XFE4UOJZPwZLFB7aTy+A6YCXmJTgZRpKCxlcF7CyBtMn7Zt98a24T3d+8m2VDqhMj311CqivKPDY6nBoGIRzIrnHL9GgMq6you/W/sjnF0wG9c+S8METtyjMu/+/NamhtTesCc9vPT5qHQtPqksmF4mHJxDnNZB23EWs3NhHirJ/BP3+LegUfFTSImzbSjcu3bsSB3Hj6dCHGpzSfWfAl7ankzQtXPQjtUIjfDxFWtOX8JFhu2YxaEw0GhX4eL+s6Nk/Gx75y0i3cNS3YyZaerUqamcfvSeh2LNeKQQM3F8l+mq0Gqgun8xE2TOwRdD6Zur0YsbCAvPlN/6mzfSs3/04xDEHr9zsOFYOoHxeay1gxZTmo6jYcrYfjgaKlJNOUYFjpqLRGfcqqICUgAzlg7CGKRPnXBenrig88+1vkV05w6GuXtVe4FDL4pYzwAiJP0pLnf5OhH342n7iVuJXQSpk5dz+dHXnkuPgsfuVYVQ4DDMQdgBW2mvqYVtLv/Xf0lTl6xgv+/CEDbyCIWYAtZxqCxw8314SyuhkMmLxHf+duzCSXj7vGvs5wOHDqUNv3ojrfnDf0Llfo7XY9wK4V6LJQDHiAQzB7cU9OPlPAWz3nsjqxoPav5DCt1udYdslsa0e9dW0gaPpUMnsw0iM8ihrSZ8OKG0AkdDYSpBcR3E876sCyHu6RCTniLtEWF3B8Glg5WvoHELOWXR7KvXUOCAUz/o7h4ORDxQ6TyOhsOtnBt/7Hw4NoSt7qMXlq1Ii8loGIcyHvTFd9YBGKjTCd6rgqFxLH9yHVUaVB5VhuUDreDlMHBo2pw54DtReH4L+IHLwtD1sV0VMenE70I5hw7k7aFAACzxVH4g7bk2bfDIfTt3pMsoIaVsUZg6YxpFOyvDWeBYxDFxWJ7i+lrTRqPDNZMXGOUwQif9FGAYZ7xURxrOB5630ODG119N42tncMLDtOTxd2YoGK3K+Fmm2NuWCk5WdBVcZR2kVcfrZaaR/EyHgHzBjCSrdW/ctCk1fLw+LXzhpSy7DdkUBin3eGXywkwLcSNL55WXyd/sU4eLfECYyb+839MnABLGUTvHav1NKquqTU+tWsXpRiVhuPu8sHZ8KtLCVoPWNlTqhG/Ai3fpRzhLQxoXGb4jJ4HfsfqGSIF+8tln0kIi2W5TiXEGpvmoilAmP5QhGbzgX4zbvp2D625/zkHaciyuh8Uy95KlcHTDxvTSv/iTNGPqFL5HGUfex1w1viUeaNzMQTPEhFgmsbK+Y8sEY1ZmqcyNgC/Yj0UQ3arZTKSpkFM1Fi5dGim+Ks86X5WtztnBe2SehphjU/4KX1OYla8aEsJBfqHDciCGihGs48ePpfqjR8JJPGPOw2muld1xPmYyOVtX4Rp8nk6Ege34VTjG5HfgrTxePPIaKJ3Do06zDWUf0bfWxvo46nbBwsWcusVR0LRxnYil8t4xus0BzA+cFKbOR9kqxISBBj0fsjXiy2HgvnK8obExbV+/Puhn0pSpUWy0HMeHY3GLn/pG1IpirvLNwHFgJm4rrSO9GJiLixqayhTX3aKh6hamzW/8+S/SCtLxJ9dmfEBclCa8HKvyUuD42bV2zG4DC+OZe10X24qaSTznfIcR+DiPo+Y9tqZ2N9Snp9lSW1lREbSkcUQHMWflq1gpbxbXfXn5vZkj4mbwAGBlwEWctnbXzt170s5tW3DOnk/tNxxRSo9MGpmqcTTUjhqaxuNoGNxDhgDBkv44eUJOgJOurTxAvYWPIVfUEaQTnQD2rxO9h8jmbb4ze+8eRXbuIufacM7vOVCf2qmXY49K1wrm/r0f/3GayZpHIM41JBruy0xBAyPBe/g+Mq6AvTyum4DA/n370mkM5JVf/Tqwr2E8mX4h8gl/o9jSovqrjsjY6kHH0rwyMEbRtz7SrjqJundbezv01JSaDuxPk8D3J6gPNhojXQed8k/nljSlA9e56zRwbYUtww26FicDZxwLffq7/Z87dz4dO3o0taIvyZNmzX+EjB+i8DibjIJrHMsHxGyfCbjTn9jkmgauu/bx8lapAhmLQatckUdu3byRrJauVFFVk6ZMmxGZXGYgKDeDh8VYdIpBl/Qnzudzso/bRrL5zraVC/KaYcBPGjtIRs7Hr72SJs54KNWhi42BloqRgyAt9xu55zlHRH/ig3D1Zb9e2jwCRB4mvUpnjk0njJH+rVs/Sfveejc99o0XUk1NLUGubHun9JHzWOGSzYNugg/IZ2mO8WkT2L006LswtQ95ndlWv6Gmww0cLU9Ru8tMc++zDfFXXqAdwReBx/aT8xTnxgRDFoVV5X387XqEo4F7G5qb0xt//dfpoTVr0pJFi5DLOHrg8bZvRoCDDBhBl9KQTog8KBCZqsCbmQR8lPPe7zw17rU/rL2w/6OP0jM/+hHFTKcHXMVHx8n/4HymWzOgoAXtLscW+jX35fAOWmCOZjLqoLyG48i6Qwew+8xCWv7ss2kSWWIulXxKh5Y6nTAsYKtSyLs+PJWzOWbXVXnqQ+r5Ibfp3+wZ7b5mdFUzqSyyebS1Pv2bn/wkvfztb6Ux6NS92M3OU/oN2NLml/lClxZb/v9d+YMSvJ/zv8U3X/qaQbt0kH03H773burEuLPg4xLqC0zH8HJ/+XUyEcLw8V4QW2EhI4kUcQUjBGeKqQqpBBDKHN9JKO41MnqzftPG9PEHH6Q5pJnOmjUrEMKUTb2sGt1698MIddFAMpmF4wvDWqSF2Ri5NvUolCIQyDG4baALZHubFOIGFJaFixaHwTiGVCG9isHguFfhJbHYdhAY4/MKwdoHmBBwzFdDJNKzGYuEcwxl6LXXXuPIpfHp6VVPpVKiY1FkByaVK2m+i8gqAipzKvi27VaRKHzDZ+EiU5WJCJNcUd2N4PkN5w2vfu65qOgsDCXSbOwSoYYyBj6Cx/nHsWnAQ2YqDHzn53A2eB8PhEDVYBY2G7dsiSM9v/md74bhlTkiVLyduMQtpDOFX0yLQjasXexfREEJxZd+ZIjCTi+0wvAUezcbgc1uivWNBjYvUExoAkrFJTyqMgnnavu2Y5/CJduXBQxQGs/gkZZY9VjrnBEPmG3g1TkUifr6eoTbkXSipTktenJFWrVyBfvYRpC+dTkEa+ANa2SkUpgpWBy/R+EIO/vkH76DGTBuIykySI2ZRtrciLFu28VEKxexl+0hjC/xTcERig5t5Mwn1oL5Cxv7Ehft33loCOmZ1aBTaCuId+zend57/depCGE7E0fDnDmkg06YEAIhipKFYMy2zqhyKfQyow/FzWiQAg0DH5aL4gKuMgedGYVEIzwO9HX2y27YgvIP0/N0hIMYkJt2bk9HSOPcsvtArOcMjOGpOPknI1QnjmI7QgGZHESF3Qcsmrj+4pZ4aISHpYqoz23hR39MCyVB+YVyzbyR6ihiGGlU/L5FtazTl2+koyc4crUdYcBlpMfrL//H/z49w1qNJ5vJ+gyZEMIIU4CwBoeOHUuvvvJKmjnnoWTRSJ1HKj3ihnBUOJt15CDFC6MYjlHngzB3jVwD10RYZwIE5wz3a9wL+483rE9Pf+1rbDNYEMpaGGcIT9OSVQ4GY9D3I2Whl3ncQ0orrENZBx4qHP2oKFY4wmymWxRA2p3eefcNlJWDacPe+pjjFJakbiLbU0rHpnLqX4woQEhBKwOZryqziqbwDH4DfamAebQvg+YHcbLvd/hGbN8Brnf47rZjIjpwDkfDUdLb9zZR74FbT/Dy+pc/+gOq4ZOSXlUd9GWKrlEQM8WKiZDpaHDfs1HXgcwzw8lhcTTV5s2bUzM0ZRR7Nnx4zuzZIYTlWZFuL09hPNKtL+leA1h6ltcbwVQQCycNdRXfLJtqKMZufRxNZTSlkto+M1FCTQ03GhGKFmN3vTTIVfbd02okTvxzTRXsvluYL99WZpRfHu5cPtm+PX303nvw4LFpOkro5Lo6igNb4Ir1o13lkjQj7gjhwTxnOq7ZDc5NPJHP6VgQf3Jl3u0f51EkLDRYf+gw6clPRttxZDD0LO9w3IEbfQqzCpj4F3yRtmzbyK73yRstOqYyrxNVJ9AxaPLnbDMczXhfgMeXe5oJ4w2HNGtkNCdq/zhu4B7Rc56Xh0a0kHZdF9u0T+vBGBXyO+e///Ch9Gvk06OLFqflGOvFwFXW56WxI30II3HBDEDnEpFJ2nHMrq0Ku/CTlwkfLzMLuyh8thmj9CjK4g9+9CO2isyNNTT12nG6vmEA8Zx81XZsQ/mtTJfvSnsqh+KMssotkPLmpqamdPjQoXQMuV0CTJ6m7kIVuKMj1XULEmHNwukCLK9eRWYy51LlBf0Y0b1FtEy6UtmL/sVbHHhdRMfc43744IFwSMzBybCI+gIWvvQ5ASQ/CsWSuToejTs7lWY13pVXwidqG8HnxcN8G6jF9Lbt2J4acTQ4vieXr4jTRwbT5mXq1phB5/qEPGYOOi9d8+Atti/Mudc+XR/7FVaRkcRY9h8y8PN+/D1t+vQ45aGysjKc4Crv3Bzjy+sviYPSlUaY3MbsKb8TH0Nn4DfnMpL6M679u+hi77/5ZnqaQt4ef2fmjRk44rvPq1fIwjLcyTL8dL5EQIXBhhHG72FE8oxrZd/DyTQ5jVx/7fXX09nOzvRVdILa6qoYh7CWHqJN+2HNdIb6kqbsW1rQoeTL/kImQMtDiIS2ovi/A0x+85s3qUt0Nh0/Q4VGrrnjBqZJZNRWlwxO44iE4h7gpCPqTvC8RnPQC3O2f2Hhmsh3whHAmjgXnTE61G+bigj/9VQiTPNkcmDbWbZsHO1KlCIKfbmVPqejM/xP//rP00KcvjoOC+inF5rsuUEhW9dXWIGzGjqhG/JZh2YnNZR2IZ+E0ZpnvxKnSIgHPHIfH9xOoqEnb42tV6HX6FCHhniJR8Im5z/SmfyzubklHT9Wz3bA46lqypT0LIajBdTP4txQf5b+c9oOHg5NKo/NbBX3Mp3z7wMCDsrvxWN1NY/GbTh2PNboofnz06PIVvUxeak0qHNNfLZt+wmdgecDDuI5MLBN4SE9ZHpTtj1Yx9qHHEl8CbqdWFVN3ZsFUcxUnnQBJ4d6mLQhjslD1AV85XqXAYEboYtlDjXHrT4o/GxjO8bo+xxjPQEdbPoMio1CS/IR9QrlhTJQfNCwDn4DRgct0I59Zw5qdFkcOsHH+tqPbG300fcxpPfAD55YvhyH47QIpMprzcSS7pQX4p36onq0fYTuzjr6tzw06B/9VGYQWUj0az0qa5P83auvkkV+KT2P/FCPVE7YhmPUCSueGcizHy9pX6IU5+0/4zFm8WV2Dw9Gfz5/kGz2V/72p2nhk8vSs6tXBa2KqyHn4On242XWtsZ7IfLFQtnKJ3mpLXqssPyij4EGLN1yfJb13L13bzqI8+s5ir9bD895x3Ybxmf/js/ngu/yW+h7tCdM3Aaj/aTszk7XG0S25VWyW85jc15NZ3D47tixkxNP+lNQ+hsU9Z8aPNbMoYuXLgTPNhNTh1aGMwQo7Q+YKwOUn25xNOiUXRl+nr94idoxTRzTeiyd6u6KV1fbqfR7f/SH6UUKV4/E2WPQSH7oeMXpL/v1hRwN/2DyLm58GaucAQhgHdq3N33w7jvp7KlO9oazHwxHg0UMdTSYwmT6o0QuU5HhqWQoBERukTYyGhBukXqC8hQMSmKE0G9jNKzb+DEnGryXZqDczkIJrZpUFantIpmMQITz5ZUpVZlDQePfiFvsu+RnlbNISYQxiLDDYHQXYKSvIzTrUVieWLYsHA2e8eyeWZleIBZI5bv9ZQInI3x/j+h3H1QyIZTdKwNX4WhAUXyFo+RKS8vSMxBiOUVWZFAafkwxnnec+dhDwZDAaVuCN4InESoYFHRR1wHBZ18yNw2jNzjuZg1CefnSJWEYBUPqG69gsR8VzUwogdR8KcNTiCpMRXbXJy5+k6jcj2/kZRNFGOubm9NL7CGc+9CcuFdYO/ds/hAdfzseYeoaeqloOn6Zl997r/eYiq0i0NbWFqdg7MLRMKaiIr2AYTcOJngbfMkYZx/xAXvnL1E7VgvkmZKmAeOKe1Sh8HTOClCdNO41O4iyZaZNO3u3Fj25HKN0ZRqsYGMLifvPA1+EDW24pqHY8hdTyZCcDyq8GSPjPtsGH+HS6WRLMxXS/97RsBhHw8PAxnnKyFw7vZ22mxn6NCnu8LvCWbhr1NiVhmJERVjfwUWkEXDfdmDyNlVqTcWehWCbi2E3nihsXIETKjo4K/gMBkJPpA0Dl3xdNJx8mZ6naNV73o81xjojj+tKHBW6afvW9CLH9JSRKXGo/ljavHsHhUiPpXWf7IpuZlDGIRwNGPyVI4elYqLoPcKNsWsEqfS6F7o/39u3gNSBcgdjXKX1HuG4gWQwuA8O4HEfOMZ9JLana2yC67hERkPrybThFJFhejS93+sn/8ufpueI3I6HBvvpLAFndFQqsMWfA32CTWN3DfeprCgIc8VJ/mJNEulGWsoMX5Rg/vM+1zPgTltemVMk+15h+AnVutd/9GF6kWMNF7Pv1DbkWxr/Zv/0I2rl6x5GPRolU0NgM3mFmoqcCy9Miqi94H6/nXt2pTff+nXad3B/+mj3oeizjramVKVUxdaJcSXDUgmpt/1wEPWLCCt4QnueyS3OMcKMvvgUDgdg4To7P+Gq0QFioSxAt/x9l2yLszfupMPtp9OOZhQTnjOK5vWnFKx86dnn07S6unCyqjjEtiNgMkT8gQ/FFg3+Fi/FK7fodHaeStu3bU9N9RhG9DX3kflpHkZjEam4KrUqWioOOe/N1kLnDgpcn1Gr4eX6OfYwJunDIr/uYzba9T7nspsGPXFSFTV1iBzV1oYhGu0ydo059/jbpg7iAhwXIAVIRxq7afHwm+Hgt1WiY8sUc7FYqtEPj5fdgCI6FoNi+rTpmaNBPsz8TRE1wynqK9BPRGKARaQMM0bHKt64Ehkvyww88UlDTGXobSKwh5GBTy6jbgHKioXuVPRlJuJXbhDK14RNITgLI5Vg0l3gF85U7hNX5XGuu3DSoFFheeVnr4Zz5WsoisrXkC3cxy0h/+TXwjZkhE49+rjHnIyChsxizaJt2lfB8XuVG9drP8b667/6ZVrw2MK0HD6mQmbfEZGOMWT45pjybD3xLY7J6+tXnMjGq1HJvICNwYNOC/DhqHa/uI6GefPmqcWGY8S+fWUXbcsHgbKwti3Ha0q3UUDxS1niHN2ywaQpsNcUdXvk8SXwimcxequqqxkX+AiP8l4B5PyVPSHrgLlp9NKN2xCFmzJR+SE83CJpvSMj3gdxHB09cjh1YyTNmjWH2gVLCKJkx1Vm/Ij7gX+uH8Q8grFIjrRHmwwiftc5bMRU55XZXka7tiBXW1ubA2eXLH0iPQJsNJpvoaSqyKoDCYcImvDZ+YhL2dpkBpztC2t1EL/XGBRR9+zbH0e9DQWG7t+ejaO6Atmqw+Y6DhcNuVwu2646VMhnHrZJmqJV/+Odv/2NxWJrGLwWXvg2jrW1b7yZnuJ0iocJ/IwieGJ26D34NRQV+OlA8m1GbtmQVv07giz0b7vWvZI/Bc2xDjr9T1H75jX0mfOkh38NnaauGkcD87AG013WNtf3YJD8b2RWHpxnHGC0RiYCuATDFqcGCxNo0SDYr99+J/3itV+xVfZcOna6i55xNIzG4Vs+OtWMHJrGDWeOLKpbf80sED/tTx7img7CoS5MxKmQIwIKgEkrIUdcB+RUD3Lv7oAh6SaO6BPdZ9HRqI/Fc2BeauU1nXT3f/1v/21a8tjjUWfKOlA98Mk78DCdvhpGZitGZg74qMS6AG9sJ5NyO7zMANCLL74UBQzFP51xGjxm52i8mXXjVl4NaQiJHmE1GHlufXMeedQdJAuc09HZ1NRMHZNjmaOhbnL6Co4Gg2M6f5WpOthzOhcfpB3hY4BDHAqjDpnkPcJEfPSzeKZjZDeZTfXwebcozXvs0SjQrrNYOnS7oCdsZXOBdmlXPuL6OUZhoYPLdkPPYT4aaRqAtq+j+j2ChToaqpEb8+ZRoB37Q5wR30VoeX3QOm2rG8lXog/oVF0qcBF+K9a7ngaWrEXi+m/ftTOtBXfG4aiegWOtpqY26haIDPIr4RHOUdbeOUtfgTu0q9wK3kmbARfmGroffel8v0T21Dtkg+/8ZGtaiT6jsetJbgFX5ulY1M3Fr3DKOG/kjvqw+obyMZwP3BM807XoW5sC8N6jSH/K6SPCWR17EnpkOFUZI0OLdcpsmIynOH5frl9mf6ALiEB9V/aZf/ndeVt/5ee0/wiOWPWxPOvJtcvbUYZmPEZdNQuYapPpwLI9s16cTyZjWB/a1nlufZdt6MJ7sXG+/q1vkXG3IO43COo9wlM4yysdq/gTW7rBCTNZ1GX8LrJTcIgpF0HAqDFyDlw50daethGEuMf9L3/zm6mWbEcaIljHNnyDteBJbJNhXQPO4ozjFBbRPToufEt8dTwWC/cIWGtRHATXla1dF85R9Pxc6oavffX730lfpXD1yIrxphhlvI91YBJ90P3yvn1xRwMAFajZiw8uMEQS7zBesfUYStb7REm78dRbYGnh3EeocFsTSqB7OhV4FiuKffww02FEz9xL7eLIRIy8GDnS85cVNULQspymrehp3AgRfrT+wzSJNqdMmYpnsTKOjlIwiWQazWE4gwgilc9JnHqtboWiq/fbiI5ePI+QI6IDcrtF4izerTcYe+PxY2nZ8hWptrYmzmbVERJp6MxPA0Phr5Ir8QQT4PmcycicjMZo5DoOq7/KbPTcWXjmVc5Qtar1iuXLKLLEnmLmLlMQpkbijNSpJOpBFbmNONmXDFCsVjA43ngxPwlMQ0O47cLj9y7e1qeeWZOWLloYUadckVcYekkYoSzQn7DRu2tUSe+3MHQ+oeByZ6wJwsDI/OkzePx274rju1Y8tSoEm0UUnZvCRyPD+UrMtuOcNAj9OyscmW2BkGnLXBVIHi0ogwxHAwLCVMBSjrBUsE1EGdJhoDCSqSo4C0mn1FCW0J0DX8WEMmGUraviwTYVQkY1zWjYj7J1GGdDNx7FR3B8PbmEqsX0bcEccUsh7PoqiHT0WNBFnHFuuVGr8AgmybuM3qI/KootHGe2FZxsR2HUaHgUJjt75oxgQgr6SH2F6ehkQOTwH0Nm4LnH3uiWY9YQKkBYuq/YdK1CnCbWUNit4+6dd6iLMCAMl4dnz0lVwEYBGVuRGL8oaRt694WZClyWCoji5X/grWnH/XlXSZCuTK+3fsnadXjQMXxXffV59iqXpeMovDv42wrYH27ZKYTTTGyhKVTGrC3F0TBCRwPMFGP4XjB01kHLGwO5l3f30rkuMn0FqycWsDIU0sToweFwixoC0t9wajv0oBhe6emfTl66lrbXN6dNpzP8jHWljX/3P/wJGQ3LcTRQqA30ZTUCdq6ZeGUh2V8S4Z05c3ZatWJ5Gj2qNPp1ANKjeOK7wlZ8USgb5VbAiTMKKZ1geeaQ3wk78dhjjDRKN6/fQHXg76ZFREaE9xW+H1FkPROdZDgycLh4egZWCXTrfkT2axKt0BCWqHWGFXGahLVFdu/fm9569y2cOIfThv1ZtkgtJDxlUv9Uw/7/SrJFSgYjbMgWuQc9Gc2USYWjQRjTnmvtJ1/+HUKW+QqzSHvkBu/pQfm+C8y7cTQcOHk6fdhEMVruOedjXH/83e9wHvlTFPGbTAGmkbE/3TFrAMjfNKBUcl3N7Bg8eCY8uQsaOnTgYGppbAzlYO78RyK6YMVmoyfhWIsxIPgdSIzUcfOZl+PVKSoN+VMoM/A7eax/u/3LiNRlsgMqUYTmzZ8XKdnSYyi0PCYvCGEPTusYtQBe1CjgnivwsUtXLoVRYZRWLuGpLDq2jE5IT9u3fRJOXrMZathfWV42GswCPWkvzsEGb6QT+bARHtvQABI/coej43dO0plz8N4ulCEjvAfgk4vhMToayolY6ITRURCLRD+OXd4gjywHtyGI2NevMuR65/zM9byNsSSvV5FuPdmWXvvlL8PhtmrlU0SkKpETuuaMXGVHAucKtODWga2cU54aFXLM8jSNUNvTaDLiJNyl10MoRCrpDxMtWspWpCKUX5gKPBBFEf6VG+HX4JO25/YrM6hiPqx9yJW+toSXfSl3VLbMWtsGPTU0NKSvkwbvSQnOS9kW2SPcF8YCfMn2NJB6cVQC9ZBJbj+xToF0pCST51h8zCwBi5YdI7vJIsHWwFjz9DOppqoqeLp80uCGeBnbUqApHeDisnzI8emYEi/zY+90Bug+Nfih8u/WO7Mmmhh7Xd2U9ASOhrHoNrYtL3fNolYE4/Zv8cErk7lhroQT0Misa6BTOKPVhPw4GfKjiwh1GZkqGkYzyDxw//Zt+Ii8G5DGXISLQQJhEZF0x8m8Yl3BP3FcfNVQGoqTDWGZ9h44QJXzd3hmUJo6bVqaNm16ZAuGDAL2HguoYeoJFRYxcy5e8k3p1W2pbjmwUKRbLXS6ue1D2XoN3eSjDRvSeoyjxymI5rGy4nPxcMxoDF7Hnhm98v2b0bYyH4SKgJJyzv3P/m19CHnNIHh0OPrhXzoazDC9jIL+zOrVFJQmAqsDiLW/x7MAmLnTrI5eTtwBUwMWOiFuM9YhZIeVjGB7DPffuk2hWdoeBL62tXHE3Dtr0yu/eCOdv3Ke4y0zR8O8MhwNY0ZQo6EojS+iCr1AIqNB45deAi4uhluqXBXHK95kK+w3/AfPVEeRnkzDvkH1435DR6Z76ETN6FDrtpyK0xkqaE2nbx01SP7sz/7XtIjjLMsY22CNXeSMTpwwumjHYxhvEWlXT9ZppU5zor2N6vc7g7a+TuBnNmtrlPwWfED57rG4kQELjiov1aeHSM+M7zLPu3biu3TgOsjj/WxQqbmlJdUfP56aGptSBcXNV67giGl0VfU85a6GYOgxwEHHhmvr3KVf+UToNMJMWAEf+b36mHzHAol70VOPI7s1LudyJLynj6jvWr9KOW/tANuXZqWhPEPAoKQ8S3rV+S3P990r0uHBY7OG3ydj7Qo1Bqqqa+L41Oqq6nB+OUb5ShReBD5mjEmrLrOyPA9Q+Z1r7PiFly9pQPvErOEN6Ewl8Blpafr0aWw/HBeOO7OicnpVhso3DabJbwyo6SDxJX8fgT1gm5dx7GjXFOP09JSp9z78MO1me/Jy+Pvk2tpYN9sIO4H10SYInYZ2lK9m0jnMy2RD2Ic8Vxkgb1V39V055ZxawRkdd67PcxTdd0uiNXvCeRF8BplNa+KNtoj6kjxevVceLp6bDS1fyAOiIRP5XfgdAWfkNZOnTkXHxhmL01deJRzkU663uKLc087Q4eB3ITdcRBeCeyOICJ47F6lOvcJtHzoadiNDXv7Od9LjjyxgXHeRXxyDy3/OL7c5tC09+UEnjXDTNpI21GeEjTzU+33XvuggeFKPPrMLB1h/7veI7KnoBjeQc3doR5tVOSTeWOvMQIQwz7f8hyNePBEuDPgOOmQ/2h7Gml5Avu7DAb6XjDhr5ZxHfzzT3pGeI4P4a1/7ahoFfQGIDM+gHduIxoXHl/T6Yo4GV9wr57kKpBBK/sALAQAFpCMwkbXvvJ3OoVh45ODjc/EoQvCmPt/GiA4DDmSSaUm47oU0eqDgzUyUvFkYtMivogP6K/D0wm7avi2t37g+Tayuiv3qZjSYQunCS4QSSSi7/K2jIbz19KeQzhFaIaCCKBPU2JCRmBbTjaPhV2Y0HDsSHsXJk+tSCQ4IvegqRI5nMG06JtvzeRmdxBYXSCIxhleeOalA5XtQLYbY1Nqafvbqz4J4V61ciSOmPMYXKTM04NhlFjIIiUZFxshDKG0wapVcla2AE31JLM5FJ4SK5s49e9Lbb76RVq35CkdqLYpImmMMZs3auFLCKcbNJ5VjmUDGAG71KTEoYHwnc/KldzBP1dtKhFcBpyfuIaIXCq+ILrIuYQTQpmPXmRBeyQCKHeYfWCPmoOCwbdNHo0psR1uqR0DsZfylFTgaYIJ6W8UPleTYvwXsh1JwDWwBJpnHMuYjQwUOroPCQUNRJqnSVQShm868H2XryCFOQUGhWLBocTBBU5/dlyVvkxkpIGV8ai4BI96Fm8zc9kV7i4nFr6HkWshwUKzppk2bKMLYEkVMFy5ewraS2ZFOayFQBhR4MxAEl1kFTrMmwkc4qyTGeqIUWoxHBUBnQ3EZReOA7y4Mo7U4v4aCT9OmTMWJMSsq3KrIeW6vbQhvC9VkSixKCozLZ1Wk4wKPoqAPk7CokfjmaQ9XcTAp2Lbv3ZVWcb5z6ejSdKy5KW0/uI8tFPVpw8598fgM9Mbc0VAxYmgqwdGAthweXxVedkCkXgzkOwBOhch1EbdUR8SPAURzUIMFYDgaFAxDhpCNgiF8EyWx/eqttOvEmbSOUydwV0YNATv+8//un+NoWJYqx4zFuELBxjFhoTPXSFo5eORI+gWOu9lEGVevWBFbtVwr+VLQOzAKxYjv/F68F/d0NKhU6WQ0VTRTWsAtFAJ5gQqHDkIdDVvWbcDD/e041zwiwAixYUN1JKLU074FhHo4SrIXRRdm5goHrGE2zCDjBcOhfY8P3XNgX3p77btp/9EjaT1OB69qhjt10gAyGkancThxzGjoD83H9gnGYqFLlcCM5v9eDoGWQVfOSXj7ct4QllOIkyru4vzowtGw78Sp9FYTBdW4BYyM609+8L301WeeTnUU2xzC9o9QTDHsNOItGgfgYn4sXRgsURcFGJ7GIDqIo6EJpUIF4DEMjMdRFjVK3esu73VMPqYA9nNucDk2X9J+nvIq79R5avaBUV6N3XeRH6Z3VtfVpfk4MibX1TIht3YQgaVNcVh81rjLCgtTKFVHHUqN1aKlIWkzoqe0rVFqH54isRNlYuuWzWQ0jOUo4qlUo66hHgyOLPEK+o9MHdpVCZG3xr5xYKG8kA+LP/LbqB3EJMUZDXDlzJmz3eltlNyDyMBl8PdpU6ZwbF1ZKIMq5OKiIHDcKmbKJ/mQvCecPMAu5725PLzL+g8AJ1SkNUpf/fnP0wDw/+lVq1MVPNKoEU3ej9aFLLET4J7zcPmCvM02hbd8wVekCaM8+bvK5P7Dh9NbpJMvXbY8rVi6hEJtw3E8IaPFatpUdksrKnHSjnNW8cyMXnljLG+Gi9zv7z53AaW/vZ2IEfTU0FCfvv57OBrIQlKRDIcgYxNHwvinD2WeW5MGIGcH9kMWanjQ73Xo8gaGn5KsPzDxBCedSCeAi7VsdhPtsqDkC/CyuqrqMJyjHcYlzxBXfJenu5bihNQTjg5uUWZ41KOwkN5Mf/aUihM4Mtzap3NtFlsnVi5bRvR5VGSsyYekt2gfPuv6yfv8KpwAzCvgwk2BP/zl9zodYk3b2tKmTRtTGw7rEvSYuTh5zFzzhI2oXi5O0odyStwXL10HMwZcU9fOyxoOrq9V0p3DsGKMSmTK7v3705voBDryjMC6/W5CRWU4FG9evU7RSHDLTADG7ktcdM3ET0fuSVMaRNLU9dsYUvQtbXmiz1Vo7UMcDR8inx7Dge+xgJXjKtJI+J1OIjPeHLNjV1bJC9RrBJgOIk9QEbdhzlnhNfq1fWt06LQ11ft19pRbTNbgQx1bqIazncVizr1khWTOUGBB/YN7/YfAJ1k7jPvIZEBWD4a3Wryxh1oL169dCX5QiD7Xcup0euOD9em1tz/A8O1MTV14uLkeH5dS1diyNKlkeBozjCASEECxAS7gA2NnKkE/wlruDirFnPgXmGU8T9zK3BAYr8Dzdi94NnxU6qVeTkv3ubRxy8l0iIfx28cpP9XDStJf/eVfpCU4Giyo2Ut/Fjm1LkvwIOChIXoTuRoZGdDBOQptt7adTFs4AvY8Out3vv2dNAeckYdoHGVOeeiVAas7CycDZPIGcUSHq7pVbEmgPQupijO5jt3U3BInsxw+eChVVlWlr+C4mwjOGPQyGyhrL8Pz3IGnnI9sE9YudAL6jOwa+vOStqI+Rnd32oHBqD7mFosFSxZHfSUDP5fJ4BFv1PEcu3geRrVrwGcdDa5D2A3QrnSmbFRH1cmhYVzf2JQ+/IAjTsnAtf7OXE6ZmwofdjuPeqO6pPqh252ybQwsKm3ahjqDfFG4Cyd1vh7W1c8GgZQFO/fuSR+8vzYCkzk9mVkmfutoiLEDc+WTCOIc5AnyfvmKeG+74dSEB+hEUqeXni5hlK5FH7NGkRkNUydz8gjOVAN30Y4IyFhtV1tH0DpWMc5go2sQv/N98H55Pf17o3+3wGt+8atfRX/PU4fAYJ7BMo1veVI/BqaOajvB1+Rl8HB19ixDk3UBh8IOAX8i24P+lYfKhMPw4LU4BmeydXgZW+/KoDV5nmMSb7QR5Fny8wju8dnt28pWcTEytKFr+W7oj/SvvL3vaEB+7ALnv/X977PVCEcDz5stJ3zD4Y889dKZ4XrKa4Lf0H/Yhtyf2YDQKvcaZHVNzA7SQaWjYQDr8I1vfCNNqa3BIUcdMujJwr9DkfPyR/V55Yh477xyGCgXzaxRHoWjgTmZ9XXx2tXIZvDY+EsEuy2kferEyfTCd7+bXuBI69JJVawn7UJ/cfnGWn2Zry/maHDm4HFQiQidXwEY/hBQEM3+iMC+m87hJRqPgbB4nhkNtTga2EcOoFXWXSBrLuhNU3G4IXOVcYAYMgs9WpGGCxIOgMplOnrurNC8afsnacOmj1M1yucMmKtRKffBXkEhUNGVIPXoykQUmgpMGWMWqc+iOzJCEZnlDSPb2RSDFKah/YI9gceOHEyrYa5Tp06NKK9jkiAyR0PEVQM5TBG7DvNVIKs0hDEDGCQOvYYqMXq4LXSm0nUcI+4V9pRXVFTAvJ9OpYxb5hYeYpBLxValTqYkQfjZ+bi/eJBOMUF3AABAAElEQVQRCgxIK9mKyF4yD5HS+/XauXXiTRjJapjIssWL46QHbggmJOHJQHxED6tjtcqznj4VPiMe/i5sfMa2ZWIykcuXr8Te7A0Y1K0d7en3/+AP0jyYicqzUSLXyucs6CPc9Rpn/aFI0I+pe/bhWpj6GuMGLv52lef1KLq3bicMtrRifHoeRVElWoEiM9HhAkfIlCHPR6SvMNRpU/gK71DnGLPRHAWYDE64ncdgPIwCbcruGfpZ+MSTaTn7p1XkuogwCGcL/eg1NtNEeAtPmVVECcEdcUUnhr1ocCk0jcQYXTCded36dRRPqg9F0T2281CijbJagVZFPZR1YKuzISsCBD7aF0IELhm4ZL2NK5yIEIKH+Y0sp2I09KBgewtFsZAxTiedy3S6SgSbTC+EMjiTRRpZWGAhHPyPiQRuOL97MEezGTQixSkN9qFkX9zCyH6L1NePUXSfefEFTnYpTYeZx1aq4h4lffKTg0cDz2YwzMkoYVlGw9A0YhB4qsIROM44mMJdvnM3tI4GFTFxJ6Kr0GB/vrjnVj+KKN5j/bIaAxhrOBp6qJbcdbM3HTh9LW07RVQUQXxJJs71Z//in6U1K5fF+cqDOaHCisQqTuKDWQemo1mj4aE5D+OQWBkFq3JaUrCEgcv6Reo6uHAPw9hjo1QmIuMImpB+FTYqE9KwglUcNT1VD/rmj9anl178OhGnBRjgZkxpTBP5QzVWuCDhwtFwh6yG22RvqFx5msEQaEw+B7hjn/81xquj4R2UoP04MtdRr8GrimUyo2EiKbSjh3P2+SA8+YyHWA04asQFpZxxqgyqZ0jA8cZHm4+1jndby+gbNGBNUNL6HA17TnSkd5rAY+5gGeL6l3/4++n3yGKZCC65fUjnqcrtUJwORfBa18hMJxXQIYVkEmkQ0HcHDuQ9u3an49CUitWSZcvSYrJ43M9viqIKhTxN5UcHmKjoOkTKO3OQloRzln0jP8gcpyUUvbLmwyHo9NdsFTK9c+qM6ekR4F5XUxM85eL5C5F5YbFKlSKVIavhy5tVGlQ2FfYqn45b+hyAAuPpH8oXIwqfwGPWkTExfvx4DDqKq9ZNSeOJJCtnYCS8M035IJ+lHR2XfMUyy2uyzDWjxnHRR0SM4BkacsqPN4noHMGx6b5pFVxPfDHlUoepSpZGl/xP2SSMHbsLGdERaYZ1c03D2AV8MXb6tv/Glpb0t3/3Sirg2edov5rq6/I4FS15rgqoMsT25GHC3ZcRYuEe/AHYmIYtX32QZ+o42Llvf/rZT/+Gei3fge6oeQKPkofZFg0xbrgH7Tt+jUYNDx3FZk0E7dCH/bvWtm+RTvm+joaTJ9vYirQtHA3fYCvSArbbeK/zpLm4go9Lt3ynsTQYJ4Np1NK0911B9nnSjjzGo45HczqKW5NaT3KcGXizdesWZF5J+ubvUZiwuiaiu560E6nRrK94Y1vydg2WcGzw/H0HNXjrekvX8nmjsMqPozi/jvPqbG9Pj5Op8vRTpgUXptMdnYF/GnDKDY1MP1tvwkvFOWQqn5Wj4rrtQxrhlLamTzvydD3G+vEjhyPi/iiZJMoPM4Q0ijzFQjozwyEc4lC/8NFZ5brI+11fC19eu0UGBH8buR/GCTZmxO1EH/vVL1+LkzfmzHmIbX0Pp4mV1GhApl/A8O0P3Q9hzMMxZoZD+85D2o1UbPrRqWAwSNeLGo28XaNPw8iTj95fty69A73qYJ87+6HY9z0K2dIDPvaQvabuJV2Jm9KURorw7oezAASIbCEdIvZzT9yhT4gKvC7i+Neu9Mprv0hNKOkvvvQi27xqcWJwshf03MNcaQHcw3EBn+vpZ8FdAyNmsmI04/juzyk6njJ047p1vzh5DLgU48w5eeZsemfj1vTW+s2cKtOamjhpw+uJKmQcfKGicEgaxRLCTVI/eZk8gHkEnvKPx9V52oP04/fBd/lMt4EDPRhLPXegGxwgiUKQaQgZbYzxRPfltPNAa2qwNAZPXeBVVTgy/ef/+B/SUgwnj6++Br4ZzIpjSpEh8i0zDiz+LC/rhYGcg54M+Hy8eTNb2TrTD3/ww9i2Ij+8hT7XI08B1mYRxmkJjpC/lZnSmHq28Ndw1sj1pCS3CY0s5ZhRvnPrhNtNd5JKPqm2Ln2DrRkTKyo4ieBiZOtJrhrq8lzXNbZlgY/yOek99LtYdngGQFHeZsbkoHAebaVWy36csQYbFy5fnpYsWcy2x+LI8jKj7A4vs5CGox85XusTyBOjHfDEd41R+9FpYsat+r1boXSSrPvoo9geU0527BNPLiMoNluSS5cYv3xSuomsD+DrZ3lVBJTo0/HL0+UPyhHpVefdUGSgjjF1gjfffD0y1WajA1u4dTwZDfIYcV5+xcgC/pEhx1r4m04S21buqb/n7Xryi9FvZdd5nOtrkU0HMHhXYR/MnDYttiIpG+KEDdvn3rwmjLBX95ZmzTwQLjonY3s4sImr7119uAXn1M+gJ+vWfE0d2yADDnr5hzJbnFEOGiy0TfV169kID+Er71e/DlkOromb2jWxRsjhg0ePpN+8/kZ6fOmS9PTyFdl2SnFO2PByvZRv4Yzjs7qoMsCt6erCZiKZrSJPt13XQOeEcz979lw4qneBkzoazDBVtmnDROYec3cdfSkPQw7xrPqY2zK1ebw3cBUe41zyOkMdODQbKNS9fdeu1L9oOIGll9OUmhq233ByHidJqMsVIQuLyR6MbcfgOkZG2Fz2pxxRZuhkkJZ8hzFRLLsIneN6ZN4KGwPZZ3C0tTU3p5d/9CP0ypdSKc5T4R7MpW/J4nO2el/Kf383jgaBkgMG4AYFyzX5cA8Ge+jggbQR4dOFl2gMR40tnr8gzaidDALjiQToFjVUaYkjp2BMpuNpYLnwGnAaABKkysBdFGCPs1IQDsSI7eHejzZuTO+993aqnTI1PUT6pWmGFgG8SuqQnq/cU6l3VYFpiqpIrtIjkUok8KxQIhyzHkavoTCpsyDBLymmWH/8GFW9V+NoMCI1OpwipkPLrAtUfvqIRaXa8csEw9FA+zQZSpGGtoQYR4LBFEX8o/X16W9++tPY7vHcmq9QUKokiFniUxEMwwzGrANDA16lVILTK6dTxn5uo2TJrBTYdiYfyZS+m30ZDW+mFXhDn+xzNKgcOv/wJgJ3cVlvosQRKbAQsR5ThUYo1twrQ3C89u2l17ADgbYBg9SsjB/88J+kh2Gy1t1wD7zM2nFIzDKRWDtgo+dSp5EMQYXLMdu2DNEHZCQKiTPdXam5pSXt3LUzinlFoRpSim7hhDJyGOjFe69R9Ls6GTIHjHPQPjCdzrZUumxXpVTm6JpY5fUIRH4Ew8iTLXQ0rFqxIhll9hiyWCfmKOxVEGV+GqlmlsjETbdSSLAUwVCzOgRExPmOgVCzoilqNLS2NEfarnts54KXpltpRCh89KRHRoNr0WdwhGFhG9IQYw9vrmvLfFQWCznCR4VmGzD5DcUgrXI+E8eaUVIdDRrcKpzCPgwKcQKEEedUBBl4KELiqMcTajyBheAu9OQ6FRanHpTNt9eujToQa/Su4miwGORmihEdaqhP66nM7TUHNJhWWZBq8FCPJaXUrRO5AubvvSxnL2mqd+jfbIwoKARs/E8cNaPB/3TRRY0I1xLccVPFXZTb09d70t6Oy2l9K8UC+TaruJHSv/9X/216bvXKVIEgH3gPY0ZHA/QnHWrkHDh0OLZOzEKReHrFyvCgB+4CN+/x0rBQiZLx90BT1vPQaMv2MKMwAkMFfyhg8J/gPfCoPKNh6/qP00svfSMt4QhV+ROaCutJYUVeCpd+jKmHbAbiQ/AS1HEU90LW1aMNrR9iu8OIOutM3bV/X3pr7TtpL7j44e5dMb5qmpxePSBNKi0DtoNx4rB+4PkA1qyAzcHiugqP5q647vwyqPo434GY4qbvfuJnYMR6wFPuMLbum+ydbD+X3jpO9JI7yN+K61/90T9L337phTRpfGUY7PfoT9w0uqmjwT5iXyPoaWaAeG/jpsCb+tqA4SWdL1y8NBwNQ3A08EUWNYIeHaW0L/y9pDMzRVQ4NcodroZXRDZ5H4WSOwiatBDvG/Bg9wPXTZmaHqM2Rt3kydARWSY6GnSSQdeaQ4EHOFg1xHSURvSCNdGQkUcKM40kiDvWTqfmVhQVHQ0WxJOeptRNjowG6UO5FkccSlv055ids+ssb3HMKl8Zf2Fu0q54Dq3pjNbR8Prbb6UjBw+mNWRlzcAp6JY8xyWsoj0akd8rn6RdszR8z1LY4T/0Jz+/iwGgUefYNQrsv6G5JWr8eJTm86a+ovzn0S55vAP0eS/5rbgdW8HgbY7Bedi2imbsNQc2fi+srEmyg4yyv/0bHA3sUbU2ivzzDlFv2/YljgVf5RlrCCijzNhznZ1/GO7AwrY1IpR9OpMvuqec/cE7drL1Dn5pRtw8eKS4rKImTjjueI5nVXRDxkLCA3h5H/9CYyjpvqBX4eKWJJX/1hOtOKgOp0+2boWHjU7fxpFRU1PD2DmBhPGbIaECbXq2Dh6d8vLMkNnAQLoSFzXWpbXAURR/z4T3tIw9wGUfTvxT7W0U+10WQQIdtZfYb66CrpMaNOAzspORykO8otge7+KHslteEMYp34VyjWOtEyfJxx9viEKWBcDwiRUrovCsusplUslzB1KkTqMD4QGIWleR5UBn8rF+yPN74OuV6+g6LJI4XwhsNN7D0fCrX8a6zSLTbv68+WwXqgqavwH/74XuzZDJjVJ1M+VfTIj2bU86UiYpq2IOoL1GnUaejob3wfkFFDPUoJuE86sUvcZMkl5knzQqbckPhI1wt+3QZ2jHbBJlXh5d96hMMxo8fti6UD9ja1wLdYOs0TCtjq2sOhrgRT1mV7BW1mUgP4SIP9+RWieuWFBuiCpGL7KI+3ooxHsPp8MA8LagsIiMhs5wMrzx4UYyERtTQ8dJRtbnaICmKnE0jOSMu6G03w88DkeDxMU4bf++owHYqHdIeK4w3cYs7ynHefWjRs49MjPuDiRIxhhPnL2Udh8kekoRIl1RnjtUR22e//STv0pPwOcG0N8t9CGdnRqs4oD0Jr5rvLgGugeNfBuc0dHgtp7vf+/7OHlmhz6goRnZi7RhQMEgHYMJ3DRz1cttmf2RidKFvECjV5wpwliVBpuacTSQzbALPWAS/PFlUsnHwC9vgo8G8+RXGqJmCUi38kR1EelWvVHnQvAw15LPodsqO6HzLow6HY6Hccaq8zy6ZElatGhR1Ne6Cb2aGaCBroNEnmK7Zh2HQ5K25Ds6AHNHg1nOGpBmrw5l/CeamtJasso05sagNyxfuTLNwnEnb78Mf7Y9o9kao+HsBa7ySucj3ebySp4oXHzJh4fTPlyHLMftIZ/G4ZCawzZWTxgbi6Pa9h23csmXjnC3Psr3DciFzg3+iUO2GSfiAEczJQZxkkHoqgRBfkNGwPbNG9NqMnikJ7dl+Ow11ly7wK1ImZ2AjKJ9dXhx0vpUKLAK2ujPwF/gJr/xP3AbGEVQzWhQDuuozhwN8ETmbts6L6VV9SzHI2+zYKwBgyJks3xMGaazQdniGig/pGkzGozav/bqq9RBezJ9ZfVqikpztDjfh34aOIOThHFk9ogBVmDVB3flWzgxaFs9y5drJc4a8DNzx63bOqheZKvQ42QAKZDk5YFftOvY5MGRscrfBlH9zkCTzte8VoM0IJ46duXPKbI0G1qa0Q22pR7W4lvUgJiOnm1G8i3kh1un0JjD2SuOu9bq9Y7Nubk+1h2L8csT5BOMfwj9XsZxcrShIZwNnThOO053po72tvTSt75NRsOLaTR0pa6hzhJ2ke1/ya8v7mgAABKNiJJ5KgEKCyarlbhU7Y4RrdsGA+wEmCOGDo+MhpmTp8A4EVIClOcRN5mhBqJ6RJ6OBgWwBpJGgIspkiukhuIJNsoGtlhVMH2It/L1X/4iTcHBYEEpT54oIfVVI0LFWOYhw1CQOTALUOrJ1WsXe44hJN/DC8Xiiogusnsau3E0vEGNg5amxrRsxXKYyJTIaDBKr1KlcA9jjXFGGhpIJdF62Z5eQy8NagWy4/BcWj7w7b3UeOxYOBrGYSiqKMapE8BSA1djFkwLRtQDgXj+vMxa412mYZr2AASs+yP5OpgVww4mE/NkjnvMJnlvbVoCoUeUUeZAzz6rMMj3VZkdYsqUhrAGmynHzjFTTGHEIj1zsZiJXOo2BGcxr42sawOweYnU14dzwQb8ZHw+I9FqVJuaJvOzArVzuoKy5l54CVsGJmPwd6MXOhp0Bpxsb+Pov12piMjmGms0sB/TaJmErBDgQ0RIJHKZhFE0xy2soyAMQLBtlURxM4xt4G5RICNShw9xfjVK7qNEpKIYJEXa9EoCmBC4jtv598LoIhpOPwLasQYzpX2VUZV1maDrzaQ5YrElfYKHXuZRyHwXoDDMASc1HFQSw7EA3qj86ASzH/f6ezmPWHDaEXdUDK10TodoouA8Y9uOYfT2m78mWj+KLQKzIp1OIcdEAybeo7EWCgOwEO/DIAa+oHrGfFH6QJhQXoaRQeBJCXj00h1SFdd+8EEUO1uDh3sUMLHuwWYYrun972zdHOOcS1ezJo1IVRQ1HD0MJdDqWMCp370wfxkL8CZP9S7TMfIe+6gV0vIK7hvAlgL7NErjOe5SA6ETlhLcIurTfuVW2t7cmdaeIjLNT7kx/JN/86fp+TWr07gy9kNzlMIg2hGGvcxFvPWoqbfY6jR9+sy0ctky6GlkjBdVJ/BG+PpSYImbEaVjTDrQjCCY9m79A+lMenVtvdxHqYGhUrFt0xYcDS+nxQsXAjPg1oOj9BYK/U20RcDgUWYeXcYKg8+YE6CNKbAeT2cRIYVPEdlStxjDrn17UCR0NBxMH+zMMhpqaHIGjoZasr8stGm2SO91nBkc8K6HX9o3s0WhLp+1z2yU/tHnaIgfsr9ZdtHyAUdDbzrSeSVtbUZJvHkvEUyL63/+4x+nb+FoqJ1UBe8GBsBFo9cIpwqkhp7NunUiDF63HwAf+YA1GpobG0OJegQDw6rhQ3Gm9CJ43WIm3kvf0mjGd7NMAHmlykrQP4O0fWHt9+55HUQbTfBIt05cAv6TqqvTQuCuUxlEJrX2Yqy/tGUtDOmzF/y3z1BYwK2YPPPX2ZUrifJ3j6XSMDJ9f+OGDeFomE7EqLa6JrbcKNPkLdIHjeHUzmoFhTxiHo5boyscBqypc8gdm/4mj3Af6ZuM/QjwWYWiNWM6VcPDUU0tAdrT2SuuKTusMg7VBA/OFfdQcvndewIngZDOQ+dkX2Y0eGqR2VBf4WSFCrZ/hNLJeG3D9uTDwt7n5WMq88Ev4S0q2P6WbUlDaUUGeKqGl2nXO4ikmSG05rnnURRXQdMUTjU4IIyVkyE7UbgwbvH28BDyA7noFTJXOQcs5HHSmt/Zn/toT4M3Vg0/0drKqRAo0bNnMcaMPwk75ycfV+HN6zjJO8MQZtwaFxrUpH7QGw9KaD6DXGnBgXwEB9UuslXGcNb7t8hoqKittbx5BDcCH3nEzDUWEphrcCFbc9kMjIzkykO5LfrSyUA6SuoFD+XB2+HxbYz90cVLol7ACIIbtwhuBGx1AMDvTLNVR4hMHtpR0fd3cTNTIjPKlaZDPkFPwmPzFk5xaWgIx8ZTZFI+jAxxfJepUSBd6rBXaQXwzIlaCcg018O1V+YQOlTIZzqQznnaL0aO4oWKU8B03KlPWaMhtiIBG2v0gBwsAHgPnENYgC/CxvVTliqPwuFuX+IPdKAMlOtbeFkjbx2FkDeQ7m3QZ9bMbFvGqCjSmRle4WgAqOKlsAAhgr4ggpijyr+GtO3Lf6183x/6KMARfr6LwA97yjvbTrCdck2aXFPFFi2UetYdixR6VZcEnxn+1dvQTD8DVURH6cLf++NoGEAaXzhJrX2DcY3imU6faGPrxIb02nsfAX8cDSdbeCClxZNSqkE3m1A0NJUVoBMi3/oz9zyjga5Anz5HA/eDgUFnfpKbObWgPxGbv+8pq5BZN8h2u4RwbOk+j+PnXKpn2KxYFD2eNn5i+su/+PO0lDUvgqb6g4tuOellUuqywXdoXwcYkwm+ZnDrNMGZzVu2RH2Sb778TfSxWUHv7h93u5EOfZ93Xf0u9A7exUUNcnFDnLkHziujnIsy8Ro02NzcEvRkdrIZDS/hGBxdUZnu4vzVeAv9n8kaLAndrA8O8iCnnunZOATFLeClfpvhD44GnHM70fMM5uk8mIvseIyCkFEMEtzWqIvxy0vUcRhjyFHeI1D1AD0pjzK5zlZT5wQtnG5oSO+8/TYOh8ZUjp5kUV5PpZI+jVCLGo5HXnafZzJG9QqzmELPZFzqA5mzgTkBRp0wPvwJGQ1vv/WbyIibOXNWqqmuohbBmMjckVeZwRMsm5v9rOHrGug0CfxjzPZhvTjlk3VmYosfv1+7cA77421qnrybVsEj5z38UJpQOYHC4MhW1kUa1jbSSeJgXFcDqfJ5ne/KJK8w7JmD/Cd0YfBAOXaivZ1i929A07fT08inSZzMI71Il+rs8i7pVflqLSvhoyNZuaFjVFxUnmSOg0w3NsvGRVen3bufjLhX/i49tmhxehb5JG/SIPcS7kG3wFmnqA6C+I62HY86gLqYDsc8+8O11ZjX9tJZvWfvvthys+a559ICbD+f93czGnR2e786fAQ4ma8yV0emjmADgzp+/D1wlnEoP5RhndCSR3NuIVv+FmOwGOQMsinlj2YHOTcLNZsZHDyHN4ugu7bCzkKe4rcyRB1BOtXxUICcvIR9YzDS+hXtBGtP4iA8g2Pj+Ze+nr5KQc7y8nHAWJejteJ0+jCuL/n1u3E0gHwimqucKeaZwmi6EGYmeyWPpC0ock0N9VTsvZfmzZiZplRVh6PB4nEROYIJyyR8XqPEglc6GoI9y6354EJKsEaw9LCZ6n4d79hWlP+PiUhNrK7GwJhOcabJUaNBZNWhEMwDworoNG0pkMNpAbHLqFTAjPIbAQsmDuJ5uX/MYpAKzo62tvQozE+PXyjAII2EEUoE8xwEs45z32lfxHXktiVQ/Ow8vEL5VUDzm/1qlL6FI0Pl88mlS9FjUGQgbBmExk/GQJD7zCOcJhCh35uFYf8SahZd1zACPvQfwpsOVQgOo6R/gvCZh7fPiJFVVwWmziHbsC+fCYMfwgsDDPir4Dp+1zWDX9auTg4v9z0brdu1Zy/nFJ8MRdEicjIdlXwVSseROaEyr6J/W2xSxniRVD9TlpyL43e+jkNBY9vWgFARPYgzwAIqT1LxfDxVfT2ezL1nKlTigh5jmbfCXMXNNRAOwkamGp5M2hbuwsq+Pbu2sRFlor4+dZJlM5s9ewsR6qUoYo5XZiGTUxmVUd2fv30AF+cRsKF9+1Jw6hSIKBz420akbj8MtpvK2CqnRo0m19VFap5Ks+nRMu9wgNFWSGJxsY+OwrnhnGCMOi+sWyGzVclTkdtPhtCmDetx2hRGuzXgvcfxCUNxSkPN+zQeEC0wPB0NpHLRFz/H/MRbOGBkFKgcFEBPGjuXSQvbQmG8xqZm9mUvC1w3Y0XP9FFgtnF/Zgw/jE4ybXxJqi4dkcpHsHViSOZWhPMGbfWgkDHBMIoi4iWd8Z+CIBQzxnEHJi2e6ZFn9WN7AItENgR7cXE0fNLYlt7r7Ilq3LJdrz/98Q/TsiWL0mj2Q7v1wmwM11R4Su8NTWSTrFufqmtr0uMYvKZfilcSoHhjf6GMMH/v97ccV4WPxk0oF/QVvIF3x2801uKx+4lM7yOrY+VTT6f5KCtDVc7gVT13Ucbvwg9cQ/q4i4Lbi7OBnBpmhmIFjkQGl0o0kS0zGoxIecTRpk+2cHRofdp04LBTTJPQDSZPSKm2vJQjLovSKLZL9Cej4R5FhzTwIgLDWovPTAuAgn++xwWU+dJX/rfTp/sHHA096WDHhfTh8atxX2YWpvQHL389rV6+LFVVVuL8IWOBNkzTRvtB0QPnbYhLQzc89ApPxmCF5ob6huCR8qnpGBfWDTFa7PYf6UmeK43mCkDwBuggjFXa9G9pyHcNUpUB9wcraJtaW6ihsCVdghePQel/iFTv2urqoMtwhES7OJLBA0YZ/FcYuZ6udTZm1xN6BebhbOBLFT154D6cADt3bItIkVFvi5yNJAKrIi5eacTL32PrHvfr4AkjkX5dbxUy+Zb0p/ImnJyHvEdes27DxxzddjSOR66rrYmjz+S3KkTyShdB/uR3KjzKQ5XewD/6l6a9bPcesHcOWbRjQPCatWvfj5RPi22NLrM2Uda/yOEz/B94n60ecGDMfQ0GjLxHniMs5MUaF8pD18FTXFSiH1+8OC3BwRN1AsBB5acv5+/zwtJMiswBrvJm9Awex5pI78FXkQ3O09kYcRRvdPh2wC8XMfapk+tCHmm4hqOBewNG9KPSLJ9yPaIOB/BxfeWNKnTCI7J86NMCap1EiVpaWuII45Glo9PqVRTKREEXP43wBv8DrvI84eJcnIfGdOgg/C3/NM3W8buuVpkXJ6NqOHzAY7t1Js8EH5csWhxOTRVg52xES5iG0g+M1D383ks+6JLarjhPt/G3AxFHPd5yH5lOp9ra4iSjx4nuPkSk1PvOky4sbotrbj/UAFAvsLaO66pcdP3MhFA2yeNyo9FtSOLu0frjadPGjaEfuGd92rTpsS1RGEs/YYACI+WrL40X21Y/8qQP5Yu4YVvSv8q0a22EU5iZSr7zk22xzXQyRml5+Zg0AieB446gEnOMtpmQ+o1jFg4yKWkzsljAFddB54u0ZEZDAY7pLub/Efz98oWz6YmlS8jgGQ+uqA9C68geZfVd5NqN2xhEt8BNsgeK6NuMrrs6guG93IrhoR4FHTOnXmSINRrWbduV1m7eTpZKa2o70xlr9djElKoZ/6TiYWkMMm4484yMBubiSgbyMA/xD46T6awuLr+p+blmTCs+e6+nTtylvxv9KLhNxkVL99m0dde51MITuaOhmiLA//y/+X3ky5w0CnwbzPwj24/inBnigCe0LRWbeSM/uMk6n0en2o0+1tHRnp4hMKM+pn6nE8B1lT8Kbzmi+C9+snB9vAp+z1rKx8Qb6dpZyMPUsU+Ci43I1kZwp3JSVVqxnILMODV1MuSZWfIs6dsIdTgUaUCe4veZ7qEchd8BFH+XptSZ5ANuczpxojXGNE35gc5kxo58Qn6o0S/9OH5xMXCad68H6cl+/N05uIVMB6hOR/H9THs7p2iVp/k4MqZOmSIjjK2Atik9yaMcX+hlwCJ0Rvig7QkXeVsmQ5gYcBffAR6F/Q6kDevXgeflYXtU4Mzw6EhuCfgL41xHdR1cQ3m07StHYszMQroya81gh9sS5cVmD6xn7BaDfAw+YE0u+zEiH/yXMYtj0pOX6x06AmOWbnL+a5/39Uq+t0/XwCNRP1q/Pua9mPbHI1+DB4K06qrijuun3q8stq9wjtNXLgNtO2QV96k/KeOVWfIeec27OHlmsy3uycXU+HHctOkVtNG3ppmOYOaaTljoA6eLxYXlC7H9BjoVXs7BdsU5s6qPYN80NTSmpQRSrWPjJY8P2HK/a+ZY8uCG87EN2/Uef3OdQnbztwtrZokFSt2K5NregWGsfvrpNLm25j4/VIZEdjJ0JB4FfjKh0Dt4N+BpHwZOg5KEOfA2g8oiui0noafWlnAOnsGO6uxsTz/8pz/meMuXyKbkNJdbVM5iTZWpZux+2a8v7Gjow+9gSkHwQMTvfOloQMxFdf+POJ5sz66dqetkBx7iCtJzKyIdDGrpU2L1ROFtQsBoWEaFZAUPC+We6XzfkVE1uEgovxoNfq9h19nZkUagHLqtwTNsRWgJTeahQSvRyABViGIPK0JMY1RFRsRTyZCYJJRAvkCWAirAXo0jWiwkM2Xq1DRmzOg4GUEktW9TlURUFUSVFhmnn2VOMo4w5iFAxyIyS5BWNdXokdl4JreRdSvOTqmri0JgdB1EoNfQsTg+CVBlRcapQqByqzHeA2OybRlgKHb0bf8+5x5gYeNe0joYaw17fyJNCfg5vnyePu8lDFSQVCjc/iCT99JAePBSCAm3i0RvGvDMXbpyLS1evChVInhkAMJVLpIz8BA6zDWDgd458AJDPhgZcPCSOWkUOCaZvW24F9a0WiNsD2PUjSSaZL8yKtu6LzgdH8+pHEvcwktGZfRcT7pMxnUN5sNzphm2YDyryMkYKnAeWWhSwWb/vvw+h1Gm1KHoYqzbloxOnBIOtuu7fbr23uv+41ZOE7mMx9UI4QS2fJhKJxTFGYswqVzZvuPWIPOlUitcnHscwQgVBUOkD99VTG/D2DrwgLY01kMHd0kLLsPDXYFjjTRzxifbFO/yAkMqaxbUC+EFjLNtM8wNHLDYnQJKn4B/g5pkk1xLx5saoafTaQqM2xobF40+ktnTjuOn4XRbrNcsAmk1ZVTjLh+ZKjCGRw5HOLKJuhdFzvEbcRCOcgLXwD2yVgYvQLkYhBA1HfbiFfbK3tDYh9Fz52DeCwrw4JL1dPoaxw42tKV3T/WkUfyWJXgmhNVc9spVpRLSaAdhzAcTppt+zEWhYmrtAQyAcs74DnpiTcUVFdDIPqEtYRCFkhifAtuXa6rg8h7HrSAW3uKaiq9r5zqfbG/nGMcGeMFMDJfKMEAt+jWEwTO1UMBvMrfe/kTY2Ys7eEi2F9DaFb2k7N5hfW3TrRt36KfrfHdqaT8ZsN3XdJJeUqqAxU0cDXzHDEhVo8uo0wDugRsD5XvgmcaWVIPKKyk5oVAefVZ4C3Zf2SVdZMpubJ3AgdB1/U7aeyKr0SDlC3vbe2wW0Xx4hAV7TbvUqIw0WxwNVlaWtuM8dPoYgHIvXhkZlBasbXKBY+FUQsZVVIKTwAZ+m6VJ0jrjcR2kQd/lNUFnrFme5SIPULF16NKGiqj3dmNctLQ0h6PBdMeJ0JOnF9m+SpAZMvJ511XeF7Qu7+Q/+aIyxPbCcAkaygxk191xNKOIuh++rJStKvCwUrY26FxQYdHockuDfTlOeay4wcCifXFCfmX70r4v+5d3m71hYVELKp5sbIyMOx2CRuq8T1iJC5kyxKS55O0jgL3LKj5qRNq2cNP4FifFURfcMZ0jdXnvvn3w7SFp5vTpRHcp1sg4XXSgHPhhW/IPYSMvti3HbLZA3rZwiMt3/g+ezeeTpJRvw/E4BpyYUlcbx1vKB127mLew7UM22/fkAfe5yqflJbmTNngzY491pyPnrXyRnnTIesxiBY5kv9fJpCx2DO4tli86d9dhMPjrSN0nrCIa0SLGKa5o7PmsvN+2rSfSDT/wGNY6xp5nN8krPNrOuevokdeLZ/JvHd+use1rrCgP/V5c8nIeOsItGmwk1uMtyysqI11a2AsTiU/Z7lyEg7Wn3C+t0hg8HPnv2gZfYcxBF+CMa+aY3KJ1Cge4pz7J08fjINGoi6014jPtijveaz/KWWEfuMe7fbrtxfaU5bkjX6PU0y08H76t7WQYKp744NHaOtbEPWWqz6tEh77BmEMnAAbKOPUZo9IGFGxfqOh0EAcsbq1SfRxcrwfnPSFmHHzYLEbHrjEhrDV+1Clsz7mrk5nxcYu1sC1xS5o1m0S89SQrIXqV2hoaAAYJCuA7M6ZP5XQcTmJCB9LRMCwyW8yIok4WjoZrLMXgYcVsVSrF3Yvz4cpFkhquQxfCTX7BqtK/jobuy1fTUXji4Zb2dOHs6ag14XrPr8TxO7o01VAMchzFfof7LOPsT5/ihLioJ8GtE7bq/DN6QO75OzfwMxeQYl49zF1Hw+2Bw2LrRHP3OWqMnUkt/FzEfVd4Lx1enB6ZOztVV1aksWWj0gjwysLpd+FHmYPAvrmZ/11T+xNnzc5qbG4BN7vTfAJLZjcJb2WbuqD9m5km/fIY40KnBD/Eo0vocvJx8VO6i5f0wLqJp2at6RC8RCp/GRlC06ZOCWPaaYmPygb7CT2I59VnbD/kBfJKnsOtwaulZy/7kN+Lq7btNmV5+Xi22pi9Ki3qyAj6jMkCceYgfw1ey+/yQPmhOoc4k1/OI3gNfYkzzc3NbEHhVBwcABPBS411cdBnbUN9zLFGMI+xyn+y59Xt1JfBF3AlMjMYgwsr7aizNqHr7du9K3QxnQwl1FmzBoC0Kf9jcWJY9ifuC3/x3mCW62Ib9uUaOge/0+HmHIV9CwbpOdZ0InpqKXqe0XlhI/xcR+HuGtiPz4R9Q3vWsZDm7MvLdfYBeUXolbxfuHgpgiduXzebTweJ/M7x2GY4WnlGeeYaRmAQ2Mjn5GG26Xderr1zEDzCSznUCX+0yOeEmpo0rbY2eIn3iAzirevpH9pO4oLOUzPVzFw2qm+bjtnxZC/ROJM918ENs55PtRMsZCuMARJ/Ex5ezjvjiTrNs+zk2FYI/iib3H4hDF0P5Yv4Kv/xN08YE290xAxABpj5lTnx6d95PvAySCePM+tOfUQHkOsm7LPZMRjGHzVcmIsFqE8BlzayGS6T3eDpOsfhO//xP/2H9DJbNMbhaAADYi5m8mSuwZjSl/afL+xocOYyXGnJdxlfdsGwwBBUQPZN70vvUil408aPOWZmQ/w8lX9Bt1BwjbFrfjbzMo33ycnj07iquvBm36DAT8fJhrSv6Vwax2/F3HwHZ0+WaM5nvuvglV+lfNAzjK8xlYzlTG3GcPI0hXL4ZD/TeFU9voC0HyokY0CdP30qnT3ZGXvjSISKNO1+BCkHkKY+aCiFOzq7016xpe+3Ot6Hl5KqJ2PqQlngb9mb6d3F48rSCNJeClEqgnmjeJ9vOp7O9VlJo6B3nOzpGPf6nPM5zauv+UTifjLRW8Vf1uD3+ODj+Llq3sdPrUujENwyOBniWYjg8ukT6eZ5DBh+99JYGzwSaILYty7fSfv5If9tAV/Lc5DDAXvvR70hKuw/PDeqJJUD9+EI9ovnzqb2PQfvwxk2Fu1Iwo7dv8/zyq9JfKgYRaoXY3ENbVL247qS2ZiKJ9EuxKihbmaKBYquIbQut59OujNIIotxEAQ26MD+ygw2Z/neaw4NjqwsT1c6z6CA/P24C6gEPXRUObWVSiKKI3PRmLtyrjtdOnk6xuL8xQmWFeOUY38A7HE+P3gJd+8R9o7Z8eevsknjUlkFRdaAu4zJfbIntm1PN2hneBG1Q65wpA73OwdswnSZ9XaN86uCD+P4nlpQgWfi4fBCIkFXUR74XPXwbIqYjY/b3e94nnU9fazh/nYB6cSX86CJ1MXrwcv2x/ByLcXFc7xcm7G8RvHDsNIJHGMF7FHSdSh4NNjVs+1kt3CEH8b69Y6udJH0AOeQw5uP9y9xe9TwsnSRiNC1HkdAxB0ci2rcOBnKORmhaDDQMpsBer0GXd25cRFHImsDE/ZoqmEYAhasG0gOq2vkHtzbCClPaFC4WsV7EEJiIFGr/jgazuhoqCejoaMnScXSgnpkAYAYxCSFNZms4az0N/X0AUP6pbZr9+7zgzl8X1SiEkslaoySmzcyA911dY2Hjh+TxtVQTMxq8RiEHU0N6dzJU0Fz4op9CMcTvKRVx3GUV34JdzMtYEdJX3oJD12GOHymiNfIyRwTyfYHhedthOZVKplfaWkJOLuWXkw33aP/yzeupq7LuGWZXyUAnwgzqC4blCaU4jxl64xjGUSkzoKfCrNMueTLXADbWFwKb9oUKH1/wwJZZ3BDJRccOIOjYc+J9vReU3bHcGBn+vGNyzeCXir5etrMqamM7SmO3RTBi+2nUjfwEfecr7wSX1MaXIzDFTzuYtyn+NtLvJvkjyA3UwqclK7ET1/F40enwlJwr0/JvYyh2QUOui7FhYhVtir04v3qRfG7S2fyQPu9yCu/avggzQ4ePhDF4G7grTDyu9K6qjQc40Klw3TUix0nyEyzbk5G027DARxpfCmGazGnqrSQusjfXrW8RgH/AuZ9+QK4zN+upW1Lg8KxqLYqFaD862S4CV5dYU/0VRbUucnzCKKy5aOQeyhmduls2nlBrpldk3nzHucq7edjcjzeNXZcaZowdUYopGdOtafOY40hI8RXOQRkxGkl2fNDESjnzvfe52VzaWRoCVsHLgA77rUPX7Y9mEkMGTWWk2vGwLOKUeQw2k42pyunLvxXssAxCJ9iXoXlOPzOXEsNfM4v11ZeY5vicI5m9ifNTHp4ZhpF2vBVFLVTx/bijGYN+N45y0eEkZfP+312oCvP8blyJNX0GbvywHuxP8E95kDDxTiXikeVkQ49Ev6Bg56ofysZQK6b9CbOimMdvHxeHuuayQu9/G00L9sN/gvfVmk5fw3HHd+NGTMyFY7mxCeUXde09VhTtOu4CkaSNXABxZfP4qAwUlaIGzlOTuez7cp//d175aXeQ5J2qn10PryoJHif231at+0Mfcd7hbV461r5t8+I7zmP4GPcM4H3krEj0+3LF9JZJtnK3459Dq8Jc2aGfNW46ag/nDZ3XeLblKp4jQF+w8dR7PFCZzp3icAL3+X9ZNw8Wx/bFz7SsTAt51UDmCrmL4hClRFFxHl+nfFfP91BlF3DKBuv8x4zpihod0db133HcB3fOz/58xVuEuelJ/UUklvBySKqrNdExt4V2r7afSb1UqSRXWLpCPd5/1xeLHnaw/3ON7+m8MHxOlZhP46OKI2TLndnY3Ju5bXTUkV1FbBlraGny82HcaJkuCcMfNmHOB9wQVaEAsLfXg9XgFvw4MkjC1PFcIpv4pzojwLl1olgsowrjET4sFle6sH/wNHAwuaR1R5koI6GOwWF6TrKTkv3hbRpV0dqYiDFKCe32VIRJ9DoPKH/R2fUYeCMjq2qVxj/9U6K0cXIsn+Ehy/x27kc5eU1idfEiaOgH/hT163ANelCmJWPLUqF1IEYrjMZPdhsvcaNW9IOiZiLKd/n74MALKWHUiPfZRjlHdQQ4jWyjC2XRRmfvdbZkUhCDNmG6EoTZs+Iozdv4pS7gT5wo5siqehJ4ol4LczlCYUsICpD4HJOS6P5vrbMAAFbrLquBj3nzwDiVME/Y8D3QnQ+DUmzeToO7Eln6d92FT3Sp8845hO8Hrycnzho/6B3GkawpGBYYbpGEOUSYyktK0ol6HvqKTp3Lp5sSmeRcXEv9wtvx1E8aTwBgyHpWH1zauNvr3G8nD9+X0UzWwIYRx9c8TemosqqVIKTQ+enx2JfBG7XT3UHL7R9x9/AyzUWDs4lH395399neBc3qngNAn7nuVk9RByoYGITZj1C+4PDMX/p1Il0A2aR07l9yBcHIScGDB6WLpy5cp8HV/G9Y2dnekwStAjZEPgF/RaUlaRR4ydSILQ0HDsn9u8gEMsWDW533I7Zl305Fvtx7D7vNZmX8/ESJK6PfNJnqniNZU1LcHqakWVm2AW2L1w+05auM37blz+qv1PeJPQCVL37+F7Ob1PLqdnHkbU3kSHimfcP65Pxd9k+ZlZU6Xi2nQD7061N6VhrZ4xTXHBcNB1wFL7neH36UuexTWWYL+foPMaBbBPnPIIzuYQ2CPQx9q621nS2uSPut10bZydXzLfVvz/j+qv/839P3/3ed6m3NpH5OgP7M2Bgr1/u63fiaNCo9hUIBUwi4gOAdDTwCx4zCp6xJ3ALKUBrP/g4IDaSfy98DuyMYBYXQhJ40G6yN/m0GPmpy4WWECWcTl7ZsvDhgSsnKpE5v+x3GGMswCJUQNxEuT6V//gF30XYEKqk2Mll7qARyujg0595OX4J6EE4iFIisFPu4098yi7holEwECeIqXS3sMZlzjkT6btNnL5P3Pl3v827zLmYAQxmz/1dlPfrLKhj+/Q4bMtxSpwyiU/D3vFLlF4qW/nlfAcPgWyAzd0bZB3w94Nzz+/7vHcFg8L0s64SvhyO5Snu6TsfhEGGPfWZaysDFH8cN3Lgc2HlPFxT+wUV8WziiUZRuH7lZiiCfP07uRx7MRkBRlwVbHduZcq5wuOzYG+nygKfc4zOQWXr0+swhu90bt2FELzHVbtNpEdG6iUcXPMH1+jzcYdfWDc0rBhU5ZhBqZoK7+Ujh6cSnD2D+F6j7vqVc9TfuJL6QXRFDK68sF8ajTE3Qi88kO4Pn9DT2w+vQQH7XgmZ4zgyIs13OBsIVwDwoakTR8O2hvb0QVvPfaVBenZ84p7zyebEh3/kytf6wdtsR6fkUCTXIATbbaJlKsLS6+ddwirnJTn80Wk/d43kBaYbRuQB4WO2VtdnNO685J2gFpEMlESIpwbJOQklfNyI4WydwEnjNhdw2mPO1GaNaAW/5T3+c0JeGNd+/2lHg4p6nDqho4HjLfee6EzvNhJR5F4fFcd9F9/8LG4MJvPESMM9nILyI/nY/xd65fbPvOQNo3FOudY38ejfwvsqL8hh+5kP/ZZfivPSRH/4jNWgPdHoIvT0eTzYeX6af9rVZ+GM3wsj+djQwmwrkmfbX4cpSX+/zeVay/MfvJRJ4pP06++DiZwqTa8jPx6kTX76wpd9FQ0Fd8Anx+16uuafdT0IA/HEeXv/gzxYXJEuxDnHPxwADcH5c+c6pyHRsPLpd3GpzKJfki2RReNuXL2d/t9oT3i6tsL689besQtv38UZbBZQEtl38266wITEC+f9j8FHOOUw0Jj79PryVTjfhhQ5ItpFfsiDM/qNr+7/Y1uORTyTv31e3/x0/5KeADlON1Ob+1FJ/9pnKsr3H+CDI3HeXp83Zn8T5rZfQFFas3ukVeHiM673py/H/hnq2qdvu9+/6+SRkx5Nehu4y7f8zrnncip/WFksfH5bnLIdK1IVcOqI2z8u4sz9LFrP2/+v3ll4eebMsRhv1CGaMqo4TaAgZOZosNYDs3ew3HPf0cAf0m0epZVD24ZiE+9w6Mg9Gq84M3Q0XMPR0Np9KX2yvy0dB0mLAcR1PPAGA/Tbg+oYRWSN0eqNK3d+ax6Tz0NYfdYaifPC0uKYBUMJ/CB/rwEYAw1e4qWvz3rW3/+xSx6jblhQTEAO5/YtskXafxtE/sca7vtdnFRPLRgGBjPQK+gKn+a/4qHyVxgoW9SlfptLnJGWUfXg8W65wZl77mLwmk8/LxzlDw/yw0/f8+DfjqmMl85i9R8L28MmP1emSnfyvdO8Pu+y/xy0olnwAiZdMEy8Qbe6cjucr67nF70cv2s7lJOwrJVDHPM+znxW2+P5UtjkMsznHa949Vk80vXS7CvAvlEX7EWBv8rAz/H9b3O5Hrb9eXPVfhJlBpL9dPs6WTz8/XmyQfoQz+RzOV3w8R9c4ov3uk6DCsm2YxHuXiPQyaLIp/K14WPMXXz8PP74F//bn6fv/eD7bM+vAT5myutiULsTal/u63fiaDA9yCgbEAmuaqEUF9ukjzv3bkc12Q/XrqXy9gEiezfTtOoa0lwm8LsKj5XU3X9lOj2V3fFqm2r61xyJ4rV4ak1atvIp0v6rIsojc3fvsEU4PFHC9B63WcSeRFOPEADyf5l97kU2Tcjok2mYZ0mH2cYe6/e3bAsEee5Z9lrPm0+NhLIsBQmBpNPEtB/bNn3QtBgj8UaB3PZgRN7JRjoqXMP986YpmU5pdd4P1n+YOs5fS88v5Rxp9lZWV1UTPR6KIYb4dPwwX1PkHb+XaYUayI5RoWWKUp5GlfUxiBTcKxQMOYP3tD69vm5jmjlxLMVPHkm1pCSNJa3V1MPY7xuQtw4F0VHGb+p77IvCyDG9LPaB8b3pipEWCuy97zRR9Aba3rGT0wU6zqaXVj6ZZk+fnkazVcRUX8cnPJ236UzZdpRb/w91bxmodZX1fy+6TRCVOnAowUJBRUQRUVRAwMbuMccavfU2phwnnXQcO7EQFVFBUloFlJTuVEK66/l81sXl3P/Xz7yZC48nr/3be+2V373W2nnllimXovi7oJkpVYX0ykLNq3VsGt9FpCeb0j5w3Pg4guD0ou49o5Q9Fb00nezHtDvWLpJsMOXnTDODJllmwXNlMXnL/bWHgaUkpvZ/Q1Oxj/r2S4NzKsjoqSe1yfRt5+4eupfuqWsopD0xK8ZwPNeW62Nk9yB/zjPdC/9g+cqV2ZxrBBkevq7s0TX7XZgqm+l6Bn68L9NXCW4YIJ0FPxfHT3QcvrGe1R/6PBaetYZz5s2Lt996IzNfGhxWmSZXF1EPVsoJPkGewSVv8CPr1/hsA5t97GcxNdPQ0vGs/8oGWtBzN+/zVpQ1q9dw5eO38c7QYensdjj1jDiJqwdtPiovF7qq8374oBI8ajq8AbFnojZGs8nUrLlz8qYL0+C+52TbF0k7UadW9TgI5VqV46ky+7ZkyvJmtPIGLMOBaOjaWI4mdSpGCVk+hwLnV2D/YBAcSniTk6G9OFb7SIEt6zExa8jGPKxqN1kQKzCQExesiOHLSPfktzoLvrp3bBfH0JRHnq9WpTqyShBJmrN7lenVzNnP8vkGTgzcS7/nD1KmlC1p5bVcy5cty7KozydOjrPJcvJ61sMovTL10L0TEFFO5EHTiZWfQtpiJdZqH4ydecVTVUFLDMM+Go2Z9rcL2i9d/l1MmUEtNJkv39Fw6qJOZ0XLZs0ooTksU4w9zTfVdeGSRQCxU7hmanFMJ4PDV33oVnoEQAP9L44kID+EpmWCDOXReXaDVzaYXn64rvwnT/Fe11uQjxxKqvon6fAWSicKt05MW74hhs7biEHH2O63hued2R65OSnHmTplanz12ZA8kbiA2vyTT2xNDwPSt6GH9DOt2RtgTBE09TNTEuEdT6HUJ9K/kPZo+nYhNdF5qB9MNf10wKcxbWFhvT/pdSnNUlvup7NXI9ootJCe7xgpt3x275Sxgm5Gv/CvqB+VJVPdNwFcfDtrdrz4bt8kwFENakfnzlwr2aRJloM4tn0dtpL2KR1TppAXwU9lOEFzicv3pugqwdmvBZlQ1ygvX078Jt7u/0mO371j+6wnPpxMMwEl52carmOZvu+4pqXrsP5AvwZPhe39Y5mIL1PQ5TPT8dWp1uePHD06Zn+3Orqedko2Ni5p2DDLupKm0M95W7Kn7tF2mLIunWyOlanA0M65SC9p4h6ZFmw5lmUir/X9KI6qXztOPblt1K1DPwrSZWtgJ0yjloucT9ay8gz30/W4b+po9YPlYPKAvKZNVTa0q8uWLY2p9C6YOHdxnNfuZPp0tMhr3g6k5E395745hmO5D/KF40vuYhmJabs/7jG0cR3OZwU9F+bMmxufDRoeG+CjO264hkaADdGRlLOJ0EETnJnUk37teO6BzzCN2rR87ZB+gjyTdIc28q510NPpRTHko08TCGx/wnHR/tS2Wa6gbTK12vkrX+obU2Mtq1HOkk/5bGquf1As9/F3WQoETS3nGj1mTHwyciw/jbisy7nY7laF1HO+N7CULtolB1VO5G0JI43lQ8fK/iLsib0RimWe2iuvU37r7d6xZO3mLDO74oaruWKvOaeqduiHp6GfNIcZCkqDzzkua5LW7iULLGSj8vDs/cJn6aU8TZo2Pd54j1uOmOtZnTsiq8fkvroWT99znswjbRXvU0cIUMp78qO6wrwRbw+Tf6xDl5fVp17t9tXXX1M+8E2c0KR+Xktc2rBRXktcATugfLoG7bdrcN7yYzmChYKvpL+UO8PfkXAMDW0euW0XmTEcIS6m98IH9MDatWlNdOvSIxo2qEsJzUEAVursgq7Upf9+zbqYNmd+TJo5l3KbFbERne3rGKIlMxqaHlyDmyf+b0YDdry4V9KKKRRLJ5yjvGhpBqyX84QZGa1QOrGLjIZt5ejRsJdrWNduiq9nrYhZ2E3OdzLwPIDU+xZNG+F31qBJ8NRYRRbDTb0uoet9k/SV5UT5Xr6UZ1IfQhupUA1f2D5VWT6EXLpCaV6VDCttkz00fiAjc9bs2fH58E9izvItZCYeEj26dE2f3F40wd/SwAAAQABJREFUqcP268TkH8aV1vkhr/Cysa7rVC7kdffa37v36rkxNEr9YMjw/NvzzziN/i6nRG1sq7ymjtUXdk/lnSzRgTfUlQU9gw+JPCi32ZScvVLnuLfqSHsujBgxIsbPmJPjX9vzgmwka7mfB0GO7/v1sfWJ1QH6ur58pvytPCn7zt1nph3jecqTpT//erV3Bq2lB1WIHpdeQ0+HJpQV4a9JZ98Ej6kD1JPVq1aDn4BW2GPLiuR3+d61KquWPxVl6Tt8qEnoyEGjv0gg5Nzzz47WxB9eh1nouUAmC/vHIrJ0yhJp91QfJnvz8OwCzfW3LW2wfFcfnqCcHlKW1X4xYWJMgDZtSutE65PaZg+Wg9DB6WPzHvetKFPqL+MDecdSAv1sfWRth/OWd8qwBkvIvV3Kngv9hozgxrHDs2dPo5KGcRgZN5buSRPLTIr6UfpYPqjcGx9KF58NYfwvP0sf99nm75aI2APry+mzo+MpJ+atKfZLsm+dY2pP1Qfqlpww/9OO2PTRchPX51jSJ+04tNGeaBstzZnx7XRu8xmXwMU13bsiT42zzMVrOrUJzs2/zdhJOrCX9gPM62CZcPIKfF7oP1b4Xvny1rKZyNNo7Md8ltXuqKbR6cyO9Ho6cr89Qj6S7gWbUOhtA7DKs7y6fgUZncM++Ch63HFz9LryiihB/7nXZSib0A6kLWDc/+bXfwRoYIdS6SYh4FjLJwqEwgBDyJnUv44jm2HZokVRnVzhtq1O5HrLxpyCwm1swL+Bhh3Zs2AUHZ3/+OsnMoXopq6d40Ku0jmGevE0OjrbPM5urt7CIIOpRA2SDM59rq9MLYbR/KwgpvKB0Q0aB40YGU+99GqcVLNiXHjtbXHWWWdlnXvWJsJgBee2YNgMLHQUdXgKgsj1JRps1ij4oPL2OhoDMgVxGg5Lv4GfxdplS+lE3Tna4bAcTWM0r3VRUBQ4x9LhzDvp+d5gO5UHc03lBNMXgQYFxXROlfci6Pc1wXq//h9TM9QsTkd5H0vjnPrUtFVA2BwzpYG5GUSqFA/AWB2AAlbB+nyNuz9XuAyo0vjw/WKU9+TJk2MEDtHoEWPjJ3feGqe2PjHq1LUxmumqCK/zwxjopFnTZ3qTQIb3e/vSEBQEvhCAaGVr0kPA99nsZ/ToUfFxn7fiiGNOjOt6XZ4Bo3XS0iProZmjNaJJCxUoX+tI60hmB1x+z9Ly5ZgG1dWo0VxNiYoNot559bkYu3hN3NCze5zbqSNXX1Fq4lVy7GHRkdX51HGVBvKE68kAhjkk37KGgjJEvJm/a7Du8RMa2jzT54NMJ33w0YfizNPbc70kyhs6s0DeU2gI413MyoO1lI7jfOU/n2EDIx3SYiO9MipIfvYNQd3Lr7zE1ZHT49xTT6DD7eV5HaZXTnrFoD0doAqlJSCc8H4aJJQqOwKtYEWnyVjeZuK94DYz1OBpeJYBDIz84st47ulnooS5dLn+lmzcqTPn1X6b4VsdJE+U7IgreLONsTFheX2TNWRf0VvlU65g9D7qb6fPTPrr23kqVoXnV1Lv870+J/YuTGlrxPe1ASOObkTa6ZG1Sf8n+GFOECB5ZAu8up56Wa/ArEZTywo4jgZPphluZ7U2g5y8ZHWMBGgQNfaEy9cDN10VHdq1jYb1SmgwVihRsoFl0cmxM7LNjHS0lBn3QPlygspU0cFYRffyeQQuX2KU+77VJy6/9qo4/ZSTuU++HsbnIOQU55+9td5cJ0VQUHo6tql3W+hZsBVn6QBq0mtQz1UGQHUvZSVe07gT/TB7/iJu6pgUQ0eP4VqthcnvJ59wAle91UmerMDfec3RVIzfsJHDY+rMmTFs3De5RksnmtQN+jMcFHWoDT5YoEE+gMDqvrKsSRX0I5+yf9Kf//Jn/AmfcyjUgTKbbJylE7vgqTXb98bMVVxduJS75MkYIys8X3cQoFzYtUs6fGNGjYkROOhT5y6MW66/gatCO0JzSnCghfKp02DQbQCrzpJG6hJ/pwOUPVKQJfdFmhUBCo24DQZffu216DdiTKZTPvDkr+N09tQyDXWKjqFyry7LAAN+1GFUT+hcG9AoA46dQIPP5eeCzOsAl8ZNnBi/53RgMevqeWa7uAx5OrHV8dl7QfncsnFTbKI2VblVt+hA6uSq13WYpZ2yr0Mg8QSRlVMdvo3wwYChw+Lh3/8pWnL01ePqG+lPcxpAeIPkLZtC5RzhH/nFPalJqqkOsP0C1L82xHWN7p+0yrpQHDntgbdIOP6ShfOjE3apLaCgzWQPRM8lsA4tnLf6RRpI94MInKSTzpp6TadcB0y943oM6uxn4HymzZwVr7/zTtTHCTrnzA4JaAqS2ENAYFMuEjxQX0pzaWzgoV4XcBFUr5yOWcEe+Dz3bDm2b95c5Gni1zFqyNC47Jprom2b1tGwpITU75q5T87XuTi26/cjdT10UP9LC38m/dTRrsl16EDaENReFJ99NjB2UFp16003RKujj85bI/I2FAWCjzy8UHaRTQMwHXQDigQC2FObR6beZS7qY/fYBoPjCIz693kzxsxfGTdfemFccP553L7CnrKfBkLaJR0+9YJ00JYKOijv0kg6yCsFGeDcio33a/l+0RJuNOAmnH+88Eqe9N77wH1xNrSvTZ8RXwaL+h46o2m/ZUD/y89k5zGO69DmGVC4r+6DvoE292vsxz+eeSaGA5ie2rR+3HLHT6MtQLt18vKJQIPZCEw4G+v5tbRJp50xtE154wW63D4X2gB+iZ3al/I0Ysy4ePTxX0crlNI553XDpzk1Shs2zIDL8eVH6aJcKk8JNDCuvGdg655r8zwQEmB1n/WXpKE9OgZzXfBrvd+JCzufSVPmU/ImpbpH0OQRXSXd0/mX/9DHGVgxX4MLwQbtRgXA6jJk1HllpWPvZj6bd3CjABlBM9DDb7/3PrffbI4e6LaWzZrQ8K42GYQoWexBNhHFki4EGB45/psYOm4ifuo8rr1elHtzHIBv/cMOiVKAhiPJOgTapkcDthe6u0ksK/ffceDA/HDfEmjg97Bcfgg6+McJ9rKmjdz/vBZRXvLDppi+cE3MRh05FtTMnhztCbQOO6wmvgG3+UybFI899EicDDhVBfnQF7AeXDkR6FGuCodMnK6iW+QV6etH+knwitdXanPkH8GdCYA7n/bvFx+OnBDntz81rrnsEsANg2n8CHkeGruXP5bpMS/5W153rQXbw9rQnawsfULtgL0JvLKv/6cD4hf/eMZ3xX03Xhc9oX2DenXz/Qaj3miTMgOtlPnCdbCFw0Z1gTLvgZy8VJm90seW1+158y228oMP+8XrHw+Moxn/lsf+F/tBg2j0rFRUnvSF059nHP0//d2ivi3KUwaXzF6QQf8yM0p57wRuMvjrX/6C/7EiOh13VNxy2+15o0HqQfSKW6kseYWy/K9v761tPCDXJL+rbxxPH9W5C7RZ979o6ZIYNe7L+BO6oF3TunF+156p5xuVlKTOUjarsn/S/QfAW2XEPdWH0X9xD+R9p+C8lQ3X49cbODzRfnyGPA3oPyDOO/v06NDxrLwB6jB0sPTQL/SgtBDjeBtDob+AfWvsiaDedB0Z26hjmEtZHLzsl8bYE9HBfft9RJ+s0uiMDjuaw8g6gAEeujlndZi8qJ2zvFugwQb00t49FXCRh+QV6SOY4WeBZGOEL8aPj48//AR/7Mpof8pJ0QQ/tdahNZPHvc5TftMmKCzqY9+f8cP+PfT3fiTQAL2UBXXC3LnYpi+/jGFDB8dGarZuwD614QYPm/AL1KsDC/oVoAifZhsZrt6OYemvH9oBfQL9gF2UdTpn9aOy4IUB3pry2UcfxoDpc+PGC7pye1fPaNawYfZBky4pn2yavdK8jlUdu515bURGF8ATgwcPjkbHHxuXXH5pNABA5y3QCYWcq1Qz/He//v8DDXI8TJQfECW1KsxUcHB1WshoAKUaTWfT75fT9ZU0tnacjrUobZKnczthRq+vYQAUDk4ghB82dlw8/MADWRf204t7xFVXX5UBtbcAWMPufcKafYVcgSkybX5m42UYP4ooa3ZRhTE0hja0+2DAwHjsb3+PbjQ/6841QB1xouvVqZOnSiKtCouG2L/XyTCY1ignCoujLBPLADowIn6Z0YDz4b2u01CCvd//IFbC2Bf17Mmp0ck0LWqRAYvX48kyGZhDMpVboocoVJlYJeIrSZoUJIgzsEHJeGKksIyjo/Mbb78Vp9Gl+xxuYvDkog6n0zpbKpI0AKxd4XIdVVD8KkGR2lS+PFMHTsWVad0wvAp/6dKl3JPMFXsjR8agAYPiocce4R7nk9JJNriQzgIMKdgIpbRQeDR2CuGPDXMUDpbh86SPN3R4iu81m4PJaunz6hvRsO3Jcdt118bxnGJqAPK0hr/RQOT8lTLWoGKvUolTEOhS3BcDAunk39mQrjpI7XdrVsdnQ4bEa08/FSNXrI97rr4yLunWNZWhjrgGU8UnPXT4eXcqRcfwQ75RWfnKjJjcAZQYilZFNWs+GQfvvBt/eOPN/JuXf//b6NL5bJyV6tTZbdzvYGEA2AM/0jjzrBybd6jE/LArul1oNTqCGpUwoHvZd53zP/zpj/H55G+jW7vW8ZNbb887gW3EZy+LstCDM7VszGegaeMeU0Ftrmg2gCdEjuk9vWUxqtmFnb/fvZNUfQJqgbUHn/hN1rpe8pO7olu3C6IUoM+mN5sJyA1MvJJIZ9A76LdZxMre1ax5aMrj2C/GxQcffcDNCHPjm2mzkgbF/5k2VpsPfLAoTy3HPk9lSD+gYoKU/6ChYY0owWE6mL0SaDBYhkBc7bg7NqEb9tIgpAqpcp5Kedc4lR0ADXRDJqNh6rIfYsQimvExPjPK12/vuTO6dDyTbuN1kE2ML8BjNrFiV12H+yWP2gwzmxVBlzRM7LEvf+cJodlHCxYsAAz4Kl741/NxHYHL2e3bEzCWcNJ4SMr/NnSRwa8f1pr6nIqUHngquhNExAweA42KZGbswJHdtXMz9e9En/DA3AVLkNUpMQAAzGsf77311mhHg67aZE5537y8JdAwccqkGDD4M7IfZsRw/t5XAxbcvEFECScFRxxIc0DAmLI74F3oVwHel4MFVAvGyHfwM+jtK3naz/l1/iTVir/fAw/uwmiuJkV5GllLA2YDjPDzrfrMvB6GtldddrGDxKcfD4i3fvvHmMzPn7z77rioSxeavR6ROlcZVAx1WtU5fiMYauCjkdchNBhTBytbOkJJd56v7pw8fXo8/+JL8cagIVlf/vjTf49OZ5yRV50abLs+5dEdcz0CPuooA2EzJ3T0lGX1mHQwWCznvgKWeUIwAmDt4XvuinnEVjd37xKX9+qV14LpQGszPKnwQwIK3CXQwNPS+VIHsbYC0IBDA+F0Gr0FST34A87iR4MGx71PPBntaaRx0RXXpf1o2KAk56QOS0AcZ9o7t3WGDgGoVf51BNXBqUPhwXQkfBb/5FeBhDnw5DsAyeNHDMLpuCpv2zm+Vat0NnU8vVO+Eo5KGdat/pXfvVZQfW8TWtegzci94BnpPDH/DWR9rYXnv+Z0+sXXX4/jAL+7kmXTvBlZNmSq2Pwy7Rr0NstQp1B767x11N0H9X/qLmiSOs09Yn99Zp52wcMjx33BVdP94raf3hEdAMLrA07ZHE0nuQAWMwJjaVeVS51Of+daHMefFeyJ9gBHUVnGZuXtLOPGxgevvxhVjjo+7rn91mh93LFRDftgiaZdwPMECtoYiNl5XftdkHfAKf6p3wqBJTwF77rPVQl+12CXh3NC+ubz/0TffB93Yz+uuuTiaMyeup/8WfKkfO/e7gb0UzfkOqC/dk575zNgHDfUr1I3CKTP44DgLcCdXz77Aj+N+Du2tVvnznQXr5U87DMEVpyvz2LgtCGO7ytPmOFx5b1on/axB+6zwdJ4nP8//vnPMfCridHp6CZx573352mjfKK/xOSSzytqn5if+2owpy3MgJ0x2Eh0P/NgL7SrOsJlkVuB5sEjRsUN9z0QLZnL5Xf8JM7pdHbeaKAceuViTozJFTMa3LMiyCVfCuiwugQZWAw8BBAETyq/NkT7iIOZPz33UtzWs1t0aH86stqKRoZHZLAu+Fyw/YWbptQ18gm76ZSZvw0N4QCAhl3YLXmpLM68fUzW879pcxbEK2+9GZvWrML5v5BTUpr41jMwovcMGVnWbZfl8GvB0hUxePSX8cnnYwH55nBqviBpf+LhwYl/rSgB8K1NyjgtmwtAA7Ryn9RR6go0Xe455iv3zu8MwfmVU/aHfMe/svhbPHMzhnItpFu6bkvMWMxVeiRQgDtAm4hGjZvGeZ3OIIA7HPswJb4A5P/147+M09rQKwNfrhLvd29Tz2CD0g+GnuoRs6XkecFRQWD5RGCtjDRCXiuwt+vRseMB2PsTGL06YHhcfM5ZcffNN8UxzZru14/oMHk9uZ4JuQB4RW6U/9Qp+XJd+TtZDJnGBgjSrwRQ7duvX/z0yd/lnz2OrF7as0eUADQU/ERAIfhdHa7O0WdSjzmcfncB5ET3MF91bhn22Bua5HVlzWsB3+j9VjzT94M4gffc87sn4+wOHfKGqbz+HP5wbP0wx3Qc7YmNJrUjBnrO1bkbI2ivlF/9bF9joc0vfvXLmLhoaVzV8fS4/qab46QTT0hqmA1n7KHd8IrDPfhY1ZijPoLPkqe1ffq80j1tE88yKPUmsBVkDg9Cnh7+41PR+dhm0bVbj+jU8ay89cVeEzu2bqfR9QFp63yW9tUrHl27pPZzMdBOAI+9UA+4Dv0dr2Ts++nA+KRP37jiqsu4maV9HE+jxJoE6wk0oBdTfpQh9wx9azyiLKvTBDrkowzYoVnqAua/DvthjCAI8wrxx7H0Eepxbudo1tgeIjXTRiSYyXykg7pA/e1+FX1rn1vwW5AL9xL6SHP3x6b1k6ZMjs/HjI43yUx+4J6fRqf23ipDRgNAi4CavQ/Sp4AQZsIJREkL/bniAac21exu/042NdNCHTQLnhkzejQl/B/GZvzGn915Z5wCcKftNGtG2XR+vi/1sXoN37IisWZFZFYdrK3agR8A16qUky8F79Zid0eOHhNvv/JCDJyxMG6/9OK4hZj1KHxsQV55ZBdlMtLbWMeY0YORnfD0VvhxPtms/T7qH7WaNIxeV/TKxplQMGWO/8mSvIqfC9/9t/3/PwM0QMDcVVefmpXPSRf/tzemw0BDP/ss1nDqcTjOc9vjTwTtaWTOUmzldEl0U5TtEDqq+v5hOBT33nNvLOTd917SM667/vpMw9zAKdT6NT+AtnL7Ag6/jqdCkaf0CJANUGTqguIoMI1MXAWjYjqZDGm3z7c/7h8P/umpuApH6PwLLoj2p52W17rY/VYUTiUFx6HIMcwwmApdxaJS1BmQYfLFXD0JKAOirjFV8GdySvoSQemSyVOjF6f2bUiLaoIwGpCvBunVuJshUVCs0AfG1oFzHYmSMb7z1wlyvqbrlsd4rMNJnE3a0mgCo+eeezbvXD3/zDMJpgt3vhtM68TmHBUy58kkHUPHza/9nadVjq+AFuhFAMx6V678LoVx8KiRIN0fxy+e4JSRNGqzHnyvp1Y6nzZE9P5c1+EzVCbZvAjB1DEysFfxsZyCIkFJeC/2hK8nck3aJ9H77XeiJSfHd1x/XRzXgnRplFieMiPE0tVGjhohOcfAwC7JOnjFEyqDgnROXRtGs+qBNUhNX1MAGv78mxixfmc8dMMNcRXXxDSqW68wpnyGE6/y0wmSHipShdn5q8Hzex6qImQZBSeUdVZm/vPmz4tXcM6ffP0N3hPxBqBAz/PPy678a1evScc8r1lkHOfNIPkzB/Inju3eSkddJI2mn6sdZPOsigkePfaLn8dYGr91aXN83P/Ag9EOgIqNis3rNuQpVHkYQoe6HNPN68bgGa9A0giZwr6Nfd3Fw/e538oB/O4VhRuQrwHDhsfNjzwSrXn+FbfcmUBD49LSTIfbBmhh4OstCHnKhLHRCfeUyBtWLBcSaPio3/vx7dy5MXbmAleYTY9MRkRig8OeqHoQc6GOd09ZbuSgtq4sHlN14rRadHuqSa1jDebl/eMGtgKKztvyiX0ADGX4cC9gJGjD6SOK/bvNu2PK0vXx+fyt/w/Q8Nef3R89zjk7jqRxm3u3B2Og0yxPGFxJZ/dTHjcQTqeI79Ur/k65U0cI+i2miZ/y9PTf/xHXomPOJdgtRS9564A86NV0nqp5um4gZKCkgZS2fAGP+CymDUCyeRNNurauz9tjKhD8LMRxnTBlZnwybFjMnzc/Hr333jj1RBrCIT+uX3oLNEwAgPt4IJkDM7kCmLRdXw05zG/RsCxAw2FRm7ruAwFjaE0cZZlDZrXwrd32lXCX5iRYXuEl7/IPNkk+Tg+Cr/39Xua+C55YRRaDZSlDFu5/z/5PP3/wvrj2ystTrvvgqDz82z/lb37/s59Frx494zCuf123dl0CX1WVcfi4kGqJrmR/UxcyIecl/Z2cjkb+nAmoc6Tf1G+/jRdfeSVeBPBtwxMe/+c/84RX53ndDwTL6l/Wp45R9j2xMxBzH3To1AHKcnYJZ09Q0DQCLZzaKVfDCXbvufnmzIi7F+DkEsDkY1u2oEnpZsp61kV1xqjBbSAJcKvnoZ//dDAyYIRWAiQ6QjwsZTUDMHU4DWw/AtS8//d/iPOalcaFl/fi6sRzMqDejKzpHLoV6kYDOkETT5bVZXny6FpcHy/T7A0K5En5VP6as3BBvPr++wTrfePmq6+OMzueGSfANzqzKwnKbMx5ADrZgNHx1GWVsQ86Saa5Z/DL3mj3Uq5yP6gDht9NH51AUPrCq69E+9PPiG5kTLTYDzRI663wezFYlN8z8wBe11lTZtRflvts3k4KK3M3CNAWOAeBhm/Z12E4c2/COw/ef2+c1fbUvG1HG+ZYZrn4HPnA8bSvyavspbQ3SNTe6kBKP1+eaOogTwYEH8RplGPXp7Th3tsAGo49NqoLRDOxbZu4JQLaVMVeVAZMEyxxH4pBho6dvLEN+7INgNOAyUD6IHka8GgoOvLVf/w5hi1bHfdC9xtx+BrXr5+nlgK2jicvZloz4xqwOPdihpS87h46rjzkWqRPDTJFFgA0vNL7jXji5VdcUjz96CPR87zzohZ6Rt9FuyefON8C7zAyY/i1z/Ql7bUmXm+6A71moG6GgI76BDIa/vDnp2LAhK+jy7Et4nZ8J+2HwYONi+XvysiWTXlNBU6ggdPYHF/bpDzxjd3Pt6PLzDooL2iL37SZ4F2g4ep77st5PAwI071rt2jZvHnapT040F4/mB/KLKOmvWPe2tKCnsKUCQSwpt1MKm0h+kCdYVD63iefxm//+WzcfTGnux3OjDYnCsgeln1ztgOUGGBImbwaG1m3BGgX2QtSRIBaoAHthn/CVYj8vnK1GjjxXKGdQMP8eAmgYdWihdEL8MhTzNJGJchTJfh9EzYU/iYzbuHylTHg8zHRf+ioWLJobsxftjDXe0oCDbWj/sFVoya1DVVYBw/6sUcDqpith3h85B7xP2XQjAYtvnrXD7vwJ48jK3vYi610ON1A6cQSSmy/XUTZ6ppC7ws1Q7OjWkZ3Uurr16uTJ8gD334zfvnIz6M9/tihZKe6j1jbpLlAjOPCcPxE4AUdy37qjwocqRttvCwAq709GB9b+25Gw8f9P4pn+38WvQgY/+fO2+OYps0SHN3Baa5Nh8vBFI6lnBo0p45i7Y5dBElds4wkgKcuqAF4tp6MCYGGx3796/iOX//q9tvi0h49MpW8cLhW4BN1vMCCtNLHll99+TN1m7Lrgdh25rt+80b2tWreKDdn/oK0H39/r2/6NA+gi8/BF9Ymrcd+JHiBHimCmY6pr6A/YNApv8t7ymnRTpXD3/HGHHX+mPET4mH8pQlLl8WdF3Ql+LsyTiRYl85mwgmMCNoZRPphIKp/r6y6BGUzacRYxgbFPRAwWcv7Px0+PH5Kxna3VkdTJlsA1zzo1Jfcjo2qefCheYiVNoSxtHO7lUvWpI/jQVIGveyFz/Mw0c8CBfMoS3zzo49iIDHITbf9hIPOk8h+PipjDk/qtdf6NvJoApjoY2OHwl7sj3v8Xp7lb1gY/Y70VbZyW833ANXT4nmyEVu1PCYuPv98shwLt7Up92Z4uI+VkanirUFMq8Cf+2WkCOykH8U6CuW6Ag3Lsvx5KPHHvz78KJ56+KHoTNZwbZo6q3ONv/R7iwCltDBbwswLaeG+Gtv4tWOrm+VRS9bd45mzuEZ81Kj44NWXYzu3pjyOT9MWAN9sGvVU2jvG0F+R391L+V9/Oz+zLnXkTrIZUoexrx7OVSP+WAdANJSD9Bf/9scYOv+7uO2yS+OuG64HaCilFwRyR6mwIIx9kXJs56w9YrzdKIeFy5bGu336xEGN6sfV11wddXmfuk1w798v/vi/+PWfARpkSP7798tt1qAgZHyezqndIFLPBRqOxIBYOtGsIcSE4bfj3KAZUhnLFBq7YePGxc/IaFjMu+++qEdcx6ZZIpCOooaTZxnYJaqLes0AG0Vi2pYOjICB6ah5cgQjqVjUwv5uJaff7xLwPvTXv8YVbVpHlwu6x2mgfkdytZalEYWxPJUiyEdxqfw8FVChy5QqGV0C15cOhftv0IRS14GctQDDhpDPHT0urrjumji5dWvqg5tmRoOOqI5cOlrQxmf4MqsBqch5OoZzd86eenp6qmIxLXbBwgWgrRPi2eefj3O6nB/nn9EhjmrchHr1w9Lx3FkEGhgzT5x4huCAtWqJ4jJ/DZ6Cp0D6DJ1c17JiOY4iJS6DEcbPBg6MRx5/PE4HQTelVrqZmqVzpeL3VFFlrvJO48D+axx85Wka83UdBhwCEyK59lAYNGhg9H63TxwNwHPHddfHcUcdlQpf41gFx0a6Cgh4OpUOKfTRWEjx4omPCq1wgsCWqqhqVIuVa1cj6MPjref+GYPp4PsICPT1l16SV6i6n4UTHBBy1px7igBryHxpSFW6ifKyl9LEeasQTRHW+MxmT1/v3TuefLOQ0fDKk0/GBZ3PKWQ0bNiIBoRfNPzKwX6Dn/PkW9mjIB5QGaXihw7vHvixogECLDCOjIYnnvxNjJ0zP7oCNNzNiZQ9JsoQRG/GMFUg+K7IvPweC5bPcdwMJBgHF4YGMzigbMZOf8HfeitK9aqW62yLTwl2b3zooQC6iMvIaDjvvPOjcWkj7url1ANec89Egbduw1lHWVdjLyo4T2i0CkdwCvI7avjQmLlwYQxesCwbDiG9UY94+4CqKnaCEJrv7eTWh+1lSNPmOg56TEVNToBqHXQId4FXi8o4hLvMzuBmikrsW3kNsHKD4pY/7DlRkTnA7ATDFQEadsXXi1bHCNpxKyUF7or4y733RY9OnRKwNJuBZSdPG5zoPGhwMp0f3jfDwb01i0Qj4V4X08rNaPCatNGk6r2EPF11zbVxDnqgUUnDzOLR+RcAlb/lRemjQdb4enqzD6RbOiu7e1mTZRP79u7IoI9ZxbzFy2P8pBnx8dChsWTJ0nj0vvvi1BNOyIDRALMSvLUZ+n8NCPsJcjEFoGHE1EIPkBLo2rxBucxoOPwAgQYkgGDHjIbyroMP52HQAUsnj/k5X8xXeXYOyXf+DV/ne6CJQMP3dAH8ZuFy9rLwluL/H7n/7rjq8ktSH3+Isf/5757KxkW/wyhfQXbWYWR6bMCRQ4Fk4KI8SV8flM/LJytDPBHa+FB+Wwg40BcGrAaOU2fMjH+98EK8BPh8Kr+/76mn4ixOMqtDkwR6WafgZRp7aQy91TX28VFn+lz3Rf2bH3yzl/2pjtHXeA/Hftx6yy2xhLHvvfSiLJ3QftizZBP2oxK2w3RIQRt1CxPMNUsH1+Na8vQ71wF/s197WY489B18I9DwAHM+p6ROXHzVdXHeuedG3bp1s8u3Ol4bkQEzY6sTCsApQSr6N4MA5Ep9ow7WmTYrxnUI6s1esCBe7/chjvqHcfMll8ZZZ3eKNuiCGtwEtAZZFGiognwINEj33Pfky6LTDNkZM4M51iEgYEbJOta9aPGi+Oqbb+KlN96Ik046Obp17Jh3j3slm7rX7CwmUrBL+/W7cy7aiJQt9IWBroGHp4IC0epvT7smMfZQ7Ec/ACQzEs+k7KMmwbTrk0t11OUH5yw4oY3STqjb/ZlylvyUfy0LsafYD23YN1On0p/hs+iLQ3bIccfEHTfdEG2OPS4OIfCqzH5uB+DZDYBmyreOv7KafCIfMrZ7mhllOpV8p3Op/ZBnfqBHw0jm3af369Fv6oy4iwyYm/ho2qAk7b77pw3RdutIG1Row12LNlF7oY2U5x3XgwMdYnXNAQINlCX2JqPhV4Brvp559NHoTnDn3DfJL8xZQN3AwkBAOsnf0l5ba4BkCrXypC9gfbzBok3TPB2bMHVK/Al/ZuDXk6L7CcfGzbfdkQGGmZ/yoxlxlqkaHPkzQQH3WVvlP/nQQFEnWhA8eR3dXKl6Vfoc7Eyf4Jr7fpbN0e679proTkZcS4JSe+p47e0+ZZUhLUsqzzjuZyGAY7HIpX6g9s4sNqlVLM3QqS8CDU88/Uzc1uW86Nzp7Dj1lLakS9fiVip6mhD0ZkDE3A0gfEnfvYDShbkXwAakDF4yQ4F5V62WGQ1raLo5FZv6Wp9344fly+LS7j3ilDYnRvOmjaE3J/uUXJZDlmqg1xav+J4AcHT0HwzQsHhuzFuxULaJtgIN3BJQF6DhUJBzPB82/d/NIFlW6imZDBIokqmv/A5uhgf3/x66ur/eOmFGww6uPt7MjU/2aJg4c2lMp3QCXD71bXOAhs5nnR51yWiwLGYk2YQ/f/ixaI8/pg6uRgaG2Ts2E4QQP9Jenpcf9V0Kp6bIF3NIG2v2IPxzcC16kcE7X2L3Pvygbzz36ZC4lMym+2/9SRwH6GjGlOCRvYC4rTpf6gb30W/zKmLGVxcayLmH8o58bxBsP5bvVq8CPB8Yz+InWQz4q9tvjysuujDqQEdLbiWSWVIJGDN/7bj+tfR2ryVkygDjqmd28rxt0FxgzSvsZ2G3n33xxXiazOHjec//AjSce2ZH9pTT5TVrc1wBae1H+qk8Q9orP865GOwWs4MEm/S1tU3K1ugJ4ykVejy+XrEy7ux6PpkBVyfQYAbDeoDqBO2QS21HGWyHNBNwKAKo8mcR5GFBhYASgTbj7gd07KcEpXf96tfRuXlpdO9xUXTs0DEaAmpa0reDWCMPUZEl6SQdnK9+RvI/axDElM9yPegcdbzP9KBzwZLF8RYHhQMBYW5AR5pRfVSLFtkPppjRoHzKK3lYwD5rF9VtHtyqx/ydz9Tn9+CqAnpgE4ciy1euiIno4ZffeitaNm4WF2L3mpQ0JGOPG9+Yr8G0fm8CIvBFETDWtqnL9c/UC+pG7V4FAAz5VP25nNKJmTNnxuccMj/T5734NQdKnfHH5HfpURm959gCs37Ia+pHyWBMk3KX3/ED+YYP6VUdnvH506ZPz4zq9wFJypaUxP9y8HMK4FFxDOeVPJfzZu6uAyb3gE85kI+0XnvYxz06YfxdGUpaq3JIJ9DwOQDJay88E4OmL4yb4fVbr6VPTmkpsgR4g88uyKAApa7lS/lsD3tZFhuxhLW/8+67Ub3+kQk01G9cyiJ4QTP1SuHDH/z3vv4zQIPrd8f9n/8hCAY/OiBSdyqndp8R3K/mRKXOYTShOqF1NG9USuAE08E0lWEa0SmVwQ8b1ifQ8DDGeBnvvoN0umuv4/SbekxPLgUbrFtXwHW2/JBBFA5LHGSuDYxh/bD3L6tATEu1plgh+p7T7744uI8/80xcdEzL6Nrzwjid0x3LD0yN9hlyrYicDbKc09rVq9PR8DSyMgoymQUBtV5H5wXN9iPQMHvhgngZZ2jmZ4Pi8ptuQtBPydKJQ7j6xOBWYfQZBUUKQysQMhSffelUOFeDNx0VgxIVuU0yl69YHl8RsD/PiVRbjLEnsMdwsmA9oydmCTToQDCUilwH05q2DThS3uVt0O8vTSFLwWINgjMqgMUEQ5MZewgCMxxFeB+OokCDNUw6kyo3neNEEBEQHSIVls/1o/hSAfh8A9wdGDcD9e0orKnTpjIuYABK5JhT2ybQcCx9Jvxj1yhty+kYkaK1HRRQI5QOO/sqjXSKdL4KGpbPzIEHZ7bHyrWrYsSo0fFe71djwPzF8ejNAg2XRX33FAfUgNn36iDquLmn/lw+FTxKpN595zk6ciomwR7pL83mLFwYb+Os/O7tt3OZz2KEzjurYxzKnmp8nFsGK9DHr5MvoYnKSodDuklv91Fe2YeS2qsHwtdbodGXOOh/+dvfYszsedHt5BPiVhzFU1qfmDy+DeNjYKQzvY9gcy9OgAGSBjmvAES+ykjziqTvs8htrEmHzvOwA2scmKeknw4dFjcDNJzC7C++jZQ0AvXS0kbov0LjogytWPM+nVfmWBPnGIg3lsydF7MJhJdhvObNmhHLCXRWLP2OkQERCIbrchpYHfp5urRtDzW3JH/aWJBLDaIKWQ6HHsQp0KHe0U6zVvbLrJi9rNd0V08Q3HeBjnVct7kXR6JG1RqcTFNXjCOVt07MWx6jFrnp/3794a6fRtczO8aRNWsVaK0DypyVewPcLfDdRk6qPOnTKdGIaYDTKYXu9lfwud9RQjVjBn1DyGjog+HsdfU1cdapp5LCyF3V3iXNuJ6sZ0o3fF7s1WBg5D3tBbsBJaC54lsFoKVSJXacb+w/MRs+HDdxanw8aEgGp/9L+UHbVicwDo3SoFlV5GIra5+EXAwcNiQmC/Lh/Pmqx3Y2qSfQUJPSiapcm4nxR1eW00FgJTqwhXC4EGi6H7JWviDXv39b+NpfKS7/zmjg1oklK+OzuerNAuv63gfuujUuu6hn8uxnlE+9/oe/5NWJv8EoX86J1BHMZ+smGtgyD7MBDF4ywOK98rfOibJkYCGNJYwOqLKk02KPA08lp3G68I9//SteHTwk2vHeWzn5Op3T70PZr5QYxja408wafKb887X7kUE7a1Tf+wyDah1pndHKOEQCbsPJwLn+ttuzMeydF3Yns6xXHE9TXiaYAalyVBbnttDoCYpCW4GMfA6E1HZ5EptpwhDOUxdlVcDKxk39AY8Eqk8/tFpcfvMdcT6n0/Xr1M1yHAM7bYROb5Yc8J6NgIUCJzYVNmhPfcD30suX69D5so+CQMPb2MpPBnwSVxMYdTrnnGjDqZRZcJvQ4wINBo46uepIHSDf657rvCXA4F4zrnuhDjOdej1zWLBwQeqa19BjLZo1pwSpY9rVevXqQ8/9QANjq8+lr3YuTwX53j3cChCis6XzLEPJ62Yr6FguXLgwvvrqyxhKqZA9Yf7nwQejg/NGRwpISIt0NNlDZSiBBt6fADa8IR+p0/ydWUqmxmqDTW2Vtybj4A4cMig+fqN3lD+mRdx8zdVxEo5i7UMoRSKrwVtjdmM3MqiGNrkGxocE+X6zvnbxTVlkyeZmAkmuoyIn25ZOfMHcP+Uk8C2aRN968cXYj0uzabU0Vti1rdpu7bY24wDSm6X5JvwRS9eUaXlRuhTBTp3oGpRSLVy6NN774IP4JUBDTR77a05Lu7KvB+KfWE6T6+Tv9uDXWIcsjwtoVMfuVuVvzAj8gfRcxzZLQifXfTDA8PP4KVPir08/HYNIa+7Z+njKwG7JHg32+NnJKSMTlAj5UZa1VCarwcAgQVL9BV4C4Nokg1FlSdDB2622QLeho0fHjQ8+HI35u2tuujEuoHHgUU1Is2ffdmxGpztfHHJ1pCWcgiKenurDGFxJh33Izw7G3UVGgECDttBg1VTyvp8OiN88/a+45oz20QUQ/PTT2sfhAA1rE1jbmTyk7TbA8NRSXS9/FBwCNTwfgL179lB8AN3sU7QJB/+7HzbH5Flz4x1O17cCKvQ4/zz8sTaZjVEZeylw59wOhIeWrFwVn9BkW6Bh6ZJ5MX/losDERWuAhgb4rHUOwZYBNFQyowGa2BVfELGgo5wL63FBMhwfhd+xR/wo7ROz5MsEEoTOd1WqEdu4R3DB6nUx6uslMQc3wudxPEY5U+M47eQTOUCqmYHdtDGj4vGHHonTWrfhlqdDMqNBgKdQdoy8QnOBKnnegxr9LbML8jYlbLxlX7udIrx/ILZtK/7wuC+/iD7vvB0vDx4RPaH7nfrY+JJ6LUhI7qeypF7UX9KfcHm5Tj6lnmcP9Pds/i7PF/WN4NGwEZ/H23/4Q4zib39x221xNdkkR+BLCgQ4nuW86hb9MvW6GasOn6fX6B7+CN2GDoYP5Ul9PW9VMWP22zmz45/Pv5AN4y3nefy3v6dfABkN6FYz4hwjA0z4Ul4sgLraZw7u+Bv9663wUoKNyJKHef5c0MSMrTEc5v0CmzSZ7OefnHN2XA1tzGjwxH4d8zejpAblBmZOaa+2I7PbkAOD1sxOY693wwPSxbl7Aq6GTqAB/3bA5yPi7id+E+2POCguuepGwLVzaGzbKG9y8DBmr34eczeLypf2Qd0p7dWFHqToj3tApCwIavgzAVl1TR+A3gEffhhXX3F59lM5mtipJpkBZpPYI0n9YkNFe0v49bq17Ak6Qh9cPlKfC1htxh7ZrLsKdmvDls3ECIvJnpoSb/R9L0rr1o8LOp0dRzdrlo0sbYgpWMHEUkeqJ/OAgHmy9Jyna9C3FhQxc0SARz28g2etWrMqM7/G4AM9/+abce8dt8fZ7drFEfiP1aF1DcZXB7if9hoytpHW0sO5FoEMgeoEq6GVNqU6c1fPTWLen3zUH6D63agKqGPpxMnHHZcZD8Y0vtTnTDX5UL4sC8MLbwg0JO2gcxn0hjRxT9VplfFpLCsZw+FGn7feiE8mfhvXXtA1ru91WfYhLMcCcww5RQFSfcDv9kHbwxwr0Z9sOT7FO8SM1eodwYHXVVFSWqpGSz8Kz3b/jJzhf+/r/z/Q4NrdHV9u8v5/MlB5AkdCrJhCACvQsBbkpsGRdaLDKadGi8ZNCZwsndiYyljHRkY0/XPo2LHxs589EMsY8q5LC6UTxx1zdAp6AaFnbDZAY6mzq7DI4DoAOkc6bDpf1l/qAKSji4FSgFYCGrw3YEA8+ve/x2Wg2xcANHQ4s0MKi/XBnoBrGDT+1q2i7dJRNODw1D2DatZbWCe/VglqRBEehX0mwdnLoFMzqDu84pZboj3Ccgz1sNUJ3vYZoMBkzldl60tFlcqb7xVClZ9jq0AyaEf5qVQ2oMxWrV6VQMPTnAaeQhqdtepHNzsq6gE0iEYmkMHYCrLoqvSwVm8r9HDthVIJzAjry5MkhNQTo7L87RLSOydMnBCfDR8ew4YNJ6PhsTgDNPTQQw8BpKBrLHurUPPW/fNlltDcfTOg1uFl2gnsqLB1IP1798C0vUk4QYM4kXoOoOF0UqKsCTSjQdZxbiLQOrsaSo2OJ5d54ihf7H+Gwi/dnItU0lEsT3rnCpTU8JEjos9rL3Nl3+J4HMN2w2WXQZcjfuyh4H6qqNI5x+lScWjIrFF1DkWnX+e5eGKkg+6+2dX79Td7x29ee52/jHjhiV9Hl7M7ZWC0E4PPm5P/PCnyZEfVUHAuIJZz3j9fd1zjI9BgyQAMnGmB476med0f/5ip8z3aU1Zy5100UiOjgXG3rt+U6Vsqq/IumQ+dOrcBYvg/xgJ0AGXdztiYqRxTJXYIxsXatU9oNHPd3fdkje3VBOrngkQ3blyKwrPBmw2NcG+Y48EYrvLQdxenDquWLaeJ64yYjeLfRWrxvo1kEjGfcvCWBtASiOrQVADBtL5dOHq7uMJg2z4aAe2l6WgZMmn0uwlEqsBjlTHy7i9TTYelHPOV9oJVyvS+XXTjZ7yyBA27+VhJ+cW4BStj5GLX+O/XH8ho6MYtNHU5HdEhsiNwAn/Qwp4JKeusR16X9wwWvSHC7A/Lp4pphwINs2fPjlE4XK++8hp9MW6Nc9q3T8DxAAFKeKVgNOE01lvIanDy8B57sFdBgC/1lMqy6RXYmHJuDjREuLj5YH4MHzM+3u//SazHOP7igQezdMK0QgOSqhhAy10mZkbDZ3QXpykkc/F1ZKWI0npVomGtQ3Fwa2QzSDZqf+mEuk/ZU+ftPwnm+/0c4W+cYtKYT4UXUy3LPPcgU7uhwSpSiict/h6goZDVU/yzh++9k/TiixiLHg2fDIhXn/xTzOKXv73//gQa6pA5tZ2Ajg3n2fACv8usLMbPkyMH8ms+OQ8DCnWYe2KWmY06bU5r48unARpe5Blm2dxPdkBHaH8gIIS19TkA4zNUfjCUA/7owKgPBILUMyqkBBrY/wQa+GxGw3U335LXat1+4QWcElwTJx7H2Rf8ayq2wVY5kSLWocyaHZdj8XUCqjw7T7/hHYM60yPVkduRlSWAvf0ASB566s/RseSI6HXdTdHl/C5xRN26sXHNmtiM7BhU2+BYvaiOFOh0/nZ0V9f9X2BZ3eDyrOvVfghq9iYwGvhRv7jmyivizI6F0gn7HGxHNxrcOX+DAHWMgcAu5M8xtBnON+XBfeAjA3h4TrB56bKlZNlMihd7v0mg2CR7NEiXkpKGGRj9QKd9KJpAiUF/0p+Bc47MU9tkxojj+iHt7bHjIcGCBQtptvVFDB46LAaNGhM//9+H48y2bbnFpWaCEa5ZRzTBKHmH/XOeOonarSLQYLMybaTfG4hURk4QbEonplAeNzjef/HlqETpxE9vvSVOxvk/mLIsA+ddgAx7kRFBWetq5c+CreBL5q1OT+dQvYveSToxb4GG1WQLjhk3Nvp/8H68NeqLuJOSxxsBp5qUlPx4Wq/tUbDcT5cuEOBLQCrpww+1HTrQyTusSSBAnp+PbX0LR/JXL76U73n2549Hd8ApgbXsL8PY8rNzNjPQefs81y8vFU8rfXCCGfI960iQDR61R8Nf/vGPGDB+YlzQ+ri45fY7oh3ZJAINmQYvr/AhwObhjgCb/kEyDc/y5X66t3vQZWYHedqmI71uyyayVEbHTQ88FHX5u5tvuTF6XtCDporN81TdHkL2adDuVUVvq+B3IevaV/lRGpg+rs0z2N0t2Rzfh7PIZZRsvvfxJ/HE356Oazt1AMQglZyDn0PIfN26ei0ZE9uz0Zynox7QeEginWGdfL/bYHacIMPWrdgR5l2NTJGtu8nSXLORWyTmRO/33ouNOPMXdb8g2rY+MY5q1gTfjnRwDm8qGDSSqr5o2cr48LNh0efjIfH9ykWxcOXi1G8nHSnQcDh6uBoZDQD+AA37BBrgUffLaWTmDDop51WYFkvjd9IWnmdD0+8wK84AdDtOwO79QMMi5vjVNG4e4hIcLAc0qkrfrVIyGlsl0GCp09Qvx8YTj/+S0ok28DvNHtVX+ADaJYNSgdK8LUIe4qVGKQI5mUEJjawHN1g/EH/Og7cxgLHvvPVmvDRgWFzYsQOlZjdFqxYtErQwXdyMCTMoM8uIMfXl+HFBx8gb8n3uAV/z80LQXi5truXJAwcPihd+/UQInf/iztsBGi6hx8/hCczJ3/K2ejzlSd5kfurLws8KciBxBU6LwbqlE5XxJezw//Szz8Yz771fyGj4wx+zdKIGukgfXlkqNhNOf9u588w8Ree5ypPBrXQSmFJm/RDEcx2jvxofP3vof2LKiu/iJ+efm2WVbU44IYHGDYCS+mL6KsqR9FHvmIUrOdRz2j3BdgEAbZMAnvJkPf96DkHMcrzt0cejDart6tsfiG7YD4PLfeiwHRyAeYiaWUfQOMeEBklj5q0eK8y7cLjiH3jDWAKp8OSipUspDf8kPn63T1x/w7XRDh3csmXLzNLMTCN8DmMZaWQGoQB4AQinNBFZSKABeyFvexPSPtZSmWB4w+bNNLVdhP2YHK8S35QeWTd6dO7MzXQt8uYigQaEkPHQs9BWu1RQMOyh/MF4fggQCOxoBwR8LCFwj79DPmfPmRMjsSEvvPFm/IweDWefRkk7B0o1aP7rXP3b3egD4zvprI1Qt+vHa1eNH+XL9EX47N/oZ/FD+s8BVBP39Xn5lSjfkIyG++7L0gmBq7RN+9/n/kts/T8BPLOJIXqCnB4sV+CGsYLfTnzDr2ocfGCCMB509n79pRjw5fS4nsONm666MlpiY8vzfv311AOShNce9tex9jK/ivioS4mLeyOLVerUhteui/oNG8GH+B7wljJRABsK7/1v/f9/BmjYv/rcZMVAzoI8uipebzmZjIYhoGxrvlsRJTDoWe1Oj6ObNs3TmU0gkAY6MoOBncw3bMzYuO+e+xJouPPyC5P4ZjQYhG6mw7zpf5ZNWINuMOpJg0LkY51D8YQnyw4QlOLplCj4CtBWawIf/evf4nKu4OrWo2ec2aFDXt3mqY+puzpZAgoymwbftMlC1gRP4Hu/1tLlCRLKWwXuyaxOw7cIy6sI+exhw+PyG28AaDgtr4My9dVaw2LQknNFQPLFN4nqIqDFcVV8WSLAc2R+MxPWgMrrKP79uefozgzQcBY1tpws2DhJNNd52Zk5TxMUEpSq9BDRVchVUCp4wRcNhz/3lFGHZTHO0ASQ3IEoweFDh8fPf/PrBBrsdu44Cq9pc46hgygKmM4RS9CB1GFMAyIYw/j+vXxQBUfL2n9rAgcANj2FcejW4fS455Zb6NFwVK7X8TKwYyxPjgRiHFtQIIMKBE7Hzr1QMboWFYzIYsXqVRNoGApA8uaLz8TnNFZ67LZb45pLL4l60MUGOb7PNDGdW99fcEBZCbTRwJlOp6JyvgamSRs+V8WoVSUVcP78+fHKa6/Fb15+NbfrRZoPdet8ThxssEjg5Z4WQAaCZ9bCoGwoH3zmuzRGLCT5UApqOAUayuHkmqpqOcwTlE58OXNedO9wStx5192F0gnG2LKOZpPwt8a/Kgi6aXsqPtNWM7j0ATxnJ4vcDisKNmxXiTH+IZzUmCb56SCAhjt/GvZkvuuuO6Irjf2aNGmMnJDpQ731HhwPzAQZGgcb8cR330yKKfDAnLlz4vuvJuIQV6Q+v3Ycyl5WgxfKQJty7IE4cN6AgFLcgwPmunbweRu/X7dzS3y/ZW2sNS5l7lVIQDiYE428HYa/sYmlDpoK2DuZy8A/5XnfPta4G9BpORdMj2MvP1+CQ/d/XqbxdwFoqM/eVmLPTJX29EjjmUg/f1s86daAuX5BL2U1Gw/x9/LP6tWr2NcFMYpu8/98/sW4/+6fUhN4Og3aDsuTOU9cHbfAd+gxaJQGmnEEMTQCOnN8gn9YO6UTaIpCYASfzaDfwmAai737/ofQY1/86n8eAmhonbLkvKpwImpGg45kf0onbJA4+qsvcqW1uMSlUZ3q3DpxCFer1SCjgSwbHHq7nVdFL1TSqye4LMM+64IU3JD9RJLt/FI2ZH4pr34Lf/xfoGEyQMPAuf8v0PDI/T+NKy69OPnpYwCSF578Y17X9CQZDZd2757ZaJnBoxMBDZPPeZjb6P9cV56wwJs6s2aTGWiZOSOALJiovrFh7rPPPR8v8AxTXx//5z/ibHSw9fXeJOQClHvp79fKq/rE7zW86mf1gydo7qXp2KY0erqgYzecZsK33vyTWMnYN/XsGtdd64nUcemQC5RUwn6wu5mmapqw/Q8qkEWDEs7TBnVAjstnT791JqzH1PFatIwbBAAa/vdPf45OzUvisiuvpc72/DiyXr3YTKAuaKYuc57aDdgjAWv5yNRVHTB7dKhT1aHuz070nYCfQfbcxYviDU6/h/JxDamvNv095thjyGgAaMA2GQAUrjh1Dwo6jEdAgQItUDaF4I7n+XWRB3TAvR7Z1NcXX38jm/l1Ayy18V6jkoZJY5tFOt9CH4yCXGWGAc/UHqXdQF/pQKvH3PM8OWUti6gNnjD+qxiMHu43eHj88uH/walHNPUAAEAASURBVM6fGkdSlmFWm/bN9atz1feCJP7TBrm30kenPZ/HzwQhBYcFKQWfpkynR8OwofHucy/GAW1axc9+eif19sdnGrn4nkBDGTIC7L9RjkBM51+9kswJHXhUBtLyh2n8AkdZekeG0aof1sSo0WPi/Xffjve5deAunER7NJRy8mVasX6MTrg+gayurbPMkiUkf6ee4WfugfwvzeHYBNksNZy7YCENnN+OJ1982a2Kp3/+WPSk9LE2TrSnkMqUWXzqQzPu3IO0n/CKgZggmPbJ8Q00fJ7BewFo2J3O/9/IaPj0i/HRuVWLuOPue+M0gAZ9JMs+LTWVIwVsEMZ0oIsAbU6I37MLmclg+FUeu+QtRAanq9avBWgYE7f9zyPcuEAp603XxYVcTe3V1xjKLJ3w9FX7J7ChjXU90ijnyT4mPdD3Ahd7+CyoIRgj7y8HaOhLYPTk3/4Z15/XKbqe3zUbQh4CkLzzh/XUOOOPGVjzHgMK7b56x38oBPiEk2pAA5uOr1+/RsURB9PbZgcPWbGWa6+/nR2vExitW7kiLr2wZ7RGDzRuVJLNIHeSoVMJfqlC1s3CJcvj/U8HxxsffkaPgWVkOCxJ0px0BLdO1D4sjiQ779BqZhZCf2yKulf5S/0L32aACQ8nH/tO9kn6WBKgrRYIqIguMatmO3PbVZGS0nKkTZN1MWn2kpj9g3rMfahGYNg42gE0HFG7VozHFn/z5Zj47a+eiNMAGjxNZ+dpgsopPPxoxoof+jXqTLNPeRD7Qoo5Otg+Vuqwok9wUE2Bhp30Xfoi3n33rXjl46Fx4dkd4z5KJxJoYAwNtgCPvKIMujabGxbABGQA/sslshdmeamH3SBP2PWX1hA09sPX++PPfxlz+MPH77gtepFO3qBu3bSh6X9Bu/zM++UZDw0dVb7Xn7eni7JkRpYAmH1VBBpq4I/OnD0nnnnu+fjnu+9lj4Z7f/+7tB9mCJn14r7wlpRXg1Gf4ymyuieFll9mjJJyCs3RZ3KjGZDarFFffhV33nMPDZNXxs1dz41rrrs+b52Qx23YmDeBMZSHnILUqRX4nXPWd7RUzD4nlpjZ8ySBTX1VdIEBe/8hQ+LWhx6J48j6vP6uBzJDqGHD0tjO2Ns2bs7SL/0abYgved05pn/DGjKTAbkq+qnKl+CJutOMhrc5ue//1jtx409upAzp5GgOGODNRxkH8DdFuySIqU3N/mfqBtZgfJAHrIypDS/42NWY96ZYvHTJ/maQ70RpHYCG884loxqgAR1vQ0l5Xd9doEFapw1Pvc5Y6AT3xmbZ1ciq2Q2obpa2NDFGMLPJrOfPx46N1956Nx64/544p317smAOA2hARuV76K1e0Z9TD6QFge+KsifQp26QH6WNlDOrXfp5ffFw7Eff55+NXfUbxuMPPpClrJbLyAva5aSh72NvMyMR3i+PrLrfZuNq9yrWAPBAN9qnaBd+mKVIlpUMp+H6Ky/+i6zUmXH9JT3jlmuvBmhomn57GUDPPFzmGQkayHd8CL6W4/mLOLx4vfcbWTpxw403UIZZwvE8+5F/7TsK8iYv/Le+4DN25T/0UhHpoKl0dCY0bhJs+nQYaCh3shOwHQDqnc0gGzVKp8nmJxoRjayI7yacudHjJ8TdpEP5uuzsM+Kyyy8n3a1ZItoGdtkYD6YzY6IYjCqSLkVhkslkrkIqacFAK6gqGW8o+HTY8PjLa2/EqUfWjAsu60Vn1tMBGmpnvaQlAekoyggwRmY36DjyPAP5REgRJon2I9CA0AuQ2MV/zoIFidDPHvtF9MRpP+Ukb504KlF5jX42v3FhzNX5msIk+ur8zD5IAZF+Cijj+lklKNCwirlPIiB5/vnn4xQc0E58eIXjkVxPppFX0AVZPE3I+UHPPF1D6XmyraJyPOedz2caph+pz5YuXRZTpk6h1mh0DKHW8zEQxVNaHZ/pvjqYSp8dg6VrCgD0UcB1vlSI0k0l4JzT2fKv+L2NalyX9+MOI0X85c+GxumMe9NVV3Aq0jRRyQJqzsiMr0DiP2QamoiiNPf7TGGFtUz9yqDDdWAUKh9QjRRJnKHPP49//OXvsYLn3sKp7CVdu2ZGg8GhYqoDoNMmICWvme0h/dMh4nvX6MpS2bAX8rGBqYFSdg3nROolAiNfv3vwfgzbGdkdWCPviaUNwyyZKJxk8kc8y3nLl8qCxsCASyRTw68hKluZfcHxnTB5Svz+T3+K2ctXxSktS+OWW2h0Bo00vaYE54kRoEM1gDWR9EytY10+z7WoAHcgezvJEtiBo0WuRiLoln3YhXkYe/rIk7916nH7lZdTU96ZHg0NmQ8GfQcBLDStBF0OxmjuAcibBWo9H+ev4tpVUW3HFk50KZGgjEhlXxneMTwC7iDgLSj2HYxjuq0OvKdWZlNsxjFYs20TYMN6yqEAPwCWq5I3XIWeDTYZE332itpMQZXW0IoWD2wUJ8esc+mWnTF68XcxbDEK15+7ObweuOmm6Ajf18UACTTgRiWP5JV88L9p2qZz65BbPqU8uJeerBUzeuTh1QRVC5DVLydOpHv1h3EPgcUZGOUjOLU3rdNAVgdF3vZfAaXf82Oz0x3KE4ZY8JJpMAcyW3AVbay5j/fOmrcoRhC09OvXn7KSiAfvuTtak76vvInMV8Qwb4Hu02fNIjAeEzPmzInxXxdKJ+j/yAkaDTcPqhK1DsC5wknZQ/+MSszn4CoHoENJy8fIVRSwYa8Fe4qvH9X5fp4rEk6gIa9WA8hZtX1PTONGj09m2UFb57bwuuNG6q+7nJe6YcjgofHCcy/Hen51HxkB3c6mASe0McVS58TmvRpn6yOVcx26IsDj6fwmdKGBkIGohl/9mKcZyJlrfYVgt/+YL/LGkscff5TSCa63ZF2WNCUbwNvKrbRPh5QxEnxMYsPfONauFZWQgQt91bKBnZllXwBq3vnoz9NU9zjj1Lgc+3EcpzrKpA60cmXw5fVVngYKWJsR5njqONN1U6bgHU8EvRrO5p3y0zJOHwaNHBV/eumVKOHZV992c5zdqVM60dklHGfK+Sv76jPn7LrUcWbL6QxmVgPryOARuVUH2adEHlu4fFl8SDbcWPTZJeix1pzANm3ePDuqq2MZIIM6s52ki4CFwax2Qxuhhi46oto7v5f/BVzXoienzJgZr7zxOvfCN4vO6LCjPZGqWzfnaVmiAZKOv/pSx07+VgYcI0FYaS4v5SIJLlwbf2ujyWmAGKPJJuk3bnw8dPMN0a5N6wTwdfa0ywLg6m5fOb7PgQ7qR/W8QHbW26o7/Rt+Z6mNa5s+E0dx5Ih4r2+/OKBxSdx24/VxfMsW2dTTE15LyvjDPO01AJD27kFmqjCW+6nuFdgV5LXZoTrYD69HHke5R9+3XosvATevpC778h7do2HdepnCLB+6jwmOMKZ8rx1y3doI6ayecZ7S2+/54wxadGQ9Zfzgo4/i6Xf7MlLEr+6+K87teCZN32jMh6x4q4K+gQCaJ3fS331I+WJMx/NZ6jT3wKwsAyLXYdCoT/Dciy/FF5zet6pzcPzkrvvokn9iXoVoir0BUn4gu2X386S21T1QvnTaf6QP8y8ADQRKZEytXk+2x1ekkj/1t5z7HZdeGOd3PjealZYmkGOzM8cWjJFfCh+snzlDiaRHgjv8SKBBMFpQ0OepF77j4GfA0OHxfO93ome7k+KsjmfR16pN9uCxwacnxY4pP8iDftZPlC8LBpa1aXewN9uwN+qcA6DrVta6dNV6et/Mjfeg/V70p1eWHtuiOTeMAX5RFrILfqxAwF6VEsPFnF7bDPIDSic2rFnBvFak/mlGFeHh6OJaBIUHYqBqaIPL8h7scCX0cnFuSRwiFrdeWqiTy8pr8CQbCeiDzscGefXx5l0Ed+W5MrlsxVhCj4ZvZi2PWYiea6Mwkiv9SqINjQJrkX3wtTIF/f/42MNk8ByX4JF8nY098R31lxJQY1z5U3lUbgzGtkMTNjkDGgEk6V8N+6Qem/D1N9Hvw77x8bhJcdZJ3HR1zVUc/jVJEAomSwBJUFPAXdAv+60xfmbwME/5UV5Xd+n3pw2AJ/U5vD7zM/z9x57+V5LlNtLIL+rKrUVHHM7fcwjCPno4I4O4s/J9Al/8tXpdH1t9IDF9rnzuwUnyPfZj9nz6bvR+K/oMGRb1eM/d99/L1dRt87rxwnv3+5G8X1o4vp/VQWZxOld9VOfv3JVbPzt3M/C+wv954Gf3x4pde6MLpUj2aDjhuGMTLDKDVZ7UdhQPPL0FRFnKvWAs+0oo/zv5eieZnpnBCu2V2Q3YxSGjRsfjT/01mnOgcMm1+DNndOBGjvroALJ5NwusYU/lPnmINVQELFKWLPfQP3UcfXjlx3+ZPSGogW2zseBH2O63Bg6K23p0jVM4kGzRotCjQV9YG6MN0hZKlzxQRRe4H77fZ1oC4uGbusaMBg/EBEgs3fZA5B1A8IZ16tMXowNXojYl/uCgEzBAsMsYxOdom9Tr+tmCFwKqlmLog6VfyvebyJaqxPsEkL4DBJ82Y3qMJZuk96Chce+1V2Xz07pevcy+qIMzNpAn+Ejbz57Jhxmb8bzUD/xO2iePsRYzFtxfD83GcoDdH3Bq98EHkDFxT5x4zNEFYFcZgcDqwTxM5XMF/FD31ew4SyeyvwW0L1+Vvl/s75adXM+KINY4mJJGQAiBuzdefSYmLVjPNb2d4upLL4qmJSUaHpQTH+pg9YNSDm31K/Yxd4idNyH27ds3GpxwDKDWtVGvbgk+mTFswfbufxcU+O99/WeBBhjTzTbbRGFGHCAXd7bP/jZGDR8eM0CstvywPprWaxAldepmkKDDVJ1MBhvEuZmr6aHwDc7Qv2AIXfezjm8RnXBySxs2SLviVSE6u6JMBngqemsZda4MJA3YnUMi3zCdyiRrvfi5e7yWmsgvqInvTQ0yh6zRpUtnhPFkuhzXygBdBSfQoKOyLdF0rmi0zhRhUUgVIpHLYrCrIkdiUSqFu2OX0PByFE7LStba+rT23Al9TJQ2apSnZo6XqCfKNoMY5leNAM57XNW6eesFRkCnRSVrDZPOuwiyJ1IrSPeeOXdujPh8eDTFQTwBQWlc0jCvyVJpOHYqataqQve03mZU1pMKPuhsahikSSpf1ilNXNP3GPyFCxcACEyPBfMXRpee3UHkGhfuV4e2ReH27xVKFbqvqpWrJm0cw/1TiamgHFjQwUBDNHw+Y9sDYuSYL6Nu44bRldO00pKSbMCjEVARqUgcXPqbiqVzJ5LoPlckQPJ3earHPlfkFKNSdU7YDzog1oKMfj56TPzj7T45pwvat6M852QMG6feBMcqKZ25TL1kLqL01vBBhkRZXVvRYRT5lodU4tLdgHgJjTIHDRseAyd8nePfdVWvOOXEVlljK3BhFoYp2VkryQmJAIDBWCoVH8JXKkYDU5saVYCeBtueGnnS8C0Ife+334753/8QTWofED0u9E5rGoiq8AEYMo2Rz1Vxciqj/KzT3o3B08H2pMRTBetfd3I7wS6DUoyyAb/P3YiB+GbqtHj5vfdy7hedfWacccbp0aB+XdaoYdgeFXk/UUrswNnayN4v5XSywrzZcXz9xlGH/SuHw1KW1FSYFokGyUdJVmJvBB2ShoncQze+MQDR8HF2CdiwJ1YDVHy/dU2sgqU5a4gKh3NTxWFcx8raRNKxAhhsgjneU4MPGD62sK7FNPIauWhFDF3M3HyoLMXrym7d4iRq62qDileUzszdbAN5Q+ehGoFJdVBzwa21635IWdIoy4t+FoiQ39Zy+rxo4cI8XR9NwHs6PHM8BtleLTZANWlAnnbNOnbyiO8TcNFYbuTk+gfSKO16XqmSdIA+uIk2EN3LvBYv/x4nd358NfEbSod2x4U4Wl53lLfIwH9EiBgrAstl9EaZNZMmTkti+rTJucZy/NrTQ68IrYSNqsLXZZjK4aSk1DuMzwfWjgPptlmtgg6tQAN/tP8FGQov3iu4xf/z+2LpROF6SwK3FRtj+Dxq/hl3+/73XESn8zM4hZaWE8ZPiOH9B8Zy3n3lOedE+9at0/kvBCcF+dfpUd8YzEkTgQRpLJ9vRNeoh/Nn6DD3RptgIGln7P5kuH05a24cyfi9rr6CoLFlBuQCotIbFkvdriOhkVZ+BGSVXWtlzW7zpXyqf3VG2YyUr2nI06svvRqr+P3pxzSLc87pHE1KG2UAkNkz2A/lyuZ46phMceaZ7q8BjNQUFNyCY2d9s2CjJ4P+bDUZeOMBBl/dDzpeStO2dvSXMHiRbsXUUdegw6Yu82ttk2svZmSp/9XxBefGsjv0EzrQjLtxACVL5s2K1oDUzUhRr9egfvYL0v6kgw7NM3DkeTptB+HsaDMsB1L35i0y8Nf/tX1m261HT85buAhdNoTT0iPipFatuOqvXvZRsXeI+ip7CCE7Om/S2hszbKBrVpo3V2BVAO2AanCc3U/XoC2wueoSeHjGrFkxG2f0jHPOpayvaV6RK/2kQdoG/lbbmU4u4+gICrZrO+yank4VY2qn3PODkEVfBhdfkFb71RcTogIHBGed2SHvKT8EELQGOtf99MTexmyWCVQmQ0X6GyQZHOmke8JrkCvQq77PXgHs91rWZQ3vgHfej0U869y2BLztuVpN+8HcnHvajrRPshuBkTTgM79KW6HNKGZPpX1l332GV0ivJHtq5OjR0WfQsNDS9+p1SZx8wonUSFdj3ew7a9c+OWbaPcYt8rw8lSeR6Dn31rWYFZY3jSD3m6HZzHnz48OPP44ZS1dGM+4U7n5xr2h5VHOa+pqlA98xbz+ki6evpvLmwQ68r3wpp0UQ3IC0cAqOXWH8dZs3xmROA19854MEBc8650yyKbm2lHJNsz1swmmQqB3SNzMwUkfaE0pgJGnCXipHBlyZRs4zCifh9L+C9l99M4nyvs/j9GObx/HHHk+2TVOy6Dz1RKfihzlXlp3843zzpqrUKfArtmnr1s3QyAMigjmeK4i7aRv16ivXxLfzFsVo/LHD8BPse1TaoF4cVvNQwEVLMchWgce9pWIlTf7GTZoeIydOI6NhBbp9TZYyHMR+VWM7asDqJDRQMw7oAEvWOuRgSr3wfeQB6JoApXqFedq0FswfWiMeTFz9Upn5VoAXd+C3btpBUFeuCuWFFWgGuZ4eG6viW9QBWEaAN0T9Qw7jGs7mAFEHxRz2ds70b+kTcFWmYjuGvJE0V38hpwVwx5AdGkFr91N7ZzCTN5TAN/K8J7EG6+q1b5HTUZ8PiXGzl0XbllyzqD+GLtCHUbcYSHugIYNrq81KcsxCsMvJLrpY2bcsTr5UF/ihv2rPk/EA+O9+9ElwxhAXkzHhVYXesmLGrfyMEkg50j9TB7vB6sQ8WGIlypgyZT8k+dGyOH0L5WU+zVUHDxsen0+amj785QCyrch4thRJHa5N0kYUdYg6zBJhQYYt+GmuwwBYcEF/z/nr73kY4Wev8X6j9+v4IDvieHRNt+4X0tOmad4y5jwFwLbhV6kbqqBninuR4Bfr1d+V79Mf0nxBp9Q7PDdvmqLB5wt9PogTS2oDJJ8M2NsyffgM1LV/6jL43r10Pfap0Y4aHwjiZ3DNWOof7V+hPJGbOdDvS5Ytx358g98xKdqdcHTeWHQUB532BzILyxghhYk9lm/N9PV37vMmyv7URem3wjuOj2BnYO28bQw+Z8HCLLs5/NDDos1xx0bDBg2Qp1rYbuIv5uwaBGH92pf63Swb97wIlPCo1A3aPjMaBPE9+Jk9dw43Uk2nj9C06Iyf2oqM53pH1MnMYffTbJIcj7305ZjFuMT4RtpIL8F3edOXvol2ddHiJTGVMtWJxB/lah5MFsn50axRo4w/pJ/vc6yMHxlXO+5hhD63zYXTdvHzfQi2JRMermkLbcgr0DAVmzfk0z4xa82+OPvk1nH+WWdmea9AL4vN+EU+h33Sv2AT80BuL/v3vQelHC60I/uyF+WS9es3zLi5ADPkMgp7Uvjyv/L//xGgIRUESiJfbBZ2LD9E/MCZaLo2PYZSnz8ZB2olTubhNQ7idKw2mQkIN4TPJosYCIVgA7XgCxYviqmjv8jYot5xzaJJi5bUetZKwdARwkqxeTi46avxMBjFOvXcRcZkD3NjNPj+U3nIeDKUaO68hQu4234mAnxIHH5knTgCh0IDn4pJBahziBDqXCh0Gi6doULNnScvhRokRk1lLoKpElRwdMbm0qxm0+qVcXidBlGvfgnjH5kn3Z54ZZoSikinwvpWDV2m0TDHvYxbcMZYI4LuTRGilyoZsyVMfV2yZGHMo5t93RaNorRRExrX0YXYcZinDp/gQgIrKjoEoxJG3y7M2SEaw2rQroK15jGdf+iiA2zH8bWAPN9zYrcFw92oaQv6VhyegZnopmtz3FRyEFgnENJiXHiyY/k9z0t0WEHllwbqBlbSfw1jL11CLeKXk6BFRIfu3fJKUcfwPe69aKj01jmvAoDhazM000mqjkJyjaK+jmdZTGVuM6gCQm8WzIyZM2LG5DEYpRpxZJ0S0rnq5P31przq/BTKa1g7z1CpVEQxOo7KT6NWDefNV55MQQ+mlWvXoBqwmu0xffKMjHnbntU+TwRV0umYowStnzb9L9POmKcGTH50PeWhgwGaytB+FZ4YVUb5lsWA4gLmidfoEZ/EgrURxzc9PI49tnU2+BTZzuwFHS543jvjzVzRwbP2tlhKkZks0DCBBprV7MVg6mSwMYlSL1i0MKaPGpmAS+kpraMFAFWtWvRvwDnbvWNrVHSuAA2bMODbv5yYiEAd9qhFowZRF6VeCUCCqjocAtgSuuTe81nXRtr6T5lPw82adyJDO/iMGYjNBGdrd22JldvXxgoap2+lOuOgwwDu2F/5rjzz9EaN6nzUkM8YdQODLdq4LUYt+i5GruBBVTAcdpjk1eHEE6J5aWkcDP2yFZNOgsY55QVnDsNWjj3TuGzdtDENh8GvvKgjpCzJ96bxrac2ewk8Ofvr6dGgecMoLW3KlZ6k6nEC62miRtc9dI3JEKynHA6Kp2by5G4Mm5kClk7splRkz57tidCXARRbs3ELSDVXaC5djtOzkz4tLRPE8M7mrEtkH7ehw5YThMyB7jYEWr54gYoLTxXasiV8Sh1YMKsRLYkbmjQi2+GgIzldo/6QPSqnLPNRfDHdwsspO+/CxKEq+8G6BRrs0TCFa/wGzMYw8xf7MZw48+QT6GVwbP7tbIKLeWMnBD3Cow0Oun1mPFkQWEsgTqdC2vNsH6n+1YGzAZx11Dvhc38v3aWXuszpqJM8QTabZO33y5C7Gly/dXTUr1s35VKa66zoBCULyxM8ywDLwFe9qZ6xnCi1O3uq/s0PgweevXiZV2WNiw0rN0U99OQxx7bKrC91TLFHgyCVmQwaf0//BDjUO5mRxJxdl8G1DqM3hHjybTBmCYhgwMrvVzDPnXH44XWiUaPS1DWuraBnqD2FKKl7HB+aGVxb5uc+6EwrQ+rV3CLop7Or/bHp35zZs2LD6iUAskdjQ+rGoTVr4hgTuKWORA60fYyvTqkIv6vj1VsbKQFw3KoAbcmjPDNtID+T3zfSa8U+PyuWLyJNuGbUqVMv7YdOuLSVW7R50sjgxdNR9aRlBtqNHdBDGpjKbPCRp+qM7by9GtMmzN+tXBFrvl8adUqaRR10cA1AblOJ9RG0be6rMiXPuP4KPEPesBGt9s/5+5EnmswoU8H5W9N2Z0z+giBmA02z6kej0iZ5OFCtYpV09Is9CKzh9SDCuTvH4hW0bAB7Co3ZVzOuysIr8ow8a+C1hPEXzZ8dP7CvdRo252aCZgRGh8IPyLt0IcCRBvKidHfeypdBhTJmoC2/m2Eg70h/Dz8EBLwx6uvxX8TwmQv524jubU+Mo1sek6eA8nsGh/CIvJ2pvBBHfpRn1LFo1/zQXmmZMphmbPVtZtlA8ymTx7MH66F782jYsFHUxr+Sl/mj9GX0Z8zkEWhwv3btBwW0fWwKc3ZsaIPQZY05Rlr6eLXgQprAff3lsNiFfWp0dEO62NOEk+BCIEDQWxnSNu9lXPm+PDzpIYn8JE2UoV0ADWYzZNkgn7UX6mNPOefMnRNLZk2JOgDb9fCZjqAszrrsBEjkGWguFfQ9pLl9DtT3ZhR4tfDWzTRb3UsPLU4b9QsqADxt5STx+3VbyGpYC+8sIygsGyV1j4zahwoQeEJKvxaerf9VhYyGddjTmdzEM33h0li3+jtKuDbEgWx8BVSr+w/2m8BDCeoHtqYuvVrUwveqCI3kCQ92dgAo5/rRH96gZP+i9IugvcCDAMROeHMrGQ32aNhZvnIsWrMegGNZzEKsBaEgcRxRpQZZHYDpgBmrSSlfueDbKD0aHYYf6X75DOVTuhvkZpkf7xPsEGCXJ/VntHXZ+0XZAohNgI2f6295Oj0PH3j5gkVxOABDq+O4UvRQUg4ZI+muTeVreV35LI8e0E5s9uCHPc1SVNaYB0TyO/MyUFfm9KmWLF1KluwiZGsL/WsacFDYMP1UwfvUf/C2/pL87t6m34WP4+/kW0Ey+d9yNRQzOo4rHKGhwIYB76wZ38YKrtqucXC5OKpVuwx4BbgESJUnb4xS1+T8kauyPEsA3GaCHmrmCTx8JG+mHYGvssyCZ3gDwoxvp6YNq1W7DifM9aIWOtjMNE+lBRnMxLbUT3/PW6j8cN7ps2kH4HdtVva0Yd8zi4rnbmduc+bPi8ljx0bdpg3howbZqLF61eoZXyinqdt5DlNJnnf98r0l5mlT5Sv2ReOhntFHdU82U97ggeE8QOoNa5ZFgybHwqvMHV0g6Jrp/zxff8ZnqIftW1UJWRMQs9xmL/pL/Zsv9rcMcy7Le82O8fDAKy4XLZhLc8YDoqRBScF+EF/YyN0byxIsgW/0eR3bQyd7ERQBt8wYVqZdA7+zNEbgej22afnypVwFPjPmckXkCScdG03R8TbR1+eV5l4taplFgl68X0BtJ7bQj73QhoenD6G/h4KAPMQSjC0frfr/qHsT4CzPPMHvAYTQhbgvSYBObmMbDL5wt8G323a37XZf0z3dm8xmpya7O7tJJdnUJJWd3WRrj2QnlWNSU1PJbE9f091ut+02PrnMZTBgDJhDQkhCEgghiUMICUkc+f3+r15379ZWT3U3qYpf++P79B3P+zz/539fD/Nub2tJF7DLCrE/GxYtDfkhDOV9fteHV8gg1uBeyNm0YxnRTwjgASd4h1la7qlO32HWc+ZMZ2ppRGdqPJNqa+aktQ98jqbqNF4FT5hg2DOWSsp7rzOuMLnO/eS3NpN8n+Osv/PP/zR9jf5A0a+DuwEh7uizV/ZvvPwM/nNbHA0yJr2IkdIWm5wZ3XG8CalDRzDSPN7y4wP7Ux9R0zls9FwI187fIoheWSMPPqCgQGoFnIwrT5eSOGRqHumjc0Ivkwa2BH6yrTUd/fijVE4d0myM45k4JVRQRBiFsQqgSG19sJtt92yZrZ5xhZ3KcyCAhAKCea88muPpCaYL9aK8LsNr6nFdEpCErkIdKj7IkjNZ75lFzjNl0g64Htsp0zNiE8dkgfimhE4nKtuH4mQHYJXnJUuWEE0lTRfikACco6+Nwmq42tRRhixhqEgZadJwtvuwTMOUS+elEBYtVexOE40/vO9DmPEqsh8Wxu/8fSgbjCUh6t0NWHE/P/NSSCnAhJ3MPWDPeDJjCVkY6Z1uxUg6hxd1xco7wzGhhzVgIEEBH08eCUOPOTkfm5LJIDTonP8AiruZHs7bMcOryH4oEC5zJFsHSk4JAmTZEryywExj3Tm5byqJKkMyLRVgx1C59/7RbZg5CBPTw/S0K3SEjJ7dnp4eOiD3oKRcTbMrKtL8+VUZM1bxc18Zwx4NZpvIxE1LVmjLtMQhYSaMFYw5czX92v2+RNZMe1tbuoKCaWpYFQx5DnWeQlbFUKERc2dOcOgwdFRQhZ37ap2uRo+GhQ6FaJCHwmjkzj0xctnReDJNJxIzczpdeYGLR2WOAocR5I/NvDT4xB0Fr3sn3ngcopHISRjuE3ge4bSIUTIOxoOX14F1Nw6+gpPnUx0Rm9pps9MccGA2Y5Tx3cnMzQwGbpFFSVi3ESsFTCmwiDIXlTf4wABZGyPge+EEUuZY6xW+d2a4PzX196YuULtkKnMoJ6pUguHIuOxgKgE4ZTxu4LG7jEbTdmUo7WrvSTu7AFo5TqCreIahzXUrEUA1NcACqxt8CoXOebG3Kvhd53vSR/v3p3nVC9Li+vqApTxAnHBPMxMH/GZdPqRVjTDxJIM9BgrjSR8aFyr//m3a+hUEQiue8U72ds0D61ItNdxAmyiLDsQBfkP6s4IZA3aUaNXILca5zh1hEq7T6JdIoPFTgPNyhNedKJKfNDenTvDxYvcZxuPiawX8Rpio4OoC05ypJ7y2aOFETqKYSwov78MIf52jQeHketmCeJX1aOB4SxwfH7WdSe+cYtBfuR5avTLdtWI5SgTlTgPgRBhXOPlwCk03ssycPBVGfiD9SVMam/0IUw21Hgwetj3Nr6tFOSNjDdgZqZePhfHF+uUfRhkyDsXs+L50ExEm6N7Itjwt+DDI5n8XyCI409kRRyGX4gSqqa2NXhqOKT9g88I4UukSQXXmxQkJTMY56siWn+tM7QfPVVxUEn1WbnmGd+uJxqD1mfCl6cgmM7Gctw95u+PKgzXcNTLlj8GDhAPrCqUYvmJ5RCi37jHvG4U63nQyXUIBXAx/n4WMCiOYNXtFBEZewiZ5L2GrsSCPk28GjJmn+2jtu7BRAVKpNcPDoxlNg/YUFxtzTaZxFxOL+TiWfMaTVhxvCLknnei0UFbLv3Sgu0/KQI/XlJf5fvBK5tTVfT4dIxK0aMUdpHTXhDy1LMZovXJN40Za8QrezX28V/53jMM9g0/CB7yXPElZplP+DPLJvhzL7rgDZxB1+coaaE188LvSrXJDZ5A83hN2LHswsiV8pVFTmeUNKs/Bh3h9FaX7EnjTRUlHEc7oOOKNiKd6hQZHGBisz3XId02ZFf4BXyYfxjPzFhYadsrvUJaZuyUgZhj20a3dkwtmEKioAzbijDiifNPhrwPe/XPuyj1xVdlsDwyzMMOw4bvCI3BG+c2czJRqa20N+aFiXQEtzQEv1WFC/oML4qP4J3FbluRDo03HvkQVOg331QmtQWfZm8/ijvLjFFk/ZsrZHFB9ySwuZWk4A+SX4IcpzREBB6/lfRpw3lp5Ks0qazWsdK6pA/q3MFQn6Dh1KlUswJEFLdlkT0edThIDMuKktOr+Sk+5AaTRLJ06toZ0yFXG9b7qkiUYNDqFjhw7hkPoTGpYvJjeJehLyKcC5Oh4S8kYexzrvIURP0qJwygGmz1QdBKNw7GOixg4ODYwQ+7pRJuEHO2HJzZzNHYzmWh9GCPyuRkw3wIYrwEtDY1JPDgMCIOfrIMFReFscc4RQQcG165xD74jberYUDZlARiNFgbhoZHhqRMIQfo0FONouJx27W9NTfi0dSh385hbWJKefvLRVFtVwdrp/UVWicEteaX6lHiv80XnnfJJLBWGl8AbDXydAStwGNtvCM4bzld7iBnQskZe2pLOxMvQ29lDA23KJ4MY16/BN5iH+yyuqg91I1fPwt97kVNl6K11dXXBV0MfE4f57cRJwBJe42t5szzR/ZWXyxM0kqUjaVo4qctoAJttdaazM/Wc7Qpan19Ty+lP82Oe6ks6TnTEhvMOeQPSB506vvgYDjpwzzHlFcLKdZUgY+VRvWQvHj9+LPUio+zHsYC5z4PXRLQb3PCHOsQjqg0spF91PvFT/uh9HFdako+ZuSMvsCeEn1sadfiDD5Abs4JWxXkbUcuv5DO5fArnG+PrwBb2Zv34+6AfxpYHyL/AmnBcqh+ru5nFfPpUEwZoPQEi6QnHN3gu7NVp8izNmDfzkwZdm3tnloU8Q7sj59O5TuO9L8HHzOay8afBkGnYH/Ijx5Wn6JzSmS18HN+x5LnioPMT96RTdVSdoyo78k55kdkqlqrv42Sv2fDIJfUNUebn2KEDsF4dETbqzmQfTkNkkGvW+W3AB4AHf3f84M3gsLzAdcmzDSo0Eci+Y/U9aWFlZeBW6Lpj98iaFeOoAOaRoQ5tCq9wgjCGMFTnCFwCf8QBL/dkCNvgHPLpJkGuRYsWhb1mWWWUCYPZ7quOEvFS2BjIiExLcFxbxf4dw2OlZeKiiDaEI1z52c/DxqBXuf8Vnnefbk3/+p/9afryV7+SasBP+TuAiblk/4jdn93rd3c0QOjhaAABw7OKQBmTzAALhghDP3b0k7R9y5bUjvAxkrScyGEtUQlTV29JBGy0tYrgUGyaqTRGewW2GygyBFGpTADrieNk5BhACGEV2T04MLZtpV6rpiYtQvjU1NamGTgEgjDYfBUoGYXIFQY0DESlSMKTIcq8VQBEZBUnGbjGng1ULmI0vvL66+kIja6efu6LqbaaRkIYnzJrx/QeKoFhyPBa5UElyDE0dmWEKpZhCPGeRKQyqtBXAW6D+XmGql3FN6xfjxCj3wLKguOFNxfk1NDxPjJ8HShGiXRyXMX4dTzv5Xok/lyRl1m4vgMwkR/+xZ+nZ77xrfTQ/feFg0OEV1nS85z/zvt5hRLM3OznIAEqNFR4Q2iM3cfXrkFFyxS51lMt6YvPvxDHRqlYCUPn7t6wEJStLHvjUzjwngaews6xjGzJ/GLuMB+FZvc5PKcYdOLOjFlz0nrqiU1rN3IQTB8GJHNSsdPTrVAQ7jIoFRMdCeKMBO5nKnDugcxcRe4kzPtUU1MoistXrUprqGmdQrfqUHT5fYaPzAtcDKWX/XZ+wkvjQcXRtclsA+8ZVwXJPeiA+R1E+T+HkqsT4E7GX7yogd9ncNVADxhCG65BZdJ9zZ00locE7sCwYt5gvemjpqcp6D45ejR9sGVrmlpUmuoa6lNtPdE9HGzWjoENCLhMsHtcmgqbzhIV6ijvobZsiMyW6yhdhRj6BWpR4NFlhPwB0vy7fvZWWjW3LNXNq0qTiRYR26esAaWT9anMSS8q69bYQqCMryMHHOFzcci1XXNPwDHPP0Ykp8u81z50MR3u7UltEHApNa/lzHfKTJRExoyz0lFuyljvBOoGrgPTM9GjgWOyWnCimdHAKRRef/zt71AWcz+GL8fegT8ejavBBXjYs1F6HhxPP/irv0r3PvxwemzD+kgLFMZBP8xLpcc18PXAB5Vgfy8d6YByX4R5KCt818iHQlMh1cv89310MO1+9930wre+Hc3oTGUVluM5cWMcD7mBmY9wQ6IZ4M4klAIUqhHoQT7naxWOQhS7QXD5ePPJaAZ6At740cF9sUbAGo4GXCm+TIoood3Ai4aFKLrTKO8oQvHWT+VaxtbDV0TJ7HKBsUre4LUuh+jRAA88T9OIw5296Y3GoXBkEAuI62vPPZ3WryM6hANlMsq3PFaBaxptPNxX9ojFhqIg7FTkrMn9iHK0RvBS+rn3oYfSPeC8io4OOmFrhEf8lwe4V+5DzIs/LJkKPsbkpS9xSb4jD/Z1Gyn5Oo8u9vSmqfD1Oymdqa2uiTV5HFkY/CpCwMEokr/1kfNl6d7LaJo8Xn4q/5VeTcU9/MmRtF9FkQh2DbJjYXU1Kf9E97jEh2wcWTkwjH+ZOjDI04flVzqr5EvOV54jz/C1JTpbt29PLSdOpM+Bk7U1NRk9AgeNQQ1SlRtpR+XT11FqwPjR0wHczZUfad9L/FRBFzdVcv/dX/91yKTnn3suTnnIcV3+K+/TAJbHOj95mL+VN2osM1TAWT4q33HejquDRxlx6JOj6W/+4v9MT3z19yireTD2T0Ndni4cHSccdczbzIXgt+gA0osKlOty/jryfNa578Z7rOMZygwPwCdPt5xKX3rpK+kOUmXFAx0t7r0ywTlopOhs1mkr7Vr77Fr8rkpvGKLCBNwuh9+Ko2cZu/nkyQhueDzbk09yBCnOZGGiAi1/cg/DaQ7uOE/xRHjxYSiN3lf+qXxVlvq5iquGUWtrazrF+O0Y1YvvWMFx0/dFdE9ntPJPXAzccf3CnP0O+cEYKqRXcbBLA8JQhV+5Kb44dx1fB8j+7O7oTOU4R1ZS4rIEvcb792MAS+KO5eYp+8R/f6uscl8cX/gLI8dT8TeIkxvFpijvJaKqkbAQfNcBVomSnhleKNjAXxg5liWK3ku+5R4CqJBNOr0M9EyCx2fOwVGU6/IwRHZAS9ve3JhWwadV0GdgHFnio4ERTl+R2Hkzf2VeZNOIn9xTmhDPde6I535HXcY1FnIvec1b8N8zrc1pw2NZSe00GhBavjZi3bQ4gQFyYzzOu0kcmQ3/1bFmT5kRTqWYgKEwiWyNCdzA93T6mo3Vfq4n7f7ocNq27+PUfbaDHg1daSpzNKjFUzh7KbZMNdg+FXN4zC1nv6dgTKhngYvBw6R/18N+g1OWGIIEkU2qo0EuFLIB/fVmEbDCGdLacwlHw+nUCBO2SEhHw4LSKemP/vA/jdLYKWRtqlPofBPfQxcBX8RH8d6/RQidDPZJOXTkMCn0l+NYXB3tGojKZA1nn73kY17ySHmBcNYQ9R46ZPw455HKxkGMo9bTbWSenKSsso2Mn5r0ILxA55d6ijxA+vEeQTOMa9+YMOYYO/gmeCg9iD/irfcUZ8Ut9cijyI7Wk82xrhXw97t4GIwTt+SL4qP4IyzCoRY8CjoF7sIhdHnu79xzulO/ll5Nm3///W2pt6srzamqSitpIltfVxf3DtyVn6BPuw75oL9RH/NyTe6ptCduKUPEB/nENPRF399HSfBr6PAV0NCKFXeQbVWH824m9EeGE0EX1yudqod4KTe0QwJm3C/gBy/IA0zKQ/V7ZZR7uYVs1AMf7EiPPPVMWtzQkKaR6SI/kU5D5gATeZkZxzYaVud0zu6NeqwYLEz8rvN1T8Ohx3c70ft+TH8ATzP6EvJjfkVl8CLnmR3jzZ7xG+We6wm5x7yEgfeDiALmwt0Xyo243G/WoJP95R/9IN0FL3h43bo4ppnNj6+LK1G2wtxyx6Owke+of2kjyHulm+ABDC3PzPhals310ccfp930THqBU4Js9Oo6LY/xGbDHWOJZVrKT2U86QLRPlFtOW5gom+Qx/sb9uEQp1VkCqIfQa8bhHX3q6adpIlsbcNCBFA/nKL3wIw8yCH2FcXQCmlGjQ8p9CEcY8sx9MKBouVgn8qkVvcajYHvImO4/dz699A/+MD3zRfagujruE04Y+BMTC5B+lv+5LY4GPeM6G0IhUgAKFxkKRgSYnk4cPxaCrbfrXJoOEdx31yrqlRuUluwqHBZHgEpVRAHYqInFGOYqJPzcWj4jMW4+nCaEprXpk0hpnABDuAExbdu1M23ZsjlV19ak5Qj9RYsWJyNT1rP6uzjuEgahsDW1S+asABPRVFyso5Sxivg+RNJQdGAWI7196ft/8zfpCIrus3Re12C0A7hpkSJ8eGlZqr9TEKgwmMIlE1GZEAyfKhmAJRQp5izhaBh7dOIPf/hDPJWz0pNPPB6RQD33zst5O45C3vuowFivVcj9hesACBqMJggExo1QyZQCiIb1ufbdNFf50fe+l77wpS+lx9Y/TGM/xRlMj89URmQOEprKqZPVeJAwVKZkVBK+jN0rM9AyB80ABkQXkZGdKCynYeRf/drXSb9bGTgg8w8PInvqmDIO1+rDtHbfu4qSK/wVdt7PPXHueisHgVtHRyclKE2khB5Ms2gI4xFyldQqI1FCGVEwKBSsu2O4UJIcvwj8Aig4EHr4auYZdfy87MN9tp5YY/04j3MQ/GqUxM9z4sA0jJjIIgC2wk4hI2z00mdzByeZ78jA1RCOMiWVrXBk8D0VGj/vaGlNu8HJM+0d0SX5Xhrd3YEAGscar4PLIfTBF5Ve12BPgTKUNLiSiITdPxBRPnFERSCPrrkPCiFP8HjvjY1pMvMyUncHUf4KauW8t4xbRSsiWhjv+senEoFgorppuecgHnWi7zdHKDthryFBQr2plz3cvm1n+uTP/iLdUz2b44sqUxFCspjfTGKdBSpm/KdH1zQ6DbqJOAXG42jwtXsgPHz2bxu1Zo4GlGPm1DZ4IX1EdLSJzydjw01bUEkkcCq/ucU5zpc4PpOUaPaypGRaKmK+Nizc0XaBIxgvBN2Hpc1U/9c/oWM7zcjm4AS0N4OCVQXbS+X3o8OH0/e++10yDh5Izz31VAhlhZP4nSsjIeCBs88qwIXSKwZNPzWK0jHLCMVDJV2FI3M04Pxi/rv37kk7t76fnv/yV9KD9HZRqbxF2m5hIcoT7e9VXoeJDgzfRMEbR/1vcVkoXNfY02HoWVy0R0dhSRk9GsgsOHIkvbV1K1lTR9J772+OdTBUmoa9U4ZeL+UVA7NbkNJsHDTz54xPs6fMJslD+HJP+ISOhk8vvhuXi4iV8AavUadRvimdwBjruXYzHaOsYGfrZWiQOu+x3/yD/+T3gdkT9AdZTL0rTTtV0BGWHmGnd9+IjvQTQhlclSbGgVeXUOB2f7A7HT18JGhu3fr1ad0DD8bRpiPsq4qiPFX6dq+EazTlYmLSu3QajaiYcWS2we/ko8XwQd5AAW0CN98n7bGHNNDZaTXRCxUulxjOUvkf85EXiv9ZJgCKnP+xxzlIRE5/o/BXYVUWuDadpbu2bcO5MCsc1Q2MPRdHmJfzjoe/5ccqu0bYVLyCL/Ke9Or8/VzlWkM9MwgKIhL45ttvhxNm/YYNYTDqwPa3yoLAN34ofioD5ZVTMS41+nR8BX9nrvJz1+I9dDrKl8dxn86WlvQXf/mXwUO+zhFyFThjnaO/yxwNZP6B3yqIOlnCCcM97OZv5pWX++g8NOp1ZkoTwkoHyl4cAd//7r9Lj0JLTz36aDj35VlhoAN3ebhyIo+gycvGs7ZR8EUlWZnuvssjVW59dh1mM3TgJNmNUapD4Gu/900a4N0V8zbqI137O/mwvDv6GKHMyR/l0RoImYGL8g7sgk+Dr/YkApiURJ3GeEHv2LMnTiN54fnnU11NLTDJeiAFHIBxwDX2WV6vIwTdA/iGExw6jp4djK+BId5rvFxGdh0/fjzkx+nTbekOnGqPrN/AaQfoCyiwRlPFOvdUuIoLOo8gKGgRHs/cdbTEZ8BDB5x4H3TFXFopL929exelVO2xnrX335fuXHknn3PcZOxZlhIsMrvXrt31CFsNd+eaGVBGXjNFWnzXcFEu2Jj5/c2boeUJZAUsCcfdgurqYOBZACILEjhu6EvMW17g+F42rgxcYZ/Fd/HWNZeBt6Zev7tpU3qb4Mxa5R762Fxw0n1xrsJEPSKjy0y3CdnKvdzr2G9gxpdiXTrxxQP3xhT+TiKMP+P417MdbfTXejqOqpxJOYR1/LfoBB8BEtavo/fWRDIyimhiDB8Zh9wavsrRhzwX4zwBHFzyRvaDezS1daQ3tmxPr7yzNXV1tqaWTjIp+YbaUjwjJ8vZvgoae1H5l2ZO5di9MnCFTZAeNMKu40VwHyfBuywJtFwiouDqxtxLg0cXt3+NTixNQzhDWnsu0rz2bGoksG4/iPM8aqfOSH/63/+36aF718Dzp0OTZLS6Jh7ip3CQBjR8/dtLneY0Ti9PDtOQeY5mppa7GS0W5vJA+Zh47VzFHeEaUW/wXVqXh2nYBX9hX0NWse9GaU+eOhU4L60urK+nofSTaWZlRRq9Au9j/93TcLggk6Wp0CPBe19nBhw35HJ8b24ZifjuWs5TEqyjuokggWu8e8090Qek2GACfMo5K7tdh+Ope0eEmCGFg3xUJ4nrk3YDt8C1KAlDP2ttbk7v4Zzq5T6VlIncg9xehnPN7CizgZVFuc6qrIpoOnqk9Ol9g2/Bj8Khwfycg1krhepVvD64a3f66Q9+EM66u3AKGuychfwI+4PxhLXwlx8LJ3UK900e7fiO6xd0cLgn6jGuR5r1pLmN77yTPtq3Nz3FaWErlnNUJXwmTujTycoYAV/G15Ehr7FBoXg9CP+VntxHL+8lTRsck64h3nQWHvPd738/HExf/fKXKYdYCF/g++yP+BVOKiYnzpidoex07u6mNA+wA+a+L34DjpDv8hkDvGaDv4wTRh37SeTHTJz5ji0vcD42JNeuMWvQcc3I0ka4Dk5ZCuJ95Fv52O6xY6v/W1atPrYLR8PXf//3073wSeczjDwWV2JuwND9Eg7up/y7gPEHyaKzHF14h6wGFvJQL2nhHLZqS/OpyMaQP7+EI7wenGFx0HSWrS3emZ0ivrmn7t8EHQrc+1o//fDYn8yhA40Cc/cEQEbw4VRbazhhOsgS6uo9H7J+/XNfSI9DV5Yyae/JpMxMZtNiXp/lf26Lo4FdBYA8gmnnQOFv0sc0iE+gRG/fsiV1d3bSSGdaevCeNWl5/aJg0rdAABu6qZC4YXa0ji6tIKMp8bJICUhjQSZimUV2fi1IAXKMgjDvI5TfZ/zqutq0nPKGSHNBIXVeYTiORUXCYwjD8Aqmy9xEyGB4YwgpwTsXBVtBWWmkvP4codna1JQewYPeQPqSzbdy5YwvMy8ECHMUmVXoiojkidzhkeNeoTxLvAghuFooZ65VJGxqaU4v//TlEMZPQIjzYFCmIzsPmZ6E5vzCsIbJycAnosxBpVG35Pc8Rzpgx7wVzBJMZDxASKbVvkvZygYQ+HN4oSUI1+58ZVJezln4OkYoK/xe4SEhuU4jSTERhL+cROFpRN+o0c7du1Mnnr+vfuMbaQXpr9w4FA+ZiPeQsTl/fydRa2T5WmYg45WZ+r6P+B7PwygynUR1moC5kcyZwORZTpGoWLAQfMqYq2tgugHniDhB/DJcFXjXIbMQdjIuo3muJfYBpfsqzPswBulRFK5uGMoa4LL+859PExUc/M5aOJmoMHcsf+9vhY3CyZ4Ajq8yGe9xXz251s7yxdTZ2pp27dhBiv3pNJloy32Mv1LY8FsFp3N3g2WwPmtc5EqczDCHvU4G1+PYLDWNV1lljw8Bk7fAyWI+X4rguXPV3WmOafzsTyhq7hNKz60R4M8t9GB775tElYcpZbrO4+Z4DDKi4iBSIrSZevGubt++Kx3+3//vdOfMial+YX2azl1LUcysg1VFKoJ29MxbGjHKGiYVqJSTwseccyWAHYl9kSZMHbvB59eAzxkcHAd7W9IJ+Ock5ODE6aQATiNCidrVf6k7jRsge4CpEMAh46EyXRiZkD48czG9f5rjDnk/AMDTn/+T/y59+YmnombSRmCgUoYD7JP4fITazZ+//LO0FAX3sQ0b4nvSg8atOOCVp90JayOs4qSOUgWj8xcP/Uxmr/ALZRpcvUApzB7KkHa/vyM9/eyX0v1r1uBswUkHfAox/EnRAu7gPcb5EMWZo5RO2ItCQXVdpya4K77b52FiSVka5O/9hw6nN957Nx1k3ps+3BXzm8NQNI9PsycXcLQl6a44MMYxZhlK3+xpc3AyWB7EWm65L3yWA8dfiyheIn/8I5GwZj745fGWnDpx5kLayKkTiLFouuu3/yHnbn/pC0+lRbU2r6X/CfxJQ8UjID1dxbTrSGtmP+WRgbPApw9Hw34U3CaML/fgXvDdBrvj4YPXcDREVFXex0RUtLzkj8GreF9+4t74PXlR/vkknYaMf5px38FY7yfyNR9F6J41a8nkaYi1juC8cSz5jDiorAickCbBQV+r1EjHOi+8Z+wt87D3jobRBx9+mN5/7z3Km+ZyFNjSkB+zSK0VkSNbj/k5b/FCHhP8k3H9Wx5gtEQepMIiH/Newty65osYABuZ+yco0g/BYzyBaC416J7GoyIij1GuyQs03pyfGXMsKJRg5yp/8Dte3i+MAeA2Hti0t7WlH/7oh2EIPoPhNb+yknlA71zyAuGic0cekkfUhJf7pCLpqI4J9NFdAABAAElEQVQfa2XerkH8ZJGkUQ+m/USMXiXide+6dekR5m9zRn8vHJyHPFxD07/9rfLJut6brE0HhLAQTgEbx+Vv72tjYg2M3aTVNrK/L5Ayuuauu2O+oYAyP2WYnFWnhr836sXyY+7ySI0DeWTOO8Ud+wMoG5VNTU0n04dkIhaCh18iSFANXnuUr2tXMXbx7qUw9p5eKuCxz8Kbe8VexotsvyfA469g7B87diwdRYnuwLi7e+3aOHmkGEN7EB7h+Cr3/tbXwlc5Kg/2kg94ukqOMzld+BuV4M6OjrQHB4wlWpbv3YOSfhfOZGulR5DpDAucMqp3DP6My732Ia4qzzM5w22BW8BIvGA+hw59nN4FJ605X7pseVpJ9HiW8oPPpCfh4bjOK8DADXx2H0Lh5xOdP0FHfM/7eF8zR26AD+9t3ZI2o3OshgfcgT5WUVEZzjPhEbQDX41oKOO4DvmjOOV47rm0kK9LegrDZgKwY8+62NdXXns19VFH/8yzz1DHXYPzC1eADXnhvQhuaBYZipwZusEeTyRIAA/WGTtKedsEZJ+9HVRNYWj8Dn0EXnyuvTP97O3NHA34Dg7l9tRMnxFEUaoFZHOwjWbwRzmv7Y0zedIUavM9qUaexi2dN/AQYuKODhzs++C5maMBtwfrU1bYKHiEbunDlHUM3JqQTtOj4cCRnnQKds7w0aNhYdmU9G/+1f+YPnfv2jQVmR9chjXdRJ6L72wEgSL1Mx3z4BX3vAhv1NHwAYbXeRyyL3z5JWC/POgtw0E5vTopdDNmLAddyuOZa9AT74tMeX198AVxDl2tGUeDWQeH4Qc18LAXCFxNrZofQQp1bPc/HMjqfeyz+lLOI7xBfM77wspLPMrlx0Uc+Pv370snGN8Isfj+IE6qAvj/KLqJeqT0Kv7kwZ/gs4zjeIErwN9LPAo8Y7+luXHgfGvzybQJ/t5HlmwVwSqb7C5ZuiR0tetjPMp1G0XXoDYzS0eukWn5gjxX/il/8b9sDchCyjBgzBw/uie99pOf0o9tQQR9qqurozTYdec6sGOYPedvnZdZjWaPeE/v7V4UoIcAqLCZtB2UV/Z3eYu5Hz74URihNnk1cOQYobPz47A/oMEsC5cjh3Gsee/oZxY6jDok9DDmDDewaomR12n0vldeeSX2Lpcf6kvCV/npZeBI2SEshG/IbdbtvB3XS73GPhgxf/eJ+cvjbZK48Revp3vYz8c3bKA3EIqNPEN6hN/ID9wv4Ri0g6xyHHHKDDudq/LFsFeg7bg3c1Du6KxWdu/FBnnxa19L98OHpYUbyAZ1tzy46JzDccwaDBqKdzrIhbH8Xv1Y3upvhZvB6w54cGNjE1m++3BUT04vfeUraf6iRXohcARlmd7ineOIM85RXbJAHsty7Hfh+DKFoDPua5mWMsASzqZTzTSBb4wTJ7rREZSVG559OvZ4Bo4GFpzBUnzw8Rm/fjdHAwAVqPGQy4owXmKfD126KAPHiUpr7Bp9mY2B8fm196Vl9Q0h2IYRuEYF3Sj2GKQ29ZpmLiAV3CWMZpFN5Ffp0NFg7TdkEP8ZGdgJoe8mPXVhrY2KlqX6emqZiE4FcoLMegwlRo1sG7EZzTeK5iRFFhHeSwT0XhlD0/c8Ls533bJtazpP9P4+iKW2piaEpsTqelUAo55QpgRx5Aqp8w2mB3AkJrMSVJYcWwXQZxHwZMup9DpGo17/R9avT7NnzAwGnUVSGB8kc0568UJx5H7BZBlT4jeCoUC4gRGp4PF3OklUWi/TPMUurvtR5u4nYr921eogKgWP48o4hQvLDEaj8RB7CSxygaDiGIYq7zlnhYefxSkYCH2PdTEF9iukLi1HaTGio6cx4AKss32FMUD83lcPukJI5dy/FThRr8U8nJPM1SiliqLlDfthJNPnzU3P4WiwQ7oMxt95Gel3fPcwOuqOMcIYh3sLF8fTANExoPAoJUIwCM58jMA8irPBGtt71uFo+NznUwGK0k2YQD5+KEWsNTyoYzDzfr+6t46tYBUX9LTLuGy+uFNHQ2tbeJfvf3AdjoYVwSSjhovvCnfhoAAVnpGiDnNRWLsPwlnYO2Z8rsDAww+Q0iEyGja+8Rr4NDEtXr4sHA3zhQ2C7Cq19TYsApNTIYrMBPiVeCmOe/wkxIMyDq1hFI/ScXB0BGNgoD9d6OgkirYnHfnL76elfK1h6cJUAeOcjMZ0jVILRGaagkLnXvWDWzoXTJtlQlEqoeMh6Il/ZfA3mUOgE7RqhLOH+x/BodA4eiHdpI33IHz9Gs6OMP2ZYyHytoSofal63xS6M18vT5/0XEn7ethrv+TwXP/HP/wv04uPPB5dmm3sFhkcKO4hsLhv45hSodB/gO7opncqlMVdGX+GY5ngyo0L6TSuMdqSvtzXXKlxL8QB65T3IfD3ckrF4099ga79q4GLhtMQNa7AtAhlDudHHH0ZjgZ4gLwKh8t49s+HeBJ7i/AaBF/3ofT/4q234uSJrY1HYhq1DFNbUZKqOIZpFlGzchVajP0i6HX6FDIs2MNBonfDo5Y+8RO8AToE4sqfY0n+wxs8wdXGSicmpfOUoRw8fTa9eQoDgW+MgTb9/e98Kz3/haei1tE3LZ2IzDGG0OBmFcGrrYWP6Di/lYdZ830Yh0kbyqi4etc996TVRHbkG2aJCE8VYukqot/gvrQov5UGAAn7p5GRwdzvSVNRN46j8CROmNd+/vM0xFgNKLn3EPGqr6vnR6RxY3h5ua8O5D7nJXDeV/4onxQ/VCBV8OSjRmdMMfUzlZUtGF7zKiriKLBFDYvSXPDGtZhSrNKjUhfzZc7ii7XmgXPek/+8lw1epU+zV8Qt5Y3NHVUUj+CIWcvpFEtRFCsrKUvCgHQeOjTDaGR+ocixWeFc5B7Srds3ER7m+ngZ97Sxnpf3tPRu45tvRi34Q5SsLKQk0ei/xmU4b5ifvDgMw4BxBgsVQ3lVrIV7i5PuZc6LNfhUog6h/L8HbO4g22Ad6a8zUHLDMGQyuWIunXg5x/z37kNGkxl2ZQ47IojARRxQPl1CPu1FkdPh+wyOgNV33pUp0MxHR7ZZdaXwHB332Z4i73BcOmdhJ2KX48i1Aewt5mv2o3Mwqt3TS5kWjt4DB/bjaCiKjLi6mprgs+oFjiGvddyIFutc5r7+XpkRtea8VkH1u+Kr8FZBz1O9j6FEd3V0plUPPoAS/UgqZk97kFvuYzSmg17dAxV2eXXsIfcU54Rd3EulmrkrH913cfIsjrsPcWh2ID+sAV6NAn0nR+MaxYzILb8XtuK/OJ/DOeQQUMlkalYn7z44d+UINxCBIkvwrTd+QZJbafSdWoEzYE5lJUfoUj8MjzOCqK4iTwm9I88o5W9lqlkr4o46gFmXvuf+Ondl95Yd29P2d9+DD9D0ctlyGt7ROR4DQ7j7EO7OW7j6LP7wFI4MdZIcV5VZ4pM16Tp7x8NLzwCbV5n75b6epGFUSy2/PRo0+kGNwAkJZYRmkP1ka41i1MdvfZOeROPJPrNsAnOCe9NgGVoZN3N26iFT4qcb300/+PFGGvmeS00Xz4aj4W6cDAvmTMPpWxxOBsvVJvJ7HRXy/pg/k+cVTnj0KeabOWPkyRhRsWZ4J59ZZhGOBvjo0K2JqR+B3N53OR0ha+80bExKucSjgpLI/+3P/jXH+63hdCdmyr7Yz2wCMsUgm+NHeQs4ZPaR+Go5qA1T7fd1DoP6JRx3K4G9uKhu4f7YTyN3KPhaPTHogHnK68QjcVU+EP3RfGafLdE1y+YofHjP9h2pZuWK9HUivLNwNNwAB7xHOIP4reuNsRwT3uZrYaTOJC5muhWw4f5mydhMz74PH8Ifj8MHHGsN+tgD6NoGiS5jaIuH6o2iSwSAwIsIAolHvBfliL/CI3PeIw67lqbm5rR1y+Z08XwPDUcXpFXIp8UYjfLAkEfMxSi+fNIr8JJn4eH81RvEReWZtGQAUL5gaQc/IuvrQHrnjTdwNCxEfiyN5vI2aVdeSONRfsXa5eeOZ4DReeV/Sz9he8BfXI9j5w6Pi5cvpXcJoh49dDCtJxDpiSzKFXWa2CfGd77SVejYyGnX4X9hi7DH9oKQNygrhU0WfMvki6V3mzZvDtg+jCN57uw5gcvKSmGeZVMrl9FzuUfwGsAuDjpv91bZqI0S6401wPfgZ/LwT3DIbt30XlqFLrYBGyR6ngHL0K8Yz7lnOJjxMdcvEOQJ3kv9QL4rv48sKtYtbzZb3Ob4Zvce5PE08uM+7Bud6oF/Y7pEjC8snD+PgA33DLzkTs5ZPPEeLEKhCr0NhQPm+IkT4ZQtolTl+RdfSDW1tekqtoNwNGtRGavskL4iOM19ckeI42cZPmPBbO5jwFZ+M8D4x5uaosy3C9zvAcev4pR57Pnn0lNPPZ2m4gxjsoFbgRDChDl/lq/fzdHgyuWwMEEoP3vteyBdPHQ0APAT1DC9DSGew3tWCSI/fP+DZDQ0pFEaZfQDZL+jshWKIBvi0SGe4WyNSjQOGiMmmYydcFV+bZriwzRGoyJ7du1MC2tqo6FiTU1NmjGDHg0QXTBaniUMCVTDTsbp+9aRyWxECAlQZFPQZYxKI19HQzeEvol0us70wIPrUh3OjKkwEetedXwo7PVa+yxxeyl2VHCNLMkQZWYSlkgtg/VSOGQZDafSjyjNcL5PPPIYhD4riDsQn3GMGGcKioxbbz9wZiwJKJwv3CfShrmPa8qdBxKmhH6IbJI9pHY9CBO5F8EfXXID3hmDEpHFYZlWELzrCcUxYwC+JzNRQEj8kVbFe0Z/z/f0pveBe1PTyfSNb30rjqiT2amgOp5GuUzBITyjXSVJZSrq07yPgli48Xmshb0RbiovZkk0Qow6SWbOr0zPcaxhDUq0tXrOxT1SAMnENXwC6mNjuibH8Tsqn8LF9Dg9veWUw1xF+d9LSclhoozWNq55aB31x+tCUboCzISxeCGuiDcaQNaPOl68x2efCk6VJO4u3HNltLm1leyA96MhVjmOjQdgsHeS0WA02HIVPeXCNCJNOKAiJQ/YeOWOH8czgsQNM8HG/K3XlR724bh7c+MviMhOTIuWL013UnNYVVkVY1+9QidtlKsiyhqmWqNKU8Ib3NPyo5toR7eI/IybBEMthPkiJ27cIAvnKkc1dnSmD3Z9kI79+f+TliE/a2vo+IuTwZyDUTIYbLRVBqNUkeoHtwaZj0oJmAheQP6sh76HcVznMN+Pvij9eOUphSgD5gOsp/EKHfWHzocy1Y+PYhx6L/2wwMmsPGASCQVMiajexHRxtDiduDicDlzCoTFqaieeCK5/+wd/lJ773MMYaxWkqeG4A3eilhD8d99OgDPvkWpYDS94CGVFR4M4x/R+6WgQrlwKnoA9+CS9qTxLa5KxuOm+i5zSswaDvGYPhtHeHbvTl7/+zfTA6jURlbjCuoooYygk+0ADzbPSb04gIkJqrNqve1rIOKj+0YBMQ2PKDGo4mYOOhtff3EhGw7H0buMnMa/F/Kxh/uRUPZPTeaaCs4UIv6tEjcHjkiKNcwQ5Dg3LX5yrhCAtxJU/+358yBu8/g8dDR+1daa3WjJ4Z5BN6R//wd+JYzjn4/TUwC4cTyQWxUo+65Fb8l6demY2SLOhbACvLhwNOu7aTjYHba4mYmSPBjuTG9WQF4SxCGyMUniFsQpOxH8+M6BwkVZDieQ7ljIVoEg3oeC++rNXiLYOhmPtLiLfGo3yjlCemJN8IGrduVcYwPB099N9jXRqcFY+Kf1oELApkc6uwyF3NMylq7tnji9evDjNU+ESP3Dw6GiQZuVnrsV0UvFDGhW4Osedv8q2gJF/yaNURC/CT95ByW3CKH2ArAAz4qaNRaTk567fOQpL+YuI6qi5EczLDCf5KAwyPjQdWjkiD/JEgNc42tBacrOyFqJI544GlaDgk8xJJVH5KS47V5UrH/zsU5gro/zMcaWlcDQA+3dxhK154P70eeS2Ta7ENWHjd/yu8/d3XiEneF84BaxYo+/lf7s46cro2wWUNmX3oY8OpOcp+1hLSaVOAyYbDqpQ6MgqlH7D4QNumCWlg1naBQg4d/g+slTF1uMrnY8N5OxM39rWFpk2k+GbZjTU19REFokKvvsZBq9r5r/MQSIvy2g+HNSsw/Ra91TjWsevka9LZMR9TO+jIwc/TudxLKz9/OfS4488mszAsYxIONvITJAoh72P6wdqsfYAFJ8JNx8aMcJa/cdmp51dZyj52EsDuFPwx6IoQbgbJ4xOB7P9lKPyI/WP6HTvOIwfOAONuademUGEEcgYNqcrQP9xDgetKX/lZ2HoWWpqXbnOAGlTOW054GRkZegqwMnMG7NWpE2QkagktensyRCpzZF+DF04N5Vo+f57729Lm3/xRjhIzOSrxgDTaWgvHvdJTFGOSk/CXvoUT3WG2HxSo0i6zBq6QndGIdGlismysqb5Z2Q0nOs4TZbjF8LRED0RkG0TkFHihhHRG8i94ZvodjwcW1VUsTcOR8P1EbIByLAb5dlS0qK589J5MhtffvO99KOX30p9V7rT8b4z0b/mwXkJp29FmldeTE8k8I17OMY45T7j8k/IIHmKzRazyx2AzviMd3nwLJ6p74C/N+Gr18bhqMHR0HlhIB1tOZ/aLxIs5VeXeVSRYaGjYR0O1QJ+Z6nmRDybuAqyNHLwXhz36Er3VZz3ZCx72eho8OQBI7A6GqR7aUd6jSxHaZZ5WiKlPioN+3Atwj37T9JiZxhXHmEDzs4zZ9IJIrAfbN+Rqhrq01ehV09su4r+pCGu0yBw3DG4V55RE0ET7udnQkXa8JIXBw9iz3t6zqe9OHuPE/jREak+ZkaDJV/98AhlNBIojDh1JucqzURgzLF5z4c8OdcNvVdeItB0qjlt2bQJ59SFyIizR0NDXR0jwquxBZT5oYuBN87T+0lf8mRhGzyN+6nfqbtaOuf9bS4PVHE0kGEKD64i2KP8qKqqounvzEzf53ObJeqAYbRMZjKmV8g6xnHu0lroHMBOeaKcUt+zWfob776T9mzblh6jfG1JQ8MvHQ38RjoKrAMm7mM4A7ifa9L+0EntOl2DPMb9DUcD99ehYZ+Ad3CEC8sND9Mjjuxh5yLPlR4dx15fXtn+ZnqT/FL80XYaGsuCCjiOyRXvp6P4yPFj6U14wd04zR5Bb5tuWQebE3vFb/2NurpXxr/AR2hLnSl4MnjonB1PvSAcZsBLvcIAx4f7D0Tg7bkvv8iR8zgaWHNuJ2V4Hew77uO9cpr1tXAJhwY8ziuX4doKOjTFm4/gleMnl9CD7vmQH9oLnspkf0AbSgfs4e/aZCFPxP+ggYyeFALqqOoM43EwlREs7EePsaHtIXQCm2We7+vlSN2+9IWvfzU9Q0B1Fk37Q3gwx+wGMbmY42f1n9vjaABhrOUFwrFZ5IgpRcFMIAyAs4yGN1Pv2TOci1qRNjywjohUQ7oFIl7Ay5idmkDqNIQbXnsQzc6e4xAeEnpsFuOEN597FeFo0NlQBFIbPd/54Z70wc6dydTIxUsWx7Er03EGaByqbIl4wVz1irJTeuJleCpkevuCQEN5DrQJhgueh5HcBRP8BRGjlpNN6eENG6KJzFQ8XEYDwlMJcSuIIwsPJiRm2ChE5qFiotKrgaLQl3BULGRWKt4SzQmQ+a+++904Ou4LlDdUIPRk2n4vh2fuoXR2rsUog4SiMiTDttxEglFRl1h8SJjWDn+EQrSF+rTPPfJI1JRLIHEFbWQE5lgyDRlJrpDqodSQNPNDZUnGK5zy76ksGq0zenGIaOY3v/3ttAqFxfvmTFrF33SinKE7jms2/S8UU+YQRgXPjitzlcnZRKwDx05jU2OUTsyaXxWlEzUoLCogenudp8wbYIdyoVCR6dp0zoiI4/tdPf8yDm4R3n+7bHus4QdkYny8f3+kMd1DRGrdmBItA3NsYZHVVzl/5onwUXj62jkKMwWzEXX3wP225MX3T7a24GjYHopiObjyII6Gu4lIua8qWjrAbrEGlaI4Fo01eDRQ7sRg8sFcYV0Y7za9QdEDpyab0QBNmM78zrtvomQXpkVLl1KysiKO8xzBKBoeIMoNWIoxcmeVWqOAIo6jIe7Lb2+SyWBGqU6GcZZOjANXYXyXUCR2b9+Zjv3Z/5VWzCxFOayOsokiUk1VqsaDYxMmimsY9sJVPATOPgBAHGd5lTleRoG7MnQ1DVBsSoJCwoeQ5tbMp8HjxNROM67WgZ50Dt/iNWpdp5GdPrmcEgrmQd5GmkQ2jHR0o4AoxzDnWfcNpQ9wNExmwlcuZwbqv/rOH6QnMdgW4HQqQvn3KDaFvnShAfHJ8RNpIxlClpRsIEtl9owZ0BKLZa8U7O6fPEUlQjirJNnAzaiXCrmIIk6aLpgZk5lw0lFj1GjXXnjN9l3p7/zdP0rryMwyhfUiZ64XAPQCjoqIyDx3sQnZeLqHm9mhYVYM7FGR4ixoBfwMUvMtEdsPff7i7bfSRxh0G3E6eC3BXl00vyjV4nRcQMPMKTgaRtjXGwg4HQZOnWQVlFZFsPAH33mKi3nzRvyf/ePnrJnv2QzyOuUu3XRRzjMaShhrMGMD6b/6e3+QXiQdWR59A74pfprV4PFOE1hHlDgAL2EpfajESLdnSWO2+WnziRPBm6zNXkt5XBkGi8qGMNfTrzIjfwhhz7vSWfRUYCz5XZadYuotdMYibXo1EUdDI8rK66++Fo6GBvj7ypV3pprq6hjXLukqciwjU57hLZY2udfSr12zNZJs/qSw90gq6dSGw0a65Q86j7Zt3kTpxJy0dMkyjjZcRFfyueHAjNIJDXZoX2VUviIvVxlUUZanqxzLe4MnAGfv7S7o2L5I6cgmIlJmezwEH3De1nL6W7+U8RlgDHz8vfLS34dy6l7ykH+GUwy8hBBJsSUiBq8Uj5vbWtNPKW2w0d+Tjz+eFlZVZbKJvZN3ixcZX2dc6FZZIj0oO+RZjq+8yhzElkBk8NHg1kF+EGXozddfSw8z9oZ1D8WJJOHAYL3yQ/m5ck64OEdpyc/FCx09yr+Q2+4p8sTvO3fv10u6944PdqeD8OGvfuP30r2rV2UprOynp1KYvRa9khwHmMg3xcVwfCmghRdjeWylUSIdDe6rDdhUFJubmyMjTlp76YUXU0N1TXY0sAo3c+eHyHCMdebqfWAK2X1Yh7CVTj12TfJQV1A/0RGi/LCm3HTmXtK+1z70UGQ0FGG0DrImx3bvha3KfR7xi0g9sBYOwkCcD7wHlr/Kg9o7cfoCF3HGLBlL7+7GOHKeA/1XotGYMFV2GGUt4djjSP1l3vnxdMomDUSNdUv67BFRWk4vGta7j+joq6RLu/alK5bTR2ElJTdVQSf2YpmCgVeOw0N5FIgM3E3zdj+kTU8uiD4c8D4bg7oPnipRwvpNK9ax9vbPX41a+LuDVrMGqIOXmTv8QL3JtSgPxRsdHM7Xo0CjNxfwFlc9+nKY+1oyU8gaJ9N8r7unN/3k56+kNur5n8HRUF+zED6DLqVsG81OfJlYiMNiEvAvLINO7f2QZTGUwEf5EvXf4BZ9ioaQU8WspWz2XHhYN/0ZNqefvP5e6r10Lh2ndMJrw/yU6oFNZTkn7+BoIDasx5o9ho+F7ONLGkPjkFvQqXxBOoDbBs+NXgR+zvc96QIhGidijOCIvoITpPPC1XT0VBclFPBhhtLRUI2B+T//y/8JR8PqOAL+Onzf7MS8N5mZCMLdgJwyyz21ll+n414yA6Sr5zGMVmL0yjs8htTSNyOvmqWetqMzScMHJhHyk7djHOWJsi9zakIb4I488iz0dPJkc9qHQ2Au+tjzX/wSR3DPi3LCYcaWNyov3E+GymDDs3/L1+RBXpmDUJTJIuLyYh0jeUaDOttqnJr3EwHXqal+r+7iGnSqqXfLw+S34ow3C31M2g06Mqs4CxKa7aGxfBI+8C7BhwFOHDLr2fLq2poafpo5GuSROuqUF0bQ5U3KFXmY/CrW4624h/eK3eXNOJmIvf4A/rURHmlW8nL0jtpaTkUiwCH9qOc5d/m59ooNazP4ZLIwdHbGZPgIosmL1bF0ME5njGHo9+cb38Bx9wua0T9HT5LF4cDOMzw0l+UzwsT7ObZ6kIa6csYaf5syKlPUy90PnQjirPK3hXIbM4TUn5584olwOOYZSrFnTEy+ayZZrreHI4A569BTfzILymxacUe5ljsy5GmHMahfQT7dQYbj4+vXhwNGnqczKs/AjmwS5uNmhkMBHAjeCPy9lzBRLokzylvpTj3djIa9wN4M3yidoJRVPUMndu7oEt8cWVkkjmbOmCzoayDZchJ5tAEiLzMVxJ/zvb2pBXr6ECf4CF5K+/M1sK9mHmjvlWK/6WgwSwlJHHI2nO/AMeifMcJRB/7YAkAd/gbfLeUEpEvYZWYKetpHdx8nsYH/59G/X/zOt9Nz7HFFTQ2gYNZjNBMT8+/P8HV7HA0htGHAADcDEAqATga3GGZoTeBWjN0LeKDC0YBRV9ewGBcum4zyzreDwEPx4Xcilkw0jzxJHF5h6HGLIph1RNYhmJswoi07t6fNm99LdSiIEnodUSPPvZWQwqgDMfUuy0x8L+8uL9OS0TlvkSOQc0xQ6FkvgOFfBeF+jPf/2JHDUT/T0NAQPRokYrnDBJYdHYU1KJinjEVvs4qKglMQ2BldxU0iCSOHz3yWcI5jTP+AGtuZeECfltDxnuuEUBirXGWRF37L39bOZYCApJlzCAX+jTReuCXTYcxsHjJRCV2PnzW2Gx5/Ij380LqosfW+4RCAAWpwCXcZlQP4vjByrjIu4RJRnhgdYud7vqcS23vhYtq2c0c61niC819/L626c2UQXCjafEe4BvNjXJ0MjivzViCpsITn271hznqLc8LS0WCPhpOnmqOXwkxKJ2w+tJD6bI3KYEbAhokRAdeAy5is9/Nzhb6MKnPCuCwFZ5axUsCeXGZPJXJTdvWm341R9DmMVyOoKlTijLDPBRCTDQYlFgqvDB8zpULjSAeJKdkquTLwUy0taceuncmjOY2m3U/KtBkNcfwXMI8O/gh9oB5KMwCNfXaP2UAmDC6yFm7GQnAMcGPLHgoJ/dtx3fT9dze9BUMvJPq6KBoELayaj+KJQe0Z3RiS4yhSLaQOFEtL17UbC7fF0CSTYZSFXQdxbzJdvRKlrPUKitaWTVvTnn/xvyS6SaT6lYsjo2EKcyiGJlXmL3EU5iAZEJ4tH+UAzN9kpkHmdBF8OD88kPr4jsc2XiNtdZg8UMXqjIWVNOYq4PNBHAgXUYAxROYWpOlzF6DIaGCiIDJuEXM0Ve8WzP4c3/mwoyftOI1yxhLCa8HTn/3jP07PPvJInCluvwyPGnSfdRxqUB468kl65ac/SatWr0lP0VNluim74iIPhYxo7P6Jxz4ryHSaheLPeAr+3DGlUhHHVTK+KcEqcDYf+mDXnvSVr3wzHA3i3NDgAEqKhihwRUiaRYM1yAO1lEwAv1PMGKCGWkDccwJKFEhGM8jD6S141wEMup/v3MsXUqpBH64hklY3d1aqmTM1TcOwvEH21034pcelhVrCnojn2YLkb77myp/jM//hM/7VURQ9Gtg7G20e6aTRZiNla3x4Zew3/80f/mfppS8+GwaZZTGqLSqobnJGY6wBmKDihePLzBNTX7vh69Gj4djxUDzue+BBFEUaZWKw3EJhU4mR9oV3pnAyd3BcOpZepVXpXzqVnpyO/LEQRRHAplMoK2++uZFO0H1pQXV11gwSXq/ykDciDscdv+GHhnIjiqezVEXrBrir8jyesXRMyS+ZUaQHexTcPpSJXbt2hcxY3LAoLapviKMWQ21j7Y4trwnHMuNogDrHIgxPGBqNRDNnlXxSmWXasXASp6yXfpfU1JaTJ9OD8JhFyI/pOL8sJYnoXuznGD66U/IaYKIyJb5EZMf3+d/99uERhDrhxc2Tp1rS977/PbKNSsa6hleEshW8UMOCeajcBg+Er/msoeulDAnez3xVTsVxx9TZ71rMzNhP1P4Vzvje8NjjoShqgGZ9K4wMY/jz2wINll/ZT38bEUJhwz3k9XEBG/da4OkEP4eiuGP3Lo6/Ppy+/s1vUtq3iq+BcyqK/M7/Yv38Lv4DJoSoSX9nDYwd8oKxPdPcU3BuQhMajuoO1h4fwxj19AbT9l/4Is0gq6txxOJwYr907CiHsmw4gMo95BFRUgnMJup0BM46GOUJOX/QALBXy8cfKz8Opwu9fenu1fdENslk5Md11uVcJwgT9BijX8JAXOUOAVf/9nWuC3ifMI7AF3mOx0Pupu64o70tlWFcr6Vm3R4NGudGYMUR524ZaeYwdT8ZkT3UmAw5pDGhHoUuorPaewS+QhMHmffbREmlj0WLFtMMcmWU3Bj5HiKjoRgeYX8WYX0LXAy5JHzcy9gVdobxpKVbzFfj0GBHKZk6Nuh9d9NmIrzUZSNXlXuW80ynN5cnjN3CqS6vcv0sNnBBY1cDPfQ/g1TSMV/ySEYz5XQ0FMCPPKnH06hexknSfuokacZPpqUN9TSYm8pvCYoMEEDSyCJrYAKOhgnFUxjXpqo4lpjjJNJ+LHswO08OYG+dCe7z5CnRYf6Vd7akH298j94hHamp47QzTA9WpVSL/rGQkrVZOMSLmec47sGP+ZSFsAT1lxvAJ8vqU9fIPgvnPJ+F3gaOGhi5pe5DtuHwmKOhneMtPz5xPjXjYRAm/TyWVc5L//RP/gnyZU2aAi3Kez1+0GqPiewNRMTWYjiyvzbBdH97cDRYRmUE1iasTz35VPIUF3mWvGs8jEO6kXbNSNNZJ84HLYP3oe+xn1jWwJ/1CHvpmL91+LS0tNLU/QTBnxNkBdSkp9BVLTUTX+Qd4qFGrzpd4L9/izNePPufV56FEPqv+8w9bdK4H52mCT1Sp+1K+MBajMapBFaiSTDzNWNLfPfIWOlUmtQ4lK+HEQrtSFVoNe4KtyRjTfmBLtF24gSO6lfTFWyNhiVLcFSv5ASBuuBF6gzZNrJPzNnfeZKN7yurpDl1Eu8R8op7ivdmUxaUEkhgHz7AufPGG6/HUa4rlq/AWb00TkjTMe9RocqRjFaZu3CQD/OZNO/9xusA415hVBMoM2NC3a+coJh9Fl4lG3z7lk3paaLddyzjCMoIdHIyHXDRPvA+0pQ2kVCOoBgyK9dxvIc8x/GFn+UFQWOs11NzfvSTH4dMiz426NhmVunMUg4BYMZkjmMPebL6lHxK+MjrhYv066XsU8cXD3RMHsag/jn0ugKYP75hQ5pNSbvfcd4Z7DMe71jiUMxT2mLO/B+2oPagDjUDA+oROibNdjPwo2PtIPL7K1//RrrPHg3A4Rqf5TzWtTvXgAXzCyc+99Yhoizyb/W9WCMw1/npes5hF+jE33tgH9lHKT2Ho2EZTp44ppbfx2k00KRBjdA9xE3+EzdjjxkLIIK02jroiMo0/i7G0eDRlkfBdZ0wXee7w9HQ29uTnnvxpfTsc8+m2VULWEcGzxjLTXXsz/D1uzsaXLyUnV/AQ2T0LUE/ggHxCYrENlKXerrOpnkY1A/dc29aWt8QgmcEQRyePpBfJqTQMiXMCK4qp4pVIAsIo8CTYK1TK0SY2Php6OoAUfUd1MG+FY4Gu/s31NdzzBchUwnRjXcyjH0LopF49MKJiHorw2HBx0Yiw4gFkSUkyyrKGeMyDPzHL/+MGuSD6QmYd3095weTOmgEXUJXCOhplplIPCpJKmwqnCpsMtQgQuefIx+vVb6cywkU0NdggjYIe/SRDTCoihhbpJUQNXx1gEgooRypIDGOxGBkzVMAaHCfCX4QOScqiUjDSkfDT3/8N1HftZ7Ii2m7ErUREdMcfS0MhFMwb8Z1/d5PZhMKM99xPL8roesZlYn0onDZo6HldFt6nojRnSvv+NRBEn0NmDuA/uU+AGc9jgwNM1TQK5DBE4jRvRBWEmU/qfymY5v6epxo5jT2YQOwsQ+BTCcYPnOgxB+nE/AAVs7LMd1DCVxmqlLoszAxSh2Mnde9KIdNJ5sQbI3RXMrjlNY98CANfMAZpiujtqeDsPfvzNmjcocCChxcgDBSEGvEKHgUyCrpKmAtzHsvTcjOksFTikGpwrWc6EIJ3xlF8Bgt1tmgk2oi+BwsivuwjVwINISNDNwjXm0OFoIIBcwma1dRHA9QOrFt23vhaFgEri9ZvChV42iYXEy6LtC4QfR7pB+jAX2oAC+FPMu0zutkJIzinR3BuTAC8EaZAO9GZ+3B8704GralXf/y36a7mMXi5Q1pNuuagRCczLM9QM5c6Uv9I/1pSvFUGhMSRQLvLZfoB05dRIxbSWM4e03lx4IL0uo4V3zCuElEQTE4wdl+UlWHiChJD6WcODFjDrjIfAauomXRb6AEaVmAkLtJOvTZq8NpW3Nber+VG8hjefL6N//1f5Gee/zROKVlBPrTQDW1Vvy1LOUwzqOXf/KTdC8RkacefzyiIuK6n0uvgY/ZUDGsuCF/AeFjXxU6gUO8p3FhXZ3RX73ePRi6+/Cg792zLz3xxDNp7eo1kcrqqRP4AsANo9koKeCh6bE3x0mDCGruPYnNtd7WCFfcjjH7UeBMLdy6c0f6CIH82tY9MbMK9JEqTuaom1fMY2aaUYLyR1RuHPDUMApHQzbdsZVwjzH4fLo+b5IDzuUBwDjeEkXVUyeOnu1PO5svOWwotw70j2gG+QJ1z/LmqRg46uP9RIFGh4gUM5Y0qvMUjpSu4DQaB36aUm5E6gBwaUIRlWfde+/9IfSnoOgZHRL+8lydjkHnwFxeb9ql8Ba+lli5BxmNAiN4QTgfee/Y8eM4kjdhZHA8GfxxDUqoXcNLMa5dt8qyBlaUdMA/Is0e/iDORPkduGfEtQjFUAXRjJxBcFFlTiX6IBlZ1vJPx1Csq61NddU1aR5n0Kuk5yUj8cyA4pAySryxNEIHY5RmsM488pKfcy6PPwsf27x1a5ygc+99NCGjy/88Il/5MbzyLHmX+Bl7OMYv3T3vHwq8z8xVPqlMzPoX6ZwtTJZp/fVffy+OFnwBZcjz4QPXkRkaAPJbZZU4rryRbyn7QtZBt8LYxpQqoUMo2B5naImZcxc2B3Q04Gj3aM5HH14PXpBVxdjyMPfVcZUL8tdwMDO27+VGtPIjf4hjmcJ+I8r6utjPD/bQDLLxBDXlX0urOJ5M3m4E1ay/LAIl3WaOCx2zN+CfABoDAL4OPNxL4oXxeiKO2FKME50OHsd3FNo6hEO5DP7zDMeTmRF3jcCE2ZdGo+xFYADCaKM83/m7txq8Rp7k5zoNfc8H5BAwV8G1GWTTicZ0ERloQ8UH2FvTpR1Hfm5Qw8wOFWJlufqEeyn85e2/KvvMMFH55mshg3U07NmL/Og6Q5nC1HT3KnodLF8Wa9ZxofHj/JHOyCYwgvm7t9Ke9xS3SoCD40VPDHrsDGE4Ch9h9gn0pCNc/lZbV5dWojPpDNBIH7pig1j2FNqxtFVDSUeVmYnChd2ITuvD3M8MCRvpDjK+OtsU0qKvcf+t71M6gSPjTso9li9dlirRbWaSYaq8cGzxx4d6jXvrJb4pT3UCCncAmOl/0L+R0+z4O449psThdaK7Z3HCPProIyj/HO1Mad5E5MjgpQvRwNQhx5HJN6l0GmNC4+z5KHMcj2PBErdSmukW0udmPMzUBm02DGzq6Ey/2Lw9/RRnw/mz7VGG4LzurkypGjlVBz7MIysPSZbGA6fxcROAxPyCb/GkLNToV76pAeeOhgkY7plsB9eg5VGiw8MTaAZJRkNbz4X04aHedBx2hFmccCOlOxbOT//o7/9heuCeVXG6Uil7rVNvFGatrjaBOZvxO4JMFk7iey+lEx1nOtMR5IjR3vXQ6lL0AnmIMC8hy0NdQ15uRDYMVHAneI80yzjqMFGKobxDz9CRYSCuH+fWicamdByct3dWdU0Np3R9PjIaIoCkUeu+Mo54KL6Lo9J9GMMBDz8GKt4r5wnwNA3fboy6wzi/DNAoD5YQLLzr7rtCBqlrFvIdHV82tpY/xIO557qg8A+HKWsIHRv+w1ZEVpHy2xNiNHav0O9gCfi48o6VBCNrs8AP9Bpfhq+zgtBV5QOWy7mO0I+Bh7qwMJHXq6PoYPch3tuj4e133gpatXTCviRxFDtwHoaGnHuROMykbFTqqRLBJ9gP6V7HYBjfzFun6SD3sP9UGfTVz16++fY76QBZ248RLJQPGJQ0M9m9i6AYNAcBBb90H3TAyAfkB/IbjWrXIezly/JW9XmfW9s7CHT+KLIpnqfBZw1p+5HZyTjqwI5rTzyfM/khZAEZwMp5v3NXtrsPuT6lPFD226PhzY0b0zL21NI+eaR8R547DHycq/NSTsnvtTvEmXBggN/yXempBD3DLBzxwSOzPT5S2Ow/QGYZGb4vUip0L6VGzvEKWV9eykzXrd3oPXTs60iW9wqTzCGSrSfgwf199h46AJSt+w4ewNFwKz3tiR9kD7uXBSxeXjmCA1N5Io80ozAcVcBNvBcftQV0PkqryqmbzMc+PleYu1nPx082pS6cbOcIRlzAznwWG8qMhpmziDKFtHEVgZW/8ux7n73r9jgaPl03jBSqzR+gM8LievoEJrL5nbfTSRRRjasVDYtSDYaRNb8eY2LtupEREUDmlv9eZI7XIF7GuDNHg0fn6dFXaTU18ACK4gf796QqGgPV1tZF522PCIsMBe5hiiCY9kvBBvHlRGJ0x7H9bqRMK0D4rgqYtYiX+vvTpm3b0qnmk9EMsqqqMtIQI5rm2CCCjDAiI4HMCHyQWbYlIUt4gcrii4TI/XwOQ5W1tnd0ph04SjyyZg01Rh59JgH4dZXnSKF1TlwqKipYpjM7VxmfQkY4idTh2WV8n1V0jNQeb2xMmzdtooHaGo6f5GxiEF1CUMHVKRJEwXclbufkfX2o8IdQAHZ+J/PsZmNKiD5MK9VjKbF8HkXU1CIvCVqCdz9V5ASAY2bOixBJoegKcz+Qict8AE7Ayj31GK9z3Rwx09KaSqeWY6zfE44AFWTHlckqeBSeKqDuWewxTElo6ejRgHEf3QOdKCoz3u8yTeU6OzvjYSOi2vr6aNY4DZxxGOcuE4x7uCDfBD4yUxmRfxt5lRmKn2HMMH8VAOunNS6OwmB78FKaRrYED3dtTXUotqbRGdWJmj3HZPPCoBDOPDQ2nKsOJG4WTgaVAA31SAOHYdnw8KOD+0jzmhi4XklkYQ6e4rJiFD+M2+tDRHQHMOxGwE80N+uaneMIYLoGosJqw9lwQ22S12WsZ/TCpXTkwMfp8k9fTWsxhIyml1E2UYK1WcSawFj6MqCkwPwVChFRA+4sgbKJcakbRe5oX0dqpixiPIFe9+AG5c2m6U3jqESF0VXmbu8VYVc2p5zTRHR6kb6IY2n8jWupjKiUzpRRBG87zpJtza2cOsFA2KB5RsPf++oL6UEEijW/9kLIGilh5bMPGpgqK1u2bKG7//J0HzivcNLgij10H7lcjfgovmX47zrc08wAcF/9gpkS0rkRDftOWHJ1HOPi6CfHoaf7UXKXBO+CeNhb9hLmpiATR2/haMC6ze7E2DaC9Az3rAkX62StA+C56a4ebdnU2pJ2HzrprKjR5RhLmpDVziklo2F6ml6MExYnA1o8YzBWTJ01MH+vjGp4Znnysuw9F+Df2SUXuqFjCP7RMwRP5kSPbScGYp8ysZzSi48/kh4ieqrTysi1PO0qQlucjYgMOKRhrcklLugA00jV8GoELu042IT1MhStFSh0pShiGqN5zwTx2/3KhD9CGDip1GXKj1F3yUzYszZoNgwOXlt7rCPgEsr0dBSVxTgZbAxrmqPcRKPXvRcZnbM8J2DBWLF+x4OGwmkHHqqgK/hVSo00NJ48Gc6MKRhnniNexWMGUfDgXUQtIoI+Nq4DhiwCFirhztMUULMcxBt5r5EXlRzvbddwnb2nMXzvMLq7kOguDg3nbglYKG/Qu/zX3XQ94Vxw22Ly2b4613DEsrBwNHgf7n+GlOa3UUR1upiVNZNoV8yRuajMyrNUqsT4rPdOxofFUXm4CpFGsLdyPyI7CxzREWR6duPJZs6gfz/6wKxG+S/HaBcuzlv5lNOQPNn35OPySMsE3Mvg7cydL8aClH86Ncxo6CWz7JNjx+HDHWkDWUo6TZVrGi/iieOE00Sc53fBK93jIE/Ww5Aq+teBiY4kDQCzvmxUq+xow2A/daqZXiElcQpKBeUwo+gb8l9lqDxMnGGywCyTf96fSYfRJSy8h/xKeMkjlClm3LVzLFxnR0c0tDTTbgUGhidyCIPYQ/BDGauDUryXDyqTlanB38fGC/7DOpX5fDFg455qMPYhPzwWsoFIWg33UBE32upzpGA7ddYipnlPnXnS3yQyIpU7BPPDUeI+eiSx8JEOTJc+dPhQrLOysjLKQXVQabSoPNu4UL1GR4MnzhgIcv5hIDD/KzigpBuVZlPrLVUxCltMho+ODbMFD0KvNmz1uLyZ02ZQGjoZRwO4wUyFd27oihXqNKKHY0ZDT2AcMo/3lHvuhwbpRLIaeqmz375zV+pjf9euWZ2q51cB98kEYSiRQI5oxIl7LBYnCNk33M/G0xoG/IMstMRK3JLHZLL7FrDv7O5Juw4eSduQgRfOnwX2NE3gWjmfZpAzp6V6jL5KHA2TgfUE8H48vDx4rQtg33TkiyvxLjDKPhNvWZpL8HtcOiNwU2THWyKr23r6ON6yNzUyvdzRUDtrenqRxnArKBObiU7i6VLS2rD8H1lklpYGqU4N4eTzZdLXu8GX5pYWsl6uhr5UjT6c8UNEKA5mebi80iis/DH4GzPNZZ86gvzcwEm+F/IYM3LNEGptbU19Pb2UCFREKc+smTNiXtKo/EVa0nCUVi3pEe9D71LP4xL3c/4u3oczkvkrPyxv0FEiT6whmLd4Mb0IcHiK0+r7GuqOL4+SVuWzYYzytzAPPsT8lS1hM/CdYviaDuw2ZOzO7Tsi7d1Ti8TLqsoK6Ag9Gnz15zFmNsl47b18T8R0rspa9XrxewJyT1kyEYeVzo5jJ+hdsXdPON1ra2rQ9WqjZFPZp1NnEvtlcFR4B95DZ+p/yg5h4B7CqONvrR/T7NXrS8ooPYR/7KGfWBNO0zVE7HUElBMEsHeS+rr2gXqq85XXR6kOc1UHz0oCLOkEZ/hMnHQt/i3f96Hu/g72wfUbo3HEe5x6B775XXVgxw1HA3OXtwmH4O/8LU90vLBXgscLrgzR3Rvli8FCy5Rr6+rSasq/ooFmgDsbL4J4jKXME7d9doTI7mB84csKozzPTAv331Idxzbj7viJpnDiP7xhQ1oOvYhvOndDXgDbPMNb3AtZIu9hW+M+3EsYerkm+aq6rXtsUKmdQGHjySaapo8jK/m+4MHKDdXmCG5AFyPwSB294qf83cGV5MIlZAe0aaN0M5HlZZPgy5421oHDzkac3qcPB1h3V3v6u//5H6cvUfK0oKqaFY/RFGNlEM3+jcl+Bv8B9wX7734JXhmWjMT/vCZRJ847GF1H0rtvvpU+pFHNkX10gcYrP4/0EAWanuGbbKzHTl0jBfkWHLAchaAMAauir5AfGhrEuwbyBNABOIQKJobSC4mlHqJu3Rd7iGZMDiK0EZNRfxv7KXyKSycjzGwSgkcY77VHrKh8ycRMLRRpZTiCQgTxbN9Q7JifTFYGaJTFTvZ6ElVAvExZktDBboxFHB+MqYKkIBAeemdFZAEs4UgkMhcdEBKkn13GK9d6ihT7KWVRNmHdpb0lgqBhTsEU+E0maIZY39TwnDrWFVIFVXBDwCF4HM95y3BEeNdkw62zZ/pSRdVsvInTQ+CpFMp4XKvMI2MgGO0IfMdXqbCmWQ+wMBIunrIh7Kz3yuHmd7q7iCKw3Q1La9NUInweiXaNvZJpOF4QcCiNmYEh2ajEqoQJk/D8MW9TVE27NHKhUiGcFHbtKOgKknqcU0bmNEpdZ0kp3ZYRaDaY0ptYNpka2pgjTaDYzx48kgMDl2FQNLUCJv5G/JQPykhkwldRGIdosjcVJ89MhKZGoPgQQoCxFVJRxiIDkZHzLGyFV3yPeSko3ANx1FpYGYnp2GfOdlC7T4MvjMaKqoU0wZkWGRJDKNhF4KLNmMQbo2sqjZZVyORkJyq7zlEmO4IAGDJihJI0iWiiRyBdvHSZRjiesV4CPmKwDF9gHM6NJqOhhLMjx1NnMeE6AoX3iibQLRtFT8/+APDs54SEa0TgR+jNcJOa03E8Y0Gnkgs9qaBnOK3AWbGW6FY1RmLBdUsaUJSBHXYx+J0JAoWgDF1l5ZZeLvC0D2Xz2IXTqZHeDNdBb8nCExiLisalqTNmhfJylTVcC0cD0bDZU9PM2dTgo/kNM6eJODXKcDqYXnYV2LcTWdvZihPuDEoaVQZMOZwNiypKadQ3L4SCXvtQKtlXlQbx7QpKlkfOlaIwzSETRuGhEeclbMXhMLxEBH/H3wpK8e8KjjOVrWgoFPQKX2Kd8jTxUfy5AOzPn+1Ns2ZXYNRND4UqUmMp/7gxSk0xR6iZzjmplPPPy+gBA/5JZwP0M7nSez4MFSNHRtKAfPSzuHD5Ak0DOWLUrGjeq+Hw9vlkNFTPmho9Gqah4N5C6I9D0cxKJ1gLY+aOBhmMawuHA/eOy/VxKfTiQ17njobeQU4A6ehObzdRrsL7dr+Qj9bOmMxpHnOiX4ylEyp4ADgEq7zaWtn+yxdxFjEP4OtRf5ZPWJ+pUXQZJRTSSLPnzQ6HaWRegcc5L5BnjQDnIhRIo67SpFEPYeylkyZSveGbztljCXVsyCPPtncC0yLK1mYA02wPpRnpUZoStjAQ+MJUsh4q0xSUMcd1fEvIjEQNUpOtw0hnltlwptnLa85SZ3/oxOmE74vjhSvZ15kRMR6Gjj1OUONIZ6CKovhShvIv3V8CFpdxfogzobgF7894r5/bu0AD7BTKVid8ckmdp03Aj9wwL57krZH6yp/yZLMJypBfKkLOXX5qDyMVeGEhrx+VGJBBOlHNQujo7BB4caSass+6ZPmsfEocF09UsoS3DfVsYiZsPKdcZ7MoI39wvt7zYt95eLPRzGIU3Wtx7ncxzi6zGUphaGEYQlMxb8Z23l6ueQp8zn4AGjsX+nrcxnDAGiEcxdg1+8gIvs6EAXi5GQHDozfj2LlpOHqco7zF+fpjadE9voohpYNg7sy54VQZgGf1Q69G/vDyUaaDdxP+cQUdop8MKZVg6/uN7hYx5zlkqEyGN9vjwXHsFTDK4yY4U1xanqbhwHL9Ckiz9Zz7EFk7xeCRRgVAzOgIYIWyy3oswVRGumdGGT3WUBqR3icRQQ5nDXvnejX8QyFnHH9vNqFy1H1QZ3DPwlHN50aQOztPkwJ8LZVTFjB1+oxUDq5m8hrYwFyFvaebjKADzJqL84oAhXJrELg7B2lJR4OnbFl6Z7lNAXSjUdOLvtTY2BpHQM6dVUBvkuwUlAhsYByVl0wO+TTK3t8AvzxBQ/mv/FMfuwQvuwjPsl+FWYNZ5A5lmnsOArMBylPsF2SfilK+o3JeKL/CaWdwSSeG2VKWsJQgt+fiKBe3dTz1XTgPDwQhmadwtzRD+pWPyUtH0Bs0eq+BDzrtiqHl0WtX4FXUV7MPlhbI7m3Ee2s8uENmg3SiM+YmtH8LBynAg1cLI+jKe3HvqyM3UveVwdQFHx5k/nwlrhXzcfzOmJYWlZemShz75Xy/ALwyS03dNi7uLQwMbigO1WH5N2g7hCTv5ReVjRwnjCyhUfMIjmgdDbsPnE8nyGhAzCWdvlORn/V1GKumyIMXoZfABwaZ2y3gLy7qXDBCWoic1smmw00HUMeZ09DrzXTXnXWUq9CAEzzzKPGb7OsEADORe5bIA9xT+Ku6qMZ99G3NEwAAQABJREFUL1kFFy90kwkDbwMfr0CbN9TFp86At9Ej6coAvI59xwFTjM5RwZ5FPbtOBGgi0zmzLKpCcH8K48h3gsfAe5UB0nbGbzIHpDxHupDedDZ2oqcK9rq6Spo9VwbvkL9GqRM8wAxTA5NTZs1N09HZQveCDiOjDDpT55YPK0MGmb+8WpzQcL9Ime8wJzWpD0xDHylHV1U/9nvaEo6lcaoeMZm5G6DQWDcrIOgJHJTPq/uH45F9EO7SlZm9La1d2Czj4QOz0fVwJANbnVvSkMqQzmrliOMrt9RVgp6BiXLpGhl2ge/s6VX+1hmuTutenzvfG6eszKFRYwn0ph0jHoQxDVzCQGfuvl+EU3Ua9/c9DW733zF0RsgTvMJGga6UPWateSyqQawF2GRFZLS5T2HLSauMHyW5/E554pzMspK/9hGkM4NTnu5v1N9DloPvOpR1BvWDNx2nz6WKhfMoR5wdMPfEGH9TSsmSPMXLuYhHWQNLcTLjkcyEwRBvrE3bQ50gyht4bQZrT18vuja9NxaQ+Yns0Znub9Xb88aQBjpiHYEPGR+OMjHWbi8gnZPyCPV9ZZtr6WWOZ1q6om9K8RT6neGILdXRIS8Cb9QHCqElnTDaHfJIM87FFXFG3Aonm3CDjqLERz4PT1Rm9cFDz/V00wiSvQ8IpPTP/8U/pYnrS+GUUX4bQs1Yh3/9ChMZ+/5n6ek2OBpkqtkVKd8gtAwmjDI8tjLcxuNHoyGhR/798Gev5l//tc9L+HRCOYpD/63U/mu/+Zt/SMyH8+jHEyG7mbp/85//rb+YzTeMsXb+rd/87b5QjyACj9Pp3+7nv/ZXNSgnJTMKUiPHCo7J2l/7/d/kQ3r/0UwpSw8k8H3bryUzMODLpqa+0923HWcAeZonOgOU242PAqKShxENtjW18LidVx2DzZw4jeMU+9MnmWr1Hx3+Md59gEyGlWQgLEDgYI6kSbdUqhRqpi9nHmKFkEIBUcITSg/0fhlh2kV/hi76NJi5MIgyf/O6ChEGD8Jq6BZGKou7hlwZB3F4EsXUGTqHbKiHYc54RQi24WEEGErqaYyII90D6cNeBKPWMHyWNggoDf/Rqf/Wb87ll/TUjHPMf+tBfs0Pa0B45E9qJrvjb7swc8Lor8fRsIAqnvk4MiqmldDtHKUbBbsAAarCrMjx31Bsea0B7Hu8E/vCS/7wnV/5Hn9fH09GA4p4L/0vjrafTVsbGZPvqH6U0BXyYt4V0h9yySeZSpwSQruN23rhR0keFefppVmbz9s6fFo1Z4rQSD3dl287HxYu86ZNTMcuSq23/6pgSPSWdA7HU55tcjvvsgB8h6RTZ+bfuZ1DpyVYS8Uo6h93Xgr439bBGQy7jwg5Dd4uXos089s5/mLgUkiH8c6+wZTFs2/n6ClB0tFu5uztHTZGq+ffSZMn4pQbve34rlyaDzvRSG7l9e1Gm2WMOWXBvNTV3pXaeH27r4WU+VlL35F7D36DG6yoQjbjxGnAqV/JEcblGA0FjGWGmoatclAuO8aAs+d4J3t/7NNwSRijvIGBcl2jmx4Soxgqp3suUjrBiQ6XM9yQF2acO9Mhp+vjAuDtt1sZ4z4NPMrnoRecv5iO3+5NZWxxBvU9Glzy52292JY0eU4ZRx4PpLbcUruNd2jAb4mwxfn0y9LC2zU8bCb4GOpMkhfcZpUmKT+mzsQR3nsjxufP23Y598Vzy8Ppder/A8Et2Kfz6LhtM/73B6pGycIHkVowQDK3y7//+W/71zx+OIug4ijVJu4p5PwbX//DP/sTmiJ/LTLMRD7zv+QG+X+/8YD/P/rBbXQ0ZGlTekeNZOlZRMWGB99IzceOpe3UqXpkkylMBRgUVXijw0sDw47InMoyD71u3USjG890hQK6gCEWLl5Mehxp7fwXac0CkO9aGiBTLpqUpTdnNVvho2Z/8Ajx0O/snDSOjMgaKW7vbE9N5y4k8ILUu7nRH8FzaY2yR+okzDHSfPH6mQ5jdMlLb5331OMVsmXMiy2PdnwVfdMqPaECXT4tmDcL7+KM8Owb2Teyytd4ZN917uGQ4R6uzVIC1xdj8aFRS1N/XItH+FmbZDp+K17lypIJaV7lAlKRiJrijdN7mKchKdy8hKu/1/PphCN6xhwcP/daGo3ye3r1hvDudp9pT6cHb6SlFbPpczE7vMJ6e52fk7cMhf+BaTZPy17sBux4AR+feYSHkvnrMTfq3N9/KfVQk3u6rz+iqEuWUQc+tqfCxEt4BFH5Yux1BvkMZgE3p8Fn8RPXhodYj/U5xm7qOBtK0PzyolRT2xCexlFg6l7aHdZf6aX2yuHu/uoFjfRKPI16md0d8cbXfu6etrY0p84rmURbOr8imhFOwgtsdEm8zS8jGoHPAolH7GvMOYN/LHLs61kk8FakVx870RzeU23qu5fQHwGPPeX9EZUzomFEWS+yXtLo9g8uG2k3KyRqQpmD+zSOiB1LDkPCkh4zbrpIxT3c2RHOrwXlGK/V86P+7zoG/nWio9fxupcRCZtGtL4BI38JnuGFREqmECEsJffSNFFUpHyDYqnigRklOhqusd+D7PEgS+5nfvZsuMpc/WyQKOaFoX6MpuupGyZ8CbZA0gXOrPFx1I+ROqM2ngdTQJPCQWB87uLl1E437nYkwVGEmdEvqkACdDXz5xA1mEVkldRYZqKzIze0hXfge+xhhjN6ksX3wF++n2cCGLkdwJnRc74rdVweTlXgzByi2ZYWmZkUeCCtjOGyKBlrBtf9TJzO+UqMzl74HdNy/Z4nzXj80tnzF2Jfl9TW0MSJqCN7cgu4RXSaeV0i46i7uytdudQLbyJdkTHq0ewXzhmfqtiHOVMoPcHRMIk9KJRX8hvp0FRdG5D5p3gdWMsfzuHTiz/8ROU2aoNxNNzA0dDHUaHHiAruagTf+bLGrFRRXTmXI7oWMibOXT7voB7aayHOp2qyuYrx6EeUHASLfgh8Jm0Jj09TFHkv5y8ZXjoCl99DLkgbNitrOnoiXWDu3n9l7YLo0i09iOPyAHmuaaDBw+UpY3QcsB+LENjg1aix0RO/J00b6bEB44HmNu8axt3iFUuJdtDolXGs+fTKuEGGUzlOACyuDL7xOgNuwMO//d41olSdZztT0/k+pVtqqJqX5ldRTkdUw+wCS0HkiUGvyBP3oxAeKA820iL9xqaNwc07fgov5m5JwelTzQkdMS2YNjnNJLvPMiFLeHK+GsfkxdqdFGsJWBlBYq9dI3MQJ+UHIb9wEJrldbl/gG7aHKWH7JsBo6kkgmVk02iOkbboH8KQIRuAt3zRFF333UjyVdJE3Wf5fQZLZb0RL8pHiCIOkD3Q3dWRWjB2F8+dSaR87lgUfww/WKu/k3Z0WkYjSX4vTpg5MYSMK8HBKfzMBJG+/I6w95jQc/QsaLs4EHJ7eT30BH2w6MyIY6/cLjmu+kekbgOP6GPEOM7T+4i/4rfZYwE3vmtGzln6R53sPBvRparSSamqujayF3XmiVuO636HLsDv7S/i74WN9x2Anwi3KIFgT5SFymQjqB4B2dbWnE6T4ea1pHJ2dHc3Mide5zAxi0O8VJ8xXd7PzKQUP9xbbhNyKaicOXmso+UfNqc88smxUG5hrTQcraOxKVlk/CbwjV+Kh44BEOI97+k+2mVfmnN/vfxNPGLdyHlwyfTqw6c74/NqjtsVb4wIB54wN/fI36ijXGfOZZSv+J5jmnXmvANIrsNxmbPzEb882aS9rSWdptRvPls9l9T2GTNmBk5e497OHzEE3xN34IHMebK9JhhHevMe0r/rGltlvHZu6nOXKf1qhZ5ssrgQfJxJVudkZE7oLPAO6cTLjLZLZKdcJKPi8mWc4sib/5e99w77qjga/ofeQcGukY4oNuygKKIGe8WGHXuJaGJiS6LRaEzyRBN9Eo2xxtjFhoKgiKISW0QEUUCKApIoNlAEpfw+n9nvuW9M8r7X815P/vG6fgfOfb7nnD27szOzM7Ozs7sem63XINYHl91WYxS/NWWjjCpHg4xZdL8lm0+BIBk278ovs1quw51Uy+HDFbS1lUTZLG3ATkwsBvnam3NixkekIZ3yv3kLVqdfnWg8IgP+vmBBzgPvyVSxtYm6bCHN4CsP861okJGs5O2UreRz8CYt5HVP25xpjOrxcKegN96aHvq/1yC7jTfbJKPAnLoinqu65Mi0H9hmoZv87mF7lT45qk6+8pHlitHPifSZN486fVjc013WbBcbduyEjCwL4ApLYqagPvWl7arYqb4qetd0/lPXGdlie7ItGsk0nXUXdFJ7bNFxA+yxdbNNuz4SKRMPjuIrQ/xG+JQB4kCeMp08I9+m/IUXfC9juujzxKnv5KBPB+67bdQ9OuD0F+vmV/FM4WXgJk/LsDpJD3iv2PrwA8/N1Kt8bGSXa9O8MY/oEd50WnuNXHvMCD/lnzhNXEhj8KA8SNlFHpV9Ldyl7FKmMEkzYVhM1MbsWe+wxtVyIhRbRweiP9oQiWYUp9/n9AEANV/rXjeVk/sS9Vb4JfmGZ0bQaa+Is2VEL2ivTGdrbGXhhug+9aqwK+fkEWXJUtq8uqS5ejBxiu3K9+ol66bcqmhglEju9IH+WIiM/+Dv82LO519F17Xaxzq0V6OYlXHWTXxUuE9C8Uie8F+2ZN9Tt0xV+536A1idiu26Lu8tIoqK+96b9EiaamN/LU2hGdkhF2hD1FdcyX9lwFxsWT2mHRNJYUSCstRIaaN9ss+KzTFzxntp663drCHTsXsQGdo24dZWUvd7iCf5pZpqZX/hs0WfMW12Slx62UUx+JjB0bVT12zbcG3WDS7Na2bwLf2DnJQ0/5uj+lwiY0RAoGwESTaUGopy2ttvx4svvBDT356aIes9e2wUXTp1KkxI8U4XkMiG+XxEI3+NxSPvveWW9GoN2qVf7L7HHizw2DWJLrE9ZAQ7CypCOwaG99jIZbJUZDCCv00vUxt6YyGGOT3/15filmEPxaZrNo/d9zs0+jAveR1CYzI/FSPfpLAiD0Nu0oimWOuWZSjAgUFmM9TfBcacv7WQcL4Zs2bH6KdZ/OulV2LXffbMhZY6d+6cq99nXjQYHQoyp3O4VAxOVVCg6+QoRkfpxAu/QsXSXPjERXPemjqNRftGR2fmmW3du3ds1J0V0hGyKk4Vq53PiqTiVFp4mo/ZmadCMJUJ94Y36gSZM3dOTHz9dRbnejFepxNw3DHsIsHijm751hqjwm8Me3OaicIkhTfGWhrVDtnW8CwOxYVlasAaZmW9nHP6zNin4/6xz8W2GP6HHXxQ9KDzpUNKgSdsHjZpBYdHwu/Vd/meP7V00tUQv5bMnVxASN+zRMv85sab/SwO3WtgrpBu5yjncYPbDIHDIaHhY3kaoq7xYd2tkx1DhYFhZRlGhUJVIEiPGbNmxaMsaPPw089k/hecdXrsBM+otJ26YRhl4ti3CXSBXyFSgV6uSVGelUpYvh+4p+5tt9wcE2fPi15rto0TTjkD3G+esIt35926+rJX25g0c9V6d4L4io68oYMa5o3oRBqS1ozwOVfeNjzsww8XxHhW5r3m5psS9mP33Df23HtPwrM6E7qJoWeoPyGZi+bOi3cmTIyvHng0ttxgfcL2WRmf6QwtGE7BLEL4AjOnvOh0DnnMBVmFfyn1ZzdK5rKxOBtPvrS9ca+SWQL8nxKuOu/LD2IGIQ3vYmuvpNpOh2iO+7oVRmNLRndaYXS1oIl+zWKSn4LTvzN1YhZW0Js4J8Rm5X0ecsyRbJ24TaxNp51dngmF5i3li2nNvFQ8PEvcA6N8Isxi3Hfym21Nx5SLDMrzk2ir/ffem5XdN8tFnHSA2fGSpz1tryoif6t4qraqISf/uH4JWVI6HRh4y1DfmfCMW+C9+PTIWNS4XRx46GG5IGhOY4F+rkq/mI7btOlTccCyoOqM6THhrSlASegoRXfERd6RqI91iWho34J2Bi0a0Y5cPT0NAtqcBoD1Ei5/lbvK2OWxEIGL5TifjDr52gUq2Qnjo8VMc5nNQpvToQGfV6O3xw4+kkUuB5oj8/LHxY233JK/h6D89v7uHrnomoaSYbguKkbjqBlFSEvpUOP3xLm6AAgShb4CL85vF3/ulDCMxbmefPHV2Lhd4xh07MnhNng6eeQr+SYNoJQG8j/TiCjXtphU5j0JUg7ZZg07tz1rxNhxcc2eq//rmqzXXtttHYccMohF6Xpmu895s8gnHQJklnADXu3qLw/hLrBbgfIbPYXD4FPk8Njxf43rWICx55ptYq/9Dmb+/w6x/nrrJpzqI3PRweccV2mVsAGzvytHtfjKUHp40nrl1A5gf3fe3HjmuedjAmX022NAro3QrTsr69PZkc/k9S8x5A0jNo/Eu8ZW4t+8ynoCPEh8G+or7sXLx4QhvzV1egx75JHowDSFfjvumOsirMuc6zbypPxE/uJG2JX3Lpgo/B7q0cRZtiM7NbYl+Ir084D7zclvJi9PmDojThlyfGy9xeY4A1ZLeaock1bi0iMNOHAizaSpUynsNKYuVyaTpzreAQB17pw5c+LNN6egu8fHAgzSww45JDbuUdvqjTTqVmmlLFdPp0FH3jqWhdF8vLrdqh1cp6fk1svU+YMFzM9nHvHtf7op5gPbIHh9IAsNqj/UBcJsGLI4V886713Y1CMa8CjDYkgmXnQA64igk0w51nYe83FfAO7HHhmRHd5TkWF92FEgV2BPXi/2j/jJtUb43jZgPXRopIwBDvOzI6KTUpvBOgqHizv++Y474qW3p8XGhPcPGfp95kP3LuHfvLcTrf7wG/Gg7aFzRXxkx4ty5UHn4xvSzYvU2Yag68R4hQVBb77tz7EVDvDt2bp2S9Z6MnQ+4RUecQIurLO0Uq8lbPwWvrRJ8jfyAp3qNAzLdrrhvPfnxzMvjI87Hhke/bp3jh136R9bMpd7nXXWVmgkDnRiGTatTNCplbghP0Pu3T5YGrjzSQP0kVOh/E576X3ydo2qJ58ekyHL/Xcsu76suy4h6OjP5EeklHzjmh6T3ng9Xp/wasyeayeZcCKOLViZd0Omk3VerVms2wrnOI6GRshgIxpsDDoalPtycb3TwTeFz+2+eOZCkV6VxdKWKR1fAe+cBZ/G62/9PWbTJ/cLxHOsDnzrd+mJI361eO2tt+ODmbPjh6efGlv22iRai1twpy6j6Gzv6UQAN+I2bSneSwfxTrOTnDzHsYf80mlpW/vryy/HX26+IV5lusIu224dRx86KLp37UK+hY6uRyQ9tTWUAU4D0OGvLLAM26fSWH2aOpFn3luuC+m99PIr8fAdd6UNf/ygg7I9rc1i25ZdDYilSUGddTDkAAH4kS+smPKi1IEyoK8LL8r/X8Az76A/Ro1+MkY+Pz5Qk3HMSSfGtlttldNTlWEJD/UWfsuzvYOFxI/vckAGePMKzpRrTvtJOUQ9J015K+69+66YPHd+7LJFrzj4oINzIUBlVcIPbP7L9mM+0oNTOWHbT31hGn5LJ9udOHNxxb+za8pL2AV/uPve2IJBhJ332p/Fk7fDWb0BOSreqS9ppZ1tVn1i/0j5lvmJr1p7o0rZbh1gFS7r4Datz9KeRo8ZG7vtvANrSW2H3cFOFThli2xEBlMGn6a8T9wLP/c+176UaYTFv9XOXjmdCxk/hb7ck2PG5OKufdlZapOeGyfsrhFUvwgli13a36L+ygKd8OalAyL7D8AprzjFvFWbVujvFjgz/84OcxNzF4nRL70aJx4+KLZFDqyF09HpV7Z9cVOg4gLACTVXn3pUbyk2ecc01ZoQb789NcYiB+4e/XR0W6tDHH/MMbHFJpswVbw4Yew7CZv4Tp1BfsoZpznrlJaXynoRlIPtoV6AKLTr5bnji4smP/bI/QyQfxL7Ddgl9hmIjY3+yN1dsJOkpdPdlJVpB6HLoQRTnhi4YEDqyZEjYruBu8XgowdjS3TC6ehbeCv/6daRQt/e4z/kaFiF1Elt2Ajk6slx4Y63UYQvYTh9gMLVE+6ih24j5siDIwypvMGjxqSL8z07fnxcc9FF8SZ4PefwQ+PwIw6nw75pCkw7uf5QCGkMpfLHySBT2FA8VJ4KzDqDF85TmMjs7+OdHz5qdFzyu+ti4Kbd44DDjmD14t3xzm2QThANUY2t4mgohlAKEvKoOhy+Jyuld3Z23dfcVZ0/wwCaDEPfM+zBmEwExwFHHslq1DuwMN0msSYdoxRMCiS+zzUXEA4qABc58Z1KWUOxwA204CQVCu8+YU7P3Hnz4lU6RsMefCg2xnDetd9OiRdXjNZAE3/ixfwFL1mTb807T54V8pRRFAWB3k6NgndmzMgt3tyK7ZVXX4mh534/dgZ2FxpUOQmThqc4t9Gl8YMCEu9poPJeQWNkgA1S/Gu4uGWko0ovvvJyPPzQQ/Hb+4bFPv37xZknDonNe/UqxjBpBSyVtrD6W/gF1qtn7VklBIVHB09rFuycjwNm+OMj4uqLfxLTSPsD8j6cRVU26toVjygLxpGnW+JIW/lNQV7NBdObqtJ0JFH8qzgdPRR2nQ4akW/Cv7fe8ee49s67BSdu+c2vY5/vfjdW0wvNHDSIVmAEUDt2Hqs6GXxpVTylTFaLZ2n88uyvr7wav7rql/HU65Nij002ih/86PzYicVnFN4am8It/C7W5aGXtzk8A8YR6MxrB796jBsgEBvjaMh1ARSOTENQsT0x9uk44ycX57eXnHhaHH7k4bFxr54sDEm9iTaAcePjWe/GC888F9N/e330oVPTpdMG0cStLJk6wVIOadxIJgXrl3i2VfpN6bja6XaxG7tXjtbboXU3CEcgNFBQN6yuvTzmMa1i2sJ5MZ3hc8f1vqKH6/oVgJmhoa2YZtW2YUt8uH7DziBfLoppHy2JCTgbdGfgb8jjZxedH3vstltsuNbadL4NLwWRGhL8FucAlLxe8F8Uv7zic2mpsSXMc+fOZYu61+MFOvnPg5/9Dzo0+oFzF11zvrWdumxH1EUaVMaRvKMxaztdxjvbQY7oJbPifOFeR8MUDMRxz42Lp0YMj48btoiTTz6FXSq2IaRxTab3sHgZ898X0WF8nR1ERrNi9eTJk2LsS+Ozjl3423kDHA3so70+oxLtmWPQZDnrIkBrDT7beANkHpZT8lJWGwMhjd3MoRgS/jWSIcN1eaujYSWKszgaWHzynRKu+2F+E3HReefF4COOyLvhwx+L3/7s50wtWxY/u+BHccShh8SGdKZdT0dHg4vGgYCU4eIz8SspgKgyuOp4HbynPKBdOQIwkQ7pn266OW579PHow+4jZ/3ox7ELCxm2Izqrap/iWRnsofIv63EgG32AfE8lD12kg8aMo8MakXYkx6Frfvr9oTGFRS9P2W/vOPHEk2IbDNGUAzhClZN2MpR/RS4CH9n6Ow95KRmKv/Iy6fyncfERIyMPPfFEnPPzK2LXjbvFoMMHxx44wuUb59zbVpVjGisu3Ke80tDMzpHwcko/DU/ljPLde0euXdxq2kycMGxn9vyIh2OfQwezJeaObA22GbtJrJO85jx8t+9S7yl3K7xXVzuMqSNrvK4xJ98blfUBu4O8hhPm5j//hV011kCG7cEiuJvRoe6YTh7rLp+Ln9zijfqoG5ojU8SdcGaUCumUjbYlDWCd+DPQHy+zaNkYjLmXn/9r/OiyS6M/nVLXvtERJK6zY8cVoFNHZ1uiDuJWvGmcihPblDBYF51P4mzqtGkxHmfAyFGjiJhaHqcNGRLbYIi2ZTcA5ajzY6VTmR9bDDrz91uNaReGE+e5tTVtxbnb8o3rIrgf+xOjR8f1F10YLwHdOcceG4PpeG3UrRvtlLn+gLyY3a1cAKwpPGZTVybILxqN4lcjuIxwlUgzaSBvShfX6HgMR/Wfbrgpp3tcdvEFbL27O3OW18k87EgIo3wu/PKMdoGda2W+uBaHzssvjgad4c4npgMIHK/Qcbnmt7+Nh+lg7LL+evGjn12etkEL6qhj0PWIHABIRwP5qO90IgibOJEu4lo7JA1onktTaeIc6KfHPRdXXXJpbNWbLepwyPZn9fiuXbqkYZ47hEAv4ZV+ylrhkoZSWp4RV5WDzc6wW4OLO51f7rDxyBOj4vLfXx9H9N0+Bu69T/TdsW9siE1jGm0KdZ9TH4yCcTRfXjS/7PTBS+KiOBrsRMKT6B2jpmbPfje3Z73/0YdZV6BV7I/xr5OkIwvquYaP3wNhdkDfY8HA5557Np4d+1RMm/1eTGQNG4+t12kSG0KnTqs1jbVbGuGHjQAs6Wigrrb1Inerq19R8/I/5ZVvjG1SR6rbPI0sWwrN5zKw9vqUT+M9FJzdCdg/1u7aOTbpvR3rEKwZL70+Md6fPiMuP/9HsdO220ZbeL2pOIBu4reSJ8pXn3lK1xz0U3aRRhkjLm1bLRj4WQ4+n372mbjpD7+P+3D2Hs42oUNPPTm2wB7Tdta5tRB5YRu0k6hOcxFJHQ3SNnkGuiiL6zruymTEp3DMwU4d/dRTcfPlV8brpPnp0LPiyEGHsHD1esmHua6ZgIk//hkBuGqHN4GG121T8qV2nmtRaMHLby4ge/c998SNDzyYW3EPveKK2A2etFOqBLfdKwu0sbNzTR7WP0/eqYOUi15tu7ZVO+n+Tlv11VfjuuuujWcmTYmjcPYOOWFIbE+fRd5NXoT3zF+8Cnfil5JTT/A87Q2u3osr5ZNXdZM2/Ohnno3LfvXr6NO1Y+x98KDYDXumW1dGsW0r1hd5YB6WJQ3srNY5GqiHcIvnpD94Eke5TgX8PItIxEdYD+8xbNX9jjgkdtmlf2y9zda5C58yQHmSjoYabHV4JzPhBYCUP0kecVnDvRFl78ycEa+wy8OwRx6N9bBN9txtADsF9Y6unbukU1P9J87V1SVyDBuP75U75q3ckR45EAnulGutjC7iveuuuFPbmGeeiYcffSzO/f65MWCnHdmxZp1oS9Rd9u+QI3K0sOUBLjzS7vOad6Ue4kR6u8Cz1ZqArffYo4/Gnbf+Odbu2SN+ePbZ7OqydW59rKNSGajOE77KBnHw2vVlXH8vHQ3Ic9e7ARjWY6OhcjXiw/7HOAY677r91hj7xttxGvb18YOPik16dMd2hU7YAmVwgL4HtFVvuk6XrgRt6Zlz3qXOj8a6PbrEUQzwrrF2R94YySZ/GdXw/zsakrxJeqgpYfNIhoW6NAZabu6T/cxTY+IjDB1HyHU0dO/SNQnqPrE6HBRmdp5Uik+NG8f2PmfFfDI757BBcfyQIbHFpr3SEHPkuRj3CDxIkB1QDN7cZ1hlzzc2/BzJqyn6yqBTEr6P5+x+lP4FV18dg/tsH3vvf0DsvPPOLD6DEKRslauKUe6UwTKc1FypTul40BCtq/9s7ApYYM/QIJj0rXemx60IwUmjx8YRJx4XfRnt2rjnxrnNnvlnvggOlaWwKkxTwCAwRFs+9B15a7ikMYcxY+iPozp//durGIq35yjanruyhVH37nj/10n8KZT03ppf5mV25lV38oDDd5UzQo+1zD8bY8gt6kbhIHlmzJg4/ycY/9ttnyukuyq5eZivYVpmoPBU6Xy1BMGhAEPxWCNxLcx8kHVogkJ3cUi3BRxOY/rdsGGxV/9dYujJKDY8igrgwj8FNrCZNK0qUDkYzDu5q1YxUWVEgwu6zcc59RQw303nZSRTHC466ZQ4etAgVs/fIJUmgCfshmA5Um0+aVxpAPFOxeTookrWfFPxYEy4OFhLHGPToektt98eV91xO28j7vj1f8V+jPy2QwAuhh8VJLAc3/Inr/7OWtWEoPzoM04q5NXauP2peNXR8Isrr4zRk9+MQ+kQnXXuubEjKwzbkdAYQ+IkvyhsVQwKdBfesZupkepzQ9DchcETglIAi8XRqfwMR8iIsWNi6I9/FL0od9AZ58a+B+xLOGC3WLSSBTFZSKs1dV00/x/x5FNj47VfXRv9mZbRbbNNCBGlo8HCf82pXLNGiDsryX/XYlER5mKB5Pk18KULBNhysSvxSkI9wYaIfcX5IQJ1xuefMJ/yM9ZroEpENLRkoSmwn3vDu0NGmwZ0GJtghBIy+hF1fPMf78fE2mIeLNWQx88vvij2xWD8DkaY6xY0oWw7X/JLhWN5TyyL57rOLs+UC+5koFG8YIGhbjPieaZz3XHbLYSsHR+779yPDmOnXMxJ40flYscr25N4pQzbis4ocayMceRBHlpBlAeJ6zzoU6dNxXB9PkY89ghOlpXxg3POxVjZhpG11ozQEMVBWJ1Tfl6b8FqMfPyxmPwmjoZXX8w69qARdOvYnJE0ws8Z9WiHp6cR+GsAzTW4Ew4M1bLobJIEWYgMBD7Iw1Gu/i0RDRq6OhroNDFk9jHzutzObdJ0Ftkl9Zz8JuLCs8+Jww85NO8eHzEi7vyv62PK8o/jkqFDY/+996I9rZ8drYbgYhkRDW75WHhCvig4ly/AFCAWelRyQFmWW+TBExOJbrrp5pvjj48OT0Px8t//PiOQDNNfRHuyk24dbSPKSeV8ykt+8wN+w8kD3nM0Ddmo4aTccyEnDYVn6ZBedt4P4lUcOeeyZdeRRx1FxMTmmW9uN0g+2cnNmha5YtZisuCvwC8MWQ+uHi4u5grRD+Jo+N4vrogD2L7vAEbWdxswIDtGjli5eGM6peRL+EIjUVmZHXJgswMnvMo95aSjanKqMkeZNH0221UOeyAevffuOO64E2KnfjvFZnSO2tNBcGR6JTzvom6aHsoCD3Ge/6iEnVs7H8oDnaXi3Tq4e9I/0H2v0HG5Cafplr02jX1xkLhl13pENCj/KiNamasOdARGfhev4ktaGjrq9BMjJXTWVrrhXTt1r76S0Xwj2WHqpz/7WQzo25dw7LZJp1zoFuSKSmEteK61Ux4WnVXwokwUFx5+7yDB60Q5jho1Ku6+9dZYf6ut47wzzoxtwYvGqrjMzgV4Kca0nVIMROouL1l/9alyUjg8sg48a8NI3yJ065Njnoo7/vv6ePjd6XHOUcfE8YcfHl07dU6HKuCkLM4V/KGp7cyKJK65lzvUHdLSUx61THfa0YjVeXTnvffG5URMePzh0kvioL32ysVkXdBMXKSspJ46BuTC7KjTzjR6xYe87oJtKed5ZodIA17avDrx9fjt734b949/IfbesEv8gPwdvRcvtifzl1eybdJuhE34pa1wG0kivnWqCK90Vq7pZHK65qhnn42jfnBubEg+p5xychx84EHYNDiqsWd00Iv7rDfvq8Oyxbd5pa61TYMpZW/aB9zpWHmPjtcDyJpL//CHOB1+3AMH/vY79MmICetuBzB3koDvjGaQ40vkrA41Ox7iHppSPyPMdDq0YZG5Lxngmjt3XvyNUdI7HxqWODxk731xlvSOTp074zxj20YiUN31yAW+35v7Xjz15GgWLX80ZhAJMZEpb83Ie8s1WCQP+6ojEQ1rtVrF0YCsF4dycHE2AIe/+cZ6Vn/tLJTQf9o5ddfZ8BXPjGb4kizeW/Aezj8WuOQTpo6jNwlJZzHEHfoTQca2oK9A29eefymuYOCtH46GdjhpnBJZ4Va7S/3jIc7lFXEujRM3PlNmgkufuX2lNsWrbsmIHXwTW6sPZKDtrBNPxB7bmE9LeqOVrIcDS8qCZtznVEnamPIleT/LKG3L9qWjqjmDUh8R0fAIztKrcU45WHjpWWfEYKLKNqwcDepS8vEQX8bzCHexifltvp6kkWft3C2nDm6lKs+/hdPx5ttujWtpU5vz/UW/+k0MHLBbLlarDK7sdL8XCbYlTyNr1eniJ+Uu+Yol5Ys7TmmPCdV45NjPrrg8/vrOjDhz3/1iMPpjW/hGm6DaySFH/mtwJ875ziPhBubqMFKjLPwIH1Bvp/U9/jQDP1f8PA7s2j32xaG5K/qjS6dO6URxMM/00jedSJUuNEvzBQZxLeIqp6+yIaMy+HYmDrO7cQQ8fuedcQxtdce+fWLTTTdNm0bZaJsTP+K/0qnqV7JLfBfZVqC3yMbY/s3hGacgzZg5g2iMv8Vf7ruf0fqOccB3B+Zg4QYbfAd4iSIiMtbvXdxcfaL8sH+jzlMGKOMT93bUea+TV6eJ01tza9ZJb7DV9/Nx1/33xbnYS3sw+KCjoQ0O0xLRUGS5aNDWywN8CLywepSr+oRfPHfnEnn1TWyOp58aE/f/8Y/RmD7TT35wXvTdeqt0oku/5DX5AB5R/+lcVybrYFuOY9t8076EniuQGS7+SoLcaedjbIJn6bPeiW56BEfM6QzWnHH8kOhFOS487K5d2gU6YCxL+Wffwjzche2dd2fHXfQZ1+zWMU444fhYs1NnhSPwQ2faurZ8VsYKfksP+EKy/e+OkkWSIhm2DikiiuynTJgQIxE8H3+4IEfIHV3q0rlzKpDPYWBIhsJsQmNgS0qY8Um8rYNOPTWBOuOQg+PU005l5L5XTqv4AO9RemYhVHMZWiIsofEwtzwNAcCQIRRQjqwrfF0F2w6GPGmYyj2PDY8LfntNnNBvZ8LI92brEhQb0w8Mb7ETZwMHkFTO2QgF0HxrDdRbGcYG7yr5KhINXzHpNnU33n1nTH58bBxz+pDok46GnrkKrQ3RUQpHX2xo1jk983bUyVuFYJ6eDQnPUYEqvF2N1vlL781hXjVC8Nrrr4/dCO3cD+HaDTw671DBpDcxhRN5pcADaEVI5iu8tTMRK7k4KkPREd5Jb7A7CLgfNWpEXPTjS1KxuZqqQjq9wNDTfM3PBqwgcZXrLwhTNPRIo8UICUcPFMQKEBuVYYyvMXI7CgP9JpT+juB9qIoNI1eiJCgiz7whXj7xofdc8hk/ym+hLjeuqK2n23mMTp14BAH4wOQJcfGQU+IYFNsGjES46njloTS6wfpYh8UYSIt1LNUMNkPLHJ1SIX+BUHAE0Ckj7Vkpd9asWTh3bosr7rjNwuP2K38Z++1BRAN5fQFNc5eKfIPaAjRB1/zMevncOgo8R3kvLWoRDfwYjxPmKhwNT02fFkdvs12c9r3vRR86peL0U6aFaBC6UnGOBPF7MauGL+S5o/nup94cfGNhxQr4aBE87LoURhS0btuOrXS+ipHPjonzLjk/ekeH2OeM42L3vfaITt06sYAjtFu6KNpDzy8XfMwoBOuo/Oq62BU4u/fehE4805I8ed+UpmynEhJnvayOikqyObKvgaQxa4joEnCo88G2o3HlYpAf0xGf9cVC1l1YxL7EfL1622i9BqvM8/vTzwhbWIKjoaHrfTDySEd8AR3ZN+bPjb/9oxji88nf47LzL4z99tyL7R/XYFcNtmyzrhpRlFc5ccR7/VloIu8jDJIfNTJsT/PmzYvnXn45rrnm6hgy5KTYi1ERR3fd5tSjMrKUBSpmOdMOVjH6iQ4AGTk6iIJ3/qJ8256Vwo1wmD59ekYIDR/+SMxcuCQuJkplezpIDZFZK/GUt11t9ZwnqqPh8eGPpqNh3Bt/y3J7ItK6dWKrxTVWizXbYjg3QRawSjpePUaVcGrBRGVnHBJS0aQFP9JIqF2zvuSGVMmIhoxqwNHg1IlPcDRMn/ePmDL9k4wUmZGlRpx/yplx6IEHp6IdQZTFsGtvYmG5T+OMU0+PgbvuGh1xNOS8S+UAu6U4wgVL5CFfgyJKL8Zhcj84T1kGnuwg5Qgy+HtjypS4GaV8Aw4WQ19vZDRz7912S3n3KYaYI40aZTKXzjblpBFbafxSjiuse7rft6fOYTs9GgcaXONeejGuIDpjNvg67oCD4mCcjptv0ivb+he0ezuh5ldAL21R2hausTrld/KUDF477IQZtv/Qk6Pi7F9fFYdsvnXse+ABOcK74fob5IiVIxca5hortluNLiOQbCvC6FaY0ka9lDKVNBZXnAUsSvre7Lj5vnvjrvvuiu8dOyT69euXjganNny84CO2pvuKxUtxyKEbNHw9rHN+n/kUx5c8WjnYNaI/wxhyzZBX6Hjd/Oc/Rx+cAPvvtjvTD3rkXFjrapuQiOqmNEKpu1fbtXXRaeFODovh9aotKSM1GN+fOycmvEZ0zjNj477HHo2fXfyTGNCnL/P1cRxSV2lvvmIznQrAVDkXlMdVJ8kObhp90p7vjKazfjqqH7z/gbjmicdi4Dbbx0VnD42tN908ZbmdLWFUP6f+xjhPnQXMPlMn1uknoonUX841ttx10fvuEvQ0cN97y21x19uvx9lEqQwh0rEzo+qGaosDR3bt6BrRI46ETaO0rKFApxzeyM42NLC+0tZV9RvjaJ89c2bi/Oe33pL0uvHSn8Uh++wbq4M7pyZYX3ncfIVVulYOEXVLDkYAqzs82NlyyztH7F0ZXz382uQ34trrrov7Xh4f+6/fLc695MexM7iXDz+CZ9Kw5Tvlmc4q89YJZXuShZRh6j1h1nGTBy9a08HQofHEuGdj0NAz8/F5Bxwcx59wQvTq1St3vfiM+fK2HfnD7+2o2pmRtnYKfW7nzo6GNK6jM+9t3/PgyftGjojL/vTHOGevfWM3Ol1uxZ1TWZED0tN68Ae8AAL84X3pSChxfWhH2lFdthJs3pJ96NfMAYb5rDEzYfLkuOOh+3NKyiF774ejYcvo0qVL8qLb5bp+Snt29rCjM2LE4zHi/nviPXTrROxSF8HcbPXiaNhwdR0N2JJENDQkuqwRcMjMdDuyHqhF9F02Zf7K5cIF2JzqRqMNYUoi/tAZPCQH1jFaGe8umMlUr7LgOVo8I166rN8+BuxzYO688AoOtmeHj46f//gn0W8btnWG3kbVyN/yWToaxE9dkZSbeCIz+Nx0ElmZqtPGdij/THlrSox/4YV4+J67osfOu8Rpxx4Xm/fsmWnlZefdSytlgiO9rYjAs7PnYJa0NE87uvKNsidtQr5pw0j3IqI0hj3ycFx+2aUxEzB+esqpcSQRphuut36OvFeO2EI5wZSDlDNFCis7U/ZSKbLO7XyN5GnF6LS7q0yd8U7c8Kc/xW+hFRZk/OyXV6M/ds/2sJB1ppx+ZLtXJqiLrbOyW17OiCbylVe1T7W77Yiqv7Rd5f/nX305zr/wwpjAQMc5+x4Yhx1+GNPAtsh2qWOwOHcEkjPRnX+SBqn3gClrwmNhUC5QNfCHHYQcHv70mDjtisvj4E41R4O6lTXrdNqZv7AqK/mk5Glb4TRPShQriXOjSlO20kfwuW1lBo6Gv+A8GoGj+pQzz8otvntstFHaNOloQP9Ukdnmn3jnmofVkZZ5w1/+N8Fmbs70BgesZtMhdtrHbffczbTnrnEQAz69NupZ0x8r2KmHnWioq9MRcm0FeE9++Zw+QnbgpQftzT5N7rxFWnlImfT+/Pk5oDfuxRfj9nvvjKFnnh177LgTUV9r1xwNJYrJfoVy2/oWQAucJZLYpwV6edLDwWvlz7Rp0+OvOGIfuue+WEIU3E9/+MPYgYg45bj4WFUupbyn3o11BqLPtS9S/9mWaFM6vrQ/SECEaofUH88+/1zczWDkfS+/GKcwWHM29uQmXbvl9qbLGIzNQWDseWFXN2u3aKO7Ta06/3Z08lobdYlT6Bet0bULQoM2DX5gHs56yZKV+hb++Y84GrI1UPlsgCp5EFSULghCeU55/fUYNXJkfAgzucDHNkQ0uLZAeu0QVCpTBYMLzai4n6Kze+SZRbGdTsjV6WecHpsxIrWYTqPzTFORo/R1LDQidqUpUqKJxnd2bSySETfy9JQxVHgaSSqoOfPfj/vw5F583e/i8K22if0PPjh2YYR9/fXXR6DqaCgRDQq6ysmQQkPm5pnCRUGYnXYYwO2inMck4y1GSLw5bWrccu898cYTI+Kok06LnWksm226WQqxpQop65uCozQEPZ6Odlkn87Th5QgpTcn7yuunQjfsyoiGa6+/IXbdlXlAA3ZLQ9E9sDVUZOZvOBpsbLZDBTinQs9rtsVSfI62qSTc4mYCQsSIhidGj4wLL/pJRjR0wIlhmGkqLGhso9VDaQdAuKsmkLghaxuRODedgtyFl1y0KR0NjEjdec+dsUnfHeN7Q4bkqFoxeDAIhVX8cojfxLM3/Cbb2kk9vKcOJnG/56YoN9euMPT15kt+Hs8xRnvBkJPjuEGHRZdc2E7DBIUIXcW1AtCPdTDID+ajEFGwK5yyfhiQ/jasqxlTM2bTabzxlpvjF3+5jdQRt17xyziAiIbV27TNbdJUnEJkXuWs/y3gPgPoOmeDv32ei4HBC+OZVnLZZZfFc7NmxqDNtohzz7+ASJjt80N5XrpahutNOIro9jrLrQ/GlZ1OgBfxzj1ipA6DDCOyAR0c26Ado8fGPhUnXHp+9ACME086g/UCDoruzLddtAKHypefRjMdFExren7s8zHlNzdE72YRXTdm/jNZt2LT+qZ8R+uBnuKFNlXAL7zEjWSDu3ASqBwd9QTfnJJUx4NrNyygczJ90YJ4l8WKjHBouNYa0XotFnNDWH/OmgGNVrA1XiOmTjRAOZHXPz5fHBPemxXPf/hlGnwlkBWj5Qc/JOR7IIsorcuiPrR98Z4CnPKAU3Tk1d/+4ya3G5P3kQEquiqiwXBvFdvvb7g+TkYxDCSyqbOOBhY4ytFQ86VyKje+TqXktwp+p4ssRdHnaBJMCWvRgcW5Q8fC9G+9PTXGYaAPf+RBFlddFhfgQe+zzbbwFFOV3F7MUTdo6DSlR5lS9AadhecmFUdDZ2DvvE6D+A5G2zrtW8dqzLtupHG7zHmy8JqVQtqlXOIXRQOfcqnUPI0FeYw3Grpl+gSOSBw5K3HkfJxrNExnZwBGuHj/PqeLpV1y9nlx7OFHgrCV8RCG4rW//nm8x/NfgvPDDzgwwyXd8lElKN+VElbBN99JhYRCWECKck0HpFfDsjXwXsf4//0NN8QtT4zM8u+67vdpKNqJ+hJ+VYaZScpJrhq46gqzVD5qYNlyHTFOecNzIxp0fCprnvnr+Ljg7LNiKrAPpXNxNKHwW2FUCK/GVhq6ZFbBnzXhxnvLqI6UST4o/9NgXYChOAy4z/zF5bFnx+5x8OAjY8CAATl1ws5s3YgR3ylvC+wl6kJHg/JfWSMehKCKiLGzpzHm6Mbtw+6Pxx9+IE48Zkj078+c9a16M1rXLkenV8IzTcm3CWc6GijHaDrzSRlDrrZHHdVuq2il5FFHbz/EiWPH5YbbbyOss0ccsMd3GZHaNOfY2uk0ulDDy1HyPPiudApK3inXefaVMgDa6nSrOpPqj9cYJR2N/hiG/rgM/TEAB74RCXZcTJeOBuDNEW5hJi8PO6fKZoG17fhcGa9ctr24bZuhryOZHnfbX26LLr23gb5DY9vNt+C7ooHkD3OQBvKCuFc/2Y49Kr3oc+kqvs2/dfv2OIs/jVFPjo6bLroqRq74IM4ZfEycdOTR0b0zgyHQK+HkGxQGUTwlAk5HlfkswckoxzsKqezR5sgWAPxOd2hKZ332rJlxx113xU9v/GPC8iemNhy87z5sP7hanXMnO468XUmUkAynvLE+XtVF0lBbw8WPdRwZkVFG3RrlqPd/Xf2beIiIqN2arRkX//43setO/VRs8WUtQkhY/SdepYPONkuyk5X0sG7gxnYqL1mm8/EX0wkYhRwbfN45pI647NgTcoS3K4MEK+AXp4tWtEpjnPzt1IpvaW691Kni0LYqfwlLthXq4H7yD+BouPymG+OM3QfmNNZtieZz4CdtCPJJbc83DeVxTuWCsGY0i3qP3y5Ore3YCCduK/C6lLb23ntzMtrjzocfTIP/4H32y3WtdDS0ZItGR7+bEQLdko7H+3Pei8cZgHrsvntiDk6oCTiAsBRi8zYNc8rYd3A0rFk5GpDDLpDskTJX2KQZBJNq0k3ceiTtrIF8R92Xc+LSSVm8BNv1vQXziWj4POaR1vJcL6fLWm3rHA0vw/cvP/NCXPmTS2Jn8NIuHV5VRAP5QbeUl3xXjuS+AgAAJV9ZpnYnCVrh3LJj9+JLL8ZDDMxc9+QTceiuA2LoSSfHlkSYKgeSL2yf4Do7/z4AvxSWNpN0bm40JteMOLGNkFZ6tKS9f0BEw8M4z39y5RXxAZ9ecvoZGWHacX0cDcjndByBs8qWS16Hb7x6VDglSdEn4o523FT7B56aMvXtuP5PN8Z/D7sv1iL91Vf8KvXH6shIIw6UWSlD+D7ta+okzPKTzgbtIu2A5HVqm/qE+toBll7PYY9dROSkjoYh/XfHZjoxdmDgR1mzBMej8KfeFy8c8n91yNt5yAvWiW9sax7K/n8ggx8bOybOuurK2HedDeOAo9EfOEm6dOmc0xq0S0WDdofwAhDO6hIdIM+bf7ZZ6J7ONsSbskfdYaTK9Nmz4+5HH4mH778Xm+bEXIfHvtMa7Tuk7ksnIPCbv1CXs/AsmSdNZICsE/zjWlKNwcun6A+nN7zCoPHttJFO621ARANr0NX0h/LQ8u0X6Fy3L2hfysPpydn2k7eAH17JklN0Fx6eR7/sbdZ/eGb8+Lj1/rvivLOGEtGwc7a9tjiH1aPmmXIMOMVyDdMCWypiYeLOd0kHHMTwqVFtb5H3OCKzHsZZvRC74aLvfz/69t4qB++0G9LpyneuX5NOaeqhrCr/zN82zBU+XAbj6nB32kQb+gcLv1jE1Inn45477oj7X/5rnMhgzRlEI27StXuJdgagkpf6DdgFkLqrt5cyAKdz6L5774v1WCD/hBOOj7adOqnISMQBDMq3rGN58q38S5vOav9HgJdINo4csYfxEjkQeQohMU8/OYb9VGfniHJvvIM9unfPkDUJYIimIUPQLUegn8XzdObFFydMJ+y/Xww5kfn8m22aDcWR5uLhp+PjqBpCpSXKpXkjvIDkZZMpToYSUlb6YXQiYT8ZaC4MPZz5Y1fdclMMxOO036GH4mjoz/yx9XMKgCNO6fgALSW3GmoK92bDF85siAoShIAN0dXIP8ETrqPhHoz0yc88HYcccUzs1Jc5toYuMUoqwztHyo5jxdAqfUeqsyNPfgoMhWExWCiIxq4jwMV5/o4Af3Uioa+33Bp9dtwh9sATvQneyvVRypWjQQHrWRhaoAuswrvqKdVtN4b1+jwdDQiRMePGMX/v6Rg69NzYiY7R2syFb4MiFj7zVFG4B7i4FA+uI5AjdtKRcjXMnIOVBj3vV8dRoSJ8YzKh4U8/HQ/iad2Akd2Tjj46NsdYse6VAapQLa0Q2IRP4Dn8nVf+VMrIR+5j7Hx350iNHD0qfv3LKxmBjTgLQ/HI/Q9MQ9HOvHA7kin+FSoqT3lI3jOKIYU6DVvj09OOkZ2ilnQaDXF6+x2mw+BxvO6BewQjfnfxT1OxtccI/hpcVHALkyKwBm4anqv+zgqJdE8O660B8CLhaFf94qr427y5MbBbjzjnhz+KvozqiHONIef2GW2jANfZ0Iznzv1qYEiXbSBzw8ADz66R0ALjthHwLyXv+Si2Uc89E+f86rJM9aMjj2Ze+aDo0bMbK04vjYWLP4mVGNqfYpRNGv9qzP/jndGDbUI7b8De7HRW2sJ7duaRmOQPXxLhwKMkTtaNBqZy1vvbktFyr+JWe9ldAZZ6AuH8pV/GW5/MjZlOQcaiarTuOtEKR0MDaPglOG/GtInVGreiI82iSexp/v6nC2PCzOkx9qOlud1RtR3quaeewXzM/tGZcO+24K+ZtKSeEDE71QkT8HmV7qo0KWIbcm2F4mhgMUjmZU9F+bxARMMdOAaPH3x07ErHaMMNvpMLJ8kn8qK84VVeqRyCPvoSeeW6LCofFWnzZsACLzlCpiybOnVqvPD884SnPhLvL1kZZ51xBuGXzAnssEbuHd+8ZRuM+CXxN2j/+PDhuUbDS1MnJY068nfDdZrGd4imWbdDm1idbdUaM4WlEWcDaCy/rViJ8lHTgVuNXI3xNMT9Dbwpn3iLSU4yRg48cTS4V+hHXzDPdcZb8YZhQPAAAEAASURBVCJhIuuSRmPwI86Lzzw3jjmsOBoeRoZdeM0vyC3iyu+fF0cfPIh1ZlaPTz5akJFTjs4oa6tD+Wpa/1J8uQM3GnM6eMS/IzUafBOJaLjhpj/FfXRKzeHWX/wSWbZzjkjZGS91okbKMuprOaZTjihfrDrEqJWnIUN7IF+NOqORnnvppTj7wvPTeTIEI+7oY45lcbwts+0r35W/xQgSb/wTTrKsDvkmD67lZ7k3LNsRqUefejLO+82vYvsWHeLgk45lHuwu0aVjp7pvKnkggObr6bzklIlkmJEdwKtx7lQ0I+/sJNlBM/T1/hGPxfin6AAcNpipE/1yQUijbHRUrwD+RuChEYwtT9oxNw/xn3KFwoRWvBdnv+1wBSvBf57RUROmvBk3E1a7HlOP9sZR7dpHHVm0Sph0xuZoN+3KIw1q5LwGsm1cXepoDk0UGhTDK0fiSWu03essiDX2uXEs0jYuLjzn+0TEbRerAXeGVOtowOBWRyjzPP0tzdIRBQ0EPHUXP3wuLMpgaeYI7Lhnx8XDt9wezTbuEUMZJd0KB74yVJ6SB9KJQJ6VgyqNfN+Tl/BrZGcnGCM96wk/tkJWusq8axNd//Ofhq6+0w49Io479PCMFhQP6mI7GEYMNpR+1KNa80F9IV40pC3Djpc6nJ85FUH9NhvcPMgCnFfccrPZxTUXXBj74OTRJnAqj/U29Di5kN/J99RDR5IyR36UhjrujQDLBagpT9yLr79hE/zuv6+NJya+FtsTgH/B734Tu/TZMTv6drw81dniv3L4iLO0k6CDHRfLoOg8ddQ4DUEnjTtmjMVx972fXxo9eX/kCSfFAUTx9OzeI6eyapfYATI/T3MwckIcuC+9cjRpTf6pe6GFJUlTR2Dnvj8vhoP7q//y5zi6b7/ov2v/2IqBqPXWWTfrbH7q62zt1JUKZxl2DJzKlM4GcCS8Ohltba5N4ZQP12hwYfEHaU+GLe/LtIzNN9s8OnXqhE3TOvnbKRR2Rt6FRqNHPxFPPPgAuufTmPTpZ7gDWJ2e/SU3xL5af7XmsUYL8jaiQYfvvzgaSvNTNFWH+FRXKIN1S/AlbQd6qiMbM80LQTaXUeA3Js2L+S4RQBr13HfaNYt+392PaJt1mPrxRkx6eUJcytSJvthNbdD/yt7iQCPf7HCKk3KA5sRv3smX4Mn2JX2VB0ZuKmscgb3tD9fHsDffiAN27h9nnnBC2mO2I2WsET/a8sodBxCWMLLrFBa5VJsoR//RdSVSorbwqTSmTbmjxcgnn4xfwJM6sH944olxBI7q76zH9GTy0BFgAwE8ziJ/k/t9APxp7/G+4snKxpbvxelk9PatTGO97fHh3EVcd8GPY/d+u7ADwuroCLHNAZ+ou83Dw2c66NQh8kwOcJGfL2wHLqatU0IHnvbYlb+4MiZ98Pc4YMtt4hQW4jQaUR2TzmLS2+6qo9K1pahSnu987sCENoGH375PBM+T4P5icLNrayJMjzky+x9du3RJ+ZVOBGDR4aDNpywoNrbruBU62raEOWU+FdDha3plvOvBPMyA3kNElR178CHRj+kHW6D71ujQIWmVjnBw9A1HA3BWOE/812BXh8BACqecevc+TsEJb06O+x5+iAGQNWLPXQfEZjgaNtyQXcxaEikMTIl7EPEFUQw6IZXPRqXZz9DWdpqWji7xnHaj8pkyXAzyrbfeQne/GDcPfyjOP/m0jIjbgLbXDudYynDwknpI3sh/iVYRnaeXCvsV3Z0aLq3efpuprDhMRzBd81Puzz799NgOvOjAT9ioo98ou1JH2L8hw1ZESDm4l31Oc6ct6Up2YNlri9Ytc4FoF9F/iCkfj8M7RwzcK44jIq5nl67Ys0SiqceIkFD+iXfpZxvThlyCLHEB6JGsq9F1q81i8ODBsVrHjvAvNq3YtFJ111p9v4WX/6ijwUasUrFBptIBSSsQLJMnTY4xrBI7kRGPjxYsiK5duxIq1DEjGNJYAvkaNYZm6xVz0af7MOY8bKIXMTrVgxEYF1nzvcyUjZgrA666hrgi5BDgGhc2VpWy/2wsChYP4bOz/uDvb4jXyqzyOIKGuO2OO+ZWjsUBUD+HSRpXyj9ZmDIsPEmfL3kL89jhVVCp3KZPmx43MBrl0Qfo++LI6Nqjey6CaUfX0XU7RjK1dch6cFUgqRAUIDoaUpBZPs9kNuv90ccfxQRWZB3x5oT0fp9w4CHRiYWN2iNgDVkS9zKyBqz5ZxkCUivHupQy6xukxr/H34k2eXviG3Hrc8/k/YFbbB077NQ3FZOKxe+SvjRAF32q4E+nEg1JeovvFJDQXKPazkUHwhjtmU6fNi2evfUOIg6Kp+4s5sBu3HOjNKTM2/z4UwBLHJff4tqjOB6sgdWxW0W24N6pEy7QNl6P4rinTcq875Zx2JknxwYotoq/hAekpuAzjYZ/5lHDjTCKcwWA+LI+OSKFE2k2o3V3YLxN8UOOw/rvFv2JgmmLQfMVClhlIFyJc68Aa94eeeVlqtUEnofkz59UQArONyZNimvvvtvkefzwqKNjC7zQrhGicrLjqmNHoe1oo8ZuQ3ryzpGX7/Uiw0DpWFjGu8YY9Q3hSZvGx0TC6G0d9uLYzLv/Bh1jj8MOYnvZDWLxyiV0dhdFI6IMvsbgmc8Wm02efCl6btg+OjMq1B7eY0CHaCFNJNuUo15FcEqDrxCG7kCxzNF2IhFaNHb+KJ1JcZpmk3PQWEgNmOZQxsSP5sRUBsQbt6UtEie6vAVKHl0vR7RAn63WZN1YuZhFVVkJ+x16v6MS4m/+6d1lo9iT0cB1UZyOADUmbxizhnvwLmopXQqI+4om0rfIgiIjPvn4k3h39qx45v774w3SbcH53cFHZSi1W8Yqw7ItaYTTZjV2k5fINJUd+HaEytEQt1TM7fpQVoZqLqOz8e4s1jwZOyYemTGbnFkbA2NuawzoVii2ZvBNcxSzXnFX6r/rluvjw0xV/4dWE9uC+/U3Y556a7C5lPqw7ugKotu9sm4mTk4SgV/bRk4bq/1OFFh5f5DHck4CRljtnHuQ9uGsiBcwbGdwu+qxY+decdQJx6VyfOyBh+LxyS/m67023RLn1KGxGnj5eMGH2eGSFzV8PBLXlFeH89oz+bw4eIqjITsF4PWdd2bEVTf+sSaBI07adz/mkvbN6QyGtioHBF38e2ZHg7zsAOVIkjKRU3lne812gRzzqux8CefRzYxOevTgHHzqadETh6x52Z7UNZWhWCRKQVV+UP0BBlFY94cb57B/RoTRE4+PjBFTJmbKg7beIbbrt2OOwCa/yIvIA0+/TRJUBiL0No28lUYcOWgsKq+th4a9o0bXMKLjsTXnLkccFT0YaTQybAkLcK6kw+QaDfJ91bF2ZERo1X3i3N/mL+6tg/y6mI6yYcVvvjEp7nz5BbOPU3bdI3rg7F2LiDhhMkQ6+Vz4eO/ourwtzPmPh8oXtEw6GtRNOhGUlf/AgH4L/XHb008hKSL23bx39AUv7u6gI87oitQRfC/us/PJNW2FNPIoj3c6TrhkWr+zs2pnfsZ0piLdNizG1nYoP+2AQ2IzBh/sPFtvT2kpj6SOBSfepwOCd5aZ/KORzT/r6TunVbru08sYijc/OUK0RBfOE844OyM9/E6958BALsbLb9eT0jhNfa0eAS/WzZE69V/Wjd/ye3McDU7Ruv+/r4vCMREDe2wcex58YKyOAZ56kvoKjzI18S6sNZkjfqRfLqYIXMqcbFPwlPzu4c4Kv/rzLfnbP+cMOjK22mqrdETkdFD0hx1787fOyig7nbYD7Q0P3yXvcJEOlqm8S8cdDp4HX3o+0+0SbWKfoSdFp86dcWDgBKdD4bfWP/kP3KahDl6qzlzSgzoVOlnPYqOpg3X4Pkg0gy7WNpyH7f7d2JQOQIc1OmR70GaSi6tR7tzaFdjMo8gTp3+Yn7injsBhBKZOB3lyMgss3zV+TMK+X6/tYtNttox1N1gvd1OQ11Juoyvfh0ZjHnokRs6YmmlX/dObm24d2CqXGXUtaWINMSXwNwAVKKtkLnjjVdKv+hYwk5dJkvJ3BbpuBebWSq7LkcXM+GUr9Ignqw9Wua7D741ZM2HslLfy6eBdBsR2DD60osOinVxwXWyWlGUyDoe0q7tCF+lsWnnY9tqOEVgXe5zAoNIf77wjHQGmv+D4E9iBpjtpnYayrG5xbBdvt43p5HSuuWximzTaU+eajgPbRoGBaBlk5IfY+M9i7z9GlJ7HDuusx8LoRzBotWY6eFM28ly9JdjyT561Z1zyXaW75XkYrC6CzV3Afnv9f9fBfmS/AblobhtkTc6DT34xF/O3BOUKOFd/gAfxYTRcOmKpr7DbDqyPaSa8PjFueOj+2vc4So45jgXdN872UE3lseNpviIkUS9iKMSn+Ydb65SRVcgxDzv57qr3JIsgj5kzM5/t361nbL/7ALaV/k6mV9YWONUhyBbyVBpnPuAg8wFWdQYPsy46GpQ59hHUH1cztcFDm2aXQYdGN+zs1ZA1yibbUzWQKuTCXl0TSVaJCtim1CHyrl1eFyp2IHUKfbkHmaLlcTR4L/pjrZxa5vfKMevvum3KBvmpOTyb0yWQV/KWukgeVBKnjQ3P6Ox9BwfSsBGPhutx9cfO223vgdGBKaYOrJmv8iplkwXkf4FNRCc84tuDp5nOWx2ryobZM2fFSyNGxaj572WaYwfsHr179y4DneRvfeXLKirfROJcp57X4migOAbfdLK7TpSDTM2IjFqEg+e1l1+NP+PQrI6fMCDWEZp+hbOoEQoio5FpR8lr4ECHtPafU+7d9eipW26MPc//YRxGO7G/6M5CLmxbDutV6lbl/227/kccDRLWI5UhBEjiKBw4liGIZs2YyWjHhJjC9lTTp09Lz6iILwaZCq0oKhWbbLIEIjgny0NPf26hSGOycakATWPH3Pk3MoFz7VUsKlE9vQoNU9mJ9pnfZMOEMWzES1jPQceADcP0KkQVego28+cspK0JEfJSKObBtZhv5S8ApBDUsWG5NvgMvaEuzWUW6wQDF6HDNwgSG0zO3QUHCp/PCEuywWi8CIPRERoTaUjwPGGvMZqhmosd3SbvVnSySwMsdalBWH8R5hp/1tdE7JXKWNVsWMDn6IjebxWH+2G3pIG2BL+mTENLDyTpbLhGCaj48znK3akU0kGhYp4OtKbiAHaPLM96UPfF5G+ebRip0tObW8Yg/OoOMzCBV446ZURFzK6uHubH++UkwB7Od47s6ZGUpi7wJD+l06ZmtIkrO+UprKiLeLUUR430NqZhzgPhTeNOfiNdBZIdAaM1jOBoi6K1c+diMdK3HHzHj5LenPldw38N+AKoL3juqJr8YZSISkJTOTtN0EJ+zEV0yF/aeNrhFeep5Mje9J7CLx9+TcHu8eu5Qv6BR1QWGoRfI/ibge+mLPS4Eu/cSiyl5Y11kBBNQJ0aMyd10bvzYu035rEv9RrRGaXdDhjZLR13GSd4Jstsj84R5cN0NLg9z9JljEIDTzOmPjRryCgW9XLtFHnCha8WQfd3geG1+e/GOzgZVluvc7To+J1out6asYK5al/qRMH6atMQvqJXvGTp8viE8P5/fM5cZHiRzzkpkNq2wMPcGkNSWJYxBx/NKZbztNWmEc5Lf0vHpDV4MYUwi2/P/AK6uUuK/J6dB0Z1zddDnMrPtmWNF3lJY9r2rZyzA6WXWqXpSILfNwO3NG7oU/hZHlrCt04lsb1muDV1cFQSjQVWwT48VY2C6sW2+NbNGkWH1s2IZGgabfjdvBHQ4sxpgFMneQ1cqBgLB/A7GQ5DPnOk5t57ZF1oJ9DC0N3llOn6EJ+D3/mfLIoP2a96ObRyzrD7ijdnHm77tqtnvT/HsNCxKxabMjm6pe2D345EmLtOPhIWPNbKsbzEK+9rGM/76rkg+VtjZxnOYY0OdYA7C7RhHqgdOTs22ckib7P1b3ZGwb33SVPwJzsoczMMk0Jt29mBop5fYBSbT47gEmniO79TPmh02O7sYORRQ5W/zb8AXPvtfe3I+pCPZToq81XqmOI0yBER22utk5myz9xIW+Up/6SMAT5lSpHporDwVcWTGh+uGSCc6jd1kzJBveV80Yzgw9nowmzygrpER4OdXvWdxnPWFZ5TfiSteCdLmIcL6KmnHKVUvqfOFY/mQ9ni3iOnxpFX4h4Yfa6sRrkrBFJ/eu8CnpXe0nisdLGy3XcioMjQxGDSQvykjqZcZamyregdd2EykqE+QuFr5IsdSKOjlHuOSvq90yzVof62w5iGK+/EsUdGBcJfVQfY+pnWeqsfzMt/5fuikx0VFy7bvREewqIjUST6LG0AytCRWmgpPyCTeeZpQuWtOPdeWaRONU8XfjW8P2FATmgbaPcon1LGgHvtpmorUaNIlJ8OIJhX0oZyMzpI2vub0zKNzlGHiDdlTFUn4ZcvBCgjX4DDvPI536a9Bvx+I49l+4Cm2kyelmF6aeMouLzmt25JrC4RXz6rcFwna/nG336fOhe4PLIOPM/8ySfz53vlr2WLDxeMdd0J8W0btnOkw4nUlKWdA/y1+ltE6mloKZzLMQSExRFI6+MaV8rrz5EH0rpEXmrnIQPI0/biVEB34CgdZm0c7VH4gzTK8XYtmkX7Nmwx3JyRWXifsU3aIHKa92RU2jd5SwlhrDuSNsIn+pVX8AVnSmnercBLrLT/aOHimP/xZ/EF8tB1dJzmprOkSVNGgO3go5td+LkpZbegc6w9LOrEb9qSIoFDnpb3PGxv4sOrPOihrBVX8q0yQv6S/nV0Il3qTmDLTiafyUfiWn5XDsv/tiPxl3mQv3yRuCWyNaNDKUN+t/1ZJi+TB40kFK+WVyAi/wJ63pN7wll0V3XHIx4bmbkYHDiNuPQbysiz/CQOnK6oQ8Q6uR4AhaRMEXZAz3pkjt4AkLa/8Am3/CzebCfi26u8oBwzdUY+NSly0Hwtz38eFX6yEO7FS+Iz31JvyvdQDksL7Wb5020e0y6VPhQiTVKeVLSiXrYb12AxQrSsJWb7tkNcZJsQ5NQkcOIz5aMj5Tpl1eW+bwq/qBNTTpAoYZMheSs+LMMzcWPdOPnj6/xGvCj/jDiV6Wyb6gFljfygjK/0R+ZFmiyYetnGHRSTX7Jt1XAg38gnpd2qi713GlfhG/tx9n9a07dxXSLhUa+CwMxaGOtwLIGAw//+EQ8e1tDvvGpfWJY3flcWkIVnwK0yTB5KBwxwyvfKX/ub4sT0KZuRTeaW+VkGdNLJ4FQ2+VpbRJyUNf60JZswVaUM/roun5FALbGtlOVV2xQv5uMgtY4i29H2O/bBOb9TdO7i1C4Goxo5lFaqlzTKu2/nH9q1VPjfHQoshYtINLuq4cgArsjvgoGfMeo8n9V8P8CDLXNlJxnFCsmSGZ2HqUEvOQ03dJFCv5cgjujagBQKPkvmQACntxtiuQ9rtS2TikLDXaNKZSP3aTBXSk4PWnvmZapkXKTQjoINMRtjDRMUUZ55zX/84J3PC8cWps1b6uJaAQp2Q4KcL6X30DpqAFRREn5v47OeuaAMwq4ofAWdjRYGx3gShwohC8twTO5TYHtPnnYebZjWx9E54dFAKbDVYKxaXAL4T3+gz6oET4YniQK8BXgXJo0HO76e0jMVECUohJ0XKhy+s3yNRA168zGtBppebWFUyX+It87Q/9WIumhHGJ5GqQ1/ASHYn4N/oyX8JtlQwHiXJz/r6lQDuKKFtPKRpl36Rbm3Y5hKle8zC/CmEEyDiXR2YopyRaDwLwUhuLRsBbTeV/nGfH2XtCAjaSGvyJMala5mnREd8FljynVV+aJOCk/4fYXh7BvnPX8qmnitVUyceSYs4EtFIsy2J/lE40taWCEVnOUKoHsDa4zZWdPDbjoNcD5O4WeUjb/lm6/pvKoE6Cui2KElhtVynuloaNqK9rESxQSNPpo5Kya/MjEW3T0qtlm7RXRhFKI1bUhHQyvpDo82NhMA+JrpE5XRot5awu4Utn8ndLjGgrTIHVvAjOGhqP6YC69MfPu9+Gj7brF+t07RpV+f6LjV5tF0NUbJNQ6WsfgYTgqnUDTUCKNzrKpfgnHuuhPL8V5RCxxJX8FPjHoDW9MmGAiApILPg3oWw6EoAnkqDUbxJ+LIQR4xTRoMfOfojIa2nZnFdK7LiEVxvPk8FQN1K84ehqM4pI8dG+VVGizk05YQbJWjdPNMQ1aaclJoGgsa1M6xpiEhK5AN5KM8SoMBHBcawbdwdROGypo2EKf8Zoy4Mb9dkFM4NGCWsfiFhrV8VeiK0aIRLI2pq5En1tejcjSsaIBSxHBZgv33GY6cr7lvwVoRK8H3Yhbf/ALeVtHLg4Yc6jiRd5YSjbKItXFWwDcZ3UT7t8Ndw3pRutKhVl6F7W9cASdpwFU5ku2VvPOQPvBv1R58p/yU4n5lfYWjKOnioLD8FhiYwqOz1pFhR1LtHNg2HNWsHEVuDexCW4bxG62iHHAUjqxTzhcYCig1iMrNP/2VlzSUHKW2M2BYuWHpfpOQkp+4U16k4cjz7KBTltesl8aJPMEX6WACFttS6dgYeswcc3DviFvRqyVMVnid2iBWWtQcDWlEUV/bvx1Qy1U2K3d8tqo8S9nItxp5GoDKZqdl5WgksClTxbkw2j7yN/fiHeDSWNRgbM4IjlOzvqRzpv60jVkf24o6TFlmXuLF9sRNvvd5tjvSFzrLPdAQ+vm9ctXw/sQRMFoP6a9Ota3ZRpTBptcAVl7r4KvasWmkgWnMzzI8LNc8xa/P1JvKU+0F85dn7AjIC6bVuWP+2gzaEqXzBD7Bv01Kh6L1MA/5UbknLnW6yBvqE/V2HsgacSE86m3brvUShpQ12jvkoczRQa7McNHJitfl+6IPtIGctoZ9RX7qJuWG9fE7dYTl2JGRB9zqTv2s0dyC/KyfZSiLcpBAoclhO0i5La6pk23IMzsDwCJt/e1IsfgXJ/KM9bVM27PlWidxIj6kh88khr+9qtfyPfllZ4zn2mfC5Le2S+0mR02tj9+Yl3X2OwcN7GC77oLfl/Zlp1Cnmm3MDoSdLKMtS3tyIMotL+VJnXUmVFbLTzrezdd2Jqhf4bAWDqfDiDM7Z+LWtDoV3E6yDfhoY9uxzjwDwMShGae85S9ZZX5ZgdpbpXLCSKP0N00tI34aMHWCRh6fowcWIXvlXrcsdr0vRzK1UkRfwS2wfyluWEOFQpRrKS/FNzi1Djq0TCtNKr7UJhUmE1Q08V1FJ/ndabF+5+Ki2sLyrx1u8y95azsUh5c11OauHOnmn3Y5uBGXynXbvc9tN9JA2GxH0tur9+aTcImYxF91z4N8VktDIm/leRoC+LNuOqpwEkFbYVQHA2i2GWkvz5ib8jdxBB2ltfhJGUQ+wmcbVE6Kl4Ib8V3qrGyQx0yjfKinbz18VsR2arvJ74WTfLNTm1CX91ZUuJTlpjdfF0uUL79AfqlDhN88XLfH+mkv6/zSrje9NrcyhKxqfIkNCg/6zDYgr9qObefKGbeU950ywDbrIS3LD3FrH7fYQVkHn/BevvAq+BVOQF7iyVF8n9mWzVs+WEr7yD4Yz83Tv9qo9nvkKRcwL3xQBtNs3/JXa3jO1Oon26Q0U+/Z/0hbCNqJl4X0GdVDOgiVvcm3iVtBrNUnK0XpApB/CvzV+6wTb8RjykfKt87iRjyXdR9sP+q8UjezckqbvKX8VNZanPa/ct5oBnloBUClrAQfFdzizyl2qVtr+lo66mRQlpuPeJRvACR5Wt5Wf6/WoX2szRbiRh0ZIew/UuVZMMzNt/T4jzga9BIp6FOxgAgFtQq5onthAoTlwuJwUOHasU3Ek15PtZ6jotwdLWRlXYz2/I4GpPKTKW2IEim9djBnGg1whUalhOZlMqPvZQTTe8jMNkIbow6MNZif2pQ1HT5bvDAZLhsb33pIUH8lM+QTftd4OlPkb/6U/8kgziFzVEnm1cvX3sXkYK6EG0Fl4zNX661y19GQsJO/OCgGAMYpjUGBoBdbSBTcNpQcSeKJTJ0jXKTTgaHH345FMWotQeC4lqrw+18P5UgCX3ulYPPQwLLTpYCwTA2h7NCRZ07rIFPL16up4K7WDVCY2Iitl7CnQUUahZH4djsfhYbGRLvV2zGKxpwp/umA0FBNpxKN3yOFoeCQT1WFpEUB0ZrVPVf5qHjS3LHCNUFIk818NIQ01BRs5iF/2SFR6JtG+HxnvTVSnWuaQpm8FHoKF5WGisY6OVfYe2kq7cxfR4Pzr8xPmBP0/FvDsI+tGEdxOvBAYISXFyoLlYT0E4dpkPEuFQdlpOKCPnlFUWns+l07wu9dFVpHg55U+V3Ps52fXDwU+HPrHNI7Aq0QzVEJ6ArggIpZo6OhtQYFaT74MP4+laktTz0Xk351Y/Rhue2uhPc2YwHH1qRtC3wtaUuuuu70ic+XYmzyvFWzlsnnluHolu0ELqk76R6yujZCnfN9eH7S9DmxbOAOsdEWG0ev7/aPzn22pfGuzujwFzgkMZRxMgRRDSwwQUZ2xhSzZQRiBRPDG/HM+rpTzUrgaE49E5UoAIrgN/wBb5ZOFVXl26oTB3lKGt7b3lNRgA+VmJ0XjV5HQ3IrNZ4nf2jM8KGdxDI6wGgh//zWTtcSnQXU3fzaMlfPkT5p5BZ1GkN6zBvTPlTWSxxlx6DM/d7hmcXpaHABKjpuwGD64miAjnTo6Y5wxYjyxAzFugUvVBLZSkPkERWi2lkpmQJ8QExOK8qZQktm46AdGEGRJ44GNKTeIfLD2G3djgQY1ihF4XP0xHbeFv4y+kX5shQDdNFClikTX0ZRUR93GqmVRL4iP0uqf8at+PcwpWDlPT+K4Vc6N34mfuX5EtJpx6Qofd+JfzlK2op326/y0KrbJoXH9mu7tKOq4dOaaCN3l/EbjYVPcTSks5MwTPfVNr309qiB/S+/80H1vlQj4beNaRB5NWRSw9pqmo+n8tORdo1aD+WEMHhNWc9zecvUlaMheRHaedXIFX6/T0dhti0MSWBWxqrRXCMgIxrATTEybc8apcXwlB7KFvWeQJlXGjZ8a9nKGmHS8FOPqLeliZFIwi8/q7+EVxxKPCN/lI/N4HF3FZL/rX86UKCXMrI4G4qzozLkHCWyTPnbMrI9UU/r6mHHTvhs1xrXabjV4BCx0lWaG36b9GZkSLmw6IuF6TwyD/OsDF7bUuoj+Ynnlm2dPMSV8tzOqrrOunmvoWta01XOdp/b8Si0KosH2xYcrRI/fJB1KPjX0F/F0WAb5ZBtSh4uhkkHtoGOSvUWI690HJUTHtLC8jRI06gm/8QrV/GRPAQO1KdiLZ2T2DGWLX5Ma13Ev/D6TL7UJlK/Vh0m7Q+/Na06XpxpaFuGtPE74ZBXxIU00gaxY+SI3FdElzi4YH6Vga6slVfs/JqneKxGxNO2kP9q+XsvPhJ3NVpYjusG6Ghw/S1tI+EzH3Fq3q1wbrkY3Ffwh7rQesgzwp34JMvS0dKBWDoBwqDDJx3J1FlayF8ZcVPnaHA5YWlbnDzpaJBOyEhySYfNSuU7sLQEDxRKanICdmVhobA5Vwe5mWH5881rJuMlOEhgWM8IZeBwN+UgH4C3gbyFA8KBgmU4T3QsNcnRdB0N2MBffg7n21YLrit8W5z4EJeAmji2zfjed+JC+vo7BzHs9FMH8VNtP+t8enFTHA2l81rJhZRb0pgM/E6+szryh78dkbVtSrcciCF/+VDe4WHSLL9J3lCDAog58N9fHnk1U9PkfXnjI2Wto8fiQ95TlqS9Dy61fYz0NHU6zqh3yi9kiM+zXQJDOhpol+JIvMgv5u2HlRNWG0r+NG/lcLYb2oQw5fRUkZtfqY/4LvFqyZ4mK7Zawlx773PrXtFKvGgLN2SK6RKmrS5iNwfzkj7CaB6Vw81cTW9fKR2EtbyUvdJXZ7Q4lw7WU31h/8CdORz8sz1V7dm8BL/qI4ijyoHvO19me+Wa97w3bwBLu0MMpyyDZ4RFXCvj5Qdhr6iqnkoHId8qh3UISS/hsL/iM6fdmLe0sy7qFeuZjgbq6m9hd8c1dVIrnglT8rOgFsoJdd2vhDWfWJVaCq+cIlgZpIyxjcsDDjxo7+k081tt78q5Lt9rL9hfaIUdIT+YY+KZ9Pb1klcsHR63/5b9MnBuW9HR4CDq19h4TvuwDupr8S08hT9pq7RjnRfpxAFHjaFdY9o/nJDlWWc4P/9BhW/18R9xNCg7Dd2RWT2y0YiZolMQFPkYiV7vxU6vPw0ESvNBsjajzkWB2cjh5vIRhF2OQrZh6R3zO72jpfHWyoPYKUiTHS22PK86HCkQa8JF4deKVd8l5pLlRWlmRzphkKjlqL/yrGRX3tXqaKp8DJMqCB05VsjKxBnaTWobkE4GG7CK0kbmR9ZFhekhk2eDr9XBPFMo+U6FQnmr3lt/R4sR8WmgVIwrvAVm4KmA59mqRwX6qu+zIa6SSHg8LdMz78m5atzWT1ynIsNQyXsakLRXEFlX89fwFH4FiQJQ2tkgNRzMSyNYGlb5VSAk6CChqsI3cG+iqhL+FE4S2on3t98Ir4IiDSieKHDLs6IUFZCmVDFXxorPMjSU+uqcSqXNVWUknPKMBosVK555+dYOUE0QJCPkn0zDY8mclag9rb8XfvLxEPdJP/CpgCoPVUyOGBUPuPgyN+dLq/ict6fR3UR4+F5jsTgahB3eUPmIY4owRNDoBfNoAi0aWj++JzNAgLb25+3IInAXzno3nhgxOsZddGXszEJZ7jrRcCke6K+/jFbgogU4cLFVqEwf1dE1HC3wQnZGgFCcUgL/rJv8UJ4sAVWLOOdSxsSZc6Lpgd+NrXbYJnr02z46bNkrHQ1ASr586eRVOr1itQgNecVOvY46RhubIPDBu4a5rTxRBoMkDxfiJ60FocJ7cTTIcQXt8kLSEdrKf3bOmuHY0PmlgszRGhLbJpMm0oszlam8Jc7lLx7bgquym4KjJjgCHB1bRrv3Wx1IzrWDgVKGGZlhREOG9JKBefi7tCHxZVmk8aR9wwnc4xCoO7lXTiX/iCN5xooLjOmBSHi9/xdHQw2nOhyIMpE+K1fKJ7Rl7gEt4fFr4bE+5mPY7kr4kZaG3CkKu2pjK2Uyi68O8cNvT//W/y530sLD7zPUt/ZxJWuEPbmI94nvzEB5UgqRXp7Z1pWXKTMLnMqdbDdcdXTb7j3MW7oqr4rhU+ZJ+rw6MvcCWvUor6tWzQeZRNjJX0h1eFimLzKtcFsDbtySN2tNObZljzpZRz1XLc47wKb6duzgI3mGQwde1jfvxBvkz3bFlWcaLNZbI1O+SFkHTsyviobwI8utdKF49Z/8njJc2MS76WxQwgHMydf89pntXNoJS36f98VYF7SkD+8tK2UCfF8Z/b6z45rOUtLk996bnqPCibCYv+mT9lw9dISov6WdBiiFpJ6paOr3dgKEzy+yrnyrrJTG+d401o3niU/SKuNNr4z3meULp511y890vM/OElcN6ux48dvv5FOPQjvpV3BopyvxwWv1nvrP/DRWxY21FjfCbzoNcfGfdSfPTAPcqad4n7jgeX4Hf4gL+U+j2e+kvXAJSdYVWZMdJMoVZ9kpQDaYf4UL8aLeyG9ruBAf+Zx0BX5wmLZLcbaIe/lNuplOfIjPggUxwZE3tWf8rnioOATAR40m1lFcm4dlpW7l83R8kUa4hdV6+Y8kye9mX0kY8+Z/PlHf2emr3tom/G0Zlm1eHuIuB5ykNZlZJ9ucjgYPp1Olw1f4KNc2YiFOkVTskmHeg4ByJY3/8/B9QQCXAml5wd8Ep8AHo5RviVpAYSugkCO0N/Om7fqpyZ3Ohs8E/uCsZbQSJ7atO2GTBnX4KXwir3iIG+uqPSZ+q9PM6+jH+8Q9fKkLYSlRiWmniSvS2R5MK610gKVeT9CBlXLNX9qY1jYi//jbPHyefMu9KCllSq/SRsSOR17Nwhsr7Z/qnjs5KcWo+UCAr+B1HZ7SyK3Kfb+q/E1+sc78q3jVMj3NV5jq2jMPyuMCk/lX+NQGbISzSfxlO0xYyCI/ICPvgak68wF/Slm+K09871HBkG2cZ8IOsbEtiQrGkSFc4q/IpOIktn1Sjbq6ZOc06VuzQYEl6U1+aXdzryyT15U14mAxC3CLH+3uqpNrpRNu3ptnDdTEj+/q8O8L3ov/tLN5Zzn2lRxcU94pw/xG2VryEoc12WANgSVxDm9rN8tTHpWMFJMpc5JPC20qPSWuxIF5Gw0gXP5JXPrTA/j+7ZGwWhfqmjir9bm4z4glbIPKMVNykJYF1+ZnGSnvuapTrUf2Obmv8MEvpUPypS1BPjETB15tLUYK6uhyMNL70n5q6fhMmlhXnWcurqycSsdDVhTa8K98x7ukpoV9e4//taMh6U/9vX6D7IXOcBLEzndJyZLIB36ggFXZyEgIK1pFCl4bfd5LfYgLFbNjo8dPz2Z9SbWMFHo1wWfTKWkUuhbiUdI5GpvCF+Yznb9NoaEiaU3lUV3L3f/kL42ff45QyWxNDYsj5+wYUkerkZ29FMbC/++OClbfFXj/NRUwky+sSYrCjKWO5dsC9/8NetP98/tSlg1PD54NSOFgA2vo6GcefucbaWn6f87DRCWf5Y7oQsc0TFSktaM0TBVU8SQX5aXhVfKu0pn/v8u9el9P0/JEiAqHlXu/FT+5cCFZW46YKgdvskPGE55XMGtspEKh3vJY9XwZ/CJecnQEHrXxl6PCwjdh//d4qX3CpcJi/ZP6upZ3UlchhwiDnxVwKrwKHp0MCkBhzzZTw5Sd/jRAgd3OYAVVqnzaj97UOkpQJxoLeXJ1JVXm/lPJiHnvx8hH2Ef8+xfGzs1wNPTuFQ1wNDTF0eC0iWacNktrURRbDceU14xyC56tj6aQyUqb0tGwkHPOZ4tiAquAtxm0f/Tp1ze6br9VtGXni2jXPvOkhXClAD1H9sCBeSX1d2RHR4qhZDoaakBYQg3dVW3rHuSr6o/4LDyWwFNCuYLJ5EXvUhkmdb0r7wu1qly8Uo5KAXyKPfdFr/ISgirXZctxLgKvuHJkXho20DEIzrUxS5uyrgVPq0Lvb8txektjHAW2drnZ6S25CjFOo6RdChQs0FV4WAdFSVvLsaqGWcq34LPguLq6jagLkjFljSIawGeNaPO5bSLPzcW4AUcBGwFLy6Z0lMwHvin1toBvFML9vz8KRFXtSpoKd+WupPBZybHKtzwv5fBM/MPrZZ66ztbCixpORaL7nWc9zUtO5W95XmTn/xT2At+//i218fk3S6jKKEYvqdRfHBp6wu3hdEKfZgcs6VLlVsFp26ofdUv+RDZV8gcpytfFgLGmyimPhvBZhUFxI497X/9dJqv7Y2lV+vLQ3ORTTuSMRqD864hMyUPZUmSNhqXllfpLB56rv/M5qWs6tnqvw7Ous7uKTCv4Kqmqv3UA8sN8NfzMz/eppyhH2MWfHSFNsnIUPAq/Rq3wyxtpCJsuce2Xpqtwbr7qJTtWtBDSFZyUdFWq8gz8qD9ImAZs5ldKroe9+oLOImuqGI7uYedZWLKDBlymykg2HAZI+UxT/TFaKw1XEiXt5Zsan8gXllUZ9qXcwu9C7H1FC78tjuryJl9nXeEv9Jr4sc6rdnJKfqaEr8BJdhxJJ12FV16oyqzSwi3gpda5TMqUkupxLN8Ue0jaaBsoz8tR8FXWSjDaxOmXdH7rbI/iHFDu+Z3HChwghb58K32BSSd70emljZW86/+WUsq9v8WIpy2xDAbJu8WSSJ5RdoPziu7lS7/g68xslWu+5B2wZK55LV+UtPXvcl0ZbWLbB4/NSopWh/eexrqolgloSEeD2KowVmCQdqYsR+lQWX45bMe+ty5KgH8+Sksv9fVdxfPmYK7SXuawPVTyw3R5QAt5xyNlWOZfD4vPvfvXJ6UU33vUQ+vdN1P75J9T5OLTdG51UjdrUqY+yXvWrtSxynHVvHhmm6m1uSRNTZZYZsoIlHWFowK32Ck48U3Jtf5N9eSf4auvQwWHdag/5HHLE6cedtSzM50OLvlXfqtoVeUBjLRV+zf5XR3svl+1nt4VuM1bvNh2PTIKCxmTPMHfUqf6WmSi/FPlV5Vd3lS8Upyp0LwGo205Ia6TgwVr9Xip8lvlOd+kc0i+TJuyUM8UllPJd2VSU6Z0VhDUfqxy/00Y//k93E+GyKTUUUQEEZ2r01oZopO26ILqqwo+P4FXbDeJZ2GrQQb+5fiih3TUF1yLRfXsYuxkdWZG1NFiha6cfu/BHXnnVux8W6bQlmfmax/DfNzu0i+a4IisWl6hl3l8e4//taPBqme/SKIm4ySdbNcQsyDb0RVXGNYT6f7eeRT65cdJXNCbxPUjPk4hqYJNgkNUnsmEPk8PXSqiwhSFiBgLacCV0Yo0wiWs+dYagt9XHd2iTOqND0qtO1b9Xffw3/4wpSXQhLMsE6H4UppZDeGTiUxmHWR8mmY6S3jme4+sI1d7IqatfV/wApvlfYFKz7NhkTaYliyMJxNmIfz9vx8i3KPkU67VM8GDRsAjrcSxo4J2ijTsi4Go8VgEpO/TscPV3LLRWgdudBylME2niiNLZURq1WiGxBXfelTCdVWo/hm2TLjqn/yUP3xUwyBvzaFgQ5FQebrTEF1VEFZVruFYungkv/mMtNY5nUY8L7xW49laGTWKl5GO2rO8ZE7/5z9V0bUS6xJmfuKS8rMG/C44Fr96jMG7p7BCpzxIK3d7p8e51N1rOSwj5/SSXo9wzvDzYRrKfOUoOaItHQ12EObNj8eGj4iHz7uQLdKCrXZ6RwvStkQ5NiPbjKHRGKfE9DDzTEPaI1cFBj5HBGTpVEh84Q4UuAjic8qds/Dz+NuMadHqgH2ib98+sRHTJtbcpEewvHjmQQW5kimg5I4gKAjXPhED5uvq3o10QphGXquEi49I5eP/0yGePAp31Kfyea7/ggJyZNG5kKaxjiW7KlOu4EjZoSyxw1gW9ir8Z+6qnnrHQOkIla95mwmsn6m49T4VYGlP3OXhY2FyoTEdDZoG6UBIo096cW+m2dZ8q7PCB4mlWvnm4rnqYRpPvxFKlZoK0t/lXtise8XpJZfCYUJZuppixmgL76sOBzcefmAR/4djVYjMVXkjj/udBke9UW8GvE9ekk/VK+Jc/vcVrZtnjiykXIT3lU8qeTsbLp5VjlVLLIDZgZOXMr9VZULti/+XS4IinPyrDK+qTpYmLuvR4S++EG4uBW4T8ZwHqSe4zQU2uTcSzjqmzFQHklOWx7O6MsCJkW0eGijCUUosJVfwFUiy9EyTH/Cngq6k9r1SU+6sf5fA5j2wga9SzwJD1hH4AYmTsmuVdW0I24kyS31vbuZuOo+UcZm4PFdOF/1SInuq9CV1+ZuyULojXJL2ZJYdINuBh3mX7Cin8NU3y6lPVAzFMhXEtM6VLnqtxo/AVnBT5EA1CldGGykvdTYF/jP/VAiwqNohXSqbJJ3DwCj8wlvDishL3Fqf0vqsDCd8WupFShPX5V/4xXysSzGYfSYNgJxTfIkr6+eR6aBHeY6AtYbmyeGz6vDbLMxL7XlCw+8qT9PqcCg4y4Spa1Pn65BST+VR5VtoX8rhN+8Sw6uUb1H5hqsglHrQ5hOeUhepkfYhiR3MsDw7uQWvtTaSMBf5XAOi7lLKKLdV3b0TrlJ2wVWBUNxKDWWjTqgi9+sda8KbX9eupU61muWb6k9JV6VHJ/NAZ1NGY9USlZKrL9QB5fRbayZGPctOM/zwyAoBLdfEU0EcLwpNqnaQ/FHDY36X7wvybe86xZN20DTbVL63fEqv5V1Sl7+Zh2XDb8JX5zy13XFveV6LnS0ei+Nula/9in+m+n87hFfcWd+M6oUuDublqLcRPsIuzwNf8odtNOUnr3jmCLO2nXyjPtFWtTNeF5GR2MYhhr5Vjim/nEZT4fR/Bm1ipZbUWntf6FTlU9pSqX8hm7wuiKYrn1rHIqvq65SJTJg0sh1AO/J2TQ3tEimiba089bftRdwUTq5gqeVfLt/8W1/4N56bVw2shFHcmluRP/kLtOOUJNLUZxnFaQ7qZfmEfHUO8afky7PsV5CPGQmn31ln65P5W3/qJPT/s+P/Y+894C6rqvP/zfShDDDD0MGhFwFRQQTBQFRssSAaRcUItlgSo4lJLDGJDRH/H7tJTGKLCIpKUaoo8FOKKE1QQFCkygwMQxmml//6rnPWeffd77n3LfO2GZ49c+7ee+3V9nPue+/Z6+4CX+NlhaVRqs9He7uaLWxiA6wqbKtZVnwHEXzwHxl5H5u/8JGqH7DNR+R45jSP8JFnX7D2DUSNZt9iXvcAPD6bKyy14++EPniQCLph4m6CBzawZ1rBgLvGLEmebeKHWCs6AuTrcxqhQAPRb9583EC+6AwS3lx8WBtCrJvjA41fyadMq99szgPO9R+G37RqxgIfANXDR/WB4EjbTWDaFMECfh3gi98/TO1G+kCMe2ofGujjgdM/YKyML/FhyK8E/PpbvZHsV3sfTNf++O3ObiX+RcrLQSPn7psB98PeNNWb14kZV/0WoU+2fok3rD9QwsGbjjdbfBhaX6p3FV8vVjb/vd3ehJ4blXXIj9v6IjDY1DYFrIIoxtvNR+z4DaFgCXt5cjl7cbrdO/w0jPzBhze/YcbDEnhXflt/za/qFy/7I6I/fEhkPro96nZP2dyJe8YGVqxPr1L8umEfks3DAi0ZdmV/yror4gPQ/plY9cHAFxh/29UDHmXvB30L+bz/4AIdRuh1Gx/g/JLLlEz29AiMQwX327/IzHDfPTcdkdBXpoLmXyrw4ILpwxV/uIkHNSOAPbMbwMgHWuG7tSHjw37cNqz5h3/gUav1L2UUI0+ggTN9/T3F+4pAA+v+bRmEfdumpffcm8499/x02j99MB1gCnbdcy/bZduWAdkfMMdbsm/ACpv9wMditTeCLQ1iaq0NiNml15zwpRrsrM6XC/spzJxqp6iw0aCZu8/2VfjVXb9Ps//iRenwww5LTz70GWn7J9uRUXOzQAM3kiUF9n4zMDzQwGwAT4aDGXC8sOV/M3y4cNV9dj6q/RKYWENHW1Xh74m1hkwxZkMr3gP8Dfg7CRYwR5y/C/PBH1IMF3cVsrXZV6Px02e+VPgqIiFkd8P+lqpBgd1D85sHJV9mRr94CDNauIUEt4i/G9/0y/R5YMiw50vLN3j0L6gqYICXRnU7VciAWvUQQEtfqvhoxUM4eO9QjrkubrYWoGxoOzfzNugPknZn7N7aZ4N1nk1Qvadhxvzz5J2xl+hU5H2N/rfjD6JVZ/3z27+IHWvTY/TqwYD3KZ/vhhGf6XU7mIKj/20bHqwL5YGTzyj/1TP0VB41r/7QYHI+GPL3TdPUWYg+dVKrGv3hcjf5u60+AyGCDb775yHvUfzw/tuL2eV9hSCzYaIv0Pmug4/9Vegvm9DhAlNgWVpD4u8dPh+oopa/j/qzgjvTfJ5YG3e1Nux6XB6epkarMdaJsv3Vuv/VTAU0VO/Lim6YWV+qYJAJ4Rz3u8aAsv+yyfvbPhOqh/880IC/7nQljCzYWOK5wL9f7LuYGTXuFu2R6nvJ9w39d0jNjr9fTGc1eKje84jwvoGJzzxjqrTw+Wp/u/Tf8TQe39vA6AQX2WPJO4PZsI2/xscmsbT5EgfwjvZKc11HkP7VRM+pByGYO3PeL/5wjr/mQzzc9ikyfoeixqNWVz0z2QCJ9wDvD/MJmssbzZPReIDm+4Op4PDF9zYDq74ZcSZrPOBLQkfdm+qext+J8TCzDH3sYZTfq+Z7yuz4e7tywF/dNzCz/9VzmHXCfOU7Gpq/J2k3u/6gjz2zUT2jWbnusyujjKy9x0h+3/yeWMV0EKBGwDHJ5WDGFnYsVQOGqu63KPoIU8XY2OUeMUPTwK78s7+Lmqvi9Vf+gkqD1pClkOFz1QMN6LNy0GFFQ9RDGznXJMPLj7KmhtN1Xzyn7pcxhhb7HHIM6Vvwo9yq/v1Jbjp5pubvimdhnxUSn1vWjDcEfPkach0uXNEb+7Vd3lskPpe4pwzUkffPaKNhrjKOsjplxSB5XtIr4Uq88cFwtPcjswIYxBIwdB/Nj+p9zuc83xuGMj6SzCf+Jjz4Yd8VLAnks4rPLv7+qmeJavAZ3yc8Z7vhwNsVdXlxv+0l7AUbPkE2f3CfvzVw9T3koJGMoXqmrnE0HdUPTNHuTM4a/fTp+Sbny5T5rLMy36tVcNS+o61P1fNpyIJDDW6dVQr7yE29o4DzRjCfwJa/B6r+GevvF+sTezPYsz73eypL3y3xfcfnMe9DXyrp3+H0x/RZm8+WsjZwQY4lFVXivUt37PMaSyWeNVfXzIXr1trvRofh7sr5u7Aiz/ng5XuTMD5xWe4B7dVzCIz+/cazl9H57OLHAP6O2ZthSj3zgve9f19a39DN8zafrb7klO827jX2vRHHSNQt+fugGkdj2t+71ntScHplPX1Z50BDDZvfHzbZ4s3D9Lqp7FhuoHDffEaDAc4bc/IUgw3kjL7GBiUMQok6+RsRsL2NN5ox2Bus+VIwEX/45APX+GLw5w/gvubYGar7ln+4Grl5kzVvopoWfPDQkbbUjd7wBkPlr9vCTpPqt4m/wasPEX9TweJ9tDz+kFyuxgf5aAeU4DG8+MMAA/+ihZ6bi3JttqMNnZHK9qZuCho/0G0+4zv3pv7jdIP+B5Mpw4/QEWRy+6PjIdkfbJr7a3T7I/Xkcm2C1hp9qThbXmsGxHMVkPGb3HHLGws1zlPTnNfK9mHNB4Q/uDVfVLUtWF1/1Evjta7IepiuWExPqIIQPoQNfw+YkqA3eu1DzZ4AbA9FhOorGqu8Qrj6sGa4wlpTx93vr7VOMYIFGtbaxjf32x4N5513Qfr/PvivaW9jm2fXVjbanWkbC61c8KAPPPl75uLrgDPB2U8QG7agwV9si5LEaldofD3P4mvCAgmLH1iQ5lv9GrsOefGL0nOP+vN0wKGHpJ3sfOdJs+2AciSav2GrRp8ZbceNtfvBA6grBwuu+PuFrS1BD2xLnrrONHYelP2BiC9CkuNDIROC5n8HRnO7xmZF+urumqFJdj+qx/TaKA35+5AvZdcNlwl3PNTVTZg1Me+il8EGK1yW6n5zV6uve3ys7DJc7CvDXPtRU+lPH2ftQ93HPs4+KTRzv8mrfuGLPTTQcVo8t2K3BFu3FLjQHvczeB03q0Qe9zpvb0AyIzzM2OUPcnzGtCU66Nhb7h2yl7zTbTLdaN4vE2701bq8jlKr43OZ/DPT2uuHs8q+1aHDju/o4EGFOg+P3h+j2X/ayDwVmHgLjW6203bIVNL9h0Rw0+YDE1PA516uoaKjuqa6L3hhhVCOPzTTF/v8LN/b1T2uRJBsEt8D9Nm/G2odjc6Gq9Ib+Lqt4DVmp2PcEmWK+d8WNOeBTqPV64fBDoytpa8/lI0vvqf8PrS8tzr0oqBOtTsBWZA7cseKv1lj5jOlJ3Mm6X879LOWs2LluNVRQ4IW/W74jAgt8Avm0OeCocAqDR9yVs/vleOBDS7uYc3v/ajpllWplnd9RnG/sjYv4nvtf7RT94RykhvrvCf+mVq1+nuPPoWemuxiUSYPtUHrqNc2gs/7Zp8v9XdN7kmIVzSUxBXCwdGX+99Z7VDz99Q42F97aPS9WWJGH3acNfgxDWeerI3mwAJMPRlfsELiWcfaqkEwbdFYs7uYK6oJGb2DtdYf8s3fDUwdjJ16qNWi/Rsyikc7rB766U/zWWP666Br33ur9jn6j6qQgcb99Lq9d71uf9vhpvnuz6y8t/x9Hg2ZP67PXqKp7EMH3RrdHSNCx28I8T0QuvCHi9T4HYoqcscrn7Ow42Pzd2cEsM/7VKvskI1Kr7bgcV+tgivwx70Hbhu8AABAAElEQVTN/ecXF//cN6bmXtSfCy4Pnc/PWklgb5TKV6Pjc54a3wp6zpM3NfwwRAW9mYCTeamJMT7BZwIJNOEbzQ0v7LUecmsnAMnfsget4rMQCrJ+mUjoQpn3DaVtCXu1/rAd/N1E2tRMYNqIBBrAAkyX2y+OREiJpM2wc4eh854kesfF4JhnJxJ4EvXkhvFL1OR8SUUGLnrLFDTYnNVsuAPRkAvAAD3TmTf3LLfpaxNodLcINKSGyTQEMWhRL5Vn7VFs3pCZmhDrpob2kKdc8tEWtJKvrCPfRoPelnLesp22sFu2daPnfKE78lCGLDg1Opxg9YaQa+lfDoxpcRF7aWxArCu0DUZlhyzyg0joDbnSBnS7GJvzcRdvfx5cQgQLIQaNj/jJEPxD0Ap8CtqX06q1NkvIdo+/1wIN59uMhs++/1/Ssw94Wpq77dZp4d13pRWLHkxzdt3Nj9S0bfQsar00zV/4QFr0+MNpqh3j6ucA28PYspXL0vxH7k9TNp6Tdt5+ngUaJqVHbN+HVY8vSxtvvY1tbrU2/e6a69Lhr3lNOuLQQ9OBzzgk7bLP3mmy6XBH3TfzL1LeERj4cuaCz5Mx+H0iD1qXvFd73tborvWU9VCPTFzQKDsvL3b5+6wu096kEMrzprEq0ERyfVWx77UmWr+bIEfd2KmxCieUSqCSqrwKHYSZyGkPF/I8whK0V284a82FvKF4CQUF2au0tckHLZcNWq4nb4feTR9tIZ/LBI32oaZcj8uirCC2ftYET248aCiq9eSk3PmgR+62s5egh/q6HtWMs6MYYg2xm0DQI28E6gL0fsoyppCDJy8HS9Cinuel3sCXz4CuKVcYfEGLOsJBC0W0Qct4SpZgLfNMpGwasD5YGyhq7IRQEMp6WIUePNCCj3JOp54lx7luz9m6iXejo7JXW5iEp5sdV2AM0d4R6AxiKBpk3k8sd7K2xXeljxqqb9o+jko4Plcrx6rP1T4n81L4FBrIq6v/p3HFU1lgAGQPzmvs4kt/MCn6FaaQgVbWB6MLnlyuTSbstbX1og2kN2Qb/blAQzT/utA7HM/4nW71nNTwZvRcLb6U9fCPPNeV85X0sh46cjq0XEfw5HnOD29ez/l6lQeygWyjt8VIg7sxBV9O67CdG8v4G56ivaFbIW/K6W3l8IO2Njnag96LN29zO7VQPj7I6V42odBNPcqBiddrB1x/XYa3qVOG0QhOizbL19M0IoGG6Hv1o6P9smT/Yr8G2jjnmFkNzFrwpRU2YGCKD9MxiaRCK58X4v4gn5epk+rb4AMor/AdQMqZ4yZVLSPzmutH43BslDq6edamO6cNVk83/SNFL/3IfexlI/hK+TaZNp6Qj3wwcm16kGvTAQ3+tjZkQlfk0Ejd+KvW4b3mNtDPs4flnYEGyJVx2EOkZq8DDWHepmLbZpCsNZtkf4sP3nd/OvecH6bLv/X99MpXvyptNXvLdMmll6Y7bro+vfBlL08777C9TfNdnhY+9GC65bbfpQWPLEjb7zIvTbejxxYvWZwWPfpw+tP8e9LcbXZOBz3tIPNiUvrFz69Ij8x/JB148MFpqk0Dv/Pue9PMzTZPu+yySzrgqQelvfbbL03bws5U7va3W3XFOmI94eIDpumUNXpEPZiiX5a3kLLW/kX4Q2//1v5t8MfVwV/7Gcriy6XhMSHkGmGvNK1DKXDv/aqF0BTaIu/URwerluhq5PDl5ZDvyPO+hOFcCCUhQHmgFLyljja5kidkgzfqJV+0DyUfSEfYGozOgXTlOgbS2629G32wugfrY/BFnusf63Luw2D6PxL+5Tbb9I20HwPZw4eRttnWr9yPsbDX5kNDy50xolfX0ak2caeFLcv9oZ+8CjT0fVrCmAcWQllF4zmYXz3J+2RCAv2ZjebngpxGGVm+7G22HdMIvWxZWwrzbW0jQQvXQtdo2RuunVyuE/LwuIIz+Hr5302+T9PYlMLX0lov30veodRLe8OxU+posz8cvW16BkvDp5GyGXoiL3Xn/Y9y5L38DX3BQz1okUfbepavc6CB/oIhV2DhM5zthbWAzEaxcYwFGtgtvwoqMPWfOkcecqQQqe0+tNFy3rgP8T3gigb7Es6W/N2MlnxlPdc3XB2lzm71sbTVzYd1oef+53qGg1s3XaF3ODpDdiDd8A1Hfze9Q9FlOphJaZP8/B+u8EDT93tHNZEeOgl6tXTCq8Zs+2RYmGK5HW9pK2vTwvnz07ln/zDddN7F6fjXvjZtZUsmzvzRD9Ndd9+R3nzCCWnP3XZNS+3oxvsXzE833Pjr9Efbb2Hb7bdN0zeenhYvW5Iet7Vui22T0p3n7ZYOPugg+5tfk84//8L0x5v/kJ75zENthtPMdOc996WVNkjdcqu5Fmh4ejrgwKeljbewfRHod95361eMZYHKH9uYGuXTo2r/6VEeaIBxMKmNL7c9GB3B06or74yVc93Oz0sIRh4KB587PoW4fw5m2gevrcXNXDjvQ04farnw18XXVXepc131DaVP2B4re2U/h+pnN/6h+j9U/m5214UePgwVk+AP+cH6kPOHjsHKwtcmk+scSBe86Chl2vT20tWmoxd/tIX9qE/kvMSol6/d8Ougo9AuDzJEoCFXGszkcdEe9Jw3nKt1+g0dqGx6mM3A5rt+/HPfN7xrRrzNVG52KOVSV7g8FB3BW+qCPlL61kVP+DeYnD6Mla3B+DNYnjbskR1uX3J9w9UxWN/hG2t7g/Et9ynnL+k5Pnk5l8nppXzwBT3yoK+H+YgEGnxGswEXS3Y4kq5a90wgoYruMkaIWQvs5UCwgSUW0zi/x1KOe1vdmeqXnDfuQeQ530B6St5e9W76Q6bNp2gr8166cj2lHPW29l762nSMFa3N1+HY7ta/XH9eLvnL+mB9yHUik9dDZ+Slzpy3bIs6PN3kg4e8jQdZQgzhFTzVZa+1cU6jCBs+CM2fk4xtjUUeltgeDSvsLOd77747/ejsc9Il//WN9Lq/fnOaY4GGs7//gzRj7hbpb//u3WmPffaxDX+Wp/vu/1O67ppr03W/+oXtJ8lZ8BZQtKVPm86enTabMzvtsffeaf+nPMU3Wzv7zLPTpRdcmPbb70Dbn2Vq+tP9822vjulp9py56dDDj0iHPPOwNGvLKtAQPYkAQ9SrPtm+ABZS4djH6JuHTvwDp9qcy7rfpLr7TX1dCtjvlpq2DoNRsTyKHQpCqs6jmvNCox5tyEd7TYsqTZFydqd1Y2qjh5JuOTK5Acp2talqo3VT24uem8v5hqu/m75c92DLpQ8D6e7VXurKfcjbch15Gf6cL5ePcq/2UlfItNF76Qm50cyH4tNgfW3TSR+60dv0ttHacICvm97g79bejd7Ndjd62CHvprONPhh9ue7xKDd+D+RszViylfUKI2YlxJencTSzu8IaeVyVRPe+1xbY+4G/Wr6YXR/08jKSPzQTXLDnZD8StP/3nTUOKWFlqCl62iY3HH1tenrZgD+3MxBvr/ZcT5sfbe299LXpGCtam6/Dsd2rf6WNXrzY7tVe6ip9Hai95I96L5vBU+bdbEEfjL5u8mEn15GXaS/rIbOh5iMTaLBIA7th+zIIQ5Cd533DQpvOwFFIEWAAXG4OezNwsQHbFAs0lKAPdAPjZuR8eZn2sh4yA7XRXvqTy0Yb+qM/eXtZDv6SHvVo7+Vv8A6GJ3jHMo8+hM1efvZqQ77UFTqjDXl4Sj1lvdRT1nO9ZbnUFe05vdQX9Zwn5CKPNnijTFteDz0hU+Z5O2GE6kKHaYxRugsZJ8z88WGMK56VaKfNnl2W2uaiS2wmwr333JMu++kl6bJzL0wHHLB/2nyLLdKNv7kp7bn/vuk1x70m7bzTzkilhx55KN3y29+mG669Lt33x7vSUjtNYisLMOy027y0wy47pSftvmvaaecn2QyHJemSSy5NP7/8cpvVNMVOH1mRlixemmZvPjttv90O6Wm2dOKAAw5Ms2ZNb1wL98Jdcu+CcUy22RcebHBuPOH0BE5fyHcBh94/hR7ybgk7wdeNBzp8pMqvvryi1q/Ng2gHNauElozUUuzlb7D30zQYoRAeKG/TVXec2TQ0xzUcVaVMv77UDEEv3Snr8EHL89LGYOthM+fPdef0vNwm19Ze+p7zUC7bQy95Xh5IrmwfbD1s5Pz4FBf03MecP+g5LeeHDk+0R7ktR44UvJFX1Oo17A1Ey9vbyqXuso5Mbisvt+kr+bvxtNkJ3rKtrHezMRjfutmAPpCdbvqRoy3P0Rf8OT1otIe9XBb6QCnkcr42Wt6el3MfoJd1aOjjW8YPJ3aG4LIWL8IRFxIDJJexbzuP/lOxqwk2IFvTyPn+9oA6337VaUPRikXKkSM5nISObgndeQpbkedtebmXTvhKvbls6M55uunLeXIdZTl0lvSy3s1OyTeW9dL3sl76MlAfemEWuoOnl67gKe3n9eDppQf+Xu3d2kJ32CvrQW/L23S20Qajs00ubLbJD4YWPORRDp3rYz6ygQb7QLTVEb4fA6dP8O5h/wXf7NFyEjeFz9Q4XxVKLKlwhponyr3yuMGucxBywd9LZ942kjd4uLqG6nPu/0QqD7UfQ8Wr1D9U+YGwWlf9pXwvewP5Hu08/OTBBl9L0RgyLhid2V6gM5LnItU/knBqBU2LHno4XX/NNem6X/zKj1WaYXsvrLUgIIGDpx/09LS9nQ6B6GKbxfCAzUy4+w9/TH+89fb0+EMPpbm2FGKn3Z6Udtj1SWn2NlvZkT+2nGLFkvTHO/+Ybv/9H9L9f7o/LVq4yG3vvP3Oac899krzdp6X5syem2baSUjhFjm+xGVFT/QxAg3xe0712MfDV1CCu3+OvqEkh6yLQLSRAyEpaFVt5F57+T3gMolewoNxsU0+OspnvOmI+9VLXZuaXvxhohdPtA2keyi6QudI5cO13a1PoY88v0p/u8mXfL3qYSvnCb3k+ZXzjGY5fIo8txW+Ba2sQ2+jlboGqud62vSF/Zwvp/Uql7ZL3miPPG8vfRmojmypZ6A6MrnevEzbWKWwO5C/ZXs3/0JftOd1yujhqr4ujcLDa8MUViIPLZY3PBmtXxGmuGiMcuRGcgfMuj1b2+Jj+8z1nxRgHpGEpV6ppWe92AfX7UzDUPVnov2Kw9U1EAb9DE1QwlD7MVy82ro/XF0D+dyrvbRZ1tv8DFquNy9He+S5zij34keuW3vIt+mGlrdTjqtso76+pZEJNNiHr5+3a1EGArBs/OhnOLOmwpLPXLC9GPy4QKsHoJwn75tC2tEik+tAhAvYS7ebRTvy0U6eX7SPdYr+jLXd3F7gEbTwKehRpx1a1HuV4YUv54EWOimvL6mtv/he9i1oE7lf0Ze+QAP3yXoSPzOH8/nfFLMdYkRPO0psRsMae4bhIWqFtd19xx/TPXb6xFI7p3IjCzJsssXmabadPjF3223SZraZIyIWPkzLl65Ijz74UFpgmzuuePRxm5WwWZqz7dy01Q5b+7nCy+yRaMmqpWmpnVDx0KKH0v0WmHjskUftPOHJaZs529jsCAtIbDHHzh8226aUe8DVNnDFZgQa8sesoQQaTMWIpsqnCsK+xz6oVaIvZYLWx9HX2kajtdSR1zvs1w15e5/2qgQ/7f1s9RIqlVCvFcTbrO1+tYltaLR+OI5RB7GbX5gtfRnqLW1zvdQJD3rLq012tGnhW+R5f7uV8Slvox7ylEm96rSFfJm78Bi8hH/kUQ5fMJ+XB6qHPHykXvVoC/2RV5Jj9xp2Iy/9Dj970Utvc11RjjznRTffkVwR4O0HeC5AuU1RydNaR7AWDmP2UM0ySI4zzlpbpTdUYn5/x6uP+S3Fn6h38432vC2vRzl0RJ+Cv6RH+3jk4dNY2w4MIi/tl37l9bwccrmevEx7WQ8Z9LTpivY8b9PRRsv1RblXHm25rfWtPCKBBgeTlxoRNoJjs0dPfEjaejQ/3pKlEnXAAVZEfMmFCRKgGGqKm0ge5aHqGCn+Ybg/IqbHu98j0olhKKHf44V56e54+cJjR3XVWOBI/oYwgHhAcZygV7tHZu7bhpD2MBNHyy5fvCytWGJhAvv7XWMRgI2mT02TpttBlbZp6xSLCrCbCg9bttoirVm2Kq2xgMNGtkyKv+kpdpzt5I2n+L5VKyxksMI2mVxt/zjVYsUKoxgfnkyfPC3NmD7T9maZ3ugLtwvX3U9/uLNOMXchsUdDdNB+4amoA89ocEWj8FI99vUp5m6Qoh+R93FUpXjfRl625/U2HcjFBS/lnC8vRzt5pLAbz7FBb81r5tBJnpdbZUaRiO3wf6TNRL+66c3t5uVu/KNBx65fAzk7GsZNZ6zOGifzrfe+9GWgeg5Nfh/zMjxlHRq6S/3QxyL5fW8xlPuTl2Et67l42b+8npdzmV76cr6RLIfNyHPduZ9t5ZyWy+W6Biqjo+PKBVBa1nND61quOxDBXUz1Mtetv+vqBvLYHU39A/k4XrZ74T2QzxtK+3hgn7/X83tQ+pLXoxx5jn/oiJy2vJzXQ548yrQPlHJ9eblNLvTmeZThz8tt8usTbUQCDXQYUAOYNbbzIxczGLjYr4Frsu3XwJ4NRBXW2iwI9nQImW6gdWvPb2KUI0dXNznacl+p56lXG3y5jZALW5EHvS1vky/5BqMHmcHoKnWPdL3Nh17+w0975PgTOnrJwUcK3qpWvQ5GLucfqXKbL+ju5k/wR/9LXtoHkkWmM1XBBgbkDk5mJAYFaPV2H6ebhZrH5hP5DIXqdJh2y4issIvNXKeaEoINJlYdlVlFAfrsmgoeiCwEYXllhOAC1nPWVe5A5VNuNXPdcaDN5bzBjPoGWvyObi2+bpU5Dn2BhlwXbpYJNb14urWHX536Ktz72iLs08AbMDd5bptyZ71PE3b6ahVX1EMu8vAp2jtlo7XKO+11t1/p6guj5Lo7NXbWcv2dLVV/2tpz3W3t6Ml5Sr3Uczl483obf0kbSH/On+vOyzlPWR6M/sHqcr5QGHlpcDTqmYN8rkTChawa5FHLO/pfG85hyMs4UdbbHCv9j3rkIYOu0Bc5bSVf8JN344OOXOTwlqmUhb+xVQvmPHkZXWW91E+90Vc35vW8HLKD0Rm8I5Hn9ijndfwrfczrXs4F2hwypmCJHLa8HGK5bqcZUz9aMGcK4KHalbdub2Mo/9ZC/WDyXvZy+fAtctrKcs4f5YH05zpCpo0WbZHDk6ewE3neVpZL2bI9rw9GH/xD0ZnrH6lym/1evsNPe+RD8aO0FXYiH0hXKd/GPxRd6Ct1lvJ5vVs51xHlyMPHso6uuODJdYcMeS4X5cjL9lyu1O36c8Fg7mY42teDfEQCDQQNPHBQBxaizt4LJOorV670vRhYRuGBB/tZdMqUqXZxNnD/1IFtG/iIGFM0RR6aOuSDOAJ5NztDsVfqKN0aSV2l7pGut/VlKP4PxZ+xtDUYv9r8QW40+t/NVvwFYNPH9sFohLVGYFiORz5gp1IRnMZ5l34yhfEiu9Eqe0F+shE8opDsCMxKBP2QOOVrLesnLHcWGpDBAAS7qHLspoUb7JUaHlQBB+qrULB2ki2dmOJiFYez1bzw22UN5J58NgPOB9EM+qyGvkADfA2/C43cS38foVRXFXJwj2tKtFT2c9nwr+Ku2mNIHznUXIZeYSNSWKoocAal4uiUDakqDy2deUhEHp5EXvoTFtt1d1LXvRZe5ZrC/5w23HKb/m66wm7k3fhy+kD6h6Kr440xkOLciXUttznZRltXO93kB+pr7UvJVtbb1OfdyMsdWNeCfcHbPk0dMn3kdS7lvmPD7eTEsFA7UDaV9WDP89L3pj6QcMOYaxudcrhCHmUshQuRN7ScCeJgkykK0chDtKznNhHqqIfQEPJGf62oqWc6hmpjqPyZqY5imy8wjJT+DmNWKe2FnchL/rJeypft1AerC97B6INvtFKb/aH4PxS/SlthJ/KBdJXybfxD0RX6Ig99uY6OcskYApEbc87SrQw7euPqEApdZV47EjrLvAt7fxshWOsb0pu1NDJB6iMSaIgZDGz8WAUXKoTYp4HTJZjVQICBi7Rs+XKfTj1t2rQ03TaOgzuwpT3w7SDS0C2ZQC4PW6OjTQbmbgy92kys1U5DbAptVvto3WwHxyDVdHSil070dWvP27qVw6+WvJur3cw5gDTmttBb1gtbA9vpxlEoGrFq1cM2qz37jv3of5TDpx4YtNkJGurcJgQL6nkyArMLmJFAqhYaWCHmYDrRggEuaC/IrbRZSLZvykaTLfhnwQb2bwh52CYby0ZGWBOTCxBDjyUmGBBXJPdA4yRj8nZbQFEveZjsx3PZWlNbmrGRBRom2zIK+2holKCLKsmDJlWxeo1zzJsGOOmVGSxS6CjIlZ2yMTealzPh6GOQquG3UTOs8Rxf4C2vkIscF+KChmT3IT36wunIkakiRlAq/0JLxVPR0N6ZQkNwlXnYqvLKq+hPaEImv3J6lPvlKKmMdTbljra05825YAtr1Rx2Ig+hXFEhnDcFe7fcRRuBptCNvaIX9voxD1JNO4D9tFUEdJZ2u9FCRckf9ImUN1g1hf79zPqRcbX2ImOt2kuBvO4fVsZmQjkZwX56Km2djDkTCqhHHvxZnttw0SDE5w68uc6WeohkaptiKdqvUx3CNXc/oUbdqBfKIE+44nmHr+ZKWR/Iu1AWfFbPVVDO67DlInk5GDtoobfQEzMWct15OcTQFVfQBso77KMUQuS5cNAipy0v19VchHKH/rKReuiIvI2nhQZ7ntyOE8uWnCsrD+iY8Q5SVUcvS73oKGmZG03/c1pZDh3hT4u+aMpFW9j6mnOdPRn7RKJU2nLxhtgUgr09H8jmINUAbtvfR66+KZc6yzqeNsy123U9Z83LNDePm/lnbi3eL8v1Wzl0lTlyweo2ILQxOaNxBDP19TSNSKCBgAJ7MvQFEypkHn54UVq06OG0+eaz0uzZsw2iir5sma0FX7kiTZs23dZr27bzbSmAb2tro3W7GUPV06YbWk/962Ak9A5bRSjo5vgo03uZH3afCp8HtNFiqJdMob5fFXWlfIsJZyr5cmWtMjnDIMo99Id6Z6ESBNQacbV9SvYFCtYm5g7lH5wr11gg0ISmEAS0jRonsXkr41ePGthQFh1WRS3j/ClW8PG+E6zNxvgEIzwZjUDEWgssrly5zDZ5XJOmzZxqTWvSsqVLrGGtBRVtQ8nJ0PC4nv5AGX3dEqwkZl+YN7xW5ll2RWOx/KqXLlc0xJewH2Ku317iHPSwB2YR9Ki7VD4YoyLUkXs59HmvqIRC8uC2opejXvM1N7PS1hcc6AtbIFmm4MZWpTFsBmdf0KK25A3BhQy9rfSETJYHY0YadrFysFN8JPWjuc1Gp8W+WmO7LpANRT54Gz19qruWOmyYAvs/GPEw1VVvS8NAel1nztThW4vCktSLP9oiz2WheWoKQajyts620Tql+mql2rLunKYwdEYeGlr5o3GIeakb8dDf7YG3lCnrvVwI3cFT1oMenQ/d8OVl+KjndGhlytvzcslX1k037Hly8yVxoHr4nCvKy3l7ZrP65kF5ZaD6/qkEc5FcVdOKiDP1cYabfRpDc38N8XlLS5+G/nwNJZQ3hHUsdDM6knZ62lhHQ+geiorgdZ+6ObaOmA5WvJv58HGwenrx9bSxDoZC71BUwBtyVsiDDUGOvOOeDtZGI5wBYrQQD/POxudtNMAejTkNeq4zyoVO2PIEm7OGrjJ3Bufo1J8rWU/KIxRoWG1ruO3wHWY02KClmqi91o62uz397tbfpV122TXtsccezTIJNodj+cSUqVNtUzgGHi0pQG9p6knivgxXtqfirLGfDTPY2GwK9uYIxvrNkqkYfBF9tXymukM+fmnpII5DJbo7pqa7gdLDiW63YxiqmnvTw9yINvXCGP+54LFrtV3VfghU2TqxGt5bZnxr0nIChBYIYPnSFGu1DwOf0eCBBhs4r7H3FUP71bZBwyQLNEy1WQjNw5U9+awyhX2BDNNtPGtX2CaQK5baQHRNmsrZlRZwWLXkcWuwgIadXJE6Ag2EPniE6pLoB8lYWAaCryzGqEh8yuBN9a8me9uovIQvjrG9EGjwYAPWaKQfdgVf5NFMnqeqGzUFXa64rnc01jQU2uV6a94INPjff91uDIQP2kIILupaKv1wmeFaf+Q5V+cMjZrRXYCruXMhGgyjkWNwrOx087+xb4W87PzmYEDnjU2lm7aB6W4jDPXp9+VOJh0tuaIRsNpTL/rjbdfKmDszKuW813m57nkbAG208C1XAa2jHpVMgRfrOlmwhL6RznMb/hmRG8iNG2PtVs7RSguGXNxpRnBabrRUWtZD2SjnYTZyzPXzv4XWxpO7muvrRjeeahFiLAWMT9d2yHM1feXcEOWqXn1Ww9X5aRztVUtV65OCaom+5WqDRr6+J/rV3DsrNGU6llVG5Bm7Bsv/vnLDGbgT5Rm7dnVUsxyCwLqBPArG1MADLYQa4iBdrGXbsA9Vhn1YRWmQO4g5wyAt9ynqU5qrcTv4FcR+n78thuJ9Ek5a3ogX7LBUNuqG0B+RlYbBCs5YKFiPqiMSaKj2ZLCHZZIBMsl+HSVdffUv0vkXXJAOf9bh6dBDD00bb7yxPU9XsJPHZpHO3PYSd6itraTFjchl2mil3FDroRM5t5UZzIpj8sYIe/HmHmpf1nv+AGCIHcnvYS46LHXdlOWKx6Bc+m5uEWio5gDwZ5kHGipmBu60s1UjvVhtQQKLKqSpU21JgwUfVtlAepUFGfhbnWwfftPqpQ/eGxNYYSPNVZYj60EMUzvZ5O2ICaNY7iNRyy2g4cmOsfVkSzQ8mDGFQET7Hi3Oh+L6qmZXVA96eI9qm4NRNxtT2X9XMBovZojPsOaqbRQzGpyK7wMl95uX8ioFAwyj+0jP+JsRn7X5Z0DwcLc7v5xzbZ2t7kBtH65wGq7ugQbwD86xwx7/JkIyzAI2L4D/KPnF+8xTbcOyuLfR0s3yUF0ajD50Nm+7gQS6ObZO9Daj0OreunNFz4tqh/lSXVnvYA4zvRSWAiNZN+d6+dfmVhstXOqnK/QjRGObcBstFI5SXpoM99rMlX0q67lMqbdbm/Px3RPz+yqlvcRzVX3lkOjL+VsmoTEv59jDUYfTK+5efULZBpfqDvfrtxFG+tm3sUEh7hPFrLzB4durQ4ZDg0nBN5KQ8D0Hxm6LFyuH/hr7mlo54XyZP2U9a+paDP3BEOat3jT5c17N4DY6vMgaTCL/7gkFdR7uRd7RHETP7WVDDjREAIDB/+CTTSYzXPpE7OGUwYnNVnj0sUfTT3/y0/SZz3wmvfa1r01HH/38tN1226VNN93U+OGzj9U+wU6TAXwntf8bvsNVhIwQNNdhL04OYq0Qp0ml/YZeNVeyzthDb20jmDHlNmsdkaGbC5ul3eBp8hYF4RtNJO8SupqKk59YLwHGEHvtmLXIDEtdN2Ut+keblPtvbhFoiN9g8DJ2NAiPYQ8RfrFZVQca2DtlI5uZRJCBi8SgfqoHEEO6CjRgo9JtSyuMz5dfuITJxXGUIYIx9K0k8GBBBwtoJNsQsnHC5ewl+KlTtqsKNMTCiSrQQJjBQw3RCfhHPZkxt0deX+GkeePF8CHvR9Ba89Djio0j8pw5U+ZF42lGfHWbf65QrkIJuTQa+zR0PtL2t9epA9nco6o105c35kY32HLWYYp9wI5Oj3MbZou7BynzosPuurgzkE6/9zkT5XUxmHseuiLP2yi7XX8pW6r6QH5Ee66/m7o2esiPWIfbu9Gdak61+YVA41sh3Y0OW5uuNlqhsvX5JeR62Qs98A6GL/jLHNmwV7ZFfaD24GvLS9/8c5bvHr4LuSrlJVubqopWcka9+jsGjHA3PplzObirq5YL5u4GN7CWcehwmIxbtU5v2PX5dgQQY9gHTDa4RzknGK3NrTZam9uFqoalje7PeA1He6HV35q11tnNNW/OG/MyKny82G52faL6jIbYzJGBf2zYWHaiLRCBXNBZNrGR/6qX0gMPLEi33npruuyyy9LXvvY1n83wnOc8Nz3rWc/yJRToXm4bQmIrTp0IPW63HlR7ICIblK+xX0uxyZvMfZ1igxW7U2uNtsbWl0+ezIN+351l3wiYvU9BN8oa6KbDN640v8Nm9GcS/UCv+YEd71fNxuCi0mtDJfMfxrXsjkepPmXDK/mLyaCbAMxGZm+qnbbhO+f5XwuKeXf1+eEDGOTxOfw2eewGTpM5GhT7tJdvTmTHMtWu9zM5Un6hP4PI7XTo7qj0udHNrz6O9lJPW7mIGehlo4tbuYYBy236c/+62TC5vkeiiglV/BJdpb4Vp0HxIICx+t+Fva9cPv4WraMdg3pTVgUyKmn0clVjX+zZ5UsLKtsVV0Wu3t/8jdVX09hSqPtPkJegCQnP+YXH7ZU3oDDXonHwpNq2m83LtR/N3yk2/e80mGoTRbXVsMvai/vtLzVblAslTTXasY1INPTlGUetM7LOx9naeDR26AodkcPUZyETKYu5QNk2lHoYy2VGSneus81O3k65w25HpeTsXg87wxTnfRaikZfGMEFbmCrbe9W76UQm9DXxrV6KRq2tl4eF0XC4ILdWB622VprrDlloUW41MghirjfYO3R2VIKjf96mpz9XRRmkyop5KIq7GRwmvTSN39CG5P8wbLtdjESgu/z8HKzOsgNVPXe/Kpd8dJN/LQmBtoZcaYvYkEltNlAS9tfVXjf9YWNdbzL6h+1jL+dwcJRT7nvuykhhj/u53rw7jtmwgevTuw4qmjFQ7hflddFZ6ura/8II1eDNm4KW681oOWuwNM1tjc5UczSMIbn+5QMGGmJgG13zwX9dYfDMxcCkGpBv5AGEW265OV1yyaUeaDjrrLOc+81vfnPiOuSQQ7zOhpB5oCH0e26DG7+f9lAVH69QPBDAhnVVa2PTuV3A3gPIuByzwG1oYheBgopeSa51HdWAioF/ZdMGMhYw8OBCBAxyP2qdtKOXVAUaTGddr07csLr5YuzVG9LKuEZwowo02C/Dti8F/sBYu406T+h3H7AHjyuqbER/YMTWJJuKXvFUsnp9giPAmykSb68oN3nnA1Leztu1esM2zO2FEMr0Q0K+0mEF/gA8RV5XI6vf080UsaB3yzNb9CrsYbGx2U12NOjerba+DeANzW1i7mPXhu496Gqua0OLrm52+3S0cfS1tqgUaWQR4AYUgLfdk5E12q6tcKOdaTSp3To+Go7ltkZD/3Bwyn0K+dHwrc3OaNoL3SOV9/K/zUZgiFyUO/hyhXm5g2mASqtil+nU2J+vP2UAU2pedwS6vhfWXbU09EBguLiHXOcfU5+hdfkj6qazT3tVWhcbaMjtrKuu0rdxrHuggYFtJB+41pUY9FINeuTQQi5oS5YssdkMD6Trr78+nXf+eeniH1+c7rzzzjRz5sx03HHHpTe96U1NoCGCFOhgwB6DdPSSQnfpA7a4CBYsX7Hcf+XniEx0rLBZEqtsQM/UbwbzJOyw+SSzAbABX2kv/Icfe1GnnPuJfNhniFMNeZCqv5uaAZThWftZtVZ6Q7frN5bVMRMik4s7AU8rJvW9gi/0lXxhU7kQ4H0y2p9XzXu2Fe5ozRvXzaOx6FPurcpCQAgIASEgBCoE4jstvsfavpGCVubCUAgIASHwxEKgdTNIBrBxAQeDan75jwF4G0TwP/LII+m+++5LV155ZfrSl76crrvuWl8awS/5xx57bHrHO96RDjvssDSD3ectMYinLQIApf7wIfJ8oJ8HEAgssASD5RgEFMpAA3TsEGDwHfaNNwbn6F7D4N0u7Lf5EEsWaAtf8R86KXThE/pILKOY1KbP2rw/FihhP4vcZsi6fIts7lsEQKDRLyUhIASEgBAQAkJACAgBISAEhIAQEAITAYHOQAPjbfsXA2YCDP6/HvTmA93cefgZyLMc4uGHH06XX355+vd/+/d06+9ubdgOPPDA9MEPfjAdccQRac6cOc3eDAzWkSeVMw0aYSswCM95Y4BO7gP3LFAQAQn0rvZ9HaqAAPq58n7AQyCCnCBEBA3gCd7QH4GAybZkwXFih32DCD7aVq5c6XrAbZLtF4G+0lbl02qn5/boaxWjqAIVVb0v4MO+EeiMhB6u8DPoyoWAEBACQkAICAEhIASEgBAQAkJACIwnAh2BhnxATZlBbH7haAy2KccgmgAAyxMee+yxtGDBgnTFFVekD3zgA2nhwoU+cGdATDrllFPS4YcfnubNm5e22morH4ijLwIIEQhwZnsJW2GHYEboghYDeWxDZyZDBApyvfBCRz+JNi5o+RKMGPjTlut3IXsJ2y5nPNThjUAD/lEnhT30BA06MvSX9vAfetikHAlaYFP6Q1voRZeSEBACQkAICAEhIASEgBAQAkJACAiBiYBAv0BDDKZxjsFtXNRjcBsDXNoi8Wv+XXfdlX7961+nq666Kn31q19NDz30UNp4440TezewZwL7NDzjGc9IBx98sJ8+sdlmm/lgm8E0Vwz0Q2cMshlIl4NpfGDmwBpbfhAzCWKvBuRjQA9fGcCIgEXYiz5Hf/L+QaMeNHSHL/gXbfBBDx3ojCtk8CPaoeW60UN/+B/64cEG/pKQpy1v9wa9CAEhIASEgBAQAkJACAgBISAEhIAQmCAIdA00MAiOK3xl4BwDa2jRzsCXAfENN9yQzjzzTDtx4hLbn+E6DzBEoIHZBsw8eNWrXpXe+MY3+qaQm2++uQcX0Il86EQfg242S8Rm2MlzeGMQjjwpBuKUw09kYoAPDX3IoX+yHY+JrZAnh58UecgELejUoy18LGcoREADXnzI/YCGrtBBTsIfrkjhL+3RhlzI5v6EjHIhIASEgBAQAkJACAgBISAEhIAQEALjhYAHGhjExkAXR2LwGnk4x6CXKxIDX3iC75e//GU66aSTPNhAG7wMrhnYR/3pT396+sQnPpGe/exn+6aQ8NCG/di0kdkPBCbQCz3sho9xPGS++SM6Qp5jH6dYECFmLKAHHcx8QAf0fNAP3YMPxoeekKOf8JczCtAFPfcPXurs3xBHZoa/wRt+oI8ydkihzzZ+cFl0WBykSciHroZohdCLz0pCQAgIASEgBISAEBACQkAICAEhIAQmAgL9Ag0MgLkixQC3HOwGX/AyWL/sssvS61//+jR//nwfyDMAhl4mZj0cddRRiaUToQceAgXwE0jgigF02GZAToogAbzQ8sADg/gIFgQdHgIJXKR8LwfakIlgSMhGv+CnDR/CbugJ3wMjePMU7UGDL+xhB/9I0T9yZPJ+0577kvNGW/BTVxICQkAICAEhIASEgBAQAkJACAgBITCeCDRLJ2KQmzuTD2qjPR88xwCY0yYeeOCB9POf/zz927/9W/rd737nQQSWShA8yNMmm2ySPv/5z/uMhu223S5tsukmTTM2GIiTQvdgB9ERKEAu/A5Z3yzSTohgqUQEC+DDVvQreBtnuhTgx1YsvSjZaCcAEnqxxxVy5NiC1pZCDt+48DPnpT3otHEpCQEhIASEgBAQAkJACAgBISAEhIAQmCgINIGGNodisMuUfqbyM6hlkJwPbhn43nvvvek3v/lNuvLKK9PXvvY13xRy00039ZkCMesA/fDOnDkzvfvd706HHXZY2n///dNOO+3kA2kG7zGgRoYNJB9//HEPVLDEIGYnoIN2+GOJQwQz2PNh1maz0pSp1ZIEbMIXSx/gDxvooY2cPpHDh66lS5f6fhLIYxefZ8yY4WXkwQV+EvyctkFihgb8tEeCP2xCj9kTyHHRhn42sowZDsjiG/3Et+gndOyiJ+4FNCUhIASEgBAQAkJACAgBISAEhIAQEAITBYEm0MAANg8g4CADWga8pBjYMvDNE7MFOGnirLPOSj/96U99Q0iCBCQGzgyS8wE29Kc+9anpz/7sz9IrXvEKLwcPA27sMHD/05/+lH7/+9+n22+/3X1guUMMuBmAY5cr0rbbbpv23nvvNG/evLTllls6bwzWkWNAn/cvBuwRbMDnRx55JN13333pjjvucPvwb7PNNq5zp512tiM55yRmZJCQJ1Bw5513pssvv9x1H3rooWnHHXf0oAT20B24hW1mf3AaBzYIzsyaNSvtt99+aYcddkgESgJfAhL0DzlwDP+xi174gjcwUC4EhIAQEAJCQAgIASEgBISAEBACQmC8Eei3R0M+eI1AQz5YppwP0pl1wED7Ax/4QLrxxhs7+sOv9PAzuC4Tx1x+5CMfSYcffniaNnVaWrlqpQcHfAC/bHl6cOGD6eabb05XXHGFD8g50YJZEltttZUfmYlugg+ku+++22dGHHHEEenAAw/0wAB8JOxHgALdXN5Hm5DA0ZgRaKAfBABuvfXWdNFFF6XPfe5zLs+eE/jIJpZ77LGHBwNoiKDEtddem/7nf/7Hgxwnnnhi2muvvTwYQWAA/Eg5pmCBLHZ+9rOfebDiyU9+ssvtvPPOrj9kI9AQ/tOX/J5AVxICQkAICAEhIASEgBAQAkJACAgBITCREPBAQwxeGRDnJx5A52KASxs5icE5g2CWGDz88MMeaHjDG97Qr1/8Wr948eJmwJ0zvPzlL0//8Pf/kA571mGuFzsM9tFJQIHB9j333JNuuvGmdOVVV6aTTz7ZxZ/ylKf4oPxJT3qSzx7A36t/eXX63ve+5/s+MFPi4IMPdh5mNsQMBJZ/rFq9ygMN6KY/eeCB/uArMyjOOeec9PGPf9ztvfjFL04ERQhiPO1pT/NAADMZ/vCHP6RLL73UT9j48Y9/nD784Q+nY489Nu2+++6+DAIb6CflAYKgLViwIN16y60ecLjvT/d5EINgBktJwC1kQj7HntkO+E+gIehuSC9CQAgIASEgBISAEBACQkAICAEhIATGGYEm0BABBQbIkWIgzmA2H9ASaGD5Ar/OMziPZQDUmebPDINrrrkmXXzxxa7qr//6r9O+++7rg2NkscGMAwICu+66q/NEoIEBP4EGZiwQeLjrrrvSJZdckt75znc6H/sgvPa1r/WZC8wemD5terr8isvTRz/6UV9yweyDF7/oxemZhz7TlyTEzAaE166xGQ32j0F6megrA3j68v3vf99naMDzrGc9y0/IOPLII91flncQZPjFL36R/uM//iNdddVV6WMf+5jvObHnnnumrbfeumOvhdwOfSRhf9nSZT5r4/rrr0+nnnqq057//Od7v8AEDMAK3jbsoYN13pbbUlkICAEhIASEgBAQAkJACAgBISAEhMB4INCxRwMOlANXBuBttAhCxOwGfuXnF3YG0yxz+MEPfpC+8IUveJ+++93v+mCdpQ7woQ/e2ASRAX78Ss8AGt3ogZ9Axk9+8pP0/ve/P91yyy0+U+E1r3lNOuSQQzyQgA4G/di4+uqrfUYEA/6XvvSlidkIu+yyy6BwjX7ef//9Hmh417ve5XIveMELEgGAZz7zmWn//fZPS5YuST/60Y98aQX9fN/73pdOOOGEtMfue6SNJnWeEDEYw+xvAU4sv3je856Xjj/+eN+/Yu7cuS6e788AIYI8BGtoUxICQkAICAEhIASEgBAQAkJACAgBITCREGgCDSPpFHsr8Ct9LD9gRsKRNiOgW2J2BIEFBs4EGhhMcxFoIADw44t+nN73j+/zTSfZz4B9E5hp8NSnPs2WRmzs+zj83//9n88uYPBPIjDxpje9Ke22224e3GBfBGZLENBAJ3YYrHOaBMsrCFiQFi1alM4444z0tre9zesELP7iL/7Cgxps9Mgxnv/1X/+VvvKVr3g7Szre8pa3+AaU9IGNLGMJCLZI0S/asYM9lkeQ/vjHP6ZTTjklffnLX/b6e97zHg+SsASDpR/wE5jhigAMeqjjP7mSEBACQkAICAEhIASEgBAQAkJACAiBiYLAqAQaGOyfdtppzb4KF154YTr66KO9zzFzIAcAWgz+gx58q1auShf9+CI/EpP9Ewg0vPrVr/YNGpnVsPHGG6f/9//+nw/U2TiSGQkMwD/0oQ/5TIPtt9/el0Ncd911fkIER3ESxGCgP2fOHN/EkWM2t9tuOzdNoOH0009P73jHO7zOXhIve9nL0pN2fpIfm8lpGOzhQCCF9IlPfCK98Y1vdPk4TYJlI2z2GIES+AhyEIBgZgQXMy0IcrBU47Of/Wz6/Oc/D5v3jSAKx3+y3CQCIOCB3wQWYtZHYERdSQgIASEgBISAEBACQkAICAEhIASEwERAYFQCDew7QKDhU5/6lPfxggsu8EADg+T4Nb7tl3ja8nYG0Mx2YLPF9773vT54Z4YCswzY34GNIQk0cOoFMwwIODBIP+aYY5pTItDxq1/9ypc7/Pd//7cHNOBhoP/ggw/6Ro/Pfe5zPeDAfg4LFy5M3zn9O+ldf1MtnXjpS16aXvLSl6TZs2c7P0duspSDzRzZeJJAxJ//+Z97UOGmm2zjyiuv9BkR2GVzSGYzsKcDwRaOs2TTTGZAEETYYost0vz58/30CWZ9sKcFwZRXvvKVvg8FG1DGHhMEFQIbdJf1ifBmkg9CQAgIASEgBISAEBACQkAICAEhIAQmVKCB/Rv45Z8gBHs48Is/gQYG4ByfSQCDWQgM8Ak4bLvtts7LAP5b3/qWL5Fgo8j3//P705577embUjK7gr0bmIHAKRbMrGCGAptKEjBghgN7MBC42G+//VwHJ1i8+93v9ncHbS984Qs9oIEd9oNgA8i//Mu/TC960Ytcjk0pmQmBjb/7u79zOY7HfNWrXuV9+O1vf5t+/vOfp3/+539Or3vd69KJJ5zo/jGrgoABJ3fQN/ZpYP8HEjMcsM1yDXCI4EIEaBRocJj0IgSEgBAQAkJACAgBISAEhIAQEAITDIEJFWggyEBggcE0yx84eSICDf/yL//iJ1mwlIAZCZzuAB97IvzsZz/zgT7YslHkP/7jP6Z58+ala6+91gfuDN6ZKcDsA46qJKBAOuuss9JXv/pVDxaw/OFlL31Zmjptqh+VGadcHHXUUR6cwB/s/PCHP3TZt7/97T7zgA0i524914MazOD44he/6O0nnXSSz7zAT5ZMcBIHMyvw/8ADD0w77rBjmrX5LJ8JwUwFNoUkOMFMEBJLMvCXYzwj0ACdAANXJDCI4EPQlAsBISAEhIAQEAJCQAgIASEgBISAEBgvBCZUoCEfRMcAOgINH/zgBxP7LGy++ebpSNtYcocddvBBOqdSsCyBgTzp2c9+ts8kYIDPPgns28DSDYITzDDYY489fLDPDISLLrrIN3ZEjtkGzGJgpsN3vvMd30gSOssXWFrBEggCBZymQeJUiuOOOy7ts88+vt8Dx3AyI4EAAYkABTMdmEHBngwEGNg/gn0WKNMPrsmTJqdly5d53zh9gv0hSAQdCDTQT2YzeDDB4gur11QbZULTZpAOlV6EgBAQAkJACAgBISAEhIAQEAJCYAIhMCECDWvX2K/09o/BcySCDgyuI9BAIIBf/XfeeWc/BYIBPsEEZj08+uijvgSCTRhZZvGc5zzH9z9go8Wf/vSnrpJAA8dd7rTTTr7XAfszsJ8CyyRI//AP/+D7QLCcIQ80oIslDAQa4OcYTRKbRTJ7Aj8IGBC4IBBx6aWXpssuu8yXa8D3N3/zN+kVr3hF4rhKZl8QyNhmm23S5rM299kT9A//CaJwmkX488UvfDG9/JiXN5tUxtKJ2MciAg3YUBICQkAICAEhIASEgBAQAkJACAgBITBREJgQgQaOgeSXfvZl4Fd6ygyoGdzTxsyD973vfYm9Djh1gpkELIFgnwb2bCCxqSIzF2JvBZYncKQl9CVLlnhQghkGbMBIEGPp0qV+CkUcQfnOd7wzHffa43y2AcEElkaQONqSPR2mTpmafvLTnySO0SSdeOKJvunkAQcc4HtF4DfBBoIh//u//5u+/e1vO9+uu+6aDjroIA9GYIuNLNk8Mo63JMiwYP6CdM2117juc8891+WY3YBd9qEg+eyFZEdZZqdZasmEQ6MXISAEhIAQEAJCQAgIASEgBISAEJhACEyIQEMEFhhM80t91PNAAzMObr755sRRlGz4yAwF9lrYcsstHU42kmTPBWYZ9Eq77767H3tJkIKBOjZJHG9J0AA9Z5xxRhNoYLB/zMuP8aMtWaIRgYa3vvWtfqoE/jBbAV3Mkrjzzjt9yQbLNtjkkc0o2QgyEksiOFWCYzcJpmCPmQ7MaODkjFia8ZnPfKYJNKAbLMAmDy7EXg05LewoFwJCQAgIASEgBISAEBACQkAICAEhMB4ITIhAQzlgZgAOjSAASws43jJmNOy9996+FIG9E572tKf5TAWAY7bAmWee6adB9ALyhBNOSO95z3s8YIEMF/awxTIMggPMaHjb297mapjRwF4JzLZgZkXMVGDmBDMr9t1n37TZrM2a5Q9s/MjRmWxsybGWBBCYafHLX/7S9X34wx/2WQ0EOjiac9q0aU5ntgabSX7jG9/w+sknn+x87NEQvkVQBAbw4SLIoECDQ6YXISAEhIAQEAJCQAgIASEgBISAEJgACEyIQEMbDgz+SQ899JAfQ8nAnmUQLJU45phj0mGHHeZLEhiIw3vffff5gP6f/umf/JQGAgT77ruvD+QZ5J999tmu7/Wvf73vxcDeCosfW5weX/K4BxuYMcCeDwsXLvRAw3vf+17nJ6DBHg3sw4D92267zfdwePOb3pxec9xr0gH7H+CnTjCbgRkVf/rTn9w39mKI5RmXX365z1ZAIcdfcjQmm1LCg12CKRxvySwG9ocgMbvhBS94ge/nQECB2Qwk8igr0OCQ6EUICAEhIASEgBAQAkJACAgBISAEJhACEzrQwIkS99xzT7rkkkv8lIfAjVMg2Pfg6U9/epo9e3Zi00c2goTvlltuSS960YvSkXYyBSdQcMLDOeeckzgekwTtjXaUJRsycuQlssxCIPDAxo/MDmDpxEc/+lHnZ3bCoYce6idIsBElPp166qm+ZIOAwSGHHOJtDzzwQPryl7+cPvKRj3iAAPvMuGDGBEEENqlkY0oCGMcff7zvL4Fv6IujL1mWQR/Yx+FNb3qT7+Ww6aabuh/MkGCZRcxuKJdROJNehIAQEAJCQAgIASEgBISAEBACQkAIjDMCEyrQkC+Z4Nd6Zhew/IAZAWywyEB73rx5vpEisw8Y+LP04MYbb/TlFcw6YAYCQQj2Tthzzz19YH711Ven888/32cjsP8DAQqWSVx11VW+5IHgA/wsZ2BAT1AAewQjCGQQEDj44IM94IAPX//6133mwVve8hbfp4HNHdlwkmUPsRnlX/3VX/kRl8xYIKBBXwhiELTguEv2aKCNmRicUnHeeeelb33rW74vwwtf+EKfFcEyEXhIBCwi0ECfY1bDOL9/ZF4ICAEhIASEgBAQAkJACAgBISAEhEAHAhMq0MASAgIBBAFILEcg0HDttdemn/3sZ74kgs0fY/ANP4EBLmgEBDhZgqDAbrvaHgibbOwD9Pvvv98H+7/5zW98Q0n2RmDQz8aNBBg49nLHHXf0TRnvvfdePzmCPRPQyQwC9MN3+OGH+2CfIASzF0hf/OIXfXNJBv8EKPCT0ycIDMSJGJx+QRCDEzPIOUmCZRMkZlSwTOKTn/yk1z/wgQ/4nhC777a77/3A3hAkAi8EYvBbQQaHRC9CQAgIASEgBISAEBACQkAICAEhMAERmFCBhtiYMQIJLCtgJsCCBQt8rwYG/bF54prVa9Ky5ct8QB/LCZAjELHTTjv5MZaBN3slsMkjeywQvCCYwcCdAMJWW22VmDnAsZcEBGhnGQQnQaCPgT0zCdDLiRXIMEOCDR7/8z//00+5eOc73+k2WYLBhd/YjBkaBAawwyyGmCEBjXaWVZxyyinp9NNPT5xkwd4SLMcg8wDfUwAAQABJREFUSNEWVFi7xgIOaxVwiHurXAgIASEgBISAEBACQkAICAEhIAQmFgITKtCQ1tov9/aPATaJgThXHHcJLdooEyyIFHQG8AQeuCK16Yk25Jg1ELMECHZEkICZFbQzc4J8k0028UADMxZYrvHNb37T92t49atf7UsoWLbBbIUVy1ekVatXud/YyX3CFroIWBDY4PjL0047zWdjHH300T7rgQ0uZ8yY4X2HlysSWOAjOkNXtCkXAkJACAgBISAEhIAQEAJCQAgIASEw3ghMrEDDOKERyxIiOBEBjHyAn7vGYJ8lFsxs4OhNlj6w2ST7MrA0YqBE4IMZFizpYOkEezgw2+HAAw/0nIAGiWAEKQ+EKNDgkOhFCAgBISAEhIAQEAJCQAgIASEgBCYoAk/4QANBBWYskLNUgpkCzBig3mvGAEskWNJx0003+dGZ7LnAsZssryBQwH4RkydNTpMmT2pmJBBgQDf2WBLCRpCPPvqoz75gJgRLPtBDgAM+lmxQZrkIQRDK+IUeyjELY4K+t+SWEBACQkAICAEhIASEgBAQAkJACDwBEVCgwQbuzBJoAgvJBvm27IE6A3kuBvUk+EgM+mknEMCshFtvvdXbdt111zR37lxf9hAnQ+TyyMSMBAIVLJ2gzjIJAgyzZs1qggcRaEA+dEWgAT0k2pSEgBAQAkJACAgBISAEhIAQEAJCQAhMJASe8IEGvxnZ3hARDMhnDRBYoF7OfECWgMCyZcs8GMGeDsyCiIQMKQ82UMdGfgVPHjggAIE9aLEpZS5rOzekjSb17d1Am5IQEAJCQAgIASEgBISAEBACQkAICIHxRkCBhvIOWNCBUx0IEkSwIYIHBBWCRgAg6KWKqOeBhqBFgIE6MxRitgR12kg+c8FOl1i9ZrWXY+8I2kr54CdXEgJCQAgIASEgBISAEBACQkAICAEhMN4IKNBgdyAf4McNIUhAYIFEQCFmG0CPmQ0EAKCzFwPBiTb+0Bd5yJNjNw9YRB19NmHBHLMrm7QQfqIrymWwgjYlISAEhIAQEAJCQAgIASEgBISAEBAC44WAAg2GfAz6Y9DuMwosCMDyBQb0EVCIm0RAATp8BAq40BGnRMSmkvDDF0EB9FBGb2kzeD1wYXzo9lTPsAgd4WPVWL02vDlRZSEgBISAEBACQkAICAEhIASEgBAQAuOAwBM+0MAAPgb94B/BA3La4gp6c4+K2QZtgQZkCSpwEUDI91oIPcjl9j3QEDMajIm2CHhM2siCGnaKBTxKQkAICAEhIASEgBAQAkJACAgBISAEJiICT/hAAzclBvtrVtvmjTaRIF8qEcECcgb4BBy4PNXBBuro6Fg6YUEBllOEPDzoJYcWV6WoCnBQpp0rUgQqqMfMimhHh3G7z8GvXAgIASEgBISAEBACQkAICAEhIASEwHgioEBDjT6BApY+MHjnOEkG9STqsScDA/wINkQbA31mGUSdPA8WIB8JOvUIHlBGX9tMB2RojyAIsvhEHm2057a8QS9CQAgIASEgBISAEBACQkAICAEhIATGEQEFGmrwGbQTaGBgz8yDmD1Asy9dsFMgfPKADfRjsE8bcjHgz4MQtLUleLGRy2GPBK1MOR/6I4UefMnp0a5cCAgBISAEhIAQEAJCQAgIASEgBITAeCCgQEONOgN3lj5EEIDBe76EotvNgZ9ABCmWRgRvBA7ywES0lXkEFHKZXgEE+LCtQEOJpOpCQAgIASEgBISAEBACQkAICAEhMJ4IPOEDDeUAPwb63BQG8XFRj7aSxoCfRGCAtghWQKMeAYNcnra2OjSuXA5ejrqMPR+8bi/hB7mSEBACQkAICAEhIASEgBAQAkJACAiBiYCAAg31TAYG9/kMBuq+ZMLyCBREQCH2Smgb4MMTchEsyAMQ3HTqoT94Gl0WULBQg783GprVgp+cCx3hhzPrRQgIASEgBISAEBACQkAICAEhIASEwARAQIEGG7RHACECAnFfYklEDPgZ4JM4ZnKjSe2zCOCJGQ3IcaGXFPLQgi9vd6YuL/DnFzpDbxcRkYWAEBACQkAICAEhIASEgBAQAkJACIw5Ak/4QMOYIy6DQkAICAEhIASEgBAQAkJACAgBISAENmAEFGjYgG+uuiYEhIAQEAJCQAgIASEgBISAEBACQmCsEVCgYawRlz0hIASEgBAQAkJACAgBISAEhIAQEAIbMAIKNGzAN1ddEwJCQAgIASEgBISAEBACQkAICAEhMNYIKNAw1ojLnhAQAkJACAgBISAEhIAQEAJCQAgIgQ0YAQUaNuCbq64JASEgBISAEBACQkAICAEhIASEgBAYawQUaBhrxGVPCAgBISAEhIAQEAJCQAgIASEgBITABoyAAg0b8M1V14SAEBACQkAICAEhIASEgBAQAkJACIw1Ago0jDXisicEhIAQEAJCQAgIASEgBISAEBACQmADRkCBhg345qprQkAICAEhIASEgBAQAkJACAgBISAExhoBBRrGGnHZEwJCQAgIASEgBISAEBACQkAICAEhsAEjoEDDBnxz1TUhIASEgBAQAkJACAgBISAEhIAQEAJjjYACDWONuOwJASEgBISAEBACQkAICAEhIASEgBDYgBFQoGEDvrnqmhAQAkJACAgBISAEhIAQEAJCQAgIgbFGQIGGsUZc9oSAEBACQkAICAEhIASEgBAQAkJACGzACCjQsAHfXHVNCAgBISAEhIAQEAJCQAgIASEgBNYvBNasWZNWrVrlTk+dOjVttNFGae2atSltZP+tvD4kBRrWh7skH4WAEBACQkAICAEhIASEgBAQAkLgCYHA6tWr07JlyzyoMGPGjDRp0qQEjUQ5gg1r11rwoU5Bi/p45wo0jPcdkH0hIASEgBAQAkJACAgBISAEhIAQeMIjQOCAixkNXAQPmNFAItAALRIBh+CHb8qUKdE0IXIFGibEbZATQkAICAEhIASEgBAQAkJACAgBIfBERoDAAUsmCBxMnjy5Y+YCQYY82EB7BCUIOsQSi4mCnwINE+VOyA8hIASEgBAQAkJACAgBISAEhIAQeMIiQDAh35sBIKJOYIEUMx1iRkMZfMgDFC4wTi8KNIwT8DIrBISAEBACQkAICAEhIASEgBAQAkIgEMgDDSyFYMbCypUrmyUUBBeaZNsz2EIL5yEYwUWQYdq0ac1MiIZ3HAoKNIwD6DIpBISAEBACQkAICAEhIASEgBAQAkIgRyCWQkCLoAIzFqCznAIaF7TYLHL69OkNLXjIxzsp0DDed0D2hYAQEAJCQAgIASEgBISAEBACQkAIdEEg9mcggMBMhxUrVqTFjy1Ok6dMTptuuqnPZOgiOm5kBRrGDXoZFgJCQAgIASEgBISAEBACQkAICAEhMHQEli9f7rMcWCrBjAeCDwQiJsqmkAo0DP2eSkIICAEhIASEgBAQAkJACAgBISAEhMCoIEDgIK42A7FEItpWrVyVlq9Y7ksoYilFtI1XrkDDeCEvu0JACAgBISAEhIAQEAJCQAgIASEgBAoE2IOBTSAff/zx9Nhjj6UlS5Y0p00wY2HzzTdPs2fP9tkL8BGUILF/g06dmAAbVBT3U1UhIASEgBAQAkJACAgBISAEhIAQEALjgsDaNWvT6jWrPcDwyCOPpAceeCDNnz8/LVq0qDnmkqUSO+64Y5o3b17aYostPLgAjb0bJsImkAGcZjQEEsqFgBAQAkJACAgBISAEhIAQEAJCQAiMEwIcUbl06dJ09913pxtvvDH94Q9/8OABsxZoW7x4sQcdtt5667Trrrumpz71qWnvvfdOm2222Th53N2sAg3dsVGLEBACQkAICAEhIASEgBAQAkJACAiBMUGAIAOzGK677rr01a9+NZ1zzjnpb//2b9P222+fZs6cmRYsWJAuueSSdMUVV7g/3/jGN9LLX/7yNGvWrDHxbyhGFGgYClriFQJCQAgIASEgBISAEBACQkAICAEhMAoIPPzww+nXv/51uvTSS9O//uu/phe84AXp+OOPT/vuu2+aM2dOYjnFNddck37xi1+k66+/Pr35zW9OxxxzTNpyyy19DwdcYvnERFhCMXKBBvaf2KhCm06ffvrp6eSTT3bCBRdckI4++mjvMGeATpTOV97qVQgIASEgBISAEBACQkAICAEhIASEwPgi8OCDD6bLL788nXfeeekrX/lKOuGEE9IrX/nKtP/++6dtt93WN4W8+eab02233eYzHwhAPPOZz/S9GlhawTibDSE3mEADwQMuNqAg3XDDDek73/lOOumkk7yeBxoAgM5zKQkBISAEhIAQEAJCQAgIASEgBISAENhQEIgTIOhPlAf7QzszFn73u9+ln//85+lzn/tcuvPOO9P73vc+34dh7ty5acaMGYkTKTh1gjqzHNifgXE4dA80bGTj7HoCwHhiOiIzGugUgQaO2iARaPjud7+bPvGJT3j9/PPP9xkNBBfYyIKcYzeUhIAQEAJCQAgIASEgBISAEBACQkAIbCgIRHAh8ujXYIINy5YtSw899FD67W9/my666KJ0yimnhLiPn0888cT0lKc8JT3jGc/w5RSbbLKJBzPC1mBsNApHuTAigQY6xhWzFK699tp02mmnpU9/+tPufj6jQUsnRvmOSr0QEAJCQAgIASEgBISAEBACQkAIjCsCMfgPJwgCkGLsTNl2U0g2kvacWQjRtnDhwnTHHXf4Moq///u/h9UTx1oeeuih6aijjkoHHHCAH3NJsGHTTTdNHHEZ4/HgH898RAINZQd+9atfpVNPPTV99rOf9aY80JADHmCX8qoLASEgBISAEBACQkAICAEhIASEgBBY3xCI8W7rWNf2NVyzdk33Llk7gQeOsSTYEMsoLrvsMl9BcPXVV/sxl0cccUQ68sgjPeiwzz77pG222cYDDRNp1cCYBxpYZpGDP6leQ9J6I7rfArUIASEgBISAEBACQkAICAEhIASEgBCYMAgwzmW8S2J2QbcZBs14OGY01LMdHnvsMZ/JwN4MixYtSrNnz0577bVXYknFjTfemK666qp09tlnp7vuusuDDO9617vS8573PN+vodmjwexOhDRigQbAimABR24wo+Ezn/mM9/HCCy5Mzzv6ed7OZpANsNmumCE7EUCRD0JACAgBISAEhIAQEAJCQAgIASEgBIaCAONcxrs2KSFNmlwFGgYa5+bj6AceeMCPtrz44ovT73//+3TcccelY4891jd7ZIzNiRTnnntuuuKKK/zoy7e+9a0eaGDpBHshktgYciCbQ+nTcHlHJNCQnzpB+brrrvNTJ2LzigsvvNA3g8RJgMwDDRMBhOGCJzkhIASEgBAQAkJACAgBISAEhIAQEAKBAONhEuPccqybj4VjTEwesx8eWPBAuuoXVyXGz1/60pfS85//fD/ekn0Y7r///nT99denb37zm75Hwxve8IZ08MEHp1122SVtPHPjtGz5MtfDAQ2l3fBtLPMRCTQwTYOLDSgAFgA4deLkk0/2vnDqxPOPfn7aaBI7XIB61cUAl00wgjaWnZctISAEhIAQEAJCQAgIASEgBISAEBACo4lAjHvJ4wp71AkMMBOB5RLsy8AP98xguOmmm3z/BY6y3GqrrXwJBe1HH310es5znpN22mmnNH36dD+RgpkU7NGwQQUa8hkNAAYwBBo++clPOn4/+tGPfEoHgQgAiOhOyAHIRNq4Im66ciEgBISAEBACQkAICAEhIASEgBAQAsNFgDFvBBriR/eYcdCcOlHPfmAvBjaBnD9/fmIZxeOPP94shUAHQYQZM2akbbfdNm233XYpjrdkRgQ6Ix+uryMpNyIzGiIqE5tdMKPh9NNPb2Y0nHPOOR51IdqyYsWKBgBmQQA80RsuJSEgBISAEBACQkAICAEhIASEgBAQAusrAhFUYOAf4+TI6VMEAyLYkPeTsTF7LRBwWLp0abPvAuNmfrAnyDBr1qw0c+ZM/6EeHcjkenN941kekUADHQC8AItAw7e//e0UezScd955Hmhg1kIDvK2V4GgP6gH2eAIh20JACAgBISAEhIAQEAJCQAgIASEgBIaLAGPbGPgzNo7xseurtxBo2zYAubjgpUxwgaDD8uXLXZzVAVOnTE2Tp0y2kXQ1lkY/P9jDHysHqHfYdemxfxmxQEPuOksnTjvttCbQcMEFF/hGFg1PfT7oRACg8UkFISAEhIAQEAJCQAgIASEgBISAEBAC64AAA34G/vyY3usHdXiaZEV+hGd8jEwkeJjZAI3ZDKQIKhCIgM5yCmisHECegMREGGePWKCBztEh8muvvdb3aPjUpz7lYPz4xz9Oz33uc72sFyEgBISAEBACQkAICAEhIASEgBAQAkKgDwHG0aQySEBAAVoEIDyQscbG3nbQQsmb8/VpHp/SiAcamCrCjIbvfe97vhkkyyV++MMf+q6YdPyRRx7x6SSUY2+GAG18IJBVISAEhIAQEAJCQAgIASEgBISAEBAC64YAwQICAyTGwWUggLEy7fEjPeNhZiDEcoeSP/cGGeS54IvDFAg8MJ6Oei4znuURCzTknWCPhu9///vpYx/7mJO/853vpCOOOMJ3zbzrrrt8cwuAAlSuAA3mXuDmNnzHThfooPasxA2N3T5bmQkkcfxmzGSpj+IseUNX5GW710NXa6MRB2rvJhf0NvkWv/v5mMnlbd3KYW6ouetzMGvJwDXPranhy7GufWx8Cp/LvMWpRqalrcS8lTdstMkPRGuTDRo5yfrZ1ufwJdpspVbf30PoQD4vd6s7m8ljLHAt5MJeP33orFPDk9dznQ1jXcBWZif6gkijK2sPcfKct6HDS8r0hp7IW+1lMoFjw+8K65dMf2s7bMaDDpLjWRW8PuALYpnvHfyZbacHL5W83CFUVwrZxvcuck07qu2zt+vnbIt8K3/JN9R69MnkGmztC5N++/1y0IwJ7Irk/lhDw5fz1H50+AzNUoeditCq35nbXmrdeVOHnR46+/F1KLFK3odcT+ABNmXK+4oC+9/YafEVbFvtGNmxDBttfGGbNlK404u34ux4bfzroFaVpq2HTucJ420+mGy/98UgfB6M7X4uh58t+gNP9JKaz+FaJrcXvD31l30N2/2EBiD0krO28KXxL1PnNLAvfYEHvSTaetmAJ2tvswNLpKY9k/G2Aew1cqFokHkpV9Yb24EBhNK3nFa3tepxZdWLtwewuW7UD/HzOlPb51v4GHnG1Oi3trj/rX0KmVxHXo72Og+9kTu55C/roaMbPdrJ23hKGnVSgWmrLHwh300Onjp19CuIeR66clpRRgeJz4cG+4LHq+FPxVyR6vdF40fYK/MWfY2MteXlSrG9Bl6mq9WvsNGiG1I/nV34gtzBX+t2WjhS+xN8TVv46UbtJeqlf2U958/bKJMKe/G+CPsVU/Xa0EJPnUPnIvG8xRW0yGljDLzxxhunWZvNSptutqlv8EidYAGBBFLIUyY4wV4NvGemTZ+WJk+a7P7CO9H2ZsBf0qgFGpjR8PWvfz0tXrzYAw4HHXSQH9PBbAfOBwUUdsvkAjg2ulASAkJACAgBISAEhIAQEAJCQAgIASGwviJQ/qDDuJfxLhdtzF7g5Aiu3Xff3S+OqiTQQJsHGixWkS+NIJjASRTMXGCvhlgRELrR2zaDAgwj8EE59w16Xu/GOxBfqZc6acQDDXT2mmuuScxiOPvss935V77ylWmvvfZK9957b7r88svTQw891MxmIJoTwFcu6VUICAEhIASEgBAQAkJACAgBISAEhMD6iUA+gGd8zGA9Ag0EBNjA8eGHH06vf/3r00te8pK08847Nx2NwECuo0O+ns3gAhaQiE0kgz8PDGCbi0Q7AYrgC3oELeCBFksxCHowq6PUDx889AdZ+pProJ00aoEGTp246KKL3Mhhhx3m4N1+++3pG9/4htP0IgSEgBAQAkJACAgBISAEhIAQEAJC4ImKwIc+9KH0zne+M2277bYOQR4kGC4muQ7KBA+CFkEGdActggTUCR6sWb0mTZo8yWdXwBcBCWS54MsDDbG/BLws7eC/l42xWkRS1UfklT0amNHAsZaPP/64H2256667pt///vfpS1/60ojYkBIhIASEgBAQAkJACAgBISAEhIAQEALrKwL//u//nt761rd6oIFhOYN6Bv4M2NknI08eJDBSSe/HkxOKMkGElatWesCAWRUReCDAwFYG+QyFaMOv/Ao6eZTxO3xnhgNpxGc0oJR9GM4444x07rnnpkcffTQde+yxaY899vBAwymnnAKLTxfBGTqlJASEgBAQAkJACAgBISAEhIAQEAJCYH1GgIE3A3gG7Pzqz3g3T2X94x//eDrxxBM90BD8+QyBXHagMrYJFrBpJLrW2hGY/IMehzBQZvxNMMCXRphSggjwc02ZPCVNnTbVTeEr/Fzw5ON2+scVibbQO2qBhqVLl6Zrr73WT50466yzvLOsPWGPhttuuz194hMfd39wLCIjEOiAkhAQAkJACAgBISAEhIAQEAJCQAgIgfUVgRjXMtbNUwzYc/pJJ52UTjjhhLTNNtukFStWeGAiAhW57EDlsLlw4UIbc9+W7rnnnvTYY4950AF9jMX33HPPNGfOHA8y5PqwywwKlkswRkcXQQeCFgQjkCflfufjeNrCPnlTNqZOBOAcZkJVBBp+8IMfpHPOOccjG6973evqQMNt6aMf/Wir9nCotVFEISAEhIAQEAJCQAgIASEgBISAEBAC6wEC+RA7Bt/kzBLI2wg0vPGNb2xmNDALYcrUKc1gfahdveuuu3z7AlYW8OM/AQcSY/AjjjjC903cbLPN/OSKGH/jEzMepk+b3uyvQKCBAASzEzzwsZHNXsjmBSDDRUJPBCicUL+M+NIJDLJHw5k/ODNd9OOLfI+GY445xiMoRFe6BRpyp1QWAkJACAgBISAEhIAQEAJCQAgIASGwPiHAoJvBOXksNYglBgQYghZ9+tSnPpXe8IY3+IyGoK1LTmDh1FNPTZ/73Od88M+pj/jywhe+0MfjbDo5e/bstOOOO3pwY6uttkoEHjhak2BDnmI5BH7Th+gX+giI+GkUzIWY1DeLIZcfkUADxsMBlN94443pe9/7Xrr44ovTokWL0nOe85zEZpB33HFH+sIXvpDbV1kICAEhIASEgBAQAkJACAgBISAEhMAGgUAMyPkBPh8jRz3v5Pvf/37fz3CXXXZxsg/i67F1zjdQmSUO2L355pvT17/+9fTlL3+5p8jb3/729JSnPCXNmzcvbb311h5smD59euJiBsPGMzdO02dM94DCipUrmn5gg4t+0R/8zQMp1CONSKAh1nDMnDnT9d5w/Q3p26d9O51//vk+XeOAAw7wqMn8+fM9+BDGlQsBISAEhIAQEAJCQAgIASEgBISAEHgiIvCSl7wkHXbYYWm77bbzATuDdmYSMJAfSkKOixkNl1xySbrwwgs9IFDOoEDnrFmzEuPz7bffPjGjgTp7N2y++ea+pGKTTTZJ++23nx/mQOCAgAL7NTDmJwjBzAdmNKxes7rxGX+54I9gw+gEGm64IX33u9/1Dl5zzTVDwUi8QkAICAEhIASEgBAQAkJACAgBISAEnhAIMDBn9v+WW27pwYHHH3/cB/YxYB8MCDHAZ79ENoTk5EcSwYfYzDECBt307bvvvh54wJfjjz8+PetZz/IZDvATaIjNIQk0EMAg8MDsBmZTjFqgAcU4jiESSyfOPPNMXz5BWUkICAEhIASEgBAQAkJACAgBISAEhIAQGH0E2HNhyZIlbohgA4kxe557peXlGc94RmJJx5FHHpm22GKLhiOWShDUWLliZWJJRcxwCL15cGREZjQ01uvCnXfelW789a/THX+8Iz344IPeKdZ7RKQDJynHFI9SXnUhIASEgBAQAkJACAgBISAEhIAQEALrKwIMuhnz8st/sjE+mybGHgf0CTpXjJGhUc4H69AGkxhXI/fAAw+k6667Ll155ZW+DGLZsmVdxVkysdtuu/lGlGwOOXfuXF8WQZCC5Rz777+/792AgvAp8lhKQX8INgQ9NzZigYYAhZwpG4sXL/YcJ6ZOsbUc06tdLGkHUKZbxKYVOAZdSQgIASEgBISAEBACQkAICAEhIASEwIaAQCwx4Id2ggGx1KAZ/9oQ2HY3WOeuht5bb701nX766emLX/yib/K4YMECt9m2VwNGX/3qV/umkMxi2GOPPXx8vnz5ct+3YYvNt/DgSARD4I/xO2V0Mobnir5BjzSigYaYqUBH26IaYVS5EBACQkAICAEhIASEgBAQAkJACAgBITByCNx9993pK1/5SvrYxz7WoZQgwp577umBAsbs7MPASRdsCMmpE3vttZcfdxlCMQkA3ggo0BYBBXJSBFIi0OHE+mXEAg3oiykURDpi0wnoHoCwnSknTa6mdOA4NBxUQAKElISAEBACQkAICAEhIASEgBAQAkJgQ0HAB+tMVrATH2PMCy1mFzBmHul02223eaDh05/+dIfqo446Kh199NFp0003dftPfvKT0z777JM4YYJxOadHxgmSCMYKhAgsQIsxPDmBBS74uOhL2Z8RDTSEIYyWgQYADUfDSQDPQacDSkJACAgBISAEhIAQEAJCQAgIASEgBNY3BGx068sN8JsBPCl+/afMOJgxM4kxc0eb/TA/3GUUoef2229PZ5xxRrr88svTDjvskNhvYbPNNkt77rFnmrfLPN+3gXH5Tjvt5LMZ3JGWl24zFaBzRaChrOeqRjTQAHBceQABY9B86UkRzaFNgQZQUBICQkAICAEhIASEgBAQAkJACAiB9RmBGNvSBx8DW57TGnox06GhUxhGCht333V3+slPf5Iee+wx3+hxu+22S3PmzPGZDMw4gI8ACEdUzpgxo59vYbrXuD4f73fjQ8+IBhrCMeVCQAgIASEgBISAEBACQkAICAEhIASEwNghsHDhwnTLLbd4AIEZDZwkwayGtlQGQjyA4Os82riHTlOgYeiYSUIICAEhIASEgBAQAkJACAgBISAEhMCEQoDTHxctWuRLMtiPgVkLsXcCyxyYzUBAIbY0iJkQvWYmDLeDCjQMFznJCQEhIASEgBAQAkJACAgBISAEhIAQmCAIEEhgDwgCCRFgwDXoBBpiFkO39ghAjER3FGgYCRSlQwgIASEgBISAEBACQkAICAEhIASEwDgi0G1mAnQCDcxgyC9cjTYCFOWhDuvSFQUa1gU9yQoBISAEhIAQEAJCQAgIASEgBISAEJhACMTMBVwisNAtAEF7BBoIRBBoyGdC0D7cpEDDcJGTnBAQAkJACAgBISAEhIAQEAJCQAgIgQmCQL5EggADSyG4IkErUwQhgp7zB204uQINw0FNMkJACAgBISAEhIAQEAJCQAgIASEgBCYQAgQa1qy2DR/tH4mgQQQccjfzGQ9BbwtCRNtwcgUahoOaZISAEBACQkAICAEhIASEgBAQAkJACEwwBDyIYHGGCDYQQOAf/0kxg4GgBG0slxiNpEDDaKAqnUJACAgBISAEhIAQEAJCQAgIASEgBMYRgQgq5MGGoJFDH6mlEmU3FWgoEVFdCAgBISAEhIAQEAJCQAgIASEgBITAeo4AwYSYuUBQgeR5PeMhaKPRTQUaRgNV6RQCQkAICAEhIASEgBAQAkJACAgBITCGCBBYyFPMXoAW+zXk7VEmGDHSMxwUaAh0lQsBISAEhIAQEAJCQAgIASEgBISAEFhPESBYwDGVpHy2AuW4yq6FjI63bJCJaE3/IzoaFhWEgBAQAkJACAgBISAEhIAQEAJCQAg8ARBgZsKqVauavRci2BBBhpjhEJtDkrNpJHKxxGLKlCkjgtSIzGiohvwx8A+/hhcA6C9V6g39QS8lynrwDzVHfy9d0R5+DFW/+CcEAnEbJ4Qz6+JE/l7N35M5vdQ/nM7nukt941kv+5n3LcqRswtvJNsEx4ulfLTXeYgyHW0A1kJS1QKB/5+9916Uq7jWfScKIEDkjAgK5IxJJjgnnLN3OHvvB7hPcO8L3D/PO5z9z9mOxzljvG2wyUlkkASIHE0WIInz/b5RY3Z1rdm9eklLAglK6q40Uo0aNSrMmr1S9x+qsVHMgrJoL40SxEy38SxEZ+2RhJuF5q6FyVbuWi6LR73W3Id2v7N6nUWDO2ohLV7dc/W8MWrDLNKMoKenxrlNh83aXc1/nP54LmUYjltdAtWWtfmW0o5opKXxwcgvVFML6ckPhgYX0sqd1954f43nQhIfASxEqDHY+qCBA4M8aACIQ4b6QCFfpTCMRKn/SsUY0R3M7PRBQ6in/m4lmd4hk2uDZtRHOijX6eQF1GRKCbWr4nGJMhfnQyFXlhUJmuyYXHOaQQEIcdo01M45KFOdedAa8azzk9Ij6PFUDU8NeUJKlPm2bNQmg8/Bi9JRXcLXdEYwNZfEGQ3RprbJjqiUlEWv5Y90DLyUI8oSKnmO08raZJj5cajs2xEN4BKH0qF8QL9fvkPalHmk+fG21dIC2+pjqCxwavo1ddcm25p8S1p1Q2A1CukBtMmIY8BJfaywIt/Wk58EW6H1ySH4lmYPPCFR06jTQ+CT6rOcWKFEkdH3YJOisAXtcUpihJqQlAzwGQGaYUJDJjA4OApfOcdWRhQL7EjkfmJ1DdTGA3xq+tTWvMmPiUZBHxK7L1CiLktK4xSidFQ3XlvTeq/SKRv8Z5UucVr4ujzTdbtG8FHLd5ZFn4+gK/wqOaqvUkmiL4qCuf4+eRSCNd05NCCWdHrCTQICYalNxShb86DUJPkK3BHgrKkkOCjwAJGWzzT8aXUt6Zpuna7hFkKvxtt16ZQoONS50OdIq3XdfPIkFhZHGtwsS9yhMurGy0dYC+c/jpG5EcVRKmV6r+KUDf47IxV0JuFPq6vbPSscOC3sUB64lIn6SQGYEf5cXzUJry4f4TNbBt86rmGTH2UpX12f6Rp/CC7rE76Op9VFa2voSIODRCnfOM+ozZbl6AqYwAie41gjzeaaIDkEz/q7wkxmdfVQWihzQaOkLU/qQ+uYIdJtWX2Q0P7ZyrzNkDcX8pZDfRjR0tuZ/CIcNGR3ZJzipJrI1+msHy4dQYbaYxCAk91AnGnKwag/lO3O0LZ7nPeoPVV5LX5V3CcHkKahDID3pPb2xIL1Mg0BZQ0ocxLKAOh7oO4pUiD4lOp+fpkm9UQaI62MUiNC09iOoOZPtbTH6LpyrGScYFXV0iFfVfd4c8paREOqcA5gT+KDkRjUi5o+oJdJoLWiBtDG3fwA8Cx0a7TdlR5sywKZD7VtnG6VA7jKLpDVAsGHJFsgiZ0An8Z9UAXTEJBjAGkSSg86L0A0cAiMsp5OgM3Ju3gIuUUs+B+sqCgh9bObdJKrvGSbOq/Z1+msH1uqUjgINO7qWh49rYFETa5O96BDxBrAGqROJw3AA6UgAtTQSNhFi8d4DEm1aJz2DEKpgkbvWUwj6vQsjapJ1elZcHcnzELbtStlCz2ltkq8QAHfnYOWBNLLRAs4YAB0Rw8aoMKBAmHoACHrJtUbcZG+Fu2gYVxFKd2oQ2hu5rI247Y88iPlx2HDKD8+pIDms6SQa6kll8WOU56UZpSvOc2RZhisRol0gzgNrQGdS2svLlmQXqYB1zpqFDoNrQGtqezidMUZAcufqxlj6vKxkvHMfPXj0JFrXh0YHveTx/oQyUllk/QeLdf3GECljyRYFSVoxglCXIGNpcfpCxDkfSoKRqzyEPughGnNrhUqfdSgdRpV1aB1egyp1WkBbGm1YO9VfqwdOyjEcNuGlhzilsCLwXiqvMkIoDo9FWlRK6dxndP8acC1VA3iJLQebF6AIJ5gGU9i2dNNgCGErJsDnBV7e1w3XOnUUV28S1QQjPgepcYZpQgZj9WmnHXhAGCCZZzgbX4AtfehQ3W9npIgcQNY86jTgTLyOYGmb4AaGgG7iN89j1qiOr2IvPYEUtn0Ru9ZTBPq9FC+QR3rwrZut/TxjHpv2zUj2qKDjUYCpNFY0doCBRw6aAgS44SCw+h70Ru0Gwku0kFDqikVVTqgdERcWolWZU3dxrYs8kkLbNL5ATPTQDaf7MWWKGiLEVKsasMRRbHlatm2eYs+ixwNYrIFNdMJkvEsZPc2mNQFca2HOt23OYH7AiVaROoa5BqtBW9Aa8q7OF1xtoAlT1QLjBQJ2gqf+YxribOsjl2vgqRX8oC0YQykrVxAfjJtcchK4qGDlkqIGnSIfYJmbJhEItOnlUigygcM0dyry3p9DLQy9VOqEjTjGqMGrdMjfdfQJV0BDtEcwNitRZV4O8x3qF1Bt6Ge8x2cmqodZl4jpiCmnZmMa8Ddk07OGddNrtOWJoHmE20O4mi4QyKrM55omz1AMEz2Gddi1KB12jBDCIk8Bzgr9va4brjSqSOKSdfVi6GKnn4k+M4Ucc0u0xn37AOhz44lGuAEzRjYOl3jNqi9LG35rARqPpkmHtGLLVbk9Z1AFIwD1mLueLqm3zODXFbsOOk9FrNu+qhj3JysypjCOl23uUadlB5DroFqQrsxPaktu1EEsxo8aJhPOOobHeaUPULNx3WjEhiCliOvIUH1HhUW5aABsw4V1d+hptDGsJra0jYP3cmHDKnn5KMbDdmDWUU8l2hdu7D0uB0U2tl2SI0DzGE9Xt2Cz5W1IdCip/ANWBZ/IOKZddICtvlWiU2+BUe5Dchu1nfhPmTzu1oSsx5ppB4ByXqxdDPiEpSDbrZdZXX7W6ZVPulknHISV2CjdAtY5/OAwYh1RU11L07P1+RaoVJDDV6n0VANWqfHkIZUWYBbekOgu6tsTP6dZDrUrjkLnRZoVwvgNomp+bTMd7LBC0Af4jyn6S1Qm5+DIAGqshYc8frqocoxADIjux8C72kJrk7Pavdm8IH5qjWk9HwK3Rm9TKDNHDeqGqVgldJl3LMfB+uLnWiAEzTjBG7zlDeofb4trwROcqO4AU4+GdeAgAZ4QWqBGloj3AWmWrqgm3ZdUacXSH9PBW+b3Og7qzOmmXW6bnaNmumMe7gWeQ5AD7lbE61Yu5L5cJOztIp3QKh6yUobRp5lLjHm/PF5f1e2etfR3umDhlBTKiji+KYzqg6Z0oaEakFGhwzUQDU/mU8eJW57ELAMgIA+iVnCZRyNyNxw3NMamUoC9lVZ0NJr88DNQZpb1qINoSTLD0o8r05agDafimqV2eRbtKY6qezGWBK0Qu0u7m78e8VcjTTrpv1th1T5WSXtUVqENj922LC7lP4+4dPqohWrV2JUzAcOVIMyv13PQWiF2JvzpfHzKXYhOoIW8PPRtFoFtBDai9wVQyKOidMCtPmUZwxJhU2+RXN1XUi6xqnTqqpBk+VQPIY2hDQPnyGae2eZNDWkn7qxY8qsK+ZJT6NbaI4fNgS9ZJdxz2UavQRqkBIl4wSbFieJjHvYWYg0SImScdICrN/stJUJRNzQc1/NVzaNXtI2jVkAE2Evi4eaXum1rq7T82khSWRs+EkExoDmo7w316ciFE/S1XzNH0RNYhlDJHj1Y28+uu/j+kU5aBhpvN5wVx0yxwMNayQxxmtRfH6oyY4gTgx+n0HpaQcNoC52MPuQp/6GTUpmlilyzX+obA5iS2jU+iQ1xicL329xtnWSsNTPV5cwGVdtTPJZNIdUDVCnEyHjFrHJt6hNdVABqK2oyzKdxGrYuo7yzKd8Y7EATKMmMAawazO50TaXbMyuZTminm1XST3mW1VU+Vkl7FFahLG8Mgk4poeRhHttakwP6F+f1EU2usm3KAlWxw1Kse0aoknPQWjq98ps1eja7ndrW0tvWpRZerYRbsheEiTrMs7yJm65VloZtpsWIemNIaqwyddofVVdSLqvKESrfA2aLIfiCmWy/DVQnR4iuNeVqcG9Mt+Dxpt9CFB/o+aUJuNe9b28fclwokKsUer0MOKIN/UVmUpXkzBL+RjSCG2cd2xzAlTf45XzMFisajHtZX1PBFishiyczqTm9voIkgmW8XyMEj3jHn4SgTmAPcYHKCEl9PrZCYVMRO2JNzqdiNDAvX+zi37QMGpqKod7CZke1dap6bWpfOI6nRTA5sOrE1m2m+IieH28Auc57RmSa6hsDmJpR1XeolVVu6nR7z82tU7m6KOuRHTyALXlcxABVqjKZ0UJxF38bWEq4XYxuznke9atVuZA7pqC3GjV7HuZCsuSr0HmE6Yn0SK1eQOWwh5pPup7QX2rh6EmNfqYBQUyY2jzIY0BDwmxt5aVhs+nn13afDF/D/XfNn1MlLYSPQyVjSFVymrKa1RX1QUVmpNTcFvQOj+GNo3+RKS6Yi9NWy9jmtp9DRXb6JbxlV4tTZ0etLdJ0laIddfX6RlQx4fjLMgQrXiTrdHqdD5RNXhdAdLuCh+0A/3U6yR9z9h3SaaNEz3jvn5Gfj38ByUxppc5WhvTwhjoWE0ZcqADNIfMJMw5gA3V9392EQ8aWiWlckqcG4NZdZLohk/aGVNIOoGI9amrAdnVYQrLlGyqTLW8PcKA0FVdjQJkVRWICZAVs+SHYMGryzMdXMa/a9i6JnlnGTQSNuuyDJhMt3HiZ0x9CUkm88R99VBlDZj1PUJdWdJVXYInVFUVRQnQVlBOWV2faTATvoXLuoStaVD3XoeUu5EjxW2Kdyo7xqpmUKfHgMRO+bp6VgFMpkVs8zWvOt0yAY/6NgYuaSZ+DUN94mWamJB4pFuYpEFdHRIn4ZPnJJi2PPHq8knpinaynQRal1do422sgTJdgBdCP1F3Jh6TsSG02LJM42XWi82wac/M2VZQ5GrLktikumwLeAlTlxX8LEpyxGOshgCGysaQamojgi2aUdrCGrWiOQ2sRsl0j7oQxB4pqUyJoQt8xgla55N3wgFT86jrqcs86QyTcLOeOHkmfs0j4bIu88Q17bp8V6aLbIjTilSLXafnAE6Tr0Ks6dfpSegV6lg3LTb/5JPxguhPEn4h5TCepJCsS+ESbihPXV0+KV3LljB1WdLJuK6r03V9nW5h6nzyA36+UGBr0Do9DT3ZZGzYWZATAVjSNU7WQSzrSWcYKmvrkl5Nq8BkVaLsyjjYi+Mg0wHhJIxBS1WN1kOXwj4/pwE1VlYKejJCAr3v41170FBrfqHamqPcthM4XeasdQ7gBONYxL4Qy1aamvqYRNMAa6T50oVoS26MFzQSoK6gbFK+rpuUnk+2SfUpS9YjQ/LImLqEG5Ix4dq40EzUknXUkxmqrAFnTReCQ+R6Xkkr5cw8cZYlAZDqdMK2cJQng6yjLNNJg7L3IqRshfeuFGeMVcso9dHqQEgtaAsyKW9+Q8hDvMaEaygmfMZ1ddJP/BqmTtc4mZ6EOwmvLq/TSS/jobq6jPS0kG0RzHygk8j0JKYRENC06km0F6O8l68ititlGeIHa/+lWSrfC+bZdnhPEjBh6ngafNZlXOOVNFVt6NkPVbbAs+R7guOqdfE0HgVvGsg09j3bWQn0CNOoNnXQnoSXfKkfgqvrIVvD1HV1OXBtqOvrdAtHflI95bs6SA81mzoN61qNddpitcCTZC2ILXibH0KvedbpMaGHELNsDGkBbZ1FuOSxM3Ej3xxSyNHCtGUp63xwSTzxJ+ElHHHC1mV1er76pFHjDMlZ12e6gktRh8gleBtX6OMqrInVSDVCMmrLavhZ2j4JvsGdJFKNvivSbl7PPIXKeJxjPkfvwcernUt1jdNtAJnUM+RfUkvELN8D48U7aLB+KiX15ptaynhGLVXgNdXApqQCGCDp2rmIA5ALKBLRWUmOSTcr0iRRKmJDpKrqSRT2yvIhXdDQXh+TABaijZ7YcN9X1Quhuniwi9HGHZGmafjuEsNsZ2CWjn9HmpY4M/Fq9JC4e3U8Sf9FF5OqF6KTMbW2BFXZFi2E9mLApny7S475+Ll+sYWZoueUZzF0uRAaQ00ck2UIYCEMgC0EW1I9nwkVbfFC2VasA3USwV6QHeGwZ+JMVcWkyh1tqvTbkmzzSbrtijafcPPFNf06PR9eza9Oz4dX17f82nzCtvSdnwScSAuNRXQSyZb/QknvjfCtrtr8pDa3umzzk/B2d/ms7dkVclkn0wQoSkuQNk6Zat1mevBNoCTQIiZSlu+B8eIcNPgUZhYtLVBjAm+ptvkhnU/kAjKViodgBmkPAA7CFdKtPEafhNACT8qLyM6SmER6by7/wOh+PuNIGwYu03R85jMeMoasI65DTacuV7oFbaoXlB1i47IJTFxcIU0AmypDhR5wIjKnjBoV7gj9qczf55W9HtqGD+iiBZmlaT39Atznk1jFJ4tmobtYML08EwgupkzTeNV8BuEAoKIGLEUpelM1wcjHSQzySoLvcWzZ5jRqgUKJyDQSc3gMwE/DnySN6VaVc/hk3QC/rPogxLVuW52Ntb8CHIJz9VBFRaQiUZUOJ+chNYw0UDrEM8sm8ZhUPkB+alHymQpUKgd5QiArCjGyA8XjcIlTMa5lGaiuID9MpgZqnVFW5yfpcFJ50ny/xHVbdodMqZfBAwEEKADIlbK1cQVGMlEcz6GbyIasvnpBqrI9MLk4Bw1WddFUr7AhDWXZDJoSaE9K4HUa7DafFIc4DJUl/Kxxyy/zLe02X9OfUweROYWBkfRr/EzXdRPQE/QDEc+ij4l6GuiDml6rwLpuIs0W6QOUr/XTNnta3Xy6nFoP4QZgGq9Wrkn5huQksA/LGw3sDt0vBo9G7JmzQ3YxnzyT6odo1YIM1Sct4ra+zde0Zk0n/Wnwi8FnGv1pdbV80+To6xIhCwYUlyAt3yxP1La+zidsXbbQ9Cx8Fkpzb4CfT7eLobchHkNlqc+WZ5tPuFniIT5DZUlriNdQWcJPi4f4DJUljZZPm0+4PobYvECT1/RJZwYSCfqBitu+avO1MibpcFJ5jftepKe1ZVfLg06sl1aIoiyKs2oornWaaeI+nUg0pE6Tz9ADZ8GeGS/iQQMKKNpyNKShLJuirAJS6z3TGU/BHqsa4jZUNoZUMpN4TSqfRnda3RDvtmwSzxbuw/xcDXyo+7k6WYySIb0O2elQ2Sz8h+gPldW0hngNldU4Q+lpfOq6HaE9xG9PK6t1kLIP6WKoLOEnxUO067KaZp2eRG+xy1OWjJN+K0ubT7j54pYu8HUZdCfRruGSz1BZ1mU8id6k8lloJu33It4Z+Sa1uW5HS7/FafM17qR0SxO4obIdoT2J555WPtT2IR1N0t1Qe4doDpUN4dZlk+SoYWZJ7w28Z9XFUFuHytDbrDRn0fHeCDNJb/O1dU/R6462b772T6pHL/kxTApQFJZZ4qF0TTd1XMc97Rq5Rsp0jZRle2C8yAcNjQZQYv6ghRWaWmvg6mwBafWf+QRt81lO3HJp80MwNX5Le1K+pluna1pteha4ll9L48P8jmngQ93vmN4mYbX6bO12vnxLt6U3X76lX9ObVlfDTUu3/KfBflg3roGd1f98ut9Z+uPSzp5LuTIGs5VlvnzLraZF3aR80m3jSfDJp63PcuKkNa2shklaGdd478f0LHLW7VuMNuwMvVnkXQwZ9zQaqdOMkb/V1Xz5oTbX9CalE6+ln+UZz1efcJPimv8kmEnlu5p3K1vNr07X8k0qB6alNy2fdDKueXyYnqvLhepkd+kVPm0/zyLrjuDMQncaTOqE2GmEKIUpTx2Tzjx0M13Tobynl+kEpLJOkye0BKJ0j/vetQcNVkdqiozSQ8pMtVWgCZYxIJPSiV7HFSkXz5evcafxqevASboZ13QmpafBtvQn0fiwfMc08KHud0xvQ1hDuqztd1J6iBZlLb06X6cTv6afZRlPq0uYWeIhvrPgfdBhdlb/8+l9Z+nvaP+kXBknnVqeOk19m0+cjFtadb5OJy3otTRbuDpfp5NnHde06nTyq2GTVsZ13fsxPZ+cbXsXqw07Snc+eRdLvj2NTuoz45S/1Vedr9MJ38Y1vUnpxJmP3nz1SWdSXPMfgoH+JJhdzXuIb82zTqfsQ2VZ19Kr83Ua+KSTcdL4MA4NtPraEb3sDt3CY0dkbXF2lM5C9JL6IM504qc8xENp4LI8cYfinnYCZ5yMEol8nc76PShepIMGFPtut237tm7btm3d0iVLuqVLl0k3oZ139WORfAguKwrdZ4nq88YDlSqHTiQFWZRbwEvNqBMNOPCV8KAXEoaalE4SiMhnnyVZEjH0kmbW9GVCWCJBE6Xm0eIk7qS4xgWmxk8d7iNe/hQiKUeLSz7rrHsyKqxxC4lFiwqLMXqUETJGLj7bXahS2kNagbiGc2H5qsszTVXSG4KtyzK9fTt/FFV4sr3km3UZ1/QpG9J9DUPaOq7swHiU65MybpetbN++3byXyMgm8QeXUPMYgp1Wn3Vp09DDrrHTrKOMAAxB4lumtj55R5+N4JIQeATzSuAoGvuG7iTaALaodb5OJ1FoqTulU/WphFiqxpkHX0KocbKcspQ36RBTr64JHVS4NY0aPtOhX/Up/dkAFzESdCymDqYtTgJByjAlrklnObBZPlRGfRtqum3dQvLJL+l5jBQCtInRNSRb8sg68tjVu+/yLRwhZ13GwBCSZ+SGv1ucGirxQ1ZsZknvt7Mu4ZMO5a5TR6dsWZewxIlPTH3i5R9hBqYNCUt50syYMtOEL/9KBVrahtGjJ5VR3NKpaUAnhUsaLitf4GLDhKx3mfLRIyPZ5uVjKvFVSFYlkcQH0tf4P+ZNgvlRrn/pFwNObddaIudWw5rwqC8CN2RPXQCXOkBVcMi+ixzfk0PiJoRJZKaJsy55swbCvmxbal/L1/OEaGR54kO25Yv+t4sesEtx3rs4IEsvX2VzLdvsmyXqm2w3ndjbj/ty1MZsV93WluZ8ecuGfPokT7FxYBlZa6cuDwjapU8xaIntPLbh9rqfKvkTqYqzDVnU5rN8oTFNQJ/08VgbVB52FJy2S/h3JTA6z3GTvExDkxd0WHu39Qm3IzG0M9TpsTJVICX975i0Puh361aU3nXLlsX8yBxLJbDQ274NZI0TNR4cytpAOSHjyC3sG1xYv1smeXSU/LAN9Os+QDDgVIY/IuRYdab5AgKMpJXVbT7LdyaGF5+0k5AuKIbUUd+P4dKWrAPSNGicQt2uSeUG3Mkv+G8TT/aG2C82Op9+LCFyln5KEbDx6Kuw85Q7x4/xCnDb7qSRcV2fZS0+MC2ceRbrCBsJKMq3vSv/r39L9lmqfkobi70xPJYuWdotLRTHaNNWM6dUCQYPSelqjgAQ2sPCIh007GPlbnl7S/f22291y5fv263Yb4UUvcTlTJbbt4XDwSA8iqUolL7P0qVFZSgaIyLSlwKLDMMrHSURZ9pAA18YNbTslLO+ILlz+VIokdOgsICD91LtWMoYNV87KPArPLJbNXDgs4zBI0+ZOCbYfAHft4s6A6s0/pt0trVGTTz0xyZ1iWbVZcs4xDGq5evpimbdJuhskwMFFxgPRsmKXtqQ9Civ0zVc0kamNtRlCQeM5dc3Dp50OJl9pOuRTMjlj+o9oSrOBaeSDkk/ZbOzUSFtqfklPA6JkHRJU7Z161aXLZPdUTctmIJw0Ps26TB1n7SIoQFdnCiHF7bpQpQWszigHCmxl3feeadbumxpt3zZ8kG5C6ojHBbNqNswXj/KDbWEscQmnPEHnWXiu1Sy0K6gG/jAYB9LZPdYRtYTQ1coLku4WMwEDQj5wFBw6Mk46JU+VVkGyq2PUpC1CZMx1bSbgM7q8jodEIzBd7u3pVNk33f5MuMhJ/yRO3Eo8kSncbp0aZQWMMMw9t2H4Mk2alwTnfAFjsel+C+TPyMgm9tAQqxoR0lSHfUsHFVI37LooT5Dykwe23LflDFLOmnbLoQbcPJShR7lhJqOC+b5qmWo8dty6rIMHvTrdvRAgxRiMZHTqYv8Ra39kOK0acrwUdu2xn7hcuAAAEAASURBVIbKNogvNcb4V+JTGk0ESqXxv6c5jjXKBX6MZeTAB6Qv7PUqzrkIBRMcfBWdBWxdl/WO6RcLHTabePRV+Ki5LQIGDlETeDUUdgXftBFi5ra35cNQQM4D2DEhbTZpEAvcPsA0ypqFMgcBZD30clqg2uNF/O3TQtleqFse1ZteUBn8Tha0T9AFJvwvvhTZ0T/B/hMfJab4KHz/1m1b7XPDZ4UtWS58jOBijpbvVZq+wzcjUx16eNV73lG95aLRwCp2XkjgjmPXlEJGSloetnkhYrHY8dtvv235sONletiyFBsrpNxOjRN4Uz6NHygcWrzzztbwbWW+SHkLSUctHWDaMgApp8W0dKjeawX6nH/oQx/sPYPxpbP0efQheqVd0QfR0qxnnhs6IKnlq9PJhzjLiQnEXtcpTn/JfIp0HseKCcBhH4SlyF7Elyp7/86mFwh0i+xup/oLm8oQFCI30kBPLsF2Osa30M/oMdcO8GZ9g21b/2rH1q3veDws1xy3XHZFAA7ZiN9+523BbOuW77u8r1fxooTURcYQTb45/rAZZMWHUMdnm+bmN7dscXrF/vurfTFfg88cTDe9/fY7Bl62fLnwoy3U1yHpZRn5lIV0hiwjn+WUZdq6ls14fqrGH3aEzTIm+RC8lpFtENLv1/Qpx+YJHitOTf+qZUnIlmaW13G212tjIcR8EjaCCJkHjr0KbcG35VyatKI+xi8KjHVOaAc5tsnnoq1ZfBM0U646phxahKAc6Xc0Z+Ebob3ffvvZJyZcQIy+KUe3jE1sKvVLOfMCdg4d5gb6if0NbWEM4d9yzY1N1oG6CG1NDYX8giug5j9e7Xpg0u9JQMkpP6iytzQO6ad999230wxnCbQy6t566y0apbbv2y3fZ5nJMxv1EqouCjVINDC20xfQxR4ZGHt42OmDhuw6FP/Otne6d+QQmWD31cRIyMUSadRFF/NEw8Zgx6QpWjFKJWBgowGsOjxXCfCyEUAjCxUzuMCxUybPYkQATBwjbLEoSNltwBDMWmkmWggzQAk2JBXwdAIjYpNKwClCI9tmB0tbqCztIFkH5O7bBXYRgjKcNWjwQXBvoqHHQYyIBAw6Y+HHhCQ41Qe91IgJuCyeDsLd2FEmHvyDZkyoURcykp4UipJcPYJLbCbJkfzIzJIr4BITebz4UNtycY/sfOxE1BbbheTLRYrLs62qRSeEGPhz867ML+swuLNQTnmgwYYG8bBReNDHEsS60Rf/g4fbEbpH7+n0aB/BeKJj2yjtS5kdCwaqSRMedoqK6T/4ZzBcyaSsyIHe4GNtStYgJoiqTaAJZMQLeOqBp1x5dEocC8MYO+CYpPHpCyhRZm6R8TcVUQYNgvvA4oiXq52JwyMxtQ2IDlXg0AZiNmLWjerKaAHC/0IAlQOnUiiiJyAdVO4KMshYill8MvEQGLcJ73YAAzEi+lAfZLP9q9y6RRbBsehhs0wm5C94sLVMQQj6wKevCXtloThapABpH6cEsB7XQc5i1/XeIKkU24QPExZIPpxlzKqctjCxUmdtWRR/FdpFB+ADV2yU5mdI+vAgeFErupFLKOIsqbHr+khHL5EO2dGDhO373lA0XmXI73YhvcnzFXqs8Q1Hn4Onets/Pk95zwNCzvHgPhJUkAtpom8my+1+FI3sG+yAvslFPDrmk/VhB9EX2TeWLRrRy4kUlqNnjV417iQ7cfRHlAEXVhp5ZdXS+PDdk3Bby3xEPXahcU37t4quCkwXeql7+jT8o6uDlgCwbWRM6rTFOhUzqmwT6LgwN03BQBc4L3YEyfiBBjYbXjApQn88FI2MFyoHTfSCnEFXhbQVXSnGR2ErMa9s7+0eQtTTNwidfeMDbJXnQwnbucdNSJDtdEPVvsiPGppyujw0BqvxYL6CNH6MQdqBnlIOEJCFhXDKR53rVRftM1To1GM05EAGaKEHdwKxAjhp77TPOqOf9C8gDLaAL/ER4si+RQmfQvvQvyilDSjlfiZOvaMj8nGoGH2DzSEjMNgF9N9hsa3F/3ItthlPbGBoC7dcYzOwAJELKLKxPoO+fQH54nMA4UDD41lpTIQgcRxYa/Yy2u5oczwowl7c9/gdPgUnMNUH0gptoZyD5KY6wcZiZJ0b5pbS68xd6BM95cMHIKOPlPJ/xgcJ/HscSABDZc4tcTAXdLC5qKe39Cn9ZpTma9b2oFJoJjyy54FOWGThZfqUhP32a2aP62K3qkxbYZNP36Bg+5Uiu+2esopn8jaLGb6AR2Z0ORp/MWbhhcSuU/9iB7E25qCh6NvYiMY4EbyIWQcWJKjH2LE2hB/ziR/sqL+wJ6/VixyKFhQKh5hHpCPLgBwE5WkTZV4nyf4Nr/L0TS73mLTU9h9ImrpAXkK/NnAu+jHakj1bKhYYpTz0JTZe+32vn9yUsJUwrEgjrdtHm0kX/ZNmXoiHfvKHGgvbtCdjDPngWjbmcaAyfA1llgEapS+d9Jcpj7J9ShoKAQqKM6pN2aKv3RcqJec6/Kj+sQdmrPqAXLcaCC7XvhjQ5RyoiRY615drocyc57FM/6ocG4Ku96LZ5xDbQ8OiHDSEsqNfSKO4MApNMDjRsgjPrn2XgS1FpqPykw0ZjYN1z5cCClYH9CEJiHqBcJybXTqFDnMnCoCntymLaSQSGaXfRQbFHnDQznqckCo4haOIgwUc0hs6nQVoxYr9fYshwNVeBgSZeQ2iMKjgPAnaqEIOBhHOGSfB6bTbj5B8MoCvPE7OpNBR0Q0LBjsa1+G8Wexw8seEJsektjGpGaHgJNmx2O0ZK2kyyLDdT+j9ZAGnyiQo2lwbQk8ZkJMn+Tg4b3Z1Egn/lj1wtB35cU5MBvvqdgxtCOfJJl2TfaW/ik2yC10J30G4PSOVIQMBnSAjTsGOVuXwjzodBMhJWbmjZrjOX4IL3asFkpF0OO8CLPm84FeMrHaOcoa0A/2MyS+C6egpjw1ZsIKm6dLI+O+msECPCSw0CAxOnP5l/PXjDTuGPuNNfUV5TLBBv/6m6dkGYHIB47bhFFUf46v0mvIuTCLWQW74pVu1BVzaTp+idezDG2GcaumUWMjFQQiUC3XrwW0UHQecstpoCPepyksVolgHsht06EMc1TG2kIEPAXD6IPXPWEFO56kUWDyV7klr4oqnHZBAFI8nJYIOPNQC8fHhDnKVEL6N8SkkPkMBsQpf+0MxibHJYp0nWKFP9ycLtfSRSavHj/FFO71YHYMTA5Xn+Kc/kIkJb58yBpKc46Q5VjicAZSQusdukB9dhQ+Sv9E/2332GQgCiD5RLTZKnnKCZEtt4X85BGCsejwKivHa0wuMHt94k3QNbOET9PUNrGx7y5a3zGc/3cLD59pepXt4Yq9pQ0gGru1GtLzhqfq8FxwYfTyelAKOFuLbCfaRFXDIE6ZgAL6KjvJw3LIirz7QTn3hJ9ERBaareuhZVuAzQK+MB2h7U+U+SQDFBRza+BM+kPD8IT3RbnTPDb6KckVg/iS6DH8bNoAt8sn2QN+LUJGiLPlkH0RdlgJUMN3W8MPYXh4o82QJ+elT5nD61P2WoiZ+zykrmhg42IoP/coTZAL08ZWMLwTO9gAbPaFiwcOfOvum4pdNQF+pk2xwthW6+Mx+fCnvtZLbmtgLiK2qsrmVvN7481Sw+Dj0ZP9DO4Etat7OZli6ox4fZN8mfXjspiwFnrby9I4+WLFihelt0bqJPE8yl2k+D+JF7opPKRmMAMMeiemDFJG5bSs32lS2n/taPthAhYzk9LoHNPxiJS/2kKDE9kKqxwYz4P85OOEgYz/5hpgXEyuhJsdAhqxK+X/GqpBsbIyQD7vEJye0KQKqfkqfF74SNCRVJdCSy+VKpx0BD20Yezy5PSOdlW41/sQvyBdAkql7bICAPcMDe/GGlkIB0hZsAPlYy6QusTGCDxfT/gt9/CIPKOkbDqcI6AWJw1ciClLsWIjNqG4GSXZuhKQNICdji8DY9NorZRtjFxn0m7BJA7HioJr5Yrlvq2KP6Ie5eGm5ZWnESV+QRRcZ93CsoeKWFH5+X9kfbaA9KTf6tf7TZgVX10FqLI/9RzPMEx0wzxI89hXnGiEfxrlyB7+wBw4a0S03nLBN8vStbUPijHxmMYjkJTlD5/I1yM2HUOmJdZJ1rbHDGHpbvocy7AjfPFKsMWf/KrxzXZYyWpealL0Psc5HyoxRqW8XhZAhcsjNN+3Gl9KHjCmA0YPXbWVsuX1BJNqc7Z5d+vcd5KIcNGi4SnlhDHIt0hNKjk0GhrxczmiJrouMh4Bxr8gIwyASIjopc7s0nsaqOCFZgkUIoxsNyF0il4xwOxMnPMutkAXzEY0+WLeZo7EZyqDN7A7HoomeekegvHU6mqyDtGCA82Caxht8TVRyUHYu1ZP/QniHJZ2OKL6aDJkQd0r30fi5rFiI2o6y7VbSCE7vdmnFoHzWj6qkODUdeIWJMAIpE9BSOdy02UDaTd+9jHUbNPFpEcHSg4lYgk0QZoY2sljBzsp4nEMI/ovtlEWTSQFbXFIOyObwXZSCxh6wF9pLW/mMjeMBhjnmW7i+vPRJP1Yn9cMA7XmLim2O2a7K3B8g7yAvjQkWESyA9lnSzh/zCjU7gHT9rnS9T7/Qly3K/2hlNDuNmSGbfp4ZbxEA1SQHTKEeoqV490bYhwSa4s92WB76U3aDL9jHG1sopT3uoC22wuCvCeWpVWSmfLut8yke2yAonjNX0nnz4Rt5hi/o61P70b4vJqEj24xGw40Gyb9EBwvGUZ6DhqXkW/80id0CylljWrK6PTX+AkSv0TLNus8HXLtAds/t9IW7FtucUccp3MSYRhPeA3qwznkmN+7peyYNv10xd7v9fEkg5lLNI3P1sRA9CdZyNo1g7NDenC/Iw4912GLoXxtzDhz2WRaHMGEz4oE9DtrkpDZRPmAPHvuq6udp0TbcACxgCw2mX+mMtQ3rtEHZJxGfoPsxXylc8cL374PuF0R/El/Ka72hG0LVHueB4ZPlmUeHrR6pkw4Y9wT7rTjA85zYjwV0BECLT9meFRbloMFPLdXBbNBGT2TV4WUCiBNPOqBWWFGyOyeVprIspsibhhon4VxZZ4bTGHh2Jrxt3JPoiYRhJQAdDxjOgmAHFcnp37Xw0yHn1ha5tmuBpHcHLWu9YYR0Ltytl7kUrLxWhB4W+qrEIdaTQK/jUj9EdqYy8EVbhyTerCN77WiRHf7mVw1GOVG3Cx33i7YiIyh+OlvB46QIHpyUCwi4oj6qxgJ8zVul8O71AVS2uSDj0LUo4tRRR99VvyfcGOUmMyREoYteUuc4P+xST4ncNg5eaBN5JmXrIdtb+NqOhWO7pC7pNiLoHTgv6JDdui/1iGYlKRprf6nPqNZTlhFPKs+61DEx9GlHOnl+HEcHDYiwxBu54lDBHQtFR5SNHUYJE7ps/LAV6rJtbCbQSY7PXscT9IMQE6rGRMkMfMWDze4ynkxMPPgrMta2aD1PYlYJgszwcd8Cz0d5fA/lfgqXfa48baacQ49+vChPGaHuX2hoPDpwum+9Frgo3YHvIp/bCl/JD0/LQh0BHkN8st5A1Rd09BnTmfJqqxf59O/S5mlfhb1jyVq+lItY5e4TtQt9IROypXy1fmHck0k8xZABzj7KmRoQLAXKCT2ByNbfVNX9at6FD+kcYzVOppnLPH8JDluBFnnwbFMFMHmYjzKmC2195g0g72DAbuDZ6ih9ncc0MgiGtnjDMk2mAgtNaOAvCPiK9LnQmqazwJjhW3T6/it8B7GqOuSy+P4SdE2DLHlgVJ/2h6y9L6R+EYLlSBmgR7rQtu6KDDVI39aKP7Dpu3ofBSmV20dJ//hL+pc8sPTFDvmgMWEqIaYkaRKyEGpbdjm2IZqepwwxz1eh0+sh8/OgTa3ONhVajE3WAegn57N58YULHu10HwjXYTHkS+bIGXx4gLiPN9MpO1VlnNXjCvasZwi0BfBch6Nz6pnLKYdeRU4l84QdbBs6sh0kM+jog1yUu05p20zmUxRwVIfMPoCmjyQ3ZW5/oZl2Zh+munZOT3IzxxVf5PK6R2XYifuc/i68TTPhi+7Nn7WDAjIxDgnpE90RUTT6LjRcIJ4OlNXlpXjBUaGBL+h1LiKpQ+uv5VPyPKzi92qQvX8gkPLVgqhsbL5o6dWw09LgDQXJPseWVIZt9H2EzoFTZDJJK2MqUnbK+ICj21O6kQEZbmTEjVMVj/Ux+T0vLM5BgwzFNxrkRLjRgBL5ZxOX1t584/XutVde7V5/7bVuy5tveiNaqzfVj4bzehKG6PIyeN01dd+olqeMXHWmY1ylNFh+Ii0ptvJjP15sIUvA+zqX0wFLl5mOiHBgAn9frRRt2sS/uCI4uqLmcrXZV6ZVz7W6aGsxCWSCcAl1OsskgoNl1xfXjpGbq0Zc/YFCXHUXX3QgGK4dkfR1ucQ3JF8jLoYHkGIN6rj2KBk1ibFwZzNqAQWT1+SBHlEw6gxfaCf0yLUowptv6gdBtVn3VUA5Bdpk/VIp4CKW8ZCN96ugAjzXQqMv8OcqVz3NyivZkGDTRx/RFj9lKO2OK7VAlKaVmCcr2S5o19cM09agxTtVXLflmiflXLHz9ShTTO1gQxToS/9tHSIeWqBt1Bf7Fw36yzwEi3xRzw87xeaVJ7W0m/6gDLvzVUGYJLy40QY+rhMOeslr2AgCDWhzZdXXxuSI4xqmZJMc+XFTyhfwOxPA9sf06aeiBdH1+IO+/nM9LK9F7qsnWvClrdgkaV+po03C980B6dNPsBFOZQKMSPbAWEa/vMrEGORH8bgOy00J2FmGovOgPdI5RKi3MVi0kM86KH2oqA+0Bh7Iiq75ER+u4tEPMX40FgWd/epruPBWGeXwz6uuPVFVIIK/EFjQ7kcV0ofoDdq+UqdaaMerJlwclTySI3QneOnM11AFByWHknAzpV/s2T+UKTr782NctjU27yF7IPbYSWXemBFF/5mP0siNPOTD36oPVVY6xTq37kXZeoHDmKxBL3SmG3EixAdd0Af2DRqPlKEDUIF1qDutL4i6BKFYqMFTsftKBeaH72bxK6rBN2xZzep9BfqiEbSpP0gHH1qmjfzRBmJC2KXGpezT41flUaM6i6cvYIOAcRBDVuMyXsczvGKDUyMA/xik9AIRDr+QB7kdDKvrxqrDrraWQ9N9vTDTWGT86B92gwygRT9K18qYDjLQTskNnNulsWc8BOzlLTyDc5RnOgQuMmVhxNH2UpVyK5v9ie2jL9pFe3MO8GtX2FSO7zGyCD0qQGbjqch968bCBBi1JGGbJrg2ywrJXkTl6REtHxHW+kEX9gVKWF7zQY/oNgjBKuxMCcr55yq+kCXGtsuKXOCGHQkGXmq35yLKPXZNwPj6mj0EY/cvfG2X0nVevfa8orwFLQqlSfDH7yIXMATSefXXP/rIBlkBufNqt/HoMxpe2pr9DGyEqMvcUOzWWpGSodKR118S0OsGIeIbUj7sBLbIj+5oDs3PNiKHX0XDphXgMfqE/mkj9mP64DLuFBcRellMoOBn2vycgWrYHGPIPCwIKe358OPSEfP222+9LTuK1wWQzzIyDsQw1hLMmTEukIGeiPkpXvOiH9xHEM5gYfUlnsExKlzcF+BjKKHANX4d2Gll6VN+FwZ+9gu2B1UIHJ1D23MVOtWHfvG4UD1to8xBEXywm7d5VUIBH8a8hM9hXkmfn+0H01qzzlI6o+prJG+WjJdRLxzpDBk8d8uXQSV8vpICSV74wpwbvQcAWcHySxD2E7xmEK8Ia8NrnWIj9GG0Gx6Wira675QwXNCa/B2yIlsd0l84hnIBQ6YYl0E/yz0usVMFrxfpK/1DLtZh1Mc6knEZNkb76WP2BhLa9fDzeFI5vPg3awDSOgDBuGFDyEAdclNOsL2q3HClLPUFBP2AfPyQ5Fv6sE7njw30/WcqhY6YWlb6wnpSK4q+AEu52nQhMR5ZvNAPsmGXyIosxWUIPuZmj4+yZ+MViHy9DPg6kHOJaIfNoQcVFjuhDj9w8CGHdMcdf3y334oDEwMgffbcsCgHDb0Cix5CJTLQ0rVPP/lE9/CDD3YbN2zoHn3kke6tN97oJwd+R4GJjsURDgpjJCjrzpDphI7FhA6FV9TFQoj8Fv2li/h15qV+j2l//YYCxsym8W29f4s8IUsYog8GirXgDOAPHTrZ/FXnQcwiUTwxcmIv7GTodopysO+oXEL7V36XIZSCh6SS0OMrHETEFLkxpW3wgOebOnzhtwgOXHmgZeWXePOApJdP/L3IFm4OVDjCx4MV0goMQDtW0UakN954s3v99df9vuSBB2K4sTiyQ5euoYXjTCWLTR9Kk/o8iagHCOfE+5j6lW39O/jgg/0OJrz4QJcNAk7NG8dCzLLSFvHOD4MOmISHD/KxcYYW9Yceeqg3evQFkyv0aT+L/Rj8tAEbYeJTWenfWEi7ymXgeaITHXQPnwMOOKA7RIObxr366mteKKXM8MhgJ4ZTKLRpixfoYphtAC9l38LGX3z2F/2V0j28aTN8+aSOKAMHu8IWHdTmnExSZxweQB+7pl/RA3lk33//A2RHb7icMnSJTCgj9Rx0aCbyojdsJFpIxIQJPAsev7cnODYbbLJ5n5eJKDdd6N36EEzKZ7lz7KgdWAk/4GU5NW4OkA545/Wll15y33JgsP/+K7oDpR9k8WmufIB1ILq5iHEryuIFnXkDhJxqP3+1htNfLwbVCA4y6UPaw1++4b1gNlrIiBz4GEJMSKHrkF/2SFtcixZCT7SZNGNnP71z/Ibs8ZWXX6bW79XtJ9roGhroOUNMhEx4QRE98+nh3Kjggaz77sshTNe9/PIr9gcHHLC/DweiH7EbDqPK712IDzZoXUhvxNmP8MfmsScOGlhcMPkxPgmvvPKK/Znfl5bc0VKEwR4c9V9FdOddhfzKQZ9+ZMbF1vyRDIzX16R7DukOWnmQy/Fj9utlXEIsdBGcIWj7VD32T1voBy968KbiYbuXrPTtG5o7yNO3yNTrfExYvLAZ8e2Q/UCMXmgDdNCvOsU+gXdr4Z3lOW6IkXm5YNm0sFnh1S5C9qf9DHl9WGqyeN5ffUh78AN8sD/ak++uY9+WXzx7P0abg3DYjuogGv2t3xqQHbwpn8KTHeirxu+lsrlDFn6EeX/ZKXS3yEdAjXfX6VsOH6BtO4SHCPPXVrbr1pH/4pIZya4YU/w6tvoRuV9//Q21Q3Q0lpinLZ/RaW3oIOPaDl1Z1SMEuOgk/RNzH/6MPHrPkBsrODBW3SeSi8U+bfX4VTnqgWjYlMaz04rEA30gP/D0B3aaY4U6PjS5fAk15PM3dKgxSPgFvul1FpL4HPqThyfY9wr5MewDLGyeOpBjbMQYgV/8MCKUYs5AHoLFQD/lQ9mbb23p5+6DDzrI8rzDr/SLn8B2IARS6p6xhP6Z//hgM54T8Xn4SYFj7+iedvDefLQL1moBIBIEemwA3HbR4J11bww0jxBWrlxp2wEXvwTdWcW3XiCCnxOPd8UP28CvbdFDDfz+IfJtxOS3oh+0GeKH/PSLGDLeeIDB/M98w3qOceV2KOZQkA01smM3/AU1rw0OPkTrR/2ivOgz9nvZS6KXMThXjcNfRi3vu6ND5Pb8Kl8D40NEm3Ufsr/66ivWOzbhMSLdo1dsOd771+snyuPP3R7h81AHnaY/ZzOG/PBlPt9X4xjeng/UdkJYeZG66MkVriupvlFqA+30Wpi/bsFmVb8p4fawBivU1CdYMjwB51AmxjByhI1gK4wB1hbMFdBlDcC8ykMIdPOy5ifsjHLmbcYU9PidECnHaWVnCvQrAfvlg70z/9EPHLxjt+kP4OGb2ZKbdMhKzAWAsP+wae0nVBjjlnGo3+7w+mip/SQ8eCCxYoX+sgK6sL2G3SELtGcNyI99xoOV7ZL9VY9P1pL0NwF6bqe+6BfGsNdNKve4VFuR1WtejUfmD3wnPh495MER/frKq6+6jPUkewKv7T1Woo9r2VO3lqGuyBaWMtuH+G2RL3tT8xFy4w8sk/rZ8ooHLRGY29L7ZuXt99VP2DXzBMG2p3EADfCx7Zy7mfuwJ8rxN+HjUWS0AXzMAvGKeRQFUqNSKkghDDjqQ3T3mtZ9+G7WNSvUBv8uh+ijS4TGb0KRuRa9wj/WmsyvgEhOwWFjXlNLRmLWUbIi98NyrQHpj/POv6C75NJLu4MPPcKyQLcXrJTsadGiHDTQaFQRC1xOyDU41EEZHnn4oe7mG2/s1t95Z/fw/fd1+0qZRxx+uDfo/KU5Flk4ES/g1EEEOtofdQLVBBaBZCj3Ykid+o46avPmzd3jjz3S7S8DPuqYY7tjjzvOGzsWphw0cLCAmfnHH9Xr2JLNTvSg5RNVxT6Jp0zyeyDKOb2u2xgbN27s/vHSi91Rxx3bHX7EEd1KTWwMgG04XRxTcbLQFBlT5xtn76aJZqSoAmY00F988cXugXvWdysOOLBbvXadB2FuNnGulk8DigGTTwvhkwOUyZcJU9Uugy8NZIGAvp54fHN3/003dCeeeXZ38tq1drAMUAYhixbLonwESYmsRcd1WwpAqWfyWOJJ7pFNm7rnnn6yO+vCj3THHntsnPpq8qMeJ+wBJ4LwIaQTYeAREo76WEyrrdKnJ52X/tE9sP5Ot+P8Sy+TzRzhgYojta1Al/4Urg+LJLcX3LRfgxh66MA8xcttVTkLiFc14bzw3HPdU7Kb41av7U49/Qw7ECYKNhFx+CIk0SeE9JGy05CdQt/Xm1RJ//rHtUT/9ddfE+3nu6ek+xcff6Q786NXdWvWrhN/LR7lbIGNJ2BBz5sU8QldxOmpf0BHfeibIoggXJw0bXjh+Re6J2Xzr7z4QrffASu7U848szvqqKM1MegAomwKoEUoqO5T9EACftiQF1rqI5wm/cSP4cH3maef7p598imnDzns8O64E0+wXbJAYgPIQocfhDPRMl7pDzZYoS0xlm5oMGU4anhx0IDDfuC++7pnHtvYHXLUMd1xq070eN1PTvZtTST0Lc6bccWGkHQsNkRLZdBE7yw4WTZBnz5mobJCNJ5Vn66/+eZumxYyq2TvRx19jA+p0DeTUWokx0/YRNp/1FpnEt/yl3bxA7CMtScef7x74M47tHGPU+dDDjnUi1FaDk0CukVGApMg5Z7U1Z/WU9G/miA4LSolG4sCJmN089jtN3enX/EJnWof53ZhV4lnW5atBK+wfcaZWJpvxuYvvcDfiyEtfND9fevXd1sUn37OOV7kYgvGtLghswXXV4wb8XCB2mSB1SboMmFKZhZVtJ0N4LPPPNPdf/st3VHHn9iddsaZ3QFazME/jI+2yu9JVi8MZHPwZWIl9phAF8qzQM0JGf0gI4u8p558stu84aFuzalndCeeeKJ9HLabE7rE6mWkD+g/ZLdV2vTpWfeu4fDh5BivL8vXPPv0U14wrD3t9O6oI4+0jrP/0IUXpqLowxP0auqFPjnaojZi78wf+x94gNPPPfds9/RTT3Uvvfh8d5DsZc26U3zwwyEkNk7fEpilsHdkZk50u2iUPuieQzUg39HBwFLpncXyG5rjnpAveEG6Zz467oQTpZuTOg7A8DVqhPXkvhOu7UhltDuDbwWWDG3gs0z0acML8jGPbtzQvaWxybx31FFHdYcfepjsOfoRGfGHiEnARPTt/8GE+lLppqgt0hGHr/ioxzWeNt53r3S1sjvymGO6w6V3FqL4gfRLUPT4EV3rS7pnfoMO/QN9+07RgxM2w2EOf2ps08aN8mWPd8esOsFzN3zxX4wfdGHZinxo3np2C9wQpZDf3+HfxBP9YDtsiu6/e323VX4RmznssMP8wAAd+EBAiNiMxyd0el2lTkJPyGvFKQuvXPw//czT3Z03XKf56ZSYn9Qn2zTOAELW2YO1EiwkHP2K3h7TQ5+Hb7ulO+Oyy7uTTj7ZY5N1AT6eMUg7kB3dk8HuQ9/hM9C59a469OYn6sLDj73yj390jzz8sDbnb3TnXHyp7OZIj+FYcyD57PJLWyhFNq81l/oM+i9p3bTxgQf09O+w7pzzztN6b2X3hg59GAO2DWuotLtSFP3tPlc/ogdocwDHj/btK5t5c8ubXYzXJ7vnHn+sW3vOed2pp56mNeuy7k3RRweMU/5DPUN/06IUuA4Y+koxB8lsGF+WXnjw9qLGKzZ42tnndqtWrfLc9LoOaaGam3VI0c/YuUg40P7w/XSJSvXBXry5Eq9nZDOPP/qo7O+t7iDZ4wknndwdooc0+Bp8qOkIx2vuQjNpj5epBWoUnoJ5bz89yNii8fSIbOZZyY8vOPLIo+0P2NxxwOPNnvwZ9omft33AC/mZoxTQB/6cNtjriTm+Zj8d1P1DB/j333O3bOclj9cjjz7acze/8cZDCCFZH0XseSPbjZqxn+Y+noI/9dST3V1/u647+IijupPWresO0hxOHdplvskORb7wySE7YxibYlPI+jLUHmtykFg3wYu18EO339addMZZ3fEnrJIPiluEMW7KawvRA/PKDgA08Q30LQdf98rXPP/EY915l10h3Wt+kt2iz9Cs4KWf8DHYnMaj9JbjkzpvaoEXTejSL8Gn617U/ubuW27u9petnHPBhd1BWqthL/AAypDCzeBUZlUZlOhngNFolKBX7OLpp57uNtx5W7f2vAu7U04/zYcFWzTW0A2+hmB7dkJf4gU7bJt5j0Bbw2fz46n8MOYSH/TiC5579hkdrL/RrTn9dO1DjjM+m39wMsR4QdZYb0i9QbPAUJ8ffMNWtf1VrZVelD2y3saGzjn//O6IIw6XX3uze4e9peRD/zGPx5rAKoCp6HHIxloVOVg3cdBDe/bTQwIOd57RehX6W1W3n+Zzwre+90/d1V/8Ynfk0ccrl/KHPg2wB34t2kEDbeekks7l7/z6uia6kZ4euvee7i/X/qm77+675Whf6k7UtZBV+iyXA9MIl/HI2HBQGgzWq/BsqtZtEMEWGHiucQfG32PlNsN9Dz7YrV9/l6+cnHjSSd1qTZqHaTGEgTMxhzEwUcq5ybDDWE3Qw8GDTjQd4F0GIpujlzQx3Hz77d1mbUhP1WLiBG26jjzyKG2aDrC8/gsaGLRo5yIxJx3oITFyE0dQy2R8yMQG4klt6v7+979r4C3tzj77bC9wecKLY2PThx6gCwEcYBDi6Ww8NWHBs6+cJYGT4HQ0GDgT6MNyfjffeEN3imQ/UwOc00o2dSwYcCSEHOAeyBSgbPFEI1lHMcEwqseJ8cTlrnvu6e7T5/KrrurWrV7tBZgnGOmQVrOwYPEyJ4g4kxF04BHOPRwkDpG+e0EO5LY77jD+FZdf3h2vgwxoE3xaqfYhKxO/B7Qc1jvSAYFJHb3Jutwc94Dy4HMy+sorL3dPaDP9wP33d6u0aTlfi5VD9NQIvSAP+gfRk7rUAf3IszDRkx3B4Yzgg6LY7HqBqDYxYTKpPfrIo92zcoCXXXFld9YZZxj/VZ0aM3FxaGDnU01wtjvJzhjiSQULjnxST5t8dV98WEw8sumR7nkdZuynyeycc8/tTlh1vG2CQxQEog25AUi5oEGIQx6eEsYTOHBoNzeBcH6btJh4RAt05DhaOj/ttFM9ntAb+lhRnpJ4vJYxC0104L/Frhh7pz21bmjzS9L73Xff0z35+ObuMB02Ml5P0uaIJ/hvv8WmMSY2T86yGw4ssVf60uMW+aEt3auT3N9Mwkz2B2pMPqkJ7frrruve0oHLunXrvIhj08jExCIBedANad+CYiyqP/LpA5LTL+kDsEsWdxxk0ecPa9N1+y232H+tXb1Gh1+H+bYDo8W2ItpiYR6KbKdMtnEIFYdo0AfI9i8fSEzgicIdOgh4SIcNF11ySXey7BKdYS8E5LZOlbZ+rHu0MR4YU/gFbB2ZcnPwnA6o/n7TTc5fqfF0lA5NaVstb1JyD4q0ZVUhvPVlueFIX/vpmhaJ+J03pe/HtGm89eZb5CNP7C7UhMxiBf5oBHz7YfUnY5snWpTlYRdCuH0qizFb+kC6YfH/suxmw8ZN3YaHHuwu1sblzNO0WJFeoIWMKWfID79syShOGC8cpSP0g41zw+YpHQQ8/LA2Rsp/9KOXd6vVBnSA7mgDuCaJTpSXApy3zKJDv7AgJ89iAh3lAvHxJx7vHtGYelo+4WjNexdccEF3pGw/faNpmz6akl0EJ5Qfxp68xUNCd+8yd6h/+QsZzE8PaMP16AbG69vd6VrknqXF1kodXMdCMeY7KKN/5ge3Cdpihg5inCrD/8IDn4FcT8l/PfjAgzrcfM43KE6T3k/WQQaHf3nIY7svaqb9DkQogQheJbYuleapHLAPbtjQ3XrTjT40YbO7Zs2a7sgj4pCHvsE+R/O1dB5i2z+Djy8Gxu1QHrtkfuVAgdf4brvrzu4h+fgzzjyzO+GEVT5co1+gaVmkjxQUkdFTaYFyyqs6IGQNqvCiEZ8hPT37wvPdDTfe5AXnherTY7Ux4paJnyCXOY95hPb7AFz0fCCuOH0zNkY70DtpZGJeoT2Pajz99a9/ldyan849R+NppWWzfRSdIuOsIfuG+C3WTerX22+9RfPTFd2Z2kwzH+Si331W+hCd2uYLo6zzRkbjk/EPXr6iwy0J5u577r23e/W1V7srNf+dILvH7gbXAvM0AP1j94wvbrG9rg3F01o33aG1weGHH9ldeflHuyO03nuThwTSHwdJsWaSPrVGgK8Ubh17Hlf76Wn0je2wbmUsYTOv6tCR8frYY5vF46nuTB3InnPWWd3+moPYXAih9y2WS5Ta9R6dlHVOKM/cjb6e05y9UXMIh6b0NU8v165ebXkZr9gHNkOdfTxrHBEBH7tiruOBAt2P/6Uc2dkE+WBNfuZ+HdwxVx+lgzvs/mgdDjKWmNtpOcFxEbIv64Uu9YKj7317SuP1NR0a3bX+btG/pztcDyDWrFnTrV2zzusmfu2fh3q0Ifog/rwgMqNu1qK2edHEtuOQJ9as9C2298zzz3e33Hpr9w/tEVaL9gknnGDZOTR9h9sx0knKShtmDZ4L5c8eefSx7m9/+5s2ikd0p596qmzncPc5yuTBFv3jsSs+caAQ60WPGzMO39D7GvpIH+hjQ3dr3r7lhhu6czX3nbJ2rdcFXrMVuFnlTTh3h5THX5tgw3uTdMOB9VVXXem1cH/QIBivjzAK/UdKdJ7jPf0vdEP3rDfCV7I2oQ1P6eDrb9qHHHToId3ll12mw+RDvZ60oRW6Jl7ZSMrpGH76B2NUlbyxhzdkN+j+Th3CXHDxJd2F551rX8GtXMafeRQcz6OiARvsBbthDRZ2Xl5dla5zTcT8h04e1eEa66cL9MBz7eqTxZ+D8HrfETpJ+dwMtQvdpH6QOT/Mr9wsf1J6wQ8/+cQTWq8e0V2qddlxxxzt24LY/DLZlWZ9t4Hx6vWI2mTfKLv2IZti+DJ3eG2j+cOHjjq4fHjjxu5BPYinf9lPPSuf/P/+z//Zfevb3+6OOf4ktKAPAa3uuWGnDxrqpr/D5lfOjM2Rr3dJv+/K+dx9113dNX/4vW8zcLXk0osv1kA/xSdB78gh4kBsbGXS98kqNoty0a90bVvnS4FBhaNawRMd4d98263ddX/5bz8NOU2LrDPOKM5VRo7D4OCDWw1eYMkYbFiiFUNi1IUxYQTPoL+ie+6FF7rfX3NN98C9d3eXXPbR7hQ5qGN0s4GFkidNJjENhniybvH8leZBnGm3pRiznZoWaxsffaT7xS9+6SfEl2vCPFGLikN9dWmZT6VZGCKn0MbinLSZfL3ZFR8chnmpbdBHvjt1CPCbn//MA/zSiy7ySShPe9g08ZQKwrGJRschKd+ona/g7RwlnniYSJjkcBTX3fD37obrr+u+9LWva0I+05vCHGTQw9Eghx0cA64O4g0s1N03ogsczodF7NPPPNv96dprPWl+5ctfjglZA5tGMsjBAdun56JF+5lQ6UccUy7eaBaLCtrKRP66HN8L6teNGzmEudFPoz4u583GCxqeSCSTFymSHeeTcnqhLhifgKs8FuYoSs6Dtoj+C1qAsrG4/777u81ygF/46le7y2TzOCL4IpuvqkowdEP7zVMOCDFZBHJ7wBs5LSDs/AQDHnxZBN2vSW2znDenoJdfeVV3qjbV1rc2Gw6iY3sQD2Rnk+EODU24X+EJjq8xypmv1LUweN99z73dei3i3pbjO3ntuu4i2c3RRx/l2xLol6uCjClsXgT8gQ7/OGigX1QaGy94kBZ/5H9Wi4m/azLeJOd6DIcYukly6imndAfpkIc+xbYY/5wQ8xQGnWKvHDhQx8LHi+FlLDyXe3HFrSNebThUT4s3Sd+/+PnPuzd1zfBcHR5x2HCcbjjxalK9KU3d9H0rOdWFtj3kZ1xxOEDnePOiGD3dqYXWn//4Bz3lOrU7VweDx+rGBO/Uqdr6hghp6KIPNpPQY2LkYz25DSxYtYjYT9fRi02z4f3zddd3d9xyU/eFL36pO0ObujxoAI9gOxQeNGkDzIIj3RAbFWwQXXtTozJsDPgntLj9ze9+Z7ivfuUr3SrpxfaHzLK9pAOflDO4mo3lhZ+4ejON36FvsAluCD3w0EPdH0T/zLPO6T71iY93h0kvYd9oJPw2fNy3+ATx5aAB6uZnjQVv+EAfP/yaJuRnn31Wul/f3anF1tVf/kp36Uc+4sWKF7ZqY8gLFyRWS4IlBXMC/gIdebOsxchzeqrAQuX2227rXtNm5atf/7oPMtBZ0jcRkYasJs1+A2o21p8WHLIZGHPYiRToBl/zsDbT92nxz+Hdyaec2n3yE5/ojtcc8pbmRvurMo48rxXZPQdCRLwIyWe79MeChae7bJg5PLpDB+EP6BCfDd5Fl1zaXaLxynVy6GPzzIG0mQUxdPCvvf2LHjpGbuzViitl2P2jmx8z/Se1+TrwwJU65Lm4O1OHpmwqrZsyJlNO8NNfIbelp39IyzdwQA7sIVrQcrh3h245/uG3v/H4PV2borPOOlu6kV1Kh8iPDMDTv+gE+W03khk+3KTxdWCP3zxoWOJbEWwar/nv/+5uvu6v3eUf+7gPTDnEwFfQ/tQB9EPQoG9di0/GSob8ireHALbNxzWefvXr3+hQ8/XuU5/6lA5MTzBtfFY+ufeCWOSxJQLjl5C8mbFZFOfBDn0DDP7nfj1A+fGPfqSHBKd1H7/yyrhJonb6NVNkHpPQZKd+ITp6xO+zYb351tu6P/3ut92XvvGN7uILL/BrNz4kkz0C574sOM5DXTq3vhTRNuwKv0j7sHf6hNcdn9YC/Xpt6pjvviH6zE/4AuzdAToOk9pBOSHgvDaTvfBgiVfjHpNdXvunP3WrTjip+5rWBsdoM/2aNhrYOq8PsVkHEz0jm9stnox72k8ltsUGkQ04rxgceNBKPyR4SHPT/ffr8O6RTd2lOiS5QhuvlTpA4jBVBMe0zljEOlilEepDB+dtOWU9Ilh88H2aX/EFbKCulF2eLbtnfYoePVdLPtun5Gaug3IeHDM/c6UdPXt9ID9AP3BY/qbWc/fpUA0/tkV+53gdCF544YU+YKt1X/t5ZMSfoRA8QOQd+cs1sscD0I3m1Ov//rfuVq2ZuDXMWD1bhzDccPLtYcnPeGR88nAg55+0ndw40gf4fWizwcf/cLNgs3TzR621n9fh5tll7uaB5P6aI/1aJevsou+RhKH/tBP6IoLK3S50H3+W9N4HHuh+qbXB8aJ5keYPbuCu1LqDdQW+DB3zYY1FO+CFbMGBcYpv8zGfWeQYxu6xIQ7xf/eLX3Sf/Oxnu/N0QMXNLOZh2k9f93KVVEQpbxbCLYPqxJPXtF56+R/d7/54TfeI5pJvfftb3dqTV4ddyz5Yv6PzbDppZPVDx+xTWmHSpU7l2D9tRb7HtJH+5S9/2R121JHdl6/+osaTbiAxVsvcFGQkD+JWImI1dYj+kY8uY4xXgl7Wg7d7tF699ve/6z6jufuTeijJ6wf4CR80VDKCh33ACNtnH8BhAzrm9TQeDvFgzHOZ2vi85r/N8gX33Xuf0s91n/rs57wPQQ76FGGj35CSNHEE2p2fgElYzZXS+Zuy5w1ax98rX7BJ4/UY2c3n1LertUd7XQeoHDyyLuV2b7z6r/2HcLAn+p12IAM+nrUMhxe+Maixukz+5kUdkqzXuuCuu9erf1/RRw88Nt7V/T//3/+vPv5Od+RxJ0jQtI9K8GzAHhQv6kHDtq0yDi0QcDA2NHXkO9oErL/zru5aLc43b9roK3Sf/fSnunPloLgezXU0HJ0Hh2I7B0WoNY0WfdogMHoFOpCJhFsFr6mzr9NJ3J+u+UN3hAbHWVrknqsnvMfJibBxYaHliUcOwhOOJ52g78GZtN2hcGXSYGO01O/OcbXlZ7/6lSaH9d0VV31Mhxin+4c6WKywGaQNLB28jQvxlAvzgFJfZDvRl5wC7eLdO56yPvjww933f/ADGysL0DVreEp6uNsXV4tiYgOHSR3dks4JlJHDIiV5ps5Y7DC53KRJ58eif8lHP9p9TE8ujuapizan1LEwBT4XP+jY7VcU4ubAU1za5AlQA4nJjavYLOSu1yHPN77zne4j558nB8APtUT/Q4+Bht5jMoxFFkoxLxGlHwnIgzPmRJkYR8+k/Kvf/Mbv1n3vu9/tTjtlnfseB8ohCRuWGOQjncTfN2cDF1d/4YND5Z/bitxl4/KAFnJ/0yHJ6ZowP/eZz3THaDOdBzvg+eYCE6daz4k7+HbehV7+PkP0AQc+sfBi48LT0fXaGD0im/+6nAYLRfTAhgkn6cUu7VS76ddeZ5KTBTaLDuDssMSXwKYTGhs3beru0gJ9k55i7qu+/LRkP0uHa/Qdp7ARkD8WKl68yB4yBLmgSX+GQ+582wW+t+rk+VZNmryTuu7007ortNhiY8QCD1i/Oyl6tjrpgskoLd3Xw+QDsCT0wc0D0j5oUJ889fQz3Z9lMw/pFarjVq3SLZ5zNGbP9JNGxiuHO0jGTSTy2PsBK3QFEfklK++SMzlCl79iwXVO7JCDCp5QsKn7/ve/323RxvfCj1zUna6DxxNPOMF6jFc/5PZFh+DNtZRBv7KAILDBqW+rMIkjPzBc2eWpwu9++Sv7gY/oiiFP6g7T6T82gL6BI+BbwENf9DF9ycaWMo8hwYKTBwngsSj/7R//2N0sf/aNb33LPpLDVMYOtLFJv7MrWTm0wq4tOwzhpzy8CD5oQPdqK+2BJzcOfvqznxnuOzoxP1l6oY6QfgX5CNDKD3nzoWniE32ssacFnCd/2Ry/W3H3vff6kOd86eVLn/98d4SeerGQZIMIraBD+1lExIEe/YrtWCeUa0wYsuiGK828V/uUbgOwMbpFi9xvfOvb3cd0I4NDa+y1lxOZzSW+7LWiO6rSkIU6dIQtPffscxpTG7sb9XSaJ7Df+6d/ku7P1qKG90K5IaQAHRHHSuhbfIJ9QXJkTioHDSzQkIRXJ/h9g/seuN837jY89HC3VvPH1Z//gmxyld/LjoMG2aNkT7rIZrHRmf73TUD34s/oQve8isT8dMtNN3f36jD/Dc21l3708u6qy6/oDtW1YBb/HNbhS+lfDrVsl6LLAs/2KvumDxgR9AEbJeZXNrrocqM2WzdK509oMbfyoIPlC67wIjp0HzecRvrHPCR7+QjdwfWihr6wT3TDE1Hm2Bv1mtMvf/pTjd+V3VnyBedpg8GTTPTCU9m0GwihhyX0geyfcUAMnMerZGY80wZ8w8EHH9S9rI3nL3/72+6v2rx8Uj7yHB0MHqOnvPiK8I1qLzqWXFY0kQJ8+j5wSRSiI45QWSwyvzy6+fHuRz/+cfeG/OIXr766W6MbGfh15l7sEhr4SvRhuRR7XSQaHgPYungit/vA/aL1hMY7eW4L/ud//qefSn9B8h95xBFe2NKX6HJHAu0Fn4OG63Tg+xttvL4le79Sm2l8FPqMsRibOtue5G4DJSyeaRv9xAafdQW2w+9WPK7r9df86VrPd//6P/5Hd7YOp6DNZ8FBzDwrSE889eOVlY260fd79e1Jq9d0//yd7+oJ7zF6vfUfvsKPztGfx6jai6+k3bZLyecHK+qbOGiI24O8NrFSNsNNjHu1KVqvxf8GzeEf+9Snu0/r0PRgHbLxaoYMx3SyDdkLecDgvOTN8oRDt9gDB3eshzfoMAP+n9HG6ELZPOOSV53oG9uC7Jh+IIDnw2jB2N41nplP3UbaSVo2w2tU63XgeOstN3vsr9JtwYu5GacYe8+5IWia9Jh/wU+P1SljvYk2Bw1sjP70Zx3c6bDheM3d5557Xnee1tr4eW6T4GsYS6zp2Eiib8qggd0TWwaVjw4a5Jvk41nLP7J5c/cLbXaf1Y3NC3QQcPppp3Un6WYZr2ZwW0IKkSYWHvDz6PeO9Xd3P/zB9+1fLtd6eJXawA1f5KrXW+gKPdsfS78ZaE8GcHIdwUMjDqyu1e2jn//4R93nv/Tl7hId8HDQwIYVJTPedyiIJX77OdnlT3WI8fBDD3b//m//3p1x6inSpeza+g5vhUyksG/+hf1g97G2QQ6kEBgS2f6Qi3ZteuzR7oc61DxCT+u/881v6an9MdIJv0kCsGAmiG+NVHrJPP0NXX7TitfDb9f89Fv17Ze1rvmiNuu8VvmqxpPHZlEM8IlHEfKjV/qDdQaHDRzgsg6zXxUPbvU+ooe1d4k+r25+8Stf7T5ywfk00HDWRNGHVGK9EFPvPqQf9a+XW7rCh6FzHmI/IB9wx933dA9pr3Ds8au6r+kBzSlr1vjBypbXXtcDN81F5bAB+7R/k1/H/uHGbQ7m2uXKc7jA7aAlsvflassLurmDXm5ff5fnqhd10PCCXrP8+j/9S/fVr32tO/TDVycwg1GQXm2QdBxGibOUlaFn9faW7h5tuP5yzR/17tgjmiwP7z6r0/9zdIrLO9kv6yneMhkC78DFCIhOB9WdzzfGUD5w5UkITnZfOSd+8OqveqrugwZdkT5Li4nzdXXpWA0UHDcnTNyuYEPqq0Z2VjJoyZdyYtA4DcYSfHgqi+M+gInn+ee7n+ug4X69/nHFx67SU5HTfJ2cH7F7602c3zbLzrmntxYQCZFtwGQJnHyjEr4YUGwecLYY8ve//wMZ7NLu05/8ZLdm9WpfKWfAcYLOIAPNTk9lOHHLDU1kldwszpMuemGg5EHDjdoY/fC//qu7VAvzj2uRyDVynoTh8FkgwAdZPNzkVNyHok1AzvxAX5Ue/OgLnDxouOFv13ff1EHAhZp0YrEXi2bazmYdmhxAmI9kxXnxj/9Jl8Ui7WQBJ3BPUJs5Zf31r3wF9p+1GDpt3To7R2i+vYX3x8pBg3RCO5CLzSk0vaiWE6CMnoUmE7LlloPj6iWn/3+//vrubF17vfpzn+uvGKZz5ZAqJxwWCixskRGdwIOnP35VQ2nshZNzbJPDBBYpOD8fNGghdJVOcaUMbWqe9QKbHwty/5VTeuTPWwec2LJBRWdsRFEU8vtH3qS/h3XAcLs2XRv0BHm/Aw7U0++rNZ7OcluZMK1TYbH4o/0s6KHvvhUh0jTEuhF/NlvYFU/mmVxuEe2bNaY4aDjlzDO6q668Sqe5x3VvakHd2wzyqt0s/KGDjNidsrF5FX10wqIc/XM7gPcwedL1Rz2J4t3m47WhOO+887tzdPp/qJ7AcvCVryBx0MBhEk96mGCwecYvvBifaoRWunGVlomHHzs8UAueR6X378veOWj4yEW6OeWDhhPdNxw0YPeMKcYJtkBAL8jNN/V8kJ3NXOgqxiuHWDfdcqs2Rv+nO01XjS/SYoJDDA4GCeA5YA/Ip0B/UO6DBtkQi0u3QTIQ2LAhB/xYKP/mD7/vbtCrH9/UQQBPRVjEUMeCLeVGJmggM7aYvoF2YK/UQZOw1PYwAABAAElEQVT+MJzytJeDu5/ooAF5vqMJnyew0MQYGBu2a4iiCeTUx4ZX+KTdo3/sHrk4CGGc8ErQPffe1/1MurlABzxf+cLVfq0EXownH4wgs2haZslm3Yo2fLBB+7KqXSwuWKjFQcNTvrnGIczXv6WDu/6gIRayvpZbZKcFEYrPzaxHL33MxiN+k4S28lSEGw036Qo/m9Pvfu97flLH3IFNWj9lseJ5QzZJ76Jb6xc1yd7ZnBP8JEjwK7U4f13492njcpeu8OMT1uoGz9VfqA8a4j1Y9Ix3cV8qFjlEs/6dpkQ0+bG6LdI9ixY2zNy443UVxhOLukv0vv1V8vMHqu4tLYSwG8YN9pgbMPwD/W57FVl+Z8aHu+oDWPo3CIove3jTRr/a99Tjm3UL4bDuo5d/tDtPBwL7qd43DtCBdImpIDCSMwegM7Hpyz3G6Gfpngp+3JcxfPMtt3S//tlPu4N1iHGm5m4+q+RreHKFLyJAE1ux95UtQR37RlccDPLEC1v33CMe+NEV8gdv6AnsL3Rb4r9///s4aDhHN5COPc6HEL6SKx0gF0IS8cAj+AVP5LdCiGiLYjS0j/oZn8TB3Q900PC6NmBXl4MGfisAXfPaBuh54Ec6FZI+oB8LkhcfTZ4x4DlcZdxG/M//9b90Q+js7urPfqY76vAjTBv6nqOgucAAD3TH/PJXjaVfyR98W3PrVdp4Uc6PrjFvhF+QyOLFWgL9g2ufIJ60x3JKSfgc4NEJgd85wtf8QQc8z8jf//t//IdfHdwq2vBdaGDt5I28ZGDxzxPSDZs2+fbUmnWndP+itccRuln2qtZqzP/7LuM1A/yZLSbYlb6NHlaRaGIvrDvw66wXDiwHDbzywXhlc/EpjdXPffKTPkB6Q08dY34atSDpxUGDV4BWTswoIzj8PxXcxLiLg4aHHrQuubn2Ea0/5Eh0WPuKxNJco/FofBG33ats3GZUXvqEcnwZawUOYe6Wzdx66y2eO1fpRsNFF19UDhrYtI1enUAy2yQJ8SGdm8m+nCrqZO/7rzxQG6OXuz/roRKvOq1adcKcGw38+UFsEzvC12CjPixU22LDHa+F2obMEN/PK2b6fSVtyjfLx/xUB1/P6FD5wos4aNBDAh00HKC+2ZmDBtZQ2Ort2of84H//b99ouFzzxwk6aDhUv2OBKP6LBoJB9vSN2Afropz3vEewvtF5fKjjVgQ4f/rLX7qf/+iHcdCggxIOHel3NVG6YI20wCDB8HbcIH1Ov6HwE+mGH9X/j3//D73qdGqZe2LegHLyYJ1K4LdW8J0+AFeMjMxXULXdKEY2bGzTY491P/zhD/UU/djue1obcFOTuY95u3QVaHMD44hSxY5KGt+Mbri1wAMUNtS/00HDV/RA8ks6aFiudQO/FeWDBoxMAXjr2jlsQ3JKXvss7ZV4MMvhPz6EG6qsWZi7H9PcfafGK77mq7o9dZHGE3j4IVFV+6IFiBj0yY/6EPoE6rzGF11+U+UN+ZIHtdbGD3M7+Wjd4vmGDgDWrV7TvSYfxENy9m3LpT88jecP8aXt9Dv0PD+JvucmwXnVpvHEA8Lny0HDHczd8mv/ePUVHZY81X3p29/tvqpb0Icff5Kkor9CfmTcU4N0U7S8Ey3YvpWnI1KwFIKjkYZDN6y7dMth0z13d3/VFfjHH9moX+1c6asz/F4AHfWiTqT4rYYVWlBGR6lThB5DRfjYgEREzJTUm22cnxbhLOSul+P785+v8Y89MSlz0HCMntzz4zocROD08qABIhgTcuZE6Q2MF0th2J7sRf8gbbye149h/UrXgR968P7uMj0tWrtubXeENutsFFlocX18RTnI6AW02CGvTRg7IdheZJQyfBwaH95R5SSR99A+8fGP+/clWIQxfHlCxcIMNIzXcsuwkZ2JxoasRQHv5kE8bknE0xDaxgKA35f4iRzIJXpiwXvZh8uxMil5s65660FyIDunm16w96IyWcfgRwb0z6LSG3zh8F7Rn7UpuvXmm7pvyoGcp0Wi6erU0aeq0jMDnv6MBVf+5YIcPKEjYHCKtI+NC4FN5mZd1/31b3/nSeCftfhft3q1F/FsbHIDw1/7sD2ovdCJjXZcW2aRxEKCchYC6IQFBTcantQTl/vuf6C7Udc7z9ep/xd10MCGMZxrODd+WKo/aFAf45DRA3S8+dMil6ucNJCnO3nQwI2GDRse7u7WCTrXL7+sE2IOeVAgThcHCg3y2Ac0kZUyeLA54CQXnTFJhn62e9Mp0O4hbVhu0wHShgce6PbXAv2LujrKQQM4PFmAFvbitjNRFLnZzNGHLBzpV+BT7zhGNus8FblVNsO7hm/p3fhTzjiju1K3MY4/7nhvZKwf+lSEcLJohFtMBHQCL8YPjfLiWTF5Nu0Hauw/rYMWrkfec+ftOmg40e+o8lTkEC3yXtfGiIUcT/5Z7HLtDvpMtMRxcCI7ZZKQ/Fwj5+k69PlVdn6gaoPG049++CMfNPBUhIPBE1dxo0EbIx80cJVcP2jp/tI7f8K3LZXxz+tf2DAnz7z7Sn/Qvyyi4cONhl9oc7F27RotEC/0Io53PllUxSJaChZ86hh7dF+KHzbCYiAnfPrefkB6hD6b3N/pRsMNejLChMl44ro6B5KMB9sifYlMJaTtwA96eSBhuZWHF30NfXTPUxGedDNh5kED9bZtxdCwXUov+Fz0Q8CebEeKOWjgXWn6l4NB9MWh6L16v5Crqedqov+SxhO/Q4CusV90zAdfi5/CtgnolHrkhK4PJSSFZZYvgD7jlQMqbtrc/Pcbuq9845vdx+TP4qk6Bw3QYCxJ1hDXtCWqgr/6PG1iEws/7Ip63gl+/PEntEC/tXtFNxq+8c1v6ncOzvAimb/kwoYF/YQPVt+y+BQmbXFfIrfyLHzwbGxc0NUhhx3qJ8c8IWXjwnXp1bJHrl+eoKcjLMLZfEGHNmDj5qE4/okY+oe4GKKTtzWG+asTSyU7B4P8iNcdt93RPSgeHDTw6sQVesXvYG0MXtVGGx8GMnTT1+Nn0Du2gs5yzNofaLdB3jdpZK8b5L+u12Hss9o4Hn7kEXp14hJf9Wa+wrbTN+UyAhn9EVcl9IUd0Qzi+KBLxivNulk6/71urfG64GnyNaeccoofEozki3Zj38wP3CCUUcbmV2XMRdiNN5XyB/DgwIfFP+/s/vr3f+iu023Kyz/2Mf8GEq9l4Odsd8L1k0b6T8LYUpSw7tF3lNASy4quOGjwO+u6Ss9V75/8n5/6R3k/85nP+kYD7aJ9+GGQ8DP4M/t70WGd5EM18UY9HEx70yjbISAXdgT3u+67t/svbYzOkG//3Kc+6SfHHLzSj6lvI836hf4Fizz4kut0U4Wr3l/T3H2FfuUcHePDsAPmWOtSvBir+C7r2nKjnKIdxd6Ama78m3TJHPGUDvKv0ZqPcftv//Zv3dk68PVfRJDNONg2IjnxG2HFigh/T7++oc30SzqQ3bhpU3et5pG1p5zWfVcbo6N1m/VF3UzCT/oGq9qChB5PaoPImI59kdpAH+FX8W+MV36Q8AA203r6ygMIfvPrwQfu7z6tgwAOGlbKF72qjTa/JQbNDHHAELQpa/NRw/X32Hhs3rxZ64L13cOau2XGeuX0ax2/78GPF/MjzwS/ligejCPPI5LVDz3UL9hRrh1pFIea+FU266S5on6HbrGiB37E+SM69D1JMWsBaEQI+bMVYwcMkinLgcViuCG0QpvmF7W5+qseKt0l+rx+cNppp+vAXb91oPUqDyVokO1dDxXQL76RuQY7Yh1DeywH9qU5g36lD1ZoHc9rKxzc/Uz2yI9lnv+RC32Yz2HAAZq7eCipwWEa0QYLNy5sX1ES4ktg7kNnPJn+8Q9/4Fu9l2nNx80pDhqQNV6VELBkTJ9m21Hb3d+Uo0N9PPZMWr5AuBz4Yke89vjLn/y4+4wOp9js9gcNqrOfQZhaueShk2V1mroS+AtAz8suf/brX3cbdRPmX//lX32jwbjAiD7zpg8aREOiOtAOfCZjl8CYx/cwLuhX2gFL/M0j0v1PfvIT/eD9cd23v/H17pgj9aqsfBh9yOhJEU2IryJrltO3hIg17uSLaZh/GF1rXl57vFYPUb7w9W92X/j0p3yjIV+dsD4Tt8jkNpngiCbSxiEoryYwnpbotgSvTmzW/Lo+Dho0d1+k/R9yw1vkLBNy+SO53H742O+HHmCFvPQn+thXv/nFQcPD+p21u3XIwMMCfpz0a7oxse7k1d2rGgtbRH9f2QerYBmHH7rhWz1mRQ06rIlRFX/O9S1/tAaSDNj8C/rdKX5D6C49xObHIF+Vvp964rHuS9/9p+4rOmg4Wj/kGnqO+QAJ99Sw8wcN0qL6y4Zud459oVkKl0lBcsz8qvTfdF2avz6xvwbNJ668SlfpTvci63V1GE9G2bR4mSuFhymIRk8rjIHBJGuJBZOcGVdTuZrChPnna6/pDtOC/2w9BeS9NE7keG+Yg4b9tLGm83EUDEYcK0YXE0YMEHdgSeZkz0HGsxokv9dtjIc06ZyvU9a1a/kl+6N9LQor9lVOYjW3p6REDuKMXYmRa3BwuoXjwygf2BAHDRgsr05wzY2DBjbPeRpsOdEzfCSoBwMDQh9ktfMr5ZxegksngH+L3rX/zS9+2V10mRagl17mq2JMBsiDIyKgC8sp+sT6otD6sbxK67+L2ZjCj1ccXtNBCKe4t+ig53v/8i/dBdI9kx7X95lAkC82FzxBZhMap6rwAD8WVCEHcMjBDxJymMH1y0f1WwR/kO5ZZHxXT3jXaODxjqIPX5AJeTX5oB/ahH3wdBthmVzgx+SLjgRpGK53chPjCW0s2ABwG+O8iy/uvshVbz2x431/6LCY86JEmxL6NXXKpsDvRrLwEn8WZRLAZSwCUN2zuv7EhvdePRl5XE7w8zoIuFJPjDjw4rpYbJiL7qHu/6Ihx8TEwJMH2sgmi0UebWCSYOJCpw+LNgcNG3Wj4cCDD/VBAz82ydMcNmXYlmVRO/jTdTBA59ClbSx6qGfD5b5QX6E/dI9ubtNBA+9hMrmv0wLRp//aGFkOFqL6SDmy39hweVEqLkxoSzTmpYISNDFIXzhZFnK8l80PPv3xmj9199xxe3fsquN10HChr19yAPmqnuiAzM0NximLFHSPDuhr9IZ+sRO0Zw1KHzyBpV/5QUheRfr5z3/W/0YDv6XAgoI/h+hNoWyXmP5FT+gZ3cII3dLnbFz8442q51iD1zWgjw1xQ4iDhnXr1um95gu71atX+0oz9ss7sugTu0Of0PNBg+izKaaMp+nwZCLGbmkPvNnYcXD3u2v/1N2g66mf1xNSDhr4xXAWaRxq0n8eN6ILojfY0i9yYZOMVdomsoajE5ALmRgP/ODTj3VNnQXEtzUhn3TCKo9l8LA9YtMVPf+XLvKgAZ1j58CwmKacMjal8GBhe/9DD3a//dWvu1Nli5//1Kd1e4o/zyRgwdJufAey+GBQ8lLO2ETnPR/xUDHsbf/0Ea8zPKPfa7lFBw0cgPmgQeOpPmjArqFt/dNwBcuXOjZFCl3DFwDeWHH4xw/A3XnHnX4q+BUtJvhBReyC20W0OXxwCAYJ5pDkZ1r0J3OM+NDn2CQ/dsp7nvdoIcEP123a8HC3WnQ/r0OYE8tBA2OJeUkKkGhhE/DyXCoe0oaVoW/LzmjeJua8NhS/0fC8fmSLg4Z7ddDwRnexfPyVOmhg8cuVfsaR5z7FLKaxSewQnfN0SAW2HefVj/wGgQ8atJHGTzy0cVP3Fz3FfEaLf/6CC1exuQbPQo+njB5TooX+LSKy205oDdLTJ7iLsFP7JvUpcx/X9znU/G/dcOKwjkPBNWvXeu4GDv0y5tmUBDVxUNk+MkDaBB/sxrwxM1XDhXmFa8svq/1//PO13Y06uDtPY/VMyc0TUn7L5f9S994BW1VXoveidxCpAipdQEDsYqEpKth7iYklGmOimUxMJmUyyWjamMRMMjNpmphEY9dgV5QqICoiRenwvvTee+f+fuu8h5CM935zv+T+4dGH53mf55y911579b322gXcVUHoKtqxAcAvDGs/+He2WrSddM/XEDDjd0/5snSMNhDA69+vf9aaaYGBLl0quwpedE4LXe2jjsnxFDJHOwBZDC+k7KEvn6HTxNmMObPjhedfwJnuFP3JiGsBPdWqgVwBtnLM4uUvL7Fw6Hf+XV7FfAiPevIttse9gfMylJokpzOvVsl3vpwrZZR87Wd1uXJHWhLfpRMhrMogZWWpywtZsIstPatZ/X6TFbrVZAhdFT2YW/WN407o/vwPwP0ljCW0fu8vOSJw7vFvrvytYg+/wfa3mNf2nbvEZTjrrTl1yerz0otpy44x4QNmkenfKe+RQW6HEl6PhHZODa4YxFAGG2iwONsMVjHnzZ0T/QgKns3cNsIWdBXTQFfKQuCS1hLXVeguoD1kNM4TfUtUynB17uIlS/L0tTnYBsrEiwiaGhDfDy+YPStc1jfIPnyWV7aRH+3P5qAp2vJdW0w43HpgkHw6WyfeJRtxB3ZMu6PbxykEZNtjU6Yso498Pv/lnwStioKy6aL9Q+kn5xvcmNFgoOFNFpamowOPQH6ZLXgM8+rWCTMQpQ/hzcCFsHMVrReOtvBK69KUQScJwZRyi5n7Wsiq+vOseq/ilJjjjiejgfaPAnYzGopABrZ7VYvZeOK/qhfngC5zDsph5E9ukcMpRc59OHNWvPTiCylrTkAeGHQ00ODquM9lIAEc2krCahCQ58RByi9oXaD9zpfz4n+5tQO6Hsui1XAC7f0GDcosFYOnZeHZpMV8OoHyn6orIc7PBRkV//qtMBT8Vp2tE2yrfOONtCcvQ3cf06lzobOBJ2HTDhAeXkULRfM5DmjF71OO0qYLjd4kTGkfI48qqff14ksvZqDhErYHWNhWPaacSX/JkSZeS+QyE7TF/8X3vOfc2Dlfih8vMx3XsvD2AfT+Lvjpj509iAXVBvCai1rCng34DC/7EFY/2FP2oZxnfLkoxlh03pX/2g4u6i0kU17d7Sk9F7God1LV1gmLSKecpK2inUKP+9k+7Fv8SrdlX/JosYBSldFQUQnss7LgcnP034VDh0bn9h1YWNkaewiu1QEWfcDd9EVjHNVeFANWptiHOlR8ZJAVPNtTdfRDA4LdBhreIftIH20vtLUZnl2+ZGFc/IlPxsXI5GZtjwYP4Ifn+Ud0fmyvv0ugIUfvTHn5Lu2AVFOukKZUUZ8ZE1E681Gc6VCfcUb0YuuEborFIKuBTB0JL1WhOJVoy8sJK19+n1F9hR/CX2Idz6kKo0cZaDg8K/AbxbXQyzYcF1cWPPbOKLGCpAw2SBT+VzBHlfCAyOxW4nNydfTSMcL4N7rdA0e6Y6eOuXXCfdlZ8AYgPd4KLv4zxLThaGym6MW/+LI0wGBClZ6vIqPhadJvavxFRoO/WWlXLCTTAu9BxVn1XcnMVWySXShQfcZ7dShMWRqFgDoeQ8KChO5J09C0fW+UEYuV7gLHCXiJl4RXB8Rb/8yctu2qpI7RCAJI70x8K65j1eKEXr3BnauXxYqx8KngfJXzp7CQ0TXUNDa98hkVFQhTMGssmB65kJSoMWPH4KTWictZ4VVhFsLPVEGUB8/u3Q2d8ZypeT7v7/6g0+m72R46u372HlPRDSYsY1uGgQaNlZ4o+jLQoKNtu263kRY1uJxIDZVCEVWtKtg/40gaEufgyllW8a/C8KyoqIjZ0MwK0gAHDD43+rJipLMqfI7Pl/2UeC0dAgWd+FMpqAA18rLSNA6Pq9sKwQUVnHzw/hSOnatgFb9JFg400GABKAW7sIufpD5g5//EsfMgbeu4q/DTCeUuDWODBNLEJnhmyrSpMXXSexlo6MgWgdNwXNwiYEM6KzpfZjEYHFQL5fwy+iLQwHf2DB3QWfbhmC1edxiG8up162Mkxv8sIrkWg+wJzbh1worqmzdtyUCacyTsOq9eBmgy0AD8Xq4Cyrn0kPioUTVejTS3Ir2C8bwd59TsJldIDTR4kksiQlygWMS9lwaSeJBWVV5e8pPz4EqO8+ArjXAeMtDwAoGGbsd0jZOgG0+4sTaEASdXv125yECDOOZ5gz/+5lxK7867q2LOkQ53rh7CEx53pKIZAb2/PfbNGDCgqGPjka7iQ8VV8J1KFiVOP87BwQwG5lPakFkdRwZnGEsWo7R9+l/GKuPTw/6UwaSrWMU0o0F6FV5hSQdCIpZgeCkbUhaKFO2GFARQrPcKg3MALg0sOldzMNBHkKbevkPHGIAx0YrML2ESt6nMbRvc+py8k4o+lXxhCBSru1WGHfSjE2Y/0rRGxGRo3rTdCzEmTPWWbsWvcBbt07b4p+2c3/K9qtfsme9U/sJl4MbA32pWQi0opXMhPs4/f0gGGmwzaQPetz3/zuwD3hNHVeMQfwYWdLiUB/Krsl5616H7gHanvD+ZQMOC6ECmxLnnGmhok4Fg50e5Ynv2orHlf4WZBqYE2rmoGoM6tbqGM+/KeleOpxpowJCzOJWBBquGH9bIGg3bs01pTR7V+fVSNigrpevqwCw+nGe3w0j7GWhAVpmFNA+YR8OvK5GXLdkH7/nex3brnsZ7bp2AljOAJN5pO4My4sP/+KIAXx1jy8VRcMo0594MHmXNRFYC3dLXBaelY4cOWV8pj4ajAem+3CanTCnaB9eMvaTXg7qF9pUJzoe2ge2PnTA+plAHwrZ1XNoTrPYYSnkw9Slt/pnOS9oR+qRSjEhHUDUO4NnPxBygfenHFdiXkTUeVWgdm+60775vHViPF1S2ZB/SC1eBk8I5dD7Ej/vTpXth9q5SF/vcrHlz4/Xhr1OHoH0WJLRYcS6acH/K12z1f/6PuHMk0rB67m3wMhrbYPDQIXEamSpmYyjD5R/7V85Ln/KvL3HilfDyR+GkFLo+HUhwpSyQJ1evXRPjyIRZQ6DhEnR3meqdtF4085H/FtjmJ9ovPzsFGQggELIdg37ZsuUxhyDAuwQdj+rYMS4ikH8EToBywkvHzzGk7K3iL2WxwVbH5UqqfxuMEic6AdK89L6erbwVlRWZ1WCaet/+/WIgtbkaQ0/WaCgCDQVsBuUOJINmtwfx41/CXr4cTJ5GAh9ayNmMg9kfzoAn98bFOI3Ho0f2A4PZSfKGQXFpI+UPdKINom6uWd2TXgp9pXyRBu2jzOCRf6dQu2kCtvY20rCP6tgptz12oAq/vFrq05QtPshFNwevqq+Kv6vwL+6VNWYjGmgYO35cTCVAZTHI7mTa9MCOb9msecK6b09RwNmjLp1nYXYvvr2oGx2UNpCXQXnH4Pa4LJLH5wU4jC+yTdmtE8cRCPDEDPWrGQ0uGCI0Et6DMH/EGLLxQ/7xltLWnTF7Tm63aUqmmfUlLBLt57KeRGHbFEezq0PTBgBmcZ4LSnz2O+WnNbvU9epzv7Po73iy7UayVet0CnyewKq6mc/qbuWjc+3lvP6PL25WTirfLKI9csyYWM0JC0NwdrsSaJBWSru0vE+qS+nFs4d2VcpIcVEswhULWmYf+XIr0mvUPGmOTXYhRyu2adUKXlEigUHGqQ76y4v2qzrIX8r+/JL/U17weTNZdZ6SZpbQdILKp2EXmN2rPWbATxoXtlLGJJx8V17FKMAzsJT6w+wdHkjdoF2woKKCosJTczv0hZdQ2JZsEuckg/i2z0vp9WfdVAxHv6PEm4uZygx1ivRuRoOLBLPRf9M+mEFtjHnRslXrLJTZuUOH2A3O9kHndaEFdcR2Ag/qFGWK9pm+l3STdjjtKivVsdXAv7ZevcOa5sl3E959OyZOoh4a/LJp2xYCDYvi8ptuyazKw1q1AQ0l3g+dzRI7H5937Pf/RkH/d9CLB1/SBq9sTloTLzX5B+TPwdAaj7HiucqmoA0848zohcEF9eQ+HddAJYSD5hREpBCyYScnic9J4r+MTKMcNDQUUlYJn2BGw9hRufpnRsOJBBqOgCi2oXg0rtyzp1Pk6rdEl0wDzGnUAajtJ5F5D/9pBNi/wtWMhuGkXs6ZM4t0LhyL9u3zdAureqeDBiz7vZ/tI0LM46BBhHDRtgaETJHONOPlq4zISYAyvYGGZ0lZMip2FqsWpmS7KiJsppL7uE5KRvtgeAW4isd2ZSZhdwVWpaORoCLNlSq6V7hZaOT1V1/Ls6Y97aN582ZphPmsTOblu8/5ShzTdsn4/i1O7FfB6nPiynFYlGnUm+PiHSLo7im3qFFG8HjGdGrbLQyUwnDJ/hw/hpJjdw7LfsWPfekgyaAaDYuIcHvqhKmqBhostpWBBsacK7sA4ZzmfDKOxAVwijTbdxZkcFctsj8EiHhSCKxdt5ZAwNxMv+yJUruQFeTmOHUKXWmER3hn5H6mIcebgirHDqR8J16yE7+jT/txLlYQaJi/YD7G0Fyqwq+JATgWp5HS7KrxVgSv4zaqXFPDj7HsZCVSOlUpG0wotp8Y8bdds1aYG+6ri4CyzxSsrpDOW0DKYeMYiqF1LEp/L4ahNFPACjA8Iw7826sw9kEPcPhl4oY7DO4kPODMQMM0jJVp1GnYTltdMJ77YWi1aUugAXry7GCLlO7bZ9aK+HTcULyw1iycRA08AwP1oEffNXIg+qjfpHGsgp/GjhufK7AtKL5pWrCFLHOVcY/8CcwJt22qgHhUeJnnTAPnXRlQA6OrOi8Gwk8EmggK+pqNjDEyb9rcsWzJ0MHwuEWNCY2CdOakNOeUfhI1Iol5zr4TYzbLLzmnxby64uL+eI3z5555itoSvTj5ADnDnkZTsb03gwbQvTStA6Hj6VyqJDM4Ctz2Vx1CAfqEJQsrKjjrYuQSHBmJkfg+8mxQvwHRC7wczjnx0oX1QAr+wyAGtgzRMR4NOB3GGvBNdeaDISXPGdRwjHtxph2XssqjdJ8eNiw2bd8al5NubPYUo04cesQwWMkgRcriQ/gKQNO5opmkIXm6hiurOkj8Z+aU2WNWyTfg2wXZPojsLLdpyfOlrBP+0sHy2ULuEHBLeaCzJV0Cs3QG3BpEbnUy6LhsGUdnYqh4wkKuwOJMl4EG5eEBXm5pkLeSN51PkVEMj+ks5lE6dW4krD3QsMHStRhxS3GkZ8z4EHzto7AfgQboxnbd2lDOHYhKmslm+UeZlX3QZspL5Ivw52od7ZvB4wqsheXex7lYvHBh1mgYzH57A3fyiWMVD6Uckz7srwg48IdDyLHYOZ/hhQwyMAZlmoGG96DJBRjRjvE4jsuzdkhTApDWJLG9nE/aUK56eV/St7/RnitEyi2DLL6rFXSMpHkDdyPYzrMC/LcmOHIq2++ySj5ydAe4Ez4zEgt+ShCzT3GUxCjMfJTOfDcgI+51TN1TPmXa9Hhr/LjMwLDuibLASvNuSZTfbRdEJ55SP/G8jpVjUA44NmY2eU64nVtxJD+abvzWO29TI2o6WQGdOemKjIkjCQyySKAs0OHOSyTRijAWegs9R/vOA1xU4I87dCz3I+/2iT7a99gzAw2bCZ5ag6crfZhJqaPrIkHqOxAh/5XBGHtSB2VKLbguDVDnQ5wIvzaPNORxeS+//FJ06tIliwk3Z+VYGleWqf/ER66cAXdpyySdS5v06eecazvlsn2xpQG+cdPGeIf6GDqlgwafG55IZUFOeVU9ZyBDXSu/SmcGq5wH57TsSxwrv4RB2tEecxxm1VmjYSxtu0p/1VXUPEGPiHNh9nmJQZtC/tGm8Dn1k7rO8QNm1Twzl1yOQxjcTpfFlhcsiPHQTRucaAu0Wfx7KzLfhl1kEPcuMtmn7TsuA9byt4EG8egpS8oc8WH/yut1rBx7jO5sHKMFC+bnlhur5B/Gir7F3/YjM3KxBFlbrTaLQchesyzdmlu3tNOAIosWg8PUMLRt8EmZWVnpSVfvxoKZs1PnXkCKtNk2AMrRzxtz3IWNVeBaHIl3gwxQR45HXIt7A+HyU27lIaPB1OypLCy9NX482zw2RvuOHTPTpkMHHCMcdbe3ic2ka3HOZWBImpcexYUQl7yqrLQf4TF72GKQ4wkeTX77nVyw0ln39IZWZJMoJw0w+BLnwqzezuwM+kmZyLvyXLmpnVUGMLRbtZ2s8P/Sq6/EqpXL84jIY9AjBhp0Sp0jgzxJM7TN7YCmHQDMfG+/ymDtmCI7rwjoyV8uGDq+D+QnMhoO40hqs56Ppm1PoZG2sgYEdCdtZpAB+vBK2cy70kv9rnw0EOS2O+WptC9/qAMtrjqKQLtF4zPQQGBQvKUe4d6CH2UhbRwaZRCOQ34T1dkXPxR/y7t+V8BkoMGMhiULK+NibOFunbtkoMG5sS2fLeV7wcOOXxknj9lHMY/iyHYLWFwI3A2f7MhjFl9C1rSAj8xoaIP/JK/6vAFT8Zx+iLKVS7p37Dbm+JVpfk44+C1lBjaH9ZWWIwty+yBZrKeBm35nnM6pfQ3z+WwfnixljLylToTscn513r3H36WT1N3AoOTetcfMKTMaFuXJDdZGO48gyfG9j8s5THuRG9POS4T7mQd9+UYfxQTIQ3qhVQuT3Gth2N30O3suxSCxhz1Cuk2btnEp2Y6d27cnu2kLGQ07kPUuYrMgBZ0JZ9owPJ88SovKaXHt38X8Flk89dBBFtB+a9I7MfG9SQQaWFzFllu1ekVcRHb4RZzi17x1W6Hk5SWwH9+LOaiagf+/YxAPzjqvfTjbEoqGQI3aEKS44fuZ7M8ZSwr84oqKOAwC639a3+iB8tyLItu6cVMVc6vcCmMEqYo0LJwWhZLM5n9p8EHwOmh+1tDUUDT9ZPyE8dEI4jgGQ6UP0USrprpn1ZQrsxlKp855E6wMWEAgMl1Gy+hbplWQGG3VkDCtah3C9bURr8dcIuiebW8ql3vBGyBANOZt120TufJB2xqFGRyh3dL4VIHJ9K50Sdw60woDhZ+RRB0jNFOcivHcuVMn6ku0Ahes+LAXUcFnSns6DkCuEFfoSrwyXxYk5DsFeO7T4zcd6UJZVctCJq+98nIekeUKrKvIFt5y4DohtuOlQeFLmGUOhXUKJfqUQexTPFmbQtj9zjNsPfHDKsdnY6z06nlsGoz2rcOrAjaia9qgQlDDznb93badb1dM/E04NHqdK5lSI0Hj30CDJHbJxRdnRkM6x/QtXlLRgH9xLuzSig4MP2R7hfHsqp3HJxVGkPeZBaMjOh9jRSO6Bw7pUIrXtSQI4z7+XOW2PQVHYgd0AYTzpuJUcheChYlPmpWoCsWvMbqStNF5ZB3MWzAvlXN/HAuPnHOcppHVr1Mvj5+zAKoOkgVRNzPXOtvWiVDAq7j2KJwcE/yUlWrp3+88EtV9nhXz5oPfBhnhzmKQPoewUrEJe7nqlfMIbsWxxoP0Kd2Y7eFnHTqddFeQ3df94Ycz4sOp0zNVVGXf/6z+cRRCVl7SWLGPvRhcNWujvGprHINz2tcAd7+rx4zVoN1m8LoZTOJ0P/3WxNhaiVHuMVCmkTdrdjhbEDpD851R+C0ICHqqBqttGKqoNxwdeaRQuCAvI8jckDKldg3ovbbZL24RouBrvToo9QYxt7KC9EsCDTu2ZXCtc1cDDe1SGYhTMJm8ZGDPl5lE0pxKKYNY0JISQmPLOa2BMemKi6tdGnIa58//6Vn2vvbJrRNmNtVvAH9C4xp9GlTiVYUjnXulXGNc9lcbY7MWRmN1ZKWyMQ1dxN0e5OWqLaSmspVn5tRpcfaZ/ePYLsdEE4xhHYuq0FfSo0GGumpi5nkHQQMNoJqMvxpOioa6oJcOt4paR0y6tUaDqakbeOaCiy6MI486MmGWBjS0NCG8T+cqnxMFjKOawSReBlrkPzAHDs3QYH7AnTRhyvFslPGE8eMI8PTOjAZXSMW5/O8Ks3QtX0uHpQzRYFGOyVviXfidB18Gej1GWDmzmKCjATC3I5099Pw8IrkINGjgQl8YJxr6rvhC1MBfyBtlA0Ih5bnz6Yq0f7v9wPHo7LqKuWLlimxbg/U8ToU4BqdRZ3G3+kMa4SUfKXOSj8CZsDsm0JTty6f24XyoP6wT4ErXjBkzs1jV8qVLowP06BY5TytRHsirqTNoR5mqnFG3FfKNOebv5GU/CD9fyWfSpI6de+AnwU8LlQXwVzf41VVGi6s6h+nk0nZpQNuMDp3wpY5gTNkucqYoblsEGzSQlZnKMWWk+6Zbt23H6UWnspLZjZnCoYTP1X91oAOwUhh0sg/tOxZftm1fKXfofA/zS+5aGuDymKneb40bl/SgHOiDkei2kh3oD4vP1oMebT/1E/hO56oKzzkmccWYxLmBydoESJRFnkZjwNejr63U3qFjp+jK62jG4IkcynjxLmzSuDpCvKiz1D/yT61qrGzRvmOUh6Wdvdwv7UhDi5ctjeGvDc9tWgYaDIQrw6XB1NGgQqfFOUgnm/btU7y6DU5aN6NGeeHlyQfiXX407dd04+fY6tStRw/46awMHtm1jpc2gThRj2kfCa9jcEVOPWvbOix+X14a6v4uT65fv6GoxUNQs9/AgVmpXV1S6GbmizbLAIJ8ppPhvNJwNifOtDm0ZzZQ48RaWWaUyusb4VcXCSwcuJF+rr32WgJ3BBrAuXLWhQb1ZmbzQHfpGNGeNpLzKP7NGlEnCY+4V1Y6Egtwb2G13vbfJJDRvN0R4VG9rcm2MUtDfWnmom25/dJnxZVBBnGhE6OTKwwNGK/87HcQatof69BPFRUVOBZzYyGO76k4RZ5wY6Bhj3qPudqzl+BjPeRfA1Y9d+/MWiDW6WrMnBpwEHd7wFXqb/mC7+qi880eWrCgghTyt2Ppgsq0w84ZfG4cR9BaKbJx62aewe5wsPzteKVxw0PVDzC/ML/6MfmKNjPgCC/kCix2mfWiPPlHebAZmXbU0e0zS9ajEHMxY2sRaJAmU06CVuuAqbPUX9oY2ky+lDN0nvzmHEizyuF3aHsKL3Vmb1aO+5Lt6LaVncj1g8E1xi6dKieT/pw+aYc2pVHlnpkpyjBt9sxG5bcK5vR1FvU8dcKisJ2QwQZkXSWWb5SVGXBInSZvoTe0gZHZ2rzayMpAF7vEubysrSfsFqI2cPcnMvrMaPKY3k6dOmW9BuHW6RMv9Qgi2KYyuMgsxSbmb2W7foE2vIXgtZnkDxdR5AMd9onvToo3R42K01ixt+6U2RLSnvQs/6cdJn9CH44nZaM4Ql6JHO+R91PPAH9e/O241rJA8zKyxi3cV7Cod0znLthG2F7Cxr3SeWbS8ZBZI8o1YTNgDyklbaeO5bMLRX7nViHhMOC9oJJsEoIwGWjgCMojWhE8gi+0c80oE4aDNSeYK2WIgT3luv0VgapC9wmHc2Cw2gVDM5CyIDL6+1Rwcyb85FbZsn37UAaYea4+NUCedM+4zBpwfvUjUjYC+C5lBDyyi+fWbmDbIxkw2h4uGPRHlnlilHxo+0WgGKSAc2WX4xVXUHYh98Fh+qvSPm2bBbcL/j6MRUfHNnf+fHT39JhDnQbrKl120cXRkay4DczHdu51C4j2mXQujbuwoOzJwAg483v7Svqlf2HSR2mEfl7P1ol3p7AdlADMTnXB7h0sbK+Ji669BvvsIhaxjgRw4Ob5j/v19wk0iAteyKdkFIkc6aicYlIjPmSiPCt7Fs7RPoi2VzcilVTE3QejakwkUcFsEoD/KfCcfJmucBYLIyxXwpk4p85nNHRVyJ6PO43JkhCPbt+BM+47574xGU0jVGXiMwLjcxoOSQC05SVxSyQKQd8VUAoqiWEzzDQRZbyosiJ6sGLfqjXHQ0L0ChrhKSvva+wUBJxNppClM5BAz/SpEWf02EuFn2lP/LaMVKgJGFp0nPUl2rZtRyp204TV1W+fTeMf2NLA5T4FUiHEEdq0m44GbarkdQQUJIXBwH5+lOb4MWOiXfv2GIjdcz95A5Sml3v6aB7MKCDKFD2MKxjEH5zWnFfwlkYBfdmHDqmMY+E0DcXZzOuJfU+LTh07pjDS+XB7ggJDIWT0V+NH/JQBDHsV1xkgAP/SjAyosNew1tFYjVPuap100H/AgAweOVafc/xJB86hih34GUoyuL/pRJQrJM6rysAbVA4KQtt31cVikB7h6HFHTTEShUf8+u4qo22KnxrAp7GlsLZ/x5arkAWWEl86mgonj62xkOXipUswQjbHibTd7RhqktCmR/2ozHTCdF6M0m/bvDX3U/tdE1b9VajC6FihzFR0CnKjuTo3K1asTGNoKZHcunXrx+lnnBEd27fPOVFpJD1znwoNcApaAAcGcpxTFZ/tWDvBvx1TRouZNxV2ZUUlhSbnZbFW+emEPgSoSAPUGTXzIvvYD77hcQMNGoRGhBXUGi2eMVwdHDVt0CgDDdIO7i8rQHUQrpszur0c/LiNR3o3UqyBXrtWEWhwxYnZo7K+WT/yKjNAewece3Bj8dma1aF3Ag37DTQwZqvwW2BnyYpluZK2fReFLLtSCBLjvyWZEypj5UHKDcaZhhD40YmR3tOIqcKdOJHmNKI1hsS7/LobnM1gpWvsG8OLCvnQjcrXFRPpS5kl/5WBBvvM6ufQj+3LAwaXaoK4avvohf6l+X3gcTeO/DoCAFNZfa1Enp16wsmsvro/VSOZbUHAIlxG57mdQIOGJ/yDo6wMMJ0+gwHMrXymjOORpAXp12K7OtQa55t2bI3T+w8gFbAlc1jI3VTu3G9fGlkGwLJ2DrjR6Nc51EmULxBqjIuACbhTBmp0lFudprHlpsuxPXJV3VU8Tw7QkFRe6vx4r/JYw0I4pdVyVZ2Gk2c1Ju1H2aExtBUdYYqk6YsV8+fHyWedmc6u/ctT6TQCr/NoITjnFuJP/Bps41PiTt4E9Ax67ecmV2OdK40h6zRUVFZmW8oCt5VogPoSlxouqUd851V0gQHJnKqjHItyRpmf8on3OsCucVpJu8Lu+fBt27ePPn2OJ6jZPPmwMHx43nZ4qZGUgeon+/N3DfPkZdqUDuQls1eUxc7pzBkzYsXiJeAL/Qe9W8vGAE3KXJ5PHDsG2k0dAryOIZ042hIP6VxAj/uo6eLfBq11Pgz2Tpr0bqwloNGM4H2PXj1zlZHHMsAknAbPhFu800PSnXCLB0Z2EPd+lobsS12tcFI/TcPYkg+OpDjsMfCshcjMltiBY1QGGpTJSefwmI4VDwtC9gfyE0fOSe36BJSh6Z3Q0DpS0WfBS0uXLmb71JFZZb51c+orISdM8xbGQu/AK+BGSAtcV+kXkA01MbairwzyMNAyo8HVtLcJtO8i0HY8e8p1dhvivOoAGcT3OflDTerc2p+U6LZBs9NydV09CQ1q+ipHDR45DuXogsqK3IpknRwXCYTbH00ld1VVHtGRsl1pz5U151S95zi8tGMK6P+sG217M0auzrRBzRP6npqF91xEkObECShN3nIOddKVC2kRQCPSopfwSo9mwRmws56MslB+MtNmMkFZ6+6cT6p3B7LKhEk5KC9JK+pi5WwGAcQ/dKFzrgMhrSg3lKk67slfoE/ZYKDACvMewXzYES3jzLPOygC9zqvtKatzYYeVWmnMDJNCViHHMPQ9EUQ94PYcxyt/SLXyhmOxUPSihYvJ4lkWvQgoH4fT2JB52Qsv72NeDQZUr4Mc57vdOCVmlVkctSHt2Y7taX/40oJwDtRtZm7pdM2c/kGsWbQ07cuTWFzq1KlTjnfrTpx19TY86EQzDYkr9QXaGx3InIC/vdBS/gjOlJ3yg1sTlWWVOIyekGaxOusoHI+sadP6CHT3TrIaHDdt0l65cKV8Flfi2nYs8iuPpqxEJ8mX9uHvBhZdmZ6DzSdNdenWnZORemXmmosQOoRJ48wBUNFXEWgQr6lPJSqunBvkqgsU9VmMqEkw31+WI+M9Yng92aYdu3SOtsjgFi1apB6QIJVnynvtQx9Qd1vzzTm1Po0yrbBP0e98TluY8ambzc6qIHA0kkBGYzLNeuCMuqXSoIP2SQZNfR7eFDfqwJRf4EIaBAnYGUWgwT4Mvsl/8q68oU31IXh//62J0YtFpS6dO2eARH4Q7gzugodC/jpa9HgVrxX4Qa7Qhn06DnFXXgZ1NsGv42l7EXrkHLJvLfDpGOX7lOPgR5tWfix8E7MVCpve4JtBx0Lnmk1SbEmVL7wc/3Kc9TEjKahP0GgA24Wsu5H8Cm7lOWWa+ljeEl5xK907Em0vYeCHfEY61EdQlmX2MAGAheB+7uzZWSg6T9NCVxXyoAhmeL84dfxFMFK7D/+GvqUrx6QtYC0DF3y0NeUVAwNroJdFHM9pgNOTxjp16JD40y5IGhQpyizalo7EbOIY/LkAxk1p4ylzXLg2SN0YWeY4Fy9dmvVgFlVU5tHIA87sl9tKNtOXCyz1pC3gLuZA3xGZBs2kPU374if/4YO8kYEG5sKjqbcg+/Vd3SK3h3HtQJYsnj0lvvD9H8flV16Bv9O26mEbEeqP7/X3CTQ4fjFahQumM42hWvytgWqgYTgphhPHj2cP1isIVZQlL91d3D+EEjTAS/JXxDbhVa9RgyQqnYhtpFSbFOeal6t5hQot2ij/LmLS/Fj1u2025OXvrhdoHnuP/R3GREvEm1EYJH9iTPwZBp+zH00ZL+ERriJEUNxbT+UHwW5X8PGbfXh5rzvQGkF8ErKMvx3iKhL6CnhtV1R5r8/62T5FnZ/tx5I9HP4VjWBqFfNWhQh/e4/wKx58przEnWP0HmHxHsdkxNNggjtzS/gdm7/5t+OyTdvyb59thQFo+r6pdythGtvy5e/2UeJG+H2V0247js2Xnx2bzwib34kX9Fbs5AHhOfR7+3d3pc9ZPk6lZmV14fM+4a2PINPJEp9+X14+Ixw+34JXKwUEinEDKxOb+LvEr3B7lXgXPi/HLD7rIGxMd7Qd73HMJY59lsV7ZdRBPAiD9xQ7DotnhNMVfBX1Nu51Puzf+2rDDHv2HEh6s0/btB8v59rVFTQNTjwGAX+Xz/q7bfgSF+XLvx17Od/CKl490CfHw7tX+ay/1+EBSD+20bHjlAf9Xvq0P/lFuMo++PgX7QuXv5W4cX5LPPq9bTjXDQAq76n60XEKh7/5lTD67j3CX34vTOKwMf+67rmWp+xTuJrxQ+OGrPah4LZsRcHznbCLA1+2YVvCJE/7u5djrk0wZPduIsYA4TPix/69x/kTDyUswuo4HI8w+9k2lVVmEeyBRsRz1dCyX/sWBu+3TZ+xHdttcbhZMPVi07pNsYKGyv6E1ZewVMPw21JtX6ylEUgkavNqAqB19GwgOtuyXV/2IY6E17YyZIhC3MJ90ntJl9KUcIlT3z2AU4NpK/LA72zLMZZ4Ey/ly7FJE618tTic+w6QoriB+SjoQxh8CYPw+9l+hbPEb134QBm5G34VH77sy/t99xJnwiAs4tTnxUkjXvUIMu3ctSeKOuzFc7ZtX97ny3bEhc/Yln0Iu/SS84Vxr5zfvmt7UGY0+yr7tB2f1/C2LeJVOc9+17gWjgHG5q4drFh5T9WLt2yj/E49ZQBwK8a5+CrnJbNN+HsbtCKtZz+8e9m/fztux+y782gf4kGcCr/BWdOAPWJzHTQvTUtP5bM5/+BIp28rBpX4t40cO06PsnIncIkPx2o/vny+pDuDMhpt6/nOMdmm8PmyLe8VN9K/z/q9n32VPONnYfN+vyNXLuqDd2/WcDYl1HF6XwmH99ahcY3WXbtZeaZx4RQu5008Co/PSC++fMaXe1wNqO2CNsSXMAqXn22jHB/xyQyQbWdibaceP5idYCaR9zse7/fl78Io7M2bNs7gooX/tu/y16J92/UZ+xG+BjhJGtbbgP/Qfv1NnEkPXs6tMtXnDTkYNN0FT0iPwuF4fRcGx+xzfteQL7WPd1ThxnvKy7bERXkJk322AJ6GOFE6lRtwJhyTl/MqDPZRwi+cjsfnfLe9Ek5pVjjEh7i3HZ9r5t/Q5BYMcflSmJIOefd5n5MOyzkUL7ZtX94rnfi3fONc+7f3+7vyykCWjq0r2qvBkXLA52xXOG3XsZcw+1s5Bvvye+F0nN7btJ7uLvvEdxA05e+GdgQR7uBmx+T9fuUYpU378W/DBbojVCLit2rYHgQ8oGNCZAdpRrh9OU8NGzOzyNV9DMg2y7n0d3Fq+yWctl+EbOyx6E9cCI/yu5yfJrRbD/j37jJQyGcQLL+6WCXepBXvFe++St7y3Vf5nffYtzAIS3k/Hw+OvS7ZabUNTCIz1rF9Yzm/CZMv7xfP5XN+5yW+vWzTq8S7n73HcUob9uss6BgKh235rLgWzhL3jt/vfbakb38vcWn73uu8+p38cxQ2dgtS/HXsNq5dF1uZI/Hiy8v75T/b8yrbEga/s03hUGZ6n/07Zz7vPc151UeWbkf+buCz7fnyHueg/JuPObZyjn3WS1pwDOJC/Nm+3zlGcdOA4IcO6hYcVsfjd95X4kKYfNY2ypd/N6wK+m2o0gslPwm3sJW825z2dXgN1PubbXsJh5/tz3Z9poTL9n15eZ+/i6sSN47NOXce6uEnGAjYgDzwd/FhO8LvZTt+Z9DaRTNtD5+th9x3W7djFi7b9+X95WdhK/62xz/bQM6heBYuf/GzL7/3aoTuNhBkDYWtAOMcO1bhFRYv+2jAAo5ZBxu3UUOCv8W1sNmOL58p27cvx+fvysRayNld8EqJU393zLbrXNQiCJmZmVX2vjTmb/ZvP4kTvhFuzoXK+RJvwurr/p/8KK6/4RNkCh3BX45VaSQ0H9/rbw80MHZsHaI1vMQFL99FvgwlAmfNnkHRIY5tI/o/8vVXiUBtjjZ837Sue7/Yx1rlFEpcIn8hr7++2iIN4JckzvI3FVFLXq06sJ2ByKRKyrTuyhmzY1HVTfajAQRvahfEJqhjWdVvh745pSt4cUt0rPphAe/2cdKx3ZKpNhI5275xXUbrdqxZH/MAVsLw8j6JcDkvx37o5bhU0hJvScAS5mpevQ+rG0d2601AYW8sqyC6tX5bEjU/Rc/GxfaRNXhI4lFCX+kPh1yO7zB+WAkg66u+T2Lns/d3BfbmCGNXMBZMnhJrAU4GUbiUl7B5qehkqEMvDYDDefm9DJi45F1nxbG079E1CxKuJ+Vn0byFB+EThoIpC/pQMK/hdeglzhtBJAw9Kqp+aMW7fXpvczrozHYVqwavokjKwoXLco6qbv3/fBPuEifioikvlQqyHQOYcbVtQZXddiksl1HwZc4hE+e9zZFOtcn+2LiK4pH8fehl24dBLLt5xrFt8G9e4rJJK/bVH96coi/1M+ixZgUV7ZcUo5dexb+4/j9dCln7kIdKmlFY4TNHg1YUGWpEyn59ilnx3WrSm6ewZ+zQqzP31TncvYN7Y8Ff/pS3daZxI7F7cabmHgLMMRBrux59yNppkFuPtrClY9vaNbGHSG9tVmHrUWSuDis3ZlKYartt244YNfXtQ7uOs09mD16dOrFmVkXsWreIY2KPinotqZhO8HA/yHdlQOfVeTXqvGPz9ti1ntWiTRzh2bphNG7dhG0ArEru3cX+u8WxYP3yg+07f+JYWvRb6bE1L/nQv7uDsDak7rtCaVbNpg2rY+0Kgmb8dujlM/LlokO/5LP0d0RjVuqw7rYRkZl/yO9H8vkoZE1j9l5uwSBbNbcyeb06xLUNAFRY8omXc+Z8CedfX+35wr6dY9+9dzOv6NAu2rI1q1E90nQ3bondqzfG/i3sZSVIUqMhRgPbIzzWEBuc1d5dsXbJqph+kMIjjq7dMpq0acpqNlkQRtNZtd25hSNyt+6I6gRrGx/ZPFqQarwPZ2cJWwXWkXnS+DDCOhiwCnFX7LZv2MRRhkv/G68Knlc7xrqfsYprL/HvnDiW9l05MaBNu8yoqnh3UiwHTr9fy6u8uvBBWVbye/m9cyoulIvSfQOYb/XabQfnTdy379kNeJvG+rWrY+LsBXxTzL14Szy/EAAAQABJREFULi/xrVz966sDX0gjygP78FJGNePhxm3IUoOuXfkys2DdsopYvI6tS/xu246hfJfP5d+/vo7GgmAxjEwQZCt6ah03lP2cdHSbaMpKuiskphivWTAnFtOIcqO8lJXNYWaDYX8tJ71H/GzkJe68vF/4m2K1NGrbPs/lVsHtkuYXLor13FjiXVnmJTwfIQpCOawBJO36Ek/ea1/teTXv2in1nyvd6zjn+/2lq7LvVkz+FqyokhYgjYP6kI8HL3lNHNoeJHFwHvgYvdoeHoe3pCYD/+1Cd6+ZuyDmc5O0oE4tL4aZOqscU/m975142bftOz/e47PNEcjN2nRCXnk83q7YsXF9bFnOyQT8pqyW7zTKxXfyH+8fdYln5bC4UVTatmNqBr82YY+32QrK+I0r1zOK4h7hOPQq4T/0Oz/3bgX/1aobm9nmsQTE76y6wfa7dO+CI3VEbhWYMXlq0rX6w7mxfdsUNuGS3j7qkk7kUccq7dt+C15tjjg82nXswqpr4zy7/f2pHyZOGjdne9ta5oF7OvJqdMRhMQ35+VGXsBCXAQdtM+tg0qKCEoSpW3tWo1lR1yZbMO2dmLFFrBfz5NzKT8IkPotf+FB1icN2vPxdepFP/E68S6d+36xrl2hNloSZjFPGjouFVb/ZlvTrdVznlmQUbY25SyHSQ67jO7XNjJANKxdzNCkZoPwmbryO5nXsGWdA725tYZGIFdMNK1ZGdYJOZhzmyiVSf78LBzUp0rdmZcxeVj5d2Bin9jZ7cXesXloZ9Zq1ikZNm2eGzta1q6JlO7YJkrFTuzoBM4JU29HbmymYuWXTuthRnVX5xg2jDltb3d5q5ses9z6MikPsEmHsCjPhYybupIPyZ6aC1dw21BBrlSvArv4vmP5ezK8avnLVsYp7aUDcLuR16KWsaMoNm0Ckc9OQl/Qln4j7E5EFTTxlAv1oAby1c+fGEu5VrsgjzXn5TD2M0o0bd8cSPh96dWPyXUTcgGwXa7YrHF69D68fHbA9XKTbgK29afXK2LZmY8IhLF6OUfgd80pef3014AvHKB1I920QDFsgiFV8tv22XXrwiX6pUbJg9vyDsuvYJmy7aApF0/fGNaxif4SgtL1u7VrE2qVrYjGfHWvLpjVj1YYi0Nv3RAtAcvoJ6fwLZ75PzaUCh9K7uFMGeqk/PopfW/O995Q4c6zykve24dXlxBMym1oZvBg5Wcl3Xv7W/HAcZ+yG7ZvXxWyVyP/mEnfqEmGSp8o56EbHJwwanKvuM98aG9O27U382X8jHiJWdxAuvvpvV8mbtmsf8qB8q4xohiyog62o/tuOY7++yo73d+mtxeFkYRGE2IgQ/ii8OGNOR4kX4ZfWlPlNmtSJhjjkaWszd9uwy9ZWLE0/QTrw8n7H4XgX8PrfXeJbeCwtuAoUSpddj2wVjQ9vkYsme9Dd25dUxjYmUPryEg7vUyav4PVRV3sYj+S6nFvx4TOO3eekixpm1ZDitXX7pljKSux9P/pBXHf9dWwhPBo6//gHGRiiCx+EZv6Gy4cNNLgarPOgseMykZMq0yik5sybFePHQrwWxJo3P9rihB1JxdfqPkNEzNQYK6ibaiPy51ZWxuOcf+3n4zsfnZWu25CWaOqzlbVNI6vl6gSvLERFfyq0ohAhUUpS5jz20jQcFYMpN/7m/ZvZtzedFJ7hb78bHeGIHlTR7twJ4ck2iUw1QoC6CuazVun1eY8KM53KVD8FbKbbEUX1b1N5cqsH95lBsA7HbNL7U2IKguAkDJHu3Y8lzYlidFihphGZPmO6qagy6mW6kClJGivCbOTPy5QoV3zEr/clXvm8lJTE0WNH53FLPbr3iHatMWJJOzedLKsi80CmejGtplYJu2k6bgcxpdF+nBzTFJ1506kco3vMthDJsSDP25Pej5OO44QN0nCbYtgLn/iwD+83BdfIuqlLRiuNmvpZ/JkOZaqYRqnpVkYXJTHPql+Bwp4xi2PYwOvpp/aNtke0zt/TADf1zvbAh2lepvT5vEd92qfpku7vLtMtMzUJ/Jjut4OxWXRqCamO702eTnXxzpyl2zv3KSvARLYpVLZnmpsDF1b7NW1TfJiSKI7MoDFVUGe6HJt7E+cvmB8zpnGk5Kbdcf5ZfaMnx7PWrwO9YixkWi/tqSATLvAj7rP4Fu/C7hF9rlC6b01c2r94l1MsGDl/7ryYRYBM52bQoAHsAzsyHUBxJ5yZAsb9PlOmRDsP0qJtCbcpa/KgfOSeROnHFOL58NPoV0ek8di745Fx6iknR1tWj+RRHf2sS8G8WWDR1MFMKU24ya7AkMsUVngi985CM26NMf23Yf1GecTp5GlTY9io4bQWMeSsAZxucjK1WBrE5jVrYy97rcV5beEh8MKmHwIA0rnjL1acJHILJIKxbLuo+UC6ZQ0Ka65ZlafKTJk9K/q0aM2WhR6Z1m6qqgEL58r0RAtaiYPc/0xRM2nb34XZ1MFMXeY99y2DN2nK/cqLSWV94/XhBCj3cDxrd2q8dMtUU3Eu//uS5jK1D1pWDthnmfbntgrn2W0V4krj1DnwVBbTUD0ecMTYt6NPx6PyWKQjWrQCNxiR5F+7fcKg7B5WaLcx1j11SIeHPtzvWx14qhMEqoGMzO1ZtGc/nrBh6uz27VZ253zqmTNjLkG4E08+kdTzthiB7gtlHU4+Z+w6zm43MR1R2vS8cs9x3kQNCxOUTWEXJ56cY10DKdJjm7aTQrxixYqYQnCybrNG0Qu8tySN1bPmpUVPC7JtV2hlIP91S5kp+8owt1KIN+WAuHcOTH9UligHLdxkKuu70Pyg00+L7l07F3s0kXXKcnlJWWtb8oB/uzc2Vyto1wJW9qmclJ+8x3HLH576Mo+UxA+nfpAGz+DzzyWG0zb5KOmh6n7b9P7clsS743JVT7hNF/VK3vM+YFKHyGMWAZwx44OYvpi9xEe3RZadktu6lOvixO0hbi8y5Vv5Ik5ymwdjUVbYRwmz2wgcp7xqJpnFjd2b/8qEt7P/fif1ieOP60U2T0PGTICO52vIL4xeupAXXZkRz16OL+Wwc89/wp9jZHx+9hSl90mXn8wecZ25M84ZFF06dcw928o/ZYuwJW4ZT7bKc5lOTD/SvTgo+Ig54l6/S7nEuOSnCePfjMVbd0ZvAjh9SGU9sm2bnFPHqSwucezfzllZZd++xbvppVnYEz4Th8LD5OS55nMWVsar4OZwLNs+PahM37FztGI/rXJQ3WqGhrwoXxU6tOBzTycyG6oawTe+yT6F2eyzXWQ2qsfX4XzIT5NmzYtTjjsGmjkq5FcLWOf2nCrcpJwHFwZqpQl1zBacLsfjd+LdFTvH6b2uuIqjVcjD95GVB4DDEzC0C0wNl260WQrboNhCYKaK9J6F8GjLujXykPOtfBEntp28SHvy1KKly2LCW2+n/uvasWOehqPud96FzfYhnXzO+XTvu8G1regmtwzkFgngNy1aJ1W7yT7cVmRNBAtie/LAGf36R/t2bTMLT32dK9a0b00sAzrKVnndfdXqQYtGG/Q1fV1ek2aEQ7ktrbq3eskSTmOYNDVaHdU2+rJ/3q16eXkj9ythnGPfHYu62RR4pHumTrt1Q53HYDOdXZ4Qd+Jt7tx5MWX8W7EE0+q8M06Nk6nh5R5x7cnd0IXbXHy3XbffuWVW2pGXnDft01oQVF1wL76l4QNE/A02WAdkOnM69v0PEtybLjyfQuddc+43MG6Pdc6Ub2jE7WluM3I7UK2suUBL0JRbgnYdQIezZWI/+yPk5UbIZfXjvIqF8dxTw9KpPqZFU7ZJnpkn1jinysay2LCde78y3nl0Dry0PZRH4s1npEXn1LmXRj9ETv5p5Ji896xePXKLTnNqbfhcbqfjXpVpmYYuv9qH8lYa9KV9Kq7sQzkm7qRpaeX96R/Em9M+yGBm3/5nccTsMTkvSSvgVTs0iQEIlJMWVrbNTdRuc2zaHl7Ojf3IF9q36sIVq9dkTaO5K9bEqV07RNduFJJF1mgXlVv0/KzMFf60td3eIh5oz21tjjPtPWw5bTO3A0n/m7GV5xOwHQluWpCi2b1XH7a4dM7TcdQP8pvtyf8WKNV2bUoAxq2Ujs3aK15lX37O7ZX0rZ1vjZRZ0OXcWXOo6XAqMrJtsZ2WNrU5pLuUL9BxKRdSr8MDblkQdnEif+XWEODQvnQrR3Fc8zLan5uo7dm9e8JtUWnbFKZ8MV/yuVtV9RPaHGHI4kCsAa/24bZR59Ii37Kh/RWLNxtjKduOJ0+bwRHc3aPnMV2jCYEx5an4lg6cV/W+NpYyS5rj66T1pFvm0ja11w5uF4M/1qxfm0fAzp07K5at3hIXDewfnY9uXwQv0KnaYeI8xQI0aPay82ffICPtSudHGrI/9ba0og0q/bh1yeLA71UsjrYN61LDZEC0ww+xwVK+CqvzSfOJW2VWbtmBhy3EzUjyb3kg6Z32hWELOJuPTTP5/bdi0cZ9cUrv7hTZPZ4sucOytgzKhky+YmvnHuUNMAq/9Vx2MG9r8ZFGvfJq3P3D78fV11xNTboOOc6iRzr9GF9/l0CDE8K05ksCcIK9jGy5m2bmjA/zrGyPt6zFjacdd3x06dCBeg1si0AYS5qubipkVPjj2Xt357/ek21cOqhfXHvdtdGta9d0NLfhDDtZ7nU2PVQmlAiEQYJVwUjI7pWxfoPKXmWrUpMY1qA0h48eEz976A9xLPlpF19/KxWjz8hK1wpeDR1fCieNHAWmhXMO7tmC2bLIFiSgwLPC9T4oL/dtQoSLliyJZ194KV4cPjIu7dc3zjtvSBYus2jIWhhY4Z3OiszOfyoumZ6PaUBoZMsYqXyEQ0EMs4pfhbl7en778CNExfbF4EFnxwkUz+p4VPs00hN2cGEQQKbS4EknD+Fi+xK2L5lQAWBf4stLYaPxP/G9yfHrh/8Yt153TZxKZd7WMGETimf5TBloSAPNfngBfDKLzJhOBXjTaVfQaBjUR3iL16VLl3Ce/KwYM24cDLkzrrr0kqxE7ZzrfMjcGppp5MN0CikVpwaLAYJ05hm/AljhqqFRHvNmEaVF1CuY9sGH8cTTj1Bs5py47MKhqZDlVPeDukKtEDTgI941cBSc0o/tiQeNU/HN7cV30KRFAN2nPGHiW/HKi0/FzOXb4h/vuC0G9jsTAdL04F77NER5NvuSLnk5z2WQZCuGlkpII0b8uJ9UgSn+PJ3i9deHx+OvjcwV9bu/+fU4+fg+qchsV+K23TT2wak48PuCfjC+mEsQmKnC2C/MB4Kedt37qAH8Dvvmf/WTH8Uiwq6DTz8lrrvac827ZJsQhBI2Fbi1D5xn6VEc7OV7BaF7zaW/DRji25k7zzOvU8cTMhoRqd0Yr48eGb/4/YPcEXHz9Z+MoecPibYWiMJ43UNaoE6u46yRcwYvYYxktfJ0xnRWoUOCHBZJ1GjXaLTgmvtgFy1fQiXqV+O1USPiuJZHxvU3fzKPetMQ28q8M+yUHdKNBUh1RF15cn4zsMZ4nNsMAEmj8hn4VBbIT9Mo1PeLBx6MmYuWxKcuOC8GDhyUxpD7IjVENczEj7RcGNTgHhilmVSsKGNxJC/sZI+dvFrys8WSxrPn9Ic/fyCux9ntSwDGY6mOYMUJLLD6jVMK3FvJ3HDrxA6CDbnfFjzW2o3TgmJi0SwVm5rQYnfVgGsHaePrWQlbuGR5jIMup1TOj/PPOSeO7dE92hGg0indjSFksMF6IBaq1TFXnqVSB94dOFfKLo1g+W6rRjFjbEbQshr3GWiYv2B+PPXcc1Gzbs24kAKJHpPmSQp1kaXSjSdVKBMcr7iQh/0sfRr0UXH7nU62tK4hpNyxgKF1Bd5Gzj8zZlzcfest0Z8aLwZ7nZvyknd8+Z2KP3nZH70HGOUxL/uTdw9vxvF/0Jj8ZAHDYY8/Hfvq14q7v/Rl5GSvNLLEAbcWz0MbtuHfCSdyUnmcQTvmxTFlIMl3aMd99VsxJt6fOjVeeuXFeH3C5BiAkXjDNVdxokHnXIFUN7hfWOfEYJiBOw1/+dfgqbi2LdsWV8obHXyNuqbU5vGkhNfI/vu3Xz4glHH7zTfEpRddEC2aNc+CZa6C1oFfDFLZh+04pzSW8sxgl7QoPpRdaSjyW4H/WtREqIynnnk2nn19ZLb/vX+6O4vdNWRswl3iR72nzhO36ldhTSOS7+3LOcn5dRyJH4LD3DcFx+JXD/w6Zi5dGYNO6IXBdC37uHsCJwYVui9pBIwbNJa/NJ59OafiJueSibbehEaxzkbue6VbHbc3334bfvp1wn7bJ6+OQeyZ7URNCmlXWhQGcZA8Dqwa4YCbx+Pto39YDPuB/cbwhTLBAo+7oWMDDotXLI+XXh8Rjz73QlxxUXFSkEV2mxHs3kWQJ+uWKHUlP/qSNg3UCbOyUXlisM35VQ5kx7y5hVKH1xM8nqHtA+i3cwYOzCNy27Lqb1ByO/UodLQsLuu8bqT2hk6oOCh5SxmcNTSgW8dXfq+ztAG60al74NcPxvkXnB9nEvw6GrzIE9K4zou495nSBkh9oq2BLpFm8nfuUTaWAVnl6Cpqi8yvqIg3J7wV03AAbr/11jieObUehXaYcIqbIhDwZyNc/GgjZQAWGNzLraxUvgt/I+oRObcG2SdPfi8ee/SpLBb3iSuviE4scqizlbnqB9v20i5wUUSaq89WOnGs47YXJ935FPZCKiCzGctqsgWmcFLN2FEjY8wHc+Ozn7gWWTY464BoJ+q4ppMsbjKICw3pxAGffdBB9luNLTjynEa/fZhaaG2dBQsJ4o8eFU+/+HLed+8X/yHOYPFK3tuMTSUdiHOBkrfEle3UqUZQH30nX6XdQQaf7W2nuKQ4aQpunJ9p1L965Pe/i3fnL4zTyB698cYb4adjsxhjOt+MQX2kHSMPpYykz3Ku5X9xpPx0nM699qULONLNiDFj41/uuz9h/9SlF8W1V12ZC0zS6w6yFWn44BxI9wZlShtBHSiOtD8S5/bL34wy71mM3fTS8NfhpxejCyi77q7Pc4LVGXm6l4561v1SrgO6eqEeNZd0hg3S6iw75+Vx7MpJaTT3/4Nbg0pzFlTEA3/4Q4x9d3JcPrh/nHMuBcmpp2FxviySCl6E2fpp0pF6TRz5Oe1u4Bc3FtEU5/KyL3csWn/sHRYMf/C9++K0E/tE/zPPRL9S14FAhmiWp8Wx86ftoQywX2netuQbbZH8m3vFmcEdn5FXK7FXx8BPoyk0/6lP3hjHMactWfxpSCDfhR/bUwarO1N/MEP2I24KXuXUFBYNtG30c5xXcWffLhDMRge+NnJU2hMXn3dedOnYMWuoKGuFRVr08rMyVh4TfidSfeQYs3YG47N+ADdkXxuQSwsrPE5yWvz2mefj5ssvjcHUdLAgaGnvlr5SBniUDTSm/6VuFnYLJCvL5JGsd4fukd/8vqKSU1nem8RJfy/FvMWb4p4v/QN204lsM2HtH77RT0x/AFo+aMNXtW8QQlwYhDFAZZ/yn7awY1M3fIjdMfzVV+LZ0eOjD4sbd33mM9Gre7fUcQZJbVtdlb4BOJB3pXP/Vj9lrSbxxt+pY11o4uVCmoHqsRMmxL0/+c8c3xUXnx9XXHpxHN2OQurUJqyGvVcbvq/Bg9K+bZs5ZS2XjQS2Fi5dzOmJY+LkQQPj6quvjiPaHkVPzlMhg/jwsb3+5kCDIxcVXr5LQF4lenbt2xUfQJRjMPyWL1kcRzRrEeee1S96du2W+2i2ENmziJEM0JDicBL98DGj44JbPp3t3HblpXHHHXewqtM7DSENYovAGGxAW6XT7z5WGUaHVYNKplMgSXA67AoPI8tGn1Zg5D71wovx9e/fFye1qhU33fn1GDJkSGhE6xBLbBa805GT4GSaFExAo2On8tMQUEAZ/QT42ItjtwdFJ8FoTPzukcfi4SeeiVsvHRpXXXlNDIQRa5HmvplsBKuYKxxKQ04mlIhLZ1eiLZQzKeUoZAMvMotjskjJZFajfvQf/4kDsicu58zYs049PY7tekwqfWH27Osy2knTgpnCP/tEwYgnFU6piBSEwuAK5NKlS2PEm+Pixz/+SXzxC3dixJ1RGCuchJBwIvxkZmFXSbsq7ZiFT6a2D5WeQrJ0QFzVULhULFjAEW9T4oXhr1EQcEt85sZPkXVAqhltNyIaqgBR6RvwUNHLW4kjjQz6y4vxGEBRmeXqSB0MeJ4zEjh79uw8yuxXv/15DBl0adyEQdG5fftsw9VycaOQ0PB3PjNwAZzCavu5al8VuZWGVWwWWHKOXXkd/sbr8fijv41J81fHffd+My4eOoTVLlajaFsFZvup7KtosjREVRKeimCEuAEOcGNoXLwZGa6F4HXep1DD5IknHo//evyZOAob9f5f/Zqzu08/GDxi0EnrOr/So31pHIIi5lcDCRyBezNrzPsSdunGYoobKUY5imyiH3zjH2IG6VtXDxkcd3729jihV0/gpgHmSwpXs1ggTXy4Yu5PGoVMavKOEdcVGJwWc/SM4SLQ0JjVqPUEAl6O+3/+U56I+Nxtn43LOH7p6CPaZjaDgYbkJ+jEubIqvPyofDDyL+3XysAhuGZ8u3GiVfLyU836daKS1fphzz8Xw156Ibof1ib+6dtfj/Nwqps1bYKzwukWIEEFpwK2yrjza6BBQ2ATmSjSrQo/lT5zab/KBJWENGxg7Z4f/FtMmjk7vnTj9XHxxRdTQKtP7ofdVbVqjqopgjLMrbzvc0bp5Z10KsCT8kaDWt5N5Qb+PQ7s1VGj4ov/ck98gWDpOQMGkDVBVf22RwIFc0VbOlzrKc64Yd+O2MSeBIsUahjVIchQG8XqSpqmswXCnFeINbahtNas3xTzFi6J0W+OZXV6blw8ZChFBo+jUjcGBeO3yG41cNuYVXKdMAO0zq2OF8Cz0l8ENTTYpKWNGD/urTdDyvoKOwhkzCKL5FcYubXr1Ywbrrw6HaOmzZpmpWXlIEye/K7RJg2m0a5M4Dfx7qURKu4zYMg8+b2ro++9916MGDU6HiQo+6NvfC0uOOfslAUKLI036VFYfdZnki6BX76VB+RljaVSnhlga96S7QnokVkfTI8/cWTwIz/7eewmf/773/lOnMlpCQ1xXktnSJ7KwqJVsPp9EYz2lBSMOecSPJTy2ECA2RxmxI17a0L88bFH4smXR8WlQ8+NL9xxexx37LEpa3S4LBKVp2Bo7BBcyaKv0L/taqyksYQczcAsY/N7ZU3j5s1YTUI/PfunuPNb9yT+vv21u+NTN1yfqy6u8kFo1ArBQYE+pHkNxHpslRFvwqwxJX3Ku8pI3+mCzxh68O2MWcwpgbVfPfZUtv/wz34SQ88dnMEpiw97c2YTgA9xYpDQALa4Tp3BPEvziXdlMTInAxp8p8E+nsLJ99x7b0yaVxmXDzg97vj8nXEajpeyXH4yWKH8zew0ThDQAPTlHKs7lO+OxaCs8tH5tl0DAmswcl8mCPOFb3wrYf/ml++My4deGN27dCU7snBwxYG0IvUpW3MFj8876dtC1GA9HTxXI4UbgDLIsHM/W8ww/h8lCHP/g7+NT3/qyjhv0DmZneXquoUpDfKYSZlBHvCivvNkFLP5PHnBlSlXRXWo01lnrI5FR9hCZVMJhD/w+4djP4Vqr7jkEk7H6s1JFe3TmZA/PSmkCWn1EESsX7M2jxLWGE35BV3rwJmtofzSUU+djhwyvX/lyhUxjqDmj+77t7iS4M75gwZG165ds6q+uNWpVGYZ1FDmaqR7yWv5Ai8GjryUa7btfKu7LBQ3a+6ceIUs0/Hvvxf//NWvRt+TT4omyBbrBhxAfmiL1QOnNag3YzHqNKTpS71UnmDgwoDz6Pn0yl+LR+oYTOeI07FjxsR//fwXce65F8Sdt93CiTtdaRMdDLVkgAu8M4yULTpcPi9966CKf/8W5/KsRy4nAfDP0qXLYiJbdl/jJKKn3nwnvomzez3Okae+7EO+goHEpTStjSh/mxFlALgocgce6Nuiw/t3FUFVx6Tdtw9BPXfBvHiNQucPP/Fk4u7fv/3t6M/WC+WqQUnnSRqwDele/WHAy0BDPeStOJZOPd54fy1WRbELtlMUshmLGC6KvE+R80d+91C8MvHdOOeUE+LLd3+Jo7JPTudTGaM8MctJ3knnB5x52aYyWRla2pPiSb7176bYXa66P/fiS3HzXV/KZ758681xx2dui47QzV5kgfrZYDjQ5TyLU20z7RfbN8hQ2B7qPO5iLpQ32qrysZmUjz79bPzsN7+LE0gf/+zXvhfnEwzwRDjpUVwIu7QjbqSldAihOZ1x592MWm168Wi/zksN7BodOxcJvv/vP43n3xgZn7nuMo5Yv5KT207Bl7CAMNm72kjAwgymDlQ2K8+qQSwWaTYr0+CUDu5mUvpr4z/Ux3m3BoxFAUePnxD/cOfncaQHsXhyHgWOT8hCu4CaMjv1FLgpdVPOJXPt317CIezKd3nORTXvWQN9GQh4cfjr8fxzw+ILd94ZpzOnnmgnT3i//CnNaNvI/y6qupCSi6eMSdgPY6VcuvUISe83kGEWZ2YHffBBPPGnYeiV2nHTNddkRmKzZmy5ZYzeKx3IJAZipE9tV2lJWSFPKSvUfS747GIuXQAxUODRsjORY+MJktz364fia7ffFpdfMDSOatsOei30nfSivihtbOnBMRhU0E5y8Ut+tdhwXWxBszhdRPHkmpnY8SPHjMoFwxnz1sZvfnxfDB7QP5pi02jHSyPi0LYNXJdj0b5Qf5stmyeNME4XBrRkDWKou9WN77K48cRjj8WDw16K/iedEN/552/EKSyoWmtCHZE2Nu2XuJCutbHFiwLIeRBnmYkjnsCRJ5PVIei5hqNxX3j1tbj17q+BgYjP3PyJ+PSNN5Ax2ClhRUGwwIQcAPXpj9SsnZkk+lDrCVLMWTA/XsE/OpoFo2s4eaJpqyLDJBuT6D7G198l0JBeiRPhpYxnAqo+Mrk7Y+aHH8YEnJ3lGJjNWB0feNrpBBqOSQW1EwWr0ShDSSiu9L4x7s348l135f7ou668LG4i6HA8K1IaPBpxOndp/EPMCqkDCFCFoApSZZNp/DC2gi+r5/rOS6fR1NGnEa7/9IP74vQ2DeP6z/wDWQfn5dGJEm1GDBF0Oo/1ERQatRZXUkhJhBJaBhoYaEboVRCsvFox1FXrmQiQPz75dDz37AtxC0GSC3AA+p5yKkIGxwjhvR/hKqFqnKcCg4ntV8Xu6qLw7ma1MdUFMOsw7sYIcnuAimsySvlnOKKHQdgXUX227wknRzdWSRuxuiAuXH1SUDkbCkJTqcxwUEjIjDJMmRbk72mI0c966mQsxKEeRUTud//187jhtltZrTuds8G7pLGiYBL/pVGSUWvaUojoHCmwVQy2n0YogkBhY58GGpYSZPoAOngBY2URke7bicyf1Ls3Rxw2y4wJ4RNo0ziNymoI2pe4sZ1aMLQZGOnM873pXDqutTCy12zakEffjR0/Ln75y9/E1VdeFTdcxRFAMLjbG3S0DCA5p4URXcW0Igl4fUs+VqhAP+Lc6tfVFSAotEpgH0Xwa9iwZ2LElNnxg3/5GoGG81mZLgINOoYqfd8Vsip8nRirO6dhx2fnxcwAHW0VZgrD+qw2M65p4OWZZ56OHz7yeBzF8//x0AMxEGPFwltWc1YZS38l3auUfSkAxZFKWPqubuAFvEgvvjTUFeqj3xwXP/ve1+Od5TvikzhGd95+e/TBMdqH05KrfLSW/CQS4C3UDW8IRPjF1b6NzMlStjDMX7woFhOo02HxVbcu9StY+Z7IWfV/enGYWITeL4izzjgzWqPU9sE3Zi3JU9KJyqqmygWcinPTGxXo0o2RZPFlsE9lgUlEBkQtjmRcFeMmjOfoqHey/Xu/+nWySfpxTF0bCvpgmNCmBqlp0fKlRfxMxXa+NTbEkzQo76fiBFc6Ixq/pllPnPx+3PvDH8ayOfPilltvjPPPH5JVxqUT99NrpOgoyltYCxmcAfOJe6yt5FfxpfFvIKBctcsznteuieGsGH3pO9+Nmy+4IM4ddDbZTacga9qDZ5Qlim0NDsoScLto/apYsmlt4t65qGX0nhc9J12hLot5ps+djHXjZuqGrFzNKiZHPi5fEv04ZqxL506c4NGGlVEUOnJSejeTyvbS0QJ+HWaV5154Np1R+MwMG4Myzan70eXo9tGUoGh15qGysiIefORhHPimce2ll8ex3bpFC07wqA1f2J7b3eSkDMgyf/KqK1VFcIHtG0mbxfF1GhppIADDkqVLkl/Nbnro2WHx9X/8YgwZyCkYOHRmPZSruE64tK0xq0NtENVVcJ09DQ55V1mTjgx8Wx9DSz7wiLfX3xgezz/zRKzfvT++9k9fJSB7SlbSdiUbYsxjs+Qp5YnyxUteLVbk6Ne+mVdlW+oQfqvfiErRGKDj354YTzz1eDxGoOEK+OkujK3e3bsDDw/RtlsCIYaqFVkXP9FL/kR/wpxGOrgBQbJb0o3zUrdJo6ym/6cXXohv3POdrMnwzS/dxSrjFRhybZOma2D412bA1u3w6K90RJEjwutKlCvzflauSPPSpPLUzwZ9Tad96He/j//44xO5T/fB+38YQwYTaEB/yC/SijykMS5fqf/comEwKleS/ZvfGR0UyTjBu3xt+zrBZiMaaJg4vzKuHXRWfPaOzxFoODlxsx1db/vK48Q9tKBOlf81xKVD5YR6WwfJQIDwq8917NZCoy+PGBGf/8a3GGHEPV+5K668kDPlkfMGMbQN1D/SXUkz0pw4T6dD3FXJutQj9KM8khfU3/MWL4zHhz0fP37od3HT1ReBl/M4vu/UXP221skB5GVNwXNugVO4dXiE2S0vrqpXZx49EcQ5ziAMf+sceDrIFIz/B/7wSOxBnl5xycWk1Z6UR/ua+eICiiu6efQ08j4Dg1W2grpPfEjnzq+Gqf/pbGjz6JR5lrxBngd/+Yu4BP03GBnZuXPnXCXV1tA5Fy/CpZGs3FUvq6vy+D/kgLaCAQJ1ue1mAJfnlhJomEnQ8dWRo2Ls5ElxN6v2p51wfAYadJaVkdaEcUuAgQa3t2qDyEvShjRigMGV0ZQ7fKcs1slwu+a0qVNjDIGG3/7ytzGYRZ/bWYTo2bVr1jFIWmG8kpp8mKyVslYKVIYVc+3YpBVlj3Pu3Ii35ctXxHjkzCsEqx+d+F58647PxtUcHdeOrbvKFuWNAQbbVucvYTV4GqcHrGJF3W0UOY+M6QBzbiBezeu4UArphC3lhIpJkyaRGTA6afKzn7gh9Ye2rDabfXjlCjpPS4faCnl0qnIBWIW5GjJ1P7p7G0EG+bUlK8SNCORUVFbG2zi8z7z+Wpx3yonxJWSlQR51kvyvflPmqPsy80gIaTMDXbwrv5A6UIuyjA/SAP24TWsjdbteenV43PblwjH6OoGGm264gRNIusR+9Ta2xz6Ca9K6/Wmv+tmAlO3ZrnPg/KZe4d2/lQvORwbuCDTc/5uHot9RzeJTn/tiDD77nAw0qJ8NVgNe2jfCn7KH+VBvFafFwZ/KedrKfnhPWuKNnNd4/8MZ8dNf/SqeH/NmfPHGa+O8oUM5dYA6Bsj4bcgy2xbPNQQREiq2EwI5+BIVmUkL/1o40AUZAwyFDcXpW2SWjJ34dnwFfA/sexbHn5+bQceO7TukzjFQ4hgzsCV8zLM8pg70e+15eUhZqVPs78pfQMkjzufNnx8vjRwZzz36aNzy2c9mILxr12Nyi4MLhfKPMJaLbcow25df7dO25VsvF+e0P8yIMhuvDDQ8PmwYNmBdZNnVBMJ7RHMWxrSNciESmBJO5K+2tgu8WwlkOL8u+qaMB4A9vpjt0hY2Q2gaGULj3hwfv3z4sfjCLbfEpQRhOh5JbSn6V56rK9QdXupWx27ARdtImaOPlzSiHOA75bzBIwMCc+aRjThqFJlfT8akGUvigX/7XpzLQm3zJgScoEH9r2KBwHks7Gxx43Zf+dggpwu0HhVsINIFMm1hswU9YcITBM0Q+s1Lw2MQ2xr+5ctfJtDQJ4PHqU+dU3RfCbejEN/F9r6ixlIG+IWdlzRTDXlfF39sNXL4ZRYkv/2Vb8QSnrvjpuvj5k/dwFGknZKPDDSY1YCgQQaYYU1dEPhQ/WGAc14lR7O/8Hy079MrbkCONMKWc2x5AdfH+frbAw3ioZD+Sh24mReCE42TAmI/wnY2ht/bE8bHUoRmA5TRmSeenBHrmkyojoi3i1AJUuE3BkPup9/+l5jC13eSYn815zD3xjHynj2sSmikOFkSncIpnfbsGCL0HphGoWpES2WvwNcI8m9XRf5EKvZXWbU/s2XduPKWz8fZZ5+d5/VmtJb2VQYyjCuDtu9RQTplOn4aXRKJ3alEq1GgrTp7fbbtYc/0urXxwaxZ8SxpdNNffSMuuOJSottnRR+K07Vg/1aRNoeRS/s6pZmiw1gUKq6oG3UTdp1Do//1+NstGcLvMZtGvSazWqex0q5NqzhvwMA4qWfv6HxkewrIkUbIPCiIjKgqKGQEz5bWgMy96xji0muuaHCPxobC1vuMVM6fNz/exKEbhvC7kLN6z8J5ObZHD85zRSlzb+EYIiLEO+2rzGSSQsGj3FSadsDvwqAToIOh4HHFJaO4CNc59HPbJ2+IE3v2ykCDkV4NKZ9TaAqfQtn2XKVWeMvoZqTQes7xbu4xfbEe1ajWgpd3VfajRsQDT78Yt1wGzVzEShcBmMPMlkBAaYgqSFzFdw5VBBoj9uEY0uiicaP9Bhp0Qmu6CogxtBhjYtz48Zxj/FK89O50DNwvkn55TjrTWVsAI6QwHnBKoRuj6NJIQZ/iRFYolJLEbtu+6jK/Ct/pszgvHUPoh48+kYV9/uNXv4iBp/fNtFTPvzY4ZfsqSnkm0+lQwAZeJEQdZw1QlaQGuW0rXOsShNmG0H3zrbfi1/d/L8Yt3Rg3nTc4Pkfqa2+cxt2kRu6mUKA0rmNtu0ayBfgAeKgFv2xB6c1byNnf06bEmwjpx18vajHQ8V9cKgsNmD3UDvh/eV2JPDjt5FPiRBRnZ/Y4N6Df3dCMzl2OQUeIlzUHdIYzi0XFKe0w1+JJ/CgfrIj/zrSp8f2f/Htsq1wYV336xpQFpkuLE7MCbNMUV4jSVIh0cGsRiYZE+MrsIF60qV/GzRmYEg8GHZeuXB4jCNzd85P741xk3nlsPzjrrH7RsUNH5pICRwQel61ZHTMr58e4Se/ELx59+P8edXqw9k17f+s19PR+bGHgqFTSuZtSWMogzx8ef4wCmO1wqC/IQINHYiq3PN5JWWPGjs6uRqirKabcKsvcBpH4RtEbEJPfNKiVI8sx5j1XewKy5qlnnolP3nxLnHvmmewRbZ0GsCsfOv3KRYNOrnLlagh/78AYspCaq6caA8oYFX06NOBdWWlWmVudRowcESvXbYjbCaydwb5vnQv3kirL90AbGrQaoxpXaVigwJQHOo/qDVdA3A6jPHCbSQMKtW3FkJmIrHl22NPwwri44rxz4o5bbkrHKOU6dFEfeA0KyrvKHA0k5YJGozrS7TjCrbrUcFbmKO81jJZScf9leOxX9/0oPuTnr3zmlrjoQjLuoHXp2iBDDQq8Vle+IHfEvXJKGWztG1egNPo1DH3PFSTnhHvMHJtXURGPPvZ4/Ozxp1LWfPf734nzBg5M/WFGg45dHehb58UAZx4viez1KGpXODPwQ586ZtK89T40tsQZ5nRMmPxefPd7342JZNtcP+CMuPUzt8cpHM2ozvaoQ2E2UHTo9sdSZ+WWOydEgQlemIwMHOmkKtvW4wy8yrbHu759b2hi//OXPh9XXnQJe3g7UMBtXWxGt+skSy/qHXnX7A7HkosZOB0GGmDaDIgp912J2g/829Hf85YsjqdefiX+Hf133ZABMeTcIXE6Z76b0bBzC0EMMjBqgPca8Jp4klaEU1ki/h2/7+psA17KRPEiX3is8dQZM+Khx56IHexD9jz209GvPZDDdXDWtTGES9pW9tBy4kwnRd5SR2soO78a5FKPOt2gnCukc8k4GP/upHgGfh1y2eU4Rx433SlrQKg31aml8Swferm33OBCQ4zd+ug59btbrNTr6gIDtGYn6Ux/gI4aMW4ctQjejc98+tPUsOgdTRs2icbYHfWgF+vKOKfCrhOpzlbXoWQLvQC8W8nksOhZ/caNUk5K92Z9TSfjdezo0fH4H5+OQeecEzdefVX06tI1GuE86Ci6cikcAJb4Vq64Yq5DIa3UM2DPd+rw3LIJ/NKAx4GawTqWRa5Xnn02Hp3+YXzzppvjchyjthz5CBpzNdXCxwZvzCaYjlz645NPxiOsLP5Pr9p1D8vTjXZT94aR/08f+z/ed/ZAjjBsdySExSLTlk3xzqgJHCfZJr5IRoZbWsWzOk78GGzYC84NNGjTqMOdQ2lEebgLGlJGKtNSToIr0+LXkU38Bvz0o3/9bjpG3/jUDaR6X5p2k3yqzZHZwrzbh/yUNljinwDgIbq0DLDrQCoX/NtaNo+SnXU/25TP7tA6rr7pthhAfY8jyDxz0SptYGhb+8YFFTNjlHGujHuss3I5Mx+AX1mpfHT1W729gW2Tk2d8GA/CqzOnvBtXUDyv34AB0bNnz+R99YRy1xM1ajAWBAEBMWwn2jd4YmaDxawt9r0HHHn6wE7tKIKFB7Sh6GM8WXf3fPOb0bfX8ZmJccZpfaNTh46JZ/Vc8gk+QW5tgA61tc3UkieVP4de0qwOvXS8niBWRWVlDIefhj32aFxBIKAfcqY326BbtW6dzrK86ZWBHeSXxFoGMLSVlfu5HQbclMENt4iXGQ0uXj354otRC/v+U5ddxvaAHikLPM1oG3pJWpFnhElbW3vdrCv78wQ05Y0ZWnswmPcgjGqCe7O13Pb4/rvvxZvw1OPPvRSfvu66uHAQdX7ad6AwbJOcP21t4dWR1jeTR5U56gxtpczKSjlZFaxC/tYjk0RZOa9iQS7qPf/SczH+g4r4z299M84543Tq8FBcHRkjzdu+tKMM1udRmsnv2h25DQaZJv0Z9N0CT+5gXlthW5g16ILV7x58MP4welycjQy7+3Ofi5NZ8Myt+OBZuj9oF9CH8FZnHG55BimxdcP61IPObw0WmKV39YcFTl3wfJ2A43/8+F9j+gYyeG64Jm5gC/oxnTqqIKBvAunYxwd2qZMKe9VgsTrVAJGBuWeffjq6sL35JhZi6x/VLseXAxSPH+Pr7xdoYMJV6O7bdaVMBZPGApM8G6IfxwQsWrAgGmO09D+FYnpdj0mnyUrnuksSZhloGM0K6b/d862wvM6dQ4dQgfMTuYdJG0Slw+ynUpYgUljBMPSYjKfxoKAzrUti0/jPdEoIQkfeVZGnX345vvzDH8eJPPOJr/xjnE9Gg3uvNIRM81aoamw1ggH9vB0DLA1GCE3hpcAClBS0WGJR+7CGsQ2DdBVOg4rqGQINk14nrRYD8ewBg9gi0CcDDbYh7BpwtuuKgatc7t3NqBlCQSZU4ckU9TFsfVfMbmIVZCXtv0P0/9cPP0wxpjZx/oCBcXKv4zLQ4L5ThbV4VIDIdAYDFNTbac/2kzn4zsvoqIrZFFVTeY1UzpkzJ8a4Ov3EE5mG1o/VnGOPPTaLxGioaIiU0VkdB9uUETPQUCVQ0oB2DkCQwtA9Z47RKOv0Dz+IF0aMYC8SGQ0EGk5iP53pXMJg2rVR1XLlReHnKmYqmiqhmEY14zSevh2c7UchNGp+eKxDEb+NEzz8jdfidy+8EbdcclFcdeEF0aNz5zi8MWd784xnSCf+oVGVtG1p+IsrYbZwn+NIo1FjDpwbZFCALFrGlpLRZDQ8+0SMmL0ovkc680XnDo6WpB8qPA4wr6XSz1Ud2pc25QcaT+ErrqRNlYMrO/bTgIr/0ugUFOZjGIg/e+7FrHr7m1/8J4Zi36Q1V6Y10g0y4D6kopTapR8F+AGI3eBUKkiNC4TeHkrfa+w2on2324wZPz5++s27YyKZ0TcOPie+yKpOHxTP3qpAg3AW6YRwYioD5g94XWHdhhKejfB/+/3JMXLC+Hie10ddtTg/ziKOOzfDn/8Pr0svvpAMoVPilF49oyt7kOsA71YcjFqgux7GiUElZYJGUrkqotGs0cuocBqdW+YF+UQoLCZOnRb3/vhHsbhyUdz6yWtjKA61Z4Nb12DrRmpAoBAMTOU77bo6ne2ZkcBvBhukm6yNQZu162NgMA8GC5esWBYj3poQX//pv8eQHj05T/6C6N9/YHTu2An6MHtne6ylSvK8pYvJ4hobP/v9b/7vMYfgq0bm/AG2A/+t17knnYrTidHA6kRzqtEbaPgtW3qaNmkQV15wYXTr0pmq2s1y/GZ7iBdlSpGZVQTrjPa7mueKmSQqP6eTAz5zlRTlvwpjZSbB53Hw7GPPPpP7js8786zMKrOYZRZuQt6Ycq5RZHvu2beS+26cPQ2Oehh4GkU6p8r4NKSRY9K751KPJStuOIHBlRu3xJ2k759JoOHINu0y8OhK3S4MUU30NFaAzSCwThdTTEChUfKlMmYbzpE0Y/uN2K6zjfG9hbHyJBkNT499J646f3DcddunM9CwB2NfXk3jFr7U+NdBVxa40uvKtfImg7DQTBpg0Eruc8YJMANpKQFZt5f9iODXUmC5+9ab4hL0iIGGzJByrzjGSk3ehT3lMM+qN3KlCNnlKn0G1qDHDFJjFBtkd1Vn3oKK+P0jf4z/eurZJJdH7vtBDMW5a4hTuYl6KwZJrZVSyi+3NZo94ipSOo9gyDHo7CojC9wDOwF3DVON82/de0+8t2xFXNX3pNw6ceqJJxaBBk40MchTg2c9WaU+fWr0Z8YT8lf9n8F7cKLjJ3/KSwZ5ahAo2YAOfAXH6Av3fJeZi7jnHz8X11x8WRq569BfmwgqaUi7uqXhiRRO3WcASMdFmrHmiYsU1qNQDmjgHgw0LF3MdphX4n6clysGnBoXXXBxnEUArDWZazuhl/2UG68OvDUhObM+vAxkGGhRjhsIsLCkDpi40bEzI06H2ECDqd6/f+rp2E41/UsINAwg6+A4Fgp0rDbh9CnrLS4sfbsn2TnQ3pHOU9bTTwZ2kGXaOAYCXPFdDZ+6ddBskice/WNcRAr5IPRHl85FRoMGv1l0qZvBsbrPOZQ3nVN52Jefc988tOnv6mXRtZBMNjOnDDSMm/Ze3HrzLXEazm67lq3Rr01SL+nMCa96Sl5yLjMDgYlSF6nztu9DFjAG09NrgRdp1EyPqdg0o0eMjN8+OYzibwPjJuoE9DbQAI0Y5NUpNaBL6ym3zZ7ROHc7orJXx87tEspiAw2+xI0LGNadGsnixvPs5X9y0eL41k23wLPnFxkNtFdsqWU1ldY9Dlb77YHfPcQ2i7E5v//Tf+rUIlixR5oSY3/71aMnRcrbt2cbG3OODHrjtdeoM9M1vvqlf8xsEnXcHmShAXY/Fzpc9BRzK35Kp056PICMVOdloAF+MmCwFpp7ne1rX7v3+1k1/6ts77vm8sujO3SjfnKrUAYaeAfz6TRKF9r3yixuSdtDPjWwJq/6cmuJQYGF2E2PkNHww988FH1ZB7vxK/8c5wwaxJbTlsX2WGxhF2OEXbnpy89uGXGlF0GZmQkuVKVTT5sZuEPWbdhmoGFG/PqPfyRI/17cfO3lcfa5g+M4nMdctU/5bmCBMfO8Y6mH7q5P29qBu9Qj0JFZpsJvQHk3dLObQIMr+JuhLdv97rf+NU7o1DkuICNxILr7mM5d0l53G5ur9NKZ/CS9a6saHJeXpEnlvC9x5j1+py60cPn8iooYPn58PPvkE9Qruyz6nX569MZPOAKHWL60ToO+lPcrv2zfNrTr7dMJcSuFOsvAkhnBbp0wW6GysiIL/j79ysvMd634BIszvbtREJIAj88K4/+i7jwD7Kyuc73Uu0YN9TLqnaIGqIAKkkAgiRZjYzA2xiEQ2/GN7cRx4sRx4sR2HJfYcQEMxgZsiugIkFBvIAkJ1KWRRr333qX7POvTIff+jv9w4OjMnDlnf/tbe6131b22eF6IE2vFfci2XlesMTiQsss1zrGkZ9ApNeuxtZ1Atf1aFtFwdsa06fHE5LfjS2zTGj9yRBFooL+TtrUBdnkyt1nLE4xngEUMclx1hrwj3XPLORfXFrZfwTpszakkCF5+bVLMW7U1fvrNv41R0KZVM06GYu2yUbUJIHSfOKlPKO585I9oC3Mt9bX8bqLNNW3eqkXi8bx334vHSOQ9M39RjMCG/MaXvkTTxivQecwTflQ3yIPaNhLorHzJz5mQhf4GksSjDLgxfuooqpuc/36S5G8y93//+3+KdXz7wbuprP7kJ7Ky2nmipOMcfoiv8qW4rC2p76P/sQGcfeG556LjwH4ZaKjd4VKgga9qv36cH3+aQINE9Imiyj1QLIAZFSQAi/987pmdMWVKbKpYF40oyx01ZFhc3r0n5UwINs4OSyzP8/HCQJ9GRcM3/+GbeRTJXwAen7nvs9l8SCEwWu4eFwE2KwR4z2yFDxWlzpyZBMsXZeZ0HJ0cY1v6updAw3Nsnfjr7/0guvH3h8hOj7eUjjIVAeAEwpvRfBjAJpAJ6AivjgvwmhkHDQNvVwPiPFn12mTVT5JB3scenWVrVsezOIxvvj0t7hs7ipKrcZmBdcvISTNCAJ6MnNlXDE/vScF3PBWvykFjOcEaZVyTrLRGzGEirtsoYXx3ydL4xRNPsJe6edw86oa45sp+0a28UzpCRwE/o54a5oKagQYNIQ05FU9GRLlmZgsRFhtT1iMQ4Gcz0EBWZAb7GZ8h0HAPADL8mmuyO3ZLoqxmndyv6auLXQWHzihlZlcAaCO2gqFg5WcERcvrG9kZmt83rN8Qi95fzNaJKbGHMtEHP30PkcS+CX4KsYafdPBhNFVl4RgJtNyDrz6MwHovx8kslgINB4huW9EwdfrUeGTS5Aw0fBKHtBcKogyHySBMVsKwhnz5Er9ZCeOIBo2ISjJmbpmA/vKMCtmKA4M9bp1w79QfHvvPmL8v4nvf/HpMpLnfZeyjdD3PUQVzhiirQah6zFtD3eCZ+xsNKmX5MeOd4fqW1Oc2B9ahPo6LgaRFGHGPPfZoPDp1eh7h9fjPf8r2omtwaomsKx8CKbM2a2TGyzE1CJlygqBAqIEjaKsks5EivFTWhP1+gPv02bPje1/8SixiTp+5YWR87S//Mvr2okIIZXvuuNuCkBTp4jiuoXKEvNQpa4hxeDbWb94Ui1csSyfi6cmTJRqZQWTw0tPfuXVo5k+wN/E0SxVLn5G3fUhun4qrq0klGbPms7xpeaN/83dWKfNCRtLPGyOoTpbseDHK3ZSRD2G/fT8qbTq3bcN1qILauzd7GRTNycCeHETaE41mLBW996Vs5aKLT9BHWi2gDPDbbJ1YVLkpvvoJ9nnefkf0u5IjthjDoz1d33S+GEnl4FpmmIfIgpzkGmAmFYEGbsTMseubFQ27d8bUeXPjqz/+UdyOnI4dS5O2oTSv69Q5DTlPEThCieYWPvfOvNnx7R//kNlCt0YoIZRRNXRSYh3vSSMJ5FJJO17SrqtN931x9gTnT7Gcxe3xlrRPmvrBSw95UliWOU/x/ikGcrwid0L/DiouRqDUS4GGHWTXH3n6GfjwPA7dhOjaqWPuIdUQlLbFnlqMHmigwaMj48OscklOxWS3PLglxoyIxtBunMLly9iXTdXB7156ib2Mn4txZLo6dexI8zo28/LQaDtJQMDvmvk0+JCOEtetjcGo057Orw4UfGslj6XYmGSxAgyeQpOtV595MvZfrBZf/erfxLCBAzhppVWWdyqrpwjyKEvFNgHoCb5kUBMeqQ/fW3p5jDLm42I/VoLbiBrRn+IE867ZVpoAAEAASURBVJkDRv7+qSfipfkf0PNkTHzlwS/Qab576ia3IhmItqJBAwgLK8uaNahrUxpfqmKz/FjMdBF1GqvAj2brDDS8hIH4lR//NOnw9QfvjzsJnHZo0yb1XTX4gigrTZXZEkQwXCx3DKsvnK8rYMBC/aegqUvccifO2xhw7YYN8ehvnohfvFBsdfrDj/4jJowZk07/QfqtmF3UWMwnvA7wJp3le50Yq1NccJ0XjUcrDQwCZNkqgj8HHP7WP3873t+xO+4YeGU8/CXK7AcQ0ocWx9BP6RzBdGXwQV2CRwZnDFqZbZceqbvRW24fNHiS9OH+vMYBAg1Z0fDP/5q0+ZevPPRRoOEQJ7Co/4pTc2zAWfDLUXSNZdn2KtHJqEqAxsypxqJ0rwVdDDScxAm2ouEPr9MzhEDMncMHUUkyMbeB6RhloAG6G2iQ9hq58qPBHeeorvC1mDc4DH10yNyHfBJH0S7znmjx5PMvxPFd22MCgYYbRoyk99SV3DPN69i6eJyEhrzpdr9GHLeqcerpLuo+19X5GnTxOqVtT+pIKxoq1lMVRaDht0/+NibiLI4ePCS6d+tGM+dWqffTxoDnxCu/49P5p15lXIOFPtThvuerssqXY+MmGrR9sCSmzJodc5Ytij+//wsxFHnq3L48mjei2ST0PA/4yPsG3tPZZXz1qvKoXrUnjNsm7EOQgTBtFNb0EJUcGWiYNp2KrhdiAvuxP3/XJzLQUJ/gkLJ+Hn7JID1zUi8bvOE2MvFh4D6dXzBXGDDIoHNnoKkB+933E9S0MeyLZDGf27U7/vn+B+KTOI3tsPfS6YHncisK37/Az6sqKuIJgv6Ps32Ju0/9UQfZrM48DFyJY6cMmPA3LpcPr+ta+bsY66vzc82AmNR3xP7h8eJ9/47fnfjjaW1YVTj6yAfvqfuUsesGX5dbDMSPU9g3L0+fEtf37kl/jK/HtQTu1HsmT7RLtSf/v6opxlCHn8UmlVd8ug4GfEq/62TvxxZ+k/4GX/x2IU9fh+73sJ+/V5eu6fSLBSZQDADIH2KY9JbQiTHIqbpPu0P8sfJIftemcW03bt0WTxJY+/6jj8dVXPovvv33cePoMTQOvCyzwgYdLX8Xa4qMMuMjlwbza4MNYk/azH6Ga2WlFrim43gMvfk+8vQzbOHJCxfFQ7ePi5tuGR/93TpBkM7vyYsGvnQerQCrB/4awCtVUGi/qquUKTGARU4ePc7YbmmcjTx995/+Na7q2CFuQf+NHnlDdOnG0aXoJnuyJNbAiy62spQ6kOtpT+v4agv7LFUi1AaXDYbpZ1SAw2/OmROTnns2Pv2Ju2IYNk0vbDJtbat1rDjIrWTwstjoRXKcDCq4BZqTOcA211n72aCgWCZ+bNiwPhbjJ7zw5mR0V9X49MQJ0TcDDZdltULiySVdrZwzWOKB89YfsZrCAJ70Poch5GkoVn41wt41cLeQLSXTp02P/351cnydioZbR42KLiR9ysAsHfSsOGDGOtLijPwiHQzcpy5XfqF94gJj+5pVTui/dcz97XemxktsnVhQsTsDDTcYaACDxW8TDWKx/K5/po7NLThcT8mTH7WF5XMDwFameJx3YxKSXnM+fWwef/TX8fS8hTG8b5/4x7+m58kVV6S9Jz/iMKU8mRiQ3hnwlkaOzu9p/zGOQl7wPnocH7AhtsEBEp6v49984+++FTv5/IN335mBBrf2ZeAOHrSiQR3k3OVz6SNPnOa6lQQaXqTyqt1VfeLeez4Tdcrb5VykXxp2OYuP5z9/mkBD6d4BJoVNZrIRHdqQv1ygeciHMZ0F2AITXcZemzHDhscVML6Lmk3LYBaPSauBoXiB709BAL9CE5a1fPuvJt4S93/+83F538sLgECQ0pBzpQURvluU54hLBQja3Z4VJBpL5gpDVKWsY2FWx713z9KA7Cvf/ffowvj/51vfiDtuvy1atGuHst+fR0QaBEjnUHBVyL3OpWuZ4bHrvotvydU57TmifTZMsamMPRp+99wLMenF1+KBCTfFrRNo2IjSr4ahcxZjwiyXAQtLaS3tSSYSTGDmFHoBT+aDbjK5kf/qBBuMpO3AIXFP+c8e+02U1amBszsOx2AoJwi4Pxjnm4yOgJRReoGZcTRoBZZStF9g9el7KmSjrxp4BwC/yspKOqnPi9888mg8xL6xkZTvdyynJAoDlS8UoMkVlDKNiJzzJSEwSOLDPdQ6FwJtRnbJDvJGrF+zNhbQMfzVt9+OwwQUvkCVyjXsjWqNAV2NUq1zZN2smLARTZ684ZoxL4Xb6+T+ZsYXvFx6M0eW99cuq5+RxA/ZUjJ77tz42S8ej7twRj/7CXo0dOyURpugpEJ2LXExk1ZF1qXQ/PIr6VZGR2ky13TUmX8NSjKrQP8tGFpv0PDp6Ud/EPN2R/zgH/4W2o+ONs1bZMBIxWWzMPnSqKv8o1KWZ3TiJRFELgw7gNX1lR+rEfhSuX2wZEk8Avj98o0p0ZmP/uev/zsrGgw0CKyOm4YEitLvErbO0m9UT6GA5XfGsyO0kXmBtmp1jjYlyGMp2TszZ8b3v/JwzCXrfd/okZSLEWigUgUrGaXJ+Mw3LSLHdrLwhXvz7H9xlO9XbtuSZYpmoH87qXBQNJTKIFk65IjdCX6XA5hhlpH6qrOrAcaf82/1mCa/xhEcYj/vw+/UZElqcelaXJOYTWziPZ3fFnzeQfw8Jz3m44FP3xXXw5f9qIbp1LYtkW2OakSuDMa4tUm58j00JQ4Sa84F5W8DSSrPpDu0kkZmq+chT//ywx/GgrXrUZp3xO3sbx7I/mOP+jwFT2aggXXUEMptJSoLgw9KscooaWfQwSoV6I4hrUNgyfrufXvjzVkz4+Hv/ls8eNO47NEwYMAgjrXrkPM7RRDpKBi1eQ8BiTmz4ps//F7eY1lTZBI5qsJ6QZp8Qp58SAZ/TiOYHzyeXlrVYy1YcpcuaVoXuqH/oAVGJ8Tew+csemjh9yG6cZsT2mC+8p6PO8eMooTz6ujRoTxaNmmaZcf/Tdlr42b14547boseXTqnsVGrOtuhTpHZ5f6LbST2AWCRGMvKHZ1pZTdpLi8hexqo7iGtRlbkAKXY71E59c6MmfHU62/EVwl83TxieHQqL2crVKPEGktffWTJODioIcetpPyafZD+F3NsDDLW1ZuvS8YeDzPWrlwZr7/xekz6/a/iUPWG8fff+GZcR5+Apo1ssEZWifW7gFEhluf2I+Ytvrl1TufZLUfuHXWvtDij0WLpaF3mdob1MnD32GO/jElzl+K03MgpNH+eW5HMPIkFGuaJBTiMztNeJQZFSpU1Xkt4UC8pbwbADDRUAyv3E9yZ9Nqr8fXvfi+OMK1/pkfD3Z+4E8eoVW4bQaFFDQwVQuDJ69wAY7ju9vHhOtIIGmTmEixNYw5M81jTujhe69eui//6xS/jZ5zI4eOFn/8ELLuRM9jRMchRKaBucFb95F5t18LAUXWN/5Qt5s96SivpVJVqBnFM2mic/+u/fTdm0Qzy3hFD4gsP/gWBhgFpgIqR0kdZFSer4qwr8AbCXVuD644nlrHgwCfX4fZgXQIalHqTMXrNxm/f/MfEmW/99cNxB8GA7p06Z4WKlSpWzajfrFZzm44nv0h7y+htOpsAgwznfXgdrweIea31W7fE72ig9m+/eTz+/M5xMXb02GxkaTZNA17aV7fCSQFX7qGBPGNgWudXejlfK2BcUw1b+ddghN3aP1ixMn7zhz/GYfD0NrKYVjRcTkWDzlme0ONYzM1tQTWltYsJD+ZDbIbP7Zmj0amcqWMl3GECotu2b0va//wnP4nbcBZvvP56mrd2j2Y4LtLSbWQunXIp76lT1a0+CseDtRQ7ma8ZNv/u1gwdmi1bOXpyxXKCPDNi6ntz4ssPfzGup9rRLSv1kSn10blLa6tB7RqkPpUG/sd8deTOcTkzpB/JK3hgufkKxp4ze0488dSvOW1pVDz8mXvj8m7dsumpxngG5Jiz936R+ZvVdQkyqcF7OozagIWtgM7lfq0Wrc74h3btyq0Tr1GS/JulH8a/YtfcSxNtjxaVZ30o5+ooHc6VFQQannk6fo0Np44D1TL4ryrirnJJQIRoyH3Ub8K2Pfj5IILqKvmZxgxZH5NHn+UgEAbXJF43RiECKwSTaGrKEjq2GO4KeG2DDPRqzs83QhFeP2wEgdGWWdHilqDp06bFQI66/Rv2lA8mcGdG1+xuqcJXXEv9xL1bdeo9SX2zxNWRT6t6S72/xB3x4BCO6qv0aPjc1/6OK7MV6b574v57741OXboiJ4Q/sA0MwCbawqMyzhl0oskr+4kZ/JOG0lvb16oVKxm0BeVPM7RPPkug4ZHHYxjx4y/87b/GTVQPN7uM5qoG1biGmKluzQoe1tgKMG2zAuFzWhAJYsv/KhjvD14yqGGg4ftg2cvwzl996tYYj0wNJABWD9kxYWgQMwO/MItHkxq08tQmgIsFA6cVBB7F9i8wnupksefIiWOxg8z9DOzV7/zDd2LE1QNIGI7l5Inrol3nLihNnGa2Iyt/8rqBgJI97ZgZaGCc7GsD3X1PuZNm0tCtE+s3VMZr06fHK/DaAw89FEMGDoyOHQm0Uz2VTAHdtUUd2/HEeWnjdQy6SIs8lhyaq1f8TFUw6CzytGnTpjwZ6Q+vvpa64D62QV9OYqZZs6J6OO+bW1c25RUTjuKUW4icXwZ3uIKVQwYHDeqY8GzUpEn6CUsXvx8z6T31X799Ov7q/s/FnTfdiC3WjmB1sd1ZjNf+zaC068bcIUYmErW/7BshhokDVgQYAHP7n1UyayrWZUXDpElP0ednfzz23e/E2OuGRYum9G9SX2hLoDMyuSwGu5bcgzyovZErytjypXyeATYubxWVVQPvUXH33B+fiZ+/Ss8TglLf+cbfxiASS45zDnnKrRPO3YHEFPhFGHYLp3xplRRRzPRpzmNrl/oH1SbQcIxAw6tvvRVf/+o3Ygff+SI9Gu6/926qYLpk0Etb8sIp9B86xEC1J61pfxgsOs61N2zeGK+x3aVNn16ctPipaFhenvwurZzLx/nxJwo0JNfCtBh9KF8dtwQbIBaVm2eOe+rE5vXrowlH4lnR0Ldb9zQ67G4ueNgFthEd+WW+qQQazLqugrJfvm18VjTY1duofO690sDl6ffy6TrwWdlMw1+l7+JYvmzVQc4F4TTKupvMx6TJb8U3/uNHAZzGl/7+63HbbXQhRvEcQWErZI6VjIaQKzA6U6XfZfCMpLHwZlwyg1yDoIaROZTeusqN8XvA9UWaQX524rjMXAy9djDZqroovT04jhhDCJQOkSClQSRPCyACuCU5locpFIK3TVLs1eD+2z3798ZClOUvn/gtpbMnYvy48XHDsOtpREbHc8BUg0PDQJAX2HwWDCoQFoab4JhRXK6qQWH2QeBxf9a2bVvJrM6nKdOv4yECPVY0tCHy7xFDGvqlfV0qdOdrliGDOIyRmSiuZ7BAA8DrCH6eZS0grlu7Nrc3vAkfHGcun6E8UgFv27Ztdu52/28RaNCBK4ILZhAEQH/3+hIqDQrWVuG3HLAaStRI4loCPO+STXv0N3SuHn0b+zzvxBDqkApZh0g+YSSE25/hSnhVQ9R7L0rgbMSpgQCYy0/ck3uwjOpuALjfJkM66alfxdztp+I7X/sruuSPzKyIUVYNWTOkUDt5w1evUTyLeftWrgVzl2aZmSHwpZG6mNLR39Kg5lcEGnqji/7pBz/O5nVmW1WWGhUq47qZEWWLDLQ6zvUcz6CS/KGxepJqCUulgdy8hsaERu7MOXPjv/7pqzFr77m4Z8R18dDnPx9XYISaXTyHRWSG2uh8Gq6sYbE3j/njsBzh+5t37ohla91Tvyh+dykTinkZzbCWGjDf2pCUW4L/vUcwnp91cj3Kx2qAs6eVbwytuvK6Rgl0Rj9kBQSfhWUpkcVRZK/y+Qtn4/BJtg9hfZ3GSz56hm1DQMQhx+bxhU/ekYEG8aB9mzYpS2YCDSqk48v6ytMMlO8lzzC2MmYE2vWUVw1AHiZTtIDI/49+/otYvm59PPCJW2MC3eCtaDBooSHkuI6lYnANzqDkLLuUWaqiKCwPFO+KY+f4bPKmK1B0En6LLOCXCGp+6Q5KO+nP0Kf35dGGEzkAOrI6JzMLvYVS6mnz58Y//ezHeY9NMWCrHD8bDbjnpmXuV6Ur/wUqYTiVQlpxd8wP/oTYp1FeDEUFGU/tD+nPs4a8Ad+4JUZHX5r7uVp1NfgpQ+ce9mMIW8lneNLH+BGDOUrKCqkOeTrQ7r374leP/y7alLekUzsOXVcCDTgWNavVJNCFMcEaqizFFhsF+tDYTfmF1sqWcitWaDCZVa+N4btj27aYP98eCtPixekz46+/+HDciNOl8V+/QYN0mj2eTIfCbI1OtNggVoqb3rdBQ9/XGLNU0uxFk+aXYSzWzm0Zb0x+PV5+5tE4Uq1R/N3ffoMMLEdkYYBmRoJ5+f1SQFls16AWt3Sei4o4ZA8811gvAudmSBtCx5MxA/30+G9+nRUNd4wdFX/5eXo0IE/Ku9ldcRJkjwZkhJNnwHwNagMwYlpiGeOqq+RJjRUNMAODO/fuiZcJvvwbpyJtg57f+eqXM9DQmt4Yh8R35RU8q8VTfmeZc46OocEinjhf8avgxYLv6xHEl7ar1q6Ln/+KoOazL7pc8fSPfhA3j2HrBLTJ8aEpmiMDMsqAe/atCqgDD3rWuvP3/qS5zrnVdj51Jq0ym7docfz0pz+Jd1ZXxGdHXx9347gMvOqqlMmsRsTIkt4GYqSG1QbKmLpKA9o1Vwcq7gbb81Wm5572s83ojWkz4mFOcRF/vvTFB+KW0WOjR6fOGdwRhw2uW2btQ750z7IGYqkp8FkEwYZcZrzFToGryLZfIKC6LZ56iV45TzwZX7oHnBk6jCbUV0RzjNxMEPA9t6/ZJyerv+RL8NZqKYM78o22hpnyDDSwFmK9jX891cmtE0/88bk4tG1zTCRDei09Gnr26JHN63SMxBn5U9yXbxAgaFPck7RxTLvuq6dcY2mmjFlCvW/fXoKm78fP/+uncTOO9FjkqVvXrlkxqPzZ+8itiOpT5cantPKZMiTPgo3q7JL+1bC33HkHzvqairXxFs7FlHkz4st/+SUqhAaxnad97st2y8fJo8yfuWZJM2OU5it/V2Hurp/HgJuNTppxD/UJrFnqrW3wHiXNT73wTPTo2Dceuu/e6NO5a+KcVUdFgI6qHXgcyMmxYaG8B/WJuOCcpRf/wFUua7H/fDdzf48A+Ttvvhm/mvdufPsLX4i7J4yPcrDGwJDjaVtZNu92wdXrK+IZsvCPPj8pg1kGccXbDvgWTRuSSABnlFqz0zVxrLQjTuCYcrhafk4dV7cOpx7xxmHk/gwXQDToN8GWkZr1sYWOIk/yP1hMhJ3VpUICXXHsfGBaZLChBXr1uqHDoy2nM7gd9iABwCXsKe8+qF/8JXbZ1QTCTTxYpWkFgPJjI1GxUdnUTs7ALzRoSHDUSi9prn1Q2GzVsOka0oDueB4/eT/N63z83X2fjvtIANlE2/J3bVUxzaCNPXKkr02DHV8b26ov5VWb/Sg0EBOsplWmXITKzVvimRdfjp8++TQ9GprEPQ/aDHIUR/U25ahesvHiInNXtxqElnfEA20eg4/ypg3Z5UvXVGzWPuNGM/D7werV8YNfEGiYRfCLQMM4KpMH9B+QJytox5tZN1FjkMHqmNSH3I/YLyYUNmyB8QaZbNRtoPMIp1lZWTYLnvz+v3w/xgwfFmNGjMjmrR3LyxO/s+kxPKcMiucf6TlopAxpS5Xe8zryp7rMh0fXerzl69NnxFv05noAnrTvRqtWrfMkiWJMk15UQ/Cf2K1eNdmYlUk5CiTWlpTvefgqnZTzHdu3xzKw5lkC1jWg32ewPfqCM540ktuhUk6KQZT93C4OP6mfEZ+8jgR3fbN6BFw3WOWRqAZMPXVi3vwF8ctHnojPf+6zGWhoT+WUVWTqVCsMHEecF4v1R6SB/k2hS4tAoXyj3ig91bdrkb9ZBPJfefnpWLjxSDz63e/E6GEciYrdkVv6mLvB8CIRjB+ivoVnMijN3xIBGFMc1sYu+toUQRN9waUffhiTSUL8+PlX4kZsnX/42lfpN3NFBnE8wljbQn8vfQNoKg3UQfpHYqYNq2sRkDnHWKdIVOmncdPRsElZ9hCaPHUqwYt/jI1856F776K56qeiW6dOhZ7DVrsIIBhoSDtG+wwdLqbbDLJy8yaaWJNs7H9V/BnVRU06lKfMZaDt0joXq/bx+/d/H2jgnt0u4SJIizRy9DRcMJ6nz5+KtQDCAphn9YoVcZxj2fp06Rad2renhAQDFSWsglVxN0TxuKgLyPB+65FHkprXtW8Vd33ms5x+0Dmjt57tKzMUDFEoFSPeZsJzAsqdwg/LpUJN5QQDyjSAyH4U/psI+PNTZ+T4908YG8NHsG/MI3cEJ0DO6FgqLRhXcJIpvJd0HHnPufKS1zD7bYOj7KbMiJsQ8ieImK3ZtDuua9Moxk74s7gSY8WIrQ3ULEXz+yp9HSJBPJUy9LMhiIaJzV6sZkhlAS0tNVRRHEFDLVuzJn76+2dz7veMHsYZv1dH5/KOZIVhWJSDAs3UUruVmkgJXL4vUAtIXsP1EQ2cR2GsHMuyKLPWz85bEPcQRfT8Wrsf22dB0My9cozlGAmu0geBds1dCasnpLn0K4wYHTEywwjlTuhiU9DXX38zt8T89Z23YZz3IILLkTsoMUtZVTqlh9HJBE+UkGur4GcTNQnP9QUv92HZrfnwJSF9n/LOF6fNj6s6tSXQcFe0A/x0tHK/FcrFuxagWK5ijfndtciMySWeURHzZt6TClMQ3LpjB8bKAvakTcvp3TZmeIwcMjj37hp0kn8tcZVHLCeXsi6C1/O95EPuTdDNII/04wOWH2o0rqmoiFdf+GNM27A9x/+b+z9DJ1z3jRXGhGPIhxqgOheOp8x5MoRGnAaujkVmLYiy6mx4TzbJ8iixRcjT9x57Msfuxb9//n++TLVHxwwyuF+xJiXY8mDBN8iSP8N3F3k1mr0D52fdpo2xEoNwxoJFOU5z/m1GgLlTeb3o2Ko5Thzd1U9jnGDMSPMaVSl/rEFGF3JaGl31Is2XyBhUBcXPXsDAMAhRg6NP0Ukn2b6hhDXUeCHgcRGa7qfEbO12GiVuPpjG4C7TSDxuHnZNdlAuBz+akXUvBWM0tjQeLKm367Q8mPuNec/1UAV5fzp03p8BUXuhfAg2ff+J3zt0jOndMYaPHkfJcdfMuGrk+yyVd1pOp+B7nVw47jOj9vInvK/J4sXySrwa6Jz57sJ4jK1aQ9q0ixEEp7p37Y6y4hhGlM0p7tEmdLsPHSA7syJ+9/orOY9Gxkmx8bq1qh89WacmDZQPsobsAVbSqnGtqsiyBnCNrKCwZwlBI65vSaxBW6M+zv0syi2Dr1bnsM7UGlEhcjZ2Yeht3b8n9u6P2G7ajsfgy7tEHwyS1uzlbEQF1h4CDf/2+DPRm7jIXXd+jqP42tMVvwwniJLKkywIETl5U/zQqUv+hrbSSKwRIxJLGVtZLjWv8/i45R9+ELPIGs5jUe66bmgGNZsTKHDPrEEJt0woKxovOjs60blVAyOOgbMqQbzQwFBmNRQbYDx7nJf7X2fNmh7PzFqQ9/W1+z4d/SmTzABxSS7zFedWLBHT+KRzdSwrX0RRVjmxRoNFw0WDXWd6yQcfxtO/eDRxzJ0rf/e1L0fXjuUFX7Cu9vfQ4MrSUcfWuOW9LE+XVvIV11D2vYZ08ogsAwE2K546Y0Y88tpk/hI0mxwZE8fdCK83TuMcIc9966KMciY2KvvynHPXGXX+GXAQ22EF+b44dahONpx66umn2P+6Icf/yj2fpEz72tw64UkHJV7/aP+oNAYjxHGdikIPFMKooVtgJFjBj+qoDzBw/+XRx3PsAU2rxW33PBi9CMJkPyLGEXtLhr76VPqXHEV5RGxXVzue9+TcxUqNuUPg/EyyjI+9UMjJxOsHEWgfER3JpnHzGSzK7/MdedJHDgmtxH0/cx7nRtmzs7r3ZJbdTPk5gGobZfaT3pgc0z5cHiP6daOagVOXOneNJgTaLcOuKo8zrEF9sb30kFfU19JCfej85Uv1iHpQutj4dfX69fH9xwusuZtqj35sp+rUsTwDvQZ0pIu0kBv9L+0Dvu+jtLbKlbQpbJ6Cb93yoyG8mO1Iv3rjzRjTrUuMGj48yss5QQbnwjUrnAntJALJrGlmpbErrFTRedH28G86K+pECeern9vPltDNW7fE21Peivd27o/7b785G6g1b4ptQIDqnNhj8BX6uJ4GX3NLDz8716QP92AW2gyjeso19ZhjjeytW7ZwCs0H8fTkGXmv//6lh6ObSQJpAOZKQ2mqI6vjIH7Le7nGrDM/wUpiEDTnZ/WmGCj99pFYWsbY0wiQL+Svd1x7TdzKFrEWYM1ZvqP8KTOOe4HveCLWOzS6e2vuAovpslKBlxjWqU6Uk4lvUhe9xpKoA07Jz9xfBrYZwyCj+kA6ag9mnQT3nHYYglgNoeTj+ayGfuTu2IpFvwHWfvvB3ei7iG1MCLGJvn17ZAXWcdZ1xwerY5mT4PGdLz9EYqlH8rMOlvMwmC/eeB1pkjgmLaCRNobB9WKrE06ZfMmkxRqDptPnzmXLSlHddDMl27fddnt0bNM2AxxWSzhfx1b2vdfsp8L1MtAlb3qvjJkVFOCOmO11XZ/tO3fFC2xFmrXUtrZkeOmjMHTwYI5xLcsG5dp84oHJO7FdO1taatukPPAdkyBpo7rGXFf+50Np+62qrIyv/2dxrPboq7rF8FEEHXt0T572++KWVW/aFkXzWfgCfhKLDSwX/gFr7+QMIKE7rSwzObP34H76oX0YT748ObSZbrxjYvTp1ScTb+o3bfNS5Y+4lTLjONDI+SqfXiPtcT7vZ6Sh63MCHDN4N2XGzHhj2fL43Mjh9N+gYTx6N4O5fNbP+X0fnoyiDHDBtFuS1vysreP78r60cYESC+gHs2FjZTzx/IvIG0eO33N3OrsenakOThsduqs75BV/l2ez9wPvG9RXPylnyq5VfQZSrY7xKM2N6zewVXlhvPLukhh75eUxYfTo3NpQE9ppI8mTJjz5ao6btjpzc7FL2J5bWf0McxA39UnEuE1btzL2u9lo2Xt/+BPwzMABufUtcZExxZkSRnID0EX65uW4lyLhq86WR9WDJg7zmFH4yoTk9ClvxtTVGx0+vo8t7LZHgxdWjBjgVVeYdHBbk/aINraJUOlko0x7WmSwHRzLigZ4xy3WR/iM/Zt+ckme+vfpEvd+4hPRoW2bDIgYZGABU/+I8q6dWKnt5BZNt6rOZov26PvupS/hp6JJ2w7cFPcnU3mDH+PHnyTQIPhoGKqk8phCCKP4aiacwvmoYHEXsR/3A8qUV1J2U5NIbIvLWrBnimYsRKyTmBA7969CWPfwb6O7p0rOI1PaoBQakZ3VcNZRdy+NZ8Tb9MnvyPwnOIvePa7VEUpBQEEvM/sGeJhR0NkVDM4wxn4iuUcxODySqS4VA/UAYzM2Gh4uqFE+l9UeA4JKlhIxF4VUgdRQFEgFjvw8Tov871yOE6jYwV7Xk7yW4Tg1YNy60EXDxvHy+8y9ZIALqgK6xrRgYZbF6/iq4a6BbVO0FHyE4Bifdf5WRTh+PWnO+5bOSf+Psovch+BmFPQ4e1uNzAkUCdZcq5rAzuf9jKCmYWQZ4AGCFQf5TgNo0QRDoCEKSTqXAEl6+HmZ3zlJ12K7TGGI5jEzGluXAMyyLKP+RmTNlO9kr6rObzv26elYWm7rmHXp3VEAcQF8CrrHip7CGXRNLSlzvp5CIXi7DUYFKpCYxT+MkXyI51HGdv9v22ZNaf6FgmUcHZc0ZnPW/MPvec9GQ42Qs6YFvTXYuTOtSOiSxotKlPX2SEF55jAKrIwysstwaqR74UCoaDDSoJlKRsNNZeLxfwmyjK8zYFfgbMbDnMzY+jcN05PQ6DBreoixNX6ce3Oym04jnRJ4zyBPOtPySF6H7Drva3ypBKSFRp0P5c4fawi0jLcfp3I/+5e9uQbQrQVzLzO7y7zEMdfHtc/xeEPZcVuKhhfUixNc5xDz3YZyrNy+N6/RjgtcxrNvn6bRq1MbaEI3YxS0jU0NClUnkFCnJqe+cE3XsQr7RRE1+AC6OkNod5ES/NMY/cc5+cLPNURWawPkNWgCtufYqVhcsTnmL9+FAUCmBztWf7h7s9qUlLZljelc7ufJVAj8XlOeURl772Z6xCUrPSwJVO7SuYMeyoDr7PMgdN8NbQxYlMHvdRmzFmuiwaNsFB8s+EU+yvJFnI4aZPUNijiuvKISxdXhGqpmMp/OifcdewcZqTp8zmMjG3GEZNHkzCoFghHw914ytVv27opFO7YyI7ak8NTI7depeVzVg4ZuZWT52f9QBBrASXjSBldya22JyuWPsj//LNUgtck8aGQXipMsN+taFQLa4LAq8z0NkxzAKdiy/3Cs37WFBrP0T6FixEf3VlVRil3z2LoMXIKzu8miX6B0oUkZZ4xTESaP16IiovpFrsu+CytiNK7lYwM7x6kScWuZhqz8LR7pdCi7xRqRbUOW7IR+FIxUXsXIxtAeritkG+VeC8yR+GKx8mSJuuvqukj37PQNTTXdvY4Gi1vZNJJOIE8+zShaxt6assam6A8frr3fUhcU68tqId8adYlrriVjKa8aAuK8BqX4aKBTGTnBPR+Dv05wv86nKVug6qNDxDGzrxojztXA8imMD7eQMVLeg2PWx9DWCHKuYpnYI7/41HnZgXO0B7prjDVm7Vsy/zrwpbT0GkXgwh+ZOxgjjfxZOhgwFAvkSecrc3gPXkeZOMY1jxDgEtPUV2JZIwK9yTPipGPwNFMkPcUagz0eWXiMrQvyuzLqcc1mOT1OzGy917A79yE+txenWtyqw/00BWsaEqh2a6QPcdKf1AuOn44772n0OlfnqcFZzAN85W3lVEPUgMBuxt59lGM4+XxTcL514ybokTrFfMFym3d5zCQD5jqKheoi9WxV3s4SagJupapEe1icwpBWao/zmd3gtnjXkMBcA9alNrTwOzpB8prBraR18l6xBtLfxoSuqU3sNNClvWWxyoUYrGwcRq9KG3mtDH5pAsZ7OouGrWPk2nINdZbj6YQpbxrtNkM0oGwSQhzS6HXsQuejn5Cl/cx9L8+G6Ppm8LvVdqVjoeV118i5m41VP7m2aWvAs/7NOTquOkpeFE9zawj0Vy9pl8n37Vq2SNq7NdXSdAPVzqMU0E8jnM+ZkXXtasInBuqUHelseb3yZbBXu/GU8gomHcEuVJ5awC9lfMeKGrklkxBcvwrXQF2kvSHvOL7l6I0JOHNnZP73J21NWLleBs2UsUNgvPrVdW1K0KgNGXV5wiqQKtCzjN/dbqtDshdeXr56TazbsQcH2CAEN8Bj/OXNonvrZtEcPVcXuPEej6Ov1fe1kU1lUswVX9QuVm9Y4u8JROmEMtBFmhIZpBW7qqIfz2O8HKWUeh9z27Rve3xYeTb4P/G/MSLcmIhzo8at8nSEU2IUY7uuZehw5+9a2iRX2ksj9azNG/2bFbQ6/WKndK6J7Sm/iCHqQelscGyvtsERjp2FBxugO8RhdaA85iP12yWay4cZcIDarpty6jpmQBg6+lntWOVYu1ss2w6WHYLna/G5xqxLU3i+JjSRX8UC/QWvJZ/J/66b8uG8vS+TUOoNtzFqQ4o50tfstHbqHmjn7w0ZR5wx++842tTayGIXS5EY7zGWZ7BvvXf1i1gpZmZQgLUvAnDMX/2JPBzks/spp7ThtLZ2GbhnA1txU5nWqZfuDeAp+0JoZ1v9ZUVD+gqMLQYoW85J2fLpfRv42Q3tD3BfjRlTDLb6t2TLSGvvV/ySNvKbmKgcW6HoOjSUlpfWuNiyjLyxVmKE+nU7dodBiRZgjLZN+mb8Xfl3m3ke7QpPGFR2PQ8ToHANywhOShftp9yqJD9AQ+/V8bQptIUPMa8G8FULnOx63IPjyOuul7zpPYgpyqrzThsbjNRe0EGXV0wMSCsrrbyGwa+D8MthaK+Oak1wpDl8w4Szgsdxsso5Jb7AdvmHt2G7AvO5CeYPcvAqjxp4FwcNchyh8uoAMn4cGnqvTcEP11Zek1cMvHoN+U8/RR18CQJYQy7B7+Jc8pWYyT2kPIGX4ocVwNrxzt9rtm7WJG0Dj8a131ZuBWO+8qdBkZwjUzcgdOT40XidIPfP/uN78el77o7GLdvxrlfPm+P14/v4kwQaZFrBwcUthAO+gECS5/Q5SuPWrIl358yJlUTc927bHu0vaxmW2hjTLe2t1tDRKRZALH+tDpjCtcmwGglZXunnZSYWyKyCginDrl67Jpa9Py8aNW8VrSjna86+xNxLA1NoHBg18nESo95FK6OpSQojgpLl0ZfmL3jIZAqZoKzCPQwYLF68KDZ9MC86Xzk4WjN+U5xky6A0igpHE+BREGBMneK6OEEaHc5bRzr3R3JlBT1LrWFwAUSFsGPnzlg8b24CRw/6UFyWFQQYK9BD51LDJrMYzo3vebazYKtweb2kzaX5+14aaACo4O811q1fH9Of/mP0uH5I9OrdO0FQGqjsBSmVl/chMDi+Tpkg5pGYxwFNBc8giUKZ4ME1is+7//V4LF++PNYvXxRDb7kjOnfsmNeXH/y+xpMGqcZAAg6/a2gIvgZ2NBbNtPg3wbswLi3lpNQbAN5DhG/ZwgU0JWwSQ0eMIDh1GQCggCKWzFcQScXGmgliKlMDKv4t+3MwtoDhvBNUWROvLfA5P0vMls+eEt2G3BBXs+e0LvM8jDFt9FJwlw71WUtppREtoBj4ycoLeBDipTGYPAN9EgB5Nbu0fdtWTjLYEPu3b4y+14+Jbt27Mz5lWICwc9IAUrkLcKKk86qXQZ3auf/PfZmO698FYEHbz+jw2EzIue9jH2EV7rl7n77Rmi0urpGOh5kOX1XaGqquq7S1XFjD7djhwgHyZAD5NfdXQtO6KCQV4PrKDVGxZlVWNNTFCGvepm0GdJatWh3T5rzLbCI6I4Zt0ek9OzWKbu1aEHEuAnyWNppFN5XqXn4d1upYzAYazp8zVFA4EVZLnDMzjrHlenNjONDKCE4mDsR+mjIs3bQzltAQ6ATxgy2Q28ewrh1yS0yn8o7Rkj2sKnUVoEaDMmumYAnNZA/v3BQtOveM8i5dow3zV/akvbyp0k7lBC00lFxbo/EqSmXS4JMliJ7WorzaxFBjwmusXVcRs196Ptp17RtdWVPLCbMkkozoORwWg27nuVcNBqPhNdOg0RDkbxhXZ7kvHZ6yeo3yentR7pu2b42Vmyrj9SWXqkWgbR1o0bN9o+jdiX4JjQiUoIqqunWCa1RlraqzTpohGk0XoW/RmwNc5D7SqVPZ81SZAUYEXDBOWevzrMcBHOVNezntYtc2MjcRFQQa5LF+XTCmu3Qn2NCOPZE0jmId5B3HP09FyhmqKjRmyVdSisrf0KxuI8mqD0bYTuXPPDKH3dieM4ieCJbDapRIcx1PH/Ko2KgzZkBCnNLIOYm8p1zzmRIO+DeNNLNTWW4KX1Yufz8uHzIyunVjDzdrmg8mr0xqGImZYkAGPFkDZegkSv8Ux1zpWBW4qDxZjSX+FceN7dy2LTZXrM0A2IAhw9jG0TZ5pHCaCpl3LOdmhkNnPvfcMgEDCqcxMOQD5dW5pG7gXpXzfVRw7Nq2NXZtXB/NO3aNK/sPiCZUKJzgvgzyKdcMnVicsso6yZeuirJssFVHvK7rAWYY3JUuXv8QgawKml9uWb08+bbnoKF5JLGGrwZl6mXmIf11HKW99DHoreyIcwYQnK/0UIaSLmIdn9+7Zy84VkkflL3Jy+07dSm2u6GDdLLEeMcoYVUNxvX7+T7rIRbrBHqfXqPQrQZVig7slZWVsWrhu2Bfw2gF3zVv2Sq358jX2g+ZHUMmJZBZKgQ1HU7vX+cOgWM7SVENp/5GIDIr6f5iA58rVq6MTetWRYfO3aI1eFFGsK8eAVCNRedscNZqGAic37PpZ2bPuXe3Szh2FWjnujt3M55pl3BP+3Bsl1Etdmz/vuhMtrMFVZHaHdLWuatb5R+vI46oozI4zvvqbtfX+/xIB/NOyhvvS6ut8OQH8+dE685d0d190t6RnlmppJHOd+U3x5c+Yk0GIviMAVHxyypH9VLqxkuftW/FfhzAzazr7i2bog+ngJWXl6eOUX60L5I3tF2ggdcwYJuVBOppbTDkJku5cTi8V+eS/Z6Yh3KYp2y8/34cZVvjqFsmsF2sFQmhwzhnp/L0L2UxHTXo49xt/mf1hcFvAwYG6Mxme28mjuQit13p6OwC47du3hQb3p9Ph/ahMZgseUNkYx96Ub1f0nPnwWL1vnJjYiUDhtBN2qtz7ClQjfuysgJFmdsntoBh0+fMjblLSjUE3ByPCX3qRq/WLXFMkHusGBYoeVx7NHWs/gDvyYM6vvaiMNBgRWSujxELAg0GTwxyGWQ4xe/HeR6Cxpv2b4mFa9BzDOO2IE5ej+69e8SAAYPZ5tEhvyNWGfA7raMID8krOvSuj7wpnTZt3BSVq1fl1oYm2JLNeDZEtuQ1A1fir/NRrsSCOtgArq3vyasn4A2Dh66nMpEBDe5BeTVhtwme2UXvBTGkJXq1LU0ArVDwIe65pmKOTlZNt3OA0dXQ8wyfdNcZ9zrqUufvw6CWvLPPk1mWvB/7d2yhZ1rHaFfeMSsI5Ldj2OHymbYot5FBgTqsa330sjh1BJvG67sWpXvM4AtrrUxqx22icmb6Sy+wnaRp9Lj8CmhzWQbEnYN4JU3TDpbHGcdKYuU25ZO/64NoV+UE+I6f92HFL6scK8Hhd1/leMJBw6JzF45WJwiqTjDQo/53HOcurcVI+dm1K3QMeMN9qCsdy4dz8V5qYzdK+yUkandUro+BbJd2S7N0c0DlXN3pmNkXDblx/ukkO8dLdo++ggvhWjq2eldZlW42aF447c1o2qFLXD14CEHQRh/Rw/UUj/yctpKBAbd3q7/922mCot6DD2ee/O6C87921EHWdQ8yewB7tU3HTtGhY8fEF+ec2MJ8/L52sRgjVnkNg/bnec/gUNKeOTusfOn96d+IMzu3b4sdWzfn93v1HxjtqbxUN0lvH96r4/u7cuK8DdCJi27Fd/6ZDGBME2XyQp5Gwvc8Hncr1Vz78EUaNGzMKXx9spmpnOucnLPrq7zYZ8KeetnbiL+nram/wrqqx62maYB/5dwMtNsIV/9vBz2rjrK+h09wksr6zfH9n/ww7uJYzKbN23oVnklVXj++jz9JoOEjyculd/mLdzApKdU9E2tQ9nNnzqQh4GoiD2fJ0vVmHzBOKYaCRwNmYwwWyii+gYZaZBPcL2UWQ+BWuQgaCqBlUHZTt5Tc6KWld++h7GfPnRHNUPRdunaNLp07Z1m1TKAguM9LBebJBj4UIh1olZ6fcbbptMJgzr3E/HVgmj0ovbfZarFs8XvRb9DVaeC2wQhNI9rvIsSW6tn0T6H1uwKbilQn2JJEr6OT6t9k7jQsAW8fGzZtjlcpLzNSOowS1rat28DQDS4xo+VZBmxQDAoZnxd07Nbt+xqx3p80UjgUphLYeC0DFEtWrIjn//CHGIQytvu3NLOUWkcog0LMSxBRCQtqgqYK/iiOuJUi3oeKWwM3Z8y1EpC5/mE+M2vBgli0eCGC8SnO6u3JmKw5StxzhgWSxtDaqLTGqApBEPL+nZ/Rz5w3dGLY/JuKwu/5/W0o/dkEqGyMNZHjKt2Tn4LN+DreRucTmJm3QFGAbFHeqzHu/k+v6UNw9V4EBA1wAapi/YaY9vabce2o0XHLmDF0za1PN+FDBDmKfhEGYixl0+jKrATjuA4CrvOG8EmTYiW5L9aWhUsD1D14q+H3TZs2xsibxrG/76oMXDl/lY5rlYEG5uTNu8ZlXEtaSff98J1GjIZEoisXSeMcuqswV65alUeG1uY7g4cMja5sLdJ4zrG5hiAoUNdifOdneWI9lJ4Oi86J9NVREbDlUd3AMpwfz5JeSkDwvcWL0ghrQjlfO/bsm0mav3AR52IXZcs9GLQ99ku3djWiI/vHrWiwhNKs1Rlk/AINAapTHlobGtbjHqqQZTxJtvvCeTJgGgsorFMEI3R8bbxoA73z7pHj8wYaDlBmtnLnwVi+bV/Y43Qr8/Nxx7Br48pePSnx75kOsQEClZlrZBBuAwbo65PfjINUCPQkANOzV6/oQBmuBorrpsOlMY0FBZKgdLl/6SQ++Mj1RR4Moh030MB8NLw9dlFaLVxKiS/9NPr2uiIGsK+yBfSx6kcr7hz35taRcwQaNLTkR+VVY9eI9mnocppAw0UqAcrq2aG5Gj1j9sVaggwLVyyLR954NefQGpZowBQ7t64VXdu0jpZlyiRVA1QWuDewyrkzmWWxFwMERRXxH9O3ugeWyfU2U2xpvb6YCJJP7vMixt8hjFsDDet27WZfYcQ6nq7/dVfiBPfunSeS2FFe2YWlcLxwjKiWOMN1VZjVOMmhDlUSVbjgOYJK0lNlW7GRZkavvBJXcvzomOHDycaXpZwYnJPvlSF5WBkUB3SKXDdlVFqLZb7PlJk8n4X2VkN4xKVOhGeDvzd/XozhqM1B/fploCGz/MhEGkLMw2CSQUzXW/l1HHn9GDKv/JsV1tzzP68vlu2CDpUEMZYsXcraXaRRH2fJo0d06MQtdY8/yyuOoXNqUMoAlOOb0ReLld00XsB7sde/+/7GTZuiYu3aqKxYFx3YLjYS2rRGV2k8lvBJDBCDdTwNoEgjMVGdot7SsfZ4Zq9X6t5tIEhndwn6byVz10kYMnxUDCFoaiWgGC5NxRH1RRqK8Ll01ZCTP5V9g6vST/6WPvK81zPDV8nc36PB40G2TxkE6EswvEvnTtC4kKdc+xKWOS7rqTwZWFBvK0+upzwgjzCZvI57hdWJS5ctj3dotNsEo7x79+5sJegULZEpjbJ0cqC7r/JFlsMyP7c/JZ/wvk09zap7b5pkVdVrVPloCB/CqZkxd24snD83Bl1zLdvFOkdzrtOgNsc2cr8+MmAhP4Lbjut3eTfXxXHJZGSgwff8jFv1DEyYCNiGkTj57SlxZO++GMZWQ/f9l1npAW2876w2QV7E9qQ59JY+8oa2jnpbmvuaFTNSyvtMLLoYa9ZviJdffjl6gGFub/GcescqgqFFJZH8JgxID50akyNeOyshwTB1ncZ1rgvXVgZ9T3kS5z+Ed0aPG5dy7xiuufre+TqGek6eVE59TxtBXlJH+zefXi91FZ9xMsrMnr17cdjnxF5o82nKgLt36pT8qDw4T20PdbT6Sg7xvaYEteV75yaml+wO5yFdxHcrRbcRZF9XUZFVsj3op3MLzeguI0hxgC0eBhHMNooi6lhL8rXVEgt4V9skAxzgJjeTQSuzqm4V1FVaB4a9SEO2l6ZM57f/eUzsGQQaWkfjGuhkcBCIZkqFTeSaiLcun/ciH3piko3CxWTfB1jgI+4T28q1OMPPx2moe5IPHIEfrGiYuzZiFx9twndao1sHXj0sbhp9c/TmhDarg9TpJmbSmYfmybPQSx5IWUbeVmAXLGb7q3q+LUkxG4K2bN4ivyuGuX6uVW6R4rtWWfpd1006i5OuizwjfZRRr2Mw5ggVowvfXxwrPlhKoFR57Zk9Rprxc9pErKV4JQa7jt6n6ypmwiSJB66r/J84KlnABBM52lnbcUbfeOttmsavi75XXhU9sSc7lpenf3Ccqgv53uSJBJUHxT/7h3lNj0lVtxso9drep7zlvaifrbBbSX+aP3KiSDP4bNAATiFiPd1OID201eVj1yrv+ZI8SZv0DaBt6hgxh/n7WZfV65jw9J4WLF4cr0+aFENoxHpFnz5JI+/f76Wc8Pl88F3lXgxUrrKiFKyR/tIxMYAPOr4yWSTAjnB04rRsqn77HbdHV+giTji39AN4da7yuY6sNMiKVcbQRpbvTYKUcMJ5qJPlJV83b92W/QFaEzi66YZR0YIKYuctzdPHuPSzcqsON3Hj9bxvK66de9KP+SaPiZHQ1e3eBjE2oF+tbO+LzdTviivynsSQ1MmMKX1cR393XAPl3ov9OkwUOId8MD6GU9qJ0mcnwQvHXr1mDf7IkRg5ekxu/9QPUTc5B7FAXnAMscx+ZAUGYVtgd+ifaWfL8/5uxWVD+EI51p5Upjas5yADgnY3XD8it/0rP1bXS3vpmwF6ZNQAt8ke19DAoLaw9oPXz0AD1brOwQSQgbW1zr1iHXbYUarJD8fOzR/Gg9/6IU3J7yQQ1oYZOAvuOZ+8fEwff6JAg3evYoX4EP0jAKRgFJUUq1cbaJgRGysqKCGuHkP7D4reGHKYM3Tk1lmHZQA0GQ+2LvZRo9BdeI26jD7LyACYWYwaMI97aRRUja7ZZDCnTHuLaoZ20atnrzzWqTmCkqDHggru7jMzggeKZHRYYcgIIoLkz2KMpXgq/YJpiIQDrrv374u3pr4Tq9lD3Q9w6tqdzAgOb12NSBhUQ8TiLIMfzk/DWANWQVcQ3I+YjhzXUSHIgL4v0NTgHisqN8ZzL7yQDqFdqNsZaAAUVZAKulFoZUtx0UgQPBSeEnj5R+ldKvsSuDQi/azXff/DD+N1jmoaSGPHa8kyNiC6nWVF/D2BgbkIPs5JdlYILbnPEikEyfcK+vAJaOPPKlb/N9Awc+48GsPMjYm33RZX9qFigntXAQueKgOVvgZ6AjPf/+iVv5WuySX4bOG0CzTem5HF7Rhy70xD4TOeJ4OUt22bBoh8kmCacxF3NPygrePAR5ZK+TCiKxBrTGo8O3fpdRQDdC+G0GqM/1kzpsdVBJBuZt+m+6AFHUFPI0XaS29p4FPaeOxmloRBG+/Pz3hN+UZD2Eyk+/vc07qK8TcCVNcD3FcPHJjbW/LoIO5PXjFAZXmfBkR2X4ZW7rvT+TCT5LpKDxYzn66rDXQ8Gun9pUtiI0ZRXYzPEaNuyH3QUqAUPc29idDF4IPjO8968Gw6dtybysWggOM559yDh+LOPegYoEuXfZjll2UY5pdRKnsaoJw1f0H85plnuQrZFp4tmVr3jhFdWjdhmw1bm7iI9HZ9LqIX4FYqGtzWg2Mg6J6gC9ZFnGSbaPG3I8iOvRqy0odPV+UaLBLOcK3YSw+AVbsOx7LtByl1i9ieV4144LYJMaT/gOjTrVu0oXLJEwh0JB3DzFXFJk4IofHXseNHMFR6RVc+1w5cMLBmuZp09yldNFoMcsqfKgINZNdUzPE+5FAj7Bm8I/hpIOVdsgqT/vhs9OnZh9Mp+nEeO8anQQiU33nOMJPvz+GUM3zKmdNWHqpxnzb+MQCj9VkbR/08Dv9ejGMDDXOWLI4fPvNU3mVr2LQxH+vWrl50a9uK0kTKYy2DYNxzzJEbYVsQ+AFfeNa2M72Apet+fBk1sYLvG2iALfmrgQYwg8zSRfj3MNfdQoShgtMudu2LWG2hF48xVxM8IdMzCPr27kbzqAwUYGARODlLRYNn1dekYadHhp21RwP3onx4/JxGzFqU8eQ33ohuGIijR47Ipl+IdcrSSbJk0kH+gwmSvmJk8jfvSHdlqIQPzkdDittJmd8HDtsb4b0F8+MWumgPvnpQGiLysbytoa8h7Q2bNTRYqrFt5YpYZqWNmWplyXXVAbChmUjhkV0e4WegQbm7dcJEjPvuGVQxg+heXyaX19NIyOAG39PxEluUDTFAA8zfS3jv9i6NsA0byNqvWkmPmpXRqUevGIdj5HHKJSMvjSjmLy3lSQ0sMV4jT8NTLHIdPbIS5KDUHwMKh9jjBz1SeekquFmhAABAAElEQVSSpXnShg0FB9FgcDDPhuhG+wKkc+F983A8vu5POVeNKw0e9ySX8CsrYuD5al6Lz69dv4HmXDPJSO1E77WLa669Ft7vmfM0o51VOsiV+rWWTj7zLlaNy3BZ17wkT8qPFVP+7tyl/fs0wp3+zlQCDY3R292jS6fOud/XNbUUHYMiaZ96Bzw0Q2xZsw/Z3cpG96h7H94DE6PqAblGXg8QQDFJMHvmtLiaQMPlvXpHZ7LDjekzYmWOQTPv0fkkrzE+i3BJx/EjE6wujrH28qXWiWfKX6TTrUHabTt3xMuvvBZHCfaMHDEyOhHQdCuEutuxNUb9Xsqja8u6pvHMfdm/RfqI6eK8y5L00X6S7+EzT7B6mWZx2hvDoHsbAj02GMWNSuM1ZYXvpTMA/xn8MsCZ+trxknfgFcbT9lBn+h31yyEywIvAsoUkCm4kiD8Ax055KbZaFTTws04s5ZT5pNHu99WP4BwTTYzLteEaLHZeU929m0qYmQQatm/diu6+nZOxuvFnLQd0MWP5KmakAwBPeA0DutomBuB0YKRNJi5YW60DbQv/tossY0XF+pg7d06079SRJMQt9NhqnlWK4ogOrnjgHF0DeUnaq7sluo6ElbBuHUBTJRZc4PpMLNZUVsYfXpgUz7z6BroL+00m5XErgYbeVDQ0yUADDhHvqd9cW7nR60krP+5sDTIYbMg96byXAStwV1xKBw2mO0XA+ThVYYfgh8p9W2MWeTg3Jtr3hbN3YtTYEXHXHZ/iaPfL2WIM34N1NlwXL7LiieCIPC+e6ayLOwaPFkAXeaIzlTD90VFWqEkHu94nkDBP/+68pbv8pgxoN2WTV17lSf6YeGkCxf40B0jCzJk3LxYR7G3KdpVeyFNfHGob5Gm/mCwoKgWljV+F75i3bCSOSaK8nteUV1h3cdngpoGAzdu3xSv0M9q+fUtc1a8/4/fKI49NFHrqi3ig7vb+c53B+Uwg8LvBM+/JJJY85LXTzuXexGTt42U4jK9hC3vk60CSbgYarEhMnXSJJs5TnaKTqoMvT4oRBiJSLhmrJFcp24xvgNn35tA/ZurkyXH9yJH0ZeuLvWV1cOH4Kxspp4yVcgUtUh54v3iIMR/9lH9TN0pP/ZKdBMOnTJuWdqvyZINBP863oEXxRfWHD+/BseX51M9cU5vaOToP7R1p4vWUQf2kShJjk9+YnD7UhJvHEWjgZBBoLl9b7u/IjpsYy3cLWhSBqBLPeG35Rlu8CPhUz2NAt4IBq6D9CnjzmqHDMhBu8E87W33hHL3PlFXmV/CNawhtmPsF7Auddnsm8KZZs6IBMT/uIgC+Ad29avXqTBKOuuGGuJxkiVKpg68+VTdpA8s3peulXoLP08/hbwYInLeJbuWpEcEooD9Wr1ubPc7Wrl0DxrSKWziivFtHaA+v25tGXnHcXGe+z0xTllIA/Icpy7PSripCVgv7KfGPOe07eCCWr1nDcxVbk4/Tlwy/ZP+uuOP+B2IiyY5mTVszAwbIB2N9jB//+0BDiQ4yPMrVrJfA5PGWsAOkOQ+TrYg5M6YTqdzAfph6ccPgYRwH1pN9vjA6zJz7nl0IGM7v6rBoCLq/jTcTVIySqpQ0PAwy1EaZ14RZLVmdMW9uvPXOm9GWzGsfSlt6kDWyzF4jqGh2p1EOaMqoPGUMuDaXTYbMAIBzEcRh7Jw/AOG5tEbXJ0+dEutguH4DCTSgMFu2aZ0gZFfbi4B3TSZrsMGssQKeJEHgBFXBWzDV6ZWRdQtUojKm5TsVlZXxx2efTYdpOGdIZ0UDTpsOp3MtKTIFJAWG72p4Ok+vk2AKzVJpojzNnmYWnL8Jvp5o8PbkN2IgJ18M5qxeMy7er+Ap8CjMzisfzNH5+56vPqS79BKoBMjM/vJ5jRLP8TVjNH/enBhLlvHKvn0uRbCLUjnBI7NYTFQwTyMdwNAoLIznYquHwFISKGnmvQlClhW99fbbjHGBIyv/LDNGZvudt06/++o/MmyZrkZ1AoXzRPF6X0klgZH1EBwFWgMNuzFWVq9ZG/PmzokeffpyvvMNGcVVwbgdRhR2vARXXlUS9XCQzbb7uKhTyrykk06G9Lc5JaiZALIpAw1rqD7YHENHjqTDuI6RXdypqsl1xfhxTXlm51yMda+Z96Mc8FT5+0xOZdzssYFsrK2oiPcWLcrzkus2bBRjxo5N499xba4qCMrfOuEGwNKB5j23buiQQwj+TNYeJ8hO3pbc1mB/plnAwwDeEnhm2YoVua+/IX1OmgC6Hr/jWv/iycIZNtDQlGePTjjEbcuiSX1OJiHzLY/kUwG2ARYc7AkIVXFWL5xhnyWmnWX8Z7ixQ2R0zhmI4Lruha7J/DUoTzO/3cfPxOq9R2P5rkNkKyJ2yOw8vkh2bLjOTteu0ZbMpzS0HFOnsS7GSsXGSgINk3GeTkQPFE6XrpR6t2mbytUO3oJ+Gp58zyCPQcgqYMl5ZNntNCpSebBoGlmsp7fi7yeR44WUA09+5VUCO73opt8v2rVpk05SNcoLPDHjAsEGlWKhYwpFpiNei0oCS0k1Tt3MV52qgDMcl6czVLltc0wjWPrtR36V99iKf6Vtdxpt9mzfJpo3IHCIo3+RbWgqtyqsWS14LQMN8J7/2ZT2IlZByi7fTQcMmsGW0BQM5X4v0FfCioYMNBw8Fhs47WL77guxmn68Pm66diAdmK/EqRmSxq2BBvn1LFtekNg0HgywWr2VXeYJEMvTyoYK18j85NffiI5dusQNI4utTsqc2GHkX6LoCEljMcCZafDoIGmYyDc68b7mQ95nbDP6+4n+LyGTthBjbjwn1gyFB5QRtzkpQ2KjPK9TmI3FwAZ/l88dzadBNY1byA+BwGwMSTnO7KsBwaVWBRw7kScC9EaHqDvEeA1cMaEWe9ETw8CfEv46f41b5d6fxXmNUmXWigb3nK7fsJ6syEq6dS+PcgIY48FKt2a4pS6NWq6j1ijN20oXeVTDC2LwN16UbeZOeBMHBh6lTNPAmhUNH1JlU7F6dZaB9uvXP08zaIAO8Qg2554YzyiJVdDT9ciqMnSQa6HTJU7qFBnMsKqoOoYXX4w169bFFAIBe3btiHbty2PI0KF5NK44dZRy5uwcz/wN2NknKPUF19RI1tB1DGnv+OpCT2rS5dCx8L3F0HzGtHc+CjTYfLEVGVgmmceYGdTS2HWtNQ7lc2lssFfdbf8EDdXUKUQ3rTYwEFBLxwjZsgv4zBnvxNXov359r8iqBnWgp09oOyS/MY/UDa4f9PFndYv9o6obvYP2zucMss03iA7gGNF7wkDD8zilR/fu56Sj0dG5vDzLyLU1XFu/J8Y4T2VEXKmGvFjS7/YFLkSWnioz9HFu1wAj7RlhwNpEhIGGl15+KUu85XcdxiZljdKWSRsA2mSQu8TnySuFPaNMlXQ45M+Hv8vvrpHBWU9pmjNrZtx0y/isdjRbaRAieZuxtBPSKGaeamhtEfEzeRYZ0IYptlQ4f2WVoB5BUPeL78YBmDVnbmyn+m4841uBJn/keJCz0BEa4IVtkckB5sclkhZ5bQMGrKf6Xx5yflY0eDygwfZZzL0Fx77eygkebVq1LHQrHzSo7Hy1Wwy8Ox9pr+Pnq/yjDXbGJ/eRx2ZKc3TjGsb97TPPcIzzy1EPCDmOb+bjtqxoINBA9KEWNm6NpLV0QWZy0nyIayv3Is5ZIMHtExkUc/JgpqedeGKPcnGRwLM60OOJD6AHKvdtjlmrIvbzUUOx1mF+moDk5++5H0zmlAlxiz3cVeV7aJRZU+bs6UlimidPGUARI+fQzNLm1F26dqP54pAoLy/PQMcFemAkprBODJHzFR+LapqC7mlzQ6NU32BkOo7Q08qH/Yc4ZnPmzHh39iyqT5oRZLg8riQ77aks4oBjezJA6iDok441a6dNpT3nfXsSlsF7g9fS3jlnoIFeNJu2bYuXqIjbsXNbJvVMGnYs5whVnX3sI3uzZQCvpDu4i9wCBX3FR28oZY1Xf8tAFcEqmCy7+ntE6xTsSe33Af37Fac8EGgwWKHtnvYqWGbzannGrLf3nQFA6JzVXuCc96KceBVxyey7v88mCD797Slxw9gxeVqNNq/8mw6/NAUDfPrw1e/I//KkyQwxU7tafPYG/L54ZD+vrdBm2owZVLsejdtJ6tkcP++ZhUxsLFY0v6u958OAlmMrB+J8Sa8W87aquOjZoTyv31gZr2LXtG7fLm7n1JrmzZrmdhWdY0+9UvrFwJQpeEZ7V+wRt+SRPDmCT1WRZ8C/DDRwPwY0tzH3Zeg+dffwUTfEyGHXZcWd11VfKz9iuE8xU7vb63h/rosBUnnUa6q38yho9JM86hHilZtpVE4gQ114A5XJV/btm/pT/y+TeepnxsprMV91avJk6mmowXtZJce1TiPb3ouBBvWUDdAXYfOZKGjVvGXcevP4POXIbShurbOCSj63X5j6SfzLZPul+1HPJk8iB5jHKRu5jQ6es3p6KTy5dOXy7O2wH/nec3BP3EQj+5snjEeu2kBR+YU5X1pffvhYPv50gQYlG+DI7CkBgnS6MJiw1ugw/mFMm/J2Hm/ZvKxxjLlueAYasMjiBMZKZi5YfB1kGfSMIAQ4lKJjSFIynYsqE9bB4Mu9bpcyRlY0TJ8zPQMNglOPbpwf3aRp7vPTuXCpZTj3xvmzyuciRvJHXVthFIU7DS7mAWcnkAveljZPZu5r1q6K/mS+rWhoBVC5BcGjc0DL4lxzDBLLxBVmt3OoGt2TqQIWqJKZUQwai+6lU0G7TcGjEzVWagPm1yOArcnS5pE+KFWVOoiUQuL8zYZkdAwmF1wEJ9nQozVV1P5sRYUKWWCxPHMRhtwbRHEHU841lKoGS80y0KACYL00jjOiyG0rMCpgjTgj71mqzxolILIeJfArZSEtuZ01f368v3hR3HjzzZwJTmd37rlk4EjT7P7LPRvBFPg1ctL4R/DT2FBxMu+MQHNP6ZgwL8HcrROvESTRGLzn7rs5Tqtd7mvSyEoaQZM0pCGytMl7JiKpbZj7p1lHsy/SXPpowHlPZhL3kiGtqKiIBWR0usAvOkbNyN4b3RX4pLevOhjSXCVqNLKaiosxT5E9lCAGdlxjjQvH97xwt9ts2Az4sXVCB2bEjTdmkMc55vGpsphjW8nD2GlI86PX8ppmXqrAD/KpFQbypQZ0WRMy57y/bj1df6G5JWN16jeMsQQaeuEYmaXzfGrHc/51uVdfi+wdfQxQOio+/pzzLY4Xgo+Qu6LkuCYNNY+mM21213OTm1Iu1pxs0QlAddrsOfGzJ3/Ht8nu8GyO/unaOaJzm1bsfeYMZ4DbtfVRxUXAmVZRQZKoxj1U5UhWcnHwH8oaChyj3v8cGCG/1oQPa0lr7v8MgL3nFJUbh0/HGjLve/adiO2Xsu733XZ7DKEypz9lm53JSBigOPFRoKE+pWiV8fJrr+LgHYs+lHl3owu1FQ0auGn8Q3Nmlkafiqc+xkQtAn4wSmGo8jeN/FSczEneUb6kjz8vxpCb9tYUSut74rhcnvJaxlYnAwxnzrpXnfG54eo4O/KyWSZ52SBD9eqWm8P/ZLYw0VO0DV5s37cnplIV9I2f/FjSRUsmWIYwd2tLsIHy1xYNKDVG7YEe0FIKwcssIio5ZVWsMcjDH7hmwVtmY/MzaOOLrIUnlFygiiIDDWfOx8a9R6KCruD2aFhT2CUxGif1ql59YsTQ62LgFf3SqbE/wFmUL7POe/Sa/MC6agQgT9BKo0mjQcfoVUq9O3XrGmMwKFpc1ixpwEeTBsq7hlQqX2iTmAvPaEgURs//lJiKbz59GKRwP6NHUy1879248daJZO2vTvwwOFQEnjHPkSWNIUsUDT6Y0fQayryGeToV8GEa/zjUZgHFhd0EGio3Vsb7lJFbpnkbhpaOkYGGsziMBla8X7MjylMJL800aQiaDWGyqbOUgQw6ggUe3+f6b2BsMy6rVq7gqNCOcdONY6N9Wzq78zeNITFHsmZDX/jUdfNe1HUa7Trx0u6Ee2pdCbKq1ZA3y5n3op9ssryO0x7Elv79B8Zg9FQj9iQbhMmgo+vFONLZ13zwUnCSwReCF/C2eooPJcZ47rj3tRqMfJOtDQcP7Ivyjp3jKkpfu3XpmjLksbIGSQ1meqpSXQKI6diBr/JFbhlybGgu1sinNslD4AkK1kuHzxNxptJpuwkBTUule1FJY6WSHfw9ftejwMRKcVHeQZBTlxbZagw8aGPQI41/7IbzfqYW1Y4EAg6CC29MmRJz5syM64aPiCuwDdqSlWqIw2kAyQonZUZ+1O5AeBPDmGaudU3GrSG4U3nlOhpuOwvtq9evk8cGbiXQ8AzVTQe37Yhx48aR6eqc2zLlEff+isPqUcez74s4pzMrj1oCz5InX2owS5+zzN91sJRf2itPk156kQBP+7h+yJB06EywFMe85dQZmsF9wB/yovpVuRHr1e3+l5UDYFAp+CMPeC78fLbETCEDOx7HZTDHVerYaCSb0PHV332mQ8PY3pfr8FGDZzBRA90ZFPaH1Q7aC6czeDebwPR+KhvupAKpJ06v8qSjaLhDfa88lWTc65ldlA7Kq8EXedFxrWg1myn9XGeDJJsJYEyfPj2aU2VwGxVIbai68335Im2J5HcIy/dMFjjJ1H/cAx/gV4OCjM3ThrH25jDwuHrDhvj1k7+Nxye9RC8GsEfa8pjYA53XtiVbJ8ANbNoajFcVXJU3rRzjSi5BweP8cgY+t6rBoKZ/M2CVvJR47HqDFzyP8TwEvmwkkzl3HTjHVLlNfeP41Pg/iwfv+3xcTaChJg7M2cOEIXgFGDKra6M+tzrKP03AWu/LCqFZ06fFUZwY5VWbsrxDOaetEFgjiCquJKZgt+gQXuD7ZqSVTemd68k4BjA82lA9qH3gMZmHSPIYaHhv7pxo1bIVWfsroz940Bib/siBgxlsMEBX4hPv22F1Gl039arBUd+0CbKnsXjdOmBNQxzbHdh7z7/4YmzZupFAw0D6WlGNSHBNbDHQ4Mkv4pk0z0AaBHdsr5dZeq6lrSi/y0v6E1ZiaDNpl3ywciXO9CvYNM3AyX7Z40l7WBkV0+VtlbKYLJ9a0eBefcez4bj2vPKQNiXjF3JWBBLcpjuTag+PUb2JCpv+bOnRFhZTSg/tYnlT+9uHek2HV91ng2MDd3KS1X9JL2X40vf3gPNTCMjuprLh9tsJNHTqnLqt0Kn/oyszWAKt/Z6BBjHTvmbqaPnfz1vdoR1oIMX3tYcrsCUnse2jXadOcdftd2Q14lG22IrDGXCFOkJ3YnjKDFjDWBkUxa6VT5Sn4slC8Lv08R7ztLwVK3OL3CgqAsaMGJnNI92iLCZoX6v7PIJYaqlTxDH9kQL3wQHWT3xzi1Mp0ODJLqWKhmU47HsJOtw07maCPJfn9zL4Bb9oZ2sPlPgkMYz1TDpAe22DPAaT+XsErBhkvzJfN26lGmPtWgIlyzjetlHcPp5jvjt2Sv3hMfPOX7vdLWtWX7lVJ20CaOL962O5Jpe4CwIWPkNNxjcRsPDDpZwW9AFNsenlRBXuzr0748a7Phk3jx9PxU17qAEt+XaBIrx8TB/QCCr9bx5+2ycEVEgTbWGy9C4gNFopPgT8ppJl3LJ+PR20L4ux1w+PvhgU5wgCHKEzqt/TEXCxjBqeYrE1wDPQgFCamZYBVXBYQ5mFzEADSvsoiz2XZlKz350TbWgC0rNHzww0uGfPUtJTgGtGWjE+3aOuUSqQwA3p0GXWW8cWZE9FrfAYNQMUa9ORexcC/sbbb2MorogBGLddcVxatW2N41w/mawqRns1nog0VRb2B+DMagRXJs2oM8ynQVEIJIqS61iqqiHRAGarpEfDpBcn5b7O64cNy4ZVRlhVwoKqTwXP7LQZr3QeANeMgCKcCmAqG0idlQkCE/fgkmjILqTE/qXnn49ho0bFdWRFBFY/l0vGd1NF8h2FOg1/QErwcd+ZQJQl5QqPAsvQVhKkI8ZnLKWbTRmdR1PdQqnPFb17pzEjSyXgoayOCSbcs9tBHC8zSHy3BKAKovPVCPLp+4KsUdkt27bhNL6WhuXnOI/dc7vdD+3fBSWj2R6rpUEnqDpBq0cEuewDwKu/p9JkDhovBiBUcPZAMCvyHkGqzgQaRg0fnsdJ6YwKRCWFaUQV9EQhk6XTKWYNbFBjs0qvZ4VA0lOeZ3wN6V04jus2rKdUb0VWNIzFEBpy7TUZDLHbt2uoySaIWxFj1kuD2eskaDFHbgjj4AQVBkeRByp5GL/RZU2p1KidzRqNsm5g/nVwKMYC3h4hp3F7jDURVOtgSNSDRsqVkdd0Zlh1/zOYpLNVBBgwJPnZQEZpX/MCDND33lsYzagYaMnWABtNGjybOmt2/PiJJ+CsiD48W5URZOjA8ZZtmuGwE0RRcdqsEMWva4Bny/3g4LC+NXDEq3OsZTUy8xrA56rSEbsqShtKqLCsbqrNq1HhM3x/HzWrG46ei7UHT0BPjvhi+4SPu8bfSvaNzDtOSfc2bcg60cCHiL/rUBvnxSPknkeejhw9HFdQNtqzd680tDREbIwm1sgvVl9ZSlofI6ZB3frJ/5baqRwy4yKdkOHTl4KeNvrRKF2Cszt9ytTo2aUHW4X6Zva1Idc9C2ad5mSIUpDBbVEqc4N0nnRTHWyoyj2f4ZrnKZmtwb1DmczQ7jq0P6ZgvH39h/+R99gcO6QBPl/31gYaWhJowFgi0GCPhlo4OhoP6Ri6jswzK0lkKliQP2U1g86fXY4Fn4sEfAw0XKxqoIGGp+DVBipF1m7bTWApYhMiAyLGqMsHxOVUatxw3Yi4pt/AaELmV2XovTmYzSBPnDyuPZrVMRpIGq3ihs7FKvbATpr0QnTr1Yu9xaMxVpolv0lTH+KKnxU/zPL4swahDw09nQ0NLz+v4ycfeU9igdVTBhqU1zETJ7ANbFBirdsDxF077Ivprqvrqxw5llhkgFO8NXhtBQ8RkgKPeU883pX7PCtjMTJ1ij4hd+B49e3RM4OYyo6Gik2L5epScMWJKVPir9VTTDZx3YyIRot6zOM2zVBv2LiR7YOr2X63Mlq2axdjxoym30zbxDF5zmC4+lOdlpk1jSz0XG5/ggZinTJi0PGMVUMcE1uNCiSvazXG0sXvRwWGnM6rgYZrcRpdOw0tgxUacmKaWKAxJH0dL403XuWhzC6C1+JAZhgbNUwj3aN3rRA6RJlnx06dow/B5M4dO+Z8T7Bn22CdR8c1UF8wT4MDBjzUX44jVksDZpE4ox60z4FBEjPKVghZcWcJs8fH9UWHtANz7L1wlvlXT/xINEndoCMkk2eTUTBZfW6gQT2iYyT+XiTQUJ+O7IfBhTeoaJg3f3YMHzEyj1Nu0RisYp5uYTNInZlzsNcAvWt6FvzSyHWtdQxr4QiK0+rs08jYeXCuRkNO3WhcFluouPv908/EvsrNMR7DsHtnekPRaM45ZRNGxnDt1G/ycDrX6XzAqty7NEnaw4PS32oNdYjVoFaVrMDAff4FmsuB7SOvvy4aE1RGSIoGu/BF4d4ya+ih3rSiQPuDy/E3yMR6K586Lt5vOl7Igg6Hv88haPc6jt1E9gMPIThlCbjykgEw1kx7TH0vbaWV96Vuybkzf9fStRCLdFbNhmtD6Vx4hK39lax6+dQnP8kxoV0yOH8SnpHXDXrZg8Hgu4Aij9qUWBnN5stghOimfOZa852i94fJixNsTdxKoGEajYpbx+0TJmTA18yveKvzKQ7qjIor0qKwR5B9qeZ7XFOZ1VlX/9kUUt26cn1F/PKJx+M3L76U9bh+w8cEAg292raKxgSQ7dFgoKEavGEgvbhCLrNwm0dbWtHg1gmDAF6zFnRDA0BHgzEEN0R0aHAMbD6IrG86cCjmrT+Aw8HHa/OlU1Xizol3x8P3PRDXsK2lJqe3nSUYcZFXGwInzaC3sqUuv4zKDogZy7G1Z0KX/dDfCqSRw4dHR17PYBucACvFSO0YnWj1XAb0oLHzvIjdq1Puz8ex+UpBDKsdGzdtSlf8Y5lVX4RD3aZ1m7iKeQ0kOO0pOofZh2/yxWSeDp2szO0nz8uQ8oz2l1jsmho4toGxfN4AWW2A87+TpnjP4uxWVq6jenhQ9kMz0GDPHXHFk+YcV7wxSSjPuE9e3S72SGftNPndLTba31aBmjCUNjaGff75Z2nS2Dj6DxhAsKRoGq+t58KJvfJ3gZnoWnhf51/7S59EvaXdrYOqTKj/zE4rY0ex62bOmxtvY6/ejC08ENpY0SbW+lkrrsTe/wn2kf1GZ/o35VHeVj6VaYOAypAyLT5pN0svg6abKyvjDns0gMXqUyAkhd3vOQ8fyrA/O1dpr9+UW/ukmfLNdQ0yZZ8cZNe+GW57fB4/oUO3bvEp8KCl620SmCqYajrqrKb6g8ukXQTbf4TnyUfwYAbuWKMzYigTywo0xvf6y9B9ryFTYwgE3MT2BqskjnGih0kw/Rtxsj4BYAP6qbdZ2ww0cB/eS1YhYX+Jj+oPgw0mgHZSObV+Y2V8wFZfMWf8xIkxgKpMfQMTwfZ40CawKbm8qZ3tmqi7xSyxRjtYLBZ7DChZ4aQt7Ot2Kp/Xb9oYyxi/rF7DuINAg/0F5XWx7AK8IZ/rszluKdBgn6W8DvRTn7ju4oQBrGxG2bQJY1BVtvT9eA8f7Si21b5jR2LHnu1xE0lVAw3t25VfWl5108f78acJNEBIAazgeDjQFCb/wyEI8PlYzd6cmZRf7mAfUPNGTWLUkGHRiwj3OZw6Aw0uVGZAEGqVo+e2uuiOo1KAY5PK7tURaOpeYhjCgAQTjsRMSpbemflOtCXQ0BfjvzeGbksysTJZydjS8C4ZcjYwy8oLp6iAeg3mCo9jkPMmgJBBDphn797d8frbb1Oas5yKhkEZaGjdtk02fPSeqzGnajhFNXQSASmVaBrM3HcaV5fGE8A1ds/yHcu6BQHLR9068QwNajwqcdTIkWS6aCjF+7XJgGosO89zMKvBEu9do0pAFFikeJaSwo6Or2GnojfTppGu0eGe8mefeiqGjBxOVmRoNsaRxukk8BmBR4NTYVAZZNk342YzFuhr9UAGeC4BR+5/ZD0EW0uV3pk1MxYtWhifuuee6E8ZnQIlAOa4gKvRYH83YuvJIpmd8F4Yw6dEl/5Giv2uoKuxoAPhvmkbZdr993Of+Uy0Yw/saYRb4zyNCOZpgyXBKenBq0ebJSe6hihiBsw1FQS5UNLJslU7V9ujYe7s2dmgZhw9GpoDrnmvzDeNIUaV3hr8HuPHaBhbgDV/l1YsRzqTKiDBDybOa23fvROna018QBR06/ZtMY4I9LAhgxPoPKsegqQzlIEF6J6RVpS/5ViCrsZXRuG5RpZGMneNoXqUF3o/a9ezdYJgwHqcgHqU0t5MKXZfeF6la/d+x/PoVh0uA3NWApnpUVHI1xlQg/SeGy2vq0htJuixRif47HyaSb1LmZvGRSsMCpW9n3lr2vT4wSO/ZlC2TPBsQSFA5051/59Ag6XIKGDpQWnohfNcD1JWY/5COWErFDlyzbXP8ffT0NKsjtmq6nyO+DrfI2/P9/ecAjcOnIrl+2iSc4Bj4YgR+Hjgns/GcPj4SgzXDmRB6qF47FtQg0AATBvr162LPzxHlvHQvsyK9IUnO3XqlIaJjpj00DnSYPfnjHTLI/I/78mDypHGVqpL6K4hZ5M4MendxYvjVbJdvahocOtEe4IdniCAJCITGAfQsQqEtzQ0HTnWGraE7hok8Af3WwXjsgZBB8QuTmDAbGULw9R5c+IbP/rPvMcWjNEYevQsrxa9yzlFh60TF6iWuHjWPQ7SiBfWzXlpQBQ4wxd4n7cwCpgv1/z/Ag1w70UrGmoYaCBSv+cwgYY9lMOejwrsVh83DhgW/ftcGWOHj4prBwyK6hhpp8hInsG4rU6AQ/NYPoJcyKvZF+SN333qUBr5f+G556Jv//4x/sYbsxze7I+yauAgs00ocrEhcb24bOJDYsYljJH/M7sDMZWzY8eO5hY2s9/zyZJOpCPzsMGDEzusaKhDpZFbYHSGDAxA+JTfREnkwGsn3zN+Si08A4imo2QAbefuXRm8ex+n9wxYe8dtt3NWPbXSYLrb+jLQIL47b+gqr1j1JQB4H9lAkFeDmv9vVYDZNA3etRXrMiOycsWKaNe5c9x8001RTpZafivwFZrIe8itePN/2XvveDurKgF7JaT3kF656T0EQksgkEIJhBKKCAQFdBQFxTIqjjOOY0Ud2ziKQ1NRei+hBUIaSYCEkEr6vSk3Cem9t+951psTM6jzOd/4D7/f98LJuaftd++1V29b/PQhz/d1dRwp3iwj0+ocOBrwhGb00Xr1dDSQ0aADvX//U3LvGpMhcBjYlxzV8i6NO68Sf2YV8KsCaZCIgI13wCuNeTMaqqIsLYKeXnjxhXh/DadFlXXgdJ4zomf37gkLjcjiyK7CUWo/Fnmzcte1CHeVOR2bZjimESPOcssaGC+mTb8FPb3M+I1wgFv2eCLp2CfAc+SDB3D6QDXQKD8QHvwH1FPpFC/ko/I675Xym7nraDhk1LleHY5J2xovvfZaTJw4Lns0nMj4Hdq2x2Cvn5krKn06GJTb4mRpfPm7uKSjoQ6p7klY3G8fi91LiVSVOhwXCy9evmpVPPjQw7Fu6bIYQZ+D7p26ZCRQXJQX60yuAi4nPgIX9zoNDuCiUeucNYpVzOUtZk2p4Iqbwm3mvLmpG3TF6XX+0KHZyFIYWy4mPNzHYi/dyWJ/lZ/y4MIQgo7QlcyyUa75mYaLirtRTGvKX3zm2TSMsoEoekdJ/krPymQdgjlvfp86CBuQ4zCWNKXcSCcJ8LN8zXls387x5MBm3PjxsYVI9ygU525k3IHAiRvurXsnPhYySbzUACroR8MlZTc05coSf1izmX5GZy1nNRtx7Nix0bJ927iSDKd2bdumgaj+kuWOMlfm5KWDJ+mW144lbMR7jVyzR7wfEwEvq8ScRQvj7t+T0UBmljQjvnld1hOZh8O9MaUTOhpqMLSOBh9gJ+PLDdlq58sb+2HA6Whgj713ZubAQ/gC35Bn0JSb9Wzj9Vr63ZSv3xjjFmwgwMYgoAzCJ0YMvya+8MmbcTT0x9FAE8XN73OsMQY0s8ru9sgkHQ06eupjuDiRd81oGPc6zVvXR1lHS9iGRbsOHXFcoANgHInXymT3VX0IYCTdS5PKFJ1HyhX1DuWfe1wNPlCfjAYzWF+j58mU8eOiOaXJJzGv0zHY1Rv2bKahLDqSkWn1DmlLg909EN/UOcWbhDPz3YXMVtfWWeqx9FXglZWUmT76xBMEUBYS1Dsj+vY9Mbp06Qy7q5V6DURR8MOkeWidtajfK8N1ChQyBfj7PnBxX9NpxfiudS762MM2gyRDcwBBw/bwYJtauj9mN6Vxztg6lUv0lbJKHiFcAFGWKoG7Xga31BVcowEwS0tfofzA5qr2b7J3k6cfpT0AnNVRS1lGYoHomf2+mO/R8bhP4VjTMcF9mbf6lL2cnqfJdTl4/xHKiHt065Z7KG6Lz+J9jg+s3UrnnXgu/BmjRLO+r0w2WOFJL8puj+TUofwUTscyHA0fJQOpOUEmnVMJc/BWfSIVD2Bj5pX6qPAVb9StfZ06ifjP69xvPpfPbMZJPRMbcMwLL8ZFZAvqaPCI5AMEfsyAMytAx7RlmOKje6E9IoBcu6c4eKXMVZbD381sMGiwWtm9rDzx3nLoy+hfoV6mjSQPFt/V85y/shSI5ljyNOWd+5dyibdZVdKSNpU4uZvv6GSwGeS8efMorW4eV1x8aXTp1CkO48Qo9Q2pwnp1FDHDdHK53/LddMzwrnukDsTHKaO1zaqDG3vQXd6agaNh5gyOhd6ZGQ3rNq2Li0eNonTiUnpCtOPX4ppzLubNHx/K6+/maFD5SsMRxpQIKfWC9FhleerEZAzSNaS7Na5bPwadenr07NyliAyTnuPmK/AlCJmPpqJpMf5egWD0RQIR8WQqtVDaM5IBApqWM+HNKTHm9TGUNLShK3YfoiK98XC3KhRPEPkQDMqGUanIcS+H1oBX+Cqo07ADob2fjECC8WEKnx6zl3GS2NDyxP4nk2Zf9Giw6ZPjVIMIq2nsgswqFGlAwyBUOEupgMmsMeoyVZf7GR3R0WCzyUVLy+OBhx5M7/kwhEIHjGnTSPOEAOYqs1Zx01hMIxSE1nuropWpZ0xXJmgpRnUEjw4A68tSkPCZpROPPfIwPRoGUDoxgMwCj84sPMt+x/XLkNJw5m/nbxRAwjEiK9P2c5mwioEOCi+dAZnONW4c0e+p8fGbbqKhVL8kLiMrqawx3rFXRtG8F+8nA+dD91yC9H7CxDk5thG0peUV8cqYV5Ipjbrm2jiBHhwe7eTnCgLxRk+lSnmuwfkzZ72f9tsQLio/erbFq5JSbXTUNL15RBmtZ/Q0kYtJZ26Bc0oGJMwVlOIManfhaPC1+81cfQgLGZ+Ki+PrDFFBl0mtgvm9R9nEbBTF1TgdhsM0zqRsRcXNTAijlRotCmSNQnFadcV7ZjqvnwEXIwCuAeCnEqRQFq8WLl0SGkXpaCCacBFlK3169kpFUFxREQWD00hyPNN2jehYRyaM07Ek7JmvgsI0RkVdsxYtktHa/+Htt6cRqWhA2UTLLD3QKLCx2k/uvptvRnT2+wRyO3eqF2VtmpGO7PGWKA/MT+HA6NyXWaSQIgsJB0NdGhrW4JEGKvDbU5WsBh0N0E015lf7iIA6CJNeu/tAzHqf1LLVW+idcDBTSr3vZ278B1L7z4k+HTn6CmZdF6FzEONVwxdNlOMnF2Zz1c2bN5DR0D/6lhwNwD57qkij4g6wF/4aYu63Cr84mY4G6QK4uJcKueM06hhfb/dUYPPUo49HdzIaTsOgLiPLphkOD1AClEQ7RIs7hCDes5cIKE6EQsAznoooa62GsV/NOt0qKvAcbYajtHzVyhg7dXJ8+85fucRozgO1MXp3rBZ9O5SR0YCjgfEOoGweRMm1h01V1sNAKdS5I7jNYnwfOhX6lk5oBAJS7guughOHjsOIIaNhC46G5fS/WLRmAzS8J5ZATl7DTx9MyUT/OC8zGk5Bma0T28HlvekYRUgzsAqKawU906Cx8Zv0KP2prDz79NNxIsrnCMp5GhHR19CWtlXKxDujpfIo+Y60Lk342giOc/e135X3emnwqMS9zzzM4pk6eXJccf11dOEfmN83/bKWjgZwRkedUQwdg4KjZCh5r8LRyB4c4e0+qxwZgTCjobyiImaipO9HWb70kkvzBB3xxKwX+YC8XZ6jsSVNiSul8ZUV3C5pR8NImlUJM8tmG/RuQ6lZRERsBlnWtVs2gyyju7c4p1GUSjl8FpRLPqBCJG56P+nY117S/kEULCP2h3SUsAk6SWbTo2HpgoXJu0xnNspoGZhzldeozAkP+Xry4CO4Ll9R5uX8eUpjg+/IQ2tQmqEh5p6OeW1MHifYEgfA2ZTg9cWZ74y2IbtVygu5mqif98yMAMZVoRLuwkT5ZKReZU5FVAVP+ajz6DV4vCc19ezeM8vv2utogBearVb0sQHhgLf7qFGV8oNx5JnJQ4GPjilp1SMFTVnXONqwdTMBiPFkNEzi9JlenKzQJwMcTUj1NvtLmaqT2Es8EzYpK3hOA4Ytr4+RUx19Qzgd4Ga7ySo6aDNIZPcKjOknKHvcsKIyzkV57tLRjAbOTYduxBflkzidTkxgblaDire4bTZjZjyx/zoZXJf83eir9K0hZv3uw8hudY7zhgyJ1s1aZJYa2JW4no4qfpuymzkbLTZLQHqUnqSv0ikUxXdcaaFLebTqmwQIxo4ZE8POPz+zxBpAr/5GWvYhL1QOqQPoQNLp5lqKSC/0qVxiPOlX+Wo9u+95vLOlDeMnToxN6zfE1VdfTYZQdz4Cd/m9Y4nz6gj8jPvgtATn0mnqPoMfhSOgcBCqT1g24Wlbwm9V5aosRZpEr4CWJ7SLS5F/Ou4KIw48BpY5Z/ZUBqisTnnK/d1neZLk5VGswtyUeEziNNptznb/I4/E/c8+y/6xjTy8LutVFUeDpROFo6Gm9ISXRfmd//GaaSYNpcHCj81qkKZcYxV00Krwe0/qqQo+1cTZVQUjVF5cuQMeDA8a+95Woqh8+ciNLzrv6rjlxk8WPRrIlju4dR3RZYMsZD8Ba3HcSLuyuRZ4Y6aAwY2pGLweuduhQ6cYDL127NCRyYAn0JM6pDJPvPSSj7mH4rf8MB98pONRh4NNJ4342lth49YtMR59aSoP+5zoCDgVx2ZLGq8rWwWAmQY6ZnXqpw7lcsAhcd79yYAW95PWqiJXzTwtspQ4ZrmiIp6mzHf58vLohww5CYOxBxnE6rs7cWqmM9asUuYq3ZfwMuU58/Q+7jNDMz56hu+Bwxk44J7vzpkTjxGEsBnkAPSxsrKyPOlEPLRkrsQjzfhgqunUkpbso6IemVlf6ABeynVpK0tnwTFxfhJluK+9/HIMHITDHl1YYz2b3jK+9OQlvP1bnFYfc75mFCgXlXvKFK/Uw4/wJl9bIjCasSuWLKF04oroBT3Z401d1DlmedCR37m3wlnZ5v3SISKNsSZfywuUHd7L36oPL2Lclyn7aIteNZJoemv65Bj1LznIhLc6q/qu/ErYas/It7RnxJuU2e4xsJamDKzaU20VfHLWrNkECejlRkbDeYOHcBxtffgAshq6cO7CXplyEHkrf3AT5RcZdAAOfJyyJI8X1tHAfcy4ES7ly5dlRoNNnS8me/iUk7BDoHnxT/kkfvgQP91rebOyRFKT75R07LQ1mYi6gSfcWKpo8MRy2aVLl5Bp15bT6YbnCTpmAmU5D7TkmDY9dUxL7HQ0JN6hB9hvqbAZWAP3N5Dh3npanI676egF0yid2IQeuH4np81t3RQjyd6+mKzN5se3Yoau3IvN+xBf/3dHg4tnx0RgMVlkVkFXWAhQU2oXwbzfnjIlVpSXZwrZGdSc9ejUOaOuprW48W6WhpsCC8mO9IFh8HsZkoIsiYOPNMrSqw+hKBQtnXgbr9Dkt6dkSlQXMiV6QIQ2lNKAUPlUuIEFqZiIgHlsEtNVaKk0SuwSXgoqF+Df3N8ux+s2bohxCMxyvGY9e/fC2O2AQSYD8YgsEIyhjXzY6EfnhUJTB4LE5hF5GrwpNI9heEYYFJwqovZo8AgriWzggIFZu2t0R+YqKERO15AGI7CypMFzkWVWRuZVukrE4jpU5o2aCBs3Q2N3zCuv5BFZ1tPVZd55b5iARqdwl3kkAQp6FPY0FIF7RmRlBIwpE5e5SjTutSUVdk2diOJv2tLlMD97NKQyKyGzl15+X9iWlCHH9rUCXwbjWEDv6HctbfD9zRxXpLJiDwWF0cV4iUt1zd470yP5nalQ/lqG6foVCjoaSrDxtyqPiZgwA5+zGSRMaTHMdfr0adGd2t2hgwdnRoMM2rHTmDiCM2BDCmafxWm9pSrR7oECQryRsWqQutdrN67PdOlFSxbT42NdDDz7nDjlZBo6Mdesm3bP+E99IiOWVRGGMDcZoWvXUeR6xD+ZuVJPOpC5m5q9YuXKbNK2YvmK/M4gxu/WpUviuEZFClzGVqmwS7U4ZNpeliYBf2GvgDDi6C5JQ75ufHyTIpKGQNYwskykIWmGrYjkWHs7YfKUuPuBB/kFDgZA2pSpdenQLDq1bU5NuGVD0DIjKiAOoWzs3sN6aHRVDaFfu8r+qF/Vej+EHNtgb4Y9rNuGWAd1RgD3WjBocbIqQn3tbo5mpV5iyopNOGc4LznvaunElXE6hlS/HhyF14ZeKWYaYAhraCjYFsFjXkRg7ty1I4+27AYvaE+6uh5lmzwJYwVxZpFwf/lCOhl4X6YuPgprKKKgW8YVfxRGOvY8xeXVl8fQYb4T0dc+2bn6eBwex6H8HdbRAN7bFHIvjgEji/KCmtSu79ljVBGY42SogbOhVjUiHSieRioWLefUiXfejp/+4Xe5yqb8SwwmTkLO9OvYhqPOiDQeAr8PquQUiuFB1rAfODrPYq7y22JtiVesoSpKrWQo5wPCGGFE/S2dIH13xaadnDqxGUG9LZYc6X8xuP9ZlD/1jUGncYQoRlljhKH9L/aTTaETxYaXNYE36M9aVZ7AI2AiPcrTLBGYiBLqqROeoGOHfMtppEuNFn6UvEaBDLSyjMl0bY0inQnScU2Vf+Atr/GSN6mseEqMSrRleMNRhDzFRZrJo6n4rnXr4ruOQvdUunJslSzHz1MvmIclcfh7CgOA10buLKNaWVmZDZ+kvfPOPQ9HUpfkiRq8jgdTyfkX+AJE+a3jS0NGoOTz4o3yK/mxc4IneLqAfMajblegEBldPIc0eJv+ih8po+DX4qC4mfyAOZay1kCmo3xSPmAPAo1pe8HoMLYudT7ZDJXLluf3unftTtft3nliiI6GdJomTBRr8HAeGrgSYWI8c3Y3igdLZP4+5GfKQEv73nz7rcxoaIgD3FMterG/0tBOIjKgXCp1JRilnIA3MspRWvI+Ok192A9CR4O8TcNoFrxGBdRSxM6dOkWPrpQm0nRLJ4DGfkGnmuwCttg3lUzX4r1Lyp7yLh29fKZDQCNmIzilY3DO3FkZvezRuRtKYudognzdTUmlCm1JThoBlXcrP5xvlrgh++pVp3wA3iG89nPD3ZSAHYAOzDxYTVbcGMqotm/YGKfjrFY+NUI2W1OucatiLk66r/wcEPFavst4pkl7P5XSzPqARwpzMz3kySqsc8GZ518YzdxPyAyeVjjCHdtxlU/KKulIR63wNhVaY9+yCI82leeL/8osfsL9wSVxjmd1n5mz58R0nA3uqQ3UNIpUkJMH8h3n7KVDQ/ws9jalYL4vnJyBst0vp1OD3xghXYUj/823387GjcNxOiqflH8O6fdLRqITk040evLejCe9lhz44nghv0ghr3XE0YDhsmjxYmTUzGjWqmUMwZhujfEoTyrpcM5XGZrjS0/A3D1RZutoEGI15DXAR0PUMh7PsrcvxtOjn48Hnnku6rHPOwgieV1KRkMPehF56kRNmuPWZAD7LvgQIkzb/5MXGyT7U+mE+g18DaKqkYzHfQB/ufdBMpU20BB5+dadsXTDmphSzr57M2zNJvXaxgU4fK8Z+ZHkxdUPYcDsRApybzhA6gU61kqloeoJ8qAFGEazkVGWl9hH4WSMdZuIaiiqnyZPEF8SJws6kpbkLTpF1CfTOeiSfEhr7IH4bvr+29OnU57xbjp9uqFr9+3TN3uHqKM6pvp56pTyTfY2Hff83nschT37VDJEffbe0oANtHVOrd+4jqbr3bJni9mIZgjpGHTuOgGE59EHeFfS2dwA99/LvfBL8g35jrzZnlkvY6y3IKByMrpwmzZt8ghnv6zD3HG8LFFWT01YQK/JW3h9VI6wRt8zuKEu7R0tnZhOCrwND3v16sXpdz3yOEQDe9KbOrnfcx55+h1/NyQbVbzfigPH/iLKPMcVZo7rD0qy0qDe6+MnxEqyPi4g+9ZmkGb4+F3pqZh7oUtL795LGPhc0H9Bp/men7uv0IN8T0eHuvZkyqCbYjcNoSm9QTdpSENdZ0Ma7IymXu9eqWtpjItzHivpuCVdVbhJU9oS2zCmDep5/KQZfcWpSKfjaKD0XJj4Q2Di3hZ8hj3gtQ4GHw7sPHyo16dTALkkXjqPjdgglZyIZA+kdTgd8tQJ7BBpMh0lPKf0YBz5ZtqZrElYCxdlkfOVjzqmfMx7KAd2wz90tM/C4WugoyUZDYPOGEhWXLsMPmTpM79lk1IeSi85FuO4LwwFny7oQnzS6aDNKNx1Cm+GT85ZuCBm0/9vHetYt4PG59u3xJUf+ziOhsuiZeOWOS8gxCrcyQ/v9X92NIgnXsc+6wXGxMl390HAi2F+HqO0aP6C2Atw+yDwu3ToEA3wyNl7IMsD2FSFi1tuPXSebQxsjeJkyigCW+RRETOVEl97GhcKzHkg8Rzq4WsRhWkDEnTq0DHPyi0hrwwwHyCVwk4FWIeDpzJkrSbvu4BkUiKaRChzhXnbh8BI2mpSRzt27pz16g1Jlc5jdSAUI6PVQSCRTQ+agt16U+GxDSVdhUEklpkeZR7cz/Gdi6n148aNZ2WH40Q8xC1wYtTH25dpRBKWUGT+GpAaiA1RZDzfXudLnsCA4iBGp5LLGD57FQpU0PG8PKYh8NvSTbZb166pHCvQ/TwFO/OWOASABqLKgvfWiNCIlvglfAnTR0YlmL/31ziw+dDiJYvibCIuXYGPBJHMke9IyI7l79xDwaAypDFpdMfx/a6MUgNbYVSHlCoVHRnUmtUwEFKWVEQ8Vq2VEXdgoMDy+97LUg6fVRpV+o0UCQO73erpLwkD4V/aX6M5m7ZsipUrK8lUeS/Pmz6FVLcmRgH5rXjjfWTewt998j7insqMMHCuKjLin78RlmmQotxtBi6r6dKu8SIj7NW3bzq/hIPf5wfFGMCnZFiYOqYiJ54qdGT+7oWGqvvrHsnkNXbXr98APq6m/GMta6qaUfsTiOj4W/fNuTlvmTPIk69dQzoamIM1epawOF+xRTrQW18Xw9LnxUuW4uFenEZBTRTbps2b5X7PmDk7nnnxZX4R0ZHgeFN0hM7tWlI60Yx0ZLwOmRdRCI/9GLO7dmECo6zXQJrUw8lQrwrRAZ7F9YPQ3x5KCTCfmSc0z1xrgCMK3mqseR1G+TurcDQsx9Gw83CszbtGnHPSGdGtcxfOYu5N3W8ZdFgDGubkAdYingjzyTg1LR/q0KFDtCdDSMVCw8iohZe0b72egqyAU7HPfua+q7yloww4CiMju+KPtGx0+p23p6PYtosunUiVbtoUx59ZQuANxvhhDIbDOBoKZeJQRn6MPOzaSX+DnURQq4JLZBbUooTBel27Ji9eTiNCSrPuf+FZpxDNeGiqnUxFxkmdmkZb6B2KhM9opEBfwG8vMNsLHqWiz+vDZFLoaGCZhQOLjVWIs/18BxjDo0qOhi3IvhWbcTSs3xJr6H+xlFNHvU7uaaO/btGvZ588PkuDzL06RBRtD9kUgA361Ihip8ETcU06LGiS5q2rVsccUiTbAvOTiSpoiJvqnITPSKkAAcfSJS/Q8Sk9auxLF9nzhBvlt1iM0UlpwXPSNS7M4hkwiFOLUCZK0ZyMcPGLowonN5CeNJx0KuvwNfNNAe9+JsykC2hBujKysB7Ho8dQqnCefhrRLsrwHE++K/+VvwOKnJf8RtwpOW09e1vjpfhQPgP9sU75nPW2y1EOK3Aob8BZYsdzlX9Tj4Wh9yiUn+JZY0heo2FURKaMhBd80rR3o4zWphbOa+q7kU/Lyis4FeJ9xjoYJ5Bho8Fev2795GO+p/MljTXmJY0kz+Rv+aTrT/4LPISL7/mss0RkWsO4Gi8bcbjLP3phkHZG+ZcHasykTHasI+uQfqUt6cf1JT91M0VM/vcEAQ0Z91nD2z2dPWtm1oy3bdOWyPQJNHI+Ptfs0aI6kFTShEXhUOdvAhHCh5tkw2czH1Tsiowy7gHiG5Wyv8176AbLcPA0bdKE45HbZ5+fRvXonQEvEHeFh3tlOrGIbcmIV55Ag5JYB2PQwEbOnXnvAfaeJqAibSPO6Rhe1uvayNKz5y05rJMyFCc+a1XOidfOzzkrA8QPr4SR8AfHhbsKbsnYVoHXcTfpjTeSfxXd/ZtQy4wjhN9YJsNPwGmdCKyX8eyDZNNlZYyy2fdSweWeygT3WVr1WaNJPr9k8aJ0tHfBcLEWXJqQTh1c2Vx6iPOpG7Bu9zXlI/BXHuaN+Ik6hXsqXggba+K3cFLBqdTbS0/ihuM7toZXGnd8X3x0bB9eGm3yz3Q6i1t8R9loGrrwFCdXSFMVFdGIbLKTceI3AWfUSYSHLI5SrgAAQABJREFUsBYmOkG9LD2qAd0Lf9eeMpv1FE6GwsFhdHQbfGIJY04E5k+9NIaa7JrgUDHGJTgaerZpGU3S0YAcY06eHGQPEfs0sHyXlUE2sL4onVAtBBc18mtD17U1NHBcHOBxiLnsY03rd+2PFdSqL920A3mHzsh3qyNKO7XuylHD/emXMyydntXg/wf20XwVR4MO/dwn8NU1+5CvicMajMsqylMfatzo+OjYsUO0ILKuzMtZsqfyAvfV10WfAYwi4SzMDqJfASP5SzoaeE8HhONvw3m1EF6wrLw8+V87eE2XTjju1JsYT3pMIPC3/ED+nNF01up+iHMapd7bYyNrqOezV5mBiszVcTcHY3QHQQJLNk8AZ+wPJT/R6ej4yQeEde5rkREnjzN67z0Td5mvz8nLeE+c8O/yiop0BDSF93an9KAp9GrA0NIpZZk4qbyxzFe5Ic0IA8dy/upJ8nlpWP6ftMxnfs+1LVi0KBaSZt8Gh2NZWZEtoYzzt8KUoQo4oEe4jqboDtKcQTWdOHyYuJswAy7CSUeka1X+TZv+TqzD4D2dbAydmqlbwzPyC3zH33u5r8Je3uZ9pNe0obBP5O3qgvI85yXOSGuW4M2dOy8bGPcjG0N6kkuJu0UzZHmN+i8yI/m3umndHFcZVHoPYCU/07kjP9DhaUnDcsrmV4KbOpB69exJPwb6wbCfzjN5E/poyTEondpDRH6g7LJvWspK18e8UzYxF++pI98jnsvLKyjl3oAjgz56XYoggbwi7UVxn3kl/IFpgfc4pqGfYv3qe+pQwI7xq3J/M1gMQpQjty1V1tY6nkw4m0S3hp6Ei5mOrkEHhoOnfGJMcVre5f6ZwaxdKMwtu84+b8zHjEftw6U41xYTxF6L/rN2++ZYt2Vt3PSZz8fIKy6P1o1xnh7Z3GL2ub0fyn/+Lo4GYF2Aw53kguXkQ0SFfJP4Jo4fF+9Omx7lCxfhqWmSx8LZwMvIjYadiKS3naHSe6rHzI2XQDVIRUIZQnrV2VUVHIWoRtMyEHjRkvnU1dRBKLfCCGidBrkb7dglZBAfTO0yepK/hTl5brrIrAAqKYgSi0gosqikLli4AGJZjQLdIZrAHOytoNB0fBFOL66pOY6jl7EBCrqIl01dmLuKhOtSUfQDFQyJS4Q0IjWNZpYaBUbWra01qu/8/FFhLBTKoAxVJ4RlG85XBTcVB+aRhMIPXKNX3ot16E2cO2M6tYwnZPdqiVcGmYoZCO9cEj7MV0dIbRRAiULhpSIg81WIKNiEfcnR4L7Y6HEhsFlMZOHM4RdyjGCbvLdzkyFJ3N5H5Tlhxe81VGQk7qf76r7LTP2NY3vUoevW2Nb4qMCJYfMUTxBoTHTd7/kQFl7VUAJT2QL+Rolk7K7JY4A0yo8qdjIo5uPeem8zHmwes2TRe5TctEfw9EgHlABUQXRerkE801nhvrp+YeX7PnRuuAZeJXxkruJQMj8Urfepvd+MQ6Nrj14ZUXN9fp9Z5Fph9fyNswRBWhgXRbaIWQ/C1ii9EV5/oEHgfWSMMr2NMFdrVR2hCw4kPdDuk/Mu9klBIlMFRuyBTD8VPdavUNQJU8JHhbT7rBdXL7EG47LlFfx9AIWgXnrmhV0FwmLW3PmCPdqCns3qVo32zZtE6yYNon4tFGsMbQW1e30QZWrfXqLW7HUjyioa0j0LFZjIDvDiOzoa9lWjFESzWDgjaKqRBaDwrIGybzPId9dsj+mUT2zfRRbHboQS9y1r3g4ax7nRoR1do5vxfVMHTYEGp1mjzfFmzqTWnvfalXXgO0ShwBvhIOwBWMInm32C5yVYJW7wmbiR6W/MUaEm3ruvIBk0gSKHYJhDTV3r1mXUBbdPWvTYUI38w0Q7UctgfuKoSm9k9pG4s2f3PhSV4v5wFjJx0Cb5qmmL79MHpmJ1ZUydP1fQRhv8GnWwe3q1iOhzQksyGnCMolySiwLtsBL2gmQIskEQ+nw/TcRjHQ18RQcobwlaBDJKJEruAe5pRsMWHBwVG1Ea125CwO2MZUcyGlpzbnNzosk2XW2Nc6Yh+1AdPniItey2CRl3ssmlsMw9dK/Bl6Rh8E58XDRvTrSCT3YFJ22IZLS/dAljH/I+4VpSJsw2UFlRUVTxTT7M97ykN/FTfqBxsXTezOh/9rmpQBcRSpRuZuR/zkUacE/Fd4+zUyGUh5vFlPKDvZSSVG7l8Rox8lGVvcrKlWmc9Omtw5eMOMbLVGOBKN0ztjQsbzbtVcNHxURHSDoanLDzPsJr5O/yUPmMjuqNG9ZF85Zt6KbejYyDRgUfY0w3ybFLyrn4Ihy8l8awhpE8z/GUiTYl9VneJlzW0JRwE3ivrGuF7LNRm7B1vBIvSxpjbiqxygDhL53Ke+Up6ch0h50L/7kHGhubcJTqKNm8eWNGYTrhXFO+qsAejRj5XcZyrxzf1Hr5ozSgnHDuzldGpnLoPeSpPKWjfeGCeZkG3ALcawVt60yXDs1q0EBKI4n7OWfLL6Rz1+76jHRqhCSfZ2+9j53+DR7blHnZyuXApxLZ0TRaEq0zKmVWgGMX+FYo3fI/6dwmle6pTslUEMGuAr/QRYCLqrrjHwff2UI6tw0+7T7eEYPL7vuJF6xfR5cwcR0uVJkn/03nJuMLb2GjnC3pB8LcOQCW3JdV7Otbb05APnVIw6ghDhKjrcJWXUPdwLl6SVPiu/JVnUYF33GT1vgs99N7cj/33XlVrqqMlUuXRIeunPTRpm3O/SjtifLSt5vEQ/jmSU/AXj7o71MOM5ZfYXv4TmFQivMaTuUq6Dga+pzUHz7cotgjcNrLsYveT2YxFTjps2uTnlJ2s/fSknjlOoSd/MSab42X1fDihjiQpKf6ZH25NlAM+i/kqDDydxqNJcPQwIn8Jk+xkP9LZ8zbPhk7MWg8ljOzJeajdyBwEEt5XcwxSz0pnWhCj4ZaGMU1mVN1mh2bzSp+eAkHMD2dDdmjQeczm+Q+WWpRE4tdemTbqTHHdcx95cVrcJSVU+o3HUfDGngxZB7H121Io2UyBsgwswy4Gsz84AHLEdSZwCn3HaAbiBOPdLT7bPr4KvbVcsl64EsrMj3kNRp08sicJBM9ClNwUl4pHomTaZACR6abtMQy+bvQb2zWuQKYr64kkxI53bpV0b/J6HTyGr7s/rG5eR/5pDzSe4tH6h2l4Fg26NUQPgbfPcJ4CTizk8BBc9asnNfglZaKdHr2ljXnOpif9FQLPiwPFx9LuO1eCBvxXDwTB5Q7OqjmoAs3atKMfjMcRYuerq7tZ5lZBvxKvEkeVujI8DaGE9d3sX55seMZrVfvTJnGa+e3cuVK7JsFNChtk3xYO0BHgnzA3zsnrwIvj0u9RJxXNiW98p3S2OozwlQa9h7y+ffmE/letYLSxNNxVDdPekq+57juk/oef6f8A7fVKb2ne2qZ2n4dDXznWEeD/Mf5yOeXMPc68N6u9FOxlM3ZirsibPIaxiqtN2kWvcffq8OIOzpfxRWdycpW5+ae62xcC+zXVK4ko68TTscTkiads9/RGeDeOY9CdtfIQK7zF646eNIOUe4Jc+At/rtXlm14/1XoT5vRifuQLa8dUvDeQjdQVvnwP/dM/iDO+7dw8eH8XWquj7nrpLFEZA18ZsWqlezPNrLVoMn2ZVnart3HTRLP84e8LHRQnAzAQdwx00xHg9ln8kbpwLUq112D8mkNJVMr0Q10lqzZugo96HD85Jc/iY9ed0205XhLb+PmOvcP8/V3czTIkIQF+4koFjR4ZnmoCM/HmHv91VepHZtMv4DHeefPL40IWt1l9/Mjfd/+25dMJSZm9GdXI95pwbEjtakvVHnYYydTlGK/S4/dHO/PfvQX3rAmupSeXfoYMg3TmBvgAa0GY/Fs4n1btqHkI5R4n5Ph/qZL94JjleZfQhlhhC0RLSAMleCdm0mhIgrjPIwDli5/73eF61+6jICqzm/hoRh3Lc5N2LcBoZsS7d4Dk1xPZ2DHENZ+94gM5a//b5f3aUm3Y4+FWo8Rugoh/r+9jGEYQ/rgfBy7EczOY8pUDlS68Pn+2eV6/xpcXOdfWqPvizcNMaLrcmSk9YVLIfTSd/2catPcr2P3gbf+7HJfP/gd98MaxtoIYBnptjXUgBOJ8JImSvvp6+Jd//rzy3l4leZVvOK0B/6oX7NeNjyT6HZsXHsUZxxPXPnfXOK4663k4Q52qMLRq61InQNRVfg2oXyVcF071yxyf9OMjWtWvw59V1AUmeyhgwgEakZdKvIxdZrmTVtEm2aNomktnEwHd0aNQxis9DCwdGIfxz1qAEsPxyFoquNoUDmpjrNo/V4cDWu3x4y1ZHeQXrqa8gnhJvxqo1yoSG1i4z+IcUlPlEqo/O3dtgN+sCn3UZ4i/Ykv7pm84f/tasAXpKsS3fr9E5hBo3ZtaAREHxEa2W4h2bX0+bG4KC8zDfZPZra/Li5hLf/wck3sJN9FUeLvw8CxDROsx497tj0uetPsrCU9GmA+9IGx8ZWCFiHLSoyRKGzz1AmpAOnHRzmmJ32oHCA/i+8C54M4Gg7iaNiMl6Ji445YsHY9ivXeWM4CnLtz8fG/wSHxwN9KA43Yt0bwyt048Rau38A7NLXk4XjC3+9JG37ywX3jrcD1kt8pwdP3vOQPDXFw1G/SNI0S6akCY8brg/T3wdf5pb/yj/vgHnvfGnUw4sBlFY2d6zaAW/uTJx37U3HvL+3nsd859m/HFw/sJ1QLPuYxqh4ntwnlZc2xXzzytzxJPvi3XNKMsBU2NVGAqunsgtfvxWniMXTkh/y3y32V15bw7r99yItjcdLP/L7veY+6KLUZoUFx2k7PmeW85+V3/tI+5ofH/POX9oQ8rWL+zL0mDi0dKnu3Y2ByLO0OPhMHxJu/5XJdfwlnhX3TJhj/yCcdRntpTLgZZVbal7eW5i/d+fqDfJa38jqWrkvv+dyCR1MMOY1VT+DYhrNq3bFf+Bv/Fs7KsGPx3vdaElRo0Kxp6jVbCBiIG8KmdPkd8VdKKPHn0md/6VmccS+8hFkzMqXqImNtILwZI0/5eqwsE9+9/iecd8wmPIRfSW9pzd8NanLKVJOGGKtVYjOKegln+OhvvhzTh/dwb5yH8/d+dcEbTxnSGbgVehLux87T9TVhgzeCoAWn4I0jlzitPrm69MaRZ+Hp+PKq5MU8uy9eOhpKpRO1MPRrMW51vFnVEJKFBCvknebKAZwCOhoOpKMBngYvNmOvOtl9JKXxDTCKtAVLJ7bhqFhH5kz55vfjzRXI4G18nwU7P36Wc8kJHPOP/OqDtOF74nvyAzIZsv8SzH8XOLkZYXws3hwz1F/8sznvOr74KEyFv3ARbg0JEtqIUqPQ7GSdwPIUYXYs/P3+sbjEy6OXup1jH4vvfqhs0MGQBir0tH3blljPe+6FeC6v+Wv8i4/+x0t4tkTHbgC9IjTR43fE1j306uJ94daQh/P5IN/krf92teSVOCGtHLsH8u7mOEVqE4S0j9hWHL/S5Adxj7f+x8t5eLnmY9cqbJpSJmSpyXZodaPw8Ytc0qn4Lsydl7/9a1eJpl2D8BRvUr4in+qTmaLDZgW85th7l8Yq8cvS62OfHUc8OZZW/VycaYrOUZNTjMzY2gXOvA+/+Uvj+/3/zVXatzq16kfNhkXvuT0byQ4h+1LY/zX8++A9/hrvF6a4c6IuAa1sfAnO78KRZ6GI83d81+vv5R1/TXb/tfGFjQ5FA2vyjc1kQcvHfvjjH8T1N3w82jRvwyv5xf/vaCgAoWWjUsuTDgejCnpyayBk/Gjh4oWc7TsuptPNfibH5tVH6dXr5NFyNTEsLJ3INEYMCCNNSyrK42XSKb061awaJ58zJFNNjaCY8lhkERjp0MtNNJgIjc0kS15NvUkqXXrJ9FTJuVMh5+8tpMnOeGd6LMJh4HVqWfvo3ffEbFym980xXITMLr2aPOsd0wuV4/IbvZ96CY185lEujJ+1bNx3I4z9+fGTcux+GGsdO3fNueup24nho/TQGyiCakD7t8fg6GgwUlCKABlNNtpkLau1UHqujbxVkL0x4d3ZOX7XBtVpUHlmtCHCJAw999bvm5aW82M9NvGph8IiLHbjbBAuphCbWm6E13npRfXvbUQhFr43P+bCyPrgBe/co3sehyl8hYFj+Oxc9aB7L9On7B2g19JaMyPwGTFjzPQOggPCdBPZCauWLYs3V1YWc+ffLtbJ4QSxPGAX+2qqk7/RU60n2GfeSNxwb/RuOlf+yTHs9m5TLpv0rQAus+jTUQlnl+jPO/usTOlzfelJZM3uq7WEGWFjHXo1sycESoCpst5LWOuRzKgW93Rd1n69X7k83iO90atT66Y0X+ydZ6Z7BnNGHY/gpThjWc3RDAjG1gvuUavShQp7zh+csaeDxnwljP01cKbEfE/u1jE6l3XMOjazHcR3G5rajMuacb2iekg1yt1LcTvr12hSZu327n0Yvxj8elgz/auCo/vmLcm5+8/lQ8/mVJam4OP2PEbueASM8925lTQvFPJ6eOLtbeH54tvpf+ARr8tXr4pN7G8l0XfsjdBQaMg21GeLaMKewo4yUo7rZK58nvjNdzp1bhhd2raOFnU52/7gDhwNOzPljEAOygleXzJSpGNcDjgiirUdAkbv79wX01evj8krjNhErDkiPbsRVWqFwLXRUkOOxZLB7MKwrcKkMl2eOt66NkkCRqWO++656edmPxlBMWVWxm4jrWWVlfEadeJeZTza9egSTTGsjqdfhdkxUEfSlmncOjLr1uFEmNqkDFLasZu0Vzf1OGBerbrZO0aExS9S8XCm7NpDNhR1oW+uWJc4eUbPXtGxS3eyljQeLAmgnII5bdm5LVa8Xxmzl8xzGtEcCVcXPO7bsWac1JnSDxwNB0knPbh7O7ggLzK6C47CR917Mw0snTCFQSVVhQAdNxVc94IYP3gGP0xHA7W2ZJus3LIrFm+wvpH64CMaS7tmZKfASxrXrUfKeDUUva3xKk2cvPojFTv27hUtWrdjnTXBZ9M/5b2FcS5vMGooPUnvW+GD0rLHi5l1pWdfvmA2mGVNS+bPjwlLlubYvSnNsWmnJWfSvN83iuFVil7Lj8V36dm08b3SG1hmuqIReU8q8l42LnN8I2+T5y3MMc48sRfRwbKEWzZCAyaJc9Bqicc7V/mCfFY+YOTHEylMYU/eDr9LvgpPLq+oiNemTsux/Wf4wNOjDUelKR+kTX6ca/fYWiMRRpKkhxLfV44Vsgqa5n7uoTxHXm2UYz6Rq8kLF+f43Vo3i5P7n5K8wAiw8/e4MZ0XRRaUWQ7chYf2i9E95YayxPIoeY6wE47KyLUowK+9yvF3OXrEoB7dqZ+npI59MwIofz8q7+At/taHcquIEJp5wZz5ntkJCXvupRJpFsFy6GnCzIKeVASHnTcksxcdU4euzb7M/rMHkcfWCZ+0qBxfXOahDNyHMWe0LCNYRpjIjtnLa/sWvD13Qc6+Z/sWNBnsHc0wfoS58/K38tTcC+aUBAEtGEn2vtlPib/NVhBnTW3POl1+swl8Hz/1TRRJnAhYJif2OzXatUZPgZ/oqMhTTcA15yvfFVctr8xME94TFnsyWk50D3iLQ0WJQRFpXIcMfGHy1Jz78fzb/6QTs/+CfZfkmFmuaHYGOJ4RQ2BkVpu8S1pUB1EWO2/ltfLLLL7dwHUTPHohZUtz0BHKGM2GrMfjmJOHOT8v9yD1IThGETktIm/upWPK+312D0Qn+015maG3nrTk96jNX0YvKo2+E/vQB4tsMRtrWs4hv7WExFIjMyucp7BXjzG7YSdO5BocF24DQ/fUPVIXMSK5Bvk3j0jz2iNW2YWnnoKS3QLdkDpv5IPwFk/UM5yYHE+0kfYTxsxZfScz26BTdRJ5jfxoCzrRXPoNTVxYyL/eyD37aVhiov62Fzzwt9XRReuRFbEVPcBa/tmLl9Cfozr9bNhvrhE2g2xDdkB19kBHAzykhs0g5f88mE7Czf5kZjX8ydGgWwH6BrbVwX04BLAHruDOQdYnL15DttsSjq58A3a4HvkJWKJD09ZkCdJLZO3OWLt3xVEjZviZZ9BzoW3iu7qAukE6lIGBNJB8knnLTyz5K2UMlHo5uCf8JB+WKFgW9e6iCpcYbXicNWxoNncU5tKMuq5rU9dL/Rf4y7OMAsvDMlLP53budz99rWz1u5aQTp4wLipNv+Ma0IUeLD17Zf8YdUjpVZ3P433V7cw8sfTViLP6qfcXZwt9B0c53899lr9RwlRJlHzMjHdz7LKmtaNzN3gBeoFy4iD6kidg2Cj4IPSzB8PcXg9mM5sVlIEI7q2cqYH+rR6pPrDF7ALgspXmfAvJkl6+0VM+6J9GaVGnzugGZNBIL9Kk+Ca9mN0gvpmNK804z5J+nVF6eLW6mEibuiL3NFv33Xemx0re7QksOqMLe8pXPWSA2U+ZYcL6LWXJTEzgnpnU6i6M731L2XZ+P/V4vmM27Cp6dy0gy1gJogPkrH4nk5XaNG0lnaJ5SUfssfghrzKCL69xXLMr3NvM5oTG/I76prhlZsXqypUxf9qMdB62ZrDTKOVoTGBNuLvvqaODZI7vvJL/gETinfQqn88H7yifUn5xHz/3JLvFi+bHnBXv5zTP6NktS4fMQE1cBMfFR/sd5LHwwMMMDe8l3OUN6sLqeuq+OtzETR/KhlXosTOmvBGroDOvYSf3i7Y6n4C1D3XI5DvsqfOWT6X8Zx1J5YyR8g84uZZklOh/wnUH9pUn2U1eIOQLZ+F5Q8/KBsHOHcqnbNYSCksjC5jK05Q/ZhhvIPv56Zdfih/85Mcx6vpRNGIXul5CxlV/eK//c0ZDwsD1Cwse7peM5jAcsIaCgLcXLVwQUyZOjLkorRtIy+7ctl10JD3XYyolP1M+TXFScIscM1G0Hvn9fVHOjy85a0CcM3hI1vip6O/eCeFzHxN4ZUCmVUoAboNEIhMQQRRCyfRAOv8Wob02kqI7hZ4Lfxg9OrrweujlI+M0GotZM2un3Ez1ZeNFqiRgCNJ1+fMi/YY/QHYFdjoDXGs11ll8IVbB/F6lacvCt6bF2UMH59ngHcvKkonaIV1lRwHoJdORqbpuwZeNmvyAe8rMVXr1YBYdb4nEQOQLly6NZ198EWVzf5xBE6c+3XvmmewqzjJsidz1CwsfMpFi/IIQS8qchOnDz1VSbeBkOuJsDIDJ48Yx92GcO94Ng846Nup9+a5MU5jyIhlKMicUHecrAzJ9ONMUXQ/f8ZIBqzC+T0bCkiVLYgbKkH0vzj7zzKwDb4ZRVxcmn/M9ougI8mwKxzq83NOSwpZKL5/LNDwJoA5p5Ttg3KY7zsQ5NW78G3HGGafH4IEDM/1bxpFpk+AKA+UaPCbVTRVWMsZMvUOwuY4ilRJ8En/AAw2NNWSC2MztnWlvxqw1G2LUZZdwhM6J0YQyF3FE/DU9SqHv/WS4PrsnooWprDp5ci+Ah/vquDZY0lPqETrjxr0eL739TrSkAdXVo65P2NdHYcu0YWCpgVF6OGqRDsZfrCuNFdajkeXRP55P7aMqjhidMHPpjfLis4/F0o174+x+fThhYzj01y7PqbdZo2cauw6FpymlKonZIwUY7MDRYLOdxRXl2WhxIseleunBlnb1oovNen+pnhCEMPkiuqGH96wOtTk9gRKGOuzVgW2kkO7K36FfxQ6Ixs4rwqkuv2uQhjLKKUJk1Y7dMa1yfYxF+RKGRsu8Bp/an4ZxXeikzZgoFSoNKis25oGZ5VGH2TCNdXgCh7iaKejskTijoqVCJL3KaxaUL42nnn8uNoP7A84amE7HMpxfKv9pNAp7fpdCPQWRjaLIqECv2y8esQ6VguoooKKr5RP7cTTobFBpnTGPs7uffp7jErtRm39K9CQVtgUCBPLF0cDxvuDFmk3rY/aCudQFP5tr1HlTAxie3rlGnNKtExkN1CbjjDiwcws4Vgis6lVxQLH3ScdMoujRoEEjb2RvmLcKqLIQSmG9ZjSg3KJsbQX4K7bujiU4Glatg3aOuOJP69ObRn89yUBpltkJlhOMGTcBPr4rT03pQM2silYNlLe9NOs8DBA1uMRB90jFRMVCOKvEy1dMkZfnHOVF8BuViUWLFtGJelaMw8lz7cUXc9rFiTm2Blb+Hl7i75PeGZulJJ7IL9NZqJLNvbyn/MUzr2thyEhPq20OBb1OR5F7f936uPaa66IXOCOuiA/y4KRVxpK+pCUvYZn8kdfKMPm7PCCNXRQJHQ1m+Hjc1euvjYk3UdAHntgnLjr3XMpNcMAIC8dRCDKWr32Wbyoz5EOJi/Ah5Z0yJBUu7qEiZE8JG0S9NX1avPLY46koXjviwjhr4IDsW6CjwbPkjwONlX8FfykZXkfwmnkLP3mMY8vH5HE+xPvllSs5RWIsvGZadGWuF19/ffTr3btozsXvnLu4LkxUhpxvQoex+J8H8PBvPndPPOrMcivnr9E+Hx7/JMekmS0zrP+JMWTI0LD+X1qSHvPEHdadTR7hOeKoD3l8jp3jFvug2ug+eC9LJnZA59NmzozfPPhwNAC0l1x0YQw4+ZRo17J1zls4y1ddt0pzRqGYrynIOuJtalYTOhB2qSyyJ9nzgrt4LPL74OVEgiHPv/FGXDDwVODSlz4wnVCi6bl0hP86Tu4vaxc3lYGpX3BP8UUFXbjI6wWc+CPu6/TRCTNm/LjYUFFOn5FzsmmcPSmyxEgn0hG8SUAzRpZ3MY4OAB3t4rv3y3IX7qOBY6nGdoyotdRuz124MF5+5eU466xBcTJ7atp8Q5zG/i5hICxYs/sHSJPnSz+Ji67PffU/nr1Sb+BPy/SWgTcz4WUz3pvFng7j9I4u0YoyFJtfCk8mRSYbeA4u6LzTCeLeCZPdyFbp0waddo2X90pTlseqMyyr4Ag5+MB4eE3P7r3ifJrRdWjTliw5HDngiLTjJf76l3STc2QMb+2cxXfhDMLm3quH6PQ0Hd8TmsY/+1S8g/N6FLJvCIZRE8rpbHBsmrf8Q+ezJ36ov70ydmyMnjSRfgw1YpMGL/cc0atGdG3T4ujxljoaquNoqM5ilIPJa50bq9bZYDZDkdEgrwEfuUcNjF9cAOANuAF89sMfNuFxX8Mxros3rItxi4pMO7YEvt+XjJNmGZ7e4+eULDZqXz9GXn4phlfnvKdOO7Qa+Bn3BfeVU9KreClOJj/mPv6ddCrcgJf7IiztufAu+thTDz+WmQMjzzozhp59Th4vq4EvzmsgCes0GPmNuqWvdWTqWEtnIMjkiWfeT1i5H8oF+w+No4H0U+iT+Gni3I9eEyf3o58GsHevSgFGdTuPnBffC6cb0eIjsjsN1yM8yHE1IjXMxKcllEU99/IrsQCec+7QQdGHgGFZ2QnJZ/19OmPZQ3WD/ZSn2Li9BnM0eKOOlnQFP5d3qTs5rri6i0DNVpxrc5FRzz35ZPTo2JmeUP2iN7LRpqPSkuU38iwv5Z+NV4W7tCZ8/CztD56Fhe9Lc67boNo6YDMdnH9rwnj6mw1Fp+ma/SgaEeATp6VTDVlx3d8IV3ma90jc5x6OKW0IP2WlsNMpUbmykn4RC2nGyslhwPoc8F3nlE4c+YUp/Y6d4zgpHtJryl7gqi7v3OVhOhn8vCgLwDGGTlC+tDz7r0xkbweDL2fgJGlmiQvyVdgKi6M8PSEkThR44VhJx9y2tJ/yeXmBuvcq7AT1gqlvTor5azbHrdddGyf16oWOioYJLJQjym4HZIh0Nqi7shjWxIMPkufy3eyPwj7Lc6pio+0GNkvL6Vk37e0YM+Xt6NqubVyO7tG1Q4dC1wMu8rK8R+4XdliOyb14nWU7eW/lSSGdhI9Odue/BXqahg3yJPJpJXO7cNDAGHbOIOyQlkmfnsZi81h7NaSzC7xwvjrQbTy5miDexLGvx/Drr41rWffxZPfkxRyE24f5+rs7GgRG4aUqYKNytAil7y2QcvnSpUQU8IDBEDx1wqOrDgFgsUYwKth2kYo1/s2p8bV/+Uamkdxw0XC8O9dzZGVPjLn9WTsp486IHb/KRjxuhAghcYJgiQsMKOIpeNKYBvlFCpnf86++Gt/59a+jL/e85gu30WX83DyHOaPmCnzGSUarAsUcJR7nl52eQbBk7iKiRIhh57ndNqDS4POIngefeDIefW503HzpJXREHhwnwaQ8zqXUpTsdDdwjvYZHiNy56q0VoZ2vq1BI21lYJNYjbSOdGbPnxJ2/vS+a4H0fPuzcOJH6/zIcN/XrGn090vgFmObahSzj+pBhZ4Sb9WkEyLR0AtiUy8vaPh0Bk1C0nnjkkRj1sY/HwFNOjQ5lZTStaZIw0YOrI0YiKzXfU/B4yXgVPI7pvYzaed9GMDqfK4DLuxy1+RJCfBOM7BPXXovxRVMYPLgeW+V8hPtOGLwRQBmfwqA0vsyUgfJ991ePug6euqRkSeCekjBp8htx16NPxscuvTSuuuRi6qlOOML8ECTAVSXXeckEHV/mnPsMrB3TjujCXKIWV0y5rUmD0RWVlfE6wvLZJx+NqctXxze+8Lm4YMiQZK4AOiMajiMDdGwNXvGyJmuqgbJkRoPrMuIqszeKs4W9rEPqp2UnczBcnnjy8fjt6BejHcj1L3fcEQNxftWFuSrsvQfIReffwrjX2HI9Tlp8dz8PoPCrWBkxMrq7l9fV69aKHdDTZPb0vrt+FdOXrCabYXB8guNz+nanczzjHsbRoMBXeDIc9FIoKDosTJGUHldU0peAOb41Y0Y8/MJLfitpQDFrqp/ssGlL0uSaWt/MOeebDsQmHNKbAWW/jnWiV8eyaFYbY2f3ZiJBNLkELmgldHDHOQbzVUmy13tj9rM69z0II15DacKM1RtiaqXRbfATMHh99OKLOFby5OiJE6xt69ZEGz39BaMNvNbRVhsjuAFwllZ3kLWkcDA7JvEIXqDgLkWprcFT2P/0179KZ8+NH7kqLrjwIjpp02gQujcLRWegsPe1ziMdkJ6ZjvYGOkpvGowoSSjROhtQDVC+rBflNAM81K/TBPfrv/jPuGLAgBgyeGicciqNnNqXMWcynFAgt4MLK9ethu6mxM/u/EWusSZshYSHGFaGs6EHx+k2QIGgpOrQnq14xJkH9/ZEiUJjL+i7yGhQ+QAfGaXkaEjhC5wP85sD4OIhjuuzdGIpp03MX0uJwPZDsWRr3jYuHjYUh8KA6IhScjz8RcfjfQ88hEOnflyNc61D+3bZ4LEmnfirUJ98gD4aNtNVkRLGgCYNKuld50tePMnPNIr8XGPQWtnFixbHFE4z+M1zz8Y3P/PZOG/QoGz2avNRDU6dXo6hEqEDVkOtugId3EgFNV+DU4ztPvqoVU/8q5rNmya9MSlGP/t0bCRa+M9f/3qc0b9/HhkM5NLRUDIcNe6k3cIpopJUZAElH3ANvAaJ8tn6/R1EjKeiqDzx2KPxwpvT49KhQ+KTH7s+enbtmvxXXFGBdXx+lfwg5QWvUlGRt4BLfph7w3fkPhrSRqzWkHEw+qWX4vaf/yzB9+VPfTIuR44YdZF3VcVJVB3C8zjlIqLFC8dUyQU+GR2R/zOm7zmuxqnrklfMR3l+6NHH4g84q5V/N3/zm3lUaGMMUjPsHNPzx537n2pKE+tzPiqgGrp5vyNGo6RpZF/VSx7xw3//Uby7fGVcMXhQXHUVXfP79sUJCe4xvnJbR08aRqwhjWn2WGVaHi8PSucIPEJHgQakRpKRqc3w+dcmTYqv3/HDnMtXPnVTXDZ8BCdJdMpsAx2OnnIijessTZkCLupUUKZA+BmBZuRUhl0DFhS9TuD7OBqWUef7JGfV/4YjJa+56Dyc4YPipD44Bmka575m53X4lXsrHotrKT+Bv010hYvzlYemUcD8XYvKv3XY8xYsjPsffTQOwNAuweC1AXFn9CDhvIWyDp079kFwD4y0ym885tpLg04cTaNRWMFfNAx8mIlYWVmZAZS77/6vuOrqj8bQAWdGWRkN6ZDdAjWjog4k3onzwEV9S1lt9E89zb+V66lD8bmZeeJo5apVMWc+zjVg/+Z7s+PTn/hknI5x0YaeGg1whptdtNcAEMPrXEvnHTAQB2WV0hDsDuOQeQNrWZdOB5sPu06bRk7BufPIYw/EaaecHR+76qroCVzk5RqLSaPMQ9zgyVEZVzpyIGDCw/ecq3JQWJnpoZNFg27iRHjBE4/Hi2QJffWmT8QVF14YbVT+wcP8DfiRjgbkxqLypfHbB/7I8ZbPpDMdV3WWMQzrXTe6tG4Sjchcqw5/t+eCp0joaEi5z/ecmTTgQyfDQQBiZq/6ak1xEtTA5GEfCQ7wIH8zezS8jxG8VCfXEppBMgpbEENPP5vjTFuC19R5k2k47Y3x0b53l7jlszdzjPiJyCPoGTzJUjpYgJkk4k3CHpyTBoS/OMqbieeHgJeOENcsT9hM5td49vSn3/9hNlv+zJVXxjU8pCezJZK/gCvy21I2afY347eZ1QANZL8L9lT4iTvivnuuEaxj7bHnnotfP/RQDGhUL6699bYYes7gdJoa2JLfpB4jP3DPMFTNrPJ9dWUvMy3Fez8v+Bl8hP1Wx5mFXXHn734fryJHbv7olTFk6FCcDX3S0bUT55tuX/GHRMM8cvMQ9oPrkueo00sDOmUTJoxphqxGqU6Mzehnk3H4fv/b347+3XB+nXdeDCSw16lDx+RVZhebvWAvHXUA5X3KPQks///Ts/P3Pfl+OhrAeWXgmDcmxuPg2vXX3xCnI586daaxJo58+WBmdDA/r9xDx+CSNpWH4pDNlpVdm3Cmee9WZNX5nNm96DXPvPJK0v1HOKWpT48eeaxn0aC5yMRw+JStwFZ+ZTNZbahsJMuHZlpLu/I0+a+8xp5ycxh7Kqdr/PapZ+KWUdfHCODucZjyMbNG5FtMJNfqeP7HhAtaPfLsytQflbOeeGY2kfLVoNvr48fH6Befi7cXVMSPv357OkoaYT9pi7mfaeewj+K8f3tfeZdw0k5SvzObJwNvyET8gXmvbejgNht99dUxyL9XYiAZml/4zGfiFHi8WQwQBoQENkBHKQuBbc4betLRlgEV3hPmws3P5DPK2JrAaj19LsYw9x997/tZhvwPH70qrrv6KrIpT0A3JYgH/nlctiuohR6WQRPG2sOcDXoth8++TEZDr7MGxHXXXRcNkfl5uVFH9r9448P379/H0SDW+ChdbKyE5XumHM9HkLxFf4b3YTxN8IAPRpntTcMRkfEQn6fAEJAg8x6Q4ZWJE+Km2z6XdTa3XDEyPnXzzWHX5UMQoKUTpqqVFBaRI7OGHYtNE7EVPk4no1EMq6csvU4wSM9dfRTm96U7fhBn8r2P/8s3Y8SIi0jhP4FzuzGWUQocU+GmgiKzSkcDA6bxnO9pjIF4IPFhDKNDCM10NMBw5y9ZHHf/4Y9x38OPxhevujIuGn5RnEHX5foY3IdIcXRcwaOwl3nKhCSSQuAVyCtDlVmnoOAe3sc0Xh0NKnL//p//GS05+eIyjKL+OG1MCzbrIIEOjPahbImYMvuSAqdhbTqdzg2VDgVNKmMYk17rMSoWogiNwZN/z733xOdvuTWGDjwzO5h76oAAVQGVAUqEKq7OO5U15poNVYCNyosODaP4Mr36eDrd52VLltA1d1o8SSbJOoTMlz71aebeh2wGHA0wzOooNV67EDB6o3O+jO99vFwHt8FbjYBAeO/mO5YJ1MHRYMrrDJwY4/AO//je38XN11wTN3zkI5kxYWmDTESGlAwCJqIjIL2gjOccxRUvFVqjHOkJ5b52ID8OBriG/hMvvvRiPPzH38fYReXx43/55xh54XAU0KaZsu/YKs+Fk4GBwEM5W54prYKNsW7kRsZ9HFHLQ+yPHWfrURdnbfVMPLi/+/3v4pd4zzvw818A/6FnnpVMW2aaOI6CK96kocS+iuO53zDp/RirCqfajFUFYWCjvn0ozjWoW9u2b3eMnTAxfvKj78bUhZUx6qIL4wu33JLM1XpRuBzMr4hMqAAe1qhCMVGw1KrHET97iTjB/GcSSTSt+O7Hn+ZHpPvxEOMa8KDVRdRpTi10k3rZkX0DvUY2b6EZJ5Um7ds14PjLVvRowBDfh5PhMJEG5q5yaJ8Go6GeLVyT+TaElhR4B8HVtbv3x2x6NLxLM8jNGMKr9UdyffKjH4mz4R8nIiTSwYaiqyIkbu6DmbvXNoU9DH5YGiIN2Ak+z1+GZt0bDQLXqnEwhZTdf/3hD6N88aK45aab4nKU3BMxAESK3azDchUYSQrPFEbyqcREn+UTCCbGPE5lzgdvH0IJ0mloqvRLCJ7PfPd78XEUlQvOu4CuyAOjrKwjX6Nekfma0bBsTWWMnTguvvXD77pE1gA9wQrOaYdTtnvHdDTsp3a9yr4dePZZH8r8YSJhPqQt8RfuB0yT7EGNQrkVz2WHYo4PMxp0NGzch0N07daYgyNnO+yu/Iij4SN494cOOju6lOEY4sjO1UQXfnHX3Zwf3SRuvObq6NyhQyqCtXE0VEV6G4VSgApjnVzCQaNFgX/UsQB83NOkb2AjPq8iq83ygAmTJ8fPH3wgvv/Vr8UlOE1boyjJk5QHGuteQrng68CYcRXOaXgwbtFwqoiQqkx4DyM1Zhy8SsbBo/fdE5tZ879jmJ6Do8cUeGlVHPA0lNI48nkvu42nsc695QWFkl7wYnlwLfiBDsOJUybHgyiID742Lq4ZMSK+hPJ/Ys9eOW6WOIFXGqOuo+QIdx0qmr6X/yUNFEq5UZOUUfCazcD88Weejpu/8+2c079+8bYYBS8rI2NCeWHZRDUM9CrMX6VZ2KTRBW5rmCvzVLbSmJNHA3uz4iybEE90GN77u9/Frx5/Ivrx+us//WlcMHRYNkY7gFzQuMiUbOaapR+JXGCPyAX8nYOGnFFAZUhReoDRikPWr05AAf2nf/6neLO8Im44/9y4/uM34Bjsn2USOhoSHiBlzp1xVBzl8Y6bey7MmKvzzqNIWU86fXhvA4bR6Ndei5u/8Y2Ezfe+/IX46Mgro3PXbnq4KC0qTjJSMXYvNXykDu8rf3DPLZ0wwFE4GZAtwgXeI79cQtPLB55+Kn54zz1x48gRwOU8DF/S+DFK5e9GRC3RMkJq6UWhaMJv2VznmEYL8xVONovUCSbsrWPfQhbfuyjovwb2VZjL1SNHxhmnnZZNU3XUbcNY0JnpqUvqOWY/AvE0msT5wpgGxViPRp6GpOnsKtRb+e2yZcuA/dT45c9/GqNu/EQMH1ycAtWErC8v9bC8gK9y0KskvzUilR8lma5M9KoBH5W/rFi+jKP73o3Rr46JyXNnxde+9KU4+3TKhSidMEiQvXCYb6YFg4PiupdzNHNBhR/CTeNwD3SlQ1/50ggeswtZOJOxXx87Nu696zcxaNiFccuNN0Zf9lR+q1O1CPy4k/Kz4qHeJD+QB8h/Ei7sobipoSFu1mX8DTRbe/311+MpgiePko333dugp5FXUBJDVhl7KS3KIzOiipxYsGhB/PKuu+I3jz2c8BdSFrYM61U7urRpGo1oBlmd/i01xAe6glo6kcY+8yp0CeYH/93P5nk6iXN2H3UXIZ3hm+wh98NfyAkmVTK7bD0GSDmyYtLiosYedTIuPGdYtCVTR8Nk++btMfG10dEDOrr9a1/NIIS4Ik6rD+jIEB/Fc408YVLKahI33QM2t5BP/O3uypPXgzcvE3T7p9v/Kfvm3A6t3khQr3uXriB0wQdK2XzqZMfx2zroL1icjOAiPCqUvkzyePZYnpAlAklfVTAal8fvH30kfoAMGda0cXzya/8UHnVqicAOHGs66+QxGpDijLygCvoSwhMnP/KOWxi4cr7Jc8CZauqJ0KylidPmzokfogs/M35cfPnjo+JiHLKnQK/qfNtp1CrNOqb0LlYeQM/II3O5p1k3XuKo/EIHrYEVT7zT6bgJHXUcfP4rt30hzujTLy4leHUOzvAOnbuwbsomKVFIHZU5qQ9LP8mL2Qsv6VW6Nbqf7/C+hqoOCUudjNw/i4y69ze/jls+c2ucM3BgnlxTn2zCw9Cq+jMonridRjQvhIF80jlLqwaupM+NGzak3GvWug2vD2WJ8nT0tYeeeSazoG+6+uroj/3kiXw1ydqRTzpf8TUdx4zpWkonZFjmKJ1lY3ZgLWyULe6xp1MYMPQY0l8+8GDc/umb03HXvlVxOoiZBzZXFckP51x144gtQIE1FPRayFRp1jWlo0FdmLnZQPZFsrIee/qxmDRrYdxL0O2Cs8/mqG36EPH7xG9plt+lQ19ewvipb7AX6hfKv5R74KlyO/VaYLmNcph3mPvz2H+/wkkyFD3vm1/5Sgw8uX/aLUmY8nfwz4CqsFYHqCL/de7uh5t5BG4irXRUBZzhGI3YSebX8zh3vv2Vr4bFfV/6xA3x6RtvwHHXMQMy4t9hdC/tV/FPvi8P0tGgfbcU+fMc2bXt+/aKUaNGRf02rfNeDJWwy+cP6T9/H0eDi3cDCoxiN/jbBxvhps2ZNTvGw9Dep3aoJUxmyABSlLt2zzRQG6fIbERAU/g2UBM/FgL/JsrKUoa47cqRcQ3enb69ehXKCJtVKwWQqZgoVDDiVFZACKMWSSAqqxBGybsloin8NcTW4nV6DGP3Kz/99xiBc+GKG26Ic889N3tGSGDZJ4C1yPpS0TqC1KloyLB4qHSp0CrQFCiHsQwOMf8qGGmLKiri3gcfivtQ5L6EMnEeCnT/PM4Mgc/vsPKJQHDED8xZo1khKfBkHEZdzQpQ+JrqY8mEXmiVGFPgjaa9M3t2/Oqee6MRn110/vlxBkTSrUPnTH9PYQPhCUcNacfUsWCmhgSTioX3Y8xUVliDyopKV3YXx6B+DeX/rrvvils/ewsphgOiXTuim9TwqyDrHGHwFPzJVJm3Xt0UbDIV1mTERaKU+cpcVJyMvqxcsTJmIxieQ1lZiTf3ZoTaKb37RGMcJqYMO44EbPRf2Og91VPpmD58T6VAhshTphoZJZFxbtq+Nd57b35MeQsv6933xoWXXxHXX3FFErhRGVOVMprGvPT4q2ilQ4mBsvs5O5BMnPcdWwYoKnumuZ7K5StXUpIxPp4nQvrc7Llxx1e/EpdgOLYm0qULQ5iYNirOqNBn6pV7Ld6BS0Zo01hifY5dYrh2+NW5NpPa13uA+Z0w2E785Ge/vhMaGZD1hSqBClyNRp/9uffzhYq0Am2vjgbwqmZVhAH7noITXKxJM67tpPC/NnFSfPdfvxizSQu4Fpz58q2fi/49e8dhsgYOchKCMDHdc9v+3bEb78Nx1EDUpMFj/Yb2ItgTyxYvihnTp8frU96M3z33WpZLnMU0sINpeslUxNvanAddi8gcnHg3+30QYY24iaYNGkaLxg2iRb1a0ZhQfXVwc6+CjKhQFXEHIFUBPlAQESIwhvXsZ9/XkZq/YNPOmEvknZ6L1HkyGNdNV1wZg6ix7d+nDxkr7VFuq+FQoD0PuGl0RHpKo8ix1OgSYCqTwl6HQJElI/1acjP13RlxB9HjnRXlcfUNN8WFOB374eEW33fQWLZISVWYsbfMy1NZzDI6hANnL488Hox90MF5gIe0JO7sQQm0t8UrkybFF3784/jkRSMyLbVvP7oit20PjuBUBWe27tqRJ06MnzIpvv+Ln7rEaKjPDV/hyciZfp3a4GjAiOdexx2i58oRR4NHYxaOBr7LMnW+MeXEB5/F4sRkPxNHeRw8ztIJMxoO0/x0Z7y3jmMdaQq5rAgexWXDLogBwLYrgrFV86aUHayN/8IwakTmzbXQUw+UrCaNaHgFDA+SjXEc65VHemVK6xFjS6M5MxOYh7RfwndhL2+wTnI2MmHC5DfSqL7tti+iWA/O8jUdlZl+yffk5zpFzQwysqVipMOxZAjJK1W67G0gH/A+KoCWTUycMCGevv8PsRGD7/vf/W6cjbPXcTOaCy+Rhkz1lF7kB0mfPIsx8jOVQnE4o55CELquD7LvhJdOmfYW5QFPxF0c9Xr1BefHFz/1aUrYuqfxrKEuHzPiaI2weKORJ/8xk831p0ENnsvj5MvKKYKjqTiuJgV+NGe93/WjO8Lq469/6h/iKpTcTqQEO9dqbOshYG9Gg7IoYYLS7byt91TWuQq5rzivoeE9zDiwp8N7ixbFb//wh/gPsu4wz+M74OaFw4aFZVrbcczBbJN/KVPlyRq9Zpdkt272z1Rzs0eMYNrHRRm4Gx6howmiySjgd3CSvLFiRXwa2XcthsspyD+PF8yMQGVI0ip8knlJt/J2aRXQpMxKGnJPoFH/dg18OdajG4we93p8lvE7ott9+tYvxCUXXJjZkY6T8k9e67r5ibBxDGGv0qiTphayoHQctRTiuDoZVHaXrloZj4x+Pn7yh/vjY8PPjfOGDItTka/tUKLTOcHvDwCLw+gchbnGxFhzPpi8cNeItgzDOWh4CRfx1P5Fs+a9F3c98EDsJwPhCqKMOjG6QFMeh2n/CvmWcBd/xCMDBsJevLHvgOMLe/dTg075Lt+xh1D50qUxiUybR373+7gUR/uwM89k7M7U+bZIOKfizBrF9aLe+ogxKlwYx70wa0j6Ev+9p82MvXQ0TyfA8eLrY2Mytd9fvPXWOJO5t86Mhno5TzPKNPCMSrufpQCHeKizRZ4gbxfWnl4gnjZp0hTc3xuzZ89Jer3nrrvjHIInn7/xpugFXJyrhnk65piHeyqdSj++l0dWys+Zv85jxxX26jkajbVR/u0aPwGj6PlnnoqHp70T/4Zecy301JqSzT04SYWFephzlH7mLlpIoOj3cdczT2Yju80CgGtEd04Fa9cmmlACWFsPPXPYjzPc49lrASvls0Y50ypkGL/xVCDXaSZTLb/Hc+KpTkK+eID93oGHdBOvyze8H+PfKxrK1eA35w+m95ZZF8iI7XjaJ4yfkEcG345T1uwsHZm7d9Bzi/vI3R1XIyiNX9Yv/qkHlAxp8VvdLPvYgJfShh3vXx47Nr707e9kY8NvjLo+riEDqSeOBseVbjTMlYHyGh0NaXCJL+CfY0v7BgscW6eXEV55pXui4XT/44/H9++9L4Y3rh/Xf/lrcT66djNsALNwdF6krgf868F/xEHvKR1ngIU5uJegeK7F/UmnKfPny/Hu/Hlxx69+FU9NGB9fvPLyGHHpZTga+ief37Zla64hnVXoN85f56blWzoAzGrw0jGr7BJPnbfj6mQ2S3YC+uR3vvHPMaD/aXGhujaysVOHjsCOdcvT+Z14mDoHsEl+I36KB3xWZAwJayPgUC/vZckJc1C2Pgc93XfPf8XNN30qzkbf607WQWOCV3vQj3YDd3VJZZR47ngeA62jQidaPnhfHuZc5HhmxJnd6lGSMwhePQYv84Scj6EP9+vVO1riyD+a0QAs1KvVc6R1YeI9nKOyUZin7HAvE97wGhDNI0hnz5kdk8jUfPSRR+NacOZiHNUdcWLUr0tzdZx1aSMJW9ZcwLdwFqdDinuV5J7wK9khZg+b5bRg6RJKz1+PJ557Iqa8VxH3fee7cf5ZZ3FyGbzISeXE4OPaB+CNeGKmdZE1SZAKWKeTjWe+nXxHW1DHr6cAzsAB8xL23z04YU5Bh/zq5z8fp5Nxrmx1Lwubz6AyWangfZa9iDviOPMVb9KGcHxe512w1Wo0qBdbcSa/zJ7+Ckf4G9z7tuuuiU+Mui5LMyx/YmJ5VLK6gbze+4lBOhl2oMMvWV4Rz+EE6XRaf7JcRkW9tm1zTxgKviJFfnivv7ujQeBr/CT3EzYI53kYUmNfeDFW4+FsiXAxo6EXzAyqIeUOzyCbl8YqkUAdDePwzN+BMqFX6LYrSIMnotOnZw8YnpGJvVm7p+C37kpHQ81qCAoIReNRwVsHpVOmZz1tRr7m58MAAEAASURBVHeYk0LOiPJ6aoweJzr91f/4eVyCo2EknqMhQ4ZkQ8UdO4jCQuAybscrZTJkNIBxfS2iSZQa8xr/exFsB0HiQyCbzNeoyG8hwD8+9XR8HsaXpRNkHbQislAVpnEA5WEzlpNC1JoqGbcCXoaqMmgk1F4MCmaFgoLKdcjQJZR3SP25+/77owFEaenEmaeeTs1eVxQUUtGJKsgsHNPxNIz0XKqsK6BliEVKKVEWxjTSosKoAWCTzJWVRFanTIm7iajfQhbJOTBWa9I8BiiNN2Cg0PTSkaCQUBF072Qa7n0+ksQhI2Cu507mV1m5MiONLxBdWEEN9SdQhvrjaGiGB9eULefsHDPFlXFkRsI5I13gic9eMl4mk84XU+iqEUnbRKbHgoXUpE2fFg/c99s4Z8Qlcd1ll+GA6ZiNAWUe4oYOAJuQCXvP+lYrMPXVOQsjGZPCxgihCqqRGPdk+arKmIjB+OLo5+LZue/FHV/6YhGBxdFgGlQVYGFUXkGscq4XW8aQChcwSkUOGJv1odNHL6ip5rUxkNgUmN+7cd/dd8ed48YGcdH4wc//IwaTpieu7YXhKQxkS+6tCrnMWeFVrYYCXwcb+6uihyTQdHfuBxRSnPawlejLa29Min/9yj/GIqLX1yDov/zZW+Pk7r3i0HaOtaQXgsqJaZ6b9++KnVVIycUpUA2nQRXShmxCVgnzX4CiOevdmTF37PTsDt2e6bRrRrpdLTrGM69t3KeS7IfVaIYHcdBUYY3VgUddnBYax81hxC3IsEDsUtKAAQ/uVWPuHp9YHacIUBepUBTxxbHv6/YciMWbyYbasJVSjD85Gj5+ycg465TT4lSERBcdDcBvG9ERWbZOM/GwFJ0Tzu6pTqRMa2Yv/E7uOXA0/XEqHu4f/fI/YjfK9JXXXR8XXDA8+vbunbhiVEW8U4nzIebXBd9q4cHeu5cTLfZuZyxwBJwyE2YvpQTViPaDRNArjob1G2IMjrtv/OJn8TEcDYPPPCt6Me82bdoCG3pLoERuwstesYoGr/C8HxPd8GqCzVaTAGSvdhxviYHZsgE4y9Fmxx2kB4pCDXzI1tLoM6lp5Mz4G3gn78XpUIhAFAYH5HMx6BB9HQpHA1kMW/bEfJw4q9dujpVHWpKP4NjIU+kj0bVTR+i+OWnH63Ca/hEHUDWM3ZGZhWaTNhtF7ofmjAnVRaEXF83YUeHkNvAu6Qajns8T9vBI90G4C/9VNH97l+jiBPByNLz40yj/5585KJqjZGkMm4Ei71IR3QOdSrNGWzRe5CXpCOBzeaI0ZYq02UHSh42s5AVTgPvoBx+JdWjf//atb8Wg/qeknHGMNGCAiDxGI0O+4z7Le/1bnqUTL+fO+8k7uV8DI7DQmnzm6eeejjtffiU+gpH+hX/4h+iDPNMpqIEonmgwOm//1iBQaVE5Sn7P95L3ADv3K8vAeLYHxJr1a+OlV1+N+3GET+VbtxMRGXnRRVkGpkJoGrCOhmwIyT64ZmWcNKiyLz/xWYjroJYXyM+MDKpk2kPh93/8Y/wc+QR6ke1xR4xgDfZpUS7xA/gOyiD3UvlyTZ5jruxQuRXl9gOjjF7ynXRksw/yM2XB5BnvxA++/72YCM/8LE2cr9OhfFI//aJkg9AQl9/Ky9Ig4vvye+/he/LJ1AW4l8ak6anpjJcnA5+1lCKNxuF7yw+/H32bV4lR134uhg8ZFl3LUP7BvXTy8Ft5gAq5yqF8WBi5LlVJHQ3CsBSUcB26afbBv5Yy58defCF++tCDMWrIoDh/2PlxOiVsbYncZ8aac0Ln0Mg7KgcdW7pL2OtsKIwinQtG7d1TjQvTkWfNfy/uQzfYvX59jLx4BE4MHQ2dU0EXP5wjyJa8R6epcN+B80cY6ExzXfbeMVqnHJeqxdn1lD1WVFTEZHoRPEWa+vkj0TvQsbp15dhjjAtlt5lGwkNZJ+yFtTLP/RM3NIqUTRot/p34As35/fIK6poZ+2Vg/9a8OXErusFAnEctlN0YAEUZjM33irRpack1q9eIf6kjAAt1GvHS42ZV0D0qXDhpuOgYvBe95pzhF8bnwJmenTpBk+wfMBE3pBv/kxazVwmgSn2MMcVN6dqmlWYTeExzdWTQccjvVWvXxKQ33ogXnnsmHqOJ9rdu/kxcc/ElqYd6hKnHY7tWjRH3bt5iHHGPPBT3jH425dx63vPS0dCjXZtoWhf+hIzL7FroUEdDbeCls9woq7JaGsSXC06BerzWgDaLrzofZSTWdSHjDkNfu/AwbuaLS9evol9N0YtIvjps8Gk4Gpqno2EHRvMb49+kBBfD6MtfJbh0csLc8gDpSviI40fpirUoAXQEZDCMeel00FAvGgqSFcp/a8CbF3E0fO4HP8g1fvO6UXEVRmn3Tp1zPOlJ2tRAUodSLy6VCGjYaYhmgCZ5DPPgvjoa1Cfd8/KVK9GDn4zv4/w6n9+OIhP0XIxSM0HlBfJ3x7esyiPbXYt6mfc9uufArqAp/uVv72GquveYOX9+/Oi/7oynyML9PHhzyRWXx6k4wJQhOhqSloCzel/SK7gkn5AexBl1qeSPrp798SEfTXpFvk0kuPKjb387BqBvnDd0KGOfGh3LyhIXdQCqZ6iLSU8+vBI/4WnaByX54j5kqj3rKzkadPKMHj8u7qcX3SevvzEGoe/16NkzS512sK/29JL/yg/TCAbG2ibSsDq78kkaEr/cfmGjviNtLVu+jOyp2fEENpcZs+rCfbr3SF1bm0NeI4zlsfIZ5a3wNlglHnlPnnKuMIosx2USaYusZt6z582NN3DCPPnYE3EFZVojBg9O+eTxu3WZG+SRU9IWS8OfmaobOPe0c6QX5i2s8mL+6try+AUVS2PspAmUsD0dby1cGb/91r/FeQPOxNFAIAE8TLsD2NbFCWrZsc5Yy6/kLfIt+b33LHQ+7ZPCLqtF5pW8UkfDCxjzD+GE6d6zV/zjLbekLqmtkbyRtYsbGShF5/NvwJzyQtxJxxXySJCnrgmfM0hgEEJd7tXx4+Pu734rXsdc+fzVV6Wd0wUdzr1jYmm7ZtkTY3sdh6zdw35Y1rF4GY6GZ5+NrmedEddT3lyfLEZx2DXlI3/x4fzn/+5ocN3CjM0QOb2gYxA//8z37YY8AeVpDY6G4+vVjzP7nxo9O8PMQBwdDenXAclU2neitIydOiW+evvtsYwhbiWF8aZPfIIoY+/0Ru7azvfZJNMYVRyy4y8cr/AUF0qhSCdTlcAzDV7E4LVM0IZPj1Gf+hVSDM9k/FH/+I+kcw2P9m3bZsdWhVjJsMslyIxAMAYTs1JoKOAU1BLGfrjjHhRpVD3WXTUWgSwqEw89/UzcRkbD0MFDsgGONbDWkBtR0zNWKFUoOQgBmauMX2blPBOLGUvlxYfOBhV5z5p/m14Ev/7tbznSs36MOO/8I46GzikwPaZKQSbBKJRT6B3ZBtcgYagsqqik1w9Fzoi9zNseDYtIW3oNR8PviXh95lOfwtFwGnBpR5d8GtSwdudabC3EKwFyyWw14lyPwiUvCEMClRnW0kBAmCxevDjenjaN/hhjYhPM4dMItVPYU6MaGhFeMiIdAhK5xrpZGTImESvf5/NSpoawhyNGdQw/U2pngWMTJ0+K3z3wMCl0lyZz7VpGqjdMVCEj7BVkwlgnkrRb4CzMkHFdg+hbgrnpUkZEjJRa8/YSKVGP3XNnvL5pe/yMurGRwL5FI8phcHRlGQ8/dshkdI4HrBRivlYouo5krqwlhRvPKv7CTKHwyIMPxi9eHB39UYT/5ac/S9gLYxU/maDwdf456byRTBzGi/e9Cniu8lwPQ5LN5CuIILeHusiNHIk4FkXrB9+7nVKEAzEKz/znP3Vz9O+BMb0HnNipsonDDEV7f03oqE61aEAmwx6yG+zwPnPWjNiybn3srKwMivaj+sqlpIByZCqR8Va16qTR6ekUHqG1EqZbyZx24ThgF6FJGpZh6NVknxrjTGqCs6E2DjJT6qowb4iBkZg7c+UnwA+BDPPYx1p1NCzYsDPmEXXX/lld+Jli1IjL4B84Gnr1wtHQLhqgJB4EZxTsCl7rJTWwpAEVB+GrA1CKkMak0cRN3pcGzGj41o9+GNOWLo2vXnZ5XH7lVYVhBMx3I/CTnqDZQvBI49Iu84UBVaUrnwa9AnUfEeaDpNhUr8Ge4vjcA16s3bARR8Mb8eWf/ySuhw+cO2Ro9MdwKTuhDLmNgEFZWQ9NL1mxjL40k+NHdxaOhsboLPWwO/p1aRwndWkfLRtSt7oP58yeLRIcTe1QNqqAU24y97ZXRF4itXTBHO3ZkP8JB3mBrhwzGqh73sTYSzZRG035xLr122OVPjeuy4YOh5+cEV06daRhZRMcJWszunfcgWqkel+ejoZWRAIbKNBRhFRX7ZtwGHjrdAXbE97Spnvha58lDOnK6K6OhtVrcDTguBqH8+4hBOvnUf4vpKlUm5at4AWUUYHDCnUVQQ1T1ygPUEFSYTaSbiNV/1ahcK/dUxU7eb6NJt+YSBTzoUdjNcrFd7/37XQ06EDwu9JiiX85fvIwxvFSCS14GbDN27IOvqPCUsf+Kqx70ltT46GHHog/vPlWXI3j7os4Gvp265YyyIicDxUEFVznnQYwzypwScf/D3XvGWdndd1tL/XeBRLqMxr1CgIJNRCiqACim44BY2zHdhzHzi/F/X3zJHacx86TOMUEV3rvICQhCfWGUO8z6r1X1PVe17rnYD9fX+cLNxzNzDnn3vfea6/632uvnQRxWHIkF/TReayjs4Ij9+pbb8U/ktFQxUff/9Lj1Me4hVV1ajSgN81oaAB9lHefoZ4xWJMFBEmlcwKl/O1X/Fv+L1bA6sRKQJhf/e738S/Yp/Z8/rMfl4AGMl0QNINGnU4d0NSTNkI/U4ehOy/QHlJQ0J458pL2ZqUJmsxEx3/ve99NoOFLw0fGo+yBHUxQqv62uKhBgIFd6lwd8up5LliXvkIz29N2qffMGKJhBA71w/1vTZ8aX/z7/ycqeO4XvvZncfMNY6Nbl7JcdLCY86eruLTrnAmAOO/aXGssWBASBZEBjrqhIXYUo8JWJWwUiwTPkLr6Y7ax3T9qRNwMYH3V8BHRBht13CxEwORSZsP51DHSvDoQkhY8z/Ridb46SFtukTzrRjj2JasEGp6Ps8j8rTfelFsnenTvkdtKDBrN+JDvpYEgs/Mg7WUQbUfyOzyv/VYGUq/BA27L2LmDgPqjRfHLf/23GAvQMGbkyOhNDSSPn1ZujhwhlZw2CjsEPbkKnwD9i7Pr+/KS86LDngEjfo5bxyqrKhNosL7S0s1V8Rc45wINF0EX7au2NXmT+RIgLPpcyJJDMHiT1wslbzYlz2QMZjOe4N7F6ILJkyYR4D8XV113fXyFVdI+3Spy/pXH9Jnor9kH6gQDVHlfQCwDYMZl+9ZnUPd4mlMWgAOI96i+6WzFffXZp+Ldjdvi//3a1ynmfEt0ADCV3iopu6ZdMM16JX7Kk888Hb9867U89k8M1m0PY/o3iR7tL4oWHNNc9wIKFFoZqOlbCJbXYL4FH9J3hAZatjMIZcofbUNY7uE+HwZRLLZsRt9xlpwPYIc37NkZ01aczdNgGkCza68Zij5sk885Adg0b+KHUdG3T3z7m99ihf2y5I30VbM1xo/OUZc5x9ye9DAIdnug/oaZAAai8qZjddHNUyHegu6P/fCH3BHxQ+py3U/Bxoqy8ty6IJ3NJkOrpA/n+IpL+8JTsi3HWCw2ST/btgPKsEDD7199Nf7ht7+Lodz42N/+TYy9nkxQsmwM1AsQX0pBQ/hPG1v4yIUMFNmCWhlAm2r5chVbPaMsfIw8/fN/PxGvY2P/nC0Zt7FF4Eq29Khf3DapzklAkXvT9+MZ8oxzJK3kdXlRPaEPnPLEZ9qDgyywfLhgAZmg38MG94px48fF8GFFlpC2o7RVWL8j+Uda8PJKAIK2E4BwXDzD72WGGL9bf2IL+/Hf/nB6bsd99MGHM6OhD1kHzQDvrOHi6RHyesYKtCufaTuyfea0AJGdB8hdrXey5gkr44KOH5HR8DKg6Xn6KtAwABDjYni+qYt6EFTZL/QNdgp6Oge+nz5m8ihP4pnpU/F3TRYJPJlj9/69sXj50pg+Z3b8K0VE/+pRap7gU3Zp1x7fDruMDnCLmu0nfZk94xd5Q/oqywl0yK/wZdpbaGQhVmtkrN1YFZNmTI2X3n4l5q3ZGr/5wQ9jDDq4FSCGfKj9lp7GB/KacVEu3qF39S201fk5wIjZCKV5cpuWfCRg+go6+GfEIWP794+/+4tvktEwIPlVYNSt4fZRWdFH83n+rV3Ujgsypy2BNvyfoIaAcpOWLOoBTr039YP4F/o8n2d96/574/GHHgQI75KgsRn4AtYwL7yOrNJ/MzkE7o+w6CXQ8AaZFhVDr0igoWnHTugLFJQC5cM+wxc0K3HV//9R2EK+Sk1U0yXNGYRayyr8rKnTwoyGZiBLQ0kfFjWtzU2mZrnfihayMOApFPYUFMfj3/zLrIT72E03xFf+7CtxGUwh4nYMg3+OCWN2KBYEc8EMhXOXLm01Ixp0MDdMpEwg05SUoYjcyxTb+vbPfhaA1PGlb/x53HzTTWGleZExhS/RT8cEAyh4Ol0CGWmY6HMi6ShuAQ23TOhinyQbw6No1lRWxm9eeDHeeOOt+BI1GkZfQ3BB4ST3B3tWtU6EBXU0yAqFQpeOLopISdBRUVE6GoUk+897Hnu2b/++mA8i929P/irat2qJk3UDaOsVrEBWIBSsoh5jBRZhsF3766WyNgsgHTtoq3Ply09NtzZrQgc1Cz6tXBFTZ8+OF194KR55BOU3ZDDV/cvToaDRVNr+lOUN+FWsOrkG6em8814G13yuMXDfVAMcuQt8Z80aTh6ZO5cqwRPjGDR8/P77SX/niEi2ZfzfQEORsiTtbVMEVoUhwmtKXaGYGAPjqoViqQcYYBGWhaDPUxDyJ19+LT4H0HDvhJszo8E9pNJa3kmHxflkvOl80k+DTWljv9Pxp2/yinNrZkxdFPM2HNC333k7nvrJT2MO9/wL23puu2FMXAR4dJZic1ACZZ3cDnmq0+MYs4TSOZIWGl75UASztJ3FrTw68EuRj1dJMXzuzTeiA46bxc6uAuTR+OYKLnR23NVhSY5H4+jqwlm3IEArODwaCTQgD3yZF0qQ7Q+7KZQwFaPwz//773ESD8f9GOQvP/KF3DpRz7w6+u/KzulzrBSzWlODTAaPatyzb3dMfu/9eOF//yLaMebOzWtQrK9jtII366CMmwIotMaRq8+zTBE9Qh/2MHZfJ/j7BDxxmnT/MwAW6egACGlMGlL3oX4DwR6NHfsQkX3NWS14sTZtXWDMZ6DT7k/OxsrdR2LJziM46QQZ1T7O/RNup0jpkLiMwK4rTnRLDRTD0PGXVjogTHH+TCeC9jT40ktlLQ3pXjryzrcZDd9nVXcuDuZfkc5sITWLtDlfAg3yoTecJ0Cx9sU5aH6ekyXq1XM+cSahfxZIvYAZrCGI51G1f8homALtv/Xzf4o7hwyNMcjrcNIAu5Z3ZYqo0cCKpeng6zazvxpw9Sf/8W/0XMCI2hc8dmC3i3h1IBukABrOUkzTTBCBhka12WKAXNCZfCWQwvj4H2ebvgo0+HKweCNwdAIN5wm69p++EOsAcZbt4jzuA6covJmPjVuvHUv9i2HRtawzAGCzTO988unfAyjUy4yGfj16ZQXlpuijCzg0tZg7XR+dqCKbgUAGWmdBQnjEAENeLAW7nwINOP/uy542a1Y8+cqr8W1WSMddfXWCvRbNld46ueo0Ay6dRYNITZU6Xdl0JVrnkCek3vZYwaYAAa7+rmMuZ374YbxFzZMt1Nn4IdlxVwPwqGcyYEa+IVMGVurenD/GoJ4UHNXB8yo57aXnuj/Z7Ws6Wb958r/i1ZVr4h4c568/+ghFeXulDvDeUuqvp9sUTgl9lg78J1+p12wzM80YgSCAq7C1AHQPs3XihddejS9RN8TrR1/9s7jvjtvzuD8LqLldpTFzqM7R+TE4VIfRMLxHuzBAOrbyOb/7ng6Yz5Q5VqCHn8Tx/8Xrb0YH2v/pj/8hxo++ltTlhnnyUDpT2A77LY0EG9SfCZDIb+hO27WCtxklBqWu2mcxUO6ZsWB+fPc734mZONKPkBH3ZfbEW6PBLYkWLWuAPrbgW66eY2/dkuGqMk2mrdV2aXPN3rBtn58fIuR7DwM0TJsWX/jRDzMI/OuvfDFuG4+eR54MUHTOi8wlnU2CFeZSAMRtNyknOom8BIdNoZZ/muCAwmTwwCmAhk3x9OtvJNDw4HVXxS033RKjqFnSCht1kFM0zvKMXLFDnjK1m05nlge2wwK/8rkFzbSvqYf43N+z+O+nQMMLcQaZt9q5xeV6wTf6E0cACzLIon/6H/Kxx38meMZ7As5uC7gg/9Nv+TTnlDmybsi+vftiJjbwp/DNjQAN40ddE33JzLqYWgRmUXqcnnNoe9LYl7xYesnrOv5MYepL2/Yz52njJlZIWeCYOHVqLK3aEN9k690wdKR0sY8GjcoraitlIINt5i0XTmhXH8GV3CIo0r6YYs/R2ADPZo0tXLgo3p/4XjzHdp4h11wTjxIweuKVfFLyXZQr/QB/6u8ljzAen6ldl1nVDWkM1PW1kTbmdQvbtKYBNLz89K9j8qY98UO2fRh4dYYuqMf0k5R/eawmNF/FYotZXL9kq0W2TftwSIzs1zIq2jaPJpjXWmfRTWmv1Kr8rTfF+GCKnDttPhYtQXNpaFBkkH4OHlOm/Fz9BSHiGK7v3hNs2wHMn776ZNZKaMK4Ro4clkCDpwydhK8/en9SdOQo1298/euctMJWJO7NObRFJs0gXbrwB6/iX/WAGQ3aADNgBHfUd36jefNmrKIejzdZQHnkO9/Ne37w0EPUaHgwupSVxVFARxfAPAbUE2JO4n+pb0pz6nwy6uTB1MfoBWmYuofnGVQKNDxN5tSPATYH893H/64AGjwKWJCkZFv1VTMwVZfl3OILQINcVIIP1TduSUq/jL+VceXBE53+nSyYN8gG/NoN1wM03B1D8Vkb4F+fpr/WQnAM+tjypAX43ErrpZ5LYA09oYzKk/rBXo7tELpWoOFH3/1uDKjoHuPJQBoxfER079aNYbKQgv4rhU7FtohCnvysBNilbOG36f/4viepKWN5cgMy9c706fHKc8/EIw8/WmQ0oAtaUg9NcE+5E4jJhQ5ooh5sgi6DebB3x7MIp/SXNvqXAo9NmVN1ssCgNVVeZkHV79/HgqfFID1ZrynbdTOeQY7MJtFW/QHc1IssaCMd1BfS3WM/62CfzOjbg6+9mO1TU2fPip/+/tn4Hrb7rvHjohOLBNprF36t+ZUgJvPKCHL7htvAtf8+04yNs/gH6hr7Ik8JklgfY83GKmr0CTS8TOFZMxp+QLbjCHzt5smHuaWROdPmyctmaul7lLIlzVoQMLC+hDpGOqp/crGUwc1D1zwHkPyfM2fFuIED4zt/+ZdxJT/Vqd5r35xbfYWMw/D7HIs86ny4Rcw5kT/1KbGyaWcatWgWh+GZdwAw/v4HP4rV0O9bD97HFvEHo1t5eZyGF60hlrWJBGKgv89sQKaGBXKVxXWbqrJGQ7lbJ+5/IJqzxRYhoSU6zjx/lq8/GWhQaf3xS2IYJJ9HQdbF4T7PSunqPwIaPKN9+KDLc+uEe31FiHTgdVZNtz2OwZ4EEzz4jb8I/d+Hxl8bX/7ylzhepn8qUpWuwR0aNJWtQINCnAEojO7vGfzSnsrOLRSlNC8Dyq2spr323sT4K1aNe9D+l771F3ELAYZAg6nUpsA7pRoyf8pQOgL+rbMks5VWXRLIAIWr1bA449vK0jpyvyFQn/rWO/HIA/dkqpg1GtyDdgBjr8JzL5PG0WNkDCZNZ5NhTa/RWVFAVHY6tTKjWQcKjEc1CTT84slfsZreNG5EuV5JWpdAQz2+p2JNxQQTK8U+SyHWadMAlFIZNfgZgKCgdJ41FJ47/zFtexzROzi6d8HoV3FMZK+evXJbiQpBQ5ZopGAGtPTSeInUSiwVqka7ZMykv8rRVccNlSg/0MR3Jk+JPThVX2DvkvvsWwKYWMjSvtrnDPwVaJUrtNfQqfCkjc5gggX0RUfLfZj1SCk9gOM2l1Su9ydNiqdefiNuv3UCpxPcFL26VUSzJs0+NS7SRgMHs2WbGnxBBzuvY5rpVnxH0VaJlJRjFUDDJDJyXnnmtzFl0674GQbzljFkNOBoWRjMAmcqBBWnlz9SAaUyKvaPSvvCwarLOAjumc+GzKsO3ZJly+N5Ul7/z9vvRD/u/QE1AzySqDFBtJdjTuMFTXyIq4K+EtxgLIJ17h12tTP3mGlMqRtymmB4x7HDzCmr5f/8w1i75XjcO35sPP7wIwXQwFaL2gB2NWmDycWy4LSeOBKbtmxEZpfFOlaa9k+i2jVnT17SoYxzxZkPHP46fLchXloTnDli7URkP4EGx1lhP8brFAQ4QV8/wUAdA2g4TlbFJ+TTnUOO6jZvSJo7K9veyMrQhfMEpDhutREwMx9q0vfzoOcCDUt2HIz5244G8UVwMmdeD9/zQIy4cnj061oenS5qGS1w7MFFoE9R2ySNLvLjHOiQJJ/zu1PkVXKs/V2DMm/xx/GPgI571q5nP/m9MZ4tDlbJdzVVAMZLOsuL/tS5UF/Bqanj1ClmFNSp41wCMhA0ncGQHD3GedYUfJoye2b84F9+EmMHXxljx47jqN5RWWD1PHtEjhwhQMA4VW7bGh/OZY5+8fN8HmIZjRhArzYUIOvQNlo3Jh3xAlt/LpCqy1pZA+apCXNRn7nwyCT5OYEGhZD/BRAvsI/4PK/CGRJoINAko8FikAdI1V279xhHte7HoToXO6prNNxKCv1I+tm5U3u2IzRKoOF3oP8tG7cioBsfl/btlxlODZD3T+j3BQxzyq20RX511NRXpi66NUsnxf5A9NRrBjmCbdtZfV2KIzQdoOE3LwE0sDI97ppRFGhrn/KubnFPozUOSlXIlRkDT+93FcP6GsqnAa6Vz9UPTZsBNPCddevWx4c4cW+TIrl+69b4Ps7KKFa6TNXO1XRk3OBIm6PBz+CW/mf/6L96IHWYAl0t1PKNlbF9rgDJr//7P+P1ZavjvrE3xJep8zOwT++8X9uQTizOjT8dfq6icX/hfMk7OHOMsaQnXT12LHWwC7vhGYtBfv2n/8y3ABq+zp5yKsF3bt8u+bUG4EVN9EGm8tOQavOPaS/NS7WJ1KXSSyAgARTGsnz16njiN7+LJ15/K8q59e9/+uMYO3p0OmLqdts1mMuMEp7j+H2EdNKGKEeuUHnut3TSeTQLRflwX/FMnPO/pybG7K3b4m5WXr/KNrOhgDw0hL3DnlXLUaHPKQLLfLmlRPoiUGljBfRLdku77mVgtv8oK7AEu4997/v53g++/IW457Y7omd3LDm01olVEsywUvals+3Io+lQI5dWzWAg2HmOxOVzgQG34JmRY0bD82ST/JwiZ49OGBM3jRkfI4cN5xz0FnGI7CSLeZkm7xw7l9oIt00JKmj7S+3J79pv/zaI0Rk2Vdyjo39J20eQ9ztuv51jS4eRdcDRbcy99aE8rtDgK+02tim32iCvGC0cYE6dge7aW/2OlGvnApoJsAjizAJo+Alp8BPgl/EE7P2wrxe3b09NidOZ9SDRtDfyu/f7u/SRh3J+GZPj0odK34bnKHc74Mk16zk6k+MnZyyYF98k2B3G3Ao0NAI4cqACU+kXea9/89O5hpOyDVfWGVjSIwF3/RLGYpam9R+mYLvffvGV6H8t221uu40TqXqRTo/thr/sqwFoAgKMQZ7R77M4nP6jfpnzre/ki45kRkNt6gZ5NLPbHt/keMvX5i+Lv3rs0fgcQaPHq7sCK38JZJoJ4dbW3DrxDBkNL7+cfJ9zyDOHc0xzl9aM14w27FpT2m7SyBVchsX812S+a/Byu6CycEEeoYWko7RAJ7ogwATn+35ujYbD4BN7T5ylRsPBmFV1MhfXWtZtHpcPvqzYbsu3T38C78yYE517lcVXvvR4bp1wm4qymbLqfFbLapEFahAk7ZVTgHBk1XkoglKBKvwyfE6D6TdY+Hn0b77DNyP+jqDosYcfjrKuXeMkWw8MaDN4hA/kCwGTBBTpt8Cu+svxaXP9qa0t2Vz18MZt2+IZgOSfoG/GtGse93/1m2xBuDaPpXbhSH+y1H99HJpJu1voCEGlIttMnaOP6TMck/reoO5jgIbfvvBCzKdI9e3jb4gbb7k1t07kCTr0Vx0v0KAGcWEp+YZ2sl34Wv2lHs45gial/qs3TWVXl/0vbMeVVwyJMdddF0NY/CkvK+ee4lSYjDm4L+WFOVaH+Xv6a7Th9xyfc6Gfb/ArKOFWJ7OH352GjaL/n//iY3nCWzl0v+giCozzn7609+qzukjmszyxDIHNjAfta/J6Nd21vQ3RZW6dWL9hQyxw5Z5aBB5vef9tt0YfgLtmANnpT+PbqOf1KUvxgn6jPMUICrskP0F3db76rS6+agMW1g4c3J8ZuFPnkCX7y9/E3z7+WNx143iOGL4ktwua8aV+VQc4odoji2u6cu/CnTYxdR1zr57Tp/IlUGK23BqAzPdnADS880rMX74lnmSR4AYWZ1rzbDMdvSe3RsB7uUAAR6Svzv3GMcZJ+tZpP7Ar8qaXYLPvz5k/P56i2O/TCz+KGy4dSI2Gr+XxnGb4qAPN/BLEks8LUBa5ga8Fenw2DF5dC6UAYhOc5e2a0P4IIIzA3V9/5/uxg2f++f13U6Ph3qwVl5k12B8IkrQRNDU7x8xMj7f0lBOzOd5+9+0oo1+eOtGybQdakZBexTiK3z97//5JQEOJBLAk6vAPJFGVmtZdl1U7sxVWLl+eWye2bKiMJkz44P4Ds4CTRtsgx8lKw43znCtGVK5+/Ps/SmrecvXgeAiktX+fXil4Z3BALZCTFaSZLNNbFPDCaJpWhXFEuaosFHCVqgFesW+H1G6M5kSyK/7hiV9l5fy7/+yLHF1zQ3TEkbMGgsi8jKXA2a4raqXV70zf1xngc/5hlKxGsRewAUrbVKaDREQr166LF15/M+ZNmxH33nlrXDVyJMfl9c9jqg6xuia7NBLFqjb+rmq3bn1RKqjcw0qb9tdshmMoO1ddFAINxiGU/8crV1DM62lS0RtSrGp0nu9b3qVLOrMa3ESJCx1B/wmAUKwG1NJYmmgIVB7SQ1plPQuesZUVKPdKzl2wMKa+NznG33YzIMagBBo8RlBnuVDQOJjQSAfESyc297zzu86Vq8oltDfb53MV2jaMzspVq2IKK43bKChzH3U3+vfqGS10VgQ7UDLSXCfIlwpJ+ru9QMPt8wQJDCiVPZWKQmrq64HDOCs4WVOnTY1n3/sgbrv+2pgw5nqK2nUt9m/ThspM8EIHV4faS2WkMvE5PlP03+eUaOM86BRt2b4tZhOsTySdcnrVzvje174cYzjr+2L6nqlQ0DsVNm1qaFR8KhJ5z7ady1MgzWYzGFRo+KWRykygY8Wq1ZnR8Dt4xuyB737/uxieQVkbIwM36Of3paPOeDrnOEnuoxbksKCqp7HodDnndVF6VsL9hNhy59FDMRuD+bNf/EOwKBc3j+b4sLvvjX7de5ICyncJeK1zYHYRrk8c3Lsn5uOYLfzP/8yjK9uXd4r2BEAtBQFYsakDOED2KEUYvY8gBMBBQ3QWgOE8K/pn2c9vyuhJ6OkRVEfg28NnAMmo/3CQn+ea14/GrJbXp6iW2w/gGsYFbQiKLfJaE2N3ljnZRaGtjzkVYd7206QasneV8iNe99xxN/umB0cPtk20bdYEh4/glf44pxZRNaBy1ZSOpaGX53UmnFMvnRh1he/pSH0EyPNfv3wizm7dEWPuuTNGjLwqemKU5ReNlsZF5y2dFOjtpa5K5Bx+URXUxADWr0f2C9kMgg7WXrBWwI6du3DMqb3wq3+P0X0GxOjrr+OM+xHRBXk9c+os+7aPxSHmbiur2HM+WsCWqF9m+1g1Vs3OR3vmr02TutG8kc8/E43rs5oNsNmS7JBWvAR+atAXDbu6OENCFIzZDISFCTQgtGqyaqABAAbaenb7+n3HyGjYD0h3PrZVnzoxdtiQPLbO+gyNAE89CvhlUvkubnkJBQNHR//efQEaOqVOPMoKrau6Bb/D69BVZ0edm7qW+dDJKBxcpkMeQ5ak/a5du2MlemwuRv+FdybFVx/9fIweMTyPt1QmlH0zGLI2A7KrwyXvZ2FX+m89GUFXHStBWmXWuXK1RnmtrKyKuWQdTKK46prKzfHtv6ayNOB2G+rkqE90VD3LXD3O9EKfIihSFzgOHejUA9A2dT20dVxNADXNLPN4y5eefSreXr4ubr16RDzwubtyBTZrS8hb9NUx5Mor98o78pFgo3yqrkldrC7j/dzWgF4QBNnB9iSLQf7wiSeTF/7y4QcpHHhjVsnXgU2wF/2b26V0fuhX6ht41J/KovrG+jvaDJ0ZV2eUC53XNevWxzNu7Zs0Ncp5wje/+7dxzcjhGTTKROlMQW+BBmUkVxuVb/qejnnOKFLLZ7an/hcMkk7WFloIgPSLn/88FhM4je1ZEY9+hRNuyOjT0Tbg9nuOQ1tamlPHrSPnPBsYGMQoc97j3MjbZvp5tv1kQJ5v/1MBwnzj/rs4xvhWAOVu2U/1e2nbjn2XFt6bGTcCzHxeryZ6h+eoT5Vj9wYLSbhqtxEb+OakyfFbFgnuH3cNR/FdQ82SQRRAbR5Hsb0W/M0ChPSVgcAr9JH7tf2OXXoIvEDET4M77YA2V/7M+hjPvxj7N6yMW++8NwYTuAiSZIYHdimDRfqSvgcOe6FzrAdzMhcl5BVrBjmmDOjgI2mpY2yxyflLlsbP//UXMeGmcXHdiJGZLdH2krZJZ/URXU77IP85D9o/bVzSmL47H86z4/AhyU+8J4ixie2DU1mEmDz5/fjaN74Rl7Pw0xwgwIxBfSRXvdWZBf9IHhpQF/Ez262eC1Oofa58K53cUuKRc7Nnzohpb02M7kOHxAROdPK4WFchlVcvwVsBRhs1WHJfP+Yn5ck6Lvoe2lpBBtutiZ70JJRde/fGPLJspkyeGG/NWxaP3kG2B7pMoKFxQ2oGMYfaY24mvbs2x1tujOdffSWefuvtfG7pn94tOMaZzLJ6AONuOWx/SfMsbN4A41MTOyf4Xgt+EniojRzaT5dipC09SjBcMN1JsGgw4S2ZgJw6cYZMHQofV+47EnM2H8tjJlvUaR29+7KnvlVreIF5OXUiVs/8ODr1axuff+h+jlztlyAUE5U+WfINv6uLlRnnVHn3bwEe5U5doN+XugYdqZ4VaJj4wbT49j/+Uw7zq7ffGg9w7Hi3srIMBl240m8s+cLe6+KIutzsX/VMDi7vLoJSdYTMYwaFIM/LHPP+nwBIY7q2iwn3PhgjhxM0tmyZwFv6YUkSHSjlSd4ATHYM/K4e9jle6ojSarZ++kEWl1asXRuvszizdunyuHr0yLj6Wo5779+PbI3mdIsgl/u1I86xW3xsN3099IBtZ8aAvI6sGZAqx45J+2VQOg9d9rMf/zNbJoagI0fGAIoGduzQAdsA8Ie8K/+CZf6U95XP0qWM6eOr57V5Ai+OQZ3jNmXBgCnossnomgc+/2BmbLcjBmkJbQRV7Ketpa6kL/4uOKTs2Dfp7BzL65lRwRdcoLROSVVVVXy8dEm8xVG9LQEAPOq9W3lZ+tnaUAFBL/vCYJMnpXcCmzwp6cJnBt7qAlgWoIAMJJ5vDb0Va1fHbGzgv/zuufjKPXdRGJ0To9iWYV0i9YA+sfRwPtMeIRvyg9nT6YM7pzTqYk5KCnRLPxf5cOu520jfnPRaLFu/P/7p239JTb/BeepEblujXQEh5yllPnkGPx09rE5RF0ofdZf8Kt2lv/RUBy6kNtTzv/11vLe2Kkb07MZRvY/GZf36olPY+kc//I4gmNkn3u88Oq/GUblNC1rk6Re06RidX7Rwjm8vIIyx5bfgGaXgEbb938mip0XLnUdpjWsG/QWe4Bt5h/k8ie46BFBduXkzp8BMjAHw2r0ADRdd3J5WeGBef+Ct6jc+Uz/+JKDBkUoGUz90KkXYZB3fMwxn6vn3HBXGl8REVpdWUEzuFIWxurbvwNE9bRMFNx3LVMEMikl1MyVzAQL+7AfTaaW4vv7QXVFRXp4Gy9XbGrkKi6FM46ajBSMx8TJUKlcUQYHicj+CKBNnn+jnPozmpA+mxEL263ndNWJwDBx0RQq4TKoDpBAUAQZBCW0nmooAGkzmi7EqpCokK9DXw+E1XdjApRJBefLVwkgNJC4ZfvOEqKioSETNvVnaGoVOYc4jclAOjTHYspHPVrBV5Bm0KzAY5vw+zzPjwnPQn5/yYfZ9zMCepEcODIEAlaiomQrbtux/ofyYD35PNqXtdMCq++77rqRJn3379lG5mhoNk6aHaFw5r6vHXRudu5RFawxe4QgWAEA60vRfKyMSaQDhJYIrGGAQpjJwLnTeVTYHWRHaWFUZz82cm9+9dcggnKzuGSjonGWgosJnpkqBhYZFYfezPCqHZ+aqlUqKPuskum9M9HnN6lXx/psTY2u2Tm2PO2+JTqyQuuKkshERFihJGjN+2xYIMPiX99AoSRsVuMGRysXPTdfbjWH4aNH8mLjEhKiIYX26xQ2jromWZEt4n4Y+jSafZUBF3+yfvzsbZ3BidWwdh06Ac+D8Zr/g4aqNVfH6i6/Glmw94u5rruI4ov5FwMx7Krs0CtI0n6FTR1sEuPQQAaTPrsrQrnTH8yN7AICD136ORVxInYXJU+dVtx7xtQfvjwoKoZoVdOEkFaX5pC6vxmyFOMvqyarlK+M4jt8A0vgq2CfaGoPWAMY9eRIDcf4Uq+kEvt5Ug4DqAgr/nGlwGJlabMMBbDiHA6WTZZh5DJ44CD/sZAvH9pMH4zALMQ1Ig6vfhBWGBgSfyTqslvBtpfQ0/HuM13YCwVX7TsXH+3EmYbW9ZDV4XTqAs+fLu0bH1q1Y6W8YjRirVHZLg4UzBaDq4fxqWApwrQjuNAg6vQke8R0Vv/vtXeF9oVqeRrZrEYNGjuaklU4pP/KKPOy8mRWkcXAGlNGUAcamMTaQr2tGA/UPJP9ZnGJl8SDA4uz5AHdrF2Xfb71ieAy8/NKs/izQcIKz509xwyFWIVZXruMozMn5vboAb/XRi43hG91syAQ/MT/8wW6Y6NAqogunQrTECa8hcXJs1SaJ/hb1GeRjZdT+wS/8x16juACQc4i3qw6fjDV7D8TOPadiUzVtB1V0ih5du0ULUpprASTt2LUjXp5e9H3CkMuiL0BDO1cuoIMpz543reyUQDVuAtyQQyECNJJvc3+2f1fLk7TcR2bXBvTYlA9mxB6+PYznjhxhinqLdDSlrSvOOp06P3lBZ+VdXayePY5htq6BulGnUfkzKFHudrA1Y+nC+fHWcssJU3tiyOVZd6OZ6ZeM33kVlLWr2Xd4pZSNoV5Qx8tP6UToIHDZb0FZ7cq6dWvjg1ffzPRIP/syuqZr5y7JH/JLBrzoPHW9erMEZtpeAhB8ls/wp6TBbsqXOvH7CbymTn4/JuMIefVt2yxuv/1zFFC7KMcp0GAaNtNTOCvoKAaReiqfDc3dTiXgm9uuoEeCtfC8/L9l27Z496lnY3UxrLhj5JVZ5KwJTqCrxl6uTtt3bYizyTt5bwaN8LwOuUGLlw5eHi3G79rP5awyPj15an7mP39GYNerZ8+UI+Wz4A1lGn1FGx5DKX2kk8JjYODc5GohNC9d1jrwxI+5AMqvz3EHLFuL2taPW255gGyPDmkXMvCBH0v2DjWU3K8+1/m1tpN1GpjYpL/j0W/wxB2r8gvy/IKgSKkxl+yOG6+LXt1ZWSfjzkxKaa9Dng4ytMlgmb+dV8ER2xNI9nkWh/WnNkQ5kG8qN20CxJho12M0W6IuHTwsOqGHXcgQTNCOSG+p7k95WfukPJxh7L5pf32OGXj8SJppW46yIubRbe+vWB3s7CcDaUx0wWdq2bJV2hudZy/52Pt95XZS6K6foMOvTUqAzbmlbUFw5+gIfssOMkGfZwHCmgU3Dx3E8cIGuzjj8K36QCfcObTfGaBwX8EhaB+ZiedJY+MadXSCYzxXgKaS1d050GUl93p9fszo6NqFwAjnX/4oVpqt30QGFffk+9BBHZ7bhxi/8uR8wzgJNrnfux5AwwEyJj5aTJHMDwv716NJjRh7852Amm2LFVzkPdP17T9+zA5s/XQAlbkrSr2hSdjwEl7N0cG1IaOmr3sF2wnbdmHhjLFj7TyeuY6LaxDSApGOPU+ske/Qhd5TAhr87AK2+xwNH6UK8z5SADdQK+fD9ftiJ581BOJvx7bAhtRAOrL1YGw6s5F3i+uLt94UfZAn+dDxpz8K/0li5V9fOPmGzw2e9ckSOGVuldkChCgWPMy6mzGbQplzCx3fh0fc9aXHMrOsJIcFk8GP0NagSH3rH/KcMizJS5f+sL5NMUcN2X65P37PCWlVhVqJezhJ4woWCawT4Lzry+WU8a+6pgBN8SOYW8enTs/FN3hHHaFu1qb77OOc1rSusjKenT4rH29Idv2466J7jx4ZNPqm/ZNnBMLk1dTttKUvpa+Ueo7vpZ9GR5TZzBSAbgJ5i5cti9dmFnxzz/Aro3efPglWq1cFGuyvYGACdtBdWyeNlSfH5X7/9AsZm2CEi4rK1SGC9S0ElS+//V7av+sqOseAgZdFc0CGzDCGL6Shl33MvtJibWjAB0k3syp9rrYj7RQNq4fdprWT7UIrVyyLiUsL+/cgdCkj2NXPNjvbzqVI0lf7Y2+Vx1ou2tJXQezcJqp88ZzUBeg1sxIOZ0BcFTNmvRsrd53NOj93P3hPFlfNeIw54iZa9CHqYvQBr5rVQXXGTcwJbxX6wq/ZB+WZX7agZ2Yvmh0zllXm+McOGpDbw5uhCzzNQh5PfYC8O0fyujGC9/s8QSDtu79r040J1Xm+tE+rVq2MX79b+Fk+4BH0ZO8e3ZOv6UZuX5MvBXEE6Z1j+cPnZj+hTdoSvuv37YPPakwcchSe9DSOV2Yv4BN81bZ1Y8xNd2dNEnWMR18X2ynVw/RLPcgzhMM94tKFnYnP/D4eY+v0/fjobS7qQCs+xUuKfXYv+BhO/hMub9aAuMIhsxr8FBeMD3EEHJZTPOS9N96MpTgJB1nNurhx07i4Vavcy3OayVeYdFjlUaQ0zjIBZ2UQGCULlaBcLuA86YCcw0F35bMBe5RVHiLwm0i3Wb9keRbtuahvz2iD8XaVXGRLw1liNJlOpj/hhPOoRqwO1IORcusGDHOWVcQ04BgHFZ2or2mJqxbMjn0UTuvap3u0ogK1yJxtiSTKaCoTFYNBt+l3GpA05ggDH+aqoyv2Mq6K2BVo0cfGrMDth7lmTv4AWlFhHoe4Ee/JuAqPL42Fjkq2x3cs7nIeGqtwVUAa8awpAaVzJlN54PDwLBXelk0bWYH7OLq3aREVBGkqC41xyXhbV8L7PMqqHo66aTyfsHJDVny+rK/gviINugokjQBj1NkSKV+3eEGs2ns4Lif4bt+lLAUoBZPx2q7HI9p/gz8N1Qnbgr4NMdB1+Y5OVAbRjE3l5FgyQOH9wzjd62bNS1Hrx0p8Ok3Sgpf9T9b1J+OEWTLIsbCKTk9jDRO/f0JQknyDoEsP58hnCvLs3ro5VmzcmnuV+143OnlGoEGlogLzp8/QTubLv2FSZpcVDJF+BqgAcPlDHvAen3lo/77YU7WW+T0e5Zf1j45l5SkfGknpk06qBOKqQd95I1N+0xmgNYNuFZ5K0z4IeLkHXeOyi5Xy9aSxbmf+G3P/oGGjo33HDrSDAwC/HTUQI0i1UKZVh/WtpWk6yrTVGL6qSx/SECIjtbjnHKsbR1YABB5m+w1tdsOwXNq5U5QTXDWFvHVxoj5hZcWtDo35DNEEYARkSKCBoA2goUEtEPcaxYqbs6k+OAmfHqL9HZzSUHVsT+yi8ZqwYN3mjaJRU7IA6gvIyMM6cCDVyODh0+diO4Z8NUDDMgpBSiUy/eFB+kWg6x7PdoAgrUiVd9vEaU67cG7lr/2sYK2ZNpOnR7Qb0Duasy+xMfpGmit7vp/AEj+li8Unz6fiMRjBEUM2Up74Ys49fKOzpj7w7y2AZQtXrI0yKnZ1GjiYdMbmOEHwFODnWXSTAZIAUqNGrKBgXE+QxeFLJzMdTdryObWsp8HWstN8/xAr1Fa8n8XeR6/6rJw3AASqjewY9DgfruW15eV+4V7lvDq1Qo+CwtMeiouxqGtp0n4Dm7Oewt9yrSuk6FFqSCTQgFwINGw6cirW7jsQ23exp7MaaOjTsi5FBztx4kQbtjS1gJ4W52UFnjnJjBfkv8hAo0/024KpJT5WD+4mwF+weGmUtWkefYcMzxUcnTIkln75/XQ/ku6mt8vzBjvSo6jVYf/hG77rQNSrWVsF+6L+2bRyaSzccySuv7RfVFAvQkfyGHyrnlSfqke8p6QPXKG0j5m2TP+UJfeG6ozrcGsXmNQMEo+ga7Ys+Ij6IhEDKATYBj4zONR+FDyjI1Y4LPbZgOk4DpP6oiHCYMp0OlHwi46fDpuZa/LOPrLo9qxbSdrpCVaYWkf3y65gm0ezlD+DY/vluE2t1Uact32emlkDtF+TNi6wKmQAB2FSz2h/1MXap52k/O9btxo9TQbMwH7RoUtZAgCfwFfaiXQe1Tn2kfttxmBcGhsEWfND2XDlOVdeoImOveDaIYD5LcsWxzme06xLebQgQGtGJpdZdupI9dkJgF71S9KVlUNr52SwSb8LeSq2RFj8VBqqw2xfedq5bWtsnLMwGrWqF606d4+WF7VJ8Flmtk/qer+Xupj+n1GO6XehJ9mGaJDL59LBrRsIVh6Tpp5P+4RO2755d3Tr1ZU5ZWsOwVsDglf1qW0maGL7ZBFJ99O0nxABz2byKQCJ7CJb+gLyusG4DCG/mUWw5P0Pcotnz8sH0PeLcVjNkEOXQ0v5RBoKTEon5/QCfou6RH6pyfsC6Mk38LjSYZ+KsZ+NHczrdMCyPjgHfUaNzgyenDvu0/fQP0qfhjcz2KBdGEhIkawNndpqu02b0l2e10Y5xwIPVatXxNJNO2No/15RVkFWCPfJ7yV6G+TbvqvhpwROuF+dUF+/jG/rx5gBKtBgMCefCT6eIIA1M27DylWpvwab/UcBQPePpz6g/+pj9aP+kuCk8nQa2XH4jZDnOrZF/w0UzUBSpi3GylRRp+tQ7N22LdauXhet6fOAa9n6A08mAEzbLnSY2VKHrD71p3Jq+44l94TzXk0bgg58PcdtpoWLRhaW/pgMixVkuKUaQhVpY2oy7dKVECbB36s7RVS075jHjNdlW2B9MvLq0VhmNChnOSfo4XyGNZRcGONmngu32Zk4x9iPATTsPQnQsO9oTF+zNwQa2LHOaR4tol371lHWpSOZDc3pLzqFbchNWAyoR/tmMHoqiSCV4JYgj3pkOwHsRhb0HHcrjpTsfNnl0QJf28wGeT0XT6BtCVCq4RzrK8IfgnAX8OnSZ8VqpMzZX8dPf03Lr0QHb9y6O7Md2/XpEe07AbaQVep3BVjzBADaaoZtptE4An+cwpapZ/T3GuDb64fkySPIdm4bw36qDwzAl8+cEifYT9IZnmyBPDVq1CRtu3ULDPSSj+EPV4PP0LcT8Jvk1OfTh9AK6herO5xY+5Wr7Hx3x9atFCT/KPte3rtntEbHN0EPCzDx1U/BWQEqTyk4SRvJO9gBbUhjdIrb+dT5yrNzzFSknVNm1lM8e8Hy1XEpwEHniu4ZJ6gzzGbSl8vFCu695E0EAABAAElEQVRPX4QHfgIdtNDN0KX19JX4nr6qOs9L3a2fbUaaGWoLJ74ds1FxE3pVRPvOXdKXlx7qpE/HKx3gY2lPsip6CD1wWv/DfhYLeuob9XURQxT69QALjUvmLEjaDOBo3yaAqwkE0RUzIOyTtvUsRD4Pv51HXvSd0meCHsZR6gHB3LPIm+07L4IvHsm7dRPbAtZWxtXN6kW/4ddktqL9KDKCoSPj16k8zT0nvQ95d+5q0rb+qUUm1ZslO+UY1WXWpzlEDLVzzdJgJ2r0GHo523w7JP0yawU96MJl+ofqKPqIEKQMpm2h7fP4ymZpK5mNGLf+nPGFNLfQ7r49u2LfxvVRv3Gz6NbvsmjBgoWy5mKIfKAdbEH9ChdCDvO3fGNtPLcC12NMjlHgzq1x0qgW8Zt9F+jbXLkhdm7YEPXbX4ztuRCLt+6Nn//8nzg29D6AhvZyQY4liVn922fxx58MNDhosxlkAJlFIyu44IsELj4lXXPVipg5ZWpUrgFhw3HtRdCVe+RgFhnVScs9X0YSKiNW1Dz6T8RH4+HKoyto7rOUkd2SIdhg2p6rJFZYnU016iacAlDB3r5eII8XkyarQrBfMpnCrZLXQXGFvVASqCXeM7Uymc7BMK++JyOYZuQewnns/99eVRU9+/SNDh074oS3wol0rbFwhlQQOgkqzYY4lyoG2xCNlcFKQISpUzogOkUqVo9l24Zz7l5ihWjI0KHRClRTR0z0UWfGKx3u6rHo8AiiSBefm+mhjoG/HYPKXgGWoTX8a9evj9lTp0Z3aNKvb980Cgqp7Ou9aXC43+NZTM1CugunhTZ07t0v68vfFdhMk0RQpalpxIs+5tjDRQtiOGlrPbp1S0fLVRgNmjTIPtJ3kXDHw1s+Iu/PsfGZAYPzYf/tmECAY7aA1dIlS3IOh1CzwNVUlY9XBs6ON/nOE0VIoa82mH7HtmxDZaGzotJRKZve7O+eeWtdCsGvDl275v47j1gyuHDunQP52baKIAmgCIWisyZqapVw+ymNE1WV3nzfMe8/sB/EegsAWCVAw764fMSIpL1z7FnfEsBnOBLb1jmVH+RR6eDqlnyjond8Pkf+kl8EkLZs3ZpZBzs2b8PYNI5B7D8vLytLebFgmKi22xas7ZFHfdFn3Ai2GzGHKDsITmvVqxs6UjzjKMDIogULY8Wzz+Wxd126d422ON+tMSwkRuNI8X1+1hIU0LryE/OGsRdkRC7ZOlG/JitcPEkgSbrU5f6zfPUEvLn71PHYcGxXbMWPOYPHVotkkMakONaBn60poFJuSD81kMAG1A04GUu3744Fm5k/urwbA+t166hRcWnvPlHepRPHIbbCedHBwpAyNwb4rtjOYevHKcCWsq4V0bFzZ05QaJMOWTr00pOXtHfe5BtfApbyildJXzCElFf5xeBXg75qDUVNp0+Prj16Rs+ePSiaeFEGlGfo5BmyQ+QxVw08ArMe2Ra10vvB4cRJPEstigL0chuAEFEt9p0fi41sJVqEU/4Ueyq9rGTfgOBex9YeIRXpOJbzsw0qoVsXXu3INGGPcGY0IPPKlTKdA0ugwXCpBDTAuwBB1mj4NKPhEEeH7tnHKu7ZqMRAe40ks6BXeVfSTznRo1t5ZhgUfIo84bWcZYxuCzmjg+QD0fWOV5BBOd+8ZUvMmzUrOqMHBrMvXx1pYCHAkAh+ypO6uJAp9aX8LN0twuQIzFjQSBfBmqmvyi/BLHKzevWa+JhaFmNuu4MtYwNSbxwmpV3dom51ngTPDHiVJ/Wwc2uRPR2Ski7KOdfhY37d56ku2MUcrGNu/c4IeKy8S5ece/WBvFLSO/5Mmuh88Z9yqTzkKrdywaUO9jIb4zgBwYYN62M12we1IV2wISNGjij2KfMs9a9bKnyI+iG3IgDuSQdtlXrA1Wq/Jw11XKV56iWeYYbe+nXrYju0FyTvympnr569sgii/Ko+0mnKMaBfvHxPeRGgcRVdmnnZLkPi88LB9R7laQkrwgdZ6W3O6nj3Xj2jSxeCC2yFY5ZebvHTrqnzDfgEUeyLn+V2EfpR/F7Ihw638+M9a+n7Ek6qkFYdWCCwbY88Vt4KuwyV6a+04M0MMHL1i7914OoQBbkVwraUa53VC8icsn0Iunmc2Vq2BHYqK4vyTmVkUlJAlgzCUvpw+giMN+sfmB5M0MTAsNEUk8PnOE3WEXFk8rL63dMpXLmVfrsBNWfPnpUB36UUvLyEk0EsPqntsL+5uMA8Og8GYAbuzSjY5jxqm+Rr9YGfS3cnyXHneBmLRRhnfzg9Opd3jcvYfpLHTDtHXAILzpf9SFvI366GyvPSwi0oti3faFf8nvwl3ygnpgivWLUqli1aGEOvHhW94Rv7bVvJW9zjPMlvrgRKpyZuZaB9+UW59NhvfTJT0w3gMQnYLFahoZsZkmvJFhOkuHL48Ew519+wHf1FHgL/aU8Jkn0O9ztuee6PAxsdeQEqHkCxuxbYgjOxfdv2qMI5X8PcyjMjaL+dGbK0mWnv6JMzAHPOY75ou0Qr+V1/ILcZGkz7RO5z/pXaTQC+k9ne+fr0GdGcyo9H0XccLgRvSfXiO1ipGNMZoKFDe4AGto7UpG4OOlcwPoEG24Mnz/Cs5EnG6/GW9bQFycvwNDRzQeoIBnLPJ+cBGg7HjPVHs0ZD/RqNAX66csxyrxhOnaxMe2ebXC0zBwmKzkJ3a3YI8rhdzK0kzq1zvg5/byV0OQUIcXHHDtGXzEj5MreFQnvlwiE7p/4iP8ozAm9mW3mctSCG7RW8SJf5vsG4+8g93Wsdq8LNkfMu+E1deemzqgtKfKWdlU/0VdW1XoWew2OgD4WeLvwsdXc97IC8twMdPOPDGbGfI0m79+odXbp0iUuYV31ZxwNRcx5zEY57BPLsm/PuHGZGLfyX/iR9KHQzcwxfOraNmziNYd78XLCp6NYtY4SmBI0+3/sLQA1AgD5nli1jlkbqYGmrPKinmMLUb+p59ZyAr+NbunxFLJo9K/pSrLNHd7b+CMgCHpfA5BIP+lMdYDaCdk5a47Dmwqh1JRIA4CElWXRrlVsiZrJ9t3L1qrgKX9uacvbTtuSx1AHVeqmgqan/Fv88m8UnpUlJN2WcAG86T86Fusg6LHNpvykyPmzYsNze4viwOAnU+F3HcQH9ak06j5YUzBW494QPQSprPKiTBRq8nBdX6l34Wr+RI3KhzQBqyl0BfRrph6ub+L66L20qPH4B238BvSBIqA08A+1PEpC7+KOeUbf5kh/1nffjt27FHzZb2iyTy+l794qKpIs6Uto4Rz5Dv6Jhw8aZOSj9tS/6HRZZVhfbX+2afKvNNJOrCuBOmXIBy8WHKwZdzmJMu7SbZj1KPxsXeFdXnmC8npBiNphjSnmnv/ogapvGDdj2BZDhvHnqy6q1a2PNhnWc+oYPzoLZpqpV8ehffTfuuOtOAMZLsm1pKR9+lq//EaBBxnViDC50IhUUGd/J1E3egEGbiwLZWlkV9WCOy3r3iZ7lXVkZJQOA+zLtmeBNh9NAqWGzJuwHInkRQdQ4qRRFb818sKqpR1S5X6cpaKepTrNxVKZ+8EGeNd2rX7+47LJB0Z7UMwVDw1c4hir/wlpodL10MhVAmoVVCqcxf3MsKACLXO0l2J005YPYgIB7NF0FilV03oKOGkbHqaDKyCoMV6VcyfIzU3w1koVTQCDGeHXKdWJUWjK1jPziyy+lkI666qoiKCLwTGaEWVWWggiOQ6ZOBxpHNPvP39JH45pAA89UkYsYG+w47iU4uO9S4GoAJ30MuRx0G+TNlGO6mwGijjRhCuAFJwIwJufQMSmgjsu2EiHmJw9JpWMgptAoiB/OmR3zKRB1E5VtBwBm6DTo2KSQSWPoa3vp6EB3hbl4pQymsiuUgYrP9TaDO8bFeHfv3hOz58zJcV937bWZ/qUw2/mSYynfaeQ0VCpWlb60d25t19/9qTPn91Qi8lMe57l+fcyj/73Ye3fDaFZFcJDd/+c9f2wU7K/vGchKf53mQygJ++mc57Ohdwlc2UUK7nraXg3f7+b3a8eNo6DQFSiimkkzZcR7SlcpuLJ/Dk6esY/SwmdrxByvjqZgSlXVRo4H/JjTMLazdaRpDEG5dqvoBtAgim39AMbOTw2RIEamtdJabq+ALq6iKaOu4tXB+WkK3Y6zojt52vSY8uOfRM9GtaKsa49oSRtNLwASIcP18SJdkXBV1LbhsgQRMpxlfmsCNNRjhV75lN/pdq58YSESpd7HCRSVx3bEJmotHMUO1bw4WN29mMChXhwDGBHAaILBr10P4KFO/dhznPPVt+2PjzYeIJCJ2CnDcn2Bgk/D4OM+Pbqz8t6W+Ua5Y4RNYXRuK6HNO+++EycwHr3RM90w+B7RaiCqI6LxLIwD6oW5E0zUMEtjg1l5N+emes7lG2nvypEytojVonfe5KxjQIZL4Zv27XE2cVbcLnHabSjyIn3Sp/RVlxUo/sTYoYsAGooMH+StgaAe9QoOHIzVgFIzF30UP3vqmRyj8y6MCRYTTbBV1B1LO6PYNyMbpGPLRtGpVVOOWkPGGRNKgPlMsUi6FzUaSkADtGZOcOlxbAqg4SA1Gio53nIllc537zkf6/U5ucYBMFwKUDuMzKp+/ahS3bpV8qDSztBzfMfRw7nyyDh19HRcpaeB1Fqcf4u69QTQvHbUqCwE675qdYqpiIVOKAJ1ZUFZ9f4iWD2e3ys5T/ZHfa0c+7mB0ccAygIZE26/I4axv10ePoqTI4+XgAbn0ecIYKi/De68X9DXIMd7lDf1kd/z+57m4xG2S3DQ7e9NN0/IdErHlen+TIhymErTjkFsdaD6QB6SP9LeSRO+lnqMX9yyoPOzfCUrx+wN3Yaur4A216PL2uP8u6rn87PtbLbQMdaeKOkHdcFhnP/kQfhUm5qikH2qyfztjqVLl0Xl+nX5nf44cYN4ub899QCyqP7zsq/qMekqXZQX29VOaWccj30p6Wvf21BVFbNmzcysjNbYvQEAPALKrng5Vm2sciOtvNeCYwKiCT7hXJWcPZ+TDh9tGoC7SGC/PiZw+XDKlHTgK5DV3r17sxWwPd8qdLzgtv1R9nxgbTLhMliS4bUX8L7875xkh2j7AnrNRYoD6OgZ6PeP2U/co2ev6N2tR5RRY6Q18po+i4Eg7Rr4utpbG6ChGUcumnKbe3XZ5nkep1mdZjCibjh9DntG5+TnbTjn71JPw+y4q7DdnVmE0JmXjo5NejuP8p00lifNSvP95C1ol8Aj35V2vuTJ0hy4TfLdd96JsvKuFI4ciuPZKsEhGUC9pFxpD6WR/wnsGeDpA5jNaZCe8yLN1Unwp4TVlzgCTy3EhsybPSuuGzsutxbZb2kt7e2Dfbc/bmd1ZdTFiLSftG3gZfBmoGCQmmnN3OeihECD2w0/ZivHkWNHY/R11+XWV5efBGB8QdLsu/0qyaI+RV7MZc4P3xMANgDky9EIv9C+bEaO1go64veVl5XnkYkd2+H8c588Jt/nNo1cAocXkHXny/HbbgE04J/iQ9oRs3sSaODxa+H3lzni9Nevv8nWyLpx4ATzj/i0hnTNyHyvBfLr3716snXikg7RFJ+uDtkMggx1lCuaNCjSLzmbwVzBm2YhCDQUfWT80EygwWKQeygGWbl3f8zYwOIKBBCwL6/oHkMHXx43jxtDbZxe0QjbXhOQ4Ry0Pw0vuVh1DpvTDB/S/eWl7CbBo48WLAAkOx7tunSOKziFoRNbAUtBtPRmctO/UI+4jUE9Jagg39iuAEb6eHzP/sIEGVgegGfmUD9tOXryIhbytK3deV3cmloSfMf7LfiqX+Q2Q3lFHSzdnZME1uB5dYFXCQATcNav2rx1a7zDiXC7AHv6cxKAwXpn+m4GklX7Yc58jmMQbJT39aXofI5JOVOfpr6j3+qvzIjGfrnFZA3yNGPatDzprC++altADOs5+Hy/rQ5IuZJf8In0C6RrFpXUH4MeCcBUy2jqNGRXOVEPWrtnGvbviiFXUlC6X9Ze069OnwOa8JBswz4rMyX7ocz5XGXV70pLL3Wo9G+AfTMonTh5ClsO18bN2KfuFeVpx5Lu9CF1JO2oW2zXl4CMc3JYX5XvqB/0z/O7/C2dfKbztWnL1iym7iLq2BtuiLaAvco3VCaDhqAcXlafXKiDPBFUW5vO9qW3QIN6IItJqq8dA7Ryfizuv5/adW5RnQloetU1o6nHNJItoPWT11KHSxfnkO/jZCbQkPUL+PusOswgnfbkI/srrTI7Az5wgUBf2y0R1hy5fuxYALq+SUO/K/3kc4ES25An9RXUOeqC4/CrNtrvSktBOzMavOcwPsfayg2xHJnasX0Hvl6HGD3yarZJdi5iIvviM2gngQ/sjlvoXYRRv/F/zrdzamFx9VtTZLUhPq7Hze7D91vMaT4eF3qcOPYQdnTvgT0x4YEH4uYJtwCEtacFe+Jla5/d638EaGA2/296QOwMZBAmOD3WrVjJ8ZZTE2hohLG9ov8AVs4qcgVTkfKsXgOYo1R9OwaxPeakNsKl4BuoyiwaBY9SMoXmLMeEWO3fYkSmhM376KP4cOaMRNh64ChfTlDXDkdO59JXThFd1Ahp7D3aR+NzhKMyDegUTpkMPsyh6NSoCAQC9uzbl+ear/hoEQVnRmehuNLKhYG4befxXPRRpvPvkiOkcKfhpmEZW8H0bwGVkmO3vqoyXnzpJSosN41rEUId0DzqjHF+6qxwr23bV2lhW74y4wNGFGxIxuY5GUxhgBrqlDIm610889vf5arC1SD/rVAkFpTSEJpimCAFfdbxzyCe3+Xt7De/1sNgiChXEyaNqMrBvh0wOGV1dy5Aw4MPP5wFbbzPviYh6I/tqqBN9Sxo4QM0YBhgfup0+tN+q8xScTKnFpqzOv0knFAV/W0c2dWtrDznShqo9JI+0Ela+p7Pkfa2Y7ql86rjp5Oho5RKGKNiZVkzDpYBwnw4ZXKMRDndjvJuxBwcAViybS9prAFUkYi+alBUVH5u1WPH43vOa84Jz/HaifJbjWJdRmC0ZfOmuIWzqa8aPiw/O0BlWgMd26HbaVg0wir77D99VjFJH/ei+j2Nvy/50ees38AJHosWx87tu7LewRVXDs06IPKAQIM0zRcykyYLeqCd81UzjYBTjJIl+K9FTt0lbYj6GZ9B4mt/970oo6fdTM8DWb4Y5dmQRuqwYiOfnQZ4OM1qkZkMhi+m0OukWOCGsCt5JyuM03+BCbdzmAZ34By1AI4fiI1HUaZ4U/V74aiVd8/7t+zYxjYZTmDhOQC+gIwd4ihpD+tIJ123+yAZItRsSOpFfPHW2/Poz/59++CEdEhH4jCGzMKBOvEGuy++8GICJ5cBSHh8XBcMg4CC6L4ORxH0VDuA6hReplkbRBu0SnOd4dxaAp+r6g2e5K25OHG///WvcLK6xRCcuIpyUrIphCQ7n2H1y5U9/VvBj1MnyVwy1ZWXGQ2CDRLI1LnGDQEaoNcu6jis2rg5ps6nwvWTv+U9bC0v8x3aAvi0JW22aQMBOmoW1ORcc2jdCiPftik7eeuht+if8gj7c8EAPpxneOoEbje/Apryfm2P3xRogE4F0MCWsN0HMGycClSd0TBh0GUxuG+/GM45zv379cYhI70fvmDqmWMdLgp7Hj6ahjRXNJAls5eU92MEFCtw/l+lWvvlBEUTCF50YjXi8rWrCfZPOVXXC+Sqj73X+VCWnAedAHWT76dO5rsJ7JF14JFdM7AjN024lZNHhqQza3aRQbMgo3KTadM4O16l4Eo9YXDt/KkDMnuKCdPp8tmCjhs3ssWM/ZXWe7n//gcoPtwn5TwBP/rvGPKibfumbk3gj/EfYaVP8Fhnye8Z+KkXXC30/qXLlsdSsgL2sG2wK/x4zahRWfhSHaIjKDjtfeo5++M0pq7CVtlvj0F1LE2xdwbBOrVMSeoCVwEXEnCtRNfo9A0l4B1OZlxL6l0k0E5fnUMekE6ztPB7OmoWt/Q7poeqQ12Vyf5Df4E1n7kOeRLEP7h3L9uzOsIX/XLFyFU258yXDrGAjHqsFDQ4jpxD6C0t1FvSxyDX7ytPPnPeokXx5isv43zViz74BS4SuFpnu+pZHUR/z8s5SN5B3yhnzgW+gMepudqlPcRw56suMmKR4EkU55o/e2Y6//17skravkM0ZyuVAb5gtu3pZ2SmGfc2a0UxNtoxYLJdneyspE4HzLwSvnN1XT2xiZX1F+n7cfyI8ePHJRBuRqPBiWPUMc7gHV4rVioL2500pj3nVrvosJxv7a88n6udvLcMB/eZp5+O8q5d47prrkmecaXVLsj3SRd+l9tt0+fadxnIz4pXsbLr5z5IW2bfjrKSZwX2KRRMvQP7NAyfqSRDyp96IwM6xuD37WdpFVFgyWA9M7ewfVaDN7j2P2kqCGEAMGvunATab6QYnfWYHJ82immDfwud5bP0t3g7aeBP5difBqvpD/C5YID7vF0dNaNhLdlH81mBrehaERM4KagDflPyC991nHBNpmy7hcJ+S9+ihwyNDqRO4x2HmvpAP4T5X7VhQ/z+xRfiCU5LAFfIjDJ+RK+L0MfNCLihXw3cgw7sv25HanMDAQDAp1rONy+3WeQJXbRr6nqhf7WfzH3+ych5aA3G5lHOZjRkMUhA32lrTifQ4PcIQ6k/Mj7uZWXzMoLWBuh9jxQ+j0wYfLlFxTn1NLMEy9EVgr3LVqyIhYABJwiSOnYtj2HDLT7cOYGnE/idzqn0UQeUeNQATF7RdOj3pmxV9z3fh6caATIdRF95VKhAhpm9ggwVFRVZtDJ5Gh5R19i2sm9QXlpFl8b6OOobaaLPZD/sg7rBTK6NW7bEa2+8Hju3buXUjcGcyNKLE5Ao2ikoCb9p57y3AKuYYWgtWJHMwu9ZEwN9YV9Snvjpf57I5k9BmHfefCvaApgKxgo06DP4fDgs5yVtD30yYNQW+fKZ+vKOTd7MBS10mrrUl/RX902bNTtee+H5GHXtdblqb2aW20rsi3avtFio3dNnyu1nfJaZz+gjaW/b6l795vw+NLPgpJlrr5HxaCbPQw8+SO2YbjlOhd85Kmwco+B3hprjzTnhCylP0Eld5Fz7fH1kQ3D9Yu+twk996ZVXog2r9Xfia7eDRp7AhwSyJRZe5fvO6zn6VZOVj/P4dUkr55q5YRagM34w45KPtPfaVzMxdu7dE4uWLon3OSL+znsfiJuuvz4D7U/wfZKP+b7slmBf+ov4UtDffuZWJ3SQ+sVLsEpAySLQ+ubbKeC7AiB/MTGg9Y3uuOceCvgOTBkXbC1sD0AX/fTlg2xJ/8MmpYP085LvXQBO/cvvR9A1lZs2U+B/LQWmN+DntY1x19+QxVLtt9s6kyfgF/tvhopxqzZFP0T65Okw8L5+EA50yquFSevyck7nEVfOW7QQX/wk2y4o6nvscIzjeN8x4znJo2Pn7Bc9q/752f3xpwMNUtgLov7hp7/zQojg5FhHQDeDgHF71Uac5oYxlOMee1F0zH09Vk3P1CUm6RQGTASsBsobzyHTbgUaVAROmMGz+61O50oDqUCk0sElFIhaGNNnfpiOandWRK7AaLbF8Jj6KGKlkNs/BUohds8ajWYwYgCnAOqEyoAKXxrVVK7N48C+vfHia6/FUioXi5aZltqGlVSPddKwmS7ovi2FSyHQwcrn0ZZKUGHXwZKxi0C+UJS+77gyMHrxRRyvpnkUpoUdRZi9dLA1tunUIRD+rYPhM3TKVVQKp4Ff8QzTTREclEcjHBLbn7twUTzx7/8OSHJtXHs1BdcYuxkNCrHKMUWMNhJwqBY4lbL0UimZWeH4kJpUYpprf1d5GTR7tvbc+XPi0S8+TgHDAYk2KuA6UY5fh9Z+GLRpfBS+Yjp0sAoapDPB3PiBDqNj0DHbtn1bvPXOu4z7VNx3z915ikTuM+ZzUzdT6aMY7K9zWwQxBUAjrXS6TOPV0fC7CXow9k9AeDdt2hRLcM6noLyv5ziwu2+7PWpgdE6jFDXYKiCVpVstbNsKzP7t3Kic/Y5gQAYvjE9jomJ1Hqyqv3btmlwhrdqwPm6jguyoESOyf66eWpBOpF9aqPzkowxeaMP5lnaOxVVD59hny6cGbtLSyvHzCEy3btsRjUhnHnb11Wn0iznFOOBMKCd0HI3NPPCzJkquFmMyxY0u4oiRqsXRkzVqXyCLBqCBPnwIYv7O33w3awGU92CfIfJ2MWCDhSB13T45x35ZAmZNVIaxyS9mRaCcCURV4WfJNjqJEjbrQeBA5YsGj8OMaTuKdPPxfRz7iPj1CFIvy/heTc7brow9W9DPxFiNKULQvHVTajs0jC3UEdh8iDTc/WdiK/Ll9YVbbucIxiExaGD/6FrWmedGHAQc0th7jvS69RviuWefjZM4/67m9CYFU2dFudcolAxLBjDMXymb5CSfCU4JMliDRdTcINHVTvlTuamJEZlH6uWv/uvfo6Jb1xhGQNetols6LgpSATQoIRgWVn9OAJyWgIYLADSGKcqUc1ibUyr0uvcfOhJrAL0+mLcgfvBfv84xUq8smjDeLpc0jXLrJXC8ZVwgte88ACX0b0Qut9kMjQh4nFsDLmVK+tM8P5ghX8ySHxQZDfCDQAN0EGjYsF+g4SBVpE99CjTcNvjKGEqWxvArr4i+ZDQ0JRA9cYwjPxhbPYpdnjnt3lqr6wOG8HyDSnleWrkvOwOjp34fI64ZTaXrCThxFP1ytYMuKSf2RVkqgikCZnjOoMVOq4NzBYmfyoRzYds6Cn5PXbNw8eKY8QFAA1ktVwGuaTd0xgTV1DUlhytXeHmWfytH6hllX0BC2uvw6jiqQ3XM9gImCzTMAKw+CN888uijjL9vkaLsSoT6WweKcaRuQvfo+LRA9miUo+AO5Qp4Sdc7FY7HNFQDWvXMUvq+h9NFKuDH0aNHZ9ruEfYkq0tcRZEm6iz1nrrSttQ9/pRvDaIFHs0iMR1VIZZegpry5HK2sKkTR9L2VSNHYE8AGqCttJRGNJO0lP91gtTrbsGTtgINDk6nOumIXPi7tF+LPE0BjD0MjToB2F1KZpypqcVKH/xIw96j/kpHjnb823k2ILAN6awulvcFJAwurK7uWOajx155/rm0V/1pexDgoM8REMxth/y0z9LHl1ztlSuL/HrmOLaG8Ulv9bzbJvgwT97xdJK3AU9nT5saI68exRGkfVmFbp90PI0+lS7ymLbP7JJz3NqIbZuulvpsdWVjV5+Ye8fm93JFrx5AMXZg07Zt8RS6xhNYbrvllk8Lrtk3M3HScYVH0z4xjhJN7L9j8dLfkLf0DaSb9kOaydNLVlC47Ne/jgqCinHXXZ+F6HSu6WbS2/bkdW2PAWTyf7Wdk8+dG/k/5YDv+bc3+57BzYw5c+O9N9+Iex/6fIwUuOO5+gS26z3OV/bJdnimvoK+kXyqPdXH0CdTMvR//OniizxvNuLUD6enDb/jzruygGGCDLZUao9+aLMy04jnZZ8dG7STOvKofOOznRuPvztKvwUGN6xfH3NnzoryzmVxK0BGW8BeC8Ta7zrQ3GfoF2mn0u+SaPaR9wWA8MZSL9KFtMPyTA34x+Mt//vpp+K/Xn6FG/5wjexah+MtWwO60x4AffPG9ckmIPPIjjK3Hm3pCy2bvCl0cpYBS3NX1d0j70iyyJ5zoZ/DvB0FaNjHUc6Ve9k2sOZCsXWCNtwyd/sNV8cXH/1CXMHqvvb79JEiWKlFp114k88MTv2pTyEAsWzF8ljIcY/WrulQXhbDR46kZksXAjp1KrJiH7hf30NaeWkLU0fwu9m4nmaV2azMtfxYC9mqj39qZtWU6dMBGuYD3ndJn6O8nC12yHLSlvvlZe9N/4j2XR02jVwZ8JklcEOgzr/V/8qbiyibtm6NVzna11o/V7AdtEePIhuxCXx2/nSRPUPnIXexAKk8Os88NOmsLDk2fe3kJeZW/e4CpX7lUkCYV/C127drH1fSvtsyBBrkDxdRtBEMOLOkzZRWHrJuDj6Z7KM/IO+bPakcSj9fZpQIVnqi2nO/+U2MnTCBE9suTx1nhpE+nZe+u/rPRTX5wtOxfKap+9kusqT/4fYM9YOgjLra5+1lO+5Lr78RGys3xBcfeyxPZSnJqTpAujgJ6srUM8yp7ym/qR/ULTxTmqfeqP5MkE+abdi4MZ557rm4BADp/s/dlUDDKU74M3vHreoIKjoHHwafQ6DhNPdJI9tSBJSn5El1Gc8xYK+B7Kpndu3bw4Ln4niDBdWHvvilGM8iBMSNs6w4ZWFjqGvvU7/wqLMok5PaE8ZuO86fbTqX0kT7bWFnC9nvhFdWks2wADtiJvG9n38ohgwahH4iu4ZnO4dp8+l76nDeT75nzPKqvCl95E/nWBr5qo08nUCeKrcANKxZG6upv9GqVWtOxBkf3cu6Um+BueFznyO/y9f6ug3IYNHXcfuyz0kbTrtutTYua8hpcdrW2tgPa9BZ3HjewgVxBDnwdLbjFFy/4Y7b44axY3JbWCKz0v8zfv3PAA1MWjK63JIsww9njQlkJmIDQMNMgpgdoEMtcG6GXXZ59K7oBsqLE4Vj5T4fmcd7nCyPJhJo0OjpxGYQp0JFWNw2YRqVKZNNmXhmM2bNnxcTJ03MtEG3Tgg0tCdg1+DpSGkE7V8CCPTJPWkyk3tz/TwnHob0O6kMYR4dkCakUVoM6xVQ1lU4i6Mx9t0x+p7HrpPrdg6Rvnr0TSOrwH+6SqFxgeF8tEyo0yXjqdRk/kz3RYDWVVXFCyi/+rx3zahrMqNBJ8ZxWdxKJZOr8tzn/aX9YiLCeVwM4nmSfaOpUARofCD9aEwbKvD5MPKT//EfcdVogAZWu1xJclVMBZErz84TdP2Dki4URclZL61UZEFI6OIRNqaHK/iHWclzP+O8eXPiPs+SJ2VJI6BB86d9ctVMh9jn6YxKC5VhyYGxHa+kDYJfHwPks93TtGXbVs6VfS/vu/fuuwskERpkOiXP8J4McqFNjlv+oQ3nIMdGuyLEKlIVlLTPDAFAgp2kva5AQU15990YydaGOzEODVgxPEbQKo3to860vGHfXaXRWGWaITzqs0vIuiRP5cQcOudW1TdwWYFhq6rcENfffHOMGHplzosopryjAVLxabzsl/Nccu41Oj5PYyPvO17H0JLApQbfW7d2bcycPSePSGpECuOYm26Ovn16J80FJNzqYsaPab81ARoaoTTNJNJhljcuIG9mJlzgnEprBFot+zDGYNHsubHkJz8l0G8Yl7S4OC7BULCIQzDrVgy2NvHSkW9QjxQ8eCArpdNe/dqg/gANnPoVJ5DPE8otc6DPb0YDRAl6FXtx/Laf3BvbDpLOhy/YmDgNnAEawIJYmYb0hfiV/XkcJ0dGw9bDp2IrgfARtlFsKbIt475xt8YQ9MeVgwZGz4qydPQO7tuLca6bvL2+sjJef/W1XPm5FEDTFRezhIrAiKUoJqvgOZ0S+geNdabkTdNLDYo0YNYW0EgakCovAg3KrMDd07/5FanYFTEYZ6Izx2y2ZC9msXVCkMftO8gX7Z0HmKmNYa6jl+laKDRPk5p9cF/n+TjIM6rI3PlgwaL40X8/xfdI0yUmb8J4e5S1pp5Nx2jdFEfrLODXmWNse+EZ0LEhPFgP2bE4Y1rovFMjyS8qvAQadCLQOTi8QGHoY0AstqUc4Lkeb7li1wFWfU/HuuqtE7cNGRHDBl7GFqtLyQTpjtNZn/2dB2jOwoas/HC/spAvxlKTuXW1RVmRF8xoePapp2L4qFEpTw0BytzCooOQQSLfS0cTnlYHqns9ScftQMqDQYX6V5nwmGP/1qFzLqyVs5iMhnmzZ8ett91BYHRlyqMp6UUdgCITwOfofPtThy7nj98T6OWnNsb+K0+uDjv3Hju8ddvWmEXbroo88OBDVBjvHaeYG1cilE+DxnR2GIPH6UnzzGiA7wQCHYvPtD2f4aqIp1S4Mu6xwR9/tCi2Yf96stoybszY3H53CD2hDlAn2WfnygBO50V98mlQSeCVepM+ZxFH5r4OesktFnv2UlsFHb8aXWO/Bg8fTpr9sAQpcx83/TKQSP3EM/zpJW2lu3yvsy89BDP8qV5L0Ic5Up6mASYf3r8vT2MZTNX4Xj26p93Tfio/Bvle2pBsn2c4j7ZV0IOgizH5LPWmOq01NlT7tJC+v8MRqk3wC3r36Rv9WL1164TfVQcW95ghIpgrfxSOscGVWxoEGVwpUr4t6OcJEuehTwNo455ygYaZH5C1hm3t36tPdGLFrlnDxkkr+yIPOL8CjWaD1ZQGjMXnWgSyMY6hdaTUBWZx1SJToh6FXi3Y6mra088/H0f27Y8J6PguOOkGVpJYwMifApyFI5skSprYvrPgz4JO+AbQKn/nXefF8S5bvTqeRp56YVdvGF1s7dM2lmymLUpvA5OSnLhtwecl7zgP9F0e05fSaVe/ycsGgrMAqIpVxntjOIGXNFXWnCt50P75LH0hnWf/Ni3Yz+2H2Y5uy0uexd4gXQkQGbQK3gk07AJcu/fe+ziCtHs634JkJXBe3nDMmc1Ie/YbAhH0shecv+1vyjFznqfZQBODG+uybCEAMKBuT3HS8coT+vkQsitwof8kLwsylLbFKD+2meAPK68C8TVx4A0v7IMggydVrADAeOLpp+KXr77KaIqrDpM1tl/z6N6WbUHo8loEBNZckOfyRA1ojAHIYF4ayKeGXxmCQWufWc8sGO5R96ivpKPHQB8B9N3H9oyNHAc7fyO1iLi/JY0coMn7xo6Irzz+5RiMzjh1jBVPvlO3JoFXHm2NPadd59YsEjP6BChXwTOLkSmPY23TsUNY26pLWZdkuFPwQGaj8H3lX+BVsNgAMYMm+panEtA3gWN5QDlyL75FpfdgC2bMnpVbJzoDBppNIuCgX1Lyl1wUk6bKbrYJbdT/Xs6lc5wAMjpDGdOH9O8W+NpuRXqLrUIHCaoHXnZplHcpS3CtIf3MLUy0Ky3VK86r/8mT6iBttJe6S5nQHy8FgUXGR71YunJFvIy8duzQke2B1PwiRnAhSj7UTkgTdZIBrlt0bFsAT5rYb+2S40ra8V7qN57lIqEZG1NmzIiX4J3xAOEGu1n7gjaTx+hXylW1Lk7gmzbsq/6en2kTMzuWZ9m2YLt8q//vtoBXqOXm1omHP/8wvk9XbI4ZFtoK+gk/63soryVeV8dIm09pxrN9jmOlU/l9bpBsuYX7+RdeiEvwZ+65k1NZ8Cs/cUGXrIaaLDBcQMcqJ7Xq4+Oi/wQazAKz/wIBjlG/E8ZOGbYfPvsT5NWjGxdjA19/6cW4674HYsINY/ALqU+C7XIhLGURne171oA4j4xZQNJF5pQn2rH91A3MjXMvQCQItJc2KjdsiEVkNLgwWWQ0XFrwFguKypsj1C/3JS0cvDbR9pJmvJdzAz/KP/bdovyn0SXrN26MpatWJdDQonnLuPGGsQANLJApw8ie+tW2vL8AGoy7qrMO+UwdAanIDiFewbbrN9fjdDJjN7fDmOnxEa9DLOAcJqvBLOMxd96eGQ0XtWlPX+VCr2Keit8/e//+zwINCJuTl9whA0NUZiE2LGMf5qTJsYu9de6PHHHFkAQaXIlzZeEUAqVxEYk25VHUzJV605d0LBLxh9DJyDB8DSbMlJ56KDg4KmbOA5l//z32V7bk/OG+uY/UzAANoAxgnxRcQQGnqzBoLuIWiFzhxKioeAbfE9xQ+TUi/fQwSu91Vr3XoqRGXj2KwKVrFoPUuKtIFUDNlS8Z1GelsoN5NXZp6BUOmNG2dWpUKDo4BjSVVVWhgGs0RrEyrZPVGAdVwdJZsa8+S6Pr7xoVARSVo0UdCSeLjAYEVUHy+RrUBBr4/vxFH8Xvnvzv3BvlWcA6dLkn0X7iOKmlVAjc5a30T4eav6sFyJhFurmVweNZDIhLFabdwzR11kxWpebFLXfeAdDQL/ugsTewT0cOI6Vzw3CyX9LW91VQggLORz6bPruKI8rrs3WYNrPSO3HS+9mve0gnKsOonZOWCLnzegGlJs2li466Y/HZ6Tjwezox/O2KiUZN2uuEqNj3kgq8BqX94bRpMQBg6iayVVqRIZPBpTxDfzSM6Ugxd/KKjpgIpT99lgo9UV6IZCAjqOEzLGK5adMm9o2tAnCoimvGjMGwDcn2TJcu8YC00FFIfoBOOoeORUcti6PSZ5WTl3Pb3AweeGrD2nUcozMnVq9dEw0wCBNuvz2LTcqPrmRYMFUZOQciLdDgqpx74pjo5A+W3pEtHEOOmLRG4DlS/PeDDC/GcVv5bz/PqrptedbF8FhTxnaBgPkMq+knLlARGSXapEGTqK/TT9/xpqARsoDTdACDdICVh+P029NLEI5UurVwjE4Dgh2lvT1njsbmA4djJ8FtDbKA61OcGp8997o2pp06nMZwHtDi0MnzfI8MiH3szwfB2Mo4vO656XOADFfE4AF9UPgdSV2lKOmRQyhvAjv2Xayv3BBvv/U29ShOU9RwQNZUaUdwIc/m3lyYXJ4rXUVwyIpsziU8wveUW+cmedjvw5eu/ipzC9hr//rLLxCId4tBl14KiEEVfgAqi0G6tUA+TFmFd7iNS14nQOE8whrQMp1q5sYMkDPoDo+2rNqxKz7gGMwfPvH77FYb5qQR5OvTtXX0o4J1m2akjp7B8TvtXkhoSl89BYIm+Zt2+Vkg38qyrMmcmRusI2b/mRuhUHKPARpIKRdoIKNhxa5DbEuhWGGxUyhuHXJVDB04iEKOZJwBNDQmm+YQ6efKmeCSBlI+PE8fTmMUnXxlVgHV4THF8Plnn4nBw4bH7TfehLFmTzU6oiRLnxpkaGM76kTl2JVoQTblVbob7BgY6dCph3W49gPQCTSYFnz7HXdlRoNOg3pC2U59UK2/pL/t62T4jHQ8+W7agGo9JxOkXuKZ1lsxaLTor8fh3X3vvYwfoAEQw1WR1C/aMu9VF/I86V4KIn1O6hz4Q12aug26KM9uq1i5ajV1FJbExvXro3v//nEjwGZbeNKsl9Tx3ONYfA4tpP6TR3UeUz9KF54pgGvwVCvtJJk3zI8BnfVa1hFgCJBaGHY4TrTZD0cZV/YVXVXieYOgdH6cPXTjpzTJ0fleAaAW2Sq1s+bJTDI9DrCK3LbtJWzLGJYpzRaW3YeTp/w4d8pIodN5Es/zgcmW8gZtquecW3uinsyz7vneIjI9Jr83MbcO9ujZEwCvZxb200ZIG1cBpW9uj4EffN+XlsNXLdi8sNzoe55pyq1gqPv5D8F775KNMeODKWwdHAHQQHZTO7ZONGoCkM0igXMIeJhBqf3k3uIIRhrlM2XGtGEGUIAeAhE42nUTaGiSRz4+h+0+DB1uHD8+t3y4dcIMGG207asPtBfSyZdXyd7lT//m2SVbJa3kA23ESvT7K2xF6mEWDNmIbq+U//JzBb36kv4C9Nq1BMZ4juCP9tVn6FvJP74nz2sz3Y4zh5XpKdSY0H4MxQZqh7SV0juDNPSU93ufAZB99OX8Jv2dZ8aoT2IGigGrY9ZXkC8/mD4tazXcd//9ud/e05hO0EeBBp1xx+glH/KYHJe6RDtm4KoMy1MJLjGmWo4R+38QXbAZ0G4RuqBDm3YADWPiIoArM4TstyCZe7xVwM6ndHFMzov/2Xe3u+r0u42NDxKkuoCNWrF+XQINTwB+SWG1qNedAxtHr3acdFQP2gK8e9qPusXvuBhzgb/NGkifhjaFXTJMgibOV1140pNGzGjI082cFxo/cuocJyqxrZBikIu2ROyivYvp0h70/4NjhsTXv/rnpOFfmkDDwT2HaKMaaBDAoj33fhvEuKqu36SucWuDIKbFIIcCPJaXlaV5kHYCTAbSZkDIM/KOuiczRPGrMruYfnkUuzyjv1QXP9WU8D3QN4EG9LDBejfAo4qu+MP44abPq6+sA2B76p2UeXij0M36d4Xvm/PP3Kjjc9UZfdaSLUsCDW+z8LOfRQ9rNNjvPIaUgPysWWTwSAKKtC/EkDJjfEC72gpZU5/MC84s+JgxmapulsYSwNgXn6XYdfsOZCNeGR06oAvoO7elrVcPZPYrdHShqhSwJwAAL8qX+oGOw0xIgWEvC3LKwx8ANLxBMG0NIQse6ivbdso3baq3vGzPNkrv55vV/5R0qJ9JN3WSxx67DeyNd96NTZUb4j6Au+7l5fTZFXV4EP5Tzzh3+u76j/KCz9A+lxbfimyAagARGirT9s+FOY/efZmtE20BGj6HPmjLiR95pC91pwQazChJGTKTsQkFZ/Ex3IqjTnOc+iDKXglocBxOgjzndidPcnmbbJUb2fZ4IzVbBCkPHziIL4Mdpp+pG5UjZPA88Z+ax/hEn0Gd5xj9jn1QHyQ4Dx0PoAusr6RvIPg4gezky8mM83vW2cktZtyvDjOOkva2I231rXMu+FsdaRbaefjHk6o8jURbYs0W+7523TrqHrWMcddyhGpZOX2iH9wPoVNXuVCOm5VFLOVH+yj4lEyZROYf/s54kc+1E9qnpSx2LiG23IcPu/+4pQOOx7h7Phfjb7opWrRuU80VNiBHf3av/zmgQZaVsAoTCrB4YUgg+DqKx3yAAtkNQ1wCA1995bDoSWEmZjtOQ2wnQyNQmzRtJCMr5ls1P7Mb+Dsv2hZFMp2xEQ5vDV5YTc46OpYZDdNnTue4mjZUgu/Fq2emM2v0ZNRk1moht48yoQYnBUSmQ+HJGAqrzKKCycCR1N8jGMw36ftaUtKsnizQ0Jox/H/snXW8ndWVsFdcIBAnxK/ElQgQkuDBpRRarFihRgUpbaelSmVqU6cCFCiUUmgZpDhJCBBCEkKI2725N3LjStzzPc967wG+v2f+mfnNCyfnnnPed8vay9faa+tllJgcj4rI+wo/zxdEVsBA5iLT8ruCsFWmi31pRqWWLl0aj5I6qkF7xmmnp7JiQS09bSnsGZtEoLKiYuuRbQwOFxmKJ6noEqRbTRTcKrnO1eeyMAt9TsMweoyoyMlnnEH6/uhMjZNJSwwaTjodRGMViiQKPjPyZFTCj7uSyCV2mYk1LrJ/iGwLHu5Jb06O6SgsZ6I8Dx86JFoTWUB6ue8DD/AHESkJXUaeDgzW23evHAfvqTzSt1stnIPRCbMCxk+YkELx45deRgpgj0zxNzNFxpNKjTgBc829UYxPoetcVDaciMzjAIYRP6Xi4vcWfDP9cjFKxTSUlZ7lFXE6R3Adw7p6CWvXSwPLQqWJQ8DCNbJ4oTieJ3IA58QbmJdef7gWT3PqBClcS2BM82FQK+tWZjHIMaNGoaSSHaFTzTXl9b6ApO1koLRrvyVDyXtKxrFjaonhJuyXVrF1gnSrJTVLoxkC+lyiaQP69ydKR00S9tAbAWihIMTwJUyfCrPKUNKn0lgGTgrowebMk3CNdHeAtZz4yoQYf+ddedxnWf8yTp1oFG1RkJrzKOoRxyLqbEBJgU6ao0y1xFjW4afavw1HwCr2S6/GC74d+O7eSd/IncYk5zRrjTcBBWQfyt+m/bs4ynFT7MRn0rmLJ7RQVM4+mFdLFqwxbR7GIN6880BUraNGw+ptMGTadQG5brzqxjj5pDExsFd5dO3Yhq1YCDnWV2GlgFAg/OvpZ9hetTMGDxlM9LXY59nY9QFXVIilJ/FPAaxBZZYIC50GbikdU1zVkScPKrom3RglbTqG0YQXn09DXHzv2qVzFoM8iNNgL0JZBiIvU4A15lkNck+baMYxnlmsE+GsctCMeUPMGINbYzFK88tkk9z5u3tzjh0g7xaQx4BuLWNwRVl0rM9owHPEPIGpI6I/+U4hyAoFmgkl23U/F5yPtqR0aJ0xNSJ1RLjqaNjCMGu2eurE9lizfkssrc9ouOjEU+OEIcNj9EnHUwyyP4KVLSwoeJ42cQDnhDwxt4nR/iFqbuhwUHHmn4TnAhxg/yBiNBgHjCmGGkaZmcO45GeOVTwv4bqOZXmg43ZdVIBVhowiqQi7Bl7biYhYXG46UYvpZB1cetnH4xSi9o7HI/ZSoYIvysdVIApFMKFEl0DAl/8BNslAuss/aFvFUWVFOrXWganZl+HU7As9HWStnL/jkcc4bmlI/FcqqdClrKA9lRdlh/Rr+342Om5WgVkBCxcuSLrtVl4RZ581LlNUxUeNMg0heYztOifHmHwSPLEd5ZSXirmczMi9ckAnjOmiFt2rIptERXgEjgajdS3x3u1h24qXPNv2VfyVcdbokbd4EoeOB40JZYFGbipIAEqFWzguhQdPoSDvOhwxbncYM3oMpzoNBPc4+g1F0bEagRe+PpuGFnifP9B3CfZ+Fja+/FuDVx6qo+HV8eMTV3r36ZPGixlIGUFnPMLGdfV++aJyInEI2ChzPX0KgKcu4VrksakQSXMipGakvICj4Y3XXo3jhg2PIf05raZbT7ZHUGaVdvMkJYmbuSs/lYWm22vApPLOgnqqBVNL3AU6gfscfoFSf2RLnFOrs5Dz1vUb4+yzz8p6LdbG8CSFdMwDo+QzPJ54AQ6ljGYO4qnySVwRzvKZNJx4xneV/3mLFsVzBDl6lJXFWHQPi+6JC66hVwZSmLPPa4AJm1JAI/sTB3mVLv+my4SfSvgUDNJJwP4snCQWK9ZIzHuAg21JG+JJRlmBvc5Yo4niU2aXMIdC2QZetJxbLIGVJwS4pWf8xAnpjLnyqqup+dPPAYPyRdRQXBEP8sWYHK9zENaFc8lsRenIdQFO0FKTI1qmoWwxyIXzF8Tb4GXvil5xCdmIrUmD58f6NaUR4KmzQX6u41L8NkggHWicyx7dUy7uNmBuAmYPaz9n8aL4M85SHQ1HgVbbIHmvixn+AAqMd0TetGzAvOFVOkB1VOQ+bPoxCKIMasB3++C3e2XBfFYeAFDwVQez/IGxuV6sx3s40ddt2x214ND02v/f0XDl6cPitltvJ0N3RMrS3VuZH0Yfwjh1lMxoYG46ZY50+wKTWExQb/KkSRzHvj66VpbHGePGRSd0VvF9D/qYuCXMXWdf4o44ao0ZeblGs/A4BN9TTjoF5WBTiojv2P5eTCAwY20MswEGElgazEu+4EkV0pPrqMNJZ4N/+588QLjTc37nezoK6Nf1MeDWFMNuXd3KeAK4r6itSRkyED5TWVGe+sxuto2YWSTuCz/noHHvEcDSrvI2HZqsgZf96/hIOjbIwueFFM19jK1OncmCcdujWypbCTfaMLPOewq5j4OLPtzWJu+xDdsSTs5FB5hwk9bSsQVvklZ0NLgV6aMfvzyOx9HgmJyrzzteacpLGnYOyhZtAZ09tqlzUh6fY+azDtnSPNeQGfT8yy/HWgJCHyPjoE9FRdKxOjCt51omX6APM6FdS3VuvxP37du2Hb+4p2PGd/tXRi9ZujSexBFwLDC57JJL8lSkfbTTBO9tA/QUHiYoDI7gBGjKseQQa2aAlXgxiJXjECet16XMFJ5m0GzCQWVGw0vYUWedc16chy1ijYKDtAe1cJ/8WzsN/oKRYR0IC5W7BsJXvFJ/MHvSy7mIW8LfLZV1davi3VnvZpHYCxn7SPQP10d5V9I1nLcyPIPK9Je/0bbwUbfO+7RxWDF5chMyDuR9C4GLDiqLjJuFd/ZpZ+QWbgAJ3rCe+a7uUugC1vFx3qljMFbHLw2kPQaXzBM5uKUJvNbTpOTxOhvWbNoQqzdvJNCxOS66hmKQF1/EccnwtLzEIlf5f+71X3c0OHeBne8AXmKSsfpSHSMaugDm9zoCbRVKi9GEMcPZO92rV0ZePb5ERqznTeIzKrEbZrEHR0MqbCoA9YuqUDMR6Siia1aidZ/bDhbLfS5vUifAqtiVtKuXtSOFWByBTDhfEJ44ILMoeQHNKpAhySRENIlPRUmGpfGj12n9po3x0iuv5JE+Ijb6mwAAQABJREFUQ0mHKi+viA7HdEAx8gQAlDF60dtHAykk7bQU1UomASNVqZBojMqokImUEr/Eo7H4T6IWCmkzGqyym5VwEYCpHDK2zGCgYRUt9y3KqCwouR0ni6mipvxJ2PYrY9S7nMyMzzNnzY6n8VSOGjOGvddEukBwBbdMxvtducIcETh8gIALuDEfmIfCX89/MhLWQeGssJQI3SJgNsk7FDo7+YzT4ziidR3Z798MuO1DCOutLkUTVFaEl427nsLbdxmsjDWZBz96j3MwnXk5HsrJb7yBkdYiLr7wokxNda1cQ8fvmHQkOF6ZtWiSp0YwkZLybLqgMFcxEr+cs159jQuzSSwi0wmhqYfbfZ72L5xlSo7JaE0aU/QBhia+OHbnr2Kr4DZyaX/OxWdUshahsCxcsCAdGqeefVacSHEj0wpVelw75yFM9LLK7P3svIVJRqhYZ5VNMyYYAHOsV5T43cI9c/CCLl2xLBrhXT4ND3HfPr1TwduzfSfnPZPBYMov9FIcZ8m7fzM225eJu2ViD/sVlCEdcajtxZh75eUJ8eI3vx+9mGuvgZXRCXi1gw5aINeNkG+HlncdchsFSiDwacWe/yYIFeM6m6CBmu07OM1gCwwUox02oFhQ3jSm6EDDVhRThHnbxvLVG6LBsZyewNFkR3JEIxoEdI0Cy/iAMGNrGpt2kQm1fmcsWvMe6eHb33c0XH/lDWxDGc22gu7RiXPCj+KopSYYvk3EZdZ/SVVVvPziS9Th2BZ9++F0xHjpaT/gpDeoPJkCKSxUYhXmGmyu4/tKMPiSRjBrIw8q0axpnh6X9yaGS7++vWPooIGZ2plF+hi3LOAgzilxQDxya0GRmcL2rBZsl2pWKBPSdZujMEgaNYn14OFC+OJEHF531ddowFUXuLNicOfGMaSinIwGTuLAQZOOBtaOZtPLryPM9ZSg8z9pF77SIB0NrLf/8bu/6WhA886tE1kMcsueWAhc166nQCc6ltfZI8fGiIFD48QTR6BE9ov2OLEKHuSRdWQwQG/iqyeEMCBgWEQApA957JLq6ngGRdHjhc85c1wc7dYJaE1BrpOUYaTgFd/liUYlzBSR3yZNsDbSlHSh8imNO35Pt/F0BYtBvj3lLYTwR2IsBrVREem/lJEmrUiXyhIVDTsUBq5HoWDzDXgrnQons0s8flI+Vle3kqN0Z2eq54Xst+8P3pTosmR8mUmFwExeLX+QL9tnRo3sj/nJX0p8xjE49mUYRlXgpUdwdUaRO+3UU9mG0C3h6XhV9HyXz6byzzo6b/tTPglzvy/ShZkW8zvE+OXVOhrmIl9rllRlG0OPo6AnW3qsRi/vVeY5DtfH1GoVK6P48huL4or7rXAIOW4Vd2nbvjUu7LOWseuAsRL8kayn2zKGpKOBbBycwSnH6ulHvpjyI3GwMDSEPUNI+STc/T3bZ0xmYHjqxFvweE9xKq+szK1OFnJWSebGXF+jRc7Bl8/nXMAVCc49r6beik869N3eoBJ8FIVMt6PkTnjttZjGkagDBg2OgX364mjowWkCRKuYv8qmzzm+3NfPfPfqWOYbjVwkRlHbhhuEhbJ2L8boQQhQB+VKlP5/kT1ljQZld0V5eRbhVEZLN8JDRdPxslrF2tKu+O56O5eSwl8opshFfnMd9rH2C8m4ewXdo0vXrik/dIQb3dQhlU5258t407gTNlzC1peTcszionDzb6+UXdCMaz8duT3l9dcz23EEUXP3yRdOhELnMmIqjFIP4/n99XTkOpZwyshe4hgzdN72Ij6vWbOWulmv874mLmHPsfSkI8e98Gmg1eOZsPfl+JS7wkkHnvBLQ5HxCycdDc2VHxiEtTU16cR/hwy83pW9sxhkN5wAOuUzY4z5H3JQtOkWBeHpmLO+EnC3CLiRRbcgqJOZxSa33A0szWh4mFPAHuCkrqPJXngvvQURFyIUB3ZpH8eQcXsEGWqHDuho0MkJX1fW2idjts/DH3I0HEI+SiMpf+E3GmKueQbV+Hsb7a/btidqqdEwtYpMBuZf2jpx2SlD43Of/RxbBYfB89k2gvPerLn9e+ELQEq9SfyC0rJOgjxpLkbRW5Mnx3rg3rm8LM7E0VBWUZ6ZX8V2NHXFgq8WjkHpqXC+iDc6GkyFV9cWR9VX5Det27eL99Dn3A4zjfY7oisNZJvy0CFDon2bdrnmBnnyJBLmoG6r7iieiJ+2nbgnvfG3MBFWLrhBGrfOLa9bGU+yPWBZTXUMIqNhUDoaKrJQbDoaeM42xRV1WGlFfCp4bmEsfthQd/99kaqOYU9H1mh4El37GGwDt4B1g65a40ARH7MYLOMUNjobTONPuUH7acyDToXzoqCn5Jc8J492PBrUr+P4mgS9WkPIIETyMHGX3xMGyE8+5vc+L504Xk/gcaxmGelkU3co6cvyIulQnfJVYL+RTNzzzz8/KsvKknBoLtsWF3TwCGO3dDt25YZ4D9iQf/AVfnMstl0EJouaOdZdqoamXiC7qQO89/zzzo3OZMq6ls3Bu5ZkmlpLIe0N1q3xkWyPAUaHWL50xsAjUp8Cxsp6+ZP9ynuk13XYUNZvehN+MHr0WE6dGIPedmQa3U2hFQv8J67Jb+DfB2hXJ6HObnVijXPnYgaOl+tltoDyTD1+FXx4Ltvz63CGW0RxGAEmHYjSvWtXrGPhFEheCKzsTzsw7RvGnPcBI3Uc18atDXvgBwurcTTgCFhZV4ejt2OcOnpMVPYsSzuUhnPeyhBlVOqPSA9tX+Wqepe8TNxT9zeLyrm4HjrO3Q6zEL1g7uKFsXojjoZNGzh8YF187KYbyYq5hCyt/3M05IJ/8A+Qq79U7Lx8Z4lzL+TSJZ6VPSOW4r0xyjKYbIY+ZeVpEDVmUQqhXKQJSVimzqhIyURkJu8jMYSkUmGUQRPfxTOddAZHhLw1/a04EoWpJ+32qqxMRwNN5bM+n8gGYnkls6ItkUPi8z4ZgQiWDFCiBfl0RGzCY/YajLV68aLoiwLdowfHY8GoNC6SkXKvjobc1mF/YJFzkKBlWEIjBatIz4eM1hlF5T+VaiNGL770Us5llPvGSMU27VWmViApzzAWCUA4KUzSA8ecMoJjbxCmiK0AM91UBc4iTSr38xYujJfxJKpoDYd5q0ykt5Fxp1LJ+Bxjad3SIKfvNHrpz71/Oi00uK3T4AkUydCAnWnGOnlmz50dp407MwZg2Jnp4XhdFxmkKWb2J1x8efku3H1PhiTc6793rdx7ZmqrBaXenvF2tnHm6adnZWkZc+IDeODAc/142nY0JlSMhL+fde7YY8KcOXivAkHjQsNGxvQO4++Cc+cknDBFUSOFAaPhwVQKYJp+SMHL/DVU/V1hIE7JZIS9zgaFhWMw+lpdXc0xlEvzaKFRp5zMcUdDct0U9jlm2hBHfNmO3yUOui606Xclp4dMVQXKtXdd1m5YHytWrYzlq+qCUgYxkuKIFSgVZtccIoOhSCdmjMBIyNqer4Q/dCUTN714O/vBmEEcSzThEPB+640p8e7PfhuVbVtEedcebJ04zBGLOHVg/g1wBohnKtu5pYm+tDdpDfjCNFHcFqPALcYru3MX9wLCo48q0jt3soXjEP6EFkd1iP3Mb/OOLdGoTYtod0xbcJ17AHFDmHwDYMtfav2xhT+XUZ+hmloCK1ZtiJVFoAKl8iIECTUEKsui2zHtsuq3kWf5iI6DFStWxlROD9hDBKQ7Rp1RCyOkKlDSqzRlHQthLY6YHSMdqWBkFJc1pKH3lRiFBjfnfDTc5syfH1Nefy2rPvfv2ye3Irmt4IgjjkKBsFCokQPWD5wR3gdwmB4Cfo2bmN5Ju9ANP7BPvBVNN8LRsCmWYMxNxSP/h8f+wfwjSPbIiufHdW0eQ5nnsWQ0HD5gFXxqNNAeBJA4rdFsH/zPd3AUxin/4mt6l9cVBjaQqXc0oDCgFG/edzhrNMxZ+x40vCPqqDHmNXYwp030R3nkmMuKXmWcpd0mafkAOb67cDQomOU9zALF2sgLzhrAc4gxqeTX1NbGpIkTyQYYQPbU2ORBGjTCXWVKHpNRMnDHS7rMyCjzKSmM8mBpSCXBNdHIMTPK2glzgb1H2p122hnsWz6ucB7Rjrgt3duqNGK70pU05dqKpcKGt+TxJZ4jX9YR4lan1SgrnhTjOIwC9q6oyGflRY474QxNlpROFTuVaZ3k8iTlVBpk8Bz7FmdS0cIZXLtsWVQvrY7VKCvdyzmqcMzoPEEgjz7mWRewJJ/sh2GmkSWs/Vt+lxdzy0gPcNEhL5zWo3guXrQ4VtKHSm8fDLqBwN/Ius+qUBmttA8VX3mK/Fm+lY4IxqrR7HhVRm3Tl7LE6Kz7XmfjDLBAm3uOT0RBH4DBbpRp86bNtIcBiJy0s5wDz+YcaFeYp4LL+F1X4cJXeTkGYbuQ7TauqTKme4+eWWBOGeglvtmG7SWMWUuzBWwn0+v5vTmGnnWDbFd55nnkRsWaE/22arinxMybNyczHfsA+26k2h+NfNUZLy91rgYVzKCRZ+0iA8nv3JetAtwIZ55b0cQlJFZG9Gzf/0z1fg1D/QAy9wQcyfIZdZI0uBmjMBc3dTTwIde0ZOS5LhKPuOjg7VMY5ny5W7xdsrQmJr46gehxlxgxfFh0aEudGOSMBri6gHDxEh6lNbVdP6f8Eyj8T9d5lWDpPWY0aHjNBPYnsB3GU3yU3T5nW7ZdkkuF/gJ+s9Z0Dk4hT+hfGGlUpK7APHVSaN+rf7g10X3TOvHOIIJZXlZW8ETGk5lizN12nac82LGJn4VuUcg/acwrQUO/1glQr1iPc622pibmznw3Oqn8jx2bx/HJ25XB4qP1Nt7Dee6a6dDMtoGbY7VAuFleFvQWlnkMpboCemcVTvx/4GT4G9t5YNe5vcExmNEwsPMx0c5sGZzlDcEzUCPHrdzR0WAqPVIR2gRGyEXu4m/kCfMAi/kELuVk5NHFfTuo0bBpF8cLbtwU0xazpZO+LAXuzMedOiIuI419UP9+wIX29gAXeLG6iC0yvOQN/m1hTvGsdlltEeCgIHXrDu05dWI0x1t2S0PaAnUWAneNhX3W72HsIoiwU4eVp7nNUANdXmfgRpnvtmQdd1Ohpznvzsy6RL169yFjsE+0yxpF0JJ4wdhSF6ZVdY8SbtqneKfjVb6oc1NasC6SepqZpnXwmPETJ4AzG2PAQAq3IrsNGLYArzx1QudfyWEtn5ZehWM6HBKXijnZl+stLkonmSnGWDzecgKOgI7tO+TpOZ4K4fGT4p7wUI9TZ3dMOljS4U07wls6TiMa+HiVaM9310o4WazYGkIG9QaqC8MvbePD94vS4lyO+0O47xpk0IwbpEP5qpm3BkVcaGsUTYNWN6BbjmZNe3TtWsg6YOK4tBekF3FA3khzaZwLf+EuH/bvhtCrvF2cdM46NswiXAGfnzz5zWhJ0GnM6JOo0XBM4oCZq01R/HTMKWMPgi6HCWzqDJDf2k5uHQJXhJMSK3UE+nKOOho2EKWvgl4XIr8tzj0cXdiTRKwj5to2J3gpP7H+ivx7v4Ensx2Bnc4E+as0LG+Vfl0beZR9b0Z/0gmwGDni9sqxp5yKHdI35+q8S+uUeMh4hEvyNvpz3ZSHjldcVyYaPJBEPeZYDSozGnCSKGc7tGuP3jGc7Xdd6uudMVZgkv2oG9C8Dpx80Zf9KJPFw3S8AUv5W9Iuv3v88mJshIXVVRTl3hobd27jKNBNcdVnPhMXX/IR6s78n6MhiScJiH8UurA/1zA/FSwQImepTNeqra6O2TPeiXmkLi2vqoqu7TpEGcyvHfUaNIg1+C0mZkQCXxVntBZ77CT43CetEsfyNAcp9YAZpW0IQbkvzSjPApDsnVkzMirRmb1jZWXlKMlFJdySkua7SGo7WdCPBd+BINIwl/AScRm9xOErmRVM2T3172AErFhanUrisXjOPbXCWgfeY3um/bq1QAwVuQqls/AcJkFDPCpKGt560DX2eSyZyIqVdRRTxElCex4d1g5lQu+d7cgwVMBU0mUgSQTMQ8aYTINxKlD3E2WRSUqY3mNqoJkLFsGpQQF9c9Ik0i/Ls4pvGlzcJ+MxYufaOUbXznbTYQHhJVPhd4WxaT96q02lUgjJKGUMCg2VlUWLF8To006PirKeKTxUUFRi7cN56b2TGFVQ6CIvido5CnfbU2H3Oefsmrhe72G4mhXguEaMGJmpo/lcPQz8nibySqOLWQj7dKDwgwJMQ8ZolQqauOR2D40L19h9pLOJknYh4u1++6NhsjKGVJiZn8LK/X0ycAVN6fQHo4LikON3Xq6FaV0aGn4nw3Pf2BqYt0WFhpAJ06tXL347lDBz3CmAuDcVTGbAV+BTEUXUEHaM9iGOOx4ZmnNXMOhZ3sL+7jXr1xKF2RumHHfr0iWV7kYyTISy3miFsm2qzKViIaSAiQa13uitu8iIITKjo6Ex989/d05s+PuT0a9LxygngtEBeLL7kHoApnxCgyjkCnf3vUp3TEfOyppDJ2hdS8CHKgzC7eAJD1DE0CPsKHi4dRtKF46G1swFw2A7kaAWHY4iM6gNmSCmF9IQONwAWDL8OMiYN+09HMu27aOWwHZOqdgSq+odDSOHj8yMpd6cONG1UwcqIrtPdTsCrhAaG9ZvSJzZyxYOU91UVKQp0/iLglkYXsBWg9RsBiO7CnOjvC0V8HzHgiatup84VUc+q4AIQ48WfYfsqcryiijv2TOdOY3IFGjdpgO4TqQUgbwH+O9H6KYyxLjoCtgV7+I1HxOvrJ2wCQGzfPUqjlVbEs/hwPAqORqGs3ViWK+eHGXplhsqqu/dxvKB16yB/wh+4QUa+UXSibiVGQ06hhy9P9IPq8SafOBoWEw2w7urN+NV3xtr6x0Ngyr6EimpiIrynnFs507RhqiwvIghp6PBLRRyigbU3vDVmE2zFr6U/0kbOu5m4bir7NsXp+ZxySs8w1tHg85T8V94K2jlneK+DoWSkaWxJ62K40Z3MiWW9ZB3uve8uqaGoryzOAJxJBHSvhxvzCks4JOOCIsu6mCQZm1bh0tmOCBbhIk0mlDiPfk2dCAPc+23kD21noyJ5bW1GAYNMLxGZbTL36U7eYo0yNRzDsoRFQb5uPxS56X8UsXZF9Mr1oM+rPmyYiVOQQyAzRs3RPeKSsY/LB0BWQ8GujOS6yLaRhoRjMHv5FkucPJS+nfcaaQxz4wOMz6PGF4Bj1+H0SuP6qr862mBtjb5vM9ugs+J7x61lsYg7Tuf5An0m3yUyYlGroWYU3LWrEPBqqpaQir2OiJKLdJhWtGzLLcGWChZPmY0MttgfXWKyvdTjtJP8mPGaevewz8CJ5U7eedy+ORiHDyujnUrKioryRLqAK8D9vzuesp/MzsOHUEjMhXQ5HFks/BkEUErYGLGgUW8GrK9YQd07pF2y5bVRDn02r1L1+hI9NWMr6wrkOOSNglegHfS0276cPzCXl2jMfM5vB/5Dd5m9iB7lJUvKsXrcPjOQadRBxhIEELnjgq/Ml657UzT0VCPO8o6FVtpUl4uLDS6hLk8Whkm3Jlwrs/ylXUx5U2ixzgwBtF+a3hYOrd4rjDOZVUYGjwjfgsv6Uv5JB8T3inL6N93P/uyb3lgFXrZIuT3ILJgelVUoMwXWUS5ToxemexYVezVFZqSTSF+6yxXRiubzCxVd9Nx4zqoVAsrTzJR+d8G/R9Hhs2xOI+Szpmva2g7RgBLDiSJRpgJo3Si1MPM/kv8oSGwS15AsGodEd7qRYujlThJEKUNJw4puy0QdxTF+Uypd33EvDbogu5f15iQnk1Zb4zhrm5D88mvG+AIVu+sA8/Hw4dfYCtbLqBEwfWRAWydYA5tcUY0pRhkYxcX2PtW8Fhvl3ZYGzDiAO3v53VQ5s9nQAnPoDHnwzcKBU2ddDTsPkgtovdi+hIMDW4BA6INLGHQ0IFsYxtFbaoePEtb0EQ+zDwASrZl//JT8U6+tBFaX4PBbuS7GfrDQLJMPVXKNVSfVhcT9urc4kRJ5zB7Uh0zjUVwRGeZbSeP4j6Pt1SXmb9wQRYkVI/sRoCmB7qTRXFzatzn2ikPcqzMVb4j3yrpXzp11bc7EDF3HDo/5BF+tw7++DZ2wh62BPfq3TudGS1ZE4NbDWlL/d92mDm2glnBhS4jPhs4kp95yTPUfTIjFLx0DK6CfHjm9LezsHMl+N6KOehkdRzSYQk2HsmobqsTwpO/dKrmUY/QmfRXoilpLmmFsekUWAS+e/qPJ9+V9yyrL1hIkMA1Z45eBW0V7+K6k5EOXLtcD3DcjGaNX3m7J304RuG0gO1xmzasi/79B2Qmpc8LmzSWwUUbE8flOfIS6clL+pQvp27PXOUxwtytijo35HepC+NQ9rf+8BqdMVlEEx7Y0GIi/C8PPwggD4D8mPCp3+QYWBc6gLZYE+aaxjSwEYF2ApfN1B/wGOY16DldOnUGNj0zE817WxJU0r5w7rl1EjzcDzLpaFCnTkMeXqOTwZf8Td4ljxVntgCj1egd1mdQRhw3fER4nKuX8lTYC/PCoYDtSD/2JW6nDkgb8tCSfagTUp2kDbqjGfPVtGvtKfFBh1q/yt44NztkEFKHWm5/AY724XiaIB/UFb0yQMhaZI0JerRwfRYWBTYexWpGQ+3KFVmI8z108W0E/lbUzImv/uS38VGOtT223tGQsjNHnM3+j/yHtWYl/guXD7swGrsirJ8FdPGfCLkvFYnJr06Kt6dNi2mvT8bC2RpdyivSGFbxUQGVODTEbeEIGJfVbhXoIovMzora3mvqvpFbC8M0hRkqoGvxCM2goJpXD15lROSORtGy3XQA+APTlJGKcB4TKMNQIKqI+S7jBVvypYEqA9bL6j7WqVOnB/VRg2zv6FrWlbTMdoWzAkKXwerJtX2Zg8+JcDIvMDjHZx+mUKcSQP+mC9uX/a5ZXRcza+scYZzQqwyDpW0qUiK+v6s0mEqvMPE7lXbhIGN06VSMtoOkMt006IGXTgGdExpPK2pr2fu3MiibGcf175MF2mQ4EpsMzvXyWccrbKyarTdVuNt/MmnHinDeT7upyEMwDCYJvhpFa4ltUyjpWNJSZTwSRjJOxidDUDH0e19pBHC/a21Ey31ZXo2Am9d+5rMPxsIAYwf716euWJ3fn87YVRiMPggHL+dfWlNTnVII2Le4xNidn/hUWkvx1COwTFnTiNiwenksoeq+qerHcYqBxpBwUUCJjzpAhInGlvNWuMtMzS7ISDgMJlOnFUD1c3RsHluzYt78WJyjjDixvEd071nG40YIzFNHMZDZMwbn4PpaBNO+ZIBGmyxsZfTOFHK/c57imOPaxl7JjWtXxkLS3736V3SCgXdNpQ9VL50MRQpjYdApcHQuyFCFhw4XBdcOikDScnSEVpojmFYvrY6OtWti5LHtozfOtA4YtW1B8JY4DTwH3LRk9zDvOyjeoBhiYDcEFw6SXmdGwzLguoztE5vxzGpotz6SPb+kme7cxVqDaA1agleI/G1b90WbPh2pWN0Z2HIiBeM4zFrpcqAZjtA8jPG7NxZv2Bpz1+B0wam/iZHKvlsy1iNat4vObVtHO/YKNgE4B4hCMsRUxjTm3lpYxayoAcGrC1GotnjnjzzSjIOi0vVuaFq8TsWihJfCBxqQn6RSBoxS+UdDNAogvYlXy2uXxoLVG4PzbnB4dGf8RMs4yaEl6dhN+Vt8KKLg6qEoAuCOSj8kxvoX+yGlTwsrqqgYobMq8zo888tQcr08daIZZDG8e8sY0btndOR4y10I69i3BeWL86MxonaSQrsL+pF+XYv3/1OjZa2K4y1ZbXBGhwbUB4DqHQ1E0ZZs2BGz127BKbYn1oIGRtGOatUWo7EVp+q0hQ8djaJ0ZDqCE2/JaNhDDQ4zMix8hrkCbwIvwGM/6+Csq14UC3BcdKGtkURF5IcWJ5Xu3f4kXclTxHej48JHYVwyOHRiKbDTKQsfSJ7EmhWG0c6onj0/VtF2Ga8+w49LerVteetuZETSOcqI7UuPNJc05vMlg8a5lBRLlTLHsx1lbkNtVSzaIzTJ7BjQF0dLZ8bFc/xe8ISC/kqGpIq4/diJThCVn8wmAa+yY+bh/BzbqmVLY/461o/LKjBDRo3MDBsdKir24oEKujCUP6rc2rZzk49qrKlwGY0UR3UyCCvX1t9q582JFYgvr3KWuXwwmWsYpbbl+HUIaKwfQbs6BVTW7VPFXOO0cKZokgEvZSbtOnblghGjefMWxrZsHRlVSW0UDAwQAZw0OglPp70CcgUvSyPFOdGO+9iT53GDW0wEjvdav0SDZBWK3MxVBd734PuKQQPSkS/M5Y/OQVmp/PezR4ZmxDqVf/BRGUI7rqnj1fHuTHQcSMfziALWQUvy+PJebJtozRGF4Ij1HeTVzl94en9jcEY6d07CxyieRej28/JkrMPQlsao7+oLG1H6p1WvoGXggl5wNMXCvByzMlb8c329kgbAGZV31075at/yGPHT+ZqunbqDsOcZFfMpS2rz+dH9KossStoVgCXZwdCTx2hYaVwol6UheYLtGhG0L+WGc9PxrhzZD+7VYlgsATZDOE64R2WfxC3XzM6Tn9BO0VbBy5oBN+WW0VuzZHLLEjJFfmZNCvUS6cM5S/dzFi+JzYz+hO44eKCnom1kErAWvtKkuCasCuOwMIxU3qUF5axr5HrwQAYOpElpffNajrVbtyXpaRjZGOpUOg11xB1pwABc2Yjz0MKp7eH/4ozYp16wnQCG8lHdxPbl197n0XRGYKuWVsfSdWh8he2W8PhIv6bRv1M7HA3IPZzz5qoeBt6uk1dmKvgd3+ho0MlgVoPZDeKXK6KxrPNGPHWt5aJunVi/Y19RDLJ6e542YZusQnRt05hCoEPS6BNeGu8HyFiUpl3/Dztk5LXikMXL11XXRg3PUxmJbU79oi1Gk3gm7Ep0XcIHdR71A9dGXmPavbiuLpW8mHX1N51MOhoWzpwedahnXn07tokuPcrS4SQvZQC5nkW9snq9C97g+hZ8Gqcnzh/HeTT6hXq2a2b70t9Wi03OnpdtD+rWCRlUHMVuJoNtlvRroaMTX/1cfiasXFd5jXxCWGkbCEdhJPTF+dUrlsXMurWpCw+oKMvAgnqnfJvJFnIa2rUt9VOPUDRQJj6Lj+lEYewJe97tx5fjE57VC+fF3M3bo4J+ewzsj+5GujxzTxqi/1wv3sVR8V29Uv1e+WefZgIJmyMz6xgZn3JlR7ahnvDu3IVh1Z1hXTuwTfxY+pZP8WLsvrzkAeKYtCiv8ZJWnY/jEPfkA7nejFke4aPqTVNrVub9J1TCJ9tRD4Y2zPzxxA8eKJ5lnTx5xzpBJRmkbiruiJfaW/IA19u+tE+2vsf2BnByFaywd6vG0bPXgBxf6u7cp4My2wBH3ZLRkD60XYSdgeod0Kvy3K0TZk4qU90aIS/yaNB1y6iH9l4hAEegU3bt0TPxUD3Xdc95M0llhLIpt0YzNn/LYAT47pq6hm6p82pJkEw+vwoePH3x0vxOeho0oH/hUJauWauUncKQttT1WrQisMo47VPHp2sof3SdhInOBn9T77H21Mol6B276yM92UvEz37x07iKOg2d2x+b34jfxerW3/A/8O2/0dFgZEozhoVVoLGQqNj5ecHieRRQezGmTXmLYl5vcQ58E6LI3dJTWAiUIo3FdEfUOVIpZ8RmoVt/Denfi1TTYxOZLTQEZWJdFN5ThfoRCBb3yKvQu4B60xV0Gm4il1cyCYjgPZSu2WsK49XvNRj04LkVIoU+CJdeQZBeBGlOux5nKWMQcSUmBaRKYiopPC8RiLQS2zraXrJR8frBNbB7F9roSFuFd1NDV4bi+EopQRquOlRkCPYvM1Bx1lmicavCIBEsrK4JEmHfv45DiLejEJLI69gKZlxsoXD8bvPQQ6qy4Zn2ztGxymjcv+h/EpnHxG1cszKW7ajXWOlBg6FDty5ZgdXohcLHLQ2+NML1tGoIyxCsheBLY97xl4jbedj3BuAyf62JgcVFsi0V9cujNdFmHVPbWDPH6/aXYs8ayhqEKXEWygDMn98zxY9x26dKt1FP4bZsztwoVL6i/Yr2bai9QJQfZp9EDT44b4+EU8HIaCkMTuVXZadkjLiGop79JrMErptIa5xZVV00XP/vqH594ygUdwWN0TGVH5U4K8ELkzR0+M2xO3/HLt6YCWC7KpTiruuwauXKmE9hsdLVA4XHI80UGuKDSpH4m0KNZ2y7CelrpuN7wkDuNwanuFlXP/OELQGXRoxjD+uxYNa8WFNqnPdu5cdE987dUtCZGbQLmtiPobVn+6EYzO8jwddKnH1tMIzbUsfhaNpiu2rhZGBfvlsnZH1WwIbYUZjIDuKrLQjkTYxhqxFeigUewRqRdxy7OJpxO86Jbd7DEFnqOLJ3kNLZG/xHeHAKhsaqyts+oofbUKbWUGtiyQaUVTatqiBq6LguFXjM3GPZ8ojWRC2pfnzAaAIGGoLHLB4NNGlVR4I0Jo16VOounAu78VYr/FVKWdYUWiuWLo0qGH7p6oty0bWyInEyhQ9wtx35SMIdWGgkHcbhkoVCFdaMeZfOlH3s+9XhgFG9l3XYgoCcVzO/1HS+D+gzKGsfQCjgjc5ZT2ghZXYLKYBrVuU97QFbM8hwZPdmcXyf8nQ0eLzg4T1r2RvbEQWiKU4inUUogSmCFEMoEUzKeRVfaW7BI8GvBuT0gQ0gNQplaesEp07MRVFfz6keq3E04PpMfD4S+nBLxEFOB6naVDiyHJT0OrB3L5x97ZIujWgCmOTzhYFd1LTxxBwdq+tJ3RV+RoUYQq6DioF0uwPjeCVR7GU2XH8NJmp7JDhXgrO0IS/J1EPm5Pc6JzSSFe4qT0ZRXRtp3DWXJ2/jWLdVVUv+P16g+WetjjQ2oD1p3bHJX3zOdU1ehhLipcKrca4SWkSGC+VM5c2oizizhFokpesYQFvWt1/y8zSKWABlocqj7VsszXHbr7DRMaFSmYoquKQSopKiASwve+3tdxLXS+2PGoR8gtfozLANlco0VngX360llM4s+hUGO3D2qYypvOlgLDkt5MtGO2eTRVC6mvHHUNZVhT0RJxFImaDRUMDWzCrXw0GZbeVpFiqh1gswMrYX/icOyEdrlyyJGuZXunogI3r265fKnb/LA+Vlyj2L8ykf5HPirr/rNHB9hV2pEK5wUg5bjPBVMtBKF1I3x94ampVva1yqe4CU2ZbFV5vjwBUGjl1csnjoAbZyibuulcVI5SvSYBYIXlM4PUp9HA9sPL5WXBFnDDz4Ls6Ij+K3l3BxvM7D310n56Me5GfntHxJVRQUXrQ+uFNHClgfmwZTwoY5277mq9kFFv9VrxHG4otbbXQQSOLSg/qBsHE96jDqP1hVeCT3dOxA5iUGnTLVAIJjUkfw+cR9cM519TsNNLk6DTIH/0iOkvqC7a9ctiLrBxS/EN3nxJ8MZtCuBo36gHqBQQJPQ7A/M2ikd7OTNAJtWA0xHR/AxjmKD0sXzYu11OQpXV1btYge5ZWJ187Pubu+4rw6k/Lb4r+mbKfDiN/kA24nctuauozbA49i/71OkSkzZsYHnAzHRx+i5TiseTrnrzx2HEYzPWVnHZmCa5gHwVzRJHHn4gHNcDS0j7Z4tj9wNNhCPbuFVgpng44GjAwdDbx0NHiHegCIkPguH7SYq9kOW3YfiNUc4+ypEzOX7Yqt3KYe4XGP6ibr4KMfvo5p2jB6DxgIHHCkMn/vdQzKOelKupSXiRteuVUUeeyVNCbMNETBX43XKTNn52+lf4ZUlLE33IyiQueoR4XUFX3mSAyp3P+ufgy+q8vadzomaERcF2huvXiP7NEZH+I15PHGKLJbpH2zVeWR0rXjsT/XQQNTfpBGXBrg8HjhxrilU+lEPHLSK5Yvy2NBS2Pv2bFNlFX0Ard1FhSOATrhZ+FERhdy3ywWx5j1EeBbyTPoX16QAdN6ulXfnj5/UalpbBnshK5dM9ItzNWbxTnH6bpLT+r36iGpc0BTyl7H69z44335o664Hj68gOyT0tWVP3rAJ3Uy6GgT35si511HHfTSu7qr/Sj3dNDIc+xDp7IBSPt1XjtxnC9buSqDM7ZfRkCgS69e4AXOF2jI+xyXtCXMha1jVy/y+0I+QTH8nYFOnvN7ebLbWmay1fPDVyeKeHXpXg4/NIALbJAdOgmdtyeWuMb2ozzRaWOGiO/CL9cnx1I4LjylyQz4jS4blwGQE4YNTToXbuJeyZBP/EePTp4AL7MPeYXGvesqr8lAaf08nfeKJYuiZme9p4y2exDoKu/bP2lGOeycXVNtvcM8dyR2obLZufhqQObuYd5tyzVyDuKWayN83mH7zIetv9Ec19yOTLdcU/DN7cZFscxCn9S5rUPDLGGzkd4iaPCjn/worrvh+ujc4f8cDeJAXuJD6eUXoBIKAYYxi9ESBIWlxgIEycSXXo5Z77yDJ3odZ8NXRhmOhsYwlExLYlFdxJatCu/knEWL4u5H/p7tD+9bFuedd0GUkQ5j5oDVbQ8QWdOgkggUlCoX7h+UgUlIGtQinIyxUJAKYhcxTGufPX9+jGcfd3d6GHnGmVSn12vcLpFTJiTx6j3WyBOJPWvXd5VMPWAyyPQuQ0wiu7+JcCqRq0hhfXP69JhCmtOYCvac9h+Qhb+K/WCq8xYA1nOJEiKRM15fzl9EtR0J33FrjArc/I22Va5rYdwTXn4pGgGDoRQw7D9oIBGmrsmAFODw33xeIaByY9HKoxm/hFFiTDJq51C8EFLMQ++aiG712XenzojBw4ZQaKmCAomdklDS0QC8VUjcmkETCeuMgAkDhJueWhmSc0iHA3+rcOixNb3JVMoZU94IRDj7oM+KXuUYURTwdJ22oLh7zKkFx1S4hY1iXCFje87LtXFeMgMVPR0UMmBTkJag4M58G7ivqIvRA/rHiSOGc1Ro52Tc4qcVXlU0hWkyK573Ei7C3zHYj4q6lwxez6froAI6k9M7Xp0wMdby2xXjxsVIcKYtcHWM4pUMXgFUcjI4/hRc/Gb/XvZlyp9jtj/bF14WXHtj0qvx6qIl4ag+c9WVMaB37zROxDPXNccFzqiYi29NiGrLF5FyQFMkgYEbcd5d78VlLM2JSO9jTlbSfuzvT+TYB/buEWefc1b07Nm9mDNt796wKbYBt/U1tdHi3XnRn3TI7jDOlvt3x1GcMtEGmLWgX1YVH4bMW/xBOXds6BVGbDyS8jCOh73MZztK+/6D+zj5AvrmqV0Y5Rv27Yw60v9XYNRuxg7ZjeXaHBdx6w4tUOQ7ZlRgPwbADnBrCxkRG6jzsAk5tA79VB9RyfF4/vF9YnBfIs7HdsPBSIYL97y3TQFEUTsEZUnhKWXi6KUWfvIDjWMNPh0S0q305vFFj/3tkagDlGdjjB4/dmxUgJcptMAF+ZjrKM6oNB8gmmV1cWwYXoXXeh/Fufa5dxbHassjW6ejYSdrsZ400XmLFsZTE56NY5q2jRNPPpHTHAbm8X1Qfm5xKYolrY9F1VXxwqvjGQXFwED2ZsD3xO6N4kSO0TyGOhZbN66PvdvWkKaqYs+WMfHOaAPwPqxjKTFRJdI/ebh+64Q0/oGjgUr/ZFJsZqzVm0grX4ejYfPeWF7vZxnas4ytE2w7a9caAweaxMB4+YXno00HiqVSP8Yz092nqDIhrUIwwEmzSJJEkYLWNUrlg0bCNWyTJwNrjSWfE/eTz8Dj57ElbSb88uzRo2MQa9oGwyAzqqANabJEP9KlnRQ088HeWw3pNIbp17VxjXUSWByquqoq5iD0dZuee9FF0Yc1VZEST2xXXmIf0qxKpunntu9lmqQGv7Tv/eLSh5VzTzZ5i4Kg01atjWE9OJP9pJNIy++SBqP380DyEvHLPlIRdHzAxe+Elf3LD8RDcVJjTcPNvbhTKAz66Isv51guPuVkTlkZlWnzKoA+J28qDHtwkDE6bsdqW8mLgEMqRQBNPE64y0/53QKGr06aFJOQgX3pYRTFs3qjhLbCgEiDn7EzvJQNKlyul04MDUkv6/QYvdaAVv66Lt4vHuhEXYyS+PjDD6fRO5KiyWPOHBcVZWX1cMe5Bj25nvJ4HSB+dsyOM1/0Y78JK+Alf5Xnqex5JvsMovB/oQBjf7ZdjRxxYqaydsSYth1p1S1hGpw6Q+VLOpTFDXltI+nF8UObOmdt29M5bH8Pc7L2zdSZ78Yr06ZHb3LXR48eFwNRQm1fw0k5tg05aQq6ckRcdR4CQMXftXEOsmPlFpSZfeTWUHjPCqJjL70yPvbjDBt1ylgKXxJAYStmHunMeHUkWJhN+AjzdJrSB9NIfUN8UaaLj/Zfymx8D5ypq6vL003mTp+BY6cPsps6VTglzQI00CBd+rxbnAw2lIIBDDC/l08qUzMzAhwoXfa3EZ1p5SpqdcydG9Nqlscl407L4/XULVrhbNFhpNGvXpAOCx1c4I30Jm4KN9fG9ZBVZbCDd7OcdEC4hWMmJ1dNrVoWx1Nkdwx6TY+u3XJrknim40zdSyNO+Cp/IGL0QeiH9wIXC/xRH1FvUx/0eN0tyH0LxU2Z8HzM23YgLhxzUoweOTKOxZhuSnZswpC19ai+LQgaU5nfpuDv69T9aopTYR/ZX14XDmgQA7p0xdFAAA3HeGN5LMBLdss6W2PIjAUX/xCT1NHgS2PF+8Txg64d4xcfjdweYB037ToQdZwAtGzj1pi1Eic7d7eg3k9lRc/cyqnOthnHxzJ4TddWzeO88y+MXmU9E+bKOl/Cw3XKwtWOhc/S7fvGcz2vETbiTdI0YzDVfCYZqY88/Sy9RpxzwgiKjp4Qx3J6G8Iscdh2lTE6buRtOXbXUH1DeuOdj/lbSRdyrsqG9QRoLDj6Es5Bec3Y8y/g6PnBmVHsVgN1dR0LIrj4IV6kg9M58Jv9Skd8ZE7wGNZJWpWPKU+WgfPPUd9s/oo6soF7xonUBZKXyU91nqnvGaQRHvJAcVs+IK8w+KAccOwlPdL+HIe4JmzcO/+3f70Qw4DHEOqblfXkBCiCHMnjea40PumqRPs6kQq5hI5KX65BwpDxSg/ShScRWcR3Fjz4lSlT4viKiuhPYKmc97Y4mBx3OkAcHFfyEQBgezl3x4gerONZOLXBkHVuOkfMht2KLr2ibmW8PmFCNEden3HyyejC8BnplP4dq2MHLFw6cAp9Wl6mcZ4ObcZgXxbbbdWyODpVmKxBD6lesSzmLZ4f86uWU7NnWNYQsZC6BX3dWk3jie+p68pTSg5paEzebpaEzhlJyKLi8lbnIX5uwDlVU8dxlfNmx8wly+Kmj34khvbvn7aigchSsEI+IP7kxTyUieKGW0Gk/1wD5uIcbFs+JFwtAD/1tUnxxvK66MOpWhdTuLNXWVnijPcmHcGvaDydgQ3hOToCdsObdYK3QH+y8Lh2q0FPcV046nDeCS9zK/lzzzwTqxnY2SccH2edflpxVCi6rfarVk2x1U8Zjo3AGC06uZMx17G95Kl77okbf/rDuOa6a6mTUTgaikn+z/73v5zR4PST4EAulR+hvhdGLLEeAYKpUC9cOD9efcWTGxZEIyyD44cMzSNCGoFsesD12InsIqRVn99in9a3fvjvGbn/yLhT47JLL6XoTG8YNQxiJ9F0vEoEWlPYFESIsa5CATMUWVTm0qjku5KCpPD2tw0o/xMmT45fPPxQnMCin3UDVexRdDVKZTISoVcKZZihCO1xkzKI4rjGggB5NNvLdEfukTGoHC1dviz+BfN7ZeKrcRFINvKEE6h+3/f9qsCKopKylR3lP8yCH1RAJcQ0DkB0+9aDKaFoyLofaS4OjH8+/VQcwfeO+7jjjsMwKktC0qBKwxzhqzLoXCxIo5PAPh2fzNUxyAB9ycHdz7glFXSKI86ak8f3nXL6mTGM/X1W7PdYLRkItksSmLDNsdKOjMkiKMLBcQoXLwWB8DbqI1xra2tjFgL8NRjrNpj8JeefR+G5fhiMndMYMQXYFEaNQPdmqQjJsGwPks+2hI1zFFgKPBWPJggqi1LOQgGdPPmNePz1N+Kys8+K8884I0+pyCgm4/I5BZkMSGalMLJx4cIwc339Tbx13Cog7veUgbv3/DWqlz/70IMxC6PyKzfeGGcCexVQMC+FmYqmKWvpAKF9lXbXUThIH4oL3/3LDoWVyp9rvABj9Gmq9f91wsQ8WvIr3/pmnMC+Was/i1cys2LLRoGbwkdHQy4IKyDZNaSfwxyveJjxpRJJuy1hpLuZ8xQcfH/47Y9j3nsRZ558Ylx99ZV5aoKjOQhONKSewY7V60iLnBUbHngYfKqIrpxDfyT1H3Q0HIXDoAVGtZJBsSR8nMselIz9eniZUiOcDM3YQmA66S7o/yDFApsysIMgzW7gsI59rTW7KQpEmuh6HA2bQZVGBANbUpDgKJR9MJ0jKXeAK4yJmg87sBY2evTXThRAXMTri6nH9eNOgH8Mjsre/amQ3I3+mmAYUtwReJYia4xUcCeelGjK9Vf5KBwNRiExDlC6ZyLsf//n+2IxRsC1OL/GnXtOFtNzXXZyprGebZWqQjkjAwX6sfhhE/ZuAZYUTPvgS4hqeBARjaYYHoTC9vDdBgT+1Hemx8/v+W2M6DcoTjn5lDj++JF5hC1qYG5H2ooivILtU2/Pmhn3PfKwIw8j8LQSJ/RoGCf26RWd2Dqxc9tmjgKuY+uYiirGBzCyujkom7xDXHberk26zckkAeOSn6gOwwm5H2daOhoOx9It7Plka8o6MhqW1jsaxo0YGSNRqLp16QTPOzILVf4DodmsUYs45/TTOZKY/YkcDZa1LoBLKprglzAuCXOdDcLMIpDSq/RQ7CF33Ci5rJMVtFX+LW7l8biXcRzYaCJdWQgXZcy2pMukHfC/RC/OLV/MU57gGjtdDV6VDMchHdbAa94B5yePn4DifihuuOGTMXzQoDRcHI/3yRsLXiv+FuPXKeK6O3YLxqoEiy8qqvarsZvKOQ6SF559Np59d1ach5Phsosvyj3u6XQB/72kffmeq2I7zkmZ4rzsV/T0O9v2UomUV6/H2Tse2fHzP92TdU0+f/VVccFZZ2UWjwqgDyqLnIMGrOPS2HDc8h/b16GmvJO/pzEi3PnbZ6qW1sST/3omHh0/PgbS71W33JJHG+qkM6rr5X0lWDtOvsg+VdZdcw0a5WqOgwGlYcz4fX+Hdb377t/FLNb4ImpRfOSyy7K+gHJMvEgll/t81u+UV65zyXHhu33L80pyxiEYpd3O/Ce+NSW+97vfxYiyznHWmefGSSNOiG7KbtpO2QB9uI9YZ4AUYEX7VNBpI1O6yT6CaWW/Guw6hjV+zcZbsWZ1vDhxYjz45FOs6/FUGB8L3gzNPblMjvXEUEdZVoF2IXQ+qpwLLx1TrmviSz2sXVn5ktlspvguqsYJA94cBkfHnXZaDCCT0oJ34l0hn4pMCOHolc4E8NVLuGmEyX/EmcyC4TfX1dM/3H/+7tx5nLiDYYQhbbHUHuztN8BR4DU0hdwurYFjTpyhrazBwPwde2a/MGYv8dP7V69dk6f5TGbr6zuLFsS1n/hEHhVqzYgjMF403qRHjbpU1MEPFjFlufRWcjQUggqo8JtwkZ7cD28R1mlTp8Urzz4fQ8eM5mjcc6MPQQ71FnFEvUW85qH3aVH9z+MOkwHyXsheHfcEclDaGzfD8Yzj0mK7b775Zjz/9H/GGzV1cfMVl8d58LLOGEYaPCr9wmEv7e9gXXQ8Pzf+lXhi4njq/xDPSgLA0dC/SfTv0hmnO+NGLiIJmIZ8Fd4hLKH3hmSnOQCl5MGSo6HED9Q9gHHSPLjfELgcol8dDSvgxTUbiP6v5GQn4N7yiKPjuKGDyCxolw6xHehmbwKfYf36APurE/bSibQjfDTU6DTxT/oUTxgC4Crg7BTcaiBWqfs4X3mSAZpJb7wZ3//Vb/gl4tOXXhJnE0QpQ+dLukTuJb+icR2yBvTEm9Ir8VtcpDNpVvw3MOK741oFD3gePnMf+uqpBKzOufzjWXS7Dfq0zlzHV5wOhiwENuqmXqknfagfsTEDB86HfsQf71kIPf31H/+IidPfjovHjIpzcJoORX6pB+igEd+dh+OTN6eBx7j8Xjy1rdSBaVLYiJPCTZ1LvJwxa3b8/te/Bt4D87Qd67B069I1dW37t215fNobvLsFRV7j89KrMBDWJXpWn2QGyQtWolO+gXPtWU7BOOu882ME4+7Vuxd1pToUPJb2lCEJazGKsdpWzp++k8+jz3ipM6sPC3f50GZsnKqa2nhuwvjExUvOOTuLG7fGISF9Jw+mDXFV3mtb8mN1deeVWVuso9+5Vd3aGPJ7HbirccbOWsDJJjOR3eMnxUWXfZSjpkexdZdCuPICnqGRxIN0KAJ36+XYrnCRj+pgMLLvuqgH5ZGYzE1+vRIePIstKK9RB+vV6bPiB7feEmNGkgWDw0ND3zGpi4kGtlmaSzrD+d61kF+4ruK6lzBX13aec+CRzz/zdPyD7fAnUcz7k1dLT2xzgRcJ2wzQwt/lr2Yd6SjMDCWeNVOjGXTQmPsyI4PvzNyQLqzX9B61wt5APj34q1+HuTDXoRd87OKLs3DnHh0Nyk14TkEv/Cu+0Z41hXYRwFoOTjzD2E44b1xcc8210QmY/m+5/lscDelFYoFdHIUj4jC9U2Y0gA/paHhjwsSsF2DxnrHHE4knYivj3Y1xkcijMsTLCN8kBMOXb78jU39uvOLSuBxFdCDIoCAzGuHRfVaEdhtFpgJKgCy2iCfHdRwydC/7d0FFIvdEeVzlE889F1/76U9iBL9d9eU7YhzMVYNagaix6aVSaLFIWzAioHDXW+j3MhMj+KbwOeZEUJ4VyRdVVcVDjz8ef3366fjixz9GxWUMdhQui9EZkZLpyDBkICJ+oUDUEzXj83uVjg+YU1EExX2uazky6m28w3968EGO9mvDEXJnEtUZQWSEQk4wEJUzCeXD21EylQ4GaLuOXcYoA3N/m2n+uS8dRDfKWIuT5DW2t/z5j/fENddfFycTWehdSUQV5pdt4yAovHGsscxUpgFsM4IEwclIVPiFv4DXAGhFESHnWQVcppHp8SJe1vUoRtdefnkMJyvA85jdB1fyolq0SUKUWdiHBr84paBJxggOFIYBuMa91mawIv3b78yICSiJv3/iibgJgXYV1ZrLUOIYYLFeMA1hmso6qyrDtc10vAAb4VNaC5mU45DxGmU04+Altv48/pcHY3LdqvjRHV+JC8CZYzluzMI3FoUR5jRRCGNHqJMkBWPhcMh1Zx7ijnCzr6PACRncLKInDz/0UNz9n/+ZdQX+4ze/jVNGjSrWFIavcpnHCLF+tuPeWF9gEGuJEcx8fDXESG+IIy9xmHVpiaIlA9Ox9qO7vhbvbtgbl5x3VnzhCzfHIPYQWkBpP4KpNQbr3k1bYsqrr8U7d/0wuh/Vmuh116JGAxIB0YTnWcVK09WMJUQCky2ceCiw/K3KpVCSFlTaDrPtQkPcY8b28r6B72r2UYBsF8f4sHVibwdSezt3oe4DdQ9wcmzFBdycOXTo0Tg6duqBc6JBVK3fEtXryLbAQbK2sIHic+eOjROGDibj5gT2FfeFDqkuj6PEDCFpXnr3yrUEV6Q1vdkqYNKV667i7filx6lEXH7yq1/F0qXV8akrroqLP3pJDENJt61t28iM0rAA7n5WwDVkPr4ao+kqgsw02U+GQNPmpq9bnFZFV6WuARGy7THxjdfiK9//VpzBkZznnn0OUdKTiPCWp4A1+reFVN0aIgSvI6B+9rvf5tjb8S/JHjG8Z5MYXtkzuhyF24HjLQ/voyAkTg7p4hA0Bidh/ZMs+KdQwgA/SAj+paOhUHzfzyEO8LwAAEAASURBVGjQ0QAstgDLZdRSWES67ur1rIlsjuvjZ46LU1EaKqkp0q59a35bH/c+/FecUQfj8o9cRDXnAUS7oFcMAJUalTWzrMRJadSogsqVfEBeKN7KH4S//Ebc93Lf4+zZs+N1+PyDT/5n3PKpT8dZp5ySGRMeNyb+Finq8pfCkFZGyJ+T3wNbP7s3VlqV1uRpKhPin0W5Xps0Kf715JOxGmX6W9+8E2Xl+KQ3FZJ0AjJm2zL6IV4oOVQWHGuuO0aH6ZDiioqK/2sYWRz4LQyufzz29/gH47/snHPii5/+NJHvvsnn5HXili8vZZJwSOcfc7EjlRMVd8crXmVaOd/LB9eyr/zFl16OP/3oR1nj5euf+1x87CMXZ7FXFWTv17AQn0tRdL8rveQtRraco/CWj2kQCxefMcPmkUcfjXtxbLoaf/zxT+IcnLI6Ocxqk88w+AK+PC9s5MXCJY3qXHer+7veRXTM9Va2MuuY8vaM+P7374rpK5bH1aecGjd86lNx/PDhiQemtBfGcsH/xGP7cqwaivITDSjf/SysxAV5tPhldPp5ePwtd30v+rZtTNTnC3EuOOtxY7mvn/X0qGcLenpcnVkNR+DETGNXfMT554k8msVpBNAXnaURZurqMoz1x5Dbv/3LX+L6j14c4045LY4fOizlnxkQwk8XkQq0slSYix/iv1FKJpJwtD/hnWtC+yr/GzdszPPYH/j73ykweSguxpg+DuOiZ1nPdGZ7j8aQOoXtCXfbEMZ+FgbioW36vZfrK38rZTS8iePuT3ffHRci+4xi9iG62xHHoIBMeUo74qXteWWWB+2LR2YDpU7AfEoGjX1Lx8uBy5x5c+MldLgZixfGl2/5Eo6MYUQ6jyicDKwTkEx5D+t5X/+Q17pu8s80MljTIsMEwwUjwN+2kkK/YOGCeIsM0388+tfoP2JUXH/lFZxs0idhq/yXdkoGkX+ri5kN66lKTAY6NvOloE//yIwTDOnW7drCw9bFSy+/FA/f98d4c9ma+LfPfjY+duEFmdGwD11SiZH1oWhPqCxcShQb4+/BZ57MNplOXhcNODr6dGoTrSGaptBXY+ShzyL94cKFo8HTmcRn/k9Hg86Goj4DfTCu9NU7UPpqxPhYwNjE1gkdDdXrNsfkpXsyo6Fxw2Zx8sljMrNA3WI3dDmBzLLhI4bHV26/LUYCe3mvOOcYdADq4BWnU/9TrsuH+E9cND07JwPcSs4H8VbZ8xy85kt3fivn+NUbPxmXXvLRzGRNXRt+U1xCAf4BDpYcVdKp+CdfcD0yECJ9sB7ij7zC7CkdAT+7/89xXq8+cdm11+QxsG1at6HQIdEDnpPneb8BHnsp4bs4I64WTrWCJ4jHynnn4r1zwJu77/tzPEcQ6KqzzoyPXXEFRzOfmAEaebj0Kj56d9IOf/k5dQP4XGn8+9CRLODsdlR5vPRlIdk3yCz7+lfuIOgzAtl9Nie/cLx9WXnO2XnK65UhbkHxb/m5OC/tlujXubkuyilpVz1aO2JlXV28QBbr3x64P2686dNxEqfWVEKvOgbli66fbSo7nG/KIMaffJK2vJQHromXY3Y+Og234GgwQ/IxggQe5foJnL1DcJIcw/ZEM9fkqcqlkgx3/K6nGRfC3PH5bkBB+B/EMSu+tKLg6tqNG9iKND1eef3VuPexJ+KOz3JCAsEZHQ2e/qN9UFJK0tkOnPLIYfm746ZdjMPEW7OgsNzS6aCjRDuienltTH57Gs6+l+LVaTPj7u99L84YM4Z6X2xTZp7is+3IT+TBym8zskuZkOr3ylPH68t5iALW5ROe05FPj/714XjglfFx6pDBcevNn8/sZNfNKx2l3GddLnUXdVuGm/BNZ5f8xzkwL9t2PvKyVgT1zAB9ASflD+68M5bR1mfhY9dddRXyqWcG1A8SBDQDy9o/jt2MBrfyHmY+HutZW7cy/on9UjZscFwLrRxDEPZ/y/Xf4mjYz55qGZyEpPCQgZhirSDzWjgfD9WECRRjWREdYDKnncTxL336poFW7G1H0QDY7ql8D+X/FRjHLTffHGt59gvXfyKuvOJKjl8aWDAz9iUf3aJIkd63gyKRCEiNffsujOiiXxdfZiAuyFzTeIQRbMbR8DcMui9+99sxKprF9d/+RpwLoXTD+38AIhUZJS4VLjMYJHCjPc5Jxu7WCY08GaxIr6Guk0PlQya8YMniuAej8QEY7L9df0OcgyJ6PEykBW1s4zgwmZyeT5E0vbj05ziN2GjU+n1GGHR68L3EIgMoORremvF2/OoPf4yepEJdSNsjhg0nza6c+3jWMRDN0uiFZlPwC/9Ucv2COYjgjlWlIveUqSDSp46GpbVLgf3r8ZNf/ipuv/lzccbYk6Nv795E0zpmRsUu4G2VaZXKUnTFojC269w1BNLRwFpK3a7BEaRX6omsqlqSjoZnMNjXwgg/fe21MQKD7hjSOxU2wt1xypSdt8qPzwlnlY2CSclcC7i4phYha8Y+UBWt6ShZr0DkP0NJ/Dxtf/LKK9Mz7zhVtoWt7eo8ktHabrYpfJh/YfwXjh8dJRokOhoagjOrly2L5zki9O8PPhgTYOC/+Na3MdjPS0eDUREaTgZFM4lrMn/7FRYaX8JbxqhTQbgrVFXgdGA1YH3n4zx64P774z8efSQdDX9AeJ5BGqBrrzDxcuzOXSNFYdwIK96/Dx4yuoiQUfEitcSsE8/sVtlulJW498bLGF3f/cYd8TYF6S6/+AKceLdSPX5Q7t88AGNu1xxvL5X33d40/o6v5RjKSGHtgie6PcWvmuo0wKiGxIAVygbGruy7qcUg+dIKuhq6nhMMJafRx42MC7gCnr28NrB9Yhk4UrV7a6ykPsDBLo2IuFXCyA+SKlcd26n2eDS6VwcqZLcn+rEDZjyvbmPMXbGWCEBEXSFP44sXnx2jhw+jkvkJFHfrx5Fn1ARAYRS+wki8U+ga7VX5UfgKR38T5q67RYVcc6PWU9hucxdOx1oMsM9cf2N8VKFM+052D0alWTbiZuKbPIo1zZMfcPJg+ee6O/8WLSk2yZaGPXvZx814FCLyMiOkN3/9jrj4zNPjgnPPj7Fjx0RFeTkGTwNOctiZyt7SFctwSLwed/38P3KtdTRQiiKGdG8cg3t2iy6tqfvBJoCGh0z5VokE/sD6MIpsgl4JnZyqmHseRVqf0eA6FMUgWTwcDYeh3y2kA9e+tycWktGwet2uqK4v+nINkZUzx44lmsjRlh3axKp1a+O3993PNA/FNR+/LAYPGJRH7TUjlZJBJM8300pYpnEFzNzK4Fj8P3EWuJuB44kF8mnvXYXnfu6cOTFp8hvxy4f+Et/80i1kIJ2ZR+CZPaaS61Yn75V+0ljmXR5T9KdCCo2ytvIL+b581Wf5gWr0i2I8GXRPwINr1q2Ln/743+PUUSelo0HacWy5JQl6UiFUuQBtkg+JHxrE4orKhxlN/gZKsd+0ZfKPyVPejEf/9kg8RB9Xsi3j3265Fdj0T3jYXuIhz0gbzsH2/c7sAvuWB6cTFuVHvMotEfyunFnDeJ9/4YW459vfipm08d1bb40rwcmeOE2dYxo3DEglWiU3+2JwKeM0lujP+xJfmWvCCDg5Fu+dy5ngf4aP3f3YY7Qe8RjZAReee146bHeiKInrTtjnlN/KEk/0EC5H4HiRRwtv4S4sSwqfNCaQ3pg2Ne78xtfjrdqa+ORZ58Rnv4AiRzq2124VWP9gjAl34KCCKywAS16+q9BpPOWY4aPORyNgM/T4zCsvxU1f+2qezPK1r3wlLrvwYk6q6IUfjrR9xmrV70O06ckIji0dDeBdpkrDDxrDp5pCN80SJtCP6yF/Bm9rVq6Ih8GZn9/zp/jCtVfH2adyjCrytWO79rllUwNAmYG5k2voYgonjYHdOOGFuRl0iWPMw3dPStChuHHDhngH59ofwXcQObNgRpJB1KuyMmGbx8Byrw4fDYCSY0AnjDgkXan4Fv0XtFXCf092kaZew1j/9x/8IK755A1E7c/gSM++0aFTpwzoZIYRYxLetiNsc3y8i+viksq+66z+k4YLfytzlqG3mTH4LAb71Llz4htf/QqZJBQ0RfkXjkb6NOAMati+OCMe6eBSB3AdlIloY6mHaczJC+xf5XwBma5vQlOP/PWv0Zts189efz1bqfqlnlGMBxiId4xFHE78gL8243kU2OzP75O/0IcZJxbtbNG+LUWTiaqT5fHgfX+KVxdUxXegp6txxJjRsI8oo22Jf2ZHqsvNR3+79+G/xO///kjio/9QFiHO7d8h+hxzdLSGfRQZDRrBwNM58cqTmRhDJqIzJo+1tAaDv4rTiA0cI66bhgv3w1saAN+tew/FKmo0VK3fHG9WsXefe3EfxbgzzsjjUhuw7ruIlL6IY3A42bHf/c632d5wfJENR8Zc4iSw0LAX/so9dXFhIC9IHGGNcrAOOHlFsafcbVpPkWFz0+1fdprxHYyuKwgA9e0FPUErpoeLB9KrXF19o8TfdJQWAQ/a5rJP1zjXhv4MANXVrQSWD8ddONDPK+8Vn7j5s2QhjctTH9ziJizMrCjktU5U1hSYqFuU1trfbLPES9WrEqB8/y52xS9+f3c8RdbEDRecTwG9a/NoRvm2OqE8XrwE7NmGdCUv8Z0usi/llvq2xbHNODDDQpXOk70mTn4jvvS5mzOz6UL0PfX4yvKKxBN1U3HccZbGar/q8fZb+k7YuAapa9KucJLfrwQ2z7z8cjzwpz/ELbd+OcYSWNLRYE01nUsftAvPAS4uQ/J13nVGqlvaT46BtfYG+3d9NpB1MI/M50f+84mshXEDBu+wDOp1SX5oCn/KDdY1+TdjSt6FY0E+Y00VAaTsU1fWiSsfbQbN7N60AR7/Vjw/4eX49QMPxbduuzU+TtS+K44Gaw+4rUCYC99cR3BiH3gj/mWghp+KNeEz6yr9qsS4DnriFi2tjlfemBT/fPbpmDxjdtz/05/Bh0+N9tThMfMh8YA2inmDj+jSzkG9WtiX6sHo9FEmCTPpwPpPTJrC/lPjofvvjz+A92cQAP63226nBsSwwlHOUHTS+0yRNQEvY43FU/mQfML6DHSYKMgwcl3kO00IqO7kGM9nkN1fve223Ir7RbY/3MSrT0Vl1tXw9CId3R5RK78F6OAb/J613AuMluKcf/yJf0anPhVkNFwTHbDx/rdc/3VHg0glF2IxgFz+XzACPkrhXAsQUhNefClWL19BGmL7OA0jSkGiwDuEYayglkm5YGY0jH/99bjt8zfHKp79wnXXxOUwv0H9B+RiHcTR0BpF16rte4kCuPWilDajAq7BqACzbRljyQMq4ljwaiOpdH8ziva978QZXcs4s/RT7Fk/O7p07YYyUSiYClovGZJELvOTcBT+KngyPm9x2g1xjmjwKkRlDguqluBo+Es8jsJy2ydvirNIe1Wh8BSNrexZkzmoOJcEZyrmMgmIPA0iiMIoahrutKdQNrKm4W0hlqmkBP/6D3+IChTPC/CyerRTT5wkeY4y41UxULFVqXXcMjafLSnmKokZoUVhEm5uV9EJswm41NTW4ql8LX7+i1/GbV/8Io4G9rxV4mVF0VLB37l9B0fRYKiRUeK4VYDS0QITMfU0HQ0ymoQ9xAiMLG4jU6ipqYkZ7Jl+FkfDeoTMp6+7PrdmWD9Cg74UxdKxo/BU+fE9jX7WruS0cr013G1cuB+BMW0BJ4uwTHj11fjpfffG5665Lm7Q0dCte97r8Tn24Xq639PxyPjFE+Ei0pYcDTItL2Gi4FFxXGZGA0Lhib/9LV4hovPLb383PkJE6hjgwoOZkptCgHZy7uCyY7R9lS0VWQVAKWKkx9UIlnP3CCqjuw+DMzoautP3b+65L06HRsSJHKswZb6urZ9lth41qSf+IAa8xQn1JjdtgGKLlFQIavw2YfuDRZF03P3wzm/EVCLUVyCQb2Ftj8PR4BanQ3iEW+uEwdEwHhp94Y6vZiGxssqe0Q3lvj0OjWY4A5riwfCUAbMaDuB4EN9TaYUWJP3DaOzWCtCoTcVAGLL+uiR289oAXFcy3mocDcvXkWbMRMtwNDSjD7coNARGRyCompOh0BTma0rp7JUbYlbNGgz2iOUuCtcXL70kTkXhGkRKc9ce7FXlXnFPx6C0KV7oDNAhmDDXycQ9rof0K+wU/MJTHHuLTJjv/+THsWLhgrjhuhvjItLdjht6XOKHCoHwFtfFQ3GlETAwo+HQQauiyw+YIW21bGkRSAshst8OBVZHwzbW+EVw8nNf/1pcfu6Zce5ZZ7Off1R49JV4s3M7xccwnmrrVqDUTI67/uNXOUdrNLQBpv26NCBd91iOH8U7j4Qipp+OhlSqoUGPXwKlE+5qRwyjYL16m3ilegiNKtgbu7+pEUYBz20mH7hq4w5O9NjI+dB7o6Y+W+Tqs89lS9AYtgEUGQ11pEz/7v4HqLXRLD7B9jV5TZcu3dB02NLD2AsnjDQK/qlggQjCvDEOKovwGdGQl0lLaTDw7tjXrFkTi3AGvI5xcfef743bb7ktHQ09unVLY18emRFeJqRSpWNIfmbbFjeT1pxsQb9FpoPPuFfVlOTqxYti4oSJ8SQO5aq6lfGTfy8cDfIix+qayqsBXMLbMYkPKmq2KX/095LBlXyO5yzOp/P5TY4jfvzxx+LeZ/8VV154UXz1S1+Kwf36Jz6JU7bLaiQOsSTZn9+Jd17e4zisR+OCGUGS/5hRYUbD8/DIP+MIn8G938WJcYWOBmAjjquEWifBhYcrZDsqibn43O+MVPCKmfGB3+wrs03A33mkqd9HFO13RNa9/v4bHA04rK1VsHtbUQNCY8n7NfZVMs0uES7u8VVpk0fKP30pT4RnZpPQz2QcDd8kg+St2qU4Gs6Nz9x8c24XEt9Nl3Ys8g2zIKUdYeLaKg/TcVqvBNu3ip1wcy5ucfB0Fh0NN3ylMIx+cOttccVHL4uKXr3jALTmWJtQXJZOMqNBBVce7jhz/3opowGeZYqvNG3GlRlaQDb3Bj/8TxwN994Tt6AgnklGg9HjDm3aQas4SbhPp5nP5bgYmzguTFJxdxnou/RZ+WoAwKib2x7fxUj/I47wnRs2xmWXXBKjMC769e2bjnQNI2Gh090Jux+54D3FSoqftu1ap7GKjHFNnJvbMlZDU6+Dlz/+Aft7b/xkOhr69O6dxwhKNzojbMM+UmnmWS/H7atwZgDr0lz4TX3Ez3U4Meaw9/h5HPmvv/M2ivTt6WiwoKLHk+toULZ61J7GQ+EQL/iCYxbHhYm4YgDK01Mch46NraSruXXCjIa/kWlTMWBAfAbdwJotGjreJx3yeOpOjsc+zGZqRn9eGsQa2O7xdouAr8bgwVHsd18DPb0yYXw8/tij8Ry1p74Dzlx16UejO9FCFf8mOGzFdYCCRQjvwOH8e3jSLx9+INVXOGlelww4Jvod2y7acFvhaCiMDR0N5ha6dcJXGk48IXWmo8F1Y8w6DEDwHKf41gjZ3pD5bUdkbUDWLd20LaaRWraMZ1vhaDj9tNOiGxHow8zFQsYvsN1p8MiR8YO7vp/bcQ+jB1mwVv1O2KvjqO/Jd6QY+UkJJ+UNyignJGfSSHVP+Zat78XTZPfedEe9o+Fzn4/LP/ZxHA2FYVQKcgh88VzY52VT4iLr4GU/8ku7ELfUWRuj1xhYvOfhh+J7v/l1nNyydXzqO3fGOeis7QkuqWunM4P5acwqY13rUoFYv0vnVP6GnklfJbqSp9nZrPnz4pd/+H08yfreBB++4uqrM2PQQNhW9BnxkAln5os8Rv1A3Zink27sT7tAR4NyysBbFl9lfdyOq6PhDraWjTv9zDgvMxpGRFnPnk45ebj6qRARP5VxwiRffPZ76U4aTl6Z8LLmh0VHcTRAU/Kyh/70x/jSbV+OMSfiaMDp6JHc6UTmPsefdCXPYf4ap66tdGlAt5Bj6DngvrStfeM8VpNJYq2AR5F/++j/ejI9hg4aVGx7ZI4GZ9OYho+lsQ9AbN/L/vzNtXZerpFOVOudHMHxrruwEya/PZUAyoT45Z/vj28hn9we0BWHJhDITCO3RahzoJIkTeLy4j+XDJkIHMzIy0KurkQ975AnGLRcWL0kXpg4Ph596vF4Z35VPPDTn6ejwQC1zzln5ae0LpDznbaVD+Ke83c9/VvnhXgpHrWhoK94PJXtKn998C9x9zNP42gYHl+DH+ho0L4Qv0q8S9xQh7MtvzdQKb+R1+ioYeSJ7/Jj68E0Rn5uJ0vnXzg1v3H77amvfoms8BuvvSb6VvbK4ElDdGSd3BaUlG5pIbf2mTWxE35ftawmniALszOHH3yC7WltjqVWipfIZIf/g6//HkdDCQACpASUXAk+E5mcgyH1yvMvZLXuNqSLn0Qaaz+UAysHl4SEQsjtCBZ8eo004s9gGHldfdGFcRmKVj8yIKy26lFTrYjAtiCaajqjCoRElx4+iESGJQY4jBSiLKKf/V0mshFkeIo0tO/95ldx4tEd47JP3xCnn86ePZh6FpHUGIHoNFaM2mgAS4wSXhI+hEFztK2CgpTgvjzyiu8kgiW1NfEw0aInQLgvXHZ5nEJK8NDBQzIaZEV0FeJMe6c9/xb5FcYithFvGYnMSCYlTGSEVp/V8aCyMHPu3PjjvfdyznuXOJtxu6WkO04S05xSCYVJyADNApDYLNpm5FalxPYlOttNIQSRyFztw8jCCiI6r015K/7j/j/H7Qj7saShlZeV5fmxRiks9mRqlApFcTF25q8Q05DT2yxTlSiEhQSqgW9/KxA6c02/HD8hNuIYuB6hMAjl3Cr1ErFMQVgrWGV0yezqhYzfq+CJUhbMSoNSmGGAqCBvRQmcjRI3GWPt9xgA1158SVyBItejS9dcJwWwRoRMVIdJkYIs02NtmbvCwfUtORsShYGNzE+h6f7XSa9NiqcfeTTe3rQuvg1zPY8IbHuZF8qKa5hRHeDgWgrbdDSwpiVmp7Ip/N2uIuO26JeGhoqwZ70/wXab+57/V1g94Dc//mmMIQqooiUchalM2nmLM4VhYdcII+CuAdwUI9LtRNyZ88soO8VVd0Ijr1MX4+df/2osoO3zSEP7zKc+FQOB/YFDCDKEVFvGtY/1n8zWiTd/+KOsE1GGV7UzIZgOGNYtkRrNeOlk0ICFyvhP5dy/FFKsG4asJ0BAOexjQ4lkLACclDCcO8BjHWPX0bBURwPp+gfI6O3WtWPWcZFm0d+iBXDUK34I2l7PcYpzl6+Md1ZwUgW/kWiZ13UYw6PlHyiinbK+B9kYwEAjTEdXSZnWGJKGMpoOfnmPjgbHWxL8wnYGvOmnP/9ZzFtdF5+/+NI4i+ymQQMGJu1bsEpa8kpHA7gu7SPe3nc0uHVFhau5WVZNW9InKe04Q71RR8Ork9+Mb/zsp3HBmJFxBvTqVqfuGI3uMd69Y3emgy9bVYeBNj1+c/9fbDwvzI0YDlAG9GmJowGHVEPwgF37hw9iyDKLBhxViYQD10Q/ldlibA7PjAakGX/5o8ovRrn3NIQGqCGxed+hWLJ+U8yuJoIGCzOK5nXhCSfFySg8ZWybadu2VawhMqKieFSLVkQt2DrRtz/KyrHApgnGMU4YBa68EhqSvwhz0zDl42ZhiR0lmMujpQ3pzOKqS6qqEPrT4w//fCzu+OSnqB1yMicLHVM4W6F7lSqVkuRj0JFGp+ubSgaTFgNTuWNN5BXyY9MjHcvSpdXxJnB/7qlnYsmqWlL5fxQnDR+ZvEjaES98iQfyeC8VdMcoT0jjkTEkH7IvXsoPiwK7R3/6jBnx1FNPxt8nTYzzTzk1Pn/Tp3IroG0qj4r2pAvWxA+SDW/2l3KkHk91PIqPuf2Ev3Q0WKPhZRTnP/76F7GS3277JFk2ZE10RT6pnCgvPdLRlo0m26a4plIHaIuO+CyESvJPWCkL5D9u7Xv4EbIxnnuWmyN++53vxrhTT0vYWbNEfHFQwt7xq5hnhhyflVF2IW8RHq6nay5fUrbKR6exFemuO78ZC7ZviUtPHB3X3kh9DBx3wlKHSkaPxRXnwXfy5lTygLdKof3ZXjoakDMJP/o0xXTbrh3xEnz4th/e5dDjVmTUx+H1fcor0xiTryoTGDgRyiLzx7pNKVfoKwsHMj1pIdeG+xh08jFNhuVs6XmcdON7Hn80rmW7ymmjx+KQHRLtUHJ3ge/uy80oLjB3rsJXWS18jfBqRCsDM0OC/nQ0KP/kM2YUzFu0KB589G+xfsGS+MhVl8dJ6WgoTuRQtsszddi4kAUcGBV9yNOEdcH3653iyMkPHA0Wl1sbU8HLX/z+d3HVxy7PdOPy8vKMHtu/jjuRw/GLBxpe0lM61GhbGKkbuCbyUpFAuSxurWbf9MLFi2IC2Y4WEv3S7bfl1okO7TjRgvlBMCn/EtsZe2E4Ki8cN7AWVrQnrNQJXJPMnoBPbMPoWkzb0+B/j91/f/Q96aS4jgzWfr16FY4GcEUnlHTji2YSJ3LrBDB3CYWR/F2DK2sR8F1jdKaWZDua6j0Zh+a/MCxefXdOfOmGG+KjF1wQ3Tp1xjGgESp+FI44gyYLoY/7//pQ/Pnpf4pi71/n9mwW/bp2oUYDMDxA4CbL8UInDAh3L+9GK+W1IBjflRwNws/11Iwz5Xo/BZY13iwG2YCaPtuRmRupgl+zfn9MJatvXX2P44aNJB29E3PjqFBg9MTk1+PEyt5x5ze/mVuRpJ88RQx6ES+Fsc4X11G+WN9tGmLpdBB+DEWA+bvZSe+xvcBU76/+8AfZ6y1XfiIuwWisLCtP/EvnXMIcmc+766muIS56lfhkydmmjFTeqvNI18uRaw+j1/yGIEpf7v/01/4tZaCFA0s8uJT94rpK8+Jm8jTud12lp9K6c0v+nf3/P/bOBO6vorr7k31PyEIS9oRFQBBZFBAUEGUvgjuouLxitaLW2k1sa7Vqbe2n+trWT1tRSl8VZVFBFhUQUFARAZV9DQkkQCALgex5lvf3PXPP/c//5v8kAR59niRnnuf+770zZ87M/O7MmTnnzsxVOe5UvfnPc7+ertIb9rce9er0ehlJDtEeSKS9TGNt6jZ1E1zoR5ArtCvavrUdlQNe1EvaAmNhZDJjbV5I3iil9C8++5l0quTYa199tDayfKn13eSLfo582XhD+abfoe1QV2n3lIEy8qypsKTJ7B5o2D+CDYuRZeec/w0ZNd9r++TspvY6RW2K9kpc8kvdQT6i9GdDQ172S3rkGfmLHGJJErKDfDGOxzD4vR9cZpt4nqYZPPtovMRsCbBheQF1BgwYyyMTGNqRLvnPhr3cf/gLm7Eap0+WEWSR3tr/WnsUXXvjz9K5F12cPvyu98hQfZy+kDAjL2dSOW2YKH6qcTZjjD1zMAjQR1ufrjQxNOBqI6VwR2G/b86D6cfqV795wf+k+fr09hc/8TeajXi4jL1T7DkyY5vZ3dRH6jzyhWdoxi2Vh2fJLAfwoY8CR/DhJQSNgheSF8mg+c3rrtUGoi9KH/3Qh9KBeoFC3wYdz4sX37wghL/pG/JnHwxmDGHk7xHu1FcV1dIGe14kL9IL1KvE928/+1nba+Xd2r/iHXpJvvvs2WZoYBYrLwMZnuW2hW2TF5EaI+sFBjMarpDhb+/DXq591N6epu6oGQ1UelyGK19vhr/9Z2gAED8ECpfUJQSJGRquuDLdIyVZLUMWnt3TLCnHCACfgoT6gtWMDoldf//l3K8ZnHtLKL39zP9jm21haFit9djD9cDU9MxSSaPAmo2wy1YoBIcauBogjR2hipRXHbeKx3r+639+Y/ruT642/u868eR02Ku0sZ/2IUCgk98siKQwqWLRMFDuaIBuraaRILwRZD2q6FjP6V5o+PPmz0+XXPoDvYl9MB25257pEPHe80V7pkkTJprSgpCiIwYhswirwVDBrSOVrzUc8Ud5Nz/DMr8NQIjc99CD6d81+Gd4/CYpuwg/9pfgDQ1vQYgDJnQ4lJ8KDR4M8BCACEam7tEA2XgTPzpYBoGPa7Byq6bxXyHF9KRXHKYBot4a76DOVVOSGUTYm3JhYTMNaGVyLuxs7aX4ILyy8JagVDlR8BkEPLbgMb3FvCf9SAPcBYr3gTe9WVO0d7cZD0z7s3hKw56l8CD/tC2UGcpEJ4SzzUN51mqg7NHAFEQ21Lvn7nvSLzQQ+sWcByRA9konSWFkg097y0Id0PPLHVf1LIWDGBv2CCR7qyEvnisYUW9skKp0F2ig9XMZMb5T1Zm3HH9COvLww9NUTedCYbSpbnQocggnawbizWAK5QX8eXYM9pkhQb1BAbM3qKJh1+3LvnNRuumJR4zHxyS8EX50jmAHQzCwekL+EK48RwaGwsKMYkMlWBUbIcbzob7zuVje9t+ijuFL3zjPeGsOhgaKf2GbA9nMBOVtnMrdped/3+13pMUXfVeCcZc0W2vOpov3NCmsE2RsGCUz9VoZNrqlWKuIOkuh7laHxbMYJiVDLVJVQ4MubSqkt+YYPTAgrFIel6kDe0zpPCJjywMrl6b5S/Utc9FO1mw2TWDQd5P1JkT5HcXLYE3jX6MxsWwR6XbltfUxO8t+OkyzIA486GVpt912SzNmTNfAhOm9GkCoLtNRUo8YLJAv6jjPkbpCvWLnYCoVNGBGu77rvnvTF/QGE/eqHWanY049Oe255542EKdjZ2AA7rQp5EK3GXdYPw0OtGMOBtNqRzKQDFFHQie4Trx5W3ezOrZvadnNdFGd+LrjbPfqndSmRg9XByOjxCLJI6Zs3/qb29JVN90qqpbbRZdHKKIZtlW9eFOgoli7kL6r6bPUi3xY5y763PlxUfFR9sjmCNHp0aRezXB/WvHufzSla+VF7t3N1sWRx54oA9D2WoYwTptZLkr/dt63zPD0xne8TRvX7aLlB0xhVJ1G2ZVRKA8MUbKQBRog6TmzMSwzHPAzRVTPAmftQdg/KQPG3XfdnX71sxvTrU/Mlxw7Nh3ysoNUH/Kmu0yRpM5Tn60gio/89ds80KSdqU0IANocchp5x8DoEXXYv73l1vSdG6+3KB85/Qxbo8pADFraHwf1gMNAzNytXcEH+OBFvTJ5Jz/2VEFm/k4z9L73ta9pw6futMeU6eltwma3WbMsDvF4FuSX+sg9gzuM1aRJO7Y39Qoww6baBwMw5DCGBurDNRqsfOvHV1qOTnn1a7Q++Fj78s9yKQb2xQfRI+95i0l5kAGuTOihGA70o9RdS0PhZmiQEj7vkUfTRRdenH6lN0e4M099g9YeH2hftSBvVnLln8EWg1GcyX61AZONSo/nSzo4jA60c2QZfrfruX7uv75iYbP1e8ZZH04v1iAXDFF2kbMMnG1Qrv6BfJmhQfxRnjhIl4EiRqCciuqO6hOb9TH4P+d7Fxn/E2QUO/mEk2y2B5+uZdoss2nYJZwBIoqnyXHxAX9TTlUpMTigcOAwYKhC29KJBcwm0cy1a277ddpbA/5jtJTopZLDyPm89CK/PUYW0B+BB2/QVGkkcyTElIYrvDxrymBvSIUlxqQHH56TvnnuuYklocdricBhMq6xvIH6wbJMUxhVYvB0wzX5hr85MNc1zxaZxHiHuooR4wktEeCrEBfqayivefFLbBbJDpIzDLDNQKRn6+MM6jz1hk8/skyIfobnR5/i/Qzp0ba5Z4d8vup0wzXXpduXLUqvP/o1af9999UeAtupzU4yAwl5Z0YJMpPc0n9bOpKzeNBOwYu8036ZvUpfiNJz3333pV+qf73mjt+lPafMSG897c1pt1mzbTkA7RoDUjY+SfjJ5TqitqV6yrJBa6/KO30Tz543o0NUD9ivgy//3KYxzaWq89Lj07GqM6959ZGmGGGc5y0sdZOxSpcOvjpxiZYp3CYDZen2183eMo5PVjUfKVk8XGkrSTNWIKeGS8QxLZo8qYi2ZNDMNRXdGPV12G16FFcfYDK5qxebaYkGQwsU7wFF+50Od9vrYqdtd7CXa08/81SaUwWc/YEP6iWBlgwKX/INPqTHSzczYJAnjfVoV67Y8lYb45eNFWhXOsCelx03aCbJuZrFgzt2/4PSCSeeoBc0mj1VtUVwJx0c/KgT1B0UOuQbPLk3f4VTX0xOiH6B6uTlesF43e9yL/6ePzrZ9lDgyw3UEWSAGY6rMR7jM+ITZgZs8aUe4ag/1E/qjo3pRfTA3LnpvHPPSw+oTr5k+Lh06vv/j74gt5/G7RjCtcxZfRR5p9/mBRl8xUj3efzEGMHySjpqRxjI4c+yqye11Ok2vYQ4/4dXpF0V7eiTTkn7vmTftIPGlOCNMcLyKqY2w0k0fE0OXOhnmJlBO2aMQb8ILZ8DpjzIQTZEZg+Iy355Qzpu3wPSy16uMY3Gw3wKmT4U+WR9nuJZs1ea4IOzl3s6kxaFYryDos2BEv6wcEHn+vZPrrHZqW95m/qnXfUpeY3jkQW8bKO9IsPckA8ujEmpv8hjHDKMSo7MtrG28OFF7R3aEPYXehl88333p2P0Naoj9fJqpvQnNo1k3GefgBQ/8KU9SpBb/SO/Jjv1LKi3/jzAkxkJbBrJPgXX//xn6dLrrrc80D8drBkH02TsHal41BfqraLYM6MuWPuXnMljYp4p9RUdKpeBfPAJZMbNd6p/+v5Xzkm/7dHm7aL6Gy0XYj8Y2gTyMRt48jJn6rV9pUf1k1kk6BLsK4geZJWAVCiH+g8M3OghLMU957vfU4jGbgcekF6vva14SbDGNoPU+JTeVA2f5aHKltpU3jyUr94skJz9ydcuSa//hz9Jp+uZ7bDrrJwMGd3MXf8ZGgSE5LweMh2JnrDAQRBTMR68/4F0iwYI98uiv3D+gjRGlXGyNhRDcTeLlhCn8bDZyFANuOZJsbtDCiO7cfLFAzZ74u0xD2u1puyq1mrgrB1rNdBC4NLAqVxY3VDsEDK8ebIdpxEeqoxUNoQtFnQGFE/KMkcjYynHjttr7ZIqEksMaOAIAwQTAwAG91jRUCZpHPhz4OC3Tny7RITBwRR2NQKMDUzR30bW/skyMEwaN0EbJ8kipvxag1Y6NDgX2lRwBkZ0+oCGZZW36Wa11NR4BIASt86ZgegD8+aaMGIAtLM6+xkaFIHjSpWN5kujkWSTkK0Ek3iSdxu8YVgQHrytXa43RJKSZg1lUIYyvFhvVpiiyuYrUzWIGK/ekdkSDGoZ9LDeFGMMZUERR5GwTswaX7bQWfrCQ1mQw4qvjTUVj0+DPS0hS5zJeuO5jbDhjYjhoDzS2cObiDRsBAgDPDo9Gj3Shem25J9v82IBXSfaFXrWy9TI+TwVb5HHKm/bTZkq3Flio8GJ6qQZkIQNAyqwpwMwJZK6Bz7iidBA+lFf6FRNYaTOiOeiZUvTMlkdMdJMkcIxXYJvwphxabTqAkKDvUboTGwpifjBhw4fPnRKPEMULQakwELapIlbohkevD1eprrD2+Jdd9zRBDcCjcEb9YM8gisHccGKwdpQKX10+FmpoSPWYYVQmURLJ7dQS26e0IGVdhJ1UrhMGItgV5llmRi+RvVeUwUXzp2XRsgYtKfeWu8qI8U01b1tpVBvI0HKjIZV3Xpjq5ESSzVUu9LqbrU74TdiqJ6FFGy+GKHhZf0JICQphoZnld/HhcE8yYI5a5enRVoqMXzfF+vbzrumUeNG2y7hw/SM9MRVx6Sg6m3902s0ZVcbFi5cISON2vtKYUwbHy/MaVPTpJRNHKd2Ilz45CR1jI4MBZcphGBMh80ZTEwJVt3hGdPZ4mgfbDC3UJ0nb4qpN9O0p8hkHdb2Vd/NOKW6Qp3k+dqgVLgMUZtn+QoYMyjiE5fr1momkdotHTPPY+Xqlfpc09K0+Jmn1YaGS5kbp2O88q1ZPHydQrMQlqrNLnxan/NUe1yqPFAnxiiPw2S4mqnns9u0SWnKGE3vXPG0Ornlmqqc3wau7dUbE33Lj0+pWSF1pj8aqnypdqvQDMQxUmmgJRDyjAa9kdYyiGcUb4Gm6z66fF1atlID1B694bJZYlICRTt2JLO/ZKRUOZcofxhWJ1PXVS5bGqO0+KONjkOOC1+mwiMHeKNIG+EPmQXerH8HD+o+Syqe0Zrj+Xqjw8a8bMI1SwrRjnrDiIEBRZo2a7JSzwd5jAxgIM2AijcHtDGKzaZvPHOeFQNrnjGDKGQ88gA5pmpl/GdMwcTGM2cQInhUJrBGLtKWbNq+4pNtMwDSdsSbg/amCLaEDYn62FML07wnHrNlfuy0jQzmrTf5tpk8aq/IBKaoIo/5DCBvAtmTAxxcqaNvBC9kMNiwtIMZfQ/NfzTNfXy+9QkYpV60224mf5exrlk4I3OYxmnr44U1OFB2Bs1m8FUbIL+0FzY5JE1kBXKWpToPyhDzrOQVfdJk9U3bSBbzmUKWxIEHfQlGazZbZtA8QX0BMpv+Uaqc8ivcJPtNvtAHKk+0KeQynyej/yZP4/S8Zgp32hMOHG0zM7UX2ODsLaziMaimrVmfpTL5s9Fjzu1O51Va6vX4M/p8qfru5ZIh08ZPTPvM2i1NlfFrhYwwPHv6TZYz2nIIpWeGKGFBn80gmHHDUKtXGjAqHZsBoXrKhmXL1F4fX7pYy7Y080K0yALyP17P2CqS5ECXysV1NjRILmnsQR1nTToYo0jzLPjyAS8LwIWxB7LoWeGJjF8hHFWx7K06z5e0mC0I5ihHlJnBvr1t1HNG/tMH0p6GaTBO+/L+A5xQ1p9Wv71Ehs3l4jFRz3Oq8g4PjDW0U549cawuyI8882KFPYuoj9kIJ3+lTXrIOtoUjk0DFy5alJarvrLnDuMB+u/Jwn2i2j/5ZHy0TNPVGYOwHwtp+osN2ihpM16wT8Wp/MiHCRpfgBdK12M6yPt41bcdtYElYxs2uCY/GGnorykD9YS+HHmgCm7tyvp0tS/a0hBbyqo+RH3WOvVZyID5qo9P6rky82uGxgU76OXVRMk79jQSmNZW12gWGtOkl2js+KTk9TrJ9nGaEYGhceWKZWnXbcamWdtukyZolt9wGZvpAckbB9f585Z5vIWvendhpXqtug7NiF7NrtOBjKa9M8bo1XNfLpGzeHVPeuxZ9Y/aq2GlZDN1a5ye82jtj9SlOs9syG7lnWVkUydonwhhz9gVeYNCyzNmOj5LW1VIq3MYuMDf+0XaLVjT7Hj2zKSkjcyb/6gZV5DnM6dOS7N32NHGZbygok+0Pk+4YnDAOO8zl8CKOk3dZn8LlmJQLtogY2/8GZcx3qO+07bptxmrImswtvIsWRNPe2LMTR13JZjxHksgqEtcYwQiL/o3GUdbo2+956EH00pZ3LfVc91J43g3Ytin3BUH9BlHoVjTHliOSpuBF/IZmYbMGKOxhICxPm+l+hu+OkHdeUZjctblj5dsZNbzVOkhtA8U0vwos+EDfjwDlsWO01JNa09q/8gYaMGDsS5jMMaCy9RWH5MxgzbLOHWaDILwps4z5qPe0a8hj9eCn/Jf13PlB/mKkZN6RDtCZ7BxvdLnhSHjPeZa0TbZgB+ZwLIsZA0bWCPjuebIL3wxFOb+CowYIyPHwGqk7mm39CXPSO4uenZZWqxjpXSWSerPp28zxc68PGGvMF5s8IUfq2+Kxx4E7MWFHLBxrMpkrULPkv4YPEeqPjILafHyZ9Lcp7RcVmNt8jZ97IQ0XXKefgq5A5Ysn6QeU16bhagzeQUz6jYHfSH9H/irKIYd47TF6kNtrK1nRX2gvjNbgnzl+gVnWrCcyoHcon5SXxmtU4+Y0UC+GYPQ32IgoT/ka2v0fQ8vfMyw2k6zPHbXsvaJqg/MiONDBixhZWYDS5zJD0Yq8rpK2PCJy4WLnkwnaCbESVrivP3OO+V+0jJDhjZf98INDSp7fjS8veLIRgM9e3sw8jJr+8MPPpjmPPCAlk/M0Wf41mjdrzpQVQ4OHrJZhdTgVevTs+rwlwt09g9gcOmDHzrj7lUawOjzbqOlkDHoMmGoNNgcD6sYlYw1paskCBFGWOI4Y8hQfbG3sljyMWIgyBDG9tZAFZJOGOHHgBc/hK9qms0KoILxvLGqEc/egKsRsYkHjU8t2qbWQoSRAXr2M6DrRkiQOJ0MApvBBIIVwcFABGWUN4R0/Agk3sAi/PhEE98mR6gwIMIKvULY8F1rhP54VeAxElzsvswAnYEhkhghYQqR0kVIo5waxrrGagseNHo6BJ4d2JiCrHNusHndP3mkM2cQARYIDzp4hBQKBp0LCj882IBm8aKnDBcGXeO1pIFyMAhCOJgCprLSOGm8NvtCZWO3WPJHRwT+DCJ4BsxyQMjxhsSmaJNPHbissOvVgvK7StggyMgHzx6lhDrFmwqenVkOhQM8eW4Ie8qCUEUAkS8EHcIfoWSKo/gJRBt40OGAPZ/KAjsGj+SdN2gjpeQzCGU6FZ0MQIAtjudIAggT3nIxUKec1DcEJA7ccFk45k4p51PPVO1juZQC1u6SXxQRMGewReeI8WvsWA04hB9rn5nKDt7QUQbSBnemwTJjgw6MgSGdylPqiJZq4DV+8nj5S3lUnVqrqYLzH5yTtFtO2mOHHdOuerbbqnOYrl5jstrkaEGyposBj6Y1qw2gMDDgtfwLbRRe+9SlhCj1xqbGCQN1sWm1yJ4SBvOU5/nq/pavWZJm6g3B3ofoE56TxkuZ1aeuVKcmakbAmBGqN6O0A77sTY8s0cB/2SpdE0dvUJQf6sAItRc9Cc2hUF0Xrr1SiCkrdRr8aSfkDMWX58A1z5YrsKFzskG3lEFkRh4USD6o3jBYW77sGVPsrK4IR+o77Zk6iiEDnOnUSA/8GTysUieyUp/ipHPKM2QwCoknHhrwjh7NveSFBgLUn6EIRuHGYHSd2sUaPZ8ePTvkwRhhO1plnqbzTjI0TBolZeLZJ7VZ7dPiI6VatL3CqmeI3gyLPftjgAtH/ioGFncpLBrYSvioY5NMY2mFbQYpRb97WJq/UntmPLtGRhAG/SO1Se9Ua9/PSLas05SSkbI4jB2bjTZqIFIgVEdklAAHgWmyzAwC5EXYolhRx5UdG/CDPe0TvK3N6znQ1hjg8jzADtlAXWZTOWZNgf8qpYO8hzf3tieLZCPyjEEusoXniGGUNDHi0a5cKRJra19m/FAaxDNjpgbpKPr0Dcgc9n3AUR6rO0qDN1D29kttFPkOnpSNukL9MTmqZ6pewja4MvkpLJhWyffGkbsYz9mlG5mAkYS+BEUd5YE2m99UqY+Uv8ke8QIDBnJmKFfaVA1mTvBmjXIwQESOm7FUD3ykZIq9n1NaDM7BATzA1Q0NyHNkAIZADEZcI3dM9orWBpDa54j8suaUfJoBXeWhT3XcyTt7ydB/gDVLEpC57FfBDETyvkyKKPkDV9K3/kT3Ym39BWWmXnMgy1HWqbHghbyjPuG459kz+EJ54h4mZoCmjHryw2WsGyKjHYZrlpBMksIoiWdtljyP1XIxm6UAb0U3pVn1lzY8VEolRgbWyTKYBpNVa/XyQvnhhQF9+IgJeu1s8iH30+vUpw7R8k/qI/0skpt6YfkSX2Q7z85m60g2mDKtYJ4Hii8lM4OP6vJI1TmWy9HP8TlnxgbjNFCnf2VsQ11EbiL7SS/vI6E+WfihfDCgpWy0LXv5oIwga5FxPFdUX7BH1mOoo+/k5QXGGx9Ic6at0A+ZDCRN2qnw5nkxk8XHQfQ1lIsXECi7I8SXIysJqjcqhwppCgHPEGM7/S0729NWyRuDaNoc4wqWMlDvF2uWAUoSX4VAViNLmT1kz4o2qHKAjY3AlF+rB7qnrlAWxlBklr6MdsXUb2QC46RuyVpeVvXKINCjcq1Sn4XhkXww3uLFyXjVGVsnLVmjgaDlMz9V1XHxXik+I8aLTn3+GtWPZ5Y+lXaePDbtvv30NEFG2KEyuAstqz+0H+VM7Uh9E3VIDunYjWyW8V0PxMK710g5WsOLBL29Vf5YYjBUz3mNjLzLtGfOfH154uHFq9NKzTPnLefYURrTKHqXXgLwHJFH+CNbMAIwhqTeYGhAYaKOmJFKePEsqUPUBWQbMoCxNONMxr72LNS/I5t5u47BExxNnqveMU5lHAV/MKPO8GyZFZjHFxpvKox6Z4qcnin9Ln6MYcF6lF5kUAfyuIxp/62lANQRytBDHyEYMZpgmKJdUQ4bs4kH/raJsMqTZUDeb4wvAqBY0255ecX4bKIMa9QD5DV5x9AALiz/ob9F0aPNM2sMOUS67LfDS0nqJGM76h/jbcbdZrAUfrQJ6NaKJwYE8mntkT5c8RhLgDWyFVkMttRX5La/zGI8AC0yD0c6YIRcYB8AZjqQV+hzm1VdUThyl+eyQuMRZDIz6ugzkCtmaFAeMOKTd9opzxspQJgSNPx5Ps/KmIEOwjIu8pobugpmsjfLRhvf6PmRR9N/lC+eO7hb3yJ+KNO9Ggt2ywhnLw9Ez/Ij+iNkq8kCNQH6JhsDKj/sP7BW/U+v4oAR/uCT23LWA6h/8B4hHLoYI+nNiN2D6QoZt7VJ11j1VSYrVV4wplz8wROs4YHxi3v6IJ6bGmQVLlkgPHGmVwnTLHNkvIVOYaZj6PEwxuZZ0C7WyfjI2JCXrDyPHrU9ZjTwLDDgwZ+6x4x2zl16abdU9XGFDF+8BDU5Tt1QGmvFa4jij5JMGKXZr8wKJZwxhaSz9ffdwkUjrHTgoQenwzVLZOrUqZbnLeHnBRsaeE44zsLROkEb7Ojh06zwxwK1TNbHRVqbu1RWPD1lq4wIMh4gFZqGwcZMGjNbx41ERnghBKhYtnZGjYUOgoGCHp8NHiw+aZGYDiogB0Nes1ApwAY+qvSkYTQixVFByR+V0CsibFodqfKnhmaCA3oRY4DA0oYwJz4DlKzsSjmQEEKg0AFDy2CJxozg9CloNDDC7M0OjU708EfwIKhpPJTZhJPi0zzoKJSwNRormwQNgzE6WloUFlc6YMOTFsa/ndXQxJs0rOBgK38wNsC4tyN3TpQJfIxG+bHBi/Jrg0H42TUDAZVNDcQaCsJd9zxjpqZbuRTGYIZBYxYKEt7qHOgIiIdjIzkauwtgT5PnYNiJznCp6ghpkG17FnoG9uxUNvBnUA32Nh2eAYvqifHT2QYlPEPFJj8tQZcFD1zBPNebXGeUKeuUsfgziEeIYDhBmMOXzpsBNgIEwxNCHD/qsQ3YKgyhtYMCK4w8U17Kgj/0HGCSB9ZV/aywN4zoNBQBvtnAJSGpTnqtyomCywwIlkdwkAZtjwEE6TBgBE/yyNv6Cep06QSWyqr77HKtCdaAfaQGZGOow1Iwf3vzr9MDX/lvTdkcn2ZNm562U36nq0pMUt1jRsM6zWagZTmOyj0FU1kwkrSOjKewVD3lDViX6upi5WOuBiFPaKDW1fts2uuMM9PLXntEmrDt1LREdadX7Xqs3tKP1rpV9jpY1aU3Fiu609JVemuowewa1b0eCXJ424BOsxjUK9u6WKbPIgf87bDPRjGLtmGf8Td8hAvPgenqYDNanTQDc+oFbQjl16Z46x5DoXUwqgd5k0ueoeKr/ikX1kFwjcQwfiqDtW+Vmbo4QofI7Rihtb3MgkBZtBlSmv2h7lQdktLQ4GGdjh7lhWcn9S+NVFuaoPxN04yPcRobrF29TPV6hZ45gzrVQz33XnVayrLw11MQ/pYTPachms2gFiY/YaROnrXB2dCgOMNHJw3B0lPrNOBXlVmhXc97hDsbPgpeQbpKna4MJlLrRulZjVPnTwIYUbq01EOZFl+G0vlc1u8sS5BXqiXKO/feTqkqJocFCHWZAYEbQ63dyN8HH9ZWVZcNez17zuSBeBzUAgY6yEXSwVEXzcCjcAbltCeb/q9w4vCcGIzQTrPskhxSWagDNpsBII2PvOFZtUvqOmVEPoichPLUbPmbMdG8ckuQh8VFHlAWLwePWtpZAABAAElEQVQ8MGCYAxvVJxz1FJ5uoCH/DLBQQjBo2gwR0dIrUH4lbQM72vAQ8q10KCN455YhAtVtcKaecg1/PeGcf9GZEq907Q2NaMxQoTpJ/RlJf6sIyE/rT5QG+yiN1Jsq8gavtcoPyhhpUFe933LZxyCNgbzhphjM1GMAyPMAd8pOvlU8w4d2g4HHnp88wclkvNKivBzKthl2UCKHS4FhSjyYIduHAaX4YdgBcxR90qmelhjAQTz0fDFm8rZNtSEbVRTEIJp9ZMCP6fYjmeklHHjeDCZXy9CQDTHqb5U3BuHUf+sbxddkie6RPcheXoyADQoLfV82AFF31a7VvlHeKZApXioDuQNvw0TlBDeWeGBwsLJbncrP12W7KRqqxxAgt8CefheZT3zSIl/5s+NadkB9Jq8c8AXjip570qY8NuZADgoPsESGUV+o/5ZWNTAGU+hR6HjBYeMh4lEe0aIg5vaXFTfkMHUHAy18mAVC3woe9GGkQ57IH+2RfiuPl/S8lBbPk3rhMpv2CS3jH8pLfnjevHFlDClP63ekEuhPTsTIAGv3xNH4sVuGa5bhYvBlpgA44kyuQ6/nhALRpdkLa1frE9BS/KdPkPIssqE8a9IRY/JhsajDOvBjtIGRAWODHoTR9HRJcZcCMkxCdoT6U9krrY12S+lY0zs8LVqpvWtWYphXWfX8pGLpSgLalPE8fhqifOc18ywxkvIG3voDo9xmeLbkKPdtYAk2yFoUYuolBl7ajtUl+UMNtuDItdcF2gt8eI7mr3zwzJE38LQxhviZbDRK2kB+dhau9Hi+GCpMZiuutQe1U2QOdYW4pGqyQWWmDLQN0ibv5MkUY/n3qG8l38hE6oq90DFy5RGZo7QIxwAHNvBBSS8VeNLCz8okHpSH9olDXtKuqKvUBzeogC/1EVmQ25nodM9h7Q18lD/7Iz/ilesvOAlb8eXAUSYrc+VHnQMb8kT9ZekXBjh4UHbyjr5BG6M8jP/wZ5Nbygqd9blqy8gvyiMQDQ97IcLYQvEYm1NviOsH+aW/Qjex2UGio92CEeM2qxPKm0jsuVlfLvmGEY9ZQ6QDb3U+9oJCD0ZyTJggN0RMvpExGBroq5WwtT8zTpn8z/KKemB4URrRDNGLr6F6mUL9Ug71aW293NLYA77IXuQRso2y8rysb5cffTgyxZ4R9VJxcXm8hn6V8QJDcCXv+TnmOpXrY8adegh/MDIDs3CgTiGnrZ0prslUyYD8glb0SlGTkaS76qAcOnC0px6NYfTwbWmVarl0V2SQnoXas7UN0bHU1uIJ2+k7bJ92mT3LDKLwoCxgsTm7fjE0AASHvtqhBqDKpgdjg3/5mZJMRUMIYdWkYxJsTHmm8VCTbTAqWgSVHou0WD0kKjkPTzRWoUVqlZfHrweHwYEOmUYMKyqwfZpEPBhsmOCgQereCFDURWuVWRHkmyuf+JswEC8cDzQ3tjxtl/7EFGri6hrlsn7oVEgRoEy58k5eaahUUjpg46o4DD7pPPFHsMDDBI/KTxwwADfyajwg0MGAk4O3UghqyoVgpRGbo3wMoHRjglq3PnDLAjCTGV9d2vovCVeUFe/4wcIypHSyUyNUw6KxeScgpjAWmf64VLrkn+fNMyJPdOQ4BeeyyZ/BC/mgUVMu6BB2xOVoOfFV8sZfnp534pjTidwRjp8pkXgIM2vUiow/A2Tzpm5wJT/yCz6E0cnhzxsdBlMoH2CPpZj4dMTcU4cQpvbWXrxJw4R5lWd4WF0QDxXEeGUhxzPMGBhG4knB7HlRQDnyDrYITQSN5Vs8qIdmLFE+qStWL+VHeGvgp3yo7iPoUPANkareWEcpWnhymKN+iZb1ozZ1WLjwGdQe1SeJamGjJUcq6zq9ZbpWu91fedafJm1xmXZ5EV+dGJmmqy2OEY2G9rRGhQhPJctzoDOiRjAAFECq73lgZYNspdGtNz9YaQVuWqLyPiBjxlOaojh8ZHc66P0fSoedeGwaoa8q9ApzllwNl/Kt1qZnqreNUrdX9+rTcBqErVM5u6nvasM8TPKs3jcNwQgkSpQhkrHc6Qz+5Mk6FwXw7Hg2BpeCjZhayj/PR4dhT3nAmvZEPJG6kRDFjPpNu8DIM1wWdo68CSXtRO1JA3Fz8COyEgBnMVQ7II2cFukyAmYDzV7x7dKxWnlcq4OlMMMVf5gs4KOFy1iTWxBrqrCGoVaZrYxqa8qv8TLhQ3pyVHYMDTabAUMDcUFGtLxh00wI9eRplWY3rBqi6dQaDEs0pS7NoCB7o5Gd1AxteKZWa/WR5GBBnbfBkc5C07BhGibYMdDj7YzQM1lIEU1+k0Gw1MG94a1r4ugE9FbXwRm5gJJKW+VhorQQnXtSNKWaek+GRJtlueLTXlS/vN7T1ojqMsbaEYnhCDCXn6/YWhr4Wx3R2Yzawo282Mw1yzdkKrPC6dMoC4YC2oAuSczSswG66h71hzfSpMIbEPq5LPtol9SLXD/JCtNfyQd8LXdUHjvU1pUe7RrHQGs42CmuKrcerZ6znMWnzLq2Q9GzaMh1Hj8b4FVldDwoOvWZN3Rgz6Aq9yG0scwMZQa5aQNUKQ9MBUcSrFYcm00ijJgdwuCf1ImGA0v+8OGZk1ZGXBROhF/j2h4TJMITOmuHKhtFltSyWQ321hpjiWQOMxSYaWdTUeFX4UB9ADvqBOXl+ZqRQXygN2VGCdCf8raNzwF3qwFQNmYo2AAVfiRsh2SCLnkG3DOwxTHQ5LlhTOGZYWhAiSNtlJj8lk3YGkb0g3kwbMqO+CHXre6RPyFk+MuL52uDVKVDGVDIrQ8SkMg1FA0w5rkY9gAsHvrP2OuePBh/XZfPw9uFY4PRg3EBLwc4MivFpYCZIQzsEl/6LRxvXzHC5CUeua5DZM9dmKCckRZ9KYoD+eGwBOAHEyVmZdZ9na4w4flbvRGR5dPqF9mh7aDU0/wrGQK9PHhuNtAXL75Lz2eYea7s22EKipIzjJVSj4ymfN6Sgb9NFVeZaJOMtSgrS2Hpc5SaKGQc6NXsNR1676x7ykBuodWJMuFnZ11KkTAjsLjTXsRG+UUJQx6r3ujoVd4o4xBmFcmwvqJ3ZFrRLXrJZ1tWoU0je3UwFMZgjZFBtQPmlpSBp/Rov7TRbETRMyDv4svztPGb6g1GhpzDqny6y+MHPUvVLcMRvio/cagzVj/x0j3lMqOo+KIII0uo58ZXjJFaFk/09VhMfqSJI0/eBqHDWbtWiYDPcFOa3Nk4CSjBRn/0NzxzZDzPxvjoDHfjr2ueBe2eMSbjN3jTF8PL/nguVdloU4RTp6xN2MPJdZE2RdsyTFRfAZo6YUmIE/8kCr5WN1X/SAP5iJ/x1D3GbPJC/0E+LK/iQxwcZSC/MLRfeIAtRhLFs5lEtBc6ZsVB5qD7kI/8bDVewl/tClkDX/oIZjKQAjOnaG+4nGIuB8+S9BjL0A64ZmaJzZTTHV+QIR3yQCh1QJm1Nkt/Av60C1OouVe6yEQMCyYnhYPLWNIm7wxNbHhiYxu9eNTzsf5GvJl1xTOADwYkDIW9LOeVIdlkhfLLUjcOZcrwAGPKxrMin9RL6j7lbKsTdm+ZqDDQNQCaq56FIpE+/px4jjwDxt7IBGQh5aM9MD6hTtKnkwfKRrZo3My0tRmdahfDwV7yxvNjFzZ2Ek4CghkgYIS/vRwyfKU7q/yGk9oqs/AxdqE/eo79nPO/+f32i6GBYoOd9B8TYHTS6AT4sSs7A4JqCA7pc3Y8tE0CGkI9bBpHy+GJ68xh47w3TpH5//5/Gd7S2XQuyaamrwaijm6IFJq+MHFOdLKk17fLvEzgoMBs1FEjNsRvowxeOIGEhUkVFzoIc4S+1xkJEAt/4SkNCAe6cRDepDpC1Vb7VM+aNOUo3Xzppekb2ohyG3nvvOceaQd1ZNMkyEeKZgR0Vh94hgwKSAMBXaVmA6psAV8rjLHwwrdLhLwxXCSFdK7WDS7XTIlx48ekw/74fenlJx2fZL4VpzxoN4GhQZpeKcqvVZ9yyvKqXE77OZTTIz7vc6PeqpNTb1NzQ+QYDLXPc78gBd6tUDY4G6p44qzAoFAi4U+ZwNLxUKEDUxRcmMiPXlFyOB8sG2jhCyUHnerIgh2cilvddXDN9tOBZFO8NMTDzr8ppH8Ymhf0UBvIcYtcQc70q2uk8zx5o15nOU+d6uBo+97O62AUaWaHYBjqI15N278XyJbWEOx58gY6XH89EvZDsT6lvQ5rWG3Y5hW+tMysQG1aL662q8GvtC1l9PeJMYoIhu2NjwkMs/LH6kZ7metgZA/1vpCVddgf4AKs6amoK50eM71UrrudQjtlUIYCk60eVsajQnl7xB8swcVpkMMul1VXeJMOPpothOEXeVxygFrqjXHJfOTRp/N0GwRS3Kxvb3i/oFsMJcjGTRrvkVIfeXtBmdhQ5I2kR33E+fgv3/X/74baRZ+pqb6qTuSxeZ9ECsi1o1kv9BrN0JbqvaHI64X1aKaqySNr/+sF978HRlrGnBt4BjwlStkuWfAp5WDz/oVnFQwxYIzUzM92pxxZ1fL23B7KWAvjzzBmMdVtvkmz6ff5CWfjGyn2leqmcxxYyn4zNFTN155FWSR7NhVQ6wFmkaqYVDqEQIVoVmWkyBbMTLHx+zKg9sMTHmJilVjXFc/MzwlzIiX3sitqhXosfLKvc8h82/1KftDlUKchL3XsKrTysDxWdJ7vmrQVn24Trq28ev5q4o1fkJZj1ChTW/ZEk1PLKXZmLArxMzrLt+cVaufmfs7P70uOnlLpt7Hrkn+2cJcxciqNtCi7lV+Ull+dm/ee7/XKQ4m8DCUmVT7aiuDpeh7Jmftx3eKT/Zt0OaX8nIlXhhM/O+pDK6Rl5c81pBXbUqacWXpVZ90wYGCww5RWLWm6SZ92+9oH3pe2E/sdtXP5FA1wt9ExRgy0glG0eQYE8UiNFLDOj9Cgg7vVEtBrpISvE0++Ec4eEtrRQ5+qXJae0OZ8i7TnxJCdZumLBtukV77jbenA445RQttr0KWOR/HtcGVYxgYzZMtXKdsQzcsKJR0QR6tLJdRKqjPOqf2uDMt+HuIxM0WTTqFWR+RPEMQWoXXv8duS9yQINKeLkrX5Vx46MQTlwOFL2czyjYcpvaDA4QxF5XXUvaC1cKet6L2O00mjMBrGrA20d3MtjmQRtsbHeeWb7NcKMV/4Om+L2AivOOfsEdaqr7l2Zt7ZN9enVjploSq+nhbR6qRafGsvCyzj53Tyb6Zv+bRi1X6WjuI7vq2A9a5yOYq06jwWfEs/4wkbxSGak5XZcr+qHM699rbo7us8PLTwh04u9xIZZadqJQx9jtOSGM5D1OSdo/F84YaB2d4Ktg3+PC4pt1LjLjvCO/kT6mEVD2dVYIZXVh/JLX9ORHznW/qV/romqH4ehMkRrYpqwfVtRiRHgrBwzsPzRhuFid/rDoyafTZ+ObkqwRyrYOyXykmdV9GuZ6QiENfik+839Zf4Hrf1LFt+m8KnyqOV2+nF07Hxc113PM/Qknbz3nkU/lxaNj2vHq0OcI+2rBPq/aM/RXnVJTZuyp+FFc8MGhzxOXDQ6j2ufiWh7TnjWzkCndAuMnWuByhFlpLOlUwGE+PBWQfyGKVLPRlmj9KRZu5n8a34GoHz1I1hTAbkV5ej4m3e7s9NX875VTQWr6I1L/0Yb531dtec1cdGvAb7irL2hRo/j5WvmlQ1eXUhaiOpYlpk5wRJixuEuX3hV/pXrAz7Kj3Hys9GsqG8OL8mDf6lX3Vvz5brZniVl/XyJx6KAyd7y+7xaj5VPO7dNfKeZQ0p5nSdkjtc5p7D3c98xdPu/W1JnYZ8W4TikG/guz6vKjVP1M8e3876gTcH95b/isDSFFf5kRvnX7agXNereJ5H5yvv5+Jy9qr2X0TkZa4Sl7i1DLZCLN+6dcyrbGeCXCaWbWGwz7xbUbnK3IpINZH7VR5WfsuCxfG47dw2v7sXbGigyDVmuga28p5wdw6p3XtF8UDO/hB1mStaWwyjbPNpJrReYJuHxeenL95lznPMMn6RmF8WwdmrGcsJSbUkdn/5Fd6thgQ9jsCC1vzcp5mi01VE5YmgOp36Qp7tccq7TOW0ZUjJ2MPdr6TzMPdr3nuc53tu8fMUKKT7Zq6tkHxfhFr90717QerXRtyMi2eLgDrUTM2itWHq9E1e7k+MZsKbcu9Pjlz4X06dPJUcuLfhC54cNt7RBQMGBjy8MWOgo/1TbrziinTOh96fxots2oxdtEZsRJqoNjmeTWyWsynP44bAiNHanG7KhNStKWK8bWP9P6y6xHOtNu9Zs3ihOGhfi913TWtEs2CFPr+mnbyfXbosjd9T33OeNi299l1npEOOOy7pe1HZ0EDbNyVYubXBl6bsyQvl27KsM9nHgR5DM1PGq/u689J9y7VwznGdQ4sCbk6Vn2kZxrWH6pI6U8ioJmWdwTKgiF6XoM5GFagTXn7g60fm6SF1xCqFKn6Znl07PTed4iieMM4deo7s6Tl1X5xr9vAtsXB5vl7E7AG2uVQ5vfZ8tZ5Buz+0xO8rV5383c/jcsaV/tyXfLkvXVmITvFatLnOlPStMEuT6I6TsSr41f6Vn98bi4KuroOlX5GOe/eRDQ8uYtSXOQq/G6OqwjlZpGZiHr/0d786uedwUfCxdkfU7Nfi6jK45dNKoIhflq0m7RBe4J/J8m+mdHpnwL1ft/LmfoS012rnlfnk9pBz65zznf82fcu0oPHwpr/H39iZ+B7XeRHH/fqK7/HKOFW8MmqBpXFqk51OWPIq/Tqk3Ra/CneZw20jO3AD/8y1hbaTlc+m4tZ28ty4Z+aEr45moBOVZyu/p0a0Km7hVZKrExZbz28uTibdWGIFQ8fDvAr/OsP4Ob9O4eTI/Zt0fd23l+L3d9fMV6eUnMbDPM9+3wyX/yZhRnznVfLoy69JU957Xjyu33Mu6Qj3e107uXkV/nV094PUietAu/A67+E5RiteKxHI5e/YVLfGRD8t7s7BfSpefusR6iQIqG8yJ6ct5EXOX4uuvVV4BJg7TemH/wtxzhMezrfh596Q1EF+4egS2O6cwnxLHjApAsugwrud2WZ21y+Ghs2szJHdQGAzRwBhhjgqzxSpFEv5ms6FK7sjClo7HQiGBmYzaO2ZnZ/QN3yvvjr974c/lhYlbQgoMn2wKk3WwZ4NTLbXHt3Gh71wmSCmb5yYH2cm4vMBQZT/pTqgxcDBcoBndTytY5GOaZO3lW1hZnrDh85KrznxRM1o2CHngY6GgyUsZnBQtnRbGhnIPo6ywNsP7rcE5+WjLOuXqQxtlhbqDYU36blfP4VOVOEXCAQCgUAgAAIvRMZuLG7I46hjgUAgsGUiEIaGLfO5Rqm2aAR80MIZVTy77Ov239bZwzkznEFBN2ODTUPQnAF5Ll8oQ8OPf5zO+fuz0xJZFZ7VZjh33rMgHfGS3dORh70izdplR/uknQRGWqMvyDz56Px07133pjt++dvENwr2OnTftO/u2tdh553TBH2nHAPDgiceT3PmzkvzHpqT5txyZ1o7UZtM7vKitK0+E/W2Mz+QTjjpj9KomZrRwJo9MmFWbQwNyh6HfHHlWd7mOJfXlXecOiDg+HmQ4+b3cQ4EAoFAIBAIBAKBQCAQCAT6G4EwNPQ3osEvEPhDIGDT2qRC+vQ21x6lrKNYMg0zr/DMinr2ayntZDEr69pBWqaHxauWpCt/cFn61CfenXbf62B9znNSuuSKq9Nbjj8uvfGNp6SX7rdPmjljunbK7U0LHnk03Xn7HemnP/15+u5530977zc+HXDYiWnPF7847bPvS9Iee+6pSQlD0733P5Bu+81v069/9et03VWXp5322DNNmTLddrl+y2lnpBM0o2HKZHaEsK0j6xz5FL/awkBm+9KWvdzQhAsEAoFAIBAIBAKBQCAQCAQCgUGBQBgaBsVjiEwEAs8BAVO69VOeTeHWj/7zhjqtZQe+/IAzUfzI6n1vGitDw9K0PH3voovTZ/7jc+l9b3i77aNw3fXXp7Hi95Y3vT4ddNABaaepmn0gN+/xh82A8JPrb0h3PTQ3veaII2SE2DatfGZZetEee6TDXvlKfSqPGRF3p5tvuSXdcstv0uOLFqf9ZIRg88g7774znfDaE9LrTjkl7TBxpmY/5FkZGBj8s0v1Z+88syRs5eVCjvKWh3nGTyAQCAQCgUAgEAgEAoFAIBAIDAYEwtAwGJ5C5CEQeC4IuMLNbAa/RulG89Y/yw7cqFAaGfwaSjZZ1Je2RdetzR9HpmVpRbrw/PPTd75/fvrzj/xZmrndzHT1j36c7r33jnTiCcen/Q94aZq1/U7ag2FomrPg4XTHHXemX970K325bEw66aST7NvNl19+aRo/Rssi3v4O+7LEnaL5zW9/m+7XzIYJYyekgw8+RF/1Wpcuu/LydPB+L0tvPe20tNNEllnkQrCkIxsbdMbLD122XVPW5gFNuEAgEAgEAoFAIBAIBAKBQCAQGBQIhKFhUDyGyEQg8BwRcAMD0bhG8cYVRga83eDgOjv3OM7sjJANDcPS092r0iUXfzdd8N3z02lvPz1Nmz4tXXvNNWnpE4+lU04+Je2//0vT9jNnmiFgwePz01133Z1++rMb0qLly9Mxxxybpk6emhbOfSxN2WZKOuCQg9LosWPSPO3PcNddd6Vf3/rrtHrt2vTyl79c3xkelm7XcooDX3KA9mg4MW0/cZrt58CCD4wMtf3AM8wZ5+d8F4YGxyHOgUAgEAgEAoFAIBAIBAKBwCBEIAwNg/ChRJYCgU1BoKl7+/3GziVvFHu+ILF89Zp0lTaD/J9zv5Ym6tOVw0cMSz+98ep04iuPTae/9TTt0fCSNHHyNlL4e9PSpxalu++5L/1Q9P/0lf8rA8LB6c2ve3M69qhj0uzZs9OwkSPS2q61adkzz2g2w/3pih9emf7fZRekww84JM3aaRczRrzi0EPN8DB54qQ2G4LZS/oqQDPjRixPP5fhcR0IBAKBQCAQCAQCgUAgEAgEAgOGQBgaBgz6SDgQeH4IlHp4ee36tvvB3f08Jb8vlybwNck1y9emh+c8lOY88EBa8cyzqUszEIaIaObM6WmvPfewpRRppD5iqS9V9K5cnZ6UseGhOY+kR+c/kdauXpd2mT0rHXTwQWncjElipqUZir9OX5N4ctFT6aGHHhLd/LROfuMmjk/TZ8xIO8/aOe24445p9Bg+nClXZjr7tPtZeEFEQezwEnmkOAcCgUAgEAgEAoFAIBAIBAKBwEAjEIaGgX4CkX4g8BwRcHWbsx9NFqX67de+waLda+0EX7fs0fqJ7q6u1Nvdo2UNWrogz651a3XfnYYPG2ozG9KI4fompmL1aGcH9oXAMtGj+65e80LjHzpMNKOGpaSTrcvwDIm8SwaH1WtWpxUrV6Ye8R89ZnQaM2ZMGjV6VBoCPYXo5Nr8deP3dYEUyT6J2Sly+AUCgUAgEAgEAoFAIBAIBAKBwEAhEIaGgUI+0g0EnicCrm9z9sNZuQ7evG8zMjgDDA2yHXSt67bJASPGyFCg//Uc9F2VVYLAYVpsMbyZkvzX6hCZ8WBnx7y7oy6yI60ehWOTqO0DnhcnKs9tYbrxe0+ac82ojBjXgUAgEAgEAoFAIBAIBAKBQCAwkAiEoWEg0Y+0A4HniQA6t+vdfoaV6+BNtuZfEjqt/DSZwWY3EIzePkzGBs498ujVDIZepj7ofqhmNQwxxd641elzB49Vq/XBTNGPHj3ceMAPHhgXLL4I3S5AnMyl/Wx+RHTn13b2GwXCqMnA48Q5EAgEAoFAIBAIBAKBQCAQCAQGFIEwNAwo/JF4IPD8EHCV289NLq6D1/4FIWHcYgCwlRB46MiGBV1rJgJ6PDRGh6FBV6yYKL4LIb+W6xbh2rV8NLM3jRolQ4OuuCONHjHGSDHC4uu+ilZOeKiyYLYDri3hTucqbotQHhbBA+IcCAQCgUAgEAgEAoFAIBAIBAIDjUAYGgb6CUT6gcDzQAADANp4PjuDbAbwO86+ZKL04xoDw7q1vZqJ0JNGjBxmyxnww9jQpekJ2vLR9mdAh8dg0N3LbIVsIhgydKhsEcNsZQS88M1GC4wRQ+pVFbbaggDxGqo4w9nnQa5LflwNNz7mVdsN3GbQlm8vpJ9rIsX168wmfgOBQCAQCAQCgUAgEAgEAoFAYBAg0C+Ghjy9WkqGXoPmqdW5ZEuXLk3Lli1LEyZMSFOmTKnD+qJ3PAjfFOdp9UhxIQ7KjPv1Fb/k7bSlH/Hcvy8eTf8y/obilnTGg2JKUdpQnGZacR8IgEA2MbihIbeXlpmhuuottPBmk9J9D5s5yrIwbLjaDZsywlf+3ZqegKEBf+qnGRJkZOghUBYA6iumBsUyPd/84V/VZVLlFt5s/kgAMxqGMk1CDuMGbhjt1a4sanXVum4zNhAKU3edInpYnAOBQCAQCAQCgUAgEAgEAoFAYEAR6BdDQ4/egHZrpzcU/WEs8JZD+b/99tvTzTffnPbff/90wAEHpBEjtIlcFdatXe1LeguoflDIXSlHqfFrP+PnB1HWrVtn6Q0fztrwTrvZZcYe38+kj3NDhfPkvKkOXn5sLH6vFC/7Q2GrHHE8H+4X50BgwwhQi3C5PrkGnmutmxt054aG+lxw9SrImYidqnzhX7JQi8zkxkM/zqtmr4jr8Wv5Ncn9fr0oNb+KnRPivyHiIl5cBgKBQCAQCAQCgUAgEAgEAoHAHx6BfjE0oEDz5tKVfBR/ZjPceOON6eKLL04nnnhiOvLII9O0qdPsk3Yo5hgaoPc4+LmCz7UpL6UyYV5Z03A64ILWDQXwcqUdf+MjmpK+E8QbovMw4nXi0ykcutLfr/1c5mGoFr4z3TxcILDpCNAOSiNDbhfEzzWJXx1GVly7dt4iJ0q7ywycUQ6rWLQIxcDaqCUgb+4JFSG0XLuxzs8Em6toqrxYNA8qzn35w95dee1+cQ4EAoFAIBAIBAKBQCAQCAQCgYFHoF8MDc1iLF68OD388MPpZz/7WbrgggvS8ccfn4466qi0xx57pBkzZphxwQ0NZhiQVoGhAgW9kzLf5O/38EB5h4cbGAjDj8PDSwNEzb9KE/pmuh7fz9Dg6rj5tvbbUHyI4IMr43uc0s+I4icQ2CgC1Cc3NOQ9EIiSFW9Xv3U2Mu6ra4jqa6czz9aPe/d1zhYF8Va6tixCiVT1OzOpItYGBt2bV4NhHU42PYzrTXMew8+bFiuoAoFAIBAIBAKBQCAQCAQCgUDgD4FAvxgaurq6EsfIkSNN4Z8zZ44tmbjuuuvSV7/61XTK605Jxxx7jBkb9tprr9rQQAFdmUfh7mQwKEFoKuWkSfzSkOD87FwtVXDenEsezITAlf5t8QsFymhQiDpoNqWRA37OA60JddCdp22T22FVKFtOE+dAYOMIUKc43Mjg90XlrNc64Ff5W1V0Gj+TWnXtXvU5116LJio/56UTbOhYGBsslIh1ZBjLVfdW18swuORwP9tt9eNplX6ZuuVTptbyjatAIBAIBAKBQCAQCAQCgUAgEBhoBPrF0LBq1aq0cuXKNGbMGDM23Hnnnenyyy9PGBpuuukm25vh9NNPT+95z3vSwQcfXJeZJRYYC3Ao6xgMOFwB9yURhJuiXxoKpIl0dfdtaCAODqXfHWk4b/w2ZGhohln6KE2uKznTDucyTYLdsNCBNLwCgeeBAHXaDzc2NNhYta8qqxsd6spbVuKiTjt5wd1TMXZ1EppFJCPDUH2PgnMrL86X8/rXeeZC9m9dt+ja06gTa7toUWdvv28jiptAIBAIBAKBQCAQCAQCgUAgEBhQBPrF0IDBYPXq1abUr1mzJt1yyy3pvPPOSxdeeGFig0aMCUcffXT6m7/5m/SqV73KDA8+G8GVcvYqGDpMh86uo9QzAwSRGxpKtNwQ4WHOC5oNGRQ8rDQmWBwlbBPSC+OE8/I43DddW7oVD6fZlHgbonE+cQ4EWgiU6r8r+q3QaqqAPFwNr86myVfX5Wya6rrkWl7D2aLWSWBoyEYGNzT4/IScZk6jZUwgYp4H0Z6nVv7K5RN1Mh0uWjFyoN93IA2vQCAQCAQCgUAgEAgEAoFAIBAYIAT6xdDgeX/66afTggUL0i9+8Yv0xS9+Md17771p7NixNtvh0EMPNUPDK1/5Spv5gJLPVygwRJhDk3keWoMbI/wMr3IJhvu7MQCl3o0Z/hUIS9+SVwbsP5/df0Nn5w+NGwz8vCnxmO0Qm0FuCKkIWx+B0gxQXovSLAJlQyqv4eT31bk6uaJfcjNWFUu/hgOJ+IwGlk+0jAyENfjbffZrGh7aadu5wKmT68S9E134BQKBQCAQCAQCgUAgEAgEAoHAwCHQr4aGJUuWpLlz56YbbrghffSjH7VSsW/D2rVr0y677JLOPvvsdPjhh6ftttsuTZw40YwMTaW8qbiX4T6DARr8fSkE9x5GouXyC+79qxhcE8+PMi0PK89cm5OW1ZzpUObLyfy8XlgV38M93WY5PDzOgcCGEXC1n7MfxOBaqrgH41U7V9Hdw+91ri49Wnl2AwSxsr+bC/IeDdnQ0AqtmTlTS85nM3BTpFuFcSrTMe/ih3SJ5WeCmlzwCxcIBAKBQCAQCAQCgUAgEAgEAoMDgX4zNKDoL1q0yAwNzGj4whe+kB5//PG6lKNGjUof/vCH02GHHZYOPODAtMusXSyMeKXiXxoMypkJELPcwr8kQRxmQ0BjTloIX67AuQHCbvSDQo+W4hszluk5Dee+9lIgfpkvoy0MFk3DgqVXMq6u8W8e5LVpGOkQNbwCgQIBVWZzzXNBwqUHt3m7io5neV0R1V6dZxjAMpNgGvBlG50SqhnVMTxmTqk9vMmheV/lrj55bD/XAXERCAQCgUAgEAgEAoFAIBAIBAIDjkC/GRooyQMPPGDLJjA0XHTRRWnp0qVtBWTZxBGvOiKd+vpT0wEHHGCGAgwHKOqlAk4k/JqGBmhR+PsKdx5G4JqKNBEzLEgtKg0NRqMf4rhrGgzwd56d6Iyv8tnmxM4NHu5f8nU+zpewYUOHtetgHjHOgUCfCLTqbR8Whc4xLVpZZ8vrzlH69vU8+LkvyjKN8lr0jVs4dOLW9PNofu4r5fAPBAKBQCAQCAQCgUAgEAgEAoE/PAL9ami4+eabbW+GCy64wN7SYxjAWODGAYr3kpe8JH3+859PRxxxRBo3blyt6EPjdG5g4Fwq6SU8KOqdwvCveUk7Yf8D5+fxLS4azka0FOhwfia9Tmk6X6f1cnDvcTYWr+QR14HAC0GAWtt5PkLJVZW/qb2XwVxvLHwj7afJ7jndV7wHMgvPKb9BHAgEAoFAIBAIBAKBQCAQCAQCNQL9ami46Zc3pXe+6502s8GVe5Ru//KEK+AXX3yxfYWCfRqgQ6FhFkCp0JdGhtK/znlx4Zs6Gi/5u6HB47E0oQzz5RdtSy8qfh6nYF9fNo0FTlv64+flJCJhnnbNqLroFL9JE/eBwIYQ2JgivqG4hJk+34nJxvyIuAFjQBW0seQ3PXy9jPZ7Cpuel6AMBAKBQCAQCAQCgUAgEAgEAoENItCvhgaWTLAPw2233ZbYk4E9FVzpRqnnM5jbb799+tKXvmQzGqZMmZLYLLIvtyGDAXEI9+UUKPQYFDhwKPFuUHBDA/TkiU9wEj52zNg0fET11YsqjsflDM/SiICfO88b9/CHzgwHUtB8iQZhnXhgGOnuyctAMEJ4fOjDBQKbisDGbAGbwqdU14c0GW7onog6bCGTzk5a8iP9Js9m+Mbz6Jyh1HXNwC/8vHFOQREIBAKBQCAQCAQCgUAgEAgEAn8YBPrF0MBeDI888kj6+c9/nv7ub/8uLVm6xHKPEo1C3nSf+MQn7OsT++67b9pxxx3tjT9Kuiv1bhBYvXp14nCDAZ/D5EDb6NUMCAwGhKGojx49Ok2YMKE2NJAmYTjCcRg64Ldq1SpLa/z48fapTQvUD3nwg40hWXbheYKGfPkXLODF1zQoI0tAPA0zNlQMa+NDFdc3s+yRoaGra53lB4MM+S7TqaLHKRDYIAKlCg5h874vP/yb6rnftxkGmgzLe0Xo9aNK23msx1/x+gyDuKMrEyuvK2JjyE/JuSOj8AwEAoFAIBAIBAKBQCAQCAQCgT8wAv1iaLjjjjvShRdemH784x+n3/zmNzZrYGPleM973pPOPPPMdPDBB9ebQrqyjgK/cuXK9PTTT9uBQQElH6V85AjNgJBuwT00GBPGjBmTJk+enGbMmJHGjh1bJw0Nzg0ezz77bFr+7PK0avUqMwxMnTp1PSXfjAkyOHg8NwBgQCDMjRUrVqxIHBg4SJe8dXJuuOhap5kUa9eYoYPyuBFlm222STNnzjQMOsUPv0CgLwQ6qN8djQ3EL2k7qebu12ZoaEZ0JhXxJhsaxMf5ejqw3rDzxKAqr6tYxoifTedYxYxTIBAIBAKBQCAQCAQCgUAgEAj8nhHoF0PD7373u3T++eenX/3qV6bAP/nkk/apyyeeeMKyz8wFlHpmEnDcf//96Y1vfGM664NnpUNfcagZAnxmAoo5NEuWLEnz5s1LDz30UFq2bJnNHmA2Awo9yzCgW758ufnjN23atLTddtvZDAlmSbjBAcMAhgaMDPfdd5/xQ8mHdv/997czMw3gh6EDWjcOcMbQgJ878jJnzpz08MMPWxl32WWXdMghhyQMBp0cPHCcMVSACfnwT38S/0UvepHhQ7lw69aus9kUXk43fnheOMMPzLh2A41Fjp+tCoEOKriVvy//JjhNNd3uO0Vu+okQL4wNOK6bvCyg9BdRXzRO2zo3EySkYmCJOSc/t2LGVSAQCAQCgUAgEAgEAoFAIBAIDCwC/WJowBjA/gwYBlD+H3300fTggw8mvkKBkn7qqaem2bNn20wHZiugQM+aNSsde+yxCSMErjQ0MFNg4cKF6e677za+nDFmoKTvvPPOxosZDCjZGA1IC0caxx9/fDrppJMSCjwOXhgSFixYkK688sr0mc98Ju21117p7W9/e3rd615n+fAlGBgsXGl3RZ4z+SUt3FNPPZWuvvrq9K1vfcv4ffrTn05nvvfMtP0O21s49E6LgQBXGirmz59v8VhmwkyMAw880D71Sd7Zs4K4zNQgDrMl4OeGEMLIHwd4YUTh05i2nCT0LcN6a/zppJI/Vxw6Vp+NMVakjZF4PuAPraVTX3hodXZmZWZU/82Vfm3R+gxoo4qbQCAQCAQCgUAgEAgEAoFAIBD4wyHQL4YGljhgGPDlBMxYwPDw3e9+12YnfOpTn7IlEj7LAOUZJZqZB9OnT7fSuqEBbWTturU2A2Hx4sU2cwCDxX/+53/WswBe85rXpFe84hU2IwGeN9xwg30yE0ZnnHFGOv3009N+++1nswxQxjGE3HLLLemSSy5JzLZ473vfmw499NDaYOGKvBsUyB/ODQZ2U/1gKLjqqqvSl7/85XT77benD33oQ7YBJrMSStcXDwwxzIi49957bWYDRgWWTvDZTwwgbkDBmDB0iGZSSI9yXvDn2u/JHwYJN46U6cd1INBEgFr9+1DLK1OAJff74N8sR9wHAoFAIBAIBAKBQCAQCAQCgcDgRqBfDA0U0RVgFGf2bPjRj36Uvv71ryeMBf/7v/+bXvva16ZJkyaZ8s6bfg5/O+9xUZxducePa5Yq8Pb/vPPOSxdddFGaNWtWOvHEE9ORRx6ZjjrqKFPMf/KTn6QvfOEL6brrrjPjw8knn5xe/vKXp5e+9KWmiF9++eXpT/7kT+xJfPKTn0zveMc70h577NHxyZAvZl2QPjMcfDYC94RhaCA/P/jBD9IFF1yQPvaxjyX2m8DQwMwC8ux7ShDX45vhQPfuHnvsMeNzzTXX2N4WGEdOOOGEtOeee9bLKHyzSeI6LhhO4I9RhPy5v/ONcyAQCAQCgUAgEAgEAoFAIBAIBAKBQCAwkAj0m6GhLASGhiuuuCJ95StfMcUcRf+4444z5bikc4NDqZATjj+KPQo2sw1++tOfpv/4j/+wGQksiWB5xNFHH52OOeYYMzT8+te/Tt/+9rcTBgdmGbD/w8te9jKb1QCPSy+91GZE7LbbbmYYeP3rX297M5R58WsMJRgBMHCgzLP3Aps9MgMDx/IN8oPRgxkbfEHj/e9/f9ppp53SM888Y/H4CgdGAj7dCQ8cX6aYOHGibT6JQYKZFb/4+S/SlT+8Mp1zzjmW37e+9a3p1a9+tc1uIK7vweDGCviAR2lowC9cIBAIBAKBQCAQCAQCgUAgEAgEAoFAIDBYEOgXQwMKMcYB2ytAJbvrzrvSZZdflv71X//VNkz84Q9/aIYGf/vuswOIx/XwYcPTsOH5E5QAg5KOQs2yCM7XXntt+qd/+iebsYBCz9IJZjRwxgiAYYN9E2666SYzKrzqVa9KGBUIgz8zEFjaAT0zKw4//PDa0EA4swQ4yB8zMDBWsLSBtHfffXczArDMA6MFm1SS1je/+c2EAYU9Gj74wQ/aLAQ2eWS/iMcWPJaWr1hef26TcrI8gv0lOGNwIB2+0MESE5Zi3HbbbTYD4+yzzzas+tpcEl7kC+ODL/UYLJUp8hEIBAKBQCAQCAQCgUAgEAgEAoFAIBAI9IuhwWcm+Nv7O++4M33v+99Lf//3f28I89lLNn7E8TYehd3f0hO3NFTAo7xHqWZ5AUsemLmAAYHZEeyxwNceWI6BP7MLbr31VjM6sIxh++23t6UFxGemA7Mg2PyRJRXwYC8EHAYGNq9kScSa1WvSwicX2t4JbEDJzIS9997bNmt86X4vtWUNK1etNEMDMygwoPzlX/5leve7320zHjAaYGhg9gJGC4wY7F8xd+5cM0SwLOKAAw6wvRgIe+SRR2yTSwwW5B/3+c9/3paGzJ41O40bP85wwvACP3DDEReHnx/mET+BQCAQCAQCgUAgEAgEAoFAIBAIBAKBwAAj0C+GBhRfDjce8IUI9i9AacZhaGCZA0oxn5lkWQD7C7hjuQIGiDGjx6TRY/ISBQ/DEMAMgo9//ONmRGBvBfZo4NOUbJ7ILApmPPzVX/2VRWG2ALMQ+KLDokWLbAYCX4pgHwWWJvgmkYTjyM+NN96YLrvssvqzk/vss48p9cxqoCy4P//zP7cvVRCPpRN8wYJ9GuB7yimn2CwD9qJg+QRLN/jcJl/EwJjAfhXMtjjooIPSRz7ykXrGAssz7rrrLjMysMwExzIMlk/wNYpZ2o+C8rHJJtiBG8YGrsEbIw3XjrsxiJ9AIBAIBAKBQCAQCAQCgUAgEAgEAoFAYAAR6DdDA2VA6cX99re/tT0T2KARh6KNoQGFmK8uoDBz4FCWMSb0dPek4SOGpxHDR+jDEy3DBWHMaPjbv/1bW17AcohXvvKVadddd81LI3p60/U/vd72hIAfMwZm61ORKOjMSmBZBe4v/uIv0mmnnWaf0yzTZjYDRoOzzjrL6P7oj/7IvlzBjAcMDcxS+M53vmOKPxtK4s9nPFkmgfGAJRUYBjAq/N3f/Z3tHfHOd77TZkLwuUoMGeSBA6MD/DGUTJ061Ywrd991d/r2d76d/uVf/sXSZ/8IynfEEUfYXg0YZDDCgC2zPUqjghsaHHdjED+BQCAQCAQCgUAgEAgEAoFAIBAIBAKBwAAi0C+Ghmb+MTScf/75tfKMIo+hAUV51apVdsYQgKLMgfLM4TMj8MNBj6GBpQ8sw+AzlziWIGBwmDBhgtGgzKNsb7fddqbAjx8/3vZ5IB/MhsAR/21ve5t9HYJ7llSwNAKDATMTXNH/zGc+k971rnfZjASMAxgaSJ/lDcxUYJ8FjA3MMmDvB9JlzweWN/z3f/+3GRIwJrAZJUs0WAbCcgo+scnyDPLOpzlZXoHDmMF+D5/73OfsniUmLO9geQgzINinIgwKBk38BAKBQCAQCAQCgUAgEAgEAoFAIBAIbAYI9IuhwQ0E/rad5QZ8lcGVZ5YlHPPaY9KIkSPs7TxGBowIzXjlRoe+j4MvnWAvBGYosCQBBZyZCyyDYEYBDoWfZQ3w4IsOKPe//OUv04UXXmjhzDbAgIDyj2NmxQMPPGDGCzZj/N73vmf+bGDJjATSueeee2zWAuHMamCpBp/MhAeGBb6swT17P3D/7//+77ZPBMssPG/MSCAtzmzwOH36dOPtsyrI5//8z/+kf/zHf7T0mcnAsomTTjopHXzwwbZxJDj5rAWuKSP3vmeDRYyfQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGAQINAvhgbeuKMAu+LLVxvY3PAf/uEfTPlHSedrD3wiEoUcIwNH0xHGTAMMERw4DA1X/fiq9P4PvD8tWLDAlPyjjjrKvjqBUs7nLksHvRsQ2EvhvPPOs+C//uu/Tmeeeabt34DHksVL0o0/vzF9//vfrzeR3GGHHWyvB5ZYbLvttmasuOWWW2zTx2984xu2JAMjB3tAsJzhS1/6UvrTP/1TM0xQfval8JkRlqh+WAqx77772lII9pVgyQSGAi8/Mx2+/vWv1/tZ8MUMDA0sr2Bmg29a6fxKYww83ADh4XEOBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAYSgX4xNKBka1uFNGTokNS1rivd9pvb0sUXX1wr3bz5Z+kExgMMCeVSCV8WAAiEcQ+dGy18RgOzBFhmgJLPnghubMA4UDqWQzz04EPp1ttutU0eWZaA+9jHPpY+8IEPJDaTxEHHJpVswsjXKjCC8KUKaN785jfb0gyWOjA7gxkZLIvAsSyCr12QLwwp7P2AAQPDxGOPPWb7SHzxi1+sN5EkDp/VZMNIllOwfwQzG0gPN2fOHDOGsGQDR9mgO+GEE+zM8hCczWTo0udA9YdxgT/717XPJDHC+AkEAoFAIBAIBAKBQCAQCAQCgUAgEAgEBhCBfjE0lPlnD4bbbrvNlk58+ctftiA2gzzu2ONMMS5peTvvhgaUZzNYiMANEdCi0LMZJHss8BlLNoFEcWc2w2GHHWb30MGHJQosm2CDR77mwGaN3/rWtwi2mQcf/OAH6z0a2NcBvnwpgr0YiLfTTjulP/7jP05veMMbzNCwcOHCxKc6L/3BpemrX/2q8Tn99NNt6QazLz7xiU+kj370o2ZoYDkF+cZwQJqf/exnE5tBLlmyxOIxQ4FPch555JH2xQy+joGDntkSn/rUp+weQwblwuDAsgz/OgZYgQUGGAwxlBc/0nSjjDGIn0AgEAgEAoFAIBAIBAKBQCAQCAQCgUBgABHoN0MDRgKMBcxKYBbApZdemvwtvRkatLlh0xHHDQ2E+TIAeBDGPgacr7nmJ5o98GmbocCMAN72s8SAmQXc46AjHp+MZCYChobrr78+fe1rX7Nwlk5gRMBQgfOvQfzsZz+zr2KwzAL3yU9+Mr3pTW8yIwFLMFg6Qf7ZEBJ/4rP8gc9YsuyCpRSnnnqqGSb4TCdGAIwIGFwweLCM5Nvf/naaO3eu0b3jHe+w2RjwwOF/npZ3fPrTn7b7M844w8KZ1bDH7nukMWPzZzgpnxsWMC54ecHMl2EYg/gJBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAYQgX4xNKD0cqAA41DyWS7xb//2b7avwg9/+EP7ikI5a8GNCp3Kzv4HGA34MgPX1113nW0seeONN6ZZs2YZLzc0oPh7uvAiHrMT7r3n3nTV1Velf/7nf7YkPv7xj6d3v/vd9tUHPJj9sGjRIluOwWaP7LeAYxkEX5cgbWZEsLwCI8Pxxx9vB0YE+GMgYObGpEmT7CsS5JO02KPhve99rxkb+KIFX8pgY0y+vMFMCb58cZT2mHBDAzRsBun5ZCkG+1mw8STLMfjqBNg28cJA40aamNFgjy5+AoFAIBAIBAKBQCAQCAQCgUAgEAgEBgEC/WZooCyuDN95553pkksusdkBKMkYHfhcIwox9+6c3u8J83CWCfAJSTaAvPbaa22JgtNxZoYCX3tgo0WU8fKt/urVq202Aen+2Z/9mUXjixMse2A5AsYBZkuQxhNPPJH4DCbLKFD4mZXwkY98xJYsYGQgDMcyCQwFfD2C2Q/wZm+Hvffe25ZxMJMCwwpfijj77LNtE0dmNLAs4wtf+ILtUcGMCJZPsE8EMx9YVsHsDz4FyqwGHAYHZkiwjIM8YkTBeMIZ/DAusGwD7ODBuYmjMYqfQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGAAEOgXQ0Mz3yjPbAbJPgW4yy+/PB177LGmGDutGxRKJZmlAfhjNEChRlHHaMHeDCj2LEfgKwzz5s0zwwWbNvKZS2YZYAAoHUsbWDpx7rnn2jIOllmgwLP/wYtf/GL7xCT0zER45JFHbIkDyyj+67/+y776wGaNGAJmzpxpx8knn2xLNsgvRhT2bMDgAE+WcuAwiGBY2GeffcyYgSGAPM+bOy+deNKJ6eijj7bNLMkv+ePzmXyCk09r3nDDDbb3BPtIsHGmbwKJkcH3Zhg5QsaRrnXGE4zYv6HEzzIRP4FAIBAIBAKBQCAQCAQCgUAgEAgEAoHAACLwezM0sFzgc5/7nBXtuRgaMDbwJh+HMv7UU0/ZUgW+EsHMhVEjR6WlTy81BZsvUPDVCRR6Xz6A4s2Bgo6hghkJ7BfBpo8sWXjnO9+ZTjrppDR9+nRLg9kPzBDAqPDwww/b1yj8qxDwQKEnP9DvvPPOpuRjwGB/hnPOOce+UsFsiRkzZlhc8km+KQeGAOKSN+Jvv932adI2k+yejSZ/9atf2aczMW6w3OKtbz1NMzT2MV7MYMAI4ssjyGxpVIAnR+lnBYqfQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGAAEfi9GRqe64wGZjKgnKNYuxINLviznAGlf/z48RbG/grMFOAeZd7joXSjoHPAh4OlEVdffXXiCxjMtOAzme973/tsrwaMDND4lx2efvpp44WhoVyKUT4fNpG8//77zYDBTIv999/fZjUw8wFHPhcvXmxGAmZZMDNi9KjRacTIEZYv58XXJjBYsH8FZ/Z2YGkFZcKtW7surV6z2gwJ8CGfzGwgX/Dj05adZoU4/zgHAoFAIBAIBAKBQCAQCAQCgUAgEAgEAgOBwMAYGrRNg3ZjqN/Go5xzuKEAQwPGAnco2CjavjwCBduXE0DLPQdxODNDAeMDSj6zAlhqwcaNfP2B2RWf//zn7asV7JXAhos44hEHhzLfnClAOHnAOLFyxcr0zLPP2JcryBOzFTBOkBcchhDKw2wGjtJoQb7hgbGCfSHYWJJ8sHfDfvvtZ2Ug/44HPIlP2vhxzwwOzy/59HQt8fgJBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAYQgYExNKjAKMquzGMM8Lf1KNEYDAhz5R4lG4d/U6k2Prze1z8OWjaRxGjA7ACUdBR0PnnJZyrZsJHws846K5122mm2HAJaDtImXfICX+5xxHca0se44HknPZZK4HzGBYYCHLQcXhZ4UlbSf+ihh+yrFmxMyacsWQLC3g04ZmtQVl924fFJi2vCuCZPnTAxJvETCAQCgUAgEAgEAoFAIBAIBAKBQCAQCAwAAoPC0FAq8Z0MCeCCkg6dJkKkYcOLGQ+67+nNSjcGAmhcwec8dIiWUgwbaso9mz5icEDR5/OSfLGCzSXhjeLuaXONX3mPHweKvhsg/HmxzGHturU1j9JAQBybnSBLyPAReWYC+WTvCfLDvhOzZ8+25RBr1q6pDQwYSDAieLlJl/xwBgPKTJgbHjwvcQ4EAoFAIBAIBAKBQCAQCAQCgUAgEAgEBhKBATU0UHBTnBsIoEC7K8N9SQSKvi9HgNaVefZy4JovNqDso+Bz7zMVMEKg5LN0AYeSD11fzvPheeDe/YiDv4eRFvs3cE/6bqQgTWYx4M9MCIwHOMrCTAjKI+SbHAAAQABJREFUwbIL7tkjgrwyy8Hp4Eue4eflKPMAL88D1+ECgUAgEAgEAoFAIBAIBAKBQCAQCAQCgYFEYFAZGlDK3TgAKL4swN/kE47hgHvCuC6VbhRy7n1GAby4R5kvlXH4GK9uzVAYmmcouGLvD4N4zo8wPwgnLs7zxTX0GAs8PQ/j3vNNfuGDwYBZCXyqknBoe5QX7smr70UBX+JSjjqe/OBDecoyQRsuEAgEAoFAIBAIBAKBQCAQCAQCgUAgEBhoBAaVoQHFngPl2hVwFG8OU8YrwwJKN0q2K/CE4dd0zoewZjj82QsBpZ1NI0mjdPgzE4Ez/D0P0KD44zxdeLnSz7WHDx8mA4cMGTjywkwK6DCEeHrwx0BB/nx2BTwwRLBhJtccXgau4eX3xjx+AoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFBgsCgMjSgdHP09piKbQo2OKGUo1ijwKNkMyMAJd+VcJR3V/RLXD0cnrhhQ7XHQaX4cw8vDlfk3XBAGM7DnD95wFkeKwOAp0EY+eQewwE0bpzweBhRcNxzeJ59xgJ+xCM+zvPTpIUPYb6UwojjJxAIBAKBQCAQCAQCgUAgEAgEAoFAIBAYBAgMDkND9fbeFW/HxQ0BrnCjgONXzgjwN/8ep8kDxR9FvlT88cNB64YBzqUBw8ONsMOP8V0nw0dPa/YF8Z0f6WHYIO8cpYGDMOffzC9GBN/TwfPTNDQQzmyJkaNG1saKDlkMr0AgEAgEAoFAIBAIBAKBQCAQCAQCgUDgD47AgBoaXMl2QwAKtSnlMgDgUNpRyl3R9hkGTkM8aLiHxmdCwNd5w8fpfLmCzzjwzRnhi4MPzsPh6YcFVD/44Yjn+eO+NCBwT97cEcf5e7k4k0/COLs/fNyfa/JPXDdkeH49XllWTy/OgUAgEAgEAoFAIBAIBAKBQCAQCAQCgcBAIDAoDA28xUeZRnH2ZRKueDsoTWUapZx4KOL+5p9rV96h9zj44+DPdbk3A3FLhxLvMydQ7jlcoXc67nFlWvClDDh4krYbIqDjM5t8lhN/aP3gnjQ4Q4dz/lzDkxkM+LlhBH9o4UG8kp6wcIFAIBAIBAKBQCAQCAQCgUAgEAgEAoHAQCEwKAwNrnSzDCJpMgOKMweKOrMUWHbAPUo1DiXbD+7LsJpX5U8YzhVzwrl2Bd3j4ueGC/wwDFh6OUm75h46NyhgFHE//HHOl2tPy/2dFv/Sz2704zw4Wx6UD2jdYAEdRgnShQZ/eOIXLhAYCAR8zo5aRpU8DaZqyPgUlxVB28ljtXl2uKlavkKqBtmBZqvz6oite24qsqBWYLqp0YooWx3uUeBAIBDYChHYmHAshOLzEcOOaMHGveIcCAQCgcDmisCAGhoADUXZHUo1hyvZKNIcfo/yz5gYJZuDuGV854MhAD4+OwJ/6PsyEMAfemYOQMfMgVJ5JwzndMx4wLFXBH7kEceeDG1jdvHCeR4xmvT0tsroaTh/Lxf38CXc45J3DCH4jRwxUvpbGBoM3PgZEARyzV5/4FW35vWDcj5rgmyDoMG0SFtXXqiCvGxaHqxzSVF4b+mXBtX6eLUXuxHeESp5NshqTNfzr7g7Hz+3Jxp3gUAgEAhsQQi4IPRzp6KVcrSDYCQq3p1YtJF3Iqjibq19XSe4wy8QCAQ2GwQGlaHBFW03IPg9aLof1/jjXAm3m+LHFfcyDsHujxLvDl7Qca4NBoWCD12ZHtclH48LXV/5IQznfDiXeXP/kobrZj5Lowvh5KPkg1+4QOD3jUBufZi63FXtUbf1mMm8dNciagVWRASVh3PzcyZTW6n4VtGqYL/zs8faCs6GqX7s7OUtbgyS4t5J6ghNzKr7Xvf3+zpi+wXBDdJ2grgLBAKBQGBLQQBZWh6NcrXJTQlGE70uIKuojSgdb4eUMru49pdxxrLg25FJeAYCgUAgMLgQGFSGhsEFTeQmEAgEOiHgJoY89MoDIuYlMASyYZB56SoTZBblYKkIchI/e3olv/LaUjD+JFan6NG2jrMMlXkwq+IaFhUgLfAzDn0NXGuULILueCDVtZ39uiZsvyC4PNpD4y4QCAQCgS0EAe9smNXKdZ7d2iqcBKGRVC+vXH66PHVCZ+P35bkStxUjhYi49qsI6/6zGVAyiutAIBAIBAYfAmFoGHzPJHIUCAxqBFqGhtYVwx8/8sBLdwyufIBVD5QyId4+dHOymlRhRISfviVT8+U+87MrJci5uiZsa3EGWIWWnarrpmGhBViFjOjwaxsEFxh2GiRXrNug9Sh+bguMm0AgEAgEthQEXADSW5U9FuVDAMq1yc1KKLbJ2Ey28V/ks6fnZ2KJpyXF2S42ziooAoFAIBAYJAiEoWGQPIjIRiCwOSGQTQz5lxkHuHoIxG3bQKsK4aTDgiHR4UM3XVZcMp/WLAZtjKow45CTybzNQz9b48DLAHQwQA7n9zq3g9W4z9SVp24gtggZV793dpCX1xWpkxEcLhAIBAKBLROBLPy0YFbF894qG79r2WkkEozrGRwaiLjsdO/mvQlaF7Y6+6XR8aNja+zvHK84BwKBwGaJQBgaNsvHFpkOBAYaAR8FVWem85vTYMgv/Z5zNU4iqNNhpNVPRaoopZFBsYwvoU6o661x4GU4CAM/c1HDUnnamzEn8HPGrXXnkcoz135f4dzHadOo+ogc3oFAIBAIbAYIYE7H0ODGdQQvsk/fJatyrzNGhjZDg4I8GCquIdHJD7y5drJsXHcjhkIIrJ2orK9z6jogLgKBQCAQGNQIhKFhUD+eyFwgMEgRqA0LzQGR57caEPm4SIMkxk3NA2r8nIz70sBgscpIEOAYdFkkP2fvreYXTEpXA5jBysEOHBh3juDD2ow6DGFUM+sYyyn8XGYjrgOBQCAQ2FIQcLmZTQ3MaMC1DA1ZUuq3NjQQnn39ZEHybc2HyH1eKZGzLIWvG9dzGhWnimemIoVwgUAgEAhsLgiEoWFzeVKRz0BgMCFQbkho+fJhU/sgywZd8nKV189elEYsG5vl4VSlAjtBnV7B3y71U3k5zy397JB4OZv3LbSh8FA/t3wcuAppY9cc3rZi5dSAmsOXs2xl0GcQ4jcQCAS2GgQwMpR/FDzLQH1e3VDQrwlK7rKPeeunaWQojQ1OwznHdOnbbmzI4c67nX/JI64DgUAgEBiMCIShYTA+lchTIDCYEXDtk3M9s0HX5RjIlzTIz8iq8njUZvE8Kme/zoM3xfBIfjYC/bQRNzlumfdAUB6Usg2WutiZKmPpFHVg4yLPNsmefp1j4lfGdsjD0NCAMG4DgUBgi0QAIwMun1vSEDNDlpKVrMSq4JdG35LVTQMDXJxTFUVRMTS4sQFW5TVUrRR1Ey4QCAQCgc0CgTA0bBaPKTIZCAwiBHyEVI6WyF5rxJQzq/smSVmKJrkRlwSeTunn1+tF9oAt+wwkDFr9KCFqQtIyGeSn4OEglK9LH3x5Xu6XzyX/TJHjEuqH+8c5EAgEAoEtE4EsQ1tlczmJj0vaVn/ncrOMVfq1+LSuMpdSAucYmBeyYTcMDS204ioQCAQ2FwTC0LC5PKnIZyAwWBDY0IipGn/xcgfnpPku/9YKqgc2z5CV47jmfTMss90qfoGquzr8LZkX3HF1eFr3DF5bA1jonaZ5XQ6ancofT5nO+vE8NM6BQCAQCGxBCLgALGfvIUFdiOrsshhSP0DAozoaHsXv289O3X5uGho2zKOdY9wFAoFAIDDQCAyMoUFy1KejDfEp1gONRKQfCAQCm4aAj4OgLq8ZAenAy7397IOjiqRF5AR+hieujFDd+3pXC69InMz9tvSzz2TA2FAObh3Xvs8Z4BxegF1ctkCvwK0eQhtJAfDWhn1R9LgMBAKBrQUBBKAfZZld2MqvR9dOUp6b5Ny73PSz0/iYGE7w4Jxp2mc0NON5/DgHAoFAIDAYERgYQ4OQ6K2sw2FoGIzVIvIUCGwCAnk0lAk1+mkOsDyYgVF5tBF6pGZyZQRdM5BzxRpSgrfGfQKAy40MnEvXgKzGHJxwhLftqeEPCP+mM2L7aYU0blsBcRUIBAKBwBaKgPdRdEA47pGFxYER3PsnJ4fUnYtOj4K/+zkNjFsiOV87jS+a4BwuEAgEAoHNCYEwNGxOTyvyGggMEgRaA6L1DQxk0cN9WFQbBXwUxrkcuJXlIpIfisggzpXrku8wkTnfMvqWfO2wAZ3DR3kdrk5nexgOHMT1dX2Bb7trzjSDcema92VYXAcCgUAgsCUg4CKyaUXoIGh9xh1RPBpnF5VlFKAxfyfEg1hOXHPIvFoGhprAYsRPIBAIBAKDHYEwNAz2JxT5CwQGGQI+NuJcHmTTwzzLPrjCIMBhBM1BWxnJI3CurAjMZujSbalcY2RwQ4Px1f3W4Eq8+4JtiAc0zwDkfuuBRYCABnd3fV0TXoY5fZwDgUAgENiSEHB56Z2P3yP//KC81bUbG/By0iI4i80yoLyGsC1WFWiyVj9+Nrr4CQQCgUBg80AgDA2bx3OKXAYCgwYBHxtxbh5kEj8bE1VnriubQTIlmGVTtbGhoiQSjls/iKSD2Qx+OBlBw3NwNmDoemtxYOA4VOhZ0WsDA3clkRMb1QZ+2phVdJ38NsAiggKBQCAQ2GIQcNlZ91dFybyfwsuvK3np0fzsYtTO7uln4pfX7TeEVvwV2xll3/gNBAKBQGDQIzAwhgYJVV+NFns0DPo6EhkMBNoQYEzU6XCicszk46JsM+jNRgEIevRTMqlHUNVgigi67NWZMV4YGhxdnR1gx68IqsM25ucPxun8vsM5J+OJ8lgykZM6izgHAoFAILDFIeBy1s9ewE4CEL/Kv5aYum8jrQNE69dt5+qGk0fkPLS6cT95hQsEAoEtFwH2MrTx1ia0ed/3EDQGm149MIYGAeGgDDZAttwqGyULBPoPAcZA2Ar8RY8PiJCHhHHgMCj2igq7wTARcdj3wmsGujBiYupgbwAONzTo0g0NdVqizPzy8gmRbD2uBWwGpkuoMENkmBaSAEp3hecwcKxgIY7Hc6QqfO3W6aoz039xHi2fWwxy1Gxu8Kg5RvwGAoFAILAFIuDiz8/NIkoMd3d1p6HDhqYhyF7Rdff02IB/aCWLy6i13HRPzn5wUV/LH2ITurrguo6s63CBQCCwRSKAjux68tAhEgBluzcRgZBouR7JG46hQ4dqOMjC4sHjwtAweJ5F5CQQ2GwQsHGQfmxiAkKPMdD/Z+9NwOyqrnvPVXVrLqk0CwkNIAkxGwzYgLEJsTHGQ5LXzuwMz50e8rXzOkn3193pbnfn5cWOYyf+knzpfO/153Tsfp04jglgm4ABG+OR2MYDEgIBRgxCAxKah1KN91b1/7f2WfeeuqqSBKoCUdpb2nfvs/faw1mn9trr/M/ae6MMFc7zFU9AQ81lZEXaUnpJLY7tAq2tWzZQAZJUXoIyhGocGxYgA/XiqCc8pc4aF4zlhjHzGNXuFQAN7e2JZ1J2E/CghSUwKJwzruBeCcjx7ILtUXU5JD9dp7IFacH7sG2IRnKYOZA5kDkwuziQJF+Sg9wZ4tbloH4IEZBjAnhrtWpS8tuk5Gteq9U078kKoRWlX4RRD0VwUdYvyAxPQjkOIbKcMLyi2WUOZA7MXg6UgQY+yMdH+QAfCMtpXAM0oJUBeAI4nCkuAw1nypPI/cgceD1xoNCaXB/ST2yC5YCD7qOhJyWogVtrLVQtt2jw60LZUrzFP6OHFkXIB3vKFtQpydOp+6zVu7h5HCHoiyYWj8ekImXXNeFWLBzgEoRiXrBWVx5vCqEqe7Ib18SSi2qoWd/u6lVFfg4zBzIHMgdmEwdCDnJPEY/pKOSh5wGa64WAFQ6AEYFI1F8GICpclPcKSYuKm+NcRyPx3lAvTGZ2mQOZA2cTBwJQ4J7LAITzQHJkbLxh2QDYEPLnteRRBhpeS+7ntjMHXo8cQCkKVyhI6FgIOPZU4CsOwi1lBXEADilMulPjRZVYumpoUeOqNH09Uo4jumqUbFWpy7PXuRab+JA0VFiRGDNe0zNQvqPZdSYpL9b3ineO6USRqOYEIW3wFIPlhOi88cQUzS5zIHMgc2BWcgDZhwfXDZfS+C3LxZCQE9MpnWRmkZ+yU1X1+CR5iaLcQCMeeTnMHMgcmLUcQJfDuT6teFwTJp04yQ3i4bCkGh0d9fyOjg4PI++1CjPQ8FpxPrebOfB65UAoR4RoX5iNsj5sXGb7AA1trFNNSCokCVqI33htTTefwIXQn9Kra11kCmhoUf2k+qILMuqZpXg5LVU7q3/Ta39wNm41MSFxOfGswazEZX9UmoRwrOE7dbalBx70jTBi0YccZg5kDmQOzD4O1ASiM8cB2La2VNzarqa1a8nqjvtNc1fIXIBYLL6YIMc1L7JssD3WFiKIcXXElwvRQl6IVLKS1CUvuVJ2JOUwcyBzYJZygGUQ1SoHu+uEtbY2BwwAEXB8SJpqaQRlhoeHPb+rs8s//Hmh1/AnAw2vIfNz05kDr0sOpHfcpAn526teb8dqUox0IW3IQQY2wOIruv6jjCWFLF6RnbIAINJLcFLT4jfpWxzX2EqV0rpaMJUoO9ULqFFWzsrZszWegITgZ9JYQyElTByMRSpwAUbhE8BTHSsmrtZ2Kb8N16AK6kZYV3mjoVSdCtcjjYpyLHMgcyBzYJZxAGs9V/IBGqTkM9tVNaslqAEJieRF7iYhCcigVwNdSUZrbmwHaGA5GwgC5n/HgQxKR5xqTkOq8zpBmGR6muqQ15Dgs8scyByY3RxoBhq4W9/3RdYL/qFIIZYNYeUQFg7QBNDQ2dmZLRpgXNnkg+vsMgcyB85wDqD94EMTortc8wM6ENqQhykNBSwBDtChSKGo8Qs5ahk+fiNFX95dMRMRIcR42gVkQPMKsEHRs8EloCEUXBiBMiuLEmcK7EhbbiZWJY4mviQ62Z34ZcXpIqfpkZFMBeEK8724VJPJlcz16nk5kjmQOZA5MOs4gEIv2VlMQ0jRBK0jexGWyNcWSVdkc00gg4AFyVhShcIrzolLmqzq8xkMKgQpchRfZAMyhIcKp619Vf6sm+649ewyB85KDpRBBBjAtW/2KFmBhQNLi0ero55GPuBDO5uCy0GHC/DBL17Dn2zR8BoyPzedOfC65QByLMmyur7k9+JvuGQo4noUYeFVYNzjLQIZEtCAQpUOvUyIQfoin1JQ09z8NJSzaFP7EBgWE21JOQt9zduf9T8ANvyDg2mH4QAaYD1AA1wrnoBzl1T4CqehxbEUBY7jEufT44pH5mSJlBkuEXqiKFJVCot4kZuDzIHMgcyB2ceBsvwjnqRomo6Qwj7buXQE8AVq8KUS/it6AQ1tzGFI2jhGCSFKVQEyFEBDTckBMhBCgnwGZAiwgZqyyxzIHDg7OADAgJUCIcBBLJsIiwcHFSQoOGkCsIH8M+0DfgYazo6/1XyXmQPTywH0J7QgeXQkd1xjFipTUT8NwZUopQEuQMgeDsR9WYUUKsXTwZeYnPq3H1esRCTlCtNTvrsXChkKGhod2hf1o321S/2Kt2Rdnh0OXvINzRkBd5xnaWkKHEjLJtLXNlEK2W7RmuK2Fox3G0sqEqADpxss9MdEFcXjSiHPjUScIhQolGIPuc4ucyBzIHNg1nIAGYhnApJDUBZyL+SuUtwBQfCP+Yu5y2c17WGUlkqoUFjmeQW69jmyCDWXBdDAAjckPPUyxQEyZKBBTMguc+As4wBAAps74trbpMcJUAhXtnqALpZWBBhBeCa4DDScCU8h9yFz4HXGAf+a40iDFCEpS61oRIAMVeWwgQ15dSVKeShp7A/gQIOEX1gjaM0rIEN6bU5YAsobL8XADL4QwJUzKWM0itKGWZhrX2cj0KB7d4VXHAO4IQ5PfUJpTCrwsFps0jmuTcgqmqAEN4iB4qO7ZONAlFKeqmpcsy2HJMQ1EQgDaCj24FBKdpkDmQOZA7OQAwg/OeYcl7fIwCLNZWHKTr+kKxH5yPynIj4nkskc5ulRqLiuz5GaByWImQfDUxxHiQAa6rLac/JP5kDmwGzmQCyXYINHrBRYGkEIoIDDgiFcWDhQpgw0nAnWDRloiKeUw8yBzIFT4gDqFEoQm2ERBwxA3LWMShjKOxjgOpfUIl6AXcFSCbdEUAaIrBdQHISCF1Y5rBsQn9SLYgbY0Kav8dTvm0HSqHv9UAbLCIqm4oqcBQ5gwb04BXBTIN3WobV5WrdXZwY0An6YdNIHNfFQz6KVDcnEz+QS4+os5JmFh8Dj+iF0V0QCYIgwsnOYOZA5kDkw6zgguedWepK3hMhWJp2Y24i7JR/zEnObZCxCt3gZ8DTniehc2BLii7nR4+zvoGpKPsQuRZDaPmUq5Dq7zIHMgdnNAdfdiiUTARwAGgA6DA0NOeDAZo/s1xCOMuGhzRYNIL5yZwLaEg8ph5kDmQMn5gCjFg8gMKIYihEmohXFKxKAbSO8AIuCpQ4CCWS7L8IR+WEhCDL/4mtQp16KOyUcWfrQjmImWsAHCUbqBWigCiUIT+A7PFtrATYoyb1nJrDhLNG6uGO/Vb6socBiNTI4aHbkiMAG8be7y0xnJjuDmHi6ugU8sDGQSiJrAR0EDLSQB9iAcqsaC04qXtQfCYT1eD2SqFLRVMdZwn/4k13mQObA2caBQhDKmmFsHBC9ppOQJIOxUACwJWQSRBb3DySZ2C45XC1kNHJ5Tq9kMfMbRfSDd5AccIH9dJJVX3AWsrpX88Td1SORkMPMgcyB2cqBsFDgHTk2eeReARpGpFOTDtAAmAC4UH6X5hpXTvOE1+gnWzS8RozPzWYOvB45gPhCr5LKJaAhAQ7oP9oD1zqU0z4qCv+aQ6peaAekgO0/YHbggFUHpYhJ32pD8Zo3x2xuj1kvL8iia5NXHkpYAht4N0bLqi+gkMJVmPuTLFJ+PCQ+yx18d6AFBGZEgM2w/IGDNv7CNju8f791z51jla5OG5KFQ9e8eda2aqXZ/PliIkqxfE1PDHABoMF5LWb7F7kSnlDwMHgaoQMVk/HXwYrJMnJa5kDmQObAbOAAkpddF9Imjw4LIE+ZAKuSkExWzHkv7bXath2y6BMQAcgrOTxcG7XOFeearZTvFvjAWc0sGZQfk+wc1eyFFV/a0QGwPk2BktDWQr0iV2ZyPjcqilCuC+YiLweZA5kDs44DfqSuAEvAgrLVwuvxRl81oOHWd71LH9jS0RsuuCVAXV5mZfX1+HeT+3wGcQBd5JR0j2bC5utTuCeKBBAA0IC+RdsADV0ADVgwkDikn2H5vfttdOs2e2n7Duvv19d3jfc58+bakpXLrVPeFullGAuHLnm3cEDdQglL7bB/Awsz+MXRFmofm20l78ln5A+8anan9JyaC+naH1VhmWADsg453G+2/UU7vOkx2/aTLdY1v89aurrsqL6sLVy1ws678oqk4PqSCvEUk19/UIoDNmBBUpj+UnfZl5tP/eUpUDzuKPZ3eKV3U24hxzMHMgcyB848DoS0A2RIXiCC4n6mDxMUE+CAfo4IQH9mq23b8JjVjg7YnLlzbXB4yAYF7q6+/GLrvuQis6Wa5+Z0Jks+id9R1aJvkppL00bIzGUADPh2GmYOxRNHzDIt4pkGs9gVE7LLHHj1OBDD8FRbDHrCE7njhnIUVCGsEsbQpyUEWrUci+UShw8f9o0hAR4AIKBho8jh4WEHI3p6eqy3t9e6u7sn7N9woj68GnnTAjSg+ONC/Xx000a74/Y77E/+5GOe/uV77rZ3OdBQmPaKvM7PJqAh1eTFTvnnuId1yiVPg7B+A6dRx6tVtLmv5etyvNyfqdLLNCeLl+uIeHNIHZE2WX2R1xxORnsqaVFP0DZfkz5ZWtC/krBcX8QJceU/3nIe6XENXTnOtVxUka7Sb7m6SQnKxJPFiwomqxty0hF96EDoWYAOuHbldCq1XV90fEPII8cEMsiS4bmttmXzZtvy2GY7NDQgK4Ux6Vuddvmb32QXXHO12QqBDR1Sr8K6AdBBTKm6AkZbdCg87aevSxXtnNWmNa4oaO6CP80hmZOlpVITf4NuYmq6Ig9XNJcuSr9N+VyGD6oo2ribyJkipILy7fElDeYfFW9f2mf29LO27QcP28Zvfcta+vqs1tlhB2XlcN4br7AbbniLdV0kBXfJIvFWFiT0xk12pa36MpUG0JBMd4/vLympeYCd5BLYgKRvuotSX52y+booP2UQ9IRlV9x/Oan+PCcknuCiXPdk9Z2g6LRlRR8mq/BkeZSZrN9RjhAHTTmtuUzkOXHppzm9+bpEOqPRaDfCqRojHxf310w/WX6Z3gs3/TTX0ZQ96WWUaW4P4siLgnEdYTmdeNxLpBMGbYRTpZXLnCxerutktM35Jyt7svzm+k7nmramciVeNpOVslLpSQgiiTB55hwOrqzqXb9mbWx4zMTHBLj/sNmO3Xbg8c324+88ZMcU71u0QIZ8gzasUhe/6Rq75A2XW+ul683OO9esR2CD9iWqylJvRFI1zXNJmgbQgJbsSHsADVwDMkDADYQwVrT+N0L8VBw31MyESIvwVOo5FZrTqe9Uyk5GM1naqfS1meZU6jkZzcnyaRMaXPMzSamn9tvcTvP1qdXSoCqXn6p/ZZpGyUbsZPkNyuNjUXaytst5L4dnUa7c2imkRRfKxU7UbJl+qni5PPH6dbkADfp1gjiheXHXLvvxj39sP/nJT3z5BOACjo0h8cuXL7fzzjvP1q9fb6tXr3bAwQnOgJ/TBhoSyJDU/7Ql3JhtfGyj3QnQ8NGP+y1++Z5/MSwaKu0SsijLOJgIyOBcTqwOPjeHTu8/kdNImaDyHp/dIMyxzIHZxAENGf7ck+eFMI0hfj0WY6E5bOZBKpZSi7gvPy3qJiOqiDjXjOLQgyiGRUNrdcjaqwg/pezRi/DjT9nOh39kWx/dYNvuusv03cfLoC9d/IEP2BVv+ymbe+klZsvPMVu8MJmXdmkBhr60cxI5NguprSRlVEzXpGg/COVx/KUDDeUOQvSaOnVGt48eCo94MnQPHpU9iSyFcBEIveK+UkTxCR+tSMSzpteBBsUFJthTW8zE2yd+9LA9ddvn6nrvUbWz5K1vs4vf+lN28fVvtsrlBX9dUQ2QgQu1ImWX/gE0lMEGZRZ9Tb0nl7tJ/Srugi3SPQXq7DIHMgcyB2aYA4genESguwiLSw+CBnFZpDNnRDJJ41pO1qJJzufM8oeugoj5D/mNpw6SUfd5++9gjwZ5F9gjmgG37rDhjY/Zlod/aD/52r02sGWLaUGgDckzP55/y/vsgje9yVa88yazKy4z6xPoK9E5ri+SI5rBgC6in0jUwBMq3gHlsFSODsTeDsTx2WUOZA7MLAc0zhj1uBij5eHXPAyDhrDZeyWln6inrkU1FygRjAwN26Ejh22zPth96Utfsg0bNuhD0g3Wp49LWDQ8//zz9ulPf9pr//3f/337mZ/5Gbv22ms9v9Tkaxo9TaAhAQzpd0xCkteNmm18fIMDDR/7yJ/7zd17z12yaLhFQIPWrnFEEA7GupAXR/U/poJmfjut/5Az0aVnkYyqff0y2ceTTSyUrzIHXu8cKIRQev1r/MGTzIs3oY+DqQdTgwNFXZ5QxFG0ykWjunLocREx7tjPsUVvyiNDh6WICU5gPeqLu2zPfV+zLX//eeXp287hvb7Jdk1K3rA2L2xdcr61zltoV/38z9u8t/90smzQwtSxdilgUsLGW9q15wPyRKZhbHyohlr0JT4AlXTSha6bURE6NtPOGdzUCAyDawUPsaxF0UwTVep1TCqQsJIBJbJdAAKbj7PtQlUKbEX3SBq4gj8ENhWTTB3XvgotLuTUxu7dNvLNb9kLn/snG9y724b27bDxipTW1jbn1dDchba/v2oXf/BX7Jqfe7fZBWuEBKlC8RZVFkmNoS5wDbYK+AQ2NNBzKFB6HYLQJmjj2siTLrX4RpLkhFc0u8yBzIHMgZniAIKncC5mFZ9S3wtahWkeYwapi2VtWSO7BJkat2qz4nbJTN8Yl7pduCmULE6QQjIqoGzI7Vad8tPJXjfse0PIBsebn7DH773f9siqrDJ41Fr277ZKZ7dVRwatVumwzjmLbMHFl9mlv/ILZte9WUBDnypUjdqod6y13WoKaSPN5YoU0pj9jlodZPYk/aiMgOHUUQXZZQ5kDswcBwp5gPbF+CzLkBAVhO6KzKBjLBOPMR3piTiN4LpMUaKP6uYCEBcq1pGDh2zT44/Zdx56yP7hs5+1nxWQ8IFf/YCtWLnC5RkAxCc/+Um7//777Y1vfKN9+MP/h73nPe+2OXO0D9oZ4mYAaKgKaNhoX8CiIYCGu++SRcMt1tohoME1bD0ihGh8zlMYD6M5THwidaKLh5wemJT1IIlwInm+yhyYPRwoJB2CTK+g9fuqjwVSQtqRHb5OWYoUddUVLYYmvqlYo5UkKCnGmzT7WzleSHvVQ9qXQX5MNqXPPWtP3flFe+HP/x9bukp7Pi5cLbq00eOIxv7Rbdq3QR/mr/i9D9kF75cStn6d1rBKPvR02ZDWo423SknTyzAdYZfdcQa4LnllZ8FEghwKoKHcOfr1mjl1xPkncEQRwAYmKhJjYqmrigk/SICCyoyKfzXxpSKEgQ3K/dRPFFo/u10hyAOndozqW5l49+KX77Gt/+u/t/kyBulevlarVca8zbG2Djt09IA9vmWvnfuB99l7f+1Xre0Nl2pjSCm42jDSBEbUBOEkoCEBDw2gQY9OVhM824qeVcAQLQANAodcxnJ0WwsPopgF/f7yT+ZA5kDmwAxyALlaqt5lEQnlRPIRXoXn4KP0EayeJLVzzGpCdSvKrAA0uByjoFyUk2hjVQSe6kPStQsIbsOaAbl8TLZjB/fZ4IYf20Of/0cb/sL9tvyq9dat+ttoQzTDmkiHdmzVkom1dsl/9SGb95a3mJ27QnJYsrhNcx1yVPuWjSkopoNiPtcSRE3gHd662tL/NPmJ0C3JuM4ucyBzYMY4UMgCxqUPv6Ih9Lgiq/HOWeSF3gx92TeLqSgfcoWwpbkAdZKhIb9v9x578JvfsH++83b7wh132u/+7u/ab/zGb9jatWv91IldWlLxkECIp59+2vdmwNrh+uuvt7naK+ZMcacJNCRBDlsR6BgzIzIbSyc+4fd5391p6URLh5ZOYAqGI+ANpeB6PAz4XVDUw0YK5Ck3FUtfCvnNQANMze6s4EAxZpJsSl9suO8TAg0QxMAijivqmRBXmo9F8go3aTElHiccKzph4vBLehF+zga0T8tzD33Xjn36Tlt6+TnWKZBxVF+EfPjrZRerhsPazHD+u3/R1r7xGmu//k1ml12szSEXudLF13ksGhjb4yoE0DDmW3HT7QQ2ENZRkejsaxXCJISQujSmMIAGnhGJZaDBJxhINYuBHaCUtsgsREYcCbRRiZrMclvErw5QBxxf0Pql3B7Yb/bsM7b929+2/X/5F7ZwzXzr7l1kI1KAh2RVUpV5xDHVt+eZF6zjlrfb+UK4z33zVdZ12UXFfhiSwS3y4q3sKeSBE/DpuXt//TYkz3UfPgnyRGjfwWH1pw4yFH2jf9llDmQOZA7MBAeKuQgZFQ5RWxdakUgILV6iKeZHknGR1aL5xOcu3gw8VQH1MTlpicKYhN4ovkhGBqLZdrC+jQ9lyMLdL5ptecp2CGh4Ui8B9v1v2LLz1lmfynfLYmFUdP2yRjtyYLsN962wZe98n62++mrruPIqszXrtCmkFliMqZNYmUnuq0bvL+H4+Ki1q4Nu6yDQgqUerT45sH+RytDX7DIHMgdmjgOFaEgypNEMGk9dakwyDhEplCErysZ11EJ56gmPbJlQIOpF8Mjv3fWSfe0bD9qdX/qirxTAauGWW26xK6+80tasWWOLFy/WyeaygZKcGNTeMGwEuXDhQmNjSI7FPBOOuDxtoAEeNbtNGx+1O4W8fORjH/Ws+/7ly/buW27VzvLiGhBRuOKJBRIEf8MHSYQADIk8PYWiqLKjkqDMYebA7OdAY8wkoCHGAy/froTBghhMachMzhQK4prDlJrqmCxeTguJWtE3oD3b7djD/2o7vnG/9T+z1doe/54tXrTKOmX6PyIFjVHcIhBhVF9mjunL0ljfMh13ucCWvv/nbOFNN5qtXiUlrFNLBfTVna83gJE4BXyNanSIO0VUv8quzMtyPJguUwREHAqjoAKfbKKnzBv0mInFFV0Rjg3KEkGAQqWnQxZf6e4oP6rlJqbj0bq0lKJCO2xAtl/HWW552vY/8iPbs3GDjX79Nlu68FwZgczRIR9VHaemTYHUwghgg+hHWMMnAGPxze+08298i7VfeKHZggWyGpFlwzi9oScCHAQcRPfBEtC34TS9aZXiDODQ4kve4oZjiow/GifOP5kDmQOZAzPGgZA+NODyioQJiWQkHwo/n8Aajo9h6O76JRlBG1MKgs+BVFXAfggSj1XIuKSM00uqAzRo6QVg74GHvm3bH/6u7X3maevYvsmWLFxl87Xsr1dWX6NS+vtHq3ao/6D1swzwvItt0eVX2tr3/IzZVdoEec489VWNaF6sKvCpju7QDf20yVSwwk2qPa5boNW8mW5QQXaZA5kDM84Bxn/ZhZ40QayUCYirDOKioaOn6yCLKgnxyJdUoBSSRob8kUOH7WnpfT/URpAPfec79rnPfY5c+8Vf/EV7y1tusEsuudjOPfdcfaNbZF06eQzQoVVgJyAD8dkBNDhHddeEkoUI7s0bn9SpE3faf/jEHyrB7P67vmK33vIu2fjqAg28idPJxA3KiQ8kpSR+B9Dgk4ET0mDxqEovI1Emh5kDZyQH4s/2VDpXpi3FiYYLe4bGkFJsIkGQTgyjgFJLVScaEqKO9MaZriOdshKAKEdkM+xdadOXGNv+vL34wP32zD/+rXXoeMveowdtns4V79QLc82BAhWW0sRu2yPS2fprFTu076gt/q3fsot++iZrv0gvw0sWS1bwxafoGQIXV7Q/jrKnMc+eDXVZkijSb1GsnHRK8ROUq2cRwRGGhx/MQAU/UG45Hz102DLQAK/qZ6QjC4cFDghoaNFu5C1diY3AMVV9T8Muok153ayraOkQtH3IBv71X+3pu75oQ9u3Wseun9g5c+ZbT3uHThJVCY5CEshQg7+a5Qa1n8LBA/us9+ZbbZ02B5p/5RVma9cIbNDGm3TOl0BIeUWJLTvdCl1DLrN/hHtdc5u4CCfE4UU5g8xTdadTtrmNqCvCqfKb01/L66n6Gn16JfknKxN1R/hy6aPcqx1GPyOcrP3mPK5xJ/r7bC6TSpza72T1n6y+yI9wspYmy4u0CCcrd6K0E5Ur55XjJ6ov8qDHnYjHiWLi7ym2E9V7YV1MqvDTduERb/goxzw5LrCUJXecVuR7+0CAlYLvg6OCLuiKG2DOKdWnTWpUYeHZUOeJJ+zZf7nbdj/wVRUftq6je62vp9f6BBz0aEnGmECLQdXbr30c+tXq0Oi4dVz8RnvTr/9ba73uBlnuSQbrJaCmOWxIXWDrmw61KZw6gdBqvt55Iui49AlXdNHjyppw7Ykv8yfqiPDlFD9RmciLcLJ6p8qbKn2yOl5J2lT1T5U+WRsvh3ay8s1pJ6uvOb/5urm+1+v1mXBf9CHcVPHIP5WwPGaDfrI08prS2fCRUyW2bNnim0F++MMfjhrsHe94hy1btsz3YyDOkgmuKwI7OQLzTHGnb9HAQwiJzn3pHeCJDVvsjjvusD/6s8SQ+7/0NQENN+tLmvLRYMNJcDrqI8bGs4wQEviN973nPUM/hI4+K8QhgF0Ip0UV5fKJIP9mDsxODqS/eO7N7QRKN1kaUKSWLmN8+DCaWCKNtSCIMe2hEkn3F3+FfPGRF0agl1opSPI2KGuGw9qf4SdP2RP332fP/9knbOn65dbX3aW9FnT0pejbHBjQ3gWqpyqUQqtZ7dDho7bzuR3W80u/Zhfc8FZboWMvWy/SUWALdO44L85CZsdVliZSHxR6ukLfzCCJH7JfDUc/XMl1ftCiIiS6LEt7k8OyYB8UKLd4XufDksEJkIWACAhNWXvVujhtA5ABywTsIWRCK985KMV2RA3s2Gt7H3jANv5P/7u1L22zeQv6bJEQ7F4ptqOaiHg8FWms/DUANBwbGrV9Tz5jlRt/2s657HJbfeNbrfImfU07d7k6ok7zhcy/kpUmJGd0YnV80aPjJHPLuOJ2PUwp+TdzIHMgc+DV4wAy2EVVCCWaJkGepJC/kY1kZv8ZXuTbJCMJHWRgLsFTkLf9VKvCiJKHR1jLD2qz48NHbFRWuxs/f4cd/fxt1nf5BdYlkB3rs27tpdOpOQtXlUAeUtEhSf8DT26xYVk1XPnf/LYt1FdIW3u+Hz08LtrDAonbtHFkD+KYgjSnKcFD7onEwsdXUqVklzmQOTBDHHBRgowITzvEyZjKkY+LsDleLusNiKAIGdcM+3JzZCVJgiVWi+3cudMefvhh++EPf2h79+61TZs2eZxmcL/3e79nP/dzP2eXXnqpLVmy5GwAGp4pgIY/1O2P2X13fVVLJ24+zqIB5sLoqYRnkS0SsT/AhXoIa+X8aehHLyNsY1Z+xokg/2YOzD4O8GePWIq/+HSdfiPHSZwqxUKIxRiJkFxK4kOn8YHEmyseQjxxHC+p0slGRYxVQwdfgg4BMjxjAz/6sW1++Ht28B/+Pzv3sjU2p0OnHFRHHGiY06lP9irbPzJiI5KqFZmU9msvgt17X7LaJTqOZ80Ftu7dt9riG643O2epKpdtgJS3MaGzCFp/wXclTD90VMsCQnYUPfPuzeRP8GgCX+iY+oMFAPohfYn+QA9MggrbGrMJ94DeCjHOtV/ZL7QLLFBdnNiu7cQEw1StC6IB7X2xVwru09tsx7e+aY9+7E9szjnttmCxgByt8e12cIEupJ3UZbVrgzLbHRjVvg06a7m26Fwb7+mz8973Hlv09rebrTlfD01arUzrvOP0jqUUqbMpSfH6/cBrXcd9QUYSPrvMgcyBzIFXmwMhqghdMHmkIaNCVkW/sDLDogFZjEWDn+ggcNZBBhfWqsABgqiokOBY4WHNgBkaOx/v32v23FZ76ZEN9uR9X7UWnay09MoLrUsIMksdONPHrRJUDfDyuGRzVRZjBzQ/Huros2XX32SrtXSi60aBDRfLek/z2wEdX9euE9l6O31RR5oXhC0LY/Z5lj0cQuCWrX/j3nKYOZA5ML0cQAq4foMYQF9rdoWYqCcX4qKuJJFRTgtCV2J1EQ0UIU2gDhKmYmlhMHrj4MAxbc213w7p9Ilh6XMHDhywPXv22E9+8hP7jpZSfFv7deHe+c532lVXXaUTJ95j1113ne/R4BlnwM/0WDRwI3CHJ6PwscKi4SMfTxYN9971gE6deKe16j3DuanAHUyWj5eFIrWeRWUJZFASAAOOIMAGrmlTIMO4XmAaD4mM7DIHZi8HGDq4ABriKoUph980ahKVD50irRhNRX6Se1ClIZm2B0yCVpQQB+DABUTSpkblGXVtDEJtWDP4nR/Y7nu/Zi9t3WJjTz0kE67zrFumpEMjQ24WyhIKgIbDQ0MONLRX2m1Q0vWghOdRrasaHW6z9f/tB23dzW/Xy/B5OqpCmxZ2d2qtbHpVr4BquDTWSFd0XEc2etf8V316FZzfutrx+aIOvChB/QE7QAbFuuDEywJkEKca5rrK8Y3FKKc4C4BbtfShTZtl6l6AGrBr6JBnorEj/TITe0Ebjm2yZ3/8Q9v22c/anFW9Nmf+EutS+Q4pyK3iK1/q2uUBGo6Jp8Nqo0U8HtYT2v/YZlv2737f1uv0H7vkIpnuymKkFxMzeglf5dFoaRBPshxbQyCfWWUBr2E/MY6/bPxVeWL+yRzIHMgcmBEOIHtwaYZK4gkRVYipeuhEpZ9GOV884TkAskjpMe0ZJAXYT9ipr2NGt3QLB5FIpqbNH3njl3TnNCWd+NP/40fshR/8yHbK9z7yuK14g06b4FQggHGBGWzKRhsVgAsJzpqAjcODQ3ZImz+29i6xubIuO+/nf9a636SNIXUS0CCWfh09+gKptdU0qy60qCm8y2IMziSTwYLT/BB3pfTsMgcyB6adA0gIPOPRFSDCsiPTXTEWY0gSNvuCsh5E5UUDgIfojQ39kbYT0MD5YPu1/PUpHaP70q7d1qH9y1gSwd4LAA6ADRs2bPAlFdR/66232m//9m876NDHUbpniDttoKHMU/RTrjc++pQ2g7zDPvYnf+i3+eW779fSiVt1vrAu4SgOwjLDi6SUQVbUXGQwAeA8uYhzzV+ClG2qxZdydJVd5sDs5QDDp+EQTeHS6IkrQh82pVGVrsvjJY0cSob3oeXXDLNQ8aKkziNXGl/dXTHbusNeuv/r9uKnbtM4PGZdIwdtQW8vRgdanzrsX3vmdnS5zD6ql2AtWdU55loYIPBgQC/Eh2XicGjvYVv1a79ul2NaeoVOoFi9TIrY3IQtSNNqd21Ld4ksUMDX/zTmU9/L9ztTcXic+KKIy7LUF17GUUdDBkEXnpfyhkWGUiHijZ1uo1VWlNAmGwZ9NQuQYVzwQIfXqL0Z9sta5Jvftx2fvduO7d5ho9rJvE2WDO0CcfwrmhTiVimzAA1tUm7HBIAMDI8IJGixLp3pzjFr2zc9bnN/6VftSvG2cpX2alh/vtlirRPGGkX54yN0Rqd8tEtIc4M4dYvtMNgcXY/Knx34CCeApL8wyuCzyxzIHMgcmBkOhJRpljRJvqZ5rzne3JOJdfhCColgVHtAU224qxh1MKvVdCIS120cf4kAlEWeCSy34WOyKtti277+Ldv+0EOSxXtt/sH9tmLJOQIaEJoCLwQy1FQGjAKZXJNsRbRyItCQ5rr+/mGrrl5rq/7N+2zVm6+2ytrzzZYu0RGXXZL4zLLtLn6FOVsbQAPV0hn5cQH7WLsBmWSXOZA5MHMcQBbgXG9LUf8NORJJXCddKA1VLxfDM4gjpFBUTMjYlqAIgIGwrhaKEL1RO3fZi7t22je//g178CsPKP6iXa9jcm+66SZ9J+q1vfv22ubNm+1v//Zv7fnnn7ff+Z3f8eUT7NUwb542nD1D3GkBDcE/QnRngFcYtVFfz+6843b7xEf+WFdmX77ny/aud90q5RhpqQR8CEsY7sz3RDLkmuJxWQ6JR1k9MNrHZyEsJmR3FnDAB43fZ4rFdYQTWcBwOZFvjJwG0EBNCNEAGdI1X2vwjHSNuKqUr/2HbezJZ+2Z+x+0fX/2f1nfecu1qXavdWu88yJc5cuR6mnXEgjGJ0cxYsRa0f4AbM/FOtaj+uJzeMcLNv/m/8LOu/wKW3DTddqd+1K9DC9SCXYrwNxVL9T6rMOOuvSM1/J0T/y+Og4e0DreBQ6hEtW1+oQRvWnQJqsGX4tApgsqCnEhPmKS256WS6BKaptMValpZ0RLJgakbb6wyw589Ru29Q+0ZGJJt3WvXFVUEkqnOCSlFquGigMHAj207pcn19HeJSV3zHa+8KS1XnGjrV5/sa14+9vMrrvGbKX2anAFWU9UyA+2KW2i97XK9FFdG2OjNIAM36ksuk6/4T3t49KvR/NP5kDmQObANHPARabqROogbYAXkK/JA+SmtPqLgYsocj3DA4DpKM8LO3vhUCNULs+VpjOArCpgAV22q00v/SydEPBg+qpoL+7Qsc2P2VMPft0OPvgV65h/ji3U68Dinm5ZlTHDSSIKaBhjiUYhi0cE+g5L/mphhVs2HNj+rB3s6rT5t/6870e08m1v0RIKWZi1ddqgylf1aqH94vVPRg4ADdw4Th0ab0sACbVllzmQOTCTHCh/uKOdJEtC00lSKLUfQEPIkSRLlOcyqAgTqX5LMkmEkKALM6KRRkkiKaI0DncHaHhJS4t/9PAP7Cv33m//8f/+T/bud7/bfvM3f9NPmTh69Kht3brVvvWtb9kFF1zgAMRll11mK1asmD1LJ4KPMAmPcIRRGx/f5Od9fuIjH9UVQMPdAhreJSVWX+cQ3LiwUIDvBe89faqf+hMWccShpayQXhfyU5XN6ZkDs5ADSUXixspCMQ2m8pCK4RLjlZBR2LgOsdlIIdeHloeNlgAZpDJJGeL7vUb7kf029vRztu9Hm2zXw4/Y0H++3RZeuNp6ujlWJ73HVlgeoHJVAQy0xJceXoz5mo5lAy/CQ1UtxdC+ApWlKrtkmS37+fdY703aq2GFrBpEN6IWx7TngCthkiO8usdrtip/1VziiZors6pIDGSaLFzQovz65BMLbIMAGTgmPrZoyQSi0Z/KqO4M3irvmJZMPL/dahs2y1T3ETvw95+1xeecY3P65ohSX84w1dU/uMou51TrbYlfTFL8AxIalPJ7SHWN9i3WMaM9dv6vvN/mv+sd2pBstRRYgb+yhGAZck3AT0UKbwtnttNXPZNxPRMeZAt7OogUB6iS+kqbcTMpL/9mDmQOZA5MFwdCuoSsL0ucJOGSbE0AA3EXTkl+0QkqQBAjqSQva9IV2YuB+tJeODETEiJJdeRyVZvwSuZ1Y8ZFBTpm2J57zo59/7s6zvL7tvup58y2bLKF87RHjurqlQxFvrPZZJKLzHsAv5ysVNPpEwLatYSCY50PDQzYfgnSqo4Znqv11Ff/6i9bx7UCfbWscMhb71J3O/0FQ1v2yIpC9bIETvNDi4zNEh/oa3aZA5kDM8mBJHtceCAF3EXYaLdBBSU+PszVCzhJqieVU7y4RJdiNLO/YAqTyIIOqaJhb8cGj9nuF3fZoxsetS/d9SXbuHGjL42YM2eO79kwoj3PRnXk7jve8Q678cYbbenSpZJ1khko4GeImwaLhqRqIgAx+kJUb3x8o4CG2+3jH/m43+a999wloOEWmd9qjTYarYMMcB+G4ydyo/FaQwbTCU6/8ZQj9PSU5ZmYIWeXOXBWcKCMo6Yb9nFygiGQXhDTMIIMj3CLOLE0mhmBKZUwjUKueb2vubeqNiccOKyTELbZvg2bbM9D37OBZ7dZ5bEnbYGO7uqUaT8vwhgfdMiSgbqH9aUIAdipNWat2iCLtjmBYggLB5mVVpQ2Kjv9wcNDtvhDH7SVN99odsEas3lzJL11hCPnYeoluF1f3RvGrqrEe0j4KjjYgCszDgahaco3kv1pFLwLoIGCZcfXL31XE9CAWSzSs4I1QxXtUg3t22+jP9poL3zlQRt45nlr0Xq8BXN6rUdfxFi+gGKLvK0SulcZ/Wf5BEoykhNFF7NdAJ1hbbhw9Mmttux/+JCte88taTMynVwh6Fudkg2FFGH4qwUYWtGhZ0YhgAZurENKN/eYbiuFLm9Fk13mQOZA5sAMcQAJw7yUXrLTDEVTATQQOtAQWjsFQhBDGE4ykmVgLVrPV5PsYkcc/qXaeavH8k4HL2vpA1B2qwBYTTo6g/mIzmzfbE/ffZftvuf/1eaOS6xP6YvnLfQlExVAXpe/1KH6pdMig7G848jhYbfok3Wf6jsqC7GD+Cd2WMt1F9n1v/s/2ry3yqph6UIb035EQy096hFAg5bG6T7GtWKjJoC9Iouylk4JX5e/9Dm7zIHMgZnkAJpviJGkBdPaRH1nohYeunIxTMvkXqysPBU9DzBAWZBMrD3VwwaQx/r7bffu3W69wN4M7NGALl0ViNmlk8cAHdasWaPTy9daO7raGeZOC2jgXhD7MQWgoCK+A2j42Ef+3G/3vru/qM0gbxEqK6CBL3h1VwjOYLYeLI8qHlc83Hg8FPO4nkaE9aqan1A9I0cyB2YxB2JwlP/+y/HyrQctoXwADyFMIU1F+Y2RmFIYlaSw2MG1uKMHTPb4NvLk47ZNQMN+7X7bfmzYuvuHrFcgQ5usGKoyIaUdgAbKxxKKDq19RRmj5lF9bR9y8/yKTFUFJui4x/17D1rPL9Cn7zsAAEAASURBVL/fVrzlTdZ3xWVm56/SppBzbVxKW40XYYEOOl+huAFpjqmLqu1Vcok9SZmlyYKfHsbLuNLK6iAf0ryf0Mrx+o6ymxIdLpCyPGodOibNhoolEzt3265vP2SbP/NpWyRlc4EsOTrE0zaVY8UDzw+Aocq6YFVe08QD+MCu6j2Y/apDnD5RVTrLVNgccp+WuPT80i/YuuvebL3XXGm2fq0fsybkR31ixw0pyAo7BDfYqBpQu360CCdUcG+44h7SRf7NHMgcyByYQQ4gb5CV8vxLLgkhh3BDjCJwYzKLkDxIgwbMW58JxxSyuAyrhjQTYcDM5ruSn5KXXohAO73bzh12VF8RN993r/V//h6be+lSW6DjKBfICkH7EbulHvsyxN4MWDOERQMyGfkMGIIAHVL8mPq2/9mtNrxujV3xyx+wcySL7SLJ4RXnaIPlHkHNHZrdOiXr1W1hzuMCfFvbVf7Me3/QPWWXOTALOcBwlS9jl3GXZOGmClOufpEfzS7SpgqDnspFUxurSifWKW3ygKLsG4PuzBItrBiwZmBzyB59LCK9Jl2a/bs6Ozut4h/4osLXNjxNoCEJ/iT8MdJlZVsBNPzz7fYnH/2k3919d3/BT51o0c66E4AGAAZ/Wvwg7if6xqNMTHLSFE3zDqV4YOHJiwdYJm5Oh2ayfNKiPGVwzXQpNdEFfdBE2UgP2nJ+xMkr96NcNsoFTVxHvVFHuUzUVU6bqjzpUddk8ShXbifi5J2Ki36UaaPNckh+0JbTy/dzovSoP+jL9RGPskE3W0Luq9kFH0kvx7kO+nJIXB5SBGrZxUj0XK+LH4gBDxTft0fHyzxi+x/6hj336GN25Etft8UXLrM+AQKy8OS9tfjSrlEt+orGOhtzo+clV0gNV8QY+drsUUJ0SF+K9u3ZaS033mzzLr/Elv/UDdZ9pTYvXLSIt2q13a6+StiidY2xcLV4+/U+Rt2vQkh75TbhX5Ona0ECy1xWiYZVCWwQNsqRaH7nfKuTua7sZPk6Zke178X2XWaPP2mPf/tf7bn/9ClbtazPlq5arX0jpQzrGbAcBQ6O6GsZFg1isvuaJiD2auAsd4AGvqjB3XYHGsZs767nbfyy62zR2rW28qdvtLZr36RNN881mZmoPD1Q4ECDrqu6AT92QiEbo9FG/YaK+41rXWaXOZA5kDkw7RyQ2JFQkkfYyBN3hzzC6yJ8AAwRkl6nV5zpAoxaoQ7+dUuytFmv5jV9BGtDllKAANm3Y6eNainw9h/8wLZ/+5tW+e4jtvTyFTZXinwXMlHyekRfFdOyCZYFYgkhyRvdUj7L2ngJ4J9WowlsGLdDe7baQPdiW37dTbZKp090/rSsGi7TBsgdcwQ0cI5Th7XVkMHqB32h33juhXvKLnMgc2DmOMA4w2vMlVe8RrKHpzIOIcSVaYmfyENfL1eTZshuMtKhBSC0C1QoOz/hRvLGnersl+UDZbu7u2cb0ADP4FoCGpJFwwbfo6Fh0QDQUFg08MWu7JDIBVdRiBt+wkqXOt+jqJdSs/UvhXQBF2G6yr+ZA7OXAyGMuMPmv/vydZku4j6ACtZE2gROqQJeesNHGyhiIAZ7dpsJZNh69232wtZtNvTU47Zy6Up95dExXaKlSqlusliQ6b7WvGLhMA+UVeN9SEsoanoBZuijgLGWFYWR0xIGhcj2C2wYXb3aWlYst/Pf915bcIP2atDeBC71BTK45PdFq6xgE3RRvlelvGou2i3zj3jhTwQ0oGyOikPt4ougExUasXbxyV/oD8lU9+Ef2bZ77reXnn7aBp9+1BYIsZ6vL2gdUrb5uBVAzqB4CdDQwXIUTTi+V0PxzJh+2rQcxffEUKewaDikM5mH5y22Ss8cW/Wz4u1NN5qtO89sjjaBlMUEu2BoStMzFF858pKHyI1gRkw3BWT4c8CkgvsMHiiaXeZA5kDmwLRzADmDmwxoQAghg8oeEVW+9rL6QSCCdCPWlD9U07IInfjDUr423ubZ9FHzkk9MsqwTgmD2zDO2Qxut7f7Xb9vIi9usb9/TWuWwyo8UTtYKsmQo5jK3YkAwq098fcSSAQACl4B2LdlQu8OS/QPDQzbMMWzaE2fu1VfbBb/+y9qgV6Bv71yoNe1q6dsoM2nxYhE8oLLsMgcyB2aWA2kYu47DcivECa6eHAkkluPlcap4OQtSEpyEjPCIiHIcOoiQV+El+7AQxmIBh7VCAjT1zix9zzehlbwhTjpWDujWZ4o7TYuGxB/Mz/DtEorw69HNaY+GP/3jP/X7vO/etEdDa0VLJ3x3G9GLKS1SVlGCARcavE5gAxwmvXgs6eHUr7za9CzUoIMNJNF4dpkDZxsHTvR3X5Y1RTysF7xYkeYjjQS8wAFpSImLReDpvGwOyqz/0H5tjrXF9n3327bzi5+xY8cGrVXpi7XZ4JwOds1OjjGdlkZog0MpYHO0rgyMAuCBF1bWsaKA8c+bVYFBKW1H9YXoiEz/j+kr+8p/8wt2CUCDvsDb/AWCanvVR1Wi5RN8geec8tfEOcNKLQefSFLecSi48l1OkSeSEd1/TfszdGgjMbeIxVJkUPteHDmqUya2217tefHCZz4nZh0xVpx1iak9kpedYmCbeAa4iyI7rI3KUHjbNPHAY1/HDNCg58dz4MhLTqKAx+yAfgwgRx3o37XDlvzKv7UL33ZD+pJ27hKzhfM1g4Vyq9K14kaoiWfP34T2fNCFKhbdGTSRqVPZZQ5kDsxaDiBgkZyEOMkmlz8KiePIiuwyKXlBhlCUx1BghE0epbmy/KEDQACQwcspoV+yeN9BG9f59U88+IAd0CkTXT0Vm18bsIXdPYICZC3mMhwwQZqq+oI1AyGy2Ze0qU7ipLCcDbmNCGVfIsAGjh0eemyrtd5wla37r/9L63vLtWbLZV02l2PpNL9VkbnqLPMdZtD6H7eqWHaZA5kDM8kBDTuGnvuiHV0mvJNwiraDviyOIA16r4NrZA3qFCEuZFfEkVWM+WLcA1pWtRQWMAEgoQw01FwvU52FDIqQqnCUQQeMTpSviQNUuAwrrCPK+amGVIenF23U69V12UETjjpxpw00wCOU5hG9nHTq5YBqNz2x2b5wxx328T/6D7oyu+8r9/qpE2zgxne8UX2F4/g11pK0adMyupVEMtSIZWpphM4gXcftpFxoE988XZWk/MZNJor8mzkw2ziQ/tL9A09xaymlIat8FCiRcCrBR1HK4ZFlyDVXtrT2K33ZUYoUpHoFGq8oX8d+9LA9840HbHDr02ZPfd/maHPGHn0556UWhYqRSruMaRQrQnqCzKEtBBFf8jtBZXXNCzMkgI6ckHBQX5L2au3Z/pEB67v+JltzySXaU+A6q1yq/RoW64WYl2HfEVyl1eYYfaTykoBTtTPiEi8TMIrs485w3Af3hselO26kATLgPV/hqJZAcAJPu8ADT6X/h7W55qbHbce3v2P7n3rKhh/dYHNbatpvQRxluYRmpk7RA874BpDiVeJxqli/3nL0w5+EaNMT0fo9EQzLsyHZPoFF7Ze9yVasXW/L3/pm67zqDWarVuiLmlANQBwq4wYppGfrPFe0Jrk9Ln63gphrUnoVWM5NZZc5kDlwlnLANUEEDWBAXeIqKtk2hgySVE2wasEgRJaiDuwqzgXzEHvbIqjRpckHBBjXJghj2mytGznHZrgQgBLv3mv29LN25NFN9twjP7Rjj/5AorFivWPag0h6LuBEyD6qxYcOS70eFwH/MHJgsR8gO87lsECNYaVVh/S7bJXNu+5aW6wlgt1XXW22Zq2sy7TMmJeQ4aoMKyT7uwTSaxNgv2dvzavKP5kDmQMzwgHJlGK8MrZxfllcpKz0ppokSSIIWQB9yATioYWleKoLmVTDakrj3HVnBEXRpo994oVizubfuMle4k+Uzos+ZfABPhCPJRekEWe/B4CLdvbikgvgIYCCSAPQgA6LiuZ6vKB+mtsj/bSAhmCqrzfWHNABU+Qe3fyk3XHb5+2TH/2IX99/75e1dOJdSVmFg3zRBE0GpeV4NX8kiZFeoM5tON3k/ekrbQI5F0xCuHJGSsm/mQOziwPx90/I+GhynqSfyJIwOX5cxDghlA8djpd+NgB0Ey2VIz7A5oTa/poKd79kT3zz6/b0X/+Nze0dtfmdI7awd571SEBJfrmnN9QaVaYWAB1SjO5wfBhAA8oja1wRaJ3aYKumkM2y9urr/s59u6y6aLXN11eeC955i51/tY4BW6EvPr2yaujTVx9CWUmgfKWbpf4ZdjTVYGxd2qDqTu5UIN12SUQpAV5ofwUbEl+P6evZiOThnn229wc/tGfvvNtGd++wzpGDtnhOj83pbNdjGFURgbkADRL0ySxXdRTV+5KJog90MeYs4gA//BNmLYCixQY0WRw6piUUnX2yqOi1hbfcZEuvvcr61q1JVg06es0tR7Q5p2YcatP/Qrjz1Q9+8+yc75PfdU7NHMgcyByYFg7ExALQ4HMItUoGuZBTiBwCbEZOke5eAXK37Lys6oDMnQjYnFzLGGTe4Aq/z3NHJY+37rChzU/Zjk2P2Z7nn7bxnc9Y39xu62lNJ1IANIRcpTmUa9ZRIy1DFvNywLxAj6D3vSCgVUpYNbAR8qj2NWo9Z7n1XniRrXrLW6zj4kvMFixOMthRERXqlCz2k3+orfnG/GbyT+ZA5sC0ccAHqmojZMyFi7Gn0JO5LqeVaAEHyPIkfuRdBkkAIa/Ik+7rQgP9ig86OE+XPKI878dCKAEsceUXf2RO2UVeOZ00rh04UPut0h9dVkkHDLoIORWn4u/jdFN1U33pdkgLgAKwgTjAA22EJz3qo2/Rp2kBGsQSB2DAQohv2PSE3fbZz9pfffLjujL76pfusltuuUW2v/papo45Mo2pcEwcMLR+QwXz/JoHQw1chFc0wAayIKC8h56QfzIHZjcHiiHiY6IuBH3ANO47LuNlsD586oVFqzgCxU1GSRdR0pQS0MCnl6PaXGanNibc8aJV9UK8d9cu+8nmTXbw+1+z5d3ttlgbBvRIEHYg0FQ+5BO14anO4wgpxbmiK3zdQfkaYw8HrY1FyPV2dGmzGx3bI4uFgzIR266NbQ6o0JiWYyy+5A36+r7Olpy/xuYsW2Yt69aarVyhvQUENvAyHPfpbczwDzcQb/LlpuLmSQsGeKgCE651gSWD9qIAuLFt22xw9x47/MI22/PsM3bwsU3WpqND54wLxJFy2d2m89gFztYkMznBA6CB6kDEcem7WUxFib900b34kuI8GwENSh9ViB+Q6ntUz7im/TC6Vp5r8y9cbwvOW2WLL7hAG0Sulgmvjr6Et/yNwV9CXKowRYokT88/mQOZA5kD08kBZCoOYRf6oidI8CCD8QiksGoDRSDJZVWR5/Qq74o/EwpSUNci9XrRSQe0DS7LJXZornv2eTvw1Bbbu/UF2//cszZ47KB1jRzVHjmd1q0y2D34PjlqiBZw9JIlbITJsiFJZZ8VRYQtr2/8q/7yj00hhyVb+zXP9esFY7RTexstO9cWrb/Izll/oc29UBtDavNfA/Tl+GHNAd5/5HA0SsPZZQ5kDkw/BxjIyJAIyy34+6YS4r2TvEgr002IqyKJHtenGMCyinLTKurn2oFSXaBzuz4uYul5MjEQbQFATKjv1C/KgABLLgIw4MQKLBlIY/PIAAWi5qDjOoCEiBMCMuCpH0c9+MnctAENNCXM1Xm5ccMTdvs//IP92V99wrRXvH3uP3/W3nXjTfRE65C1ozqCnnXgfNEjjuDEp6dKZKLzPP9RehG68luQ1R+yHlKQTazh1K9UhddBiDtZfUGfqCf+nihvIuUru5qq/ub05utya+W8qeJl+pcbjzqbw3I95OEm4/WJyqVSx/9GmXJOtFFOe13HxSy/p8mYprRILr+Ae1qJEf7yqGusFxBu9fpEyDXWDIdkzr9tu+2T8jWi+OGXXrLdO5+36osb7JyFy7X5Y5d1avyhSPGKm15+Ua8ao5l4w5SUroleChcnI9QkA46NyGJCaV3t2uywXSeIC2wYUEX79LX/gL68D/Xr3OB5K23eEp1qse4C6125ys659BJrXXu+XoYDaCgaVDCjDh66109Z6QuFOMCGZgZQqJ6mCAi2zGZt507bt+UZOyKQ4ajCgX27rXb4JevpaNPO5h3Wp+UqOkJdYMywrBiqfjIHoIxzUdVQJS5ghkiJLpLncbgumYmcZsNHzIQH9Hz364z4fj3mMV33XvlGW3jBOjv3ssvE57XaE0N7NngL9L3oPxWSlir1q/yTOZA5kDkw7RxAxiDgXKYi7OQDXXXZKwKAhogT1gVTxItecQlt6J186II+6tQ+Q3Yo7Y9z4IknbY/2Zji6Z5eNHNxlFQGune0Vt8DDEo+5jpDlEN48XZRHtqKcp3+6UIwTlzzXQZLYl0g1qDyHWgxKUe/X/Dsw2K8tGTT/LV5u89ZeYEuveKMtWLdORw9rqeDcOdKdJbNphfvAEVJ1dpkDmQMzwwF0nthsqz7wijEY49rHYwzEIi8u6ZXLGIUhw5BfpPnyX+lxxPFykkiuJ7frpd/69JGH/chimbCAiPQJqVy5F5vyJ4CDABpiyUMUAGjAk97B/mlYqRaubJUQaWWwgTTqDc815ctLKqCnbtxpAQ1UwG2DzvJe0lX087FHnrAvfvYf7dN/9RfWqwf0V5/8pL3jmmttXDueH9q5w8GGir5itvAlU8pzh/jcIYndKmGcXlH0WlKAB9Qfz9qfO40WVKH71sMseZ07+We2cyAJJu6y/k0l5I+ykkBKPIh4jBFyIWXjKk4q8PX+MtuvybdI6WlXZhdoK05f3Me0OeGePfraLl9BsIwM2bF+gQ/DR2xue6tbM6B4FWqQCqURTIijLfcStIANKW3cd+1muQUWDUeG+/XFXgKPfR60E3d7W5do034NQxIsbGLI7txtsngY7+y2sc4uW7BmjZ2zaqW1yUpqUErjmO5Hwszrn8kf56duzSWV81r3l25VzYoP6gL9qCjE1/dlKPjBNb5NflRrg/eLr/sENowePWJjx47q3PRBa6sO+74MvUKye+Q5231gdFC4z7AsGthQE1Q6LYUIPpc4Xdx+PHku01c0Nake8ny0x4LAiiGh54c10bBUpaYJrWXufOuQUj3n3BXWt/wc62SyU/stAiG4l3E9CxBwlOd2Kd6tktlpQqLm7DIHMgcyB6afA8wtFc0BSaYmWYPMZZldVR79EPmfZDLyLXzqCyWQVa5IS8cE3GauQ662KWwDaBfQUD181I7tP2BH9++zwYMHtKpC+qk27O30L4pp810kKHMmu5ElsEF1K44rz2/Q8U+k3htA4pqWabAxbxvyFLBYcQ63wLKBTZAHdVNVzXMtvX3WvmiJdS1abN2yaOjum2MdAp3b6Ifqm+wlwDuQfzIHMgemhQOM6VaNzTaNyYo8r6PIkSRrpMu6zEljPN5VadgljwiRCNQRm51zopqq05CvuNwalY44IuFQE4A4LOIh6cFj+qhU0Qboy9ZdYH3al8wWLVWjGvOt6Uh39iKj/lN1AQwABlS1RCOAgHJ50sMqgfyyxUMdmFCTbETp7xrcmFyAGCGLynlRZ9Tn9CI89Z57ExN/KOzWHop0JvDCnhDQcM/n/sm+pF3Tx47usz/+gz+wGy+/0o7s3m1bH/mx2YED1iVh3yVB3q2XBM6qaNOT1CPQA9UNadMzfy1RmscIiwfLw2KSod16yGMt0ib2Ll9lDsxWDoTI0R9+4Rqx41PKg5whj8Br57hJhWMj2hBL1gPjCivK6xGS2iEkclwnSQwfOWiHDuj4yqND1iWFp717no3xUgoKqjdmxi3D3r/cMCCbRKGPU6WmMPUC8cymkb5Hg+LsP1CVoKVfKIl8M0KoItoAHEgTIuHr2YaP7LWB7erL+iXWt2qttcicdVgyAzlx/P0HH6YzTK2k1tIz8OlGyT7h6B7AW+Fjm7rsvBFfnDVK5+4AGipSLMcFNPTLgmHgpZ1WEXjd1iP7LymaFTYbk2LcoeUV+FbJw5HqkBRVHYHZyjPTYWwSiGMFv9PdlTlNQ4nXKU+/9MEvCLmHdNRaVRMgnolwRBYWw4cPWq27zyqLFlnrvHk6BrNHoIKUXJUfExg1MtDvz7qjGwRcdYn36el65fkncyBzIHNgWjmADHWZidwsxBoBh+LgkWeADqQBOBBiMeCh4u40X7UIWHfJJ92zIt+qOYcPXq3y40cP2di+bVaTYcOYVipY53ztidsrWSyAWwp4VfLcXwZUqUSzAw0sF6RGlgFOdMwIuOiBrpmjsKKQY9NjP3JYITMCEjSdpqllhAKahwcP2shRgf8ib1s23zplOdipYy/bNdfRVJK5imSXOZA5MCMcaJW+A8DQJj0L3cfHnVqqSa+q6mLM30l5L9XYLnQtJA5RZJV/bNL49uPFVZojcH0TbVkOIKsG9cFmSMRVWa4OqkD/qPS7bul2Wo588dtvtdVv+yntR7ZaLWqdgD68ATbUVF9qKkmXk914WBMc1ibjL+58EVGjlVgLfMNHgIIe6XZdskjGAQ74e4HSw1EeurBaIA54ECBD0LneLvlIOj6AizpQIcLTsmiI20V8Ei++g9qTGzbb/bf9s933z1+w4V077MO/89/bDZdcZi9u22qPPHC/tezfYwv00rJQCM48hL+Q3nG9bIAwI8RDQCOuEcJsskMbxB14KOIKvN0Ga0iZeEVKw9FL8iNs5DRicVeRMlV9UUeEQV8OT5QH3Ynyy3nEcc19KdMkilRnM20zXfn6VOJR94nCcj1BR1rZlXlfpg+68v1F/snCqD/ouC7H4zroZkOYlKjmOwvuRcjfSyPe+Muoc0BCAcsGXzsqniEgEJCchOAmoryASiEblPIzJkHUrbHKHgHUCbCAipRMQxt/mdEiTwBH2IinWOqT4ryMA1ioTqleUsT0sivlb1j94OWXWnmpblc+FJRjB+4B7VcwqlMnWiQkayoPOvxqAw3pHhrKrE88xZ2iPmIZwmo1eg0td5PuiDTymMgk4XQvLYCuBc9ruv9Ref4xq7QLCKpoIgJkYI0yFg2tsmjQvCWAl5pTTxot0AouwkZOotVTU1ZVFVRkQYL1Cl/Y6CXWI4cEfhxRv4bE8zEABuVzBGeHaMf1XIallCOF+RvJFg3O6PyTOZA5MIMcQDYhMwFwQ+Ih3ZI+mOQb8ZTWkMlcu4hUyP4JnI7GF8Zuya5OKZoun5U2JrnWyhc/yeE20bmlgvJRmqnXy1K+iNMfaDo8TDKe/nnn6nIX7RXnvfB5Ft0WQLcK4KBkvy/NX1jyMQ9jpTaC7JUcHlCIhUNNcnicOUB9Zq5MLtVcXOQgcyBzYFo5EPImWS4luYMsSO+heiWvx0mLcY5sYoSGR1NOp7Bp3Gs8ozHzos4OMSyZGlKBqnTqQeUckV41gpnryB67+lf+O7v0Xe80O3+dhJ6+QHUI+XSrhqQDv9xb3bp1q331q1/VyfSDdvHFF9ucOfpgKGvilStX2rnnnluvDkAhTp/AssHln9IAIfCkUY70suO9Ac+94XHNoMVpAw0wOUAA9mjAbd74qH31ttvt3tvvtNFdO+2Pfuf3BDRcaluffcYe+tR/tHEBDYuXzLElfQu0xrtbyLJEeHVQE4m+jvo9pIfHLw8IoAFE2R+0h0wyaln//eHqxnmoxCeywLuTfzIHZhUHGHOMDcIYB9wg4z9ebBkNaSxECAUupSIIqvpKTk2dnXP05UZIq15wWcqALQGKTxvrw6TksDQKM08AgXZXjFSH/sfu2l6rrhGw5dbom+MFEBQu9TGVxYSVr0U9vNBK2YJ+VAJrEMEmAcdXKUxNedn2F3MaRR7ID+sFfUh7O2ANgfzxLkYjMxwGbwnVFe+3OOdyiqbhgyur3v/EEfqHxwGqsKGjm9CK7+16mce6AyV4RCa2w+ILIfxok4LJfhZ6y1drKMp6JuJJTeerY9EQdXrFDnczneFSTrSbNiojh7rUZ/G3XTzvBkgQ0MDfDefCHxPS3i/LlgF5juBkiQX875CnNF/lxmVOnL6qoYZnlzmQOZA5MLMccJkr+ZhkW2rLJZx+0kyYJJ5/XVN2mh9TDhKxVtPGZ5ovAEc7ZKngewFJpqX5kuUQ6ci2tKxBqWoLkAK9E7moxRZpmYbqpg9IQ/TdNtHFi0XSXZVYuOgDl2nJhPqhCdHnWdVLPVg2kMd824Jcpz15llOMCHBwWs0HfIgblzzGlXngCfkncyBzYFo5gKRBH2N8u+ajsPEuqnGpMcp7adKBaZrxTBn0u1SWcpRnvELHyK1Ip2YFwDHpr4PUoRf3AX1AOjx4xEbb9dFpq9l1f/q/2Pr3vddszXoJGIEM7ezVoOUTKv9Kxv5TOir9M5/5jD3++ON27bXX6rA2yT9ZVqxbt87Wrl1r82S5yjXpWDiEJYQ67C72cgBk6JQVNA79ERkZYERcN5cNUOK0gQZUTcQfyj4WDbB/88YN9hUBDXf90+es9aW99vH/+X+zt112uW0DaPi8llM8/pgtWH++LVDH58mqQSu19TDxxwMNvixD6bzsoHjTTgAbMB38RKq3K/bpRUcX2WUOzGIOILLwjD3GBDKMsaBxXyhOjdDTSwKKctABAPDlnLK+V4NefHm5968tTpOsHXiV5SsML5Z1oaF8lDDqQJmKNjhFAiGbFKz0JYg+epsKXSEraFjzNSoFCiWrG6BBSh909MEVO4VeVh2kfv+CJNouvZADeCAPBgRIjKoe6F4tF6I+KaipVZ6B1ECffLgHFE5kIX1OSuhEQID7gZdMRCiYDurwUOQAGYakVPJssJIAiAGUYEmZQ61qAI4U0lLPJeqmZeV4NYln6enwHJDRlMbRp9R2u2JMpvTD+6IQZRfaIT1cQhz0fjwbtPI8X0AIJtv0dJ0s/2QOZA5kDswIB5IkSjKSBiLWHIZEihCpiQOAcPmnkH/IXGRZu+Qdy9SI8495roqPeUjxBGRrCZ/kMC1To+ud1FHEecGgPBQhd5O8pbUENCTZqVzVTX/cFUGaW5G/ybsgV99izmVpIfMlLu7ZL/JP5kDmwLRzIMYyYxb9B8d4BngEYHBfyJQ0whv6bdKnGPPIB2pK8ocxDZCJPDkm3RWgYVQyZUD1HZEl6Zje4dsGd9qbf/v/tOXvfY/ZeWs12JXYLrBBlqx8eHslY/+JJ56wv//7v7e//Mu/tKuvvtoGBgbcOuES7QNxwQUXOOCwatUqu/DCC23FCp3kVvQ3ZA9WDsPqHxYNABHj0g3d+hm5Kf00XMg0QAfigA4BPEwL0ICSjQhkgxximzdtsAdkzXDPF75gg889b//+Q78vi4ZL7MUXXrBH7r3bWna9YPMWLrY56mivvAMN6lgDaEiimgfLRJEU5fSgHWSQcCYPpiPgXaknTtoreRIql13mwOuFA+gmGi4+NhgHXPNnj0coujqkgZDUItInDgovL1q+rrD3CSaZCJURWROg0Liyo3HpoegSvcSpBAgO4cKrrK/tpyNFmwnNhSKJ3vRym+Kpb4zRojcqBlARL9m0VVP9dZSYgUy/vDq9cKtOliNwUgVf1+nJECZbRVuQvRqO3qd7Sfzl7ukLgAdykGt2lQDJRi758/Cb0AUOhKbuUtzr437leHlH0eW5QKrH4A8WBRgBDkAzNq4nK2uEcXwZaPDlLPQgAQ30hit4hHyG31z7/hia8HgWYrqWrole7QL2dAo5p1HMjJ23PF/5+j3JwoJJhCUuDjTQP6+VMLvMgcyBzIHp5QDSzMWQqkV+4RA7zG/IRxdBnob+mSh8XlQU/ZEUn0704s4VSrIrwkpPlmXJokCX/iIByDsiOetWtCrIfkQuUb3q1Jq3LfroQ1xHXyClrSSJ/YK7EH1YL6SZhH74V1G159RqL8BnnyuLeQG5X5MXUeOGFc0ucyBzYPo5EHpe0lfTqEamoNPWrRkUdznjg7KQBaKhDLowYcgF5JdbL0l35h12QEuAjwEeanyzTOqYNuXWUWPWOXbQrvr1f2fnv/OdOmJ8jSoBaOi2EellVeln6Gmn6mIpA5YMn/70p+1v/uZvjisK0PC2t73NLrroIgN4WM1R54AJamfhwoXu0TsBGrBmII/r8hKL5kopi0enn3agYVQsbxdrUWufeHyjPXDnF+2B++6zXY9usg/90gfsmvXr7eDuXfbcDx629iOHba463Ckz3HYJz4rCisL6Q9GDS4I6KfE8TAcYFBKXalw8Wh5mAhp4EYnySqrnE88uc2A2cABxF2KGEZLGAneGOsO/JOwa8ZRGOi6UnhhbCILYNIsvOMMsQ1CYBBTgA6VUh0IEh6OYuujwdVqVBEyAAiotxh4qGQ61KTwpVIXnxZvQTUn1ooyjTZZMjOiLDUKcfrXJ0qlDHhDE1TzRtEg4txBSSDRlOZBaJWNmXdyDAwhqinZ5Dsg/bSnm/+gBVlZ47tDvWQW93/rVLXoZt9aS3AMAIM8RcE0mLJdwAa1E57vkIwAQzwj+cN8tWkLRAtBQ1NroiSoq+hG9wTIi5KeyHFDoZq8HxWs6x70mdJ3JgyUS3TpelLYBO2jb61KcY+Fc1jrIhEKuflOZU3iQfzIHMgcyB6aNA8jEJIEa0i3kXWO+iTmv0WwhtVzGIqMQYyyZaJfZMjKR9cbIOzJoA3lHGeQ44IJ/tVQGG0u2an8a9qmBdozTKURImeSjN/ShEVd2vT4o+cfcyTzHEkEsCH2JBsCH6q3V5XsBmysNWZtmR3qm+kUbSntK8eT8kzmQOTADHEjjG7026auMbmQJIxSPrOA6dCC6QJkYt5Qjjpyq16UxHEsnBqTrDkgmDGsws0fDkJZSVOb0ainruF32M++3q/Xy37LqPC2n6LL+jm4bxhJCcurlAA0sh8A/+eST9nd/93fuXeeXfMEBHLA55BIdoTtfR5nPnTvX929YtmyZYeHAMgvAB5ZMsHyCpRX4AB6QR1g54JBjXIeM8sTSz2lbNNBlvpbhaRL18/GNG+2+O+6w+//lLvvuY0/Yb115hV0mxOTYvn320te/4V/6ZAxSV8bjYUSoLLG+4dNDTRMB6VwT8gAp01DoU5qSssscmNUcKI8DbjQJs0YYY4n0sotxRVrk8RI6Ku+bXSnkS3xSchSRg45y0BFnlRYh9Ix7HNfRJtfRP8ZqOGjCU3/s6RJtDyuNNqiHPtAOYdQbfSfEkY6L63Q1s7/l/tN+3Cf3gOd+gxfIJWjCkx73AF3wnRAXPOGeoyx58Ji6CcuyL+pT8gQX/Ci3RTk8jvrZa5h+US9t4GlfJzgXcnwiX6kLevpFPOqLtpSUXeZA5kDmwLRzoCzHQt4g+5BXyKSQt9FwmT7kJbTIPVzI0XSVfkOekRf51FMuxzVthY++KMkd6bhoP+hJo05kLH1g3iOkbtoty/iokzx8uNBxo+5Iz2HmQObA9HMgxnJ5rDP2YryGXCEMBy3yiHFLWPa6rF9Tht3RdMCN61/ovXjKoZet/eWftQuvusZ6zllu/frwMyg/oo9AfoS78k/m0gciyZkCaGAzyLvuusu+8pWv1IuSB3gwlbv55psND9AALXWuXbPWVp+32gEKwIYAFsjDA2KUfbnu0wYaqAzG4WHUqKTmYwIa7vnCnfagLBoe2qDjLOWulh+Q3yuP0ESh5UUiFOp4oEqquxCq5ZBMrsNFuQgjPYeZA7OdA1ONA+6b8YCLsDyGyuUiPZQd6BF2jMsY12V68kMBmixf2e6iTDmMOATUgQ9FkbpCySOkHZSxULDiPpRUV+SI48r1ppSZ+6Uf5cmEtuk7IhtPHFemiThlocdHnDK87OOCDkU0lFHSqZOJKaYFyjZ7JbmL/vA8Kcd1uChDO/A1+gAtfYC2/EzIhzbKRagkV46hL9dPenaZA5kDmQPTyYGQM2V5FrKSEF920EMbnryQZSHPkHPIQBx0yMDwzD8B7Crq9SOPy8A36SFjo53oZzksy0ziMe8Rx0XbtEkcBw3tlWV0cxvQZZc5kDkwcxyIsUsYY7o8DomTHq4sW2Kso8MSj7ENLXHGO/IDRwjQEB99Fii+eMVia5u3UGBEq6wZtNxCPtlMlVsU4QkcQADWyceOHbPt27d7CDlpgAdYWQXYAEAQjlMp8Bx/SQjdmjVr7IMf/KC99a1vtUU6+jxOpaBMAA1uJaZr6qLtcp2nBTR4IzTkjUkgq6/qkz3/rI6x/OEP7Llnn7G9e1+yfQf329DosPV2d9nc3h7tcI8o1UYYMhcZ4bg0FWQdHI/EmenrmDE+UZrWI2O80kJYpHPGqS9gVjCmM+Zr8mOtMmiRiTD/ssscmN0cSCIH0dAqJBFHHJcudaX/Pi49NS01YpmELzxQngs7DVbGC4InLVHwEafhKDqZl/b3H/MjDft651h3h9QsBjfr+WUCxviTNX1a9w+9xl7yqtn3ChDiCcpZjEf2HOD8YFBZOsd45qwDpKybsiq5RXIBU1WO8hKl+qAFCVrOMcZu2xrjrTpEvUWL32ifhVJjOnkB+UB9yfvNzvgP8odlB626qRBFVSVU1b/gQ3BfrHA+cB4zZXgGnB8xqKUHTC6tMkvDnI6KKqLRggbrqmmDzFHtSSGvm/Q6Rzu1AWa7yrKkQc+gVesuJPK05Iw71w++kH+1VslENcaZzzg41KbH4n1WEks1MOMdZ4mG2q9JHA/KfHdMvG3TBKQGdAiQTgHS8+uSaRwbUda0IRBtcAoFp16kEy+C97SSXeZA5kDmwPRzwKWY5CYyPznmD10pozH/FZpfIQOZb1wfZGoonEsrJj7tS1OR/Kwgc1Wnm/tK/2RuqomevXZGCL2AZKKKdFfHrHukZh2UlTxEziPzXc4qTHHmOKQkjVI46aytmqPax7VcQq3V1G5VSzA4WYL5kMXcLW2iDeEsOdyi+a5dk2uHaNg3B5mr/ejdzHrM5z7qzy5zIHNgZjnAOJNPAsj1q9SeEnwIeoaSUuh6WGRBqPHr+jL6or94J5ngy6DQoSSLqlq6ymbrUmql30pCSP8aGB6xF/cfsGNDA9bXwVG8IpTMQScuGqb2k7oAAI4ePWq7d++2Xbt2Safvd30boAFgAN17KsdyCpZPsLyCYzDf+9732jXXXONLLChTBhNoC9ds2eCJ+jltoIGKYBjel2uovX37DtuObdtsn0CGI4cPyh+ykeFB6+7uFELSqzUfKKsCGmS6MSwAws0t9LKTmMiDTQ/ErxXnpSQBDgXYQJr+cWvjBciQgAYpzyjXfs/+l0D3JnEQTJUfeV7JKdBNUv1rnhT3EB1pvo50wnLeVPEy/cuJU1/ZwfNyG5F3orTIi/BEZV5OXtQXIWUjTlh28bcS6XEdNFGO63K8Ob9cPuLQRH1RtjkvrhP/ghpli3gIuEY9qU5egnH+uq94hNAhsqpaJ4ZgqGjgAjZ4XWoKoIEXy2NH+h1omN/XZz1azzXOGlVecrXOlBdjcAfpXYqqBxp3AH7jCEXVTp9S/+g7L+CiZxhDi+CV0sWeLuNSvEZGBCbQuORChX0ZBDbQw3GBkOM6lqwmsMGBBml8DjQASo7LlExAw7jLCu+5KsAFr4iTHtfNcfJxkZ+uUpmIR9igQe4gYgAZHPAUCXhHHWiQwgj4Sb3eK/EXHdJf9LlJ3T+ifUCKJFYKrRL4bTrikm60qaIO8aRbjOoaGbcOAQ3jYjLKbLVLyqaABvZpYIKoqBKUZep2XquCBLQWIAP9IJN+KKioSwmUELWeYQANTGxVPc5BjqyUwtuh56xGbXRAWLra7urQ2RS6h6qOuxSzEyjiQENalVzcpbejHznuGkfbES9fT5ZOPg568stuqjqaaaLe5hC65jqby8Z1lI3r5rCcH/GpwnJZaHCT3QvpUQfxcJF2orKT0ZTTmtuj7nIa11F/5DVfB02Ui/zydcShxUUf0tXE31PJOxlNuUbaLtMTDxf9irTydcSDNuooh+Q11x/0hJPRRjphlCWOi+sIU2r6Ja3ZleuPfNLKLtLLaZPFy3WRP1m5qJu8chz6uCYeZSOtmZ70SCvTNsfL5akXVy7LtcroP3JG0i5d8ysy5FICs6GjHDLQf10WBthALi271ijZNy7QoAWgAZnITCQFnw9dY/rghWx2oEFNATS0KI2jlbtlqts1XHWgoVVKP7K2DDTUJFyrovc2i9a8RSWgv7b7bKc5S8clATSwkTKgBCADfhzhLHnN0cEtmpcBGti/jH0lAmgY0c0xjyY+cFfcM467m8pBQ/5kIWWa80gLV643ypN3KvEy3VT0ZZoTxcnDleuZ7HqyNMrgyvfCdbmu5jj5ZddcNvLK5SKtHJ4oP/IIy665rRPRlfMoV66rfB11Bj3tRby5zMvJm6oN6sBFu8SjnXIa6eGiP1xHPMqQ1txW5EV9k11HmQipB1cuE3kRlvNd2/MSCBZ/t/SrJGdSP1O7jEovKZnkoX6QUWNstq2w4oAhkkTjXfoTns3YR4ZHpYeLRvkVjhqX/lWV3tXff1T5o9bRhW6uviFz6jz0Jqb8odf+X7KCd+sdO3bY9773PXvwwQddd+TUCZzr/Oijk4AN7NHw/ve/397whjc40MD+Deu1zyKbRQIwDA0NeRiWDWG9EGFz56YFaIC34oMaVvW6x8EBncV+9IgNDw3qJWLYhgYHPOzsbNeulZ3pXHjRpQ1y9LZCMQl0V1r9OSkzJhU9YGdc8UKBVUO6hpmwHoUawZ+Ev1eWfzIHZjUHfJC4AAsB17hdjQuyGUJyBWWKu5LiUU9PZwBLbUHwYVVUFCA2LkVnVAAACGKXrBnaAQJBE1WhCxONR8a8/rvTsJQShAAmJamFCNjoQcrXlfqgHx/D+pbkFfDi7PXQB98I0XugPFlc6OuOn3ahetXNQixQByADPSYRR/xVcNy/mkEO8R7PLfq96SIBKUkmOZEEY6JVL0WIp7R/NVPeqDJbXMllN2HlSynFyqNdYbsU0jZEo3hD/W7NoAlHdgfOs1ZNUmA6Xj/VIoTr8hCwg355g6IpaCHxEspXnGcBv2viO5tZjit0azM92DEBTSjxfiKJwjE9C6rj7wSeF09Yca6zyxzIHMgcmBkONKRYyJo0P7jMRO7VHQJKco1/HpZlYJJ9gN/+lRHZKZ9OeNAcwtwo7yJXFVdV3i0OFDLDdAiY6BBA0CbBSR3I1mS9puok2JG3ce1znHdE/dQ8RW+xaoj5zk978l6qTZqWTCWkQ36MtORvRXLfNzhHRvNSojrwmgW9r/VbzpHMgcyBmeMAgoQxF07jPkmcJrlTp0o6X0HksoairmO7Aos0YAyjP0tnFMiAHs41L/BYNSADWNKgT0a+MTjF3FLAZQa9KfVHdUePSCce+a2uS7fali1b7Pbbb7fPfOYzdOU4t27dOrvsssvsiiuusPPPP9/mzZvnp0tgyYDnpAk2hIwNI6mA/vEeEGAFaVOBDJ6nGyhzjLTTdpiHjQmVUT9ckFdlAo3nTHg6nPgUj6vcfDCwCCc8ZKXpOuUEHV1NQj+Uaq6ncuRQMsLJ6CIvwsloSIv8CCejO1HeZPQvN22y+knDTeTQxOtEcfxvub5y/HjKU0+Zqp5yOnFcuc8p5dT4HLQRluuOtKnCyWgnS5uq/MtJL9dLHDfVPafcRn65bOR5+aionFiKe7Y3kloqk5fjdMQpisRGPAmuuEaUJUqlOK1SPFOXaH5ySdilGFlFlU6X4mkcp6VQ0CWaojq/Tu2oJRdPynEBX9TklfIT3otM+IGSXFzEI0ypx/+eKJ88nNdZyCHikR4v9n6diJzeyygR1tT7I8EoHVeKKbxLqXDEaUTnJr0gARAVDkU0tZESAC3qdSruPVFVPul4qDgEhYu6630gnfYVRL2EOFJT3SmMu2yUjViEiaJxdfx1qvn430YPE3/imrqIl+tsLj1ZfqRF2FymfH0qNGX6yeKnWseJ6E6WR7sn4gP5UUdzSF64yItrQtJw5fono0tUp/97orojL8LJWiMvXPS5TB/5kRe0ZZpIK4eRH2E5b6p40EYYdFzj6EPE45oQF2Uiv7m/ZRovUPxEuXLay4mfrHzkR9hc94nSoY17nux+muvieqr6gpb8iX+djZqTeGN+Kjv0wXTtZUuZIQ6TbBONCBrZSRZSlnJJNqc4GEBF8hjg1RFar74oXFTq5ShbVOizJhV5CyHbyUwEKYs2o78pjPnOrTW8J96YYqJ1eV00kJJP+ks7lIhwsgKR5316GfST1VVOK9c7Va+DplyO+FTpzXQnu56qnlNJn4om2jzd/KgnwldaX5SLMOo7UVimLccnKzNZ/mRp5bInyy/TEp+MnjTcZH87J8pLpSb+TlV/c90NuuacVF+026h9Ykq5lMcnZKdcdL16ciEw/LrQBSe2pJwQXI1GTykGCIDj1IlPfepT9td//dcOBpRf+bFc4HjLSy+91K6//nrf/BFwAUuFKB+NlZdKRNqphpJrpw80UAPVgGjAq1Rjuo6O8FUy7cMQKTnMHMgcyBzIHMgcyBzIHMgcyBzIHMgcyBzIHMgcmE4OYNEA0PAXf/EXDiicc845tnLlSrv88stt7dq1tnjxYt/0cfny5bZ06dJkDDCdHVBd0wI0uOmzgAQ3/ZD5B6ADaQAPpE2VH/fCGceYh2WXOZA5kDmQOZA5kDmQOZA5kDmQOZA5kDmQOZA58Mo5gEXDbbfdZt/85jftvPPO840d2Wvhqquusosvvtg3d+QdPZZBlN/fm60aXmkvZgxoaFg4yExEwEP5ml02x7QOBUOSZAUB0JDMSl7pjeRymQOZA5kDmQOZA5kDmQOZA5kDM8UBzJyztjpT3M31Zg5kDkwnB9gMcsOGDX685ZIlS9x6obe315YtW+bWDM1tATqEw1BgOty0AA3NQAIdIw03GYDAjQTwMF034o3ln8yBzIHMgcyBzIHMgcyBzIHMgcyBzIHMgcyBs5gDHG+5Z88e40hLlkkQ4nj35v2cd/EyuEDadL+XTxvQQMfLoEIACaTjAniIONdxo06QfzIHMgcyBzIHMgcyBzIHMgcyBzIHMgcyBzIHMgdOiwOjOkFseHjY917o5PjywgEukMd7O5s/NjvSy+/0zfkv53pagIbjGmRzSP1TN93GDFAhfNDGTUzXjUS9OcwcyBzIHMgcyBzIHMgcyBzIHMgcyBzIHMgcOBs5UP7AH+/aAAzValVHVKbTIDkJsqenZ4J1AzQYApxRezTEA4ybijBujPwAGtifQUBJ3ZqhTBP15DBzIHMgcyBzIHMgcyBzIHMgcyBzIHMgcyBzIHPg1DkQ79xRgmsAhEiPONYMsZwCWtLxvJufcUBDdJ4QVwYQIl6+gVg2EXleKP9kDmQOZA5kDmQOZA5kDmQOZA5kDmQOZA5kDmQOvGwO+Du5PuzXxmo29v+zdx5wlhTV/q+dnV1gyUEWJKMiKmAgJwUUUDE9MXxUzL6nTxE/6lP/z/fMYkJRMYKiz4yKiqiAJBUUCSoiggSJEgVBJO7uzOz/fE/f352a3jsb2Ls7M7u/2u3p7gqnqr7dfbrq3Krq4TAexAcY8KPPrdEK+tJELVx9eWYkTIsvQvbD9WXqhApGgVQRGRB0rjCdE84xjmPFTw//MQETMAETMAETMAETMAETMAETMAETWHwCnSUMNHKB/nbd/9aP/fgRBye/fvfH+25ooLAyHLQrRljthofD0hIVlHWlDvOxCZiACZiACZiACZiACZiACZiACZhAfwjQP1cfnH44/Xb1xdn30/XN0FAXStYQKsHG8Ixecz0WFV7L9LEJmIAJmIAJmIAJmIAJmIAJmIAJmMA4BDojGjAo4DQAQLE1EGB+TK/gHw4DA0YHDQDo9TUKpV+SfV8MDeNlOHfu3FjZcu4Cn9VQfFa+pELjGSIUz3sTMAETMAETMAETMAETMAETMAETMIHxCWBIoH8tg4JGLCxqtII+h4mRgc9hauDA+DktOmSZGRqo4AMPPJDf79Sqllp4QqMbMDRoxEO/LCeLrrJjmIAJmIAJmIAJmIAJmIAJmIAJmMAKRqAzooE+Nv1xDAb0s9uGA8LYMECwEZ++Ocd8+rIfbpkYGhiKMW9oXrn77rvLPffck4VdffXV8xMaVFSVtaGhH5fQMkzABEzABEzABEzABEzABEzABEygIYARIQ0H0wbK9MHpCxgaMCwwikGGBQwR9XSLfnBcJoYGCkbBr7jiinLppZeWLbbYomyzzTZl1qxZ3bUa2hWhctrqihGvbYHphncsNoAk3vSBgNj5HAfndR61jAgK1wwrwR/AcqSRhUdh7Ov0ilvv6/wG4oLGl0HGdXW5xo20iIC6jBohsogkDjYBEzABEzABEzABEzABEzABE1jBCahPq/5su7rLoy+5TAwNVOzee+8tv/jFL8rRRx9dXvCCF5T999+/rL/++jmqQUMz6CAzumE8EN0OOb32Hh13pUMex8hSp1th7PGrDQUKAzCOcBkbCMNIQhhpCGunb18ozklHOXQx6/zq+MRjw9V5ct5Oo3htf+KKoaxQ+NmZgAmYgAmYgAmYgAmYgAmYgAmYwEQT6IuhgU45nWI65Li77rqrXHvtteWMM84ob3/728uhhx5aDjzwwLLDDjuUTTbZJONoDkh2tqPfPTK/6djTqVZnvFcHOxO3/shggCylkYw6qsrZjkenHSeDguQhiy3LGOEyaGTk+CM5xKnzw59z5EgWfopPmFx9rLITVsuTP3sdSzbn4i6Z3puACZiACZiACZiACZiACZiACZjARBHoi6FheJgO9XB34Ygrr7yynHXWWeXss88uJ510Ull11VXLwQcfXF784heXnXfeuVvX8TrZdKIJU8dc5ySkY610Cu8KHOdAnXIZCjTyIWXFehJz5s5JIwL+bL3kkifGEWTh1MFnzya/PIg/xFN80mIMYGENxcVPspS2DiOcTY6wXuVSuPcmYAImYAImYAImYAImYAImYAImMBkI9MXQQEXoNNORZ8rEH//4x3LiiSeW0047rfz5z3/Oeh5yyCHlNa95Tdltt93ykxl4Ep+NTnj9qzyy6GSrY00c/IhDh5tzwjknDotPDoehQ51z/LRl5vGH9Gw4yVX8Xv4ZMf6Q33gGgDqsHR/ZyFUedXnkx14ylIfksCe83kdJcg2KXnEzov+YgAmYgAmYgAmYgAmYgAmYgAmYwAQT6JuhgXrwhYlbb721nHfueeXYrxxbzjzzzKzeWmutVZ75zGcWjA277LJLWXvttdNIwC/+rIeAwYCRBOp0qyOuc40M0GiD9jmGB/mRVvJkUOjFmHikYS+5xONchg3OZSBQWRSn1x4/xWPfdshmk2FD8VnEstcaFEqvdOyRS5nsTMAETMAETMAETMAETMAETMAETGAyEui7oeGWW24pv/nNb8rhhx9emEIh96QnPam84Q1vKHvuuWfZYIMNclFIOtwYGuhA03nGQMCmzrgMBcSh88/UA8I1UkDhis9estTRlx/lIG3tL+OE/OswlRu/8fwVp94rP9K0DQIqt+SRrpZfy2kfS678JUN7+XtvAiZgAiZgAiZgAiZgAiZgAiZgAhNJoK+GBhaBvOGGG9LQ8P73v7/ceOON3bqtueaa5aMf/WjZe++9y6abblrWWWedDKOzrxEEGBIYXUCnmk65DAlz587tGhoIX1yHDGSzMe1gcMbYr1IoX8kjP+U5pgPfWaxyJKZoxJiHZlRBfMJSn9JUevaUnTqRXgYM+Wc5OgaIMfJrAQs5lrGBPUMgBjqf8nwwshaSjYNMwARMwARMwARMwARMwARMwARM4EET6Juhgc7v9ddfX/70pz+Vc845p3zxi18s//znP7PjTocfx4iGPfbYo+y0007lYQ972JjRCaSvO+YyNJBu7lxGNAzliAYZGupON3HpbMtQQBoccdLYMBRrPMRXLUjbzoM4csjQJj/tFY99HYdbDOhnAABAAElEQVRzDAi4welhJIl/Oq/zIt5ILJrJFAn8M12Ui3PVibLij1Me7GtHuOLU8eo4PjYBEzABEzABEzABEzABEzABEzCBiSLQN0MDnWSMDCwC+ctf/rKcf/75uTAknWp1vDfccMNy0EEHlVe84hW5VgNfo+jl1JFWJ1ujHmQoUGdbHXPJV7jSIZu4hBM3DRGdkQh1nF5lWFw/5DK1Azdz5szcL2pEA0xIx0gNysRIDhx+bDjK13N0RYSp/orXr7ogz84ETMAETMAETMAETMAETMAETMAEloZA3wwNFOJ3v/tdOfLII8t3vvOd7HTTkZahgU4453zekmkVT3ziE8usWbOy7LUxgI62RiaQlk40X5VgRII63nVHm2M5wnHIwL+bPo7xU4dcnXmFk4b4CuccN14+8mePU3nZI3to3lCOVKg/Z4mxA4MEecCCPX7s63KnwPgj2ZwTR1sdTpy2v8K9NwETMAETMAETMAETMAETMAETMIGJINBXQ8PZZ59dXv/61+cnLRldoA49HWs63XfffXd2qr/73e+WfffdN9dpoLNPvFzwsTPFAT+mIUwfbD5f2QajTjid7LYjTCMYkMNWO8LJiz1lknGAOO1OO3EwcuQ/jmPDsafMbKSnfrWxAIMKrvanTHPmzMk8VllllW78jNjjD3mQBsf6EqwHoTzwy7JFnHaZCbMzARMwARMwARMwARMwARMwARMwgYki0BdDAx3oO++8s/z6178u/+///b9y1VVXZQeYStEhprNPJ1lTDD7/+c/niAYWheRTlzgZBzgmbttAgP+SOKYvyNCB0UOddMrTNjSQNx12xRkvH9JKpuKoo89e7oEHHsh61wYF8iBf8sAAUTvJrPOXIUH7gZjyMTB99LOWKsvilLvOy8cmYAImYAImYAImYAImYAImYAImsCwJ9MXQ8Pe//71cfvnl5be//W059thjyxVXXNEtMx1hOsVyfG3ita99bdl9993L4x//+LL55psraMyezjcGDDrnjDzAWMAxHXadk4B4+LOnA8+mPBlZQHz8SI+jLI0RghENjQGCtN0yRlE55h9OBgSMABzrPAPjD3nfd999ecpUEOLhRzzylMGEPCgLDn+OqR/+iks5exkbFEeykEEZ5V+nIczOBEzABEzABEzABEzABEzABEzABCaKQF8MDX+59C/lxJ+cWH7wgx+UCy64oFsXFnukc3zvvfd2/XTw5je/uRxyyCHlCU94gry6e0YE8MWKv/3tb+WmG2/KKRQYFzRKgZECdNZliKBjv/rqq5fNNtusPPShDy1rrbVW5ktnnjSaIkEGMjSwR4Y66ci69dZbC0aTe+65p1AGHMYD5G2wwQZlvfXW664rQRgdfdL8+c9/zrJsvfXWhQUv11hjjTRukAdGBOXBOWVF9s0331yuvPLKstpqq+UXONZdd92uoUQGBeKzkY9HNEDczgRMwARMwARMwARMwARMwARMYLIT6Iuh4cILLyz/93//l5+1XHPNNcttt93W3TAAbLXVVtlJp+PPdt1115V99tmnHPqGQ8tuu+82hhHhGCbowP/xj38sv4wvWNx0003pxwgFjAwPechDssNPh511H6655pryqEc9quy///5puNhiiy0KHXc66NlJj1EGdWcf4wMd+NrQcP/99+dIjD/84Q/59Qz2uMc85jG5Pe5xj8s8MDbgMEyQ96WXXlqOO+64NGg897nPzbiUDyMLeeMwNrDhSIcRhXSnnHJKgdfee+1dNtl0k7LG6muUNddaM40PlLc2NJBeBgjkyABRGzLwtzMBEzABEzABEzABEzABEzABEzCBiSTQF0PDjTfemFMn+LWezjC/1J955pnl+OOPz7p94AMfKDvuuGN3FALGBH7Jf8QjHpGjEOjw4/DXtAOmI1x//fXZ6T/vvPPK5z73uYzDiAE6/RgvGMFAWtaG+OlPf1ro6GNs2GuvvXKUAJ31eqs7+xgBmKqgzjv5YiDBAHDqqaeWI444IvPbb7/90nix3777lV132zUNJnTyMX7wOc9f/epX5aMf/Wh54xvfWF71qldlnRhBwUZ+xKVeGpGAkQNDCiMarr322gI7jBwbbbRRlpl1K9Zff/2uYYT44kp5a4dsnOpVh/nYBEzABEzABEzABEzABEzABEzABCaCQF8MDfxKT2dZBoOLLroop1F88pOfzDp9//vfL3TY6XwzCoGOMR18dcjZYxBgxAId69VWXS2/svCvf/2rXH/d9eUXv/xFOeyww1IWhgYMCRgbmHbBNAUMDf/7v/+b4XzN4nWve13Zaaed0ihAOPlpo3NOx71taBgZjjUURoaz8/+jH/2ovOMd70h55LPLLruUpz3taeVJT3pSjpS4/fbby8UXX1y+/e1vly9/+cvlKU95SnnZy16W+4033jjrQH4alYChgXP4kC91hAPMmHbB50BxyNl+++0LIzIoN464cEEWozmQQx3Y25mACZiACZiACZiACZiACZiACZjAZCPQF0MDnWc66oOxuCLHTHlgvYYPfehDWV9GGzDSgF/k6WDj1BHXiAPO6ZDTicYIoY70P/7xjxwd8e53v7tcdtlluQYDnX4Wk9x99z2i479OrgvB6IlvfOMbKfvVr351dtr32GOPcRebzIidP+TLRvluueWWcsIJJ5T//M//zFDyeeITn1j2edI+ZZddd8lynX/++Tnq4cgjjywvetGLciTDtttum+tEMBVCBpc6j/YxnKgrBosvfOEL5Zhjjimvec1r0iDDIpmMbGDaCRwwNrQ/sylDTVuuz03ABEzABEzABEzABEzABEzABExgIgn0xdDQrgCGhh/+8IeFKRO4k08+uRxwwAH5qzwdbDk60TIoyI99Gi4inkYAnHHGGeWDH/xgOeuss3J6wTOf+cyy9957pwGANRN+//vfp3GAhShPO+20FPWGN7yhHHrooQUDAE4jCDAosH4Coyjo6DcbX4KYnoYG1k/48Y9/XN75znfm9AhGGWAkYYQE60AwyuIrX/lK+djHPpZyP/zhD5f/+I//yNETrNmAUQD5yGXEAvXjnKkT84ZGP29J/jg+BXr00Ud3p2rwRQ4MKYxswNig6RKUm5EY7HGwIawXv4zgPyZgAiZgAiZgAiZgAiZgAiZgAiYwAQT6bmigg42hgREGGtFQGxqoozr44xkamIpBp5rpAxgdWO8BWb/4xS9yDYRnP/vZOY2BqQyMIGANh29+85vld7/7XTn33HMTI1MtMDSwDgRTHViAkq9YsA4DUxD4mgSd9U022SSNEcjB/fPOf5YfnfCjHKXAOZ3+pz/96bnII3HvuOOO8vWvfz1HIRD+3ve+N6dqzJ49O79WwYgI8mIvw8Dg9FiDImY6YCRgWsQ222yTX6egHKxnwfQLGS4wbOwTC2WyYWzgixc4mJGePY6RIFpfIj38xwRMwARMwARMwARMwARMwARMwAQmAYG+GxowDPAVCtZlYJFE3EknnZQjGtQxJg4dZgwNdJjbjpEAdNLpZDNCAEMDIwd+GV+g4BOSjGjYc889cyPO2WefnVMPmPLACAamTDDigY0RD1dccUX57W9/WxgZwTSOtddeu+y888454uA5z3lOYXv4wx+exbjzzjsLazQw/QKHoeEZz3hG2XLLLdM4wdcwGPGgdRU+85nP5CKUfP4SIwZrLnzve9/LUQ+vfvVrYuTEYH4yk+kWN9xwQy4a+bznPS/LyZcxWFSSr0/AiMUlr40FIjE2vPKVr0xjAwYMGOXIBWwMXpohr4v/mIAJmIAJmIAJmIAJmIAJmIAJTE4Cy8XQ0GtEA8YGdaDbIxz45Z6NqQEshIih4fDDD89FH/l0JAs+8mv/ox/96Px6BZ+iZEQDazg861nPKm9605tyBALTJfi6A+F8SeInP/lJdvAZEYGB4je/+U2ObjjwwAO7UyMYTXHiiSemkeSSSy7JvJ761KemweKuu+7K0QpMC8GgobUitt9u+yznb8/9bU7dOOqoo8qb3/zmXL8BQwcjKpjewXQOjAsYYDCGYNzAoML0CaZ9sK4FRgcc6z8wZYMREKzV0DbIaGQDcT19Agp2JmACJmACJmACJmACJmACJmACk4FA3w0NdIAZ0XD8948vH/7Ih7OOvQwNGtFAJ1lTAuhMtzvUdPwZicB6D0yLYG0DRiOwfgFGBxyfpGRaBe7FL35xYeFIpkxgKMD/9NNPTyMDayywVsRuu+1WZgzOKCefcnI59thjs6P+8Y9/PNMypQKDBB19DBSMnKDDT77kTxiOEQ98ThODx0Mf+tAcmcAUiPe///0ZzucxKQthfM4SI8hxxx2XUyqY8kEdMFYwfYJPecLsi1/8YhpMEMBXNDBkUA+ME/UCkzLMEA9+NjRAws4ETMAETMAETMAETMAETMAETGAyEOi7oYFKaY0GRiHgmBbAqIExRoRqGgCGBo1w0PSKTBh/2oYGwnfcccfswK+//vo5teJrX/uaohdGH/D1BtZToHPPqAWmSyDn5S9/eY6C4BOUjHb4+c9/nusjkPgtb3lLfkKTkQ6MWOATmUzbwChA2TE0MP2CMNwrXvGKwsgIvhDBqAOmQHz605/urrWAkWGfWGfhMY95TJaFujO1AqMAUzcwHrAXE74+8YlPfKKoLhhLMDQ87GEPK+uss07mnxl3/sjYYENDTcXHJmACJmACJmACJmACJmACJmACE01gmRgaLrroolwMki9F4H72s59lZ71tRFDlZWggnI63OtEcM3WCEQ0YLTAa0Dln7QV+6WdUA190uPHGG8tf/vKX3JCJcYDO+TXXXJNTEtjvuuuu2XHfaqutcroFX48455xzci0F0rzxjW9MYwOGBqYw8CUJ3JOf/ORMxzQO1llgigbukEMOybUinvCEJ+S6EXytAoMK6zOwGCTrLeCQy2KSyhf5TIXAcKFRHcTDKPKRj3yka2hgZARGE9KxKCYjH9ojF0iPa/unp/+YgAmYgAmYgAmYgAmYgAmYgAmYwAQQ6IuhoTYMUAdGNNBZl6GB6QZMWaCzPn8kPikZ/3D6Nb6dntEGrF3AlyDYM/2BTjj7rbbcqjzr2c/qrqmw4YYbpqy///3vaZB4xzveUXbYYYf8qgMLN15++eVprGARSUYfMN2CTj7TFf76178WjCIYCd7znvfkKAbyZDFIpi5gMMDQwOKTlB3DhAwNL33pS9P/sY99bI5YIBzjBdM4MDZ89rOfzXJtvvnmOcViy1hMEoMBBhJGKbB2A4YVNupPOT71qU915TNVhBENpGc6R34iMwwvNiokVv8xARMwARMwARMwARMwARMwAROYpAT6Zmhg6oNGLCzM0EA8HJ3rgWnRcR5ofUYhbBD33ndvGgeYXsD0BQwMLKDIyAbWNXjBC16Qoxro5GudBuRiIOCLDm3HyAjlS6f94IMPztEQlBcDASMqME7wtQf8WAwSwwajEvCrDQ3f+MY3UjzTMPDfYfsdyuyNZnc/Q8noCgwrPzj+B2Vg+kCOsuCzmnLUY/+nxCKPW26RIytYewFjCoaGz33uc+Vb3/pWRsVIw0iIzTbbLOM1hobpYWho2EmeDQ8i4b0JmIAJmIAJmIAJmIAJmIAJmMBkINA3QwOVUaeXDjprGbzvfe/LOp70s/i85YEHdH+9V8UVX+fa0/Gm80/nGoPEmWecWT704Q/l1ycYEfBv//ZvaWjYaaedykYbbaRkaWhggcaFOdZVeO1rX1tYGJI8KAOd/VmrzSrrrb9e+cc//pFrOjCigCkXLAR50EEHZZxf/epX+dlO5LMYJJ/FxEBBGRip8bcb/pafsuTznIxuuOeee8qVV16Zn8PUVIp3vetd+blMvjjBCAcMHTjCGdHw1a9+Nc/f+9735hc0tooRHKuv0Uy1IADDC9NJVG4MI1rnIRP6jwmYgAmYgAmYgAmYgAmYgAmYgAlMIIG+GBra5V/A0NBrMch2os45hgU5OtN02vXVCdZIYCoBaxfsuceeZaedd8pzDBJ8QpJFH//93/89k2OE4IsPdMSvvfba/KoDAa+IRRz1+UsWiKTjjqFBoxtY1JERDYceemjK2ScWdGT6BOsqXH/99Tk1gk9lskYDBg8tBsmnL0877bT8qgSf3cSIgMGE6Rd8nlMGBD57ibEDQwfTJ8ibOjMKBEPD17/+9cyXr14wokHrUFA+HDKZWgIbpoCo7BnoPyZgAiZgAiZgAiZgAiZgAiZgAiYwwQT6YmhI40DYBzQNov3VCQwArNFAx1iuXqtBv8gzvYFRBlookV/ub7nllvw8JV+SkKMDzuch6eSzRgMjB+jQM8Xi29/+dk6vYH0DPk2JEeKUU07prpmA4YARDXwpAuPEHXfcUe6+++7Clyh23333zP+73/1uedvb3pbZMVqBr04wkoI4xCUPDAlM0+BTmRgW7rzzzlxYEkMBdd32kdvm9AgMJfDAOHHBBRfktI/nP//5hUUkmRaBoYC0v//978sXvvCFHJVBOTCGYOBg+ggGEeKJH8YRDA2aesKxnQmYgAmYgAmYgAmYgAmYgAmYgAlMBgJ9MzRgbJDB4MILL8wpBh/+8IezjowQoPPNlxNwxE3jRJ6NTrnAyICxgekE7OmAM32Br0186UtfKpdccklhXQY6/IxsYFFF1lxgwcdzzz03vz5BB57PX2KEeNzjHpd5nnXWWbnIIos/MsoBAwSGAr5UwdQGysJ6C0yFoIwsZImhgc9nPvKRj8wvWOyxxx6FjREFGBrYMFhg0OArGPfee2+ORmAxShwjHvbbb780dNxwww05qoIvS/D1i7322qtst912OVqBRSkpP5/OZNQDDBgpgXGDusACQwojGjCa2KjQuWm8MwETMAETMAETMAETMAETMAETmJQE+mJooGZ01tUJbo9oYHFEOs76RZ6PTqShofNDPEYFtvyVPhZuxGBBh54vSVx99dXZEb/44ovT8IA/v+6vttpquQAjcZnuQGecqQismYChgTUQ+MQl+dx8881pUPjzn/+cUx/4sgQOwwMjFVjwEaMF0yMY4cDICKZBMFqCjj7TIpiKwQgD8j/22GPT8IGMo48+urzoRS9KAwXGAowiGEQwIGyzzTZp0MB4gAEDowhTJtgwllAPysaIjy9/+cv5+cxXvvKVOVJi++237079IE/YEN/OBEzABEzABEzABEzABEzABEzABCYzgb4ZGupK8gWF448/vvt5y55TJyrDBFMB6IzTka7XImBqA1Mn6PzzCUqmENDpxngg4wTpSI9BgFEKTEfgyxQbbLBBFom4xEEGIwcwLhCf9BgDttxyy5wywdcrMCjcfNPN5eprrk4jB4YBOvgs7Dh79uwcTUH+jJDgE5ZMhzjssMPys5gYDm677bY0HPDlCRaVxGFcQQ5GEDbKx6gKjf7gc5if/vSnyzHHHJOjNN75znem4YM41Ek8Ulj8SQNN50SGHYV5bwImYAImYAImYAImYAImYAImYAITTWBSGBroPLOx5kDpjHLgnEUPWeNABgY65+pc1x1ujvHn38xVZuZIB03T0EgJZGBsYOQDHXiMGoRhCGCEA34YJFgXAgMEBgXiIJdjOvyMeMBIgeGB0RF8jhJjw7vf/e5cM2KrrbbqjqLgwsoYQvmQzygMjA5MgcBRP4wyjGZg5AZrTzA9Q4tJUhbypYyUAzmUEbmwGJweIxy8PEOy9B8TMAETMAETMAETMAETMAETMIHJQWBCDQ0gkOGA49p4wHnb1XHbYe1zZNEhx2lUwNC8oZi1MX90CkcnEZ334aEYUTFjsDvSoBM0ZofBAZkYMRi18POf/zzXZeCzl29961vLC1/4wpwWwciK2iGfsmsUA2EYUDB8sG4DIySY5sHCkltvvXVO2SA+cUiDkYJz8s6yhjzqJENInZePTcAETMAETMAETMAETMAETMAETGAiCUyooUGGAzrQMgpgIKgNDsShU1130mtgxJUcjumI5xoQ8Qd/pSeN5Cq+5ODPNl4eyCScdMRhz2gE1oZgRMJxxx2XhoIXvOAFucgj0za6xo0YAcEoCBkMlCdTQRjFwCczGSHB4paPecxjcnqF0rYNFDDKOnS+8DFeeZWH9yZgAiZgAiZgAiZgAiZgAiZgAiawvAlMGkNDGgii9ur0CwSden65b3eqiaeOtzr/tcGC9LVhgOPayXAgv+zAd04UV3kgV+UgCmXFj3xZzPHXv/51TsngSxIYDPhaBaMeiEPc2tAg2RgaWC+CqRyrr75GLA65UXfthraBgXKofKSXDPx0rHp4bwImYAImYAImYAImYAImYAImYAITSWBCDQ1UnI6yOtEC0T6vO9carVDHoUPPOR3/tkFCMpUX+zo+5zIc5CoPA80ICvIknpzKwLoJLFJJfoxcwB+jAf5MccDAwMa6CpSFeMghnkYqIJM1I/h8J+Gs3UBaDCqcM0WD9MjhHNmk11oNpMefDbewOmcE/zEBEzABEzABEzABEzABEzABEzCB5URgUhgasq588hIrQjg61b1c3bmu42EoIKyeYsE5cuiLj4yMhuPXjT8wPbMZGm6+QkEYC1JOH5zeSdt05vFnw2Eg4EsYOL5EoYUdOcegwOgF8qbzrzUUOO86DkMUcSkHZZYBAoOC1oEgrUZF4E8crdWAPG1Z5sjLzgRMwARMwARMwARMwARMwARMwAQmA4EJNTSo806nm00dcnXs6axzrE41cXDqXCt9nY5wOvvEpXNOHDrqxKGjjp/kEcbWnCOX1GMNHYqLv0YosD7D/JH5uXgk8trlJK6c8qA8KhdhpCEtm5wYkCeOPX4YJDA8UH7OMUaQXoYMpffeBEzABEzABEzABEzABEzABEzABCaawKQxNNCZrp066HSocep0c0yY/DmuHfHqUQHEaxsaiK/OfJ22fSzZMgAQjjz5Kx8ZG1Qm4pGGjbiEy0DAHoeRgKkQuIwXwxymxbQNOcWnnJJBGowV5IvMeiqF0nlvAiZgAiZgAiZgAiZgAiZgAiZgAhNJYGINDcwhiP91p59jbXSw662OJ2i1n+JitKCjTmccP8VROGmVB/F0LJnEw2hQGxWIN3fO3CyvpktohIIMDaTDkb/CkKEpD8qLOEzRwLBAXAwhdTzCKRMGBWSqHvgTn434HtEAETsTMAETMAETMAETMAETMAETMIHJRGBCDQ2AUOe8hkKHnE3h6vjXcWrjAMc4GQYURrpavuI10UcNGkyD4F/tkNXu4LM+AzIwHBDOcV02zmVMUB2Ix8gD9m1HfI1QIFwGCfy14a+0kokc1U37tmyfm4AJmIAJmIAJmIAJmIAJmIAJmMBEEJh0hgZ11OvO//RYtHFgeu+OOh1yOUYJMEKi7RgBgFwcHXPSyEDAvnbKHz9GDODq9BxjcCDdrFmzxsRh7QYcizhipJCxQGWsDRf4YWTAyZCAH/LZqPOMmaMGCsqFP3Fr2ZSjXYcU6j8mYAImYAImYAImYAImYAImYAImMAEEJoWhQR3x8fbqTGsvTo2NYdTQEF3uNDRIDvHVeaejnukjDqMXOFbHnzhs6vDL2EAcHB18nNZIuO+++/J89dVXH2NouP/++1Mun6usZSEPR3445Ye/vnKBP/lgfGAjr/YIB8mRbNJknTrl5NzOBEzABEzABEzABEzABEzABEzABCaSwIQaGuqOfHa6q1/rayiE0TlXp1r7Og7H6sCzx9EhJ678lV8dznE9JULGAPKk4084frUs+SMPfzbiyRBAfM41YkHpKRNptfYCxgTS1o50bJJdyyUuMvW5S0ZOqE61DB+bgAmYgAmYgAmYgAmYgAmYgAmYwEQRmJSGhjYMOvBsdKrrrR1PnXT2ODrmi+qII5eOO3tNeSAtMmQowCDQSw5GA1yvfJBHetLV6WtDQz1iATm98mAKycj8pu4yNGAYwXhhQwPU7EzABEzABEzABEzABEzABEzABCYTgYk1NLSmOgCmZ2e7YzgYL7wGKiPD4sRVOowCpGsbDOjkp5zqs5NKw1559Soza0vKQFCHk0bpyG9xnOIjh2PKy/Hipl+cPBzHBEzABEzABEzABEzABEzABEzABPpBYEINDVSg7oT3o0KWYQImYAImYAImYAImYAImYAImYAImMHEEbGiYOPbO2QRMwARMwARMwARMwARMwARMwARWOAI2NKxwl9QVMgETMAETMAETMAETMAETMAETMIGJI2BDw8Sxd84mYAImYAImYAImYAImYAImYAImsMIRsKFhhbukrpAJmIAJmIAJmIAJmIAJmIAJmIAJTBwBGxomjr1zNgETMAETMAETMAETMAETMAETMIEVjoANDSvcJXWFTMAETMAETMAETMAETMAETMAETGDiCNjQMHHsnbMJmIAJmIAJmIAJmIAJmIAJmIAJrHAEbGhY4S6pK2QCJmACJmACJmACJmACJmACJmACE0fAhoaJY++cTcAETMAETMAETMAETMAETMAETGCFI2BDwwp3SV0hEzABEzABEzABEzABEzABEzABE5g4AjY0TBx752wCJmACJmACJmACJmACJmACJmACKxwBGxpWuEvqCpmACZiACZiACZiACZiACZiACZjAxBGwoWHi2DtnEzABEzABEzABEzABEzABEzABE1jhCNjQsMJdUlfIBJYjgfmR17Sx+c2fP7+wyU2bNq2w9XJ13IGBgW6UJfXvJlxJD4aHh7PmMIR1zY+AhV2DlRSZq20CJmACi0VA+rTWo/jV77WRkZEx57XgeAMu8J6sw31sAiZgAoskEM3qaF1329e1PiItOkmu1k3ym6i9DQ0TRd75msAUJyClNkahhZ4bGh7qKjwpQnWA21Wmg8xGvMHBwdwjt/afMWNGtwFHY25oaGhM/LbMle0cXnPmzEnmM2fOLNOnT09+sCIs2U4PtgO9jT0rGy/X1wRMwASWhAC6dHgo3lOhQ3lP4WRYQL/mOyvCsSfUBnPlofegzr03ARMwgSUloLaxdA9tPekbwtjkJpPOsaFBV8V7EzCBxSaAQkPZ4WREkKKTP2G1siOccylGwokrQwNKk3DJXsB/JPKcP5JpkKH4yFmZHZwwvsANowxs4Do/ePEPpmKla1Nfl5WZnetuAiZgAosigN5Mndp5h0l/6p2n9PLnnFEM6N88Dh1MmJ0JmIAJLAmBto5R+xgZbUMDbUGc2uSTRefY0JCXxX9MwASWhADKDqXGHmWHk5KrlZ9k0kibO3duNrb41b1WgMioz5UGf20jw2GQGBlOBcovSrWxQvFXxr2ugXjACwdPNp0TzvHQvDBIxD8zXBnvFtfZBExgaQjMmzcv32O843iPoX8ZTYY+XWWVVVLn8q7DyOARZEtD2mlNwAQggD7hhySc2m1q19XtZsXDj3h1WCaewD82NEwgfGdtAlOVAIoOxcZenVzOcTI8SDnW54pPGhShNn59x5BAOH6ESy6NOW3IqqdSTFV+S1tu8RdzvVh0PjAt1rvQD2hhe8C4QBo44hR/acvh9CZgAiawMhBAf/JOY5OhgWMM6LyrFvZe0ntuZeDkOpqACfSPAG22+kc6tYvJAZ2EQ78QD31E+GRr39nQkJfJf0zABB4MASm6Oi1KD4V37733piJcbbXVuo0wOsL8AoSjYSYjhJQp4VKUGvlAHvgThzDSkMfK6sQDJhzDAib1C6hmQxxNoyDOysyu5uJjEzABE1gcAuha3mm9dC36lTC2wVgLZ3DGYNeoK/2s99bi5OU4JmACJiACtHvVZl511VW77bxs14XuwaGXpIfQNRgaJpOzoWEyXQ2XxQSmEAEUGy4bU62hojS6HnjggQxjSKl+7SGulCbKUJ1jlCnDUmnQoTQJmzkjplh0FjAkHWE4pVlZO8xiwR6nxi/HMMS/Zsu54hIHR5qVlV9DwH9NwARMYPEI8O6pDd1M5Zs3NC8NvOhave84pjMgwwTSeV9pW7zcHMsETMAEmra1dAntNbWjYSOdhD/6hT1+cvLX+UTubWiYSPrO2wSmKAE6rig19ii0elOVsnNLXzgGHxAup05v24+GHGFsKM4FRi6ErAjNfElLnJXV9WLI9fjXv/6VfNZcY80yY+aMMTxJgyECVxsiVlaGrrcJmIAJLCkB9ChGdEbsYURfY4010gjxwP0P5GgGDA3Ewfig99iS5uH4JmACKzcBdIgMB+32LmG0l9ExhGGAUHsYfzb8aeexn2hnQ8NEXwHnbwJTkACKrt6kCNnX/lQNBdhVdmEsSANFGAzwk7/SEZ/0OIURn2PkECYlOkZuplj5/sADPmxwYbQIrGbNmpUvGV0LyCgux5PlBURZ7EzABExgUhPoGLlVRuZMY2yggc/UQHSr1mqQbk3d2/nyD+8qNjsTMAETWBwCdXtNbWH8OGbjmDYfTm1h9moLEmeBH+sWJ+NlEMeGhmUA1SJNYGUhUCtDKTv8sLTS8MLxCw8KD4cSpDNMHP2qjkJU2owUfwjHoUj1yxCNOpysuJNFiWahJuAPjMSHRi+ORq/WtlCRYA4znJgrzHsTMAETMIGFE0CHsuldRWz0L+dsOsdP/rzT9JUK9C6jH+xMwARMYEkIqP3GHode6TWFQmHSSaGZcjRxJprgPzY0TPAFcPYmMNUJSAGqwUV96ADTyEIp1g0sGmF0etnLuEA6ztWQo1GGU9xaDnFlxZ0+EMaLiR8VlmWdqD8wk7GhzZow/OA4PNT52kQsVGZnAiZgAiaw+ASkZ3n/6P00XmrpXcJZhHfuvNGvUoyXxv4mYAIm0IsA7TfawOxpz2mr29uEoXfYFkdH9cpnWfrZ0LAs6Vq2CawEBFBybHIoOra6waUwGl5a4FF+7FGkcx6IYf+x+CO/yqNMcRglNCR1lZnxnfLO4pAZ6D/jEsD4AH8axVwLrs9ksnCPW3AHmIAJmMAkI1A34hlJxzk6lmO9q/QORN/amYAJmEBfCETTmk+/o1eka7o/tnVGCpMP+kdTZ9ujWvtSjqUQYkPDUsBzUhNYmQnUDSuOh+bFSIX4R+dWChFDwd///vdyxx13dL82wQiHddddt6y33nppVIAhirNWkppqgT8ykFd3mkmzsjfo7r///nLTTTeXO++8I0eNwAxWq6++etloo41yD6faEc61Ess6zMcmYAImYAILEkBn6n3Hu4hj3k0yQNx55535nuMdhm7FoY+777lVVyvTB5vpgwtKt48JmIAJjCUgnUM7l41zfnS77777ckP/MIUCfYOuUZuZr7XNXGVm93ys1Ik5s6FhYrg7VxOY8gRoZOHU8Ko/ZymlRwPszDPPLKecckq5++67Uyk+5CEPKXvttVfZbdfdysYP3bhrlECelCsyZUjAj1/jGc3AMfGkfBVnysNcggokj3jx3HLLLeVnP/tZOfroo8tDH/rQstZaa5Xbb7+9POMZzyjPfe5z09iAWMWHG8YJzhk1omu0BFk7qgmYgAmYQBBAn/LO40s/F198cTn55JPLX/7yl7L22munnl1zzTXL0572tLLLLrukLubrFCvj+8o3iwmYwJITQL8w5XVgevMFNn4kuu2227o/3KF7GLmgDb3Dhp7BT+s4TAadY0PDkl9/pzABEwgCdFjZ9MsOxxgIUHL8ssMohksuuSQ7w5/61KfGMHvLW95S9t133/LoRz+6zJ49u/vrO8oVhYphYTDWE2grSeWJMPJaGR18MCjA9jvf+U459thjx2B49rOfXV796leXxz/+8fGL2nrBdlZeI64TG0y5RisrvzGwfGICJmACS0CAd5DeSzT8L7/88nL22WeXd77znQtIQQ/vv//+Zeeddy5bb731AuH2MAETMIFeBNTWZRQD26233lquuuqqcsMNN2T7munGjGZQm3n99dcvG2+8cdlqq63KJptskl8e6yV3IvxsaJgI6s7TBFYQAnRc77v3vjIyfyQVm74MQQPsjDPOKD/60Y/KddddV84777wxNd5zzz2z4cWv73vvvXcqSCKgNDWFgikWatCNSbySnzAq4YILLig///nPy+9+97ty6qmnjiHyyEc+sjBq5EUvelGObth8880L33hnWgsGBo9kGIPLJyZgAiawSAJq+BNRRloa/ieddFI5/fTTy0UXXZTvOsJ4j+E222yzfL+97nWvy316+o8JmIAJLCYBRgLThka/YNC8/vrry6Me9aj8cQ49w9Tk888/P0cy7LDDDuVZz3pWoX3NiKrJ4mxomCxXwuUwgeVMACVF44mG0YPt0GNowDCAHD5jKTk0wL75zW+W97///Qut1eGHH16e97znpdFBc1u1wi6yKJs6xmq8qZG3UMFTJBB+1Is69qqXWMBG4UxHYcrEe97znnLttdd2G7XtKr/sZS8rr3/968tjHvOYlI8RCBmS047POdcRp+vIMX4aCUHaOoxwOxMwAROY7ARq3SadRpn5elF7kWHCFb/Wl7U/I8suvPDCHFH2pS99qVt94utdJc+vfe1rObIBA7Dec4QpD45rvap88Kv9iWdnAiaw8hD4xz/+kT8onXbaaeUTn/hE2WOPPcpLX/rSHLkwa9asnE5x7rnn5vQt2pEvf/nLy4EHHphTaScLJRsaJsuVcDlMYDkSoCFDQ4kGEQ0fdeYXpwhqHGlPQ0gNI4Z4YXj461//Wr73ve+VI444IkXSyVWnus6D4aYYGh7xiEfkiAg16mTA4Fyfx8wpFZEXZV0RGl8wgxV11Zy6mg3hLPxDvVngkeuEH0PnTjjhhHLYYYfV0ZMJcTBO4F784heXgw8+OKdQMKQOQxB5IaMXQ/z5KkjMWikD02JaSmfxdNJwXWHuKRdjkPvEBExgChBAt6nzj+7T+6XWafU7hbjEwa+tK5GFXv7nP/+ZHYBjjjkmRzXUGEhX6+L3ve99OaJh22237Y7eS32Lzo2N+Hr3IYf82fCr/es8fGwCJrDiE2AtrrPOOquceOKJ5Vvf+lY57I2HlRe84AU5qmHd9daNxcDvLH/4wx/Kn//853Lb328ru++xe9lnn31yhMNkoWNDw2S5Ei6HCSxHAjRu6k5n3ZghLEbZ51B7FUmNsAzDkx++oyOKv8LwZmGsa665pjukH2MDDmMBnWocnVU6rjgU5gEHHJCd4S222CKtsGoQkhflUkMPf/LiFyh1glPIFP1D/WRogI8MCao/e4wMxFstVi3ne+xMSbn00ktz4TGtewFPxcOgI7YMn2NaChZwhtRhbICfrrWuna4f+XBP4MScY8rRNTTEisbtX/+IY2cCJmACk5UABtSh4Vj7J/QfehadJoPsjMEZ3YWG423WPZYeRheiGznnGMdwZfTwOeeck41/jnHoVuKyJy/0Mu4lL3lJ2X333XMRZIY9o7NxxGWTLm48Q+fGVET8cQpjb2cCJrByEaDN9/vf/z6nIn/84x/P6bDPf/7zC1NkWZeBttmNN96YuoaFIFkYnDUa+GFpsjgbGibLlXA5TGB5E+gYE9oNGBpUagBRpHa4GkDqjKqhRFwWgGTtAKZNMK+MBQtrRwOMzrCMDnyGccMNNyyvetWrypOf/OTsDJM/SpJhYcRXY40GImXJ/NLKUUueesfUg7rRuYcJPDnGDwbUFX81WvULGkPoGLLLHscXJGg0i5NI8Gk1rN1vfetbc/VzGrj4EV9xdQ1Jo/JwjD/54vAfGY45x4x06DSgM8B/TMAETGAKEECfolvRqdJ50rH49Qqvq0VadKzWDbr66qvLj3/84xzJcMUVV+S8aeKjH5GPziQNexxGBhaEZP70jjvumKvDk+8CTu/kzvsNGZRNcheIbw8TMIEVmgA/3jFFlvW4jj/++PyRiUXUMTTMnr1R2XzzzcrsDWeXHR67Q3ftBnRVresmGpANDRN9BZy/CUwGAp0GjhpG2lO0doOIMPzqjqgaVYxmOP77x5f/+d//GVMr4moNBzq5yKBBxsKGONYToBHGegIbbLBBNsToZOP0azrnpCP9ZFKiWcgH+YcOPL9eUR826sdG4xKnUQ4c33zzzbnw40c+8pFy5ZVX4pWOxi9MuAY4WLMQ0F133ZXnNHKf85zn5K9p2223XY4a0fVSo5uIypc9MlQmhbHHz84ETMAEphKBWrdJr+n9RT3Qh2qcM9qgredqQwTHf/zjHwtTJvjij0bokQZ9jU6VvJrRE5/4xJwmiMGB0Xv8GqmRDcSTzudYZcOPjXP5EW5nAiawchDgM5Z3/OOOcu111xaMmiwI+ZWvfKVbeRkxn/SkJ5XHPvax+RU32oSM1MJeORmcDQ2T4Sq4DCYwgQRohOHYs6khhl+7wYVfL6c5q5dddln5yU9+UjSsX3FpUGkVXCy0NOowHLDHPfWpTy077bRT2W+//XKvuDSyZFggPg04RkPQ6NKvS8pjqu5hXnf81aCUP4YWGDA87qSfnVT+623/Naaq9TXS9aPBK7asf8G0CRYJ4isfjCAhnhqw7fSEyaksOvfeBEzABKYiAek89B46rzayLu57BcM4o8T4dfHoo48eszYDuhK9y4a+Rm/XjveVRjTsvdfe5VGPflQafSkHZaMMOORQPullwnRcy/OxCZjAik+Adty9996beocfjxgl/O1vf3uM7oECn9JltNRuu+2WIxs8dSKgqDFrBbriPyiu4eQlwHOoZ1ENmrqRs7CSKx3x+QQPi9H85je/SYsrC9fUDiOBjAd33fWvaFQNdX8JIh7zyviV59BDDy1Pf/rTyzrrrJMdZfKg4ZVbLFA4PNJMLWCxwsEZzVSKOp+pcsycYf5RL5wMDaqr6kG8u++5O9dmwIjDpyyPOuqoDKbhykuIhjNOulTXD3YKI/xd73pXOeSQQ3LhzeRaLfhIuJyuq84ll/NspIeZ3Os0iI73JmACU4UAehadiU6rRy6g1/BH/2IoIDx1Z9hc0XXSgawA/6c//Snfc9/97nfznUfdpccxGtQjGvAnrYwIxMXYwAg+OgSM3kOPo3OJQ1zJIq7y5djOBExg5SOAkYEFIVkX5p577kmjA7oCgyc/Pl188cXlBz/4QS7++MIXvjBHTfnzlp37RI1ZK9KV78FxjScHAT2D6ozyLGrrVULFJw7H2ensNIxYP+CnP/1p+dznPpcKkTmstaPxxdoApONXIdLix15yiX/kkUcWlCVrN6BgiYNllsZXHW+q6w1eFGKgulG/XvxhS+OWlYcvuOCCXH0YVnyJgtEd/HqGI60aqcinwUwcTaHgU5cvetGLCvP7MPpg/JET2zbX2p/jujHcjitZ3puACZjAZCSA/tJUvFVmrtI1mKLbpOvQoehm4uI45z2EY2ogjXq++sMaRHwBSE76l32tK0krHU1cvjzxX//1XzmVDQO7DPC1btV7UTKVh/cmYAIrF4Hbb7u9XPjHC5uvSsTCkEx/3WuvvVIv8eMTbULWiznvvPPyK2P8mMQ0CtbjmizOUycmy5VwOUxgAgjUDSwaNWxtV8fhWJ8+JC4NIvY0uo477rjy3//9393kkkcajmlwsZc8NaZoyKlRR2eYX3xojKEo6Sjj1IEm/YrgaHjCASbUjWOc6gcP+GAMwHJ95hlnli8e/cWco3f99ddnXAwwyFEjlrTIYo8fx6xCzFQVHNMmmKKy66675kJCauCSd93IVRlIk9e3M4KBeJzjlE+e+I8JmIAJTAEC6C+NaMAQW+teii/dRzzpUOKRhlF7LML79a9/PTd0M/4yQkg3Sgb6UnqSMIWTD+9JOgt8DWjTTTfFKxfc1egJ6Vpk6X2bkfzHBExgpSLA2ly//OUvcxFIvj5BO+5pT3ta/gCH4fOiiy7KqcrbbLNNefazn13233///Iqb2neTAZYNDZPhKrgMJjCJCdBAouHDhsvGT9WhpQGGZfVHP/pROeKII7o1UUNOjSz2NMoYsoosflmqG18kZMEsFrQ56KCDCsO/6CirIy1DRTeDKXxAxx4GNETrxi5s8WekAo1YvrzBcF1+QXvta187psbEZcOJoxhJvuQRB+PN5ptvnqMaeFHNnj0b70wrxrpm+FMO5CJDjV38cMo3T/zHBEzABKYAAek0ilrrMI51ThzFkz5FB19+2eXlvPPPyxFlNPzR2zimPqBv0de1flQ4cSRT4UwPZBE3Og2Pe9zjiNLVtZRD8TIg/kTp+GNnAiawkhFg2sQvfvGLbAPyuXjacM985jNzwXQWirzpppsK07he97rX5ZfbaD9vttlmqZcmCyobGibLlXA5TGCyEIi+JOsHdF3nnMZP3SAjnF/bWQmX4VsoQ4wNOBpZaqTRCKPDqsYTDTOcGmbEJU7tvvSlL8eXEp6dc1jbYcghjTq/dbqpcizDgHiKD8yoHx1/DDjwveqqq/KToUwrwWEMqA0DyBDjmrl4t5m85z3vyekpWMCJjyM98ZUeP5UD+bU/YXYmYAImMJUI9NKH+LGh42QYkG6mbvJDB7M+Dp9u5l1H4x7Hu0zvr3rxx1qe8mjnz6+PjODDoI5BmS8QDUxvRqQhux0fmXYmYAIrFwFGpDJi+G9/+1u2B1mnAV0wNMR6ZfOyPci0ZAwQbCz2zWgG6a7JQMuGhslwFVwGE5hEBNQw0q8ovRo4dEz51f26a68rp59xen7mi8VqGOaFI027E6sqyp98iIdC5FidZ+LxCceDDz64bLnllmX6QEy5iAW5MEzUHXI63L3Kpnym0l6GAuqE4xye5557bs6/u/TSS3Olc8Lgp8Yww3dhIDYyCMhwQPy2Y8HN5z//+blWw9prrz1mrYY6LnnomiifOtzHJmACJjAVCOidRllrAzX+6Ln6PdQ+x4DA5yz5ysRXv/rVMYZe9C06mzToYLm2PPnXe6a+8YlM5lPrU5ftd5rKjTw2OxMwgZWIQPzIx+fP0S+0t1nfDEMDX3nTHiMlxgWmGnNMW22yORsaJtsVcXlMYHkSYOBC1X5Rw4siqLHUqzgs1MiKtyxSyK88X/7ylzOapkWgGNVIYo8sKUA6r2rMKQ/2bPpViGFgDO/POaybbJpfmCAdsnAYJ9hIsyK4rFt8YWLGzOYTniwAya9op59+evmf//mfbhWpMxxlWKgNE7BRQ5Vw4mLpFlex5Zc01mrgU0hbbbVVNnJ7ceQatQ0N4t8rfreQPjABEzCBSUQAvSXdhV6sHXoOh05rx6Exz4KPLLT2xS9+MQ2/xJUOJg3GBtJh3JXDX/III090M3viySjBl4D23nvvnNa28UYb53tOMthTNjbStctdx/OxCZjAikdAzz41Q49gaEB3cEzbjDYdeoZ2N0YG2ns46SJ0BuET7WxomOgr4PxNYIIIoKxwtSJSw4YwGlDtxo3S3HrrrfkL+xlnnJGL0TBtAseaCshACbJxjEOWvuvLvDIpQsLIn404aoDts88+3bUa+AwYQ8EkS/FJu6I4eFA/GrC8TDAy8K12PhdaG3F0PeBUM4QDXGR4IJxjRizgzzQMLOI4DAx8eeLJT35yLgzJcDuGAMO/dnxacyg+Q6prw17XQOWo4/vYBEzABCYjAd5benf10l2EdXVbfPZXn+/FmH722WcX1mRAF/MJZ9KjC2v9yzlOeXCMn87R65oySDp0PI651qzV8NQDn5pG9emDY3UwcdnQzW39nAL8xwRMYMUkEM1zRjPI0aZDb6AHMCpIH9Cepn1He2+ttdZK/TRvbnzCN0YB4yfdJDkTsbehYSKoO08TmAQE1AiqFRF+wzH3izUaUGTdRlkoveGR5tNgNHyYL4aRgeGkrHzLCAccFlXC1WhLeXFOHvpuuRpPikMYG3npF3QUJp/+Ouyww8oB+x9QNt1s0yyPOtKTAN9SFQEubGLPHh743X777eX888/Pz4X+4Q9/6E6Z4AscsIMRe+LWTgzxI1wvJPwZalezJfxNb3pTecpTnlIe9ahH5agGGsMql667rtF453X+PjYBEzCByUpAuk3lq3UvYehE/NSAJ96VV15Zvv3tb5fPfvazqZ/vuOOObhzSSGeTjncT58jBST7HhEkucTS6jLDnPOc55S1veUuObOAcV8vmHP0rHcy5nQmYwIpNoNZX6BL0hn6IQ5+oLUw82nfE4cc89r102UTSsqFhIuk7bxOYQAIoKFx08/mTDj+UFPva0ICSm/PAnHL3PXenUsO4cPLJJ4/5ykTKCiVHWhpFdFxxKEfS4/CXgsRfcdUoIx5+cnxv/IADDigsXMg8Viy5uKne6KrrSd2pD35Ypq+95tpc94K6y8EMnjCTwYAwcVM87WuGxKnPFeclL3lJfgrpCU94Qtlyyy1z1IgayZSnTqdjyZnq/MXAexMwgZWHAPpLOg6dxibdi17lWO8nzlmb4fOf/3yuzVBTUjx0NvF4V6Kfka3OAHGQL0fe2vBTvnQOfvCDH+QIs3rUA7KQKwOF5HhvAiaw4hMYoytilJXa6OgFRqeiW7QYreJK32g/WSj1xdBAJXGqHMr5+9//fvnQhz6U/j/72c+ysyAFnp7+YwImMGkJ8EzreaaQDKP/513/zHUZrr322myAnXPOOWlsIJzGULvzjB8yUIyE4ThXwwl/nM4VBz8ds5YAQ0tZq2GLLbbIVXUxOKxoDhb6wgTfSma47nHHHZfVRG9qNAgvGBka6uvTi4f0ssLEXumZQrHrrrvmxqiGLcPYsN5663WvB+nVaCZ/HGklR3K9NwETMIGpREDvJDr7ev/Uuo3PWV599dU5sgw9/Otf/zqrJ+MAezZ0JO8q6UTO9V5r62e90xBEWpz8PvCBD+SIhq233rrM3nB2mblKo28zkv+YgAmsEATUJmvrBvzbflS4V3z8aJcRn7Zhna6WU099JR5hqZuiu860CtJJD5EXuqjWZfjJqRyS386z9ue4PkdG3wwNCJbivfDCC9PQwMrxuLahoVdB8LMzARNYfgT0zKE0asXRqwRMjeArCH/5y19ygcJPfvKTY6ItKv2YyNUJ6aQEaeipTFWUPHzNa15Tdtppp26nGEuu9Eg77uKcP9jyLo7sxYmj/KkDxgNGMlx//fXlV7/6VXn729/ebawii7jUlwYxQ271klmcfHrFaTN+3vOel8acPfbYo2y33Xa5zgbpyIc5geh1RpJQjlx8KEzrgzOahc3asnrlZz8TMAETmAwEpHdpUKPL+AIFnXrO0cPscZdffnmOMvjKV76Suvi2225Lf6XPkyX8syhd+dznPre87GUvy3ccBl8Zd5XNotIrnvcmYAKTg0CtL3h+ZYSkLacwdA4b57S15L+0NaA9jY4jL3QJhoe58+Zmuxk/bcqHstHmw3/GYIxGrkY5E4fys6mcSkfZa//2OfH6ZGhA1KhFph7RQKF/8pOf5BBdINJhYY+/Cs45m50JmMDyI8Dzh5NiQ8mgJOj48zwSLgMDK29jaLjiiivS0MBoBhwdYBQa6XBSOJKdnvFHebT9a12AolN6KTNk47bddttCR5hf4R/+8IcXfvnZaKONck6alHdGXII/KtMSJOlbVOpNw/aWW25JAwNfmWDdC0YyHH/88ZkPbOFK/dCXOI7FmvK3eWak+LOwuhHGi4dFhHAstHnggQcWFt1kZAMjR2josrAncSlrLY9jbSnAf0zABExgEhNAT0pX6t2GLkWP8b7jW/U33XRTjiqjcX7ZZZeV7373u92RDMTTu4lqShbHCuMYxzmujpMe1R/0uXQ6+cm97W1vK7vsskt5yEMekp+rmz17du4ps/S+4npvAiYwdQigD3iGo/VUBqY3feDUHWEAYNFtwnjOpRvG0yPyz5pHEz40Wx4il2OFI4/2M+fIVP5Ertt0+twv+pA+AGEzZ8SIqtFZX5mW9GzIUx6cy8mffDFqMGoCWbi+GBqUkfYXXXRRNpY/+MEP5iqY3/jGN8q+++6blWChMxq5NKKpGCBQ9JrPLRnem4AJLFsCUhIoA55Ffr1G0bCgI88kCgPjwm9/+9ty4oknFr40wdcQiEf8fjiUE/lTFvLDSTnpHD8Wh1xnnXUaRRca8L/f+d9pvKRDTIf9wTgpyweTdmnToPhp3J533vnxy9nxOUwXWqsD1QAAQABJREFUQwNDdmGBjkQnoh/ZUnlXSn1p8xdj8oID8ll8kzxf/vKX57fdMeZghCCcxYZwlEv3y9KWwelNwARMYHkQQM/pnYX+kv5Dt/HvhhtvKBdccEFhNC7GXxaBlOGBNRTQj7wbkdMPJ/2OzNrQsO6665aHPexhZcuYxrb99tunHsbIzvuY94CdCZjA1CHQS1+gc6SD1M5GD6CfiI++ob1LWK/0S1J78kIuuoNj2nfscchGr6k8ikfZ6hENyo/4dXl0rroontqqkot/XwwNdYYUlhENP/zhDwvDzvgO8cc+9rG00vKr3bUxv5tG9mqrrpZWHOIDlM3OBExg+RGQ0kBRoBwwIKCQUHSygGIY5BvirLxdOxpKxJUM7es44x2jgOr4teKjLOTNHifl15bFQoZ8nhHjQ91Qa8db2LnyXVicZRU2fWB6LqzJVyU+85nPjMkGXQhfHNdFDMRM5db5mMRLcAJnDL4yIigp33VnAU5GNuSohmiI33tf81UR4pM/ZSJ/lUVpvTcBEzCByUYAXYUuxaGz6g0/jAsYGc4666w0puMnR+Oc9xHvmQerc0lPnmqEo3v1jkWXqmzKkz3vt/322y9H8BGXeHYmYAJTh0AvfSHdo7YucWTE5HizzTYrj3zkI3Pxc2pK/F5yFkWBdDja9az/xQ+IGDLbjtEH0cTr6ibKxVa7On+O2aTLyAf9pHplXOyxIVNl6IuhgQzZKBzAMDSccMIJOWWCX+mYX41Vll9DjznmmKw0Q8Nqa267YnUlfWwCJtBfAigDnj+eO361pnPLyAA2wjhHMeH45R1l1XZSIm3/xT1PhdSKTHlo2JE/8jFmqEycKw3x6IyrsdYSs1inE6lzqAs6k7pRR+pCnetGJ3EoI3UmDmH41RwWq6I9IiGTIXOstYDTi45jjAlrr7125sP0CpURAxSGB9LKKKXykM7OBEzABCYbgdR1oUfRpehcdB17HLoO3YtuZZ2cdmdeOpi4SsPxkjryVv51HvKXPN4BvNMwalBOdC4bebNRF8pkZwImMLkJ8Kyy4Xhmea7VXuXZ1g917Hm2N9hgg5yqfPjhh5dnPvOZZauttkqdsbTPO6Nk6XszSoLRUrSv5SifdAu6iPLh6nKrHpSDrU5DWpz0mNKnZ/Wnr4YGNZSZOoGh4dRTT83h1ixy84hHPKJceumlC/x6V5XFhyZgApOcAI0yKaZaAS1psaXI2umkkFFcHNMoYyN+rejGS9+WN5XOeQFQLylv6iuDCy8mOKDIYcNxHW9x6ilmpJdcXUuxRo7iLY5MxzEBEzCBFY0AuhidiC6UruV8SZ10qd5n6Fv8OGfjWBuy0cvEIU87EzCBlY8ASw4ccsghOaK0H7W/7rrryplnnpk/GD3i4Y8oq662aordcMMNC2vAYGxFB2m0KoEYOtF36EF0EZvajYQTX7pM58Qnjhzn0pl9MzSQsawZF198cRoaTjvttPKP2/9RnvNvz8mhICwkh7VGTgVRYeTvvQmYwLInIEXBc8sziDLhOZbT80k8jjWCQIqnHV/plnSv57/Ouy1DDTPiEk9bO96SnCvfJUnTr7gq/8LqTPlQ9NQdxc910Hn9q9ySlonrza9kOEYscB1p4JKPylVfW+ITThj5sifuRPJb0jo7vgmYwMpLAJ2l91it5/CvHe84RvKh2/ilEX23NFMmatn1MfqUDT1LHnKUjY2ysslZ34qE9yYwdQjwDEvHoFN45tXe5pxNOka1+vjHP56GBowA/XB8Ke4LX/hC/si/5557pkGBKRSMmuDz5ppOsfrqqxc29B7tQtqatBM5RwdSdvwoc+2kW1VP9sSRLiNunwwNNPxHuoaGP/3pT7kY5Mknn1xYl+Hggw8u22yzTfnrX/9a+OQlBQG2HOcqpPy8NwETWLYEpBBQICgGDeEiV86lEPHXM4vy0PNaK9EHW1Ly0YYMZNcNrFquGlvEUdw6fCoeq+7UiWMpchQ7jVDVmWOcrkltCFjSeiOTa47rZThoX1fKRb6UUeXAz84ETMAEpgoBvTfQf9rwQ99J56HnpIPxQ98tja4Vm1rPk2edP3F0zrHyZU86wkij8hPHzgRMYHIT0DNPKet2E8+znmuOaV+zyX3qU59KQ8P6668vr6Xas7DtZz/72XLUUUeNkfPa1762POEJT8ip0wSQ34YP2bA8ZMOH5NpnGB3kaCdSZrUb0UWcy9X6SXpKdSROnwwNjdUGJY1jjYbjjjuu/PjHP05DA99pZ+rENddcUz7/+c+ndUTDNVCm2jKx/5iACSw3AigDnkWeXc3FJ/O6waVOrwolBSOFIv8Hs0eWFBJ7ZPajYfdgyrK806jevGxw7DV8jTUQ4C4+UuSc4/rBHjlLIk9lIR06284ETMAEphoB9BgNZjWaZUxAp/XSq0uiI8djgW5n0/tN8fDjXUtZ2FMGykPHg7385ad03puACUxuAugNjJY4nud2m4lwnv+23jniiCPKC1/4wlwUkuf+wTr0CY4RDV/72tfKRz/60cJ0Cb4kJ0f5NKLqWc96Vtl5553LXnvtVR796EeP+awucdBFjPhCh1FmlV+ytK91qHRnXwwNwCBjQcXQwCr1fBIP48LTnva0slUsbHHjjTeW73//+yqP9yZgApOAgBTieMqwVhyToLgrVRGk3Lk2Gn2wvADoRbU0L7vlVVbnYwImYAKTmQDv2QfzLlVnZDLXzWUzARNYNAEZGxemB173uteVpzzlKWXjjTfujoRYtOQFY5AXOufqq68up5xySvnWt76VUyGYFjGeO+igg8puu+2WAwP4ohs/fLExhYLPn2OoQKaMExyzKa/x5PbN0EBjFGsHjsUgMSicfvrp+ckgCsgnO5hGwfoNOAqnvY7Tw39MwASWCwEpOzqU9TOI0VAbCoTOLkZENtLUv7YvTUHJU2XgmLxw6tjiR56yovILP+VSGu0fTBnq+j6Y9EubhnpQBthSb/2ChVz8Cee68EUQGBBO/dlQ8v0ov64tecqIgR+yFUb5uB4a7UKYNtLZmYAJmMBUIIBOxUl31u8P/NC3+KHv2udLWz9kS5eiy9GvbJSpXa46L9K149XhPjYBE5i8BHi20SW04Xj+eZ7xo7OPHiCMDb0jfcRoAr4OoS9/Ef5gHPLIg343C0JicKCdh35Dp9R5Il/lUF58YpMlDx7+8IfnxmfPKRt1oB2q8iILP9VF6et9XwwNZAg8MsOxRgOjGdguuOCCOj8fm4AJmIAJmIAJmIAJmIAJmIAJmIAJLGMCjFDgU/UYPPTjFT8gLY571ateletGMNqBxXLp78tQgYEBY4MMFRgyZA+QTaAvhoa6oGTCoo/nnXdertVwySWXFL7jqcKpUFRWFh7SYHmh4ITbmYAJLDsCPGcoBp4/HCMUUDicM0SKRWBQEHxXHMsrQ6dQTDieVY0sID5yltQpf9JyrGFYyOOcPNjjKMeMwRllJBabbf/qvqT5Tsb46Ds2FDMOznBBH6q+CpPuFPN+6EpkSz5yuQbwv++++9Jf157r0Fwv1odo0ugaTUauLpMJmIAJiAC6Cj2HfkOncc67jb30qd476FX0nd5Hej8R78HqXPJGvmQjiw0/dD2j9jRyDz+F867l3ax0qo/3JmACk58Az602dA3PNhv6gGecZx49wzF+GrGKTlA80j0Yh0z0GG25W265pdx+++2Zl3Qgeo0w5FNG2p7SQ2r3rbXWWmW99dbLr0Y+//nPz2kVjLIdzyELuZSffJCH66uhQSDvuuuucscdd5R77703OzEaJqKKlOBGx4HKAcPOBExg+RLgWUWxScnoOdQzqWd5/kh8IWawGVKKQQLlhzFChoelLbXKgRzKQP448q11BGVFeRGOAlO8jDzV/4Q+HBpuFguibrwc4IKejAF149auXwxgPTzSNILzGpT41Gmc43RfZHmq8wz0HxMwAROYAgR4f/DuQp+hYzmmXYoOpVEtnUs8NvzxSycVvBS/gaE/pUORLd1NOdQop1w00tl4v7K1dfMUQO0imoAJBIH6mVc7CjDSAxyjBzhH5+AUb2Q42ubxT3oiA5fwD/qL7aqrrionnHBC+d73vpe6D32Dzus1mmHHHXdMo8IWW2yR0yQ233zzLANpON50001TL3Eu+RSLOtR1oT7URTq0r4YGlGY7AwpBobDUyHqDn50JmMDEElBnXspgUaW5/74wNEQHdNasWV2FuKg0/QxHj6DMFre8/cx7WctCb7LR2JwIp5ff0rzYJqLcztMETMAEFocA+hX9Jh1XGxrq9Go0137L6pi8aDfzTqNcHMvQsCK+55YVR8s1galMoK2b+lkXZhh84QtfKEceeeQYA8Maa6yRn7Fcd911c9TClltuWTbZZJNcT5H9dtttV7aKjzjgGDRA2xQDhfrznGvEwqLaj301NJAZm6wy/YRlWSZgAhNPgOdbDbWJL41LYAImYAImYAImYAImYAIm0CZw9VVXl49/4uNpbKjDHvvYx5Y999wzRy7wsYYNNtigYHxgmQNGLTNlgmnUuNqQgFEEg2g9YmFR/YK+GhrqSvjYBEzABEzABEzABEzABEzABEzABExg+RK47LLL0shw1FFHlZ122ilnFzAta9999y2Pf/zjy7bbbptTIhjZ0K8p0e0a2tDQJuJzEzABEzABEzABEzABEzABEzABE5iCBBh5cMUVV5RTTz01P3O59dZb52gFpmXNnj27bLzxxjl9gunQjGJYVs6GhmVF1nJNwARMwARMwARMwARMwARMwARMYDkRwMjA2og33XRTufLKK3M9BaZIrD5r9TJtYFrh6xFMlcAxHQK3rJY9sKEh8fqPCZiACZiACZiACZiACZiACZiACUxdAqybgLGBz9TfeeedOS1inXXW6S7gyDSJXoYF0mlxyl7hD4aIDQ0PhprTmIAJmIAJmIAJmIAJmIAJmIAJmMAkJICxgS/ZYDTQVyLqYrYXcsTIIENDv758Y0NDTdzHJmACJmACJmACJmACJmACJmACJjBFCWBEwKUxoUwr/JchQWH65C+GCDb8M371KeClrb4NDUtL0OlNwARMwARMwARMwARMwARMwARMYIIJYCxgNENtQMDIgN/w0HAJc0J+qh5DA3EYvdCvEQztqtvQ0CbicxMwARMwARMwARMwARMwARMwAROYYgQwKAwNDaURQZ+t1GgFDA61q0c11P79OrahoV8kLccETMAETMAETMAETMAETMAETMAEJoiA1mbAiMDaDOw1JaJdJPxxxFkWzoaGZUHVMk3ABEzABEzABEzABEzABEzABExgORLAeKBFHZkawTEjHHBMkcBvAcNC2BuYUoGb1lnTIU+W8o8NDUsJ0MlNwARMwARMwARMwARMwARMwARMYLIRwMjA1ydwg4ODXWODyqlRDTpnv4Ahog5cgmMbGpYAlqOagAmYgAmYgAmYgAmYgAmYgAmYwGQkgOGA6RM4Ri9wzobxYGDaQH6BguP5IzHyYf5INyzDI34/nQ0N/aRpWSZgAiZgAiZgAiZgAiZgAiZgAiYwAQT0hYmucSGMB92vSjA7orMcg+JRRE2nYN9PZ0NDP2lalgmYgAmYgAmYgAmYgAmYgAmYgAlMAAGNYMjPWXY+c8mikPgzhQJjAlMoFI8i5giHCNcx5/1wNjT0g6JlmIAJmIAJmIAJmIAJmIAJmIAJmMAkIKCvT2BYmDljZi4KOXfe3DQ08NnLtjEBw0O9iGQ/qmBDQz8oWoYJmIAJmIAJmIAJmIAJmIAJmIAJTAICMhxQFKZO6HzctRjqL094RMMkuIIuggmYgAmYgAmYgAmYgAmYgAmYgAmYwBgCHtEwBodPTMAETMAETMAETMAETMAETMAETMAEloaADQ1LQ89pTcAETMAETMAETMAETMAETMAETMAExhCwoWEMDp+YgAmYgAmYgAmYgAmYgAmYgAmYgAksDQEbGpaGntOagAmYgAmYgAmYgAmYgAmYgAmYgAmMIWBDwxgcPjEBEzABEzABEzABEzABEzABEzABE1gaAjY0LA09pzUBEzABEzABEzABEzABEzABEzABExhDwIaGMTh8YgImYAImYAImYAImYAImYAImYAImsDQEbGhYGnpOawImYAImYAImYAImYAImYAImYAImMIaADQ1jcPjEBEzABEzABEzABEzABEzABEzABExgaQjY0LA09JzWBEzABEzABEzABEzABEzABEzABExgDAEbGsbg8IkJmIAJmIAJmIAJmIAJmIAJmIAJmMDSELChYWnoOa0JmIAJmIAJmIAJmIAJmIAJmIAJmMAYAn0zNMwfI7Y5mdbDb0GvXikXjNX2IdWC8hf0GZtOqbQfG9qcqTxtWQtL00vOyuwnhm0GNdM2z/a50vbyl3zk6Zj4tXylH2e/sGS9smyJmd/Jd2yO9VmdAYlbZVVwJmmlGxNWZ1zHq/17HPeqQy+/HkkX10vFJL6OF1bCOmxsUcaejea/OFJHYy+ro96lU9l659qE1jVeMN7CQxeMP8ZnYdkvQvCi6jNW9PjCxoYo1Vjf0TtjTOlHT3oXphNeyxpP/qgoHy0bAgu9RMsmy/GlLuZtoGgSVN9J8st9OyKe40bupBSQ+XHQjds9iEgSOuonnyZs2miyjsgFd5GCRNNCBvmQYlTcgtHxGc1kNLyVpleU0cgLyaJO2JJZp19exx0iyyu7nmgXlfn4mJZ36RdV0k54Xaz6eIHkBOKooY7TY9F/FpArSgsEdGUtLAel7kauD+qEdVHHSVRHr8WME70bpU43btw6Ujdl66CVuJ2kFdxK7NNlQYB2/lht3b4q4+RaRxv3wjUBdVSkjRt9nKymgvdSGxoESfsFKh0vSS4U78uu48XZfUlHwLRO6tzFn4xbJxhVZ03MppvXxGhuA/7OzxdyJB+TWTfX0YNOdqMerSMEE6cjLwtfFWdsPlVAS8yDPW3kt5gtobBEPDKSLKYNRBmjPshNWhRZxV4YC+L0ClfabpniekReRB2AfZt/LxndtO2DVuSOrLHMmzStmGMFdQLzXlBE7RWzrh/AOM/yK0K9b+65+WWESB18DYjmbx23dbywfBVV+XcvTGaj0NzPnx+MKWaUsbnHm5yTTfoTrSoNkdOr8qsORy9uPDudC02KsVEan/Qb/ZOxCdGW2fCncmPkhH9zDeMepPyZC6mb/Jqj5m96pj/lGnXIGz1vpI/x6wRyCal6c783vMZWalRmV2AjrgpoDpUf+5SXZafMmcFo/Co9TxmuSVsFjMYeLU4ngwVipX/8oTILBHaFVxLHHnbEdtPqVkDWqDjF0r6W0cRSiOqktArlnuS4vh+BT7qMQ/nbTkLl3yOKghrmnFWRMn11rsjaK6iTj6LLW9HyHomSNvdjKSONR3PejqxE1V7VGC9qHZ7H4tK5hypRS3yIPMpL3g37URE9y0MCtl6BLb8s66i47pGSt6J3w5foIDPpSFwcgXV8MuJa4arnAx/uvE5IVHVUML40M3StM60i5knrz2jSVkAkUjrKkPe3PCJqdb/j27s0lX9HRLesqpfK3s1jrOwxhaqyH+Ovk6ouTZkUMHZPtG7UjCjB4dsNUBrCWv7hlZw7DPJ5IlbFRKkXEKeAel9lD/OmhbEE8lrpmwvXKrPyy7idBCpvnM7vRCekE5r7XuUf369zF+S1hNpozOZyIzl807sJU14UbzQ2Z70dcrrvp0iwpOlTap2olU3T7gnPKOTilKenPBKSRy2gAZBymzQNq7yPiJhQxrYDMl4lpiuuLn993KWBvEiYYfGHY11reVf7OEyX0Wp5eITDq/bO86gPIqGU6TJmj4jy174jMxO1ohOlzofzVnS8RiMpsE4kvyZmxh2JNjuFbdrs4dWJP8p+NJ8sQFuGZJG1ElPvHvEIb+JEfvRHxnMq80KikJTsVM5e+dXiiduNk+ma0K6f5GVE6hyZj8l/JN61wSrSwmqMPgu/LrhupnhKhgThhzfn8kPk6HGGx5+MWUVfMIZiTp19XwwNdL1GKrYCMzwcF2h4uEyfPlBmTJ8+SmVkuAzjPzBQ4s+of17MEISABS5IcwG4uXjhdG+yiDwQG/9GQu78KMj0yGvaNOSqJKNZLHjUKXg7IMoyPG9e5jM4Y0aIovx09CL/bFzzwAy2Uy31OS9nOu3Tgk0qgAcpcWjeUJk7d16ZMWOwzJg5o8wfnl/mRX2mDw7GVjOPDIQAXBy3zkeCKf9wA8E10eZZ50/wmDt3Tl7TmTNXCfnBawHXpO9oiOb65jXu+Oe1iuO4huSXVy4UEhxww0NDWYLBKH+UIjaViNBRx31ACEqUhuWA7ru4F7k3sBOkzOmRg+o7jPx54R/XdGbIz8xHZeoo7toyNDyU8QanDeZ914QpAXVhw8kvDlFguDH3NH6dOCj8jtIPwK14mTL+xPWbOzev4Yy4H2fMnNlNz7M0EvVDgU8fiPs084kU4c+9NDA96kR9ezhYwQw3PD/kRFmRgd/wSDCHY1zw6XndR+8b1TSf/Uir2igX9vUWiMsDc+bENZlfVlllZsprUjX565o1V7V5GfFk45pGDmcDcczzF2miPKOlCXxRADhwf06Pug7H/T43eKF7Zsb9v7RuKPJM+XE/DsbWNH1EQdKb2lOjJkTnTXhz1nBR2ZtLH9coolB2VWpkqKPL4vmVn3Lp7smkdsog/FClXBseH/ZD8yA3vwzGs88tlkkjEn7T4kFpkupO4Ex1aNITn1BCsqyxD+2e9yS324x45hudGxKjUuj+6ZHRNO69TBW7rltIwbtx4iDux2HuX3jDBi/KS+ufrfEYFY9Xx1th3Zw6/nXwcNw0w6FvBqOM1GFu6Mfh4D4znq3B+r2Uwhb8g2zKw93QyylvQjmeFzqG9weslka3kxfPE/c3V4T7Gzo8A+TVefzjqHIRpudjGrogztEZ3Azthh9lZcOlvNhzD3FNU8f0zIDYS+CCA3o+814MeY3uDl0kfR7XCR0/MBj6rrpWvCWyURgyG43RlGkorjO6ZzDSj7leqqiKToUX5RJQEAl5CYj4HPNgZTuhEcC9EaUkMMtCifiX/nFv85xwP9AOGhxAR0VI6LAsQud+b/IIHx7kRbnFqEsWvSOnHZ0cutWPazOf+yP205JxNyT9KHe+RyvvbBt1nlduQu53rjHvq+mLcY0XWr0o7Fyen4iEvLzfOwkoQlWMUTFcE0I6gVkf7guuUw/Hs08x1WbINkRcB/yQVG8kr6XoWPt2+Ai6LK4tbdOBzj3Cey3byMEM/3x3kzAceeEkr33ehI7+nRdlR36yjvoF9ry3eL4kYzT2Qo6UkaKQOISl7opSDcb7KN9TY0o4Xg5ZiEZSXv92PMJ5PsJlOKfBJLd4lweTGdNp5zT6pxMzz/mj+3WMVMqfG7LjmECd5/MZHnFfzEcf8ExVuiNiNlGrPX4D3Ov5L06qzKKJke8Pyon3vJA5FNchn+fwG4w6VdEb4QikPL0ckasEWexOPI6zbxBl4d2RW0tG3u6IkAwBA1TLjUTh50R7DLfqqqsGi5Af1xn2PMe8c/UObOQGg67gscKIr404pG27edF+p/1K/2OVbLu2Y3TOo6LIGu8ZVaqh0E16nlROhdV7yp7yolwUP5+LqCPlbLYmtp4fyp7PaOe5Se6hxR+Yc3/2ZVdbZdXgwj1JCLvYh7zcN5k1FwAGbFyLFMIbO07yfoOPLlJXUvg1jvtqKHgRY0bo3qVtK0juRO77ZmjoYKzwxUM41BgaMDLQwBXw7ACFgskbMsEH2c4F4xeyFMKN0FEM8+M4buVQyzQimo1zHmOUnjp9w9EJpPE0PRqOyE5Z3Fm42HGjpXDyShce+OkUv4xDcUbyYhOE8s4GToTR4Ml8QgZ5kw+NYMoynqvFt+Pkw9sULIPoUGMQwJ9ONXvyZK8GYVN8pFKg0eJTAnXMeajnxDYzyk7nH7lz582Nh6QxPJAZcvmHazo5ISEemqYByINC3pzHFpkiH0WR14W0wWhaGi1Cad1/f5Q78ou8yDPLRRoSddnECde3U/TGv8mfWNwDQ/GypExZ97hvotJZpjlhyKAcGH1Q7Cp3B0FTljjhZU29MLRwTWam0SNevPECSI7RQcn7jg65nvco0kgYZeZHh2s6jSpu1ShL/pqR92BTBYwMNHa4DnlPdDNvyp4KLQ5hqesQp1l+OFLvvN74NWA4asKTVfChvl3X1DLvgfCbGy8GFPYq8WKYEZzhh1yUEga9fBaCjfIejjoRhqFpAA6RB4VI4pEVDXKOKQp76sc+O0JRjjTcxfNEHhEl2ZIHZyPsI+EIrCKMTSXvZJNpSAdCXgpzHrg/2a22WijrSD8Uhgye7LxmkYiy6qXANcrrFOlJ29z/cW04j/JkHiEDJczzR/1Jny/5qGve77zYQr9wTyZDrkHHUa7kF/kjKy8HBQ3HeUNGARhdmk4vin8G9040HCPTJnKTrBECkzjnaYETXMin2fjbiUwm8UbJxmzcr5SbLQsSYZRfneCBqEPTr+5IY4dH7iv5nWx4Uc2jkxDnM2Yis0SjAg2NkYeGYsNwJPg3lW+e0yb7RgjlR3wULTeO4Zz3NiFx74xQxngeMELROc/7Lsqua0Fd1Ylvno2QnaDZU+5wcMic9DdOMyz4xfVKoy73QjDo6tmoIGokCxY7EjTXr8Mv/fSu6FzziJD3U+wpS8qOe4bc0Vc803PmzM17aOaMmfF8D0Yc7g3dMxSK2JFb5z5p7kMZQhq5GSWrpwqSII65ptwv4ZqGTJQ1xcWfRmyWK1NF/Cp1E97xyOsSx+hJDA3UaZW4vzHqNOWlzI1MskUSSdF95M/1I3/qz/NCXRpDesYKpJ30pIVVk7rx5z4NvzQgdfyzQkvwh6JRIcrIRvm5rs0F5JGKeyru3ewghT91wKVRJMrMvUatRkK/x91RBmm0zgidH7KG4lrNow0Q8tOgHj8EhIQ4wxA+N4SM5PtgBj8QUJAO98yA405e9R7vfA8QnA9D3A+kxVE4HhrqE9cjdQbMginsOIdzio5z/FJ2eHBfUSfCqRMGEO5nnvsZtF/iHkwX4ZQ7XcidT37kER45QqNTlPRoYlGcJh/OO3VKdRHHjW5SxCYQPpRjICJRG5hR1/nRfiNv7pm46I0ij3DeC9wnXDu2iBl+sfGsRNm4n6gr7Y3sDESbobnOTX6dImUhqAOu66f6NN7N35BF+Xj3QjPbAHDoXAfyGpM+/LNtE3v8yRuX7+DY6/2oc8qc4SE7ZSk+cgiI8PnBQCo3I+PdORizzwT5lGZoc6U6zDr3dVOeJhXPIM8yz2S3vRcyYAnTRud2cgj/vIdCcvP8RN3Qi/FPrGmXYAwADfXL4lBWGLU4qdzdSCTCac8xdc/nivZRPG9xLSkr+ROv2Y+yyCT86dLJk9E/pMkz7SMmzwvv1HDcW9wzqSsjb34kadre3GcRHv844L6h5uij/Edgp0w8R81x+EV4liV38YfzTh68CLMtiVcITRGEhz8u7+d41wxEwHSeDfLiPoh/vDnQ/6Qb6Bhf5sX7lHan3uWkwyjeGByQGRuZ4LTXQT7MEU6UyCfvNZKEY0f0zC/YwBw/7qPmfRwn4ep2GufcW3AYCLZ6BpqE0Z6J9vD90WbHzZo1K+8jjCS0AckH/TvYMYhLbvce6pSLtJQl+2Tca5Qrys79wR6nZ20o+jTkR9gqq3TaYxE/40ShOtFTRt5T+HEdMoB7MKh35OOXejXyhDXXMAK7cVJmXCeS5js67gfagTDIe6t6DlU+3g/ZfgxZ+RxG3uTPPRZ3Y7n/gXvj2s4rq0XZV0E3U3bus/pew4+NqlOm1CONH7o+jqId3tzPJMsCRiE5JFlkmPoXbT80N65duJnxbrOhIUAkpNgDp3Z5m3UCeUelC7rzO53o+sXFgx93fghBiUQiPXRcKO4WbrhwqXwjXEoBPzopgwOrxhFxIi2N57hg8dTFxYqOVuSXN2iE0ujlomWjhbRxM/BAYN3MbDOfCI+0+OevJXmzRGT2nREM84fmZCeeG5MHfdWwcuWvxnm3RNzFdCis/MWPOsoFh/vuvS8fJF4Ycbtn+bOecZNSx3zIYMsZPIIrEnhoqBM3c1ZI5aGOKO/YUjkFMxo0+WBFxykbmlnPkMI1YMuGRdSZJyL4pKEh5EyLMmVmoZSycxu/TqeLjtcQFtLIM8vEgxXHNEopO8ouryNlYuNeYE/ZqFPEb16ujTFhcPXVqVFHdnTw738gGxp5XTpKo1FEIS7Ky8uaa0GjG2bz4tpzG81AKXA/RHlTHuVAbtYxjvVjd8SNnm/en1jv6QTzEmfkQGN8QLmFEQjlHcnz3okD2KfyCvncWyg+OioBtckn6sa9jSED5lw70mbDEkEdBqP3OWVrXrT5a0eE5zWLsqTii/JPm4GRoeNofEWcfGTSKwsXckPMnAfC+DPUdALjnpgf5eCXvaxARMvsY5evy5ChxuNMRhwMdK5rCBpGTpQ/KOY9Ni1+kZkf5UgzQbClIQBiRMajEzyinlnX5tc56sp9QCHTQju9gT4y7wFSxIu6U5+hucmHa5wvAK5VlCt/5Qu/uCBNJpEH9+6ceLa5r7jG5A3b5hpwjUnaPBd5j0UY/POeCzaZR+feIy6MpwVjGHA9uZ9SD+iZ4rniuuVzktKx/GT5MnO8KGNu1CrujZTf8c8kUS/84p5htBHlGYzyz4xnKkcBAZj7kHuT5yP2atTzjDSiQ0bEaRoxTfyISvRGB8eF4Apzn6K/Zq2ObmrUK+k5xiF7OHh3MuwUPXReRwdSflhlUTIWZedlTSc1ngNGp0SZZsR9ReO20Y15FbgBGiMEe+qALog99z3xs2EAR+RnHFhTw45LjFGWDnPKGMFlOvmUTgXmzGsqnUlIEAdZQQ7CJY9GB6XcCJMhh19yMOaiX9EXqeebVNG56vzSFRkqXuoc7g/+oc+CK1lxn1C/vKaRnnPqyXnWlQ5XpOM6wy47xZ18eMZ1L2Zhu5WnGp06ELfy5zRq1GngNvHIh63rgjXl5vlIJPE3G76wzDqEjLhZaMhnhz7ueRpW6GbK02zcJ/EuiXryHORIuEifxlXiRB25IFUpu9kv6oA86bikwZpyZ/3iT6cOQw88UO6/7768zwbhHGWWXuW+TwMD1yj+cd2mrRp6KsrKe35O3M9D8I/zVWetVmJcShYnrlI8b2GojnQYnhtDYQgjb23EVIWqvTqXXBPu1eEwRvGIDMZ9Ew/uaKLheGdEY/WByAeR2RmOcnAsl/d4lE/3BqyHQz/nfdN5Rhh1MWu1WVGv1ZQMK2EYaUNXhrwZNNKDCWkpJkzG1EEZVnUgIt4YGbh/MITETRadtOAX/4bmx3shyg4f5M3kx4jYMlGUK99dcb9wzehUkTe6ERnI5QcGGvTcRzNXjeeJ91/HzQ9dMRejUIZ32gGRKsvdiUNR6/MUKgHaU/ZO+eGI477OZw/lh8ysKDoratlRilHblJ33M3UKRzj3NOVGFu0TjPeDYQBPF89OOu7JiDs3z9FHkf7/U/em31oVWf5niMyCqMwyeC/zIIMyCU4MzlM6W1nVXd1rdffrXv2m3/XqtfpNr16/1X9Fdf060xzMNB0RUEFBARWRGS7TZZ5BQATB/ny+8ZwLaWVVZXXlGw889zzPOXF27Nixp9ixIw5yXGuvOFdRte4GB5+0zqZU69yiOZ0dfRCZFV7kS/0gaNtTDany68DP9qlzLe85AUOecWCkDPeBT6S5bWpoTMGKP3+dnHDwmwAE/SOtu44uFPmS761zc70pLDizoBqwrbZpl6WjcgH2XbAjm+Cd/mnJtfrCcuqT6E3pjvwaoO4W+6EOs0JgCZ+PGWZOMOlf9KKd0aW0WVzll+gF6BU0xdk+99nm7B0Jq37rnlLcswpg8Im/CTBx0i9ygK/uEC9tT3xS7hlkgPMTEOTpchn/xuwF9U93dEDkgrqCggX4Jm0u4bM62dMXXeFkR9qXtqXQT/7wtCiCw4/QuQk2NDq7KSye31+qfapPFd9QvPOw3dTS5zxwBV0lravfqB7lQ7uSoQQeP+A7+lzsKrDM+DHQ0GQi6QvEdsBPCfBKThGRps0BnOg1zpE1IYaPLUs5ad86rjmYBx/7qAYAtJX2I/DBK7hRVvuUf5RrZEJ/JjYNnJwIk+e7DsuDu/Igr9tmbbs8X+1ZnbhULrTv3lcfKE9R5gDSRntdPCKb9iZ1tVrMGbpcJYNQnFr13YTMxSuwEbThz+jiox6U9xP5pFx0CHjIhj5jm+UbMzTiI9g//JaFPUShAVWv/Dz//s0yGhrChOYSiE8IBMGuXLrM4Pl8uXj+fGa+TXXphYCGoDBHnE0HJyrLkL3FslBZRpPa0j2KwU7LLwluxxkhM52lO8xSYcngMo1K9jLCJlwVdk+YXsG0nIdOr9ctK0N6T2axvIzYE6PuWSa3nMbIQ+X3HYZf4y9z6BgISxhdqKVk6+df4pQUrQLgQMmIm+25xKzvt99+G5ziAFoOuI1DLx3EV+b1exO594c46uAoYAqLv6PcwT+4WQPXPBw4aiSc7TbCmLYDI32AE1GNGwIBLaIUqM9HK643g+elKKrefXvzfM8ogUQFganTF5rCFLbLvokAS1+OGEv63bP42BKNqnV5ONDt179/BvkqPTMzrM+ovSRunP3gzLMOxlRCKiwNr2cHchoj8dUgmSpWBbn2UyLP0Mi0MXETB53Ri0RdvydNyj7X4PR29h2lBcjwn4rYw7rFRaUYpwAF57UoQWiqQ5sy3FeJNcse5D3hWi4HQCwnn1Va1P5tFKs8b180itPAR4wzODug0Oj4nAYh9AQn4XnIn7YzgQPKNzAjeHZmFCn4UUf4g2viIc2SCaMDAP4XcfzD69Kef8ocf3BQ6Uuc1Rha+Tf0sC/o/xYPyG3JAojiR/kjJw4gDEZcgtaiYZ9Zzn6WB2xPaGKboE/4nRLykn2oYdMJ+c62g4d92NDadgsrBlI8g1OdvW2CjilDHdbjQZHwgG2X16uxbUX2Qw9niepHHeIsyjV45Sr01+gIRhg18wp+5ncTZKjXrKXWFfypI84CfGEaofJ3XTepB6uDaduVUfkrEAAhlPQBFcrfltHnv8oZynER3Cijc6wD0T9y1CNwXCKRzANKfE/w6AfkScxvEgCPxqhBc+HbHsVRWl+zQcAVd+ksPqYSGnQxOyX82CJCAiMOTqQjvKcz79nBaQYitDcZM9DVMvKk/ev3aDThcKj31WPqJwen9ol06t2zdwZnOlGRaRH1keBX8RSOl6VNnCB/cT8OBEW+u/hdHHVl29mczNxQX4O7NGlmfJSx6qDRdmDIIxkkQ6yKN33FP+uRv8K/wZ0ghgFovktrz7f2vzU0UJfZr8GyIgq29Wi1Pk1qrjVni0bf0F9VB1Y9H7zEjf5Rzzhz5BmUgrPtbuyHpLD/dMqEZXtiZ6g4tOIh6/HazcisOl1bZx/3hV7R3eAu8Iprg91fdw7NeFb9Yv8qb9JMGyKNvj33bfn2/LfIbyuwwTVlWXzkzCvfIXfUb/BSJ787PPEjg6DvoPF3yiTYi7f9ataXfVr1LzjDR/Ks2VTKTtdH1G00DfLUBBeqHNfr3jTb4go6R6dbvk8mCbpMummntB0X0JX+7oUjLJ/cSCT5WL1nu52coMsiG9JYe5xgHLD7EWRXbm23PHURfj1/8UIGXD3RdfGJWvS/sQ35DrrN0bQlWQz2rx9umrln72lTGnnOoMR+BcfeBH5765OIPL/Dr+AYesMHoQv1e9h/8rf85GCwDwEe5dS2e08+z/PQJzzl4DpUrvQXBrXkUs43/PayR7oGeXNgZ/9qJ2yBNlZaZKArPaCdfOmgQ56KAPBbPpdftIMeBt9jO8HbvvLeLf36lf633soj1d7ZOfK87bpEn4tl7c9q5wIIHMTZfqy4gynPd31Pofpbm6cfpO8ovNhX6ORgVhqJh4dyrV0SR3WjuqXKqD4i7add8oQyqSz1A295XXrYTp+N7oT+tuXChQvo6kvh1bqEsGKXv1Zpva266/egkTYIyyIutVKmdOrVw9JW3hR3+15c1UE5eCD6iPviK22FY9nYVXB3sCkMbWrkVNm3LkCk36yT511q+S1jBr/3RSZin4EjnvJ61XvoZctbOe23zTK5mEs7644doS5pHN+Euv2egSm4mCkjrQFYgwfqGj7ibMCAIXACDWkj4C9h0ww2yE890QOZaEGPpu/ERNjI83n8+Mvoq37IRV8+ypN4ezRn+81LkVG+XQOH6B/OgtLXEn/lNPKkPo79atkl2hf7JN/wT72pL+Ehj6v7IEKeF4Yy6Mdr+paSS7w9xEP9ZGBQ3vKK/aztsO0pFbRq+eYZaZ4PFygWPCxcaa+/yoCfvtF/V8951gbZ18FZPhGvFq8Iy3v2kX2vXPuMPr08oN6V7/X7GnsX+eEZ22xfKrt+giNwqu7BZ+WebZMW8qfwbWfsEjjWa9AGWLahZ28DSdVfVe7i13I2YEGhGtgBP3G3H2x/6rQvqdc+c4km0BLgTeYOdeqvUXn6Vx9RGerb95YycOAgzjXI3AIlGj/74z8daJACV5gJvnzFGd2WcqHv0n9SiP44tG9/2bplSzl4oLOcPHkCAXZdLE6RSodZCItF0cD4dk6UhYyt8HC2Izx0RXOfs4fXIzwaRbINGoZXOJSgLgOuY8Y/BVYnIULEfZnKw9+Ku0JqfQ68vKfBVOgvEpm0Rp0LYcvI4p6BL0yUTInUGXA3/PEpVd4NR21K8POq+Bvlyl4KCFt1LC6GQa2rq03gEwUBMBVkgALLdvlduigcGsM6mFM5iCuGHqfc6GcEWXwoaxsUuusCVxEThveDV6v+LqHn2cY50WD6fCPQaT7P6aBHmUtTaBP4tlGhavVn8KUeFZ34S/s600VDQMN+MqijktWpsA3iVPGQCyrdwha53opSUkcGnQBRcLlVFQeGIm3ivn0lrew/jwRmWkpOJZsA0mWDKAzUqD+DdBSNdSXdFZytXz5p+tY2y0PVOa5094FQ1ML5oHBuoLl42O6GRtKpFq3tFJ79rJLynn3voCs8AGzbII7OQolneIWyOqvS2kpV6sLxOctIE419cGv6grPtSpuoJ/LG0zFYGjjqcrZLvhTXtBo5EUYGoDwjbI1B6EP90jHBQ3EBVnAnBSyzZFywTfapRoLqGTyaSlcdwPAEP+qgtvKqvGG9CXCkZTUC7OylQRjblzbTiDgP0EQZcBDvc5lFadHeXqlBPfvTT3ohsDViOmvSLA4V9xIUkg600X7wyIyu9ABmXb8ptVsfcM/3n5zzoNjw33rjHHOxcYKUDXGJ00m7EqjCwXOQbj+LpQ/aP8lm4FmdFT/2CmjHmElIv5tCri64BQfNs7rwR7KO7CvhGGS4xiysT1e4QS3wheEBGuGzH1WCXLNPNMwO3uw/dVafPjhQXJNmkU8qt0+llbypjlQ+MoiC53U6xMH+sq9rgJFnwSltbNHIunr2cjDaMzRxprhHd4Iy9KlwHRjJj6LvIx6RyRbuwmpgWsRC9q/9n5lMGmegwWBA1S2WqvwdWQQfg2sup1AGfDY6TBg00LoafSRM22I7PTfyqv3w3oXvLqb+AQwe1cHqmPSHaFHPjUerKXmuXq84BTv/WADayI/ypofyIY4GcOybZhbTdnnYP5FB+MBL4Sfw9BBXYVlS3KWZh+XlG/WvA2jp3pe+drCtMxeeCTIp/h/6I6/XYJPBz6qj+qDvldnzDIwcHMkjKSN+fGyDvK6jl5l32mv7b9aZBJ7O//faCXmP69ol2xX+ol8ozvNwhQFn+t5+aeSnobmNsPVx9LnY9d0bFpI2PKsPIX7NEs06wCC4Bw5NoKGpP4/6bItflG9pmyxI8I6uaTnfsQXANuiSIBXPeD++hvILnJpGXpELWFBSH6Qezl5rjrSDH9doqFzUzTRc+NfZM2dGpU+yRiijfJoBKm3NaFD/JCCDjIWf0EGZvUXmFbsmOK0MRGdBG21vBvPg3fhs2gR9DW1CRbPSvcGxwde+8Gh+5zvXxNxb4u3Ej1x7EfkRbm9+yxvqUnndPs1hP+W37ar6PM+jS+QDeUL5a/w36eCA18GLdMngloLypDLhAMdBZx6GqH+GoxVyoWr96+fwSkUm5ZUfgwvfUe8F5Kk3v13v3dBHu5MjwGu/K9eBLf/TJw5SxKfizyCS++p3/VKf12Y5sFE3JdjDc04SGOhJX9POppKuNoRWXg2xW3Sjja0CDe1vdu8q+NW+tkdMH7eIwQB9A+v0t+A8q4+qjFSf2n4QP3WPPC3/aPv6MElnOfGO/uEsrtoJ6/oWXaBOsu+jc2lz7WvrgafBKVpdRCkXnRccvMA9kFGPKXPCiS/BtcCSlsqXdOOsbVOnSOfmPg8lo0GZtz7hJzABn4hTD2TVQWMzZlBP+THYJe3NxG3kqUKgblELdqF66ClfK69NUDDyAw274QPUSb+GjvJj3asr+su2QAHb6RFdL6/wXX9Pe5ASFEj7wE362j7bIt51Nh2dz3P2bfioRWcxFG8P//JY65tn79bGhO71UgrVYg0PYEusn/vRZ+p8ZDC8yrXYIGheJ5JqOftK3QLSgSff+JFX1K3qGvnHoF1dklEH+5Fr6NP4VfH96Fufsx77X5ro36oT0iCa4DXbYDlpkwwXf6PvamadjcXGS1PwiA2SV7UFlJc/wosSiI+wbEN4i7O0l6/s13yklc9YH9fFe8rkqWX27Dll+J3DK1x4UTkS5M/9+NsEGq5obIxq1oFclu3rk/thXLPt641l6dtvl3WffFr2rt9YRk8dV0a1ja7GzUEwHe5Mg51TncfKvHZ4BCJUbliaH17nGdMIv0PRbVj9WVm2d1e5k1sz7p1VRtx1V7ntttssWDscJpJ9VfQyW5QdzGJdKjfrtR6VkbBVcJbrf2v/cvbsufLmP/9T2QO0h8eMK+1TJpdbb789TmrwVUmpfFVU/wGGaISrc++e8quPVwG9lH98dEkZOHhIHTjBgGFWFfANyjXKmN/iW4UOZUe7nCG9QPTXZ6qTWFO/tm/cWN7duqU8NPzOcs9DD8YABZ64KmC0X2Uq8l4KPfitAAg/qoTbGsRKpzrQ0Nk8dfJUWbry43KaUs/NX1AmTJ6cZywn7HpWYaDMY6xbmxUBVxysy1oVQumhw+ZZw3jy+PGyd9OW8snhziTA/uPzL5Shw4bFMbX/FHYdxp7wgeekcvN8b5xh4bm5SwJC9jP46aA5w2tg4RyR5n27O8rnX3xVznLvnsG3lvsff7bc2q9/BhdxioCpAglfaowY6Cj0DhSkVRQh/H6NupzV52YUoMr68MGDZfWf3iw7gO0CkCceeKiMmzChOu46ScAO7TlLg0bpqYRVjBo7Z1nl+BsdEPvZtm/+akNZunEDkEtZMn5sGQ3sOwYOlOBVEao06UN5JEbbQBx0MgtAJ0X40tlBuV2V3/C+Cvw8PPTZu2+Vz0+eK9OAP2nBfWXoiBFkmNwa+BpQed2UWDoREa/ZNgKKE8JZw27wTLo3fC4ufo4ePlxef29pOcm9V2fOKMNGjYrBjiMAzukry/oPhtTYxAnghwqfy9AMVGgPFUVp5zf1ugRq986d5c2168pU4D/4wvM4Yv1aRo1BILhroPo4AwRclXt0ge2AHuItD1qxRlD+dQZRuus0nDx+rKx5+92yE9iPtk8uM+6bQxo2Dgy6T6MvLfyvHKUh9Q848pMCnqEcuFMGx+0mHH8dOB2XYyeOlY5dm8rqjft9urz8xMPlrtFtgRPDRh0QI46E8KvjrqwbcVdvQQ8JRu2NQ2X19qkzIIf27SvbP11dvqGEtHn4+V8QPR+YYI/wJaoDMekuDP8aYIg+zm/gQxvXiDuDfNVZLgMB6ODj0OWz37xRNv5Yg3ePz7inTKFvzfTSmY+sQ2OhKkNNn1JF6C5dmu/KrnT3X29mgQxs7tu7t7z+pz8VF9rczWfG4kfKyFEjY9wNGlQ93iJ8YFWAypa08JD3pI/9XI0+g11o4yBq47q1ZdmWbWUA5e6bOqXcNX58uV154hBX4YuTUIVZByg4yrRdvlU3dtWTUlSlLuL+uXPnyof/9ddlE88ubh9V7po0pfRj5lS+kgfjTAVF/ngWzfqn/q6Xciv6FPyVaYv67MEDneW3H63kFzxz/4IybOTI8Lx41QAoDhq8Y11hj1Y16nZpa23qZ/WOsuCRgTP1CL9jx47yzhdflnnDBpV7H1qYAbIDu0phsfgrj1bblCX7Qp48feJ4Wbvio+jJ52bNLBOm0LsAVvZcflZpi+MLXup3nTuDkl73t/rdoAJCEWffJQE9yCTQUT4B7H07t5ZV2/YFwf/+F0+X4djAy+jfHwweUZEyazs8N4e86M+cb/iujjGo0YeBnQPRrd98U1Z8WXXwPYMGlfmPPlYGDLiVjE2ynHg+Tjt0kr9gkMipvCdfKw/RaeBtH4TneUafRhk7fOhQWf7WW+VQC6nnFlb7oS36jsxQdTDFqs65oQ3WG+RbzzVtaAYxzr7KBDt3bC9/WLk6pe5rG1ymzl6AbR0ePXaJZZvOxmpTHUwacOCh4B268M3+ySBBeQLn6E3P6OML4Lf2g3fLp0dPl4k8Oe3BypP9sK1dAyRrbuHvV4/g7tlKWkdzLZfsW+h/+szpsvSNN8s+yrz00IIyZOgwmtTyH7gmb2lP5RF5TR42YBh/QdnhIw28rz/gfftInrd85/795b8uWxGf45dPPFruuOMOfAD0tCEO/ULKN3gFa2Dl8Cyi+VmvRZt6nY99Ju9tW7+uvHPocHly1Ogyff59sX3ygrItLn78Ln76KoIMvbnmgDa6q+WD+N0BuT7C6ZMnSyc+zdsbvg46ry5aWNrHjo0OUF9VjFroNTQGXo6cgO0ZXNXRGeAA3741sKNPs2PVp2UDFmwMxR555dUyePCgBGLVB9VXBFdkMu1RYDgCCzji6qEeki/ts/QR+J8+dapsAPbqQ50p8zA6chZ+h8Gf71xGjH3M0z7boo8wcoS+fJPGucBf+jLwoZ/9faBzX/nju8vKBe6P4DMPvhnd1h4dE50nXXnM/te/Mwu67idV+UjA9kv0MrCrXDW65mrZtOHL8v6Xle6PzJhS2idMLoPQCdrUBO/Uv9DF521HUBfZVhsin1RS5ZSLKeT4pkeym1e8/tvoyPvbRpTx02aW/gNuix+j3rYOeV7+0v+yL6S57WgCodQE9GrDvK8PqM2yb48dO1r+edlyi5RfLl5UhqIjnbixv+xL263+yiel/F7h+bPKnvSujdFWyq+Wt45dW7eWt7/+JnZ74SsvJVO58WnFqQFpsMoJSnEO3/N85CF1Q5K0pwYHlI/vCeCcPX2qfP7+0rINIM8jS3fPmAHvGeAh+4t/jb6NfwCt0pZcr/Iv7tJMXyr6gLrlYyfAtB97GTd90nkwKL74yKLS1t4uI9RsBnDQX9KOwJR1DEjbY9+gnXTOZtPcc+zhssnsz4AuMXi2f9/esg1/rKNSIH//j//tfy+vvvZ3ZSxyK9joVfjN7z/3428SaICW4UPp0eK3ShcFBt9lB4PdD955t2wl4CDd5s6ZXSYxOOqLU6CAZ48EOkaGqAxaGVDmDQPzjFfiaKUOrmPYTNW7wFKDz1DeKz9eWYaPHpVOGjlyVBmIgUiEjF6KUecsEyiEGVy0hKhxECOcCJ71aBA1PP0xjicxbMuWLSsd23eUuQvml/b2dpzQO8otKEGxSpvFScZrBIff/96hMRS/jj17yhu/+z2pe7eUhx5+uAwbOrQrWmd7q+BWQ+TvCJ9Kj3YoFM3miw78L5y/EBopYN5XiLZs21ZWf/RRmT1/frnnnnsyKxU6ct/DCGjK+wy/K3wjezoOOHEcwUNcbCPPWcZI9qnTp8va9evL9u3by6NPPlkmT5rUmoWif6QG5SWJ9M9bKVBwzoLadpWR9xtDZF3SXKlyVtrHLrUAAEAASURBVEgFuJfB0ZZvNpU7hg4pixYvKiPuvDPOZYyZSonSvYHXDQZMaj/PJtAA7gYaTB/XgZatFHadUp0Lg0f7gL0bw3yws7NMmT69zJszt9w+YECUjPwIcjVSqdIATrMmXQeSagJTd/sq9HC/AhWz/CU9OzsPlC+gy5EDBxOsmknwa9LECQl0OUOaAQbwPXuoRO0D6eTg38GjdJIXu2jPLxWPvLlp0+by2aercIJuD7+Phu8HkXJll2ZWVbg0uotHxIs65AcjtSpVlWw216JOo7YqePE/e+5s+ezzz8uGtWvLhEmTy7hx48qdGJ/bbnMYZsNxhlDMdXCKow9eCb5wV/ge3RPYoHdAyHqkTdOOAwcPlQ+WLg0PLVy0qIwcMSKDYXFSMXuEe6iq4bXIL78TWQZeBtKUy5sgoKO/NV7yxc6OjvLhBx+UMeA9b9480tX725XpT/nWwZ+z8JaXJxPxhiaZrYY/7Av50PsaSmctDMR8++35cvTo0fLlV1+VTeu/LM+/8EqZjTz1YL+Ja2zcE6Mjn0GPxln2e1rEBXvaYIObZ17lfFVSMhXpnieXrnxfjgB79749ZcuWzWn/wocXlbFtbTFkCezAzyB1ndbwv9AdqMgvDa09297qTEgzZonRCzrQu3fuYuC4vUycPKUsWriwDBsyBKeKFFzoFobmQeXRfyKeQIPA8KzsR2HDqOUHTrg0AMeYA/8QwaMv1q0ru3fszNpJ+X3atLsTuFPXRqfgAEQfQAcdJPtUaqlnKu7VMZD+CRDQ1szKwZe76NNPPllVzqFvRowYWWbdM7OMHzMmAwAHCdcDCuIp6vzhLzWmztoHwLdt9i1tsn+t2wDSBuzS5598UgZBj3Hjx5f29vYyZPDgyIx0qDpRHUzfgbvZXNaZTVmRmTi/aQ1/bjgM8pwG51XA3rl5c5kxa1bkaRiDI2dPpUPlM2kcLPO0fH/j0fyyiG1KRhAyKG3VNasI9jognD1nThlFoGEAeiyZH9DcMuqMOI0AgALweNXt6gR5yIFv5MA+sbJW/T67o2NXWQP+k6ZOLffC77cRJFHepWXTnzfi+u99t232vcsDjx87VjYyYN9L/z78yCNlCvZDfhUJZ/WjEygr/up3ddst2Hzbar8bOM3gnJkNqWcQrAd7Nnj9KPZDHb8FuhtsXISuuYugpg45BEwzu/Y5uQHpwGkRvGt2kfvKr7xugOjU6TNlE3C38nGQNIUAyVxoP/D2OzK7iwYJjaS567TlD9ui7ZDmBkLMavHIcgT1M/e1Tw5i9mOTPkcHHzjQWW7D17gXvplCEN9ZcAdANSMDfEA23XXDOUBbf5q2ZGDENXWNGSRbsNer6VPfPtU+diywp5SRd46Ic2ygwcGRqcEGGnqBm7rRw9nPDHppj3yjrKZdltF207enz54pa9EF61avJnA0pUyYOJGg4KhyOxM/VY6kZD1aZM6P6zqzdU/km0OeoW5rPQLPrAb2ubNny7z75uEvDQsO0lV44iqPmR2jPdN/0jeSl9UJ3resM9GmYCvPzoiKm+3ZQ1DzHSbFBg4ZXB64//4yhAGjE1S96ZvuyE9CfJEjodU2pxe6GlO/VPTVN5V2LhM8c+Zs2Uxm75fY1jnAnsnAyMC38uehPGXwyHf1uhk9wpHmbu6rvRPH8AoyrM9gWwy4HYMuexm8bN60KUG8RcjT+HHjhBodE39OP4UrXQfwUoFnDnWDh7JddWX1aRwY7dyzu2yFbw7Am3fSnwsWLCjDnfhB1sQ7PgBgpHNsjzzCdftCPONj8j0VNtfA3eeOMqn09YYNZRu0UdbvnTe3zILnB6BrMuAHbg9gaE8rreQ+DsEBS/728JrfrbPxx9R1Hbt3l48//KicQCfcOWJkmQxftre1xRcIPPHkXzKBoZH8Yn+FT+iDxn4JU/pDnNTj4PF7gjgbGN98tGI5k4SDysSJk8q4sePix0tDdQ3GovoHqQX8gnxQzh973xZFTn3GD3XIo2fg849WrixfrFld7nvwQfp0fIJfZrJkvMRzUkYcpV0CajzfBNs8C67yVtXz9pF8b/v0Oz5mfGDb7n/gAXy94bFr3lNP24bqd7X0PbQSVnM0/evZw3ux7RTRRm7fsaO8/cc/lvHQ/EF4XtvkIT80h8+YNeSkgfS1H6zBNtW6amAgA2/qEb6TqicJrn399ddlG3r46RdeKPdMn8FTLH2i73iwiwfkMZ8JXjyvDqhZCowTtI3cU4/pAysn9v8JYO/r3F820reX0NeLliwpY9vbobWIyS/QHST9rX43UCK+4q6vJH0pBg7UB1zblTEIcn2G5YE7d+0q26CN9Rw9drzsXL2m/C//5b+Ul19+pQxvGwXfAFiSNh++/pyPv0mgIVwhFeSOrg9fekAlCLYLR27Ze++VPTt2ojz6l4ceuL9Mw7i5lshIXw00IG4wZnonsOjMGA1/XAfr9zA3HeeGT+dxFFdieFasWEGWRBuCPrG0cR6MgTDlSIZTsGTYJqOhmelRUP2nkokyhMksJ6MpeAqFjPDmO2+XnUTmHnjwoTJ+/DgUyuAEGoyEZYAR5gWObQ8BPP/bh4LsZzvO/69//ausyXxk8RIEfVjXTJ6gxE9ntMJV2OtsiBwozrbJgUazVslak7rFWefsSwRlOQOvBwliLGDgZYBExeZhW5PuA5w4E7TDSJyOeAIhGNcGB8v6ke8VTAMNx0+cLJ9+tqZsow3PPPdcmX733WmTzwAqz9pXCmJ1dmtKu3gLQ3jSwN8KZG3TTUmfPXz4SNm9p6NswAANIvjyBIEMHUVTeY18AiCzDr3hoW6khNdAQym9zGgApo7zZT5XrAccvFadue7lJM7/zp07yw4GXYcY+M649x6U4APlDvpbA5PslNAAQwtu/k6aP9diUMH0B/rkKvx5Dbh1Pf71jAadlc/WrCmHMMqu+5wL3e/GUbev4nhKR5prv6qcQgN4z+/5TZvs0/S11ygvMR30ati/hCYrP1yO8zagTBg/nsHL2DIcGknrBBpsM7CtQxloAiA6JNJFpSrN/a1j0xhQnXsN28crV5X19OvUqXdHnkYyeNFRDC+IC8+4seQ1lj2BdUu51lQ9+9CItDAtGtrz3evit5/gy5vM1qmYH3v00TKaPs2ArWXQKdhVttLIwAY40paa0aAM0P38IQs6vKx4yEs69gbW3nrrTzH4C5HXO26/ntkkz9kH0tHyMbhck+Y6JBoDz+qdZuBlKrBOnwOjw0eOlM9xojes+7K89NJrZcGceWTUsM4cIxmjA8xqfNQFVVYkWnX06WtuOnj5AUXhQP0HfndnDaAp34eOHC47CXx9vZGZEdrz5GNPlIk4inX3d+jN0jRhasgUwsvQXudbWot3LkokPtZcHbIaXBX3Pbv3lO3QZgd6bNKUqeWJxx4rI3AqfFuMdFNGK85qw/qP6sJH6TtNKnTRATJIkkADdHH2o5PZrjXo4J3AN/A5hwHArHvuLbei62vacaWxdXjIm9I8RljeEGcqC/35ncABDlr2R6G9Orgrli8vZxnUjSKoNo/0wskTxtdAAzruxkCDtEkd1uM/4NIMm5B+tc5c47qOvMsa1q5bX1Z99GEZigxNagXXdKKVEXEW1yYw6vdkNAC1BhrIaAHXtKehP7BFw/T4E6dOlg+WLS9b0MMOjCbhiA5Dx7sGPzoQWogPf8Qyh3LyLw6LcDFtAroBQ/ttN7pmKfrdNzs5MGobTTYfM17KsrqgOv41VdV6hG278om9q/pc/NUz0kfZVS+o4zfh/H/44Yoyk/7UftyGjkxwutVn/wLPf+eCus7+P8OA9BAz9+u/+KJ0dHSUp55+BkdxWnS0eGbZBPgph+qKulQGnmD/APd8yZIi9QJlQKgORCGbm4RdwkYcRp4cYOiIOpv+FPZjbFtbMr6y4SfElMra7BupHRpzoevMd7nWj5vWaV9OYD8MTm3a+E1mkqfdPa3cz8BryB2DEgBxOKecmoGhXTK4YbszKOe6ffIdAQNhKr8Geg0yGHRQBnYzYFz5yaoESm5jwmQufDNj2jRS7XuWSwz6DDTQ6i7cmzY0Z27laNpgPeqg7jwvPb9mMLriw+Xpx/ETJpTp06bHtqpnk9HADKx6pxfyob6UGJEB9E1CDAIOH8FL4B27im6Qb+zXlas/LZ8RyJiCP2AQY9To0eV2guLhMeq48eiiPTCb77bjzw55TSTgzUPo4KXoglP4ZQ8/9FDwNiApv3gIQ/7RTpsV4/f4HtgrQcj/4mkQUDsgnzswETf7yMDaG2+8UYaQ4bGE4NTwoYMTbDFz8mbKOqkhNhI0ts0agelRpf6GszSCLjbHYIZBx6/QA599+ml5cNHich/BqRr0Tg8F18Yvku4JlIC/SwQNLlpK3OURz7ZFnBNYM1ANv+svqdOUp6mTJ4lW9EzabdvzL5dTX5Cjji7a883BpR/rMIvkHIO67bt2lW/QBXv27Ckj2u4qSxbWSQJpK43FQxgGGRzsxmfhunqmqdtaLVvbwGCPAZj8f4Q+XUtW2WaCjsKbiywtYFLvtlsHEDSp/N5TODyrPhZGHZQDEDyrfZXufEQCPrGOTBJwdkC3DB15/OiRMnLk6DJzJtlT48cncGembfZZ4jGXdoaeyKx+mjylHtVPU25sh7rGOq1DXWOg4fP1X5T33nunDCFQfTc+0wRkygG7fJwUe+nAd2nfyC3V5QjOfItcATb4B74Tqb3KKSY632eicy329cGHHmYyb2KyJfoRPJUONjr+Pt+bQbP1SndloPoGVMB9+0T+0m74XX104NDB8g5jM2EtWby4yx/znmVrk+lb6UoZ8b1+lh+v84pFpJWDbCrIeTP+xhu//325m8m8JQsXZkylrIlfKAJgnzMAql70uvpEfKzfQ3/MdthO+8DrZt46NtN+fIOOf+GVV8o8glMeF+F/YVs+vi7POlbTHvp8aEMd8ogBa+tV1ixr/5tRfYSgVMeevej5DZlYcfyhP6atb8YH4p0lNeCqjdKuCUNaxbfmepXVGkB243+zys6Q5bhl67ayET18nDYcOXqsHKKuX/5P/2N56cWXym2jyc13zi4dCTAr8vMzPpBdqPGfPNyUK2ufgCNtMiMMM3UnWuuxB4J+jLAc3LuvuE71fmbXJyPoLjm4ANFlOdMC4dIwsYwsR/9UQQWYjBnGY0MmBs3Ofq9iULfq449L25gxcRTHcDbQ4CFTykyeNTwykoyuINh5snmcK+HyTyHRwbKcaXM6ir97849lO21YvOSRKKiBwFYB6UQ4u+v6IzKJK+6pNaBb3/7yqSqC7mV7x67ym9/+hgHRHeVRombDhgyN8250zYFmIxiWt90RQHBMt9GECCb3bJ/Ol3g7IFMgpM3ar74sb//hD+XRp54qDy+4n9mdvjFaPq+RrQZBOLQeGsQZgD4JNADLjqjd4bkaJI2JMzLHTpwoq5l52bO/szz/0ktlOgMYy6g0mv5T2Qk3A2Dh+huoCrdlG4dS/P3tfQ2/s8e79+xOZsDtZDQ8i+EczYDXeypKad4TuL0ERh9cvkSKKszX0022EHYVd153Rp3OdCUaynUdI/He7IwUSvAEMwGz77uvPEw0V948R7aDfGnL3Z28J/i4Dl8nzGsqFml0GRr8CDw6K5siGtTQ4dFB2MNMmgOvw9ClP+m0c+bdV6YRaJAWzqA2fa/yi3LlugqK7gwNMugFZ+ksLaULRMRhviVs+yV9unzpe6UfgbaJEydktmvkiBHpQ+lcaS09tYc6I7Sbs7CU00b5yl9dhoG6TVU89+25shxZ+oK0rhn33svAaGK5k0ySWwmYZPBqH8kr7lTOWyNuIshj+qb8I+ygCt3kFNf+2Q9VXl2a0at0Mrh44803y3miuo8w62KgQWfLtfiRS/DwsFvlGx0LeQPw9GHlHXk2nEhfaCyEr+zaR99s3VJe//WvY9geJ3A3iBR46Z0+w4mxXIIJnFtmkzN0woFI9J+K/G1AS6dHZ0UjdAGHx1mjz8lUWf/ZuvLsCy+X+bPmtgIN8CMP3YxOkVdu5uM5QhBofIc3DTQ4SDfAcFn6wVC9+/Ul6evHcvjYkbKLQMMXX35JO34szz3zbJk8bnxmFq9+jzwh2zor6h3bfIkdkK9Ae/GWOPZjqoRm8gqtjCzJk2Zj7O7YnRkjZ43GTphYHifIM4LBtA5Vk1ovgNA9T/ON+mCRHEKkYhVFuWpf054e6Hd18IHDh8qnDCx2bN4Sx3EejuKc2bOzqZ0Otvwor8nHgQNE+7bRu14X/+a3g3r7qy+6Sp29Zfu2svT998u3p06Xu3ByZzGzPnHs2NiM6OAWbCkengnGtXf9K11yD7xTb+pmgzHwd++HNcwwfvj+Uma7RpQpyKlO6FD0sHgpn/JV9GQLrvhJ457MnsszllEnCdsj7eS78nQSnN9+/72ymX59mIHLRGC7zMl7kRdgWb45AkH8mgutc20DfAX9zcqyKmlmRtybBNZM71788EKW24xOgEe9alAyuFNOCkROeC60sCcAkiCN7eGQ/s2sjkshz184X77C+X/vnXfKfGbTFjJB0K/vLbWteeKv/9PQxBlcdbyDrgMHDpQ12I+OXbvKS6++WmYzAFBPOXACG3uuhb+DO6/A1SAfaZdG0KIbs/Jib3aWAzJnAd2vwcFLx57d5Uvk9RaCI88/+1wZ29ZWLl1kI1BsRdUYwASesJsjlGpdaAYwBget4yYGXX3IRDlFMHYjmXZmNJw8fqIYaHhgwf1lEEsqvzt/MXbCJR4qazPhDDRkFo12a4f0MZzMUDeaJeGSD+vSCe3FZw/ZRx+vWsns+h6Wad5W5sydSzDgbmbVu5fvCBrCOKmjwf3Gc9MOz01brEeG6YM8Kb8bNn1TPkCenL0z42BaE2hATqWPNNZJN9DgudnALbB5RudZPqwSxlX7go+DdwelH3/6SVnDLOz0mSyhIhPDNce30gdOEGjTPLpoLmq5Uv90fb/hOl8TUDLweBgd/EcyDo4wQHrs0cfK2Pb26BmzExR09UZsKviotz38XQPvFbo8L5+Lb/w9fBmRUGb0x17/zW/Knfgaj2OfhjN47AGPGWC4xt5N2rtqIYTlN87U1fXda/zM9RvuaUsM+K4nEPARvvBjzzxTHsQPdt8T9YBPaOsqrtpUAiHYVe85yIXZqaYGLbrUBfXYDu16k9HgwEu/74UXXyzT4o85yVMHcdpRZSjoSlTq9L9088g9zxRQDp2kcNbeybwOAppmwmwjmDyira08TqB61IgR+MD41vBzbCf4ZCAG3yvv1ffAyLWu2zfSXvjqAIMY6oPDBADMoty84evY3Hks8TVoOgBZ+xZZ8011aDxoD52AEb0AnqEzsDw3MmrWoDyuXdR2y6s70C8rli8rp+CdkSxZmT2LjGr43r0T5HcHjsqq/p56NNlStCvLLOkfdb9r7SVTU6cOv7bP66uZfPgTwak7R9xZpk+fQaBhPHwzLHpSWDWQoUVu0biSm18e8Gz+CpuWtdoD8bD1vZMhtJRJ1K+gz4MLF5bJ4O2Sx1vQw5kkgi7yubS2f6Pv4RlIkv7zun3hP/s3tKOtXA6P7Tt4oPwO3OXPp594gsDd6JrRgK7J+EB6+7HxzRF4/OAcXoHe1bZUexL/U3kBn83wy5/++Idy79x55VHw70+f6luJQMMf0SXAip9n3/HRxioLFX7locaGKMtumn+azLLP168r67HfL732WrkPn8MyLsuTv/RzPeQ5YSlLdWLVe3Vcoh7W1ilvTba1Y5uD+DQGqs2460n2yNPPPlsmjB3bxRs6RtoQA8rNmEB6qC85ZTLCNjRLiLVPBhpuZXLQDCED+N9gP07gH5xkAuUUwYanX32lPIudupWMfCpCuO0k2qCPZ4f+jI+/SaAh0VaFFQJLDxmMXsURq4GGjgQalpejnZ3lDmZGFzCwMzp0GYYwHdb3zGanVDpPgQ8DC4vrfvzNz3SgP+NgwEiuAXZjnVWkFX2y4qPSDswppOiMgSEGDxrsE3G24kzDaDJFmE9OANNmcM2PHNYlcyh0lutHoOEsgYbf/OGNsg0l+Mjjj5eJEyaUBBpgzO+InLl+zCBJNxWcWPL/r+EJFbMDpwQaMGyDyJJ4nEDGUPZocAa1Eb5KA4UPWlCPhzWFJtLFtkgzDsuKt0Km42vUbw2O1h9e/3V5EsOzhMG0KVfpL9qZyCZnqWt9MWQGH4Dn7wiNgFv0TwfwU6F1g0wH7J9+/lnZyyz1S6++VmYQzVVZuMZNLFVs4iLuKgdxTT3ctZwNyaAPA6pSsym23cFJZqQ6Osrazz4vg0YML88/94sMSt0ozI3spHlP4PTwIZS9r9a0HRrGBBroBAd1zny7nj/OObQx0GD6pTNdphm6tnEedFmII+0eDeeIIJs66v4MGjeNj1TXWCSYBK4gG6V1DcWBhmLAxziQ9mgYHAg6y/jpqlUJrPWH3+ezdno6zqi0MOVLGhjN10B3KVPuyTeAyn06I/e8r6L0GbMjvL6eQMMHb/+p9MERmTh5UtLUzfZwoGAEXdr6iXMF1EpzB/7AAncdCJ1M+9sarcN6+2IELuAMffDRh+Xzjz7GOMzNcpgROBS3MrtgYESjAypAhW+uYkRJWTKAomHUYsqKGkvPOkjNhpFmaDgb2Mn61N8R+DrD/h6P4ijexQx13toCHcWtOaSFHxV6DCowgzOXajnvOpiu/G5b1DsbUd7//E//VKbPurc89chjpMCT2WQ/AduU9xqEqfRM4AK4OThH1mwch2W7Ag3g5iv3jsPvLtP67JM15ZkXXy3zZ89lFgRn9TKBBhqc1Fr5RJ7Mp8uFoDFcixMEvfHkL13D+YNsfQaQQg/tDhNY27l7V9KODTS89PyLZer4CcmWuHqJWaPLzqbBbjrPOL6X2Q8hWQX2Ob1nfyu38of9nUwWaK6z5NKJXbt2MTDaUrYwyBgzYVIyGu78SaCh8otUVXJbdBEmR37LL8A3g0eO6Ul/9unfrxwh+2g1s5jbN22OYzcPfp9L1oGD6YvIqzTPIU04or/BuyuLir5RFqxFXaEOto/VVTqjCTQw63LeQEN7W5ZOTBgzJjrA1FrLJhCQPkwN/gFD/8mT9VvVpbVd0sid5p15MFi6nMG0Kd5m8UxAxw9mgJElU9gC4TdOjnyeujjrnMh3pnzaRh0njzgYLfgOqP/07jtlE1kTi3HOJ44bX25j8GhwrQk0hFfyZP0jnn/psF71ZZPFYj/t2rsnjqI29FHsx10MkGyXusYZrgbv6IDIu6wpVaCJdOETuDyvUx6nFR2pg+wSs/XM6BiofhjclzCDfAt4q9//MoZ/Cet6rcFDnrCes2fOZInAaiYJdu3cUX753/5jlmaAEG92qDvqR4cFV1heuwZNzUaQT9U5DtrTH1Shwy8Pqf8NHh3CUdy5q6Oso29vZfnBK8wU3dXWVi4TdNMfqDwux9VPGIUflUM5t75nEEMZJbkbsHsRjD7F5Mg32I4t8PtJbMmM6TMJVD9YBt12e7kIfBDJ8g5thpuH6d47gKl9UPlbXSxsM+2EbVA8gYZb+pS9nfvLRwYa9uwu2o85pJLPJKPBQMNFBl4wTgIN6gOPqBbP+XX9T+1lcecb/dtvQP/YRlO932bPE+3ZRPylGQyO2ghQOUh087oMAMA3rwEFnJsBZ5mKPAJv2H/KsPRWNqxZvuxF315CT64A90+WL89SoanAH87srrYrmSnI2414dn0XxeuoX//OdaXXgIyBx8Ok2f+WgcvBPXuYtX8a539cZknVcwlKA9+BtXwUOQHniiP9B87qSGmvjMnr3sseBvy2vDP3v/rVr8rItrbyFDw/jCUUBta7XcPHuMxMKW2uFkK8qj5UY2aACNZ6Pbak8o82pQYHDPq5t8e6L79iGfE75dlXXs7Ej29ykc/F1wk6aaSdNZPOIKs+msGZarMd/NVgSpVhxiDQRfudVO/9+8o6Br0Gewzc3Q3t5cW8GYIy6qjQmD/BMrTle2Qsd+p1+9kPPNAEGgx+bd2xM1kHw9uhzRNPltEjRmb2V3qqywOh1V8olfBIMvCgiGUa2ysvansTTEGfHGf2uAYaNqYv7jPQQLC67y34I+jPH9Gvbj3p/hjSSX72XzJJqdTXQRpo0IKE1+ln+TQZDfDq9l07kxF32kADGV9zGfROnTQJ/mfpHLT6URkF3+7staXfp/9nP/g2rJt9A4B1ir++SGqGZvI7etZ7n6Jj/vib18tI9oZzOcx47PZQ7IdBRjNkpYzeXf1XaQ+qOSAXEP34jzP1UzB6zUmC08j7+yuWJ9Dw8OIlLC8z0DAomcnxHSkanS1v09fys3IgsOgb7jf8L2iB6yd6zz1nOjsPlF/99vVkSjm5oR9ppob+ms/pezV6OHZJJDnCf+GbWk+j27wen5VnfW6TgQYCGXMfuL88tmhx6Y9NdyDvIbw6PvjzQEL82PB59QlqvZU+zXezDly6/dm6tcn2ePkf/qEswOfwcFwm74qTh+0wyNkEGqxTv1FYBhq81yxBV7c5/jhIlqbLcL8mc60XwYFf/OL5MoHx5SVgG5wCaJ6PHaKeLh2svMMn+hXSwteWa1/d50Rd71I4x6xmM3xNEOMkdtCAyVl8m8dffL48/dTTpb+BBnBKgMFAA/5eeCKt+Xn++ZsEGqqgQIswIUKJQjNKaCqgim4rg7rl775Xjh44kDVv97cCDQ4OL+DMdNdps+NlXBUUZ2UigskXLys59cx1hYTyRhSd4f6YVLSVRInbceIMNIwdS6CBAYYdbTReplRx1EE49QhbJpcR+aECtKxM5qGAOOC9BSN/+uSJ8lscrS1ffVUWMzAyEmqKVG+EUYfFTfHEn/8cIMr/fPXnv3FYt0y6DWb+FUsnBhtoeOTRrJvWeDio0qiI10/brlHvcmrBXWMUeDC1bVRQba8zmZ99QaCBGd4nX3qxLL7/gdbaYB37GuUTtrRoBFMlpWBqOBIgsEkN4W0crVORqCwMNKwkyLNrz77y6i9/WWZOnUb31UBNSMFzN9LC76lLo0SdHtYV2kMPFYP4G5E/QKR1x44dZS2O6DBmMV8iUDIKAfyOgUuixMDuTl3def4mjQDGSFXUDRoooM4SaYg0QD9CZw2PAQjProkyJWoTgn6KNswnJc1AgxkN53Eir0E7jUPeKEAfZIaa3xoLHXqQl03ZEI+ATjcCBv6mLe4PoXEwEvox69727+ooAwhWPbDwYRzF6elvgz80OO0XX51mFZE08J/0le6pw75o3ZM2plvrwBhoeI8smz60ZeKUyWX6jGkxEPJEBvc3GBweb/EKOGI0al9ahzJkP8hn9jcReuB/B37vE0H/hH0UXCs5derUMooot4Mj5SLBKehN62mPwRdxtvUR3dAlzhDtaIIMN6H0Vbhmm+wno+E3pNKdQ7k+gbOig+sr0cxoUEFLm1AhePuzGk5JIr6ph/ZJN9vm22aUF/E30PA1g+n/+v/8U5lGNsZTzEgNIeCoLAvUwIGDL42AxsZBLI+1cJYP4aUWH0rH6vDVjAaNj4GGNRi21StXl2df/WWWThho+IFAg0GG7vKKHxGDpkEwtOF3LBFnRgfuAn+JQMEPNKdXf2a2Qe4QGQ0ats/Xfs6z3RgYvVymMuB1WcbViwYaoDntDg2gg8GKq3zkcx2gatytp+o1dZkOiM6SEfSOXbtYr76lbGaQMW7K1PLk40+U64EGQhYtfNW58r7/ctgWwfoDXhG+wTszeHrQn+4tY5BkLc7WTtIB7T33g5k7azbOEEvbCHLYL428B4yggBNaAzMBt1YZ+VJc1E/JaKCPXDrh8q/zOBajceZmz6oZDZZ1UCpfKydiqe5r6vJKlR/kqFUnp9Rnm1zaoRO/mhmRFe++m1lM+b06ioPRofUNC3HceE69Kw2ktwRxYGJddXBQZ/WE3zjewj995iyBhnfZ14NAA1kkE3FC3VulK6NB/m7R2Gc9Gvzrr/o3UlGbWOkW+b25dJA99bvf/y5O82MEGkaNHEEQg53cpQ06UUSrM3dd58qX0thP6qYt6oEqE8xiI09mipzGCXIG9m0Gdgvhl0cINJjR0Di4N+L3730Xf3lK/Wj7zgBbHb96zWcJNPz9P/53BBpmRhh15qR94+CqDx10aS/1LXSo7Xv7WpKoEwGaAYcO8kWCT534Gu4dtJYlYHcw0H2Nta93tbeXK/Cjg2mKI5JiJIXqISyPnLnY/G4GMTfhzzi7dQLczWjYzOcEvH/vvbPLYmgzmKzEi98SWENm48uop+Dr7ugo91ewJp3a8KS/1L/ocOXfpTA3M7h0M0sDDS6dMKPBQMO8+feVmSwr6UPbLpFxdhMwldGuQIOwWsj+i7ZwIbJBg2+BH5ltSXr9H+EZl2BMvnsay2LuKWPa2oKz2R7yxE2weNW2PG87WroxS1Wo2zLyeQ2CMyAFbm8C9Veg/TIy4lYwmJ45e1bsh0vvBrCcR75Rp9aj0r71owv/rt/NF87BB1ppXw9B799i+w7s3l2ewimfOH4c+wfdXt8QAV2sw0CYz8QXsqM55LlGt5gB4KEPKV+Gn7lfJ346khE3akx7eQp/b+gg9j6CEOmlH5CnZDT4NHC5UT0cAwvy4vVPHrLulKmvGnRj2LVkNi1DHzwHPz5MQLYP/S2v+6SBhhq0dIbVZSvYFtrj/UxMiS/9ErkVBQ7bqP48xUCl80Ane2aty/LHF19+OcuT5Td35m/0R1ASd46GZ8Lp8E+9yplC1f8zqNmzfIs/ZpbmFvYpk+eHt98V+2GGqb61M8JdMKzAX/CW9E4fAFkc4z/QRx7qGgMNBoiOHD9GgGR92cbgSxs9B7oswIY4KP0WWbsJGvRS38nj6kv+qc9Dc/pG+awyWq+DfAZ1Lj3QDhpoWIY/c/LIUTaBbEugYQp+vIGGC+fMEMLua7fBXR+vvlmAjWfBrTs8Z53pB87Kkhioe24heCYu2o8/kpU8+q62MoNAg/taucePfGigwSCjS9vk+FDnBlqnSYFCNWkTf8BD+OrKUyxFepexzXrGOIuwH3eTITQIn8bM5GywDp2lpZDj3/FbQPZh9ZfgLK7pL3kIV5r4jJNvnZ2d5f8Fd/2+58iyuQsfW7/I5VzKEH/qGXjNmEP46gP9PC7zqb67/e0z9rM237MZpr9nInUuk3lPEChJRgPjPrEJLWxrvgQ7gfG/fizQ2CnrzrgPWlr3BfaSccPGNQTWXOb7KoHq++fMCY6OTRrbFjvBs/af+Pjbtje6wT5Sj7mnkT6oNt4+O8i+UwaqvyBDqBv21AwhJ8e1i2ZTZK8f2hpZkfrSoXX2W3QWdUlLedVxKpWXAehz5clg71eMi90DUB/h/Omz5cnXXi7PPPVMufWu0aG74xiYkucCXAL9bI//dKBBhono86USvTKhBlaHhR4umyHoMgINx4gSDUUA7yPyNIlOc1h/mU7rBsNmUCcMO4/rzad+k9mFa23WA7NgoHvi9HxPpxlo+OiDZaVt7BgCDVPJaHDphBkNVu8735khQRnKXDJZmADO0BmT443Wy7wZ4HPN+wpaHwynbz94409vJljy0KJFSV1yh2adaJXiNQINQIEXRFBsK46p/IY/tqfroEgEHVy2MQAwgj5o8KDyhIEG1gmLh7h6xAlXSHSwxJFnZF4FJve9pyHiuorbNom/xsnU188xbG9jmB950qUTC5JmKIbCMsJHYQkaJ04hS6BBxcu1KA76RtrUoyoABdY1pkdPnMx6zB2kZb/yGoEGZl1spzS3jgoLvO1fhMV/4qbScBBkP7ohn0pB3HUSVY5G/lWA27ZvK+twREeMG5MZqeEMeC9zz1nMrHsFL7dLSlojOAlboczO+NRRgw0gosBCF2dFDH5l8yEE3YyGkyirufPvLw8/+EA2g3SXYxCK0XH27Cp9XKPd8BygxD1BGYy+7sr30od26DDGwacde3azISGD9X072JOENLeHFi8q984gLZhnLtInDtZV/I3C1xmo6cKiCa7U0aVsVTKtPnKGV1oZaHifdOm+vVoZDXcbDBgZ+jqItry0aAJVgcXdenCPui2Tdkgnvss/ztZ9D30NNKxa+j4zUrPL3ayzNV39dpxoeUYnzd2zfyT1v3dv6Am64u/A0P40uOCSCZ0AU8Vuwsk2kmtdKvJ9ZL+8/sbvs3TCddOuKc/SCfrFPgU7GSfYVoz5HdjKDJVx7+oP8GPaUPvCAYi8pRO7ccvW8ltmFyaDtxH0IYMG8px4gBs8osw6g+W17K4MntLJNsi3zQCdWkMXZ5akjel4TaDhU5aVPPPKL8t8ZkZ85WICDcBIoAFaGvySvuKas23Sc1dH2ChGCFAsGQ09mNG6ghN2iPRRDZtrVX0txSsvvMQ+BBNQTpRLRgP9eqU6ab714UcIf43NGJ3NceAv7vJG5BY6yUfqEDe/VJ46kNEtW2pGw7gpd5cnCfIMZ6+AunSiCTTIelISura4RfzTD7andc/63JxMR8U3Q7ihlMt53AxS/pjFxqqzWS/Zj0CwQUNhRJdIEmgiKA91gg6tfGVgJ84tuNsf6j35wjZs37mTzX4/KudxOkeMGFFmE0SayL4kAChX4UXL6gA2MmNf+11eEpbwoxu45qFjYZf078/r7JBxg0cf4ogOI8NjMmvK3efHGSl1qEHN8KQ0Aa76JfUBR76QJpFn6hdXa3D2Uhq63Mg9T95i6cQWZjIfWrgwgYZB8KTvzI4zRJ+JW/Dj2YoiUCqqXKlHSCb9/GdbwcUswAQakCedWQMNI0nf1UFW3gyAiLO61kNHVMDSJvqftnvofPrPyi3roNGUaNfbf4ntfu+dt7OmfBHB2FuZxYusB8FWRwbKX/dHGoF++ZZNZw/hzLl0Yhf9+9rf/325l1R7hDSyJm0yILetoJb13NLbh+nT/OOc15BRdd4AAt4GknVC9zNYN817HYG7gWxm++pLL5fR7e0E7XjlHDzTanFa8VPMm1YlgMFNJDcDmZugTQ94+gRBUmejDFQfpw2zZs0tS9gDyQ15rxDE+AHauadEfRuNe0Ox5II+EXc3A5b22lr1onZD+Aav8vpJ6tjDzPQqMoT27iXQQIB3Pnb7nhnTSx/uXWJgVAMN11mkGTD+hGXSLNsSWkFEA8kQsmwkePSH3xFooM7JZPA0gQblz0BssuLgjaSUg7N8Hl8usCo8+yc6p3Vfn6QXgYxr0PYDguwfkDExnQDGNHyCxn4oFz7zUzx/+lvEmzb5PQc8qo9wEF3zB9/IAY0ee+zxzDK6f5A8rxwK33qUEfGW/9PXtF8+F+9mYOz9DFYpW1tVktHwewLh8opLJ7QfahJF/yZ8PbkhuMmU0Avu7PrIqJSsv3OfOlMGP0F5gufXowc+XPZBefoXv4g/5gDnyhUzA8EBPMzWvIoOzR4N2ER9O/F1UNxNW9owpUShDuVJfWRQ0MCd+82Yiv0LNsebNnlSntXmRTe25FzUrE66BEz+tv6Ag2UzsKNOdbw6fDeBhq0EGrQhw5gceALaZ+mEM8LQW7oKMzoSUP62HmkcGgBXf1Bcrdnr6hllw/Xw2o8dBKrtu3sYMM4jm/JW9LMZQt2wDe7RoP8Vmyp8gIcUnF3Gp+dgwE5ZUkcrX2ZUW4/2w6V3p6hndFs7tsk9fiaEpmY01CAD9JUm4oltU8foH9wMfgkAgbcySpHIr33fD37392rsx1voYPcicb+TsePGJTPZtmg/7Dv9cmnq8VPeFkZkNDcpQzl51YwM92h4hyD7evTBokceZTnMlEx0unRCP0b+8JDfax/Yf6365H1gxQ/3PnTUbsgz+lL6QPs6O8tvwN29mp5hebV9qh9u3/isR2NbI0vCa/WltlXMu3xiYPu7ydRTHjdu3VJ+++vXM/nwBEvD3eCzZkdZkg8wgneaLWyvV1uqzmlk2kCbyx3sT8u7DMnl1Z8RaNjAGOcV7McCAw08ow6T5+VLyztWFCfbbxv8SAPxNvvJ8YyBPW2f9wxU6NN07N6TDKGrlH3hhRfDMw1scQhd5WeQVndKLtsj3aSt9Upv2+TG9AZp+zKmPHv+22TeGmxwj4YTyOtZxlJPv/ZqeZpgz8C72hSR+Dc5+13gP+PjbxJouIzjJiEz+L9Zp0ZuIZJ/kzOJV3kVFLuyEgjQKA9mhtfd2ieNG88O0jhE9IKDuezqb4fxtIIYZdcirB0V5vaL9+nUzFBj9K8hIB9/8klSo+5qa8uOsmPGEGggoCHTyBAyncyks6LAa+gb5lCIjCLLIAqXDGLnRhHi6J5k7cyb77yV9ccLWDc2iZQr16ybnprd92m7DMefilvEJ1/DI/lW0W7dr/cc0FBJnKxf/erXLMcYWJ4gYmmgwZkyDTcNiLF3MB7BwfgrfEZqEyQBlMLjjIOC2KSpOeDSgTaFyBkpo7kP4OQ+QCaJu52LThQQbY/AgLvtzowRbfGa9/2XgUEUSqtPUIAKbVdGA4Mu0w1N1ZvJhi+hb6u8z6psdVxsr6Ki4pDAOl7SOGu4qS+DCoTde6bv6yi6ed36tevKSGYXXmYPiEEEGn5ESI2iuxmhEe5eCHMAh0lqH2iAbGNjjOJM0J5u9K9reE0z3ESQQaNp2t5MBtQPEXG9Hd68hiMYgwCPgXwcxzorhSIBqG2gg7JkghFLXq9qoMEUw55EPtFW5UDHrgQa9u7qKG7m9dCihWWGTjT1XzUjI8qNKCozwjrIpqZKB2kuD+bgu/IUfqQ1cZygGR1b1hFlXcbmQ/2Jak8ilW4yUe4RDDAsI71F0r6Ttxs+bxSshKk80wrMSCiOKGReYXkN+r6/fHlSX6chp87wKlemH3uYTu7rg34k9b9vX/oQMpma6UDRrAUdL3nPV35Kk27qA/hYw2xb9pKC+dvfv0HA5WJ58sknShsz1Fk6IW2AoRzJN9IZVquGn99+N4VVOc2sGJ2MGxkFr5L30Ml086E32QPCTc4W4fwPZN20yt71txpvA3Ya6MbYQPToA+XLGQINUF3bWY20smgZN6U6dpylEwxcVn/2eXnq5dfKfDbHc8YnS21gvSbQcLPy06J91QsSmU8YqHUmSBDiwfP2WTaD7Ogo65n5ZofR8uIvXiCFfyKNArB7NBBwkN8ir+BDCliCDRJG96crW0Wa8fGIs0Uf+DpXs2zck2Qbhn8c72t+gvWYQ9Bjl+E7HVnhBkUejuPQgiH/NG2oDhJ9QO/4cTAr3xxmpugbdPwe8HcgNXPWvQQDZnXNXghK+Y+jqb6iLnkz9Xid716zT4TnPR1SnXDr2MGM1JrVq5ndOstr+IZkj4bx48aFr35EF4QmFfnIkHAqEYDbgh1ZkCggo4MkTr2RH/tOZ8U9hMyCmzRpcj5Dhg0NvSNPeYwn+G9POriV5sqr9dguvxtI81Izo+qMlzNy76J/t6CH5y+4P0vvhpCObVqwz+UDjtIgBwAA0VVXvVj/WkL+j3xQTl7dvXdfeYOlffL3o48syVtczGKx79W1NcDXShHH6Y2O4Tnri7xRmfRKQIZ2aV+EpYzozG1gML38g6UEYxcwA3s/zj+zeDwrHB3C/+ihnbK/zqNnjmJbP2M20ECDM7D38EpUbmYGVj5QXm1v+pc65Rc3bMuAEVkwqKrcqu/7klmTPaEo44aJvrnBjIYvv1hfbmfSwYy4Ee3t5tVWXwMqh87/SgO6WkYhrYofAw098TlMd/0aJ/EbaHOUDC0zGpY8vLDcwb4e2owfGVQasHavHweGDhqzjJQ2qOtDP2iejAYVKN9tg0EH5blj397yKfy+dx+BBvY2cDd49yVxDfElMkDVA050VXmsDfjX2hKesZ+kHbbfujbBi28x+aDWnMTAxXXlbW1tuSf+BtiUi2TE8Kj7CNyMncJwVN1uz7f4x3N4hjZ2M5CBz7Hsww9Z2vd2mcqgazoBkrFjx5b+A3ldLPyXZQ3iXtH+s783tufPbvgD/NXFBmTfIlviGL7k4sWL2eF/LIMX3rKCXVf/q9/VHcKShxpdYH3yq3ye+8BTJ9X7+CX4NMr6tp07yp8Ikrix+KPAd68vikZVw4zgLUU5vAgF41vkqne8xpl78WQ5NwMNU7TPEnT8gszYVQRN3VzuAWbte5Earf20L4BGGwj04NuEZ2ivMpzACAyCtQMPca6yoQzqByvH2fOEibx12A8D4s+wptzZb+/ZLvGwrRXDir/fbU7Ofm8dtQy420ZwkJfNaHBTRd8i4Ct0HyUIM5KzAy/5pdruGtwRjHhLqQSP4enA4rd62O/2jYNd23KEPv0KntwFbGV62syZ2ePHt4BlPxV0glmCoT3n2ghwA45yoy42+B07yHfbqmwlewp9tgO4vunqNJOGo/A37r2HQDX+QXf8Btumzxq9AgyDDOFDvoc3uKf+Uefn0N62cOitPPH9c3TY20xGGgQ3sOZbJ4bgx3tP2nj2E+qLtoS54fCnvJnLtEn6+OmGn+/S8nfA/QuWKC9cvIS9vqawafGw0otJJ/euSJCHPs5AWr7nX/he2tK+wAK+bWhsmfo9QX7athc9+Qf8JX3CJ1kaPhKfQLlIkAVdK04G5kE7cIWX5gBPmP4IrsCyXh9QvqrerktZf/P66+UeJpefgGfcwLxOStX+k2+UW4/4Z9BfX8bxj4FF5bkJGKj/zI4VV9864+bc8vvmzZvYI449s+aydEI9BTwDJ44TtJF+1FPiZEOkS7NHQ8O7CbCLP+0wOHQcXpHnzbS5Qpuffx5/jAkIdaDyabuDO30gvpFJ2uA1+0De0wYru/KmOlL/+Gb7lMwmNy13c1X3nDFLS332FGOcZ559hgzuttARAJIlOLf+1N8/w79/m0ADkV6DDSq9HgQXohAQe+JikORq1gV/uPSDcpSI6wAiOlMZHI1ra89AqQcDEpdQZJaBDlEY6VfOkpYvHGES7tUIGtdhBoWhL1kFF5hBcI3tqlUflxEMRF1fawTd99jGqcE4NClGMpzKQ0YVZhUalTtKUWYAZoQFBCznbKCz3+8TgfaNGW7KNH4CG70wQ9IPJ1XBddCj48cfMW1hnK+ifv13fl3/LW7WtZOZxj/gKLpB2CJS7Ju3ZcioDjpVIM16cfHU2LpsQ9yT0oiwK0AGCWxflCLlPGvcXAvkbOCc++aXOcwymnIlplGinBUM2+7zCoOObxRIC3dpXgd+9gtKTPpR5jucqeMnSSVfuy4bkj1DhN4ND3UGG0Ui3KoI6waEPp8ZQq5n/Rv8ojIQXtLUqN8e/5b01sOsse3o4K0TRCuHsW7MtK6RKHKXg2iYHcg58PStEC5d8TlVdQYW3NPopEekU+6hKKGnG0r51gkHXb514vix42wcOKPcxzIBB6XySgwP/SPuKiyA4nxXJSrvSOcePXkDBErwojNUwDcKLGyV4+49e9gc79NyAIfRdx67R8O0u+/Oc9ljotU/9rEf++kiM+YJ1PG8dAs/Umf6xPaAg/1uf2mUP16xPPIzfsK48Ly75DvYd4AgnauDAwV41r6u/IZ0YZnDt+Ag1fwX5cgzAxhEnGdA/dHKVax7+5TXfk6LctWADmBmTXpqdAyKGOXv0wdlCuHNGLIPXedGxYyLlQkcQ9qSQAOwvW5Gh28o+NNbb2ft/hIi3G4GqRwbJAsvAhfgYBWdn372t/XYjrqOteIep6ulKex9n3f24oP3l5b2MWOSfnkbm3GKtzMnGhfxTNaH8OF5aeUh3RwgKnMxEtTFzaoPuG/q2ykiz+vhx7VffFkeYdMeX8HljI/Gqlky8ednnRZ1QjgReC2+BLTZNqaDuE7SCP/R48fgm73p2x95f+QzTz6drK9rV5DHyxg2zj8SdAhv8OiP8iPPS5i8NpN2SacQzvvWy20Hv+cv8NaJvXvLDmijM9c2cXJZvGRxgpquHewKNNBO6VEDDdKlhbf9IWx/chjo9YM3R3U3ZSOybQzq9lOHvDENeXKtat34iY33KKvRVU+pw+yDil/Vs8LNLG+LT5VhnRWNv/goT6Ywnse5UK+7A/+49vbIv7JTA8dBjDZXmD4nut6zvjiHIs+Rurnv8gVlwVnGT9CRtyP/2g9fUearP8VVfSAsP3kWqGjMwKvUackqbVT2LWd6pXWY0eA+Bw68tjMo9fWTptXahn44ipXf6/NVW6UKCVy/tE61Xv5SobpYXVCXE/QgcNeJPL0V/l6M/XC38wTKoKXw1WXiZfDPlE/7S7p61AFX7RvLSgttkve1a2YGbEJPrgR/HcUF980F77rbeehLG//awyZZXBnWMVPf+XqyL6B9B4GkpxgYzUBHWq+p3uJc5bXKdWOzdZJtk/RVF8V+8N3Av28BoXnB+whvndi9u751wsH6U08+VdoZZNg3tlPS3kDef9GMG1tWBzOUV+8TxHEzSLMltm3bWo7iIE6dOp23Fi0ow9hfyaB6Ase0z4wGZckJDgeOHo2vIZ9CjNrX+Q7fQnsjCM4yfs4s6X6CsrcwqzuPCYIZDNp9lbObZ9NxXVqvQfxfa0va4R8KZDNI8Nm4aTMDr/eTzm1AdiKTJ6NGjIyMOkOqvDhQTMCM78qJOlG9Ke2UZftRnrGswOWb/szwOgHhxM/HzML6StSpDIza2trZ7Pr2+DHKU44G4Rahm5/15l/4C97ypWn2S5ctz5KVh8iwacPX8zXkDozETZ9IRpM/xbHqqgpPnol/IM7epx3i7UfbqS5x0mQpA7uRzE4vZK8ANwRX8PQ1Aje/hMdvYNCJiiU62LO/1Tute95XT3IYEDNwZ4BqzaeflCUMuu5jYNQDHPIKR4qaFSvdHcj4WlEHVvJ9Ag2izD+D9dq91M0z+iLibhDjED7Tl19tIKX8RHmcIL4bBzZyLT26PkLi2QoR7Ft94BUPb1mXhYTvZpD7Ow+wh9Du7PUzlMHoQgJrZk/VCbC6vCN0Aj+ft95Gz0Ynt+jgNftFmntdnI4y2HLiZw/wlY/J8I1LEAw0mGloxoFZPNrSAA+SFT9/6+vpc3pOU4Bp38qz+k9mCn780YfZj2vEyJEJrI0bMyZ2yT1FlE/pLW4JNDTt5+y1wEbvSg9xbmxJXlHM/XX4BEvffYe3CQ3P0u32dl+PPCSoRt7BLbTgirTx8NyQ3fON+j/9BI3MpnSPhuW8mnPDl+sJOD6YPbPM1nZZYYKB0KdrHAAu4md7pHGts9G5TLji31iPvlCVjRJ/7N333hel8sjixbyylAAJ7VTW7HvLy3/qQOGKG4Aj95F9vltenRy+BE4z6SFeDqjf5PWWBo+0T2Y0yBsJBvGc36WRv/V/rUtfTBwNHuozKBPKsXWItzbdJcgGA1x+4AbXj5GNYTDWCUz7y4xrs4iEaTtoRuhhO21CfEdope9mOyJX8Izw1QMnT57K8jvlyaXRTwF/wvhxKSu+HrYz4xueV1Y9DLxJkppVyDIMcJAvzfz0rUVWfhod7ibOOzo6yAo/QbDhaDlAhtYL//DflOee/wWZMW2hO1wcmDzE2c/P90B2Jcv/v8MH/UTQ860Kku40EssbAZiVxy3bxCvb3if9shNF4juwRzEo8nV8fXAmUJkxnM4aq0gkJ/3PGTLLERwyW2MgrE9ml4Fcs3cJ4fmK2bR1RBWHoQDb2tvzLnGdRg+ZSAOkg+ZgUEaKEuR6hKYFz7KSIsQQD8rJLG44spKlGQeJbvk+6/a2tixzUBDqoLE6ZxQPg1WMhdZijQD8l2ziejAdi/0HDpRlzCAPHDgohkfnXMOh4cxOypTTIRRn22KgQQXk78YRMDiTQAOKwDKJQPocZbYxuHBjQt/hPp0Ue4Mn0rJpe9rMb4VRGP4WRiWEtK9K0vY4YDAKbRkHXu6o7oyXswyPPPZY3m2fwS7CFk6AGCobnWJpqaLQwVQYHQA1Az/7VwXpIV4K+llmL90Q0vRUlx8swrC5sZ8G1f7soxEBlyghkNVweYh7BhfgGG4CbHiU39JUp8nXyxjl7sCpcFOyiVOmJhtp/kJGAABAAElEQVTD4FEyC8BePlWRmAIrnqEbsA2U2Jsqpgzm+W6bVT46ur7Sztnprzd8XY5zdoNFAxnjxo4JfhcIosiDDmg9e9hed+LVMPYhWGFwqS6lAHPoEUNCKzRsPrN123aclVWRn7b2tromkFlSFbRvTLGMn8YgNv2moZAYOtvSLcEenBbfhKHCdVD+PY7gWgZ1Wzd9k+UHo1kv5royZc3UwaQP2l84RaZrK7NxPqnPWVoNgpvdXCbNP6nB/LYfjObKA+7rsXzFh/TjmTKf4JcDI4NfBnIStJP3+AhfGclwkXr5Cv9Iizogsh3uzxA+TjlKUs4Z3pWsEW7DkZjNa0tNMVQOwt/QXN5tZEm+8LpG1f6TfvKRgxl5yMFZKqYynWzl3YwJX1F236LFvKFgSvjAZ82uMTsr+3lAn5z5nSVhIssnO2LzzT0a5Bk3gXSfGRWeGwIdYKPMjRu/geeuMpv2SGnH2b1CNsMPl3S2KCYdGdxb3sGum536PbDB1/aHXsAXf3lAY62s7j/QWfbs2VP27eX1ZGPH51WLA+8YSEYOAy/a2ci8cliXNGjmwBs41z+2Q5LowNeZNXlLHbmXIMOBzs44ADqKU1mC4EyoA0H7SLqKkzMUHuJW+64ls/B8rVsdZIqtxht9DXx15DfQ/MK357LjtvvkuD5Y+6A8iruY1ecr7wM8fR1dQH949kgL7Bfqj6PIPYOxa9CRA5htcTZq/PjxSYMXdoN/Y4ukt3yt4yWOftSRtsUMDM8us5HPnL0x7XilWV8JNMzNWyFu47qyoFyLl/qvZXlshai3+E6MK865b3fYAmAry+qkg8zqvPv+0tTta6MHoyszYOU5+VKdrl6R53V6fFbb2ZIs+gV6UUYZVg/ZTw7ybZO6ZMeujvLJqpXlHrK+Zt8zE7x9xW51tILcf/CP9JE21ufMjoNeMxoee+LxMgm6m72njRBn+98jOh1aNTNl9oV4OIukQyksZ8AcVEg6dal2wplS9yUxmPcQTvpI3n5gWeliub/2kGecpbbv3QPIzfZMUzcQcAz6t7ePJRtjZja6zkAdWsvn1iH97bLIF1+ku3yqDEUe1AMiQmEDs9ooNyv+Bv17EL43481Xw0mbnuiv76ENwAL7r26DDaBwE4jZvrOjfEYgWfk0W20ksuRO9h7q1wwywLvJ8jIILI/42z5oAg+W1U4pI8qBrz71zR8G7taxd9MkdMDYse1kCg2JrKlDtTt/6fi32iL6yqsy46tFDYS7N8aC+ffVDB50qHQWP+lsWXkk+iWUqgSwC7WJ6l550H6IPwXdvS7vuURgBRuLj2CTYgNrDoyEmSULlLEvQ8w0Al4WKHXYswCsZ67U317jwzNV/r7LwGv1J6t449KSMovBNCjgc1yIHwzayRh0368snaC/pZd2qPINcksdHuJrG7RffneZ7DEGXu4d4kTKo489ij/WHj50oso2iL7oqFM9grrX8qv1J+2r16Sf/W7wyH14DIDtwmcawkSbr3MdNpQND6G5PJAAEhVEZ9MQ+cSjGXyKa/OR7nWgp+7plqUe27fvKJ3QXt91PIHeKZMnJVCtX+LkgvrIBnTh6hfwE0fbb/tCEykfvA2wGmjAx+5kSQmZiOeYKPC1pWaA+nYe+0WbLn+ru8VPnpY+8lBgWnfoRoX+B7b+md/dM8vfG7AfH7BZsZueTpw4IXuJGaCyz2tgTaKKa/5KlrSjklq6BBWutspBH+Gqh9U1Ztxt3byJ8cfs0k5gbQBypu5Xl4mvPJFBOLSUrupw25L70EVbIf3U7x5mRDdBA/t1Gf6Y8uLyYe2Hsqxd0MfVsmZiBtyVsdh+YEgb22c93Aq9rNfvGa9xX9x2MXnyIeObqWSrzSfQbiDAialQQoYHvjAMjtteN/I121UeUQbE07bZFmlpv3jPuu07929yjOCbrqYQMNXfCT+07EV0ATRp6pHEDb7py/g+BuTBvUV3x1X6NIfwx7bi7/m2ocWLFjEpNrLlq1c6ClMdLn7qJuG5abg8a3v8bYan575MLMDsefWygWqXZrgM7Bxy6+bCe3Z8U/6H//l/JbOPvehGtLHZdpV5OBF8xdjPz/f4mwUaYixbdMAFjnLo3c1AwzU2kNmYQMMWGOIMHdgHBXo7s6e+OcAUwKxh8lkYTtaTYStTcxPG0DHwk9l1LoR5KKPhdMmGr6/ZuOqTMmRce3aVHUIg41aUgAysUjAq6neVoLCr0q0CIhM4YPRo0u6873WZx/XNvnLu2J7tZcb8OmPkwMvOd7BkeqECEieHZ64bOJuDEAFLwbNtqSs1VWWvknVjws8+WloGjWzP+i4jY6amm5LtIMRBruqHh/1DXXVZhUbVHd1NZVcxqiwVSnGXVipYy5uqvnrpijLt/jmsZxwfwxQjYLspEdicHVxptKymS1G0lIXtsLQDkCgtfjt4Oc36sR3beUXk8cPlgUefTtqV2QbNYF3B9RC2SlkcVQ65L62gu5/ax2SHaFB5Rgfc9rm+eceWb0gT619mMaN2G0bfTcRUYO5ibRvdOEzFooLR8TQ4oBKy3x2w2KDKB6zDQvgdXJxHkXV07Cx7d3zNLt4XyriZZKqMGxfFZqTUvtLR9dDQG4100ztpK+4qPfvVYInLHzS2KkcDQO7ToJLa3bGrnDlxrPTu24+9Q8bFCIm3DoHPuFREeDo3iRhTp8rIjRHTtyosjK5lGudMvpPXnMX88pMPyOa4VkaOnVbagT+QpQ063Xl9JnROJgTPevjd1ED71771zRdGw005VSbOMsg1si98abmVKPT+nZvLpHvmZvd9nbGbEFTfrCHTGLBTuWKRKgPBRBr1fsoc9Zl14ltJ5Bp/y/7N/bMo1dWkBR/dtafMXvRQ1sIn0IBcGmioaWk4i9YT/oBPgOFveVPevqLjBJ72NwzD3WroPPue9dXvLi1j7pmeXbellwGEGlBQH1VHszGS9q2ZKAnuAFcZlSft48Zx1Zh4XYO7B8O5fs0XZc7jC0t7e1sGncIy4JL0TvHyO213dYTYcQpPyY+YphhyB0P2jnysrCsXx4+fICj7Vblw8mxZ+MRz5U5SJC9/Z7YXARCgGFhR/nT+dON8ProLuFev6nToxIfiqcd29OIVjJeoy9f9HegkGLCF1Nfpd2fw0h8d7GBSHaqMePhMdzIl1L+hOZBcpnSVlF7xj9nTKCfQUINl9vcRZtMOH+xkreHhMmH63AS/nCVyEELh0D+6CbrKj/aLutJ6pav0lk62LfIK79pn6hxnvHZs3cJbJ46W2wffWcYQKHEPBZ/3OWW+8oPOUc0CkjfAPPIT+0EfRR+kldqY7tFJVupges1bS8vtd/Yv7ROQp/Z2Bk23BXflInqbumyH+Llhn2ffdGD9jXzaJttgoIHK2KTutgx615EBs3ndhjLvwXk1sEbwS7mTr2LTOINq4Kv/7APrTE+mb9Vl2o8W8tzweZ0213cuW/oeeuYWAncL0JGsk6eYOlS7J78kqBFd42Z2rUDDDXIjD8nrZjxIN3Vp+J227UPXfLR8JW/mYWNYHHR1uM5TRbiFD6eGRnFEwVN8b/x0lbQRrXsGPkzF3vbFxrLk+adLG46c+lX9pG33I1zLS6cEfsMnvuq3Xwbl0lq9J80aAtkf9otLhnaRtea+ITPvmVWdaOgiHza0rGS/TnPxDN6UkaduPKSrVwzOmaniZmRHD+4vQ0eQSTluAjj56s+qC6xAGVJXNnretmgLE6AGvnypbtKxt2tdXqEucnMw7dORg/vgsx5lzHgyDggGGGhoBnSWb45mYFQbVXneOkW2RT6+VJ7xGbPKNn+1jo0m7+DVkyPDp86Qahtsu3aoGcjodNe+JXPN2Tng+qpKs9DUmQatDepo9x1cmdq8FZpv/uTTMnHO7LrMFHhOmjRBOeXyOr9Ae3nRBoFv5ZnK76G+1/inXOsPOfBay6TSsb07ypwHl2TTPW21fKcv5vOWjQwBNPxjo4Hvd3GWH0IfLruU0iC6hwPyzoOHygdvvl/GTB+f5V+3UKd9qlAppuLoJ3yunIbvnHzhcnBtFWl9rw0Tur7EFV5hvLu8terD8sojj2ZgZKaYy/LMZjCwfg097sDazUPVJ40/oy2lslSvLDS+gbrUW8qN+zRs3bwxmx4uee553goxgvbWTA11QewUdSjjGZiKP3gFb/q10gTEOfT3mj6SLvo0h8ne2b5+Yxk2aQzZvfPKQDa1lR/VHX48xFm+F4K6O/42FegjWT9AA9f+8eN9A457CVQf2tfBIO370j5pehkzZkwCYcqIz0kHfS5xap6V9uIv3k05+7+Ba9DOAaRZyZs3bijnju3jDWbjkKeJzNwPy3MX8MeqH8cEXAuOulWfR38tgQ5gUm3qto3ykL2sT6sd2L6ro7z/x3fYJ2tgGTtxKnv98DpX9LA6SLqIY9WLtF2agFPDl9ZZ2wfMVh1NG8VDP9vXIO5c/3WZjv1wabU+i+MC2yxD+N02SHv1i36x+t+l0/qW3rceA+f2qzomk640Svux8qMV6YcF9z8YH1v5EJnAse9oBwyaZzIug+6VNpWnxEGa136XNC0dBP2cPPl8+cdl6vw5WfYh3/mqcIqkTuH6bHxf5NBgiJk/0sTr6iHp4F5SLqn2Wvo1evUqyxv2l2/WrCqT585nGe7o9JttlDcs2/Bwc07FaZ1oMj400EBdzX3P6mQnIN0DYvfGL0rPO4aW+whUu8GnYzPp6pHxDeWlu7yQtuHHuZmk/oWdo62UR/q55BC8zrJPyylgu0/DWSYdv8eHcPPijVt2l//r//4/y9/9/d+V0cPa2MOr1QfV47JFqfPn+uc/FWiw0aoloy++nklhQsWjkxkwIAR9ujtYu0Zqy+aynHS0z9esKcuXLS2HTl3w0UKMpwx20gKa6jgb5/KFmCPaRvAakEFxahSmE7wzee/hEyG9Q4Xm07tvDyL8V0oH1248BDkYXdfD/ZcAfAbA4nkHv28feidKYACDQmtCQWMoTx49hJN/lqUekfXgoqrsM6AHaZJXyhkLtg4HDqP7y+ws2zh5obBnbT6DOA+/83bekzoIB+m64Tp76ng5eOhUIeGxkJSUyLVqqheAegN/+2mEld8ed/IRz8P+4BhDQ7uBFAFvcLmp9L8DBYZz4Jp2BfLUyWPl1P7D5QwAefEh79wmRfa7y+Uc7RVPj0P1lL93+Rd+PU8lioEfY3PWOWTwLeW2QcMzUFb5u2nhGeBfPIETAYLC68Gzdik6q5zHrhzl2o1H2wDS+L43nTV2Oe3iZVxp97i7JycSqxOoQ+uA/tyZk+X7syyFuGGSw3rkg9M3Aua7fT56AAOysxgsvvcCF8t+D/IDYKRBd40nNVSO4hoInDl5pJw6dKbg8hdx8Bm3Bx16F1kRp0+UTjvkhkMxNknyJB/73nwYz6I2cuTAMnj4qCg8B0XfnjlVjuzYF9h9QMJl9KoeuV222mcDfnKMpALrkPa2pRfEt93iNfzOQawj9k0m8A2K9ywBnP3bOoK3vNKAk396sSxwP7GQG49R/Bg6Zng5ceBw2Uu/yH13gPwlgPelsjvHtsPzt3GV9cs4hMc6d5T9J38ozmGhx8tZmEA6SR/V20E+zWGd4iAd/OhOyDORD87DgT90zAQMhW/EMIhxruzetqsc4d5Pj4mDBrJ+9GQ59ZMb0l2a2OfC9pA3R/IZ0j4KvmGfBYh38eJ5+v9EuXDkXMpJT/H1GWW3F0jtlaCtwxZDrtCvH/3U9w5m2M+QiUNDvH7HiEr3WwgG6Sifhi8unP3/qHvv8Kuqa1F7iIAoYKEqTZogiGIBFRFFQFDAhmJv2DW2qLFrEhM1MVFjTuwFG4JdVIp0FKygoPTelSYISFe/9x2LbTzn5vmee5+Tf7J0s/dvl7nmHL3NMZfTcNTAJNBivHUAfwXfdSzn5OvSVaVmJY6ZpIzvu0Lx7AigNjghrr2q7hhVa9TCGSz6qdiDZsMajjJagHPC5/KcEqgigxqIWfCLefN2Xg34V3iX8C8ehJGypl5VtrPU3h0lR2YDQ/CbqdNj+hYajfKZF7ulE0f+rYz6V5f4Xv4vPtizanmqwxrmEVqQY+J01qRZ+d09AHR5Jo7dl5d4WYB8+p9XLWBXoRKNxJCf7vDw9cY1W5K/Gu5RlfFxnFDQGm2rvl2BsTY/+aP6bhXS2PweRhFGPv4nvXivPbnvTrtS7go/fr/2p/yO+JFva+5FT5FddyuCARh6K5d/E7MWLovSNHfhO4jwqFgV5wejYtZq7/LPS1zX2BXHZb2BwGIO3C5pDfuRrut7Q+/gHgNMo2n1isXx3bINOPuwL+veAMDF1S670W9mFSeK/HPofCX+UlIxB2WpOHbuO/LmLgRSKjN3DRWzO9+tWs7xwStDlq/FA3sy58RP6TERMbu0KP72qls8Ja/6G/nKeyk3ynKDyrtWJ1NYdEvXYFq3dnWsXboy1sIT8jdLYG3cg3GX8brEj7xM+VAJefEDE94KyJy3ZJBw343ATVV6F8FLZqLSYFyzKtasIGsDewCW5FEh7W98KGuFU+lqDj+tXLou+cM5V2WR8mF5JrVz9T2Y184pg33TAO06xv968cqkS/FeCSR51LDc6Np/OTZ/xh48trFnwsU5ueaddymTDojGrgad+unbZYs523xN6hjn6lqFRUne8PL/uBqg/8qV25ETYjYzN47S5RvKpd2qV4ldCYzp0GqcbsDAXD57VqxCsXr/xD1fLLNjkUGcv8Zf/verMmurCOy3loQBH/stf1u7bo2oUm13jOxi+9l3q76Nr+csTLnh/YW5F7172f6BjPzFGMUnhbxQHgkTx/TZ8dUPNeo3TENZp0lD2+aFWzZxzPQm9kGv2hrz+Z5XfX5YrjLbQVf99/lL7zuBy80gxFv7UD5VrcK58lXsd4WRTkBFB0cZv3bFEvamU3nCdxzJ+TsnddlKEPFLeeb76g+mmd8T5+JJHVi5+k7YRDUJABUBcJ3KteiP1egP8emcKuxG5ehOuyBD18eqpev/D5tGPnPMvD/P0pbzqs6j5u7VOFWqJjqfYz2hmZVLv8YmXJnfl/7+h4mRtFCiPz5OGEu3XvKp9/qOh99pipCqVrdpBmh0iNas/Y7xF8SmbbLFOQkXE3U/8EKd8sux+TOaVisCFZvWkv3lw9Lca/DZ7o3qQve7ZSDSIMTKZdjA8JLrhIyiXEUCtQinjcjWxbz33zGKnOK9WntUoUHvtzhexVycv1fVmrtGVfmVYJRBDeXMIhJ136zZGojEn23I1LH8vQhklGi0GAHc8KI6DG0A/wcmvpkv+B3nV61Wlditxh7QphQLnNGrC6fO/tlu8be7A9iyO7C9AIaZs0Jo/ferJveVxjcwqHJjR2TARgxpYVi7YW3ssZrpfCrHViPDvlm0PPFTgR+pr53LTlU5UpX/pi//pZQsaLE28vZH3qYYMenduyvTdqm2E71cOBkIOelvdUq/mT09ZsEUrk24SsuIUOa0Q6xbsSkW8Xfpkl68t3P3e0w98Sr97FylXFSpzgkv+AgGM9RNa8DP6sVfp3xXFvg78WR8aofKnDoBn5VUiGPtyUP+dC47soYtwH4p4HNeNerVgGaqZCWsvOpR8N+h+76HJlNW8B3H8LXPXtJO6arDC8dVnzsPsSe8/X7dOtXSXtL30EfYsHE94+J7rCeZu56eC0xKKLsGH2LUea/mUbp250U5FqdOLV2+JJYYu9WuzfG+u7JFhj+gKeXMGuy9jdAOoizHFq47OynGmMe6/yfNN8Le2AJCiXkkzLWZHb8Wi63foknqVZM9Jj/XEFBYuXhpLFFYcDWoQjIaRfbt0tWxwhv9i+sPf7orzrvgvKhbvR4yhsAa3zGU5sP//pOvf0ug4Qe8+Qw0oEQt9dC7V0iV317y/5Hz1b8i6/JeHoE2YxoZNTJ1tbeVMW4CKWZJMhJHhl/Gttz/gwmTEq61+feQTkdmRthoU5apE4EyAGHUzqyWZU+WuosKhXJGqviOjYfMYmnQGgQxopxHdn32ScxdI5lEtMaRabpPi6LsjzEzu8AYZjOMqhml07G3lEjDshQ59XOR7x5tMxFGDm1QsnDRoviAs1e99qIUvRkllbVq1c45mt0zeuZVZJzIlqPJzSbIXFZPWAJqZtj7GNnzPkVkc33uEZ8xZUrMIePh1bFVK6KnNbNBl8yjM6NHltG0bXSZ0VkimmZQDapkRo45uzYfRsSFq3N3v+noCROTwPcnouy5sSoLo5/i04yH3xXmAtuItVl8YVRkJYuotZm6zLLwvkancLMsbtwnNCrKmUe027cZZY+c+Y5x5xxdv7D35kYGNZqKCCmZPd4X785XxVOUsRLQYh4/omlXAafJ7JedgbPipSDqdGQ7jqaqTmaAiCjzcAyPHbMXiJlS75tCDcEgLoRzPvhtbhHg+x6ZpONvKevAUe/zR3Htt8/e2YG2MnhnUlk2n/NiDC8jweJAWLkg510q10zA+TaXEVc/szT8vY8/K97k3yNbtogG9esnXHzT6LqKw0oU6Uccmu0X12Y3ssoC/O5Ils+qDeFtFsL1mc2eMm16TIDvvBruunMcSDbC6GxWrjAe8YHkGeHgmPKLc9uIE2YprCd12M3Xqgb7LLhtSH76CW/j25Wr6EfxScxeNjeoJ4r9jtyPctx6md3TMJUXxa/ztgJHnO4MX+TcwIVdtqVd4SRYxI1VOzoSa6HJBWRU+xOxFqcdWrSk9LFm7scWBpvg54QF3zdib+TduZf26SlLkqb4rZ/7kF6N/ltZspQs/5dkx5awbg3HVoe1yV4pVqWUsqdmyxzTzJ4wdWuTPGEWai2l/FYluT4nL106vspnGXuJp8+YHJNnaQJG7NO0HqWsxVFsBpTMLnhaRbEXkewtdOpracdrM/Jks9F2YGOZvgabdOBpBUbJZ0yfGf2p3DBExIYbTqk4PmqTpZEslL9mkKAOjLGiKVHKLdbvRPPUCLa2iFOzhOLaMYW5fGimdiJNkKZ+s4TvRxy0Z51o1eqgDJqoQA0OlGW+Zi/FnPJBnIlTL/Eg7IV3Kevk+1mhALyWfP1NvDXyn/x0JNUnezdpwjxwzHHCdMbUB37fMRN30I/BYeG7me0kZnpck5f4sSokZTTr9hScUePG5Wf+0w1Z4NG44kl6lC6Fj3N37WaKzfxnhQFr8zspE7inr/1Oyj3m7laI8V9MjKmLFub4LRvVpzx8rzz+1QGVM85Xmk6c8RvlmQ//9p7yguXQzl9jM/kDmemcbDg66MMPc+xGRDWas++0dt26zLFcBmfdE+pcS3Mqxi6qH8RLwirvrR4wcyZBYDzCa2vNHCqH0a9e7eiJsAf7rD160O86H+lemeKcrGwo6WX1mzhVjrk2ceTYPgsrx17KVgX3tKqd9qIPhVuLctvVtsC7Y0t/hVxMluE+xVqUYW6DVBe6/cy5mFlSx0pPy5HBs5Dx09k769WG/jH2XLBqROPRSi6DhcIm15338ZsiJf/nhowGHsSpY4pv15kluJTIfj5rtj9Io7rj0Z2yr4AZL/WdWUGrijwSUlnPW3kftztAMVkZZHXQJuac+8PVm4zNT+hl9G18/MnoWIzT4HUgRumBlM27dU1Hw+15No5UxrsWca1NBCKy8kyccstC3/F7T1Vy3NJaFixaHIPHjMmx/ac9lQR7NWyY/OM6haGXdKfMzwwo44sH6dGH95AvxK8yw6yh761DZk+dMTPGAx+v/ag62bNRI4IEODPCmrnI+05IOHo/+49o15h11y4QhsJc2SYPyKfZMwScLUfWfPjhR+kwOMqh0KQN++xvIm/kJd544V8a3dkvwb99g8/khXROgKXy0m01jm9lzGKadX7AtiuvdmxBqfmz/mAO0HSeWsJv1JtWEypfDQ4L28Lm0O4RdsyGvWrlybSoP7TNlgD3qV9Ni8lLp0fzPZrS8Hlf6NHGlMW2Tu+ZfMqz1Xo+PClGeZWwZ2D52YdVDF7C0rUuJ5s688vJMWrBNl5t3gI505Cgxra5AVfnpz7VVko5K5zEKespYF/A3fdKstTXOv7q1dHI+OKuEd3ZP78HzUy1l5P3oEkvdZ24FGf+VmB4X2kl7UdowAlLWyW7zwqFGVMnx4RFhe6rV6l8tGvfMbdmapMnHTK24zmudC+cfHg5f2kv74OOl97d/sQX8jPL/QcPG5Xf9Z820Mw+lM2rm7Vl1K3fU2VnvwX5W5j6zA1zjpKND22bhBPP/uc2JXl3NlnykWMKGez4XY48nOqQOknrbo3KLDj4KuZf8KxyjGmnjWaVh3Sv3NA+8SGMhJc2/pdUKExhi6fXAQ0bZHWhW5cKuHuKR0ErwkH5a8WnY8hfwt21+Le87CVfObYydBlycsjHn+T7Bvj2RxbURvdZmeNv1U+pUxlbfSNdyK/qXj93G6Xf8d4+vI/2n/rDhqNz586NiXPn5fgdsAnsKae9lPKK7wsTH+oEYasskx8cS5jwJBrSLkv64f7O51uCo3NmzYpxswoZXA8b0Ubkbu90q5a/l09S3/H9HISBlFPyQPo34F36zTlsoyfnpSywZ89XJLrnY3N5tcMvq1+v0KvKMeHg5IShcNCn9OGW3pwv8BU/rkl5r2xP2PC5PUymT50SH02ZlWNrBXU4+ICsSN0ReeL67Bfh77URpbNMivJ6PXPWVnxnyPD4w72/J9BwftStUS8DDQ6mvCv9l4P/h/7zbwk0qBB+/g9kKS58bGf4HFFmx+1BHMdn+auO3wEo2YbsNTLzvA6hZJlYhTRqyiaiP/l8Qtzx0MMJ0h6HtYqu3Y/L85I1aiRWHSkNH4URNJtbL9wvnowN8tLRZkYyh8JKhZ6/hYC+ptP1qI8/jt79340D8RM7ckzdoXSPd7+ZxrbEIMGl08lvHTP3f0K4RemfzI3zCJPLKBoalVCKGkn2FPAIoCGjRlFpsCA6HH10HHTgQTQRIeNLudI6hJ/MIiOkUGE+Kh2dXoXLWsppZCobQ2pk2ZBEuMqoloEu+XoJnUqnchzNW/QsOCLaEGhoWL8+J3lUzTln2TzzlAm8h8BRAckpGokppGBMlapz1yhQaPndleydnzdvXnxCme+wD8bEpeefFwcQgNkFY1cHSAZWeKRC4PvCRzgko8Ns3utnYwUYKrBlXmFvgGMKhsrY90fH0LGfUvpcP47v0jmb3aUhynycizDwUpikMOU5mVOach08K8S9c1no5UfuQd+8+HrlCgzcL2LwgDdweDfESZ06RPvD20YDDHTPfd/BQAnCRoMum/9AK5a5ilsFVN4TODiuhkcqINfL3+6nn4tSfm/4sHh3dGHMXX1xL/abtYoqlEOVYa3bAZfsMcJ4Cp+8mKvjeSUueDaAIQzFifBxnUaGv+JYpz4vPB+fL1keh9auzhnbp1KmvHcqeMfQsFFgKmyLYAPjQPvChLcyyyRP7EJfErNywltHTAPEfgkfjxsfDzzZOxowVueTT4TeD409gY2Gs/Mp9hXrHOVkc1yFqYEGgzkVKu5YdE2H/1T44rQM6f4fSTMsptS0/6AB8exrfeOSE86KQ+AlHYzdyMpKj0JBQ0Ujy74bzrnKbrumckj+pCTfRWjyZuAKPGgoGhX2aNlJyIzX6OhcFrwc3Z59cnXqkK3eBeVKCTdrtsGnxpdOloa+SldHxfvKazpN+Rp618DRsbZ00HPH58yZE5/TP+blgYOjZ9dj4pADDyRLQ8UTSs7fCkN7PMiTZvLW4QRbEumxiN8Txtfp1sDw/oJOJbIjsPK1Dt0XE7+IjzjjedacRXH66afS7G4fgo7Mn0Di9+twjFA+jm+DPecsnnXetB9SvoBj5ZfQMShgKfmuZCvcpvPRR5/GW6/2j3fHDowTj+4a55x6RnFksIKXPb4bN+Kw88ukc2C+HngadMqxGd/n8uDRMmiNf3Hlw+oI956Pobnu4y+/nDxw3TmnR9cO7WNnaEulqOIuTxbPOSlblLfCQSGQhipzLjkXJdrnw21GAc25gPurb7wR742fmNUZv/71VXHoQQclP7o1ShpR5vlQhkgnGsc6ARWBlbLfffwGfnQAKmAMuxVJo1WcjSfQe8/9D2RWuxNBuxNO6pFl/9KhcsuxNpCW0ADwgQhJ3kpm4rWGi8pdWaP88W/nJG3Z32UUBst/vdgn2jRpmCdJaBBZ0upvNNKUZY7l/DWilTvewy0MrieNaMZV9sjTBk+Uxzqd8xctioEjRsRXGIvdTygajjZFFhg8U0Yb8FJnKA+cexpwjsP4/u3lezlf/s71wbc6XTbPMuj4Jl31bcLajiaDjRs3yi7mfs9qpxLenLt7+AuDtijv1cgS9861NL7Pvr+CAMl8aP5zYP8W+u+8k06MVuj5msDFslLnJCz9fgYpkYW+l/qJZ2Ehf/pdcSkMfU8ZLa7m0yzLvbijhgwmhV01TuvRI/Zr1oyAqZVgFTJQntvXkB/C2LFLOg6IgAv4C93nvZWhjp2OH+s0+eDpFy8//2IsAX49CTIc4wkelEArn93aqQ4sBxz5UeoSs8DK8DxNgvc387dydx20pWzy6LvyOoV8x0DAMHD6/JsDEz83XXFRHEWjwZ3RQdoEG6Flu+vrhKqvTJrIxm5v28TanbM2iA1kzV7b26XgO4PPNFybMSNe6vtSfDJzdmYkL73+ujiIPdHOWZ0v7XlJm8pJn73SSeWeJZ3lFhS/X7GEA9ZkybxHZD/4xFOxfy1KiNsdQWf9/ajyq83vS4GG8jmezre8Kv6kUR2h1FfcTzmQ34eHxI/3sTzZrZ0ffPJpvAnNnHjoIZzgcWA2IPYEGOVJ8T+cxe9LQS1/K34zICO+mYf0sobAr7yV9hS0tgoZP3PO7Hib/fPOqXP79rk3314s4sgtMNKIsFQv2MxS+aI893PvnWsgoM6OBsUqtiqON7JPXpw+fXp8Ou6z6P/K63HCGafEEW0OT3q0z1JhvyAbk96VJUUgV3ouX77or6LMzEo3dIu0r7z2t+Jr7tw5JGY+iffZPz9l0dy49PIrCFC1yNNV5BlhIG2mbSBd8556LgM7jJV8Jr1Ir4wnPoSTOnbNmrWFPUYvo3c+Gx+Ht9wvzjrlZBq018/vO7Y851wN+Gi78hKYo4+Aa7ENQ5wWwWNQkfD3XuLWU73G0edpcL/XYhr37nXicdENnqpZrWrKbXWaa1Tm+H1xK504UcdM2aLc5HtWdf3o98AJhAp+f6CR3rwYMGBgDBnzMaNE3HbZpXE4dkc1juDWMVuPnl7FHAw6KBtSBjowl7DQcdZucMvghs30KOI+JpW0c+y/M5FAwAMP3h9L126KToceGMcd2z2aN21Kcoc+INgYaVfkWosARo7MwMLWSxiV6Mq1FAFHfZctbFVYyXGY4+LhF1+KZpDYMaefGYe3a5d2TcIdHayMl56lceFj8NXEnfTtd6Rv6Us9KM6LbUlFYC17vn3wQQwc/UH07NA+/Q9PyrPXiIEK+aPUj0JeFcfSfiaykOMl+eD3lC2FfYXvAo1+TSLS5o790R9N924W7emL4HGYnkRkUNr5ZoKRMYWB+tP1K3eTHn+Bg0KXoFu36TKDR1OofPdUliHjPo+zundDfyBnSNLa+0X+cPtE0gy4k94LmaCkhP6ArTawl3KiCGgW/YaEpadujfvs0xj9zsAoSz+zs844neRP07RNDeao78SeQTL1SAYaWFMGNhjP+0r/KTOgQYMFrkse1iZw3oNeez4++WZTHNP6wOjU/ggaVtdHn1GFB9+pG+x/pv1RFl2kzyjNrUYvz19Mn76hQ6Jd12PjzLPOjLp7wIdZN6VF8c//XNt/6vW/DjT8cuE/batkkHjBdvGAeKd88XkMhDiXzJ+H4VEj2rZpk9lyj1ZbQ5+DjPLCOCJXY3f0Rx/HLbfcEd8w+MVdj46ep52a58dKQBKT2T6FlUSQDelQaIWzVyjQFO58pkKVIJOxGMuMh3vwBiC8736mdxxbu0Z0Pe3MaE8012NdJIZ0ZJWcPGScFB2sR0YpMYvveX+jszpedrXegHCQERVSr3P80rcLFkU3Ov+2wZjbp3nzdCg0KnIfoVa+YzNuSdgqQBQEMr3HLMo4Gt0atxrYq4DTfAMBEHTvZ56JLpzC0BkBZdWBmXsZcS0KxO/rkMjwOosuwOVoRGpcKXh1tDJgw9+Fgb49DuPiPK5rJJmRUcOGxbXX3xBtMf6rEfTwOypcBWwJJiV4lCHLLaoLwWQ2bJsBydoUku6lFa5fkOkaMnhQvPzuoGhJJPTCM06L/RBWOnF+z7HNSjDVInAEA6s0hIP3VrC6EIWj39mBOXn8z088FhPFHY1wfaXvC/HZ7EVxxRlnRI9u3aIRDX/Kw+TlUBBIzVTqKiFPqtDZE0Y6K8InDWrWoSGnak7YAUvrvqfPnh2vvPlmPMWxjF4P/P7O6NzhqKhKSeZWHEaQmiXcjqdgFkaFgnem22gHg9P3pBthpyGjQ63g+RTYPPjAAzEcQ7F7syZx7kUXRWsirhqKCuTMHG37fY4rvW+Dr0ao21DErXToMW++1ulWwbmndRiwuf7ue6M5s+l50YXR+ejOCMGG2RVdJ8hO6c5ZZeODCeb6N0vjWFcKxM0I1w2UzKZCJoJdhiDiD5yEsGjREgy5AdH7lZfikh5nc/71IdlsyUyjzrnANVMkfRpoYNqpOMyqSfNWNJSMLB1Fsw8GHW2qs3KFgYap8TpByu2Zh4EGT++oR8bLZqCb6F+gsWngQzgZjRaPGopeJacpDTBwJM1Ljz48a3zmTBql4mA8/WzvOPvss6ND27ZFsz4CNipKZVHyC4rBsf1bo6si67HkfgulwywwFRsA0XLKIxOtGHAv7ic0cRqBMTcdw6jX+ednIKMO2QWbOZmV37i+MHTlGYAOqTCGDMvDMQw2SC/5KfDSqdllZwM4G9in/Fm8+9ageHNk/+jRuVuce9oZ0aRRI6bBarGKN1N6CFdilOyU85NvlJtSpDS+lX/Ksa7KbCOzMsG1yW+7VK6UlR5Dh74XfR56MKbw/bt/dWn07NY1alatgoxChulsWmYB7flb+degljRksFBjkJe5lJRDKGjpNmHJGiZjoD/97HPx/PCRSZN3/vW+6NDu8OR7O6Yr5w28OG7KfGjUagu3iVh+bvBoM5kJ6VzHV3w7tsa0dP8Bjb/uvO66ML9wAbTe8/TT8qQK6Uuac6+58iYdduhH+nN+PjtpAxKZJQFm6oM00PmtsnoF5aLvDh8et//9oTjxkIPDk1Natz449UdhXEEX/EYspqMOjKRldZGZH9ekg1s47DrexelJGnU6ailroPfP3nsvTj333Dj88LYcEdiSsXYiW7U0jS17X6TjC68oG4WNl2MnfllH6hZoxmoT16IBtQQZP57s7guvvEwFSdM4pn377GJei6oGjS1pXKNMWAgbYerlunJgFiV+5SPxnVU4fM9L/TF5MiccEYR5Z8C7cTmOUTtOaTLQ4IkQJdqQxNXJ0oVzlDcNdpYqYDLQAH/pmIlf16numjZteowdOybe6dMndmzaJC4BNq2Bix3Y5X8DKQZqMijE2KmPSjjlPhn0AT6Gj4V18hzvq9s0/m0w2Pcv98eHWzfFr047Lc4gOGWgOo15vg93Ztlveebudh3nm3TKXM24boHnNjBfDVGPqayAXivPqTzKYI+rfOOt/vHAsy8lrO6//abo3qVzVEEOmHm1yk45rK7aibVomFo18QMyws/UF55yJHVu5n2dISspxYFr+ZwAzGNPPBEDxo+LI2rVictvuC4OQw5r96S+5DvJkBIHvxcXiU/+1FZTF3kPqzHEtadTmIzQobQaYySNHa+/++5ozfvH4hgdcQRGdMOG/LoILIojCV4cGDyVH+VVrwxucP/UL8w7gxvMOxMr0LtHyA0YOSKegibP7nh0HEECxdN8rHo1eON85Eunrl0n3uRfFyCfaheoA/2OvC9NaVOYxLJaYhJB/L793+LzrXHiMcdGi32ak+Gtk3j3+8pXYWgSQFpUjgtfcbsNXPxWXQI+yGpUoBxfPlZOTYcmPx3/Wbz9+ltx4uk94ohD/xloEDfKgLRFmZOwVNf5njBQ91tJpeNq4NP5q0IMDPu5x3tPmPBFDBs1KgNst9x6C/ZYq3QY5XPpT1kmfRWNUItqKXlFHvb9QtYUuj0TG9CVAUur+caTUNImf3bkyDiRY6AvP++82AeZ4JW2KLgU1jqozlUnyzn+iI0vv5aqk0oB5qw+Yp1mx+2JMHQ4gbW//T2+YLzbLrogTiNoWovtQ9+Bc+WLMlUbwGcrIdLuBuLaH1k9BAzEjRlfE0plmLdd+8XvtBkzo1+/V+KFt9/JSse/3/nb6Hxk+6hGcsMt2wbuvl+zLqs+Xa+/SXnAerS3tNG2R3aK8S0g133yPu+E7vOzjwms3fn731O1tiTO6NIxziCIfxDVMOrHDdjoOVdgIFzkMdejraF+kI/yb96TfqQjnWkmAV42J2yGjfkgbv/bQ/Dq7tGNpFKHDh0yYaj9K14NMDqexCL9ZJCR0TwFSDoqejTAQ8zbtSn/DNQoS2bNmxtvEFgb8tZbcdaZZ3IEN/4HCQ77cVm17NzUS1467l6uQz2UfKZ84T15IukIW8zAo0GOdNbxP/qRJGi+dzOSDx2ySW1NKmGUryW9l/DmPqk3GEuYuH5lj/aZD3Wg/J29eJAVi0mieiLLB1TzvYKfcM3Fl0R7fCcDGZ6GlhVL6FGBoo8jffssPoVDKcCmbhEPwt37lmxDE52jR46KgX1ejLJ71o9fXXRxtAKnVnqkHYD+c34GGfQTlWnyp3JYO8pLOtX/NPmojLO/i+teiU0wZuyH8eqzT8XA2UuiV9dj4sweJ8bejRoxF6JJDKEuy+Q4rw2aVQIfNvM20DBr/rwYNGhQNGi5b5xBAKQu89sKn7ECZEKR9EhiyFn8Z/7z7wk0iAuhidGDZuE1EJRaQThSK6YiMIcQgVy2ZDEZvT2i3eGHZ+n5ZhC6xgwWX03hC0PqlI4YMzZ+d90NYbHe1ScdR6ABp5SskWNKnBq6XgoRs9U/opB/wOnwWCmzs07HjI9Oe0aqmIcZZ5XPvEWL4q2hQ+L3jz4aJ+61V3Tr2TOOOuqoPANXQ8VookLVS+ZTUSp4XY6Gl4abf8hENrzzyCv3/hitsmxpIlE5FdvK+YviBIIBbczwNmueZV2WjjuWSlYBrfHopXCRuK2oMAuisSWjm4XUsPZvsy6zZ9MBnG0fjz76eHSnVLrbUR0h5sZZvqRwstGmijf3msJkMoaMqBBSqcokGlbCRaEn8etwK8jmzJkTH2MkDhkxPD6hlPH6m26KI1ofkk1zsskf8Mu5cx+FdpbVKqwZe6uODeOlAgEeafByXxm+EsaUx5eO+3w8VS0D4onXXovDCJBcf/HFsX+zZtuUAHNEWKjAZHZjeCkswKTCy0ujQp7XmNHH2Yl5l3fuu1SOrzEo3hs6LHo/+Xi8P2NW3IyQOhcB3qB2nbx3GZwqaWwrBorCuAg0UL4Pfl2T8HFMEK5kj598IKi2R5AoFKbOmhnPvdQnHuTh9dzf/hYnEETaBfytX/EttEeXeeghlaQwYR3CQ9grdDXk0igUhuBApW8moiKZc4BFpPWzuAvF9g7C8HRKgi+96urs0Ov2CDMLSXzcV+NbgaqRLp51xryn5a3yjQbiDuA2FTf3Eg+rUBCDMCYuveOO2Jsxel12RZxw3AnplLpXeP1aGvPAt46j0lSAK6zlMIMK3+NMryTI5Xm/i5d9na/Lq6iEHc0pltFz4eNxn8bIse9Hh0OPyOMB7c6bVQDMyyi/xpN6RtxpCCjEy5YrjE75KB0xaDVpCr5wLhpMpYzXWJTPdj9tITpPddOx3eIQG4NWZI88c6+wfbmoBB5URJa1eyN5Xpi5LmWBsklal7+sVtDRt5HprFmzYjTVTf/4x0Nx/gUXxzEYXA0Q8gb6pAkbzUmHPqQTZQOowyHAOQTP5QmybQHuzhUBlsZLOWCzBf6YNZdAA1mdIcB+MoGGy1BsbQiw7U7FhPdXgajobdJoGatHZ9ooUxpPixMcSJNboaU0glWc3Nf+LxuRd/PmL4zJk6bGqE/fjzYtD4wuOLy1cepspvWjD3jS7uXykjiQDv29e6G3Apfv1/MduMLxlHPOZa9GjSjp3j8N32HvDYrX7n84Rm5aGXdfdkmczvnODTHQXafVQWvgI4MV6ciCMw1GFb6Ohk5FcS8UJeuQZpVxGeTBmJs0bVo89uST8fDAQdGG5f7+scfiaGQwhBercKadqzgUf+loKI8FDO9nE0ru5ZxV3OoD8VOSe85hFPRy+xW/irk/bo5LTjkteiDjPXpXw0lnXjmlAacs1Fk2mKmj5+eAPCtM5AUdb+et4yfPupZlOKVvDnkvbnjwr3HOkUfFscccQzDAEw1qE6yBDzUG5XHmqnx3Leu4pzJfA8+5eh9laGmdNgRVjnryyOQZ0+PFt96IsW+/GWf1ujiOhCb3Z/uEBpHNqeQVdZvzUyZ6SZsSvDJGmaOckPKLShPolO/asM9KlU8J+j/9wgvRCmeue8dOWelhoEE8Su8GLYS5axWmzlVnyM/Fibj0fr5WzxhEQMBxKtO83Bo5lGPkhr43IK658dY46pA2eZqBhmzOi7G8HNsAoXJRXJTu4XfM1mkcGgAWjo7v5xOoPHoPA/pVAprVm7eIq3pdQKCBkx4ICmoHqCfUgdJJOreM67NOqLhTFvJHyl8dDOWccDFbaEO0kTh0Lz/1TLw5e2r85pzz44LTz4jGyAJpTLvCY45t9lqJtbh9QodD/jSgYDDa7KjOiltIlZvb8Z5Zrx0ITM6aNy9e4iz5P/d+Idf/9ztujRPRH2ZgxafHYBrs1TXVnknTEtr3fdckvDy1Zwv33yTtMq5BR4MByvrPJk6IfzzycLz80Zjoud+BceGvrojDsDvchiFOdU7USVZmaGdJ46XAj3JT50r8pg7kM/9OHcB6hM3QMR/EZQTX9+Kzc867MLp3Py6PThQ/yR/qDGCrDNGukG58OG8vnSbtGb7CewWvpl0FXZnNe3PI4PjHM0/GmR26cCzjsRzjd3hUZRvYZhxinSvvkbYFc5dvpEfvJ52kM8081Ym+LvBKEz3gugx+mUDi50WOD1/JFooexx2XRx57Ko6VXM5Vepa+XOci7NNvkD9rua+VUcLIKjUDD1sBzhYQaxVYBfhaWb2AIMn06dOoyBhD4uFokmEtqORjKw92g3QobE2rOze3ezhnnTnXov1ncE/cyE/yv7KhCsFcK9yKCtbFWT01/bPP43e33R7t0HvVcablfXWR2X5/45rNrgpgk1XqIx046ds1qMsMbIoPT2OTtz6mYupNaPLREUPj7KO7xJUXXBgtsVPlSfG6hman2jAGDpyrPPAj+sQxpB/HdD2uQadO+WZl1o4kptYSaLBq6m9/+EMGGv50xRVx1sknszWjelYSikN51nkrJ/2t1TTCLCs0eN91WV1q8G4r32HR9FyzKql8BhpeQIY9TMVdA+Zy1x//RNC0Aw3mK8fG74tjZdVRwkk4wCQpE12PwQuVuIG67Xfg/qxtI1WVG1wrtkFZeEob++Zbb43xc+fGhWTWzzuboOb+B2Qycy1wUb46pkF8bTDpUd+ioHsqbeFJcWyyQGBZQSFupDOPsX6P5MPNf/lzHN24aXQ5/rhoR5VQowYNEp76KSU7WDvIq8CfwWnkBGMLG/lT3Kp3MxHIa5MAM+fMjb7v9I/h4Pb8yy5POZD+B7DRxpAXtceEu7alfOi8kzZ5LX6VEUWFKA438NuVpp8eszllyhQSM59Ev9dfJ0DdLI7D5jhgv5ZRv359YL1Dbo0Vt47t0hk8xxEW6mXXJZ2KE+VB+iMEavVxTNJ++dWXMYKk2BOv9YvfXX9jHHMEzfcJYqg3k0bgaceS3pK+wZU41fb1fW/p+NJV4cMVTYOF05eTvuJkkPfizWefjrINGsX12AdtDjjw52oMf5x6A/j4W+Fqc1a328sPW6ERaUcZuT22q3LdQIPwcdvHqPffj5ceezhen70wrj21Z1xB4G6vBg2zglraEJ4smdsUFQ36L+qJ77AZZkBnbxEYqrFXwzjrrLOibgMCDa4TPGivocBY2X/29b8PNIhdIQjjFRfQ439BmgBCqM0kUjWCZpDLEfY1tlU07N1kL4ICW8jGkoUHofkAsGZnDTT88Tc3xteMcuGpJ28zFMnH8j2JU8NbSpYYymGwl+VW222BmOnOrhDQadXI0kHfTkHD93/SEIEoFzCHN5jLbx99OE5u3CS6n346WakONIOqHT+hXH4ONDCmDC1zGARwOQYaSkwp87td4ieIoALCeBPC0j1MX2FEv/Dm67FwwuQ4+ZQeHJHUJs/W1eFm8qk0NS4UIho5Xt6zYJTCMZXAFCje2wx1OUr61iMkZsycGe9/8nE88dTT0anL0dH9qI6U/+ydwQAdXY1Jla2MKzPKzAWTy+gy4rZjZGAQ4aiCE0auSafro7Fj2SIwPD7/bHz8+sYb4kiyIntQPup3xK/fT6bhXplBRFArWAw0qLxUlhrXKgONAz+rSJnij9zrCyKhQ8nSPftSn9gXw/w3l14aBzRvnqSSQklA8CKjqtwLVIu2xKWCS4HupYHH25xEAVyADfWnnK1NoGHY0Oj9+OMxmnXccdkVcQEZ3j1x6jZAT6SbMriA5sIxxGhG8WukIVX15HLehTOHUWqUFAdSR7uswgRBOG02gQYioX96/lnejXj2/gcINBwbu1JpsmUVO5JZKxMFp/6+MJ4z0CBPsI40BICx91BZZNSV+5RjDc7hMwINf7zrrngbo+X8Aw+Ky66+Og5p3Trv5fw1VMSndKKyEl8666lwkHwZLWVc555Rf569r87eSgJUBhouuvP2OIARz778yjiRjtQNCVD9gBG3gYoMTQfHkp8KAxPa434GFNZhAMyYMwuDbVKe/Ttn4fwoB1x+4h4bwe8q+HcehvQcIul16+0ZNTAmPNbPrISOl+eEW/pmnwxpx+CizcRcg+efy6urVq1MZVqpIk3BgJ90Iz0ZQPmWEsj585cE/YAYI+I+4GRlQ02Cez/RqXGnMlQ0QG/yitk7aV5lmc51PoNj6KcUWNPZrQA9f8e4M2bMwJD7MB557B9xHk7dsSi2BvXr59YlFa8GRPIldCl85NmtzOsH3q+EQtNIwbrONWkEbQe8QEzKoBlzOEJu/Dj2kg6LaUu+iWswttzqVLVadRR9ZYzRokpiGvLiM0qH3fu4YO78vN/2lNaacdFZ0XnZgoGnvJF+pP0tOPgbqSZZA+6m0KuhHk3J9t+XbU7ww4bv1yAH6YUB/n4kO7th7aqko0o7U5lUcWfonkAIfLB69VrwY2m6SoyyzKWromevM6MbjrPGzrD3Bkf/J5+J95YviHsuvSRO69Y1GlIh5PpSFmDQbWUcYZ2BNA1UaFDnPJUpBqg49jNp1mZpOo3lcKpnElB7+LFH46EBA+II7n7HI49GJwMN0N8G5FwaUPxOxZ+Gi/cA/hrLyT98T8dLJ1I6F+d+T9mjcWoG9tbLL6MfzA9x/qlnxkkYuftRCSMuDUYpY8RvKSOq8eUcpU+DG26PET+Ws+t469h7L3/zzYrl8fqQwfHrB+6Lsw49PLrjvBwJ3eyB/thE4K4ImkEvfF+HQ94ygO295Vnh5Rpco691BgxOKSNXYbAYaOjz9lvxMVUNp593QRxBUHY/qpsMRnyPcyNNCn8dF4380vqdmzASDlkFxvjO2fGdh6ckLCTQ8PEX4+NJqklaHdwqTuh4dFY02CXdSiLlezqFzNX5eamjna8Z6jQQ+UzdIV4NNuwATmH2WDJnTnw4dkwGfEeOGR433/Y7Ao+HpeOlPlCGq9PEoWP7W+nDsb2vz16/fN+1uG4dti9wpgdRKfha3+eiRssD4uqLLonWGLniPLcaML5wrWu0MAAAQABJREFUMZDp93M8llDQYJHtlX9yDzJf9X0do/LI4NXQ3KjRo+KV3s9F3ylfxI1nnx8Xn3l2NK7fIMfT2d+kzmbeO2lPQGOb1EOMtwP6AcEJT4JTcGLiAY2S/WN0MCpCS7ORjy/2eznueuqZXOMjyGIDDdUJaJp9hbGhE7iQ+W+XD9Aq/pBprkkaArk4u/C+7zN3tw4KV4Mzn5LI+fvD/xX9Phkb57Y6LM69+KJog+42mCM/QhSMYH4MGoHmsgqUIQ0MKDO1GRwrs/CsxUCMhjFIi9UEqod+8H70uu2maMQce513cZzEthXLsX9AH+nQS3te4sv5+nfKYGS/r6V9P/Nb0qR0Kg1oLyzCwXht8MC4/fF/xGWHdYiuOF5HUGG6C4GGLdC7jrM06fdLQZK8D2M5jpdOSFZ+QguuQabQrlyOXWDix0DDKgK6PQiQtGlzaDTD7tiJgABEkjgUhgsJeHi62JcTJubRc8uofPV9cVsWO20L99rIAsoSWDK4ZBLIxNISghMGNJo1bZrbSTwiWz2qY7IJmedcraTaEXmiM6Zd4G+VuxkY5HNhrVOqfKhB1r8KASjtK52zD0nQzPx4fNx1480kfg6O3atUjYp8ZjWtNhYAzUCawSEvnUfvoX0j74sa1yGPiYvdqlZLO9jg/at9XopHRg2NswiSXHbuebF/c48/h775jXQjH+msQwbcC9kIHpOfWI/rEic+8iY8a3eWkaaB++sk2/7yh7tiInP665VXxTmnnJJrW4ONrIwten8p4wkCMF8DYl7OWXqUToWJVZVbud9P0LKJHwMEHmn4/PMvxH+93C/24ze33fvXOLZ9x6gMXr7/Dn/CcXDQlDl5QXPO8SecRm2lIhAI/B0PHt2E/WqgYcfKJES4t4GGW++4PT6bOzcu6totLup1QRyCU4qioRH4d+l4svCUPYlTeEjdoUxUJqv/hHn+x32VA0Ap8WK/r0HImt/cd28cQ6DhmOOPz0CDFUKu2XENOmrPOHvhW5KN8qh2oAkT7aaS7hVm8piJzFnM+SUCDSNJ6J17yaXRrs1h0QLdVxE5uubbVYy1JeftvdR5/m4blHgu+LbEn95XGO2AvWRCeNr0afERtmo/AuGN6zck0NCJI48PxJZEMrDujfgfjpd8ug326bzznjpaXGujil//lr5NepbHnlxK3yaP9B2OrHn8lT5x5/U3YY+1Z/va7lERvnYcq7tMLFjRqOwWHuoiA2u+Zw8x9ZTBBufuPfL0QeD4FVVfQ/A/3nj68diufqO4+epr4zC2adnXwyCrtC7MhYvrFybKYGnez7QDtMHkM2nGYEMmHwg8r0ZvW1Hd78nHo9+MOXEdifGre/WKPcHpj1mxBu+JW0Z1TtshH7St1XjfM/eZBOlfe+31qMFWzHPOOTt2b9AgZZMJT7+bfjTf/U++/i2BBqOHKviMwG0T/jIMb5huibmTKKnE2flm4cLc89XqoAPInjVMBSiDWgoqgo0crcQBsIfCA3f9IY3qk9nb3P2EE/JcXQWlEWjUWTKaStp777ZTpahIK3SNIjNTClUvMy5GY83mW24n8XxNRPGt4cPijqefilNr1Y3jQGzHjh0wFOvEFoRrZoOcO1caRxCfDJmKDgYpCUGJRqP2R4TYdhDqJual0p06c1Y898ar8eXQwXHaWb3YJnJYNjWpjoBX2MksZmodU6EkUfuQOVQ0li/aMEZBriLSOPexgj4E06ZRPjru0+iD0XIQ2dHOGKEH7ktEEQdA+ClonLPMANulEvU+GkEpBGFMmcO5a4zKjCo0lf88HMXxn42L4fRR+GLc+PjVtddEu4NaZWmqWSbHt1pEBaTDq2GqAavg87QB93YLNY10o9IGPYSHGWRxZjR0DMz4+osvRE0i81edd34c0Izj0piTyiuNeX7vnDQcfg44MKp0VShN5s29FeJlFK6s8wfmsWDZ0hiFgOr33HPx4cIFcetFl8Q5J/eMupRfrl+zNraDRixLLbZR4ITinCu4pFFpKg1gBErJUNyCAWmjwbKUvtpgcfrcOdGH0s4/v/gcM2TrBNmFY47qELvj7JZlruWdj2Pxn/8b1BG+Cj9xXir18rM0XnhPeuIpafMjgjD/+PtDMXguEXSMiV4EYQ5GgAsDGw6WovziUh4pjHGErI4Q8JB+DCo4Z7PpVsWokMWHZV1Dgfuf7/lj1OPvEy65IrpSQtqUQMNWK4EwWArD0/JTDXGzCxgV0EmV6tXje/YwGsV+d9DAmPf1ophJoKECDm0GVLiDGYfV360iKLAGY4pjQMnGuNVH4yqVIWvU4E2Dk/ll0yvhBT1Jk/690S0IvFcOHvZ9YSP8dKo2E5Qwq79sFcE+rjtvuiGO6dgx6latHuVxtslpEWyEpll3HjfIevyt8BBO3sOgg8ac75cMsG9oXCdNvo+sefHlPnHm6ciBw+jrwbYMe6RIbxm8QBEoE2yYZwnhJnhzLYqlHLgpLz4Zk8mjyAkkAheRamnqtFkcmQivDsQ5WsScrsPYsgeEJ95YRaCh5RaI8V98npU+s6CxBchHcVaOIymdt96HtLSVQIMhBqPpaB79EgymAk8el1RpRwzU6rsDf3hiC3DiWIBsmMbvtmymLzMwLlueCp5yNrU1C6qxAp8xkBUCHvE6b93KuPVX18ZJ3Y6DTH+KEQTuBj/zYoxevTj+cMnFcULno6MujdTEk0Fc3RZAnoaFOJOHdSLNTIm/nx054KhzZ6DBKhcdU8+m/sfjj8UjKP52LOnae/4UHQ5vmwZFKRDgGI6r0V4yPpXrmb3QqEAmKN81bpXtdthWhrg95H0MxTtuvC4WM/Zlx50UJ+AYtWyxb8or6UBDXOcxA37cQ7Aqbw0S6NQYWDXjphyShjMAJ66Zk0HNt4YPjev+9tfo2nDvOO7kkzLQULd2nfy9tOI85CllsY/iP26Sd8J4YRyvpHWezaCYuVUvTJ09K16nmmTS+x/FCT1PikMpH9Uxsnlr6iPmqQ5x/sow+Upal8YdNY1b4FMydOU9+cBKDrc3mP1+kmxgy333TUPRKpZqjO16nZe6gCETDsobja3UT4xjwFSRljSJnBCWViv4uWW1HxqoHvxefDRtQtx58x3R/uBDi21S6IMMugBrnSPxKE59eI+SEyQ+xEVeTEKDVVx4P7Ndw4bRJwcZv/NBLeNKZPyB+7RI2KrRdOSEuZlXqxs0DoWXwRHnp0GqvnZxynmflcsauivh5w/GjIk3XnwpXp46Ia6mb9OFp54eTeo3yDXKP8pJwxU7orMZvKAV8OZRpzAbPEnQTZ2I0Wxw0PPRNUh3JYM8F53U79VX447Hn8rTEB6447bo3rkzFQ27EhikUoL5WzWjLWMgnImaCM+AuNV30o24/ZHXP7JG++YYCBfv3ncc1R4PP/5ovDVhXJzTqk2cyjawgwlYi3vhbSBGWGPlshQyveBDGtVesO+MNoE0osEvju3NY7bc8uAN/H7YWEq9kbtVuGfPXpfG8dhjzZo0TZ3v79VJ0o72iwFm5UA62OJTePOZ/xkw9/K1slX8LEF3vz5kUNzxxCNxdvOD4tiTToh2bM2w54myLefvfNH12gHyojaYPFOipXSIeF954JjSk6XeJn4M3PXD8bIXwgmdj4mW++2XW+8qUVmlrlPO6rTMA0dDoK+RQ4fGamS+jbENHlvRwA3jB2hmCy8N5Ktbpaf136/NU1s2ctLXLiQ8PNlJ/aKtpF4zASM9Z0UDuJK3fkAmS5u+Fn+AJnlVeKXOwlHajWBC4yZNssHsOJyv2Z98HrddhT2G3VSbQHVlA6roHR3OEp8L11KAyPfUv65NGvdeyjwvK4B0tsdSvfrqi33izbGj6G9wWJzd4xQqGppl1ZkZ8pwfa3f5OlsGTYS52xqV/+JUfao9KC61X5XF2qoeR/w2eu+hB/4ak7nnny6/nPFPjtoEUVYT8JQCvIfyL4O8zCeDvHwizcqvykz5VFr/iXX8CP6lfx21KdOnR9++/eKJ/m9GK35zwx/vi85Hto9K2B86xDsQZKiIjjXA63aB7INkYInfqp+UAykDhA1w0t5zi6iJA7eIfkRw5977/hxfLFoY53boFBddeCG6+6CsZDKQkfhj/QUfofeQDSnDmEs6lCJd2DF/k4baSupv4W4vgvc+GE1F3P3RpXa96IpusmqtcYOGKe/SoQavygFlo3QhD2mnK0sMhHiqjAE47UJhJTylBRM7cxbMR38MjtHv9o+ePc9EN7WLA7AlxbtbVw3qlALeTjPtImkjaUadBY/yWlpMGwT4aHd8y28XLVrENq0v4xXgXmf3WtH1qA4/VzRI81ZUSwvKmkyOJRikoSKAIWwMRBgs8FmZ5jZueeZrAoGTCQqOJknw/JuvxNXYqZ3bHh571ub4XWymrLKAb4SzvOdYyi3hY081GS3tEOjTwIGBAfnbxJK0OmXqlBjFlvn+2DQ/1KuZgYZDCeAbKPJSbysbDbRJgzk//jZBJpy8rzhUn5QpT2CZsaWjsiSFVrDuj7Aj+/ftE32nzojLCR5dRmVCM3CqLkpZXtagH7JJm4L5gLiku43cY+6iBfH662/Envu3iPOohNjVhA70mJf44He5wOKd/8h//y2BhlRgKBcRDfYLQMC8vJHZ3llEk0aTKf9m0cLMcLRu3SqaNm6UhpKnTkikZpklJp3s4Rgst1C6pDLtRXToxJNt5rV3EphBA0tWvJeK0iqGSgiVHWE6CUVCl7C8RKxXZgIhRp3jpZR6v8oeoFsefjjO2rdFdGMvpoxeix4NNl6S4GQ0/5NAfnkZkUumYVwJXSWEGMh56uBJ9NPnzImn+vWNTwe8E+ecf1ERaGi+T1RB0ClUs1QOoaCwcp4lJlRoqPAkaEv3FAAGGmwqpfBeScmuBvoY9pQ//+KLcTid1Lu0OzJa7M0Z27Vqb8sYFyWFCk8FcmZBeZZT7MquMnCOMomfK6CKQMN2sXDhwpg4cWIMI9AwZsSouC63TrRm3pamWqIIXoGHyl0YibMiaIHRwH8ypn9nhQSM7lYPAw27UXblZ5MmT44P3n8/Xnn22ahFWec1F1yQWyfEo4ZDETlH6CNEZE5xqZFbBHYKZvf+YlRFqnLYypzKYjAsXrEim231/sfD8TlH5d18kYGGU6LeHnuQeSLjIiyhLwMNO3AvrWWddDMq3l+l+hOkKr2qgDQUddrNNFriNH3ubDJS/eLPzz/LlyIe+u3v4lic3RpEidFcBBo0ClGIjCvMk2ykPf73dUFN/LkNZuJd+KskxMVHn38eD9z/1xg2d170Yl/zhSjmQw46KGnEgE06bQhv4SgNySfO20CBzlAaYcDcsl0fKjbXgrTPioYh4PRWyhibMJdTLr2c3iHdtgUaoEMc1iwNBwZpuAF/y4Atz622x+65dcLtNA///e8xkbLiFQLgX1ziJdf9Lz77375VhbMIv10rvUbccv210a1Ll6hPSd2OdgH3bWCSvArMDTZoVMlX0o6Gs8/SjAaphpewMxtlhZD7+Xu/8Fycf16v6NS2bdSvu2fSrL+RRzOwBr3vCh/Yz8By3rUEb8qCix24BxST49mrxUwjyMh+LdOpaLDp07vvvkugYVPcfP31ZEUw/rcFgdw+oeHxIc0iX+j9dIyDN+bkCv/f/pHMWNq/5br2sl/FWaeexpoiBpJR7/vAX7JHw33XXhUnd+sau1ermkfzpQPH2cGQWsory6F1VAzYKZ+VMTq+BhF9X1lmhYqyRmP0SwI8Dz/+eDxBZdkh3OvG++6LjgRNbYSnIah8UQZI9/6+MDwxBqB1jQx7V0jf7lX1c+Ho7zSgNH5HUfV18/W/jvmM/euTTo4TDTTgWOuk+Lk6ouClQgZb2eA9cusA8/fvNEC2AVZ6kWd9WNHwFkGY6x/8a3TEUDyRPZVHtT8qg71ZmQbNZNCUKapPZApLbOXZ/Bz6dDxh5j2FmTLPAIqZGcvs+77zdowbPCR6nndOHExlU5MmTaI6wQDHkM6tzNMQNRstnWusKWw0Ivk4DUTf9/Ie0rKBBstTDTQ88fzzwKNFBhqa7rUXVYaczc6ahQmaLccUByUnT6cg9QY4SQMUvSQuhLs4dfyFOGo25B1KQuHd0cPi7jt+nxUNu1iOzOc6JwLDTKw60Pd8OK70UUxXp7Tg89K8rViQdr6cNClGYEP0f+6pqEIw9hrkmM3xku+hh9xygAwz2fDPnjMEwDR6gXcGl5DNGv4azjaSNbtmUHE1Du0I5v3iw4/F2/NnxjVUM1xqRQOyQB2WSRTGthmkPRr8O7PVrEd+lhatOnJsAw8aoHYit0eD27DmUEnyQt++8TsCDV5WNBx/TJeo7tYJ7B8MlNR1P1F55/wNhLttzsCJlTEyuDRvL4jsB8HfBl9tgmq29FNw+ucH7o8BE8b/vHXCigb1p46WDpE63LENmGhMq2/Fr86YwNepcCzXsJlsvDrArXgGHaxo+DX8RMvpOJPKr+OPOz6b40kvykfHSSMdWpAHDc6pp8Stl7ZC2kv8LX2KDy/lyGIcr1cHDYg7qCq7vEOX6NipUxyMDjSwtpq5y6/SgLSvrvPZbUTSt86W95YvHVMHx/fVreLNk1Amz5wRL7zxWq69B9npfZo142hdjvFmDHWvvOPW0Dlsg3j9zTei9z/+K0/G+uWxeTnZ/59/dFUID/1br7POOSvq4XB8Dt1PGjUmbr/213EEgYZaJKwqw4+uMZ0f+MXXGdyRHrEh5St1ne+r/4SNcFQiqMeUM6VAw5NjRsfJhx8RF591Ns1V9078KXdT1vCLQk5qZ5S2DxeyUtx6f/HvwBn01UlDjiyhKfq7bHN69C9/iQnc8w8kTs6mqqwu2WmrFL105rykk6SXlAFFcNH3pSeIBscaGcnjB/COEElaNdDwYp8+8QR9s1rw3dvu+QtbJ46Knbj/d2TtDaxVAkbOTx9BmjTILZ1I1/K/tlFpq5MBBrdRQKixHpk6dhxbWe+5O75asiQuoHL13LORw/sfkHrR7aaFbcrXmV/StkTN2MKqRPPKBO3wTMRxL51LM+5WmA5E1lx99x+jPbLn5F69okvnLtGoQYOsbnLrnadlaKPKH9qO6gdxaqDBZ7ftKDd0qJWT2t1+x7XOho7lp6HQ8hnIsCMPPzz2Z+5u6bGHmzrCgF3a78xRmJR8JsGSf4MT5YFB0wzEgGt7a1ghZGXr8yTd6tTcg8BdZ7YkckpMnTqQANVPONyOoaxJPmQcZb6vpSkf6gxpQL0nbUo3BjQ9HWYCcmzEmA/ovfFm3Pirq+NoAg21SRbujP9jMpqhUo6njaGeYFznmQG7hBRoBR7CXHiIj6zGZhaTsTlGoj9ee/Lx2L5h47jzht/EoeIUHP7si/G9hAvvJf0BG/0GbpNjuTjl+3bltNtN6mEDIuPtnzfmw48IVD8fL0+aFpedeGJccc450axhw0yM/oR8F08SnkFz/syAkT0aCNHGnEULqWh4LWo1b0qg4dyoQmUwBMCDS2Ll/23/+OI/8vr3BBqS0X6xfv+WKsQQjDsFA2TIwAGxdNFieiHUyihbs6ZNUumtQ8mLaJnKxoP+ZvCoUXHsJZfkgLewv/bMs8+KFuwfc9+aJzO4v85tB/7ODLcRdZW/t1RAZgkXTOQ2DAlCpaJBtD1EsnL5Ckrp3opr7/1TXNzhyDjmmGPjUJpT1kIIarhJoDqMMpzC45fZdIWtglHmT4OMexlxdc+zLKUQcL/NY88/F+PefCd6XXNVtCUj5R4pM0bfsQdXoe++NwmvlL3X8PJ+6fACMl+rJGRGAw0VyKauI9Bg6dJoItEP41CfTDPF7h06Us5MBtbMOuNqHJacWcdWkep0GmDQqBK2Cl8fvtbpymoF5mK2a9JXk2LwyBHxDmU8v7/7nmzGYjMgjZKMgm5jwBJj6qhbgWEjLIWJgRGFjGszq6vyq0YpvcLXrRPvEWl9+ulno+WRR8RN7CM1gp4Cgc+9h4I7/2be4kCm1+CXNjLizXs7GCwB1uvIBm8HPneDnlYgvN8eMCDuv/XGmMJB6jdRMnbuqadGQ5p5uc+1DOMblS8DSnPfFe9lWbw0AyazmgQFqVAtnTixFRyUx5Az0DBt1qzojXF+H00DvXr/7cE4EaNlF3C6FnrannW6RUDaMFpbcpA02jStNJQ1iBSCClfxKkzs6Gxlxkeffha3335bjJg5O85ofVBceZ3NvFpD0zRQxNiSZqQtppS/s7GVykhDNBtdugq+oxA047KZzzdCx1a2rIK/BgwfEZfdenvU5XuXE8Q46QQb1eyVim0TDQmL0mOOs4T+Xb/GuVUL5atXS8d66KgR2TBx9oJ58SWO0P/tpSnBlLNE7Je/gRLzffGoDN1t24fmOrbFcfMdXRPycClrPe/a63e33BjdKe/fk0DDDgxQBuPc3huOY6bJFwYV0kAC58LbbGoGp8CNDp6KyP3wiyiX/eCTT+LBhx6KX/3qyjj2KLqSQzMGAaxG0QgXb46ls1UY68gb4FQBfNvEFqRyZwx/6NHGVVY2WOE0Ezh9PG4cjfEGcCTfivjtrbdxskKrpDEIO7PIBqU+/OjD6PPCszRCmhBfzF3kEjPrKWyEhXLlf3MJW2FTHAr430fS3Pc+petWgovnYHDKK6+w//V3f7o3P3rwjlvi7J4nRzWCht9hbFjZVL4cPRTQmMqSsmSQ0tmFT+VfZY+yQSNA478U5PG1wd6Jk6fEI48/EU+/NyT25Q5/euyRDNy59WQrMr4Ed3lfuCvfpU1XUhgSzJx7gaLkh5wkf+vQq8hH0Jjp15dcnIGGG846M05Gh+yHQSQudbjTkGZujqkss8rEJp9ZSp7BgcLIU5ckvUhT3IxbxDfg8i0CJNf/5b44mu1/Pdh614kS0kb1G0AnhYOFaZJ6qcjw/JBHdGlYe2/lTsnokqdLjpG0IJ/Pxik1UD2obx+2UF2TgYbMbkKTyndxJs+bRbPnibRsIFp5ouMlstV/yuLMTjlp6FM5Yj+QzyZMiMd6944DMbKsUmnRnJNQahOoZi46DdJ6KasmbtVVGmvq0hUE6c3oWKUm7MWzBrzOzTJOc5o+fVoMGT2aQMazcd8f74nO7D32uD9h6Hddu2zslFy3+k5d4RoKx5RAwLb3fF94OC8N04kkK4YPH0aQ/floxBakG668MptBGmAw2JDBBeSlzrXwV5f4e++jrZb6lLsrkw0EGMy3SdvunH61mUzgADOwbNccjQF/00UXx1UXXJh9m1YvW54VJOpvg9Tqjww04KwlrFk/gE49mJlS1qeFoIz3CLNKVC3MmzsvHu/9bPzpqd58GvHw7+/IZsU1q1VLmrNCRZrP4/gMhiuzcI5chwavulD6UxakXED2+7pKtapRBvvgK6qibv7tb2MgQdMuVKrdfu+92cn+J+D9NVsAtA2s+JBmtJdspFvaipjj53wZnzmr91wPC81tITpe7ik/+5prkvZuO+/8OI5AQwt0t/pZG+PnABvzLtG0a7HcXnqSj8Wn9KTtJE9n4In7Lfx6SbzUv3/8lq0fd55/QTpGnmphrwIdKh0jmy9Kk+6PVwl6opH3cQtC2o7SEPAwYOV9tPW0++yNMgmafOKll7L64MyTTs5AQ00C6PKIulpHpzI4st/C6ziufR//e9DpKmZ9+124sVV4W7P2r+TwDrzvhTXFqv71Jb/6KOk12/Cx2YhDibFheHipJ0ufO06j+nWiS9fjoL86Wa3y0buD4q5bbokjCB7VxNmsCP6kr5SzwEPaLmBLRSm8KY8KG4OXJT4SD/KCTZp9/0PsyFdw1p/C6T2za9e4GX7at3nztMlzLMcFt8pe5Zp85ViZEII+lPPi3nG1F5QRZZiXum0ZtuQAAg1P/P4P8THr+S2nQpxNsnBP5IxOYtq6YMygor/XvpMepKeUh7ynrFPGGASwmkT4uGVTWvBkt2eQYQ9T2cum3nj8PqrLOh2dW0pWc9y2POrpdslDzNmxrKgTttKNlUbaw1brrOd9m0BWRk5ZLbCBJsqjcBqvv/mmmLrk67jy1FOiJ0GSA/drmTLFXi0APOnQCcqjwsRkTSYR4THvk/4h8zYZmVsfeU/cfA/s+w95Ly78zU3RZpdycd61N6c9VqN+/ViLs70COVoB3s8qDOS6MsxGvgbSDaobXCjZj6X1ZBCFuxpomDFnTrwIHfcnGXkptl76H8h4t6/qOykD9GmEuZeVL44pX0lP4tuAXvKRfAqsxKmBUxtof4EcfgQ7uEGtOnEq2waVA269czwr8opAIBQObtW30om6yQCU9pPNcl0PiE6bIU8QQ4Z+Q6DaviFu3X7s3bfjb9hLXahssidJViMjW6QPEw3a0+p5md5tTPK7f/tZwibpiuA18LcniTT15ZdfxWBkfO8nnoiqTZvGPbffztaJg9LWMWhuoN25awOop7yX+jP1CvMXXBk4gh7d0qpd77P+gaePjURGvvDEo/H6xGlxJc2nr6Whe6OGBBoITGljl3xKhkob3Xm7/XgLymsOa+/38itRuc7ucc6550Sdho0SfiwADBV4+udzou0/7p//faDBJSuNIdT/Bgz/BtFQRUyntG84xtniefOyhKfNIQdnt1KVnHvQLbsXnJ6eoMM0hFLvE6+6kncirunWPc5ie4MErbFjsKEUOJCAi2iolQwoZAhMJioCDRzjw3cVmhpiEqPG3jdkv19+59247W8PxVmHHxqdiSYeTIZ9D8qCLcFNASc1MH+DCWbydbIlVhlR4ZsRQAmNe5XKuxSKUqMZqadf6hsTaXR2NvuEDyX70mzv4qhCDU/n574hx1NBa5B7Hw3NDAywfh1fMxgqS09XUBnavG4OQuRDoq2PUI1xEpnHY9nL2KBuvexercBLBkFYamQ6ltFDqz9cOx8nM3rEnWVF6QTAXH4m7L9hj5T7xT2h4K033oo72aPWjmzazpWKHg4ZCGDuwkVYp+HGnGVsDasMzDBQydAQ7l5WNMjIX1gtgYB9uu+rcXDbNuyxvTD2heEdR7xlebJwYN4aFQouGV8n2LHNNvq+wkpQaygieaMqlSgriCgOoAz7wTvuzKzwteefT9fXHlG/Tp00Cm3epfOksnStvk4lzbOXc1YQSsZGvH1WqGTzIQw0O8G/iPGvYvN6+N57svTVQMP3RNC34zcqNwW0xosKQZwZyBE+Ng39HsWfhjNKSWPLNbg/zGDAx+M+j7uoOBg7Z14cv1/zuPRKejS08rg/9nAZ4d42b2nGh/AHcOlwWFqrsnZl7hc2Mi+O3XNoMzJLeAePHB3X/PauVMq/vvCCOA6eaoIwM+O6maaAwtkJqRgcx74gO/jAcVuBEH3/w7HR9/VXspHqV7NmJwzYJBC7EAXYmReVIC8qyNLgZ7nMTxgXz4BRNOVasFeAETDelv4py++2Zwx0NMEq1kpyz33IJMtRzgaTwDOP9c4t70r24rpro0unDlG3OoEG3t8OmG+CNqQXaV0FqQxJhYRSk86lcelMfhDX8ocnurhVYSx7Dv/2+JOU6l0cR1NmWIsqGMvtpBOzrwU9WlljZhgDRQgx1vbSLPc32CBe1zJZjYjKu+zGmsqzL3t+fEZwbSAG11TKg28hgt6arRMGPsoQEbfBknsUPxv3KWVzr7CNY1KMnz4vV6nxVAG4Yf/kg50UaawKV25BNQ80K0sLN+AEeUALwJHfCf+EPbCWfgBJ/pjClYRtGX6zmXFWo+tXrC1ENz/J6wYCXKdRQWbZ7xsEG/90//35/t03/jpOp6S5RlUCDRgbVsFkbwd+qIMojA3mpIyEFqVHg4wqej/zUr4pfzUo7WPz5DO9ox902YTP/kAZaSeCjzpzOuNpnPB78aTslVfTyQbO4k85q7xVxijnhKnOrr8X7zb4/PVV18Rixr66x0nR45ST04j2++oQvy+dmBVy/pZmmiX1vgY0s6KK+bq1Le8HgJX5Zo6WI8PfHTE8bkV/HNmYY3opObYizi03qRf4nrSjQ6fhpczyrHHXYYZVHjPgorzz0iDNZ+jKOc1duCh6v/oKwd5X4woM9NZkMRsT0FBnZPaZhduMVBnmXHXiPVJVmFvGrmQpHeWo/PESF5aSeySfJxQ89cKLCY9uHTvgeNGFHwfAe5sFFtYSlLJM3VS5IkY49xYvy5evSOfcv6UZ7ylvGTixC//s2bNpCjs2Hu7zYtxLRaJbkcykCW+NcMt7veSXlGngsYAF277AjfhRFiWP8B0vAw1up/lqyuQYNWpU9CEA1qDlflQ0XBIHUaViFjMD1IxdbG+AD9gO5O/SUIQhDHR5P6vWzJDm1gbWo+ytTWBRI3oQ+uOhm27ODOzV55wbl7D9oB6ZbxMTGufZnZzvy2BpdwAn6VtdDSkm3VlNlXqRdwyYeNqOiQKz5c/16RsPvvBSrukvN90Qx3XpHDWgCw17G6jayM3+DMKj5CRJGsp68VeS8dK+wWADD7sgQ9wC8Cm69c67744RyJu2HEF5K1uRjjjsMOZNl3v0uuW/Bha2AiO3EOiAZRWP+tx7MJ5BEudvRZwwygQFgmcdjtXwD8bEZbfcmg7xtQTubIDarEnTxGPB69pEOrLwJ/cS9l5uRZKXpBH5SP4SD2lzgF9pYiHO1as4AH/p/UzcRLmxjlEzHKMqrC37M2yjMQ11qzOEya4kVryHzpf3z4wma1Bey6M6acpWadajP5+lMd532E+nsuXDE8BsfqqNqNNjVYhHbC9YtCje5bSUN9lG9+2GLTFr+apAbWWwYSdkbUX+qIDPVZKzkoLsxRLQP7zPZ4AY+86Vy3PKAGELyfB3PvisqJzkjbLYOixmHcqNWwWiOOFrOHXvRnvGkR06xx7YNp4SM+adAfGH226Ntvb4gfcqcPMMpjs4lzDV+fIeeVw4a5OXtTm80mbgu8JJh1Nn/2MC7K9TpfnimA/jZI6e/M0Vl2OP7Z3yKRMOLCDtDH/Pw6148q34Le4Hv4lzeUB6EsfMy++YnR46YkQ89+e/xjh+e0Ov8+J0Tp2oB9yV1wX/GEAr5u+Y0r2/VbCnvIdW5CXezH5RP0D32sIGqabPYnsyPRqewk71euqPf+QEhI7Jo2so8Vdnaw/LR85LuSI8pA2DMNoH2mXaSSbKrNzRR1AeGFizavhWmmfPIMh44fHd4iQy1C1btMiAnZWwzlFb0mCaQU4Dd/KUzq78rBMqLqxi8DUrTmVcEV79HptrAM70VXf8LvZluef/5nqacx+f+uPrUqCBeVvdZwBB2FiBooyQP8WGuk5YCSfXIky8xJuypt/bb+f26ivPP5cecSQ6oXkThkVFA4kweKeQLdrd+ktsB+Ad+cfAnokExzWAZKBBeaBtswrdP2HKlKyIs9F6DwJUzZo0CU+d0P5yfMezAkncOh+fCxqxooEqKug0q1qU/STGKmJnansvhP/skTLi/fej96BB8cdrr42ObQ8rmp/yO4O8hX2Bjc38tCdcRCnQkPYdcy/ZBCW6dCs3aKCiehL+x5B47lm2bjduFL+98cY4uGXLxKFySL9Cnez2E+1iXxfbJrgJv88ABi/kWRRM+gfCpmJlevyg19/Hb+rz1GMxaOq8uJCjnS879+zYuwGBho3KXOelLSm/wEOupxRoYMy5rP21N16PKg3qZVK9YaOGmcAmDJ94Lf7xxv+5178l0PDD1iIyaRRIgyUvsQtC0GAxb+qU+PD9D2LurJnp+EmcDTHMzAIbMTJDC+WkoJB53ofRL7/n7hzmfLIiGr/74KzLyEZqJaaMXkHEMpyZLDNlKjKVsgJFVteR9zcaAyVh6x7bwaPfp2Ptq3FUvd2jM43x2lDRsAfloxqBpfJWBYjK0fWIYoMB/q/CU5ClQcEaM0uN8FII6BTOnDs3XiOLOfXDj2lC1iNaH9Qq9m7aJA22ZDwNVphMwtPQ1Sn16BmdbQ0qCdFSIhWJxpeCislndH8p+8pl9Oeff5GTGw6n4oCjBPfaK2pRXqRGUzEbEJD5DFJ4P50vhWsy4jbBqoKQub23Jc7OxaPT5s6Zm47XsGGj4opLLyZjtF9RtoTgy34SzM37qCgywwecNaa8h3s6DdT4mZyp0SGzq0Ds4DyFeY8Z8wHRXI6023efOBNmbI4BrZDUUFUgaagrFdJphNENygh74S1u/MzMjPAwe2w34goIkmUY9O+PHRPPPfxoLOT7F/U8JUu97cJfKAZoQhwymM8apkZyRahKMy8+VAka5U4cMC+zXwZ8xGl/cPrSe0Pyq7decXkcCc1UR2mXAZZlmLdK2dJUDTbhrZKQNsSfGQRxq1PhWn1fupUmhdsXkybF008+FeOXLI2jGtWL0zF098eI1nESV65fvvA3OmrlEPxZ0iXvcE/pXvzaLCn3GfKbLOsCN+vByUgi9Hfc/1BAJfQiODU6HtUhGu1ZP3nPI9Qy2srvDQg5N7sv6yxv/HFrnujhvryh74+MRWREp86elzCohqFVk3R5zV0rRZXKO3EKA28wxk/wgYI7myZuJdgBnDXSNVSkyc2bN0L34BlY7EBvge3LoSTxfjchJzT4f9hOIVyJTtD0ZSA7sWwZziFfL2V/rrmoFw2O2kRtSmsrSGPAYPMvAg3yujCSd9K4AFYaG8LI7IVBSuXFchyjadOm07BxfDwzYHBcQca+basDo+puNuKyeuGfjV+lOy9pUSVtUGkjvLYR50Dn2YwdFA/PwrsoWQ2MufMXxPgJEynJHhXTln0DP9H8lEzdzmTPDAiVIyC0nqaNk1GAo0cPj5nIxnFT5uR9rEKowq6c6lUrRFWMYHswbA9dSV9r2RdsxcqO0J6KzhLwH3+iaReyNneCUl30AxZuGv6Mk9kKYKoD8RP9GcrQp2EDUZ0ly3AMFzIm39F88br4wgs41aNr8tnIEcPjhUcfI7uHs37emdH1aPrYUOFihZAG1g9GhiDozI5Al8oRIZQKmfX/7NwBmdJVov2pM2fGCy/1iwGfjou9+PDyG6/PEzl0fsSZclfH3EuZkFmXlAfwLLdRxhvQS+UNXJQhpeCyMvhDjm67moy616ltD40TTjoJx7pZjisfmfn0OY1zaNZmU+LbSyNLuanBWOqhk7KJ7+kAf4tRMXTMmLjnqaejVe1qcfQx3TnesnUeb5nyi+8pX+QpM9XqD417A6ZWDHjfkrxTLiRfKyfAj7w+n2zg6wSnRuBUn02QJLcZovsMNGRghHnZNFDDUKPOhwEF9VyOx7NyJYM08LDQT9oHrmZeJpENfPHV19giVDc6oUOaNm5MRmr35JnM+jk2v09ZA17t+K0Rps7VQFQeKtd9TpnD/cW8+7Jnz56V24VeYu63XNArm21VZb+5+PE36oaUNdCH/6kj0uFl/vYrET7CRp6SfiCw4t4YkNNmzAirfwbjXOy8d5M478wzoiVwEXcGXgx+WWmwHbLCGTlGlsXKN8BEOWxSQPnoax0Kw7OV0R8aih8QIHnhoX/EdO56FgZ0T7rN59Y75Kf87hrKIsvUEcqD7clmeaUdwLqcb0H7flysT3pR9iwEpwMHvxf/9eobGey95pILoz1GtIEGlVLqN+bDdJJGlTEauuLBscSfDrs40UgVjhlg067hvYlTp8Yj6I9PZs2Kg/eoFudddkW0omJFmWsptg7XjjyyooH1aEAnbTN+aQ2uQ3jYKA+PKh0jBiDQ+z02wbi47S8PRGM+6n5az2hPYK1RgwbFPJhXST6Wgg02zCwFrrSntEnk6RJcShUu0rOBhsE6F2wxO71t2+I48Bb7RDVgo43n5e+FhTQob6lPhIU2gfzjuOLY19K+DeFMprj1wiTBm/DTiqVfR1dKve3R0KBRw9TRbtM1EGpg3XJ/nYVRI4bGcvbhz17G0eLce3fUU5XddqYPGM2LDTaUgb+hoPLAxt+aJNu4fh10jNOBcyiNlHC2kex4Nh+FHn9i3uo5A8NbfoRnd7DxYLlYufY7jkJeF8vAfdEaPKIeFQ0HHtyWatAalKpPiU9GDo/fE6g+GHusMk5hOdaYNhjrTvsUWLg1SBrUcdP+ULZtANcm4gqbrNAFVhipGz9D7/UnmNn/i0nREb13AZVZTYGLsk5YKluV6cJa/Zakwhy1U4VzNiSEt6RxYe5v5NjcnkxwbsyHHFP4zHMxg/cu7dkjTujSOeoQxE86c3xwpywoZH1RVi/p6YylnCjh1HGZx3bwrY6q95s5Z0688tob8crwEfyCnllU4h1N9ntn1v49wVaTUqn7mVdRTVNUN2nv6jyXnF3na3DBZ3lX20e+Gk8w9iG2is6i0Xe3VgfEKVbEtWiegQYd/mzYWvwo7Ulle8kpTRpnIVYHSb/aYWUJ2OUWENbkfv5R2GP3Pvpk7Ml9T+t1NhVxHXPrnUevZ/Nv6CWrtMCFcqAyAQrnZlWac7cHlnDztTabyDEoLG4Wf7M03h42PPoMHBzndmyfJ/ztv3/L9DFWE2xTBggH/Zkic09gAHtEPa7OSzyCF+HBdLNXlzLze2Sz27cnoz/6URFu/7MuJDqbNt4r+6n4+6ywY03qbnWhFeDyojTkHKUbA4AGSpWQSVTgVrpdtlz9MScb2748ZFj0OvmkaEtipu4etWI39KdVfGljM6+kD2Cs7JMH1XXa1tKWvoZyQf9G2WsCRHqfMWNmNrt/9/X+UbFOrbjq4otpftos9ajjFduHTRYWMFB3lKevgvpPHOgXGJjU9voRVnabmU27fXbrxKfIyP79no+xC7+NHiRNTuneNZo2aIjcRRYCaysl0jdlHQZxrTzmtNzYBN4WIHsGDhgYex18QJzGVswGjRqxHnRVSiDWyX//6de/JdBgfwIJVAWioJVJoIaM+vg8h7OMP2Sf37RJk8kQLGOvb7WojdAxEmhZHz9OIpJZVUxfojjf7PtSzGWY7hgTR2H8Nm7QAGZDuUA0dtDO0yr4rU75TkQjFSBG41TKhaDi/iBLYvY/AwGW8i1fsTI+J0o84qNPU3EefHzX2B+Crl6tagpPM2epsPjNzwoOBpEvNACYba7V9WrcWYKVHUR5bUnQ/EUL4yPK0pZNnx37t6Gagej8ngRVrAxIIY4g9R6ZOYN4DQrsjDOhgLL0qQg0FEavTOl6dUYVnG5HmEdp7ScfDI9qu9cmOt8imjRuErUxFGVCSwVlLrPpCkwjoQoJS0Sdb6lBivdy/5WZLwWUTLCSkmDPWZ8+bVosnDItDkUpN2nYMLPuZkM0aGU+15APxpBhdsJQM3OucW4QyEyYQiQFPLBRiFiyZfno5IlfxOQvp0XNertT2llkAd0fqVEo3lQywlfl6XuymrjQENOh1thwXHGqg6WD5MkQq4D7lyiHkf3fjlm8d0K7ttkw0GZbCj9/X5RCMSIkYXZag1ZDV1opPTRkjParzKQpkJE0YbbDIMl7EyfFHozfpVtXSo6bRTUyKxWAgRluBbj3EbbZqRc8WBXh+nNc4CNcpBfH1xnWCDA4pOIcNah/fL5qU7TetUy0P+408No4y5alBxVCKjgmr4Fo8CazmsD6R2hDA1s8ZpMwvq/KVzlbursRh+yzLybEo/3eiBrMvfNR7dgDewhKv7aSuZg3TqP0o+KXXmyAaVmXJ04shS5mzZ9LgGsSr1fGvMVLGQVjCBKtV317eiXUiNpVaZ5XrnAWzKJp4GqkYV7lg6efr2RJ5ihsNb6wuzLTbpZ9E6X4OsPlKnB8GMfVzoLWZy4g+MZ3lm8b4fTux8YBLVpEDXhmB8bJQAOwlTYyAi9embuGuYastKSMkI/kITOAlSvvnEpzxvRpHBH5VUyh3K31EYex77hJoViAsdtaPGZMgzbpA/j4rIJX6W+AFzdA16mQoMnylGHoBHgc0WYd+a+/hpdmxlcfT4hl69bEkSccE032ahy7VCWQQQbaBqrr1q+N+QvmsmVpAhH9+RicS7Nyox7Zsd2rR+xRtUbUqFI5dmYfYDkUrJUzysc0XoF38jYBBnnGoyxBIkEAKgyAhZUW0puBps3iFaW5HXMsQ8OstRu3xqxFHCc1k+wPv3XLitfxXdlGxrnbWhgTyS58RGZkAe+f0qEdFTYHUnFWtZDXjLeZAFWunS0UIkhZKK37WrnrQ3il4cIY/l3AjsazCxbGkEEDY/TMebnHtsOpPTIzIs9rJJgRMVCn0td51nAx6/LLMeW1zL5wj1KgwTXIT+qPZ17om9tFuuzdINoexdaGhg2Sb5xj8dtf8Cvjy1fqLtducFI6dr7KDQMTrkX6WgsNec76MxhyB1TZPg44rFM0JRPotj/ll7IxA5msF4DkGAZBpENlBAPle35Xuajckz4FnYajzcLG0rdj5tTp0frgA2MfjnBsiCxwi5sZYuelLLScNB0ux2XMhD/ypGTMSaPKdxWXBq9wtSLCjNcwzkGvvmfdaEW1Xd06dbNPgeuUtlJGwZeuXX1XMu6Va8oZx/JhoKH0XT9bsXw5gerZMW3y5Jg/Z1607dyJIDgN7eDT7CXAfBN/GrD+1gUDo+RZ+Ym12fdAuax8TFhyB7duiLN58+bFhC8+jy/GfBTlalWNTp2PxSaon03f7DCvLMtTGniWHwyweT/1YGa/eA9mRjbAz7xvQFhnQHlsj4bJOHQfv/1OfAlDHHtAyzj8MJIPZuqYprThvKTtzCry7Lydl3BVdionlEEGVFybRiV/JhyXAZsJBL8mjvogy/APPaZT9gypQv8G4ezA0qSXv3fevqfs95U6VYe2LI6qsh+wpMGuYW0vIU+1GD5kcEz/enkc0Bi8HtYuGjZokFlW6a1UIWGzSas+/L33yPkyvrSd+ECWlI52VocoG9ZugJ/AaZ9X34qa/N0G/dG6NfrD7DRjaVNZ3eRYpTWU6L3UtDR7CG3Dv/fxkXYN+NbBmIBdOJ6y6brokX2Ze/N9WuSxqOJOGsugi7CAbkrBFkFkULDkSLsGBnZh6TRp+1gBMX8hJdlU5K3l5J+WR3Kseot96QbfIPHpkX2Ob/B5BU6U5dVfTvycrZirYuF3m1kt1QU1d4paBLVr70rQd0fsEo5Z/pHmxf8fde8ZXOeZJegdZhIkSJAACZJgQGBOEoMSSUkUJVGipG6ppW51Szs9HXZmd6d2x/a6Zu1yzdg1tR57POW1vbX+ueUf9nRQd0utVhYpUaSYJDHnABAASQBMABMIRjD4ec6Hq5nZv91/9FFX9+Le73vDeU8+5z2vGW1p5PO8/xWyjr6BoY7RdIYCH4acAYusHg8MbjDm6wi7gcOQLRghZy5cov7IiWjDzwSGJf8fP3Z0zFv4YG65sqjwth1fxb957bWYNwP5hHzuT9+uvWOXPnU0FjRJUA2a19kuPHT46zBQjxTm4rD06NgM/Gxa+z7b9c7G3OlTY8WKJ8g4ILMJHd571eeEtdkj8l5Bmzovzxa6WuEEEh+lg9zGQp8aZm552c0WrQ1r1qUO/70VyzNTJR1rzFEeZfs26vPp9IIH2K9rrv2QW1GhK/FEo8ttkY5fmLexHchixR+hj3n9xR+9Hg+T7SE/1Fmps8FsFtdEHph8HBp2HsoYZYQZjfJdMxmkYb/TvhB/mltbYx3p+zvOd8cSbOTVf/TTmElQTMeL0emSo0E+I4XmP2ClLSMfLfgcASZwUEeDW3CV1f7diT7l1sF3PvgkEPHx4FPLY9GixejwEwrnAvCVlyWvzTUYwEkhlRlUMKNAHm5GmbBQXqivql/K4/zOYptu2dzxxfaYP2tqLHwQvQZ68khLt24rU6VPYawN4nwtTq1+/w9Zv4XjSB3bDByDTmY06GhoJVNzx9aNbC+tjAXKptq6PE1E262UdVyyE9RJs/B18nB4VV9/rqG4Kw9O2cQ8rlzpyaztxuZjsWXzl8BkAcGBuVl/zmCL/KVkWwBwxs3A5LV870udnrcM6IkD0nQG+7jHAKhHOx/cuyd2bdmOboRd+frrHD9Zl/NmKImLNut62pf4ro5eVuapFKwdbYrjbkm+g1CwcK5OKvm1J/NIT5vfeScOwDaenj87lnMIgFuFyoYYZIM+mftdgmcZ+GH+yqBb0PFNXmbZf/bBh7Hqj1+PH7yOo6G+IfVi8cqr9J5/fEP/93s7GlwjxYGCSZVX4hOJVHoHIxhVgI9AWBtIF9oNARwlgjeAxfIYH5UInQ0SVhZB4lmFx0UAfx6lpZc0qDKY/PgZM2M0zomCqXGkHl7BaxiQFloSoTwixAiFfafRB/HJNEwj07NViu5LkD0o/RfIDHA/1KDhFIOaTDGsmsmpyKWSxtgkRolFpml08jwpQRLEKP4eKrNjpiqUtmsEwGrTGkwKvR6Y7DmMh97zXTGiuiZGjqkifZI9wHghZXIyED2XRqRtX3bdDaHpARxKW8moQEQ9ZQoMmbrRcIlSBpbjP3ea/u+QtlOR1eZHIwyE3zUQ3nNdPW5ToaCwvQbjusEcLGQ1VEUCxFb4mbakt1HPpYz2MkzkwqkT7D9nD/MQ0vOGk05cPiqNMhV/xyX1FcK9SAHyaM9exuSRW46nH33anoxEZ4cKo+M3HckjxC6d7Ygr7V1RNqEiJk9n3xj7p0qGXG5ZYawya7/TCaBBdYV1VUEaCbMbBsG7XUX6S+8g8BlG9N2jRU91tEcLKdPbmdsjY4bGw08+l4zmQlcnRmEhRGQgGsF0kNiKXZtKujhTRIN17JBGhYFZDkydh4LPIxaPH9gTl7p6wJNB4OPcGEu2hFGirP/APcJfwNJFOkBMZBQnHKuG3yDe6S6/SwNRRZixuE7nz3dGR9MB6j2Qyom2MWXRwhiH4Cnto00mh+AU54QLA2MKOEuA+2DaHQ4chJuOgR7WfCBr67YPBZzHQzU3cVrJ3qbgXISYMbkqps9bSJHPMVlQ7iZVzxWe4p9eXY3067TZy9hUEI0cn2F8rafaiOZejvM9hYIxnS0TDeP6xwyYaf14jGdwq6vrEmmkVxFqREGHYKRAgxoMV3tKkVy2MZCHWmYuKuO9icJl5sItFqIXiXYXfoEGRrRnaHR2X4u9Rw/HF8dvpIPEjAYLdC2dPYOjlWqJLsHogTuIgPLM3nXGK77dZA16ci2o+4E0TeUk8bDYp1mGw8/TI3RCnCfT4FLn6bh26WyMHFcbFZVjgTHrBpzHVFZlrQbHL/w1JoSRbd/gXeN/OFEsf7vOHrxhwzypoEy9HqECzbLnoxtFpbvjEvO7G6Nn18QoFEizTvqBDOjmGAklB18zONaFsC1wpxYfVw2wnVQ5PsYZTaOvIaz1ANcfOpNPXcfQV9CWk00inN07eptsEXmgdUxGsJ9FOu+6SGV0xqMztD/jGzCUbVikBh+iHsT2w12Jj5bnEr73TZuOgVKfeNzRdCw6T7aIvjG1blJMZi+7mSD+XUQrqNOA88I9s+LYJfixQlga8/QLax6I8BlpY9yFMoDTExo2jbntyL7oOdsTw8YMiur6OdSsGJfPqkyoIOg80PiUbxTHQRXF22xvuAoiLxUZYSGv97hLoxuu3emOtmj6ak9gkkXVLAzp8ZNwMI1MnqFzQrrOTADGqnJ7lWj4TdZZ3j5U2oKHmRqbPI8ZpxOPdo1CqPgeP3Ykjp84Cw8YGtW1OBnYxmPUP53U/C7gdTa4116p2MN38jKLhw6hfQ34kmNYhiEf1FhQaTTqdLq1KbrPXEB+jIzKqQ1RCS8Qj9Nwgx96rKBy00wJt9F0iTiMd5QGATBRXrhQRjZ9t+80yIDVxa5z0X6wmawlcGwWx2bC5wZDS66rPMxMNS//di2vQ5vXmPsI+O8o+tR40XnlXcLb6FiuKTL5dGtLXO86GwPgnxVUJR8Jj0llDFg4P/m6VzoaaCENdWjDQMVAYK6hpXEtTDRalXfKcNs/c/pUtO77iiADMmJMxLjaOey/5XQYeNaQ/jhfdQY4auaqvJD32u5NZLJzGkr/rqfV5XWi6vzQUa6zwUyni9DfReTTtY5zMWJcJbUbpueWGtv30qi+cw8ZB66VijLeYIgLhSEAAEAASURBVIw9ZAwoTcqBtccOqm/I0w0aqEc4B+VPNzpH9/H2QLWPkVUjo6q2Ab1gZDrpfUZjWr0pdRXW9xo44xzEFY/VFCcHwjS8T8WVZtO5dJ3sJY9Xu3CuA9oeyl7zSuZWpCOn80zYc7Oa2WA/AyNTxs0IlI51CLv9TsekckNdRhi59Q7IYRTfiI6Tx+NIU3viRH1Fv5j1wAocAVVJn+ph6VhLuhENcSLw0m0Cp0MHhC/7G3273tKnRpH3iV/Sczc4f4mMg8tnzpM+PCmmz78P/sV2HZ254LK4JuaoM/n5GjhpW2iOyO3UNlO3Kjk4vtZ9GNslZNf5xkbWnG2c9dNiHAU+K9E9NdTNwlFfMdjhNgO30rUdb6JfaIq2vRbVVkXthOqorxwW40cg0+DZN8lCuAfclcFmMshvxY+rPTq2oXu+E+cyEMXcNZL74xCACIA7OIOjd2CZ9ZmGRnvnpdixB+ccws31tl8z2hY9QkYDBuapDhzWu7dzFDhGVw06Ae2no0F5BAzEnZKj4Tp4I+zFzxGs5RCcaupf8iyDFeJ7JXp00hP6UvvRHeh76JFV1RR+nkINAXgBdC4v6cHwk0dZAFm5anbENdpPHs/45AfOuz90lzTUp2PJy9SzmxuPxMmDTQUPnlkb1ZOmsKZsSRQPaFenolxGJ5jz1qg1JV5+nrwNGeA4lK/ii9mlmWmIXDCy37J/d5w+1ZU4OWMRJ681NOR6GFhyrmnkAhvliM6dK9Cp/MpTM6THqzgaqtDhKqsocEwfF9Hx5LHyM7dfnAXnu050pH4+7YEFMQGHrOORxysb0JQyyq5hegXYXAU2ZcBiOO1nkAy81xGgI9BgmBkZ0pLO5UuXusDLE6lLDy0bRZbjBDIO2AY1jFOUwBNPMGNx812H7k3hA0+zNhQmatoqZo64/q6v2wGlq3J0YfH6TPtJ+E0zx3iPRfZNjrF98qMHO0a+ajBS/u5WKnVnt6bKG8sZo4Ez6VXnuk5+A1YD4ZUGO4XRZejpVs9lHiaLEhyunlIf1WQ3+IyOhJQhPCu9yu+1Da4zBzNdLaCdWQasibqvNo22h/3IV8XjLjOroYfREytiIjx41IiRqWfndmfmmhfPwjzSEdoD3V1jDqNGlMGDi+xpHQLD4IFFVnFBA+eh9dNN6PDn0FtoZMpCdI5x44u1Yv4GF+xDHNUuSicqbSOFgCk30Ie2mzzxHkGeweiw8krHYV2PU8D81L6m5HuTcfY2TJ+dWezXoKNegmZwwHSo6fiSPq8xl+vwWbOyLbT53pdb4u/+l7/JrROTptT2cbViutKJ6/VNvn4vRwPgT8Yvo/Dl3wLEd1YNxQqE5f0Q0eZ1a9fEoX3700Hg+dSTMVAkKI0EPYQSsQvtu4QqIUn4tpXpUDADmYDRLRm435djzEpo7u3ZTCXU2aT01U+fHpWk+JYjqLJNBIn3+soFAzEU/homCgqJ9RbGmQaFjMjfJFqV0REwO9PvNmzcFM2bNsVDL7yQ2QkWGCm2I6DAca+CzYlLrEaSCgUVmEBwMtX8nc+otSlwvUclYDCElXsDKVZUSdbDMtK/9FbqgVYY5PwZT3qvGad9yPQVBn5nlEOlSsHjeH2pqJu5oPKtkmuF3jW/ejNWfPfFWIgHMo3HJFjgTZM6HryKaCzSWHjlmHnnBoV7zotxeJk2nZ5y2jCzZBcpeEe/2h7P/vOfxDSYvc+U4JdOBP5O4412ha1z8nuVMOGisuElY/Maytxc0wtknrTjhdy9eTOwqY0nn3wyqnE66XlWGAkD4ZjP0YSCSGaVbZM+ruGl0m22hWlVPiMWyMz0drcT6TjR0oSw3RMLHn8+FuNV1vF1DYEkDAWOCp3j1bOZDo6El3gKbGSerAGTzXYVoHrIXR/3KO7cvi06Dh2KEWTu3P/IwzF92rQcr6ldCkEv23fNEmbAxzW3rzSgGINj9rPfqazk9iC+O8qabsPjXgFTbJhLVsuMGem4U6lWQVU4iO9G38T+wRiDRj4UMneJthulk/achwKNjzkOI/0y/c83bowv1n4cL1BHYwyKyfH2tjh4rDFOMq/Gk6dy7LNxNMwY3z9mTtTRUIETqD+CiNQ+mLxG5hCOANL5kQ45lXTW2vXXgZYRXD7fwNHQi9Lo/su78Iq7GAx3yWi4R+GGs32Ohq9OcOIDPZ7jZYzph889E0vYWzcaOrnHfPJY0Ry/az8gWojuvf+f/5+YseJR0nAfQdFw3z7R6YRfYZyKXwo66T3rLoiPKARGdL3Eq3R4MS7vLX2vEbD/wEG8z8DmR69TcXkuN1tEUyGFcAWWA/opqF1H8Jw5SbSyt4w6s5YqZUrhIcM9Bq+X8bbE7l1fkdlwOI604/XmibnoWLWkzkyunBjjK8qjAgE6GDwbyEujQ/o0UkXTOPSKlO4U8tA9Q04aH4Zzgm6jGyfPDdccegER8uUe5IPHOerwyPkUjMJWA+gFqo97jJdHyxmx7YejxtMNBvJehgLlOeTuJU+6hX+l4gePzCyxnTviOA7lMrKIZpGePA18NyVT5TFhyBpIm9JtplKzHgpzlQL5i8LdsSevYH7yTddMw7O9vT3279gRl3FAj2Hf8sw5s2LKpEn8Dv3D/wqegyJGX/Ienc+OzfaUFRp97ud2Tvbj/Qk7FB5/33fgQGx645dRQ6bMNLITalAqK3Fip3jnXvm4c87III0ORFHT6aDs8HsVEC9lUxpP4JF4r/wwPXvz5k1x9LMNsZStEFaS14gq8XCfy0wK3h2L+CRepiwCR+UB6eiSlwHzNNqUXdyvg7SdLLT3/t//HJXT58STTz+dzgedpfK57IM2fV44+neJnwknU1t9Fx6ugXxGh4T4Lq0KvyM4nH71y1/HU089EQ9zGsBQeEmOUwDmpZQBJsDDl5dtymu8z3aEid8VTmhVdBRnZK4FWc1SOMI2w5f+5Z9St2lGfi+P13GkkS3Pzp6gSWEjTkMBxTuEJeyVgdKENGvmoH2dJurpVs1W6HXExPHx0LLlKMTVGEuksHovSrUwVjZ4v4EE+bGKpoa5Bq4OWA3zHADfWSxuEHR1CfnR1NRI1slhnM+dMfv+xXH/AngSir5ZKykfgKm47NgzSoZsEk6OPGHLWO1XnBKPvFHeqBw+Q5R/39696dAagsK8+OGlMXvmzDRsrmMsFE4wTQ7wT0gIY9qTbyn3bTd1Bt5lPumgZhzWs3AUzS2kKH/2WfKpqbRbP2N67rOWv+l0MbjCouGsxohlTUs6js4C8U6YS5/KLudSyFbryZQnr/2C7IRNZBeupCaCOoHbK6WNpDvaLnBLyLikbgcp8MYTLoRFqd5LGsj2xTy8zyMLL+DQWstWiHN798WqH/8otywlXosrPKs+kzQptBMm8nh+ozu/12h17OKi8FM/0EHRSaBlF5l/O7d/mUdCd8gQuZbUjok6HA3TcDRMGEGW0B0cMBha/Vg35y/tpt7FODVWCoe3ATYjtoybe4QhFjlyjsgmvOSGhYgGEwxCzrVRoGHn3qNkUBT9dfBm1uRrf/Ivsg6GGZzqMfc8AtogArxY/HQerovtO2edi50Ygvv27IozzWyH+O4Po6GuPuEmTIW5fKyXNsQHI82Fg6vQP3QOKAPFUf8TpwBg0qD8o729A3pqjmPbtsVUMloeQ1etIjuvqINmzS9xl4wb3oWrMtF2NPRtTieq/ReRZx28dgHfAH4XqHNlJu1xXhryc9mKNg/Zap0Cg2XSt3hsO8I38a6PdnOtmb9zypoINOza0nz2rc3QhvzYumUTgZwzMaluWjTMgMfXTMJBj/ygP/HLS7ntdyV+n3yYOQnrXraBJu4Ic8cNr5CefPYAet7G/+/nMWXxwpg2a1aMxZFlwXppyDEp85Om5AG8kk75TRiUaEJ8AUGTtqVReZHbynQieHTinrXr4qFvrY66+vp0TGuwpw7t2HOtCu6iHioPkF5cAMdnFpxcUx3QPrV35PfyunPo2R++915cP38unvzWS2whx/hG1vu8J9s4boMEfJHjTtq1Nb4XTjZY9GRvzkmbRxhxP8+ZHfIuxSMXPPFEPLJ0abitSlxLuuhbQ/FTnqyuawBUY9x1FVe1DYsT3VhT2naurq0ZMWaQHzh4gEyxzfHMj17PQq+OT76R4/Rex88r/2YOpS0S6iQJF37TUSoPEa/cGnoDnUSnoXWHDqB36Bx8HNtP2U1rWcftKple0p8ZsuoVycfFU9oTHrm1meGqk7i2yu1C3+cEKOSbdl9L6/E8ne8CwZRdHa3xd//hf2frxGsxDp36HnYzjycckyb5/E2+fi9HgxN30QWI7768ZAhehZpwN/YjND9FOJzijNcq9kAvJz131vRpuajXENqZEsf9MgsXykVROGiQiPCm1WgAamipKPqdSCyxuW/0c5wAn5NKNf/++2MeyqII4V40931m4UMYiIqXz4lwyVh4tw+RUKRVMZIQ00BnHCKdhOhebivoHoOZPLJ0WRqMZmOYymo7yfAhChHQth2X/QiM7If2vaxFIXI7N5mvjMr5HkEZeuvNtzhyaWKseurJLJaZAso5ypj6xiwhqgiI1EbPJLoiCwAll3ZU3hXQMnS3WDg3mc5OYP/+u7+LpykA+NiypenEcb+RY0umwPgct3uUVQb0MFoMxe8cazJ3/p+wcyJMx3kofM4Bm01bt2al21dfez0L5sg0/N0HJRANOi+VEWEt45cJuR9YIlTJkOkJC/t0TRXYpzBqj6Hk7tqxPcayT+tFKtyartmNc8P2vc8eNCCMHsgohmCQlfYnniMFWSdXJVEB+9C77BoNwjiRsBubmhBuh+NEa0s88vgT8dQTK4lgjSyODhJvKOLinIV1MiHXi7mXjBkFn/MR9mm09q2r69N8vDU2YqyfbGmJcopaLX300ViA8aWQzXPHhQXPub4yH9dC5uz62VemXbIOepFluKb86Z1VyRcH3F+5hn1yI6EHTzRZMH9+TJk8GQcDDJi201OMIqTTQJeGpyj4vIadyrNZKQAnlWiZrOukAWL08ArZNu98+GFs3LIpXnn9tTxWb/9Rj1X9Kg4fI61t9z6XM+Zgs86c0C+mobxPIeV1BI4FI/syb5IbaJEL+KhIDCG7wb9vETk2Q4SuoRsVMb4ET4WZ7zobbt3DM85EznVfj8Ok6e1vL4y4YsNGxP/6b/+reHblE7n9ylTpFHLZj8Z9/ziAsvLrN96IOcB71cqVSafSt3gh3Yk7bqEA2egX5Yh+pXW/F/f9WzpwTRTk4q1CRLrWuN+OU3PDhvWx6sVv54kA4nPSJjhrpHkoUSpf/ZjLPawYZWMqG4xVhcMMKNO3h48iZfM29TlI1f3oo/codrcvPt/TLNRiJpOaNoVMgsrqqB5VFhXk+g2QVnjpuvDl+JPfMGdFr8pzKqQSKC9/A4ETN92iom7bixPk7kBO3sHRcJitE3uaKXzE3a22x/Xf/Pin8Z3nn4+G2trksw7eLSKDGM8o+R24d5n9iMJkIHxYfBSvOtgmsnnLlmhpbMxU1BIfTqcpMFSxUGGUnlQihJn4Jg+xboDOHlM7/V06cB18xq0rrtnRpsY8muoqGVs1FL+dO29O1JFhoUNaw9hL4872xHGre9u3Al66V1mTL6oUlLaVuaa2Lz156ss6jjyeQORn9uzZGEfULTBtnvFI345J+aAxKspaJFXjoUj7REFnXcQPZYLGcTp94Pc6Gi4QOVvzySfRiMH7KI5wHY6mL5vNJv9QKU4DiD78rLPM+h2llGj34LpNUKVGxVM+b40W11o+aWG03/zmN0StxseL1BXQGSs+SlPeK70Z5RNfhLv8RdiL78JLPHee4r1jd22lF3my8sO0+bffejMeJBV0BXxsJM5Ixw2GJc7Jqxy3WW8alM4lC5cBV9u2L/lvOh7EG/oQN6+S+dRJsTW3iRzGQfXDn/wYB+L9OJ7EiW7G6jiL455d4zSKaMe5SUc6RYR5tsuap5HH31XUhJDvNDc3xyGU0COHDkcFJx+t4kjcqegFuc8Wg1YqYeI5HmW4OCIvVl5oLAmzPMKSdVFeZf/IFzPFzmGU7sRBcpAAijUQTCF+hILSHmFttqK4mJkIPJfU6Tozbjt17mmQsQ7OQ7zUwHad3M4ofrafPhVfwW+bm5pwaA2Mx1c8EQ8uXpLb5boxyjK4QDvqBgwuccM55Jz62tdosk9x046dQ9Y3Yiw61tav/QTZNiRmzpod8xfMx7k2KfHB/cbiinWX3Hqn0SGeq2vYJj0WdMZ3ymDxSVpVBlv4U5n18SefxifvvRurOJnJkwzEmayBQt9ewlk4uHbiSMmpJo7r+HFe3qkcU58oPWNq/Bmq8v8W2dcJz/k259U31NXmODRALXRZ0jMMDPTH2ZvGovRCO/6mPihPUGarX1oI0O2rJ9rb4yNg8sH778UpDPajZ4tzehZOHBRTOcqvnq0T48ugcWOcPD8YQCjPxX/5lTQ0mLVyXvblXKQFx2EQRIe6mXvWZQCxkXPse2dp2rouxv7DZ+Msjg35+nFes3HW/sVf/k9sB3iw2J8Oj7+rAwjjRl4sbbremeWan+9msVe3Xe1APlnL69nn2N4JL0vYihN9+OB2EmlF3TYjvsKa8coPcisauJvrj2xM2PGc+ncrRpEBjmPs0a/FIbh69bNZ18yTaOTt8mlpXc7gvIsaD8g54CsfkaeobyYO0aeXsFL2nmHce9lqcYz2pYP7cXY/wFaICvh4PseYdKrKh8XpdKLCyzSAEw58l/jfhzsl2OtAco2b4AWfffopWQTnY2ptXSym7ZnMQfwzY058FJd1MqgLqSOJ7/IzXwZszEZwXsmjmY9OTevD+N22HTvjE2p4TUYHU35MnFSTfMQMEuHhnNTppXu/E6cLDspa0qfOJHmZzs2sm0D7jskgicG8tTgFd8MPHl2xIuboyCD7z3EJG/uXNwlL8VoYCR/bFSflRdKnv6fMAe7yKHWlMQRMrenwBsVSe8CLF5D9nrolTcuzHWehp8EDac9+vJSx8hTHqB6bPIZ77Y8lSHzq+4Reczje+PnP0LEfj9U4wuUDOqfUfdOWY6wMLrOeteWU26M4aULd6xq6h4Ek1yUvPnuva6D86GI9d+IcPLB/Xzz/0otZbNt5W+AzZRT3y5f8nA4qxiuOSj860w3U3iYIY5azPEp9wu3nF+GxZvScRT5t376drJb+8dIrbu+cmU40ZchF5Lq6Q2bVs07COJ3MwEOYM8h0YOjYSH4HZORk8gO3bDUqnxqPxmmcyqfYWnfuZHu8+uf/Ml5+5ZUYjSy/wxzUGx2v9PNNv35vR8M/BkCKBP5XIiKR278OUA35k48+jC6Eg3uRHkdpsSDkPRDW4icW+igWH0MFBFO4mc6pkPW6yuKrgGgAlIgy0/VkAiDnuo2fx6ccnTgXgTlv3vyora3NiJSCxReYlu34P4lBJcDFy8gxgkIG6y0uqr+LQCLsMNLGLmFM/w6h2XhIRXEFe7Vm5NF0MtBkfAp4kVkE4+VzBXLABGECfpdX3xCEjf8ppEw7a0KZ+CXRtKqqsfHsqlVEFsYlEygJiBRatkMjJcYskcpwFQ6+i8IlBdL5yvgV1grxbRil73Cm7mqE8hMoiiVD3N8cf7FWhaGZSiD9+H3JyNLZkEoTaySRS0AyYQn9DOlIG7fgaGhuiVe+/2osTGO6cN4kU2ZsqSgweDFB5uYa+pfbKRy/4xZm3l8wQ85NR3C3tbWlYNsJoY/DwfASlX/HT5rMepMaR//J1NBKivkrfHFOycgRkBpE7sFzbnl8DrBOLycMRYHiXrP97M13f75ZE8twNKx66qkYzHrf4jmZUHqYGbcCINuGYTi+4nta5jdhmF5WZ6TigsKChhxtrdRc2LAhnRgjYebLHn+MbJL7YK4oF+CyY2ZoyYgUWDZmu+KEfSmYMuXcTmjX9GPrbAxGOeDh+AqYfPjbt6IcRUrP/0IcbNVkxGSjzF0Ftpc1lOG6wkZ3hbO4mMVXwXnX0VTcFKwJTwQJAgzplUe9fb55YzxPwU6Lch1qamRf+s7Yd4RTSb7aRj9E3fHzzKwZEPUYNhMrqK6Oo0GBI+yRTjknxyP+mEoqq0yFlXvEUZ0NLDxKGDQODEoREU3pa5DsqctUmj/eFptPsTWEWy1K6PV//Q//jhM/nmLfLGNlDlBREeGzLdZHw+gXP/t5LAAmq1cR4cV5JDxTwEDfOkIKAwvhAz6WjK9UtrjPd9FcHBV/XOPEZd7lQV8wf4/Z+/ar32Pf6UNpqKQzE5gjdh0N/5yt+KLAR7GkQYVzYaiqbOLErGDLD7DavmtHvPv+79inTMHNnYfsOGbS/5wG0vtGk9JaNjhGUqFcJ8Ng8GZQn5KjkqVSTpc5ToCQ745fQSwNC9fkRbynwsC47hJF63TrRMeZ2NFKMSmaOM7L69/96Z/GKzj0LBCYx97Sh8LeLRvDoCsAkcqQ8GDiyUusp2Fa+5dffEm67NFcx4VLFufxiSoNKk6FEltsq9B4TAcP66Uy6haWVGLAT2lIOkj8oM8cA7LgKDV+1uDs7cEImlJbG/dR3GratPo0CL2XqUuMqXgp7FWik1aYN43FNZwZFho1RdrCb+kYQnlMZQ18cE3Xf7I2xpN9NAfDa/q06alEa5xxc/JCnXOJG7Q5UMWONSy1I967FPLW5GX06bpoOJ5HEf8AJ8ZBFKLHVz4Rs1BWpCnHaHvSpIqx85Cvul7DUXpgugnvO8BPvBMuOlJTdgkn/8ELjh5rRn68kXupX/zWC1n7yDFoiIvHtlvKUMgsQeBMJxJjZoeJ396fhjSwNvW1VCtIHrsHY/rtt97C0fBIrCSKOSodDaJ0sVY5B+aRESra8V2eZS2A5NPQmO07fvFSGeNyqdCdprisRRgPQbM/+ulPY+HixXoj0xmrrPC5Qn5A5zwnL3Y+9qkeoAFndL2EX45pOMaueKqj4QBjVwkdDa94XiW6rjadgcp3qTQph7bEZ+nTsVkIl0nEDZw7mdFAH47DvnLLGzDqZKvCftp23F0oo/ORe48uW86pLJVZ78jAiXxcLpDynz5y0r7Tr4aA9OMQ0mEE/ty8XWRdiTMn2jgN54ut0drSkviqg+oBjC/1hVukdZu9IZ9JHCia5C8VcL4Bxq5broP9851wt2vx3WsXwYePMYx0PMyZOyfHPxEHnrimg0VYp7HBuzSpzNAoE76+Undgjv7mHKQDkc1spjvKjzVr42P2Kz/97LNxP4GfMQSXdBIoF6RV2/fBu6y1bUlPACxrj2g8p4FGu6WMPOWmazCE+jKn0SHf/O3bbHs7Gy+9+O2s3ZUFRRlLr8Zg4getk0GQdWl4Vuedzip/t/B4ERWHS8v/0eMgxjhzsi3efv/D+DW4fgb94MjpcwmrhYiZKTiq6keT0VCGcUk64ADwB5bMmMzMLOpoOT4dhF7Ss/MS9gXM4L98zu8Zlxl7vf1J4aco5AmMjB27zgdiLo+9PM77HJxlf/XX/z4e5cSAKrNngdcdAzPoTAOZp4aRp2N5bKJZMK67x1ib3fQlGQedXZ3x0ndepoAhGXfSHeuj88zPrq8OmTJ0Ah0sLDQ9sobo0Tq9hIm4Y+RdHdK1MivLQn2Hqd3ViDOgbvr0LBpczaksV8FH6U/HoE4E5yw9lXQ0110YqNMJk2ybv73EU2XBWRwNO6lhcvTwoXxu0YMPkY34UG4tuoFRnFtb5cU8bwabeKch7BjFO+WqDi75jt9LEvZlgGYQfOIIcmnNRx/jVOiKuvqGWLyYAu0zZiQ/0aA0Q8jAn+PXDikVqE992PaAc55GJh3xz/mIU56CIf9RH1vDiSUTCIjNQR+rr6+PcdXjkiblV6k/9NGlbYorzl18EF72aZsO3HHLn/xep6NOV+lp+xdbMmNNR4MZ1TqJ5Kk+lzyV9jOzkne33Np+SYe3f/vQyS8P/doxhjz0KNKfIT+uwe9eIgOpFmesDgB1acfAcBK/pFdxI/ka45evJS92Di4m/ytW9R/e7Vd97Fe//GU8gPxQH7OosYVEsy3a8RIO4pDt6RhSXzW7xnoUtmmwynEn3PksvuuU6IR2hP1udNNXvv+DeOTBBxIfDD469hwzOOG/ktwQH7MQI3zK2nQ6BaTjMoIOTDr1X2F+HieGWQceuXkXGvk+7dcDewZKlifP0od0ZSBSvV3ZLd7kOO2a/rUxdTSwGP6ZY+sHbA3WHCAbbi+wOQtOnsXG7MTh8+0fvk7h6peigqCzchDQJy/0+W/69fs7GhKogKEPuAlRkD2/UDmFGI7s2R1rP/wgOklntMDSIwjNmRC8SlwvyOSeLPcIXiFiZdrkMJRBPc22ItGpaMm4PEImDVWQQ0GrImt0fiNEuO6zT3Of1oyZM7LA1TgMII0IF15FS4VXZVEiF9klGCNFegUlShUzlTwZid/JxEYjILtQKt6hIrJK9OOk/zTUk7pElFpiVqg5P8RxCn+JRWalQJeh+neJmchQNXI1eDWCZQ5Gtizk9Cu2fehtXLniCaL2NalgG43ycux6Ot3yUDbMLAr2tTM+FaM7MECwOYnWolYSjMJBwvI+I9oesfcxqVFPrl6dR17peZboJFbvKTEIx6kSYNRPBURi8zg2YShxOi8JXQbjHIwA6WjQkdFy4jhMcFWmkqtAqww7PtNjZSo+U0Tj3ItaRPAtHOPalhwNwsq5+Lztp6OhqTH2Mv4qBNpzeOhNl84jiVhL19MtAKZTajDfoS0Zm2jI9POlgjKQaLDfldLnreB7njXdg7JlRKoTj+ISUuwfxwlj2u0l0nl9XAYivqh0y0DEF8fuuilkGCrwMypfeNNlt+77tUZGKwXXVBQ72k6iuI6KB1EYdAjoHLtaEmx8piW+Y/1cMdcDvHYOro/OAk8nsOiMQu7mHY5YUwlmjY2mffLBhyg9A9PLatquGQ1mcAi7NEBp1zEpuNLApW3XJQ0VbnCOMkH7dM6mydUAX89RX7dhAwrLV6TsPpynJJxEGB0E//eSAbLmqy95snA0zJg0JGqrxsS4kUNxNMBMGadKsC/blwELpxSIyWlZCefJK5UYcFqHww1qCJgGP4LtBPf6E03kDKG2iz2xrbEtNp5hOw1t9WWyxt/+t38ezz25gmKJCHLSAzzKzgWWzsWzgxilb3E84Nx58+PpJ1YS4SQFPmkCgcb4VAzFNfFBWCvUMhINfXqfQso0VCPCWTSJdo1+y3+sTq8i9zkZDa9QpfuRB5bQBsYyxngFNRFGlFEUlWfNmLhHZkZ/ii9at0Hj2iyhG+C86wGhYhCNZk3vcHzZnjRE9wHbdXsPCtqYhWxaMGNQTKkYG6PQaMtBdJ0MwsEaAioNveIecHStM7UR4jVbQgGb/0R6LmmWr3GCAB9gdXcghhKenL1kNGxuJdLBb+3eyPWv/4ij655+Ko8eHo3RoHJ6k7loEOTpKvSp8S1e3fYz/FL61fN/YN8+UmuPpRKzEEVuyaJFyTeSfsAt+0lFgefFibz6PjjmTNHsm488WgVXpcObD+HgWkdE6jJ0OxmH2kJqmEyfNi0jHRqDJfrRyWDqo5EJ9/5KiwrpK0QQLiNbLMKZ9WsYf1YDxzCQR+6Ax2wjsj4O2WS7DbV1edSy7d4lC+cW8kdeoHErH3buwiCNORQZ1zQjJ3znHJNHgPvKE7O+Plq7NvbDJ81smjVzZqbwK7tSGWLOPJZKobLPcZsxJ45cB9/EGe/LdunbNdbAUFHTsWFx4DcxjkzV1FkqjxSf5eWJh4wt4SncGav0rzIuPntCRxr//K1ckH8ZFevuJsuQeSgDVYg+JkiwEJm9HGVxJAqZ9KxiLs2lQ4N2HbsOPIuolsPzdOj5nXLFq5Cxrqv8/x7K1mUKpuKggp6aGhtRFL+fW6K8z7FJo47NOSrzU2lW5rEe4rKKtrinMXoLHixPkTcOYe+sMuI4MukwvEBn8ijk+LMYvZ60oyNF5VJe7ruy1bV1rdK45t0xu0XIkRtQ0PC1H3FUZ4PFv07C44+B7y3HmmMa0dHHli/nVJZxqXwmeosj0Kxts4ApP/y+ZPSL1yrzOpD9LguveQOwVH5staA0kekqDJZFOGA8htSaQNJjkQEKX2Iu8jPX1LG7LvI4o7vCw3XWEE2HGN8NG4HRB4x279tPFtUHCdeZKM+zeE2umZQyyPG6fdECm+7hVs7SGAMr+Kfj9pg++WMPhu9V+KVt2o9HeVo07tP162P9mjWZAWpGwziCKKOQrWZiOHbbVnXO4nA07UkJIHTC/AYOl6Rb0uLM9EBDSSdY4WwYSPbUGRzhH0X3xfPxLFkq9VOIwAJHa1Ddgxen/KHNu2RvURAneZ6o4SlIt657KtcA9sOXs/5mqHEqF/J1IAGGtvb2+O0HH8cv33wnLly5EE3oNl4LSZCZUl0RDWTtTSynSDSE1a/XkwfEjgIu3peOX8Yg3JOu8zfu5V9BJ9IftXQ4duI66WX9hlEAnMy3Fvr5bAtbEmljEi958bQRFfFXf/WXsZTIexU64hBphnVwj76BCen4OvPRUT0U/NTpef7ShczK2Ibh5Xbf7373uzGPddVYu0EdpiHwcgN6WQwUvHdM6tND0bfEuStsSfFkAXVvdVWr6xuFL61zS0srgZ9G8P1Y1MCDn1zJEdMTawoDi/uUC7bpP3FQY1Z0Vo9Ko5expuzj25JeIn5KxxZI3AUPNsPUINlCtmg9TIaQWyc8ItgtieK+dK+jQb1VOBuAcXwGVMRF4Su/kDe6Mn6Wxo40NsVaApHOsba+IbNA6+tqs31pM4MAZHkIW3lNGv48Lx/yJbxtU9wv6VbymlK2zw6yMTZ8ti7thVmzC3qaOH5CoQMDU3mxLwaeOmDyLuZu2+ryjt+xu92iOJIcuwT4mZnn8eRryBDa8eXWWPnkU7kVSRlhG/J56wAJ14Q5c3AN3AIsANThpV8zBjOIBc9zLXyV5JTbYn+D407D/vnnCx1bmCp/1af6pa5YwN22hKlHZcpTbF9dw+9sz+weF90xyEM1vg8iuz/C9psBLj6+/NHkBdk+8FP/MvtNPiD/ck6ur3ZD6vKsje0J/8zSUHaB64LSDHcdajoaDEZ+7zUKgqqPgXtmTHgph3WAqa+7XVodTJtLuMn305HBWNWDk1cCH+0c++/AodkIru/AiTGA+800MABjBpuOBmlHu8/sILeXKlfE9/yefoWx+OJLTmG9IBqPMuS+W+92Y3vs2b8vLiMjL0CvZ9GxX+DEiRdx9oyZOgWGVdh2NJT06Xy+ydcfxtFQ4rkihq9EBd4hcgF2SEcDHvQu0uEnUoDj4YWLOGNURwNKAoqUtQo0kkVki88pzD26TaVKIVww78Q5GDzvMEpIpnA0wHA3oiSu37g+ptTVsl99ZtSSVju2soqFL4wPhacI6NhUMCRUDUcJvUi9hZGwoCobMkEVJhFkNA6FTlKrfktGQxNM0D2w06Y1sEfKI/AsGAKDYDyDUeAVoAp++9Dol3F4FdAolFIZuAqFSC9ij4KR6Gh441e/SuJ9GubtHqlCocXw4XnbTGYBAWj0qxzpkbZ9GW2h9GPcJTdT8SuYicxYRdJU7w+pHv9Un6NBJpTwBPEzEsEApQeVFC8JU+VRIhQOGhslYk3lk3tVAp3DKbxwKooyqxfImPCsYcfopHMtUVScg0IojXSZdXLqQhiXFGjfVY4ciMadTFbB39jUGLsxqivx8D333OpMfdVo1kiUwPthpZaxlhrsErrMyauATd8awKScpwa4TodymOR5BM5eHA2HDhxgH1Yn3talMMHlKXg8a168EU6w44R/Gso2DIwcq7ginIWjjoacEv3oFFBxdE03bdkUbSi75TA2t9wsADYWFpNBMlCEJ3yHBxWe4o6OhhTUwCpxnu7Eo3uk2avMXYcuRlZSNA4c2pn0hKMBhc0I6QLqNFjzJBk3sFEo+hIOjjePogL/xW/3eYujzjGjHPRTbOe4kwUQddyt27iB1N3t8dCjy1N4tmEQmNXgMWoff7VVSMQ8gmPTJ5WxbWLUP3E0OLd0NLDw6Wign1wX8M1Ikvhg/zJQhZnKzI0bjJkfyojYQhg4FQbGqe4bsbO1Lda1FRkNFiz0+p//638Vq1euiBropD/K5CBgoDAU56QV90u+SSrgvHnF1olx8AHXyj79vaSo6G32ewWlV0Z0ga04bwRH2LtfUDoVL1WcTCv+AnzftH5DOhqWspfUDI7r17o5dsw9m/CUm6wVgghTBgXc5xFIRrGA/71elSR6hPeYLXUdoboHr/ZaFPM9wpb9gF7TGe7c+n5RO2ZcVJcPjgryZQdiZA2iDU8bEU9MxS0cDQgygCcI7uKQkIydU86q738D+JFZgA84dvoyGnafPBVrjmN88H1pW8q/+ePX44VnV0VDbW2RCtunmA6A58iNVPh0TKVS7Tjk07yb+npg336csY2Zlmn0+2FONLCGjvheZPCAc4zbsYuThdLpoBh4viALcMGXhou4UYYS7bvG7kecrW1GQ11DQyxCAZ/Bu2taFNbFqGccEHoadol/zNkaEUZn3E/ZQ+aEtOkeeyvrC7P+OLfMdJBHfrF1Sx7zaErttLr6dGTpyHTN3BKjkSTtqIQqozQ6Na50NqSiBx9IPGcu9qNiJL/X0fDBx2ti/+6dsWLlk3nUsdlrKjven8ocsNWZ6d5ZFR0dnsJJJ4NyKxVf/s41ZmVvw+uFvRG7VhwNv2brhEfsPoN8MiJlGqjiQGNZhJDu5WUl3iX/ypRjcZIlSH7GPSrlZv+4T1/e5j1WSP/g/Xdj+WMrYgU8shxlUOeL7ZWUVZ83GGB2ig54a2QIE5VX+8z1zaUGD4ENj6Zzs72DiBH0dKypKb7DEXJLyEJSOdTRms5W2kjjHxinYx0a6A/ey+91XGt8WgzxOsYpkMyCa8NHlacTydMGDqPkWkPIInffJlNnem1dKoU6o3L8wEzdoBTVEpdzPWlLeaH+keMFX3Q22of4aFX9E8D92LGmaGk6FnPnL4iVj69A5xgDPoLvjJ9HU6aK+zqYXQO/c82FjXJbBTgdL3zu5XvxRUPjOGPftHkTdYTasuK8mR46Giw2qVKbEVf7YG2VrSrKxXaawtFg+66rtXq4IcdtlfOykUbtiu2U76LT6MibgyNg7hwLDSI/gO+tPqN0CG3CnBP/07hl9OmcpWUdDToDpKlr8DsNXeWS3/eAB59u2BDr2H73IFtklU2TiPRWgJOelsJEi0w68EJnlLLVAIzjVPboALQtx+mRvK6Bjh551yBOuDHV+x22N3Sd6ojVOo9qp5DCznYsHAd3wYOUo8D1HhkDd/tTmJNteKZHW4yuPzVxhuC4HcZxwXdxSly7hh4GDEagz7VyKsU7az+L37y/Fp3vDMdbngGCEQ+Nj6gdXxm1o4fHuDJ4EisHMqYMN3tEI0g56zjVPphOgfPAyRo3aoHSskvh1QtMb3I+Xv/hY4iUDovWzvNs/aUiPs9V87u8uG54Rfzt3/x7jlvmJAVgYW0c6Vu9VxqV3nQ03GAOOho0ej0pQ7xxP79bQ1/D8FrA2qYed4VUedrXMMqaW7zLHwxypIOKPnUyyNfcMuN66sQQZ3QCuS4tra1U1j/MNqeD6WhYjZNnSs2kNBILZ5rD0GhDhwaXNeSkfflByllxnr/9riSfpC2dm2e7SFFH9h3CKaicXcIW36XIkHKcmjoa7kGjjttsPvV2eYN6oDqOMtpsPY11ZbZtZkYn4zeIoJ7eeKw5PvlkbVzEqTMJJ8n99y/MYxlN45e/qktq7EpHBvikKQaaeq66buqu0G+J/4IB4Bc6A3hnEGi7gR/aN42+RE+eqpfFFtlOao0B9bySo03HoPMoeKQZyNA0C6IR6oll0pT1tgz6daOLfIyTfQ+BH+0PTyPTeePY02lMO45VHibc1bB0hsvfhJPyWtSTV3sVuiGj4W9fLeCMGUI6r79F1pcBK2HqmuWzTDbHTjs6Nf1eXSmdo4ybRlIOurbCSnqQh8vndKLoaFiD7J6N/uvWOwucKuMYdLZnoEC9TLvB7XfKDJ0PtiE/lB/0gueFPNVpAK2BSzqxraGgPraD4NcP/uiHBH4eyLZSf+O+hLO8g97U67TXEifoSzxUF9T+UwYznISNsJXXeyTxUeTSdhwNA+Gbr7zy3dQ5rhCUu4VOM4KxDlWXTh5pJm8hRxLW9J0OePBTPYFfszZLP+yP4TiTLiGX92J7mC14mfU9D+2eOtkWL71ORgOOhsraWhgJYyoxjWzU/31zrz+co0EOW7oSMK4c1IjytC8zGj6M86fYOoGBsHQRe6Tq6/EMw5AAdAogFsTUUPe+6smWiZYYhwLRhdN4VdAOYA2MYqusaYRtgrl+vvnzqMUJMHu2qa/T2C85Oo3hGyBFEgdIobdJRE0HAWM1fUzFIbdOMH4VR4aRUU2xUw/jOVJofsOewCMH98cqBNvMmTMokDcWQuesZohEz7ZVryH3JHadFxoaQqNEsDIoFWgRWIKUOFU8JNimFlJfSS2aWFNDatGqqGTcEoBGWXqJGUiiGOOTwPws43Pug3hxcx5BpcHrj8lQaF/iUfHbRkrau0S8VlHMZMWyZamEep9MJFO0aJfbGQ+wBzYlB4PwlmE5kRSoPGTb9u1cuonqdLCeGzZt4uz39vjxT/95LCKFVMJVQZZZOAYNdoWZiqIMxe9ksu4/k5kIL5VbB2H7MhSV/w6M26ZjEDoGb+WkifEt0oJrp0xNYZgMFBhJ5J76oPJpu8LL521LOKe6xWfbzz3iwg3B6b7pgwjMw4dIXcJz+chjj8cTpKcOx8lhGp+KnBkmue8YQemcbV+BVESrC+W9JHhUhFSOXG9TbBtbjsVnGI8tTY2cZFBJJsxKUsnvz4rCFqlUoUtlHdhrBGqEMuAUIIPoN+nGKBe000NFW09V8Sic0eOoGA2NGIH9kNTUkaSSzpoxK/ft1aDM6VxyrgoT8VpcF6YKBdfR9VXpEb/828hvHrcDTtF9fjYt+CP2lH8J3N33ZmZQK8Jo76FDOBoOxdqvvuBuHA3oN9Nr/gtHA2uPpEg6oBvaU0TJM+2/ULp8VkUjkRUcV0lI4x/B1J+MjHsqKsyr8zpFlk73xM42Uj0xbC74CNdf//mfxnMrV+TxnIMHGu0E5vy7Bw64504G/qtf/DLuY6vKs0QAxgL/pCPh0CeM7V486Adu3kNgXYTRCy+dXCowFihUwIlHeutT4DGvf+xoePl7PwgdDei34Drpl3euM34jCjQOnO+hGN8mq8GjLlUChkFfnmqgtmLNhEFlI+Iqgns/Udf1GLm7wMd3N2/OOdbSZh0K7kxOZ5k2YTTbJ+BLKCxofIXDgPmC+qnYavTfgc2mU9Z3JsdPycdsTMVb3jSYYfXDMVNkNPTGrhNE8E4UFc6L3cgR//ZPfhzfffGFPLs6lQbWRmNmOGMfRWbGPTo15V0DZgiwS4OA/uUDGnSNzMF0xOXQ0jKyhIxue1KCiqi0Ly5I+y5loWSRhghckxeq9AFz4e93Kl5WMPeY2QPQ6dtvv52yYib8fQkKeEN9Q/LxbpyGRkiNeDnXLOYE/1FOaMC4piqeOrTusVhpFKlMq4zhaDBiZI2G9es+iYkTPTJ4DkrojJhI7ZH+rFXWAemDgzxAHNJxKQ4rLzQy5EfJf5mXa59OPviAytO5813xLkbXITI+nn1udabsWgtFZ7IwVkERIAkb8MI+VL5cQB2BKr/SrZd9eIa3Cotj1wl2rLU1fo78YEbxwnPPpaPB2hMat8pL2/GzV47fOTAfHfslJ5q80rZL8sn1uY3imdkee/bmHtvvkMGzeuVKqtlDI+ChOE2D4BTzdXxMwHaLLLYiiub808lBX87V9j2lRFq7xLqdhK9s/eqrzGj4Hu0vWXh/4of3JU0zjnS69tGtfH4wODwYHJKmXQePX7yCDmDGl9Xdx1L4Ub1Bo+sgPGsrtDVyZEV8H0eGjgb1gVvQkjxX7jQU/iFPFFbCQUPF5+Xt4ozGlwZvEdUE5vwuvzhy9Cip3ofjdFtbPESk7pmnnkoH0RlowaymLNwpLvDyc8nRIK4UxpY6QcGvlacGCnSIjBxTkYX31pM1ZSq5xswD0NIi6kAon9KBD40ZnRPnrQMiLEqGhu/qOzpMNEZLjgALO5YR2NBxbZbjb3/7ZmaNLlhwX9wPrzSjwQrpl851ZabgUGhqOLJPR/4geBkgQlZDm+BFOtLAQeGDRE9YSVdlGEY6H9asWxcf/e7teGTZ8ljICRJTJ3HyC7rUbRzKd9WZRDDxx3V17sA9OwBPpFH5l44G+YsV2nXCIFhxPJZz/Ou5+OVbv4lmjNKXX/4OtErgB0NgGPR8BwNNTHd8/QbAT/pBYzBG5QfNMR/o5h4ZbTqDcTJcvdqdhV1HVlbFybOd8eHGLfH+Z5vhZyei+ewpRxGPTY1oINBRUz40OCCHrDKMOXkZa1eM26EzZl5Z1Fh4OB/e4fSsDSzB33GC3MYpZsYeZfwJ9XNiDPLrRNfl2LbneDRxxrB8Wl5cO3x0/N//8T/Eo8iXe+jCnpAwBJzPTBN4sWsrvmuMqg/I+zVWDPhsRIa4veRHf/yj3LZiAMaTpXSWsmApgzKjhCGmToP+Jf4p4yA+YO2WDHgBOO+WlgqMZ/XEYy0tbEM6EDsweKc0TItXXqKwLTqrmUk34bde8ioNYJUJt2ho+MoD1PO+pmf6EijiqPxT3fAUmTtm8OzFTlA3f+SJJ2L58mW57dGtDQYjrdxvRoZ6mXpOScfW8aLNkPoOOCg/NivR1Hoj5G6Xa25tic/WfQatnoxq9KRH0ffumz8vjXFPmJCmpBv1ITMahIsOCNdV+tUwVq/8mk8CG5Iuk3560Vm+2L4j3nuX41/HV8d8nI5zkFETx6OP0YbOBh0kmcNDH8rCjIDzWwY3gI28V5grVVxLkVV6chuV+/nX4GjYh8H7NM6duRQrzmL0jNNsQZ11aZQ7RvkAY1N+qLNa3Dt1bOYn37HppLPiQ8qp1ra2eOPN36SjxjpotThilJnOV8eCNKqOatu2KQ8w41N+qEPZd/mwMlseL26a6aGjQeN+Pzz4fXTVh5Yv52j1J77eOiF8E8aMqtgaoW6qe6SgJ+0bT7vwJK0rZKu4vm5Nkra0JXSiWx9ER/UOZMgPfvjD1MfkJwZYtV2cu7qlcy/ZU46RRhI35MkGQtTp00nDWotfjr3jDBkN2GbbdmyP/vC1V199NWbU13M634W4fvlK6vLlyMKRZJn3G4jznD7uoXNoPwkP6UlbQDry5I3MaOC7MrKpupmPtcT2ARsz5s92dkZ7S0t87yc/iZfZ8lRJoDz5I/hXLFrfurl+39DrD+NoABmhfkAAYFis5PYFxsAob+Z+xo0In3N4oavxHi9b/EDMbpiee39vstBWfpVAjGDpUVVYqTwY2UqvZ59RqvFaEC5Ml8XV0O7l3s8wdtes+YhqsjMwMBbE7Fmz8wxiC99IjCVPZe5dYpSZ0gliaEiKbCKfCGxfXqaPKipECvcBvQWhNB49HE89vSojUpUYX3pKb6j8g1Qe45meYghFp4WGss+r6Jp14CUzKXlhk/nSr0zscGNj/OznP89CMi+QdWBBKR0YKpeprEAsep5lwG43EKx6XTMtDCYO4JNJiNBpUHKv9zgfPYpG6z54hwrQODEeX7YsMydkoBKgEQoJzHUzddY9vG6J8JQP56f3z99LTMrxljzgZjSYXrRh48ZoJtXzRz/5MTUa7ksjWgdHekMZiAq1TEqPse0Ib9cjjU3GqJDzkpEURvG9PNbqbOe50ItuMZaK6rHxrRdkglMyLTaZgg+Bd3c95k+HA30pEFxDYZ/1CWhfhunfqbxC+K7JeZjFIZQ4vfNtRKZ0NJhNolC6glDXKJLp6RFNDzfwkYGVPN+OUyGhMur4jS7a7yAj8gzE4kMbPv88jsOoRiGol7O3Wdi4Rcg27jBmcb5g4KwFipBCyb48B1uBLzNUwJtKqgBickReRqWR9xXe//dwfo0pH5UedLMaJuJBL5h+nyLL89KUl8ZderKZk+0qQFx/McX1UCBbpMro0mn2vupo2IVh9O3vfCeLQVq4ZgdKgM6GT9kS4jUXH9f0icOiti+jobxv6wQN59q7HsLePlQM7Jfe83LtUw0TVxmT45Z/3AUfrcx9h5TSs9fY39dxJba0WiwWx1bfs3/7F38eLzz9ZNZ6GdBPxUBDoVC0xXcLnb35698g8OfHMyufzK0TKcDoSwUix8HnhDO85g78QWVJo8stTwWuIDjBew1UaSIL/7Fe6WhAqG3+fHO8/N3XYtmDDyeO9N5E4N+kYF8v9WbMPuAZayHcJuxxHeVa5WI4a+/RV5nRINxRmq8hMHcx3jUbPotdKHEfbtmSs5wCCtSSPT99/GiKbVZwfjsCk0ipzoY8fgo6vI3RpZNGR4PReZ0NKj930OJd9Vx5JqOyO5D3Ibw8BcNxdV1360RXrD8G/+I6n/+P+O//7F/ED15+MaZicCdPBEfuMsZhGB0VCFRhpxPR/gaSot4PmKm4eMrKbvhM0+EjyXOWYngtY9vNMBwNePiSdxXO3SLaIf14ZWYScBX28jOxQoXF/ba+j8FJNBge3AjevQO+Wwxy+syZGSnVmazCZjEvDXIrgKeixbqloxNDTJqU1ypHklYZv/CRXtPhIL+DV2vsei57zaRJMQ9Hw4xp1GjgyEpxUkeDacdCUiMp4cL4+2EQybPEF52lKhcqWdKZPECFV15jRsM77N/15KXVOAJmM34jX9K6e2rlNcJVJU5eKY6apaHiW4paFQokdCttSUTSFS/p61hrS/zil2+kAfEtiu+p/NuvWxtSkRMHHC+PiXs6gqV9lTB5mONVgZZfGsW3Tb+Xr3nk31c4kH7xs7/PPbDPI0PcVpcyG5x2v7sAcK4lg0IlVBmik9HokAqXRoVtC6eUifx2CQXfjAZTva2n8CK8ZhEGr2M1BTcjt3z2OWGeii50nllgLKb/EvYo+rd4pWOQdkeShSjdtlJ4WmeyjoYxlWPjdbZmNNTXczQbKbPoHOoRcicLuilrjcDK41XupXfb1uiy8JcGtdlwRvHdN23EeDfG+h5w/nR7eyx9fEUGCcrIUrqE0aQinCnjjN810NAU3l7KRS95nnAXzspt+xuOU20QSu3ptjbkxwaCGwfz5IfHnlgZD+Fc0wjqRj5pSJi1MwJn5TBT34GPe9lLiruGQn/mcYexW+FcnHdOyg9rGOmofuu3b7HW/dMwWsw2p7qptQmTq2ybMYvHCPgwdKzEfcYoXsqz/c8onY5AcVBZpe4hfXlcp4Efi9etJevgAfba3wcfruVoQ/Ua5VwavMAgs/gEBP0Id+ExAJqQdopoOoYr/NL2b4EPFlErx2GUjgYMo1b0sRfJopw1ja2sOBqGQtN3bpmmrsxn+wum3c07Kvqa78hr6HUo2QxmNVir4Xav9RrAK/Uc5H4LGQ0frN8S76yjiPNJTlfoOOno4rG6iGnwwxq2xo2GkQ5jrv2glXQ0OHjmLQ9Mhy/vrmmuJu9iKMPnne/pS2cD1jsT48SAQWR7McYTnd2x4wDZm2R7iyHKuWkca/yf/o+/i0cfejB15BvoWv6mw0edRD4jvmvkysuEv9t52gnOWBi9Dfz5IRHehQvmZxRdnSMLiOqoAzZZF4o1UA9QZqorejSiRy9Lo/IC27RtC0mbhXsMGt2PrNKomwp/fPWVV6K6hgKi4KPHRao7yMPkWZqLZiaI62lEqn+wrvYjbbvWOoMykAVenqVWyxdEpQ/s25u/m0m5bOnSDPRdB69v05bBGTNCpauSEatOLb8Qt+X1A3C+qk9Is+r45cgOI8itjH3tmjXR1tIS49CTnkAvsGAxxMdxjRzxzJjUEeRT8oLE9b75SLf+5iWdFk4BaJZ1Hw7eqZttxdh9953fxQQcUhbmnjHoD/+WAABAAElEQVR9Rtb4ESbKT/lMulogffU8nYTSaurc4J+073qaOXKbNXU7j5lNBljd5vv+xx/Hti2bM9ApPY0nWOvJXlegVW0Ft51n9L6P5ys/5DmuXT9pijUV7uqDLMHXOCuvPw6u/Bpe4Lq/8DyOaviAWSbCwrYzC4NnxBvtJ+W4W3N0xmbmnPQJviivXRf5tvX11PkMOuzBIfgWGaZLCT489/QqnLEj0kmkDi/dizPaOa6BfB7UoG/mw5oK+1vQjc5edSpliX1oB7q+8uFtO3fEXvjwy997leKpSxLHdHCkneHztCmea7fYnr8pc91CrQ7otki/89K+UY5pp5yGjze2thCE+CruoNf/AEf4rBnT4/oVCmgDX/mXzr/h6Kpm1iGcWetS/S/rgxTHJ6tHQvn8gwsw/qEEuLqRNYebGtPZcJosG50ap1iHl197ndoqL8VY+CXAz2cMYqZNnSP85v7v93c0MHcVlxSoLJQImNjiwslgIcUjhw/Fl1s2IUDbo4J9Vzoa5kKMevksQGRamxRgGhtYhwKJo4HFT9EmIrJAMgARUaNyGMaFShmWoRtRKc62Ln6Hl3vG7NmxCKHpyROj3C8JMorsPiuSpSCDaG6iCOnFTCbCbyK8zERmJeOScBQeQ0CK8zgafkeNg9bmY7Fi5co8SrBqbFUiroa/ETRTo0pCIJU22mbq2Z5CwUsmVRAiBASToPP8vhnP1t///d9nIZlvQeiVOGJKBrlpv6X77gIPo4k0VBj7Mm2QWOaann/+NkLiuJ2D8JTZ70Sp8Dgoo4yPko5mlNHBqXDKSErRI41NK2pnoRP60ispjB2zLxmXzKcfhGgfvRDbKQhED3oTsHnl1e+nUqEC5Dpp9PuMeOHf9sWocusCDaWXXk+ihO3LjArQIRmi52fLREx/3YFRXY5i/txzxdYJMxM80lIGxcKl0S5OlNZYBi1DlXnA15NZu84qw/YrfnWTpXIYnDyIcdfa0lJ4W4lIDa6symIwcNNUiGRQMkyZoDgic1R4yMQcs4aRqXPivMZSKkbMWQ96UaOhLYuLZQrpvPn/4GgAHgXegHPAyb3luR0GCMnsElC0k8YE4/U4PcIZaH5kOzC2bQh7TxKpGlMV88H1GTNnRA1CzrkJE4WBzjLh7rgLpgu10aZC1HmpDPu7a1pBFs0A22Zu54gYffLZujhw9Gg88/zzWT3Z6rhfbN9GYZ9DsX7L1sTb2didMycOjjq2c1SPHBKFowH8A6+EU0lgiIvij/jod158TMXUyL6OuDyPm9/MbOrFOL9J1Kej+2Zsazkd69uMPNJsPkkxyP/xv4sXSe8fjyF4l72uAzGCxTX71Ju8/+DBeA/H4Jw5c+PJFU9AT6MBp//ok7kLX1/CRTpLI5F3aV/h4DpqmHJ3GgGJNzxseuNForAKni0bv2TP3j/DmF6KMoYRiuLae7MbuF4B1vAaaMeCX2AGRnOxXaMMHFQh0DgDzKTjEe1nvtsQkm9/+D6Ohv2xYVuxdWIq9ewaJgzCiVMRkyhCNoo2exFw/VEKyzGMsjgYe32lg3/iaGDYKj7CSkVIOKvs/peOhgvX78ThU1diR9Ml6mFEnOmD7V/+6z+L115+ib3sUxk5T4L3KnoDUVBHyIsQrNkoC3kHGBkd1WsvH9iPY8o0ch2KSzAwHiYaNwQFvuRoEM6uQkYaWC/hmmmSfO96CPdcF8YrrMVfMxoGagTAIz/84IOs0VBbXx+PsNWpfubMVKBMZZSGTKUvje8evEYa0BGQjl7ap+tcTxVFjSKdJRrURr9Mv/x8/fqYNHlSFoNsqKOYF7xAulcZVcGSd9wDv4zo2KYv5yC/V1mXjzoH6UlE9zfbN73zXcZ+kP2Yq1Y9k9GuscgPnbjiq+N0nVQUMxoIvehAkY+mfFLJTYJBaeXd9TX6beTXvjw+zK0TZuc9/+xqikGOz+cyc0R8F+ryEl62I844VvmlOC/Mk5+jzGnUm5U1GGPa6xaOBjPi3vjlz+O5b70Yz616WoaKpx5DnXsL/ljQVBaWk0+5dvB14Z2RQHkSfWRaPrwrjQvG4v7eMxgYO3ftjuPHW+OZ1c/F/SjRhTFiQWgc1MxPPq7scH1VdnXSipfOT2MFpmpqFqMFiL7gxR5P1nr8eGY07GBtx42fED8gIjWxoSHH3sv4NdY1SjVcWKzc/27fg1CyU+YCI/lDOqxpN/mDcOE0q7sXLsZX8GDrerTRz4PLluNoeCbKcYzdUgmnvYHeK49B11DJN4PES/khbmS2V+JKgZu5xv7NfW3HT+TWieamxnRsPEUm5X3sWXd6PcBMvNRRNWQ4Tgbktutx7fyFVKCVi2XKeBRptP+4S8aHNSuQYHkCEoCMA3v2xu/eeRtW3ZunTixZvCT3frM4qTAj1Fh8HWAMWHwBv5UVWUwOWJs5pvKvgacxqpGh48HaHEaa132+ITbgrDZF3dpEptibYeq6Kfds07aVRxqGKRicOzTgD7eR8dKpeo38JZ35rP2gEaMy/f3N3/4WXfJEPP/c6pjeUEeKPUcowotY1IS5yNd7m7ohN3WIWBvLU75omlN+BpDR0J/9rnk/GQ5MSkUtzp5oi3c+3RC/+WhdnDx+jGOcW3kgYtlUeDE1oiaNGBZVgwnIaNwDi3+S0QC9Z0YD96tzqOvJd/MFHeQ8+c7rHrzqDvLtRr/Bcfl2/zjeeSG27+WUC8DCigWbnWLWxCnxv/3NX8djFEQsh6b6Ad979CnsdLhJs0A8nQHKKh1hBufOECSwuOoJAj8Wr0t6go9IpwbCdDCk0QwOKmtT75CfQTNDWTtxg5uBI3I41xTwIBMNHLW0tCY9eRxtLUHCly0UPWlS3OFUBPXg1P9ZzzToXEtxB3pSzvo5HWt89hQdP0tP6iXqLJ1kkbp1whoN6rSLHnwgHrJGA3isUScdmcEsP4fJqiSmnmogRhtBeGicOg8dp45deSM+Ym3H2aam+ABn78ljzVGNnmSttTkL7st2r6ALskQMg3YZrzoCWEmbOAeUU7z4MvUL5/J1dhz4ZP0tHzYjzu1lE2pqEt/r6+rIBKWGFPN2zeQzbsOTF9uHcPdd53riH+O3j1vIIudvbS4dYCBuXKMw6e+oEbdh7cc4GlZT+JvsIzKEBiMXlUe2JZ9MPk77rqvZJOmoZu1yXsAonczKPvp1GNKdToGT7e3xNvqS8HrmmVUxFdmvA8T2tB/EHRWWIdhcnkKDAMlT7fxdpys38hXYCE0rn+Tv/aUpPmtL7EYveOMXv4iHly1DPj2bhY7vwj9KVxrp4gv9Kw/FlVxD5pE6A+upXq09ojyUJytvzTq1ttguAmDq8c+RjfEgtp+Xv4tbrp84ov6pLeN87UMZrr2TRWhpT9xN3HIc4hjzlpaaWltiMzz+Fszj+zoaZs9m/swV+dxLAEkHWPIy+RkwEuapUydsRqRzRFzUaaduopN3MP12Y5ceJev5IDp2O8HaNgLwnhTzwndeya0TyivrByqXrfElbn/Trz+MowECzKilggMgCyDwJb14LGMcOXIwthDhbT3WxFnwEYvn4PVDmRsMsksYpcI6Mgqf14tlalihVCVVSBtJ7NZEcG/MEDzDRiPcG+oRWesgRJVQDYzpODGqqhD6KBOZFgUSyDiMCMj0/U6EkOjylb+reBXKrsiciwzBd2HwWtzIwn4ajHV1tZm6JCKrBBmt1GPpHmGNZbpJxcL5SzAJC4mbi94SofM+frNvU9LepYbCWLIkTN8fTfqkhJFpXDDjVFx5Vi+eURcVRJUMx6/nViNXpcy2dTSoUCbToW0Vx4OHDsfWzZtiEXumF+PFHUHWiKPROWQbMk9ha6TJduxbBcT9o77S0PYe2lW5E0ZeCpdzXZ2piCrYPE7Jk0RkOgqTkpIsEetB1KhQyJnOpdKl0aZXUgaQjgaVCvrQA6gDwq0Zp1Cq9qOgqzg9sWIFUfvxKDJ4+phnCgHmmIqL6yfjhEk4PuckXsj4ZFDCWziWBJHnNjcifJowoE+1d8SCxYsy1bsSh4bzFy7iSDpiGH8hfFhK/olHRYZAkUqXzh2+06GUxhJza4N579m7J7dhyIytSj5j+vRUlFVw02EBUzJTxchjwaRQwmBIKqK2yVuBKzgYjKTJbFWsPWZpN2eIb1j/GTrvqMT1+vq63F8uk1fwKiBU+EpbghT+4qv9AZJcj2KOGnkUx6IdjWwj5F0orFu//DKaUP6XkolhmrcMdxfRhqZjzaTd7s31n4NWNBNjWEfDeB0NGMMaR1mLQDzkLtdD/M/50rG04SX+OT/8Qwhy6E7hxH0qb3eI2tyGtjuu3Iwvm4jstfOc9/sg11/+2Z/Ek48toxp3JQq3DicUDOagoPP0h0aM3fWffRYNDdOoQvxgwsh1s1fvkTZ8lZwMtpm4wfpJr0bDxBMv8aegK9oGJyxWq+DctX1vPL3q27H4vkVJp7eJVN3tpWjoHU5QYMoq33dxgNwhzdsim5mWyeQJqGW/tjsUOvAo0r2HqNFAmrQ1MHbsO5D9TkR/aRg/MKaOHY2jYXhUDEXhUaHgNYhn5aF61BOQPOFWBnTWfBm9TEeD3/NSyVFM/eOMhgtkixzsuBhfHuUIP37r4uX1r37waqx+cmXUYnC7zcw+TFvtT4TTOjTij9cd+uulv3up2A3IYl5NjY15got0Mwen2gJepnXrNJD+xTfXWJxwzYS1tKYy4VVkA8hzdPQWRq8FEy0K3AyP3Eyk7jI8o5qI1P3U+JlWX5/4plIl7ZciOvahISYfcp2NhIpAwsJIrEaLRVPFJxU9DSYLw24D5yfQdkN9A4qchlFFKnGunUa80TQrTcvbvnY00JftOUf7y3ocrL18TGVa3mY9GOVHI0r0MpSt6dOmpfNOnqcTXNgoBzQQNeR8l9/ki+/lBzA0QZTtatCp7OpgEk9VFD/GkWzK54pHH6PYFrWJ+C0NCp5hGMm3ckx8b1+p/NteHy34mwquSpkyIKMxPKj8cCvS+8inR2j78WWeg16k7ydPZ+zSlHPVmFOGyJv9TbjYVyFHCnqT5qQ1HT1mGlrZ2+0NHcxhGbxmFjzSsTkOYeG9Ko06Y3QIKPfugouub7YtzHDap2NP2qI/YaOj2iybllYq5eN4dKujhQNrOVnB6G5pOw+NJE92/vbhuzghLupgUElMmQqcxFsjfWa9GdHbB864JbS9rS3m3b8oi0F6QoCyS35USsEtUsiL1PTSmriW4mPyIuiAjvObwjS9l/Jjt22fPJnpyY88+mhmxKlVdXV2JW6oHwgTnWAqz2ZvymelLTOzkp/zt06GkkE2nLEPIDPjEAquBW2l1clTazMrzpRps4I0hr52fDNIeYCwse10/gAHnf3CJ+UdOCi9stoZRDD6bTrztq1bcWLMyuyg8WxDytNKaCOdd8BdI0xaLclt+YH4qNGcGU3SL+ugfPB7DT5PnTjXeT4+WedRhZ2xgtOcpk4ig4eU6iEYA/3Y1iHdWKz1+i2M75vgJtsTyglI4ZfDYWIkEj4KyC0K6WlIOkvu0nZLx+n4dOu2+HjTl+h6rXHyzCmXKR6aElFPQc6pI8ti7FAimOBXZjQwl1xFl455/OOMBnHT31wvl7agQYHJt+DGbRwN19nW0U0aWuu587GVUyda+bnkaKivnhh/TnbZkvsWxGgcRkNowMi4WTjCzXaEt1xBWkoehOy7wPaJ7TgG26Gn5whaqY9Jn2lIwSMzK0hY8px6q98LL2k0M3lYW3myvCAdstyn/nQNPmXQx+PGm8CdSbW18dSTT7I9AH0M+ZCOVtZdXiX/KvF45y8N+b18XWNXXHQCGn3ij7K/Uz4AnR5vbU16cz+/x4G77VZ6Egd1Jtt2ynp4zC3GL68pIF0ART4krshDnIcZQmZJt+K4+3zDBpxTJ2Ms2QAPoBfMmjkz5y7dOH/pKefOPBIn7YuXNFpqz3fhLrxdVOt9+a5O8BnBzvFsndD2qKmZmAFD4fw1vucj4jtQ4Xl1EuGkgSvuqxNk9hTjLnQ9jFJ4sbzG4tzbt27KrUgWbh0P3K1foUxVj2cICVNxQzpVD1JuFeMvZKo46fx8T3riIZ0Q6tifMHZ1xeXLlxOwmpA8UEeEslk88RltJzPAvWzfy/VL3Of3ku7qfNQ1DfapP2tMf0Cg9j6cAJ56ZyZBOptsAFhoz/jyOx2YrkXB94ui3MLGzI60zVgP5+C4xDkzOg4ePgxeNuYRwPPnzknctiaZbfhyzRx/wtp+5Om8SrAXN8XT1I+533VxHcRJsz12Uay7F97yLNnmM6Y1JP2l0xzeqSPFLC1hrf2XugfjSzkiL+U7s+LoIh3I/YCNzg0zGqytpF5tQf3TXefYwn0q/tlP/yS+88rLBNEmwrtwOfLcMDImBqhUfsOvP4ijQTgWL9Xy0ufC0YCKCRPZH+tIXdpNGuZ5GPr0mikxtaYm0/PAMADp8mJMg2gamla+HYKX2i8VPC68SCtCZrVrImxoFPm3RpWVt9tIlTQCVg0jqcJoHwlCu+ASoszKCK7KqAqeSoAMRGT1eZHXe/WyipzJCBiTBprFWKzS3IWHa9bsWRw/WY2ywR5Y7tP4NxUqmQZ/234iMJ9FcAlCxJaJyGjdDy/Sp2Dmd7pkf04XhQn3ZFTZtFqZq5dMVUTlgWRsIrHfZXVwFWTadvuCipD3Sei+HJf3ZT/M+UR7GymYhzLluKGu7muG6u+O0XkLCy/fVRadh8pzphQB6mTg/O7aer/CS0NWJmhl1otEp5YvW04V4gkJT+HqVYylEBD+bfsydNtQWXFNHYOAsE+ZiuNSWdGpopLe3NycleI9wnHMaM7ppm0FYTKoPuEJaAVTErqpRq6nkUrf7bPk7XY8/m0xL4WPziOZ22ScXvXAxuJ1mdoOHH3WecowZchuJZHZClvXT5xy7MJe5db7ZYYyLLdmtCI0LWSkk2BqbW1MQDi4huJMriXjkMk5Xx1m1qzwb9dV2DpP4d0fJlcIo0LpUsC2dbSnwBemVVSo1zDSsWb/PuM+adfPtp2vsBXuaeAxBmlCpd8xi7tmzqRHF3iaanukqSna8LQ2gI8aemfI6hGPPIbn+MkOu425yNiZ43E0sKd4fLkZDeAcTJWGgQtw556izQJfhKPz9nKMKoPWL8i9a3zj/R7d1X8I2zjIejpz9VZs5dSJDW2kM/NboZ5EfOuxh2M2DL+CNGWVjtKpE9ySdKvg9EzuarzCszFcPMXEfoVFOhC5T5i4ttLLcPqysrxrquNL3HJ84qh4nw4JfvPyswLi2JHmmLfgISqe1+UY7hElGzIIp8dAFTQ4HnhxB8UIqcL6mUmCcoeCZWqdAl1+MKRsBEX9ItoZ76HmY7yfjqPNLdlPFfJ86vhAwR0bU6rKY+wIjD/GM4D+b1wB766yhQK8G8Q8hKjp9G6d0Nng6HMLRbbEPJiMCf7WaCi2ThBlv9Ybe090xHvNZCpwn/OVYh+9HwfwtPqsT2BapGmBKXrBF/cfujdf/LQYYT+UdLM5rBVwhaiT6a8Xznfl75MmTY4pHpPF3MVj8YwF6KPFggaFr2siDQlz+Zi8U57r9ypz4rM06x7GZviM2ySGQiu1ffSkcDdCr3LlSzh7v45M19h5CeukZd5VsLiJNUBBc+3ltYzDrIAjBw9AQ2OTTqsqq5ImNcQ0mi0eLA2poDguo6ziRknJFyb24z0lhUW+4N8pP8hWOcH4Z6MIqZybVeZ9Ccs+RY6hJi3Kf00v9dJIFX7CSFy3KG+OXzpj4eVLOsJ3khVjNsT8eXNTAfV+8SJxOFsCd4BJ0guGoTBSscu2gYN/f30BD+Hkd3yE7jtiC0ajNYQ0XBybvEQZmXAE7kw9+3L9pCXnoFyVnlxLlVbbKmiKNeA7n/WI5BMn28iiOktBxfkxCflh9N/fSpFRPzsf5bZGtX27sLm3VmeyA2ctCl6DEswaWczS7Rue7iReanTPhJeNHVNZjMcx8c85SNPygkI+F/jnWrqlRryR76tQq9k4ftfV7SGO+TTODKOxE3BgKLvLgY1GueMThuKLMHYuVmp3/UoKvHvInZsLJa7mGtC+c72A3Gtrb+NkBbJ1eHZybS2nUU1MR4u823Ydt7AF0xO2aURitLnG4tU1+hXmroltaNjRUeojpgW3trYkbmssjUWGmEkpDvm8WUk6ZMRfM0ncLuNnx6Y+o7HoOgl3aSDxn0nLMzTE3A56FAfV5ClTc0ufjmzbyDEDU8cqLJNmGZP4Igzkwa6f/WSKOv3oKCzo1IKjN6h5ciGPvR5AiNgTLSrZDsJC4mgg+ocTxcsssms4GWBzRBDLs6Cx3OBGz2UyYjBcGaVZDQwfwx9ZAK8+d6k7Dra2x97mE3Gx8zTV4M0tiFgyCV48rjLqRg2PCcOoW8GzOn3769TgH00kHMxokOqcv/gjEtina5AvPvvfHfq7jeFwizoNbLRLR8OmbWfT0VDOvVe4p4rMjaUPLY4GTtSoZivQSBy2/YDbbdbEtRdu2QMNC3/lmPzM4Erjseasxv8ggSXpyXuN4IpryoLMDAKfHXfKfj77vPRyDadBCcfNuBFnPB5Sh6NyVYfgBXSAsdQ5mDNnNs7+MeAgayUvgd4Lh5RykKKZOLvkx37vGEo8xmwq9RyBoqNU56E6h86RTowuHbY14I0F3f0tM1OlT0eccAXc0KDjk4falzj5tZwR2F68abR6nUN+HEOnuU6U2BNoauvqvtbHxF3b8CXP0vmrjmfbwiJlFOMXJ/3bl2vs+HVkqLNaJ2cXGRmVlZXQKU5q1sw6OV7yGACcn9VDpC95WOI7fTt2P4uMiffM3+9K8k/4uRW3E/3AcVszS3rRCeE4hYlrK19wrNJp2jf05bPiS7bPCJSVfJ1rIQxdkwvwmN04TZVzc1nTMQTbSnNP3uj4AWYhOwo90t/tU/6eco+/Re7MsOxbo8LhfJttAQQLab+2gfp5yA/H5jyFiON1/F7yb+EivzUwqH0gTqaOCmyUt4X+6JpoWxU6uA6wjrb2WLBwYdShc9iea+rlvIWHc3UutiUPdi5F8eJird0eK4/2/pwX/N3aGG577DjdEf2A91xkazWw9zKgpgMps1N5Vw57kqE1c5ybMJeXySOdo05IAS8k79LHFdrvgAerY1/GhrtG8PBgY2v8x//0f8arr30/JlRNRN/VcadOjL7Ev2/69QdyNGgwAUTQR8aXVM7/ie0Arjvs7doTH+HV2rxpIxVI1wfqUsyjss69SyoReG2AIwHAOI2j7AK/LZlDhHZKbSp0RnDPdJyIE4faiK6yL0qPWCdbH9CMRVFR6iKvS7z4ORA7WUldP8VIHBqO5dSxE9HOJ2yjmFw+IKbc92CmAXl84yWqC19qPpmK9nDGMaSKfYwaB7zcw9PDsUFbOi/zJMcc8ZowCkIePS6R8sYV9kteghgQaENHIBCrJ5GeWFmkB6E4G4G7dKotrvC8YBk1fkzcZM9VB/N0V5DjddydvLwaeJFsnBFIUcv5eZ8ijy3bUb1gboxGGVbwylh1fvRc6Ixb3Z2cgyxWIljxvA8uc6YQHGmTrWd7cu7YLTFj/MgUfjdB7nuFU5IUT2A/jCJRYPXAYSNi3KSpOFJGxkWMhtMHd9NusZr671Fv0+AT5ppe7id0vbzm8hpfWxNXz3aw7SW/QowyHiZeVjMuRlTCIGG+Oghkvirx1xlHz9n2uHGZY3OG40hBwBq5kIBvohScv3ovmoum4uHqUQiJKrZcdMVNzoweMAgmMrQcQx6nFEbbYBiYEf9kFjCanssX40rHcYSneFngxGDWbiCpSN1niUz3teub6zCaFyiTsFc8uV6uge+jZ9THGAzX4YxfgeRxee2HqZB8/jJzq6YKbTfrwHYTHhxOheorRCmOAaACa0iFpI2xE9kSc43jWy+xNw/LuYzU/1vdF9h73xs1Sxanpz3XG+X7IoKxc//BIPMzL998uQYum+2e41W6avhQDVENGgUzgxABUXhKwxheFVMqyAipJGJB8VAYuOt8jcj8tcuuHAycfzrL7kG4A4GjSsWh9rNf10So4i77vKkOB9O7RzQYHhpzkaOzJgzMjIYJ6WhgXW1HRQJGrEBWeAg/haYMF1mRl3JX5uvWCbMoemXI3DMgDVjSYBnrmau98UVTe6w/yf46njL7iVIF0DAGIoAgmEeas4UgixMdBrDvdQCM/kz7uThcdBMPc+75iCqK+qHYWYjrJnO+e8NIGVNhLYeMGhPVKDXumdeoO3W8NS41tSTNibv4PPA+4wzks/ih6tDKS34jbOtiMnSAggW0xg4bGyOoWXH1PLC7RM2H8eNi2LgJpG9yTKQKEzjTjZP14mkMCJ41NjB4zLi4TcbKTeByBQXnfA+/AP9KaLJuwoiYMrYiJlYMizEUgxymsAXwVy5wpNTVK3w3nO0MKoyquwh55qTjonAy+E2BM4J8ALAXhv3ISrjLSRid127FruMd8QGT0YkzhJuGlxOp7r6e9Rrq+W76wnkoTlXgKooBaYI97GG+dPhg0rv4QNInKfY4DsdUoaBdjwvnrmRmhFg1ndeEmrFEoijWdxqY87foA2nHAOZSNnZCnrph9oj42EN66PmWtrxn+KRq1rFwNniix23qX1ztYisVjZygDS/XoY7XKHjukAp4AvgqTbhmsPeoUKEhI0Gcu4nR2d11Li6DF8JCmtap4jWudgJzGBEtB8lu4m9hMZNXxcSqpJWek6fiOoBkOegHEwP49wfuw8gasGirzhHTXXu6zsSNLk+1YAzw30HwpIHATSfjVZTbjSdO00KBQ1N4Z3oJi9t9vMkxuV7y1bG1E2PytJnJx85hyJ49cDhlhHOrGonByHhvIJPIvI6hFeOQL+diF/TotXTscOiCKvHM9x48mML7RHR5AZPBI6vYCjgyRpDCboFNi9J2drTFNZQdGYv39EcQ916m5o9zRhANH1cTZ092xN6+9u3Dta1kMN7PNvev8Uze5BpPWXJfZhD0wGPOtByNntOXU1YwFLbSOCYHVRiaZsscg1HBrgr5MbU6bl46C60oTx0z9RZukSU0iEyCShz8jL0cB6MGTBcKbNvO3UmLiht5uP2Lf+d5SZ8MMX93veVjylbXmKWLsqrxyXMudZxL/Bw9eXyePuDWu5uk5bYfOJo8dEIVsgW43ey5FNdYY/mq4HA+9nuSl/g4g1fZaIw2lPneboIb/K3cFi9ncvPUBx7OCKjGj/Kjbd/2ON1tJkAxJscmftq2z8ojbF/csC/5xVgmNLK+lrpUyIj2zoSbB7kpXyYsXJB6h8r4qdYm+OYZvkXP4lUJLZZVjMFJeSkunAS+fCeuSceum7gnXITZUAZxni86+Cyu1lSPifHTZ+Uefp3kPYz9Bjh9g/VVTt9mO8I16NN5VNZPQi4PjsNHWxIuzqme14j/n7r3DrSyOvpwB6SDdEEElI6AIioqWBEEFBUbdlGxazSKNdFojCX5NDHVxN57F5TelKYCKgJKEzh0lN6rcp9nNtt8/d588Y+bN9kezj57r3e9s6b+ZtYsFJpJlk3f0P+I31HbUQ7du2PThijHvGoQuGq7HXvj6pXYERIN36xOv8W5NcYn89SJ2dhVdXHxOpC5agfAXlMf1dmHoIIAfv0yj0kvyHntVm2jHgGIQf9qfJMNS0viO4IrYxFp7cs5SRNpvg478r2MvetqVx+fkS1szWrsHvUrl4sq2igSJKWRffUL5GbhtGXYUf6tbSsADcIOrB//gV0hcsEGfscvAg3by1WJTQjovOWrY8zExTGHiVQtSzUXgq39tNFjVb520P4t80jAHcjrxhXLY/PyJfhLzrjAL9JdGpVBADCjMUmG4NoPXqnXfB+qUwD80E/f8nDyVQNetZo1wCeoTkKPHgb4klawzPl0TIxd833KibIiT1esjo9VpSY6DiBgxeYo4T2vOrzsI1Rtr/rYSEr4oYPrtnHJipQP513voAOySsLGqFsAbbbx2o79/W6LSY4CzdVpldG1jr8U/2k+v/s8zXg1wJc0AblhKf4hiyOf+tQ+a+0a5aN2431z64I+jTr2G3h+DbbGz2mbKu5BnLByQ6xjwCX8rhx67cGrFi+fryxCVQbZrlCV4Bpff9Oaldjo5VEVG1SNhKKgoPRbT4ywDn5Un1RAB2tdS3Hf3esU+HbOF1/GV/zNS1msxrgVqtXi+/AFa7kD/xBjAa8TG1CJWU37ga+yHj92LWNvXb0iduAD71ad/gCbKNuHNxcxzj68lH153mVtzMtnk0+dS90aPENF+sIsQW52vVenbpWo32I/bEx5GhfyPIBm2/iprZF22uByVEmWxU4oq2vxvz9WUXGpK2rUIhDnNBSv79jCroyr7HdDIZfhO9WhS3ViHBOBC/GBN9BjBEwJHwF9wg3UKeoWWV59vHzXy/k6fo6MTMAyKXvKnTJYl2ffo1lrfPwaCQzLN8YgG6DNllVLg17bafPKcgT6buU4BpMAcNO3m2Iy33XNW/Bq1LQBviz9atatZO74eTBYJYJ24wPttPFprT3hWdb6m4UlnJI1P/Ve8nodmuryhfXL1qYNWcN42pHiBanTB/R3n82Xz+S9a9erHA2bt82eIjxa9ohaAUCx6uuvoRvv6BiwlXY7IOcmbINr6/j/+Xrgwd/EeRecR6PzveF1R/Y+eugJs/3nj/9L/f6jAA2iOEWUSs0q+qQaNMzgL5RfTo73aeY1dvSHMXTY6P9XAqEzKQ+qCX+DPG1cG/PXyLr//aXg/d0s/Pef+ffvyvwNKYGriIEzuFmH8dKo/lhXQwaqTIM8jc8mMirEST/apUDUAVWvSPDiHtm1q9bGsh9tdObNWB6nVxFndtMKABHm/j9T/h+/cX0ks7IZCKzxBgImDcCPddVkoBo4A6K0OzEOOwiaXNcfY/4qmeo4GRVovqjxWLuUBi4/1sQdm9eedTkdASuwHYW4Ftp8+yON35hxSKxnlUDy5GqAJy3O//EqKtc2GNNWe+0G0FAz6rl1YlczyL8DDRo1pQ0dgJwVgQYNjI6YlSfuB9cLs0ojEXmcN7cc7AQMWrphG0DDYhxmKpF2zZVPp7F0TTVO/+wFJ1ItwMkEBC+b162JxRvIaPwDgzqv/20ejl+NShMrajYvXxHLeL7/+WI06bVjC8eF7hZN9qoV9XAIanGkWhVAtTLSEAfX5lXlKatrCOBYk4aMpXFgpUqxokFj6l0K8APkhd6umTlZgYbvYIZvN2+Pzwl++8+lHJq/+fny3HrTv9NVtVDh1di6URYjuZ1jJVds3JoODh/9py/v2bS2R7WSuSCoW716/X8w6v/MDXQA9uJVqSagKhkS+wwsQBf8u0f7Z4bP7+7Jf6vVMZtHlhTaLN0GWPZPjlqQlEKwV6M2GgG5WMv+7aX/5Lj/+evpaNeuCji+PVauBSD6zx/4P/6uxUclxB6V7BGAPFHGvWQLQM//cbz/7muua1XobjC98pv/GHT+d5//R94zeKpc1eaVAA0EAPNZ0x/z2psFrsK+ba/12I+FP+Lgyvc+Vj1hn/Rpln6z4r91ZP+vt9ybL1bZc4/Mem5YuSZ9DrXOj3Fp+2qyNawcQe9mgtEt6CbHNkD5MS5td6269bFB31EZtSwDsv9P46JIdGPbIOz1a1SNluiTBtgKgYbdSJIIoma0xGf0Cf59RYN6QQ0sCOwY/JlfCxV0CTRg4wpAQ3mAhjUx/ouFMYtIsRrHI28CKdYWWoUGTk6VLtVP2IU136z60Wji82fgVA2eIQj7Dn9pCUH5LozCP//T197MvXKdPfL5N1gR+SMqYMm5D1mHCoAl0nkVuuB/8peS9P/g06RfAFpQUbQVeVqwbPkPQMU/ONR/+bj6t1oltrLC7x5nvHYtxzT+l0/9/Q3t2T8ia+rgelWo3K5MSgYdv24Vx9D/fbh/+l/1GaEqFT42VF26hiTA/zKiNu0fWXbpXhu6m5DcgR+8kbkv+l/G/0f/pPathk9lsnAtyd8fiy7y2N78p0rd2pkg2Aqgu3A9lcn/4ATvvffuuKD3BTTkbALdrJTPerX8+Q8O9f+7j/8oQEOWgCOQUCS1qmfMqmrBl2nuto1uslNi2ODB8SUlNJvXbYzm+zQqbJ1QFaNUy1GipfNg2Yqd3aey7+bZgYOSWIc2bhBHdz4uTxyw5MUglao5kELK90G9LImxSYnHN2UJO/MwkFHZmy1T5xf2QBVKvCw19XinURM+zQCmZ7fONFhpx/muIKuUNRcaXLnHFySSAMhyHsseDWCtIvih3J/Z+Z77dS1NtNTH41ZsQjV0xGCyht/H8R3a0xxmv+zkasmQpVnOK/ckZelPQUwtC01jxbNliRBZf58htwjsuodlRN9SwTATlGzgmI+iOXDmIe0PjSaNGmXjGUtj3R7i5TIUSnfodl+FzCeCa0naZrKmzkGaue/JbRgGQZazeazj14w9ccL4mEWG4qSjD4827AerDfpqSailoGlAGdwSKffYWqJk2b8lrZbfWfLl2Jbl2pNBC+ueVp/Fo8zstzBi4uSoSeas12m9stSpsB/Y/WA4GNA8aYp1lqekU5Y08UT+3Wfw2bz4M8EqgFHlStlx2X3Wb/cfmIHiIa1a0IyuPaWD9fP+ljY5n9wKIX/wEmlOZJoRfbakv+PiQMgz3ijf55+WDY77aFyMnzqD3yJ69ejGsV3sQYfv5JMi/2fJnZAxl/xZHF/edizX0z1bVv3k2K4Zv8+eOzeee/G1BEUo3IgTT+QotiZN0sFwHPFMXzZ0cizn7rPwT2ef9/EXaWW5o1UdzsuspfugPUbnzQ/HZIakC42WDqas0n4XrqPr5Sg+suvnODaAEvTYxtzWUPXjPvAZs2clHb7m315tscEt6SPQiDLB7NHwH06dsIz9vwEa/CLvp3zyLCx20iFLHCG6lRU7CIa3EQwvAWiYOHcZWydoLMrXigarx1Edky8tY3PPoFtdPCVFWmR5NXP3p2WD6wgYfC7p4ge8r3Ii7T1pYsnixRyd+FWMJSNxzMHt4sD99os9dlUMqTukjbxtCaeyb1llofSU7Bv7Azeu35DbqKrSfZozVnEI4E94chu0X7jsm5g68+sYOm50ZhPOOIETa5o1z9Nw7BZfGmfTUuA580pi0mdfxILFS2Lh8gVSKGrgeNffo2LUqkIGzQZkKLzS39E0kJMtNgCzk3SIfRvWijqWblJhAkWzksEtFDolyXk+OE8PWXKLmkADN6X/RTmODuVEjyVrYiStzv32Wj/KdXSnjjRybJ///mIa292Gf5BI3REdac7FHsu9KLHO0x0YVV1tA1N1gDIrzXPPNgsvH2XZJnRQrtSPhbLxwvfcfjJ48KCYvrAAk158xqlZBq2u9XvKa64Z6yUfqxeUWZuZeS8dcdfGseX1bMzo+8iuJelfUbr9wjv98zma7VWDfho9aBrXNPeJO/ZmqoY8yk+SFPctmyX3HkVQTBm1tFcK/rClj9SN2/gmfj453ho0NMfvcTT82JqySvZxq0vVAdopdaX2SXm1747z9EhH9a+lr1mOL88zZ5/FUk516mIqDD4cQz8jnKxuhx4UrbEfbr1yS4Il7ZZlqvykif+WH+2ubi8QeVrau+VEZyppxfhuRUv+5fvS/pX+g6IZJ5oc3qEjzSP3ym17Zjalv5fjFl6FrWc+k3N0re0/YtbfrQY+o+WhbtVSzyxGnqZMmxJTSpZGF+a+X6vCfuJqAA9FneQYjuX8UrdDH1nVsmvftyz3hzVG/xhkaU+WUWo6a87X0W/U2Pz8ZRecHc0aF7YCuobSBGcm9aT/thTYoLso+1ZqKRdWmegPqIstz/ffbqX7Cp9jyMBhCaZ12L9V0qYea2rpqnOVP7xSLzCf3CLB75bdOn/trcpN/at+UfcXn/Gbb5fn9pOhH03gMxGnde0cBx/YLmpQdeOlLpcurqmXd5K3HVgaF0rF2bqTOgkbCV/6XP60WuzrufPilVefj2XrOUmL755//tm5lUPeKPCJvgzz02Y4Jt9h4LSv0trMbSpsb8l9TfA4CXXJBmTli2lfxmv9BqQe7nHskenT1GOLqvPLOTOWY6at4tm9r8+uLMmPxYaa2hVlVdrbh0GetKxdf+zjz6bGflQYHbB/u2gMv9cma6qsurbKdco8dPemylnqceZbmuYLu9mAgdnaWyo/y/pvplnu5u30u1j6Tbz5Xn/8zvVx+skn0qejfm7BrERZofyinH/Hf75ZxZHXX8+LKTPn0AdjKZnUNYwZsT/oVgMSRy0I+BsA5gg0lAbwtR+Ez+8ype/AT2sYCrq3wIul/Oyuv0MgPo7cQp/tZE43c/zmup1lON6SUydmLIkZpKkrY+g2MqxNDFs2bUw5dmWOPZ5CheL66H3GKdiPZmxHK1QJ2kPHrWPSWNqkXmC+ldlmob51+6XbR11DaV4JP9DO/a7HahJgM2fPig9G9I+SFd8DaFeMU0/itKH69XN7ZfI889TnSJ3IGD5joXxd3sYeu97Qr5BUlLX0R2xeVyF7RXiSz/sfjOWTEccdflgcTl+EOjTBldccUz3onB3DLaluHS3EAAXZUh6UI/k89+jr38M3bll1q/SHJC0nzy7J8c858fho26bNDyeq6Y8pn/mC7x1DXzf1FWMo8yZB1ElebtdJ3cZiObdZbGF84pXX82+NqnBscK/zs7eO9iflSAJwD6tyLaGX5vr3Of6usbJJOJ+X9nkKFV/ZAJDmaWqTkadRH09KeTrpuGPiIHoO2cfEsR3Pk14cy4pr75G6uTwnZMmvSXPnbSVoYZuRsuZ2pg34QTZm/ngSJzFAmwP3qRMHHtIxG9gbw2iz5RV1mDpHeqrz7fcAmyZtpUP63vBWbl3k7/YW8BjopW7vnD07Bn4wLprUqRFHdjyC2GYfjhCn8pF1d27qA+Mm5y397cFh/x7jg/Txc/4pFCk8abuhu33TShaUxBdsM/ycbQRHHdw2j2etT9+kagCo+u+uvbbVMQsXvgXz0z7ltivup12Sb5JvWSP1sc+5ZAkyNv2rGDl+Ylb2nIMP79G41bDNNoaUF3L9tMfM30aPxqbl8dPsz1Tws7FT6iKeBcWUciDhtB8z8TlGDxqWwMghyG6XY4/lZDS2S/sB+MVeFzxw8l3ynmsGr23CdtqnYeizL8U5v7wtKxoaNW6S91BWCp6/q/Ovff0oQAMrlMRMUkhXXi6GSljUbjoNz8aPHh0L583jTPby0aHdQRxvidKEkJZb20VdBrHJiOeOj/lkQjz069/E1wx4yYnd4rTTTsv9QypAz3IXaLAplKcwKBiVCGZt1JRAg0zAJdOo/DK4wCDLeAIJS5Yuo/na6Pjjs89H+5q7xWkXXROdO3fmHOn6CRYIJMiYKkEFXyVVg5JNHR4dQRWkQir/aKTTiUZJuqdz6dIl2Zn/vSFDY+WihdG9a7c4vGPH7ERrsK6gSCv3ymtkbUTjPIvBtv9WSDSizluDrEOqwGsc5s8viU+/mBL933s/Txo4iq7E+6Ng927YMJvl6IgWL+ni87pvsiqGy+dxT6xggwpH4VKB5X4rhLiEho6T2ds+etx4Kk/GxxXXXBEdDj6IPWf1s/dFzgnBdVEFJvLoUEpfBTEEG7ykm/fVqZNOWtlaABU+l47c2HFjY8Abr8Se+x0UF9J4bv9WrRIIsazSPaHpgELTFHrWS6DBQM8mdDZ48Rkge17SRwVemWOZbNwy8oMP4vXnH4/x81fGxaeeHN06d0KRGNh5lBznaTMnvy8fqEikgf/WOLqOKmueLh0V5+tzphHlp3vwBgwcGI+9yVnJfOam22+l8dqRec5zgjuMo3KWR4pGothEx/k6vk6h/Udck9yzpUJECdqMzh4gzz73THzw2ZfRveOB0evMs6MdR1NVwABnh3XkRFUn/8v78mV2LmZuyk1BgRWO7jSgK+xJs3khiPCixfHhJx/HE488TqF/xAl9Loru3brhpDdJB17ln44x4xqQKD12kNe4GDB/S9ndNNbuIxyHmXPnxHh4xOtAfORme1QAaNj9v5w6IRDC1FKpqqB1/uR733O2/CuNu8fnlSbwrQK6X1YZZX22oTw287RWF3w2f0WMpqxGs6Ka9urbp3d0OrxDNGLLQzXKHnVu7WDvfSoghzZ/0rAZuK1im5JramAnL7rehWC4dB5b+/XXszHKn8bbr74ZZ/c+j+PEDst+FzbZ1HFO3QJva0SVXfVNNr2Dn9atXksJNFsY6BtSsybo0G4EZ+xHKl0eJ5LnmDF3foz79IsYPmZsrFoKT553bhxKcFGf87WrY9zKUqK7jprfz5DnAUOGxZczZsTEGZ/nM1qlZXWRUkXxVQKi4gmGga5PS6D5/Rt52gd9KqQtcIGnKKh3lQufOenND51pM54ZQsI/25G1FVu+jy8pO5ywcH2so+/Ct7uI2+eyC+Kknj1SJsaNHUf12ZCY+tnsuO7yPpyB3SkaN9g7qkALAS97m6hv1GMaf2mvLlR2dXp0dNVfypeOonQr6PhtAF8Ayc+/EP1Hj8sy2ZvuuxunpSONBivknlwdT/dq+iDKrOugnOlQ6BgVHWvHltfVj/LrDpx/91Z+RC+g3953TyzYFnHKMR3jTE7EOfjAAzJ4sW+EIJGnVUij7GbOnHVy0/mCnrydsq8TJNP6LDYodk+u+4kHjhgZv/jt76MVC3RK7z5xBKdgNGrUKOVfHWCAJP8IRMnv7t01UHUPsnuObXKpXVHPSCtlcD3lvzYb/RrgaTDjL5w/F2elc3RAx7cBADNY34T+TrmHrsqKAbgOdHV4UN25Eln1Pektn6vTDKYFb/zuesDqL6fPjBdeez0a4sB17XR0njaQzfoYX0BNOXJOBUe90MBT/ZV6nXEE9D0/XWdd+6oeVTaWApDMxgn1lIoxzP/MCy6Iju0PjsbQRbDaMfysdsGxfH5fRQdPx9RnyD44zpt/+9I++fm5JfNiMg1ph9DraSsVT1dccnE6ovJMWcDJDJ7RBYTNqROy4SO/F/WhjqjyoZ8gQK2uE+TV6VuOz2ED3PfefCXGz1kWl/Y6NU4+4fhoghOtrZZn5D1p430EnuwRofNsGS4skvpMfnS+0sY3/bfNJd1H/N77A+KRJ5/N0uGf3nRDdOl0DP2ezG8iszi0CczxvMl8CjC8kXaIf+c4ggbcz+BCvsyGcczL9VWH/PXRR2MU+qZD84Zx+dXXRgcAZZuxZtM/eKLAN2gP7JTVLMpV0Wk3cLfpojpS2ySYpCOtrlkNWPvh+I/i7rvvjwOaN4iu3U/Ep+HUF9aVx8YPI1jUL4Auyo+2Wll3zup97ZvP5rYCe28Vg111v/7IAuzTcPyxF15+PU7t2ik6oIP3A7hrAAAmP2rzDF6U/y34AOrwgr3WZmMXy1Lez3o62+++K/DQduazYeuOWOvpOvRcePWtt+gxszFOObFHtG7J0bV16eFVBeGFnj4vRdYxj21toydMjhEffxqLS+iZQ88vr7b1yJ5TRdO0RpXYqzJAA/cpDT/aM8E14uu8CnSTXr5cN/Uu70rSfAk6SLDveZ5tvNZ/XyZWoZ/mAyhOnbciZoH28ue0c/UaNODo5IPYE147j5meN+2LuOO229N+VIQmPq1HZZclCCoEdsprIcmkbhH0tY/IRkvfmYfNUqvgJ1lB6HrY82YSOtKTEvqPnhTHH9EhLjirV7Ru3qzA7/CDIIYgj2vrGD6XE0xQyuflvfwd3emlLPk37e8yklbvDRoc9/710fzbDX0ujFOh/d40GVaGBFcF7dUH0lCZz2CPcZV1dYF+uHKk7a7AmDar1H/Sp9FWvvtuv3hxwJDccnXZHT+Low7vmD1YXAv90LRN3MPx1AGV2PLmnA1Y3aYjjbQdWks/I4/qB+nbTpr8Rfz5T3+KLxYujWP3bxmXX3V1HALQLk3cPuRSyu95TCX8X1UfGF9a2VJ3Zv8xnk3ATn4vx9yxKvQ0W5MNBsd8/En84annomOz+tHjpFMz/miyT6ME7pVT11a6ryJx6ekKNlA0RsjEKc9nfwrJL4Dnsypr/tueNPYbMr4Z9P7g6N7lyOh0bOc45JBDskmwtlqaq8PShvJdZUwQwmcymakf7uDKmICyvOOxp6sYey5jf/oFIHu//tG8cdPohg5rgw+fCT2eP3kFXSY9PanEJrXaQnlC2ifQAB1cI2mdjcC13dxLgOSrrzidcOKkeB9Q86ze5+TxrvqpAhk7eD7tqfbC5/VyHG2Idq4Yc/h3X+oJX669W3Nn4+t5UtAoGsmuI4a8GPvUnhM8bMJvzySf1zkmMErMuhn97glHFfBPPeZXO8DtYhu86xGkKE9kAu7hPZPXytOQ9/vF4GlfR5+TesTZp54KjRqnrCZfsK6umQ2j3TKqjrUZ+DroNA/7MGzosGjWvl2cefZZsU+TJilzKWspMWqGf+3rnwcaFDop6E/p4Wq4APxPRtjO3uivpk2LMR+Mim8WLWKfaXWOt2wfrZs1x0lmYVEGpf0+n1eADNhHjB8Xd9xya+6b/WmvU+J8zgQ+gGYcOj9bNsK8OBalWWGF0iy3CkPnQeb1/qkYMSIFlJWsg84AGl9DbcbobZTgXX/6S5zYunmceva50aVL52ziohNYzBopwAYxOrY2lNPgpaDKMDCwl/e1i7MCaabLrI7VGC+9/U4snT07TofZPE++NYZTxNPmgAp0Ef1U2crcMnkGjEk7KAEJCyQ1A8OpDCjbFTiRs+n6+9GkifEi56Z3RLF2o1O3VQcNOLJHR0jF53hSM4NRGNlTD1SCGv1CYFAwxgYGOow6xhqfhTTlmjKVypMPR8fQgUPitl/8PI7G6O+Bk2jVgPQwcFDIna9zV6HohKlMFGo/45p7//w3wliDjLfo7ucEqEOHDo3Xn3k+GhMoXnXRhTiKbRINFmjQ8fE7P/ASzyHNs0EVBsy5CxAYEHgPhTyBBo4b+2bF8hjMcVrP/e338eGi1XH9BedHL7IXLZs0TQOmQ6XSS16BSZO2zDdpxS8qpgQaoLtzSO7lHgZOdl22iuQVnPPfvvCSyx5PPfDrOLFb1zQwBp/yg9ij87U7sr+nA8bYGtZcX/gzHXP4Ne/Avcrh9JqFNtj97e8filGfT4uTj2gfV1x5dZ6bbrO/rYA5nmkOFJcvg0adiqQF9DWD7tr6LGnUWB9RXH9XXkRLh7CmPwe4a8N3z7z6qjj5pJOiGfJnF2sdfxWaHJ2dnPnpMad24zZ4W2En688/o0pnREyHDmPphu51ABsxm9el0SUlpYXjLVHUPBuWnOeHD/iMTjxkTAfU+eh0+b78odNg0y63UORRQypuvrsNj5QnpqKB0wAWrWHrBL0v+Dw+WV739L2OkxGOjUZUq1QkWBd4tL+CdDbAUlZcN439OteG//m7E1GulOcMLlasiLlz5sRYjM+Tjz4RF192SXSlK3LjRo0ADzh9hLnIM3Z2N5izu/YmUH0zSTYH3IER8kz4ymxfKFuRoyxpZrKJkyfKsYcQFyOmz5sfYyd9EQNHfhCL5y+J66+8PDoC3NWpWRsnl0aLlXZHn2zjTPvJgFhDyFxx+sTn4/MZNaPSyb2kdeCPCrwBHpDl+UCV0YY/tGvG3mkAkdI0oiyVDvOuL0FnCZx+rTRP3hFo8M1CRcO37F/8AvBj+GyMKTdazZ+8+t58Lcc49cp/DxgwMP76xIOxalHEnTdeH6fDMw1B6EtBb3kwAS/4S7lMg69TAt+pE3XW5CszMOkY4EyoIwUrraKZzHFUjz/1VLw4ZFjsz1h3/eVPcdwxxwAq0hgMEEAZV6dIA2VJPSPP61TYcEkBNjjzPoLL8qpH4Wm8N5LF+/Cjj+PnfX+a+54v7XlCnHveeXFQu3a5dvKYHdx1Iuxm7nOoH7ynTntB/n1As9MQnp8ZlAJi6OytAgzoN3hI9L3v13Fkg5px+vl9okvnztGYoDS/y3wdT7DNYFS9KAvQjwAAQABJREFUUIN9p2bDPI5LG6JOUd8UHAnuxdro6Npca9bcufFa//fi07Ej44wzz4mj0fHtDjwwm02txqFxy5wZFh1d7Z88L5BsUG4TQWmiDKgL1DvaQoNsT/HRPn0G7Z94/vlo27p1nHhcFxp0tcwu5oLFOrKySSGw0+GnURpjGAhoO72HAaNOlvbW8X0G31/CEV3TsX2jCUr7vdUvrrrumugEeLQ3De18fuVfnvCzOqSCQ8pi6nL9AOaozGlfpM0PjjC02oLzO33WjBj70fh45+Xno3zTVnHDNVfSlf+AqEwvDI+X9rixndgHM1AGu57uI+8o+46XPoFCIQ/ykNl0kN+thtRRFKh++cm/xQfzvonre58f5/U6I5o1apQ+gGsofxRefB97qT5wTAMW/Y7UwZAmfRBklj/l2ghOzaHK8eXXXotfAfZ6/fnOO+Lk7t2yuZg8Uwykna96zC9LI2nmv51/6nS+qw1Wj8mXrjMCFhOxrQ/+/vcx+JNJcdx+zePavjfFkVSreGyw/hKTQx9Ac+Q/aQVtXFvp5NjKrPPejgPtyR0pS/g1Nnpdi27VJ7jkxlujLc911jVXRdcux+UJIZLTDuwQImXJ+UsrnXt1rLJuAKp/Ic0NWNJeYW1SpljzhWQa+w0aEg89/lRcddpJeXLKgQccCNBQL3WYQLuBp/xQbO6nHeWG/O78zXojS4y5Yzs2nvmXQndYzbAGoGHq7DnxzEsvU4a9PM4+/TSq1trEPg3rk8WtyOcBDHx2kl9zFy2JoWM+iQEfjIsFc2fFvPlzXao4eM+IRnvWjkbVq0TdygRN3CeBBmycawNJ0rfU0kMOSZHr5m/m/iGxS5Wf5T9sDQRwo0fDhp27xcrtpWLBaiqw5n8bX7OHSRvHqNGkWXOCxKPx6/bMoPfj4UPivjt/BfhwSFRFTpV/ExrqFPVgAUwSaCiVQZ0ypD/qqwgcCYBrawWpBI8mTJwY/d99J56jZ1qvrl3iOuzf/vu2zASeukt/Q/5w6o7LQyL7Ju8EHvQWfNv3C59QDytr1fHHln7zbbzJVunrf/NAfuwueOYsjsPcB6AhA0D4Qv/UNfV3A/gM/LmP+qEAclopRzYcP9WEjKcppWwxoqemvMCaPvLmO3EQv9/wb79O+1EDPWhCKsEXxsmEIGskj0sTZU09Iw1spuhj5UkY8KiAXVYAMd54KgJ+dc89MalkYZzX6ci45PIr8McO5uP4Jujo3RBA192gXD+vMj6CPr0MULB92EV4PnWkehjaS7FN9DKyOaJAwO2/+310a9syTj751DzBozGJEwHwbfjV1Ui86Ffbe0I/O4+w5xmcr7JayOjT7BHAM4Np9ID3FYTRfrxFNfj7r7+F3TszjtllPwzWC/FLAZyQRjKrOtiG2OoHdZr2xRW1Cat0UmblHRu+L6CSRF3z7CuvxP4tW8Wp3btHy+bNs4eItNMnVSYc1/Glt8lCaa9s+Lt8ol5T7rIyi/VVV9jg3KrkUWPHxsus643XXxvHHXVkNGrQICsRE4wlNszvMmbqYseWvvCJPoKJanlE+yuP+llttjw1A54ZO2ZMHgu/HuDgpp/8JP0xG9UKFusnqleKcYz2A6KSDEfWkFftoIJsla/puDweFxso4LsCuzuGeb/63FMx8Mu5cQ2g3eXEICbT85Qk6LIdf0Odrk9RABoA0OG5jcx7DkBDP6qu9mjWmDU7Nxo2aQK1oBgyl4vOf//+M3/5l/vPjwM0QMBkMB9frZqc6i/+4/uYBgo2gq0TyzEqe8LwHQ88OFqCiCH1NMdAuCzxgglrst/b7w8fNy5u6ts3VPV9zzwtLurTJ0trzaKvoeuwzkQFjIPCqKNoxslu7sXu+cnQLKKOgMxsQC2KqaO7hMDr1f7949aHHorzOx4WJ/bsybEuR2V3ZDMzGZDCmDKFQlIMHvNJmKOMqCApOIIXGs5iZlpBNhh7GqdiwRdT45xzzuZs14OjebNmGdCb0TKzZUZTwXRMhcH5SisRXMcvOhMqqgQDdHDJusycNZNqj0/i8ccei5NOPz16HNuJY0KbJlppllGnv1D6j6DnHHc5KdBJxvU+InaOX+i0aokjho/3zEjNRBiH4lS8T+POu++7N46h3M2SXY2oIIzCLGghQpmAgvfAaGgwDAQKgk2puQ4QBkilWIGyXo+BmfjpJBD09+MlQJJWZOl+cjEZqTat08AINBTGwzHhHgqnhtqgvVjRoFIvZmHys/y9NEJeudrusRTaDBk2LJ79/f3xIf08brukT1wAfZrQDdw56ZBbjZLAEXygYTMA8tIZ0lY6V9dUBSXf+KYAS0XQZI91fOaF5+M3ZGG9Xvjdb+PUE06gkoMyweU0r4Ke8okZgByVE1FSkTOOxsl75dpyHx0hEVE4LCpXB0lFUY7DsN11990xbsbsOPHQdnHjTbfEEYA8OogbyJyX9oQVxjH0Kg37SQfXUJBLMEA025dr7H0S5dWYQle3PgwYNSouufOusCj+vCuuwLj1BGhohtwVtgPIexrCVLT8tCGnBqYS1TBrMXbj4DkV4Qx4+5OZ0/kEjX2wqy3qAzSwn1ygoUo5npx5Mbmks7yt7EnbgsHHQfNNLsmbVR3QKw0Oc3buKnbyGLGV0tKlAA1fLFoXw+dtoAESZbD5zYgHbrspeuKk169dJ0rvgP/gle3whjyR1Qqso3KZDi76pbiWKavSBrnT8fB41QXzF8SYCZ/Ew3/+S+qY4wl2mzZunNsbdITckiHib8d0eV/5Us7KYyzKYaxQKDAOE2Nbwxb2NKzbtIYmUOwp4TuzFyyOj774Kmk/b/a8uO26a9F7B8buyHJFmi3VrFYDcu0k6J5K5cDIBBremjQ2nxItmNUM9CeiAzGlfYwnKLGRPhIrKbGtB9DQtkWtqIuRLJVAgwCfq8gFGUsjlwYBAlSCuGX5yWxd2NhB0LiMhlMT5i2OtxcX3pdzvH52+02AuudkgPYGjsq99zyY79936y0g9KdlB/R1K2mKBT9WIsD1WGKDgLwna10MWDIohT8NiHxPntQB0BHVQfiCzMVTzzwdTw4cnDx511//mhUT8utqSijlbx0fdaWf1zl0PdQFHq+oXlaWBZMM0HmDJq/oAjITBjSjCEhvuPyKBKpvOPuMOIuKhv1bt0mgaC0l0lUYpwoBqkCDulzZMkBSP6p/i4GcwIVZl4LMCmiQ/QZ46wdgetMDD8YJLZvEaWefF926dsWJbkjFC53b0TOug/PTWZE9rPrSUVFHaqfcbuB6pQMMTeRJaWYgPmse26jIwPbjddmFveNYSjAPOvjgdGSXoaMt6ayKY6iuUa8ZgAqEGehasSC/C047V/WOcuZ7a5i3Rz7qKD757DPYvGPiZIGGlgANlMFL06KOdP7S2/nriDq+zpx08UQHwRzH14kTJBRw0H58SUJhBA7XS6+/Gbfe2Dc6A4ZbLWE20ee2ms719Lmdt9+Td4rOnYGq7yVQU3QUWSvXeDJbeYYNHxYvvfZGNKTRXF8A0/ZtOQKPdZTPN6/fCHi0FVkhA4psqn99Du+lI6stVcdtwhndwnG0lsCqe6sDhK/Crxg+ckQ8S9fvkYtXRN/eveNSHL6mNBHMrCV0Lmbr1QfOWX3Aj3T61WEuqGuoDnUtpLnVE57qINDw7Isvxn1PP8M3Iv7yizviNOzHHlTbZbKB7zhXbYU/+XLKoDeQXnnxI9eSNw3cBY+sEDBbOgkHXaBh4MRP48S2reLq6/tmgkPfyJMr5G8D00qAdPpO8pDP5cgG7/KJANIW7QiVO9KlDDxUjmB8IzI25MMP48Ibbspp3A4I0/Okk6NNy31TRgXsnK+ylDLLqPKS8p600J4yZ+2dDro/ddIzAEa2ln67PN6k2uM3f3s0ru91WnTpdCzZ44M54o1myfgcWwDrzC46V7dhyht5zCxrqBfmtgl9mVKlBCQ4NYExyyNv29i/a0XD1Flz4qmXX4pv58+Lc3udSRazLTp+n7Tdmzethw8BjgF+5y1eFoPYltN/+OhYUDI75iyal8/bIYGGutGwBsdb0i+nouers/Y2g/R5k4askc/Dr8yIl+/zEmjQ5vnSL5OHdsIrO1iLTaU5upAOvgsBGr4sWRaz2cKwhe9iQaNlq9bRs0fX2LtB/fiU7PqgV1+KX93xyzgKf6wWlUeVmLP+RvIJukTwFCWVczGoU98KpMnjqb+4v53tpX11fGyD4In4HO9j0x/tPzjOOb573PaTa6JtyxaczLApkxulmKvJPNeyoMMLoKWZ42L1gjfM5+Wn/K+/VJUMsc2sBRruuPfe7CtxzzVXx1kk3RqSEFPHSR/1rfKuzk1b5X18j78VqrXQbcit222c75qNVBMiT56KYDD91DPPxp/feDPtx80PPID9ODYDfrenpaxCH3WX9FCEEvRiHINhaZJAGPTRj3KBfMYq+Kr+HAsIc/sdd8TEhYviJySszj3/fI6GP5Bxd9CwFJ5B95ZlfAFrA2CBH1+pb5m/VatWgxobCNbt5H5FgHbl2jUxYOTIuP7e++MkGi6f2OOkOOaoY7KietXyFeixDVmZYZWEOkw9rJ0TSHBu+jgG1/o7Hl3rJd2VBas4vxbUpOJg0KuvxaUckXr4oYflaXlWZReBBgNvece1lY8ErPxdu+vPgs5Bn7muzF9f0CMZl9G48rMpU+MxgOoD2+zPFuIe+NgN0765dvpH2iV1ZLEyzfnJ+6ndmLOAjjSXR43JXFNtyYLFi+Lzzz8H1PwwHqVa5Xc/vy26c6Ry3Vq1srJXeRJQK9pP7cQPup31s5LPahLpIp0URn2+igBz3m/GzBkxevToeOeF52ILuuXOm29Of0xfWV2d4JY0hhbqGDWxdmU3iCCM6fsy0jb8LU/dKtKlMjwjcDcCH/vJP/8uhlMRdzVVCdde0gegoWls30RsuhmbD6+kfSutLdKvEDxD3nnNXbwwXnv9jajRdO/oje1p0Kxpzp8HkHy7LhfjX/di/aDyP3OlpuE/WvEfaAHbJwLJgiMA0774PIYOGJBAw1516kbHdgfHvo2bZAZiC86RgZrKOPehwiwjxo+Pm2CE+Xz7+l6nRp8+l7AHq3U6cmtwRF34cixYeRwKGVvDo8BnZlQlTjmKhliBNLOTjMcNFNKlywEa2Hrwsz/+Ic4HIe4B0HDUUQANe9bLjFIG68xHZjPA8JG2mL3gPR3hNKL5VCgvFKUZabzIVOqWZc2YgxJ89dX4etzHcd5FveMwqjdaNG+eDvK6tXSM5zsKopUE3sMrwQtuJDMrFAaNRcc8zwnnGTwycc7cOTEOJfgoQEP3k0+KHp06JWq2J02mVBY6D+koM6aC6Hg66YniMkc79Cr03qMokAqaSso9TJ5prqAPGjQo7vjlL+MYSq6yrIi5ZjkbY+l0CiTINjrTCrTKKY+74r6Wukl37yFLeEqIQNCnZMWHsC/7RSoD2nTsENde3CcOoOxKZaHTmcALhs0SX7NTKrtEullj/225Z9HZc+4qwdLcp/zulWMpFQ3DR42Mlx59OIYtXRF3XHZ5XHzWmZn1ttRNJSJQ4TiuqZkQwRGfQRr507V0saV7Bkr8rgL37PFZc+bEcy+9GL/GWfR69je/yWC3KqDLujVEfjyrfFh0tkrxHLKF+kj+SRGRytx/p/fmDyqZchoIHCWBhnvvvy/G4RSddEi7uOHGmzEQh2T2WKAh+d3xCUxL7Zq389jJmvr9HTq46eT+/ZkM8i2d3QDvvjdyRFx0+x3Rge+cc+VVcUKPE+gBgRJE+WWJOwaGJUThQ2v4xqyWAMbu7CFex3qMQR7ffPvtNPCT5szy1tEaLKl5g4oADZTwVxNogJfhf8EGZUV5FsTKteJ3GC/fkx4q9jSau5S8WQjloixfshnkDno0LOXUiU9LVsXwEqoI+A7hZF7/duuN0bPrcbFXLU412EZgIguSZXcdfeYsfWO9dSYMbNPJ5f4GSRo30Wv5bQXZXSsaRlvRgDxdcNHF0Q3AsWnjAtDgfAUdna9yKu/4klCus7oAIeN3jDOd17dS0bB151aammHYeH/W/EVsM5mG4zoyFs8pidtv+GkcCdBQk2xFRWUfBl6L0zKFo2c/+HBsTJs9O8ZMn5yd6vfinnXLurefqiMCCYPUHew5trHhmlVbomZdejQ02TP2qOYGC0Nr6AtNvdLB5Z8CUp42YbAh0FDWNeU57NHwDYZvAke5vQXQYBfoIohz2203gKifnWvxztvvxj33/jbH/DXVZeeSDaxLpcc6msTKgxXQpZrjLOdkbO9e+C//cPFZD3/6vutt8GVgagZ+6lfT49Enn4gnqSzryN9vJkjqQualCk5BlizKQ9xDeqtvlXv1mjrOEkbfV7Z0UnVcdGN2ErxUAeT5jnuOhF+vvvzytB99zzqDKo1zcg/vFpxoA68K8FglgGodRp2JpJ0CwDydq7ySThb30UnMIJXH8f1lK1ZEv+HD45bf/S660z+o1wUXxfHdj48GDRrQeGt1bq9xnh67ysdznikP/GZApEOmbfJ5lA2dLHlSnaMdmzkPoIGKuDfffTuuACDpAq+3Rw+79c6jFA0Sc+7SV17kJhnUMe+sFuB3x/Q956tDrd1bDdAwv2R+fIIefgpH8TAy3id36UwfhVaA7PVzydZrn6C1tsOf2mUdRnW6ZNLZ3UygruOvEy1AIvBshm3hwoKjOJy90++8PzB+fsstcSzVfLUJbHw+LyvKHMi5ydPexzmngwtdpEdyjDdj7gbB9sExuPmcbRODhgyON3DIanMM67WXXRqHtD0gagCGVsAX2AwouAOnzkC6vDzCAJmRlU6uI+PBVZlF2r5LX2o/dgfsFWj4ALv32vPPRr9pM+KnVMBcdu452UvKjGU6uLt0VDrm0pSXl7a1SGfvox6WTgZ6xWqTOWxLfIEs4L3PPJPf+dsvfhGnHn88YGO1rOCRxwXR1DnqZPlFOZb2ZnqlkUC/i+Tauj/eNShPNZUNVQUafvvHP8Ygtq2cwukTV5CtM8CQvzcANKsLyvJv6WJVg0Fkrq88z4IUecUMmy9tiralPLpsExWpQ3HQL+x7c4KVtwF+nYLP1KbFvrmtz4pUhLugZ1xT7uN6KpvaO+csEGOzWkEMqJWJmVLcQxugP/bGewPivof/FtdQctz9uK7R8bAO2StnE7Zvq1VBjJN0h4+9DCi+U+86ForABJJQhicLCWKUB9jagoFdsX5LTMGmPvf6a7Fy4cLMqndoj+/Zohl+QFlOBVsFPeWBWlHCqToDRo6J/kMBGhbMjq8Xz8t7HS7QAFjWAKChVhUSXHo13Oc/Aw0ybFKT/5ik8jdnxWPm/Hkz9ep3PMt2eHQrRx54vGUJyPGkGYtiGlsnfDrrEvZt1SaOP+4YKhrqxafw/QdvvxW/vP3OOIreSnWoDvLYYSs9CiAPeoR76iv9QHv4I4MZ1lDrYKXKZnzK75hMzdq18kSLTyZMiHcY97EBQ+MsdMwtV10J0NAyfS8r9QSr5RumD42RJniUX9O+qnP9Q8qr8sUaC8bq91XFZ3BrxnuDqIi7//48FeCea66J80j81N+zLtsc16feyqoXxtXuf4/9NojXbyrDWkpIZUB58jm2sdYCJQJrHmFvwuPRJ5+KhwFj2zGnOwB9u3funNVuK9luoNzrpwpUp5/qPXgV56yvp3+a/js3y+CdYNqg1/fGTJwQd9x5Z3y6ZGlcl0DDBQAN7RJ4XYuOL4J2VjYos1b1mPBQDwrIKv+CPPyCE4Q88EgGp/LaairLBBquvefeOL5Vs+h56hnR+Zhjo7FANfpXYM0qLbfNpj1ino6nfSgC9vlMPLe3d13UCc5bQEJd8wqJwoHoyUsvv5RjUgUaOLYSuukLC5DqS0sbq4X1ZQQ7GQB9g15Dl6qPtNdbfS6AhrIAjuvxA5cAJk+aOiWeeuml2I+TaE5HhzVv1CgTp/pDVsimrPLcaacZx7mmPnOerGXqRu7vnK1yND6zUmYxY7t1YuS4cfG3N96I+2+5GaDhKPidY3fVg9BO66BPpi50zeQhhk/aJE38JRdZ1inolyrwjLSZCgju9oS3ANlLMefbb+xLHHpgJuX0W4xf1FnSWF/S/xmdlcERUA4cP31s1tITvvQ3tB+V8Dms9hiF/Xj28YdjyJclcXmv0+NqKrZbN22WMrpzG1IIfdNep1ZgDMdDbkpDg/nLlsSrJKer7L1XXEjM2LBpU+7MxTzyeXymf/HrxwEaJIJr7H/8P0Lh/ywRgboxlXLrwWSzv6W8sj5o0uEg1lY0aPC2EwhVYMEMvP3eKhA/HcWfY4wX8u1rTzs5Lrz4YrZO7JfB7sZ1ABMIdSkQXEvLVa46pQqHmSON11rGsGzMLQ8ysyVGOncGGDqKbxLw3vW3v0Wv/UEU6f9w9NHH0BSrADQUMnSFQGJ3ggIZZCXfsfGZzp5l0zKxxsR9uwZlKhMViw6BjuLTr78e0wcPiXMJeA/HaLZC0GuARItO+tpmmSefV9hTIGQoxpSfCoEShoznsHGVc+aD2SRzEc22Pgb1ewKHxa0TJzDv/fZl6wT7Gc3+W3ZVVKhWd6j4bI5mJYjggI0hvVLJIlQKT+6N4142a7RHw7DRo2MkivBGHMWjcXDdw6Qz6bh+TwfLQF2FtWMb++d1Xnjl+jN/FYDPIboqzQUadBRtLjdq5Ih4GQXYpmPHuLbPxdGWufthn1Ha6px7LNoWHMYMKnA0/anTmEIqrfl/XsyBG3NEUUU6Ji+PD5j3Gy88GwPZG/+Lyy+PPmedFXtDl006oMyDh+XjZOegg4ovs3e8l4gma+m+W29jhkOFIiot/aWZWcZXWNN/w1n0evSXd8UJnTtHLSpT5Bd5UYOjsnaeOnipaB2QexTBnXS84JVEuHP+ZBFxmj7+7LP4w5/+GGNpHnjyYQfGVVezxxaHyHFtYmXpls70TrJH3yfNCXxZM35LA1baMledCuagM58BB/OsBkiymfm9x3peDNBwJO/1uuqqOO64rtGsSRPooHHimFHWypJIQRWPeRIpt4t2NbJ9ItmjUf6vv/lGouWfz5sjCXJ/erP6HMFIxr1O1Qp56gSEhgZWNCCfLJRAg4YnnQZoqtNV1A/qhgo05NIhX41D+T30FhgpjZH9HkdKoOGTr5fGSDba69LrVnrdd8O10aMLjXZq0XyPN8vBM9wl5V+ja8bVLRNm+qpRxsmK5DNqTPy7cpB6gBJGS73HsDf7tZdfjnN7XxhdDmevPSWMnikv35n9sJTQ+eu4uI3CoCPXnIE1A9KbVeDoJ+ZAQ4Xd2EaxiWeaMW9BjGXP9LvDRsTqhYviF9f/NI4+6MDYk8yCNNi07NsomT0nS/omfTwx5tMMcvHKZemIV4Fme9aqErvjDH/PvuPv0DOlShUaRG1at4njIUuT7dozqnMk5fdk8gQadDrkNa9iRYMgg2CD9Cvn36DVd/C3p05MWrA03qAVOK02fuhQf+P118SZVJA5v0GAAH/79UPZEfu+vjfFuWSk6lGNZsYF4chAKGWUNfbzGfCj06yk0tlPPQCPa1CVJXWAZeTuN50yfUY8/Ogj8SyGX568kszXMez7romTmqGmfAydfaQE8PJdWasQlPpc6k7XUb63qdI2nOkKBEZm7UZ+9FH0ufrqPMniutNPiXPOPZfmrW2TL7fQF2Mn87dKSIexHDpGpz2dodTH3Ic5S1Wfyd4X8pKBtTp+CQ15+wM0/IzA7hiO7Tv78p/ECcefEPs0aEAzYI53U17Rve6zdZuN9kP9q41yL2wxcNSpKQRjqDF0pnrfrRMz5qJr3n8v3h/4fvQ+hbLa7t3iUDKZ1aHN+jU0ezRrxPMLY0h/9bJ6lrcSaEMQUo/J94ImggEV0ZHuD547b158zF7SZwHC2+zbKk489ti0qw2p/NI5t/mY+kt9rtz60oF0G4trqGxJF5Rb2iTlyYo7AYMSxnYP7PBRo+KD8R/FbbfSxybnbe8HsuPMIwEznlP9VLAjNgF2W4xbNHTS4U/lCZppF6WLvSl0Tj/HwR08dEi89+JLUWb/1nH5hb3j0APakfGqDchJxRE2Ywe+hE6hwKzPIO94uY6ZiUVS1ZVWIAokqYcN1i19/Qg9MKDfu/Hy+E/iql690n6YDJHGMERWf2W1HXMzUeC56dLccmXHz2odbKN23IyvTr/O9O4AIe7BfQOg9lfYbYqR4j6ypSd160aJdBW2U2Kb4RPloth3St4v+DNUD+KDuOZui1GBCta5xtooKw9cj4kADX94GCeXbVinHdwuLr78iuiI7a7APKULBOQZoCk/6VkL32uzsdPwjvzjc7DYgLzIK4+bgAPjl4U2Ag3DxoyNS2/9WTTlYxdRYn/yiSexn79FOtECAYIx8mMldLcBr5WhZq512g2udMh1zA0Y5VQrhTJBA62WfLMs3hwwMO5/+JG4qNNR0eP4E+PoI46MPWvXjpVUO+zAV7IkXh7UTsk7hWCAyaggWFMsLKpPcIMML+tVBh1vj4alqzbEF9jUV955Jzax9fTUHidQKXhItGaLQAX4YAUVps6vWs3aMZ+mkQMBGvoBNCxc8HXMWVqSwEp7gIZ9SI41qFkAGspb0SDQoI1DvuQwedXJCC+og/WrrCTD0rtkBVni317aMTYFxLbyJGA4anjuijUx5tMFMQv3w6oz2ufFvi2bsfWFqo46ewA00Fx1zIdx5213ADS0B+ytlZUp29lL5/GwzsHsugkUeV4doi/jliD1lqXeW6F7bj1gHapi0wULx6MjX3/tlXh66Adx2jFHx3V98LGpUnEdDaDLMF31bBHk9dm0Mflinj6j8q+e9z2rbHxCwTWrhs3wvvzbB2MM792NLu59Zq+ohy8pECC4YLl+bp3iS+p1E0EMk+Caukg6pj8DH2b/IXROBQJe9c2XM2eyre+JeIzMt9tB72KLRnd0WSV0jE0FDUptcCiv2JBXPStYYmBqPJC6LH2eQvCun2cVmHy1CVmzouHu++6Nycu+iSu7d43eF12cQIOJvNXM38qg3QHFrZwS5NEmChCoF9TvyqTyaVLJuQsySB31gVvvBn4wKq6/79dxNEee92LrneBac3SNWW8z4G4By623zNsr7RxypTqz6a+6ReBBX0Y/UP2jn+fWgXkLF8brbJ0YCM/3pirrSOIEe/zYXFWZVIdJFyswjG+sHllNlbg2MOMb+Eidpz2yEayAY0WC6bXw1fwF81PXvIAv2KzBPtHzuOOobGoZ9UjSmiQoBtP6u/7bGMl5yhjOU39QkFSgUFpY0SDvCJraJHMu1RhjJkyIJwAy+lJh0/WII/A5ODYcnbc7/GKM6HZE+xnpt6cthUaCvZlo4h76efKmelgbUwWbK78JVA/o1x+g+rWoRKXazddeG4ex9c4tLwIgXn7P+eiDyH/KgakBfYW0UzwXhEvwxTVVp1UgPhA8GkvM+trLz8eASV/FxT1Pij4A1a0BDAqyVIhhBNJQVUlbfewdzLE8en/x8m8AGl6PynvXi94XXhD7NMU3Zz4CtDmX1DI5xX/Z//zzQIOPzrrm5QLzS6p+FqJMKQwKqnUywfEQgIYVNPzYm+xJp8M6pqHaCbENpDSqZRBIBX0dFQ4jCGxuJou2iNGuO/PUuPgSst/77Z+lOe5jKpSSUwaNsNjMK0vHuLcOjc7R+o00NTHIhQl0ANwPaJWAGc9ly5fHGwMHxi/+8pc4u/1BcfJpp0enTp1y64RN5axo0IlVWdnVXmO8liyYAmrZrszu8xYZuqAEMaK7nAu3TjwD03yJo26Z+lGHH1FoBklQ6vPqRBj4plDyfBopXzK5KKLKNTO+zFUlnqVv/M09tgrjJ9Dyr08+mc2eehzbmb1ShR4NFTDECpzBkc6az60wapwFGxRyM0uFcvbCXjiBA8EYje18hHwSmfXBo0bGiBEj4/Y7fxHHgIbaTFHlrkOSCpt1UhTTQeE9wYEEe1AsXqLaKhXBHR0ugwuV9+dsnxk2ZEg8DtBwJEjl9ZdfFm0BYKSjDqa01sBYrm4pfIEnoAFr4fuCDSp1lYa08m47bQSFE71kxbcxEkTx9eefjkFfz4+7rr4qLjn7nNxT7p5vaZ1ldKydmRGfw3VWEUoPL2mhftF4ugYazmLpq00QX0D53f/8C/nZx++9J04kC5BAgwaSz+uM6qQXHIzinPm4c3a+vngA+UVH8XteKq3N3Ocj6P7gQ7+LcdNnxylHHRo/+cl1NFKjooFxN62hVI8xVHhluI0Z/HRsoEkaMMY0CIJIhTWCh+RVvpIotnLQb9jwOP+mm+MQ3jvvmqujW/fu0aIZ+8eYs6VoItdMPZt4mUHQEYEwnDlcNzbCPyM++CCeee7ZLAGeOr+EUci60KOhRYM9OGO8atTmdITKZOAFC0oRFKdzxQx0vbx0hvy3tIHoBboDEumUWPK2CvkSpNgd52i3CvQDIdvs8ZafUIYm0FBwwHKoeOCWG+Kkrl2iQe26lPCjqNlmobym/LCG8p1BhY6DnbZdS0FHHVADF/lTI+QpKzNmUE6Hw/X8c8/H5VdeGV2PPDJBOxuo2t27kG0xCCWbDo/68hEMpmV3aaau20nkV6Y8DhqvUjiwm7j/jLkl7PWcHK9wOkEp7vXAz26Nw9vuH+Wg9Xp00Px5JTFz6pexkn2Pa0rmUVnCfkt4owzsUZH/VC2PY8Wyei504SxrgyP3CJJ1LIOMVyIQLo8usaMFgUqVijWYcwEk85mdu5PVWSwPr1WG3lY0bKWkWNpOXvRt9CtBp0FWkml53XbjdXEuDqFM+/57AwEaHowl/PZvVNic0/OUqI/DrXNrA98CUMozQxM/L1CV/2P+3DINtrykQ6GRtvmbgKWl5Pax+csjj8RTBBgd+GxftiJ1PvKo3IupbpRflFmG4uX/HJB74AwJCAgsuRZmMl1XQQaz1AIN/hxBQ9s+6F6PDbvm9J6UI14YB+FUsHCxdQPBKGNrQ+w3UXTU5SHvoZyqh60SyqwUzoTNhg2WtpBVW0DlVz+2af3sod9H533qxjkXX07564mxV4MGHJnFud/YkAys0cfpMEMX5VFmUQcZUBfkdxeduJ+XPGuX+Fnz5sWLBLyD+veLC3EUj+3MCQUHH5yZPKv/zJ5lWTPjOX4CDfCIo6h3tRcIBL/74jPMWzuwBrBj4cIFaT/MSLVq1jxOOq4LdGkXjRo1St1qDwh1rGC6elJVldRPmqD/oYmur6dKFSs+ClWEZWIe8/4IWbKXy7Ax4+LO238WnQGUs8ePup11Ksqoc86sETRX/2i3DCTlJdffdfbfzrsipal4xjiKAA3Dh8bbTz4d5cnaX3fl5XEoWcaadCS3WZcJi+8JSq10NHtvpk6a+z+BI8EKQSh1r1k6fwo4lAPsXM5zj8NR7P/O2/Hy6PHxEypgLsVRbAFd5ENlqCDsjMbcpYlOrJd2w6RK2vFd9Ff+dJ79jNsMM8sIUH3PU0/ndwSqex5/fNQCPMoTc3g3wXq+p/0u8D7+DHrQSj+dfnlDoFp5yq0H0LMAsn0XE0gQ/BF/xq0TPdsfQDPIn7B14rDMitrjR8Ba8HEnILVgg1UfVkvI78pEPh5rbZWdQEMRcDDIsGTdhraX3fKz2Jt5XnrFpXEqumA//A5B7230gMgMKYOYiWXhWAu2oGJfdeAFFXzplMuljg9zZTDmfRfjE2ZFw58ejou6sJ3nxJ5xLNVNNanS3Ig8GVAbNMoP2mx9G3lHcVWCrIwow+u77+2bga3nb5XQMZuoAFtCtcBnX82Kl956M9YT/J7R82QAmPZsF6LClKBzLVU+Bp5VCd7nLVoa7w4ZGW+8PzyWLSmJeUtL0DMRh9YDaGBrUX2BBno0VADJ8vjsUsxD2jkNfc7M+st3/J4v/pZ+ATKjjlFW1VcmprYgQDvKkwSgcq+EUyc+nlISU8BvrfvZUaoSQEjT6MgWyj3r1M6tTlM/Hh/33nk3WycOiRpVqOBRh7ie6kP4hegt+SftE/d1RfVjFODimpqUQMiiWq0C0DAWMPDVl1+MpweNjNM7d4rrL7s0DmzVOkGLrPIimaeR89lkEHsqMUJBxzCu4lV4UPQMH1FnGhhZBboUMHbQ0KHx9H33x8d87G6Cxt5nnhkN6PGjH6vflbrQRWSc9Om8FwOqJ4q6Pv8IzbSLPodNIQ3spgM0PPzoY/G3NwsVDT9/kIqGYztnsLueMnaz8tlMmPsU/GHmzjoojwnq8izGA+oG6aQcaavsB2EgbJXjrT//OX2MlsWVPbqzrfKSOIRqRKuNrGgwuZFZdnSWduM7bLeVPeoA+dTxlAMBAOmeMsUzuL1vDUHy+8NHxNV3/jIOqRbR++pb4qQTekTjps1iJ7IqcOd6quOlg2MaF0lr/VbH1Ebxh/Rd1Qm+J7ikL1WyaGFWbL+Hn92HJpxHoIPbtAFoYAtCIT4oJDvV71UI3rWnxjfGUIJVvqyS4mZps9WVbn+2V0vJgpKYAJhphVDTvRrGKd260dC9dW77cCz1loB6Vh9Dx9QvrL+XPpNrYKxhj6Kij63vKiBjbOOJFqM//iiefOElejRcF93wCerV3iNBnUxCsUaCroJp6gDXMuMS7iXd9eXT1+Ze/jQhqi7wmmJFHFX1rz/7XJRt3Ch+fsMN0fGgg7Ji1Mq5/B7zc55eypLVX/rdrodxlPFMGcBXFCjb77BT/KlKjWpJmw/HjImXiD8GfDItLj7tlLjsgvOiTfPm+O6sUxpM1tKx+d1tPFuhtzFAOfh5ITrwRZJdlRrUjYsuvjj2btI4ba1KTpkw+vlXv9CBcu2Pc+ViqTlSN0Fg/uHxlgINwwYNTKChUf2GcdwRNDFsQeMZmMZyUxkTbUN2vSL7BNk6MXZs9GWf4SKmdd05pyfQ0BZUzrJayztlAANr+zQoMGYdVSjcNhlGgVLZivhpmBVMFaUCa0bqjfcHxB1/+GOce0SH6ElFQ6dOnWiIVY8yeCohYChReQ2/zg8DZjVDsWrCxytkvxR0syMoFRjcfZ/Fo9UEGmaQyTwX5X00wcv+gCR21t+GAU7HBQFwHBVu8dKAGhQWFAjGmTFVgqnEoY37b20IKdDwZzpMdwQEOKlLF+jYgpK0eumQaHh06jOb4jOkIBacLAXSSwDC91NpQRNLi9DAsQCgYSJI7iCydSOY+92/vg9A6DCOf6kK4OGWC5wgjatTRrmlow/t8zkQHB1EPyPNvYeGx7mLrBtkTCSTNoBM3UOvvxU96VZ7w5WXxwGtW+dYKlMDO8eyvMvzf4tAgyBGoTM8AsffXYdULtBEJWip+hKU1PBRbJ148pEYWbIs7iKYvoiKhgYc4Sgw5feyqSTzde1cA3m1UPbtFFhL6OWjfWfQwmecfyVAkoo4g/PmfB1PPfdc3P/UM5Iwm0Ge3L07VSpV4UlKWvk8TJb8Ls8XAiUUC/eQJwulhygY7qCzq2K1PHU3M/rcb9xEtk78GqP8FUBDpw7x0+tQgocdmgGRWyd0EAUYKuFQm4V1/ung6mCxBI6rM40qL6wTSswbi2ILmPQjc3zuT/tGK+bS55orMzBq2bxF0kInlq/yXS7pww+BB/fl1WzQgIwSe3RHDI/HHn88PH1jOoGxV0tS4S0a7oUDViVqVqJSxHmYxdsJQIPMMTXIojMGXXheOPkHxysBHmRRpF6EXmcbd4ITDagWIsjZvlu5XcdbfhMjABp0wIAK8nroZ/Zo6BoN6tRLBV4WMNPLbIAgg+uaAa7yw8vn8331QOoD1ln++RaemTOHrRM0DvzrY0/ETVQcdKdHg9uQRLmVf/kmnUjGN1jU0VAWyjDHHRgPdm6k7IsO7CyN4eDlnkzLVGfNKaHJ5+R4mj4EtVcsjz/d9Ys4rNW+sRI5m40j8xUgx0wcyJrYkJpVOdUG2pdjboICFEdAT5wxqhWYbOoJOck6ETRErKPKYfGmpbEEn4RdEFGBNOmee9akoovsL3Q0QLZSRB5mKJwH9qJX8khCKoa2sU1qHSXFi5bHAICG8vydYta87rz5hjifvjLe8513+sUffvNgnk/+QN+b4qyTekYDSogtj/TvmalgTf1fXsiQQa461i7P0txGSTajzewI4K/ZWIHNqdO/ikceezwe7/deHMiX7/rrw9H12E55dKZ9DgqOOSbWoVlP1+sH4AQaqHvU+661jqHP7F7HItBg+eWVl10RS/n65TSYu/jiPpmRUj/qyOkolkU5GYRZJux6lykHl8GvZtd03DLzIv3gm91xJkqh0zbTxV1Hrt+QofFzmnkdt2+jOOeCi6NHjx5Rj6qAjWzHUd8IRusgZGMt7uPJCOoxM0o+i/rXV0HnYF/kUbNN6L3Z8McLb78Vw8iAmz0WlN2fXgSebuIWPrNdWbGSNIFA0EAyJZCp9GIzirZDPW2w4d/X4oALrllm/8TzL0Sr5s3j5K5dOY3jwGjcuHHqFCv35JdCHwzkh7GTHtxTJy6rvbiHGW91juMXtk6UjRLmPQG+HjJyZLw7dETcA9DQhYzUXpR/u7fecQw+na/6NnUi99IOCeQZhOm0m21LMAkaGoxUgF++R/bs0TBk+LB49bEno+ohB8Ut11+bQINl5DpzZgIhZPZs8GhelFjqBO+lvmU5MlixjDxLVllXwSO3JnqyzmgcxbfI8L45bmL8tPf59Gg474ceDQINgi+pE5izts6svYNmvyJoXsjoonvgTZ3/dKoZ3+Bl9tx58QKO5P1PPs13Iv56911x2oknRt3aHKnNPNUtHkUsj5gVlXekiXKW+sw1ZVx+S75MOUPPuL1NWZ+ATyDQMIDjM48/qE38BF3vKS5WLugzGTjKkdIH41YAY6QRNEnm4AcSneuqfSqDXRIwpZYrvmV7wYjRY+LKW28PIB8SBH3ijFNOyy03TCZ2EGCZPJEns9qTue4w8IJGztPgs2jvvhdgwDDoFwjkybmLCObe6P9e/PpPf40+J3TNaolORx0dNQjud+AbbsW+Kk9wTEEP+D14yIm7PTebQRLAfU81w+rVK/Ke1QlOtoKEJdDw5cx4ngqeVUuXZDPI9ge2Y9tgI8AL9v4D3pQneVSBJFDJgsXxFtsIXnh7ED0GFsWCpQu4B0DDXoWKhr3cOsH5kwINLBiBYEE3Z2JB+4Y+0mdJAM0vun7yNvwsMKtPaWn6dua+hbltL1eoaFhA1cXnMxfEzFXobb/GeUNt2jSj8uKgqEdFw4TPP4vPPhobv7nn/gQaPF5YavhTm2FSxkpWdZv3r0jAx41YF0rMtXvofgG1reo2aF+jdk3e38Zx3R/Fa6++HE+/NyzO6NolbmTrxEFtWmPK4JNc113H+yGDymraE2jv1gDX1RWQx9MPcT2ggZUBFakiXImP/e5778dvf3l3zORzv7yWrRNnnE4VXoO0oQkswC9FgMF56//J976nLdePledNRqjbN+NfCzTsjj86fdas+BtAw8OvvpE9Gm568IE4rlOnqI6PbUPD1DGM5WkkArvq3IKfU9A98p8vBSB5ERnyeaoyd09ZGE1107UEolMBn644+QSCvz556gQPnECyMqROsBrOWESfz78px+qz7JGDHG9lztJdkA0GyAoTA/b++GNX/uz2OIBTsS/56a3Z86RR4yaxDZB6ExXbgqX6AtLDaSon0lkwQbBXmujjFIAH+IwP+Xz651Y0vPIup4m8/EpceuVlHNN7WLTCzxZo8PNZPYLOcWzlVVrJP8qw+l6da/Wmg6Y/xbzLEyMIkHh6jkfRPkOftab1G+b2r7YADfXpvWEzYXld/1w/yXH1nZQH7YS2z62BJh4rso3je35fTZWdVTeuq6dOTEXHjxo7Lp55+dW49ea+0Q3btxdVMFUq0CtNAISx1CuOpe/uHO3DoN3Q7/BesqJ86bO6plkpxj++/PLLGI4f+yaVlNsbNY5fUnF3OEBDnkgG/Qz+9Vels5e0cfuKW1ytoLcyRl1bfndSM+jGDVs3JV9W36NWbiuxmfDTxB9DP5kel5x5elzBFghjs0wMAvR+hw+/U8AXWvBfNCskYs678fwlVPo//8ILUbnhnnEJMWODBo3wadDVPJ/rxJM5pX/pC95yaX6cSyFIpxCF5v9UHRJs2rQpMRKEc8G8uVG9YhUWuD17jJuygKDQOGaqLRdAZ8agdPSEiXHtfb/OSZ13fGdKX8/J0xUMQu36WgYnXwHX2bTMpyiQ3tuXzKJwZndPhFwnTMeRW+TWifcIph965rk4utFe0bPX2WydADnDsIm2WsKV2RUZAuXh2BoJ56fxV1B9SbQi0GBAUwQa3M9v1/BZY8bHaRzh6H7D1mTuReU1+rkXjTGVCEmvETVzo2C4X16kT4Ch4LQTvSFImmSBhuU4gp8hjI9RNtbh8MOzS75nK9dn7pZJmglSQSuIXjqyju0WCkEM33dsmy9KH+dg8CVh3DrxBU7oyNGjY8SET+MXNxUQP8t9dYr9vMKY32P+uV7SX9qgrc3I6YBlFgN6SJ9sxkKgYTZm8pQpMZxM4JNkeDsdfFBcgTNn2ZVrntlEPl80MgYYVpRkMCE9+N1/O1+NkGssXeyGW6Fqlfhm5YoYNmpUPPLQH6OEcWzGcmbPk7OiQeVf2Pu36/s6RZDfkmDnqOLyWSzj8hK1NNBwHXQSBRsMsF8iI/U4wZfXgz+7JZvXuT84m4UxhopaI22VDcOn4XHe/judXe7h2IUsKcYJZVUaB2kbMjMRlPgBsrpfLVwWR7RtEVdy6oQOkWjqVvaV23TIDKxHw4qkC6pZfpZbMOBv55vjel/Xid+9POrKAGbo6DHR9/5/Y7yIG889K0u93TqRvEIWUDrIA2a80dYJWpSG/lUAWdajYD+iYeK7ZFjNzE2fV+KnYx+MZIM9Kkad3StHNY5FqIDl/W7bOgJktlwQ8HoMV0Gu4UOI4MkIMFAaM4EHL5YzZdN1L4vSrWhZGkYWlzsWrdscE+cuiVGLWCs+S3ib1x1X9sluxG7BKks1Q1Y0wZfFZkCCXBpKNYDPbgCgPkigoXyhSZ5yt3z58szCjgfkeZjmdTf1viA6sad8zzp1KOukeSy0cF46/85W3jYIqoDRK1eRfeP0y9iEQyalaSCO08/z8dKxs4LK4OLjiZPjryM/iKYL58f9N90YbZs0im/nzI25Yz6INdMnxc6lWzjirnTU2qNR3i9BNcYrhzNriW6hVzXjJh+xLszFPb7rmceyzWtiycY1sYZ4ZysiXKEGGUX2GlsqqGO5AdBH58y1LQe9ixUNlu1+y2Ht05asjrGzyZDzd4qy87qewPZ0er/w4DHQTvCPPZHm7rYL+7Cfvyt6pi4LhjwyqjxWeKmvkB/0mDRW55gt8hhIfxdo0PC7FmYy3NL1FY7i0889H++MHhv1ufOdv6IfDPrM7QZ5ggiTlhbKpQ/gOqiL3b9b1APqYtdR3V7IGOHL4YBtZV7jqRC67ue/SHDqjGOPzK0TB7RpkxkFnSrlyuDUgEgH3ZMs1JPep+i8KU8ZPPJsVdIBpfcPNF1ERcPgD0fHg088FS2Y+/nX0oWfgN2tE85dMEB+UfYFBH0OgQafxUC7mK2XTr6cv7pZcFj+mrdoYXYNH0dlwJlnn8nRZO2j5b77AvhWS8Db+VqR4To4vrrdSjV1gEC3jrPbFDKrxj3V2OoyS/w9dcJGnE+/+AKnBrSI7jjnHo/ckLmrgz1BhwmlvUv6/3vbKp0ZR1AneT6VGxVFOr3IyqJFi8gaTcltVv3Hfhy3XXV5HMnc7X1UhfJQ6erzF8F1nUIdR1/qx7StfCb9B+6jPpI+lvMqv9MAp0Z8MCrefP3tqEoTzmtwyNox990JFMvjC+QpItCm2IdAOqlg0vlkrKKOFGgwk5THthGQuUdYoGE8gONbr7wQY+csjt49T2JP+Wkc59ogK0i0bwmsQyPX1mcRIDBjJngm/yvz6Xfk4vMf3rN6yr/PA5x985134y+vvs63I+7rez0n53TOZpCOY6bekmD9jB90D2sr4CI9EpiBTvpXPodZQeevYjUx8/nUqexZfzLG0V+i/d57xJXX9o3DDjk4HWUrAsykJTiFvjJTaoDqS9pD6JRP/SODIlM0bplwi4kl99+yZcMG1Hc9+Iec+3XnnBEnHt8jWjalIo57uzUjKyb4a1YfMm7RLZYX1cNZUQK/GHBZLcHqpr2SN5dSaTBg6PB49PmX44yjOsRxnY+jWvNQtk7sEZsAHXcw/5wn8pR2n+8KSklzhcweDaUZcwe6btNG+lEQGFmhsBn9vHD5mviCKsHXaUy4Y+P6OAVAsG2bfbPJYhWecTsyVw7+qUiVwPxdPRreHPwBfWiWMK8l+RytANT3BMitsztgLQhwFcD+Cmxjq6Dfhu9iJa5LLh19ySFOLQEIaCofupWwPHIq0LAN+m/kRIxtZeh/UbpcLFhF1cWMxTFzF9pLUXs0b9qYDPp+UYf+Jm6dGP/RJ/HAL++Iw/AJTDQY5Ao0WJlikk7wt6BrPFqUgIy5qW9t7skEsU8k46C6QI99bDbxt4mTPgVMfjP6jZkUXTscyilgvalSaZF+dWFLM+X5+Bn6pwkuwCsJoKmQfVJ+d/30n+RLfxdYdvulPRqsaLjzzw+nrrj2/HPjDOyKJ4n4efVsAmnKJ2MJBhT9JvVjwcd2uwN0hGYCVep4eV7dNuNr+m68+GK8MnhYNOb7P73l5jiaLQJuT9YPK/rpyqdjyz/qAeXTYNy5FoE79a9+mc8gIGoVsduTb6FH3EJQ/J4d2tMg+YI4iH4w6gAblNpDTIBaGXI93NqqvnTe6nDnzE0TnHG7UAIN8grzXwfgrj92x4MPRSswobMuviK6HNuZHg17Z58ZgfCMbRgv9RdEKIssSnW3Izt/aeAaO2dtoLFCAazewvGZi6jMGRqvDhgUV55xCsfFHkr80ZommjWS9vqO+jKqb21pgvbcSx5VD3kjq6ggUuoaPpAJsbXM263bk6dNi1feejsa12/I9uFjo3WLFqnjPXkjqxl4foEG11iaGzsIXhh7eOSqIIx0FsRYB3hhs89iFYx9FDwF7HlihJsuuYiK6kOpotwTf7LQ/Fj6KmUyhj5Fxme71tbfsxqBD6Q9UfagjfpXuzUTn2Pc2LHRDxBjR+2accsN10f7/TlCHnmRH6R12jfo6/eMD8ohX1A69ae9IQTYy5KwMcFpk9zt+GhVaxZ8ZCuEXnj2kZg0e0X0AjC9ENvdohHcqc7lJcggzVNbSG94cyf0L4W/uJBtvG/Ql6Jhuza0CbgIeyzQoJUt6BO/k8/ts/+LXj8u0MCCagjVHi4eeBDk+p5Spy9j9MiRMR2DuGnN2th3nyZpxC0JFxl2D47MqLNl1v5T0KeHXn4tSdqlXevozpnWzRo3ZqEMNEF6VN6UxqkIdeDszWCplIyWzi9jqkBcHf5bMHTOi2sl5XJjcURfGDA49yefDmJ5OOi/++E8RktFp3JlsKxuMJCpDopqqaECWsxspgMggyLkCqP9GlQEC3C4RoLKLZo8NToee3QcgIJq1rRpdsTN8hsUVAIVjC/7uL3DhotOVEG0zNsgUmHSCcrtE9xn7fp12dn7q9mzYjDH4bU+YP845IC2uberHsGRTooCrqLTESoguN/nHlcDTtFQG/H4d8GCdHR5ToVSR9dslxnezyjDnDGnJHr1Oo1tGS1ybimMfE5aeiXoAJ18wy0PCmUR4Mj782w6GSpzMz6i4V8z9qefTowhYz+Jpk0bxSmsafNGjVIRpBFgDipBBd7MkaVSKsI8BYT3s7qE9TUL4TobtNisypMbVoCMjkR5/+mlV3N+PY8+gqqZI9KwmSESaHBfvV3UbdjpWtpkzMs1kQYFwKWADKtwVFxmY8y6lyxaHAMBSQZNmJTfuf7C8/OM+OrQNdF3+GYLa6fhEXl13vJqqgf5kMv/qlzNdpcFYCjP85k10rmbNnMmgdezWUbZdI9KBBgX0DIdDL4AAEAASURBVHujZYIKKir5XWVlEzgreXwWgR0BLitqLKcvGFDuyLPw/+R/ZUOA6pMvptBg5+2cx0XHHhNdOneOvevXzxK0DVQTpAPHnG0Wmg44P5UWHZUVVPnMX7iQ4HBmGrEvWUekI6oTXJfnQ7vzs4qBLj/t2AgADQpdke7YdAsGgCgnygAtYcpEvIWgdLhcZ4+3lEYVULbleQ4/a9Z+I17FgrWbskfD6KWIF0OL73pdeEIXus3vR0ldHQJEnPxcWwwb44lqi5hryJSjlWTjDBZ1lAy8snQSfpD3DbrmzpubzRiHjhlPNcNRcfB+bdJoVieoc16urXMvGAgdXAPnKhhLmhZSzrAeR0RHH1eLNSUbSVfysmQDdVzm0KNhAhUNI6ZMi0rz5sT57D9uukftWItjvW3OzGhQvkzsRfapOrSoDO2lhzoHLym1ZlmMWBlunHzkgvLuTgyUYMNmPruOz63cvjVWbt0Yy7dwGg+Oapl6EQ0bNckMwVo6sK/n75k5dEwcnlJUf5SCP9ds3RnTF6+LibPWEExwDnRSNuLcE09gC8MROZfx4z+OflR+rZLmx3WnMeyhucdWGjoddVQ6aDyrcq48CvIUnVz1lTpY51MwURBLx8/3ZgNWvQ0Y+8nM2VGb8fvg5B60/34JNHjWtvTmo+m8qRv4Us4ptyTotOAQCdoqU47NwmQAozxs5pm/mD4jHnni6dwScjTnoJ9wQo9o0bQp48Ffjo8sCdwJUuvUJY0ZTL5IJ4WRlSl7ErglrhJgmuWk29Hxltl/9BlZnXffS6qd07VTHHXEkZSPkvrU/vC9v2eHcIyRV1fvh78pB7zSQXQ+8Jc6M0ExZHoxeth9qnO/nBIdyOy2at0q9mlEBha+lh+z/4m6l3s5b+1Hdfp+uO/Y8+u1v/K/II/0kd7qBvfbes76rLnz4v0B/cma7IMOa09Pkr2z8Z5giPNUBxcb52qTDXxtVKhts6Gk1sNAV+fWYE87r81cvoLtQCUlMfXLr2La5Gk0Kz6B4/L2za0TztHJ+Jy+1Dc6uDqhgoLaW0EIs5HS30tb6/yVRX96xPC4j8bF2HETomzd6tGje/fYlzWtxXHZVXByDXZzbzN9bAyszUip+72Pga5raYbXwFed6dHCSSOewR4NnwH29nv59VjIvY4//DD0wdGxN5k6nU0DO3WujrRyKp8UK1L4eIHG0D3BfNYh7SvPZLWEXc8tJXdr34uDh2fz1cvPOztL+Kuypvocnv5jEkVeqYK9tPQ79QH3kk+Sp+AZ19Znsa9EBdZF3tlAYuar2bPpAfEOMv1NNAUAPrP3ZZyy0gqfw6aB2GLmnWA1si4MDpenbEkbASZ9Jvncl0CD1WxpV3h/NcFAHon6ypvpL53YvTPl2IfHPnvVT1BtC/bDIFHbJ98rY1a5CH4VxxWEyYALnimUwRvc6aN9D+1XxfiJBL1sW+jcdl8qjw6K1mzLqEXW0/4M2r4i0KBPoz7Ivfbwt/y3g0qGzfC2PyF5boWwGaS6eR6Noadx4s/ID8fQVK5qHEng0owTJ+ruYSd7gn50pNvOKpAJX7pidYz7dEqMmjgl1gAyrFy9PCvpwG/pP0S2G5SeggZ67FApiLtWu3pN+nTgt0JDAx6TMDugtdwrDShyS7slLwqyez+BiS1kR9dvBXTbrWJsArCYv3JNTJjybXypLeW7G3ntXWvPaIfeqg3AOZ21/fLL6XHlJRcmECCt5Y0CzQ1w/76e3lteSd8UWgsMuIVHcA0hyzXVvrsdchqA48jhg+OjWYvjsNYtOAUFHxtd4Do6ZwNpt8YofOp1e22p2wvBLll7xtEQqK/ly9QFygU+a+pIdNjj7/RP2e3VrUvKUx2y6sXjJw1E5T99MX3X/CDvOX9tr7o5wS90ouB9eeRCn1I/9uuS+TFwyDCOA/8iaXYJQd3BVn2RGLFxs5l15Sp1CLRSh+kX+LuN4rVXJpakkzZMAEJZcu7qy2mzZscTjz0SSzD/B9StGaedeTaJzpbpwztvG8/aWFhQM3vxoCP0+bRvfD1to7KkriEh/gPPa59srv0JuuaxV9+MdhyP3LHjUdF2v/2pXqlbAEl26S+EJ+crjaziUN9s3Gz/DQFOgBLG8jnyWeRlns2qtfkLF9HMclKMmPhZHH/w/tG+PT1JWrfO/kBm5V0vfZoEfJmsgFU1EmZO3Grx7D/lCqjbXRd0pVuonLcxwsw5c2PU6A/w8epFB3pONWnUmMqsPRJMF+DJigZ0oP+WH9Xv9uPQBsk76gT1eQb1zEPgwe1L32I/BAPsxTPqsylxWje2DOKPudXeymFtkkC4sYj6xcux0l4woPZT3ijqZnnTS1DSCt2S+SVZWT9+9PjYrVrl6HX6GWwfbJrjGWMVbL/yU+BB528yQp/byhUBMpMPgkaCXilX+GjlsSMm4yZPmRoD3305ZpO16Qo4dTJbqz0OXKAXJyx1u7ypPkcj4ODoy8Ev0HYZMe8w+mp06MlR3Oefx5HQTeAd5YAbcfkkysS/8oWvomj8c5dMqwDmQNBDheC2FJZPHJVuolNjxNAhMZny+WXzF0Y9jnZzvy8qM8v6NLgCBdsIDiyn8TioyaPHoiDJnB7QMvZFEOsSTKfRtQQFZY2GQCHCzBjK0igNywgVFktqDLBcFz/vrFQezs2g0X4BVh18PfP/oe5No6u6sjzPIwYhEGKeJaEBxGAwxoBHsA14xgY77EhnOCKyKrK7V3Z1dq/M7urqrq7V1VUZVZGrs7JXrV7V9a261uqcoiIjHGFHOMITGIwxZhTzrBkNSCAhJjFIQtC/3766hPNTVlaQH3zx85Oe7jv3nH32/u/h7LPPMfYLT05ziCSWl5VHik0WiTMdD1CmbQ1aJ7gI50JH189Mg4uIK+AU49WRgll8jiB5EaOl7sxp9gR2pdkYcxUVVaSPzonvm42hwPh9jSuF0DRsuDzrq8yMkKpQtbTtryCvIFh34gKC3tLakhoOHUuli+eledWcYTuVYlgInsZDHsAI4xIFY3/s+1he/s2q9TraAmwOUpLK+6xP0UMkurOzA6O0L9UsXBIFMi244r1BQ2mLgEjzmG8IMAK6KEDSRgM6jElARdr4Pesc+F1XkFvPNqcjew4SIEjpmZdei6rKIFp8z0CFCkJ6S2tp4899OMoGlDSaHKM0tD2NOFO6rPpqwcJjJ46no3s/ZY//xFRWUZMqy8ujqJ9GsqsMg4CQhrp00GHMI50GGgSZYvop02iw52BooMfocTdO6eEjh9ORwyfg6ZTWvMBpHwsWRsq1xpVpryofjdJi+m07Ki86yk+yR6aEBEMdYFNTi5gzMzJ0BC0W9vlnv0h13SmtqJmdli9fFfveVPpWrNVIpMGoNm06l33WWFAx2sdQlDhBEWRQCekEMLE+W3BvampKJ7/YHfI2b9XD6UH2ZU+bNi0KYrptwfl3HkbDiwXw2hBt9PNZP329xt8tdtNF1kgHaa517e1hgMG14fxLD0fsCzs2zWffYfVcTk2YOpc0eYosGTyAr4eYX1+Ki6n89s9Kv76b4jgS73IEtBjC8fNkhHPX+gk0ELRrJ6BBu1mOTkobVi3lpJUq0iQn8h2ezkM1IORJHYdCDPvR8IYR9D4Ur3OpgZQ5Ro4xCzR4uomp4hY4qqs9miofmE8ADHkCl6LQG4pG4z9z9CGPDM0zRslPKJ9BtiAMUHBMJeZxpSOKGAeBBp0AOoPj1ZvaWtrTxa7zieXeNGfoRppB9crRVwbSVGhQUTolleIkTaTPxci6zoz4hSfJvGVBhgxVxC9ZSacUWaFtRkuGBwEZxmZ2Q/eta6mj50q6Du2nk343hj2Vt8iuuMnWC1f4xeAxWr5+jypsPdeoIdGBw1zP+PiUEoBxvcQeYIOXjvkkqwsn9+yLbAcz0JYtWRorRtnKAUYQ/CZto/ATfRLDXMlRtvybMhHBOnhJx9S58fmmJ16A7mfq61J3RxMYPBVDaFkcD+nqUzh0w7Ijjvuy/kMEF5k7M53E4NjCIcqIR7aNAaAh595HtzfUHvgyXSKYUrW0Oi1bvjK2l8knbpcwyKD7H1vv6Leryhpqpu8GzjMf9l0ZG2Cl1KCgtQ40Sl2Rau/sTG0dreBSf5pTWpFq5tfEilFsabJv8IQ0FHvExgEwQmzUeJbeZrWpMzXmvJx6DTGNGfXHGfTHlYsdnKe9GB1SlqYRvROHQz/RFiAW/OIqmn1ze4H9v3yxO/SINSUMwGg8Z7hNUVnGctXtEzi9ra3NZEhMSXPRfVOnTI0ghkEcZVH6W9gs2uaZrvi6ZUL8vIXMSIOoJQI9lCV1rP26zoqxR8t1dp5L3V30vWpBKistJVBNMUh0e+huaKPuoVMxbg3ZQmhkht2Q+opnKAJe4rSXW228zpIVcPzI3jBIx5XNDVnVOHclrYitVq7YG2iIUxDAFR3dwDNorvaX/vIrPYj+y6vaDCPgmz70RwvZWo111EwB4yoWPMA+/kWhWy3U6CyZou5WGPWeGRzqBfHAQKaX2Ta2L8ZLc+lvWrCBBgOetfv2pC3H6gLLXn3qMeo2LY0gvTaG7apHIm2Z8UgCeUGe99nyklwi7cRYM3ds2/lVn7Sy0njo0F62ofZSsXxBmj/fVcZZYdxK67CTDKyhCRk1eAmP8lKXZ068GAP2+sJuK2BulSlrQRgY1x6r3f1pGiLqOO+hBaT2PxTOhSegaEjHyii0iCAe/StEB+o8OJnSRBoF3wD+8k6sjBtE5Wczn3QwWk4dSmVza+DJygj2ThhncUzkhLmU5hLF/oqtaCt0HKn69PEO8tnXx/ZCajSMRa9Kl1HQ8AZ6s7P3WmrtuojN1EbQfiR6qYx+T0mTyIJU38jPBhrG4mj1XruZTjS1paON1Mzp7iID6HKaCPE9sUdzH7c6dFwlPxBjwXYZn6YRDDF4oFNiRl0/+sD5Us4L4QczyaIuEXMwmkaUqX7GcwPH43Yhiz9Ro+EygcuOdAp2B76jgO3ssRM4rWwZOnRyukBK+bmWU2nhslU8szRsCfnBtqS7AQdxU20vj1vrR1p7WpGn3Li44X5yHSTnVPpoX7Z1tKX6MydTG4tKcyorCPCsiiwSJiwLTOHw+nMEMqCROlXX0cUwsSqK6DFOs9d0GrX15HltkpAn9GpLcyM/XyP4XRM1oazBFHYe/XRODazFIhYUlt8jCMnf/NzAp+Mxw9l+W5tBp1186gLD1E9tJxvY7jAyLV35FA5vZdKPUDbFeReoxOPIagDbxDAdUYuAR+0X9LTyZcDc4J0Tp50gVojvx44dJoB1Nc2cXZEqK6tiIdJFJOnsUbq3yLax+KQFov26bblAFjgAfRyLHoK1JYLn4Vd1oIs3pxsa0sGdX6Symmqyayo4np46BMUl9+RUWyC3B7TlomYCtB5E34iLYYNr48lf9NksQeXsmnYaPkJ9w5l06cLZVDH/wVSOPM0EC9QfBhoyW4lROGTmQIwsQtb8fRB5yDFOOROfXQwTDyxeaCBD2jc31rMQWBJBhulT9D+y45vFMOfMl/ypj6N/AFECC1D+QRf5U3oH/oNl6taoIdTemhobTqeG+o708GPLWRyYHwE9gzna19cIlLsVuwT7RnvPMQ8qe9KaOb/LXGrLRyCc/jsG++B9BknOwo/d5zvY/jCZLMEHInvVQDlDz2jK/c6/utmAiQE3t+Zqh0fdEv4WddGQhMiMg/6F8JGB1Pb29lR/6liqrzvHKYNl6fHH1wQ+3GQrjP7qOBantAXcVmoA7Q7PNdDgdqZefK8dP/7r9N0f/Kv022TvV1ZXB84zu/QsSHXv//HB1/B/YJZi8ptdTopOokJu6pqX5q2FApmadIyU/E8oxHGodn/qbj+XpiNUs6ZyPB0MZwVwI5qmgOrgG6TwnG6PszF924iXKez+TYPQKLfb5IwyWYhKAW92kmF+j8ecQtR0MgUMjWKq8HPDWIE0EqbDYTERlZ8glxnGKl6dfJhV0ISJBTvB2rO/BQaLwFRXVAxXQEb4YBIdPPtrUEDm1vDS8HZlJgQaabI2gM+VeY28u6ruMyyKNoXq9pdhsgPQRyERLLPijBjOtK9hYZBBo0ZD8jpGrtsQBDENmGiXPrgiItpFihh9t29qZvt37kI3q6stqWJuOasQswNkDYpoaAiyrmKrkHyWjp9KhD/HCn9s6WA8X81WiOAHtBHsjI6aStzTfZGsjeowPlQ20l1aqoB0hBV+Bdhodi/ROz8vLSuLSKeBBAHQLgvi4VjEmLIMjE5AX4O9Zt685HGSkX7M30OxwTPus7WispFeL1ex7H84LIzHfspfGrPSR8rcYH4uYfxdpgiOBvgUVprnkNaXr6wJhAqFUXwNZX93NdBouHRyPuK0DloT+HOAjTQ6nm/myDmMvxu8yxOzCTRNmzY16KJhaNqU/GJ6Kp2KYIArjkapVVzOq+lrOlMa/bGyw5jdqyZfnmdVvAPjKVvNnBS1TSL1WwLQc8dsW0bB5QXHqOMnfV1BsH3f7Xsod3hTk9Y+qVAaMepNma2ePz8Mih5WMl1p7eTVSG0DXUaLCGp8GQTwdwMOmtzzWQKaNzeRcVAVKz4eWWmK6iB868kt3jsWmTa4wCPjyoBdRwM+HoWsYzCcv3E77Ws6nzY334pnuSPa66WVS9h2VRVpwbdu6CgzzmF+dBQXMLbPNDbGeduV5WWhYDWgRTn/7rz6WOXKAqnSxki5bUgX6a/Br7NosELjQb6worPZH6b6Xjjfk8pnlGGYzQg6ule4f4hVybvuiQXHkPlRYzhBAyV1F94epE9XMRhHNB9P5WBKOYbtNBTMFOY+Ag3yZ8gtHaOjhBPATiFARxGlxvxgNxMkiNkFc5hfXpq1/dzfO4izce1c6uKekeNQigSRRk3DMCPNpO82zhtasoSUP6+rN8CEXk43aLuQdjZlc4fEx7WeLKnlrH4Uw3tXWN3wxBYx14yrmdSuUH48mWAAg0eBvWdYgqcdyOklZNvPZyBLs9lmIVYol8q7mBBGE7QMfOJ3P3O8GnBxogdy5taDcLI0Eof5w74YZBXnxrE6UlZahhOoPBEMon9Y3FmQg3kzwK2ha0BAWdXwncgebI0VjxcWxz2a0wr5Bu00is6RutjBKpkrL1NIV55EPQQDkRowrtaF4cJcBaY5N8i0/OM4xLbAHCgYFd/hJ1HG+THAqP5wy9E1ijFWeaIJq5RiQpYZkn3f321Lg8iVuD76LuYo02KN715imgZVGEC0LUZcweD1aFRpNQ/9ZM0ddZxjV2eIA35fXSDOeuXPt+/igPwuFgS28h0ImxlszHc3Fcmb0R9zabuivDSCkh51ZgaY2WphrGM8O5Vyp0EH6SQGOUZ5JFbNeb4BTTHJ32+CpVegyYXunnDOq6urY04NtKtv7LMy6SVGib1mJBgItQBwMcZtyCnzbxBAI9asBp08V/Edqzh88WIPxuA4AhPzIjNRQ9+X+l+H1xUp+dI++1z1omznnCr7/qwRLk0cpL/L0wZoNbw9DWIi9ob7z3W+Mscl53cdL2t73IwTSW4wrxq2nkRhFko4yvK5/CK9ePmu0d3e1s4JJlexUcam6TNnxB5r5yvrt52iJ9wrv8szZmw4J2KYOjT0OXMhv4Qtg0PhCqzj6IbmrQQPDNiNpy+TcZjH43xrI3kaBDATMmUwXOfIU3wuowO0XRy/8modD/WdDoXP0AY0CGh2Sxs2gfLqiVWT4HdtOAM7FkK0vwYE3daqbWA/3dYjb0vzsdTcUFZ1og002HbmHLkYUBxp/2a3XCHjoIIV+AlkNUKG8GV8t7/K59BIHOqCQpxsVzsN5BDkvkugFw9uDM83QHGLBZUR8P9YCopevTWYmsiAaDh3IfUSaLjedzVNRexGgame1KHeEkHLUVvAG88uCntHR98xG3Dupw0vA5ZjwCSDDRFoYI516jD8kEOwHJ2Vxk2iTsPY1NJ9hUyK5lSH6jOkRlg6zSosTi8+/wzHc8+BLuinK9QxAxscqDIhruhEy4/OrfPtEYWebnOOQNkN5GRBTQ3ZROzLFyOVbTBbu8OtdWaZxaIHWKW8SetJBgShhYFY5cnAnfwfuMyzXWw5jy1pVpOBzQoWcsy+kbbisPaYWOUCkDwc2AmGifHau7oZ936mbYMl4oMBTnVwF/3u7ekOWs4moFJGhpjy7XZiswNckHFufUZgG/wiz3lpY8uP0iFsWHhGPLPv1n3rxXYzo7YX3W0ArJS+zyCDOe+nTK3Ta6Dhq1ig7IpD0XeelTvR2gZMCKfGlEQf2891pjMnT3EKVEm06xGcFlCXBh7pqo2X+zJ0MuRJPPMeed5xGFDLMmHoB+MI2kNLA1gNyOq5DhZosd89plK/RXqLQ1o00sSxhOPN/QZU/F370CCU/cgzseUZfS35yGdYfP90fSNCfyctqKqMk3DURc6V+kO8HUM9ExoMHaJNZBBHHrQApDaBx5MaoNBWsB1xyjmxn93o22MnT6TJZJtUo/+K4D0DMPZfLFQ/SXtxU9vY7X/WclBn+x3bkx+1HcUBx+WYfFendaC7DULPB989PlV6SDPnzGeoo+Sj69jR+k9+Js/pU+r7mUUfWdM8x0t9pZ0s9vSzLawHnr9D0K2SoLzZdQYYfMmP4piBBtuUxrajLal/OgWdoH1h5gtGRASVDY648NdnX+Dra4zzBmNyEfmLhrr0b/7V98lmfitVMRb5BMJEn7L/ibxf3+s3DzSgf3OFEMYTkxqamYlgBgDEgYg+fr51K8e5NZCOwtF41fNTNVkEhTIpE3pbRwRGlcFlPFP3wgnz77Sj4MjEGioq/UIMeJWcK/kC5t6DB9J2Cn2U4YAsWLQwVVZWxWkJGriuUOfOqUaOwBErnDxL5jADwt/pdICTz5BJNeIspmeGxXsUtjlONdSXX/8GwYCKMBRsK6KWMig8kAOpNNAxtl0dWmNkRhNlMoFKQ8yVYpnf42VMS/8x0ayJCNX6deso6jYrAMj2ZErZS4PdsQiiCo7fc2XQglR5hFi+VMAVQt+N5BoIOHj0aPohR7FtZE/rGupFWBzFDgsYArxRUb+jgHoJfI4hAIV7FGjbM+prEEUjUaB3JcajhPYfqE1NzOsmUpEeWLgw6ysgbNsKsZe0MkNBOihAGqe3mZcw3FXCw/f4XJ/nd8+zEtyKgX6STIWp7MdfSyqr+339jsEQVxFukw5uhNDAX/4Mo6veYwaFxovPldb227Z9XcI4bGjgCKv6+jjiagkF0VauWBHpZdJTgJVvvFd+EcgFZ4FJA8/+qdSlmXMt6Dq/QTt4vr2DM+UPHkrnedeQW0b7Kn7nUaMwVo7kTcBV5WDWhw6UfOi8uz3EZ0REnuf5T4NOA0yldOLUqbRr+/Y48sdggMA0E8dOJekcycO+pJNjkF8EfZWvcmRWTR4IE+ydX8He6PYVgPKzL76grsqJtOH119JUHLpmVieOnTwZher2nT4Zc2qaJ2TXZIp3XQJDPUtZ0J8PTs6ehhFYwqoKBles2DEXZjSMxoMex8pTtgIIBeEFBk3foIX8MtpAQ0kcwbi3MQs0aODlGQ3/3VuvpydWPky0eArfc6tKxlfSyDk7cfoMRUH/3/TYc8+l59euDSc5+GVYfqS3NPZy3NLFOVYudX40isQhHQ5pqPPgHDsfHl9Ye+hg2kdK6Jv/zT9iz+yKkCemhlTdPiq0E7giWGLl85IpFDEioDoCWvdh4Bw8dCgd/rM/Sw/x3IVLycjAnJ/AazxzNpb7NZK8xDsGFqm3yrS/sQAWQYZBoppuf8hPetHMukkfewZuprbrZJzwPsh3CuZMS8WkZQ4RaOjuw4inIO+kEjI9kIOBO3xGRsOplu609RjHRNFGFqJL6bsvvhAnzVThVJZgeBo4jlUQaGPvxC+Vu7+I09LOgJtpj47vDLIqHR99im0o8LyBWrfuhAPH95TvwEIGFnS2IcYtX4r/+bzIs0b/vdefzxJUOwzG9yLTk1DgbkerrqykR4wfHAqDBToGRkE/eTlkgb/bZh5g1DBzXjXOdYrEBXHsGLxeS3E0g9RVVVVpLm1bPEsucT5kF2XdtpyPGD/P02D3Fw0M+SOcVMYW28lo2zFcJPiyHXlqOn06Pb12XfTbwI1jUwZ9hnxo29LJfktT8UT8NJXT9M/oi7T3fmhm3+XNs+3t6c/+4i/SBIyg1zdujK0K8rjzJIaLOWKLOG//sjmgNgw4oIPnWNR1GmcaeBqg9l92FD+PshXiR//u36WX/iF7Zlc/iazgGPB5GKvSj591pB2DWQTirXwmPQwiB/3pv7wU9yBrPtQjqM/hkB4EJ882NqTX3yI9efGioIH6WpmzHXVlyCG6XkdaCjg2ZTp0KfeGAQoKOadinbzVSeCrEYw/jH4aCy+/9NJLZC6S7k9/XYFyPgP71DnD9JXXDCpK7F/rVWgf2IGRKwYzPgNKLRj/TfS7lQDVggeXUlfAE5o4q545tL/quIx34D/azIM7uV520SHSc/0bNPe5Pl96uRf6IPx+nrmdgMH9ILK0sKaGfo6MObPvYbM4Sf5HvxxDbF+CBur9kFvkSnw1gGH78r0LQmfQ1/u+/DJwe251dVqA3jbr0vbVSfKd4whHi21+6r2QSfmU9mxbebUAnDovsjLgH+s5SbcvKab3+YcfpIfZYlGzYEGaOm1qpK6r98LZlIntN/2SJ5xn8S/sAdqR3hCC/ol3vsRHdbEp1j3p4y1bUntTfVr//PPIEw4A2ycLCdrfBnsHCSAMYNgPUf+gYAw6tRBHg+95Ss4Aq+sjCDZYL8GMBj8z2HSXTMS2891pD1t+vjh4LJ0/10adga40iT5qr3qh1iIQUIn5NIdSNaWzCRZTJFYnXTtwYEAHjxVVxhT4gt4zyA4jREAnskpogzgDAWICHWMnUqehKDVTR+LLWrLqAGEzGrp4lY+bkP7R7/0uNUhIecdZtKaR8+G8xlYD+h92ELTydxnWRZNz5zrS0WPHIlD1LLRZgG0Qci//8rLQdVzyDZdz6vflSXV0bC0N+hvAyPhFnBJjm+H3+oZ6svTOpjlVVWn1k0+mGQSS4ihTvqu9q13oS2dNWXVenT+mMuwcZSJ+8dl8Lj7Kl26XPgnONCOvjmvpQw+B8cuQZbYWDfOi43cq5Bf1jo5spqcNRLlgQrALrAyMpg++u2jngmMLjuiOzz9P3eDNLIIMD9L+PPheLBQPtKWVWZ/hXBoAcNHSyzalk8+yb+GnwJf222NX5cvaw4fT+z/+cZw8tITs6yraNmNUjHLhRl7nxsAtf5YfDVRLi3guY/Q54rBYkC1cZRlOBtk/+2JHOrBze1r/yibsyPlxApHzIk7qw0gT+yjtDaxbeF6dIQYrjxLOvzk26e53tXkMLLWDkz/hVBazZl/bSMFnghnSRVpLD3VqBK55F3cdr3+XtcWC3H6T3n4p4yze45lDBDHq008pdLh89er0zJo1QTMDXl76NI5fXHAMBh61QW3fObHv2VHpkI+WnQPtW8fhc+WNgyzS7t7OEa1vfzutfGgZf79L1k22Hdj75UFlMsbC92KRjbFLO/2r0AOMyed7vy/1XmTndZxLRw8eJIBdkF7c8HKaV1mF/ieQod9Bvw2O+BKfPELaAIbzIH5Zu03fNsvsYHsW/OplYO4igS8XZuTLLhbu3Lp3mcKjb/+TP0gbX99EBlD2HO0Y20aI47tf5//dl0BDfu6rkwWXyBUhRFCZjAVShU6dDMXWDXGnIASPPfQw6c8oTu+Fwe9g4KusVMwqO1PL3UtmtoD7YhQYDRpuiIkbg2Jwr/poDCiPUtq+68v02batqaK6Ks6MXbBwASA4I8Atov0wnkyrcg7HEUZjBqNdn6lhFc48TpyML6No6BQBpLdYEfkhVYuP1tamjRzrtBDF6ZnmMo5CLuMrYyEYAJEA5H4wP8wNrXBGHSuXQGXhJ8Hd59Y1Nab/REVqo/8vvfACxlAZTJsVUFNgFGAVfe5AWhSsiKgmkkNUn0g3jC5zCyAaGwpp5vhmwYRd7JX7EYL+yuuvh+NVwvcdu6uDRlUFB7+Xg3RuKKpANKgEJZWGl2ClIAq4jq2LaOLOXbvS2bOt6S2Ok1yBoMsD0sXvK8z2X1C1XV867dLGVRINFu8XDPIAhwapkcd2jKz6uvp09PChNI1il69s2JDKWcGwAJXth3PCe6zwSCPGbfumDbtSc+H8haC1gRXbF5ikk/TRYbQK7SleXfDkSooAPo1z5FGe8omgFAYu4xWkHH/Qxb7z+y3653nQXgJXDmYCjeDQ0sxRbxhy53CQ3F/36ONPcPLI0gigWUzIVVJBWyUnULmn2gwXed+06musUhoZFaTkV40Z+6Fy1ajef+Age7o+jLThRezFXfogqedkrDi+MMAZvysVrvZqaLhiNRKe4sM4a17HSEfDuZT+ke2BPDlOQfCDzZ9wHCn75DjqcDpydOLM6bR7/7507PTptGXfnhi3e1flCl+aOgYadMLK+ENFKcWzJpVCG5QZBtddxuSc+DLwMG4sxg3P7sc4UzGE3oHWHo95l20TBchF1/VBjrfsTJ+exXij3WETKf3gf/z99OLapzkqixUPUk+LKcyosYSKiDkzsPaXf/7n6VGcoo0vb4gVAGmt/OhM5YGGkHP4RmPEFRpP13DF289Vg9JRnsmyHNijDq/KU18ScNyzfUf6ztvfTU89sRrrkJCLeMf2hb6+SwQcyFrieyVTZkSgYSQK5wo89tkXO9P73/9+HDG6dMUCjEqCDPRpLA8rhBZeKjH7qjtrkTHnXFl1zfMWBNBAHQX2jSTYMIrPNR774J/ugRupnTTPjsErZDiAuXMoCjmX46wKR6R2VqKuUcNhMnIQq8CkSV67xXa25ktpz8GuKJrmvmCvf/yd76SNzz1LRXmqVLNVDa2fbiPnkWUgTtNfeSxWqeEbletI+P8i2Rq7d+1OJ48djSDdmrXrOL/7yTQKY+0mATllSqNC2VP+NUrFEOfM9sREcZqexz3hmHFvOMi8N9bXpS927GBFqpttBDPiuEcDd1ItgrG0IYaJC8qWWC7miD06Nvnl7xpA4qMvMcfss31g+y4KPJp1VLNgYZpP27NYHbF/9jszovkiD3SODETaqqt33tNHMMfMBa8IAGCo5nh2gSDTh598kuowpNetX58WopvcrqD+CLow38qCzxEvxRL1i+NxFUYDWnooq4Fh9EHdIdaMhP6tTU0UB/6PEfD6FkfImTKvcagxJoZJB+c9nAn0mwaon6lTNabsv9im/nIOxBj1lyuO8vw+sOavkKfnMbReevbZkAfpbJ+cO9vxPtt19d16QKNYwXbvvsGEwH/udVy+lFU/M9jbRpB9F05pA8bot+C9VTjU4pttinsa3Y5BvWPgayR0BSDDEJRW9lf6SBex0r37k3DM1WWtBEd1Xvbt3cOK3Pj0xjdeT/OqqgmSgH3ggPS1/zq7XtLfMajvwtiEJw2saVhrD+jkKY+Oz22Gp8DCU6zUGWhYSr/Xr1sXzoXYKnYwyGhTPDEg5Wr8CN55aBoSE8BZ/ya/SJd8gUCF3Eybu9GrHRiiBpAeRT8tw/Hy+Zf4HlMW3xEbgqf5PPQohnroX2hoP2xfRvV7OnU+S/oePX48fb5tW6QE1yxcmJbheFWygGJ7BpG0CzTi1cUGG6Srcuv3vcx0cltZ6HM+03ZzVX8CfKvD6hGnn/zy/fQIem8pem/WbAq6MQ5lMdKGkX/77T8xwXacC9vUyM/6nc2pto/32BffXT3+GcUdO9ta4rQXj6qcyhaDQjLJbnMqjP229g+WGEXb3EZXQvvwDU72ANt7LIs4lvEY8BZZzQ67Q9t1bOn98LOd6d3N21NnezNZsmQ4MVaXZdwWyC72qNNQNottgei4aZOnkU3BaiY0U69k2aBgHP016GGQwd1qBnbC4WCszoPLKuL4bbIWbpJx0dx9Ke06cC6dgWVYv41Tfqop6vsv//k/jVMmZrgySn+dt0FWVuVP+UX9rY7P7Cm2XGDTnGVhZj9YZpbNxtc2RaFXncT86GF1n9gV9OVZQXtkVmzQJtU5ktcdk3LqfIszrjKbEXDq9CmwuIGU/PnpxRdfTDMJTnnkrrKojGrLhF1Be2EvwTvaH8qQMuWV25A+I3gWGTet/SAB/HpkSjl7mNoxFjEcD89oL4mT0W+eYTPiTARjac/7zTZUhyj3gZPyFi8DFdYyaaTvWyhO2cNzzGZYRbHRxYsW3cPBcBihS/gZtKNNoJxLJ/VU+AzQIgs0GHBE/ui3pyfoBB5AVt/54Q85faE0LX+YlH9kyu0Kfl9bUnlVb2iP6VRrU7idLBZ+6L9zy58Zk/VqshpcBn3Usz3o7w/p+8H9e9NL2MAW751GBq70zfAvW0yStj7PYKOLlkwqWw3QvciT/OJl/+VBdY9jMpunHZz887/6YdjVb33zm1Gzx/ulo30PeaVz4VjzfeXQgIizqcyLc86l8mvbSpW0d0zyxRGw5qcUUl/5GHVvWPyZBj9LQO+xdpu0N5iuzpaXndco6sx3IzuA5+hTaQM79+K0bTtW+XL33r3pS2yDt3/nd9iu8Hj05wY8KZ/5DHksxjKMK86tMmSQXf9GGRDjHLM6wUu/5HzneQLJjWn/3n3I9Oj0W+hWF7EdrzpHjJc+YqW45pwa1IotY+gjs5kHyL43+K3/Z22sGABY0U1gze1oBmHasA07ey5Ehtz61zZGPUKDYdpadJ4+6U9n/YrOfU3/d18CDXCjHBBCB7eFYCla8TOTcRpm++Kzz9IFVninUZ9hzapH0pL5CyAZnAMDwDXcjjOgAuIjq+nDWRFtVkA1bFT6MrEMZ5XXEbyQlnQbhvn8y53scd9GoKE6FJuCPllDme+4iirDy5g5SMt4PktQlCE1moIhhycxPmOSR2pUEHF6F8XWSIGx5wHXGkBWx01htU0BQkHzZ4MhCpwgkA3NPacqUwwJngHHIu2ciQ0jeynsdY0N6R3OvJ2JMn6RKLSr9mGM07DtOWb7Fg4koGS0dRT9AlnxbTg3mn/RNu86baaDe7/90VDdd+BA+viXv0zPUuzHiKLF7NAmARJh7ENvo2YytgabEVGVu6tb0scUYivDOh6I5s0oz8FwyjqIEH+BQ93e3pG+9e1vp6UYQzyY75mhkoGB9NCBVpkFHaCbbfQDBhoo9lUhdwzeJ40G6LeBhrq6unQQxTkV2mx6dWOaTaABrRIAnQOJdFQ5Sp8AQfoqza0A7yVwqehc7da50DHyGLojOKQnjx0nc6IzPUK0dR1HG45WcTA3vw5mGEQCSOFHgdBtJnQ0gmeCFCQPejlGeWoUAMZNqaOpKe1kFbMDxW9g53Haf5BggH8bEpiGQdA5sv0AOhSERDbQYBqkc6+zIp9Jeq8C5455OgJNPnr//QCwxSgeldtMaUO7d6C9YByONXLDA0IxGy02PU/lZqZE9IH5DP5iTDofMBenwFwNxeZxpC9v2shq1HQAsS7tI7J7lGyGT4YDDZWw89xSij6yUl7MsAsLMDYGrnMEZ+Ksb5xstnkgwjgAdJz+2G8DDRpfGmJeBhq8IluEz0dw323nij3X51h1P3D2Asdboui5B3Ud15/8kz9Mrzy3PpXPRE5GYAhxr2OQN1Vaxwge/eydn6YHlj2YXkCxTWdl2uCPfdBgcc40flSSOvXWhhklz8CvZjR4aZQ7N9JIg8B5V2FbQHI3gbs9n29Pr5Pd9CTKk5xNvsH4MG1v36GgHXw2oBwVlfA9FDrtXsfZ/HznzvThv/h+Ws6dS1ctxKjEEML4hXSRlhtkshWfi3waaMj4CgcaUOxjKayfvOaREWhAefJ9jQAQjK0T/amVbIq2WxwHx/duT8HZm4mRNrogXWT/cl//FWhFUAz2mTS5inTiUWQ09KZ9hy8GXfNAw//y3e+m18GgxQsWgHEYBIz7LrwYGSnMnU567qBpLMTeUfizF2W5H7rUnTwZWP04OPMESr8Aug4QaJCOyrlyL797Od4sYOE+azNtMqzMHT/HXijOIQOtGLibcdavENwrg88feeSRVF2D/qAp95Uqe2FQQzvn1DZymcxYgxv5T2yMYB79Cbmjf3fAuD30ffunn1IHaGZavHhxWsD4pxFokKfk2ZwX5IvgHebHGbf/DiecYWRKPM+w2KFCH/DgEg7ABx9/lE6Q8fHUM2vjBCKz1jSATQdVHgN/6bdOkt836MgAWIG18K2ZIBhB0DsjnUZ0prMK4M325pb0lz/8qzD+xMiy0lL4LjMspanzFc4IhDCYoKw4BlcB7be/h+xDIA11x2C/1REWuK2lcNm7GIpPPP10em7t2th+4OxJY2kohqtfpbc4ZvDJOfPoap2X6CtzH4ERMMjL1GP3E5u1totAwGkytL5JoNqz6u2bToM01wD1Ercdg2m8EkGaiZHhBPCZ9HGCndtR0JU/xNY19YdHbloz4PXXXkuV2AcWuVNXaBQHP8ILEfiFHgwrZN15lV98lpfj9CUPuy2qD2f/BLwe+8TB+OU4LmJNEQb+LZw8gzzOgd/RdhHfinR27T98AdGyRQhxgs/kFe8N3YvMtbe1pT1k2LS3tMSpR48gS8sJBnjEqnqTm2NeeeNHaGQ3aSOXTeVNfPPdKwx1+KrAeaU/ni615aOPg2c8+s5Aw/SKuaG7B9Fr9t/vhlzZXy7nO2wLZEB9K69EdgLPd560gYrQdXcZ22aCGJ/+6oO0iqP1DLDPwQEzeOYYdXZt25/tf/AN9LF959Vn216Mi+dqi2i3FYB7/JI6WWXUHuvpOpc2bnyFfdzVBOoJCahThsB3+87YbzKd/Xf5bLQLHGTogLWDZJ25fSIyGpjiwG1pwklona3t6d2PP00/+sUnOL5tqaGrNQINVSifGVNJhWb6JnDrJNi7ZAwFSAkyjinM+ETMCWee8cg7cawiZBOj80CDes8sPmYOTUHgeERRuk7/Wnoup9pjHLVM19UkLl9UlExK/9ef/Ov0NM72ZNPfoa2FGe8MGpiiQ8ylxwOqz8QRseIyuqnlbEs4Xp5O9sabb4YtLJEjYMZ3vHLbzLkNuYKn5B2DDLZnn7OgFDggvyKzgwSWDDQcR7ceO3okVeGkv/Ha62liWRmpfBQY53vaWM6rwQ/nVkzJMYLm4+/M+D2ZVv4CK6H/Zfb9799fy/aDE/RhEL55nIKjT4T9PUT7YoH8Jb/5jJBDeIbm4m/+XdvVK5OljDfN+IJ5UktDQ/oUZ/2igQb1B3p7IWOQjkNibMgQsgpuGDDSJvCoTu0kxyN9QhayJwQ9xYpCgpp0LB3ixJqf/+TH1EOYS7bEslRFQHOG/geX+C2+O3YDafKKAQV1Z25nOkfSXGzhBw0j6EA2Gv27yLbLD7dsTsfIcHrh5ZfJ+locGQ2OLcbNd4P2jMH58+ex8Ix9Ntgr5uvoeonT9jsy1uQHfm47y4k4P/tZyPTGV1+NIuHi6L3gtmPgGVFbAPrYrngiPaQ//4+XcxILx8xrzMswxhlo+OAXv0grmc8X1z+bJrItkQaD5iHr4gHtyyvKTo7zQ/C3wVL5JLCUeXcsoYN5tvaxQVdPRNuDD/LNt98mOIU9xv3qnhxDcjtAvpJeBtJjizC6zTbUd3FykrzOGBzfEH9ra8v8j9p9+2Mh6rfeeiuVYxeI3Wbg265yFScFgjnRDrwWNhF0uQ1fqX91aJ3H0MHqKX7uwyayTuCJM2dSO/6H9c8sbr1244b0Ipl3U8uRK3gveIHnOKav+/WbBRqU7fylTvPnr3Kf6IoCP0Vq0eYPPwgHbMbkqURqHyfQUBNKQacy0rSGjRDTuyxe41EieikyfbwgtmDjKRCeM4tbCoOTggmz7cRY2UVqlBkNKs75tD2DqJ/MFtEn+uB3XSGLvYIwgKDiJXDJ8F4ytIycKUSVZ0rnAKetBklgiCdYpauqJO0ZYYlgAgJju35HplPQVcL5ao9MKz3yAIApU4KaDB6rMIytvqkxvY/TOIuNf8+uWxeFYTS2cvDw3ZWWzDDEcKRN+5n3W+HUiVSI8nR/hdPVcvfAunpRy6qRhuJjK1eG0hZMNVwFQNuznyp225SmXuGQ8u44dXa9pIuAoPK8gkNqoGEXK7wdrDK8haAvYSXUCLROuEAk+NhXn5EHe4xGa7BIA8fk2AwQxJhpW6PRKKFptabq1eIETMEw3wQIuk9KY1ywDmXG9xRwFYLF/QxuZO0IlCp8U7GgDeNy1c17i4mo3oBnDsOTJ0gz7EHJrTLQ8PQzaRQG/h0V5zA/OKfSNQCRz5znMAZ59zII5tyGouL33CltamlOHqXT3tycSiZNTo+vWU1l4aWxJ85iSnQ+aBIKk7buPcNx0dcAXmgm7V019e8aaIWs6vHFdJQgwIesGJn6tmg40DCbKKgAKO1Vas5TpnQzBRoODX10xSVWW3mX/hqM9sOiWGMIwhjp3fLZtrQPxf/Us+uj3kkj4zlEUObYmdPp00P7HXpagi+0oLIszZkyPk0cy6oUdQCGSN0fjfyOtU4B/ZRPTH0LmKT/kQYHn8kP0swq3QJ24RhWOu0DrJc51QWpg2KQh9svpW1tA3+jRsMP/qc/SK8aaODYo9E43hb2s4ZF0A3auX9Xo8LslycxWDyuUp6TX0IRB4+Zmse8DivOXztx6gGCjrzsn/cE9tBfecAsHLdO7N25Iz37/LPpkeUY/+z5vUUdhNHjcTKpg8CII9AwyBYFIWwsYxxgZWEPxsiOH/xJWgztFq+geCBEmcC9cG+k52bGCJDIlzRaTZeVTq64kYCQLg1Y+JHp1+Dmszuk78EpsU+wj++0XLuYzt68TDouEXkM4n6KUw6MgU8xyAbv4NhcCpuLgCbZG3cnUNSTbSD1GpbUNHBCuf7nb70dgYZ5sZeS1FfowBJMrG47h/Yn+sS35H15TPp0nu9KR3FeWhoag2bLH1nF1okVcWyk+9ilqca+PKhsi2l5mrd/C7yFDzXKYsVCvmG+JpANZHZL/amT6f333ks3wLMaDC0rabsnUzmyuJdjkH50iY8yPBfLYi7pn3ihTCmfGsCuRIiVrlr5N7N1tn38MXuv54T+WEAQQ75RNjQWdIztm1gmPokxqjt5xH768lnuadcouEWf1C9u7fOUo48wFI9isDyG/li8aDEnPpTGqpmGZ/CY8kB/xS/pK976rnHkoMQxnUjVq/3QUTYg7+ctba2cIvFByJhZWe6dNlChnGdGfzZvth8BSGnBz5mDR5COdux/GHrKIC/HZ79c4Tty4njajFNq+v4a5GkqAajgC/qiTMSL/qg3MkfXoLL8mc2n+CgO5UF+ZVAeMEBxCbnYW7ufgO+x9CoZdytxeLM94XeicKWBCgPFeVA/HCbw0oBX1Oag72aMWQDWrCnnUn50r69b53S8DtYeiBWyVza8kuZVVcVcZjSXX+AVMNC5sl85XdSn9tdxhJ1A/9UdzrFbhgw4RqABTOxsa0sryJ56ASN6LKtlZm0aKHHlzHHnOsnv2560Nghgu9JZnpKGrk66b9jveab8PvReG0EkHZ6VFGk1lVx9kC2OZI6VmCdTyBP2PXe2nMOYA3mTf9od8j7EDQP2CFmCH/3qV7ECtwS95GtmWVlkWvQRAJKvInvBvkIfdbf08ZL/rQOiHrxK5p1Zl9LFbDj7bq2IbaR679i8JS3H3lj6wJLg98ksMAVPMEf2WzpoweU8za+hs2VI7wscYE6dT7HDYn4uLpnq/Ytf/ZJiqd3p1Vc2sO+7nOezymokFXrSpIqZ7TGeCoRMURTCdGw4EuWC/XSXVV0YyN/voquKkZWCqdMpTNuZ3vngk/TDn3yQuq90UT3+XAQalhNvLSdoO6NkLMc4s+8dm9Y6Dzr/Pi7spqAzP/sZc6xN48g8bUKd5+KB93uEM5JHcJdMoLvQz9OVLl5Jx+p601nMAjHlMq85RcXp//m//zQyGopobwj6j2A81opwy7D2nQ6OW4A8OlbHyZpT7lU3Q6gLPP4mW5GWYQur4+Q1nU2/p9zJQ/4csk6/GETwoHQXR8OmZE5jAY62tSncOmEW6B4WUKoffDB9C8drell5GsIO9BnaFAw+gjw5P4qfYpXtO4/OubwevyPH6oAxzG1P9wWyyvan08iTuOzCjyebGES5gqPtlMZWCX6KYBRtKsP21wnP+xvyxSc+x78pc47RxbzPtm6jQOKFCDSsQD8tWrAwaOD2ZmnhQlJu+4q9PlTs8nnyfowRHrfPYk/oD3mHe/ccqE2fIE/WsTFQPQc94h79zPaFnrTvmG3H9vJ+5QFVdVKmW3T+hzMJGKOZRL3ovM3btqaTRw6n9c89H1uolD+xQLvZtp0zsdHFwbCpfR7t+Jk2q7IvTfLFMY+TlKbyhfrj061bY+xrWWybRT0YBy/+ucgo/YIOtHWP5soqvKzce+U2pJgRRfl5tn6A24vdcvvZp1vSCnTHemzsCWwljm2yyjhtSj9f6ucsuCjtxYDsecq2z3H7fJZFRYAPXnYsF7DdXUh1e9wGAl+Psf3ZgHboe/vLM7K5zGhhm/KI9PLZ0sQ+GwSIsTBWFCc4eDNkyay1I/gJRWyJe+PNN1Jl9TxsEGq18Wzpb+234A31NG0p9XkQxvbNdJJXHJtz7IKtGdd9tH+qvo5tvqezml/I7nVsy+fZqvwywaRJBn3lbQHGmYo3//f1vX6zQIPjVlOY0eALgsYFE8LhTBrEgeCnWc35GEHsIvo/h1WjtaQcL2HrhBWir7ECAKfimGTGpwVfPPLPl6tUKnZBKpgRBc2sUWUawTTYwHd0eHexarEHx85AwyIilVVV7JFiJVNQC2HmXeM2TmegLZlUA0ABVJAEEZlBBavyz4FKpjwHaCvoXR0dBBpWp3nV1RFRNE3GPtkflYkGeUaM7P/h6AJ0MpxgphDJbLYZjIfwWITRwnU/Jho6beq09MKzz1F0bXoGnBiKXt5vWqjAadBEofaZPjqMw9HQxjFArzBe+IPfUaFo5BtR3Etq15OAiIEGCznlCkUHSy62LUFLofRv8Xf/wu8+w7ty4RWQ/Y5G6AUUxOdEExsaGtLb3/2d5Fn1RsY1JKWrQiwo+H0zDBRKjUY/z54juGRjcY5jrNBF48UsiTqEsZa5nVpWyv6xjVmgQbBmrH7PyrzSBk4LIyvvuwNSSXrpoEsXU++ivsW0aek6gQYNuWOs0pvC+wgrsGZ7eAa00UbnTIAWxGO++F0+ktcdl69QnHwgXTTmIFTwk4DV0NxMqvfnqZW5nYDCeZIgz0MoZ40Es1lyA1FQsiBPGAMAEoPK6O2E8ArlB/+HY8Tcm5qqPOwflidrNixk68RDy5djzJXFivw10ri95DVXF3U4XKl3BdCxRFAPo83x5ateMfeMaQwOuYrtE/i9lpTp5za8HPvW6xnHAVYyPIZz25ED0f5SAg0Vs6an8mklafpEjExWz7Hi4xhF01IRiszIhp9Gk9qgocWkh/HlPIWMBWdIOv4OL3qPLst1jMMOvOpjndfSF60UOeOJV5Efr+//4f8QgYa5M2bzOXOB6FksyFUs583sC9MkKyur0hqi6LNItc+2/qDoobE0+KqCNAtCnFBeXS1yXqV9HmjwZy95V3myHszeLz5nL93GON7pDitk18nkGE1ah4GGIcaBTYiBawCJYBGrUP291DIhBe/LP/43ifBqqnmoKk2h3RIM3kLGJek80k6MyuoMwNs+l5f1Ga6BredvcNQolc3uksWhQeu58QUEd5zjAQTgHPuP2270pCvYcVfsrzqTxYMJUzGGRtwkGwDsQB9O5DzJgbuTUlPX5XSqjUdwr6toXv8rGQ1vEFGvLC1lnnCu4FczyEZLM+7UcBE36RKry1kGkvS0mOJRDKHm+oaYgxWs8K4y0ICsG7hy5cxgj3KbHWFI32jb72YYYy+yFXdXgMOR5iGTUPAWBq1jpevnrLrVTMLAAABAAElEQVQYlF4IxizH6Z0HxiNIkXIoHoplo9ELeVDWORVnnGsrrytDmT4hiBTySuAZg82tV2ap5IGGB5Y8wPa4hQQaKCylocz3DDSI8RqDrrDKG2K4xENi4WX4mrGEM8fv4pfP1/G6BM+YSn4GI/qJNaspajs/jFAdaO9x5Mqo861MiAEirj9rlNpV8cYfIlAQH2S47FibcS7ex/ESC9diyHlcpTUg1GVilu1wN6KHfCAj8TsPNftAA8vf7YeyY1qvRpgBA3+/F2ggCOOq+tMESjwKzT5Lc+8JHUT/QhfycbTDs8QXZSl3DDLczDDZ+VUWLSy3ixWpowcPpddJ2zWjwewDcUIjVT1tSqo6w7F4tLV4advyIg/Huc8yBSw4a7FI+276v1tWmgk0HNi/PxWz0v462x7nV1WBFaSc05bPCIeXcUjSXBc6t44lgvfcE8Y5v+vQiSOecHWJQINZAcfh+fOssD/6zNOhu8ewLfQSjrBjNogl3c0akcbOccyh+tsH8rfMQWKe4EFpHc46z7HA8l703tmmxgg0PAKOPUwQRl1qUV+DXxGUohV1iG2rqww0SP+4mCR5XnkyWK1zMcpAGM8+hP54/913I6PhAfSS2xvMhHEF8Topv27z8HhpeQGmi22W2hNhX/AcVyVHQIubyLaFS60ab9+LqQavntny+fa07VcfpBUESDy6rwIHzGKD0XdOqQiepx3lySsWXqCRbWj/SaGgiY4TY4ogFWMvIkuuk+1rP3v/5+lCe1t69dVXItDgdjyPRx7pkcDwRgH0GGJ72a0htnFa3VJa89BChKQAELTo8CBB8dsU0S1mVXoMWzMvkCr90w83px+98xGn8pxPp3s7Qu88OTulahaBZk8YlyYRaCii0lvBEEEi9Jvzyv9iNsVkTwSKwTkoPuWT0HduQzLo4DsMio6g6HIBRaMJNLRxMsbJRo6GJcLAenNgd+m48enfE2hYg0M8iu8MENAZzZELhLqyQAPzYjDNI/bEMOXM02paWs9GoEEH7JsEApYR5AnMzm0L+QMMkCJ5PQD/Ls+IZ4GLdt0JGsYBccLtaW3Yv6dxjHbt+IKV3Zr026SSzyotSzd4rvyogyfOSxPlKtoMGWPstKf8O3w/l2Jhi4A/BtK6sSP3gsGnjh7LAg1PrYlAg7J/FVvNgqDaefJ5/gx50T5rrwe2wDeBZY5FmeYZ4ob9r8M+3UYNNzPiyisrOYVoeRQXVz6V7yi+GLoiC+KIh9pk4oByFVsuwSzT4g0SqDPkT7eYyat7cXQ/po5bKUGvBwg0aItpz2trhU2N/o5FFp4nzjgGnx2YRn9jYRLccjxisDivrnLblIUC3cq6d8eO9DxZyYsIgkuXWJmnnQg00JZjF3dyO8jP7av6z3FIdxfbvMyK9vL56o/NBAKck3XPrI2td3QyaCf9nKchbBgvcdf7ssCC8kttK+igTs+c+GwhzudKM7dAH2OR4GOwYDlY8OzTa+MI0mhDHqG/Ykxmq/Np8E0WoLbP8nX4Yzwz5oT7xQLtYrdVuHU7CzQcSBvffBN7jIVUnp37Ko6ZrwY/Ow7tq+BPaOU8+IywRYNfMl8r+s6YxGADVGLlCDKmXnvjG6E/LmPLeVrNeGTUouZAzt/QJYpOJgMuQDpS/szLeTXbwe1AnpJ3HLrom3WRfWTdmcsUXX7lW2+lV8C06fBoXPQ5Lhulr1/n6/4EGmCquxgBUDgmD0mKlbRAd5jnFBH0zay69DB55eytXv/kmsg6uIuQ96I4jH45OcUYDQrBACBuRkMYhjAbHBJMGNF8nlXEPm6dNo8nUxC/RCnv/nInEafqtGjhwlTJRFmdVWWsMGUMjWGJonK+rJzuqr4GmYAbzqLCPTyxEVnjRpnaKvO//OhDCtXUp2fWrYuVNAuSGbQIxoWZPeJJJaKjYvu2rcI0gmVwwMwClX4OiCpYhVjF6grs//cXf8Z+v5L0yosvhaBrAMaqEVwqUMU/33mGikIQ1KAKRc27Ve8dgy8FUwHyHusoeKLFZxRPepr9taspWGW/naeAYt69fEZmRGvAqSSGU5RoSxpqCEQ0lvbz+xRiq/m6eqHR9d3vfS+twGAxouq9gpIpoyog+2OgwYik9FaY/cxLAPGKIMwwsFhArq29LY69OoihOB0Aj4wGjGj3dYUjQj8FVX7BuMDgxBCRvvYrCtjQvHtxLVQmGDpSFcNEAlBGyc3EOLy/NnhhFStSa55cjRGd7b+VBioDA0Gex+6Xpaeg5GqaNBYEBRJXoMPYhudVRM5LfVNT2kGg4WxjY1QkX02gYTkrUkWM20CMwB2OCzTSMHLlP49E506w/VXxW91WA1qjooSiVwySOT0cqa8epWkK4IMYi2WlGIoYHzo59st5inoegKGBLo1I+dVxBejCVY7Hsdn/DPBHR2Gaj1A8h9hasumNN9h3PD2dqjsTUfsTvH9+5JDTlR4gDX/G+JGpYsakVDadKupjCdKxyj7Cl/zFmOQDuJM5x6mBPqopec85cnwFjN25UilpiOnQDuFw38IQ67x+Ox3tvJ52EWgYyd+uQmevf/mHBBrg5bmzZqciaxU4Dr7vy2DSCdLsP3z/l2kRqzlG0Kej8DNZyjI75LtwgpR1eYQ+yt+u0BlokSDKkcpeTIJo8e4KkntfXf3evX1b+s4/+C6G4CPczV7BW+QEsKJW4D5hZdFRU/XcYpWF7Ku9iSLZvweM+uM/SVU8Yf7SuWkyzzbQMNpx87OYZrDBuVMxKZOOuJ9fLoGt7VdvpI7L7Nln/pSY2wbzKPY4ccqkOILqEitBXTfPpy7itpfodhG7gCZMGwO/c7Y4AYkbV8BZLFmPfusbHJWae64lTmIKGnT5QK7/7b/6Xnpzw8ucTlMaTovBXKuqOy/MbjjcGive7jYhzyJX6RtoOMTKQsPpMyHPj+IYPbpqFenF48KQY3gRWNCQUBZj8vlM/pMXlCX5XllypSgMLZ4Zq0LI7BmU8vukSw/w7Br43VTv6srKaMeUQ2VJ51wM0LCMlFRwK3CGdi2u6jFpbjVRJ1n/R1k1MHCDud8DxmyH52ficGgoGmiYw8/irXzlsX0GHeyj8+JKogFMn2XfNXrtu3IlspqJ4Lt4cwns//SzbakFLHgKHKiqqIxVevumLIhZBkTkUeUTBgisCRmxv8yl9NMBDqwc7n9unFqR/B2KeXkK00vPvxAZDTqKtqvu87sandJUjLH/jkNHOgw8+qAz6qq1WCkW3MsCAzMOk23wAdlTa9lSs37NU1GA1nalh/OnjlSXiR/2UVkykyJOM2Jctm0asMa/9HFFUJqpC3pIGd3JFoFDtbXpLc4PfwxDUUcepohVI/vkKn8het7iweLmaDIaPW7M5zEY7IwMh/uYXwuxypMGlswKaIDmBqqnMJe/hSFaU8m2IXhoAAwO3UGfcicj9tHSL3Feo1AcV2e7kCEOa/RHFXcw9zL646BbyXj1YL889vRT6XkyGtw6cL27J2yVTM+SXQQNNcIjOEK76u/AIOdg+KU+s8/SzMLAre3taffuXcEzruq69W4FzpH8ZiBALLegr1guz4fToZ5yTqCTuOV86yCaYeCpD+PgxXGcLKFDXIs99h6BO7OmFqOz1R+emqFu8hi5CcUlYY/IQ/IfkxgBN+dW2lhTaATzMijPQHN5Rn4aSyDczwxUf/zez2PrxMPLHkpVlZWsZE5k3/LVqMIeTpD227Bt4EqsvFREMCTmn2lVpjyJyeMTPSJPh7SELQXnu7vTT957N7WcOUWg4dU0n9oSxWxfi1pAZCxE29oCFIIk+kt/s0C9a15j3V5BoOH2res4R9KRlUnGMh7+ONd1nq0TW9NP3t+SLpLRcJLtE17ry8HrOWWpdCInmhFoGMP47/IcJjJ4WgHTHvDoRayDoI9jUf5FA9go6GzGjSddYBhSh4j6LCOxXcl6a+/tSycaqZzfw65NnmeQuJLgx7/90z9Oq1etjECDWxdYGkDfoaPQE8pRBE8JeGhjWlzPgooe0boH/dSDQ/0NdLcZDXQrTq8KuwNc0sXVGfPEAPfoQ+jAFTOknGp7rg5ynv3M42e1K8xarW9oIGC+h4KKc9MbZCCVooMvIQvyo4FN+VHe1kYKG1rs4nf7G7zEz8qCl4sb2nzWL/EUrX3028wm530l9pjZiB4zrQ2rvHoCl4FvF/hsT1yRxqJj5ieQ9YtsyS/S33uUV21s+72ZxYc+9HdFVXVk8FRXVQVtYostzRjA1N4zmGFQTbl1TOKblzIlbokLsRjAID1qUTrtrt0f2wNmzZnDsbVLUhVtG6iWFz0Bx2NgxRv53T370kRdKB4r+9pBcXIVeBNbJ6G7wcHJnIyh7noP32nbr95nK+trHLu7MGpPmPkVtI1RyGuZXaNOkYY+2y0SbmcIW4zPtHW83UwFv6ud3wTP/IJFYH9+6YUXw45Up+uDRHAU2pjVZHu5LR86m989ScMArzVrzKCWRn7P1X7bFy+OorvffeedtIxsg+fXmrE9LXjBoKi63nazRYeMAfOAQmAj/ZC+0sh+h53NHPhdFzA8qnkvuvsItscbZGM+ic3h92xXG94gmrxAZ+7pWLPc/UzfRH2rznOuxWUvt6TI/xa4biRwt5+FpQECmZvINpgP75jx5QK5hXCLtTeYO4Ng2grqRGnjs6WFC8Dyt8XBpY9HWo4jGHsZnj564ngU6j/PczovdJNR1ZHe+N1/mDZt3BTFVkO38f17F2P4Ol/QB4r8JpffhrAaB5ncQxAmJgglcQD2o4ePpG2ffEJQoWs40EBmwPwFbhpKN4gQOUnuXwvHme96tJcZDQIdiBFAbttOokd7WQiykL3ZWDhpiEn7bOfOtG3bllRNpHUJgj6vel5WfRvmMcigUAt+AqFMYOqLzGZk0LRChdPf4wVj+67iHIXhcA0n4R2i/yePH6VGw0uppiar+irgeXmUSQFtuqIk48rcMpWApOKUvCp7DVMBxVUMQVcjTyE7VVeX/upH/ykKhG2gBkQZYKXhJvNGhFLa0kYACW0GiEODX/+DLnx4h5dTEeAzzJQKusW8fvHuz9J6jNC1T62hMrTV5LO2wxHk59z5zGiMYQ3d7KP3SYsIxNCHGC+fhcMAcBlF94SCEyj9t7/9nbQCZ9o2NNYEA+fVduxzGCnMhXMsgKmIYgWG9lXUuVPgM1yV9+QGFcQRVtKnsaLwMtHcSlK65Y0AI56BdR+OpkcD6rD7bP8uJQQcCJwpTX53HD57NHNiZPsgxtbxY0dJ2+tOK1Y9mp5aszocmywwBd/QvjQPsOW7wXu0L0001gWvMN4JinnMjUagRq5839BMjQZ40oJkEzje63EyeJZjzBlkcfVdx8Uqv0BdAJUAJU2dc/k9+FH60H/HoPPqHBdihFoctZYo69bNn6TxHKFoYM301LmkTHsmvOM3ICc4xxYJgZdnOSfym/13PqRVgCHjcJU2eJP3btK4Pma/+nEc9o3f+AaFtqYFKFoHxT1lX2Bcey0m0DB36qhUzQZWsxrcPsFDSO80aAC9mWvnHMLTD+jOOBgN44S2YoXPhV6wCfeZzUGqI3S8g1z38+ros0bDxbStFQOc7zHbcf3p//7P0msvv5jmkKlgzQkdYQNNKnIdE6tuv/vTn6YVK1ell9g3bcDxrtlGtJ8rk1xGfI+gAv1RHjV8IgOGcUgi5yILgFEsC2VkYSZXYPft2Jne/uZb6QkCd4F1rpCR1zoIGAz4HOZxZJFntWMeopSu44hbHPTzP/qjVEWzC5ZydjZzNdHphR4GUixwq/E1CL10iKNv9G+AjlzCwWq9SpbPVQxysO+2n/fjFBJAGAeGeULPTdq5dpvj/HpxLtlTPLvM9HwMISh35w7OBwYBX6Aexfh0mUZPdPSmvfVk79Cf846V65/+t/91+uYmjPeqSmQFfhaDmJsC5Yx+jACQ7ZdhIscpv48BB11ZqEXhW6NBTHkCfn+C/ZKFODd3cOykuzzOV2OMPksZ1dAy8CCNlX9pLv/mRkURhibMkxpp9wOMrSsY0xWVVWklBsWCmpqQ59i7LMbzDI1FgNfoEQZQFtjV0NKIiuOoNC545Uf4GQzWQXVVZBf8bZGtRTULqdZeE5l3GuUhm67o0H8dMzupA2pf89V095M6bo0iL58ppjkuDZYtW7emJgLVq3HUrQTv8csaY+oKGxJPlH3xRhzIdBb4aVv8LfDGv/HPvt8l2BCYQ/8Nav4lxbyKMTxf37QxlaM/LF7ld8Uy282DGhGoQDY12PIrjGfkzv7L4+o9DVGDBhbbsqL6e8P644V169LE4vFheGp8iimBqeIe7dq+86l8x5wy/gicMSb+HPPv516udlkE7guy7dx2863vfJeMuxVxU2Aw3/G7gVmMwfGo+00XCp3L2AEunmt6fLYwIW2KSorjOD/TyE+hlw4wt5MnTUlvUlNlXmVlOLq3weA48hh5kBLyNETJxuDcMnejMfS9rlNgUIyw32J8IZ/rXB2CLicIxnp85oqVj0SNn5IpZFGiu5zTUdoVfM/jidV1ypODcM6lhT+HHRA8y+d86FzoNOkwfkmgoe1sSxxHaDFhA9UuZJhiq940QKLOE/vE7miQ+TD7xjnEQwo8NrsD0zfade+2OuUQeu+jTz4OG8Wg2kMEA9xyo8zcZPV8LIGdcfYfmVLH0lWaH+ZNBhf0oh11k7xo8F9brZhMB+uOmMHzEcEptzg9RG0itzxOxnlW5/kSR4Kn5UNocZd+Kzuhs51X+NF5td6Ncqs8jaJPY8Zx7DEBgXcINLQiTxtihXc+thNHxtKXfo6ktH6UWyxGjQF/x5KmTaDB4KjOFnFZMI32RDAy0cwKi3nGzjtH1fd3P9mafvzBFor+sj+7/ayjTqvLU5o3e1aqmFCcphexBYz+AL5OJG0oS9wEv5jNoOVhBoY6xIGNQNGKGdq23u92NwaT6bgRWaCh9eLVdOQMx0aT0SBbXOW1mMr/3//n/yyteXRVmoAsjpQ3SG0roNngIzGNcXp0ojrU+fX4SdPgD2DXeBT3hpcpHMhWVvlEDAuZUQ6ZU1dh1ZvOqXpaedVeFRutA+J4YssxfdZx9Ljg5uZmMhrO8DqVSisq0wYy39wicAN+zLA2wy8YOfhDW1g+kXd442XYhX8yPx9oh0Sgk7F04zAewKE7c+Z0OMnLyLx9lCC+CyUGMcRe+y+vG7BTgJRJX5GBxOdmetq+QQD/+WwDvQBtajl9Or1PnYBrnMxh8dMHkaX51dXBbwYVIF/wo/IkX5qFZGBG+RQ7w4bl8/yZBWbPaNNgS7otZve+/elXBAKmoj+WLlkahSattSatDZDoG2jraWcHw4Cdsa00aIEYiYnQPwouwiPqQPF9AotiN8Hgn3/wq7Rj6+a04ZWN2HoPRI04/Q9xQH2h7aNNF8Fq6G2gIeZcutBvL/Eln+fweewL82wB0b9+5yfhnJv1VUHafgQZ5DH66TPCt6H/kfXFc7R71W/SxZ+zQp3yvDrPWmZZfRoDVEfZbvMe8rr0wYfYXkaggYxtAwvioMFS+UFeyH2Q8An4m91WTw3C49LFYKkLA+FfMWdmovSCwwYaDmOTvvX2tzn551H6wFbWwFw6ao9oyJd6RG6UNrbhvEZQArz3Mx9oP2LhGZnwNIiGlubIVrlFXzZxGsRisFJeFNdHiWHQRvujgN/Vs86B/bcPoWOlMfMo7W/ynDvQbCyBhiv03QLrR6BNF0G2Tp7l9qFN2JSb0OEzyitoIqOnNPW/4f/5w9fy+s0DDQ47m9NfEwDCAGmwJkpoqD8dRyFbbKun81yaw9nzTz/6eHpgfk0onX6IPtZJx6BklsJYcfX2FgxmG0bgg1mYJNuzRsMYQFKgLMC4GuD7W1k9/mjLR2m+ThcR+hra9tx32zOwIAMITrkR52qKvxutNGrppSOqkSSYyPyRCghw9MHMf01E7igruS+yf2b+/PnhPBpRtD0BZAwAlRulucGmEGuwCYCheBwHjKeAytQCpIJ/mkDDe+w/ngUwPf/ssxFoiIggfQ7nXOXMfQJ3GEeMW6Hxu/1E1lXERtN9nm3L4N7r3ibv2ctq0U9+9NfsKX+e1Nqncbxc4dT5tNjKcDFGaKAxpKGoUyAtBKgwQmlTcFco/V0Ac4yCSA+02YmhaAXVN0h9XU4BPgUuIrUIr8pKEJfWtuk8CCjOp38zuuhlu+5H890592zfTlakmpqb00kiopMBp2ephq8zLeiEQUsfFHS30YxE6F3VzAxdlTmBC+ZWYHLlUrpYzEYFJJh0YxyeOXMm1fGyFoSpdGtWrw4Q5JYwoE0HM9jg785zzLVzAB2y+dOoyFa+VdBGLvOTUpqgxx5W0jrOZcdbrkJpqiDGEQFV8fjSgbPfo2lTIJc2wefQQx7U8BqBMhvF8WIFGo44pv5+Haf2wMFDVA3fSlEqMhoI2C1euCgMRRUfA2S1+zpAnBWddAAZ+EkW5lTeg25+Fmzzlbm10KBH7ViT5FRjQ3qJFSOdosMYph7RdxJ67ebZXgYaFpZyPv2MKal08jgKZcEb0Mu0UuA1lJ/8K+9aHAt7NPggDzRk0V628TDuOAKKdwMNdzGmBzhNwhoNu+vb0+cdPu3X17/9o/8jbcLAtMijRoJn0btS4Pw4Z0cINPyUo6Yee+yJtOHFFyLV29ROZdp74oHDzQW9oYfzGYqBH10piVV3PtMQcmVB5XkDWXEFVsV28Ms96RsvbUqrmdcCDXKV4V0yF+6SHSFPyCfjTF9ncwd9ukY6tY7s9j/6F7F1YvGy6jQbY2Uy9meBjjXfUbY1xjzz3DbsUwQUwJfL8G5bHxkN1yMlgfapeQIfDPHM2H8M3W5jPQ5iPBtELeF4ywqO/igmy8TsoIF+VsQYm/w5atz4dLF/KB1kCW3Lsa4oBsliWlx/+HvfS29s2hDOsBW75UlXUIfI2BpJsCYcEHjMuM1VHDBXH13ddGWhluygulOnYk4exzHyuD/Tx12Nkv4Gv0z1F3PFJ+dDOmukaJgoq45Zpaz8igUaF352kkK8W8g4sE7OTIKOj9L2A4sWxapCYAsGkcG7kCEYSsNXZ1WWCzyU/3xGMXgMDUx99ax5mVIj+iAZQgfASTMo5lfPS/OqmB9qNIjp1gDRuNDJtX15yO/bbqTHQwNXdcRDeUf5E7/D8GUsZnt8um1bqq8/kx5jlU5ZtR6P9NXA0ZhTRkIeHTv/IaDR9wg+0J7vGnUGEkWx/nBYwDjo09DUlP78L/4yznR/k1WX2azO2pZyZjaaePvV/c3isLTPsVKcNItQHWXWjr+7xcx56LvRl2oPHk4/e/en6Zm161i1X8cxqWRVQRPprXyLJ8pJtMd4YiXTz3hu9FnjnTGEbmJUvnuv25A6lQsyfXRe3mJFaiU4HKv79EOeUOfYL8djEEldO8TWB5RAGIrySNRzgircQBCNLVwTOWKR77htwjoKh3G8SopL2M9Pmj0p/LeusciAcTiOYL7BvQiKMr8GTZwP+dEAlNvodNgHkM8sVZp5gvbyqQF296vXwZeXCH49sGQpK7BPxGqdNA87hb7ZXl5DJBYPoIX0d0zqZnk76MTzwunid3WK++F3s3LscYUTJ00mkEGtAxZQXA11650ru+oSwyTqPXWyfBTbG3h+bPMgW1OGdVw35E9shUL4nwdG2u6OnV/wzJGpet68CAZUkC04ZPYVgQYsq9BNrtxJb5+rc+L90uA6zp90GVfCiU6cEOZCirhldpVBuK3bt6dPP/44LV/+cOi9UhzS6QR7zLqx7QAQ+h0rf/KjLI++02kxyKMTp+Mlr/u7GQ0GG0YXFnEsXFf6+S/e50SnlvTC889xpLa23jT+DiZe7k390Ad2wWnmWMtxnILBNrw+MgLMtBjBolcR9xVz6lEhhRxHoHhDt9JuQ2t7ev/T7eknn2xjO8zZOHpOUFxRmlLlzCmpeuJ4aiewoo5cjAjbA10iwNwLNMCWPDfsMcZCz5GNLNAwEpzxNoX7DrI8iA3bT8ZbHxkNLd29af/RnnQSfxqVGvVyHqwoT//4D34f/bIyzQSTnOsheNZTJww0jIQeA2CALx1S+b2HBYJWFmeOkY5tLaFn162P1W+DxeKYgSPlx4UOV9jlGVfbDcJKfwNc2kpuxUBxMY9gNjjnZ9pjp9H9J5Gnc6y8VlZVc9z4M2GrynOxMAXvKqfh9NKeQTEd08AiaBb/eJDYIwZEYAN+8LlmNBzBxmhsbAydsAgb/uGHl1N4loLGYLl8M5b2DJAYhBU/lBPxNlvthmfos3igXRHzQh8MNFhg8Qx66T0WC6+xVWsRwZdlBNas8eNCjPIhrqtH8ndlONMfBolYRIL/xTC3q5hJYjbfGLNowEl9FW3sjz7+ME57WMKij7Iqz0trC/oW0XczFs30lD4xB8hrYCf9Vi+rn7TjDZoaHPS9RKeUufwAWaolA/eFl17MTp1g8cdFUvWGGXeOQaYXI21TGjkG/ZwsyOmWP2wrxqkOiUUE5El8aybQ8EP8A32JN1hYqiJDyCwZL1f6ldUISg3TXvySvsEz4pe6lbZcJAmMF+vFMfjKhZ9jnPzzARkTS5YuSevWrh3OaCDYRt9z3pEngs7wtd9Vx+b+kfTVFh5HANkxa0uY5aKuMjN9f+0B6igcopjwb6fHscfkRQsN28F7OijsDXldnYjtDe8baMi3cDtWdY0v/UF5vwubpr65iSLoB1I/43VLw9LFizM+1N+gncHrZApjl4mR4ZtJA+7VvpEmBnXFgwGeq566w+9mUF1jccNikKfq66MGoEGNXvTIxm+8ycmGG1nwmE2Pgil5p8G48vfhX79mb/cn0PCVQQuxsEkoJEwForyDrBwfI6Ph49R4po4UsBFp2cLFqZooNzMex8oVIWQKswpYcJOxoh1oG+9KCP8p7AKn6ZNGHzVab8Bw7lnfuW9XKseQEEDKcUinoKBDEGFapj++b9pWrtycNlerw8Gg8SgciXDE3/ldg8uij5euXI0IvYbiapzRsvKySMlS8XqvijPSZ3wGzxIE8xUvnU/7jGgGv2TOTGZsqVQF+ZbWtvQ5hSxNUX/skVWRiSFI2z+FQmBS8Pzdtkyd07nyOQLSbQBJgFIhK6Tekxl/GAX07wTG0ObNn6RHWWHUkDMdTVDQ0ddQNGgR+455hvQJsOVZCr+sbpsGGpwfHQXbNNDgGC+TFqxj10Gmyvr16wnwzKOfAB3gJ9iFMTU8d9H/4f7F2LjH+VEyVToKpvSJ6B+GSy+KUyO9sbEpjScr4FH2eM2kUI2rJ7YrXQTuQtLns/mlvzEGxsED7Lcrrs5jAYo+ot/83eddpqBLe1t7amUFoPtCd5pXUxMrRrH6zZjte6Qa8hyDACJ0gCH9iwwH7+Fv8mls06D/BhtiJYl5OIcB7ekH1rCwAKkFSudVVQWwGWS4i6HsCotRevtubQJaYN7oHv8EaVe2R2A8G1ywwI6gVYBxJGCdRo5MNy7BAKkoLY8jUT3OVQdBcL2XDsZ82u8AXPruhMa8MocR+OFZ8ot/z7JtRkWBr1oixM1tbWnVE49HYTkDJ0dPHk9NHLt2/HQdo2frBHbswjnjUiWp+bNKcDh1ggBoV+jdL6sBr7LT4YlVSb8EvYDomAMmHYZ264R+w3A/Gf/dQlZTCaCcI6NhV11b2t5G9Jiv4sLF9d9/7x+k1VQzn6RDAf8a+DFjwjnSKLGexFa2Ci1Z8mBaDc8b+VeOHLf3BH9Db3nQK3iPfogzymQEeeizfKIRFCsaPCPn9xMEvs4cOZHWPf5Uegijxef7HdQOVc5R+vIENC3g/HZXli0GeZsVpiOHD6ZT//E/pBUslD6weGGaxvBZbzOqBY/hOKHgRmqAhgGZ8WkEFFBqvRiZzVfYg3uxL93FcNKg7bvsiQEpTS/HgCfo2ccRl7eGCETw7JIpE6h6PZm0agoCYhzdZeVuFAP3qKS70La7/3Y62NqdPj59MWQ8r9Hw5sYX0jNPrSagV5alXfIcCxuqSEfCM/bRAKum6XXa9RQA01MvkpV2+uSpdLa5ObBh6dIH04MYXO7zNqApH2gMyWuBI9Bb+Qw+93ONOWTVAcX+WrGMe0Oe+Mzj/vYT4Ont7YlTUCy4FVsQdOihgXhjcEFjS76LoIBY4Jx7OR8YRB6bpUHnSqBy5PxqPJ6uq8cpPREraKaQl88ppejh5Ez2mb9YDRzmHwkmL8k3OvrKjama8of6y37HXnMNO/650mhwqgUZ8ohCjxG0flBeHDPHycB45loMiABDzC5j8Z1nZhiZ8Wlk+4Fp8qZ7ST/48KPYprKOWgFxfBj9sz23JLkKGCmvtCNmKX/SXiPdPrtS7/YEKaVjrMHuXDjGjDZ16bPPPqMuxor0KBkHE8hokL4adLkxbt/UR7bvzxqNthd0gj7qDSfXz8IQhk4GwCzYKE62kX3w3AsvRKEz2zEjUD5RtjQ4HYs6SKwc4XwAGtJZ6rggYcaXzqlBWY1/nWB1h0V5GzDm3DK5+sknSfWeheGvPIBR8LJ6W0yQb3yG/ZcnbdvMBZ1bcUGnRr1jX6SXjtxZAhlWbLcYtVk2DxJsmIyeki5wW2Be6GgcDcec7anOAmzihX+THsHnPMd2nXz70M6CjJlZPT3dOC8TOS5vUaquqgp6uAqoQ2FwNYIkPE9MC7yFbupmA12mdYth0sKtd7fgUY8NVw5cGDhEcM1nl5WWkqVZQ4BqZjgt/RjP6iOD4AYa1Fc6eREoGabHNTDBNg00FNKmdog8KRa4regAJ5V4HN/8mgUEdyojKDxpPEU76bf2UgHzZ4BEW0LmFlf4OFb9zNiLlXX6SRci4BDya5YC/ei52Ju279jBqROdcQRiFdsqJ7OlsBB5uNnn6jqOrzjA9oTRRRR3ZjZugV/qJtI9uI9FbgIG1g3ClAx63GVcree7087aw2nr/oOcTnCOFcYMFZeVkbk3fVKaj9NXyvc4PDuNBM/EbOUbUsW8mdFASZ4Ijog72d94Op+HY+0kcVlzBzRNgwRCbmK7tPCc3QdY+AC+8kDDvJnT0m+/+Y20TD0BDlmL6TZBhn5xmL6K49p9g+pT6KTOuXztCquw3VEvy0ykR8kmqcIeVvLMINHZxV2OLTBZUJaOQCf53/6GHYPeNkPOZxiIdWXdrU4GlsyyaWpqgi49cYrIihUP3wusKTvyvEEF8Uycd5uo78qDetV5VtTyQKR/E/e1PS5i69U1NMRxtz6zev58toQujG2+oePRi/bf/qpHxBUxTLwVx5RReSRvT9o7JuXAwKD643OCX9dxQOdWVkXGWllZafCdcph1LJMhm3I8vvyZxwT2KJtRBBIeimwG2lWfaLscJ5BhBlIJW5Oqq6rDB5mBPR+BBmQoy8CG+vQpCwridIpjtGlAWpyBEAJ/2JRu51MOxo1n6yGBswjGYn89/tjjqbq6KrKSxRPlJ3wcxwBtws6DqWVJ58FsELFGLJXe0j/wmec5x/m2x48+2RwBnvXr1lIQeXYsmjl2AwW2WzgckHUB0cbFd2fUtm032gfj+UrMi0QTx8SixuasMPo85nQV2ycmRgBUXgFvaU+fw/mMxUzatT11nt+XF8xokDfdUiYG6bcYANHWc5vwKfwbFw2ffe75tIR6ZY7bbIfwgWgvMhnoj8/Q5g2fg5/lFf2gCJzQb3VNBBuQLfXghYs9Ebhzce028/Qk23mqKyuDD0kkBSsJRrEAYyDpLuMIfUKbNB30N+AlfkWggeeKw9rwY/AHlC2Dgs2tbfEcC0ZfAHN+9/d+P73OMczlpRXQUgo7k2EBDP/M29f0Qj9Jmt/8UrhtKg8SKKVjRpgOeycdP3ksbfnww9infProsTQeYZjFyosOhNsOdEZMJdIohRWiYIZpfhqCglRU2NWw5f4QI75jdFPl7PM62d7QceEce9gnoXQmR+0FlZcM53E+7r/UQYzqv3xukS6FQ9BSGGQsDYxgEphSgc0MJgAXp7cJg6KPtLwKGE1HXSEV6GRagcMxaBwaDTPCF0aQtHBcvEtgGVqDJTcsHIyfGchobKinevakOFrGKKvtyl4RBBBAeUWaMX217/bB/WgWYlIQdaylg/T3Xl8ORmHtRjGfRdgNwsxiz1eABM+1//4L4aNfdlJBs30NU2l+XcUNbbwsRGUEMAcQ6WaqrZkH17l3IY7FVCLQBi+keUT1oKO0lPa+NDh9pv0U4AUZBd7fYx74TLoHvfhM2re2tQUIm0lSDNhYaFJnxBQnaW4arEEn9yX7WaxCYQgYqHDvp3s7pbnj9Dk8Pgxs9+bFWbq8T8FJn8kKpsV73F+cGUCCT7ZHz+f4XedD+kkDo542Z38zo91IN4ENnmfdkHYi/5ev9PB7cSotKye90xR+j4yjT/Q3FCe/G3QYw3M9QUKwDQUKL7qyJkhpTGgkGuF2Rcp9cTp2Xe1taTKr5qYym9khsI6BPga3IgDCeH2XVydgJDmn0tgo8r3gVVhyTD3f97lGugfpk8VpurrPx1aN0ShrVwVUfOf9/Hxv8MMDFBpcOKsolU8sSVNJKS0Gfc3S0KEdRx9iO4MyRT/sW8yq/YGG9ilSTXnuIC8hlTfoCT1w0LGS0/nrA6T2d6StLbfSBIzMm46HO+ehCGeR4TIWAxfSw+vxxYzPoN9lotzNTdTGoMp5KUcUKueOz8li6uHxLKjpeP3M/eh+pnNjOnfIJ85WyCvznBuNDlrFquN4kTTbRVWsTJsq7SogfFaAUz+CDAIaC8V0BSXElKV5GBxT4EvPqx5xYH96eu6MtBhem0hQYhxbGrIMEPYnE0BUVtw2MWhf6Z8ocIufL8LPzTjZLefJsuE0iX4iDZcxTDFNMJw4VQOH/sL1K+nq7as4jewdHO8546xO0afYksZQR0o/6EAoKHVRWPLoufNpCyd6iMGm62JCoEhnpLmsbFr7AwJEXYYoBEkfRkiLYbw0PfgOfTVt14wKsaKbValLBNaU61lzyqKorbIibolHudyIJxoMrqJL4+BH2vcSg+MYKvGI8WvkyiuXwcg2goJi6yQMbzFKIzLHAGXKc6t1XnTApjIvZgyIo86rsuTL/buuAso4BvBiaxvPcX/2qROnKHw6ARyYlabzfWkQe4OZR411Zjf4RZ1TjIMlbuksi8FhDNCm8yf/yGj+3UC4znx9cwsrsO2cw11DUbwJgRnKhMNWPjK8l5dN3aSoHlimEaqR7aqUQRSdXGmhyA46BhwlAw1ZWnML+nAoznF33H4uzmp0Bd/bJ+eMZ3l0W2QwoD801MQuec3vGJQV18RFn+cYrrDC3YnjOxH9NH1qtroaW1RsTyfXsdK+M2hGjideeHyb6erWJpIWYr984fwqjwa2TU+Wfj1ginqkat68CO6E3HGvWtN+SW91ibUVEI40jZXxsaxAmymgQxVuBnwxmhVG7QWNuD4yukKe0RX2oYjgZSm4MUEnyg7R72xl1xRj8BeesV6T4/fPOstXcUrkFzHV4EugB3/zkoctsNsHbSxaOZ4sD08pcQHAuZIO7vd2bj1NQr5w76/61TFJC/Wk7The288zBrghVjHb0Hs3rl8le3JyBNdMIxc7ndNYjYb+A8id43BbwiS3JvA3s7q0a8IesL/QREPdrXejmHsd024yERsa65n7ftqeGbbYBHjaVXOPA3dLno5iZDSAb+5HVt7U3+LTFZxaV1rddjCa4I747fO0b8xOs5aNxdp0KibAj8qkWagGGEJXwcQGRuyn7U5H/zrPOpwuAmjPwDTh0JnRauaTp+8oG7egbyOO480rvamqmqMt6YPjHg2Lx7GV8iLtR9Fc6iCMMOAAvvMJulZMZn4A5jvYTY6fhAeeRfCIdjs4AaINfNfu4ba4lpZz6sTUyamGrROl4LsnBY2i3wXQIdNc3EZ/Xeixr8qn++3D6lPADTDwmUNSRgwSW7loiK0dHuNsoGFX7YV0mjgIG8WSpZwnk362eBH6ZfpUxodOZ0z9zKv1MwI05CHobSq2c6Czqo1wNeyOdrZOXOFY0WXI08TgR3EM8EcHwA581/kYR8A47CXGrlw6Z25Z1e62vevoNKXQjDX5+SoZSL3YkmbwFI+fGAGq8QT1xAD7FBgATzqnYklke/Es5TSyhBhDLtvqVO8X3y0SrP6w2GQnATC6mSoWL6D9ObBuAc8Fi9B/2njKqkFrMWaihbHhx8B1cVJ7DNqJkdo5OskGTMdCnz6yOy+wTasfmbUOk4t6E1moEHdj1Z5+i7f+U08VY1PljrwYrE2YOdncEcEA5ImnuWXR+T7PHDY2N4RemE7b00J/UOyXfiifGc/TN9o3uCk/6thKA2mRF/aMTB76Ie21t8zI8O9m8fRe6EpzSsvQawQQueQnX2FnMz/iylexTFtSDLb/YkpGe2x5frY+gXPqJc80NjUFdmb1g8jU5nNt7LDP4VX7Khvrc7iYJVaKYRZS9z0PTOd45jP4Ly79m7O0P4dtz2VsQRITzUgQC5V9aRAPzP4X+kH6BEYyp+KKA9WX0gZXf/hdcfAmfG1w7VxbB8ddu11+CnMKDmFzyFve6xy7iOz82q62h993i5lZiGZ1G7xwcVfM9h59Tm3szq6OqD/haW+z4ccS9IdBahq8ZxO48K08uaiinnPrmEEQfQSxUpSQV8RgHjwcCCcDieCC9RnceneFs3gtIP6D//P7FHH9JsGkeQwZe4J/2ZXx5vAvX8u3+xRokDUzZtAYN4IbDgURW7nozKkTsad85xc7049+9vO492/732JuGEmIF12ezv5tN/8d/z6F+wlSU/U6pQt/x+/+59zOpo3YV97xn3Pzf8E9NZAVWUot/wXf/du+UsUNxdM5EqjbVdr7e0kXTLlID6Rm3X2/Fk8BvEqmpt6z5+87bXAh06zhHhP6uO8XGZqxosG0psb73jpBgRkonkuk4Gdxo7/zE1gIR6kjzeCsOmHRRAMNo9NcFP70cQTvSEkVhDEHwjDi11AqFnnUEEE/h+Ggg4V2RIFiQPK5Kzw2qVOtoTbEdoM7OAbnyWg40nIh7WiiCjp/pyRkKIFrtzGa7uPlnBYjT40S/u/hKqfNRRjEtzHSqjCin55fmRayAjeebQ9FHovJyKWVCldjQaWEjo+ffbdGwzXoehGH9yIrWoMFpE/jcF0jTfgWnxdijA6yTNd9s4eCmay4ImDFE4rCGCghMGUBtCKMJ13PfrZMdF+9kc5evJwaLrJlACGk+ShCNpoNzNduORN/86KmZMyPwYj7eXH4RRxb2sX7/cYZ+7lq5sQw0rovEKTwg/t4Taet6ZNGpJOX4e2/h0sswG4hIJQ5Hvf7ERWAGb5Fanfy7/O1CGEdR1D1eBvV6O9z2zY3l9f0yaS6X+JUpfvc/kLsusIJbNu61J+ycOr9fYA8rx7pvL/NRms1/N8YLfViU8d9bp/ktSRPig7tvHjEfb2W0trEubNTR2vnfdfbdrRCUERxnZXp/7YLLA5QHL5vaRljnzo11VAMsgw9ZwFfAw2R0aDzEDfz7vfUbb7zWQQavvKTSGGw6jaOyW2cwDvU8BlgIa6151Lae5gTHQBY1uzRc8NN8O7vmDQEaFJq/XuQ1QW0P2H2pHSz+3I68f9T995xWxbXovaiiYAgTVFEpQl27IqICmoMamxYsPfYEkss25IYjSXJTjfNGHtvqIgNUBRUREVQEAsiICiggFQBwfJd15rnfsF99v593zmf5w8HnvfuM2vWrDZr1sz8f0ANr/9vJXXfXH7W6btOyoG11m3KVuVLY9r/BUHTDV7SiTAb307Zx+u7q4EyQPilCfXfd40febVlm3rsjsPUPc6/yyRNbrp+CxaXXhSTv2tBQN5waqhflTP/N1JHKsAyVTENAf9d4l1ab020KjNaE+f/J7rpl7+6PI48egARMV3JrXI0FCeDf7/P6TtwNFQSkE4DglxPkx58vUb68BTwk995J0YOH85KyqPj2aeHxAo86p3w2OolM5pB77ZJVBp14HyVmQsZTedaQ7ddh/VyFEsvm56tlO3cz9FSDHRDVV2TwF0GnHqRzxH6Ojz0gmV4Fcf0UvL9bMJUps5flh27ddq2yBEw1wgw1NRQLzPQU6h3059OE5NeKp/rHRRiO00KCz1XdpIcPdQ7q4eNvkC0a9sSuJunh9eOhJ41v/VjPWzpjLGDkflbN72I5R07HXpsswPCu1/Qy3MEZz4jm/PwgLVhZLPNOu2oU22kBDgyzFRcChzIFD49l5ZlEhclf8sq5fiqL9enQyju58/7lNHRr6J9q2aMHrbmW7uO5Xuyo7NHtAd56kkWH3rzHMmpPKDWMfMWDt7PUTjO9RwvWbQg5qAYzG3DjVa1qXAVKHhS/nMorOW7pnynvOZVVlGcG7rsyJP7SM9hYSXHF9s3rocHcqMcrV5G50w8NKF9PeqV9Xvxkm1LfaQjR1JzFM92oh0MiXMExygOR6xnMV92NlsACM/G4KYta42UuWvcq8GvoZEgcswX8xqcW2LtncoA4VbikQc5KvbRrLmp0BzV6AK9t6IDvwJYpaecIwuOpW9p2cgLPa+GMAOsmWe5jlY5srKMtllOW67BaJNwzINmps5ekCCtu1ajhN0dARwpMQ/rLu1Lj/KRI46Osulhr+Z/fjhrJnlSlOgjdQfQ7uvXj41bt412a60RLejsys/1pW9+5muoYDoauHZ0QtoRNdKH2ehc0L5JZ4N0Bq+trE+Z9ViJmjUa3psxJ8ZPXZzv6JiSC9dbe51cDGlNytPYI76Eu4VCV+cZbmZH0xGBpPnSMslrtqF4NLRw0YJ5MWfJl9ESVLVqsw4dvKaJ7xwhoA7CmnIGwAt+wAt4MvpC+nftD/kfRmG0kFEKRzKp6wJGCmbN+4QFDJeng2ojytyeCIOeRBZtwuhhM6IZmvBrDNIcjUuvNzBWJG64q7WyeXU2sCV8LM1zw8WJTOC3iHaej1f+0y8WxGeMcn9GPsrMpnhS27ZtFq1Y6b0J8DSFVpqB12XIjamz5jA/cEF8wosf8tNto1Ikaxb+bMWIPts6Uu95s2bFPKJDxG7Xlo0zpFK5/jkjAF9TtrxTn5DWIl9qcirpvcghca4XX7q3TuJTeezRkeyPZ8zOPeM1urq0Y9S2jd0w16VhtJBj4toywKsjK8pdyzeqQembowVV/hyVFsIk1hxpmTp7XhoSrItJlEZ7osBaJE8bYWDe9fV8ZUk12Lw0AWyekmcCXisjz4Fd/TKXaJ/pRNyo4dq3bs76OuvlaKsjZ04ncP6/czZzFIx3lCHW21Eaf1XyHg8SR+JLXBnF9SnRJti30XYtRtpbEV3BKJZ1l2aLzuM73pU2zUMcKat8x3uOKkv3XquHGxISrf5wpHPevDmxkEbXKGrTli3YiA5Q/+QaCORhsv2Fh5McdVJvGja8GK+/OHa026kEhswri5RPtpGjZ/M/YxXtRStiHaZTtWrNVs3yNeAmzilHnjFvR5vUGx7F9xJGbA3RdmTIXWrUL/7EHVXJNR0+hXbdUcWO74YbtGN0r3nSmLRgva2zMt6RKWEWL45sKt8KvRZa4sWkxRwNFK/gy/VXPpnPblTkvTZE2ZrIFu0KiiOfwvuORroNr7rOUVPrZPSG5S5mrq4j+jmNCxisp/gXFqd3fjxjWsyS2Uid2zRjatN6iXPlrjrJARorqg1hNI3wS/OGTqtTjdYQFn8VXxn9KP6Nvpg27aNQRkrv7dcjYooICCnZ8GPhlD7Ul8JqedpR2jziX7qyfX0mPQmD+CpRaY7uzYspn8xL3LSFRNZdv12dPSZ3O3ooro1MUR42R74ZXWD0gaN7Jts4G5KDeM9EeUa2fIqsWQDi24D3lkQ3uMOHdoOypui7ojfkJ/G7NvO1zcPybAdzJ6vysyTqQAPnfdfWmfURI5NIjTboPKfDOiqsnssIuhpWjWJxZ5rFixnZZ2vlJSKatFX7erEBfNK1ZdNoj0e6OfOodDQ0SEVYK5Q8lDsleW47lWv/Klu/ggmcCvcVNOSCvt8QNfIFMnn6nIUxduKM+ICZGtIe48+0CzJ87TYZLWaE3uJFS3Dorx2tGYVvQnupt83f9srIFQrRVhRntnPKGugpbVXtOuhVetSWa0Hd5RHXqZqCDLYTbcduw45MCWa0+gvpkXfFj3RfZ3eRh7RmZI71W0R0xTJG65Xpyhh5WTkiH9ouc4gwnonCsv4dmjeMduttkJFDwlFFGPIok1EW0o9tatOlzoDmrV/+eEuaN9LC0XUjsT6G3udab551W7c1o9nrZL0TJu4pf5Uz1sW8/c6fPKkM9z1h81ooLTN3IuBdpwRP/Wh2OtQclGyPrHFbX1s14edDZZr4SbjJQ5ybn/LZcov85EbeKzQhT/jcKVHTsFXVH+u2aBLrt98g+V16V1YIk3qO7DNqt+g1IwqcnlZwmnKftjbJI5bnN/LDbGzVhbBFu5bs1NKiVU6N06arwz2QSgNG6qbekFeEnzwq2Z9tQN5lNN6aWztsENbtmTmTnXU4b9OKRcAZ7Tc6RnrxplENOfUNXKsHlT2+m5EnwKa8cVtI5YR1tVzhNqpAe2zBfOyxZV/Fejh8W6M/1C3iWJrLVMDgO674lv8FdtqvgtmjdGPB4tITbY7PWHfhU/CCn4EFrztkxJV6UTll3ZV3wia+i1xWdpb+nzCY53Lql4vf2va8p3xXlroA66c1G741MK3Xfr2MTNQiAbDEvW2WtgDt9qX3hJ3zxYsXxFvTZsWVv7osjj7uaCJLuwCxFo1f+8/6+/L3N32njgaJPR0HokYK4PcVDD3p3Xfj5RdfykVZDJvp3nWT6IjBrTBIBucomxpyb3jWG29NiAdY4GoGeO3fq2f02WsvvDydk2gqYpJpVFKpfAh7UYgoUH2uwCuddwVUETY6QUyG5730ymtx56DB4Qh43/0Pj5132ilD56twRjLKhpXg0kCiHnaiUoAoAHluknDsXDRozLxfCNCQU7eLeeb55+ODMeNij333KdvdbNwxWtJxNPzLb0p4j9M2XCMBww2G9L5CUaLNcqiHwky+8ui8UOe0vvv++zH8maHRCRy65VW3Ll1ifQzdEm7knHjagG9LKu2gMqiSz1J4K/C5aZiuisJdHiaMH5/7d4999/044agjY5stt8AgwqDDcKiMKwWZKx6D4GRIBUGG0pKXglDDTlxYpiFVzjG1XhPfxtk08rl4ZOTLsS2hcYcfdCALr3WiTYuCsqbiOHFKXnnuMX9F4XlPpi0HhCVlNwE25zi98NJLcf2td/BCxMH77B37MF/ZlbR1xKjApJUMg0Ow2KYakRpq1t06aawpsNMA1nmCwCnC5euc0+qCPI+PeCHzv+D0U2NXaKY5RrEhjSA0FZ4PNeZqQHNVUz5AnDDXHTObNNB8ZyKOuDtvuzXe+uiT6N66SZx4ylks0LVlCnDbS0PYEHONNq/dmspwVst1wUoFu7DnOhHA3Yi6fUNotQuAOdfslTFj44Yabg7ttw+LJP4wOhEiL+yGJNeDwNIYBU9psMiX0gy/+eDFLSNHvTo6ZmAQTpryUQLfnZHL7u0jOqIM2jVvHM0ZOS+OBWqqYQwdqmIMG9Sgs19XORqyY8Br4soFD9PhAB98bVugfpd/0zBmM/L+DiGyr1GcndFqRP3YQ4+A7reL9dsSQk0Hyk66MqdK2ZkFbvFN0RgRhR9KuxSjSBqbzboi7yKXxkPzE14ZG3v2+wF7vm+Z28tqpOe8YdtL+OUpMwP3aViQ/wrmaqo8zbcsVFbm/4PIDN/+8OMZ8ea7b8WE996Nd16ZGFsDz04822GjDtEVQ3lt5n41w7RsDPwNIOzVHQ3SvBKxPnG99OnTEbOCNlrO+QrgoNsE77GPPeefEiY+Y+ln8fHK+fExIm4JqKhP29jPYAYF9A2Pg8C1G64HrTSITz5jfZK5n6fCnc6IxOeIMjsopgEsyNe3wnND/wAAQABJREFU715Zz9EjRsbge+6MOdw/4aD9o0/vXcFNu6QPd/FYvgxa5KjxKk6klULv0jr1EW/8A3PcRk7yyzB4cDB5ytR4lO0qn2NO9CbAeuhxp+auLM0JWZW+lZNF7pIv3xuOa8isspHcstOF4IDmuY9sMQTYn3AYOj5uwoT441/+lk7HfbbvwbzHQ1k0rns+l4c0hszT9kx5I3zkm3BaIvf9WVg5lroI/0L014jRo+OGe+6LTeDVffc/hPVjdmIF9vUTRkMyRYVzcJU50o0d8zRooaOU7RwrfHj0njzstDBDiEeMGhXjXnk1evfdI9d16NylC44jnAKULy3Ks8JfB3sNvxasIep0OuuSHQ+MOHWhYbSGR7/3/uR4eDArpCOXd9ulZ46eqD/cjjGniJG/eacuBFca326hKDrUoYn/Km/aQBh8/2PWinjn7bfjNeTEmPenxenHHxPbbrVV6j3lrHjM78GHKY1pvk/a4TplGPkYdq0ut43U8YbXip+P6Cy6PsootsOcS0fg8EP7s0PIJrnwoTI+HRqUoaw0XNY8zNs8hFEdqx5wOqX5Of0mp5iAszlzmSf/6itx5623ZYTjwXux8GWfPrn4sNMphN0QcEP0dS5LlQ6omL+dbHEtHUpE6hP1q7KholfX7HmZxYEfe2JIOpBOG3A4C5dtn1vvJh6gd+lP/ZlTLzjX9jAsXTyYp4vyKTcNkVevqr+so/V7Gzl29913x5jJU6Ib2+ye8NPz2AGqRzpBfK5O9ufUA9fjqDoD2mjWodgdOH8wmnNXA4DxO2lAmnE75Zvuujd26NopdmJBU9cakd4T3hp85mO+OuudiuL8b+0c80l7A9jFu+/ZphSdYcviZiQDUPc+8VTs2mWj6Nm70LzrMcmVdlzV224P2RAlomxQjyTPYFtKTk7fkjfrMcXOgQfbexFOsVmEnL/7/qRwcWN3x+m9ay/WkeqK03Q9YNCRIz1ry32TO6C89dZ4Fv0eG9M/nhFT5pbh2h7tG8SGOD8602lbv1l9pv2iy5A79VPnaLPw4/v81Z2bY6FzLUl/OtOZpJTRDG7h/DUOvhVE/M5gusa4t2fFNKJr/YLZFNESOdu+czdC8VvGONp21gdT4+IzfsyaDZvFWnaEqJ91TPkKjqsBkpTFyFefiR9xJ+16rQywU9SCjqHTDFzA8J5b/hVvfLIwdtuuRxzV/1A6X514l0Ek6qcta3tqH+pgSLlGXrZttjXv2Pkvzo3Cx8p6YXEl/VfJf9C9D8Ys6nTMwT/KhWTXZdFO5a9OSdGeWppKK3fMU3qUDxQ2VYfXMnJKKu0l/evEcN7/sGeeiWEvv5pOkmNPPCF2wBZ2cEYel6e0FYU/p2ODIzPOTmNNHooPO4qWm2uwSLvA7/sT330vHrz/3ngHx2avLTdlN5+DYwvWjPBdaVF6FkbxmnBzPwuw/hBkOrCsQ75DaD1tJl6dbvWpuGENk38/ODC2bNYgdut3YOy44444Tjfga9DC9+YpHl0nTNkqn6sP0wahzKyfZcqn4ES5qgPdtYJmuZMP/DTk+Rdi7147xvbb7xCuaeSU8rTd4UcK4VNgNy/ySbxnlQrehTt/wJM2JTLOdVlSxr/3Xjz77LM4Gdqws9ROsWm37gm7W2k6UKmedrpY9hHI0+mD8js5Ur7O46J/xbX4d/FRZdls4H7rrbfitdfHxLP0nY7vf3Ds0KMH0xhbp+PV9asqvAJWQTfwl/PCC4CdybJy+jPPnUpo/2nSpEkxgn7Zg8+OiE7sUnP8scexK8umOcXHaRPKMvEjvtUfFqCscSDVo7SkjE8LBNtaeQzy4OuyEOs4dk568rGHYvLsxdFv992iH4vvd6L/4bdOGdOJYr7Zp0RWOZBnXi526Rp3w556Mnod0C8dDR3ad+SZsom2wRL0b6lwqd/38e936mhIUWlrS6gwt6OazoFx1ddXMRBmf8w6CjT8jiwK0h0joShTlDdIl/BdyGcO3r6Ro16O63/+83gPjJ51xGFx+JFHRA86ATJ2Ogw4piJEeeZ8HBYrSacF5ZkkYDscqhAZVqGrZ18CnMm+108MHRZXXv+32GfzLnHQEUfF3nvvlQvqCWsqNZmdb9MIUAhK0FaLfJIIeW5JlmFntwGCxFEk5xcqpO5/+JGYCFEfOGAAC7jsHFuwaJwLgOm55YvMx3lfLuxkx871D6ybdVJwJMziUD7ivsf5LmCIEfr6G2w3hpHenYiQPXfrlXhxxWjn+KeRxfeFIf3Wzykzy/WYTZPPi2eU/cHx1GpMTp78QbxEZ30YkSdjYPZzzjs/egP7BghAO17m6aiH85pkRh0EKiCdDCkEgVcPuqvy2ukVNxpp7lqgcHGv+kGPPhJ/eeDh2G+P3nHWKSfF1ltsnkaUgjURCsiFpYBVOrIKHBINXnjL+/xXUDlH3IUiZ+GAGcwaIH/4+RU57eD8k0+KI9nnuXuXLgg5Fkik4rmADPhWoAivAlDDvTgaUKzMT8xn3NN4FHaNJYuciLK/7a474290Lkw3/e63sT+Ll7WEll2lm0ZL3BaEA54AkxJcce4Fx2LSFNrxlgLYNHrM6/H73/42nnnjrdh7s03i/Iv+I3r33CUdCtKEdJIL+4B3M8s5sxjX8leuNk676GWtR8e7AVEMrq4Pc+X2YAqxoRha51/+yyzrotNPiWPoUNrxWgrsyxZ/nvhRIKbCkd6hSS4yD7e7fAV6eHLY0zgZ2O7nzbczn83wc2y6AdEdRDSsy8hr81pEQ7YbNJjzEgFW54OKLbNTyZPtl+BLIeu8W0d5NMC+go4qR8MXbEk2e+GSmDB5RrxIbKFRTVVn+IrzLoy99uwbG2MsNqW+LgKmESpiCp6hHQrzXBrRKMh/lCMfuIaH9DZjxke5Iv0olPJLI59nxd/DojeLTLqAlnP8VT7CnQYPbVA5G3LEiPyl8TJ3uMibRswtcfHRb6jjEkal35v6frw8jh0q3ngzXn94SHQAnu349dhgPRYWWytaMV+iOetarAGBo0JzDjUmOW9IKsAJJ4At4AdfEFTO7eV8hTAR8dFsDdZpQfl++sWS+HDpgpi2/LOYwk4QjsStwLmgHhTnsGuw/XuwAyl1YlV4iljAYpAf02GeQigDg88ZWWC5F1/8H3HEEQOS94Y8OijuvfaqmMD9K39yRvT/0X44pzZMWSFOli5xrY8yaq7RZsOKc38F7/6ttYq45x3XD1Gmjp/4dvz7ppvjjsFPRs8NWseZF1wae7DYkqNGypA6By/1l9+V8cq2dMKSaT0UvUo+FT9Gq7yc6zWQtx1J9ccvLzgv3mFk5DSU98mnnJILUWnQum6LBo8yTAABLfHtsZx5tFiopvYTBs+VCXMZuRg0ZEicf+11seemXaL/kUfHPnvvnXSjEa3+UGbZicntu2gvR6edvykva2RrBImPqqOrzDdyyZE6t6t8+Ikn4qWnH4v9+h8ZPXv1Yju2rTJqQoMz13mh7XL7XfKQpsWzFZHuNZpT/nKdtM43vqN801H9+pvj45Y774712raJ/X6wN861rXLbYPWyKJDONRbTsYncUT7qaDAP9ai6yfLMW6esstRO9RTgfvXVV9MIHTPqlbiIHVb22LVn6r2MDAB/ylfxaF6Vge7Rexp5GnPixDI9F186BDxOev/9GI2D56mhQ2MhUS+nn3RSbI8h6lxrZXyOqEHbwm3bmoew+a2dD2WtZYlj67EWTi3bU903i4Ujnx42LP55+eXxGnU79/jjYkD//tgoXfMd4Vtaw3k6GkCAdoD1EA+cJF5sUzte6WiwI2aHimd2jJ546qm47V83p6Ph55ddnFvvtmcBRmETVmVv7uQBztW1dop0bIgzBxHEofPyHVEz0sxr9Zf1e23suPjzn/8Sg3BQ9W6/flx81a+wDXYri+mBV3Wftk2ujQIe1Mc6Hqp2kI+kyzVoZ6MchFka0tGgPTb8hRfj9+S53fbbxD5sa7g7u1d17tQp28x8pANxK59KH177E2/Z4c38ix3me64eb3IHDVe9f2zI0LjmHzfEET13jB/st38u3OkOU2SaOFD32XFxVyKdDYkreEh7xC6+61u4/aULsLm1pbsyzMcZNQ1HtduzDnxsUC6O+SMc7G4TujELsuboPfVTCKjuPpwxPV56cSSdkWdjEt+Nn/Fpwri90wNpp42J6mrXtF6sxTbGdY4GaVkIOKZTPaFJbkzZot6xS6fLPZ0MnBuvhZsivgJe18v5iIGAN99ZEB8SwuTYK1WJdp07xaY9doxWjNK/ipNn9uSpcdXFF8VudEjd7rIR7VNFqeokEsfitXScFWjyqjILXgUc5YI/HVTN6HCuBJ/DRzwf//77X2Pgq+PiCLaLPufHp0UP7DGdFeq1hURSKAdcTFk7LxeQJE/5U5rVDldb5ci79rZINFHODOz8Yc8+E7de85t4g1u/OOfsGHDYobn1rvSi/FOHJO74q55L+DmmGDYfnisXHShMRwNw6HTQ0fAWDsf7738g/j3wkdiKV3969dXRF5pcty27j1D3dDryvXJAGhY/0npF7wkzdfKYtE5dyqCBEXU4YdgS/m/gZsSEt+PovfvEScianbbbHtpDf0iL5Cdiq/x0IiTg3Et7g7LzH0fr1YSoJ49LiQKZwYDeMJz41/7uD7Fz542i36GHRd++fXH4dqnjF3WkMMu3rvOgbWadqjKVMSXCqYYj3s31BlD2LjD4mINid98X+x9xCLsF7Rk7bI9Tk3WtXO9HnBTc03bSEbCn3QcevS/epRsqUNoXeeA6NfNZo2PyBx+krHn4scdifZxv+wK3C8x37sRaKbRPdtShGfVgOvHARzoakFVyhXInHSLUSbwrO13vSFkm/7lT2/ARI2LQ4CfivPPPjb679coFfF2AWBykg4qMxK3fZ+Jg3iaP5VfkjtSUfRfujsMOexw5cPdtd8X63bvFBT/9SfTcYft0wAijeFF3K1OEXd1h36Yx066MdJA+Uk5arANc9PkUHK59Mwvn0QsvsizAHbfG8xMmxekDjojjjzo6NqeP665y7u7iNqXKR/WUfKitqA28jOmzU6ZPp86PRftNu8Yxxx4dbdttzBP4BLuvPs5IOaQQGIfvafqOHA3JViCk1vgQmAQrMXxDw7nrxPN4wT77dA4j5OuwevUOsQmMpcdeZSMDa0StCeEZKvjsyJEQwk+Dwcw474jD48STT8wOtSM+elplNJWzBl2GaOMx0muUZfJNhnwh8FIgcF283cDG/49Z+OshDLlL/vjHGLDLTrH/QQfFHm7VQ4c6O6MKJg1BspPYCiOSCddlEaYiZMwsDWyFFT+J0FEZIw5uuf++eGvIczHglBNyP/nNcTSszaI6MrrCwnwTV+bJtYydAkq8JQr5A/wKE2HX+2VozvQZM1iheAyG4h0ZhfHDPn3Y27VbjsI6AltnjKcgBGZSJWA9lry5STEaBB6rsNxpU6flyu5DnhvO1onPxX/8/PLYA0dDGxwkLjDn5+JFA8Q6aDxr6FhmJVgsT3j9WZaKrxFGhYvwvIqjYTCM/ueHBsZ+e+4R5/4Yxba5iq2moPy4Vn1xb1KBkw3HQlmeW3Ye+KOTZ00E1WyMoaF4uO++4cYY+uHUuOy0H8cx/Q9Lj6KGmHShYWhbSmfm432FuQpZJWznxvY0dw1E6+nWhk0Iz31/8qS4+fbb47d33G7Rcefv/xA/2nffXIhxKQqZzFahtiYA0xynIPOrohzynDtZA97LMESOo8DNb667LoZMmBiHbbtt/PRnP8sdE6QTR2gBMvNPjzzvr3TRLoSWVJQOAoSwsOeWV6oH6NH9zV2s6DPgexreO/2SS6MjsJx2zjlxCNvgbdq1W0Y0uGquIcEqGwWheEnDhDxUMJ+hYEYx2vfYk4PjvSlT4+V3dP9FbF1zNGxEp3wdpk6sRVnZXrYPvKiDARDyaOcFFCefWxH5MqMayMd1GuxEf4WzEMLB0iKmm9+cxUvjzUkfsE4DHWXem8rPdN1FF8cB+/wgNsT4a8R39KmzbaWLXESM/FPucBDTxdHAhQBQR0ftNKbmsHDhZEZ3X0S53XPn7XHUscfH3r17524GbnNop1TlU4wiDaPC97ZJ3cKmZCnfa+zVQynVg0+lyWVEO0yeTsdr/Fi2Rxobz93/WHQBhB2gsa0Jw+zcnIgGxEYzFrJsBLHXZ5RMevGvSWp3kSHb14XNFG3iaCXnhtxRUDRpyEgv7ywgamUm21dOW76QqRBs7wYKv8HPtCajbzQII3tggT51C2i50Rps90a47oIVbKHHAjXvzFnK7hE4GsjSdOGFF2VUg+trDhs0OAZdc32MinlxzVlnxCH79YOfOiT/SMArloMbwJV/NbQAzdvAaz2UafxqbZH0hCyzY1fnaLj5pvgXZRjpcdXf/x77YhApU1xETpyb/LwmKRMnNB83xQH0QynKF3VBkaEYweBeQ2HEy6PiqgsuiNeZynA+Dsejjz02tqNTKm07Mi1+pXdTybI6L8d8IPy1HydZt+JomB8PY8j99Lpr40DyPBg5s9debr27UUYauDBlcUqBBeqR4Zh0DuTTNMSQKz6XXzU4dOqJN417wzXdUuvOhwfGYEbUjjvxpNiNDuPWlNOadQ9yuzK+z327+Uh5Zkp8mwt1UnZJjyl7yb8KuXc7SaN4xmBw3XTHHYzmbB4/YtTFbXfbE7qbuKMTkHSOTNTYqpw+PktDF/S4erZOTfGuQ1YjUaxNmzYttzgdiqP66aFD4oqrroq+u+6aW9SpD4TH98RpXaq1gfeUz+oky1FX5YACr7rwmO3mFrtDGSC4/6abYl2M/gvPOit2YNTejk8OCIBPDWU7MvJt5QTxW+V/0or0wnumCkfNcKIvZtR+KB2jO6//ewya8UGcz2jXCWyX1hUDWlklmOokv9TeKNPBlC2lI2SN5APLMLzbD5Q7dmRsY51Hdz9wf1x9400WHf/ACXNwv/1ycU0XNBMz2bkA1hLRUPSRbWE72M7aALn7EOUoc6QXHQc6IexM/+nPf4oHR70U/TbsHBde9cvoA93Y8f4cfhIv0rtwFpqGYoAv4TU/8CU+hLWK0FA3CpMhx0PolB53wc+iG9+fcCayAJvJkUydOkaoFtyCHQswga+Eme+zLamD+ctH4kk+8mVHyT/86KN4iEGCK//xjzgdh90P0Ku79OwJTbbPdk/7gsELd2lqBK8oxtNeSlsEU50ypUUqi06xI8zCbDgsl8KHM4iCeZ2Rxrsffihh7L/fARkF2rFzpxxldhs8p/TpdHAHqmeIFB321OCY/PGseJOpIrhcYpu2DWNjIn42btU41sXR0ExHAxFDGdFA4dlZtl68KydL4xUiRIedBRc+/ga6/pqfjgaj01bSgVjGC9PnzmB7XfCAyHPYQcm3YdcOsfPue+VWvq/Cr28wcn/dpZdFbyKn1kaWuJh0dpJ5V/quo1HoJGVtQqX8AiZwJlDiX3jWYgT5c3DzGhEHjw8aFNfTaTwMOfDTU09JeyztRdrIozSis8FFBtfAgaNOSl5FxlhmTtsgT2VZtquDHOB+LqPTg554PP78yyvjLZ5f+ZOz45jD+ufId+VoELhi3xVZLH0WWZ8NnLSibSYffU0VvqYMR5GlHXcCuOX22+L6++9P/XHpf/4hfth3r1xo1/zr5C/fW450nAvSatdB6+JImk0+lQ5rMlN+Ume9hD129XXXxCjsg7PY4vuYY45lcHTblB32V9RP8r56JPEF7OJYBCd/5QnXJMuqnDPuMvfJp3PiCWTk2ddeEwd17RoHHHZ49N2rb3Tu2CmdBeqI3MKUdstdGcC9ssd6lCTstAPlVbaN106HMlJlCotO30ebPnHX3XHsaaem026rrbZkoWO2A0fWpE2jTBP//KvwnnlbBjizvCySm25f2xhnr44nF4185fXX464HH2DXwI3jQAbbHADesAMj9/DgkkXKmrI7lXa2OFdz6iyt6NR8hbf0E3D2oBvUXzOQA2+OfzOes8NO/ueff37ss1vvdDQ0N+qa9tfRUPBbMJE454+4MJm3yTLTacJ9nZrSqtESz6I/HrjxxlgDB8AvLrwwdsUBYzScbaSuThiB1YyM3NHRYB/1q5Xyjv+kQ97FsHUHCSqYu2HMYxB4BH3Wu2+9JR57fVycxUDemejuLSjHdctcMDyjEOEl6UUb1C1EjRp2t57J06fFvfQZ23bZOE4+6cRou3FHGBajTbqC75RthcA4fE8T9FZHwf/HVcgmSMYjC5FTtTiCSQZ5G4/7Uwie+XPcGqd9ji516YRHnI75EghYOjEE3+0FJYphKLbDTj894TmLkK7Tzzid0e8tcq6goUeOjNlJa4xXeA2FH0bvNzRm6eiQG/9lQo0VhaBb9ug9s5E/YpeE+x4fHJegmE/afY/4Yb9+0RPF5rYuVURDiVqwc1SMfatknSojzMsUMBI/v9zWiPKs9qSpU+LGe+6OiU88F8eedUr03GnnXEHYeUyuUG3eErAjphpDEncKX5hIWFNRcNRgcRsjO7t6v1z1V2WoELz+nzcQhdE3DsDA7dqxE6NGraF55wSXUaBKEIrAShCufvR+1ewljBG8wOgTxk+IoeB+yJAn47Kf/zJ640F35CdHh4QHfIhXHTmG1Am/o+IaMwpwBborAru1ltjQWBHvTvsYy163QzDQ//3IwNit9+5x7qmnsj3gZtlWZJl0Iq0o5MRvIjMfqMAVieV+Cl2uFC4aXnaGZ8+dGyNefCEee+CheHDC2Lj8lB/HcXiKO7CziY6pykOpUDFE2GzddaJyLK0JLbWC9oxg0MFQ5mqyCCHOoTaEcE6ZOjVuueO2uPbO24Qsbr/utxjpRDSAm88XLkJIOV5RUioATq2/1coEAdUJQ170vu1R4X4USv83v74unpk0KY7dYac4AydbT5xxtucCOoTi1RHbnC7B+efzWfXb+7SHdXKV5AbwhGtJLGZU23UVFIjN2BHCVdiffu65+PHll8YujdaM/meeGT9EQWzSuUuuiOxOETqpxKveej36AJejZs0ZLVzInLxRdMYHDR4U70Lbo/mZtsPR0J1h+o1atYk2xOY3+1ZEA8odJKfHXDyoLKm3DkURJY/raPDnCP0KetJGNNSz08BKPY1wbM39fHm8+d6kmDgZZcdn72iBkX570QVxMKNq7VlPgQ8zcqI4AyiHSojbVb/aNWWKbwg3hbxGhqvRuyf4C4zC/vlPf4yTTj41+uFw7MjqyIYZmosdu0oWqLjIITuM8oPhkDAG+yl/UZvvyVPqZzu4ReXUmdMJiR0fo8eNjSH3E4HEtzvBLz06rB+dmjdlZIwdAPBpF0cDvFL7ZxnCCrcl3VuqjgYpzHm+2k5yRCMMVSQUxurXMQdnw9Rli2L6Vwvjy8Y4O1qw80RLRg1RiIuWuBUUIejIyvp4510D4zPk5aQ582LsjIXpwFiIbjWde+65ccThR6b/fPjjT8XTv7k5RsbMuOa00zEq9o2NGC1NwwT4nBogHyVegU3cC5sYLwZQPkyZpmFhp8fRUjsF4wmxv/nWW+MGdMIGlHvD3/8Z+2EoKvPUEeqFdDYkDdExAW+G38sHAJBTs9yi0k6u8lFHp7RraLgd7RGvjI5rcZp8+MWyOP6gQ+LQww6LrTffougb+L6sMF22EK7wbf09Xz3Z5pWctF4aH3MxKh4ZNjTO+d1v4rAe28cBNUe122J+zoiVjgyNFvnJTq1wy6PiTRiNpiikWDoLdQYv7WiajKF484P3xT333xM/Pf7k6I3za6seWzNitBbTCpkby/fNgMNV/OUvisk6O9pn0vhX7opLDVxpXn4z2m42I/djMOZuxtHQEyfAgXvtnY7qdshJG0/95NFR/jSiyU/Zaz3EvW24HCeaWxvaDuph1yByhH3mjBkxDj0/9Pnn4oHHH4urLr8i9kKv2onTEeWoUTqgpQ/gEbd5BG7/+Y54Ed/5jHroEGyJI0A9/ipRX488+FD86enHY98ddo5Lzzk3dthy63xfA17dpH5Wfinv7YAbfZS6MDulTplDP+GYVs/quLcs9f4SohyGP/983H/r7XHPO+PiHKJUTiayx9BX142QxpW9dnTdeUUc2UHVgHbFeOm9OI3svIAa8CTNa0w2pP7TpkxJnF+DIWr615WsLr7/Aayh0pz1qOYn3NK4+WoP2K7KGABMWhJPUoc7GjWCltRPziN3PRmn0Y0l5P/6v/41HmCL7wM7dI3zr/h57N5z15Rd7uohHdiJEjfqPG0F4bUM65ajdRi28mY1SJB1Rlc6Avn0yBFx2LlnJ+wXHnRonIgxvAX85Na3OrCkFekjaUS84DATt7a599KRAa7SGQPuzds6WT8j7h7E0XDVv/8V5/U7AKdd39hhhx2J4GmHXeQK7sqC4pwjCIxvwAU4yhF7kc1PyjdKzm0sxbnrJ6nHnToxjg7GnY88mA6c/vv/iBHYbaMTjgaN/fmsFbYGDnKdeDM+nhFPAceTD90X02mTN+k0GXexdauGsRGOho10NOC8bdYAnQMPuKaV8Ft66bTJKwUaoTL51HbzB3LTXnExyC8AeAVRe58j2D+c8wHOEBwOvGJ5rjHVmSivvvsfnNGkrzG1b8TjRHxc/ovovcMOsbYRBuSVbQeus3MEPgAl+ScJEADEiXhOOuLoiLftYEfdqIC3iQoYRQTMoHvvjk2wg884/oTYatNN8xtpw90mtPMWLkBH0HlvxhaxOktdVT8jk8gz9ThtI/1rt7pLQnPspcXs3DFw0KNxzVVXZoTpFT8+PY465BD0R/scjKtke8Fb6exWnd5sUYBP2UstrJedsWWMhq+FbdmaqIX3Jk+OG276d/wZObk59bzqP/8Y/frug02KjS280KwyWJmgLJMO5QFp2SlkacMiHz2qL6yH+NLekf5fHPNqXHLZpTF29sw470cHE+V3REZPyZd+L86TfvnGlNapgAt35lS7y73sQyALsi3A32fI4cHDn40zrr06Du3ULQ44vH/06dMnjEp2FxsHU7OTCxwUV/KkLhRoppmEVdh1kCjL3MLTe077+IDR8buIHH7qvnvjtLN/ErvgnOrWrVtOYdMxWDmOxG/imr80XZZjJhUtWytt1jXgpzVxTjllcNq0afEKAye3knf3zl3iECKEtujO7ijwh/j+jHZXtrhuQ0bxUQcdpzojpRlpJJ2ZwKtDU3mjDZjr2s2ayYDe+zFy9Oi4/f6749yzz4l9eu0WRn3paFDeyvepH6i79c0K+If/lX3tbZ9JNybtNOneqRPS+6NEJS9nN5YrLrooeiILsk8DHj2KBuWKdO9UEOl9Gdv9lshzZDrw6hywv+f0IiobLZnC685PI14cGffefgcyeHSc3v+IOOfkU2LzLl3hHSL1kGPiwags8a7T2D6Hzgp3F/kAnX87g5jrdu8cp51ySqzTpbMeRGSG9o6/IlmyQt/TP9BV1ST/f2pQGl6FoBDRMLGTnJxC9m8zJ2kIQnwOho5EuSOepG5du6bitzNlR0QFovNAgfjM8yNiwNlnJUBn4gk986wzCR/dOj7HKTGPxUJUWHrLJI2GEFQjhjIbwoflTjG2clSafGVw5yWq/BUoM2bOjAcwcC//61/iKBTaAQhAIxo2YFQnw0VTsRXG9lvLkAClXInEo9c+0ziS2NxP3lGeFODvTyKi4d54k1DJY087I+cFbrXlVjkXSK+WRhBSgnwKnygoNEI9iq8cJVHwUUgKJxSiDGnHyKkTo14vjoY+ffbA0bB3zlN1D2w9iE7HSMMK4pVhqlRgFd5VP5vda+cqWo8PCWEcZ6foORwNQ5+MSy/7ReyBk8TRXUO/3ALQJNNmxx185uhTDS/phCE/nQ+OojniovGrB91FX8aOwwgdMiTuwoDeolev+CmMuC3GioJHYyTJkPcTv4Jew49larQnzj3PXzEuHD1eg/xnMzo9hNDX267+Qzz/5Wdx6cmnxfGHHYHXdaOiFKBJQ9CEVwFosnNSRs1gfHCnIpKKi9GFBxYcNsOIXrNVy5iGALzxlpvj13fdlt/eeu1v4yBGXlrhvV9O50KhIFx+X6mDrAI3PZpSEHoNjnyZlsiOl+300muvxtW/+lWMnDolDt96mziPUftdiSbxY2leHhEvOqucj2oYowaYhelsyA4FdXDaynLwbiRDGV03omFBPKliu/yycHmwC884Ow479NCMaNBJZESD89B0fqmg0zlHnjqIGhPiv2TJ4nhx9MvxCIbD2yj4F99/N+uzDX2Y7hsx+oKDpjWOhqZ6A2wn4MxOFhcqZq+lDUVlWYAPdHGtav8Gmif6Hn8B7SNeqMM3dIbdOmEOo03jJ30Sb84q235NyVIj/nDJxXFIPxwNLISqo4FggFRy8qYRDbaBidt55rV3Kgee9GYnQAN8Kh0AFdtf//mPOA1Hww8xuDqi8KV5FU8azMAq7pUDKiDxrXzznjIrF1aj/evDH85n9LeUjv8HM6bGGJxeo1HMQx9+PLoAQ0/y2LFLx+iyNttn4TpoxGKQOhoafCuiofClo5y6GpQ21iUXE+M8iYe1G4w68N5K8DYPw3fSEvZQ/wKHH2K3YeuW0YJFbu0ALlHRIXIaO/kX77jzgucs/SLeBr4RH7G+AXqs2mziYpTvMUcfk+331MOPxj3XXBnYwPGf510QRx50MI67dmnMSO8aFiJWOha/YjnblIs8cp3yBlxlSDM4T+MCOntj4lvxjxtuiJuffioXZrr7b/+I/fbai2Zn20I6gI6ki99iDJU1G8roiKKTqCp40zEGFbaGofSl8Wfn0s7U80Q0XHLOT0JKPY/OxdHHHZdz1sVeGfECSNuPJPyFJX1aS7VnyqRyWt7VYHXqxMAhT8XZv74m+nXqHoewlk3fPn1z6oRGXBq50KJ0n3oKmaNsFsYMu6VuwqzMM4k3+UHDxTq8/+G0uH3ggzGYztFpx52coa/bMJrmVoGLMaLd6q2xPF+jQ2GUZytHg5Cap/oup35ROWWZ28QZxWPH5V+33xZbbrZZHLj3PumA6YCTRNloeKd071zubFfgSp3HMZEE/Yt7HZkaXI6qajBZl+kYuK8z2jUMp+ZDOKp/ddkvoi+OBuG2vnZ0dfCkfqOeaaxLQ6B9db1UOR/EjW3erAULPiL/xr7xRjz5+BNxyz13RLftdoxLf3pu7EhEgzxpGwmDLSjPapAWG0QdJa/aEbWzCs3wnjhz9M/z5oz0fY5uHYLz6Jarfh9PLKNzcfRxcepRx6QTP0OqeV8qN5pB2nd0TceA+ShzpfdqbYMycsy7vKMjrBH6adrUKXHHPffEL2/8l9WKf191dfQ/YP/clnIh9KQ9UCLt4HVwrfykWtkG1kkdkfehI3VetgF0oBEtzb+GE/8POEsfHjM69m7aLi67/nfRp1dvkMJUEeqWnSLyFF6TOto2MfnMTsCXOEe1A5SNdmL8uTCaunsIjoajLjg337/y2BMI7z02um6+eXxNB0KHh+0nLm0vG0Ee1A6xzdN5r80g3oQ/24ORcsrUjvgIe+xBbKWrb/pXnL3PD2Nv5MCOdI50ABVbA1kg7uF7eYpG5L92HXJYmUuZlr8Sx6cdlgZsE+xW4dpy0wkjz4iGRwemvs+IBiIGO3fpnLbmUhxMLjzalA7mzBkfxuPYhU9gu82gTuNwQmgp9GjRIDZimt6G7HSyTjM6IEQ01P+KLTKFQYwAU/I6p8oRqK0uiW1JRvmtrvP3VT0668D+ZT22VObB9LkziWhYmtG7RjRADdG5XQscDYekTerUidHDX4xfX3FF7L7jTkSm6WjQqUO9IRLx6q+0LB/XkjJAvBSHhPYY9M8/pyJpp47G5njs4YfjL08/GYcjv849hYEf2lS54XfSXBVCbx3r4xRRhjnCK43I99p5dt7lLd9XtzZlKqsRDa4Dc8V118QnwPPLM86MYxm532gDHA10usxHxIi//FFe2tkc87qGOOlV3BkR8jVOc51Ijan/O++9G//8943x14EP5ELLf7jud+iPvaMl9pgRoNkhtQzySRkM3dkBlp7k1yIbkXHgT96VZ5XB8qs4ehHcXIK99AaLxp/aZx+m3p0cOzPwY15pw/O+fCN84srkgUtS1RLqFW0GbCnK97l67dO5TPMdPjx+8ptr40frERVw7ACca0y969Qp7TwjGkpewKXiJlMHguStLItrHQzC609Boby2Drbr5GlT457HBsUgIqhOo017Y2tvSf+jDYORqxwN8hD8JNz5r7RDgk7+1X2ATxvC7c0XMGA3nQ7xq9jxtzP63nGDDeNgbOCtN98y1B/KQ53s2kc6Ssw/dSH5iW/lg/qiNK0NU/BjZa2P6z+8S7sajXjLA/fEhT85NyMaNly/PdHgDKQBi7SXNEGe/ssksgSYlLZ1Oc33PHWxXm20d959N15Ajj364MBYjN1wGRFau267XQ4C2D7ShxnZh7Kd1IeWqX0pjrJRqJvRDDoaXIDeSJvmrAviFqEjX3wh7rvjznjw1ZfjlIP7x9knnBSbd90ExzQOVmhdvWo/T7wIufpBOe6AiY6G+++7P9pvvkmcfNKJ0aJTJxQW00ssl/d4uZTPne9rQkbSat9RspFkZpVmUbwgCgZ4e/yEGE5H8KMPp7MmQPPYlnk93buxkFN6qhC+CEG9caAzR6Cff+mlOOPSSxKqUwjzPsWwrq22SiPRRftUggrBL1fQiCi0JhjRTRowLxDioMRkOtdkSEbk2k6TlbTDNgPP2WPPDIvrEFT9NukWBx5+eOyJR9GpE45gyhwKKhn8vzJhChaIxiTTpyBRaaOQl/HdfEaZJ8Is9w56JN4a/kwcdvQJsRuMrqOhNaOkKnTDobJDB64UJCp99zUXZxKzcGeILUSYJVkOTOm+1WVEioWZWLRql547xw923zPn2m/ASKOMbihizgGGmMWRdagBuwpe8rOcQu1lnQDroaNhLJ0ip60899wzce75F8RujK63o3PRAmNPZjRPceQ8Z2EX12W9gOKssE1UaDKh00jEVysEnEJw/ITxMRwBOxAP+oY4eE7DWFGxWXcNUL9No5ZvzFf4PP7X86pNrJkr/DeFnmZ++mk8OeTp+P2vr4kPuX8uxtBRdIw26dQ5hZ54MIJBASKeZXgVY6UEhFPHSDoZoBEVqJ2KJoxGGXXwDo6GW26/nfUl7iH3iL9dcSWKbZ9ogxG9AuGeBih5CFMRIwW96VzgXrYCFSnOBk7EP8m2lyZGY6D/+te/jteIWOnXbdM4/2IcDTh5XHdED7pz++wgOTqazgYUjwJdwasQFUvmbVjzlxybrMW6FBhQOr9mzfkko1QuvObqLPOC406Io48cgKNhk+y4uEaDqwObdzXSoGKww2z9F8BvL7/2SgzGCHv7A9bxeLes0bAVVtGmGzWKDjgaWjZlheGGjijSdtl+dsh1gtBa4iWVWsG32JAexIFlaESs5DtHegwvdY/xFUjyTxayONB7S+JVLC9cCoG/IdN1zL035Ht9Rq3QUAhx2hIZII5tgTxSNsXWrss9FZsjpI5kKeQ/wRhyMciXiNa489574gSmTvRlFNC5wUZWacCnoQVs0odKRw+3CoMKpaNHZ4/PxJfrrOQaDVT8c0bSJ384BUfD62novvzU8DSIdgXGXl07xSZsb9mY+QyNvnZ7y8rRoPNFs6rQv+0LxFlnStAu42maY+UNDD/+Y4A1SEfDxAUfxttLgAt92Wg9dpxg5XnDHpdCz1+hERshI5k9Tegu00bw0r817f14cTowUIR7OJsuZLrB0YT9WdgTOBr+/ttrYzb3r/sZUyoOOZR5metk9JIdPzKttbUQF1wX6MVXubaNxbX8ZIdQJ5nGxviJE+MfN94Y9w1/Fogibvnt71i8dc+c5+mCWTlVyjYU99BKxfPSjfyigqdBslzLUDbZPv6cejeSiIbzLr6ISR8Rp+79gzjuhBMYkdoGftOZBp8jq3U0CqUYTTi5qksV/Fmxqnaue7FmGCY5iE7pz4ho6Nl83Tj05OOiz557RueOHc0u6SEbCyTYYST3hN9Rd0NXlaHVehKeKy+V+fK3nd8PkMMPPjE4XsLZe/iAY6M3c497oC/VHxq53wC7Ok/HuvUtsgucULhyvJI54l269FqjeAnGkLtxjMXJc9Pdd7OS/jqxP50612hwNE2YHHXRoE1nMXArL10nQP0srOaV0XvgX0eDeJOfrLeOhjfo8A5Hfzw98vm45GcXxu7IMBdoc2FdozpShwBLdmyps3yrDDbyoGCqwEpJpT2BxdBX5/ZOnPh2jGD+7iO33BFrso7NeaefEdsDu7BmJzflOnyiLIA/hUn8+NwyxJP6PyMegMFvdNDa8ZrDSNwQbIJ//urnuUbDWUQ0nHj4kUR9dTab7MjpJNJZ7ZSwxsiGdNCDg3RE8I4dd3EkrNKp5WXkJTJ0KrgZyCjj1Uz7MP3lssvjACKE2oAb1xSRToRHWrHANEaBUT2lzEnYuU4ZwEuOrOkct26+O4bO6J/+en08NW5MsLJPXPbXP7DmSa9cW8MIBn/Sl/i381/hzA6q9Jc2A/DWik+7yWfClNEeo16Mc666IjbhhaNP+XEczHSkzbp3S9gXGZGKrPJdf1YgF4Pje3WoZdre1sFzO6lcwIPFWT5j5sfYY8/E7++4LU7YbXdsMeZ977B9LjbpOlLmJx509ACoyMnvc40o5Il4dwHIjGiAv1z3pyl2pVM+XKNBR8PAJx9PvhfnZY2Gjtg0Ze2PdDTQGTFa9GkciE8/MpAdzxbGm3PnBS7v2LpNk9iQwbEOrNHQpklxNNTD0ZC7KwGT+s2kNLL9ijzhxHbkn905200p5s/pE1/j8P0Gh8gKHMYfsfj5+Ikf544kYs+1iDq0Xit677NfLlr5Oo7BCWPejCsvuSR60dltjj2inZs8A17S0SBeqlQrV6h4zHsF59Km7dMS3Wbk44gXXohbiYx9cPy4OGTPPvGTk07OxSbFp+1lBJRTuYwosqO7nGloXyIfzFMaas6ote8qs6R520oZpDP5YwYUnxo6JK77y5/TcXLJaafFgIMPyTUaKieUNCC+bNnSvh65AeDyg8+lGWumc00bO0eUuX6Lxam1x255fBBXEX+/7IrYB1u4TavW8D9YFgc1e9I8zFbAE1c8F27hND8fyq/af8pMHb4vY49d9+tr400iGg7BqXn6mWfGLuDeiEx5yTKqvkVmbSY12G3zcs8ii82hI8C7yv+ZRFQPeWFkXHr9n2OvtdeN/XE02P/oiqyRj3QKi391lBHW0rzrZBitJ56sj/oiZQy5Wjt1qu8r4ydPmxaPEDn86GOPxnE4d3YnIk79sY5TJ7BXKkdsEiUwCbb5JoDiqoCfsBfdDVWSv46GjxnoHPfWhLgfWbZe67ZEkaA/ttiSXZ02yr5c4t7Kk4/RfUbI6XzS2axjSv5X3rizkviWJm0L9dQsIpuMsnmBgZ/bBg2Mi04/K6feFUcDUXO0jXrI+he6qAFa4d46WJlaMm8v1R/qPx0NI9EfTw5+PBaA43Np05230YFP9IU8pROELHXGVHjS1tPe1nGSzl7xDQ3YM5NOdN01MdoDG9lFih9+4IEY/PprcXS//ePEI4+KzTp3of3QF/RNHeC076FNoy0gHowMdGBw2kcz4sknn4jO22wZRx9zNFv9bsx3OJmybtbCuq1WuVodv0+H79TRIPFLDHqHUumAnK8RTq7R4PyYCUQ2LEKAde3aNTp27JgdnGIs4Z3jOwnejtUoRlDvGDw48diBv2f/x0U4JphTTsOomDPxrkKeCOSoR4ejAVZQzjWXICEkBUGyIcRSLernfVc3ffSeB1hkbkZmcwLzAnfatRcdasLtYFYdJY7WSRBFAJbiyCwZSGpMZrR8fxBPdur4zikCk95/P/5y3935UZ+1Noieh+wbm+BUcdFFGdGfncMcEYR2LEPvWXbugF3vcBorwJ/0xT2JTLzMI3R2HDsIPPzaqFxc7jCIuVPHTixe1zoZRSGigK28rTKkmfB5gZUTYc6Ms0Iu2MhIJ2k2HsV33pwQ9w57KpXDkbv0wpmxC6O7bTKiwe/MV/z481ylqoOjhKkikChPD7dOBldct+A2rDSsp3HSe+/FyIcHxbA5M7O8C447nikl3YvxQRslrMKbvwKhIAqtqYK6HNPsyI7qGgjheRjQL6I4bx/6VL67U9sN4/ATjmJOYIc01IT1CxUEbVqFBdsOJo1QsAKMCoDiKLEwBaAhaYarTkV43/3bP8aY2s67x/9w/9iTKJi1MWhcfwJiS/ikt0rlJ7lYAHl5nimB549H/mikC9ub8MfvbrstX/HPLxhd36ZHj6QLDdwUfOBVA1GHAF2IzLSMKkOP1EEcp6MB/K1BB1PlDLVlqN7IF16MB5l/aurbffPY/9BDcuR+2RKmWTACYJ5GNCTdi3/yatDINRqapqH5xhtvxEN33RZTModVf3bitBthEsyeiKZYZbBXeoDtNqSjQdLl3DUCRAL2VR5FPdXOHxtMsNUX95mKUZ8hJNciYBA+po+NeKwOcTyvpR9u3S32/9GhrEYMXcH3GdFAu6YCojA/qT6r2sNnGdGAkjAyxzZ3C91pU6bGyIcejVdYULHnmq1irwGH5NSu5jivKqVg+4gXO8p2/k0a9zoMc2Vlrh2xNyRVmrHiS6H96R9Pp11fj6dHvJI7Zrg51gB+e3beMLoTutf0G6IJvmHaCnTXUNrj2vYSeqlbqlTRSZtgJu2Cctdr7lLJNGKRP3NRVuPnfxhvfKazjLfxzDRfj7dgbfxIGCGEQMKeko1rYcyZtzKepzEdbVo99cTRMuCIw8kYR8PAR2PoqJH5+ABkwUEHHkhnl44RES52PlnHMqMqsn15S1wX3NsW5Vo6SmMF3HksRkV9QiQnx1+vv76u/LP7Hx67sXCgnd2lGLRmxKcJR3FSFWNUma6xCGOk8yKdyVybr3LIo7zyyquvxd+JCjD14DeAMPvNCAs2Xw2J7DjTpt4o+LU8C8xb+cc65Ae1owfnf+t4G/L00BiIDDYd2WuP2GW3Xkk34q2ilwJ3vpLt6LWOYGlRg0t8mL8GkfUqTs4VLIo1I/5w1604hCJ612sTux3PorZbbJ4O+uJowFWEh0n868gzP/EgfNKotJEg13Au+QiTIbmLmOb11oS34ubnh+V88FP23T+6E9nQjo6U9K7zRX2UI9Pk4q4ijh5L/6lNeSaNWpqOhsohKz/NJkz9bTpFjzz1RDqnDtt519i1167Zka/aJx0fwJs6kHbzqJFcOqhgQ/zxXLzkiBIw2alxAGPypMnx0uCn48mPP+A5kSpHHoMDf8uUiZavHZE6ClgTXoURlVfe+1wc6ISoIhu8p13g9APnH4/GUPzH449k3lvFGnH8z84Lp8Nk+wCntkFxsDFfHbg0Tq1P5sdXTlWxjBwkgD/8zgEOowE/YnG8h/90Q7z0Zdk75xAc+PtmRMPa6QCwwRL+GjWmfBE38L+4sY1LRw7M1NpV+lEfmN5+55341b//mef+ueRYFsrcbrt04Otg0CEqXNKH8s/vhF1eEn6TuEu6gV4sz7r4jotnvoD+uOe5YfneD9t3iv2OGxCdO3fCJmFLUjr0ytZiw0DTZCIPmreOHB0itrORLDp606aSjmgf+XD2bOyxW+6OV5Z9FhtRwgFEIG25TQ+mP6xTszNKx1Hocm0MYBM/5iVd2ZHmAnixPewIc78JetnohlkzZ8VbDHLdOvzJhP3wHXePLbbtEe07bJCRltaxkXoOOO1EDWftroE4a/5r2oEbXZGnBIkR0UBxyNN6khd1VQ7nD7zJ0XJglQCVevPjhs7RrzWRkMlfA7LnzGCLKe9GDKk+WO3YjfMuOFyeGvN63j2FzsuO2+/IFAYc2tRX+q1423pUyTLBkKAlLDkFl3elH5087gKmrBnLgoc333JTzKx9eCVRB9032STztRNUTTl1jRQdDe5QVTkaXDTUqRVGlNnW2qvCYJnak58y/W0EzqOHGKAw9enWPQ7q35+d3dZJOrT9fFlcKX/zCE1U5xBg4lQ6NE+3vXbrbufzW+/JU6fGv/70+xxUMv8T9+4XvZDBLiasbVq1ic9KIhf+p6MBupOuhd2jdF/tTCev2YcZh+Puz/felZ9i2sRZp/44ttp8i+RR7VrliPScwAF81oCjuC8389PMO+UMPOCzL8HTHCIpnx0yLB6faKxgxBFMv9uZ6OQNGeDwXfGYeo42SF0HASkbdDimLOAbedZdndKmkfeAOzvw9BGmMTp+0+235W5RuwBZ72OOiW6bbYrDiO3SlWHkK/6VtQX/wC/uRVEN797nZuoo7UpJXYfjPJxibzNIcO+IZ30jTsEZ1p28nXqnHJXY5W8rq5NEW0E+VQaW6CYGOijfvkzlaMioL2jGCNP3330vnnzkgZhM3vtutW3stc9e0Rbnkbs2yVtJY+StbBXWTFkJ/hSgy9G6ZOMw6IajwO+mTmF9iWeGx6PvTczPTut3QGy77TY5BVxHkLaWeEknODBaBx0/2sXueGGZUri2ntOSjQAzgnZN6m1Ew9jXxsSNDz+UeWvO/pydf9zZzWkTDXAoGlkhH1VlOBhrX2kldPTJ3E/j2VsfiL7nnhhHHDUgunbrmvZ7PWy1krKStfPv5+E7czTY7MmANJaMUQnClRDclMnMQxszJh0O7+FZcuQk58rzLphPJdWQEVEdFBLQIpwJiyBSk/N63ffYML5UjHwjLatg9BJZzhK8Zzn3kIaU6VRiwqPQ06jzPAmT7xSyC1xXAGK3PMMPmzLqoKGahAyzSGSmojhsZBK3dGyYZEqTIzwAkIavzCiRuj+vzhC7CGuRr7tBqOAlZJlQODSEVG7OA1IwLmCeo0njRYLWoSLzq0gVJhaXhM6zJeTt3srOR3O0SKWTU0/MoAZfOa0ByYV5mfJo+Xnl6xq5Gnwq7mKouT+ye0+3IpzQBSz91HccgRA/CobS2dXx4N7pxTmTbU4dc45wrQxhL0Y1jIlzxX3XF4J78dYOB4R1KAZ2zdgRMoGzHgkkjJ3HFOWJv1pNqAyvAJwjbDnfHwWhoaEQsy3b4Lm37DR6KFvcC6M/81ehVArD99Io4pkqO8N7qWsKNABROFp/jRcFREu8oG2Y1+kY1JfUCcKsYZRveb8CPzGdAPPHo8jkvyLe0zT4KFP6NRrGD3MtBoRXEzpdCmNHYBVQ1snnjjKmwqRMaUohqLGu4VmFNa+k06pB6sq4tvnCRYvTIJRfKs9qrhOiEAUWF6yplJpt6kgGmedCN+azCGNyIcJUPFdKeR22Mthw7TXYcWKNaMG6AI3pYH9Fx18YbS07QeLaaqdTh/ulI1Q6VoZ6+7MN7bDUo446Rxzt+RLB/Nni5TFj9oKYs4hIJ5456m7kQ7MmzQiRbA5OkBXAKo5zBJNyJJVUvuBFGpO+bQ/bMRNlaWwVhS4u2S8dfloM/p22ZYieUSQJP0ehT8daGulFPokbPdKO1skH8oZ8r1IyX/O3W7ac1YSXsV7GN8tQNIuWxKJpU6LD3CWxW/vWsem67HMPYbu95ZrA6dQJ8aqrwVrI8ZZdftArcLsoZBJPQleeuRika1vMIcxu3NypMYF2bNiKrU837hytNlo/GiB/FsMTLF+DMwPDCs9DA9ZqWIKFO/3TeTHzM3ZaoZQVzF/RCNG7v+4662a58z9bkB0J69VwLQwF1vtQsdphbQQ+m0uTtl0aLKUda6ya7ZByTpBNwp8HbvBfPjXEVYekMsXRltatWiZtO59Tekl5xEcpB2kLZbXtYnvzEPqGHnhPPrYY5X5lMMynQz0Xo6gxBoSrYSvj7TxrEMvHdj7lqUwVbQifN7IS+aRcr3ZLWFYCr1t9LQV22zpH9xgVlz+LoxpaqPIgb/NMegJmO/PmIa9Jk55bTzu84tm6KWPm4jh1xMSdIByRceqf+DSyqR5t3ISyaM3UR/FUs+cAAEAASURBVKkToUc7WNZfQ8iUC5xBl4Iif4nn1E/AvRQdpT5dm/xTPwkT72r4FF4VxcDlTxnBMb+H1stiWEXWWLZGpKM+toORbguldfDTArhbwE/W0W+VqaJaGZA4oB7e0xAUbmlCWS3/2pY6r31XmG2z4sCGbvKd+tEaw1n9mgYi+SijlefSickpmDre7egq+4XVcuXZYiMITxnl1fgzf8t39yj1QTobaRfrle+BA/W/+HFRPNtb+LJTQPnViBeFZL2sc3GuoYPIc8HCxYl3YWgO3Gszol45M4XTaAthd/RMItSRmW3APfNS7lSy0qPioLIp1HlOjbGdUr5LH9ab6ypZB3Fpfbzvu0mH5K2T1Pooy+yQSo+2u23hN0ZTylPqhibYVK0Y5S4hyTpbS+SDeUq/2dbkaXnSfbYntGnKzgXyQv5LfqYe6n9pxvaSFp1q6QiobaQdZZs4em9NvnGUT7zynVwlbYt3O13ZDhx1pGSnRv6mnaSX+QtYj4N3WzAVUpvQdis6HycI+X2xYnnaDUZBSGvCbEdMvdKG9W7WQfa1bcLILOFfrqtTT37ju0pWc5LwpfzwYrUkFvJN+dsOC0esLRwNyAsacQ67K3306WfIaUZIeeZ0OBcWbtK07IriGiFGea3dlCgCZNka2MnCD3BZ9xy5p7zUa5bBubhPu05c1WhAeWJd1Vs6hZLWwY34V/YYodO4sTKxVgsOtp90osMrKUk8Qz8WYkfd/BydVpYpo9JerbWpelVbWPi0rVyrRZwLm99nKbWj57VS62RnuS507nbpn0MfRgzab5DXdZoaXWtmbYj2MgpReFxMWNzk4BewSyuFXng13y59AHUBxSfeUndDY8VxVRZAdS0F668d1lTcIKP8IDvp1oFU5V3lb92qX/XM9+QhZZ287X3tDXWIdXTHPe1+5VKVj+/LT+ou2yr5gLrKN2Kqgl06zwhN8tR+EC/qj4WMLtj+ysfCC8qCVTRd4V+5mHAKiXWiffNoKT4DBnWs62Moc2xH5VAuyJ/wuU4bcoJ/FZ3waeah/FC+6RTR2anc4UHmqYPHthJmI9/NV3i1B1wLQty0xb5uS5sKj3qVD+pwmzRkbsJoef7h/L+mqi1SRgDHCmC3b+N98xe/X8IXymflmHXW/jbC2vpYtvJAG9wWz5+8B61Yns4vo9akf3d1UgY7UGKU94ZEmdumrqVmH7is8SPPFFt7JeVpW+uMVj87SN17rz6xO06nzl265HonjRs4eatWvVLTvP4+/vlOHA0KeQlJRW9SiUhk4sZOjKuRulDILEbNP8GDbSNq2Gdj8r5rO6QSpNElAr1jCi6TBOi0CgViKk7y1Pj3WqUvM6goDctVQUjAPvO79PhDEBJSUXKlo+wcbEN6ZBgN52Qq3ktKokzOyr0894prqcyjL/kfOL0lkeToMeUakibjtERRpmFrufyER6JNxkMYuDK5Atv6W7ZEK7OpBMxXeAUiRwPI1xErb6QBBmEqEDVMZGDzzXwEjpTQmuf/lGpwV49TcVATnR5OY9B48Z7KTQNGeCplJf5TcNG+rr5r+Qp0FYht4btptFAXjRVpQg+uoyIusNcCb3o6UxBo8xhRdv6/IVU5zaaGV+uTPwDMWnBZ1Uax4rk4E/dSGyI8BY64SVz6wDoKN+8Jm20nfWlMJ814H0EozlPIAacwKlT4OJWo9VCA2AGTVgxfk7YU5OalArXrk+H0fCVclpnF89ejN/PouRcF+HLkjng2z+QX6MajbamxpwAU3hSAfm4daHPLaI7BJI9k5wADPesGPDBIhrk5ioF1sKojBl+kUkmANJZ5lzawI+HIqGV4LX3axvKKcFtvpzfYaSlCkWvyNaxrja+ZI8waA80bfB3NEbaN+C7xwiioeLceSZdklLRBjsJgRZQXiQ7gVLflyDRHw15BPjxFxwMP0ufLaS/msrp1ZD1D/+lduuCXndGVdK7drYHa1NqarMlfWlUO1KrKN6scRt70mYYFH+V38pw0oDJZljRQOlvKDg3fVIjgR0NcfPid9zTsrGfKImikkn3e12laD6O0gc4E3v0ao+ht9oZ+/0//yPDjrlt0iTYN2XoJMNbkHV2hUEJxNJC/OCIHvpfey7+sEOfVURhyJwoMkYxomPxhzNp0/Vi/W6fouP12sfHWW0YzRpCWML3MqShQFvm5AC1b8eK1mbuAtT/A59qMGFiaStLOvw7BRqyR0QxD19DSL7h2FvpyYHWRS0eXG1B2E3CoWer8Q8Ck7bhI+IT+23zwLb6genYccgSUD61t1RZJ7/CEdJMdnXxGGbwnXWZbQIsaP7arownKIw2sDHlET9gOLlQrf/idNOnCf4aVuoe8HUj5ztGlLJx3Ktleu2GptZrkae0P7U7baCRZrnSms1oHty/bSnZOhF16yo4U99Jxp6ECzqyz8kjZaJJ2hM98xZF1ksaEXdlf9GrpHIp3nbp22ZrShrkCvLRFXcSHdGe5wic8tqNOUZN5Jd1zru7QkLJco6XUT+LV5lOGOgKVvMt5mSpEvYCtdMK/yMV3XezXRRA1rniUxrLRHllvywKn4iV1KzlbXwcGbPfskNOGRe8Yho2jAZjUneoTy9d4FRYrovNC49Z2TruA96UF21MDPGkLvCsbrYRbXWanGZz4LB0Wq5UrzgVaeH3feokL62/b5FbTyAid/eJF3JnMXzpRRoof8/C5Ok5jWhoU99mR0wnKN+JBvFc4V6ZYL2HIUT3aR5ox4sBOk1ufVdsxS8fW07LEVRrDlJcGP04i8aHcFn7hUF44KKMuddRV2hQW9a31s4yEQxqBd+VQ8/WX7W6bJRy0gW1PPcWfdKW+MbrPPGxX8yvtV5P1vF/xp+2b9Qah5Vy6KnpFnek985Uv1K2W7RZ0wp02BbDLS8Xu0+ZzwMbF4FgPAFqQj+z0WRdphdKApTjRpBN5IeFOOlK/axu6/pKRXURbkodz2a2XHTGTjgb5VSeN9ZT+dCZLj/XUdZTdgrZpzn0noOnsAxC+JFfqIu2Avjz61/PqiuomjHKY56jH4kygvt+Al8/RZ4tYM0cKVO/pcDdKNnerIBfxY34rcFp/sdw58LQJOCl8VHSfBSsvk/cpLZ0uti24SkgSuASK7/ymfGcbKw8tw7U2xIudI/nV/LNufKujoXLApw1lHmRs/nZ6/d6FIMWp9OF92yf5hO8tU3pRviVtCDCpyF3xV11bZj4qd/g2Lz1aZx4Ju3DndFtgdDqT76Ssh69sY/OTT+UtyxVf0qDfCWPSFrSSLUPbimDhEj7zUo75K7odZ0a2sTDyNAHyk5pNxfecZrI8Zbnve7PYOzXbExx4raPL6Gbzd4DJdUKkV98Xj9bvczqrya9c+54OCutjmcob6VKZkwNVvGN9vC/9m39LBiB9ZnuKD3k9yxBKi+IgLMqBbA/OhVne8pjveI+feFfmeJ6yDDwqU8VrFR2Yz8hTvEsflqltqfzR8ed3wlzJJGlOIOwXZd8MGpL/18RprVxT5rregwvgS0Nur1zgy5oIXoFTsD23ZM4zU+5YheqJtOgj6aWy9YRHW0fcZ3Q5Hyi/Cl0BL+8rn41AtH8i/s2yGmRzQM98tXns/+kscGqL31u439nHU7dCXejqMlBSRcTW4TxxywvkYT6tGXxdv8MGZWF6ZAFSLmExD3H7fU7fiaNB74yKVoEiQhTUhhcmbmyhGo6WLVjMKvrz04DXI56CiMc6GpKpVZowml5tjTm/M0xXT1cKNIS9jSQhS6ASqtfuKiGBSm0SgHnJfJWRUOaRea8sUNSWucZ2IhYsRrhCUBqNlVCwMa2DIK86ejfBKfQLMRUC56+GGYvvqeBkJAWDc8UUGtUuFnYazUsDyNELFaowmjQ+E1+1Dk/VuRUAFYcwq9glapkhO/IIE3GQW7UBQhFCZMb5KobL7P+bPxUjlke2mUklKw4tU4GjR1pDzqSBaOfMo4rbdvO5hqoeQHFZFIkGHEK6ZvAoDD9h/QSNQucGKgBtK9vY3UP04unp1rirBFxWoiA3FZHtkMm6cZI/KukrjrBiVqQCyg4m97P+qWA07F2YpniKZX6NxTQqecm2sNxqVVo7Wi4UZNIwEReqHQ05vcYJN3jRwLZTqoGfI1vgyw6hACnMhcufgH7rWLuXD2rPqo6VwlgjUWMnHT20t3BqbNoW/jxPmqEMw+CcWywtZQcLQe0c1XqOdqjgoUcyokMJj5CP7ZZGGXgH+RhPQEE+tGqGv7vWg0pfnEhj4kmq0Fur1zYdDTgYGtLW5qWjoeFXGK4rl2N4YXSxrRUfojkccSIj8YFwlTcSC8CWR27nkfoUCcxzkQSM+Z1IQ8AiublPp8QwhgZMA2nsvArz4lWayFDnLym7gSsiJqTmT5HUuaIDlaOtkQYZ9S4t4/PyjnRvG2qIO6qa07JcHBO+8n7ShwqmhnsVt/dMKeesI0mnjPjS2JWGxV+DbAcUEPA1Rw6tnDc/Rj83Ip498/xYl286bdY51uGdVuA0HQ0gH2iSL0SIOatcbB/PlXH8zZ93KCblwgpO6ObGp8A88d2Z8fnum0f3bbrHlnuwTSdb9xLPD8KAS0ZhlXO3xXShTVfgXJaRRQ1YvKu1iIsVjCouXVpoW0dD87VaZCTJcmhjOfhbTl1WECkjT+tocNzVyAbpSMhqgAK9NeAfJ3XndfdKKySOktbzy8SnNJiyCPpRdlYddTOy/spnZUwaVMCgnGzKWiR2zNQ9yiKdgPKUhoz84Xcqe9cmUF456mXUhm2mISeABbdWoKRi/FZX3z5apvLRtUsgvmIo4pA1H8iKVByPykDnfCq0i6MBmqIdNHIrY8a31V9FV5W2t/7Kd8OSNfatV9JX6ldoDH6XC9ZEXtRtNadcAB9FN9QcDbyjPpKWbRf1oM89L3SsEb0i5bvvVA4SYUvngjSsXuMo3pVr6WgAZxqDzktVJ+toUD/5rlEJlSFn+6kLS1g9OgO+MW9hMC+/kcdMGTrLMw1R5/YrX3zXPExVx1Y+de69ERRQA7pjUToc04AmTw1G29IBDOto/tKf55mX74gT4LYdNQwrA9g2EPeWazm2U+nA46igXrwOHRV6aUy7ZEedm5ahnaH9k3wBzHZUK7tDne235mE916jvTifIVybGfI5OlDYF0jYQLuFUFonzdDRwtA3ElzAqh5V05iWc8oM2hjSmXFDvalCLS+0adZgRMZZje0mX6mtlpHJNfMgv0rSdMfHvt9bfe+LENmthBAPlOeCT7SEsfGcS58KtfVB1YJOnuG8ZJvFaygRnymLuZ0elVucc+AFuB37Mn0+TTizDvHXyOz9eRwMfZx2TnnimlFTGVx0teSZlMfCoV10fRGeWkkdnjs4vO2CuYm8kq2WJf/nVUX3tAaOdvvrG0WFG65EV7qDUzDpSj2ww+I1CrRqJBuQ/6C/JDOsuvFV7IDF4rn70U+qbeg5bYhk/usPkj/7lvg4Ht+o0glD6VZQ4RfOLpUStkAVNkm1j+0jLtv0qfPw3jgbqajv6nvQq7sWR36xN5Kr0qjNWvEgf3hefEq+0mA5SeFyd5LeWKz7TNuXaNtI+kp/MwzLS0ZDtY5VLh19eTSyQ5+py1nPvJ7OIS1JeJy65kB7TDil8IHzStnJL2q7oTMebNpEwqz+EU/qWNnXi+Z11LXAX+k0CsBz+Z92AMaN2oQPpQvtKWMyzgs9rv5NnzLvSIdJ/Omh8TvK5Geu0quwDZUFLBt0aomOXLl0EzbvPiO8WuWddHPSSD20vZaeDgHV2LPj2mfLG+vBhwp30D62qP9ySXrpRPivHbJesIHUzeWV9lGNZL+/wLPHoO7ZH4oT74N4yJF/b0TLteItX+zHiXBllnsKrLSTezLc4n4vsV/7Ynyj6rehm9Z+RTD6rHOzqFx0Zbj2r3jby1sgD80+6q9WhRibcJfnQPx6r5xx9RxqxKsKd8g+6kV4drHKXD/P0eXFEaXfoZNPZgxMCvnTXPZ0Nld7SyaC+rWRxPe1icJ0OSvkXXPjdYmxUd5xobLnwc+pSAQSu7EvJ1LSLPJ5b0Uuf9pvsX+XQU+EVpI6SIatmLb+v6TtxNOilLURQ0CBSpU9bGt7LPkc+YZV4GdfGNPQqha4v1JKjTGnkw+RQc7lLw34N4WpwpfCiQRQIMpZlmtJjngUmpSVDSGQ2ukcFn4Thd77riBcQstp62W5M4yYFhpmRqmY1N3+mSjDmtfXKnHkgk/G9hp2KSSJu3pStgfhyOZ0hBZ8MLE4kdD/TaHD6ROYLlQtndgb5NgW4zyhIZk8hbT299j3q34AwaOd0ayyKQ5m6Dk65hqs8ZAnlTxpkq11/61Qk1cpLwcPH4sqfMPhLJcHR+glvGsgIGQW6dZOhU9CSl4JNgep3hirZdl5b/wYuhMS/5YwiaBQkLdh2wlBLdXWp3ctr8/W59zjxkMLPc8opD8WDsCLwgc3yNRoSfnCocKwcDVUkhgaViqDyxFu/VQoJoa4xBM5VPhaigLc9xYf93CIIVsHFWalKDca85jyP5VB3bh7+kl8o19e4THgqQ1NlYI6WuZKOvEcNokY154yOOCMxpG+jD/xJj+JGJ4P3qzbLzMk/FXsNfs+lRcu2kyGuiqMBpYIALY4G6qu+gXdQTbzp+zjP2F2hgfzLezQ6HViME+ggz72GLsQZjFoqlgqP514nEDyz4EyeeI0A9sdrK5EXcE7he7MiaR6g38iD1ffTn+IIloY2KenAPPxlFoBT2orsMlWOiIq+s4OEMwPqSOdldoDETXqhwaMfkkcq5YrOhX/1lO/wJwtRkfA9EQuYwDZmENYTo58ZHo+demaurdJ1y82iNcTTwi0uededJ/wYSAG7KBiru0rBZO24UyolLI4wuWPHQuhxBgh5472PY0nvLWPL7beIrfrsGR132Tli3Q6Zb34HHqVWc004aXONn6Qz7mlMJtHYhr6nQ8J7lOkdTO5caFTlqJRqCE5s++JogD7FeS1Je6VGiZByDiLzH7c0wHR8SWt+pRzPjiHPvLZ+8oTnKXc4+mZlJIt9aVy+lH9tJI1H+du8HB1Z3SmksaW8siOsweY7tr+pQJCnWV45W+1vqULeEP6Uweou3l7xVa3DVYO71Ie6Zb0S+uTXysjMUcfkiZKpf1MGkK9y3nPrI5yZP1E76rlVb9t60lU5VnJNOZoyV36VRnmeOo/78kJOrZIf/U688Q/pnnxewSbMynVJUTjEqRlVskmcCUt+j/HkteWa+NS/2Z4pO6mDbSHOEyfCVMtTOG3fUu9iAFquctlfHRzcEwYHGIRR3eHP2sspyzOSi04g75mf+BMMy7fM1LHAqOxL+SedkCzD5Hsm6cB7la4T9wmPeCfPpC/eS7lAfuYtJqWbip6VMVk+zxLXwk7SIJX2zMOOUcPaIjXO783FSAFYPWQ9SwepdIjIrODC2tJelqVsSBqnLOWyDgXLLTRf6l7VNR0X2Ex2Nuw4ZseKOqaupt7qENvSOtuO4sKf14mHlNPoAb7xeRk4UI8CKrCV7+Qf29ya5h9Pylm5mfjznm1kkl7ML9uDd7IsjjoCzMF54No08q/vpJ7lvk4BnxfZCFGaOKQc4K62WwFEe0l5wh/yLQY9dTMvPpEnMupBuuQTZYQ4TDuK567XUCJWpBWpjBJ47gKgxS7iI84poBwzV67NvFbnCg7ueLMc6p7zvbCZB7o0nerktRL6zmg+8CRcphW8gukIjPy4NgvtYHWKryTN8W3yFWUnTmt4lhZ1PonrggdwYd75nXKmyH7pXLpUpy9Hl8szFf8UOwc5D+4Kj5FHgm7eYGa1sqVRadICso0pX3hSPgl7wmNrFYx4PxP55Zn4IKUatKYokLxf/aH9HVkv/OTUpuKQ87E0lDg1g1o5yTEi0mvqmjjicdYDuEwpbykrS05aKfe8n/xA+2hjywPCVcFpXgV+6csfz2r18VlVVnXPsqr7wirOm7BVqBJ8xQqd40TXcM8yK5xZZpbLW0nD5O87FR9l34eyvCcASQvU08Em5U/TzN+1ohiVRwYpY9S5lRPEulQ6KuvAtbjKTrnnpGwBXswBG7/lueWot+04yxvprIeevVfyA4fQRfI1eVgf7Qrh1MbOgeGsK20A3OK+6HTkqvVTn2edipxWJlrnKpqmwqPwZcpGqc5rF9aDW9I4p9k2PhEmnzi42EhHHro7dQTPfK4OqTVjtpcOFMsTd8KV9aKudX0O8kqKljb5p4wVl2siu+QnnbJG82fUsHfMnO9Tj1BeRjVSN79zHEhHWhW1U7Cvni66JumZb77P6TtxNGTDggUbbPVEWydyvb8649W9qICFAHJeqQSGcIQilAjlZ+NIOHRUbZBU4jDkt0uidBuLH+1tQamc6yQ2t6r0JV5qGUZilpEMhfEjOxXeMd/V67D6eZXH/3TEVMkOnyBrBJhUYBry5qrAVomtgsvcBfj/PUnIVZ0989qvC7RerX5tfv8d5KuX9b8+rxjPr8VPCr40jLxTyvCsKvV/KkNvnsIjnUIq01qipVM4pYLiXKNLhvx2ziX3/xW6KheP1GMVOjgtAmvVG14j7IDBfFLQ1fBhWTK694sBWUpyrr/CWxq13jzlh7FXUzQQCO1nGJP3V9XckjIHJZpneVHyzBdX++Mblm8qf6t8qvcLJhRupdNVKXkVY3nnG4S1AtM6Jc/U+MP3ra+h7hm5wBfiG2qHKuGb/LcKdnOr5ZhHO4uZKuWMgFeppPGgMCQP8xMv5Tv/cgeD2W91UJhjLh7Ha9JlMf4os7ya2ee51/Id39lO8qtKxqMl1DCanegviGj4Cilsu1iETeM7iAM65/giuc5amZ/5ZsoCOCs3Sil+ZRKychQzqRDNW2WYz6rn+dK3/4gjyikONXLVYCSpTBFM5V1v0Q4ggnucC5fWItE7Lw97Jh449fTowu3uPXpEC8onJuVbjgZrJxasU6W4E6IsqkBusSqvphrJvD0PZExjdHTsuzNi0W7bxDY79iCiYffozPao9dfrQE4YCVk7eU1jo8gjHX5foWwXMZLl9AcX0qJHAfyUA9iAJxT8p27csnv2FXWyHaxa4t1XskUKLiqc5+3an/LEVvDNcrQmBdOerXqjuu+xLol32ijzBrep0Km/bSZVSqdJHwlRybXKscpjVasWCFaVXb3xv3tMyi0w1f0ttc8SpO3URwUSq1hoWMxJIiKXdpZ2qp5FPln1J41c3jO/NMKscyGqWp1tA9uUdoEPxZF6zLp5L3GTDanUKtRdoCl/LanCy+r4tmaWnTKIEQQd4Gmokocp8wUudYTlVclvKgPTehX6XUUldq5TdvGsdLirL63hqlRgqSDCgEueg4L5Tng1nP0JfeopeK8KSa1ykSZy6hm6t3Jqyacak6tSVaplISvJU1JLY7dWV9+toCu4KrLZ+5Zd6NKrCl7PSzL3FexOoANbme5InjRQOoA85Z66xtFBpc/qKfWRHRxuJp5lOssDGuV8aevSpn4njP4TRv/5joa9PKLdUeATolJXnxsBIiwm4cgQ53zunfLeypojTZtJFpQOih60TN/yPWiCtreOwiq1rUoFe74nXWnYK38yyqTOtihvm4cjteajU79hfTquJGqcbSm+jPw0uQivHYFi3MMV1LEBnYei01cvP19PWMtZgbs6F3rpWVqpcGGVUPdJ98UurOpafcURWEqmYmH1xIeVrMrblkBKZJVndvZyK1raxld9pLitktf+GEKCJsE5zac1ac2rlswvgEFc+ZOuyqh1VffVnlGZqp1Ku5IRyXpX35Y71VvCDD/Arz5P52hdmwqZjwsf2OlK/ZfPS1tXZVRX5bpcmbOpKqmc+7eWr6dV8lZ+UL7yciWDC0Yy2/lsvIYOEnWb+ow2q4OxymC1o3iq0bq4Spmb7SQ/1fTH/8PemQZbclR3PntvqVsLWli0opXNo41ubSAM9hh7cNgRdgQEmjAYjM2MP3gZ+4PXiLFNhL84wkuMCQcBhD847BkDHhzeZFvQRhgJIZgAQQASQgsNklqbpZbU6lavc34n81/33HxZd3nvvm41VHbXzcyT5/zPyVNVWZXnZVXZ2IAO2S310Xu5jZbYh2yfE8f6Eem05nMXn3Jeop730nCe4kO/37Z8/PwBw8ZjGwu434CPAHtxjGPaj6Wsy/ep17JfON9IHrgz/9BOgnvUryy7dB+M6PSYK5GutXm8snrxHe8Jy0leK1XPsr+klXsjrgMkD375mDG6ZuUAqPnExqSNNgbkY0UYSMWybISuVPYS1w0j6dqgVe2MPQQY87VA8nDmMn+0sl3kY5lo6NS8hXchYROezJbYeGv/9lrQiGOJleEWEjeOfB8nDW6d7UNWSCHIHwRNiR+XnEdrzIfcZ/O5S3AJhuBn5EcjvaMclz8LCTTkFQ2cQHaamGfYUbaf/WTCUUy2uXHhRFlrS4bde3iTvcXNlAnA58KcgQj73jBe2xkA5igshzsXaP5yw8GNIoAo2onMAWy5L130dsOh2W8w8uDpf8FxUr5R0QHn+s2KnAOoVPBVXcKBRZyE2Gi8BqCDm4MTe3Sy+CBjtuQXdhkjg58GvtiXYi+yWR1WZcv221+5WCLMRfcEnl13+iQbYxvlEVbXJXpgPsde/EN/CIqstZsBTjz86pMx9oUl+gG//bh+H7zVZrzgcMOG3/2Gz+oMpJocZHn6xvFCD/IJBXZrD0AfpfH+UCtHTydre6PcjNoFmmPO/nUJn5Lwuyer85++lH1Bn4m+wkn03AdEQ8e6vOEhXeBEc7DyI+xIo4ycqyu/mS9Svf/uX3xsNpmAX8w5JrDdzw2wkKVO2Xix3U4+qmycQT5hsJq/MNJvU7JU5tBAGG21su2rw9wQmi4PNNiFzc89dBhm9tvoqENa+88Onaw4m9K5GLNJ7nJr825kUrbV2mHx/moMsbqPKzQg4+1e9GGCQAO3opaVBEedaMXubHu2WhLswfwODgKCBAc3M9GWXzuowm/nKmMYARRu6nxMswsHN2J2V5y5MYExiPPaxzlzCG9itPfS3GKBhr9873/zdzS88sptaasFPbewKsOeY2FFg+85y0FCoy4uo/MBDmvBeZbZggm7MNlfAW172P5q+uWv3peee+M16bKrr0yvft3r0/n2nobNZ59rrfbXZ79NzceG3yywb318tL8y2HLiNWYzX+yxA80U28byFcCxhpsIBnUr8ulULopUjRpSy/c0G2NJ5ejxmo8wdhzn48L6bD5lG+M23/pfNI3JV1twg4UaxikvWNnP1/yXUcYczlVWe+UUbcrIPsaZvOvifFpWyrhuSrFD+8iPKLMbbdBG/aFkErnD3pqZMkc+rozfA1b5xYR+/jFmWr9Bkj6NnYxVusHjBgX/Zo38FlyXUh0O/uUkarYU67CeE1g42Cte9jlhDm7G7Z/5EA0eTPR6ZuSXa4Wu9VyHvecOxY9hm91ZLtvIjTaTPL838GPSJUC3reD6sWL2mTz7GR9k/tE+zGgMX9iHHhM3jJxTxl7pzuc9fL5Kwm+UM65fA3LvTGK0asP/SMBJYNcGN4vjx000G4suVxJ+/JleJglGI2ADo183Aw+NHjDp+k6j2cJxZPZ5B+iEH68gjfzgQQi3HVqeMLFffV9yHUfeajnwg37ukdjHGdabjaaU/eOdKVR8adbg/86v+Y8m3BvkBCb7kPsuO0LcHlqEizVUs91UGD/552QI1oat2d5yX8YgU3g8CGDtnAveB5tschxwD+jBDbv34BqEvB9b5V7EFZQfa+osiscE1mXd+dgXl9/LGirtTCDYD7lvshtg71nRoD7l9kL0TFzkXNN8cmt9YQyFlvdI7q3q0NjgYcPb5JyBnrxDWFe85MeIfEaf8v7HPyNkJMWDbo5vgixcxwjW5EkUXCZtDOV8hVD2hRfRzfFgUP5HAvyEPquzJ7CJew9y7oW1r122qmUanH0Je0m2H8wqjl/2DWMfwSlWqKCDCWTXT8YIs8+DL35eGb7ZnL9GY/emHEc21vKHElZgeEDOxirJswqUwCP+2FACXliADUvTyL7cBg+0SGd/SJLyaIOP/nDu5eM/843GKsMx3+JvOwCNXdjmDx9bbN+57Xls5lwlkIg++j+6tiLXGdFZl+0c0Z0F1o7DbPV/2S7Kfu5ZNWPDbLrxmd03crzxdRBPPgbpOLSjl/sLFNj+AYPx0fvJ+YsP7B9jPOeH9rGb4mAqBVs7G7O6Uf+yf6HqWnPYA91Zn4+bZYzIAen8Pj8f0ziOzQbscl9zLLkzre42ErCxR3bs3s2v0RYQwG5b2+h98lUzOgvM1DUcr9aeg6CGwf0hXeAYRAf6XBV/0DNcAg1G90cY7Yy3pm6jP8drWkygwU4CnjVhp/oSEXMkO4clb/bfBoN8EHKxXs/z4yScDR8HnDmfnOUkLNX2t+CXm4/8l9sswDJEIl7cHIClC6DfiBoWy8g5gP3EY0da2Q8aP8DtRtna80mYL0hM1hlkcsKgRnI71cYRYTyhagrcDg6aPKg3MBAyu1kKxLGlE1HfiPeDDjEGE/DLTQU+8QOekwJBS/vspUC8RAYf8CxyPpFMTjY5V/XDiaJUcFT1XCeStcmHftExvQxm/PXAAwU+oNlJbHZxM4mvfbDxgUI2Fluw2U4i/krB/uUZpvVlpQeDlS/P5xixfZMvcGMW9fcndAUmTnp85n6yAl7ywZY/B1jiAuptkov9b/nF2g/ZxJPnVbmx4fks+VgQ+bizfWMjRF7OlveNK+Snqjo90BzHdCtnwOI4Gg2Axmy+w++6afdvPgNceMn9ptVEPcqNvw3R/1oCm9W4YKLFfey3KW6J/XDh4vKAqTKs5OCWQIM/3sS5gy2uz9pg4+aBE9sRLCuJwxfznMV+cDV2QCNRp61UncbNlB0edl5iafaBDQGOHPnYmzaMOJ1PNTKK8OgKeBlQSiCMJ3Dh1K4vNWdi6SJvCmaJMc8zw9Sdl4AXIcYk7Qs7GaxsPjH/cgHxGxcDpZ9ccNnWEQkwv7Gi4dAjj6abLdDw4Z97b7rIIF9x2ZUWaLD3Q9jFb6PlrE3wiBL9N7EcfLPxBAvd4RS4gWOzf+wP02GXunTQbviftJuir9/1QDrygzeky67Zll5z3evSyy+zTzedbSsarP2w3ZTJT3bKWpkLOZB4wjazw5ZjWdHKFsT14AI7xt/rYIww239IvPIBLHvXZS4AAUa3k6kbB0yulHpMpt2M8HEYYyz5jR7HGb52J9p5XcYXxm9/pIexp7TjX78ZMRnOUf5yw3hCAJpHtFwxOOjHvpL7uMWYZf3JN8jW1pe8X41GsAqejwOmh5sid6Nh+1+ewMdWbcAYH8cQjB5QUF9Nhpta+LkusG/32uNmJF6IzONKyOAHLZlFfx4rzGe51cY8DKbPnNHc2nCsjBLHjY+VRsJ8JfioE2Rgv7gdXMfz0edSkQ6vT4ANHJu0McYwLvDXZt5hw37hmpHtyOc17W4jttJ/S+w3rjG+Ai7sY2/kp/iJ44HrCIm+uz7ze548QM947GOKHgDEJpL5lPMV3X7DZ2MNwXp4+et5vh7TIVj4sQS2tfsz4FYlEOnHjNqLvsw/6o/Luin2U/rotMYPE2h8hc+5F8nXGTECUmyKJKgmx4oEfMyjoNiArX7Mca66nF0L3Gc5AMdxBA80xiv/Q43bZ7KFL5td9Fr/fFwDDzPwBdcF4+V5at3DoJv9h3890FCOV5nstuEzXGR6PRlWvuZBzseQH3fsL9OHPRxX3FvIzS6HaZz7po+0jrEKGcNGD49LIuD7uJyT8HkynnyOoMJ76jrAd785yYEcK4+NjFXma7MHu9zXdl4ULoOlxK/OIq82fyST/yhnYxD7zmWFMhLLqKOuY9paO4bX2XHrI3k5J1wSZhig+f4sOOZjfOjHbOH3uvicZkFN/6s6K1Dz4zN+/+44gHJcmQJwtC9knNE8OZ6xoM8InJvsU+61qXOeQiOBuCQJLzbUNO9fZMhl7qd5dwr3/6wY8v5jhx2Lfm9qeplPdH6x48MDCMbP+zZYIcoflLAxr97MFnKcszF+cZ/tlqu/S80Yp8Dn/huR3TdGdz9Ym65teYwq54S1i46knw/MTYrv2AddAt/66Sumje7BUj8PmKQzNuTzg+BLnt8E2Q7ECjW501H2VMk6Rmw3vZx/Ol91XBy2fcFj8fiSz5+S8C/8wPqY4+M7/bUjxM4pxn5M8ICIjRv+x8ncaiyMC3je/lX+NJbJCUH/z3FrndCGlNtTzgvj4cW5+ItH5nx+4rL5vgQMt98Kfr3x8ct8YOci73PjHoTHylh9has47gl+IePGc+7YCc873Lg38X1JG6nrk/GQuN5YBia3fBwrugZ3u8EZj8+fhQQacB0+PUhAwXYaJygv1/GxHl9z4tuBxYnlN+B5rxiNgzYvWXfHsiO9jR2WD5I8ocnOzTdaDNL85SoPaNz0MOFzQcPzHczJ6TvSlLP3/EDDyNzOAcEB7BN87XD4+tKkNldQGPwCZrgcrF3CNkvQuGChT4MH9rhtgQe7StVlKLuNmX7E/MsgyAR3HYMgbVGdKws/rTbhw6Z20bCTnUlfwMZGr5tPvX/IFB5yt81o5CqDC5412w42CBtkffao/Wt0Tij7lwcqmHsSGL2pNCIeISDbYOD6ZddEnKJA9ttgzfHKIOUvgHJ6AHB81WvlwdhoUyCPigXDM35MQDbA1PkeuvlOSfz4n+T7Khdzp61sIpxDcPjENeJClGw3kS3ytKGXdj8f6QREUskNy1dQWFOm5EHSOUYsLtHRgLEU0TLF1Fkhm2PChk1PC7tYnMcPQ6PQ3fXo0dZxVYUaJDaXNs4nfxbQxhRepOlJvolWoJxjinO3+Nsv54aDGSTEspuZPNoEygJWW41/31O7083/8q/pf77z3YmnM19t20tsO/mcs1L6zkO+eAAscFhTsXGrud7ePbcmr7LL+NZwxOr+bkfjwdJDp9qbq5/an/7DyvfYds5129P1P/CmdNXrvj9dat/n3vxi02KfpuAN5v4HSPqMs0nc5XqkBoKNS3aeeqOPTdZHjgsFGjj27D+38fQRMatahR8lKsWpkEJRHJ5DB8Q3KFbGaWPHt9rJjYV2twt+S8h2ctZmxysXd7+Ri3zOHH7Yh1FOTZDnSfQBHLfDil7PdmQYK+cDIVedwfg5r0j01WWsDAZ09dHq3KA5Gzdm6g98tPm/cvNVxmNrsWQtFFDdgUMdJWRzkvKRGVk+Xxd93BuJGa5NYss/JwPjUPaj3Peh4dIXrsN+jvhRUlS6YSODZIJfs+E3XvU16O6K4HoHjSJdYBS/dHxuj9XG9BvR932h40eflFp/uUH3PzYUQckLG/tIPhaajWrP1GATBHUqFANJIl2OTTom6Dv9qvE75lJwu8wmZCkj5zJFEAwSVb8GwodvwbYycu4b+MQbfIuskh+n4kG26MUX2ldGXqJH8rSRxvZbqXtbYSBDTYdpBNG8ofARGPU+lH3iPjNbSLD4PjYgPz6cOvopEE4oXeoaqXe0ooPGos8D+rSbPmAiVC5HAAEpByinLNudwaYSHqHlXOeorqhCXmvj8Roea3MZy51dspBpi8naaJYvtA+QFyvt3OvYfu3GzhonylXwCsZkcrFF8jquXX+lM+LEcoGIpK7MvnC7g/F2bvr7pdDBeUzCXt+sDKuOKbVhF/zQ4bP+5/PD6oI2njGfdA2ATEjRfmHB3tljROgcp9D8+A14okOCz30ZgQIvO1djEzic0yTvE/fWJt7dv0GnsSdNakNQJpA7fhGI1zFs0fyG6xYsGn9QK587mDUWO2nKfS19cB1OzTw0IltUdvyqwx+T6J0A8oHB2+1HmJqfcPzgL9qxDRmVKWjMdDm7p+K8MT7mon7uuAo7e5H1zSDIy1CV97WBgjmWjOD22Y/rLHX0sH2XpBUHGvCb+8fyfXxKzSKkRNI2b85RHs5rX3ZnJxFRLT/viwCBCSJwBCZ4U7snAeba0v1idFhIwPiuYGeKqFwM5ItIEbfGcyNEbDA6aYxJzCWXjHhC3UmqG3s8+AK5AxRNUF3DDAVk55WTvj74SXhqm4QxqU3yyruDoBA6WQqidcQ+i0c+RsTZ7afTgZiwCkQf5JhM4V1u1qcDPNcDgxWizlh2vcYTAwsMhAh47gy5v/EYcwcEXP8rOGImq7JVmaJk5SOloM+eQKglhDlC6VTCqm3UPF4amTJOj7XIU6uHr6bJJMt5lIChR8MPrOV2J+21r3LstxeenmyPY+y3NxzffNO/pF+68afShcZzyZvemPbbZ18PP/JwOsm+gLPZ3o9wyAJx++2i95x9v/ugfdaJx6J4a/MRGzBZLbbX3oJMcGfrGaf7eLl/93/YJ5TszcZbT0l7LYC78yvfSFe85b+ka7ZvT9dc+4b0fVdsT5vOtPcu8OEYIgREJjAOI+kDZTb/BAk3W+qJ0TwxHueNv6PRqsQnUTvf1/6BCfxpSTwt+Vq25pFs5INW86ld9CgnmnjmySNOn5zj10okKLrqFcgYOfCKrrwS6/O7EGp21ZtwLSHRlAtgnhzZpkKjq035JFy3wX7GxqpawJkKUUpFU51m0SRPG7TAU7OINeaBPZLnKs+iB8BOlwREqOvSDl080MRHOdKpKxmPs1l7i6WGDGJNfrXPk0uH28GPbbIlXss64jzgxiusTswVFbrK6KScR/pCdeFcFgi5rmKiZeDxmhDIx8tZekTPwQiTJuh72DYea5sljSscSQDd1zbiWlqSmUtbMmU5mBFrLnwxB6VOatA7/6Is8Dvd6pHU8Qa6IKOtKtM2Jq+Gkk9rh034LRy1VbBdtSWjRtqmyYt3Gt8kPShxeWMSn9f5EaGlKPCreczgStYxO8ZRIbK1VIpT8pFfbcrFo/oS3sLANWesTYqVG4CwulwF2hC2umOUMjq7usoldzoMx29aSKBB3c9BrfwcM8vTFGQ7bMtHFCGETuCB5Sf4j7+eEBEiOFYn7RrlsR0a8i5GRXfCkXk1dlDEx6Dl6KgxwGmlFnakzYrTwl4krbYj2jhJj/hq+ZZMi0fyymeRa+FEuYhFWfyRLn61KRedvMUf2+ctz6Kj1hnrLXnRlE+yKWJ1QQY76bqZP8J5Yho738UwonynB8UKMORybqKMgDbYwC4gNau1jKWmrjGOUUW8YPal2FZMYqyzJ4Vtsm7BU6PJpNJsjzXY8lFe9mg+2WufavrXm/45/e//9f701p/8yXTRBRekO+64I936sY/YCoQfSJdcekk64aSt6Xlbdv6Ne+5J933jG+m00063T4/Z97BtGSLPoT5w330WcDiYLt92lX9K7GtfuTM99thD6ZVXvTZttc9l7XrsSXtEYlM68/QXp8su25auvPKatOXFtn7CVkb4mxwxEONwIwEG5ey/tXk1g43K4XDXvuSvePmt7SblaWKgAR2LTtH/YLd0QKv55rVjVvmW/lrXrFi13CTsVluLVmNS7+Ob1c7IF8stXatNi/r7+rVoG6LOGns1bJikD/2robPuV23D0dBZ2zBWrw2yRietwLA+0e66Zgq8TM5NJgpdqeUxqABQBstBd6t6yqGCkYykIo7KrRxMG4uP2F+JD9vm5Yzc+9vXp16BGRvUbbGvhp5aB7pm1dOSla19eR+26MvB7NO1HPok/bJxObgtmZauWXQgF/laOC19UabV/kKlyW7lk/ovXyif1CfhiYe6aMrVdpzlKw400F98GH3NTbgCC6xGYXUSzwYSUCDQwOMV1HkuzL83XuTBiqlv34iu/aDrgMtGQyLYosuL0KOOYNvxfCCpH0ejD7Xfp+mUbcvd/5PwI3Zt13L1TZOTztquuj4Nh3Zh1eVadgm2CfpNF38JB4QNJianlndBgSWC1k5CXnLx5k20zJWxwCibR4LreuHtUyWoleaYRip6Dljw9ICtNOCRIFbdyXLlsFEm3737CQ80fPIjH00/+1PvSJdcdFH6xI5/S//yfz+W3n7jjenKKy5PW07emp6zZxy/+OU70//7whfSyVtPtkDDKf7pN1OVvv3ww/ZIxYnpumuvts/znpBuve3WdPddd6Zt27anU150enrYAg1P77PnsTduSa985eVp+1XXpdNeZs9KEkNgs8cuPHGvSqChBBtwqT3oYbYSZGDT2hQL/mp/OnPuOL/sOt99Dmg/6qjqq5Gjg5TNyOXV/JW+Wsdy9U/Cm8d/y9E/SabPrrrf1OfhbckvglbbMKlvq6GvxlxN/XVfj6Zu6aptWM3+SufUHKOCIbWNU+UDQ4DpqGM0wG3rVnyVeqdfzOTahKQ21WWoMGbJDYPVDLyViGBDX6ChViWVi87VhdXWtwg9wqh9gO20rXYfar0rqce+rLbd0rUSPcKo+7wSzBrrWNTntb/2Q12PfQCbdumo88h7nJUXEmjQo0V6ZOeg3Rnz7gVe7rFhXY768giFVjnyFzpeKMIjFny7mFT7v65Hv6pt3v0guYg1rSwd0/imtS8HZzn2TrPjWLQvtx+z+Gwa9iwYk3yyCPxpGH36Z7W9hR9pLZyaVtdbNmVMrUAgQMCa/BIo6IIAJdjgN0SgRmRD8GoILoz9lQgNxXLPinyHLTx02OYDio0vUYW1xFTQImmm8gRIN5GVGjyC6GOeMaOHcXC/jXu8cXuDvSQIK/fbKoVHdz2cbvqnf0offN/vpfe897+niy3Q8G8WaHhw57fSL/3qr6art29L9l2ktOfpp9PnvvD5tGPHJ9NBexkpn5PbYI9PnHDySbwZMJ134QXpmqu32ae9NqRP3PzP6aaP/2W68IJLrWlremjXo7bC4oR06ukvSdu3vz5df+0N6dyzt7iN7CKCvfSJx9G5bz1kFfYedttobRv7hFVmCjQQZuCvcTngkIMOZfcZ57QE7nLTRN8X0FnxZ8Farp3T5ObVPWuf0OvYQWDSOSA7A7uTptnXtSNYKjWGsI9WPtbvzsCsvc+2Pnol3nVhCV0AoUGkTigUJrUFtiXFAN/fFsGDQCQvETZCbA9iLVbt6lEbwkUo4owYjn2p69O8BppgLVLX85ioa5blHYO0kscy/lC99g3Cjc2X/tV0wXCPzGaBBrvgdOqNspI0D05fb6L+efCi3CzYkX9aeVa85do7Tf+xaF9uX2b11Sx9mgdrmr3T2mXPPDolU+fTdEUdNW9dF3aUiWXa67pkvpvzxQQa/FEIu0FlxYJ58aC9sYxVC/42Vws2KMCAg9kxB7gZ93Zb0VACDbWT+3Zg5Is8sdzHE+nzlhd9cPTh9fVjXntfCPyL6stKfdUnP8lH89jewp9HfpIdtLXwoa9ERx8muDFFPvTluv0l3yelecm9W+LGlACAz3ooS5pc1pLb1gUYdANX6NY6lmKQgbI/Y0Vuy/mtnKfGGT1qGcNYQQXMOnkvZS55SdwrPm/vqeETRZv4YoB9eYK3ej+ya1e65VOfSv/nL/4iXXzBhemss89KX//q19I5556d3vMzP5Mu+b7vcwQ+NfYlW9Hw6dtuSw/bJzF329dlWDFx1tlnp5dfeGG69BWX2GqFV/gt5+2f/Uz6xL/+U9ptwYndu/ek3c88l8480/heflG66vLt6bL/dEV62UtP9D2AvQRFSHJn9HoOFkHJ3uRWNoYYCDLkd6Q7hP9IfkTJpeCOumlZ9Zb/V6Kjhbcsw+YU6tM7S1/gkTx5LNdmzIJXy7Tq0hHbwNYW6Uez3LIL/a1+t2gtW1uYLVqfnkn0lr5ptD7dffSW/ln7jmyNW9ejvfPgRrmVlvv01rbW9Vn0RuxYliyYjIlcbcbeZyTPaVB1gVksQEu1jQUaALJ2XzZmeNxA22d77bsTRs1/uHNVy/hp9W9WmFbPVoJX623h1zzz1PvwZrUZvj6MeexYLd5Z+zGL/kX3sw9vVpsjXyzTlxZ2izat3zUu/JEWMVWO7cJv0WiTjPiWQwOjhRMxj4fyqgQa+MoE36cl8biEf6OXCIQldoqvgLAlDj62Gjl/ItGbu5++ndcxlAJ82iDNIgdP386b1AZ+X+rD6+NfBH2Wvi5CzyIx5F/lYKsfq+1D8KNe6Y56ZQttdVJb5K95JtWjvMrwCw+aypNw5m3rw5S+li19OsCyD/z4TZd9CNRq5e/i3c2WTWu93Ao0oKlsfhOl6WqgLzkaTKOwyRVosD/NywpJ99lMO3aTkygrRZr41NbKu17Z8LbGNh/WOqJJWJf4FChBBouFeHr6mT3pKxZA+Pzn7vDx8AR79GGPBRHOfPGZ6YYbbkjnnX+e8z1vBux88MH0jfvuTTu/82B69IknDGd9Ovucc9KrXv2qdO5556at9pk9HnB47PGH0gP335u+ec8307ftyxUbNmxOZ730vHTBBRfbSobz06mnnJ5Osq91WpzC9lXuM+OuLSZzd/IVOuj0Ob/p3N6tY8ha0UBbXtGQwwx5RUP2HDJxz1l1akJGSf6PNNpEF98secRAnnrMZ8FYKU+0W/pXiil59U86yOMmPuXiV305uXRFWeGSa6Nd9CgDLdbhI0XeFo9o4stS41gt3IgtmRpDdPG2cCItlmtZYUR6XW71BcyWXX26IqZ4lMe2GrOu17wtjJpW18GIuLEc8ZGjLeZqr+kRQ/rEE2VU7sslq/a6Dl20qFP8kRbLakeW8dDfVMNNa8ckVOWSCHnHG2hdkca40VDVgeaaZ5s9fFxGaPgWlyaZOKFnEw0QJvKUhRPpEwF6GoVDc8TtYZ+bLMxop8pzgx0jgVYfMEX9qPfJrGaupu9lc7SzLtd2Rntoq+s1f6zLF6LVddEjZiz38SPX1xbl4Yv1Vhma6MqROx7TYgINNvjygkdWNBB8JdBwqHw2BKd4oMFumOuVDYdYCWFrevnW67oSiIhOnLTD1EYetyh/tMovhINA/jhafR70vLA9MM8x2XfstDCgaSkptz6jKae1jAUYVBdK0TIWYCjTVafpLC5+dfaszYfbiO03XoQ5/G9MvQP7auwhbji9R7zz4ID9jQlbRKSBMknd8e9QpvSgBRB27txpKxz4bqVN222sPMnewXDueeelM04/1UV4b+Mze55PTzz5ZHrksUfTk7t325i6Lp125hnpgosuTKdtXO/vduRFk4RZnn32qXTfN+9NjzzyWDrBHp8484yXprNedk465eT8yIQ9teaBBot5eCLQsH9/Lm+wz2WWOIihaV1I3h+w502/eX0DVHUr5hnxe+u3uPSodnq0X8oxWPZTNIL9sogU+yfMuM9FW4SueTCiXVGutifWY1kyLZxIi2XJkIPVwos8q1GWPcqjjtqeug5vpLUwalpdl76II9pq51FnLEcbZylHOyNOX1n8YDOs+zAvZuViqvNp7TW/1xGSYMlRbtcLvjjEKK0Ab1P8u5gY9++x6Kb2yrHQ/ULQeSz8H8+GPh9Eu/rKyNb7L9ZjudYDZsSt26n3yffRI57KysFTmVwb9OM5LSTQ4A7lx7yCY3KggUmIJSPwbVECwXzekscp1paIAyKHCVBYvZBcZNYf12vM5CpPko082NlKs/AgB1+NUddb+KJFPaLNI49MC0NYL7Q82ko/o//UVtMn9SHKTOJbZJt09mH27b9pci28ebBq3r56bUddb9kBbSmeFnBqgirJMOP2wIDoMUcrm90yjQUdamvQWrYYZCg0SPGmC+naTiMt6xyZhKMermV4Y9GWzC6mKtBwhEcoDuz3MY8A7H4r77Mgw36b6fO5yg22MmGjfVFi0+bN9h6GDf7uBPpjT5XZ4xeHMi+rwiwAu2HjxrTlpE3+hUriBActkGuQ6eCB59PTFozY//yBtHnTienEE7bYqx422+cvzTcmikl8NZiAg/fJbO3e1aCOGM/4YyzUIebEnobAwuFcHnUZjj6/q418nhRUj4nJzWPEGSp9eLXorPg1Xl2vcalPw56GEX0Mr2/TQFuGrJRmilGrDTiZgU2UldPWV1YbuVKNIzoDBGtVAAAgoElEQVQ5OEqxLJpkqcdyqy4Z5TVerMdyxJIO8pon8knHLHkLR1hqI1dZmLJFvKK36rFN5Rov1mO5xot64VNd5VpW+oQjPurTeCUrHarXshGnr4xMjaO68poHrLGtjxHBWRLy0cBJMoXvsOWIaZskQtss8LEb0/Dq9j78eTGn4dTtdb22S/VpdsyCMw1Duo5GHm3psz3yzGLTLDiRJ5Yn4U+zYxYcYdQ5emv5WG+VhSGbY72vLD3CUy6MVj4JS20RR+W+XDa0dB1vtIUEGupO88WJQ7YRUCCIwGMU/k4GuwPewF1wiSrQNi31cWjHIU851qG15OCBrhy+OqlNeau9pkmX8ro91sGdJS0SaxZ9y+Vp9adlu/xZ5+gVRksu2iW+SKM8Ta7mX0S9z5aWPbHPapd8tF002TepTTzCU10yykWPufQopy2WI69wlOc2cStHHo4R16g0Anda14CsQgWUtVmxw8qz4RpbWpUjEVOnwog1T2xDZlp7zYO8bzI9LuoArczqjxBUeH6fj398XWetvbPBZ/22CsJflGvBBV9SYAEB+wCPBxpYHNF1HcUlYSMbqmyhmD2aYQGewksQl0fPNlhAwkZW5yOo6y+qtLxbKIYwCTmSQLuCETzwY23RDhuj8T8bYaWYxmvZdLUDr3bKJNVzLf+qTe1RDlpszxL9v+BH/pa+Wjry1219deEq7+ODPiv+JCww1O65QJVPMmBRbTKAPsVysG0WVbEvNb/alNft1IPqrlluUK6Gui56ndeYsR7L4GmbhNGnFyzalEeMqEf0iEO7eJTDF3liuW6j3koRi/ZYj2XJRh2UxSO66uJv5VGu1R5pwoVGOdalSzk8zXIUgokUGNWsnOZYpk4KIrneYhJfT5sL9v2YgiVigbakrQ+n0Gt7+9jnxRVOH37Eg4e6eCe1CTfyQJNsXRZ/zGvZ2FaXI27dRn0erJb8Imh9NrRsj7y0qy5e1WWX6KqT1zzQxKccWiu1ZFt80GbFArOFW8urrrzWETFUVg4vqa6DpY12yjUP9JjUrpy2WI68NTb1JcxOjFLHZ3khgYa8YsFuRe2mlE11lgeTCDwcOHDAVzOwouGg3Vnzssj1FnRga+3AWf2rnahcu2FWefHPmvfpmUdfjVHrXiRWjb3oeqsv89g/jz1HU9csdrXsQW41+j+Lrk5vH3PsVGEWq/LIUvfFRWAsE1KKWY6J6HjqbIFdTS6bK5mm2XpGGmHQmjf+kq40ahclYI9II32BtpJirXetCORsNok/ZKsQDh7cb1+E2JjSRnsogW/8EhXAV4yDBFht1n9k/wFfkcAqhcQzDbiATV22YiwTMLDh02OzxGVdZcgRy0TLCxbBBR96vdHoZsbzey3oYRGIjQQ8CIbAC7gnUC0JDADKvpnNlivYUDi7ZpcrP7AvMklXH+ai9E3TE/VLp/LY1leeBX9mvAgWy33KF0WvDazri9IzCWdSf4s9NUtdb8HXXenqtbA1QKrJwuzkRFhhHvWA7fiRKPyiuG6q62KPeW1zV58k3DFFpNUryxRyldEmM5RH2hgjDdNSARG+conV9agTXWN1CcUcgAlMY/jGN1YvOBPEo6auPC9/J1gVWrbAsij8St2SvkuP8po/1vtsjTwqz4IH7zyYwl5U3qd7VtvntaPWJz3Kp+HV8i3+ebDAa2FGjCXlloAMMWY1K1dTXQdXWyck5lZeDBFOnSMCrbCNsEWTQIsR2nGcFhJoIJDAttZuUHNwIbuS9y/wGAUJOhuBCJ5Tft6WEG+0m+1Nmza5w+Vj7YTOp2roCFWh2rlqXYKjhhXmtTmdHm+oWxvKOoFGWyRNhQpAoRghjka5z8zVMKmla6Sn1bqaHsiaW1pHNi1Of0sP6J0VkSGW+0yQkSWfJCLWscGWgKJha6vVdDKdjYXZGkZtPts1jIhCK9jko0951fZlLmOxNMJr1zN1+b9LdMtccpRbvn8fj0o875+eXG+ftszJ+sfyAlIxkpVdPDqx3h6dIOjaJVzBpo4VXFY7HIHfHjvrYi7W5n9VttzZTMXhA/aJSnvugrCMj8FEGthgMJ37ntsDUNp84onJntswgWJXyYyr2FhAAULWthxkyDlspNKUK+EX+iJTNC/iLlJPn46oT+VOrwvNINkJCKEnnwGq7KAegIo8E14lQ3VWexuiR4XU9asUWvYGWsfeY1xgzRy1QFc3zsIcV3QIdgmOGpaZd2qLvOOLqDGFtlpxqIt9kgmBnRN8PI3VjXOMeZx11WumG3OiSTLH89ggY1o0tdW5wEQv+qgKRnlgUXHkmoqphq2aM3ZhUpvyDtwKsGiL9EnlWvck3mltLZuQWaQO8Fp6XEfX0BVgb6dZjJoBJoMHsFBsK14dap+pizanpcd1dA1dob+jsxg1A4wrKPeYlGsRqVG+hKEWAKRjpmLJ6pEtlktzFqEhjrk0tlLED9jCVY6oWMm9rEblwuevS2IW7TjMFxJoOGR3w2x6B4M8s3v3U/bptd3ppJNOTi96ES88yx7bZ0uKeVZ5o30jfrMFGnpT7fRexg66zTEPTgth0o7usLtCC6GfFrGXBREB+tWsWssk9cvqT8PSqToaiibJNFSMkYCr5RsqnKnmi0BNmcgwQ3kSvoubkqinryxVEY9yqEfRJeyNRl5QBTk2BbgMXRoj3bEb72cY4YDrU+YOW3qEQx432ev5CGiMvKyKFAZh4G3u7o+HrbeXIBADsFhAHgPNJywYcK9wcTrikQJ/mdcRC8QSS8Bva+xxhzX2WQorOetBe8/CEfss8CYbE/1lDIIA2HDWoMTSof3P+4qwtes3pHW2SiIHdmkwPnhJrFQgQoH3+OwE9thLG5ggrSG4YS+Y9OR+opGNrOTU7b83qy1zjP2Ke4xIJQsuIc9N6FWwQB0YNUlPbXTXt65Qc/TXaz3LgHBjDWeSaK2m36B2y1TsSQxtyNmo4PYZP6ZzrJKxW3ItWp8lNWRddzkDBLOF2+TvUzaFPgm/dcPb4m/RJqmt7a/rLltA+7CR6Wvr0z2PjGHXZrm6mjitPsnGui3oHA+Ij3e1Fhtvtc67TcYVGGUmeSy3XIVYvgKMQbRYRzSBjijLLwW7l4AsSk+fDsdfgZKIuyyYCLCk96tPmKR+Wf1pmNynYyW+rzGXY2u5x8RixAWpvDtx1KVZdHTCRajUJSo9TqbSGnPFLL0RU2XLxaZc7OSwOasa69wZnGPU8QhwHJUXFmjIX4+wm2z/Kx1D4pF03333pXvvvTedf/756aKLLu7+gkeQgfc2bLCb5Y08q9yX5Pi+9ppe9omT55Wtsfrq0jGGb5WxugmLrw9nufSmntVSNoeR0YTaxjlgJrI2dSxDWcTxHVcIy4BavR3d4wlM7ezsCplZA2JFXoKkCaVP9g2wp/uZDJiVHNN+vFpanJyDDejI1KzNy8YbabmFX0BoZGJMmUQuLL14MK9oiBxwgqnNb77EQONqJ1OMuv02sT9g21ob79ZbZAE7ur5acGGtTfZ5VOGIreo6bGVbb5AINPC5ShslHYOVAnxCksqBffstFnAobbKVDutZceAdtAb2KYEDmCx4cKC8THIdKyIINvh4a8wlIOHdJ7hhL5/0IAdvgyTYQKDC97vhGHheMTLKuY3NNBC6njgctV4/0wjkaqejqaevL10/rRDLzm8GYmPX4JU+pIoOWMXv5zI0KbJyYWkF+ARYoYg8Vy6NUUi45OXJqZFpkXHVy2adDOwMQWmxsKY5uRMo1lEv/GpyUKN1fodVjYUXksZOykcjoVpmuG1FKeVgllfG6oVvCQ2wQhRuYXVFTqNdjTVAXe+EV7cgtcrRJhOj5ppW1yMv5YgX2yLdynyZxwZZywHsGykjQCxXYN6UaSBFxGxu5M84ur4sbYl6rDytvxX78VO1jnV96wq2//AIdXkmluldXYdGatDj+eU8wrTK0T7vXf8L4cf8hKu6FCqdT+RL5TDHcifcKBS+btylTjLfy/2mR9TSUtlk1MgA07QkbPGVeoRxEnaJuOT4kHDIdTwiXPyDuCACp3ev00FDx1iMcQwarFBI1I7HtJBAQ34nAwNx9i1/qSN94QufTzfffHO67rrr0jXXXGufYDvBruM2VJeNxyi6v8i5RPXT2jsVS1fVjogyLVonsMyCMBF3XUFhKB6VA0P6ygG9zB4tTgzfyKbFoU5BWobCuA8j+jKgju0IUBncVa3QlemgOgzRyqrWubVKTE1Ie1JDgXCaMU16QeDYPX+BGYEZkDPkcUPNowlwvrWKasVDjn26+eqMjgyrVTbF2MR6gUNW4DEIAgnr7DGF9QQSjM5lMQcact+4ST1gQYKDlntwYA2vbdQNpoEYm7/3wQAJNqBhgwUb1mwoKw8OHbB3LOy1Vz4c8FVgBCJ8xQerIlidwAXQ3oHjwQY9YkGwgU9MAI6zwOJRCqvkfYb+vMmT8r0xuYhy+doEhuQeMEd0vqCAh0ZZrizg13VIkelAjW2jyclkHcWqyUyhVZoCaaxY1B/7QMOYVVTiPghl8U1yRN3pui4M5Y41CVCMq5GbcZPsa5nVosm0JVjCR4jGlnCLJsBVymuVMq+lru5TXY8yNW5fm/MRZMhjs3bCJPEINSpLYpTnMTcjxnL0PdysfMu5VSb1aaTsu6hUOryk30ZY9L1vp4OC9hPFUP4u8uz0rpgfOp9U3It0iU/iBVh8r2rx/dgeqW2q65Wpzarw1Wh1wXRN2CWi5/x0rUWy0CJZ5ZLD4eJFYqxZDZ7bj57Ng8kZ7UcCRf54y7pAA5N/H8rm7JDLBRnqh+wG99lnn007Prkj/cmf/Em68cb/mt785jenl7zkxenEE7fYOWsCODXIjTlOjh8jlkpsa8mL5nxiFlGAfXRr58DqBhX4gixFF43yVlYV+MBOtUvgKnX4IsyYRwwXMWWur0/pjLiLYpMZoauLglZ3x3ztxGUok521ccuA6t/hNfhq1BsGR1IsS33su8rKxdPKe7A06UEkwni5JePYNNjmgYZxpnyzhbQmweOnl4t7a9Y3WY+4F5ibwmI9U/h0wAINrM7yQAOPUZjd3XTex5Ks+4AFCwhK8LjDuhBosDCFxwI2WMCA8Xf/vn0WUDhon760FQusbCDZSyWf2/OM07ds2ZrW2mcxfZzCED4/wfsWWMHAqgZWOJQvX/iKBr2QklUNFmjI+ysGGeTnbLXrA7YUyLuW8V0l1u/BPDjC98EquyDq8OOPfdY+L2SJ9p/qs+ahZ0tEwPQtMkXblkjMSRCW8lp8yfWvYujrdB8d8dgXwbVotHU4XUESRyk3w6baVpkyydQWVos2BmmALUzJtdrG5K0C7yx8tZzqyEqfaDGf1Bb5+sq1beU6pVUNUl6z9cFleuRWOZ/HOEMm5+ufkDIfv3krcmIW23d9XnWYanHFqnVdKjs9XWHVVL4wgeWIo2hdvX9b86WWWS1ay+y+Xdmic83pw430KNsoR1aZ1LHFxliGEaZW/wVynOQeaNDLHAkAjL2gLHSCAAK9jn1GzunmDD6x5gEE43riicfTPffck2655Zb0wQ99KH3/G96QfvAH/7OtarjGHqG4yFF5ISRfnJC+jF8UurNtyEVZUHjEliq7TiyRrcZyxG609VfFjt8wCHhwQ+46Khz05ZemsSctWf0wN+yWZ71edDiep+4GNmvPL7gsuNbAy9r8UuF/McxwY7+OfdierT7ofqLf+a+L4sq+9ZrxYoOnYHO2z/zNZMIStvvz1vAUdm842j/FfU21i7Jrqo6GokkyTWMDUXDCUD2wjIrGJL4RMZcmytXMPfU+bLHrWFFdeZ/uGq+uS77OazyXG90gRfYxyFrOGY3oTGpUniVzjXKsRw1qGeXjrVYT5JKGOQhZ/RIBQZP737hsH8BqCxos5x91cSHO+MRtah5bFIrIHPnXXpVrMhYrsJUPGpvWAEji0QteCmHnPoEKDya4mNqNp4x1ecCyujcZkz92YXU3LvOPrMuWWqsl2gqe10e1riWbWlqXsI/oNd+oZb7SuDkj2UXhjxBHnY20Vtl1r8AA9Wm5EDbeS1R5y0xoUqV2+GtabFO5L0e2k5+mvA9kxfQ5FHfGTlE6B2TngRb2XDg9NrVwYe2wu0IPQCD3YQWWEW4k9pVnAeyTXRC9NmEOdyzbAteJIkbwrLA2Y3bsWnJ0PoPRh56vKzNqWS2f1KbLnEXpa+F32F1BWufLwV4RRMu4+UxYEfck9SvqV7Gqhd/hdoX5uyDcFUB0c7pa+0owayzZWdPr++s+nS35QGuJheYJx6ZxjTHWBh4f9S7QwMscmbxq4t+Zbx7S4ApNwQTKMUDhE1+7CeIzlnfddZcHGT796U+nj370o7Cm9773vek973lPuvrqq72+z/5yh678eUsG29GuUNABXdIHzYMMBDcMwQdeu3mm3fk5IKy81mX4GxwrK/LEfI31CzrtecKedbnN3c08/ck3+QosgMs+dhvAtX/QPIBhdOynHbtI4JGyfZRozT3Dv3zSEzv4tJ1jYnOV4CZwQrv0wkKAAQzvq9W7fUWfhjR4QB5YekipZTxf7mEzOrg7vKhydtgo1UGFQkaaxDW7rgC7oOIku1Axfvs4UrpUjlGlL0VucTVoHUkF5W7IEvBRqzBhieVxkf6Wcb7vyRrOXE0HaWdVOkQ+2j6vzIgXu9lMmeSvSW2gT+r0EsNmM6eXq6Vr0Tp6lU9oWG27tA9aemRWyw/ip00Y4j8WuexZju5W/7qDbyXAGNME79BH5o7zjddGXENplTyg3Tw4fpUcPAF2ueOH9tkE6J7Tb5JEbpsFWygrOWainpXgyJYXSO6BBiavPqnW5LYYJzpVn/SGHJomvWrba88RP/744+nOO+9MN910U9qxY0e6++67/TOW73jHO9LP/uzP2aqGHGjQpBkMJuyapIPLqJun51lH1KMJOJP7A/ZNeib9fCYTDF4yCe5Gf6Eaz0HnIADBD+g+OSfoEPT5vgyTdXR5f4oNCqZgE39hZOVG62AdwyGAEH1ZsHw1gtHVV2wiyX+UY1/FB51EAEJ+MUZMctmaz5mHn8EDgwe+Bz3AqDBrGl3JotSIOivOwDd4YPDA4IHvBQ/EkXK5/R1G2OV6bpAbPDB44PjzQPeOhmi6Jrvkmnhrgh/56vJTTz2VHnzwwXT77benD3zgA+nzn/+8r1jgL/lve9vb0s///M+n66+/3gMDyDLR7gIArA4IE37apV85E2rZAY3HL8DevHmzBxpU32SfzORlaiQCBaJrBQWrKDQ5Fza8tX7qyGMjOTJs4JAUKBAWPEqys8akXTrhF5/oLXn4axxkJS97JDvkgwcGDwweGDwweGDwwOCBwQODBwYPDB4YPDB44Fh5YEmgQZNgciUmuX1/yYcHXlYN8DjEk08+mW679bb0u7/3u76aQRjbtm1Lv/Ebv5FuuOGGdNppp3WTdQIFmkhrIi+ZmMOjCb8m3crhk73QmHiTazKOHO3Q2RQYQA4eVkKQq132CIe6b7zDwYLR0KkjQ1IdH0CTDZJ3JvtBJvYhtxM8yRy0x0TV9dpz1rVveJ8Ej3pIV5QbyoMHBg8MHhg8MHhg8MDggcEDgwcGDwweGDwweOBYeWAs0JAntWVSbbNcJrFxk5GaENNGYvLMZH3Pnj3pscceS7feeqsHFXiMAh7x/+Ef/qEHGs4///wu2ECbJt9MvNmUJCc9BCXgJTHx9vc7GL4ejeARCgURIi7y0NfxKTgzOeISGGDFA7isgoCPdmTWr7Nv3usdDqZTgQXxUIcXm8mxT4EG12d02S6dtKOLdtnvHWr8ICPftPCESduQBg8MHhg8MHhg8MDggcEDgwcGDwweGDwweGDwwAvBA0sCDZpMYxyTZG3UmdhqUzs5iUDDd77znfTVr361e3SC1Q0nnnhieu6553wy/q53vctfBvna177Wvz6xdetWn2wzmWaLjzSAGSfZmkxrck07tmGvVhLwyIQCFZrQw18HMLSKAjq48MKnvkpHXRddtmAfNMnGVR/QhIutyLCBKX7KvGiBL2YoSafq6MBe6MKQfuGId8gHDwweGDwweGDwwOCBwQODBwYPDB4YPDB4YPDAsfZAb6BBE16fDBcr9RlJJrgk8TDxZTL8la98Jf3d3/2df3Hijjvu8BUOW7Zs8ZzVBmw/9mM/lngxJF+fOOWUUzy4AB4TapIm42Ar0CA9MYeXdvFQV0ABPG3QtTIBmgIQTq/e1QBNCV2eSiAAWekXj/DApC2uUKBNKxzgp19qp42EjDBEg49NCWxwSGqr7RDvkA8eGDwweGDwwOCBwQODBwYPDB4YPDB4YPDA4IFj7QEPNDDJ1UQXg5jIxtwr9sOkl02JiW+c9PLyxz/4gz/wT1rSBi+Tf4IBqhNgeN/73pfe8IY3+Esc4aEN/XppIwEJHmOIE3H44IGmCTurKJiE65EJ6qxuQCc8WrGADPKa+KtN+FoRQb8UrMAmEjo10RceWEq0Hz5kdXMZMmzgkmhjI0GL+ihjB0l9owxdj3hQJ0V91IUDNmXZStuQBg8MHhg8MHhg8MDggcEDgwcGDwweGDwweGDwwLH0wJJAAxNXNiVNlDVp1uSW9jipZjJ+yy23+GqFhx9+uJt0a5IuPPK//du/TW9605sSj05EfQQaCBYQZFDwAH5NxDXh9hUKZuN+f/ni6N0KyMdAg4IVvDjx0KHR+x2gEzQQtgIN2AJdgQza6S+BEhJt8Kgu2+UbeKC1cifaD7L4BN9hBwl59Q15BQ6gG6JhOpv/SFduy/rEP+IaSoMHBg8MHhg8MHhg8MDggcEDgwcGDwweGDwweODYeKB7dIKJqybJMqWe1ELX5Fplcib4vPiRl0D+1m/9VvrmN7+ZTjrpJA8a0BYTn6L8sz/7M1/R8NKXvtTf4aB2Jtts0qFc7ZNyycGjSbgm4AQStKpCqxLARkb9nlUX/GDBr2BFtIv2gwfspZD23gXxwCc58Wo1g+qeW1zB1kC4XPRF1AOO+jqrzWM6hsrggcEDgwcGDwweGDwweGDwwOCBwQODBwYPDB5YRQ90gYaWjnpyzMSWyTt5TA899FD6+te/nj772c+mD33oQ+lb3/qWBxqY4LNCQRNj8Hhnw6/8j19J111/XXrNa16TzjnnHMeEJwYG+FTm3r17XZ5JuVYngKHAATRk4IV+8skn+yqJODHXCgLsBUdtXd9scr92XX50A17s1coIeJAhOMKLJimjD1tpI2ELL7sk8eJLeMBRQp90IkcbG3Js4IFPX5BVgoeVD/hafacNvfKn/CWZIR88MHhg8MDggcEDgwcGDwweGDwweGDwwOCBwQPH2gNdoIEJbB1A0MQYIxVkqCe3TJZ5CeQ//uM/pk996lOJl0A+++yz3i8myEyywWHSTE66/vrr/TOXP/7jP54uv/zybnJ+wgknuJ5nnnkmPbLrkXT/A/en+++/3yfXPErBRBw70ElAAExN+M8888x0ySWXJD6deeqpp7peTeg12Y+2a8IOD2WCGk8//XTa9fCutPPbO9Ojjz7qtoJ73rnnpbPPOds/yUkwgYQMNvCljc997nNO2759ezrrrLPSpo329Yv1+d0U8pt8S1CEr3Hs3Lkz3XXXXR6QefWrXp1edtbLPFAiPvoGPnX5kbLsphz74wYMP4MHBg8MHhg8MHhg8MDggcEDgwcGDwweGDwweOAYe2DsHQ1MXtmUFGgQnYmt2pmg075nz5502223pd/5nd9JvAwyJoIDTPKZxNfp2muvdZnXve51/j4GJtb6iz78jz32WPra177mj2MwIb/33nt9xcCLXvQi59fkm4n3I488ki644IL0+te/3gMXBBtOO+20LggBL7bDS/I+WJHHGxRo2PPsnvTEfzyR7r777vSJT3wi/fEf/7Hzvss+yYmNV111lX+Sky9lkJ55+pm065Fd6Utf+lL68Ic/nC688ML07ne/O73iFa/wVRsKsMAbAwIEGp566ikPMvBOC/QTbEGO1R2syoAf37KyAltlP2XtE3jQMaTBA4MHBg8MHhg8MHhg8MDggcEDgwcGDwweGDzwQvKABxqYvPLlhDVrx9874HRrY4LLxNYn6GY9k2NWFRAQ2P3U7vTvn/n39M53vnNJv5g0E4iAv04/+qM/mn7t137NJ/E+sTb9e57b449B8HgFur797W+nL3/5y+n2229Pf/RHf+ST7CuuuCJdcvEl6dzzzvXVA0y2CXB88pOf9JUSBBu2bduWLr74Yl/ZoBUI6NcKCGTQSeCBjTKTelZi3HPPPenv//7v0+///u+7yXyOky9lgHvllVf6JzlZafDAAw+kz3zmM+kf/uEf0sc//nF/N8Vb3/pW18ujEAoCgE9fyNGPT0m7du3yx03Q98QTT6RLL73U8Qk28H4LkniRj74HB5u1wsOZh5/BA4MHBg8MHhg8MHhg8MDggcEDgwcGDwweGDzwAvDAKNBQAgqaIGObJuJxogtdgYZ9e/elZ559xifnX/ziF/1dBbzL4MEHH0x33nmnf4UC/p/+6Z/2v9h7QMH0oIMXQV533XX+uAM8TKoJSvAXfwIU4PAIxc5v7Uw7/m1H+sVf/EXY/B0MN954Y7cKYOOGjenW225Nv/mbv+ntfM3iLW95S2LFxKte9ap0+umnO50fdNCn2Ec1eiDAXuJ43/33pY997GPpt3/7t72J1QxvfOMbfSPgQOCCd1AQ3PjgBz+YduzY4bpvuOEGf+cE/WIFAglMBQioEyCgjn7e6/D4Y4+nL37pi+mv//qv/T0NP/RDb7Z+XeaPfxBswd4+3+NL9ER8dAxp8MDggcEDgwcGDwweGDwweGDwwOCBwQODBwYPHEsPeKABA5gUk+qJaz1ZhgcaGxNhgg6sbCBAwAQaGu9s4BOW73//+2FPf/VXf+UTdSbGeu8Af43n85a8l0GBC3QzgbYPL/hjDfATbGC1wq//+q97QIO//L/97W/3VQa8TBJ53pHwkY98xFc+YBd0gg0/8iM/kl7+8pe7DdN+1E8+zfk3f/M36Rd+4Rdc5Id/+IcTG4GLyy67zPt50003pT//8z/3IMMv//Iv+yMT2EX/FWSYpk99ZMXGn/7pn/rjFz/xEz+R3va2t/nqiTPOOMN9DB642i/y1Vy6phozMAweGDwweGDwwOCBwQODBwYPDB4YPDB4YPDA4IHFeOD/AwAA//9bdIrnAABAAElEQVTsvQm0LUV1/19vZsYRVGRQQMEBJ0TBCcVZMc7TMppEo65ooibRJGTFP8nPmOU8T9Ho0kSjGDTOMxrnAXFAEBAVQUUQERSBN//rs6u/ffap233uufede+559+16r29Ne6pvV1dX71NdvWp7DmnC4Yc//GF697vfnf71X//VJH/+859Pxx9/fK+WzZs3p61bt6b169en1atXW3rLli1pw4YNCfM+85nPpBe84AXpe9/7Xrr1rW+dnvSkJ6Xjjjsu3fGOd0x77LFH+upXv2r6vva1rxkNiv7hH/4hPfWpT02HHnpo2rRpU7rqqquS9CATPWvWrDGdu+22W+Ig/Pa3v03vf//70zOe8QzLn3jiiemhD31oOuqoo9KBBx6YLrvssvSWt7wlvelNb7L6l7zkJenpT396us51rmO2/uEPf0jXXHNNuvbaaxNtINCuVatWWT1pbN5zzz2t7qc//Wl6+ctfnt74xjda/m//9m/Twx72MLN73332Tbvvsbvxin/btm2Jgzz2E0cIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBGYFgVVL4WjAIfDf//3fiYdwwqc+9al0//vfv7fNPPjr4V9E5HmI5mH905/+dHruc5+bfvSjH5mj4fGPf3y6+93vnu5yl7uk3XffPX3pS1+yB38cDRdccIGJ+Od//uf0tKc9Ld3kJjdJF154Yfr+97+ffv7zn6df/epX5sjYe++903Wve910+OGHpyOPPDLtv//+xoej4b3vfW/6i7/4C8s//OEPtwf/m93sZuYwgP9///d/03/+539aPc6UP/3TP003vvGN0xVXXJF+9rOfmbPjxz/+sTkC1C7agQPi9re/fTr66KPTwQcfbI4UHA2vfOUr0+tf/3qT98QnPtHaduyxx6Zb3vKW1j4qkIODgSDngjDCaRIhEAgEAoFAIBAIBAKBQCAQCAQCgUAgEJgFBJbE0fDd737XHA0vfelLrY2f/OQnzdHAA7J+jdfDsgeBuu3b8gKL/CM9D8/QsAqBFQ3Pe97z0nnnnZcOO+yw9Ed/9EfpmGOOSXe4wx1sdcCXv/xlW2XAygmcD6xAoJ7VD6wg+Pa3v50++tGPpg984APp4osvTre73e3SLW5xC1vlwMqIE044wR7qr3e969mKhfe9733p2c9+tpnG6gKO61//+uk3v/lN+slPfpJO+9xp6Zxzz0n3uc990mMf+9h0v/vdz1ZEnHPOOekb3/iGrYjA6fDoRz86rVu3LuFM+MQnPmFOEJwSrLS41a1uZasgsAe7caZ84QtfSL///e/TAx/4wCRnCjYR5GgAE7Cp80YUfwKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBZUZgphwNGzdutNcceJBeu3at/eKPo+Gzn/1sOumkkxIOjBvc4Abp3ve+tzkcDjjgAFs1cOaZZ5pjg9UIPKD/3d/9nTkOWH1w1llnpW9+85vplFNOSeeee266173ulR7xiEekffbZxx7scR6w2uJOd7qTrWzglYf/+Z//Sc95znPs1DzgAQ9ID37wg82hgSMBpwUOgUc96lHmEMCxcasjb5WuuPKKhIPiZS97mTkUXvGKV6THPOYx5oDABlZdvPCFL0xPeMITbKUFqxWwgVdGsIG2vf3tb08f//jHTe8b3vAGc2Dc9KY3NRzkXJCDJhwNy3zlhPpAIBAIBAKBQCAQCAQCgUAgEAgEAoFOBGbO0YBjYfWqvH/C2jVDjoZ/+qd/sod8XpW4293ulvbbbz/7ZZ+9F04//XR7LYIW8iD/93//94lXHc444wxbycBqAh72cSiwgoGVEDyw8woED/c4H+BjJQQOjlNPPTU961nPMsBwajzg/g8we774xS+mj3zkI1b+zGc+01Ys3Pa2tzVbeC2DFRyve93rrB6HAysvbnjDG9orFaxq4NWOvfbaK935zne2/R5wNLAPBc4GXu147Wtfaw4TBLz4xS9OvLbBKxbsH4GjgYCDwce0Q84Hq4g/gUAgEAgEAoFAIBAIBAKBQCAQCAQCgcAyIjBTjgb/K70eoLWi4R//8R/Td77znbTvvvuaY4C9F3AK8KoBKwlYiUDAMcCqBvZcYAUCr1Xw2sRd73pXW2HAKxNsxMirDewdwcaOBFZM8LoEezew+oHXGwj3uMc90n3ve197BQKHBq9fEKDFOXHEEUeYTewDgSztS/GgBz0o4YS45z3vaZtW4lDgNQn2asDZQDs42NCRlRysaMDRwP4QhFe/+tXmaNCqDTkTcEro9ZPYDNKgij+BQCAQCAQCgUAgEAgEAoFAIBAIBAIzhMBMOBpwMHDoV3vwIc/DtRwNrFLgV3++/PCQhzzEXo3gNQr2YMBpcNFFF9nD+re+9S1zNvAVCPZTYO8DAptHstfCQQcdZLJ//etf2woDNq0k/M3f/I0drDLAcSFHA/sw8PrEurXr0te+/jXbfwF6Vjzg0JCj4fLLLzd5vObx9a9/3VZfQPfXf/3XtvIBW3/3u9/ZKxiktZoBxwPOElZfvOXNb0nv/5/3w5Ze/7rXp4c/4uG2ySR5vTqBk4GDPI6GCIFAIBAIBAKBQCAQCAQCgUAgEAgEAoHALCEwE44GHrZ5eObBmUMP06xYoI7NIPns49lnn22bKPKAz+sHN7/5zW2TRgC95FeXpE9+6pPmLGDjRjaN5OH/F7/4Rbr66qsTKwNuc5vbpOvse520ZWt5uOcznOzjgDPj3/7t39If//Ef21ce+Lwlr0YQcGrwCgS2sGmjvjaBI4K9Hli1cKMb3cge/NlrgS9uvO1tb2sdEmxIyWoKHB98ZpONI3lVA0cDASfDJZdcYo4GZLP6gsArGLw6gWycLl2rF7TKwRjiTyAQCAQCgUAgEAgEAoFAIBAIBAKBQCAwAwjMhKOB1wE45GjQ6wF8sWHzZhwNnzZHA44BHuz5BCT7NPAQr68y8OoEey7wOsOogMOBLz+whwMP6jgQiNl08Y53vKM5HXh1Qp+3xMnAAz+2sDriXe96l4n/8z//8/TIRz4yHXXUUe1+ETg22IsBZwMbVLJ/BKsweOVCAQcCX6OQA4FPXl555ZX2Wshb3/q23IYPGumrXvUqc3Dw2UwC+lnF4J0LWvVhBPEnEAgEAoFAIBAIBAKBQCAQCAQCgUAgEJgBBGbC0cADM0EP0axo0K/4rDZgRcPzn/98W9HAqwo8qPMqBI4BNlsk4Jz44Ac/aPswWEHPnyc/+cnpuc99bl7dcNvMs8X4tm3Nqyny5pN77LGHvYaBo+EZz3iGSTjxxBPN0YBDgk0ltYfCX/3VX5lTg89UsjqBlQk4FXAu4LTA8cGrG+wr8bGPfczqEHjyySfbKxysxmBjS179ILBZJZtJypHBXg84OdiLAgcMezwQK4CPHA3CTXURBwKBQCAQCAQCgUAgEAgEAoFAIBAIBALLhcBMOBq6Go+zgQdoPln5uc99Lj3vec+z1yBYCcADOF+POProo+2hngduXoHg05DsiUBgPwY+IclKAB72cRIQcDSwHwMOgj/84Q/2WgWvZ0DHKxeXXXaZbQaJM4Jw/PHH22cs2SSSfSBYVfGhD30osaKB1ROssGDPhcsu+03+IsWHE3s/HHvssbbhJM4HnA1sSMnXLQi0g89eHn744bbxJI4GnCRsBvnKV76y/erEm9/8ZtNLewlyMoCJ9rIIR4NBE38CgUAgEAgEAoFAIBAIBAKBQCAQCARmCIGZdTTwEM3qAPZYYG8EvcoAdnymkj0acDTw6gQOAF5X+MIXvpDYDPKEE05IbOLIFx9YNfDhD384/cu//IvBzv4I7K/AKwm85sDXInA4sKcDdQRWNIieVyz48gT1rC7AefBf//Vfxv/Yxz42HXPMMYkvWVx66aXpTW96U/rnf/7nRDn7Mtw2r5rYtHmTORE++clPpi996Uu2mgJnB/L4bCWvTtBGXq9gNQObSbL5JHtE0AZWS4AFKzvY4wEng61uWN2sblhlJsefQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGAmEJgpRwOrGFJ+i2L1mtX2cM3miqwI+MpXvpLe+ta3muPh0EMPTde97nVtj4NDDjnEHrp5ZYFVBqw6YAUCDgj2TjjyyCNtD4avfvWr5mw4//zzbeUCzgEcEHwdgpUQrI64/e1vb/SsbmAvhte85jX2hYr99tvPVicgE+cBn6J85zvfac4IPnHJygl04qxg1QKrJQh/9md/Zo4CVkr86Ec/sk9bbt60Od3jnvew/SV4vYK6X/7yl9Y+dLKJ5IMf/ODEpzF5NYQ9KKAhYBe65WjQqgarjD+BQCAQCAQCgUAgEAgEAoFAIBAIBAKBwIwgMFOOBn61x9mgfQt4jQFHA6sUTjvtNHMOsIKBh28etKGFh69KrMm/8O++x+7mLGC1w2GHHpb22nsve0DnYf68885LP/jBD9I555xjDgleQUA2X6J46EMfap/NRA6rC3iNAecFdvDKAjpud7vb2coGHvb//d//3RwfnENecXjKU55iDg2cBdjJppAEvfZAHqcIjgNemWA1xb777ms0F/z0AnNQ/L8X/T/Lv+AFL7CvWbDigS9VsDcEgbZyYLdeo7CK+BMIBAKBQCAQCAQCgUAgEAgEAoFAIBAIzBACM+Vo4Fd7Hqb1Kz6vKeBsuPjii23vAx66efjnYZt9DdhwEScA5bxOQB37LBx88MHt1yjAGgcCD/vI4RWH8lWL7flVhI32xQj2WeCh/oorrjA9fG7yd7/7ndmBLvSwDwOvSPD6AiskPvKRj9inLnEyPOtZzzLnAftJ8AUJXvnglQj0EHCK7L///rafBPbtsfsetmqDOl75YBPI97znPfZ5TT6ZyR4PbHKJ7nrlAq9RcBDqOiuMP4FAIBAIBAKBQCAQCAQCgUAgEAgEAoHAMiIwU44GPUDzgE3gQZ0DBwSxyoWX6MlTxz9eu8BRoZUA1OG8QIYcGZTxikZ+ZLeHda1cQB6OBDkJcF7wME8ZKyb23GtPc2zg/GDFwzve8Y506qmn2ucyH/KQh9irFbxqgfND+lCFLTqwDVupx5GCo4G9GVil8MAHPtA2lzzwwANt9YZWMPh2Cw/sQqavQ1eEQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGA5EZgpR8NyAYGDgYd6vZIgB0bfQzwP+2xAycoGvmbB5pAn589Wsskjm0fOF+Bn5QNfqPjxj39sX7Jgo0k+13nAAQekvfbay0TgsCBgl1YvhKPBIIk/gUAgEAgEAoFAIBAIBAKBQCAQCAQCM4rALu9owKnAAz2x9n5gtQH5USsGeD2CjSTPPPNMe42CVyt47YG9Ffbcc097lQNHhRwEyNu2dZt9hYIVEmx0yX4QvKKBIwFHw0EHHWRfmYAHhwKvbJDGLmiQhxzqSMsxMqN9K8wKBAKBQCAQCAQCgUAgEAgEAoFAIBDYBREIR0N+cMexQJBjQY4GPdxrZYMe8Hn454EfRwAbTbLJJPkjjjjC9mLgs5XaSwJeOQj0CgeODV6bYE8H+HBMsDkkhxwT2KCvTCCLcsmBhyBay8SfQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGAGENjlHQ2cAz2460EehwJOgfJwvzqvHCiOBVYiQKuVD/DibGB1A4HPa7Kvg4XsC9i6raw8kJOAculCPnoI6IXGr1CgDocE5drXAVr4OWxHitVlLwvKIwQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCs4BAOBqqs6AHeRwBHDgBWOlAYJWBynAKeMdAJcayfgWE6iWfPLI5FKgjUOb1ez3iF59iyYg4EAgEAoFAIBAIBAKBQCAQCAQCgUAgEFhOBMLRkNH3D/g6GTzo+1cqWFlAwHngX62gnAMZ5oRovnzR5wDQSgVi6HEi6DUL8siSYwGZXo7sxA6lqfc01EUIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBJYLgXA0ZOR5wFfQgzsP8jgDiHnwl6MBOq1skJNBdfpKhPZ6gFeHlwu/ZNeOBeW988Dbh37VIVtyKY8QCAQCgUAgEAgEAoFAIBAIBAKBQCAQCCw3Aru8o4GHdR7kiQk8uPOwTywngR7o5VCATmWkCeTlaNCeCsjFocABr8qhVSDt9cvRoHrJgI46HaqPOBAIBAKBQCAQCAQCgUAgEAgEAoFAIBCYJQR2eUcDJ4OHeR3kWZHAAz2BB3y/+kDlVtnUk5ZDAAeFHApFJo6E4mhgZQT1PiBfB+VydIhGjgryWlkhGfApLfqIA4FAIBAIBAKBQCAQCAQCgUAgEAgEAoHlRCAcDQ36OAX0VQm+HCGHAg/zrFTQQz3l/uEePjkKiKmXo0EnVrzKE4tHshTXNMVZUTal9I4Kz9/F6+VEOhAIBAKBQCAQCAQCgUAgEAgEAoFAIBCYFgLhaGiQ5sEdRwMP9qxo0OoBqrX5Iw/0OijXwz6xAo6G2hmhOtEhgzS6SEOvIBqfp6yLrotffBEHAoFAIBAIBAKBQCAQCAQCgUAgEAgEAsuBQDgaGtR5mNcmj6R5+PevUPSenMbHkF+AMBIcAnXAIaBAPQc6eC2CNE4NAnSUEyj3DggrdH+gC0eDAySSgUAgEAgEAoFAIBAIBAKBQCAQCAQCM4FAOBryafAP+DzA62FfKxN46CeonLzKrKL6I3ldNOLtchRINzF0taNh+zbcGdkRgS+i8WdIXmVCZAOBQCAQCAQCgUAgEAgEAoFAIBAIBAKBZUFgl3c08FDPSgYe3tesHXzGknJtArlm9Rp7wMeBQLDXKlbl1x2ah31oCTz0Q+NftYB39ZrBVyxER+z5yBNURhp5Ct4e0jgh/J4Noos4EAgEAoFAIBAIBAKBQCAQCAQCgUAgEFhOBMLRkB/atQKhfnDH0UDQA78cDTzk+9UGcg5A5x0C5GvaxZ5s5LKiYdv24uxYlR0da7IDI0IgEAgEAoFAIBAIBAKBQCAQCAQCgUAgMEsI7PKOhiU9Ge4VhyXVE8IDgUAgEAgEAoFAIBAIBAKBQCAQCAQCgRlBIBwNM3IiwoxAIBAIBAKBQCAQCAQCgUAgEAgEAoFAYCUgEI6GlXAWow2BQCAQCAQCgUAgEAgEAoFAIBAIBAKBwIwgEI6GGTkRYUYgEAgEAoFAIBAIBAKBQCAQCAQCgUAgsBIQCEfDSjiL0YZAIBAIBAKBQCAQCAQCgUAgEAgEAoFAYEYQCEfDjJyIMCMQCAQCgUAgEAgEAoFAIBAIBAKBQCAQWAkIhKNhJZzFaEMgEAgEAoFAIBAIBAKBQCAQCAQCgUAgMCMIhKNhRk5EmBEIBAKBQCAQCAQCgUAgEAgEAoFAIBAIrAQEwtGwEs5itCEQCAQCgUAgEAgEAoFAIBAIBAKBQCAQmBEEwtEwIycizAgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEVgIC4WhYCWcx2hAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIzAgC4WiYkRMRZgQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCKwGBcDSshLMYbQgEAoFAIBAIBAKBQCAQCAQCgUAgEAgEZgSBcDTMyIkIMwKBQCAQCAQCgUAgEAgEAoFAIBAIBAKBlYBAOBpWwlmMNgQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCM4JAOBpm5ESEGYFAIBAIBAKBQCAQCAQCgUAgEAgEAoHAtm3b0pYtW9KqVavS2rVrLd6+fbsBQ9nOEMLRsDOcpbAxEAgEAoFAIBAIBAKBQCAQCAQCgUBgl0Bg69at6dprrzUHw2677ZZWr16dKMPJQNqHWXVAhKPBn6VIBwKBQCAQCAQCgUAgEAgEAoFAIBAIBALLgABOAw5WNOBYwKmwbu26lPIiBvKUE3A4aGUDZdCtWbNmGSzuVxmOhn5soiYQCAQCgUAgEAgEAoFAIBAIBAKBQCAQmAoCOBn0ygSOAzkTvPNBzgatbJCjYd26dS39VIydR0k4GuYBKKoDgUAgEAgEAoFAIBAIBAKBQCAQCAQCgaVGAKcBjgYCjgPC1i1bU17n0K5Y8I4GHBCsdCDWaxXeQWEClulPOBqWCfhQGwgEAoFAIBAIBAKBQCAQCAQCgUAgEAgIAe9oYBNIHAibN282JwKOB61iED31HDgnOHAyrF+/fiZWNoSjQWcp4kAgEAgEAoFAIBAIBAKBQCAQCAQCgUBgmRDAaeBXLOSFDGnrtuEVCzgbWMWwceNGcyhs2LDBrN22dVtatbpsFqlXLpapGaY2HA3LiX7oDgQCgUAgEAgEAoFAIBAIBAKBQCAQCARGIIDzgVcocCSw0mHTpk3p97//fVq7Zm3aa++92tcqRoiYelU4GqYOeSgMBAKBQCAQCAQCgUAgEAgEAoFAIBAIBBaPgD5/yYoG/4oFjohY0bB4XIMzEAgEAoFAIBAIBAKBQCAQCAQCgUAgEFhxCOA4IBD3OQ18Ofsz8CoFr1XstmE3W/mw3KDEioblPgOhPxAIBAKBQCAQCAQCgUAgEAgEAoFAIBBoEGAPBpwHV199dbrqqqvSNddcY3s34EjgdYm999knXfe617HXKNgsEocEB5tBxlcnVq2KjhQIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAIZAZwFOBlwLLAHw69//et0ySWXpN/+9rfmeFiVVqX1G9anm970punggw9O+2SHAysb1q1dl9aum41XJnQiY0WDkIg4EAgEAoFAIBAIBAKBQCAQCAQCgUAgEFgmBFjFwN4Lv/jFL9LZZ5+dLrjggvYLE1rh8Lvf/S7d6EY3Sje72c3SbW9723T4YYfbhpDLZHKv2nA09EITFYFAIBAIBAKBQCAQCAQCgUAgEAgEAoHAdBDAyXDZZZel733ve+ld73pXOuWUU9Kzn/1scyyw6eOll16aPve5z6UzzjgjXf/610+vec1r0oknnmgrG6Zj4fhawtEwPlZBGQgEAoFAIBAIBAKBQCAQCAQCgUAgEAgsCQJXXnll+sEPfpC++MUvppNOOikdf/zx6U/+5E/SkUceaY6FK664In37299OX//6183Z8Jd/+ZfpkY98ZN6v4bq2hwNGsY/DLIRwNMzCWQgbAoFAIBBYQgR434/gdydeQnUhegEIcG7ivCwAsCANBAKBQCAjEGNndIOVigCrGb785S+nj33sY+ltb3tbeupTn5oe/ehH2ysSvC7xhz/8IZ111lnp3HPPTb/85S/TUUcdle5+97un61znOmUPh7xfA46GWZhbhKNhpfbSaFcgEAhMDYFt27a1kx4/sPsH/LpckyTK2fSHvHYJ9nw0YtvWLD//041DvGrg1i2ZP//ju8kE6jmgJ960aZPF69evtzLsJaCbAxrlieu8VeY/NZ/Kpxlj2/Zt+eF8dbEdmzhoK4cCZdCuXpVvtpl2vmByM33L18jz5w0Z82HjbfA6xScZpie3I+/pZOdA597ziJa4tqOmi3wgEAgEAlNHIA9h27aX+4l0a6xSrHJiPw6qXmXKi44xkjKNqdCJhjp22Se/bt26tly6oK35VVfLR4bkigZejvq+ovqIA4GlRIAVDT/84Q/Tl770pfSqV70qXXzxxemFL3xhOuKII9INb3jDxFyO1yv23HPPdL3rXS/d4AY3MCcD1wLzydyjy3Uz/9RnKZthssPRsOQQh4JAIBBY6QhoUsJkRZMi2sxkR5MjP5mBnnJoKWdzH8p42KSMOoJkUU9ZXQ8vfHIkcJOBRvJxPGjnYuTtvvvuVi951EuG1wc/gToF9FNOmexW3TRjbODABg7ax0Gazz3x4E6gTHRgMl+gfRziUzuH2sppGUAyhA+64B+id0qpU4BW54CyNavzp6jWlnMvGmLZRBq5EQKBQCAQmCUENEb58Y2xU4e31dNQDg1B5cqrjLHYy2HcJM9YyPi5aeMmGzd5Z93zwg+tp19oPbo5uHeMc/9AZ4RAYFIIaI8GXp9gVcPrX//6VjTOhvve977pNre+TTr6znfOr1MckfbYYw+r1/Xor5uWcZkS4WhYJuBDbSAQCOy8CDCBYUDXpKdrcFcZsYIN/vlJ1eqqFQrI3LI5Oxzyr0M4DLQ6AV7qCPXDJnKYcGVRxqeJGRMvaDVZgp88cgn63jJ50VFOWhMym8jllRCSzyeTNqzfYBM7aJcr0Ba1B3sJtJMy8NDEkLTKSKtt4hfdqHZAi2z4OR/SJx7qJBcaDtFTrkP01IMvsWyjTv2IWOWitbq8KsM7OCQv4kAgEAgElhIBjVXcYxiDusYjaKjPI2B7/4BOgXodlGnM9PWeXuU+5j6ksRtZjN/cv2o+jdlmZx6DoaWMX3i1Ck481FHOfwVfZ3yNY0P1EQcC00BA/ZjPWv74xz+21yjYq0Hh0EMPTccee2w6/vjj7bWJm9zkJvZDEg4HrVwV7XLH4WhY7jMQ+gOBQGCnQ0APtkyYRv3aockVsYImMuRJKw8N30xG9m677dY6BWwy1EzauPlwUIazgPf0WM3AQzBl5LGJpXSsXkAWwTsu4IeXsH7dept8mTMh5/2DMWVXX3112rhxo8nGebHXXnuNbK8JXeI/ar+wE360CZvBQg4VTKEcHORYgIa8xwTsdMBDPe3WgU7owRQc0AENPJSrD5DnfEAvfeO+uoFe+OHlINA25KiNVhh/AoFAIBCYEgKMSRrrNObWjoJRpsDvD2R4fuoIxNQZbX6ljH8ExlN+3SXGDo3n3IvY+I6HKvFCLxrGTcZmxlLd73R/kw3QK5jexha1U3URBwJTR6Bx3F111VXpN7/5jX3i8rOf/Wx6z3veY5tB8slLwv3ud790z3veMx1zzDHpFre4Rdpvv/1s/khfn5UQjoZZORNhRyAQCOw0COhhUBOXXsObm0VfPRMaguTpAZMJEnU86BJ4uCX89re/tXf1iLn58B1lnBNyNHBTYjOgm9/85ummN72pfepo7733tgkX/MjnQVt2EzPBYnJGUDlpyjWpI489enhe7omYbKMtfkJJ+2QjNhPkWFC5JpTkfWAyC6a/+tWv7MBpA7ZMcOGhzfvss4/dyPfff3/Ded9997V3JL0cnUuwJKCfoHMKprLT421E+Y/sU17nSHI419gSIRAIBAKBaSDAeKUwNPbgC1jAUGTjKGsIOvbM4R7EGPf73//e7nPsqs/9jHfVGYsZn+HXPenGN75xOvjggxO/5PJ5P90jsRNZGrNldx3TDo3R1EGvdpLuGptrGZEPBJYKAfr8hT+7MF3084sS1wJ7MdDfmZPwOsU3v/nN9L73vc+ulePzqoanP/3p6YQTTrD5Cf2f/jt0rS6VoWPIDUfDGCAFSSAQCAQCHgEmIprI+MGcMgVfrrKuGB4mWMQ8RGryw6SHmw0TK369welw/vnnp+985zvm3WaTIG42dbjrXe+aHvKQh6Q73OEOdmNih2Itp0MPdvHQ6/VwY6Kch29ia1u1pFR2om8WHnaZeHLQFiaZwptYB7bSNrCkvd65QHs0seTmrSWK3/rWt+yb1d/97ndhnxOe+cxn2q8Hhx12WDrwwAPT9a57vbTnXnu2OmUHjOjgvBHLRv0yJ8eHMJ+jyBVgJ3zI9ufOkUQyEAgEAoGpIMBmvFpx4BX6sY9yxj2C7jWWaf5o/OWexD2O1XMcl1xySbrgggvSeeedZ/e7r371qxZ7XtInnnhiOu6449LRRx+dGItxNrC6QQ5dyccmG/ezKbyWSDkHNnm7GGPFg/z6fkFZhEBgWghc9uvL0hf+7wvptNNOSz/72c/SYx7zGPt8JXMvPmvJFyk+/vGPW8yKBj5v+cAHPtDmilxP6vf1NTkt+72ecDR4NCIdCAQCgcCYCDAp0SCuyQsxgUmK6rw40VFm9c3kR7/A1A+RPADzmSNNvpiAsWSOd/b4vnJfeNjDHma7E7OMjl98WGJ60EEH2YHTQgF7pBt7uIlRxuRPD+FM0ignyFHR1z7JnUbMAzwP37WjgfZw+Imix532kMdJwS8FrGC48MILLeaGziejPvzhD/c24c5586Xb3e52hiuOBlY3HHDAAZbnlRUmu23I53frtvLrGvYQhCt466Acmwi+zAryH+poE2Ecx4QRxp9AIBAIBJYAAY1VtWjGrqGQhzQcEnPKGyLuJ9zfGHd//vOftyv2Lr30UnM2/OQnP7H73ZDMJsN97S53uUu61a1uZQ5fduJnhRmr+bjXmXOhodU9jqxs0T2MtvhD46/iRkREgcBUEWB15Ve+8hVzJrzlLW8xJwOft+RHI64VfnD6j//4j3S3u90tPfnJT078wITDjXrmNvRvOd2maniHsnA0dIASRYFAIBAILAQB/RoiHk1ilCf2kxnymvBQrodIrRTAI81qBn7hueiii8yp8LKXvcwmZfD6gBzpIw2vD7xCwft7rHK4xz3uYZOwehKlPJMz2oIMTc6wSQ4Q6vLjcefSV69zGmnZiM3CDSyZvHLU5diE/TgnwJYlub/4xS/yrwNnpA984FS7qXu7kckqBMkD4xpb6B/60IfaO5I4INigidcruNmjHx4FnWOdK5V39QvOh4LS0BGUV33EgUAgEAjsLAhoHMOJzmsSOM2//vWvp09/+tPpU5/6VG8zuAcxJsPPGM5Y7sNRRx1lq/ge8YhHmAOCFQ66r4lWeT8GI4962UWdxm2VxZjrkY70NBBgfsKPSqyw/MY3vpFOP/10m1+wQpVPWfJa0RlnnGEOiAc84AG2epX5CteI5j/haHATqWmctNARCAQCgcDEEWh+sdGEBPmazJCm3A631NTX1xMY8jzMnnPOOen73/++PRCzmoFl/B/4wAcQOScwKUIHMb+mM4GrA+/23ec+90m3uc1t0uGHH27v8eGA4Nd4bkwKPAwz6fJ2kUY2MXpwNPB/uYKfFGIDeV/mH/CxV+3hpktgYsvNm1/SeF0CrE855RSrq/9oYoscbuL8UkDaB278d7/b3dMtbnkLw5bVDYcccojtkcHmkQqy02NJHbgKW/Y/4xdA2U099OIhHyEQCAQCgVlBQONhX6zxjTGMwEo09hjCyctKMh6meOf8Ix/5iN3vutrFOKyxmHGUBynp8/RHHnmkPXjd8Y53tAcvnA0c7FNUhy5+aLCXwH2YY93adWnd+nLvsIr4EwhMAQHmGsxPLr74YlvRilNOP/ignjTzPVb2MJfTSlXNFejHuuamYO5IFbGiYSQ8URkIBAKBQD8CTFY0YdGEylPrAVixvwnU9NDwoM+NhV922NynDtxcOKDjQLdkI0/7APh9Abhh+cAkjF99WHLHslOWnBKQhUy+krBm7ex+6UBtx6HAwWSQX7iwHwy4+cp5IlpivuSBE+bzn/98Ovnkk+09R48LsliJgCzw84HzBu7ShzzyNR0rGh70oAfZCgdw5tUKeLDL9xNkK68+IX06D+jA8bB6Tdlbou4voo84EAgEAoFpI6DxS85R9FOmQ/YwbjEGMp4xXvLwxKsS3/ve92wVWe3khVZjJvc28SMPGTgZKIeGsZ7xk7wc7Oy8z+oGVpjheDjyiCPTTQ+8qY3/2IY8greza2zFVg50cO+IEAhMEwH6NHMR+jUrW5nn0E+5BkjTJ3lViDkL8x3VEddzimna3aUrHA1dqERZIBAIBAIjEGAzLDaWImiSQuyDTWQaOk9T04mHG8q5555ry0i/9rWvpXe9612qamM98HKz4SCgR0ETNNVxA+KmVAcehnmn75a3vKW918ev8vzyI0cF9PNNxGqZ08qr7eAIHgqyl3rS3IiFNRhocssy3Ze//OViG4qZVHKDhx8sCX5iizzVe4ePF8JrKnzfGicOE13eF2bliJ+sIp+gGLmyVeXS4+t82gTEn0AgEAgEpoyAxibUdo1JfiyTaTy0s3rhzDPPtLGYVQys2mNFmQ8a05GBHsnXwxNljMnkNUZTpnseshh3cfqyX8O97nUv21NH9zd/X2D8RRa8yJNMdFK2bWveRLhx9HobIx0ILDUC9E0O+iEHc5hNG/MPKvkfcw8duk6s767Or77meSn0lMsBsdS2zic/HA3zIRT1gUAgEAhUCDCx8ZMgTYYg08MjaWgI3ASgIaieOiY5+jWeDbA++clP2u7BRpj/cDPhs0Y4IZioSY9uQqKrZYtO9ehiUoYsPompcPzxx6f73//+tnM3r1Tw7p+W4EHDDYuwJt/A7HUJ+TSGfSpGM60/tEV20U5hKwxYwcEBdtxowYpNH//v//4vnfz/nZzOOXcwsZVjgfOggDwO3aS5wft66NAFntLBr3qbNg+vhMC58KQnPSnd+973to052SgSbOFDvoL6SHvOwNjhW+/w7nklI+JAIBAIBKaBAOMpY5buY4xH7diVDdC9STE2Mebh6GWl3rvf/e7EF5N8kIObe6HGQ+qR6/UwJlPPeEwduqkXj6eX/Oc85zk2BrO8nE8/szGy/+Sz7sHwIh+ZapNkRBwILDcC9HHmNfRTvZJJ36f/cmg+QhnXEXTMb4iXO4SjYbnPQOgPBAKBnQ4BBn0GdAZxHTSCB2DqVOZj1XNTYEKD44CNHtkzgI19+PoBn6tkIqYAvx6GkVvrxYbV2QmwYUP50gEysYGJEoF6DoJkQaPAxoXs3YCTgS8psOz0Zje7mTkcRONjbCdwU0PecgTfJvTjCKDN/FKldl9z9TXpV5f8yvC9/PLLE04cdml+85vfPGSyn1CqPcKYOsmDibYLS5XDozQ02OID2N7+9rc3THHygPOtb31rm+x6OnMm5PPkV8kgF/nSqZhXW7wjwsuJdCAQCAQCS4GAxl3v+NQYpbETvYyffrk3u+ezHwMrFxiDP/jBD9omkN5GOXX9GMs9hnKCHMvoQz50pHVv5MGKAI9orSD/YUUDY7BW7XGPO+SQQyyPg0NB477GWY3tvm2ijTgQWA4E6Pf0R/o5gTz9ljIdlNOHyev6pGw5QzgalhP90B0IBAI7JQKadPnBnYYw8OtBn5sBAz0Beh5CedeOLx7Ax+Y+TLz4FjLfCsfh4AM0umEgizyyubHoBkI9dVqWzwRPkzDoNXnycuGFHlt84LvkJ5xwgr3bygMxv/6gDzla0SDdssfzL0ea9uM44RDetP/KK3+XP1P5g/TZz342fe5zn7PNNL19rESgLTpXYKJzRRkHgbbrVy5/bruwhR8bkC2Hj9dJ+vnPf356/OMfb6+sQA+tsGSZLo4G7JJeYgXKCbJT5REHAoFAILDUCDDWMgbpnsTY5McixkzGSO5rOBc4uB/96Ec/SqeeeqqNxd5Gxj2NaSpHtgLjLo4EAnI1LhKjS/WktSoQmbJTTgp4FXid7XGPe5yt4MPhgPNBzgbaQpvED4/a6NspWREHAsuFgPoocwb6KHtqsaqST2lbPl8HsxSWzNHw3ve+N73kJS+xtrJciuW5BAACiAiBQCAQCOzMCHSNZZqIMeHxgckQO23zy/ovf/lLi/kWMs6Fb3/723M2JoSXcZIHUWL4NSkjj24O0flJleiYHMkOJlvQazJFXP/6zjeY73SnO9neAuwrwCaRTMJY8s9yU16r6Nq924xY5j+0GVx/+tOf2g7NfKkDbNlw7LTTTptjHe0XhuDJQVBMWudSmEFPPXmCPyfkJYd66nR+qFPgM1SscuAdYjBlOS9fqeA8zxckz9s4H0/UBwKBQCAwDQR4JY/7G1+S0MFSb1bt8UogX/lRYAzDiaAxtG8s1linexp0jK8ag8lTxwEt5cSioxwdPvA5YvYmYqNeXm/D2bD/fvunmxxwE9tcz9Nyj+QeKn2+LtKBwFIjoH7vVzHSn7WCZ+iHitzXmefR//lSyiytelwyR8N73vOexHffCZ/4xCfM0cDFqoteA8hSn6iQHwgEAoHApBFgIqPAWKbJDQO9HuqpZ8wjzx4BfE2CSRcbYn3hC1/ofACWTGJk8qCPDP1CTlrjqLfB8ykNvxwVTJi4acnxwDiseujJa2wWP3sLaKn/IXmpKZtr3fjGN7Z9HpCFHZqEIYugG6PykoWtlFl5ho4NjRYTkIOdtAdcSeNkIX/WWWfZt9iZ1OK88YFJLbzQzReEMW1Re+DBdtWRR7evp6wrwFPTMdllOS8bR/LJUSa8woiutSZvQEa74FWgnlBjq/qIA4FAIBBYSgQYexiHOBjTGAN56OH+hHP3/B+dn874zhk2/rJSzwfGM+i5Z+g+JBkaH+vxTmOelwMNsqjz4zm2aYwmlmzpg7ZL3rOf/Wxb4cB4zGegWe0ne9CLLo4IgcCOIkD/Uz9FFnn1SZUTq45+WJcz7/F7NeiaUX+Hnj4vOSas+SNdZLvqPS1p0Y+kdfO5ProlcTScccYZtmP6a17zGrP7wx/+cLrvfe9rG1hoiROgZIxpSgukEcefQCAQCARmHAEGdw67UeQvS6xaXSY2TLj4ZeeiCy9KP7vwZzaxgoY9GFhKyi8+F1xwQTr99NPtF/j5mqkbBhM05Ggg1w1gPn5shKeMtwN+8ekmRR4dPuy33362a/fN8p4N/OqDk4Gdu/klnv0G7Jeg/IDMJ5ZwaGATN0ACefPC5zTL+bg50ha9U0uegG1qE7FvF2l/YCs2sqnYD3/4Q8NU9jOJpBwHA69LyONvSvIfjwNlXo9oFMuemk7limWb+Priul3QgSm/qrGUl53RWTXCOcKxxMG3sVlVwh4ampyDKWHL5ryMuPniiRXEn0AgEAgElhABxjrGMcZwxinGeT5TyQoy9l8g4ExnDGYvBl6XqF8FZAyGV2MxPBpDNR5rbFUdcR2gER3yfFA5sWSTlm7p8TzHHXecrTDjVQrGXZwK3KdwsuN4YDzu4vMyIh0I1AjQ73TQTzm4l9MX2cwx16Zrrr3GnGX0L/od5dRrHxT4CYpJQ8v8iTLND1WufooMlYmXOs3xKINGdbqOxAdva2/zuXOVwSM+ypCJPfBij5dBPWFijgYaIeU4Gt75znem1772tXaRvv3tb7cNWQCS94IxjAMeDt/gYlb8DQQCgUBgdhFgLOPQWMYYxsCsCRifUDzppJNGNkADsgb5kcQTrtRYzfhL0M2DmDaNCvzyc/TRR9uv8Tws43DQr0A4VAhMzrjpELgJ8eDPg7Lo5HDW2G/684033xGMR/cGsCFNjDxk4aR51ateZZ9GM+KePzonqlYbJVvl04rRL7z7dPJKBRNeVpPwHXheX6HNwg6+jdduTFu2lolGn5woDwQCgUBgUggw/jJ+8QDOeMQ4/5Of/MReiXjb2942Ug3j8HKNud4w7NCDGe2hHX2BTz8/85nPtDGYe9Yo2j4ZUb5rI8D14ve2og9xMG/UK6jsZ8Kckf7IDzY3ufFN0u577N7OwTQ/WhSSzUoD7CBwDWpuR5kOXZvk0edpoeeawWbRUS9e0vzIQ7tERx1BsaUzc5nZWdXi/gASYlBEYIMzXp144xvfaBuKsQEW7/7yjvL5559vk04NPjJG8eIsCK5AIBAIBKaHAOOXxjBNwhgDGXRZ0XDuuefa7tqjLNKYN4EheJSaidcx8eILFTgZ9MkwrVRg8y/aZSsampsWNyvdiERHngCtcFAsPIh1gDH3F/j4pewd73iH1Y1qnG6aovFyVTaLMY6GO9zhDuZw2Heffc2pQNvbFQ0ZAzAVXrPYhrApEAgEVg4CuscxBjH28HDEV5JYQYZTvSvwcKIxi5V+yFju4O83o+xhI+RHPepRNgbrB4Xltj3071wIsGKBla70Ofoa1w0H93Jb0ZDL+eGdOQ3zxqOOOiode+yxtnKUTR4ze+89Xvd+zWm6kBFNVx1l2IRe5knYpPkSNmIT/CqXLM3HuvRCw4FcDslF10RWNAhAJpEENuB63/vel3hlgh3Wn/CEJ9ik9Mwzz0yveMUrjCb+BAKBQCAQCMwOArqZeIvqGwo3Hsb7nSFwo/Nt4uZXt2fa7cAeJq4EbubYszNhOm28Ql8gEAjsXAgwxjGmMc5xMO5qj6HlaIm/B2j8p8ynZZfKlI84EJgWAi984QvTU57yFHuVkmvG99vF2MA8DUcCsfo1zo+167IDMG8WyepR5iBcq3IIQkeZyvVM3/I7R4JsYp4lJwVl8gcgl4MwEUeDDOOXLsL3v//91tHAe1xPfOITzTPIr3yvfvWrjSb+BAKBQCCwKyOwozeSHcFONwbdQJClG4YmYdzs/E1qR/QtNW+NpfJqC+30bVX9UtvVJV+6wZcgG7tooywQCAQCgVlHgHsH4xhjGuMsaZWR11g3zXZovJfDgzzPKsQ6sEcPRLKfh7MIgcC0ETj55JPTU5/6VFsl6q8j+uVCgugvv/xy20OFr3Hxg79eX2VPKDb2Zl8ozQMlX33fzwXt+T7vC8UnNL1DQjz+WpJu6kgrPzFHAxNS3sslfPe7320dDTSW74azHJQlr1rRIE/ncgxAZmT8CQQCgUBgkQgwOdEEhsGUAVr7DiCSsnqixYCsOkss0x/dAIg1/spe2kUaWxnTNTHzplLPDYdY3mu1zbfPl/ly0nUdZQsJ6CYQ60Bml9y6XLwL0TdJ2i4bu+TTf2Q7aW1KRj/Teevii7JAIBAIBCaJgL+XaUxCPmMpdRyEvvuFVU75j8ZZ7lUcjJnYR+zb4O/jmKj7XoyxUz5hK1Cdrg/mVbpG6FfMF9U/1ewXvehF6WlPe1r7BSrodN2JZiExXzj79Kc/bccPfvAD+9oZG3o/5znPSfe4xz1ss2n2imDVAisd2GAanVwrVtbMsbCVgzZQp3bIFng4CGpvPceaiKNBFy0GcCGzGeQpp5ySPvShD5lxj33sY+3VifPOOy+9+MUvNhomTdByUctAS8SfQCAQCARmHAENpBp0/WCL6Zq8aNKimwoDNQM2Yx/HcgXZ7/VT5ss1rst20UKjdlOnmwz1vtzziYe2U65xXzLni71d0CqPLB2S4fWqTDF8o+pFt5RxH0Yq93h6O8COULfX00Q6EAgEAoGlREDjJ2OpHjw0l1cd+lVPuuvBivJpBMZVDo2b9fjKuKr7EnWkoff3aN1vpmFv6Fg5COh6oP9w6B7P/Ed1au1LX/pSczTwVa9JBL4G8+53vzu94Q1vaD8/i9yHP/zh9pUVnA7oIuYLY6xw2GuvvdIee+xh17W3AXs1Z6MdXCNqE9eM2kL7KK/DRBwNXii/trBBDI6Gj33sYzbhftjDHpYOO+ww2wjyla98pQ06eEy4kHXRdxnn5UY6EAgEAoFZQUADq7eHMUzljG8MxkywvEOBiRlOiLrcy9lZ07Tf30jrdoAHBxjpplXT9OXr+4OwRpbuIX28vlx8vmzaaWGE7eov2NBXXttXY1HXRz4QCAQCgUki4McpyWW84n5G8Kv5VM84xX2wr150yx1jJ23RPYk2cXDfpl2EGHOX+yztvPr9taN+5MvUMl6dYJsBPqmqzVNFL5pxYuZYzDHPPvts2zT7da97nc271L+9DD7n+uhHP9o29z7kkEPM4cAqBxYCcO1yHbAlAjHzLDkMuV78fI46XUfIp33e9iVzNLAZ5Cc+8YnE5zv4TNeBBx5o343/4Ac/6NsZ6UAgEAgEAoFAIBAIBAKBQCAQCAQCgUBgxSDAA3eXY6Fu4OMe9zj7rPX+++8/9CP8OLxeFg4AHAEXXnhh+sxnPpM+/vGPW77rBxkcCHe7293sNQo+pc0nNlnZsM8++5iDYY/d90hHHHmEbVBJO+RswAkHL86I7dvyD0fbtpoO9GKvHA1yNkzM0SDBGMBXJ3AonHbaaelrX/uaYcBn0K688kpzPHhQIh0IBAKBQCAQCAQCgUAgEAgEAoHAciPAA1PXg9ly2xX6Vy4CvMbAqgJeX1D/43malQh6YB+n9dBysAHkxRdfnPggg8pwDpCmb2u1TpfMu9zlLvZaxUEHHWRfjTzuuOPa1UmsaoBXjgbs48BmVlIsmaMBo1GEYgIbT3z0ox9Np556ajr99NO72hFlgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgMGEEdt9993TNNde0zgYcDTgDxnGkHXPMMemkk05Kxx9/vK12kGlyLCALxwMHTga9KmULD/IGk/wnTGRFgzwaUvLzn//cPnHJ5o+ked+EOjweekcXQ8hzjNvoYnL8DQQCgUBgeRFgHGOQxePMobGNwVtjmwZ0LBW9xkrqOKYdZBM2Erwdskd11CutupqH9uqGBW1uVXtz0fguXk+rMuQRpKfkyt+aRnUqh0d8prvCU3XiUww/R1+96JYqlv2KsWOULbJVNORVtlQ2htxAIBAIBEBA4w1pjfWax/OAQeAhQ3N56ElDq70boFe9MUzxj+zHHsZQ2adxV/XKYydl3KvhUT2xxuApmh+qdmIE6v5Cnn6kPqY+RxPpb1xPxKpfTNPF+5vf/CadddZZtmciz9+jVjCwmuKAAw5IN7jBDdKNbnQji+HhFYp73ete6fa3v0NO723mID8xfWymr97RoBUTtd0TcTQILDMga8B7ctVVV1nMJByjVq0eTKw1OWdwYgAi1CfECuNPIBAIBAIziIAG88FkBKdpWZLG5EQTK5muB3A/2eGGM+2AHfqMUX3TG9cW2U1b/AE/dbqRCiPR6z6xo2O9dKBPeEqmr6Oe0FVWapb3r8dllCVGl++h2R1h90m1dRRP1AUCgUAgMCkENLfXGE6esVeOBh4w5HxAJ2MW90Y93PDQ4usnZdc4cjRe6l6F7diCjarzcoxua16lnd87Jw0tzyp99J430oFAFwLsY8A/Av2onhtRxbzMnpczjfqnMSzwD7wc/ND//ve/P73pTW+yTR4vvfRSK+e67AqPfOQjbVNI9lQ8/PDDrc+zSAAnBPs2YLOe53EySA/XENeJriXoOHyYiKPBC4x0IBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAITBeBiy68KP37W/89vehFL0p6fQILDj300HTIIYeYIwGnw81vfnPL88EGVjPc6la3SnyNQgEHghyH+mGNOhwNa9dkB1z+gY1AHY4IK8+OOR8m4mjAEHkzMIijL3i6PpooDwQCgUBglhHAg8vAyqBae29n2e6p29Z46hn3wWnUvWExtiF30jIXY8diePQrAH1oVKCf0cboZ6NQirpAIBAIBEYjUN8vGIMZW/09BBqVx5g7Gs+o3TEEuLfT31gxM+lw/vnnp7e85S3p5S9/+ZBovjLxwAc8MO251542h731rW+djjzyyLTnnnuaLWxGuccee7Q82Kg5iOYqukaIKePwbyrU7ZmYo0EXZn3RttbmBDQcXLxxAXtkIh0IBAI7EwJ6l44BtR5UGXz9xIV2Me5RzrhHHWmO5Qr1+CtbFNf12FnbPGqsF73GfHiRWWO10PbLPsMwL0dkuaHsIO4K4qHO+GYAe2zixkwMJl14Yy/4QYfd0PW1EdoIgUAgEAjMAgIaczVekVfZtO3DBg7ZoDxjqx6gGH9lq79X943L025D6Ft5COjeTr+s5wA7cq2oz+JoeO9732tff2T/hQ0bNqS9997bViwcdthh9vlK+v8heXUDX4XsC9B0rVSgjDbI0QAdx5rV2fGwdvjHk4k4Gni/xL9/0mewwMuXfZ7x9VFFeSAQCAQCs42ATVryg67fe2aUxe3Ylyc8CipTfpqxJlVDOscYx73NnTKGBA47JzTBq0gWnV2oLV6R5/Xl00gLN27ShFG4YKdsXb0qv/c46D7TMDV0BAKBQCCw4wi4e8uOC1uYBI23cDGW6vlD46qkic6Xq0w0EQcCk0KAfqa+Vs8BVL4YXeqzF154YfrsZz6brrjyinTozQ9NN7rxjdL1r399czawZwp0zEF22223oRUMtU7Z2WUjdSrvo0PeZBwNtWWRDwQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgakhcNlll6Wzzz7bHAGsaNhvv/0Sr0V0BTk25KSwfSsn+KNGOBq6UI+yQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGAnQuDqq69Ol19+uTka+EwlG0Lq1VVWMujgVQtef5CTYdTKhMU2PxwNi0Uu+AKBQCAQCAQClOn6HAAAQABJREFUgUAgEAgEAoFAIBAIBAKBGUFAeyvgSODzswo4GKjTKgbq5YCARg4IHA84ICYRwtEwCRRDRiAQCAQCgUAgEAgEAoFAIBAIBAKBQCCwjAj0rUzYnvcW27ptq1mGk0F7LFAAjxwUOBnWrc0Oigm8QhGOhmXsCKE6EAgEAoFAIBAIBAKBQCAQCAQCgUAgEJg0Alq9gFOhdUCwLerqYS+CHA04G+qVEDtiUzgadgS94A0EAoFAIBAIBAKBQCAQCAQCgUAgEAgEZgABewVia/6suu3smMxxgPNAQV9fUZ5YTghinBKe3tMtNB2OhoUiFvSBQCAQCAQCgUAgEAgEAoFAIBAIBAKBwIwh4Pdi0OsROA5q5wFOhTpAP8kQjoZJohmyAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoHlQCD7D1jN4B0JcjjIHK1gwClhTohVecXDZH0MpiocDUI84kAgEAgEAoFAIBAIBAKBQCAQCAQCgUBghSAgp4J3NqiMmPJ6tcOkmh6OhkkhGXICgUAgEAgEAoFAIBAIBAKBQCAQCAQCgRlBAGcCKxfYm0GbQOJcoFyB/FKEcDQsBaohMxAIBAKBQCAQCAQCgUAgEAgEAoFAIBCYJgLNqxNSqdUL5LVyocuxgDNi0iscwtGgsxBxIBAIBAKBQCAQCAQCgUAgEAgEAoFAILCTIoCzgM9UErxDgfTqnr0YxLMtf61i9ZrVae3atRNpfTgaJgJjCAkEAoFAIBAIBAKBQCAQCAQCgUAgEAgElg8BViZs2bKl3XtBzgZiDpwKPqgMPhwUrHqYOUfDwGRSC3vPY37qgXQPzNz0/JLm8uxoido7ro07qi/4AwGPwHL0efTPSn9fjvbPStt9P4j0roXAcvR7EI6+v2v1s1lq7XL1eWFQ+r6ugKW0RjqkuS9eKhu8/qJjqTT1tawu9xbVdZH3CIyD1HKfTW/vzpWeLHJzz5UvYTeFxQfvaMBhYI6GRjxfo6Ceg3KcCsRyNkir8SizA/FEVjRgNMFDNLCpG6ru0gEXqexzcQV9aUlS7FimmPTWoXZea2oG2TqCsYtlBLkkrvh4Qbh0EQuhEWB2sY0gl8RdJhY+S4kJOubIl2KP9ByiUtlFKrYeln7GkQySugvEHtQRmHiyLlRGsA7fWEYSFlJI0FeTygaV1zR1vsvOmqbOd/HsSBnyCbK55Hbtv8LEozASny4GmEcw1SxzSEVABek5BCgY7rqlZPhvD1shkg5yIwmHZUZuaRDwp6PWMO/pGdFHJGuUfNH0xUutf175fYZF+ZIjsCP9BuN2pnOry0htHtd28fmT0VVGvS/3ac9b0pV2iOcLDcsw6SA3SA3Oy2LdDd6RsGbNmiHLWM3AAQ3BOxqGCCeU2WFHQwEGV4NSssyfBJ8u9XNLBsAWiiJv4GzQKahjJPlD+qcVq+Vz9XW10ajUhLkspaSDcRRLB3mf5BVX3odLJyZ9xDUqFfMotoq0ljSF/HJZUFDpw2YSVs0r2wh6NFXFtSzyFcmcfDOkdZzDRlotoINyxRbVgKqhHZj0kYqFuIOt/ynNEY8j2+uZRtqZt2h1fe0ayB6kFq1kUYx9li1K2IKZRmnvRGQUg7RXjH0sLdm8BEVwH5nUKm7lqqCPcQ6hGHaleHlA0CyvPjXeGp9uz0jNQEUHoSfz6VZOT8KL8umWvEtYRViT1HmRL/aBp7Vl0YnaokULWnGMNTJ1vq/BOqeqr/Mqn4V43DZNw9aCk0crpxdiYEVeWCVAo4yGCF1xihfeQr0e0bUyQXVINQ2+WQtXNZJjAo4GgaPY65PlxV2gXBfF3LIB+IV7kB8+s0jlWN2I6NLipU8qLXu8NYMyaZljzVwSkQ7HFeMotop0WM4Kzy0Il1HEHqcK0FFsFamXssTpWnOdz+oxvKO4NWy++pbQJXivy8ks2JS/jsqT+OIFpedKLexFff47ROCMkhZXJFLFIiF2ZEPpYfnicBKM0eVFsivEo5rtAc1YeFKfBiZP6tNDTDWeDWEtqyZbrvxQOxZpRHfbuiYcWZuIJ6F4pL1SBJFPj2SaaOUorXOaP4rYW1Ux9rG1ZPMSFOEiU9ynspUrgi4G1c0hVsVKj33Dc1oY+eIlgaAo4u8gNaxIJigeqpWdvrCDUGSKPbkv62Btx9CuuhYnL7Ai9PJ9urAMxpzClv9CVMnw4ieSbnV4i3x6Ilp2HiFqeoW7immIT3flK9ahU1jXTeUcj4l+3a4x2SZONrgSEA1iDWoLNHD7HDY9Ow8LKhoGfyfeoCkKnJCjoQAkuNoT0JyI7U3c4Duneb58kC4yB04GnQRiHeUkDE668nNULFFBscn/rRUN2tPUFOKabG6+YhzFVpHOlbWCS/pwmYNJF6HKauIqLzJgVFokipcH4qxdBmnQW3JDskLX6ME1P1exI5tbOUZJ27SKtsh1bTfCnK8VurxkKa5EtqwtS03Y5nNCRKvawlrcys+ParrwaVAQqWIPjif16UG/9tRN2hF2yezgmGqRM29Reke1aXiyk8Vr1oKmHVVcWztkSJMxHUMVNdeS5qVZsW+yT5sRIpJFys8hzASuTGSwkVaV4t6+2RLAORiavbxSM5BJfoiti1hMc4h9xUpPO5QMI5efNC7+HDRjPEWluNzxvHalFbdnwstpC5tERSxSxVD59Ch2iVLc0o4pwJMprbjILKNOK9+POShrK1rNi0tIacudC4ZkzyFoKVd8wjfdYaJixcKhzqvcsVqR8oqt0DMPVUjKdGNvznQ1D2sbvvc2wNTXgmeR4RWGYlE1V3pJD0oQA5t0Kvbid6b0RBwNHqgBVAWmAkaFdINQXVrnkdvvaBDM0sOKhpweGFANUqLfgdjLRowZrE5CwTDBnPYMVw+TzyGWfOSWULOrvItVdSs9HhuTmrDO1yBW+ZocXCuSKUPdaNeoNWXtyT1k+ytAZkwKmxr3IldtR1tOi6hW6vIiUSw7GwlttmWpCX1ebTdiX9GKWdmJ+Zrcglhg8OQ+Ta0n9en2nPYh2RDX8vrIp1E+ZP8OKuxq1/BkI2uriZbaAGtTVmp6auU72OAFsHdpntP0mqjOz2HIBriymhzz2uquyiECMoPT00Xeysp0Pj3nnJok92eI2JWv6KRvdE7PB+iOYNEjm3vcoGqQQpWsU9yqHyZriy1REYtUsYjrPOUVa5uvy53BEjeIK2LpUVwTQt6OPzVRJWvAu8BULRd2k+0rfHqB8ndW8rrJFd6qVkwzfdo327Mqrbilq5nnELSUU0vUJk1D8dxmq8TF8xlGvcgbo+sp+2BkmSuMa6697qbR6CXSscOOBrq0B2oAFegKYcXdreiqLWVIk0SlfR4qd9RnUOqkAFalVdcXSw30Ste0rawBAiJpq1TQJaMuq5nqfIcpHSTSuMvE88E45/zVDEKqBrPK12xVtaRMMc4W1EZNS7s1frmU50aa6qr99Qlx+XEtbVlqhjo/5GyYFugzoqfGojarBbFUzEcOVcUyf7+ew1AbsZLzTePnA3YhGCEL+vlkimAhsid8KrpMHDKnJqjzsmeIqWm/6nJcsxm5LyTtZfh0B78TPZQcYvPyRTWPHpGt/Dgj1YWPb/gQmL5invQouY1MP9OVNKlTrPJ57YSwYpIJiltZIxISobglHUeIY/LkPo08yNqHnbqyVdgQ+jy0TodV1WWj5EmWyRiHUAwrLO5qusPVV/v0fChIhOKWvkvIHKKWehdLCIgcd+E0DhqdrBKmGEFFV3vtjSN7Rmkm4mgYIO4fuAGpADWIR6Mg6mEqgNdBjU4EsTi0mkF56KYQTF2xx/9F8xxLZLbMqvOdTHMF1Wxz9Ej+LhTPi0lNUOeFVQ1mla/ZquoiBaK6wpcpLWGe1tdRrrzsG4ozgWTMUThEuDQZPWib9NaQpdHVJVVORcXQeCyr/LgWtiJqhqF8zohwCIcuQ1dY2RAOuW3khYWaWuVrFpH5uGJxfdtTufQcBle3YpOu0b7fT6297kwutt939RfZrzrFKq9iZ4XVOFS6+03NIHlDjLmwytdsVu0LSVc8Pu9JpbIrHhLRxVTrGWLokrjSynKDW1yWofGmvhjg/4KyrFHcIt/a25Z0JxyjZ/HpbsaBbuqdGIdVH2dTPsQ0YBvWXR5zCmn+O1w5j4JJVWelra3LYsCkGrJwOX3NbfEoIkWmeD5FYlfc0vcJmEPYcuxCiQxCi88OANLLKuGKRah454V64o6GARQFnLI/w2igRtcKdGKflia4ObKzQdWqWuq4Mdy7V1A5pz1ddnWVzWFsGuDKazZXtdStnVn5HpM5ePhKWkAeorp8DiPEObjycVkK4w7+lZ19YswYZ1wf3VKVt6prVJZKYSVX7ffqW5sa2ibvSSopc7KtiJqpzhthU9gyzRE3KIB0HLoBx+iU7FmMzB2xRXpHWVfZNA4L4obY5mMaIh5lzEqsy42fD58lbXZWvoz4100fMqWuBIeusiEmB1ZV7lmtyhc4NkuO4K1JfX6IbZT8XiZfMU8a+UMK56FfSPVSy14yw+dpZMarnJbhmZ6H0ac7+1ufCsfoT71Pj8E6jMw4zAh1usl6Np8uZM3vqr4CpmmFxTo2p2XfUunpw3vMc9dnltgVt3Rj6mvpd5XEEC5zUBtCYYh0qKa55HrZ+zh7GSrps5tdckdDgbYDKDCluAvbOeQiUgygEkAahobJk1C1lKFHZa/5i7XFCayb56qKdBH4Cg/VKBs8nU+P4pmvrk9OXV7na7kj6qlS8M22Ml/ZFjgq+4qCy0uQYldVi3JVoh7uliqV7RIAo0/30VEuJZJBmXhJL2eQbZUNXaaqyT72bL5JXqzKfdmc9ncSZemZSVVe16h0q6dmrPMtYdHTKxM+aBV7QsmULE/j055H6T7ePj5f7tOSp7irTmXEbVChClxe7clVQywi7Ykd2/yMDbHki1dWKEaVaKS2plW551GZj+erh7aPpi73eZ+Wvq4y1bUxRNMMACedfSDOZ8+ohqlOcYcsqfdVMsXKjKASwBhPWNVQdo75jscJbDgLO399gZWqMDP18LVkIxKOtUdHB/MQU0d9V5Fr5pxqtQ25XXS+HmZP4+t8+RwlHXyj2iFZiiVP+pRfyjjbJ3WKUefN9umW2GyqDa8MdYxetk9XHG3WsQ7ZMmn90qN4WH5rzuQTrcIe0V3Q1mUCspZV00mFyvv4REcsWl/m0/PVS4bn8XbKhrZeBQ1RE6lUZHVe5Yq9Cp8enFckDNUUVl/UQyId82LTEjYJL8+nKzpVERP6TBJdoeo+VaJRDO2w3JxTgQRZ7LUOKoy0u6oQNbLsNtQpt6NQ96yBmp0ytbSOhiHkR52BDuzmkPuToLSIFDdyVN0hdiJFTl2XKlfd01EXaIUTWOtzVf1CYRqHcFy6fk1zayYls0cOxT4MNbOu9IQLSTdCu8QN6UNmj52mztdJ2BwBjQxjyH/66imXDNFOO65sW0pzhlSNqygzjUvqoWt1jcvcMngpTRoZ1CvuIOksmo9ettW6+/h8uU93Kh9RKL0jSNRnxyHtEtM2aZSATDSqukvupMpa+5zApbSlS59TvfRAjDKAho+qHzI0Z0bRq05xzduw18WtevgmEVqBw9Ba8SgdDd8okj7znMphpX0MlA8xjSJ0dSOwNSrVK3asQ/Vd5ZRhUx9vzUN+IbSeH76lDrktXo1Po9rD79NmVk3cZ6tj9Cw+PQbrkC1DRvcxU+50k/U6fbomndrigso+7FhwoCFdcsYp76ORETtaLzmKu+RR1hVcmzyJT3exqcyxD8PTJ8AzIAS6ukzCx6n3tDV9JbvPpFrEJPNt01rllVGVMr3J2JJX9a28XG7pPkJ9Pt7UNVyeuZK7s2Qn62jQLwfWeqFTx2NCI7ZMPvecqMQRVWLbGpFW9YvKZqHjimv1o2hcpj6jnLAuUa66T8KKLZ8Xjy6ChaDhwO0S5aoXInVytF1GTU76aEmu8dMyw1SOoUwD/+gGjK4dS5fDYLS0FVTbh7/Doo9kXBScqLnjZ67cUfnj2tFHJ/umZcdIfdkI1ffZu6jyHpyXRNeYBnbhPWRPF8GYsluyRmAtqtVTV8DYw9PKHDMxUodktEQqWPlxF+S02qDoq1wsLFloLbLOS7Q/FT6t+nFjL9+n5+P3On16Pj5fX+ur86Kt5Vu+j1hMC42z0C6Rte6Fil2p9DVWdb6v3TWedb6Pb9rl47ZnKewyTEYZ0IAmkjqWTR5bpTuddRJQM4pJ5TthPDlHg4HkkRI6ikHHp+dBqyH1EsXRVaa6+TRY/SgBCMpE85H4+j6dQ+WeQcaOEzsh84lwpEOS4RunztP59JCwBWRkL7olT7EXM6pMdYrFR35UGGrvfMR9gpyQcUT4dnqRsl0yRAeNUzGEkfi7aCVPNObfqwWpEh1NXb1iWHnFsEh2G+cE/OQtNAnJrIqVbeOWry2ZP+GbUlO3dT2CrbglcnbXgnryjnVAkYV2ljeFMqWLhjrKFSNU6ZpP5Z6GdFfo4/UyPJ8v92lPQ7qrjjLCUPtUWFX4YqrqPGV9YUh+Q9SWSVAuUBISn+6TO8ny1p4eodgjmoXaJr4e0UPFkj2HRwY0sdU3xKrygpqqUiRhFaFoVO35SfeV13TkK9FDJKpTrErpV74rbm0Yh7hLAGWtkP5+1ZJITy5QUmLrvMpHxa3chsjytSBH5Ktcca8K6KETXxePrxO9F+jrKfc0vs6Xe36lfb1Pq97Hkqsyn+9qg+gwbmR9JhzHGe31tbKrRK2HPHxdccXang+Vd+mTLNHUcZd+0Yi3jn19V1plfXGts6bjQUo6fZ3KWuxV4IlymmKFWpfyXax1meSIRzJrurq8j090xH0yRDNfvWSInri2U3Wyx9P4Msq78n3yvBzSCtB7uyXTy+krq2l8XvL74i6dNa301uWLyaudfbyyvdMhAFNDgE2yq44lQzqUJ54jV8wiVmzEyuy88eQcDYZBRqsFzMMqgFSm/Ig4k7aiMplPi6su65LeVSb+hca1vi7+Ufrm1CFwTuFA6ih9qhvBPhC0wlPjYNHiVGNe5zNWktcFm69rZXYR7qJlHp8aAkHtacbFsJPOC6wIvI7ajnHzlchBx5hTMa7EXYNuSbCvoJuEjkrk2Nm+0z/KJurgE02fjNqILjrJqGmV7+KxOhkhwp54Pvmw9erokTmp4tq2UXa0dWJSQQcOIumys4O8i8zKRsnpZXIVMtEVRTIjMB+uk8Kt1lPndTK69HWViX6+uEtPV5nkdOnqKhP9qLhLT1cZMrp0dJWZPoRQqZhCnybvQp9OkfTqEcEuGte41XkPSx+GfeWedznSo9qy1PaAieFSG9GApWJiHbKJvMdUaeI2LQEw+TR5hZZYBTtnPHlHAzgYaF0IqWwEWA2Jx70vPUJKezJrmjEsMBav08voKh8lc1QdclXfJXc+vb5+FtJqi2zpaxN01Il+PjrJW0gs2aN4ZMcoGur67JuPbyXXd+HbhVNX2Ti41PLrfJeMLl1dZV28vqxPV12+GNlez86YrjFQG/qw6CsXXx3X8uu8l+fTtZylyHtbfBpdXbZ0lc1nVy0Xel8mmYq9PE+n8q4y1fm4S15XGTzjyvTyp5HGLmzus0/lfe3CxlF11BMkp+Tm8owjQ7yKa5mUd5UtRrZ07OxxV9u7MOrDrqv9XTKh6yvvkkFZnx199H3lC9W7nLr72txXXre5r61d5ePKrHXsSvku3Ea1f2fCdKFtG9XucerARsfQYNCAJnuIu9Jeh3D28RzZEuIZSXumum4nyk/Y0dDVcodUH5hiE2nOe1KlFUPu02JX7MRY0Xx58fm4lu/zSnu5Pu3l1Olx6aSj5o/84hEYB/vAfXx8azxr7ObLe021rDoPbV1Wy/fySM9XX9PX+VpfXR/5fgR2BPtxcN8R+f1Wz18j2xTDUdtS57topMnL6Sqr65Et+Yprmvny0qNYcubLe7k+Lb5Zi8e1sW7/JNqxWJnj2jwJG3cmGR5PpWus5st3tVeyqPPprnwt38sbVefpRqVr/aNo67ql1l/b5vX5tOzqKlMdcS2vLvP1kqXYy4l0N5YLwWVauKLHn9dxbVwMz7iy++iECbGlMaIplD0+Jq08MpX2cihv5fm0iBVDqFALUPlOFk/X0eDBqUEVoA2Nr1ZaMSQ+7cUq7cX5NPV1XjyKa9l9eclRLP5R8Ti0tT7JE29fvegi7kdAGHZRBK5dqPSXdWHpMfRppNT5WnItz+d9Wnyj5I2qE/84cZfecfh2dZodxX8+3CchfzEyZJdinWcvy6epr/PiUVzL8nmflizJU0x5TefzPi2dPvZyfBqaOi9Zir2cWUzPZ2fdvkm1YbFy57N3UvbtbHKEp2Ls78LKl/l0X3u9vL60eOeTN1+95PTFXn8XDfL7aJZad5der9OnZTtlKq/5R+XrOslQLPkRFwRqvBaDyzSwlY6F2lvTI8eX1fnFtL/mka3ESotGun1MWnlPJ95ajvJWL0bFEiBm8j6t+p0onpCjgRZvT1u3bU1bt25Nq1evSWvWrMnYFHS2593mOEpugNgqdpTzu8ploIU1sap8WdHE3/4gejQNtA3SvsxLYVM8r1d1lElmXcamHti5uqnwsmse8fbFnhcaz18wLLrATbSexsulnjo7aFgTPK/KJhWjRXZJ5kCzSgqN2ZWtG7RkUA5lnxyVSy55lUmD6pT38bZtWWdmGIVDzV9j7+WRtraAcRasftCW54Rs3JZptm3bllatXp1Wu3MIbVfwdtRthH5UveqsTzeZrNZsUZ10Wj7/MVwqudCgG5qajjoK4bNkTrebPJWiob+tDFfq2+XTkPi8T4vd5OU/W+2crkprcvu8Ds8jWrVRMhSrnryn8TJE62PDN2vt6k/I7OOnjtBXX2rL31qOeD1/V5mXMem09GE/aa6RNmQAKVddW+4Sarfx5nLxexxFIzanQUWdsfSKv+az6zlzokvXa03jeUtdGasoV51XLn7F1JHm6KJXveoUU6608TYC6ZOEbfnYalhnjHMZxV6HeBXDYwQ5kgwra/7A24gb0mvlDY1k1XpU7uUpDW1XKGNpxpIxsCEoNuQ5Qs4zLhK66Ky8VLbXW+Gd2zakqI6U71eUjxPUvlH0qpO+rXl8x3brW6u5Dsq1gL5iT/6biQelw5ZIJ6Wc6+3cLzImwmWYerI52Wc2ZJ3eFq+J+xidhnMIDXwE0Vu1w7wtL2SL+mu2ZU5i6VSavPoSwtFPoCu1unOZyrkPks63jYHt0DbEDXsR0vyVHBWSh87HqltIjAz6C8qRJXnI4IrQWQBz6OgHdV9ABvMKq+e6UkMQMkbw7egjh6YvmPm5ErVqA7SUb91KL075eSD3lVxJmekjncuz2RZW5XMCL2V1oJyguOQW/hfZ2938TxKKHdsMN641gtmBsYRc1qcbir46453gH3RJHzob60yDbCg0+W/+r7aoDkKrb9rl6+tyz2MKduAPsui/jI3oXFONG12isUfB22Jz6CyLPo4so8t5tUU8xJ7Py6tpqIO2pqFMh+fhuoRWR6krtuQnYOvjq3OHLqNjqd26fWtm2J7bnp+NG8sGsrOkVlhjCYMTSQYr4p08TMDRUBAA+o2brs3HprRu3bq024bdMtAM/8UBsS0POAYsnQNQc7AOlx0SJRSwNaCC7ipu1Jme0J6HJm2FPX+2GnHujJkfC9qQy4sNpcSfP2zigYUAX6PW9NoNn6qGgYjsluxUoTFrc2dYkzuWeHLVnAC93VByXOgaYZlfotVWzyw+biQcdOC1a0tXtbohudluz5zTTEq3ZTvRjfzV3IjovFVQmyj2afKtfWRyIN8VVO5tKDbmNhq2nJNiu5+Q2XnOWuHj/KNhFXg6JV426W3bc3/KCdri6cRS5ID1ABPKtmzZYmVr16zNsai7Y7Mk8zDZw14Gt7Vr1xqxyc/8SCeNk416BhKFfOsvNzbrh6usv2zevDmtyedv3dp1nXaLl1j6fRvqeuXrphTegqed/0xIm9uH8Uyg9uN8AfY1awpW4pXsbL7ZUujyYMmkgcqGkPNHsMlOjq0fZ+HeJkgNDwhzUK1oFFOXrSFqB2rVKaauUHANbk+bwDTbtG5dc25skGZChp4SKGLSw7W9RvbmMjCAhvnQ1q30jXx9ZFmetxHRGeFYpd04VhnPCNhmbSCRFZRRkJqii2LrPxl0uyYzDWUKspk8dJpAkkeujSOZwfoFDaC8ofNl1JgJRjH3T62TvKcX/1zOQkc5NJxXxvft+ZqEn2uS66BYBlUJJt/aDN+gr23NfOBoWGRexjhCH7/VWSV/stTyv+BBZU8o+vM4mm0F1+FzBq6F0SYxjQyKuPaptLEz4+3talgK/o1NjVV57AWTwZhXmyXecvaLXC+bfkXbOMXqJ9zbNuUxDCMYi6C3oTXH6rOSQUybinOVsb9gqnbCrHqUNN3XzqFdL1k/1/Ya9TFrQBZoNpV+bUUdfzJJZ2D8ZazE9rXNWKnxE6zW5uuI88+9lT4BnZ+Y2hiT6aws26Uxqdyz1fKBat1nRG920WjalGPZadfNgG1Oyq7XXAqdD6XHl7GK870pz390zmkLfaz05nKdbN2S5wxZRvkhxkuam8b2zVs2W79b39wvZO9c6v4SLBYfMXm1Qnm4ba7AOac+26g+Rx0BWtqmMU/nph6jqDcM8jjKvMgH2eHLxknDZw62bBcSydNHsNX6TI4JZiMTthzsemgayqUE9rRp7drVRrc598X22sDWfCh4O4UVdT4t2h2JOcfbmDu4MRPdzG+wjbGI/mLXTW4v9zibu2Qa6LCHeNPmTYbH+jz3pn6SQVgoRrb06vpj9MJWjTHUb82D1TXXXmu0u+2+e75my/0afuYajDHcu5G2NreL8+V1QEdAFkFxyY3/V3xgTd80rPN1qfIt/ECa+4bdD3I5QeMMaejr655y+jjBrhVLDc5Jk+1sj+rGjbETTfQJVJo9lrfZQMZtMAeGjjbCAZ3upbnA2st4ZfXIYWyif+VQ+PJ9JVONMzYZ0xh/hPHmPLfatHGTyd6wYUN7DUsE+glqK9gyrti9ONuo8i1ZzpbmXPEcRP8r10+ZfyGHeUg5J9Je2mcKrKVFXskP/y125L+NQaZ/mCRXlX8a97g+wRlsN+brkPL169enfOcyu/MMMT8Xb+QEJtq+btXgGaFYiL5GJ+MlbeIc5krOURZeWbDzZXfY0dCcD4N+89bNaXMGem2+KXJjJNjkswERuDjFPLjRkegM5SLO4DZYUl4u4ExJB2PkQo79LbHSTVE+jYQsrxFSBoniRS3chVKfFNFpwyxCVmNB3lceNBBlg6jV50Exy6eDU95O8Lh7ZSE2wFpnk+Qiz/+1rimFWNqQWnsZcXOezgodeltsshBorE1ZH3jYw2ymLzjR8qbtJrTwD3QXPJEJZVltAioYICQbYwZMLiUaigZ04sYuBkCrBQMG5YZOnNi3Nd/UsdcmXnmCaTw5b+c48/HP6PIFxoVq7W/kobd9iLE2ljw6y0AwsMsMAa98EOTEII1OziEi1pijATnQgREUDQ/2NIP3XOxLjzL5WQ50yLXBu7HX2oS0LLRIRHbWT9syXuWGVh4SSn2hK60o6FFOmw0LmK3dJEgWvEoOupIqbSn1dgpyOWXYRlwmhuBceCSy9PPSh5BN8JYXi4os6srgnxPWpxp9mcMm9TmmD8he9NKGVh62G7ZFT9GEoZkF4TnAQ9pulCrNZdCUbK5tiLdkG+Q8AlcrRxbtaGjg0/WDTCaUJg49Zg/1xX7y1ocbXlTiJBtWzY0lV+QAtu2NLuun2HjyuUNHkS9DWvNyXakHy0zU5BvsshTZa+c/k9jNP+OGdPBRAEvKbGzKMdc3D11qPKliT+Hz2GLbQJIkqgTO/tCeT2xV/wdPrv8sl0OB/mPtzNoGtkMDxYAfnoI9FQWT0v5GXpZfrgfoBvKzUP7P0Sv9itHNUcaecn8APz382nWZ7UcWqJVfbDkXzYNT07Zywyl9p+A8QIMVPbSXErsesjC7nzRliC7TQuwvWKsl8CmNEbKTMrtmcptpPw9Y2zNW2IsE+iA03D8KzqQbyzKBYZ5jnRPy5RwVC4SpdaXGKh7qTG4WRJ8i0CeLHs5HaadVdP4pbaursJ1xsFyHRa6dkyybeE12LNAOnBHtWNkYRj3XDY1WP2nnEs25MVl2bdHwrL10sibC7mI7dmVx/OVPKR+gb2Xtn0wIRlRzHnRuEdD290xsDzLNfU7tMztznY2xmR77zCmCvY0+5BUrWo1mHO3nwHgcJeCic+goF5BEP6KdHbTH8mU8QliBrLlmc0b00l3uJ3Kuci8fyEM+c0DsXrduvfXRlt7GJvBbeGCGgUx4wZxQ5GY8M46Gd+6r9E+wVj+FDpuMNydog8Z/HlrKec18TT8vbYerhKI399csUQ4v1XXF/W2bW0MJ8yLawbWsHx8ot3t/boeCxiAbo7jumyqdExxSzF/5EQM7CZBQr35mhT1/wKsvIAccfKBMPx7BKy3SVc5DdpSZIyHZj4+cI84DNq1uHA2MvdYUyujj+TyY7EaZnUeXbpILioQl/RhUih6NPczdynVGv2BeCI2uVxTZ9UrHyOxcqQVzLCv9vlwfoittRKddr825QM7iwuA+Ynqxg5DbUsbtfB/LOuz+kIspoz9hm+YCw32Fes5mqedCKW0t428WVM5PE+t8ZobFhcZObGLc59rFMagfp0rPyaKtWU3bclZjDkqtD2NPTptTiOuFvpLlcP0w92Fuy8GPRdxjuE6GHW6cuRz4kwUVTQN9VJXAOSVlJ7spG5hX+lAuzqxGlv8Sc66JN+XrkHNvc21zKNCfm+sgC+ZHeKPlHtVc37SszKnzdcv5zeVDjgbKdvIwIUdDAZu//AM4/rFcZBvep9wpOPEGF+cvDzY2cDZA0/EyQYaSSiL+5JBPngFf4VxuI4UEyjIpyRdOHig4iZqg2YCCmEJaZLu0JinQmZ6sF3lcBJiwhU6T82tz50Am3lnCbrvt1g7mCLXXJ2Do6xAYkKsLNjnt6OhsYJELbUBjssLgC2Z0SsMA2RwK8Oc8nb4dfJpG0qZyAy5qyqBaBj8GGPLmuXc2SOzC4mIDNzh70GvOMeeZc1ACNoNl+WWGm4xdgM7j3pjd0nHzx7vMgImteOiJGTxA0H4prW130LR6M6426bc+VErBDAxg95Nnzq09TOZ6dFCHt7TF3thLW0qyYI+g0lc4h2WgNirK86GHSM4v54SbQcFn0Grk0dZyLsuARRlykMlRcvlvLpTtWjkxoCv9CJr2esv9GEHlgSdPQtqHUEnk7DTpTKc20CbduLDLrqdMx3mwQT+nzcDyh1zONxjkMtqIofBybXIjyC20GwPXKLKZuBEyallvrs/nS6gwdoAd7UBOITQDS55zStuakGusjXYjy/R2g8nVOqfYQYBDbSBPe3UTo9LIGrFNlPsd1xNOMlSXa5QY2zCtjGX0GfqC+n2jO7etlY/COmBWowjbsdOwy8VM0MqEAZ2sYsoPYBm7NpQmGR5cX1syPTbOoTMFGeMsn34gjBhbVtkDpAQ1kp1Nra6ehDjBsfRvfi0sk+AyBpVziv1D5zIbWs4JmJV+0qrNoAp7fgXZsnmLtZt20UAmRa082YW8nDY+TkpPUD+g2rTYCdyert14reG3Ia/CW7d+nY1nrHqgLUxm4OOAB+mD+0bu564fWmWjG3vAhf6NvVhYJnjc6rJcT2z2FMbW+kYnDWvbhb35QDYHgbGDMZh7kMYW6M1Wj0Wul91w2/VNf20VGhMiTXZZZVLGSvoJfQx+Ya+eiB1ehAlwf3w96YIlskCkYGoXUsODfK59aIslDeb+HAy1q1BKhsbacu0k+2UJmTYGZRk8iJFvA3JzxtqA3EZcW69EpjOiPPagg1+QKVif+wtYcq5z43JRtjeL8fiDG/opNwe37zNZCpjYPaiwNxiVc8Q1Dz/t4b5qcyUELTKgy+6vuQ3YAh42NiA/n+cydmNUPho1di3bued6wJ6MWZbDmGeNwpaGHls3btxofX233TaYjmvzvIkxlOuLuVQhhmn8gHhWnNrZUvtzIbgz9oHNhvwrotkEsQI0uW0EO+/CPpdbn27oYDG2XG/37aacB5vNeZUK49eG7DhhPB/HfpPVyFBktpte1RYnOePCujy+2XzPQG/qc9TeG7kusB1+/tHXcpCji7T6EWOkbLTryfp7czIhbMLcEtXkGBENAUmbQ+RY8ybmabnTWn9Bh5Fmwu25LeAKf7lflmvNzkHGbugcNPJpP2NYrmwwYOVDXl2Y/5WxMivOQaNCyY3/tzyM5vtI7t+26rHpP/RVu26RncvKmOga3aoAgdwki7guM00jg3L6H9cIP7ByPZFvH36bVZbQLTxwb8yrpLI87GSsoQ1cS9yfCOBpcxE7x7kgG6k2GdYZtaE8zSvNAVCrk7OHsYUq+hxttJUzrp25asEBO7EXbMFGY5nhbf2mjJfgabh6DdkY+jT/ylyavmSFLf7Mk7Cfa4c5AivKuF7X5bGAVQXWSGuVFzxGutFt11+2wezNNhqWGTewLfhiHVroneUf92SC2kNdAZ0UdOUZz85hpkWOORnzubUAeyMDXOwoNTvt34k4GphOMaHKw0g7gQJMHjLoWOuYWK2ql3M1N2YAtYtEN/9ykgqinKAlDFIlNeSVRq1dzLkw22/ZfMHQ8RlQJhucIRmzrfniofOtyje2hYcsC0zVUdV5EcQNgGCDh29oKV7UX2Rmm/MdL5/HLLNtis5nI5V3lLgBGpa1bphUltNZHhehXdxDWLfCF2VqP1OWC175ZsEN1R6KhvT2cw7XYB8HbVF7oMhlYDSnn4uG+oyjTYIq3OC1G3cj1waemqZRkQdcBkJ7KPMPpZgwbgAH6x8VQ6O+Kh3O0gZrurcvjwPcKDMldq1yy8YGzAzQmSLrtkHZ9HsZmRK7TH5WYDgOuNuU6rvsb4kWmMgyvSOtE5sFiuwmB2BC0ycYa3J/NOcF7fXXcdvHCof9pX8RhuhyXn1HmAijms6YF/NHdhP7c1bOp0lkbFC7FqJi25Y8Ac1OV+4fazTmokfXzUKEjaDNK/EYb1bzEIStYMbDCc6NVpfTS18kCNOS6/jreKy24WtldrAsooirx1brzWcPF6Gub3+qxtZZt2dsxg7CbAz3g84xr4N87KIsM5+79uFSk01dBxPq99tz3ySsWl3Pa3oMtXtk7rd2LXTRgG2Db7aVeUZxXDYnivunnd9FnbhhhWDBONDei7Ne8jaudl1bud76Ta27sXdIeu6NeaLPfXRtXiZMe7fnZcP8ULCO/ITw9yo511i9qpmn+TpLYyahq2mlZuRfHpR40CmO2ZGkC6+0eVHGnn7Rh7+u2SHpahSFdcOoU319zoaEjJ+hT6JpqP9ayVwZXNd2n8m688oFC5QR7HovyaG/Rp9p5xvDhpjGzWTd+T5i/X3I/szPtWA6awy7ZDftqs8T1zb2636R83bvJl/r6xI7T9l27k8ZvzXmpMt2ci6yDjsXtS3Ior8QhrBsyub0lUxnYxP0etAFEwRMqO8g39tJ3sR7+fPhn22y66CxsUgo5w/sNZZl2Vuz02oN8/eJjDUZNz/2cb0S7Lx6m7MNFijjUJ5ClZEmILM8G5OzcV7Px/TH9nrPfLCWPyR22jARRwMrF7bkk21envbC4mIoYLOHQfZNjgGSLgaRGsrKLC7WRcfJmk+c1ItOvEMX7OLMGJuLjoZ3F532sCtjkICBPj+2VEeYZXBekG/t2lF5TjTJPCi2g+zQJKwGt+HjwgVnGxScLe0FXfeb0qcWNgj26K5M5+LP7uOCix46appF57Gb9nFke3iQMWcAgy3nPN8IGYxrHHKt0dsNEVqHkdW5P1mGYY/tNrC7uqVOcg452n4lhbnM+nPO28PiCPvzRjqlff4G1Mjh5gRmjC92Q8/l5Gmn9eOGbtJR1rEt47oanX0T2VZnbmsbRrWzJcoJcON6rM6tbjh2Hp0scABn3Vi9qDqNjOzksTDx/oxU2qt+3XHOTPG4f5Dl2glbfpgrY0keA3QjHlfcDtHlNtlDsMYebOOYp406ZzTD+uQ89Iu2sQOrLlnmKM/GaLLPBg/Y1WUWImnjUl5LQzaikMPAcjW5zK4HYU8VfazLaMfmk/DbdZILNfm3eunzxLOSxjaFnOYebdf+Atot9h2KF4CR+ns9RuU5gF0/ejDiXNCeoXOxQ0buGLOgpuvNSrA+25zzdg49hnF952AM1gWR9M7HeqTY2JPr9INHjTn14G99p0fGRIv7+nVdXuedEerH3Hvbc1Q3DPpcprlQfU9z4sZOtnNkOTUzdiafsaGjE1ufyFU1ttlhZsGtKC4FfX9HYNHHMlZ5jdkYenDs5tWNNobMa3/GZyH3i7Fs9kS1vTm/PdvGObFnHs4JNAo6R4qp00GZxvi82mzzRhNjPxa2jhLxSd7OF0/I0ZBXNOTOjWeGf4DIP4Mvg3/tNdekq6+6Kl1z9dVpY15GhwMiK26mGNlTnH+O4RcZeJr/5fJpJz0FaJPK+cnlVpX/6HQRc9FRrqX7/BLJqxsEXB14pc0znWP715w/0vyCYMvDsIvBMdfZu0s5tl/W8cQiXOWZjmVNtmQVuVRka/irUGwquTbtCRpC+/UCGRk/flnTe238sm4rG9CbBRjGWYMtbXeaDBdkZZuw0VQ0sS3LB+9GFr94a1mplgOVZUnwNwbNE80hywr51ZFylkmydIlVH2WDn4xMMd+kmm1mYf4NG8x5OM4xFxYysAk5Wq4Jky27shtW2RQJel7/gJYJzeBcIl3WIYdz1BwmB+zKRd0um8zk5d288r7XtddyoZd3qWxJGjoI/z977/Ws53Hl6zUYkHPORM4gSII5ApSYMyVqJI00dcp3vvGFr+1ylW9dNf4XbE/5zDmKlEhKzDkTJHIOG5HIORMg6ef59dcbGxxqFG9Y5Qa+/X7fG1avXrlXh5f72tcIAaetqdaRO4JPcOpZL7AsjdYenVbn1ECXMjg927Z6zqmRjQbtfp+VZ37qyG6dfhbZBLb3tf0mnLKq7DiNrE7DBL/W/g4eDRePKZ1GhXI97mmXLztyb6hhvVxo37vroN3BGxp7dB25s5oyLZLvvRnR8rxtd/otP2qboYMwlIXok3JgxZKO+7zmFDZHrtQHs9WOr7gpnvx0Oq6Yhae2oZL8kq5Tj+e83kqVmSojnquPdR7k/tYmcXdqZ+8+vTM1t8msT1YY0qFzPzwSgtUps7a1VuxJPp37Ulmu0TzapAw5TdG2aYPktff4fDZsQi7Ez/Mu55L3mdYP3TpgBE5JJXk2eALb9dLi4nIvdSx6FTp07r30VCB825+0yQs84vfwCoRCI86Id6ZddnAUcrUpPsDJ/K8yI5CKc62/0Vl865Kdet62tiVx4q0tyb3SRhgVHf5eXqzucpp84zo/29Tv0BfaevQj/KpXVU48Z11ZOsS1tvRIGQ0h+GN98k/8hVvn9vGUNAFvfYlt8Xp36UYwDwOgHuObUmMHfud8ngMV+ejeCS4p+Rq8tbHaDPEOPhwE7QZ8To+vU8p7ZVqmN8h725RlV9yXx/hj+8Qv0st1+VDlDtw9D/7CrX7VuuqHU92FM93lT533hnrNv1V+6kOV/n6vPG+DFk5VlbqV9m7i2s27DqQ8D7gKsUKrvKi6qGwGeWBYKk/rffnbA/GKW73W83u7xWOjUZYxcaJOrYU24OY/S+VHfaqdk35imWtpe34Gn5Czg5932V7bbRFf2+BHEBm8qZdy/a/+Q2XKpnCFJe/lq+f8rf1ppaJc68/9PNsTf+VJWXBfjSzHlB781o57rHjbZiHy23qst1XwZ45pb+cefQkPd7/VSJji4j3xmRwzbR+6BW+u1ev6R2knHh1Zt43AUsYrPlKc53kwR/52w+e+q4w9vOBznTr5leLp7tJ5vvs3X7wefIDD/8D1T6Uj/SZwkE76beOmGus4A9j7Ox9gRKatu53jKIy6oWVnbwZgBX/Odxfv50dayOlufLpvAL8et3s6+HZfRwd5yiUkSoZT9yOLwLUd2gaP8lacpXTonLiuxlbi3Cr2uzJme+Vp4j5iIOXPeuKfOOYZYPlotbec69mubvz+/JdGs8h7h/cVPs8Cs12XxtXWVbo3yM2XaU/bDLu2RNC2Vjmv+iMMYYp4g2vjPfW3lvA+BLwEQR5d4oPnrdeqO3be68hDZueCi+0KzbmefXBiA3yu4ql8NN1Xn0Q3s8K4X5nEvAW+T1h6NsdLl5We94YO3K9v7MQdjZ7e1uTa53Oe42WwO3bVpWq+aEB9cUlEN/8UEAt42vZGc7560j8pfvsPeHau/ekDT6ThVWaNH8XxEpxan3KlXIiDS3PUEc+JT0rDkR/RQyGELh452bGL0kIeDRw0qIwZM7b07ts/TwRGj1rr7+/W339IokFyNpb2ZIJGB1Eq+/ftK9u2bCk7urrKrp07y3kSD+nEcdUdrdOh5ihjZFArTWjkRurwOv/CahSlrVk+zyi0nRcVy+CrLx0aldCkhjudhpcA9dhtEFW0nNPhVEeisBjoxBEr4NwjTjHm1BsF1WmBa4yljoHrV7vWUcHp1FFrqkIVugTv7ou1VuHzjMkQO4h2DPv3R7C49wvaYwBjoxVsBdfzwc3fHcG0wkYXgKY0mtkmMTp77mw5e/Yc6yN7l/79+nM/cAhCNegKdjq3whf5IOuhQ+MOzG8evG4JbXQYfB84cGAMwOnTp8tpEkrSPx0EeNJtEPMUEoHRUWk1fnFUnM+9BCzeaxE/16adRVZs02CUTxq5Bstrnqsc7PC181wCUfHnuqWnkc4ztNU63bQliSi+96MTNgj4yt6pU6cTKKVTD4wGR1jSMwGlsPkIW+PJIUj4jB/x02CcR/bsGLrTrLy1bc3gx2HxW5nSoPuM13vSqn2PXlCJ7Re+8iJPfcbfgwYOKn1og7TyozG2Yya+otboLJxw1wOl0qPSyQZYn0XcpY3Fc61e4aSzzvM+1T4xqh2ZEKZTWD0auKW9wLqCYKL/gP7g/FU5fuJ4+CjPfTtNv359gdUrgZb8i3OkjtgCce58V/6VfWmWHd6RYztyOh7pYJE2Z06fSf2u2fWa619te0tqeV+cZ5xIlePwkrpTmbhzv//E12P/AQNiV6TvqZMnfQiZrRt4Xc0xcqZc88+2hA60P+jzJ7T1d2TfemqRPt7bnOfJUyexW+fhZ5/QxjrE1fucwhtbxPfYsSYv2pLU2WCKt8krN0q6GFlQf6zn5MlT4W/We0ozUQEvn/+2Ynssud65pW0UKH+lez7olYHy6TOnkb+rygDoJR8jM8pND9r0rE/42gP1KDyBn8qYdE+9tC3yBw/lrUlr4ctbS9ON/Oj8abi2Y5X7etHvJvWso9kcryhr2aiQo+dtkziLV3gE0vU8+CkTXJMcwtMXxA74u3NOee/HTuvaYQMkP/Kk8drzJpWjO8AQVuw6x5DZ5nM+H8/BO2XdmYPngNWrA9/zF/AXyoY4Ket9e/cJzuewEcKSVtIigaOwuuVe+1g7l9WWgYeyRD2ucbW9BnjKvPLbm6V8NRjkPnCLZIgjpR78zvNpQE5fdo9n0g5uELbfz8HTL/j420/jZ/ex84ybS9thVIf1Xw1OraC2yXMpHP0uDH2IdiNJIp6vNq5eq0hX/IWTp33WOusvvtFOrtla7/yKXo/2TZmUn2fwddLdmEOZ8VnlJfaTB63X89YbWeEZaW6pbcDm8pCwU39Hl/3tTuUm7rUNAwcM5Dqy+0VNzOdegfyVxTorPsQGyIfwlVMTkeJtYjVyaaOpxNjD4Nl2NJsibqGIOgA8fY06aWlt14f4EYZxh/Ym+tXR69z8F/5Jfdo6+EeF0K/ubaB/1dcNgjbS13jvS0c9pWZFPzYosgYi6qmyYPuUc/1IYjxujtwDw3uUGeXeY2ID/KvyfgE5VfdBIaXSga/f/F0xqOc7N7k+XRoap6qvTT4GETcZG8iHUwzGaQsTD4OLR3FX57T7seUdPZHuypGxonQ1vjP2lX/iraxJk+a7W7uDuPh26JPf/Ok04T+cD/rUZWIT1IK/otESJCpHns2xxvIhP3RUFrxefXb1Y+IljtpDYbsnjgMQJvJt46nTp9KeZg+UK+U+tkt5awj/Fce8qQPaGAtLY/lgTCZPYnM7Oqd8+7HERqbxNTZVZ4w9xVv+VzvCffxI/AFM4eu7xT3nlFcwlg6hRSD/5X+sXjyEJ69PEVsrA/3RV22xdYeI/JGu2iH9ib7TS9Ku6XrkGtxtnzKf87GH1TbJE2N3+1DG8uqafSfhNb/0TcyrRbSFl3MleHVu9ru4qKvuhSTeNRZGH8GzmzbcIxxh2pa0yzbAN2Mg6a6OCC97ywT3alPV5zZ4JV+lffwabQ1NABYcL0ezYpiqOoyW3vzzfwpxV/w0dD2ND9THDug/AH/a9nEyHgVneGMSymL71I20q2PnbU/zr/JBmMq8PPC3CTfl6Srw9jhvwcKyePHiMmjIcCA23BpSqeY79+cfkmiw1ZIjxGydAQjWSLNj65ay7KOPyuqVK8umdWvLVRB2+PBh2buhddB5OEKtYOc57qlCWqFE9lQmhUYBAL7M0jjt3rO77Nm1s/RDQUaOHlPGjh2bQPfcGRX/XEZ4xCadd42VsDtIR3BRZE6hxDUIUBEVBkdKT589U7Z3dZXjx46VkWPHlGHDh5cBBO0qf4RLxQWvKyCAQtdTUKVJDECw7uiOFXNfVfQry9EjR8pmaNIPZ3nNtGngjZKLDDBjFIDovSAfxRSKOKtAKlOyluDi+TYKYuM0pta9B9ps+viDMmHugnLN1Gmlr5066GcHWIeX9tNWtavhCqgoW2uLKLcCSO6jXmikQ9u5fXs5dGBfmbvo+jJ6zBiCCxw0RkHj1EbbfMZ6LKmD5yuu1RmKjwY1z4CLbRO/Y9B80+qV+X3tzbeW4SOGc75uhCMOyoy4ylvx8Yc89GgQQaXdbeK24CBfNXqnTp4ohw8eLPt37Sjjpk4vM2bNTkB+BmOrkdDJi7G4WPzesw1xHOBMxbloG5UJ+SGMI4cOlX27d5Uju7eV2bfcVabCW58/i0xKA79XknRwpD1VrjXALfFAcIKRbfzQiHrPYWDvBfYJZKdP/4Flxty5ZdSoUTHErZOdESZwDvadP5X2VU5sT5IRkQWD169wvn1jsA/s218O7dsbPAYPHVbGTZwQuZSvOnzb6XIoHqodDo4NtvqZhkkbGogZDRzXFw5AP+2Ibly/ruzfua0MHTm2jJ04EX0dF10+T+DrVHnlwHqyZAHK62zEN8GGdKNuO7lyOv0x6tAW9KGDdQierl72SfkKHk+A5tqDIUOGBKayGYLwbPRHW9OROytIG4CZInP4r03zfN/+vJ4Lx71nz56yadWKJKbGjhtfBgM7CUIe0uHVZ7UFymNNmEWekIvqtGon1WuRgU792ho70ps3rC87P/2ozLpzSRG+AZj1aheFI5/SMee7jWkyI62jrwFcYYu3nTJ1w9eLnYH269esLedIZsycP78MHjy46qFNzfM+XEsVGdtef3s9TOCo3XGE6wrwEj+LmzYePHCgbFz+SRk5fnKZOWdO6d+3X3gvHgJquMrHBNoAlCYW76l216RN7fyKd2jGNTst+/Z+XnbjS66ZPqtMnDQpOmq9Pps6AqnTFvG1eLD6+qf7PttjEG6xs6h9P7h/X/CaMmNGGTFiZGgeexNaG7jVwFT8ldNWqD71iD+MT/CgHeg/cEC+Hzx0sBxAn44dOVwGDB5SpkybHvmxTUl+YWPiQ8DJf7E8AvXTsT/yV1pY6wU7zuDej2SOSYC9yORhaO9eKGPHTyiTJk7KLIZz6QSTOIFP4Z9UAF7kSHpQl3Txmx+LSYZ0pPswW4LnjoDzjq5tSQYMRF5GjhxZhg4ZGtqHDi7a3nUAAEAASURBVMpjw7VCEFUh8QE2gC/xpv5W51ridc/uPaVr4/r4vxGjR+NfR2AnBkTXL4S3yjk2ILSHth37H/tMReqc9Usb5SWt4miiTv+0o6urHEBuRo8fH9/dj06vHQ9p4EcExVFs6wcOhA+csIg//2IHuEG7Y5LHNyocx4dsWrumXERvp86cXYYOHZpA08cu+Dozno1PUC4o3bSHZtZphVWvqBOaeMK6lB1laT/yuPqjd8rYKbPKzNn4J+o05mgj0D4hmD9bWl3Atz59inTbuWN72bZ8WZl1821l0uTJuaY+ZfYYtAkdwCOxCvbMQLsm6dRlca/66X3au8BFvoy5Thw/XnZu3ZxBpfk33hS50X+YjKwN/7NYp53SO/yBv8q8SU6TU0ePHinbN23E/g4r8xZeWwbSAXDW7EXgG/tUalpTbbO1NTvhsdqaKi8m7/SFvZGZM+B+GH3d9/nn5eDuHWXagkXEBrPK1XYksZtfd5JcDXvxayW8EN92gqP8FAt9t7JwHLrsRx6PHNifpMXM+QvL+AkTgvepEzWBrRxLX5+TrpGNAK26G33jBu/xtPc70OD3/fv3l8+JhS8yBXsgejp+0uT4PxMnxnuWHijX7zx42bnUlVtDs17g3Qf/Z4Jz584d5SADhwMHDY6N1B6YZLsIbJM8NcbWDIp7pX3aA44W/Zedq3SwxJh73LujD3Hp8RMnygZi4ZPHjqKvE8oIYhp1St1Xx1qSR/nvSfeK6bf8TTt4pSC0UV/37d1bVr//Thk0clSZNG1GGYQ9007Y+jqwV21BfKwy4hXoL9/UATuz6od097z3+axJOqvasb2rbF2xvEycPaeMg6d98X/qROK5xKW5nT9/WVFOw1t89znsyfo1q8vhPTvLgptvjz6pw+IQGQcB/aZxgnZGnYzN1JbwXVunL2swlf/4qw7jjxw9WtZ9+knpB73nL7ou/aeaaKB/IyXAJaVz8LuyXR+XIPnP2crzzoXYGWN5B5u7Vn5Wrrn2+jJj5ixoemXiVWkjvkITz1aiq/xI/4Y2+Nv2NZttTChtTI4cB/dD6JODEFPQVWcDiK/+NXD4HtjAv1RDxb/V3Y299/CxXu3CaeL1o8ePoVO7Igfzr11URtAHtC4Tj0kKgmf14/SLfJZP6NWBZaXqrLbLpKD+oy/JxS+Qp4PE8scYePNaH86p6088/Ux58MEHy4jR44DcCN4T80al787xH5ZosMl2+mWuI/y+LaBxdcu6deXtN99AUdYk2BpPImD8uLG5r1cUw06FAlcdv4yOSEBbjwo0fKBU0Y4BQ8g03hq/jZs3l7UYKA3HRIKsa66ZXIZhZBPIYRiyRwQwDYzSGbBOAPoRfgwh11MFdTbDaGf1KELw2coVZc/uXWX69BllwkQMIMbVrGJgGOjQZixnFTDR7MhEExFqi7wkSPE6uNsR1Hjt3X+gfPTxx0m6zCU4HzliRIIwBbglGiK4PFbpU6mQqbHQ+yqya9LBugwE0oG3XQa84LSNRMCny5aV6QTPs2fOxOkMJuPXJ7B1/Jam4LYn0DlADq90X/NnrnboJu46/NV0Gjdu3FBuueXWMm3KNShjnc6bWRg8oXNTLr5ZhKehy7TGjtGO0lOx7TagOowBWUFySqd06803l3EkMmpApmIb7HfkJTyEfxgsnYF41050lZ3YMbEHtrw1M3oCp/Y5wf/mTZvL+IkTy7ULFjBrYmACqRgLAguFrtG8O2nSqSO8gQbZRZvGSDuDXR2QwcQ+DGucMh3fG6HNvNmzQkBHrO04OgIhuXVwHi3WIe7KrR9x1SB7ziuOMlqPwcSOHTtIZhwmOOpX5i+Yjz6Nj7FzFCx3K88BXJ1V6/iqQZ73nkYjO7i2px+wEpwTTOzo2h4ejILmM5CdoUOHJFuvoVfe3OC10l8e2P4a8McZAN8myV9lvnUEfM5gYi324HMSYEOHDSuTCIQmTpwQfbpw3pk8Ok7ggY88Vg9MIMiTOFGupUBrCJlp5CaOhD0AQ/05dP/ggw/KF3SyppJYG08HQ51yV18dLWAi035P0NChsbQGYalT6cNvz6XTCy46HkeFtnZ1lZWfLS/asKnXXFOG0YaBzNSQR8Fd5KWuFVFaR1V9UdbVz9A/eMBfzleZZrYBgfJKbORWAujrb7ihTJ4wMe2ST7UovxVuHQ24JDudG9K+OgpZHbE4ZbQbhhw6fLh8jC2Q1+rTKOhim3ri2+DIVMWnyoq32KZ6NLySpwZRyqRO1s76bjq8y5cvLxPGTyyLFi5gpLF2tNGK0EP9kJ92IJU5aVRlsAah0sGP9Ur3yhNGvdVXOnVd23eUrVu2lBtuWFxmI5OO3qsn4uinFaDYpP9Q2j0tcBS+duYoSYZ9e/fBWzrU/L75ppvLZGRSiNJKGjY6JMj1N3ys5BDnGrTJY7IE2CAoxEUDXANEk1M70Cn1dhRB0LXXXkuwMiy2MQGKuPMRbynhMejnPCda26gHophFZuNKdqmH9sewNZs3bSo70VcTabNmzS5z+AygQ/0Fdauj6o20tr3ibZtCCyppuHs9/qnTFhMOULXsJ4GxCf96FNkxWTUTuk/CXvaG9tJOOeipl03uxb9xpNHdo7S0DEBntJVbtm0ryz9dFtszabK+ewodmBG5T956f54JLaRTSAwJDKDVL/iDrKQdnBAfZciEgm+JWklwvnXzptBlArbAGMG3ISRBIR+FS+nuvAND3P2kdBrBnaFPpvADX1oe7OiTnaBFdHbHjB6VetMx0tYAoCX8tQOWyDSwQrdO3TYkvOG3M7W0Nf7ehdy89/77ZQKdlmtJDNqZ7satg1eA/oV/5E3axVHfvwG+rkRfb7rllqpPyFQdAFDkqnxbjd978rjRTHnXHlUdqTPuRMUg/AiJgHUbNmSG4K233lomjhtXO2rw668taSr0cJbQBWTXzoVyuWrVKuzv8HLbzbeU4fgnB5bEM8kdZAvEw2fx87s0jY2BCq2jamzhUiT9eD86044a7yHJsGv3rujr7Lnzyvy5c0o/fJDtMs6DfN2lsaHB80LOde6h2ghTHeG+shyiY+HAlZ1eab1g4cL4EXlzAT8mjtLVdoSu2hIg1uc7s7oYGRas93neWQEmTbVdXcQFm4jHTPaMIMk+mwTVqFEjo6vOflAAutEHSPd30Qzil5+LHKDr/dBXR3VXr11XNgPfBMAUdHXq1KllMDM+nJXkxzaEB8Q42md5YSXRN2TbH/JAGde+hDe0WT9wAH36DHk8TqJh8pQpZSJyP4pY277ExQ7cnvgC7C8qdVbHFWX7rl3low8/LMORGe3YcHx3P2IG26h+1phcHaixR9PL6E13xVVXPddsk/B9fi3yvhz/Oo9YcvrUKRn9TswmL/n8TYV65O8pBgmWLV9Bh31vue3W24g/xkA7YCrX3CM+fo9gUFHFuep701fr104qY7bN8/p/cVOfPqQfYjL5lptuKsPQpwzacY9JcOH2hPPNtlh9eNt9rATTJzm4tgPar161siy87vrEBs5QO4M8SUPh1sekrW0BPypUP0JjrjcZV7bsrEeuuMvBSGPtXcA3frqWRMAU+n/Gu7UvIF5i5p8OnfyeJiGBwO5Zf6Ob/Zjz6NM+6LITO7wXfTVevZGZBmNHje5ONLisyvgGIMg4tOz4rGobpTXXoLdw9R143hy1NyeYvWM8uaVrG/xlWwFodWTPhvI//2//Wp56+qkyZvxkEK0602mBmH8ny9+daOjZ6gs4EYMPHa2BfaImDMQaHMJrr7xcNtMpNUCRWbNmTM9ls0JIU/3ALBkWoeBvE17PcSUC4RcVxWDa0Xkz0MuWf1befeftMnzkCAKKOWXOnNllNNlQO7kGcplCJJMNSlDOZCKBU+u5JITW4UmFwjrMshpMvPL662UjiYwbccgzZs4oYxiBHWgQjYMywx3nY7DTDTFyLMYVb+FarBDYwlcQVRYdw/PPP58A/Lbbbotx1YgboJj9b0og7Pp4PapsKlLgILSWnsGL+GvEV61dW/743O/LdYtvLDdBdztdBowaRoN9SwyPuFYiB+fQpoNr++4NLbA0CXOG2R7vffhR+fC9d8vDjz9eFsydm5HlqmTVkBnQWFflmQakFutqdPAYp4ocNLx9xsD89TffTELj0YcfjkPWQYmHcE1OJSkAZVRoDZPBqUXD5L3BN21LhaGXSzuOwNdtKPkyjOs0sqB33XFHMpXSO4YbmBo55UeK2ybpkADA83bQpI/4cPSiSQGN5GFg72C0aMP6DWU3HYz7H3ms3HzjYuB9ybUjBAcskyEQFjfbWeUNWDGwdfq/nQQTEjoxr1u3QYVOYSdGdeP69cDeVXrDy9tuv6PMmDYtsuLIRStV1muHUHlqRTYLT1r7XTmwXQNJtNhpN2m3hgSPgcPkqdPo2N1QRhNEn2ZJgtlpp2abaIjAyEg+MdjAEr/oBRU4Ito6LNal0z14+FD58KOPS9eWzck8z5zNaN2MmSz/GEh9NUgBTGYzqL9Xqed02EwW2klqiQzp3ovgROMsXk7VH8rsgujTc8+VcyxvWEDwPw26jCPIlXaOukQjQbkFCQY96bQAP3LYcbzKjh3p4EL7vCadTAS8/eqr2IGZZeH8eXQuxmRmgNd1NNzo/9wvaZRHZVtd1y5Kb2kt732mBpCVlnZ4337vvbLik0/KfQ89VOZQh51Vn/UZS6b78lzTl5zkj/wUtjhIa+EmmOM5Zcz79+AsX3z55fBKfZqQ4N8RC57vtD+85Hc9dmyC121U52inyw6RI4yOZtnGkySQNpEEePWll8scOkVL7rqLZK/BStUfnxUv4YiLz6hnBphiL1+kV47eTPGabXC664GDB8pqaL/y00/LAw8/Wm68/voEoM1GNvkDQIjRwTZwLv3xYsVDXKSr+DmqYOJuBQkkZ7A9+tjjdNZnBk+Dc3HqIFdpJRiR7RTbpJyrr95gZ8hn9E8G51u3bi3r0dcdXdvKZALce+6+J4Gi8pRRe3kLPAOWZnsS9KcO67Yi5Qo6aeeUWWyIsiHuKwlAN65dk+Dn+htvjp0fwqw7p/GaTNOGaR/zCq0O/dWjJEuggx04S9rJdW6G7ibZvi47d+8qK1asYAbV7iwfWnzjjWUunReDf21wk+UOkt14hv78qWQCss3gj/S2mPDWh68gNnj1xRfjT2fRoZs7z6TpWO77stol8eQ5cZUOepDIjbYFXLVH+sLIFnhrf/yuLTtJp/GNt94qn7z3brkVeZyFnXGQwCTHZYmGIBe0Kn/ztdrcetaq+Ud7vrJh2Gllczf69Mc//rGco56lS5aSgGHmF8kA4w0DbCEoYxZ5AMLx8/6WtuEBbUrHC5xtp/hrd5R7B1B+/etfZwTw7jtuL8MZPLFt7sHhvX9tEXWfkn4OEiyjU/f6Sy+Wh594siy+7rr4GnUz9Aa+91vab/HvnEhbbJs8UA5sn3bae5w5tY9ZcR/QqdMXPv7EE2Umdljef9ugQwX6p/+mpdaNTDqF+iS23Y7LW2+8wSDBpPIYtmwMo9QuaTMmSMcSOolt9eG1TVVGamxnbfJAfFxG6Yw4Z9wdY/RyC/q6gc70DgZpbr79dhIZN5eBJq7gMwDD10acxoWWaGi/hZ9zngAR9UUb+/mez7EF68r2bdsA9XW5/c67ksgwAas90Bf5MVbIwBj32A7bpE7qnzOYAD2MSfSp8kF5tOO2YePGsoJ42KTIOGhz3fXXJaZUn1psJG7CbCXfwbOda7+9rtw7o6E/tHEGz3sffFg+++jDMgbfMQ9dnTdvHkmeoUny6L/VRynvci3bETmFzpLB71U/wZ32+Fv62y5nk+ifXn3tNWYlHijzScBMnz49AwUmeS6YXOnQouH9lx5DO+zf+o2bygvEBuNION6A/xjLIIrr4cVDGTYxIj3VAfsxVS+rbbSu2Hno7tGibPmsPtAkz4f47Zeff67c/b3vZ+BqIDOznEpv6+X131SoSpyOklB+GdooN0899VQG9TLYRv12qtVpcRGzzILhi7/5n9JB2UYEf0+3GEh/vgv7/vwf/kAfamR56MEH0KeRaRNKIiAF4U+WUKPzpx5qHdJJOXSprEnHN4k97n34kXIPsbY0M2GoPLQijsEdXbCInzbDWFvb4sff8qrZHu3LTuLgDcwENYm39HvfQ5/mpo3diTXbLMAc840flTaVRtDN0/yJ/4We0vws+riNuGAdOtW1rSsyfx/wr2E25WlikvMkUEw0GJvaO9AXGo+It/quvTEel3TK+5XoKCczo8FlEkfg6RpswSriGmc1HCHB9vmGT8v/9L//n+UHP/xBGTluUvDkD6XhXX991/7+QxMNX7KrtQ5HwktkBfQCnTozWW+88gqjLtvIUI4o31u6NJ1SLGmMtxkzRctjFWgVpiMcIXATCgMy7gO2RrYfTt3A8N0PPyivv/ZqGUnm1kBlIUZqHCNHdpQMtExuZIYAxjYjPNQj2xQqhUsB6alHGgZ3mbfzsv/QwfL7F14o69auxincWeZkWtT4XBM+WlCDH/GS+7ZBmP7jq8d6wbpsZFXCOAfqMDj/xS9/GZrdc889ZeoURnSYmmP7XGOr0OYx/hosGmRoAA2UNIg0gvMYQ26iptwrGj7v9U8++6z8+he/KDcxqnAnTtMEjGsyVVhHfDQG0sai0uXIH+v0j53f1G+buN6Mk47tFB281wnk3n3nrfLkD35YrmekLh2c8F+6dtbIgoftFadapE3FttVt0kRjbGfdo4Z+D1MMX/jji9lE9Jlnflhm4XjaO90NoiNr4CcM8RQ3jZDFKd0GawYT+ScbpB/nXAd4gEzlxk2bywd07GbhLO+79146jaMDoxltg5bWIWpBejNMrcMbioUHNfhU7g8cOJjOxZrVqzN68fgPflDugvYGDtZrEkTZSjvhg/XpbDWywnM0wmDCrGrWV3NdJjiyL0+3dXVlNEen44yGpfd+r8xjNozttHNu8bv3ygMD10u0F5QcpXAQB5MaliFM6zYAdVThs08+Dh4mYW6/7XaC/3FkjE8mGaAR1SlfIQ9FuNMZULZ1HPLS0xpWeeD3BBM4l71kn998++0sEXDK6Lz5C8o8HMMQMunqk3Itdk7D9LfBSn86bC1okcfWYaLBUV1nNDkK5R4b6s1mgsRfIO9n6fg68j0L/DMCi2FXNmrypTq3GjgoO1UnrTgJPHkCzcw61+SPjohlLwQ7n3z6WXn5Dy9gB2aXG5hi6Cipme7gjD0LbRs86GOdwszoDvA0Ck2HaGZ3IsHnD7MU5iWSGJ9gz54gmFiILUuSBVqHlzwbB9vRf+GIF39Sv7KpXvvbZFajmee8dyfBxLO//31074dPPx2H2e5PEC4smcWfJufKkaW1S9jKvksnpI9JSztVTpVes259eR7417KM6uH77ws/Etx2YHagdLffOpVLL4cmwG36mjYgL7bX2UeOKCzDlrkE74mnni53kZTV1igj3bh21xOUASFV/2OBTILP844KHSSwVac+BvYJAogf/eifoP286L7rSrsLz2kpEwxxVLcqwQCmbQFXGWHHxSuOljkSZfC/evWq7FM0bdbs8sAD95dJyL4zNdTXJJGEDVJaW7H2EyAgm+/+5fqXZCAuKgfYN5cf7GfG1DIC3HWrVmMnTzM6fVu5E9qYdHOEV/gG/8pCbDMwpLH0VqYSTNMxls/p+HK9nqt82bYdupCM3UPHzqDcZLizv7RLdoyE0+gvwk2XqrzUNghbmpvg1x9LG0cTtQ0fMQL4wrPPZl2wI4HO9nAk0w6IQar3pnToUJco1iSR9FK+kmjAflq3U1CVq0GDBzEL5mR5/qWXyruvv1aWYCPnw9Mxnc5F7cRV3EVO/PTa/hd3QEnxygMP/BAX6W/8oX/ZsWt3+dVvflPOnjzFVNcHytTJ18Sum1C0Q4hI0EF0LTXyrV3ji7hZqryHMpyviR3pqG1r9noVM7/+7d/+jYGTOeV+AtyRw0fUoBYYVfYC6q/6Yx3qnHL9Lp3GF+kYPfXMj8odDKLYIZOeDTfb/6d0yPOxRRz1GdqR7EnCbxODzgp4nUTAAeTzJz/9aZmPvRR27MFfg3HoDmcqMuUMdWkPupjB8xJJkslTppYf//CHme14/OixxA11Pw/8A7hIpzZrMCCgXXjAD/Wg7hfAPkp0dAciM86iNCm4eg0zYYjN7iJWXXr33WXwgIFZmgGwKhedNigTnsiRr9+WcPAWaasg7GSPstXo6jYS7dZ/L53S65B5cTXeM5aRP+EB+mmR1uqvRzsu0rrFwNoc2yMvjIVXM7D06bJPojsTWA5zI8tWruGormsHehbpYUlS06M/Iv9+qUUTpy/sT+LuyLHjxHtvlk+YMTgBHV2wYGG5llhbv+uo9aXZDOyBQKzS9FP7ljiA9lZ/46AMiQYqVs9tgzMmTB49R6ztErZFJAKcjTGJTl1/lnR+ga38Ju0bjn/uqN3Tpq1cvab8ithg4sSJxVk2+u4hjNwrI9oyeeS90ko5la5VVmRwtW3yMPaCSlu/YQAzYUwYv/HOO+U57MH9DBLcyOCMex0IU9mIjf9ziH7zehiCL8fWHGSG0LPPPc/srM3lZz/758xAujzRYB0VR3H2UWUo/BTniraYVHxoT/wANlm5coDmlyQ1R44ZXX5A7DGOARRpUn0TcMWtCbnfW+HZXPvG7+DANWc6HiGuMaH84gvPl4fx3Q99//ssq+ybGQhJNICLRTzac/6OfsIH+WHS3qUoxhpu2G58o908RP9sOwnB1cTaDkw+9OijxGWLfDz+VZjt4zm/t9L8lkcJVOvnCP2c9X0amdtEPOng0uZNm7Ms8fFHHynTp0zNwIoJZgfCHHRzOwDlIkvDoKnLkK3JwViXYJjI1Gfbr7wC3K/G3hzGXi0nLljB5xhJPJdoHDq4vzz5438ujzNwO3T0eCA0ol/Cu+H/XTrSt+9w+e/AGrpCYwRYq8QxnUcJL20wnmsg5NskAnYjEEk03LuUQG4uxuN81mO5T4PLLWqioQp1I6vHYMgfBc+iMDp61JtAy2DknQ/eJ9HwCmu6RqbjsojpM06zd/2qxi9BPgJhcKHiqBoKVe2gEnhxzo/QbYcBV4yfjocsmYmGDYwY3e6oyGzWADFtWqdqh9BEQ28EzYyWiAbfYImidIQkWHfo0YRex2BnfePmLeW//ff/HmG9F6c2dcoU9q8YjpG+AvzP0JmuI44a7bSbdni0ZLo6NHd0kQZx3k91sOKvUf+IEcBf/vu/l5sJEO8mk+hUNDsvGnjxD0zuFffw0COwbUfD1aPwvUc6aRzE3w7eayQaPnjv3fL0M8+QaFgYeHZehSskcRBuNknBYclD5SS1UJGw/W47LRp679eg7Cb7r+Nxk52f/NOPMyoibhqeGEGekYcqu/XJX0c8xNWp9HZuxTW1WRe/lQWnWDndaj1ZVnF3TdqD999fRkObBMLiyMf38RqoywvX9Xq0NHqYaXWdlb+lt07F6XcmGrYQpDi102TAE9DmTmgP8bKO3UBCHqQOcPZ58RdfZdO22UHVmGqgUsDfZ6T/Fozfcjpd23A6fUi23f/gQ2UBQbTXfBZwKY5ieE6clAvrg4lcNyivjij85D7rHsyImTKx7LNPCSY+5PvZMmPO3HInCTZHMM5CNztHleboIEAMUqoTBW54bmcdnnNNmmRGA/UarPRBZ6T7a2+8nvWGExhxWUiQtZAOhomGc2dqYk248kFcTKy5IZd1GqwHX+T9a3671s03T4iTU6IHoDc7oPt///f/Vs4RjN7A6GuCFepxAx+Df5NTyo88ED9LpYuUqfLqiLTXMyuGeiSW8q5stY7RLEa8b7z+hiQx1FdLgiiOjZ+ekx+eVzYSdEAL5TQOluvKu0ks6XOMIPePJGQ/fPfd8hTJqUXQRTtj3Y6Y+Jx4hc7wVW6CGp8aENkOAyT54TPeJ738rXw5AvtbOnXi051oUH7553XvhxiBK6z2sR22qX0uQv9MN6aOmmi4kNHENXSMfg/8RdDlUdYYjoQuGbHvtFl71YIh69Km2QDraVM4g2+nPmeUObLgbInPwf0TbJlBrknNu7FntbPLiIFwg2/lofhabJf/W/GrNJP/4qGNsLXa+O0EWiYajtM5fYZEg51S19nrQ4RjoOrzaqiy6FFcg28YUQNyv9p5Uf4dVT9DAL6O0ZZVJNu30rmYRqL6wQcezOi3e5K0ERAaEJjSpP4DdYFx3pLawcGg5Rw8M2gxueaMhmV01tcTaLk/y80mlEkMDjBxx8a2gY/eiHO1T3oqE4IE08gBX2MbWvJIvG2rsi+PnNr5PtP39+7eTVA+tNyaRMP8Snv8d2gA/cVTVJuMeGxF3kh5/YK099KQocOsOEmS53/3O2YFDaojpMi8HYB0AIEvf8Q39lFkab+/k+gEkG1Ql/R9kXfq0pb1pf1nkJvnSFS/9cpLZQkduoXz57PvybjUlaVHykHwBj9xFP/QukPvznexT9UceAL4dTblDmjyi1/9qpymA+aaWpcODqRDKq5tI071W53tgMgxAT44hy60QXx9xnrki/dbx8o1a8v//f/8X6HLAwTno0g0yEc/ONLA+mv++IR1msx39PkddOkFaP+DH/+43IncmCDRzmgjTd6EFtbHeeuM75ZOFK/FFoF/s03OsPG8I5UmGl5hBHY/a6d//vN/STLZ/RPaQID3WYTWvufEN/6kNupAwqiQmAhb79JE5fJlEg1Tp80oP/nRj1gmMLqcZCmh8Z6JcDvmVZcqwCqDPYADUzm3ndp1R9QHGO/RKVq3bm1Zie92SdJS4oL7iMucqWLyOq/b5dmepeJY2+L5lmzI986N6p5yu4P9E9yrbAuwZeEDdEodXUcxsHMnoz+Z+RZ5RNagu/Zd/JMIDN+rDLbOe3iKvkqbNUk0LIvvNtHgDKRLiYY6m0iUulsADn7P7zSkxzXOi4Z+1v3PjjDj7o233yqfMqNhwoSJkcsF6JRJQ5OaDg4oJ87okQfipQ/XRiSuA15bbgVz+KUYExtC+76M/u/aZSL8dywP+JylgyyPI9EwedLE0o9O2wVtQXT/En6i292OQLtcnjrNiZ0Xr+XYyF8QCzvAcfttLOehDc4etiiXxgP6TW2UPjIxN7Ifm8Y9lQfVL0oYf3vNmTD65tdINPyeQcP7mWHj7GFnPZuMt9QYKV//4j/BH/hJNCCXvyGJr9z8y7/8vMxlnwPpqhApjtIh/S+OLU71uudjf/gSm9ftK7WstU3any4SYA54jqRv86MfPF3Gok9uFmu7hHFZMsrn+FgabTo/6oEntMcipi1w9vByZP5FZm4/SlLw4fvuK1fbfyKeTBwkLRssnrG+hpv2UDqrP9LSeNyBMeMCdUPf7WzElStXkWjYVx570tlZ14c2dvKDuzrkv/zIN+BX/gnbj8W2hOfYDvcNMalZEw1rmTGxgRh4fHmSBMC0KVPLKWyQ8bBJhquBbw0OvCXWop7oO3qrH1PGQRZGYMdEAn3qTWxzCH2SLitIaprUOHbyePZyeuQHPyqPPv5YGT7OGQ1aviAuit/Z8g9JNHx10dERR/ZlFH8jZNBE/3rx67KNjNC7b75eduEcXAe/5K47y9xZs8OoI2Sk7Khn5FaG8IElIa1UlcQ5jUJVgaiBnll/R4xO0xl6jwDxTeC7WaAzGhaR0XJ0+jQjDSYizHDbGTWzLd8UpjhPjQjwEyyhlMLXmCv8Gh07L4fIJL7A1E7Xpd1y+22Ziu0mNU790Yj2Aq++KgHtDqIiTYmiRJzr79oghBzaKNAaND+btm0tv/zVrzPrYgmZ8yms+9b4eY+Bo05f1agKYNvr6HR1QDXQMsvt/bZJmOLufQr5J0wH/s0vf5F9Au7EuOoUVFKNaYwrCpAOV9p+SfmEd9mn06ZGK52hiYY36BR9yuj3UxgQ15E2uA2/GDtgJeCCZ62z2KFKaG5HIfIDLnamLecZcdnFRmF/gPYGAj8mmJg+ZUqCGp2ADkvDKt11IrbduuzYgXjg2Mn13ig6vGib1zni8jmBkImGjwiiF7Em7UGMnx0jA8QYN2BLewN1aZ/OIPU0Ouvk7VC7Btv6NIK20XYfZBTH6dLOaHCDoEefZkYDAbrF6V3KWYw/v/3e6Ow5n28jP8KzMxSaQyOXW1hMNLjvxlamAvals/HQI4+UhXPpGIFvdogHH2EaRMVRdPCWN8qo9eQ69yvrfjcwcHNAg5WMHDPttSUa7iBJ4owGnYb6JD7qaGYuIZvWYVEnDfaFabAljSBe7nd2gw7ZNW9Oj1y7ckXdG4Mpu46KDGFzqTN0jISt8Zb28kKboq6ppyaj1M8EvODsFHJHMOXXIJ4fxCiuo1C/+uWvkmi4jlGF2bPYOHAia8oZWXT0Ox0TYMsvbY6wlBH54McOtL/ViZZosE3ywXZ9TGf3ud/8ukybypIScDeIc025zyaI5ig9TYRyiOzKT+lrnToi4YQXtKnZAdtoJ/fFV18rH7EMTIepPkkz71Ef7LQrH8pjdY3VPopfglPgKa/C9j5L+MtRvZL2z7qsBB4+yXTmyQRc3iu+3u8xcDu0sE3SR9onOaXtkubgb4InySPwll6+unjdho3MaPhd1mE+fN/90SeX0ajz3uNH/oqrNsj6tMnqvjwUbned1GMSQx1QX/cxWvEpM21MNDz65FPlLjpGfaCnyaMkXMGTL/6vBaTFm0o6J+pvr8sP2y1PvckEj/tLfApvTxDsP8lsj/ksvzPQMtmbRI6dQW6W9voSbXLFvSbzrNaAzbDAjpe2x9EyR3vXMUJak45bs1nVfd+/jyB3fOT7IrZb+mjLGnzrEOuaaOCLSHNCPn8B3mewOSYahH/4CPvYQJdN69ZnE9rF7C9xO7RxBNYEjQk7YQlTva+fug5ZeRXvqrMkHuBVfoN7luxA363Yr/eY9XUAezls5IhyEyOkTk2ttO8kGjp8A1R4Kl/9tCJPe36UNd+CYl3OuHuZKbvOwJjFyP2MmTMzpVn+RJ86MJUZY4tswqndRyeE432RUetEZoSp3XH2hft6/OHlV8o7r75cbme5iskj92zRzuW5zrMA4Ck+HiihPX8vtaBe0qZRW0alTADugia//u2z5SQbZn4fnk5lbbBvABIv9UG2qfcmqfXHlqb76oHFe9WjzEoEgezRwDnldjU8/a//9f9NTGNnd6SzQLj2ty6dqE2sbyZRB94lbnoRe/DED58pd9x8U2xes5Hxrx381EHprZ0Xf0vjsTSyLZLO4Fo+Z4NSEsqvsuTUUcaf/fznZT52WD8ufNv21xRhJwEGnZxVdpSRwG1dXeWN118rU9kY1o7RaJZOHMG+GZNdfZU7v6tN1a5VfVI2THZV2xubCb76E5ffaY+0tcZ765MYJNGwcWO5l0TAfUuWZOnESToG0kDIKRw6IlOP3/K73ZDEHe12Lbmjr1uBLSUffuzxcj1+5Evs2OHDhwLQJJq4S+O2HNPZCOqysu0AlZ156dhmOKivfl+LrXHphHRw6cQNi9nrh6Oxis83vMWrcSHHb/ntvdLM2YMmApzq/Q62YBU66/KD2bNmZ8agS3qsT99mrC3+xmT6a22o9llba3uMSeILwEf8jRncGG8A/YKdxHu/Y5nvvs/3FH33TGyBvrs/zzooCfO6ca4N+Qv+0i73ZFF+V5CE+RWDes5quoXlMBPxf85GVKdiJyGEOCrjyolyI729bpH34q+MWzzaztgT7n8T2jzPrIDvPfBAliK5qa1xo7crZ39TASdl8xA+6lkG3ZwJ888/+WmWVQZwEBGX6kM81yxX2oBNDA7cF7+Hn62cRxc6wmkbnU3ya2ZjjCLO+wGxxxgGbZ2N4KzeyOKfQD6yA52+eZR28tclBi5vWInMv87SiQeZLfHA0nuZjdevLp3oQU9pL0rKXPdR2ALvXFN2jCmkif7A2RLqlP7VpOZjxAaL6f9p308zc1nap89lK6CFdfjPOvS5zS+ledQjP7XFLdGwhX2h1rAE2llObiz+ODMmpk+ZUk6iC+c6iYb0/ahPKXHAXF8lurHVyB0oZJbjeXB3YNK41c1VDwPjM/BetX5tBhBOQu+9e3aWh5/5J5ZvPlZGM0MuD9POyrNg+Z388w9JNHxt/wWmxQArFFJWxboKAhFEdZEhfo+R7+0oiUbjHkZI5xHIuYnSqWPHuQ1lgDk+6KwGQSgMrUSxO0LhlXQsMVAmGs6QaNBhvvnGa2UYAf98RkSuI6M1jilAZoh1+O7WLPwEdOAT+EhCkiL8UBiDNOesS6PgFH1fx3eAIMLpzFs2bmCfg8Vl6rRpZRTr1Z0WlewVz17JxymdNcypWAvSTzpFflPA/SDICryGz48Zs1/SMepNe5awdMKOS9ujwQ6BdOWxCgzc4jSBURWidursPNmoCDaC7gi2xSlGn9Kh+wOZ0MVMjXSt4TCSGE5bsxjcX6Z4wG+Kl/NUnPpEwA/NSIcApdLROS34dabBL/v4o/LMT35SroP2GgIDRNsWA85vDZ73226NtXXYEfN6U3gdoTz3VYfSTAPlXgQvQ3uDjGcY4XVqqksKdGCSJIxT7riuMU3QYCBDsZMiziZb0oGhJgMhz/sKS9/GYQfgw/ffK4sInh9i5GIEo2y+FSGyDG5xLJ1AXeNh+63D73YaxdNp0rYr7YGH3uN6chMN6xjh3c0Ixv2PPsaIEVNTwdH1pXFW0MR7bYjtlrwZhaFecXY2ghtGGuTZcdERutzCurYA+7Nln2ZGQ38C9IdY92bwbxBnp0za26GQ7n4s0lne2LbagSZRIm9oj4GBU3wNnk0euXTiU3TK6YrTGVXI3iHjJySQcSRMhwXgylPwNii1ZNYH9YanOYO8AF/5dNPSwUMGsxTpUBIN69idedx4NuFMouFaAvQB6RjJU195Kd6O+NrZkgby2412lB1l08xw0hvQQ51y8zen17kU6ffP/o7pzCczW6IFK8LUQaWDAW2lj3Tyd9oDfOUxHQH0wkSD15v+Om3PdjlD6Peum54+vSxmJMoNsdz3RNgmacTfjmloATwTX8K3DcqfCRTrbPoVIaAtyuUJaP8ywfkH2MoHHno4iQY7YE7ja3CiV3E8YENd0SdwT5JHmmDfLJFXjvLYOmz/Xhzxr6GNAcTTTz1ZriGIU86q/NbkE7cGbrMDBjApwA7OtEmxVW5QPGhW5cik1IZNm8sf6TTOnjOXpUhLy+gRvLnBh8EzsgZPo1vYJ9vhRe1J5JR7UmC03/w4khOdOXUyHRbXlC8jAdadaICm0kWYwVf4whFXnhffbyudmnJd3fLNCrsJcldiK88gczr5eci9fBN+s7m2Q3ms1hUcW71WQlUGbMLOGmraaBBrItLNT1cg713o7RTg3k9ScxKBepZOuAEq8hDYALGudJGA981Eg5V8yfkL0N49GpSZtkfDJmyZa8gX33wL0+BvJfHGbAoS7foo7Yq4ygN9g/ZfmjtrTFop601PDT5NkgjbYG5L17byNjb+AMG/o8YmGlzqZKJBexN9ku7ADxnEX53sQfvIqfdwQ9M7dUE6ucHZWyQeRzBIMJOOiwm8Mfhu5UOYl+mLFXBOrgon/oPfkcVOfdZiwkf/fJz2v8L0fRN3i+i4zJ07h5kkk5LUUE+ku882PoqgYJQe62gfqxX3JBq8Dnw7Tm4S9js66seYwXY3vnsmNqFuXsf6Xny38I0x2kxD4WlPksDGxluZ7ZT+tkXcpafnpdlaYo7foa/TZ7KvBzHTKBLhV13JaL3XoacYiq9HMawc8Hc94/Gb51QP6zJx+R5LYl5BXx9hj4bbSDRoI6w3Ph5Z0Tao/8qLeCoz/rZNVikN87vDC3mujLmscT8+0CVyJhp+xCDBPBINJkqbre1GWyQtIpqT/ri8PbkEzibXtLFuXLdly9bsyzVlxszy9ONPsEHbqLzBS19k0lYcE++Br7DlgT5a+kanOzJubSZATIQr885o2ESc6swAB5fuIYH0vSX3lEH4FzsX7sklLOkYisuADt7SrudshsZH6zARoB4a06xiFHPT+nXQ6qvyGHb4OmaAfYUuOQhhXKev0A6kCNO6lFO+RDa5pq3RbssjddfXL+tnV69dUz7GRvrGmQkMWt18y80skZscuhuXdaCGJn6v1fDNSvydv5f+KK/ZowH4R1hH/jYDS6vwgeOIB5xxYCJ/BHbO+MRlyYFZQXXDFLbg42donz5Wmlv51fBU2vTu16dsZ63971jKs//z3dFXExmTiYf7wc8vsMsIYIV/Cb0e3zqYd9rRULB9oSf1mrh7jkS4/tp9p9xAe+gw3xRTkwFV7o0qKp3rTKM6E7TJvnDVH+VLfliMWfUjbzNo9SKx9t0s01p83aK87cMp9NqY6HXuvvRHjBue7ezl5+xRVHvmXnHOdtzNzIOnSYTPnj4jeNi+uuGvNFZGLuehOqmtFFd109/GrhJSnBIfw7cu9hJ7DltmouEJOtPOaKi+FZo3JAXud5HkT08bnzOeB77nm40w3s2bwPCBH5GIWUIS5l4GVAega5dvBslzyLMNiB6lTvgAnYWXGMH+CrRvPkS5P3jQGQ3b8d0rM1v28aeeTpJHONrgbpoEJ32T3rvSVRua+E67FtSlFbzFTrREw+ZtXZGbjSQGTTS4t9WMKVMzSK5M9tF287SxsoPOviTA5GDbD8y4Wnqdw9c6OJOlffju/syeOnL8RPmI2cOfrlxeTPGfoO/xOXx4/Kc/K48/+UQZMeEa6IH9AvcA4e93tfz9iYYIBM3vedQHEnjjFY10swnkBzidrRhuO/xLcJoLGb3QYV5AGGpyAQD8VwRCV7nTKVXwvG4lCAPCJzPNhCqs7zKV643XX02iwV18F9+wOMsbTsNIDa7rxcw0JbBAueKkEYoKTT5WAdR4W63CJxJ29PbZMXrj9TideQsXlKnTCISYXjSMTqkGjCeSjc5rj4IdaKYBKgywqKXVpCIl0cB1HbefjQSfv/zVL/P6pHvuYUYDnWkTDXb+4hiAoXJEKYK7RhD0NHYqTcOXc+JcFakaEacOLWdK0esYqOsZtb+VaXS+6s8gz+BGNJ3OWtcwVnyr8ayGNvhG0a2mKqfOWwMl/e2Uvkqn6MMP3i8//dnPs3RCg6BBcwRZQ20bElzQDungs9I7HS8CmODvMzoqCObIq8+75ns7Svfmm2/l/bJPkWWditNxhND7atYf8WIqlfTIpjuc97ondF6WZPzB2XPWmVkwKjRBotn/95nutgCn8zCJhuEmGmiTxcy8GJvUkJE1cKnZeA2dNJSAtik8NfigEjucjhxv69qW6VZ7GfVy+qVJniy3MTinfbaRBxJQhObUYSCiofOaAYT46hQMCu2wGDwro1u2bmPjus/KdmTHV1jZKXWPhnPwW8Nu5yz4iR1w+R9nJx90enZcYwyph0vd9UhT3wqxfMXKspx13xrPaTNnlVvpuLjPAQ8HN6euGWQqv5Z0WIBk59oOrjSpddYZAvLkqt5XlaHDh5aDdOpef5030CCXY8eOZ8PGRVk64cZJJ1ijJp98e4SIGbBW3kJrAJpo8Hf0QVpLP+RQWU6GG33YuGVL+QPBs68ic3aTb1sR97yCUqT4r4wKx49y52iRMDNKxDl1Vjr7yUgQdDIINYg00eCMhlm8zu4mRoucgTSCKc3SNp0LaGQgKv2lhZ0p63AZjPSVt8nI892g0uDQpQhmuI8jl6+y+emHb71dliy5t1wL/sIW9/PIubIoDOVPB1T3EGEGA+1JUOR5ZNJ61Qf12w2RtHvO3tjDKOMvGbUwQfgMM5AmQxeTXgnCkT31MiV0gofaBh2dxWvaL45V3ju2h7ptu53mTZu3lFdefqlMobO4lGDC/WBq8qwGCoINA6C8cLRp4q68aF9aG5RZgwg7OOqDa+3tsHzKSJ17NDxKMOGMBvXDzm46iuBqUKGMBsegbHv8pOL6l3qTaINGBlkm5lxHvmvXrrKGmXfS40GWIploED/5pe4HCr/TeeGoPIqzdNFOVtzrXgexQZwbSsdQ3XXd9GcEFCYapgL3AeyBiQY7TdmjgTpts7V0Jxo6mAfpSjjkkuqQ9yuQLY92eN10r85oWJeZKjeSaLgdfa1Lkc4EpvbADpjyaVE2rU/ZVsbVHX2esvgVUaX8Vd5NDm5mxt0bdNb3Yy9HsdP5TcyYMKmpPDvKqEzGf0h3YEsr5UketCLsBOo0xqVgVyGb8kpb8xkBokuFfE2e+6lMnTq1jMO/6gf08/oP68nz0N3AsyXZrUf6VBtHHfzwI/7a+RPYgLeA/Rkdal8P6b4q16Cv2nn9UOIBYNZEwyU5l69pi8cO7W2Lyc2vEftsxgndduzZXV7A1hyBB7ffcUc2yZxAB8ykp5tctySJcmSJXAJDmumXlB1Hp+WB7VIPknijTo/rN21mecBL5RqWZMhT3xLjoIk61WxYEM2fKuOp6E/8CU+4TZ3Wz32AjX+DUcb7SFTfRmzgUhzx8T7pE9+N/dA2qoegl2L9VmnnyvvUJzvxwnVGlbOMfKWro98HeKvWk/juuSw1a7HDn0Dv0mnp3KnMKmWBdt5krwNLe1hSuZE389ihnjxtennskYezplzf5836Wfkn/sYH4qhNVKb8btyiDdWfSnc7veqweuAeDfpuZzs6Tf02YrKld91VBrN04gzw69KJSoq6MWhDGyQ79LHy4M2X2g4HUEjcoXc76Ci66eyGNWtjN+0Y+Yahr8HhMLMptO/GLpCg2h9p3Oz+FdV/ZFAGvNV/i7bAZVou+XMq9nvE2qeZzXMNtFEup02ZEl/qrANLnurgKp3CzG7kqbeezBXUOrR3M0hnNLz17jtlBfrkq5fnYgdMOiahbFyI/cieMOCsbulP7XhZHDSzUdoVqeNGe/U3eq49g/5bmQLvUtn9e/dkjwbh619dOunGe+qRqHWjB27te9VYIXcaZqWdkjiFun0rhPo0jOTCtWwUPW7cWGLtYchFfW24NlL5VSaUF2VEvPQB2kb1IvYSfIWpDZM33mc/xKVIr734R5ZY381sR16DiL665EZdNgZIaQg35NpRtL9xLXqofUKmD9APcWP0/SwhfJgZrO5XJg7aW2U69lFFof3NfklfQYYiXNMO+4wDMrbR9qpP+gWXIr3I7OFR2N5HmMXT860WPAiQQKnAOngKwwrEL7bFtlgn5xIj8MVZdfuxAS4f9G1d6tPd7FdmjOdAqDyVZ9VvaGOqrxCUpfFVGmqnXWYT/YAv6rczHbdt481FDBK4LPexzsa28s/rgR+5gXfYMfH0n3VKM21W7L84c635ces5A372z1auJum4eXMZzb5/jxAbzJg6lcQXiWRsiwl3l0z4al1l3k3NlQcHuI0v6h49LIfG3kt/ddXXWPoa0RMk7t5jkPaDT9gPjWePnz7JazR3lKf/y/9QniQBOXTMBCjQoTs4f5cLfpTW/z3Fp9tHf9rAmQa7CsG58GXe2PAur7fcTidgABm+pSYaWKvaC+E5x/IAnTlyU5/16A+llRIxRMAizLmEEdDx4ex0HL5B4N2PPyxvAt/spBtKmWgYj1C4C7FrxxQGjZ5OQqGK4oB0RK5TTxMym2LmXWtsltiOkTMaNqIoi264HqfPZo0ERXbY++KYDIYUOKxJFQXa0sjhCRXOtijQKovf0zEi+LOztwklcWdp7ip3QRdHdAy6TMK4dEL00mkHWDNsCrRK7iimdElHg+8aEetoHXsDATcaeQUDsoDpRDcTTGj8DIQMHHzWjwoQYwVciwqZ4Bo+xIBIso6idysriBkovs5o0UdsXufSiRtYb2/nwOL9JjE01Bbhq/QWYeh0HQ21Lc1QWpcBrIbd2Sg6ZTeU0hG1RINBgXCakW1TaX22tUO6Z5o6dRnQyQ/vl+7SzBFdRwLdpO1NRpDnM6r+KMbVpRNuaiT8tFu5E2fo42//ZXST792Fa1xMO00w2UFy5HgLBspg6AAB11JGMG8hQL+aupVJaZsOI0fVRBl1RNjXS+qYDCR02OqBtHLjPddm+/ot27IVmXEn+C70aeAgZzQ8XNeU47ydCSKuPife/hNvjzGsPK8hFLby4XkNtwZR4yxPXe+2gg71OWZ+zJg1J3I5YQKJBvTCNbBOX/UVfnZ41PHoJg25WiEGT5215aqr6xp4g4pe5CQGDmGGENND3377nbJlLWveRo4jWGEzyDlsBjl0cDl/0WmW6kg1BV8T8SSpKL7Q4Es67b4O1/ZdSdDViw9/wnd38fWzcctmgpXn0Z1TvF99YZ1+yYZSjooYFIQ24Cbd/UijfDo2BnIk0PI+aWTQpdS6WZg8+JAlK8+SGFxIoHKzdoYRAG2BRbn1Y0Cd6dLoWOtsXAksO0jWJTfcPMgqst+BNfRlF2IczWvQ5tMPPyr33rW0XDvHHb2Hs3FSf3QEp8ht1fZhA6nvK+o6h9wYBF3Zx30eakfXeuxcAj4BjjJsByWJhmd/S+b8VEZFruF1grbN4j12dJUNZ2c1uc81AYG/tlg7lkCMumLbuNckg3K9YfOm8gaj0zOx7SYaRvAaMe8Xl2artE3RI2ijPKr7wkm9nJP50lAnrX03meCabF8R6dIJpwU/zLIPlwfYJhMN2hCTLqEN8iAPpbNyGd5KaD6e1tAmsKUu5d9Ox8HDBzOjYS0JAWXkwYceZAR2dnhnR0UZ1B5fgitY4UMR64A22jI7QxaDCs+5p4EBqKOM7qniMir3aLiP9fZuBpmOEDh8M3lhXaERf8W/1sVRPoC3I4xuhCpN99LJdTPIrQTR0m4R+824EdmwwUOgTR3BFJ51xC9wV2wDR+lhYKVd1HZqdxxxMdlgR92kwMatvEkE/7ePTvUYkiO3QPf58+bGVuifxI+WU7O0Bh4fcQfbXPNXdEi4nJNGdpAM2KXNcqaOvv/uO0mMzCKp6WbL7tEgHOXbUSJH7JSJyErnWWWmJWXEwfYFPnQJjbjPafDv0xl1j6hp0+vrnZ0V51Rv+ayPslBVlQ/gxE9xFHZsD8hLdstXyE6Wa3G0fqcbv8BbJ04cOlzuuONOXh89g2Uf7N+E3GoDxSn8EzdkPbICHOlv+/2d5SoclU9p40deKBtriDn+QMfLZOldwHfphHGMSUNttfCTsMjj4InMhfY8X/WUX8BtRR3zt7j5WlT3m3mXgYLvkfi6efHiJBrUVfETX5Okyox16j+TdIlPh98duHh17qnJTm2k1k0f9DkbOb9FEv/wwUPlh+xR5IyG+HroLm0leuIhcFV3hKfvTOKRc8pMEjC0iZ95Rh/lcjo3VN6CXL737ntl/NTJmc5scsqkoUV/pv0y2FduhK891l742ySLbWqJhqoX8BvaO6PBjouJhq1bt5bb7rqTgbG7yhBiwfP4FGXyK32UvCJ5fuErZ3C6aTGzXKQdtkLZTywSPsjaOuNOPevq2k6y9OOylenYVzI75RFmT7nxIQLJq9RNtDsIZSKHRvu8cRMZ9atpw5U40XTmoSEVVXtDvVdezexe8HN25Qp893vo00mS9lOmTi9tg3E76sYZiG5w1FZabLsyH73knDKpT4itkU3gI97aA/doeJfkkbMdfd31wgXXZn+JMbzuTztpx9V9ONyrwThbeWvLHh0dV5G0KdLGzq11GmOb0LS+Lezhpj7tR3YWEq+6CaqvqrdTajykjU8Mz/OSpyXIpZF1J64yrkT3lSeTxsbySYTB/zXr15cXmDHhK6md9Zxlj8TayqM6Ic6gEd1yeZxFXBs/tY/GtMq5M5rip3hO+iiX72JrXn/5pezldj34t0SDz3mvOEU/hQhcS85xXuIos9bVznlv9JijiYaXXmVGA8kY3+Li651bIl5I6qt1WDxvmyq+1e4IMz4WHnvN3/yJnTHm3dK1rbyArRmNHj1OIsPXd1cbiU5CQ32I+idtLdK2O1lK++NTuEd8lSdpYoxvPLkXfmb5IDHrbeiSG6O7f0UbBPF+7ZkAtKyWAABAAElEQVT3a9Mc+LHt4qnt106Le9oLH+2s2+ZzF5g5hS1wQHIVSzP8/iCDbjcsoh/C/UnuyFNpzX9lRkrHoHjwO3VQUey5MqgOyfMBJF1d5rCBwRMHazfRVxg/bkJmezij4TTtukDcY1ypbmoDlUPxlLfyQl5qZ6S19JJHCrobQbZEw/udRMM52njiLG/r2b+XGQ0/JWHyBBtz/v+JBllUi9zSMvH5kqlgEYoYYb1xPe9GVW+yGeSubV1lKBmfJWxWpeP5koyRm2qo0mFQWANAhZmPjErgowLCvAR8MLWty9fhGih+uOwTsufvZKfpOQTn19FxdDPIM1xz+rWCEMMBDIUsRgrjrzAqBAkuqEscdHQGztZv4uIwxvWPZP03bdrAtFTer86o+iCmgDuN3c7i1cAxGLoi1rkakAgUcFtApQNT0OoO5gganQKV1vNbocnvWZdGxdkJd8b06VlDptE7Tt2GcMmGiyv/atbYDDz4U3+MKQphQK6DNUCxIy1sGeB7xF/8wwsZ0bmRjtFYDIg7cqtgMX7cY9Hh+NFgSBdp4fewEFwSTNAGp1fGIEAnX8fnRpzLyMh9nylRbl6n8/ZZnblJAUdj5ZN1SZcGX+cvT4UbPKCj16Spvw0SfI/46yQCFDFHRaZA+5al9F4diwZQA61DCXxlR9pjPDQYdsIMWHQOrc3uzmxQsoVA4lVme8wjQfIIm3mZmdchSmMdl0Yv1AEBj06xc3aMMqQRS6AKbcQvxoq6HeXYx7TRzVu3ZBr/kWNHyhISDW4OJNxDBF4Gou5J0Bsj5EwYd8s+AS2HEgA7DdFOpbLSAv8agDqdq3cC02045OxcvZmlSAMGlodJNCyYy2aQ8Cej6tQjLdJZFDU2oVFebL8friR5IX/87kiRozkGmY4er1m9pqxevjK6OXv23LLk7ntYzz8xowpnT5MBRz/OYxh78UwvZNnASLJfSQB2EbxPn2JTK/4NGsRrWuHnuS/Y96IXo+oDrmLpxAESUx+VHZu6yuhh48pM1tjOmO5r54bRWcbhf+VbJAjoIGrv3v1jqAGdQOwr4EBEvT+4Iu+9+0ErgpZzrLHVeDMrwj1PnkWfTmO0F+BwnI49cdLEyJW2QOfl7CY7Mn78rn2Q33bMQjPIpDrLdJMpTquV9udxQr7C6nckBh2Fuokpr+55YnLIAEpbonwatBh4ZhRQ6ejwohdOODZDYkG/r/3w/QKq+kXvK8p+NgN66733y5rlq8p9d/JmnlkkYAYM5h3uJph4BlDSFddV+iDfNB5dP5UpeVcx9dTOZzL/oK6N1M4pEz7nK0n34oilzVGecbMhbZk2Sj2xwy491NXoFHKpg47cUNfXyFCSItDJkn1v4K0jmdobN3zaQGLtXUbT1Kd7kRnX4Tu6r86YJNPOKp/SqdkQdV1bpfw1W6wOKpsGI9pZ7Yy7ta9gtG7t2jXlPkYwfde3CViD/IssP/gafbQj4Ud6G5Ta9gR01JfRP0hm4Gxb7GJ+ibz6euQjjGJ+zkiRm8Bd+OIimzU+UObMmJlRaUfTtfHKSLM54hkdAvdGb88p6wYrGf2C/wMHDyQRfpa3cawtqwiy9uzeXabi95YuWZL1wcpcfE+CKXAGX3mm7GjblFVtTW0HCFuvosNpeW0ixtlTnxD4d23aEj8xl6SdG8MOxb4YKCZ4hR6RG+yg9NA2yFfls/FXGYgvQSbt8NmxcDNOl/a9SoC7F1s8buKEbDbpKCYoJLmkT5bmyk4COeCon9pOg05x1hZLF3XqgvD5ZsfIelZha3w1tXI3g2TAddcuYrbHBJaBnMnbHHy1nR04dcoR214kNl0zrr3VOynnkCT23zp6I2caI6eqaoc//nQZvntjXpU3c9qMMoWlE8PYo0H7nane0EEaGECLj3LnjCPp3xueo/1JCtKq0P0iVbt8xfp3wk9HAc8cP1nuuotBgmumZGmicmnHy2Lc0XOAQDrbSVGuTSDrh5LwFXdtGHRXtlzbvgq5efa3v+V1sfOSuDN51ItG2vFKMgP50c/Kz+avlVF/K1eRSWnVKUnOc934xrXN7sXzCbNB77n33mygJlx9pTCUE22Z+ilvbJN6JW+VSfVJmydd3C3dpNEwEvXaSd9t7yDBmyQxjh45Wn76kx/XxB001wcq3z4oT8XVWEgZ0d+pO9JFPRWW7VKk/CO/teGOkrp561vYmlGTxncnGk5i15Q5bYmyL21th7TSdzs4ZSfGjpWJau22fPacltWYxPXkJvKdKr0dP3vrHbenYzSMuOYLExd0bi58SfKxLzHcgL7lLPbnJLMHHMxy1oP8FgcT8cprNI9z+ljhb93axb5QH5TdW7ZhHweX79//QN464Z3HTtF5IXHh82gM/KttNvK7gqk0V6D4NeEMQfTp0MZOlx83l3PWo7OntAcnsGmTp0yN757GrIBz+G13yY/OgIf4WkwWZo8KaG2iOske6lYGQTh81q456n+EOOVDYC9nRoOxwiLi7NtIPI4l0WASw1k86r0yElsAD8Nr6qlJPdoBzvJZedGvug+afFZ3fZXgS6+8zAj4PjZ1n5/9WnzrhH5AOyZPkxDo2Mn40o5tsH7jVuNNfYs6baLMerRjxsar168vv2E2onJ6E4Nu06dP57XdowPzJLOf5Z2JEX2beCv7fvKmAGjspuT6M+Nxba/6oa9SP9RhO40uA7uNWSSLGIgwoeG9iePAvc70qvoZvwRdunWU9ts+9SF+Rh2xwAYHqA4hl89jazaTAPsBg3q++lq+RO/VEZ6zvaqKdQpX3DJoylllzz6CepT+DffZBvFwpsu2LvshLJ2g3/QkS33tP+mftJPyVduhvkhbeWV86hJkRDOzVOSldaq/yqE6KB7OMnKQoCUaboU2vhXJvWwCXxpTj/Ik7bUP0lXfp766d4k4ODPGN5Mol+eRH9+8dP7iF+UQdmw3y/rWbdyQpUdLljITdMF8eIk9x5dHd0QS+iiX2nxp4Klq97F30Fd/KmzfOqXvGDaCQRJwcJamccdG6D5h/MTy9GOPl+no01GSy85iGIBe99VOUZ96m1mK4Ce9TDJ4XrrYn5O/tsWlGcq9S5FcOvHJCvZUweadOH82gx6P/NM/kYB8lBk3k6oAiOx3vBBLSvW/o/i0H/kXXuqENIIqUeWpIwqvsvvzBowgklgWEQhNY2TBPRp8NVSECsclKv6T6Tp+wMXw1WwQiQCY1katNJhmqTUka8n8L2e0yz0Vrpk6lWnNs7IOSwVyBNZgqAVtPlcTFpwDnkWnHAVHYRUWFZSLWVPu9EvfHby9a1s6LnnjBPWopCpCAh3a7/SZ0KEjxGk8BNAhK9C2waAY6qCEdeqVRncPSvI2U6VVBJd9OM17+PARIZwOVbwNTBRacddgm2FUeH1e3B0VMSvsfWYJDebt/Nk+X/f3DrMCJk6ZknceO1vCZIBFIyqeinHWaqEIGmsNeMNfpZQvZpQNqjUGGgXpZad0JbxdRyLpRoyHSZLLEw3ns4GhS1B0kApIC4iEr3EUX9vQjKv1G1hr0B258NVqBmdLly5NllVDZt1pPzDkpUos/tJfmRC2CaP6ATYwDYpsqEZM2BpKN4D7kAy9+xD46s9hdPST4acOjwlEoY0Ukg9J5mBArT9BUjNaEpPr8toA6RDJhZ27d2XEyw3JpM28uXMC8wgGqj/GyU6YnRfrMDt6mhkcBh6OFGiQxNG26vjVhzgVjvLaTtHWLVuT3TaAuYOpnU7nkg5O1Y7D4r7MKKHN1RlVeddJ1CAIgw7N1LerCeYN9pSZ0wQeW1masXXDphjSKVOmMUJKgopp8AZ5Zu6dGvsFNPgafPKqHpMNBv4ESRdJBpxGLvRGzrbQ4BrIfNkLGe3D5j3QZh12YP+uvWX4oFFl4vjJ2f15yLDBBG/O3nCUuSUamL4dYy1sgk/gfA3OBjOuVe59dU00SCvX7/ZFL103/QZTDM+cP1NmMiIyGacwmjXf2g6n6iUzD8zWKeojHHCUZm10POZMuZd2OFanE1/J6JVr7BwVef2llzNzyuUq7jKf4AT5ks7pECHTiGW1VdQLaRLMKtct0fA1/FH+7ThdxF6eR2wPESh/ilPbtnFzuf36W7GRU8rAPowsMzMECxNJVB9NNPQWLs+H38DqRftpZOyM+qqdtI3pcPCkiQY3DnyL4P/Y2VPlzqX3kNAcW2WW+207aKbTGJ1SJ/ltkPM1DcjeAJxTZrxPvtgW26xM2LnoIjBfwSipr4u9kcSam5eqZ+qNU2bFxRkYjvAlYKFez9nhVb4t6mzdB6QmKZ195WtV9yLzmzZtyiyem+++C1s2NzAyNRp7+DW8MUD0Y7sBBKn4GFyAsKeSZKBRHn1NoXbFjqV27BAzbRzJNOi547Y7WNc8Mb5D/6GNNwiNn5KufISnLW6+yTriT6BV7BNH22wiQ7ibwf0gM50mTJnCjLsbsqzEtivL8XscG6+0gfLP+sRfO91mh1mP41aOYrr+9wij9iYGP9+xM0G2e4ZMpY4E58KGnsq2uAm3Bj01mJV3wksyX15AL238l9RpcO4eGerTR3RGDzFFdSTB53ySSFOnTglBTeSLpzTXN5mYugKAUqclGjhV6U9bTJBov0xY6au1mfqn5QRb6uck1pLPZQbVGGxNd6KBNtop0udJ6160246VRbtsIKlOSCN5UhMNvCoQvh46ejjvb99Fp3ciHRaTpePoFKmzddQV/ZPOfGK7gVD9C/UENnLK0bZZxP9LdDWvuAR3kzzvsy77PDYza77Hjgvd1Y0sxxIGciOx1H3lQiT1RSbebE8SDfouiuuClRl5YgzispVXXnqpzMA/mageRIfLoMig2/hDH2WSTx7r4yI3HJWjJGWAafuCPX/Ey9/Cdmmio/ZrsTeL6Sy6rEQ7FlpwjzKpLqiPJpLsqMtflCZ6U/HF5kAHZ0c4Bds9SWybHW991CckZe3APcII6VTssPBMAEoTJDu+X5okCQDexl7Kh502E4HKn+2KflCvgznaVxMFe+mMOjNg6LhRGbV3jw9xUKf1OdLWwQrbLk218bZNvpvEMcEgDT3Km0gT34+RNLFjtKNrR5ZXXsssVl/bPUh+YcvcvNVY44q+dCT6M6Wf3y5R7Qv8gdgqddZYx/qdAYeEhea9e9fp6u4Fs5YR0gM7dqez4dvAZk6fHtk6SXLc9mfGBE8Kq8a7JPIRil4mGqCfcLmoY6eTpOzCe+I/O0jbtnXhX9dkkMB9FJzdO4FZd/ruL3irkzZdW5bOON/tdCqryp5wrN89YJRB67CDaiyuDddOrl27rmwg3vPybAY3FkEbB0eEn1mY4gYP1B/xjzxxb3jI0WLHW59t59QNOPWxxiHOuPuQWQFHsMXTZrIRJDbYRIAdVvVGPkWG5Be/TUA6q9hzJkysS546m9Xv2nY7fg4ymcRzecArDBoOJsZawKCYNsE3RmnjTyGzLdGQgQjlQv5RV2Z7QBtnckovkxbG2sqi8aS0sU2r16wty0giLbpxMTMpZ6QzrT4kZkcmtL2xv+oRH3GURuoQZ6K31pnz8lcqc5/4qGMuRdq+eXNen+lsxNgu8Iod5z71Wr4ZE2pPxU+89B0mOYzx9InKv8UEnMX7drPE941X2SsH27t0yZLM7tWm2jF2loq2xSSociNatts3KllfSwjajspbN1eFN8DP7GGWJm6D9u4jdC2+7zr6OcYG3hu7Dv/sU0hH2y8/jUGU/cyUIZ7K6y2RA32VAz60KrLqayGdndy1Y3tiEF/nOn3atNDV2UdaP3UHpeJTZdM2N9n07WX8iCxylX2yTkWnBzMb0eTnjl27E3ds37aNfSvGlnvZi2cCdv44iTz3RPKNKBmcMU4CN+Md7a8yKM1SZG6qt201ie1MnpM8v2bjhrKOQewL4HaGxMnurk3lf/xf/te8dWxc94wG8P+Ol39MokEiSMwOPWSYn6v4TfegrFnlO1T/kE7dO+wCfQyDOGfCpGyi6FTo6BT3m33T4PRnZFLjgLnL9BWNkp0bFUpjUKfL106lzD3B8oZjdK41ov0Q8AGsu9IYZHoy1zXONRNMthsYAwmiEiAjwF9Qp8qcj/ijLMLRwWkIdeYHd+8uvNioDMKZ9MdIxUFx3Q5bnHzHIPjdoKsfuGssdPYqhQZPZbcj121sOsblLIJ9hA6AVQ9G+Hxl55UqHfeKv+27QD0qoMZb4TX4F45FofYjvcU9B3A1qNC4nDx2vOw9drQQErA77pCM+mosdMgGVbmf54Sh8jlF0OlATnc/gSGRNyq9RicKBA1sW/CCNscZNXJXg6EYgYE4nDgw4Eg3nxFPaZ1OCc+1GSoGMMKw4yftL8Ajv/rOZPE2AeEUzCM4frsgY1FuX494XrjgWltaRU44nhPvwciOdZ4Ed9vgNQ2GnUXvtg06Vo3ZWTr3x8BxGPiNnDA+nR3XwsfYSxieNdAX9948r9NVzG1bpiXnmsZER0FbuO9KHL/yasfrBDLpIoLRjNYPZRq59NDwysM+dh6FD2/7QJc+nIvDAHf1QBjyKAX87exJIM+dZY39aUYXdBeOS4wmeNZhK286jRjRkLUqpSPGfprhcxTGQFw+Sith2vkyQHOa5ilwNwBWpgb1uroMZ222jvUiGWINpc8Ymn3hc7TXgNBEQy9GiHvhPGgobQNdOvHCUM6+voIA82r3JDhbjh3kfecQhhWy4D0cmaTTQQB/7iva3MskgkEnDuWCiSlGU+gk93d6qEE+sFwu5ewpp55+TfClbpkI0OE5wmcQ6mr0QSRABhFI6CDlozSVNjqwdISQOTsxdQkU+HOPPMqUvjSgdo6kTaZf8pwzT/bhZHTRvunCOjOlD9rp+MVPWbQY3A4a0C8bBp1GFuwwK++xS9xzBZ1dl3sgYOUsQ8LHIYpLS2BvmTyUZFT/odyDfBlggttX8MZ2QAZmw9jBQ474cFM5C93PUneCYGivLuhkTa54HETH7ivkft/nuwoTdMvQwWyCBd3FOboEvf0mfaxDB6+dHM7aX3l4lCD4NPSLzPLbe+WTduYr6jbZcIrRhRMEMsPQkxFMf1fmtK/acUNPhcIkQBILPKscKaHSKzICDp6TP+ER13zLQmhK3aeVS84NYfbGoBG+6o+2+4yyBs7qNoLT4Sk2FNwAh6wTiPK88YbttcMoTzPSzvNOAXUvn+MnSHoDf/z4semMGjj78Zy213pshs8afCs7wj8LjbUbnouPot3REWBr+08zcmEgrC1whfJQ9MkAVF0y8KudUeiAXZGmBoDCNlhUHk+e4lmuxbbCfPmhrvrKVhNEh/fuKyd8lvPD6UQPhTbCkabxe9gY6WQRP/mibHqPiaNT8E4e6PPCJtrURssyW4UOdbM1A4cMKv1cy9+hvT5PXZI28qwf8uxbmCxJGtFGfaB2X9jirrymE8n97suy7+CRyMEg7MPwkWPoWPg6Ozp0BPX6U+1veMxzboIJ4hn11q9TCUkmAjjqgPXlKpYg2TGQMV+gT0fwTyfPXyxDGX0eOHAwdNVWqac1yVNlU7xY/wvuA9AT7aK24gIzZSBMZEp+iv9FD9o82vgFQeX+PXvD1+HQxOAxgTh4GIhbmt+LbikfwNa2Kdfx6dyrdnhOHKRPZAhenMFe7Dl8JLZm2KiRsTN29rWJxhI+r8xLf9s7kM6wm23Ld3nqUejWGd9CXXbmlQU7UCcPHirHSCwNAd5g4Iu7+l/1sbMUCZylq+3vD32Mn/Srrl9Wf6RVlS1awXd1AwOSQSST6lJhPJ2XTO1HR0w09DOBwH3aJuXTTnJ/eG5nXiIfpfOg/3aAQn1NXEhbTczT6NgmfffxL+ms8sQIEmB2lJ1poMxJC9t8NbhXPVRk6ii+9ZsYuMCSXvVOn+69Fp91FPQieJ09DQ5wY0SfgcAfhcxgg/Gb6qMzXpzZou/TLygL2nQJVUdknfVgTIZtYuaEfiqzcDBAru0+d+RY4lprHTZoOHHTEDr39W0yPiUobbs6Kv7+6wOPwDa+6SyxcJIYyiLtSrKBNpgoPMWgxfFjvG0G2FJzcMf/9VJGaJ9yWP8hZ9KIehycccaK+B7Hf57AFmaUF9jqqjz2E9+LDdaW6eEGgNNQkvjqTQaioivVFni/MZOdML9HVqk/sRo01C6a3DNOt8HOdPKtU0dJnIJpGYw89O4kIaRBYrJO51OZV7+G4X/VO6/ZaTsnXbiGuEY2fU4505Zpm13e52bU2snB7lVG3RnEkSLqBHDUJb6GNsbx2mF5eRb7ol/UY6kPzaNZh3KkXh3HTh4BryG0dyA22JFr5Vcc+B/5sv3SQ7vQ4o6z2O7QA7ws3bGx8tl51mSItkzamCx1f7qz1KUcuNxYPBJz85tK4xu0BT7vfdoC6230V/aarTJmOENC8DCBh+81G02srT7Jb2mSBnPeupPQVGbA39c6OvvoDLgpO+qY+qyvkrfxV1IKudAHHoK/w8F7OMkjeWSb4wOhb2xaYuxKL+2Mdtr4+Cv9JPdrW/Qjyrl75XhO/+XgxUlmlcXWjB6Zfo5ykDiOo7GBtsM30ZhYVO77QjP7NafwMaew40lOUac+Q5oa18k0Zf0kMnkKH8M88LwpzSXOSdxhB7Wr0t4EvfTtg/9JHM299g9N/hhLRRaRHu6GdiZhqp0+fOBQOXye13xyv+lmFiOWf/3X/6P85Gf/zODeOH41WUOAvsPl7080SAgVz4/foUc+fDfc0OCtX782GxK6aeALz/2WEUvPljKJj8wzeNzLx3F2CX6CzzeLxqE+dfkVxv7L1PGjy+CRo8No12av3bytHO/c5ligK6jFRVZZj3X8Z2UkF733YOemO2fPwFEOLEcP7i+nyNRfRQbl1Lmvy/bO9XbwGWnwbcVr4lJDsIITq2Umh2k33hAHtmsda4FqfJKLU/krrjvz69v/CHcin13fctn6Fs+cyk6yExLQbVi5Ju3/llv/01PSmC5GlMC3Dgt3Px8d2ULgDyKxc+jA3rJqx97LaCs/TXCoQK29fL2sjOWXTT7S4+x4vn/OR/mYs/j6GM3Pt24qKw7weqke9/0tX+WtsmR7xo8YWMZMmoaTPMebUTaV3d8AOJrfzJAse2mAbfhmUa7s0PZgWRnF75EQZuB4dktmepiGee/OzWXjoboR238mI9+E72/lxWBKxyDejGkxLZoO9MjxdNIHIae9yl5GGNZzvmcRj/5UdgqBPNzzQue7PB0AI5kJeplMSPvp8+eS7ONVlwYdBLpHWWOnTlr3gBEjedXVIGYPDGQpxECmmp0uK9av4sql8v25c5Kx3vnZ6nIIyg29kr0nJpP8G4xxpxHpUH1FZ6oXr7hDj87A19PHd5OwIukCUYdNmkowz1TQ818y5W7Tf7AH8tDkVqUogSbflS/5MI3PNQvnQSzeinLqRDm6b3vZysVv00uTBTW3z5ceZQbfvV8bwgvHuovyvgBbM5SZACcZLf18+57IozxVfsXpLynDuEndsH5hyl87/71oyORZ1xFwDyrnj7K/zK4j5cuDjFjy74qrGfkh+XBlP2YH4dTOHjle9p/ZXXbwXCvq5fiRQ0mAkAzFsWJUypnDR8tFOizWMfz/o+69462qrgXcQa+KICrSpAoKYgHFggVpiooNC3axa+waE02MRpNYo4klsaBYEBuCiiBILxYQBaV3KSJNQOn1fd/Y7FyTm7yX97v5J0s3+5x91p5rzjFHb3OferEnkcXtCMT5ixfEt6uXkEa6ZyqDCuPNlhQtWxwLZMj/4nLO0sI/8lBxY/96taNmnX0ykjhjwpd/N7ficHvxg3z8n+Fk8R73dzcQfvZPiF2+07Rpw6iCw245dYxfzP0fapXHuAfe/s/olI9TBrg//yhDpJNqu+sk5chioiwazktnzow5/2ogB/snlwqaLy+VBV/F64C9KImqUbug9EFTi5FP/4ynixeril/6N959Xi1eu9WtSYMpdgCFZyNG2spF3yXsfwK+/8/RduUO6cfXT79Xl99rNqAhG0q/4y9bMDemrCqszmd/x+sfcYGP/tclbgrSn47tTY2rlYk9azXkJ+aO7F48d2GO6d9+ev0rWvWearz8u/NYyqt4iWs1GtOfpQL19Sij65Z9G8tXo1TzuXxOmpBufyp7+PXfupRbe9eoFlVr1Epl/LtvZsXSNYV+QNLyv3s1hMGXrViK8oNtf7du59aqQd3Ys2ZtSgVIsf1qSvI7ZcA/4vC/8yzH++k+NWY76+1/SGbRfQd/H4v8kydJD/N2Dihcdwews/4Zk9x5z56877kH30QBnLzifzjgQcCmRt366GSlYvqn42Luzvv/3TfxRbp2rUU+r64oHxAGe1G7X7NevTQMxoz9NPknH//d1bhmGYIVW+JbhddPrn33svSkciz9ZtnfwdxblOmtOIFDx71leUa6l86dFyXXrIsqdJ3XwbMDr9e2MjgNStGPST5anODOZxzToCZG38ZYAv+uXJXM2D3qxvofVsWa79ZE7X0bkWG3NxlpbDxOjbU4rVdNn4eMW5t46cflq+MsrIpjCT49cfLc/4Wf4p6PLOq4Ox+bb/vX2C2q710ng2EGHaZOmPR3NFG8V3oXtj/lU8W/CeN/hcOHweN3230PcJ5sHJwai+fM/1+6p/LYvVKHk5/89JJnKCuk03+cv3J339Ycs4rOtJIo+KoFc2L1P+gn3JK60D/yET//Z5f4uWznH/YFcfY58ODE1TXI7y/nLfybvNiHeypVh/8jSJYic/8VT2hahd4sa8gK2Dmm/LHIy49B79gDHPGY0lkTv47FO+8pviHSUq/4Z7pI8R71geLYflbke3vxc4sDDyBoQt84TuWYSUZMUYY6bj1eZQDsj5CgcP//upQdyswixdbj50OPb5vy76sRI2Mmv3t5j/gmPvx0Xvz6Ty/nK+2qj7lHfrfmXgR7CGzoFFsHHXz77Yq/w0nvEU/+FczdG/fwH5/vs2ryqlJn73R+q2v/8P0yMpVX/q+xlK3yjeW8/t8u8dZxi/c12b0SgbbawAF6R3avmb8wdcLiHjqmcu0fcZmP/nb9dE/r8Kl8TXgKW2mtDA4zXLAE0NbGEpj0gw//Ibqdf17U2Vvs8kne+d99/Z8dDYJBD19G3ISFMMEL6hs8M5nZjNnTY8yIEdlgbt70mVGDFPXa9Aoozfe24/3aikfMiISZAkabZtPco9/wkbmBLerX5ixgTpHgSEmjN5tI/8JPiAcZzxQvvUj5Asn0oKmU64XSa22UQC+bqXN6nvXu6fmcgiI55PMvoz4U2oRGPPUb1M9Udr2kevD8jlFSO+XK9OzgrcfL5+tN9Xm+G/XI1HaEj3VcRs1XkUFg+vPXc76Jg+tSg75v06zH1bNbOK6yEMHSs+gYRoqtK/Nno7F6JYWpXljn7M/+TZgK1G+/Wxqjx4wiQlk5G2ftDWPbjfmZgrSWMhQR07n6PTMDdiGLwY7+pnx5RrzpSnrX9MAyhYSZa9T4s9/FPNJMv6BGvEWzplGP1DL7BuSRk3jnnIfea+8XVo5VDu+eEQm9ovkZ8xCGPjujbqzPtdrQzQ7p00kVMp249WGtYUB6w2VLMBG86EYLCrWMhTpShXpVDAs946ZpGV3LPWD83E89oNxjdH4lWS3ffrskJn01jeZZ9Tlqsxl9EKwDU5xiqIEremGNPrjujPwzx+Lznb/eR1Pt9H6bsm1WjbBcjUCdO49TJCbTgPGHLdH+8ENJ8W1EhIcu1ngrPQ3BuYsXzkvvrGOIE8La8h6j2cLDNEDh4T4LRynFutB5c+fG7Omz0gHSps0RUa8WfQVYn5f3ZFYG4xoNTq87+JlZK6xLuJuylVkQMCxr2Uw1c1+s25sz/5sYM3RUMs/m9WpRCnEwaWB7MCq4RWTHEiMjfM67HGsyrc21OO9CJLWw5+lpZz3pfS5XPp1va9mXiV9NigHDP8q5duEYz9b0LhA/l2Pkrt9AvV454F6RsSsZHSMjAefEDhSIciUqRantZFGwHzvo4bC9FLhZFrxh3qQ/iMlEO1dS+zguJkGzB++xO/RESiWpoHqFM0OBOaf3HZzwd1O+Ld8R/7OZGTgqvPS8G8UzwiB9i8eucRE4YwPDzZu3RfOmjbOng0c7uW+eeqG3XLyQt2R/EveX723T880eZlkF+2qEciM4JB80ppLZUMBU2I/+eHw022fvPJ61Bo6aqhUrRxnmVBIvuXS9jT1dDzPcDJzKExUtT/+JEhuAxQZ4TZK+/IX5Mgej0eloIMNgOQrN15SNzV40Ow5u2YpIfE0aEJK1BB/VcQDBFnoVMA/5g3C1yZHZMasRanIacUVaNXq7g/UYOd7Mnq6DXpcu+S4mk+ZbvvqusV/TpjSp5QQM5icf3cy+mv0iLMRP4W3dubA3emJ/GeEvHOUbvuTD8jp50XIUyfnyGnC+zWGtomnDBuCeKajiIetlXGkq+SEIIj1lvxfWJg+QF/jcpAf23miT8sP5LF++gtKi2TFjyrRUYI5rd1zUBTZMJseUP0mDPkM+K10mLQIHx7HEzWiIiOn8HdN7xQGj86aZTps+NaYsXh5NatfIRnrSk2MYgTG7wzn6HPmNMDEyn6mi7EWm0u6cc5YrsGb5jPCzf8zU6TNiyLgJqagdeVBzePH+0FOBhxvdMfoGhHJe8gBxwvl5ZTRafgTeZwSONSU8k9egQOE4nDR5ckz8ZmE6cg899uhoyKkG0oNZWu6TzhYvxyzyHtcunOQHua/8zXG9v8j7xIHFOOI9DWDB+k3RvEZ1mrodlCVveS80yNRT9qSsBVaZEgsvAcwJu5QhwF6Y++LmhKMRsvXsy2xwZiiwqYpG2Hxfmr3uw3HTyAgzhYS3+2N01LlkVI11JQ6CSzZtLgG/gzsXMn6Yf2YdEgm3nMOa2ckzZsSkWfPikOaNwJnasRf0WqlcBeiowEcKsq2AC8JMfu8JQWaASZcps1mk+GO2ioa2slb+amPpSZS57IB3NG4EH6tdm+Mw90g4K/+EpXNNIDF/8d26aGFiCV5mRSITxF3nkdFS9lcZZ7nkAvByPLBR/rmndtT3vHpLlcQ5v+93has11HZIV/8wJd4MPNfj7+Ku+2yJhsq78mnBwgWU/0wntXhDmO5ftxaObuaWacOMb/RT/UNZ4jhmkTl/57iGrBV1C7N45IvO3f0pwG4r43+P7KakYOJkMqFq0PvmYE7YqJa8iNuSzyir1PcK/ASHNFlNNltlVXlqzLqNlC+YEQE8pF9xVbrzubNmzo5JY8fHEsZof3irOOQAekkxd/m7+2TGROIda/B0hSrATb6QZQT8XRlPzDjKI5PEM3VM0qXS2WAfEEuDR0+c6lTjwhPaRzNklHu+Cr2hNPqNuoQ8cTNZOmbU2HekjD0X4J8F2USEn7LDjTswN2DAZihUBnbukw0S332nf8rufXevwnGVh1MKoWlW4GXJU6Aj0ca9kk4TL3kXZpZCqncKN1+Jv7y79+L+tFmz4r1RY516HLlfkzjowEIphP0IhIl6k/hoVNb5qBsUcdyxkv4ZxywP55TykHlI7+pNEym1GDt5ahqchx5JiQ6wEa/UdYs0Ijidq84dj3M2Km6mk3wl0/25Qb6WOMxcXKc8z+yEjymfmbdsZRzcsC49HfbNkyTMMFAfSp2Pe6U99T3lt/Sg/PIz9RvLv9xrcSdLA8BdM9xsYjhv4cIYPerj2A11pEnzFtnTwdJj6cOsSmnFbAJLEZyrzR8tWfOIdHVtaa0Ic+HrvmSGAbBdRUaqJxrMnTknWh56CCWke2ephftXKGdBt2Z8+bsZ3K5JelIOyiucu7JR+lLuWRqiTuTcpdfFOA89nUwbqOm+lpJXS91aenVOwoa3zERZi25aBTtBfuS1FD094QKtChtL1cR516jc/QHYLKHM5aspMzhpp3Hs16gRmcSF3mzuu+Mre4pRfmnReSYegTMFnJVybaxZPvUCxzfDwWaslpPPJrD43fK10bHNkdGQkjplnrzFNaZ+yDP8vrhQeBV4g3SWfd+AGX9OPMwMPjN2eLYlXTOmTImvF3CKEkGbI448Kmphh3gxZfgG82eu8nTnZHli8gJgrQywX5OSVnqQxtXRC6U1ZEcgu8WZryZPiPmrtkTLZo2jFaePVAOnzYAw8658KXCA54j74jnMnzLkgu64EpzvP3RY3Pfg7+Psc89GX2yQc2C3cn7/zf/8RxwN4EAqRaon/FjgGrzpRQecMW3q5Bg1fHjW6JRE0B/GkXaN69cvpKiBtKozbtiuGMwK/I8//zxuuv93jhSnHNeGc5jPoqNzYwgMBRhh5tmlmRbLw1TsdFJ4SXD/owwVuuNL7CrTCjmJdAVCbfDIkfHUS6/G/ruWiJPPuYQjgI7M7vEKHBmSBkSm9ICYMleJszQpzMnoeJ5MSiQUwbOxGMJNAQH1Upu/OPr1HxAffDQ8urRpHR06dMwad+vyV8IYbawischwvHxXoRNuyZiYo+Nq1Fn/JzKbMqSnVWY7DYPrxVdfi7IYZse3PT4OanZAGjAKMNOrNJhlQAoAL1NUC8a0hF8QDDKfZDY8t1hSIGNZTurXp198Gc/16h3dz+4ah9LspwZpvvYOcG6OqeIs05OhSdRyK1NJZTD+LGxkSDIV16Vh7e+LFi1COZ+Wze5Mi+zapUseeeWeZw0eOCAjkEkU5l+AvX/TMHSM4ktGoBPA/gAywTUwym9wTtkI6c23e1NjfXycSuf4FMhuC3BQoJuOZWM6Ie8eu56CMGD+MlPn/xMlVeVfoboI5vQJJ2t8+EGfmLZkXdxw5aV0oj4qdkfRSe6EwqAhB3dlZEZn7Y6rY8MxVAIVrBppNuJ0H7OPBmMLs5kYRUM/+ijeAGdkeTf94vZoicAX70z1dDwRpJBOplOoAAvpJg0MxnCcTCcDB+2RIi6q1OlYGz/hi3juT3+MBRsj2qFondP1DJoJNcp6atPaFAq+ig4MFVPxUVqUEWogijMqDuszzQycAp8r0qjwexxrQ4cPjedeeoFvRFxNoyKPCq2xx16cY49ARDiY0hqlUMJxFZem6aH4U4Lc020bmOtWjTiEhXVWZVAIULZsJrQNeitVxp4L38aADwfF4BFD46A9a8fZF54bhx96KAK9Iso9J3iwToW9jFsYK5ztfyEOmSopzssTFBa+cnukXZ7pXn81dVr8tUePmI7gOf/EDlnvu1+TJingFWwFmICLChhgrLNCgVMKetfIlX40aDbymaULpg/bmZ5FopRzhNy48fHnp3vEGSigh7c8JPat35BMmj2iHJtVgn1UmVsPzq+lh8XGUtAlc9QQKr2F8TdrUAIjft/O8x03nwV8Vq9ZlX1AxtCca9K8KdGxXQdO8MCpSV3rLjgWrcc1XValVtZkaYBo5F46t/XsiZkN/m5TyrUoRgrRbDgHLphKaa+Ot997P0pXKBWd27fPo8Z0ZGRDVHC+iDPOsFAOIYwsj9lZ+gPsxU9hpALly9/tDj192rT4jBrud0aNjZsuvZjjKluzb5RpMEnH83Lf/I6fqZwkJPhTAV/BTdYjH06lgM+tt3X/Z8yaxXHHw+K9t96JrdRS33TTzXHwAc0LTkbW5ujSp+MIFH93XsWmdCqp4pPyIvEGvuF7eWqy10LLHiE3cNCAGPLJl3EM9HTeWV05bqxB8sBMzUa51ziRV8qXffcZRUNeZUb803mYfB4cEEa7VSMzjDK6wcOGxiPPFujp8gu7cXzfCXm0oT17thMFLQdtlEieU3BWqqylcgSM7COikegDHVNZIq/XsPT3OfPmx9s0GOw3ZAQzirj3lhujDbCvhAGhEqmTIfkK++hJKcnPGc8xVHqz3ITvqeQl7wRGJZJ+CzJh4uQp8XyP52Pa4qVx3EHN4kxOHDigmc25Cs5p6chL/mejTZ1iWSvMPqTRIg2xLfJ9FXP3XVmj/DOlfsxn4+PRZ57P9XXvdma0PZImjHX3SQNQWlVmCoOcG3uq/BNvNvE8G4sRhCaajMNXXUHcYtzNGHk6JxZ+tyQGDBkWr7//QZx20vHRuuWh0azpfqkopmMNek0FHbwRTn5f5V+DVENdZ6b0JN/NCcoH+F9HpbzJxprvvN8/e81Y66sBUJNjAoXreowT90DHvrJJRx0CMWVAAVegf2EET87UYfcJPJKXCstVKOhfAvsez78QHU/oGEce2iqbvUoTwsI5iOPKaeWsL2lL2SqvFGfcY//ufYX9LpTfSK+z582NMR9/El/Pmh6XX9o9Hfka69nQGLjn8d58X15TlP/KTvHPckfnbB8d+ZelF+KPslD+N3s2nd1pTPn6633i0Nato9sZp9NYs27qduKia0x9CSRQB3OujlupshFoTrnA6SrsNUCcO1PIS55kn6dJEyehfw6NUVPmxBXdzoaXHc+JR3uwbsog2EtxnC8mjYuDzskU7Sx3YCTxEXULxzBywzXybIQxDuIdMXfB/PDEsz4ffJjPvOeGn+VRoeKGxxUnTJU7jJF8C1iV5JlQIyWT0BPjqTtuR4eyHGM92ZXqQLtVoSyP732FU/DVl3rG52T6HNa0UVxwwQXpeJQ3Om/5jUa+ZXVOlOEKzyzuIzAQCdU5lHdp/PG3qp6Ig3wbNnJ03Pvo4zn387t0jrPPOCOPEbfRX8oM5uoIKbN5RD6Lz/I54onjJ8wFUgF/irzBZt4DhgyN3u99EI2Y1znXXhVt0LU9jUicVddO2DNv+YI9QqQBDXmNZfdS/dDSRPXgDAbxHcunslHt3Hnx/Cuvxhiy505r1ybatmufR2UrA6Q3cVKYFPrGMD2n6O/AQ7jLM/koHafilHaCL7V7a/XHfzkxHnrgUQInLXLeNtmVXn9KT85RfBHn0+Bn36U1xys6fBKfgL+OL+9fTRZLNjOl99vIYUPi/PMvzD21H4XOZr/veNJiBsdYP+Ar0CnPUjbJh3XMiAc6JoSPPNMS8+/gY8rAwcNHpH58UocO2cNLx5w9BaQh1+Alz5THyoMqwhOFlyVN7qE4rE6ZeiD7bIBpNWXY3yBDJn31dfTs+35cdOop0e7oNtnDy33SoS6NyB/TOcS6fZLyx32x1CGDwHymPLKvVlG/1Mlur4XPJ0yIIcMHxqwFa+LX0NPhZDXr7NXWU5Ym7jNu2gmsxQcUSlgpQQUWym/nnnZPoj+lR9gL7ok9RjyCu+/Ij6NFowZx7eWXRXP0PXmueCccxPXU84CFct89Sx2DNVki5frkEz7Y/iKW7eroscx7FHbCQ3/6SwY4Tj+pY5zW5aTYp3Yt5A+RNRwN5UhZsteMOrx8XXyzVGM1uuo3ixfS4HZkHN6hfZx9ztlRs9Y++Qywlvf/7uv/7Ghw+QWUVfko/Fz8XfBsoo7uayKeIz4aEouJRuxNhKBDm2OiGZu7BYPzRxQrDSiJVCVWpP+Q7IdTLrvcoePyM0+Nq6+5Jg7G8LKGS2XLiJ81a1BXIoQIImJLaCK0zNSaWZsDKYDcTKOeKnh2Xn8L5fnOPzwULfcsHRf/7JdxIicO1K9Xr0DIjKUHWETIrAmQTMaUzIn5pGMDYpepZh0PAmcrRA/LTGKfMXtOOgJeQWh2P/XEOLvrOXT+PYZoLt3TiRBuhhDK6Bl3XAkSZJbYZRwqKBKRkfDNGAIKAgU0N+a7StQEIoyP/OlJ+ltsjjM4M7ZN6yPwoNOUDgatsas3X2IreuQkEhXmHBc4q2BIJH6ucS1zcNfWYDDaHNHj9R5+9LG4+frrOIb0qKiLN7GorCgUZHwK8IwCwDRyfqxDR04yABikTFJmJoFY8ypjtCHaFygT79Pc6nucRVdedGG0pMO4Y6twqPQoiBUQMk6GzDlK+M7VqwAroj6sQ8ZRCsUFzsbJIKsyU+JTIt/P9Hg6Oh3fJS7udk40Yk8TzigowsafrfdPRuE8+cy5KnCyZlj48FwVOlSxZCLu8VyY3yAcAa/36hGfz1keD9x7V3TBkWG3ZXSNQn04Y4mDriGZFDCW6SpsXI9KfGUMYBsRpREMU/WZLI6MgK/ijTdej6fAmbqg9SN/+Usci0B2rjbiMXJsLxObArkG1+LcJbzcR+adDVTZG5A2BeVWaj4VyGtQzoePHBV/+NVNMZXctLMweK+7+so4uHnz9KzqZdWYlZbEGcfV0yot87CC4cveGin02M5VMET3uixHLlpesZw63A8GfBB/fKKgrNzWvXt0BS9r16yNAoiCjdDaQLRpKykMpcsZwaQOGlwtQSbDxh+A2RYMPOBUqgyCvyxCjpRTHUdb2LMy5XeJ+QsXRd9+/aIvJVfNdqsbt//mtujUrh2KUhW87pQEgBo6KTPKoBMSmO0KPhmtUlkXZxRwztm9lDfJE6QpFZdPPp8Qv33gwfh86oy4+SKMulO6xME42KyP1QutciL2qaywubkf7on1v2Wh/TQq+Nk6S/sksBgyM1BCud0TawYPGxF33HlvXHnhudH+2ONwDDaPenuTreKoG4kOgxdryC5YDZ/8EZq207HPLIutWIZB3BuVInTczEAwG2E93YlXEB2dM38uiuKo+HLu5Dil80mctnMgUZcGmYFlDbMRs4w0MIYO2qRf4IA0pb8GPIc1qrC552swVCpgFNcirdd+IRuoeZzGEWzPvPQy+1AyzseB1IRoVDUiIx63mQiisQueM0NoH9oB1tJTKhjgqwiaTkGeKX+Xd3jPggULY8KEz2PIsOHxPEbdQ3feEZ3ZU5uKSfiut7hv7p3OBPlN8hWeJ0ykA25KfmZkzu3ZA0WtFOuZghLUt+878fKfn44tRAF/f9998MnWhQgtCq37KR9XSZdWHSfnCa1qwOjoKhozaawzb/fZ3kF2pfaknV69X403PxiGQ7Nj3AA9tWi+f8oLx7SRoTRqDa6OBuWbfKHouJInpAID3uho8HkqLFWr755OmDffeSdu+M1vmWXE3XfcEhdd0K3QgEp8JvOkvAYKdLsFHFcZtV5X+aFBrlGnoS3P9yQW38V58V9YTnFPn3sunun9Vo7f8/FH0jFofyA7hNMiJWFr2rZGtQ4TFWVhVJAZ8n/wW1pwL4CLfMb1uI4xRBjvu/++GE9WwGnHHhnXXHtdHE4quvtlpofjun9G5aQvo4wa/UW5lPjE/lcC1kaTpFF7yoj3y6iVHThkaNx4129y7nfdcm2c1vnk2J9IplEi8dh9Szxh1c5XWIMaGaTwlCvpTt1BPqHMYULQAvoCtDsHZ3Wvt9+Jx55/IS67sGt0PL4dR0IfymlEu3PUL04YnDzFU6aMaIkbxd44nlySjgYio/IZ8SiNMNaiYm0zN7MZnu35Ms6ijXEGjvaDaKRXj1Im5YT0aeZkNQzgHRgLK5Yvz6CEjgDnqjNJ5d8j18QZDQvlrXthNoVnyAv7hx96MLrStbxT27Y0xW5Mmv5eKZeMuqa85373TcVa+SzeCB8vaU76KzgglLuUs6APfUt0dNqMGTEAHW7slxPirjt+nsb0rmStFU9OYlKJ7wZklHfiTOI4fCFZJ2N5BK/8zaZ6ytndMHzUVb5G/tmk9qmnno4OHTvHdZd3Z08bY9Uqm9BdmLO46PSce9HxpA4g3erI5k/peBHfXVN+wD+LCfzYYHAgRx6/PeqzuOv6a6MbZ9TXxmBUzkH5yZOcq/1yzIDwKEGjq7mP0Jp4tB3H73ay3oRWZiqS0bAVpJs5Z1Z8OHBAvPT6GwnDx3/zmzi2TZvkdz8i9+R38rN0UPHdPP4RGi7HUZUV6NOUfIzxrdHcjgz8EeeEequ8UP7xxZdfxks47gZ+9nm0P/TguOWWW3C0t0qDK7Ns4ANZS7+Tl+UeMpN8JrCX7l2bBp4OMXFHPPDkhR/Rp/v17x+X3XBrzv3Wyy6Jq6+4giOtG8dmeIH69nbGl1/aq0CYurepewDjdHQxtu/iDd6C3A+foQ4+e968eA16+nOPnnEwrP3qO+6PTp06hlm4G6AJaci5AySegTHIM+QH8gUdZ+67Jzeo08sf5GvymNLgUVl0/UlTp8YDjz0e7w4ZFlece1qcduaZmSkrP8kgA/yAL6bj3hp9s8Hky65HY1LeIA1r4BoUKAftVtyF+gP2wyOgh4/BCX799dHh2LbRuVOnOOSgg5NepRedAcLYS8e66xBPDNJow7gP6SyF/xcaNm9Lp4n3LF+2PE9o6o9O+R66zfXX4ZxiT+twCpQZHY6tjui96r86YNQJ1uH80EEj3qo72nxVHmCGgXyyEvSokW1Qb9LXX8frffvBm8vGxQRqD9h//78dbZ/9bBijcEk5XOyBMHaPXZb9JeTt0qnZNgb0NKblS1MnT4mxH38cDz3zYtxx5eVxxkmd86QgA2PKO6GivBMmyYsZV1o1Y0QbRhmqg7AM/Qy0zcwmcTZmBNigdhiOu9f7vBJTZ62M5x5+AL3pmDxFSR4vr3TvtrHedPAAJ+dtJrSOTfVs6cd+bunAYEG6OnyO948b/3m88fpr8XzfD+IYHBi/vevOOAx9T6eXJ5eoYyujtMmSdt1Tf2c9KQOl5wSXWUQFm60kmaiOvwyd7P0PP4wrbruTOyKuuOS86H7xBTR7pTw7HQ06GOFlLFYaUu/19AkdDdowZrh8OHhQ7NN8vzgHHl5tr5qMsnN/8qk57H/lP/8RR0NiyU54KFSkZH/1x00YDlPxylo6sQRHQ3U89scf2Ya0xyYIbpQIGJobm547lEQZ2WC8Ojddd13M4/vXn3VGXHrZZdn5V2NCJQ41i+2CqYmdbJIM1weKaApeGWoqn/xZj5yMQyYow/oOIaKj4ed/eDCOrFk5zr/qJphfp2QgErfKmwqhhGcWgqlyRl4UeiKhnysspEYFEZQVOxA6GxB2MizLMl59/a144+1+RHdPi5NRhDzzvTIItXH1D6m4FUBUUJZFaJmEwkBlXIXK+bs0Yak30YiLHYUd/3McDY8//deoUrl8dDnhxDiy5WF5FJvRBedoGr/KgYxOgeuabMhmYyXHl3hU5lTeJZRUxHj3uKv5pHkPGzMmejzxZFx05RXR9qijolEjagoxqDWiJVSNdL/n/krgzs+x9CC6BuGjk0EG4xxkACoGdv7+Gub33qDBsYAMgasuvjhaHehZw9VgwERJYaZe2YWb+avsyGglSMcRP/w9meFOIVeC/faIqeUQ6SSUlVFjRsdf/vpsdD3jrLgQ5tqkQYP04PLNVNqcWxrrzF+m4SsZiBviulBSxBXMj8QfFWiPjZqHAjp0+DCORnozhk6cGQ/c/cvo0vmEbMqjo0EGmCnNbJroZqqbRp1RPOftGtwH04TLotBvJXXW1Dc7pCukPYL0rbfeiodf6R11+f6fX3gujm9zVApeI2kaL3rnEefp+fd5HnPmPhSyD9gBYcJ87cquMirOlIWR65kfPmp0PHbfHTFuyca4sHPH+NnVV8XBGLxZ9oHSozInPeWmuhZfjOf6NUhtDrVk5fKYs3BBLMJRVxY8KouH2Zr2VeD02I/HxlvvFAyXc0/snEexiTMbacJmWcsmFOutZCqULIPAkSmDEyW3E+miV8sOMhrSmYSDpEQZFOmtGNw8byvrK82JC0uWLkcJHRVjPhnF6iP+cOdvsvNvHdJHK0B3ZTEUSoBvlmApLBREjq9Dzyg9oybeS6sqFUaqdOIpQFVcPsZ7rqPhG056uPzyi+NE5n/QAS1Sydkor0FxsOkRX0z6AmHYb5Q1vm8zR8GWwpjP4BJ0I6eJLXtgdsN3lDZ8NGxk3PHr++K8M7ug/LfDO09X5DpEYLVvSUNehYHy7YqlsXDVilj8A42wGM+9KM3fdTRIbz5EivVIJ/fZ86NXk+a9GAPAI+qmfjuTI4OPjX1REGvXrp3ZHs69JPzAI+vc30zNFiehK5gkJW3Qv8oDPFFaXbNqTexeeZc8umk3atpLwJvnzpkXz778SlTbo0qch3LuKRvVKRGwkake+nSQMjuVZaMd4rh4nXwFePsuvfoM6Vv60rBfuHBRTJw4Ebwcbm8YBgAAQABJREFUFc+/0zd+fcvN0fn4tqSRFxrSmVmgMzOBK5yZr7RvNpgOJPejLM5a6VelVj4pXCrjYGIy8fXUqRw7ODD6vtkrVm0pEXf+8pdxNI6G3avuhvJO1EY+yfqkUx0OKkVCWaVNepRHytXyJfyZik6ZdDRgCIzB0dD7jdfiNRwNZ3buFNdffUW02H9/aFIcYSzG9BmJK4ysMaYirZIrL3MtKi8AiLkX1iDtlieKuYxGpu+8+27cfM992T/k17feEN3O6Rp1atWiXAVjkQapZUESSwDS2AU2OosSB8F/aZ9ZQGs4kYG7a9D5oGKqoqfB+PwLL8YTr74OXkS8+MeHo3OHDtmIWOVc3NMRLvRlBM7b+8QRnT0an/L5hI3rBV7ikfSlMTMaY/ee394bn86eF+cef3RcvdPRIKlouKTshqaywRf4KH+U/pVJRkvdT+GiYa1B4e+uSYfAchwtHwwZEtf98tfOLu69/YboesqpsV/DRnn0ropiwbATxcUZHIHikdsBDLAAUPTA1UQYJsTfdFZ7isQGePIsjtd7jWyPR3q8GJee0yVO7NApjgBvjH5vZO47cAxa7qkDT7wRDsoHcfxH+KyyUJ6Zhihj6/wVp1R8pfMvkX/P4GjYwr1dTzs1Dj2E7vQNG6bRuBbHnhFFSx1RCPIUIvUMHZzKQnm5e6xe43Ncp3Slk9Wxv/lmAbD/LJ556sk47ayzowPBjcYY60ZJ0wmF88K9S3nBd4W39OrcpU2zwvzdPZZPFp0Nynz5jCd7DRw6LEZOGBe333wTfKxlVKlYOZ2TiTPsqdlTpXA0mD1iwMOAQBqh4LryhKfFNrZDWtWIUTn/EaPDjIMRw4fHc08/Hx07d46rL7ko9cOyjCX/lT69pFLxLh2ZrMFt9Ohm+YMIW9h7f5cfFXTKb8mIG4NOM+DdftGLEra7r706zsHJU0dHA2MYaEmeyBxV+BfhsLET/HJgqrEiDkmvO/D0boP2lCfiu69tCOIFixZyXPOn8SHHt3tdf+mlcQgBFOlNB5lzcvby8aLjzoaTZVibpyYUeUEJ5KJZDep4GtN7gnPqdLPncGoYNfN9PhoUnVq3jFtvvjmNUg1n+Yl0JZ9Jox2eVtAJCjCRxwgj8Ua4iefSlnzY6LoZiu9zGtzlt9zh1OOXl18al150UeLNDvi7Bn/SDbiu3uQaCgZYAf8c1/GTjsBz3/29GByzbLDXW2/Ho8+9EEfXqUpQ79boSGacRycWSu8QcuytMsG1iEcaqtKWvF54iZdp6AFH/sz4zIE9l8t9MWVy/PHpv8S7lFnfePG5ceJJJ0VL8NJGezruLB/U8cXMMpMpeTKOE8d32joCSkK/W8BXs6XkMfIDdah1GOwjyeC57aYbyZo6Oo8/P6xlq2hQrz48vHByg7DO/XNePKvo5ORj8A/ewNx9L+rCedIOz9VYnzlrVvTHadq392tx+dXXZFZZnpZXHaemNgjrd3ztD8dQ1mn/SLc+U/rUkHY/PaXLz3V6aj8tWrgwJsJr5GU2vLzk7LPjwGb7R3WasurI8R7vFwbyXuepvppZIDxHx4a8TTrdCs54CklJAnrKmWVLyRAi02P06NHxVM9eceNl3eN0gm4NCEiKr+JJ0XnknIWLTlFtLzOatHVsjK0+k/yRz/zcrADpb/pMytqHD0WffJ3gz6J4jjKCjmR/aTeqT6euzdzdw8zmQS75HHU+907eYyDGku4ylFdpN5mtVgWnjJT4CTzy5Zd6EuD4MI5veUjc/fPbozWOhqQhdWHhDWQK895JuzxXh534n8e4Qp8pX8ATNiPxpRzZVcvp+/EBp5rcedsvwzKtay49H3q6IJo0aoi+wTyR2WZFMaGcu7DXOeS6Pd1w5ty5HDH6XtRr0Zwsl/NjF8s9WVtePPu/+fq/OxqEA8iURFyEBAxHxi8RbMPImD6VNNmxYzi6Y35UQhi1QdluRhRCoW2HX5V2cICrUNc2kvSTP979q/iCT25AIJ/drRupRc3yOTKgHWyYSoNI52NUhgoKuftSNCQKx4vJNDR2NLw09BQg7wwcGHc88sc4mqZAZ156bbRr1y7q1q6dnsdMb4VhSzBVULxFOo9oMu3SCLO/p2OD55ZAWJYgQluSzvLrcKhYg+lZvX3e6x8TB34UJ+NoOPaoozFcDqSOFESHyQknv+/cC545O/CiPEOIKrIqEiot1mNX4HeFg+l0psCv+mF1fA4Defall+lxsVdGLVpRO9aobr3YReOAfZCByNiSEBCGMg+NdxU3ezXIrTOigfKm0LD/goxs+fJlpErPiZEQYt9XX42Tz+xKWvDhHMu4H3VvNaFDj6YzlRwid+4qEbw8i970w0IkwSgYRMoNzqGoxKjAWO89beYMapCGxvTZs+NKUgBbHnAAGQ27RxUU7HQ0MK7z1SOc9WgIGufuWDI/lQJRRaGpM2YHzKnCbrvGChrMjMdTOWTYkHjmzffistNPjbO6nJwK6G5E3RXKm1RCFczM1TQ9veUFZbTgvFBJVkiqQKjIbeKZKrrlUIYWUDM2CvwdMPCD6D9uEgruzXFyx/ZRA8PIVFzHFCfTKGVcDQ17H+QeAw//83+f5/h6dWWA5fGe63H+etrUePe9fvEwyn8N1vfnZ55GuB2RBornX1tbnPXFKLjin4aLBrVeZy8NZplpSeab+M5aNnNMZHnxkj0b9fHH8cyjv4vRi1bHJSd0iGsuuzwObNqU5jYohLxUvEsTuVHpTwHjZJlnGRwhPyJwZ8+fB959FWM+Hx8v938/n1kNuG5HiG9lTptg0Cw4jD3bWUFBKFVuw8snHpetgFGIG3fLVgUiTjpgZsi/xFaY9w7mzH6oMW0rQfaGnhueva2kBgBZBbR5Tya9rdAm75zTuxHRaR2HNGsSDWrXgJ9g4BJ98KhHldzsLsx4lhGZ+qkRrHA1YmxJiccICf/tPNIo5qcYvH/442OxDt501mUXJy9ozrFdwnkDxoURTOGNNGDOGCr87EkPOjfwILF+lHPwZYtCWcUCfNkOX1iDcbEQo3HY6LFxzx8ejfZHHxEntu+Y/KDxPvWjDAJnw6ofOCJvacyYO4dI4efx6Cs9E7YV8V9SRUIdb4Il8RK/DIqoSMTEeanEb4Wnrd0IHXAvgCcjhDfuIzC2M9W38G7aL+DNF2/JalX4ZZ4aH2vW+WnE6ce3jaOIPtevUTN2I2thCUcavtT79ahLn5yuGADN9mvKOdt7Jq78QAaU0S4VHvmH46gcGRWXl5nyKh5kZgDv4pYGj/zJXirT4JNjOHf8zbffjou6d4+ObdpkLX9FBK91tNK6kSAdF/KGjIaAyzqay0LP5VFIZUTyGGnKhQuTDThhTBsdiwwZMuSj+I6MuauvujqOatUqj3mTp+tk2GJpCXSbzAx6lWd5qdTqSNNQN4vHvhvyA2FecVdqvpnPJ+PHRZ++b0fvwaPizE7t45rul5B+uW+B5hnT3i2isc4enyXOJL8Rz7mKyno+kXE1xlS6NFoXLV0SHwwaFH958OGYwr23X9U9upzcOfvlyLfKmuWCA88SRPmMPKU08FG5N1KsAq4Rp+PCd3Fd2aGhakbVrDlzo9drveNPvd/MRlr3//6+lCO74DTUMScPU9lPOQW/1HhUdij/ioqoz1QJlV9qQFo+6Nx99tjPP4/7f/e7+GT+gjjvuKPi8iuvisMwqHXqeAKS0ZwiTUmrQkSlUR5vZFCYOHY6fYFNGhY8x6jR9yhjA4YNz2wPG3bdect16WiQnlaTWfUDdc9GiTTyUllmnirQjp+8WfjxRJ22lmEKMxVE17AevJm18BuyVAbEY716xXmd28YJHU8gSHDE/zga1hOlB+7y/EyhZf7pPGN+8l9nXzDomByfqfgaybNUwGNILSt5AXra+P2KOO2UU+JI6u33a9I0cVnYqEeZbaE+kzKFeaauwLwL0UXoB0IuOhrScc1eKbs9+nXsuPHxFobLiaefHm2Zd8OG9K/A4auzQ7rTQBLNNWCAcspzsw01OpW39qMxYqpxLV1Ld37Pc+on05Pko1GjY+QX4+Kqyy+PQw9sEVWRAbvCJ8wwLbww2pm7gRrpPjML2APpUyfDWgyALcy/Ig5BjRZxfpVBAhwNI0eMiN6vvBnHd2iPYUQEFv2wMs7sMsglebk6CxPLlzRq9oj8RgTS4FL/yEwHFqiTweiq2ZT2hTJbYsA7faLXpMnxq0supYyNskp6hIlr5cB7eYswXQu9fj1jOtHUPtEDhb8GcNrETSWZw/Yd4Dyr24FMSh4MkxXvc43ctxXDfMsmouJIDvfFclJljHjtkZhQefIADV+NmR2bCnqgpky686DPHeVKxYo1K8DdytH++HZRq2Yt+AdldRwJ/elHo2Pf5nXipp9dG60POST5y1bkrk5X8cUAmbwm+QE4JF66Pp0dOtaVqcI7eSV/07liFs5gHDwP/eb+WMS9d2IUdT3tdAJXjZL+zeAR9upN6nUaeuKSaxZe6qqpN/F71s3zDGlKmlV3mr9oUbzW55149IWXol2DvePsiy+P4zAa98b55bgF/ajgdFQ/y2AKuC5v99Qkjb3MLkZOe5mVXA6dRrm9Cl4wAUfDc6/2iqlffBZnnt8tjjmuLUfEN89MEJ2a8hfHKoWOopFXWj2HuVl+pjEszhv42QKMVq/7MU+WEE9Th+IZ8rJ77rorjmhxCLygYxwFvTas34A9pSwTvbRIJ9KKNCV/NFNDR7m0U6CznHr+XDjmfRvHd5KNOG9efDhqdPR7rVdmIB1N35MWOKj2wgmjni0tuoHKJeWFhMsj2EbkBGOre6uTyzMNsPhHyy7MaFi4kIyGyV/HG++/j7FdIS6iHKYFeryOBrOj7CFh8EuZ7e951CTjWBZhQFHj16wXeZr0SiwoeZmZB0vRCb5E1x45YlT07vd+XHbeeXHy8cfTK6deln0JX/dSHU+ZJ64IB2nWOTqmOKPOpKMKccbgJWjmSN8qeKVH+g4dMTze7d8vxn49N578za+i3VFHxV7YCTrmtoHzjq8+Ix3JJx1CHc9AsyePGIgRV3SO/KjjDifyngSm1AE/GTcuXnz+uXhp2KhoBw+79bpr4zDgLq5YjmjmsO9JPIzryRE6js08gLiyeet69t7sDnEersrpM9iayJHllLMOZu5/fuSe+Ap19eoLzokLzjsnmjRsuJOesJU2oOOmvlxwgrmXBjul07k4uvsQcGx85GFxCYHYinVqp0zIBbLW/+brP+doAFjpbACRZGpwpYJggMlOm0KqzcgR8Q2G7C4oYccednh6rBVKW43SCEkISUG4ikjdiM8+jYfuvTsmAdmfdT6RDpzn45FrDnJhYLpJCGBfIlkyq2S2PB7GpwBSAVIYiLhFw85ooIa80e+3BwyI2x56JFpx2/kYjWY01K5VM8sybDbp18shPG3A5fjr8Y6qaOl8ECFzvtwjseDSj7Ic+bWOSOxSBP5X06bF26QDTxhMWu0pnYm+tqXe/qCoToOh7TA7Jllg3DxF5VtFSMaigSchS4Smz5lmaOO2Enr6QOY1azFKGH8cQvnZl1+m7qdmnABjbdX8QBwN+2Sjosy8kCEBjzQAGFPFQQYo41BhVBB5GanQAWDfAD2aeipnEO3S0fDO671JQ8PRQDSnGQ4e69KEbXpCYUgyP+frWHrjFC7JVN1G9kQPpvspI7Y5jo6DRQsXZb3h+3j+bZhy5QUXRiscDbtjrOeZ79zvM6wxk6YUAjpinL9pnhotKUR5ruPncXVEtCvvXjVW/rgmPmXegz4aFC++N5iSlVPirJNPiv0RmNU8xo99s8GdgpjJpmBOxV+84eV4Zn2kkIQxCm+zGsoi1GwO9c3iRTEEBtKv75vx0dR58bs7bo1TOrWPPak11HmkQLahadEAEj/SiFFAAA8NBBUhn1OMSMmgKuEkURmdiMDs/frr8Xjfd7OD+nNPPxFtETymXG/CEbCDuZkqLb0YCXH8TMVkXJ5QEDaMreIj07O5jAppZcY3OjJi7Nj48923xsfospd0bB83XnVVHLTf/rEVXN9EHwXnaORMmIA8BTjwc3kUwrV8f/rc2fHJBBw5o0fH+59+nPjzj/9UKkcTQ0h+JfWy//kLKxpV1evUk7rGEfCPww7YL5rQ2LIcz1yHEo8KyNFuKKbAh4/Y68KeWGcuLbgua2Hd4zQcFaT8/OmkifHbRx6JxZyb3v3CbnHCiZ3jQJQVDaK1OBitp03V333kpSFQFth4lKfOFY92dJyt8Ltt0FFJ8H0bRuoqBNw31EoOH/Nx3PvgYxi6B8fJnU6M4485Lvat1zAdDRt/4PhW+NGcBfMzi+uxXj2Z+f/Pi8WWILCx4z8A9nY0YTuh3fGxLxkX1TEiviN75QXwslq1XdLR0LRxY87ZJusAgb+BVHLxWoVKXEwagr50DlgbqfECmiafyaZH7E+RJ6msTJ06NR0NvXU0IFQ7tTk6PBvcOlIjtToQTIO0mZmGo/zAI9SM6tujx7RjlaI0QIC9GQc6flUqjIqMHDsqBn84IL4j4+Y6ouo6GurWrE2DWDo8M8Ym588ENUBT9kCrGeFlzpVQeoyy2I/EyJb5ZcqRXapWySM+P8ZB8sZbveOtEZ9RitQhfpZ1nvumsq9cqoDscGznmg5CcMmsPetLhVU6YcGZZHR87tgaAcor+wS8P+hDjrh6LL4BFW69/JI49eQToz6NeTM6pzKEwVuaqIhzV/H3uzpe16GcqrgVIkQ61shkgc//iBJtdNY05Flz58ZLOJKfeKNP0knPB/8QJ7VrF5WQDWsw1MV3jbsi/1Lm2YzX6JHGgZfyBW6TSpZyXrg7d+lgDMr5b+67N8YvWhJnH3FoXE1mYuuWOBr4/g9kzQiP0izdUj+PMjaSafBA3v83pxHjJ53yDJXQHayjFIaYxsWA4SPihnvvB74R99x8LdHp06NxvfqxEvm1ZiXHOIM7RioLeIkDAfzRWPdZGsMaGzDM/NxnlMd5ZIS04GhYEG+iGzyKo6Fr29Zx8kld4uijqD82o+FH0shpcFkSvmK2kaVVXvJzHSOZfcHQZl+oTMvfMyMOuKr82+TMVO+eb7wZ65cvZU9PieOOPiZaIAMtWVrzPc1TkVFmZpUjo6RSeYiavVCuqBeJKz7HuWrIuQzlubS4DGfl9Ok03B43Lt7oVQgSHI/8MBtRw6UYVRW+jqUcVe6pA+hoMAIsvMR/P1O++3cNF3+ev3BBfEnG4Efw/9GTxmePhsPhFbXow1ONE250HOl8Sac7dGQwwki+c9bYFic14OxFsw35VBH60jEl3mrsmt00YuhQeE1fjJa2cTFlWi0a75vBE/sYaEhZ1mdPGZ2JOjKVz+oGrkknmvPN/gE+l5dr0tlpj4ahjP0uOtMbRNjvvuRSaPbEdDpyJ8ZC0WDAMchzJpG58UyPHvH2mNG5v//uPxXK0W8CR4Pz+k9cTfZrGfs2ICMT+rLUZjiBqxYtGsbPb7kpjqCZs3qp6di+K6tYfOKLMlwj1H1TzhWboxacI3AleI0/yzdWIDcHDxsRv/rt7/OUgDvOOzfOOf2MbO5ntnDB0UBWBjjPFqazQZ1OXcYx5AHiu7gubuYz+FzHqYbY/EWL4xX4+0PPvxhHYaddePNd0b5t23Q0mJmmveD8U4eCJneoW8LfdG6ql7qmdTiuNYrlZfIY+dhG5O4q9OEJU6fEM/CyTzF8L6Rfi06qFpQj6aSQ7tWX1Ml0MgCI1JE9flc90IwKcV6d26NFN4CbllD5Eld/hJfKy+779T3RslHj6Ey2RFtkdxNoKssysVOUZ46hLizOiY86v5R/8iHxUbzVoJfmCp9ty15ts+fOi0HgWB9KZs/CuXPMkUdGCyLre9fYGxosZDSI28Vsj9S5d+K+mcnSlnq9/Tzcbx0GZjTYxHP+vHnxxaRJ8daAD+DNZeICSlkPwNGwB9mIRv6Lerw6u3jgvJy/urcOYefq+NKtGQ2b2aSy9CfSUb0UPjue3hL2QHrpg0Fx3TnnxinQrDy4KlkHyj0d7DoC5E2ZUeZYjJvZdiISeynOqGcnr+TmSgQby2Of6Wj4CBuh3/vvcBLOgvjTnb/A0XBk7A0PVuYru9fDi3Vo6HhQTvks1+G8lYOOqXNA2eTRle7pHnvDB4HFx9gJz//16eg1dly0Rc+74/rrozU4o12HMVPAFfGS8f1vC/snv9UZKW3Zyy6bzTKWeK5usKMMvJL5ryQQPHDY0Hjwrt/EDJZ51flnxQXnnJ2OBucIAFLn9j0d3/C20sikov0xl8zpt998M+ofdgiOhkui/D47HQ18lQn573/t9Z9xNAhEXwgqa2dEfA1kdh7mty2mEw0dTkrJvFkzY7eKlUGco6NFk/0QTBh4GFKwLbbU26mNwls0DGPmzl/fFXP47OqO7VFEL6H50AGMxf0wKBlrpqfyu4hm1NLvKyitDROhFGIK4/SayQgZuxIRZNMv36Qh0y0PPBRN+M5Vt98Up5x8MjXlNbMBTUYxQVIdDXpDk6HjCEivLgNqZJRXyeU/u2BvZ53lUcStz15OpOJramDfePf9GDRoaFzYqV2ciHFxRKvDsqGUBCjTlsFmWj3zlJGkZ5656mVWcdEjp/JmzZjp9SqOq1GyFpPC+MmXX8RfXuxJ6t9epBuTin0QDebovK2CaFRE5qFiLvOQAZoK6fgis8LYZ+h0MHPDTIrKeC+9fxnKv46GYaQBavSeT43QcXhwmzZtSkPIGjnPbBLD/FIRAZ4qnKYfOrbPTVpCWLsmiV4mbHMr92TO7Dk0efk83vvoo1jKPK8io6FViwOyLEPFUKMi4ZB4AIxhpo6hIyZTanl3k422KeDWwlB3YNDtUr0aka4fqL0aF4OJYD7Xd2A6Gs49hYwGhIIZDTIkhXIho4G5MlGNJKbM5bxdQ4Hp6agywiUzrAC+VIS5zkXRGjh4UPTu8Wh8vHxHPHDn7XEqDbf2SOcRwoRu0iqJCjWjmTo2xGkZl0quz3ItOpEyms6DTRWrRJ8BHQ2f08OkR4/n49nBQ/Pop55P/glHw+E5no4G91YGbtdrDV2zJQpp2AX8Fu6pzO0UkjoZ9MrbXE5FY+ioUfHgz26K8dx3EY2wbkP5P2B/MoSAydZ1dsMtKCkyVh6V8/QkhAowT0uCZn0zP8ZDw2PZv14o4l6a/l6C0LWW42WU0Z/BcPaowBJ8Z/T83XtVz+H/0G3hcz+DSyTu+D1f3q9bYWsJaLg0KXHs37YNNJjg6tb1PCILR5DR0DQaktFQmqj+ahxwziebk8G8pVlpTNhbYlJw8iDY2NuiQqS3W+fjJxO/jHseeijGz50ft51zRpyGonUIAj/pScMInqKH2x1VoS7j3jF8aXAeqcwLRxuL2AK8tjJmSeh1Kz+vBj+/gaaGjR4T9+BoOJaTSk4iQnrsUcfgaGiQGQtbMHZNlV2EcTnk49Hxqz89ysic8c25pKWoCS4JEIpwlJcRVEOI5tLyc7YYngYseV9LEIHtzP0QxmY1aNAJZ2HsKz/3H+4noJYvt34jH3md3bFDlks1rl0nHQ2ecPPsa6+Bz9vjnFO6ROMG9UlBtPwALzw4aFZNKj3iDAqPkRdpqaiAJU2l8WLNKdFx6FwHhM3lsi77k0/iZXopXHnppXEiqd4N66OsUDssL1FpKyhu1noXlLTMBGBPy/tcBTR8Jp0D0ivAkF+qwEzGWJAXvPf6S7GC1I3bbvt5tMHRUBslztNQdDpacy+9akiLL0VHqjhSGbw3q2EtNdZF413HbxXoaT38bTTy6dVXe0bfjyfG2fRouOmqK+KAJk2yXMeIi7hiRoOySdrSSS3PySg7zywaRBnlgYda3pf9MlDmzILph4J402N/yj25/cpL40wcp/vUqgUywAdQUvCAZFlNeXi5ChaMPencGlflXTrYgYfjmzm1FuefDlP74cycOzee6/FiPP123xy/96MPR5dOHdMQX0VWgDxSXlN8KXPNCFDCysMyY41vZlYcsLJ8rTSGnnxMXjOarKdf33tPTPh2aZzR6qC47oYb4/BWLXPua+H7Koo6TXcjs8RImnzZdNd0MrCPlntoDBmpMwvR5qo6T31GZjQM19Hwu5z7fTddE+ecegZKbj14QCGjIY0HnArKPx1R9nQyrdx+AhXB2yx7YI3KP2nKSJS8LksnFi2gEWR/MstejTOPPZRMktPi6DZtskTO0ol0NGCwUAGWMsVIlGm6ygpPi5GxCQMVavHIgIslJWaaWJpo49mX3no71n23OLpAT+3btqP31IFp7K6jSfU6MkqUI8qQbMoKf1LfEc8zBR/4qMf4PA2vlPHsicb07FmzYhSOhpdefilOhYe1Rzlvsm+TlN3KfWWr8AANcx9TtjKueC+9eY9XGqjA3vddkH0KyXnz59EY7wucoaNi9Fefx5XdL096ali3Xp74oSG3jX0UzzOzTzxhvKLupQNK482XZWXip/spbFatWRMTScX25J+nXusTpx13bFxGqreOhsoYRTpdMkWaucuvk06gTfdOo8oghgGJQuQUNOM+6Uta2wWn5Up48EdDhsQ7zz4bb2Ek3cPcz+3cOU+hsV+EtJM6DLDVkTEFHbUnGT8vkNHgcZ+wSgwc9En4BFBKZ+f67QRpBBYXI+gLSx7iz76KV8K6QJ7QFTzGD7gc0+MF7dPgmthhju4Dl/hM+WeG3zFHHhM1cBKVgH9sRPfrN2xQHNNsv/jVHbfjaChkNBgUMwihrNNQkpdlzwfGyKgxe6uBYgBCo66o14g/6nwrcfIMHDIsrr/nfr5B9tQ5GkbnZoBG41+noI4u4S8/ADtSHxNm1tdrzOlYMUvQ5zm+e1pwsJUloLQoXnrz7XjwuR5xMN+++jd3RacOHdLRoMEmr0zDlrFt0Oo6pFX1NfvO6LTdgD1g+VQakujE6vUajhqQn+NoeLJnzxhAJs81Z5wUJ6LHHwJsKuLEMqNB/Suj08DIUrPK0JUOPNdlCrx6QWn0STdwGy9piwRKHGJkJxMAGDV+fPzu7vvi4Hp14+Qup0aHdu3zZIut2AOWKyWv0ejnEu900klPfu58C448A2cFg97PvW/FihVZEjNw9Kjog2F5HqVOR5M9bFBPXdsx0pbh3cyLzGgA9jqpHVcHo/S5BmeHmUPKVUsky8HjN8NL58yZTUnll/H2wAHQIP2VTu0SBzQtOBo8KSZ7SMC7GIRRuXiXH5RVt2Z+ZiTphBXWZjNsAt5mfll+IK8ZR0nJ8KHD4qn3B8bt53aLU3FUN6LXzG44Hc0yKGYcZIYs48pD7HkiHyw6odTD7KyyBR7veyWznAjszZw9JwYNGRx9330jPpm5FEfDHdEOJ0xNHQ3wdeXFBgK/4rv2WcpY5lygO2iYsdQBxHGfYX8J97TaHrunLNHR8MKzf80yquNwNNx9y804Gg5M/E58FFfAm7Qpgd0WcFL+4BqUfemA8GG85EHythIEPHcl4Pk9Ac/+2Lm/+OWvYwm3XHVe17iA0yOaNGyYeph8cqvOasZXfynLq8CHCxnUZjS8QzZVHU6auvCii6LCPnWSJqRhn//ffP1nHA1FCEDAKpwikx7+1IDZ+qlfT4rhgwaT0TA7a206HX1ctADxjSxsBGnMVNAYKwOibcP4HTx6dNx0w/Uxk3Fv6HJSdO9+WRzYosXfGISKHGwpFSCVr+LmS5RufmmJH6FvpMQUeNPYVF4qoIguReC/QY+Gm373QDRijJt/dUecccbpUaNO7ViLouXRe3qu9Dg5J5XQNMRAOJ9llDm7mYJpera2MpFSpnPtII2ZTIQpM2bGK2/1IbW2f1zR5USyGk6No484MkqjWG1BmcgGXnw3FVwEWF4wFAmcR6VgkEgkFj3SehJLw0Q2MPZi0mo/4QSBJ57vgcOmHI3ITozjDm9DM0hcJkzvR9YmOpq6ZZ1lplcB2zTUmb/RDB0NGgLFVFU9/3qpPRFjzty58dGYMfEC41911ZVhVKRB/QY0gINImV8houUsC8a5PxXnnF5dHi6TyjpP4G0zr3KmHMEMZ+PE+AQnxnukBa9hX64g5ao1UZHsuk2K4xbgbrqYQlbi86WyIn2ZJSHz9TJ1zEWq0G3Hk1gBBmVGwySM9ZHM/c9/7QnjPiMu6npmNG3QIBVohVjWM7KGFJjAyvUkowU+4qsKjKvJcRlffMkeCgitbzC0Pxg4MHo991B8vCzioV/9PB0NNffkXG1wUQ95Mc1eb7yRR9W2rAFX2PFzRgGFoco5+ysTL000TWV0Ig2fnnn2mfjrgMFRn3sfe+Ypau5xNLBWU7yds4w18c71o6z7ubBX2Js6jfsYYY/Dg5eOBtdk40lTsoZS4/nAjdfGWHTii3E03KqjAaFG8XCmfDpfkAVEVgVy3jB/Jl2GfTGjYc4ijiEk68L6657U1HspXncBfXX6cQpjrlHFzM8dxfXzp1TIsH+TXmkrkhe+jVSohLgvqQCQJLtYj0I2N+9COJTD9cFRFWuxijfhfPO6rNv5cSyC55ADmlEXWIvvI3ApWdLxKOyFWWGPUaykfYCUsJcOwH/hIuxVgo1Wf/zFF3Hfw48g1GbH7URFziCTpxXKio5ABZqGlwqQOCTty7MKx0C6OgZPLZPJ8/8Wft6OgaOjYR34+S0pkoOpH73jHo4rwljs1LZdtMbp2KB23TxVYgvZJOsxZhd9920MHsN9f3wo17jXrii1lERk6+LCU3KvpQCdAsK3Ci9Rdh3TMM5cgZ+dCrpZwtRqFbM9/Gwz+76Cz3mL6rzQ3WM9U1/Pd3VcqOB6de3YHofIEWSK1I8aZOss+W4ZdZg9cVhVjgswXpo0bpgN3HT2aVTII4vKibwQEKfyVqBdo2oojuyBSpORHRv8lcF4WfnttzEOgT90xIh4pf8Hccu118ZJbY+LBvXqRUUcGcJ7A+Vj6dBkH3xPZ6bjwxCs3VbpMgKmoqWyu4O9qVSN78LbpoOr/Qd8EH1eeSZWl94l7voFPRoOPTSqs6Z0kkCvhQykQhSkANxCxpZKmEajzl2zgeQHIqeGUSUcDfKo4cinHs//NfqM/TLOPalT3EzPkxb7NcksGnmB8kK+ID46X41rFXczGvigwBd2wspoiUapjq9SwGYFjoY+GDm3/v7BPOP8npt/FuedfSaO5b2zbKQEjmpPJCmLdyKj6vBIiU/DvNhkT0U/I5c8y7Ht0WCWRmUMr5kzZ8UTNJt9svfbuedvP/F4ntCjzFyPfCo6GpKOUPhtoGgJknMvg2MgGTK8WNjLy3QwlEKGQBwYsxtjNMbufb//XYyaPT8uOO7IuOLqa3A0tEqalEdmhgcWl0Z/KfBoB7JAY5olpLwq7VgiNsqt4wsfaVX4rESxfn/IsLjqrrvTsXk3zSC7nnwqkd+GqUeo4BrtzswZ4KKCbv2yfKAypYU6xvC8JA3nOnwO+yrtWoY0e+GCeIUGar/v8UJcfsaJcUKHjvRoODwzGnROgQxRmpKnzIqQFzCu0UGj9pm+D1/R6ZjGl/IK+FvyYPmPJQKWTvTo/UasWbwgTifK2JY08gMpfZR/b8QJkxkw4I4KdHkMAvUNlIzcJ4076UnF1nGN7Gt0aMTYxX7hooU4GsbH048/Hqede06ccAynWjRpEntguPBFUtClch0KQtqPMNr5T31JZ776hw1dzX5IXYTnuCZl7zfAZeLkr2IgTp4h48bE9ddcF8eS7dhon/oY81VhLDgScdy5t5kRI57nHkK30ibPtFTLl0q/8klZUwHjxdMN7N00etSoePGV58h+OT6uuYgu/PvuW3Csw3ezrwRzNlNPx5N77P4ZKDF9XCdDQQdkcNalrmAWThmcS6uhp5Hwmfcw6F6Y9HXcTxnVhaeeSpPrOsxRTlrIZNDA38Hv9tjqiXP1GRxCYHvKL+VaWYbmqeksAIOiMr9XrorMRR6s/rFwH5gbVVgjqh40Fxwh/BN+jeyrxA3ruXcFW+jYjuvlsz2YXFe6/L0Kcu/YNm05/nsvDG+a5+HwHkKUt3XLA+OO22+LI3fSk3zF8gn5jTgjPogz6sHCRh3Srv46dtIBBo5LS+KO2Soev/n+h4Oi++138tRC6UR3AkANGzdmIsCWV5aA8rdS6hjAdhP7JY80s0Ce6D5uh1atu099FT5i2ZnO4TkLFsRLb7wVDz77QrRBYF3xy/sIvHWinKd6rMeplk404CevsR+aurZ82TVkWjy/J56y56mfgDcpC8QjXmY0PEy/sn6jx8QNNIM85bTT4tBDW9FsmsAV+FgsJ9HhbgNdHdRZbgq8TF+XnpIfgz/FrCnx9ocNa+Pb5ctiOJH7+3792zj20EPipE4ECY4+Juo2apQ0qVNQHVu+6Jx0vKb9wdx14rgX6sHKPlaRumzSE/daOuHRk+8PHxbvvvJqXHbtNXEU8qlBg4aZMeheqDv6XelPfqYubEZf0inP9ZlmSvl7oVQDxw8w3IKdMH/evJhAltDrlE6UBC8uPvN/SicyS4kx08UAfJ2zNpsyu6I8h3F1AmmNWH7ADLIs3BJiA1faCV+MnxAj0CmfePm1uPHSS6LrCfRoqF0nm3yng1HkZxx/Fj/4gQ1DR4bXayeUpXeCPEEnmxkB8oN0joMz02fNyoyGPn1ejU9m0wzy/nuj4zFkle1ePQ1zHWs6G8wQLO6lfLjAswqOE8fO52L3FRxs0Bvyz2yHz8hSef21XvF0/8HRsSXNIO+4o9CjAZxIJziySecFIyTfKeA3MAG/fYYnmpWQFliPJTSOaVCvfPWqlB6uifc+/JDARqFHw3UXdyNL9jwcDY2SRncQJNhGUNJSHmVR9kJCl1GHsfH/7G/mx/vI/lrN949u3brFLvXqQQsFHJXf/Tdf/3dHg6sHYf0nG7IB/DSiIAbjIqByTJ7yVZ46sWDO7LC221MnDmjSNAXTBtKTBaaK/S4YRhqAg/H03XLNNTGVb994BicIXHIpGQ3NM2UpDTruNbqoQipCe7kPyZRQCo1GidwqGSpfWbMqU4ABLIXI3/5gQPz8wUcDdho3/PrncSZK9N44GtaR7aAn1OiNzg/HzoggP5b0dxDQeVr/p4DXi7sZItHgVQGQ2Vhv/fLrb8U7b78bl552UnTBE3r0kUdxRByNj/Cuq0yYmqq3Lz1+KtL8l15Mvu9cres0KmKESoXXXg02lLIb8mcYpU/3eJH0zY00JDw52h/TNg7cr1kSxo+kvgo/HQz5ksATLoKqqExgmO5kjsm0IG6XlsrKwoXx0dix0QPmfe0NP8OJcTglJbXooVAllTaVWZ0vrt3xsnGXQp4xFP5+ruIlg9RZY8TFFDib2JgtYfdnO1evY9/shNv64IMYvw69CiqnAJNxakA4Tu4lc1fx8XcVCq/i302DVzEoBdPy/PPpM3FkoOQ+1+Op6NiBBqJ45/Wyul9pSAMXDVCNIxdsOp6RIp/j3K0ZVelSKZfJqqirsPuyR8EgPJVvvfp0jFm0Me7/+U1xUgf6epAFUwEvuYJevLTXgZ2TxR9xJZkE78W1sBAXkII+UwFxfHnreITCiy++EH/pPyiaE82+5+HH6Y9xWMHRAGNKg05hjOOGjSULgUgrz3O8PKcb/CiJ0NeDvgFvvAqGyldl4Gr6t033Hr/7lhi5bGtcePyxdPUu9GiQYevF1XDU215SRRyccW8VMGxg/EDE7htqdE0pNTX3pbfeyX3gZNiohlyqjK6hgsWBEZk6ywipvxGsYX9g9NAF+goCBscE97NtCDLwEX0CVBcc3MjfoaEyGBOb+MMqtK4f3W5qMTbg8Vj9A2nX3ON1FceTHYcD7MDmzbKviqc/rEVhSuOOvXW/0yEA3NO5xHcSn3iXznJP2SPpyxM5dDQ8+sRTMYlmkFede3p0wQBoiQNMmEirjgtAMsqic9BohlGDUsCoNJNXoXLBphiqJG5jzVvYl828VhCt09Fw+933R/fzukU7ovYHNWsRdWrUysj05h/pMA6N62gwo+GuJx5jhIjau4KjeAEq8GiqsojOMT7KnBEx0DidBxUBtO6sTRt1XjEFUEMHgmAiAIxjxHcwEYNUuiUDVYc6WTrMkf4Xq8Gr71GEKRmM1fnUiC5tj81u8k3qN8gjOL9bvjz+8sKLUWufmnE+ztgmjckQwli1dKHY40B4y7tUVkRmjZW/wZvJymPyFBPwQCWnrBkNixbFWPiMkcY+Q4fHrddfF50xuupSOmF6ps4Ju7/LP0z1tIGUEVlpX+PaMh/5s43KMvLNXoq31fasThlJ+ZgxdWr0p8v8O689Gz+W2i3u/MUvog0KqBkvyb/ADZUJnXf5O2M5T58hD5fnyodVIpKWWJNKV0VKJ2yqWXA0/CXeGTuxcIrL5d2JGDXJzTHTQ2eDsDeKLs7YmDQNeJ4nuvss9ykzbXh3DRrSFZF/Roz60gfl/vsfyLrp+2+/EUfDWfSv2DPT6/PUCZQTj7gU9hqLztG5ZlSRnzNtFLqQB2hYGA23bNDsrOnw4Seefiaefr3gaOjNqRMnd+yQpQzKgGL0UoeMck4ngz2KjCa5N14a7s5Z/m+mRzo68WiZnTN2/Ofx2ON/pMRsVlza8bg4/6KLaHp4SMI6HQrQkgaF8EnDQj7My7mqnBsRta+LmJyRZt7lISpzK9bQDHLosLj6rnsC8zZuvOGKOKXDidG0YcMcw7mn8a3c45K/Z2NknmmjRZ0/W8kQY5Ozptc+FgAxlV0V0jmLFsarOBoe6PFiXH8hR2cefWxmHOyFkmvWmpGoMuCemo08XgN9A2ntwle+kscrKlt5vA4esAxeDw+DX6xm7pOmTKVHwxuxetE3cSp6gU2i92+6HziOkwenZrGXhDieThFwNPeDMeTNOkPMUGHYv8l3Hk0K9Vr6NCzPVO8n//ynOPnU06PTsWRONS6cOiF9mmat4q+jXkNR+SfvMhugcKQ0mRqsQZrLi3FtNOk+f7tkSUxFvg4aMSIGjSWj5Lrr45jDDqOchy75lCZuQR7plJVPipGmcbsPwkAoqA8KZ50wNhe2j4oUYINs9bMZ06anbvDqW70IDrSIa20G2ahxOnTSwSs+wE83sQ7FgsaKTVTlE8pWnSc6GpL7MW/fNUQ8teE7dK5PMRgHDxgQfx37Sdx75ZWkkneJenXrJkydn32MlHcam1MxdHq98WY8SyQelpo8ndlHbaZQFc+A5YHibYVKNuOjvh/H/jocxhwaxNqRh9xTseKuGPacnkSJE76plHG74lmoRO+FjRvXBj1/k0drr9jnaBN0tIo+Od+ytasYYy/kpI6G2jga8gQGHIATqClv0vqQuJ5Ub49JtkTQQJrBH2WUTk31STMCjB7raNDgshRNZ4NlIcJdZ7s4uSs6ndnD/QcOikswjLzuuuTCuJgy5caNGmXgR/mnriQPK7vTCF2Lw0ya0mjOOnXo1THtAyMPSoOR8b10NLxG5tRjPV+JdvWrxUVX34xu1j6P6v0BnuL4GrpmMMib5Qka08V1yd+M1rsu9z8dKOI/+KST48tp0+LBp56OvvQLuPG80+OkLl2iFU6YgqNhXcJO49Hym+z3wfjqHwYlMjtO/AT24oCwslRWx6kNtC1hG4G++sBv/xCdjjs6OrbluFudAfXqJ19Zj+NROZeGNeuX10hnop/Od50Qxc+Uf6JnhXTUFnTtufPmR/9hw7JJ6RVXXBGHwyP3Rp/02NHCmPB0YOH3zELQ4N0ML87MJFFd3sK7c8jfWJsOCfsvLF5EmfKUKfH6e++xHxXS0WDphBltWZLiF5io+pBlyXkiDXtmbwY/tX9NrgM7RLvmx030neBnT7kwk8NTncaM/TiefuaFuKL7pZRVnhh1Ka9WXriH8jHxxpkZxNSJIS/QoE5bARing124gSoFxwB7D/7MmD07RowcEf369YrP5q6JHn+4Lzoc3SYzp5TXym1lbDqifBZ8zB4oBR3DFTFzaF9nl3KwWLpVyCzbFF+ga3+AfP3jm/3iBBxId99uM8gD02GnM1n+JfaKH65AW5LV0L9iTToW9qi+RwbgdsAz5F15dDu8bVeCHN+jh37w0eC45+e/inl859qLz41LLziPo68bpk5gNvsOGEI6Y8HJzMRiDfaVEOfmkNEwePCgqH/wgXEWWV3V6tVLOCIcE/8Z8r/2+o84GmQAlkyI+SpPMrL8mS3bjEE8Y9rUGDtqVMyYPIUj7dbGgZRNNNqnXqaFbYF4MjWT79oUUKE9dsKEuOPJJxOoHZo0jLOp57dBjemOlh+IDCK0ymYyDpiEioqX73psRQ4FqMqXBqSILbJ9j/JvQ6lX+3+Y91/dlXNgj6cTLs0V9eQZkdeL6MvxRWgRXCVXLd/n+bOEaJRNA0PvqoqKlGUDnJfxnn8xbW50aFw7Op10GsrKQZkGuAYiVTA4pkim0FcgJyFCZDJwCdEGIRKmv2vwGuVRcNhpfhJC+eEeL+fcu5/UDsPg8Ghcv0HOUWNXZreTA0Fv7gdzh/D8XCXa6G7WTTECy8ufFdZrURSsnbZz9SsYR90RCEe2ahl70UzK2q8dzEfBbnRBoS6D9nuldhK0z3TvZFwy2FwXa7NOy3UsXrgwphJpHND3vYxY30STFNO5bFBj/ZPCpTA+TgbnJqwZ06ZwrkPlPBV09kXJnXgGbEqg6FpWMne+Xtwvo/eA4XHE/vvGhZxtX5coINiQ+MLk8j1TohjCOeaWsWfCSJxJxss6xRX3QdjLBD0P+hPSpZ/pNzDhfu7JnTgV4ohMqbUDvwqWQlO8VCiqhApc0CKfL31krR50oQAqRulk3uLm1Bkz4923X48PwRmvX11zeXpZNZi3oOA6rvNWICt8VSYUQsLcTIxsfMNcjVqY0eA6pEGFtIrwuM+/iHuffjbHPhjfxhU33JbZHirP9jLQKy+cHU8mDVKkk2AHY5uiuJia4pnz5sbX06dTp/tJjrM7t1VFE2tYq3zsU2OP2LUcTB1n2Hbuz0WVKnjYFb0bcFaU4NSJihzhVZrOhNtoCgkL5zG78rOKOOnUPLsiXRAV9NuZz/coabO/XUHZxo+CN74z7MN1Kg3mDmnePOrXI223uv0CMOT4vsaPe6yCXkFBxs/2czFqwaoS1xUdllWJswo1laMvMUrve6ZHjn3ywftFW8objASquGV5CniiImejSZVXCInfFRZEodnj5HXgiIrqZh7kUbe+tnHvanjVKJTcnr370Im8OQLz2NivcROO+N0zSmG0aPSY/rvs++Uxnojh8+/1zXnsja5fEn2q3p6lokn9hlF1F4+F0oGHI47nqOjqFS+FRVMaIafSbeaKkdRy0IP0bfqfMNmqdwGcSecra4cycR5tjaUIxYUrl8aKlSi4Bl242hx4ACU1+0XtPWvwTOqbl6+I3z/z12jRsE6cdXpXlKy6Wfds+ZjNz+SHcIOkVZ1T8sXEb+Aiv0ma5WeB7/5aZiFvU/mfBK2O7N8vRqxan+U8Oo/2oklYHnXFuCpUKk4aPulMQFHWAFOZ0ePi2jT0NJrS4cmadVTbXHU2zt7hw4dFz49G5LruvOLSOJQyLZ1HgI8ZQ9/CkDll1hrv4ohzdizxRPnhu/Qvf9CQVGG3lGICzt5eZB1NxVFTp1q5uOmaG2Lf+vUTDinLwD3lU2aWAXtxRtwsGEP8yryVHdKbzxF2ju+pGcvJShuMAvpkn3459/NOOYG+JCeinFcLG3BaN210bqc7M2EuDjrX5PGMq4EuX0nc5BnyA9NtNQ7sBP/yq6/G8IlTcvw7aIDqUbo6Ma2HzvkDDWEt705nDnshf8iUXYixGKVLJVceyfMFoDj4xeTJ8esn/5pjH1mnWpx+7kXZRFRjxbGy7NH57fSauRcFpZE9AGby9uRBvCX8Gcl3GGD2aDDK+PRrb+b4Z3Vow+kKbTNDyHkbBRSm8ldlk3jnf/kM9kEDw55Qlk9o3MsL5E+mYiu/Fy4jm+SDgTHgs/HR6fAD6AVzBMb6vrE75X86Q/xe9iIQh3gGX2Fu/MdzMr2WOeps8PnuqXNRjojLHkE3DSX6kb88nxlEl3Sid9PBh6ThYpq/qdziSEbqlLHCBR6SPIefXUf29wHfc2/5m3Ldy4Z5qwiSjJ80Kf5Mn59T4DXtcNzVq1cvjQvpUGeH9/uSnpS10pIvdQvLItVDDEJ4D6vLd42DlWSMzad+ePCwoTFqzoK4GoesDdTUDWxCbeRYg45F515mbTb44yDOFUgUHF5MVz5ZKB/0yLlKaRQvACcnTsLZ3u/D2It777jtZspBCRIwQPYlAXeEqRkN0ktmT4InmZXIeM7V/Rb/vUq7D6xBHWQFPGwSxsWw116P0fytG3A5vVPHqAGv2cqY7r+yWSeIeDwP/U366z9yTGYwwIbzOqpeudiHSHxVUsXKQ9I+22wGL58njcuTkp8wX/OsNpPlqtNJeJbmB/m1OqVXqRJkHbHCDYyxir1fsnp5zFgcsZg/V2f8Aw9qlhlY69BXv5s1OT5fvT324Hu33XZjHLg/zYrBEXWtoiNcXVJ8cV7Jx3bSguVk8hZxR6PInlrSmGUxa9G9Le177MVXc06nc6rFmTQOrF+7TsFIZ1+FbSFoZHNDcY0sCnAwy5PBbfVJHQ3qeL77rNTBuXkhDqo+9Csb/NmEHP/Wi7tFG7IRq+LksGlwMXtBPUfjXB4hL5BPaOzKlW3yJ3yFmsafclu9zNLsqXPmxG1kfiGJ4qTWB8Rx7TrGfsgvHUzZ7BVdW7o1KKnupNPqb45l4FGUH+KU5SXq2TrF5PHLVq7IRtHPYZC2RGfqcBoNSpsdkCXWLkaaTn2Un4VR8kL3lvlLR5lFKU4Ab1/+XVkmnq7DwaPzbhBZAX1xzF7NqQ2HWEYMTrov3lvEZ8cugy7imPI3o+gZDGNM9TY/z2cwrs+UzlcxdzMmXgHnhdtl3S/J9P10OsH3tAOcqnq1+GIPFGVclkFyv/wknafJH9lbdErlap66hINoLnxsHGUlb478JLq0psSsQ4eoydyl+3Q0MKb6lw9JnsN+eTmXBJY4I91xHxuSvN25a/PMwzn12bhP4+UPhnp33HRhN7IRW0UVakTlSsJDPuPPcr+CrbZTx3NMYQQept3DXupo91kGE+U7nro07KNB8cHEaY4Uf/rFz8muJxsRPNnKnhYzYuV7lsaVwzbRNig2pd8FW0ieKe0ZXBEfxR1LPzwSdTTy6eGevXLso1oeEBec3TXq1a7N/dynLsbLch7xMG1AeJS0uR66soR21OBB0bbbOXFut3OjWp16LjBxqgC4HPa/8p//iKPBiLWps3rAU6EFCQrqmuk962P2zJnU9Xwck4geTib1vzzKUg0aCVUEkbNZC4gjwvt9EXzRCs6ZnTcbL/kPsVetOtGwQf3YHU+f3v1Mh8KAUGkodJYumWktplarxCrYjapL8HptRTCjhjJCiVJkW7RseSq7NsCqxrjVSNfNY+D4uwSeihRUYZdYETq7uoJ0Kr5eIpmXY8u0s8kJvzu+5/F6TNYajkmqUWNvhEXVPL1CL2sazYyXAlEE4pJQZBQykPT4MYYZDQp8EdxonoaYTNw1fQ+DXkjtdHlgtadj44V0HRpGPt+xC4ogt0O8WSfG2rNkgvmqAKlkKKwVxDIC1+xnwm0JGR8yQaM4NSiZ8FxfDVaZvHMscAtZhnssYUOgMhaZCs93D9xH73MuBdwo1KnpVV/A2D+wBhsdVYOppnOBsSxrEb7Cw88yLQk4C2vhZjTN9WVtH2vQO2yfg+wYzvrs6r2UqM53pErutXdtFBWO28Gbm3vFmDJvGZOOorx4F+eEvXN3H1NYAA/h5gkF6TiRCQAXjdKVRKVW4Cyyjq42jNXGQo6XijJrSMeRewaOKZAZOOdcFAQ6VFT2ZVD2pBBX3QfHXkHZzhIUXRtmNd+vedTZc49UZjPzAnjICNOYZsw0YIBJKp7MXyW8BIq0Bqf/5QWD1QjXcFqKsrVowfdB98oAAEAASURBVEIM741RHY9svVq1YneiSeJ2KibSFc8wEmI6m8a+TYS2M79NwNrGSCtwci0GtnMXr8jhayA7qvI6aP+q0ax+raiGk2ALhvM2YCWusGkcHQX8uduz0uGypEvrtOMD/lySlIdSpWxAtp1oG0o2VwXGMEWvFHu7fO3G+GLmghg3aQXzCcptEO7c0xRtq9beDWJXMqPKkk2S5ydT6yaMjRxr7Ip/wkt8TiUJZUXlx312T31XAfY7y1DQ5yLcyvGdPehsXAU8qyQuAl8FMV8o4EjyKPCI76j22KtBZZY3foOmWZeKq47HbeIa9EiGO8KDJquz5iQPqFF9z9hz9z1iN4QmZo6hbGCzHprmeLplS+LThQsTDtWFBa8W9XeLg5oSldyNjB/qH7by8khNPeIlNpMFxiLKm77KHH6Ax22hELg8GT6pmDF2CkN4ZUngUxnHgXPClYkTZ1MsWLk65pBJsWT5+phLholXkxrVaTJbN3mKhuw6lD3rbLWuatETZtcUsvBscLw0c9DhYvReoyuNtqR39gCFUR4mPQlj6SJpG7iL+/IzefJKlGizPoR7DQxpFU4NcEuujJaJyvICDSH5mE42lbWiMcayWTuw5ntM4m/3ej789+zr0hXL4M3boinOHcdXTclUa96dc6otzEk69ZX0z6fyWvFE+pQ/+rPzEm9U8tbg2HTuq1C6TCHep+be9BzQGVtYq81tpa013GOUJI1a5u5++IzsSg+eWmqggVrgzcAV3mk5j03U5uMs0ZCp3bABJ07USh6ffF0lxXUzZRbD/1J8QTY4VxA98cE/+xfhU9wHYWkUc6n9DJi7WRs14WV7VS/AXsXbMVSAbHLqfOU1Zjco31WQ5c/ugfw4TypgvvLzfA7fXc6a5+OY3QrPqIKBXrNmjZTdjimMpU+NLeWCcjVxQ17BPIWv6caW+rmn8nv36P9h702Ds7yyPM8LmE3siF0L2iXEbsBmszGLsbHxnkvlHlXVXT3RMzEx3yfmw8SsMRUdURU1Pd1VHV2dVZWZTqf3DRtsY8xidptVICQkJMQmAWLH7PP7nUcPiZeszI7KL46ZB7+W9L7Pe597zz3nf5Z77rnKqhhnIPUoWNZ8rA1e6Z2KxoxP5ROKWGkeEg6F7WX1EaQH/3GP7fh1g7MoK5xHnA5Sf3RGpIunimhIa4xeoM9HCIKdvYzdgf5TP6lDCqCBOCLWiysxDsYqrXxJ18vguTyorvSZ4q4/5Xt5TvvDRY624yeQmeu0P5LAGsUU0eHKq0UZYTLJGEFk61Y4frMD/L78r67Q5pBOkXnj38yhz3eF9SS6+0hHO0Gp0RRqHJ3CKNYmoo9ejtfvhj1E+9ke84HxTPlI/lJn+7799m951GdZLK+DGgenL55Lk2pqqQI/MmjuiqJ6xixNhh9jkI/yOiTOXWTY8KFbYTT8ow4HYxYb1Dnq9HPw4wnS1Q3cVxYXp1EeeS0GM3uOz5OtIBSczt/05xbZHT7HLNUhQ5S9O1nVfD4zvdk+8QB0y5XURSaomULnCfYUE7itLC6Kdj0lzBojQ5kDt/8YbJB/PTms8VgnOAPLwEpeK6eOSrUTCtNo9j8Momn56RI0N6hr8UFXWg3aOybl7hbs7r7/4EHG7tYpU890dnWq1X+3IMZFnOHTZES0nTmWdrXcSK2wAbsMUiEKYDgpgAUDOTWL+32WJLAI+ChsMufRZ5lpFHMFHV3Eku7KjHa4/CPfaUOKp/KP8yuWxXegXwe2ZBv2qpjqau2EsTi72CnZQgzy2iO38gKPD1yXn+RH58H3zIyRL8NZ5D15WIy4hP5tae9Ix9qORG2eCdgdbgfpD811iO2nNrxjMXNDDIi/GZe6W6wQO+2L26Icj/aTT3Vbm7rbLKRbBHTUrYWjCgmE46jTKfFFbDHDNFsFzzKn8mBQbvuKl2Eb8OyoFwD9DC5rB3Vi67WDxYOhv/yur2CNH+dc+dYhd8HHAHFWZJGFA/vZI5cGTpU52/fK5cLfr/G9NnyEY8eOpqKx47ELOOYdHZ3VcTBAkdmOorjFJ503aSrtgzb0YSj4arDBuTDwod3pyr68b7H0w/TdLVNlZEroP4lNkDxkImsvW2By/lwMM0vW/noMp323XYXaDD/nWVvfZ7st5QyZLcexB8eMGstC07g4HtnnOoeRDaAcQENl11fOIzKH+lQHXb7Ubghe5btihcfdmrlt4Xu3VdVVcGQ3AT51hvxt+6FLJCJXRlm6CV3kv1go4N4M+w1eqMuhibjJ/doFJ06cBIvP4T8QPKTvo5GnXA+JtwbstFmVHbdq2RYtBra5rVj+ku7ah44hAhnQyOwP2z0Jrmh7DB0+MrKqh2EPSF9P/zITSX4UP2KOGbe1YeQ3C/6/vn1n+pu//D853vKHacT4EnosADnKfKT8+i28/iiBhshoYAIiFQ/hdkIRlSCNKWSHSLvesnFj2r97TzrZ1p6KUYQW5lLpRyV3Jk1Fblqq6fN9rEtACiwzGcxqtoRGrcDEtAf6W2zL44t0kEyb37djfRo+riSNIxo7CjAbomFNPxQcQUWmt33bGMpeXVeBdUyu87xw4lCC3OQXwkBwZc5o6nmMqM937khtuzaliplUP6X9ERghmfPtd5RFhQtnDcHUaByI4SMo6iTq3Jl+iqoJp8h2Y+WGvmlAnABsPv90U3yvZspUVvizDAKNj1xIjbjbf4XJCFsUyuFvswCM/gqesaLjPTzXedA5V+E1HebIyt+8mmo4MmVS/eQAK+dHxRP7qxEO58/2dVbdn6xiu4wxfQXFbPTOSKdj5BZe3m9/UOKMaz8rWC27t6S5T303lZexCsH8C2J+PwNhqsny/btjsY88x1VnHXSBWYD0e/KA/TfIoFFrgcp9WzakASNGpwWPLKFwJNW/GbN05atBP+ff1Q6L+pgh0E+nknEbkLqO4RhgAdgI0ioAQcTMGPt3gr3iDZ98kCoXLkmzSYsrAIhdeZJPzGxRGVtELVPaWRDMYJD04n+84PFgGXmGVQvGAKEiTfZ4RwfHuTan7mOH06RFK1J1TU0UKRJcVIIqWqOaPiMCG9DEzBGdrCv07RKAGLzL5xJesHT+VSRnAbKT9P0MYMzAUnX9lEi7i8wPaK+DYFBOx03wt323oKjElYlLgKFpeI5Nuhn08IhM610YvGhpbU2HDx2gwjmKHidwdFFROM/7DzSmdZu30wKppDQ0Ch93au3AVF9WgmGEY03A4A609XLP/C367p5cwbgXxkB/lpEtUsh/kMl+WQwVo4D5jOAExPQ4pv4YWGfIaNjdcjztajwb26pPQG7+Swsrh6XKkopUOrGSFYAJ0I/sH76vMavj5HFmu7ZvSReON6cxFWyvqKrB2eF0CnjDZ2iISR8N08wIgOf4roGFvsiNcmQqnsavBrnYMYDAh8aE/NPUzAkcr/8qldTMSJXMqduKNH7kQZWndFS53cc8xlnOOCq9cWw01MxOMYvEAl8F9Fv+t0ZDZ/fptA9eeWPLVkmXxvAayWtS+dBUXzExjRk2iL6j9NhWEoEO2u8D3Vzxc35V0Gau3IDG4os83gt+0bhVPlgCihRKhIPgERlA1H9o6TqbDrElpqv7ejpE1rPXjPJS0vyq2BJUgvM/KrY6yDu2b9r2dTIqlKl+9HuwckY/opAfPON1/ATFat94J1UtnBfyNBh81oESG8UE8Ujsk45Bc/jR38VNazI4L15ip3T3M400McKjt9paWlLbnq1p8kPLSe+tDlwRy0I+aF+DTDrnq/dR6Iu+fkE66TV43PYi48Kv8E+MFIPPkpp8ClocbT6k1ZxmzluQiuB525W35IcMczLdELyG3Pkcr4vIk3RQJyjP+XgFKY3RMwRAO2n/1OGDaVRFXZo+azYnQAwP51CsE/OUCQMVBpfdOiAWe4mN1+i/RrcrStLvGnPNDTF+C4I1HzyYOhr3Akk3Uu2shaluEqt69E0c0xkJ3IAPxB373g+etO/2VR3o3lLnR92VvcS6rLiZK8LHWM0+j+Hkan0Jhl9RUXGk84rXMXe0oX6wvb7whbUXlHn1U2QUSUeeH5kbfMd50PBTrx050poO7djKto6hsagwGufblTexNGiCPGayCjGQTxSSEdSQXQNuMCVZHhkma8DC/ARJmWfuc7vhAWyP9qYDOJhVLG6Mi2LUg+wj/VX+tVJ0LFyVMrjaG550Fdq98R69fadHXuXJmCeyoZR1O3cGvtm/+/N0mRXEiXX14BHBOAK4Yrh9l/ahK7hffpYfNazD0IY28lcEBaWP+oRLefNznbhjBGz2bt6YxkPzWlZqI4Waz+Qv+dE+SXP5zFdf5tRgVfAt/dfukAecJ/W9et1bNeDP0ud2cP70sfZUT1ZkKYF5dZP8aBBfB14dqAMjT2gv9XJOaMstY9wcNUPke9t0vny2fOD3TLHe+9lOeOtceuTJp6nFND6K1+momL4tPdSByisMGhhrara8as2da+CvRr9zpL62cKN2j4G+U9hMHTivLVs/TeXzH0pzyYbyhDCL7Glv6Zyq57SN7PvAQeg5ZV26QjfrgKnHDUK6im1mhTylo9BO25+QFv7prn0xH/n/npk6OE2aMDaNMqNB4195oo08sO0WW4QoaCjSRU0K9rDJW47BIAOTGkXgsuAR2EAk+jIrnN3Q5MhpguoHU2qnGbcFjYbNq+urKW44L02knkTYasiC2/bEAx0qecV5Upakm3Nl0OAIR5FKqxE43yPJ+rMAr3YvvYj5sT9ijfw8ANrE3PKec+/RfWJ88DpthkzxRTMVnK922u/qaOeZ/dNo9GoR22eGwfO2rm6N1XDoEPoUfgg8YK69PEbS4o5x3Ke8RPv2RUyWdzyZZd/uXan7OMGykrJUXFoWdo3oGCdA0UboWuZRXWvf3X6jzhWDtYPDhuxpN3QuNNEXkAZtLCise+0lCveNSbXTZlAPYXTYXApzOIzOH21ryymnbksVq2Ixhrm2fQOw2dWzYMgfHhsvLh8Ah7e/8XqqhB/LKyujeKI6QXvZvkSWExClThMLtOXlT/lUHM3stp72nSzvhT5iuTUwdpNJd+rI4TRzwcMhT9q0XlfgB/W8PC4/6Lc4f8SkA4PMRtZ/EoNt1uwE7X3nw2CCtqKBuB3vv5lGVNalB+YvYAvHiExnc1+Mn3tCV0EP7eGwbWjHMWlLBs7ZYZ5gn4PH7Bt6XSzoIihxDj04vqwcrJkYWCTmOX7HYd/u6if6Lz+EzDJ/tm9mSs6L8o3zYkjvHAuM2sInj7bFWGrvn5WKkRexMWxK+uBY7V/oQvEL28vMSXnFrfLXsPMM8MiHbu9znNqh2nEeP95x9Gg6i609hG1idZzWNpaAnPgiDkcglrbD51IW8VvdkqdqUqfehMZm7hhYMDPeWkEGSsS0cwQ1T4I3J1jwMSh3/sqFtLmlI/31X/1l+j4ZDYVjin0KL2fN17f3+qMEGkIiggaab9lf/ka8nxQyjhvbvz9tXLcuNaH077ApeAZbJ6onlrEiBxmZgKiezaSrFN33YgFEU76MJMlcRr0VRIMMkXIC7U3RMdDgKvk2BHDDpnUEGMakyqrqVFlRmUYRgYz0JiZbB1Lj20icvfOYL1dpBE7vkRFlQsHA/rtXUfBWwLNU1o/TXoyhmexL1GEsKi6OIxkVDKXZs4x1UDR0jXQNZQuIjp3gZfuu4OVRZAVEIAvHnWe1kDb4zqpVpJX3TwsAqCKij0Y2VRy2b78EcfvoJXC5khSrJLbbA472XaBScPMVCUHgs3370yu/fjHNoSDlg7PuD5qFgmJ8d0GUvocjC00FTR3SCxS70enWkQng0rjIupABEP0yCLN+y5Y4TeJ7FKCaOqmOfruizxGdOMsGcKwiL/2ljSuTjkUQ8EhNwTkAFkF1fIKTzxN0TFXqAEA2EKASkJ9+4slUWjQBesIL0FXj0/F5r7RyzL4ELXlGg8a0dIFU0vm+QGL/POu4+2x3BGHWrnk/zVv6KDUXlsVKiKBokMOIpsrdCHlu8Ej/MB4Zl2BkHwScDFxR4hrC9OU0CvMIhpCK50hba1ry+IrYp2zhTQHGMRuEkScdrx2ULipsM2vOs7pzhtUpeUTFAWHiJV9qYLQBfA0HDgQA9ieoNW/BglRVWRHGs4CmAonVHnjQlXohytVgs2ps08JkRq/jyB74xbHqKlpV3+Kpn+/dw3aL7WF4jyCzoqSsLD7fvG1HevH1tx1wKmPgowmQ15ezEo48jGRl/RYr5VgAGcjDL1/wYF1HsQC1h7zzAjg18lF3DJtGjPBCBwMormq4wjSAQEP3tVvpwPEzqeHoBQIrKbX5UK7vzp/O0Zx1qd6sj+KJMUdmRIS8ghnuc1v13nsohpNpEoE7na6JKDaNz3xFQb4MQwvKaPA6B4J/yCRzoZEv/1ncVXlS3jxtQf7Zvmt3+tXPfw6vT06zZsyIdP+8OrvGj4aw3w9DAofOIIUGvgauvHuNLQcqTQMN4tklCk8d6zqRNuOw/M0rr8YYx/P/MfgPVUX9U9V4Iu5DUIrknPfG2dfY6Q2tLIgY28e49w5WbtSIgcaKqKIqJslTt8CnMDj44A4ZIL0LBqcLGL2HT51JB3FkzrIY3UxGg+bNQ9OnkJY7mS1Nk1N5aVkcVxUGAwEgV3siVRDeMpRsNpqBhnDIesbc3Nqa3mZf6IwHHkzLqR4/AhwMgx6eFAeVU+VeGdTYyuVVfJcflWefFxc/vVccdX+58rB73z6O1tqcllE1fs7MGYHPyqNyKF1cDReHxS/nWyy2PWv1WPPBudRZFh+kk7KlPLmVo4UghkVZb9LWMxSLm1RdnRkSyIYrKeJsBEOVV7oodsoXXhoM4UDxdzhQ4I5OtFlavn8EjG9qOhSnLk2sqYsigOPRVRaYilUjG6FDjkXjJzLa+CkmRlCUVVnpZSDSybXuioakxTVP4+x+RqZgA1tRNOoWPLI0zUdP6XhdvEghRPqdBSDNSBMrwV7oYKChPzJryrwrvbnRFzQSM6CbxquVsLdv3046bieO9DjOqZ+aKssrgsa2LV+rdzIs69E90EYd4Lw6Bmnt38pHGNkYxK6aqXM+37MvrV39fujkmppa2i4PmRKvInjOM/wpBkaGifxj/6CDMnyb4o4WJnVsPkcjz7oRHp/oljqdxu1bNqU5HIlbQ9ujh40k3b8ga5P7xR7tjFgBo12zuZxf58XCXXgx6PhMB8d9ZNEx2Li/g+y899d8kC7g4C5cuDAcwmGsxLvK7Lilj1gvLQ0I5PyuAart4XznBrPvaTh7r31yLAebm0OeauvrKSg9l3oIOHQ9fCLdxSu/H9/h94GM2Qyv4Bueq9wYRHYFVh2WOaQei3clnPJde/emvfD8MvTT9Mn10Y5zrt0TQSjayBcB/K7v2ZYBCQ13aeS8+jz74DOknbq+83RXWrdhA9kEZ9KPKGzmiTXaE8qDNoz9NiAhPtBAvOdR19oGBresO6EcayOIO3f4qb66Stsd4FZTUxPzujlNop7Ok48/FpmjBuC1mULuoZMOnL+bYaQu97K/pikbUI85l1+0GdDdctCh1iPUSHknvfHBx3F//r9n6tF17EMfQYX5fmTAiIFwW2C4iOW8+JLb1aWxnRZzwAyOIAp6sReFRM081Ra5we+XCfhe5YYL9KX19LG0qTGlk9w9ku8UkdYwa87C9NiyJ6LYt9mTOoSuUAfvSHPmQhyQlmKGq/z7Gw6kndu2hTwW4XDVgGNucZEX/b5yanBE+1FaG7zyu/bRbcbiZNTK4jOxJpw7vqO8XkCetos1bNHRrlNePZXMrN3cmXZOdfAMoMkPzrWY6KX+c17DKWZevEyX16k0K+UYiwSe7tV+uClNYbtxXd2k5OKV2yEtvqgcGsCQyvKgBW61meRDT3VR7/q5Tl9uP4tvw7DhhnBfw6FD6dcvvhi+wZzZs6MQ+TC220mPsCmhKf/FHMrP6hBpo22iHCuj6qhc5wQHQBttNvXI5h070ruvvZrmPbQoTZsyORVCI3lWWQk5oWXprLxIk+BL5lXsEisdh7+HPDtK59j2oeF57JH3P1obQeXnnns2VZaVxRh9rgWKpYcZ2PK58xovvut47Lfjs33lyTnJ5NTMQnQQMtPWwRHuH35IrbrSOOJ6LLLouANjHTe84+/S1qLk1jQTz9QbZlOFjNJnL2kfW5uhoVtkDGIcbmXxCpl1XmewTUSfwLFKB1/aw9oI/q6/IZY57warPUpb/rXPBnnFfgNfjs1AQHNrS2rE1tYfWbxsWZoMT4pTtu/cRjYE7UuH0K/0vwDdnNsW+gnyoDTTVhCThrCApOyq//bT9uHDzWSKjYktadamiW0s8LN4ZoDN7biBkehUF7wgdMiBNFeHa5e7DWyItUjQbdoH+pYeN30Qfj9L9r6n5x1v/Sz9N//zX6UXKGY/avT/H2jIOOor/zetJCLzOQDiTGDepAMHDDR8jKHVlAZA7AX3z0mTq6ujsJKrBu51lomdMNNWNSQ0FgRSRVNgkhE1OARzTI3YS6NTbFr7+q2b05qP3ifboDhNIuJUW1tLKtKoECDB1dQ2JzcCAwikCkzAtU1BQLAO5QyDafxobMk0GoqdGLjvffAB577vTffPngO4skJaXBRGptF8HSv3gLl30/4pKIKTTKvh4GqtwC0gKKRIYQBZCBjPkdFexsGwwNojFHAqIUqs4yJgajx76TDo0IZhwTgidYtxBXjB0Aq2++8UEJWYRqTvKbg7UQpvvflmeoDCU/MemBNtO17B7N5LOtu+GQw+2++GwrF9xid9vAz0KPBeCva6jZvSpk83pmfZ22fBTo13246VTMY8gL9jLD1zbDt5W/lPESP/XboICCqsY6SZfrh2bYDtC889R9pgcRhOYdgyhgAR+uFP6e2QVIzxgsrSPJwXaGG7jtubBBPB72BjY+zlnsVxiU8+tjwUpsArX/gMmS8i5HzHIedFE+XVcD746RWODnzjSpo86/nU7mltaDyYWgk4LFr2aJo7Z3YAc0T8BW15hf4Y5ZRH5UPTeX2GtI+6BbSlcxsDA1ydV/efyTM6Fx47VoBhu3jJ0lQPzzt/WfQUw4z25HnPGw7nlH7qGGl4qdQiM0QF4iChj6uogzgFw8JYn+3ZwznMu2KFzLTSsaSXfQE93H/29y++HGOugCARaKhIqYYA0EgVMoEGV+udi1v013MxPL1CzjHQ0BdnFa4OHpJ01zG28B6CLlL4NsrQNDKYMJ25eiMdPHmWQANbC6hW2B5PTenfPL08LaBacH3NJAyFImhIHQmcVDNZCghQNGMovvPeKt67kOow0JXXEgwu+VpjQYUl7eGeyPgwPTeCW8ip0WkVtv/kHSPaKg2dU1dSpP3WnTvTyxz/OgVn/AGi5wYGLeAUMul3oLtKWQPBLQRhNMCfvcE959G5ll/i2Db6coEy5G0nj6aPt21N/yvHgHlNYMpHQYbqCX1SDe2PIdDQ10CD86WxQBvuJTSYIGPC8QR04HX65z/ejbGhYpElxgKZGTK1L8AlVoEuQPcjp8+nxhOsslOj4YDxV65H4dFZ06dTpHU26dGTItCgQ2OastkSir7V3HvRj5vQyp/yXDgd8IeFnN7FSK+dPDktX7IYg47TapBHcUplrpyKq/Y5nCz5H77zHmU+AgD3YIHGijebXXKaFdjPCPJsIftr5QsvpPkPUiyV76rEMyM/c+xoJOTIQLJYZZsGOMPphSedl3Dp6LfyJEZ73GZLa2v6HKdLuXiWQn2TkScdFY+QCyyAgD5PfgtMoWeORcPN9nOD2fm2DedCg86VqMNsg2hoaKBI5f5Uzsr3EzhGJchMGGjcGysv9FPMjsJrPEf9JM5I/8B5PlcvRdFRsF5DS0PbQMPnYMHBffsj0PDgg/M5/vXBSJv3aEf5TbrfxVja8VJPaFypW135j0Az8yG/u5qnU+84Gw+TEffJJ6xInUgTiorTXE4lqa+bFDUcXBiIFSB4UqzRyM22tTDBXD5KepgRY1s6d9JFY9G+S/udzOlHH6xJheBMbU1tqqqojNo3znxsUzDlHDpIG1fT72Yf8LnzHjUfmPOQOx5o0Uj3b7tYYXGu1R+vTRvWrU0P0u9pBNEqikqj/kj0m/kNnqN/8oXYHSdUSS+uqIOCfdub53ufWHlDUvIMDe0OMnje4ASrizjTSxYvSRUENHV8xJTcXpG3bc3+Sx+DZ86n2+WUA+dAvSQt5KG7DjD3NzQdSq+/8UYsbDw8nyPexo4L54ReRvtBYNp27nyOOk5d67NC7sBTg2/+HSdKMEdimzJzjow5ncZtBO4eX7kyzSZoakBKvS1+K3tioc/wb3WVPOkV+hG+sf+Bc77PnPoc7T8DDadYAfx4/YYoTPcd5HUyOGyfvOwjXw3HR1rkWGCxWJ9rIMSgVNgx/B0ZnXxDWhkkcHvkoaamtIlAxsSqyvQM/R/PVsaLGOvKkqn5tn83oCydeaaZJvbAtHXbd9uSwQWzJSxcbBbewZaW9CL22ItvrwJfGWum4tOzkwg0sA1oJG/2v2mw1eGrRTLbIMMg5sLn0uZN4F5eiSM0eY8HRmMWj9YhvIkXcxXevsx+jfPMUcvpjvQJ28a7uNWSq2a0LX58cfrec3+SZhIw7w9tb4sr0Es7mcmIWgXypYWxHZs1Unahuzdv3BAyU052mnVASotxWHiW9NDpkghiizTK7SL5Qv0mHvhTWWDiszmG33WY3fqzcdMmgr2f4kQXpnrkaSo2n7a2OKXzZbsSAVYK/JV35CHl30frJPK/+KmOdSuz+tWtWO0EkN5AfxzraEsz0a316O+K8vKoH3MdHNaOUXeHDue7eSBD/WNAzblXD8uHd/mS5/m3z9oDBr/55htpHNk1c2Zluns4K/fKZE4Tdbd+gniiM2p2T2AXf8vj4pk87uch27Q9iHvkp41kJK5+9920aMmSNJOArIFgZT7TY04JcopMhRxIH/sZWMMcQpx4P6YnC9ypa3zPRa2TbFta/dFHUUftO9jaNZUVzF6QNvpn/6W1c6outZ/qK+kgvQzC+PJz9UjgMm0bINDebCUY/i4LnhOwlZ5+8glW7UcR1ELH067b2/1pu/Ynx0rHJZ7LM4HrtB10px/arfbH2jEdHR2h//bt3ZPmLngodLfFP/MAtYs8zp39tF/SJfAG2shTzomfBY2Yz8iqwj80EOAWi8NHWmPhzW0Ry5Y9mqZNzoKm4dzTtrpJ3rGNWKjmb/vuWBy7ATZ1uTrPhW5xYXhhYcjxAYJTO7ALGrHlx7PFxSPKDVhbG8VsBbHOdl0E1L9TjtR3DIT/cdHWbWRPfrFGiza+AQ7nXT/Bumd7WYA/R32HM5cvpq4zJ9N3//wvOKL42TSqcIINRDM02PPz2/njj5PRELSAoICgjGvFT8EDdoEqrEw2cDTexx+nNoyWYQjl0vkL43hLMxpuEA2TIcIZ6mGi26RYC9C93STHz1DyMbFZsKG/zgnC0h/FZNrLxxif7324KhWj6KdMnpImEdEaQ3qLxoSrhxa2ktloiO4o7Lz4KRMEYwuGXDrqYXB5P/13G0EXBu57a9ag2A6m+0mvr6qpTuMxEj0D3NREVzz6wvFuA8n3DgejISwaEAqgRq7G7V2DAsa0fQ3RpsMt6de/eSmchsWLHoliM6Z5ReEy+gsFYDFWXmHMMD7ptwIqaEmXWOWBwQURwU6BMdKoEOk0WyBxNQBiRoPGuane0Q++L/MLDLkBIQ2kRxim8jVtSCsjmwqTbcbqL+PyPgMNH2/ckD7duBFj5ck0HXA1Uqny8vJ+wUlZyVYnoQdtqRgEJ9sWjGJc3OtI/duxOcZjFsxZs5qx3U7f++532atcHJkW9luB1XgQWnV2/K4K2CN0pEsEPKCLv6v1pJNjlZ8uYJBY+NLCMBork+j348seZWsGUVz4JWSbPuQBgNw5NLI8YDBmAG2q9O2/T46AhsqZZ4CQpKOfjSPBItDQfiQ9hOKZyyqjzq7GOZ0K4DbI4Ly6z92VYdMvVYqOJ+srj+L34CeAcSCrClCTPf9Naev2bRFlLWCf3vLlj1HXAXAV9FEO9hdiRAAMUUIOcPn5W34zq4LGw6i1GNQ1nBZTqV0B1Di3xshnBKd279sbWyuG0P4IQFeHad3GT9N//Kdf0gNW2xn4KDLHJ1Wa0cA+adr1nHkmNuYwAg30nZAHd2cZDf0wNgw0GPxw5fhqlOTO5MBtHkA/4+M79O8UWycOdZ5LDccvk3qX0lGb4fofOIJy8bwHCVTWYVyOoy0L9ZBmS/8LCJQ0tbZyFOmq2JIwCUOlqppUb/qnA6dSUP41tqS7zvoAMwvg15uMz4KoYfQyh74njsGcMQc6MFZ837pjZ1rFqn197eQ0GyOupIh6F2zF0sCRH0IhBl8wb9Je2eeZGsmuBMTF+/ZHPjZdruV4O6e9bEz/419nBXAncNsw2LAW+3ASPD9uKAYLzNGbuTKQlO+LdtVIObQ2h4GATNn3BBpUpiETyBv4JKfevo+xYjBeJNDQduZiOnTqOPssCTRkJTLSCoKRD+BwPDR3IUHD6WkEQSxXz6ys7qkX/XDgNL7uoJivIPsIcvC0Y9bZPnioKa3C0CqvqkzL4Hm3OsnHGgrZ0bWmjMIB0Ee8ki/EGlfkxAzxwpW2kNkglDR0nzWp3kT/d36+i2MxN6enwIKFrPCKG1dwSjQeIugCnZWtLHiE8chzwjiiLRAfnuO5tOfvFn6TZzRWOru60pEjRyLQYHtPP/U0gaTa0EvuDVaHKJvqHPWIbfqS9hrOIav0RePcvmu4+AyNc09iaD7czMlL+znmeW8qr61LT4GVGv+RUQdPinVh0NG+fKEe8e8IQNzlJWSb3235Op1xT3kWaCDTA0OoiQwnM/bux0CfT0aJ+/OvXOAMenhMPghMkQ49NBFn1UH217kA3QMbo1o3RqKFk8Wegzi7ng5yCqe6pHRiWrDwIQy5yUF7T6MwlVv9Lc3VWeEIMN86tgaRNKjEr6A/tLeGgnxq8SyeGEbc2o8+jFoFdTW1qRrnaDz1myBwnIijvLpFQmNUWqM1oq/yirrRgJ2yHMa/c8scQMSo9XKGtH1POVq3jqMBCTTMmjo91VaQ0kwKrCclmEGlEyENwvBkvBqZOtzhmIrPZl3xfPvjefJXeQEasZXKQMMrr76WLnadSY+yklZVVk7WAft9+V4sQtB3nQV1hA5GOPvQxPk2Y0q9ZAqv/C+NTOXX8VKPGPBpQD+9jmM0CqPfbMeJxWxRwzFSb0Qgw7nkpfw5jiAoY9BIDx3M7z1vRh8CK6Qf8+Pzt5CpsnH9J2nFyqfIdpwVuK39lgcYtBNsK3iHttQlYpzGudilrRGnhHCPetV5Fe8MtBnI/wS74BgrgitDnupCZ+f0kKbytzrbQIJ2V66fNdbV17atUxErq4xEOhmAN7sptoSuW5fGYYs989RT1JAZz2dk/jB/Olj2WZvS4LL9vQ+b0QxYjXxpdoNnay9d4yXdDR55hOPBw4fTP/zqRY5xfiNqMVwGh72e6wk0FPZDb4CHfXkOFMlkS+rKzLzkc5HtBiQxq8EaUvEZY+zFVol+1MsxyOdpE9cBn0vcfIY6Oi1snfikgd/5rrkXbkD8MQHJP/vxn6U5rAL3o883cUYsQuy0Wp9KWyPbqseWDMYm73is4UYCg24hqaY2zYL5C1L5xDI6g9yRoRN2L7SXM1RQgWXKjX/ypvSGWPF7FHlFnuRFTz47gyL+mLY3wzOFBBcsjjiDwHQs6mFjQNjg/chYlFf4O7fl5Hmx36ws24ugGn2yzwZN3ZpoIfXXWRQ7cfJYun/W7Ag0lJeVxYkUbjk0+1k7Kewb5ZRRhO3aw5eOJ3jcuWAsbhfy2F4XQK1NswubZs3q1djvRWnW/fezpZLaOsiTmQvqEHnbgIl2vQtd2ktmfNhXccv+60AbHJPPnVd51tV35XE9AZi1q9ekpcuXUwB+WuhGM8jCCYWu0kKet3v+Lm+Kvbm8KrO2F7Y292gvyquXLlGXDdp8hA9lhsDzLLrVgJMhMzCDGCtPeCnb8ru00A/I7Wmf53N930tdZcBP3PB+Mw7eevMtMhpK0gvPPsOcFqaLZJG4Rb2A4Bgdy3hIrIFfpIlYmfGM/JLZqfZfLJVWyqsBzaMdR9MedN+OrVvToqXLOM3noVjZN6CjnmME0L9nLgMXwAPoJEY4v77CxuaZUTMBWXVrnCdKeDJWC4t5DQcaCLqfScseXY4fMiXaNRsiTvhjDmwLogcuSAj5UQwLm4lnR5Yc/bYOkMHs4YUjQ47NZtjG4lIDiwTjqQn07JMrs1OO8Pts35ftKtPqJ/FTXFGHOPeht3w043GsEegAg9zmZmDkc3hyF/7xebDrLItOp852pie+/ydpJSeojI5Ag5Lp5PZMsJP3Lbz+5YEGiBeXP504JkpFGUa6q3i3rqe9RFnXrllNoIH0k6Ej0mMPPxKBBp0Sz9M1QCEj6BwqyNdZQVOwXV1Q2SlFKmoj8XGUD2DtucH9UNIql08Q8I82rI1Aw2ScCw2W0QjKVYyJu6cBMLkaQzqmCrigGKmAMIPGrMpMBskVnuBnoMHqs+/S98bGhjQLA666tiYLNGBEGsjohZLwbG1EOgxRDSADCxqwGnIKoqsU/lR5auxqlKtEBd3DrMC+/ApHKSGYizj+zuJcBjF0gjKlkAmcjpjGj+9p2OmQSivZkF6HAe2zc6PdcRhoMBr37ttvpfm0vRBj695Ag+lU4djSlsLndwLkeubC5ymMAqsGqxjlakEWkSNlmBWj9US4d+zYxukaK+PIQaPMgo1ioRLTmJa2KnlTMn1PofNZzmk0Km0AshBOfgq+AoFbJ94mSOJ3fvzDH1K9tSQKrBnhtfiOBpdOl0+LlVFoa0Qy289JepiCz5wKihqTgquFqKTL6dNUeW5q4uirT1MVxv+ji5dESp3gZ3sai1Al+FKay3exSorykW+vkRUhPeK59F/Q7cVqh8r5FDwj+O0nUmlGw2IMhvmsMmoA6chkgAMQudQs+DGJGkgWifHZKoje9FOlapq0aesQJw3hCB2V9CGMIav+ulI6kKKIyznjeTKOkXUpPGbMdvpx/0BkRBoZaLAtI64qHnnR/sYKIzSytoUpw4L3ORTZNvbWfgbfDMOBNp3VuiFur/how8b0f//jP0mVVEMbI9E/tZW9U01xMdW4Af7LBhrMaEAx8Pyr3HODwfrPbRP9efVl3lUqTr1xhtvMtwpWehsP9u9rvLqsI9B9NTVBy06WeY72OMP/+jmOiyXgN6NuEkWOinE0SK3HiMgDDYdaWtIb8PtltiRMnjYt1SCvJfCNAbKo7M5cajAHrenEoAHImnMKtkQQiLEpp9JbhaNs6eB5/KC8tAND7sP3V1NgcBKVomcgrxgrrGI6j+49ZcgoF7cAZcauRreriu6DdTtFKDfuVU6ky7mrF1PriXaOt/w0/U9//e8lbSrERx4IJE4uSmnKxDFpAumdA+i0NHRFSwP6t05uFmgAeaGpJi595f9mWXkM5G147DZgdIvf7xhoAFvcOtHaRUbD8U7S90jRxkb0Wo6zMXPylLR4waI0e/qsqLYvTWLV0fb510vmRZ4QSuZMuQODoKmYZuDurbfeJNBQnR5bujQCDRodOi62IchoFIk5KmVxQXrILxomyrm08r7sHkeSbYPyeKnPCYBt27olPY4hNH/ug35EcOhiFjCC3mK6smrBJZ31yMawn2IW8+/8+dJ31Eg3uKah4eprSyun1rDCq854jiNOp9TVRQDQlTQAKWQ0ggDITxilyo+4yPcjs4Ex2LY6RLzRYDcQYDrzYXhSQ6iBYENReXla8fjjEWgw8CXehMEFjcQXcV4SOw6xWH2l3hK/XLFkTZPaJ4yPmigDBlM0ldX03RRYPtTQQN8vY0DPIXPtQYpTDom/I0hCezpeQdPgUMYvo4YcZiuZ1uBQN0E4MMYjldnyAx4cACPfe/89tppRh6C8gvZnccxpdXzddGYL4BkIGAQee3KFukkHXnnTwLaIn21LJ4MZFtxDQCKIKUe5qv4Bxr9FESch0/U1dRRHGxfBnch2hH81dsPZZU79rkatfKNjEDqdv+UbcdICfCjKVDBsSJxS8S6LBBvWr0sPL8LmqKdmyzi2JuI8GEAyK82BSBf5Q3oYAJexnOs4QlSwBNMshvkF8nUDjO8zeCCFvoZFVf0XyW7qPn4yPbFiBStdFDjGcTH46VyIMwbE5dNwtJjb3tBI2dFu4e1wGGM80MdiiY5B20M9Zar3a6+/xl71kvTwgoVRoHIggVGLscaX4Qn+i/76M4J00CTG47OkF5d86rjEWedF7HAFeBOG/wfM7VPPPpfmgamR9cV9wdf0UePZbV8QmsbBnx6dGKnA6GAzX6LmBCQK24FOuVgjFnhizYaNG9JpVmJfeP6FVF9dEzaE/GjfnU+DDv70DXV+tiDDc2g32x6DHuEz7RQxRLvDjAuDJEcIYKxduzaNwVl87pmng2fMVNT+jPHTrm2HvcSYfEo8T9rxvnZT6EDoZfBRfas92dDcnP7uH/8h/f2rr9893pJbs4yGIjMawA0DDfTLo4O1EnrBIzEK54D35XGzGQw2aAd6Wbj3Pv4ITOZ7IAqnUhBo4Pdu8PjIGbaJNpJpArQyTMbBCRlPfSf9m5/+OSdQzUz9KHZ+4/xZghU6kdxkMABZMNPQZ4wYNTL0lcf3rYMu1ngqq6hMix56OJVNLEu3kclrFl2GzmFjOK/wh/MRdq+dRHbMbLReiQ6X2/HUgR4lKb9r7+nsbmVex6P3pqP/ZtE3iyRe4Gh17Y9Y1IP/fUYMHcbU+ZWntFetC+V16Sp747FJnF+DGENGFUZNklfg9/b2IyzqzY7M5FLS1MUWt0fZV+0waShOypNigIFG+Zqm4BOCXejhyO5F57o448lcBiJ37d8XW5FGsR30fgIN47G1LRhvxrOYbp9tz3GIDbEwo51Pe2JvBNaQTcdioCGXM21A7aNPsIU/ZNvmCjJs3FYZzmfwNwPmp/RQ/xlwVF4NZsjbfj+TtSzTwHT8oJdj4kvayaewV9d8+FHqYqvA8889T0C2IvSnDdmP3OaO/tM/n2ZmtXa1fZUu2Sq+bhqYDe9oj6tXzLI1cPfqa2BNeXn6/gvPh/90EZ0r9nnKkTS2/96vnsjxXJtavBLDwkLg87CF4Rs/MyviPPUz9uzbnz5cs5ogzOMcFbo45jQKu9NXZVR/zi1n2sHyS/ghvK8M54EG9apH2ps5bMa7vHPydJbRsGffvij6+viKJ7DLpjGX0JdnaxNo69l/8Stb0MIvgCbSWJzxlfffrfgG8wcPGwr/3+EUjLa0j5P+9pKNUci2u+cJmtZWVESR52vYCuGLcZ+0dB6+oH6SwRvnVNpr0zh/mTxAQX4XU/tiM15GnrazZXbHnt0UhcUnIdBwgm20K77//fQkwdMJ4ycyChglKC/1v73XHyfQIC0gtpMKVQPABC2BDCsqjhf6YNW77L1qpvr3aAINiykiVxdHTV1wAzbfM6rnZN2HkeDKoWf+yqixsshnkjkLNHAmNso20swBiIvso95I8bf1FE0qmlgSxoqBBms0XL14ORS+7Wt8uiKtA2+AwPcy5sjSagTbcIKdS4RE5nO14aSBBgyhhgP70mycxRocunHFE0hhHByGaC8MrfuuY/AAfq6Oquxd/VV56RRqGKnUDJqolH2OqaoacRapcQ/Qq6+9GkbaooceIj1nXERYw4mmj5HyA8D6t45/ZoS6YoQxQhsytZWzVTbhIAlszIVT4tYH61e88fLL6aGlS9PDrIrkgQbviKihAOhXEIDM0Fep34pIrs58FCODXn7mpRPsXBnUMC3KKO7u3bviDOPppNGpzP3Ml4LsnjxXLKx1IHDnQQaNHTsZBiP3qih0ghVWvycIt3d0pDffeRv69Up/+pOfcG53SeyH1oEQlGJlnD3v0iTbz2mBJYxH5k8nQvAwYi59NLQMgDmnGkL5qshWakxY1G/pI4+kkazeC7pym7SW5gKU4OA8aEA6h7egh86tTGl6p05F7ry4gnEC8BO49xCpPILSXE500hVY23QvuiDoMwySeLaulajdOuNzYiw6vtD5FsaoFe4dk0bFCJSxxWY8vm87UdYWfg4YNCQ9RqDBrRMWWrrYfZ5+Z0EGDX+BVYNdZ0aC+y8CL/zlfmZfEF4rLNo20LB527a0jZfFkkwzdIuCAPzB+vXpr37+c75JoIHXCLpZU9k/VZeMzzIaLgPsjMl51OC/Cv098hHqEWAg0ABf9VMueJ+R4sRrcPE7suO47/NeaHwdup9Bpo5cxEk7e4moNRH9C/HY9MMnn0rzZ81Oc8jgqC4uJpjC8anwmIGGARgsB8GYl5GnC5fOp+kYE2Y1lJHppJHt0bhoQWjPDwKE0t+q8laSVtkZgFRhG5CR213FjxUv+m0gxqCDW5HWrvkwAg0zpkwjyu1pDJyewnevoyx0vvNjGHWgxSxXnTSeLaamcXUDeVAWxMhuAg0tJ46mtaQw/y///m9jkENgBQ3NOeM45qyiMBUR8BmI16JqlQ8N+mnQQjZ4mv/xmX29wwsmwjHjXvhWg8xjBA003L4DzhFo6MN4z1+/xYkT3eng0W72sVP/gmnjv7R02vQ0jfo5yx7mzHAc1kJWfi0OJgY4QRYh1EES1gugt9soNATEBh0xj2l99dVXUg00X/Hoo2GsiEPKtHigseNLp05F7PeURS8j/xqDWao3xm0PHviZKy7WETDQsJVAw/KnV0aGkEaVq+oaKbHqooHCnOrgyU86dz7PbS/irYEADWh5HcEI/BSP3edpMGAHMmUw6gUMOY/eta04xhPe0NlVZsNYUVb5XZlSlsxWcS7dxheyypSIzRorzrepnRYlPLB/fxoHhi2HNmY0iHPBHxpE9pNAg3jjuDSoXblTbxX0GIQeu3bN1ApW1HsTaBDjzMb4nH437eXoaLBr1iwCDXMeSCNZWdfQsh2zmTR0xO0cYzUY1R0ahfKSdJFPdTLcsz5kOEV8BxWQ0dAUKbXnzp1N5ZWVkTFYUVYOfdljTlDTIIM61WMO7ecN8FgnO4IyPUa5NPE5ti3tQ7cSyDDQ6WrR6lXvsrI4PNqeSjCghGBAZHkR5JHucFk8L2RTnYqM6XAqBz5bPBHfddRdRSbinwaPGJbOgwuea75p04b0yJIlaQo2x9gRFDkFFw00+H31lQ6Q/OacZk4t883vfZGf/gC7fKDOJlcu3S5AL5BhNHTE8NTO1r5f/OpXqau1LT2FYVhbUcX2u5ERCMiP4VZPievyioanfOgVWSRgoTIcATD6cgumlUb3wU+uWO9vbCRj4hWyKGvTEhYKPF0DhotUZuUlc9LpNfRQn4Z8watiPO/gTDAK3jebyIC/wU1PPPG7bmXaSKDhHZyLZ77z3bSAjDuzleQL5U36ah+p7wNvoIG0NoDn3/Zfe8MVRmUg3/Lh7zpK8uX6DRtCPn/ACl1NVVX6An7xCG5tDdtxL7bB97CRaM/sH9txJVq7DwmIebXujYEG50gnxOKwbR1g5kcfpTFkNDxPoMFtJQYgxCH53XGHTcFzIHHQxu96WWhV21Ig05F2YcJsBgPO+5ub0n/4L/8l/WfoIkcYdvJ6uo6tE8XouZ4aDX3FA3jD1sVZL0hHj/kO82iQIds6ER9F0Mqs19ssSl1Ht6n7blCkV2ugm/eOnO1Om5q7cTi438S3a73Td575Yfq3P/vzNHfG/akfp7fdIK0axsWGAsPgE7N3cttgNAEXiJn2GmiALhaKLiktS0sWPRIZDdeg+9XzWZ0Dae9iljR2kU+ax4lVvK/TaCFLFzg8jUW70tVXAxnnoe/adevSdhzqoglF6X6CDLMJPFqQ8fyprvQFz8izvsTgoA1tyv9iu4Ei9bSYG3VtwAWxYAiyOhRb4wQFc1969VXsmqbIHnbbYzE4qR0Tx6fC+7YrH4r54qQZfs5zyBlzoX6U15XXyMQgUDCQgC8KJ+3DHnv55d8ki47Omj0rjYNnrKni99UX0kX8FXd9xbZfZEYaG2gInKAdsSYKBmqD810XyDzpaN2mjWn122+nlQTu3Iqkjg97Vtl2/PCdbeROqHKWBQCxvWg3AhOM4TI+jTJkUEIbwsy4bratrFpD/YrW1vQ8gbvqiorgafWqsi6/53ggXXyubfq5z/GnNkj+t4EGtyqJGWYMuu3xZfyEiTXV6Qff+Q5+2qg4TtkAz32IjXlZ6g8eFL6NfOHvkX0FVilDBh+cW/FMHBGntfeVSbetvP3a62k5tdZW4Is4p27tU1+4eKLucDuF85ttwwHHHIfPsG1+t331tlvjLNx7A3vHk2qaW6mvhLPuFsinqK80mwwgdYKLzAaNbmPryTNm3GmDG7gQj+2rhS3Dj0Jy7fcV+uoxumKB+uQYmc/q7920P6xgaHoBW76mrCJsbfEstzfMapHm+TZ5M4f9O9tagf3L850nM6YtpDqwEP8Uedr6+U5en6WL2FanL1Oj4dSxtIJFVQMNpSVlIDlkDouVX77F1x8n0AAzCSY9VAkAB2WC0eC01MAkfUzRpOM41WNRxEsXPETqMyuwRNUvsMfUWxX2fJ+LRo8GvmCaZzTYtoapq7+u1ApovTCITOFdt4WMhk8+JNBQyp6xqZzbXU+F6THBaDKboKHBkhtyGjG+lzNxCCiMmaloJhYhVPn1CUOuk0DD+2n//r1kNFAMkkDDhJLiKByoc9IH8OuD4uiLMMpYSG4GRIxbpRMOKO/HKgVGhopYharQW4vBVO8XKVCjo7lk8eIwQD26z0CK4BfGLsLus6RTpN4AQPZZ/YaKQGnhPGksqSR8PoJrXzQkt7Da9dIvf5EW0vaiBQuiKnakRAZA3usAYHTyjAgoABKCpIaJbVlcUIDSUBIMbVsj3qKHH36yjoyG7elPfvSjdD9pdBGEgBdc4VCx59HUCFBgmOhI+AzBwxcNR3uCoqvA4ZxhnJsi1ko681vvvBOrO3/605+lEhzGL3hfh1DB1RjsBf01eoMe/HT12T2LOv8Gd2g8lGWs1sFPRqVd+bAAXL51YgpK4QnS3TxmLxxynDPbNC4vKEXFXsDK5/ncUHA6LPwtYKssfTGAeNYx9jOb9rp735509NjR9ASOy0ML5odRFQEK2g9nSLnh5R44HRiDDmE8QwuNfZWTSs6glQbRIBwXgb0RY8iMhqZDh3hveHqSbJKpOHd5RoOBBle9+sAgFuxzTIK5tNVYD9CG9BGJ5j0LQGrgWo/BY5E+xQDdQgDGLRPjKYBVUlJKP26k99euTX/5d3/HuFOq4hUZDVUDU1XJOAINWUZDL+ZX/vptoAEmhj9djR/Aal1/xqIBEv1gzK60u41CeiDRjBMeIR3ajIam7ivpQNc5qlFfSyeJEXj9xQ9+khbPX5imV1XFueYF0DxOQgDYidCl5qZD6cXfvEQQ7EyaOXtOmjptWqqsqAjax5Gj8p5YRaReo91gksEY5Ut+1XCIlHJ4yIi26XkGj4ygq4i24Bi9TVptXU09xsQstk4URzpzL8Z3i7mCjPAiHZUPxQDaVekGjjnHPNoAWBjwvN914Wxq7GhNH1PY7H/7f/5TjHEoQ+mNwXl/CYGGyuI0gdXZvtZIwPAzoOGqnQ/KArFQE3Dj6bTNmHj1gcZZ3RjoqSwyiAg0cE5obxTrBfCqhW0pjR3dHNOYUpNRBq7HWNWcRfDksUXL0rzZD6a+BGC+YGXSk3n6IEu2f5M+aFi5z9hhZqnPYsSN4PlXMOSmEOB5ilV7V6nFj7tZVtDC1SGxxPn30ilSnjR4eFvbBQOJiD9YFgYG3zFYaUV5V783b9qYnqbw7EKCpn7BjAZXeQvAqrtYyTyKnfGir7FCitzo7Bqi0dlF4EKWlC9P/jHQsJNMHoPQzz/7fJyXrSg2AABAAElEQVRVr2wakPIoZXnG9uKkA9qRrmbCiS+uPjsfEURizkN3IMNmBRh0PoS87iVFcj/poyWVlbH6PRGZCtpBN+XTgMBdTJMQYIQOk4ZvtqqMj0HwXQcG5RDOtJgvjkWgYV9DzJMZDXOZR1fWTTXOAhbwDnLmVhsvnTbnIPQd9M5Xc8RIA5piWQHGeR+CGYfAmHdXvUul/xOptKw8PYAOnITDLj4a5FEfizWRYQg2avhfx3hUDyhLGnMabGGQ0q7OkTpRA0/aG2h4/913IgBuKrbb70onFEffdS4IqYSRK+2jz/RXedJxcQ5y7JQZlVNx5zbGaH9o333xQlr14QeR0TB33vzIaCgvLonjZc1ccTXK1UX1mSS/SxP50fmAZgW9cYTFJZ53jU5c59icXhxxqHPVhmP0i1/+KnW2HEkrWcWsI53Z01os+GdKbQRI4AM6zGk8YjD4Di1CHnBsBQr/NsAjtpg1ZXaZtNJO2LV/f/oVhZxr68i4W8JWJGwn6SFmRZvwXyY3dJ7LVN3Q+/BNBFHUqciRsqmxr6MXjhFCZlbfRoJ2q15/Iz3JfuCsrgdn1TNv+WpfvsqqrpdWyoNyEMEq5jEC7NDdrULKVgT36Ye1EjwxwzT7czjQP8Jwrq3BUwe7lC91kf0PHqFPtuMEmP3juOVraSBfyqMGNXS6tEcMzOWLBGs//DCNLS2OVG9x2DFH8Iyfyg6NMnP3OmDZYkrUfID2eUaGK96ukso/+9Dbf/tzMho4PUBpgb3jemYSRysT1BjRs3WiHyQ30OALEoR8OQthj/HGDTA5Ag20STfiOOA+mLQB0fBVbzLpiFCmi3TzFPWIWk6fTesOnmaBjUZkOX6uXPGD9N//+V+keeiZvtcup5tnT6beN6h1Q6+CT9BJsQJLo0NHFQY/fU6g4ZO1H6VuAj1lFVVsYVuaSsoriBzgdOEM64grs9pbTDYdzmimo6iNoeyr8wzuEGYIXDPQYGDtHKfTmNHwKcGGMdjX97N18IFZsykijdNEISWdUudIW1ueEXscu7aZfGlgSlq7Wm3QNIIY6BEDmr1ZJOhg9fglsntbDjemWQ/ODd1dhUwVICsuGsIIYf+GzqbvypPZmmKkzw2dIjbwbBeYDKTEqj4BNDF5H/j76xd/RTX/0dSa4aQVgr4jkCnn2QwGnVPtMLEGwcowXh7iuzB92Ntij3qdH9F20JE/LODtNuL32VapMz0HHWjwVIdTfnNBTX2m7gy7l0cE3vAcP/fKbWSDfN6vnDkmn3H67Jn0NtkSLeiS7xIYnEQQJvQabQY/0w6/Br/bVrQNnf0Zz6WtsM35TPm2XW18n6O8GlB+jeBaGYGG77/wnchGNDiFMxMnXDmntmN7EZiSV5RRSBNBZPkcOvn7LfhRmRbnDGieI9tlNxkBq995Nz1B/aMVy5ax4Dcotq/dFBcZr7Z/bBenz1H/TKyhrcArPpOR9CmUUxROzIfbfo/3FIO0ppjboZ/F1p4zc2bMoxisTaCtp+2u7ySvyJPaJWKFgV/tYHlR28BtVAZ8DTS4QHm4jczkAwdi6+PYkaMjo6G6ojIyhDy62kCd/TSAYcNmtpjBp84OevMZnB/j8Lnin/PaF9tIX2YrNofBhnOcPmag4dSZzrQSX2rl00+RcVNKmyIQnYsXP76lFzSCEv+Sy2/DFB6lZmQdSQrAC2mV8yFU4z6KQX6yLp1ob4+o/KI5c1N9VXWstF5mVVwg0shSCFW+TrgvgU/pUbg1KpwoGWUAk2qEyjQvheSTzZvS6rVrokjj1KnT2Ds2JVKaZYKbGIqCay8MN0FEMFFZ6lTIiA5fQZahQ1J7xiC4uIp5sotKuB98EAUtZ5BabI2GccVFUfTJxSXPk7+PvXe9HT/CLkP4XRWmYKeTqNAZNXPly6ic0dZIIyOiaBr8L375yzCmli1dkspKy8JAN11MuigoeSpXOKGMXUNGIbGKrwLi/nHbV2gEDivtmtLseLZhnL8EuD44fz7G+XyCG4PDmHA1QSNEQ8Xv2LYGKF9hHoywYpTQb6OLEbiA7jqqAoKXYOW2kjU4n1vYN/2zP/2ziOL6nWy+MiPIe6VxDlLxrHsBkAe6quQc5C9XOc+xH/BwS2t6//33QxH9+Ac/5FicsjjqJoCSNgUPHSoVg/0UiOQfwU4DV2NF40fAQ7eH4QIDxOrocbZl7CfKuh6+VKmtxDEaS1T9Js6+/KKykmcEp/hbcOY5KjmBwuh0BFOgn+1Le09MEKSOYZTvbzyAc7Evfn+cFRcdI1dvzGiIFRdo7UpIPgbNFZ1IQZauMge8o2LmWYK5Rlc/DH8DKUafd+zcEU71ILYiPfnkk/D85GhX49zIvO1aOFDD38CMzpzOocopAg0Ik4pCFXeRNEYNjdGkEqpE3Lu7jeKEg4cMS2N4r7S0FAfxZhZo+Nu/dUpTJa9CFutqqwaQWTA+jby7dUIFCf/Th6vMxXXooUtjfYaBvPqhhJRBceI2AQVUEvyHjEhbXggiqeH9UufVm2nfyXPps+NnOSKNvavoC6//7mf/Ki1Z+HCaUlGRJrCVxECDRXn6YnQxQByjxvQSzm5395mkvE4l+FVZWRlKzH3TBhSU/9j3zfP8W6fCl45jZAr1KB6NRo1/DVJ/epb8Zmjzyku/Ydz1YWSVsW/dParZkW/wnCAF71lYUnyRFhr4PDLm0N/7iF/I8HWeeZw9eQ2tTekT6P1//ae/jzEOxy4aiPM/rbxXmlZRSY0GDDEKkN0mY8I2Iz0YR9lKx31I5WbRGwrngQbozzgM2hi8USTuBhrIaOiF3F8Ar46QJXLoBNtS2BTc3LMtZQU86n7gRx9emubdPwdHc1C6hBN+Dbzqi3LvjewwbTGmcGiQE2VV/lKuLZz0xuuvp+lU9F752GNpOGmpkb3FeCOwImaBTa7iKDtZcPm3mCX+69x4r1ggGIk951nNOUUBuG07dqZPN21ML/z4R6SSzw98VJ4i7RKeMY3/BoreuZSfVP7irBwoJtiejjSTFYE1scKaLicwUFpbW5JGuvL3DMaQGQ22obMuv6jj/Gnbyqm4aV+Vp5BRWFrMl2f8262DZju5N/jAoYNkfe2OjIby2toINJQhUwahxN2Qz54+iwPKh3Mn09BbdB4YwD91iY70nf7wE+1rLJ6ALrs/+zwdPthIv26wZ3omfDkrCtuqk8Ua33csBk3FeAMcofYZf0woP8OpE3ho3/5br8WxHWg6lFZ/sCYdxeByb/PDD7MFYeqU6N8F5kUdGJhI+z4jAhs8M1KRobVYwy04RtAKevFkxkEABSwyMOM2rQ9Xr46Tliz+Np1gQ+mEonBGzSYR39X5MRe0JT5l2Tt0nXalk3pdfnGl6zb9v8nLYwtPn+9OH+AYbdq0PtWzADGDtuuraiLV+wscF+muPHpFJoM6ReOZnxqE99HxIX2hQ4/Ou8XDrnAY+m2eYxCpDWf65ZdfSV3tR6nR8GiqQVYNVqu7nTsxOJyKHoxxldLVVvWuVfDFd59rkMFx9QXfTSNXp5sd4+k/Bhqqa2oJNCxOE6hdMaif+8nBdvBY3onMCL5rn5UbX47LZxlUNyvBz5TPuPjdy60Tn4JlH6FflyKrbp0Y6uqueCqNuT/basAcagPQZtSHYSxusbBt5ce+Ks/yZ6TF8577suMoQQINZwhUfv972YlUSEU4mdEWbQYW831tL3k59Cn9036wbZ3e7H1oCU8OxDk3WHzsGMXlMP7X0/44slgtBqk8SWv+i2e44hzOrvNA26FP4SPfs6CkVHA7mw67GSTqQQNfFmf7OQs///Dmm8wfYs/L65nJvVMdxSBHgLdunTDQYP0Og/nKrA3apveLAdf5sgUhpY9XL5yd3gR41fked9xvEEEdnJlzYHHHxaupmdXYjxo4dlph6Xnwike/m/7bP/3X6UFkuu91jhA834nTB1/C+G6b6sPcir8uzMk38tEueObTDRvYytCdyiuqOOHmEX5WOEk4R5lTJybYZ+kljoESmW0kDkAr7Q2xxsCLPKqsug3sLCnwH6/7JH2KzWQmwHR0hYEGj/szQ0iM1FnUDnaedCBhvpg75TN0Bp9JH+fa+TXgqG4Vh5paW9Jr0P0IRzhaD20mzrpBTbMVTDO/Aw0z20bXTZuPALf2EnOs3SmPuBjmeMQdF4HU3eKYGRuf7dmbfvObX6exZGnOI9BQXlYWtSa0jdwiGBgp3sgv0Ccye+AJM+I8Bc+AmphF8/Ess4Mcl77JOWiznu2Pbp1YQPbRLJxdaxQNJgspt7H9oryt76GtoQ3gHJjBoE2r7Fo80sv3xaLsj0TWXVd6h21OLc3N6YUXKK4KXfKTEwwi2qYXMwYpwQfmWF2b40LIGG2GLuQz29cf8bkekXyIdle9u4pAeEV6jlX7CWRqGgDXr7HQvfaS9FHHGRjVx1F2/NvsF/VH2GDQTvqL9eKcJ81oa+9C/21avz49zqLY8sVLgi4GGbSt9XGC9vQ95lS+cf6YC23moDFj03eKguvoPnnTjJuTyI3BADMarAsTGQ0zCDTAC+KV+kE7PnQ4bTIBYQsH3zMXmY0NN9Fv+V55VQb6D2JbPrRxwXAHde6aCfCUjC9OTz22IrZOmA1rYM1FSHEs063wPZkJ+h6RKQeuRRYLffFv+US9wgyl/iwyX7h4Pu0gQLKN19nLFyPQcOb8mfQM2dsr8RnGjBzPqJ2xbF758a29/uWBBofO/MnQMi9UjMkyqqWjbNptI0phG0Jo2o+nTsyDESYRqezL506WTBUMIFH5fiApjGygQeYyYher4H4k8/XGsesxLi5epqjRZzvSJrIahnM8X01NLUffTYqUZplYJRmRVSZZ8NAoUVH6mNh/DFOHIuJ5DCAUm0oujC0A1v32HyMgh1uaUz2rLWXlZWn02LEICulY9Fsh7MtLZlZgFGj3hQkoHo8nONlulnHAqi9jdFVPA0egsgjLaxjnAufC+QvYT85+d1apLVBjHwXvcPahk3vArXA7FCb1PY8iygIZACOgFCvJgIiKPyrp8lyPhHsf8KufkhWvsxKuzzbSqwEVq/MIhoLn8xTqMKzov+9pzEh7BUYgV4Cda8fgOeLrSKPbxT6j50m3cutELnAKlf8UsGw/dmYM6ZTLJwJKBo7wjf+kEW1rGPk8j5n0TOhNtG+xwqdXPhnFsLI97xj60EWaWQzMfrtq47ypFOQZaeMc6JxnioabeIb3ePTmqVOdUbl6+/ZtaRKBqaWPPEIB0VHRrnxjewKIz7B//pR/5OmcFhpjKnqNIUE19jdyo/vpmls4cqf5EPu/uzhyblFUOdaxsqK2fCOwBj/SngVrpJsyIL3DGYM+1iwxjdQ+8xGgSPYB77cdbScVu5G9jG3cMyD2H9fV1ES7OkFh5NNfV440uHyeSl7ayp/yhyuCkZ7aw6fy0UgMBg1eK1frdKkshhF5LSoqikCDJ4z8x3/6BS2nVI1tMJKu1ZVxMkJJUZw6caenRoMK/havK5DbQINgaYBhIM+0TgN+AGMiyMG4dc09GUFF0IdXbw0V+tlJRsOuY2fStvbzpMQSaLAZrh8//UKai3Ezo642lRWNxwhhxQ5F5xwb7DnUcjiOi70McNcTfKnFYZyIEerK5d0aDWCI+KFBIWGd7whk0r687aM0hsQio92+VEiuuFmjYfV7q1N5WRWrr9NS8XiKQYI7dwMNjM/VT7dROJcWR9WAuEbA8zqO8H3wa19W4Af2LwiD/mjnibSvuTFtxOH6GwKOXsPxsYcwbdOqBqep5aVp3DACDdS6uXMDhR5yYyoxjgO0vQ/DtzfbJ+AcsAVjA8Xfmz64rchVCKaeIbrSgHKmtg2CH6dOtJ25nJpQzCdPE2jo2ZayeA50xSF7mJMLZlIM0n3+l4m630B5ms3Qh+eInQYcpJfjc/VFY0U+E8s+xrHzOL7FixbFlpI4bUL50CCDtsqMRqC/K6saSzpFGiTKmbTy3tzI8v4L9EEjQr7cRZrhCtIj53KCjnLodgGD1K6qi/Wx8iq/M8emBxtcEzMiFZV+GJTNnWqNJYPBFpE6evQogcf9IXvLH10ex1sq/2EsM1ZxmE4Hv4hbyqunEsl3BkPEefFGnolAA23LjwYampqbo0bDEQyi0vKKtBg8KEambMfAhXR0lU9eVHbFCX8qJr6XBcFoW3YFC2LVnvaVM48RPLC/IR1tPRLt1NXUgcNT2QY2LPArAiP0z76HnrNd+T4apz0fAff4ku/tv3pX2Zc+1prZTHbTcVbvTTn21InJ9ZMCuyye6olR6lT7KbMF9vT03TmWJhpv4r46SpzROBXXxCHndNPGDbF9ydXLSQRiTIPXgbA+Ruh55ranu9GWQdFwHGnbjBMABJ6BL3FcbtEVt0/4+xkM6M0E8DRCPeK2nixKsw7cEmQKvxgvbnvJB+oHHQpp5f7hXuydH4ysqmPsgPVmkOoIZJgCbkD5/dVrON7yTJrHtkqLNQ4fwhHF8F3Mn2NnftWx8rYrodoyBr/kc58XGR/0X7qYSZVnBVxF5vZiN71FKvZEjvh7aP6COI0jFiAgtfSJjCmfAW9Ka3W7JwvJ686N+tTnqFtjLuiHulW9bsDjc+iyney1BwkwziDzywKi6oeYM9r0e145fypTOjH+9BP5Rb4xE1K+MX1YbW5KdAf8soW2zyJbjz++IuQpX6SwPe0XbQD75RzECiD8IT9G+jH9jAAvPGhwzLEozxaDPNbREbr7cxyA0ePHpSWLH4nTf3Te1M/S9bYYDC45l45JO0S8EE887cW+6+QabBDfrzOGS2SaRl0Mavz80xtvpUHw0uXMf0tPc7zlJPRNduoETiF9ug9MtfZCUIMGbVO9cXfrhGIRFOFZ3NdPQQgYgY792aYCz55Gz7Wdv5IOc7zlxsPwIW0kYHrIgAlp5eIl6QfPf5+6OVPJmCXb4zJRYQLOvYnuxfYS+q3ja6DBsYhBBxoJaqKj3L7klkeLHpaRPeWqq466OCNPShfnN+Qo8AAeoXvaTgZlzQpVznhYyK38bvr+VoJTe8Bg9VpgDTpQuymCmdJELICWQXv4LKd9BBl4tnznM+T1WBwDZ3yG2VTuh19LEKPzdCe1lbDj6yezSFARC2tXLrK6TrvqbHoV9pOk8vfIGuSzeJ+2fFc0C/7lT+1deXof29feo+bX2HFjo0aDGOxR9/KgW3XFey8D1GKwsiJWyZva78qVK9bas/JyBJrhWS+PEjbjbitbiaeAv2LkaLI+zFpW3rS3vMLZlC+5hpKhamDBQLrbftR5Otba3/K7A/K78lUnGX1mk7RjE1vjx61IYc8xNgPH0iDjQOVTGjjFfhPyOr/86uKk70kXdYD6w3ly64Q1TzZga4+GNksXL46McOXU7BeP0/anzdofbUT1wwCccWtheOypT/+trQofQC+DkW55PE5A9gABvH1gvZllCwjyiDXq6+gpfCPtc96URgY8pYXmo8/0JV+qk7TF1FEG1jy5oeMEi4YHGmK71rJHHw39Z7tipLMjx9iOPC8PSYOc72PRDX6U97UL7JDt9xdHoY2BdouInqAw/Xjm8+F5C1Il8hTtQJ/InKK/0txgVmQF0oZ8L53FuFiQ5m8DrY4zsrOQn25os5cFyd32na2JnWz3PXuxO73wk59GwGTsiHF2OuZf/fFtvv7FgQbnz+ven2Iz5mS8a2pTE1Gh7RgrTTDbdQRyWk1tFE4aiuJwxSIcOxS9kXTJKgCZqiwuO3GZIStTYgBxfxjRTJqM6IrZPhTynv17SMcpiKPsKisq2B+s05iBaih6mRkGE0Tck63DrNPn/kUZ2/5nAqgQ8uJzI35WBt3G1oDjJ46lyursxAnTrQwSCNhGzGJVHWdJplKxezav7Zn+r3OiENpmrJ4wJplbINFIPYrStKiR0GiEeBxBjCEY+Br0CobsZf81igRzgwyCo8/SANdYE6gdm//C2LVPALnfjcKBpEhaMbwO8PY8ZPvh5zpfKnGF2GcpfIKXhr6GQB4pte3oL33WyPB+FbZRXItNHkIYH1m6hFXe6qBhGEA9wifY+F1XMaSJ+8IEcY1/I8YxRwhfOL483yq/Pk/wPUEkdB+BEttYQEaGxXs06n22LwEkCxq5Z5e9ZIDTUFaKpIH1IwyGaOw7XulP54JWruacJZDRToZNA1kNJTiinqvs6QHSwT5FoAFglufsrwpBQ11ekU4aXN6j4gz6CCQ8n5tQyOc4mvM4NSaOkvZ/Nk2ZMT2CX/Kc9wet6QutcDvt63z6fWirseQpCqaLOxcF0MP5lWdcBZBm7n+1/ZOsNtORNGPGTOoQlEbfdPjCyGWojkPesb8Ct1ksznmkeENHA1PyzGUML5WHq2z+bGxqTo1kBih7/ZHR0aQaGsXe+fnu9No7q5jFlGqwx0cw3Howt7aY7QM4Drcvs7oA39iuq4pX0G/ZrGeBhgJS3dw6kdViMOshCzTIgwJ3bwyhPvSxDwazWyc+O3aaQMPFCDScUoi4ls16kPoINWzTmZqqq8oJyLGHEgMxV2ztR4/GEVzybkVlZTgY4+AbZdt0aRWO8+DWK/FDpgwDQ/agfTM35CWNIemuQZSvrLn6rSG3bet2DNtSnl+NMTE6ZJIYEARHFiPQkG03gvhRhd4UxSuX2TdKDYs+jLk/q6SDBnC8H5hxlG02+wk07GT/6D+++7ZDTMPoyAh+1lcMT/UTi9PYoWQ33cY4wcjsdduUVIJ0zJ+njPQn08AAwB20WQQb4NnevN+XNqJLDMNAg9Jyi0DDHeh7nj3B7d0EGuCjk6dvJ7YGxzV7KkcDg3EzJ1udv5otIcN5ns7JDXCM0x2YUwMD8tMt5iqTQ2RFmeTl+fYauSVlZWHgWgA22x/ag63MgfMQaMtPscBXyCOpoYhe4KdZIM4GtwTfZ6dOdMOThyKLZz4FzqZNmxIBBudKJS8W5FiSz7FGnnisEScWa6SIuWFIg8rBp9DLtNdOUzCbD4fBOQ/HqxzHNHBARxYa2LmQ/Z5+iZHW6dF5tn8aoHQ/0x3wjYaczzLYbMC0pbU1dXV1khVQTB2F++Nse+kXTiLtK6fiqoa6fCkeiLUae64sKSM+S4PIIm0GHDRMu0lLbW1pSZ0YQvZ3IjjvyQ1DMeQyA5x5AqcCc+iTOKaB7BzGCjLP1JiWJv4L2tC+z3ICjuNMaySePt0VqbZTcCyqkCsxJlYBoUfgIs+2/7EPlvb9PZxaJ9WL/nJr4Iv4bKDbMTmnu9Ahg+CrYhx1K+RbX8mVH1dJDSJJC/lGw1gj0ABpGOK0c42TNsz407CLwCmso6MnDlvfRufCY4A9uaG8uDRVQp/hg4dGvRbpLy0cp7pCne8Ruf5txfU70K0AmXF7hp1ntuLUCfew65x2Yfxv37Yt9qbXs13TjDgdsAIC49oZzmk4MIwzHC77TVvqjgh2QefMmWE+ob38qA6B28Db6xGsts6B+DWTzCwzp2wbwkVAzDmVz3yOl/xugWl1jPrTzyNoR7ve57OUVflEfm1qaortd9axqUbuxSnnMpNRH5PxpbqHqQt9JP9kcm+wk895hi+/EwsX/H4Fnu/qOh0ZfWYmPkDhVuUp+I6+eL98HfqfNlzZNcV8gGODDsqrOsr25FN1onTzc509jf5MplqibpHyNIptftpCmRPI6iHfERtkBWmgY6juM7hnsEI5cq/0fbykuc76efRuc2tLLCy9ump1GsYWmfMGz7meItBQTzHIQgK7/ZmbAc5pHmigMenDW+Gg435kWydgm9jGyfsF9H+gmUmYxWbw3UYPWIuoi70Sbec4eejMpbTjODaj/SUGVVlUk+ZMm52WP/JomlRVg87E5rnmcbViAWjOWJxT9bJHmxuU0elrw1lvOXw47C3t1KoKMuKwKcNBp+2wdZ03Xs5Z8EePfMmDsQgBHigD3B58Ka2kkfamWNBK+2JUacnEVAPfWJckeFACyA+0LY+JZdocyqrY4twZUBZjDNJqXwe/87fydwx7ZjfO6CUWCSZgUxgcdJHDjLUo7Ee74k5c0ok+yY/ytbwUfEpfHZfyKp/Jo/KEvx9uaaH49+bQ2ZPq6uKnC4ben23pRcK5Xz71uFDl1EvHUMy6gp0h5jme3K4N3cM8KE8HDzYS9N1H8dbSVF5mtkRhLEj6Xfk9aMrvYoJzJya5oCiGWzBReosT1hvzp+OJLWJ8cPZcd2yXPXXiZJo3nxNo2PaRB+fii3w35NAOc2njRPCVsdlGBMPBM+chsDLkSrqTpQHtzIxza4lbwmaSjaE8OXoDDNpmAak9PGG/DCoY2HThq5u+ZZhuXbQe/wb+VH5jUe/kKQIZR1L7kTZq3NVF9u1gfDXx336KObGYirzKP9JXHDWTxfddTAhdiUwzKaHH/Wlw1vZdKHBhzyOwHySIUVtTHW3re6pD5UPnyTHkWKn/I6bE+OE9daE8I6/Elhv8OzGhubU1isab9VE4bESaCs4XIU/6fdKFBnnF1Mac0mjo5dh+C52u9AS0I3iFLos6bzzXrFb102Fsg0YyeE4xhk6CDJ3nu9LP/uLfxvGWE0aMj/niSfbMH9/a648SaIA3QjnmtHDKfAkJmNzpIM7cxnXr0i7qBRzBiSkaNSaVAiAWZRIAI70TQYyUTr7jKrSRZufS/Z0KQm5QypSwTRiWGiCuKFtQ8VDzQZyigWksZ516tr3HTAkaAl5oADvJKwINgIvfdYuB4KeRHCAFkwkqMptAIDNeROkJrqdYeSyeiBGEMaFCF4w05BwjJk48w3Z0DocRqRRUXFW3fx7PKG3COOKnQqkCdZVHp3H7ti1BOldfRwLacaICIBoECOJmQCWgGmgwbc3frTUgQIbByH3xz/vtE23bB43//bs+S2Mx4jRC7Z9K6l6wCTDmXvuncKt8BKYAb+bF/iqUOgARaEC4VNg+X9ocbtyb5i1eHtkYPluaB+jRps+xXfvrmF2VyOfN9iNbhWcYZBLYHbsjsJaB+7LdkyaoT6VQnXu+bSd/CRwxDp6TKwjBTwBToWmsaIw7lxq6oYC41znRmHFPV3NTYxo3oTiKiEpbecR5VTHkylhlJviHQS19eflDnnQMjlWaxvzyHM9IP32mK8D7HCBcXZcVJHT8ptQ7QH+3/wJgZpxjCEFjP9NxsX+O2/mSOeRP58FUW41IwfUMwGooqhrHW2NCGthv6eg8Rf+5Qxo5pxGU4bnyvACr4e6lkpRHC3D6DDQcPdYR9TFUUAOYL3neTrSwarpz9974TgU++igMoikTyWooJqMBvrkTx1syj843fbhM83lGQ39qDBTYHj8126MWA4YXdzMu/oafIA4GPIX7mIcuChbuPtGdPjtJtJ/FjKMkgsDRqZJVGiteV1aUp/GksmrwxP5jeZrfPUHAVe/rN65R06MMI51VKGRKmA4Fz095WR4UC8Kw5r3MOMnm1CCY9A4Di/vC6WI8mSHXnvawEjh+fGnUrnB7gEoRajsIXsi6jpvzwEOHMRYNZI3bq6zQCox9evfNHAYe0IWD3XbsKEdcHk2f7t9PT1jpgG6j8H/KxgxL5WML04gCCG1Gw032BN5klZfnDOpjAUROxiHQQBehp9Kv3EFR+iCtHLN8epvnGGi4GYGG/pGue4Qim41k9ZxkkexIT0ZDybhC6DUhVZSWo0w5TYO+W7/C1cGrFCHzCWZKheElP8IrykrmeNwMLGvyGChwpqa2JoxMcUT5EIv4L+gs77s9y6CF8m7Wg4E/+Vc+DdnwZi7fk1+VhzCiD+1Ps+Y9zPxXhrwZWKNlRpcFGuR5ed92DHQou8qTRnI8Fz7RoA4Mhv9tX5w2g6qj42jw0jSOQQx5cmzgKzcFISPQQL+UJ2VJx0xs8fsRcLTDjlHZ5j6xR16yjoIZAWfBhNHQt460V/fvimP2V/rET54nhog18qZtyEeO33vVFxF8N5jFZ8qZdDlh2zh2zoc1VYqLiqPwcRZoEBOyOZAuBl7EFPneYJr4K6YEvvTQRfo4BsdioFS6uxVJ47uyiuNiJxQFbhkAkfaBi/TdcVgHySwS6WvfxZXY00xbYpWZjn6m/vR+A+2NBxtCRizOpmwrMwZxY/sC/YisuBgvv/M9g4rSSZqZmaATYjDZ47BdhY2iiuIPjsER+u4iwYjhI+M43PFjxhDkoxAlfZc+YoZ0jkA38yUG8kYEv8y2JCQT/CQ3hgMJ99i+xqh71i3weQ3no6KiimewJ9vx00cdW/snjRh48IxYlcuP9I4tCsiWK41wWNBcrFHO/Mxg8rZtn5LqXcSe7LrYrunxiBAuCx5xnzzt5RgG0/eB4LUZAQbWfIafB8bxU153TnzffnVA+/bWllSB/rDoXgQCuC/mnmd4vy8vMdOMBeVKmVC3ypPZ51mgwTlwTn2+2ycONzdTx+NcmkLq/3hWSiOrxf6KSYw5intzv0EneVLe9DPtCreFRmBJPcY9jkNZVud61K1B9uMd7WkYDlFtbW0sMDiH8mzGG+hKHAjH7v59ae/79lkslgc19nV0nUsddo971uE6yMLYzr0NyKABnxh+WjmZQAP6xuMtB9BuBBpuo0fAVrHHiyYjo0H+iBoNpJS5yqme7x8v7iPIq6q7w7NvQi9PnDiB3mxBvnYcS1GLiO5wOlthqiqrTTOmziBlewLjYO5uUFcEvWadHOdIDJBP5B+xxt9PETC1PoaZjRYbH882gRHUa9Ghi37SSekJATKa9siT/CNNYhFCOnKJNd7L3eHcKU/tbe2sUB8Neo4fVxR1DiyGHHwAr+Rti5Xq2Dg6kp8hq+CYdpn9jG0HPDvjd+x86G8dAlPUr7CVcww4MBY80Fm3uLKr0xJYDJPaviIgwNxq/8pLmTNqbzN5sE/SRt7x/uMEqPaSBTN8ZCFZQmWBwYHhjF17NvCYtnTQ5UUDU37XFv3MTBiLIctHuZ4SK7Th1HNuF2plgWYM/oc4bOF1Cznaj/BDuM8xeK/YXYg9K6a6/Vv9FPLKPY4rsN7+81wvM7cbwJouVu+nzWK7CjgWWTq049i8pH3oQvpsECbsPd4JZxp+MJjjPeqv4B9+l2b2R5lqYovfIObSYMAwt3b5j3uIRPObNOefRg19VGalnW2fp//2XXs1xy7HJ0+qFw02niRAcuJ4B9ufy1NZWVnwhYSVlgaPoh/0UXmV/lFsmvZiMQ+5vDu3PLsXCx5MTPCrwR9PQ3E71VmyG6axWGtWuDSXJ5wb25QD4l/P3/n8ye/6A/JQcA6f23cXKMWE4+BMGzjjEaPDBw9LFRPxAZk3ZTpoo/GafTO+F5k6YI00FuPUz/Kuc+URu9EXeZg+Wb/pOHjTjn4yM6PzQmc6duJC+nd/8+/S937wJ6mY4y2jT/zfvn+brz9KoEFaB70zHgylKYHwRSKv4cChBiq1f0Ahr03pN79++RvppWFsPNukoiyG/OXbdE4ykfvy+7iGqRDQ7o9Qm0J9jYkVJm1H+/mbvsPbX7tsh5q8X7pQe2k4L7dCeOTXDVd+YUrbdFvzV+/nrW+8NAXsP+tKX7tsf7SMC+N9gXK+BLCc471MvX/t9m98o5B3HW/eH9tkPSOY1M9GsiJ9jVWG06z+yK7Oi7T5r3kGt3/t8qCi0VQnd2vDWaKWXV+74/e/gRudpLP9yYQq+45tD8URKMB4M+PlBKuOPVvJsxv+gP/LUz12wpfulgbO91AEfiBFjq7jKLRpEN5zyYvO1zd9/57bwqH76j2EmdIQDLMBnLQhkF4iKHD8ni/JD76k/z83B/ZfmnyVh51TSrWxp5egDDdc/eJSzDdu7Nfu5a3fe7l6TmmqRH5EfH+cf2OYY0OF4XEBJcfuhbjyfpfy2ViINKWclFKAvRDFfNtAAwGCMHo09LnZAmqujfRnFWYQLwtCqifuQPvrBBp0gFVhYX2pGFjO6UMg0EDDnlPn0q7OC6S00jcYRBlCRaaB9xEQYWWHA7W+Nj+OZVShgQUU7LmLdAcFy3vyjvUkfZr8L61+3yVN/O698zuWv4cVjqLg3fV04QoGwlc+58/fe/n8HAvkfc5joX+c0MKqlRNewEDH8MHowQPSqEFkP7CKdpvU2VvXcWh54HCEpnRMQRpDfY6BfNbXFBGNWmbPQIOZDph2MVb5w2COuTk3CU7cxkDQuG1lBe3gyU4i6Zw6weRKW2nj5Xjluz/kkt48Peg7jJ9WD/8CpdyOMe+lnClZ0tFL3pVm+fh9L79sxz58ld+lkTI1CKxxFfJSJ0E8/vay3/fe/9W/46bf8b+8XeXMYHE/gpSBwziQ9tHXvZf9+0Pp4vfENnHM9g2cm44plp3HqITsX7vkN3n0D72kid9xe4GFi12RvwGWXUSHiP9fvezP7+J7afFlBMz0sXM6kKwqV/DN/NEo7vxqwz1/O3ffhGffNCc+L3Qruvs+g8N4dNevcGoA79tH5fWbeIS3v3b9LpxXzgoHYhvQf+l+/fylZPJOzot+z8s59fevjt/PvH7XvMv7I7A7zHj6AmP3IsGRb6J7NPLP/E9ayMP34ozvjcYmGMSqp0VmL7nqyXvSJb+cT3nA8Wgz/CGXc+ElbUZhDA8k+9Is0/PoP+2He2XJ+ZQ2v4/n5RHpZx/8/iheVCAIm8wU54sY0Sd47/e1wy1fuqS7/fV79/ZrJH8XoDv6o1/vYMy7veveeeXjuOyHMpzPd/ZuhkGO/2T+Rs9P35Pu8oF87HNzfjbQkG+dGGBGAx3qS6aYR1bq6tlXHXXdlWzrBD97Ag2uft6HTPYlC4wSH9yHo4GesxbRBb7fCd+0dJ9MW9pT6qDDTDv6MuO7b8KDb5Jj3xvEy/7r8LmNU+fWWh/S5l7e4s9/9hKjlUGfnc+ZvOA8D6XffbGH3cYr1kgf6aV9cC+dCYd96W/+vHuJWfJx3nb+ge0X4uDq6F0jo+gSAQ/77uXceP9/zTj8Xn6Jw8rrQIIueMXpBjxDfkjgsLaecmSfvor5vPWlS95zzKx9fAmf1HMjcE4HENy5Bl0u4ETa1r18y5+/93IO5SXHmWO1tLfvQ9F/Zq5cYstyNw5Xjld+HvPOT/v1zz3Ttn15OQ7ly2cOIShQQCaZ/k0HGTbfRGe/99U546245D8/z/khezfTf4XYev2o8WF9pKvnqLeEnHxT+/l3/tCfzpt0d5N5PwIkBq2u075cKRb9ofrjm+TJPjie0bwKWNg16GkWqf6lvK5sOFYv75Onpf03Xb9LP9n/Edod8Iy4cYqaDc7p//GX/3v6yU9/morGFEVzWnb/nw80SAmN2Xj5Oy8nwBU2KyH490FWjdezPWD7lq1p56ebWdm8E1scBhnFxtDQCDDS7p50V1maDpO+xt4VrzG85i56KI0xfdsMBKJbpvPEFgoAySh3pPwZ9SQ6FanjRI8IZUUUzEibvxvJM7pp9GvLho13DdWprBhOnTmbwmWkUwLKRsEcjBF8V2ZM3fSKyBi/G8myr0bWjdy7T8gqvQqRUUhPYlizeVt8p2ZQv1TNXmcr9Bq1UyEakTF6L3NmY8aR0MAlkmZ00MidEV9XmfxpipJbQuy7abjumd3acCjalw1nL5ifioie2tZFAhWmow1kZSP6B9iZCjUEhWzmgynKRiR1fh2nq+v+btTWlfkLCGnD9u2phXYredWSQjUMR9+oqwrdvhmptq+uBFnszFRTFYMrgkYu89UJVyy9z3HGKgTO9tGmprQbg8lrAq969rEVTSyLlccrpLW74uwXTKU0EhwRWehmpot9tx0jgo5B0XN7jRWLTWm3XsGWrTvvOsQr5s4h8ljI2OhrTyTReXVfmAo4Iu4Yzz7Hcbmv1Mv2Yn8y33Ol/5yRxs6TqaOpJbXJzFyjB/XiWKe5kWHh6qNturJm1NQ+m97qKrZ91Tg33S5Om+C7Rjy1JDTAIm2Q8bqf9f0enrH9+tLxkZY/lNRssx00VKz/4X5kC5zKS6al+TLLJE4LQW7cf24xNPf3ejysBeki/YvjovY3/zbUsWLBg+w3G50uE7y59cV1UvhGx8ryJY6/MoI8hDn3GM1ITft/2XvPsKuqq217IL0pUiyA9N6sqDRpggL2Huwae4klajRFTbHEFPM8SYwdewOVZqF3CypIkw7SO4iioIjveY7F9s3x/X3zJ8fxLd3c9733XnPNOeao1xxzTBBjswRWgBhvJYBcTxVxFmXiEPp5INq1XWOKZNUXaADN/hrZASBwZXE349vBaxedzxR/AuBqpHhWgo+Mi8XIdypLBknOD3+Xg1Y/8Pv30HAdbX2ydmO8t4oVHCzGOpr2anZAkaVQu87+7HFUvcMbpFqWYUVCWa1epVoek+T2qj04dlmnArrJ64lwQxOLf6nY3da0jHoXU+BLLx2sJo3qZ1HMmjVr5wqhc6ps7bJqN3xmcScDL9v6mvfUK9YsKMtKF6eVId7I7R5T8eCJnTti9tyPY8Fe0ndqXpfCbtQ+2LcmgQPOyJavozyyb9GwFevXxAezP0gFajv7Q6P9eL8qv4MlZMotuyYIZiIa4xm0aYQM7XcIn+PQl+fLFotx+wT0/XegwXElyOD2CXUtsuzWic+3fc3WCRD09dRW2Otd1atVnZVHCt1Cw8rMg/pg0l493Jp2mh3NaT5168N3nPbzFWmJfKcSq8PKuTLkSozypC7Zhh70/cySwSmV/ysiE9VYrTZNdOGcOfHB6oIwTXAQjujSJVeYdJJdYXGPPA3kyowrpYJXrkKY9ePefY9SY9SFU0r7VqC2IJoBvVuXPl9B9s3izx1+HNmyaTRr3CR5rNjuxqoOgYqymycRobftq6sg6tyEbPjd4nDue1ZWDSYdm3vqTcGd/MmsbNt/ehx5KLU66hYrTMi2Ol6+cRXRdnObC3+7SqZGLOyMWUTFaqQBijrHtHersc9jT+jHK1Zl+/U46/SYzta7qAbP4YbA03mkJFkxnkykzREc0cbls+i3tkMaukooWKiOl3bScD0gzZuTJv/Y946NGxVb6gAtzQTjH/RjkRVi/12Z8X4vVyWVhawt4ffQObsIutQxOnlu53BV7/35hTx5T7/u1B2qVy/1oMVYrXlhPRaPN8u0anSZTA8JivZp15VpbaG0dtXW2jQWHvN0nFlkzMxevNymoxFFYg5rf3QWYMx+owOKPbJ7V6vpU+7pheZmTXp6iIGhK3SpFxwLz8Yi5OrtZvjm3U9mZNsGNp2P6JCnylQjSyDtBjrYrEXnV5poa9277u/OoSuGruDpc5h1IT2dB+nk3LjPesxHn2T7/nNc6xZ5kofbBeUL287jlZlPfQRtiDKlXczCm7QhD0kfV/wzQwK963GPm2l7HnVeltCuQckxbHGpVbtWyp884qXNc5XNS56xbTMv9C0ydZnn6z+VVkYdg5cZO9YCmTl7zo8A2VHNG0S9gzxxpyZzSa0S5lGZtACb26FcsZb2rgrmHnR0oQGqRTqVJ6fBPpjNZLbPex/NTr/R5/Xq0J6MqoPSNxRE0+fi2/n9wvbzpzIp3flPupvVVmQwcmIKekD6SZ8v0GGzZ7B3fsVqG4km9KlL795pI/QbpKP3WWXe42itqTKfVem5S5cB8KIDmXOvARaDrFfUaLAYZCXUbQUcv8xoQMgYTtJNfiplNPwINPBeedopB5gmoFkG2U2gAdpvwxdehw1evHld1mjYgIgrzg1rHUR9kOrx5ZptsfzflnB6djw8a4HI7/oD6hnpY1E6+VJ5VZekvNN/wUdtnTVIlFUenjpBHee8zv1sbixYuT7HaOBzYreuWdzR1Vp9F+Xd0cnrZig4Z/K3vpg0T5+Q+9KvUdfBS06XPKceHj1pyo8B2GHQr10H7B/gXGbFyccA0vK3q75mP+zLZ8qTfojPtg/6UeoiV/edq2/R9W4fW8nq/qR5RZxQC1ZtfTj1IihiqB/gvR43b+F0j/feBZhWmUKqbks2Q8IxKWtu86lAZl0leHYnPtMXX7F4AOC5jaDv05nzfgQOO5LN0qxlG3ylWqmnzIZWHzt+M5+VVbeDSHezxKSP41Km1bvaMMiT39cf3ExdlynoeYPThrxatW1HjSx8DgLy4rsFLW3frDhX8asT8Cqz0sF2M9sOOlj3SR/eGEW7uXrZ8phNdsJa2vXqQ0btAWRAaFv1OZNX+Uedqww5d1kPjM+1GWad2H+Daz9Xt6cN5ndX9tesXElhzblJGwGO3sQJ1pVL3oO2Zp14aS+cS/WI8512lYfKIyVQTl7BNUk+9XMzdRfMmxmLNxUQ26HUqGpDBqBzpu3WdsjvZsKbJaANNwPCwZTalT9zazb87vHtguTGK9+xyGWW2JRpH/4I6Hdp2yqLD8tn2gUPGVBvqBellYUhFchSVox2JH1xeFd/Ie2uuoj0JzOi5pGd9/HywnZLgxO6Yp/IqNVmWji2Ios9ZitmTCKtoK1bibShm8l+fm3M6Pjznx6M8y+4gIyeujbBJZWctf/e6/85oyFpUBo/dHe+VGwJNMCo/BkLF8yPaZMm5xm/61euiqZ167Ff8hBSf0mDhIA5eUygVUs1TLPmz4/XXnwmVuMQH9/52OhGFdeGh9RP5z6BBhkNFZsBF4ao5NApfCUjb6Dr3tM08vTDqfLaTDD+PobnhbffiWb83ePkk+Io9udb0MbAMmsJwMwKrYo1hQaGUjFlkMs9GmyFXUconRTHCbPJC2spWjaWsS6e/nEWAWzbujUVkRsSgFbMM+kVCMERhUWHQUBD5eG9tqkA+rsOUxai4TOdGZ1HjeDCpUtjxLvvsJ99F0eNcQQQSqRBvfrQAsWJw+G4FWwVlPeU0sBs1+fpRHhlOhe/qxx0glQgFlybM39BvEc15649ekSbFi2ijsoPJ1enSfrqhMr4GhIVlwpKDeoWE9PKBCVyPDkOHSMDh90cj+YRcksorDI3QYnO7KXyLGAVYFUdeL6jUyaoIM1VICqH7Ku09tnQRMXH4xgLvyPcVfatxor3N7nf1LNuJ09+LzpSKO442jdNVqNTSpFX8eUYEHoZQkXqHDu2ohgYfMUzTaVUsfsM319HOmLuJabo6Cyq5513Uv848tD2eayhyk7+FQTT6Ps8wTPblV+cb4s76oBKM4EjwTT53C1C7jleyt61CZMmxKiPZsRBROGnn3tutIX21XFAbU/lmtXc6bc/BR6kUfIjxPiez90L6ikpOuXfoGANkgRiDKY9j/3dYRwbte276NqhLUd59qGQYn2MPKn4OCtVOV1ARb7LqtSM2YBQ5SxPb2dOV5PetWj5sli8fHlMmzkz50SggUV1gIbyAA11KQYJ0PD/qdGQQAP9KgENVZlbT56AtKkXEmhgHAas7oOuxFh+IADcxe+r2Bv78aq1MXoJwATP+iKfGtHt8E7RqlnLaNKY2gWAhK7m76KPOlrSJY86pP8GY6aP6nwpuwZ1ygSEK4Ii2tPxWrBsWQx9a2R8Ae937MRpOO3aZjqoZzqnXqFNDZx8I+01QMqv+2zlWT7Wd8NYMw4CflyzzKLYTSbFFwAgn86dH4NffzcOa9MwDj/sqGjXuj2OHLVGOFVjx3bAD/q3GdmbRdbXSyMGF6NkwCY3IFm54qADiB+E0Y5YBihwFGJxBMqrfo2GrERQAFXkphw92Qs0ZDFI7im0nn2CR6QBfd+DXH1B2yu++BpjvilWrd8ZCwvsL45s2zqNel2A0RqMfxtOurrM096tSt+YOiC169SGV6iLsdOAq3BEoChPK4IvHYvCOSrOAVcXKLeFLjJ1nNMASJFdtHBh7sedMm9enN2vXxzZvn3uC9WhVQ8qL8p5yUFTnTgf6vwMEnFE/V0ZFuz17OtKOHo6B54iYfrzJ2wZs1r32Wefwz7nZsnjyQ+oMHlF2XJriLreKwPpvXpLeXIbkTr434GGlKfPPosJ48bEhwAZx8IvJ/TqGY0POSTlUR1gOz7H/sogJT7UCdVhUYfqFGmrUg9LOz7TyRQIt6jY2CFDYiF9Oqdf3+jMHnfTbDN9GL6zaCotJeii7k6dDl8bhKWeV8/Rvm0bGKh3tAmCritWrY4x48fHux99HM1pvz8pmh3ats26RQKw9k3gX/1i/zOQkTa81GU+K1/5HsE19+jA2X+Dx/lLlsTQYUNjwYZN0fPw9tG9R8/U89JYHakMqc906KS9x25KK/fU/9gub0kb9aTP1RG1btMO7PN09nA//vKrWTD1xD5945jDjoj6pFlnUIQ8ZlFO7lKP6+CnQ1saE9NSEf2iqCRYQvvqOIMWQdX18OWU6dPjLfZx9+l0JMdhtovmjZvG/jj4hf7F2tN/nyXH2H45gWB40H7K99oLRpPP9z3H4fva3pWktI+ZOCk2Ll4UR3c7DqC92FLndkXT/KV98g43KlHyi/pG3aM8aPu0t0Ug48lShTyZnmuNkbnI1Ggc1U6du8ThtG1tB0+SEIxOPqMv2jrpnLKVNgoaSWv6J61K88vjEzT3780sIKxYvZKiZZ/FzHmzoutx3bOY98FsgbX4ZVGjChknWJROhfMPP3CvMvQ1wLfyqT3KYyQhnjJlgOMxm59j/+bNncMpElNyC+Px3bpFI3zESgCa8on84VUGu1DQ1GCW3+R92+I/5UkdowwkAIQeEWxw688nyNOkoa/HjF174id9+lDs9pg8ecR6PNqF7+izAKVA5Rp0h/Lx1tQp1GOgRhd+ls8c0LZ8tKx3UNRAz5eAhvIU6xBoEIZDXeT3oHBmNAgy/Ag0QAeBhgqAhOVBkcsSGDJ5HH/JAg0+7hoyARdtWh8TFhQr6roNR7ZoT7YoORno6p0Aq4tZXKpxSNU4+ZQB0bJp0+QPQTskKOUpgTDGoX5RB2eQuFfuUUw5D25DTnGjp+oFM6s+BTwa+tqQ2MQYTmHvf4+u3diqcXAhk7SnnMAU2aZ8pL+a8wqtEwyEt50HfXf5M3mItvzueoLpiRzbPBSeb8M89aRg+OGktqvL5DfbNlg2O8I6MvK6vqCy9eOWI8dCX7Xh8qJy6qkz8tOSlStj5OjRuT+/R48u0bZdO1LzG2agqK7Rp5GHDAy/g4bKvb6gizfqfuVKfa6vI5Apfb7mb/l1G1mcny1aFG9xXGUrdIDFUtu0bM1pdgelj2RtN30lZ71Ec31pf7efCQaoT5EtaZZjYGDqAhfNrO/yMWD79CmTU55aNec0O+guCJN8TRspl9wvX8uD2lJ1OR/k32lrfBZtagfcwimIvWol29HQBdM/+ogMw9rRtePRuVVd+6L9VSeV9K3PUmbUlwWIWaT72//CF4a7+U6h6wDGiJ+WLV2aJ7ZNe++D6NqlaxxNDTLrdEjb3KLEeJ1D+58Xf9BN+sw/+TxoxHuOQn5Rmt2qYNDtVoVZs2dRB2tqzF//RVx97jkcNd2aWJG8A9pzzMkN3CdP6GdrR2zf52WbtOdcGsC7QOCCmz79N8zt0mXL4mPoMv796cSg9eIUfI/m8Iz2yYL+Aqb6FelbM5dZs4j2lBe/o9+gPnI7qX13UU2+Lwf/b0MPfzL703jz5ddiJV/r2/mY6Nmtaxx84AEA7MwR92GV8HULOskTqjYBdBcG17LwM3nsuBhwyYXxk4E/iZrYteLyoVL0v/f6zwEN0sKXP5KJMJYoTJHJBRRk+nDqtFiG4JZFODuCarZq0jQqMKGlc0i9WSP6NSuPk6hWfOdvfhXirBf1OwGiD4x2GE5BgG9I/7fSdXGsEArNCchnO/kKULJz0Qd+hzvS+RRdlyHWI+Ajx46J3z/ySLSn/XOvvz56H89Zw/XqJQJpFfU09rSVSoI+WjjOY4l8fqJq3Cfj2eYPMLEv0+U0dgZjLw15PV4d8VZcCYjRHaN8OOO1AKUZDRokAxWFJlFDmNeA3WepuG23HAF0KnOY2RQ4jwbzMyu4fgIK+q+nn46aKI0TevWOQ1u3jUaANgZGtq0CLwXlSZa9k2JA7PjdjyQqrJOiYjEDwWsjDvmSJUti8ocfxuuvvhI/Of+CpvJYyQAAQABJREFU6AwAY0Ee98kpEQWKrUOEEkKpZEFJBNnnCNL4ucZdhevvzoV7kf25bNkyTqeYyRGJ43Nl/OJzcXBbtc56FyUkWADH/dQ6XSUnS6PppYK2HY2R/OU48IQznXpbGsxZFAGcEo+/9kacD93P5MjHJlSHzVUfjE2pFogr0aL1tlNy0m1XBZVOIXNo+wkKAPBYzdnV/AkTJ8Tw1weT3rgmfnH9tdGHyvF1SDUjtkujr/OpEuLWvT8BWaCxylcn0XG5Bcd9kxYwtRCMjo1Vxi1mOuT1ITHorbejPjJz1+9/H52gvTVM0qlFAdK57LfPcFVXhejT5FXRWxVrhaqsLMEroqO7cP49ok7n/H3m9OnH/hnTl62J03ocF5eClrZr2TIVnynL8mJqPLUeo3HsKmaBiy/p6+eMfxZ9/JD9jYM5YskrgQYi4HZNKkTL+nUpBoljCThQKgZpZfyvkT1CfS6QYvqXNRr4XVDMlcrvGMN3PFNHT11QDVrtw1x9y7PXkNEwY83mmLbyK1YeAAj32qyz+50WRx9+JNXpm1EoitNfoJ+nPHhU0rcAJZWRJTNBdrNK9BXy4rMyu0Q+oj8CeLnSq26iTx8hTw8/8s9YgtxeeOYZ0YeKzh4VKo0tHmnQJe1LoGYaOejufz/AKOkw4fgUQAP6DIbYBciwiz5t/mJrTMQY3/uXf8aAbkdidHqSCUPAfkgjDA6gKmPcxkrLcug7efoH8eenHklq0fSPuvQQ+lmnThmKntVmXr5nP9+WqEFiVPtGZaP+fnWhGXunATjMgpAZXbEsw6scykDJYfhwtgEoY8fBFWhw68SSTdvjM7ZObKGthXtRnP49e0YXnHBB4JpkHngyy1MvvsxRV1XjLE59adwAcBhH0GKWRn/ffWv9BBw1aOUJEl7KaWkFNx/Oewa5Oi3Km5+7v3rhwkUco/phPDpiePzyyqvi+K5dsy6C+kNdaFaE31dvpdPGfQa+CQzCL4INynDqGmj9LfxuNpL60wK4U6ZNibeGD41NOJh33n5HHEP19azYDy0EoQyIlC3nVhnyWVkgimcIAgpeyC8MrvgpnWnfVQsrrw8e/Gq8TQbVST17xGXnD+REg+a2nLJk3wo7UTgm6pt0kOhbOjROCpc6XrZ2H7dBl9ke61g5HvnOu/Hrvz1sjBE3XX5pnIY+q4eDmxk59Lc8vr+VwA0uYMKc5LRvyI06zGBX581gI1c3aVs96vPm44C+9Npr8TxAewfa/+ldd0W3Tp1yRUqHNZ1ydLf9VQZ0hpLniy7/6EBrS9QRAjI+Sz3pzw8o7PjQn/8UM1esjNO7d40zOIrtMEAknXtpUiTeMG76Lv0NBnyOfJE6nj4hbD86uSmv8LMO41ZWG8dNmRJ3PfiQ34pbLr84TjmhfxaWVk4FSr/Bf9AOm22nDVGj+VzBHqvue4Qu2i15NgECaCTQ8B0yvHzt6ngDujyK/Tun3/FZYdyTZQ4i40t+kW9KoK8BksCN45bP1Sm58KD88b501zmXH+Vl6w7MXbAwnoP2u3FIB5xwAkfgHUFV/abpKH9Bpp+84apuZsh9XRTCNHhQggU1bdd5TqCBOU77jY0w22EVOuR9AuonnniME6DOjh6dOmcBxprabi5X7m2HzqaO0OYZuJRstbyVwYRzqnzwuX2RZ8y4m4sPNx7avw/Q8NNLLiW4OIzUXgpXk/3kefLfUuxWfZN6EpnVUU+nX77hdwtoGhwiGQlIOZ8embjDVcC5c2PatGkcFfoipzN1i/PRw55KJmjsCWPKp76BV8pLjoORSA9e0l+vz+cloIzs6ku6Or5x48awoOZI7Os7CxfHrRdfEqej4+tS0ygBetr1ngQaQHMXLlsag158IZ4DLCulVPvz+HZVonnd2gBc6AkAamsuVEAHlgddK9l96WsflANrNHgCirKtv1oRXnc7hAtrZQC7vhdQ5/etHG+5Dr5dsnlTTFpcAA1MQfTqSIBSBwANXb1jO4Uip06OQ9o2iauvuoJFjg4pM9puM/d4RGaSKFMJMkh7nmlfpL2LD6VjKw2c7J+6bitA8kTm9OEH/pi+9pWnnx7nnnFGypM8WDpxR72g7+ucVsW2eq862UKA3+wi4KZN6S3YqM50ppStz1etisHDR8QjL78cx+5XNc675vro0b17Fnv9iq0RucpLm3Q2eV5dIL8rr4Jnso5ZT/50jjKg49mCg2awzVowP/71zDMxBn18xdmnR3fsV/v27RIg2/HlDvgRH4w2U+fgQ3lUsTTzOamP6LcAoPRIMJm2zQrVdqtr3vv443gAX+yIFm04vvZ4Tjo6Jpo2bpx6ykLyyo61EJRHdVdJvpgSnlzQIX93jvyPfvs9MxrWsNV4zJTJMeSlF4hvLkz71ARdoK8tAKK/rwxyW9omedzL9+yzQLCZ3AIGW8ky5ZesaeHfFjn3tLlho0bRzrdxFkdKtmvVitM2Dkr7rS4oLTqWbKtzaraH9sOMBm24GXxMeoLW6Q8TK1jkdS5tv/fB+/HMm8Piqp8MDP0GT2QQvDFDUBvtnDpW25EfinHstaWMRR/bTwqduSeqsmBo5vZS/LDxkybEyLdHxPQFy+OB229LYHA/+uZ8+gx/SiPBKX/PBQieqa7N7Cb8X+MmbaoLefKLz3ML8GwAzbFjxsRzb4+KTm3bxA1XXhlHtmuffnpJt6vrE4hW7zh3tJvAnXOgHuJ9/T4vARJBBk8r2sjJEWNYpH3ovgdiFZ9ddvYZcd5ZZ1LzqkGC7GYg5RGt2J9KACf6Tdo37fVOxrMCPfsui8jtj+uSMW8NAT+v5INi/os3/vv+/c8ADXJSchM/pUfpxXumJ1kM8oMpU2PdypVRi0Cr+7Gdon2LlknA7y3k5ATCDHAo6O2OeHfSxLj4hutyFfOaM06LK6+6ivPBD01FkVVfaVegQcYovWSAwkAWzGF3ckWEdjN1B4bT8RA1eoUjo265/77ozHcu+s1vYkD//hR6bMAqY5EerVHTCUrHiL6plDQmoqyl91R6MnECDQADAg0irZ8tWhyPP/tcPPnyK3ETTNb/xP5xLIii6ejfY5BtV4fCnwqiv5ecQIVfhaJQuzqksVDxifR51MoXpHN9QGrnQ//7v3EgR+qd1q9/HIEj1LRhI5QEu8y4F48kAROGho3RKcFI8MrAHcFTyRiYWpTK4MAUea+NOP+uAo6eNCkef/KJuP6aa6NXly5UGG+W1XmdX/dvlVLa7KOKVjo434IXCp+IqeNxW4lKcV+Cce9dvnhxVs0dMnJEbESR3XQFAk6KpIbL4CUdNvrxNQbINPcMIlQWts9lSqcPEjhwbnUo96AE3be9hT3Vn5Cl4tFIf3xiUFx93nlx0dln53m3zl3OH/dKc4MADbN9p9tJYwVZRaQxK62IleFzHaGyOP9rV3yO4nsrXnr26Ri3aFn88Vd3xakgoQdiFERBVXbyn+0aVPi7beZz6e/30FsUW8Vdjvb2CDSw17nqfqTxMQceMzbomUHxP4OHRGP69NfHH49eXbsUaX8oU7R/8rlgl7Ji1graj29yyUeACYILBdDA2cgEXTrOlclE2YEjMA7l9/ADf4iJrMBe2P/EuJG5dQXZ/u5h3lyJcpuBjkS2zXgcf1kcL+diKeP/mJXECaxOPPnaK/nYRvxbBx+4TZNK0aL+gQANBBIEdWWgb/IzcvcNfXXWZIDyGBy3TZSHLoq6vPo9RsNjxQxWDQCqM1dWAf8e3lzHiv/sDV/EjHVsyWHFfU3RUFx+9kCyVTpxhFEbspzq4ehWYV4ZLzQ2pV5wpxKg2w+0+SVbQxyTzksZ3ucPBrx3hYA+GExOxZm4+8EHyIhZGNdfemlxTCsBgH3+Buc/K/Yzxx6fKGhkCmAyIMbCnz77e+hdDjnFK5YBYid/f8N8rNu6Jd4dPyFuvvt3rNr3in7H941OZCG1aNwUQwjxqDi+DUfYlZPRUyfF3f/4m8TKves1+FmTJverViZq1KoZ+9XhBAic1xVrlsaeDWxralA+Dt6PbCCeW8m9FckSdsjVVtIp6ZxFIYu+2irOJnO6B/puYXvLwvVbY/bqrbEdvG4hWRJe53AefU9WWls0aky6Xw0KE62Nhx99PBodtG9cet450axRo6RlRQp2lqEQ2ne0sxMnWZ4xVVp5d4VIGum4eBn0CaSWNyDj0mFdjUGdD3A1cerU+PMLz8f9P789TsaRc7XIADEBCfmeOVI/unIkuKlhVh/k1icdT/7O7UcMkpEmsKbOnzvvsxg1ZlS88tTjsZVUxYfufwCbc2yCsRk060DA7+ryIpvOu1nBxWkweBao1QEy7TiddPqgrq9UvWqmG0+i3y88/2y8OHZCnDegf9x09dWsurSB1vSDdnXSbddnZRDCtMjyjkUH0fFlkMRP9Y6Ouqtq+7DFbSs0f+3NN+Kq396bffrNTTfGwHPOTvBH56osvFiOVxlon4AGtHHFvxT4W2xRp4V3047obGXKrLaK58zGFj8xaFD847XBcRhPuOPPfwaw7pW1BtQDpQDDvmfGAT/Vac5p4SgXK8cGFTpZUg5KZvqxz5z0/vtx5y/viveXLouL+h4fF1x0cRx95JGpy3IO99ptA39plUADdM6VTeyUhHIstq0OSgAeeZL+mwDuRowZG1cDjnj97uYb49zTz2Q7Er6EgRHyXwIaXNXW7ns5z7nazncMDF2BN1MGZsqXR7cWK6Sfx3Ovvx4PPvF4XHLagOjb63j63jFBntTz6nho7xnqzoV99TkQJ+2GWSTOpQou7SO0l/7qN09omkFV93+ySFCGsZ996mkELkdzykuLHO8XpAyXJfisBpilzrFauXNgdoD61EtekcYGAwYIOUba/4JAY/ny5awevx9/++uf4vxLLot+PcgkadYsapPVJ1+60qkyYDZ/tHmZ9UHbLgpkIAm9tYvyiZc1RdQnZhx4lvzI0aNi6txP4/abbo5uAJL12d5QhWy4nQTCOwFMzeQzA8FneGWQAS3MRnFrqcHhTvUlbQo07IeOMaNhJlly48aOjScfeyS69uoX1158cbRv2TIqIbtunSgBDXZLnyj7xyOkiwGAfGmP5X19HYMN+aca7W8iU23s2HHx+isvxasfz4jf3nBjXEBAfUjdeqlXnETbzBMo0GGfLVwQ//Pov+Jfr76co7BdqBC99wIN+1XAB2EcFeCFsvKSNjlHXPSLfxN8+w6Z9JhV7YE6QO1nyOy2X90DEhmwE2VyG9tGApClzP/kxUXmHu4kW456k6lTl4zD79kSuz0mjRkRrZGj22/7eXQmu8yFBvkkqU1bggICDemT6ffBH5mN5VRAo3ypA/jbl/p5E3zzDhkBd91xZ27OuOOii+KS8y/k2MoWKU+2rx6zbX1f9ZdbB2FKGuWhyIAF7XxOBlzoBH1V+V/fc/Hny2MQfvD9jz0WvWrvH5ff/ovoB8C2P37TlzxbGcrAUd3iHBhEYp+YwGJRTpqRneilTlbnlNNfBTjxmR/NnhUP4gu/OXFC3HLR+THg5JMzO7kSc6/tdxFIu10+s5gITvUR8PHLA16VCiVmJgxtmZtYngxTt/a4ALEVX3sc4NfPb7wxjm1/eJxyysnRvetxFE5trjOaWxTSp6ZP6WPTv1zoTE6UBEVwqs3yki/SrnGvmcer2PYxlOyjJx/5R1x79XXRvXPnaNWqddY40j80C9ZL/k5fFdr7HF/2Wd7PwrXQzeBfgOGAevV4EMAguuBjZOrFN9/MTONLzjkHcIrtffXrR8VchCHOob/ek0CDepFxmLmsbFlI1v4aH2TdH+RKu2g2rtmCM/C1J0yaHH97/oW4k0WCM4hDGhAUW6i2ivoKPSCTu4icMRhtynPqyVLQ7t/KgSemmPVUjVoxbiNdspgsEoLtV994NaZ8uiAev+++OIGM9pr7kpkFTdUv6kXtlPyjbpAvc/GWPhqjGLgnwI5PmkCDz+JlBs8nM2bE8OHD4h+vvxm9WHz49c9/Hp2OODJ9dWmH4CQYpT4UQLK/CeLLo86Hk6L+ZQ58Q9u6D88hFSd2UNB1OH2/G39mIV+7+bKL48pLLo4WTZoAgkNz6nr9ANCVWygAGpQRdbmxnRnISwGIhtG3Boe2jfMHnh/V69VNMct/GON/8/WfARqkAHP046s0I/w0NdvzUyei0NatWJnBWU/Q9gQacJK+JQBLhwaBkvHdpzJmGqsWd/4iltHkjWeexur6+QQW7TJFyKOsKpVF4TDx7gdMhFLm82+VLcyis6rCE3GVkUWlVH4KjumRr44YEbf+6Y/R/5BD4kzQ+T6k05nR4J41j0RxHDJUrujwuwGqTKhBkdllbAXSQEWD8kNFHKKyPoPVtGVL44kXXownX30tbsag9el9PKuYRxKsa/BpFKYSzdXpMpiW2bxUKCoPDaXOkgKiYOfKL0ytA2//phOU/p1AtAZjGXBC3ziW1V0DF1frdDxVHCo82/KlE+FeMQUmARf6r4DI4DotroooSFad9SzdMSDc/3rs0QQaerLS1YCsgJqABYpZOvjcp3AL6njZZgnQKKHOqVChjeN1v6ZjsobCLBytoaPe5Ui/9XENzsSR7TpwVGeNVHA6PdLY/aaOwX4VQUWhDH3PaVSh+GTp4SpJRZTTFoL2uTjQ0wyEH3si+p9xZq5Ot2zMGczQRWc2V6ScPx0X6GPWhA6RiLTt2cdUivwuXVSEgh+eFbx85coYN358DHtjSAyfPTfuv/3ncUqfvlGXOgfl8PIFu3ScpZF9TiNDZ6WDl87yj0ZI3vFtflYhsKADOFoz4vHHH4t/AmY05aO//PORUEbcg62DLCCQzn7+/L+/a4Dkue+YX5VVponhQGgoVazVUd7f8P5YgLuH7rg9pqJoL+zbN26+9ro4XHmSN3AUVKrOaSnrxblNoIUVoV0o9GUowE+Q4fHQ94khrzqkaAnta5PO37Jh5WhWr07sXwk60o99CLCVZ8PdnYjNbgfLWMsyiAQZpC7ty9d76LurSrmygQOvM7YPMvEDjsIm0lwXbP06Ptu0OQsWLtdP5rrs1FMzFfAoDGfTRo1JjSzP/n/kyZRyn0ObOce0K796OQ8aTue5CMiKlDid3Gnsa77vr3+Jr5YuiXPRBf1B/02TdC7NiFCnaFj8W0fIPZ9Yl3SG1D9eHlGalZDZwuDK0S702HbuW4nzOBra3/ngfXF2/xPjxF4941gyVVo2bhxlqW3ApMVXq0hJxmEaDW3vHfRstmfhqqN4HQh2KIZQiWPWqu3Pcb37mC66DgCE/aj4OwfXrAd/E3zzXJFxHo3cmEpIf+QB5kIAxv5XxAkQxNFJdBVt8aYvY+46jrckVWS+1Y24zuhzAmdcdwKg40SPOrXZBrY+/vH0IOpvfB/ns9Lldp46NWthlDn66Wvo8r0OZRFYKDM6f8qROkEd7NT7t/OvPjb48hJomK1NAHx+GZm66Wc3R/8ePfJ4QIFKwUTpnQE/vKmeNOBS57q65jz6ezpd0FqHqwKGXgIIVM9j9XXihAnx+qBnYgtt3ff730U3wF5XW1IO5Qto4nyq47U7+b4Ny67Mp302UDJwdGz23z3cZghNI+NuyOuvxaNvvRPn4DjffOWVbGFrVQTp6GA9KO2Tzqzj0Ln9Ud/Trv22fXWcffYoQ1fUrK1jFeoRb78d/3jgvphFd+688oo4C55v2qhhBl3lDFQEdwQG1eX0UXnPlRdtKPe4QudLW6jd07ZIV4OLeQsXxlPPPBN/A9RsxXfvfeih6Ne7d27T+gr9gEBmn3Xo1C8GL0WQgVzxd4Kx0M/AQv0oMKsuFmhyLG49uPfee2IK+v4KwKOBF1wYR7GH1zkVpDZwgahJH+2otDILJ1es6W6p0rs0t//aFvnIQHWjQMO4cXEN7Tdk6Nfc9LPMaGjdrHnqd2VVHe68OZFKvLpM2uuY7sNzKzMugQb5x8t2zWgQnF2yemW8PGx4PPTsoLiwX5/o07M3QMNRcQgprM6n93+P/yHQQAM8gY5xv3NpH0sykDzD54IMbnvMbESAhpms3D/6/PPxHUHQmaeckm03b94saxzkllDak07SpBTcmWnge4LUjqfItHEuCvvuODIbEf015cMP44Unn4xTBw6M47t0ySMr3bOuTtQP0Dn2++pHeUKb6ksap/8EX+ZqKX8beAhUe32+fFlu53lr7NiYOntm3HT9ddEVAKYuQMO+gLryt7owMxDkGXjIdkz5Zii54qdt8kQQedU6JIJjZlu4QDFLXYC8Pv7oY9GdoOUG9HDb5ig4bi6AOoi799KWZgDA366cyqP6OT7PTEF1kLRxW6IZg+qwiaTua7tfmv5x3Ivt+wm0r1vnwAzmpIXBgltg9LnmIB+PPvN0PPrG4AR89+4qiwGti9OVLC5aCT1s5t5uto/JSwIsyW3ytrzqOPn5LbSWL+TzytC0Ij+Vr+8EOfmiGX1fYagFfpduYusE5QZ8nnj1CWQDmcXkKuiXW7bHhAnj4wjk6A5WeDvBk4JnO1lVV7/wdfi/8FHlFWmSYJS0IkiUH6WLvCoflQXJ4K1Yx6Lb22PGxC333JuFB+9CVs8jG0Y9r88hEPgtvqhp35iU1DclPzVrPyA3ud0Y2utDCpaaJaOu1M4uQQc8gx/8hyeeiBP33zcuvPX26ItO8OjEL8nCMZjW79A2VcWfLXwzZVVgQ/+MZzIW+2r/y6iTeIYryOqaT6jXcv/f/zdenziBRb0z4iT05FHQpiLfsb6QY8h0fua4BMzkUbjc6/te6gvpo7603/KAumAbPuWE98lGvPPO6Hzk0dEPv6nTMcdG0yZNss/6DvbLuf0RNFbXMJ4MQvlMfavtUh+V/D9tmvrUgH3YuAJcu+qyK6M7vnar1q2jBpmLFpM0C1Zf0vsrIDs+zGdqO0oAh8G0OsFFLH9aw8FMX49+/eTTT3NB1a0mF5lV1rZdbs1wUa9UO8I+qcOUI7e6+Lv6QR2dPx2bc8k4+ELaqDXr1+aWx8nvTYuXX3qFWgIXxsnEOGZButXXOESbqr9q+wV94Xl1DXOYvgG2yHhE/e579tGMAPln/pLFMWr82Bg8dHBMm7c0nvzd76Nv165RA4BEkNc5lRZFNpbbygRJAdygkXSR79Ux6cvTfxciCt+D+hLIyydkVb9FFuUjb7wZnVikvV0g6bDD0heQ36ydYN/lP4EM+ViQXRvi54XPoP1A2ztGOiSNyrMouR379DbZ8v97510xle/eeP55cfkF5+fCzU50JB0rQC+AL3VyYaPwk9GB6kSBuWHDhkaTjkfEBdxXrX79HCtfTBuTP/9L//nPAg2FroOJoEZBx3Qq5hJIjRn5VqxdvjwOqlUneuDMqsywRAgVQAOrckWQ/R3HfGyO8aTl3M+KznyaufGMU+IsVqfbIYSmR+5G8RpcVGCy0oFDCbpybHEvmUOh1vFUCHWAMiCFIXS4TNHfCJDx6ltvxe1/+2uc0rAxRvkn0bNXLwoqHhw6WjKEXVdYEvVkTAomHJx/VxDkgEkUkCwmpCLniLk9oKwy9WKE/ClSxZ59/Y248ZRTo2f3Hrl14mDPXqXfZnBsIQBRCD1+TUWl8lCh6pxreD0bVgTRIpH48jkGwQfTDD8m9ecxHMXqPKsfAt654zHsP26eSJ8FCRXCXFFM5QFwgSCq0KWLDoXP0LBKF9t0VcRneU7sylWrYhwK5FGAjGuvujq6s+JSF7rUoNBL4dSijFU+kNM+K3wlo6Kj6DNSQe0VBhWwCsHU0VW0LRgwcvz4+Bw09zKyDkxZqkOw7nGh9lmjo0PkGKz1UA7l53Nc7dIhQpfCKygC+qDD5RGKItwCDQtYifjgo4/iuaeejO4DTo6BGB2BhqqVOU6TuTRgV7hNxRNosAiQitVUbfusgtZR3Adjlk4jY3HrgGDPCvo+acrkeGvk8BgK0HDfzTehXHvnMa3iq3g5eZa7zprKTl62j6lEnVv+dn59hitL0l+Dn44cffoE+XgCcOeR8WOjDbS7/69/ix4YNY2h9FDBaQakSyo3nufv6VTQtt/RmdX4ahBUsgyEKsU1EikdO3lyPHTLDTGNdi7q1TtuuuZaaga0gS8ohoRRMxOF5tLJ1wC4lUGeqF6DfeHQapmGaxZ7aDmG9alhb+TstgaoF2ho3rBaNKlbM2pWxhiSPVEWYE/5kIi7WLbZjSPlynNx5KZTaICIzPgb9HIOlLeyzH053k8DhDxvJi1/8RffxMLNHI20MWJJAfDHZSedgJN7FNuvDo9mDZvk3G7bsi1pZOCm8UoDofKnneJ5Or3wETIrv5fS8wXu3mMf/x//539i1/JlccbAC6LvCSdGB0AY+f1r0jczsIUG8oy9dQ+pvGmBKVcmdAbSEeBJeTH/3zL+raxELd+0pchUePgPccFpZ0Tvrl3iqEPbRROKYlXhOz/At2swLnNmzYwp8MDDw0bnKQWH01ALtufWrsLe8O+QaftdhXPi2YiycrXV7SMOakzRN/a6VqwCvzFW/UyDtMo42BXKCwoiH+z7cxVnH2SnMs5ceVKRy8DP2wQatlJ0cMNGCmrtjvlF3aU4qXuvOPoIgJBmTcguqJMF4B4HNK26c0ucjS47rHWbLHpYiRoNO7Yz12U4prNysQqik28WgFRQ9xYgKc42wcaPoCbPNuC1INMnADyTADVHvM0WM/ixb1cK/tai/gP3VlFHIYfqLTPY3MPu0X3yTW6pEEiB7jq5rl5YsFYQgMnPUxHmL1gQ08g6GP7Cy7GBSOXee+6JbkccmQ6V+kQ9k7IPLyRwyd8GKm6bM+hNkBP+T57h+zqPPi9XYJHh9z+eHm8MexNg8J04Gz3ws5/+NNo3b5FymAEtNNBOmHpuoKSMGQQLlqTuUsfRgyyYBx84BqYPu1U51rAC+w4rXc/++aGU1ztYETmV4KspW9h0oBNoYOXezAYBVAVXQF3dayDhS6df59n5SF1A24LsOpmfLV4cg557Lv6KfWrA+3984P4YgE6wOONWwGZpKMigTbV99aZzoO1Qb+22XZ7lHAsOa6/MXrN9vzON9P377vt9TFq9Kq6Bn35yEUDDYYenfKZDjBypzwrdBXDB/QKd6v8s8KX+5HcdcvWSMqyNEYjZQGrqCAKuawFhOhywT5z/k+vixJ69M9XbQCu3OfE9hgCvkFqrzfCizwmkopMqs0ouNKaOkC8NuuRa06WXrl4Zr8KPf37xhTi/Z7fo25saEEcVGQ2mX6vntd9mw2QWJm+px+h88oc+hjZEp1q+1x9wu41jsSCiNQ6efOXl+Aa5O43soY7wZPNmzXJbpf0RsLavjt+X4MOXLEpIK22kz3LlKwEMeMvnSjtrKy1bujSmkZ31+ksvRd/T8DvwsVrgY1mnwXlRbrSh2g9tlMFoFrSDn9WHyqX7zg1w/NyVZP0P+7NkmUDDx2RnjY/3586K6/ANOhH0HsTiiVtCBUWkvyvJ8n1hs9FW0hheSVAEW2ZNJf9W7zqW2gRVfsc92ZPIpHxy0KA47sR+ccPFl0TrJk1T9zqZaSWkMf8pixmEQiqB+AySsC+CGh4BqONvrZZidbpCrCJT0y2VI5HXVz75NO6m7+dC+4PRNd+w3cPAwvFr75ziuYsW4b+9EI+PGJoV5zE9eQ0AlWt9SD1sHrYbZjANf+cOV8cJ3hm32WPyn/KtDfuW/ll/RxsnEF2B9yrA+PpMboPRPu9Bzr6mzs02ApAlG1fH+NkRSGBU5NW7x9EUxGRvN/L3FRkNkye8H0dQF+q2W29jcemIDMZ3kEUi+yV9mCd/luaWt9P/UIflghj8bdBUjcUNbaCBkvUo3h47Lq4nu9frV6yinnXa6elP2q7jyboq3KsusH35VB4ysJP/5HMDRS/BJNt2vn3W0pUryRAaEn8ArD6BsQ/81a+iT69eqefdSuoqr/Jv/bIaFC13fuV5dag6ImccuqVN55kwcs6TQIP+1EwA5QfZAv365IlxAxmmJ7Ow1xEgX93ldqKUeeisXlGetOHSP+WL9xyHOkB/z7GoY3yWvLQNH3wyoOmDxCGdjjom+vbsldkSTRo19qspO8q19kKa+/JK/oQ3CjuiXAE08FztizS1bWm6FplVlz0z6AmC0UuiGxl3rbGvFnD9inm13pk20HbNylAOlE1lWNsq/Wku++5PaSOwoWwtx6eYgUwNJs4pB2/rC7tNuQ4F9T1ePnUfNNavljaZ8Qm1i0UJ9AOyKm3sKw5OtmEwbZHT1fDM7HlzYgox2uuvDo7Tzz6HRYKe0ZTtATWqc9S38w9BjRHkMe2FMi8PSgO3XJfsoLTysv/OqYs085ctjrFTJsaQkW/EBwtWxlN330O9nC4UqGYhAR2T2/u4z+yLCrznItsOfPncyo0cyjiCy8mX0CqBMXhF+6StmgHQMJK6Gy8BNrRs0zZuxffoSHavQAtdzbEbJxTxTREzOZYEyXmuW3G0jz7H8fkcgcXqNapnHDIa0Ovx398dYzHxN5x9Vlz6k3OjeaNG8DWLvfTLmiHGqvKiULV8bAbidubNOmjD0FMtuhwbF1x4YVRnIZzBJG8m0yW1/jv/+X8HGhy3/JKMVRABmVb7FRfvL5gFYs1+oTWk4Ll1ogvGu03TZlkpficERr5RzihJmE1kZyzB7h2/KDIariOF8ZJLL43DcP4VhKzuj5MlM+vEJVP7fCZRwZF5TbHSOTGwUHEoJDpfOpDrzGh4a2T8nFXMbtw28NafxwmsSjWoXz/30Ys2Zno6TIBaY1woJxwLUT4ZTgBCw2/w6KoxKoW9djAcL5+xEGZ5inSxF0DMbjjttOjVo2ccAWJWc7/9E8kspet6v+3oPOvIeenISQyDI42V/VaBqAh37OS8WFDaD8lo+OdTT3G0XfUY0KdPAg2tmjXPgOsbFJSKVCWRxkeN6KWwQxff9xk6KjphOqKuuGhk3cu4aMniGIOD/vSzz8Y1V1wB0HBMnknr+eDSVyG3XcEGX14aslwVYTw6NHn5OeNQiFyl0xlavHhxFqcZPnpUbGa8V5KlItCgYq2Gs+LlyraVjHOFm/YM4nSIfLaOUip1hFwjlsYBZVsOp8KUWrMlJk2dEoOefzH6s2JxPoFRi8aN8wQIDYsr986fgYVKRX4tmLYwyBmA8I4BhfMoP7rnuxLOlpXU34F/X3vqsRi7cWv8meyA00C4D6zBEZCi/cn/qg3+gyzSWqWaWR/87Rh8+cj/C8YQtNK+z3PrxEusdP3p7ZFxDEro1399OEEeEX6Ni4ovwYtSn+0nv2tI88W8Sg9XZeT93HvKd6qgjHdgzMdPmRT/c+tdMZYzOS7r3Seuu/JKEO42OZ/fUvhIQ2j6MM3wU3CAAfHsqji332A0lyxdDhI8i20GH8UL775FywAMvGqS1diyWY1ofkitqEXAS3pSlN29C0fevqHs8bb2ICSmKavwXfW3fYtwGQi5QuHYytF3zbTpqFLRlZ71pJnN27gt5qz9hurVFC/MsUdcd/ZpgDDHENi1JnW3LkWCqCoN+Cit/S/5WuVPe85jItLyJc/w2fKo7wliCai8RxrgPQ8+GLOXLokbAQNOY+X+SAIjv6c8yYue5KDcSqd0WqCN9FdSnSPfQwgKucNBR5HFF4x75dbt8fbEsXH7A7+M6y++NHrhTHRo0SRqV68aG1atipUL5scOVpW2rFsdC5YujUXvf8r51RR5rFUlGlapETUwSt+hDzWQWGJO6dgTW3ZsiK38uRtV4XnAfAUZqwgvkWlAsFgGpYg5xplFj/GzCml9fvUHaPSDCgt6WaNh0Rb2jLM1ZT2e7aK92SIDeh4fxxzZMZo35WSPA2oBNGyIR597IQ7a57s4D2eldRP6Ds9XreAxjTwboMFjf6XLTvnIOU2dBWUQBE2p8yztIWgG1gKdAg0zCEgnAIC9BIJ/Pc5/P9Ij67FybDCsg0VjqXNtu6A1ugaD7PzqaPlSvxuoqCudL/W7crxw4cKYQtvDX3wl1pIt8Nvf3RvdXOmir/KI/CjfKa86Czr+3qcAKPdm9ihv6kvHpIz5DLc6uao0GSfrJYKRZ6a9F+ewQncTQEOHli0LOdIG0UedCnnD1ZEiK8YAz+ei0/fqTvsinyq76uUKTP5mVmDfIOPujw/eH4v47NdXXhHnQHtTUw2wLGhWCfkoan/SNv2WBrahzZPO2hCnOlvnbx1/2zdonwcg++Qzz8bD2Kd6tP8XgQbAEoGGLRyb9uOpNj4DGkgTZVmaaDd0Bg3fsyibPM/vBlc6ftJO5/w3v/l1CDRcRarxZeiajqSoClh4MpFAko6mdtqAIoNf55h2nMPUdTzbNv3bQFLal4CG4QS7V/zht9GC719GrZwBfU5gxahJ+gZu01T3Fvq3WKkXzFHnOw+mrVtIEybi+65WkVWGjmNwsRM+WbTy83gRJ/SBZwbF+T26xsn9T45unbtQo6E2W/qwrUl/uIZnFKt+jB09Ig2KFVdohrPrXGgXlQXpLhDj2GcCtD/5yiuxm99PHTAgt1S2bNEygTW3Skgj29VeOW79m+T/vbRwdVoQQ6e8AvOVPgh9+YLFk6ymDtD++D/+ESfAL327dYs2LM4cfHBdeARHFsBCtnMepae/q9ukVSk4TXCG95wjtxGZxu7RmkvQTdPR/W+PHRufLlsaP7v22ugM0FCHYN0gxdo4Bk9msukfyTN5+RAubZ4mMmnFe7tRHoJU+5MpKVhoscbRo0fFU4Akxx3fJ66hhlBbfBp5QSlVt9uScqss+iz1g0C8z9QXUU4ze1X5hU/LAGrswwLQCnTNBECMN15+PkYuWRG/u/76DLzqk9HwLRll6hYvC03ygAQannzxuXh0+Jt5dB45Phn49+tQNVrWO4DMPfy2HwjAsO+79670ZyDI3z9A54Jv1bzYFxjBMTsOJhImQcfQf54Gbc2goMwuaZlbdlLba8PaGD+Huj58WpnB9urZia0TB2T2jHbovXcmcoJZ27jtllvjWAAqeUOfSPpIm+RH5ci55T8p7pYzg0UDPemddPFzxikIuoUsmxGjR8dP77mHFiLuufAitmkRGKHnC360oKLZZQwXHZNAXs4tD3duoXVmUjlP8HraW8fK+y4uLF25ggW31+O+Qc/kNuXLyVI+EZ+1Ltt5BLlsT/lnBtMXziwNZNixuGijz6T8SDHlyfnRv/E56o9PPpsbf37ssXhj6pS4ER/+dLYIuB1JkOwrQPzSqrRBnfMsr6Q+kWKMI7fkMS/Zb+WNz/3I4HEbQMXE6R/G737zmziC0yb6AWR0JstUYND51Care0vBcs47NJGdEiTls0Ln4o8xHr+nPlXeXMBYCV8KNLzw3KC4/MJLcjuoxSz3ox7MdwTOgrLyinMLZTMm8bm2rw0sxTbqGoidGWYCgx5nunQ5BQ8JqAezuGvG1vnogw5tPHniwNhXfcfYpbV+OR1iPM6Aeo3W+cwmi4vFMginvnfRrSJAuDWEBDEmvDc1/vnSq3HTpZfG6X36Uly8HjXFyB6mrdyWuHfM8p6LpUljxq9NNY5Q96gXinlmWyJxgsViFyxbEqMmjY/XRgzh9KKV8TRAwwlkZ9WsxtGeDDbvl5byG+NWf3hyjbTW/ufz+Dz9Zcbu4oELftaKU0d8hK55HR3851HvxgkdOsRdP7spjiE7VltT+AH6kuhE+F5d6aUO1oZrG3NOIFPGP4zLtgXYqpOZ7Yklb48bG/9Dn9/jvltYxL7qoguwT40yU1s/NWnMAlzGTNDKrMDveJ71IwQahg4dGs06dUygYV+yyVF4tCQBef0XX/8RoIH5kz9TCJIc/sNLBeW7C2aDgI0bF2sBGvYFUeuEI2+xH4sr6UjrmPm9avtWy5WFMSiOq26+Jc/rvuLkE+Kaa64hK6B9OhNfkXbokXxlcJYr4UCIoGcQANpVcgxllJweHAmDaJnQvbYqEpHE11i1+Plf/hJkw8VVP7sxTgLhbsSkGvArfDKRiikdTH6W0NBMIeVvMx1sU6XnlglCY/YeFk6wVbefgpHfHDo8rqKoUe+evbLoUzUc6G3sS7NtA2uVju3L3BlcSwM+s12dI510V6pU4Kapuhdu0+ZN8QF7r/73iSejXq2acTLBbidAm5ZNm2d7O1FgCbYgGNl3xpfKGhqk84WAS4Pc18yE6Yy64uIzVq8mnXnu3BgL0PDKK6/GZZddkkBDk8aNM9VNZzNTxfnp9CqEggklhWubPkth9lJwNW6VQap/wFmZP5+TR957L4a98058xXeuEmgASdyfarUG3F4qH1fnEzWHNrZnRoJtGXD7voopEXM+cz+ddQnMUrHC7hiE/MnBb7D6egrpkSdnRoOOkM6Pc5cGh+cYyIi8Ow6NRRoCBDqDCt7TEPsMA21TolaRAjiC2hLPPVisMj78yzvjjL4nRG0yPXbjZLlCphGwPYN8DY37RJ3PksJLpxl+LUv2jsrPzIbiWNayMWvOnBhCkbCXCbrqYyR/8cADcRwGUxqrSHPMtF9ImLTXuRJ1RYnyLEluIF+efV9FOh36kPcscOVJJROQp3/d/YcYtWNjXH5837jysssSaMgjS+Fbr5JjoqLOOUwliMEGqFi8BMM181NOa5nB8Tuj8vuH8O/+2OWWLfePZofUBmhA8QM0lPueVR4+c3+kTZchR/bfgQbbF2iwfxof6WZBqwq8KkFAuctNKGs4PnHWWiozL+cYSdpZk08FaDj3bFbrQP+bNGNVqg5IN8erQgtBKGuPaISVHfndZ8nvypT0KZQ1gZO0gX8MxN6j5smv778/3lu0KG476eQ469xzMzDS8dTBk0Z2VmPjMwrgoeBNgULl2WJfDCq/V64yq4AVOXIVrlj5xVfx1oQxcfPvbovbfnplHMdqS4u6B4AP4CRNmxaTH/hTHqm5X6tD4ktoosGpjrGtg7wfhKO8L/Il3+7CQLnGs5PHuB3li907YjP7J7bySDDXqLA/dR1q0661KaDh7h/IFPvWbIs9rDIAlkHj71m92/0tlAEE2QJwunDzFzFrA9lVLIot2Qs0nAgIdazpoY0aEETsx1GI6+Ox51+MpuTynnvqKdG6cZOoBc9XZXw/eOIELhDWPmldOILwO3pA2lszJMEkxlA4ctZxwBGBJ9esWRszAXgsLvfEkNfj59Tg6UeRsIb16ufKrRP0HTpePldWXfVSXtTrOhc6zAZ0yqlzqFPm5/sCYruCtJC5nDxxYgxne8AKwNl7WZU6jn3NZqPIi+oVHUNlX31voK4NcpUo+QKa0mx+h6+lXXHFvQq6wCOGJ0ybGoOeeDSGzP0szsNxvuGySynK27qwE/RRpyQdE3U6vCOPa0N8ZvK7vMcY5Vf7r8yabbcPztB2tk688sYbcSUAgNe9110bA884ndXNA7NIlxkN1QgA1TmuJDsGnU55O4EA+ivdlQHfK6UzOzafPxs9/ASO/9/fHBb1af8hsgP69+pN/YrKrAJiW/fysXOgRhNEUw+px9IRRy+aAm82nwG0sqUek/dgCrKePoxf/fKumIw9uQxeuuqGG3KLgNlTm8nkE0hyVc0sQe1tQRP1WQr/j3ZLcED5kgccBwRMPS/QcPlv78m09luvuTJO738SW32aspWnyM6SD6WHPKj9EQBxxdp5KIOPQMRS7MGl/wLh1WoCokMb9/YuXLE8nsfRe+Dpp+PC3sfFqSefGj26HZdHOG7dsBFdvxOQjQxA6CJPesmH8qVFrOVzM9W0p+ohwRFppu3aio1KoIFsx93btmVGQ2fo07pV68xU2Q6aKk0EX+QVa82YyWPAr87RDjgu21TGBAfsv5dB4UYCgMnYwD9hO/qT0eAqY7u2bXPf9m6e7+kLzqGrx4Jr0id1F++pPwWJ9Blk/RLwIK/63GXLWSElcBFomLV8adx83fUc/XkEpwfUzD7ab7NLpYt2zna913acXwM350XdpMwqfwKFVfANDLqmfzQ93mW70IvI67E9e8bl6OB2LVokX+nwp86VH9HJzqM8L2hk4GgQZr/5odNB+/ytrge9FmywwNp4dMHg55+M0Z9vjHv3Ag0NAWBUnt6rPVaP6c/NXbwwngD0f5RTKrS4tJy8dlyHmtHsoBqxb3nGJpiOg5hb9fhcLYRzwousSceOvOyhPcGG9LfoVwbq8Fh2UxogNzBofLUbvqYe0RL4a8K8nXn6Q3X63+24Lgk0CGq5GPcRxesatGkbN91AqjdAgwCAOquQG4M37B50sSvOoXpFvpT22vOKyKgr3glKOia2VW6Hb4YRcF36y1/xTsTd1FO5BJCnUePG8SWy6jbW6gSA+k+ZaUBb6kfl0TnwGfKgdNNfojM8U91TBHpFRsMbAHfPRkfav+rOO+JEfFaPLtXPy3mjb0WmATxJ+/qv+t6pJ2k3V9chmpmV6S/wnv6aweUn+Kt/HzQohrLt8AbaPZ0TCo5lESKPdydTWrmzoLN+krwpwKlMeRnsOgbBBuVV/ehYpJ3gjKf/TESX3UsWRgf86/4nDYhuZN21aN48aW6tM3V4xhzIpePOxRRpwxjMxioyOc3IKACD3E7I97ahC5SpkRMnxOAXX4hLL7mMmifogjatoyZZQt/DJ2ZW5+q9dGa8ZuW6DVn5MRtXuVRaE+iB5w1Y92VO1ctLlwIM4qsNIaPB7annow/aY5884W0/bKTAgrQX2Ey+pH20QOpbae88SAjpoc4xtb889mFfdOUG9MjHZGCOmzo5/vTcS/FrbPfZ/ftFAxYJtNXlEHKzfZIfudeMBlyF7J9xjZkBnnCnfZR29kU9X5WFUwuZz1+2lBp94wAaKLw+z4yGuwEauqavLYgh78nX6ld52SxhdYv6RKDB9/w7AWZ0nX6BvrjZnwrfB9M/ipeeGRT/nDQ5+rEA/MtbbsmtE45VnrQIqQCVMUlmvqIjUv8wFnWzMZDbsF2szCwIZQDeqQrQYBHNEfjHf7j73pgHH9164cC4+uKLOFq7cVEwl1hB+7rnW/kFGUGGM+MNOgg0uEg9DKC7ydFHsnXigqhRvwHzoAai44z7v/n6fwYaFMx/f0mMFADQd4/y2bPnu/hsztyYCtBgRsP+BNldWF1q27wFtRYQbJhCB96XJyBYvG40DuiFN96UZ8xe1L83QMPVWWlXwTOjYTernXDTj2eSKhw6ghpSJyRXvpgg/84AGAVrHzWuK9euycrSt/35L9GS96669SYcipM5grJBOqym6zql+eImlWxuoYAZTPWS6VSCvlR8ZWi7LOnKFjryiMc5CxbEIAL1McNGUo38vDgeJ+5IjLJAgytGKrzqOD8GLqbUZkALTQrHE2NNuwqNwuJWCYGSSlUqpWLRWRBo+PsTT7Cavl+chHI9FqChBaCNhkdjoLFR6dFgPktjryA7dhVoKkcGl0E1hsGz26XR5ytXxgzaHg/QMAIU+lwY3SMiW7dqldsnTPdJJBJBVuAUFGn0o5FRAfBMHffCCBWKqjrOuWDK4iVFRsOI0WMoBvlF/JR9pAIN7tPUGdRgcns+ozAArHrAH6ZMO48q3gQLfK7019lCcVWk/S2sEL3/4QfxLkbzmcFDSf87Jc6hUrtH2qlYrdNAh3PuEsXlQbZZcqAL3kApQrtSoKqDoHGW9ss+XxHvjh4Vg597Msau2Bh/+eUvMqPhABwt9+tapDE7L9lL//G7hsf5NWvFtg0EXC0SnCkBDRq4mbNmxysvvRgPDx8Zh0LTX5Nt0wPaO/acyux7AYg4f/Kj7RQ0I6iDZ3PVe6+zZBqs23TkpS04tROQp0fu/m1M+HpbXAbyf8Vll0aH1q2YF9KWeYkOS8+C6eFQ7oNAvAdQgaFejOH6aAZAA6m5L48YSQ8pBMmrGl9r0mC/aIgDVoOVnjK7vopKP+yMagTLlbh/HwoGWuAsgRF4LVfbkUuPDZUfkwehk6uN7l91H6tZDh7DuB50Yfb67TFj7TZSYoOjbvOxcdEpp3MaSkfS+FtF43p1Y3/AIDMipK/p+zrMFvZyHjKV38mVUWnfy7EJkPmXNHv/Y1K9AR3XLlhEAZ7zYgCgo6fEKN8GsCWnJ1F/3tNJL63QZSP03RMA9sGAlAOp3gdUn8qH8c0PrKYRPLw1cXzc8rs74mb4/Vj4/WD4qTw6bjkZIp+T2k+p1NiveX2cY1dqCKyhaVVeNXAeqvBwnQz5B1wVsIG+QxszqDZ9uy027NoMQEGgwfd/qEggvy9FIymOWoE6Dd8C+Oz+3hUv0HmYqCIG0/O2scaZ0TAfhGEm6QzrqfewpEioir6s2nTq3DkaNqhPccCqeSStp040Y8xn4Gh1bN+BzK+GmRWxBxDmWwCLPHKuIG3qKvlIlF/nJFNq/SxpXug1A9M1rObMxBGSL59+DaCBlel+PXpknRxBWB1oA0eDoirIuDpX2VeXeb9bvswsUE8KXqRDyd/7UVNEuTCjYeKECTECo71o1aq4++57ojsOaG3AWY9uVY/pVJRWmlKX0U8dFVMwBTTlJ2UNNkpeUpZMO/bUCQGSpx//Z7wxa34MPLEvzsTFCdxZA8KgLR1mVjt9jrytsyw/OS6f5aWDm2AkvwsImllmMawNa9fGqxTxuuGPD+X37r3huhh45hkcT1Y35ZxJzVV5QXr7JnlVPzrLOksFkAfQia5Xl6lzDH6zFg3f9/SYx58eFI++OTwac+8fHnog+vXqlSs+CSTTX53QTO2kj2lbfQbvp8zyLJ1bQXCfIf11ytSl6jRPLfrdb38bU1euivOOOiKuo3Bgp45H5f1fYbsLvas+LzJ1zDLJ1XPo5jNcrVZHa7PMwDBwU3blq81ffhHDx46Ly3/zm6TN3VdfHuedfma0ao4ltz86zhBFGjh2iZNbL5B3HVtpV97iAHzmKrx0qwLNDd491m4RgPLLFIr+y3PPx2Un942TThwQx3XukgH1tk2b8iSbytkn5xJpRF7lQZ+l7bc9HUd1TAbW9EWZ1hnegSP56bz58dgLL8T21aviLNK8u9B2W9KlXV3ewf3pfEN7xyw9DYrKwBsgjekAyznOZ4ICUoDvOVf6EfoGUwAaHqR42insybYSfAf0TZ169ci6oxglhW0N+nMxgHvkwxKg4Pvq4pQHxiKv+54/lZM1+Eyf4de8g0xNAhS45fob2Ld+RNTEeXchgInToaDfBcggzyTYwNj5Nfnck1zsbwZ1jEEQSFm1SOZH2JUxo0bFsFeHxKG9euapE9Y82Y8951lZn75qMwxSvAShMqihPee0tC0k/TH0JsJG8V/kgcBl1bq1eerEUPZ8v/nhnLjjisspelucSFUJ+6a8CjTI01aqn7doYTz5AkDD4MGFbPE8vMro2qRKNKrDeGGfsmSLVeeUpWrocusp7IO+szZRGXxAQXPtnVsm9JDSV4G/9mEM1s2RVtLkB/zK3XxnO0Pa8DU1GjYyf0t3ZlHG/Svsx9HlR+axeG7J2PXNjpg1aUo0bNWUwoFXcULB4VlvpkR3F4G0E/6dPi+8o+/hc9yWlX6fo6Ef/lBPuBXHYNqFn0t/8Uu+GfHLiy7kRJFLolHTprETv+FrbL9bJtRd8oZbQMwWcExus5HH5UX/9qX8lvwneWs5uvd5gOQHn34m+h5YNS644basWXYQKfylQDrpwdxm5g59kOek34/B8F6+Ebxxfh2TesZi2jMAGp4GuHvvvffjLI4BPokM4qMBlN2GYT+KrXfFFln1jFtt5B31cMYI+G7aKvuuLDsz3mc2qoGfoOnv0TXHsj35hOM5dQIb0rRxk6RF+gaMXXrrTZTkJWUp+XWvv6ZcpB+IPGt7+MwCpQsXU/QQeRr20stxyRVXZIHPptD9gDqccMMYlU9lOzMPkH/lyRoMGJPYjQ1y67P0oPMZbylX6jJPw1hE2x+y1WkIJ35UAby+AKC6bcuWqeO1r86ndM+MMukL/dU3AjHMZOpfn6282l9pUgGgoTIxx5atm/MIR+OE+x57Ou666oo4e0D/rGMjGGLhTW6gFdOp9+cAAEAASURBVC7uF6hwq501GNzSLrBhMO+4HJPyJ320f3QiPluyuAAaRg6JD2aviCdZJOjbtQAabL+kq7Sdyq2xpvNn7KhOkTf0D+Q/7bkdkZ7S3s+mMafPPf5YPPfhx3HC4YfFbTfewFakw1PPSHPBAv0J9Y4ZojkPyhXPhmoJMphNJOBmv/3cD/aB9tu3bqEY5Ltxxy9/E6v57o3nn8u2mIFZlN4MujxpCbDbRbjkc3jRU+fylJMvv8z6fsNZ0GxMvwbiL9Y8uL5P5OWVFC1+/S/89z8CNGgAfXmlkPCXFYCto7CHNLl5pLVPJMBcsWRp7MuEH8tZutYVqILgi9iK2qQiwzh86YoRK9+XM1m2dQYpZBdfclGe9U1jWVk+jwnBkcuVaZUqTKAiypVLmE7jKIMnmixDIJwypEHVSlbT3gb0+N0jj0Vb2v/J9VezdaJvOrkqD5WTQqjyUCBlKB1Ip1knSCc0lSOds3/lKrOnGKXtHiRXLeZikF9+c1h8OGZ8nHvuGXEcKyKHEbhY7GarR1hxT9UqFFCijyKbCoB1ChRKnRHbVEh01D0SS6DB1S6DIo3yJ2SHPIUjtD8rlX169sptGU0bNU6gwUKWKuxS/xXkTAFCgEuOhErU1HiDJQiXykn6rFzFEYZscZn64fSYgPHph9L2iEXTL+vVrZvtq3x0RnXodAZVzDqxidTSbw1aEfQSCkFDhckVLA3SqlUrYw6GYTSFmVZztM/57F/qAIIr0ijQUFLYqVxV9tzjvBarkEX9DTM/RIu97LPKyYKKm6GLGQ3jxo6J10aOxkHsS5GwPnnetOcSS+909FFuKpFEzWlDp8u+20+BLgGR3C8tTzr3OkS8VkAb93m+M/zNGLtoZdxzI3uDe/UIgYaiQA1Km7bzUnlyb4IMZQuD71y7+qeBd0VXI+dqpkGU782ZOy8Gv/ZqPD1mQjSkkbvuvTu64Jzbd/soLQy07LfGXAdNoyCf8LgMiL8mMNMZ07F1dVFZkJkEYaZSvO6pP/whpjP3P+nZPS5AibVu3gwHjWPJoKlHU/lSXqxRkQZMxUqA9CXtWgzy0znz2Kc7I16nAJ6XOSg8Ieqxf+KgmtWjOkcvxjebYz9i2dr7Voj9Sf3XKa8oDaRJcjZ0VRIZg/xR8CSyz7i4DaABOUbWPIJxA+mkczbsiJkbvsKp2BmrXcrnGtDzxDi8/WFxRJsW7AusxzGMzC1tynui/NJTedEglZyGTJGE31NeGaPfUd+4MvDRpxwX+9hj8d2yFXHiwHOjW/fjODqzVfKLhsm+a4Qziwl62EZWN6c9T/agoQQayqmPMCIVPPpxH4pRkS60atv23AZ291/vi5/Ck4c1bRZV4YMKyP0P7HUsh0wI1lRlruyT9M+jKQmXBBkq8dLJ9fqWtj0STRDJ2iRbcXY3ffd1bGcVbRMAz/pNgKCcZFevQWOcyMpUPDcQJCBHh5Rl3mtWAqHn3h941hZQiwVbpO2mWL2JApPmB3Md15fCtcceg7wfTGEn5oA+vsRe/iYAu/379mFf9hGpt9UpGzZtZhVXZ0eeKV6Cav6uc5KBLjIlvQzAdAZSnhjn2nXr8oisqe9TVHH423H1FZflKSueOmEGkvzgapoBmPKvI+17rlLoPGwDqDSwMqjTYS5O0jGjgf3HjG/xkiUxDUdoFEZ/4eIlcSvb8DofdWQceMCBqY+cV4Mz+dBLXlH/2LY/MyMJmU1gwO/wv2PzHHIzyywG+cqLz8bwT+fHmcjThedSQ6hVq2IFFl4pANm9QAOWQ96Rj0rOrc6JK17qRQVYWVX+XEFZTUbDcGo//PqRR7Nvt11+SZwJaNqgXr3kWYF5j27VFgqCp96EtiXaFytQZhvsPcYY/ZU1i9AVgmTzANSex7l9/p3R0Ywn3Hr3r6LncThy6DLHaT8RzGLs8HbSAL2iDrK/Kbd8RTviPKv/1fHSUgfS4y3//vDDMX3thujftmX89Br2wAK0q8cMuJ1Lx5/6jPYMpp1nx6HuN8vBIMTva3u1w15m9Xm2/Si2xNx8/4P53i0XnkehzNM4WrRFAiOpg5EnNUXKPvznZTDh6h3IYy5uuBquLfd9MxLkUs9YXwYAMHQUleCx3xeedHz07t4za5bUxlm3uJy2z8J/Op0MOGkuSCRttrNKp4bJwNi5Rh+lDWRc0kqe83SZp19+JTYvWxSnnX5WHMPWxFYtW6Zv8A1jNlgsgB19D/mmqCHiyT9WgtcmCWzItbYpvdRt7ufObZUzZ3LqxN9iwCknxfHd2DqBff33rRNOcGHrCh2c+5rThgg0MMfImGORT2R7HWnn3EyU5diAccjUWDK0rr32huh4aAcCusK2Ok8GAdpYAxVv9v6ClYoMBOdDPaB+0KamrmOM2ie3PU5he8OEoSOjedfOnKZ1YrRp2SL2r7F/8pZzaAFFwUVaTQDebFYdfgMXecZVa3UMaIdMnGnYHu+8duOGeJ/TOEaNfjeGTpvBMYhnxIDje+eRcx7NqW5XLgUGTIFegI/64pDX4lkyUv/9aoturUvGbSW2TZSFdw4+sCaFzemfmbICDPi56tkKPNttefaz4D6DKfiXV+bQQZgsgMzn30KQLwQavtlDMcgvYtrnO/KYyZrla0fbDmSj1KoNPQVYOLntvZnRoPWBcfFF58cRpHynT0pbGQjp8yFXaaucC+bUBQwnoFj1pU4Xvq8AnJ+pb5TZrejRd8aMi5t+f38O9Yazz4yL8A3ccqosS1cnUhkUnFe3ep+LejvgOX0Hx+m8etkX+UW/0MBv1dp18dqw4fF3Uuz7tWgQp57H4hV8WZstM+rfzFyVmblP/aEOSIBRGeN350WwQz4qtgUCeCCzLsDpa8+ZP59tZiNjwScz2XLTPXoe3ycOhS/d6mufvV9A0zgh6/6k7AoE41/ymbxun50gece+p/8HnVy0eI9TSv6KruncpTM6shsn3x0WhxxSP31fgUV5J20aP5Ur7YhXMSTnjTgEnlDOHJe6Qb/Dmipm3Vl4fczQYTGQOjwWt66Ljq8FGO73sz1Jw/dd4HQ82jqfp5+jflFH8sWkiUCZvqUxw5KlS6j7NRM78nbUPPDgOAv70aJpk8ykrowNzQwm24YO6hDnWBpp/5TftF881wXLYmGF+eQ+45xN0H32/HkU/f0g/vbUC3ENi6mn9O2TR92aYeRxtMW2QeQCneB2LwPpvF+ggWe6IKodUL/4PP/Tn3ebxkIypsa/N4VMm2ExY/66+Msdt7HodkyeOpEFeRmvelWfWt5Wj0gTeVOwRR1htovv+56v9K24Tx364Ucslg16KkbMWxTd27aOqy679MfT75w/vyPfy7+C1D5LHk8dB404+CvBRP92juRHdafj28C2fLO+fnHfH9mkHHH5GSfHOadTyJn6ShmXsdgjyOA4nOPc6kzfdzKXW7Efi5cv5xSYd6Idiz0CDbUPqEcrPt9rr5AVf/zX/fsfARpyvybElulxNZM0qEACESaC/2aTdvcOKwXzSL82/bAZKSENCF51omVq1bKKTOUoGuURjk/vDWik6K1XsM+laZNkUlcidBhc0ckJU8hlACY+BQ9mkQkL45ENp0NgOyqVDRjN0RPGxeS5C32LwKtLHAliWbt2LQKPIvAqKW0dimQwGM5pLiGAOgS2peK2Iqv7ixQogYLFy5bHP14anG0fU6dCdDn+VKo/kwaoEoCJbUel6bhNeVQ5WLTPS4dChavSU4hEjRUeg2ENtQV03GP77MhR+f1Tjjmcc4M7RP269bOfpnMqwD5Do5MKhbbSANOuSkNFZ1v2XeXkipTP2LRpYyxetDDGjxgVS7i/DZFft/79o3HjJlGnNqcrILjp2OCMaNxV0jK/ApZpgMy6YxIQkf45Dto3pctnbqb9pUsWxzNjJmbfzzmuc7Ru0YJVQjIO6IOGJftLP1VwOuIKfu5FZQxmamgccl75jvNdHmVQkWBDJ28eFYhHvzY09zUbAF838OxMxXYFMwMIhFswwX2ZKm+tV7aho6UnwHzmyjFOg30vfS5t1hFwfYRiHfrBjOx7zyM7RF9SvWuJMNNXV/8SgJIi9FU+tO2kO8+RHs6tY9TISzvHYXAhjy3GMLz53EvZdx9w0Yl98jiiwqgXqWLSVvrn3Mrz8jvt0XxhNEF3dfz9hlkmCRjQ1nZWnj368yXANS926MX1l10cTVB+uwlWBd/sa66A0Jg8oRy74qIidOVy85atFCHkSMLFSzC+M7Mdaazc1sTW1aiGES0D3fCFD4AkB+OUHVSjFiBANcAGGAn6lEE+fsAZU3HSPG1LCwBAlK9HJJZBps1q2IdVpj3Ix3qAhtkADTPWfwXA9k2so7ii17GHdaYuRPM4hBoCtapj/Fi917fU0XRly7FbDKzkUEtrP0tHl3kV9XZ1NzOKMCiu8D478t1su3fT+nFUl+OiQYOGqY8MRkpBaK6iQSfpY2Bi0TEkKHnJCuTloH85AvjyZA3sIZNrB97Xui+/BuRhS8+MydEZp/RwAvWK8EEt9EQz5qou/amokwptNIxOpsDsPvxdCRpVYWAVmQf7sBP6uOfXIP97CPgV923nu7v43ibqIywkS2A9JDqwQc3Ylwrf+7DRd88+6BiNJvQ5gLkwHfsbsi427iRVd/vOmEOG1aqN1OCgBoZXi0PbR3OAxRrcz/ZmAMG1MWpwkcFy9lHtKOrXEQe9YfZhC8i/vGFGg3030BV0kD46mupHDXDqGRunD/KZMrAJHbwIPTYBUHAZH/Vo1zKO69I1auGASufUIzhT/m7wbfCl7hJkcX51Ur9kddsgz7O3Uy8gYxlQ84zVq1bFjOkfxpCPCl49pztFONmuJ6hpG8qiwSxdTT4pgGr5XV2groFfGJv6IB1R+mi/3QOrI/rZ/Pkx6uXBMddxcf2MlYvmjRtBF+wEjarvcpsWNPA+A0Z/Ji/CK1mok+/k97hfuuks6QRuAkAZS/rlyE9Nvozo2PSQOP2U0/JEDu/Pfc3wmg6Ptqm00mcb9j2Davoo0OBLmgvIqJPUa2auDX/p6ZiNrHoNPL5HHMMqoFl2Bq1eOoqQBrrzkPxN+jOrjMcsobQf6FI/cg505pjydPJmzZ0TTwIela6bBp7Dqn3rpLPymU3yj/S1Pe2f9lBdpg7OTAfmRvmVZvbDXgg0fCXIw4r6q+MnZfPHND6QbMSzojFFs1zt1mam/vImLu9ze2A+lLbLMD5PjvCntjxtlA4u3/wOWRLkGYQe3sAtB/M66YwB0aZVG46YrR47sdU65qXV1rSv9g++lx4C2MmjjMfnZl/4TblQLxt06Eg+Ssad14ntm8cRRx0bDRs1StDY7Qc/2Dc+K174Q84vPKm99XM/cD7VO8k7PMhnCtpsx7f4eMbMGPbRJ9GENk7GwW3clK1OBKvaUvWAl/Ym55I2lNv0nQy0aEubZL+1k47Bscr/rvKtIavhzTdH5ErdGT06Z82syoCXrhSXnHC32Rg0OK866LbhS4/QZ0on58OgQpnT59N2L164KKa+MTRmFOwXV5zcL9ONPUpR221byqKAonzhkdhmcPqc9EWgjbKRhKPN3F5CVl1FgAZPMfuY1d2X3p1ITyLak313Yr+TMn3fwtBm3BlgKj/S2mJ34yZPiskzPfOluHhk1MWM7c+rPFhHWVi/RfOIBgc2yuw9ZigqorPL8zLDoZx9YOBMJ/RjTvlDkMHtFn6gjc6MBmjwJTUaNrEnzlOAJi3aHGt5ZFU2a9SrXy+zYL+ijs7CbYWvam+uZ/GqbavWSXP5sQAC6RBNy5Pqg9Sz8Im6yEBXG++86qcXIESx2uu2yolTp8Tr46fkQI8gGe+cK69PUFOgN3nOgXDZlvrRLM+0R/Cc/MJI8nP/Udc7T/oSVbHB68kCeuGFp2PuJgGiiItP6BUd2RJqlqlARilDBZLRJnTd23f5Sd7zc31eaaaeKNl09Zrp9wuXLIlBo8Zm2035tzf13Fq2bIku08vRJygWaCzepx3Rv5TF0n+nnzBQfs/x2AHBcRf49AcN5D3S+5W9/urFvbpHm7Zt40C2sKnH7L/6Sd2XGWvIOVOdvOo8SBf7bzsCM8qyfXCi3EK9/PPlMXTIm2n/BGQPBcTw2M9qBPMpl9yT/ZJf0FV2sQLZki4CqUuUUeMldX76NrQsgKceWg1gOmfOrBj24ac5vp9Cl8b4ewK62r8cLn01VpC2NJ1jSYDDv5AraaQtERTzOwKy2tptX21Hjy2Nye9NiI+XbIgWNSrEWWcNBHSrje+DDdUr5H4pkLYUnpfKxkn6vuotC2n7TOdYjeGln+33Pl+zKqZ+NC1GTy+s66ldjs1Fgv2qmrlqLCMoqv3QDgHuQVfb9ScTnHOjfZd2vifPpn8CnaTNnDlz4l/osdJ1NYcNtIFnirnBz+I7mT1Jf/MkGu6T75xD++rCuLFnzg1zKbDvEFwQ+QKe9DSOF8dNzuY74ov1O/mMPD1mN/6bWy4smitt5B23TlirRWhOoFtQdNQbz8UFt98T5194ATb//wcaSvMEiTBQENsiRSoYq/gWFygZBJXNZnEk0tusEsycPj02r1kXdTAUB3BMmhXRd2EAcTEgOhOJY22xqZ1M3C4YReYrz/vlYaAihYxiTxgbz1cW0RbVVbGtQmhXzJqLIGAMmrSKWuy/c6VF5M9VFCdV9FEDJzN/SbDpPtbqKMNKGj3eU3BVTCJuGkXvyXQbkNtFn34S29ZsjkPagrITdFciXdDP0+Hi+xkU02+V4Q+8vwtG1MCYUlfWtrI9V52KfXUWJvS7blvwWMmPx09EQDFeRx2eBfykqUyeyD/tpmNAGylgfEbR+EKhaTj4XBp5+T0+SMWgA6CArGYlYibVlhsS/TVq3S4DfzVNGgX6Z999nmdml8fwfo1y/BpFUJ65rMj9rrC6PUCDrvNcGAEd3KLuwdK5n8ayDdtYPWkWBwEgKdS2r5KxPypFFVYaKObgS9qWbtVxqiuhCNJQ8rmC6yjssw6EisQjkJa9Nz3714pgoQYrHCoqnZ+kiYPm0rksjs4iaGU+TPfbH+calyodrCLTA/6kbRWtbXgM3iaC50Wfr4oDeXBLitFV4R6zGuy7DqLj4EG5d/5bxp505z1XLSpDH/lWNZl9Uflwn89QWW3Hwdm8ekVsW7s56h/aNuoSoPm5KV85VumUlxJi8Ipx4xlmm1Tm2RVpX+BIpWf78m91QBkdhfWsCC/5cHKsxnc0s+DQLkfHwfXq0T5zQv9NnzOzRD51G4Hy+S10ScVMh/eF9lVQpPScuSkCdINxHS1T8j5ftjiWLVhNgRvkqWHLqH1w/XSMlrD1acbcBdnrUu/9Q5myNdYM43BejevrhO1PpoP7+XEI6ZOFsvYQHP8f9t40uM7zSsx8uYPgToIgCYAkVhIAQVJcJW4SF4nUYsm2LNmW3O50Op12Kl2pmszfVGqmJpWpTHUlqamUOx07sdubZEt2y7Ita6FIcd8pcSd2gARAEgS4AuACbvM858NVq+dv9x9X9Sdd3ot7v+9dzn7Oe97zDkfxjIReTe830CJN3aYir/eMUZGMBD/wRvftB9QQIOPg4k1ORLmTrtyVSlN6bCHObmk5x7ui4NkeMJz9sg/vZZkHKhYr57ce2g8d4lxX1eJ0s4+YQKCKQloPBwE8eMXKO4P3GDJtQLdgjFbeDOFGOpNWfEn30kLHeQpjnm5KRRUTUnF5Tew3Hwtfj6OdMSgREAicoTs4+g6yUEWiQXP9YlcaYIVEeqnln3UUhayypgAwGfEgowlGwZigPyCqwZpnoAG8O+Y7tMvWvsCxtD5Im3cY9ANo5YrOb3cL+3zJCmFhOn/G9DR2OsGWsRStIuNhNPdNIyjnCvgt2um5dT+1991N9ZzoYaCh9UaAA7k5M82YWUQ1+QKK15IdwP33cPryyNZgc1MaA46GI38f2e8o+JRgEZ5L8Kd83MPRVyeOneIEn6mpesmKcBI0CsPlYMwaCf4njUvrGuIwTASKXPELA4137/FftyAoP8KhQDZ3NdWnhkvX0vJFtam0sioCEgZvddJjuwx0Hs447T4A3+6Ttv0x9Kuhfx/a1jgOw0N9AE7VUPJYP6t7Xac/Y08v1eXXrWI1oTAMxdyqnasv4fhBG65+DjLfPmCjkzIBHMuvQSvyGd+5uhsr/cz1Wk9PutrRnm5cupImFs9IZQsWhkEZjt0QjysbDLgaQMwq1gsjEM7zY4C3zopyVGDrpDkWV8l0IC+zD/16Vxu68U4qmFeXZpTMDgMrVsmhE/WycslX1JAR9jbE7A3Sybviz/E4B+lcJ8xMjBukUF9sPAtA76UJhUVpAnp7HHLIYJ5jEHZmBimjnANKixfOO+MWb+rX0fSfC+4Ie+toKIftpxsHtotAaD6BuCkzS9gHPC0CRv5mMNA2srYzGX+X733Jmx4tOAXj2QDlQJ8F1EAe7Xu6wWhg6bGhrfWnU8+57lS6oIqA+Yw4glHbwRU85bsyUVgYMPBIwlvI8UHaVncM57dh0HscYaijAtzvAwflt/r7JjRzBt19C7YvX1KXJmNs6xgLB2lAp8BgmQG3CDYzH5dVNLDz6E+1LV6FvXCX6nWGnK/fXers4Ai/plSKkJ/3+LqwaeI3fvf+sGu0KRivdKj8NetJe2m0jUEvOgxeOtI5+rVtMyzONdanxnMXkanVaU5pWVCEzrzjlQdjSwvtu3jgaRcW6R2mrENuS+9xNDLt6PT7cstHrFjiHLrVpO1sPbBFJ6wjY4asTReRtMmUB8JIvnWrnLaY+tXq68oA9dMYxmtQTWfNFUp5bixOmNctDPqrBIXa0UXEtVMNunsSad3aRxFoQ24IXBcilJN96Bf5VUfWdscIe6Ed9AWsaUO+U1b3YnMco6r+2a5uvpTX4A9uHWmT3MdbHMO8dk7iWOfZ6CG3T0DnzJSQSMjtCDRAR8q4HA2bC2c7MjCzz3gEmPU/IPDK2llTD8cp1vckAw1AOI3Pm4wsnsrx4jPTVLbDoUChR/aak2k2Dp7SxrhD3Z3IANBWBB9m7Vzs7EydJ04G3CdPn5JKauvgKQqRI7sNEkoDABn7Cnwiqx5qr0sbyhSG5QlFI4AZAHewXCG9wTsnZCBrziELujouMUL0K2cszywuCVkmvUiTZtfYh9vY1FNX5UtkhPbCWMY9HnhZ96iPBRADmzrqrh6boXmDgFb9kf3pbm9/Kl6M7qbwcNjatGMhPvuQ5rXjw1ahv/7QR+pt5ErMA4kOPzgWeUXnUH4zZHkRB/w4CyWWHp8zvypNo1aEC13a2UpDdZX0aZq/C3AD0P0NAi5mkVlDaiL2oQuGBm3kn2gfWOonCKfWpibqbdWTYVWaSkrLM5sXAooaJrQlP7lKrty1HlM/31nDYAr2ST6yXBmZs/doPNp3vtZmMLhxbNdH6UTfQ2wHjp+ePSfG6O8GM7SpA2P0J0/JwXeBr/JNOaYMdtuLsJBHtLscv7Cyr+vYTWcOHqVGFPbJuvURzFP36k/o4BuUUKbdhx/uA+tB5q09bMDbzEu3wbuQIU9FHQPeHZCy1QBXV8e5tLehNS2anJdqVqyOTDbHYPvKwMiiZWxWnrjF+JRlNjCKZ8fwu7aIdpl4da6hu5mr9OaWhZ5zDakfRipduSQVUjjZS32W8xUie4IxKkfC3mbcBmlH8hpGe9boER4RxATHyhJloScAXmO7yLUL58Dd2FSKTTkJmnERSvknXgz4TCUTRflxDR4ZoF8XszyNJp8XIMPfwHfFjtI/ji1mzEU7vfNcW+o535byiovZEns/HUVX/Zf/+v+k16lh90+BhkDj3/2j4SjyNWgiYg5xIfIRmIpmzmlHcO/aui01s3r4ECe/em4ZqxAlOFQQJs/KXKZxyxQarnmmqJESLQJFuKkspgCrdCzoJNHlsXLo/kCFw6dEHvd9sg3HaGqqqK1N1bzc66TyzSlkjQOFgYaWY7VdlZrfqXglSD7y/xCD2wfGxXUMrQOkyna1tqTquoWppKQkTdUYwjEPRqIPK+jalEaGaesKBonWaKwKwdUbjTyFqX27IqcRN4nCap0YWh634mrA46TMTGVVT2dSQRcrRYwwGBxhomCOPbEEKByv6fjOz3Vs+/O7XJRbZ1vnqhHht5ctBfMYe11dXaRfKaQdu2PJpdRNRDEYTc2ML9pECYWhD7N52kesANG+0WGNNAWcaUpHSZU9dmhfWvMM1b+rqgIGoQhkasZkVob9CEvnA4ijDw1xr1htRgkq8CL6zx251DbTo09w7J9/r6RmQREFZzI8Ks8yJa7QDOMV2CrEHZdYpfMQNAp5hYHCWNrUmFcAefzReYIwxwl+lVRUsidyRShHfxNX0p6Gpf1pFPludDSMawSwe2pdeZWG/M6X43DOV0mhsu321tZ0FSdj2dq1aSHRcIMXpl47Pu/1sl1X9FS24iuMUuhJunElQtw7f+9zK4W00dHRkU6fPEEQqY1imOPScgoJlZeVMQaio9C3DoYBE+c61mADz4STYVvMT0VvdoHBtQcYzgY/pHtTww1INDPulrZWsgsI5k2YRHCNs5353oKQv/5gazZu/g1cxl9/908tH0kMSKWzCDRQUHA8SlwjwVViX8MxyjwOUvSHYagBZOFCDJuxBBmGI8wfQCeXCDQcv9SXDhJouMUe1htDBQs3bNic6jCe5rFtongqDo9GEyeyaGTobHZgTOzbszsNIsRLKyvTbGqvuAoh7Wn0yS++xIGGp6nI/iacpRNnJawC59zl9xlNZJ/PNDSknbs+ToXzK1NVNUGYgmlpCisok5FllKWM1WBAlQZYuhtEqbhf1CDpabK69n2Pffec8lBOFc1FU2elUnBHdRaMVJxBAQKOdXwNNIxAeesExh51vhlEPJEwMfSrdyHHGO19nrvGGM/dvJ7O9VPAi+Jij2ZNTBOKqVfAFpYHHE8grofdYjWQcVlPpo+shpZesqM4N/RSL6sI5vlx1cyvSWWlFRzvWZuqKsoIFCHnoOt8MyksYARMb0P3OnAPsEof8ooV3YAdjgs0f4DU9rnz5sVeWaP8ymcDDMJa/RD8BJ37nc6msFeOeVSbvKOCzvGSclODzq1aGhRncVw+270jbXn1m2kJqab+7rGByl3lon/r0CkDzIQyA8H2lQHyq22pY3L9OhZ57AZp8d04Lo319fRzO61dvwE4zAX3GDy0l41ZitFGJyA6RB/Sr98qyzQepBmvoC9+c1wa5y3NzamelZSuZpxGMtDWIA9mUPTLeWvMKJu8nHdsRYAulDXKNjMv+vqyCurKD2VSyDhphZcyshkZ33X+XPRbUV2d5vNyO5r6L+eoB21xvwNmaNGX8lJZEAYl/dsuZBUySMfDuZnJdPxTAu2k+05mxa2StktZHTONV3wKU1f3lPGOz+K+E6F55XPAm7nJP/KWciZ4jrmZ5SEuGhubWIA4FKttxfDq3LmlsZVQOIeTxmBDN/jOgKx+rlOornN1aTQ1F1xhEveuLulQWwzQsbjCZApxw0kC7eUVZOOUspI9i22HkwJnoSOUB/BntI0scCueNoh4C1rHmbN9adn5msWjvtXQ7Ua279u7J1KBl7DNcBb6SZqLlFvG5v3iVBmiUWlgdSI6X2NfvSddS5t+FifCW74QBwZF2wjs7v1kW5pbOS8tZR+xzltOb9im+DIAGrqQ/szoyWcRx2dNTw7eGaJfx+FLmhFWZkB43PQJahut2rCRzI3qoLmAK/d4n7wjrWep2gTUcOa1b3w+9CrGs8Fw7QHnhMgKWjJTs5dAQ8PZMwQp7qUn1q1NJcXFQSM6u9K19Bj6lD7Uterm4CfacNtIODb0o21o/+LVyu7WergATbY1N6ez0GUJtuTaNWvYyjAzYBc8A1/FtjbgLy51LqQHg/XSkvbMQ+zIbD2VvgC5zofZFu0E7TwO+re79pDJMhJn0C0R4iPQwn1ZwGHLXE5eKikm0EBWB4I1j5zo0bmMBuamLRPBVB9E74yOoLG4zWzQR4zlAXO+iefWw9aJZrZO7Gq6Gdk0HOaL7ipHz1WnVY+vILujNI0jcGJAGgCj725HdqzOjtvFdI60H5VdTciC09C8C3iFZPosWLwo6NLVerf3Wo9JSovgDZ+0QbVXwwEFtn0UhJV25H9xr0x2IUdn/Dpy6Di2duPpU2kyusFaDuXlFZHurwzU5ugjWCAN2ab2R5btmslZ5UAEj8Qr87B9A5oG7bRRLiKDd+/ala6QSTcPG15ZMBO8astas0fYOU5XsF1hlxfEh4ET6VW6V5Yp97Tp+Rb0I5flJ8bW1k5Ra+o5WPujgpSUKI4IT9m/9KgtbFAtV/sns5Nd5YaX6N+gjjJdmOTsCPuRju33ODL+yO5dqW4ZR0SjA82gUy+F7ON3aTxonXErB3WuhYF0CWEGv8qzAXP6yPGi2wndErGbrUstp0+mJ5/ZQh2lOTEWZYCyN7KQeEa5FLY2cBWmwuI625O05aUTv9PBdtz6E2FjApuLwHz/nj0Ed6ak1fghZhfqA6gFrLugLBY2j0ZBh2PBGcGYqE8Df99ClpgFNxaZLq1HPRzGoj40QOl2+OY2ClTu3pkWr1wVW+ncymLdgggyDN1rMOuRqZQEikcCZ2HlQofZZAYGc7JU2SfMzYhS/3V2dKQ2/DP15PLVa7KTQQIume2sfITz4vmMLlmEhA+ck5kx/dCsOJJe1F3CT1lkxo9Huzcha66QbVDIKWceSVxCIEM5oi0tTXtFMWfatNaPQSSLvhs0lmYjQ5N5WMttPPIzl+F4HV4zQ70Bu2AQ2dFHZmpb46fpO//u/05f+/orFOQuomWINy5n8Id7gWcg8Q+8ZIhI2QfxIl9nSUSMIBgA5aVmFNr+nbtTR0tLbKdYWrsgVZezZwhmsGK70VUzD8JxRnTks5qWT7BBJaHiCKUPo0faCsgaCVETP490zzso6304i9u2fxyOcs3ChWkJe0KLyWrQSJQQZGYFkeMUcTKnk/Y3iTZA4BdDuHQuRsAMJvSSXvzRtm2ppaE+LV22LFWUV+C4FIYhJ+RkWBWvDSrEFa5/L9AQhgQMS3sKVYWCgQZXdayS3oqB+Nbbv4zAw3oi8zNYSYsIL8QehgGDklEUCAZaZAIzIexQo8ejosLQYDDOQ6JWmGf7goeH8PuA49IWUmF1JeNX+JmGGvPnPhWQhpZt+gr80V/O2ffd9jziEwBmQQbgqSGosbKLehqHDh2IIyUX4UyHU8tcNYgZUUR/hbuCQaNIPPgKWDOInMD2XZpxYM5Bwd2NcbsPxSB8N23cGAU7xaWXeFNQ2nYYXBjNwlSY2UakCnKPQtV7zZBQMSm0VbI9l3siCHOQ8VdDM09v2BB7+9z/ZwMqgiiSyDMxXtpUwRmVVhno4Nhm1rcrqu4rzIIrly53h/Fff/YsDkx32vjss5zHvpzfKf6kUGYOCtEcwQkzxy7M7FvnQqNBfNp3FDlDiU7GKPC+ltY2iukdTZ04dnnj89Pjq7Jjl4TxA5aJVfi+S2++hIl4jTRT8G3qtq9HCDcVVKzagpJJQ4bcKcZ9GqeLQbKKNDFNY2+7mS67wcUP3vwFY4Q1/Ydn8gnQjx+LYwef37vOSgEr6iWF1AogwlsAH7v6EhkNBDSyjAazYgzIuMpHAIuMhEdkVYwZPpqgBK46NQ4G6fcSxSA/u3A17eoixo3/328MgOvFF78SxVWX18xPVcUcb4kBdgdlkcfcVeqe+f7+799H+d2kijMOM9uWZpeUBN9Iy0FbwEAaUdm4GiG/WVjoFgaFuNHZdXLSb452xK+0duT48fSb936biinMtZCtBrPIApgO3CYSVBiL3AhFC6vcRjnfI/NqGkcWDoP+DkNnH/znf5+Gkz5QMnd6KqWPEuhpCmMYJ40JTHBtcGEYlpHwCfwwhofIPFcqH/COfcz3jJ17dXMNNtyAD7qRg53Q9WUCo7eKCGLOmZ5GTyY7hNoZtwnk9PVciCDt1OmzUWojKT7Wnxou9JDeSqCBhWCvNUsfJy13QRi3dQQbishsiCKdWOAGGh7gLFklPgINLs9hdMRKMPBURjeikLdt3ZrmIwc2PvVUyGeDkdJebt+p05SHNQClV2lTftJZFfY6N/KUdK9MUIb7u3snj2HkHsDYeunllymetTLwoWGbk5fSvTQlH9mOclg5qKNi0DcMXeAadWuAv+OwfZ0ig3fHwa2BQE8hqsZQlL/VS9ICw/n80nD1WQ1PjUfHqc7zs+MOI5d3jQ8LIJquqbPe0d6eqpQ1mzZFOqWyxv5pTrDEu/IlH2NEPvd7ZYGyxmCEW+iUMXGz/9CHMvIEQUdX06TVhTikS9miY1V555uTr94rzKVpDSydXmnfZwziSH/CzMalvcABnw047sUA7WG/tVkeiwjwzMdId6uFcxU+4t6+DJROhhd0iO1XuAf/IGsi6A//+YxtRy0O7hGnu7ZvD/6srKyMs+StCcRtPJvpBPlOw88vdXgMZPNF8JrbIOI0CX4XXljtBBroA9x4fJ+prJ8dOcyYq6lLM49sqzlRwdznbddFkqi5ghz0FKNJrP5K02bK3O6/FSdcxaodv+nQ6KzBmUG7LhJ47PFtaGsdwaM5OHYGeISjOjnTDdYAyLYu+P0k5IF0IrzC5sFZFFbiPzJ+DFgxT2moHpx+QOX4soqKtOYJsmyQqeogJyo9BB8BS+ehrpDefSnj1B8G+TK8ZDB3PF5+53aII2xRPbhvb9q05VmO9F0c47Yt+/cVuhyakf/MrnExQpo2kB11EZiX8i4CDdwnX7iqblBPurS4tA7SBui9oqws4CZcfCHKCBjheMH/OkfhEAoDB0g7MSfazuCEg83YxwE7q+qfx/ivRz8dpy5TWWl5evbpp9NsaCbsH3SaDqNZfO759rkIMtCHDp1wVZ9GoEFY859y1CCDx/A1tLVGEb0fvvsbtkaO5ihuHETk+VR+m4g5OxxxIBTZ7UUwnVNy4El1n6/YOsF9FoQ0S8PMNvtTYJtVNUbh7vfOn7EYaIgaDWSYNVMMcnfzYHa85YixqZzg0qqVy9MLWzanhQQcxuu4sNXxAbgYxHEzmKN8cnU1ToagPfnQOlifYg9Lk0UEBJezVWHOnNmfO9HCmulmgQbA4/PaucJf/SjurAlg4CK2GjBe6d4Moatk8Oxn0c2t0NYVq0JGzoOn/OzzjieCjtCftCOPWyhWeWxgQbiHTc7v4kr6zWyfrEbNuc7O9PsP3k/dBJIWhpyZB0/NwYElWEzAD6KIfmIhi3lIP8qECM7xroyxfek/ZzvF6rH45bv6Rk4j2rEjiph6IstMagJNYtuyfCk9KqsMZEUmNfJReSt9GlRzK0noMeDsuL0MlAozbQMDxgeA+46Pt7Lw83hazMKeWTwW9LZd6dhLvvJ52/W5oEnmFX0DI9+VozKBcsF5uOXhGjrgQxYMW1josGB1FTIhx5/eJ7/4kscNnKj3lBW2F7Yq78oGbXDvC59BXmBc2tduqfsI3e32DQtfzmTsBmeYLbQr37iwCfFDhyPYkjSKl3AT3gM3s0CDxTatQeBWjwjIM5YBbJIrHD9/qqE+7dm5kxpYG9J6AoPjmJMngig/AH02Z2w5gwy+PC1JvrUe0aCwB27SpHJPeRq6kN8vkd1rIODs2TOREbNp8xYWSljU417nJvx8OWfhLk1GAAw8+p306kvfSvxaLDMPWQ/VE1jrIwjQkk7iv15C1hcVlaQN656kNtjcoEXhZqBV3S+sPdkw5A79yTNeypeQx/Cmx3NOZAuIelfc9RIAcpH8M7a5DKBHr5NOefnK5fTlb387vciRpIX/tHUiYPh3/whYMeMlfAG8xoopPHB4ajzlqROfEGhoJUVodFQv93hL04UU2q5wyoB9KKUBgC0Rq/TdNxnRSYmE+9wqYTaDRwrC5VGM6C5Ed+DokbSTSKLEZyR0+YoVBBpmYVz249TrOGaXhCWCjWhKxH0wiE5nGIgQhv95eZ+/u2pzGSP0Haq3nmaf35M4oxZvmknbChAJyHkb/WXC8bdtZE5k5vDZFpNDsGSR2Ixhs1RvV9aaWlsJNLwVkbRNtO+4dZgUQAoQBYdRXAWVxoOXc1BQKRCBdBB3DJ3h5wIDFtlyXh5z88aPfxzZEk+uIVKJIBFOsXIuo6CQGWHM93MjdogxnZspkRoSRh41zmKFVSONsVnIaSuC+wCBhm9Red0iReFAghOmHPMOocxn4RAZC/GD4MoIxlUfr8jE4B4FinMw0HCBCuwGeRT0X33py6myvAx4QFM8awTS+1Ri0o7fhQMPTAxAaBzZtsJV5Rr38rcRac8U7yDA47GSOz/+OK3dzNFIX3oxTcCQuUGE1FUUCVkYK7Adq/AX7gp9Ba6GmkEwU2MjiDKEE2dldFhD6ASOy3n6+TJnU69bvSrGaQTWdixs5yWOVQY5BWMwws/CyyKW9qcB4cu9hzrBCtajGM8X2c/mCpzZHpXw0zCcUZ9zC8UIlIP4j1Rc8GW0PwJGjFnTSjk4AsPHz3eIpHpNxsj2WMKjGIiHcYyslzCeyPYsUrHvEmiy0vD/+MnP4l5dEs8pnzEtn+PfKAg3koDBwPU0FWNsBvmsBeNRsgY6oF0DhNZoMP0z3jEA7dd/w8xjfKa0RobTcJQ24+4itf9o5+X0YRtGCwTqEZdeX0UAryBoswpaq2HV2YyGPujQFLUJBEUagM3bb7+dBvhuCYG12hpWRlAMwlHFkIO3fMiAMqUMTYTDBH+ppOU/4RjRfvAj/o10S0cGNf/mxz9MZQtr2W+6HEOoJE0HbqOVBRhoEcxhqg84apTcyTQZ+kMbp8P79qXt/+9/SGNaL6eS8tmpmHEX0d4UXuPAOSAI4zTYA9lpAPEeARjTDpV+w0eg/IDLoMYrN5vOLW6BKOm31F1gbl2s5F2kAGVf4Yg0aa57KEaka3eocdF/MQ2QSZEH68xiC9WjkRNSFyki7b3XU9dFji8d2jqxZdV6irwt5bzwJ9IiipF5oodH5o5g5SEPS/wRxpTHFGLCIxigMetjYHgYrOwnI+F0/dn0zq/+Ni3j+RdxXlxtUwYrDHTuMzbN+DQMW2AsrYcTCpx1sq2pogzxO/nal7xssTuzp3Z9sj19iQKAazHmNJqUA7kMhWgLYy3LNMj4V/kZBiHt+9lXGB7gVP72mR5Wptva2tJ+jknzyDfTFj133KDFLXCaG4d+i2OTjuQtjXTnZRDEIJX4cJLeE3oGx8y6PwYCjsFPl3HWKyjQt3H9elbqsuMqdaY1bOwjZBrj9LNyzkCG9CrvO263TinzY1V9aPyuAh46dDidwWCRXh/HEFqzahXp1pOhaQxXxqrBldNLtqdxKD9khTQxcDBi7VMDzHfhoxGp3jF4tJ1AgNs/ikpK4iSDeQQEcttCNFiFoWOPYIhGrryGvAnjDdo2yKQ+tW3lqGOQn/z7IM7ib6EZU5IXwNNLWSRwtU7+Uw7Lp35WrnI7QkdeyGjfVTRtgUcYierLCEBorNKXq21XmNdH0Msh5JYO16JqttwUl1BThtRX2o6VN/jQVfbINIOWJ+HM205krEH3kbIL/zlW67LgwiA4cRpp/xwO0Vu/+hWG9s30/LPPRSDc7XfShPJWGhGOjt9FFB9VV6jjhHE43dynrhG/MS/m52f7O4GB+8bP3kjlFRUEwjOacaHBdsSh7eYuYWO/0p1X1nbmgAi2CGLQj7yh3WJK8N6Dh9K2Dz9ML3/961H13rG6ECL9cht4Y0yMRxrVTghjmjkZmHJr3hj6c3UuCkEyAP8TprdxhK1rtHfffrI+LqcXXnghAneu4MY2RxoXo/Gfn3k5X2WCbWTOufPJ7MJwisCTq9iujnZ2dqaG+obAa0V5Zfoy7bvKKA1q19BEyM1BxqyiE+Y5+hN2UQuDPl1h5I1n+I77pJszLc3px2/9In3/V+9QdwiRzm9e8607hF4bbfOgcnbxSAKxJZHxNRw5PQK4WQxyFDSiQyRmVDHiGYrMvrchxmcQwi0oj5jfTY+3JGOvGf7aUZ8FGhDTBPAnpOeffyZ985WvYVfVxYlMj5CDD6Vb3nUCxasrpDpPygqdYW0ag9oGhGeXl6dVa9dEBlJsW4EGo3YTc1XfaRPlgjzZIo/2XcZbjllYCXtlTj620TXo/BPs7E8PHaKGREmaN49gP7JgesE0xgJugbd0aUBBmaB81XHTZlFnmbkjjgRp0Ck4VxZoLyt72jrOp3c4XvZiR0fwqyeelaK7x/ObW6YDoDwdtA0MDQ7kggy2KT/Y3ue05Fz4XhtWWJ06cza9/7vfxmKewVgDDcoh6UMa9D/b1lmUjpRj8ps4dD45+8GxZzyepfErSw2k7EDO/Pqtt9JTGzex8r0kAjDaJPK1i5eZk8yCizBlbAbt5HV9FHWcn21bPvQZZaUw8+8esmR//bv3Umtzc/r2H30r6ps5Ty9lpLao747Vrw1W5ORMTpfG4iO06b3ayCGDoFl5vpXsqV9x2pzbDr7GcZhFbh0E5kgrbCxolfGHzNFm5DSXR8hZeVgZb2aNwVi3a+sfWKQ1K3bIVmn0/8Xey9S7OJ4+eu+99PI3Xk9feuZpZAnZfhTHdwFT30L8iU8zJS12bThXXNheztaBW0OnCRd1l7ZaFxlIpw2uoV/1R5Rly5c8FnMTpuJWPeZCkj6FlzLNl7JGOS0feCl/hLW6RD3TR7DOujqnG+qpL9fKAvPM9Nwzz6Sq0vKw88yMkibUdV4GGpRRyhx1tPBVPoLwsI9gfLbrw6/YONausx6TJ7kdPHqYhbS76QYLQtf7rqfnmcOzLzxP9vzcaJeRDb3/4b79wzMapBCveA9y4fPQOwiGU1IjVYV34dB1tbax/y6fgm5LUy0CKgqdgQSdP6RzpHsN3OE4GgSPkTOj166eiXi3HQSCUHSDrDQ8xAgYT5oP3JX2Y6wYaHCl3kDDCgINBgMUthoMMonjc/VWxBu1g6Mxvq9ixBHY0FlEKGYXwgYmVPiNw1C8SqDhFzDgcVIMn8GYqKmpjrbdtqHQVJBFBWAZMQRslgZpW6HcIbpgemChIAlhNiQMZYB6BMdbOEamxT+9cSOFHVmlJcLM0+FgK6SNgClAZRyZX8EQK1IIKiPxgzgl9iXzKMR02j3lQmNV2Hz/u99NT9L206wyGmiwgJdMrHBUWCiZzGrIGS4yoEyioDJgEZFKQcgzmECxv0tjQKf5g+3biHLvT3/6538eBQyNahu8sX3Ho7AWtvalgJA0QqTzu4IyW+nMFI4/imvb1hDs6OxKv2NFx60pr3FG8nwMrtwcXekTJgr8EBjM2XYNPPi9Y1Boe7aw9S5cwfc3CCDdxgBtR4AcIzK/FeG9mePAvsEq6TCUziArMRr2wsK2VSIBe5xQxypuFP6mwgojjVLnpyHj7+LBKGs9kWeP8GslLeplHJf1rHh5fw+F8BRmGqT+rfCWjnwPRUNb9s1PKEGin/Rn5NcsGIWrfTU0NqZDBw+kC53n4/zeNevWpfmsLKjMjfa6hSLgyN9hqKtUgIkG5DBfASedPw3JTHjzAxkNU6JGw4EjR9O+AwcI9uEoo3CK55bGHtdtu/ak7/7ox5I2K/iki40dRVFX9oEWTkwTx/DF7ZtsH7iVJvG9mQweiaqiQjfxks4YRyi5LGogfRpFVjFZDyRP/PC6g5LsIoXhMwINe9sJOnH7tUyWp2989SWOy1uRVj22hKyoMlaShqXrwDQfOhXXjU3N6c033ki3cUxX4Ixaed1Agzyqogn+ABbiNBx2xwl9aHhJMwYZTEFWOQcdc58BrGkYU8PhGyuYf++v/3uat2hhWoVDXTqXFVJqUQzj+UGUqhFuMw+GjSXARdGY8fT7ABlzFONv93f/U8rrupSKZ89NRcx7JvOfDA481lP+c1sXLBF0YZBhkCwQU+oIp6HEoEOKTN5mXPdQWM7bQmbDCCgZfrwGji9gSJ5HqV+dPEigoSg9JOvgwrUO+BQ6RcdCPpzTDZ5GFqZetqZcuDFAwcdbqf5aoDS9tGZTWrV0RQQaFi5cgBE7lr3WVyiYw7nS0JT7d+XLR+DRIJOBhpGsPmhAucJ2AoX/s5/+JK3dsJGTEl6Mol864V46LdK0vC0Pm11kW1klecQxKxjKCuWajrGr4dK6zo2BRo0Ig1+7CDy+QNDxSZzpwCn3yjc5uZDhFVkGPJX7/qd80HAzIKFcD6MReeDf0kNvL4VqW9viGDwrsf/pn/6L2GZ2D3qQz4NGoUkvZaArfhpAU0gfphFo7RrBBjIywJ20QpcxD4v8OvbjGFnHOEbVUzwqDTRs2EDaLoEGntOJGz+eTB7aV76HjMcosk+NXGWwskGDyeJ4WENRsExjxu0hBhqkyZPAxr7WYuQ+haxxpc5xGizRGHRsykN1m+3ZtluldBit4K4slvZ9Vy6JC+9vaKI6+sdb0w304BxWSK28Pr+yMn6zP+frM8p2eciOxEUW3MlWetTv6jHvVdYJf7cImg7vtsRfvflm6KtFZGMsX74i+jEoGtsOeRfmPiuMwGrgQd2p3BhkpfPhoLg0qww5r7CB1iwS7Crge1s/YvvB9rRu/fr0WG1dmltUTACXLWLgVXkQ9ED7/chXV7THk4Xl1gyD+m6ZmECw0D3K3hu5DNgpI6g7o5PQ3tmZfvzGm6kPPfhVTmkqI0CiwyQ9CnODxtIYzcacc7TpBMJB8hdg7dyChrk/dCJw9+9jOI0/+MEPUmVVVXoW43wmNKMdxNPAGzkDL0nj0nbIe2UI3xngyDnW4tJ75Afb9vJv52u2x+/ZtvnaH/9xWkewWnyLx9w4hXeG3yBpYI8jAP2EXAwbgwAzdAImwlmQVnWA1c1m8m3fuSN1dnWmr73yCplS1VmQwQFwn3ypc2cAQ3oQx/K7I4wAFfc4V3WqGNfOecg8dVxs2+1C+3fvSeWlZekrLBLMInA3QPAk9DYyRKfFugwGh5Q1ubk7RueVjZmbaFzHX5qxtscp2v2fyLC//uWvHOnn15rykWluQUEaR3vDcAimTEA3TswnEEUbyL9hQ68gP+CvllUPOFe3gpDXFy/nGYEGZL9ZDX3otZ7bFOftuZR21WMf0KMYdqnj5c3r05/98z9NK8hGHSHfUu8AxkIOZws+8oA2SmSUMGeL7J04dZJAw4FIBy9BP67FNiguK4NHkLXwq5c8FHqQsUgffpa+wWJsEYq6IuBReznGD1/luQiDbNzGwtIRbI+5wH3ePE5+Ki9H/yEHaUc5y3TRgWbwULcFOlPOyGP+Zj/iWnpVvoh/+Uxaddtue0dH+tWv34mMhhWcNOCi3pyS2dTzwlaCn3hA4o02XBDx+ehQHNBx0DrfyTs5WhLepvQLI7c2/IpAQDEywKMqZxFoMHjr/dm2K2Q37VinSjmlPxF1DYboMrKEgKEOu9tdhY9zcjFLOb5118705g9/mJ5F9z3BYohbrLOtVFnwT/8gC/CAdPrRllRWmpWnvjP7VLniuzByDPK5OlG78W2OPW5raUn/8s/+LNUC++gfusjxeA6Xsag09L30bjApdC59eU8umKhfolxwDi3Ywz9FlhWR/fL611+NUyTk45EwPeEDmYQ5AnPGNYz6WB5ZKZyUFZp26kPtPQNVfjbwNYyXCw2XsEkOfvZp+g1+zh//y++k5597Dn5DF2FbRPaDaA26pBu6ukeDbrnQDrDug0Fo56H9auaINGR2lYt1HpVtoOEQeuQStvvr/+yP0+PLlsU9ZjHq2xmw1EbJBcAikEl/tqncFP/KhyCjoGHkKfrE2iIt585HNoYLhwXTCtKLzz2f5pVXUG+B8cFvBm1zwQYDqWPV5dCz+BSu+m5QZ2wN1S/TTs1Tp4D7G9eu4p8dTvsJ3N3E1rjJgt/A3YH0DL7IZk7emY3dGoIMuP6hX/84gQYZPl6Cg89C1gsEgonUTKBhN8dbXoCYJ5M6snrg9cyZAABAAElEQVQpxyZqrECUFoR0/1AwB8+Gw4wiV/BbyEyDX0LI0vNQBgibe6ZRgbSJIB5sciTjgfThRx/G6Q+1pKYuh8l12HVQNYbiYnwSmM5NLu3T+gv+ngnDTBiEMGTMGnbWfLhOJPGX7/6aEzOOpU1EsxSu01A4KkEjyPZv3YJwwPmsIjZiGAYDBC4DRQSR32RyGV7nVOPLVyORsreIoNveRoyhIgIk+QpW7tXQMjCisDJrQqZ2vDrC4azyvSssd0ipk8gVKIEHYDReIcbfrhh9/6/+Kj21YSPpzE9G+r2MkAUaEN5wlzCPiC59ZgYdTB1CXYWWCQ6ZyehjVJZlLM7P4j1bMSb2H9hHRsOfcOxgXTC4hoh407HXmFVwxgqXTMlLGPt8MDfw8Apjku+Eg31rJJ/v7CDQ8H4I29e+8U0qu6MwedY2NJDFp4pWwyoAHfomi9hqMNFBCGlxoHEt7C1iZgRZAXXqDCdVEGV98vnn06uslOeR6TKAQa1CsR8FVAR56M/vFEr5PG874llBr9Fg+85FZ0latap+a1trpEwbgd780ktpHY6ROO2FnsS7SiYcKtq1PQ3l2OYA3YljcW9bKkznYsDA474867upoT72Brc2N6YJ06elZ59/gf2ctcDFbTmOXVrPos0+J0wj2iyuGUMoDJzYEKwIdXEjDYzHmDDV7SCBhoOHD1H/YXyaQhS3GIFnjYaPd+9O/+1vfiS60kxIbQJbJqpKZ6TyEk6YYPV8+F0K8z3ITjkYST/Ev2LVyMKiGlvD8Aw8VUGhL094KSp0GEYDAx3uYSNGpfu8ujG+Tl++lo6z4s4iferIgtHpTzgyaC31NJYtWkwKW2ns3bsGvFVGZipZifodAoMPoQ+3UFVVVsU2KnGpYyt/iCvess/0KfwNhJlyqwHky6yVfowleU6lL8+7SrqfjIaf/uCHpI1WR7V+Aw1mNDx6gKyiVkQ4uPIHQYbhZDVYyOgOKdwGKg/89V+mkW1X08wKYAoeZ/CaQNt5jCf4jyGppPmfv6Utgiw87+7BQYIMtxjzDQKst1C2FjDyhItxY6nyAA/cAOcXkAtNyNgO7ps6DwRhoPReJ/0bVpjGbiv+5Ox2C9653YIikuwNvnKdeg1seVFKfmnFkwSBlxGoXRYBVR1gV2uVjBMJnLjNTdq0gKhIG87WCZ0T+cDv3XLzxk9+ktas35C+Bs2PwzG+xfMaCMoC+VXFrAxWkfvMADBW1uYyjyQIswjie3AmzDW4rhFoMNPmAM7Fl1HE655YFTohUrihJ40nr3Ai4JuMR+mP76VtecnvBK7fCW9PefDv66ysnMfI3UsauasM3yY7qxZ+GgSeBkp81pe0agEr9+tKQG5l0hi9gzxxxTqcMvvgkm+zc80HYl/zZ6xcWEdhPo76c89uiUCDukXjxxVJ71fmuLoifzoPZb+0EE4u/ToAC6y5+mqw2IDY5Z6edARj5ezJU8ioW+nxNWvT2tWrI/tpgLEr94S5RmUY37ShHBJv6hBlkPrE78SDcJGGIzgAjjwe9JNPtkegQcNnJYEATwtSXpuSa0DEdmQn5Y6wlr8yAzbTJ34nzNUJ0oD8pNHmcYKHDx9Jv3vn14x3XKqtqyOThlOUiktC5olbZZ99OXbpJvjLsYbOpU/4QVtAh1SH5T7yzBoNGnymev9u60dp98cfR6Bhce2CNGdmMemr46KQnnQbwRXut9q8zoYpu/qHOruUNyErC0MRWSo9erLUcFbzxozDGUCvdZHR8BOCJH3In5defCmVsnVC2QEEoFlWj3nXSVA/ZTKHsTH2L145vZtzvH2PhQ9gcxJ++gnZiDULFqTNmzZRoHWSZAdtMEAhblN8ztkS8onGtbTqd4EHYCcNCMcczuUDYbubANWHnNv+6muvpzU4XjqutqF+DX6iM2k6YA/87U5952KCOIkTJ8QJ90fGoL/7LLDrgS63kyp9kQKx36R9t624qq6MjVV0cOXYdXp9Rtpx3E5QetcGkK4i84nvDDTA8LH4pN12HgfAlXtrbrzA1kSPgvS4cOlLZ03acunBbQq5uhC2GauW0EoUZQNDMpUBFBe3rP9xqrkpfe8nP07/Ax2Su1hkTc/WTUrzZk5JExGrI7C33AZh8IwREz+nJ3j2EXMT584DSokXDBJ9jqERgxKOz8UASIrCkmTjUfm15/a91NZ7NR1sTYkSlGkKw7rGoF7fsjb9q+/8q7SSQMPdgTvpJhloHh+o4xyZlLQtnRrciSKFfD5z9gxbJ45EIe2Zs0vSSuyOstLSoGlhb2BX/SsOdAaFsbJG3ejYdKJFtIsb4sWTBlx9HUltnx7gu3PPnnSSulnWT6isqCDQXkr2FPoPGIR9hCyL5+kngtLAXxoXfdKSvGDgwaCg43ArqfawtV06L15Iv4Uer8JP6u6yMuoEsdCRz3wNNGgniD95KLY8BfXAD3ynTSt9hm1Jb8qloEVgo3PnvI6fOp3e/vmbEbxYZc0vtlfrsCqfpHfHpc0snJTnUZsC+tY2kze094WftkTIPMbhxLQ77PfjXbvSW+i/F8gIWLl0WWyjkuekc/lF+Rf6iHEqA8WhMMnqcWWZC8JFfpMPtKO1zdzSbNbZLwkKNjc2pH/+J3+SqisrQ3foNwnbgCvPKXv8Lux3+xE2vASObTlPf3fgztexebWyHenNX/w8zSJY+hqBwVnA3a1jj5Cvw9g2CcBD9g6HR0Yi/1wAGcDesT/tS+k+Cs+qA6Bd4e/cPE3hWt/NdPTk8fQugYZXv/VtjsPcEkHmvh72beJT5OqBRMYTPP4A3nKLmjLL4Zkx5bt4D3qH1gwQGdRV/zXDs0ewWQ1qvvLaa2kFAWuftVivdrpyUPzJl9K6MxZfticupSlt55BDwMdxa7uYEdXY1haZZZ40pf39Apma88rKI0DiolKczsEzYUOrd8Zh9wFXA0ra3von4lJ/xkDDKPhX2lF3XwWnR7BpjsBP19EvZjTc4rWFhc8tzz+Xps8scaS8HLGvP9zrHzfQAJEFRQsTCA1uAk6c005a507Op74EMU/DOFu7fCWBhqqIhA2iGC22YuROJhuNQIMqiJxJ2zrt2cq4Zl4QMgQPx8beobEg3mjybhTO+x/+Pqrr1tYtTI8hmN3nKeEohGUyiUpm95K4/DtbFXc/mSvAdMiQFYoKBJl9PA6EqfTvcDSnBXDWrd+QKisrqDDK9gOYy4iWR5bI3uEg2ADPO2aJVUa2vVD0Mj+fja7rkMoknsTQ0tqafv6LX8Bsw9P6p56KAIlFWwShhrjC20CISkFhIgMpmBQeGuuo6GBKmTQEB30oZCLQQF86jX/z/e+z7WNj2kh0W8dfrtVgE74yobgScwJKhyCih/wmozgfuDIyKWQUI4ymosmwKonte3azKrU/ffXVV+PIK+enMJPRnG/ME2fB9mVujZjM+HeFyllyBX7IlqBv7/c5s1EsLvc+qZ08ll4jnaistBR8ajQhMIFDGA6Mw+dUnM5FB1aYe/lun+JTR9Kx6eCrRDSEzjZQ2G/79vQYRtaLzz6XprG/2JXJaJtnbVdakY40wAyyfDHCrWGqoW5v4iMXaDDTox2H7wypr21trWn9li1pNX0ofC0AI61J645J2vCzmRPSlMa0FXANbDgOBaU4kB6trwGxxj69vXt3pyaMignTC9iz/tVUvaCOaMo9ouP94C3LyjEYo2Nk4MqVJ/uNQAOGkn0AQKEEraKYWamz2rLpYm63MU19LAp0MkXrZhQVs3XhHkWy9qT/9qMfCdo0Gx01NX9Yqq4oojBjQZqWj5IeJM3+Po6jcgBauU8FQ7sIpwDlYWBW495UewXzEJoi7W40pADngyNWJeHHHo6zrL9CwTJOnsAGSy1DgYbvfO1L6cnHSYNmdXIO+61tu5+tMBq9FmxramlJv2Or0yPgunjxYrbbVETwTqf8i4GGmAT/yKfSjeMRl5GhAoxNfZNOpCF5y2wS6ecQDuO7v3g71VRUk6K3lBTaIvZ8TqYlMw0wTpgnyKJQYrbVwQ0y91AoBhoO/tV/SsPab6TCsoJUAk/MAO953J65aXxgHNneWEeXGWgGBkzfvQkcr0D3vbf6042Bm6HMx4yimORYslxwhu4R1PCYy1MNzakZu6CQGGzeRGQIz4L+VMAK3MjheZyUcC1dw082Q6SHXWXXSDjo4OXuiS8tW5MeX+Sq8rI0v2Z+bH24gzHhiq7ZZMpgg8IPCTR4OoYniGTOgXz9IJ1BGf+cbJKVa9akl1/4UhoHzG4jIzIDXwMo4/+QXcAoB3PpXxknH2l8GuRRfrjPXkNNg8vTeSzsdxjn6OWvvRorsMKqn1U+dYcyQUHieHxGflHOKIuUM+JZJ07ZEnQHXOU3L404UzDNDLhC0OGbr78WtQLuovzdv2mbvngk+MmsMtP23fIg/YXxBqGHEQMv8SHkqFtBbjB/jf9jHD3YhkE0H5p8gRUdM+766TfSO5Vf9sE7Qw25a1+27XvIMOjRVRKdJx0idYdGTQ+B0c8+/Sw14pSqF5atfDytxoh2a5+n9ggX2/Dlv2aWhCHLX7YbMpKxC3tffqf+0kE28NDcylFmZAteZbVoFob5GurB1NbUsELKsbe9PSH3dK7FqXKEf2IO/hOwpk1lsnLO9FUHoqEVZ93zzBEyMba+/35sQ5nHqnd1dQ1Ff2cGDISNz+kA+UwEQhibelyeNV3Xlw6If+sYWATQQMM4ssE8m/z3W7eSBbOVFPJ1aZHbqGYVJ49Ks2K4dOmqmLrDjCK3Kfly/vbhQshY5AZfRHDatg00jB4P7KHtCxe7MM7fSjcwmF8gWF2Kka6sFQ4alhKasM7hVvnvJf1lsJEigTl96mjnFiTifp4zZfeXGOfzCXptwjbwWEBh4e9Ba1lzoZOkRenD2hLiIhdosJ+APfSTrcTiFPC7waVs68QHUfNk1YqV8E0W1A6+GdLTjlVa0EaSSjLdqnshmYNrbjCwoJ3looRw0wCXLrez+t1NvaLX/+iPyLirij5vwcsRaKAvxyGd2J+Q0OGI8cJf6onYsunv9BFHVjJHVzotbneOVO+jrGIWF85Kz2/ZTOG0AlYIKXqHHJc3zLSCoZDJZIIix5VP0oiywHFr8GcOjnYf82A8BjJONTWm7/30p+l7rKw7R/FjOOLlxyammiIC6mTujUZGDUP+Kc/8LeyYB8IAuWD7pJojHQkkOD/sE/BloMHTQITPPZwr53QPmX4TPddDEKGtF2fsfEqXaK+QoVxGnH17yxPp3/zFvwnH6U7/7XSN071G0XY+8t5sLuFnLQZpzToN8u7pM2cJNByKUwQKS0rSEwQdy8vKhgINZGIi07Q75CeDbMpdHa2whcFhBBqgxX6cQwNKypjRyn4DDazA7tq7NwINs6mdUFVZlSrKy2ObVgTmwJ86WDkWddfAYwRJoSXxKhxCNiNXdLTVt33IV4O12tQep2wGq3JlETZ8eVlpZPGMhfYsCqgE1h7LeB22HOIbbRcDjdKntBQMJt1Iw8xB20f74BiBhrfefIPjO0uQkauisLuZX9KeMFHfaFPL/+p/aUl6NyBgv9qA2uQxD/ujf8fiFkGzEbchJ3+NLW8NoRUESnL6xbmHrKVdPwsD2/Bz9gLpjMG24j/phN+09Z2jNus1ij2/+97vQ4e8/vq3WFUvj/E4R+nP8Zk9JS5zgTr7kEYi6AKtKgfUuc7J79W7Erlja8E3c8upgYavf+1lajQUZkf6UiPBQINZY8JlhPJvAhmf6H552XYio5sZCOuQzcCCyUTbBm1uQnPHTp9Kv33nHbY9fjW98PTTBOpYHEGnG8R1odZ2+CeKTT5CR+nX2J/yjgHGHIWP+BXuZvoKR+0CC69/ir16zm3KOOkeZS3u9E+yABr6THqHDgL29CNt27YyT3kgrIVbBEz53cK395hHQ2srJ62dSg34ClMmT6UeDIvN8hN+qKeRMGHa0cfIdNso+CQWcvlOuCpDmErAhYGH/WCQ00CDAZjjZGMImysERa7eojAl9tZz33g1PUcdjimckpRdSqFoaejvP7y3f9xAAwQsUYC5oRdCHEQ0YiBuQ4B0n+9Isygy8tQTq1M1EW6onnQwrFzukYhUDhZiuguR+NLADwIUxiApzpPlfRxG/DCYH06mStxA2oOj+8muHalg5oxUjRHk3i6r1Ur0EpOE4Gd4mRft8J39GW2SCWOVne9lTBnEvyMggLFyE4X5m9+/lxpIu3oCA7qysjIr8kKU0WFpcEZBKt8D//xLG8IgGIN+MyKkP4SYQ7B9jaZREH5LS0t6kyirTuymDRtjf2qcLsDYvC+cTZjCsakEou6F7cMYt3EsFK4qyIAV8HKurjDkFJGBhjeJ0D+1cVOk77tyqGA1bdXxuXoTYBE0fh//8ZlxK+xQwfEyyINsCYGtQICTY5Vxx549rH4fTJuffy4txYieTEqseHE/YURkFT78p1DLCdcQurRN14Ffx+G4xYWOvNscXGVsa2tPH1MARyPn60RZS0pL8ZyG0rV4WkMxBAPPjyRq7eVRlvankNfwVIGEcOI7jT6NYp34yxjODRgVB0gzLAOnm9avj7PqGVYIa4V3tM9Y7EN4aPhHFWVuygor8hu0Ky6jcjHvXlcwrpoaGynMdCoq4m7EsVhLmv1wxmjF6AiU0K60HTBhbEGjwoR+VRoRcGDsrnhKs97nsXLCvo1xH8TIaiGjYTxp+8+TqleFMfqQY7xuEmjIw+lUoN5TOUg7Gjs8p1HIROLlCoRwHkb4Wbo0zc0iPFYQ/pTaEgrAcQQFzerxyLmbwGw7uP6rn/w05jiHfwvJ5K7mLPvKkqmR0cCySxp5n2wb5iBf3DPQgJ6QlzQsPL5WeImTUHbMUzhDTdRhgEbkUcb6ACV0+Q7Fm65Qlbebwp0EGlr5yetfv/JiWk9a5YLqWhwf06A1sFBWtoWB47aS3777G7KeBlgdXYzjUp3mYhQFfegkAw+VirgNWDP34dDmI2DhqqZKjB9iZcP6A5mDSsd8Jz0baNj+3ofpsepFHLP4WBRNGofiTSPgu2EoG4we0wtvo0A53CGOrkLDp1MYaDv/8//BOWa9qbCiMM3GaC6k35E6L8w7AnziKGYJBfM9LdImTgFj7YUGL1K/phu+QD+lccQ2RrGd4ja1FoZNoOhkcRWnXAxPJ9tPplZ2OxgMn1xA7YhxFkAi7T5kHcYdNHCdVYoLNwdTG4VuL11+lE4PFYP8ysp1kdGwavUTqY59wRb189QYFbBwk4ZiGxWCwNNKPM0ik6uMF/61gvJbP/95WkwA5stk2bj/9Q54yNG05Be8qEwGzvK1R9AJW2WydKHxKcwjaKfxD0TcTy6/HqJOzqG9+0jF/np6CgNamFldPcdHIS+VrfIPegS2CjpTjvmH/9qetGif/I84GQxjpbOzMx3CQDfQ9gpBTU8usvCazpu8Zx8GWuUfnRRpVmPF+Sh7HXO0jgwLeudvVzZ0/JpamiPo2NLUlOZUVKYtm5+JuifKcGEb2VlDjpVGupdZIPZnvxrJjj1kmZ+kdV4axTpyBhqaOJFDQ9hCZGs4hWYs+skgjzJbWaDMtS/nomyUB3Q2HasrwI4/c3SRRc4R2vS3lrbWtG/fvtRNIGYacmDdmrVZUJN5u/VQINq+lzwtrgMevDvmzJDmk4QtwHnJ866SGrSyIOEnBAOsdzFv/vwoLmdWn86oNKFhr7w0aBPOLmMLGgI2EeyBrhl82BLWNTFQoBzLI/jnEcbvf7w17d7xCYWclxOcXJAq2LY0bgKb7QnCqlvjEmfQy+fp9szDMRrmGeWXyh775YMG9jDaHzN+XGQ0vPXLtzmRozdtIZhcVc6xuzguws5glONXdmdTd94ZnYgLadUfMtkofRn8R2bwjJTqPacI3P2ORY5S2n0S22O6WVXAWj3kZfu2I6wCx/xtUD36lP58CXMucSH/Cn+fM1NnHym7Fq/bDK+6HU2HRjoQhwF76EUYOR91nE67NBJHb0Mb0mecDY98kvrDPqEjA15uH9xKEP8Cq9Q6RlU11Zm9dx99zNyCJ5lz0IQwot9sXjh9Q7CLVUj4QRQYCBjN+AZYlOrAsTiLQ23dm6qKqqivNJngFOkcwMPAP+0xPrNT1DcGGpyTjoZ6NjKSwKk1JqSp0H38fgf6OdFQn/7XGz8j0ECWDZPiNMG4vlLDsX8ElQuRpflSArLqDielya+jqWVkHaIHzM3MIbPyBhn0oHVt+F3cqnvNfDAOHXiRvunzxp0Hqbvvdmq9fCUdbvv7gYbXNi1L//v/9m8jQ5cIGlu0zE5jQPxvEEa9PsjcnNN4FyEgqPoTJ9JeMkmuIC+LK8rTpqfZclNZEXaTC3rSlXaRY3Brj3aGMtwMF9uZqF0Lrh/g2Csvgm7A/+gpk9A7bJ34ZEc6ROZXUVFxbC9bWFfHAs1UYOrYdHozW0O68z8vcS092VYEI/leHEkHLtaMIdg3Bl3TjQz+W+B+/lxbchvVAvi1Eto3g+OOsgw6k0aEJx3FQlkEkpmHdpnBKeWaHYW9wVgch8e280U6C2x+8bOfxellq8n0mINTPVG4MQ4DMNKgCw3KVmWYvKXtntlP0Luw45ULHiqHfClPrYezDbi//5t3o06AGQ3ypHMPnmLuPu+l06scNpBqHz4vD+sUO35pNeNp+JypKo8vgs/fs+h2iSyqV1nUcxuxdqltCmV522CLc7FdcZllYmSBGdsw0Cvc7dv2XZhUXmgPRyYowTUDDa989auRSTIIDVBLGhgyDp69S5aLvsboifgQBgOwUQy26RuEPeU4gLkLAPYBoiIYcYVMmE9PnqCw7Xtpy7PPp+c3PR3Bqwf4bgaPAHaMW3vUhZVs+5uycihYxBi1iT/XM86ZtsX31asc0Q3dfEpWwDmCJS8ydoM8wkOcRLCJMQojaT6ykHgXFv4Wtja0ETqFeWS0wxzxk8R9fUsLxRpPxYKwWXib8aPml8FP4BUCjndtR/Fm5pR06StsDHq1D/lgDDKCGcXRnyJVWeaWmVPUtTp2lmKTvRxte62XLIdr6cVvf4tikC+lqQXItLiCc4Y+/2G+/cMDDc5boHvJSBB0DtiQHcjgjPcTJ9OOrR+lCziOU4nKr13B3unKKvaaETlEQJlWLWEamTRF7rZCHKEtw6uIbV8GV7F5DN5E0pJ1pHmI1FwUJqmjew/uS9PZp1c5ryoK43m8pUaWjKiQk/EkNtuRuRWIpqxKfBpoEpoCRAJWmfpu1MlikB8w9kbS7JdgrJRXlKfppBVphAeR0qpGeEZ0kBCd+Gz2wa/pj7b9TmdURjey6N8yjgz+NsaKZ3uvX/8U6ZdzwlgxbdYxKXwig0HiREBZM8F3lacGuPtKo0LrkFOkYaCRo9J3jqYbv/vLX6bV6ywS9kREnMWWgkZh6mdERQhEPsYlnEIohmAnCo1wF7emRJnRoDBxFdEtArtYBTx69HB6ktTOJYsXxVGCo3D+4ggmFH9OmOZWRUSCwjecd/rNKY4cfpybTGugQcHhcUcWiPsKjCdsxJU4VEFKFxolMrIrU5KhCsM5GfGMlaVQlhhC3K9ilZ6s9u4RlM0trenTo0fSTJSmisd9ngafNOakC+lGeObGptLSsPB7jX5XSTQOLQxmf9KPcMuKQTZgDJ0OR8CMhlUUI3PbhaekiDudC50pjR+FvQa1dKnAdi5uo7AfYSG87NttHH5ubW9LJxHc7e2tYfBuZEtPzXxSUwk0DJDulk+aexawwfiBNh1/KAPaE0ie86081FlU5Y9mq5IK1td1aMq9jKdwXPIx/vMJNhhwuAnMdhKU+V8//0XQSCn/FpIcU03RwUrqNExlGwW55igmzlUHdvKecvchDK3itENOogtaixUqvpIHhKfjGYljPjzmijAGVwYaGq70pzOX+1kdS6ktek3pz7/yfFqHUeypADNmFkWKuA6nRqmwaWykUjsrpHcQ4jWsYFbPz47js2iWc5c3VKziSXoIZxea0yAV1ho+8oOp6fJrlpLpigdHKdLmURTage2705LqxWnpAipLY6jkk0r4aBQ0bXlyaheY+nfzDnsCoY8iHI882v7MGg3/5f9KwxoupxmVhWkueC8E/yPoz+Mvh6NshYdzwCwDftk4DDT0M9ZLjPs8x1devMjZ4XQzlYyFEdDqhUvQJ3CtXDQf/I1JpztaOBp0IM0uZfVtCsUKx8AbpIvkcY/zfQScrrOK1n51IDVc6k5d3WQiEOv1enHlmrSSjIZVqwjkEGjw5AJp1dUuDVH5fjwrXMprjyrVUcwCVkCMMVof412MlZraBVE0yZUe003FjXwNykOmBZyhRbOXTAtVRionzGJQWevYuNomPQqPm0RWLnVTUOqzTzFy96WXWBVZhzMtn4pP5aiBBR1S5VLQg4EGLp+XR315SYsaWL4rl3W2PXVCY+UYstJUz5fYRuVxf45TY0VZEPfzt3RtsEVYCBfvkUZCT9k+sPFz0DbvN+Gn9nPtcexcK7K+CENuw/oNUURUQeXz1l9RzuQcK3ldOeB3Gky5PbuOV/34SDrhxaCi6N4JakC0NjaFY2ABVLc3TAL26g1lozI2dAlzMaNBmeO2QgvaKoPM1tExcxUoeJOBubrnvNsY++FDFJ7t6oz71q5akxYvWBD6QBktXIS/hqx4FMnO3e99CXf/U15Hxh0wEhWZoX07fXaco6l37Qw+rqisjEB+EdmI4tZL+a7Bp2wNHuc7eVe8q3NNq1Y/CSsrxsMNYQzrQPTBBx/v2JEO7t+b6thSWcfxreWzSfUmU8tCXrYdMpcxS3MgNYrhOmZhBpWwN56xM15hoat09xEwAvRu6elg+91vfvPbqNGwfv36cIqsPZGT3eo4DU3HK+3bhrShPFZ/CB8d+HBu4E2vyPpBJjjnsw2N6aOPPqSmy+zQH55IZcaEdodt2nZkrNCOvC3wA9rCnJf9hVOBfAznjN+lA3lE3B86+mnaC+yf3LiRVfOlgV/pQTgLA3WttkrYZnwXgQa+D37zHuZngFEnWn4IOmUUyoqLFHL+ZOcu3i+kl1kkqK2ez9jgOeSadKyc5TEuR5zBRpxLr/ap7nMczgFAEQxGVyJ7+mi7Db19+qS1CDgxqqo6KwZZNCvwGavQwEY+gXliHiFTaFt7z+DgTbIKXZGMvfvQjzhwOeQ2NufJxsb0E4pz/4AAz2SyF67fhZ64XqzipInigjSDFctxHNH8kKzA26w+erLaGAL7wsAxM2B4E6cRZeejD5HrEUQSVtIxY9LZMUgoD9/kpu6bZDRcvpQONqfYOjGNKV/h2Veeeiz9xb/+C/acL8GSHkXQlqDkbfiBQLHwNovW+SgvCqx5wncngMu+3bs5JeZiBBqe3ryZo13LyXyguj62UTjJ0o9wZ8zBo4xNOQhRITfY+w5tu01WOjG7jEETtJ7GcbH9sR1m/57dFFSckRYuXETNlsXRt1stXOSR5gW9dlTYx+DQPtQPQdvImJDFfKdN4G/yknqgvbMjikG2tTTFKWkL4dkqArP56OHbLKAYzLFNacJgiTo7s62hD74PGceYhUcmLzKZoW0tXR0/dTL97Vtvx9HCj2OPzYavPCXHNuK0MZ4LO8g+mLM85m8MOOYkvOVf6VJYS2vhSzAei/7uIgCz/aOP0ks4u8vIyDATwgfVRwEDxusXBk2VkW7hFcYG+ByvOJD2/aw8UmfKHerFC2R7mCHUSybul8gWrCovC/4R1s7NOasrhIE6V3tPOW9bOR3ob+onbZ6w//msfvNkGDNB38dumk4w7UWys2aBXxfTxhBkyCfL9BGLVuFv8MzI8djWBFsNAMpbyuKwyYGJWULKY2W9eLJ4a/fV3qjftJtAzDr8kI28Juoj8Nxo+MOtEcLRmg9uyeDE1/BpbEP6NkNKf8asX2WF81DfmEVzlSybLuTwCYJIbp3YQtDUE3Sco/dFwB48iksfDlkGrGILBn1mdDKUXTJ0j+POw/e7zfzPtjSTcXAmTqUqLJgep05UlpaFbpBfgq6Vw/C2L2kytjYqy+yHOYavie0ubORdEadteQ3f9WxTYzrZUJ8u9lxOXVcu4292p1f+7F+kL0NDBdP/KdAAur94hcaILzK14Uc/ZdHjFoS3lWpbGxrSPVJdF6Pw5yP8xgFsWBBkZZFByAFlDl9jIxrtdXVCApFYNPAUrlaB9uxsz3Y1ndcCN4cp6rf/0H5ODZgU0f8qDBaJIsYQxKASoC0Iz8vsAQWFf2fEmAlcCUxGdDYarhq7V4iY7SAlqhliqCF6O5eCWB5bM5H97ApTx2+gQcb2QZna/8LQlMlpy3QlCdBLh3cUTKp4MCLX3MpxfB98EErQfWOeOuERWQoNmUFB4ryjXebi958bjhK2KkPmp02Fh8aTEXvTxRRUVtp1H+ZC9gYvI0o8ga0T4aTzjMzq+LJXhrlgRPqQwZ2TgQ2DC7n0SFcBHI8rB1cxNA3yHD9xLG3A2a2rrYmiPjKvq7+uFmZGCuOnHxkMwMdccnAPYwJ8ZINgDNyTC664KnKYPfFGap8mCjpbYwKYyNwKby8Vm5fGgs8qlMNQ5G+jin4WLhpQGsLusVOg62x2IJiOUsOimADGalbJo6gRbSm0HY+w1hHWiHC8IfQQPuLEOYYiUljRl0JdmnF13VXG5ubmyFa5fuN6Wk3a6xIUss/k9v0Lj2ifuTsujUYbVmkEzdOOglbFqtNh/9KnAtliWJ5m0dF5Hidz2NCpE+U8h+APmjGSP5SKbXvAKNoXbkzMNkdiVLtq7ot/Iuhk/Yp+8OZxPr5GkKKZj6M8lTQ6he7+w0fSG++8y8hTKsMPKOBVPXdSqiqamqaNxSy/h1P58C6p9sDQnvCAPZrxES/pP4qWgpNRBDY0FO6gvJyTJ0aMYAyPbok7hgM8ezHAGsnxP8tKD/5wahdgXK8/g1FMQMtjtWZBD7nV2QxXwwlOnU/7WPV2BUReLZ1TGtuoJrHnTvi7SiP+czgM2AMX6TQz+KErYKrDJX/4WZqVe6XpE6dOp4M79qQFZTVpIXLM1Zx8UqkfUjXpPuH/4ax4PSTod4OUQ2FWCC+PAXcNGPXHf/TdNKKlJ80snprKkC2zkH9WNldK6IpIyU5TCWT1cv+CKtIN8HcRg89AQzcWaN8d9oUWQj8cBXoNI/UBCzbTZ5aBw1GplZXnO+PupXIMkQnjMNDIMhkGTjyHfTQywuyNG6yKtfSg5C71sO+WWhhkQHhtemxJWkLwZDHwrZhXGUfxhewKZZ852dKO44tsGGCUGdFsO4HXPVr0k23byAZYgEJeG/LZk318RmNK/hT+ofTpT76UxoW1dC2slZvel/Ft5sC7immKpMUm1SObNj6dVuIYuT3MSxmgkvc5lXtOhgVugX3IY3mal7/Lrzle8rSIKwRMu7ouxBFZ99ATz2wmPRId4pg0xGyXf7JxQ6DSjsZDZnBiTHCftGLgVrmUy5jw3dTgtvb2kAddnR1pTnl5HIU4i4w7HbkIZEJ/EQzU+RoiOdvXeVQe2Hdcjl9ZiZyRf4SRe1Q9RreDPpRP8wmQLGQbladOePmdss42xEMWlMkcc7M1hINGj3pPvAitTH5mhuJ5VtCOo1+7Mebc0vcEiwR1OI0GMK+RESNPGRh1mMJbWDlc28vaRHYxKfvxFcBjXOJI/eDe108JZGh8z5lbGjWQzGgQxso85x9GJf1lq+niDmeUZz02N28kBrkw8X46vmtWA92Y8m3K7j5OVjh58hiZjrXYHBXUaCiKrRMagDnYizfTtzWcLQDm/MegL7QxXNEzY9G+1ZYPEW5RB4L+OnHmdmD83wOOFpcrYWuJR5PqqOV0dgR6eZZHMxkj7qAh6VV6DIOf98Cwk47PWWaD9TG2bd+WioqL0woCSAXTpuHM4xhDY9oun/OJsAUGmY6CT/k7eIC2bC93hbMDjgxuSZfHcEqPwk+m13scnzVZ5A1lqeOxDx0t2xW2Zpva9j34TdslUsoZi3A0s+GLGQ0eH30I3dp7pTc9jW1QUVaWwY/hOGd5/fO2aUs8a6/Yt3xnAEM97JjVCYEj6Eya1S5obW5JJ8iGKcIh2vjkU5FZptPmvM1aNKBhdpL0LD503HSAnPsANqjbbSzoPZyggHRrFppbbhra29Lbv/1N+hm1oUZDR4MKfq4vk5BRVzQjFYyhfRbPhtN+Vrw343ltBO1UJCK2KzDCMuSu+AzQmB2/KCNsTLQANwMN/dRo6OVIpXaCnQcb7kYxSELiIfefX788vUqQZvGCWugJ247g9QMCAB7NqXqIthi7sFMWanu0tLamMywU9ACjKQSmVq9dix6cjd1BQWn0l3AImas9zLMhq2gr5DJ4NnvKrbFBA/yuAy4IJk6bGkGe/WwBPE5Wn1sd5s+bH9nD6sDMPjT4rAzLxpdzfsWJL4NifQNkJjDv2IoIPUUGG78pQwzcbSWDtQena8HCuqj/EAVQGfMDF2aAmXJCmo5AlbAMuQW/QEPSqXNSJrmaH7KDeSofxMBZ/JCPyQrQN7AWjIuRFqHkp6A5g6vaAI7JlH95weCXfGDgRXmvDM0gr1aBrZ0r47E2yiG2ge0nyLOGY+oXkhFn9rDy1vvjbnmIe4WFMNAmc8zKRdsSB1655wzyS++PQLa29gF4tRfb0gKfpSWzoy3HFPClDecYQUxkmAJH28i21QHCJeQCMHdeztnAj/ayeug8tvCu3XviCNknoRlrNGj75kF3LFkCIO7lvvvYjaQCxWKKMsGLKSl8ow/9IeVTBD7pW3v3MsGAptbmdOrkKXyEuihuOh7eewRM86A1A0HCwoxSA7lmjXl6gza79qx1/AwyRKCQ+xyH8s7rCguGLhLU41uqx93eXldTHb+HfHeM/K/OEBYOVfkrPFRU4ld/KBcwsG0fsTC6tlcu0HAZmpw+bXp6fOmyOLnI7aT6rdK9csf21B8ulhukEtb2K+zlVenATEjhE/8xfosVN7S0pLNkJl9m21fvwA1qZl1Jr33nOwQavkLdmX8KNIjjuIAh8Pzif9Kw6ERRIeY96qi9WaVwNJ0ms6GDz7NxXMpx7qa6WqpSQOm6ohURIdqy8IwRbKP+GnoiUaGVx4qdxXCiMAyEPQHDR2V1CiI7+tkRDKbRqYh2y8vKQilLMRKVCLcNCc92XBXw3f23EpbCIwiXYRuAUPiqDGXU66SLuV/9XEszkeGKNKt4VlSTVUDFc8zVQIPCyCsI1vFCSBovcqFjlBgVXu6jUsh66bh4fu1+IvMeA7R4ESukCHAr2jp2HW6VuQxmu656K0gcu4QcQgSF597REIrAzJUq9+2pRF0x1PjfizE0t6ycVe/5UURFha7xF8a5A6E9MagQ1KlXeMWqAkrD0ytcqTBabSpVRCsRJApIVxpNK6pvOBOV5uP4SeAmrMWnCtyaEMLRAIF4ti/nJkw0lD4XkswnhKRRTebgZ4uNncG5cK6u0hVOLwiFIE4dK41FG7bp3zQXBqFzky6Fj3gUDxrTzskIaDia3O8+Uk+GKJkzJy0j3co9sBo5ITQYXw720rOC0JUaVx9VZDpOdqhSUiB/vsrDdwo/941dQHirKBYvXx5nzzvfGzheCr0Q9owxM8xzsM+Me/twjCocX87XsTsG6VW6vUaK1aXuS9DU3TSvuibNLimBHjGWmXgWrTV1LlvtC4XGs7HyRN/hcEDj9M79OIm0rTJzT73VnBuamuOoQg2msZOmUKOhKJxgiyl9sH0nz6VUBmlPQ+fWzJ5IoGFaVqPhPqmkOLWYUKgmhTq8SlBQFrQCuPtrh40isDAeo4g2+ggsSMvjPc6Wex5yVJ2BCQaeBRqu3k5neq6RNs85z0p9rs0Y3DVVVamsvDQVzkAZMg+VPNMKHPR09wTN3OW7AgyKGcgaecrUbOlYGSB8pQ1x5oqNjpjGqcX7NMQ0ao2ua5hJR5mC1iClOBABpE/3Hkrls8ooTlqRpiDD8saRfUKg4Z6BhnwAg0N/E5jeIno9mXbHEGjswKG68P7P02SiBHMmF6ZS+pmFUTOBcbjVBM6Iwo/SA39GBoIYshjkDXDXjWPUeetm6u1newz2yBitUQIaAyjr+yi2/AmFOECc1oGxNnzm+FRVVQpcOQ4Ow+7BIPKAOY3i/mH0e+MuJwEB19MXr6WbbJvoJAPe3RPLKis4UaAqsrZmFVORG96VxxhOGBIa/8ohXzBoGKPSUvAGMFThf4ZzUUkWyXL4ye0sNyjcJpytGaAhLP06P4OlcmmkXkqHdBF8yviUk64QGbjzWXnMzIBmlPIZtvUsXbYCZ7c6cGo74m/ANEzkljog57zpVORkTgQm6VdcOmbflWE+66kLngjR3tYWAe4nTKtltcvfg++YrzIhcyaQXcgy6VY5Lh/bRhimtKvcD1lEX9KYBr6yoL29jROMegg0VKZl0PBU6v84ZrNCXH2RcXWes+1M8igGGDJLwFhPIAu8ZFlHrt7JP8pXAzDtBBkMBDje2SVzUllpKQGwKSF3zbq4grPnmCYi3zTexGjoQ+4PepN5uMSB/URf0grj7yZlt7GxMQxcs6SWLKLuSVlZwOAafatLcin3BgRsN2DFs/apLHZccYl4Lr8XV+Knnay1BoKa0rqZZZVVlcGzPuPvscpNW/K4OsVgqDA3UOCKm8EAHYlc8Dy2XaIPdRj6CCKdRH+Y+VVeXpHmFpekGVM5OYB5PACH4aw7Hp4XLlmgAb3FmN1+5qlY7IjCic4CaZ5gYH0MNEQY6FY5Pw496rTW1ZlCPiXmpcOt7pBGNDSDZ+hHvarukNojsMbv0otwUx8GXPg94AYctQ327t1D5tbMZIq6Wyp1Av3dsfseOg4eUA5KqwZvzFoJOUaf4vdznHC//Cy/mvmnLDuL/jZN3cCa9oK847i9tIUcqzJSW2G0vwN7T6yQj60LYGap+lp8yFcZHXNkKo6Rxv9NdPhS9F8RQWHhqoOdh7y3H2v1ZDya0Ydwky7U/cLMUeTGHzUahmSBKceXOCrW7UJmt5pJaWBNWI/BdjTb1JXWSwThlDGTgxfQjcgfdaOZPlbIH0fmn5dZhiAnjdLZpXjlR9hL7+3eG7/l/vkKSTwLZs1MUw3Y3iOl3MExl9wYdSYYLf0ZMMa5o/17vB4AQ24M/RQnLwV/+RXyh3v72RJxhROAzl25ng419KUrtKMLNRWRsGjJIrYqrUnlHOOsjZFtm+AG2oBo7C76twd/V7dZe+oCwUFXvl2VrQM2HqXrCW5hfw7Jx5ydIz1KQ8I8+IF38e8Ck3MT19byslC0QTgLaDeDV7fFWaehlGC+OjA3ptyiRiwAMU7bMrBhhq70qW1kJt70wulBSwZ6dVi9pxv5eIiFJbfrVc2j6Dp6W9vXxS2LwEsf2pJOXNoRhsoC56JTnuMhec+ARGZPEnxiDFoj5853RGDNdisrKuNUL9sLfUFb2oghNwb6Y3+/tpeF45UzQd/wmfoox0/CTR6URrUNzwCXk2TdzSeoWV5eHjCSp3L3e68vrxzv+jnjgczutH3pV7x40pIFDdWLLpCdPnsmtsQsWFAXR3RG4IP71RV+FgfSuPxt+xGUof1sa55bFbmPVy5bI+QFutbxmbmtLHP+C+oWRDDGhdwx+FvDWZiQ3iC3COIabDBzzOCO/Bpb++hbvegYDLJq4zKI1A9+LcrbRWaTdFnCdteK0rIo0ClOzSoai1/nGCz+r/zOBRrULQZf7iFf9EPc4udcLHrsb/oqkdFAu+fRI9LqEmRNeVlp4ES4qsukwZi7soV+pAuxYDDf75WdIRu4P4415vep+BpuU2861x7+pfUeplGjoZYFLutXRKABGexx3/ZDFwE7cSUMvbR3xIWwU+daJ8ygSvAb33nCVRu2gfUxbkBzFoPs6mxO//b//I/p5VdfSTOHAg1CfsgKi3b/EP/BdgIT/4DLh62OLpOHg4fElUlQqfzHygM10y1UtXfHznTk0OF0ZO/+NBLjpxjnTkZWAKlUNAg9issItHvR80hH1pAy0OBROTq5IUBA1DCiayOwCiJyTb+tRMt2N7XELGrYWFdau5S0XyrhotjCKHaQTFPjRabUQFQp6rhHgAMGMQ1KatG48uUcTInvxxg8wtjbaKKCV3HtPKJdUyNVXiaTYGPrBISjsNc4DuHN8xKUzKhS1uG0ErUGgGliXgYSTC3cc7oBWKW0lrPrVYrOM1Zx+F1DWgMv+mH8OeFi217WaXDFT+dIx1LGlPgNpuhYnYNRdtL+HO6tW/ZYlnEAcwnbXKDB+ToXhZCCV9gohDR87U9GNdAgwzs2xyRsxUvjEVaMAN1qHJsioqy2I0nJfL4rvBUK9uGYfdYr2qcPV0a8Yn+ZCoQ525fM2Q8jflrfHEboasZuZeJYWQrGDZTG8z6bGUkYi/yn4pFuXI0V9aHoDGgBP4scqRQUOL2kKx7jCEVhs3jtqgj2OB5/U0CIT8cujQoTvw8Dl3bonTmaOofTwZy9L5wZ4GKxqo7GM6n5BlXruXPDguo0p7Qs4KEwlM40BsWB9GlgyYwIhR4/xf7Zmzpo9GtWjVcEsrhXY8IUtmukWHV0dKfr/LaktpzicsUIfFYmMW68R0XvZ8etse67CoAOM+Gt0y9R8fcgNCTc3CrhmFpbmtLexnN2m+ZMHJHK4SfH4upmQ4ucwPc0VUg8rGbOZAINbp2A28loGMHWCcwW+F/VrlFt2MGAOMEn+vT8ZVcvhOCAhYb4L98CQwxmOE6zIYoH4PMye1frewcoBnmTs4U56tTtgTwzd1oBFfsLqAXCloXx46CrLNVWGhVfV3Gqjh89HitD87h/ZhXFqqZlKxfiUbo0ECctyou++6x7PKUTx5kLcGrMhEEArrxP+jl3ri0dbTqXymm7Yt5CsqgmhnF7n20Tg6TUDifaD3LTHe5V0UxBxuXzbG9XRxrJtouFBWPSvMlFaRbPTwcwExi/1cixN7NAAxDAdEHBMx/wcx8eGkDx9ZD9cQm+vnoHeLD1wb2Mrn9wOAeBBgIP4yfFClrHuWtp5NzEyvB8DECOYn0IjB/iJEDXRuDvkVPcA/034lgfA8WgIJHUQI+eTJHHkY3TUwGrGZNIKc2O5qJxftSBkWflLTOdPCbVvZjBF/ytLO1qb0tHurrTfMa2dOPG+E2nQJkgHYfhB39rALnyK0xDztGmWQGu0hvktR8NRw1AnXD5WFnTevZ4arxxLy2YPC7Nq0OWgX8dTB0Hcer99qNekJdguJD5jlnHQ/mvTPI+eVbeUza797gH/HzWTcSFa/PyJVH40H6Vgcoc741nh4wTaUmZI/0Z+NNgzsk4YSlzOW+DyV3nOYu7laAjX5fh2yx6nNRReC0MQPpQbogb/3Yl0cwBgwzCVrj0keptoFr5PozvIFgCIk6PbSU4cuea6tPZHst5IuMLJqfSeTVZEAY+UudcJyAgjVtJ26CAMl66lp6VX/JELuATgQYQLnzEj45B/eFPU1e0ntJ6dJTBDJ1vTyQJHKEnvRhO4DYnC21LPAobacj2IO645FVl7IXOjnS4qTXkwXzkSdni7Fg4Za3jU5c6VmW291ukS32ojIuANLrbAJh6Vx14DzgqRUxN10E+ffxwarp6J80lLjy3spbtRFPJpESmQr8+J3yFp/JNA1F8Ok7nj0ETK6nqvagwzvBHIrvcAibMensvp50nG2I+T9VWEQhgvzfzUx+FLOcPx+yUbVO4K+e9Qj/xmzTpPKUx+xSe0o0Au0jwaPuJM8nclOVLF0IzbtdUCjI06EaYChvhrZ61H+nU7/gn2nWc0o76wDFk+lk9dje11p9OJ9hCtXLOrFRaXhl952jXtmzHl3iUti0W7PgM+hgIz2wBFiXgfZ2MMNrhD+fcD22cZltMB+2sr56XCmfOCl4PWDNW56qcVUaKY5/VkfSSJ8Wtc5TG7dsXzBH4su7LFeTXkbaONJf7H1tGdhM2lfgW7+NdMOBZV8atk1JA1oMnzBgM0L4wy0p4GEySzsTFCPrOIwDu9oD6xvrUwDHE4fHjY6GS0ldqRqfamQTUiTCMxiGKcBFzFU5xOU4QoguDFoggQwQafFg48pun9uiAxVykf75368Tl/kEyGqhA39yXrtJfrs250/NT7YLFsfKe8Qu0Apy18Rx/yCTgJ+Npp8nDHpl3ua2J46FJyWdgC5YvjROTtPWUgcpL+1cmOha3Bwt38SBPWVhSmSBuHbW4UEZ7XKzBivrTx1ND9/UkFdeWzcbmmxPOuI6a43BMPPD5mJST2pXyp7b2FTJdtDXcimHQSflo++piTxbaffAwB2SntGIe9U60hXk+MpBpO0vJz+S6drXH+7odVRQ5TgMU9iGNyw90g86R//iPzxc6zqc9jS2phPur62qZO9m90Ecml5QB2APQojLLl6dJ6CtIz+q3R8gD7V55VroJOQEsXcG3+GUzdHO481JaMGFMmjt/QbadljbFp3Tsc14hM4GJMl68ihv1q3a7sJF+5QnrqNzCARV+nthy6lAmh1dXzU3Tp89A3hlg1T7PbBjbVs77n/jLZA1FG+FVdarjFffyXuhd8K3sEVCe9LEDP8HrqYXzCfIUhD2pn2XhX3Eai7Bko1oQV140MOu8xHtsWwQH4j8CDfRhX+L3OoUsL3a2pMbeO2nRrKmptKwqxqf8tRCkMk27O2wLbS14WN/LeavbB7DZpQPnI/+K52z7x4ioc3Cp81w63tkTizXraipZOJwb43LOIT+ASSb7DHiRKQFsA+eMO3Qgdry4Ec/3gLNTGkewx4yjTjJEjx07GcWyiyG9mkXLIqDs86E/ghexE4GbQQZPOwpZTJ/Ox0UtZZk6Xt8n+lZGAicLz5uJeOJSV2RPBPD55y//619SQPdbqahAK1HsKFtyUiG++oP75x8l0CDT+wrHCY6OjAAAyzolQuARkb5TadsHH6YD+/al/Tt3p1GsqHnGbzjFEFJE5xF67sFTaBw4eYan/u6qKi2J4o4hCGEaAw3DELSmJRodnTCZo04QmCorx+AqWuaoGfXCMOOKaC2/XSdy14QSzF26/DXl5bHS7577cE65T0E+CEFbVGuqRZggUAlXgRbZCQgGx+84JTCp09WpboRZB/P74lU+bVKaVjgzjGAJX+JTsDvefOZspV4JXQUegp3+JWQNlhAI9OPcTSE6cwEF+IWruoBCfChx6DqYUGJ2zpGBgHCchtNggSrHnilYDDOeV1AaSfY/jRwFWi9OwuUvtK2BU8g+7wkEbTR+Ha8Bn7uuNiJIFAYef6SDdofxKQxDmNKuQiYMFd4VDj0d51I7xzh98VpYNDNNIrqs4PVMecc8YeLkENAqF+ehglKJRVCIvgPmtK8QUimYzulet/PNzX9v7EXslZ+BwLECtXO1ArusapBHQRCMz7hV0OJEgyyyLngXJiHAoWHn4Epk/f8P7os51nAChnukeiKIbxOQiv3PGvL0KU2EMKLtEI7QuSuzBuMU9NncDNg8wkFrT20YP7mLrPhUvXhRCBeNJwWgjoh9KZRtW8fYvZ6OT5pxX55zCDr3ScbuPBV2Fri6m2uc93k4x4WsHnqEogaQRrb0Y2BHo3IKEVvxqtN9GyHpcWK9rN7187kPupdHVdYsnKfqOdRomDWFrRMYx/coLmdWg3N0DI8cX6ZwdJiNWFtPwLHrVN6F5vk6FLXmM2UOgA00z3gu40GfuHgjfXbhBnSFkz2AXOGe/FETogDmpAlke7B6hRBg72o/igtewnnVoAyDAWGu0gsZA10NINRvobDGcI/ZSM5XJ7KjqTF10m7ums2HkpqawI8yTXjKqxaGVLkZvbfy9yOc/UeMkdlpOyM3oB8c+gcUMlEq3EEOXgPn7jvNXY/z4emy8alu8sw0k4kXML7IaKABedFgA/H2wMlo2nQlRmV+B4C7feIqwYab4LifgM7/x95ZgNtVXYt6JDlxN4gRD8EtWViLAwAAQABJREFUhEJCcHcrBYoVqdwK1pZe2lKh99aF2xZa3LVQ3JOUhECgwZIAIS4n7sT9/f9Ye50c0lDve1/v91ayzt57yZxjjjl8jjnn+o3ICuDynobZOvCylOyWKXORFW0j+vRlNwycsjpkWmBWsEgntIG8XI3snA8eJsxfHm9P4z3e9X1dmyZsUdqUqL0G6Hr6cdqczTRpf3cimNUYOSDf6dAJW/I5z2uEaLTq/GvsmbqrDG0Cv8lPjiQ6kqIMWYHjPHPa1JhNmeWxPQvvNkVOWXY6fXym8QHMOn/KwqbISoNyyjJ3pVGB28fym7TuTirLlizNNNAiZFCULm3tQoaCz8kXGtL2qzzoe9KLnzqCHkuRRYsXOPKGfOCefCzPmo4rj80Y/35Mpy/KQ4O+T49uyCSe1QDjtzJHvnf+sfupa1QqG8WN8+MNnCirlTPiUP1iEMBU5dfGvlsWnZ+792IaDDSbzjb4kHjToATnjvKId/GqLJCmXYAyF2ejj6RZgy/Wo5E8p7o6xjPlofax23Zdknfsz8LN0Sg2sFKs7p26FVjtx5XIuQ+YTmh7HChQd+iAiCP5ZAqyhplONYcTGLtvXzEskw5wksCDgXB51amE9q+wl6Nx4q044STwaNmNoCuNwpHjxtWU7ZddunTObUbtF+VkpvdDZ5pn9l/D1E8V54Rn3Ip0HWvZ6PSJkyr7hWeVofNmV0f1itqSEketc6dcBNNnpRn3hRd+6cVAXA4a0OFpUEKXHt5XXyvby/d07KdUz8zAcD7Enz5kQrXtDF1iQPusMKwkiKycFz9N4AnlsH3hKJ460EB32TZ5QtpZxvS8GTNmRu1e1a7pgFPQDCe7GUEtF99UF6hjXWPFd9OYB0fyUdILMCiXy8M+0VFTd06btyCznsp7PTu0yzWD5EfTmnWYdFI11P2uU9AM+K1HR8fssCzPdjqgRL+anWK/jR834UNlt6CSXn16pR1g36fzy3M0Fl7VQWNaKHCnQ0M5NCz7Xo7MbChkQxXOUAvWLZCfRr7zXgl2fkrvuYMT/SYPSoP2lzzpOjwLF81n8V3kMKYjJC2646SdGsaOtLlNfQa4agIN0C2384RXMuOJX0rwMqPBrECfkI5BZsoH6dLRUgMNi8lmmMWCvlMXMqgyZWUs4TFtk5boaNtuOnjtw37dYcftU3YhBbI8oTAQpsxRhhXOfWH3mrmyAppXSSkzKB5witFubYs33xtfu/jYviPTQ5hSkOn20LF9ZvvkPdctcltBda007sCg8kAdm7Ro+b5DH2u/uavA2PnzP1T+AYzGu/ijNnpBA8UCpPJuDggpE2i3QWlpw0CpdelMyyPaJwkQf6aRcj7fFZcrR3sWIurZl2km1C2vlCPXwm+ZLbDXUmZRl/aSekR7X3zotFuPTr+HOmLM5Gn5vfzTl8BHa3BjsEZZKL49lTY6kGkLQ5/akdZv+7yvHpSIlMPyq0Hx+VOxh627crCEek71NKvUqc8GLtKOxMazHHWVcl4bUxngwp5mxFm+/O19aVgdsRJ+nYSMLiXZtpTduet2KbOsv7Sh1ce2RbpwjTFlmThejgwyEw6ihZeRofS7aFcmL1iALYwPVftQ/3Xt0gndXwzg6oAbJLRP69Nmp7FZl4U4SGE2mffsH5+VyQwS2w9mSU9iGiO11xz77tBXhZqLG+faWciWpEueN8NKmSCM9nsGJuD/nM5ICbbNvvee9DT9/QlR24MS772RNQYyfC55hLpyEACeaY5N4hpxyk5Pp9FpR4nD5DnaZNnqAvnhlXff/VDQYC+yRA1uGxxZT4arC5rWwyZWBmjH2x4KSP/ZtaLehKb/+4f/Hed96vzo1L4MNFRIvgYj/35f/imBBlm9OGU/jEqMbhm4CRFjHY53iZwPZm7UW6OYszdrdvTt1jP3nDb9JNOSKgzvCKUjNWMwJm544KHE5m69usQxLH7SgxQtAwtrWOxuPSnWLk5Sju7DDUlwuXo2hGUkUIbTeFMASuBJKNRjOpIr6j8JLH2oof+BB8VuOHXtcXgNNGg4KcxkBAWRDm0u/MinjqKCSObO8hSqlKGhqoDVUJiJgf0yOwK8NnFS7APz9SXl0UVnFN4So2LbVFsDCBKopwRu3SkcKVsmUnDoSAJKCpB0JlEYUwhkPP/k04RwGDXsTxo55XdBcVqOgsB3Fcp+lxmEvRWRWZnMQEaOTvCM9ev0+ttIt6NyLu44fuLEGMWI8J677pTplC76Y0qoi+mZtileXfiHIlJo+n4ufgIOjA6nMqAN4tHv6QCAS9OmxmOgv/bSyBSAhx95WK7S7cKa9pNpuLZf592RQvvWtiiMxLeIEMca0pYrzmVW69Q4GD9hQrz56sh4bc682Kdvn9iX9GS3OM05eOBK417lYX9anwa4fWd/ii+vWY9GkEc69DwrHM6DfpP5dy8QJDOD4NSDD47+u+0WrcGrgkknSkPQPlCZJGx8V0FYvvB6SD+OkmffUp8K23tTSJ16iZXRX6pkC3z29I/Hzn0wznmmUOiOYjh3DCEFrQi7wrUYHSl4T2M0o+KJH2VXVQaHfP8d+Omxhx4MHbu9u3Rh1fsj4b/OhfGD6WG6ubgw28IF1Zo2N9JPCjs0uQRemskiCZNRjNWkq44Bzx6dOTswA2iHbu2jV2UxyDqk6Ndle8sMNNBlqAHwUzhTBhzXIBfgrnQmAbBQ7gjetQpg6nJMrj7prPVReAYa/jhtQbw4eQGCPXCys1q2qNs9evRg2kJ3RlPIbNCJXoZj2AA6KBQdxjePiid5reRjlbc8IU41NnzGkSz3Sb7vgfszSHUIAcd9Bg3KqVc5AsP95HNoWUfO0/mxGwl81FvLqAGLybhNUwOCEBuYgrKeXSc2MOK1llzqpfTzHHDnvNCnn3s+gR/A3/22rRM7t+kSXWl/B+SWgYaGAAMa0uFJ/gRXZjOoe8WiYzIrGU1ZQd0rwZP7O3tPXK6CxpbQ94uBZeaKRTGeaSYGC7tuz7zalh3IIGG0iOBHQ4JK7m7BX0bRyBAh22bqYrNK2EqNU8W+W+/uxa46ZIs0bsJiRTjtjz3zeOzQplsMYiHZzqwr0LQJgQZgty+V1RrFIlPa1LnQWZaPHSHR8cxRf/kYmKV7eXYhTvz498fF2FHsIsEI3HEfK+b9u+Vh6fhbrjJEuZX8Tx0aAznqSV2m6CoPdE6t175RrppNZJqm6wK9NXZsBlLcenB7AttOT5P/5QnPDIjDJ/KtsEkbcuoyjB1lZSGDCwdeGe19M9PehwdGDh0cr7Mdyi4dtomB++/PNqdkFFXgUDgqX5XZvude7RqiBhmkOdtj/RqGyjjbXMxBZRszDPBX0B+/e2EIkEQcM3BAHADunfqznGCZOBEuDUaB9btGVikvxZfGlo6C/WLblGV+Wlc1o+RD//AHMpbGR0/KH3DEESnnHRFOh79SrvALp8a/8kZ+8nBEVQNLJ8+6y763fJ2R8ZMnx/333pvG3B4tm8f+7Dves3v3QkdSXsrDCl3Yb/KnPJaBX8oQXzplGrrSESDnPZ1iF+ocNXpM3MOaRn1aN4p92CVlh959oj2BHMsosmLgC3kD+DNDBviFU1lbl0jKRmTNehxrHX/lQxNknXTgVClT7V9jKt3Q19+MbowdDDqEdYdwXLQNciEveNopPI7Ep1OEw2tqt0cGgWi/eJAX0ojmU5yrd5Q90zGgn3n6qZR3+w/YD2e6d25zalBBfDvtUSPf99N4xsC13cKpPaWeUaerc1KP0S/CrtM2s7o6F3Qb8+bb0aN3T7YeZJ0qBxl0jjh1JKQNHayaTAGRS9llxoN1SuMFbckJxT23a57ByN7bo0fHGzNmxXEH7V/ssIH+c0qUafbSgzgwYCHdSO8OTqhbCrupcOgMZuVgDqXrcMoTE7A53mDnsNenzY49e3YPcdOV7EjT1g1aiBOdN7MVSscIRsg1Olwg0ICsePdMPMp39HvTFs1Sf40ZOyZGsObCePy9oz+2Twzov3d0YFpdA6YaOvIrzTktwGmyU8Dj6yyuOgLZ0YCgwlqjvxwn7FyHXSe6RFum/jUgoKurKXHKFYQRoC30Gv2W/2ikgQbPjck36CH4UedRPrIddeBJp7otZH2G6iUEpMloeGsGgWTKa9y0OTqoW6b2r0CHzAP3cxYujvZUdhxzt3v36J5BHvk6d1uiHOnC08P+k+ZtVw4CwhvqdXGjveQ96Ud972KsDzz1bL536F57hIskdmKqRUHDyF/wrk4SZt8pA5rym7yrEy0V5XU+lTvKNYiAqakLc92CIeC/J/cOOPJIpgfvlkFTpwIIp7ILgk7elS6knaQ87ikHlJMGLgqHkT7mus9rW02jr55gAcMJTJfs171z7Lv/Aam/GkFzytkC54V9l4EA9IdyQNiVLZbtUdqRaQvLq8AvbsZBlw8+83zswo4be/TbO3p0787OL+2zrb6XMhI6TB0l74PXpEHbIM4qv/UjbJcy1msGgueQkfM2TumTr70WA/EPdtp11+jZi6mY8KrweSo7RK40pWwWx9qq3lOeGMATH76jbrT/5RV14PQZ1ewoMziaoMsPxV7twro3ylthlP/Tzqjwv+XL9+pur1uubRLnjfHhmmP7q2ddNHI2MnLSDKcTjI23ps6OQXvuGrsyMON0Au0v6VHeTBgpw7UWzIRSHqsPDSwkz1CeWSb6gE5j0pZ1sGX+EqYCzmSKC+vqjJkyM8474bjY3YEfYDEgKn6lQ+2z1BV2BPf0ldQhmY1KPRkoF2/c87my3ydPnhIjsbVHzp7H9N+qOIkdPFzc0SxLn5Xehd0yDQbmjmS8r5zS5nCrVTM59VvVg6We1bczmPr2O2PjUWQNplUc0m/POBzcdwQ32p85ME7rzcyRd2lM4ns19a1A/8xkKvTvbrkxPv+jH8Q5553LOhlFoMEm/rsf/3CgQQRInPxPAeBv543b4U0hMMiBRbbeiaEY2+8zv6sO6dH9d9s9F2ZSMJuWmIoPojDCvRYmeIWF067+/g8z1fSEQw+IU089JXbcfnsiYQiIFezdKrFieFOx1aXAytGyVJIsMgdRyCh2qITpIaPLsgq/oWRW/M89d0d/YDuMDt1/wADmEHZKAlP4KCQkNg1X33evXQWEBpyGkkRYHBAxil7m9XmF1yQW6Xvi+edjyNA/xLHsItGvPyvk77ADqUhtClgA2TI0wmsf1qlgVXj53RFCjUfrlwFKI9otrx5mpesmMOYA4N6T+ZUu/KYBbkQtHXOFn8KNtmhcO8qoQrCMDABQsc5CGUU00OCotQb6G2+PYbuxZ2PQgQczH3fX3Olhm7Zuq4VCFi8wori1w22BasGFO2V8y9Mo8o6KQLgVXhqAU6ZOYQ7YaFbmfTmWIwhOPProFFAdEYA6I67HoPA0u8O2KNgSD9RhmZZlH9our8uoKj+3CF0E7G9hBI0Y8VI8/NKIOPnww+LoQ9gqFAFu2QoahVwaorxrVNioP4VmWyxbQWX5KgV/l6lnKsIZ1dXsJT88nrz91nibCPqXP/WpOATcb4OBm4IffEgbKk4FtvSgYrCPy4BL4oq+TQHPPYWiaX9+vkufPvEYC1ANHZqZAldcdVXsw6rFaYjTh+K77E+xodDUKARMDkrmizhfC3+sRdHTjOxf52Tb5tdeHxW3//gX8ea65XE8q/Wfc8YZsSORVuklI+cKWWBy9MP3Hf1ypK8OhpirfE9mgcUx777Hvu4spgSOPbpwtmeaUt9u7WoCDXXXVQINOEPSiqu6Gr1VMahV1hqAlL6Bty7OucEMF9RaQ/5+Bg4BvEETlBVOlYGG1wg0PDN+IcELRgwLmyCOPPTo2H3X3VmIsXd0Y3EubEEyMZaksVkGqBIlAimNUn72K/0vDTgaJk2KOvnhTWTSb265JcZB++ccelgcdtSRbKtVjIo4GqYcE4eFkYV5Sf9vWguc6xnhpn25YByac8Mm2oZbu4kVxNZVYfzj2M8iuOWuL9f+6lfwCVOjOPcmTWjndp2jO6ONnaBDAw2NAMb70oanfep8XrokaQppgMGIouWhteDIZxrAa+JxFfhcBG/PZR7llOVLYsLMDzJduRUdVB++X7sRZ43wgqMODRGFVQ0IBGyqF/MJlsxGli7Csp3Iaa0HfqxfrpbdmfnULVo2y8DjA26v14AtVA85OHp17Z7zcY3CG+ywLzVkfVejRNqXZg0GLjU7Bljls5QNtFOeVV7OJhg7loXoXCxu+CsvMx/x4zGgX7/MWlNhK5uUV/JOBhOkF3kGmWg9xT/RJGZ0upDz8JH12WfKmjdxGEcMHhzLwOG5554XexGQdbqCxpryQ6fYT//5X7hKWWFQ0nKEvTRA0iimfS5u9cZbb8ezTz0ZT/J5NEGAk9nz2q0Ny3YCGbCoQwpdkQYe5Rfr1JidpNSUbQu5VsibYh2LeeinwUOHxI9uvDlp4j/OPCOOOfzw2JasOqcgSM/qIg+NnNIAdWTWcko9JC7Eo8/a5jTQae+EKVPi0SeeiPvAza6UcfoXv8iq9v3SqZPORQaPZVmgtuawfMty62R1QDpM/BaH0qN1KPPfoF9/c/118RaG9HHIsBNPOSV22XnnlLk17YduUn7zvvrWPi4DDanvqDUNvoqeUb7psCqLho58Ja657rrYu2dnjLgjCCizejy621E+R7OxAhkpxgZRx9IWM0qETTpxTjBR9Tx1kqQnnV2+5LvTkQHPMk3yjkcejSPhhYMGDop+yBqdUhqJHGDUG2OymFKlc6Vx7vpJBAFxTMwAkWbUN+JE9Ek32gU6F26V9tCTT7IWzao4lAWCdwYvbrEn3SnjddCsIxcZ5N3S8bcTxFOBq0KviqfUNXyacj5jxowMrA1+7jmcon7sJb8HZTPAAewGVrUl7F9lYGnjCGeNbkTvZYYi/GtfeMhrOmzy6/hJE+NlnKI3sOU+yXaVuyMjDX65qJu6Eu2fOko9JX1Ii9Zr0N02JW0p0DiT9qnbvnGAwwVBXx05MgY/Dez7D4jjcUi379WrCAwCd2HPSesV/qdsRwaLbcXpZb6bpZG8TekGjVxLw2k285n68zJrYD3z+CMxnOlLBvGPxvjvzACK1op06Kit9CJ9vT95cjw95IV4GB6svRjk8TtVEWjoHK0NNKw30AB/KY+oT12H9OET2uJ7Ln5cCTRs4hkJIdfxIhPCNpiFqwOzgbYZaJjOWkRTFiyOUTMImoP3JkyD24NdfwxwmSFiIP3l1/4YezEF5ewzz2ShQRwv3tVpSxuXMq1X26+GRsCHskHeEd/KO/lBGaV9YnDTAZoXR4yI//qfX9vdcdHJJ8bhhx0WPbbrmjKqDAJKy76jjPTgZ97PfuS3dCIuMjAAjQmH8Dno9syQIezg8Vgc2G6bOPITp8d+BJXNsHX6pzRS7g6mc6/8KOVJSuasqJDxZR22yfd0XN+fOCnu/t1DMRQ9csLAj8URRx+TgQyDtga9lI/l1AnhcY68n7ZLW1PcyEfZJlEFHm2T9vAynOrXsSl/+8tf5ba4A/fdL3Zm7YUuXbqk/SWcwivPyiPKXfkx5SDfMyCMzBTf9okFy+fCbiC7moG34fTpUw8/FIcRjN0Lfu3Th6Apct6+Unek7ZIQgYMKrH4qZwo5Txs4DPZZb+o/5JBZMBOTjofQOXXjRAaW1E8tc9oZwV1poYJb37Es7Rv5Vf9DWab+Vd43xAbUuVYmqOlnzSdA8t67MZI18V4aMiyOOeWkGOQi9qwj4zoKDkbS+KxDnjfDzKkQlpsyAF5lHAa+4eSzCDTAR/SD9DmD3TVGs+bbMAKPQ//4Vnz3S1+Mgay70Fh+oT+FydO+k0bSRqBM5Yx2vVk6ntoLBiU9xJkBYesfM5Z1xp54PH7HFJ39+m4f5591VgYytPN9TrrwOdsr7G5Pa4aS1+S3htYP9OpBM9jFpTTZnOytD5Blw9FPd/7ylzGOes8lSHLqCeyW17kLgQYCW+pNgpAGZfXvpDeAJDOVjHJoaCoBxcfhlQHHHRXnnHNOdCBT/X/L8U8JNGhApIMG4jT6JCoJwJ0PVPAGGoYNHhLTJ0+O5kTpc3tLmErhW8yt1SBCAEKQGnJDWTX+y1/+SqYCXnD6KfGJT3yC1Up3SgVmNkNTlLkGvmn8EoZpTzq5heEobxUKyU6SeArhhFEBMc5buCAefuqp+M+f/Dj25v6Zl13BqsiHsTp9V5S9TpoeTeGAGh30u4LRMs2UMPovU0vYpVOp8pQQNSiMgt754INxN47jF1gx+OBDD4299toz53sVUyZQSJQlrDJ4Mj11yhQSu4yv0eEnwKfhroDy3dyFgXneN95+e2wLTEfiGPXfu19GcRWuCj2N/Ew3Q1AgO7PNGj9ZLoyh8FVI51xmjCwViILVbIapU1nPAaV8+w03xVnnnZMCZHsWzXFBPSN4RhTT4JT5gFlBa9t1eIxG+ztxb19Qt8/KgOJmInh5DUNFxeMKq+eidPoRcOpo1gGRXqOowp+GGuVlBBHGNl3ZaLSMCdJS2Ii7NKIxJkzLWsDCU6NwpgdT9m9+//u4EGPiTLaHcTtM4bG/bKcGrc6lh8a/yqtUbmoCo6D2iWXrYDQlkqsidMGyZ8nIefD222IEo1Lfu+KKOO6ww4lUkkYHXCpW+174pEUPeUDaA4DEvfh3NCEVkbjjHR0f6zFIctedd8Z1wN6Jd3987bVxIIot+5R+zBRy4ErFSTkGRQw2qHAstzQoisCGct6662Y2yxp48w8vDY9fXHV1vMquBWcefkRc8rnPZZBn+XJSuFGo0rFGRBp00AgFEsBpzDoIbTOrwdXPX3vjzXgVHD/IDiYe29HMNg3rRh+2tzSjoS1p9/VIt6/awPQJ2ufo+SYsfne/sM3JIxloQF2BFg0w58Cl8ajaoZ2b4OVNdTHUwbtrNLw1i11NqpcSjGSUWR+I46zTz46B+7JK+o59CTR0wHnG2YZPnVqSygGcS/elkZQGhgEN8KeMkscMNKjEjdC/SqbKj679BYp5Ulx8+hlxAo6RSl+6MY1PpaUR5G8VnKZlFZO0G2ykDwg0ZCodZW/YgAFPoKFuIxwuIuUrcHjmANewl1+Jr37jqoR9EH/3bc9c37YdoyvyzoyGFvBPI2CGkzKib5+qQOtWAg3SqH3JFe5Lr3IWo/sVvgNjsZig6xwcqKnQ9tRFLLoEOht3aJG7dyxdRQCPrUIbItbYEAN+Ab4q5iJvcAtRts1agKFv+J3j2MMOBrf7Ro/uXVmroVW42N3Nd7Pv+MZG8XGU5k69mWvdpn1Oh3ALT41zHXLlibgpnUdlQfJv0mYRfKsZ7aeemY6OsvDUcOT8HY/+Pr540cVxOCt1u7CYa+tI72nswCPStvwv/8qb9qEOgv3qKa/al+JNXvUY9/77MezFF+PJRx6J2cjsq676zxjYf590jKRFaU5ZYFlmMKm/JJockUHefMA0JgOHTmtT9npTVi6N81dYef0hsmAeBP7TcIo+f9FFsTPBZAPmZqalHkIW5D8+U5bzmYXw4XMauMKrge58YA+Dwu5Y8wzO4m+//4MYz7WvffazcdqJJ2TGhPpJeiiMZaZhAKP6o5S5fiqLDI4pe3SE5e1cgZ3fGo9mN919371x06OPhkvhXfv977M3+CFprJoxoZGrHMv+BFfiyL5Ud4oLnQmDAIl/7lu/7ziVQsp9BaP/e9dcE38k8+4sdgM4H9y4Y4JwSyviwrPUe7widjNwYfBCvGR77BAO+8lnDSovhh+fJhh76TXfjR1Z6+STZ382jjr08OjVrXvKX53oNGqhf0dMDYSZnZXOLvc2Eoh1cUfDDgamrEu7wWCZWzc6zekB9Pav7rgjzjvp+DiMYPs+e+xFkKd9ZkAoQ2yj9C2OLUMDVnlrIEGcl851YXfQHtokLS9cwMLDjHbdyvbAVTx/AoF2dyLq3r17yiT1nzgSVvGjDWAZ9kPaU8AnnsRNeaT9QRvMaJhRXc0OUKPipuuvj2NOOikOJctm++3ZApjRaQ/1U6nrkh65Ji9YvnXbx+pE+zjxYt2UrRPlopRjgP1Z9Ovr7Pt+Gcb/PnuwgxWOSQ5AUJbZImZ9qEdNO7bP1F/agwavxRkNzBRqnRqnSFm3Acl333svF8T+3b13xc77DIhzCYTvvH3fhCX1HPxd0pm8njygjhIX4Eq7BHCTPyUbA05OnWjJ4M5sZNhz8NNdt/w2RkydHVd+5tNxGoHBjji+DnIpS9IhoSyn942bNDHuxfm7/bFHuEfxnB4n7Nwi+nZoE62Qoa7RgOuU/YP0oe044tBavTLQwPP8yowGbSP70bIMHtuHdGLUI8gCAnIhyOnsrjRx3kIyGpn6xXNV9RrFAYMGREecNx2aVejpwWTx7M1aFJdfeilbke6JLeAUqeUFzeBAO4qvvVXaf+kYUZbBKnknBRz4F1Hqeu2/xUy5eerZ5+PSb17N/YivXPCpOOWkkzPIk3YidSsLUuPwqnQjPRSBwcKusv9tn7Zb8gfPSKNm6ZgFc/dDD8VPb70ljkF3nILzdNCBB0RrZPxiMtmERdtPGS4/WY99kU4p5SnT1X0pF+xrjhygAxafHQPdXHfzzfHksGFx5hGHxmn4Ce7+4mBCMU24gB+0W1X2tfgXTulJfSV+0nZHDzhNzoCmDzvoMnzkq/H1K78aH9tzb7JAD2edlH6Z7Wj2QGmTiW+z3AwMaFdYt21Rp4gXeSlP4Led6jDXCZtePZOg5tC497Zb4/wLLyLLZh9S+Ak0sAhhYYdiq/NsyavCL1zSfi5eSJvyPu3I6/St2dvqkkVMjXt/4gRk2eNpw5x96qmxG0FNF5U1YzjlAP0kfoVT3hfH5dQJ/Rx1mG1J+xY4XBenGZl5cxbMYyD4j/H8sD/EzQ8+HFd85mICg0eRMdGBwQ/wSRuTaShbWyW3s+WCfCAe6Fw7seA7+xa5kbyBnNAunDhtKnLstXhy8HMx9NU34lff/nYcMnBgtAJuUaA8cFBZHBnALIM8BknVdwbjtfGl79RXSb9sHGC7wZWDG/ffdVfc+sLgOJDsmkuxhfdGDiv7PDJQSnuLKX2FTHBMu+BhYOV7MYgm/gq7Q9vEXQgXM+D19AsvxPe/+c2YQlmfOfMTcR6Bwd6pn5CJDO4YIHWHHvkrpzeDV3e7cVvPKdUz4ncPPxy9+u3O4Mg5sS27GP1vOf4pgQb3Bk0lj6JRsSRFQBUShcd7KKkXBw+O2dNnsHJnqzh4wMDc09oFpTLQAAEa+ZOAlq5YRor6i3EJ+wc7l+YL550dZ9BZuzEi5RyXDTB2S9OribStIYJkpKiK0VEdPAnPzleBlgKLC4UzQ2c6P9vF4u6mM7/07atjX2JT51/9jTj6qKNZrK9broEg80pUCiNXPpe4nR/rZxFoIHJJ+Tm/BsGk86jhqrOuUebKszfceUfcSrDhyvPOj6OOOirT0VzrwbmtErsGgnAatCiFicIrR0e4rnNTBgRkFoWxxspson1uMXjtb66PbmQCHE/ZGnG9ezGf0fRLYDbwkqPrwCtjp2Lju/B76DSlYUiQIVfwxkBU4MzHEHJrpOfB/Y9/cW0y4KEHkJraB2OlkvrjvOjc7rIiaBVYaehTuMpd48jf1qt6kgGdPyZcEyaQbkxK8OM47HMIalwMI/XHWNEQsn2F0NRhKRyHMhVVRaahrFFnG1RoKhsdEEfdGxLIWErgwtWKn4PJf3LH7fH5c8+NT51xJtNtuqbhrXMpHjXCHUFReGs4C6tlGt1VeYoX+0dFbB9pNNbF2Zg1ZWo8RXBKpTBk4sT4GYr5JAzFTizIk+oPeMpMC4W+eDHQpuMrP1im7XMER4FmH8gvBrDqANc7jL7eesvN8dN778lAw/U33RyH7D8oA3UqQY808HmviDRTLrg1Wl8qfdsCUjR/qE9z2NT5lklLL2Ccf/+KK+PlJXPiPKYhfeWyS1lZeNdYiyO8cuXydOSMAFuXjpKf4rbtth3TiXPk4NU/vh5/eHlE3PbgfQlPNxzNVqyD0adr6+hJoKFdUwIKjJ57GmjQAd/A6D+qBH4sMjzWMb1Ap1ToUI/pWMunDeEnRxvXw8saaGiJmM/iA6PnkhEw2zR2nOkCDXHRORfGgfuzXejOOxIp7oDz7IJBTAkC5s1KWcOncAbkVftenJjBYb/aB/KfPDUCurnmhz9kbvl78ZnzL2DP94/H7hh0GoOrGfGxn8SHMkGca0wb065PkKGuQ6c6lgRQNjG/Y1Md2k2mwgbwshI6noXDOnT4i/H5Sy9JnB3A34EdW8ROOOtdoDFmUeRikGY0lPjQyNKMqsN0B1CchoXOKNxMz9K/Kj1+MUOD+sgS4ZdTJ2aT0TANw7l6GU4Ne2Y268BiuIy+LSGYsmrlUozj1YwKIEuat4l1tGEu+7HPwKCYyWKb75qvy3HysUfHgYP2j149e7CAWGv27p4T191ya3RcWy/OOu1Ugjs7k1bbIergEAujqYMGhqU1Za4GZsUszWv2h7yg82QfKCul45mM5oxm5PsPwwmA3Xl7fP2LlxDkODR6du+Rqd6OXDjqYx9pPOvgS0NODVIueNgXXpN+5C15zGliXIyJGKAvkFX20IO/i8ks+PojnPaDyEBqgRwvsmvAN/2WBiFlKrdtg3LIwJ90Yb9rXCk7POj+XHVfh3I4fHDvPXfHncibMxmx+Noll+SoVxm40BkSP4kPvsvvttu22HnSpvpOveIzbjUoHzvNy5TaJ0kHvvHqb8YblPJtHIszCVgbNE3ZBCBSgzgSRt+TNtVBykRlmc8lvYIL+yX5T9kADGPI4Lnlttvj1wRKPO5jxE6n13UYlrN2hqM0FFHoOOSuTqMrcZfyMDM1aI+y3QCQDqQBEPvXtg1nZPqqr18VI6dMjguOOCo++/nPR3+MfwtdRTn2qf/MQEh9IT8ph3lXXcUHNF8E9TR+bZ/t0QlYvIypPDiNF33tq9GO5778la/EqcefgP7rw7oLGJgYzPWRsU7lky5dRyQDDeDAef4bsB/qY83mFtkY5eopZZHZOS5oPXn69Ljzdw/GT264Ib5wzifjiIMOIdtjb7YZa5drOwhHYeQXuluIxYuy3ikJ4l88lDRmf9el7tXA4m4ArxNc+w1BjDrQ22nQTX9G6nr37g2uydaA3nV81DnSitMolAU6FuJMvEsrKeeB2X4uA3AuCFpdXR0vMpr2g+/9V5z9qU/FMQxw7Ejwqz36VVvGRVktx/ctswjgFTybwVRoSVqR1/I+z2SAhr6eRpbmm6NHx5Po7pFjx8RVX/1KDNi7P3PemRqBHSa8GtDqVB0TaUbHS9xYn/hZnzoJuQbd68yJI2nI7Z/fJYV8BEG7u+6+M/ruvmd8FrvJdGyDV1kGsNj+HAiiHOHToXFrPG5kEEVcqWvlPDNO6rN+T+N2bWMBNpP8dNtNv4k/vDcpvgU/nUUwuRM2zRr0jVJVB8253gY/3h0/Pm5CJl13/z2UVBzE0+OondrF9tu2jNYI3vpkNNQONBhkqOI00GCavzC428RGguzqY/8RdyYwUrE1eMBAgzsALUHPVS9dQ6BhUbw0ATrhXaRaHE7/me4OcrGRl8UzBE37wUffuvrq2G+f/knPS7An5Wl1Uu7OAB3JU+o5ZU7SCO0y0KB8AHHJo37XKTYT9FEybC66/Ips6NX/8R9xJs66Np/2jDKmPGyVtoEyTie75H/7x0OHu5Q70pHrCcyonhE34tRd86tfxjG9yMb43GcyY6Jdm7a504996sLQyipluPRteaCQdhTTDbyXdA8+vW7dCgudUqfG/YzsqUeQw5867tg4i0DGQJxSA1xLGXyS7j0MJiUfQTviy5Fp5bN1SePKUTOVDIZnsJry3a1pyEsvxZc+9x9x4ID94/hjj42PEQzo1asnbaf3KVuYC3wXsGpXqC/K69ZVymFlnIf4U4dMh18fe/65uO2318cll17OoN5+GWhwirXvaedadilzAKlG1guzslF7NeuqtFPZY1vmL5jPDhUElAmYLUE2XID/tBdOdafOnQkmNN9sK4FQ3xcm4RRv9kmxeK/87EL9+CPIToMQDdnlayX+0/CRL8dTg5+P/7ntjvgmtuTHTzgxadXsBLcgVRZ4+Fe/yC2H6cSUtylbuO8nkiinT8gzGQyDPg30vfDSi/HQE4/G8FFvxy0/+lEceeBB0ZadTaTzlL+Ua9vFTwYaqKOcslwGGqRv+1L8KfcMktC4eAX9dOctt8T1ZPUdutdeceVll8W+BJBSz/OcZYoTZYJ8sobvBkyklQykpr1X8Ll9IkPpf9ZnncDl+CGPMTXuyssvj2rufPG8c+MiTrdV1kd2YN1At1ulmsWbOFfeQxtmNZgN/wD6p+MOvTOjoX2n/5/RIIaLQ2qiI1yRVcTxJ4WZRrDKzOPd0WNiCEpq1rTpmQJ6yMBBqUh8dqMKFSSrKDRE3fv6hWEvxmUIvZm8+wVG1s/4xBnsDb5zGicb6KBWTVBwrLC/VoMQJtDp12jQISiFoMJJBaehK1wGMVxl1lW07zHQ8J2r45DO3eOTn/00wYAj2RZzO6ZlkCoNo2Y7UqgBE+W4hZNsI8NJhJZdtJWmopych6T7pHB3TvYNGBP3PfhAXH7hxXHk4UdE//5749Q3jaU42Bq4GrMysERdCqN0hpsQ3YLYNTIcabM9Kn5H1ly9df589lp+fVT8glGLXmRgHMdo2h4IkB7dumfaUo2AQuhriKv4FSJGLBV0Mo9lGpDRAKiPUySDOqqzkCjo5KlT4jkDDT/7WVxOSu2hgwZFX5ROewwtA0IuqCcuNACEMw0X8KoQsZ4sV0FDv6fS4VPjWZwZxHj99dcJNDyTGQ2fxphQ+Olsa1yJZw1MySedQvpBRWG/5pwmlJfUpELL0REe1Blu0rJFjoqMouzBONQ/uIk5TqRKZ6ABHAmHArM04HLUjvZrBIojy7dggxApuBFaAuF1laAL8kyrZDT87p574nkc0p9/69sEGo5h+xnM3fVIDnDh/C1hVzilYcXvVMaViLlOjYpIfNsfOjM6Rg0QhqPffivuvP2O+AkjOl1p4y9vLAIN4lnlLm48xKMKSNhMFc1RBOC1b9NQok0AQD9oOLt6MQvIUddgIuc/uPIb8fLC6jjnmGPjMvp2T3C/ETyo0BNuK6jgfhV0DoGwDzejYTTP9RlGvflWDBk+LH57zx0+GT14tm3jBtGbxSB7shhku2bQ26ZVAcXl6A5IwBGFibAINAABC2e6DDLgDMGX63hGOmxE39YDXlYUhRYx+MDJPBbJepuFIEfNWBhLl22MucDhcfEZ58YBA/aPPXbeKbp1QXFiUK6HVxI3lT4wwKOhK00WAbxC4Rjtl3c1hORflfLLo4pAw/T33okLzr8wTjjxxJyOZGDLjCbxL1+p4HRqU9nRmJxCwfxdlarZB/UIddcB/RArjjxBSb5WY+wMRZZdesXlgh6DOA/o0pY1GtpFJ/C3Dfhw14mGwEJiXo6oKQehphz9yukTdIqjOqplTaY8xBXP5AKSfMtAA4tTzkA2znU0vn2raN+1I8Y2o/MEYdauYRoAtOP2wO7oswJZ/f7chTGaUee5izbEBKMcHCdjrB0Az/fq1Z2dOlpnYPPXt9wSndZWZaCh3y5sldZ5O9KkiP4jp1dVeD4j88gaYRfnOhHyjb/FsX2sc+GnuJw9ezbp0u/FsBEj4lc33xhfvuSyOJbsLKc6SbPKSBfdUx4ow+QDF1rUgM455hVjMwM/8HBpkLVuTeAOXp/EqP0QAtsPI+cnVM+IH/6AQMN+A3J6gDAoV3wnZRjtlvflAflT2tB48b60kgYq+PZ7Y/mJdo/AoXvg/vvjxicfjzOPPyGuNNBAWq1t9VQe6FykbKF8+VSry7I9EieUl9uHUrEBbGVGc6Y6zSGj4SlGL2/61jdjFM9++9LLMtAgboRbI3mjsAsz/9Jwg4ayAZSlQ1C2y2vKYmFPZ4q2j33v3bjp1lvjV2Q1eGSggUC7gfBVwKFjn7CCVx3ZlFUsOiauNWR1XpSTKYMoT30i72nYKfuGvzoyvkGg4ZUpk+LCI4+OT6PH98FAp+OznTkFBt7KkSMML3FiPcJcbo0njXgtAzNc918DZLHrxTz2/LPxqa8UjtH3MBLPOOXjrHXQJzYsd1Se1cjpw01E6NyJSdiUtwZ1HKQQb1VMQaoPXVm+eJGTMtDAtynV0+MOBgh+cuNv45Lzz43DyWjov2e/aN+aRQXRfS5kJrxlsCHxLNzQufLMQxx4eE2azS3ZoAnXIHpjzOj4ze23x4oFC+PjZNztR/bQDjvsiIyqT1YCwUD0s4ER6cdR+uxvvnsoryzb/hQ/1lfqL6f6uEPFixjRP/je9+KcCy8k0HAIWyr3ZRtBRu6hZ6cmeqRzRRt8V4HvIIPledoeD7972N9em4FTNBqn7qkXno/h2B9fBe+OwLqlpAMPBhoQRjk/W12V/AgPG7AXx9aj5HedAGsop7Oos8xoeI/A4MtMobrnnnujF3beZ88/n+1rd0zeNwhT8GCh/yzA39oEpjF7mJLsYrzi3AWM1+HYuFVl8zatk5+exxG9776746lXX49vAfsnTzk1tmO0cJP0V7dCZ9p4yJqJyKXrkEk/v/PWlLYVtRMn77xt7MiK+a3rU/cGbE7aA9chlZH9nEWggWvikLMINEhfPgXMwAZzFQ4kn1XgrS51mqk3j3mBk1ij4dUJy2Iqz7IyRTiv3ilBZuo5wPP044/G7uD8mu9+l8DdvrEJvW6gQZlIw9MuU1Z62GfSR/YjuAJhElCqD+GxX7SHFkMTj5CheNEVBT9963OfjzNOPz3XPVGOK7cSepokbkt696I6Vl7OvhXnyjh+Sl8ZcEIezEK/aAt/53/I0GzeNi7+5n/GUdisLlC+mjb5Tg3tUYa8ZXBXGlIeKpe13zykf1Fbu01mCP3sul/H7we/EBchh884+5MxcMDA1Bdm+ZRyV50tv+dAHO2qg00iDwurcsypNtpJOqZmyCrfXCtnyEvD44ovfSkOP+SwOAa4+/djnYYePRInBueERZwIm3SeNizlFbDCw9SVNizyR3vCPrDNBm7lKQMNtxNo+NJlVxSBBoKObQk0FPpJHQRxUEeO4oNrbV9loXypbanc1eZWzlm2MljdMgtZ4FoB+jn6JOeTIbTnrrtmRoOZJsp05bwwp/6gRfkpjqnPckW2dofwZqAB3deErIWVixbECDL6nF7085tviW8SuDsdm6kLg1LJlwTXcopa9ho8C7zrpB1sJGG0L1zjoPhHNfqOthH7wCDkuxPGxzNDX4h7H3kwRo0dH7f++Cdx1IEHpQwWh+JG36jEvQNXlFzobvrTftHO0+6zTOGXhlqxMKxtcrDzrttui18/9iiBhn7xNeTBxwg4KGdSt2EP639Ii8pbt741+GIgz2eUNQ6QUxjNQSZzulB4PQY8ly9eSKDh6biKQMM0nvjS+efFhQQaduyNfqIv60LKZuIrK4tFfQlUo6+041YA93i2YX6IrOaO7JxxztlnR2sWZs3DBspq/8bHP57RIBLKw+8lUgoZlEgdgyP1PAtkOHXCyJRprDuhBN3/WmGgUyCzGDBYCZG8iNL54teuzDUazj35pDiNEZ2ddtiBVDeYDwXcoiEpSkTSc9sp3ncUPA1IhVOF8Y14phDjt51kxoMZAwuJOj1MFPfqX/w0BrbvHKddcF4cglLujOLR4JMJZRiJWiGUjgUEVzJgjiBRoGWnw0vdKjXrk0HHT54Ut993XzzIHN5LPnEmqWIHxR67sxUbAsy9pSV6Ry4k+jQkQFkyqAIag1pBooBaQ7tkEp00gw0av0b/NVauv/EmFkvqHEcecijz9Xbie5eMRmp8Wr4CVSHqqZBw2oWGhelF6cSDbxWHjGRWg0JLwTp9xoxw1PpnN94Yl15wQRxAlLVXD0Y3iUAb0LEct6MpM1XsdstwBMm2qxzK9PUiu4RdHmi3Uc3pBJlGjx0Tz74wOBbQjvM/+UmCTTvlKKIC0jLFd/YZbdDZSKOXOhTgtkXaMgVURSCDV9GepjC4KbWjGXEZTgT6l2QFnI8hcebJp+KIdimEmAafRhN95kKW0lum5Nm/tF2FKd2UwQb7wHYpqMT99OoZuYDaY6S9vjK7Or7DCMAxOEYaoKZBMfgM3LRdwcN7Knn7wb4znUtcKAA3BxpWMYq5Ih0NDeGx77wTDz7wQNzw+COBOIyf/einsT/GRBFoINhCmcJbpGYjsPiujpd3zGpIOqUe+9EpCUWgYWMG1twJZNiIl+LnX/lmjI7lceKgA+MzF18Uu2PQ6ZZYpsam9GjAQnYxuu8805at2qYQnFE9m/2z340XoY07UAAeHTi34ezTvUV079iuCDSwpGDDOjiadhTtX4vza9FFoIHgE4jKf9K+dSdrwmvyG8K8ClzWb0gQEaU2nzUaXp82N156f3lOoSrGsZk6ccxJyI+PkareN7p07kigoVhNXV5Sqao87VPxL89INxr7BgwM1nnoeMjfypxRTEX60U9/GuOmT43PnHJ6HHn0UQQ1d0lcOnouTUgP9oGBhuxj+d+1GriX5WFL12ekqy6nTs5q2rcMGpgJT414ZWRcc81387lB/D1wu21iF/ipE4q3HchpRkc2sC+pYx3viR+RVs+MBq6V9YEh3i6cGAtjvCyzIMi1yEBDNRkKU1lzYc6CRbGu8zbRka3HGjZhpJRAw/q1BhpIbyfQ0Bhn9oN1pNCzDdeod6pz4cgZFsjhwkUDGfnvzkJkrdsUTu9Nd94VHdbUjdOYv7vHTrtE145d0mhbjHOT6aHAnztFwL/KAOnNERcdJnlKAw4Q6RMUN8adtDZ37rzMcHrlj6/FdffdE1++mJEu0uzNlpBPlQHyuTh3lw/7UKdTPsrRUngN0kmDWdpXHvhOrsFA37u43AhkwZOPPsY+2JPiu//1Axyj/jk9QD5Svhr4K/pUvAIiNKhc1gjX+JF+SmPXsq3H9Eh3WHiV4NQjj/w+7mZU53hk8Bcvvjj1WQZBoUGZCEmQtEjTEQ5J6FmGgCvXrc9ApocLj2mwOs1sHsHkZzGcb/zZj2MS977MtJJTNOTQT8LtVmMb+DSFU7wIl/j1j3SqHrLslGfg2k9x5bOeLmR5+113xW3MBfW4/rvX0O+HREt4zhR6225x4kY5o5Nqhpx8pSyzLI075VwG9JAf6kFluL9H4ohec/W3YvTCuXH6wAPivAsvjH6keotP9WsR8MZIBgfK+IQL2knZy7UcSeW6PKxz4CEuGzZhlJIgj+nGX/rut/L6FZ+6IE4/6ZTo26t3rn4vnGY0AHxlLQVsCpx4eT0DwfBryhmQZPtsg4LUKRbYgDFtVjXpxo/G9ffeHRecekqu0bDnbruThdmaHWsINACX2SHSou+rQ5U59p0DGYkbaFN6FCfiyzVH5AuDAWMI8tyGMz1/0uQ4CZtmv/32jR0ZuZfGdYzEjdP1pJ/CSVF+FjJGukx46VvpUj2uvPcdsyGcVunUiV/88lpGpc+MwwYdED179iQziYUyMXLN5ONVZHGxQruGtHBJi+lw2B7KFG77yjZl8IiXZhEYfBcH3ExT5/R/EefrY3vuFe3ats1FomG+lIVAmLSTMlMa4V35reB72mSfI7eUD8Jh35jNM+59FonGAbgfWbP93v3ifEZgd2SAw0EN6UB8CA9FFrxFuTl6yj0lYmmbmclgqrbSwakTDkLMXTAPu2BEPP7YI/HC62/FZUzlOZWpEwYa6hl0yr4sBmEMfJjRcDMZDTc8XGT8JKHx59hezWMHMugMNDTYwBRBsxfAZwYZaFMxdcJAg/IblqfdBhvKw3Rr761b6/ph2Jj14X3O5fgsC1inYcqCZfHqbKaV8YJvHdG/mPeuXaFj+tiLQ6PfDjvF17/xjVxTRf7JbW91hOgv6THbAj3YnwIn5yu7MujgLxmb69rKBhqWQDdPP/98XPHd7ySYl599bpx8IotNQjfrKVfaqMG98NvesnzeSBlTlk/b5DNteG05bdlpM6vjDgKyP2fqxC48f/FVX4/DkJcdyLLRIU47V3sOOtQPlSZ9L2WaOKRs22bfKwX8VBuXfDD2/XEEhW6KZ14ZEWcSDDiVIMk+LGZpoGMpNqZrhSjPXKDQIF468MgzaVLZYj0G7qRLT21h7TEd2QUEBl8iaPq173w7jhlwAMGGg9OO70rAV8fToKbwSOPSsnwonr1mO8RFqWcKXYDM8Rna4yDTTIIBzyDLbruLDNwLPh37oZ969uqVtnY5SFLixUCkdoCDoJZfEzyVf+VX6rVP5Vf17YzqGZkx+BDrK5lRdSYZPDsjZ1z/Qfy6S5t4LWWsuPFIf4S2WVfiGnkgDZhJ6KK5bZjWsYApL6+99QZBmGFxI/bwJRdcGCceRXYvwSOzmXSkawcaTPrcSOfqTCsvxUu5gKl9Lu9qRxl8dAHXcZMnIuMHs/bG3TF1zpL4xTcYECZLpX2rNtA3I//gQPxJByWd+6mdrp2ZfUkfKxvFScpReMidHxROo5gq+yCLFd9O0HTADjvGpV/4Quy1627ZZ9Jb6iVwo15y2q/2jPJMflFOq3sNGshdKd+0f6g3p3CzlsqzQwbHt77znXCvGKdwn33GJ9iRqme+4zSRBnUYdENEJG1K88g4p+0tJzCe6/s98WT03XevOAv/qC3yhmqKA9j/nY9/XqBBhJRniRTknQ7q6Lffjudw7t8fMzbntxhkcMEZCadMQZIIJWaNGFd+/gGjCh67du4Sn7zgfFbG7pOM5q4TsB0nygHCViirHBV6mSJaERwqewlNBa2EVOj6eyHEMGTY8Lj/uaez/AtPwHFhFG9bIokqPQ1cDSxhk9hyjlKFGeC+bKOMKFGq2HSyqxhVVQdqCDuf8aHfPxJvTBwfh7KX7r6D9s/FIDXkVPjJWLwrriRUGVrjW9TJCV6TIfxtm/I71yzbuUfjJk6In5PCb/LySUex+M3uu+X6EjKvhi4v+UoKPgWbgsLrBmNU8OJC2HOqA4JKxaCR9AFGoCONf4QRHyOl+YT9B8XeGIjbdWErKFP8ASUFEcaWbVBYeygMneMqbtOBAw7bYL0aREao7R/TpccxcvH0o4/EdN77AlMb+tKnjuopIBV6CmTLs/wUIrTfOkVGaXTqaEgrjhaZSWKQR4Vp+uXLLw6LYe+/hwDZmVS3Y9I49z0NQ3FiuxUS4tu6PMSxdaVBw29hFkfiJBUIQsSV2kcMfynuqtDMWUw/OAj8OA3IRUkVlAooD5WgfWe/KvgsQ2FnlFWh4pZuOmg6vTpVKqXx9Omj9z4QI6qnZBlfveDi6Me8MSOo4q5SYMJvG6S/pEHuiSv72ZPKoUNwyDXIIIXfauoe9cbrzJO8Mcvuwt8vfPVKViXvlTC72JT4FBul8lWRSkVVOKZrmNfsAqqTJk+NVzEGX5v4TpZT/unPl15U3Z6CG0ISjfiu2toEOtYwiLYRkqyH7VyHi/KIwQXQxRQDnoOIN3B/BQRRl8+mANG8N5/MKViwahOjZxEvlhVVPgf02YUFpUhh7NEDxdkWxQmO6NMyWGk/ZkANHIh3FY58bFDBIKIN9ZqGmUp/LDT537+5Lks/qFufOIK52S7eKi5U7D6jopFGxLnOUUa8Uc72nbSUQaa6NsqsBNKeqdvAyAIU+hvIvoceKIIz+3Ht0C7tM9DQGTja8XwzPrFdXUayJtAAhyLX6FeuSU30NmVzsjaEh3A0Qq4J0wbORS4ESZDhPQKZU+csjSWU16EnOx0whWPZB4tiPVulNKbpDdklpKod+3PTpxPB+SjKmpElFn9aNm0Qxx17MrvkdGEhNRaDXDA/fn7tddGD26cxHalvT1ayJxvD4KvOMaClghefHipMR9gyPZpIfV5DbhXSDUNLfoBO55JGPg5+HTl8RIycPjk+cfhRsS+GVhsyEnT2lbnyj61NZeRm2AQAAEAASURBVE49/rY+KRMEJJ9ZLr8SHyUPKz+mEdR8kykxd/3hhYTh8nPOjz122SWdOPnTLB5Hi4Sl5HsfBG1ZX/IS35Vhma5dkW8GMgwAvzX67Xj4hltj7MaV0ZctqM499+zo1b17vp8AWRg0IK1YZjkqm7KNdli+7Up5BL1IY8oJAw0auC8MGRK3P/W4pcTJhx4ex5JxZ7qxGTZOHdSQM+CrQa1+k1/lYY05DWdlsbix3HQyuKfsN9A5Bdw8gIH4Mnu+e3z246fHx0jhd2E/5ViBb/BqmbwP4gu882k9iXvK58FEWGlcW7bvvkXQ9Du/ujbLhpXjvEsuTyNXWDQQ5Sv5xt9pYAKXjkk6udCKBljiw76pyG0L03HUGHPe9PUP3pvlHzdg/zgRWawtYRDcbBfXeVInK281OsugojSlFjAvrg5CSHkt7eTWkuBQB7h67px4gmyS50a9yn7vHeNwDOjdMUKV86bZu06R/Sr/STf2n/U4/1gDXtxod6iri7rdkq7YntIMnQmTJ7P+0Q2BPxnHM/VgwAEHxA59+2Y/mk4tDgrap/fsC57TFskv/qF88a7OUu4Ig7Sk7p6D7n6L6Uj3EPw6fNc9UkZ26YLuZiRPOs93gNdP8S+/GFjSpvC38Nt/8pnt8jMzF4HBIMb7E8bHsOeHxpsL58TpLC5nJmVHAoPuvKQsNQijblbmait4TdxLi4JuvfarOsDAg7pR3LuWxjgcxpEEA55+YxRrb3SIM846gwB2j9SPOibKbXlJ2vFIO4qyxE8GqXnGHxkYBF3q7jqsk1MPmplHFqmZlI/ee39uu3r0wP3TaTSoqdGvDSnepW1tz0nTpsXDjCq+NnV81lX+2YMvOzHAyGYn7DoBPdJG0EWAgfq4x+Y+mRatE+Hhh04Wzc7nGrFnZyOWkNnIu2uXV+7zzOKZRXBhAt/f4iwP9fR2HbslnS5dMCvXa/He1Uwz243BpdRf4MTgjpVkhhCyz9/i3SCXtJHrj3Bdh1QZUa6Noe3hgocGjm68/76s9uh++8SxTBHo1mW7rDedLt4VP3aq5ZV0oj5Nu1t+oK+VL9Zre9OeADkzoclHn3gqXnjjj1n+xSeSxTNgv7S1vSA95MARstgXSxkvHcpjlpv0z7PSjzab8lv6EakTpkyOm2++NcYvnhd7NG4VJ30aOc+gXkMDWGT2iZMMwsj7FVmStmWWT7+Dj5Rp/qbMtIVpo+szuNPYKHT3HQSo+lD/oSeeGruSFdC5c6eUhzq8ah9hyiAgn9KpeBG3ykPryqAj8kBh43XbpBx0GvSwl1+JR0a8GMfu0T+znnv17k0mIQuAop/kI2WAeLGv9WDsB+t0wMOgkTLGwwExF2jW7nEdnKlTp+YaSHc883QOCJ15zrk5vdqMP3k9pyVX+EndpPy1HvnXzzLwoO7zsN8N4JotZqBh9HvvMIAyIl5+5904asDAOJigpuuVuXCk09JyHQL4Sfwqi2lATmNTn9qv8rH9WtKu/a4sqAvPuqvekJdejIdfGJx1f+a003MHuXYt2VmD96SXDMwLV0W+iH/ljHSjPpKukukqOLIfXNBf3Th27Dvx8PU3xajVH6APIr75pUtiZ2SwdodyT/tFWSOd21fKx/UMzNh34sWsOH3W7FB7n4El6dGMu8VkZ43ARr6eQUOPgwmannLKSZmZpP7YRDmGRvUZlGEKCafhOMVvJe2qRs4+f8ejccKVF8aZBBo69+xWCAoFzL/58U8NNEBXKRCgIjq66GuJd8J4ItYsMjh+3Di26pkVTUmPbs3ImunSMpMdbGc1ZxsZDYUpREJfZ+XRlXRqZ6KfRre3gQENWqxexujPWpQO0ejGEIMBARlcoefogUavAQMjUblACM9YtkpEIbAUY82VTWdhRDs33NVSFayu3CoD6gTK2DWGHA1x72lHRFR61qfQ8lB4mxbkdlobabP1LEXpT5k+LZw3aRvbkcHRunnLaNHU+b8YI7TVLAMZzvQeR9N1XFzAUcWvIDViWQQAijmwjqKJUxXofAzR96dMyhHybVq3zhVNi1WxcW4YJU+lB/EqMGQwPpLnFBaeOV8POFcCg/NY0zClXA1o003nk/GxCIZpA8ztST1swTQVV5N1+oFK3W1a7AedN43jxAGC1D7MAA39pwFEtfCRgliByIgKSm0ROLHsdTzbnmkDZrc4L1qDRiFhGaWwk7Hth1IRyfQ2RgZVsDQiBUzB5OjFcvrHANICYBf/zdHonYmwiv9GCFKBsZy6fKYAQcg5ki/eVUTiQJgzSADACi1xbRtU1AYy5ixYEItYlElHcluM/o7t2keLxkQ5oQV3Q5F2FJgKPxFue/yuUnBkXYM0jStTTfmnMEzhSB3CPWM2+6Az6qWBsH337rkqtrwhbSd/8Fw6yMBmCq/36oMHp1AUzi/XaFdxopbAl9FsaX4m6djT585KB7A1DkUHjM8WGMA6yM7J1kmHWFLYGrU1OAQyUIir6DeUJ3WtxMFZioLU2Ld+tqyOZuC/PYsLtm/G/toNaDsjPQ3Y4tGUVjMiVq/BANqoEoBfgHsDxorGl7yYfcjUHftgxUpWCUe5sjdKNHM6T1MWqmIBQ9domLbaec/cQTjLh83qNcipU44y6vhpRGvYZ0ANGjayrXFv36mIxXU6l/S3v/1uP9BDaZguZCRRB8MF7lyo1ukw7eCrdOJ4RtyL32Qk6Q98qsxSucMD0tHa9RgdrM+wCStzLWm7azRaGa1ai4xaOn9hLJ46PRag/Dsx/75/x7axI3V0pt/aQZAGV0iEyCBD4ZLLMwYZilMDQ1hBIKfcrShAWXNJntiELF1KfVPA4bgPliN75sXKHbaLHrvuGE1bkc7HwmWO8TVBdpmyqPu+gmyMBWSbzFnOyM1SZOU6pjg1lg+bpCHSqAlGC0GHNbRrPlOqXHOjDYHSlsiCZuDIyPx6ssvMkJB/5fu11GMmjfxi/2oIAWDKRK+JN9ME5eul8NP06mq2ypqLnF4bvXAUu3bqnLJVR1Pcy7c6u64DobzRaJR33avcEYTS0LLvlUUZTKJ/laGupr6IEa2FyBvpwGlm8qtw2p9p0HI9HTVg9JryXRg9NBK9Z53SjP2vjFC/KG+q0R+TqqfHEvRMc+R6j85dMrtJuA3CoASTrzQu7Ct3f5FOdYYNnCrflRGF3lIOkLlBnc0INKxATphCOWH6VIKRa9jKrkfqP3XdEmScgYZG9LnTjdRf0mVmvynPaEfdKugbOCw/8Q6vKqOV1Y0wFhctWcqo0aRMm3aOfcrhFq1yWkmOIEsj8KSp++LdwKiLVCqvHC0zUGggyT5QfqUhjUx2dFp6nLtwAbBPS/3bgtH5Ljh08pMdIX59RhwlX3JNo1O9ap/kHuvUbZtSX/GsTmveg/RXIiNmLpzP6O9c5NCK6Mgo1269+qaOdWqDMli9afaibRY237VO9blGcH2Cda4fU44OaiDSOfAfcp71aqZDk/NY1Mvtcju0bptyuDnyB+QWgyLQhIa09KFjmxk7lK/M0YlT5zkAocyXRnXANLh1HD5AB84H/zoyLpbbA7uja2f2t+c9acPFraU526zhq2Erfnxf3Cm7xLtOl32b+py26lwsVv8hy5ZQTit4tT2GtXpVR0Kek3fUdcpJdZL0bIaJq/83hqcN9lueh/xgf9mnHoso24VhlyL711J3c3RvWwIMbnvdkjnfwinNOC9+JWVKy5bp+yl75SHhhQbFidl9FJ+BNYNjM9ntYwY23we0owXldUcWmC1oGYoRcWNGWtpPvGjmituT2ifylZlB6uscJCCNWRrYCB+sB5FmO06fNRNZM4/7m6JTu23IyurIOl8sEooszKAT+jvXf4G+tU9m4UytRpY3dXCIvly5cln0atUkurfHjqPcehvAoZ3EoUR1uoQUndMjvAzv0Vp0nVcL6U04PKcVKsFzgUjgNushMxpWs5r/MrY//WBtrEBf2ufq1kYs6rB+XTEdy4UqG7DV4LbQpHaTelp5kwtuQtdmPcgDHtKm/SntKR+VD+JG2SVs8q0yTjp1XRKzcMVzF6ZKunCdwaOcjgJfa0OmnQA/SR+Wq7xSdjlYJW1qszRBlkhTDqA49df6lmlPIoOle7chtU87UUcLBpfShqY/pHflvDxqYEMeLmxtZKLyXhoAT8qfAuOFHWx/z8MWHkvAdBn85K483bt2I/i1Lc+zHTQ0k1lMtMtP6VM6tUztSsuSjuRfdbnTJqRV+Up+UkctgBaknzrU7bpw2yHn22I7iRP5OXEpPnlPnjRryEwHt3V1BFw4fDZlAZ+uc6BTL+5ciLMae2AeU7lbQ2fbYhM4RdkUffEnn+baZJRh5rayUdjFvTadekmbUpnTnMwd9aL25graNHPOrNwqcbXvQAOt4alW6BbluHhP2SfvALe/lY3KBm176cDpUMKetjZlys80MqeYLaUv5y5dRL8uBk+rsuyObdpFK8o2y1wZmzsCgo/UtcBLRelMp/1F+cp/OI9v8AL1GuxRDhtMXrBsSUycXR0LV5D9Rr93adEm5bxtaIwPIi5z9yV6UDmmLVejh6Bn4ZQOi4ADtAt9WlXKEu65GcAMfFD53GvbQ+/SjnraPix8JuiRumVxcZ22NngWaqdNqMPlCQ/psI5TJ7BbV5KtNBk5NnHmjFwou2vHzmTb9YqW0IK+2XpstCoEoJlUEiDSHFiVW2Ra05/LoZ2Z2BbHnfHxOO7446Jzt675XAVVWd+/659/PNBQabmMCz8jEIqgAfhL09jucP7gpAnj2dt8QkyfNAmvb200hijttIwOgXeNA4lNI2YpRsQHa3Ba+K2SVHCq3FeRzZC7TmDEa2y5irSjDBotGlgacHWJMJmWLhMatFDYqpwNAkhIazCI3cZIIauw1UA1eOCRkXI6XUGU2RIQm4yQ8zuBVZWhUZAGGWWqMNyO84PVjO7x28X3hMVVyxVujSjbckSMROtohSPqMrp1lPXLKF5T6QtjwoRRqMFoKqDM5XoEpnZlMABmUbgZHGmCUGjI+6a6rYHxNdJS8FFnOrO2hfsKUYWHjlg9lJhlZloQ7VZ4udaEDCpeDAz4TuIFvMMJKRhUqBqgMp5GtwLVPXJt8wIiwK6srUGr0eWiMxoaRgRNRbMfchEdnhWuNBQoWxyYiZIjCgpPhLCKx20uVWwGHlRAiqVCZWvkoTCoFyTmPHGDPOLG/tA4FveuSJ0LEhJFtA+F2X4Tbu6kkrFElYyjQ8XiWwgvBYcnZTl3z6i/W2U1Q5ibQWEdwu56HgYZmhLU0PhfAc2Je0dtPexH8amSNAimwJKOM4AEbDZInsk/PMeDyTsaxhoPOhGOcmm8cQsl0yiVl7SxBpym0w2OpLHlOFbLMDKkEXeLsC8NNBQOCG3ne32EuNsbmdmygMCDW2a1ZAEbHQmVvatYA3QqHhcWVQAuJ6i3mpVy61O32Q1u9SO88lwjhnJaUma7Zg2ibXOckQZw+joCJUydcERB7sfPgj/EJ3hTmdFsgw0Ga+RHjWlxtgEBXUU6aSPSGxrQ2Hr00yKmToxfyJ7QQdkt26IIMQxo4/LFS2MZp3zoHvHSiEa4ij9XGwdvSQtAoJGVyoPvqJz8brBG5aSc0ohsQNvSUKWfpBsXrFuJw66RrrEgrahU0lhBNhgcrIJ/xJlGlQ72Bha5rENT6jZAXtCXm2hvVWMCqaweXgckrGc6g+nSm4a8EH3atYreRP870/52oLMJfVsFTpw2UUgyRzKLIEMVxi4o4zdlZjYDqkk4wd9a8CUe3a5yVd36MZvgwTT6asa4KVH/2ANjl/37R6sO7ZjCYRAEfqLN7lfNY+zZvCmWrGEKw9JV7HKwBN6oj7LtyGfEPIyf5Thc9RqzJkGLJuCexaOox8Cp0fyG9Fk9nqtDFoUyWGUtUeg8mNFgmmQ6n3YYuMigAE8YfFD2KKPtE3mrHFFtiSPehsCR04CU8RpAGtLiXF7T0FJmaOS6aKF6WjmljE/ZSJ9rUHlYtvJPppEmNHibN8VIQZ6q7B1N0mDTeKKYNLDM+LI/NYyKAHARRLU8DQ+dHGWcsk26dYXoNcDqaKz06+r7ymHlO81PQ0RD3XmYXsspHdC/wc40rHlHeaxMtNxiT3nm2GKA64wZvF6Fg7ECGaNs9n3btAZ6qwMsDeFDuCppQ4NUPBTz32k7/ZzONnyeMgX4dbqVRRpmfjfLyfKUhwayHI3W+NPgBIEJfzq9wO8Cmq1wbDx8T8Nco0hYdcSU787/F07xqtyQB5Sf4reQLfAZ7VJua6SV8lxaVtaLQ5/1HfFv4EH94/2UD/S9vC3e6zUniEimznJ0uHK3jQGyuuxNz0KWyn7hSjuCcig5aTcdZ3UYUZJ6nKb3Jqw8k/Oz4WH17EZwV68pRnXKB+CkDzewy5XbaUuPqVMoVJ5MuMQt7ZHODeCLd20OTFv4U7lgwE25Dh1Dr446ukie8moZONM2MFCVRj59nfN4wYSyzcB+EYTBSAeOnL6C3HHtk+xD+MJD+ef78lzqHPpBnjTTK2UUeBLH4lbdIqKVYY5sCoenZaibvC+uvCbdyyNeV8452FHol2K3Julcu0AdWwbXXEtAnLnIaTqk0KDlqRvX4Zw34bp07zpZyovWbdtkHeLK3ZHSeKdcBzRK+0t6kDZAZPKKo7raaRnsoa3iSDtDcNxWXf1SF6Mf44XtI3E4kTNLHSDgPQNtBo2acboo27rlpL8jxwqnQqlLGbTdPe3rN0P2MQK8Bt30weL50a11k+jdaRum7cJ50IshBAETKu0igwx1FKBesc8JY6xXKdDHwr9xLQNka9DREI/6Me1S+GENcn0pAfnqxatjysJVrJ9jJgg2FOmBjWDH9djBykCv1Uubmb4GV572URP62mCSz2hDii37U5ykXQnPqifcxlWnyAXOsy+gO22dHJSDp512oS2hk4klCL1hh0FT2mc0B8d9efJu6krKl96UrcovhEnW5zWdbZ11aUfnt+RFZbF0Ku8o14Xf3/KRgQptHvGkzMysU9qmrZM2PfJgI3ybNivyRh2u/Sfvus5EYdu0Shlj+3PQDprTvtBx12Y1AOYuCtKmtG9d6h+DbdKkqfvyq3aB9rG2t9flqVUETNYhB9Lepk3ylfaig4TqBMtTniqLPf3uKd/bRsvJayKSw+spE2w/ZWjr2of2p2Wro/zuGl62YQVt1OZqjh5Qbolf5WEGfvme25HT3/pQtmEVeFFHGjyRp7UPLU/4LS9lLr+Th/nUNvbUF/OawQf9Ezte/jWzwZ0R3NFnk0EDbikvHVgwo0f565Q0AMvMHkftfV/6Ex7ltjpBHZFre4gHnhc3GdCGbqvg2fr0KetOMwEXOpFHgGMD9LrxgxXYl9i/2KUJD7LUACXEQ5mF32KGiTLFOqQPWiRlVuos+lHc21/CpTzOvoISpMmUKXwaDLI/tRXkKW1hZXHCC35c0NHpE74rEUl7ZrSb8bEee20RgakPWBNLGJJ+6Vd19Vropw6+CE+jv5FZwF3FoJnyVYvPHbzWU56LQu49cN/Yn2y3dgRA/rcc/3Cgwc708BM8ckIkEGOVhMU1hbcR/CWksM3HiF3I/NxNdJLCLB1ACV7C43mj3Rslbl+kDI2uJAqeN9NAAWQE2o6y+4pV91EU1sVpx0tgGc2CwKV9y5X4ZEK/5zMSKV9lfh9RYGZ6GN+5zGMAUGEEGVBwkil5WAaSSFxMRgHi6PxKFJzwOhc8BYxw8qzPyeDC7Slj+dtKLSdP4LL9BQPB0PxLwcR1FYPtKR2zZCDeV6DbJstXUGsoKiSyDbTb8hUwnqXhZsO4nId4Voj46TU/LVsFlc/xnvAIr58u9Gk94kT4fV2BpfFYKnnTmUqDWUbNDAjgN4ppGTJUYWwWjrjGsQJMfJVGUFmnQGlAlNkeRd8UxmgaBcBu+6UV0440rhWqGqgasp4K0xQKfs8+RClowAKTqt+6PMq6pRmViv8S/8LOuwptM2NMa9Y48BkDJ6bpmsKs46Xi1FkBnKTXxK04rJSXSOae5XoWh5hHLUKTtlXhnjTM1Qy6gPt0ICjXI0duUMY+q9J2pNdVt+sDp0JWQ43CoBn6EfwDSAbBHAmxPzQYmmA8WYeG3jIjuhgfjRDom/EujoHH98GSI6pmEjRq6OgUwhYD3fvONcWnRsEwWtuQPYQbg/964JlAA7WmIaXnvXqt/EF/I1A3Qltm/uScPbEsPuxH4KtLFkB9gww4z3AMgQkWMaQ5s1fizNUhSo4zoeZcj0G0miwLDQT7VJqSfsS3zrB8IX41oOzdVPQi347hv58pC3gm20yfG1DQGJF2pHeVvAuGyls6Yjk1AgVaeT2fE4frgXktxrOr1UM5dBDFm5ogP1OWc0OgtmhJem5dnOdJLKY5+Z67ow2jsV1YTbgThnB7ZYavoKDsJ7lfjlQq1SNDwgAEJSXOvSrSDFwJ+2pwtYa661SRfgyu5yF7Z3N/zjsTY9vPfDIGHHtYbNu9M4EGaIXyGytPaP86Ig3EcGIV21suW+0uLCjAjWaJsCoz110HxtFi1HA0IFOlZZuWoJ6RQYKg8rKOs2nC9anPT7OEAB3Qij6VgjQuNIY0uKVv5a4tU5Z72j/KPvtHp0aelr5TVvqbMqwnjR+e8dNK0gCq9K0j0Cnnrcey7VvwbtmOXKUDJk9zXwfb+zkKB9+kcyKNU6a4NJAgLPZxHjaIX8oKy0lZQpu8aluUy1SWNFfIWPjOexX5WASlxIR9q9yBJ/nMR4TJ9vBTWP1i0CTbwG8dVg0UDbM0XIHfmq0ny+NBdacjhNaj7ko8+IwVCF/qOyACRq8qh0pZJL/IN+LSgI51iBf7UZmu0yR82QY+C6eXYL3tpXhl4mr7yDKQu/KcfShv2YfC7unzwmzZyrGsj3fEs/KZFuQ/+avQKcBNGb6XMj4xk2jKcqxX2VGfQICBX51tdWpp4BpotxxltHAV2KoUQttcVA/CzECDUkwa4SMNvHIxSB3UBuhwHQ0NWZ2e1QY0qMfV1A006ADbD7Yj+yTxAu9KZ7RPh8VglHjRFtKgtQ+ke50EHSrfM4CeNAdsyh3r0GaQL+yXDFpZU9kf4Em6U7YbuDaI7OHz8pg4E3faJeJaOaieEP/pEFK2JKj8UH4lnn2Xf9kn4K68Lk9I89J+8lHSfqEXDKSX75SZRupV4ZBmaCryn6AMuLAc69YhEQcGWmxSsVCnTiwZF9IK9dj3HsmPtM0sIr8LYcp54Pa3Z0kvDoSU7Vf+awvoYIHAIqBNnVkz19Jeos+V6/ahO5CsJtCQ9iTOQF14VNikG+ncXSHqsy6Ii0yuWbWcKRNsR9yCzA/X4kH2y1mJUJ6VZ4q1GXyTMiyfQMMG5LLfbdpGAhab1uGAIIsbEACpMuUanPnM6k1VMX8Fgd8V2BFwt85TlfLf0DN9DYHQDzqzOEjoebMvdIykG/FW0IrgFDwlDIkr4LJNtr0MkuqsS6vi1L71EMd+59EC79Ij+Pe39oWlGpSX7sQ9labsEn5q4OQfXyw3A2+8aH32rxkJli0dGGCUJpU5ZZagZafcoG9si3RnHbZNnawtYru0Q8oBGxCXcpKqUwbL8waxvS+9p2NMGdKgAULljfwmrcj31ifPKLfUabZBnpUPnHZqkK4Msll3ymHgtr3yjbhPvcV3ZXjiPXEPLsQDcFiWRynTsg2UnTKDZ21bwavI/NRFBD4IaBg88BnrMfAjzLlwIO/mdpPUJ46zjsR8VpJtEP+8mPIv5TDtsCwzNGxD1inMnPa5uDaAYfnSsPI/+wC5rzwpeN8MLfpdOoL380Q+8kDqFPkHYkvnz90UtImlGGlSeZJyFF1NYalPhUf9Im0V/VroDzCTz9RhAeu6Ou+lnDHLCz41oKEMFi+8mPQkjgubAhxBr+LEe9J7ediv1qM89tAOVj7JH/ahp/jM/qKO9A+A3euCpA2ozBBPyreEm3J8XrpPeYi8Ue5oJ+m7ZqA9YShka6lLDW7SOk76XvxqF4AXZY4wGMQBgOjI1NWevXsREC226waMrFf4/12Pf0qgQUR4EhwuGFCFCJF5TQWg4DCo4HxwDYIkGjpf4pbYJQQJOQ1UnkcSqEHzWmkkUVBBvKC8DoZ/jk5IzJbj+6iHwqlFQGGsKRQkPAWHxJcEB0x++lvYahQw12UsDwmpYEKji4ykJwMq+IGJ7+X9os6CuEzR0+lVeJWMZGkytmVZhsRWGlgqyHwf2NIAFAfCwPNWIGz5SZl+SsQKkSR+4HdkSCbmMjfFrQpZ3vdhhb5w8s/fHPm38t3RAwWHDKKA9mZZn3jx8Ld1yUyZXiVcHsKZ/3hG2DnFoW0oAxU1eBEu/ikYvKYxb8mlgrNs3998FO0RhKIO4ecNyk6AeFDoPL2U9fpDXNqnCiBuqKB8PgWdT3NN/NsPCjiVnXhSgUl7Oaecvnc0yrqkIftCg18AMnIqrqVHqtOotwJh1DhXsCZ9cz2NuFr0lTiiTMEoBSQvJ+xGzr2m0itogN+8Kw2IG0/h9Jksn3IUSvmbd21n0a5Kv/OsozbKfZ0ATyFVHFq+MKTBhoFTTBtBsMFropDm8em/yidlyYYp/GBM18NwYZx18J04SkfNdzDC6qNEGjFhFXcJoiF1cxOf0BaTZKEXAxZ8IlA30C7p2GBD8jr4yjZSXkNgauDk1XWOEFMxgh0POpZjgBl6cJuwXCmad8S5cNqXvi+f2y77SnoTEv/b5uRvrtufyZuVe0lYPOl/6cOjMNRtN2XYNzzLq+kAyLfpKAGXBpfOQ640TDs3ARCUTMSf9xI4ZQAR6rW0A1Rs07BpVKEs3xo2PIb96Cex6c1R0Y65d515tz2OTSNkhz1lMNG+sk7TcqFOZE6lf4QbiLJtfPPT58yCWAm8i+j02WQzzEWBLZgwLXb5zy/FkWecHC379KA98DtGa31eKOgbOczWnBvrkVkQBFL4Xo9+argJmUIHSd9maaxcTzCH7mvINBZjRavoa+lJeVAfbWoCC15aynNlUY6i08f2gM8ZeFACAJ6gA6+OKneBuZB1XKQd0qBGpzhOwxIcS48WIn3ziq/nIR8InwGMfAhYRE3KAvpM/iiMSN+gbq4pY+SZ5BvKy/q5CwazTIuymvzjDwAut1ZTRihrLasAhb7mi3pKGq5xkHxfuDypUxpKGZNtAafIFNsh3wiH36VPgyC+mkFwyivLlaazfcBjfcp+boMfaJ1r6VxTlzjzKIPoliX+hS1xxLP5nevqYetUFic++PRf0rM6mbI1yqV7G0v3JZxlNphtVcZbLpIjRxczgwj8GIi1f/MF/npYT+qCbKf1ljgvcGl7sg4f5pnyrs+JFHHodfFoOWA1610HTxhwSHiAua5BQPHN49kinrXNygb7OvtIfPodmtL28PnsJyvinoahBqKnGDV5KO0FQeBZR+2lCy4n/ftdGeohTuRdR9Oka0cXc4CA+gwgGZS2P4tsD52ZIsgirWZTKcvySh1lewVLetJm8Ewnmb5JHcTtwhZQ9umwqF8FmHeEl381uLcMTpHvtfLwmrSaMPB+On84UumwYRP4ZOoMXxAW3+W/Xz2t0y+OoBsg0XmTtrMGrtsP8rUOn3Sn02Cwzz4s/vF6PmzRwmYbKDgrkS8K+BL31qfeS/riPfBaOipF24trWS74sO+kUQORq8G1v7V11KtWIX17mg3rKHU9HjDY7H0D/CXfbEQXmylJbfSNI5HrkZHoO34bLLCNFaAplUYDV578okZoFJ3HSSf5JPRJvyOL6xCkqMP3jcjTbB+Zgiw0FSs2kZlI8HcjQXn5cyPbEasPqyDs3DIwcQStJkNbF4UCr3aaPKoOVEdJP+IvM2q4nms1qKd4PHEEMPmqOAbmxK00JJT8TplCucpi+0Rc8zefk2YMGvqeATXrLMDgvVKWgTNfzPr8ytsp74Hfa/KlcCdfF7VmvdYtDOoSH7Su7Ct1inApVylXOkjaKR7LuizfOjO4Z0CA7+k0cz3/8b641maSn7yftM9n8gWflun7tsN7KesAxLo9LMf/wpb0KbyULzz+9swyuZYDQfSL+kM4Eu/UX5Zl/xZ0b4GKoKIMp11oczlIJ24LW1Y7QP1lXfatNirZIZRaBI8KnatMMPhoO8zSVW8lniptSBjBoTUmnRQtyikyOa2Y3wZBtZulKdurLqVSuyvLEv/JE/CUtpy4UG45lVKZCvKKQIO/87bcU3mWNirH1De5Zhxlm1klHlJWgHsDhZsIYtRpKF0VfJ6DGhRN5+SAatIruLGvhNNAT206zIp53E9f8yg/vVZAxjVpwj6k/vK6OMrALOUa1DHLhKYm7SjnQH7KOWEo+pKSaZODTQ5IwtW5QL3yRtznM1YObqRlAw3iSj0kUEnf2Lb2ZQY7gKUO75odYeaQAxQUk0f5Wfn5b/cBnYDtf+AoXxZ3OjkSQBoBYEZbdCOdYKqi5trfe1jHX4VomwIxwPG1qioh3HoJwi0xbf348+9u/Z2/46pwS/B/4UAMAqvk+Zef/eiiYDCUXB2U0p9rue+nkv0z2PEJI+6IWVCOwvyTQ/zVhvXPY/tPXv9XXECYJUwIvjwQKon7kmayL7xTG+7i0f+7f7fE3UfV/tc999c99VF1FNctw/PD/GKfeuJMsUYDEoAHeIKRGuO3xSk/fvgtS0JVcFUDw3v0yyaMKwxTBAi/pU/T4VHCPGFv/Cnd/zNaRcF/6RAmFHB5bOaf2jSSqrEG0nTLea++eCDQ8P7QofH8T38eS18dFc3aNotOKPVtUCYNkI/FCuaWJS40sHxPA4PWc+YdmppGpnCAH40TMm7jAxTwfM657DqxEOPig/GTYt9rvh7Hn3161O3eizJNsa7QfJakWtPoJkU8z83t4sLmgyZvQCMaKvVtx0/Ftj1jr9QcW/JPzY2/7QthTcounIG/7c1/0dNb9PlfX4tY8rDXKkfqJa5jlPxzj63U9TdXoJSXD4XN3t3KgWNU0H9t+IsFhTWmGZvZykv/uktqHOmyFob/9spEnWftJv3tpWx+AwcyAdK5rHUQ5uOyo1jFdWFPA/OvgV4axJ5Ke6aW/KlV/D/w1caXGCR4gx43GPC3IYQytLdSXm8FlIqTijewlZv/+kvi2lbifte0tHatOgjS0V9jexXvmV1IP9cc4s/TWsrT3yUv2e4Sx0pRT96Xn7DBdMyI7vC4srhYUJwv+QZ3KJEAd/76C/y1NVm1VVvY0v/BwwEB+7xqa/be1soWLx4lHopf/7q/Yu7PMLW48vin81NRbPl3E7RVB7/nbzp4R2e3Ltkrmw/xtwXueC6PLcrXnvJpQk7F/S3+bqWkfGIj2aQZ4GQK5v+VQ5tBXfgnfbAZQnvJ80Mt+RM6/wt9/Xc0ZgPBRINtDdwV5kN4B7b0DbZOW5t8D4irHGD70Ht/BxC8UrS/CFDY+1tQwN9X6P/Dt/5pgQZJpDxtj4jxt0eJqPKzuFr560M1WCzf8F4lKlqrlA918YcfrVTuRU6t8xoIvFZTQU25fOHJspAPuzDl094vvpdXfOujj7I0S97qexKqRxlUKH+XIJbXi6e2+KtBWDwotJsh2lzrFi98xE+eT4axhPKsXYbXbHlxraipuPanBRZl+WRGBmsEfFle3qm8VpRYG/I/La+88lH1lfdrf/qsEJfHR+A+b/OUkVcPnWHxUPZBBh4q9+2HrfSFb5Y08eF2VMrMggt48mv+Ke/Vvl7iwge8Xj6z+bdXijfK9zZfqXm+hN0naxezBey+WdZQlmZNxdXizofbs/muBZfvKPw8avgwXy1EYhpRGlAqwazfp1C0qQz5vgVMllPgsoSM9wwClbSpEuJdnWKfEIoSDt/NI9vP1a2UXXmg8mDxZllT5WLNx9b7tLzNWyVMQsD3/EedUpplGmjDVOd74UToLuu45eJgLFy7gV07RrPC9PC77on5774bVcy77cIaJts43YfRiSqMzpwG4+iBQUCMObPoWAssRzOExCwKA7n1MfBcANJF2ci2ZSSM7S2h6UWMSi9nNHLF2PcINFyVCwrV7d2dOIPBH/CKQ1g4BOJCA8hRA81YKsl28VEePMIb2SLbaA8XJkw+idPEiBHXcoyqNj+V73/Ep7gSdx61e7O4Zk1b7eV8vvjDu75edGetL0UJxeWam9wv6irerX29uPKRf5OueDfpasv3ijKLvx9uRU15+T7vlXSpYe6xZXk+Z/Hlcx+CN1/wD1e3rM3fnMXlWu/n41v9Uzxa80I+Y9WW7b8EI2lhi9eFMeEs2+OTHlA8fZ+jen/ynvWUz+XDf8efD8NaFiCs6sGSVopatlZf+b5vbgGLt7KPKrdq8O+zlu8bxTub36xdno9VfpfvbsWBKWG1VOVBVpuwby7fe5vr8FetY6u4L+EoPz/y7VoFbe2r75fvAil1FTrca55l+Vt7d/N7NbRRU1bl+RJ2f4qjxFNZZvm+N2vD4e/yKJ/1d+3nK/drv2ZdWzzibemkeMybngWd+z0lt232etmHlaLLjwrX+gSnv9RPJS/XBoBbwlBzWKZytSJb87rvcfp+4sbfvKN+rATWHUb68KE+qcCYNwpIPvwMZWTdW7Qj6+HJGtz7Vm2YS3gts/axxfUsm2sljlKW8TvtpdrvbvFe1lXUaOklP9W+UrvWP72+RXn+zOpq1/nhEizDf0VdW3uOQkp9lXjx/drPlXXWvl5Tca3KyufKd8vf5Xtb8pPXt3ymVnHlV/osa0tcWza/xH+J+5rnKmVtcV0rxKPQ6eXDmz8LbvD+5t74P+y9CYBdRZX/f3rv7BCWQCAkYd9JIOwIDIIso6iMCC64zjg6M46OzvhzEJVxHWdfHPU/jrM4Co4gigi4sMq+BwgJCQQIBBLIQkhI0p3e/udz6p736t1+nQTo0J3OqeTe2k6dqvt9/epWfd+pKsNM67An8Ym/feYoItWfMddTDROqkfCyRRMrmd5W8rlMdf73ToH06dEab2v6BiFclLMKixpdT6USMl+tS3UYhvo3wg856fuLvqJumshzFNWTk1z6vK31hmG1/eQn8RzzSrFKrtWBpP5PSCQZyqbyRZmt1HvNRAPPDTDuACWPezp+DWD2B+kpWsKCHu+vo5qTaSxXVFcoky+C6Y94IOGktP+fRVaZBysqUqBfcg0SFeHqw2VJ1jRToDf/UlaaTkZVONWT7tV2pnilyICBqp5qQ5JwrqGql7w8J1ec6yrLeZ6XLcddD+ku42mb41f1pdK1LU4aynq9TFFlFrUm5HFTMHB5cvqJ9yuTS+S6yumvNE5FXkb1uurS340nW7Pq3ooXTN08Er2OAQU0g/qpqXxRNr0mUmmND6iuKFvRQwnkvXxeEFl3np6nlfNSPEnUl6tqqYeH56KH8imeJuJpMJte8On1CMnANN5+m+fXSLU26Fai4f477pTr/veH8vSDD0n3yhdlsm5+uJNuPNSkm1u16jVGLWra9PPrVWKAbSGbdMkCS8A48YH1+PQJZp6oyxV61G5xvZodvqy/hq3XXwvXaH2rdB+IDbopUecTC+SUv7pYzj7vXGndezr2zandLAVyqx37XGhlhm8GjZn9aS7DlirhkJ5ek+xXBn5p4Bmr6GQKEDKX51ax89yqxoH0VMvn2FfLEyrrzdtRLp+XJC+X9by8DGllmdp8G1xkKLiWip83z1Rl+vz7an/3WsLjlcIE+imoyd2cSFZjP/H0NANh4eJZfqU5tThUccrTN1az6x7Iz/SAj0VTWlUr37lMruazGiC9UriUb9FqWhJL95Tqea6AuId5hnJ+noaky9bKeQzp/i7P9fIuRV45zfM2x8/Lb6yesq5cNs/TtuTNKf8t22foZV3Q4+ipl5bprylfpFuRolyuqqLNE/ujX/t3k9WTq86SE6VMXd7OLLOcZNVy8/qRVaHK33FewGUSpeA51dKektVXE/TyVFHIlrGvtBlZ15eVq6Sh2NPLcgPFKfN6uHrt8jZ5/S7j8U3lq1zlM6FMXp6yG4sj7/pzOdJzV9bjeV7W4/i5nrychl3cRFzOE2vLVv/ac91JJpVMEinsusgv6av8PdXqqUq5BlIyPVWBVLCSVZIjt1JHRUhbUSuXvnsII5Mr9zJ5GnKb48q6vIzrJO56S2mejEglywMbQ58Cmavo0bJevMj2rFJyVnjrCg4K0bB1PXK0NhAIBAYXAe8WXSvxchdJvF46ZcrlSXNX1uPpQ+fTWibg/Mpvax/1ZWkbO+kzJx5cXzasxVYTvAZMY3Un7ntu/q1c8s//IvOuv96IAfbx30HtAnQPa70wnK01E0RPn25Gtl5PrWBSv4teGPOt1GuVXqDCcgY9nEtW627SS9a+aChiaXDeRZ+Tc84/Tybsu4/GlC7AwssYeiwjsLxIa1jNtBNWoew0iWeEaEhX+pXXPz3a5mRKndJlbREPBAKBQGBIEfA3zGvrr1zL5j5KXtumyiZZl8pLbm5tIRcIBAKBwHBEIIiG4fipRJsCga0MgXyARPjVDJRcB4/+asq/XpDRTpuAK8FgG4jptJzNmthIydh3TCCVaGhUS4SGVj3+ccN6uf36G+Rfv/JlWXjHXdK7x2SZv+g5OUCPSzvhmGNkz913k7F2xJVSCro3A0eOLZg3X+679np5Tuvaa5LIUUedKFOmTpO2HXey4zPXrVgtLzy7VBYufFIeue9+YYHEmB22lzUrXpSPXfSXct573i2T9t9PU6ufhm0saBtCKdGgyy8qJpaI5OBr1D6A4kOwEyVKImTxq+Bw/px4jHCBQCAQCAQCgUAgEAgEAkODQBANQ4N71BoIBAJbMwL5xBzCwS4lGFgb68QDlgRsBtm9Xq7/zXXyN1/4nGxYu0p2nDxV5t1xq+w36xh5+9veKjMOOUgmbjfBjgNjzfuyFcvluht/K1/94jeMQDjjlH3kiBPfKIfNmCn773egnQX/wlNL5LGHHpU77rpHfvPDH8nO++0p7RPGy8N3z5YPXnyhvOcDF8huUyEa2EI27SCRqAG27mPFuLaNZ2D7aCca8mfyz4ajAWAT/CKdMK6fiW5KjnsgEAgEAoFAIBAIBAKBQCAQREP8DQQCgUAg8EoQsAm63pRcsH0kWEug1gvpCMG0BRmEAfPwJt3JeX3HGrnuuuvl29/6Vzlo/wNkt8mT5eGHH5aONavlLWedIbMOnylT9pgibePG6lnrnfLM4mfkqmt/Jd/68X/LW9/8e7LnnnvImtUrZcquu8opJ/2OTJyws6xc9LTMu3eO3PzbW2X2ww/J0Se9QdrVKuLGG34jBx9/grz/gx+Q6bvtq8sr+Af5AT8AvaDHVullu/Y7yZC4kWSmgSDP587PIDSigefVDCNQ1OcBiYcLBAKBQCAQCAQCgUAgEAgESggE0VACJKKBQCAQCGwUATgG3X+BM7k5b1sPnC7EmaGzGZAeTKabOHZzgoTujbBm9Wq5UY+3vPqaq+S0N54qeyipcJ8ud7j3njvk0IMPllmzjpBDZ8yQHXbcQZatXCbzH1sg11z7S3nqhaXy0T/+I9l1t13kpz+9QpdJPCof/9gnZO/d9pRlSkY89sAcuf2W22RtR6ec9bazZZTu1XDllVfa3g7v/9CHZO/J+6hFhJ51r+1JR0c22DF2zUowtHNeO5ttQjL4lZqfnoWwkwyklIkGyJUgGkAmXCAQCAQCgUAgEAgEAoFAHQSCaKgDSiQFAoFAIDAgAmrJ0KcnSvTqhYUA+zP0FZPuBs6H1rRuPeqzS8kIjklas2aN3H7bbXLD9dfJYYcdKpN2mSQPPjBbHnv0UTnyyKPkcLVo2O+A/WU7PYli9drVsvCJJ+UXV/9C7p0/Wz78B3+gezPsIffdeZ+sW7Neznjz6bLbjrvKiheek4UPz5PbfnuLLFu2TE4760wZPW6MXHfDDdI6YYK88/zzZfrkvXSzyA1GfLToxpMsmOjt7ZYmJRra9LQKO0M+JxncsqHmwZVxcKuFxiLMswbRUINSRAKBQCAQCAQCgUAgEAgEahEIoqEWj4gFAoFAILAJBPi5X53ux9DVpUsT9OLwhkY9PrKlpUWXS3BORLJsYEeETt0M8u6775Zrfn6VvPTSKrUq6JEFc+fIPtP3lXe841w5YuZM2X7iRGkcpRtHtjTL2heWyU9+9lN5/x/+oex//F7yjjPPl+NmHScH6LKLXSZP0jqa5cXly+Sx+Y/qUokb5KdX/kD2PfAImaA6nleLiGNOOFnOevPvytTJ05Vm6Na2NOjZFC26ZIIDKXXjSr3b4ZY8hpML7muSiiRnBEMRIWz7NWjAwsSLcCEeXiAQCAQCgUAgEAgEAoFAIOAIBNHgSIQfCAQCgcBmIZAm3xz6aESDWi4w6cZ6gaUUTY1M45VoUMuH5oZm2yDy6acWyfx5j8oLS5+Xl19aY5P9XSdNkoMPPEim7bGHNLTp4ZVKVEiLTt7VcuFB3cPhXl1e8eLyVbLrlMly7InHybS9piuZoVYJuiSjo2OdLFv+vDy+cKEsXPSUdCrZ0dTWKmPUqmH3adNk73331b0cdrSNINO+DLYrg7arVxqVFWnRZRMYKBipAMmA83iKJUKBxAqxUGQQx0E0hAsEAoFAIBAIBAKBQCAQCATqIBBEQx1QIikQCAQCgYEQMFsFtWbo1Q0g0yRcJ9zZpLuvV/doUPKhT/NbW1p1C4dm6d7QJRs6OqRjXYd0d26QZiUj2jSvrVnzW1uVYNALp/stbNB8LCRYjsHxmQ26B0T7qHY9wKJRuru6paevS5qbGzW/R8U7pLO7y/Zh6FMSAqsKCIeWljYlM7CsSA5KQFssXaq7SbmDUa3t0qLESD+iwQvgO4+QnzyR51cEahIjEggEAoFAIBAIBAKBQCAQCKgxLD+7hQsEAoFAIBDYLAQgGrBk6O7plmZdxtDS1KJTbhYlpMk8R132GNGgmzAqodCsVg6NGRGhrEDa44DaWNmARQF7HqiC7vV6RgQExbg23WRS0zLXp+U2dKmwBtpa9dhM34MykyFIOzYYrcAyiSQEycCeErSLpRPtSkQ0c3oEwlxlB8lQZHOOhhs9IEZW2omCpw4XCAQCgUAgEAgEAoFAIBAI9EcgiIb+mERKIBAIBAIbQaBPj6zUbRY3dEprW5u067IHJxogIdwR6u1Jlg/4uJZm3cOBDSPhC1SAub7N2snUOGKUa4Af0Dw1aFALBr3IV9ekac1cCGlGb2enHavZ3K7EhFoz9Cj50a3WFj2qnI0pm40EUQJDT8GAU4b4aFLSIxEFqgM9uaNOjZNc9WuJBprGBWGBnnCBQCAQCAQCgUAgEAgEAoFAGYEgGsqIRDwQCAQCgU0g0Llhg1k1sPljqy59SMspdHKvk3j/nd+4AGUKsFCoEA0qr6sebBLPygvIBuRYxeBGDz7Jh1zwMJN+5QDMyEFtGZKxQ5fmazvYlLKB5RfKWrBko0fjKGxQVqKBIyxVMSQD5dlHgnoIc+WOuvL6qLN6kVNtQ7OWLriQfnpMMG6BQCAQCAQCgUAgEAgEAts0AkE0bNMffzx8IBAIvBoEWB4BSdCgk3sm7Jwk0aPMQRN7JOhknnzbX4FNF3WujyzOyQTKYK3Q0ckSjB4lK9p0X4U09UcUksHJBQ0aAYCPBCsqWhBCwNgIIkZ1aBvUckErYUkHfpfu30DdECLU3dOd6Av2jYCDMMWpWlPnap1gIJ5KEEr1QzBANNAOihbFNRQuEAgEAoFAIBAIBAKBQCAQSAgMCtHAr2X2i5mOZPlFz93q1avtDPkxY8bIBD3b3fMGkvdy+MjgKONhSyhurouobcqmPml5eiHaz3N9LutxBD2tX6GNJLyS8rmsq3w1dXrZ8AOBQOD1RSD1TNU6bTKurAGbPzayNEEn8MlaQfdI0D4JoqHGUUC7Sbq4DRvUAkGJhmYsHXSzR3eQECamcvSohN0RZ0PHSiJhZQboW3rNmkGtDTCbUNelxAL1tLRwtCVEAxSCLqHghAsScqfxlJt8Jxs8DVGrW33IBq5qizUSLhAIBAKBQCAQCAQCgUAgECgQGBSigYk+g2U73o0BrDoGvXPmzJH7779fDjnkEDn00ENtUzTy3JSYo9ooU3aU5con4J6GLOl+Ebdz7FXefk0s6ie97NCBc9/rpj1eX663XL5e3NuF32hmyql9m5L1fOrzdnha+IFAIDA8EUg9CFP1dJVbyUTc5u+FoIUR8oLlAq6oUrAsUMQriurn91Pv8pvbDtQWZTjxwskF9/Nm0mNz0dN7NRoMFwgEAoFAIBAIBAKBQCAQCFQQGDSiwSbaShowcWad8EsvvSS33HKLXHHFFXLmmWfKSSedJBMnTkzrmXVSDjFRQwwwkvWBrub7xN9bStwddbgj3YkC9PmknXQvk8tbOVeV1Ud6PzmvZGO+6tKaTMLL43vdXtTj7ns6st5mTws/EAgEhicC3nXgMwl3R1fivZKFc0EX8jSP43shwpU+riyocZJc1vdd0DjJeRZqXKwmjJA7D7tPermQxsskg9eDKEQDfl5Mo+ECgUAgEAgEAoFAIBAIBAIBQ2BQiIYyli+++KI89dRTRjT8+Mc/ltNPP11OPvlk2WuvvWSnnXayiTXkQA0xgK2wjlp9sl7WWS9uBIOWs3XSOmH3skzmuSAzcEzkfTLvMozOTU4DpFXSVd7Lu29K9JbL5Gn1yuf60YPLy3uZPM11hh8IBALDE4H0Ta5Owr2V+aS7IXVliQFwAS/ocfPzRMLluCdl6dpX2eYKSjb0arBMdqCWtuAqvhd3n8w8XImgmwz85BHzS4PmiqxKuEgOLxAIBAKBQCAQCAQCgUAgEKggMChEAxN6rBjYfZ2JMyTDPffcIzfeeKN8+9vflnPOOUdOO+00OfHEE2W//fYzgsFJAFriE/GcELAW6gjXrQWIlyflbGzGmuScsGBUTBlICC4vh26f3Fui3jzfSYg8fSCSoaYNjMB11F0un5f1Z0N3XrbcFq87/EAgEBi+CPCVx+GXJ/k2AdcMfBPAx3mhFEsJFaEi0yb4hbAlFek1Vg5Wg1ag9gS6F0S31oQUV5GDgkq4klaoqrTD4p5oRWpv1ja9mV9kaTgvkWfVFo5YIBAIBAKBQCAQCAQCgUAgoENJnQjn48dXhcn69etl3bp1Mnr0aCMbHnnkEbnmmmuMaLj11ltl++23N7LhggsukCOPPLJSB3srQFDgmKz7UgqfkJvFQmYNUJ6cU5bm50QDcX8k971CJxs87kRDrtfLl/O8Te67jnp+uV5kNqdcPV2RFggEAsMHAe8s8T1M65h4VywZSPBM90mz2XlR0sM5wdCvkMp6ee+msWjQ3RH6Gpr1NIiGCtlh9VOHOg+7X9VBbqaT6Mac1VUIoCx35XieF+FAIBAIBAKBQCAQCAQCgW0egUEhGjboWe4dHR0GJuTBvffeK9///vflkksusQ0gIQROPfVUufDCC+UNb3iDpWHRwGSeyyf6EAE5GeCTfhS7TP6JURYZz8sn+PnEPicN0O8uTyeNMnmdLuf6PV72y/WW42V5jyOXt9PTww8EAoHhi0BBFVTm77TUJvWaYfPvCjlQegbPNHIB4SSYrLZqCyVbBcoX6UY0WC1arkkJhma9+ls0FBIVssFa4CSFqXJ9pbZVotbIIqbhPOoynua+p4cfCAQCgUAgEAgEAoFAIBAIFAgMCtGALibNHGf53HPPyR133CH//M//LA899JBZOWDtcNyxx8mFn0tEQ3t7u+2fwNnuWCP4BP/VTLqpN79oixMW3i7Ptzw1O2ZPhzzPInrz+nXHhvoDbBfMfR2325Fyefn8l8BcthTOSZZSVkQDgUBgmCLAVN0vb6JtjljM4ftlupBbL+AXZEMqkqiGXCsUQnUer1Ku2/omtWhQqwY956eSjGx+UaWVr5AMFQXemo34XrP7JVFPdr+UHdFAIBAIBAKBQCAQCAQCgUBg0IgGoFy5cqVGnCDhAABAAElEQVQ8+eSTcustt8on/+yThi77NmDxMH36dLNoOP7442XSpEkyduxYPdu9pTK5948CUiB3PvknzS0YPN+tHyiT5zl54XJ9umFkTgagkysnIJD1utz38vjeLvx6+blsvXwv73LEnWho0vXWaVbgueEHAoHAcEWAHsov2sh82648sbYbQ0yFikQjGkiAYKiSDOSmuXsiGapWDYhqrhVXCbVoSFYNLp3KWRuSWu7qKODlrLCl2i0V1WAlUOR53P0i2YvnyXm4EAsvEAgEAoFAIBAIBAKBQCAQAIFBIxqYNK9YsUIWLVokt912m3zjG9+QJUuWVCb07N/wp3/6p3LcccfJYYcdJnvssYd9Aj7ZZnLuk2+flOeWCQizBIMlF+STN9DeDE5AWAV6Q951kkZdXp/LeHoe97CXp625HPXkcYvoLa/L0/BdT+77c9QjJ/KyEQ4EAoGhR8Dn2/geplWbZdGAYEYyMMevEg0p7HP3GosGJxmsQpVgM0hq1H6swhPkjbEwN0/MfK+AgnmYtplLibk9haW4iloxj4UfCAQCgUAgEAgEAoFAIBAI1CAwaEQDWhcuXCh33XWX3H777XLppZeahUNe2ymnnCInnHCCnH322TLjsBnS1Kzmv0oc+CSbibxP0kljEu6TefT4vg7IkJ8TDeT7BJ5w7pDln/926PUhU6mvZuBdLe06XY4cL296GeyXnBMSnuzyxE2PDtptguHPERYNDlX4gcCwRsDn2/gepsGbTzSocMWyoegHSrroUSpEg1diZIP3NepDNnhU5c25rLUsb2GR4fLuWy1e1BPxPZzyPGY+qjwhZcc9EAgEAoFAIBAIBAKBQCAQ6IfAoBINHGn5zW9+0zaCbG5uNgsEiIJ84n300UfLF7/4RdsUEisHn8AbyaBLHPjnBAN+Pkmn9S5PuJzn+ejyOpFxfeS/Eud1uY+uenXmOpH1i3Qvs6lyuY4IBwKBwPBEwOfy+TSeeXe6NNUzckFyfXJeFba+riruAlVdLtpPp+urFklgQUaYc61ENGxyRV6lDFQGuSnBfa+dki7qxT1Onrl+CZ4RfiAQCAQCgUAgEAgEAoHAto7AoBINbAL5vve9Tx5//PHK5J4Jv5MOPvm//PLLBeuG8ePHVybuPjnHd2IAKwT+k4YbaLLuZSmHc6KBvRkon1s+kIdlBC5PtwS9eV0ez/1y/S6bp5Pmz0lZ8rxduS7C9cqXZSIeCAQCwweBYrquE3T+JefWBzbvJtEui6WwBfVWJFmfpmEWYlXEC13umYWERijSWBYisbjISpSBBmqIBo17C92CgqTCJZVeEmVIJ6XW72q8Ug3COPeTeBJIOXEPBAKBQCAQCAQCgUAgEAgEahAYVKLhzjvvlI9//ON2vGVbW5tw1KVPpiEbiO+662Q9keKf5KSTTpLtt9/eNoSsaVEaOVuST9pdB8RAeVLvyykoQB0+qacMefhOKDjJ0NnZaemjRo2yMl6/1+M+deX1uRw+Mk4oUCdyXs595Orp8LKUJ7/8XJQLFwgEAsMTgUQyONHg0/Ni3t2ns/A0iy8an83KKzP3RDJANORkQ/60iDrZgF8hGxCiCi7Cldm/t8PZgLKfZKupTo+QXiUcEsngd82hQLUQwulBaSDO/RSLeyAQCAQCgUAgEAgEAoFAIGAIDArR4Mda3nrrrXLRRRfJ888/b8qZQLv1QI73xRdfLJw+ccABB8jkyZMrk3Sf1DMRh5SAEOByHRAJXD6p5zQL8pjoQ2xwkgV1uvNynuY6169fbyLjxo0Tjtp0R71+OUHgbUImJwjYmJL6qZslIF4HMrnztjrJgc9FW9DBqRy0O68nLx/hQCAQGF4IONFQnYFnc2+bmBezb+sKirASiubUgyQokwxWrHhMJPPLCAcV8DSvwtQXrAZ5OKcMaJunOSWSJFKrU9kk4ZJOL+B7XYX6/FGrDUkVutrwA4FAIBAIBAKBQCAQCAQCgQoCg0I0PPLII/LTn/5UfvOb38hvf/vbivKBArvssou87W1vs2UWRx55pJEHkAI+WWcSvm7dOnnppZfsYkLP5JxJOReTcuSRwccyAeuInXfeuYY4oAwOMgAC4OWXX7YLooG6Jk6c2G+STxknC9xSAR1OMuRkBfVDcOy0007WLuT6OR3Rc7QmpIITJ+joWN8hHZ0dMmHCBDvu05+9X/lICAQCgWGFQJq4J7qBhlUm5URsBq8paSavvoYR4GZ+SqpHNCDlDtH8crLB8jUj9WzEqChVltQ7beB5+LgkU2mWN6aOXyEaqsJePKnyhhFLlab0uAcCgUAgEAgEAoFAIBAIBAIFAoNCNMyePVv+93//V9ijgYn3Cy+8YEddumXDgQceaJP6jo4OYZIPMfHOd77Tjrs89thjjQhggu+EAHIrV66UZ555Rp588knBYgKyAZIB/UzKmfivXbvW0rFK2GGHHXRZxq6y22672cQd8gHHpB75NWvW2KkYTz31lKAfUuLggw8WSA/ICvRRf6Pu5m5TiMwygXR3tAUdTz/9tLVx9913lyOOOMIIA5fJfScteD7qWbZsmbUDbEibMmWK7LPPPoaPkw20GTIF6w3mBz29aU8J9Dr5gV70WZuz9uV1RzgQCAQGH4GqhYDPxLP5diVJZ+CVsLYht2jQKFnlK29peS5vcQoUE3svi5aUREol28K1DSiS1EuSHi8UWjSFkz1DoatakRdIPqJ50drciAUCgUAgEAgEAoFAIBAIbOMIDArRwOaPt9xyi5ECTOgXL14sTzzxhNx///02YX7zm98sU6dOrSyHYAK99957y1lnnSWHHHKIfQRMnH2ZAQQCE3EICY7KfOyxx2xyjkXAdtttZ0QCyx6YaENcPPvss2bJsMcee8jv/M7vyOmnny4QADisDpjQP/fcc/LLX/5Svvvd7xopcO6559oxm9OnT68sz3ASg3I+kWdUzjGcvrRh+fLlcv3118tPfvITueyyy+RrX/uafOADHzCSw8u5LPUS9jj5YHPNNdcYKTNmzBg5/PDDZebMmTJt2jR7NmR5/iY98rKtvY0ihpvjAxnBxbM7idLS3BKDfkMqboHA64NAlWxI9dXMuWtn8iqQ5WrQs8t+ueVeyv1yfjXumqoptWXKrXW5WqmUmtIqOf1Ve+Gax6omRigQCAQCgUAgEAgEAoFAIBDQoaJOYDc2lNwsjLA+YCLP0gQm9gsWLBA2hrziiitsEv/5iz4vs46cVbOsAYsDyAcsCnA+kWYU3rmh06wYsIxYuHCh3H333Tah96aykeQxxxwjhx56qC2bgOT4x3/8R9PzwQ9+UN71rndZHmQElhCLFi2SBx54wJZ3QF587GMfsz0i9t13X7MkYMKO7paWlgopUGmPaa3eIDUgLP7mb/7GnvOP//iP5ROf+IRZJVSl0vMQz0kG4mtWr5H5C+bL3Llz7XQOCAOsGg466CChPSyl4BNpVnLDLSkgLHCui7Y5Fk48mEDcAoFA4HVGwLvPytS8tn6yyXI/y/WSWdKAwbL2vGyt+ryiXKqqOpdIqVXt/fNUwhNdXVW8qjRCgUAgEAgEAoFAIBAIBAKBQIbAoBANTHqZDHNBNMyZM0d+9atfyfe+9z1bXvBf//Vf8sY3vtEm0UyWXZaJvS0P0AbZxJ4ReTGI9cn1qlWr5LbbbpPvf//7wrGYkBO/+7u/KyeeeKKdXMHE/IYbbpBvfOMbZlVx9NFHWz57Pxx88CE6WW8wYuCLX/yiWRNceOGF8t73vtc2osxwqARphxMPWDi482fEIoH2/PznP5f/+7//k0996lMCubHffvtVTtCgPO3PlzX4kgfX53puvPFGueeee+Qtb3mLWWJg6cF+E+Dim01CJjjJgG7SSaN9nu56ww8EAoFAIBAIBAKBQCAQCAQCgUAgEAgEhhKBQSEayg/w8MMPyy9+8Qv51re+ZZN7wixncFLB5ZmMG8Gg5IP/ek+ekwyksYkiG0x+85vfNIsElhiceeaZtkTitNNOs+UGWDz84Ac/kF//+tcyf/58YVkERMOMGTNsQs5GlZSfNGmSfP7zn5dzzjmnstTB2+I+SzGWLl1qezpAhIwfP1523HFHm9Qjs2TJErn55ptt6QTEx1/+5V/KRz7yEWHZBkse2MOBTSx9TwkIARwnU2BhwUXa8mXL5dbbbpWrr75a/uM//sMsNM4//3wjULBuYD8KrB1wroOwbyoJljkRQl64QCAQCAQCgUAgEAgEAoFAIBAIBAKBQGCoERgUogFigEkxE3McFg2QC//wD/9gmx+yJ8EZZ5xR+fXdrQMoQ5hJcz6ZZpLOhJrJOb/g86s/FgtYLrDMAOsIlk+ceuqptqkjxMZ1111n+x5ceeWVcvLJJ9tSBjaHRD8WCCzBoNyb3vQmecMb3mDHatJW8mkH9WEdsGLFCkEfyz9I33PPPW2zRzaZxLFMhLrY/JJn/Ku/+ith+QSbUbJXBfWwvIJlJJAKPBv4QHLQdjahJJ1NIVnOwZGgECQPPvignHDCCfLJT35SIFAgOOo5byskTOzNUA+hSAsEAoFAIBAIBAKBQCAQCAQCgUAgEBhKBAaNaGAy7RYLEA1YEXzhC1+wZ2MZBRN8nC8HcAsGyjHJZ8LvSymYTHPxqz55bL6ILiwXmPhjHcEeDSyTYHPI++67z5Yy4N977722jGHy5Mm2JwTlOXaT+tmU8qijjqqc8kB7yIcYwFKBtrEvxLx582wjSpZtHHDAATJr1iw7oWKvvfYyqwX0XXLJJXLttdfKZz7zGfnQhz4ko9pHyR133mEbV9JuHMQFFg4sk8AqguUV7CvBKRM8n+8dAREDXjgIFZaGYLnBPhbgBNmCczIGzNCdXyYQt0AgEAgEAoFAIBAIBAKBQCAQCAQCgUBgiBEYFKIBkoDLyQN+nf/xj39sGzjyfDnRwKkUfkylPztLDjhyEgsGP5bS85hkM7H/7Gc/a5YGTNKZiLMsYv/99zdy4qabbpJPf/rTVoTJN5N5TnRgks/FUZTvf//77UjNww47zPZAoC4cdXOyBW3kpAwIBywhmMyzDOPRRx81uYsuusjKs1zhpptuVmuGq+Sqq64ykoGlGBAWl156qbz44otGaLDPAs8EmQCRwAkcWCz84R/+oVkssLcEsmxOyaaZ3/72t60erCM4OYPnYzkG5Att5LnADbKBMHg74eC4m4K4BQKBQCAQCAQCgUAgEAgEAoFAIBAIBAJDiMCgEA3sSs4BakyAcbNnz7ZJNycz4DilgeUATIhZUsCE2X/1Z7LsSyWYVHs65dAH0cBShc997nO21IBTKtgIEusCJwTYM8EtApigT1NrAHQxied0BxxEBHsgHHzwwVaHT9axNsAy4aMf/ajJsRzjfe97n5ERWDZAQvzsZz+zPR8gASAQWB6B7rvuusvqOuWUU4xUYKNJ2vYBPe4SEgRrC4gOiBeWYzzzzDO2PwRECUstICJo349+9CP527/9W6sf0oKlHVy0FWIDOdpbXmLiRIPjbgriFggEAoFAIBAIBAKBQCAQCAQCgUAgEAgMIQKDQzSUHgCigaUFPnnmF32WLvBrPJstMmGGCGCizAUB4RN/4u6Q6+7qluuuv04uvvhim9iTxyR+p512MgsIyrHfARYF05RgYC8EJvgsTWCCD0mB49QJjr1k+QIOeTZtfOyxx2zZxde//nVLZ88FiAaIAJaAQDSwdAMy4j3veY/svvvuMnbsWNsskjzqP+6444ws+Zd/+RfbiJITJFhusef0PaW7p9vqoB4sK1iKcfzxx5sOKoTMYCPLr33ta1Y/y0JY3gFehx9+uD2jYxKWCwZR3AKBQCAQCAQCgUAgEAgEAoFAIBAIBIYxAoNCNGxq6QRLDLBowFqBX+chGSARyuV6unukq7vLCAlICSbWvnTi//2//2cTfywKZs6cKSyBOOSQQ2xTRyb7yLLsgkk5GzqyDOKOO+6wIzHBnz0eIBCwhMCxHAHLBI6WZNnEZZddZul///d/b3LsqQAJgA42a+QoS0iKmTNmyl5772XEAuTDgQceaEslOjs77ZQNNnjkJArax9IHnhlCg/ZBULAZJGSInxjBBpIc/+lEAxYRRxxxhJx11llGOLApJDjxjDhbMtGjezTosZ1BPBgkcQsEAoFAIBAIBAKBQCAQCAQCgUAgEBhGCAwK0cDkngmwb1b40EMP2fGPX/rSl2zyz9IAliQwuYY4gGTgKrt8CQVkBA55JvrsbcCmjWwGyWScUyfwieNoAxNvJvxYD0AgcCzmf//3f1s+ezx8+MMflr333tvinB6BRQIkCBtIsocCSzGQY4kFFhPoIY+lH5wyQVlIDsgKCJN/+qd/ko9//ONGTFD/D/73B/Kv3/xXIwWmT59u1ghYJbCvBFYP7B2BpQTWFv78kB3f+973xC0qWDJBGYgGjuiEWMkdZbHG4Fkdozw/woFAIBAIBAKBQCAQCAQCgUAgEAgEAoHAUCIwKERDbpnAJJhf9S+//HLxPRo4BtItGnySzETZyzkATKKZsDMJd9LCLRo+9alP2eaMTPbZLPFkPcISssGPnXQdWA8weYcg4OhICAIc5T/2sY9ViAY2YoTA+Na3vmWnVjBp56QKZM4991yzOmBPBZZfQEb8+7//u+lhWQQEAO368pe/LH/+538uv//7v28EAhs/Ui8EhG8iSaEzzzxTzj77bFtOMXXqVDvesr293fRheQEZgi4cz4V+jgPF5yhMHFiBD75bN7glh8dNMG6BQCAQCAQCgUAgEAgEAoFAIBAIBAKBwBAiMChEQ95+9mDAOoBTJ9izAIdFAHsOlCfETiyQnudBQnicCT37LLDHAlYKWDC88Y1vNGsGrARyiwY2muR4SggC9le48847ba8I2vCJT3xC/uiP/kj23XdforbHAqdZYE3ARo1s2ghp8ZGPfMQ2bGTTyaVLl5qen//85/Kd73zHyr3zne+0JQ20iyUSf/Znf2ZEA1YOtJulEP/5n/8pf/d3f2fyfnv7299ux3Fy8gSWDU4gQDRAhlyse1Dg2Cjy2GOPFTaYZGNLP4UDrKgTAgZSBEKGNOp0UsYUxC0QCAQCgUAgEAgEAoFAIBAIBAKBQCAQGEIEBo1o8F/asVhgM8grr7xSvvKVr9ijQTSwyWHZMVmmHC4nG5yAYH8DZNiMkU0ab7vtNmFJAssKWGJwzNHHyNRpU608epiIr1q1SjhJglMhOI0CIgH3mc98xpZfODHBMZtYK9x44412fOYtt9xickz4f+/3fs8sFLCMuO+++4wo4Rne9ra32bIJ9lmA1IBMOeaYY0yeZRcsp8BhkYH+5559Th6e87D8z//8jyxfvtzk3v3ud8vJarUwceJEk33qqafMooHnw7HhJPlHHXmU7LPvPhWigedzaxCIBY+Dmy/DMAVxCwQCgUAgEAgEAoFAIBAIBAKBQCAQCASGEIFBIRqY9HLx6zqOST7LJbBoeO655+zEBogGJsXI4dxiwSKlG/ssMKkeM2aMkQc33HCDLS1wooGlCBANRx99tBEPeXFOqVj6/FLbyBGLBT/5AuuDD37wg7ZfAvJu/TD3kbly7S+vtSUUpLMXxDve8Q6r+6677lYS4tfCqRks12A5AydasL8DVhOQEMSxQIAcufTSS+VP/uRP5P3vf79ZLMyfP1/uvvtu22gSHSy7uOCCC0wXm03i2AcCC4i//uu/tjgWEuxnwekUbBo5evRoSy/fIGC4wDEsGsroRDwQCAQCgUAgEAgEAoFAIBAIBAKBQGCoEBg0ooEHcPKAZQtYNLAZJBs8Xn311WbR4L/E+8O6vMedsCCOdQLLMJYsWSIQDUzg3WHVwAkSEA4HH3SwtI9qr5lsU46jJKn305/+tBX70Ic+JFgT+LIFrABoG/pZ6gEp8d3vftdkOeGCJQvUy4aSOCwizjnnHNvQkr0fOKkCyw2WTEB6YEnxzW9+05Z1/MVf/IVM3H6iLHp6kVlNYNmBlQKWEiz34HhONsZknwg2zvzhD39oZAP1sCnkW9/6VjuxAhkwg3TBh8iBXAAbsOMZ8Ms4oidcIBAIBAKBQCAQCAQCgUAgEAgEAoFAIDAUCAwK0VBuOEsS2AzSl05g3cAeDfkpCfUsG/xXeibQhLEaYP8E9lrgCEisIyAZnnzySbMaeNe73mUnNEwYP0Fa21prmsGmkCy5+Ld/+zcjDI4//nhhnwSsDzimktMfcCx3YPkCG1iyjAKy4aCDDjJLgrlz55osx1SyQSQWCUzqf/azn9meDVhYkAbhgUUDzwk5wRILTouAGKAdEC/nnXeebYjJHhFYQbC0AosHnu2KK66wujkSE8sLLCcmTJhg7UMvhAhEA0tJnIABI8iQIBkMprgFAoFAIBAIBAKBQCAQCAQCgUAgEAgMEwS2GNFw2WWXyVe/+lV7zM0lGnxvBicksBJ4/vnnbVNGliswsWayjSUAE28IgylTpph1AHH9bV/NKpJlBUsonnzqSVvewKkRl1xyiU3gOboSYoB9FnAs04BsWLZsmbAxI3spMMlvb2uX7p5uI0ewLGAPBvZ3wFoCMgFygCUPbB7Jcgj0UZa2sbEkRIm3F8KBzSVpK3sz0FY2rWRZBZYRWEKgg40msbhgU0pkIBjQg8sJBUga8t2iwQTiFggEAoFAIBAIBAKBQCAQCAQCgUAgEAgMAwS2GNHwaiwaWCLAxJpJNBeut6dX1q5ba7/kjx071ogGrASY8I8fP94sD5ygYELPhBy/r1c3T1Si4Nlnn7XJPKdWQFp89rOflQ9/+MN2zKXvBcE+CNQLSYAurBEgNHwpB/rcYYkwb948IzCwaDjqqKPM2gEiAgc5AOGAjw6OseQiDDHgDiuKm266yawgfvKTn9jxmee98zwZP2G8iWC5AAHC80B00D7S0EGc9HpWIa4//EAgEAgEAoFAIBAIBAKBQCAQCAQCgUBgKBAYUqLBf6WHYGCCj0VCQ2Pa3DCf3DPBZlLNZB1HmIk8k24IiZwQIIw8+pjgQ0hgqcDRmGzWeO+999oJFiyhmDp1qi2hMGKiKId+r4dw7pjsow+yAWsLCA+sFrBAwFLBn4eNJnkm9JQJBtIhOBYsWGDHdj67+FmZvud0YWnH4YcfbiQJ7UeOZ2luapbmlrSUhDSe1y0+DLOCWMnbGeFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAYKgQGBZEAxNv/7WeSTQTf//Fnsk9F5Pu3NIBwEjD+QSfMLLr1q2ziToWEJRBN/s9sITjk5/8pJ0IcdFFFwnLKNh/gQk7F3VDdmzo2oCqyoSeCT756KZtkAdOhJAHsYAbN26cpUOCGElQECHePsrzrGvXrpXHH39cbr/9ditz5JFH2rIK9m5Alvbj+2aQhNFHecLUTZg2EeYZwwUCgUAgEAgEAoFAIBAIBAKBQCAQCAQCwwGBYUE0MFn3SXy+vACAmGAnPiFNtH0Cz4TbHWW53JKBPCbf6GIizgUZgGXDokWLLMyeCjNmzDCLBp/E+4SdCTzO467fJ/ZuUeD1QyxweRnyKUs7KOv6aA9xZNmjgU0tIUPY+wHLCNpPW5HjQgdto7w/kz83esgjTplwgUAgEAgEAoFAIBAIBAKBQCAQCAQCgcBwQGBIiQYA8Inz5oDBBJ1JNxN5JuLm1Kihp7fHJuksa2ACzuQdawAnMMxSQSfkTOTR4Xsf+J4Pm1M3Mkzsudw1NugEv+A7qIslFTwPer19tBcrBtJpk5MCpLH8graxJwRtY48I4lg2uBx6yYN08OfI20BbXgmG3vbwA4FAIBAIBAKBQCAQCAQCgUAgEAgEAoEtgcCwIhqYlHNBFuCYbDPBxmcy3dOt+UoqMIknzX/VR5bJNxNyfF9ywCSdOPL5ZDyvh3SWQuT5rs+JirwN5FEeR7qXox7IA3wIAfZWgIQg7nooQ7vJZ7NKX6JB+9AJCUKYvSXckU55L0c6z029XrfLhh8IBAKBQCAQCAQCgUAgEAgEAoFAIBAIDDUCw4pogCjgYnLNBJ2JPBNvJuY5sUCYSTZyTLqdCABMyvkE3PUgz5U75NwCgok99eQOvRAHrp986sEx8cdBJrB5Ze6cWGCvh6bmKhFBW9ySIt8gEv0QDLQ5JzzQk1/+DKRRBvnyM+XtiHAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgMBQIDCuigQm0kwM+yWZCzSSfSbVbBvikP5dxciEH0fPRi8stEIijj/pw6M8JC9LIR4dP6n1ijz4sEuyf5uO8PPIQB/joc53EXV9Kg4SwopZOHaSXy6OXy5+P9kLGkAYxES4QCAQCgUAgEAgEAoFAIBAIBAKBQCAQGE4IDCuioQwMk2oun6wzgSeeWwRQhsk5zifjFiluPsGHHHCCopzvxACWE9S1Oc710h7ClLMlERpGH/WR5lfeNic+SMvTqRcSwfd08PbkREN3lx6PuaHTniW3gNicNodMIBAIBAKBQCAQCAQCgUAgEAgEAoFAILClERhSosEn2U4oMKFmYu7pTOCZlJPOhge9uj+DT+BJo1weR56rPIF3SwKIBvJ8LwUm6q6HcuTjcqKAfNdX1u16vb2UNRltq1s7eFn0cLkM7XZ9PHOeznNRjnTkiFPWiQzqJT9vmymIWyAQCAQCgUAgEAgEAoFAIBAIBAKBQCAwxAgMC6KBX/GZPDNxZrLvE2gm4u7yyTxp5FGOibj/8p9P3n2Cj6yn+8Q935uBsrlDFiKCyT3yXN4e5HK9ThSQRjmeAYdO0pwIQY4TKnzPBmT9Qo468E2fkhT5vg9YMHR0dpgMe0kgh0MWHcRpX7hAIBAIBAKBQCAQCAQCgUAgEAgEAoFAYDggMCyIBp90+8SdiTOXp/tk2ifZAEce8lz5RN0n4Mg0NkISFBNz3VOhty+VoSwuJxEoB1Hg1gPU5ReyHkYOGVy5XtKQ84m/t9HTycvb5zrJx5HnzvWgg3aRRxp1cnk7PM3LhR8IvJ4IVP9i9e/TKuZOaopZkPQiSjB31fJ5ah5OEmyuWtWb6c9Ft7VwDkMlnPB65VCUPq9NKRjg89xUscgPBAKBQGDrQ2Bz+tWsU9wc8YFAyNQMJBLpgUAgEAhsLQgMKdEASEyU3TGp5nKigQm9T/wtTa0CmG8wyfaJd17e9TAxR49bR5COvE/YPd31OKnhSyr8eEzXhy6cy7G0ApcvvSBOft4e9OM8jQ0kITvQR5ov1XD93h7i6HIiAx20HQsO0lpbWm1pBtigh7RwgcDriUD6y+4/mqp+m7U1/bNrCIfi25GJ9S+Q68vD1Wetn1rNH6Ghom/Z9NMppkAEtP2gKhL6wZ4J9svL9GRim25HSAQCgUAgsDUi4J2g+/WeQTvDSnadjpG8Osn9NVWU1GZZ2c1SUFsuYoFAIBAIDDECw4po8Ik2k2cuJtykeRwfV57AlzH0cuWJf0rHEqG61MD14zNxx4cA8LrK9bkc6U4EoBdHfRtzlOVlxP4NOJe39KIgYS7q93yyqIOLdCcWPJ63tVATXiCwxRBIf73+V0w1KYVvZ2UoZEkaS1mpLZ5Z+GTlVxKq3pNYspQg7MWThMfcr5Yb8SHDVG/m+9NmkQokWZqL9fMrwqrPw4U/UHGyS6L91EZCIBAIBAIjAgE6wvzKH0o7QusnSx1ipS8tZAfqS2tU5UJF2NXS4Rbj37xIhAOBQCAQGO4IDCuiYbiDFe0LBAIBn98mosHpBrY/ZUyUxkV6Z5yUj5t8ZloIeXbZd3xzfXnYaqCQVVQo80Lbil8Qlva4hrHeDA9SLCEh0ZCF83TLrRTQmIZ9YGx+kZcXTxoLvamI1ZmryWUiHAgEAoHAVo+Ad4L8mETYL38w7zvpCAmT7mkuo76ryZIqQYqacyH1K2lFlpMM7hfJ4QUCgUAgMNwRCKJhuH9C0b5AYJgh4OQCfhoaVUkGGx9ZIoMtbXgS0IETORrB1wkwJcpDt4qoPW/S2WiSadxVo9tk0GWpFttmboar3hwwD5SJhSpgBTRewDEr+U4yOOlAKS+Sg0ux/MrzIhwIBAKBwIhBwDtA3lb5G4sHLPrPmn6z6BjzPhRR1BTiROs7hPSqyHndmmBp+JXM+ioiNRAIBAKBYYZAEA3D7AOJ5gQCwx0BpxcYFKWhUJVoKBI0qzwgYpCkT6ZXMZwy34duPHM2rFIx1+mEQyaAsCvbFgdeBqCjBRalsEHvaerXxJHHWWLhFx+Kp/nA2eT05qo8TtG8uKeHHwgEAoHAiEIgdX66u5Y+lb+t0jup0gl6f1n2yzh4n5mn16RRV9HZYrWWO3vPqfC2+L7LcYhwIBAIbHUIBNGw1X1k0eBAYKgR8EGQ+9qeysBIB0NZcmUwxoCqyCK7fOVPVIiquB4La8VU2gtUZrhkqOS2OPACC5z7HgA4B6oS9jT85CrFKliasGbi+1UIb8TzUhsRiaxAIBAIBLZiBBKZDtGQQpANqZfUrb/Tc5UJBosXQkmi0q36a6zaB7sAIhAYTmKoRI2Q1uVkQ7VIhAKBQCAQGPYIBNEw7D+iaGAgMAwRqBAL5QGRt7UYhPlsVAdJjJvKF9I+nqqIagrh/iRDLqwSVsB9NG1DzkHLH7mydCJl+hA5ibj1iRcw8AqkSUufTwI15blkXhU55cvlwg8EAoFAYKQhQM/JP92OWx8t9Yb0gRANqafUO+SCEwxFquGAgF5e0n20eL+KCK66TDARDtWtxV2iUJbE4x4IBAKBwFaBQBANW8XHFI0MBIYZAvmGhNa00rDJx0aMsvS/D6zc96cplaoM0XzQlUZjKlVTMOlMwkXYFW4jvuPmj1sbz8HKw0m6KqvYqUtxD+OncDWPUHKem0igXNIlwg8EAoFAYOQgUCUaqn0p/WAt0cDzaipkA5mFM/5Bw04wuF/tg5MgRdyaAd9J9pTuClOsUB1eIBAIBAJbBQJBNGwVH1M0MhAYRgj4KKlMNvh4iKZaWG/6vzo880lt/2fxojW+W01U6ivKVYQ04OH+KkdkikPhA9aBHzL9KpbyvRQxwmXQ3JqBfB/uEu7/eVGSK4gG0AkXCAQCIx0BiAacEw6EUz+YWTSYQNGvqkeJ8pX32Z7nupKfLPm8B6761Xo8hHy4QCAQCAS2BgSCaNgaPqVoYyAwnBBI467qSMrbVoyzKvPYYsBFthdxUfcp4sX6CQ1UiMJeyH1XOMJ9IGHA6hePS5rDUOungat/ULV5lPQUwsl5Cc+r9xFQKr+8bPiBQCAQCIxMBOgJy72h959VotYlXNp9MMnz6mHkWvr7DQWxC83gddbTEGmBQCAQCAw/BIJoGH6fSbQoEBjeCGxsxFSMg3y5qovmD+ST1LojLwrUG0uV08rxvIIRHAaeHr0gGvBzfB1X9zVboaz9lYw0XBk+j28O0eDlvYwpjFsgEAgEAiMRAetk9ZZ3tvSg3gGqT5ZbLLhY2XdovJjHq365RIpDLiQLskQ0DFy+qilCgUAgEAgMFwSCaBgun0S0IxDYmhBgDOTjIm83I6Bi0OVZ7vvgqBBJZcs6XBh9eYEi7utdieIqulJ0m7i7JYOTDQ6hY1HfT8CmvCqVUAEsx92BR7gI12RXCnlulhDBQCAQCARGGgLeyZY7Qu9s9Xl7NZyLeTiHwrpUTSj7LuNLNNCUqvK+OogGxyj8QCAQ2PoQCKJh6/vMosWBwNAjUB50aYucCPAs93085n6/ERlP48KE85FYUSgfyLmI63Nx0ke6c6KhbNGQYzFwWEHOcQasctwBNFBLyJaiLhp+IBAIBAIjEgHvH/HpdHGES50s7z6yyfJLgzXOi5CYh13I6QU0oMNdkk2LJmLphKMSfiAQCGwtCATRsLV8UtHOQGAYIZAPhPKBVTmdQRKusnmgC5f9JJbuPgrD14IM4vJf8BFCn19eB+kj3QFbTjbkzwseOPwcwsqo1T8c8z1iRWpvBmiGahasERwovUYoIoFAIBAIbKUIeDdZZhHo+0qXkw08KcW8qHeTLk5+JexClphHymRDrgXhcIFAIBAIbB0IBNGwdXxO0cpAYNgg4MMhfL9oXJ5OPB8aOSlgQuVBmxf0Qj4KK2bMWDNANDjZQDZZTYVPeFtxjrf7/twOGXEL5wI5vnnYC1c+uaKwf3IocpeHSSvHXS78QCAQCARGCgLeXzq763HrZPUhvR8s4m7Vx+O7KGEX93AlMxcis5JRhF0/GixcSTDpuAUCgUAgMNwRCKJhuH9C0b5AYJghwNgov2iex8tNZVjEVXAG0mCCequQDcXAiXScF/BCWtBJBnwXQ1+zXvhc25IzCLMHLhBM2Hp6LuSged7G/IqyTMjTSMrDmUgEA4FAIBAYcQh431l5X2VPSF/o/WEWhmxw58U9yd5/5cx+cS9FhoYbitJWh2vyQuEHAoFAIDC8EQiiYXh/PtG6QGDYIcAwqN7lDc2HSTY20gz8Ri1lpEBl0KaS+U9APmpLwlaoTwsg7mSD60bPtko0VNgWBwPfx5+EPV2DFVdOc3kX8HgdPy9KuCziKsIPBAKBQGDEIUCnl1/+gN4REifsnWORTtRcEa+IVzI018NlnwzSvBAvPAgHj5viuAUCgUAgUEWgry91JA1OTlazhjQURMOQwh+VBwJbJwJ0Z716c86gPABK3R1jpfQPkqFJhbjsnPCKAg2YMCMoBlLFZQMrzdKoEw1eF+Ism/CLktuMM6z0afEBpFsDvFyaFTCAgJEhsxEcCatDlssd6X6R5nKZ70XcRwFhL5YOWqsWRU24QCAQCARGJALef3qH6H2lP6z2xT09PdLY2CgNTZqpcj29vdKg/XBj0Re7CopUinui67W43jzuwjnRUCnslYcfCAQCIw0BSAMnDhobivFd9pCe50m92t9w0Qc1NTE6Hj4uiIbh81lESwKBrQYBGwfpDbKBeS6EAH2hO8vXCNPTXp39MjZq1rsOw/RfcWyXFtYOKBtU0ZmqpHaUVkDL+GkTOcmAbqryPRq2qXGXA6vPb6RCV3f6AJpbEijdyjSAaZPae2Sfhw1c063AWMs7cIXvxiVeBT4uUUUpjCgXqtNnmdLjHggEAoHASESg2g+mp6N79X6w6Dqlt6dPerq70yC/Wd9MKtRtxIO+8xj0q6DrcYysrCfily8vYZXpjU7Xwq4h/EAgEBipCEAkQBzYjzpKVrqVghMM+HkacchO0iAaIByGiwuiYbh8EtGOQGBrQkAHRTZGKvzKJFUHQoyFqmOmasjHSeT6eAkfYTrTxFZ4TtLhBINlZ/gg5fpMR5Y3ooMOJw8JOD3c1PlLpacgHhp1cGtpFFCEHKTcz8Ku1n1UejjZMpCS1FAM7INoAJFwgUAgMJIR8H6QZ/Rw1nWmrlUzehn46z+6XQ3qpZMEHfRXJgMZSF7eFOaKy2HiCJcv0sMFAoHANoeAExA8eN6/ECfP8yEazMKKH++G2AXRMMQfQFQfCGyVCDDiwhUjL6a7DLT6dLcrTEf5l7KqgmnCWhRQ+SSVxlB5jG7RpNTiAR857ligWlA9d0PfhXpLXkffINWbgVTU66D19tiLpoHRLiYmjHh50dhV20bIIZyp24iPhMtQhAuiwT8/DYYLBAKBQGBEIuDdbEHp2jOm/tB7xdQX5g+frPboKVPp1G9yL5wXNb9Ousvhe3ZSkudEOBAIBEYwApAGOCMrNchIzMkEJxlsfOx9hMpi1dDV1WUkQ0tLSyprWobuFkTD0GEfNQcCWycC+SDJGIbUuekKMe0RlWhQ01Fbp1owqdY5pi6yGHYVnac9feohq5PWRCtYFksrbHTH3g5MnDU161Ar4Txt60T0FbY6IZoKEQaWBEKvxcjJwUq5yPUYEaErK9S0bvNh8w+8Cn/SvvkaaFG4QCAQCAS2RgR6dMDPnguw3ayXpp/t0X+1/S02Xsk5EYvZGZYNLBts9rWF9k5TOWd6rYiWTJ1qUqBhel3veV2v+0ko7oFAIDBSEWDZRA9LYfVL39zM1udpnI1v1gr0J3U6hG5dwtXZ2Wky7W3ttk8MZYbSBdEwlOhH3YHA1oiAj4DwGTTp+tQ+ncD26oAKPqCxSQdcbIilg7K0pIJ9GtLkOI2xiFcHUUCQiAa/F2Mu1Q/R0KgbNejwDrGqo4NNo7m6nW1VcGSFEoqOpX8QOZZpQQM5VWAS0cBn0N2rSyvUNTe22B4XFtGbv6/w83DKT9pctuq7ZDUlQoFAIBAIjDQEeLfxS6ERDbosDYqhWy/89E5L76jUU3K6khILeoeO0A0cpEXDLSxn44VoGxvlfaeG3eJM32no01KF3oQkrzotbX1zXjLlxj0QCARGGgIQDVgm4LBMwOV7MGDR4BYP+G7hgIwTDW1tbWHRAHBmEkIgXCAQCGwdCPj81tmCyjw0DblqCAAODteLf0x0CwkdSOmk1+4MnhiW6XoyvacwHEKiFhopbjtC6vDK68VntMXIy8mGrQO519xKJxr4NS2hiZEuIdAFDmw/GOACV07QJDnKkdpkcqk5QFm+TIFlqyaU5Q5hXGGxkiJxDwQCgUBgZCKAVQL9rHWUeiNGD5x6YXJSD5qIhx4jGaBy6XWVhVeiobDKM6JBMbI+tehIjWTQsL7LyIZk8As0keJVtw2+7nj8cIHANomAL5FwEgHfNofU/gILB+JYL/TqPl30QFip5oQEoDVBbhbdzFCCGBYNQ4l+1B0IbI0IMEjicqKByb47G0B5BomaUJANFOhjMKWpDNC69I4kQ7BEKzAFTv9ISanaS+ZHT1CgMGFVW9RtjmgAPUgFfk8jBFq8ZBJpkwgE7unVwxsmXcgRtsGyhiAj/GPDr0pqhA/IPkcP5xGVrAgXYRULFwgEAoHAyEQg7/9S58idV5HTvS7BGw0yl3dXqy2YUApCJwTNJqA9rb/L6ERJc5IBX7N71HOSAR8R+mdIBoyn8VUkXCAQCGwjCDjB4CSDb/JIHKLBLK0UC4iGZj1tDIvi4eaCaBhun0i0JxDYGhDQEZCOn4xDqIx8GBWRiImpZRYP4kRDn6YTZkmFDarSVBlDU34RorgPo5LpKb+7FwMyBmhpZKe+6qEvbdFhF/42NfKCKgAIJxo0qI4BL/hB2ICl/9LWwz4XupavuQHj3WTpgHyicxJ0DiEfjTn8ylUkmqc3sC4GxWmQnIrEPRAIBAKBkYmA9nu8z1ga6O+aorOE0KU3xtFF0gvzL72/ENb+V5cWpv0YNJ7WEmq6daTJZ5fjEtHAArecaIBkCKJBQQgXCGxjCORLKLBkgFBwRx5EBM4JCcK2B5f2KZASw8EF0TAcPoVoQyCwlSHA4IpTJnCNdGgEWXvarTkcsUiYwZNdmscgjf0BGKCxf4NZI6gP6aCDLgZVptN8BmosAkgG/o02OFNZBBi0caSj/cSzLRIN+uxgaYgpahZWTOyFUn2pQDR0c7Y71h9KNDQ1QzSwJZniaC753LmspKrRYrUXCZ5GwArojQI2QFY/XCAQCAQCIxIB7//od33qrw/qHSfPzDuNPtJumkEecbppIyjwSdcL3wsTJ1wQDUa+awq1+PtQgybtJAOvPUqFCwQCgW0DASwWursYO4u0trZqN6JLtxjXqcuJhJyQcKsH/OGwPUEQDdvG32o8ZSAwaAj4GIrf1PnHrgA2ANLOsKFLh0gQAQj5EYs2oNI0LBEYlDXrLNUKaJgJq3agkA10nemXHMqzAED1NiSyoYFRGAJ26Y3BGYSF/rdLvW3CQSzYpVhC3KjpnIGtLyBlE6oQIKNkD2QQkPUp2dCg6/UaFM+ByAb7zPjcuHAW1pvHPeAEg/tJOu6BQCAQCIxABLQD5N1Ff4sPeWDvHX0nOVlAGuQ67zzWRTMRwLIPQZMhSCH3i7KkcWlfSj+dX6rNHKV4XWoJf11aetwCgUBg5CKAhYIti6C70f4BwgDiwE+VIM5mjwNZOLj8cEAoiIbh8ClEGwKBrQgBBkMMobp04kmYqWuThht10tu8QXPcVJTjdwizc273Br3UZ9TUqhNirhbNx7IBwoB1ZdpxJr26BwGdq/6DwmhuUHMxhliMvLhSpg3OTJ8mjXTHYwNdZQCL1UhHh8iaNYqvYjtqFHS3CqgkpnX6AtIdgwrMNE1fWn2KbwNpZnqXLElQiTPdBKgIh18JVwKaqJII21WENRouEAgEAoGRh0DREao1Q29BNDQoidBglgm8k7QPRGS99sXr1mu/qGnsEM+xdJDA7doPjx6dyHX6TMjZ7OrV9xoke7oSeoj5RQphnPspFvdAIBAYyQhgoQCpAGHgmzzyvPWIBkgJ5Nz5coo8zfOGwg+iYShQjzoDga0UAcZUkAv8jq7TWyMG6N5adKjUojktXSrRrRd7Kig9YAOwlS+KvPii9K1fZ3szNI7Vgdf4sSLjdHI8uj3ttQDpoP+dbLAdCKjMLBrSSQqsezVHp8q/ar+a0kfw3aDgBsmyQQmbTr1eXCWy+BlZrfiOGjtGmnRQ26Evprbx46Rpt90U4wk6CNZPi1/hsDIBXycajNjRBMUQtTj3HVb37Re8JFJ735Y+gNonj1ggEAhsEwjQK2K3l86TaFS/gT4YRrxbe0jzNf7CCuld/Kw0dmk/267vNSV/NygZ3LrrLiK77apEsJIPnNVcEOu9SjboFAJtqps3G6R66qLNegG9Kl7plD2TTrnSMWs4XCAQCIxIBDhSt1sJS77uOdGwNT7skBIN1l/GYHVr/LuJNm+jCDDssrGV+hANEA58j/WwHWmHaMCCAaKhU6Wwbli+UnoXPSMvLF4sL/Pruw6Yxk0YLztMniTNu+kgbKJOhtt0ENauF5s7sqxCNeo02uqBUsCqIQ3DfIyViAaGZ0gPVwdWuXst40N0aWediIZ1nSKr1yrJsERWPzxHFj/2uLRPmCANo9rl5fXrZfvdJ8vuhx6sA9zJiikWDIqSLVtRJc1gXKTZ0hYGumk86763udpe8AZ7JHAMi5NvXtwCgUAgEBhhCHhvh91eunr0fZNsEARCnZfUOr2tUUuGhYvk2dlzpPfl9TJ23Djl1ztknVpA7HHQftK6/74iO+p7boxanLXR/1K0Ud+fEA3JooF3mSbb1ULFvFi5CNPZwj5wpdejBsIFAoHAcEfA+5B67ayOr+rl6ldfx3u9uvwKHSyP2LBhgxqwrjGLBjaFdGuFLrUY7uzsNJlRatnKVV5SUb+G1y91kIgGGN/q8PPBh2bL5ZddLl/5ylftSa7+xVXypjedLs2YlCGZ/qfBaoloQM8rdZv6wF6pvpAfwQikP9TqA5bj5NRLq5Z45aFcn4fxcfkfb55HuseRy8PE1bmKFEv3XF1dgVy4HM4K19ONOOn80JJbNJCORUObDptaMBeFaGAivFx/cX9ykTwxd548rteq9WttyDaurV0OPOIwmT5zhgi/+LCMYqz+CjRGrRsgHRSUbhvSUR+N8ot4+tekJqvNaqZatXIoxGgg4u5rsBLO00gvu43lk4fLMEoJ2T0rT9AvJPJi1afJytYLlvQ1mHWCCq5RbF9YKfLYQll8z90y+5bbpHHCOOlta1Ujh5dkj0MOkmOPPUZa99UB7sTtFdsx2gD91DDZZdmEWzMURAOHZHpb8XPn5IKfV+HPkagGj2mJrK1WvhzPldYLu3z/BvSXdtn+OfVTXN79+lJbNnVjdW8qj5ZlUFca6uXwccjkaeUynmfC2a2cXo5nols06PW6P1Bl5OP8+cry9fJzeStcupV1lLLrRr1MuT6EPc8Letz9PJ2wP4un47us+wOl5WU2Fc51bUq2nL+pspvKL+t7LXHqGshlWOZiWXK1ZC5Aqgp5En4KQzNg0dCtc/0eacY6jBcgRMOK1SLPPS+r5syV+2+7Q9ZpeLz2ueuU8O3U0vsdPlP21/5Y9t9bZIq+60Yr2dDEccRNmo99RCIaaBtEA28/LtPtRANxSAYEEMzZdRpY98E0vZ6rJ+9p7tcr92rSXou+zSlbT6Ze2pZq+6bq2lQ+7UIG90o+w1Siei/XU45XJTcvlJcfqH25TD2tm8qvV8bTvGy9uvO8V4KZl/M68Oul5fmFSClpox+VN5kyedjjeZM97H6/AiTof2hOSIWlS5fKgw8+KAsXLjSyAeIBxz4OXJMmTZLdd99d9txzT/NHs2RrmLhBIBrSwB9EWKmNP/vhB+QnEA1f/ro95tW/+Lmc/qY3SVOLrldjsIzjU4BkMJQT1P7BlH2Tt5vnpJRUKhvy1mZXi0UoEBhpCOgfP3/u5T95vhP2vfCMsl/GIX2Jqi+6Qi9iXjQPk8aFVQMX32bGPezR0NTToUsntPNDYNkKkXkLZOndD8gTs++Xp664XF7WZMZODKQOeu8FMvPEk2TU/vuJ7LyjyA46IR6j/YNOlnt1ApxOIk/TWzpab0vye7U+zlDgnjVY9Q690xZqkxI2Pk1PrQLq/OKhLK43rHExWPAukXRzJCIIScAGY8RXKoGz4HGRe+6XeffcJY9c8n2rj3HvS3pNOvFkOeQNJ8l+R80SOVDx3WUn/YC0PNYikAtsVsanpstS6LUT0ZA2I6M2HPXTer/4pKtDYj5xlWCDznCBQCAQCLweCNApufOOyn1Pdxm6pyKNt4cnW5J2tinOPcspgmy74O8210H/16ez/xYd0DfpZXsPYbH39LPS/eAjsuDue2Tur6+WtfMfFaV1pUMv+uM9z3ir7Dtrlux6yhtEDj1Azfk0V7vNXv1FcoO+wZKNRBrD0ps6n9DEi9L2OipaYCSxNow2Fu3UULhAIBDYUgjo94xvn1/+tSv7Xr33FS7vPvmeR9jLF6MouoNqJWVBzezq3CCrX14jc+fNlSt/dqXcddddMkv7lDFjxhjBsGjRIrn00ktl2rRpcu6558oZZ5whs46YpStnx6N5WLjXSDSkCQB8bxqIQrn2yANzZhvR8NUvfcMe8ppfXKkWDacp0aC/WtoRQZoMoIyqgV3/e9fvH47j7X4qYOoqt1Q6mU8XxxpXxcgsO6tTE90v5xOvVphy6+lxOfIG0uV6Biqf60g1DayrnO91up/rqldvLpfL5mEvR9pAz1XWgyzOy5af1dOTVK3eXJfL5eU93/PQkbfL8113Hvew+8gQHikOHPRK37rqg5HMxBvfnpcsvzwNP3eFrlRIMzTu+1vVK1qtLdXP965Fy3BWeFfnS9Lao2ak7fqrzZIlsvxXN8rjP7pCetevlp5li21e2qPrVrs2rJfmKYdI2067yGFvebOMPVEHYZP11x791b1Xl09s0EFYX0OLEhIMu5ScUCuJXq2oUX+JL57OKAajGWgsLm9YStly96LKmgqsfr2RpxeDTMaKJNO3kcwLxV8ucAYMJFuUAGD/MLZd6NHlDU1KBDRrGryAFWZQq+Rsn+5hUaEtnl8qPb+9VRb9WMmbJc/IumcXSG9Tm3TrqRNdGzplww67yuq+Ntn/vLfJYb97msje0wqiQfE0coF+2qghrQL6AINgiIZkIEzVaYNPHoWG6o4Z+hk0KsnByRW6o6Sm8STp89FAuEAgEAgEtgwCdEiF826+33jPBVxW/fQeS2NUkrnYYK1HTY05Mrm5UfsxI12LTAS0W6PHo//moj56Ort6u6SN/pjOm814ta+VeY/KvGt/Lc/fcouyvMtFnl8kTaPGSXfnWulubpdR20+WHQ48WA54x9tEIH7H6+DfSINW6Wlq0Yt3XeplqZc+Hpq9Vfta+ltrAI3gJaF9d3oK9cIFAoHAlkOg6DD4TnLZV1B970fctwxaoQnIcLl87iNS1uH9in2rvaAXogAZeq1+8SWZ++hcue2O2+WSH14ip5xyipx//vkyefJkO/bykbmPyNe+9jW5RfugmTNnyoUXXiinn366jNMlXMPFDQLRQEfOP35lZKV2t8xWouEKLBq+9Df2nNdcdaVaNJwmja1KNLBW2D4VRRaiobjAud6VgCKn1vFB49KHpYN1F3E/Zcc9EBh5CBS9HH1SWsGVHrHyXSDqHZZ/qUir990odOU9f1ctOgAAQABJREFU6MaIBtR4EWbSjVoPYyBtiI7M9Jf2DXqR8eSTMv/yn8iTf/3/yc5T1GJ04h46vkqnSnTqL0prnnlaXtA9Imf82Z/IXm//PZF99tINs5Sg0H0GOnQfgb7GVl2KoQNBbTNEQx9fcI0yZWfBRKIc9O6N1VqH3mkbFRya5APV9DEkMhSY7KVCQ8FLLyMUkFfBHiUUmpRMsdM/UWVLJVQIH0F2PWdwq9gtufoX8uRfXCTbTVJeZ9fp0q2Ydmnlvc2tsmrNSnn4sWWy+3veIm95z7ul4ZADRSboL2m2hEIHt0rhsCK4D0C1RVWiQavQurQmra44SURzG/oUf7VUsT6WpRcQDTbo5WnCBQKBQCCwhRHQTkm7xIqzvoiEPJFcOq/iYj/iNDatJGlXqgsglGho0sxmjgO2fqwoQ3ntpHv1wiiZC/X0clxYMzQ70bBe7fNWrZDOB+6XWy79gXRcfo3sOnMfaVf9Tfry7dHlFezB0PHcU9I4dV854MMflfHHHqvWZbuq5Z5OAJSEoB/tbWmVPm0G+0ryrmCBBgsHWYqoOdoATSXD+lwVDCsyBSNcILCFESj6EIZpfP3cMYYrssy3DqLI9KEo8vlV7qa8vPcr+KxsrRTyPo0M/covf/4FufHmm+Tyn14hP/7R/8mnPvUpueCCC2T69Om63VazPPPMM3LdddfJnDlzlMccb0TE8ccfP5KIhtSRgxAdOsbMdJXVpRPJouHaq9LSiYZWNY3WAbE52NoK0ZA6dP9A/IN1vFNuKsaHRDz5hTWDxoJoSPjEfRtAoOipUt/ENy85OsHKb/5k+hfKBdwv5O1LlL5INb2nFSvSy0UoatVrRr/OsVGtGdY8r5sULpKOOQ/K4zffKi9/9zLZ+aCd9JSv0TqZ1rVkKNRfkTp085pV85bKjue/U/aZdZQ0HHmEyAH76BKKiSqjdGVjiw60dMMb7b1tUxytrM8qpP5ENuDbrL5eI/0ZXy+fNtAJWZP6bJAJ2ZD6slqigc9Jl+mqFYj2lirUo31ig5qFqBFHMvLS/J4u3ZOcXcttYq/C/IK2Vge3enqHPPG4PKMvnuVf/TuZuN84PXFiZ9mguxND4HQrti8rMfP8I09L29mnyN5HzpLdZs2Q5v0VW6xG7AhM7YcVW84J0QUvxZX+XKy99hjan+vz2EsQRoT6rc/W1ldIBp4kXCAQCAQCWxCBOu+iTRIN2jX5+9Fblnor7dy0n2w0FsLeZClbk33tWq92el1cJOlFOe2a1VqPskVf+MIS3QBygTx3/33yyA3Xidxyo0zaay+ZoNYK7WqV1qWExFq9Vq9YJJ0Tpsjk08+WqUccIU2HHCYydZoq0/XTMBq6b1mfKu/RpjCp4YeDPiV2W/RdR+/cpxbAfUpaNDUoCa/vRGsNjQoXCAQCWw6BomtIfUi1GpLpD/Ctc8DPHGQDZfiKelmPu5jrQA8Xs+aaAv79LjJfWLJUrrvheiMafvqTK3T/rWPNYuGQQw6RKVOmyAQ2Ate5ND/Idegxu2PHjZWdd97ZllawiaRvGkk1Q+Veo0WDN9uRMfjlId2wgj0avvTVr5jAtT+/Ws7QzSBtx116U3eI6+VMEFr8chH33WwYvyhmWTbZMCUuGX4gMPIR8O8MFJ+71AHqN8KT/MuUx104fVWLHlMTy3GXw/fy5bDHvUdt0t+Alj0j6+++Qxbf/GtZs+AJaXrwNtlxxynSplYKHPeFaKMOmLr0l5m1uvasd/vdpG3CDrLzW98iE046QTfMmmKDL36Zb+TXGyMjqYhmpC6b5vC9bxiqX3ccD/dpnOGnCdpkBos6LdcrmcSSyWfDpJ2LF4t9RirU29Frg9Km0S1q8ZWgpovs6lEs9RqlL4pG6lEiQVYoybDwcVmpe168oL+kdf76Etl5h8l6QugYO9ayUwekHIbEJmNrNdy13Xa2ueZObzxFpp5wnDTvs7cIaaP0aNG+oiX6Sxl0As03S12ti+qMD9ZGNunAmYUV9sua5WimPU36ayMWLhAIBAKBLY0A/ZI76z9JqEnUOB2ZXj7gz9+PaVkC/RkCKkdHm14pGtcEI1I1T/s8usduvRCjp7PJAH0wREO3UhDaD6+6/RZ5+q475IUFj0rrogdkpx2myXb6nhujfXaXWja8rGTxqjUr5OXGNmnb8yDZ8eDDZNoZZ4kcdrhal2HWrBXoL5JWD92xOmuO9t3N2uk3Q65rfRANvDOFpR72gCYat0AgENiSCBTdhHcxGk3fPk9wP28DQuqq4/PUh1ia5VS6KNOFOP2LdTToowNwR4Zeq/T48rmPzpO7dePv22+7XS677DKTePe7322kw/7772/LKLbTsR3HYLbqj0kQDPjERwbRADgOOMBo+JEH5tmpExf/9RcMkF9e+Ss5/bQ36QBXo4zAiw/DkfaXAsKuCj8XSxuRFRJkuiBSTEbcZUFPelW+6x9InzfQ/XqVbCyvnvxgpb2SenPZgcKvtl3ow9XDMK8LmXKctNxtKj+X3Vi4rKcc31hZ8l6pfLmMl3d/oPrIxzl2WdyDZFftGZKoEW8u4D6C9ZzrLudRzst62H2X1e8683z6RX6dTx2kDsAWPyVLfvMrWfh/35PmtZ0yZtVymTBqtHKMuvJUB1+sR23QX8Q5VYITMNf2Nsvql9bLTu97n+xz8knSzEkJatUgWqaY7RY9cdEmHQxi/sp3vkF1Gj7Unz8LcRxp5XAuh8ym8pHBeR0uj+9h8hn5qm76MogGJvxggwifCV0jY0kuM8wgk76wQ608dElEw+g2aVBrWsa+iaTAcLdLmnWg2c66Cn7RWvairL/zDnn8qqtk3dMLpeXpOTJp3PYyWjfZ7VQ2u0sHpH26jqVX8e3ShqxX0+BVL62Usae8SfY6+miZcOghItOmiWyvG29SEea4DF6xUMifhTZonB/9bGlwAbNG1UH0plC6W6I/aBExMS1cjQ4YyutFvhyvVxAZly3XMVDeQOn19A+U5jry/Hppeb6HNya3qTx0lJ/T9eLXK/9K08ry5XheXx7eXLm8zEBh1+V+PTnPc39jMp6HLG5zMCzrLceTpnT3vLL+PJ7LeP3l/IHa5mUHqtP15fmbCtfT6WXyvDxcL9/T3EcetzltynXn4aSh7t3VW6ZGjGggkmdQd3HRvXr/m8R4U+qEXeU5rciW3CGAlUI3AXXW2akC10OnTRjH3mK6R4MRDbr0QubOlSeu+oUsveE63ZtonbStfl4mjB4r441o0E0e9T21XvvkNWq597L2+p36smzb/zA54l0XSOPRuoRior7jWnUZm1qgqR2gHQbUSj9bNJyqk+MB9aJtnlhpUyHi8SJa41E8zy/HEfY092sU1InkcgOFN1dvXj6vqpxejueyefi1ym1u+fz58vrz8MZ05Xkedj/XkYfL+R5332Xz+OaEvZz75TKk539DLjeQn5fPZQZKRybP87D7uY48vLH8cl45Xq7T9SJXduW0crwsn8fr4VYvLS/j4UKOEyU4wnLBggVy5ZVXyhe+8AWTgEg47bTTjGRgyQTLJY5QqymsGVhSMVysGWjsa7doAHQ6R3wIV+2P5z7wmFx++eXyxW9cqAkiv/zZb3SPhlOrRIOl6k07TmN+FFD/7NxHBJwrF2wzUuYVvgmpBEQDLHSSIDVcIDCiEeB7kRx/9el7kuJFLCWnpEI4/37k2V4OMfv1nAT/TiNoYQ3wHeQLq981vrs9Oj/tUV+nwDph1onx6tV65OJ8mXfNNfLE178mO+2zq5IM+muOZrdpmWYlBpimdquebh146e82OhFeI4ufWCzjznuv7H3CG2TyrMOlwX55n6DKtWI1Q+3TsnzFrR20xdLVt1MUii5Bo6+HoxmVX9NoC46Eoi/jFzSSuYCOT0az9Epn8vhAssIoQCIQadeVve2NSjJAUvSojz2E7nKuV9t6Hdh2aef67DJZ/pvfyOzPXSzN43t1V+ExslN7u4xmE0h9GWGF0KgDUsiGHv2c1nZ0ybJ5j0vTiafIroceKlOPP1YajpipR4rqOmHrM1WnDnSNcEiNpbl28VF3F88EO0IyDjHCPJOnaTBcIBAIBAKvCwLW72hH5H6lUhL0oo/y/pcwzmgGJQuMaNA+z95zdJiQDLxPKEhfmPdqlQpgZbmUAu5Yp++5NdIz+yF54EeXyepLLpVxB+8t7X1d2oU3al/coO869OieOaq/U1Wv17545SOPS+ee+8uMj3xUJh57vMj0qSI7bq9kboO8pJYSLWrBN5ru2BtPdTSLjtabVfTH/kyaEy4QCAS2AALWlfBF82tz6vAvpvsDlbF+RTOtkuQzrObrnldHto+zCD+7eLHcetttcvvtt8uKFSvsqEv2ZXDH3g1vfetbBQuHHXbYwYgGzxtqfwsRDY8XRMPn9fl65dorfy1nnPbGWqJBkQNcezEQroNEka0immuTHBWq+EWBgmRg8uMfVB1VkRQIjCgE+G7wrUn0mg+PUqrnmIhJpVDeieVhcv27RsfGlb5MKmVfqswnz75zOvfVARBWDa382vKSHqz42BPScd/9MufO22Xlf/+n7HrQNBnXohte6UYEbSoytk1/steaXlZ2doPqbdRf1F/e0C1LlyyW3hknynZ77St7KSE58Zij9YzGnbVutQ3QwVsvywe0nE3waY8TDXoSA31I+Vlo4pZy4GSDQSq19QXqF0QDFgCMD/P2VHFVosHfJjwDZgsI42z0q+RLiy59UF0QDSyCwO5jFELr9LC0FTrAfWyxPHvTjTL7y1+SsZNaZLsdd5EJahrH8gq6RTBiJ3XC69Vsd11Xj6zX89x7dDfORrV82OOsM2SiWo3ItGm6PEU/vGY1x+WzYySLrXC1sRauPA8imufPhRhJXOECgUAgEHi9EfCuyt4JXnnWR3lfhY+DaGC/A8o1qwWXneig5KxZNNBhkmN9IRLuNJ3NGHXPBDM1aFT5lXqyxFNPy7L7Z8vca34pfVf/WnY+bF9pVwZZ33S6lwJ7laW+GJ1Yl3XrtfLFlfJS+3ay6/G6jG3mEdJ6wjEi++2jgg2yoqNTjRtG6enOToCoAgzaeEdot2w/4OGrYttaQoPhAoFAYMshQC9g4xvGat6JlKvzriLPJ+zxsk9577C8gsK3Ya1m59XZeE7TOjo75MUVK/VaIWteflmWL18uy5Ytk/nz58vNN99sx12i+swzzpQjZh2hJzy+yY6/HDWKJQTDww0O0eCA8slo+OHCouFLX08WDddcmSwaGpln+OCa5wdkvXyyQFLumEQlkkFT7WWAX4QrdaoCrdePCKLE4Dgq2JiuTeXTis2RGZzWVrU4MHnby+3I45sTrmp/ZSHXjY8bqE0by8915OWTxld+L+vzuvP2DSST1+8ylBso7Hmu2+tCj4c9D99dvbzaOrwlVaLBU9Cch9GZpNDgF6l5LcQplWwOfLCkEnzvEGRSjc9lgvqLja6ZgN5r5gu45AXpuP1uWXrtDbL0ifnSM+dG2WXynjJKTUk7N3QIZqET2rXj4xecjg4jGlr0eK/1jN00/nLjGOnqbpV9f/99sucpp+gvPnvoURU6EW5v08m3Ftaric2z6IlZOqHBvub0XCSlhlkgu9FQGozzMH7uPN/T6slVZcjVqqukB/qLRMaFtKUqnbLSGBGiRAUR8J2/wFQHmrb2RAexXXp4eq8OWKEauFrVmsF2T9Bf0GT+MyJ3zZEndJ3eU9//Hxm7e7uM234X3XiMX9D0laS4NusvaS16Ac86NdntwCxYrR02qF3Eiofny+SPf1yJHF3CdoAuT9leLUbG8CLS+iEZwNaWUmgSD8iljh/8IJNYXUHTuXA8E4+dntafmBTC7pOfpGrTPY18L+uyedzT8HO3MZm8fq9nIHmXRbfLeJm8vjyfcC6T63A5z/e8ero9z8sMpHdjZV1HLpOn0Q6Pez3eNo/ju/O8vAx5eZwwLpf1uMuVZaxAcXOZPI1wXiYPDyRH+kBtyMsgU9ZXrw0uk+sl7LKen+tz2TzPy5TziLtzHe6TTtid6yPuMp4/UHs8nzIuQ9idp7nuXD6XIex1erhePmmuy/PxvWzue37eBs/3POI4l0kxjw9Uk5fy5VxeKvnQCx5CU+q9GMDTk/Uq0dCoRAKnIVl59e09RweKszhkhFqUMetXqwVO/FmnJMNTd98ji++8R8bc/ZDsNkNPm6AfR7+S45zcQx0cVUyf2qOd50tK+K7SPrZx3CSZcNDBssc5Z0v7LLUuGzta1lGPbpbcqlYNaDEiu1OLUi0drVo6mK9h3gzVp9J0c5QayDmejgRyZfmyDPkuX5alfJ7nZT3dy9bzcxnCuFxXSkl31+t+Pdk8r17+K0lLtab2eNs9rR4GrnugvHr55fa6jNfjfj2dlHXn+a5vU76Xcx2U9zLk5ekedxniucvTPew+coRxA+lMubX3gWQ9HWmvo6zf8/CRz/PzMq7L83N5L+cyaEk9ig2DSPasvHglrJm5jIfdp6rcUc4vrQDykB6HqTEXxRBg7Ic18MqXXpRH584TNoVs0eUSjdqvcGHV8Oijj8oDDzwgV199tZXiWMuPfOQjcuqpp9oJFJY4DG6vmWhwLPHpE/FnP/iobQb51a9+3h7x6qt+qXs0nC561HtClFQEHWx8dST5vTo1KpLKRIPJ6o2yaq7GB8WVdGggXCAwwhEovjbFU6aOMUVSTv5dKCg7+36Qnl+pTJLme8dFB5v8jHQwwWpJzPx1Kyv94uk376ln5YVf3SjPfe8yPaBgtZr7L5ftx441gqFDj2Rs0tHTOLVooDTrVlkx0KK/qNumkGqh8NKGPj2GfI1Mec975eDjjhM5ZH+R3dWqQXfQTfsd6CSaVhkrqVr0EXuVHU7f+dT29Bxb9g6yYMNllfNEmkizIBr8RYGcX7wwGHgamZ2/VWg2iWxy0ax2DHoMBZYMaOJwtDYlGhQl3jQiv71blvzoWlmtJ3p0Pv+4vnBabKOfZi1vR1FCxFSIhj7daLNTSQJ9UbWN0vXBDbJ4th599K53y2HHHS+NMw8V2XOPtBcGA2SYBMXfRrR63Fp6OI0quBiP8GzsRYZvfJPWmfpnlbFPlLLhAoFAIBAYfAS8d6Gvz51PBryfzeNVOXLppdL0POnivUFPy/I03m/ad6oMfboefqm8QpeFm9VSzN5t3Wpe0KVWZRvUqmzBY7L4xt/K02rCvGbxUtl+5Qsyeedd1aqMHl616ruwW8kGulWWsbGEzfbL0Y50vfaza9d2Se+0vWWPt79ZpugyQZmW+uHelnbt8TkByGh7Uc5ZmrFqoFE0Tq8+fYfyhuhPNGh+uEAgEBg0BFKfksbUqQdJquk/vD+qVsZ4qDreMwEXdGH3XRk+nYT+Z9xI31Y7ftQfjjSzXa/n9ISbm66/UW7Wa/nKFTJjxgw5TsfIo0ePNuuGRx55RL7zne/I008/LX/wB38gb3/7222TSDaHHC7uNRENOZYApWNRA2v2w4/IFboz5te//Ff2nFdfdY2ZczS30ltqkoFeIA/gXDUfX5FHMukexc/DXlY7Y+rnik5YQQi3DSBgXxp7zhSqxosvVA0G/tUZyPdvTppApokkGt3CgXCKc843v9gwIdZvXI8Ovl7UX9wfXSiPXXO9LP/6P8rYqbvK2Amj1SBBN6TRQl36ixB62zDx11IdnD6hA7Cm/5+98wD0rKju/3l9e196WViKgAVBUFDAKGBXgpVoElPQWGKMmvxTTFQS0Bhji4kl9lhiV6QqoIgKCshSlt6XBRZ2YfvbV/f//Zz5nd+b9/Ptssh7lMeZ3fube2fOtO9999wz5545o6/tEslMGy/YOm3Ls/rW22zuC463PZ50oM0+8hCzA/fTZHi+l+Hbvk/YJazhTJJQvu5Ezz1pwn8KBkX+c4ZDi0pkEh4viujECG3RTjcYVINRUQg0hGO7ANCyCf6xX0W7RE72UnfhFv8My+621Wf9xG551/ts+sJpNmWXXfweUFGIz20Savkyh6Mzqh2QI7LNwqq7e4rwHrY7brnGOg460hbte4DteJQUOYfqa9rOO0mARZLV8hRpfhByOyTwNp1DqmvDeFrXC7Fdy1REVoYgRUO0G3GMOeNEIBFIBMYTgdHvrMJxaqUC53CxEpfJgTNkOkFhGLFO0PEG52LCLpWCp5eykKF8GJCinCm/jOmkCMfiwQY0479/ldmKO63viivt6nPOtfvOOdO6Zm1v88RjF06XNYJ4JHVjzTAsRQMWZiga3E+D+C8L4bDMu++2m2y16Oe96BW2i7Ye3vGwQ8322VtahR53CqkNjTUWeY5Xv7vQM6t577+sGjZLIV3eEiRmSAQSgYlDoMFHmg04E9ETXkLhQuU8coKPEHuoGVekFWZUnmkRQhKOw+FGhSMVYlSOU0V/98p77ELtNnHGqafZZz//OXvxi19sr3vd67Sb2wJbr6UUt956q51zzjm222672VFHHWVPfKIspnQ+Qx/6Hi1hXBQNsD0OFA0AteSqK9yi4QMn/YuuzE4/7bSiaNB64iJcC14XspWJ2Rhf9R4oBAkxUn0EyvoNgwmXG1flBlXGiYAjwJ8Pfx+tcQ3P1vJqujgPeq7r89Z88gjRfpx7on6ibNDV+ZFH2kh+/ZdeM8Y6nRKlDOXGPoJtFjFsRNnAo1VKBPPEhaNEJqUjBelpX3efbb7xVlt16ZW2/MJLrffz/2fz9tnNpk3FxEvzWHWFLRJZ68qXHlpAAGMpBJPjAVXfKxP/TbLR79d2l11abjF9+51tx+OOtalHah3rzturnTZNvctkuF2T4S59dWfqHtNsEXgviesACvSeEOfEddhSPulBGzSUAwfSnWXBw4JQYwzNdNA7nZehtwpF0h3pFOXxZN4mxYsMCQoHQ6UCtsrbuN7stuVml19jt1x0qa36zOdsvpQDM2bP1Nj1D6GWUqonsOC7Wodw9SUXOud7Xa++st2/bq0NaqnF1CkzbfdXvNRmH/N75stT3KGmFEDq/JDMfDtd0SCplr5q64nN8vUAj27rVlrR7zj7HWkx/nYKLgyTUGMQ1+BBOnGEoOM68iMv0uprzusyQRP1tsZbo4+yNU3dN9LrEO3WNNFe0NXXcd5aLtLrMpyPVW9rWeiifB1H+Tqtrq8uxzkh6i5XI+1HOuWjvqCJPK4jP85rmrrtqKO1LPR1WtQTaXUddd1xHvk1fZzXNJFW08d50EFD2gPF0I9FQ3rUWbcX5+RHaG2H9CgbNMSt7bSmcT1WOdLHCnVfWsu15sV1TdeaxjX5kU6bcV2XIz1ot3bemhfXlC6yXYlJJ/DGox1+4XtxeGM0iJzYbFhl4ZesSxCvhl+ibCAuRLTA+0kWB9q+sks8b4qW9vm7kKUTEuZ7f32R3fHrX9udV19vm6+91ObM3tlmy4psupYHwhq9Npdr2RYYxa9Uxlqewe4TbeKtbfKfc/+G9bZK77Dh7bWE4qkH2YGvPN66sGzQssJNqqFf3zC1P4X+tVkXLxTpOIb1fmyTNTAbD9FG6bPyqvBAuAcMxIT6/kRaySl5QR9p9fWWzoM24rreaK8uC13rdV22dUxR35bqGqu+1jKt9cd1xEEf18TRXp3GefQ94i3lBy1x1BVlWtuL/KhrLLqgqfNIG+u6tc24bm030onrergmRJvlqtDEeWse6VFH0ER7Y9G20kfZKEN+lGvNi/Sx6iCNAE1dlyc2fiIv6vltupIT6RGP1FFSoIJXEIeM6DRkR6GYtzLnJSgiCc5TjjbnQNQCBZ7JWASwbuMGu1OOIC+79DL7zne/Y0uWLLGXvOQlvjSiv7/fNmnp8YYNG+w5z3mOHXHEEba9eIsrOhHAHyVhXBQNiJoAhakHiobLlwqQb8qi4aT3+zDPOO0Hrmjwr2VItM6MGwi4oqFx3ozKVCf+vOJ1MnLDmoTlhLtSJP+WjLxMBCYnAjV7q0fIo9B8TloygudFzDMb5zzDpU5SCWHVUOKSBvPDJ4Oe8kFZMmySJcPyZXafPHDfc8FFtv6GW619yZU2V5rWKZqYDkmwa5dQ1+1fzeWBW1+KNuvZ72brHVkl0BJffPjijompb3s5LJ8O6/pt4Zv+yHY6+kizxbv78onNst3v71e7bSwZQBgr1hFN3hAdfDhigArwoj14uo5ILliSWb62IQR7ZtA72hIaxQ9x/sjyCVQVKHDaB7VAFx658j4buvRyu/2cn9i6628yk4fhuTNnyrWClqCI34EvQuegYg4UDlSLr4apshYBGwTdTcK4X0efFAfrr7nVdnzHW2zPFx5r9gR9SZPSwnAapHKDvld7l5CVgK0vda4FkrNOlEJsxcb4GIYfFHCe2xxQniQCiUAiMK4IiMsoIF+W91M9yYa/xT/4a9MHDoU4YMYEeJaniUeiEZBylWV3LFDjH5lcoWiAB7eJZ3ZLLmUpml462oNZCl+ZJ98gOfbuMz4nC73tbKYs8BbMmW/TUChQufjvEFtgKhR/OSxlQ9EwLCW6+Lredx1SNKyT4vY+1b/66jus7bD97LC//Gub9Sxtd6kdKIbkj2hT21TVhqJBCnV1bbNeBUNy6tshJ0dtPRpIyrmOcf4kAhOJQLCQkH65/u1QUuvZaohHxB6ioMfNVGXxLEPRSFMESRzkEBC5+uQMcsP6DbZ8+XK74YYbfLnEFO02RmDry56eHpspuXDvvfa2vbRjWxcf9B9l4SEpGhhLmaCU10CHmCMMe8lVS2TR8C07+aQP+nDP/OH3tL3lMdLISqDVnvEFTrIAm8PJ/DqmNyRyTohsj3UnIvbM+PEbGRcZJwKTHIF4KOph1s9AfQ5NTc+5jtCmQhoHpHFVGGg8hVCwbgxhSsf61WZ33m4D1y21ZZddaSsv+Ll1rt1oU9ZusBmalHbyhR/BS+2wZKJNAhLm/NTZpUkwfgUQ8VzRoHTM9Xs6ujUZHpZj7zU2/dW/bzsffojNfPL+Zrvtoi8+M/RlR2KhFA3t7T1iwNiSMgix4taxqt4JDQFWxA0864m4d02dKKjphVHTKh0UB5tCI1/SipKB7Szb5DjMtDWlLb/bVlzwC1v65S/b3N4+m6MJf49Q61I5lNW0gbJhUBYL1MDe7Xy1Y/nENMx+hTZf08AYIbdPX8ZWXXWTTX/tK20v7ewx9SD5ali8SEKu9nR3iww8biA4d8qAV/hiWIFyh4Hx8mpYNCghQyKQCCQCDw8Czl/FQMX3yr9otlgxlPeA0nihFL3BSBykxOTBw7AMUDyg2lA0lPecc2RxPfFPFLYEGOxqvefuutM2LLnclp55uq396qk2Y7/tbK6sHeZOnQaXlB8bqYobB+IsCoawaIAnw59dISK+jIPe9eLHq2681fr23tMOPOF1tvDpWia4zyJtO7ydDbRNM+1BUf6pGygahmX219Glih998wdQypAITD4EnOcUFhAsJQZJFqE1rtOcoMFG/JyfLV3X6Zw32oZfDcnidZOWbvXrgMe4NTBVwVck2/XJF1enPtzhr4EYHzEoGlA+4DDy0RIeoqIhGD/osG4btjuiaPjXk/7dx3nmD79bKRqQXhvBlQwjtyuUDBGP3Mr6rJRFRvf7QdNxkMV5VMl1HSIv4jovziMv4khvjSM/4tZ8rreWty35Y9VZp41VP2mEGoNWuvp6S+ellof2G32JWuhTtBcxeUE3Vp+Dbktx1L2tcdQT9FtrG5o6vz6P8kETfd9a/XX5+jzqirKRR3pgFjTRTly3xnXZOK/LxDlx44AMmaoOI0qGRiUIXzyvYnb+VWXVPWwvY/ddeL7dIouGNd8/x+Yv3sFmSSHQIzpY3ABf2QWg5rB+IONxHk3BPfgKPyjBixLd7EKh5RMrV+hrz7OPtTlP2t921NeeKU95otm8+cyqVbhLfcWkVVJX7JZAxxvd5LQZaCjSW8+DKPLjOjoX18StNJFWp1Ou5ah1ILWigVUJ+F4c1A4TKAPKIhCZ60rE7ADndRukZFhhdvV1dvXPfm43fPy/bbcdZtp2u+6unTcGdegLl4DEqqFf/i6wZuDecA+HhSUY90ix4PdAyhmqZIePPp3fc+dNcrR5uC3cay/b+ahnWcehMtvddWcJ37IQEa76fqfQ6V/UZOKAJkjXivUS8wHGmGOskBNIJy1CTUda5EfcSsc15aNc5LfW+WBpxqKv24r6o924jvbruO57nEccdPX1ls6DNmLoCHXbUXasvEI9GtNIi3qifJ0eaRGTF/VHuUiLvtS0kbclWtIJrWVKavndlrzoU/ShtXxcR35dZ5SFps5vvY68qCvqiDjSiaPOKBM0dQwd+UG7tetWuqAlrkNd/5barulbz6M86XEe/Yv6okykc133r6YLmkiLOilT50V6xOTXoU6vy7XScB1tEbvQFwUamfHiitlAa9zaFi8hXh1iaX28neQfpzjr1XtNu0p0SlD3RonEL235nTa09Cpbxm4/P/mJtf/iEtvugJ1sthwbT4EnirnCgxHweZ/hJ8d3sYAJK5DKO84tLvQrozK3MLt/xS22cdpC2/lZz7HdtPtE5xFaJrj/PurbdPUL3t0tiwbVj7iMDsRfnooDD52OwpzrsUKMvwW2UaStNLRRp0WbW0sbVWHjYlvog6a1fKS3xjXdWHmkEeo+19ect9KQFiHy4po46qrTOI/2W9Pjelvygzbi1raijtZ+QVfnbemaeqPOqCNoI69OJy3qjXNiQtTDeV2mPm/N45pQ09T1t+bFdd1H0qLtKFvXRz4h8uKcuLUcaRGCvo7JizLE4hP1ileS6qM5Lsq1hqiH9OhvnHO9pQMatUv+Zlm89uuAj3TKShgH6nWA72BBxYHyAZ8NnKN4mGSKBvAo3B1FA1/mllxVlk6c/C+1ouFoWTRME3GlaAAxgRJ3NhQMsOU4D1Dre+bFKKUb0RTguWmEiMtV/iYCkxeB+qEY6++etJoGJOKauD4nb1RQYWaoHDxURASucbxwz91mv/ip3Xb6t+y2m2+z3qWXy53CLjZX23Tx8YWqkY8GNCnu0xrXTj3nM6Vl1Y6UMiWVwy0YpPJhinxDpwST5F45H1yvfcUHFu1h7ZoAL3rh823O4RLCttvOaXwLRji/BDFftIoEFn1T6sMa6nbpEsEHVWJk4JCDm3xKaXQfB5hSEbjCgFdHm8TLLuHiE/rVa80uvsyWn/lju/Paa2zDFb+2+TKNm6OXR7cGC77IsVgzbNRyFBQNXRJ6+YqGUMsLRxpkoYq/BgRfztrdomG1zID75m1nnTNm2W4veoHNPuqIsjxlmvDs6lGPVLEwlbcGNUAjukQqx4yY8eoe+SBZDgNpjYEuMyQCiUAiMK4IwGcICHwwnLj2E100kgt/KiTNc8oRKMNrhkOsDJ31pmGpVcWYe+CdYnRtOH0MRQMaAZaN3XST3XnBz+yuX1xgm5bdbLNWLLXtFuwpRa6WCYuEr4zFYkHViv+yVJDAxIB0Yt6ZWJnhOwcLhz7x0A2beq2vU0sAp860WQcdZHuc8HKzpx/slnt0cnizLNIGG8p0KmyOmYsMiUAiMKEI8Lw1eEYoGmgvkp0VRQf0iHtofUZ1HVlB2ixHRhxl+lyuOSc02i48SzKdCiLbhWKhw62Ei3KBtDiQ/cjDugHZ+tESHqJFQ8GmbMo2LCEYw7PN8tHA0olv2ynvO8XHeebpP7DnPU9LJzpYV1KYOSa+bWLMOIQDb6YdBXfA4Zw3AjFGZyMhzguVKFSoKcSPkOVZIvD4QICH5oFCPDTQNc5jAkwcz1LjASzCFl/Jo+7yYOpBk4QmAcnWyZz0lpvs/l+cb3d857O2Rl/g2+W4cOFsrV3VLgc8uQR45oCYIIoFvsDPZA9gNdanaxhjp55/nwirBzQxJAEMfw3rpGxYJ9oNPd3aBuzlts8ztYZ10SKzWXPcaZZPfPX13dpRNvCl/REIgLaVAK6uD2nQwKP8JUO60vo0/iFpqnvkSMx11Do3lkxskO+LZcvtPi2ZuOWzX7XNvas1/98snwttvoXaFMUobbg5CLKbpMRB4YCigS9p4AhvRWCGc3bpniHgco6fhg0octS5DXffadu95o9sryOeaXbAvmY7yGJkzmxJy+DJobuIosEHoXPuPUoGLW1x5TCadbqRIRFIBBKBCUcAzubcrdGSmI/zwXjbNLKDrI6DTxGLjcHaxG1liYD9lninrrvEL92CAR4H894gXsy2wkuvsaXn/Ei7TJxtPVPbbK52WZo3dborzPG/AO9FaY6CAT5Ln7Bs8CVtyuOcFBQN8G1noWoC67I+daT3ilus/VkH2d4n/pnNOFw7UGy/g9k0+c1BkT4Iz2V8OlDschpj0WmGRCARmEAE9KzBCvxoNMPjF8qC5qMIr2lejKYPNkTxIPE6uEYQ5EMOMQFiQsQ87w1RjMKxXAISlAlhsRDpxKRxoGSoFQ3kbemaPA5CXWdNT17Q1XW31gsd/Xe+5/zZU4RZtFCuH/QvGPWL0fZLs9sj4RMQr7j6Kvvut79t73/P+7y+M8863Y593rHik1g8DGitdr8c6gzKw7m+m8kBGUMsLJkOltsQMbeHfyX26vyKs5JaYirhOkMi8NhHgCfigf+ag+Ex3qCmJMFjJRIHoxyV51SlHGUb8pceRD3RfMmRkxn8JrgjQGippEvXq9bYpssutpsv+IltuPFaG7rqApve0WNTJUh1a5KKQFWeV3goWljiwklRKuCrYbMS8eGA7wZ4KRNmOsqX940SwO7XPuYrdawa6LO5z/w92+OA/W3x07SO9Qlsd7lAnRX31VIA75MmwJtVrvALOkpgpIGIJ4zbT2DJiMqoStW0xlgi0AMOAul+qAB0pA+K/22WIOqOMmHIGoOtQbC9Wl/PLrSVV19tvZdcbDMkEk+TCUOb/F106s3UI4ETHF2QFW7wTTTdVFzaG+Gc3Ak341XMP77A9elYJ2XByvvvtZ6nPMN22Wdf2/EZh1jngfKFsctOEnLlRwclDpUxQF6E9A3MlTYkRcVmtd8Or9cLrfF+EtHvGmgIVB6J8Ei2/UiMN9tMBB5rCDT4GcpTjgaX04tEbEMT9wbvr/k/78Xm0RgubAwjBYyz3Dexrl3mlBOEzVquN5V3kJabOQFMfoW2s7zhZlun7SxvvuRXtv6yi+SEVztMDG/SLhPyQQS/hX0oEJVDvNjPiUN4V89Ey3wBvk1wPuyKhjYbkFPJ9p12tzlSpi888CnW8+QDzXZfpHet+PCg6PUu7hfP7ZDSvWMKivXi28gryp/HOQL81ZW/qccfEBM19pF6YQMEUiI00VZiOSe3QaGE6srP4QNQ8q/EpRxXLhvjA0sMoUu8x/lSqbQhd4koBHOvO3iK6mjwElF4qKfx3lajHqdTFzxfaVxzzoe+UEhwPiB5m+twJEkatHU7pOF8EjoUHdTD0Uo3VvpDUjQEqKw35mtZDybVCpdLC/ydb37DPnjS+/z6rDNOl0XDsYWRI7lK0SBPFuK+4vr6olcCtUVooNS4OSO3Rul+94mDVjFvFWfxpNUZXGdIBCYbAvH3H89Dy/hqJsS5/pdQPxtx3ojhegQJQNIE6vlEZNLzKSHHJAzJeYLq0bN699123U/Os2v/8z9tevcmm6Nj3ozZmgxLCFIVtfBVhK7yRIollQmxYrqEV28UDRToZ8mABMYeKQ8w3cdZ1r0bN9qdK5fb0PaLbd5OO9vexxxrux4s01KdawGadqJgtwTF7Ibg42WQMSYGMlFhBE+E22ix2GW1ttkAHiIOACEAEoeUDfLmU/AF83tX2n2/uthu/Pap1n/XMuvetMoWzJhm0yVkDvL1TcqGbmGGdYib5VKHmvCqdc5LjR7RalEweLauWDiBgIqDTlkz6J7ev2GdDUyZK6dBM23+MUfZ9s842KYvXmQ2V1YNs2U50iNBF6sFpGIUDVg0eEMaBHhz7xx3VZ8hEUgEEoFxRwBOJqYT/NKVDTAhgvIwj4MHwZ+cFykm3Q9FQapTDxKUMUFuo5xnioDthbU9nL58Ff7cq+v1sma4/Q4buOpaW3b5lbbi5mtteNn12k5uqk2T/Mq7C0VDmT74ib/b4L+8RonjH4p1WiuKhlKGFCz9UPr2iRcPTJtlHTvubDOk9N3t8MOtYz8pfWfLQS882MelGvQOsB7x42bfy5DyNxFIBCYCAT1zzj+IeYIjeKIuGrHPPSNNyTUp5w0ZrWREJrF4FcWQ+5ALXZ6STEUgHbkbMsyt9MzDTwgx8WcyX4dIJ63OI53rUBygJIjroCOPQB5LLgh8DBw1FtIa9UDHQbkoSzukRXvQcs5BGBdFgyDxD19igx5fdsXV9o2vftU+8sFTaMPO/sGpduwxx2hioKUTDMpfGCoVGmr64v0ZDZ4X9owGgWc3iVW+Ktd6w0vh/E0EJicCoxRu/vCMjDMuGw95k2E00/XgxKMGw0K54IoGEfi10lA0kLZOW3vdtUJOse6y4Y29tvKuu+1aOYFc9fOzbYepnbZAD/10MZhumKH6RLX1AQujSlc0eA+L4IVOEmFtWJZQeNVlS8bp2pWmU5PbYX09v18MeNm6dXYf45RCYeEBT7FdFu9tCxYtsunaJ9j2WGS2s77AT5eygQZ8kMQTHNQdcc8Gv+IiQtW2D7iRR/JYhzBzJcM995otu8P677nH1ty+zFZo+6L7llxmHdrVY/pwn82TcDlNyth+KWfZPq0oGopaw2+ZVx9iLX0p+Ho3deXCsHcXs92y/XC/4n7dmI1adrJBSyM277HIpu6+q83ZZy+bI78Y8/ZcLAeRu5rNkDLHX0IjtflYYvyNIdJqhkQgEUgEJgQB56diojA85/WKnQeJATHxbioaGuchM/LuiBDyITKn3jnOlNFLcO3KdCl8UTDcqXfdzbfamututHtuudVW3nSTbVy70no2rdEuE7LcUxlEcfeT49y1NACL911/qLL6xxuRrjKF4HAFsBLCV8N6vefWiw8PTpthXVI2zN93P9th731s2l77yMJMPHi2FL8o1vkox3Di0GmGRCARmCgE9KDxUMND/Gi043xE5xFDVJ9Hd3hO6+B16cc/3CiTCT0f7kJ2hYcRkMX9EI9CRvTdvkTXWl+h3qZflAFYIjDpR5EQCoN+bd2LJQMOJnu0tS6KgjoEHWmjlAYwNAXq5AhlA3WHosIJqp9xUzQIHlaVuXJmyWVX2zf/93/tgx/5gOnbmH3jS1+zY486qoDWqzXIbHsHs9f64uLFXkTed78bumiEUeByEQmKIW1eckFQHGkl4cH/Rr1R5QPVF/RjtbS1vLHoH2zalupvTW+9rtup87Z0XtM/2POoszWu6yGPMBbWWytXSv32b5T57ZyRv5ugibimHSuN/G1Jb6XhmsDYtnTuBI38mo70+ro+J8PrI5EQcblqXjaYwsh1dKJRBkaHoAVzI7hwprpQNJC+Wub8ty2z+2662fp0vkYWDXfKKdbAHRfbjvN3trnaz7dHjFaGVPo3trKBFv0rj04aVP5VvlvMdUi7KGzsl4CnMLVrigwUpuhDuvwzqD/3yJLifjkv7F23ynrmybx0u51szl572/TddrXt99dXnz0XybJhuipXX2P4LcMrGKly8iMvaJU0Ko38Oo98QpTjnHwwrWPSIYLOheJyOeoF5XmRrgssBOT0Upsj233X32hrb7vN1l5/g22Qk83B1XfJQqTDZspUdraWl/EFbdNgn26JXgosT2G5iDpQmqIjRbTViZ/zG90r56gb6Foxu5Xxm9rvtI36irdq/Vpbh7JBS9hmPPWpNm9v7UbxxANsxuLFsm4Q944X4aiXLQ0woEYoXSiNRhrZpEeI64hJr6pwsqgnyhDXdUT6WOXIi/SoJ8pGepQnbqUhDboow3VrGCs/0lrjuix5hKg7aEvq2P0OmtayUYZ4LJo6LdqLMq15UXfkB33QRXp9HWW2REuZmj7qiHTiKFvnRT55rW3UdJFHWtRTt1fnB02dFvVH2ag76oiY9CjXSjtWGdKCri4X55Ef9ddx5BHXoaap6+a8zqNM5HMeeZzXgXRCTVtSym+dX58HTWtaXEc+cd23Or0+p1z0oT6vaeLc29BPKBlCuwoPdiWDYufHjRje5oEGOBqBU+hd7tRXRBQMpMHfqBOfDGvWmd26zFZr+dqKK5fa2hV3Wt+q5dYxa5Z1S9k7VQcKdbivXK35UYx4USdgUUZ1nHELyi98klzagfvixwGnkVzxit0oQX293rMbe9fbUOc069luZ5u95962/YEH2uzFe5ktXCjfRDOkpWBcqoc+cxBoIoKPRReRF+nQRF6kbQsNtFEu4tY0rqP+1vP6eltooK9DlKnjyI/+13mtaUELDSHyOR8rjXRCXSfXdTmu67C1eqCLulrPx6oj0rbUXrRV00X9dR7l6/S6vkinjigT9KQFbdAFTZ3HOSFoytVv/7bmt17XJaKdbWk/6mktQ32R13peX9flgj5i6AhBg8yDjyq/rjrHacg/HjcLFAzj0os0ytX8C37ly39RIOicoxF8hxpN+m2GnvkpUjCyRBha8Q2WrBZ5LKi3Hoc1AYoAtsLskNzY0VhBAJ9CycD2mCyDGGs7TGjqUCsbSKfeOLimni0tqXhIigYqpyusfUNRM6XB46/4zdX2va981T7zkX+zWWLHH/2P/7DnPu3pcmzWa2vvWu4O5Tr0FbNNX+nYrg3tMMJ0EYOpsXE0bqYzcOU3c8Bb1KOvdeXp9CpDIjC5EWhzhQBj1B/9GIFng7wgi2fFyRF69Dx1SwPJutHBfjlnFNNp0+S+S4S+hQ5Mpk+KwLXr7N4VK+z+e1ZYhwSiITmDXL/uPpn7328zNQmeLrMEBK+GGFTabLRNFO26dtSvS0q3hK1p0tbitXvdpvXumKtdX3Y65e+hW7sfMBnGX0OvDpxumRQQXdrRok1ffoZl4TB/zz1s+113sY7pU+U9XAxvbBi8J+P94yIjvKbBk6gfwZIuwJVw/Nihg7jpBNLzlK8b0i5sfSmDFA0rZcmw8g5ZNKxdY0NrV9tw7wbrHNxk0yTBzpCyYaqYd6f44MaBjbLu7ZdFQ5fuGVppuGVpkfYD6egH1yOQuF2DpxT0MX3r8D3dV+tFg3PIIb3MOubMtx4tm5i5yy42e6cdbcqsmdpBVCI1LygVHNZ94IWFOXCnXlgowItAXXqQv4lAIpAIjCcCiIDwMbb97ZSwzntGQqv4vXiWMoYUl3M4bzknhs8Vbuwn4mFSDDBZV9khPnBpgu8KA8VdvF/khHdQioYNK1fZGlmZ9a66V+/FTdYhnsuuFHA6/OIQUC7gjQyZtWyN6clFme6ncMVGD1yGVVnJuUNSFKNowC8ZygYmDwMa0yYdG/VulbcGG5JvhnY5Pe7ebgebumChTZs316ZqmWCXlgjCc3mfR92l1fxNBBKB8UQAfsNj26GHrUOCJbJP+VQDv4H3SBbiKSTWdTyPhQNBq6Ay8KriiJtJeVFE8oEJfjUgPjQgnjQontSv602Sg4cl73VoC8vtFu1hM/eRRdN8KRnZwl1OzzfL+gF/NMHZaOKBQigGUAZgeYASoNVqAXkurBLID4sE0qANeuT3UFw4Fj5IdU/pESI/6qzrGzdFg3DUlj+lyaulaDjta1+37+I1fcMqO+n//T878olPkYZ4hd1+2WW2+f77bYqUDFOkbJgigLvk5Awz6nZZOmjlhyrRbXSXnNzUOMrNdQUTN5imFMdLhZv+QAFIIIt4a/QPRPNA+dS9LTRb68MD5W2p/tb01ust1butdFsq35pe11eft9Jx/UD5rWUeLH2Uby3Xev279CXq3lLZaIOYEH+Dce6J+mmlq/MjjzT+5kdCfT6S2mB3jUoLTbSPE0Imml3aC9y3RNRkc7hvkw7t4C3GMW3adD2TephlfbRJk9/Vq2633rUbNPGUt+2pc+QIWzsciEF2axbNJLg89qWHMKFoh95wPnKUHJhTl5iY+2hQbp94waAEMXgI7Jm+qYc6MPUvX38kpdlm+XLoX3uPbbxDzrv22d7m7LbY2mTO2qfxwPhrXKmpvo7zggS5JZQejdC25kMVNKVEUJTXCnl+8MLRgRAMHp1iUAjHrmgAk0Yx8CGtU+MZlqJh3b132YY7l1kHH62mzZMfxh5pnbWHul5COIrE+WO76u0b7NULoV8WDcqXooFlEBzN+1x60eiNIq6jq3SwcVH4pffClcP41hmgL3oZDWzqt741q23zjDnWsWCBdchst0Nmu1iYdKqtzVJI9Wl3EfrTPVU7iCBxu/BdXrXRXKP1ZvNjXZNG8K6VU6evr0mu62yQjSrTSkN5ykRM/pbqrGmge6AwFn1rWut11LmldPLHyos0YsKWcIixBk1drrVM5HmFjZ+oP8oTj0XXIG9iGXVvjTbK1PHW6CMv4rpcnJMXYaw+bCmfMmPRR13RZsSRvrU4aKPNun7KcR159XWkRxx5xHWo66/rjnKRVpd5oPOocyy66OuW6q/zKV/XVefV6VtqJ/q+NdrIE7vRhB5+ioxYcHUpUZW4okF5CO+kFeUvCofScvOtoHdKmxQGzrXlG6dDR7tkTz54tcuEeLN2Uhq+9xYblMHtkFwjWM8syfcz9UGxR7y4Q76DUAhoMkAfVHcoGoi5Hh1GJh8FJcmwkm05nPPq3YrjYw76x0c6FA59Eu77+rTt5cb79J4TvSrt2lHK3/k7Ws/0mdbNl05CQ+Hhp/r5rebJaARV7fmtceQT13lcU1+kcd0a6rz6fEt0NU19Dn3rddSxpfTI31LZ1nJcE1oxaqUrVCP92VK5oCPeUh1B80D5UUfQE7f2M/KiPzVN1P9AcdRRx1GGtPq89Zo8Qmu/WssUqpHfB8ofoSxnNX2cE0eI9lvzIh26yGs9H+u6ThurHB+EkHk6XdGgp1ZEiFsoGspmXDEvbTzrdKQh+zmP0jmuzrE+5ZkfQpnJM6/d1AZRLOjD3ibVNSjFQq8KrJfj86Fpku2mdNm+zz7Gdn3mEVoavJvq1DoByXxYNgypPPLltoZQEqzTEuS7ZYmMImC2ZDocPnI+BWtkbTlPwLqBEMoCzl3RoDbZxaxWPNQ00BFC4UAetBwoGjgI46JokIG132QZeXi45rKldtY3vmlnfvM7tkkWDP/4lrfa4fs90e5adpstOe/H1nbfvTZHa6vnSUM7Sx1p09Zum6Vl9umFbhivDODkFnJG/Ryc+8vEz0ubv/UEKC9DIjDZEQh2UwSpMtpguhFHalxHmSY2MD4xBrdIEAMbFnOAkeEHoEvp7VgKiAH19m3UKqcBLW3o8jwX1sQkI6Y+P/eHMVorz2d5jkuLZTpazgu9JtxqB0EOBoXZGE6y+tWPQQleCI1MqrtgWEzflY8H7o3qyyBbZcqyYUhlZY/hfGGk5dLGxP3y6iihoFD4UuFaqEoQRDU2HZzzkoJvgRLlXBGhsw4UJBJycY47RQoFMC+7SYhRU0IFUTYgyA7JXwMCZneHvI8LE8xuh3jzVT0ZQZzUcrfjnpf7UOgFo1bFSJUjLTk7BZWXYbuWZwzZavVnnQj68JUhjDv9nrN8Q0KxyvTphchourBoUHX1PVVGhkQgEUgExhUBuBbCOyIrvJMAP4On+ocnPy8cj7TCk2tuiPzIu0XCvyqD1/aI18Kf26Q82Kz3TbveKe1SZHfq/YOSF0s/BG3qw5+CuLT1K+YdBReHV3cr5gNZmUpQmQ7v2Uhc+KMUztSnfP+6KD6uavydVxQOpQZqZgc3LPQ2qq+bdI2lmT4zSmDH2q8ePW1kSAQSgYlAANsBFJsoEuP5huegcNTCK/EF5qXiB3qmQwbi8ecJjYNyyLf847nn+W7Xc4yiolc8Ry5oZcHUYdJt2jopPPslNG4euN8OesXrbb9jjtbuM4v17Gv5RJcOWUGxuxqBdh5MuE3Lcs877zzDJ8Pee++tVRkz3HJhp512sh122KFZlX9sgg+K72HZ4DK5+o2FAgdpoaRoFtLJWIqFWvEA7UNSNL1n30QAAEAASURBVAA8R1ECSAncuL56yeV29je+ZWd++7s2cOdy+6c3/aUUDfvbbTfdYBd86r/MtLXaggXTbeGseXKwI1MxfanbLFUyEx5eBCBJR/nHzYTR+6Fzv8FqtOQW0Lmh3IJyS3WSIRGYxAiU5648AfEMMlweHRhkYUQlLo9TSRmBREKZnqlBmejzJPX0wHikafUvNsWqyNeSNszmWRolrqNJrhgN5lQwT1XJs8g/Ai3EM8g1qSWfZ5kUr8LpoPX2WTYlRQE7VrB+jDSUDL0wNjE4GqEf0LBtJowfGszO+sWYNw30ymnvgPMfmmgdJW1ORKCdwmsQbhE+4YHS+vqoi1DJC4qXDAKrj1dlGjA4fh2a5HeyDEITenfGgyAp2n5h0q+vbWwXPISll8bu8qWUsbSGkqFNZVEyuKIBTGgBbYaflVaK2F3adIFcmGEhwj+d+ouvS/VMFfbdakN3VZYNQ7ZBL5p1sm7ZILPhAfWB+8LWSyh7+P6GCfBmfOxIWOYOZ0gEEoFEYKIRQOj1f8HkC5sTR9K/lnPnyeqQ5zU6hjVYvyz29PqS47PpWjbYU3ir6qUCJvyd8GDxOVe8ohVQGFSemzmrjbCeIB3bCJQNKCtcAeL9c05Mttou7Zcz0fD+Up0oKgbFZ4vCQu9M0hsHY+Rd6ztS6P2HBQVC/LA+wm1mhyLxXuoDhwyJQCIw/gjw3PJ08Ywhu4UMRwr8BH4wKNkn5qWtMjBzUVdSRnnF1IdVABIyCkPmy8hZvciMkrs3Kl7Tu8YGOpVzq9kzTnmX7fPiF5ntsZcYh3yQdeOrQcsnGnWp+IMK1157rX3+85+36667zg499FBXNHTrI9LixYttjz32cCsHlAhTNRcnPawQohEUFBzhNJJ0lBLOk4WRK0/Fp9wCAgZbBWgID1nRAHwAxwHTRZxduuQ3rmg49etfs7YVK+397/o7O2L/A+y2m2+yn3/9Kza89Cqbu/cim6c13rP1xUzfznQLJFSrdOlmeUUUUVY3lvp1g0s7KB2CfRcmzx8DXxB9AqQ4QyIwmREIIYYJLs/ICHNsTPb1PMSkvzBN2GQ8M+XB5wljYkn58lWb9aKyJBBDjDI8T1y4NlbPH0zDn89SReM5LMIVtOWLE5lwAXhCmYRH/5DdKI8yBMY7gAmrhCwmuwh30PFFH58Mvn2jUrysfvwLkmhZbsHEGIa/UeURAmnr4QyMMBQ69I/26Q/j5R9jpL9hVss1dD4Wxbx6+OcvJHDTAQ8j9GlMmyRYomhg2Zhbc4h5S60geVi1qxJa4IBrgj5pXrvoSy0Rk9rgm94/6LiH3CuEZAnXtK2Ya/7xf0D1sRwFbHXTlSve3ugjffV7R/8eduTpf4ZEIBF4vCHgLK4adOFzhZeSzHXQEMP3eD9Gmk8IxM/goRD7hEAvJBTYnYrha14HfFIHSnfehVhBUJb10XxRDM7Kuw6eSOxHozy8kkD70Q+ui0KhqH9ZuujbxxVCWKyC2ufE6xFdnKtNauNdTZ+otNBTJkMikAhMBAI8kiEnuRysa5SDyHhYNTAHdflW5zznBJ5UDj6WO3/x8+ArutAzjiKTeSxbjPeKDwxKlt0gDrOW5cuskui90w5947ttxxe+wGzRniqinRrlt+WhKBquueYa+/KXv+zKhv3lRJ1lEigW9pEfiD333NP22GMP23nnnW2vvfYaZeFAjwnhNDIUDfBQFKDwq1BKOF8t5M35Qq14GBdFg/StrgxAsOZs6RWX2Y+0bOL072rpxC232Xvf8nY7bL/97M7bbrVLf/gDeVq/1WYv3M5m6oZM112RUYivDe9oCsojjJqbWW5q3FgmI+Tzp1BuKkoGDm4wN5oQN79c5W8i8NhHgL94/q7jgPHVk2z+9mGK0PHLdZxHWSV5cEWAC1ESmPTJHKaBMDMg5ocg4/Vw0giwUxQOBPeaLQHIlQHqDFS05RPnxpPn9euc55cQNDBvf0aVjEBHO1hJ0F+unZkrLqsCVIqCuu4Uvfiw/MDIN4SYNUIkX3yY4BPKr59O6A/9LGMp46BdxsryDfrCNVwQIbTwpMZ4m72idIRSF78oYSiMcBtKC8zy2pWBTwSEU9ccqw33zSDLBrZHKn4aaFWH6AhFnOWs9Ke8HAvfJBXlTo+sFHzFspQ6bQITB5VYjuAgFIGavwMfj9Kpj3wfk/5WELyxPEHRUFqk1gyJQCKQCEwMAnAheH4E58H6IY4j8iDjgC+7cpYMEfGu8Xem3mOkw3OLoqFY6UHDkj1fvierLefDKtMmfugT/2b7haf7O4+qVa4o2UtfaA7OW96WXImAX5Uv72fq1KFr6OgL/eKfC+/Kgy4Oyg6pz+GMkusMiUAiMHEIuEym6otkWp7fkGnhC0g+RdFQnmF6EvygyMHwhKKIpDSsw5WNkrFQNGyU1e5GPdM4guxVfetlMWDTZF06tNIOet1f2e6+dGIPFdI6ASka+mX9Oih5D1XntgaUAEz2r7rqKlcyfPzjH/+tok94whPsiGcdYfs+YV9DCbH77ru73wZkzTlz5ri1A+fsToE/B/w6cI3yIZZYtFbqPFdjgpdBQxg3RQOCtgyBVeWQXX3VEvvxd75nPz7jDLv7iivtLa9+rT1N2pP77rrLbrrol9YpD+szp05xR5DdEmhZq9xO7IzW++Vwwni5ubxguDl8ay0xN44/BW6mBGDFxaKB1AyJwORGAFZTjlqYKeJMTOSDUZbnYfRTIR7QmMiPsC0muHxNR6Dp0GQSk3nxCa+UiGcRhzakdcvcq00MpE+OAhDMyIedlEOVKyEYcfRT2covAlqh50uS+IUIinXDkE9eUTbAoPCwzXowvjZ5vVIqtKFFbbRHR1yQVL208XAFcKX/vEQYD23zwkHZyuScPvmuDIqZyI8IoKWckr2M8zKNdUjjcQGT+jQmlDgczqDVkOMuoZfdOVDsFGWMWpaigNpBv5QvSCO98q+ULL/lBck9KaFTL6wpLNvQ5ZD2cR+Sdn2z6uZ+TJXzM9rm76GY+6ku5bFUAno08gTP95ZoK0MikAgkAhODgPM42JCqD25T3jXwzPLegydzlPyG3Ah/UgL80IVieJcSfOmC+Cl5Xo/4HeWcTyoRPu5yJu8ellOgfFX6MI5xFBdlQWmptFvegdEHVdWsj16RzruTdyu8lyWI8Fr6RL3w9vDNg0IZevpVOG1ph0kKSmfqK/xdpxkSgURgQhAIOQ8Zr3CWEf5QFAwVj5HMFVTluR2R+4JPeb6e4U7JbSOKBjl/1eONooHlwh0zp2kL3WF74otfbgcecYTZrrtrJ4qptq57ihQN+HZA6iz84IEGDV9hGQTH1VdfbZ/73OfsM5/5zKhiKA4Wavtc/DTMmyc3BnPn2ixt5RtpBx98sO27774uh7N0Ypocg3OE4sF5qngjgfa45ohr5PgID1nRwLBZ2sBBk4jaSy9fIv8M37EfnfZDu2DJlfbGQw+xJ+6zt61fudJWXPhL61qz3rTqxOkpQ9foUrkphUnrssmseQHEQXucE0cZ6oApRz06zZAITGoE+PuPZ4GBOiOr4ngWRh51qEoZyhEiD8bH84ubP879S7xiD6qIDWAoQx5l8MUinifFQCmny+azGHVG33hWI5AXB88rFgoE/N3ibAuPEdDTd/pAO241RgK+ENVJ6uWIenTq18QPR4h2g9/EOBkDB/2HhvygofscpBOg4QBPyhATAhNwgafpveRzfO5NXX89fs5bQ6QRc0R7xASwxYF5uxqWnsHvPX2gTfgy/YA26tGpnzMGaAjQt9J4Rv4kAolAIjCOCNR8LHhS8NSIg7fSbE0fPAqeBt8jwE+DF3pC45o08iKferycrJdheJthwgq0OVaIPkQfI4aWOoPH+ntN1673UGK0SfVRhnY5IoSMS37QRF7GiUAiML4IxLNcP+vwBw6eY55BzuvnkTI8s8GT6pi8yKc8sm6vDuRe5G5i6RJsigSwPV/6Ctv3qQfZ9B12svX68LOxu8cGJHAPaRKvCbsoty3woQ5lwi233GLf/e537fTTT28WJC92mmgmVifPe97z7Nhjj3UrB5QVKBd2220323XXXV3xwHUoFlAycKBYqI+quodu0UBlcQMAeUAoXqEtLE/7zrft7B+car+65ipv75md7VqXMmx36wo6ubgoEwnF3JC4EcSEuIFbi6PMWOVLLfmbCExOBILdRBzPQjw/cc3oOQ+6+nmK9GCeCDwEBCEEm6ANhkoeZUIAgmGSF4G8CFG2bjfyoOOZDabMNfXEZJp6yUcw5OCcY6y6lNxM53yiA33liL7Tp7rvgUc9vug/5QiU4ZyYFwy4cx5lGDPKhsCZOuNlpFMvG3HUGfWRDj0HddaHLpt95/7SHnTgzUGgzWiXOuMgD/pop66fvAyJQCKQCEwEAsHDgufQRvDK4EnwpQjQQxv0XJMPXwu6KK+kJm3wwZj41zwRfglfDr5Zl4v+tcbQEIJnck751jpohzaJoaVvtBX9pV5CXX9Jyd9EIBGYKAR4FuOIZy/4Ss1byAs6nt3gSfGskxflOadsyLo69Wcf+S7kwO10vsN+e1jXnPlyFNlhfW7NoCWrTOQpsI0hLA7Wrl1rN910k61atcpLsqQCRQN+FsZSNrAFJtYNHJyjVMDq4TWveY0ddthhNn/+fLfyCouFUDRARyCdtiPf00QEBr9zCACpBcsu9d1uuuFmu+RXF9lNN15vK+5ZYSvvWyUP8X02TcslZmpby04pHViDPSDP8XiNV4/cFJtOFCOUxu0SkbosbUi5dcTsb+r/FHvbMlsZ0qe5YQ6lsJd9hkRgMiMAs+HPnCegnMffPFcllJR4RspzRZqvNVUpnpXiY0FLjxpLJYJJusM/PcgbNsgfrszqZ02fblOl1fSH25cuFEpZfPqyJurFn8Bwu+yZMH/wfsmUihhtJ3l+xHIHnmotEeC5Frmb7iu/TXyhnW0T1R9M9fG0jcftYbxtq952bTvR5ray1KxjuMQgUY7AQZcTFAr/kRCoAXFOwGnjkPo2qD3Y2GcZHkRP/P5o/L41mxLanV7Lv8TvcATEy6Vdu05gnsv9pE5d2ZQhOciU+/FuvDKKeYPdQI/8JmgvNbgcoGON0KEDfB1n7wrmfDLRVWX0ZVgHydytDhWjH7QDy/ftQ/Uy6NA+zkPCtJflGXJy09ktEVd9G9y0ybd6w1Eoy9qG4NO0pTKbpV2n5jhUfYZEIBFIBCYIgZrXIP0Vbo/fGPiZv+UUc+H/RECs14NC8GLo9I/3l44OOfpiFyNWPbexhE88mXfjoMri7K1fZQcorzQMlqfqI9k0mfB1awkE/BAe7/xeTHVIR+H9epfRtsrQmrm8WuRXFqppk0q9T0WrOnC0C63Wyck6UCeuVRCTFh9my80uHd2i6RS/bdfEoF/vjn7VqdxG/SqbIRFIBCYIAZ5fquYh5YjgDEcXnulxyS3XzouUCl9ykuBRLHuQiap/8dfDzvIrsRHfNnIYnkSenvN2OUbfIH8Iy1beZ2s3brC53W3ypwXP0ZOvuqJV1b7FEBN85Lxh8Zr1G9a7kmGlVhSsW7fOFQxYKZA/lqKhrvjwww93hQPWDC972cvskEMO8eUVoUwIWuriIPgYNb7oh6cpc1v67hVs6QdFhrDShEUUiu+9Z7XdftstilfYmtUCbM1qbS3Uq+0zerS1xjRpU6Tr0Z0o22b0+eQBkD2IoSI6Ix4XBYPOK4bNTQ+FA3L7Zk1AXMkgyZvzbbsVpan8TQQeqwg4+9Ojy9PiTK05kBGmSC7/ecCdEuYGnWJXNEiZgBMq1t2j5XQGIQI9eVq7P2DrxZQkFdmcWbNtmmztN+vcJ7nY9OuZlB5A60t5BpWsJJQMPIMoBWgRgazRok+WmdCWFahF0SAPDL7udQA/AXRLewp3iDd0Km5DmBvsV76OYZSR2j5HE22EMnfOpV66ogFlhfMLRQ9DUOuOd7tm/0VxwLgFE4oGzeYROouyk/vid0B0jYk+sAg7xrpBguQmYdQhszi2uERp0SEQezbLf4Liqf0oGoSBAHbFwZQOG+hi+zPxOzHcDmGPosGFbb+71I2aAcG39ANFAwFFRKEViZLg+KwX3oyioUdOhoRpr9alDEvR09MjhZLa6JeSqUM0U6R4aFeMUpjxuJdhvTRxQqnXH416G/mTCCQCicBEIFDeY/6mc05XeDDvl8L/eNf4O1A//o93ns7hy4UXFy7Few0lw2YpDdrEV1HW4jOBLeekQRU/FH/VAPC306/KB1ypLeWv6pkiXjy1b9C69Q6E5/Keg+fD76UXbiodhlUGrosM6/Kr3k/tOnjXoWrAz8OgzH6Lo0kRiueiYHdFg/j2ZpTqOrr0bkbR4LsOqX8oGfRKcJ5bFBkTgXTWmQgkAgWBhlyDcFvLOPCUxhNeksvTTpmQ9/ycH3gNSgSR4POsXYd/OG8oHYak7Ozr1/bs4kXItB2yMujumSKRe9DWrUchMKCteMU3JJ+Jm1Hjgwox4V++fLn96le/svPPP98VG729LNqA5Ynnwct0jBXe+MY32pOf/GT33zBz5kzDcSTOIpEBN+lDVFhMRDtRR61gaKaNh6JBcqkLr+q335PeDf22Vg4fN/VulIJhk/X2bpBSAa+VXTZVXitxNsftwikP+7JTyL9Ueip3kptbKitfDXWuNP6VmGsvpgjNtRi0GL9PcpScIRGY7Ai4OKNnoIg1/tg1hhwpgcDINQKKsxRiMZfwdI2jKZ4/f75UjKdvs57NgT4Z9jPZFPPrlhZxs2/3IhHKFQ2aaOq5R8GI4qIIdnoaXeJDNBTz9Mb8R+mi9cc3nmG+FKEs0KRXjJbnuHzd4QuOegLz02QcwWuzYiprc8lSeT4OmCR1wScIOn+YAuNCyVBbNKBoQejEuoG+6lc9Ki+ZQk8ZOohFg5ZMaHwDitskRPICAiC+sHUilAqobrHFTvAWwG4x0SUHjSIDKdeAS2BtVx47SDDyIb2clCPs1BHhh5LBbby4QWqrfL0r2NEH6kCwRsFL36XOsc0q14G2mL8NOf/xnSbE1BkHfw+k4wQU3swd5qCuDIlAIpAITBQCzjZb+A1cJywaxJgaTStWBtzXXw2NczKhF7drvFfEufTe4YC7ITCXdxhvLfFSMWy3bPB3IjRayiZejJIBngz345/zWNHCP+HRHot2xKLBW1SbRdkglYZPPHAA7Ltf6D1G5bx7/TWGDKsXIkp2lLyd8G36IB6PJcOgDsynGUmGRCAReDgQ0LMGMyF4xJNPCJ5TzkeeyCIVNUmQvxRcxnZZDUpxHT3HyM8sX4AXkIblEkpPnHD3ab68WVYMHVj5qkhptW6TWrceUAjA22644Qb30fCFL3xhzAJ7Ld7L9tl3HzvggAPcDwPLJZD5Fyxc4EqGqVOnulNJHEbiLJKAkQBjiA+UpI2lYCCdIHneR1muxul3SOZhmNrSMHwR84xBXXdJiC3WDIAt0NR0EzqSSG3cVFj0CEPVeZ0eNx56pHhug+JyrssMicAkR8D/7H2M5QlqPD6NUTMJ/O1QfwkZK58SzXqcQExTMc+wP496Xku+fj2fq0ZbnlQ/gw1a2EspJCFOJ41znmf/p2yvSjX5Yx35SnVlg+dCQT1BqUuVRuQroVmocT2BEd1Q9aP6roT4euY9bfTTe9XAzHH0kmW8LJ9wodGJ9ON46HWjCrCW6NQLyhUTVKhsvpqVNnStOodxhqO4i69xCihyEVK7ZBKHssAFX13zImNHCV50vu0SLzu17f2koPejqpskcum3IrrXpG70xVPV3/rviaoyJAKJQCIwMQgULlQ4UoMviUdFcDYqvhUp/i6prkt+ozR8jUOFQ1nMBW8sylEHvLZM6qHThF+TAniyv5NotxR22iJ7ljL0h/INAo+D95e2SgPRTumnykBUavP2QolCMwR4bXl/Bg4lPX8TgURgAhGIBzSaiAey8ZRHcokbT36JmlmlSKMg9XFa1QvfKaGRR7bzNlXkfKGRPWabkffbMbvloGhYunSp7zgx1vaWlDruuOPsSU96kvtfYItLfDNQloMQCoRQXJAWaoPII21rYVwUDWBCw6FYcIzUqnhjMyDslq9hzaQ8SQQSgUQgERgPBHi5wXhhuhXfHY+qs45EIBFIBBKBRCARSAQSgccWAjfeeKN9+tOftg996EO+iwTOHHfaaSc/33PPPW3BggVuqbDLLrvYjjvu6I4ix3uE46JoYM0wB9oTDpQOXGPyxd6/nq8va5iG1PkxGGigzZAIJAKJQCKwbQgEn0XRzZIJrjFpQ+Hglg3itwTSPXaTXfhyMRfeVm20F86fRCARSAQSgUQgEUgEEoHHDALXXHONffWrX7UzzzzTFi9ebCgU8LVw8MEHu98F/C8gI2LBgNVCyJUxnx+PgU6YooHOFgsHmXrpvL5mfTDrUPjwFjQp9I7H7cw6EoFE4PGEAEpcDIZxNkRA0QCvZfsiXhQRXNkLTyYBRYOO5LmBTsaJQCKQCGwbAqht02hs27BKqkQgEXhkEVi2bJldcskl8pu41hYuXGgoFjiwathuOzbTHB1cpmzM32sZcjTVg7saF0VDqyKBL2yxWm4sYXYiBvLghp3UiUAikAhMPgSCt/KCCN4Lf3ZfDYrrdXaTb/Q5okQgEUgEEoFEIBFIBBIBEEDBcPfdd/vHJ5ZJ9PT0uGzYlAU1Xx/C4XojIDeOl4KhWaeE0GJXGym/Q1xXUQu3cU6VNQ3nHLUw/Ds0m0USgUQgEXjcIwAvHRzUrhOKeXlwELh2SwZZPRDgx+TVfNkz8icRSAQSgUQgEUgEEoFEYFIhwGYMbEeJlesU7foYAfmQPByb+25jyiAt5EPiOI8yv2s8LhYNYzXuHcbATP85jyNoYxDjNZCoN+NEIBFIBCY7AvBTAvwTZcLGjRs9ZisiXigErBhQQJAfCohU7jo0+ZMIJAKJQCKQCCQCicCkRSDkROKYcyMPIheiZOBAXpw2bZrnQxcfp5AV46PVQwVoXBUN9aDoWK1EIC8ONCjsHRwDf6iDyPKJQCKQCDyeEOBlQOBlMDwkRUNvUTTwwohtiaCJJRPwWmhT0fB4+ivJsSYCiUAikAgkAonA4w2BmG8zbuQ/rkOJUJ+jaOjWtugRgoYyjzpFQwyKmEAnI8R5PYAQeCMvaDNOBBKBRCAR2DoC8FJ4LXyUOJxA8sJofTmQDz0h+O7Wa8/cRCARSAQSgUQgEUgEEoHHIgLIfZu18QL+F2LuTRpzbuTAsHJtnYN7OdERoBuPMC4WDXXHYiDR+bims0FHHgfXhLj2i/xJBBKBRCAR2DICYpvs2jMWb6VQu7YKDouxqARTOQIvl+DNkZdxIpAIJAKJQCKQCCQCicDkQCDm17WSIWRGFAjx0Yk0aGIeHvJhxOOBxrgrGuhUdJgBxMDG6jRmvQyQrdnYBz5DIpAIJAKJwAMjAN+Et0ZAgcB1OIVk+URoo0lnLR6hTo+yGScCiUAikAgkAolAIpAIPD4QCAVExMzRYy4esuN4ITFuioa6Q6FUCEUCnW4154WefI4w4ajryPNEIBFIBBKBsRGolQycc4x6YUjxUGusU9EwNo6ZmggkAolAIpAIJAKJwKRCQN+hJBk2P0iFAUCMsZYbOY/8kCWRH8PfV5T5XeNxUTRsqXHWDYdXy9rZRNAPDUrRoPUjqWgIRDJOBBKBRODBIYCCYcOGDa60hc/i3IeXBi8KDl4c8FpeOrw4QhH84FpJ6kQgEUgEEoFEIBFIBBKBRzsCoTAg5qhlwq31nTl7X1+fy4o9PT3jIi9OmKIB4Ze9O1E2oEigwy74av1wLJPAzDcsGsZLc7I1ADMvEUgEEoHJhgB89rrrrvMtLvfaay9bsGCB81XGCe/lBQM/5mUTAV6cCodAI+NEIBFIBBKBRCARSAQmBwKhYKgtXcf60AQdNKGIYE6OsgHZMbZKf6iITIiigY6jRFi/fr1/aaOzU6dof/fuLteSxGBT0fBQb1+WTwQSgcc7AitXrrTTTzvd7l5xtx133HG2ePHi5osjeC0Y8TKB5xJIR9mQIRFIBBKBRCARSAQSgURg8iEQch+KhFoejJE2FQvyleiKBW0YGR+lxutj1IQoGhgAGpEbb7zRrr/+ettll11c+GWPd7QkhBgI56FJiXPiCNBtbbDkAySh/kpHerRB+dY66vxa4I76iKNcxNGnMeOGJ/jox5g0jcS6X1uj21oeY+ag73X/t1Ym8xKBRGDyIIDSYM2aNc5nv/e973n86le/2g488EDbYYcdbObMmaMGy1ZH/QP9zhdZYpF8YxQ8eZEIJAKJQCKQCCQCicCkQSDmtAwo5t/14JhHomxgt7KOzjI/r/PH43zCFA0bN260888/3774xS/ay172Mnvuc59r8+bNc40Jg0JIZtBoWBCA2a6NCX0t/D7QhDwApD7OqSuAjDxi0mpFQ+QBsFQQDm7kk4eSxCfxjWUereXHAp5y9CPGEPW10kLHQYixxnVrmS2lUzYwpI7xMm+h3gyJQCLw2ECgt7fXFbm//vWv7ac//an95je/scMPP9ye//zn25FHHmnbb7+9DwQ+Am+Bp8HbCPCM4D+ekD+JQCKQCCQCiUAikAgkAonAOCIwLoqGUBTEJH/t2rW2bNkyO+ecc+ztb3+7vfOd77QXvOAFtv/++9uOO+7o3UfRgKDLgSAcwjACsU+wmYvLhGNbAgI0ZWqFQNRZl4eOQBsxqYcu0ulLCOSkcx59pJy3I6UI/6KOiOv2YkzRr2gz6oc2Qn1OXRHq+qIN8oKGujm4DtyjbMaJQCIw+RFAmbtkyRL7yU9+YhdccIGdffbZbjn21re+1ZdQLFq0yBWS8JLgjSgoCcGLJj9KOcJEIBFIBBKBRCARSAQSgUcCgXFRNCC8MumNL+s333yz/fznP3fh9/TTT7c5c+bYS17yEnvVq15lBx98cHOcMcmOyXNkxAQ9hOG4xvqA/1Eu8qPclmLKc9BPyoblA+1yjYdN8kjnGKte6FCOUA8hJvjQRqjHAV3QUxZBH3yChrSoK+qr88jniEDeWP2K/IwTgUTg8YUAO01gxXDuuefahRdeaD/60Y8cgFNOOcWOP/54wzEkPAjeEXzt8YVQjjYRSAQSgUQgEUgEEoFE4JFCYFwUDTFpZuKMOe/ll19up556qgvAl112mY/tta99rZ144ol22GGHWWx1CT0TfCbQ9Vd50qkzJtauIJAlgV+3tzUVBpQhrW6fxmJSTl4E6uSQMYLvegEN5aIscXz1gwarBQJ0HISw3IA20iPPCfQT6VGvt6l01r+w2wb5MT6vR5qTNo2ptR7yCBFzHnW30pKXIRFIBB5fCGA5dumll7rl2EUXXWTnnXeeA/CBD3zAXvOa19juu+/uvAZ+Ezwjzpu87vEFWY42EUgEEoFEIBFIBBKBROBhQmBcFA3RV76wrVixwlgzjG8GTHkJ+GZ40YteZK977evs0KcfarNmzXIFAV/bYhuN+osbk2ufhDcm+WEZEDSt1ygiIo1yCNFBGwJ29DFi6ChDHLTkcU19TQWBlBWh8Ii6oKmVEX7dqBgalApjLfuAjiPqpojTq42ou1HNqCjKEQf9KIK8SAQSgccdAvfff78rGn784x87z8VPA+GDH/ygnXDCCe6El+vgOcEn4U/dPekMEmwyJAKJQCKQCCQCiUAikAhMDALjqmhgO8u7777bl01gvnvDDTc0e/2c5zzH3vymN9thhx/m+7xj1cCEe6B/wK0HmMyjIOAIwTgm+CgjEJJZekA+5aCJ/KD3Cbx0AFgIkBeB9Jigx4SeMqGcoM66LvI4gpaYgzRCpEf9EUd+lK37AE30uy4fdUcdW4qpM+qHJuqIeEvlMj0RSAQmJwLr1q2zX/ziF/b973/frciwaiC84x3vcB8N++23n82YMcN6enqcd8A/nEeKBuVq8g6HK38SgUQgEUgEEoFEIBFIBCYAgXFVNGDKu3z5chd+TzrpJHcIGX1esGCBnXzyyXbEEUfYzjvv7FYN5DHZD8sCFAkIwCEQx+S/v7+/qWggf1sDQjUKCg6EasqiVCDQRp1HGu1Fm7UQDm30CTryOFoVCeRBx3jIp62oJ9qLcpFOmW0N0Q9iyvvR8FuxrXUkXSKQCEwOBFA04J/hS1/6ku8+cfXVV/vAXvziF9sxxxxjT3va09xPw8KFCz39d+E5kwOpHEUikAgkAolAIpAIJAKJwMONwLgpGpj83nHHHXbVVVfZL3/5S/vEJz5hq1ev9skweQR2oGD7tYMOOsgWySN6bZ0ATUz0WZbAdpcxkR9L0QB9fVB/szwXCuSjbAhFRigaQuAOC4NCPaJAiPxIj7qoj+ATfE30I1A/IZQkQ4Py7K7sLSkaSKeuUIBwTaj7E2209iXG7AX0E3RxnXEikAhMbgTgGziwvf32290/w0c/+lG76667jF0oCChzn/WsZ3mM893tttuuyVuCX7TylcmNWI4uEUgEEoFEIBFIBBKBRODhRmDcFA1MklEynHbaafazn/3MrRpYSsEkGsGYgBf0o48+2nAMecghh7hJ71gDrif05A8MsNtD2RUiJunQ+MRcTiKHlEdoVSSQFhN6aBGuKR/CNvkPNVBv7E0fTi5jvNEWbUQ/og+UQ4GCciR26yCNgwBdq+LEM/RDXRyE8RyLV5g/iUAi8KhGAL6BL5ylS5ca/hk+/OEPj+rvM5/5TDv00EON5WrPeMYzfKkaPImj5iucZ0gEEoFEIBFIBBKBRCARSAQmAoFxUzTQuUsuucQ+9rGP2Ve+8hXfWQKBOBQNTKaZkD/96U+39773vXbkkUfatGnTfEwxCWeSzXkIwzFRj3Qm3uTVE+36PPJjsk55QpQPwZoyhKDnPNrlPELQRUy6n7vFBZP9ohQIhQAxbYWFA2OONkln/FyHYiEE/9Z+RvvEUZ44zkmnHxyt6eRlSAQSgcmLAHzknnvusWuuucbOOOMM+8hHPjJqsFiNhaKBXX5YtgavCL4YPKPmJ6MqyItEIBFIBBKBRCARSAQSgUTgISIwroqGn//85/a2t73N2NIS64KYSPOln8k1a4pnzpxpX9SOFM9+9rNtzpw5PtmPSXgscWDizUEdTN5bg0/2laipNz+jAnm0S51jlScfQZ2YPlE/21byLwTwqBAa6iEmeKxTaEnnoDzji36ShoKFjnV3l/opS58wd6YNnLMFPXljBdqiDCH6VZchnyPyxqoj0xKBRGDyIQCfXLNmjTvb/eEPf2g43q0DSydQ6P7e7/2eKxxQNGRIBBKBRCARSAQSgUQgEUgEHk4ExkXRwMQdfwwoGt75znfaLbfc0pxIM/GOCX+ZgJt96lOfcouGVqeQ0BKYUKNoYBL9u4SYpKNAQBFBXTFJJ69V0TA8pHZFFzRbapOy9JE4An2kXN3XTZs2eXatgEBpwPihRdFQh3rckU4b9UG5un/Rl2g/ymWcCCQCkxsBeAlbCd900032g+//wN530vtGDfioo45yXzjEOIScP3++5wefgWfU/GpU4bxIBBKBRCARSAQSgUQgEUgExgGBcVE03HvvvXbjjTfahRdeaP/zP/9j11577Ra7Nm/ePPuLv/gLF4Sf/OQn26677jomLRNpJuZ8vWPCjrIABQFCNpYIKC8I0LFFJkJ0lywI6nTKQ0/5On0Qnw9a9hAWDaE8CAG86BGKMqG2mhhLOKd/oViYOnWqC/ChUKF++k2gDfpCoC8xvhD+oaOfdRvQcEBDetRFHXV6rYAgL0MikAhMXgTgIzh+dEXDD35g79VStDo8W9ZiOINkeRrOIOG58JDgNfCL4HV1uTxPBBKBRCARSAQSgUQgEUgExguBcVE0oFg488wzDTPen/zkJ82+8eWeyXF4Q4+M3Xff3U444QR79atfbQceeGAkN2OWGGAafOedd9rdd9/tE3Mm7UzqEZZDcYDiIQ4m+TvttJNtv/32vjyDdqFHKGdiH5N0JuikE5Mek3TaXLlypR/0l2sC9bIXPcI6Sz24jkAd995zr11z7TWuFGFcmCnje4I+kh9CPWW4pr/UjTO3W2+91a0bKEfdlKmVE9BzpKIhEM84EUgE4F9YkF1//fXufPf973//KFCwZIhdJ5761Kf6rhMQBD9JJcMouPIiEUgEEoFEIBFIBBKBRGACEBgXRQM+GT772c+6omHWrFk+ieYrPwcTc0x3p0+f7pNxhF2sH17xilfYO97xDsNZWR2YVLNbBQqGyy+/3M4//3yf/GMlwCSdiTiT/ilTprj5MLQoJPbdd1/3so7iAiuJ2bNnN7/idbRrGUZ7WYZB+2MpGnp7e11wZyzsR4+jNWj32Wcfr/spT3mKn9M2gb7QNkqWb33rWz7Wl770pbb//vu7YE//YklGLdijZGCSQBtnnXmWzZo9y5gYsIwEjFBqUBYFRUwMUtFQ/4XkeSLw+EYA3oMzSHjI2Wefbf/xH/8xChD4CdYM7D4BP0T5miERSAQSgUQgEUgEEoFEIBF4OBEYF0XDsmXLfKs1JtFYDqBIYIvL733vez6Wf/7nfza+rJEHDVYGfPXfb7/9bI899mhaG5AeSgDWIPPFf8mSJfbrX//aPvOZz3hdc+fOdXPgRYsW+eScCTm+Idjm7Q/+4A/suc99risvqDesCYjjnEroA5P42noARQbCO1vG/ehHP2puGUd9mB8/W+bIOFhD0UBZFCEI+hdccIG9733vsze96U32Z3/2Z66MwJKDuiOgcEDRQR8YHwqK5cuXO05YNqBI2HHHHS3GRBvQEqDn4BqLhzrQDwKKjAyJQCLw+EAgFA0oQ88666zfUjQ873nPs2OPPda3tkTxibUUZeAz8KXgLY8PtHKUiUAikAgkAolAIpAIJAKPBALjomjAcgHFQPhBuOKKK+y73/2uffSjH/UxfeMb33BrA4RcLAeYGKN0YEIeywUQfpnsM6mOL/p8+UfZgFXD29/+dq+LCTlWEPh3QHmBFQCKhvc21im/8IUvtD//8z+3gw46yAVsFBrtbVqT3JjoMzkPRQNtx5IKhHCEcdr7/ve/b3/3d3/n7VEPDtVe8IIXuOUBio7777/fFRKM6xOf+ITn43cCGpZvUA/j4aA9FCj4eujs6nRhn3xwYIkGig0sIsAGL/FPfOITbbfddmtu/Qke/X1yItlRnEimUuGReEyyzUTg0YMA/AMedN1119npp59u//Zv/zaqc89//vNHKRqw7oLXwOOwMAueN6pQXiQCiUAikAgkAolAIpAIJALjiMC4KBoQYJlMM1nm6/2Sy5fYt7/9bYu1w/huOOaYY6VY6G4qGpgwx2ScmGvqoC4UFlwzSV+1apWde+659u53v9stAHbYYQef0D/jGc9wh5J8rbv44ouNST8H4S1veYsrNthLfpdddnlAuGiTCT2Kh7vuussVDW9+85u9HFYMmCGjBOAcIf3SSy+18847z04++WT7/d//ffvTP/1TO+CAA1yxwdKRbRHkGSvju+KKK+2Tn/xv+8IXvuBWEZg9s0wDhQVKEnBgYgGtb43B5po6p41Q7DzgAJMgEUgEJg0C8A4Ulezug1IUi7E6YIHFkgl4FkpZeCA8Az4bvLWmz/NEIBFIBBKBRCARSAQSgURgvBEYF0VDa6dY7oBFw7/8y794Fo4iMeVF0GVSXybNZTtJJtKtIWiYTCNUo2j413/9V1+msOeee9pLXvISY694FAAsM2Di/wN5X7/41xfbj8/5sVf3tre9zd78pjfbvk/Y16+ZrGN5QX1YTKAUoR+0RRp9w8ICKwrq+od/+Af3/XD00UcbxyGHHOL+F9atW2df/OIXm3vXo2x4wxve4E4gyaMuFAQEviJSr1toyKpiYHDAFQe0HcoIlpl8+tOftg996ENe5i//8i8N02csG1A2QEugXsZATGDCgGJkLPycIH8SgURgUiIAD8D6C0UDy9NQwtYB3oDi9G/+5m/s+OOP9yVqWH6RHrw3+UaNWJ4nAolAIpAIJAKJQCKQCIw3AhOiaMChIhYNp5xyive3VjSQgLDLgbA7lsDL0gYEZYRjFAFYD1AXO1rstddedtxxx/kyBr7+z5w50304fPWrX7VLLrnEfvnLX3qbb33rW41JO84c77vvPrvjjjvcLwLnKBRQBjDZx1Ha4sWLvR4KomjgK+GJJ57ofWA5BAcTf5xMYmHxpS99SVYIn/R28M/AsontttvONqzfYCvuWeEKCrb8ZDJA/xHwCZzj9BH/EQsXLnRFwQ033OCOND/4wQ86DQqZ5zznOa5EoU3GRwAvMAncUGCEssIJ8icRSAQeFwigcMS3SziD/PCHPzzmuOFhr33ta513zZ4125duOQ8ZlkVUZ4crQccsmImJQCKQCCQCiUAikAgkAonAQ0Rg3BUNTKZRNOB3INYOn3HGGW7REBNjaOoJc+sYMAtmks7aYgRjFA0sw/jpT3/qSgEsGti+Da/q0OCQEauAc845xyf8+FTAbBhHjkzomcxfdNFF7uuBfmEp8KQnPckn/i9+8YuN3SIWybkkgbXPfCXEsSMBJQM0WFKg+MBhJBYP//u//+v5H/nIR+yVr3ylt4sSAuH/O9/5jitaKItCgDJYeeAA8l3vepcrStglg2UfONJknTV1Unbt2rWuRPnDP/xDVzagCAmFTGDmDedPIpAIPC4RgD9eeeWVzvfgayh1I8Bv4K8ElnTBR+B1LOnCOqr2TwNthkQgEUgEEoFEIBFIBBKBRGAiEHhYFA1nnqGlE88rSycYBBNmhGEEXSbRXMckmmuUC5gHY3mAwiH8IeD0kYk3SgT8GPDFH8sElk4w8Uf4RimAjwZ8JtAGlgUoPtiVguUcKB7YnQIFBdYPOHdEIcC65r333tvXPp966qluQcHWlVgX4FxtwYIFxtIIFAMoBXBKSTrKDvpCf/EVgdUFDiL/6I/+yE444QSvf+XKlfab3/zG3vnOd7pVBFYQ+JhAecH4cOpGWSwp2PGCgCPNY445pukYsnVSAF4RxrIKibyME4FEYHIhwK418Bl4HrwD57sRUObG8iosGv70T+Q/5okH+PKtWFIBLXStPCXqyDgRSAQSgUQgEUgEEoFEIBF4qAiMu6KBCXBYNHzgAx/w/j3Q0gkUAqF4aBV++QKHjwb8PfD1Dr8E+EtgZwaUBtBjCRATdJQI73nPe1xpwPZv7FhBeawMWLLArhSHH36413PmmWfZ5z//OadlmcWrXvUq98qO80osFVBgoEhgwt/d1W0XX3Jxc8tOvhbiCJLdL7CQYLvLz33uc/bexu4X7G1PX3BeyY4c7C7x5S9/2a0a8MGAooHtPVGmMHEAM6wyWAJC+Kd/+idXgLBUZN7ceW7q7Bn6CcUM12HtEHkZJwKJwORGAKsnrBjC6qoebShuSWPLXXbggc+gZEC5UCt0U0FZI5fniUAikAgkAolAIpAIJALjicC4KxroHMsEvv2tb9vJp5zsfT1DFg3PqywaSAyBl3O+wIWiIZZXkE5oVTSgWMD6AF8HOIJkvXIsY4D+RS96kTtnxNM6Fgksq0BxwLIF/DZg6UBZ6j377LPdPwLlsDZA2YCJMUsn/vqv/7q5jAG/CZgdYwGB1QHhT/7kT+xlL3uZe3fffffd3S8DVgj//u//XvJf/yf23KOf60I+/hsYIztaaNMImztvrs2fP9+tHWK8WGOgnMD/AwFP8lha4D+CJRbhFNIz9RPKhlQ0BCIZJwKPDwRQNPzf//2fvfGNb9zqgFE0oIxA0QDfRNlAzJEhEUgEEoFEIBFIBBKBRCARmEgEJkTRcPnll/sXN3aKILT6aGgdUCgaanPeUET09/Xbueed61tJ/uIXv3DniFgZ8KUfZQIWDrfeeqsrN2gXh43PfvazfRKPV3YcRKJwYGvKF73wRbbHnnv4cos1a9YY9WGFQEDJ8I53vMMVDXwtDCEePw8skaAdljd85StfcfrXve51vvsFSg8sJfDtgBKCbSpx1MZuEgR8MlAeHxBYL+DckeUeKA5ijNDRRyxAQtFw0kkneTnqnjljpvVM6YFsVKA8Ib9MjoIlLxKBSY3AtioacFKLQjQsGuA58NjkF5P6zyMHlwgkAolAIpAIJAKJwKMCgXFRNMTX9fhShkUDSxVC0XDaaafZscfIKqC7TK7rCTJCb2t5rA2wVJgxY4bHrEcOZ5BYD+AMEoePOFRk+QTlmdxDx5IDJv/4VCANSwEUGfhfoAw+Hviyx3IG1jdThvKU4wsgigAsGv7+7//erSBQNOD3AUXDhRde2FQ04GSNfuCfAYUHdbKjxVVXXeVj/9SnPuU3mD6yxAKFAePBLwNKB6wUOto7ijmzzBxQkrBcIxQZLBXBooElIigmfItMfYnMScKj4rnJTiQCjxgCKBq++c1v+s44dSfgv8FLSWfZxB//8R+7Fde0qdPGVFbW5fM8EUgEEoFEIBFIBBKBRCARGC8Exk3RwNKHWAbQqmhg6QLLD5isQ8fyAbl/1KQZM962UWNBUN64caMvbcBRI0oClAHsYIGvhSc84QnuS4FdJw488EBXNFABDiS//73v2ytf9cpR9XGBEoB8Aksj8JGAXwX6S5/IQznBxJ6vfjh7xLoAJ2tHH320KxSgY+lELNNAgEfRgEd3/DBQL4ElGigqvvjFL7oFA1gwHgLKBfa8R3mBwgTlAX1DqYKi4b/+67+aPhpQ0uBPAguNqVOnjlI0gFGEVDwEEhknAo8PBNxHg5am/dmfl51xYtTBf+GZBPzIYHmFHxkUqPCwDIlAIpAIJAKJQCKQCCQCicDDgcC4KRrobEx6maCzwwO7KxDYvpHJPYLwqEmySckwWs/g9OzEgLDMBBt6dp045ZRTPMYy4fjjj/etH1EOYKEQgQk+eVsLLJ848Q0nusICpQd9ZrLP1pX4UmAJBIqRk08+2W666SZ3BInfB2hwLMn2mATWPh933HFNRQNpOITEioJlGVg34OSRJRQsxYilFFhOYCHB0g8sHFz4l97g8isu950mUFAQwA5FBtYP0IWPBpQiKCboN3hyhCWJF8yfRCARmNQIuKJhDGeQ8AH4AfyBMNb2lpuHtePP5pEdfyY1UDm4RCARSAQSgUQgEUgEEoFHDIFxUTS09h5FA5P+9zZ2YMBHA4qGbZkQj1JEaDLd6gwSSwAsD/DTwFKIsAxYtWqVsUSDNckEnD6yrALBGysDfCAQyP+rv/or3xqTulFooESgb0zmoUXRwBaZBLbSxKqB5QsoHrBQYJtNtq9kSQRWFSxvQPg/79zzbMU9K1yJAT314z8CSwx2nCDgdPKlL32p0+DMkrYJ1IszyfDR8KEPfcgtGqgbywfGQWASsWnTJlc00F/KR54T5E8ikAhMagTgNSg8WRpRB5SP8AQUtQTyWeKF1VUoK+F38Fh4RiiG6zryPBFIBBKBRCARSAQSgUQgERgPBMZF0RDKgRBcW5dOuI+Gxs4N0WnKcFAmymFhwBGTbwRmLATOOecc/zoXZV/y4pfYIYceYk996lPdoqG3t9eWLVvmFg+f//zn3Q9CbGPJJJ3dJdg6koDSACdpi2QpgNXB6tWr3V8D1gwHHXSQT+RZ/4wTRwJLF1j2gW8FFBdYK3zta19zHxAvf/nLm9tUUhdKApZdHHnkkW6xwO4W+IL4zW9+4w4xWR7xmte8xl7xild4W/h2YGKw+v7VdulvLrX//u//dksQLDVwTElfY2cNMIEWfMI0GuUIR+DnHc6fRCARmNQIuKLhm1I0nDha0cCg4QXBj0888URXiO6///5uHRZLJ4LnJt+Y1H8mObhEIBFIBBKBRCARSAQeUQTGTdGAcBsWC5dddpl/ccOBI+HUU0/1yTq7LhBCyeAX+gmBlwk0E2kEYkx87199v7FzBBYEH/vYx/wcD+pM/veQc0WWUWA5cMMNN9ivfvUrd+6Ic0YsHZisc9AmPh4+85nP+IT/kEMOsWdrVwrWLOMMkgPlAZN/DuhZ6vC3f/u33j3qQsFw+OGH22GHHeaKCBQNZ555pn8txFID64p169b5jhP/+I//6OXw4YA1xJSeKXb7stt96QQKGHxLHHXUUb5umnFg9UD/L7rwIvvCF7/gSzfoB4oS2qY/LMHgCyRKk8AqsMs4EUgEJj8CoZRlpCgaxnIG2YrCG97wBnv9619vKBpQUnZ3dVubfOKkcrIVqbxOBBKBRCARSAQSgUQgERhvBMZF0UCnakGYCTWTdfwcEGpnkFyHoiEmzWHJwHV8pR8cGPRlCCgarrnmGkN5gf8EfBQgNONTYfbs2T4Bv+OOOzyPr/+uaDj4abbX3nvZ/PnzvS3yWTqxdOlSVyzglJG2UDKgsMA5Iz4TSMfCgaUOLPfA/wMTfQT7Qw891OlYusCWmJ/97GcZisevetWrXDmCQuT8839mV1+91PvJ8g36SRksElCgIPRzYO3ANX4dzjrrLHcCieUGSzKwlIjdLFAwUJ7+hqWHN5w/iUAiMCkQCH5IPJYSgPRY8gDvG2vpBPwBXhG0AMPyL5ZPoJwlj7rJhzaOSQFgDiIRSAQSgUQgEUgEEoFE4FGHwLgpGuqRsUQARcOo7S3HWDqBsEtAeYAgzUQagZgw0D9g96681+68807D/wJKBpZIMOlGWA7lBOUoz6QdKwV8NjCRZykEAVrKUAfKBpQL0R7LGhYvXuxWBigVsGygPSwMUACgJCAg2O+4446+3IGyKAS+8IUv2CWXXOI+F1iKQfm77rrLUGrcfvvttnLlSi+LogKrC7bbRBFC/1AyxDjp08c//nH75Cc/6fT/+Z//6dYfLKugbNB5Jj+xY8cWHGk26fIkEUgEHvUIwJ8I8DPOQ9Fadzx4GDE8AespfDTgkDYC5eCfQUs6fAmHkCg8g5fU7QT/jToyTgQSgUQgEUgEEoFEIBFIBMYLgUeFogHhmKP+yoZAjNNDtoYkxl8D+fFVDnpClG3XVpmYBbO8AMsEYgL1UI46mPwjpPNVkAk8eQjg0BOjRIAOBQTtQUcIiwQUGSg28MeAw0sUBFgxsBXmQU89yHbeZWdXdkBD3RzRTxQhKBxwysZuGgTaQCnzqU99SlYQV7uTSJZW4LyNtmiXfjKBYAzURZ3UHxMLryh/EoFE4DGLQPAwYp5rnvXgHXHNMx/8D4UrSyder2URdQieFjznta99rS8Hw2EtitDgO+RTV4ZEIBFIBBKBRCARSAQSgURgohB4RBUNDKpV4A0huR5wpCF0P2BA/yAZmjII64SwCmBiT2DSX4ewcECxsKU2qC+sKSiP80m27cQS4corr3SfDq985St9NwmUCXWgfsYZ/SAPhQZWGiwLYfvOWbNmuQ8IlnAwKaAfKFmIUYJQPpQMTDpqBUTdVp4nAonAYwMBeErwP845gv/wjMd1pMWoUJiyffAb3/jGSBozxokt/mDwIfPkJz/Z5s6dOyZdJiYCiUAikAgkAolAIpAIJALjjcAjqmgIIZsJdCgFEK4JESNkx7Etgw8BPWjrCX7UGe0GDekcrQJ95NO3KAsN5WOnC3aU+PrXv+5LNU444QTfNpNlElEX/QlFQ63gYJkG/iduu+02t5BgG0tMnBfMX2CdXWXLyygXCoroR/Q12oh+ZpwIJAKPDQT8WZbD23DO2Nrr+lkPHjY8NGxr1q5xx7I4o33Pe97TWmzUNfyE3XKOP/54316Y5V8ZEoFEIBFIBBKBRCARSAQSgYcDgUeNooEJOSEm/fXEnqUDrZNq8kMYj8k/15GGcM4ReZyPCg3LhzqNOlXKLSJIjzaoM4R94mgHmuXLl9v5Pz3f1q1fZ5go41wSJ5RYIUAX1hL0A0VD9ANrBnxBsJQDXxA77bRT03cD5QgxZvrBQYjyEXti/iQCicBjCgH4As80SsT6OY/nOp754ItYW2EFdeONN9rFF19sF1xwgfuJaR005YNXRN773vc+X2aBMjNDIpAIJAKJQCK0GF2kAABAAElEQVSQCCQCiUAi8HAg8MgqGhqT+hCMI2bgcY7gHEcAQl7kkxYT86CrlQVRhph8AvSUDwG/toKABuGfOOqlTNQdjiUpH7taYMrMsgz8QrAOmjiWYUBH/ZRHYRKBSQO+HsjDdwNlUERAHz4hUFbEdZQnJohMx2iFRNSdcSKQCDy6EeC5h7+EoqHmSSPP+IjTW/gJO+Jceuml9uMf/9h34fnRj37UHCS8rLVcZL773e+2E0880VLREIhknAgkAolAIpAIJAKJQCIw0Qg8oooGBhfC8bYMlEk3R4QoG4qCENrJhy7yW4X4oK8VDaFUIK12vkg9QUe9KAjYkYKwww47NJ1Ock29dd11PeTXgfb4qtnZoZ02OstOGygrUDJgIs3yCZQP1Ec6YwuLiMAhxlj3r24jzxOBRODRiQDPP0coNeEFXNfWW/GcRzoKzZ/+9Kf25S9/2a6//nrfQYfRwefgAcHvKAffiICi4Q1veIPtuuuukZRxIpAIJAKJQCKQCCQCiUAiMKEIPKKKhhCMQ+iuRxqCMzQhcEc8lmBNXky4m0K7JvEYTfjkXUI8E3UE+7qeun7a55ojQistfcU/A+nUN9bEIMoSR32Ui36Rxi4Z7R3t3p+gDxyoOwJpTBpoh/aiHuoIRUbQZpwIJAKPDQTiGec55hwexXPeyqMYDRZa+HJgm91zzz3XPvvZz/oSCpQNEYLPUBfn8IkI733ve30rTLbMJQRN5GecCCQCiUAikAgkAolAIpAIjDcCjxpFA0J2LXyH4BzKA/IQnolJC0VEKyDkh2LBlQCa0PcP9HvZnu6epvVAs63G8g2vh+UI+heBPhCiXa7/P3tnHqxXUeb/zh4gBAhbWJOwQ9jCNiyyiIiyqIPgOI464+6MWlM1NX9N1dTouMz8Skspt6qxpqbUKmdURNzADRAEZd93CXvYZCdA1nuT3/fz9Pt903m5N+u9yb3J0/ee95zT/fTTT3+7++nnPKfPOZaHeJfjlRRtGnnYyEM6x76YcNzECfr6hYroytIpz2VCT5rpqQ84eYUDy6lJy5AIJAKjF4FWZzGmrS889hnjbHx2ly/U/M///E+834VP4g4UoCUv+gLn5uc+97nyAX0K044G66XUHQOhl3GJQCKQCCQCiUAikAgkAkOBwMZ1NHQu8jGK2Rx8bgO7NYhJ6z13Pl/oY1xDh8EO7TK93R0XQuuccBkY3Ry3weW29NBxgU8a704geIWCHQ2WC2eAN3hwl7LKsaIszkmz46Clgzcy4WggmD/HLd9c0QAiGRKB0Y+A9ZB1DuPceok4Nj53e6Uenfjf//3fct999xW+eLOqgI6Bx+c///nyd3/3d+Fo4JyyXM6q8mdaIpAIJAKJQCKQCCQCiUAisK4IbFRHA0L74rytAIYwm9N5zIClw23AYLYh7r2N5zZvy9908HF+9tC3aXYC2FEBPYb/4sWLg87Lm10OdATzJN4bMvnFkEHU/ECPswIHBnQ4MNi3MiGL+ZsnLIhvt4ZtHiYCicAoQMA6h3HcGzzWoSEdpyKOhquuuqr84Ac/KKxm4OsTDi0P83Uajoa//du/jXc0WLdYV5om94lAIpAIJAKJQCKQCCQCicBQIjDiHA0Y2BjDy7UKgT9Ce0fflReJwgpnA2e+8Oa4DTgJ4Nsa46T3GttRrhibFuOe4Pw+9soGvjDR0uCIINgRYX7sKbstjzjftWzlomzioW0dFKY3H8ox3zY/8RkSgURgZCOAflvW+WoM49ebpWZse8wThy7wiobvf//74WjwiobelU1e0WVevY9OWG84PfeJQCKQCCQCiUAikAgkAonAUCMwYhwNGL8EG9g+J669uG4vqlsa07FvAzR2FLR5OfaKBfNxOl99wMnBxb7zwxN6eGHwE7baaquVHA28JFKXDGWLLbeIvNDgOGAjtI6G6lBgCfOKz15ygcBGGZTFCoeuTD18gqF+SDeN43KfCCQCIxsBxj+6xbphIGcqNbDTAEcD72j4/e9/H49O3HvvvfGJS2hwNFi3WF+hQxw++9nPlg9+8IPddzRAkzrD6OQ+EUgEEoFEIBFIBBKBRGA4ENiojgYbu3YEYCyztQGj2Bv0PEYRr3bQcW8wHXtCa3w7rs1DOvGsUMDg90oEaKojoBrrlovyHU8+x5uPjXsMf9K5SCDYoUF+aBzvC4Qg6vzAv+XNMXEEyiEv726Ap9/90Mmau0QgERhFCDCu7UhAFzCmGe8e/1SlHfuvvvpqPDrRu6IBvcJGYN/qDOJaRwNp6CDrJNIzJAKJQCKQCCQCiUAikAgkAkONwMhxNGgVQe/nHl1ZjG02G9TeO917G+nsCVyY2wA3jffQkAZfv3uBFQQY4ATSfRHA3cSB+NixMFA58CU/+biIcH7y+J0MdhRYXtNYRvauO2XY0bBo0aLg2a54aPPkcSKQCIwOBPwlGnTEeH2Ol5VU1k29+oDPW1599dXlhz/8YTw6cfPNN7+ukugIAnrDAUfDhz70obLbbrt19Uk6GoxO7hOBRCARSAQSgUQgEUgEhgOBjeto6PnqBIZ1r3FNpX0hbgAGonFaS7squpbeRnmvw6CNN327d1kDlUOa0238k5c4+JKnjW/5rnQsnwkXHwTykB9nBcd2iqxEnyeJQCIwahBgLPOoFqoQfWCdYN3BOGcjvPTSS7GiAUdD++iEK2udYB3h+C984QvhaJg+fXpEkW6epsl9IpAIJAKJQCKQCCQCiUAiMJQIbFRHAxVJg3comzN5JQKJwGhBgAt+nI5dp4K8DazqQic6HseDdSSOhj/84Q/lRz/6UaxouOmmm1aqKnTQm68T/+3f/q28//3vL/vss0+kmZ/Tc58IJAKJQCKQCCQCiUAikAgMNQLpaBhqRJNfIpAIJAKrQaDXGcDFvzeyejVVG8fLIK+55pry05/+tNxxxx3hdOgtBno7Lpz2yU9+spx77rnloIMOKlOmTCl8Lafla7rcJwKJQCKQCCQCiUAikAgkAkOFQDoahgrJ5JMIJAKJwBoi4BULkPuin30EPSkVn77Ufoy+SuN4XgbJioaLLrqo3HXXXeXaa68Ncqf3Ohgqs1LOO++8cvrpp5c5c+aUGTNmlGnTpsXKB+czXe4TgUQgEUgEEoFEIBFIBBKBoUIgHQ1DhWTySQQSgURgDRHAKcDmi33vyU68XzTbvrTx2WefLVdecWX59ne+XR544IEyd+7cKA0a82PfG970pjeV4447rpxwwgnl0EMPLbyrgfLaMnvz5HkikAgkAolAIpAIJAKJQCKwPgiko2F90Mu8iUAikAisCwLyB/CS1/Zi304C9l7xwBdvOOZLNfPmzSuXXXZZ4eWOTzzxRLfU1hmBg4L88DW/I444osyePbucccYZ5aSTToqvT3Qz50EikAgkAolAIpAIJAKJQCIwDAiko2EYQE2WiUAikAisDQKtcyE+MtN5ioLPXvIJzBdffDFWMeBo+PSnP70Sa14ACR2BT+rimCCOPYFVDPvvv395xzveUU477bSy8847R3z+JAKJQCKQCCQCiUAikAgkAsOFQDoahgvZ5JsIJAKJwBoigFOAzasQ/LUJ9osXLy5PPfVUufvuu8ull15avvrVrwZXr1pgP3HixFjFwMqHgRwNfHHine98Z7yrYccdd1xDqZIsEUgEEoFEIBFIBBKBRCARWDcE0tGwbrhlrkQgEUgEhgwBOxr8KAV7nAwEnAc8KsGXJi6//PLy9a9/PeK9agHaSZMmdR0Nfr9DEOmHRycOPPDA8ra3va2ceuqpJR0NRib3iUAikAgkAolAIpAIJALDhUA6GoYL2eSbCCQCicAgCHjlgh0LXs3AuTdnxdHw+OOPdx0N3/jGNyKJxyXsVFiVo+Goo44qBx98cDnzzLPKKaecnI4GA5v7RCARSAQSgUQgEUgEEoFhQyAdDcMGbTJOBBKBRGBgBPzSRlYleOVCr/PBOXl04sknn4xPWvKOhq997WuRxOMSvL+B4EcnOLfzIRL0c/TRR5dDDjkkXgZ58smnyNGwg5NynwgkAolAIpAIJAKJQCKQCAwLAuloGBZYk2kikAgkAoMjgDOAVQx8McKOhl5qHA+sbli4cGH3HQ08OuF3NNjRAB1fp4DWL4NseeFoqCsaziwnn5wrGlps8jgRSAQSgUQgEUgEEoFEYHgQSEfD8OCaXBOBRCARGBQBnAN2JOAg6A1Oxwnx2muvdR0Nv/vd77orGvzoBLR2Vjhfy+/II4+Mz1ueffbZenSCFQ35MsgWnzxOBBKBRCARSAQSgUQgERh6BNLRMPSYJsdEIBFIBFaLAE6BgQKOBzsM7Gjg0Qm+OoGjoX0ZpHl4Dz/ys1KC1Q2EOXPmlIMOOihfBhlo5E8ikAgkAolAIpAIJAKJwIZAIB0NGwLlLCMRSAQSgQEQsEPBL4PEscDWrnLgHQ3z5s2Ll0HiaPjmN78ZnKAxnfmQQP4tttgiPouJs+Gwww4rBxxwQHnHO95RTjvttFzRMEA7ZFQikAgkAolAIpAIJAKJwNAikI6GocUzuSUCiUAisMYI4CDAyeCXQ/I4BI4CBxwJ7csg23c0QGOnhB0N7ImbPHly5IMvn7ecPXt28aMTO+20k9nnPhFIBBKBRCARSAQSgURgFCBgW0+3mbR8ta5gtdikOfgmlM835j4dDRsT/Sw7EUgENnsEcDSw8oBJAkcDjz14hQOTxaJFi8oLL7xQ7r///vKb3/ymfPGLX1wJM2jIw94OC47hQTj++OPL4YcfXt785jfHcToaVoIvTxKBRCARSAQSgUQgERjRCGAj+saU7T7fmLIDwhUgnW0khHQ0jIRWSBkSgURgs0Kg9TxTcTsI/BUKzplQOGdFw/PPP/86RwNp0BFwUNi54LhI0M8xxxwTX50444wzykknnVTS0WBkcp8IJAKJQCKQCCQCicDIRKDXgcA5Nt5Ajgbbfl7pmo6GzhKPkQLEyOxiKVUikAhsigh4xYInBDseWA6n71F0VzjwCcslS5Z0vzpx2WWXlfPPPz8g4T0MpHnSaXEyP+J4P8Mee+xR3vfe95Wzzj6rbL/99i1pHicCiUAikAgkAolAIpAIjDAEsBVZ8do6FmzftdfPLZ1vPI2UquSKhpHSEilHIpAIbDYI9DoaXHEmEE8YHPOuBZwJPDZx/fXXlz/84Q/lO9/5TpC3jgbn9yMU8GAj8DlLJqp/+Zd/iRdC7r333t13Ozhf7hOBRCARSAQSgUQgEUgERg4C3EjCBsSpwI0nPyoREuqVDNyYIg067DzS09HQab+BPDIjp2lTkkQgEUgEhg8B9B/bSpOGisM54AmD0nEm8I6GG264oVx88cXl1ltvLaxqIDCZQNvqUk9ExC9durSbBv0//MM/lDPPPLMccsghZeeddw4nBvEZEoFEIBFIBBKBRCARSARGFgLYcjw+S+DGU9dmlJNh2fJ6MwlHA3Zg62gYSbXIFQ0jqTVSlkQgEdhsEAgHQccj7cnDKxGYMAhMLK+88kq59NJLy1e/+tUyd+7ceIyCNPLAo3U0TJgwIeKZnLyigWPCO9/5zvjyxFFHHVVmzZpVpkyZEvH5kwgkAolAIpAIJAKJQCIwchDAtsOO46aRVzSwJ/imFOe2H1tbkHjTbuwapaNhY7dAlp8IJAKbJQJMCjgB2PslkADheCYSVig899xz5Re/+EX50Ic+tBJOvY4GEnsnF3ixEf76r/86HA187nLPPfcsW221VcTnTyKQCCQCiUAikAgkAonAyEAAu803i8KZMEafPe98RMI2YruCwc4GbEo28oyURyjS0TAy+lRKkQgkApshAniqmUyYEHA2OHiSIe6ZZ54pP/7xj8snPvEJJ6/kqbYjoZvYOWDiYfPqiPe9733lnHPOiU9d7rLLLvFYRm+ePE8EEoFEIBFIBBKBRCAR2HgI2AZEAq9MIM43k7yigXTfqCIt4vvkaBi74rPn0GzMkI6GjYl+lp0IJAKbNQLhaOjXZyzHj4vJwhMKoHhSYUUDjoa///u/fx1Wph/I2YCTAQcGLxIisCLir/7qr8qhhx5apk2bViZNmvQ6fhmRCCQCiUAikAgkAolAIrDxEcBxwM0i9gScCl6pYGcEaXZAeA+t7UOON2ZIR8PGRD/LTgQSgc0SASYITxLsvfqgFwwmipdeeqn86Ec/Kh/72McimTjyOHgyaeNJ55wJCWcG4SMf+Uh5z3veUw4++OCy7bbbxmMZ5pH7RCARSAQSgUQgEUgEEoGRgwC2HDacbTrbiuwdcDSwQUN8uzrWNBtzn46GjYl+lp0IJAKbJQKeGJgUcAjYWcBEwUY6AUfBq6++Wi644ILy4Q9/OOKYRPyCRyLI68nHedk7+BhHw7vf/e5wNGy33Xa5osEA5T4RSAQSgUQgEUgEEoERhoBtOtt5iGf7sHU2EM/XKaDjpeC2KYnf2CEdDRu7BbL8RCAR2OwQaF8C6QnBDgH2diQwYfDVCVY02NEAvfN4wsH5QBx5260FFkcDj07wect0NLTI5HEikAgkAolAIpAIJAIjAwHbcbb3OGdlw8KFC2PDRsQ+5GaU7T8knzB+Qpk4aeKIWtWQjoaR0adSikQgEdiMEMBBwMThFQ0cO3BsRwRfnXjxxRfjHQ0f/ehHTRKTC3n97J4dDxC0vLoZdGBHA49O5DsaWmTyOBFIBBKBRCARSAQSgZGBADYidiB2nlexPv/88/FycGzCRYsWxeOv2IhsU6dOjY2viXHu9zi0tuHGqlk6GjYW8lluIpAIbLYI9DoamFCIs2fa6UwWvAzyJz/5SfcdDYAGHROQ83FMwMlgRwMTjGlIe9e73lXOOOOMctRRR5VZs2aVKVOmEJ0hEUgEEoFEIBFIBBKBRGCEIIAdhx3IzSRWMjz77LPloYceKk888URZsGBBxGEfErADt99++zJ9+nR9unxG2WWX6WXLLbccITXR472qzIpbaUMk1u23314uvPDC8vnPfz44XnzxxeX000+PZR4uwsWOBG+LZcp9IpAIJAIbAgEmEIIdBHwZgsnCS+FIQ0eiH5lgcDR8/OMfJ7obyAsfaOy9blc4kE48z+0RjjvuuDJnzpzylre8pZxwwgkxMXWZ5UEikAgkAolAIpAIJAKJwIhBgHd0zXtsXrnzrjvLtddeWx577LGy1157lcmTJ4f9x42oO+64o2yzzTbloIMOiptJxx57bNl6661HTB3S0TBimiIFSQRGJwJcIHNR7LvxrsVgzkRfZHOBzB//BOh9cc15rxPS/Egj9KbX2NHxG3XBxdupux0EOAbAkQCuLJWbO3du+e1vf1s++9nPRrx/qL/xMvbwIQ4+OBqgwYlB3I477hhOhy984QvlvPPOC+83vEIWM+3sB8IWOredefdky9NEIBFIBDY5BFodOZBuXFWFnZe5TjNcl5T4lld73CXKg0QgEdisEcAGvOWWW8pll11WvvjFL5YjjjiifOADHygzZswoW2yxRTxKgQPirrvuilUMH/zgB+NmEo9SjJSQjoaR0hIpRyIwChHAWOKOORegkyZN6l4kUxXiSO+9KPXFMPFOg870GFxspDk4nXOnbwqGGfVic3DdOOcZvBtuuKFccskl5bbbbgtnQy+d8xsLzjnmGT32YM3Whs997nOFyWi33XaLssHd+aEL98/YjgekyYjjA6eF+bft05DlYSKQCCQCmxQC6FXrSes96+1Wd/ZWus0HHefeoCWu3Xrz53kikAhs3gg8/fTT5aqrriq/+MUvyve+973yqU99Kl7qfeCBB8ZLvV944YVy8803lzvvvDOcDieeeGI59dRTR9Sjselo2Lz7cNY+EVgnBGwscfHJhrHEsn+MMKeZMWkE6EhrDSsfk25HA8fQEdr0iOj8DBbf0oyGY2M1UH1YMvfrX/86HkG7++67V3IYQO9grHxOmh0NOAbAtQ3/+q//Go9h7L777hFtA5oT84JHKxvtCh3PCpJGW7cytPzzOBFIBBKBTQkB60J0INvYMXpB2/j6pR/qGXqzs0INvdjOi15tZjzMi3PrUPY+Nl3uE4FEIBF45plnyk033RQrGs4///xy7rnnxvu29t9//3j8lRtSPE7B1yhY4YBdt+eee8bxSEEvHQ0jpSVSjkRgFCGAseUl+Vx0hjHVWRoajgcdjx1Xl+5TLe6q+10BPFvmxwN6qxxG2DJ9dWFZdWCQDq2Ntc3JGHv55ZfL5ZdfXr75zW+W++67rzz55JO9cHWN0zB0O6lgxKMTBNqCtmrDZz7zmcIXLHbdddc2unsMLxvU5MfJYMeCy9mc2qELTB4kAonAZo0AcxgGPfqQl62hB2PO6uhMdCUbdFwAmO51oMkpwWMUr9OjnfiW/nU0bWIeJwKJwCaNwPz58+MlkKxu/eEPf1h+97vfxTu29t1333gcdvr0XeRwmFZmz55dcD7wbgZuCFkXjQT9kY6GTbqLZuUSgeFBAOMKZUZoL0JtdBGPgvPGBetAy+59QQs9ihF68yBPG+/0iNzUfgYwPJlgLv3tpeUr53+l3HvvvfGZy95qG1/ijRvHduSAL/Ft+Pd///fy4Q9/OB6dIJ50sIaXMXa7sCcefqRlSAQSgURgc0Wgb2lfWbR4UehDHOboxlbHWn8yN/bOd62uHgy/VodDT/B+sDwZnwgkApsuAosWLirPPf9cOBuwA6+88srygx/8oFvhk08+Ob4kxv6www4L5wM3mthGiu5IR0O3ufIgEUgE1gYBX8CizDjG4CL4gtQGmFcjtPTQcW4HBOc4LExrnqZj72Dl6b3jR/M+sJM/YIzejeB68egEL4H80pe+VHh04pVXXokqtthw7I1EY24exrzFhhUNH/rQh8oee+wR0bQBd+DIw3s23H5t3va4La/lm8eJQCKQCGzqCHieQw+2+tZOBtcfnYnDgY15jcfZrFtN0+6h79WzpFuXt7R5nAgkApsHAuiP1157LW40vfTSS/GFie9+97vliiuu6AKw3Xbblfe85z3lyCOPDKfDfvvtF1+l6BJs5IN0NGzkBsjiE4HRioCNIgwhjv2SRzsLiCNtVcYVF7ltPvL20tuwAycbXd6PVux65W4xcP35VjKOhi9/+cvx6ASfMSIYbx+3GIOn2yWIB/jB0cCKBr+jwY4GSHtf6OnsNqg5j/L0jLKejsmQCCQCicAmjwA6FT2JbmbzfEfFHYdehIYLA99RRG+ysgEaz21yDXd1p3W19/CDj0N77LjcJwKJwOaDAHYg72ngM+fcfOKRWuI450WRfG3i4osvjpUM55xzTnnnO98Zj1ZMmTJlxICUjoYR0xQpSCIwehBoDS2/DwCDCsPKRpUdDqurVTgSmkcHyO/QXuASvykaXmCJcYqRyqoO48mzwJdeemn52te+Vv70pz+Vxx9/PGABg9YwBRdjY4eF8Rto/+lPf7p85CMf6ToawJjyCZRNu7WhbQO+zuZVF5tiW7T1zuNEIBFIBECgv0+P/i1d0l2ZYOcsuhLnrAM6m7uPxGHoW1ejr9lwMqA/HRzvc+jb+c/xuU8EEoHNEwFuMN1xxx2xqpVPXR5wwAHluOOOCzB4dxcvivzZz35WbrzxxnhR5Pve+75y8iknxxcpRgpi6WgYKS2RciQCowgBDCRfgNowwvgKY6pjLNnIgo5jOx5MR3XjIrlzd5y8DmGA6aWQfmGWL6RJNx08N4VAfeykaR0NPCrBioavfOUr4WhgkiGAReDTwcvYktZiy/lA4R//8R/Lu9/97sLnkTCGKdP5xo2Vk0GwtvxbHpTlrY3P40QgEUgENlUElvUvK339faF7cca2zlnrX+Y39LhfAul3OPTqUugJjmdPIL6d5yJSP6Q7j+NynwgkApsHAk899VT5/e9/H7Ygqxfe+ta3ljPOOCOcmQ899FC59dZby7e//e2y7bbblne84x3l9NNPj0copk6dOmIASkfDiGmKFCQRGH0IYAR1L1Kbxx4czx12NgwoG16+e09tMc4mjNenEjt3ecjHhmHHlycwsLgQtqEVaR3HBXGOH33IrZAYoxWM2FNXMCHgWODzljzq8MADD3Qz2NFABHiAgQ1Ut4WJSYOmDSyvO+WUU8pf/MVfhHd8m222aZODvl0ZYf5RRrPsd6VMeZIIJAKJwGaGgL8ugfOBT8u1uhm9iU5n49h6HYjQyZ7LenU4tA6mI66Nd3ruE4FEYNNGAEcDX5q48MILy09/+tNYiXreeecVHAk8QsGnLS+44ILywQ9+MJwMc+bMKTNnzlxppdXGRigdDRu7BbL8RGAUI4ARxR0c9jgSvOyfKnHRy0YaBhgvwyL4oppj4jHAMKJwLngFg40w4s0TPsQTiCfvaA42MNnbQeC7ZWA6b968eHSCFQhtaOsNJgQbsS1GxEMLf+NG3LHHHhufQnrLW94Sz/L1fuYSWjsajDN7Nof22HG5TwQSgURgU0TAOlRaMFZ8Wf/hNPfnLu1Ib+uPXkeXoodxIjtYH1tfW796b7o2vdX7Ts99IpAIbNoI8E4GVi48/PDD5YUXXoj3NGDvoRvQLRzzqNaMGTPKrFmzyi677BKfuLRNOBLQSUfDSGiFlCERGKUIYEixxJ/9VlttFQrPRhhVskHVxjm+jbPSJI2L7bF6nMJOB+JIpwwCCrTXIIuEUfRjXBDZOBDHMXfJeNEPz9/xKaMvfOELK9UMGhudNkQ5J97n5mvexDvwyARfnDj33HPLm970ppigyG+eyAHWGNVjx614Lwbxltu05pn7RCARSAQ2VQRi/tF7GvAzMP9Y/6EnbezbSYzzgWPoSOdxCo7taG8xanWqdbX30FEuW6uf2/x5nAgkAps2AugQNm4+sYKBF0Li3MTu5hy7e6eddop3MnCMnml1yEhAJx0NI6EVUoZEYBQiEBekMr4WL1kc0qPgbFxhGHHswMXziy++GAbT9ttvv1KaaXwX3UaVlWWU0zHoiOPOkA095x1texuY1Mf1dB14mdgjjzxSbrvttnL11VeXb33rW06KPfSuP0YovDgn3ucQDkRHPF5vJiaW2p155pndz1ySRoAHbUF+DGb2DpRFaOOclvtEIBFIBDZFBFalE11fHAy8uO3Pf/5zGP877rhj2XLLLVdakWed3OpP61TzadMol81zomlynwgkAps+Ah77rikOBr/Piz0buoHVVDgZ2BPIh17xO7ecf2Pt09GwsZDPchOBUYwASoyLUb5CMG78ijs8KDg8rxhLPLNKII7P8/AiG5wEPEPG82UYZtBxMesALY9QcOfI8b5rxB6lyjKx1hhz3tG0Bz826uG6+Jylcvfff3+8Rfjaa68t3/ve915XtV7HQu85GeDreLCDP4FvLPO4xAc+8IFy1llnlR122CHi/QMtbUPAeQSPDIlAIpAIbK4IxLykuQmd2jrQjQc6E7199913F3Q2y5cPP/zwsueeexa/AwcHslc29OpU62b4eT7gmHI9L/TmIT1DIpAIbKIIyFxbtnzFSlRsMhwN6AEcmOgSdAP2NqscsK23mbpNpPOFHPRI742ijYXURnU0tAp1YwGQ5SYCicDaI4CCs/HFMcrPjgEcEBhd3N156aWXuo6G22+/PS5cjzzyyFjmhdLECJs+fXqc+xlW8sMbntYRLo84FKzj117ykZGD+rARqEtbH7DjsQkM1uuvv7784Ac/6NI5DzgQzMeYtA4FeJrOBit5uNMG1v/0T/9Uzj777FjhAC3tBz08w4kkWk9U5Cf0yhqR+ZMIJAKJwCaMgPWs9SnnGPgsX0Zfs1qP56fvvPPOcvnll0un7lWOPvqocDSgb7fbbrv4wg/OdztvW51v/qFf8bJ3FpGtFC8dnSERSAQ2HwRauwvbrm+pbu51bsLZ3kZH4MREd6Bf2PM5Xl6wjl04EkI6GkZCK6QMicAoRQDlhzeVwCoFlNxyfZby4UceLpdcckn5v//7v7hjzqMTLCklHccCCpHny3hHwBve8Ia4yz5t2rS40MVzC18CitIXuxGxifzYgHR1bMByPv/l+eXe++4NR8N1111XfvjDHwYZNJ54TM85mLaOBtMQbzrKc7zL/PjHP17e/va3x2cubQibj2nYOy97+MGXLUMikAgkApsjAjgZcCzMnTs3Vp6xkgHHOo+88bUg5jJWjTHPsbqBz9EdccQR8Qk6vrI0YeKKrwuBXzsfpH7dHHtU1jkReD0CttlancBNIB6ZII7Vva1d2Npl7fHrOW/YmCFxNKAkCa4Yzxb/+Mc/Lp///Ocj/he/+EV8dgNPLgHwuJAAoJHicQnB8icR2IwQ6B23jMv2YrI33dC08RyzMgGnAcoPpwN3eVj6/6Mf/aj85Cc/cbYB93wTmO/+zp49OxwQO++8czgsUKDwRqegJzhGPp8PyGwURVIftjZQP5wqrAJhNcNFF10Ud8hY1eBgHcu+zQ9GBLchx9CY3rTQ2Ynz3ve+N767fOihh4YxPGXKlEgjj73l5tfyMV/HUdaGDK4LZQ6lDEzg3BnwS5bgb1zbcijf5yxh5NETr8YhD6Gl4dh9l3zOSxzBZfSeu51IJ09vemTOn0QgEVgrBFr90Wb0uCSOscZGXGuj+kW9fHLuySefjMcB+cb9pZde2rJ63fE///M/x9d+cD7wjiKc7X6kAuJemawzGPvWD69jugEjWvlanCzCYOmOdx7OpQHjrqzzDrZHF/NSZOwL61f4wMN8wYbrChw6PKPOfrAQZSt/hkRgJCBAf0THsO8d546nv3uzzND70VbGhccW6W0f5xgbgnR0mM+hI44yV8qrG4Q8quE06BzI24aV8jVpxLe0phsyRwPAUBkqxhJpLjBaR8Ob3/zm8L4gLCBh1GHMWoG0lcjjRCARGH4ErMxsyDAmiWNMEtemW2GgRIgnWHkxnjEIuLtzxx13xLL/G2+8MVYw8IlG09pgQ0f4IopnWHEucLG71157hTHG8YDvDViidzpoORiGheUJ5qPwp8UW8cED/MGeO2M4Zz/60Y++rmaeHGiHVqG/jnAVEc73/ve/P14GyTszaAevMiErLxXiyx/I5KV65ENOsLccqyhm2JJcd+RYXT9wXXmXiBALeuehbtQHpxYBB8/jjz/e/ZQUdB4LHiPQ0Xb0ZdLBjTuVXDw4MB6gcT91OfBg8wuaiEc+O3U8JjgnvjUm4D0SsHcdc58IjEYErDuQ3XqAOC5+mVscGJuMP8a5b5CRxqq8m268qdxw4w3l1ltvLddcc02kM/9Zp3uegy8BXcpF8yGHHFJwrPPo4NFHHx3zHemUZd3AOYGyGe/oAuuHmrJxfqmbA7gZO+KMaeDYSSOdc/KBLV8vIljHGaOIHOSH1SF//OMfy2OPPRYrQaxz4QlmlIF+5tEUbIjdd989XnJsfd6ydbnMaW07tzR5nAhsSATox4xzxglj3P2bc/o3gfh2rFm+GGsaV/wPFuDBzT/4MiYoj3PyEufN+Rkj1nm95ZLHG/L02kMhTyeectpz+A+ZowHGFM7eKxr8WTaWUHPX0gqTCrG1FVU2hY63M44qhkSDpfc6jIDRSECJEZzeu4/Ezk8YmqL3fuU0l9NyWMG/peXYPKocVYoqUeXT0vTm9bl5+HygfS9PaFZIuAIv563yrCx3bzk+r7xX8HB8LaONb+u04nhFmfWot89bFtOBksvw3mWxd1s6biB65/MeWocWl5ab62m6zX1vI4CxSrDSQMmgJBiXjiOdOPIQ3wbi58+fX55++ulwMtx7773lD3/4Q1wkm85lce78nvRN4/2JJ54YS0yPOuqoMmvWrDAuuOuDMUFAXsok9Cq7iFzLH9d/LbOtF7nxAAPqgk401ty5Ydntn/70p/Kb3/ymfOlLX4qymCSggd66kwTkh5+P40A/jhsovq3zqaeeGgbvaaedVo477ri4I9TKBR+XyZ5z2pC9t5afyx/uPWWvaUA+ZOdxHimYOAZn+i3PVbN3/+IcR8MDDzwQbUAZxh78XS4YeS7bZ5994sJht912C96UxQTPSge+7EH/dfu6vSZOkKOsuahp62Iay02ay6bc9hyaDIlAIrB6BDx2oVzVuOmls771+xjQzVdddVX55S9/WW666abXFby6OY6Ve9x0w9Gw7777hkOdF7htPXXrrh4yU8pGnlYm20SmGe79YOW1MiGDMe2Nb+WDBt2IjiSgh3HuooO5ACINXQcd26OPPlpYLXLPPfeEI8FzJbhgq1AW+plHU9j4ZDM6F91LmsvhpgXxOIzgSxmex1r5VnVMvgyJwJoiQP9zP277DvHeiKcvs/ccD3/O6bvQdfupuh/XPATi22D+xHPsdOsu8yGt1SnEs1E2weOKc2wU7CUH8npzPtKIc3A8smNvYeOY95A4GlyQ96xouOCCC8p//Md/RNSvfvWr8pa3vKULQK9w7bl55D4RSASGHwGUg0MYAfrigxUESg6lgZHFnjveNqQYs9ylwRhgmT9jnIu0G264IZQL6VzAwd8ODJfDHgVkXpRrHYCzYe+99y7HH3983AFilQOGghWW5eEcI6OVv+W/Jscuc01oh4oGw43lacYE48c48NgJ+LGaAR16xRVXRLHU0W8Zpi0wyoYynH/++YXHKLgzNFBAVozCVo6NgZ1la9scObwR7zTimDjpW55w6TNLtSrmqaefKg8++GCsvAFncIcObHkECMOXF7zBw/xcNnvHk8fPYnsZtJfvckFx5BFHlpkzZ5Ytt6qfuLNxzB1OOzDM1zwtN/H0i7Z80jIkAonAuiHQjqVeDswr6Il2XoIGXYsuYGUeDkhuojHfXXnlleFsRAfwyBmBY28RoR/GsPU75bNx0cucdtBBB4VdzIoyLpJ5x1FvYMwjm/P2pm+oc2NnHeRzyrfOIs51beVyOvqPDUypE4+f8CUqNlaKsJLP+eHFI2ysZvDnQl0m/Fo5wH/rrbeOF26CoXUr7UY573vf+wp2BTS0Dw4LNuwTyrNt4bq0566Hy/N57hOB1SHgft/2HfoWG3257c/wgo7+SaBftjQRuQ4/8LD9wzH9vi3XugWZbC9x7JsvbZHI19bF566TaeFJGuWQRhgSR0NbIEwx3niB2X/+539yWn7729+GFzdO8icRSARGFQKsWOBub+9FMctFeRcDhtd3v/vdleqEQkNZohtQnigfByugVuGh5NrAsn4+D8anGP08K+XDh+dkeXkhyyU3lYBRhNPm6quvLv/1X/8Vn0kDO4d4lEFK23d+HL8ue5Q//LioJnzqU58q4M0dNtoNQ81OIvOnXPKRvrEDxirOAeSnL3hypn8gH33JdyAxVpGdOPobtBiuXDTwhnjuTA5HeNe73lWOOeaYeLQC5wNyIRPY8pgFjgnkBVPkIxhz6odTDzroMyQCicDwIoCuRVfgUGWOQV+w54WPvIsBxySPBuJoQEc7+GKV83YOs03sOc5zFzqgDR/72MficUFWRvklyb74RWegO9DVIzWgq9DD3HRAF3vOQq95niee+Q18OQYDsMWu4FFLVi2wGnK4wic/+cly0kknhUMI/Q+utAdOCZwP6FrakTTqQzAN2OPIgD5DIjDcCND/GEP0P8aQx9O6lGvdw3hj5RB9edttt30dK8YitOwpj3LZVgoyReVmiCho2ExP3tYx4nTiLcOQOBr47n3/sv6uF6TX0cAyYB6dIFDpVjlHZP4kAonARkPARhXjsjeg+Fi6iJFF4JyNizWMru9///sxEaN0vKFcrIgcxzmBNCtQ0lBQXEyRbiMMObgQ4y7+YYcdFs+yzpgxI+4EoSyRd//994+vJQwkcxQ0in4wbnHY8F6Lm2++uXz7298Og6ytApiBHZitTwBnJjEwxzgknHfeefH1jwMPPDBWNXC3DePKF7mU6219yh6qvBj/vtOFAwzjFXwwHOkzGL7cHePiAEP2mWee6RrB1IP+w8U9hi+8wJR4QttvOSfefRfc6G/sCbSbDVc71YwTEzobRqzLfETPHHNnDQcEdzC5iEBuO3zAHP6MAy46cLK1q3mi0PxJBBKBdUIAPUFgjHkO8rhnzHHhi/OcFU1s0OP85REJ3sdA4NE29CZzYBs87q0j0BnoGTZ0hAN0lE08cuAwZ5wfe+yx3fHOxS980B28AwZdYDnNZyTs0aHghK4FN/bgSN3Qh8YCGuwHHjtBF2M7kEZ+sDSe6GEwYU8aGFv3gpk30ltMwQJ8KJONY2iQg2PfqHCbM6+hV3kXFA4eVpige5EdWcmHYwEbhDTaAPoMicBQIUAfI9BfHejr2BTssXPbNNOsyx4b5+GHH47+zAphxkEbGCtsjBXS2CMDewLHPnea87AnkA95e3lHon6GxtHQERTlQcC449EJv6OB45NPPjkUyhNPPBEVYLC7IuShIhkSgURgwyFgpcGkjsJgcmUMc8x4ZNLnYgwD4b777ot4aDHAWPbIu1faAD94kNeKyOPaY91lEs/GOeUQyNNrQBA/S+9rwCjgOXiML+hYdsqFMQZCr9FHnpEejANygrEdDTh1WCHiQHugvMGFereGFOfG1fSr24M5/GgnDCsCLzPEoeO7ajxC4SWopHsS4djtyfGGDtSdOmOsMnFisOKppx7IaOcUF+7QsCQX582ahLY9TA9PNowC44YMbAT6nQ0G51mTPe/EoE/b0YChTfl2NDC+eDs9FyCsajD+7CM0dxfWpLykSQQ2VwTkIpWVu+L5Y3CwTuXYY5wLTFYuoDc4ZkOvoGd65znyMWf1zjvoBfNDX6Cr2j35XDbzaBt4fOLggw+OC1t0L3Q4TdETXChzDi/q4zuLbf7hOrZedF2oo+N8YY6TAdzYc6EELsjLxjzDagZWj7Xz2prKazw911E+OFgnw4fzdQnMeWzgiy6mPsgKb+TGUYyjgTZg9SRlr4u+XxfZMs+micAYvYx0mW7KM0bot+gR+hWBPs7cj/Nxxp4zypSt6yNZ64sEN2VYNUTfxcbDhqZsbAtsPfo6ZbO3jYF+4pgxTBr2p8+Rh3cw8AgwfDz+0AvODw3nbHEsonUbpZG9/rgwF4Kj4cILLyzf+c534rntr3/96/HCLLzDl19+eShxKgs9m/M3LPMwEUgEhgkBxpuVAscoN5QQYxLFwrmNBY55PhVHgxURtCgiLpB6DaZeka1srBsoD8XFfqAAPTJA72OUMXEoZBQeBgGPVbDKwSscBuK1qjjLtSqa4Uqj7mzgSH24MOZuGhjzSADxBGSkfmBBO0ALFpzTPuA4FAGetD0Xt9y5YfPSfsoAe9oeuTAk2dMWyLchA/VGHq9WYDUDMiAPeCITGzTgQz+xvK2cxp84eFI38tGXyedgI4A4t4nTevfIYec5fExPPGV4gycbZbIn0K7I5HP6A29Qx7HGRQeymd71pY4cZ0gEEoFVI8DYYvx5LLZ70hir6BLsU26EQUtgPKJ30TfsCc5LPsagA3kYp+bHntDScw4NtJTJuCdAw4Wu51/0LXHoYOY49LF5R4YN/NPW1fIjApjgkOGOKfix2gNaNtebL+yw2hmdxmb9ij4jgAE4Gq+I7PyAE21AurGifEKbh7LYWjmhsQzwadMtH44c5lfKgC88rbd9zuoSHinE0QAfaDIkAmuCAP2M/s6evkOfYmzTh7xygXHgOI7pp6ecckpsOMCGIvBY0n//938X3sV19tlnh51Cv+YpA15K68cprIMYA8iHXIwPxh42Decet61cHovUsw3UmY0wJCsaYOTBS6E8OvHzn/88PMEY0DyHxsuxuDP6mc98pqu0yZchEUgERi8CXFyhTD0Be3JnT0AvePNkb12B4uXYkzv0zo+C4nh1jgzybGrBGLDHCGKPUQdOVt4cg936BHhh3OIwWlWADkOLlRc4QkZbcF9yP+yVnwkUjG30cmyjgGM7Dlo6ePW2hdNpG48HyjIv2nI04teLV54nAqMRAes7dCljFd3HePTF76rqRF7GL6Gd7+BDPPoA/dHqZXQHG3kdrLNtnGPIE3CKbi7BOFLfXl3ZYmD9CmbQEYypcWQ/EB20xKN7CS29eUVC/iQCIwyBb3zjG4V3PLGaZigCjy197WtfK/BtA+/m4gtv3Mwg8GJrnJrscUTgeGC8EbCBGE/oOwLjyWk+J87jjLhW9w2ZowHGBAS68447yyW/vKRcqTfzssT6rLPOCq8gz8xSWbwlVjZWHK3QlVP+JgKJwHAjgGKw0eMLJd89sPcSw4y4lRRHx4gif2tcWRmxJ5BG3lYBEU+6dQA6ozcdmoECMiAn+UejzkDmFnMMIeKMky9Q2zpCD4ZOGwiXdYkDw7aNKQdZiEcu9mzEtzJTluUmfkMFYwcWbATkc7CcPh9IftIcD54DYQr2rj/09E/ocKqRxkUB5dN/oePCYzDjFZnJw75tQ87d/8mP7MQROEZGr2bxhQ3p3oIwfxKBRGCNEGjHlvWE42DgcUWa9UI7r6EnuQPOGObOvPUGYxSHBWMUhy35zQ/d4OCyyNfqCox8eHh1gPOT1xu6wHKZ34bcIzsyECwHca5LixM0pLnubRrx6EICOMKLuDa4/o73eUvTe2x9Dm2LrfFDTspbXYDe8rlu7ImzDl8TeVZXTqZvPgjQj9t+ST/yWAIF0umbraPxy1/+cnnPe94Tn2wdCqS4wf8dPV3w//7f/4vHhLj5jxw8NsFqBm4gUT5fhmSlMO+L4bFk0hgTjAFsII6xWagPccje1sWytmPE43jIHQ0oTK9owNHAcjSWZ/BCFT5/9+Mf/9jy5D4RSAQ2AwRQNt5aQ2BNq+4LOis4Gylrmn9ToQPDVokPVb3gy4SxLm0zVDJsKD7Uk0lysAAWDgNhvS5tsC55LEPuE4FEYOMj4ItW5p5Wf6BPMNrtLLSkxJMHndrSmw+GOwHd4FWBm4P+NT7eU3/rx8H0LbQDpZnHmuxdxmC0q0sfLF/GJwJDjcAnPvGJuDnPo6y9emVtykIH0a8fevChuPHPl+FwarZOjV5+b3/728sJJ5wQL1vH0YBuwv7G0cqjHKx4gCdyETh2ORwPFobc0YAC5W30P/nJT+I78Lfcckt9uYWeNeNFK7z0jIDgKOA18TQOJnzGJwKJwNAjgMIIpaGbM7qX3Z3krUjWZtInD4rKdwQwpnyH2JJDY2WFTmgNM/JyJwkDjeA7Ry2N+WzKe/SlDddeY3d96w32TCi0K45i9sQRjDPnjiN9YxrFyGEsLB+yEkd/IRDfixMYkk7/80QZxPohLxu8yUv91qaO9GHz4BiM4GP52BO3qkA+510d7ar4ZFoikAgMjADjCx3AWOXY89Fg4w19AD3pdg7AmXjmNMZ1a8OaP2nQoGfQqQTSWP2AHoIXKyMcSIOezXKtjf4xn429dx2QA8xcB9ePvfUitFz4EMAJHNt2AENjDx/SnN98I/NqfuDD/AZ/twVZ4EWa+wLp7byAfKRRlvX4aorK5ERgJQTovwT3bfqc+/BKhM3JkUceGS8732bqNvF+k3ZMNGSrOKSMFeOPd6fwNAHvAKMvIwsyEFrejEUel6Dfo6dmzpwZ74riPTGz9ELU448/PlY6kI7+cl6PE9dtIMGG3NHAgORlkLyj4Wc/+1nB0ZAhEUgEEoFEIBFIBBKBRCARSAQSgUQgEUgENhwCvFyWxyRwnuEAwenQOt5WJQnvWfybv/mb+DQ3Tgg7+uz8w9nggA+AdMphIwy5owGmrFrgcxrXXXddueaaa8KTwhu07VnEa0JFeREPnydDcO5a4hGxlwQ+GRKBRGD4EEAJ2BvJuMNL2Xoq7fW0B5S7AuRBiVjBsLe3n/HtDanhhSLjzg3H5GWcM/7Nx3cROIc/ZVqJIRv5WQkFHenoDWjZSLeM64LS+uRdl/LIY9yoB+VzBwVs2BPHp4244wVmbOBJAAc28lNvr3CIxLX4cfmU7bYDb7ehsaVcMGdiwtONXNBzDr3bai2KHjJS8GJDLjZkRjYw9PsTqJ9XMIAX6S3OYE2g3u6D0JCPupPOxrH5kx9a9zvKa8eC4+FLPOnQw5d+z0QPP9rVbelJmTxtfuSgXPZO45zg9nJaROZPIpAIDIgA44RxyJhjTDMWCegKxjRjkHh0CWOQYL3A2CUw5uCBToGOeI9/aEMXTVK8/oinLHgz3tGV0Fh/wIt4eLFx7PIow+nWQYx7eLJZR4VQG/DHOIAP8iAzx5ab+iK79ZZ1l3EzFn7BHOekEagX723jOoDl2saD9uGrFqR77ieNgDyUTbA87B1IQxZkJL/L97xFfuKQG1roPF+QD9kon408tC/xxsHl5D4RGAwB+gp9j/7FWKaPEehbxBOsA9hDj23Au17YGBNtn44Ma/gDL8pkvFAefCmTeJfJeG3fKzMYaz4lz0sj3/ve95bjjj2ubD1168FIgz/lwHvCeNlQE6udNSSOBoRnM5B8Doj3MWCUUqgVCtJ58ENLHisL4jMkAonAhkOA8Ufwvi2Z8egxyfiFBqXHuO0ds6SxEe/x7fxOM2/H+9zpjoeHDRaUJPEujzycO0hCReiMaji6XZ3uNDL4uENHuRszUCdkoD7WmyFmp35g4HqTztbWPWg79XddSDfP3rq1NMYYGjCGt9OJ47gtm/O+pXqZlrBj8uqVgzwbKyCL6225XRfjZtkcz3lbB+Kd1hsPLf2edM9lYNYaAOQxpuxXSlc34+KD0FuGy3L5yEtosefc6RwTxupb3N3+XqPyNxFIBFaBAGOIeYwxx/jknPFMsA4kDb1LPMcY5MwxfC+eQBxjEz6MVXQAcfByPPRjx1VdTRqB9PbY58T1xkPfxsOXjTjrB2g2dKB85GYjtDIOFm9MSG8xJ2/vhRcX/dSPi3oC7UAgjvzGoMWc9OXLJI9gbrGxPOwtt3lZbtPAN/iIFh4D8SFPhkRgfRBwP4OH+yDH9MN27/5um5vztg8H8Rr+MFbYHnrooXLxxReXiy66KMYd+g3HGU603jBnzpz4cMMee+xRDjjggMIeGZBn1qxZ8bld9GKrA4MH1dAwoT6kUV+XT/qQOBpgyoZAbFbWKBcUCmEwoCNRPwbc57lPBBKB4UXAk63HnidU7xnLXCP19de7soznUHqa3PmLdIlIfusAjlEwpJnP6mrRlg8fG3rDfVHrclcn33Ckt8q4xarF0jqTdGM6FLIYY3i1Bp95IwPyEWhzjrnzQ3tiCCLPxsQOuQbqW8jkDZoWV84HC65Ly9N82IM9e/olWICJx4J5ko6xDLZgSnobiGeDDrla2YgnEEcwHeX63DTImI6GgCV/EoE1RoBxx9hl/DA2GU/YqT732CeuveglHlr2bPCAhrHKHTuMa4JtXuLh7/FNuWzO33tec9c5tKVzPOWxwc/6wGkbco/8BOsm18cyIDsBOR2MMefoRGi4uCGv5xHSoANz4rmIIeDY5nz8hOoU6rbVOOnVDuarwhKebbC87B2c37KT1spvOvamaePyOBFYHQLub91xo84bfXFs7Yf0K9LYiGeMs7euCtqmz66uvIHS+erEt771rXL++efHuMOWc2Bc8oJHtv322y8cCbyTYffddy+HHnpo2WuvvYKUpw8YmzgorCPRcx6vHh/IO1AYEkcDhbANBSgDCZlxiUAikAgkAolAIpAIJAKJQCKQCCQCiUAisHoEWNHwla98pXzzm99cifiQQw7pfspy9912LzvsuEOZMmVKPNrM42U4HzgntI4EnCL9fXJ+auWWnZ9x/Y8HcGA/w9CsaFhJ+jxJBBKBRCARSAQSgUQgEUgEEoFEIBFIBBKBjYIAX5v4xje+EY4GViu8+OKL4Uw499xzi79wwSMSvIdrst4zg7NgdY6Dta3IkKxoWNtCkz4RSAQSgUQgEUgEEoFEIBFIBBKBRCARSASGFgFWH/DoxK9+9avCuxN5FILHH3hEaJdddil8pGHatGmxcoH44QrpaBguZJNvIpAIJAKJQCKQCCQCiUAikAgkAolAIrCBEOA9D7z75IknnogvP/I+hT333DO+uoOjYeutty5Tp05d6Z0QEwBr+AAAQABJREFUg72jZH1FTkfD+iKY+ROBRCARSAQSgUQgEUgEEoFEIBFIBBKBjYwAjz/wLoWX579cXnjhhXghK6sXcDjwPsWBXgSOyORjIwyV4yEdDQFn/iQCiUAikAgkAolAIpAIJAKJQCKQCCQCox+B+CLOkqXx8kY7GVZVq96vYKyKdk3T0tGwpkglXSKQCCQCiUAikAgkAolAIpAIJAKJQCIwghHwygT2+rBmrGRYtrx+ThOHAoHVDaxc8N4rGoK+8xnO9a1iOhrWF8HMnwgkAolAIpAIJAKJQCKQCCQCiUAikAhsZARwGOBMaB0InPM4RV9/X0hHmtP5VKU/VznUoqejYagRTX6JQCKQCCQCiUAikAgkAolAIpAIJAKJwAZGgJdB8tgEqxV4HwPBzofly/QeBv0RcDQQoBuqdzIEw+YnHQ0NGHmYCCQCiUAikAgkAolAIpAIJAKJQCKQCIxGBPzVCZwHq3s3Aw4Igp0OQ13fdDQMNaLJLxFIBBKBRCARSAQSgUQgEUgEEoFEIBHYwAjgPMDZgPOARyJ4bIIVDn5UAgfEQI6F4XA6pKNhAzd+FpcIJAKJQCKQCCQCiUAikAgkAolAIpAIDDcC8fWJpUujmPHjx4fzoX1Uwg6GVo6BHBFt+poep6NhTZFKukQgEUgEEoFEIBFIBBKBRCARSAQSgURghCKA46D9soTPvaKBPZvjXY1IHzNWz1E4Zv336WhYfwyTQyKQCCQCiUAikAgkAolAIpAIJAKJQCKwURHwoxIIYefCQF+ViC9R6BELgh+naFc6RMJ6/qSjYT0BzOyJQCKQCCQCiUAikAgkAolAIpAIJAKJwMZGgJUKbLyngQ0nA1+fIM7vauARCtMhr1c4+JjzoQjpaBgKFJNHIpAIJAKJQCKQCCQCiUAikAgkAolAIjACEMDJsFTvZmCVAl+fYAXDkiVL4hzHQ68zAccDNF4FMRRVSEfDUKCYPBKBRCARSAQSgUQgEUgEEoFEIBFIBBKBEYCAVzXgOGBVQ+95r4ikO/Q6IRy/tvt0NKwtYkmfCCQCiUAikAgkAolAIpAIJAKJQCKQCCQCgyKQjoZBocmERCARSAQSgUQgEUgEEoFEIBFIBBKBRCARWFsE0tGwtoglfSKQCCQCiUAikAgkAolAIpAIJAKJQCKQCAyKQDoaBoUmExKBRCARSAQSgUQgEUgEEoFEIBFIBBKBRGBtEUhHw9oilvSJQCKQCCQCiUAikAgkAolAIpAIJAKJQCIwKALpaBgUmkxIBBKBRCARSAQSgUQgEUgEEoFEIBFIBBKBtUUgHQ1ri1jSJwKJQCKQCCQCiUAikAgkAolAIpAIJAKJwKAIpKNhUGgyIRFIBBKBRCARSAQSgUQgEUgEEoFEIBFIBNYWgXQ0rC1iSZ8IJAKJQCKQCCQCiUAikAgkAolAIpAIJAKDIpCOhkGhyYREIBFIBBKBRCARSAQSgUQgEUgEEoFEIBFYWwTS0bC2iCV9IpAIJAKJQCKQCCQCiUAikAgkAolAIpAIDIpAOhoGhSYTEoFEIBFIBBKBRCARSAQSgUQgEUgEEoFEYG0RSEfD2iKW9IlAIpAIDAMCyzs8xwwD72SZCCQCiUAikAgkAolAIpAIbEgEhsTRYAMZwdvjtiIYz8NnQLvU4SphuPm3SA3H8XDKb97IPRD+Th8obVV1db7B+K4q79qkUc7ayrYm/Fv5oV/bMlYll3mvLc81kbulWZUMLd1IOjY2yLQqfFZVt9WlrSp9VWUOjJMl9h6qsQOTjoLYwbBZ2/jBqmqU1h7nwTi+Pn5DlPH6Utc9ZiB5HQfX9cXKvNaXz0A1XBPe0Kyq7IHSzddlriq/adZ235axtvwHkrktf314t3xWdby+ZQxWh/XluyqZnTZY2U5fn/1w8kau4ea/PnUfLK/bdG37+WD8NmS8ZafMVclvutXRDJS+JnnXtc7m7fy95ZPeG2faNdmb//rwWFU5QyFfK5vlbcts09v49T12Waviv771G/i6eVUlrm+tNnT+9XY0ALE3hG+PXZkKWE0ZI4qxGhRj4lQ/yzlw6Bx3EF4+phdq6BlSPfFjfb5c7Bp+LTvzijj9sI9s/HQILUYkiFeXRDTkb3h3c6wgqrmdYLbsBwk1q2pj2VQi8rsOK+IbBspUJUOkBgny6a8WVwsP/vA2/2XLVjByXOQzFKIN+eNHtOTtZGnq3uVHkvlQOjTdrI1s0FFOh3ekBF8zDwJ+giZYjvWlVuVpTIKom61iF8UG8zFlbEcesOjKUjnrt0emruydgmPXqYDSajI9tiND8OlUWTJAGWmddMSqW0fADqsg7NAECxN28F3Bp/Js210DtFuPDtdaCsLVjMFypZ9uUkcA6qK/Wg/1kc55MAgeHToLF/K5NKVJBnpOxChvpR6rvY7brNCIyDlhN1C6h+uyZTVzt75BTFzLRFI3ZcC/Vrxn36EJXhApk/tjzUM2EYWAjYSmU5lB1yWmlKZgijMNrIQI6bQP2AZAy+FL2do4jJ844ETB8ZCIA0na4FC5cao+TKRixmi8hq7kPETpyK/UyE8kpN1QT2q7VNnHjumMo5BT5KofVMuX06LI78w+MEPvazo8HaIHxKnykC2YrEiHrh2v3fbtiYcl0kAbbGDV4A+fFaFLoahOucq3UuiK0D2otN1fHZDUyV6LamlrumNg7z5Qq1ixi/YVafQn9pZZGVfKQ7zToOuE4NmIvqINqnimC1C6Jz5QRsrhT4VFe3Z05XL1F+JCB7psBNI4o7iVRXEt4RuptXDR1z9O9Wc+UDXzR5sbDmsdgkGHC2VQrjbzRSJCtz+EXFXEjqBk6cgnwk56ZCJfd/4gRrwDg4qXabp7F6YIl99N6zkwaYsLJC02kSUY8eMcEVtPFd3pSTWVijRhZd5K4180q5PNLEIN+WTAPe1KQodjp3zKaGJXpDd1sKRt/shHXkV226sSIHhs3XxRwpr/1HxVTo7hX8voxIm/sR8bE8uK+AAuarEiLo4sWyMGvANj+EffqXxrtaRDFb+8A2zIVFn2cOC0Stwo1hrnaPFBp4t7lFexk2OZctHV1Ee0OlXoFBIRZkB8lTUORKKcNS5+60/kV5ZaTodTh13ddU46bGuulU5abisYIEsE78VHCozoiOmw7WauFemedg86fJB9pSxd/o51Od2ctRydBkXLv5t3BW1QmZWjg2UP35aP6DwWyAKGhJhLO8BW24V42i1+q0Adtu5LkZGflWQbUKAu6UoHwXwFfcgiXrCrIjf4va6MjjBG2Okddl0e1pWKcL274zhk52eFDHHoejbCNhQrYlv5KZAyAs9G7qgIafEfeSsvCtERJ7JXupjWitcyXGg3L3kGCV121eZoqYINfJExgo6J7JRFbBeboOnID42zdPOST5tCN8n1CH6M/xrqvhI3iCi96nviQowO/WjdrZejAZC8VbO1nvcrfhmGsv5QquN0jrlLXFneVyaOGV9j+peUZUuWVMPInR2OQjaMcE0cdPhoDP2EcSwWAF+NcR2ME/exE3VA6Cv94gkFuXwhgxLvGl/i09/XF51mrMpkowO5E9GxmLDoM/39/ZE+dgL8qYFqhoEuAaCHPwaMZqYoUQQrBaWsCAjdBiXSmSaMn6BYEKoB+RctXhzyTpw0McoHALLDr0+ys42T3BMmTFDRlfHy/qWlb2lfyD5u3HjJ1h/yT5g8WbmQX+gvXRRyU+cx4zqTZ/DrL+PHj1Pc+LJcdabe4B50ncmbyXwZFz60ifJHYGJ0W5alwlWbaJBonNplLG0TdVNN+5aUpZIPYOEd6fDRMWGZylyGMhGe4yTL2AlbKpY0MK91XtbJayU4dqzoxtKXSlm8ZHG0wcSJk3Q2RrKobyGv+NOWyM8x5UaZgKlyartq16++05GfYi1/1FUMwJyLwejTwi76jc4ldWAdZcFSmIyTXAJTZ8ivgvrVZ1S/2BCGeoO/20D17pN8/CEbZatmyqk+Bi7alvcLF6WNR/7oj9RbvCQXFxJUkvEhDtEncNL1qU7IPEH08OxT/eizE8aPlwjigyzw7xN/2k1tG22m9Cq/mCl//5JFwWss+SQzBheXwMuWaVvOHroQXeVIPGVX7YpEBlYVUdsdzCZMUN1IVOjrq5MHcfVccqgO0NFWtDN9oh/59Ec8kILqGBk37OnXyO7xOy6wYUz1l6WLXguIxktuaOjXHI+ZyHiobYP+Wbp0afTpCRKcMVD7h+g1hkI3BHXVC2PHerwuUZstCgzHCY8xKCzhERehwiR4gEIIyU8cRDxOgj7qNVZ1AizRqWX0V8pktTwxixXTt2BxmSz9MF5t1a+xQ/8P+cerfy/XOB1D69Yiw0gVH/onsXWsaeSrrkJTbSTdoL45IfqlMtFzO+0icAInwR2YCwyl66R2qyhjhfxRhcAfAtorahZt43zCXrgi2zg1Nn2tjiP1c7UlY4UQ/VxjkHZZumRpnNMGtWxyc4gclKP2pnN19Ent98jdoYMWXVUrwVmE2n41f6QpNtq1o2eQIcqLSnDEAfVgWDGf1D5ALOM6jE0uOJQfnQD/8ejh4KNo1W3J0lr3SZMniZ760Hvpr5WvWi76I2UESNSB+um0bvpVFMcRulXsRIpNn/rmYpUzceIEjakpIlteFi96JXTFJOnAsZJJ2khbn8aB9L7kir4DPgqhQ+NYkqkuMY+oDdEFSzQekJfxNmnyFqKG1zK10YKoL5h1ZYPZOgTKDxlCf4OLsFa50QJUv9Ou46Iekkt1BW/qgFzM4WDNHIhCQe5oK8k9TjTjxjPvVbwDA8199D3mudB9oovQxbbBGyma+KBDJuFE36Evj0fPjAGXisSyvgV1zOmUOTL6vOroelDX6IuqV6SjZxRolzpX174Mb/RztWngrXiNXXQ3IjPvvy4gWxPZHrcN5Ysj2q/Om/CiDPVH6QL3dfo4GEf7KDXmFckZTSLy2naiiflTuqjTNvClfZSgXIwrxjnzC7zR6502V+zahY49JhmYg8aPY4536C8LFixAyLLllrIZ0G/SSeg25g1kDZmUjp4nxDgAR6VFUBp9i/RJkxg7lf9izR/UmfkTvipeOEsWbc5aOwqI1zG+ouOIKtjX1gidJ2aTx8MbbEpZ0r8w9N4yYTNZ5U6YoD6rtl66RP2cMUYfUaExf9LCEhl9ip6j/9NeMR6iL1UZIIvQEZB+Ax3tGW2K7CbpHimT81HhNnAKVmGnKqfmHYGrPfWtfYH5xmMv9LzKrraasqoebYjSlRd65Ii2iHEqbqor45j40KcUoLgoR3VmX0vVgULth53aKLGOL/ocofa16MNhcFgOpavskFdyAFOMVeTsYIYNDG4eu9i0lB39K2zppWXx4oUSTXOfxspE6aCx49AFBEnYGUuhJ+FLvaCNdPedjtxwhrmCy6tnNRp7Sx1SUchP3dQ/sOMkI3Y++iB0t3iEnSgdVdtZ+VUmdQosma+Yl0THHEuRS9WHov+ErS36/o6dpzzBI2xE+FZMQ292MEI69GFgHtw6eItvVFQF0FZjo9+oDgRsFpWJvoOIMmp/Vrp4EQ9PcvJPUaFjRLdM9v1iXRdxTTRuIrod/KA1jtgzyh9xbVJNR4eRFPUSY9qDPgAgkrwz3iQHAAVb5Yt+gy7DFpcO1tikbzA3xLUE4wKMCPBCfvIq0O8wE+g7gR5zgvoC9qOOFFclreRIwF8tGnT6l8smVeIE6VJm21oLOI/OMCSOBoBkAzT2AZSOpNr0pw5ddPG84LWyWBNC3yIZzxogk9VAS3WMEeQLKKCnAWyzh9JSYxIfHZpOqE32ufiqudSYDLaJW05WI44tC8Rr8eJF0cg0TFXutVPQwZhA4bNUA27FBZcaXZ0hBrky0UGgpcNwocbxpC22iH0obdFCQ/5qsNY8SDRYAJeBAmVyITAZ/uLJZLdw4cLymrBC1i0Uj7IKYToMlsggX6JBh4Jgchofg6EqkSUy7jGGUSQxcYrfVlttFduSxUvKa68xcQo/5Rkv3KgbeTCMUZZMqNSZCZfywyARLVj2aSAxMImjDNqE9glniOLggyKgXAIOFORgwkR5LFZb4wzgmLpiIIZDodMmcVEshcbAJG3rqVtrbhtfFikfjhcm21DWKjMGscoYp0E4QfjRFgsWLIxyqS/8KY881AP8yBvlSi4UM3KAIYYFachOHZBDBXSMVQ1yyc/FLpi4fPBD9rhglHLplwJiggSpieAvbCdoHwpC5aCoMbbgHY4Y5cdgwtmzXLJw0bmUNDqdwObCpeImPLjAFG8U3DjVZaImtMmTJpeJqgeGMxdo1J+JvV98ULV2Ii3ByFDdJsvZBJbUD+NrkjALY5Z8Ou9T3ZZLRiYt6Nw2tC/t/trCBdFHxuuiZqzqxpTZH04GjC8Z/eKDVhVsyjsu+GNUwhfcqpGsCwDVd5Imism6AKMfLqQ/6o9+jPagX1MX5ABjeICdL9xiUqUQaWAlqTzKrZN4TCTisoXqusUWW0b7z3/55Wh7xhiTLn2Tuk0SfvAnjr61cNHCaOeJjKdol3rxi9zVxKh1Y7xAQx0X68Jl8SIMXF3AybEwvl+TlbAYi7NBPQHtt1ztFeYFMgsfJh4cQP2Se6km3T4N7XGTZETATxe1ZN1KxrJQLgtenF/6XllQttBF40T186WLq+EzQW0wZrzaJf7U2uIFz3A0qDz2YMi4oTNtoQtF+tJSjf9xAm1LdIr26F0uEAI34cAYCd0HD9WTyZDuSJ9kz3QsAv47myJBR/UnDiMEfOCBIcR4Ih8XdmBq5yd9kHFEGB86YkKllzwxHlXf0K/w5U/8MECoE30WPUVf5aI0xpV4UU6IR7+pHSP4x5xE/xAB7QgvSOkHjGn6AnqKuNBnSgc/ZCYwtmKuUH5kYVyj+8bQlvTLaJNl0ScYs7Qv44X+RJlbTZki/aRxqjjOQ5erpK6zRXG1cEmqf2XvbKCvoOSIQ0AkFD0+LCmCslQ6h3IY29ttt13o5hdfeCH2tDljaqL0OfK/+uqr6qY4HKvug2+0lbCCp/Ua8jFeF6GnO/JuKX3KtkTt+eor4qP4cEqHZB35EXJNA3UJnGufYY6g71AumwqokKh9qD26CgNtsfoHfYdz5GQ+Y/5lLCMPzpHartXxs9WUrWJuZc5arHwLZXvAHwy6Fz8qi9CKj0rpjXMMfZ0yyI8eYO6AH3FgbGd3zA/qK9HfOvXwMVhT32gLFYx89AfmqsAcHaM64jCnL3OBHtioDgR0YG/oiBwV6R6LqHvcqSB9gAB+jLXQdWoL5gR0deg7lUcfhybGkuiRIS4CaJtou2oj1TqMka6pbcM5srNH1zNmwQb5A7cYn8jflawetg2AgD2B0UdTMZeN03jdcsutogwuLCh7/vz5kWPq1rIZlM7FTNRHcye4M+dQd3QSRWEz0P/phwR6HGOddGyxbbfdJi7CXnrpRY3b0nG2yVGvLhmrGjr5gll0GOrT2XzOXuyrxtHwlqy0LxerW2p80pcXaP5D/v6l/WUKdprqFXJId4f9RF2if+D4kz6UyDFeNP4Xq/+jZwNv1Qfe9C32BNqP8qEDC85Dd4VMtd781iPqpZP6U6viNMWTl3LAjDJDfwVqyk8fjXEhHae4GFuSM3S8cMLpV/t+zCBhj5GGTNhjMZ5VMeSOfqh2YPZBzxPoN7RP2Eo657hTxeifYd8FZS0zytU5ZbIhc9QdPFSXKFtjLfhKDvoA6YwF6wX6K7ZIxZL5rMqwzTbbhC5cKHsIXRj9UfzreBU+UY86XqkLegnMoaP9mUNUXJRp3BG91qdTL1euQ4CTAF0zTjYCsqPnbNvSR0JumKpuyI1NE04qxTE/wgYa8sacrHMwp7nRV9j8U7eZGjK9+sorBZtxBWbcoKltwJwHTtXOQGb6GzKv6HNhN6hcyiSdDdmZo1w+NyDoPxCBDRiBu+0zxil//FOtiZofxsne4boIHc41EbqdRHhWQNENVY/GzUpjKDnoAwRokcd4hc6lXRUHzURhhI3SrY/ikGucsJKgVQcLX+xllAI2FDeAJoCJ/qrjr/KjPLAA43oDUUc6x+aHH20aNonKRr9AS1mTpRfQD+N1cwKnBjewJmJzRAlwHb1hSBwNAMqmZo89jgaO8QWxf+rZJ8oDf/pTeeqJJ8pLzz2PNaY7a2ocKZV+dbzxApoJlA6GsgpHA/1DcXFFocPouLSKNsWGMgpzWA3EBRCdoRobdaDQv+i8DAZY1UFeOx1KRgxDmVXlWTsIx2wE6sNvDKyIY8qonZVOQv6gqYcd+so/svb8VH69keqw6nxxx1llkJuLqoWafDhmQmTvwYBiZoBgEFTlr3qLMXcruRBlkDB4MXRswGCwMNgZCFV50iJVaVBXsGCLC0zJEvyliBl8cWEXcqlcxaG4wohSGVF7aKTs4IMhgrFEuciL0jWeKA+UIDJQH+IZ8LXNa/2oCLCiKBjwKCcGnyfUinZVCmBJu0pI8amOBiZsZOZCjbLjohV5VRaMUTTgh4MFulDCSouJUGUjN1soJPGn35EXJYBMrhdlRrwme2SK6VXplMFqBu4Yh2KQkoi6IqbS2MAIxYP8YhJOBi4cuJizk4C07sQIreoA7zGqLw45nA3gM1blgCv1iLGhjPCgdeMiWvJjFBBHP4InTiraCCdF4CC+jKeYBHWM4iQvsoERx/R1JiQulsZJ6ZPWp6UK/RJ8TNzRQ2lWQ5D+h3HKRKddxUx1rv2BrGp38axGqC4AZNgBEhMfIe6Cqzx4BMa0k3iyUgesiYMeXOuKBvqM6q8yiKTdq4OLCyxdMMkggBbDFwxpQ3jEBCIZ6X8xcat+5KV+1Wtf+yEGNoYUdLR7tI0wIq6vX07SPhmuKp8JYXy/6oajQcdcDVYnA3vyIYWitSdZPolYzaAsUpKi0RYuDcVPkqySovQvlKGj9poY/Uk0ndUflM2F5rJxajetaBC6oTOrAazyVQ/ajLZGd+F4oc+ALX1wsrAOPSI9Eysa1McEIMJRxcgfOg9ZJV4kd2SHQCQijBQdK1/kob2EC+nawHmJVhSpuMCb/kD/Y2yF0aby4BQ6QIYG7YvDB5x7dR509AHGezjwpDdobxxwVb/T4wkhSFcGTsGBv7qvVOCPHFQOJ0A1wkRDHFwkQ9xl0TG6GNkI4BrGiOpJtZepPcKwEx+crTgaCKw0WKi6UC5GUTj4xAP+9DtCdZx05AYk1Q15JFpszAQcd+OUxgnjSIKoz4A8WC4N+SdP3jLSFqu/U07VH9XJS1twkU67YLxH+7iuilNELYgS9Q/OvqgkjTv3zE/ELV2KIxC5JR+yVCm1X5NQ6WuRyq8D+hl4c0yfpI7MRbWP1FETqxOEOXoLXWcjOpymkoWLfdqQerLRV+CJA4K8GKBxASOsqAN1auXmzCG6deekja9Rrm/VQ2MkE/zRo5TBDQ5kjDpRN8lAfbr2B+fCjIuOqge5ENQYi75N/xauKgLxcKCj44E32lw0oeNFE/Me2Ec9LHlkjRP6dxuQuqaix6peDWSVELqQ/iR+lB8Xw2r/2jaqQ4dRpIkm2kj0yMCf51KcWdQL3RW6Vu0apXb4hl2g9MrPXDvMV7lD+qqHQiZhjp7B2Y3sQIBNwdwPdnUFUbVpXBdkjjlestA/CIwPOCMzAd7GlzkAe4m+tkiOPLDCecEch6OBfTRM7OBC0N4OBh3j/A2po6rQBOIxf8OL9qXdseP6Yk6Ww0yrKJgHq9OHFau1roG97DvAowsxJ1NvnGfMXXVFU50/qUP0D6XXVYtySIgOPVXHmPJKGo4J9beKHjVR/gidfe0BtLsdY9if3BAREMocfMRLvTPsA/a0C2lx80H7sCcUQX8BosBauMMHfT9JuoV92DICOOJFzwUm9UF2+DKegB7R4EXo1iniFYvuQjbS+KO/qy/Wfl51b8WoY+fFuBKteCMntMpWdYnkgz+bHcXoc/oGdgt9g7Rq62ATdMpR2dbvMe9UgTsyVZl9oqKi60RtOpgjX+BOnTr1ZpVmnTvQH3W1IP0i5lX1E+TgHOwEgPor9lcdgwAGf/gyX3o8UNxSzdHosbpqjfmOm3N1jFAf+iCZg6/AjzkefRH84NnRSzBDaiUhS6THT72+weFNCFy6epo81kFqW/GgDjV3JOmn6hxYMhdjw9hxQTnkwXYOHUvTiQ75uYYBe5hRX9NCX9uLm2N1XhCTwDswU33DpiAvmekT0jXh5FJdww4R/7DJ0ZP6o++CNLLrp9a/U2aMC8XFzRriGLuaM8C81l5lKIROUJvtvfc+5aDZs8tOO+0U7YcdyIiFf6UM8lH5I3shUF1n4Stg0R9rhxYn4thwNGCm3XPfXeXy3/ym3Hz99eWhW28vU3XPbtfdditTt5pSttDAjaVGKBQ1yjJpo2qIK6M6NYZ6oCwxUSQoq3Ey5Lmow8hg0N/5+6vLFS89V2Yqy4EHH1B2nTGzbLPttjpT26tjLFmkiVD86+QknuLDxQyTIp1w0UJNVCqGO1Ccv8YdIOXdbvtp5RUd/+rCi8oDOj91xu5ll7320gWJ7irL+zRpi8mi18SmySIuXJF1gACvCE1yVX5jy+OPPFp+euONRT668penvlFlbh9KC9JQHpIb/siFMRurAEIBaIBRN9W/TwNwiy3lDZP8II9X3BPwPZdfUf6oC6ljlDLnrDPDkI8LfvGDp34C3lCUOo42YMAwgJpzugn0KDyOF8vD+OJzz5Xf33xLeU6833bk4WXv/fcPmuqZroqBCwLArJ736pSIcpFU5SArBCgQDALkWSTeLzzz5/LYtdeXPyp1N22nn3F62UEDEAOTyYc68DgBMsIf/MGUiwfLqGwRkLcqo9rmeG7nzX2g3H3/n8o8URyt7ZhzztEqiqnBG287S895lAI84IsyQG54xaZC1Vu7KwgwdjEUuBh65smnyi2XXl7uFN8Z2o6dc0SZtd9+YeBgFKG4wyhGcBQ3GxMD/V30KGTSKQ+jiH6K4cBFNLLdd8ed5ZK77yk7ifaw6TPKbgfsW7adtr3yVmOK5WbIjCEVYyb4V69rnTQoRUF1gY4+RRk4d/DW3/TLy8ofF7xYDhXJPocfUXbYdZeyle4W0TbgQZ8Dz/EyjmgzeCA4cjMZLJHRzUUsstOuk8SXCy7q8+yf/1wu+O1vih5qKG+bfWCZvueMKBcZ6DdMXshFp6z9hLZTHDChoJXWNRDjHPJaD+gfvX9uufiuu8se4v/GU04OPRAYqm2YODEQXpv/SsjM+I0JXPLXfi/cVRbHIIShMknjir6LnnnpxRfLzb+5vNyjtCP3mlgOPfpNMXEtV1+Z2Ke+J8/BWHlJmRrUa6TLNIHW0SW9VcdZ9B3xHTdZd8B1wbhQk/urWqL7mpalP/vCn8s1N90r7qW8742nlj332KMsmb+g9PMIhYwcJr0l9B89XjVuEpOW2kN4IXO/jDQ1iWSW4SHc6U8sWwR7LjSfenReefDGa8rN4j1b2/GnvTn0G+0VYwncFRj35EVupn2aIvbUQ3KDMT2/f5l0kkiZuOe//FKZd8+dciQ/F7jte9D+ZeZ++4d+ZnzT/TB8qDs6C50ZF/PwIi42jBYkqO1LX5qAThD/J594vNzwx+sL9y33ZTv+uDJ9l13DcEc3mocYSyY6TnTHGi9+sGWL/hTyV102WW2L3ph7zz3ll7ffVWaJZq99Z5bd9tqnTNVdTcZKPI6mPPS9alRIZuWR9SBq+qRw1hZGBP1IOGLcU6ctdeeFZd3X/fRn5XbRHqVtxvHHlm2l42nPWKlEo4k2jHClS3Rtta9046KoihMroJbL0TR2oi6ItDLoqSefLP972RVybpbyt289Pe5OLdF8xlhSRw65Y4WUximYw4o2IB0dg4FNejVgdcdfPAMX5UX2uzVnX/XE0+UQ5TvxvL/UBYDGQufCDlnXNoAjrYEOeVnj6Y/XXFceV8x7Tj6x7Kv549VXXykvP/9i1A0HB+OV+W2yHMjxWBx9Re3CPEDbcWGIzg8HlfCnzVi59/zTT5V5N91abhTv6dreqvljx+k7a2Xlwig7+oriCVEPAeP6gLsDcZzSx8apHPQBKw4fvPeecuvd95dnlXaEtiPfdpZ0jfpMx6kUBit6Xuf0O+aHGDtqb/oI/OJCSP2b8Rp9SPLTW/+s+eNm2TT3i6+0bjn1mCNibsVhuIBVJcx14kmwqLFXVPfclYFGZVHfKdLh6PmH5s4tF1zFzFr75H6nnFh21niCJ7oAXOkjbJ4/0JOhK8U3jPmoJxcl1S6hDbZQG+Hgv+OP15TLH3u8HKTUfQ89uOwkPUbZYEP7dESn+DUKjCVsLuybl156qfzwpz8PXXDafvuEntlad5qRjRVy0fclN3qJMcaYpa+HA5wLHvHCfkDvsQevmLs1F0D/+Lx55f+uvLJsp/hzzjyzTJVNgMy0Z3X6135StYqIPEjFCQdDnHMcnDmnitgpOOj7yh1XXVque176V+bpMWf8ZTjEYlWh9BgrfOkjXNjDimYLBoqLi2zvFUs7ofeZf2nf116ZX5576sly671zyzNKf/cbTyy777ln1HGJ+EZ/g50EQqSOWBHTKaiK3klDDjb4M96ffvzx8shtt8X8sZ9ojjvt1LL9jjsGf/oztFVWya0+jj5B/srHxajvozuhlB7DnsFJ+4pWpDx8153l0YfnFVniZfb++5R9Zh8c2HAXG+y5CUKIdmDPCTJqDqJczsEcWWp81WuMq6c0f/zxqmvKk6LBpjngDceVXdUn6e/Y/lUPqy+LSehzMbVepP5YA/GomnTWUm2xykA2AX2a+fK+O+8sP5euwU49XHPf7vvsKz28TVmgawdsjQmqY+guQbQS7shcG1lHNQSK1EvbeJXBSqlrLvlluUvJx+giYa9j3qC5abu4/gDgwAOdoj6PbSgAoj+HE0L2Aul2NG+59ZRIi/FLn1b+p3Xz9wfXXheF//Ubji/b7bC9+ntduRzXR5KYFTeUZUdMYE/ZHZnZ1XZWOxBPGyiR44fuubf8+sG5YXOcePbZwmxqxFcdUlc6IWPgHTpSc6nqLqKQnbGHLQmG4EG/pz7YaDh3b7ni94HN2XMOK7MPOyyc79j30c/AW+0TurUKGXwZAYx54kPPqb4USTx1xHH64vPPlyck+1XSN4S/Ou2NZQ/1GeTiBjl6hlWhy4QNXRCsmEfRM9g39BnwWa4y4maT4pdqTCyRDpyvOQ47+MG77ok+CX/Cf/znf5Rz3vlOORz2DtnQ9/CgT4z2sN6OhkCCfqiG5zg6iQyhsHyEDvF33XlHueLSS8sjugiYILK9d9+z7LX7HmXaVC1FkjGJEyAuTkRbVzNo4GBQaaMH0GRqXzFTZ9deU144GlhCzvLRG26+uVx39e/LrjNnlL3327fsIQW7/bRp0Wkon0mFDksnotHiwkV7JiH403npdCy5phLz1VEZJNuJx0vzXy6XXnaZZL+/HHfyyWX33XeLCQlaLkBiIvOErNy9gQlioEB5GNEPPfJI+cVFPynTdtihnHTySWVHKW8GAWkEJklkR64wdmUYsscQZ+JGTgYJWOB44ZwJFKWzQBfsd919d7lGF71/ceop5cg5c6qBK0xi8JFR9NGZdRzYcK6N9DA8RItSsCJBLvBjKdNzzz9XbpGj4bFHHylvPvuscoAMRfDgIpQBXI0WdQ6FWObVqVOUqULhw90OFRcXom4PDLln/vxMefTRR8u9d95Vpu06vZxy6hvLrtN30Z3PeqFOHgY4F48xKYsXoV74UpMV/YbJB2OFyQ2Hwctq00cefqQ88tCDmkCfKAfNObwcc8wxZRsZFbEsTXhTZ5QVShMsuNAHIbCJoCLwVPZpCTwx8MY7z12exzUp33rTTeWZeY+XKeJ52JFHlv333S/a1Uoy8oC5eIttDfR3Be6kM1EToh2EG7jTvvSFu3RhdN1VV5epW29bZu69V5mx58yyg/oPsiE3OJKPc8qJfo+8wgjMia+YVMyghf9kGVtMbNfp4uI2XQDsN/ugspeU3vRdpgubbUIexhNlgAvdB5GrcrXsUqZcBIiOCxv6Mkq43iUeU56QMfTbX/9aSnphOfnUN5Xddts1HA3QVb61/8ENTFVQyEr/q3XirrHkZizrzhDgqbtV2YTb3AcfKJdefEmZuc8+5bjjjotl5Uy6OIGoI3f6MV7AArkxUIkP7FSnDquYKGAaDjCl09+ff+H5cuutt5Ubrr2qnPauc8rhhx8a/aJfz9ROkHc0HA04FOQIXSZ5VYI4RE1Cb9FPGcdE8W6G5VqVsFh3FV5Z+FqZv+DV8vRzz5Tbbr2ljH11cXnbW88q++45syx+VbLKUcpdazBiXPfrfSzyaAj/ygsdAyTq4R1cpDtUN57xRUe9pvo+9uhj5cG592tyu7fseeA+0jUnl52ka5isMYDdV2hUVmOwx8EAtuwRGn2s6DCow5hQ+aQ899yz5YH755Y/q99jZO57wAGhC1gKjLzQoEsYT7RxnKvPEcQ+yoqOBG+1N+1L/4/l41rt8Yhkv/nmm3SR9UrZeefp5eADDyqz5KDC+ES3UybjG8Yxnjp8Y7JXfPyp/JibREPb049xwqAr75Jj6pYbrg99P2MvjaeZGk9yBtCHq+6FobgAhvYrHt2rRlHoePFlnCEH706gHizxZC655tprywMas7MPP7zMnDWr7LjTjvE4GwYuZQQIou80p6qBwUN19AdASiNQH0Ysj95okMe4evTxeeVnP74oLojefLqcscgtnMkP39AfwjpOKaODQ+gYtTt40f/BhH7AWKXP0070mzs1f/zqggvLCbpQP0HjiRVjtQ3FsYqFaGselI25gbnpBRlzzB8P3fencs5731MOOeigGGfoIC766Ls4nXHc2NEa/U/tQLvAB/ljNZ5oqSt3H8n/zLPPSg/LuSbeU6ZtF/199913D91EXrB18FFgrUifk05craZ+0WcyeLEJ5j7wQFywv/DMs2Vf9cejjjqyTNMFQHXCasSQT5iGjOKITgZ7eNE3fEGEzNFnGVs6JqAj77jjDjkcnixbqA8dLAN6//32j9VIGLisbrP8ti+qjOLdEd7n8KP/Q8/NCGS49777ytWX/059ZIzmj73LvrKZduk4Ghiv9PPQB5KfvfsQfZu/yrPWg2P6D/Me8xPOqRtuurHc+Puryt4HHlj2EW9uKm2rC6+Yf9Q+NbQod6IG2VEicwEXpc/o5sZll10euuYNp5xSZsrmY25CN6Kj0QfhBFdb8a6Sao+gwTrzh+Sn/zJGujpDOGA3wOOhRx4uP/nhBWW3WTPLqaeeWqbpsSTaEZN2LOMHGbXnwFg0A3dFHEfqBK4lfQ5sbrvjzvK7C/+nnP7Xf1+OPfroeLQt5MHOkz0noaKNcDagT+BA/fsUj6URjmT1E7cC8xc24oty2j2pfnOvbkCAwxvffFrZR22LDYaOo91tByB8rUdUhopEoM9yQqr1BGMr5g/G0oMPlnmyV7nxcOyxx5addeOHFafg0+3HwUL9W3EE86nRwkT1oHD6TPQbYf689MC9995THn3o4RjX++mu7sEHz9bjJFPqRbKysOo5xhR9kE31gQ/9ArHZuv1TaYyluOmkOeIR2afXXXNNma9Hy6arLx500Owyc+bMmD/CHlNfCHsmROvoXmEfY1b9iDHVpzLBkUdciUdP8pgustx2u65vfvkrOTKnl/0PPKDM2muvsMd4vIsbS/EIheoZuAJEJ5B3paDzwAtK+rt02suaP676wx/KrddfV456wwllH9k103QDlLlVhUf5VD7sbcaW8GVcs4U+EU11tGk88M4gyY6OZNUYbfTEk0+U3116WawKP+mNbwybALm4aGYFXMxpogd7ZIugnUhUbJU/6kV52sjrtgfTP82dWy750Y/LgUfOKSe+4Q1lW43VmotxWO1RdCHlRB9SAfDwRnnYadWG1COkuvkHpshPP7/t9tvLbbJXz3r3u8qcww6Pvsj1A2WEvFGYfpBPf1U2VrNXezDeH6PxQ9VIp0/SzvTJeXLC3H3XXWWZboIxnvaeNSvwjcegRROrKjvY1BVEHZtGxQU2lEm7K78q8f/Ze+8gPY/0sLORc855AnIGCBCZBAESgSBBcJm53NWu5JNvfbIl3bl85VPV+a4syXcquXy3d7pz2VoFa5e7zBGMIDJJRBI5Y2aAGYRBGCLncL/f098LDLkrW5b2H1bdC3zzft8bup9++sn9dHeeIi2voj+OEWioYZD5ELaNtlkdg/H/w5/8aXryySdTb2QawjJgBjEC9q0/fj2Bhhtg1g//44A5I9Cgr8w81h0Qw/KPPmKUoT71xHkfN2xEGjqoLHVGkJiOeotOi1R3CE5jyoyGPNU5M3lRbAhhijSlxIwG57opBNes+yytWrkiDaCDhmHkVkAQOuwhqGEmlY/MpsMh8SnYFY6Z+DJhS+ThqFO+hoqE0rVL13SKeXrvvLc0jAqN83LKNsrtXJpgDMqLshSgHI1pIq40vsD9oi0KKxXbXgyWV155JXUFLw/NnRvCWyaXscI4B85w2KN8IvsITkd/VZQyW2aOXFakW1KHQkeGvHjxUvpy65a04pNP0kxgnz5lSghvYRCsULR3IMqAyuBCaTDD9kXaI+WFIKBfZUTrvnDxQjDL5zB5zeGatPixJWksCiK/g8BTWABz4IYSHen3nowezP4NYWK5Ckb7xxGpo8eOpYMEArYSRVexLWJ0YQBKwv623TGFACY06GQar/UIuXWUpEb8DsHHfdtq1FRj5XTDV2nv3j1pH8Gj+uPH03gCAbNmzAhj6OKFi0Er0VPinP/2lfDlNmG0KEAoy9sx5QG6pfigH1MZq1HGn6PYjh6ujSyJe1HKY4jQq3Au0yceliGsngNG4Lf9ClXTDg0kUWQ+rI97bdth5PPcF/Tpqk9WRF8OHjwEQ3Fo6tOrT+BAY8UyxE8uIBuKUQ+lBf6BV7hDmJfoU9w49/UcIyPLV69KG9d+lsaMHZOGY+BqoGsoOqJT9CdQ8l2jUWM/K7bcv1khq2T8XTjy8Z3fh3FG33znHRyIS2n+Q/NSGUFBDWDpPRt/1kHL0WzSvziIslREJZwbcdcZjgWYoFOp2Xc0kndiRC99951UCV5mz5qVupPpIZ9Zvk2V94vRUHlcuGLUQhqhPUGD1mMf0IYcpWYkEbozsLaeANK6jZ+nhU88RnBqUinQwEhwEWi4k9GAUrMP4gA/NMSPhEKzUD7INm4TjksXWVjq1JmGdPjYkbRx08bU5NK19NSix9LIisHp+kVGdAk0tDQVHB5ympQR/tus6UBvco1CaIMo00S08BwogLbAjVkByrOq6qq0Z/futBeHt3zEUHD/UBhGN1XalCddCF7j9zXP5RvP2bDL5Uez6B/P0tVxRo+3IeMPH6yOcsYT0JyI0u+goegIkG0WNuqwj3M19q045h5tkE6sWw2gISSdm3Ei/vdgrKxeszqdJ3Oif9/+6Z5xE9KwysGxDoqOnTQZsoz3s+FJXZZtDZQfaA/QBTjTgM+7XoVBgY04u59C892790jDCJYOHTY09SagIa2E42VpAXvWG0iq4C9px/ZLJxQXtGSd0pf1dGD0JgLVyN9djNhNJpg5dMgQUiN7pfaMzqqTsiwEJ7wfxhx1WaYt8K/nKJz7lp0D8Vyibun64KFq9MerEQB4eMGC1Be4hSuntd8tI+hZ+qZs7wtvIWO8Jpa4FP0gn8lj4RgB9wdLl6aps2am2TNnpY7ALcwZMt7wpQBSQP/Lh6M94tX56QYD1hHg2QvPPvPc8/TruAgqWK9TfsxS0C7QYC/gVq75XR0XuKNK6cfsB+GWbtRNxzHkDiGHdxIoaYfsmj9/XirH5rBvItBQwAz8xdeM61/+7QM2E0UQc2xPYxPorO9DhzgyNXrMWPTHzNQdp1T9IWw5AA5OxZV1BNwZP+Je6uRi8K6OjOWr1+UDg0cbN25KR47UEmhonyZMnEgQZhSDMq1jJC0HGkplBdCl75yKQINXAmbLjvpZvyYGUlLaygjsx2SYtqQus0hGEBAYgIyHkDO/8m70Ly9ahnJYWA3+yTfqQuEMmcFv6cmPfXaBfl21dk1au2JFGjl6NE7dyDSQoGCsI4Letu/jaAR3vvCf/6v80XHUQH+PQPUJZM4DOEYV5RUE3DuE42DfxsAF7dBeaSE+ORdH0Dn9oXyxT0On80UZ4W/va4+9+uorqR96af6DD6We3ckwtW7v867BhhJm452MIS7ZHj6R1RAV5jtRPa8YLHMtic3YM6uWfZLmLXo0zcIucL2iG6URY/GfZUJej8ZBEeW6NO20DZOosn7KdqyyTp0gPZ8k2FvDwMyXX34ZNtIjix9No4aPiHvyUNhvAmM7Aj7OlJebzhcOf8eZJ2xzdvDIOCAIfrCmOu1m+vOBA/tTH2jlQQcJ+vQJGVHY1kEnFBD4DDxl2sm0n/Fs/1u2tF4Ed46Tvbr5iy/Sfso32DkWe2zypEkx8HOZDKQmNLy58AgvCIl/gWvgBAeC7SfkI98sX17VUZdODQqugB6/Qt70A/aJZJgOw2bSJo2MCXUSBYgXpEuc/R7fKL8Y/LQfHFzynrRjoEF9tn7zpvTBO++m3gQaRhEgMRjQCxkv7+u0AlCUJVgepVPgPkOerwcMPstHXBoIb0Dnfbj8k7Rh3edpOvbMiGHDw7dpTwAy7LESPIWt7bko/865KBMe9RBX9oN661BtbXoffrI/HoLe+zKopGKPKTnQn2+EzrYeyimOoG4L4lK0Djx5374veNz2b8fmeOO119Lo8ePSQ7PnlAKOZhiVYOH50CclGIU/7DBLLV2T5sW3v+Vdp/I6YHSezICNX2xOm8kIfwwHfeokcpOBxyC2R4YXSO1b3rXl0qp1SBsGB/StvOZt6dTgiv7i8RMnIuhoIOMW62MsfHhRGka/OkW9mLYJoCEztW9C3lNGtmGjQomfD+2EFh30kY60uxtYO+xwbV3ad/BgOoSPUFN9KNVt35d+8D/+bnr6yadS+4F9EBhZRhENy+Xw7rf5AEd2w9/z8E0/2d+4W4g0JGI8k7a1DeH30XvvpYs4eIP69U+TRo9JQwaVs8gZBjIEQ+/wn0/8gxh4LeYv21FQQCjPqAti5yz5O5rVkkCDi0yu/HRtWr7so1ReWZlGMApbWVEZkTmJK5idOmymRCRBKJiDwKjTQyIOQlaoQIRhHPPdSPkJnIs3cVwOYFjMnjMnBJQp/G0wgiN6Thk2tfgEPqJUUOPFv+WQ0XQ89yAEf/GLX0QEVMXWywAJ143GF86RjCjMpvOH8A8FlBlauDUqZW4dcMst2ngRg2sTiu3j999P9xORmzV1WrRJxpWZIyMCgANPJfwGuMCtAtPBVvBbtmUqjKxLZj9HVK6OiN8aHOrqQ9XpqWeeTeMxLMSzsIZzzvtiRjSEwueeglfcewSswO/ZQxDEicGEo4zm7MPB2LBuXeo5aEB64vHvpP79+pNmdzbKiFWafY/+QhNz1tnIDod4t01cjWvRNK7ptDg94CR9umXb1rSLbIlTKJ97Z87AKb0vjOizX50JWlQINYtRhSz0bYVCJtoGzBq2AB516KiJezMCnO/mqMiqVStTLY5Xx66d04z77kvjMUbFyXki1BrL0mJgpoQvcWJwx/aLMwW5Sk3jLhxBrjq1g5fTZkbVzQpozeq7QwmsjYGfBoAb4TNNslCWxVlciGP73c6w/8Ixc5jG39ShIdeB1LpzOKUfLPs4rTULxgAJBu4Aso+MRJvCLD+1BMYmrg/AGgW3YpeXHFSI6SXihPKlA+sT9/KUMJj6ZpT45ddfTxfOnE0PP7wwVQwaFAssKfhDydiHCnDel9Y9LKugFeGWD6gR4Y0kYI2OCBRQp2mQ23Gk33rzDQKOI9Lc2bNTj27dwyGTunyvCBpZh3SdjTVHdLOCc70X+zbwTp8AeNRv5lQDIyLrUGqfrlubHnn6iTT13sk8Cz/cyWjQGBJmaU8DJcNvP0egQTzkFmXZSHe0aNUCnXI9HT9Zn/bXHEwG7ppevp6eXfJEGjp4KPITp5VgLQigWD78B1HpNlMubpNN0xR4aSDXcsnRoSBdvEd/Q+9X6dODyJldu3amndu2p8oxI9PD8xekrhiKDA9kHgcfvmN7o81UlPmH/ovr1u89/qP8mvJpjgJW/tSRFbQePt1L2eJ15n05qNmOQMM1AmsaREKn7LYv4+Cs4SbPxkrytoOHIktI2cQ9px4YGNRYeY9gr1O1yssr0rTJU9JIM4TgF+ndOqPcqMQ/uf1hkMb3wEb0tfes1+d19uXbtRhxHxL86tO3bxqLszsafupDcNOMgwga8Kx1yPvyWKyVEnJXXoV/uO79wHfpt/TanlT6c6RevoXu+xKHei7yffiwoQSVu2GkmhkAHAXs1BHTawA/msFfeQZAc2PoHUVdZPlhuBhosL4D1QQaXns1tYIGFjw0Pw3EkHYusfJRmWs7pXMDJspe4TJA4VmsxD3kl/Je41L+inndBKrVg9tw1Jd99GGaPG16um/69HDqLFPZ4vsZuIzz+Pm3/vFpHSOzh5iWgUNajzG3lmyPbeio5154IU0ePyHgFedhCCIjhUfZGOsA0B/qH2WkRqF1K8uUG+om8eHnEkHMehzSg1VVaTOBwTYsLLx48eI0uKw82iYuRHLIX+GNhsibtiP3Q5y9VzriEQMNrQlUE2jYBU3uAjfHamvTpHunpodwvJyueR4ZYaqxGVTFKKx9KIwegSn++EuZK9tmR5KpQrzjdJgayvzs889STU1VBBomEaAah/5oh01wN6Mhios/RcmFCMi/c2XxnfqtOK+a3yQC1Uvffju1Q1eNQmeP5mMw2WlI9kvYFNIIOBZey7DPTPv1rAMkrMp56afgvbYEMgw0fLxyRVr27rtpEgMb48aOS4OQ8QYapL9wvIRa2o7D0ovvXvjVv3Xg7fcjDAws/eD9dBraeRB+Un+E3i3RuzwTMMNX4UBQovrB6/aBcl1+VW4beFH+qxdcL0FZsJvBhzfeeD31GzAwBn76YOu5XoC5czARclxZJowZUivLvzhbceOmAHPUy2VHX8+g877AcVnHCPWDCxelGfSrNp6BNEdYtTnkObMEYsFnAkvKB/GulRk12z5tMfhImvd94XbA5AADM2ZPnSGg8fx3v5vGobtdx8ERYFVp8AzANgZR2rQBxTXPwqyjq4ywn89hYx+srko79uxK24F/4JDBackjjxL07ZcunD0XMtJF8cLGk84pM8rhrzpcu6bgex1Eb6pnw14At8cYVJLe9RO0RaY9MDvNdOAHm0N6dGpiM5SQAQfLlt502qIS5RjfuQN+uO435YCBBnSHde/dvy99TEb1CWyP/gS9ZkyfkUYTABPmSwQGFaxSerTZQq0D2axMjwEZL8n7wGrgQpqXttoyQKL8WbdxQ3r3jTeDh8bApxWVFakPQQf71KMx3YvbOwf1BODFBW5JvQXuW2JPOlXo3Y8/Sp8TaH/gwQfTKOB2ELXIFpQ+xG3BqwE77RF2+dM+zItvZwfca+LFmsRjTe3h9Da8Kh8smDc/BvMiQwzYtZUE0BF8cSTo4jnq8OwhzEEvYJCz+lzc+IyyW3vslZdfShOh9QVzH0wd0LnK9zuDP7wjHPmDjpXWgdE2aYdZZvQt9cu7HtqTZjZ/BW4c+FnPQPOSp57GLpgc77meg+/58WXf51vUEcFI2qMfoA1uQF39It5dP8zryoMj+B/SzSbKv4WNtmTJ42k4gwROnTED30Fr7Q8xFBVQiT6VfS3upW3p8qq/ecRMuFgAHp41S6WaoOA+pm/XMU2utrYu1e7Yn777+/8kPf3UU6n1gF50Fnxiwa2QPMAVDbCub+nx6wk0hEUKBjzbq2LfntUOw1DeTjrwhxDzxYYzpLwOTPeOHZ+GlpWnJnTyNZzKPOLlqxApf+MjjSgd/RQHBKkx1nmxcqsAAEAASURBVDjQcBUhuOJTAg0ff5gqhg6BEUcFo/dgdEpYZKxQbrwrEWWnPM+9VblI4IXhJWNkZQTzQhBtiZSfxrh97e230j5SaOYwCjgSx643BqnZDxeJqGm0SKAKB9vxzeOXr+QnHImUmYyg/5xAQ89evdJCyu9BCrwMYvqqgkpBLWMZ1NAAlPk1wjy8ruBTmKqcVGYSuIJFYjczYAOR4vfeeivNWbgg3Y+AdWTa5zXcXJneuoRFPGSHMAuOCDRwXaWcGT+nFoorgw/OVz9cW5tWg/tDCKvnv/c9Ag1jAh+FIJEZAy+yMfUY7TO6HoyNEWP7C9xbv4eKTafuCErBjINP16xJvcoHpWeffpq0t/7pAoaceGiLEHaHB4DLn4Af+uF3VjZZQElLVB50JE6df+xI2kYEyDbo0vTdGXPmpDn3z04dGNG3v3UmItCjUQu+FUIKWtds0BgTN/a/UUqFiYaAAqUNzkMLnKND1dVp+fJPUg1925E0t/semMMI77hgibMYG5YZW9DZYHDijgCZjvLIuyNzwqyzZZDhCn2lAu7UrUvMVd0I3EvfficMk+HQuxH6MhSoCllDVFgjzRPgMivSAugoDC7O12mfChRAAi+uNKzR6xzj8wSn3mW0a+W77wH3A9GnAwk0dGJ09iqjC7ehh1YYCU3wnG/fcH4jjp4OL+/H1pL0qfXHoTNAv6iMpbmm4P74kaPpRTJ4vjpxMi1atChVlJVFZob4DP4Droig02+hKMCvR+MAQRheVkGZzTG+WxJwUQk5OrEV4/91yh81dmyaj/EvP1m3vO7oiIaZQULJTVqxDpWxMErXwXfAYnnSsdUIl1MMVPrroJtP164h0PCdHGgg2BGKh4yG5qBU+eRhkMHMLDvda/YHMyVKMkJeg24J9LTpwMgE/+qOk/Z6YG8YXE2IZr/w5DNMAxsGcaHkoQ/lmHCEQ8XzN8A7wioUGEzEdyqyUeDe5wycKBuaOWqPMXXgIIEG0mp3EmCrGD0qLSLQ0I1Aw23aFcqdsnw9eAXYNRX9KBM8x3VlMfdUfK4P4bxJHVqDR/Lpjo2bg7cfZGT9vukzUwv46QZGryMA0qHGkHTiIb8rW6TrGNmC722CO7B4TfrswGrYTYFfh07j33VbhoCT6ZOnNgo05Pmatlkw4w9nmxKfaBTfuWZf+9Gx81Hn0UoDq5Bhb5Eu7ZzmCfdMTGNxjnoi4xGSMZXKUnWwfFbZkFFA+8U7P5TN0o7B2Fx+dohbdemcrkAzL7/5Ztq0enV6BGNlxLBhydXLDQYoo+8GGqylaEJInCgrd4r107W2SHmE3LEPpOsi0EDNkaUyCAfJAIr9Iiy+qDHl1mbqQa+pI5S9frcPNMyUu8Kk02JGgRlxOikaissxdA00zCLQYJaKuMgQAo9I9hChxeG1b/yOS1xT3ntcIgClHF7z2afpC3jque+9kO5FjlleLHJJG6ULeVNaMXNF+JUDwi/uhV8Yxb3PSe+WrxF6XMfrIIE7AuGtCaA+yUjRkIoKdB5rNNBfAtgYxOK7wbDiKK75W9PGFNgW7HBloMEpiTuY3lBbVZ2mEUhehJHethOBBhxgp1K59lRk8VmLtOOQNI2LPrFf/MXJq9K7cl7HwrUo1KercCwOHjwQa+Pcy5SVCeiPtsg6p1I1QWdEOVFKoKz0LZfpj0bN4HtgP+hCPbAJh+5NsmDMThnLdJ6xyMp+/ZhWgkPq/GZxqO2hXSCWIoCvnlJPUHYxrSWcc3g7RiBpU9v2HSJT7QMyeN5/9bWYajqBkUwDDZ1L00rsL48SCjKgjREdd/lTaoA4ioOOUfYdrT8eGaanoZ0F8+dHRpywatsp2yNrFZjNbHAapPTv9aAjCtL20H7QhnJNLm5k3kCvywcGGt6EX81omDd3TopAA/SGpke/EmgoyY4SVNGHfr+DbxvG//wb7IFvQAjbTMfoS2hmA8GABxc+jBy7N+hZO0yd1JzAwnV0lDtomW3Vgg/EHbaFWWoGF5Vzli0ugg+QweoGM3gOHDiQViFnGqDPH/7Wb6Wx2GPOI5efM1gZmQVKM5CUloEVbD7842HltDhTxp/DjjRzavvuXWkTAdNKnN2nn3gy9enXL11i8FCbI9M6RaEvIuPG9ykr7AJlDTQFoUQgxT41OyVW9Kf8kwQazIL5YsOGkPuzWGvmfnjKgZWL2Eu34afmBBmaUrb6TXCVhdosVABeMh/JS143yBBZTvSxMkGHcRmBhmOkqNuv95PdO240Az+8fxF6p1K+I1eUIbZfHEPvysYIhqu85H1gda0Q5b0yxMCaMvyzjevTu0xfG1hWFrxUxrkX9rzBIvvfQFKWOUEaFFY6Sn3pL1oSf3OTlGXY+dB0BBoI9H6GPHgIG95pgwYalNVO+9Cpl1/1a5SNlqNO0YYSfuV8oWvOkh2hnWMmhu/Yz9WHD6fX33oz3lkETRqodkAodJuYjrKwVULmSyqZWAp73TLiY918t27riPf4vm337vTqSy+lKbNmpoUEGtoB90X8FMsPG1q6Fg+ULy6V8bZJ/nRBX2szIK/zr4y0nfatwbPT+AIGeT4ncLcE/8BAg+2y3QCT4QrEZuwKm4tOa2u7M5N1KA+yP2KgAZ8P+au+PIwMNpi8AZrUbn3iqSfT8MFDGNhmBzbKMJDsourSd9CL7aassBlpT16TA/pC30hDrn2krWqG6Vn8xn3w6u69+2Iq2HEy/Y/sY7D2H/8wPfmdJ1OrAWSVMNhEwczdhW+aQ4C5CRLJt/IAR2Dl73v4pp/M4VAE3yUyR0pbgBxtimu30u4tX6aPGdU5fex46tOjZ5qMITeMjAYN7xsQjHwMiYYQVVDcAMFhpCtE6EgPCVy8y0qQWqzurzB29Hs10dA1q1ak8sGD0/ARI1J5WVms0SCzSbjB5DRThlMpSXDhkAKrxC1RRh08UzCODkcbDF1H0V6FEXdv2RqBhhHDh7NwktHKFiEE3CJOx0shFRoFOH/1keso7ilIJOy9Bw+m1159NYIX85k6kecGO0cKwcF93yoY0HbISCpVjcxgUJ6wCUbCVVgyr4syyQCmEJla9DYjyHNQygYanPZhexVSKqBw9mmLsBe4KJSDiiaELXgKYUbdBSM7J/BwXW36FKV5DAfgOSPoo0aDa7YLRFGG4Uc9udU4oZQlvDK5/WK94VDTvniGZ33Htrm9WpHR8OlqAg1lA9IzRCz7EEE/c/pUKO02CKGW4BAAI6VR2lBY6ZyHsgkFBG5EON/NEpHJTdOvP3Uybdq4KW0BNw3070wE4NzZBBoQwGY4uMCLq/OH8AY6yxbJOkwqGR0K6cORBSgmHPdrwNGOkbNWfA7VVKdPSNWrOUiggSkxs3DYJ4wbC93djkVmpOFYbTnKhdYj0MAoi8LX4BK4kSkc3XUBmSvM49cB69y9W8ztN9DwDiNS0o/zDe+ZeE/MWXcEVkMlRpBRnip8ipF5wC04iHJZ7AaB7faKRukN5rlVngscdWEu8wVoYumHH6SVS99Ps+fMSeNH5WyJThhllzFyb0JnjgSATlpBGbzrmgE2xQCMoyY6uf6OERT6lZ/QM8qLMuqPHU2/gN5P1B1L81Gc5Rih7TFQpdugZx4OJ9z3+fjHs7Rhe3VA5enr0JD93AI60PC1Qml6K6P2r738chpHurGBBvkp6B24XeTVvgv+oe1Sp4aAhwawAReNUhWQxr+0H6OktME6nVbiejCfodgWkJo65Z5Jsf1QBBogtGYMswQdUqTyy6yswIPw05fxsTL7lT51lK4DwR0X9ztSf4zspv1kS3yWmqInv/f0M8xvJtBANsN1+NhgkwGiJjwbMIMHUHLHiFaZqZBviBe+UwW8ygJq0LR8Xl1dTYr6Xubw7khlZAPMg+b7MuqizLCd+Z0StMG3SmT7jmtahlyTj6zUPrhGv7fC6VKeHMOpW48c2L1lW/DHA5R9H46pfWMWm4sn8WYYo4WDaF/r1Oq8WKajRfan9B48zAudcNRbE7zbsXtXepNg6XkM6MEo+0njJqahFZXoAHYNoV+FPeAUt8JZOiwvy0ivCz59ThsiwESdTo3zvdU4u++8/AqBhgGR0TACQ9qpE9JTHg3M7+WS4Vf4R+yYASBfGeTVWAmZZqdQpnTUmhHuS0WggTnrjz3xRBpBMLygdx04ZYIwRocF3PRvVMQfz97zVHxsA3zgQp8GB6oYGXmVjAY1xTwC1Y4yhtMFL4Y85z2L8bvt9ijwIE9pFErbjnI5wmvb1BvShH2zjUCDCzlPmTkzMhpco8HAlEeAGd/+y39shu2KYCePh6F4uiGySbbAU8+gPybj9GpkmpGgHhafRbDB68ImPoTftqtT1Ik50CBOkMtcN7XWQMP+A4zwfrqWAECn9AyG6ODy8hhxt26wnPGc0fu1tkS7Gl33q7TkYpCtCQyexmDfzsCDmRiHq6rIWLs/PTxvQQSuzrC20A3oobVGJfBn3ZFpxk4s7Asrd1RWSZmDa2QKoJsMVtfU1eZAA/KgHfw1dcaMCFS3ps8vncUxImihjvYogRmdUXwvzkWjpHHrdQ0i8Wmg4XWMf4NG41ifyFHYAf37R5+cY4RaOSv9il/hDHspZEq2lcSxukSbQydKKLQLusBP4t5U7w9efzOm24ylbLMlOmFLRaYM/SWwJfAD/twSW/PLR24L8MNnLVsxdQJb462l76ZTBBwWENB04Ep4dEqULdKMhUq/hWwI24Xrtl37Q3ko/MX0V+nHgKov7oVm3iQjrh966SH0Xy8D1cDbTD6F7nV2hVf6yUGQRv0groomRAN5CrilfWWE67V8QaDXjIaHCLJPJzNLHLvLmPrPdmg7+XEainot7Fdkv2v6SN/ypHIz+IP2yOseTuurYarQGso+jW32g9/8YUzX1DEyeCTCg2ZKAN7BucA1uhZti2ezs6tj7RpC1TheO/btSRvXr0uDcXafIVW9H7LmPPLdAQi382bZoAjEBo+CHJoeeLJP7APlj22Vl8xocNv4FtD8CfrUrLJtW7eEbjGjYQbypj2ypuEkAz/owNZNsD015qRD/inJAv/gTz5yEXlv52vgnToNDGhj7j94MK1auTLVExDvzTpfM5kCNhZbFeom44xABrJF+ekIdbRDqMFLyExkdPAp5dgHOrnSvP3SgYFIj3VMd3z/rbdTWUV5ZMPJS92wO+wjy5B/sh4VHxz+CbR/HfdxS9zTJj+uqdAAfO9/8nHajMM7d54DnSPCt5FepGPtUe1Us308h2y3eOEH3/a5slJ+cOqO14Xb9+0XZc2r+AcOPD7C9ACnJ8sn0mXoC9qPlQjIJSLh/fhX0Ix9LLzUY8OKgLz8pB23Y8+e8D+mEtxZgD3WhjbJByHDoS1fi8EMyy3BrF6Un11wX3tG3pHmfU4eMTPZgZ8G6PzzjRvJ9liTFhMImMp0G9ukTgiZB0T+lteFzr4w+Cgu5C/L8nsEGnhCGlUm+PsQARgDDZvRTS07tk/fgd6HVVaGDemCwoFvaZ5y4yjBXuhGs76kFWWedrzBG3lJH8SpE66ztoOBH7MbGrARTtQeTYu/+2xa8thjTJ0YgPEINVs49h7IKhFOqa5v4enXE2iQ6ORy12mAuHOgAYFvoIHre7duJX3/g1RfW5t6oIymMH93eIWGIoyIEaoBDpUFccCS2UgHt0VGQ0HYMr9CH3YKI/PuGg2fp7WrV6ZyCME1GsrKcqAhImF0tArR8hXKEpffNfAkxqxEcZgAQWYJI546NLzaYiieMdBAhHs3QtCMhmFDh5F90DMUsavlOsrd2kADREVhf2cSkJF1zJyn8xqGYm9GFzX+u3fHMeJQ0CioZD4ZPhiCcxiwEjHGVmZm7tOWSAGSESFmnWDbYrs34Ey/iWM3x0DDDFasZXSHx8KINnNAGHyHS9SV4QcLwaAKkKLeUBYwrMyoYjYN0IVkPiNlWuX/zLPPRqBBRWgKu3CLVPGrNNF4UbjYFuspRv8sy0cdPbFsI4GOSBWBBh2YngP6E+l7IhaVOvtVA+XniGgLGLApDJnTGamOf9Gn0I51Sj+heCg7z1dXubVmJI1FLDG2ttOnJ4F9+v2zI6PBEZ4zTp1A0Kh0jHib8i4+PCuADDbYL80ZyY4+4J5OnosFmQHTEkO0pqY6rWDOd011VepAyujM++8jhZT1jinDldYNAKjQDLSFcqZct8tzz1xTOi1XuFWpYCeCAjqu7bvolDYleERGA8aWUdXhKH0XwSlzRVzKiJWrwYmjXki4UJjyjDAr+KgyXQPnBhpccNUPPRJGjI7deUYvPvj4o/QpUyemY+COGzk6DeyHoUgw4NolRr+hqSz/MLwNNjCFQoUm7sWxtHUdxW23h4C337kegQaEuKvkv/z6a+nU8ZNpXoxIDSLCzlottEWaiY8vW17AzVe+Z37J84KlMelGA10lqkFml6tgthFoeAUjegJBgAWkGnYrOZMamNI7RQVty1/SdA4klAINPBMBQOiwcNztD0ePTPk8g4LYuJk1GlhVfSFzbCPQ4LPc0wiSRjwMIBhkMGAa9Cf8tM379oBtVLGLs3YoMen06Mn6tK8axwiDSyvqhaefjdF7mDgcryu0+SqKW+Qro+jOOzix8co6ecuz5Ys7F2A10KDhWlOdAw17UZ6DKgeTFkyggVGXQvEqS3gR6APrQS+AF/zk2at0JB8DUxiMBEocgXUP7hMnCNxhCO3fuTsMn1lMQ5oxZWrIoQtksTnlBlREoEFZI+4DB9C9fWmZGoZSUQR46H+NO4MwZiDt2ruHeaTvpwvI27Ky8jRxzLg0tLwieNRsIA2IMOR4R0j97xGygDb5L+hfHqBu6dXfnZHvvvspMuxD59gig0eOGpllvDvcgHtlqPDmjwUraw2swa/oCOnS54pAg3LNQ6enNVlAF+D315mWsZU6Fj7ySKRfGpzREMlGqPQgpzc6gK1og9dzrbZH2goCCKPFETMDDS+98jKyo0VaCD/1pQ1FMEdjOAw6YPGQpnMf50LtU3GkYRfGKn0T7Qs6ynNhtzCf/z2yEV1474FZs2ItiLxTUDzKn7/rkVsiLwlDDjScDtybGfDM88+xRsP44GHT79Vfd/kzqC8qsu881IPKFdso3StrLFs54qjVMQKazs12Sk97ZPBTGIqV5eWxhsIV1kTJJd4tNwrlT5BOqTPiOz3jT3vIEdg2HduFobgVmHWM6sD/1GkzQ9Z0YdT+HMET5UExwps7jRLsPI6gfcoq9JQDKcoIP/KTo5g6davXriE4eBD50ClNI5PEjAYDDRcj0JAdiIJISuDGzzvfqav4Ln1J72bwqGMNNLz12muRdTEGvTR6zBhGMgcE7g3Gqn/U15Khh2JBfhU5lmO/+MOggo6OPCVfOz1C3C9bydSJpe+lexhhzNMyyIijbmWe/ZWPUuGlX3/7KfNvUwzu1m1aha3hVNbjR+rIaFjAGg1lkUauLhTEaLXwQutmpWnneUTwhGekFR002yP/2h75UPpxcGffgYPpZfhpYFk5qeQPse5G1wjcK7ubYN+qr4U8KKeEIKVtPujL4rv34qOsy+nzrpWziUG3lcs+SQuXPJZmGYylPyKYCS0btFSHyV+O+DsoFnoOXdeMUU11Uw40ZBxKS04b8XB09/DhWhZyXpe+IhD23HPPE2gYFYMyZrYGzDzvoSyOs38ELn77p8QVwC3/Wb7BNadOVNUeikDDVuCvIFD9+OLHmAbdLxz1yGiAZnKgAVoD54WtbonKSGFXN0kfBgV0FqX3VgTW6k+eCGd91+5d0WcTZ0yDp6Yy+k2g4dTp1ISMhrZNsbE1Cyjbvgvn3+ZQdlymzLBCbCjXtHW0DezXA9jYq7HHThF87EWgYSq6aRQDktpFTv24ZQCJ11z3TbvPs+33yGVz5oFcvfJfm/V2BM+kH6dTvk+G6UCCU9K7ZwMN2hz2Z+AxeCaKzH8KnBfnRri3TN/JgQbWaCBD6AvsjgfmzkkOdHZj6p2BAjM475QP3GEjiWvbTy0F7ftbOooAK2WbiaGcVBa4HszLyAL5+FH00wCCR+LO9hcBdX1dflriHVrJZCO1Cyt/wZnPZJ+EnuAB+3vnnt3p7TfeYHryTAZ+5kSmjmvHeQiXskn+C9qjAN/zn/C1bNEqbMmr8INsLF4cPJGW1Lk66OvBvQt9Ln6SqawEGizTwRN1moeyKvQI35W5tlMZEFOToEH70o/N8zkzHdTvtXV1ae++fbHmiVnKTp0YOrgyfA/9j4yOTOd+FzbPBsT9Lu0pF5V30qr2bxFoOA3cW9AfrpVzicDb2fMXoM0Tad6SR1mLblHqVlYmOjTwOEfD828ufVuPf1igwVbLKH7s1zjnCxrbTVpqVKS0myjusg8+jDlSvbt1TzNYtGPU4KER8acnpE6toCA6hYVOlYx9N9DAd4gkcE55OaMBwjZ1CSG6EqW84pNlqXww+5AyGlVRUREp074jEWksOoquMpK5wsCzPEHmnAmdcrknt8i8El1rFOcFIsUGGtzCZi6BBhfz6kaU26CFo/dwM+1AIOfCKPHvdsgsVJIO7GeNhp//PHUnHWrBvHks6tczmEmjSdhkCtOGCmMh0uUQ/goRr8uAUDRFIYhL8KtkJXujaeuJtppK/tDChdlQxGGksGAmnafCwc+UnIW4LQhhBS6s308WfgYa8hw1t/10bp0ZDaZ6mlrkOgRIKJxm3gHvMQqFshc1zrdS2StEMtCegIP+t50xgoKjrZDT2KnDkNi/f3/6Eqe6V//+afGjj6beONPX6e8QrpSpudMcoggHT8FiRTC3Z9ES2TDSEe0QLkcEmkADZqk4ImVK9nEM0klTp6UHSNVrR3/fQggKu/QYcILgrCipTWSDiygcnCtBhF1Kso5mOEUQWTrM3FpTAQ8fPpTaY2BNQ8iOY2FFjfk8J9DgCLBjXTbjk0e7hZ06hF9+0EiiTEe7DS7wMuXnKQIGjz4k68DUz+EsDuS8vYEoCMuMwB2vB07oh4A5yhU5HOBJA+y6Zy4Vu7uIdxebdH7nsuXL0/rVa9KE8RNijYYydonpTFow2sooAv0LzxKosNjoBIsWx+KE4IZK4AbnmHvf3Ag0wT1pk/4/Upsj6BfJjlgITZYNLItMIw0r6Va6Dlq3SHChweJv6VGjIeBHaeo0ST/yiUaLICjUt9KvL8FP40mBf5h0Zo3/zDvARk9FGrmOIu9KKNKzEfzAif3uVdpi2TmyTsobys1R1pMEqFy8bj2BhiVPPMUc2ynwPvPI4aNMg5bJB2BucuEmkSQdFGGzj4tgg8/oMNEC0mVZDIz2HEfOHDhUHYEGg07PP/VMqhhGRgNBu8s4RhEQEr28GxRHoWEMineOIsDgd3nfNkhvyqkLTJ2oOngw7d61m4yGnWkwi/HqlPZkpflbKDpxErgP0PO7lgGS4uMpflOmQQ5nHV4FfrMQNHTNaPhy0+ZURSqgPD+FudlTJzH/mKkTyudYPAl+KtY2CFoBzjvOgOVCf5AtH/qIvhU7ZjPYt7v370srGZFyG01H0SaTwTMC/WFw4lYYFbmvAkbgKw77MPczV7h81xhS17g4HiOGJRm5Gprv3q20GORQF4PsFXJP/VEYnZblNCGhszxHWKVLHQODk0GjGlyU3Ux5g9HiVK+lrKdiRpyLCTt1QlnfggBQyBJ5XTj5l4HMp6CaUlO8Ex/+eL6l3KBvzRg5WF2dfvrTn0YA4DFkZD93D1BewEeFHnP0xiPS1inA+/KZNB80BP2rA5V74lsjydEoHTKDmgbu5kIv8zAUnWObDTOBE5r/usPggHW5jWU9o//OKd+DMfrcd19IE1hE1IwpAw2tkKPynTxtfRGoLsEtvpQF0rgw289FBqDXTT0/gv5wjZ8twN+J4P2SJUvSgPKKoHfxEqjlj33V+CihPF/iXtFKH2vSghHPdm1ixNhAww7smuNHj6V7CGrOnf0A25Z2TzeB3Yy4kFvaNOpO/oUOUbbzXdyaSRJ8bDuQQeom+Uk5X32oJq3FeD7EuT2BvCnopwg0EIS/Bi9HADlKoge+BvDXeySaVjSAcyv4Ud4zwP4egTWzMIfhcI3ROSIzwO6MQRm/+B+8imvlsAGrTKX8Vs7zq5AbIYOlR/TfVdq/fPXq2NVi1Ji8/kNZWXnqRGafUw/syzi+AXe++Kv/Bp7gpxZsCezCs2+QzVd3qDrNQ74Pg1fdYUyadaSxCGRo1+ioe0QwhHb7jO2RD6RB6YcWRjtjhB1Z7NSJv/zLv8KWrExLHn0kFhMOviA/P3S1FHEH6UUjGp/5HuV6ze/iKusmbabPSfVe+uZb6fFnn05zyIRpjoy4TQDGkdAcfIY/xTcf4RPP6i/PEqs6Kf/Osli7Sno6iU3jLl2bsQ0cMV4MvbuLi31kuZYV8k9gOCw5juhjvnnmkFbzs9mBxONjCu6FtKdqf9rGGg3aZIPKy5nmOy+cUhe3Vv+1cD0rixCv6H7L87d0Q4G5QmSOuk67PtY7QOfTSQz2nCD49QVTHPZGtuWYSSwGyfpHTtfUXmoGH7EUcqzToFyTLu2C8A8oW0euyGhQf1Bp0Kyjx8q6vfv2p+X4B063Mbtm0j2TQw472BPwQ5MGR8B41lHALNzSvWUJv+VrT5v1aN/EgB8BY9u5kXWVzBruQ5DXNX5cULgH+sP5/A66xeg3skw03DlEkT9sC5+4xQMF/sN5V3eTxffeRx/FYpD3P/BABEjUH67RYL+qb+PIhQEu/SbsVlYqm1McXso6MPdtM2ByisAv8A+koSWLF8daXwKqvIrngTKjoARjLipgDvlAmUV91uk1y7Jx8pgZca+yRsN4ZKQDPwYcIzONlkrH2i0+L07Vab6oPM9wYhNk9YiNlv0bAxm224BVnsq6MQY5Hmdtg2n33ht9ZiYiWL3T6IzTKDrkrnjRF7TM2EFCmRR1IiMMPiAftGkOVlXFgCTRwPQouHHapjrbLHZ9It8VdnVIDEjRhrBfqUqcCIOyRsxJi9p6GGQxHehLdMfWbdtZaPVSLBh9ksGaWQ/OZdHi+anPoLJMd+oDCSN3BF++vcevJ9Bg+0v96lcJxW3/3FHCY8eObbHrxFHmSHVFeEwbPxFDcXBqRWe444SKU6Lzo6C4G2hQSOWig3AUBtSDSCtlNNBpdNQajJXVK5eHABxOxK+8vDwWV5TAJAgNC89Gj7Ohg5IvEZbwafDamRKZ1438+dv1DE5hKL77/nvpIEb0LEamKysqInKvkSq8GhRNoTTpQUjz+S46it+N8eOTKkKDGWY0vMp8xi6Mrs2d80AYuGYkGDQQFhVzoTy95jsaUwoYAwWivWlTMgEwOp33rwNme3k53jOCvvStt9L9MLkR9PYYuOIyDEtwIkOHUFGaAH30A3gOJw8c6BBpkHooSKzfd10Pwjm2RhQdwV9AKqAR9KzcM9wx95v3PRzxKBxC2xVOBkJGxWMjjGAqbFSkKkpHvquqq9MeBFV3pqo8yAisKWnOo7Tt7nig89YcsFXl0Rd+l+Y4S4OhdIDZvgzbgDbqVBr9V2Hu37+PQMMxtg8bn2aw8KEGi7g2UKKw8aykM8ptuygpBIm4BUxPcQbwwJcjXgYGqggwOHfsyNE65th2TBMnT4oAmMJN5QNCg+bNaNB4MXDmHEEdMf9Fn5cUMpWTsoeSQug0bUmgguCWQspV+DswTWNwZSWfwQSoekXgwrIxXbPSD/jBEQLcPo5RevAWqbrSAA0KZQ0tetYQc9ReI3frpk0xsjts8JDIaOiOwy7fufL2dWBw54OmNMCRJmk5lDLw38BJvsIosylvTak3MhmgS+nMFDJXOV7KNCqzHhxVd29io8vStsFA+1HE2m3SQ8Z1doikPS4ELwcN8d164znuiLcdjNjHKseM1D2IYpaHVU6muVuHwbnY0lHc8L7OjHQZ5dI26cayi4i4Iwfe19jSMdrAyMIXGzZhyLFGAwaLMs4RzDCqfJd/GiU3wI3BBr9LN6beFgElZQYUyT/aCO6uQGsnvmqINMaNpOrpmD/+6OLYWcHsHqdNqOxuQwvSdNC1ZVCA9CKOhNtz4dAEr4Ib6VYDt7qKXSf27E37SGWsHDo8zUMe9GF0R6WcHQahyeUF7qNci7Q/uO7tuJENOzNtqCzkgfODt7PFl2nkTtsZBz+564QZQq5pUgQefSUMKMvOYHMp46FkzQSfxoKQ6A/TDQ1sHKDcDcgZ55i6Jec9Tp2A5k1N14lQHtl+2+zHsj2Kvsy/BN97yjjq5KM+UI7pNJqaajCtvKIiVcJTbt1mMdJO9BVnsy0i0GCfQorqC9ujnMtrN8B30TDaybvKvNOMcK/E8aoG9xMZcRmC3utFMNmt23Q2hb2gZVEsfFFEo3Z4PT788Wygwe3vrP9gTU16ialCBgAeWfhwTIeRpoTbgJ80bzqodehE2iZlYEwrxGj2vnwvHp0yIb27xoNw5RHYLWEoPkCQ/cH7mV7GvRx4LgHF6b/mCBlP2abxasy5Vk4N/fs4geoJBKrVXfaJ+jWcR75rVCrDNNiLI/qSH8LiYTsKWeD2ZkdYC6aq6iD6Yzdr23TFKS3tOgEv3XF2eU98xCFiS8eda8UFznEb/nOubV6jYVfau3tXrOkzauToNB390ZMBCIMM0oI6Sj7WSVWu6xDKmx5hk8DzUr5BhgiS0JcROIPfXKDNzCkzBtuRJTeBwJq6tY2BBhyXGDGOku7+aQR+vlhqROPrylnrdMvSVQTW5GnTvYcPZ9eJAf2BLw8iyPPSR0Gbyt2s9+WbkD6liuWNbBPYr/aButsFbTdhk1UMYSorZZeXlcWWfOJdWePxq3BcKvRrpww/9YC6mDpR72KQH0Sg4f7Zs2Pb6J7wqrxghmkESqB17QnpXvi056T/TCOZ/21bBKvlP2o00G1Qdg8DP3/113+dypEBix9eGDaB/B36Ga72ny8Iv63PB+cwMPgloHG9dI/flm/bzSxwh4J3WDhwydNPxi4uMRUJXSrNm3EnjMIOwCG/dBwVBXm3Iew15E0EPkvywect20DDYdK93WXFQN0cpuG68Kx617bKLwFR6RzfM3KjLusrDp/0eWWbNs05dN/eqgNpJ1MnpMm+/fqnmWTZ9GOnKzPKzJ4M/IgXyolAQ8hNVURIxMC/VUh/XIzAmmcqiW2dt+3cEQtOOgV12OhRTOkZF/I4r38Ef6OGmpUCGFGODQA+kROBBsrlkawbuS6elB/aymY2rVyxIp3F7uuPvTFm9Fhspgp0N4FMZMttbBaQVNKnym5xnHWbstQBH8PLjj4bbNCWcORbOaltvJ5puEvffotAdfdkcM3BToMO6laDnhFo0Iku4b7Ac2CcxkibHnf6R9zzMevNdT0+XrE8bWSAY9r0GbFtdI8e3UN/BH9Kv7yvvA8/hnIyzVBaqWzv2Q/ig2KDXrym/jtMQPYN/AOPRQz8uJOID0Vg174LxS9m6VeuB4z+KpXt77juPT42JcOR2+UuYG8QhHEtsTn4T+6uV9hr4q4INCh7lIMewpZ5U7xIhznTWVst1toKXrlyZxcXFyhdxJSDyfdMjLJDBgSgwgN+KA/gAvYC1+pmZVrIaWguDh7TllUHub3l4dq6sA1uUJZbRw8bMjjoQrwLhz6C8t2qwr8BnwXOrce2yZvSTwtkt8GGWHcDOaUM3oFuOo+u+gqb+wQ21Bx21luIzOk/qCzgNegchfP+t/1ALkga/7AjiMsiSvhQlSi+HWc0br9r9w624/skHdy3LzVFaI8ZPDSVk6pHL8Sc8khZotOjc3izCDTQq+EABYBUIsFEoEHnDEHgglcqERfY2bxpQ6S+lldUhEMqQWfCx0DUaYQ4jJjZZxKXv4P4+F0wikEImcSUQNvkyuBfMUVAx+tYXW1y2zYdI6NyKqVAHQZxbPMXaPxlVP5KEuGxcAhos8S8bPknYcDdiyHq1AmnD8h0sobMKLFqRIWipAGZ0PP12xqdlGOakYLEZ3NEz3beSLvA+dpVq3B2J6cJOF9Z+dpXWeFGQ/kp01lHBBYwlPxe4M/6clvBP9dtqlFFt27bvmMn85kOpSnTprHYViV4yXO/NKb8+K44EPfWEQcFxIiO9+jjEDIwqdiTgc+fJ5WIEV4zJg4TpXc05B7m3DvKKNwCEFFT30eQ0AG5Hu5pMPiMAQMdFsv3iJ7husrzLIxeW1eX6nB6T1NPOU6LhpyOhu3UUIyAA2d/G2gIpwKaA2tBhwrDMDsw+FXm0iqFx1SHIyzs57xyt5xqTWDH6Tzl5eVBr+GQCIxKk/JVyhFooA5NFNsWoxAGGgQdYRNzAzkbxLiE4+kCotsINrgqf/9+/Rjl7RvpdJHyB1wqffnElECslZIQ1IhE8IWzRBsou9jjVzWiIrW/nTNmtkfVvv1Rrim17oTSpSPz5RHOYsBMnhs3nWsL/MhWFak0CLKhV0dSwT1nfxtsiFEXfurku2q4o5g0M90LTdqnBsgU8BFA4obNzugEI/ateOJiBDS4F7xr8WKMG/6zn6R9R3hXYERX4NDdSxS9Aziyr0yT1YCzrJg3x9lDmswGqGWJfg086YkK6Gt5Stp1y7yTBNZ2ohz27t7DQplzY2EmU6R1KCKIEFKP90H+DT45o8Fi6RPKa06RzvG1n6OPxA80cxW4nfddB252791D4OIGQcEZaRDGf9CCMoY1b24zoipfRokaR/SnR9gC4g2kaSAoW2yH7dGY0PB04VaDDbUYo/0HVaQpRP+VNc43NSgUz1uWPFI6cxH0y2PiIt+zTOkmAnrU53tORdq3d286Rh3K6KFDh7Et6tDYoUD602lRBkdZdmTpKOSupasvNOqkIwMEZjXYHteDqMNp3M2otzvduBOQW3yVseihfKkcsq/8F+XRdquwzOhL7hVHVG37fKZ0UUPwAPy0jwCVi2T169c/RndjEdEoSBxo+GR5awCdiBs4wBCV7oURfRLrolDVHVzx3RFjp5htIZvhOLgRLzp06iYd6TCyaJ9wBrzCLGDCb92evVb6cOIAR9CNN/1XC26WoVsNIM+cPi0CJPKbb2kwSbuxODB9oCMjjoIPwK8yTto3uKAzfwG563d3n7EPXPF9J/26jBG1e6CXKegn10WyP4UtAOP0dztsBfRJfb5ooMHAnfNgXTHfhWeHDxkcvC0fix8DfKapmgor3PJ/9F2031rBm7jjowwOlHF2HvhJ0rFdUPjQoZoI9t4L/K5JYtn2ZW6AZZS+Cd6vOIpm2kNm3bh6uDLS0a7DBHmc/+5ih6OYwmagWsqSH6X3/MFJhQ7Eq7JGWO8EGoSbe+p6R9Ttc+FzwcM9yIFTOI9OHRoKvVeWl8f6PRGohh7t+7/1KN36ZpOUBfZrVXV1rC8BMKSS9wb+spDDYehzLcOYdarPSOcRhABvwm65OjP2Zdbp2SaJfgUfzj02CNOH7Jry8rJw7gz4Kv/V7/n4z8BfeiKfqM1H+bQg0H6qgek22GNubzkRm6CslKauE+Li3M7nFn6D+jqC0sRlgjPiNdNQ1uX2p7JVfagzIp8o610c78233mbXiQFp9n0zUxcySuTTwLeg3EFqI/hhWsu+A2gBsA3wOu+Id21VF1ddCb/OmfcQmVkTgs5zWruBhivhxGbb0tFeA+zyOzIG3Km7lO+ZhyycfuC37xvQdKX8KujSBU/HE5wqGzQw7BZhK2w42yFIcbaAaA9//A+MRaviPrLNdO+LZPNVH0F/MH3Ctbm6de8Ruzb06NYt5F7Y5LzpObCgWkK+yAvCa9mZ5xCd0JI0HwtbgkzxcpI+3V91MNb8MmNgUGUlND+MwbdOWU9C7y4ISUMzvLxTyMcoy+qoJD7cs4HqjhwIbhqDGxsJVF+CPqTJyorKsJt0DpVlIbN9Lz4Wlr+L2+BZLqmHtBucuqL8tI/MFNOO3YYNvCps+A5sFzs0YNeuUb4WQS6KABv8CwQXWPaq/JbP4snD/vKjzeIuYA7m7SIQMxr7vbysLAY6lffxHGXab9rDhf0kzViDzrqF+5z9ID58Vr0gbRlwdmvRlawf5DMGj3r17MH37Gsobw2sB8/ynrqOx+LgZ+hzfxRwiHPbID95WFdVdU0EeQbAp5Pg1y5MzxUO37kT6LPsEq59T1p1TQYDfAFLZGvnwECBU3nFAZQ9+DfV0I47u7lQv/3lu1lPSDJZZlmufGQvePY5z9nfkb/vHgbd3R1Ou8aFRLXP3Jq6MT/pWylTwjblVTMatEc8hF/8hn63D6B3cR0Zvuhm+7Sq5lBsGev3M9RVhw3yw9/73fQd1nHqg20TiIzS/NMYujsXv1Vf4DFJ5u9/+LJk5bnxx2uOEzrytXvvjhCu27dsSadwHvt365H6dO/JIjKX0uVz52PhPRf3U1ToHLqKbKSMQ7gKFAk3BKUKlkocBUZcZcULMzvitW/XttQFAehKuCpPDVIZw9YVQlbi85BIvGb/ScjBQKXOlPhlLAWQilen1z2zzzacwnlhD3QWs2zPSLJBDlEXDA4MkUIT5WUhERVRt88UKG5MLhK58JzAmHBRQueZu/6DQQydZUeCve+7CmkZQ2Xqb+GTCcNZpw4DJDEyy30Nb6PjRb2uCL9j8wZWCh6TKsvKop5gMt6R2QN+2hqMAjPIIDJQ44Mq4zlx5juZ8G9HPW7TUstUAdOx+7IlXFtSuoz45neyEW1ZEVihPb4vbAo7zyp3DSBhEvcGSXTqHE07SzTXXSDaIFQ15jTQDcKEUwqcMrnwFx+VWKxUS7ka1fazAoweyfgICk2RBdOAcrNst8vszsJvOtQukiMcwmU6tLiQqjVCbJPnwBnXFepuf5lXnuUdnlQZXbt5PbJgaokUnzt/NtKbgyZRPBGEkd6kNeq4hfI07dDROtdn8LBN4l+FJg+BuEgzdOTLufGXaNdRDPPDKH2NUOfrdUYhu7CXTq94RoSG8tQ4ATlhzDiybbkaJeFEU64RVgWgcLtApPcV3m5begoFJA+5xoFzyju17xhOhgrrGsGOa+x6QDgG4ZkVouVIF3m9EOuB7r0CnTmtR1oNB4A5lxrRtnkYBnRXpqu4loBkdUeh8SPaQVtoQEmYZ0UXhVJw7OQA/hEQ0V/yq/19lMjw1s2b2Ot7INOcBgefasxoGBS0EUEk2iwlh4LTkAaexvxWBBo06jRmHCVtwJirwXGphebH3jM1DSLdWHqxz3K2AvSu8cTnBlGFWxk8egPYwYcpoHGmZufUNydSL++qGFU29QS96upqWQfjOo76iBghFchYS6MUaND50pC4fR3qINggHjSUlJHKFGWH8kyYpGO3odSZNuX4CGWfZi2IHv0GBe7NiNH4D4XPs/aB9C0eLAvMBp3GCAXlywv2sTzrNq6+IC4bWBCsllHYk9Th0R/cGwCTn+xb5YbKO/jJIjyoSxqQZ7PMJT0eXIcxxL1Q1Lxn6uEpRhfMDrp4/lzUO2jAoHCopRFp1v61rXdgp0+CT7mmbPCeHw9xZz22UUfQUUZXfXaRUg1Pp8WZ6eEq+dI6oIDLPDLhAp4GGswsamrQBx7yCFyD7zBQs1rhu31zG5gvphoc0vP0be++/SPTLhbjAofK9RwkEbP8o7IwoOk/AA1si3UDXwE9fyIoC97sDuldY2g7Qcc2yN2Yv8vovYto2X51gfRlu+Q/nXbpXd1lmQaZxIVOsLxpxog8Ir+LL/WIGUgbP12dho4eF8EjpzRk3rDlAJTRGvXxx//grCRvxbuPFc9xU1g0SM+j9w3cSTeORI8km6E/AVP7xfu2Qdg01HWcLMJ70r/93jgYaNcWfWz90uRZRokclTpFWrbbYFcSeOyKkRv4DlrmQQoVPr/lQIWQ56sGlwrofcLvygFtAldNNwh+imCGesLtSl0bQ2da3FqKMEjznqVzAyfSurBKswZrQ59aZonuQ3/wjoucHYUez0Pv8lrffv1jFfsc1HTamlDfPezrgJ9L3ilwkX/5XG6Vz8gPZiLW0a/ydUdkfA+cC+ldHReDLZQvbH6sS55Uzgm3sioChsCtTPVe8De0Ji7c2762ri4W3utIlmYvdGtv7DGdfnlZnotDkDjElf3tv7uwazfYJ/kJ2+F38Xfuwjm26d3NWkcn6dNhlN0Lm6lz8KpTfaRpacN+aI/8kd/NYIvgNzpOXMeaPhQY8MAXuR/QOZR/jODXik8+SL36laWJLE7a3kA19YtTZVJBEwExZSsnoUwBDXQLdzSE9pQaED99XvxpL61bsSxNnUPGwdAh8Jv8lIOAV5ki5yi2tBI2L/XJ77ZBnWAAuiVTESNrlOKFSZpUp5tGfgJarydIZVsHlg1KZnoUfBTylOc8hEUeslyh9xAG+9UyPXL7Mk4uQ5PHT1E2Hxfq7kCWZl9kpFMbQk9bDu+5tbOYsMyw06VtZRX35AXxofOsDFJma89od5hFeRTdUX/ieAzy9UR39OvfPxxqs3DMonR9qBg44b1M70BI+YWcD1nKvdw/3KMu+1qZ4RoQewh8XYcOevTsFTQpzxqM8n70YSY+cJBpP/SpuEfGixcD3+EXcNYGzVO7coZkFfL9y/WfhR07sGJwDHIYqBan2rnyhX0vYrK/UdCNpGJ9/OXZDLuPxYNhk18iSOZaAYeq96eySqb0Qe8dmP7sgKF2s/wKgkOX6BOIa+1jCos6i3aEjCnpYuWpz9o2A+Hbtm8LPIxisM3Mank9cMfZaQ6uaWM58kfQDOBZT4Er67/TJ9H7mYZ85jj8tO3LTakr/t5gZLDrIqlj5PmgOYmNw36wXgqK6wZ1XD/K+rQh5APvCbcZC9r36m4zbE5A8yPGjosdM7IdSnmUJUzqQGWw3y3DOqKegN+AgHSfA3rCoS63z+Qh/RAHaJw26w5gBo+Cn9ABwU/0qfI07C7k4J1AA2UY8JQvAy/U6zm2pKY9F9FpZiAdg19dT6WBbNZD9afTv/3TP0nPv/Bd6ukbtCAWg5fir9B9e49fa6BBt0x2yegpAg2Jxby2p4+ZU76eSPQaRhtPnzyXhvTvnS6dPkkn3kydMaLbwfjXIB5HiroxD9etbaCM2NrnqzMNEFN1ME9zFoW5fYV0Lfi2feduCI/Laf+ZvLhI0Q3lnVuwQj+pS6yWe+0Kc7yaO9rPTg0QWds27cIAVlhr4EqwXwHHudPHWZjGVZkpH0K5iSMlAR75ipTSomDOnfj07tkBw65DMPfN62yXdelckEJLFivq1KUPiy6RZg5xKZQv4myeOXk4XT1Deo27KWV/MtqivbPn7N3CW/G1P/zUkkrc6iiUPtdk2NZtO+NwU29rFnKBqGUGV8E/f+Y0K7uzZWJb0rk6gA/ac/7kWZzg4MtUY6eUDtfI7c503ZY47o40m4534RQ44vqAckbaEAaWrdCTuTQ8L50/E/NC4ROMa43A7Fhdv3wr1VO27xZHH+RbC/wPFy5qRoaFQvUqhnaLNi1Tt14Dw4B19Fq8Ghk/ffJY4LkZyrNN+87BjBfPYRyepk+KQktn0VbW3XTaNgE7EgEnHcPiFFtBdW2eOvcpjxW6VUwaFnU1u9Kpo5dTB3Y5NSofwZmSL1DfwKrn3yhf3PTuq2LECKfvr5wj6OF0WK73HdCJ+exl2bmiL3R4TtXsZes+DJpuwE2nSvcqzSvXLqSD5xohvVQPzUtdUBAtoN/mOMgunHTtbEO6zbN9h1ayeFAPaEbn50YsGHlq//6EeR3c1LwT79D311l48cxFgi/Q0jcP/IzUrR2R9mYYtDrf0N75BgwXHiwfMxK67BKCT+F8ioyL08cbUoc+XVIrAghXyU64fA06vskiaiepNdsjX6sCNFJ+3lbu/NnLiQkgYVR0r2jCLiyjEMDMGaT956GXwzWMTpzOr3cg2mjb9YuJMfzqg2cgK+ZP373dGfbv3rVz6tapO9uOwjgcl6+ygvbFsyxAVU8mlOlqvNcEY4G0ipv0+eXzt9LRu0UkYXZ2unjsAF2269Id/DK/jwWg2uJ0KD80mlwJ2akcBnEuQ/dXOV+/5raJbHOKvHDbznNnTqQqcdPo6N3BlcFBPG0z1NSE569dYoVvBpQ79u4b63O4gJmp026jdR4Zcx2nSuIDXRhdBIdaMCoCHR87einVNSrbr4P4SEniWhlENdGe7n1b4bCWM4rdkYBFTns/dfxQOnW4njKBhU/hSzVv3TydPUkmCe9+8xgEU12hry1fPpbHpJdeg3qyjkBf2oZBgDi/Ak5On65P5xrqgx5bdujEwqddgI1Rb2Rf1eFvcitlUE6PPt2CLpRf1wnUXCFQc40GdR/YL3XD+dCo9jiHoXmseh+lsaBq1540IE/zwdVB/l9JB+p+ufyyzq4aD2EheW9Au25zTJdBz01YMX5YOE5qIqeeNBAkrj9Uyxxyt+DriqFRMn6hpzMnyFQRiEZHV773Yy9rDRLbL/zOx7xy4Svm6LcnUDMgsok0li9fuYQzezg11JxNbQCnFfteO63hNgHH2+y4JK+eaFR2Bd9BHSnJzGc/B89BUvYxVaVWXZqlDt36h/5w9OMqtHoRejrXQJDlLEE96B2RGkZZkyYG51jM62SW31YBiRPEbwPNOpLrQlT2rGU7hSlnvHWk75z+oMN4liBrZL9BLOfOnCTofQkZlVJXZJ2S5xJO3Z5jd3HfH7ruwBa7Hs5TFec0P+iyZ7/uqUu3nuhX1tWgMeqPrzCgrgD/DfpQnaJubd0ub698ouZIOhYl3f1TBk/E6tzo6nYdcB55/jwyUv3aBf2hQ+mAhEabsNuvN+RT5I76jBsUxhSRi+fSifPI6btFy5KpvFfH4Gn7U92qjj/TcA291DT1KxseBrwyWEP2xIljqYFgQitkqtuJ3kRX0rDUDP37lTqKfv3mUdGtJXTXO3R/bCt4+kQ6c+km9kLX1LeisuRAAhfB3HoCLJcQiK1Y4LcJ+kmn6SZBrGtsGXzgRGPIcy2DB5LpiJ68jjN9E7o1QA2JYScgf/tV4pSRTQHeNW7N/Dlx7FAsDGwGhjjRGVAn3+Klg7S58SEXDujOTlXyBf3kWQNf+lHf9kKWKSd1DJxec7L+KPDXp669O0c/KSeVmVfON6Sj6MRGYjyqGdQWedidbBKNfpTqDRwIebMZwbqOXXvH2ig6H+6q49odRw7sSccopH9HFmeDWWLawG3oHx45duRiaoz6ASjuLgRK7LfzZ+vTRXTMFRgKdZp69K7MMhI60mEyWHzp8gXa5TpM8AZ8ehPdd0M+ga+aI4v31N6FnkupDzyNGRQ8KnUphz16Qqt9Buhss14XsJsRdLrhBDbN8XQCEe+7HWk3l9NF4PG38rvx0QXYO3RoR8CDNqkWMrtChwmnqU/qiu5rR5DM7DcHXtyK+yZ2nzIvOzA4rGEzXCOww8BJ48L53gOAO2AztWwFsBzy4cl6spb4Xj5Cp4+BG+SMtpGDLifqqpFbwAqeHYRo6mAXtHmOfq1DrX3zKO/XMewZrJmYznMTGrh0+mLqTMN6DUI/IWd0vgxw1jNt+iKOVTsCcgZqDXxeB/cGb+vxBzDJvn4g68r6dWO6EO0HcbcIlt/AKb5+6UbqOpAMTgJYpqHLy9qpVWa8wQ9duzN9FSf2OrZM69boR97fV13/9bL5VdGnI/1GB0nvBut9AqdTXHfEF2lPJyg39RHOIMeO1+zDJgAv7VlQHNu/Zas8tcvA2Zaqr2vugRTba0BF+AdhSyAk1VHyVtuO3QkA9Y4FsOUBA7ynkDXHDuN/IMJaUb59ax83Rw6eOXE2HffB0oFZRMCUwGW7ziHD7H+ZKd7hPdduMDNX/0NedbDrfMNJAlWXUrvOTAfkGWXyNZxo0JQOQdCFuUe3pwHA7tEaW7UVdte1KwyAHL+Q2lFNzwp9G7LxoEkH2s6jHy6cPck6duxmAd2AbuQYpWib8xtRlg40MpnUqz066SM4eCPvoSPBuUGHtp36QC/I9wig5Kmqp/APLp09RYBJfcmaPS3Z8Yi9wUCjAABAAElEQVR2XDlDNjVlwTJfO7rzq2M39Bz0bpnKm1P159MFrg8diE2DDDIjz8CAGQunTtXj/5wiOAmfYGO3RG+qa85jk2sTfJNfK7plvwkkhnx0rbJzp85DK81S3/Jh4d/kgTh2PSIAcuTwsdQSHDdrA33BZ7fFDb5CQwMDqV+DPP/4N//bH6cf/PAH6Is+9AnWFQEo+xHu+hVPf7su/VoCDfKBH2iLzslxOVkXWREZDTv2bE8fsc7BpnXr0oEdu1O39p1iBEDh69YyzsNydMbRAgXQgYMswlFdzV2cFD73TpkUe8fKqI4uOfqrADP65GEqk9E2o0xGr2RelaJTHzRWvKZjLpRmKGxet/6O8Te5fBCRwsEhWHIaMVEo/hURthxtj1dzy2woh+UrhPypQep3I5cniJ6u2bY9nhmEwVxJpK0HkWVHjYTDNviS5ZtyHoQkx3NYhu03+qkAlaA9G60VNleZdT7rAZx035g1ZnTgxZRfn3NOrvAaRQ5FFKWW/lCW5YmjAm8aN8Il4zn6U42w3nriVLwwslePVAleXHDQURX7R/g9Muz0AcwT0UEaFFvQcN9nve7z4siUUNtzglHDfV98mQ5HCSlNHzk8FnZzZV2NGo07n3PEKkdqc7SahsUIhXDLeMLs4egPyGMxJRbMwajdt38fi8bVxL0OPDJ7zpzUEbxcYbEihZllFiP+Mq74Eke2JQwlDTfrEE30Z7E4l6OWJ8DNh6vXRtn+GVwxgG3qhsWq3bEQINfEIWo/zrk3uWgX+kLpsE6dkxih5Gxbrc8RoNVbthWPpemjR6SBpE/F6C5ttr8CnwplnjcY5L1cOPxGWUF/GFPST7TBvkWoanju2rs3bd9bHeVXdGmRxoyfFpkE7lDhHEuNNPvAI3BC+8WzcAaO6VPxEYIX+opgHHVK79LNR8uW3wk4zZwwMQ0eMjiCeQZN7FONvOg7YDet2z3DRY4Ra9tlnfazUXOPbORmenf3kZXM//eYNKgfwaB+pdXTc9qj+PRd4Q3HMPo2l+M73I1D/NjP4XRBC47WakDsJ5pfffVGUoFPhJ86kCqr0assEi4VqnQRIwLgIUb3qCsyN7hu+zI/0TeU0ZwFcM3KOkUAsOrwrnTwcDZNRw3uw8KX5aktjorBpptkI9x22gyZDeJEg07jTqNVmtQ4c7eGyFDAIL9ploReL/10CZo+XFOX1m74LDeOv4vnLIgpLrnF4JK2QjkBkw6I7bFcD+ETfj+BPq4pN2yHRmcDc1l3bd2aahiF9+gHqY1npW63xwulx3uOsClnHNWUKA0yiWv5Rfrzu9ccNVRK2j+uPaOsPo7B+fGqTy06jgnDB6chyJpQ0lrb9FU01X7lX2z1Bl6AFviQX5zl/xj1wEpwFCN4grKVOY4wfbZ9Z5St8TFx6r0xuqdR6Ai5vOo70ovyV/KT5mIUx7aAd2WddXsos+UxFzC7jJzasmULzlp2wIdDk8OHE8gDNzrtIYNpvHWIH9eRUPZYkhlG0ot8YaXKSvWWuNHxN8jl6Nua7Tui3p78HTxudOqO/tC4k37Fv4ErZZpwutuRNONhYIKCox3+lm6lYduZA+oNqYrMvyo9MY5pw4aEbnLXl5A14DV0pX3AIY4c9YupFrTfe34KfvC6bbCOM+ik2prqtKGqJt4d3rM7i2cNhdfbRv0iQBkQMpZ6DDj7fsjEoFXugzdlQGSQlGSGwS6v1zPiuWvzl3cCieoPs2bU79avnMuGGbKM9orvLBMyzYcsEh9clzbt0zzw0CacxP179gB7dcCu3TJ/1szUlUwxM36Ugzog0oPrI4S8pM8cEbSOxvSuw1nI4OBn4Hee9XvLVmb5SdkDe3VOY8eMD7ou5G/oPAoSrrs0k3+7zom0HnwkzUIz0cbgWacWHUmrSjLSBswcOSKmK1im+JbWPOQNkRnTyJA5/jZzLsswA0GlDCN4zGu2TxnviOqOuiNRxgD+TmBKQXeyR6W/Yj60fBT8JO5L9dmXIXehVeuyr70nn3n2mgGjjWs/S4UrOGP4MEYPh8aIrZkuBqzkTQNDli+dhu6jFwubQxmtbJOegp8oW3vJaS1H0a2bmdrpMYYRyf5l5QTECDaCQ2FXf/iu/Wh7HSl23QThNhNMWonpmPS914RB+LUj6wlE7dy2LR0lCDCAQM/48eNCr8qPtlVekVZ8XryLj+AZ2qCcdUAk+oQ6lG0e9o29dZxR2h2bV6e9DVmXjejeme2Oh4eDmqciilPlKjRJe4tzFEJR0qxtkyeKfhaP7hLkcai6Ji3/ckt89888Fl90XRoPadD+92zAUlzFqLKyirqkKeWcMiueB2Dbqz3jLkeum/blFxvTvuM59NENhpp53wOx45nToMRD9Kdw84n+LX33t/Xap0Ez4CWvKZXpU3ljhtvHaz6Puv0zFZpxUWxl4UX6RR5VlwhTyASuh11Zog9hMHAjP8UCrOAwsM9Z3nXLx807994pf/Y945E1/ZG96DT4QfgybsUPcpx2q18tJNsZlMwzuUf9m/kv9Dp9vpvpYruPZYofzEDA6CnTYw2TQr5aseUG7mmHus0irNs1ypSPlmob7XfbGHzM/dNk6q7ZscsiUiVlV4waE/pDO1+eCHnAPenYcq1HvR+4plDL854j/fKH+DGj2OnkLlhYdWB/OnCqIcq/d9jQyLTSR1Df6WMJixmVBb+GXob+xatlBM3yrO0pMCMuHQBzGvMX7Fyl9unFYOW4eyaFXo3BSWUJ9KZMsy+FV7/II3AFn1moGQxmI4hr+8QMBA8zOrd/ti7Vxa+UJg+pxMYeEMFfYRV27a2wlayDj3iwbHGh3SC9Fxk54hsCi+wo3606uD9t3FdVKp31Ltg5pTsBK2EUJ0GLwBdtBjbtULOU9TXM6Hn744/Tv/7D/5VAww/J7BsQmZO+8/8HGkooFXEenouPolHBCRkTfLjFvLRt7DrxQdoPg7mgy1gEZoVzbEGkzo77TrtNpELYOVqb2eHhT//jn0dk/Km596WZs2bFXLxgiOs3iXJi/GCg+1uDSwUBRUSnyqwGGiQQ07J1GnQqVFgShos7riLQ8J+WvpfmDR+Sps26DwUxnqh6NxQLo5kwlx0socqcHqGQqCcTH0oJ4eszmdCz0SoRmpJUfbg2vQvRHELxz2fVYld0Nu1fBaZjJczCYVmZgQgQhIGYmT+UQsloVwBbh0TtPEOF4x4Y/ZUXf5HuxRCazpzZQTBLrEcBvn1GHpZBZDphFB8qNXFre2QafyPGQoEYARV/tbV1aQvbXq1je719GIvPfff5NH7kyNSla5cwZHMqEyHKKN+pBDmgoPGrUgohAwEY9AihRpu8Ht9hxGqM/204L8vffS+1LxuYnly8OA0fnB1SceGWNwoJhbbwC7sMGozKd3FhSli0jUY6+kG0iSwRtxs7w+JZm9P7776WdtedTc8+8nBaNO8htlJluzGi4O5/3QrDymkOBhtM89PwzArPQEMO8OiAUVEIgJhP1YpUUoRBdV1teu/DD9PbK9bEyNiPfvsHzK+cGIGMm2TXIC4ABdiAUbqzbFNjI1rL78IJEuc6SIUy0oCRZ3bu2ZteevGnaUPdsXRf5aA0/5HFaRTKU+dCWhGPGpthpAOrOFDJiA8XY1Q5KKx1NJxPpuGrgjB1VEdv7fqN6U/+nz+PEfJFTy1JM5iLN4C5igaurpKSaNBOgWZdWeHooqI0gc4RsfY4Ua1Zbf0WbVE42ke2wXcPQzfvfbws/ezNt9Jiyp0zd26aNHkyu770CENKughj3f7icIqO7QLEuC8/yGtRN9+9brt0tJ06s2f//vQq2wNSWXrogTmpvKws0s+lK9cWEF4Vb6EgCmdSnGiQFfRSGL1hFEBvzhE3iLF1x870KltTLYRe7sVQdFsqeVX6Fi5xL29bju+qlLIDI4856qfzRYaVKfUA78roptcfPn4kbd+/O61ZvybVHjiRfusH30tjRgyPKSitm5PFQHDjFtultSDbytRuVyT2bAq8fXsVfjAibyCuGXR4k6kY15kE60jAV1+R7vjl9rTy/VXp3c8/SovuezB998lnWCOlAhikKGhMGQIcdFmGl37zhwrf8EOMPIR8yUaLbbUdOsums69HDixltwEV8w8XP5zumzY19pTXyZU4DDQ4wiquLNNtUZ3vHAE66FpjQDyY1WXaqcjxWaf7HES+vPTyK2nFxi+T4+P/3T/9UZo0YTxrgLCPPO2OdUxUzvYrzXEb47ymAQYu+LYO6dAAowaKfKRB4WiF8mITgd4//rf/Lka0n587m0V870/SjW1zJCPLXmnDkVt4Up6B9nUQ5FVpSEM3DBjgiyAfbbBNZxgJWknA/P8F/nuGDUoPzJ7LIlSTIsijY3P5AqPRwK4saIW8MdggXdgW5YJ6ThksDLYp7/Wes990ug6SWr1s9ZpYjHX+ogVpBE6j81tdN0GYlDUtoQ8X2HT/emWCtGk75HtpVJ3nod7Q0ZGWpfe6urqYI/72m2+nCVMmpxnwqdN/8pS0PLVKfs1ZDrSBcovAXExDpEzv+5H/7E/bIO0cZfeFnTt3pPUbNqSVBE3/m+fZrpLAndMwxBugBawhw8Q1ASphVa/osEYQit8hi+mP4jlHuMS/ayJs2rghffzx8tSlX5/03aefjgWlbZv6WJ3mO+I1+pTv9qn8GrDLFsgzT6FXSs863eE8fbp+w8b09n/4j+kL7n/ngdnpsQXzWeyuVwSWdBrEIyUFPSqr4qBR1u0aOtKgqeAXlKmM0vqE2/c5Pcl1ad774MP00tKP4rUfvfAsK6RPZuSaQDh9qF4yU0NT2cUkPYcuoZBYL4j2K2fsXxcFFp9F4FD5tJOFql/8+Yvpi7qj6aEhlenBhxfFfOVYfBg5oN6RbaU7HVCdRvGkjNAoF+feN8PIPpHHdCRts4G1jejtP/mLv0rdgOux+Q+lB+bMTeWk5mt8O2rKq0ErBn3EdbY5SuOkFGx/WIH96CHtKEPNEqo/eTIt+/TT9DfYBQ+PHpnumzMnTYYuTbF2KoBTYHzfsrPNkZ0j+Twcp1KZOsPaU7ZLvhU29ceB6uq0FHvMTM8HZ7MOCHq1X//+ESBz7Rpll/aP79mHOso6TuJEe1AecKqFIU/1gPgxdd71M/bv28dippvTT9ge8LeffibdP31GTP+RV6UZdxzQMRLu0D+8H/XQh+I++jQ0LX1De3ynHTQhPPvQe6tXrWArzDfSAYZXf5NdKrTHnCop36nvpXfxGPqfd/0tPXhPfKjTpUPLzgHWppH+7bUt9OkH7Kb2/u696X52xHr28cfTkLIy7mQ+lcfVzSEDaEM4PAoy+5Hr8q112fmWJ2dJP25x6uJ2y1asSP/nT38e5f3GY4+mBXPnJNd0EKfiVjzYr7x+hx/lq4JW4w73eSgC1m6nbLZTG/SHNsc77y5N761dF+X/63/6O2kWi7EqF90OU/nbin6yvHDKOQu37yqvpNkzZKVaeWT8SIu2grO8u4M1mP7yJ/8hHb5wPT04YXR6dNGjaeSwYRHAEP7gf2HjlZAoIiAOv2RHXRtG+WNfFM+JS6emfr75i/R//PRnqYKnFyxZnGbOnBmBDANP9pOHMjUCf5yFXTs7gpjwZlGHdCWPhi3Ge/o5ddg0n6xdm/ZBlwsfW5xGjxoVa7A4BUh61NcIeSZdI3PsC3WoZ8vzI43bx/pM4twpUBfIBqrRhmf9FXc8cxq5OC9Tf5hNBRzak5bjd2WMtl4ERIFYPpPeo13UbZuyNNZ2JWsEXj1G4G7Lzp3pxQ8+Sr+x+JE0hTXxerM+WHtsImFWL0s32rbqQtuSA8FkQtK30p++n3jwOeWMWTX2g/z06ZrV6cOPPsGWbZ2+//3fSGPo0zxdmkXWwYHB+OBX7BBxkLMuss1hZqR9aXnKCX+Ld3nd+uSnZe+8mdaQVfooQYYlCxemQf37wSPYW8jdEhkEjUnl4SODJ7ePrUeWvPP222nS7PvS8+y+VFFZEff1efIhl3y7j39wRkM0P/OS9B+HSJRxNS9MAdmxY3ta/vFHpLPXpC6k40xhRfLhFZWxQNp1Ooke4wUIHafmMh24kkDAH/yrfxVR7h898Rhbizwa29HYYbFHNQIUEg4lLGGHsC0RbsF0EnLsVw6jSBQSoIKt/uSp9O4nn6Q//vOfpCWjhhMMWJxmEchwoSgjsREMgPBliFCIvKPStW4Fhdc9JF7rovIgfIWuBLeXbIwXEeB7YfYnnn8+lKZrL5iuqhDJgYbgs4AnykIwCq/tUCqFcOK3dcmMYchjxJretnnHjvTXP/0pewFPSQ/OmpmGDXYV815RloyukhXO4hAuhYaMpxEtzF5TkKvQVFq+oxBxwZwVazByCTj849/5nTQdZ7oHjK7yLZxn4RSuMMILGMGFwRgVWrFHr4pKuC3fSKZR3M+YOvPWT19Mve+ZmP6RgYwRI0m9NEXNLckMNJARAYz+Fr8ahPavOAl4qdd2KM4NSN1Cmbbu1CGdIIrryu4v/s1P0hcH69M/+8FvpOe+83gYipfOkaRE35kF08K+knkptzB6FNTWII50rE27c1RWR6YZ9NiMNL89Bw+mF195Of3k1TciS+eP/pc/YDvMWTEV4jrCu9i2UCdAGnOkOvqZemSJHBCwTVadHTuNRundujcyQvpnf/Zn6ROU/qPjx6Tnvvf9cLzaaeCIA4RVrN4PjPKJSt/oPVVhfEo7XAb2a9y/jnPHAzhjRqLbxnzij1asSr/3P/9RGkxd3/1vf5OtqeanyrIyUsENNGDoghuDDYUBHqMhPCsuboMHcXGLgMZVjCMXanUFXfnhKm0/dKguvcticX/ByvfPzn0QIxRDcRKBhh7dgyakA3EtfkWA/ecINcXE/VB69IH3VKb2s22TlxwlNRvj5XfeJq/0cmyvNwHZUVlZEaNOGprSh7BIkxpXoYCoU+NLg1xcBX54Tvo0+CAMLjZaVVWVPkchv4jSf/Z7L6TZU6fE/HyVT4xQAKMR+Kw8M91bmPQXVr/f6U8QR6ABGOiLlkwTun77Rtp/uDqt2/ZF+nDFsnSUNOPf/dHvpMkEMjqTzdXG+UUslX3zumuVGEgENnkJBeoIsIEGM3FuwDctDTQQvDDQ4AKTpnEbaNi6eVta8cGq9OqKt9N3HlqUvvfUs+xSUQlNCB3lwR9FoEE+9yPs8mQEGijnNrwQ80O9A/4cSW0NTTo/fBny+sX/68dpP/f+p3/0g7SIrZcGkPYqnchPVy9iRBPslb+VKc5bd+TJIIDt8CMtfi3QgLGj42hg7c9/8hfplQ8+SRWU/y//9z9K98+Yntpi+MT2r9B7LCwG7j3rsEcAADrSCXKbQR2uK/Sz5WscKat1rLy2Bmf3X/7zfxFBkn/2+GPpYfYHHzViOPjIWTTRZ+BC3pdfpU1p3/eljQjqUZc0BZcFL0sDjlCfJhX13U+Wpz/48Y/T/RNGsNPDo2kWhqL7jxskuQoehFmn1PKLAGQONGRn2DrDgRdP4Fxa1aFz/vm+qqr0+vsfpI3rVqXHH3+KrRPvYf2boThebAtGoELJ7rZs7tYk/8k/YRTZDr4rO/2t3nAETDo2sGcQw4VAN2EQ/Ywgybhx49L8++9LZpI4l1scqhfMDMiysYQfccBH3KmXxJXywQBKjBjRZ+qC2rratJWyV639NH20fEX6PRa2moUzXQT7wxmCbqxDXNpfwqluKOAM2V6qw/4A9XkbN2h5167dafXqVemtn7+Uuo0amf7JD3+YJo4eFfRnMEH9Y9mWIbwGHgq54G8P21Cc/e7oqHOSHVFavnJl+tmP/11a1nAu/ejpp9L3n3wylQ/oH8Z9BJ14kZ5C/kMRFKOsEh/KXeVjZO7x+xJTOQo+MKOsDTTvvPyXXn0t/fivfhb1/+G/+P00b+4DpMZ3DpqJha2RSxTKtAiMccqXz4IHKDPkMjhXP5nZpHEq7BrF9sdmAmv/97//9+kjzk9PHJ+efuF7aTJGun0qXoojZCV1iCPpxL5Wr3td/o955/SJZaqLlZ1ON1j5+br03//hH6V+FPTcC8+nR7GZhg0ZEvaM85g9xLHPSwvKWcv0KOwEz1EPOAzZSrvEax0jjW8RCPjTv/pP6fuzZqR58+en6TNm4JR2j8WULxK4sx06XTQ/4BR2v4ejLuyUbf3SgffMFFV/ONXAxUx/QaD6CvbTYsqewKCSO20YmBR2+089oVyUFsWDQS9xE8455enAqMlzoMH5+aVAAwGe9Zs2pb/52U/T98H5nJIcUH/Il8Lg1ASfLwZk7DMdsMAxTm00hL/WJ1/puNg/BtY+//wzFgpfxiLq1en3f/+fp2ksHukoqbD7vE6WfNXYbpSu+R/yXrwE3wKL7RM3LliqDF3HziCv/+IX6W8Y5V2CHfnbL7yQRg8daof9f9S9B9SV1bWoPVHpTbrwIXwfTYrYsCCIFBWs0dhr7L0nMaarURN7THJy1NhiL1FULAiCIE1BpPeOgHRUikj1f575sr3nH3fcO84YJ+OO4aubvb+933eVuWafc82V+OZ4kwZzDSXFAsaucfIW6EtHv/2ry8h73MpQn8CUGaBvvvNO/OKBP/N0xK1XXBpnYPQ2hc9kJgH3FvvuC7nPxBNeDlyO67vwo0t0EHgPuscOXsoU8WA2RuOL8IFnB7yXW5kfvuvO6NerV2aYfsX2PHlvNXQUnXQlh4mw0GFUFeefMkPHOMw/HQ0eH55OPPBmC/MaS+btQw8/HJMXL4uz+vSI888+N7qQmWyASvmUfEQFBjh72bav1O2Yi3AWH1OP55lcH+6X75vdNHjkqPjFgw/FwTx72lVXcKThsdG6oiJ1YOkt23TyXMJXWeGVuhTrbnvKllI/9u1vyoOFBAn6vz8ohhE8Ofu8c6IrRQw7dixqL5R0bOWf6yheusZm0omPBW4WGUOurYa3mZY1cZZatHDhwoXx2aTJ8a+33kq5cWxvT31pSyZMk5TP0ouwUWaWYFLQJc4Q2pdei/ko8wqerPwTn6wboz42BhvkqVdejRuvuDx6U2Beu6w2OoM4oVx2/aXvgn6KIJDP60CSbqU5HUnSkPPTwaKDdfqMGdReGRpvY39Ual4WN1xxRQaW3GaSjgNg5/jVvZRtjp9/8iXfStuNMWivyOsNKovzdYCNOD1qzMfx2rNPx7tkDl9CgPmiswn8lBvcwC5i7jotMkBNm3LGzCoFTm4jsgj4W28NiCbwpbPPORtHQ2sZamY75MLvwoXi8w/z33+Po0FGoRBwYeQTwEIGrmDWfJuOo8FTJ5YvWRIN2Ovn8ZbtUXB2Z6G2b0ZRBCkSyXk3uvDBqJFx5c9+lvv0rz3tlDgHg33/ffdNcJsBYYS6dIxUQfQFsxUBRWA9XxK5AkoF24X2JfLpQX8dRe7Xf/lL9GScZ93y8zz6yqMTM8ILwdqmhOzzIoeKVwpJpuc8ZYKpZPCHCJQ1AGhfZJw1j+OROJd24vsD45xLLo3uh3fDq7hvpgAlssqcgY1GkkShEapxIUGKuCVClKD8rig4BoMizXsJ8PtkwoR48tln8iiXvj17ESUlTbKsLMfrXmqJwzYdN8PNy/nk2vBXjpuxukb+7hz9ztMdJmLwDsVgH4Oz4aZbbokjiCxYAMXIuM8XMCiEl3MRzjJvjQC9rTI7lUfHnUoA7fqsAtwj5CT0Z1/mTF2MiusvuSQOhAHKHGzbe1yjFEAyfp79fpB8LPUtIxC3LFCko6E6m/mXI9gGD/kg/v7QHTGPrK6fXX55nM9xaa2a752Oqd0x6sRFiwp9R8RIpd+FTGYNnL3MNJABWIjU4nv8CBNgLjCC6XNmx1PPPRePMnavv9yDYMPwqk8hrW0Y6mggbAFCAChkIIB0atBuKfor/qgEu746BkpbMxR6rsQYjN177r0nhs+eGyfs1ymuwMlzOLCvhULhWH0Z/aGB79MCbXv7jiJbRXgwxaJooONGIKOpptG3FiX6/aHD4vpf35Hr/bsrLuZ8cI9ObM0+PdYQBluNyLSKrYq5yp+Kog4FFdrN9OHRi1+sWRVrvv4y1uvlRin2tJPtGMmrV6/lbHAcVGNGRZ8uXaMTRkBFBeemE8k0Qp6wFtGYezJcPkvrXs7Jn1JgMh8/iwviTxF9Xp9VwD8EH9EK41Ci6idgNHY95FD2xtZKL3ThuBO/fbYQXiJO4n/Sga0COnBL5SyjgeCQR+vNmD49RhCdfuH1/nENOHMUeCkfcC+4kbmScpbKFfjh3wkfYCT96q226Jg1HsBY+lTZQrlnU+GshfNi5PhP4u0P3qFA18a49cabOQ7TLBiyQ3A0VOW1ncIVq1atJQqxgq0WwBZDVSVchcRCucXWCYReFXgaG1V3MD33Km7aRObU/MUx9bMZ8dGk0dF9v4M5erB3OgKAKtOHX7FuKhTOI2mfNqV5ULTAc0ZccKIC3kK/BdEJIzfu8X7nnbfjkT8/EMt45o6rr4wfH3dsGl4a/dLQxq/Z4wkOKODpACcXfeZiqhj6QjEHjzyak1/yHh1f8guPdXqMjLUXBgwMVNu4/W9/jqPIOhDfzQjwZA7pNc+tZ7zSVUZ24Tc6GHV+SZfSqPy+tKYikBEjDaNbbv5pLKHta088IU49/TSO29w/oxfihYqV208S14RL8pqCH1hcMxU6cFO8lEdk/7RlhFp6ehMnzE333BNd27ZMZ8CRVLyuIEMvcdHtMDwjbPzbZ+VZKqlpGDAfDTrHoTHscW7yHvmnDvF5i8n2wDD6ePgHcda5F0RXnF/tM5JZHxzG+SFsaMvCaOKH49MQEudNJZdPCgfx3f50ZpplZsTGrIPxkyfFP+BlHTAqTiL7aB/eG8PjjQY7niJzrDDYxENxRnmnkSVPV4aqmNm+cHIe4pnHSc5AmRtOdHoAjsdf/fzn6bjTUa1zSeXN+2xDXqicsC0/F7KCjrI33wucFf6OXT7iSTgfDhkarzL2Rp07x01XoiiyphYzlGY2w4cNCBT0U8A2HQTMQfwsXc7FdbftVEThUzo0ByOb/nnfPTFw3VfxU5yOl55zTrQhk2SL4wWObu+0rk518F/JquwTJuK9PFw5vdMXXZmBJK54FKZK6RyCD8+/9FI8+Pg/cxgP3vYbjk48FqOxfmY0eDxg4guKtPqNa6wzyZdOCKP51jMwW+2bbfzOfM10cvxeYwkM3P/Qn+NtsvrO2n+/uAz50Z2tTvLZkmGnMv694Sh+AgPX0JdrrN7heviSpko6kMdVDob/Xvzr30QF911y8UVxCtFvT35R2bZ97y3whH+df9INOJ9g9x+/B+a0m18mLZg1tD2WEsXsT7bgn558Ki6Bjo465ug4jCCKafxuT0jjm/3i4tlGeEPBc4vjkOmY7wv+Jd6LS/6tTqNuZWBmKgGO5998g/o4a+PHJ5wQB+u4wzgyeGLEVllsds3XRLh1lq0ki0Jjz8BUMS/aZ10h63zp4JFWnLdHY8+aMzeGDhkU3Y84kq13nTPrS+ertG8EuYprxTr5d0E/OgKtj6U8cbwCH3xi7M7ViKn0bCFQI7wfQU9zZ82O23/z++hhpof4Dv9LfgGuuG4aa8I83+WNu9bP9oSXlzCxX2uTeerWx8i9/mSsPY1j8BQCbVf/5ILYjzUttSXuKBOkvQxy0I4449jEEXkWLI6+0Bt4N5vNSHMdHKLLV66MN+Bh19/1p+z799dfE2efdipGY5MsAisNpp7Hmjr9wqGWpkMGgoRVOntp0+K4VWqTOYWel6dusS5TkNvPPfdCPNV/QNZheuDuu+LYXr2jbk2iy+BIVfQZgxnWs9BRJZ6JF9Ki62eGnXQLQn6vKymzpFv58Wj0mTvvvjvGz1sU5x3TKy75yUVxKFtClUfyUcfvJX7YrrxMfV1ach1LV4kXiy/ikPMyej1w2PC4EflxODeec9NNceJJJ0VF61aMnb374LyXOpg6tn2IT0VNOeDB3661/dqf8FOH9nszwzw15SWcDA/BJ69FZh8FjzdDyOKU0kRpfOo0jpsHEy8dGx9TX3B9DUCYIWsWq9mWnrQjj58wdUq8gH3TpqJVnHjMMWTetmcbfLMco/PVCVsaizq98sR+xEXlkZxCWi4F35RP8huzS6exrh+NGR3/eO21uA24HIPjrinF92vCS23XdSw9Zx/q09ouDJE+dEYWDkZpVxiJ89KedOepVSM4XWPAi8/FtgZN4qfXXpuB1OIEKDJMwW/5fJH9pn2mPUINNvQV+W8GUpmDWTHi+f/KaKiJo3p9Oqqf/vO9MXjZurgSXJee2pZXZD2e7ehL4l06jFw3xrwd+G5z/NDv58z9zQFvReOKchwN50TLioqkL2lR+zInKFL8gK9/i6OhMIZMU2TFISixPxGKDztRenU0jBj6YVYibgij7HZQFzIa2lCBHWUlI6ogPYtZGYTaCpIMInJxKelQFuS44bQfx0WXXJxnbEsMRo2MIu9AqdI4Unhlai59ilgSvAhfijhIPCKiDFmjYCWpVS+jRP/8/gfi+IYN4vQrr4yjjz4aA2NvjBuKiu1S1pIxJdNmoWlExFZQl9q2XRtWUBlldAxGZmbNnxdPoFSMf/ftuODyq6JH9yNiX5wkdTC4My2YB1U8VdJkgsJMZT0VT5ifBKLi7Hjtws8S6pcYIospqDNm/KfxnyjpPUjPOb5Pn+iEYdCsqQWoLPLinsKCkB2/rxRAwKjkURdX/T7nQwdWmnZeS5cuJfNkWgzmKMzBgwfFr37z2+iFwG8Ig6qBgcBTPFN4Qh2Xyrpz0Luu4iwTkYkp5Fx/mZ73mQKpB/0zHCTvv/dePAqTUjG/+fLL40CMUonYS2YgbJOJOnfGRDP5t78ng6RBhWX2T/s7MKarUdRv+ZrV8T7K7cP3/T4WUCXm1quuigtIrW2N8u+xSCqIKvzk4KXjwc8JZ8Yqk3MdZViqXEaMSu+VYSrVatWIGXjQH//nU/GXZ59zKPEf9/8pju/XF0dDnSyUqaMBrSH7UGjqaDB1D5MxccdIpDCQ2cJ5UykVb6rQvga9gu32O/8QI+fOj5O77B/X33RzdAP2RpilDzUcx1wywDKqTDtwRuCCwoZQcv++BphHIOog8TNSGwPW/cEfxrW3/j4LCf76msvixz86JTrg6NuGwbr9my1E2ImaM2bnoTGdUW6ercK6r6eY6jQcLeMmT8gtJIuWL4PRIjh3A0e/I+KFs8IjJb/4YimMtU0qz6a6qWCJc+KlkWKxWZywiBw/JBzFFZUmlZqSY83vpAVTenX8rSLzYPqMaaTB74x9KjeMq26/JY7q1YttMXtSbMgz5VGkaM+aBK6hz6cAdU39XiTi8rOCWSPJua5ctTJmz54dIz7+OB4no+GGq69mX3aPTCWvC846dvdy2pZ8JZUI1tD3nWQgbCPyaH0Z0/VVaviSZzDsarA9if9mLCD1dfzH8dbAt+KL1d/Eb35+S3RDya1ZnUJSFB2rwbvZDHPnL8TBx755aHsRNChd8g88zqJvZGGxDp6LuXU32meJquCU3MGk1q1ZHyuWrck1KWvUIDqgPNcDH3UyWIhw5w7gDL7tAY1IkDlumlZwYdawzuC5wFHo70bhQeZ6PFuO+sILNWAHvPVGPPbAPbGAp++94fo4HYO9vKwsDWbpaCsOYqZZ0KewFtVZaxUTT9tQgBrZ1dkgjtuVjjWzAqaSfvnY44/Hc2++F+W0f/8jf4u+vXsXGQ2cRuCRr3DVzEAyC0mj2kw256CQNrvmu3SkQWHgT4E7Bb9zC9aHH4+Jn19/Q479RqILp8MLuhDJdK+ptL5dox4ZIk4wMnpygHzkH5VIDdRUhsGTdBLkLywDeLAaenoD/njdH++OI9q1iR+fenocCd60alnO4wWdFllT4ghrgLIi/vudPMy+5JdeGgtpZPM54QSs5rOf/DlSsQe/1T8uufxKorvdohPyw2PBdL7pLE03HW3ZvvSjIiraGIGyj5ISJrxUtDTWTY9dTqbKOPZlP/rPf+bxdCejKBaOhsYpfwtDna0XKsauI+snHOQHOjlUvOS/Kk3yfhXh5J+MX6Nrzpw5MQzD6GUiXr//5S/jqG7dMiNOR4MyR3gnTfLuOuTleto+c7cv6VelXDj52bGbpj2F7ZRDiXy/ytgb4GD4OfR6GGtq0TYVMh1HGkWmA6soqzRqyCVgip741z5daHGlkK3VkcvrcTQM+fDDeJ4MnjeWLI2fX3BBXMbWjzbl5QXfFh+Y++48WrUSmMm7PN0aJOK4MiOzvxi377thsOyhk4F1VimdPX9+vPDSy3Hvo0/mSP529x1x6kknREPSzDeacUf7yg3fDaJY/E58sT8hoW5UiTaFjynk0pOODfUG5ZiOhnseuD/e/HR8nEWq9DU4eXp0PZy1qZSFVoWlSrhTl0f6wbfUAfisMeC9/pbOSdrUEDGA4FaQQegEZ9NmW5685NJLwPnT8shms1HdfpA8m99SxjFGnyuyFviSq6SLpN7B32lIgqcOwm0l/xo4MO547LG4tm/f6AMf6MKWULM0NYy83N6pTNiELNwB75Enu+bOR/3Pv8WrYnssRengM/Iz93xPmTkznn39NYp9r43TcbAfQttt2+FoACdNB7fwpfqNdWMMtEwhIGIl+6/YYiu/0JjZAu/Zzlh3AhP5l1uTpAf1OWuqKJ/KKPDXsjlOaniwjmcdUVvg4cJC41wjye2UqXeow9gebSeu027qP3zntg0LodeF3g1gjSZjYhY0+8fbb4+ehx4W9QjUmfGnbJLeXU1hYTvifQk2jtsxSlvC3fXQ2Sf9msEzDp3jnTfeiL8N/iDOQJ7ecMklsV/7IutLWCvzXFcNfuWB/Fdc1CljW/LhFB/0q6NBWtABVpOtSB6Z2P+tAXHdnXfn+G6/8bo494zTooyTKnSgqNu5XSgDMeo2tCX+J87Tt3JV3kYPZAtBB2zbrIyzYSefxTHlxzPoYo+92j9aMf87//jHOK53n3Q0fIOh7hY8i6mrzxgIEt8YesGrmBMdaVGnzErZpDxhHpWrs27Q88ix4+J3t98Wn83/PC489qi45IKL4jCyeytD+6ljA9uCx9IulzxWGnVs8sVETGAuXbkurkniPvP0tIG3PxwaV995V/StUyvOvPraOB4HWNNWrSgO/lU6YuTpDljjVhxxLWxDesm1ZJ1ddx19jkP+Kr06TzManmNdddz9/JRTok+fPulcU4+XnkpOF3mCbcnn+T95uzhre+KRV+I8930HfpkB4tgnYSM88cLzOGHLCT4cR2CifdKqmczyJ5rKS/1NeeUlvtif65l47zzkk4zZrZTObQm6z8RJE2MovObRN16Pe2/5RfTFTmjakIxq6EkcybHbIM/yZ7aXc2Atkx8wEbefKC+kM9t1bVyT2WQfjRk9Kt587V+xiUKev7755ugOL5BelWdFAKlwSDlGZaGw177RBnM+yih5umM3K8arLgXLdToqP5586L54Z+EXcTWBjesuuggbtxVy18KzO+ADBr3JxEhZx1x41gxkXS+Lli2NN8mCb9KmVZx77nkUlizPwIo4moFm8OiHfv3PHQ0uOAAzvVtkh5uBCIJFUhAhtse0KToahsRKkKkBjobD9j8w9qmARcAINsMY9DyKoNZJoBEyGkbFdTden4UDbzrtlLjw4ktifwRo7tsm4uD+ZZlRHZiyioXeJaMLesf0WnqpZIlgpaikSGdxyDXrvoyX8Lbe8tBDcRkes34QS1cipR7XI2H7Khm9IrEIWwhS5gLiaYCocCXB0ybYA9KgyPObyD974QIcDS/GZPZjnn/V5dGNfUwd2SKgQZL7DbnXYkMSnuNznF4itYqdyJiKEt+riFaF+VmsS0XRlOaPOQrz4b/9ncjucUSkjo7WLdkjhWEkIWr8y2wKggb6ALVgUjoCSK2ivSRAmKKrI0EpOHR2rFi+Io/x1NEw4K0347Y//CF6IdhMA3RMwkQlNtuDEQnvUgTM3xX4CSfebdexOw7X1HoK44m2DCSd7km8lYd27x43XXpp7jl0PF4qhUbUvXwuYcznFHhMJBk4g1ZplwC/1cAG16pmRsOa+GAohP6P/4yp7JH6xRVXkkp+RrTE07oFYzrPYLZtlBSNFiNFqfzTjoKYlcv/VPYl/q0YjNtYizoN6lEdv3HMdU2ffSYeeOqpHN/Df7orju97DGnwbIchOrA7bWgQGZlKhZSuFKIlT30iBjBJpRz8doWMCGjI66UfA2z+cPfdMRqj86wjDourr7ue6PfB6XRbtwp3G4atQq4y462CUeh7Rk1ZN9s2yruFMZteqKOhkjRAxFem+NXGDTFw6LC4BkdDB0Z/4Y3XkO59fOxT3ipPBNmOo6BGFQxA0uDToGP+Io5t7FG3VqaXjv50bLw16L1YiJNh9pLFKHLWEdB5YMoyhT5XrSXTYVM0rsNJDjhmhK3KUGE4GCkrlHPx5TvW2TGL/+Jd4oz9MSdpqvRyXfQyb8AZt5xjr75O1kx0/ae/KKL3TSiQB58xpmebbjNQIVSoZeE8YCzO01UKBvGdr3JPvMrW13ihly1blmn2fyG76dIrrojjiKpbIKgOypJC0lNd9JRLI85FWtXIgCOwtsyLNTfCL+5v9YQb0qZr1mE/4R6VYs7iBTFq4rgYMOidWLji6/gtqfyHo6xUtYr2btQ2oPr+t8BuErzxA9ZnDjg29/NFKfh1vMgTv8OoSEcDFsd2jtnZSbuV4XdCb8P6b9LZ8OU3X0cd2jTFsKbj/I712+VsABuS3p16wV/4oNACl3z/jvQdBd83bKGZv3pZ3P6zX1I75RRvjvfefSdefuCPuWf9QaILZ2Kw71W/QZ64oiFUDWeJCmPukwaX5ds6G+Rm6QjYpbyl84F1VimVN8srps6YGU8+9XS8CI/E9I/H//pQ9O3VMzNrvoY/S69p1IGT1eSx4L8RZeWLjgUzO8Ckwsij75LSIo9V4bWGwq3Q0ALavoktVKecemp07tgxeZbOq4KHFUWCVa7S0AL3XGN5l7LINVU5cC1EouRHzHElBshbQ4bEzQ/eH8eRoXL8cSfk1gmPx82ixvAXGDm0ROFJnBny5XS8gSeuQdE+fTFuZZOdqegk/tPnAhTFJ195KV595cW47oqrohvGekdknynVX3/FEUXMr6Y8kGe/ZS7yT41xOZg1elSGpCFp2EtaFH9LNRrGYZQ+8eyzyLzD40dHHRVtWnPiDUqoCqeptcoeZapGSkbUmIvt2Y+/+dm+lAW+VORUxNaQKThv3jz2B4+OZ15+KX5PBPwYnCRGjJyfcJaHu79dWWy0S2Wu1K5wkUaFtziiLBBGGoQqjjrBh6HMvfHMM1EPB8PNOJO74IBxTMpedQPbcLuk9O/YVEyl2YR5gqSQUa5DKVpo6qt7ykfiIHnrxRfjJQzTG3BMXcjWiVYtCD5g8AgbU7FVl2G2kFcxNtesyB7DwQtOsvK5XUjlUePLrBuzGuYvWhSv9X8j7v3H0y5J/P3uO+IUnHp1kR/rVrOnHD6ncVQ1eTtwhlh0LGvcWb+K7hPGACd5i9l8m5D1OhqEvzWtHoSHDWBtz8BYvOLGG6Mbslu9zKMyXX8j5V7CRR1BXcO1VNlPQ4DPbh0VB/zeNVUJ9/7B6GM//elPozbPn3fhhXHKKWQ0UOtAw8X7bV8j1r81pjMDAzoVzi6q6y2NigO2V1w6oCtzbOKaeAW94HePPBK3nHxy9IIHH0T02K136jwabzqGdYY6VgnGQrrqC7mVCFwpHG3fZfFHnSX+rb7ivu9ps2fFM6//K77BgXn6iSdhdB2UR50KN9fdcalfLcG5MOyjYUQ9P4pVfL92zWoM/rrpfDHKTTmddKKaSu78hJ8GuBkfKzlpojb8sD66Tk0MJ4M3Ghcep6gT1PkLc7ezJc4oG2mvwEsRxTmpFRSwqgc9tm3fgfpY9WMszo8ZYz6Ou37zazIaDo2GyKZqtClc1HuTblgv30WUwpFeHEUqLxB2rmfuzd9FH+K0BW2HkEnyaP/+cSzO5Z8RcOvcrl3yEGFXqvEg/5KfiYvKPh0n9iOfVV/KsTNuP5sRsCcOkuXwArdO3HzvA7nUv7n2qjiHgGEZMkqjzPbkS+pHtqsun8Ef1tYgio7m5PfgexVwHK4WX3NqQyWyBWvWrhlz5s2P5597If7zldfjAHr45Z/+FH179oIvVo1i6wTBOz7ruMjxOwr7Ah+tG6QDR9pU19tMhhBu+XSMVyvpY2SY/gbHzswvVsXFx1P/6Ixz4hCcm1WRR+kAoR1x2zVwXc0oUKfQuaXeW9BPUShZ/aEI8nEfeGFmwACyp65Evz4NeJ8En+kDHzaT0gwc+bTOJmk7nb32A56l7gHc5ZeJT3xvvSFlSC34f9IYv3+OTvMMa/oGGQ1XwSO7sXWi3T6ewlQ3s75cWzAux2+bylTXQvyRhzoveWqePENfOhl8fYM+pM40acYMHNVPwxtbxBknnERh9Fa5/cxn5OfO3TpoiTbghO2pJ8hjhIWd268ZMPZZg60NztWCthMIRg6B/h7DyX4PgZm+R/SIvaCFGsDXranyD5/NNl3QXfAQJuKhfaadAm46HmFi2/KcuXPnUXfqk3gDJ8bX6D+3/+IXmdGgU9321PeEs/qo7QmjQkdl/ny23lEG4fjMCHKdpbWy5mWZ+TGccb/wxOPx0gTqE8HHrvnJT6Jj69YZfGbo2aY6rTjjthS+SBvDrIaFy5bGG8iHFp07UjvigmhUXs4CqRsUoyje6fgHfEGHLs//4PLpNLBgFiySAMxVYjH4Aga65f/naGjI0Y/dDuwS+4CglWAw3+Jo0GsqQ2jQoH4qpB+MHhVX33hDsceWYimXYJS6dcI9SOvZn/wtxgcYl2lkKhWbOeJSxUWmnp57FshpFYWO8EKBcCJPZjTg2X4ZJvhLBPOVeMz6Hnss6ak4Gth/rEKjMS7BpEAUkZlTKj+8p1Eq8TBuF98U8jy2hHlqTNuf+/mfQlGc/sHIOO/yC9k6cXh06sheUhD+qy+/StD4OVPObAvYSTwyQRFeRFeZlmA8bs/UHY190/m+IGr08Wfj4+H/wNFwwnFxoooiSNkA5g7kMwKsclVEJlQQMQhQGnXAyATduyTxVUP5kfgVljWIFmgImhalMjdo+PB45+0B8fs7/oCj4dBU3ISrMJEQFdAqjo616It1ZlYyWonbz7brvV71YRTeZ7HG93DwPIejYT8cO9dfdHE6GiRWPegpiHcxn4QzMBEW9ifDdV0cs0xRL59CYifCoioMdAVraurrU48/EhPxKP780svjvNNOi/JmZUS9UdR2CTJTvkuOhlKdgMQRxivuGpnSi/stBp4p37XxVjYk3W/u4oVsnXg27n/qqZzTX++5O07o15fjq2rENygzzADhj/ASphoaMhJemYUAfWjIZMoXcDaTwbQ99wKaLaFjbjSwMVVvFI6Gs3t0jauvvT4OO7hLOtTWcFqHbK866YA6GzRu/Rs7Lp0NrrFCf6u4hMd/ZxUUPNrU2IPjxzrS4Ad9+FHc+Ns7ozNIcv4N18aJx+JowNG3ZQPp+Rs5HhRHwx4ocmYJiYvWd9gdoV4JJ45H3H0w4qP4x1OPEu2ZkTSZQPjf/kGIfH/2xP/24//oC9VLKC6vW274aRx3VN+owAFUkynqbMjMKJQu8VsjslTMS0VMXFKZlBgUguKTBu/6kqPh03HxMGnHF1x8cToaWrWqSOPIiJGKahqcuwSxhqiRCwvRIoozlVJlBsRkC4oRVbJDcM7gCYp5HPE5csLYeHvwuzH3iy/xoLvHloyGmhxxyraJajWgabICPvn0s3j1tf4x7pPPYtb6Rbtm+d9/Y2YpCP/7T/yf77zlmhvYW3g+2BXx3jsD4uX77orxfH4IR8NZpHc2QfHdAEycey2cTfIuFUc5gE6tjGyhyGWUSJjr9AIXAWL+ZnTXdbCg1BPQ0ssDh0Zjnv0bWyf69mKPLXBejyNZ40rnQlWVIOCdhh08RN5lRFHcNvIkjUpHqdiBs/JJ1JoYRpbKzVddHbNp+1YcDWeefXZ0xlj3WEGP1VX50Dgyw8ZMLLMWfIn78pgSz7c/FV9liYaA85PXvMU2rZ/9+aE4gfV0K09PCgpblFcl1FfyMmSByguqbiqCKui2kX3QnlqRolOeacQzU+/BL7dOPPnqy/HKyy/E9WTEdccpuy8p2SqT64jQukWrFvwbxCaiytHNwNY0cPmuMrAkQ9KggaclzIC756UvIVvC6LfbwLqype+ko/qwx5atE6Spuy6bNm1k7oWcTPmjQx84+508X0VZ2aID0O99RqNOmltJZHrWrFkxZOTIeIaU7Nt+/es4ulv3lOk+K6w1cIS7939jejr0Kj06f2Hsq+RoUP4KR9eqcDRMj+HDP4w3n3k26qL033TFFelosC3hWDgO2ONei2PZaFOZYxuF80geDP2Dk/6nrFWeeIkznmWejgYyEV9Ekb7pLBwNOKotWC1MfcbtnaZOw2zTMcBg0yGiI0EeLm7oYLAuyVZemWUJP5bXzF+0ON6g2Nd9TzyTff797ttJ4z+ebVS1OA5xdRpWGkbKkNwuoaMBY0s62LZL7qkT5HYh1lL5pOKvHuFcx+NoeOgvD8ebEybGaW1axzVEA48gI074rWXPujLTdXK9/C6NdN6Vu+Kf+oHOHQ176xb4vXhjXSkVY7ey3oziz8l0cR7ZHicTKe2A8SK/1TjRUBc3jN65Dsp06amEJ5lxRN+uRxGkcSjAlD50NKiPpaMBHtOnDxFYIo0NGzXGkVZsYfAZj4ytSiRSWSrNik+OzX5qseZeHo0pDpWyYKzRMJWU6Wf6v8aWlG/j9BNOjC44MVq1bp1jdL+889Y5tWjp5/HOu+/G63/7e8zC9CQx8r99/Vf59N9+6P9yo0ff/gQcbF7WnLWdElOGfxR/uPUXuXWiCUGlGqynTgTn73xhWfm3epfrKe0nrLlH4049yuwHeYOF+zSaPoMPDH7vvbjnzbfivL7HxC+uvoYi7TiPuM81lE+lvOR5dY6SXiMvkHOpc8iDS45kMxz2QGcwE2P56lVsnXgnbvzTfTnL316no+HUdDRoHDvgasyBnYbprFEvU1faA5zIYt189jQvM8iqks2wCXxftRE9C0dA/YYNYu6CBfHPp5+J/3j5tQye3HHffZndq6PhyzXrimcZswXA1fllEOJ8YeTB76FZtzaph21ivtKrGXj2ZU0IAz+/w9EwHUfDZSf0ZdvHmXEINRp0elsEWZhne9CnxmfyNH7TySDsYBdJP2YaSHuuhfxUmvoKR8LbOEyvuuuuOKND+zgBp11PnOxmVCubpEEDosVpPQZr0EdpUyNbuixlrsiH5aGuk1F311jaXrx0aTxHoHAYWXGXXXNNdIWW2sDjdRrqZHccrqv8UR1dB6GyRRjZnmN1jbWZhH8l3nU0bML2WkdW9aRp0+ORZ56OirK94wxkX7vWbVJf8hl5gXxRHEwnD/2kncC4bE+7w3EbpBQHpWsz0oSTjobPgPtQdM2nBrwRd9z8s9w6UYZsqsVaoWWlnZgGP8/L851zyebzb/FfeKjzKRfts3SCjNmro5BN/XGCb6pRK27b5WjQgewYzQ7RRrLN1Aecg7jOeAu7TyeVwWDGD12Z0bAH9kfTZgQzgeNHI0fEyzhgXqDA9RXfOxraJJyt2eblfA2GqS9Zz8S6XAZM5y+hrgbbd8s67RM/gb82btWKm7EjWG8Wq3hlCz/cf/49jgbhyAIkhQEXXZ8qIsLI7QjTEIQjIK7VIFOT+g3jyEMOi45t22aK4A6IKAtmsahQJancm+J9Fu2cG67Ps0avJcXwsssvjwNQLmRQ26h0bzq5EaOapOvsBjHkmd4svEjhfxKSzLb0nhESkMn06qUY66++NzB++/e/4/1vF6ecfU707t07mkLo39GGCoiIIyH6vB5hlR+Vz0Q6kEVitJ/0tNO/XIM6bwAAQABJREFUaVrfwnRkFFNQtp4hPWfOsDFx9iUXpBK6/3774blj6wRM1naLCJowE4cYKy/hlUoon0V2GZhEZTE4CdFsiMUoimNIpfvPJ57AgcF+9d59iNRRlbysGcRBlB+4GIlKONC2EWMVEYWNzMrog4qZjLHIzCD120gHCs6yhQvw+I2NgR8OjaE4G36NomhGgymMVkKWQWmUlxwKjjUVCeHKfzpOHLeTkhj93TWoTXqoazX+s/HxLsLnZYoGtjvs0PT4HYjyr5IsA04GwTOlsfsus9DjKHwcv4xU5cT0b4m9ErCpQdaByv97nGryyMMPxETSyX968SVxLvtITe/aQwUFI1rjHKCm8qby7153gJB7Yh2/TKkUndpK6rkRo91p30I4M+dTd+P55+LBZ59hfhGPPXgfWQHHRh3wb8OX6wJ2nEaSUVidUHroNY7S0cD94o6OLvEQIGUGgspiNeCqITYa2Nxx553UaJgXpx12UFx7403RjX11trPp6w3Zts4A8T8VXeaen5Pm+I53o8lI1tiJcbedz9+CB/ah0B/80cj45V33RwW3XH79VfHjk06mRkrb2EYk24wGazSAdbkVwTUVFruTSVOpLsYwjoaho0bEP198JqPu01cQgft/eBWuK6a9q8+7fnt7nHTs8VGGU3J3HIzG9yuztCrkRuSMLhi9EwdzH504xbNJZ8Devc0KwtUo+HPnsr0BL/cjbEU6/7xzox+OR7OPGuN0lNGvJwqmEAL9inegpOJSja0jSJ2MqBXOJHpQMChCyGiQ/y2cPzs+/GQUjoZ3Yg779m65/uasedKoUVOiMnVRdNmWAvzHIVzfGPBOTJ4+LUbP1KzncV6ajs5ddx2VV/7tl30wi4RryYnz+5/dGhedc37i05v9X4/H/3RHzOSeB4iQ6mhoThaJe8hVPCtBUzCoNC4yjRvlSGXN7BqzgTKdHPrVsQaDB++hOR0NzM70y0f/gfd/4JDozDd3P/5I9OvTG17HCRY6nuGlWRQPfJdWsyYPeCnv0dFgtg5ElYqdxYN1Lidfk5ex3laxv+ySS2Mxbf+cImSXID86UIgTy5aU6C/5tlBS5OPSjs/qQEr+q1HjWOEx0q28GsFR8DoQYfma1fEGKfw3k6rep107tmWclftg3Trh1jmjnGY1paEL33P8ppXalo4HU/rFJ3llKZrsyRPSnc5kTxV6hlTv999EUbz0itxmtj8RfLfeeRyrvLQ6hpzzVLFzrMqHlBnMR15mB6X2k+9wj0aVxSB1NDz5/PPpeLFGg6ci7Y2TxPtUcn3OTA4V21SaaU4+XLSDMiuvkSa4Tzqyb37M+ksTwOXByI5XMdh+f+utcTQZDY0xGL3HZ5QhKnE+m9FvaNbfcj81vwt/4eTvmfYNHNPRwH1Zo+HDodGflOna+3aKmy67nKrkBxCp82Qp5ZtFJd1KUkRwHb+OsIT1LgXddU/ZzRxUsDMDErm8Cbia+vrSo4/EKwsWxi+J2l8OP2hVXp7rqdyTv2j8V+M5I7HKooSzOA18pKGd/ODWodJWodK7hlF/tpPc/9RzDiH+fudt8WO2ItWrWycDJ7aXmVG866B2q5/f+dmsBK+EiY5w1leZoaxK5wHw/IzU+nvBx3+R8n1qRXn8/I4/xOFka3ptJgNHnFOeurY6W4Sz+AZq5rqqD+gMKqq4s0bqO7Src0bDaNCIEXH+r34d+9DehcDmZBRpHQ2uofuh5bfSkIaKzqTUOWhDWJfgLaxKOOS4En6MyWKQ6mO3PcbWiT594tjjjsvtQvXJMP1uV/viDSTIuJBTrKWfcw7iE/3Yv/xd/cZLnUKjygzQieiez73xOh3uTEfDQdBSeatWOUZrFahf1UVHWbpsabxPhP89gixzliyJ6WtXx560JfQxjf+fXm2pDXJ0337RjEDJeLZyTAQ3b6NmWU8CP00Yq4YXoEvnggMTVdQXdaClU52/NeakOSPJwt3fWe7M1nPdxuCMfRU+8I9Ro+NcHA23shVpvw4dknepAytLXSO3rRR1ecAh6Sn7A895N9pR8HcMMvBKZ/Pu6AxfEhx5nT3nv/3dHVnQ/fabrosLcJyUEbQxKi5O6wQQx81KKWqU6J+Hj0Nf6jaZyQNdWR9gKwSxaQf1vwjMePz0TNLgH3n0H/EfL/3LUcTrOH1PAV671YT/075bq31eWV2J8av3iUtb0Yd0iFik1e0YIlJRQwiuyfhLWydGjfs0brvj9hjH1okrTuwX5511DvVgDkw4pGxKXqWhDo/hc554QF/ifh5ZuovWkg6gC2Em/HeiI6xaQzH6YcPiunvujRPLmsbJ55wXfY4+Cl5TkfqKxq7yTFrNrC7XFNz2kob9lHokHzRcS3qyTgMd6XMXUePnnXdjJPzmJ5dfGkdYIw4eL45n3SfhzVxdW7MR5cc6Z23X41zNOhWhlNUW/da+gsg4pYMaDdQSsJjwky+8EC0xsE897vjYr2OnPMVFh4p1crSxwIrivxw3sKU9g5lmApnJkHxmF35qWxhMXYJt+Bm2zVBsv+fZtvnLG27E0dAjWjRrGnsi+9Q5zAiSF2gXCRPhkDyFd2lAR4ProYyya+0zg06OafKUqWzdfjdexUG1O5lqv0LH7k52k8UgHbtraTA17VZGn1lZtGvDwoYFSbi5xSZrKmEr2k9t8N2spixG/8Q/4vVps+MaslSug092aE0dNGC8wyw47nW95Ltm1NTE8ZOZIrTjmr3+Rv+o27wZp/2dEy0qWuVcDGInfamD/MCvf5OjgdVwpfPiA3DR/HSxt6IITt/laFj++ZKwRkP3LofkHvE0zCAsvZsa8zayDoVoyJjRceGvf5VK8GXHHhMXXPCTOHC/zhldMvthG5FAFVGjDAoaMcHFN1VaT6uIredP4SfCSFgip4tuapGpS3c98WT0q187Trnk8vSim/qaBCDC0Y6RkHQkiGCMTAGnEiQiKrhl6k5wdxhmVZQlq4avXl0UH3oFYbVk0rT40amnxBHd/ksxSAixiKIVZlN6zlRcGKvwS2YksTiBotMi1Zt5rEVhWLAQZ8CECfE81YIP2H+/OBplYn+UrpaM3T3x1reQ0LySEBlvSbjrPJGQVCi+97JC7EYtNCznz58fH48Zwx6p4fHZp+PjyhtuiCMO7hJlCDtTyVWcJfISYcuoUrBlb8U/jjuVdcfPJcN0v6GeXvc/fsCxOAP6vxnlhxwcl5x1Vgo2GU0WupERM3ZxxrH7n8y2wAvxCILlHtdAo0Un4W540GvgQdfR8D57DR+9746YvvG7uPbcc9Pb2qZFeTomTHlzFTXcFRQ6HYSB/WWmRI4VXDISg7Fudsom8LYkPK278eKrr8R//qsQbH+9+w9x3NFHY1OS0YBgc8ecAtI+NDx9sYiZpYNumAqb+OO4+RMnCbCE+elV1zizwOf9DzwQI+YuiOP37xBXXXNdZjTY4laEptEuBbMCU09/ti2sEs4Ifd5tRwNMR4Op5ToaNmGIL2O/5LBRY+KOh/4ezej70isujpNJedunojU1GnQ0sD0HGkG0ZTQ2YSzdANuq7CFci6Nh5NhP4pW3XochLowpi5bSCpFAbJ2a8OGaVYioary7JtCNtQpE53yJw6DjNrfqobGhR4Br4kWSDvjDz7x8p3uEGmTA2m/Ha7J5C+mSnEC10d+4Ssrebb/4Jadm9I2mCM7dviVtl/urIhBMtdTolB+k8cMzub0HOCSt8rfKehoXDGAFBatmEe0aNW5c/OvlV+MkIt99uhXZR83KmrmS30cAhImXuKfjS6M06zSwFhnpYS3dzlIV2FejRoPCdOZCnBiffhKDhg+O+UvXxVVk2ZjR0LRpc2iC46BQmr9avykmTpkcAwd9ENMYy8hp47IfI4fG6GoD25o1LOAFrRl1EZeAoVfqA/y9B31KEqlMOUzgJdgTxn7PJa1s47cinRvnL58hmVjH95YRLEXvfnndTXH26WfmoryNovjow/fHMn6/48or4lQyv1pQC2Y3cC0L1+FI07CWr8hTrMYsvejpF7ftK19iPOuzm9Fd+IyDm0xGw2Pw39eHjoiD0Pdu+eP90btHj4zw6sgQpqbUihxGvVRMVXIzOg+NKnx1ZNi3BatUOOT1xdaJHZnRcMV116eSe02/vnHxZZdGF04rUT5oXJSMUMdixoLtyotTSaGfgv8IOS5pjP+TNwHoVfDht9gGeCsZcUdiEPz4zDOjd6/eecyX/LGUnediGY2SLFMG0U6JhxVKUuFokEfav3xIZ8DMuRxf/N478Rky6vTzzsujaPfFUV0Xh+cGHV/MwdotaIo5D41BI8jCwHaTFwA3hpz8s2RcmsGzHMPLEwqeJnLfpqIiju/dO3SCt2T7nU4Pj+f0SpnqtIU/f9uul8pSoczhBN41bh0BPrtoMacWQUvusfV4zptwTvXEodzYU4tQ9nWICEMvx1jAYns6vVXICyVMZ126SuzMjnMbhOn4U6eT0TDsw3gLWq1N2v7VpKZao6ERES/HoPGk46XIYHDw2VXSrHTvDBx/Opf4nM6lXTizet3a4tSJPz8Y7321IW4+95y4GPlkMUhlsnjjNhgIO7MO3BYnPprgIC76brRLl6Y4L/NTUZeXqZd4xOJbRO3//NzLOagHf3NrnAReNiA6bXE5cdxgi/JJpVS9KHUDdQ7aMKJmBNs+0G7SoDMLxDkIU4+f/PNf/xoDyGg4tkmjuPn2P0RPMil1ylscVQeXuOk6Kr9T6XUtgIewyQwE7pXP2Z5tiwMaHavXrE3H3VXsKW/L6M8//zyyKU8kE8ZTJ3A0AHPhLw7rdFA30pmbPNIxozeoxKs3ZYo5vJNh5PfqQku+WB5vkiF0zzPPxkXgS7/jj88snqak2eeawg9sQxhkMKNSYYS5vvJ18VtZ7t86lnUQqlOYbbF0KUd2o3u+Qk0ujwo+GWPUgFU5uO/ecB17zrUuWZFLMKKGsCVqMAGLeUuXxLRVq5IH6/CtXk1noXWXWO/v5Pm8870i3bn42f590X3yXqabvmfR2J8Yfr4zfHCGv/mO5WbMGHgEgr/hM//nke5tWu7Nseu9Yi9g4CljU6Cn3/3sp3EENX7cOlEDg95LOnL+DiLXlE5dv3zZG/+r+6Zzhvt1GOqU0YkwGkfDK//8Z7w4aUqcTkT9+osuyhoN4ody0xR+M7B0cFbXYEeIyIddX/sVv62fII7L9333O09Z+WLlinibuht33n1vrKJft06cd+ZpeeqEWb06FzJDCACWgjHKFGWoGQ0CSz1NXmOGgVsGt1dGdrNmrtsMHA2PPfFUPNH/LcEQz/7x7jgJfWxP6ld4WpMn/3j0tnWydJQIm7QNmJeyWWe1DibpyYw46TeLQapDc48ZDffed2+MW7Akzut9RPzk3As4oeAAxlfo2NJJvmhLPUFDOXXqXbxCnmGfro3wlJb8W/17OXg1aOTIuPWv1CVqVC+Ox4nRs2evaN2qgpnoBCycc0XNs8JOKHSOUu25kiENvGlX/i/H1EnwNZlZcxfAa6CncQMHxY/POSu6wQc6d+5M1nP9pCfHnXYMeJL6PGPUES5vkB6VjRrDyReAk/W+KkGzX4IPny9ZgvyYHK9QA6KsURMyS4+KA2i7ZcvydOpkoBP4Mdlsz/lnJhltJw+2D37Xvkrbgb+rYTupk+XWCZzgI7D93sYhcMUVV1BM+PB0NFiXpDLyJvGPsZlNYnviMyieL20o8Vw+WThgkF3ck1mOzNVi9GZUv/la/6i9d/O4+tJLC/nRgK0Z4JR47fxLNo2OaNcuG3dlJHb74CWPV4dPXIL3rMVRPQrb6dWnHo/3Fyxj68SP4rJzzsmsffm5wcfMikBmODYzRQpHA3Vn4FnzCCAPIAjbsFWLOIvsy5YVFYmbOhq0QZkII/hhX/9zRwPzzwgOCOyVHlU9nSARaAZD3UYxyGnUaPgwFs+fF9Ux+rp07Bxty8ujkouLAHcPjoxHZ4CLNhJC/xWKnNG8C3r3iJPwoFsN3cU3zUomZEq8xq4CWSXX1D2V3EwzEtlBMgWgwlhCFMFFpGUYGJ4z++ALL0XPOpXj6LMuiCO6d8egbpYCrcREjGRldXCIX0Gt0pgeUuYlMRZGDATJmKqCqFuYi6nWFn56e/DgWEO65FFH9cFBsn+0bt2aKvl10lhXwUrlQiJzWwPMMIU/YxTJTe+SEM1CKFU4lZgsxKKj4TMJhpS3zjC+7hjsnh7QlKwDmapjFyWTCCFMha5CWoai8PGS6dmfHlBfphn63WKiXUakPubYo3kYPT+mKMkhOHeaElnQWeDzyZh4VgaS7cFQhK/t+ZvtZTaIzJzxaIAYLTHN04qyo0iL+vD9D6K8y4Fx1ilERdq0AcbV8nkZhETtWPR+JpMC9qk4AnsZtX06Rz8r2Cqx5tY50NEwjIqyT5D2qBl8MW3/CGO0ZVlZpnDpOU/jgjXSS6zzIoUnayxjF+4ptJlHZbQJ25aJ+K6loIHdHyb1/PuDEoa33XR99D6iexaDLPbS0y5tmy6moNQQECaZRcETJZxKnKFdjQJTYWVcHsc3Afp4nP1dny5ZHke2ah4XXUZaMI4knRemYuvNVVUuZUuolCqUVUIZYTpGNO52MNEdtOmxnKaXK0Q1jEZ8Mi7u+fvjQZwej+mZ0e+oY9hjR0V1MxoUyBi91mgQ1mBPbp2woFllvP5fbtoYn06ZhME8NDMaJs6ezz0RjdB19qpXJRqguNSmP2xicIBtKghvDe7KjgNjUC/+FuoXWEdBo1gFVNyAQUBDrKdrqmBij2sVUmN3KszJFviKca1YvZpikFJvpNFov9de+JM4EuHZlDT+KjxXEzqphoLgTcJXgKSA34XnrqM0Je7YjlFx4e8Z7XMx6vTQD0cpOgIltOtBB0XbNq0zi8dxFkoyzkvWSJwR1+2AbnPMpke7nUvcqgUMauKcMYK0hS0UC5ctiYkzyeQaOyYWfb46zj3zbKqS70f15yZE3Igg7OZ+zU0c9TgrRo0eE7PmzomPZ01yinlefT3eG+1ZPRrXr0MES6MFQ4GCkFncEc3IQpI7tpaUb1AJWIPNwFuDwhTaXXTKeDlFE5iKHziEqnFaB7i6YOmymEFwvzHrtp5lNxZ4OQrV8cBBRW/IUE5xeeFZhxM3cob7cSijLeCRwloni8X3FM7y+eooc7VwSgnfNDbAAelGnBT2flYpEn4qBNNVFP/5TAwZN6GoG3Lz9VT1PpBilnVdvsR1FizpKRUVxuP3OiSFrzTjtjJxRzwqlOkie8v+PkZhufXOu6nrQap3t65xBkdNdSbywq3p9FThc201cFUQk4rkKb7EEybiexo48Bt/d54aZF9i7A8cMSL+QDHLnq3L45h+x8WhRBqbAxsdLzpklUmZEQHdipiFolEY7eKP48hLgPFZ2Ag3TxbyeMv3hw+PRbNnxdHU4DmIqMs+7fYhvZvTe7hHh5qwUcUSz70ca8KX+chHUwYybtvWOJMXabTZ/lTw7fl/vRblZDEcc2SPLApZVtacRr7LjDzHr3JjQTu3JTrvdCrTngq0vEwDwHZdC2WY8C/kxwQMmDExccKk+AnOncPIIvF4SxVx115lLTPpwEWp2raFk06I5AO0rRyxD3mEzyjDNVRnzLRq+PAY+Pa7Ubd1q7iQCGmXzvtCT41SxriFx5fjt13HlWsrsJlbjhs4+VvCzLXmg2vlcXyjMLxefuwfIQWef2zfOPOEEzhJZO/vcUv5n05kHhLqJQWaBpMXqHhqpBjoMGL1vezmd4+3fG/Q4Pj7q/3tOm6//uo4BnrS0WAEM/kuckk+ooNNGVIDuWlar3xImFjoUKiZzaBB5xopu6TDiWz3eBpDffTCRdGF9i//5a1ZvM4aVso1109c9nINhLfj9kqcp10VYRV4YaIxqrPAfnU0fIQD6dY//yVa89vpFPXr169f7s3W+aKxnrIaXLQP2xPuyn6/l++aaWBb0lvyAO+Fd4inS3F+WZPrOQyAfgfuHz37cDzyIUTucVDZtjqFYy5otMBncUP8cwq2n0YC7cv/bb8uxriOOyvZu3XiHRyDRtmP7qNjbf+oAH+co9lX0nRGVLl3OPj14eBBsQxda97XGwMpFS1q75FHStavWQU5h2zEy7ADBzernmMAgsxZ2oYe4cE64KS3DEgJT36Te2UROICbhZSRtxbi3QIf3UANqS+/2oRhD2+CZJXADfdqEO33PYAaDfVyW8wsjr2+m4yGQ3EKul1T+Z90xJpJgwkP+qSbhLN06vfCSH4o7jsudSvpycyl8fDIgRSge/mzSXEsPOY86th0atsmaUnA5pY4njPaXRM+oE6jnu+ztqfBr5NNXdXTUJSzGmDijXJbh+M9Tz/HbCjofuH5cebJbL1r2CB5TOo0PFvoSuh7zEdHgwawnwEOuIQTG90ni+4RQKlCNoNBIMemjv3iK/+KV4cMz/bvu+kGTozqnsWQS1llW6ErdXjtghLeiSvqp+K4zhHxRRwAUOkIV98zWDFh6rR45LFHY/rKddGzbcu46vKrs0aD+tZm1ks6sS1lWUmfEbbyFvE/g5r0U9I75KPihNkOnnr3EZlHDz/9z+jarHH0VH7gYKtoWZ7jlCtZYDXlK+OTPxkM1Nlgn9JRqTaHARXXWd7klhe3pXjqxOARI2P84CHR54Tj2IbUJTqQqeIxvkXE3u1p0A9jdR1B2fycOhNw0MmQcga83Z37PEZag/drtiV9QR23afDhgWT0NcJx0dMgKhmgZsQZLNbRq3MKIABS1hIe5bzlN8JFHi9MhHvCjmd0Pio/lpFpPhWn4Ceffhqjhg2L03BoWtOqKXygNvpFVcfhutGO62e7Pud6ChPb8ZVbWvhOGvBGaxvxSMyAD3jq3Yi334vqLZrHmaednsXoPe7VbSrJI+FJ0quXYxd/5M3CXfpNDZI+QdLMKEsHFX+uRn6MIzg74PknYwyFv8/s3StrWrUrr0gcBwL/qx1wW2eFmTpu094E/XwOD9TJ2faQLmzzZMtUeXmuTeIlXkn53w/9+rc4GjTeXCgxwcVHQwQuMI4UyTuJRkyJD1Dm58yYrsYbHcpbZ6E+jbStCEr35mpw63W2Iu6kmTPiX2+8mYy+K8XxurDf0IwDGVEqbXqJyGjQAJBgahPVtqK5hCQRFsKpSCnVW6YQlfglrDUYXp/i+R8GIbbYs3Ic0LNf7ItB7fEvIpT3puIGIsuUJWIJ2GdrSdh8LzGJ3EbTZE7ut9HoUJkzBWjkyFGxYdnS6HJEj2jdqnV6pmuT1uVYHeMGpIqEWIvvjPIVokhRWkTp9MbradfANxIoYa5j3EuWLCFtbFZ8Sir8Phjr1q0oI827HoJV+ElRtqshJePzs8JcD7afdUYkgTIOmbiRIufovSvYYzsbJXT29Gmx9gvG3vvo2KdNmywUlnvemb+KRLZPWxK8TN/iXho1CnvnJjOVyJPwWVcZ4TcoJPMXzI/J4z+lxsTkaL53U/Y2c6QPkTQJ2naS6YE2WYCNcSaR04dwdl0yisffGQnj79yzyrg1qtewZWU8RTIHctzRYjDvjF5HRm8ET2PW1LVSgdMgFHdcAwWzwkdYFEwERuJv4G0WCuL7xGNxmcssmBEYF2+M/TT/vvK0U+LgA1EEWB+NMtOl9aLraLBd21cRTIUOMKWXGvhkAbRdTNH1Bdsy8uKRqANfezEmbtgR3ZrUjeNPO5vU1HbwMxw4tC0+ZgSNMfpZmGn4Zgo7OCPsijoNCHyG7OktwkVGaDHI8UQtHnu5f+zN6Pv06xOHHdo1muNAchuSDruSwE9lzrVl3p5aYTsbtmzOk1TGT5lIRfzPY/q8RQmDcrIUy5vUiaZ1a0e96mQ/ADvpl6dR8okQyxsZq0dYahyJ25VxNKQ3nb9UgOG50A3wk7cj1PZge8hO5radymrrqB2xiLohi5awbvy8LHtlbY/pjcG+L5GdPeEPRJrAPxVy8dK1FPfMSFGBNCVbo8htTRpgiqjSurjNaemSpTF7zuyYPOqT6Nj1kOiEQDaboR5CtDBAi0waldbcMkF7GhPfOh/xlj5Vhl37utBR7RoYXcD8W4pCrli7mr13i/CkT4jlny+NviecEe3btkNpcNsEUWAcO5s48WMRRoje9gWfc+/iuTnLFvy7V50q0bxx/ShruGfUreGeXPffu18coEl6KbxQLDFMzGypLsxzDYrooTQJsqeAxB+Rzoade+hoYMsGvHPWooUxbvG3UZ/xbuZ3NxScfHRfjsU7PPnIZ9Dq8MED08Fz7lG9ohsKSzOix/IZjTmj69JMGoMoAqYry8fkXTSXdC/P1YBmsMnnSkbGAvDovXcHxtBpM+Ow+tXikJ7HRNvWOGOhJ6P/bgPzmElxxVdxQbf8psJs0VsVXulXg6a07jqRpIWps2bHC88+n07Hk/brGEf07gMfblXwKX7XuJMmVTBcV3EmnSZ0xFBz/sozeY/fyzNUjHSKboCXjoHX/OPNAdG9RdM48NDDoz14o/xQ7kin0qY8QLqSTwoTx2VWkutiH8oVvytwUiV0S26P+3wpRxijiK5dOD+69OqdhbyaU3irNvCV/zquLJTG2uZa0E7uF6VPncYaICqqKnRe0oU82AiZDm4LEw5+561osndLsqYOwQneihoNTXJNlTGFTC0in0aDVJ7TgWK/+YKeoSmVH9dC+NmHR2fOMPo6fhz7hFdE35NPjH33aZ9jkhbli65tqQ2fsY00hKHbdABIq6yN/Fr5oZPa7QHOe978efEpToxxn4yPOo3rxXFkZbVv25bic/USDhpGmzaw7YZnM3KLbJXHiozJ4zX6gJU445VrS7veq87hOeufvDMgxmCPn3jwgdEL+eFxfAiCXDN5bq4bOG+bjp9BJ66n8svYhbn1oqxxo8zU6NLY+4LtASNGjoyXhnyUUeurT/sRe6c9qtAjgAv5pmxy7L7Ec+Wy/Es+pMwT36WvlE/SNldJlzBjYsTwYTENuHeuVyt69DsB2LRByYaeWPsCBoybGQjnlG3MK+cDfqqcOw7pVaO4Nk4tjW/p/CuipBOmTIsXX3olt3Md2atH9OjZK4vmFsdb4kSmDS/by/aBcdImNOB30qs4pK5TyEZ0KHDJbNeVq1bHJwQ4PhoxKvYvbx4HditqktRjS8wGZJfPyTd0SNlP4h1rYfvqLY5RR4b0I+6LMx5PrM60ZvWqmLdgQcL+K/jsoUf1ochi+yjDMPKkCenetRI/PXXC7Z3jRg+Ptes3xZJvC4OjfcNq0QxnVlndatGgBvjuCm7HiGW9nVziFn0JU3GpcOIAcsYqbgtP5TBsAbmmowEHDHDYjlW+GT12NRk0S79YQ/0VMs2AlatUt27laN22E2nddWPhwgXx5fJVcfLpZ1BcDkcAY6Xxgo6gG/lfZunRpvho9qhzN7vLtVf/ky/piJQ/qq/Jk+fMmRPjx4yKaZNncOJBS6LqPaMCPiMPUUZ6VLpzcI97NQIA8jT1fAsky/c14NTBbCt1bvGY2bpW68AZt/N8MGhoyu0LTzou+vTskY5ko+7is0a7J0/IP3JtoU0xUl4rzgDYHLsZOdYmqVG3DrAr+PuiJUs4UnRoDJw4NVpx68lnnpaR9TqMXbxynOKF47e9avB5jXKNSJ2W4rv3Jc7zOZ0wwM/7dTTMmjc/3nv95Zi2cUf0Li+LE04+leOA22bmkVtylB0MN3FZR4Y8wvUv6dzyK/Ex8R64KGfEe2nbOgcTpkxN+VdRr1rs37137IOxXobeIey9zLqz3oiQkMc7dvViBpj8WZ1DvPPoeOGtAa9uqf3hsd2fYPTOHjs+Dux+GG13iBZkZpmZkroC8EgaZMy2Z4RduncNdG6qX6aTgzlqRyCMterZSrw5bRCdpuPJcLXAcWccX9o3BiPFD3FNPub6Jf3znW3IHZIegLmwEf7yArNKfJdK5APz5s2NyQR+PobfnHAM2RJka9eHBtw2bMa2NkHJSZpjYy7aNuKg9CyuJuyBRfJV5pf1J7hvIU7YCYx79phxUQ0HT3dka9uKVsnrlE3f27AMVh5WyCeDe+CSOAVc1CXNpNTZq73pu7LQNZ05c1Z8POSdGLtycxzdqX0c1atXVDRvDo5jD0BPIowwSLkvPOhjC/zKzOMV1F4ajXPlKJwMZ51zdjTbuxxa0jEsBvgfa/UDv/4tjgYRNrEJDEsvTwJFxqHZsYO0+Ql5rMhnRMs3f7U+9m7YOPZq0DCLOm5a92UqlnrsqhMRdEHnz50dH7NfvYx2Wh7UKfZCKdLolkGZSl6Jxc/0QhcBgb8FIletMpoKhyEqQC4EY9IBoCBJxkK7Mlr3Ec3+ZHjMop5kW55ptn+HaNCkaR5llMjEfSKWCq5FVvRkrcPRYKXQPfHiWvHXZZeRpTeNe91rI9OV2DyTe8LIMZnq3alFWTRs1pyMC9LPaEtjWWazESVd5PboR9FpHUqExFkbprENItGxkek1KnoIL73FHqVkPYAlE4gaMc2u8Ld9uh2RzElmmsVXaCMFvYRCXwqejTC89cy5Ku3Uon3HKBEpfOxLJizjWU82xqrPF8XqeYsyfa+sTXk0xrnj77ZV3F/sgU1lh7ZNa0PEJtFU4zNqdaEsCT9grXDzpUNj+ZLPY/bEaTGZMXqddlDn2JuoumMU7kV6pdGQwkhniglzjTrXsiZjhFxzHApwx+yewMqssUdwzZs1IybPmh/Luaf33nvFwd17JDO0CNpGhONWjGo6KhRe4KCX9jsYV2ZS8L0nRzCUNB6FuXglM1HZ82jRmZ+NiwnLVqdBdky7iuiwb2eMu6Kg3Fa8yaaNuQ6u63cwbRUGlQwvz71XMTHirzIqXhoREDbi2lLg/un4KXmcayfuP7DfUQiesrx3w9cIdmEA/mlQynZsn0VMPMxUdvDDjAHTsL4lsrYHbVeV8UIzCqFpOvomzcmxHNm0VrTqRLGt+g2zRkqmRDL3FM4YIxmll2pxCijgrNK8Ei1o8fJlRCpWxbK1xokjOjSIaLdX/Wher3Y0qAntkt4oTRhZVxny3XHraBAKbq3Q0SBUtm5D4OBlkNmqfG2j/x2VWF0Uj+9gzN9hhK/d+C2ZJJxyMZ89lzz1BS+vXgd0zGODqgGDzcAGDEOQQ+e71nIzc9hIv+JRbb6XwRt1UUhIG4mT4LMG1SaE+dJ5s2Pi0jXRirYrulB0DyW1CrRaMiy8z5fp367ZRhwz66EpFS2VOWl1w9dfEu2qmv2pzCj013+zPlZ/uTxmTlmWzq+TDgbfm7dk3qIhWyKo02CdA89tX7BgIYruili2kf3UjKNDjUrRgtoj5U3qRwtedasT1dyK8bhFxZsIH/9lfRrmvJGsFAsE1q2DMgIPkk5VhDSM5cXbVCS4fwd97SRrZPeqNeKrzWSZLcSgnbkmacqtEyq53dmHuj94LX+bP3t2zBk/NubzuWfTBtG5yyEIciqAI9R1rO1kDVnKpBP3cVZCETIV1S1kVYCv2R3StUqolwpF8iQ+q2yuWDg/viGKUaUOWRvl7aMhxq5Ks4qOz6nMlvBdz794Ik2mAgDNSE8qFhqT9qGxoXHk+n6+cEF8Mn5SbgtpsVed2LsjTkEcAQWfAT7Ay0ujxPs3IVe+YV3FziriKbDTHZBOMvr6nqeCn/Y1H3qauXxNnuFe1qFtNIWPqSQmbMA/eazGYjqlwb/1mX3xXTqjiuybgt7SGcAaGX0XmK7tGvBhIoriUr7pUqNyNCOyuScV+HVyKDvcb8pEEg72s5X1/Yr2xdc9oXluKLb8oDyW8D2VXOZh8ciVSxdTc2ZpYEJH665dolGTvVBYMXjp+2vkyxb4mPy2Ooa6ckvYb9ZIlLcBF2GnEsdypMxz3sruL+ERS+bMxCGwJBbwW5+K5lGBoyHr6fCMSngquIxTZVF5qkG0mZd9SD81kBlG0zSWNHasXWHkWQVtKQ6SaWPGxlzabsTroC77xV7NyFgDr1TeNIws+KexIh6ZZWMdHjMN5bGIS3gSY4ZmSvKUW1MGM7VUolcRHFhCxlYtMrU6HHpkVkR3/63KuOm1aRDRXuIn7ci/pDEd+Kazuz4a5uobVsuXf8ojdGpO/nBwfAxovXo0rhL7HtoHfAV3d8FbXBHfnYtySdmahjlwM8thq4af4wdGUALwV79yuVl/HETL581iH/qmqN1k72iEzqEDBgRIGeJiOUfxRQNAfrslcUi9gR/4LK/WMFKnsfp+NeCnk0Nesmj+3Bg7eWbK1kPo8+B+x0QTtlFJcxtx7riejl+dSbltxtRW2hQuVfjOI1mVTzqAvdJx4Hz5vB4nz2SKFY/l83689sExWI5DVkeL20WNkvpZHJOmbOEb4KEOYHE+297KPeKv66Js1QATPh51uByn5uiZMwPKIDiwfzQiMGN6v1l06/ldWS8OW5PJ1PAlSxbyPScdoUI6l46NqpEm3ihaNagRTWtVjjqV0T2Qsc7UPnTgqbsQeGR8/JPg9BfWxgmKI8AHFEoetptHQ5PRsJW/N327neyJtZz2tTpWoo96u5ll9UDWDmz18vjTr9asibXAv0lFW44ab5QGl/fpAFV3EUeyaB/wFDYbcdSZSVaPOel81qkqz1IPkHdKF4ws1sJnls+ZgtwhCMU3rfbdJxqiB1uwTxxxe4OXjon8mwnJr3S0ItpxGpBFzH3SqgE35avOQWsoaGSrwy+ePCvbbrpfu9i7wuzVqhixRfF3cUV81PmKZKYNA4HqYBjXtFud1054WBr24pdGKTQmH1kHr5k1bESsZcL1GWP5IQdEs+YtcpzyYPUw2xZO8g4z+sR5caawEdSXdJxCy8BCGeJLp4H3LF26JCaN/jSLnzbHPmgEXHTa6UROPONZ11d+pt7/Ld9v4aX8dezCE4Uq79WIhwmm7NOp4vNzCNoMWroq9uG28qb1oklrToUwQxMeb7tuYTOjIwOIwH+Dawh8qsMTPc5bvUWeJn8uOdrFBecrPU0ZMSZW8PmA8r2i8d7l6IEENxir/Mkrgy3SPXM103ET31sfo648jgFYV0+el/Ia+tjJS71Q/XUtOuCCCVOzr+btWkFPZenYs91vNuJ05D7tnFKgcRt92L7U7prKucRF6U7ZKz9zzQ2+roT/Tpo8LeWHevBBR3ZLHV7bRv7iunqvMJL3SsMbWO9N4Nue0HQdxq8jXh6mw0E8r4EcE+9XkjWwcNTY1N+lgNYHwwuQfTqC1X2FjbIt+Zjjoj/5sHIqHdS0JX82c82T4gzCaXtUQc+RLlZ8sSwWTPo4xhKxKaf9Hj0Oz2w7t06AVOlsyOApn61h9S0w2MK7dXzW40x7c9SoeIAi8+eSydG0rCUtiJleanvFe779QP8BdkDv33F934pxWogabkTMlU8U4pg8gb35b8Q00rV0EuzTooL9vk0hGoAOoph2LgNQoOidNeVbb48RAQlEQ0HvvUzdInsqPVZ+NzVQpeezSZNi1NsDokPXw6JV27bRmL1tCg8VmTSQeZf1y6RkmgoQEanwppoxUEQSTBuSgBVYIrW/W7xm7KfjYuXsObE/qUIef+cxRjJgDYp8FmPMth2/hCDipTLL/MDSRFS3htieSK3nUWZtutFSUvbefebZ2AsvWPcjjqQeAsYhS5IwZByOR8JUOJaqqm+G8UhQiYC0Y1sldPR+mZSKunPXoz920OA4jD3WnTq0zzG45CrtjjVfwIMm8iV8JMxsQ2Gz6x7fvXzWubkebhWZRAGXBTNmsteMPa2tWu0SSgVDzojBLoaiMBTmOTfmY0q9BGhftpnGIN/ruZXorRi9nEyC2UQZ9izbO7oC+0bAXcEm4adDwmd5RobJgiXzsS0jC+KNsPCsbMWCgsTtKHqvv17/dSyYPy8WIQzXr1se7Q7grPqOHCG3C5/s3/Q+Z+y6pdFAe3YjA1OQmE3gOFyb3H/FdzpXFDzL2aM4ZfKk+GLBrKjZcK/odFCXqKioSMYq3GxX/FIp9pVMdBfDEy65VYLf9dRm3QH6lnFn0Th+nz9/QUwa9VEK6RZt2kWbdu3yvHqNys3gpEqI+C79qIhk2jzjzPkzbgubuZe8YN5uHxHnYYb0oed62swZMX/evGjXeV9S4inuhBBYvnplLGY9Zi1czOgj9sXR0L7pntGS1P7GtavhCCpwBqgwLuDAuzBkodNwM0q9O2kO0ta3ZiMxVlMvd8rMgcF2NDWdDUbd0ShizQbGwRgmzS/g5V5Pr9Nxwhyw775RH8Gvc2g3BYF4yuKoJFh1eQSRyb077Rv7k7ptRJTbgEPh9Er8Zizivc+o/Iqn4p04pde/pKwkr/B31lwaU9DOwHP90ZCh0feMM6Nj+/aJE86zFkpdDXBF551ZPW5jUUBrMCjMquGV3535SbvfInwqazgCi2UIwFlzZgHbJTEVY4puogN1C8ob1o5W7LduiTOnXk2UhK0YUjgaNAjEHaMkzmHjBop2Qe91av9XR0ORnSOf2wq/3MZ9Om90NFQim2LdN6Si42gYO4Pigtyzmpf9HksU9xDSFRvhhCrwk+9dP0ClkekRolmVHhyvjpKjM0PYrV69JubPmZOGpvDrfHDXLBank07ncOI4MEjexPiFq3xe2peviBMaZ8lj+M4oQSrG9KOy/gVRmplkw63zGDmOUN2nbftoAU+oA0/UwFaxdSuFyqv4rmJnW46Px5NPywuT1zEODSM/q4z6rGs67q23Meo7pvxoVlZGVku9bFvIyEvFAWWNl2nx4pNtyieNstpPOi15d37yY7rJaPkE5N4Xs6dE50N7kGbKccQolY5zA4aOyq4KeBpSOXYVeo0InJ/MR8eVSn/yOcaceLurPz8vX7kqRhHNljd0IeXctlXebF/4eo88UUNAGpf/yRuVQ+JqyjrGmlE9DLnv+TF4uhG6X4j8mIj86NS7d3QiwqRcTQch8HD+ZmhokKZSyrjkO3SXPNjxiw/KSS/bls4ck4rlCvjkNGT3F7PmxAkXXZjbAIWhGSDfG460ndE8YSFAuYSJ404FkXE4P+8xkCA+yGN12OicmDPuk6jGfuKuPdnzzhbDlGvMXV5hJNuIl3wwgwaspTSpbExZzT3KD+V54hZj0dlolHXu3Dkxb8bU2LBicezb9ejc+698/haHdjpioItS1NZ5K/fEk3QACnt4ieMWSVyrdLIxPfHMPe7Tp06JlYvnRK0GTTC+KWBYXpHj9EhTiVYZZ7RT2ZQwoT/hmgEH4UTTjsPMRfsR53ObC/csWEg205DBOacWyL0KdSZgIw9wrtKi8HVt1WvkX8LEdpR5/JiOA9vWaaPjQPzVqWJ2zUSikqPfHBAVnTtFa3ikAQW3/riu4oxjdq2EC4POfl0P15NO+B25QB/e7/e2q/EiL1qD4T3u49GxesbMOBCdpjnBkDoEbJTv4oXw07gWAMJUR5TOruK3wkFh9Nn1kPf7WQPTY89nIvdmTP0MeYfTQYuf64CymtES2JTXrRpNa+wWdfdAvlUqHJ2OTR3TPmUAu2OAyE8d+391MmRAA7DxlIIIuQc/RzfevG1nfE4kd8JnK2IJrEV3ow71TnvWiKNPPC3atmrN2PiWfnZKq2TKMZPCOZRLLD8QZ8xi2pCwmTVjBo6ntdHjmL7Ujdk7f3OMylrxQ71RWGjkZfYY78LKbTDOQ1p2zb3kOc5Fnr+ctPklny+KpQvnRVMM4y4pJzi6HHyRVzlG6cjn7UddXZ6T/ITfkyaAgXxGOhCXEl/B4y+p2yA9LSJY9O3Gr6Pj4UdGp04dMwovz1LmuRXCGiaul+uqruIchLv4ql6YuAuOqIepn4tj4vTiJUti5IgP2Sr6VbRpz9aZilaxF45tx5Z6EO9mjxaOPvgt/bi2ZjArw8yyyowi5pMZNcxBHu9LvjFz9uwY8yZZYq0rojXZCc2aIz84CloZYf8FbHEU0J68XngpC2ks4aA+rRxQZtivurBOTbPkXJNRY8bESGou9O53TLQsL0/jWX2wuIDPrnE5X9v0ZIPU/4CTclyngdk+Dia33DA/HS3Ofw2OrjFsaTZrpSs1qtxK4JidW64dKOuYQLr8zj6l09QZaUe+qI7s+mdtB5/lu8IpsyUWwIOHwQvaH3YI2zgOST5Qkh8ZhGB8wkkHoSf4GNg1a5RlLfCcvzObl3dx0e/FHXmD9sfcuXNj/tTJ0e24E6Jdm9Y5RuGbQQnh62y4n8fzck7CJNfa7xM2Wls6bpkLvMC5edTo8iVLY+G06RSFrx6H9DiCbNeyoj4D9p5rZBBOfq68laclvBwv/XsCHYgJ7oKzfDarwTUVZz2yXbioY2/EObwRJ+c07MA/PnhfnElGQ5Ome8NHlGuKB3ULFuEHfv3PHQ27FjDhAIBFhvwPzbwKnlvQMmZMnxrDPvgglixYSOSiehyG4GzfmjQwgP8dTERHg0JEweZCeFRf6bxbBbGKvwqhOKMRBkvAU44Hjoitwm7EmNEx4sOh7GvbNxlUy4qKVBR9RgYkI0pmyGgSAUE2kVuFS+RwzBK0BpqKiMwtlXmQfw0G73D2/6+AWR0Ic23LuJuQUplClbaz+CRzTQYooTO2TG/d1Z7YIhOTARsB9zdTWGUuIpEVqQdQIbaMtLWj+/TO4llZYIrJyjhtX2Veg8+UwO/oy/PSdVYIF48lVIFwHsLHOajY2b6/T0Mgj/vk4zhslxFhZoUCIBkl4/IhCVf4+K7yrdIo7EpKgUaB96eg4j5/s8LtypUrs6bD4oUL40ccebVfp04pvFQWhbvCxbZ8Pvfpwhwdp/OxQrUKoUpWCiaYo+ug0uL3buVYDDHOpHBcPRwMfVB03SYi01ZQqliCGlmvA+RJAeYYZbQy3u9hZ5v0r/fXd9d/BQUSJ6EMzZg2NTNQDjr0sOjWFSaLcaGTQUUljwJiHAAms1GyaCbwSkFdYk6J+wp7YE+7etwtkLSA9LKPSdNaumwJEfK6cRB7uDt17JhMzLadJ/8kA5UJ1WD9VGwVekb0XEMFgnOQyVcnwqSQkhG7thMmT4kR7Dv1mKv27TtgUB/A8XotoDRPWihw3mcdXqHcFnSlo0FGLQxTGaNt8TWFPnMz/V1Hw6ekhs9C8LfHsPBUks/x1s5ki8GMOXPYr/spz6AM4RZu16xyVDRsEHtRS6CWjgbG7bzMXnBNjHwjcjLDQUeDnSuM3GPvlgmLDPkC6dLJsBXtbNvuZDTsUS1Wkb46iX11Iz+nUjb9sYU1r1uuuYrCgUdEBdHMusCNABN1XooicMJqzvz5pFV+EM1JF+zKlitTBp1lFvoE1zJ1nbVSmBTKj7RbbHkRp6R/YZOGBfiU97Eu0pPKxgQMo4/HfJJ7Kw+iroACxqhaHXiFWTeenb6ZPbxb2Mu7HVotjD6Ut924D85lJkcezYpjZT3tzZ43J8aOH0vdglkx6JNPco6t+LeMSbdq1oBjPOtRBwM+ukOnjeMqeBOEBagLXiBO1rA+BDB2nOKONKWDrchoMNyGAN2djAGcOOu+2RqzP18QE+YmywijH16Xs+/9mN59qN9BFATl3iKkLqXq0m60uWN7sd3KbTk6Gkwd1NG6jLT56Wz/WDRvQfZ/wAEHxkEUXatdg33Q4LN8LvcVC3NgKf0WeImQZh7biRJoXO9GxosOSZV019I9uSolCxYvis/I5DJqXpdMkE5EyluXV+TeTduWZjVwxGP5i4qofEV8k6/JB82q8jvXWNh4qZhZRMuj3sahzDWFv7Rr1y7KW5LN1bhRygfvE68zm442vGrp4ODZjABDbyrPKhFetl3wSruvlFXGR9P2YvDSYyrbtmmbabJmU3iSkDxWnudLxT+VNOCdpMk/JdmUNMpcc+y8e3mPSvQQeIGyzMJfFpAzJVVF1HGI+/LjkkLluFV2nY+p6eKLY9dJbuE027FhcX0tDqTpOHjGgZedibAeylFpe7JNMWW0MAeuwliZUTJaUg4lfFW4VD5VolWqC6VJI8Y5WS9i6VLOTp84IVZgxJzCccQWFvO3Uiq8tOj9jtdon2MXDsoPFT0NAi/79x5pURowyr5w4UJkx/QsRF0Hpb9fP47ExeAV3vbhHJyruCK9mJmk0SCO6LRxPZTp8oht9CMM/b4WgYAvWbeJ4OMUeIHZBPuTCdQdR3gTsjTFxdze6djoRxzQ+HctHKd9yptNf3ZtbDMNYtLDVbLdduX2lk/GjSXTbXHUYZ/+oVSO3w/dxpo9ue2SB21Hp4oOBOFQoivV0mI9gJXwR39I5wC9iXPizJTp02LIoEHJt9p26BAHwMcqKirSQHO9NEydd0lnEhb2l7jpGHHqmWlQ8E+ckMDetnVCaQBoGCmfWkKjHTgVq01bovHIcB3njrNELyU+YPsgdsp9+Yk07Trbvmtg9pYoJW91a+qwj4bHOhxJXcH3drStk6R0pLG6SdbqcL2gdbNG1D1c23XgnHPTKaE8UDdJwxeesYjMhw+HfRiD330tVrCdYd6XugwiDquoCx9uGmXVdo96u22JuruxPUN9Dx5W6EyFkZKOPMZc/AXuM2BfnkIiFmRRQ3k2fN86RIToMSV2x9GwhiKqy2IeonNP+lvO6/DyvePci6+Kgw44iL31nKoi7HcAF7ZsyIt3BybSmbCRsJybRtcXy7+IKexz/4pAylHHHJNbi6Q9nUGukby24IU4XXlWehE+0r86qWvvOurAKviOBvfODMx8vgSja9HCWLZ0KSe0NU98L3P7pXhCH6WAjyMSsX3eS/z3i+95M20rb/3bnxzTSqLkHq2u4aV+sy/6TJcuB2H0Es0A33S0etKcDn1lnbzNwJtrJ7zNovOYSnVlBVauK7xCuhJOc2j3o+HDkUWbo1Wr1qmLlbcoT5kkHiNS0VMIdtC+fFEjNHkisBBuwkX5okyS/+qglC9J0+L7BHRJ6wo0JPNlHwrVivc6NdMZwBwLmBf1QFJvVRfisj3nk/YJOqVtSxOup581+s3Afn/IkBiHDdKzT5904BvozK2KwFgcVN8FwjlXwSqvKsHb+WvL5MWPyStYM/vVLvmCrMJhjN0173nkkdR72yv7Ls2PXazoEd9jdTZja7Yjr5MnZQ0K+rFN19vZyWc3YVBPR4f74P1B0Ql9oOcR1NFAx6aDzIIRdsp616k6vMOsMXWKdC4Bc+FO1wU+AR/xzPbFSWl8DVsO3PK2YMGCOKJnz9gf+SGfEiaujXjmMzpxvHxWuDp+5WE6BLjHe4WRsBIOwn8ZsmnenLk4HqfCK6pSi6kvsrtNjm8r+or49g3b5DwiVVpSfibtQFPik5n3OwkoaavSesoAcd3xfUXwesbsWVnvYs3XX8Vq6HUdttSPLr0oTvrxKWSJNGcMxRbUws4pdAvn8EO9/n2OBoCrYGX1Ei0zowGgi6YK/JEgs2ls9WvWoXou+6FJjxNJkbpibXrYknGyaOJWaS+MBFQIKBQyBEc+Q5Qut06g7GJZxTCLDH4wKB0N+7FvSMFWHSJFE0zDS6+TVypcEJsIpaIhMYl4MsVkyCC2yOd3CnHTH9ficX73/YGxcNbsFGwWVmle1jx2gyg8Mmc7AgAsknYKxrkLYQuPHr/Rnv3ZHlhWwAhmlrDi+9kg86uvvooXtHkcDzLLoCzAYoOOKTMmeDeSsofzlaWk4lwweMnatmWMKu/5DISiMiYT/QwmOBxG1Ye2e6CwyDgVDhKXUREZk/MvCQYJDcDAdI3MckoFYxHu3CwI6R4FgO9VRHU0fDRqFGlyc9lbdE4cBOyZbDKIFEDOnT6SacmYnZftc20jMmP7yRB2zVUWUHLgeBTbnNmktaPQNWnaLE4+6SS2cjSPHQpExp/ReMZuSqZCP41919k+6FeD3RRCU7R0ALgNgonkPNYybhXcqcBmzZrV0bV7D/YQ9iRllqM4YewayBr9vnSCWTiyKilYucD0DSIlHFiK4jvmrOGHtZfzW7pwPsfdfBSLEMzWD+kGAz+A6LqCXQeL+74co15lK47b/tF+hNIAAEAASURBVO4ws/+Pu/cAsvO6DjQPcg6NDHQ30N1oZIIkCIAgEgkQYAIpUkySmDym5bU9XtmWZI9V3rW3xkGe4DCaWU+0ZcoKphgkMRMgARIZJHIgkRupu5EaOTfift/5+8GcmdqSpoTaKu1PPrx+7/3/DeeefM49V1qw6r44KN67hmlwMW6dDG1xNjjflWSRzH37LVLFusRNRO5vRTD3xVFlmwA1Ga3rWTwvSMB14C6jc8wK80z3bBm/fSicTTk9zfg+XLIk1mM4Tpx8B9Ei9oniONmAwbERpv4e6+01huGOKI+owSArL+vMthzT9gt4WRQLTp6RCJUiC8ulQsx8HJNRQ4thGelBymQ9CdQoUm6ZcxsUHxTLJiL1qzdviWX7ONmC/sgszeuPf//34v5Zs6IWXNDR0EbDHZwQL+Ufn4Izr1PkqnbEiJjJmvZk/E5TehcXE0+g1RTyjCPxnmcVdiq8qdSw/pkVA10psMU3X6ZRf4SjZdHCRTHn0cdj8u13pOBw60JHBKRKDpp0vi5fQ1AyPSNqFlW6xp5cl4dRwt+gWtb7NJ5sj7X8cNEHsZ73t5YuyzlW8+8QtM6agd1iSL+ebE3B+MbIt+J5exxZzjMzMXL8zA7816Hjq+gBSuIeukuHTubg4PS9jIJ7mayKo5w0sqMBpbSOoXKPyq3X155/Ph7meLlh1TWp3OtoUOlqJX/GABD3VKXlT61dU97tp4FaGutWr4m6rVtTAbEGyCSM0g7g52WUDYVt1rQQAMCqgDngYi4AJxUB0291sOpccNw6SaRZt75t28kJHktIlUWx6N+3X0y45bYYWTssZYGRb9coZ867l3xGnkO3SQsqPRoY8pr8nnvk8RocRsqW4xRcBI8cjCE6GodgVXV19KceRfI824YHFAo1vIY2Vc797bLKrbyIvmw7lWfalt9zW95ztKkp5iP7LLA7HpiMxElSUV6etNzMFjr5u3hnGz6XHbTMA+AmTWu4lowyv3Ps3icua5S+/sYbib+z7sYZiwNOuInPiQMam8zdsfm54Ps40GhT/qu8cLDyfZ2dboFhIHGNrXrC2+i0RbQmYkjfORVFkeixCpxt+nzyDsZhJCj7ZNp+Jw9TYSxdxRoVCryKolXtD6DkrsCJoYHxpWeexZE/jgUr5FYqgo6ZeUq3aei6plwqksLNsQvnknzNtYUnKPd379qVx2qvXrkyehAZfJxid0PA68vKbJ6VH6bscR1Zw3S60K51kzT+xdGcB2NNXsFY2jDHTt265p5cHV8b169L/WDcuPE4P+8ktZ2aQOCT8kEW6Lt6QG5PcOzCVvkkPqIoyy/aoWMQ7nJa+Vn62sl+4iXLkKu7dqZjY9pdMzLTSIPzDEqq7WqMK/MLGa7BUijOLHTCQ+eGcxBGJfi0QYfw9w1r18XrP/5RytCbMADEy/KamsQDxyauFTAuaFXYp16Q8gN+CwzTUQ3wHYd4JezbIz+u8tsC+OOCd9/Jegg3UwB3+Ijh0aM3W5fAl4zWAnOwN9fQ9dURIM5ZGNzf/S5fgERcc47FOlM0DkfDGxTDPli/L2bNnh0jh5PNB62qjyVvYfwGYrxKDgV5jPzL7RHSq3DXSNU5lvvE4WV79uzNavevvfL9aDxGUe8j8HGuSUO6wIcHRQX1Gfq0uRjdW7EtBvjI8zVszdLT8NRY1EDRcFKWmn2TfEz6AxfcXus4LnHDJay3Nh3R5dhGse8wEeUVe2MrtlAf+jtkn1VD4je/+vtxx8RJ6Whwi0g6Gji+qY1RVO4RJsIMAIG/OFFweNU3NrAFc3We3PYIgR+DG+K2ji3pU/nv/KUdL/Ff40gYaxhJ0/Iiv/c58Ud98TTydeeuutiKcaQDzxoXdxP4qSyvKO6ThzhHaQa+4pX6GetoGzq6pH/ble6Ev0ap79araMJpZNbXNnikRQ1vJTNrsrqHRqnOBfivNdnynec04HO9eV6ZZEFHXzp1lCmZ5o/+YTajuLV1+/aYiw5/Bgfh0KG1OHDG5akpYpXp/mKjWwfU99S/pFcj0OJ0Bv1Y79RZ6JvZJC+S16nLXkHPtIDhe+CkEW+PkqwZWhSUlm+VaFB6EofVR9XHMstGePFKuwQY0W3CKQ1sPnQlkHoWnePtd+fGxzgaZt17bx5LLL53xDD3lC/1KenPh5PHAmffvfze//zse8oX5wI8XRPHUd/QEG9wKov84gGKvFrUWLlSOOB4ShjTPCMt1oz5Zzs87xoKpzwC0y5pNydBu/KRC/C4DTiQ3iSQeuvEiQQxZkYPHKfiisa/9FLQYmEbqKO5pRnGdl3uJRFxv/zNzAzxyktdzG2na+HB29A77pnzQPJI10z4SYPyEP+WB4p7vhJPpd8WvNR5Kg/z8v7WynbwoH7vPrIoN8f6NWsh047x8CMPZ3aWxHf1KmMH9h6NWuBdgRMZTEZnEq/S0UA2Qzsci+KX8JZfg5BxAdm3ibaFzUGCJ4eOH01H4ewnHosHOPa4X2UF4AM2jCtxhTZ+0a8b42go8DoXMSVsSlm+BEDXrl4kqvBJLPngg9jP4vWiiu0UBPPo2mHsm8SY1oPIorN6/I9xIpGkAgqRghWl6DTUkkqAyq/77X3OtEedEIvIaFiIMjR0+LAYTVRdR4MppBZU0fgpiqYUnqqMaEh4EI+IJ1FJ7Co/BTIoOPCEo2y0R1E+SmqqZwJvRCGaPmMmht2YLK6iQWz7Ohqspi8xmw4pEZpupYesFJkWHMmEU0EonBgikC8LAf7wpZeiN17K++6ZnQquxokEI4HLSBQMCgO/08BwDgo3PYnua7sIE5ZYFJxeEpbj0ZO6EoXoLQyvzz3+GAUSp2UbRoxkII6V23gVc/fZktKbAglh4z0ynYJAuZnL9s06OHr0WCxatiR2sK3kqWeeIaV9bCFw+S2ZHM/6vIqaAsTnjMzruHBOMoHrTBF42bcRaLNUVBQ3Yex+tGxZDAZXvvTkk9TqqIxmFK3zRoOApeTn0YYaWEZK7FPFQbidUwkG8KbYybj06vtuJMMqsZ6CYTr24UMHY9KUaTEDZ0AP+j5JGp9ZBu4d9N1z69uCx7mXEEZq4T9hIVMEwZkbqCsy0XdHI50oPLt270LZ+pDtGTuiO+s6HQaro8E1OoX3UmGcrI21sw+dZ6aGmmZlhFGlTlgU6Z2FIJUW3P/oHFbC/OYiHHqR4TIax9fIESMoyDMgFQrxPT2rPO/fGlgp9GFyqTCD6wXMWX/GIyGkEGSdFGwnEQ7vvv9eHn91P0zPfaFGlDWIdTQsIDvG62bAqqNhKOn95b04dQBHg8qnwhq2mvR8DYasQqSyIojEGeek4X2FL4y2G90xQn4RWJwi0n61PZ5t5nWMQomrSWVduOtq7pU8mb0G54l/jaNFZ0UV0ZTOPOvJNRdQhBSURjw/Qej88MUXYyxRuvtQRDWMpG0H4PyL6EGxt1UFWlqSToSRMC8pBgpQf1doqAhIy6ep9bGcQn0L4WWPPfUshRPvyKiIUftW0H4rnAGgAXgIjfB+pQ0wliaB7UVqAFxifVszZnGyC+OyENBatti8M+8dHA2b4v1V63KWw3h2WMK2H/VsukbPjghP6OcqiqaOBoYUF6AfjXHHLK+5iHf9GlkPbclakE9k9JGBCG+x7RrzuQQeX0TJPXLmYuxAYd+0g3bocX8LbL/+K8/Ho1TbHzq4in7gQeCMCrVpu5eZo3NzO46ZGueYbxv+7orhdRAeuQaDbufmLWnATpk8NSajLOpAO9VCT9J8GlyJGoXSUoo8qbCb5WIHOi+s9aCTsAtZXPan82jue3PjOOmMVVXVMf2OqTEaR7VKoVushIERhVxjeTlwSRwHLl7yg3wHFn6vAazjy+r08iRPHJjHqTI1tbW5hcoq2kZgvfxdhcpnUilhTW3WdjJSwrv0qhKRCqP38p33aOiYETcP2bR108aYgqE+cviI5PHWl9BQt53MNGI80qH0L82q9JiOLswKI1JlkcuGWVeNBvFzJ07Al199JWXW/SiKnp6kU9J9uLYnj9VocHzCyf6UU8q+jLjRZIkmnKfGbEfWymcs/Gb21FtsRboTWrobHmlml1lJysqkFf6WvgpjlOdYS3mxsPDKLSEaYtxnm/JoL+nO2gVLiH6vwzh66rlfypNHHK8ptfIMcSbb47lcB8auPFEWyoSdiy/HYdvCRHqX/Rh53QovWLZ0aXRDuX2aY+QGV1dHMwqqsiiV2hbadiye6iDd9MZZoDGkI0RF2AyoVFqBl9E2C9MdzeJfW1LBda/72DE3x/QpU6MP0WfrAsjThaHvOsKU//J3AwK2pWy1P3HdbDXx3QiZDvGOXTuHxYeXwWd37NyedSamTp+eqepdUHgvnLEWBfTofMEF4V7QuzJanCzwVaXce4SNekIX+mmPvsRiZdHDH6FzdOW7W8bdRrbKzVk53vkaKXT+qWsoo2lDnEs9ALxz9VJuO0cdWvAJ4el3ZpiaUbdg8eL4AMNrLAbdzRTarq6uyeisTgTnnjoB4zIr0/WzDof4qF4i7pQcS9YlEd3NHPKPXjjtD8MDXubM+T1k2D0IrxpWMzQLuqlLuWUtDVjhAu1kNXnaP4vTTLzLY+zAz3Qq8a686Nq9R3Tt1TOza9546+348asvUoeIGgBNRUGNcf0jKvsNiGFlnaKC85y7um0COF2BJ3q6UCeCC8LWdG+LsGqYmjlZ1GWAj7EOvnQ06Gy9QJDB0yXad+0F/+wce3E0LF2+K7bA/kqOhtFExv/F//Evk4d269IN/QOxj57ZynOiWRMWNeWquORL2B+DlhrAeTMpj/L3lwj8jB09OnmMDhavXEPHAXx0NEq3iZPQU+qntOv6ijtmrbgmfXHsyp+3Au8N8LBt8GIzGmbffTfb13A00HeOB9ywjdwqR/udwTn7cz1zTewfXcA2dcCo/zl29cHDBHt0NKiPCcNxbIGegqPBAurWHGjFFpMO0DYjTxxXH9UB7RZrt8zB3JLnKVelKVPRrZXSA3xRr95RVwcPeysOQ1eDq6ridhw4nmInfVoDqwM4bFZpHn/OeM2+U/Zl1J6526b96bDRsBRv3JqhDSCvXk720dvo2NU1NeD7zVFVXZ39yt+lB3mZdCp+uqWkRLMl/uV6+MrpARv5l+vgcx55bEbDOuyPmbNmpfPIDB7lncE++1ffE67SlnzXdtXt/A4OmWtg8ylP/M515gsN4331DfFDjm23rt0jDz8clcgPe5desh3knfbNVRxc8kkHpyxRXyoZ6Y5VvU/9T34pv7EP6XsjevbrHId5G9ml9949syiAC+6lHADO2Q9j8V63qTlmZX7WkRAvEd7X0A1pLvsW7vImM9AsfLlqzeosIPkw9s2k8RPAuaIgasKTJ4RPyjXWt7QtwnV17An3Fn1E57NXd2txAL+9yFWzqXU0tAW+DwMbj/Q12/4SsGgFXNQrUlcBR4S9eq9bZNNpJZ8Dv9zi35qxJ10AN2t9WFPO08Y2od8eAPd1Npw4djxmP/lY3P/gnBiEo5GmEq8LTBDCv9jXjXc0sEgtuUhABoWAFOKNREUW4JXTC92/rE9Mn3B7jBpaCwMhqgKx5FF9IIiLJVNLjRaE9V14y5T8Q4HUCQGut+gKirupnh6duBih/OEHpOpB6KNgrrW1nJYAgxF5ZYR6NlNw0n4yRtq0XTDKfwsi510FUURVeEq8HRGcx4lIvfSjV2M1Jz3oNdPR4L5Ai+ZoNKq0tYcQW6FNZBqqhAKDEDWSyUIhKgQFqvAvfWjYZx/ct2P37ngZQncP4+yZd6fBqLGsIpQKFIqDY5YgnUM6HpiHyoCCWKHQjKOhjQYMRGhfzsN+VNhWoMT9CMPr8WeejllEXWT+KhMMOImtBIckOhWJHGKLEgeh+L0w8bJZ21eZ0TjzyE3TJHUKuLdIR4NjVqHI+/nH52V+pkk5j5IRnEyW9vOd1fBdxVLlXzywzU9IW1q6aFEMhsCf5nzZgcD9LELUomYOph3j7QwcWtGn2RteHjXKxFIgyAQ8H1mhL1NQYJiarbKycdMG0vU2xWGY1bQZd8esGTOy5seJo1Rzob2M5jI+C3EpkPKEB8er0iAgZCvMzZTIwpgjoQGjy0JaO/fsjg8+WJB1ILr37hV3IpQ9v1somuLo2DWMWah86WiQcYs/KnbJyBmrCrV9mIGgo6QHHn5rQHzMmr7xox+FVZZNxzZqVFFezpoUlYcVZDqiErb05RqI8K6b36mQiwc62ZyJRoB9udf1FMzeiNFC4P4YqfT92ctYx3zWA6sNmzfH/I+W80TELTj0R1a0IqOhT2Y0dOF8y0vgoeNXyGSHwpx2VQyAXK6rv2SEn++N9KRqw9+XECbncTBda4dC3LU7UfeLsW7H7vhwd3PgA88iPrzFH3/9d2IOAncwKX6Y2BAZPIQsFBVNFbxNW7bEd154IT3oD957X26HQaXiSegCGKosSJfSl/c73jQogL9wKzznhQfcbB4VMddLpUHDyOjFssVL4vNf/FJMwUuvwLrIVok2ZDC0wbEibUt/V8C5K7RplXHhbOQ8nTDcr4e8B3hhwbQ1OBreevetzGh4f80mpxjDmNaISpw4RC4qeneJnh3ADejtGvTsyRLisk4KnRkKZdfXtOJrOj0RbApr4c4PiWKsuAtROBpQ144A262NB2PddoQm/V13NDz/y/EYyrtHnyogFZjSlpHGcxidGr0eJcwsKcKEYQaP7A69Glkwcrxj85YU6lOnTCMad3vWoDmBM1JDy5NBfF78k0co/FXKxQ0NYlMQxUVpVVyXdlUUNcR0cP0Y4+I0UbuR7IGddscUjsZF6LMm0qu4buTKtjVM5ZH2oXIoLLzEv+JdfC8yEzxdxLVagjPzbZSh4SNHsvVuTBpdvfyNdrzXtgB14ksq9sKel3iRxp7zkJacF680spmHqeQapW/NnRsb16xKRXEUDhKdGKaD23bSozwq8dNni5frl85Ohp08iPc0CoQhY3EczruOSOyLL7+Eot0pHiQbZSBp3kYJnXvCA8XWlGMV59xix/OpjDKh5AvgE5Moxs2crHvCNnTWDAc2jjOPU37xlR/GXXPuj3tmwCM7d8UhCg/EYMotAozXqzBOVXZ1NEDHfCdtKLNcg4SL/IfvE060r7K4BCfPx8D/iziqJ+IcFObSaElOSJ8quCqM8i8XIp3utCkMnIPPaKTq/MgaFXx3gGyJHdu3x9IlS9Kp98xTT+f55OcwXDTy07nDfSqYOmSVWY5VfBYnNU7tV9knntqXToa2nTqkIVdyVB8j43EcGTZ3TZsWnvcuvreGl7m+1pIqioGJP4WxLr6In0bEci85eHsRurXIXnuMVrdm1B/A0QBcttftSOfD5KnTYvy4W7P6uo4Gsw3lJeJIyWhRZiSMW/BVGKfTgXcNDOHplh/h79GGryE/3IN+E4aRwZly5Idyxnl7rLfBFuWwMBCPvK4bFszBvnVcCX+L18lDxWvXyaMNFyBDboM/jkU+6bjTAeRv4ryXfNbtTNKfmTTiyPU1bukrM2Ro33GJz73gmcruf8Sxtnvblvj8I5+P2mr2rDM3M+d0+EqThfzDsKDwrdtexDPH29MjeDES3H5yRV4Jf+8CvDsjV82UeJ198D/GYGygMO+2ppNZM2EMiU3lfcpieO+uUdmNLZgyM3jtFZwMl6APnYmdWTeLxp21f9cEPEl6hodlJJw1MIKto8HiredF444cGc72iX1HThA42Bt7UF+IpWZGwxCyfv/83/xb5Muk1EOM2reFJ7YCVzUIrcnjfJIHQOvSs3pFA3NQH2s6eiSexXF385jRqQNrkLqCaXyC2z7rmkovckanlLzAT3xnnSgNI2Vk7z6904myfScnAuBo2MB2ocqa6vjcgw+lo8Ggj074dEozT3mNvFCdW3wRh5LXt+CMbYr/6qaO3yBgE4aWGaabMUp18E2cNjWPnNeQNyOsNbxGJ5v6nnjtqOU6l1jD3M+P810ng446dTyNe7cmud24G46kHXU7OeXh7WhiH/zgqqqYgEE6YtiIlEc6Bh27DlbhADBT10s6BVfFSYvKms3k9gkd4uJX0hP83bksxQnwGo672uHD2YZ0azoc3PbhGDzBQdmkUV/gvwYp/wEPL9fiurzms+siHXulowGHyXsENtahd0wnQ9PAklnPJUeDsHc8tpFrmuvawpOBNV+mvmN7GtryOPv23WL3e7DJvvP978d5bIIvPPEEp/tVsC7eA3zhUdo16kFKnSvgnX3k8/RnG2iRScvyUcfifHS8Owd1Jg3qt3Hi3zx+fMzCUe1JKtK8TifbSR2Xscm/rQXiJd0rT3Q26GgQHDzC/QRxgaXz1Qnu8bUfraJI++o18cTTT8VkakDYps6nhAVjdkz+LT4KT2WTPM37pAfX2ZXwPnqBR5KVRYf72La2GUfD2pWrogN24BPAxlOOzqL3WDdNp7NyU71CfUVdxEGKs+KT+h6GQeo9bqUwy6o1gZ6eOL09hW/ztm3oNZ/GfrZx7z/SRK2443HvF5/gNKUHY2B1lZNNXsKg/n9x3RhHg6BIIpV5wUXVcSF+sIgfKAaJV+jNH/84Dtc3xJDyiphpRApHwyUMhLMwSI06MwhEggswcA03K3tqFMqYVDxkViqrFh65xt4XF7HIaGiORRg/Czj3fXANjgYIsWbo0OvHVabnljEVTLUgbAnESyYoEmqkiPAlwex3ImV3ohsn8G7/EMG2gRMz7n/ooRg1clTWaJCYrJ5+iT2VVinPF+1kShtti7gZsQIw3itRy5xEcp8TvRX8u8jy+AnCzUiRUfWKco65Adm9NOaLMZrCxgkIGtFcKkYKbIWbssJdQKnoYdRIPBKyBo/Pf4RR+uoPf0gE9ktx92ccDTouZE6OIxlHwgChzjPu4fe3ElOyTxUZBYfPOSaFtfu7PsLA8P1RPIpWrJcJJJOBKReFqAqmZxslxuK7RJnETrsSaxIqY+mB4Hdu7pEyIrUCJbR/RXk8ybm3leXl7NM+ngpFwhSHUAfGpCe6OI6pcDTIBMyEuYAiYM0BNPQUOqYUm9Gwn60T7oFdC5M6huIye86Dcc/ds9LbagRWxT4ZqHBGcCp8FJ7i6XVvLXDSKGrFfDWK3HdfqqVgoZeFixZSrbsu99jm/jEUOufrvmzfxbl0WsDUVLT01KpU6xzLOg20Jw6qyOR6AjJPKRH+y4H5y9/7XhoFt026Pe68866oAvcvwwBtX4eDyof4YhvitXRQgrlr6RikCR1VCkCVaff+naF/DSONr0fYN90PY1dHwzqUjPUoAu99tMyljFvT0dCGGg29YkAPlFgcDfahs8T11xjWKUJHSc+qB7KI0gsES+WRUYHP0icwZm5XSe2/1Apn0Jnm+GTvoVixrzm3ThyzU64/+53/PR6cdTdHPw4Q6zGEoWPWSCdVydHwwt9/O/d5pqOBzKYci3gCzom7KsXOXVimoOE38VZDTtzLKCTj1jvv98LK/YZNKD2ryRBat3YNx1XOyQisY77C3tnunLzRHoeA1eHPwNcQZfAw2sTDLR2Jo6bvCm95TVfWUu/4Ogy5efPfi/UInbmrCkdDLbAzo6GmX8+o6NUtepHR0IpxtwIfhaD/XYK1mhUCYgridIYp9vxfmi5dwju/4SazRy4zpiOcOvHJvgOxdCepffx6IO+J+J3nno1H5zyQGQ0auZ1I7dUJZqr0CYpGAbQsSOvanVdRh2cbkToAPa1BEarbui3hOmny5IwuyK89hSdpBzwW/3TyyJu8hCuaicNz2CiP4CP3aGy7ZgplU0Q34uR6CR52HoPhJpxq44mUDquuyXZLfMM2xGNfOgFsT3rXGErnEvDLNUZpkn/qdLLmjbi6GOX83ddfS0eDqa+DqXfi/ljpRnzxHscqLWnwqOBmITn6KE59wXHIgJM/Mg4VDyMeKro6Gl5/+x0UluVxD44vHQ3WgjHiJ73rGDFbwvlqjEgz6SDxb3k5su4CuGf7XTVe+d2xO1/xqshoeJVodddMfbUQskfTpnKsooYjLtOBeV7ntie0yFM0to8eP8a9RB+7U5tB5U5cFndPnUlaNA15DbD/zkvfizvunZ2Ohl7deqL4cx8V8z0yWKelvLhk9CevAW6OzZfwc57+rkxx7DojxAWjl25bWfXRx/EYGWsT2AImnDPa6fzlB8A++QkLKt64vtJxid5dUz+r0NuXwQjvP6ijAeNoxbLl6Wj44he+EEOHVOV+c/mr8jidXIxVmk+cox37V4YXiju8CWXb9gAIWynhc2U9WFOMQ2SH24VOYiTdMWlKzJpBWjB9Hzl4OLfaePZ7RrMSsZkD/SRS0r7zsD/llAaMTjaL+LbDiSG+721swGBcRsGwXTivu4X0dCtZB0Zez51EGact5ZNj9OUlDNQ5nItOa41oUISxF4aLv+v4EkdN2X1/3tzMstA4GjmK7aAVFTk+YV8o+UWEVJj6rG2VjCLxyL8z/RneqyHrunrMnTS8YOHCmI+jYTy1iW4aPQbn16AWuS6spSeBIqw1NooxCvcSr3UOJdqQV3ZgrczSMYjQAK956dVXKUpYF4+xPaCW6F8n+FA7cRcY6iBLhxy1fgAu9KVfwOMoVfqRe8L+ipln0Cz47Zq2Y612YaS/veBDnA3v4ehpiO1NRzKTbjR8uAI9sJoCjQO7cMwiAqcV8gOmj1zGmUm/0qwczbpDOTOBVfzlH0mrylxpAElL/R4iuFeJyrK3ruHoKU6BaYoD7IixjYO8yjt0iW/9+2/FtNsngUM45Bk/7CQjpEUhZ6QL/WqIaTyqH2igN2J4LYOXHcJ4efrZZ8loGJO1pjR4C5gUwQyHJKzFhdR5lUl85xoU/3mHa44M5D4jzXsbiqPVP6b9WnikGaZuFTiFY03asy0QJeW//F5e6Xc6lEprLa4mTwAHLKjqNoLuGHFH4EPr1q/PLdbqxndgUN85fTrOuk5Z1LUVbXQFB1zDEo4XPNYsRubPWP1sUCa3yvJd8h/eXRG3Tsx///04S/ZCdU1NOpNrqqvTkSuepcMUmnLcZjOkw4G+cuH8zPoaULIWhPwga0QwtiweDq7qLH31Bz/gSNJhcZt13HjvS1aKupyOO3FEmtExLE/PzAZkUGbu8L1jlZ6kM9dDmeaaWlzWbSvvL/wgVmF/TJoymRoNI7MOj7aPslRdRXqRH5hJLYydk/qNbbqm6ZzJ+UASLWvg9rD2yJN6HA3f/u4/kDlygjX9IkfOE2SA1rxSpyZ4kqcwiW+8XOMMTPGnbYk3qUvRj/1JE6XsNW0dYf8hjpLh8JjpU6akXHW+Xo5bBiAu24bPqh/JH5M30P51RwMztP2sVca6quc2UjtsBRmm69asjidxVE/Gsel8zXIvZEbhbHUdzWZSxxa22kXqqX6vA0hacF5eqS/A0/YBl60UiV614qPoRjDt2WeejSp4ZTPBZWugpNzmGeU8XWZ/0piZiuqUZ5ChFjHtRE1C11xc0IHTSwcU/W/GtrFWTgNHH+8/fDhOEjB56Lmn4iG2iPc1o8FL87kYVqJifvcL+s+NcTQoODD8i8XiXa7oCwALqY0o5u+8/kYcJXpcXV4ZMyi8N3rosLiConLmxMnMaLDScApLPM4ed2WNBhkzq5TE528qv6YgXj5fGH9dWDSwNT5gP/y7c99JZNY7P4T96noUJbAU8I7CNiFimWcqRiCtiO73STAgR0aTuMfvRb5ueNBP4mgwVW8LBsFs9kiNHDkyzx3X6+9+eyuxaypLjDJ9Ca8Qki1RNZkXhKVSk0yAtiUElQG9bGY0vEKNBhWkWTNn5qkWeZQO4zqLh0+Cuc4cYEoSUokg9aZeRWhJlK0xIHTKuAaleUhQK4G9HsUHHv5c3DV1Whq49i9sHYOMmEfoQ1ZFVADmIPNyzDLHnBC/S0z+bv8alAovBdoyCHE3CtEj7IEdhxFQSs+VIadCCTx8Np+2DT74n3D361xjxqBTwksGqmFg6us2tmSsxiHQlyjdo0Qvyssr4iwCNbNI2sIonYOtAFOVR4aZSrR7yBU+prmdw/jWIWCNi6xsy7odxmC0qN+mjRsyo2HqjBkxe8ZMDAP2xIGPJUeDKpxQ0UhUGBnhNWsExEql1nYBUhpHl1injMLRvo6GJYsXRz3v3TAoJxPtuoUUUtfRbBJh4N+urYJY40Em5Vqk4c/8xVXXQIXRv4VXHlkG3qrk/uSVVzM992a2ZNyOQldeVUXEuzga1WiBbZvaKp7KxHU8OAcXO9PSwBnb9L7C+G2T0TwLFL6NEioDf4jCNIWjYU86GtahoL67dJHLFLdiN44spxhk757RvxtbAXA0WHOiaK8Q+kYXFP4aZa6HeKpBlayC7xXerpnjy+PzUPxUoc9jyBw41RybGo5Ro+F8OhrIA8nrX3/9K/HwPbOiov8gWAzeDrYCKHCFn3A0o+HFf/xHeMHIuA/nkXwglTJgmbjLWFSevRRcoo/4WHI4CJMSXLxHQSRdGbWzJon1MdYA/wfZs3fHhAnwEpQ3FNcOhIHbkCMn3jeDj5dbo+So7IIztp9HnKoM+eKz2S/nGYeFpN59fy5OnM0xb/UndhlDQTwzGqqJpJWXdYleHVBEMDjdJqIiLQzT0cDwVeNoDlgwB/5w7K5x8e6PBc0lJ2YsV3AeNOFoWL93f7xVdzWPBztS3Ba/9yu/HI/jUS9tndCw0Rvv3liVXboBxvAEeIXbJ9xPKX7up5jfehwwu3buTH57G5EFT69Q8TlNHQL5TMlBJ29xbMkHGLP83QmI++lQ45O4wg2ZEt0ahdUaP6/jCFBRHD58REy4bXwMHzo05yuPy7YYk89LKxqj4qGOJw3oTL/nu+wJHPQPDRgz4oyWLiUjbv4778bQWrZOID+qqqqIzvbJcWpMye8cn3igQ87USQv32V46GkjNcX0zA4QvPQILtkwh1c6pRL/F/uBPONJs5t0U8xqGElpGRgOwMWroOFORZVzy9VT5gYkGvIV+PX72Ktl7RRqmCqm9Ch9Ri2LCyI+XcIR3Im3/wQfmcOJSf9aG56EH6U3s00nRWjnBGJOvI9su4tC3HstVcK1dJ3CceWl86cy6dh6ZJsLwWoWD8YWXvx9T7783U197dHQfPnyEOZvSKt0Z8SrBXtzzyvaAsWuhPE3jF/j5q2ukwme1+RWcCrF+7bp4+NFHOX5wXMpm2xIupVcJX2w35TlzNyPBuXjZnhltyr08mYn3Axhd23fsyEKWXYiiGZFyXc9BxwYAjPILP5VijWRxyLGpM4h7jr/Udo6DX9sjQ7px7KzpzB+h+OuoPn7kGI6GO1J2l/UoizPMSXqRduRpACZfn1X2bV+e5LsyxG1C8sgOXQhGoAfsbdgXi6hJUrerLrcPTaK20m04YQyynD15mgkjM4CtY/Yq3tWThDUclDYdf8mhXKzBpUIJBq9UcD+cPz/XRONInWkw2YLCXdjYbPJqPicfSchkT8knhbv8Uri7tsprR6KjWt46n22DH8ydF7dNGE+q900YpDoa2KYkLvBMwZsKHmCr6XShvZLxK7yTjmnLNcmAkwYB+lIDOuTL1JfYv29PfB6lfMTQGhw8OHWY88XzZ9LJY+SwFby3VVsKX0MB0q+ZWe3UKck8QxACH+lZ5AeHmE9dfWO8u3hpvLlgEQVWd8c2skoM94weoKOBgpC9unK8ZXscDYwIHtYKHpB02PJvKbsx6QA6lg6MBgun0ku4XoYW3b7GJrg4A/HVHzsdn+7ghJQWR0MT7VX16B3//q//IqaTbu62CQshagT7ci7SgHqTa2zAQtkuTjY0NCReNh1piie/8MUszu16yCOLdWRdaT/5ArivXBLO4qbGUDoL+N2xGwQRr8yYM1iza8/uLOy3bs2aqBoxPB7//KMxAEfDWfBd3UucsG3HpyzSqBPFdQzYh5f3aKTL584SwZYGLOLp9rJ17LXPjAYMyNvRl3Q0qBOfZl5uXzWbQZYkzHVUOefUYWlTGehn8ajEpzXq5REOSmN3AY4Gab+quoaCjSPToO6Moe1cxWGDFXIA4ZC6BLBNPHQd+dutL2Y0iOvOTV3P6Lq66DIyGl5/9UdRVVWV9bKGsYXbTFCddgZ9hC8gSeeoMLA/X4kj9FrilY5dfbCkn/SgvpT62Dvvs5V16eKYSkBpDMVVPTFD2FhPSppSfxLH3O4ojGzbPtO5Zce8/Jx98rdyTPiYkVhfXx/fffEHaWu4ptVV1akry0Nc16sGFGhTc871vH5JmIw3L9oUbvJT11obovg+iNxvj7eo0TAMmM8kkNoPB4w2grBNhwpj5/GUd9ogtiiu8n+yztw6kSvDTdwo7IWXW2PMaFiJk8Gt+Y+4dQK9w9+U6dkGbSV+01iRzYFTivEl/OUt9K1DLMfD98JeelKHO8R20F27d8fHOJGsR/X0U0+no+HSGY4z52UgU3AIS2FlP9KL20Wlq5RH0IJtA53kq+JrD+S0gajN29g6gV4jP2s8dDBONB2NOU9/IT4HT+tjvTVwJwHOM/894BOyv3D/3BBHg4LVFMEkGL1DKaPBFDEI1NmMQeepEyeajkQlKc/TJ0yK6tphABMGhOGVR/ewUHonoZZ8DraRaVEZwaAN206PnUfEoXAa6elSXsG9EcsRmq+99uO4FcV/LN5W0wB7kDKVSi0InWcHg8QXW6IeGg8lw06MTnJpeU9Ch1BFelNmPMf4dfbD78CAMXVp5Ej22OK5N0XeEzNMawNDQSVa4Rm4XTofxAQFJA3xF84BkL+ojaCCC4PDCITaowEm+MJ3vpNp+6a+6iRpBxNxXJeIZMmM24K8UCbtwgyBqcjNP8ULYjGNFWxM5VllQ2YoA9Kh4B5w95Sbvj8VB4/Gp8qIBoIwLYS6ijnjp0+NLwWO7zIP+/N7CSkFdstnlXf3BX6IQmQ6nRGpcWwPsM3PCjU/iwfpOWYOJWXinzyX4ojTKwRbWzI3jKDuY4+UGQ0bSPM0o+HhhygGKQEioBReKbx90MWTSaAg249MIdeB9vxRRU6moIKjQm80Tya1c+fOVEQtOnkLCu5dZHtY6OscglMhm8da4kUHYAl7QoBZmEinQ45YJQUY2b6Gn72V1nvf7l2xdOnSaCRbpRsKlp7oW8hosGiOx7kKTxvJaBPjSuWL8WoY5b5U15d2uSGFiY4D17M7TArEzQyh98k6MOo6YsSIrIbbl3Q6PahWLU/YiIvAw/VTyfeSsbsOMlPxv7i8p7i3NbA/yZq+8957nDyxNuY8/HAW2rJGwzq2sazF6Hgb77rXOE+dGNAeR0OP6N+dvfo4GmTixQuB71pghJfOIi4Zjz4ri3bf6nnWTObbGZzsxL3tJB+UsPMYRY0nmzGGj8YHe8/+d8Ug/+obX43P33dvDB5UgeJilBy6ZstG4hxgtcrx6wi26pqazBDqTQq8fcjwi2iwikrhxDEbRdwpRQVcDwWSxqnwVuDnevCdBScVPktXLM/tPF98+pm4Ew89aS7wMeDK0Vnnz50AB1Cm2HtL+I0MAqPprC/4amylnTBhWXmj6BBFgcDzVeD3G++8GesQOgvWbhY8UUuTo6oC2PaLgd07Rk8jccxRZ0NuPwBOquCXaEfcy/aAKX8WuCVNeIlnXH6vonC1xdFwmOMt1+1tjDd3EeXjNzAyr//zn/9GfPHzFD0aXIUhQ5/A4wJ43wFcaW+WlXhSUiIS/235Wgr8jThi99TtSpjdjFFk1oF8Tk++uKaTz/GoNLpW4qXrIkAKJQhZQHM6AHJC/J18j9+3b90WCz/8INPSyysqYtqUqTGEyA7SO86Q4STdtJenJp5D8/Sh3LAtjQn70gBwLK6pmT4dVTJZ/4s4c5ejKC6GR5aKQdbUVEcflDnpWxrMwm+057izijxfi99eOmLaMfS2OSd/kNfQPzjWjsKWTceOkPq6gIKH27NGw2gMuwF9+mWh4as42h1jK5yr8qyr8AajZp4p7/eeUtSRqCw/FrJS3sF48Gon3ISXRdpe/OFL0R0Fzj22/cloQCIhhgoFukNbzrZnuwPLREE1nL++WEMVTSPEeYoR+KvjwdTYzqyVypLXFSpff4wB8P0fvRgzH34oi7B2AKfPnjgLTmB0Ea1JOSR8aVMFs2TkSktFZAq8ZC7yJPlM0hyw0mGsouiech1JnyM6fftt47PGTa4/fFZ+ViiKcleXQ2W2MKBzrWnHSvKmpRopV9b0NPjAtb+hHvmxjYr+K8kewtFAdlb/6hqqynraUZGxx+P5nGMtZTFoCLjOzkWZlAYU4zZiagZPWzIazmP8rEbB1UFijYZx1DmYeSfbSsj+AvGKtWL8ADVxUY1ZGORlp/4tjxeFaNf0evljezJgUFziJNG0BeD79u3bUs+YgtE1EdhYqPMiuk8WEeZhx1cao84em5ZvFQGIFgc2xoc8WUMscZ512Ig+Nh8erx40cuSo0Fndl+1S0pPGWBokDM02dSyWdAD7Ujkv6NcpqEO0yCp5AzR+FSXc4qcL0fdugQeoj1Uity2KzMBYT+iSMdiGgQjbdN3EmwI0yCv6TBjxhfdfAGfN3tJhdIAgwStkx+poeGjOA5xAw1akPhT+xkl9Dbmu7pCGF06Gdp16AHcMW/poDV0CbJGaNSKtWcKFr6auACz37KvH0bAi3vpwSezZWxebOZWHX2Msw67o2z6G9esVFT06UReItQQ3WgFTIJGo6j/JF1wTvpPXMJt8ye/FfdfZcZj52Kx3r0tZXGlPPY4jHJ++kcJz+I/kxdYiGjWwMv7iX/1p3EmtAp1VzqlwBID7OFGkg8RL4CacpD2N9b3oMqvILDtOFtUjOO7MzgIAzLfIlHRdNY4zC0A8kachh10PdQIzquRf6vM6JzRUO/QxmHeJYrZbKRC9IY+hHFBOjQa2L5phmlm7zFdcUgKpX6T+Ib8HVyy+6j3KXHW/jjh3k9d5n3SgPtZEUT9oaQsOMIv8maU5DdnahcwvBpIZWW6LyWBE6neuDDBlrMljbEdYtOCLeCXfcJsfaTzRuH1HFoM8xda7wVVVifPV1dV5ckMuoPTBM45d3DEo5biwWDN7NjPM4JfN3KNuLV2ko1O9gHFZIHr+u+8WxSDHjs2t257+41XozeB5wtmp40AGVrluwEU+I/zzJQSdFqiZNAEvuASf/Mnbb+ZJWvdiH3j6jE6MIqMBXOZejWUYY66z8jX1dPpOvc/vbRTcs2ioerdwLzI/2uapRa+ybVCnyJw5c6KKaHpHZKmBX3mJeGsWkHbOVT5rG2ThctpXLnrZllfKR2ApnruVhYHFdnj7C9/+dowac1PMuf8+5Co8Ur2Le64l31auFmMSp/M315JxFu3TNjgvTcmn5aP24xH1Bw8eSgfVDmyoexn7BIIb6m+p64v3XPIP10A4aUsV9keR9eH3hcOZ4AFroW7g747f2iBuRbJYsc6ez0NPFp51vYSVeoXj1Y4SFX1eeF137thfrmfB16Q16UvbzgxFT3HzRECdDI04G46wBe/exx6JB8ma7wddmU0ijpiVqd3yi37dEEeD6ZmJhAodlSAALxMQUGBoHjG1aMGCOFDfED0h/NtGj43hVdUZBXL/b7FILDJIIhGazgn6pcLlPlGRTMIz3VSl9cwJ9tgR5fE4MlYvFmLUvf/e3DxCZSSGl3uYuqEYa1iJlFaS9nmLNxr9lDBLCKWS6z3gRQ7bvkQKidFUwyMwp/kffhB7d+3inPIJUVPDtgyUOn9zv58EIzE6X53dMtR8nnE5H9uxbb2D7hXUSWA9htwvy5g83vIVUgG70d7MGTOy6qtH19B4kW7D8xpJtpnpN3x2/AoLPfcS32UcDTl+GIpOBAlGR4B71UzRcf/0bbdPjHEYADprvDcZGW0V2REaiMyDPm1XoeMlXGBJ+bfMS6JViPB1zvMETHA5kZ1PERAPouTeNGpkrlUyOog6mSptqUTI/IW1cBcmJU+3xC+T9VKYOlfn2dBQn86AbRBjPzIaZt1NFHvQoJyTsHAQRuiEuQaRzCGdMvSnEeD8aTDnk9so9CzTjZ7o0xgX9fUNFHzZk8ruMBjIRJxU4slZcERhYzFA91ul15vPrl+JGTlahY/9CHmdDSrRMh3nsBdFcQ2R70Mo0h6reSsMULx0bqnAMu7EuZZ3lWQFgNED9/OlEkHbfqfHXEHtmhqtc93cH/wRKYzuI6+uqopBwMVjg4q1JHoozGH+6cAALzMqD8xtx7290pDtOA+xXpUolQ28xa7pwqVLSK/9FOfUzEz18njLzTJGcGkRhoHXzejEwweY0YCjgYyGbihtmfkB887tU7QpjBRyGWlwnfjPNbA/t/00YzgbLejI0YwdSo4GMO7cVVJKT16I1bsPxqIG9mvT33Vj+Deej3vv4kzjfgPBLw2iApeuEl1Vmbbw00IU3YqKilxTt5soHDM1XP5E79KMMBIXfUbYGl32XdoSRzIK7mdgIh17zJTHKa0iomM63YN4/yeNH59Okqsor2dOH4O/FEavpy201tFAVK3kaGhDPzobPH5P/JfPnQbP3ae3AOfNpwjL5Z/uYHwR1eghIwfzjkE6COW2JxkNbZqhPWhI8Sm3MqPAF6BMGPt9/slX4lZeLW9yIFAUPEXAktGQjoZ9B+PNOgqPcmNL/CG+8sxTMYeCtFXlOHG4V2F/4SyOBhT/MrYZGFHLoq62B+yM2gs/i0FuZ/yNKLoqYqZiW/E8Cx5Cdyo84r7jkjc4fvFNOPgSP6Tp/E68dLBc8krpetfu3SiipKmTpmuxvolELobX1qLkFXUzjJJ1xvGbRg+P5trRXsLBfmyTd/mK0QqLxOlwlQZM3zdtdxUKhfKklnbdOuEJAv5OIzk2HReO0zkb3ZLmmUZmGrQVn2CfOoHyfiKmecY2OO32BDMm6uv3hMeh1lbXRH+MYWWZPEW+4VFtACIjh2ZgaYz4vVuqOuEo6IhznUllIVrh3UZnPP3Le+pwyL6GY60MB/4DOOD6ULzNjEDlgPy/E1t3enTtDp8kQsX83e7gVgpPgumGHILz577TZhyUKkpdWKfuOm3gGxaRW7/5k3hj3ttxx6yZ6Vhrp6P/FPuO27E3HTjK4+U7qYDBW1TAzIQr6Kdw2KdTE9C4BuKBl6mvOhosArcbGXjPffelEq0h5H1Jkyh1rr9wLnCjMLCSd3GPuOQWEI0iLzMVTcVWhtt2XV1d1vnpwnf3ko1YxbrqtC0p9yV8dPzOI8dOG35fOkZZfqBy6/qbIm8m0kl45CfQ7dbNm/MI0FHUDbmDrLIBwF55qWFf1GQhrTlpVuNZ2SCvLXDf9S05wF0DP3fu1iWNo/rG/WQKUvto965MFR7XEkBxH7lV8pWj0rvyQWXZcbuVxEt4qQgLmxKP8zvvk6/RUWwmaLJ0yeKMgNbUDs2TVgzOKKNTR4KGUwbSn+ulE0buku3QrngijDW4/N1+ClnfJmFjhPcjdDLrZSn3TLEvFV5NgwvctX1p0TYde+oEymwu8cc5CS8zPbK+EzjQmRoYTTjC5+IkOdRYz5bB6ZnR0K8PW6y4/8JZsh3BcWXLtVZEPsm+ac0pRsodKDZr6FBFHEOaOgI4DDrAV6Xji7Rd13ggFlGMd/5Hq8mm3BN1++tzLLcPCo4Y7sMpQF2ifyfW37XSOIQOcy29y/mIj8LIb4GNfKDIaPBnkJ/7rX1gLaJLrXDedOsdV5ERe6gFsXTN7tjIjhgzKPA3xLD+5fH7X/+tmIi+1gEHio4EI7s5D2RYym/xCbyULsRnT50wldzjLTXWZ8/mRA5gL6249uKz6yZ9FVHbYksTw6UdDDDatT3Xxft0gss35YPi/rYd2+PTLZupZdEQvcHz29EnPQpRnuj8XENmmWvqOFPPpC2DayVHgw4knbzii8/J533OmhLqNDuRIWZ8jrmF7XHoTNb1kH4MsOlQdK4ZJGyZe9IPY5N2xJekZ+YqXonLRv197d6zJxYtXJhBlIHlg+Dxw3AqVyKfkNM5Z/Us1oZ+1HG7oAdaY8VAXRYoFL/B89St6S8zUJmL72YsWLtixZKlaReoSw5h+4E2grC/TjO0K2yFdTp7aFP+n6e3ADfn9tmXsNfGOHH6VMzDCb58+RKK0c/IrRN9WRPHl3yM9RPWrkHyHOZBF8mHbM/5qZM6Du9XfqR89Tf6aGSL2fsL5icvupNgm3xA41bals+ItzycRr+OaNdOPiKsXVcvv/OSJ2j/pC4L35R3eiT6P7KtxKwpT50wOCY/FSd9PnkJ7TtO9bF04NC3/MstrtwMXFxbdQ3Gk6R0NbfeqI9tgZdZuNGCuTfdNCbxKXEr4enQizGpC4vrylT7Ub6oc5Sy27UV/U7e49yKU/WKUy2kp7uhp6HV1SnXhKVrq76vY4Ou0q70eWFW0Kn8S74pK9BhKr5j3yD33Q5Tt3t3Hrt6mK13h44ciQN76+PxL/+zdGj0r6ggwEMdOhpWt3GdftGvG+JogLvmIooExcXiwnZN3zT15tNPNsWC997nrPUN7Ok6HkNgUBVkBbBESsskDBdLxqEiZxX6VihTMm0jQyKcyKMXz/Sg82co1MTJExYzcgG3bt8R2xD8AzC4Ksorsqq3DEZEEilKhrNMz8/+pvIrI5H4JNIkSBDBy3tcXA3NUzC+NSiiB+rrY8Qo9kfpxEBxkYjEfsfN/ylESm2lcsIPIp6Ibvsim0To3fblc3yVZwhvWL8hiXc4TEpCdEuFzCA9rA6IZ0oGp23riLA9jSPbELFFahlLQezAEVg6/30NVN+GGGuGDYuhROpy3NzPY7wYv//RlzYLfxZCjPEpXOzfK+FD28V/LlmhxJ5AWTQt7djJ43En2R6DK8oRLO5LQxliYLl/V+cReGBvPi9Tsl+jUM5J40CGLUzSIEHwuN4eeWSBpnqYSBlMWyVd2AjjhCvrbpvOO6NRtCtMVWQcu23YpnuzvDKFjfs1OB2f+xndx6vzx+OaamtqEi/08Dt2vawJWRq1nX/K8igULhmXcCgxNfFFBua9pi5uByetkq932PTUSmDjXEvMPhmS7fJcScD4bCq1wF2DLb3HwCb7oS9hJ27u3VdPlHdrGitubejHEZMqcvk8MNDJ4HJaOdpxWl1cx5ZM3VeJAdrWFZxU7lm33x4IdhU7KwVv3bEjho/BWIRWmlBi6vcfiAbgtX3XLsEZowgWjBjUGkdDWQzo3jG6ZToCyhcCwogbM0H4m04JvFwr8VQc4r1YOQeKAKQtSMQ/CTCB8wgVEkWj/hTR1J37Y/khhAMwaqZN5/SF++6Km0ePjJ4YT9dwSOhs84dUkLhHwWkRUSszWyU4aYl+E87gufQi7Eu475oJV40V8cJ1LGiEzrhZx5v4pUKggbFn7x6cjvvgBVRTr6pKIe/e9mtXEZpXSDXE+XgVnNTJ4FnpbTHshfdFBMeVZgw08E/lXKPlHFlO9S1OnD3Q6Se799IpETTIZSgKbk3f3lFJym5vsibaAdfWOHTpJPkIU0dJ5uYWZ4PwBqI55gSU8/Qz//o9oGVMeO7ZctRE6vvGhqPxznYKv/FbUYIp4p7bx8ctrPkAThrJejitoVX6sw6GXRX4whiARxui9alcQyfygf3gxxEiUwrsqpqhUVNdlW2YxuhAxE15objseOQ5iYd8KHhjoYQJ/wKP+YH/Ve4O0+4elMUzwL8zyuFQ2i+3FgHrk5E3nnGdsh2+83mflQ/4Ugl1jcW/4h7wnrEoF+QlKfThkTrrBuBsUJHTqef4vJ9/8j2dZLRtDYScO3MhHE1FeKLH8nk6dR+r9YlyfryrKFrMsrFxH9s+hiP3BlA0sAeGOtEw+Lf82lOGxG4LjVngUydUjpf22I2TVdfdOpFyhPavsphuLfSZAzh5FqPk9kP2aeyWEb0Xzpdw4ulYUblXcXbtLpDRB0MgswZexTzSSYBM0tEpPTj2IrJfKIIa5bt1mq5dzck/QymGNTzvWLPJAABAAElEQVRlIlSXPF3+Lv9TzggnxyftqHy5FU75yld5r/zF310LukpaOwpf2VlXl1uSJhG9dX+wskIcEW8MCriWaXS2jFfeJqbbr0aBhoiXTlrX0+XSMD1KhPcgkaL9yBDPaHdLTL++xXaYXFPayIHk8iKbW8af4+MX+3bMKvHeqvxQpqr46YBRNllH6ASOpAocGCNYW08BkmerJAt7HQ7p5GQNMojC3DQ0CicQuge457oIJJXWdIaCC56KtHXbViqRH8tieRUYRdY/kFcV/LuQSUmP4iADtF3x28vvfYlDPuP6SAcaaa6ZxyB+yjY4o7h9kB06ZTUoC/gVjjWf0YBTNrumtiXf9HvXVtltv+JLaRuL8lvYm1W2eeOmqBk6FLlXkXQlHxbH5NM5RmApHMQJDS/XWcNDevQOP5do1rW+CvFp7J04dToNu+NHDsdw+PvA/n2pFI+DpiN8HGmijtXM2l1AdblIHQQYFfPGqWjfnNrQCqewWyfaE8zqgI6ZDlNgcgC9dO22uliJs/fksUNx/Ax7GbhmjmgbwyqGxMBO7ajZQDFripu3AW7paGAOCXL+SX7Au9Mr8EuDQ5pgLt7EvSKnmRlXyAa61hlZi3zYdfhELFnNCVsw4R70Z0ZD/y7d43Nz7onh6Gs9kN1uF5ZXXCC45hpLt8JIeMqjpBe3sh4ju2v3nt25LWEchrqBGS/x1vtyHH5mkOKROk46LYB1ic9JW4UsZY78Z+DDLaj7kasN+xvA9xNZO6e2dhj6GBkH3sX0vNdxyP8do8ao38lDEpf4W1yRT/u7+Cl9ySs05DxedD94qUNkCHgzrLYWR4BbE4ptOdKRa6szIJ+jHWGgfmNbBcxzOPxTrEHJCWax4s3wYOWH20/NsNFJYkF3R+7z8kBh7Fg18MVJZcsZHHvK6rbopd4nLiZdQQ++Oz63yn5KRp9OzkGDynO7qfqY8yyNS1iL71KoPEU4pHELrgoX8V3e5f3FM/Bj2rdmlvS0Z+9u6KkWR8CgDDDZhjwq15H1TNpkLAYIdPBLi45N3cu2xQF1T9u2b7/zZX0Mnb3aXmYfWUzXIrWJY44FmBcZVAV/l58UPEUeRwFe7hHO6lfil+vhGoljXvXo2TrxR5PRO27sTclLdIDLI4u1k39BpjwvPJPmGZfr4PhdH3mWuJRXC+7Yhrq7WTzy+ZtwTlWTleWcdHInDLk3x8V3wsm1S0cVfclr5GP2V+AWOOTa8ps2pcUmm44czcxqGiFrbVz0788JLIxJR5Zjd33dmqxTRv4rrIWxMsnRSnPCscAD1pb71W/cirSfbAwzGTxtSMfDEjIHv/XXfxVfevop+hmYtq9zEKbX515A4Bfy3xvraCiBAM1UVV6gXmVP3GaE2vx582IFUdgPfvJGHOG+YbyIm2A0U8m3b3+qOXcknfIoyhbH0gwewZFDpDxLjCD6waMHEAQ7Y2CfYRRd60EqGVXQT53gPNJDcfbgpTiKrlFSlk1Yqq0dTMVyqoaDOBrL1lG4xPFvzWdPc5JEr+hfXpnEYZr4iSOHMALwI0NoHbr0LNJ1WVqFvga9FUJXbfg03CM+hFffAT3w+HGMIZFOEUjFRwPSqu/HD+whfbIyBg2uzt+OYXCeOdZEth4KfafuFKUqKpmfPX4kzjcdMeM68FtlRX19Vgqanj0pFNe3Ij1fEpgMsBkhcuEcJ1wwh96DUWiIdJr+eeRAI9srqAZv0TkMCCvc+wzY2QJ7FNFdO2MzspXcj6iqGoBCphPDfe2kbV2gSBBC2Pl0wENqmrgRXOd1lnZPMv6LwCyZY9eeeY9/G9k/Ub8rGggkHeSz193jxkYf1uwoRsEBlHbkMQWceHUmFbdnP6pp98otLMmkWJMmCi4d2dUYHTBYO5X1pW1ObIC5t28xiI8eQrA1NkUjbXNLTBzF2qP86wXWgL54HsMNhaE1c+7KnuceRAllGv5+Gtw4dmBPRht7D6xO5nOWVCvTykwfPXPiWGw5dCKFOk1HJS8yJKNHeR8qUJMqyPz1KJ4+Uo8Thb2nfdtG/6oxbIPoCd50yP6PUZn63PGj6Cw4S4g6tu9YwNBikydh3tt3Nyaeu65j+3YF58QeFFaYczNjv4zR2a4jp6hgdNiuRW68LBR0GNjs3VGPMR1RVun4xQMUvLMn4vSBE3EE3nw07y7+qeGtV2+iBWX981z2QpklytGwJy6C2kPGjYqyXijZ0gPCSdyxaKGfm3k/vOtgCu3hk8aTTk1hrF27Ys3ehswk6EGw9Yp0iBp3gaKNHtOod2AE4ZcRg1rhaOiV6f3paGCMcOA0hjUHUmhglOi8UQNLppnClAGDg+7xN/qqowMCRNHlXtbzIvBsOHMhlm3bF8sOgEPMvxNKYYc2KMZU/+5J8TpTYS+iBLRrbcFLMQRnHDh9eBeFvPhE4jtR7yFpGKSDj34UfkaV9Mz7MuWvz4DKdLAYSTmwty4uneUUAyJh7aGJdhbygYcJp/NnT8VpCr0dZ/oWpuSgUU7DGIiCC1337QR+I4DRWzyr++TRk3ENeukETlq1Wy/6UZ498gn8YUA3UoC7CEJSaIkcgT+nm1ESSfs9AD/yKqedoQOBLYbR4M84Gtw+Yf0Q59AKx05rvQcSJFf6HPIvAcz/vIqr+MNbPQXjMnziMOerbWogMrjtDM7eIqOhEzp5FwbVkVff/p2i1yCOjcOZo4f/Io7do1u35ckTugxb9+webXhpcF9mDmdPH49jTedib0uPI6H76tE3o9AU9GhEyrRNafYyPKdTz77Ai6KC8E3Xxt+y6CrPm+EizFUYXE95n3Lh1PFLSa+qJdJr7yEDoTkKL+EMUYlyPS9REVrlu3vfAdRH6JaK0KlTx4tsO3Ctc3f4O/h16uSxOHlod3Tq3hclsn00Qmulsdu2ON8JB9tVGTTgEx/ayTdVSohImP7YirmpVLgd77Lp7Kyd9Q1Mf+/MurejEr3FFM+cOxOrP6kLzZYKXoPKKUzbmd8Zd8qlCxzBDE3hF8gtD13Ly6P3QPg/fEZF9Bw1Y07t2hqt8BH0RNFshfJ9Ae8DFQnAH2rZIBuP7DvHmvXIUxu641RwK51K81lwWiXJbX4ZrUYx64iToQe8Kk98OsU2gtNn4jJZK+27sp2kB3NGdp8ntfwiRpnbvI7va4xd4ATDC2WrdNVjGByHuTUD7zNH9rP+0EOfjlE2sApa6pVGvzVN5PGXziM/oF/XWqdbcQoLfBD5cmL/8dhGe17jBvYGNpW5jsqeUwfrid4T5S1rG936EGXr3JX11pmgQ4mIFnR25sSRpIWOXcuiN8qZskUD9ODmbXGCMR+hXd5Sfhgt7g4z7lbRP/FG3JJIlOPihDiXSifj1IFxFkVTRa8bdRe8ziBTzoOHDJCCYDgl4QOwpmBZ8roFFtSzP3qFkUZl8469SZo9wdPuyOsuRONL2WpmzR3YuzuOw6ukzo692XrWGwkNn7lAH02Hz8aulnZHMmamFdeQtR3g8R3BWbcXKsOFgwq7Bon6iga/81AGnmdRdDKZwqzib0TYezzx5wRRtD0Hjl0/yUfeUcVrUG0l8OaUAcbvKTOerCAf7ANsu+rYpT+NLwtgHmvYGeePixXAdVAZcqxwsijfNuw5kPoYGxpiSC+2xfGb45An2YYOGNgRxE4ggHbLenukKEYV+HoKmXrq0L64dJrCngP7UbOCU0CYl44Gt8idgh4aDh1M+deHJtSZYJfRp7oDvLw6dbHTFmxj+8DhpjPRoU9VDISmlMNnjx+OS8eAOfiOuoHewBYm9Emzz05R3HT34eOx6yB0jMNYPuI1dahO3yFRiZ7ai7oOndFnW6NHfHbrhPrSZ7dOpJHD8yVHAz+ztmY08JLnwXMud4A/sQ3JPpesoh4V+KRMkU+ggcWQvtQ+wtFslpWBMWsVHMYpnXWWuKf5HMevssZmN7ViTeUl50D6HfzmNRwe1ndQJbpaYQx2d67gzXlwTz6sbFMXcluxvPYcRvgF1lyB4mfxxAVTrz13simOnbgYh/lVfAdTY2BlP2o6leW68hH8IjoPrz5/qoltbD2ijIxD61mpv6pz6JhyKxSNpl4u37cPt7KeJwDYWFcfu22Iq4pX9ejapPXzMAG3W3gMqUc4NzXupP3u6GTUaHLetJ+66qE6YEOWSvfeqYsVtbRwmoHDJ+GR+5rY6mvjXKMB9MCqYcljnaMGqDIoM2KQT72Sj5WB683g27HUka4gp8Vf5YW6srCU32hcNuzZEZ8eg0C5qnn16o9O0L0MSDpbWDD0qdPO06k0PnvCD8yq09iV1vI+Gk9bpQVGGsaX2bp27vSROHSCDC3aEdcH9W6NLjksn/d+6fQ4gY/TCEZl88CKflFeMywDS2egA/mYJ5VI/9o5reHBXVg3+Z4dn4ROVtQXWvy4ft2Ry2WMmVE7KC4LjF84dThlZY/e/bGJ0I3gI820dxQ6tE1tCiP1ud6M6Szy9XTDkbSZ9hXNxLh+PaNqKHX5gPPRgw3o4mQ6Iocuk0l3qfkMuuuAHJdwFf/MqDkLz70ifBhOG+Auny74HrCCD18Aj/fuJyOAPkZ3bxvlQ2pTF3BsFumXDl2HTsiOEj0Ld50Pp9G3Th4+kDwuM2KAizaUc1CXaKpjOxPtKj+ky9HV2JQ48dXDz1ML5vTR+mjGNuiA4dATm68XOof89xz0pX1x/uRhahBSuws9sC38RflncENefKrpUGxB/PyP15//q2/Gs7/0HEeMVibeiDsty3D9/X985hfl841xNEBsMkAZroig1uupEf4nqW0m/XL+e/Ni+dJlHBX52k+FjTHoqqrimK7TIPK+xkIB/6kP/ow3DO3eOboj3BTSR+uJTPyMz/2st43q3zuF45GGA1EyxH/WZ3/afTL53pUDk7E3NB2/ruj8tOd+lt8HsG5lRIKNYpw8sD/2FXrEz/Loz3RPTS/OrMYAkHltPqQaeOMuFeDelYMSB3Xu7D2D5L6BV2VnIhqcdCAT3L9rbyqxN7D5GFMxEObfHgfHudh2sOlGNh34AygwMzAjDifMFPl5QAOOpKMB7psZDUQ1BlKjoRtp4nBhXkg8FCodDZmOCU9QGLu9pYhFwhHgoNZucO+ZlbrzWEu+bK/xjNC6hmLRyKkTS7buiYUgoVykHfykA+mu6J839KrGqtTRcxbBU3dSt9+Nu1DrOWVnSCpMO/duu75F4f+tB5VhoBeDURJrB3XIEz0qe3WJMrdOYIleQ/G5RKE+HQ3u/29jFgnAET4uS14Cl6vlzb/ys2zZGg1mNOho2Eihzbe2sdeeX0WHTvx+VqnaclXSaDcKC5pBdqq+4brhU/r9530f2ReDlHXWaXgUXnAjuYEGyIDyAakknMbpV3/u50H4/3mmFoXTeDRycYyoxHEX7QZd+GiiYiCGGQ7gc2zx2nsEa/tnvAZXGN2FMKE3ZZsRL53ORrCM2BvBtqiaTo5mnAxN8MkbKVkHMc6ygcgPDX4cxfuabyBgaLuQT/3Ad845P9CUTvqfETQ/9bYK7uhVWZ7y42TTQY4bvHHCT9qswYnTmeCH0bOje/bEvs/Q2k8d3M9wQ21vjmnEaDe4Ule/H0fUjbv60dTAqsGg1ZUMPtxIelLXG8LWhw4Y0zpImpB9n3Wi/7yzcEPJkMohGCvX4nDDvjR+/lfaHI0hUdmnQ4zsR3ZZTxzKWD3/VKPBrAX4LzRmtNJPmVFKX+JoOhr4jZ+gR52t8O7W0CKZDM3UkDh9rU3spubEinVkytEOvo/EaTm2f/eg7lFPMk50EDXtro/GgpXzy89/yWeqyAaxvo0OxcbDOHh+/mavt4A/NcrIqNCwPnVwf+y5eGMRfihFkrtQs0q740D9gRuKMzolh1QOSEed+tjWQzcSI4F7O05XG1hsAz6O7NOBcyOvEejZneAFjn0/Ufkbua5DLfzds3fS6t6mY9e3tN6I8YvzAym86ikzpyk0v9c9TTfwGgg9lbHtxy2O2mYHbmDbNjViENtlwPdzxw4jP/7Xx/6H/9cfxi/9s1+KoTVD4SXyDzVm9bvCkr7Bw/3/tLmf39HAcK0+nVFLgUKUUOVGCAmki+yJs5rsQmo0WLH2YMP+qB1cFUMqKpL5G6Fz4QsnBeeNwvTc1/Pi3HkJiIkjh8aUadMzvU9hcQmvtgLpCu9GSI1CmFrWFkNHz6Fc3eiNnqdMGUOwGy1WGJj+bFr7SlKFFq/dkNG8B2dMi5spYmh1etNiSq9MF7J9PFF6LlUQ1NkzAkfbekFFBY0lDcQsbocXroFUIYshNULgd7O3ctTIkXmOtCdmeESeqUhmQBgl1bvl+E2DMl1Jz1qR9m8aNkqaMLRfxuFeVIsvmuY7nz3iwwYOyOKLblfogwJjFWq9u4U3XdAVMDVSYDqoWwn0oKoE6pEs0sXcQ6sf9FocIc1/LwrQhjUrY/uJc/HQ1MkxorY2j1Q0jcwr07AYk31kihBjzEgK7RnJ9zJ10n3ADDnhZgqyeyZ37twZHy2cH+sOHov+MNpHHyvO7HV8kpEeSpVj2xYXhHemUzFerSYjKa5ppkKx3lj8RFQhRJ4/jtf2U7Io3n53QY7httEjqEA7gT2zZEroqfReonyuKRPnxULSpmsgHISx8LemgBGh3K6D59VtPKbNHUQZWLVmVazcqI8zKEx5X4wjFawrcLmi4Qe+6a23LT2nwjdrcNhvC6xM9bI/M2Bc88Rb5iYeWafjuy++nMrh8M6tY+p9n4tqivKId7Ir4eGV77RnP0ZHbM8r07Na+vJ+03S9Vy+952t7EsM7Sz/KDIW7bx8Hvo/L9HDTe6UJ04GlHVMmU1GiDbOJrC/hOdU7dtXFOoqKeizoQRQSr1FI41JGw4BuHaM7Rq8Fg1q5hoxN5VrakUavOxpa5sEUUjEz0mlsKyMKPOvz19qzRxtn1MFzl+OjnQdjwR5SF2mrpKY8MHN6jBk5Ko+Scw2T9mlH/En8TnqiyB2/ScvCii64pAfG5BpDZ1mlux6v9ZbNbNHYE9PGUFdg1Mjo3Zv98xjAPpPj5iHXzPThXA+ak79cIAJ2EeM/o4bgyDVTeIh2dSSSLW7uP9QUW0jFnb9kEYb81XjynvtjWA3bc0yFZX3EM89jbiBKtWXbVtLoDsTOxsItOZjkllq2pVThDB1IjQZPnWjLtok2wNakWfkgGJC45jhda6foS4Rx7i1/Fl/wgyz5inCCDx1m68QGtk68tY2sGu4o+W7umjKRIo638vzV2LBxU3ywbGW2M3vKHdDTeGDeLVNbmWzSZ6k/5yO+y28zLRIe55UZJMA/owmM0XRaaaOBPejz5nESAwqia/vk/ffkGdXyGfHvs+m8uX58V5qj8/M7jR7TF8XZgscVuGb/bvv5wdvv5hgmVlfGpKnTKbJbmbyjlNopbtiWjkPTd+UrrnfSVQLRx52hfEKaoy8+n8T4X7txY3y4ak10gw1ZRHYEEaR+4I18RtwyBON/Sae5TrZVtGOL3sfHjGC5Vh5x2Azv9sg3tyctXb409h49HZNvGR1jR43JlNDck6ujyfRe8E9e5SkIF8C5Y2QN7Gqs5xjNtxCg9vXTr9FDKzkBY0TU4ggb2As+SVacsvgSc73oOgIfU/tdV1NxxahL0icZD614iYE5duU911Hk3d49u2PTutWx+diZuGfi+Bg9Yjhp82wF7MKxisDX+6XRktwT7sKfrxMWpT379iVd6fDO7S2M6wAOnR3bt8Xc1esSZ5575HMxtKoqt0a5/oXMF5Mx72iwxB8Tb6QPCCD7kTfxt/OSF/i7W39MrZ47/4NUym8fNTxmoHP0R37kOqbjRh7P/KFB189CnfYrrVsoUrzzmEqxRGJTD3KN7OMwsnXl6lWxfM0mQRVzZt0Z48fdSgFoamTQntFgay+YuZVpz7yD4Enn+FaLMfBcnsYF3LPdFtgpE3ezvfCNl16O/fCmvtz30KOPZA0Tt5OIg8pqYa6slv7MlFGeCntpLWHDc8kv6bc4rci4OoYvxory45W57/Mp4r4J4zhidixbSAfkZ5+xffWVkkwzlViZqhHo+NRpvByP90hPxXPNWcTQgrgfb9keYzEyxo6/nTpYnCRB6nlB3wXnB5rAHRp39V1IcFQsdOecx1RKn81EgD1uzgj4OXjzgSPHY+ceijwumB89SdmaPmV61LA9ZwDH1YlXZi2KK57YdZS6X1t3kgK/g0wTsmJOQVNetwHQyj49o7Z3txiEQ91TJ1qRPWBGgysjjAr4FY6GxBfaLDkaQK/kvep9jvGKOh7OBh0N5pPtZcvGyk+aYht0q5ZlRl8ZzvvKCiK8yJKNWzeSJXo+HpkJn6mtzSNudeAXDo0iLV7aApFzLLm9i/5N07c/v/d3ZXziO324RbCublesWrwgPjl2NrM1HpjzuRhcbpaA+pjbMYo1U7fweXHFubrOptl7qa/mVqYW2koeSd9H0VM/IYv53RWF/Jgx4baYTE2HMtY09SDuUb+zTfUDeWaJTm039TL6cY7yAmlJPdtsN+9ze6RHJm6s2+vt8YUH7uUY1dGpR6vn+rw45uWYsx/GKCz8JudDW7ae81GeuJ78LB9Rx/7H1+GlXMP7dI3Z9xe8xsFoe6RtYR/Og7F5opLwtV9x1rakO3+3TXVse/a5U2QZbOCEqXeXf5QZ0rdNnxoeMduX7EXHqcxM3Rq6Up4Kf+VmSRcUxiVeV4yZffzQdI4NfcIT1T5evTrW1VETqLxf3Dx+Yp6m5FGc0rz8xjE7NuWIsMhtLsAm+2WM/iacMwuNti2C60kJh+TBdXUxj4BxJcGZyZPvoCBoBdstyrI2QmbsOG9eylLbKbZDw8uVsdIc8svMpatkQmbfyBZhZy28Hcjt9Wwh2H7gYNwFvozFdiqOgsY+YjxJPy3wFVY+L+3lugJq+xNmuW2Dr71HuLkVoqGBrakb1sWHmwod/ukH7qNeUnVuk5Evpqym7ULWiw/CATkELyvqRqAp0ZcwShnG+ihH3EavnNy2dWssfu3NDMjcjFN21owZMZBtzeq2rk3acYkD4Abv8nDxW1tD+fD9734vvvEn/5KMhmfZQliDHPEuKVG6Fnt+sa8b4mgQkPkSHrz8KJiuoASdJb1rC4S1fMni2LV9R3SCqU+bcHtYfZtMNFJpqSYr0vCC32RNhKWrVsZf/ek3c9F+7YlH4mEqUo/mtAcBrhF77tQZ0rTYf+peUxChQCiLlGgwFXuTJMYsnAWRe56593gsyZ69+2LuwkXx777z3RjLGL/4278Z98yenXsJRSCJUUEsQZYcGRYMkWCcmMgugSYCSYwIBrd9WJHWs4y37twRP3rjzdiDov6QR+Bx9NWYUQUT9Ex5ha8FcEyNsrCagt79iyUhrFDWWPddRiiC+vLs1v1kGXgG9mu0P2bM6JjOvtYxI0ZSgX8QkUf38WH0SujMy8EqCCRwBYwMXsNSovYsdYlPx4SOBwm0vr6e4x435lE963EIPff8r8Qk9iUNZE9xRsloUcaGnE0YOEYJzPN4LfCjMmmKv4zUvVO2afqv+2J1NKymzbde+0m8MH8he8EnxJfZi3QTjMR5+5yKh6lgPucEJGIZtExUODh2YaYCmvtoZZYKH84eP0hRmGVsy3nzzZ/ER2u3x/NPPhYP3EPxFvZsqaBbNV9nQKloqWsAlef8TduXmeT5vI4FWHk8nWfdXkHLc/903b69Mff99+K//uDlhOy/+dM/itl3z4gyFMVLp6n7ofKvssX4xHuNUpm3jFCjTbyyJoVz8zuZn6+SIrhy3fr4D9/6VizdsSuemHJ7VmC/+aaxuU6JAxIGl8y/aK9QHGXoCunEzxbGJf3ZvwzY9LODeIaXrPg4/uvf/JcY2qt13PP4L8XMu2fhsa/MgmyegW06WaaM0V4a/bxbJ6WMvfrWEfBIx3femxfbdtbFhs1bcyyjscVH5tYJ0jszo0FHA3AVb3mn+0KJVUDw2blLT17+bUZDZjUAj8JQuER68snAFRat2aN6+MK12NBIBfPdqmMI13wy4g++8s9j1l0YARjhICJ4Xzgajd7qjBM/cj8wfSgUpIeSEuO7+OQauK9P48K5fcjxg/d+/tGYjDFdUV6RWymK7ScaJdAQfVivRdqRr5wnJe4cUfKLRGzdamQxy6um2167mAX2dKBsp97C8lXrOQN7ManQ++M3nn8+Jt58C/sriTZAfzq2TqHofoISv2jZ4iwGuXjNhpylNRpqy8lsKOse/bqSko6joSM00Rmc794ZHsf7WWrUnGd+qRAwL0ErbXolfH0vPiVPdj10NFxqcTRYo0FHA1wN6BbXr/3y0/EQAthVWrx4Sbzzwxfi06NX4g9+89fjofvuZ2tUGamYHM8KbIW7WGlfwtS0cHmjfEFly3Ep9OUzJT7WBSdLR5Syzdu2xd+98EK8wlFyE8s6xLO/+bW4Y+IECu4TjWfQ0oZGpkJf5UwntuuYl7jDH372N3m86+LeS4FwBkfAitVr41t/8sexjYk9f/9s5MejMRZ+6Tjlq9KFfD5xkvWVH9ufeCrfT9EuPAUqnUlnPucILEb3/pIl8Zd/9/dxxy2j4v4Zs2PyuAlRXUHaPDBJhzSP5dzhIxqhhVFQKJ9WTu9IfxqQOvlU2lXkzrGWTaSkb925M95Z8AHOp0/gYffHtEmT41Z4QRmZCudPn0X+Fc4GHYGdupNSjSO//kRTrN++haKQb8fq5WsKOLX8K+sQXjn4z/zy9MMPxO04lW4bMYZtOoMpOokBatvAGlU9zgCfs/AsTwsxC03YulWtFds2PBqwcDS4X7lYp/qGhtjIUa0WB165dEU8/avPx+Tx46Mc2WTtF9dUeFsnSV4uTbke0pffS6ufpVedEG6T8DllV11dXRYEffftN6MVx//9GpGf8Ri8prNKgxoYGtOOUzwsHBrFfn/pJbcV0Jdyxj5NR7d/l9hipotY0+/9xV/HemD0vz3xWDzF0b4apYlr4EWuFeNQhugQ0FGRDl3mnwULUfKbqUeVxUIhNo2i3OtMavve+oaY9/778X///Q9yBf7kG1+Le2bNjL4EN5Qb53EyuCWgI2tQRop4WxZNx7VODeVU0jjtiYE6gcSXlJt855zXbfok/vbvvh3vr98YU8v7xpd/66tJTxoX0qLw9qUjT6NIGrEYZ8oO2nIthInwF/+FjTId0HDfqVi0YkX8yZ/+eQzv2R758XRMnTY1aqqqE9Y+o/ElfaRMA6bqFI5Z+ky5jp5hX+oIwlzalf48Hry+oTHeW7Q4/v6VH8Xj06fQ9rSW/dAc08pzFvn1AprU8JFuSrWvgA1E1BYHd3uyu+AUzJHsHxwNnYHhyXPNsWPfgVi9aXO8ydG1XSlWfN/sWXHb2DGMfQgnplBY07Ry4Uu7+/YfisUr1+JcXR3763dHw+HG5G8zaqixRFBnYJd20ZMjjDtegz+QndAauEpZwsi5poHPJ5oDn+UU/qbMS/sEmkFX5IOB/QvOge1YzWQ26FBctYUaDYdph6faEomuqaqE5kdGX46O3oCM2gQ9/e7vfA16vYVtg9Z3AYbQjHDUYZ2GY/Zor/zHb8Jeg0s9wHVJ2Lesi4UjV69dG++89lq8+vGaeGDypHjuySdi9PDhSUvigutGQ/lsGnTOkf506Nuu96iHaTz6t+MR16S9Rur1LF62NF75z38bmxnXV3/5uXjsoQepi9Ava3g5PvVpjWhh4n9exb90S/upM+SXwI1+rNnmuwS7bcfOeOnlV+K78DszfH//D/8Ah++0PLlNvEqDFz5WPF5qvVgnHSPyAmlXzHLMzkm5LuzkNWs3bIy///bfxWrS5x+YeEt8+flf5ejdW1O+uh1N2BTOhMLRkDUdoKt0fgP3/I05Ok+GmzB0dm6TOMTpAguXr4j/9J/+S0waOyqmz5wZEyZOpDjl4NSXbMM6Fc7DdoRt2gfIOGGVjggCSNKdYxb3pGtxTgN+z759Me/DRbHg9Tdj5uwZcdeMGTFhwsSsb+bvjj31UtbSNlwHAyvqZllPQzgw7lxf8KWdwQHsk+PwAXnw6vXrOSXrbTI1K2M2x1WOxv6QxzsGHbGFDAUG8JHET8Zf4B/bdNAztXmszdPMHOyjWw+2mcBvDNCuxhm7BD3+J/MXxG//6q/EtNsnRSW017Nbt7QR1a8dv7xGWKQDR/wRyLxcP/ss4b2yWD3c+7dswRGwcGHMwyHbpqIivoz8mECwsBc1O9RdErcZf64h78LGdjKIIt8EBsLN+grWQ3F9pDtrpAk3T6d4/eWX4ierN8ZTHAX9LPQ0rKqqRf/RntEWIPDOWKQV7YyLjFUdrh67bj7y4RYcN09hF/UbgPKnq4H7teH+CYMTpX8h/7kxjoaWqUu4ArFYdJleURV68yebYinGfQMR874wyllTp8fY4SPTK9yMkFX5SmUA4Hu29/ylS+N3f+/3opH2vvbUk/HUM8/kmcBpnLNfONOHQQazBDyGRWbhMV0aWCVHQzJaxuJnmazGusJ2N4T4E7Il/uQ//ud4YGRVPPbUc1To5agekE9lQgRKRgJCiBkSolFxkbbEwGSmihGZvMd1tYJpXWA8VjA3G+N7IPPW5R/HF555Ku5EcHq0YRdSwo9DYM4hlWLAJCNJ7GP+EqNInUJYJIdxlJwMFn3LCGxjY2ZjfPcHP4jJOBnuoQDjWBwwlRaKAul1wuTYGLdr4aUSbrtmimgEmCqXkUOwWK+dTFcmZeXWdUQWFiD0P1q+LH7na78b0ykuNgDh4GkMjktHQEbPGa9OBqtbF5EbjUXgAIySAWL02aYKjCcjGKlauXJVvPGTH8e/e+2t+Nz0afHbX34+bh1DlViVPZ4TLsmceE6iF42EueOV0CRmx6BRoMAxunOVLJZ2XTtHY9PhWPDBh/EP3/3bWPtpfXz1y78cT37+ETJnhqTSliYRjA9ESaPFc+WL9fTkAzZLCX9gZGTRfdg6Gtyn3JrPHWjfAogv/ejV+Mv/9kLC9G/++l/HQzCTXuloIN2e+eq88JWGA7BwXjJSmXYyR9bUS2aVAhrnh3v3vX/ZytXxZ9/8s1i8vS6eu3NKOnluR0nXiWaBOGEpPGSovlKQgTsalukMEw/py340bJIO+M7nPPZqHrT3lT/+Zkyi/8e/8usx54E5WfzSwp3ivPskVRh0usgI1e3aMLZeOIk0OJasWB6v4iSy6OqaTwuP8FgcDSMGtY1qjM8BOhraM1dhrCLCC/6fbbp2Mm8WtRi/woD2+ZT9yHAtqOPan0HxsxZEOhpIPdvQeCYW7dKwpbhXC0b/+Tf+RTx47+wYSLQRQKB8EjVk7uKd+C3MrCaddMTYfVfZUtF1PQqHXrv0zluxeAkC4lXo6fHnnou7p0zJitFlFkTiXnmIlzAXD3ViuPf9PJXGikKUZiagcDHXK5cJSTH67kRtNDI24zRaSEbAG3PfYw0OxTd+67cxvG5LZagDjolOGN06s9ZsXI8TZy5Rjk9j/sp12d9gnOcjBuNoALb9unTI4y3boTh1Yg5dKQzpyRXn5FWsVwknNPpLlzgHiFsgxl+Mz/X4rKNhA3so3yaMxtct90V84+tfiae+8HjypLffeie+/c2/TGfvN3//95KeBvTpg6OBSB9jaS/OSYOsgXQuDumkciuE7+JjCv4CcVMxUFgr+J3r36Bo/cM78+J2EkC++uf/NmbCJzWMhK+wd61E+uQJ9OE65hoydy/nqIKoE9M1l386DnFgEWv6R7/91djC1L/6+CPxhS99KW7BKPVKRZS2bK/Ef+Up0qX8UBoWpo5BRUYx7xwtiKbqepDowxvz58cffes/xL1kgDx87wNx16QpMbRycDoP5F3iu68sDAoU5JFetiNUOhCZFe7pWBW3cDydp31PqPgE+fHKm2/H0mXvxZeefDZmTb8rJtx6W/SilssZlL1LOJjMzjIK04kieM0Y/kfZ47pl906OMV4YH5M11rOsD3uqT8Tmuh0czRVkv3WJ8oGVGR06fORwzN9QF7/xzBMxa8rkGD/iJqrqg2wImeaTZ3gD9tB+M3A4x1q0Bud1NiiPLmNgXXc0YHCx+kU2HrBTfqzGaffB4sXx/rz58Vtf/2rMQHEqLy9OHHA9ldMaxvKphDHP5ToDg/weehMufud6uia+K7c9KWEZesGPf/Cd6FwzMr766/8PdWcZbld1LeyREHd3OefEhVA8OAlJcHcITqFFb4HS0lJaSgu0xaq0WBUJWggB4sEKEUKIEHd3I27f+46VTe/z/b390wU755y9155rzuE2x7whjjjooAzsyZcGFuTXkpNr0F39xCS/Hs9xfbaXdKjM14awYm3EyFHxl5/dF6PZan3HVVdkILwjgYZs0KkcgM4qIRgr81OaSBp1/uggXRT14U5gYjNPPsz3K0OXvubMXxCvvf5G/PLJ5/LZj//sR3HWaadksFR630GwdysBvBqswxNCTMDsom/HPmwKg7bCwXV5yozVUTk+tG4wRj4YP+mLePzXv4m3xo6PARVt49bv3RPHHXUUer5G0rtzk9bUScJzC8/bQrDB3w38aY8ox1IfoGeFjf2alDMb4ffhH3wYt9x9T/bVuvDG6+MUjtnzqDcv5e7XsGdOzjOTMn7GM9Xr4lpbySoC1+IlHgxQ2Kz6jaHD4uFn/xw3DDgJW6x/9O7dO1qwbcvAsRWs6hAgTYAH/YzuTl2rPiHQcAB6x0DDXnTEV1vojYOgq022dTMyeu7SVTGeQMMrb7Bdl2qHs5h378MPoZKHRoPIYPseKBztqzF/yQrW+Wm8M+rjWMSe+3lL52cQ9rh21aIC+6oVJeMNqxMkxKathD1TCRtB+Se6XR//gBmcHd7zpdvjqzI4K+RJcd8uPtsOr+2iP9M2Aw1rNseEGZw6sdqZIBNIxPUiyHA8sqVli2bxGU7vp0Pfi/u+d28ch0PahO0CVtP4jJSzPps1K88K2zvFZspG75E3pHNpXxxU5/eNmzbH2HHoptdei6eHj47z+54YN119dRzUrevX+Ck1LlSmlvBpljp7LfCsIsABVqARZb3r9xK/Njh+D8fpj794NExL3Hfzt+KyC85nS1jLDC7pwGnvK8+1YfJKmAkDoOZaeAk3dele1iePVQVn6pkvZ86KZ5/7S/xx0KvZN+ZXj/0qTsGGr4veN9mXDnpCs5hWgRN/lw6V684b+4j/MuGWshp7VR6DXj+Z8Fk8/MtfxPjZC+LSvsfFjd+8IXpjj8n3X8GnBsB8hi/H1FGXZ/yu8Ek8sKh83n64gzDWtCcbDL47ekzc/uDDcd5BPTiW8fQ89ri8rAw4FsE5dVSp2kA4MRKw4oWzyo/Ee/F8aJDxDR4KL0+MUda8TmBt8Esvx/kXnht9+/aNw6WbRo0zASi/Opb3+7s8qX3vXJWzRR8NSAr42AOjCk62gYZ1BCbnzJ0bY0kYvvDKK1TxdYwzBwygurRrtGIbiEciK8vEnZQgHv2ZdMl7wlbbS7rSls+qGPBfsza9HfjuosWLY/yE8fgf78ffBg+O+75ze5xEVVn7Vi0JsnPaGqMJ27RxlevMVzz6KtGf9q74VFcJK2nX5LPrnDKV072GD4vXn/tb1OhYEXfdcgs4xR5jbH0gdbP4S1sb+nTeoEzlUdAMsCjhx/u0s+ULqzls5jiGeb/w7NPx6ufT4obzz40bsSe7duzAs7EbGM+AgcMVviqyjDXrw2zB/9AnHfLOO9Gua+e47LLL6K3SBsDxPb7gOngw3/zvvv5jgQaBaHRYArJ8DbbI5iSouJjKaROjhg2LpQsWRnMcz5OO5iiSzl0yE2yzK1WPSs0tBB7vZcbowrvuTMjeft45MRCkHdi9RzaN2YKQrIKysdRTBvN7W2iyIvGaGZVBNEAVwlK6f5t1l5F8z9LU1959L36KoXtln2NjAJk6S4BaIQR1uiRKia5k4MqUZkxEtcZQllMzsM6iWyb2YYx6nv12iG8nhsFMmPGvL70Uk98ZHpfecF0GGnodSKABht2wrlTRgPEG42WjNcbMCgDIUCEqMUuYOtNm0zVSIfkMNCwl8jWWSPQfn36a47r6xSlEQ7t16ECXeJopMT/3ZCmAFHQpXHlP5tYoFT4e0efvlkZ6yUwaH96/GGL/gozUcKJ+H456P+758Y/ieMqXGoOvzOQyT7PGGiUZHNgPTw1wo5MaFY5jEMN7fL6XpaAa/wYxhr33XjxFj47jjj06brv22n8rNsbK+bLuNNRZg1FIOdNnKWxlbnGYQRqYfzvP3E3JZA2a0i2jomHosOHxq5//PFYTN7jrxm/GwAvYmkGkVSOOlFMaiRpwCiyP61NZe2XmSwcDurWhk0Ycf2UZbA0yhvUaNYiZ8+bFX/7xj3j0mT/ndx576P447eT+0bg2Wws2fZUd5x036QYBlGIWPJauQtGBU+atYPQSVgYa/PkvFNv9P3sgxi1aGpf1Piy+hVPaG+Xg9zwv2Mi1uPL7ZhC/Lmdkviq/HA+Y2Q3diHwa0MDNEzc2E8h7h6081/3gvijjxuuvvTLOOOMMTmTonEEXeUJjRGyJp+0Ydu43rQLd1MPh3gxNfUDg6eVXXyHggkFEyaXXQSQ5OzevTnl//WiBEZaBBuaQ2x+AZ4ISQe9PaRLE5u9Ol2WlrMhj/OCfrMBgTJuMelpDpVp1YuXWPRxvScPCORspKbX5nTOM+Bly4QyqVTLQAE0YZBDU0qYKWhngsXs+0+h5wg1BXRhayBgVJ3xlAGYevPrh2HHx1J+eJrhzVfQ/7lhK7Ntn6apKShmQzqy0uP+y87f4qEuTn9pUXuic2qRqzy6P3+IIUiL0GWiYNS9GE2j455D3MNY3xL13kLWnQqga81N2NOC0Dtc//vOJlLy/FZNwvsd8bv4nohzS7F4eUdakRcK2Ps4MTBaVWaOnBSiL9gBE5QJL57mFUve7Xklv/iz+KuQgN/470LA7Ji1ezakTMMv/uu6758644vJLFAzx6quvxz0//UV++tO77oiLkMMt2d+4jayI22PkJZjya740UFU4o3IP82KexYu5SQT8XXLuJlPh9qenn4m/vDssejHMfb95PPqdcHzywyac6ULG8gCfwTp1VnxPx0hZ5HhpJDLPDGIBBfGrY6XcGMPWsrtuuS3m8vU7LzgnLrzoYjpq90j60BBNRwqZngaja4EndRy/lvn8rhFRCkDo7KXTxFyWI2veHD4ifvjEr+PME46JM/udgkN9dJS1aoNziP6ABvPEBLLbXsrxahjI8qy0woQJSAAfXl5pgBF0MruxkUDbl3PmxAtkGl+mDPPb11yOsUWZPVudrJ7aTMf3vVTT2GchK2ng76Ab/u5qEQtXLI1PqSaYOX1qVEU/LiGr+NFnY2PNii0EE1rn2fFtKI1eTqDkkZffiVuvuDBOpTLooI7dolWTliowzvJeg66sFXXhe49CNdjAbHkZWFbGb2fGBpaU05r+e7IKxUzVIvSHhuIIgppvvPNefP+7d0ZfnF0dRgP94k+4JB8Ka2Dqexr+vlf6O/UqtOR74lmcW3U1eSpbeUaMjNdeeCma9+pJxut6KhrsYg6zcF9W8wFT9Y06roRbGcRx0iDlp3rE50o/8rjVeutoiDYavffCH/8QgxcuizuuGBg3DLycrF0r9O7GpD8N6RrYHGjkDPRoVKMxUkerMzwFxiCDp4FYaZdb8eB1S75nzZ0bzw96OX797D8S54/85Adx9umnEmhgrzPJAbeB7kb2adPUoUkfwKBikyAp/C69OE8NU08bMdy1AzpyG4tHukoHn02eHI8+/kS8Of6zOKNzedx0591xLIkIYSi9Cx91qFJCfSOslGsGGYRXVkeAbzOeNvEswcsAsMGHER9/HNfcc2+W9t+JfDjvvPOzVF2jvDiBonC8ErdfP8etodoEbMXArrFyUydBfvV34c+HsYQtY6/iGD2ADL7p5H7YYyfH0QR8myJrbOgo7nVID8A5r5wvVsFXeQvmMpEEr1LxtZvKnk3I2b18aKBh624a6K3jhIoZs+MV+GkdfQIMNBxz5OFUmHYh0FCdxpPrgAuBaZrEWtEwdMy/qCb6KBbMn8U2tnlpUx1MB762zerTmLc+29hobMkzAWCeOqFsUvcAXi5l0n47hvf3/5WfpykAfxt43M3Ed1UigVCVypJKbp3YREXD8phO/FYbTk3TlfmdOqAPZektYwK4ff+NN+K+7/4wEz/NcBhrgzdlfDot/BSnhc2r46vclc7RxcBCHGszqNul/fok+uRDK0zfxaH7zdvvxfl9Toz/+eb1mbSSD32JHulAOagNXMhh5CB2oJ9rV/scbksbNe1seFWadIulVSS/fPhXsYTPM9Bw/nkEGlokPgud7JiQAGO5FmlBMKYm42/tQMe0ItcTp75Cx9aoQ78iMtAz5syNp555Np565fVoxHf+8OvH47QB/fNEp9VsWfS76njn79g+z5d/S6PCS7snbb5iBbmG2ozvMz8ePz7u+eG9MZV9/Ndy+seVlw3kqNGDs3x/K05lYecZdDHh4LHkxZZAYeOLB6W8kW+Vb7lO+MB+R55C9PbI0XHzAz+LMztXxGlnn8vRjMdGGUFN8en3Hde5esqeekOetApPWk37b798lId0RE2CyFfyypwF82MQgeo3B70S11x1eRx3DInOg3ol3AySyPt+z2Cdz9EH8TlKB5tyqmsLPi5k1wEGHNEzG/iuJzyMn/R5/PWFF6NX125xNr6TJ3s1a0IfEeBmJYbjCPuSf6N9bQBE/SlctPVqMJ72QsEc2NvMfdGSxXk06xiCyc+99Wbc/53/iX4kH9q2oKIaGaXOzOPl8TdKdO881Z/qDGGs75k6nJ/agWkvWO3GHKZhX40aOTIG/e35qN+hIn545x2FPQZ9WUFTovtSQMfkhUJGGFktp10tzTh/5aXz9x7tyfWpP96Pv/7msXh38aq4iaCagYbOFRVpc8h3UrYULu1ZjehpdHBrVgzPXbgg3iAY2rKiLC4fODBalZWhY6At1meza/7h+//d13800LAbREgERg5kAN1zVfqULyfHqPeGxlKyHs3oatqHDFAPHB2oj46mmzM7JqEaXfPc2qEffRiXfO+7fDfi+xdcmEd+HNitG52U7cJKh9IqEKuCRORBVLsw6sxCS2gykQZuYcAwEaSXuReJRMJcTvZbxfZjAg3XEq3sP+DkOPLII/cHGopIIvyQxJfZLeaggFDQGogoZRgkNCN+eWQc92/F+diOALe8/O+vvByT3303Lr72egINGHM9e6VBZiDADryOa+mPzGhQwQCGhK7QlvkMLthhVSGLbs3SzA00q1uBAB+LY/K7Pz0V/U7qE6f27RvdO3SIVmR3WWkGGoSHDJ3Cm/dkRAVeBgRgFg0u3ytdGgEKtSUy+uQpMQyDa+h7w+LeH91LoOGIaETZq8Z9qeJAR9/vK9jEtYyjwC4FGizzcl0qM7/j0WpmLqaw5WMMDu/Lz78Y5RhBt15zdXwDnDqWeCkWD+5gboW3hq0CwLnrBPgcf2pE+vtXZk4RMHWaNooVVIp4tvZvfnl/zKMT7N1kuywFbEcmwnJjAw2Woxqg0k7QOXWfYyoinqXRloIQuFvVoAntnumqdGKvg+M4Y97c+Mvz/2C7zd8TbL9++AEUW79oSCR7x/pNGPYEdJinl/hMxSYtMk8JUFyn8HadwFq4CDvL8aXVTwgePfzQwzES2rn88EPihltuzdJXYeJ2nzSMhTNvQGoJE401adKXOPVSoKqoHFPhaz+Ar6C5IaPGxDU//FF05J7rr7s6zj77bKKtnQohisHsHIXpLuhSB1ZHuTJwroniXY+Ss6LhNbIfs+3hQbDQ6xsEGjo1r0VX8XrRvB7HW1rRABxTQEIbLDPn4E9LrqVLwMDlOvwXGmWeuSKWofGoMtnHUSX7MLaXf7Urxs1dHcPZOoFryZYKbuC6/7bbku7bUGljJZSVPH7XKgoFuspYxasxUNqvKZ6dkEpEw8tAjHvK586dEx/gnD359LNxDfR4soEGMtMNiFLrZErXKhphKs6EkTJH4V+dOdql2O71u3DAquJ8VQcG9mjYCRynzpwToz4aG/8c/E5Gre+5nYoGyi9rMDdxUxu6ch+8FQ1D6FcwiRLZUZ9NyzWW4Tt1bR8cb9k8WjesRUUDuDZbgJNp1Ugl5iWONPRybXwLyvr6ku6EVgEx/mX5wr4INFSnR8Ou+HzRynh3duEMl774g+/eHpdfcmHy3T/feDN+8uAjafj+9M7vxAVnnxWtaBS7S2NC+QXfQMTIMnHrM8Anz/CZzkuDLR+6H/bOIYOGrN09qhqKf35vePTg/p//7tcxoM+JmV32+DRh/XW2kC9akql89PsqelenrvEZynk/E/d+Ji+P+XRs3ENFw0zGvvOcM4uKhp4HMl22pem4yOfQXm7rcBx+lzakGXnXRdjUyYyx8gfEJ7+6nhVr18UbyJrvPvZYnH38MXFW/1PihN5UwrRszTZATsnAIFR2KR/zORgjynHHd46JP5/JM/K5fJ49GuCRrwgUzpg3j0DDm/HuP9+Kq6+7ku1xR3PkaM9oTEXDDozcA6hmqAn9CZ896D2z6FY1LFq5nBL6SbF47myyrhxbxnaAGVO+iGqrNkVZj440OmwbtZo2jsUEGl4cMibOu+A0KjLYltH9QLpct2ONlQhkbIKuCEQT6NsNMnciN5EuTJQgCevxeW6bECS7dlv5tyOPAdXY8rjHSZTVjqCiYdBbb8cPv3tXnESgoTmlpVayuHZ1Qspz8Obf4ll+LRmK4jUr5oCzst//HNsAorrJhtKvk6lrQtDo1muvza0Tli1rVJqxV8drXDqGuFaPOL70KF4d00t69XONbPfDuz1gxOhR8fzvfhNvLF4ed115RdxEsKF969bZF0mH+d+BBmQWdJ97tcUxwKhEINCAwh6eswt87Es9wrrgdZMRVsQ9/+JLbLf5Wz7/8R//IM5ki1ITnCa3gGajXKbGSAQyGB+4ewqLR5pKh9KOwV97Ehls2AmtqK/q1GWLA/AZT9b7l48+Gm8QaDinU0Xc8r3vQze9XWmsh5+UEcKoZFA7Cd6C/giIgAt1qg6lFSAZQBFWyBj5TQd1BHuyr//BvXky002XXRrnE8Tvge72frOgJVz5HIZNOZkyiHHU58pjab0kRxMn3CsPLmNr36AhQ+I+7LHbgUn/fv3Do06b4LwYaNB58ahdZkrgRdlHKbow50HaffYM8fQdMJr06Gk81UkAbN65O5as3hAT6f3w6ltvxQYCGmeecnIc0/uI6NmtKye/1MgTgsxmGphYQEXD2yPej3++S3+tJfNi7vL5KVMPI9DQrnlDToGoH83rs+2UCXhMZmVwD5DyHvGjkJW6FIUAJP/yHaam2AAohT2QJ/UQUNrKiRMb9tAMcu0GejSsilnE8GjPFFsRP+UVZQQaTqQaiEADuJ0wdGjcf3dR0dCsAT1PcP6UeVYfimO+kn+XbFwf6Odewl4cp33Ge/LLVvhpIjbHULKoj6GfLuxLoIHAXa8uXVLOJd8IY75vZj1tXvDo4rRbxK30BGNhL+y3W4GBerUOGeLl2KlvgtMHf/FILGOMB269mVLyoqLBYJa8mpc8DlwEXCHvCx2dgJR2lMvMAyzHdmjenjSW2U+fNTv+9Oyz8TRJK0Kk8fjjj8Vp/fploGHN6tXYdx5NXyt5vghAig/+Ay7So7JMPZE0yrzzfWDk3JXZH40bH3d87+6YvnxV3Hj6yejEy+JwqqfkRW340mUwxyoFEzUG8rQ3SvaXAQH1U8k2kyy0izcQ+Bs8clR866cPxNkdyuIM/JsTTjghytjO43etPM5AA/fnllb5kvftzSNO5THtceVoISFFA7wFTE2szMPHemnw2zGURMHV110dxyCDe/ToQaChQQYSPLlF+izJQ/0ut4EJf2XaXvSLfAnDJl1Z3XYAcN+EnFpGktag5rP/+Ht0u/2OlwAAQABJREFUq+gY5556WnTDjmwKr7pt0KAp3yxkvPTCVdLNrsnfPTlIJ9sAfLIKOPHkKvs2Tf1yWrxPUutPr78W9//P7QQajsOGb06ggUAIczbQII0n3vLbyLX9cBYu6Ycgq1O2A2vll8loYTMN+2rMqJHx8rN/iarlZXHf3d+No9g6qFwSFkkfELz8K90rYBzTv7Q1lHNpYxhUgqf8XFrxCFarzUej957/7RMxeAmBhvPOjeupTDAJ7Nh7qIRz7ZkcYnxp2lM6DEy7dcJAg/Z1iw7lccXAK6JVRXnKC3HAQxIXTum/+YK+BO3//XIQEWJGSedY4V+DiC1kAZKnxJjhw6loWEAWuF4cc8hhOMgdo4oIwDirBUFIqAqddUSZh338Udzx43sxmCKuufTyOI9oaI8uKDYIzUh/bTpyqyS3k631OMDq7NOvXI3majCazTX+d9RJ58CmawYBZM4VZDJfI7OuYrv8yEPilNPOyD2HRUUD2QWEh05cKnfmo2JTwGRWS2Of9zLKCxHoKBlo2Mu4WyAYzwP+cvbseMky82Gj4pyBlxeBBioa3I8pFe9kvUYoFRw6oDK5zrkC3P2rBkvMhuiAF+er43Sj0BVQNnoZ98Xn8SRC9qgjj4hTT+wTB3bpXGydYKztGi0Qbwo3flEQKYSSCZm3xF5Cdn7GPWmoMf8lS5bGlCmTYxgMM/jNwXE3gvYEAg1WNGjMOIakImx8hnMVptX5zAhfsuf+ZwujTQSQdHwVcBr0Nt37GIPln8//Ler3PChuwpj7hr0r+L5r9Ts+Qxz5U8GUGS/mrzBg6PypYLFc2v3te4FTfcoLV2OQDB0xIv78zJPx6awlcdd118bA88/H+G/F8TvspUKX2afBqgMkVfZr0HgUxwojaUTnQIPfqLk5Wc+31SiohkEyY+6ceP7ll+O3Lw1iFhF//OWD2QOiHkJnK4YCYofAFwIZweOlMNSITtbiGelwCDc+S4dexcH6NBQ1dKxSeQLH5TWM6SsOOyQGXntdHHHIwQkLlZeCX2VoJt3vCQ/fy9JrnmVWS+WjxvbZCjdfZqQ2odjfJct4/f0PxGHcMfBb34xzzj4nz6reAY40shWgItU+DR57JP3tg66NvLon/RPLLN9+K+agxCbOX8AoBBpoEdyxed1oT7fzZqWtEypvjT/orBKMc4AGOD8LusMglJmYozAwSKfS2Y0MsJTXffgZPCSIuIvXss074tPZS+N9Wm1j0qTD63N/dOO3yPIeQ0ldKzI7lPiCI/lK2Dq6sPEl7NNx5KeX9OVvygadkdWrMO5mzcpAw3M04rn6aioajjkm2rWhRwMOgNUmXsoz6ThhzQC5HxMjxpI4lY+BBlRcNKhPpURdspHgaSe8MWX67Bj54Sfx1pD3OIZwX3znWzdmoKGeOAcvllRvxHGcDF+MomHk5BkzYtjYokcD1brRoTWv5o2jXROO8uKMeI9O3Ec1hdlPAJrOWTrzLNy1l165Wtbsz/zdf/mQaRWnTkCnKzPQsIJAA44e9xUmacTt374uzj/nrITnsKHDY9Djv4/ZfH4/ZYznnHZatEHp78WAPwBYZgk5ONNAkdbMSpQCXOl8yQvQlLjO/3i+vC1u3Hf81LPPxZ+HjoiejP+z3zyRgYaa8OJGMsjiTcUv18ujlnPKT/KK/GrTPWWieysNlMq74kK5Z+bhAwzFn3337pjM2DovF196aTbONUgqPnVcfTm280kjg3ulozQM5AdwpiOac/YjXsrjVRgVrxNo+M4jv4qzaJJ5Zr+TCcgeBT22zgx09moBFgxayHCcw+xID4xSJrA2HUglRdIp98E1bNViDdDSLIyOQRiKn346Oi46/5Loja7sSlC+WYOGBHjgaeZskIk6cU52WBGrcKDW0dthweKFZM7nxEZ+NsTR2gk8NnB6Qn2OJ2zVmBOW4JO1bH2Yv3xhTF6zI47qcziGVi/27x4ZnTtRMk1wQUdu1y4Mzl0aVmRyoDWPFavBtr8iAICTRzANMABny+852gw+EScGwWdMnx6j2WP7EoGS793xnaxosKGigQblkgZzwhuYCwthLXwz2My6pJeCb92mAb2DD8+mVzdOmTKF0tfh8ebzL0Stbl3jpquuiiMx/htRFaAOcSxxqyyTV/0OI6ZcFM8eVWdFSepVn8/nzrsu399KWfCwESPjLw/eH29u2hZ3Z6DhimxY/RV6VwdA50UJ7rY7Bk857DMBDIhWVlIBhXzLhpAwW1ayoDs0qjUkX2JP+c/++Fyw4ywevO+eOK1/v2jENqtsAol94b57Aw57tDEINKinsvIOeSystkHXTIJtLWQvoZfdOHj2UjCbOv6LL+KhX/4q3vhsYpxXURa3/YDsN0Ek178e+S0chbtBcH/PYAw0ZODH5Il2iO/ZU8mfwkb4q+tN/BhouJsMbzPGu/iqKzNQ3a1Ll+Q5HUfHTlnE2Cl3hAuXuP3a0eIz4eXz1e9eBgyWY9O8hFN67x+ejDtOOyX6nHBiHHLoodms2EpPbQczrlWoAnDLrN6PstlxtkGDOwl2ATXolGxpDQ14tgFixK//alvMWbwixrF14nWapO4iYH/6gP704bFBt8ekc7zgNrbtIg/t0D938VKCDGQ8/8lWtzVLYsHqRTnH4/Bky1u0iVacONGwFsmzSuAGXq0ELSn7lKvSVzI8//JWyg51Apyf8rW4Z/990gnr3oLVsJZS2Hmr18Unk1fFbOL9DWvQpHj7Xo55bRknHnckPQ2aMv/Jseizz+OBu38Uxx12KAFHjhlHLmkHaBukk8wDfK6P9m9JNHHNO8JaHCTOxQe4svnpRCpMh5MMe+bdoXFqnxPjlquvzkCD8lp6yEohft8s/UN7uU0ZevByPIOnaZPAC8r+IrBKAB2aNHg0mLEf+dVjsZD7H7z91rjyogvYvtVy/3hF1bCTLsn4r3/CC4WZAL3wuVrbrcmVsRVs/O0ap6Arn/vLX+Ppf74VFfz904cfjlP69ola4H0jgTUro3MbHvDZjI3jpZOvfvJSFjnnZBDfA0auRTllj5WPsHfuvueemMqR1DfSqPjfgYaiR5wwFAap2xgrYc7E1EPiJfWgDiJj+bs2qwEO4bqO+b01alR8++cPxnkdy+PMCy+KPn36RPuysvRv3C6kbaGsyiAduLYaWh/EagptQCuSDfSkTFXeca8BCvl5/uLF8TKJ1I8GvxWXXXM1TTiPjG7du2cvggyOcr+6janlmK5F2aZ9ZBIUwkl+dm326wFwUQX+cwutTQs/Rw4/TaChrHmrOA+boEfnLtkYtoa6FdmVY/Pd3BLGd5SxuXUdGDtPYc0DEq8lX0cZugw95va4MeiPp18ZFN9na4MVDe2hmQY8PysapPf8upxV8JqwT/nDmEof5XwpoK1slA6Ek/24bCD6xl+fjW1U8P2Irfm90R9+V1lSNAc2AK5sJ2DEWgBTVugYiFW3KBfFp/f7DH/atHYz29A+/IieJM89Ey9TyXojFcNXX3ghsOkE+KBbvqMOMQFl1b9Cwy2J6n17+81bvCgDDW3ZBn8lAe4WHToUi4PGElFJSGLsv/f6jwQahF2WIQH4/E+Y8KqKcoB8YyrCcgyl7asp52xBRLb3QeyTq+iQmeB9ILQahH4AwJeKPAPZQMP37rk7nYvrLr08I+jdcUqhAAINlhgq8DBAiaDtwniqwh49nRqNzyReBGoqPsZ0PkaSFCwy+rJVq+NVhOAPfvv7uOTgnnEmZYA2TFEIeiqExpAKUMNKQajQUzxlNoDnM1xR4cBcbQK1VyMDxreZl6dCKARfoNRt0YQv4twLzkPhH00jsgMLg0ljB8JKB0jChfBUxhprXjKic1VR+BIeClcdVZtB2jDl04mfxR+eeZbtB0fFaX360uuiMw5Ay8zu7kBIpfHMmDJk4iWVQCE8ZCqZTqWgce24BjlkhCWLFsekLyZR0fA+ke534+4f3BMnIqSaNKELP46VTKWhoGBSeel8yXwqnMzYwRS+731GwW30ZKCgCfv8VXpuy7DhySCcurZkLG6/5po4hEirQlNYW4Lp+AomAzlGikuGkaBwQeLPe8WxUXkDDXWbNo6VwH0YgYa/PfOneH/mgvjeddfl1omKNm3TKCThl0ZcJQUnc7GiRONN5ZaReX4mfTCezq/BKismqhDAqk0jUQMNz/397/HY8887k3j2kV/E6ScPoJN1zdiybgOOFw3xmLOwcZ6uQzgLC68i0CA98Xje1wiWBnRaVVifgNNHf/WreH3KtLjy0IPj+pvZP3b4oXm/hlyWaYFTeUzDS7p0bJ1zf4rzVP5JKzyHS6GYig3HyEDDtwk0mD2+8obr43yCMG07dox9jG1ASDhDBBgjOMA8BxWcWbmaCOkNGHsfk/V/6+3BwGFufDJzpsNHLyzmjq0aRDu2TjTHya5jRQO8CIGzNpQknF8Fw1gGcq2snHkKD+fO7wjarJRhDV99tZXb9kZtgm4QU+wgQLnUQMMcAw28xbdQUXn97Pbb2TJ0YrSl63l1YFdVHs+1FspfeLh2n1QYgMX3Cloy+FJsJTLzMWf27HiftZld9/ziU447LjpUVETjJk2+pvHMvDKetC3/aIBptBmoymxJ8pLjmmkA9gbdkBNZ0fDh2Bj83jCM3q1xx7dvjKMPOSQaUiGUpYPQ+QZ4ZNJUqohGj4pJKNnhn07MybZhCAMNFWSD2zauE40oj6+Mg+/2iex2Dg0ZwPFiWknH/pRPWH7ShJ8VdxT/EveNPcBrF4qvVNHwzmy2QoGiHZCU13dv/XZccsG5Oc57774Xzz/8WFhj8TDR/4tpyNsSuGzVsVBu8b41ZdK88Hb7lJMpyQKAD70WctcZKGOsEFAuW9Hwp2eewcgdFlB53EcmYMCJJ2bmUsdOHhXWdpqWR+VVZYpyQUdR/jeonbIHelUOaeQVlVQ7wem4eIDSywms6zYMxSuvviZP02DQPMotK3/AUY7HmPJk6ZnKRR1VaVZHy3uEq2sxO70afnp12NC47Re/iLOQY2efTI8Gqg7KW7fNPfWewV3Qn1k/PHLgkPyeOONPgGE1iOhzXACYGfFtPHMTjvv0eXPjxbcGx78+GhqXXHRFHEczyF7de0QTsq67CR5U4T6R/BXG/KzpM2Lh1Gnx1YqVsXHuvNiKIVgV56s+lSduX9wBP5qJr4f8Vq+tW7Mq1m7cHOtgs2oYQU3btoku6OLyjp3I7DeBhqlGIzBRiUDfXrIFuwhsVNqHLkSPa4waSK1M5Y59Gnbt0agG5uBU2bMM3aQxN4oy+9cINPwPGSkrGmwUZmduYaChW+IjYZ6ySzzzfV9+JuzkuTTY+bsBgQDXa6PJoejtV9Ef9ahoMAPbm4yUjSarsMYsq2WNpcuxvRzX3wpeLfSLz8ngAbRTB5rejuM1fOTI+Pvjj8YrZDG/jyz4FiWs7WnQtguYS3s6lQYC8rUfd46bkgYcZ0UDCDVTaqbKv3NPOTpiLsHZl9h6dv+Tzzql+OMD98VZp5xC48e6GVhDwyeeDEBp7GegAfho5+j8Q6Bp29h/AILMZ6pf1N0GxydM+iIefuSReI0teJf17BbfuoP+Sr2PStrbzNoEhfzkL85Z+SVd53ZKs5CMa1ZWXErzaSOAh5rIsm3YLO998EFcc+dd6dQNvIaKOGRBJwINNvI2SJxOLLSRQR5wJw6Fu/PTvjEIKLy/xvP+uSifLbN/acg78YM//CG+M6B/nHTSSdkcrzk0bLm4hr/2GJRHgqDgG//22o2u2Q0d+rMyjFWNZFNV7Am8A6p/aCBKj4axk6fFi/SGggDSMTqUMvIKusLXrUNyh/cMrlclMDd/Mb0iCDS88MZQemktjXkrFuQzjm2FHG7V7utAg2EeiC31XFaicJfrkKb2peEGhKUT9N0BwFu5K9pSlvEzq17gpe1VcN7Qc3NXrY0Pxi+L2QxrD4j1O/ahg8oINPSmRwOBBuh+5sf/ip/f85M4/nD22lPZVAQaDLYSuAPOaesyD3GrjVBgmfnwPPnAuSmLxIX2lQGccWwPGMKWkseHjYjLTuqbW1l74egkXzKOstTLLLXy0CNxpZlcK/iz6tbnaUsqi5WPBtfcfrCcaqrBNFj+3UO/jKnc8/PbbslAgz0aPPFCWaQ9DUWmPSdsHCx5zJ/853O+1h/i3+A89KkemYqN/ee//i1+9+pr0YExHsR2OvWkfsX2ZGxBk5a5fRLaUeZ4SXsK3LQPmK92tnaZcwZAYAu+YHz514qGH/3kxzFxybL4NidauHXiCLZOOL9tzF9eEpalS3hrX0j3wj9xwj0lGSfs/Y52z2oSnYPpJ/btBx+KS3p0jdPOOTf9j3ZsndgDXAwY5DjMkS8kfAzAK39LW5HkN+esznMdJi7UgeJ19nz6ib39ToyiJ8wV118TR6OjDDSYMJQH1aUGFdSrBtLFQb6HHZb0jB0onp27FZf7eFZVcGqgYQXJmc/w5Z7GFq6ggu98Ag09u7L1Dv/DQJS0kkkmcOiY+jfCXZqzas3AiXa2lVD2JxAf9ieyua3VEpOnTYnROOxPDnop7sXOO/l4KxpaRn3s5ErMx6RO2gXAXjw6xxK9ijsrpZQ1JhH82yREDWxYAJqnoIwgQfDqU8/A0OVFoMGKBuDoWP/e3oVeQwaLA2Gc1V7ASVr0P+nPZ5rU9nuN2GZoMHb0+/Ro+P1v4+V5i+JmKoavJ7nRo1Mn5rtf/zgm32MAhbEEmTBw++z8xYviVSoamsP3V1x+eRFoyHvEjheAYi7/zdd/JNCgMhAxMpgEpaiDBIjmEsnZvSOmICxHg+TNa9aSfW8VvXsdHF3LKzLQsBviTOMZpLkPcdeO7THsow/jru/clo1k7r3w4tw60YPyUbRONsOqxP67NNgEPv/v24e6x3JLoYFUT0MFgSHzZaSS6LUOlASyePmyjPh9/4nfxEUHdY1zL7o0TqLsqilNR7Zt2JiEmkYVBCFq/VdBrZDRsTOymAYknxlRtqKhOlnKrTC9+77N1v391Vdj9WxOEKCE5hgMRY/e0WBYB6M6np2DJTazFxpUCnKNZrMfSlzH3cF7Cj3L12thkLh1Yt78eRlt/cPTz9A0qW+cjlLu0bFTtMIhsYx8B5lU51pSPAo9y4Z8hsIpHTsVA/hKpx2Y6Hgp9OcvmB8TP/sshhL1+wRj8XtkME5kS0kzMlK5n8hxmFdRbikDwKD8p+BQ2ClQfHYGS/bTgwZBHQwGGf1zHLo3gMuvX3sjBiBA7rrxhji0Z880EuHijNYqCBVKfk+8MXzSVSkbrVBIg4mfBnn24VjXADbLMLCHjxgZf3vqD/H+/KVxzze/GVdQ3tmpfTkCmrmSNTfLvAdnzZmLgwyYuAbmzo8UIGnIMbbbJuwVUocTAqpTor90zpz4/VN/iof+/Ge+HfHcI7+Ms0/FUESI2WNEupQ+SrQiXNKxdQFcpWi2z8rn8UDXV8rMfDxhQjxIhPu92XNi4KHfiO98/544hIoVoi8ctbUmYW51gspN+BvtVohnMyXG34kAlubFr/iU1nkQc9idUWgDDbf/+KeZkbrh2qviIqKtZZ27mJbMfeXSiwJUUOxSiPJcHhYNwZ1O2Uef0An4rTdjCkGGDyZPyTV1J3nfsW0jMu4NqGhgXzeBBgBMsIFIr/DAIDPQIBoz8KAChkd1kIVB0inPMMJr9Fi+skHXPkq36bQQSzZx2sX8VTFqEYE/noh7ldejBMDOoQRWp3cfNGnwSOUmPuVLM3FGtUFjKlLX5aWS97kGCg6AxjaSBZ4/b34GGn7/29/FxQMvZ8/6CdG9W7dowL5ADVNPiTGwo4Nl1Uhu2+FZBf/gIIEL18eCMYpp1EefhgaN2TXKvbPnzM8eDYMx5Baz//d7lI8ec+hhuVeyFjx9ALSjQnTP45vvDonP2Vo0alwRaGgFbDu3rcL58k2jZQO2TlQH79BuFXBeDctV1aVDW1SOQM8s1mn4kuSkP3FZ/Ams+UWD10DDbgI5q7YVPRrenr0jamNnbUGnev3ke3fG1Zdfyv374k2yRX+874HsGv74vffG1RdfTJNByswxIvfCpzWQ824X8ggst8xYNeYjUzYCFA23wqgoZLDBMoOKyiEDDfaZ+dPgd+No7rv7t/RoOP4EMlLVs9mWfFTIYNfFWNCT+sXfk1ahK/Hq+DqwJXoqVYaNoUv+fbfcFJ/u3JuBhuupgjkQo0Kc2m1f4MhH7rHMwCXjGxRV7ijHlMdFZVsRPFT+aCRkRQM08SqlzEWg4Yg459Qzos9Rx0QZW264CUIlAOX3mZtjqQstcU7aQ8a7LmlWw0njRbkfdYnaAcO10OTkmdPjH2xbGUaw4ZpvUmVzQl+qmw6lKW3d2It+2YkeqEwwYfGCBVkhNuuN16Jeq7ZRl/HqApN6rKGWAUOe7NYGS04tjxUf9oHYAv9thhbWMb91PL9a46bRBBnXtkPHaE1/klYVHaNxqzZRlQoHqAYdRVAHeuFryWN7aLq3e58Ojllw4INc8lpKoPoLAtUjP/woBjP3m267NQMNZWVl9HxomEGYbQTCpVJ1z35q9avJqynX+SyDSuKbuZoJrA0PeE0nAzuELN3zf/lbNKP7/vdvvjkrGsS51yb2PiurDN66PconyAfSjTwsDn2QMlRcaJAqg+rBr1sJbo0cPToGPfWneB69/b0r6NGAoVjB3KW9NGaRUwwEq2sDwIPIEMfz2ELeTXr0p5UG9vqprOzjWeLX44sH4RTd/6fncq7PPPRAXHjWGdkfYgM4VT9Vhy/c3pd2Bny+dxfynVWIOwgp7QVXZJDNQLjwyb3C4HwcgYZHnng8Xh3/WVzD1rtrvvXtOBrdLf3p2AkL6d1f8nfeV3ekwc/6vC9plTENsBX8RBIC3boXWh4yZkycdfOt6dR969qr45xzz42OOBgYBFmhmaXEzMP+JMreDNLBW3XI9iEQYis84zzUTb7EqzaH9y0iQPXyO+/ED5/8Y9xy4glxMn0Ujj7m6GhENSKKLXtXmITQ9qqKblBPqFt5HEO7JmWhZeUG4LBzGL8SPRf2UZ2zeCVHR1LR8OdBL2YDx0tx6np1s3ld89w64feqGjjOQAMVDUNHxctDRhKQWxKzFs1OXPVuGVGGU9WmUW2qcWloR0XDvp04r/CrPJz2BPj2v4SudAKOzMD6otAi6SV1H/iz78k20ub76jSiIWStmLdqXYz418KYDXnW5d7NfL1Xj+7Rv++xBOlagNtJ8fGbb8WDP3qAxM8RGXC0elK61tYqtvAWzkw65rwnbchP6RQxB/HpSxzXNOiHk/QxfWxee/GF+O3IMTFwQL/4DjaTgYYiWFQoBMfIHkisTfgz/ZQByVc8w+co3wxo+CwrIWvAfysJgg6xH9dPH4yxQOX+m79F4ud8emZhY0MjylqhJS6VudJ50p18ykt9prPLlJPW0XT0ttAppYINfp8+a1b8mYqGx9iO1J5xHn/iCRoTnkxfqRqxGX5SLxowU7Zn8ofvSzPaw6WfzjlhB9/levhMeWBV2cfjJ8RDDz8Uny5YRKDh5Ljmyqvi8IMPTv63IW/O3XmLd15+X7QLIP8uBRbStmcu6jztPWXbSuy5Iciaux76RZx7cK84GWf9GLYIZI8GdLq6wzGkJf8VCDaFVf4WSTjkF39og2wFj66hDsk8vsTa12QQ5kUq4t4e9Epce91VxdYJ7OwmOMSlQEMGALjf4IB86HY/5ZowN0hjtak0vE2+Y9tmNWyVTcjuJWyPs3rqmX/8g62d5XH+qadx/DKBBnjVrcgmIVI+SjeMpaz1WQZ5hUlV9Lv05bylVelF/8ZT+5YjByZSrT3ygw/i94MGxQN33RmnYI+1xQa1R4M4dRxxWqrmKGiVpABrsLpROaRcNwignMlqad7fh5P/BX0C36Vy6iV6NDTs0jkDDUezlVU5KF2YZJNWfIa8Jc60bXyGdC59a3vIE6Jam1uY10F/7KSiwUD1Mw/+NP65Yn3czrbtm668MjqjUw0e5ZZkxmSQgjaAC4OxzQ5ZDhxsBvna669ndbbNIFt16FDIe+RkcUEJSRP7//wv/IFek53/b5eCw1ciQouWS6WrANlJk56pk6loGD4iVlGe3xgn+9DuPXECy7L8dhfl/khM7iSjSSR6Jwpj9Kefxs333ZtnWt/Qvz97bC/OyJmZhZ1G4JF5mGsZbBD+4B5E+JLhi1cpcsat6YBl529uXkGPhjdHjIyHnv1L9G/dMM689CpKlzjzFIK2pMw9WIUDwYBARuVvdNe1KCjyvf3E5jP2QTQ2S3GvjRUN0xCCg9gTuJrS6XPOO4fz5w8PywyNQq/GSFdwN6QMViErQ5hd9zJAY18GBbcGgBlCgw06JXVR2OupaJg7fx4VDRPjueeeixMpvbS0yB4Nntdqc7bcP8YaVSjCQ9SmMoBRxE3JmNAI9gaZRub0vgUYrp8ztnuNpqCcb8ZQdE95Uxw6u+oq8HRwZWp/Nxos80k8Gj8luGdQgM9VHArBJnxfZp1AWafHW/4exXbqYYfGzVddiWLrmgzt8zVCFcxmVhRQGQgQuY7F/C0Z877cnqBwSEQQKEGxuR1mFBHFvz/yWOgG34RTdNEZnH1MRkrDnslltFWm93fhoJBVoLsmmVj4uAaDUxpyqtBadetGPY5PmwXcrWh4EmHg9egP76FPQJ8s6bI5noqASQryhIk/8w9+CJ/SlQYrz1C4CT8Vh0JNQ/FXv/pljF25Jk6raB+3fPe72eVYenP/l9UdwrpwdlGM8hvvSac+y32sBqeM4hblrwgy1uQ9Br9GkBG587Ff0+uAU1zown82Wye6QDcahTr5OtDCxFI5AzhuTbGSpj7KyZMRbFjo8Wxfzpkdn0ybnsupYLC2zWpRoVQHOFDeZ6OK3VujGntma1ShaRZ4rMZ+WQ2tNLykQWBq5YI0Iuyljww0MHeVdk2dLoyonTjDSzfTo2H+mhg2n/PlGQIzMq/7brslTu5zQrQgQm+gwexwGifAxzVII9Kb19cODe8JexWKkWvh6BFf8+fP52z7z9hz+EKcf/aZWerdFV5ttj/AYtmxl0rHsX05T5G7D+fAZ1UHTh5dtmnjGoJlG6MpW3nc4z597oIY868J8e6IkWxLWh6333wTXfK/kSWMtaGr6vD1FmD/+bSp8d6okVkJ9QnOlFdjknLt8K9acZxcE4KkdcnUVSKIUQPrqH6NuulIKi+Fpxzoq2Tqyi9Jc/+L8Jyy9xgU3U222oqGSYvIOs3ZGbpppV2nd998Y1xCcFSqfWcIpa+P/Sbsy37/rbfF5TgXjTFSV5OBtHGd21zMgGooCledPB9pJtefRdWBDhGyZj9uMmsAvKbNnBV/ITP94ugPs8rmth//MI4n82KJqMc3Khtt8qtx5Xrk2RzUf1hM9qfg82xCK+2wLmWG42uofTzhs3jg+z/IQPUVRx9JRQP9YDh1wgy8WR+HVL6U8JpGLvSRcp/35buij45SH+DxmevRAFuNjnh7zOi4D8foiPK2cf6Z59IM8hgqGtoYWckghXLMdatzNDCdvsMk5bgEeCwD5TxLR7RabdaNzF+zYV1Mmz07ewi9ZtbrwrM5jYNmkL0OisYEGnZs2kCwfnVswJBfOHtmfPnxh7Hts+nRGvHcvCnduaG72oynzpI2vg7wCUbgtofXDl5bmcgGDLJ169fGupVbKOPGyTmqVzTvcWB0pLS8XaeOzAmHBIcoOx1zjCsASDzs2kugYS+BQZy8qlQSGqxRJ2RFw7RpuRVpyIhRcf3V9JdwrLZts+pAOesRv/J9OkH8zN/56SW8DAgkjHhPmlJOWg2hjJzK2KMx5l5h73GjDhXxnRu+ub8ijqgcl6coWHKscWkAV3npJY8qBx0js6jQiu9pUEo3jZFxnqwwEmf6bxj/H/Cdmzix6HKPt2TuGdDm/gxUsE5ljbSpnHUdzlt9kVUr++kTQsqxS/ifu2BhvPn2kPj1oNdyTg/dcXucMaBfNEa3bKMiQNtJoky6Z0yPcPRvgw45pN8SJrwtHaZO52cGlbn/c2Dz2z88GUO/nBGnl7eLq2+6KfWHxv4W7JkcI4M70qCOUOGE6agqK12H/ODvrkM553flJysH1R/f/MlPg7Y8ccsF58ZpdMrvSkWMTkTqHWSBlyfOqE9KdoVBH3/fYAKHeRgIT2cJGSGuTVwsIZP5No7XIzT5vPSgntGPBnNH0l/CCtO0gxhP/eazqqIX5FEvK2Cr4gQZuDbTuYcgNzelDqzFVoitVD8sXbOJSjFOAXv9Vbae7YgLsAm6Q9stmjVhO4YNFVmrDgaBqXlLl8fQDz6JNzl1YuPapbFw2cJ8Tk/ixq2acEw32wMb1mSrKXKm+j5gwxo8Ujzz2qIpaUQ5y9zAlbNUEhqMUH4Y8ONt6yGyGeSemvWpaqgec9k6MfrTxTGT2+rxGZwVnbp2JFB0CP1NmsREAtAf0Tfip9+9I47G2W1MEMWeFdKziajUSeDKS8lfssO0L3ygOE1HiWeb8a2L7tEZG0tFwxtkjl+YODm3gN1IoN0MbMorcKNTKr/IS9KCx4NLR1npwFjKXp1dSRVGTXo3sKY9uRz5NBz59czv/hhz+Pg7V1wWF555Oplvq1QINAgP5qZtZkAgOVXeSlipyxwSHcvzdgM3kx8GG6xWqUF1loG752m4/tzb73BnxFP33RcDTjwx6vKZzU/dviZPObYJGsdLu9Wb+UN4WIUhfwonfQTfM3iqzW1w59FHH4mpa9bHJUcdGQNx/g49sFfaLh7vLK5zKOaonClwwDiugc9yqwRrM+khP6mbSrbmKpKtNlf94ZN/in70/Rhw3oVx7HFFbyh1qLpDGErn4s5Ap7oi/R3ek5/Ekb6H/VPUhY1MbvDe+nXrs/r2n1SPvzz4nbj23DOiNwHH7t27ZUVD6iVwpr5Tt4pXNRyLTxoVv0m7PCdtYe4zmad/sxH5uphAgwmRQVRsd2pHH5ET+7ClvQu82ioDpfof9ngQ3s7f8U3wfC1jgINwL1ViOGcDR1Z+LWMboH3cPsD3e46K6nu+eV2eWtSm2f8KNCCLDJgKz6R1xnKeEqa0J2yk28KPKGjRPhf+7djDqIj725D32ObYIu667dY4HJtAP0A+Keit0AvSTrE9xabChUwUf9knh+cljwF/aacBFXWb8QHGfPhh/PUnD8QYZnMtScirL7ooOpeV5bPlE19MMG1tKyM93W439LIdGlm4ZEm8w9zadOkUF/O9NhXlzAmu4J4UGjw7CZd//1uv/3ugocBzCqGksP0w8W1/3Uu270uQ/P6oUTGLbP8eDMkDO3UJy9rNjNlnQYWq8rbsSgb6lKjZvU8+mTDtT4dpHfZOFRWpxAw01MQZqVaZ5iMoNrOn7uGzm7vGhntnVMBmnzRWzCaZbdOBlHg2ShSfjovnYET3Bw+45Lw8TqlZk+L4F52vzDo5d4jDCJ/7fFTEGsEZ8WKsVKYoYiYeu6EJAw0eb+keqXcQskumzYwB/frEITgXnYhsWcK6mWiojOxeMhXtNkpujKR5xIqCzvNZC4MWIoTJ3QpiFNCj8OzRsHDxIvZ0T4/BQ4bGgQf1iCMJBHStoBkkzGjZ01bWL0PorEug0qeGrIzpeDKcTKIw9HkKdrMiZtyXLF1C5cnk+Gz82Fi8Yh3lkWfR/4GSWhjJho7ue1NwCB8zsSLXcasDU5ncvWUKyiw14r5iK0Sxj1TYz8S5+OSjD+NVtpQcXlGG4jkjOtEARyHt80sZ55Lx6Xs+T2dAPNoTwpKmvB9cSF/2EKiOIFmDM+757X8Z9EoGp87v0yejoW1wGDWsVGQKDx0Is5WOYWmdwiWrXhJmlmBTyZDC2w72fA5NqujmEXF8Z9jQGDxuPCOpOAfGsYcfxnFK7NWXBhXIwNK5Z3kx89NITgbw2eDGNSjgVbIqJ+lHJ018TwE2z0LvM3fujYP42uVkY3uhHDT0FHQai67fv7OBJM+Rt/IZ4FK8GoQTtyqhIhrrM3CAMaI/Zo/no88Pcupx7YnHRt++faJd69bwCzgDn0aDpcMdwFelq/C3THEva1hPpnAGAQbP3RYOU+YtzHGaQ2LYXlELWaixZRCjErYe1Z7RtmlN9pI2xhklOMIcNLjc159HggEDgJDrN8ptNUw2WQUOGm6VaLK4B/5YvnV3jJ23Nt6duynHL0IHEVdfcDYdoHvlnnVL932lQZ6zKqL+GrPCOSP44oZnCEeNs3REgONamvrNnTsnFefQj8fGgOOOTsXTvn27LIfzXmEujQtPadvx6mPouTd6y+YtbPP6imQ0FUdssdm8aS1bQDZEU7LDBr9mzl1IM0i68EM3OvIDL7wsT9qx1M4tKVVY4xaMtVnz58enBBgseZw6fXKuAv+N7HREfQBbz0pg7Mi9DMIuimjTlLOb69HJn/28bEnGCEHJAjvpQeNBvvAfSMR38g//zUADSnr3/q0Tk2gGOXgOWyf4jNh8Xlede1YGcTQw33//g3jqjbfy/W+fe36c2bdvNGDe6whcZSmtjiaGvvDxYUnfzMXnpzMkvfvtnBg4gg68V+du9nyO4KK8fvSUGUHOM264EkMOOV8POZOGmvzBF3XqxIPB2cJoYWk+gzEdW2NX2hffGmfyn/w7kYqJh596Ltc1oHNFnH7WWfQ56Jh8n4YDtJCGqLjl5fekIWnGZ+YzgIE87e8uwct9+OvRH++T8XrydY7M4/omcuz43kdniafGuEauz0heRH5I48pIL+lJ/YUwJgNExhi+M6vjXs2tVB9s3vpVzEcOD//woxj1+ZQ49/gjaUJ2MEHBjjRRrkegiR5GGPETCdqu+HRUNK5ZJ1oD8JbVakVjjOrawBizidHEAhBi7rxVwHI/zGjBQANJj9jDMWRla5jvcvTjSnTXVoILHU8bEB05Xq8S9GlDvZqV2OdamQatyCa3J6if9xjpV6jK26xD+bYWuli0iB4uU6bGu+M+i4FnnBqHsjWuKXo1T50AlgaLUz4q8/m6cJe3/KnutFTeoLan5Qh34ehP5dQidN+XONSjRr4fB9SrGQMvuTT7PNXkXvVdEUyQKly7wQznVugP33KbgPxbXOCbCWgnyI/2sRkOvT/89xfy44s4jeOMk/pkpWDul2bNzlF94X/aAo4tLUvX3pO6mzVKh5nR5DMfol5bRKOzMR98GC+O+SjHv/YMnOlDvpHNVbO/BDT+FfJEmNhHxJdlzdJf7hdmfOnc8bJqk/vEcepk7vOkEgN345euyKq1O269iTPiD8x5WkkgbwoDadLLI9/kGeGrTnVc12cwSHhnEzrwoq2zhiqbcV9MiScGvZooH3jcUTSvOzEqkJPi3cCeg8s7WXnAs4qqkoLm5d/SnnN1ni91u88S38tIvnyMbnlx9AfRp3kDeof0j4Oxa6ykzPnJU8zT4LeMX8Kpzpy07eknu6gwsKqqCgIw5TU6ZCvBsRXrPPaVo+NGDI892F4DqALtjBHfgmBwPbZOMJXcIrirEsezrmAek6bG8PGTY8t6tiJtWJ281AhZXAemqoOYq8397BZE/gbHTDbjKFKccNaSeh0Haw+vDEIpV4Cnes+KkD3AuJKOiTQJzVUiULAdnrIZpD0a/jVxeUxDLTI0Ue0aBKubkg2lKXH9ugQeZ2I3z49bOO3jYCoOGpKo0zkSJgXsQZ+AEIfCN+lSZ5R5gUvp3nsNjGVgGLzKa5OxyYe/+XqMWb4+eneqoAz+VI4sLE/dpl3haVfqZWWU2WrtC+ne5nc6e/bn0nYqybns68Q0pIPlVO7+a+z4eObt91xRDDx9AD0UTqRPGdVDPFvbN3mIOfss+Up5r22cNg1jGFiSbpW+VjOo/5W/ygtt7DfefidGYNd4WYF09KGHRQPtaOmNeRtM8RkGSnJM7pMvDbIZYNtOAMtAjc/QBpH5DISpWybPnBm/eeK3sZLvHNe+NRU856G7O6cvoHzPXlnYivKK9GhvB3lWB1oeSBrn2SWbVnjJr8JmPYHqTz6fFL+jkaUcMrB/n+jT1xNGWmcQXDvDppSucwtySdpRL2bFAPpDOZCn0yF3i5MQ0I/Yatrz4nop2+hGfzI23vz40zjr0J5xCNVwXQgGaMdnAB3YF3rOgIN9sehTg15XIgszT06SnqUn7XoEEcGGA7Ip+NJlS2P67NnxAU51G3o0HEHgq0tHKuEICtaC5wxsG2gwOCLNOY5yRrtVvDhfAyO+Z/N+g5QmJnxv9bo1JFLnZw+IweMmxhXoocMO7Emj+2ZpYxkMUR55lWSvyVnH0k7XL0nbHfwJ/6RL1mTFm3iaybw/HD0qBuF/tOeea667JvvbFcdbAj/mq37I3gzA0iaS0oN8JO6kWf0xnyP9pJwB7vKHPRomTPw8Bv/1+ewLdfphh8QZ/U4i+dA6+VHxq1+6F+JSP2QVFTAxiL0JflhMfwqryI88qS/bms+LduXlPBEUwHcMwC8q2//u6z8TaBAGQsYsHwLVyDuUC0EAKAyeaexDHvHe0Jj02YRYu3xFdG5X9nXzLDtpS6AKmzr1sKQhmlkLFsQHn4yJLRvXRoceB8eBZHTsXm1U3C7NtarRgBAmsAO6RK2jpIA3u+y+u5oGHkCoxKbzaLmWxOH7lkZNxmD54uMJ0b5z6+jQpXuUlZURrMB5YC5G2TVqnY9Gp5E5CUNBWCgNyvRgdolbJxcrmD3ORKykJta9Bgdm0qSJsXHBXAy2g9nnWZbNUjy5IisOUM5pXAEvGdGASFWIWsbcgaHppeAoRf7cf2rDxa0c4bmaagybfllG2q5bt+jckX229LyowzwMNGgIigaZg+nzC8qH5xo90xkWzgWiMCrEEwyVjMoabSi2BENxGQadDNu5W88891gBmvs3mYcRYpk9t1CwfuduCalbDgya+PyaGIqOqdBVOfl9gxzOfRkKwrK6qszX4Euzxo2TEZNpGUtjpxBQOu2ugywy83fOGaUGRsK4WB9rBE9+vhlDdCFZo8U4MOK3TVl5BqZ0AhUeGodZlZLCXwhx8QCFs0aQClhhKz48ike9Y1Mpn6tgX0v226N9li5ckJ3fexx+OPOvSEPPEnaIPpWKhkQGTfhmKq9EBrKC52sLKPBUbM7H56sIdcoWGSkmwLOV0rdWnbtFp06dKUdrkXB0jioAg2oa4So1FbxHqWaAjjE0PDTgDQApzB1eg8MTDoT9XPhp2uTPs3li69btoh0l0m7fEZfC21JjlYpK0r1z4sdTJ5z+ZvC6CAUza+4clNiKWLByXVYY1PAZ3CBFmREtXcfBwt064vw0aAefougPYO3M4QANLX+y3jQo0jgqhLgKT2F+AIai54jvsKKBUyfGL+R8e7ZOIEoyE+Qz+h19SBqLTch0etxcNYUwtC/ShK/rsKGlf+8FN+JUOk/lyrMNqMh/yoQN68HrwkUxYyyyoFf36AhN2lyuVIIvfKRlg2fKHh3FOsCtdh2yvZwAYaNRDRn3Bm/etI7s5IZoTKChBqW4i5atov/CnFi0cDnwrEmX9q7RFoWsrKrMHPZBt1uhrSXww4wF82MRW7oWL5wpcWOMsl6agnkpQUlYBwX/2c+gZ7eI1o3bcAweFSDslzfIgFrNIAMoyXUn4qCvpDP+8P00euEnt06s3rYnvliyhq06HHfLZ5v9Hlf/ww4uHBS+MXfGrFg1f2EcAA917NApOrKHtCZw3Q49SMOVCSLp9FgiLp1YDSMtF8Zhkjf8WRi+0rr4lW+9Vq5ejU6YGosJCNRqVCd6HnxklDs+sMys8/6Za1zoQCZBAxflg2uRzxzT/jzypzLAah4NOh2zeeB03EfDEjbtu3wjOiAnmzWl7wb/yQ86cE465TxzhFR4DvTiZ7wMNJsxTbrkXnWBz+MBsQk+9GSIz6d9RsVPM7IWnaJLWYes1MutcPIQcvbfBjjGLY6d2RD3+1tVdQB6Uh7Q8FUw2Lnd0yP4FkHT9TH5y2mxcuWcqOhwYJS3bc+xoi2yH0x17rGaYcrot6Py4q3RuXWVqGjYJlpWrpKBhlpMMfEMHuSFnLbQ430v8QTF5BsGGr4CvuuQI+uY0yL6oczn88rHHxRNu3WJfTQyVK/VrERFDQcbVpHRuReMEFhHLmIoGnTI4BFwUUatR07OmTML3M6OI485Io1QeUlZJDyEr5d4dFLSQ9oI/G5/odQfBNWVR16F8bcjeydtZMvI2jVraDq5HP6oyRan7mSm2TLI2I7l2pLHwVexdsfHiNWQ5T91XwaERTZ3i2952+1AGrxTv5wekz4Zg87aGWXd2drZuTOOJNublKfcX1R9yY1Jyfk8HswzeLbyBTmqY+GaXK/GcK6T561h3iZbFkz6Mqo3qBrl3Q/idJu2KWtqINOl2Y0EyzWQrerMZrHo2nSaoCed8jxpJuFlNYAZMk9ZKTqgr8BZnzxlciybMT3qImMOPuyIKG/XlqkWQRrn4Xxy7rzn/ISNOAEwSd/eo67UoK7LlgkNbSsU3D7m9oa5s2fFzjVLo0VZl+h2YGGP5fzgv+QbxmKIxKdVAolz+UCc52foAebvJX4KPb+bKtJNMX0mvUa+mB5lB3aOsvIO0bpN64RDZnhZp99Tiln9pvb0Qeq7GjhBleQbHCz7AykLpYeqNAvfSaOMTRyRvGLNBkqTl3CUOnZB8yZU/jSmHwnOOg12HW0vY+8GFis3bIrJ7K8eO2ch2yFXx86vNtIjA35w+gk5AjT8PAgSoFCSvlj1qUihMg360rnKrCXbXbIClveqQRdVmaonlEgbGWhg3iZH9iGDt1euHhvIUM1fszHGT1uep04YJNzEqyU2Xc+u9Ari6O4Vy5fGmtkz2Up5bFTw4HroFk9EygAUdFOiweQv/tJ+LrK+Bf15n7Au0aV2kDbxChzSBfPnxcIZUyi9bxnfOPjQaNOqVeo+4WtSLPkxbWvsPmhDQGSzTWAsP4l/nXVlWG5ZUZbBC1YGL1i4MObNnhZrF62PHscfwclr9CkjkahtKU2k7BWXCVx1N8PwtzYRZkDyqvQknWqTKIvMBBuYW0VQ02Dros8nR+N2raMn/kFF+7K0x8SD87YZrs8wwOIjtM+1Y9UT0l/KFmBjsEbrQ3q1eliZPBc7ePhrr6KfOWa6VzcqkruC7xYZlHbuOqPat46fQcWU42xFAkYZhNcGgQZ8jnIml8nv8ph2h81hp0/+LJ389p27RzdkmU3TlQHaGFZxKW/cimDPllpUqvkst0brg4gDda92YNrxzD95GXiZkPT0hmVzZ+A7HQQvteWo2KY4xMUpHEwodazrMDDu/GsyvvpoD3BThyW9ggf7v3iCzi4QspVgnv3CllN5MHv6NKpH6kSHio74Zc3zyFT9m9SrrDeD9Y7Ps7THDgAHPm8PtnlW3TL/TAAjXzw4QDve09VWr1nNFm5OfJk2Lw4+gSbFHTrwHBvBQtOA0TEyeAM+3dZg0MheX/ofeaw046mPSoFnn+/6xIPVqSuxX1fih1hJ0KGsnEAvthpw0a+x+sT+edJcBqb4ZR/PhZkkwv32gL3n8EHBs9W4+pgGxbVB9A9mTf0iFs5dFm0rWtNn5khkTVPGwzrjefKPpJBbNLBz9Js8ttXE90rWPf6tN+Kq+38WF19yUbQuL0f5IXgIgPrsnJRE9F98/ecCDdrFIEoG9CxjjUwdZMgjt068w3aC8ZTFrFy8JMoptWnHy2ycZbhG0XTYsjEIxO2ZuVsgbJ14Gc4InspGJFsBgXmbFQ2W70rU7ntaj6PcACNF48D7S/t4inmwD49xJBqVl06vSrSxDEiAwasQIEbzLJFFWUF8Osk2Q5q/eGkyfRvur48w0lGRGI1I2Wl6L4Tu3D1FQIJaiWLehUCpZ+MelS5EopGjs1w6qs3ARpbdsKbp8xaw1ErsR4LwIV5BqbFqBE3h6t406Uyh7l5Uja4mNMNryUth8RWliZpTGk7OP3EAkyn01yD0VxL8aNqkUbTAidLgULAq9HwJV3/6PZnNiLNraEhpus63GQ8b4JSCMBogmUUCBir+FcB9DUxsY6sGvMwSJaODW7VIafwUujxDptRwkutKzxc3Rj016DVYfanEjB6uZf4yZ1vKnQyoqCRdV2WYUOFabKmAVFDehUFSPNM5uI9qA+VkOj9169ZL/Gj4Kuw9TmcFZZtmotqVl0eHsrI8Hkkac61GkxVaRpf96fylHUtdDTI5X0vmNTtTFglLXq7aUqrVlMhJY37XrJnHhCbsmXvCgvH8qeA0QODYCj3PofY7DmSFji8bVjlvM4Ou0SzQvLnzIIid0RRju0NFB0ryG6QicEvAFgJWjq0RLa7MTKgEEzcqLP5WIWqwSMtgosA/+PG0jWWr18Q2vm92320GS1etIFgxn0ZGGPqbKF9jjfjC6QTrqGp++9JhPZi0TJcyKhsatKe5I1tUvJlnHYBStKqB2AM8gYIAVu5dk64Lo5z7MBrxgWMTr0U8Z+KS9fHRKp2nfwcajujZAVxRdYDBVR0HC187jTmVnGv2OE4bvtYBXi3Jphal/UWmS7jK5xpedscWnhtQ7gbXDOA0bFTwRxpQwEtaFT4qKw0T8bSartGbtmyLDm3LomXjJsByO0GGDex79fz5XXlUWjWcha92cDLKNqPghXJpRDO/OvCxVSPufdzF+rcyps0FF+I8LkfZrF6xGEsOBVYV+t5OvxLgoPEprDfwOhAx0KNLFbJqbajqIhtBZlnjWo5GDBUXMChUku6VvxV///+BhmnLNsZHMzEmuYNd4nl9o3VzqozK6D2CoYOBV6tGLbYz1E7ZtQUZo6w1G2rZ/F41PzLLR2zBSVzHOqy8cRp1lAWUhauIAUq+lDlMzX8T/tKf8BUfddkWYEmvMPb4SQO5rkejWANrHc9ehmFsdVlDtpHVRc5K146duIIPzHhaEafztXm/jDToKZ6Tf6EPDSWrvnRkM7jG/KWFDTgZ9m6wcqI2dFCP75gtThnJekoZMeX9dmTXZnST+NMgrI3TW5XIuidCmH1KGc99KaPQIzbUWgbf+F176TRirTXlOWh/E3JcGV8Dnq+KY29AIrdQsKVBWV8PONYBB7WQbfYyWkfmY+/KZVF719ZoundnNIF/W1N+3RxZ1wg41WBO8qHBAHkhrwJFiRffqQLPVEO3bWE+65A5W1A2O3lvBfQ+F9jM4tjKeeCtZgf6NeCY7dzCaUpLNkTz2g2jOSW6Grg7qVLMk5xw8GxsmlvrGFu9sY61rke/NtfAxQgV6WlkAX9xrfw2AO1lMNZqAnnCisL60IB0ofGvTBD34ti1SBvi2kt+VC5LHymT0RfyoUZ39mDhe+JVp2Y18t8xDPLVh278XbpTrqrzpA/1ps/Iqj/W4He9lCnqRI1KaUmbQp1j8GEThvFX2CLqKI93a9um2Ke8iUywstYAiv0V1EOejLURHen7zl26qUvAUr0kTbpt0GeaQVMmbReO8FOx1YTsOdsPm6C7Taaoj60EUCfrPFYzCSKM+C/5PdmNf7iEe0nuF1VrhdEtTJZjdBskbSgN80xh6TzUvVYwykvqXXnA+cuX2/ncKs86fEc47+R9s6jCyW2f2jPizazqMhJKdaCNutC2ekdbSjg6nvNyhlaGCc9lBNodu2XrNtk0Wx0njjze0kSAz0uHEZtrM4mmBUuWpIxo36YljU5x/wl67UXX796ObYhd4Na1A6rVRkZREbhXh6wIIB6AfqmCzKyC3t5NYGLrNhI72h7gYsP2XTGLRqDTCRBvWr86tm1aD/74GP5wV6B8ZaChHGHcCrJu27IGx5M2wllEA7L+3Iu+k6AN91qtZKChGuuwIaQJAeW0vGCgxAoKKxqwMGLh2s3x+cxlMY+pSHUGlBvC7/1POp5nNKd/yMbYuHplNkquW6tu2ijycPIRNCNNSgfSpJnV9QQIdvB+E3i1gXCDl6XtokKBvlPiW1oGF9K7wXYD6o0aNcGJF6fSf6CRjigAAEAASURBVNEnIJNs0K/BXhule4LDBujV77ZoRu8ubXVkvrLOJto6wEUWuAjoShvStzhXvuczmZvCKAMKvC9s3E7h6VcG8/2sLvQnXeZpZuBcGekWzlrIzobYUtLPGqomdIh1oLVJpTFlgHwmDjxFQN3PwxMuJgCdj3PQHmuAHpH/dBrVY/KlvGeQz8TS8qVLspLYbc7ZPwUYK7MNREqbXp444Hq1N0zmGPjSzpMPzHQrr5Rl6YBD8D5DXMlPBkT0U1yjc5IPPI3OJuoGiuQj5YeycgW25DboXvvd01JYXs7Z+/RvHNOfju/z1q5dnUH/Jk2oruQZ4lPZm1/kOepWzTK3aom/hctWZKKyLfqpvvYnsssAaspDKJYQauombVPt42Xwn/ZBM+S7QQDhbhWJvpxBemFfsjXXQTPzuV+d6pHkJvWU+5ksY15WqejjyBkGH6TTzZs3RotWbRi/GX4UleLofwMZyivlZFEdUFRlr+Gzdeju5srIRg1SBopXYSrdOV/pRbrR53K7unSWfglwyOQ18/dvbfoG2GnCUTt6JXa29mRlbOD2bVqn/iieb+WKW+/YOoHdrf7QNhR/67HjhK/zlwZ8X5nNkpMWDZzZAHIzcnYz87AJtP7cp7PnxqMP/SwGUp3TrHV7bi50HV/yi/tf/Pgvvf4zgQaBiByFs/gfshQuCHMJSOqeylnx7709JGYTca9WqQonJXSJ8jZtUA4YFTCQ+6iqYsAY1dI4qEXJWC2MAsdx/6PvyUAqw2oIYSRbCpO6CEydpn+NGxvvv/FK9O5H2WcHomAINRVrChAITidCQtKpVEhkIALCdY+ewkCm10hJYmDGKm5LF92SYd+Fd9nzNH/KlOh32mlRRlQ5nU+EgIJLIagRbXDCdei8SeRm5hTgBhYc2PGMxhpt9ax4hYjCzmzBK+yVa4ohdNIJJ0ZjFIQRPoVHliA7P+bm/LOCAMY0+uqYClrPxTXq6XNlRIW+TOBPGezLmTNjzLvvxNH9B7CNo1fOoaB5kWRJkJFHsjvAVqcqS1CBh0yaL+7ycxWZsHMftfdpkKyBqcaNnxDz5s2Ncy65JMuTSw6ZilcFp8D05VjCNbORMI6CtYC92RqcKQSuBr3BAUv7ZNqV7Af/grLKBhhyJ/XtS2UIiheDRMbVqPI/Aw4Gcr6eLwKSP1gZihsYaOCnEcZ7ztvnGHGfMWsm2bc5uaevKxHlXj17pqHr/J03/yeMnVupdDsNurQXDOJAMwg0/+PxKZhLwm0pOJ0yeXKs4qf78Xv06hUdKioSxtKxa/cZfs81p9Bj3o4vVpy3As0peFOxNlgKOGo4zmTen0/4DCFfKcrKy+PAAw+kAqJl4sgOuPkt6MWoekaqmSsPTcPdCKtjZ7QXg0V8mMXi4wzGbcSg+OiTT9gTPTVOsjM6AnoBjrh0tGDJ4pg8e16Or9Gl8WWgAWpMh1hDqQd9iTq1w/lpQDkdWe9qLCh7KcAnBhqscNBAYerwdIlGgAF/QxWUuxNQZMTFnDoxgT4C7y8rxi+J3WsvPjeOPpzjzzDyPLbU3iQZQWds6WnO/PkxjKY/Hbt35+SOw1MWCGuVgfhRcauoNHQ0fkvKXxgLE3lHxSmPZZBhv8KSlzeSLZj4xRfxr3++Hudff1McfGDPpNctX23CaOaEktqWCBKQYF079pgp48zomgREyLCZiTCgqmGzmznXhPeh/Ji9wK0Tk9hCMZfeKBOAIGsiOrOPQIUBBsOgSLLcBtCBAqouHapEy4Yt2YvP+6WKBuhQupFWC8JNquE93/13oGEfSq5U0TB56boYM4vqBO4wiOF1CX1fjqNXQllrKiYIMOiQKqPtJu0xfI6tMapRs5teHJmNAI6rCTbOmT0nli9bkrKioktnqnI6pdNeyu4nT/EMf0rH4iIrgJwj7/m+dLkb2Pm3hk5tjEjlkntyx4wcSZXH9ihDvrcvo0oMes9suYob40+F7mWmM6tWoDGf4aWxobzK6rGU+8hOeEIa0FGcOWsWGabJGVxtSya4davW2Usjv8xcSoGGPLqQ6Xrcmk0QlbkyzraNZJ6objEQomOZ5e2MrSFiENb9m3NnzogT+p6UlSENCHpmhRtztrGXzrq6bss28UHfDww6ex8oD3bg4G1asy6WUK01Gb7cO/XL6N6mVrSu2zAa8p2mwLIBfGwjyK/LtVNySAz7L+77N2koT8Afb+xk7ph66fiswMGYi+yYtmBFUFcTh/3PVdHrGz3ZsrA0Xv39E3HS8RfRWKx3OqBmGOVH9ZJ401kQjY6beGVO0qK8oGEnjOUleVAHXEPQQO5aDGjlzCLw25e9+Z07dUweVm9pqPodedJniANxW8Kp96TBryDhUqZK7+pgg8/qpkVkmSZNmJC8dgrjt23dKulAI7cYR6cXicMYOtu5lY3nObZOvnrDbQT+lIak+7oYlpvRT19O/5IqsS9iyZzpceQJHHF6zDFZum3ASp2vvk+9xLykM+nCcdQvyhrtBQ15S7jNyOng6IgzmWy6Nm78uFg4bxbNKpvGYUfQOb5LlzTit6AXdQClvTR6kUvKMY1ax5R3hLfBdMczg6h9YGZbx17eUJaP5FSAetBh525do7yiQ25VEC4Gx52fOin5EJg6rkEf8euVfMq9PIqrCNAIQ8uzHeNf48bFyFdejB69j6PjfTcqAMjE4zjKg8rRkmx1zgyaJePC3OCeOBffjrMV21A7RgfAjLnN/lbhML43YkQsnTc7+vfrTxPWNhnMqAZu9jB3CCbhg8RHvsJDVSiB9jh05rnXLRb0GKmk7ML2202AohLPq4yjupRxP506PT6c/CV6exG9aJZpwkY11qiOU99ZWVaGQG7ZjKqy5rUINNAvge9L/7sJNO7cgQaEp9SHnoZUXbwzhn/7U0rdRTXTNl47CDTYfWjRus3xxewVsYBAg+4rYbFoSR+eG2+8Jg7q0Y3tmeCV93ZDJ2ZtmXqOI1+krAAuXjpoywnwTIcuraA5EnrsUF5e2FXgTlSpH9VvwkjZKY/l+9hqBvjyBdzFvzazOJdeDRasWb2GXkP0kvjyy2jSuk0cT0Nvt7cYXC74UFS6wsKWM7HjRP1uURXEB8DJ58mn0os05jPMNqs/llJJoH3TkQqC7l27Qa9W+2Avseaskua78pRjOJZ0L21oa+owqgO05f1efejN5xjEWMC4k7Aj12JPNmTOPbCDK8rLUwaoj3M85mpAQDki3+SL+fm0UnLCALg869/ScGOa3MrXE9Edg195mUx2RZ7w0KZNm+zDlslCeE/+ca3SuM8wuOm883PwKk6UpRkk5dnCQPwa9NYW/uCjj2Pa2E+j3+lnZOWfNovywgSdMFf/iVv+SP5xq57vG5D8WkayLscUJsqjDCKxhuXA5O0h71DxszP60w/Pk0FMLqm7DGbp/Fu9Zh8F5YfzdyubNC/8tb2KdZlwA5/IJnFqYtVA5CwSYsPI1nfnGOWjjjwi8ZK9DkBhVmMwjrov18R4wlUqcUztsN1kapQHJj2UDykzeT8Da/iLU6ZOi8kTxsXJ557HduPuqVuEZ8l28z7llb5cLb6vXNF/SBJKMir8EANsLC63satrVhLImofOnYq9Zx++k7CNKsrK0i8TjtrxwkfiFNb6r9o1SfT7/83kLbpA+lLfuBVCGG2kz8c87L7ZwMYKlHUEVO1j+OPHHolLL70kGrZozbjFug1M8FBG+O++oBew+H+5/DbCFa8rCV1FCS3z2v834nAaQBw5dGisJoPconGT6E2ZVpfyCiLQKEQUZ5FBqp6N69ZvXJ9dquuSEdNFzBMAFGYg1UinxqfPcpuoxON2hOGjRsXwIYOjN8K1B4rNTK5MIbOIYAMLTlMjwHHqEcE2spYBDAhaoVdM2rtgRf7UUHD/zqrVq/O4rnkzZsTJOF6dOnTIiKWEnIEGmRxikzkkOA1xM3SC1cYxCmoZz74M7t32OE9LQBWUBkQ0ol988cVoDoOfNmAA+wdbEKApjFWFnoLC/XBOSmbUUTaKqlC1vE1izqY3CAerJ2QC9y77vvPTMRoB7I/t2zeOwYkwqpfinvEUGjKh83c9qeT5XaGl8GaSadAIQ5WQ7xeZPpiFjMuiJUsQgh/GEjJtV11NwzX2hRr4Ubk4b2Hgd2VAhbN/K0jS0UimxIFCEDhXDUQNGY1TM0WW4S5evDgm0LSoEcrhTM6mbYcAV/AWQgHmhQkz8ATafK7zywgveFdR+Cz/FjsKKGHoGt13OgN8GiDxeMeOnTrFN+hk3qh+w5ynuK8ODpyXkVqFpgLa54lLhkmFZMmzXcZ1FnxTmjLKbNnguLFjMypeB4V7KA5vD4RgiWaEQ8ICoZNzdECuhDvP0hCXDs1G+B3fz+AKt2lEfknAbhKlgwarysrKoyeBhrbAxsi1hqtZDpWbz5D+dKzFX2Hw4gwh8FQ0gCVf4t/n2ZvBxmhDR46MiZMmRf/TTiX635jAxmwaQn4eX86aFaPHFX0qbAxm7wAq+CkFL5xhnf72bYMu3Y3p0WBZKfznQ5hDZfDq9glPTbCiwRWbaRLGTkKxAapgPKLWRMSXbdkVY+eujGELPIOCIXh5Pfj9O+OMk/vl3r3KyAGw8XWgQVqeBl7fput9565do8/xxyevOr5wdM3SgYpZeBhA0yipA796j1tHNLRVchrk8nI6CMBRI9ntRZ+MHRcfv/9+nHv+BXkmu3uDt5NJa9SALFFdZBOw/oojeLeyGZ7wH4EmMiJkva3Eyq1drNny2QZkA2zO9xnbyoZgOE+k9HnMByNyjVhTGURpyF8NgHFtALAPEdCMnk9tW1QjiEO1UU32hlbFWINWfAlPyRCk5xjSq/+5LsGqoV0EGqqzdWJXfE6Phjfn0jyPzzDP8/rBDd+M8884PTqXsy2IOVcCvluRYQZIEBJJP9L4PnAo3Ws961SvwFix2dIi6F4HvvuBvaIXskAZrCGnTJIW82LNykmDDPKKPw3KKh/Eh/Pn48SV31fmffnl9Hj37beZy2YCDRXRBdyWtS9DfpK5hJaV6cpD8eazNJJziwpji2+dWg0O5a3ZPJ0u5Y58IF4nISMnQtc2vq3o0CHKy8vzd+cifWocOCmrDFg1fURwLqQn+M8s1zaOjNzLVpqa0K0GpAF2+VrYuF95CPJ3+rSpcWKfPtGtU2f2d6OfcLKUscqn6lQz2AR5DdUAhACjAQascp7FxOb1G2PVYrYuEWAY/8m/YtvQYdGzomm04fv1mVZ95laTV3XmB6kUeAbXXsLR30ovwWs2ZTt8Ygf/WjhgTID39sVK+g/NQ7bO37EiNpSVx7HfujkO7n0Ye1vnxTOP/C5O+X/UvQe0V9d14L3p/dHro7z3qAKBRFEBhESRUBdqliXZkmU7zZaTOInj2HGcLGeSfBlnMpNJJplMMo7HTlzVLAkQaiCBQFTRRX+U93hU0QTi0ef32/ddWf6++daaNSFrli7c92/3nrvPPrufffa54ba47ZYZzOJ1SaM/1++KE3BfGsbKbx0YcaD81/g3uC9f+V3h3DjDii5Gf1jFfDmBANPy77pnFvpjTI6/xqCZM/JsTgIAc0kzjre0VM5USY/lzLvjZDDDGcP6+vqsC7QSh70TQcn7KWY6uKoqa9YoJ521N3Ch0azOEb4MgoBzP0tLfs76SfCXRXUVUD2ZZVZGrgDuFUxw1O3cGZNuuAnc3JJr0E+gk6UJA0nynWOsnNaJMHtNPZWyX9rhX6Z004cyHdrgtTbB/DcW4Hxtia7YS5OmTGGS4KrUPyeYpNBg1sYQ7+pD6VCn0VcPYfe3zNxBhpmhp052YkNbaDW1mGY//7MMTowiwJ76g6Uc8qA2kfDJR6nzeVXnidcMFMGz8o/BHPHtqdyVypzhNQNUe+zlF55nCccE6i2MjWHDhqdN9j5GtVkTjpfw2p7PMrtEveZ42IdyjJOfwYfZEi6H037ai6yxvsvuHVvj9ltvjRFDWLaEw9+eTLCLZMKKeyOg5y4SRGRpQjMcevGAyMpAQzOycXgM/AnpO0Dooku0va2+IV5atCR+9ubi2LtrG0vqalN6ZqCXayugWXeFIOkL+cvJbktdWepbLN9oCjSQ0eDzdcKcBGjNiYjOYL8ZDurfs/x+inonZjScQrNloGHrwdiNEJZPsQxjSPfe8Qff+GrccO010adHd+QKwTMc5tPoEGUlTeb4eL184usRslTq6utiNbsYHcK+nHbzzblcT1xrC2gzeqHFEh0D6bHgMYKl/GCmpjLRQ/tHXnU8zCgx62/fvobYWbszNhFo6Mcyt9vZ+al/ZWXSSzrr9FnHUVrwWc7qGyzWvrJd+bc8fOfpOMu/BjHWM5FXu3076pMabtD6hPHjMxAmrPZYWa1ckE7kIz9ri+bknXyAnvLZ4lj7vh3+g/09D+07qbT4rbfiCLZ8H5aHjKVt6xYYxFYvyIfa2sKp3CqztHyOPJABCOUC7Ssb5A1tCYswamdaH+y5p56KAQTUxiDDqqoL/SE8OUFKH9V1mRWM7JFP1E/qnlKOyUcG45RD2mvKDf0bJzfmzGPZOc+4jYlOi1WbzZcZSvCPh8Fcx0m4zCyRzz2UWerFQrYZNNKO1enFjgUes7b31NXF0xR3dELhzttvJ3BHFivjJx9mIAS9pN6Thqxx5yFf6vPpkBuIkSazvSZb328NElh4ef3GjTGPXWVGjxsX07HHupOVkTa6uhl4xZH2p3o+s2J4tn6bvpqBaG2azKLG7/voRKp4cxLY2mFroflZbNl+LeMqDvxN3WGbhU0N/PQnZRVyy+/0SwwsS+se3mNR2czO45ku8a6F3t95ZxU6v1ncif9hsFe9rswqgkiFvWgfnBgw+Ju4Yyy118W38PhcM67LAJYZmu9u2ZzL9Q6i8/cfPhQH6vfGA597Iu67/352n+ibO9uglrMPKawSyo/vn8sUaAABID/Fh8K7YF0EjYrvUkb+X3/lZSpcH8RB6M1+8uOziKHbjpxBeKo4Nb4bT5GOyIC3xvBqDTMxTIVjAHNKzBJaGxwR95tuQRisOcYC1ky8ZqDhpdkxDsGsQ9eLAiIVMJtCR2GX2QEQl1F+B74DM0Y6EDKMwkMhmILQVyGmLxKF27ocxVB85rmfhYGGmQQahg0ZkkJUQzCZBCbMyBxC1rYlcCORHkZTFVISs9/zJ50u61L4JAXyNoSrgQZT4G8n0NCPLYByvRvPF3cKukIYKiCACaXjzJyGhOlsYCEDDBKz+LcfKTh5roJsOYw498UX2KViZtw0eTIpmzhVXCOswu+rh0yn4BcfGo+Op20Ju4ZGDi9/dGLtk8qnDuZw68N61vB/ku3Arhp9ZTKYzppCKGESHu4rT9tMxqNN38uM4k985PNo39kk11Pt2LEjlrHcpgfBl/vZu7s3gvwiuNNwFSDTJDXoIJNi1sb+oBxclytuHUMj4aUi8b304F7GW7ZsYfnBjhRoOi7joUnTsqUJU+U0TgCM2dzCeLE/ZjYoaGgQvDHeSEGDDNKpz1Wgm2a1Z+fOWLRoYdTv2hWdULgTJ98QV+F4ea9LUzzEgRzjIZ0qXM0sUIApCP1NRWo/VH6FY8SyB+AziruC2U0jyjU1NTFy1Kgwip4CEBykk0M/HWdxa2TbmTuVs8rVV5+pE6Vz530qwtY4YjqWFr5cRsbEHffcnWm7FgBajsC1EOmrS95OmPui43p1Rakxi9+RJRKm8WMNsStC6+hO4bqOOGMad5rTWZcB/OgQG3hw/bvjZ3/tZ85u8JXFvC4ynhYsbKBGw/KdB+K13czE0Y+TXO/xFxhg99w2Mypx1HWEW5nRwu8ZWccAtv7Kc888g7M7OmZOn0GgRHddVEjzJcYBFZymUQGOTQn0UDmIZ2lAPlPBSUPCakrjIQyipczWLcNouRfFNokAkmGss2fZEaI9dMi6X6YzSaHHIKLQl4GG1m002IrUd5dTJa4ZtwocCIvyWeH6Z1QczkDD4jcSDpIjgiXAFB1rxq4TZHdBN+c/eJ9igBcI4JD2Cc4NMrQmsuPzXYIG+v73Aw0sPl29Z388X0ukn/uYTMvjG7/6K01FWg00MCuCjM26AmRNyQsZaMNo0oMyfb45ucWm++8n0Lhq1arYvnUrMuVCjL/uurgWJ8NUVPHmOCfTMAbSvWNRjIf0B/z5vXylwVcETbwu98AGV7XUcnBrqhMEHwdWVcfYcWNj6JChKSfLdffyTAYbGNe2FOeUfx1tDUOdJ8fawIUGdMo4PuvoKKOXEmR4C8euL8HeK5hJGzp0aNYEUj4qfzUqlRsaRgYaLI7l2lV1Ujo2jHcLUgSUk8rL3PJRugFXbmn8wktzYx1ZK9OmT4+RGCu9SVN2aY8ZaQ6chVedXXVZnDKlE/yjAc7b7PNeCrBupiDfmuVLI8iuGzO0H4GGNlHBOLQXd7ShppUGlCpJC/5pOsR+ZiGAX7MYpLtm8E0LsgstqgwHxVHGeA+42H3x/Thc2SeueuyxuHLCWGakdsU//Ke/i+tGXhczpt6YmR7qJ4P5Bm4cPwPayhJxpAz0d+lFmaMOKgINFDXGWHQmznE+jrG1d299LEG+b0auPPjQJ2PC2KuBFJqDjw1aSCPSTaE7+IXPGox+rWHt+Hw0YKX+sh6KafS7CXq9i1O0An6tMNDwwP1RVV2dGSLep4Mijcnv0ojvfXapD32GTlpLrqNzWavAAFtX0n911pavXEHh5OWxr74+Jk6aErfefAsBom7RSL9czpgy3ak68KO8NTCV9I1ssT8a20mf0j86z73kMXBUBpnh8errr2W9iy44mpPQH2OvvpqxIuuT9t3e0AwMAwPKdp2kj/KV7fus1IE818kYDWnHy1nQ1cicOSxltYD2yCtHUzBuXPSrqpJZsMFOgVcnFQq+1HZKeMFOGu/0pTDezbIs+NhrxVdbHKUL0JCB6pexOa657noC+FenjmoPvVwABvEtrDmOEi6givPUp7wKejEWOu8GMHAygdm6No5tPXbBU88+G/W1O+LOO++IUcOGZmaBhWlJu8oaKDSDVCSI0cKMiWICw90fmpnNAJ+hFXk+zybjDs8gz5119ew4sSieenVBNOzZwSx4Lc+OqCKo0ANZ7E5AnRmiLlzeieKrnVmj3qEdMDFe8qm6xayGDATw3iUTqfvooLzZij5rP7g+3OWB51qShg5su987Hqs2UgODQIMUSDgrBnfrFX/yrW/mTjw9ujIpxjg543yWYCCDzRUOrzyMiAF+x99irNL8MmjSQMMsAmujrxzVdG2RZQCD5hJgnXfH1fE0zd1xbCR7RP0n7tPOFOe893A5kLWMtm4j8wv92r+6mp1H7og+A7A5mpxzx9CgrnJWPlSnyq/K5IJPi7ZKgBxn++VyUZcyr2BCaRPBaq83G2MKp1v6NuJwilPlqu3rwHpvCaP2jM9MPuA6ZbAyvpk6Xf8DftuO7b4AH+E4+mMAQZKx0PuwYcMYFCbQ4B8xKj7V+wYGdBaVDxBK8ljSJjSefMXVBe6ZVISfPJYSBHgBm6M/2XBjxlwVgwcPjt7ICflCWabt6GDJNx76DtpoykZtZfunU6zfIH/aH/FpYO0U/Z+NfbByyZK4Bf9jFNm3puvbR9vUXjR4qc2eOEWOOLnlcdylRwZ5CRCow0pfJ3UUYy5cu6CZZww0ILPuuvNOlgj0T9yK3+w/jTqhpp3reHo2IYznwVP6YXwnP3smzrnA7EOX2lh01EDDlQQcp7NdpVkw+nq2LTxlZoD9Fy8WS6UhaqScStvc5R0GxfTXCn9OO9laai5PPpT2mLvlffLTn46J117LeLG0kd9SFzC+jpW8Kdy+Nwitz6Evqa7KfkIAyiWXxbhES7jMaNi5k0ADE3pOCN19DwWloZm0zxkbeQdKKGxr9RX/9KGcnBKvuQQJnIquzLoWP/ShOc814Lpx0+YMwhhkcDLiEHLtrkc+GffMmhVdGQMnrIAaX4ZxaOLDHNSP6Z/LE2iw83KrB68ypsQp0/jFBlIMX4NZzGjo270n+19TrbS6hlk7hDPM5poqB8TTZs6iDFwyke4WDJGRIBhFB9eih83xGBXcnTDCZdQ3Fr+FIHk1hpPNMAKn0dTXrjgYDrgMqyFUROCNKhdGo0LU35NxeCaPTuHLS97j9xb6sHDZCxi5u7ZtT0NxcE1NBjFkdAW0EOde2hCnAkJuF15/ksB9nsJQIvd3wwAyQRoiPGPL9h3sofpMbgE2Y+rUTIHPpR0yI9c66+sMrPcLswrCV/slwyk0jKTZPw26jKxBzAovZ5MMNLzItpLTCGLcOGlyRlM1CIVF5tKgyxR7GEFm8TsFrkJDuMVDIUgKmMWPQQ53M7AwzEocDLe9uYUIt0a0cHlqCBVwaRCCF9oRW/7mUcxmOgaFcWck22uM6qqY6kh7NetgGQ51r8rKDDQYbXXphPDZP7cBc62Yws7PKXRlemB3VrMZM+pGwX2is4vSljNG1hrYvn17CpKjR4/gqI+Oa6+ZQGYNjjYCzuBFRxUVbaqAdWI1EhwzBZ94z2AMRkYLDBzT3lxCo6LQubJ67hsL5sduntG5W/eYwrheTZTe/rtsQ7pRUKk47WtGVuEVcVMqa9+r7BS+pQOsAjT6u5YMobfeeIMZqfYUuhtMyjHFI4nUO44aHd6rECyVhZF08atjZXBCupdOM+JK38S7s0YG5yysWQQaVhJomEUhoR65VGMFUeN1GO6voVQ9BuMED2D7rT7M5Hdpj1OOjrl0rpFk0AtUIMbgp48KfY2s1oxDK5i82OoLruaZKilAQC8Vho12n4EITP5oxAFqYOnEqt0H4429l6Ibwv8IgtfjT377N+IuZlb7spzGzCarJpvVoszRaTTQ8CxKfzQG7swZ00lvJIJO2wV/mFLnllfFEgcVdPYdvPEmeUxa9drEFfiWD+Q9Z8U14IygryPocge7DVyHwdKKvp2n33AUp44j/YYmz2NEUuGB8RQP8Dy0JIfZXxVOW4wBd51YgdH//Lx5sfbdjfE2RWQ9+mAnVPWuiEoKJfauaE/FcxTXSdYVgoMKHExn76DCphM+YKylLQ3eRKrvm/4pQxjtvKbMaCi2tzwQL+w4l5XOj/K7x5cf+1TMYpawhmKhbcFpBvGAvZnjhRySV03F1hk+c4H6MQSV5PMGlORSHMZ3169Lw2HKtGm5f7ep0W5tJ42nHJF/wLXvU+mDfw1LcZ2GEzB4rbQrjWY6O8/bzK4s83G8TH11HfekSZNJrR2RdO4SK+lcQ0Q5rz5Q/mq42I7GnsECAxiOuzwkTqS9cg2lS4Xm4XhVVVXnjJSBR4sPC5s04tp45ZVcpanIqpiciU6niXHtSHFiC5OaMm+/LKJlMNi6PRYum/3yvMxAmsKMzhUYK31YO+tWbMJlIFAjzraF0eicwVyf6YzTCWYq95BVsG3d+ti6dk10WPhmjLliYFSC+07c15qBl+ftk4e04Dg55olnYeYnt4g7w3lB3qfdDxjPk8iE9izv6QL8H3DRPvTHbjbYq4On+8Jj1SOGsr52X/z4ez+JjiweHz95QtYjsLbRFTgxZpWoi8ST/CzVFbPS6Ar1CXAoq9U1yjtxL/+pFzW2rBOweOnbsZlA0kNsIede9d4jXj3lxdSVtCV/FzqwMGh9rn227XSK+ewzDCb53a7dFFyj3dWr34mOBHvvYkZqCOOb2UzSMtf7LP7n/cIp7Sk7paeUvRjtXqcOVpcaXOqE4+dW0zrrG6D3IwQfJ1B8cdqNN1G8r2sGAswAclabJ6S+KHW9RCesfJ163PE2eMWAZbDBWh1tsDl2kuo9f8EC0mt3ELzoTmGxa3Aar6Q4IZXoMd5dF60cF37hVR/njCbtCa/85Ol7cVaOQQZXuGctxv9rr7ySMErrtl9TXZM6Tecg10DTrvpMnnF8PR3bDJok3goeZhCaxgXckGHkJMHrb74RbxAQm0DA8UqC4GZpqteFRd3pKa4dJ/sgn4vzcgy87qPtGmjQ4G5OgMVAw3MEMQ7U18Ud2BxXDB2SgYY2wNZIAccMjELLLVpROLljd/gKWkeHWxi4deog6IX6DAYaLAhpIMkdVrYxafLC/IXx01cWsHRiN8V59yQMYyqpydC9S/TpRD0LdvrpyH1IQJZFwKfgl48OJ4f44IXTsS/sVKQFeFTv5bImx4P+nke/XWiD7UrV352H3IUAWiXQoGRSFg8imPwnf/zNmEywtiOTbgbqZWL1ZmErF0+UeJXH4jMDDdDNYiYCDmPTPIrjdRW4dyzlJR0oeVIcGwAU98JaOlsur0na5xplnT9KP9qi0v6OHbW5XGgLQcHK6uq4FXtyEIEGdaXP995yXH3vuOYhfnhf2tqOrafXKA/MGLJA32Ic6TUEGwyITb/t9pgxbSo2HEuXsb+zqDjy3ftSl4Br9ai2q3AqT5QPjoEwS6f2wSxZP2/eti3p/QNouxp7aTRZB9rxwpTbv9KGbelg2r73SI/iy/fKaM+ibXHDU4FFHnTiZxk28KsEk/tig40adWUMGcIWqmzlySWJZ+W815uFIF/6jHJcxJnfZeYJzyt4uuiL/HcMWfPya6/FCvBzA476lSMpggs/ufzCCUgDL45lGWxUBtqeY1sGMZw0sd0y0JCyA1wZHHZZyWz8GxrIMe1H28JtoDsnNYUJNBswcaLWdnTSPXyuukaZIG587+82oC9ippIOtTtvjUB+ubxMvZqBaAD0GvFgsEFcSw/qbd+X8qEFgXDHwgkMv0s65rN1mPa5WwMZpmY0fOqJJ2ISgQZp5Ti/CUcxftJhQYvi2ok+4TZbxOxGfSF9hzJrRZqQXw5Bd7vBzdo1LJ0AnjvQH4Orq/O5wmvGjra5drX8JGzaXE4O2obyUnyrv/zs+Gj36R+408TmrRRNhpc+DDRQ0+ZOAg13z7onehIMg5lSLyTyxenH/PjXBxpEAISZZxMynJ3xdK0P5Bxr165l3fRcdpzYx57EveJ6Ag0jqgcXKdEoAdeeObtj8cG2CFYL0p3EobRZUzQLYUhNBK8lqmuKdmuUrkLqNAO9cOkSFPNrMQjh4ZpAlaZpsB4SlSmcEoLRW404HSyHTqZMQcKgKgh8D4WmwPQCHTmF4IsESXbhNN6E8LNtHTKzIiRk18Br3Dm7oBDXuZKwJfR0oiA0GUWG0riS8FS6MrICUiH49NNP53c3T5uWdQhkcAVPMi2taZAomD1LPBsRNYhh285OyRxGSGVEU6tkHNMqDTQ8TyBjOg6EGQ2mbXmvAtIosH0o8cCj0qnVwFN42HY6hMCZTEufFEIpdLhXx2spyqF2985MLRo14ooU+BpTObMFrmX8TI3iOQZJZL7sB88S3z7HZ1jsxsNCPTrbuzEUnZFahuLs1b9/PEBGg/UxyhoNCkbPIghAUIR+O2b2S6NdQ1+8uYxE5W7k31kkvzOjwUyS7eD+ADQ5DgF14w03ZI0GU181FKRd27amhgajQRMNC5058eNYmznRkpl7g2J+toCWhq6BhvnM6uzauo36Et3jxunTYyyBBg/XI9rvUuFInxoLCT+/ZwYChqo49hoNPWF2PDXIFFgrGFMdo844q8OvYPeRDDT0TSHttcIijLZbCOnCATJwpNFr4MJx8VA4eigEOyM8DTTMQTEsWbos7kTo9cCpMJV3FU7OWgTjfGZMPEZ2aR41LFYd0K0ielSQFdAKvsHR4w/PoF3gkOeQ4+ASWkqbgH7AHyoNRg66RTklHWMc8Lk5fTTQcKYMNJDRsHAfxbHg9aM4th5/8uVfZ+s56nWQEWC1bzOcVJziR/o30PAM/HQVQYCZ4L0HhjoPSgdDOWDwM2c8aEs4nM2UXpNfATaNFmCXtzRY/F76tRiaSycyVe+dlXH3vbPYq34cY4RSJKPhTONJ8O52teAcw7UZhu4Fgg2nG6EVZovb0M+24DiNIGi+FUaEjt4K8PoiqfXrNr0bb63bkH0cyAzakH4VMZCptL5dKE7IDPq5U9SNQDF3wDhuhXV7AXxcRMaKVrgyR1HaTAbN7xxZx7b4TfxmAIQAgrtOrGPXiVfYdQKTJI1bXthC7ZGYhfFeQ0BP+eqpYQvn5mnb8m7WjoHLzDzT4FHhL8EQ2sCsvbRnUHPKpMkZ3ZfeNbSExbEugpoq36ICt0Ew6VIFLKwqcZ9hVxwn8enSnYUsVzmMMjb19aabpsaV0L2BJdcja/gYWPTZytmUy9ynTJcfMnOHVzEl7/m7fKEhp7G2cMnimP3U01GDgegMrFXAc5cj6EmacpbMe4TJIIuBBmlCWaMu6tKeAsTgqpwV5IbMUjAF9xD9n4tTt4alR5ORMSOHDc/tiN0a9xzjKZ8bIJVRipkuZz1dbodT0xYaIXNsx8bNsemd1bF5w7rogmM+nkCDGQ3tgQW3PTMUymCD+og5kEzdlnZBQQZFGqVh6Pwks7qnKCR5tNGipgTxmJmt7NQb2mjNdnsRtSwDWsfGlx2vu4bskUEUWj4SqxetjJp+g9lFYjDym0AcfD0OJ1JdK+85ZokcnivOPdSzBsFzDHg2oCQvqf8cEx3a/WWgATn/CI7RtfCs46MBKt4dS2kjZRg6QbpIncHYpc6iUcdcZyefCd6lI+WbRqKZEuuwPSrQKc7ADq6qTt0uzh07DUyNWwO/RYZEQXvCqFNuUKzQX+aswUd8bkXw6D1mCl0qtBmePcba/rEsBb2JsTXQcBId73p6OglvFoGGlLB89sjJCeReyhXwYA0hKDR1VJsOBKygC2vhvElAaU/dbpZOdI9x4yekg9EWndRIwDEzYWgvU6DBsXJWPIhr29V+UF9JVwYhiucifzCCvWbdxg0x/9VXs3jp4GHDYjwObU11dbajcyA+HS/X2YsHnT8DrUU7hc6WHzyU48peeUubyOyh+QsXxlvMIF97/fWZIWTdKetaOXYA0DQG2GXYfX7XlWwHx0F+th/lIQwJCNe4vtnduVw68TzLqA7U70nHaPjgGpY8skwPfjlzSty7jRz2YdsKan31RFa1oOgqS5sY83ZmMFzA0ca+bI5ga6ssxcZrTh+3Uxx6zhuL49nX3mTJ467YuX8PPSK41t/tmtVz1GToQJ0tiyTQVjN5lvHLoAKA2g/tsHS2BFuc6PwyvhAuchSbxA6hVy4igy8C35kWbdnekoLHy3fGGmLeJE+kLK7p0jO+9Ue/H5MmjKcIJBKaNszihUya5L2QcUC38oEOlIEGZ6cXkW0nfT7xWWs8XAmOKayOjPXILAZ4x0N7UTs4nTvGUrtMfpDX7IN2ibRk4VJl5OZtW9jZhGAnkz/9kAvWx3D222enPUf/fE1Z63d8th3b87nSnafj729e69INbWlnj4V7JQFf6WwmunXmjBnQHtkOjLeBO+vfOMljmzlJBczKEWm/pHsTiHxEodOZ8EAWSL9ubfjS3LlxAhzVYCuNGz8em2ko40vAk0C1ukk4EzZwkEFT2kk9wnOcSNImzQCw13EUuCIrARrWHnNpuHWDRhHcGULbfSjULgEpi3T47a+2t1mS3lN+pw2knSb9iHPx6XufLexOTJkhtOytRTERGTOaMbWOkNlJZjQbXPfQmVUe2F7Bj8V3OtJSizjS3lH+aNt66LMY1JwDbuz7TMa0L3XQhFXbM234hE356JJo6sMAl8u2bLRcBqZNI94dj9TzPMN+KMddyvrSnNkEpq+MqSwB0y+TZr0+ZTf6JP0xxtW2cyIGHpFm7JOv9sm2vN7sDH0js8oa9jUQaFgWa9Gtj33+8xloEIfijOayPZ9TvC/oOiedGRP1iqe06FimXcZzxL3BG2ly165dsWrlKrIQWpMR90AMqanJIpH6IOJfWKQ18SoufU7h85pofzppUzlsP9SZZvi3x146iS3plvHvbt6SO07sw8c8yNKtuz/9CIGGWdEL/soDPH542PjH+LgsgQYHyjOJAlmu8jyHIawRwg9EhdbEK7PnUDV7P5VH+8TEq8YRaKihmi8EjBIz0ui2lFZWbkvaqNu4nDhFDXuQa4QrlT4E4Dqs05wWgctAg0IQof8mxterC16NSqrky+gjRlyRW19J7EackiFgHqNNGj86YRKgsysyRjI4v+uEyUDpeDDIGrpuPfICjLgTwpg6bTppgNW/kNGQ6cQSBPcbFZbwCiGLsIDxZR7xYrqa1Wxlkh44nwp4Gdq0dJdOqGxvvflmqm+TWgTjyowauJkyxOuHgQzuEWZ/95QJdY4yOkhfdaQUEDK9CsZAwwvPPZuBhiKjoQJm+nkBNeHzGSUd51iCnFSYfKnQEs5CSRRMK340YN47eiTeXLwYQb4lDcWrEYLi0mieSkqmFdH2X7z7uVQCwuwzDTR4GPTwMFKoUHdP9k0YimVGw32zCDSwjlQDVOHtYQVsq7zbRqaFgg8Z2qJtGlkawGYa+HwL5DjT6XvXrm3dtjUN0d21tTGJAM8t02dklWbXDjuOwq3SNDXbmUWdGRWd+JF+7KeBC2cvMwuB71RsBgMs9LJg/gIyGrYVGQ0EqDLQAM0dO34sceM4SZ8qSpWcgl2lIF7so4pIx8zvM+gDrdpHx8FiW8/88EesTe3K1k5jcr1hmdEgLOJfxSD9eb9BLfEvPQm/dCFPlMtlkl6hiQrWX1vozEDDW4zrbaSLWfHcAourmb1bv4UUxFUrE/djcIaHUX57UM/OZDWQyYERd541sheY3Qd59MOsD4UrvEqgAVQ10ZKzAzAwh0FEadk+aYgZaLiEsXaOpQb73j8bK2sbYmGDBRFZOkGbHn/2mwQa2KPY9PMLFA5MhaHhxr32260BnyXQMIb0+pnwa5HRUPC4Rpd4UEGkAUS7ZqaU9CTfSaMJUxrQGkWFMSO+LLi1gtkL18rf95BLJyYg44D3LIb4+0dRLifSWWzbgfXfbRkrDMkPqNdwhsrJ7ehrO3jfZSPJDxgR7wOvSybmss/7Gpyt+Ws2Zh+rWc8wtLJVVBHk6deVwlZkiFwkwNocB6CdQRv45gz0lw4qcCp+Msjg3eCRjxz2wnfFZyg3Aw0XwNXBxguxYe+xWLCFrVy54piXc/z645+O++64nUDDAAJDPoe74AFTtnVyzGpwBkjDywwhZ19Nkd1HAGApRuK7ZK6Jyxtn3Bw3TJyYGQMWvpVfPDIjCF5yzORFaVQnRjovA2rylTQs3p0B0rjbun1HvLVoYS5D6Nuvsgg0UDBMo3Q/z1Y/6MgYpPNZBs28z8N2MngEfRRFszSiitl15bvjupDxnPvsc1FVUxNXERC8giBGBhoYHwthKiM1RGAd6BNdR6BHozZnLDD9K6hngRlTVObnHnchasbznaE+jDx5ifG1OOzkyU2BBnSgGQ25DRvyS7haEIkzUCn9nT5DQIxndq1gzTtO0pZ1G2I9+9Kv27A2uq1cHtePGBD9CfKwSIARJuuKPlrJ29GWNtzy1RlUWC5hPsfvGWQArw2NOCTvN8Y+crStu9kf76aqRyU6oyJ3n9gOvK/vqYs2U8bFcAyeUydOxpG97xEkmRajR4wknfVYzoINJchwxYgRqVMLWS4khRMpL4qz1GGMs4aWcs6x9Xuv01CUbpagu50lfYSlGgYalFHKbXlZWnIcvUdZabvip2zb97br6W/Su8Eanai6uvrYhoy3yFYXZNiHgQZoxLZ1MGyzI7yqjJR2bKMIOhaTEMqltB2AN2soSFOMvcVPN2FAb92yhSrj70EzV5PqTaABeezSMwMBKUWgF/lSHepZwu6ryk856Ppn+cnxc1lJawJIu+rqUv42NNRnfSJTvV0S6l71Ol0u55Muxa+07yH8gJm6Rfz4DPvp6XXaBF5rn8xoeJ3gl0551eDBcdXYqykyV5X993qvkT+d+NFOMXjgTKD6MHU2vyk/HVcP5ZB6xbRhjegF8OqSN96I6yZNynXNWTMLPCv3vF84vUc9J5zdWNriRIA2ks6E32XbXAsoKQ8YdGRNJ2YADxNoeDEadu+ieN3NMbR6EJmIHQjiqn+YnGJMVTqtoOe2HZm0oFbDCWj4EnKhA7L6EoGGRpZYgH36hl4ELxaDrN27P+a99XbMXrCYAM+O2L5vN8FViqL2ZTtLMveqenYiu4ygNjxn0UmX58j/ApjwItfUtwXsAo6OA18gjRO8edpx5KrbW15s15lAQ5uoPXgU+3VXrEdEusjvKOfwXv3iD37/qx8GGnJrTJqBSJKemlCYNKST6rhkoAGbaTF620DDY49/5sOMhmJ3lEIva0M4pvKIQTRtAGEuAw1pU/Io6UAbzrFzF5TNWzfHGnhpC/Wh+jLhczOBAAMNOlk5SHTN19LJlReVmdqWHkX2VqH3pS/lstkSTrrtx6nT3niHpWHaJjfffXfcPG16BoIPZqABGsYu0A5zuYU+gTpD/s2AIXj1s3ZM8V2RlZu7u9Bfi2fPefFFat3URdXQodRUuSEDd9Ks9p79T53Eq3AXmZ7wsJ85s5YA42gAMvUKfbUP+g8GYbQJXiMrsQ876Y0i02vIEAINZDQ43NKzuFS2dMa3MXji57TPbA+aKWx4ZtvRhQY8S5vNcXL3mXkEGt4m8GitljGjR7Mb2KC0BbMWGg64YyY/Kjt9jgE7aUT9pixQ7jq+4ib7qq3J2Hrtrj174kUyGhw3s1TKQEP6ETzfPmqzaO8baNB/6Wz9Cw751zZlal+Vw74v+lTINwMNLmU1w3TGVIrdQ08+W1qRdsSjiHIshKf0G9JepU/ysuOqLtCeVE7Y3yLQsI+lE0Wg4dOf+1wuZbWvZoGIU+mvpE9pTX9UOEtcyDf6I4Lg+ItD+UGaKpZu18bbTKC0xKZ3N4ihQ4awi92RzJgQL17vYXeEW/vG++2LY5mBPOwmZVlBp0WRVXeb2ApNbtq6lR0BqdFw8FDsZ2nSrM8+FrOYUO1ZVZX44UYazic0vfr+43lclkDDBWYWk4ghag0m1CqzKEQAQfD5C+diPbMKptIdx8Eb0KsINAyvrqFAHIqWqJzOIlSGYGHdJIRk0OEDTklQRskZfphSYncLMfc2tu0WKMKLCP0FzEi98sZrMXBwTVbgd49tZ2LdEszolIcK3/PDKGsKFJmvILS8xoHlew0hFW1rUgFN3XqGwkmuP77l1mJXi4qmtBkJVmXUBtiE38KBClBhVkDJQApABaPG00lmC/xNo9hXcSYj/uCHP4iBKPq7mXXpTtsySxFkULDiaAKLxosCxEPHM5nVJ9CnPBPqwrlXmAiHKYMrSPOekzUabilqNDBLIfH6bGEqIsRcD/wajMlAwJaMze8ytcxTMKjClh7zQIWl2R4Wftq+sza++OtfimEYXESDcj2rDC4DFtsMEXVHUBss8TkewugJ2BwKGZQoN6QSpO19ZBqYdbCclGxrNNwHA/bFAToPkzoTmHcBh20aAFA46yimUAJXzobZtGlauWyCax0TFYUBn60UCNpMWpdLNK6dNBEhOI0ZkC5xhrQr+54KE5jsq4JCIeLsRWFsgWfxQP98Ru4+Qb+cVW2Bobtn564PazRIK2WNBp9vqrf3ZHv2nz7rlNuu78VBGs/QpfhJ5YYychxaI/AYiFi2fEXMZjmMWyZan8H1hgYavF48S785vuDAtovtn1onsOJfus10fvrg+OvYORvTDlhdo+sM7CIU/82335bFe7bW1mZl5Q0Y1q8ve1vUxxhAGVbZLaqZdTfQ0KGVysi12jgTkj7M5paDyoLmGOc5xvIa/7KfXNQco0tjW+WqIWYaeHPSuJu37RD7T56NpVsbYv7uRow7HGtOj7/86u/GrJm3RB9mmeyDfGL2gcJdpW6gQcXmTh8zp09PIzbHibETJx7iuDg1LIoxLBWe9O1pe+nwgj8Vhr9rcL+NYpv/ystx3ycejBsortqWIMCF82SgkM1wnhoVpuS2IMuCqTJmv0mtO4sjwam5ZUGwTLeFn0h9yVm2VcjGOa/Ooyjkxpj99irBiyqGqqZfRHWvbjGgewUpu9xNVoSBBqurA37CJt0V0NMn3nmmMPCVT/7zd/82ZzwuMsbnkScHM6PhvZi7FYeW39hULI/fe/LX4uH7782MBgYu121agKwNxmJXtuq1bWVYBhrgI3lLfjUFftXKlbF9y1ZwfD6uu25iXEc6trOzjThe0pv4S1kDL8kHvpcPnD2SZ4t/Qtt0ArTGgTytQn5jwYJcY1uJcTuZ9ocPG57FhN3W2FkEeU++MXBkqrX8Iq0XwRja5Hl+Fo5yjA0eOrvkmLqrRSU8NBKHbhhtG2hQDmQQAPpyJkgZ5ZJAuDWRrVx06VZLlvK5vCR3AJLG0IEITQIx7eMgssalSOs3ro8pU27MjIY+3XtSTb7YNtQMuBJGK1dfpH0DYu740QF+ZB/F2L7h3Vi/fGW8s3pldFjyVlw3vDIq0ZUGGsSWgQY5y3E2dGe1e0LHBY7pr8sm3M7yBOeeDw7HlhNnCTYliFFBE5h+UdGlMmu07EO+bsQZG3LPXeDiijiIEbR+xWqC7DNzFxfHyirZGs1mC6VhxbPFTc4EAoNHOv/gRAdXGpE3lcm+V05Z46e+vj4WE6DSYX+YpRPXjhuf463+c5xss6CGbJLv+MQfnyN/ysPqVg3b4ntojLY18vaynG/79u3YHuuiMzPqWUwYm0MHUd1VFpUTHo1aD3WmMiLbph3xmfqK5+hEmtHQnEDfe2SpuKzPQPg++jAGvTeVpRO9unfPono0lHLJIJ0OloALV8ocW7VhDnunfOTH7LdL/gxg1TKTtmjxotz20WUqzsA6gdIBh9jglIFw21UvSecpELI15VrB+T5DR9Jx8Nlel1lDXLCO4OYrL81Lp9wsHgtCDsJ59DqvtxH5s7BhmpxE8OLvGQDgWfYlZ+vgz0yf5z7H2vXRLp1YTKBh4uTJOHSjsv6UmX4GAR1TYeH2HAfHzeC8betkCnOR0VlMTKQ+5zui+rmD0/5Dh+NnLzxP/aNaZtVvZpaxikADFemRw0X9BZAKXi42I6MD+XuOpWtnuR/MEuylX9SWOY+eaklGgwFwCAhl3DK21+2NeQsNNLwVuygGuWXvzswMGk9i7MDeXZDF6DkDDWQ0XIR+zJDQ9nBsc9aYsXMCR5zZN20FCKn4nVc/p/0AbB9dOlF78EgsWrY3NnEpuXdZo2H0gJr46u/8Rky+ZgI6noCJ+gK8XTQymE3CA8oyniP9ikNtGrN4ljEJ4UTK/fc/EGOgGfGXvAfdeJ3Op06VE3COdWFLFjPv0r2TccpH7/H6dgRLlZFba3fEhk0byTLdGP3IeLuNDNlB2GPKyMywobviQ7rUHrNGjllZaTfCBwkv7UmX/M0zHWqDsdjY1pZwKZI27nU33kCG6ZSk1xPw2iVpAtyaPVbgu+CXMlDn12mPIaOT7oWDU7pqQ3BNOfAyGQd1O3ZEb2T8zbfcguM7lrbIrCIjSb9AGcDd2X7SPp/Ej6e7whS8mVd4VdK/7dsvJ37m/OxnoW5yB7DB8JT6w74ry+QZ+SUPcCDcfrL/4rq8Lp/F94VMMnDVMguXz331Fezgt2Mqk2GjGVOXTpj6b7BInBvM0a4Qqepa5ZuHY6l9pC3udcoy6VP+k9+EyYyGZ4FdvX3n7XdEZWVl/qadLB7MwhFW6xc4Nga23CLVcTDQkP4OcEor9kviV2d7qNfWYdf8lF31rp04KW4H7+4Goh8nPTtuaQ+JA2AscMUz+SyshU3MWAur/QOP/uadBj3MOlgK7s0WfJiMuOut0UD/XdYt7tQLJf3ZRtqK3O9RLjnJgIZtSpv8F/eOgzve7YBeDNw1x6Z//PHHo//w4W6jkrsjeo26WhzZdnlm1hLt+Ls4SrqS5+mf/XU7YosJG/xy9x8DDWY07K/f+2GNhu5krICMxCUd1nhLmD/Of5B9Yvhfd6gcjDY5uDqqNqgCFT1nML43rt8QS0h9ff/IUda79Yxrx1wVwwZVg0xmnTFkNdY0sqx1oIBwSC7A/Ub5PVTyDpjXWQDTBx1RAABAAElEQVTQyG4+xGg+68fmL14Ury1cEKYBjqbo3ghmuypQ+ucxcp2RaCtDM9imTisY3I8XysCpZD0iv8t4EnACDOH4akSvGUL+FELwpzgu27ZtiVtvvz0LhVUQ0fOejBwiRNvQbyg6ZxlkXmdMZbh05GE6DWY/p0HJq0JRZpEYXcP0QwINV5ANcB/rvq0Ya0oUrEWfi9m/5vTd7fFyqQNwa1jLQCloFB7gRHg9RYxjIaMqcFaufideZunHTTNmkM48KVOdHXIVUK5ra0KlCsJ7nPUw8mcUXHxpIKhsXH9sQCjxwlOMpjYQDJiHENyDUfc7v/uV6Dd2HOWP34vjMKmwyXxuoaVAtShc4ov+GzhJIcvv4kB4UvgxRsKgM1MWN1rBGqxu7Nl8LylFPfsPyGKQKkkPca3D7v3iQ6FnJFNHyL5rsHQmgiqznk2hSKosQsN0bre028a5v6EhRrM22OJDHXHczwKnQk8h4eE4FEKviIQq/IRdhe0Y5tpYXn2ubbuWtA5D8W0CJPswQjtSfHMCAtCUN2fwi6JFtM9hdFiBLqwaxz5SOixn1sWfRkwhxAi4QUcKUtP3F5D66tIJgwxDhw6lkF2fpDFxYL8BiF1JjmO8ncwx1amSTzXSNRDlJw+NC+lFId4Gx+Ycxt482l789tK4icwBC5xtQ+CuYrbaXSdeI6jnMYrbh/dvx2xol5zp6dAKvEMfYCudb/uQKfaMp/jLWTuew2PSEUx+o39ZhfsU2SwopXbgok37imjZsSIOsuvE4s0N8cr242nwAWEef/X7X4t7MHL6keJ3CQfP8Qf9SQPS0gYyA55HcY4YOZJZkWlkCnUp8KqTIG1wjUaUtC++HUuVizCmk4rR6ZiIl0JJFQpamlURLmZc52Do3kXg64aJ12dF8EuXDK6oZIGStPcLyKfzzQiu4e5dzKlvHsS9LehjVmd2fJwVAJZ1a9fEXAINK9atj2cXLs0+DkT+DGQLtepe7N/cs1t0b49zhpHZnOtzja6UB13YdHEUslY8FMgoHA4Ays/+NdBwAfl5vmUbAg3nYg3FIGdvBx5+K3H7h7/zm/Hphz6RmUNmC7kU4Dgy2+yxXjiVGtLKhAxwsJxDee+5/8B+Zo7XZ4BNg8aCWOOYwWjPLKZrptNgAL95AKO41ygR9ypeg9EasxoTOo5mCvneKtQq2Xdx6l6nRoP0PLD/wBiPkTh88JA0VqyW7tg4ZspbxzZnPTCIcqxxbjSVlLnqkTRUGHjHWwPNWdRVGCoGNC1UNQReGlxTkwWFvUYaMJAlKoVbGX6GNd6wVxqy4ubCB6zHJBDkczRIm+HAmNHQHH51h5vZzHZppN+EM1ruOlFBoEHZkuPFwBVGutkNxWycS206II+wamL3ZtIs31lDMGdZtH5jfkwY1o9AA1Xjua8Z49pIfyz26GEmQxvovMhogEb8jX6cpB/HGdM9jcdjOzx+ki51aAe/H6MK/VFm24ClO474KRyp97pUxIRHH6FS+Fhm1+tj3pyX48apM2IagRKXm2h0Fqmmwu8wGLxkTHmG4yC+lGeeykkNcsfF088WA7Mwm9tPmtGwfeu2eOChhygGOZb+FAa+dCBvO4bi3ICrRp2f5UONXOWv+sWAVg4IcKjfzXzch26qra3NbMoKZMDdd98T/auqMlBtQbCCNzQDGAXa9TVxRfulbPA7s18UWsIgXZrFY2quGQ0bN26MXTzjSnZZmYGs6U02ovJdx0VnTpzkZ54mTUofGvQZlHHsaN9nmMlgeq59uABulbemklss0wkTMxqsdeDOVU5miPWkHGSUNOqHsh/8lHLNP+kA06b85xg5wQHR55Zt2gTiV3q3rtUAs5jgB/WDukw8imNTjRNGfpNfNdbFv881sGBGn5M/fvdhoIGgoDWEDDQ4A9uvsh92R6fMxPA6bQzlRk4cyV+0Ke0YaPBVGtFmSt1Of7wH5JMhxC5gOBfPM3FSR6DBWfUhNczudnS9NTjUv0mj3N0SKFiNDjlLoEE92wbet0aDUrkZDkJLU3+g1bwJeb19d128bKBhPoGG3dtic11tTiKNgwUH9u6InqvIQEM7B5cxMssAJInuHDfHzmCmpzztX2Wul/MtvF5c5vaWjeitcyytayRzbyeBk8UrWMrJ7z246TDXX10zLH7ji7+cGXP9cFg7YX9p8+YECK+OjXji0sSTz7ICf11dHbLsnVxffguz067nd0yFJ6+HJpSV0rtt6ZQaaPB37WBpRl61XpP62OweJ2nexybaVU/NrO3boPkNGWi463acUmjGon9lfQdfdeDMPHCZAEI37SnHL53tHBu4wFdgaAH+W8IXBhpWowe3bduaGQJXjr2amlnXkO1Q1MwywNCWNi1YmMuspXkGO4tx81u5zXKpj5rlxAaBsCZ7zN0s3oQezUquYHnTbcB+5YQJCvQ4Df5hjkIvwK/KYbP3LN5q/Tgz+FpA9wbV3SFGh1E8qUs6konDjfEOwdLnnmbXCfBh/Ydq5GhP+FabWnklPWsXWthR214Z6QScdpp4UR4ZrJMP5LG045E19vEoGTxmmL7Dcs1bZlIH7Qp21UMvWD9OOlCmlDaQ45l2OjrPgJSOtu3nAczybKFjkdE8iwuYaNsdT+HfOEbWsRmEk+v4+7tBcPEhnrQ7tR+1081i1H9w4kVCV7Zp70mPjqunE17K+zUst/npj39EnbJpcddtt8GnFIjGd/Bi5YqF18U1AKRs87mOoxlb+iDSiu1n4IpXcW+71g3RR3DXojXQ/P2feIhAwzVpVyhHhNNTWavsLv2bDOJAS8o2+6x/Y/v6B9ry1m2yb4eQMztqyWhgbMXTIwTC+4N7InToe3wjrjdw7gSEOPZVvkp+5zWDNNB/0j2faRK8ECgBpqNk87mcx0CDu07sg/734UPdweTVrPvuja7Y8hfgR6WLgR3p4ON+XJZAgwIpUw5FNqcG8EUMFkgG5jyX1WQXLliQe4FDknFFzZCo6tcfuxwCQDA5e2OgwYFPp4cZIZV6OiqMkAMoM1mcTCFmtXmL7biu/QNmf5ZTDGQZsz0Dq6rS6aqimJmRsyz8wex3RmkZZNdZyzTWdrAd0yd1iBW+yShJDPIJzjBCwDQzC+u4b/POnbVhMS/3hNZ5lCFMb8eKy0BDMaNVGGCZoggObPvD+gDAr7IvnQOJWWas3bkr5rI0Y9jw4TFj6tSwGrkMJmWqBAw2qNwVIlYyza2y6LeKQ0IX74JdGO1FdFuDW6EiQ2qkL1m8OAszjWMLR40Bn+2hYSXH+1LONshoOqXCIMOqeBSUMqqGgc8RP+LywOGDhUMNozz2mcdjFH2w+JvrpjWoxJGpqQpWry9wXQSNFDJgOgWxsGThHsZIGvC5pkalA0OQqjOFPaeDm76kHH9Yo8G7m+jCXvg8+6MgFa86LsLqUgydDNvUMLX/bhm0E7xbpfkIwmro8GFZrNFUUYtZiVuRIowpxGlfgZuCHEWjANMQ8nnCK/6kH7+3z3sJXrhd0yF2WXEWaaTpdIMHJ52JAw1Zx0ADyPF1HBVc2R/GXCPefuTocJ3fp1BmXIRhEwJqJQEYjX5nokyls2ij8NhuBjzgQ3EoD6iUDB6pKKSLItBgFFp20MHW1WyGIQrPgDed6bUb1ifNdMJg2F1fn7PKRr9X0i+PEdgiwytbRHX3rtGXmZ6OTYEGjSu341LJJY1DnwYPdeKlIfFUzFRD0zzTQmsu+3G2J7cKIz34IlkN+9l1Yuk2Mhp2OeuObOBqjy8//ljciIPfq3uPFOYK8pz55H6d1+0oBytMV9fU5Ky6vC5e5HHHRsVvuqP9Vhkk34Ab73Usc8y5zntK48z36TjQj9Wkjy54/fW4cdqMGItRkbNizJK1bonxQbBBOjR4gimbs2pWHM5ipYwxDyDQ4CwsVbmhtTNcq/G2mCyRjSieBWvfzT5Wg9vqvpxki1R26xTdyGhoQZsGG3LtL/AAfBpYeUNSCiOYBFN8owHgmMrf/v0w0EC2xYHcdaIh5m5XRsM7nB6ff/ShuI3gUiUzJs7G6kDoyNODNBAM1oojJY6F8ehw4ssZtNrtO+JAw77E69AhQ2L40GG5FbHr4UEuRpFyBgA5xX3iFLxLq9JfGi3iBsUqv0r/GlwakTtqd1LZe2nScj+2ftJZH1TZH00C/UA70pRBkKQx2vI+FbTtCq8IcH2k4+/4Kgc00nyOQT75adOGjVnNewDBTGd1creSBBc5AJ3AhEkPju856hz4nWvS3bXhDIGy8yyPse1cDsT4QnCpQ95jqcFC5O/2nbVxDcZzNbOBnZGJpsFrDzs2nhl8oW2deGWxQXXrOJyl7QM4QXVbtsXOTRuiFxlqY4cPiH4Ug7RGg+NqoMGgvMNfbKtHwAb4QJ3opm2WS9HfE4xD7bH6WNPATB6/9RjYBaOJMT58Kjq37BzdBvWN96HlhnatYvhdd8TQUSOjjjF9/dX5bFV4fVyHca7Tk+np6LKP8ofy0XHNAAF4Ve4YaHD5i/rDcVB/+Nkgp5XszYRx3bdZZTOY7bKYsHThuJWyVH617ZJ/i9/PpT4pZy3Vtzmu3CsMPtctpN0+cwv6T167iUJqZqw43sKhM+2wijPvVccqZ32ehmk6WXzWxtCmEaY0enN5wMnYtWt3zngJ+9BhwzByr2OLWzLCkOM2KrzCrQOnEapjYfviTP2UMotn26b0qgEsQC7121Nfh2OxGqd6f6auj8DAHVwzOB2gDOZynW0ZQLC9hB95a588CloqvpcvUt+AF8dBHti8FZlDIKM19wwcVBVVLJHpxS4+KbOhlbThxKPGN7JSfSF89snnalf4XGWn35VjpG71Hus2rV6+IpdkGAQ3gKceFPfqLw174fC94+X7ctxsN50B2vZZcoe/ZSAfnjlEgGoBk1YH9+2NiWSUDajsS79YFoKMNJEo8cJ9p8+yU8gp4EQOW1TQTLDmFwj2EmTgadhRjC03aJ+5vevufQcoyrg+3lqxNhoaKAZ5eH/y5cTeEdW9u0X/zu2jJxWP2xOsaAGMtlFQD/gW54y5ctT3+T2gZ6CBT3ZDOetxljFz14nzFIN06cQuaqAsWXkwtvJduXRiSO/KeOSh+1j6QK2YHt1zK1zHWkco5SgPE0+p68GlfS7spQPIss05kXItkxuDq6uTthIn3G8QySCgn9Neop3SSdXZtW15SV2XtAXe6UScIhjrrKu1Q7ahr3ojg2+aMiX6sjxA+jbAUGbvyFsZaMD+9lkGpuV9nykifIHAksYMYkg/LvXYiv5zq0UzyGqgGeu/OGsv/aFaM6PhEvSSWcMJl4MNpvMsfA7luW3KD+qP1CW81mG/uDNBPfaeQUkzy8wMUAccI5Buv51Zl18dyHbg1K3itSGVJQZG3UnIDE1pXRkkzaojhN/tYl8hcGemwbDhw9j2s39OcJSZPhm84Tp32nGCTvtaPCvj7IMTcOJIu0BeU4aWjqu4WbSE5WVk4E6+YXJUV1VB69hzwEMvE6/8BRHIPmmC0/5oCzi24lt4k254peGEXfjl973IYCeW1DnKyH7UmVB3isO0F5GF6m+YMNtRdhvA0V7K+hA8wOtLezUfCM3Is/bJGnTuOnHN9ddnRrV9z3ovNKmdmz6d9IZ9o62QSzaBS7rSZpefxId6w3t9bmEvNybNbyDDxsyy6eiPMoNHOZOZ2dznGKsnikCD9F0sn3dcpVW3s9Q21pcz+Oa4eBxBztTV1acdr60zk8mtwdXVaWPYb2lDnInHMugunuUbx0O7XvyLco9C3xT2wXFowCKcteiQIwSf9DF3btwUn/u932H3pYeiJ5No8qf8XWQcMYgf8+OyBBoSByBUY0clauTvEoGGNsyeKXQ3bdlIuvGrsZI0l01r1kVFy9YYs30RHhA9V6R65F6LYHEnhdKIZsNIEpXr7TUgVfwOnMZuM5x7BYJErwFQx+yFEdeevXvlmmydC9N9dRoVTh0hJh10GdoZQYMQRtIU3BKbz1FwC7t0ocCSeSzmdZJ7LNRWx3ZHo8ZcTfusJ4RYVcYauQY9WgET4juZ2xkQmUIiUUCf5fkK2UIgig3xVEQWJdAjrGFeQzR3wIBBMWLokDR4jHoaQZRgNWgzYsaNklsqfRijIGKMzHRSWUcMc6qgDWYo4HKWiT414OxuxmkchmAdUFmZDChsMoWHAsXT/nsYcZShZUQFgtFFjTBxJWOphFQgKgSLTTawztY1UUMQsGloJQOezwCFAR7b9lkGSey9EUSZx6wFl3b4nZ81UsSTEXGNFR1yA0F7UA4dyUqwiFoFS1k0cowqc6ncm0hRucjYjpttqAx03D1s12dIC+JMY0shsRcD+gDFZBx/UwH7M+tiG/6mgBRmI84WBFWol8aQz0/8Qo8KU6/LMaJtr/H5znjtYZ2zS4VMnx5A7RBrb/i7Rqz3FcYTY+s9QKiglnaKWaUiCqvALFJ8eQa04vja/sFDh2N3bW3yTTccbtcDdobmpWPbV2F5nfdrZFoNXEO3CBbheIEPyCSFsHwlD+mOSrfWV1EA7sWwsNCkhUVdJ9jA5/eOHo+jKGaP4UyyDCOJooZAQ2XndtEpAw0Y1eCjLfhyV5ikddr3GT77PLO1Gr5tUJTO/J6Dh/kp4Vaxavieh5dOUcCr7sSZWLlzXyzZh3Joyd7SzCKDtbiqemAal2ZzaAzIG0m7PExX6zCpkBs2bkhjqBq8Z20BvpfG5BFpw8CGYy0+xauA2oZ4kMZVTH4nDj2lYcdGfqxH1mxcvzGGjxob/VmT6TOtYt6KIENLiseoIByHS1Tzb87yibYETZQ9bgN2sbEIdGrwKQ8aedZhDImGAw0Y0Iej4QMN44gh1GgY1r9VDCIrq09FW3YFwCj4fwUaslYA14pj/yYN+a74Arj9HrlT/oblkRkNBhrIaFi9m33jCTS04jpvYXfGGD6oT/Tvx449ZHK5hV4FvFqBU6wCPgCfa1Dm9rj0p9HMDe6VbjUIDiJnnKW2MQOCfZiJM5MMYQdM9JeBVulr8MgHGgLOUitHxbc1JzJTgs8MqoIpjUZhO0y7O3ftgvcbkTHdopItkrtTv0BdoNPrNR4p07jXAJ5j7XjKr+LAa/zsOGsclrxqUNYUzL119dB/2yxG65pxd51x7D2kMVtIh4q+tMRBEX5lofrkHPUzDDQUz4eeePYlTmexTsKDLj068N4hlnsMY+tXqlVLi44N8CROaFN6LAN0fClT5HKM88hI6zRcRE80Z1nXmJYXYwzF7/qTKm6gwdw4t6uUboRR49MgA+Z2opGvkiYawfv7nNsPMEtzCEOK6/v1oA8tOkUzCo22r+iZO6EcxMBbf/JoNLtyePRkq+VDPHfpipXRG/1UAz9Za0RHi0ErAg48oHRwxVeBW2eUWSqhk8D1GtTKbPGXQVSuU4aaTbKf7LcTyMthI0ZET+jdewq9AN6hE2WrBnHOSiNXNLLlR2e01JPqbOnc8SwMPrMPCDSjv5TDZt1JS4NrapKuvVaE/NzZLwK+Bm2Vm2YhCLvLV6QVYZfGldcylTCp+9RNR+Hdw9BOn8oBtF+d9C4vqOukhdQN3CudKGvEhThKGSR+oA3X7vq9ekrHXXlkIFyn6wRy1yVBvTA8tTu8ToM86cw+AJ+yxrbLlHeQkThUj9lP4S0OnUqphT3imRjYuaM2jW5nXruhX3WGbMu+e0j5Pke8OuFi4T4dD4O0jpF99Pm2p14VTwbeDKDsJPhSi2M0sKqaulvYSwRrkt95vg2XcHuz36tjUzbDi4Wdoc1XBHyEuRhzZfdFcPN+1myxLs6wYUOpY9KRPiqjGR9oIZc20e5ZIpRnLqJrOnbO+lcGsj84fhQZfAq5AV4IOGTtA2Bvhq14HB7Yvf+92LnvcJw6dpgMoCLP66aBEYOxVft1aB1d8Xg7AD8VFpLvGMrEkXJL+WlWEVAUyOM3pa/XmHWUNi4/ZaCBjIaLbdlKu1Xb2H34WCx+Z29sxlwh3yQDgEgeCg1fHf3R653Qv07CnUH2noY302EBZm0UeUq9JD843tKN/CQNVlcXuNdGluYcV2lYWky5hUxT56ZsA24degM/4jttNsYx/3HvGfTUCepaHCZoWk+WTdfu7DoD7s0k0aY+n9lc4pS+OqbQqdsjSxcZsKDdlL1N9rXwZOYXtK78d0v7fQcPFBNUwNijb++keR1+9UZuFQo8ZjaAzuyP9/EAhXPSrXaLvoI07HfahNKU+JJXLTx7lNljA85DhwxDR7G0AbjeP34i4RZmdzHLADIyJp1a2iz1Uo4vn5Ut0q846kpgURtxd31DLH9rEUFBdFP/ylxuKj85RsoTeVsZZoFAv/O35FfaEN6cHWdsczz4Lnsp3fD+NE7tDmzgQ0ffy1pcXfBdhFtbJO0f+pqBHvHD9QZ57Is2e4l/x167BvQ14a6w+cXPMXCz/t13U6aZ2dQF3a9jLwzCSmcTL9owGQQRpzxHfOeEDbSfk8L0I+2mJtx7jfLDwutrVq2ModT3GYKMtHfKbYgR+AoYzfJUlxc2IDYwz+JWHl3IG5+jjHNSIm0FZI/9UXbupRD17lqyysim7mddDHopXygrlV3iVx1b6ibtf/Ejjxj0Sd8KelQm+1D9H8fWpX0HkZNm2zRHLg+qqkq/MYPQ0jH9TpkHD+hLylviKzOWoVknbJMv5Q/g8dq0d4DJmieHsFMPEWCQvvSFdrNE8d//h29nLYh+vfqmHMnxypFIiuDdx/e4fIEGcJDEobBXRCFx2jQnosS/TVsodPYq674XsU/xT5/738LWANbGfQCmodPLfhizquFUpe7ndHbnch4k9TLjx0ycNtC/wSE7aT5gLzLTe3kPfJyg4H1sPXF52y1bG9q1SL/cdLgIBJTfX47XHsQUkEex9/jlaO0X2xhACqX7Gp84ilOFv3i5DxMYK8G7CnTXMUXM5T2GMl1C1nTUpSX0r2hbTUEbI4B1MDw6tGeXGMQ2jJ1whs9p3CKwnR1QYcP6eer8KIgNNCgyW+HEWkX8ItecQyibAaCB3bYNDgnfn8JArDtBptKOvQQaMFxQQiqO1lgax9nF4XIe8pE0/29AMglm18BJINiw/eyu/Pz/98fxxy3PeglDqH9hMciBGOluq9aljYEGFLPKEHyloE17BBzn8dFAQ0k7WipNP/OisXuB2fdzOOEHT5+PtSydmLONCD7tNCONWMV4+PgvEvZAkDN49Kg4zuzeO/WXVxArw4hVUeSzkGO8XNajP605ppdbtpdACr+UqMN+OQ+HbCh/sBtj+0caHs/7KyCS60htHUXGQSX81oExdaGicGRGA/d4fxpt8JZ856HBd4YGT3LWv0+a9q5jcYxxb9eHHYgIiDUjU4Y9oqKRnScaMPrXHz8Y27i1BUGuYxhIp+HdOFJUrs8G/y/+GdGD9fjtO8X2PQcu+9gOACeIpqhDNV1eKVMgrDf6qW37ZrH7SMmjlw+RiGKKtOGYHL8YDZe5eR3gwYP6EDjfHztl2Mt8gPKo7sb+8sfOxN5/rX76X8A2cMQQHN7zUb9t1//i1//vV4rWEowpCJIaHJj+HdtEd/yvjnjTrXEyDKir3HJCB77S5tXcM0NCJ0uPWxWorPaf13oYXKdMc+46YaBhF7tOLF5VBBpYbJDysDQbhaMfp7phF+flPtR7JP+zx0zEwcvdOO1Jk9KOMvJy61dx04vTcfq3gL2KdsW70yqXV/PRIMdQlJ/zDnXFx8v6F9MscSOr6t9czkOakU73Xs5GP9KWIQ7mr1L+Xm7YfcwgCNLA5eZDl9//UI5p4f6fHn/67/8sHnviM9Qx7Nc0cUDMjMYUI4Um/z9t+f/+fZcv0NCk3HwhhpSC1lmVDDRsJqPh1deyguecZ56K42jxKg0ZLhORClbPEqFneHOaH87znZFEbWt/w7bKk0mdLAjJZFk63B26EQVrzaznaWY5ULSlSSRDYJMVgU/uIXMu20zDjN88JA4NXtuXMRW6fidcXqfxX9Gbclk4QqdOHmdbLqKgfKcQ6kJ426KUZ09qqJWqhDccOlFGuG3XawE1AxsyUtuOzuQRFWQmtE07opvtSaOmYn/DwRN5XTf62aa1WRJEPJlF4H/Ck8V1aNPZKdvjMgqCcS0PoN5c9ttnJfw8mEBhtCHi7zroc2Q+uLuHOFA4yxAGWrB9so+ynf1P+Oi8EwTCXsxv0FfaateJCPYJcNz0W17bHjiJ+DWyTpmJHtZRGkmm7sApngdM3i9uxKenbQq3cPrZo/zO1/LwNxJfwBVF8zB03z/Gml++czy830OasX3HiQz1DO44EdGahliySXSXZ4CEc+Qqnmjqt2Mt3LaBns+6B2mIMysp/OIG8KNVB9eQMtYgRpoQNiYi8mgDcJ4uydfecCw8bJeJfdZhCQ9mPjTgSDnLcxFCZlLiQ0GU/eN6JmOYfYHeeW9//N7TfnaCvtoSYW109o6t6HyOeGvfydl4sgL4ZzT7A5xyx84+lXgVH5Bm3sNyVRwN4KcB2xZO2/fVz/bZZztOttGRIoTNcUjfh96PnmSNPTO456RzHV0v5ryiKwYYwZfhvSmUxc4TFTjDbj1rJXOj4G5v6cONWhtBxu6C9opMkeYEEww0EOJlFoJsE6L5vm9HLQIrcuvw1NOnZdt2x8J6namiH8LWBcA7tse9YmxU1B72w6HxbNeRSuzUeNAAPMMszDlm7wVb/Hq5ipJdylzxRIG8gnZst0MbKgIzO3GWXSLww5Mv2kHbzgg6g3Hkg4tp0AxhBqkrEefGRlLRjzDDZDQeJJ47exRaLNZP01zSJMmQ4NfZa/FKATJeS7wLq/NcpvaeJa3gFEEY4ZPWBkOXNX1ZG1xmNIDbVgjBluKVU6JL+tKgzRFu6j/fSyN+J21o9Baf+MtbMxrO4UkdooPr6w7Gy1sboy3fn3ZsuAQxGl27EeXg8xHS6U+CI+VDVwRMZ2YCLpJRcJx0ZOVr0hHCpzUzfTkr1hQEceZQoc2KOWYMuU6AOJte+FC8lzktUniG8VdeKce4PPHmqxkfR7lJnAwEsO7dezNjwEzykUNx7kTZzwIO8epZYkPZ5nh7evQE6e2hLQvp5Wo3vhMzDDfZaXQamE05vXBOPvUODp6duoe3jp/XlzxiEJlYWLAxSoAtQkkFnnyup9cpk8r3bRSezAQ1nqZOAcgTFz04e/btTkMX2bLvaNKWRr/4prxHyoVWtO+1GulXcdZ06xLju3aKK9qREYigcXbVjJRzws/vZqo57sQq/ZuvIlJ9bKDBgMFRxumwsyi8p+JHJk+YdXIUut97+ETs4tvttLWW06NnZS+yPIATWnJmzO0bjzUcTGOzI90iRpGyR/wLizrZ/ktX6mvJQpQ6xspbVB7jzgcOl8l3YFeVVsx4n2R25zgIUz6rQ86yMwrxx2xTWaYuUe9ySyCamU1k+SP0fPwQ23TyzM4Mfqu27LQAnzruPtOx6Y7uNlPg5LEj7AzjqPziIX6F13v8FdR/yKNJV3why8HuyZuCbrudgNGZP2nyNApRh8Q+duvoLC3LNLETlL9tQdIFcH8cZpK3s82PvvpAcQbAwuJJd1N3tUSRuRTHGWNI58PfEEmp28Ul/7OvZT98VcaUcoa5nqRpSDsP267owW4S2B2nThwjdbeQWV4v/4hg9YSHepDYJDIa/ICcEv7udLQdcvAD8CnOuhBo1sY4wYyxPJFj2AmbDB3lbOLJIyfDeQubtbvyOuyQtOP94tQxkF+EozPPJNEh8a7OVAZ4r+22Z+vjtixdVaE0op8aYVLvE/b2Ns6bk3whrM0Zi4ssTzhPB8wQldda8aASPzyi0NfQ5Tnvu0gtKYNunN7vcX0fgiB9usWgivbRuy1LQRForRgs9ZuzmkVmjLl2wOiAowzUGSl6gVHbQvtF+D2diy4CDZ3iLBm/uw4dicUrG2IzD+zK7adpSFwIm3A6XtK89Oz7rvTRbVA/OE79HBrkloK3eCXxL+t9uOuONOhWtO8fZa07vylXRI9tCav9k3Zs0+ckf/Lqc32+4yVeUfHwJ9cLAAPQkYyynKk9eSxOHyPrhMaEwTasWdyWXVOUQ8cgBHnK54K2aAOsmgR+Z/ten3KKB17ytBFtJggjM5JgOMBPHcIvCbdtCaf3SxPSjv3RztPuEhDBJBkyf7cvzIOk/cykMQWz2cGpczeWXZ0kQ5ldovjdQEhHGiGpJhuUp2zjo3zlM4VXvhNhTKgnbny2MCU/QeuNbK9qsCxB4Y/9tS1xLaw+S9vU943gw+9tw+99hvTx0cNx8vfWnaAnZI0Zfafpx3t8J7iV3Si4yVgfxm9QR2CSJZwXEaznYWJllrBo85Rj7zM8xaF9lGe6sORDgj1BJs8JDOXSf/IZdtlDODyFSfilDcdAWVjh+NGoS4L83XFV7jR3AsMaOm0pCk2G8f6Dx/iV6wGqHQa6ct86efqDPke5YJakskq4hTnpkh/VBeLLw2v9rSWzJG2o/WLdg1PvEzx/X43Gb7RR6m6vc9xw0RJHjhexXnY8LNoRXvHhc5RJyvrsA5+169qQsaCN9wHZhPZPOlMm6pMKU6nveJuwKzt9Zso4v+PkcclXmrzN0EXe+wEZkOK/ObbV8TP4eLz/0z//U5agPxYD+gzgvsLGsT/qdNv4OB+XJ9DgSH3kyFRZKK9I27sU77IO87WX58WWDe/mrOfgQVUU9eqf63MMRaQjInFgAB0n3fEdrv+bH/4wo60zpk2J61jfM2BA/zT4vSbXBkI9pvJJ4W2RhKbb+DmXWUABDpOpMwrFTPHjOtfiHMNQWkChu/8xe27cgKE3ceoMipeNYX/X7jiCCE7az6UFKAePTLmhnXQaaUPFUZz5YwYUVDClcnYZx+xXXon177wTd99+B8VbLLREXQdmw1U4wlI+Q2WkI2zKp22aYuOrh+lWrhcyTdP1d6dYK+06oq07dsTTP/lJjJkwPq6nSNSg/qRqkfroLLJ9NzW5YJ1sJuH+Oex810Sx2Qc+mg4lHNZVMD15JYXRXl2zPn71wfti7MiRmXZoIZZMKQc3WXAHfJgOrxGR6Z5IFtNdNURzDRR4NhXJdDlpwBT+feBl27Zt8frsl6LtgL7x8H33x1DWhhZKWYcc0JroqAlEBFbJYirrAu/5G9/n6CAZWoIj1zm9s8YtVJ+LLUc+iAdvnRm3z5gRPUk3PUlwReenHYpAetDYyPVg4EqaEc+OiUV/HHfXy1qkyLQyn3GODJ1ddXti/oI3Yi50oxD5/KOfjHFsg9eVIIjSJhNSuVfY0tT3jUjlfzEawv7z9/zqBZk26jM3bdkaT/3oX2LtweNxbZ+ucfcnHo5RpLFl6qDwgmvTskyxc6mHBdBcW+Y6NpdWZGoqqRzOarr8yLQ20zldS2fq3dJV78Tffv9f8qmfAjdTbrghBpAib2Ell/+4rKDkE3FhulkLsgs64+i6fazboc1fuCD2UHuitn5/tjOSsHkN/scwDPlBPTpFBQXw3D/eNcQXwa21BMSvgTgVjwhwVsl+S/NKa/kG1zkDcr5a4PC8xfUwwPaxBd+q7btjQX0x61LOHD/x4L2klY7L1PlmiXtoRNpITGfzBa/6yKaTpvMHnVdhkh9MjbMy/TrSBufMXxizbr05xo++Muu3iE+XXznLn+lw0Lb8Io4SV+BLA8tsDGtMKO/cfaINxrfBQHm2rn5vbHx3UyycNzeOnG8ev/yFX42R1BagmeyvxdEs0uea12UUxKuluNm6PXsENIagkGr662B3i14unSDQ0Bo6bMWpc6bykTYLihOjxbt08m2g6TDQIA5IHATX4BacX4DfD+M1bKw7EIu3FjuzHG66/tF77onprNNUhix86634Z3bb8Xh05m25w0ZvlunIpKLTJTkJBe3y/+dH0rn07pM58nevKdLqxeFOUkHnzXs55r5TuLPf+tIXcky95ggphfbMVHnbUGaadmpGi2Nh2rZNFxkwrLcE5+X3qQOg37Xg/W//+3cTR3dOuT4mTirWtipPTNkv9JN4S/B4/WgHBJojwS/6kXDw0CxiSLrlYrYz+87Tz1ENPuLxex+IqddMjP4s57Cehenwrum8yJkFjY0kchqklI8t6nsRPnELSneecFmW22WeQra/R+HIHcjg1xe/RfbRsbh56rToi2HcBrY5x/reQ2wx13/X2hjdb2BUwp+Z0UC7GjtJDwlzMR5ln/xeuWAw4ix0qoF7hvee0p81RFpyHgGm3aQRb8EYXMc9p2p6RW/W654B8DPnm7Gsb1QuFbJA4eLnn4o7HvwEBT+vSj5R5ZhiumPH9tQfr6zZEE8+/IkYO2pkpgkr403jFePishhX6QdDDrnl2Joyr/6QBjyTvni1bg63RO3OnbGKFNwXXpnPEsnu8Tm2wxxWU51OiWPqCEpb2hIGN9O5o3+Ote2l3lLucCjjpBnhcLmMOyVs3PhuLH5zfiysrY/bJl0fd94yg/5SlEvZIszcIyBmichnxZIXeEF4eW7aOinoVAku2aHOBrqkE4H+/QcOxWvz58cPXn49n/8ktVCmUF+gA/LFtG7pQtrVPrHQs89TzmsnqEczm6tJvpserttqSrj2gb9t3rY9vv/978VaZPO4bm3jwcd/Odcrm4qs3ZDrtnmy+k9bQ9x42kbaSMpEZW+T/eTz/axuVIevWL02vv2P/5SwPzZjakyfPj2qqA2kPsp6UsLjP+4RF+Lf8VAOaie4JMW04WQqxtL2PUzhV3e/hqz5PvbYrAljY/z48bmjjNseavc4TtYYsp/iPAOCqUeQ5dxviryH4yyuGJkMYp+hL6bk79xTTzG9V8j0OELxyJnU8BqctQXaM+7aNB7SzX7od+26DbGGel8uZdtzTDcg4treEVXUaKhmZ6U+7YtAQ8vUb4XcTzpjGUb2CHwmDngFuSlg1O/yoHgBCTjs1L7AC7rQhiVpBNX3sHRi5Yb9UUsUTSfUZJc+1IMYd/3k3Fp649atsWrFqvjtJx6PMdgE7aGR1AGOGc8obVVR6iPti6eHv+m0i29Tt6Ux6dQC0Zs2b8ktE1/atC0mDx8a9955R9RY7d5xpCH5hRuTJ8VrDijf+0/bKO1GnpNryRUAPFse1x58j+WVby9bFk8/+3wGUB+77RYKyU5h+ag2dsF3CSDtizdu/fDwvd8JM/+L3xNubbLCTtm1py7mzpsX85aviEqufeSzT1Ag+OrkffnJeiCdWVrnFpJH0fPyknQuv6jTi/R7XGX7CczFs6z5hizm34ZNW+Jv//qvE/bbx10V06ZNj2FDBqduty3HvEjJF9LCpkgbnvfCLNTZprKDf45H4pTX91k2sBTf4L/85OmYQCBs8q33xNUUwbV+jDBK79om8pbLuZSP6i1pX5nic+Unx9NTWOQT6wYoO+SnBUuWsAvfoph5/YQszDxkyJAsMi+9K/uUN8LnYdspA3hNWhLvCXeBe4BPfmrk2eJ2G/rpOewCfZqpkyenHVnBcgt5WV4XHmV3U/PAWMDq8kuXRMvHyhWvM0irXMglHMDdsLchdw376euvx6PseHYNRaV7kdXZkTFDtCTsNizkxV+HkB8Sdp/LLxKQ33nwmnABT31dfWzAjn199rw4i8j4wpNPxpXDhyfNCLd62yUpLoVxuZFLXmxPO8SgvbUAzbx1+2F3tVIGa2NrV7l0fPOWzbEUObZk6464mVpGt+J/DGRMQWpmGBY4/jlfeq9LZ8+AgwaWDb36wgtx5+c+E59iG83KyipbtwNFN4pO5fuP6x90ZkkS/4ouFDRbNOB7BlZibo4xJKI3rVkbL8+dEwcx7Hv26BHjIKBhNTW5tkWl7d64ErwVly0sNp/iWd/65jczEvfAE5+OOxCCI4YPS8XruhyFnAaFhGH71mPQ0VYgqpxTCNCuBKwylfBlItddHaT9p+a+FF/7q7+JR8deGbfPujcdr/6VlbnmR0ZXmckIKVaTjgvh6+c8aIv/2eZFnnsJAaGxJyq31O6M7xAkWT1nXnz6136ZgnTXsrbKtU+dC/iAUYNKwZEGCv1WOXlkm3yv0lQodsDI8loFj+vvjkPQqyhG9w/f/W5MvO7auG3q1BiBAOzDrgzufKEQ9N7SKc9Gyz/2Q/jzUfzhYQ6VTC+z6nTJiK8uXBgvAftXv/7VmMozerPeugNRPddkGjAo6wiUOFLYeb81HTLQoHCEETW2dMIUNDrxO3bsiJUY6E//9IfRqXpYfPmXfymupuCPDOgYAVD+F9wE0VcB9LV4yd99r8Oo8qbxaA1s+wiSzH/jzfjR978bCzbXxtd+7dfisw9/MvoD+3HWGEtjHQhZ51p56MUsEWFV8VqXQOHrOilpJAtV4bykAcPYQgnstrAlfvLU0/Gff/TjwP+Lr/3xH8XNOGQ93TkAAeoaQp/h0QRywuh7YfX46Pvys3jymcsIBPzn//Qf46X1W+IT40fHL33hizERYeU6R+lZwS9tG4m3voCBhg4dOmYWSSNZBG3oWxsMJ4WXhqindVKsMeKevS9h5H7h69/ImdcncXjvvefeGI7yadQxwom2II8KVwWsYem6MYuh9urfj5m0M7HgrUXxo6d+HFt21MYqDBOPkYS7h2CEDe5JoSxmwStwtOVHK0PLxwZfXLumn+XMCkjmrtK4ZUkVY548g6KxQr+znKdYFnGWUHgzgkKHWDO7dsfuWF5XRPz35lOJ+v7ub8WdM2+OSmteQF8tkxi4GTzmW1+9VrxDl+Upjcpn0pvfHcKw3LFje7y1bEX88Dvfi0//6udjxqRJGEM9so6H/OraYdeuup5PB0MlmbP3yhS+MQ22KLxKpXSL86GEpHeV/laM/7eXLosXfvZsHGT6+49+72sZGFSqONvQifWc4tpdYWa/+DzrJDfEm/C2x1DOwYOKjIaeGWjAgSKAZMpuGxwFxYVt6AR52FVTeYuwQvE56c1v+JGFKTi6jG9zxoggznsEGjbV7Y0V24oZySJ0FPHN3/xyPPqJh1I2Pfez5+Ov/uNf5PKsb33xSzGLitEDcTxFqcHhCxc0GB3PBKHAOW9LdVLSvReI+1x/idw2QLCeQMB3v/f9+HuUvmmeP/j7/xJ33DwjdYBraW2ydLiUw46Z9CmuDTR4QRos8K7GobzsGmWNCoOtby5dHn/w5a+kjHjkUw/FHXfdTQX2K7J99Ye0UgLcBH52wvfCWv7ml/YnHRxe3RngELL4BbLzvvLnfxEjqnvEFx/5lbj/Fiqw9x8Ul3DUlYOXyAC6gDfg7MwFyK0MOtjOJfmZ6WkWLGQdiCyMypTc+6TnHMDgWMc+9T9+4cU4xlrrR++/H/7qHe1x9I/vPxgr314cbRa8HuNGULASfrdGg4FPOcujcPd8JyXwj27qehlk0BXSOCoopuii5NOKwJ47ZxyFb3djCL57sCFWH6XGzl3TomZINXLxDEUbj7F7wLgYOngIM4HwJA75nXfeGlMmTszaAbZZX0+RSYK9r7/5Zrww5+X4xh98PaZNvD7XMetwp/MjLoVD2k15gIxAJ2vYObaOY44HY5D6l9cuyFivX49ussjrj/7bd6Ibxv/Xv/wbGRgsDFaDR4wP1ytTpZcsZsoz0kkCvjKgYftpWCLXvMeaQTojS95mxwG2DP7+4uWM6UPxuUc+GUOrqzIYo/xV3xnQ1IU2iCr8jqf0ra7Q6VW+KM9ThtIX1xRbjNiaBT/66VPxR3//HZ4e8fff+mbce8dtWVfHomO27dpqdbFrt4XdILKyR/kv/qyV4zgb+DVwpAPQEd1nf5evXhP/z7f/IuYsfyfuHT08nvytr+SOOPKMdoPteyQfgZu0k5A92kfq71w7DOzlGHitGVM6Oq6PfuXNRfEp+End94VfeiIeJMhkTY2zyEWdHMfAw/blS3lI3Mqr2oHiweckL/F9+SrsB9DdP3z+xfjGX/9NfOW+e2La1GkxnkkUa1KIG2nCYJMBxdwKFv7WzpHGbbdYT86YYuPlRAv01ZKsrdPoyaPHTsR6gvj/jO42e+PBu++OsVezK0BVVdYXOOdSPghCmaTz+sbCRTEfGtsOjW/ca45KxDUZaOgR1V3bEWgA56R6tgAG6zvYD4CSom2G07/5pulVPVHwpRmCIIdt29n9BT13oTUFtgk07D1yPNZuOUhgo7BpnK0e2r9XzLzznixKuxzbeRmBkj//wz+MKddMiI7yC9c4k+0Yifvy9KEfBhoARfDEi3CKf8fGV8fMav1zcRj/7tU34hPTp8YXP/N4jB4x3CboiJMgPgV6Q65qE9sz+dy2HGdrh2g/Seva29ySQQxpuAEZPvfll+O///lfxmru+eMv/Ep88r5Z1Fbql+MpPwuc7SWQxZviAXzVhMXieX7WRqC/uRsCfbBa/z9973vxX595Nq7m9698+9sEZacmL0gz1hHqwSSJdbkMgEpDBlgy0ADc4ssgmOOVPCt/o8vkPZ++eOWK+APwvQbH98m774xPPPRgjGdiyf5aNFN+UoaIC/td6LcimFDSgL/5nMQXfKbdID9a72rO/AXxhX/3Z3H/iJq4874Hsgjj4ME1IjAnaww4q0ek+4QJ/PhM+yHutMGVCfKENpvjaWBCXbiPmjE/eXFOPPPPP4iHP/lA3HADO7/gb/Xo0b0IXmIz2ZawZf9L+IHPfiTuhT1PhoQ+S7unwKVbqK7ZuDH+G7gfWl0dD9xxJwGYIVmTQn1dBDIKesxxpT1xZoBIOaZdJN0a3M0deZAPBtp17t1GeevWrbFw6dL47v/4bjz561+KW26Ywux+b+pEsROKshVaS7xCGfkKjB6lrZGf7ICDki9FsFR5Z9tLCMA8++PvRWPHnvHHX/taTGbCSl9SfJT+i4Eo8WjQ1d3DWsGjDAxBEvgAXrI+n7axO56Ysd4cXW8NKbfZnAM//XTRkvg8O0c88cgjMaJmsAzI3eAB20sbSBjFrbb6aWjwA/TQzrq6mDNndgwaMzIeZXeLPoOqvCqfKz36/OKVl4/pcZkCDaDvw1EGEylIQBQGlNpxy9o18SrO/TGUilVNjT4OgVB1zs5BfO49qpFgMTgLDOrs/uZv/1Y40/b1xx6NTz78cIwcNZItxBqzCBTSIZlWxs31qD4PxnGmWgaS0HTiFSJ58tlhk+gbYMQfvzg7vvKXfxUPjx4Ws5g9njptavTp35+CbRb6I9CgcLZNjhxm2/Ofr34N3BK66lsDHqlMCjDpdhgH727bFt/50Y/i3QUL41OfeyImYYyNvGJkzvyYPiSDaaAreJypU3DICCmsgM9nK7wl9nLfa4WiWzJapXspVcf/7h//EYV8U9w5fXpcYaCBgk5tcHCcTS6NYuH7hSN5zz74bWEI+C63BgNXe3fvYsZoVcxbsCBeYebl69/AUGTWxUq6wqHRo9IpjYkySpvRT3BeGo4KEg2vdDohClP/nTlfvxFHCiP0B//wTzHghknxu7/2KznjlQaoQCW4TThvAj1B5X2+JtRCXFzqeCJpWRrSiUKFh+IVoqDf+4f/Gm9s3xN/+KUvkXXwaEYUT2L8u/90CjzHELw4holvhasCDPgdA00GBiaVUnPwqUBxFnMTgYZ/YsboP/zzv/jU+O5ffjvuvnUmabIseTFjgrEvRYGgK/h+4dWbyi766o+8qviAiO2tVsSf/Ls/jVfe3RqPXHNVPInDN+naaxNGAwFZLIcxUlgrAKWdzApgtvESD5PWL3EaFNGxSIcCI6QtKZYGGmZTVfizv/2VTK373S89GQ+aTTJsWFxkuctZBKjtAw44KIw1l0hkRsP/pO494PYsqrz/SXnSgAAiLQkQQlcUUSwgSJGOCoqKCiqIotgVLIvltYFr313XXWxgQaQo6qIiHenSLKAGCEkggQABQgiQnrzf72+uuZ87D2F13/X/+fyZ57nu67qmnDlz5syZM2fKhZB3Fc0lV/y2/OD003Ko3e+nzSQmWyfokzU0TFmfA5AwNKyFoSHtTzqCp4aGMaxyaIaGlRg/zCO4ozhUQwO4mjcd0RLKoRK2YgCDEEaUBx5dVH5/21/LtTPq0r/ZybWUL/7Thxj07scMsoYGrPvQUsVffpesKTt3n7sMoWOtZ5lf/tV/Lh3bHXdMo2P7XfkOA4Ajj3lL2e8lu7FCaJOc9O7ARCBLadOLoYEDgXRK5OMAX8WHHjSdvzJjgIHlaMo7UmWFstqxXYnB9Bc//2mZjT77iY98pOz8vJ2whgOXtGutvS6DBmYLb7iu/Jw4nr5/OYe26rbmYozHpy03KhuuM7asw9rTEazpzAVS8m9EXmLLQXR4+NVujPD4i75yzwEvvMG1FCPOyhgalpS/Mvi5cRoKE3Hv6eKf9NETyluOeGPawxmsmvrgiZ9JyJc+9JHyBnjGT4ouY0Cswr/SPQbIsZqXtDf3WgehPSmjABBB+tvJqhwps6OsfPu7MTQ4I/Xd7/xn2W/vvZ0SK49wqKQNxMFnBuYUVDmZWQZko+0UYFGyM0sI/NQ9aTzw1MHGxVdeXd57zDvLXcD+yOtfnZOcn7399uFLjUaRYfKB2JNOV8sBLcVXj64Qga18I94IDdWsNDjnN+eX933u8xyOuG45/s3vKa/d7+VlvU0mF04fLMsXPMoWFfjGro/7ChrASvtB78KgPKNQPkagxKS+RAFlxdmNhWyfmzpjejn1rJ+UmbdyCjUybEu26ayFoWHeHL4ZftUVZeCSC8tO207i85bMzlG7fsZSXhBarwygr3y0LWQlA/fINu6gxFUHzJnNYjXDMJQgDQ2zkNO3zZ1V7sCIuN1RH+CArecwK7ykTL/9bhRelHe2UDzGEtJH5z9Qnrnd1nwlYusyntV0ELTMYZXKjQxezr/ssvKTX/yqfPyED5e9mfGy//DwM53tRBro7C+Uu/ZzDoAM88pACT6wX1FGr8FBtsq8P/zxj/RL55fvYxTchJnvE97/vvICBo2mNW76G+AlPfymk3+qfx0cWe/pb5I/chQ+GsvKJY3Rl/72snLGqd8tZ/5pann/Gw8vxxzxhrpiAp4TT43TURpBv+OcmgflSYlknOgbDi6VERgPKJvn+syYMQP5+ePyqW+dmjTf/dynGPQeFNotZJAQ2KRRGdVYZoVWWc+AFJkcgwC854ov26sKr4M7DQ0uP76eVYgnfv4L5Re/u6G8+tnblncf/+HyEoym0s/D7kQtci8cIm51MKAsdrCqs14ctDjgyqAUPDwA0kmC8y79bXntu9+f1J896o0MYF5ftmC1I0oBX1zh4GrwlQNtOelXoavvzsCq62i8dyVYrXMMNiBkftL/nnvvK6efi6Hh698oHzho/7L/fvuzAmnnstb6G5TFHLZZB1AaQ+BTBF+rUzKoRgZgtfJIc7cNOAhehC4394EHs7rpVIw8bus47JCDy/Oeu2OZMmVKGc+Bqs7Ga2TwmjHzzqw6ueD888rtGBpu7g56eiECavLGE9k6MbpsMGYFq4jo62mrw8krvAwtbWm2vUrJQVnibKchCbXP41pEu3+ca6WGBgx8sx6cV268+d4yjSXxo4CheWP7LTcpe+3/cj4LOrFcixHp2vN+U77ymU+X3fl833hpSRz5XrzlzVy2K2nax+PiF9pQB7YR449hpn85/ZlG8J+ddWb5KrreEfu+tHzwmLeVHbbbFpp0uhy4W6aUEdBpN8Bx9ZDOdivvKI9T8zyLkytM72P16rno+//xuX+OoeFz7zm2HHHoq7L6VkNv5LqJxFnX4R7dmlfzrUAjIeF5jPNco4A9lvakoeFkdOCvn3lWmUzUr7D64KB994sx8SHGGPbTGhBtQ8p7B5KR+eDnoFceV9fxrgsWZCrf6K5g0PjRE04oN86aVd5x4P7lTcwyvwC+EcZSaKfxTLoGb9LJz62Pk2pKBOkd+ADPGAR/J0cfov/4r4suKUd/8tPlkMkblYNf/8ay1157lU2nTIne4ApTDQrSyNl0V0hWvUrjhq2fugAPp+aH2wAAQABJREFUy6FcEHf53jT2fTNmzS6nY6j++Wk/Lm9+8xsyieqK7adhaMiKU+orKxqAL53TXnmyL0g5eFZHroNhikg+Hob4CHScQ9/sRKeGhm0xOr/6oINySPsGG26Q/tnxTfiMdp2xGXjKm5VHqjyXhtnODK4aNq0ntyfMYaLzJlZ6XMQY4dvw5ac+dDz62EvKJA6V9kBUDzi2HpUn8mQ1hFT+iZ5BWWo9WiG84NQP1LFN95e//LVcdukl5cxvnlxWbLJ5+ewJ/1R21dCA/DRc3KWhxs+6igEAAmZPj32rMs7t8G7tQVBHDrsS0ck8vyx12eW/Laed8t1y7k1/Kscedlh511veUraDRuqPTr4haYOg9LCfiPEFhleWT599V/kJRrN1Np1QDqffmbD55ogU45EX/XOuVqiU7Kn3848xNFAJVr6NDG6tVLDW7ZFpG7c603H+BexpfijL1vws3OabMVtAR/UYAzUVVxl9HQaNDrQvvOKKctT73ps9mcdjHTrq6KP4ROD2nBjsybrzMxC31jzUYxQNYTmN00bkTICNxc/aVIECEiq4dJryjLD9XNfZCO4T/u0b5eCtJpWDDzu87LHHHtnK4YBepUZmsKEr+CyNTJKGyD3CkLLyT9FgPhrOMIT/4wzEtVbeMvXWcvrPflZm/fEWvu16aHkx2z6e8YxnZkZ9AbjbyFUmIpTtfGn4zhqIt8JboZF3GolL353JsKP2O8l3TL8jg9KTv/0dPreyTzlgzz3KNgiojZiF9TvRDvCCe/BT3FX8e3XS92759PfzkxoGPIX6WpZwn49F/6qrf1c++KHjykuwoG/I4CIn6IKny4uEr1BVCVH5j8WbBupqERUrwxXClsPOaW2+Ya7C4fed/czNqWedU567687lA29jRQMdG9IArMBUZHEd9+S9Pa/SARHHqGBPb8dp3iiK99C5XHTxJeV7J3+jXD37vvJPb397OfK1h/EJvIkZSHuOQeMPc3MGX8u7gHozpNSJwsuvG8gr7o0diwAcw+Uner596inlqz/6kbmW7331y+WQAw4oayPEHiFvet8YywwTt57gA07w5L6Kv8wT2nPCLfxzFae6f/KT/6dcwQz+YaxoeNf7PsCKhudFAX2EwYvCT4GpQcB6c5uKKxnGjnZpHWeTUD5XHigIFYKuEFAgupfzEVZB/Pqii8sxzKir7n+E1R6HHHwwBqqta7tBEDaeVqldRr2pcA5jcLQWn2/ytOlLr7qy/OiM03L68Z+hr25bxssaGibzWc0J644bNDTQlrU82wWOBoZ3BTk/qdt0bJTZIY/dpiaa5eCtKHbeZBgDmtFrjsfQsLDcyCz/5Xcsy6x3bzB8/AfLy/fdp0xyRQNwe4YGIEpj67BHa+mh8u+9e7aj0z3wwNwyffqMciVKxbcYAByBQVNDwzZbbVU25FNv8vFjDBo1sIm/X6+QxzUCqmz5/e8R+PnuEk0NKWSFQZHtNNxvu/22chWGhvPO+2WZNn9R+cB73lte+Nznssd1Xb5EwucNKaMy44YbWQ7+i5/lSxnX/PUvwW1r0m+5+fAymUHmxuutgaGBzt7ZtyUoOfCanXnthORmZZLUVP7iL2/pC4x0kPhqZPBrHsuGszQUQ8NDzKhPvQvD4rQ6/Gy0PfGjH2NJ+pvCYz8+44xy3ImfDqyvsBrmzax0WO/pTyuPIcM1+JqX+5TJJi4050nqR9bqa2BHd+tA+aBM+COzIidjaPg+y+C3Ico/f/1rZd89d8/KtHzVBNq7/FpeV6a7SsQ2IKwUjw5+BcRWTrr0ULmpkcHZCGX4xVddU45927ExNHzw4APLGw4/ouzwrO2jTDzCwMv+QHjBvZJLbDt08e35URafwSOGBmTe/fPnl58zw3jcP3+JFT9rYQjH0LDPQWUCKxpYQ8lezgXsvcRgR6Ny68QK2sAwjHDDbJeAcsvEGgwoPYDR74m7tWmZ8TBUuSxz5px7ynfPOLP84dory9uOfEvZcv2Ny3i23sxn+f11V19ZxrCaYKftMDQws9JWNNRaSGnIw78qd2QT5sCyZQJK4muXzKCbessBq9SFpV5OhT2EDLmHawYrGu6duEbZ+f2fKc/f9cXM5Cwrt0+dzYB1ITyGYsXBC2txMN7T1h2frziszYqDESjEszVcYWhQUTz73F/D7+9ihdDO+fTuusxO28/5JQfzkyWUNfYT9oMuO9bIoEJqn5LVASJLRNuc6f7wRz4hx/bL75/xk7LVjs8uxx37jvJ8tm54SngGANS7q+7sX600+Sx0II86MKjyp+an8lb1Aj9V/RBLvS+4+KLy3c9+vFzEBuX3HvH6cjQr4py1Ux6q4Iv/SupMo7KrJ3snvvMemWC4MOmT8olT+NOBgMucb6NvPe2Ms8oXfvhjS1X+45MnlFcddADLgutXNhwQubQ4+gvhMRpKpE6vSs3xrlzXAL6EPOVzT1CXj2+ANl/48lfLL29gRcN2W5ZjP3BctjppSHC5s0Z2ed5BpDQWtO1RuA6GxN+BlwSTPvY1WdlHvfiVh/Mvv7y86fiPinr52GGvKa95zWvKszA0KCNVznXqf8LWL7QHfhsYmbd+1rF+5mE8yz2L7Xg/xYB04infK8fs9uJyAIOXXXfbrTwdA9Ui5O9Czt2SV+Rov/aiwXLQVSNDW1LuAMYVimuiEzjp4xcY/nDLn8sPz/kZhzg/hHHnZaxo2KFMpl7lW2WVdST/uZ3r4ksuLhf+Bnk9665yy73uQOeMhk0HyuYTJpVJnDmxHgc8jONgpqxooBxZ0aWAkN+IO5x2bOurGHb05U3OyxU5zKw1eA4bs0YMDTPvf6BcfR3b7JZynggwrJMp20wuL9pz37IRXzX6HSsabmAF1Rc/+YnoY2tS32iz0W+laQZc0LIOwOwWpJHYBK3425+r51jnfsHE92uYOf7Jj08v/3bxb8vr996rHPd2tttss014QWNA+AQYytboq8pj+EcdUH6xzcnv6nl2fLZZr9HIsLvn1BUN//H5LxdN5598x1vLGw59JfrYBPBAv+polsLyDNmCrHdpl3fuOickFpPHQnhgLIPStVkh5Fahb37nO+UbZ5+dOGd97V/LK1hx5+qw+Wy9Uw/O5ALArA3rN7SiPcl/1rt6mc/SQvylm4YG+66rmfj55Kc+VW5Aph2BTvCWo44sL3zejkw2+NnFuqJBugd/84AObaDOS8oSPcT2y5/hOtO7dftcVjS847Mnlf04u+fgI48te7HMfjKfKPcrb7Yn9W0nOpQ5GY+gb7h1K7wFrJDLbPjzfAInAq0HVz5PnTatnPmrX5cL2Lby5qOOKLsw/njmM5+ZrykJW6OmbY/OlUu8KT6QxT+Gx64urCNbXQwN0HUecmTWrNnImj+W7595Rtlm8y3KwfvuW7ZnEnWC2z7gD8c3IpexAHJcHsmKUM4YUwZk4hSYblFfgp6tPFoHHXMNtl7Mov1dzrjPT22edukl5YsYGvZhi+/GGEjWgBYaGvKFKfASt6rnSYHqcq9ktkLir6xw5a/l9UtkF51/QTn7lB+UkZM3LR8/7oNlZya8s3URUtT+JxpoyiK+I+inPd/Fqtag66SjhoGlbJXSvDaciaXxjG8efnRBxh//8cWTypV331+OwdDwvre+tWw3ZQvO1OAzmkzm2XbUI+U56TKacd1w+gonGfxsrPrW2I2fjlHrjWXSlM3TbulIsDFgeNbYQB09ld0/xtCQyu9IQSXHWfPKOw66uBmL+wUMMh/Gwjxp0sSyE3uStpwyBaZkYBcrWJ0R9nNqWuUuRFl5w7vemcM/3kPn8FYGpc/e4VmxDLm/TOVS5cFO1pnGlQghrUZWpI06y1HpQLSY2ZH6rgCR6e/EcnbOeeeX//ON/2SZ4dbl5Ye+tuzB6gDPjDC+DTuDcLU0mCnCD5g2RkuWi6Aq4AlXEDO4eAwBNAcB+/tbbiln/vzn5f7pM1ii/oqy6y4vLttvvz37jMZx/sTDga0VzbInL+7ibOcrc6vYqEDLkFpCxzHQdQuFhobb75hWrmLv2zdPOaW8dK89MTTsWbdOuKKB9HbczeIXYQ6+umAu4hbJO85w/dcEdz81dAcC6qorryoXYmi4/rprWX6poeH5WNUncIDOOhHW6bDowN1bJa7OUii8rIt8U55y+Y3bDM6A7yB6PB26cW7EWvmb835dTv/RmeUZu+5S3vOWo/hO9HaUuyohFan8VhSDX333N2iDfy2GswQ4lK4BhKwrGi4G7x+e8p1yJYP1Dx51VHn9K19Ztpy8eYwKKm75/nJXt1pbM3OEvwLGTkbFyj3LLsFehiCJNVTao4hOnXZ7OfUHPyhf+t73zLV850tfLK9gD9m65P04wp3KQoGvThLLa4N3hF56znqX6k08em6H+Vx13fXlYx/7RLl2+p3l1TvtUN5//IeyosEO04GXK35UwMVZ3D2kUt4ZiRAagRDS0KDy6SoEL/eIZwgJ/zwA3/zm0kvKez/+yexnfDt7017xspfBN1uV5aRbhsFCXhRFO5smpDVYjFlrjfIQM5iXX31VOfOcs8o0OoM/3D4zBd0a+bflxsy6r/f0sjH7V9dE6DpDlE/2iQsAXaHkXYt88iClwt8ySwcmdhDaXLS1pRDNAbGGhlFrjC8PsnXipr/eXC6bVc9omJtcS/n88ceXA/fZm5N5+e47eA9Ia/hPiktzB1TerQPLUi9u5OuzQl43FwPRdAYAV9Cevn3yd8oRR76x7Lf7S8oztt0WZWyjGKb8vJwyxU7UJYzKG9uAHaVZxsINzKyKoewOvNcer6FhGCsabi1XXnll+c0FnE1z30PlnRh4dmYb1fp8Km0NVjN4UNoj7Ne8iRVK5533K5aG31x+e9MNwW0yv5szk7YZSuEEzr9YdyyDseUo9BgarLMo89S9hxTVVmz9qeyClIXXV7pAY3FcDo/E2IChwcPR5mFouA2l4aZpKE3EZg1B3CeO+1B50+vfEBg/Yxn5x078TA4p+vLHMDTwfeenoxTMY0XYctqz293ky+THTddqodG/tQPrWxopM1T4VP6/cfI3y48wNLwA+8FxX/xy2Wu3XWOM9ZOHqIUZHGUmJ/T3nU6XfJIHsDzzwKWYbvNxD7dnloiTRrhLrrq6vI8VDTPB6dgD9y1vevObOU/gOZG9zpCKs+wQF3pRZXmJpOyeu2DoirBPe3JFw1xk+M9QWI478fNl060mlONe99Zy6EsPKBP5/CPT/2U5+S/lFMwYGhA8yzGKrByA38lwJbJ9BAVAxWBW1IEWCj18gx0hxoZhxJs+axYr4jA0XHdVOeaoo8tWGyJ/l6Ggami46vIycPGFbJ2YsFpDg2WwBPZVFsu2UFc0VEOJM8KugBjDpeLmn6tzlnDNQ6bcRzudedc9Zc4mpez60X8pL9p9N6CMKXPv4xBhVlW4xF7jIfoR7w5GWNZO/+EZPm69c+vEJVdcWX7O7Myx731P2TOGhk055wdDA/WoUdr69/K9KV2+V0WvruSLQcrKxjnQcVnrn+hX3TpxDgPSdXbcgRUrb2NFww7MiCEviCMs+7/apzIoBVdlpX2r7cXBatpN8q+wnYxwefJcjGfno+B+64SPlyvI831HvKG88bWviaFBGlauQK5gaPCwW8+dkeeUC+orDsz8zLQM6uSAEx0Oep3xVab6edOzzzmnfO7b37NI5eufPIGB0X5ZieiALgZecM/SYOpCvNVrlFWpS3jQpbZuxamz5LUdjCUv47h14gtf+nL51fU3lgPYc/Xej56QFQ32F87oygySs0dzyq2+oae6TgwN0M9+UH/paZtVnrtc+sLLryjHfOyTMQoecfRR5WUve3nOELIs1XABHHDU+GFZ6sAO2WTbwVkHXs2Js/X9OLi5reTciy4q3zz1e+VVe7yk7Lv/AVnuvfGEiWkf6g7Wq1u17ENAK3Urz4i/gxX1NrOKDkUblR8ttzx5059uLqdBe2l6KEaM7Z/JwGjSxOg90YFon8KaSd926WWXlosu+DVbJ+4qf7mXQxNwO00alRUNE9caVdYbjaFBkzh1Pty+TrrykwsiK1PAqlfWyF+EoDKr9nH0hchtDzwePmZNZMMoDoOcW668elaZSpyncTH9UTbZZkrZ4UW7lvU32KhcS5u6jZWmX/jEx9k68fyyBnWDmSZtUZlqGeTrDHzFgbI4yIZpg18N0xBRjRPj2RLoYPmqa64pZ512Wvkme/lfi6HBiZ9nb7cdEOrKFutHg7az8LngRzKKwUI+yoHO5G/7sFJcdaYeqWFt9j1zynkYY08+6YvlFsrziXe+vRz+mleVTSeyPZn2E0O5xONfJNU95A7pqGvv0s8+xL5rOXmMol5ddv+XW28r3z7llPIfrLrT/egrX4uhQVmwkAGxebi6VzqIu+1cvUPZII/6roxxcO7qTXO1rcr3yuOrMZiedNJJ5Zpp08qrd35heUf67p0GDQ2kswxJB36RpMCPnJDPKUerFwsmXAfxTnTej97xy4svLe/+3EnlgE03ZEXDEWXvvffG0DC5PCruyJG1qSPTPIqhzfGRW9s0UpiTRDPf4E4deZ6YxhcN4XPn3l/+PPXWctavfsXZUP/FwYJvzRbr7ajXp2Hs1Zip8UKesE/Tya/VyFDxNwcPcbZe2yo+dWw/g+kZbtfd9Pty2tmsJGGVz8v326/syLaMyZy1pryaz6SYZW9GfGVBNWIui7zUAKhxOdsUlBXg4PhgHH3InTE0XF4uQBb8jOsTGBpeiqFhItvC18J4qMxVF+uNb8BTGluK+std5K0F6kA/24IrJizvn25mWziG6nO+fWoZtvlm5cPvfW/ZmRV7GnVcAdPkoduylDfWl38eDGuPqgFzODr4Ivq8Rcgix2kaftdGJ5rPmPSSSy8t3/7G18slrEp+K4bYuqJhq/QX9hvSW1kr/UEwh7YiyDIxOGP2rPKj008va0xYn1UofHViiymhI42MuMrpSBUL95R1tG1q63/pGojUcxpDBxCPFQxk/gBz/vqX55a5CKAJfJt7J2b23NvjaoRqqYOWoGHHqTJyMZatt7GigdVk5egD9gvxn/Ps7cNYDsId6Krw23k40MoMAOkzoCF/96vbaWbQSDyZRLQ8jOROKvVXF11SvsCM2iEM6vY76GVY0HctkxCCClctfmFgGyIwLZOdvffaFHnAn/90/gMMQMYhGB4H71mzUd5ZAn0OSwHn3T2nHMSst1sntseiuCaKsN8LV0ApRGRoLZh26O6FVPDZASvENaSkg+V57BrMFjPYnUfa6Sgs19xwfTn1h6eVF7P/dZ89WNGwBYcb0RilZTU0iFvF3YoVbxl7qDOODdLBrgYBz1C4mj1Ml2Lk+dPNfypHHv3W8mJWNEyaNCmnjrezHOzAVRDEW/prZBCODdaBhIq8M1DCF25mFxgQ/IklV+5//K/vn1YmIryPPuLwdGzCtXMSZX/6MbXD6XcJ6wpl5w3BslRvDp31by+/nEMyf1wup6G/jUHRwdDewfQ6LBX0sNAmQNxGYYMPSYAluCzNhv7ylDyzBEGi/xhoPw5BNW3GdPbYnlW+2hka/uXTn+Kwl704kHA8A3WUZ5TAhmsbXFWhB3yQFlaurnA+65yBFZFr6dg+/enPlhswNLz8eRgajjueQenzo3hqaMgZByRqxoYMuqDUCgYry1V+wVsFdBTK70hmFDIIUyDSad3LwND29Il//mLZmvwPO/bYsj/LDLeaMoWvCCAwF9WVQHY2rvSwLlQcNDQM0B4fYG/r1df9rvziV+dmRcMNf741uG+NRrTlhLEcWLhu2WAtzhNhAOLKJC8VkhgaaIOKSAdYqVvyGDRmoCQSlnMOOBzLrRMraMsrB1DgWanx4GMLy81snbiaBRQszs42KjP+zPs/AN/vWSayXG8U8Ny7F/iE9ejMU+hPuAwlV63O0DCD9uTsxQ++e0p5HTP5eyMHttl6q7IBy3Y1lrmk2g5HC70zDNJHvlY5eRy55gFJGqiyr3qF5V6egZfZZk/gNVezHPficuvd95WjjjyqvEjDHYcojefkbpfRzmN23bZ2ycUXc3AkBxVde5VFLJtwTdpoWNmUZYMxNHA09MgV7DOlTuuqJYoFLhoaagEtoTzIFZ/KYZX3qpImbZfxOYMVrGiY9/jScvusOeX3tz+cOmgHbb7/He8srzrkEKlVLmaG94xvfrdMfeSBcuKHj+fw1leW9VAKHoSflNnjUPqcKQ3RyXOQz6G9731+0l550QwNrmj4z299p/zkokvLSzbfuLz57e8qL37hC+vBgsgTlUNhZyYamSww+abCRc5TSDg+Aww7fGe1HfiJ9yMoRFcwW/ep9x9XppHgTfvsyXLEN+bgQmehla/KeS8BhkUE3DnpJ031N7zJUhX5EbYHDA3nXnBh+SjtaavttyhvP/h15RW778O+6s1YkuyXazC8wvTNeLCsMzYwzGVQxowJ7dVPlXrqtcrZMAY6y6HP4hUMWJE7t89kmf3ZPy1Tb/5DOfLwI8pWrGoZv2IkW0oeKDdezdYJDA07brNRmZAVDcAB1yo1LX0wT39lKSyWkmwpfJEBAc+j4Zlx0NZ2aZmWYe1bTHudzyEpD/B8x+2zykzO/HzhCSeWF9Eexo5bh4EJM/ijWN1FnQ+3PMsXM3v2IJ+efjB0V/bfx+zxXzlYVdqfh5Hqze84tuxGnXrImYMb+z0H5Sp/rZ9TAfTdunWwaN3II/aP9ilerU/569SpWSH0G/ayDkdpfpvGo2c/C0MBK6BogzrhxdDAXcXRyz5KJ2wv5ZB1atnNW9w9F+oiFMXvffbT5RqivJPVDK9hmf0UFGgZIQPY8CPGEs610cC2FjNl9m/ykXJWo5dxR6sUI0Pl9yZzps+YUX7JUvIfnPydTJ586KMfKvvSf2zIarCm9Iub+otGU/sj9zynHVBf4mr4YmTrUq46oHNVTp2wuJ7B6Je/+rVywY03ld03mVDe/08fK7th5HGVj/qUeoEKv4q6HOKqi0ZjeSR5WxeUxxl+6a6fZfJb8pddfU058aR/Ltuv/7RywGsOK3vtxeF4W20lWRNPOkYuMlut4aGuEqhwQmtg66xL6974DgZdXTTjzpnl/EsvKz//4Q/LS6DJHnvuWZ7/ghdEH5OjnSgK/up8XKAW3Kvh0fBKG8vlALIeLkd7YSXGrNmzYmg4m4mfdeCZg5kc2IYtg0+H7q7ayGw88CzvXcTVMHw5K4Y0NNw6p57R8JyJa5ZN2UI4ia0T6/EpFVc0DBePrk+Tn2yBcplX2qA/cUpl2xnygAeN6m4VXOkEAYaGFcjwO+9/kPNBppe/Em99Lj5mUjakb956++eA83rFMxruYyvHpz/64bLL856XwyDRukJHecx2JQ9JB1u8fulj81brJ+2INiX9ncF1lco1v7u2/JRZ1NOuvKYcwmqyd+SMhm1DQ5IiF+QXkAaufaD6pcVysGqdtC2y5iqfyzv2AT7PZpXKRczan/qFr5Q/E/4Rzio77FWH5IyGrGiQH8Q3KIMz99DNd1x7TzDvLt3XyOuMsu7PyILTfvSj8q2zf5L3b37uxHIAg/WnsVrQfttLPVT+scz2JdJFnVq+01jh7Lp001CdHgseMI4D/d8xKfZv//av5eqpt5aDnv+8GBpeBO0HaBttVa98bRHkR+nbLhFKMQjUCCY91O/le9PezbaS31z22/JhjOsH8tnVgw55FSsa9sqKhkcZD4ifB6Ea34ORF2FkHY+Mi45hntS3f9FVaZ/i7KoA6/9++mZp8zNWbF939eXlMNrqC3baqWy9zdY51D11p5yh3MKR5o5t5Jf2HIKaj/hTkAFole1l4KahwW1aZ2K423Dd9TLh87wdn1u2gF/VjRzfSBT1VMdoC9maK67KMQf8TpgqhzwPzboQZydS3X5w112zOOfg2nIpevzF4H8M4789GDtNpO3VMxqaoaHiFvqH1ubQ56wQnH4al1yxLb/egs5xCQaMX/7kx2XFOhuWdx9zTHkhkw/jGVs5SSF+ypSF0FtDiLwvjSSCByY7TnGl2kJ0MM9W8Bw0J/Rcse2qYbfJnvGj0zig9MZyBCuGj2Lb43aMcYeR3pbjFn9p07bsWG9Z8QiMO++enRUNG2AkfjOHvm665Ra1AORbW0aTLJbsqen+IYYGrVQyrxWrlX8Vt5RvtmNx/xWD76k335JOWmV+U04tHoDIGajCFjK8hgYZUGvrV374g4B5Jr9HHveBsu2221BPCAbCW8do405DIa3CKYYG+Mzl5FooFTYqoi6JssG733z23feAyy/KZbdOL6onRx5yUHneC16YLQIqKZmVlcFgCi/Z1mb4xIZoB4LyieAeqyUVAaWydQvK1jfYj6l79S67lBfsvAsnHW8VRvULCMLMEmzyiqGBMoify4OVWjYghYiWV5UYFRcbqEJo9t2zyvXX31DOZGAyBfivgimnTN6cg2+ehtXTbRgITdK3RpjWVttd8A9S3Q/RIiTtcGX6WTT03zOgPPP8Cwtz9OWwF7+ovOhFO2epnYqiNLV+bYRedj7OXERggbfCW4XMA3gUlmaosBT+IursNgTglef/qvzqtpnB4MPMIG+3zTZRElUQ4kSqOfFrz9x7z0bhxZsH1biE3RmpazCSfP+/fpkUW8MVrz327RlMe3CiAwwHADEiQdsIkMQUCHjSgYiDiocdjfRXQdBgpbHhThSPsxEiV0y7I6kOf9lBxTMy1qXelyHsh3dC28A24Op/1i/v9RbcLUOMNzzcxHK0z/37yV1oKSd94L1lxx2eQ9tYFmXMwaWJVEDt4N1CIf1VSpdrbLBMwBkYVw+qUYAthhfsROc++EC57LeXl3Pp3HQvY5/nXvvsWzZjwLsSHqxbSrTakl7Y8KFGOiovqyPmsaLhJk7iPuWUU7N/tIckDx7E9Ix1+GbzRihIGB4YJ7GiAU8uxk/wdL07BtdKrqz1IisCuKj2fM4I/RdbQ55zgN7w0WXOjMXllzCii6373SG0p933qEr6APz4ZIaGtCUTwpvJL3dnZUWAvbCs9JhFvV59+aXlwj9PK3tssWnZ+4CDyuTJkzMDq7Lip/yktfWUmRFoIouqQPhJTleSuFrKyy9tWF9rrjkuHfedKNA3osydcv5F+RTUmzB87bTT81kSzIqGtdam/CjDzFjceuut5TJmU6+85abg1f+zOy+T0edZYc1BkCSBToxHyQs6Q7/wlbQkTPkXg2sHwOI2XvSsAOnKxDh7gwdYzbG0nIu9iLnOVdzOzE4ccuirIRnnhmBw/AWDWt0r4fVXHvyKbG17mIOqaCjZStIv61teoAE6XecvDgIAnjImvMV9KjNSJ3zpa4bEHfvqQ3LavEqBMt4BeDM0VOOx3K06X+HaNuX4zAYT3/qxDiSFhtDrkJH/9qMzAntzfo9697EsH31GZi7sp5TzDl50pul3vldp3/n25Cl9FArvQ/DE+Rgaftq1p8MPPLDsu8vuZTNmeDQ0uE3LAyA1HuTAKGjvpzA9nNU8hzGYHKAAAxDM/bcwS85y0Mjgtq3p8OSn//U/k/lRr9i3bDNpcllvJIeSzl9QpmF82Oj3N5Ydt5vY++qEqrfmpf4/ssNVejlf56FV1dBQ26PGidoK7G+kJQYacNLQMPXe6eUG2t3EtxxRnsUWx1Gj+QzfEgbQnJKvLB9huTB6zZv3INuP7o8R38H6g8zUTaNeL/3xj8v15H4ohvBdaKvrs9pOY7n4KV+VW/bF1oOXPOR7ZttoP8o3BwfyoHzjrLz9ybQ7ppXfsQ/2nJv+kNK97/DXccDnM1ESx2XgGXlIYTTmqFPY96g41vZufsh05TqyWsXTPtK8xX0exqMrgP3Nrv94zthh5fXv/EC+dGUfLy+Kkwa2RaxY0dBgOo0YKs72Geol4usBhfYlGn75D9874L0AA8mvb3J+t5TX7b1HBtQeeKjstu1q/A5+4G5+lrsaSpQ5VSfQyGDfREecPDSwSNebUaI/9rV/CWx/Tjj6LeX5DDCcWYyhARydXbRtyRfqGi5zF0Fhpy6kB/l62WYdaLpf/CG2HFxJ33rGRZcIurzmBTuVXfdiBhYjDEmCv4YDW3omR8jHfioHTHbwo1MR1/ZvnRjfgYgztqHNuf9VLr9rdtkOKPtg0Hz2c3eMPiYPpOzBH6M4dStXWxfC14mD+Dt7bT/uShIHvQuA7cGytzDx821meHXvPey1ZcoWW/AJX/Ql6kna29dZ5nvvu7dc/7tryo/Pu5j2sKp7Fq/bbl7YxsbkAEUdpnpjJMiZfo1HKQC69c5zc6qSobrKJqu3nNxkkS8rGmz3a5Y7rltQfmGEIW4L3tffYrty7R2aIEp59+tez0rg5/C59mpalK8ts3UqT0sn//SzPYEKb+Qtv4CYE1kxmJHe7TR+XeOMU39Qpgsc9ylWHWyLEUZaGF8dqbaZipyGBnVtdVLzkselnXkow5TvptPvPga8l192aTn9ot8aWvbYfuvyGvDfmBV68kj0ryTkB1jyv867eAs0dx7NXQODhgYNbNb3tOl3lB+c9PmsljD6WznQfc899qB/Gh85oq63yAkgyx1eqUYv87atjsZg6gpcZ+z1i2wkQ/lyCTz2hz/dXL783e8KOu6T6JLPQRbaLtULQnMR4V9E5dP8cW/OughfEqLclCc1NDhGcPLhpxh4dG/df++yy267Z+XwY6xwFB/1fevBgbvnmzlJqVHR+pD21vHylUyKUUbrei0Nufx5EKZy8gecg3YnsF/BNtznvWiXMnnzzWPstb+UH5Q10duJI97SybrtYU8eFq+Ob5hkgVaPMpaagwHJs3K+xxkQurfbVtEZNtlkE/ps25xfeIPNobnbSz33QCIp0x3juA1cHBw/KDfF2fGNkzVz7p3DOPH35ZdshxH3AzE2voRtK54/59d53K4W3MXNP2mfJ37rS/SdlIKCpGool/2D9TDt9tvLlReeX37+x7o99d2vfhU69rNjZFB/cIuFcnEh8l1jQ6URWcTQgKGt4z8NDOrWS1TCwGkNznrxHJvrmbD69x+cJlIxGH6Albd+XbEdINzOQXNFQx1fwB/SfdRIDvC8r3z/s58t+x///vKWo9kuyfgYhgFS7cnDZIO1kzyeaj//EENDln8qtCGOCnmPYTtq3P4XPvN22WXlzyx/nH3nXVl6q4VOxVzCe5lmTRjaBubJqdNuvw0r2Qisz+vnQKm1WMatwmGHnk+QwMwqFF5pJChuPus8c0ChF6EI4ChIxofhFmB9uuPOO1mqM7NsPnlzZi+fHguiDVlFyMFbGFfm5V+8vPobYhSDMLxKmoocgz0iKagewSAwfeadWTIzidmcpyEEPL1eGDY8D3xqyy7FJ0YTaOddg40C3PLZyJ0BSoNRoPOg0cQTTp1hX4ftDJM4WFNrnwqFwqLiLv61CZpnzxFe3/21qXrj13TcPeVaS6MHKD3CnqPNNt0se0gVorH8C5N4eSapMyIOTIUl3YN/VwYNEjZMlQHjW28KF0/Avo8ZEg//c7ZoXWgj/IqMCA06FYo6kgqmHe6D4fGF3u5Z1ZDhEk9nX+5n+dhGjHw3x5A1HuGR0oKXSpMUUAiqlEp7XSufim6Wz0F7O03p79291fMRoBob5tx7T/YjT5kyBUvrRtW4Q94Kk0rVil8bdOlpiLjqp6ulqb/Zi0z5H8ByPX369Hyrd11mMTadtAmnbmOlDt4MZsHZDtOBih0RyAGVTpS2knMbgGtpMpix24T+CsG6n3dZZhhuv/02YK5XNma23kPdxtN5OTB125GDo5yrYHlVXsSSNjTA6ogl1N8caHrXnLs5rBFrLh31w/DKs9YfX7ZC85rI9+zXGcesPnSKQkmbRkrTXjzczA4MaMDQOUixNUlbiBsc3Ye20otZHqQuM7B09jSmuQ/zKaU772YPL4c7weMLWdrtVoOJm06G9huXNZEfzPVx2ekAz7uZ4Hr0zzN5Jtt6t3y+y5MOSu+b+0C5h1mGyRheJmA9lz+kb+uMlWdebXmz/DIcfOVh78o8c17Mkv8lHJQ4Bv4x/kKePU9GWTYfy/4WW2wZujuoQ1Jm64SDkYdRJh54YC4zcPP5POJ8OuoVHAA5DqV2fNmIQzbXW2sM519QFytZ8rlSK4PlZRkoVhpLD9EosPzggEXoPqt4NzrwhmXca/lwl+2yooEvCdw2855yMwenjsCA6NaKZbRhzxmYOHESZRqWgeND4OW+z002Wp+DvCbQ4bMFzQGLOKi/SmgzIsfQ31tylyLxqZ2/cbhUtpRTrs5yBuMRDntzZsk9nutjTTH5ElbYmH9m+/GpcqDmIM9YfUtpu8rCfIYWGeOgxXZhG1EG+3m1u2fPTr8ynhVNG1Gva2NwVEY5WKkDUGgH3eSdoJ28RL+Tk+EpQygJz/KsMxi2gbtQim69Z1ZWa3mGwlYbTOTzrmPLYvgzWwFpCysG4HzKscLnkdYBVUf+bvcZRz2MpMHantN30qFgBqVO+VQZPDkDY7hnfmwmXcbyRZeVKNrw0CN3zyrPWjq3PJdtQ5twbgdzcqxosO2L8+CffZXOOrB/UqFWPsQX/pK3fVYOZok/9f8oh17NRam6ed4D5YK7HiwP77Bl2ZI2sQwryQK/T47xbxS8MsAZDZAYQ/iizHjbD7QBrbzsCiqXB2+LEdnDQ6WdyqWz6PYXvT6vk7/2dw7YVb7UAxr97Qtta676Ug676mD23bPLvWxP9ABgz1JZj9kk+3j7HwfdDgTSDwHHmSPLKT+0iyInXBxU2j30a232B5v3XfDLTGUw/dQGEyfy+cZN0m87qy+PiDvFDo7ysMttxS940xjkD/lbHsyny5AvDgJcBfIoe5TtP2YzM+0qpK35CtWmm0yK7FYGWRfSUL2iDQRqA6q82YwjaT/QS4OD/ZV6jUrygxgDNN55sOT6rIKyDdt/KLNUmk2Xfs+Kw4lr66+lhXhKoxgHeJamlkv40n4OgyO3gnnorucGOEm0NoM6B06uMFXeqbdlFpw4wvFd+lgH2ZKqLoPcMB95RqOAZXSV6V333F3uv/e+yABPx1e3UX+wrVoGIwrLwYa0Cg9Zx+AoV0tzB9Hpr6ml8D3161ev7LtnA19+2BBd0vp20KOMsZyeKeDAzv7ApeduqXMfvZNU4jlhg/XKhuutwycnx2YL22gsC8OW969osK9TCltXtb4is/DTRW6II1vlBijTIvoxv640jC9j2OfN4fOWf502gwPlMPuOUhZTDwMMfNheZ3vz3K+H0W22YDC3YSaUqgyVB0Nf8kweFhqnn5dOKSzv1qv61HqqXypQZ7K8HrI4ZfLkDNRtF9JRvjIPB14aZvMFKfxta5GZ0M8sK//jx7Nt3C+UqY/dNWt2vlAj3TdCjk2caP9Rv/AFAGKDI/dgCl/oXNWcO776+2sXo17jJ7sRFBm0PkZ7ug9+mQf+Ziw/KmvkDuvNu4PGGDWFI99QFvVp240yR1yVMdl2Q8MzjsYY4/kllKm33RZ9ZUP0JflGI4Y42T5Db9KmFCnAIM3rK7/S3cJwN748a1uQNurAGsHGQWO/wtcOzNUoKB9KX2WZdWBfpW4m3vZzUkV/249yQNmQiSHwllaPsuJqOnLGet100sTofM7ay8tVtlR+EC8RFF/rWZoFd3MwiHDh2dc6uLb/so3Nx4B3x4zpaB/DiuMbVwzXFZ2UTSMsePu1NPETovwk/0gDnVTxWZlkPfguD7kqTFnwIBNAjnE2YsXqhk9fHxqxsguZGV6AD4ieNBVWQOrV+YFk/uVNfZVr4rAyk7puP/fcFnu/7bfbFn3saeEXx2XKX+WI/G1dhSYQIBITUPZh9qEj+bqYWyaU8dLEVQ4ap4Stgc0vR62/7tPL1ltsUdZGrixl5eswYI4Bvvyo3FXuOI4VzprrIEd5/90vOFPjc58qh3Kun8ZQjWpwOznqyChXXp6SP/9rQ4PV6QyBjTYdeohJJwBzSVwb8DyUhLtnzUI43Bvh4MBGi6wzzTJvljvBaFauHaJWrswMQGythzLC4yjyUSp4dyCulawyBUybZlKFifzs4DYdKHmIkzgEN959rrMNzm4KX6smM1EwUnhTFgVGFXqrNj6rW2dDDGvjYSNZvBRmomENzq7A6MRxBkTrambTeQ7zqtxRThUXhaFlkOnCyNIQnBSC4iueChcboUqRFsEIQ8Kkt4pqBL+CuhPWlqdiN4Q1gaVrZahFUAlEIYOmwlVZUyCJg0JJelclnoaBEBRH4xlHQRjaAlccXC1iOfQzvFlxVaSEI+5uYZHmSPPgLjzLoQCuuDXsfLMT8r2Wx1t/aI1BsfmTh1xRodIsTAe2EXKWoVvOKT84ePEQSyFZ5zrTmkY8LZvL1iyDOLdOVJ5phx0pQOVt6aFhx3wqPwRcfhTQOjHvfyZqK00N7+qqKoxso+BdXNIe7HCAL6/k0FPahR1RXRLozKRdAzML3F0OqXHtMerAAwZ9HoGlVCGY59QVfpRDPhG+2yY0UijC7cisb8si/8TaDK5unfDAGloTgyYUIPIZMUAacBrB0oXhSx5nvznbBaC9n11cxqxs3Qplm+QChu0oygsljnLJ3bpYxkoMO8qVDHI8TG4EA7URKl8MwpZBtAUoY/MWsISNwfwaHJzoFgsNDaaLdZg6ppKi/Fb1mXYLXh23PIHuIXgLFy88NDpkAOSgoaO9irmXvOIqnhhHDKPOrRtTysMDKIV+biuDV/DIaiKs3Jbfco+mQ0q9ENcDrQBBeetKiEVMa7nfz3Lb1uQ3OVmajcD6M4blIONGMWvKKHIUU2cjMTAMX87sBcsZUuvs22OYJOcD15LQVmjDSAWwsy3ZdmwwlSZ+GUc6a1CQnosZVHLGX1lIT7mC9PrTs0Xp8qs/ujWUNQySqSxOTmYV02OcXg/Nx6Iwe0jSSntZ4IRn+PVfF57nt97x6Pxt83HcPKNGWaPTOCU/yOse5qeiJf387KJKgn8ST76MEg2tMrNLeW039hOPwhd+4kuZpAx24GCbsV9S9gpXnrf+zMs27yVGkZciG4xFV1/u9dYKlBKpXKykbY1k+Y7tQtjDGDiMY6/ESLYe+IWYrFpArqMdQVfIJwmpT0gVyK5+8mspwylvZLZlNL4GCeKryIxlz6oy8TGWls+7597y4IxZ5X4+K/vAzOlly9l/KTtuMrFswlksazLocU7bWm+YV4o15MmCEA0NKWJiySuVlg6PLKicswAEHwSBv957Z/nd3MfLJm8/uuzgHtbx65FepdztDSiNtnHa/gDyRTlv1g4gbRMqjk2pzqw2fKe8cvCuEmd86W0d2G58Tjr5v7VNw7k0HNmvaJQ3nTJJeWwemRnnLo2cRZNn2mfJxKUqc/aplTIq4jEUkI95t8t2Zxv1SwXhL+KpV0gtz/TJ6jbybXgqi/vpbLwo0Hjb9yhrzUtcLbNtexyTJyqYbdLAeC7Blv/kyQWscpSvxd8VFmQWWewAOwMD3s1fp/y0/CkfeSjP1ZfSN+EvnQIX3NPvSkPSGk9/aW1etoPWvwk7dUW49PC9roJYziwon1GmLemkfT2DoZ6jYZmcmHBWteoNlYYq9TYa86lyzTaugY88uXQq9cqADAbJ073a5mt7t/y1/tQ90G+oL/OybWvQkHf1zyUN8Leth/e6unXFmbQXL/v0FlYPIiSMPK0Py2l9RVchb/MVD/904Q/a5hjaGnY9zjeB/2xtWlmRBeKqnBUnOFgWrm2rSy8dCMpbaE/9ut1uIdeoMaxi5XoEA+JDCzjwEvnrzL1t0f7CrxON9NN6AHVVl1t2lsBT9tfWp/RtruLcveFfQ/yt5TC8tUt1Pfs9dWhXgWkIE5SrSx5nAG/9iav6lPk4AaVMsw7s9823XcKULzQwqcd5NolnnkhvB9TGc1BsnrYH66yHN6g1vSn4Aqvi3ecvYvxrVM6gWtypp7FM3LnlVzyVEZ7HIJ5+HcqDQeUvtyvoNF4qEyrwmkMGieBba7qWx07H+pYfQjXyti+Rh4T9OH2MtBF/6dlom0zy09FdnAk3Rh5J07aFCV+6u91LvpQmjm0sh7JFesqXj1PXyjY/jev2J3XN6GzJXzlQ27I8bk7q3d41zilns/KDd+ktT8elUPwE9e7OS4d15d9WAymfBcCgDD5uhR4Ab+VBleHSlXon38ExiD1NJbNU1hBrPaRM4KEs1VgincXR8ivHxd2xnbqWRqqstCKOKyIs81Adu6LvL65WZ4pUPepvOMkwymH+3qVZDKLSjnaYr3nAO64U99LJ7+JW5TC8RlIn82zfGpzlcVc4S4vKk8hEeN/xgRMm9iXpW5Td4O9KZCdm6KYDR/i2I+PYPlTd1LHJMIdCbzRpQtnmmdux4ootQKRPO2ViyOMBnuoOGloT/+/OxO1K3fK+eAmWORqnhgatXdR2lDIPO3mMy4ZvBRrmN2FlqAzcgCQzWGk5VwGGU3H3gDAVlljMQVcG1WouHNFHBHIpfGtHqfBTyYwSTyUSLY3eBpjOmrsCRU7VKGEDqIOIjg6SxDSJwU/3bKjMp7/Oxi3DeYKqs+EK51jGKINpbIQqTMLPoBFGS1rLQByVBMuQDjw400SIE8Ejg9vgEJQyuQ3FDjGHTZFOAWLHGYt/6FBxipAj7+YUdsHYe5+/vtLO8qc+oKmdv2VQKROnGBfIR2GtMicu4my8CGWAK3jTcBCGCjb9HbxlPy80GTQ0sHQK/OssvjxS6ZJlrFZQ5xptn/BOlKFhiJHgLz/YKagwSY8oDDTmCENw8m5nJ80V3JbbsukUeNZ9U4bXiqFBQwT4WSfAkWcUsFVpYUBGfVqulRn0OmAZxCwl4dV7ri4o48HOz3x1wtaJu5d1Jw2j5HZC1g5InKW7OKscCVKhBYB0EGOYlVFZfpwO4THaXowL0MQZVXnezi2KtnUFLYSzfDGfZFTgKvgoZ/gTuK2zE7NmaHAJOJI5hoaRDDBsOsPg+eV8kWIkg98ISweldEoAI2WoUO+UKX5BuhOYlhua03AAhB/8xLRKvXNAlqOyFYQt4JyG4czurMkMF2gz07SAZAy8bRvgDJNm8Ctor1Xozbue8eueIwR81hEWRQjaqkxIAwekGhmkT+MVW6ydvjxlHBPaRgcwigxHEXSgbDu3jCqgrtJS+Rytcgpc263xNTIsZqC2mHIt4ZmAGBs0BtnexRS1KbQdPYL0iJDBvRIYxZbBryxZr4NDAodJJ+ezu0KiANP9c1lz3SVRDJdXqGesoVzkhaGA0S1nNmA009BAzvrZ+c1ncCsu4+n0R2FU0oCxZNFj+Q49ha2zFRiDMnJm/0ZVHC1xzarRW9nYnkWhn/bSWwVUb9ue7UCF0X7AS5hRCsDZtmXbVUbpH1pi0PHgVvd2CkdDwwK2+KggaNAcz6FTKqMauJRbzdAQuQA/Sm+NVT2Hn2wacunJg/n2nOG8qKBqQBhgdZ1LHqMIsQJjHHtTRi7BqMGgK6vzmPXXIJGtE2SjsaEaGlBmwXs4J1lraLBZ+R3uYchLDQ3O3LmKaE0UOnF/lDNC7sXIMPOWW8vt7P284+Y/lvWvvKLsuO3GZVMMEmsBAHsUbVZc6yXePkXZ4q46LTdYPp1bmjJgIBYYkCcGMK5HMCTMA8nbp04ttyGKdj3pK2XXPfYs66y3EfE8KNevfGCwoV9YgaHBflujrXXjwE4ZrIzRpe+lrszSJcz2X87M2S/oaXjaE7SI8kV9ZBBv/Zoef/sH25v9iPKr8YmDGY0B9t/CyAFq1HGMTsgRZbvpomQrNABon5SBNnflm+25yl7PX6iD9xZHOW8c5buz9ZZPJ9+pJIpf443kJWHBW3yavmE/qXJuGnUZYTf9IvlYXi7ljAM8yx5DA35kHtyU05bDPLxqOare0uhne1AWqtSLt+2KAnFu0MIYMJKn5Rc/+F2+N40ySxxtc3J22kMnp8xL3E27Fu3IA/bUQ6SJxnnTZTADHBV061djnzpBcJW2Hc2SH4irY1hXjQbim4EGtJceg662dWW8qxmML46hGfGsQ5V+jb4OyAw3D3lEfdA6dTBgXpZXmmTwxV35oSwQF+GZPkZ7yhaDMH6trqV1ZA31PYAMzNeTsvwPOa+M7RkaxLzyRxg7BaGurK9wvx6+c7OcymB1TfAfiXxiT1FZifxYgIHSVX3DoYs9ukZhDQ0xRJNGGizCGLEInlRqKefCgzIjeSW37l7xtgA1azMXncZH0sf6VL4qO2NIAjcPPu4NuKgXaSe/246ciIisAqi0Sx7Si7/UlfXLpW7nYNG68Jwx+U55nBllcI9hVjroglRFU1SFr+vd66vMG9hLkfkrpDtOXcnBurxvG1EPdiWZ7UnaqoNXfcr+RWNVBV7xlv8xTtAGUs/iA57SxHt7tn3ah9im5HG3NaQPIlGlOIgIttHZe177wnmX7uLU+M6V0w7Y5X9ll0aFjEmo00pPdFH8jO8qPPO3n3FytmUnrup1tgf9qkyu4yLheunk99bmQgFprhtCe4GIvjyVYrR4vGjgWYROqdzNpyiRxfKfOk8Mkuo+ffCkkfJVGaH+Y5B1EH3auNBbvNP+6TM0QLiSwXYqLyrr5THlv3RfySq7ilclsDRq6FVkazWkXBbNhxo1XlXO22ZqvvK1fZG8YL0o5x1fCrQagas+FgMHcswJJ1kjOjPvfi1CWvj1CY0MGmKsC2VlJjEpv1u0Hf96cHfdOkGx+XNFlrRTzriKAemeCUEn8YTn+Wr2/dLIVTsWZA2+TjOgvvYUd//fGBqY4XewZCeQZd92EFSsFh5nmGVEecHBk6fXIi2ioNm4ZKoMXAiDE6pVqLIPFRQ2g/6Nk7xj4UUwIwLx7jc01A7UfG0sdj5yjDjJ1DbW+lkk1Gwq1rRh064tynjJpWuEotCfq+9iQ7eaP59FS8XFmU7D20xxFVC1wfhsR68QbgxfyyWvk0gsgBOBDl4qtwoLQ/TLaofAd7bO2SXxasJbGGZd4QgrwlXMG/JESGh/PPzSIMEphiFn1xgQqWiZp/SRfsZRAFd6CZCcSRNhCo7Gka42WBVP81bAaPiJcKFOFariYgeVpbIVSX8rioOoD/r51Pm3YhjZlQtLNfKQj40837g1HvkpRIIvYdUhSKhjB3byn8Jbp+ARf63OlsvljToPnrJDklqxhsqPwR2lC7q7pFC623GEdzr8Gvo9w4J4BmJ3b+jg12jaaGNQU4KrwK48qICyHlQ4TKPgs514LoA00MKK5gBAB7F0oCi9zu7nE0KULQYqBsVyq0IwA+NuZYCfueshKJ7yguWmx3d7gFtH8tlMRijDbKs4OFLm5gR9BKmJiVNrjzYGbatrpeY9HT3vlCEOno6f/uavIHXrhINgVSm8PXvCZaYjWDkwhkG9bqH+JHWwNNwOKAoQPIm/rkfzIc8gWYsogX3B1TbHQI16VWEJDyCbNErJN/rZyYQelil51DYcnMHVN2nloDADOBHhmUpBzlAu+QU4yRP+ckbY2SrLu5I2QmOqoDqyeFPRGuEG4OHk6T3bJTAweO8ULQATU2UCmqXti5w4Et97DA749bQ2INsOpK9XOi5hdGXo5IdqtPsNpdA4Oj15gxJSJAYYrGqwXOl4Sbcio2cHLsGaFARX0oZUteXEt+btY9cWI5N4rrJJbxJKOmgn/QWTFTvG4dn6SJ8hPjC/xl0NDfK9Co1tV0XA9q3cqf1KVUKVA7pkIZng717+BuBn3esq+vzW//ilMHlCbvPit7OH2d6ItGQFRhF4dCyGBqsq1jBh2R66avdQyBz6RF1kwAfPZ0VD2gQZ2ZiJr5xxW5LtbSzbmgKAOn94zn1l1l+mlT9jaLjuysvLuPN+XXbeesOyGTMrGhpsGfamHWcGr1DNciXMu3/VkRu1nVabJriEgMXgMh/8XdEwfeq0MovTVw/8+illj333KcPX3YACUBisEZ5JEiMCr87Ka9DMsl7kUNlRFpwAAEAASURBVAyZys4QGh5ETmWgDGz/Ks3J2XCcsj/9Be8O0jN46skHlHPkWG2HGuTIELpaBpW6nhwhD5VdYamQZzbMSPBpZLdyxjTwRfrTjglq2zdaN+Agjf1S0qukk9diFFAVZP3UGazv+heQeW8yJOxDsWKMoCzNWGvjdtZef8uiS+nBw7uDOAcD8m2MkpY/+FPW8Lwvunrv/xVAU+rFL7hr6LE5YkR2plRaq4+YXFxDA/hNfFV2e3wvfcDb+ME9ffbg6kUCKhYk9M/+3bsDAQc5GdCjkySU+rbuxK03gCKdfKOfLkaZVlZAW/eWJ/2OyJkdN/XB4E3+0kgDmf7SMnIXmNFPHAwAL/VheMpWYURfoR+zDNKUSHlWB3MwI0D73+G2a+LUSxTIy3fbp8LdjCNXm4z1nUt4ce257735517hpQOzE1OHi8GWMtov2BdQDtuy1zCMwmirYpGco0siyxTp0kJ/XWjeZelNElmG5ho2AZLYlX7qlNJsHEZTnVvWbEvSovJ7TRk6UMY68IIU8JrpRMAYqQvCpXkmNTQmkr+8bX3E0E48DRw9fjNDnbTjP9h2d5+TZyL4otbiRZuGH+wjxDFGNUHYXyMHlCXhL2BqRFHP6xCsbQ9/67K1RfXP6Kq27RCt4ljlW2eUs5zmQXWtQN8IvPjUH3yCe7v3BSWqZTEsbdn8ySdtFSOxzoO4bf+2Xcukk57qZ8ov9VFpbb/RaCQNpaUeprM80qXShrZJO9bwp38b3/T4QWTASGga7ARS4epXnfzVK6e0p/D1K2zKyLoqIDIY+rmKWZqrKzWetP9WHkeXVpZKW2Cmb6eOzMg26SWO8qEyRFmh8aEe+And0S/FX6VC2EkoisASxbggW/uy5uW96SHxo5zGl0d0GjmltXQWz/Cv9CSSqCrbMqaBpgQyyK884ARS+JkJBgoXPdtxpQeDS3MNygNs/dWtBHflr7zp2XltMm+4iCmPJQJp5WthuSWTrjfjl+HowfovdnsWwaPQ22mRgftU/vmHGBoiCLqGJOtaAQ7UrBiZxINkbPyVWaAejcjGlwYgE0HkOCo3/jZ+PBdhabIzyEoBGg+cib8NrQ4GhC1jKJB7DvARDMQbQQfBKzCqBVyWk8EVUjLVYwwWZbQMxKzwDkhDJ694tvfcWyQDfZYbEGBaW+seKpm5HmYlc5smp8OboQ7mc8mRaXOgj2W1o7VD08n0XsYHp9yJbAO2A1fwKGDMWmE0SANA4qm/P94DkR9B5bkG9cKN1MifmVYattZ9rfiLObFIC7QWxtE2rv8HJw4NJ++6lp86h36244ZbwhNr1Z/+8P4QhdxSlHOVpsxMhZYAhD+yTIvIse52wqKXlnpxRkNejYJmeA9BciM8xh38WucQ4Soi5OngxcGNn5d0H2UK0JVvdYVpQe3e8LDvagNb24rgVbqi9IJS6hFWSGUSN+xvJC+BgYd7uR2cRIClog2Ql1l6TUegxbXyN7PvzERqaLCstdVUI1KtFDPESQcvM5AnhSl5yFRfxaP7sx3UjqFNawRJXPwTof50ft46WDz28I6fcElroRTARJPt3SLhUlpnWp2pHYGgVZHVSQqdOdriHdc3I4P+zbWOxpzNM3ce211vskjbtz2pR6r72fGkfdHuUnTTWCyuNE8z7py42nd519Fk0ozzIvBgy1364ZZjxHDPsPzibLh4mbQfp0TUk4s5Ax6sK+92kl5dZv2GhtCPoFXidEAa9KDQ0ToNEGQxOCA9Kp3xs2imkv7WtB2sNFbtRZXJvYet0/PuCzBG4PHY5yxT/5Ugojc5tBQjUgZYENXZ6SgqgBSHnusnDEW3rUfpJ5Lk1dBQByw1RVjKR8KiRHRt2NksZdpqZVjLo91NH1r50OcM7/zlrV6NYAjwcMexnGMwLEsWWiFJYGFMA4PaPzYQKaMvFqLnSUTa8WMLmfUjtoZ2DfSYTMqSBZzzcfvMcsv1N5YLLzi/lHN+WvbYaoOymbPNxG2GhqpdVcUx/WoHfggn1DzJ2OyVP9XQwOGo1MlcGsHMaTPL/Rx69+pvnl5ewin9ZRxWB+lPg1zKgMjl7SNZsdEqS6OrxmQH1B7YljIDN1+0oT1p+InyiF8aSxqW5a1GJRGKIUDZbX/XnPGt1FaxLZ007cLUFaJ0EyeKuukN+3uccCCAy62jGKsQQnO/S2+eznJZa8rOngG7wR2aB+/ymbxRB6yDaPRH9bkVSXmfwT7p7MNdytsTpavLR3ypTBV2ZZQCycFfjMYEtUGJFaCBxH4lWxOUneKmsMLVNkT6Ti7Fc+gPdLUNBcdQQago/CjJtrnmsmqEeFl9ZP11Lv7gZp3E0NEC+u7Soc02xxgDPi6XlnJZsWJ997t+Qurv+5Aoq/hRXJcfyyMZPIS+lKJLg3f0yPS7+EkXaVh10g52f54Z1Ohhi9L53CL0PVuwVfyNO8QFiYa893rBCUlZjQ1yH5D4MWsn0/wk7RMcYcbrOaKsJlYvjmG2/cdYLSj9M0Ci81rKKiv1avta2WsJOrM84OoAq3xF7ZBr/Q+yQM12SIbKFc/80ZgjDOnvCij72YZrL0nnEfIKrQX0R+z81LGXM4hLX2A5lCHk48DQPsQLpboCST3wKBwrO504iFs43rO91mfjd3R1MOmkWIxTFDqfDUe+1W0ArMAT/4YXYP9eF/RbubpEwlmMQVADiTQeyUq5ftfCLeMYJrOGc85PaENRbCcaBDWyO3TQSXNXnMnPrnqOToNf5e9BvheNhkruxGn3AGrveTEyHrQNV7GpM0trjcriZR/uhIATtxUR4oKbMkmYrmwJ80RH6HLtZda9Uy+ryJmuDQKp1jNplY+rc8YZ6ob6mYt+jm/U6aWZMqnp3cqukRKr3yVzPKwEXQ9n3sMr1ZjqKoT0P9An/E2PrQkQzs/Eh1+c8LyK8Fwm2OnrHAfLd4FdM8rKY3BS82IEHHzNNDI32fv01Hb/EENDteww8IKI7q2VVAothbxUixBoLaLRS0K3irTh89czPHSdjAM6B9cqK87+dzVOZQCbtFFQmsbTeIBYClJBW586ZWTbB6gVzXGZzu+HKwg9dLJrrzWg++2v3Pbc7v0RAR/mElfDnfWjW6ZEll/2wTcMyh26OAg2XpSjhqQeuuCktRWWjdBsjQylgrQVlJHrZT4tqXjo2r35t3sNHQw3XoMeGqFsavywY0FPiRAcSSekjFNNSfY8i3IvXWR4Neq0jgSvnmt562edmKek0L+FtXsvUffw9/hbf3Yi2d/ZaCzlEYRm4IF9OhW0Ho/xXpuz1tLaoAexSezwhcjKk5UvO2wohB2dAiaHAUqsv+Ess67d61t9ly4WIYHiyyUdzU1/Z24UtK3/TFqKpv8wOoEUWRRIEMUb/FQI5YslDITkGQ0iWkWdFZAn03eAjJyzCm8K3EoKTY0AUC8ykYvFXypihkmcAfwzy9TSJYYvzZEilW5KXHidZ3AP4mnTHf3wtt3mIi/vaTkaXogiiWDPJJMfba9dsYXccySLe7K7gYa1cN8BV/3wlPb9cBs5OjIYPbh5d2ARUoGXMiWsIKI2lAAhghUEEA0NKl8DGhpQKixfyqOeQxKv5qyf+LlCwYuVI/Xi2RBnwjicD4tFTZLCkLFxQymREIh3HWnEIx0+iKXjZok1IfWLBNZjIia1j/VVXmelDwhl5UuoBExXM6QGVoM8IaLTf/Ea1+CKpWdt2K40BodUXZx2a3HzbtEsjp5EFnZXwgSvErcLa23HCCOpHHlGertSxve/o9kG9tAf85ZulkEZQk2W0Rpd9OioFgyhveF14UfF0LZW+xneRRDFJwWTefByNZKGPG0WDnrGsD1mIVtC7rvjrvLnG39fLuI74Ev4hvmuW3MgHzMoHgY5GsI4MBFA15p7T+Ja22ullxja5lUOPbchh2qC0VIGMfMQ+PdzTb/1tvIAn6097N9PLXtpaBjDF1JANfQEYGR/X4X5uWAHlvZlngtDkYkMvyN/lc36xxBq5lZaRTXPyiv7cV0bPCc8PvwQ5GBaOFVpbQHd3fAufZXRNU1wEEedeRKnF8+KFwcd6bNFAfj2t9I8DQF/lVKdusffdMIRFyMCO02tS6RfUOjeW9bdq6glfo+kvhvYIppY197rW941boi/ZZd+MSIQnlVrKtUMCIZrFNJ1dMhzP4J4uDzZ/lFEAqcLFzd5OP/kr7c/DRUHO+KgztDITewM1lrd9/oH8+HSmd7nbN8gfQwiwBWeeXouTsvD+KEtAfUwYX2qc+zYnOkcdEqLkQM1tUWiaoO3uFu9cR0Cwg0i3buvxjFuc6ZXl200rsi3hLUsAhlMYxhOhASeV34AFJ01PGad9GXSe9av9rPSvYMADOqFDBr6ROq5gO+9rf7BOMo+9ZaRCEJzWYLCZ53HQIiHA1VRVhQZfyGDYHUMvwTnGFi/dCcNCeHp19559l1HUL2MA9DUCfFWV+Ik4Kc/rPn136vuW2Hp34x0MofwYyRKBXeQQn8iWjE+e/mcd+pCXol+M1iA6EfBV35mOTv9qSsfPJPIrd7/Uycm0kQeMnuHQC03abSUc31sJ1mBQViLh/oWeoAiPE35iKt+21BYxCSg+qdGoV5c4dmOycj+reWNd8/pp/PervbuPU6EcYnbEvDumMuVB/Khs+zklHFMDA+uzjGFRgOQVvdOe3FQDZ6+a7wBMUEnXu7WRefk9t5KJLwd28nxrU8bjNee6r1Dd1XP1byl7weXjG+AX2WK+dSrygp7UmWg/ATNRS8Z8BNcW26aEiqtKXHC5JeKr5lrAKfMBGXcSmYrMMbb/mLIbhVJXWWlhPlBG2EuZDeAtBjFKl51dlEYSgNzeKq5/7WhwQIvggHda+OMwGiWOrfGFFFpw/WPipJoteZ4ss5gTBtaTykhvQRvrlWr7z5bqQouFfxaAbVBASL+GTQSECYifjqNLi23wOi/+7w6J+zm2vPQewsPXjYwhJLljdBLI6nl1S8ND4xdNqVyFUMDzKV1zZLoVxtZVz587fCd2RZKSNVlKA2Mm4YctbWGN3y8N7o1nPvD+p+HxvO9pWl5trpcQkvV8GMZ6pLIGncJwtIZoSb0FKDWRxzAbKzCFF5r3IZZNw2273+va/gZ3+d6NWxXBwUrIXWjUmNdSNdcLiHHQfncpXOF1XIQpvCrf16EgHd8IniIW6MluPfY59382r3CqclaTs2v3Zv/MpYrxwpLmxhQQRAugJZBc2cj3ENf24vtyLNCNCzQcTF7oHHBlmeZW97C7b9C/xboXeBe4UfuVp5XRmVaagfxDtcRdziXvJhM4Ms4371S4bYNYPHuOSbGixGIiNk2JSOkQRMfR3Dc0LsdhTOq5jWA5tMGxjXVqml8G5p+6LtxTKu/l8/9/NjgduRIpMTHQ7qqNKhkdUWspAKGij8FhP7wmVqbjjRuG1uGIpDlgbQhJpCoK+hHQVq/UyMP4pLU0pQD+JbbATn4UbZQt8NGaimvPGwBqnGCuMaPRth5ttKlToRIzZHOMjiUUjlxm0061g4B6aFbweyRh1xqaBjDgMs6dybAkfBwjB3DaEOC1SVN3zNYVHYyEP8uyLdVnuPR/TRaG7fJDeGHrSyOcCiC7GJ+LY/48246XcO/vXvXb/FiFEfqQVk1alRXNybAtbj1re/XfHk1vfmaJxTIXX9rwC9IDIsmz4uFIFSDQQ4dk09op9LKHO2xUmvQ0ZVtGUQzQK9xXDuCAYDZI9vMKBTcx+bNL/dxTsNf+KzjZaxoeARDwwu2nFAmsFd0DQgzinhVPapyalDdSQsNru7uzSCOvF2BNIr6930xSmEOCEVxnM/zfdBmBmc0PLDJ+HL4v36rvHT//Tg6hS87qOxSIf10bvSqn9d1+WidUbT49udxRKor7lrs6t1+jeuAwcGq7XrwIoZJCHf2TniZbFCrrt65r/ITWBWe/jEacHfwqWxseWj4sM2lQo04BDXAPMFVPGvURgP94rr0yoHGj1a0/KszWsK6MtrOhmTZe08+ADGtl++gHiff5zKx/gRGF+Je+7Ra/0a2Tpz0cHVcVhR0acRFZVcAwo7c5s0+JpMkFC79Owbg0IiwfpdDRbv8OpDBIfXWRRS6NLdehaVOptNfnM1YfHXpk8HHuu03SCSw+zFdjD48pO4quNDUcqoLOWNuO9Lg5QDFL//IKqb9e13qSD4HX8ClTvSzLMo8+b9udU0R6g+4iE4o3547/Cxn+j2x4LnpuKFvjFdGbBi2RB22Q17NwZjt6mLl1iD40p+s+esnXzqjKw5u9UQc9XI2nXFbWu+y3CKW9UvTnA/V0QPvxIPk8Ivp6gSTfKlbHX7N33vLw+fmmp/39iyg3jMP9pNLlrGtjDrIoDyStJawF2+V9DWs5tEfo/rUdqMmTT7Ut0/tuc2eD0Kv6RPen0cF9Td/TbcUPU4ZJP92Iiz5KSalse3BZqLx3XbT4pmzPKhBQv+68seVC+gDpIvOrQUdZz79l36GBIYvuBpz0H+on+kFknj8tPj6uxpWnVN6jXKLln6ZWFV3gEFIqJGh8jzyizLZJ3goomND+T4rH4AqLZIXsNKv6IePbVk57Z9tuh6C2LBIljVdffybv+Zhau/Jr3vvh0iTTxtXxtTJu7o6Rj6znZjQc6oCiITBEe9UGJ4NduUgo2lu6EWvnEpFe8aGkTPmA3ZeqMPkC1z1Qg1bfqFImFmFrI4VeJEw+D513T/E0JA9sxBTAmkNykoDmchL2qQ2qAo7GlyUAMKs2KaUyHAyo2lcvhTrdJjVRlgr1IFUVToYSIW5K2iVbJ15+Uj9Ja8wsR20gTjvEbpdgx5lB4df0DMCrsXtf25+7Z6IXVzhab0SSmbVE6gaP2jfstymtRxmZkPTGSd+eFuu2lFqkXdJVFUZHSRnORe0yGnvlEB6S+MRHu7WuY4EefM5+bXA1dxb/HYfGr/5m9TnHk0pA6gEfs8f4ZCZSYEYl0tLrOUewWBrKI0D2x/iD83X9H/LddmkEduobfxu84iQhnaVX8hAXKGTWan094QB/v7V3MVXAefKAXgwAwLDutik69UT5TGe6dIhtR4WH13KVR8zKHmCXxfWf6s51bTKM5uI9FUXtpOh+mOIMk1VKH03noqcdUHb4FkejLAWC8tn2+lEniHykQYty+KKGxd5ASWZ2LrShiLkkzw/DqyE5WWpFYTWaf1aRU2fT3saB1BhEm6VQWoBjB9KEqcpmM4S1Gi27drJglacZZZ3zBNxEO8GujcLTudKsZOlyQxvrj23u/5Dn303nZflMk/hyad1ZY+zGJ7RgAfOOjFv22jd2gJPET9wuQtHanh3dtA9evVcDSNRK9BdGMZwH65yCXDUCT4kbORLlA6O8BpM6eoWGevZ+sPKUI0Fgu/i+5D4woyhwZL5wq3+cKsQPXPDUGsBEZyyyG86/XU1pmXBMg8cbSZGyUCFwtOyn1B3phOfVS5fOtjdrb3W/CGEfCH81L3v4GndWycCs8lloEjKFIG44U2CdWbhj3Q0iXCM7wyoMDowUY7tc5RJ5vcEF0D4mmDwVl/4NVj6IGnAHYUQGiiBBwyQmN6taBqTB0GmPZoPSNgD6OPrAMjbbjTQ2j6Ga4iwwMQxjUYKgQn/ET5dOOu2O8qfOKPh0osvKrf/4udlR0I34lqbzEetwzJWZx8XVBREXTVQvEZM2qAsnn1/IShu7EbrlOGctbHyYc4iwUdD03C/oPH0DcpDfHZ6Ju9epn3Pz88qLz1w/zJ2YC2+UgJmABZ3i2hi6aqcsrjhb7zTlxmOC59yb4P8zCTRp6Uu4WPrOHVpeoCoOIcWZCQ/2EZ0GuV7fX6foaEOZu13HMzKx/Bq1z7Eo/XFUVyBL2z9q+5B/DC+/RO0Jx9XG1XZDu7kL74687aMVfbWUvluF86tyigA+CzfEd3Cx7/5GV8/8eQ/cY0nTVu7wjvOuMYxbmjVxZPWCajRaj10z0I0XZaqUw5xDV2ko8BwwaE+pr4c9IfORLDcKTvP9oFte4R+0ikrFoBlMRodO1DVz7rDI/CMYyDwGz+0d71FqEMpeo3wsnUKf13i9t2Fw39cdMv6mBYifZIPxLKeM4EDnFEcxBtbUpeuA52Uwko63lr/YoB1p79xQ2v8TA5LVZlHQK/+OrimiyON2Ld8vAdn4g3eRbajke0G4W/bCM06XjPcLS4xngBEPqxAkR3CNLy7Erf9mDmuu+W5oaifz7J7ZKI6A576i1Fm1SlkdOEOgPE1ils3bQZYIOoIrWzpo4HiosRWbuF1XXtoy2vtX7hbRFlY2M112fXwznsXIc9dhLQrdY9gTH4UoGo3lZfU35SltX33GbfA3zLojFkHsvSh0LXxvqEa2eo5Yq6e9KtXvGO08oDtAVcP4sTBcoqSV4emQU/qWjz5qvGWMBp/Nf9WzeYhvwk9ZaFLEIZ1ZzEc8vgujW2/6n/CSzr8G34B4TuXTly9fG8Xj73wFk+/OCILq7maHiqrjOJiPMRT+RCduY3FLBCuL2naTuJRSGWtrhlJrY/UBR1BzYP6yl+i8SMkZFgH0Tfj/U9cf3zTSyuvxo/qYMp+XeBDV/Pzi1vKEP0kvn1L+MdneZkyy4XC7+nXhHlwoxhbDgbXFXvuWXmGv3K5VprwutLCz/b/StHFjHH11ajpWMRc6p+IPHXdP8TQILF1Nlit1LWR2Ghp0DKRBIUJVVL9U1m3oduJq2BI/NaxC8v9YW7HMI4zti1sIXuChO9neUaRxriAjuBsQsyGOrhNgiqyEsMtsqxMwbIwTwQlXw8+HCA8cPDvovG0+uf+8BZHFo2hASlcLXAoTTRImSMHmnVQ+9P6LJPZ0TThKO0W5QBNP7mF8pfGR+eJf5YsUV73iomr+9SezNBgeMur3fF6gjOert2Nu7r4hjeY/eG1adY0/f4+G2ZHpYDJ2Qn9ETp4EY4ApopXmy/R/lsnSC9Fl3zkwTTmp9VURclnGcMlt7Xh13JUDvS5lsowO6rM6AArn9XDr5aDEIRQE6YRNmqIJK0DZMRAJ92F1lzvGSC9ZwKHPrcy6B8BSF4qA3W/YeVXw1QG0vHBA5nVUdCZGJe08JHliWIC5i5zc/Ypyjylp9uM5VQ6Wd58GcXBqjVFPQUPANlGdRGG/coPfk0IKmxzoE5EoMLUFBYUDLr09UySeKV9GsMoDixsr1X514u/riytjUpeZzGl6wDLfi2nWZgug1z8U/bOX9BBwQfc6p77/frjAEIKhPbClJf8IoRfKXD2wFl80AtMD3IULy3SrqhQjtg/ib/phOVVkfVwSMrmYJP2K97pmKi/FlOcKrVrkoaHIHQNH5+FKx7Nmdb8W3r9XabXcAgeIFIlG4GNuJ1P8jI9aYRlQuHrL/116gSD2OqjTBMmkdF625cOArpmaKRa/L57PPrCE4kfvTJTxUBSfnd1jnWsQcd+w/xbMnGyHeoyADVTEG7FSjkIVpZIN2fgVTzrzFCDMggvgIb8mLcusfkZTFX926/kWQRCKhca7PgwagbmIV4HI4nBxdcerXlDHY7yMRL6jcjIgRjmBdLt06zGN535w/3lkfnzyuw7ZpQ/ckbDb9g6ccHPzil7bbpxWdcvzTy2oAxnpQtLZzgfga/uePo+DDkMnlthH/foI2XlGmuWYXwmzdmoJXPvg3dHl7F8xcU+chEHf3qWgoRcRJ/zKKe5z5p6W1nKwdcfOe3ssu+BB5Y1R4wrCzt8Gk382o7ioZ7PQiDONq3MtSzWn3Eth23GWRtnrZ0lst+NTAVAf7wcDgxdHUw6E5aBQJfe/rXWpRxZ4XpGjvnZHoUTuLz7bFpdwyEv3bvP8ov0UC8xvbKmnitA7fIsjJzdQ1zPn9AlH8KESTbhU/3dW413nEprNZJSd2qpOEiVNKLURYuBUbrYr3geUsV2MLzFMx/1GeGry8uj6g3iq5/xpLHlULZLE7dNONOZw5G7cEAkcdLxWHWPauxpBhmj6ITX4EqTOgDDME3d6d/vjGuKVY0+Q2PV/MSx1WlNJR3pVfC3v2l5Cg+vzlVsGt497+Ta4lR8LeMyZLSEcZAgPOmnC63wiB9AmsHavdmG6YTd8lWG9LveayINhrT4Am5wkolRjIu/9deeA1dghC3Hoi0PKvsyAOv87S9cQRHjDmEVeWGpp1RQDY1e/jWY39U7QTdn2uYUqe6zl3ecQR3oeLaFe098f4grnAbLNuRL+LrzlP9ddahoU57r7Dd1jc8DLz6DsHytesSgX0B2cFsaZa6f17UVyjMaG4yifHCiSf6ynVa9R76rsibwoZ/xYjijc1EW1YGiqyU4pN66sG9ntaCHaHsQuu1oNF+9Mg/La/11KAnyf+wgc9pem5QTpnUYuB1gyyp/Rg8Ezz41rNbFkFzlCftR07UtRz57NbliHJ1ZNPzbvfl773f94cKq7+ZjP1bHcsaPbmyfw59hxvO50b72B5UXjK8TnuHyXTX69Lf/RKGn7PoT65h67cenxmg4tbdV7+ahC59yb3XnGVT2P21cIs9K69SJ8blanUg/r5QZXB3XKTtl+iqzNDQg/0gl/+jcViJnugLEzO2Ps1rLZEZQYQSGq3pNmy0lIFcpV2kj7tI4fJ5fn57a7h9oaIDgSPYoG5DFRr9Kx9JJfYmo4m3l2oHESi0jdZQ03M7aGeh0MH1h7ikVfowPwulo3xjC11RSMuGlcv0qlWSQny20g7PztAk0ODz2XH/FPtmzkZNffmEacqpZDza4DoUeXB9ao7Sx+WxjlYFVyCxz7dQrLJlbuuqvgabmV9MpKBtuf6sMqyDQvQxN02D1x21xhoY9mX9LS/WmTFEcm2ffPcKPOK3e+4L+rsdG1wgC6CPtbLgZJNtwFQgA1yBQGcG68q/Vt0+1AevbGradV6Wq4cTtqyMFROAGtGnBoq8ANUWSJZ9WOU/wr1HyazkMz9VJudBM0F08+sd0knag6UwM6AKTDhyTR3BRIfFPHrTsVWj5riHAZP0rEkwYcBVQ4strCtNBSsmL8Ce8KFmjzJOql85UQcAffDuaBKRhzZkAJ4xUjy9G99bCoIGyQdcs9nl5QqLW1hJaoww+VnS69wqtL7DvseEYHPA3a2cGbWsj4aMOLehfO6g6CJKmxONq6dpd0NaAXVCoBs0tbIxA4cUaQ2nR8h56N0bj2pZ/g9/ihlWM2LnVxbdSWvqKqT6DlzCGOtHVqeA0mL5rna8pO4hqk7rBDKJg6mVM3dB79a2/Jqu0rrN6bf+1dW/7C/sRx3iwd+KaUj4JXAO8cHnnxzC9hGs/kT6oi5OI/Ax5bd6DyOozJJJKcCuu5MlWBHJVUjj77xWGCCI8d4Tz1fhePtuG5InhKaPRyIj/hHV51hhExql+LeXTYgsfXlCm/vkv5fTTTy9z/npTOfjQQzkzo5Tbbrm5PDhrJga50WXS5Clls82n5BDJx+cvKLNZofDHyy4pzzrggPLi3Xcrcx94sJxx8sllI1Yv7LHP3mS6stxNnHvumlUenDu3bLnb7mXrZz+r3HXP3eWXl15YDnvXu8v+Bx1Uxo9YgxUclSSimKKR1nv/cnfLpmyMVGyNmThVJ7CO68SD/VxkKm3Bfq+5KKbKJ/zqVaWw9WhYrUtzrXQUrvnZTo0vTF4H03eApW1zLTdxFa5hyjJd8pFxiCRe5qczHyM68EvZ8DMfvXVGsxjC8oo/7/rpBBmYeas/4QmUXfFug4MW3CWrr6RNmXhLHubTwWvxW8QYD9BrLId9YD3TquLk72CySCXgUFcArVReFZpvxq+rUTraS+cnRgtkYXllgNcK3hc34cRMvfZBWZ1/xbRDQBjJtOYsTs31PxsafDvPNqjIKz8NpV68/rprADsYvtbcakB7zl2AXR41tO+3i9jkROLpR3yT+Njw0EM+iayzDto4zIgE1PZBChO0RNyFbRQvXbvXt5rHf+c/NMz0Gvish+jCIrk612WkHGxRenn3oShZm6GtGbDsN3WNz1u6Bsew9tyMDf1+jZ6ms8UqC0zQWqNp4w/v2z5bOxWGvJTJCZ6rjKjtPrIk7dvUdayhEUIZJQ+rc2tgqzpApLvggmfDNR7/wx9JAanJQ3zqc0D43gdLA1DaExGN21yjXf97pUv16YtKqQZhtnT94f3Ppn6y95a25iC19AllO3pUqbhqet8qrSNjwsNV7vTDyaAdKMrbJ+ZT61XoYrcq/ApldX6D8OtTg1uhABMP823jEnm2Vyc+NwDcWxq9av+iXm0A+PTKZJpqbBBQWxFN6QMsfYlJANxfisFJOXLpyl/zrrSodJbPa7r/rqyi9P93948xNEBgG0Zz6VBSEfg070Yp3h0UarWNcOssn4lHnBZdWD6393Zv/t51gu2/4tn9PFma/jh/z3ND3bj9z763PNpdP93QeEPfa6xVf40zFI4x+v36n1vqvwd2i/tUv1v+Vl7v7bm/XI1Gf+ven8bnBmv196pEJ00DPBRA/3sHpD9q/3N/1Pbc8n2y91UYwUh9eTTY/ff23OD1JUlSk7c8230wD1L34NeHQXjSogse9KzZtHbPWwtqdyO0515+NVXLKm+rhEWumKql7BKYIgJ6MPbQGEPfW8q/5z4ItcbufxduOijuLQ/DBy8NOtIo3dKQWLx23YfDNdO3y5B+eL43NzT//jSD+faqLLiYtj+d7w1+u/f7+axrafoVyxrCb0vYIvUCuofOv0XTt/95aHTfh4LqvT9ZQiI8WdDq4A/168FvAX8vMBJao63uTa4ikHFC8xR4dwm2xecxLkEoy9L2/7L3JnCXFNX5fzE7g+yLwICMIAy7IqsDwgiICxKjRkQTNWpcY6Jm0SQaNX707/JPoolRE9e4EVQQNYpoQJFFFpVdkR0UGLZhHZgNhl99T/fT99y+3ffed39nODXTb1WdOls9fW9317lV1Rpo22MbDVkQGbnDw3TxCdkg3XLt9em///u/0723Xp9e8pIXGdcvfnFhWnrr79Nmm2+Z9tpz77TXHnukDXPQ4f577k1XXfXbdOopJ6clefnDS154XFp6513p//+3f097P3mX9NLjXmB+33Dd9em3V12dea9KBx1zTDp48TPSDb//ffrit7+Vjjr+Zen5x74gBxrmF0ssskX1lbx4AJKnmTBNUz8PDfIR+F09KLYpLRWqWXmbiSb7RmsTzI1FUxtDt6VBXE32uzX01kYj06tl5BSupvRnUJ/qmofxt4lHdmizdiPkP+45t2iQtPLM0il2ueN10tDR28VWVBrsSK/0NEhNCAk/W30t+1r3qV6vO1aKVeSq3iBYD7BIqJKRf2oYYe5N+rLUYEeHaJOZN/nkab48Gr/64YjuJv1eBpvFt7NO9d6gpbfd6/ZlL+nLvRp868SUZVP++VzlumVk/EG7YWQC0lgy5azQw5OAa+s016i5YR1L4xJoKFDKIOVwURGJy48hORTH9BCmxxAZZCd8m8mQ64DKTZtfB6sf+cozpospOJakKq/T/IlUGR4lyVP3Zerw12nQm1L3qS9kxYcO6VHej19yTbnkpMfztNEko9zLTFbZ+zbRfsiW7FgOUYSy0+Ij92VhIprqXlxlcl8Wb6WwIrQUJFw2123WpWrsHcfrjL6ehaS3KYfm9dbLqis31VLkiCJ1TOuSWLaYIQSKWw58klHeke0uOTPma6dejt546ILoH76MkK8zFtgoJLwdX+62NrjWsd/hFQ299UNc8NB7AgxFLk5xkBdcBWdnuCZ/lXuJelk85PJLWuH1ZdXJq5QFpaOiuYJ0GmloxjYFBX3EavoJyFSXoyIOyIfR20dF/aEXF+wVq15veQIgKf5AWe7aWc8ExeS4Z1q7Bc6QoZ4/R5k40/hmpNtuuCmdnAMHl196YTrooAPyVM3V6bIrLk2z8nKH3fbYKz39aU9Pe+6+ew40zEn35UDD5Zdfnr785f9O222zZTouz0x44KHl6Yc/OystOeTQ9Pwjj8wzImam3+UZDZdecmk67XvfTTvttns6+NBD0023/D596QenpLf+1T+k4/7gD9JGG8xND+cZPrPzPXxu9o+gStG92ve/6l1msN6Qk4rhOf3r0IVEQe0gY0wNfHU69breuk7JdKx2KJIWBT+8vl66KEXXZKuiFoUGsnpY47RqA3uzsxLmA1Gm4hOjWqFJ+nq51AJ/p6+FdIdb2jp5gUkrX6EqN6M/V1RXXimSfRpyqtpLuYLq/tbpuqcUeanF8TcXZbXe2kav86lu/Hbvyd9my7MH+vJa3zOnPcgWmr1/vix9yuVHoV9U5Q2S5fVBHOORy4cGa6Ze7VZpY6Kxi7E4xSbT8qfG3l8gM2O6zXyPrhabkOFt09NGR6ay0caE8mFSPwckL2OypXrZLrLYyZtovr1f2av3Zems557Hl/vZ6Ncm/eLx9Sb9TTTJjjX3ttFVt6V2cpWbbEqO3Je7hNRQKpA+5WpW3mRnXaGNT6CB3mZ0mA7CYdMO89Qk22md9ZksUcjrnwg8MFXLNv/JgYe2NGywAXlOQvG4Tk2niHJv6t/ayw9lmJPMI1eb7kHyam+Tl1dt7YW8HvrEPbl53Tf1aSK8kK3Khv+wYLBsEF9b3uRbpbOjRuqKXMoq4R5C1dJT8Mp7GmuEEagtftXvyEu0notDbrTljR9kMWclhV593mSl0F7U9F3ofSj03E5lhTFaoEtSeWEV6VKDnXM4y0ADda8wtyh5m6INyltUFeZzo77vDCJJ2EAGf+WzL1d+V04W3B2p4ndr6fI5ZZ+a+iN/fe7LlXyTMI1tdAn6dim2trKhiyahMu/X5lm9DU+fbuXyYV/u0j0b/4mAv0YsYIWsz4maqvtVKVOGGUwOEnVbWpgHNRZsyJ/zpbfckn529tnp5xddkFbnyMayB+5Pdy67K+2/335p//0PSPvmZQ87L3xyDgbMTstXPJiuvOKK9I2TTkqX//aKdPDBh6TNNt0kByFmp0P2PzA9fd+n5j2OZqW777gzXXbpZenUb38n3bp0adpjr73SPfffl5bec0967ZvenI7MSyw2zHu5LH94pe1HseHcYs8S+tHpXVGbzL/9PlL+NHif6vR+Ovq1df1cjdJ+zP3a5FzdMdF9XtnJhQE6+6lTWz8V/drMJSnx/k1G2b53xdUVc01uFL43tRSw0dLWP0IqTZKVTqbsd4UN8SK3Zr+KRI4OXcsrSWuu6/ZSMKjeKWcJL+QZTOMk/vF+YJZ6mz9t9DZ367rF521knbqzqln5sObgazMlXU3tyNkno6lRgpOdt3R6pC62qOk6v4XOft+N/p2XjUG+tbdz5rtTvd7dOrZasx8di75dZeVY7nB2yqIpb/0gVgxdp2BsHZom0uMTaBDSRHvLNVkgrhkOtpQiz3Cwj0xmKTb0ygjkazfrZYr2GiLIO1JbmXPDg5txG5PjdCfOWMb6x6muVJU3mt6vQ8VRFUbiTpOpSpErdC4BpYQEvTFoqtfb622eT2XZq8uKPiiX3CC+envdfr3dPmQQa4xlVWbreY+aGkHa6nn3B1JaEfblUpmEa7pHVW1QX3S5NFJ9Bjvam0Q6rUXJu1iVhxIsmIoBUue3tYJaaCq+Dz2fzroL1ZmT/UICabSRMzuAVNStaBSo+ZtfBR2Klq6/UtpFHLKCOeSLTnUL2UMvl6+OZx1/C99VLwS9EjlF3jna8PKS6PJ1r4mW7rr7VtSDcV5J4WDxt43ueVQ2YwjUhOSE+MaS11R3qRqrnX66uwyVlcpeLpTnn5bqR2avr+QFdsj1JpqRs71IuP+xEDfr5Gtc8XMvzf/t3pYb7r/rnvTrvMTh6muvS/fnTRyX3X9/eijnixYtSk972lPTwoU7pc032zhvTpmXJubj+utuSP/34/9LV193Tdpmu23S7rvtlhbt+pS043bbp803ybs95hkKax9ekfmuTxecd3668fob8stMZqb5G2+cnrjddmm/Aw9Mu+elGDPzZoePPVxs2pUXoBYO2c6jhaf8JdEnJWi+Ljp5E3+dLh7JtelSe1Ne19HE42lD2dD3qE35UEq81T7luo1Kd26oys3yddFmrm7qAJUFc10xdS+ouvJuE53aoPYOZ1kqjeTvQXF1rTOgUKlzHSwovk085H62RlHvtPpOQUUHO/L4YAN08RV+US/8K67+qsNZlItSUSvK0tBLK/xWe5G39aWjtyqNgLWSGVRo0yknB8kP0163Ybrzn/xfZxaWfib7tcmFuhnRlXdslFZNIP8ZJCgF45EP0xHZGQmvZJT365N952AczsBwXP1hxJ1CT+GYvk1ytyfv538PcwOh1Wk1KO/2u26243fHRkey7FNdqMPaW/LCva3rFGViAg08JJHYcIWHKJZU5EMPVPYpyizMfmAXWNtgrWHH20JJ/ptV+PPjy5wLOx9mkxbfWmmYoIJZzg4UXjRZLjnGxb7XX+gtKcJ7UvvuutTUSe+sY62KtEtOvKpXTLVC1Z4LkjElVUNHoCSJTXmHoX9JGpV37JVyPZi3WKgU9LfX2tqotlRqnzskc73BTqNog6Eu0aGEMlMeKRX/OBUS0i2hN8esuOSCt1uUi8c0ONFQaPG5JMkZgmUp3jU02anEXb9U06+O/zjT8bnjWoeroCFRSBW56up1wSXMlHf0IQVVtgpdXmOl34RzS5OSJpo30lY2QyDQokCOtMkPoreoHSQ2se10Kh/V9660Vve17LsCDXWf+MTyAynLCpmKXWwwWgqVmclIb6ateWhVWnr7HenOu5alB3OA4MGHVuQd41dbUOApu+yStthiY3tThyYK3n338rx84rJ0x52357c0zU277rpL2j0HJdiRvzplWe/yO+5JN1x7bbrt1tvSwzlwsfmWW6YFO+6Yttt2u7Tx5lsUO10WG2oXHyeCDLPygZ92DSiK9T5OSl34YMzjNl7GvX6vs40+Hn6MRvdk9p0+9vPR4zReZetf/pO/d1ztSB0Xeim+tbhGNjniQWsqZxpGLJJIgUCDgg3os8acy5/Ct8KbzpWZ9o6H8Bb8xV/0iNJW7misZKpnj0JmTH87QI5JTdmt0eto9SP3mo7bNXe4s9njhHRXAPZwuM9Tp61gz8Im7/IOy+SU+vg9sQ6UhqcAe/rVOds6gToHQ/RaIp51GBwrHhXquVforzTd9HpNWoze5FtdwNe7hH3DulMen0AD/eUzkJdFsGO77eqap2baxUEg5XY2gGQnY3vlYH7gWZtf42J7OOSnI727eRB0+lFBfKbeTpx/7FfrROdl58ov4oit+Q+ccBqREkBHgD9e2YiUTC7zMG4OhYWY6nnZHZHHgIxT0QBv2RG76ffpVJeSEULdR63dfe1zh84WIy3kgV602RVdD19dwQZpLYx2P1wJvl6HRNFNpciRxlg99zaypF0M0CAtap+EHPOlGeUdLzq973DVfSq56YMV+dM5it4XMtKv3NiNWwN9WvwvdCqXnBKsXzxFL8wM/9fUIqyjQVRONjQNJI3Wr4GKx4OBjulo0ae+57yOkCQJNLApMgy8asuC8FIHk8eA+prH0ooV+Q0UK3n1c37tcX49HjMi5ubX+T5h4w3z6+QKEQINebJCWrUypXvvvT+/pm2F7bC98SZPSJtttpF5vjYHDoj/87qMx1Y8mh68/4H8qssV+f5cvBpxo402yq9H3JB3dRVK7R2NWYAICSse2TiCsl0Hcj7ZyWPjbdOn8Uht+qW7X/tYfRit7rHaHaZv8PTzTzrGO9d9rmfA453x19wmR+Gtg+TrKrvc1Oc/9jn3gQbZ7fAWFO5aOvChKBfewNvhL1pVp9ZpLWqdurSQ2wmQeTGOJh8PHd5ud1d8y3DlVn+yYtNNPkIjTTpHqKKDd1Y2ngGe4VApuEbs80iU9+MtDZffu36cPW3jhb0uOMNg32Szx7FMGBpPGMWsvKawhVzj6q02+VqnSbfyXi3rDGVcAw28w5mHJ3s3cN6ToTpHwJFBtPcyZx7edct7tZnlQKCBIMOwgYZmZDlDOpo5JoaqT0DOR3oRxCH/wZKqkThaffmmou8jcbTW12FF+2KixnpeKhe5rIJQjTSsF93nqZLSyct5dR6qxqIwaoNOj8w4khWrzxtGRmCoxurVdzX5Bl8245nggg2QOiyFlvpjX8fHLiumjT96iJI0GkUrmDoWrG6DZkY7pGadRdsE/TWThU/F344PnT5gu+a3d6dqkix5Psobu5rJVZZ4gU2x6aRoHRwmINAgFytj8qruWWbo4a2Ehi80qB1eeCI5y3PU1kn1vcybukGTzWjIgXfOLIH3+qbIXT1ASZvZ3Mbrb+3IZT46eUukQl/pg3Tx2rRyEoUFGghKlB81sRQfNOJXimERZECIyAQCBBps6UTOa/o7Siaw1ASoNzdWn1r1uwZX9KbHBY823Riq+lYVusxbpU9TL3MDpZ/96j7njSBAXYK+rUG/kSRDxZc9v9NnKku95X2vaNVdRnr65V43ZfnZkpsB2ihw8IXI34MN9MXIVUu98oVEQe94yBW7m1dX6Y4vvlTXXvpRnYPS/Egz1ExEUtdGq7vNr/J8F8hkIyOx06pzBE4a3qWisWI/ArNdrCPpc5fgWCsyLNxVH0LveGBv37tsy5+DNtNt9tr4oQ/sDgxiUt5PYdlWY/WudTX5Bl/2JiSg3LetQ+XxCTQAUj7sXaMsk8hVrg9MCbXzlAnMZihegcm7o/OLu+wnFWTy5RfmMQFZOmDAU/bJKzbPcmM9h78uJx2S9zK0ia5yrnuSxCcyry583neVvTPyXc6o7nlVVn/E42VU9rpLmg08S3qlqixUdckPmVdmKDgl1c0HPbRVjBD6J6emh3FYNaZDiup5j9YJIMjRel6awiU1NVkv2+R5K4sYlMNo5fxHgQZ/XjBa2a0KpXrVlXurPQZKQ9DzUTVTkHzOrai61zcJZTNbOeb8arPteTNP9d0Vv/pBXh75cy4p5eIGlOL1mbRwODlj0mNspktYeUUoRY3f/8kyqKunLprswlQprkusX/VqRgiYOjBUVE6vYWnpvbHlxrxyMLOV9z94M624R5bwc4/MNILx3CNnsOwBYcY6JOJstDMxIufVZTHzsGqxCl5kNkRWFxMoUn7hhMnlW3W+F+f4QeaH1JWIgTDjAidJKDT7mZnvPn5MRcqmB6YG3+piDSyGyUDdFUNdY9UwQYXSY8xSVN5kraFz3tuG5v5998LYa1IgnkG+1f3t14+KVwbLXFVrl2HlECmrrtyY3R+USJFymlUucxPnT/4edG0ICW9OYvcVo/kGlX3uyl0ulvQuGnYglEQrm8HiT53XNfUUR8JbF5bLdfqE1b1Byr5eGm0gdbnj+zsS3kqJFNTzimE9LXiwKPt62eUGUgUGcNEu2PrxIiQ+ylUSMecmn3ORKp6y0Eav89XrrX6poZ7XFfSpZ9E2t0yrb/Rlr3IM5r2aqS6PS6Ch2PQxP4vwpJOfRx7LUzsfzT+x8Ki7QX5AWZsfVjh4+8QM9mIAVAErIMeEhJQpH5OyEQqrA8pr4i3kGtfgamPXPNGXB6sbN462/tXdqdeHcaCuu14vrj5ZU09Dr/aR2h9CZfUh7hk09pqfGIqcLPN+fRSrHMl1sSunSWzKe5iMWRLkKpfFarSDNp+kUblvU9npqvQ6GkWJV7kK0jEZeXbEzDrfao4VLTB1fscqPCtlqs9Mmw5kGS12SRkqBQk5BoGSh1oyW16URanYUGe2JWcE/riUpUyQP6WGnEmioOSaEUR14utzUQEG5fTVwWRdLyFrQsaa1EBF5Zxr82TOj22QTBQg01evXp1tbJBmsz4iJ8b/2FQcnwkHqKKOOsUG7OOTG6Axm+ERiywQ6M/1TFud69yjqef/hY6cU7b9kx5Zk2l5xkW+h8/IQQ97m5RxZYYqpzyJic6QlNPxpuToYq2zOZaOvjqTFzYBT6gzT3Q9O1A339WJ0n6NVheBq8bSqxemumCPEEyTkfoYtibvqMrkvuz9lD5yXxaPaF4FgQbpVC5+lztRR81FNfi8LPtrifjkehd7JtaDDN1Gippkm9pEG4ZHvPJB9UnP5YDymgMt5BrX4GojJiIqH6xm/eIQuMprvWsh17gGVxvhzUTT39BYJ9Xrgy12vpLi7elLJphe19Bmx7FIHb6LXTltYrVcDfVcjF3MleZ1rjAugQbWihJImJEXh/LDB4lrMptLsa50Xt6Mav78jbra1uYnHzBkZoPNaDCp0fwpz5BOCCp00lrVweAFmhgH8NTFu24WTl+dzzWNuNjTrx5CVimaN9yvL76trdzHU2+mzmau2J/slhhlQzlCJY+dk5JuN1Rkct0Gr56/MCSp+rmUpYKr/Nth7iKb6SaBBlpdRef3Zq+y10/7MlR9gLfsl4l5Q6WsPdCUbNXn1OmtOyI9XXRVnH5XRC0c4jIV7g+sxi6GKlcBYVd2skVRxuBRmRZfLjjb/7boR4XUWJ75wNfYvQyNqqtsAs7koHZYxVOKmQpong5Ruu136pJZmQ84lLJd+EmX9Li8VCuOQiO14hraoZcX38qPgtPEO0zZbSo64FEjeeY2AXIr5Nbu/nSoyCqVsqqazoKzINXbxSjb1DM/vnmx7kqpquSpVDoBk5ce0TMjvCQjOXqT/oKz9690kFfXs1KnVJa5WL0SmnDP4M9lm9RnRBqKo3hFdBlosI0bH0urcqDhsXwuZs+ZY6eEwAJuEyAw8TwGItcMBrOBuqyT2RBr8mxC7rO8YprZDJhChfZ4zCstrP5I5p2d+eZlRehb+9gj2V4RjOCzZhs657aZ+ZWXBCgmPeE4SXlRK/42uVPSmtglWok1MdVpxlwSqzIFMZbadIK7rvlYFG8tR7z8rsHVSdbQUU+D/9yJsTSrquVypYvYXanE5L5vbqJVAp5xupSzw5V/OK8O1HMx+dyXa/3x4nZeM4HcRNToZRytKyjgbBgL9ToNPaI5nWK1XPrJISh3/L5oPotPDdRdauShPfN51qrsbfqy00nRcELI8/iy50HApxofTcN+9r2akZQx2ZVKQtXvrsZcafCxi2VQO8x1oy3G7Bx55R5X2WnKkWnSKV7a62VEShmaLDXoaCCJe8R5ZcdLZmKPDfma80oGJl/3OprKmd/0Ol3qb6W0NFzZwERJa1IpmmfJZcS9CrGRw2rsYjBm/pRKKoYOKZfWyTRugYZHc6CB2QvMauABCrhuu+32fNyatt1227TDDgsMPn5UKX65yQ8u+csDlsXmkYpQCEc0jCCV56avxAhVmq5h9PY1Wm/0CnGIej1HZjTOIteQpL6hqTJNm+fz5SY5R6t76nvY0406s9NjxS7hTHH1umi9DnPBXnyuKtV1xnpdjM5Ws12FFgoFnl0qfD6o3fM2lYdxs8K3jdkrlkNljkiBFMud1FhAXg0tpbeee71q87Seckd/TxMEmqVnAKvJw6OjErSWbj3SWTaNOGv0BaX58Dd/u1EVDnksZd6rKT5FXl5c8k4dU57ppYIOJyWdPeSqM0alK8l257m3kC2A8uVSrLrpFjqxogMOeVX0o8uUVWSvt2U4SqeP7fyTYcNbr+wZXLnmnaRRRy76proOPjIE5eGxJYTIUamO/F1kpgF0zWjIMwt4xpk5KwcK8m3SPna5Dkt1ZHndT4sbMHrW5tkQa9Lq/HYKZOfNzxs8ZnkmRBBo4MAsOgg6rFm9ygING2beIpRAK77mGYn8y/pm8m/G7KwGqZEn2WuSVJtyeHzZKiLWFTS5k2nIK/my2C33DU3MotWE6mJqFvto82a9WTsN9UaMNBkuaZ5dZbErb9QpZt8JCeS8qdmzjne5c+0aoNkY5V09l6zrSAlecSVVe3de2fbqpKJCwjciT100r0+CApF6neb5y2ZY+O5bU5PeQkaailrtb7tYjbGh6hTX1bimBsHhSXW9SDbqFmNj4/D2Gjmlu8W4b26UH2di3y7KGZhUHql9yfY15JTKzrD8TnSoYoN+kbx8Zb6psYkqWwASAABAAElEQVQm4UqwJLh6XaxqUoNy6WrKJVTmiBTXlmJLgUKEcUpBNTbprec8BNT0NZlcF2jjEmgAHwIIBBt4GJmXN3okXXLZ5encc85JBx9ySDrggP0NsxUrV9kSCjaMfCQ/QLF55Oy8pIINIqvkH+Aroi/ojEArTkbTjULnyEuOtewtS1fbA7falTfJqq0pH87/4bia9I+F5vviy9Ipr5SP6kKYhb3utrK4ZKuem08SVi5HfS5BaK4skXoOk2PzmnrKdT7pqtMRVFuPEkdAzmT1XRlWCB2lUUR0QPZJ+gsbZYtsKK8GpF5yHMuln20a+wWYB4i2qeyhq6u+ofi+ayqtWvJToOHRuRo0y1bwZ/Dh0EGxlKhw7ToLlWBHr0qDbeKltHXs5j7IfvU0DSep0Ml1tdhyUtJF7msFf+9feAYleuD51KNBcr69Lk/d6x2NTq9fZfRW4xiv1BpoLOyKv57DVtwn8xA/n2vbBBKZvNQQh23pIUzSTTmnRzOvfdZtCoSaOw8q+ZOXgwp5I+Y1ayzGMMs2YkZxbsizGR7JmzNskGcbzpwzFyMWaFhb6ibAsCrfg/nIzeJ1FXnDh8eynjl548d5WU9+L1SeEZGXUOR2ew2nhSB6dnTIWiY2mbv0R9g0mSv7VDXlej8Rsfd89NtsIDBAZ2W7YLWq1CFO2ecwqJ1yWzLTMLYxw1BLuj42iYi9p+/oaBKAnoXQ2dYMy0Ql/O3yFSfUCW/UaDTKS+UdpoIiYdPcaayV4BVnramr2uFBQgcshTVjdsVCa5YymqSVOzGRYOVoaDLd5R+xexrlHnqXL3XuWr20C3WQmLcDL3Xlkq/zQO+X4O/c4do5B/nWJOl9aWqHprHFaPS36RwNvclXaB7f0eiVTFv/phr7Jr+EhfKBH0x10uelsPQrFwvN1nc1KBdDUy6HnG7EmkQL/eV3UwzKpZsbr3SKtg7mYw40CBdyAg1r8kMLMxRWrVqVzjzzzPSv//rx9OY3vTE95znPTRtuOC/vjr02zZk7x4ILxVso1liQYY4PNHBapLgH1IaGfDK4GPiWYc+N5/PyPWZLQp1H8t3We6Xrcr0czRTpb26FOshyu+RYWnx/fLnwqKNZ/ivvOkkdtqJUMXVOv9fty92inRapqOeV3Q5rqQKCuF2xJImdXOVS0DF3KG0lZ8FYpKtOp1FtbbqgI2eHBqeVUFVw4qUVe1LL5bIKpw6YKZdNHf2iGmONQ8wIjzGh2ZLzjXpFL1p7/ja50ETrERwBoe5DdbUx7IVJtspNISMHRTLKMSe/Ci4xiTvnntkExFlKllmdTXXliKpcikBy55QaQQYXaOjyGvmiHwoyFPXCH8Jrxb9On9BYT952va2tLr/b2pvo3g7yvi7+0eiVrHL0MqivYPMNNOZDdpTD4v3hdw2WM/DRYc8iBHitJF/NWbwS2qIGUlzqLPUWZwsNaC+WzXCWFGhgRkJ+UaYtsbCpD0Q1dJrxgukQ+VibP6dry3UXq/L9eGWWw5f5+R6Mb6seeijNzT8EzNtwbvbz0byJ5Gp7K9SsWXnpRrZQWHQ+TkYxd8VwpOttyQOdeYy1xK5JROxdA1gY22ygq9TXxuLtSL94VZcJ1dXuZetleO3gfDYlKSvbTGem9dNtIpmhS3SAAAEqsZB3yTb5NU407HCezJ4cQHfdgS4Gz9jxu+OShIu8m7vDBV0HVPFJGprKyuEqrqC0SaLDh0ynlqUUFSoauv6a7VJxR1MXS1Xp2K9IlW+iNPE4F8VW5LiWSzq6G3trXjcy1JXD7cuqk/dL6ABDr7vg72ijNNrUq7ejCb2yPBYbHY2jLzX52UQbrYW2/jVj37HSJtfhaC/181/YN+mXXD23D1i7uaKlFJLeei5x2KzvXQxUZFWcjqamnHsxX3YspsnqFYPThXoa7blSttbNfMyBBroNNBw88DAdc9k996Sbbrop/fSnP00f/8S/pT95+cvT0c8+Ou2x+x5pu+22s4cWZjPwsKpNpmbyEFQloV4RyrPWQC9PQuey7mTKok5sb8vwlAbLlbB9FqqPVUWuCv1kYUK+jWew753bWJuOypEJKLTZ9H6rrLzHDZS4Rq9TZeU9skbotEpNPa8A7rCWqiCU3BKipSzT6kV8uWKCfxKS89Tcw0U7+3LKcnEpd44NCDQ4TnW/slOAkHXqgUgXv+yEmfXCtbKHlaYm/jpNdeVeTvrqec1sV1W8XcSGirfX0GwkdFVvfKgEMrW8hkESWTmC8qGQd0zGnTkVNDLmHu6OAi/qyt4WKqhLC/XKrpV9kEFluAotXE8LavGYUVxfCw0KM0i3cqTXxyQc6afdpTxcdLhs8Pj7sscH+lp2r88Flk6w3IGlDdTnsgcDsxbQT8pFDWyLAR7ShBn8mSl9ynfex3KQwN48yUZJeSbDGpZM5E0ZZsyZVyjizU85gLDB7Dlw5wDCoznokM1k/pl5BgPzFLhErF2zOr/FL4cTqNDhrLR4M1Su2CsrJn9GA/gYjkDQlKyxu0GXqkEidlnsFrXzUSfpfOj0oLfBbI/YaAnyGxvVAVENUtzghLFkep1VIuQmlhkaxHsFS136PPbT622MtSzfyDlPqlvHqoqzUtG8h0W5Q6mY0FoJd9orkhWgcxTfuu62jnRHk2jFkxlXTiVfLqhcS4tU5NgRxW4HZUU+wEuZJL6i1vlbp9frHc5OqYfHOSLbsuuaOgrGueRt4FtxF2o3It/aOdpbevruWNFb3PscsSx6H3tbR04ZRl8/X7E4qF1ejQSv6Yi976vvc1Wug+nqvu8qKxc+0o8++x6LwX8pK2YaS8tyoMxp0VGxl4VCdyVZfrEzt25clS4V6hrWnfqYAw2ASCLnmYSL8W+vvjqdddZZ+fhp+tZJ30h77fvUdNxxL0gv/aM/Svs97WmZI28UuXJFntUw22Y2dMHIiRTBTqqx5z8VUYQitwGPLumFH+LsZizZm4g1mu9Tky61q62w3vGwps6qkmlqG+w1lzpZ62godHbo/W105Ma7VLfb8aiwNKju/anr8nVf9jIFft34y6by6u4swbqyijEzuLLYlCPeKTtG6W3Ih+PqFuzY6Karhs7iyJx15nq97kBZh82z+rL0Y8/YfSNEqPl/XYc1Fa0q9s3ran3dl1GiuvmT6/W8nyHx9uOhTTb68aGruuJUN55MrYKehXSbrkK+tGBM4lQu695r9Ive66cklXc4i5JEOzmcenSmLEnyqneZSrlzoK0eaIDWlGSrqa2NJi/a2j19ovV7W5SxZ4eHyzUM63sxI6HAkY2U1/BWiSzcHWjIhPx5Qie7JNizRzaOrA80cM/FpxyywJPMUOSP5hmFq/JGzLPyfgpz5j/BmtauysH9PGtigzyjkCWOK7LdDXLgYW6uowPJKoSQZ1nwYwBviZphSyGzXT4uNiui4jK9k/WnCgiUXa3s4nxD0vMaTf1EKr0NOirB0sYwA+0Wd5q0d9HqPvpGdNoBk2dsMWYsZZtnl85KLDdWZTUq94KZaZi+S3S8c3y0w/tUN9LVkV7GXkqXgGnr5Snghu4PmZYG5dBVLvJCY/FNLqTU3uH0UgWP/yuflPu2ermju9PSROu0FqU2HtkkV7kuq3qbDrU35YN0IoPe4mjnbm9pstpN6+c3ern/kcZiwxSM8U8/P6V6GB54R9IXdPrPr2wpH4kuySjv528/7L1cW1k26rn3t60sneTWd8+IwnpdAjJW1mETq3LPUugvKXWGirGuXA3rTj58oCGDYA85XYP/3NH8MKS3RqzNbQ/laZcXX3xx+sY3v5n+Jx/333VX2nOvvdNznvuc9Io8s+GA/fc3dFblX01YYjGTN1XoAT3L8wAEHRL7N7DUYlb+tWUG00ot4Uh5cAGAMR+cI+PPbUwDnSmdmc5yDjbGmpkfqngzRtlUfAIQLxSbDh78aMcPduGmjTWv6MMGfaSNhD7SWuPLvwCVuqt3oZuhQvtj+SkNWZL1zz6+GdFMwzcwhN7xxljt1y/fjgp0FZroOlipB4XMZP6VH3WbTR410epyqtf11uvi6+QFh7fhy8Y3WEmhzgnWRTp1x9RxYqgSktLjtYg2jBLJWV5+roaRqz7szgfk6ra79EtxF1PmyP+7SOIbZd6kq4mGevlXL4/S9IjFOjfe7CFP4OZQ4ZX3mbL3VYa6aIPOX8v329uR3iaa2rzNwn9xk6tccHco6mknV9DT65ONfjn86JVct8V+ksO1ef2yM5420G++S6mM4F7ZKTUN53HmygJr86ugyXU/MVmn2+42WT/33yKRF4d8Ks0XdJryPYllEDO4P8xk/6PMwX2LQEG+b3HfYakjN7sZeRkF8ohxB7KU2+y+A6HcGwIGHrq555Dgn6xk/RuJwRKQYUSG1p0Z0TeMziZcsIOs8iaeNpr5iOwwxkvmEbAO1SkFbobR29aP0dIH9l8MXQaaPS2ojQJd0qrAr0O0et6kraB1fGjiKfS0t3g7HU2e2lseTlu3XD8Z2VXeLdm/hl7kpH+0OrCiOxDltjQS/fKpTRf06RJkkI/D+Cze8cynBnt60G65CYsmWhMO9c9JvV5Y7nxubczZpKiJ5pzwen1Z+n1uqnqYnLImW+sIbahAgwbONiiuPRR3BsgprcwbPS5bdnc697zz0oc+9KF0xeWXGwwLd945Pfuoo9IrX/nKdNBBB+VfUObaQ44g1ECZATw2eOCCtiYHIx7N0zsJHMyyX1WyRG4v/OGM5Hrmg5caez4UgYkcaMjBCfQzuDd61m0BCIID5cnMYpbUv6JW/H00BzhWM4U0V+dkf9m8EjF85AGOxCaWJNULv+EpDOBXYSP7l/14ND9Q8pCuQEomGR2d8BaBBtyzx7miXzmogC/oqR7wSgzQiQybdJVdUdeqOv7hjdqp++Tb2sqe35fhHya12R5GdlgbdV2tNgEdMCvFFHK9S6CkOaUVu6NNdbHLZe8MfexKZf/U96qt6GcxgOnVVlBqWJjuUl+lpwMnMjUJx9VcrHvbzDVyqnxBUmXyttTmd92/jg7f0qFKv28VrZdLLTm381PWzZm+3E6wg38XsaHSrdF76MuFYEEpJHwr17DHa6p63g1IBQfkiqeijr3gzXXOdofabLOkVmy5DqnmZNXc6LtvVT+aral1QvMmdzDYxyWJiIW6ygN9lbCz4UkD5ceRofLZO1ARhzM0sO9iaLHhycNZHD+urq7KkS7i2G2p+9IkM9R9We0+b3ZFGgvpbp7umtfly4Pset6mMlbkRVP7MLSx+jCMjX48zUg19apOk+d1DXU+WRddeUGXFnFNl9yf226P+3voeVVu62MduQ4izS3Dtdf9kxfQO+U2n7x0Py88X708Kt16hu4Slr85twGfGouzUwSrRMOLgl6UOmWje/2j7Vi9o9Og3hpo0OBbuXxlQOyTrzOb4Y477kjnnntueu9735tuvvnmivXwww9P73jHX6XDDjs0bbbZZjboVyMzERisM1BXkIE2bDNbwJKzWwzgO4P4gqEY8CtYAU2v29THQAN57KGbN12QP/zwwxZA2HD+/K7gAQEK8SFrHxU+COjO/qAfNGymQqYLC5u9kIMNyEIjwEGizqGkfoiO7xUWOVAyN+8SDg/t4KOABPrES5CBevdZkYXIA4F1GwF9W/h8q0yP4vM+nufVI9urt2jtRbyX0isblPFHoHO2ikeYdgs6Q0io3Mw9mKNZLqiBwOMBgc53bnBv+abF92kwTsERCAQCjw8ERhRo0MC4DZply5alG264IZ2XZzR85CMfsaCDBsrIfOITn0gEHHbaaae0xRZbmBoG0QyuORj4+0E5siQG2RyF/bzcgqmeZZsxuD8agGtQzoZbMxmIl/zYUwBhTt58i/qDDz5o+jfaaCObbYE6G9xnn6rlDlnelimU00gLX7of3pCRLPblM31SkAMe+oq8D6oYPxt4la/8RGbevHmVHDL4jQx+q5/oFWZmPP4EAoFAIBAIBAKBQCAQCAQCgUAgEAgEAlOIgAUaGPxqkKwBOblo8k9t1CVDzuCX/MYbb0wXXnhhOv/889OJJ56Yl1Ess0Hxaja7yum1r31tWrx4sR277rqrDZAZQJM08KYMP3QG1AyiKTNox44fnMsHZOu+MRB/jFkF+Z9kxC97GvxLv+gEPNAHvwU58DHXFTBQAAG9JPhIlQ+5ys7i8KmNvShYzgGN/sHLEhJyaJKHH98VEscGfkqOOriQjC/n6ocR408gEAgEAoFAIBAIBAKBQCAQCAQCgUAgMIUIVIEGP2jNw/a+My0ZDGtATM7AnHTJJZekb3zjG+mMM85I1157bXrggQfsV/mVK1dW+QknnJDe8pa3pEMOOcTkGHQzeNagHT3wM/hnII5uBtkcnk8+kDNYrwb5Wd7KebDPnggktaOTRMBA/JInxxdybMofghWr8nvGoeMPg3rpoYwesJMNrxe6DnjVF/pHnRkLJPQh52cmYE90fEEPdeS8/6Yg/gQCgUAgEAgEAoFAIBAIBAKBQCAQCAQC0wSBKtDAwFYBBg2W+/kIvwbRCjT84he/SB/+8IfTqaeeaoNqTfUnSMDgmIHyAQcckD7+8Y/nvRoOM/W0KWngDg39DLDlC7agkVSmHRn5Qs6BDIf0UYaOfXJ8oQ07HOiDx9uTPPyr8qvCSMwkQI6EDPrIvR3K4kFWh/TBDy7wCLdH1jBjogiAmPLyD7zIkyPPoTq+ckQKBAKBQCAQCAQCgUAgEAgEAoFAIBAIBKYTAtUeDQxgSQxmlURT3bdB84NeBsNnn312evWrX51+97vfmQiDaejkyCqocNppp6UjjzzSZgigQ3rg41BSm2jUFRigzECdNk/3g3IFFNAnHnLoJAIFCjagRzMW0AGfdMNHQk4YIKfAhQIe8NAunqY6er2P8FidME+5/wM80kObAhPYZ4YFdvHN3qzhzhe6IgUCgUAgEAgEAoFAIBAIBAKBQCAQCAQCU4lAFWioO6EBMQNdEgNfBrcc9cRA+L777rO3Tfz93/99uvrqq7tYkGGQzNIElgv8y7/8S3rmM5+ZdtxxR3sDBczYI/lBOnoZVG+44YbWNswf9CgAgE3vL20cosFH/6j72QzeDvzyCX4ODfznzZ1ng33Pj76VK1baHg3aY0L2aFMAwcuorOAFNvAH/ez1AG7oILCC/CA90hd5IBAIBAKBQCAQCAQCgUAgEAgEAoFAIDDZCDQHGvKYnwEuA1oGvyQGuhqQU/cD8DvvvDNdd911tgnk5z//+fTb3/4WlioxaOZgwMyrLV/60pemZzzjGbZ8gk0hfUIvicH8vffem5YvX554GwQHiXYdftCObwQWsEOijTK5dFJWgkb/SMhSZwkDb32AzmCfvRTQ8YQnPMGWTYiOb+giaELul1bg/qpVK41OoMHPukBeviDD60CxjX58J6Ebu8ipzwpsiMcY408gEAgEAoFAIBAIBAKBQCAQCAQCgUAgMA0RaA40ZEcZEOvAbwbUOqAzaKbOgPzXv/51+uEPf2ivtbziiivS73//+6qrDNT9AJuGBQsWpBe+8IXpNa95je3ZIGb0MthfsXKFBRluvvnmdNNNN9lgnEG794cyQRByBusEMJghsf3226dNN9k0zZ5TbFCp4AA2NMMBGgn/pZNXXN5+++3ptttus00sH374Yevblltuaa/j3HbbbdPGG29sAQdkGPyvWb3GZK789ZWmb4899kjbbLONBSDwF/34RkIGrFasWJHQfeutt9qGmfPnz09PecpTzG/6AB++4CttJPnrdaE7UiAQCAQCgUAgEAgEAoFAIBAIBAKBQCAw3RCwQIMG2zinwWzlKBMMamNaTfFHjl/mzzvvvPSud70rXXllMeCWLEEG9DEor6dnP/vZ6b3vfW+1KSTt6IOXgfhdd92VfvOb39gsCV6becstt9gMAPZR2HzzzdOmm25qeyow4KaNAAPLMZ72tKelhQsXpq232tr8ZpCOTnQz+PeBD8rQ4WHpB3rowwUXXJBOP/10m1Fw9NFH2xsy9tpzr7T9ghzEyHZJ+EhA5dJLL00nn3xy2vaJ26aXHv/StPvuu5t/zEiwlPHLIRuzgR3kmKVxzTXXpHPOOceCD3vvvXfac88905Of/GQLUoApuKEDH31ijwZmm/gghm+PciAQCAQCgUAgEAgEAoFAIBAIBAKBQCAwlQhYoIHAAQeDV35JH/RrOUsgGAwjw8CZQMPxxx/f0w8G5fyCD389veENb0h/+qd/mg488ECzySAcuwz8SSwrYDDOmywuvvji9P3vfz8tXbrUBuN77bVX2nnnnS2gwGD8wgsvTCeeeGJ6/vOfb5tMHnrooYklGSxJoJ1AA75q4I4NDh9UwUf4brzhxnTKt09J73//+80PlnnwKs799tvPZh488YlPtIAFgZD/+7//S6eccor59ra3vS296EUvSosWLUqbbLJJ1Sfsqm9gq8AGQY3LL7/c+khf99xjz7Tf0/dLzJzQkgz8IdBAgETp0UceteUdCkQMOleSizwQCAQCgUAgEAgEAoFAIBAIBAKBQCAQmAwEqkAD0/pnbJD3OZjtAg3lr/FyxAa1mcY+BgQaGJwTSGDzxwvOvyDdvexuG2ATEFCQgMH9sccea4EBBsccDMSf9KQnpf33398G7/BoMO4HznfccYfp5pf/97znPeYGsn/4h39oMxcIODAo//nPf57YhJLEazNf+cpXpoMPPtgCEQQ7NNgfJohCAOFrX/ta+qu/+qtK35IlS4pZDdkesynoN33+zGc+YwEOggxHHHFEYmYCMyvYvJJ+0ifZVmDAlOY/4HbrLbemX138q/Sd73zHln4we4I+sQSEfoExgQbwQZ7EeSIAQV3LM6wh/gQCgUAgEAgEAoFAIBAIBAKBQCAQCAQC0wABCzQwINZAX1P19cu76AQAGNyS08YAmv0ULNiQ91TQdH/oLD/43ve+lz772c9a4OHTn/60LWtgzwENvun7FltsYUsR0ItOHZUPeZkAwYszzzzTlmbw2kz2M3jJS15iMyH22WcfW96gGQ8//elPbYbFUUcdlViaweCfQfswCdv0jeAGSyHe+ta3mhh6jjnmGAtcEARgoE9gg1d0fu5zn0tvetOb0mtf+9q022672cB/JG/IIGBw2WWXWcDii1/8Ynr5y19usyLYKJO9HsABn8AMjDgoW1AolwmcRAoEAoFAIBAIBAKBQCAQCAQCgUAgEAgEphMCFmjIWwjYPgI4xsCWxMCbQS0HSQNdtUOjjcACv7j7xN4KzAr48Ic/bGT2O3jOc57jWarBMnqVmuzR9uMf/9hmGLDpJIP9E044IS1evNiWM7A84pe//KUFNggAnH322aaOpQ9//Md/bIEJgiAs8UC/AgqyyWCdAIj6QKDh1FNPTW9+85uN5QUveEHiYO8HlmssW7YsETj55Cc/ae0f/ehH05/92Z9Z0ASCbGnWAXgpWECAgFkIeosF/Ow/8a//+q/pP/7jP6imv/mbv7EZGwQumD2Bf8ihg8CDzgt1j50Jx59AIBAIBAKBQCAQCAQCgUAgEAgEAoFAYIoRKAINOMHWCLVNHxnUctBA/IHBrU9qrw942XuAPRMYhJOaAg2F3o5O6ugnZ2BNUICNHymzFwIDcAIYBBr45Z8lEgcddJAtU2CPiC984Qu2VwRLNrbeeuvEcgaWULBEg5kQvHKTNz2wNAIbvEGCtzwwQwKdepUk7ey7oEAD+y7whgwG/izDIBDxP//zPzabgb598IMfTK973etsbwV8ZYNIAh/XXnut+a9+EpAh+EDA4oADDjB+5OH7t3/7t/SpT32KqgVHluSlGvDssssu5qewoZ2y6vXzQXukQCAQCAQCgUAgEAgEAoFAIBAIBAKBQGAqEegEGsbRC97EwGD8Yx/7mGn90Y9+ZMsPqBBAYIDsB8kajDcFGliaccYZZ6S/+7u/S7w6k00eGfyzB8PTn/50CxAwi4FZBj/5yU9slgMzEGjfd999LRBxySWX2KyI//3f/7W9FZhR8KxnPcv2QTj88MNtA0kCDsw2uPfee9M3v/lNWxKBvwQZ/uAP/iBtt912NluBTRxZNsHrPFlWQTDjuc99rgUhCGSwjINlEPD89V//tdnntZnMtiBQ8hd/8RfpT/MmmGwaSXADfehiqQmbWuIbb8/4oz/6I5u1wes165gp0IB/kQKBQCAQCAQCgUAgEAgEAoFAIBAIBAKB6YTApAQa/IyG+qDZg0GbDzowU2LlypW2R8P73ve+9Ktf/cpeW3nEkiNshgH7L7C0gD0hmIXAoJ23RDD7YY899rCgwXXXXWcDeDZcvOqqqxJvpDjyyCNtQH/++eebfgb2zI7gzRIsffjGN76RXv/615trbNDIHg0EAG6++WbTQVCADSmf97zn2V4RBA0efPBBm7nxrW99K/3gBz9IH/rQ/5eXeLzMZiQwowJbBBnYf4GNJpmxsOMOO6ZVq1el66+/Pl100UXppJNOsqAKhr/yla/YWzRYPsHGkfQzNn/0n5YoBwKBQCAQCAQCgUAgEAgEAoFAIBAITEcEJi3QwGCdGQttgQYCDAo0aBNEAGNvBTaD/Md//EfbOJHlFAzSec2k3szATAeWTJDYl+Hd73637afARovs78CMAWYUsIkksrvvvrvZImDw5S9/OTFr4P15TweWZKCfAb8CDWwoSWCCoAdLOLQHxJvf9Ob04pe82N40gS8EE1gqwpsoSJ/4xCdsVsJWW21l+zrgHzMu0MNsC3wg0DBz1sx0//33J2Zd/Od//qfNpkCePRuY1YBvBBrYQwLf/EwQ+CIFAoFAIBAIBAKBQCAQCAQCgUAgEAgEAtMJgWkRaCDI4Gcy+ME0MwUY4P/lX/6l7bHAPgmHHHKI7b3AXgzsfcCSCJYlkJhl8JrXvMZeM0kAgsE9swwOPPDA9KpXvcqWXjA74O67704s6fjSl75kcizN4E0TzFxgRsMb3/hGoxNkYCNLBvoXXHBBFQh4y1veYrMnePMFwQCWTfzzP/+zBRgQJGjBLAlmO7DsgqAIszPYeJJZCuwRQeCAfhNIINBAcAHbJAIVzJrYdtvtcu0xm9FAkMJjY4zxJxAIBAKBQCAQCAQCgUAgEAgEAoFAIBCYRghMi0CDZjJoIK3AA/Xly5fbcgICDWy0uGDBAlvKYDMC8tIJButLly61vRfYH4G3Qjz/+c+3t0Dwlgr2iiAtyRsssqyC5RYM7JH5xS9+kb7+9a9b+zve8Q7bQJIAAHs0aDNI9mFAH8sWCDR89atfNf4///M/Ty972ctsRgOBg3vuuSfxek2WTRA0YJ8K0hve8Aaz/eQnPzltsskmiRkObEKJPhKBEpZrIMObLBRo4E0U7A2xww47WJCBWR42G4QdOxs25jRl8ScQCAQCgUAgEAgEAoFAIBAIBAKBQCAQmGIEpmWggbcz8AaHDTfcMLEZpJZOsEcDb384/vjj0/7775922mknm02gGQosk/jbv/1b2yRy2223tWACA34CF2wiyRsfGOyzVIFNH1mWwUAfHpZmvPrVr7YZB8yAUKCB2QxsLjl71uz0s7N/VgUuFGgg4EFwgqAIAQz2i/jsZz9reyxwbnlzBDMbCDQw8wEf9txzT3szBsED7BNMIdDAhpbYJn384x/vCjSgH0xIzGrwhxHjTyAQCAQCgUAgEAgEAoFAIBAIBAKBQCAwDRCYPoGGtY+lGTOLpQEEFx5Z80iav9F8G1wTaGAPBWYUMEhnHwY2VSTowLIEBuHMCvjud79rswzquGpALzpBgp133rna94BABIEAAgIM/H2ggaUYxx13nM0qYMaCZkiwdIKAB4EG3h7BzAoSG0ay1IM3ZRAMYDNK9oogLVy40N5EwXIMygRSmKXwwAMPWKCB/R1OPvlk4/UzGli2QR8JwJAoR6DBoIg/gUAgEAgEAoFAIBAIBAKBQCAQCAQC0wyBaRFoYHDPgJuAgH65p87yAn7FZ9D+D//wDzYYZ2DPAJ+3Rzz1qU+1TSHBlGABb5Z48Ytf3BfiV7ziFbZEgrdSMKMB/dhh0M/+DMx0YDNIAgkkZjMo0EDA48QTTzQ6wQo2a8QfZkkQ6GBDSGZLoG/5g8vT0tuX2t4R7AXBjAUSb8/gdZgESVhCQcCAfSguuTjPaPjMp6s9ID784Q/bHg1PetKTLIghXMjBKVIgEAgEAoFAIBAIBAKBQCAQCAQCgUAgMB0RmJaBBoAi+MAg/L777rOlE+9617vSjTfeaJtAMvAn0MDyCfYwYPB9xx132NsltOSB11IymGfQz4wCZiOQXvva19ryCgIE7Ofw0EMP2cwGAg0M/NFDoOHtb3+78bNHA7Ma2MSRN0cQMEAXeniLBZtB8tYJAhQEIu666y7btwF+llLcdNNNtiGl3wviJS9+SVq0+yKzR0AFWfaXYMkFwRISsxuwy4wNBWDgJYGLcpWNEH8CgUAgEAgEAoFAIBAIBAKBQCAQCAQCgSlGYFoEGhhAc8ycMTNtMKMYRDNDgSUFbADJwJ7NIJXYnPHggw5OBx18kG2uyMaObPx4zjnnpNNOO83eMMGsAZYoMOD/9re/ba+eRJ7AAbMVtt9+e1vWQCCAJQkspVi8eLH5wYaM7NlA2nvvvW0GAgN+BvV33nmnvanisMMOsxkNBDvYh4EAw+c+9zmTe+UrX2lBEJZ5EGzg1Zpf+MIX7E0XBDD+5E/+xGT0Jorbb7/dAg28AYPZGy984QstkLEkb2DJbAmwUUCBAAz+UmdvCoIsHJECgUAgEAgEAoFAIBAIBAKBQCAQCAQCgemAwLQINBBU4FBi4MyAmsH79ddfn84//3xbssBsA2Yw8IrLhXmPA4IALHdgA8bTTz89XXvttTZIJwjApossj5g5c1Y677xz0ymnnJJuuOEG25CRdgIQvHUCGQICvP6Sg8SbIwg0sIHkU57yFLNJmYMZEOzTgBxvnXj20c9OhzzjEAuKfP7zn0+8JpP0pje9KT3rWc+ygMDll19uQQ1keZPEUUcdlRZsvyDNnDXTZlAw4+Lss89O//Vf/2Wv7jz22GNtxgZ+MSNDgQaCCyz1YA8Lytq7IQINBnn8CQQCgUAgEAgEAoFAIBAIBAKBQCAQmAYITItAAzgQaGAQTYBBmzeytIEZBwzEzzvvPNsHQZsuMgDfYostbCDO0gMG8fzSv99++yXeFEFQgAE4Mwp49ST7JzDrgQMd2CPwQDACft5gweCdGQvMQCC4gX540bHXXnvZ4J+9GL74xS+mL3/5y3b6CA6ccMIJ5jObQJ511ln2Fgn6wJsv6M9tt92WttlmG1vKwb4S+MZMBRL9Y1nFe97zHqsz44E9KJglQRBFvqIP/wg6sFEmMz+Y0QAtUiAQCAQCgUAgEAgEAoFAIBAIBAKBQCAwXRCYNoEGACHQwEGAgAE1r30kSMBAndkMDKoZcNOmJQQEDBhwE3ignf0SmOnAfgu0seEjdHSxDIODoASzAtCzYMGCtO+++1pQgY0cmUWBLexqpgABjK233jotWrTI5Ah6sJcCSzJe9apXJTaGZGkFgRH2lGBzR+yS8JM+Ic9sDJZsbL755pVugigf+MAHTBf7PrD55IEHHJi23GpL89sHE+iPEr7JP9EiDwQCgUAgEAgEAoFAIBAIBAKBQCAQCASmGoFpEWhgAO0H0YBC3X69z4P0FQ+vSKtWr7KAAgNvtRMAYCAPTQNyAhEsKeDQr/3oeuQRBvxrbNYDctAYqBOgYCNI9ofABm0kggPMZICPvRSYWQDvypUrLaDAcohPfvKTtn/E2972tnTMMcfYvgwEEQhk4Dv2C9uPmH/Sg6/oJyDxq1/9KvGGCfaIYO+GhXlJCK/L5MAe/SERGME2suiJIIPBEn8CgUAgEAgEAoFAIBAIBAKBQCAQCASmGQLTKtAwXoNnBSgYlI9EJ0ELggOSQQ+BAg32OXcEIggS3HLLLemiiy5KZ+WlEhxvfOMbbQkFsxaGScyeYKbG1Vdfna666ipbTsFmlCzXwK6CJdKlQAN0Ag0Koqg98kAgEAgEAoFAIBAIBAKBQCAQCAQCgUBgOiAwLQIN4w0EwQHSSAfjyHFskP+Rcs10eD1assHSCGYYsCnkqaeeasEI3hbB8gqCBQQETEepk7ICGOjgTRkEGNCx1VZb2YEcMxmQVXBDPinogQ7f5n0zg/EnEAgEAoFAIBAIBAKBQCAQCAQCgUAgEJhCBNbLQMNY8GRgz6CepAG910c7gQJyZkywnwNvr2APiN122832YWgLNEgP+rVBJTbYV4KNH9HHcglyJflDQEEHbdA5PE0ykQcCgUAgEAgEAoFAIBAIBAKBQCAQCAQCU4VABBoc8sWgngF8EWhg9oBmIYhNA3zNMOAtFOzJQGI2AssaCB7UZxrAz5ILEoEE6izD4Hg07x8xa/Ys2weC2Qx1WWySPP2xtUVAhLdP1H005vgTCAQCgUAgEAgEAoFAIBAIBAKBQCAQCEwBAhFocKAriGAD+zy2ZxDfOGMgt63NwQgFANpmPvjAAIEF9lmAxqwF30awgkSQwQcNpJ82W87h3mSJPmZWwN9kH5lIgUAgEAgEAoFAIBAIBAKBQCAQCAQCgcBkIxCBBoe4Ag2QKCsY4Af/Yu8KAuTggU8EAZCVPG3QNKOhPmuBNpK3432p64K3CjRskAMNs4o3U0CPFAgEAoFAIBAIBAKBQCAQCAQCgUAgEAhMJQIRaKih7wMIPtjggwY1kWpPBwUKFDgQH7Logk5ZMxBUb9JNm/SgFx7Pp3avT/YiDwQCgUAgEAgEAoFAIBAIBAKBQCAQCASmCoEINAyBvA8+wF4f8LPPAklLIhRUIBhAWYEC5fDSxtIHdPnNH2mTvNolR64kHuQ9Xe2RBwKBQCAQCAQCgUAgEAgEAoFAIBAIBAJTgUAEGoZAnUG9JbJylYSCDQQMtCSCgIEG/ZpxgKyCATPyMgfJ+0DDzBl588i8HwQJfh3wkNoCDdaY/8gX1SMPBAKBQCAQCAQCgUAgEAgEAoFAIBAIBKYKgQg0DIG8Ag3KEWFzRh8c8Go08Pf8tKuudpMpN5aE5unwEmjADv8VbPB2ohwIBAKBQCAQCAQCgUAgEAgEAoFAIBAITDcEItCQz4gCAJwcP9ivTlYOBuR5Bl184hU/OljqQGp6vSX0+iwHLZmQnGZDwEtq8kuBh4Ij/gYCgUAgEAgEAoFAIBAIBAKBQCAQCAQC0wuBCDTk80EAgEG9ZhUoeFA/VX7g79vgJ1jAXg2U66+pFC92WGbBQVBh7ty5xg+dVA80QJNN5dDMz3KmA/VIgUAgEAgEAoFAIBAIBAKBQCAQCAQCgcB0QSACDflM1AMNnJyRBBvgVRCBMjMVyAk+KEBA3fMRVNBrLj1P0wdD7crR08/HJh1BCwQCgUAgEAgEAoFAIBAIBAKBQCAQCAQmA4EINGSUNYCvA64BfZ3eVkePZAg8rF69unqzBMspNNNB9sTbps/TJeNpI5H3clEOBAKBQCAQCAQCgUAgEAgEAoFAIBAIBCYKgQg0lMg2DeRpGslg3i+B0AwH0Qg0aKYDtjikW3ndB9F18n17vU08kQcCgUAgEAgEAoFAIBAIBAKBQCAQCAQCU4lABBoa0PcDepqHGdQTUPB7NCDTpEcBCPSyfEIHddpy/CGnzn4R2Xq2Dy1SIBAIBAKBQCAQCAQCgUAgEAgEAoFAIDD9EYhAQ8s58kGC4QINvHXiEdOmmQtNqgkm+LdMEGiQfmzW7aqtSVfQAoFAIBAIBAKBkSKgew1vMdJrmqWDNuj8r/jKPYbEE3kgEAgEAoFAIBAIBAKDEIhAwyCERtCuIMGg4ID4UD2IdwTmgzUQCAQCgUAgEBiIgALe3H/865jrgQXxERCHL1IgEAgEAoFAIBAIBALDIhCBhmGRCr5AIBAIBAKBQGAdR0DBBIIIMzbIy/dmzqhmLqhrBCA44IVPwXG/1E+8kQcCgUAgEAgEAoFAINCEQAQamlAJWiAQCAQCgUAgsJ4hoMCBAgnkJIIJjzzyiAUXmLlAQMEn9h/iYFmgXsvs26McCAQCgUAgEAgEAoFAHYEINNQRiXogEAgEAoFAILAeIkBAgYOk/YEINohOGTp19hKiTOCBsuoEGiIFAoFAIBAIBAKBQCAwCIEINAxCKNoDgUAgEAgEAoH1AAEFEOiKBRXKpRPWNd54VL7haPXq1WnlypUWaJg7d261j4NmQBh//AkEAoFAIBAIBAKBQKAPAhFo6ANONAUCgUAgEAgEAusLAlo6QU7QwB++jyyjINjAjAYtlVCQQbnnj3IgEAgEAoFAIBAIBAJ1BCLQUEck6oFAIBAIBAKBwPqMQDl7QZs80lUffFCdnMCCZkJoKQX0SIFAIBAIBAKBQCAQCPRDIAIN/dCJtkAgEAgEAoFAYD1HQHs0EEjgICkIoUADsxxoY0PISIFAIBAIBAKBQCAQCAxCIAINgxCK9kAgEAgEAoFAYD1GgI0eCSSw8SOBBAIPPrBQzWjIezrMnDVzPUYiuhYIBAKBQCAQCAQC44VABBrGC8nQEwgEAoFAIBAIrCMIaKkE7rIfw/Llyy3QMG/ePMuh+xkOBCOY3aAZD7RHCgQCgUAgEAgEAoFAoA2BCDS0IRP0QCAQCAQCgUBgPUSgmqGQl0Iwi+GBBx5Id911lwUSNt5447Thhhsm3jYRr7JcD09+dCkQCAQCgUAgEJgkBCLQMElAh5lAIBAIBAKBQGA6ILBixYp055132iwGlkgsW7Ys3XHHHbYvA4GGzTff3I4tttgibbLJpmnevOIVl9PB9/AhEAgEAoFAIBAIBNYNBCLQsG6cp/AyEAgEAoFAIBAYFwQIMlx22WXpqquuSrfddlu64YYb0q233mozGwgu7LPPPmnRokVp7733TjvvvHPaaqut0vz5823Gw7g4EEoCgUAgEAgEAoFAYL1HIAIN6/0pjg4GAoFAIBAIBAIprVy50mYyXH311emXv/xluuCCC9KVV15pgQaPD/swvOhFL0r77befBRzId9llF88S5UAgEAgEAoFAIBAIBPoiEIGGvvBEYyAQCAQCgUAgsH4gwOyFc845x45LL700nXfeeWmzzTZLDz30UFqzZo11kr0ZSJtssont1fDUpz41vfWtb01LlixJc+bMsbb4EwgEAoFAIBAIBAKBwCAEItAwCKFoDwQCgUAgEAgEpgECvCmCg6S3P7Cxo69Thge63hJBnTdLMHvhm9/8ZvrYxz5mMv4P+ggksGcDh0//9E//lI444oi02267pW222cY2kNTrL+WH5zcfs5vZWyPjB0ekQCAQCAQCgUAgEBgeAd3zdQ+t19GkDZ7h4RXV0ylFoGE6nY3wJRAIBAKBQCAQaEGABwwG+DxM8LYIEq+dJFHXgwgPHWtWr0kzZs6wN0do88df/epX6Stf/kr67ve+azL6gyxvmDC5PLNBDzK0s2fDqlWr0uLFi9Pb3/52CziwXwM0yUmP8sfW5kDHY2srPQQjmgIS4o88EAgEAoFAIBAIBLoR4F6s+zH3UMr6EYH7ve75PBfwYwI8zEoUvVvb1NQi0DA1uIfVQCAQCAQCgUBgRAjooUMPHjxwaGaBljVQh04ieMCDx913350IMpx99tnp5JNPTtdcc42188sH/AQMOKTPGvMfaApkQPvEJz6Rnve856Xtt9/ellWgGxn80YONHn7ko9pEl+7IA4FAIBAIBAKBQKAdAe6fugdzv6bOPZv7Kfdn3Xd179a9nzb41d5uYeJbItAw8RiHhUAgEAgEAoFAYNwQ0EMFDyAcPFDwKwZ0Zi/wcEHggUADic0fv/Wtb6UvfvGLNhOBvRp8gl8PJHpQ8e0qv/Od70yHHXZYYt+GHXfc0WSY2aBgAoEHHdKHLO1Kni5a5IFAIBAIBAKBQCDQjYDu9VB1P9d+StS5n9r9N+Wlifk/bTwDEGjYcMMNp8VMwgg0dJ/TqAUCgUAgEAgEAtMSAR4oePDQwF11Bvc8dBB0YOBPmeOh5Q+lG268wd4w8d3vfjdxVA8m+QGFJF0+AECZw9uC97nPfW7af//905FHHmmvwGTDyJkz8q8qM8qHnVIOXpL0UMZO1moPQ9QjBQKBQCAQCAQCgUAvAtwv/dHFkeP23HO57/v7Njw8AxBsmLFBfiaYUwQiumSnoBKBhikAPUwGAoFAIBAIBAIjRYCBv37NmDN7jj1seB2086Axe1aeyZDH9DfddFP6+te/nj7wgQ+krbbaKvmZDDykkPQwQ5mHFj8jAX1M0/RpwYIF6R3veIfNbNh5551Nb9PDDrJel9cR5UAgEAgEAoFAIBBoRoD7spZIzJo5y/Y80r2fHxF0//bSyJDq92PPMxXlCDRMBephMxAIBAKBQCAQGCECPEgQSCD3QQGpUaCBWQ0PP/xw4hWWn/70p20mg3jI6w8p6PMPKUy7hAcaOrFFzkF6xStekQ4//HA79thjD6Npc0itIxUvjeiabg8/5nT8CQQCgUAgEAgEphkC1b03/2LAps4kaPX7KDT9GKB7L88I8Pk9HKayexFomEr0w3YgEAgEAoFAIDBCBBjE8+sGDxP8uqGHDx46eMhYunSp7ctw0UUXpdNPPz2dc845PRaQ0aGHGjERGPAPKdjTwww82267bVqyZEl64xvfmA499FDjXb58ue0LMW/ePKmpghPo44gUCAQCgUAgEAgEAsMhoHsz9+r6PdSCDGvy2ybWFG+b4N7LvZo9GuClXpcZzur4ckWgYXzxDG2BQCAQCAQCgcCEI0BAQbMbeJjwO0zffPPN6fvf/3465ZRT0rXXXptuueUW8wc+zTRQkIEGHlg4lNSmXA87nmeHHXZIH/rQh+x1l7wCk+UarAklQKGELQ49JJFHCgQCgUAgEAgEAoHhECDIzwzFBx980PZg0n2UnA0fN9544yqosPbRtRZ4oI0NocU7nKWJ4YpAw8TgGloDgUAgEAgEAoEJRYAHEP164XeYvv7669OnPvWp9PGPf7yyT5DBBwqqhrLQr42HFQ7xKH//+99vezXsvvvu9srL+kMNQQbxSkedp+5H1AOBQCAQCAQCgUAgpdWrV9s9/o477kj8gHDPPffYjwrcz9nwcYcdd0jslbTppptWMxT1YwI80yFFoGE6nIXwIRAIBAKBQCAQGIAADxBaMsGvFQziV65cadMjeb0lDyX33XdfuuSSS9LnP/f5dPIpJ5tGllf4AT966kEAmVZAQfyerrLajj/++LR48eJ09NFHp7322kvNplvrRHnY8cEFX64EohAIBAKBQCAQCAQChoBmMdx55522qTMbO9999902o+EJT3iC5dS32267tOuuuyb2Slq4cKG95hoF3KOny702Ag3xoQ4EAoFAIBAIBNYBBJpmMDBVkjdMMKC//fbb0xVXXJF+/vOfpzPPPLPam4EHDpY0aN8FggDoUsCAdn9Ah2dQ4g0US/JeDa973evSoYsPTXPmzjERgiHoZzkHQY5IgUAgEAgEAoFAIDAcAsxU5H5+2WWX2WbOp512mr1eescdd0xbbrmlzWz48Y9/nNiHadGiRel973tfOvbYYxOvnCZFoKF8qBkO7uAKBAKBQCAQCAQCAWYhPJI3f1r7WLHvAYEDBvMM7Fm/ec0116Sf/exntgHkjTfeaFMtQY0ghIIM1E1PDgQoKcgAH4ef8aBgBLyyxxsmlPbee28LNBxyyCFpp512SuzXgE/ogB99kQKBQCAQCAQCgUBgOASYmfjrX//a7ufvfve700EHHWT3WYIK3GPvv/9+m7l49tlnp5NPPjl95jOfSS9/+cttCQX3bI7pcu+NGQ3DnfPgCgQCgUAgEAgEpgUCzDZgyQQDeXaWJshAYOEXv/hF+va3v5349cMnHjjgJREA4CGEXIlAAzzK1a5cfCzXYIkGgQ3sKy3Jsxp4EHre856Xnva0p9nmVLInnsgDgUAgEAgEAoFAYDACy5Yts5mJP/zhDy2IwBueWKrIfkibb755euihh2yjZ2Ywcjzzmc+0+y8bQ+rezh4OzHac6hSBhqk+A2E/EAgEAoFAIBAYAQI8SDDYJzjA0gSmWLJc4owzzrAgA5tGkRQUoJwXR6T8O0e1XAIaieACiaCCZjaoDo2DRBvBAw7s+6UXtPOay3e+8532wMPDjhLyyEyXX1fkV+SBQCAQCAQCgcB0RIAZC1deeWVixsJHPvIR24vh9a9/fXrKU55iyyMI+vMMwOxBfmzYZptt7LXT0P3+SNOhbxFomA5nIXwIBAKBQCAQCASGQEADf1gpEwBgyQTTJ3kg4e0Td911l2licM8BX33PBQUVyGnXryBNLogXPg6feNAh6EAw4atf/Wpakmc3sAO2DyzAwxEpEAgEAoFAIBAIBPoj4Pdo+N73vpe+9KUvmQD31oULF9oGzMwe5CD4QLDhsbX2U4Lx6Z7d38rktEagYXJwDiuBQCAQCKz3CPhBqC/7mx43w0fXPmqvZpoxs1i/Dy88JMmRi+4HrQyIRZcMcr7cpae8+aKjkSePm7k913XUeY1hHP6oXxrY45emOELjVwoSMxXUb2Q0gwAag3r8g583TbCWkwcRXmnpk+nO/MjXAw3woYNDPnnZelm8sosMZWxI9wc+8AF73SW7YPMLC8EFfPR+SE56aEceeldAIp+SNY+ssTawoM8TlbDdL+HrdEryV7n3z5enk8/hSyAQCHQQ4LvLtU/fYV0jOxzdJXhJfL85JIucvvPo0rVY94huLVEbTwTs3PnnB9Yp1G4VOjcjtct55N7Oay15XTUzFt/73vdWanbZZRdbKvGMZzzDllOwSeRmm21mzw36TI3WdmVknAoRaBgnIENNIBAIBAKPdwR0gyNXmZudDvDhAYlBMw9IDCzFKx7V/YOUBpm0iQ4/Oup2dA766YFHcuKDZj6UDwuUJyJhjz5ocE3f9FAIjV8ySMxMUL/10EE8BMxmziqWIsB777332s7UX/nKV9JJJ51ksppWSQUd2ETHWJN81Tms63vBC15gezU8+9nPTvvuu2+aP39+F4vOnR6O8Ul9o41fZfCdhM/sA8FnhSUgoncpHKcKtkjKpVafAeWiT3WOnzrwRf7V86n2M+wHAoFAMwK6B5CTuK7rukhd1yK+05S5TpLDB02BZ67JyElGgWrps4b4MyoEdA4Q1rXVK6K9PovAtyPTJOd5BpXZi4F7PMsoTj311PTZz37WZgyytILEvfbAAw9MxxxzTDrggAPSRhttNEjlpLdHoGHSIQ+DgUAgEAis2whwg226gfobMz30fOKHxsMVdR6QeIDygQfo8ECHDx4bLOeZCbxtgeQfyPTApkGwMZR/ZEt6vBwstCvPjwRdv0bIX2NwvHW62keSyy9y6cM36mBBoj+06QGTsnhph3fp0qUWZDjvvPPSWWedlS688EKa7GFUeiQD/1gTunQ+yLEhO+gmUMCDzwknnGAPP9tuu23ind/ql+R1HqDr/FG2IErutxIPzbTX6WofcZ4hYPaKMJF8P2zqnwvJTGUuf5X7/viyfISvia72yAOBQGD0COh7qFyafF1lXU/0fTR6vi5tMKO4tppsrjPrj2sf7eQcXDc1u0v3hZkz8n0iyypBJ+kaK3rkI0dAuHOudL6US5vOK/V6WxtNsv1yLZ1g/yWCCrzpiWA7sxweeOCBdPXVV6fPf/7zNuOBTZhf85rXpCOPPNJefdlP71S0RaBhKlAPm4FAIBAIrMMI6ObadGMdabcYTHLzZGDNL9fSyU2ehybqPDTpps+DFb/oK/G6x0ceLfYI4CGsnpDz/qJPNuq8/erSAc9o5Jt0o1OH9NJXkvrPQF4PmGrjl/7ly5fbrxxf+9rX0he+8AWTmaw/PPBoo0l8Eab4THrXu95lm0Pus88+iSmdJB6UOMf6pW28MDTlQ/7ROZwK20O6OO5s6jOKH0/9HncgQ2Eg0IRAnZd77gAAKFdJREFUGbz013HY9L2r57TxPeRaqOs5NJ+Q4d6nY+2j+R6W/3Ht5NqLrO5r6IjvtUdvfMqcAzDWPQ2M/eGtTAT+vHXiggsusOO2226z2QoEEthomT2YmOFw4okn2ubPLzj2BemP/+SP05K8PxLBfXyfCJ98n0dSjkDDSNAK3kAgEAgEHucIcBPjIOnGOxJIuHHzAMUDEkGD1WtW2yCUhyh+EdcNsm5Hddr9Axq60Gn68gOY6nqQk9xo/UVuPHR4PehTP6E3Jdrho2/kJDCCTpCBfRnOPffc9K1vfauaycDsAaZawk//ZYM6uIxXIqDDAy9BEAIIYI8N+cmrLo8++uj0spe9zJZQYJeAEv7gl3ipc6iOj5TpJ3xK9XMq+khz2REuyofV46fJDiszXnzCaiT66C+JfDTyI7EVvIHA4xUB/z3rh4H49F3U9Qd6vY3rvq79tOUrpc1c0HVdMroXile68QMZ/q+rSX2cSv8N+3yPUtI5M2whdprEMi753Xffbff3008/Pf3oRz9KixcvTscee2y1bOKqq65KH/zgB20vpDe/+c02m4HliuzTUPd5XBwag5IINIwBvBANBAKBQODxhoC/+Vc3XXcjHoQHg1MGnTwwMWDVYJXBpZ/RMEiP2uWPHrDQjU70aYYDPCT5K9lhcskql51hZOs86NBgmjYeEjnQSZseLqnrgRI+6PQLXvp06623pu9///v2iwZlNouCnz4zO4RE2T+Egon6YAxj+CNb+NWmlz0mvvOd76SjjjqqK2iAWQUO1Hf1e02enfJYXh7D58CfO2atMJWYPnGMNmGHpAfwkXwewE7HaO2PRQ5fdT6H1eP9RX4k/R3WRvAFAoHA6BGw72htWeCg77n/XsNLXfcVfc99PnrvplaSfumaPRWe6P40Fbbvu+++dPnll9smkGflZZHXXXddOvzwwy3QgD8EIs4///x03HHHWZBh7733TgsWLLAfAITZoM/RZPUrAg2ThXTYCQQCgUBgPUGABwClgYOXzJqHaMauBwceirgJMmjUQxJ1BrC0MXjVYBZBeFptlvr1YMVAG3kGqhqsyte6Lvmu3PP5cqttzzRkmYcA9Qe7/mFGdtSOSt/O7IF77rnHpk0SaPj3f/93mwXC8gUNwMGvLodNPXxY4yj/cE7wh4Q++Y9NDvkA/qQPfehD6YgjjkiLFi1KW221ldH4Iwz0tg3RKnq24fsNncPbr5SNoCB8Eamfc9/WpdJ9fis5feZyyEKfbf3C5esqm1zJCx905WrrspkrnsfzGn/+3PjcKg1/6n2q97lBJEiBQCAwjghwLeTaqGulrmv6Lupar+8qdB1ygzYCzbrG0s71kDR71mzj5w098PlrpGxIz7qWCxv81jVQuWjqk66X1H25qe5pnpeyUv0ciD4o13mEbyz4c69n+cRNN92UmL3AhpDcQzXrU/5tt912tjxxyy23rDaQ1mdD9+pBPk90ewQaJhrh0B8IBAKBwOMYAT0s6AasnBslD0X1RKCAmywPUNxU8xNGNTBFVjdY3cSlXw9wTTMaZEO83gfpE8+k5Pl5hl/oSfLb29XAGj/9gyO/Ylx88cXpnHPOSWeffbYdyLHTNJhpgA/N40N9PBKBBII32AFn1XkA1owL/OUcMqOB/Rme9axnpVe84hW2OSS0YZL6r3OjvigfRsdIePR5kExTve6LeCcrxyc9QE61L5PV57ATCKzLCPCd5Vqoa+OsmXmWWX6ls675fI91rVHu+6vvOd97Ngfkuqs9GhS8oI4+bKCDazL1SJOPgM6hcp2/sXjCzIbf//73tiSSpZH68YTzzv0UGvd/bOn+gD0CMn6T0LH4MFbZCDSMFcGQDwQCgUDgcY6AbqyCgZueT76dmyF1Hob0QKR2cgbMPJxxQ+VGii7f3nXzLgfs6NSAnAcwDuocrKtnUA8NPdD0yzs+9vO1qd33ayxlCwpk/7WxJX3ARz0s4KP85CGSXzfYaZr3abNu85prrknsSE1iqQH6hG3dL/qILvovHOo8w9R1zrDDgV7wFIbyHTucO/aLYN0ogYZDDjkk7bnHnmnrbbauTMGPP6QmXfJV57ISHMcCvnI0JfWLdpUtz+z2S5j7bKpduqirjG7V67na6vYrm7iWv07UjUal/HrJJrLelnT5dtEiDwQCgXFAoLwG9NPEd9JfK7l+8p2sfy+tXtOna6ndw7Ie7gFsCqlXG+v77u8R3Ovq7U32+vk83dqqa152rO2ai8/Gl7HtKrtrJwNvS2UmfuWSIwcz6EoqK9f5a8LWeEq70iU9o8m5r7MnE89E2NM9mOcjDs6/PlfY1mG8G+SAU9nf0dgeL5kINIwXkqEnEAgEAoHHIQK6sdmsw3xTGxRJrz94AZl0kPNAxUHEvm3PBvh0s9fgnJutPZSV611186Wdwx7U8sAWnehuS/Kl6k/Dg2Gb7LB0bFigIQv4B0VoHPSDgTp9IN15553piiuusCDDmWeemX72s58ZnX7wAEJChgS+6PeJNnhpg7/e7nmHLYO/9KCffuA7WDMThYegBx980NTtvPPOiVdwEXDgXd/4gqzODWX0oUP9QJBzBg904TSsf8PwyX/lktFnS7nodT7RJyuv++Pt4pv3D95+/F42yoFAIDAyBPx3Dcl6XdravocKJDS1o4vrHjnXQ+4Dpj9f1u07XRs8ootrLzxcJ+GRfuRNRg6tQ7n1eQr9lf16jktgqmeMuoviH1fc87ln42ySPhM6z5x7yrpH8tnp51/d34muR6BhohEO/YFAIBAIrMcIcFPVjZVucoPj6Jf45WVt3vQPOd0Qxc+vNsxA4CbOjVMzEsSnwSw3W91YZd9+tShNywfaeOjioKzpq7JXz+GRPtrQI1113pHWTXfZd+mmHyT6ZT7m9lmziwE39aVLl6bf/va36Ze//GUiyHDeeeelhx9+2GSYNsmvHfhHAEV69JAq38EJO9AZvPv+mdAI/6CPQAI+o4+EfulVn9RG+8EHH1wtoXjSk55k7/tGBwm/6CvnHFk9wEETXX0xgXH6I3+Vo1bnWrk35fk8fbLKTT7JNr55/yYCL9mKPBB4PCFQ/16p754uWlte/+4iy7VNSd9X8fl27mtMg1ebZODRtRMa7Vw/ja/8Vb0uI9l1IR8JvpPRH+8PuLZha3zjgD96vA3p1ZIIPj+6B3Pe9QzAZwI53UcnA5t+NiLQ0A+daAsEAoFAIBDoiwA3P7sBZi7dFJX3E+RmyKGAQhuv54OXwauWVvgZD/BpUKqBbpvOfnT1RTl9GaY//XSqDZ34SU5fOJTwHTuexp4Ml1xyie3FwCwG9mYgMSPAgjBZDxtBImP7WeQ2sBEW6PMDd2GpvpmyUfwBdw7OBfalDz+wSZ3+6KGXhyES+zU84xnPsA0i99prLws24De8CkqgQz7LNemnPl7nAl1eL3WlJhttvJKZjDx/EjMALZbyg23+JlZ9og9N/WiRDnIgEAg0IND0vR/J94prGzrY+FYDRMxA46jay2tn/Xur+4WupZKFD1kFqHXN1DW4oSvrHKkJ+8nsxEjOs/eL80Kqn0vPM6isz0ebHp173dN5HrDnoXyDeOTRYobDdPksRKBh0NmO9kAgEAgEAoFWBHRD1E1ZuRcQDznt3AAp85CkByT41e5lR1JmsMoN1/ugmz42SdiAxqCt6Vci8ShHl9cHfdQpDwaZyUHCH/xgTwpyft0ngKB0yy23pN/85jc2k+GMM86wV1kxqCdtvPHGlRx1j6mCDPSTpAdU6uq7NYzij7DAd51DfJct5f6c6kFY5o455pi0ZMmStP/++6d99tknsWu2EvL4b/pr60tpG+t5kH+y5/Mu3W7QLhlh7GUms4wfYE0Cny5/nSPwcdDexuPYoxgIBAJ9END3CRZ9n5T3EauuicPw9tPT1KbvN23yDzvelq4VdXqTvqANhwBY++TxFt3OR56VyL9+12nxt+U6r7Q3nUO16/4LD88+JJ177E+HFIGG6XAWwodAIBAIBNZhBHQDbrvxcuPTAJibHzdE0agzMF29anV6eMXD1qaZCv30Ci5swsdyAgbt8+fPt0N07NKuwa8GvrJL3uY3NpraZHusOb7hNzlBBoINHHfccYcFGH7yk5/YUokLL7zQTMEDNuovuZYfqF/eJ3wXDvCONaELvNDF+aPMQYKmA584xwR+OCQjHw477LC0JAcb2LeBYIM2/ZR/8pt8PJPsS2ebfvoGr3LK8NaDWNIzGTmfEc4xfuizLOzr9s1fpj6ML3x1M1EPBNZ7BPgucZD47jVeM2qBSS/DdxQZvrtr1rCPQhEs5DvMoYQM1xsOkr7jakcH1wDePgEv97m5c/JyufI7TrvXQRnaVF6z5Ptoc/ow1QkfhKv3hfOqc+vplHXfaGuv8zfVZZc29JCEB+e1LYmH9n58bfITQZ+0QMNznvMc858TQOenCwATAWroDAQCgUAgEOggwM2PhyQOkq7/uiHzEHbbbbel66+/3gbeDKh1o9UNnbruH9Ksmyo5v/ajd+HChfZaRV75hB7Zkozso3e6PITRL4IkLJX43e9+Z3sy8IaJiy66yA4eLkkM4NUf4VPP4VPfaANbkuSwNZaEnvo5wQ5JdMrQsMWhB2qdf2ZkPPOZzyzeRLHnnmnbbbdN22yzTdp6663TpptuWvmKnqlM+I7P6gt9V1/xy9eFr9p9m+cVXbnayH1Cj3iU064BClhHCgQCgemBgK4Rus9R5+D7SrCV4DH3uAceeKC6VymYoO+39iOiR2pDhxLXI+4FXD932mmn9MQnPrEIOOTgM/zwsnQOPvYimj1ndjVIlY6R5OjDt6lM3Bflh8/xyfumNui+3FT3NM9LmVTpzdV8Fk2fNZRtXHvBm2Mik/dH9yLs6bkFmk/qC/5XffAMU1SetEAD0yXpOMBMNxCmCPswGwgEAoHAOocANzMNvrzzdmPjPl0+l3Ct5+Ahi4cfcuT8zRFdDIQJErBM4LTTTktnnXWW8THg5td7BqCbbLKJ8dxzzz1mkgACcjyEaDNEdLHh4PHHH5/2228/W/9PsEGDc/nDQwI3ah4SyNHFUQ2Sy4cLDOXbtT1o0DetsbV+mhfD/8E32UeeMphAZ48CyrwvGwy+853vpE9/+tNdysEB/IQdOjSTATp6fKJvtENHNwkadc7BWBO4oZ9zgH0l4YoNBThoE7a00+ZldthhBztnBx10UNp9990TdTCBV1grl53R5sIJfRyqe33yDx8pc4C7L4+XP95uW1k+cv50CH8+t8JJ/eEzy3/Jodf89Z/rsu/QdW6a7KNjMvva5EPQAoHJREDXafvsl9d/2dd3i7r4uM7pOqiyXTPypsYsk+M7y6w1AscXXHCBXeN/8IMfSKUFWbm/YQ957mno5ruNrK47XI/4rhOsOOGEE9LRRx9t18vNN9/cAg+0kTTjgeszsx4s4D67DNznu5muE5UDDQVdE0b63acP+EuuZDrctUf0frl85K1F999/v+GBT1Od8EvYgK+eHcCec0XS58bKGW8l/9nx+NCOXukmb0p8JvgM0I5tEliTTKbEmLI/jKH2R/ZNrtY22mo/neMSaDADuZPa6OTSSy9NJ510UvroRz9qPvPOb81oGG0nQi4QCAQCgUBg6hFg4MqbEHgA0M2Fm6xuWuTcjLkpEkCAb9myZemhhx6qHprEizw3S3TedNNN6dxzz00XX3zxmDr5spe9LO266672yzhT8uUbN2rsYVuDMx7ECGRsscUWFtTAbz3YUd4g7xPwaN5Yad7ceWnrbbZOPNTJ95E6yZ4L4MBDwtq8hnP16lWGz6qVq9J999+X7r333nTdddcllktoqYRsMPAGT98H/CN5GnX6SJvaux5Gynb4RpP8+UY/tr19nXvRsQFNmOnBmXafDj/8cFtCsXDhwrRgwYK01VZbpc0228welMGLvvMQ7nV5+WHLsquHcrChT/qM0Cce1AlocfD55bMJD7KP5sEDU5/Vn2HtjoVPmOuc4isPuFtuuaV9bvkM6/OMj8IIvOgf+HFQB0fk4adOGbyZRRIpEAgEkgWuub8x4Oe7xHeK7yBlvoN8Z0h8f3R/I0hMMIE63znJIIcMdALnV155pb2mmNcVjyXtscceafHixYm39zC7gWuA+ZXHYavyfUX+co3Q91v+k9Pur334gs8k/EXO751jDUP8oZ8EQgj+owdbsoe4x4W6D95nl3J7EaCGD3zB6dZbb7VrMNew6ZDoF/jxxidm4G2+2eZp7ry51eBfPsLDQfLYU6dvtGV00oyZxQ8f6NM9D34l6SDXOdJnEJrpKfl9GT/b0qOPFAGKmbM6wRF4vd02Wb0xTH2SX+Qk7NZtj1ugASNSzi7ZBBo+9rGPmeHvfe97Fn3jg8IHUY4gw4HDPNCBVemryfX/U3QqQ9OfrasVGfiVdzWWFbUN0u/52nwQT5MdaIPa2+REb5KHRvI+1fl8fZhyoXHkf+WLJD32dbvwNPksvrZcun0u3jrN16McCAQCwyCgG4huLLfffrs9LPHgpBsfv7jr+q/rOw9qBBluuOEGe2vCr3/962HMTSoP96Q3vOENadGiRfbgwA0cvxlcMhhTnQcAeHiw46GOgR6J/tsDWw4ccNPmwSnf1dx9rfj1gSAC90VeU4k8iUEfSyUILrBEgtkM9QSWxf2xeOClXeejzrsu1OU7uNIv8NNnSP4z6H3xi19sv9YRBAIvglQcyHGMJmGbc8XD3Zy5xZIa/XrI54DzTc5nlnPBWz6azslobE+EDAG1vffe2wYFfP/Ak/79v/bOHtSy6orjxy+IE6tYKYjzHCMhgqioYCzUYoKNlULstLGwtRcRrEWURCtBUEHRAStBm4CgphC0UXAwEz9SiI1mCo1Rk/Pbb34va86c+96999377r3P/5o5b5/9tfZa//2x9tl3n31sM8y10I9fNLnwgyFtl4Ur/OTjUM5rrrmm4coEGD5gRR+gjfqrHTpYf8vQJzyDwEEhYDvGdXyl/9N/Tp061X344Ycdv6bTl+gT9ivHCMK1byyQ8+nhd99996DEn7ocFtzvueee9ioh4ybyIztjLvKjv+c80N/BgjSMB4wt2D0fimuhw4fNNub04+qX//yy44dmXhOBD0S5lKOtrGO+4zn5ScN447jFwg3j72uvvVaLXqv7Bx98sDt27FibOzCmgh9U9cUPFupKHNg3W9SnZ3zF7mxtbfVzjN/1i+yXkmVnHG6eGf8gB/XmIjllE0bZyoZMlG34sIiqi3GEWX/UmW3JNkK8epoHdyELDTBCeAV+//33uxdffLF78skn2yTh2Wee7W79w63t3SQnpwBb86lUC8yfIBAEgkAQWB0C/VodD8wQYzvk6vvXX3/dHpi/+OKLNuYzdjOeO1nQAGHkeLDhF4l33nmn8VjHPxxMyPuuTBSQnckOlwYTPfjV6OjRo22bK/dOKjC6GlmNOROIHcx6bDDovJfLIgOLCuYl3bfffNud+sepNjmr2CAHpE2Fnzxruk27Rx900947aRnqceONN7aJlztNvv/u++67779recVmmGcav5M72isyULfIQB158Wsci2Pr+OBQdeQ1Exa/2HbNhBFCF/FFNya07Orh4p5JPLqTHj8uh3HS/mm/4IML0QfwsxhBHng3/PqRgP+hILAJCDjGYL/a/77fO/4gP/dejOXYNcZqf5WnzTP2koa+5dhB/8C+8Qs+O/HWdXw+fvx4O8sB2RnjcMGE8QFCHwh91HFra6s9QDO2kJZwSJy4FxPj8PMjBNixE0G+lAdZD7ik5WKsIZ4LP/gzLiELY9XJkyebzWwM1vAPr2peccUVzabbLhRTffGP6Um7Mo5ddHfddVfb+c9OErCAxLZ5ZvzDjxvYMX7MQBbwBF/GehZHWERyrJc15SIX6akT2gt5qA/urVPlIx/x7JBgZ4Z6DuVe2EKDgiIkq3svvfRS99RTT7X3LR9++OFmzD755JPu+eefbxNPfhlSKPPGDQJBIAgEgdUigBHRkNR7pML4YLiYTMxD5IcwZJtK119/fdsyif0CHww4hpiHNvxMPpk4SKTj1xkWGaYhJ3NOvsAKvhpv7jeV0Mk2gB5Vt3XVS9zBfJUy2i6W0XdYtGASyWSSHSQsLliOO3ho07RjMLAON7UdRu5fDgKMzywaQLRrFnoZq23DuLRpHnDZxfDxxx+38XxWhOif8rLvOHbownM4hgz9e5VbedV78xHGRX+udsj4WVweRlnsZQxgbAA/LmxaJbADY3aDgOGiCVzFdNG89+IHluiOy/Mt1zLkefTRR9vuyssvv7yJRLugzHmJH/XffPPNtpuUXXpvv/12ez2TNw04M5EFDdoI9ekCAhhTLpf2wEUf01aZSMdCA9fYQoRpF7bQICgUyDu2r776avfGG280oDici5V3DkN55JFHdnBDiKrgTkRugkAQCAJBYCUIMJZrcBYtAMYI/hjreUjDRV74zEPIwETBScM8PC79zaXtRG9kOP2v0+2znLxjiZ+FhnkJ/ZANF15c1AVhLmTwSxThm0i1/pBfPZi4qvO8bWNZeKyLbLQBLtoD1zLJw+moE3bwME+jXXPGCHU2fNBYpizhHQTmQcCxhgelIbHDR1tEW6ZN86C8334lryEfZUEOx7yhTLv5J+Wv4cP86Dem+zDdrH4XasiHLozXLEAukxz3llnGbry1AY694D5PPe5WxuOPP9499NBDbWFnt3TTxrEz5+WXX24/7rPgxBe9oHvvvbe7+eab2y4XXqnzi0+M+Rf/6uLuyK+P7DyXWxbtyDaN7toiXhXlwFOwIIw40tEm8GsnFrLQQCEWxEID7+jwXs1f+9PDWU28/fbbO7bioOjTTz+t7HGDQBAIAkFgQxHQ2GJQmNRAjP/VIJEGIox7J2LzPkzKD57zGnoempADWbnGSJ0ojzTzyitv+ImLYWOuGBFHem0r8vLLA35+PZqG1xj/dQ1DPy708qqygosYzlvvld8F/affLui3ekKUR/3CFxkox3ZmvRNGvOkqr4O6RwYxQGbukRe5ajumfXMR5vZoZCS9epHH66DkTzlBYJMQsH8hM/0Nss/gjpH9y7hJ6Yyf1q18Z+VJXi51mKZM7DmLMYwh8+yKEDtkrWOTshA+pofxuBAyj6WbRodFpakyTSsP+nNByF/zEc74THgdn9nRcP/997dnZWy8tmZW/bWl7DrlCAPPShzDg09M33HHHd3v+09Ms5OCw645iJlzkrTHyEp7QB7ltQzcSsjKaxQ/9Yd6Eue8cCELDRREATYOzmh44YUXOj7hwkrXdddd15TgXSZ2OYSCQBAIAkEgCASBIBAEgkAQCALriAAPhbM8oK+jDquS6bBgx3PtrA/782B+35/u647/8XjbYVAXZ2blBe485H/22WfdW2+91Z04cWKHxbBO2MVw2223dUePHm2HCuPniyO8MsMiAYsMHAx61VVXted7Fz9gCC8uiTjkNhzXNYGFLTRYGC6na7PQwDfRfZeXb2Oz6OB30Gv63AeBIBAEgsDmIKABmdUAH5TRPggkMebos59JwZicGGhwnRXbMV7rHLZXW3AS80vAYtp6GmJGG2SCtxeRrv6qtlf6xAeBIHAuAvQ/H6AWPe6fW1pC1gGB4ZiLTLYDx178jLF7tQlffxx7pYUvLPG5TF7B5AHfsxO0g9NigSxcnMvAWwT8wA8vwiBkHiu/8ueAYHY1sMDwwAMPdByYjUwQ9hhbAr8qG7sd4Es69Ky0lIUGPg3DuyHPPfdc+8xJLTD3QSAIBIEgEASCQBAIAkEgCASBIBAEgsByEGAxgMUBdiiwQDDLgjNnOfBKx5133tkOBEVCeLFYAV8XGghjoYGFlqUuNFCQKyZ8UuO99/7W72b4uH1hAgE4QIQVHwRDGAUlTOHbTf4EgSAQBILA2iLAWA8x3jvmG2Y4LmHaBcf5Gl7zED4k8+6VznzIYh7Dqmu8xhaDiFzkIUzC70UYacirgea+GlnsGXGEG0c+0yuTRrn+CmIe0hgub+L4wiiHLUHN37uk3VQSE3VUj4o3YcRXfc0nXuab1YWvWMNTOWpZ8iSMeMjyV4m9siID8kDIOCaT4WNxLWP/p7Zr2h55uCDyed8C8icIbDgC9gXaNX3JPo1f+0Qa+kLtX8RzEScPoIAH4ZJxNR335jfdbm7lZzr56sdVnrH0Nd1u93VsMx38CKdMcFB+44kzXowqdoQZDi/5kX+oh7IPwy3LPLvF17TLuKdsLmWlDO49e4BnW3ByLqHuphuTCX6kUy/wBEPCONMQftuY0ub+n26M11iYmPN5S3Y0fPTRR03mKlvNx1kcvDLBDgYO/uWMBr40wkGR7LDgs5s33XRTW2gQD3jZFpyjOA9CdvCotJAdDRTKdWF/wBLfqeX01m+++aZ9O5zvXxNGwVQOwlE5XISxxQJgBL0Kl/sgEASCQBBYLwQYqzGGGjTcMcImkA6qkxPusQUHPe5bHgctYRSRQYOITshVddEmGaadU1fD1RE/PCofeFQ+5pEHLmHwcNKCoeaSF/lJ4yW/yuOw3IuxrviIqe68+npKtqdoOydpfPuJSl9bjbX1hms7Bn/aC3WzijpQDtyKi+1ETJATUvaqi/eksZ2ZDmzOO//svlx5yT9uENhEBBxTaNNcjLlc9AP6dW3r9AnTmY+0P//UP/j1/+hzPO9ccOH2InQbNkrXIf+6UB0v0EnZqr7IWnXWj2uemg+e2NCGw5nnupqHe6hHuuHFvflbeC/HplLFzYOZeY4Fi9ZGemxIw9XseD+u8gwMZsSDA3YH+vE//WHUfdyO/8yP8KSp2Fbs9sLNcZ1Fhtdff7175pln2usYPJezqDDpcM+777674zPHLCpcffVv+2fz7QOFeaWDC77YTXVDPu+RCf2U03BcaCELDRVchJE5BRCnQPgl3+XQHzcIBIEgEASCwEEg4ELDQZQ1bRkYaYz1mL2clsdhSgcWTlhWrRd1U+c1q5SnTuZWKUfKDgKbjsCs/Zr0XIzRoSAAArO2oWlQWwTPzz//vB1f8Nhjj7WvSbDDAbryyivbxxlc3Nja2mphnKN42WWXdddee207m4G0PKfT1nmu51m++oe2WfuI7Npu+8lCFhpgihAUxKr4+Wc+G4WgY8Qkj/TuZhhLk7AgEASCQBDYDAQYzyEMUigI7BcBJitOtpzA7JfnWH7KgJZZxli5ywwTOyd5+ynLXy0XwWs/ciRvEFgFArT/4Y+nk+TgOaiOWZs2piA/tKi+7sPmpuEwqX4JX8Y8xzazW7nzxH366d+7v/zlz90TTzxxVvYbbrihY/cCn7Kkro8dO9ax2MDrE+zs4fWJI0eOtDzIZrsmgLrkqm3E53n6iYsX5DN9c/uAfe/xaYL8zIai7VX/sS14FEY6KooiuRCMSz9pQkEgCASBILBcBBz2nQToTirV9MRrbMzDmP7Dv39o264xVBgh4sjjZKMaJsI12JYnL/26k8KNr26VcbfwOnEkj2WMGVT1MJ1p5W+4/h0Xq8quwd7ljAXSXXB+b+v6f+quHBN5kP0MhsgGUb5XC9jEPz0m4ACpS8UVnblqPMlrnhY5x5/Kl3vnI1WOKosyWJT1oP8gXWWsZaKD8v63n4Px/XJk5KJ90R8bAef2LtZtb8F3O8H2JBo8mCzSX3mVx4UG26plmSduEFh3BGiztGf6iv3FdqwfHWj7tHdfieDX27bz+sKLuov6beSTyP5Gfu7hTX+hTFzLnZS/H9HP6puT0sFnjCaF17QVA+SE7NPcIzf9nXTacMKlqoO23HLJQ36wM79Y8ix44UXbr0mSRiIdVyX5EWZcLbemPaj7KhPyoxdhjJHWsbIQrtyG6TI286/GV96Ec+3GQ17TuidPnmw7Gl555ZXulltu2cnGqxF8VYIFBcpkJwPXJEJnLuq9LiSoC/VOPyFux94MmC1kR0MFDP4KgHBUjh3OiiKeMOOpMK5QEAgCQSAIrDcCjPeM5YzjjNvcY2jw+5CCBozvPqgQrl0gDh7ajRpO3BiZdixumvw+qJKWfxj9MftTy5EvOhA+nFiQv4X3Cwj13XbwgFpZfXnylB9+LidspK9pDIeHabmX5KN/k1z1ERtkH9On4sE9dQBO+50rUGcQfChXeVpg/6fKRZx1Y/iYrOZdtjss2/br/IrylRm5SU+cOnLPRVyNl+8QY/yUIX/TLVvP8A8Ci0aAtmu7tx/YV+wntHcubBUX6Wv7VybynUNnFkKNq32l3p+T70xASzNYDKxp5VvDZr2nDHUmLzgoG7py3gB+HhYZHyu5iEk8cfLB75jCHMCFBfLWMQa/OuCSj0uCv4ceE1ZlM59pV+UiR5Wl6mAcrpioH2HV7iA/WEF1vkQ62h/zk52zP1qq+f6cOnWqO3HiRPvMJbsYONiRxQUOfeSgR+uN3Qv4IeVUB8Jav+nPJuFNBfLYT2gHtBXktq4rJuSVFrLQILOhi0AIjkB2XARC2CqwHXuYP/4gEASCQBBYLwQYwxnXMSpOSIZ+JCasTT768R6DpOGdRxuM2SSah69GHV20T6P8+2J//OnchQbyox8u+bFnjfr07mAgbC/ZyF8v0puPcInJB/83ncAbvdRxGn3IQzvC3c9cgXKpM+isOuv9Yl3ry/S4tV5qmsZsBX+UDX2G7Zc4LknM1Rk/+aiDWg+EEVfT4Ted/OIGgU1EgLZc2/PQT/u3XzDOQPaj2udr/yK8xlVc4E/a2sdq/CruJ8mOrD78XtTv4Bi+/u5CAzKDDXzACt0ZL8jfHpJ7P/GTMCE/eaGaxrownDhwW1cSR3XQjx6EsXvRHx/ECl3ACmL3COEeIkmYGHIPhvvV/6uvvuo++OCDViavR7DQcMkll8D+LEIOZLb9N/l7OXG5mm79QhD64KedcCEj8lciLUS6SktdaGgCnlFiR+BejvMRov/vKtakVy2qoLkPAkEgCASB1SPguI4kGsMxA0OYhtd0i5AevtoT+A2N2lRl9HZo2gUB9aWcWhb2i3/nhE8wtpPkEjvjzyrjjK7GbbqrrlXHvXQSf1zyDduS4fCRP/eWYTyu8cQZT9pJZB7T6k5Kf5DhO7L1kykntZavntWvzjv5BhgMwyuPddJbneIGgVkQGLbnMT9h9pPdeJt3t36xk2bNFol35Or7v0RYDR/q1eJ4huTRrc9nWvLrN2w4PlvGbq55a5qhDDVuHe6RWd2VRz0Ir/I7VxAbHuoh/KYj76T88p/F5VOZp0+fbvzZtcCiAIsDk2hS+VUm8roohOzqI0/Sqo9huEtdaKgF5T4IBIEgEASCQBAIAkEgCASBIBAEgkAQOPwIZKHh8NdxNAwCQSAIBIEgEASCQBAIAkEgCASBIHBgCGSh4cCgTkFBIAgEgSAQBIJAEAgCQSAIBIEgEAQOPwJZaDj8dRwNg0AQCAJBIAgEgSAQBIJAEAgCQSAIHBgC5/UHO2wfE3lgRaagIBAEgkAQCAJBIAgEgSAQBIJAEAgCQeCwIpCFhsNas9ErCASBIBAEgkAQCAJBIAgEgSAQBILAChDIQsMKQE+RQSAIBIEgEASCQBAIAkEgCASBIBAEDisCWWg4rDUbvYJAEAgCQSAIBIEgEASCQBAIAkEgCKwAgSw0rAD0FBkEgkAQCAJBIAgEgSAQBIJAEAgCQeCwIpCFhsNas9ErCASBIBAEgkAQCAJBIAgEgSAQBILAChDIQsMKQE+RQSAIBIEgEASCQBAIAkEgCASBIBAEDisCWWg4rDUbvYJAEAgCQSAIBIEgEASCQBAIAkEgCKwAgSw0rAD0FBkEgkAQCAJBIAgEgSAQBIJAEAgCQeCwIvA/kJaLIJcMFM0AAAAASUVORK5CYII=\n", - "text/plain": [ - "" - ] - }, - "execution_count": 3, - "metadata": { - "image/png": { - "width": 400 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "Image(filename=\"bayes_filter.png\",width=400)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "Given - A robot with a sensor to detect doorways along a hallway. Also, the robot knows how the hallway looks like but doesn't know where it is in the map. \n", - "\n", - "\n", - "1. Initially(first scenario), it doesn't know where it is with respect to the map and hence the belief assigns equal probability to each location in the map.\n", - "\n", - "\n", - "2. The first sensor reading is incorporated and it shows the presence of a door. Now the robot knows how the map looks like but cannot localize yet as map has 3 doors present. Therefore it assigns equal probability to each door present. \n", - "\n", - "\n", - "3. The robot now moves forward. This is the prediction step and the motion causes the robot to lose some of the information and hence the variance of the gaussians increase (diagram 4.). The final belief is **convolution** of posterior from previous step and the current state after motion. Also, the means shift on the right due to the motion.\n", - "\n", - "\n", - "4. Again, incorporating the measurement, the sensor senses a door and this time too the possibility of door is equal for the three door. This is where the filter's magic kicks in. For the final belief (diagram 5.), the posterior calculated after sensing is mixed or **convolution** of previous posterior and measurement. It improves the robot's belief at location near to the second door. The variance **decreases** and **peaks**.\n", - "\n", - "\n", - "5. Finally after series of iterations of motion and correction, the robot is able to localize itself with respect to the environment.(diagram 6.)\n", - "\n", - "Do note that the robot knows the map but doesn't know where exactly it is on the map." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Bayes and Kalman filter structure\n", - "\n", - "The basic structure and the concept remains the same as bayes filter for Kalman. The only key difference is the mathematical representation of Kalman filter. The Kalman filter is nothing but a bayesian filter that uses Gaussians.\n", - "\n", - "For a bayes filter to be a Kalman filter, **each term of belief is now a gaussian**, unlike histograms. The basic formulation for the **bayes filter** algorithm is:\n", - "\n", - "$$\\begin{aligned} \n", - "\\bar {\\mathbf x} &= \\mathbf x \\ast f_{\\mathbf x}(\\bullet)\\, \\, &\\text{Prediction} \\\\\n", - "\\mathbf x &= \\mathcal L \\cdot \\bar{\\mathbf x}\\, \\, &\\text{Correction}\n", - "\\end{aligned}$$\n", - "\n", - "\n", - "$\\bar{\\mathbf x}$ is the *prior* \n", - "\n", - "$\\mathcal L$ is the *likelihood* of a measurement given the prior $\\bar{\\mathbf x}$\n", - "\n", - "$f_{\\mathbf x}(\\bullet)$ is the *process model* or the gaussian term that helps predict the next state like velocity\n", - "to track position or acceleration.\n", - "\n", - "$\\ast$ denotes *convolution*.\n", - "\n", - "\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Kalman Gain\n", - "\n", - "\n", - "$$ x = (\\mathcal L \\bar x)$$\n", - "\n", - "Where x is posterior and $\\mathcal L$ and $\\bar x$ are gaussians.\n", - "\n", - "Therefore the mean of the posterior is given by:\n", - "\n", - "$$\n", - "\\mu=\\frac{\\bar\\sigma^2\\, \\mu_z + \\sigma_z^2 \\, \\bar\\mu} {\\bar\\sigma^2 + \\sigma_z^2}\n", - "$$\n", - "\n", - "\n", - "$$\\mu = \\left( \\frac{\\bar\\sigma^2}{\\bar\\sigma^2 + \\sigma_z^2}\\right) \\mu_z + \\left(\\frac{\\sigma_z^2}{\\bar\\sigma^2 + \\sigma_z^2}\\right)\\bar\\mu$$\n", - "\n", - "In this form it is easy to see that we are scaling the measurement and the prior by weights: \n", - "\n", - "$$\\mu = W_1 \\mu_z + W_2 \\bar\\mu$$\n", - "\n", - "\n", - "The weights sum to one because the denominator is a normalization term. We introduce a new term, $K=W_1$, giving us:\n", - "\n", - "$$\\begin{aligned}\n", - "\\mu &= K \\mu_z + (1-K) \\bar\\mu\\\\\n", - "&= \\bar\\mu + K(\\mu_z - \\bar\\mu)\n", - "\\end{aligned}$$\n", - "\n", - "where\n", - "\n", - "$$K = \\frac {\\bar\\sigma^2}{\\bar\\sigma^2 + \\sigma_z^2}$$\n", - "\n", - "The variance in terms of the Kalman gain:\n", - "\n", - "$$\\begin{aligned}\n", - "\\sigma^2 &= \\frac{\\bar\\sigma^2 \\sigma_z^2 } {\\bar\\sigma^2 + \\sigma_z^2} \\\\\n", - "&= K\\sigma_z^2 \\\\\n", - "&= (1-K)\\bar\\sigma^2 \n", - "\\end{aligned}$$\n", - "\n", - "\n", - "$K$ is the *Kalman gain*. It's the crux of the Kalman filter. It is a scaling term that chooses a value partway between $\\mu_z$ and $\\bar\\mu$." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Kalman Filter - Univariate and Multivariate\n", - "\n", - "\n", - "**Prediction**\n", - "\n", - "$\\begin{array}{|l|l|l|}\n", - "\\hline\n", - "\\text{Univariate} & \\text{Univariate} & \\text{Multivariate}\\\\\n", - "& \\text{(Kalman form)} & \\\\\n", - "\\hline\n", - "\\bar \\mu = \\mu + \\mu_{f_x} & \\bar x = x + dx & \\bar{\\mathbf x} = \\mathbf{Fx} + \\mathbf{Bu}\\\\\n", - "\\bar\\sigma^2 = \\sigma_x^2 + \\sigma_{f_x}^2 & \\bar P = P + Q & \\bar{\\mathbf P} = \\mathbf{FPF}^\\mathsf T + \\mathbf Q \\\\\n", - "\\hline\n", - "\\end{array}$\n", - "\n", - "$\\mathbf x,\\, \\mathbf P$ are the state mean and covariance. They correspond to $x$ and $\\sigma^2$.\n", - "\n", - "$\\mathbf F$ is the *state transition function*. When multiplied by $\\bf x$ it computes the prior. \n", - "\n", - "$\\mathbf Q$ is the process covariance. It corresponds to $\\sigma^2_{f_x}$.\n", - "\n", - "$\\mathbf B$ and $\\mathbf u$ are model control inputs to the system.\n", - "\n", - "**Correction**\n", - "\n", - "$\\begin{array}{|l|l|l|}\n", - "\\hline\n", - "\\text{Univariate} & \\text{Univariate} & \\text{Multivariate}\\\\\n", - "& \\text{(Kalman form)} & \\\\\n", - "\\hline\n", - "& y = z - \\bar x & \\mathbf y = \\mathbf z - \\mathbf{H\\bar x} \\\\\n", - "& K = \\frac{\\bar P}{\\bar P+R}&\n", - "\\mathbf K = \\mathbf{\\bar{P}H}^\\mathsf T (\\mathbf{H\\bar{P}H}^\\mathsf T + \\mathbf R)^{-1} \\\\\n", - "\\mu=\\frac{\\bar\\sigma^2\\, \\mu_z + \\sigma_z^2 \\, \\bar\\mu} {\\bar\\sigma^2 + \\sigma_z^2} & x = \\bar x + Ky & \\mathbf x = \\bar{\\mathbf x} + \\mathbf{Ky} \\\\\n", - "\\sigma^2 = \\frac{\\sigma_1^2\\sigma_2^2}{\\sigma_1^2+\\sigma_2^2} & P = (1-K)\\bar P &\n", - "\\mathbf P = (\\mathbf I - \\mathbf{KH})\\mathbf{\\bar{P}} \\\\\n", - "\\hline\n", - "\\end{array}$\n", - "\n", - "$\\mathbf H$ is the measurement function.\n", - "\n", - "$\\mathbf z,\\, \\mathbf R$ are the measurement mean and noise covariance. They correspond to $z$ and $\\sigma_z^2$ in the univariate filter. \n", - "$\\mathbf y$ and $\\mathbf K$ are the residual and Kalman gain. \n", - "\n", - "The details will be different than the univariate filter because these are vectors and matrices, but the concepts are exactly the same: \n", - "\n", - "- Use a Gaussian to represent our estimate of the state and error\n", - "- Use a Gaussian to represent the measurement and its error\n", - "- Use a Gaussian to represent the process model\n", - "- Use the process model to predict the next state (the prior)\n", - "- Form an estimate part way between the measurement and the prior" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### References:\n", - "\n", - "1. Roger Labbe's [repo](https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python) on Kalman Filters. (Majority of text in the notes are from this)\n", - "\n", - "\n", - "\n", - "2. Probabilistic Robotics by Sebastian Thrun, Wolfram Burgard and Dieter Fox, MIT Press.\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.6" - }, - "pycharm": { - "stem_cell": { - "cell_type": "raw", - "source": [], - "metadata": { - "collapsed": false - } - } - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/ArmNavigation/n_joint_arm_3d/__init__py.py b/Localization/__init__.py similarity index 100% rename from ArmNavigation/n_joint_arm_3d/__init__py.py rename to Localization/__init__.py diff --git a/Localization/bayes_filter.png b/Localization/bayes_filter.png deleted file mode 100644 index 50e509bdac..0000000000 Binary files a/Localization/bayes_filter.png and /dev/null differ diff --git a/Localization/cubature_kalman_filter/cubature_kalman_filter.py b/Localization/cubature_kalman_filter/cubature_kalman_filter.py new file mode 100644 index 0000000000..0fc4c93760 --- /dev/null +++ b/Localization/cubature_kalman_filter/cubature_kalman_filter.py @@ -0,0 +1,246 @@ +""" +Cubature Kalman filter using Constant Turn Rate and Velocity (CTRV) model +Fuse sensor data from IMU and GPS to obtain accurate position + +https://ieeexplore.ieee.org/document/4982682 + +Author: Raghuram Shankar + +state matrix: 2D x-y position, yaw, velocity and yaw rate +measurement matrix: 2D x-y position, velocity and yaw rate + +dt: Duration of time step +N: Number of time steps +show_final: Flag for showing final result +show_animation: Flag for showing each animation frame +show_ellipse: Flag for showing covariance ellipse +z_noise: Measurement noise +x_0: Prior state estimate matrix +P_0: Prior state estimate covariance matrix +q: Process noise covariance +hx: Measurement model matrix +r: Sensor noise covariance +SP: Sigma Points +W: Weights + +x_est: State estimate +P_est: State estimate covariance +x_true: Ground truth value of state +x_true_cat: Concatenate all ground truth states +x_est_cat: Concatenate all state estimates +z_cat: Concatenate all measurements + +""" + +import math +import matplotlib.pyplot as plt +import numpy as np +from scipy.linalg import sqrtm + + +dt = 0.1 +N = 100 + +show_final = 1 +show_animation = 0 +show_ellipse = 0 + + +z_noise = np.array([[0.1, 0.0, 0.0, 0.0], # x position [m] + [0.0, 0.1, 0.0, 0.0], # y position [m] + [0.0, 0.0, 0.1, 0.0], # velocity [m/s] + [0.0, 0.0, 0.0, 0.1]]) # yaw rate [rad/s] + + +x_0 = np.array([[0.0], # x position [m] + [0.0], # y position [m] + [0.0], # yaw [rad] + [1.0], # velocity [m/s] + [0.1]]) # yaw rate [rad/s] + + +p_0 = np.array([[1e-3, 0.0, 0.0, 0.0, 0.0], + [0.0, 1e-3, 0.0, 0.0, 0.0], + [0.0, 0.0, 1.0, 0.0, 0.0], + [0.0, 0.0, 0.0, 1.0, 0.0], + [0.0, 0.0, 0.0, 0.0, 1.0]]) + + +q = np.array([[1e-11, 0.0, 0.0, 0.0, 0.0], + [0.0, 1e-11, 0.0, 0.0, 0.0], + [0.0, 0.0, np.deg2rad(1e-4), 0.0, 0.0], + [0.0, 0.0, 0.0, 1e-4, 0.0], + [0.0, 0.0, 0.0, 0.0, np.deg2rad(1e-4)]]) + + +hx = np.array([[1.0, 0.0, 0.0, 0.0, 0.0], + [0.0, 1.0, 0.0, 0.0, 0.0], + [0.0, 0.0, 0.0, 1.0, 0.0], + [0.0, 0.0, 0.0, 0.0, 1.0]]) + + +r = np.array([[0.015, 0.0, 0.0, 0.0], + [0.0, 0.010, 0.0, 0.0], + [0.0, 0.0, 0.1, 0.0], + [0.0, 0.0, 0.0, 0.01]])**2 + + +def cubature_kalman_filter(x_est, p_est, z): + x_pred, p_pred = cubature_prediction(x_est, p_est) + x_upd, p_upd = cubature_update(x_pred, p_pred, z) + return x_upd, p_upd + + +def f(x): + """ + Motion Model + References: + http://fusion.isif.org/proceedings/fusion08CD/papers/1569107835.pdf + https://github.com/balzer82/Kalman + """ + x[0] = x[0] + (x[3]/x[4]) * (np.sin(x[4] * dt + x[2]) - np.sin(x[2])) + x[1] = x[1] + (x[3]/x[4]) * (- np.cos(x[4] * dt + x[2]) + np.cos(x[2])) + x[2] = x[2] + x[4] * dt + x[3] = x[3] + x[4] = x[4] + return x + + +def h(x): + """Measurement Model""" + x = hx @ x + return x + + +def sigma(x, p): + """ + Unscented Transform with Cubature Rule + Generate 2n Sigma Points to represent the nonlinear motion + Assign Weights to each Sigma Point, Wi = 1/2n + Cubature Rule - Special Case of Unscented Transform + W0 = 0, no extra tuning parameters, no negative weights + """ + n = np.shape(x)[0] + SP = np.zeros((n, 2*n)) + W = np.zeros((1, 2*n)) + for i in range(n): + SD = sqrtm(p) + SP[:, i] = (x + (math.sqrt(n) * SD[:, i]).reshape((n, 1))).flatten() + SP[:, i+n] = (x - (math.sqrt(n) * SD[:, i]).reshape((n, 1))).flatten() + W[:, i] = 1/(2*n) + W[:, i+n] = W[:, i] + return SP, W + + +def cubature_prediction(x_pred, p_pred): + n = np.shape(x_pred)[0] + [SP, W] = sigma(x_pred, p_pred) + x_pred = np.zeros((n, 1)) + p_pred = q + for i in range(2*n): + x_pred = x_pred + (f(SP[:, i]).reshape((n, 1)) * W[0, i]) + for i in range(2*n): + p_step = (f(SP[:, i]).reshape((n, 1)) - x_pred) + p_pred = p_pred + (p_step @ p_step.T * W[0, i]) + return x_pred, p_pred + + +def cubature_update(x_pred, p_pred, z): + n = np.shape(x_pred)[0] + m = np.shape(z)[0] + [SP, W] = sigma(x_pred, p_pred) + y_k = np.zeros((m, 1)) + P_xy = np.zeros((n, m)) + s = r + for i in range(2*n): + y_k = y_k + (h(SP[:, i]).reshape((m, 1)) * W[0, i]) + for i in range(2*n): + p_step = (h(SP[:, i]).reshape((m, 1)) - y_k) + P_xy = P_xy + ((SP[:, i]).reshape((n, 1)) - + x_pred) @ p_step.T * W[0, i] + s = s + p_step @ p_step.T * W[0, i] + x_pred = x_pred + P_xy @ np.linalg.pinv(s) @ (z - y_k) + p_pred = p_pred - P_xy @ np.linalg.pinv(s) @ P_xy.T + return x_pred, p_pred + + +def generate_measurement(x_true): + gz = hx @ x_true + z = gz + z_noise @ np.random.randn(4, 1) + return z + + +def plot_animation(i, x_true_cat, x_est_cat, z): + if i == 0: + plt.plot(x_true_cat[0], x_true_cat[1], '.r') + plt.plot(x_est_cat[0], x_est_cat[1], '.b') + else: + plt.plot(x_true_cat[0:, 0], x_true_cat[0:, 1], 'r') + plt.plot(x_est_cat[0:, 0], x_est_cat[0:, 1], 'b') + plt.plot(z[0], z[1], '+g') + plt.grid(True) + plt.pause(0.001) + + +def plot_ellipse(x_est, p_est): + phi = np.linspace(0, 2 * math.pi, 100) + p_ellipse = np.array( + [[p_est[0, 0], p_est[0, 1]], [p_est[1, 0], p_est[1, 1]]]) + x0 = 3 * sqrtm(p_ellipse) + xy_1 = np.array([]) + xy_2 = np.array([]) + for i in range(100): + arr = np.array([[math.sin(phi[i])], [math.cos(phi[i])]]) + arr = x0 @ arr + xy_1 = np.hstack([xy_1, arr[0]]) + xy_2 = np.hstack([xy_2, arr[1]]) + plt.plot(xy_1 + x_est[0], xy_2 + x_est[1], 'r') + plt.pause(0.00001) + + +def plot_final(x_true_cat, x_est_cat, z_cat): + fig = plt.figure() + subplot = fig.add_subplot(111) + subplot.plot(x_true_cat[0:, 0], x_true_cat[0:, 1], + 'r', label='True Position') + subplot.plot(x_est_cat[0:, 0], x_est_cat[0:, 1], + 'b', label='Estimated Position') + subplot.plot(z_cat[0:, 0], z_cat[0:, 1], '+g', label='Noisy Measurements') + subplot.set_xlabel('x [m]') + subplot.set_ylabel('y [m]') + subplot.set_title('Cubature Kalman Filter - CTRV Model') + subplot.legend(loc='upper left', shadow=True, fontsize='large') + plt.grid(True) + plt.show() + + +def main(): + print(__file__ + " start!!") + x_est = x_0 + p_est = p_0 + x_true = x_0 + x_true_cat = np.array([x_0[0, 0], x_0[1, 0]]) + x_est_cat = np.array([x_0[0, 0], x_0[1, 0]]) + z_cat = np.array([x_0[0, 0], x_0[1, 0]]) + for i in range(N): + x_true = f(x_true) + z = generate_measurement(x_true) + if i == (N - 1) and show_final == 1: + show_final_flag = 1 + else: + show_final_flag = 0 + if show_animation == 1: + plot_animation(i, x_true_cat, x_est_cat, z) + if show_ellipse == 1: + plot_ellipse(x_est[0:2], p_est) + if show_final_flag == 1: + plot_final(x_true_cat, x_est_cat, z_cat) + x_est, p_est = cubature_kalman_filter(x_est, p_est, z) + x_true_cat = np.vstack((x_true_cat, x_true[0:2].T)) + x_est_cat = np.vstack((x_est_cat, x_est[0:2].T)) + z_cat = np.vstack((z_cat, z[0:2].T)) + print('CKF Over') + + +if __name__ == '__main__': + main() diff --git a/Localization/ensemble_kalman_filter/ensemble_kalman_filter.py b/Localization/ensemble_kalman_filter/ensemble_kalman_filter.py index 1307b1ebd1..e8a988a270 100644 --- a/Localization/ensemble_kalman_filter/ensemble_kalman_filter.py +++ b/Localization/ensemble_kalman_filter/ensemble_kalman_filter.py @@ -4,17 +4,21 @@ author: Ryohei Sasaki(rsasaki0109) -Ref: +Reference: Ensemble Kalman filtering (https://rmets.onlinelibrary.wiley.com/doi/10.1256/qj.05.135) """ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) import math - import matplotlib.pyplot as plt import numpy as np -from scipy.spatial.transform import Rotation as Rot +from utils.angle import angle_mod + +from utils.angle import rot_mat_2d # Simulation parameter Q_sim = np.diag([0.2, np.deg2rad(1.0)]) ** 2 @@ -167,9 +171,8 @@ def plot_covariance_ellipse(xEst, PEst): # pragma: no cover x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] - angle = math.atan2(eig_vec[big_ind, 1], eig_vec[big_ind, 0]) - rot = Rot.from_euler('z', angle).as_matrix()[0:2, 0:2] - fx = np.stack([x, y]).T @ rot + angle = math.atan2(eig_vec[1, big_ind], eig_vec[0, big_ind]) + fx = np.stack([x, y]).T @ rot_mat_2d(angle) px = np.array(fx[:, 0] + xEst[0, 0]).flatten() py = np.array(fx[:, 1] + xEst[1, 0]).flatten() @@ -177,7 +180,7 @@ def plot_covariance_ellipse(xEst, PEst): # pragma: no cover def pi_2_pi(angle): - return (angle + math.pi) % (2 * math.pi) - math.pi + return angle_mod(angle) def main(): diff --git a/Localization/extended_kalman_filter/ekf.png b/Localization/extended_kalman_filter/ekf.png deleted file mode 100644 index fb4e660011..0000000000 Binary files a/Localization/extended_kalman_filter/ekf.png and /dev/null differ diff --git a/Localization/extended_kalman_filter/ekf_with_velocity_correction.py b/Localization/extended_kalman_filter/ekf_with_velocity_correction.py new file mode 100644 index 0000000000..5dd97830fc --- /dev/null +++ b/Localization/extended_kalman_filter/ekf_with_velocity_correction.py @@ -0,0 +1,198 @@ +""" + +Extended kalman filter (EKF) localization with velocity correction sample + +author: Atsushi Sakai (@Atsushi_twi) +modified by: Ryohei Sasaki (@rsasaki0109) + +""" +import sys +import pathlib + +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) + +import math +import matplotlib.pyplot as plt +import numpy as np + +from utils.plot import plot_covariance_ellipse + +# Covariance for EKF simulation +Q = np.diag([ + 0.1, # variance of location on x-axis + 0.1, # variance of location on y-axis + np.deg2rad(1.0), # variance of yaw angle + 0.4, # variance of velocity + 0.1 # variance of scale factor +]) ** 2 # predict state covariance +R = np.diag([0.1, 0.1]) ** 2 # Observation x,y position covariance + +# Simulation parameter +INPUT_NOISE = np.diag([0.1, np.deg2rad(5.0)]) ** 2 +GPS_NOISE = np.diag([0.05, 0.05]) ** 2 + +DT = 0.1 # time tick [s] +SIM_TIME = 50.0 # simulation time [s] + +show_animation = True + + +def calc_input(): + v = 1.0 # [m/s] + yawrate = 0.1 # [rad/s] + u = np.array([[v], [yawrate]]) + return u + + +def observation(xTrue, xd, u): + xTrue = motion_model(xTrue, u) + + # add noise to gps x-y + z = observation_model(xTrue) + GPS_NOISE @ np.random.randn(2, 1) + + # add noise to input + ud = u + INPUT_NOISE @ np.random.randn(2, 1) + + xd = motion_model(xd, ud) + + return xTrue, z, xd, ud + + +def motion_model(x, u): + F = np.array([[1.0, 0, 0, 0, 0], + [0, 1.0, 0, 0, 0], + [0, 0, 1.0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 1.0]]) + + B = np.array([[DT * math.cos(x[2, 0]) * x[4, 0], 0], + [DT * math.sin(x[2, 0]) * x[4, 0], 0], + [0.0, DT], + [1.0, 0.0], + [0.0, 0.0]]) + + x = F @ x + B @ u + + return x + + +def observation_model(x): + H = np.array([ + [1, 0, 0, 0, 0], + [0, 1, 0, 0, 0] + ]) + z = H @ x + + return z + + +def jacob_f(x, u): + """ + Jacobian of Motion Model + + motion model + x_{t+1} = x_t+v*s*dt*cos(yaw) + y_{t+1} = y_t+v*s*dt*sin(yaw) + yaw_{t+1} = yaw_t+omega*dt + v_{t+1} = v{t} + s_{t+1} = s{t} + so + dx/dyaw = -v*s*dt*sin(yaw) + dx/dv = dt*s*cos(yaw) + dx/ds = dt*v*cos(yaw) + dy/dyaw = v*s*dt*cos(yaw) + dy/dv = dt*s*sin(yaw) + dy/ds = dt*v*sin(yaw) + """ + yaw = x[2, 0] + v = u[0, 0] + s = x[4, 0] + jF = np.array([ + [1.0, 0.0, -DT * v * s * math.sin(yaw), DT * s * math.cos(yaw), DT * v * math.cos(yaw)], + [0.0, 1.0, DT * v * s * math.cos(yaw), DT * s * math.sin(yaw), DT * v * math.sin(yaw)], + [0.0, 0.0, 1.0, 0.0, 0.0], + [0.0, 0.0, 0.0, 1.0, 0.0], + [0.0, 0.0, 0.0, 0.0, 1.0]]) + return jF + + +def jacob_h(): + jH = np.array([[1, 0, 0, 0, 0], + [0, 1, 0, 0, 0]]) + return jH + + +def ekf_estimation(xEst, PEst, z, u): + # Predict + xPred = motion_model(xEst, u) + jF = jacob_f(xEst, u) + PPred = jF @ PEst @ jF.T + Q + + # Update + jH = jacob_h() + zPred = observation_model(xPred) + y = z - zPred + S = jH @ PPred @ jH.T + R + K = PPred @ jH.T @ np.linalg.inv(S) + xEst = xPred + K @ y + PEst = (np.eye(len(xEst)) - K @ jH) @ PPred + return xEst, PEst + + +def main(): + print(__file__ + " start!!") + + time = 0.0 + + # State Vector [x y yaw v s]' + xEst = np.zeros((5, 1)) + xEst[4, 0] = 1.0 # Initial scale factor + xTrue = np.zeros((5, 1)) + true_scale_factor = 0.9 # True scale factor + xTrue[4, 0] = true_scale_factor + PEst = np.eye(5) + + xDR = np.zeros((5, 1)) # Dead reckoning + + # history + hxEst = xEst + hxTrue = xTrue + hxDR = xTrue + hz = np.zeros((2, 1)) + + while SIM_TIME >= time: + time += DT + u = calc_input() + + xTrue, z, xDR, ud = observation(xTrue, xDR, u) + + xEst, PEst = ekf_estimation(xEst, PEst, z, ud) + + # store data history + hxEst = np.hstack((hxEst, xEst)) + hxDR = np.hstack((hxDR, xDR)) + hxTrue = np.hstack((hxTrue, xTrue)) + hz = np.hstack((hz, z)) + estimated_scale_factor = hxEst[4, -1] + if show_animation: + plt.cla() + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect('key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) + plt.plot(hz[0, :], hz[1, :], ".g") + plt.plot(hxTrue[0, :].flatten(), + hxTrue[1, :].flatten(), "-b") + plt.plot(hxDR[0, :].flatten(), + hxDR[1, :].flatten(), "-k") + plt.plot(hxEst[0, :].flatten(), + hxEst[1, :].flatten(), "-r") + plt.text(0.45, 0.85, f"True Velocity Scale Factor: {true_scale_factor:.2f}", ha='left', va='top', transform=plt.gca().transAxes) + plt.text(0.45, 0.95, f"Estimated Velocity Scale Factor: {estimated_scale_factor:.2f}", ha='left', va='top', transform=plt.gca().transAxes) + plot_covariance_ellipse(xEst[0, 0], xEst[1, 0], PEst) + plt.axis("equal") + plt.grid(True) + plt.pause(0.001) + + +if __name__ == '__main__': + main() diff --git a/Localization/extended_kalman_filter/extended_kalman_filter.py b/Localization/extended_kalman_filter/extended_kalman_filter.py index 2d0d86bf77..d9ece6c6f3 100644 --- a/Localization/extended_kalman_filter/extended_kalman_filter.py +++ b/Localization/extended_kalman_filter/extended_kalman_filter.py @@ -5,12 +5,17 @@ author: Atsushi Sakai (@Atsushi_twi) """ +import sys +import pathlib -import math +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +import math import matplotlib.pyplot as plt import numpy as np +from utils.plot import plot_covariance_ellipse + # Covariance for EKF simulation Q = np.diag([ 0.1, # variance of location on x-axis @@ -131,31 +136,6 @@ def ekf_estimation(xEst, PEst, z, u): return xEst, PEst -def plot_covariance_ellipse(xEst, PEst): # pragma: no cover - Pxy = PEst[0:2, 0:2] - eigval, eigvec = np.linalg.eig(Pxy) - - if eigval[0] >= eigval[1]: - bigind = 0 - smallind = 1 - else: - bigind = 1 - smallind = 0 - - t = np.arange(0, 2 * math.pi + 0.1, 0.1) - a = math.sqrt(eigval[bigind]) - b = math.sqrt(eigval[smallind]) - x = [a * math.cos(it) for it in t] - y = [b * math.sin(it) for it in t] - angle = math.atan2(eigvec[bigind, 1], eigvec[bigind, 0]) - rot = np.array([[math.cos(angle), math.sin(angle)], - [-math.sin(angle), math.cos(angle)]]) - fx = rot @ (np.array([x, y])) - px = np.array(fx[0, :] + xEst[0, 0]).flatten() - py = np.array(fx[1, :] + xEst[1, 0]).flatten() - plt.plot(px, py, "--r") - - def main(): print(__file__ + " start!!") @@ -200,7 +180,7 @@ def main(): hxDR[1, :].flatten(), "-k") plt.plot(hxEst[0, :].flatten(), hxEst[1, :].flatten(), "-r") - plot_covariance_ellipse(xEst, PEst) + plot_covariance_ellipse(xEst[0, 0], xEst[1, 0], PEst) plt.axis("equal") plt.grid(True) plt.pause(0.001) diff --git a/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb b/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb deleted file mode 100644 index 073fd06a16..0000000000 --- a/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb +++ /dev/null @@ -1,264 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Extended Kalman Filter Localization" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJwAAAOMCAYAAAAIX6nJAAAMS2lDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvYnSq5QQWgQBqYKNkAQSSowJQcTOsqyCa0FFBNQVXRVx0dUVkLWirnVRsK/lYUFFWRcLNlTepICu+733vne+79z758yZ/5TMvXcGAJ06nlSah+oCkC8pkCVEhrImp6WzSPcAFRCBDjAH+jy+XMqOj48BUIbvf5fXVwGivF9yUXL9c/y/ip5AKOcDgMRDnCmQ8/Mh/gUAvJQvlRUAQPSFduvZBVIlngqxgQwmCLFUibPVuFSJM9W4WuWTlMCBeBcAZBqPJ8sGQLsV2lmF/GzIo30dYleJQCwBQIcMcRBfxBNAHAXxmPz8mUoM/YBD5hc82X/jzBzh5PGyR7C6FpWQw8RyaR5vzv/Zjv8t+XmK4Rh2UGkiWVSCsmbYt+u5M6OVmAZxnyQzNg5ifYjfigUqf4hRqkgRlaz2R035cg7sGWBC7CrghUVDbApxhCQvNkZjz8wSR3AhhisELRIXcJM0c5cI5eGJGs462cyEuGGcJeOwNXObeDJVXKX/CUVuMlvDf10k5A7zvyoWJaWqc8aoheKUWIi1IWbKcxOj1T6YTbGIEzvsI1MkKPO3gdhfKIkMVfNj07NkEQkaf1m+fLhebIlIzI3V4JoCUVKUhmcXn6fK3wjiVqGEnTzMI5RPjhmuRSAMC1fXjl0USpI19WLd0oLQBM3cF9K8eI0/ThXmRSrtVhCbygsTNXPxoAK4INX8eKy0ID5JnSeemcObEK/OBy8CMYADwgALKKBmgpkgB4g7+lr64C/1SATgARnIBkLgorEMz0hVjUjgNREUgz8hEgL5yLxQ1agQFEL7xxGr+uoCslSjhaoZueAhxPkgGuTB3wrVLMlItBTwAFrE/4jOh7nmQVWO/dPGhpYYjUUxzMvSGfYkhhPDiFHECKIjboIH4QF4DLyGQHXHfXG/4Ww/+xMeEjoJ9whXCN2EGzPEJbKv6mGBiaAbRojQ1Jz5Zc24HWT1wkPxQMgPuXEmbgJccE8YiY0Hw9he0MrRZK6s/mvuv9XwRdc1fhRXCkoZRQmhOHw9U9tJ22uERdnTLzukzjVzpK+ckZGv43O+6LQA3qO/9sSWYPuwU9gx7Ax2EGsBLOwI1oqdxw4p8cgqeqBaRcPRElT55EIe8T/i8TQxlZ2Uuza69rp+UI8VCIuU70fAmSmdIxNniwpYbPjmF7K4Ev7YMSx3Vzf41lZ+R9SvqZdM1fcBYZ79bCvZAkBg0NDQ0MHPtugeAPb1A0C9/dnmAJ9d7S4ATq/hK2SFahuuvBDgF0oHPlHG8BtlDRxgPe7AGwSAEBAOJoA4kATSwHTYZRFczzIwG8wDi0EZqAArwVpQAzaBLWAH+AnsBS3gIDgGfgPnwEVwBdyEq6cHPAX94DUYRBCEhNARBmKMWCC2iDPijvgiQUg4EoMkIGlIBpKNSBAFMg/5BqlAKpEaZDPSgPyMHECOIWeQTuQGchfpRV4g71EMpaEGqBlqh45DfVE2Go0modPQbHQWWoyWosvRarQe3YU2o8fQc+gVtBt9ig5gANPCmJgl5oL5YhwsDkvHsjAZtgArx6qweqwJa4P/8yWsG+vD3uFEnIGzcBe4gqPwZJyPz8IX4MvwGnwH3oyfwC/hd/F+/BOBTjAlOBP8CVzCZEI2YTahjFBF2EbYTzgJn6Yewmsikcgk2hN94NOYRswhziUuI24g7iYeJXYS7xMHSCSSMcmZFEiKI/FIBaQy0nrSLtIRUheph/SWrEW2ILuTI8jpZAm5hFxF3kk+TO4iPyIPUnQpthR/ShxFQJlDWUHZSmmjXKD0UAapelR7aiA1iZpDXUytpjZRT1JvUV9qaWlZaflpTdISay3Sqtbao3Va667WO5o+zYnGoU2lKWjLadtpR2k3aC/pdLodPYSeTi+gL6c30I/T79DfajO0x2pztQXaC7VrtZu1u7Sf6VB0bHXYOtN1inWqdPbpXNDp06Xo2ulydHm6C3RrdQ/oXtMd0GPouenF6eXrLdPbqXdG77E+Sd9OP1xfoF+qv0X/uP59BsawZnAYfMY3jK2Mk4weA6KBvQHXIMegwuAngw6DfkN9Q0/DFMMiw1rDQ4bdTIxpx+Qy85grmHuZV5nvR5mNYo8Sjlo6qmlU16g3RqONQoyERuVGu42uGL03ZhmHG+carzJuMb5tgps4mUwymW2y0eSkSd9og9EBo/mjy0fvHf2HKWrqZJpgOtd0i+l50wEzc7NIM6nZerPjZn3mTPMQ8xzzNeaHzXstGBZBFmKLNRZHLJ6wDFlsVh6rmnWC1W9pahllqbDcbNlhOWhlb5VsVWK12+q2NdXa1zrLeo11u3W/jYXNRJt5No02f9hSbH1tRbbrbE/ZvrGzt0u1+86uxe6xvZE9177YvtH+lgPdIdhhlkO9w2VHoqOvY67jBseLTqiTl5PIqdbpgjPq7O0sdt7g3DmGMMZvjGRM/ZhrLjQXtkuhS6PL3bHMsTFjS8a2jH02zmZc+rhV406N++Tq5ZrnutX1ppu+2wS3Erc2txfuTu5891r3yx50jwiPhR6tHs89nT2Fnhs9r3sxvCZ6fefV7vXR28db5t3k3etj45PhU+dzzdfAN953me9pP4JfqN9Cv4N+7/y9/Qv89/r/FeASkBuwM+DxePvxwvFbx98PtArkBW4O7A5iBWUE/RDUHWwZzAuuD74XYh0iCNkW8ojtyM5h72I/C3UNlYXuD33D8efM5xwNw8Iiw8rDOsL1w5PDa8LvRFhFZEc0RvRHekXOjTwaRYiKjloVdY1rxuVzG7j9E3wmzJ9wIpoWnRhdE30vxilGFtM2EZ04YeLqibdibWMlsS1xII4btzrudrx9/Kz4XycRJ8VPqp30MMEtYV7CqURG4ozEnYmvk0KTViTdTHZIViS3p+ikTE1pSHmTGpZamdo9edzk+ZPPpZmkidNa00npKenb0gemhE9ZO6VnqtfUsqlXp9lPK5p2ZrrJ9Lzph2bozODN2JdByEjN2JnxgRfHq+cNZHIz6zL7+Rz+Ov5TQYhgjaBXGCisFD7KCsyqzHqcHZi9OrtXFCyqEvWJOeIa8fOcqJxNOW9y43K35w7lpebtzifnZ+QfkOhLciUnZprPLJrZKXWWlkm7Z/nPWjurXxYt2yZH5NPkrQUGcMN+XuGg+FZxtzCosLbw7eyU2fuK9IokRefnOM1ZOudRcUTxj3Pxufy57fMs5y2ed3c+e/7mBciCzAXtC60Xli7sWRS5aMdi6uLcxb+XuJZUlrz6JvWbtlKz0kWl97+N/LaxTLtMVnbtu4DvNi3Bl4iXdCz1WLp+6adyQfnZCteKqooPy/jLzn7v9n3190PLs5Z3rPBesXElcaVk5dVVwat2VOpVFlfeXz1xdfMa1pryNa/Wzlh7psqzatM66jrFuu7qmOrW9TbrV67/UCOquVIbWru7zrRuad2bDYINXRtDNjZtMttUsen9D+Ifrm+O3Nxcb1dftYW4pXDLw60pW0/96PtjwzaTbRXbPm6XbO/ekbDjRINPQ8NO050rGtFGRWPvrqm7Lv4U9lNrk0vT5t3M3RV7wB7Fnic/Z/x8dW/03vZ9vvuafrH9pW4/Y395M9I8p7m/RdTS3ZrW2nlgwoH2toC2/b+O/XX7QcuDtYcMD604TD1cenjoSPGRgaPSo33Hso/db5/RfvP45OOXT0w60XEy+uTp3yJ+O36KferI6cDTB8/4nzlw1vdsyznvc83nvc7v/93r9/0d3h3NF3wutF70u9jWOb7zcFdw17FLYZd+u8y9fO5K7JXOq8lXr1+beq37uuD64xt5N57/UfjH4M1Ftwi3ym/r3q66Y3qn/l+O/9rd7d196G7Y3fP3Eu/dvM+///SB/MGHntKH9IdVjyweNTx2f3ywN6L34pMpT3qeSp8O9pX9qfdn3TOHZ7/8FfLX+f7J/T3PZc+HXix7afxy+yvPV+0D8QN3Xue/HnxT/tb47Y53vu9OvU99/2hw9gfSh+qPjh/bPkV/ujWUPzQk5cl4qq0ABhXNygLgxXYA6GkAMC7C/cMU9TlPJYj6bKpC4D9h9VlQJd4ANMGbcrvOOQrAHqh2UOlQlVv1pBCAeniMqEbkWR7uai4aPPEQ3g4NvTQDgNQGwEfZ0NDghqGhj1thsjcAODpLfb5UChGeDX7wVKIuZtEi8JX8G32pgSxMCqsSAAAACXBIWXMAABYlAAAWJQFJUiTwAAABnmlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTgwPC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjkwODwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgprBUyPAAAAHGlET1QAAAACAAAAAAAAAcYAAAAoAAABxgAAAcYAANwG2Vno5AAAQABJREFUeAHsnQuclUX9/797ObvsLiA3xRUQUDAFFy+IeKMQlUq8kGhlZhbiLetvpRklmD+B0tK0klREzZ+lFt5vlVf8KSYhISAkeCEFxQsgsOwue/+fedbn8JxznnObnbPnOWfep5ec58zM9zsz7/k4NF9n5ilqD3+EDwQgAAEIQAACEIAABCAAAQhAAAIQgAAEDBEoIuBkiCRuIAABCEAAAhCAAAQgAAEIQAACEIAABBwCBJwQAgQgAAEIQAACEIAABCAAAQhAAAIQgIBRAgScjOLEGQQgAAEIQAACEIAABCAAAQhAAAIQgAABJzQAAQhAAAIQgAAEIAABCEAAAhCAAAQgYJQAASejOHEGAQhAAAIQgAAEIAABCEAAAhCAAAQgQMAJDUAAAhCAAAQgAAEIQAACEIAABCAAAQgYJUDAyShOnEEAAhCAAAQgAAEIQAACEIAABCAAAQgQcEIDEIAABCAAAQhAAAIQgAAEIAABCEAAAkYJEHAyihNnEIAABCAAAQhAAAIQgAAEIAABCEAAAgSc0AAEIAABCEAAAhCAAAQgAAEIQAACEICAUQIEnIzixBkEIAABCEAAAhCAAAQgAAEIQAACEIAAASc0AAEIQAACEIAABCAAAQhAAAIQgAAEIGCUAAEnozhxBgEIQAACEIAABCAAAQhAAAIQgAAEIEDACQ1AAAIQgAAEIAABCEAAAhCAAAQgAAEIGCVAwMkoTpxBAAIQgAAEIAABCEAAAhCAAAQgAAEIEHBCAxCAAAQgAAEIQAACEIAABCAAAQhAAAJGCRBwMooTZxCAAAQgAAEIQAACEIAABCAAAQhAAAIEnNAABCAAAQhAAAIQgAAEIAABCEAAAhCAgFECBJyM4sQZBCAAAQhAAAIQgAAEIAABCEAAAhCAAAEnNAABCEAAAhCAAAQgAAEIQAACEIAABCBglAABJ6M4cQYBCEAAAhCAAAQgAAEIQAACEIAABCBAwAkNQAACEIAABCAAAQhAAAIQgAAEIAABCBglQMDJKE6cQQACEIAABCAAAQhAAAIQgAAEIAABCBBwQgMQgAAEIAABCEAAAhCAAAQgAAEIQAACRgkQcDKKE2cQgAAEIAABCEAAAhCAAAQgAAEIQAACBJzQAAQgAAEIQAACEIAABCAAAQhAAAIQgIBRAgScjOLEGQQgAAEIQAACEIAABCAAAQhAAAIQgAABJzQAAQhAAAIQgAAEIAABCEAAAhCAAAQgYJQAASejOHEGAQhAAAIQgAAEIAABCEAAAhCAAAQgQMAJDUAAAhCAAAQgAAEIQAACEIAABCAAAQgYJUDAyShOnEEAAhCAAAQgAAEIQAACEIAABCAAAQgQcEIDEIAABCAAAQhAAAIQgAAEIAABCEAAAkYJEHAyihNnEIAABCAAAQhAAAIQgAAEIAABCEAAAgSc0AAEIAABCEAAAhCAAAQgAAEIQAACEICAUQIEnIzixBkEIAABCEAAAhCAAAQgAAEIQAACEIAAASc0AAEIQAACEIAABCAAAQhAAAIQgAAEIGCUAAEnozhxBgEIQAACEIAABCAAAQhAAAIQgAAEIEDACQ1AAAIQgAAEIAABCEAAAhCAAAQgAAEIGCVAwMkoTpxBAAIQgAAEIAABCEAAAhCAAAQgAAEIEHBCAxCAAAQgAAEIQAACEIAABCAAAQhAAAJGCRBwMooTZxCAAAQgAAEIQAACEIAABCAAAQhAAAIEnNAABCAAAQhAAAIQgAAEIAABCEAAAhCAgFECBJyM4sQZBCAAAQhAAAIQgAAEIAABCEAAAhCAAAEnNAABCEAAAhCAAAQgAAEIQAACEIAABCBglAABJ6M4cQYBCEAAAhCAAAQgAAEIQAACEIAABCBAwAkNQAACEIAABCAAAQhAAAIQgAAEIAABCBglQMDJKE6cQQACEIAABCAAAQhAAAIQgAAEIAABCBBwQgMQgAAEIAABCEAAAhCAAAQgAAEIQAACRgkQcDKKE2cQgAAEIAABCEAAAhCAAAQgAAEIQAACBJzQAAQgAAEIQAACEIAABCAAAQhAAAIQgIBRAgScjOLEGQQgAAEIQAACEIAABCAAAQhAAAIQgAABJzQAAQhAAAIQgAAEIAABCEAAAhCAAAQgYJQAASejOHEGAQhAAAIQgAAEIAABCEAAAhCAAAQgQMAJDUAAAhCAAAQgAAEIQAACEIAABCAAAQgYJUDAyShOnEEAAhCAAAQgAAEIQAACEIAABCAAAQgQcEIDEIAABCAAAQhAAAIQgAAEIAABCEAAAkYJEHAyihNnEIAABCAAAQhAAAIQgAAEIAABCEAAAgSc0AAEIAABCEAAAhCAAAQgAAEIQAACEICAUQIEnIzixBkEIAABCEAAAhCAAAQgAAEIQAACEIAAASc0AAEIQAACEIAABCAAAQhAAAIQgAAEIGCUAAEnozhxBgEIQAACEIAABCAAAQhAAAIQgAAEIEDACQ1AAAIQgAAEIAABCEAAAhCAAAQgAAEIGCVAwMkoTpxBAAIQgAAEIAABCEAAAhCAAAQgAAEIEHBCAxCAAAQgAAEIQAACEIAABCAAAQhAAAJGCRBwMooTZxCAAAQgAAEIQAACEIAABCAAAQhAAAIEnNAABCAAAQhAAAIQgAAEIAABCEAAAhCAgFECBJyM4sQZBCAAAQhAAAIQgAAEIAABCEAAAhCAAAEnNAABCEAAAhCAAAQgAAEIQAACEIAABCBglAABJ6M4cQYBCEAAAhCAAAQgAAEIQAACEIAABCBAwAkNQAACEIAABCAAAQhAAAIQgAAEIAABCBglQMDJKM78ddbQ0CCrVq1yOtCnTx8pKyvL387QcghAAAIQgAAEIAABCEAAAhCAQEAJNDU1yZYtW5zWjRw5UioqKgLa0s41i4BT5/gVjPWrr74qY8aMKZj+0BEIQAACEIAABCAAAQhAAAIQgEDQCSxZskQOO+ywoDdTq30EnLSwFZ4RAafCG1N6BAEIQAACEIAABCAAAQhAAALBJkDAKdjjQ+sMEHjnnXdk3333dTwpwe+5554GvBa+C7UVcuHChU5Hx48fz1HEwh/ywPYQLQZ2aKxrGFq0bsgD2WF0GMhhsbJRaNHKYQ9kp9FisIblww8/jJwwevvtt2WfffYJVgMNtYYdToZA5rubDRs2yKBBg5xurF+/XgYOHJjvXeqS9qu7r5566ilpbmmWSSdOKtizt10Ck0o6RQAtdgofxgYJKC0+8eQTEioNycSJE5kXDbLFVfoE0GH6rCiZXQLu38+qFubE7LLGe3ICzIvJ+XR1ri3rbwJOXa2sgNZni+BN4+f/RJgmij9dAmhRlxx2pgmgRdNE8adDAB3qUMMmGwTQYjao4lOHAFrUoZY9G1vW3wScsqehvPJsi+BNDwoTt2mi+NMlgBZ1yWFnmgBaNE0UfzoE0KEONWyyQQAtZoMqPnUIoEUdatmzsWX9TcApexrKK8+2CN70oDBxmyaKP10CaFGXHHamCaBF00Txp0MAHepQwyYbBJQWOWacDbL4zJQA82KmxLJb3pb1NwGn7Ooob7zbInjTA8LEbZoo/nQJoEVdctiZJoAWTRPFnw4BdKhDDZtsEECL2aCKTx0CaFGHWvZsbFl/E3DKnobyyrMtgjc9KEzcponiT5cAWtQlh51pAmjRNFH86RBAhzrUsMkGAbSYDar41CGAFnWoZc/GlvU3AafsaSivPNsieNODwsRtmij+dAmgRV1y2JkmgBZNE8WfDgF0qEMNm2wQQIvZoIpPHQJoUYda9mxsWX8TcMqehvLKsy2CNz0oTNymieJPlwBa1CWHnWkCaNE0UfzpEECHOtSwyQYBtJgNqvjUIYAWdahlz8aW9TcBp+xpKK882yJ404PCxG2aKP50CaBFXXLYmSaAFk0TxZ8OAXSoQw2bbBBAi9mgik8dAmhRh1r2bGxZfxNwyp6G8sqzLYI3PShM3KaJ4k+XAFrUJYedaQJo0TRR/OkQQIc61LDJBgG0mA2q+NQhgBZ1qGXPxpb1NwGn7GkorzzbInjTg8LEbZoo/nQJoEVdctiZJoAWTRPFnw4BdKhDDZtsEECL2aCKTx0CaFGHWvZsbFl/E3DKnobyyrMtgjc9KEzcponiT5cAWtQlh51pAmjRNFH86RBAhzrUsMkGAbSYDar41CGAFnWoZc/GlvU3AafsaSivPNsieNODwsRtmij+dAmgRV1y2JkmgBZNE8WfDgF0qEMNm2wQQIvZoIpPHQJoUYda9mxsWX8TcMqehvLKsy2CNz0oTNymieJPlwBa1CWHnWkCaNE0UfzpEECHOtSwyQYBtJgNqvjUIYAWdahlz8aW9TcBp+xpKK882yJ404PCxG2aKP50CaBFXXLYmSaAFk0TxZ8OAXSoQw2bbBBAi9mgik8dAmhRh1r2bGxZfxNwyp6G8sqzLYI3PShM3KaJ4k+XAFrUJYedaQJo0TRR/OkQQIc61LDJBgG0mA2q+NQhgBZ1qGXPxpb1NwGn7GkorzzbInjTg8LEbZoo/nQJoEVdctiZJoAWTRPFnw4BdKhDDZtsEECL2aCKTx0CaFGHWvZsbFl/E3DKnobyyrMtgjc9KEzcponiT5cAWtQlh51pAmjRNFH86RBAhzrUsMkGAbSYDar41CGAFnWoZc/GlvU3AafsaSivPNsieNODwsRtmij+dAmgRV1y2JkmgBZNE8WfDgF0qEMNm2wQQIvZoIpPHQJoUYda9mxsWX8TcMqehvLKsy2CNz0oTNymieJPlwBa1CWHnWkCaNE0UfzpEECHOtSwyQYBtJgNqvjUIYAWdahlz8aW9TcBp+xpKK882yJ404PCxG2aKP50CaBFXXLYmSaAFk0TxZ8OAXSoQw2bbBBAi9mgik8dAmhRh1r2bGxZfxNwyp6G8sqzLYI3PShM3KaJ4k+XAFrUJYedaQJo0TRR/OkQQIc61LDJBgG0mA2q+NQhgBZ1qGXPxpb1NwGn7GkorzzbInjTg8LEbZoo/nQJoEVdctiZJoAWTRPFnw4BdKhDDZtsEECL2aCKTx0CaFGHWvZsbFl/E3DKnobyyrMtgjc9KEzcponiT5cAWtQlh51pAmjRNFH86RBAhzrUsMkGAbSYDar41CGAFnWoZc/GlvU3AafsaSivPNsieNODwsRtmij+dAmgRV1y2JkmgBZNE8WfDgF0qEMNm2wQQIvZoIpPHQJoUYda9mxsWX8TcMqehvLKsy2CNz0oTNymieJPlwBa1CWHnWkCaNE0UfzpEECHOtSwyQYBtJgNqvjUIYAWdahlz8aW9TcBp+xpKK882yJ404PCxG2aKP50CaBFXXL5aVffVCeVZVWBbDxaDOSwWNcodGjdkAe2w2gxsENjXcPQYrCG3Jb1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXXP7Yrdq4Uu54ea4sXr1QWpqbpTQUkrEjxsvUoy6WkdU1OemIN/DlPistPvHkExIqDcnEiROloqIiJ23rbKVufzrrB/vcEGBOzA13ao0ngBbjmZCSGwJoMTfcE9Vqy/qbgFMiBViWbovgTQ8rE7dpovjTJYAWdcnlh93DyxfINQ9MT9jYK874tZxcc1rCfJMZsYEvr283CLZP0wgZWDk40AEnv4BSbN/c/pwz9gIZNfAQb1d5DjgB5sSAD5BFzUOLFg12wLuKFoM1QLasvwk4BUt3OWuNLYI3DZiJ2zRR/OkSQIu65IJvt2LDMjl/3ukpG3r7RQ9r7XTyC7wkqixV4EvZtbe1S1FxkRw/6DS54ptXJ93hlEndidqUSbpiedfiW313ib358RuBCepl0ifK+hNgTvTnQmrXE0CLXc+cGv0JoEV/LrlKtWX9TcApVwoLWL22CN40diZu00Txp0sALeqSC77dpQ9cKIuWP52yoUcfdIJcP+WWlOVUAZ2dPMrm3Jsnp+VfFVKBpz+cf5+M3vvwKJtkQZ9sHg18bOWDMmfBj6Pa4gbHohKT/Jh3/v3sdErCJ0hZzIlBGg2724IW7R7/IPUeLQZpNERsWX8TcAqW7nLWGlsEbxowE7dpovjTJYAWdckF3+6YWfs7dzalaqk6/vXSzDdSFZNUu5SmT7lGJh90RpyfdANfXsPYIJg36OMX7MnW0cB0d4l52+73HNsfvzKkBYMAc2IwxoFWiKBFVBAUAmgxKCPR0Q5b1t8EnDqpu1dffVX+8Y9/yCuvvCKvvfaaE6msqqqS6upqGT9+vHz729+Wo48+Ou1aHnnkEbn77rtl8eLFjq+BAwfK2LFj5eyzz5ZTTz01bT+ZFrRF8JlySVWeiTsVIfK7igBa7CrSXVuPOnJ27NU1zhG1dGp+bsaKpG+vS3eXkt/xvHQDX247VUApVF4WCYKlW7faRTRsj/2S9sOtI91vnWCZn+90g3p+tl2d1tXHFbu6f6nqY05MRYj8riKAFruKNPWkIoAWUxHq2nxb1t8EnDqhq3HjxslLL72U0sO3vvUtueWWW5LeY6GcnHfeeTJ//vyE/qZNmya33XZbwvzOZNgi+M4w8rNl4vajQlouCKDFXFDvmjrTDfSkEwxJN/ASu5OnMzuE3CBYbN1+O5xcom6wytRb+NJlmKpN6m4qtz9uW4P0rXNUMkjtN9kW5kSTNPHVGQJosTP0sDVJAC2apNl5X7asvwk4dUIrw4cPl7feekvULqTJkyfLF8Z/QYYMHuJ4fOGFF+TGG290dimpBBV0uuuuu5w8vz9mzpwps2fPdrJGjx4t03863fG1Zs0aueGGG2Tp0qVO3owZM2TWrFl+LjqVZovgOwXJx5iJ2wcKSTkhgBZzgr1LKo0N1CSqNDZI5Fcu3cCLN3iV6gieW49fsMbrJ926XX/e784ctVM7fSbMHuV1p/3s7Y+2kywZeo8r+lWR6KikX9lCSGNOLIRRLIw+oMXCGMdC6AVaDNYo2rL+JuDUCd2dfPLJcs63z5HTp/i/PWjLli3OcTgVlFIftRvK73jdO++8I/vuu69TRgWbXnzxxajdUGpyULup3KDT22+/Lfvss49T3tQftgjeFC/XDxO3S4LvXBNAi7kegfTrz/SoU7KjaN4gT6oLrd3Ai9cmWavVTp51m9/J6KJwrz9VzzGHTHQuMnfr9uZn+pyqf8n8HXFlx9+xycqkk1czfIzcdvZ96RTt0jLJNOJtiN9RSW9+IT0zJxbSaOZ3X9Bifo9fIbUeLQZrNG1ZfxNwyrLu1J1MaveT+nzve9+T3//+93E1fv/735ebbrrJSU8UlFq0aJEcc8wxTplEfuIcZ5Bgi+AzQJJWUSbutDBRqAsIoEV9yJkGgHRq6uxRp1S7jPx2r/j1K91dRu5OnnR3V/kxUQEn71vq0q3bz5dKS2cHVyLbzvQj1qcf69gy6rcff79yJtLS7V9nGJpoZ1f6YE7sStrUlYwAWkxGh7yuJIAWu5J26rpsWX8TcEqthU6VUP9iV1ZWOj5OOukkeeyxx+L8DRo0yDl6N3LkSHn99dfj8t2EAw88UFatWuUc4Vu/fr2bbOTbFsEbgeVxwsTtgcFjTgmgxczwdzYAlEltqYJFPzzlKvnaYWendJmozVOPulhGVtc49qnKZBqY0A0SqWDTCYOnyBXfvDqyYzfdur0gvLux3CCYNz/dZ8Xl3Js7/uNPujbJyiXaKZSKfzKfnclLd5w6w7Az7cuFLXNiLqhTpx8BtOhHhbRcEECLuaCeuE5b1t8EnBJrwEiOOlbXt29fx5dfwMl7nC7VziXvpeKmj9XZIngjg+pxwsTtgcFjTgmgxfTxewNA3oCG6yHdHSxu+WTf6V62rQIB6oLsc8ZeIKMGHpLMpZPnt3vG2y8/B6pfw/fYP63AiwqoDO27T6fvPlI7atyAWKqgj99YxPZDHfNTn8qyqtgs57cfF7dgqjuO1D1Rj772V1n55hLXxPn2a5ffTqF0+E8+6Iwo3yZ+qD4nuqPK23b3OciXnpvg4fpgTnRJ8J1rAmgx1yNA/S4BtOiSCMa3LetvAk5Z1tv9D9wvZ5ze8X8wL730UrnuuuuiavQeuVN5qkyiz/XXXy+XXXaZk/3www/Lqaeemqhoxum2CD5jMCkMmLhTACK7ywi4WmxuaZZJJ06K7CrpsgbkSUXpBoAS7WDJtJt+u3rchX8iXzoXZC9/b7lcMP+0RC4j6apfb378hvxywU+cNPXWNe9HBb4uO2WWTDzgRHnr47Vy0fyvS2tbi7dI0mdv37zPbp/coI83z3Xol+bmud+qfS3NzeIG6FQwS33ueHmuLF69MC7P3fnl2qvxv2vxrfLKyuelJfzvSqi8zAn0uUGx2LueErVJ1f/SzDdct5IqmOYWNKUr15/7HdtuNz32O7bdsfmF9NudE1WfJk6cyJxYSIObZ31Bi3k2YAXcXLQYrMG1Zf1NwCnLulOXfat7mdRnyZIlcthhh0XVeMcdd8i5557rpC24f0HCC8hVAW/w6vbbb5epU6dG+Ur2Qwk62efDDz+UMWPGOEXU7qnq6upkxcn7jICauNUl7+qjxrqiouKzHL4g0LUE0GJ6vGc8+UNZtPzplIXVDpbZJ96QslxsATUHqLFwP8f+8kD3MaNvdUH28L77J7SJrSe2X4kCJW6/Vn+yUu5ZcocsfHmh7NzaT5rqe0ivoq869a3/ZJXz3bSzl4z75DU5cmdHM/7ZdKQ82n1sx4+2biLqH/VpL+/4dv7s/dlzx1Hy8E1Gu/JKyzqeWz7alaaeihpFSreGv8MVle4IB5O2Ofnl5VulrKzWeS7rtjWcXitllVulJLQ9/F0r3XptkuLSVikOtTplYoNnKlHt6vr8oOMic7OXmxqnyJzd2iirt6yVi+ef6fhKxM/J/OwPdRTylJGnO79i+XvLeZ9d/t40E8/p1K/6pC5xV7puL2mTotZiE1UH1gdzYmCHxrqGoUXrhjywHUaLwRqajRs3Rl4cpq7LUW++L8QPAacsjqp3R9KUKVPk/vvvj6vNWybVrqVMdkPFVlRUFP1fsWPzvb9VMMs9BuhN5xkCEIBAPhNQu79uXD3D2QXj7YdfcEHtBPnBiNkSKg15i6b1rOpRn3cb3pYFa+elZRPbhsG9D5Bv7HNeStvu3bvLjh075Jf//IFIWbEoPy0NZU4QqWHbgHAgqZfU1w6S2vA/Lc27iTT3k6LQIdLeFA7StJR2+G/dLKc2PSt7hpZKdXGz7Fn0qexXGX4bavl2qQoHJurDPtWnMrwb6pCNf5UNZYkDYR0Oo/88teGvcmDJ61LTbZUMKv9Qntx2nMwp/bFIcY/ogp369b5ISThQVRIOTFW8LypY1b3neqncbb1U7Pa+lJTXyeeGDZbx1RNkQNkg2Rn+X0WpGxQTh+GDT18tH/RqkLbuHVz8AljeJirW36q+1Pk/iL9c+iNvlu+zO8Y/Hf0bcTWSjr5U2VTlNtS/K/+76kZJ1eazD7hEBlYO9m0fiRCAAAQgAAEIZJ+A+/f65s2bIxtPCDhln3vB1eB9q1y/fv1k2bJlvlHLOXPmyIwZM5z+J3pDnQvH63P27NlyxRVXuFkpvwk4pUREAQhAIIcE2lvCOy5Ks7vjQv0Ff93yjqNk6XT1soOuTbnQ9/pRi/7/+/ApeffT/3iT/Z+b2uSExXUyuK5Y6kra5b6x5dLeMzq4laj+bdvr5Lmnhjt+X9vcYbP8rR3hYFL/cNoA//qiUuultGWbDGrfJJPanpKf73VXJFcFl1RgKfbjpl/+wblyZ/klsdnRv9tqZVTTahld9Ir8aq/bo/M++5WWH19Ln8RwfaVtO8Lxs3R25tbL0Oa3pWZIlZzS+gfH2bEtz0vP9mZpKy6V4vDxwTMPa5Lt/UpTBm9UAGmfwfvLqX3OlhuXd/w97tM6JwjoDQSpYOL7O96KBD7V78/vOTEqEOSnpdhysUGrJR+/JM+sf9CvCU7a8YNOkzF7HJMwnwwIQAACEIAABLqOAAGnrmNdcDWpN8mNHz9eNm3a5PQtWSCpq3Y4caQuOzJja2p2uOI1cwJoMT1mJ1x3SGShn8xC7XB6+oevSEndTmmt6iYN4QCROn7lPZIl4WNYFd17OUfoHn/9Qbn+sSsdl+5OFj//u79dJ6e+KTK5rXtU9qutDXLVyR1H1Fobi6V+U3/5/pFPy3/fFdlS2yT/eq1EVnxSJO318cGgKEfeH+GdS+OalsnnS/4vsruoR0mTVJeHj7B14rM2fPxuZf1+sr0tvGPqs8+21p7yuYq1sm/Z+vDuqI5jcG6e3/cDm0bLhUV3+mV9lqaO4u3agRRbsLRlo3yj5Qm5fsDvIlk3bpwsc0oukaFtH0iP1nBgqf1d2a1ou/Qs2iYHlr3u7NraK7RD+oZaIjZ+D/M3HSwze50sPXqEd0iF/9mtepVzfC9U1bFzTdmoMVYfdQfUUz9ZKhOvHZ2WrhyjBH+o439f3O8k+cfax+WaB6YnKCVy9jHfk3dq10TurFIFe/fuK7U7tke1wdWhOsanLqNPdkQzYWV5nMGcmMeDV2BNR4sFNqB53B20GKzB40hdsMYjb1qj3jr3hS98QdwAT6pjcnPnzhX1djr1yeQOp5tuukkuvrjjslQTcGy5tMwEK68PNXE/9dRTThKXknrJ8NzVBNBiesT9LvH2Wg5fvkO++265DHfvG/JkOjtg+g+S4mGfk7JjviAlXzzBCTipC6Onzj01akeMu9hX5qGPG2Xi6iaZXFsp1SWfHWPz+FWPagfR4MbrRRqGhaMZ+8TkpvOzXkbtXCmfL3rJCa4c2n2FDO22K0CSjoeuLLOluVUmjeg4mtfa3NOpWh3/a2nuEb4Xaab06VHmBNru+ecfnbzj1rfIr3a/TSpKmn13YJlu++Ef/lnWhWpi3IaP7ZW9K1W9VkmvvqvDR/Xek557rZMXf7lUZj52acq7wbyaiHHs/FT5M752ncxZED5umOSTyo/X1OQbF71+8+GZOTEfRsmONqJFO8Y5H3qJFoM1Srasv7nDyaDulGiOPfZYeeuttxyvf/rTn+Sss85KWoP3XqZUQSTvbqhnnnlGjjvuuKS+M8m0RfCZMEmnLBN3OpQo0xUE0GJ6lJ231N0Ufptb+L6j2I9ayO+3sk5ueD+9u4VUACp04ulyWb83ZNXHyyLulB9paJWjVtbLFz8pk8NKUr9M4M6PJ8jlJTdGfCR6UDt7RrS85+zeGVS83gku1VSuTWtXUSKfsem/7bFdNoY3YF2zsSMQFJtv8vfNldsdd00lIm/2K5b/7lshR4/5olw/5RYn/ZhZ4SNr/9gi39mZ/bb49WvJ9mpZVDdW/q/18/JiefjCdL97p0pb5KABxfJe643Sq/9K6b7HWqns19EvP5+J0pRu+vTtJ59+ujlREa30bL0ZT6sxXWjEnNiFsKkqKQG0mBQPmV1IAC12Iew0qrJl/U3AKQ0xpFNky5Yt8vnPf17UcTr1SRU8cn16hTZt2jS57bbb3Ky47/POO0/mz5/vpKs3ye2zj85/BY9z6yR421HIl5b5914/lYlbnx2WZgmgxdQ8dzywQHYuuEfqNn8iXztyY5yBWvD33NQi97762dvU4kr4J2xpbZVLRzTIJ4MqZMjbDXLaO0UyoajKv3CC1N0/WdQRzAgfg1NHwka1/EdUQGnv0vA/ofXOZdsDwhdfq0u8TX5U0OztpnpZH9459NRerfL6IdHBNnUE8PD1bTKmNiQjirpltLvozZYmWVUW/qdX2O8+FWlx3djaInOG7ZSbR06T1jdWyZY1r0mfknA0KgufdTtD8lbjbjI41Jh2wE4dJ1y0Y4z8p2WoLG0/QlaEwjvSSvr6t67s5chuKHUsr3v1B1G74PyMlAa99z35lck0TR2pcwN4mdrmc3nmxHwevcJqO1osrPHM596gxWCNni3rbwJOBnSngk3qONXSpUsdb5le6D1o0CDnCN7IkSPl9ddfT9iiAw880AloqVcmqqCQyY8tgjfJTPli4jZNFH+6BNCiP7mGHVul8dZ50vSXO5wLod1SH/5hrty5/qHIPTjqzqaxI8bLdwZ9Rfb8rt5x5brwa+Y7ExDa3Fya8n4ht/3pfqujeh+Uh6R89Bdk+LHHS1GvXlLcPRxUGrl/wuOACX2H77HqsbVVDnynQfrs7LhLqttn8a+y1iLZHmqXVf2L5aPdSqShXzhoF7OL7KrHdqa12yth/RlkqCDg5vZW2VbUKtuL22RNVau8G75y6qOexbK5d0hae4UigR0V5Jm4aIdcUqu3i8q90+pvO78sj1R8NXkrw0Go3nu84uyE6j14efiNek1OO7IRaHIborT90sw33J/WfDMnWjPUge8oWgz8EFnTQLQYrKG2Zf1NwKmTulP/4qpgk7oYXH3UG+dmzZqVkdfvf//7zo4oZZTognHvG+rUnU+///3vM6ojVWFbBJ+KQ6b5TNyZEqN8tgigxWiyKtC087rrpPnJ+6MCTW6p0jPPl16XXu78rG+qk8qyXTuS1E6okoHhu5r69JW/f/yyXLNgppTubJNetS0y7JNWOeL9SjmuouPtcK6/oHyry8dXhi+3XtNbZM2AMjn8hJOS7m5x77RSAQ/1Sba7Zt7598uwPfaTp/7zpO+l1ql8qN1Sd66Jviy9s9weLt4hzwwW2dy3THZKmzRVhXdDVZQkDeIkCu70+LhZJr6+U47Z0c33Dq902qqCjn//9BD5Xusv0ntrXtE7UtpzqfTf62XncvJ0dkGl047YMs/NWOFoPFbrseW8vzMp67ULyjNzYlBGgnagRTQQFAJoMSgj0dEOW9bfBJw6qbsTTjhB1H1K6qMbCFLH8NTuJfUZPXq0vPjii86bkJyE8B9qchg3blxkB5Xp43SqHlsE7zI19c3EbYokfjpLAC3uIlh7x3xpuOU630BTpFT1UOn32NORn36L64eXL5Arb/2FbPnv4fLRB0dJy7ajwuUHODZDm1fKI72nJn3jmwo+/HVzeNfUHs9F6jH1oI6rqWNw71a0ygeV7c6Rtdpe4WBLzK6iVLtb1B1JLc3NKZtVEj56t+iqNZFy6qL0O16e6+wQa25sct7WpnaITT3qYtnZ3CAXzz8zUtb74B7Rq95ZLJ+WtaV9N5O7U2uxfCor+7XLe33Du8GOPljWrd/VJm89yZ4TBZyi0sO7uXZf3yBX9z5VGpe+IHs1ZnZZudr19LVtt8uGso6L0ZO1Jzov/Ha+ypfCAaiXpO/er6R1DM9rH9UHT4Y6Vrd49UJnrN3dfGqsRlbXeEqJeMdV6cItq95yN2rgIVFlg/6DOTHoI2RP+9CiPWMd9J6ixWCNkC3rbwJOndDd6aefLg888IDj4fjjj5cbb/S/8FX9y+2+TjvRvUuXXXaZqEvB1UcFnab/dLoMGTxE1qxZIzfccEMk2KSzg8pxmuIPWwSfAkPG2UzcGSPDIEsE0KJI45tvSu2PviuycV1iyuFAU7dvn++8Ye7NrevkrsW3RoImpaUh2avnATKp+pfy0GN7y6P//EDGNfxHzur2Z9m77AOZXnu1rOg2VtTF3Rv7fzFhHc9+OlyerP+y/G+fvaV3n9flK9vukWvDdxll8mnv0UeK+g8I31HdU4r3HymlQ4Y6u65KhgyRCfPGR4JEKsCgPol2Jqn8hVesivqPGG47VJBtwuxR7s+U3+4umdiCscE6pcU5f7pSnln/YGzRyG83MOK366m9rEKK9h4mJeF+h2oOktCog6V8+PCIrbe+2ABJpJCBh9i7j+qefVqaX1smbRvek9rXX5OqTz9MWcvT2/rJ2qaD5cGmrznaSWkQVyB1AMplGWeaJMG18b7F7rGVDyZ9Q563bBLXgcliTgzMUFjfELRovQQCAwAtBmYonIbYsv4m4NQJ3RUVddxhka6LYcOGyZvhBVGij/dScL8yqS4V97NJN80WwafLI91yTNzpkqJctgnYrkV1DK7+2pkJdzUVH3K0VF0+IxK4ULuXfrngJ9LWXCJb3xsmmzccLZ9u/JJI6whnqFRQ6aaSn8mUfkujhu5vW0fIl3utjkrz/lCXXp91ZO+4t5QVbW+Wm0ZfI8MOHSllgwc79yepAFnDow9Je+12Kd17iBSH09W3N7ji9a2e3SCRGzCIzY/9bWqHUyo/3npdLW6of1feKVsdtbOmb7c95aPa6DsIQx83yoDNLVIXvvZp2nevlVOPPsfrLu1nxWbmY5fKouW7dq4lMk6HX6q3u6ljm7LqDWlZ9bo0PvWEyFsrE1XnpKtdadfsPFye7Hay7PlJjWwo2V1K25ukpajjknp1Wfyktqeci+JvbjtX1oWidx91OH8/vANqlQwY/DfpM+RfcTpL2gBPprf/qp/qc+7Nkz0l/B9TMfG3yk2qq0NVu7r6QP2HPz4QyAUBtJgL6tTpRwAt+lHJXZot628CTp3QWKYBp3Qu+37kkUecN9G99tprzjE3ZTN27Fg5++yz5dRTT+1Ea5Ob2iL45BQyz2XizpwZFtkhYLMWP71qhrQ+fp8v2NhAkyr07D/XyFlX3iYfvRcOMDWpY3LRn2/tnC8/2+MPWhd4q4DTeSeHj7bFfM4+/mK5+PM/iknV+5nuMTjlPXaXTmyN7h1Osemxv1P58ZZ3tdjc0iyTTpzkLPS9u5JWbFgW2Vlm+thWJmxUm72BF28f0tnNE7u7qnJbm8x/uZv0bE99RNFbV6Ln//ngHFnedpBsKO0v64v6OXdCqUDoT9pulkHhNxf+eedZ8mL3vaR39d+l78BF0mffNZGdbon65VeXGlv1SSdQl4kO/OrqyjRXh6pOAk5dSZ66YgmgxVgi/M4VAbSYK/L+9dqy/ibg5D/+1qXaInjTA8vEbZoo/nQJ2KrFLeedI23LFsVhU0fSKmfMkarjOhbTjz7eKI8/s1P+8VL4/p/NHTtKvEajdi6Wb4bulVN6/1/GgSYVZCqXIulTUiLPtdfJbyZVel07zyYX6ukGiVTF6qLvZHfvqODP+fNOj7Q3UaAik50tmWhRlTW188Td/RXpTIqHudPulXuW3BG1A0vdQ5XOfUVqh9yvHwoHOttaompRO9nOfblJJreZvRw9qpLPfqg7woZt+pvncvKO43eDhz4pp50RksXrnolrn58ftXtNfdK5yyuTnW5+dXVlWiY67Mp2UZd9BNCifWMe1B6jxWCNjC3rbwJOwdJdzlpji+BNA2biNk0Uf7oEbNSiOtK0Y+I4KWpqiMJWPO5LsvOSOfLoM2Xyt+fa5NElreHVdGlUGedH62b5Xssf5cxeD8p+lbXx+UlS1CXWD5XvkIdHlkrDXt2cnTI9N3UEH2r36FjAe81NLtTVzpp0jj+lu6sq1d09V5zxazm55jRvd5I+51KL6e5wih0P7w6spJ0LZ6bDv72uRaZWHytnvN9dWl/7lxTVbknlViv/uPdvS3w3VMlqZ/dT9X5/j7t8PFFgMZ1GPH7ZYunXs186RXNaJpc6zGnHqTxwBNBi4IbE2gahxWANvS3rbwJOwdJdzlpji+BNA2biNk0Uf7oEbNWiugdp+zmnRYJOjx4wS363/mRZvq5Owjdu++Nsq5Vftc+Ur/ZdKFUlbf5lEqRuaW2Vm3ffIS/XVEpRVXQQSy3i1SfRBd6JLt1OUFXSZLXD5poHpseVcQMJ6QabXAexx8NUQCbd3T6uD/c7l1pMd/dXZ3acpVuHerPfvAvul316DJKfnTZcpn5SJdUl0Zpxmel+q7fhbWvpLt1KO4Ku5dIqK+v3k9nNP4l+Q17RO9J7wMPiBp9Ufa5O1Vgn293kasrbRlcffm+685bzPmcS1PPa6T7nUoe6bcauMAmgxcIc13zsFVoM1qjZsv4m4BQs3eWsNbYI3jRgJm7TRPGnS8BmLbpBp8pZv5HfLTtGfja3I/CTjOWiiqMz3tX0wwG1sramylmo+y3CkwWcYnfUJGtbunneIFFzY5OEysucIFEmQQC/ujobGMilFmOPCPr1T6VlckQw1ofaRaV4uwGb2Hz3t9LDMYdMlPH7TXTe/uZopqVDm+3N8YHO0rJS6fNendxV+UVp+/ADad+xTT7d+olzVNP16ffdFg5sFccc7VOBqKMb4o+adti/L1V7PCmDD1wgPQZsdO75Uunp3OHkV3+y+668GvXe19UZjaarz1zq0I8TafYSQIv2jn3Qeo4WgzUitqy/CTgFS3c5a40tgjcNmInbNFH86RJAix3k1r7ZKp+b2OiL8aDBbfK1k0rkk90vk/Y//1Wu2LJbVDn1FrG/7tEgi/frJq3lxXLpwiY5oK1c/l5VLw+P6yGt6qRcU5uoYIHa3aR2Ed39zNwoH34/3MDD9VNu8cs2kpbuItxIZSmc5FqLiXZ/uc3O9Iiga6e+FecJs0d5kxJePK4KqV1O6p4nJ9hUnPrNtu7OK+8xR2UrDa1y0pIGuai+Z1TdyX5M2zBDHqn4arIi4bz35ZQj95KvnPye3LxqklM2WSAtUT/8AnipxsEvUJVIx97AVbrB1VzrMAV4si0igBYtGuyAdxUtBmuAbFl/E3AKlu5y1hpbBG8aMBO3aaL40yWAFneRG3zYVudi8KLKdjn5IJEvTyiWySeVyZ57drw9Ti1ep153kjzxQsddSw8X75C/HFom2/uVJt21oi6E/vkLrdKrWw8pvet/5bD9Dpe5//ebqKBTJgvyXS0urCdXi9631HV1D70BClM7a9w+pHtPlFs+k28VuFGf2Du6lK5KtjbLHxeFd0GFL6dP56PuGfvLpuPksaaT5MXysYmPmEacvS+9B/7FOXandj5l8nEDZa6Nu9Ms0b8Pbjm3v3e8PDfu8nZ3F5Q3+Obaeb/9Alcq39WheuYtdYoCn1wRQIu5Ik+9sQTQYiyR3P62Zf1NwCm3OgtM7bYI3jRwJm7TRPGnSwAt7iKn3kinPqecVL4rMeZJ7b64b/b3Zd3e4ffLxdzFFFPU+bn723Vy/eqKXYv96qFSde8CqejeS+Y+dYPc/dJNfmZOWqIFcUKDPM8ImhZVe0y9CU8NjfcOp2QBlWR5fkPs6sTrP7Zc8ZYmGfFuo/RobJeD+wyW0yZeGCnS/M8Xfd/Y6BZYWd9Lnt02Xv7Vepg8XXZ0ePtVXzcr/jt84Xj/offJHsOflcp+2+PyY/umdnItumpNpFyyPkQKhR+GDvqcrFu/y86bp57T3UXot8MqaDqM7Ru/7SGAFu0Z66D3FC0Ga4RsWX8TcAqW7nLWGlsEbxowE7dpovjTJYAWMye3/L3l8sN7viX19TsSGid7zX3xIUdLn9vucmy9O2rSPfKTsNI8zyh0Laqxjt2BlM6QxQZpYm3cS+XT2UGlfKk7u16a+UaUmy3nnZM06OQtrO55WrRjjCxqOkqeCI0Lv8ix2pu967nsZRmw7wLpf8ALEqpqdtL9+jJ32r0yeu/Dnfx0+rCrgs4/xe6wUh4LXYedp4aHriKAFruKNPWkIoAWUxHq2nxb1t8EnLpWV4GtzRbBmx4AJm7TRPGnS8AWLX561YwIoqIePaXym9+Ssv57RtIyfUgUPCgJr6snvFIr523rIZU+d++0l1VI9xtuk4qxR8RVmegemriCBZpggxZjj1ImGspUb4Bz7dxL5f3uiHLL+H27QSo3r2HHVqk78wyRjevcpIy/NzaWy7zNX5ft7bvJiyVjZV2o5jMf9VK62xOy3+jbpHv1B3HHT92gj+rDsVfXJLxcP+MGpWHg8vMWtUGH3v7yHFwCaDG4Y2Nby9BisEbclvU3Aadg6S5nrbFF8KYBM3GbJoo/XQK2aPGTo8IL2aaOV8ArVuXfnS49pk7TxebYee+IUUeWvvJao5xaV7Xr+Fys92E1UjX/Tuc4XWwWv+3ZWZIq6KQuJ1+49qm03v7mBmuUftLdHeQXZFH2KujUtniJNL34grQuXdyp4JPy53/5+PvSf9itMmDU486uJ3fH0ytXv61MkvbBLesUTPBHOmViTeOCb+GjlE899ZRTjDucYmnxuysJ2PL3c1cypS49AmhRj1u2rGxZfxNwypaC8syvLYI3PSxM3KaJ4k+XgC1ajD0ypHYa7fbQ053a5aQW6P+9c65su+duGdbcknAI1OvnK38yS7pPCe8g4ZOQgC1aVAC8Ryn9LidPtIMuFp73DqJ07z/yBqli/cX+rnv2aWl+bZm0LPmntL3zHykOvzkvk8/uHz+f8M6n0t0WyJAD7pM++66R569cKZVlVVH3XPnVoxNQ8vPjpvkF32zSocuB72ASQIvBHBcbW4UWgzXqtqy/CTgFS3c5a40tgjcNmInbNFH86RKwRYs7HlggO3/50yhMKhBU9rWpWsfrau+YL41/uCbKn9+P4nFfkopZs9nV5AcnJs0WLcZ0WxIdpXR30HmDLN5n97Jw159OkMq1TedbBVhPuWyU3PtqWTrFI2XUnU8r6/eTxU0Hy9L2I2RFt/Cb76I+78tPvjlQfnBxmWxuXy3n33q6tIYDW6qv6lPkOZrq7X+UiyQ/ktm4wTelPfeCeFt1mAQhWTkigBZzBJ5q4wigxTgkOU2wZf1NwCmnMgtO5bYI3jRxJm7TRPGnS8AmLW76+ldE3lrpi6q9Rx8pGXaAFA0Y5OSre57aa7dL5VnnSPnw4XE2DYtfkbqLvxmX7iaoi8GrLp/ha+uW4TuagE1ajO554l+pdkLFWqq3KF7zwPTY5MhvdVzv5JrTIr8zfVC7qF5a9pRMXLRDLqntmal5pLx6892rOw51Lh5fVzRYDpaV0rNomxw8eKO0HLJdHt/2jDSGimVH9xLHprW8WKSi49kbgIo41HyoGT5G/vPf10TtMlMfFYA6Z+wFsm7pe85vjtQ5GPgjRwSYE3MEnmrjCKDFOCQ5TbBl/U3AKacyC07ltgjeNHEmbtNE8adLwCYtqh0aO06eKEW1W9LG1e2nv0x4FO7jw/ePOmKkdkyFTjxdqi76XqeO6qXduAIraJMWdYYu0U6oWF+ZBqli7ZP9jt1FVfHBTpmwtlmqdxbLXw4tk98sLpbqktJkLlLmqX+P1Cf2+N7G1hb50dg2qd0jlNKHKnD28RfL3c/MjSubbMeTW/j4QafJmD2OEQJOLhG+c0GAOTEX1KnTjwBa9KOSuzRb1t8EnHKnsUDVbIvgTUNn4jZNFH+6BGzTogo6NcycIW0v/j0tZKVnni+9Lr3ct6zaMeXca7PPAdLtjG8kDEz5GpMYR8A2LcYByEJCukGqTKp2j/r52bTXtcjEfzfI0VtDMqKom++bGv3s0k17s6VJfnBSadSb7PwCSO5OLjf49srK56WlpVlC5WVywJDwfqo3l6Ss8uwDLpGpk8+LHLVLaUABCBgmwJxoGCjutAmgRW10WTG0Zf1NwCkr8sk/p7YI3vTIMHGbJoo/XQK2alEdiWu470/SsuiZuJ0UXpYlJ31del8125sUeW766ENprerG/UwRIp17sFWLnaOWG2sVyJn9+E9k3fo1cQ1wA0Dqu2xTk3zu/Sap2VQkhzeUy/DSzO5/inMeTjjliEZp61Mm6sLvsSPGizeYpH5PPepiGVldE2fqBt/SvVx9cO8D5I8XLiDgFEeShK4iwJzYVaSpJxUBtJiKUNfm27L+JuDUtboKbG22CN70ADBxmyaKP10CaDH8Ovhw8Kll1evS8t5/pf399VEoQ0eOkx5Tp0Wl8SM7BNBidrhm0+uKDcvk989fKyvW/Cvqcu+EdTa1SY+trXLgOw1y5OZSOaCtPOMjePM3HSy3H1kX9XY7N5iUsF5PxjGz9o/c2eRJjntUAa2nL1tGwCmODAldRYA5satIU08qAmgxFaGuzbdl/U3AqWt1FdjabBG86QFg4jZNFH+6BNCiLjnsTBNAi6aJdp2/VJeVuy1Ru57cT2lpyHkb3ZD/1MlN67q7yc73up0hObxuqQxtXin/2vOsqDz1o661WO79dJTs+ctZ8u0zD4jLT5Twl1fvlhsevSpRdlz6kz9YIn369IlLJwECXUGAObErKFNHOgTQYjqUuq6MLetvAk5dp6lA12SL4E0PAhO3aaL40yWAFnXJYWeaAFo0TbRr/andTnctvlUWLX9aq2IVeDr+3Q7Tuw4tlW3Fu8sHr5wlbxTfktSfeuPdutGXyllXHpb0rZCqfefPOz3iy3v0L9Gb757/6evscIoQ46GrCTAndjVx6ktEAC0mIpObdFvW3wSccqOvwNVqi+BNg2fiNk0Uf7oE0KIuOexME0CLponmxl+6R9ZStc4NCB24rFZmbuglVSVtot5gF/v2ulg/6t61bpddFne3Wrp3N7n+uMPJJcF3rggwJ+aKPPXGEkCLsURy+9uW9TcBp9zqLDC12yJ408CZuE0TxZ8uAbSoSw470wTQommiufGXaWAnVSudwFNLuxy4qk6++lalHNyjm2OSKvBUfMjR0ue2uyLuMw2E8Za6CDoeckSAOTFH4Kk2jgBajEOS0wRb1t8EnHIqs+BUbovgTRNn4jZNFH+6BNCiLjnsTBNAi6aJ5safeoPduTdPTlq5u3spaaHPMlVZ9SkKB52OOuBEmXrAKdL8vw9K6QsvSXV542el/L8ePWCWnPjrr0rPPjtlwuxR/oV8Uo8fdJqM2eMYmThxIkfqfPiQ1DUEmBO7hjO1pCaAFlMz6soStqy/CTh1paoCXJctgjc9BEzcponiT5cAWtQlh51pAmjRNNHc+Ut1iXj/HoPko9roN0Ima+3caffK6L0Pjyuy9O57ZPX/3Cdf7LPW96idulx8yI5X5RcXhOT+jYdIaUVTxEeie5tUgZ+O/o1TjoBTBBcPOSDAnJgD6FTpSwAt+mLJWaIt628CTjmTWLAqtkXwpqkzcZsmij9dAmhRlxx2pgmgRdNEc+tP7XS64+W5snj1QmlpbpbSUEjGjhgvU4+6WG58Zo6sfHNJWg2cPuUamXzQGQnLqnp+N+cOmfPKY75lTtvwG3mx4niR0hbpP+RqGXToI1IcahW/gJPaTTXqc4fLST3PdHylG3Cqb6qTyrIq3/pJhIAuAeZEXXLYmSaAFk0T7Zw/W9bfBJw6p5OCsbZF8KYHjInbNFH86RJAi7rksDNNAC2aJhocf7EBmXTvU1JBqpdmvpGwI2on1a8fmiGtbS1OmclPNss0KYsqr3Y5HfvJ3bIuVPNZ+vvSf9itMnjsg87v2MBTzfAxaQWcEgXUzhl7gYwaeEhUG/gBAR0CzIk61LDJBgG0mA2q+j5tWX8TcNLXSEFZ2iJ404PGxG2aKP50CaBFXXLYmSaAFk0TDaY/FXzK5D6l53/6uu89Sis2LJPz550uJeE317kBJ9XjM5/eIWc194jq/AObRsuFRXdGpYm8L0NHz5Dd918StdtJBbl+MGK2hEpDCe9wSnVk8Iozfi0n15wWU1/qn7GBudQWlChkAsyJhTy6+dU3tBis8bJl/U3AKVi6y1lrbBG8acBM3KaJ4k+XAFrUJYedaQJo0TTR4PozscMp2dvwbni0WYaXRu90mrZhhqwoPcCz0+kzPiWrZdiYmdJn3zWRwNNlB10bF3BydzQtWv50WmDnnX9/WjudXL+xRw/ZKZUW5oIuxJxY0MObV51Di8EaLlvW3wScgqW7nLXGFsGbBszEbZoo/nQJoEVdctiZJoAWTRMNrr9kwSJvq48+6AS5fsot3qTIc7Kg1fDlO+SG96N3ObmG9eF7mlbt2EsW1Y2V11sPlCdC46SltFqk7GUZccxV0nvIJmeHkyo/6cRJzu6qx1Y+KHMW/Nh1kdZ3sra7Dvz8et/gl+r+KtcP34VJgDmxMMc1H3uFFoM1arasvwk4BUt3OWuNLYI3DZiJ2zRR/OkSQIu65LAzTQAtmiYaXH/ucbhULbz9oodlZLV799Ku0qmO5YU+bpSHXu22yyDF050fT5DLZaZISV/p1+sduf5HK2S3nlXOkbp3tr4l5948OYWH+OxU90+pnU3p+E3EIL5GUgqNAHNioY1o/vYHLQZr7GxZfxNwCpbuctYaWwRvGjATt6AenngAAEAASURBVGmi+NMlgBZ1yWFnmgBaNE002P78dvd4W5xqd0+yHU7Kzwkv1soltT29LpM+b24ulZs+OUtuKr/IKXfKkRVy502NMuf5n4n3GJ13B1JSh+HM52asSPj2OhO7vFLVT35+E2BOzO/xK6TWo8VgjaYt628CTsHSXc5aY4vgTQNm4jZNFH+6BNCiLjnsTBNAi6aJBt9fZ+4vShWwUYEhaWiVmrUNcsRHxTK2uZtUl5SmhLK2vodcteUn8nTFKVJU2S57D/2h7HnosyntYgNRqXY4pQqYuRWm8uOW47vwCDAnFt6Y5muP0GKwRs6W9TcBp2DpLmetsUXwpgEzcZsmij9dAmhRlxx2pgmgRdNE88tfpm9oS/dImpdCe12L7PFhowz7pFWO3FwqR7RXSmVxkbdI5HnJ9mo5v+63sqFs//BRu9Uy4gs/kB4DNkbyUz0ku8Mp1ZHAWN/JdkrFluV34RBgTiycscz3nqDFYI2gLetvAk7B0l3OWmOL4E0DZuI2TRR/ugTQoi457EwTQIumiRa+vyOu3LdTnSza3iznvtwkk9u6J/Sz++YVkbzS3RbIAUfdKJX9tkfSEj2kunuJHU6JyJHuEmBOdEnwnWsCaDHXIxBdvy3rbwJO0eNu7S9bBG96gJm4TRPFny4BtKhLDjvTBNCiaaKF7S+TXUKxx928ZNSRtd8OuVIG//VOkY3rvFnOc11rsVyy8WfySPmXRYrVm+/qpf+wa2TQoY9ISXlbXHmVcMUZv5aTa07zzXMTUx0JdMsl2ynlluG7MAkwJxbmuOZjr9BisEbNlvU3Aadg6S5nrbFF8KYBM3GbJoo/XQJoUZccdqYJoEXTRAvfX7q7hGJJeANQ3svJN518gm/QSdlvbCyXeZu/LjeVftt5m506ZjdszEzps+8ax31bc4l8/vDjZOpRF/u+Wc8p5Pkj9kigt02eYjLv/Ptl1MBDvEk8W0KAOdGSgc6DbqLFYA2SLetvAk7B0l3OWmOL4E0DZuI2TRR/ugTQoi457EwTQIumiRa+v3R3CdUMHyM9K3vJ4tULpaW5WdSuprEjxss5Yy+ICuY07NgqtROOkOK2loTw6sOXkf9l03Fyc9u5si5UI+qY3T23lcoZY85KaONmxN5T9fDyBXLNA9Pd7LhvbzAsLpOEgifAnFjwQ5w3HUSLwRoqW9bfBJyCpbuctcYWwZsGzMRtmij+dAmgRV1y2JkmgBZNEy18f7G7hBL12HufUmzQJ9Zm26rl0nzOlNhk39/PfjpcflF/uazoPlpu/klILpxWEVduxYZlctfiW51gV3Njk4TKy5xgl7sTqjNv6ourjISCIsCcWFDDmdedQYvBGj5b1t8EnIKlu5y1xhbBmwbMxG2aKP50CaBFXXLYmSaAFk0TtcPfYysflDkLfpyws+ncp+Q1Vjp85MmH5YZlV8jQNfVy2jtFMqGoylsk7lkFni7bOUf6Dt9Pbrs+JCNrWqSyrEoyaZsKhKmPsuMDAUWAOREdBIUAWgzKSHS0w5b1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXHHamCaBF00Tt8efdReQ9MufuIsqEhNKhG3AqKi4SdbdS5YeNctaKVpnYUiWV4TS/jzpq9+sPvy03hc6X3nvfJkMP/5OEqpr9ikalqeN+//nva1FH/XTaHeWUHwVBgDmxIIaxIDqBFoM1jLasvwk4BUt3OWuNLYI3DZiJ2zRR/OkSQIu65LAzTQAtmiZqp79UR+bSoXL/A/fLr5ddLirg5P0UbW+W45fvlLO3VkmfkhJvVuR5bX0PuejT38iKit1lxLEXSo8BGyN5mTxwf1MmtAqzLHNiYY5rPvYKLQZr1GxZfxNwCpbuctYaWwRvGjATt2mi+NMlgBZ1yWFnmgBaNE0UfzoEXB3esfYG+ah2vb+LpjY5cFWdXLKhUqpLSn3LPLBptFzYdp1UVT8oB4y/SUrK26R4S5O0l4Z3TfUM+drEJnrvnorN43fhE3C1qHo6ceJEqaiIvyOs8CnQwyAQQItBGIVdbbBl/U3AadeYW/1ki+BNDzITt2mi+NMlgBZ1yWFnmgBaNE0UfzoEXB1uqH9X7v7Pb5O6KAmfmDt/XW+Z9NZW33IbG8vl4k9+KS9W7iP3VUyS4yp2BZpOPiYcfEoReDr6oBPk+im3+PomsfAJuFpUPSXgVPjjHeQeosVgjY4t628CTsHSXc5aY4vgTQNm4jZNFH+6BNCiLjnsTBNAi6aJ4k+HgFeHTXvtkOsfuzKhG3Xs7bpHZ0rxezvkZ6+2y2El/jtQNjeXSt9QS5yfk05sj0uLTXjl6rdjk/htCQGvFgk4WTLoAe0mWgzWwNiy/ibgFCzd5aw1tgjeNGAmbtNE8adLAC3qksPONAG0aJoo/nQIxOrwna1vyR0vz5XFqxdKc2OThMrLZOyI8aIu9h7adx+ZMHuUU426XLxm+Q65fEPi+51i23Nz5XZ5/PPd4+6K8pabO+1eGb334d4kni0hEKtFjtRZMvAB7CZaDNag2LL+JuAULN3lrDW2CN40YCZu00Txp0sALeqSw840AbRomij+dAgk06HfheTHzNrfecOcW5e6WPyHLzbLhKIqNynp953dtsv94xMHnThWlxRfQWcm02JBd5zOBY4AWgzWkNiy/ibgFCzd5aw1tgjeNGAmbtNE8adLAC3qksPONAG0aJoo/nQIZKrDSx+4UBYtfzquqgOX1cqV7/eQypg33cUVDCekCjpxrM6PWuGnZarFwidCD3NFAC3mirx/vbasvwk4+Y+/dam2CN70wDJxmyaKP10CaFGXHHamCaBF00Txp0MgUx2u2rhSzr15sm9VoY8b5ZTXm6SpqEj+9fbl8mj5RXJqw1/ld3vNigtE/TlUK/cc17ErqigmSPXcjBVSWZbejinfhpCYlwQy1WJedpJG5wUBtBisYbJl/U3AKVi6y1lrbBG8acBM3KaJ4k+XAFrUJYedaQJo0TRR/OkQ0NHhw8sXyDUPTE9YnbpcfOIBJ8pvf1csP7u1WU6tfVDmD5wdV35BUaP88fPFIhUlkXudSkMheWnmG3FlSSh8AjpaLHwq9DAXBNBiLqgnrtOW9TcBp8QasCrHFsGbHlQmbtNE8adLAC3qksPONAG0aJoo/nQI6OpQ7XRyLxdvaW4WFShyLxcfWV0TacraN1vlq+c1yJA37vfd6aTeaPfz/bbKus9VOkEn7nCKoLPuQVeL1oGiw1kngBazjjijCmxZfxNwykgWhVvYFsGbHkEmbtNE8adLAC3qksPONAG0aJoo/nQImNCh3+XisW2ZPrNB/n3bI3LPwBmxWc7v59rr5IZxIZn/kyfEG7DyLZwiMZ32pHBBdg4ImNBiDppNlQVIAC0Ga1BtWX8TcAqW7nLWGlsEbxowE7dpovjTJYAWdclhZ5oAWjRNFH86BLpSh5fc8Fd599p6ubb/NdI31BLX3LbiUqm48DLpMXVaXF6qBO+Oq+bGJgmVl/nuuErlh/zcEehKLeaul9ScDwTQYrBGyZb1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXHHamCaBF00Txp0MgHR2a3DG0/L3lMm36v2Xay3+XKf2W+jd5WI30mPUrKR8+3D8/JtXvTqn2tvbIvVDqTqnJB50RY8XPoBFIR4tBazPtKUwCaDFY42rL+puAU7B0l7PW2CJ404CZuE0TxZ8uAbSoSw470wTQommi+NMhkEiH3h1Dye5o0qlT2Tz6eKPcMe3ehLudVJny7053djupNlZUVKgkiQ1+JXtrnmPw2R+3X/Rwp4/qef3xbJ5AIi2arwmPEEhOAC0m59PVubasvwk4dbWyAlqfLYI3jZ+J2zRR/OkSQIu65LAzTQAtmiaKPx0Cfjr02zGkfLu7hkztGPrww1b50tcb5Kx3fiTf2eM53+aru52u/3JFZLeSKuReUH7O2AvkrsW3yqLlT/vaehO5jNxLI5jPfloMZktpVaETQIvBGmFb1t8EnIKlu5y1xhbBmwbMxG2aKP50CaBFXXLYmSaAFk0TxZ8OgVgdvrP1LTn35skpXZnaMeQesat4rq/M3f2nUl3eGFf3n0O1cs9xVVFBp7hCKRJUkOqlmW+kKEV2LgnEatHd1ZbLNlG3nQTQYrDG3Zb1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXHHamCaBF00Txp0MgVocznvxhl+0YcndStTYWy9b3hslbi+bJr2SW726n6dXbZfmI3aSkvC2tbrq7sdzC6vfzV66UyrIqN4nvgBGI1SIBp4ANkEXNQYvBGmxb1t8EnIKlu5y1xhbBmwbMxG2aKP50CaBFXXLYmSaAFk0TxZ8OgVgdnnDdIaLubEr16eyOIb+7l5rrQvLvx2+Scdvq5U97/VAqi4sizVBvsPvK3jukdUR5JC2Th862N5O6KKtHIFaLBJz0OGLVeQJosfMMTXqwZf1NwMmkavLYly2CNz1ETNymieJPlwBa1CWHnWkCaNE0UfzpEPDqcNy4cXLijWPSdvPcjBXaO4YufeDChDup1j7/HVnb8Me4dmxsLJdvDBsgVTVvx+WlSkh1h1PsZeSp/JFvnoBXixMnToxcFG++JjxCIDkBtJicT1fn2rL+JuDU1coKaH22CN40fiZu00Txp0sALeqSw840AbRomij+dAi4OmxuaZZJJ06SVDuc3KNqnd0xdMys/eN2Urm+1fcTfy/27c6S7dXyncFjZfDYB538Is8uKF+DzxL97pxasWGZc+n44tULnbaoPo0dMV6mHnUxb7RLBjNLea4WlXsCTlmCjNu0CKDFtDB1WSFb1t8EnLpMUsGuyBbBmx4FJm7TRPGnSwAt6pLDzjQBtGiaKP50CMTqsCvucFK7iY69uibhJeAq4HTj4y0yvLTMt0vPfjpcvt7tAjn0S9MlVJX6+J/fW/UeW/mgzFnw4zj/btDLzyauMAlGCcRqkSN1RvHiLAMCaDEDWF1Q1Jb1NwGnLhBTPlRhi+BNjwUTt2mi+NMlgBZ1yWFnmgBaNE0UfzoEYnXYVW+p89vh5G1/6ONGeejVbt6kqOfTNvxGXqzcR2q+dLZU9tselad+JNut5Hd/VJyDcILfrii/cqSZIRCrRQJOZrjiJXMCaDFzZtm0sGX9TcApmyrKI9+2CN70kDBxmyaKP10CaFGXHHamCaBF00Txp0PAT4fu2+MS+bvijF/LyTWnJcpOKz3ZHU6ug2RH61SZaRtmyIElr8sL+yyW5mM/cM1E2f3h/Ptk9N6HR9K8D+nUrcqnuvfJ65PnzhPw02LnveIBApkTQIuZM8umhS3rbwJO2VRRHvm2RfCmh4SJ2zRR/OkSQIu65LAzTQAtmiaKPx0CiXSY7fuNlP/z552eVpMnLayVi+p7pix72iE7pbF/xzE8dbdTosBYqt1VbkWdvafK9cN3egQSaTE9a0pBwBwBtGiOpQlPtqy/CTiZUEsB+LBF8KaHionbNFH86RJAi7rksDNNAC2aJoo/HQLp6DBbb3BLtZPK25+yjY3y4LLER+zcsm+2NMkPTwk5P0uKS2XeBfdHXQCu+jJh9ii3eMrvzryJL6VzCkQRSEeLUQb8gECWCKDFLIHVdGvL+puAk6ZACs3MFsGbHjcmbtNE8adLAC3qksPONAG0aJoo/nQI5FqH6j6lO16eK7Fvihu/38S4S72LtzTJHxeVSp+SkqRdXVDUKH/8YkfQ6ZhDJsr1U26JKq92ODU3NiW8tNwtzA4nl0TXfOdai13TS2rJBwJoMVijZMv6m4BTsHSXs9bYInjTgJm4TRPFny4BtKhLDjvTBNCiaaL40yEQJB3G7qTye5Pc7m/XyZ1ruqfs6nxpkoe+VCqlpSFZdNWaqPKJ7nBy31DnFuYOJ5dE13wHSYtd02NqCSoBtBiskbFl/U3AKVi6y1lrbBG8acBM3KaJ4k+XAFrUJYedaQJo0TRR/OkQCLoO1Q6oG5+ZIyvfXBLp3vDlO2TO+u5SGb6n6Z3GZtmnvGM3U6TAZw/uTqfnr1wplWVVkWzeUhdBEaiHoGsxULBoTFYJoMWs4s3YuS3rbwJOGUujMA1sEbzp0WPiNk0Uf7oE0KIuOexME0CLponiT4dAvugw9r6nou3NEqprk6bqcql9v1que7FIxvTcGIfgsD0nyH8fnxeX7rd7ylso0YXj3jI8myWQL1o022u8BZEAWgzWqNiy/ibgFCzd5aw1tgjeNGAmbtNE8adLAC3qksPONAG0aJoo/nQI5IsO/XY6efvbXBeSMX89QWb3/5s3WXbfvEJ+cXGR/PSyiqh09WPpe/+Se5bcEXd/1NSjLo66aDzOkISsEMgXLWal8zgNFAG0GKjhEFvW3wScgqW7nLXGFsGbBszEbZoo/nQJoEVdctiZJoAWTRPFnw6BfNBhqt1Ibr9LVjfKI//d9Sa7zc2lsv/2fzvZ553aLPNu3E28l5Sri8ND5WUydsR4+caYqTJ678NdV3zngEA+aDEHWKgyBwTQYg6gJ6nSlvU3AackIrApyxbBmx5TJm7TRPGnSwAt6pLDzjQBtGiaKP50CARdhys2LJPz552eVtfU3U43vN8jquzK+l5y7va5si5UIwcNbpPQ2EOkpLwtqoz7g2N0LoncfAddi7mhQq25IIAWc0E9cZ22rL8JOCXWgFU5tgje9KAycZsmij9dAmhRlxx2pgmgRdNE8adDIOg6TPRGOb++9vi4We59tcwvSx7YNFoubP2JSOUWOfSk70moqtm33O0XPcxxOl8y2U8MuhazT4AagkIALQZlJDraYcv6m4BTsHSXs9bYInjTgJm4TRPFny4BtKhLDjvTBNCiaaL40yEQdB0eM2t/aWn2Dw759XfSwlq5qL6nX5aoI3Zf3nyXrAu/sa7mS2dLRZ9tUhR+0533c/RBJ8j1U27xJsU91zfVRb31Lq4ACVoEgq5FrU5hlJcE0GKwhs2W9TcBp2DpLmetsUXwpgEzcZsmij9dAmhRlxx2pgmgRdNE8adDIMg6VIGdCbNHZdSt9rZ22WNdvfxsVZkML43f7bS2vocc3bBIpOgdJ+hU2W97lP/SUEhemvlGVJr6kejuJy4Yj0OlnRBkLWp3CsO8JIAWgzVstqy/CTgFS3c5a40tgjcNmInbNFH86RJAi7rksDNNAC2aJoo/HQJB12GmO5xcBirwdNS/auWHm3pKZcwupmkbZsgjFV8Vad8sI447U3oM2OiaOd/PzVgRtYPp4eUL5JoHpkeV8f6YPuUamXzQGd4knjUIBF2LGl3CJE8JoMVgDZwt628CTsHSXc5aY4vgTQNm4jZNFH+6BNCiLjnsTBNAi6aJ4k+HQNB1mMkdTn79b69rkRufbY/a7eTscqr7u0hxxwXjIyZMjASdYnc4qZ1N59482c91XJo6jnfO2Atk1MBD4vJISE0g6FpM3QNKFAoBtBiskbRl/U3AKVi6y1lrbBG8acBM3KaJ4k+XAFrUJYedaQJo0TRR/OkQCLoOMwn4JOr/7m/XyZ1rukdl3/nxBLm85BfhtEonfdgRU6Tv8LUSe4dTbMBL7ZyKvfcpynH4B2+7iyWS3u+gazG9XlCqEAigxWCNoi3rbwJOwdJdzlpji+BNA2biNk0Uf7oE0KIuOexME0CLponiT4dAPujwsZUPypwFP07aPbUzKdHl4ipIdOnfGmRCUVWUD7XT6Zvbb5F1oRonfejo78jDN06P2qGke6SPt91FoU7rRz5oMa2OUCjvCaDFYA2hLetvAk7B0l3OWmOL4E0DZuI2TRR/ugTQoi457EwTQIumieJPh0C+6NB7abcKLKkA09gR450jbMP22M+5cylZcKjig52y4LUKX0Q3bpwsc0rDAa3wEbubryiSC6ftKnfElfv62riJiXY8xe6UcsvznZhAvmgxcQ/IKRQCaDFYI2nL+puAU7B0l7PW2CJ404CZuE0TxZ8uAbSoSw470wTQommi+NMhkI86VG+vqyyL3q2k+h57/M3LQwWGapbvkGs29vQmR57VbqeLPv2NrOg2NirolCyIFTH2eYi9C8qnCEkxBPJRizFd4GeBEECLwRpIW9bfBJyCpbuctcYWwZsGzMRtmij+dAmgRV1y2JkmgBZNE8WfDoFC0mE69z31+LhZ7lmzpxTVbvHF5ex2KrtaDjvyL/LH6w+TO16eK4uWP+1bNlGiu+sp9m13icqT3kGgkLTImOY3AbQYrPGzZf1NwClYustZa2wRvGnATNymieJPlwBa1CWHnWkCaNE0UfzpECg0Haa670ld6H380AnSeOs8abl3ni+y496/zdnp1H/YlTJz5l5y9zNzfcslS2SHUzI6/nmFpkX/XpKaDwTQYrBGyZb1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXHHamCaBF00Txp0OgEHUYe99TSXGpHFFzbNR9T4rVpsOGJUT27KfD5Rf1l8tHBz6hFXTiDqeEaBNmFKIWE3aWjEATQIvBGh5b1t8EnIKlu5y1xhbBmwbMxG2aKP50CaBFXXLYmSaAFk0TxZ8OARt0uGLDMrlr8a3yysrnpbWtJXLh+KgFr8qkt7YmxaZ2O6mg08nf2iAr31wSVdY9Oud+ezPnnX9/1NvuvHk8+xOwQYv+PSc1aATQYrBGxJb1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXHHamCaBF00Txp0Og0HWY6ojdj56olwlF8ReQuyw3NpbLoVsflf41v5KBhz3jJif9Hjroc3LveU8mLUNmPIFC12J8j0kJKgG0GKyRsWX9TcApWLrLWWtsEbxpwEzcponiT5cAWtQlh51pAmjRNFH86RAoZB0mu0Tcuytp0sJauaje/+11LtPNzaVyeeOB8tFXl7lJCb9vv+hhGVldkzCfDH8ChaxF/x6TGlQCaDFYI2PL+puAU7B0l7PW2CJ404CZuE0TxZ8uAbSoSw470wTQommi+NMhUMg6vPSBC9N6w5wKPp33VL1MbuueEuGZvYfK9rFvR8oVFRdFntXD9CnXyOSDzohK40d6BApZi+kRoFRQCKDFoIxERztsWX8TcAqW7nLWGlsEbxowE7dpovjTJYAWdclhZ5oAWjRNFH86BApZh8fM2l9ampvTw9LUJj96emfS43Wuo4P3OE6+dm6RLF690PGv3kg3dsR4mXrUxexsciFpfBeyFjVwYJJDAmgxh/B9qrZl/U3AyWfwbUyyRfCmx5aJ2zRR/OkSQIu65LAzTQAtmiaKPx0CharD+qY6mTB7lIPEe3xOJcT+drmp9N027JSGbsVO0p//VS6VMTuYVMblH5wrh1/9A7lwWoWoeirLEt8B5frmOzWBQtVi6p5TImgE0GKwRsSW9TcBp2DpLmetsUXwpgEzcZsmij9dAmhRlxx2pgmgRdNE8adDoJB1eMSV++ogidgM+U+d3LTO/5jdaRt+I5fN/6KcclJ5pDwPnSNQyFrsHBmsu5oAWuxq4snrs2X9TcApuQ6sybVF8KYHlInbNFH86RJAi7rksDNNAC2aJoo/HQKFrMN073CqGT5Gelb2cu57it39dOQr2+WKLbvFoa1rLZYhW16UR+b2kuMntrDLKY5Q5gmFrMXMaWCRSwJoMZf04+u2Zf1NwCl+7K1MsUXwpgeXids0UfzpEkCLuuSwM00ALZomij8dAoWsw8dWPihzFvw4JRb3rXLn3f11WfnmkqjyKgA1dE29706nGzdOljll02XEhMnSa9AnckTNsdzjFEUvsx+FrMXMSFA61wTQYq5HILp+W9bfBJyix93aX7YI3vQAM3GbJoo/XQJoUZccdqYJoEXTRPGnQ6BQdfjw8gVyzQPTUyK54oxfy8k1pznlVmxYJufPO93XJvRxozz0are4vP/54By5qezbUnPiKVLZb7uT7/UZZ0BCQgKFqsWEHSYjsATQYrCGxpb1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXHHamCaBF00Txp0OgEHW4auNKOffmyQ6O2CNyXkZ+gaFku6LKNjbKg8vig05/2zpCvtV4lRz61W9IqKrjrXjurilvfTwnJ1CIWkzeY3KDSgAtBmtkbFl/E3AKlu5y1hpbBG8aMBO3aaL40yWAFnXJYWeaAFo0TRR/OgQKUYfp3t109EEnyPVTbonDpnY63bX4Vlm8eqG0NDdLaSgkY0eMl3PGXiDLLjtPJr21Nc5mbX0P+W7Dj6TktDlO0Mn1zVvs4lAlTChELSbsLBmBJoAWgzU8tqy/CTgFS3c5a40tgjcNmInbNFH86RJAi7rksDNNAC2aJoo/HQKFqMNjZu3vBIpiecTudlKBpJdmvhFbLOp3bMDo6J/uK4cvTXyR+P/76AL54OxbpKS8zQlUeQNWU4+6WEZW10T5z+RHbFsysc2HsoWoxXzgThvjCaDFeCa5TLFl/U3AKZcqC1DdtgjeNHImbtNE8adLAC3qksPONAG0aJoo/nQIFJoOVVDm2KtrpKi4KC0cz81YkfYb5pTvCbNHOX53f7tOrl9dIX1KSuLqmb/pYHnom//2bcP0KdfI5IPOiLNJlKCOB97x8ty43VadDV4lqi+X6YWmxVyypO7OEUCLneNn2tqW9TcBJ9PKyVN/tgje9PAwcZsmij9dAmhRlxx2pgmgRdNE8adDoBB1mGiHUyyfdHY4xdq4vtVuqeIdLfLzF1rlsJIKp1h9OK3ys0DXyvpe8rOJH0t7z1CsC5k77V4ZvffhcemxCbEXn8fu0PK7gyrWRz79LkQt5hN/2rqLAFrcxSIIT7asvwk4BUFtAWiDLYI3jZqJ2zRR/OkSQIu65LAzTQAtmiaKPx0ChajDzt7h5MfR3Wm0aPnTUdkqCPTtfzTLlKIq2dnSHAk4qUKbm0vle0fWy/Z+pY6Nd9eVey9Uop1K3ovPoyqM+VFIl5MXohZjhoufeUIALQZroGxZfxNwCpbuctYaWwRvGjATt2mi+NMlgBZ1yWFnmgBaNE0UfzoEClGHpoM1sTuNYjmroNOBj3aTK0tapKqkLTZbfttjuzx1dHffI3aqcOxOJXV0b+Zjl0pscCvOcTjBvZzcLy/f0gpRi/k2BrS3gwBaDJYSbFl/E3AKlu5y1hpbBG8aMBO3aaL40yWAFnXJYWeaAFo0TRR/OgQKVYexQaLY42jp3qXkBq9i7f1Yh57fS67dvEP2q6yNy36zpUl+dlirNOzVLS5PJaig08K1T0XuavIt5El026NzLNDjJlCPharFQEGmMWkRQItpYeqyQrasvwk4dZmkgl2RLYI3PQpM3KaJ4k+XAFrUJYedaQJo0TRR/OkQKGQdusfgFq9e6Ly1LtUxNj9+6R7Pc20//Pdxcu1/1stxvd90k6K+b67cLk8cVSVSVhyVrn64QaS4jBQJmVx8nsJVTrMLWYs5BUvlGRNAixkjy6qBLetvAk5ZlVH+OLdF8KZHhInbNFH86RJAi7rksDNNAC2aJoo/HQK26FAdU6ssCwd6MvyoS8KbG5sSHoeLdaeCRm++MFXOertdfr7XXbHZzm+12+kXI5vkk30zb0+sQ3Y4xRLhNwQ6T8CWebHzpLrGgy3rbwJOXaOnwNdii+BNDwQTt2mi+NMlgBZ1yWFnmgBaNE0UfzoE0GFiaipINWH2qMQFEuSooNO/H/+5DNq0v9ze82KpqdzqW/J7Q3fIfw/oXNCJO5x80ZIIgU4RYF7sFD7jxrasvwk4GZdOfjq0RfCmR4eJ2zRR/OkSQIu65LAzTQAtmiaKPx0C6DA5NbXDqaW5OXkhn9zWxmJ59eGbRZqOku81Xi8/3vOPUW+wUyZbWlvlnC+0SnvPkI+H9JJ4S116nCgFgUwIMC9mQiv7ZW1ZfxNwyr6W8qIGWwRvejCYuE0TxZ8uAbSoSw470wTQommi+NMhgA6TU8v0Diflzb0rauHLC+XfD90fvpxpHxnY9IbMq7pExvTcGFXhq60N8vNJ5b5H9tw7ndzvKMPwj3QvPo+1C+pvtBjUkbGvXWgxWGNuy/qbgFOwdJez1tgieNOAmbhNE8WfLgG0qEsOO9ME0KJpovjTIYAOk1Nz31LnLZUoAOQt417k/ew/18jxZ1aKFPV1sm9p/45M6bfUW1RU0GlRr2bZ2F1k5UHdfYNPrkFJcakcUXOsTD3qYhlZXeMmF8Q3WiyIYSyITqDFYA2jLetvAk7B0l3OWmOL4E0DZuI2TRR/ugTQoi457EwTQIumieJPhwA6TE3tsZUPypwFP05dMFxCBaNC5WXy0sw3IuUvueGv8rvfndTxu61WFlV9SfarrI3kex8eLt4h879UFffGOnVX06yTr9e6+NzrP8jPaDHIo2NX29BisMbblvU3Aadg6S5nrbFF8KYBM3GbJoo/XQJoUZccdqYJoEXTRPGnQwAdpkdN7XS67L5z5dNPN6c08LvIe/rMBrn2T+2O7biGZ+TBgT9K6GdOn23y8uE9nPyi4iLnu5DuakrUcbSYiAzpXU0ALXY18eT12bL+JuCUXAfW5NoieNMDysRtmij+dAmgRV1y2JkmgBZNE8WfDgF0mD61FRuWyfnzTk9pcOu0B+WgvQ+KK3fqN+rk0X+qAFK9fNL3iLh8b8KZhzVJ7R4dl4kX2l1N3n56n9GilwbPuSSAFnNJP75uW9bfBJzix97KFFsEb3pwmbhNE8WfLgG0qEsOO9ME0KJpovjTIYAOM6P28PIFcs0D0xMaJQsOKdZHfrlVlr9bHA44jUroQ2VsbG2RO38wSc6deGHB3dWUqONoMREZ0ruaAFrsauLJ67Nl/U3AKbkOrMm1RfCmB5SJ2zRR/OkSQIu65LAzTQAtmiaKPx0C6DBzaup43R0vz5XFqxdKc2OTc2fT2BHj07rI+8MPW2Wv43bKvTtPl+N6v5m88mE10u++h5KXKaBctFhAg5nnXUGLwRpAW9bfBJyCpbuctcYWwZsGzMRtmij+dAmgRV1y2JkmgBZNE8WfDgF0qENtl019U13GF3kvWdooh3/lY1mx25ekurxR2sJvnjv9vV/Jg2N+H97atG6X8/BTyUlfl95XzY5KK9QfaLFQRzb/+oUWgzVmtqy/CTgFS3c5a40tgjcNmInbNFH86RJAi7rksDNNAC2aJoo/HQLoUIda521umd8gF129ScY1LZN1JQNlQ+kA2Xv3cnm1bJwUNTVEVVBx7c1SddwJUWmF+AMtFuKo5mef0GKwxs2W9TcBp2DpLmetsUXwpgEzcZsmij9dAmhRlxx2pgm4WmxuaZZJJ06SiooK01XgDwIpCbg6VAUnTpyIDlMSM1fg/B9sk9se6bgY3PV6zjGr5Gevf1X6lJS4Sc4OqF6PLZSy/ntG0grxAS0W4qjmZ5/QYrDGzZb1NwGnYOkuZ62xRfCmATNxmyaKP10CaFGXHHamCbhaJOBkmiz+MiHg6lDZEHDKhFznyyr27iXiEW9ttTJ/r/+RU5ufkvq2dqksVm+1E6nrvacMfvqlSDGdo3wR44A+oMWADoyFzUKLwRp0W9bfBJyCpbuctcYWwZsGzMRtmij+dAmgRV1y2JkmgBZNE8WfDgF0qEMtuU2qYJA3X10iXj2uTqSl1OO0Xu6rHC1HlpdGAk4q853qGvnLt/s7l5W3NDdLaSgk6rLyc8ZeIKMGHuKxz89HtJif41aIrUaLwRpVW9bfBJyCpbuctcYWwZsGzMRtmij+dAmgRV1y2JkmkKkWV61a5TRh69atsvHDjfLuf9+VN954Q+bPny9VVVXOUaj9999flN+dO3dGmtutWzfp3bu3qO8+ffrI7rvvLkOHDpX+e/aXIYOHyJ577ikDBw6MlOfBLgKZ6tAuOun3dsWGZXLX4lsTvrkuWf7bS/eTU7/fGl1Zyxvyct/JMry0zNnp5GZevm+d/PeAKvdn5Hv6lGtk8kFnRH7n4wNazMdRK8w2o8Vgjast628CTsHSXc5aY4vgTQNm4jZNFH+6BNCiLjnsTBNQWnziySckVBqKO8qk/q5ZunSpvPrqqzJ7dte8oUoFnYYMGSL9+/eX6upq51kFqvr27SsDBgxwglUqnbumTCvh/7N3LvBRFefffxKSYBLAEoKVGl81AlLCRSQYgVCRmyggkQSVYkHu0kArgopN+GsNFKygVqBeuDUIhRqCwaBWbtJCRCSIhIsgF7VgEQVUIFFISN7M0nNyzu7Z3bOzc3bP7vz282n3zJx5njPnOz+HnSdzCa4/9In+8y/es5pmFDzm1lHX9r2pZPd6t/dzBj9Hz8z8gUq33a8r054K6a3GT+tmObFldg90uUjVCTG6siyxaHwRpdTOggrVD7QYqi0XfvWGFu3VprKMvxFwspfuglYbWQQvGjA6btFE4Y+XALTISw52VhBYs2YNnT59mhpd2YgOHjhIH374IX3yySfE/q2x6ycxMdERlGKzpFiAis2QYt/sfywglZycbNeqo14GBNAnGkDxIYvNXBr7WpZHC7b0jS2B8/RhZUpWziKq6KMrdk/9YbSowSe6PJbo17eaIv63v5Nys3HjJjT7gUUhG3SCFpWWxHewCUCLwW4B/fNlGX8j4KRvd2lTsghedAOj4xZNFP54CUCLvORgx0uA/bvx5Zdf0hdffEFff/2145tds+Vwhw8f5nVrazs2W4rNlNIGoq67/jos4bNhq6FP9K9RJhc+7HH2ki/eK8uj6ePVxbUm1+jM/pp4Ew2uqa/LO1R1kSbdoz/hTinAZkwNaDtISYbMN7QYMk0V9hWFFu3VxLKMvxFwspfuglYbWQQvGjA6btFE4Y+XALTISw52ngicOXOGPv30Uzp48CB9/vnnjmsWUGKBpfLyck+mXPeaN2/umFnEgjo//PADnThxgu69917H3kzMYf369an+FfXpwk8X6MKFC/Tdd9859nVi36xOJ0+edAS/7BLwmj17Nt1+++2UkpKCJXtciuA3Qp/Iz45Zpue18jp7yZcnnPuqGe3ftE5vUm8/ffuzB/R5tanBN/9IP/7iCkd+Te1SO+2Mp1BcXgctujQxMoJEAFoMEng3j5Vl/I2AkxsByJYti+BFtys6btFE4Y+XALTISw52jAALLO3atcsxO4kFlJT/sX8bRH/YRuCdO3em9u3bO5aqsRlC/e7uJzwgw+rOZl599dVXjqV87Po///kP/fe//3UEqlhwyor3c8eLBZ3Ye998882O/91yyy3C39nds2XMR5/I3+rstLke09vxO3Bj+cW2e+nk4Wd0d8dVPUHTf/6uLo/NcppyVzRdMpjoxPaNmpP5iq683RPQot1bSJ76QYv2amtZxt8IONlLd0GrjSyCFw0YHbdoovDHSwBa5CUnpx07GW779u30r3/9iz744APLlsCxfZHYCXMsyHLbbbc5vlngxU4f9t8Om0nFZnCxJYLsms2WYv9Trq2YzcUYMBYdO3akW2+9FUEowaJAn+gfUBEznJxnJ7H0RwWvEV3soqvcyrhfUs9YfXRpU005Pd8vTleOJdieUFunHXDJt3MGtGjn1pGrbtCivdpblvE3Ak720l3QaiOL4EUDRsctmij88RKAFnnJhb/d0aNH6eNdH9PuT3arm3efOnVK2IuzZXDKnkZso2226TYL1LCNtocMGRIWs3jYDDD2TmypHvv3UpktxdiywBTLE/XRBqHS0tKwHI8TLPpETnD/MxO5h5O2Job7OV06Te82uY1uiW5IkdVVavElV5ylwh4N1bRysSm3jOJi4h1JNhtLuVbu2+0bWrRbi8hbH2jRXm0vy/gbASd76S5otZFF8KIBo+MWTRT+eAlAi7zkwsuO9eU7d+6k0tJSx6lw7HQ4EcElFlRiM5Vuuukmat26NV133XWOa7aJtvNHVi0y9iwQVVZWRjNnznTsLXXllVcSm03m74fNgurQoYNjSV737t1xYp4JoLLq0AQaU0X2ndhDo17OMFXWU6G2LTrRnkM7dEW+2Z9Kn+9cosujC+9Q2c+nULN6Ubr8Sdeco0PtG6h5bIbTX0esoPztr9L2/Zsd+0yxvLTW3Wl42jhql9TBUdZOgShoUW0+XASZALQY5AZwerws428EnJwaXtakLIIX3b7ouEUThT9eAtAiL7nQtispKXHMWtq2bZtjiRzry/35sMAGm2HTsmVLuqnVTfTLVr90pH3xCS3qaTEeH3/8saOdWDCKBQT9DUKxQF+PHj0cG5K3a9fOsdG6UfBPXxO5UtCh/+1dtLuAZhVOdeuI7aekBH1YIecldFMzZ1GLq1o5AlfO9/a+9zsq/2aMznfzBtm0rf4Wqqhdeqd84iIjSLu87rrGv6Qvv/tUue3yfcO1N9Gxr4/qAlEju2RTSrO2LmUDlQEtBoo0nuONALTojVBg78sy/kbAKbC6su3TZBG86AZAxy2aKPzxEoAWecmFlh0LVGzevJn++c9/0vvvv+/XSXEsQMGWbN1xxx2O79TUVCEwoEXvGBkjFoT65JNP6KOPPhIShFKeOmHCBPrzn/8cFksZlXfi+YYOeai52rCZTos/mK8GlpxnE7m7rw3yGAWuHPs5rXyD6FJr3UNHNkylp6IuEAs0aT/Lo8/Rit51M52098xcs+BXRvvBZooKLwMtCkcKh5wEoEVOcBaZyTL+RsDJIgGFmltZBC+6XdBxiyYKf7wEoEVecva2Y3sHvfvuu2qQifXVPB+2ebeycXf7m9vTbWm3kVUzYqBFnhYiYtxEB6FYuxcVFVHXrl35KhXCVtCh+MbztkzN033nwFS9yCj6RaNf0qq5C2srqtkcPOIofZtgvJTviYdupr1ff0wRTsEob2+qzK5aNL4oKDOdoEVvLYT7gSIALQaKtLnnyDL+RsDJnB7CvpQsghfdkOi4RROFP14C0CIvOfvZsSDTE088QQsXsoGY75/4+HjHXj/t29cGljrXbsTb4ZaA7vkDLfreZu4sGEt2iiCbCcWWTbJTBXn25GJ7cLFTCRMSEtw9KuzyoUP7NikLTB36+jCNWziIvth2L508/IyusvfUH0aLGnyiy1MS/fpW+xxwUmzZEsA5ma8oyYB9Q4sBQ40HeSEALXoBFODbsoy/EXAKsLDs+jhZBC+aPzpu0UThj5cAtMhLzj52bD+m1157jQoLC31aKsf2XOrcubPjf8qpZsF8K2jRWvrKskq2pJJpxZdPr169HCcHZmRkhH3wCTr0RRmBL6ucgsdmOn2wYj7RxS66SrCldc/GXNTlscSMhB9o222NXPK1GcqMJm0eu2bLAbdOO+CcbXkaWrQcMR5gkgC0aBJUgIrJMv5GwClAgrL7Y2QRvOh2QMctmij88RKAFnnJBdeOzWZasWIFvfzyy6Y3kmZL4fr27UvstLK77rrLdoEDaDGwmmIBqOHDhzv2geJ58rBhwyg/P5/H1NY20KGtm4fS81rRhfOXqF79aqo41Yj2vLu+tsKapXWXTtMjrW6hnDNX6l6EbSj+QJeLVJ0Qo8s3m9iUW0ZxMfFmiwspBy0KwQgnAghAiwIgCnQhy/gbASeBogllV7IIXnQboeMWTRT+eAlAi7zkgmPHZjP97W9/cwSbysvLvVaif//+apCJzWiy8wdaDG7rzJgxg3Jzc32uxOzZs+m3v/1t2Gw2Dh36LIGAGbAldT2mt9M975v9qfT5ziW6vKgrC6j7bdNoRak+uFR66Ud6esAVurJmEpjhZIYSyoQzAfSL9mpdWcbfCDjZS3dBq40sghcNGB23aKLwx0sAWuQlFzg71kaLFy+mJUuWmJqNwgJLQ4YMoZycnMBVUsCToEUBEAW4YO3w9jtvU/FbxaaXabJNxh9++GEaN26cZZvKC3g1Uy6gQ1OYglaIzXCqqqzUPX974Ryiij66vBs6jqAR37xP4yv0y+imNjtLezs01JX1lsAeTt4I4X64E0C/aK8WlmX8jYCTvXQXtNrIInjRgNFxiyYKf7wEoEVectbblZaW0quvvmpqNhPb3Pmhhx6i8ePH226pnFlS0KJZUoErx9pk9erV9Oabb5re92n06NH0yCOPkN1n1LmjCB26I2OPfGUPJ21tKsuj6ePVW2uzNEvr6CvqcPddNL/kIrWIqpvpxJbW3f+rSqppFK114fEap9R5xIObEhBAv2ivRpZl/I2Ak710F7TayCJ40YDRcYsmCn+8BKBFXnLW2LH2YHsz/fWvfzU1mykzM9MRZOrZs6c1FQqgV2gxgLA5HqVoc9SoUaas2UbjEyZMoIEDB5oqb5dC0KFdWsK4HmXHd9HY17JcbrpbWtc35QlacrCBrvxfGp6l9d0aOjYDv/bqZPr82EFyt2F4zuDnaEDbQTr7QCWgxUCRxnO8EYAWvREK7H1Zxt8IOAVWV7Z9miyCF90A6LhFE4U/XgLQIi85sXZsE/AXXniBXnnlFa/H1yuzmdiGz2wj8HD5QIuh1ZJsmaeZwCib6fTkk0/S0KFDQ+IFoUP7N1PxntU0o+AxR0WVQBH7/njtU1T1w2DdCzS/LZMmfPExDa2sW0bH9nKaPqihevLcvhN7aPEH82n7/s2O5Xpsz6a01t1pZJdsSmnWVucvkAloMZC08SxPBKBFT3QCf0+W8TcCToHXli2fKIvgRcNHxy2aKPzxEoAWecmJsWN96IsvvugINHnbBDycZjMZ0YMWjajYP4+ddsc0vHDhQo+VZcHRqVOn0siRI229wTh06LEZbXNTCRKV7Gan1JFjhlLVjzH0cWFtOqJJXT0jjtIjze9wObWuX99q2jz1Y4pt8LO6srVXbGPyQJ9Gp6uAJgEtamDgMqgEoMWg4nd5uCzjbwScXJpezgxZBC+6ddFxiyYKf7wEoEVecv7ZsRlNf/rTn7wGmtggnW3GHG6zmYzoQYtGVEInT5mlx05RZL8N3H3YBuNsjye77jcGHbprOfvlO59ax2Y5ffVxb/rq0xd0lb2n/jBa1OATXd6mmnLK+PeXFBNft7+TroANEtCiDRoBVXAQgBbtJQRZxt8IONlLd0GrjSyCFw0YHbdoovDHSwBa5CXHZ8d4P//88zRz5kzyNKMpVPe/4aNy2Qpa9IeefWxZO7J9yJjO2ewnd5/4+HhHMPUPf/iDrTa6hw7dtZg9851PrWNBp4/efL7u1LrqczTwwru0MGm6ywtEduhKCQvyXfLtkgEt2qUlUA9o0V4akGX8jYCTvXQXtNrIInjRgNFxiyYKf7wEoEVecr7ZsYE3259p5cqVHvdoGjZsGD3++OMhe8KXb1T0paFFPY9wSK0qXEV/efEvtHUrO0HM+KMEntisJzvsSQYdGreTXXONTq2rONWI9rxbUlfl2qDTRw2703VxNRRZXVWXX3sVNWQs/Wzy47o8uySgRbu0BOoBLdpLA7KMvxFwspfuglYbWQQvGjA6btFE4Y+XALTIS86cXUlJCaWnp3stzI6SZxsrJycney0brgWgxXBtWaKNGzc69nlau3atx5dkp9pNmjQpqP8dQIcem8h2N9leTqNeznCp1xfb7qWTh5+py68NOo288g56NuZiXd7/ruLnL6PYtNtc8oOdAS0GuwXwfIUAtKiQsMe3LONvBJz81Bvb62DLli1UWlpKn3zyCX344YfqX73ZX7jz871P8V2+fDk9+OCDpmqyaNEix0adpgr7UEgWwfuAxFRRdNymMKFQAAhAi9ZBjoiI8Oqc9fdPPfVUUAfYXisZoALQYoBAB/Ex7DfP3LlzaenSpR5rwQJPTzzxRFBmPEGHHpvGljdv+78bXerlWFq38g2iS6019yqo9Jl1dN1f/k+TV7vheEwsXfnmeor5+dW6fG0iGJuJQ4vaFsB1MAlAi8Gk7/psWcbfCDi5tr1POZ4GIuwv3QsWLPDqjx1JPGrUKK/lWIFly5ZZciSxLII3BdmHQui4fYCFopYSgBbF4zUzq6l///40a9YsKZfOuSMOLbojE375R48edexj5u1ku2DM/IMOQ0tvzhuHa2t/7qtmtH/TOm0W3dO5hvI7zqeqFa/p8qnZDZRYfPnEO+WGchLe9v2bqaqykqKioymtdXcanjaO2iV1UIpZ9g0tWoYWjn0kAC36CMzi4rKMvxFw8lNI2oAT27OgVatWtGHDBodXnhlOzPbqq93/ZaZZs2aWbMopi+D9bG4Xc3TcLkiQESQC0KJY8GvWrKGMDNflHdqnsP1sunbtqs3CdS0BaFE+GZgNPAVyxhN0GHo6dN44XPsGn70/gr47/qgmq4LWzG1IXZY9QHR4jyafqF7/B6jx05c3Fy/aXUCzCqfq7msTOYOfowFtB2mzhF9Di8KRwiEnAWiRE5xFZrKMvxFw8lNA06ZNo9TUVOrWrZsjEKQVjtmAk3aG05EjR4KyJENb72PHjgVl+rufTREUc3TcQcGOhxoQgBYNoHBkMY6sX58zZ45ba6uWNrt9YIjdgBZDrMEEVpf9lnj22WdpyZIlHk9vnDx5MuXl5VFsbKzAp+tdQYd6HqGQMto4XKl3ZXk0fby6uDZ5jZJFEbWbh//nve+o/n13UcTFH9X86sgo+lnxZjpU/a1uXyi2PC8i0nWJ9KLxRZTSrK1qL/oCWhRNFP54CUCLvOSssZNl/I2Ak2D9sL/y3Xjj5TXoPEvqEHAS3CAWu0PHbTFguDdNAFo0jcptQXYC3f333+/2CHg2i5UF5PHxTABa9MxHhrvsR/SLL77oONGxvLzc8JUTExMdwamRI0ca3vc3Ezr0l2Dg7d1tHK7U5Jv9qfT5ziVK0vHdOOl5mjnwMGWu1J+gGNmtL81Ir6KS3frldTrj/yW6tu9NczJfMbolJA9aFIIRTgQQgBYFQBToAgEngTBlcqUNOGGGU/i3PDru8G/jUHlDaNG/lpo/f75jc2OjwTE77r2srCwos0/9e6vgWEOLweFux6eamfHETn984YUXHLPFRb4DdCiSZuB8Fe9ZTTMKHtM9UJmZ5NhAvKB2z6aLXTT3K6jtXb1p00fnNHlEbJbToAHk2LNJd8MgwfZ02jrtgMEdMVnQohiO8OI/AWjRf4YiPSDgJJKmRL60wuEJOAVrOZu23sGqQyjKBB13KLZaeNYZWuRrV3bS6PDhw8nomHcWaGLLg7Kzs/mcS2oFLUra8B5em/3GYDOePC1VZeYi90WDDj00iM1vaTf5rrxwkaLrx9Avr7+Z9hzaQRWnGtGed0vq3qD6HEU1/iediMqry2NXtZuH9+9wVJ9Xm1KCV843NuWWUVxMvHO2kDS0KAQjnAggAC0KgCjQhSzjbyypEyga5opnhtPy5cvpwQcfdNSE/aXviy++ICZANt38uuuuo7vuuovGjRtn6b5KsghecHNjc1zRQOGPmwB+RPiObuPGjfTQQw85+ltn65SUFPrHP/6B0+ecwZhIQ4smIElahP1G+v3vf28Y4NUiqamp0Sa5rqFDLmy2Mio7vovyt79KyulySuX2vvc7Kv9mjJKkdj9tp43X1KXZjSuenEl990/zOsOJBaBYQAsznFScuAhjAugX7dW4soy/EXASrDt/A07uquPvX9qZoD19vv76a+rUqZOjCNtHip2Gh493Aqzj3rJli6Mg2zjeyg1QvdcGJWQmAC361vp/+tOfaPr0y6cYOVuyk7T++Mc/4r9nZzAm09CiSVASF3v7nbfpyalP0uHDh91SYLOdbrnlFrf3vd2ADr0Rsvf9t/atohfeetqwkpcuRFLpG+/U3vvfBuKXTtOXid0pTrMhONvD6YlbTjlmRRk60WS2bdGJ/nL/Ioq4FKnJFXcJLYpjCU/+EYAW/eMn2vrEiRPq3s/hvMIIASfBytFGKn3ZNHzmzJk0cOBAuq3zbXT9ddc7anX4y0O0akUhFRYWqrXkPR0pIsL1VA7VqdMFe0aTJk2osqqSoqOine4iCQIgAAKhS6C0tNRtoIkF9idNmiR8LxmztNDnmiUVnuVka3/2vsVvFdPSpUvdNmhmZiY9MOQB/BZxSyg8bxyv+JKW7ntRd6Kc81I45w3E/3xGwYluAABAAElEQVTpERpx1SYdkFH3J9HJc+4PelB8/rzhtTSy5SSdLRIgAAIgYCUB9m/g2R/O0qhRoxyPQcDJStph5lsbcDK7hxPbQyQhIcEtiTVr1lBGRobjPhsQHThwwOfldTwBJ7cVwg0E46AB2xMI9uDViuf745PZDs4a7Lbd2BK6J598kupfUR+DW7eUcAMExBNgv5vYrEJ3H3Y6JFv6mpqaGjL/9vrTV7njEMj8YNf/70cX0JffferxlVmw6CPNBuJRVSfoxM/v1NkM6vATXWxWX5dnlKhXu8H44x3+rN4K9vurFcEFCFhIADq3EK5J16dPn0bAySQrFNMQ4FlSpzF3e8k22pwyZYrjPlsGkpOT47as0Q0sqTOiIiZv3bp1DkdYUieGJ7zwEXCeJs2C2CwPHyK2fMdTsIn1qY8++ihQCSLgrEUsNRYENszd9OnTx7FpuKfX9HWZHf599kTTvvd6z+5gau+l8yd+Qfs3Xf4NZrSP0z23XaDqhBhTL/rOIzssW0aNPtFUE6BQAAhotcj6XHyCSwBL6oLLP2SfblXAic2CYsvc2KdXr160fv16oYy0M7PCeUqfUGi1zljHrfygZR03BlaiCcOfWQLQojGpiRMn0rx584xv1ubu2LEjaEvo3FYqxG9AiyHegEGsPtOOp/3VWNWWLVtGQ4cO9VpL6NArIlsWqLhYTj2mtzNdN2UD8QONbqEm0VU6u/69LhHFGO/LpCynYwZR0dHYNFxHDolwJYB+0V4tK8v4G3s4CdadVjhml9SZrULTpk3p1KlTjlOT9u7da9bMVDltvRFwMoXMUQgdt3lWKGktAWhRz5f1aePHj/d4GlZFRQWCxHpsQlLQohCMUjvZt28fPfzww25nPE2ePJny8vI8/vfLdMhmN7K9KPEHodCSU3peK68znJQ3qjjViPasfYu+veoOJUv9HpB+kWoaed+LtGv73jQn8xXVTvQF+kTRROGPlwC0yEvOGjtZxt8IOAnWj1UznFg1EXAS3FgC3KHjFgARLoQQgBbrMG7cuJEeeOABR4C+LrfuqmPHjsQ2D8fHGgLQojVcZfS6ePFidX8L5/dPT0+n/Px8Sk5Odr7lSEOHhlhCInNy4cNUsvvyTH7tTCSjyrP7h/41kmYe20OZiTt1RYoiz9PCvvG6PKPEovFFlNKsLbHZVXEx3ssb+fCUBy16ooN7gSQALQaStvdnIeDknRFKGBDQBpzMnlJn4MYlC0vqXJDYIgMdty2aAZWoJQAtXpYB2+uO7Xnn7rNhwwbq2bOnu9vIF0AAWhQAES5UAmy2U5s2bdS09iIxMZEWLlzoOOVXm8+uoUNnIqGT3ndiD416+fJhOWZqfelCJJX+/R/0TuzvqVOjE6pJRW0w6r4+1W6X1bGCv+mVTUe//Yy279/smFXFltelte5OI7tkO4JQqjM/LqBFP+DBVCgBaFEoTr+dIeDkN0I5HVgVcJoxYwbl5uY6oPJsGu6tNWQRvDcOvt5Hx+0rMZS3ioDsWmR9GDvNc+dO/V+4GW92uuezzz5L2dnZVuGHXw0B2bWoQYFLgQTmz59PTzzxBJWXl7t4Zb+P2BI77Qc61NIIveui3QU0q3Cq6YofL+1FX+3NdVlaNyPhB9p2WyNDP2wpnTKTyqhAzuDnaEDbQUa3fMqDFn3ChcIWEoAWLYTL4VqW8TeW1HGIw5OJVjhm9nBiASo2e4kd9+vus2bNGsdAit1nA6cDBw4QOyZY5Edbb+zhZJ4sOm7zrFDSWgIya3FV4Soa//B4wyV0mZmZ9NprrxE7tQ+fwBCQWYuBISzvU9hS2CFDhtDhw4ddILADVZYsWaL+PoIOXRCFXEbxntU0o+AxU/VmS+s++vtbtDLiMerZ+JDO5uW4s7T2Vw0oIjJCl69NuFu6pyy305b19Rpa9JUYyltFAFq0iiyfX1nG3wg48elDtSopKaGDBw9S/fr16cKFC/Tdd98RW9LBPmx/gREjRqhlWRnnk1XYXiPsRxIr27dvX8e08WuuucZh88WXX9DKFSupsLBQ9cFOW7Lir/SyCF4FKegCHbcgkHDjNwEZtcje+fHHH3d7Ct3s2bOJbS6MT2AJyKjFwBKW+2nsj3Rjx47V/TZSiLA/xq1cuZK6du2KJXUKlBD+1u7lZPQazkGi04daUrP3x9PqpEddihvt5+Rs72JUmyFiQ3H0iUZkkRcMAtBiMKi7f6Ys428EnNxrwNSd4cOH09KlS02VZYVqamp0ZVnAigWbvH3YzKaXXnqJRo4c6a0o131ZBM8Fx4MROm4PcHAroARk0yIL1j/00EPE+i7nT/PmzWnFihUeZ4462yAtjoBsWhRHDp58IcCW2E2YMMHQhAWbf/vb39K6desc93FKnSEm22f6clqd8jLbC+dQzvdb6ZFmRUqW+j3hhvP0xS992xSc7em0ddoB1QfPBfpEHmqwsYIAtGgFVX6fsoy/EXDi14jD0t+AE/sPf/Xq1fThhx/Stm3b6OTJk45ZUmyPArYZ5s0330zdu3d3HO9t5ZIQWQTvZ3O7mKPjdkGCjCARkEWLbHbDpEmT3Ab62RK6119/3eNx6UFqImkeK4sWpWlQG78o+6MdO5HSKPDMtjUYcM8AR+373d0PfYKN29GoauzEuB7T2xnd8ph37qtmtH/TOhr200J65up5FF+vdtPw/3021ZTT8/3ilKTXb2UG1KbcMr9Or0Of6BU1CgSIALQYINAmHyPL+BsBJ5OCCPdisghedDui4xZNFP54CcigxeXLl9MjjzxiuFcT42bVkmPeNpHVTgYtytq2dnxvFoS+//77iZ1A6fxJSUmhJ598kgYNGoSAkzOcEEhrZzgpwR8z1WaznKiijyPoNOeal3Qm96b+RJVX1dfleUpghpMnOrgXagTw77O9WkyW8TcCTvbSXdBqI4vgRQNGxy2aKPzxEghnLXpbesyWJefn51NycjIvPtgJJBDOWhSICa4EE5g2bRqxU3ydP2y2+Lvvvoslts5gQiDtbQ8nd69QcaoR7Xm3xHG7rEEnalb/glqUzXKac1esxw3E1cK1F9jDSUsD16FOAP8+26sFZRl/I+BkL90FrTayCF40YHTcoonCHy+BcNViRIT7U4Ws3tuOty1ktwtXLcrerqHw/uxUX3Y4C9uWQPthfQWbITlw4EBtNq5tTqDs+C4a+1qWYS09zXhi9z5e+xRV/TCYci7+n8t+TjMSfqAPbm1oKuiEU+oM8SMzRAng32d7NZws428EnOylu6DVRhbBiwaMjls0UfjjJRBuWty3b5/j1E53PNheTS+++KJ6BLq7csgPPIFw02LgCeKJ/hAoLS2le++913BfJ5xc6Q/Z4NgW71lNMwoec/twtuStqrLS5b46y+nSaSq7sq9ulhMrPOKm8/TNDXEeg045g5+jAW0Hqb7ZvlJxMb5tOs6M0SeqCHERZALQYpAbwOnxsoy/EXByanhZk7IIXnT7ouMWTRT+eAmEixbZezz//POUm5vrFkXBqgLKyjT+q7dbI9wIGIFw0WLAgOFBwgmwfZ3YyXQ7d+508T169GhasGCBSz4y7EuAzXTK3/4qbd+/mSovXKTo+jGU1ro7jeySTYs/mE8lu9c7Ku8862nve7+j8m/GULcfN9DqpEd1L3jm0iUafvslqmkUrctnPtrddCs90iuHUpq1pX0n9jiewZ7NAlsswKU8m90380GfaIYSygSCALQYCMrmnyHL+BsBJ/OaCOuSsghedCOi4xZNFP54CYSDFtleTePGjSM2u8nd5/Tp02TliZ3unot88wTCQYvm3xYl7UqA6ZAFnbZu3epSxV69etGSJUswQ9KFjP0znGcZeVp2p85yqn2tCRfm0FO/yNe9YOmlH+mpfvVdZjkp+zZ5m13lPANK51yTQJ+ogYHLoBKAFoOK3+Xhsoy/EXByaXo5M2QRvOjWRcctmij88RIIZS2y2QhPPfWU45Q5d+/fv39/Ki4udncb+TYiEMpatBFGVMVPAkyHb7/zNhW/VUxLly518cY2E1+4cCH2dXIhE3oZRbsLaFbhVF3FldlOn70/gr47fnl20ys1IygzUT/rje3ntO22RjpbNovpryNWmNo/6rWxq6hdUgedvXMCfaIzEaSDRQBaDBZ54+fKMv5GwMm4/aXLlUXwohsWHbdoovDHSyBUtcg2+Z0wYYLhfiuMxeTJkykvLw9HmvMKIwh2oarFIKDCIy0koNXh+fPnHbMnnTcTZ49ny3dZH4NPaBNgS9+mrBxF3313WvcileXR9PHqjy/n1e7nVNLgHmoZd04tw5bWDbuzNhkT6chTAlVslpO7pXqqce2FMhtKm+d8rdUim3UXGxvrXARpEAgIAWgxIJhNP0SW8TcCTqYlEd4FZRG86FZExy2aKPzxEgg1LbL6Pv74425nNXXs2JFeeeUVHGXOK4gg2oWaFoOICo+2kICzDtlSXXebiaenp9OKFSuwxM7C9giEaxZ0GvVyhsujlL2c2I0bKvfQR1cP1ZWZ2uws7e3QUM1ztxG5UkAJSrE0K7t12gHlluG3sxYRcDLEhMwAEIAWAwDZh0fIMv5GwMkHUYRzUVkEL7oN0XGLJgp/vARCSYts4Hf//fcb7tXEji//4x//6JjZxMsCdsElEEpaDC4pPN1KAooOK6sqqd/d/RyzStjy3eHDh9PatWtdHs36nuXLl2OJnQuZ0MowWl6n3cuJvc3KyEzq2fiQ+mKHqi7SI/2j1L2cGjdu4jJTSi1scLEpt8zj6XWKFpkpZjgZAERWwAhAiwFDbepBsoy/EXAyJYfwLySL4EW3JDpu0UThj5dAqGhx8eLF9Lvf1Z4cVF7u8qpsI99XX32VkpOTXe4hI3QIhIoWQ4coaspDwJMO58+f71jKa+SXLfGdO3eu0S3khQgBo5Plzm9bSbs/bel4A6NT6+5N/Ykqr6rvuF8vsjb4VC/CcSqdt1fGDCdvhHDfTgQ89Yt2qqcsdZFl/I2AkyyK9vKesgjeCwafb6Pj9hkZDCwiYHctspkFY8eOpcLCQhcCbGbBSy+9RCNHjnS5h4zQI2B3LYYeUdSYh4A3HZaWltKQIUPo8OHDLu7Zkt433ngDwW8XMqGXoZxqt2PnBbo18xuiiCaOl/i2STvdywxJvUhnE6MceRGREbp7SkK7lE7Jwx5OCgl8hwIBb/1iKLxDONVRlvE3Ak7hpFo/3kUWwfuByNAUHbchFmQGgYCdtVhSUkIPPfSQ4cAuJSWF/vGPfxD7xic8CNhZi+FBGG9hhoAZHbJA+KRJkwxPsWOB8L/l/42yMrPMPA5lQoBA9M35VPXDYEq6eIB2NbtPV+N+t1dSRHwUKUEl5VtXyCCxaHwRpTRra3CnLsuMFutK4woErCMALVrHlsezLONvBJx41BGGNrIIXnTToeMWTRT+eAnYVYszZsxwnAJl9F5YumJEJfTz7KrF0CeLN/CFgC86xBI7X8iGbtlH87Pphaefo6iqE3Ti5+xourrPiJvO0zc3xKn7ONXdcX+VM/g5GtB2kPsC/7vjixa9OkMBEPCDALToBzwLTGUZfyPgZIF4QtGlLIIX3TbouEUThT9eAnbTIutTRowYQRs2bHB5pcTERFq4cCE253UhEx4ZdtNieFDFW/hKwFcdejrMgO0vx2ZiJiQk+FoNlLcRgbLju6j9nV8SVfShTbG/orZx36u1K4o8Twv7xqtpTxds9lN0/Rivp9MpPnzVomKHbxAQTQBaFE3UP3+yjL8RcPJPJ2FjLYvgRTcYOm7RROGPl4CdtMg2Bh81apThq+D4cUMsYZVpJy2GFVi8jE8EeHTIbB5++GHDJXZsX6eioiJKSkryqR4obC8Cv3/hjdo9A/vTiAt/oT//YpGucgPSL1JNo2hdnqeEt9PpFFseLSq2+AYBkQSgRZE0/fcly/gbASf/tRIWHmQRvOjGQsctmij88RKwixYjIow3W2XvlZubS3l5ebyvCLsQIWAXLYYILlTTIgL+6NBT0Bz9mEUNFkC316V+T//59gJ9kdCN4utVq0+ekfADbbutkZr2djE1cxZltB/srRj5o0WvzlEABHwgAC36ACsARWUZfyPgFAAxhcIjZBG86LZAxy2aKPzxEgi2FtnzW7ZsSawvcf6wGQErV66krl27Ot9COgwJBFuLYYgUr8RBwF8dslPs7r33XsM+jW0ofv78eY5awcQOBN5ae4EGTrxEf770CI24apNapdJLP9LTA65Q02Y2Dsem4SouXIQAAX/7xRB4xZCqoizjbwScQkqW1lVWFsGLJoiOWzRR+OMlEEwtspOe7r//fsP9mtgSujVr1mDvE96GDUG7YGoxBHGhyhYREKHDo0eP0p133ml4wmbz5s3p0KFDFtUebq0mwGY5XXf837Q66VH1UWcuXaJhAyLVtNGFcxCqa/veNCfzFaOiap4ILarOcAECfhCAFv2AZ4GpLONvBJwsEE8oupRF8KLbBh23aKLwx0sgWFpkfUffvn2Jbbhr9KmpqTHKRl4YEwiWFsMYKV6Ng4AoHWp/HzlXg20mvn79eudspEOAwCsLf6Q/P11GH109VFfbfn2rfTqpLio62uvm4aK0qKsoEiDAQQBa5IBmoYn235djx46F7R6BCDhZKKJQci2L4EW3CTpu0UThj5dAMLTIlpzcdddddOrUKZdqF6wqoKzMLJd8ZIQ/gWBoMfyp4g19JSBSh2wWZ5MmTQyrsHXrViwXNiRj70ymj7ibTtG3V92hq6h243Dn2Uy6gpqEt83DRWpR81hcgoDPBKBFn5FZaiDL+BsBJ0tlFDrOZRG86BZBxy2aKPzxEgi0FtkyuaFDh1J5ebmuymy/pjfffJNSU1N1+UjIQyDQWpSHLN7UFwKidcj8xcXFGVZh7969lJKSYngPmfYlMHXaj/Toex0osrrKUcmK6hoaknyBLrWub7rSmOFkGhUK2oCA6H7RBq8U0lWQZfyNgFNIy1Rc5WURvDhilz2h4xZNFP54CQRSi+5OcGIDrrfeeouSk5N5XwN2YUAgkFoMA1x4BYsIWKFD5tMo6MQC7du2bQvb5RAWNVHQ3X526BJdGNSOfh57yRF0YgGniRUd6OR9uzzWTZn5xL7TO/TBHk4eaeGmnQhY0S/a6f1CrS6yjL8RcAo1ZVpUX1kELxofOm7RROGPl0CgtDhnzhyaMmWKSzXZXiYs2BQbG+tyDxlyEQiUFuWiirf1lYCVOmzatKnLUmIWcN+xYwf6QF8bKsjl32+dSikNzquznHJP3kW7hr9teh8nnFIX5AbE430iYGW/6FNFUNhBQJbxNwJOELxUghfd3Oi4RROFP14CgdAiCzSxgJPzZ9iwYZSfn++cjbSkBAKhRUnR4rV9IGClDpnvPn36ENu/SfvBJuJaGqFxvWvCOLr2w41qZXecbUbZ7X5BV7UuVfO0F8rsJpaXM/g5GtB2kPa24bWVWjR8IDJBwA0BaNENmCBlI+AUJPB4bHAIyCJ40XTRcYsmCn+8BKzW4pgxY2jhwoUu1cvNzaW8vDyXfGTIS8BqLcpLFm/uCwGrdcg2Ev/Vr37lckLn6NGjacGCBb5UFWWDSKB843r68Ynxag3KL0VS85ocSsucSWmtu1P3ln1o82fraPv+zVRVWUlszyaWP7JLNqU0a6vaebqwWoueno17IKAlAC1qaQT/WpbxN2Y4BV9rtqiBLIIXDRsdt2ii8MdLwEotZmVlUWFhoUvVZs+eTZMnT3bJR4bcBKzUotxk8fa+EAiEDtlvpw4dOrgsr5s+fTrl5OT4Ul2UDRKBH89/T+Xd9Ydc9PxqARX8+1fUskU9Xa0qLpZTXEy8Ls9MIhBaNFMPlAEBaNFeGpBl/I2Ak710F7TayCJ40YDRcYsmCn+8BKzQIvN5zz330IYNG1yqtWzZMscpdS43kCE9ASu0KD1UAPCZQKB0WFJSQunp6S71K1hVQFmZWS75yLAfgW/vuJUizp1RK/bH/w6n+FFTaFZeLPEGmVRntReB0qL2mbgGASMC0KIRleDlyTL+RsApeBqz1ZNlEbxo6Oi4RROFP14CorXI/BntUcLqV1RURAMHDuStKuzCnIBoLYY5LryeRQQCqcNVhatocNZglzeZN28eZWdnu+Qjw14EzkyaQNVb/qlWauN3LeiB6tep68h03TK64WnjqF1SB7Wc2YtAatFsnVBOTgLQor3aXZbxNwJO9tJd0Goji+BFA0bHLZoo/PESEKlF5stoZlN8fDytWbOGevbsyVtN2ElAQKQWJcCFV7SIQKB16O4EzyNHjlBycrJFbwm3IgicLyygn2Y+qbpi+zhd//0ndEPHES6bh5vdKFx1VnsRaC1qn41rENASgBa1NIJ/Lcv4GwGn4GvNFjWQRfCiYaPjFk0U/ngJiNIi83PffffR2rVrdVVJTEx0zGzq2rWrLh8JEHAmIEqLzn6RBgFfCARDh926dXM5uS4lJYV27NhBsbGxvlQfZQNI4OLJr+lsP/2yyFu/Xk6fx5+jtPvHudRk0fgi0xuGM+NgaNGl0sgAAWjRdhqQZfyNgJPtpBecCskieNF08SNCNFH44yUgSovDhw+npUuX6qrBgk2bN28mNnDCBwS8ERClRW/PwX0Q8EQgWDqMiIhwqVb//v2puLjYJR8Z9iHwbZe2FHHxR7VCj/93FC2p/3tqe1dXiks8q+azi67te9OczFd0eZ4SwdKipzrhnpwEoEV7tbss428EnOylu6DVRhbBiwaMjls0UfjjJSBCi9OmTSN2upL2w5bRsWBTaqr+FB9tGVyDgJaACC1q/eEaBHgIBEuH7LktW7Yk9rtK+5kwYQLNnTtXm4XrABEws/H3qdTmutooy+rir1pAKb3/QhGRdYHEqOho2jrtgK68p0SwtOipTrgnJwFo0V7tLsv4GwEne+kuaLWRRfCiAaPjFk0U/ngJ+KvF5cuX04MPPqh7PAs2vffee4RldDosSHgh4K8WvbjHbRAwRSCYOjx69CilpaXRqVOndHXFJuI6HJYmyo7vovztr9L2/ZvdbvytDUQ5B5xY5ZqeLqv9/6/o1qF36gJO7N6m3DKKi4lnl14/wdSi18qhgFQEoEV7Nbcs428EnOylu6DVRhbBiwaMjls0UfjjJeCPFjdu3Ei9evVyeTROo3NBggwTBPzRogn3KAICpggEW4clJSWUnq7fF4hVfMOGDTh4wVQL8hcq3rOaZhQ85tbBDdfeRMe+PkqVFy5SdP0YSmvdnZ54djNFVlfpbHacbUZ3V75nuHn4h88cIW3ASmfolAi2Fp2qg6TEBKBFezW+LONvBJzspbug1UYWwYsGjI5bNFH44yXAq8XS0lLq1KmTy2Pxl3gXJMgwSYBXiybdoxgImCJgBx26mzlaVlaGk+tMtaLvhfad2EOjXs7w2TDuh2p6o6Sei92g48/TlibVlJY5Wb3XuHETOnf+rG7m1Mgu2W43EreDFtXK40JqAtCivZpflvE3Ak720l3QaiOL4EUDRsctmij88RJQtFhZVUn97u5n6kSkNWvWUEaG6w/zyZMn0+zZs3mrAjvJCShaZBj69OljSouSI8PrW0DALjo02huvefPmtH37dkpISLDgzeV2ObnwYSrZvd4rhJrqGpdlcmvfqdunSXFwujKKWn23nm4Z3Jui4yuVbMPvqZmzKKP9YJd7dtGiS8WQIR0BaNFeTS7L+BsBJ3vpLmi1kUXwogGj4xZNFP54CfBo0eg0pczMTFq1ahVvNWAHAjgCHBqwBQGePtGqimdlZVFhYaHOPVtut27dOgRkdVT8T6TntXLMPPLkySjYxMo3PVJOSw42cDFlJ9a9k3Karu/8pss954xF44tcZjrZSYvO9UVaLgLQor3aW5bxNwJO9tJd0Goji+BFA0bHLZoo/PES8FWLU6ZMoTlz5rg8rqKiAgMgFyrI8IWAr1r0xTfKgoBZAnbSIatLt27daOfOnbrqDxs2jPLz83V5SPATYHsq9ZjejtwFlMx4vv7Tcpr3uT7otOSbHvR4zFi69YH7XGZFOfvs2r43zcl8RZdtJy3qKoaEdASgRXs1uSzjbwSc7KW7oNVGFsGLBoyOWzRR+OMl4IsWWaCJBZycPzt27KDU1FTnbKRBwCcCvmjRJ8coDAI+ELCbDtnvrM6dOxP71n6mT59OOTk52ixc+0HAzAwnb+6XVN9NTf/5rlpM2Ty8dY8+1PCaE2q+0UVUdDRtnXZAd8tuWtRVDgmpCECL9mpuWcbfCDjZS3dBq40sghcNGB23aKLwx0vArBa1/61rn1WwqoCyMrO0WbgGAS4CZrXI5RxGIGCSgB11uG/fPkpLS6Py8nLdWyxbtoyGDh2qy0OCj4DZPZw8eR9xqjNlfvShWuTEhfrU7vwOir9qAbW58yU1391Mqk25ZRQXE6+Ws6MW1crhQioC0KK9mlv7m/zYsWOUlJRkrwoKqg0CToJAhrobWQQvup3QcYsmCn+8BMxq0Wjfpvj4eDp//jzvo2EHAjoCZrWoM0ICBAQTsKsO3R3WsHXrVuratatgCvK5U06pcxcM8kaELYnb9e/3XE6sa/ptCVHkWbp16J1ul9Upz3TePNyuWvTGAvfDjwC0aK82lWX8jYCTvXQXtNrIInjRgNFxiyYKf7wEzGhx+PDhtHTpUpdHhPNfVVxeFhmWEzCjRcsrgQdIT8DOOpw/fz5NmDBB10aJiYmOk+uSk5N1+Uj4TqBodwHNKpzqu2GtxfzRK6hoeH/6/blGOvsOJ96g4zGtqPltmdSkxWe6e0YJ7ebhdtaiUd2RF74EoEV7ta0s428EnOylu6DVRhbBiwaMjls0UfjjJeBNi8uXL6cHH3zQxf3s2bNp8uTJLvnIAAFeAt60yOsXdiDgCwG763DixIk0b9483SulpKTQv//9b0pISNDlI+E7ATbTafEH82n7/s2OU+vY3krXXp1Mnx876NZZzuDnKDmxBW0b2JsyqvUbh1+e4dTQsawupfdf3M5yUpxrNw9nWnz7nbcpOiqa+vTpg4M5FEj4DjgBu/eLAQcS5AfKMv5GwCnIQrPL42URvGje6LhFE4U/XgKetOhuCQcb3Ozdu5f3kbADAUMCnrRoaIBMELCAQCjocMCAAbR27Vrd2/fq1YvWr1+vy0PCPwLs9DplTyUlEFWy+zJjFohKa92dRnbJpqOnDtGMgseo84dnKefMlbqHNjv5HlVFNavNq6DU+zpTvfrVuvvOCe3m4aGgRef6Ix2eBKBFe7WrLONvBJzspbug1UYWwYsGjI5bNFH44yXgToulpaXUvXt3l01q2XKOuXPn8j4OdiDgloA7Lbo1wA0QsIBAKOiQ1bFbt260c+dOHQH0zzocliUY/9jYWId/Foga+2oWXaquIhYs+vublRQXGaE++8UTGTQj5hlHmi2rS7jxoNdZTsrm4aGgRfVFcRHWBKBFezWvLONvBJzspbug1UYWwYsGjI5bNFH44yVgpMWjR4/S7bff7nIMN1tCx5bS4QMCVhAw0qIVz4FPEPBEIFR0yH5/dejQgU6dOqV7HbbcLjs7W5eHhHUEnE+3y9x0jkb8VLePU/mlSLr+zJbajcMbUtSVBdTxnsvBJ6VGyobhShoznBQS+LYTgVDpF+3EzMq6yDL+RsDJShWFkG9ZBC+6SdBxiyYKf7wEnLXI0uz47cOHD+tcDhs2jPLz83V5SICASALOWlRmEIh8BnyBgDcCoaTDkpISSk9Pd3mlDRs2UM+ePV3ykeEbAe2SOneW6XmtHHs9KfcjzlZS8dYYJen4nvzV72jpFaNrrytqT6u71ZEXoZkFpS3svIfTunXrHLexh5OWEq4DTSCU+sVAswnG82QZfyPgFAx12fCZsgheNHp03KKJwh8vAUWLlVWV1OOOHo6NSZ2XabABDfvRiwAAL2XYmSGgaJGVxeDKDDGUsYJAqOlwVeEqGpw1WIcCJ9fpcPiUUPZq0m4aruzVlNKsrc4XC0j1mN5Ol1cvMopGvPODbvPwJd/0oMfrvegod0PHEXRV61KdjTaBU+q0NHBtFwKh1i/ahZtV9ZBl/I2Ak1UKCjG/sghedLOg4xZNFP54CWi1+Prrr1NhYaHOFdsgfMeOHQg26aggYQUBrRYRcLKCMHyaIRCKOpw2bRpNnz5d93rNmzen7du34+Q6HRXPieI9qx2bfzuXUpa9sdPoBrQdpLvtPMOJle3y0Tnd5uEbv2tBD1Rf/reVLau7pf8fDfdxmpo5izLa1wUPQ1GLOjhIhA0BaNFeTSnL+BsBJ3vpLmi1kUXwogGj4xZNFP54CWi1yP4qnpGRoe4JwgYs77//PiUlJfG6hx0ImCag1SICTqaxoaBgAqGqw6ysLJc/GODkOvPiYDObRr2c4dVAOwOJFXbew4nlXf9pOc37vAG7VD9NT5ep14/OfpTMzKAKVS2qL4qLsCEALdqrKWUZfyPgZC/dBa02sgheNGB03KKJwh8vAWctnjhxgu688076/vvvafPmzcRmOOEDAoEg4KxFLOEMBHU8w5lAqOqQ1dvo5Lrc3FzKy8tzfk2knQgYBY6cijiS2j2WWIZzoIrNcLry+E/0971xLuafVTSkkvOd6Ka/zqV7+tcnb3tEhaoWXV4cGSFPAFq0VxPKMv5GwMleugtabWQRvGjA6LhFE4U/XgJGWmT/XX/99deUmprK6xZ2IOAzASMt+uwEBiDgJ4FQ1iHruzt37uxywmhRURENHDjQTzLhbc6WxlVeuGi41E375tpT5JR856V40d9coDdLr1Buu3yvie5Do7b91SXfOUPRIttjsd/d/bC03RkQ0gEjoGiRPRAzkAOG3e2DZBl/I+DkVgJy3ZBF8KJbFR23aKLwx0sAWuQlBzvRBKBF0UThj4dAqOvQ6OQ6tlx6165dWB7tRhBGm3+7KerI3pRbRnEx8boi2qATm+X09j8jdfedE4ml+pNgne+zdKhr0eidkBeaBKBFe7WbLONvBJzspbug1UYWwYsGjI5bNFH44yUALfKSg51oAtCiaKLwx0MgHHQ4Z84cmjJliu71sZ+TDodLwnnzb20BZdNw9h1dP4a2Tjugve24VpbkKWXb7DpHs040cimnZHzw9D7HsjolbfQdDlo0ei/khR4BaNFebSbL+BsBJ3vpLmi1kUXwogGj4xZNFP54CUCLvORgJ5oAtCiaKPzxEAgXHQ4YMIDWrl2rQzBv3jzKzs7W5SFxmYASMPLGw3kPJ1aeaeaOmW1cTS9WU78Pyml8hWvg6a1f5tHI14e42mhywkWLmlfCZYgSgBbt1XCyjL8RcLKX7oJWG1kELxowOm7RROGPlwC0yEsOdqIJQIuiicIfD4Fw0eGZM2eoffv2Lvs57d27F4dBGAjDefNvgyKOLOWUOlZ+8Qfz1dPmlPLKDCdtOmvzeRrxkz7o9OKJDJr+1WylmOF3uGjR8OWQGVIEoEV7NZcs428EnOylu6DVRhbBiwaMjls0UfjjJQAt8pKDnWgC0KJoovDHQyCcdLhx40ZiS+m0H3by6I4dO7ABtRbK/66LdhfQrMKpBncuZ+UMfo4GtB1E2v2a3BbW3GBBqBfXVlGLqBg1d8fZZnTj25upZYt6ap7zBa8WvZ1+5/wcpEHAGwFeLXrzi/t8BGQZfyPgxKePsLOSRfCiGw4dt2ii8MdLAFrkJQc70QSgRdFE4Y+HQLjpkO3lxPZ00n4mTJhAc+fO1Wbh+n8EnGcusVPp0lp3p5FdsimlWVsyOxNKC5QFnK76vIKWHGygZpdfiqSX+++mWXmxap7zhS9aLDu+i/K3v6rOuHKut7NvpEHAFwK+aNEXvyjLR0CW8TcCTnz6CDsrWQQvuuHQcYsmCn+8BKBFXnKwE00AWhRNFP54CISjDtu0aUP79u3T4SgqKqKBAwfq8pDQEzCaKcT2etq6ax1FREboC3tJ1ZRXUfGWWIqsrlJLjrqiiNZsNdj76X8l2LLILVu2OFKejqL3NuNKmZmlPhgXIOAjgXDsF31EYKvisoy/EXCyleyCVxlZBC+aMDpu0UThj5cAtMhLDnaiCUCLoonCHw+BcNQhCzalpaVReXm5iiQxMZEOHjxICQkJah4uvBPwdJqdJ2ujZXV//O9wyvn4D3T11cbL6sxo0eyMK2XvKU91xD0QcEfAjBbd2SJfPAFZxt8IOInXTkh6lEXwohsHHbdoovDHSwBa5CUHO9EEoEXRROGPh0C46nD+/PnEltJpP/3796fi4mJtFq49EGAznnpMb+co4bw5uAcztfyvN5bT0MqGatHPKhrSZ9P+Tg8N+aWap70wo0VPp+uxOrIPm41ldLqe9lm4BgFPBMxo0ZM97oklIMv4GwEnsboJWW+yCF50A6HjFk0U/ngJQIu85GAnmgC0KJoo/PEQCGcdDhgwgNauXavDMm/ePMrOztblIeGeAO8MJ+bx+k/Lad7ndfs4sTwWdErdsZ1i4us2FGf57GNGi2brw/Z02jrtwGXH+H8Q8JGAGS366BLF/SAgy/gbASc/RBJOprIIXnSboeMWTRT+eAlAi7zkYCeaALQomij88RAIZx2yPYHat29P7Leb9rN3715ip9fh452ApxlF3qzZjKO8wmq6JT5KVzSyQ1dKWJCvy2MJb1pk9++Y6X4PKGeHm3LLKC4m3jkbaRDwSsCbFr06QAGhBGQZfyPgJFQ2oetMFsGLbiF03KKJwh8vAWiRlxzsRBOAFkUThT8eAuGuwzVr1lBGRoYOTXp6uro5te4GEi4EzO6ZxAyNlt1dOBlH87dEUcu4czrfDVe8S/VbtNDlmdEiZjjpkCFhEQEzWrTo0XBrQECW8TcCTgaNL2OWLIIX3bbouEUThT9eAtAiLznYiSYALYomCn88BGTQ4cSJE4ktpdN+Fi1aRCNHjtRm4doNAaNT4YyCS0bm9SKj6MTCpfRuk+HUJLruxLrIbn0p4QV9m5jRotkZV9jDyag1kGeWgBktmvWFcv4TkGX8jYCT/1oJCw+yCF50Y6HjFk0U/ngJQIu85GAnmgC0KJoo/PEQkEGH7B3btWtHhw8fVhHFx8dTWVkZJScnq3m4cE+AzXRa/MF82r5/M1VVVhLbIymtdXc17d6ydt+m90fQb49+T480K9IVc57lxNrpvXf+SVV0ifrd3Y9iY2N15VnC7IwrnFLngg4ZPhCQoV/0AUfQi8oy/kbAKehSs0cFZBG8aNrouEUThT9eAtAiLznYiSYALYomCn88BGTR4caNG6lXr146RDi1TofDdIKdXqfsjWQ048h59tM3+1Pp849m0xdNelJ8vWr1Oc6znJgWWcApIiqS+vS8nWIb/Ewtq70o2l1AswqnqlnOz5uaOYsy2g9W7+MCBHwlIEu/6CuXYJWXZfyNgFOwFGaz58oieNHY0XGLJgp/vASgRV5ysBNNAFoUTRT+eAjIpMMxY8bQwoULdZiWLVtGQ4cO1eUhYZ5A2fFdNPa1LI8Gly5EUukb2yjn4izdLKfq2uV2DTd9qAaWmBZZwIl97ry7r+EMJ+VB7mZcjeySTSnN2irF8A0CXARk6he5AAXYSJbxNwJOARaWXR8ni+BF80fHLZoo/PESgBZ5ycFONAFoUTRR+OMhIJMOjU6tS0xMpIMHD1JCQgIPPiltlGBPye71pt6fzUD66M3nic51dJnlFDVkLP1s8uMOP7xa1M64MlUhFAIBLwR4tejFLW5zEpBl/I2AE6dAws1MFsGLbjd03KKJwh8vAWiRlxzsRBOAFkUThT8eArLpcFXhKhqcpV9uNXr0aFqwYAEPPulseDYQZwGnL7cPopOHn6FXakZQZuJOlVtNTCw1/WCPIy2bFlUIuLAdAWjRXk0iy/gbASd76S5otZFF8KIBo+MWTRT+eAlAi7zkYCeaALQomij88RCQUYdZWVlUWFiow7Vhwwbq2bOnLg8JPQEzy+f0FnWpc181o/2b1tENlXvoo6v1SxiveHImNcgcTDJqsY4QruxEAFq0U2sQyTL+RsDJXroLWm1kEbxowOi4RROFP14C0CIvOdiJJgAtiiYKfzwEZNQh+y3XqlUrKi8vV5E1b96cDh06pKZx4UrAaINwVsp50+7GjZvQufNnqfLCRYquH+M4zW5Yp/F0c7eriSIb0jvRd1KnRid0D2BL6+qPG0vrNv7Lkd+nTx+PezjpjJEAAcEEZOwXBSMU6k6W8TcCTkJlE7rOZBG86BZCxy2aKPzxEoAWecnBTjQBaFE0UfjjISCrDufPn08TJkzQIZs+fTrl5OTo8pCoI5Ce14qqKivrMtxcRUVH09ZpB8h5b6Wbu5+n3V9G0sAf36CFSdNdrA9VXaQXh7ejX13dh0YOGKZuJu5SEBkgYDEBWftFi7Fyu5dl/I2AE7dEwstQFsGLbjV03KKJwh8vAWiRlxzsRBOAFkUThT8eAjLrMDU1lXburNtPiPHbu3cvpaSk8KAMaxsWPLrjmbYUERnh8T2V2U6bcssoLiZeV3bm7B/pD/NrHHmbYn9FbeO+191niSGpF+lsYhQ9OfhZymiv32vLpTAyQMAiAjL3ixYh9cutLONvBJz8kkn4GMsieNEtho5bNFH44yUALfKSg51oAtCiaKLwx0NAZh2WlpZSp06ddNg6duxILB8fVwK+znBy9vDW2gs0cOIlR3ZU1Qk68fM7nYtQ6aUf6ekBVziW6bGgU59f3u0SuHIxQgYICCYgc78oGKUQd7KMvxFwEiKX0Hcii+BFtxQ6btFE4Y+XALTISw52oglAi6KJwh8PAdl1OGXKFJozZ44O3bx58yg7O1uXhwSRuz2cnNl0bd+b8gbMMQwURdxQoRb/tkk79Vp70f/uGpd9odq26ESP9MqhlGZttUVxDQKWEJC9X7QEqh9OZRl/I+Dkh0jCyVQWwYtuM3TcoonCHy8BaJGXHOxEE4AWRROFPx4CsuuQvX+7du3o8OHDKr74+Hg6cOAAJSUlqXm4INp3Yg+NejnDKwq2hxPb64l9p7XuTsPTxlG7pA4OO2Ufp3Y/baeN14wx9MUCTu4+UzNnYamdOzjIF0ZA9n5RGEhBjmQZfyPgJEgwoe5GFsGLbid03KKJwh8vAWiRlxzsRBOAFkUThT8eAtAhUUlJCaWnp+vw9erVi9avX6/LQ4KoeM9qmlHwmM8obrj2Jnryrhn091db0bPLauiVmhGUmajfP4s5VZbUeXrAovFFmOnkCRDu+U0A/aLfCIU6kGX8jYCTUNmErjNZBC+6hdBxiyYKf7wEoEVecrATTQBaFE0U/ngIQIeXqY0ZM4YWLlyoQ7hs2TIaOnSoLg+JyzOdFn8wn7bv30yVFy4abiSubB7uzCut8Uza/OemtP7a8RRZXaW7zU6pe6JTNV1sVl+Xr00wv+kd+tCczFe02bgGAaEE0C8Kxem3M1nG3wg4+S2V8HAgi+BFtxY6btFE4Y+XALTISw52oglAi6KJwh8PAejwMjXGoWXLlsR+5ymfxMREOnjwICUkJChZ+HYiwE6vm1Y8mUp2m5sNdulCJE1Z1Zx6Nj6k8zQg/SLVNIrW5blLsKV6W6cdcHcb+SDgNwH0i34jFOpAlvE3Ak5CZRO6zmQRvOgWQsctmij88RKAFnnJwU40AWhRNFH44yEAHdZRW7NmDWVk6PcoGjZsGOXn59cVwpULAbOn1ymGz69qRC3jzilJOnqhkn53b5SaNnOxKbfMcFNyM7YoAwLeCKBf9EYosPdlGX8j4BRYXdn2abIIXnQDoOMWTRT+eAlAi7zkYCeaALQomij88RCADvXUsrKyqLCwUJe5detW6tq1qy4PicsE2AynHtONT5tzx2jmqsbUNu57x+3qyCgac7YNnbxvl7viLvmY4eSCBBmCCaBfFAzUT3eyjL8RcPJTKOFiLovgRbcXOm7RROGPlwC0yEsOdqIJQIuiicIfDwHoUE+N/c5r1aoVlZeXqzdSUlJo7969ahoXegKeZjgZ7eX0TMEluiW+bkbT4/8dRftH6/fP0j9Bn+ravjf2cNIjQUowAfSLgoH66U6W8TcCTn4KJVzMZRG86PZCxy2aKPzxEoAWecnBTjQBaFE0UfjjIQAdulKbP38+TZgwQXdj+vTplJOTo8tD4jKByYUPm97DiVlMKqyinrF1+zVt/K4Fzc46TPXqV7sgNQpY4ZQ6F0zIEEwA/aJgoH66k2X8jYCTn0IJF3NZBC+6vdBxiyYKf7wEoEVecrATTQBaFE0U/ngIQIfG1FJTU2nnzp26m0eOHKHk5GRdHhJEZcd30djXskyjaLPrHM060UhXPue2AbQ74S0yCjBpC07NnEUZ7Qdrs3ANAsIJoF8UjtQvh7KMvxFw8ksm4WMsi+BFtxg6btFE4Y+XALTISw52oglAi6KJwh8PAejQmFppaSl16tRJd7N///5UXFysy0PiMoHiPatpRsFjpnDUq923afGbEdQkuspRvvxSJJ1MSqFbi9+k+SteonXHV9PJc8d0vtq26ESP9MqhlGZtdflIgIAVBNAvWkGV36cs428EnPg1ElaWsghedKOh4xZNFP54CUCLvORgJ5oAtCiaKPzxEIAO3VObOHEizZs3T1egYFUBZWWan82jMw7zBJvpNPPdHPr82EGvb5qxtAONTvxELcc2D79yeTH9c/9+R16fPn2opt7lJXZxMfFqOVyAQCAIoF8MBGXzz5Bl/I2Ak3lNhHVJWQQvuhHRcYsmCn+8BKBFXnKwE00AWhRNFP54CECH7qmdOXOG2rdvT+y3n/JJSkqizz77jGJjY5UsfDsRYIGnJwrG0XffnXa6U5c8uaM9/evkboqLjHBkVlTXUKOh4+hfzW9ypFnACYzreOEqsATQLwaWt7enyTL+RsDJmxIkuS+L4EU3Jzpu0UThj5cAtMhLDnaiCUCLoonCHw8B6NAztVWFq2hwln7PoNmzZ9PkyZM9G0p+d9+JPTTq5Qy3FCpONaLfrO1EI67aVFemeVsqGfKQI2024FRxsZwwA6oOIa7EEEC/KIajKC+yjL8RcBKlmBD3I4vgRTcTOm7RROGPlwC0yEsOdqIJQIuiicIfDwHo0Du13r1704YNG9SCiYmJ9J///AczcFQixhdFuwtoVuFUw5tsH6emrzxJC5Omq/fZXk67cp+lKrpE/e7u55YvC2Yt/mA+bd+/maoqKykqOprSWnen4WnjqF1SB9UfLkCAlwD6RV5y1tjJMv5GwMka/YScV1kEL7ph0HGLJgp/vASgRV5ysBNNAFoUTRT+eAhAh96plZSUUHp6uq4gm+HEZjrh45mAu+DQyC7Z9IfBEbToJ/0sqLd++wdq0qQJ9el5O8U2+JmLc2+bk+MUOxdkyOAggH6RA5qFJrKMvxFwslBEoeRaFsGLbhN03KKJwh8vAWiRlxzsRBOAFkUThT8eAtChOWoDBgygtWvX6gofOXKEkpOTdXlI1BFwXu7mnB77yA/00Lru1DLunGp07Lae9OUdfenOO+9wCTixvaHGvuZ9w/ZF44twmp1KFBc8BNAv8lCzzkaW8TcCTtZpKKQ8yyJ40Y2Cjls0UfjjJQAt8pKDnWgC0KJoovDHQwA6NEfNaJYTs6ypqTHnQJJSLCiUv/1Vl+VubEZTSrO2OgozZ/9ICfMeoszEnWr+0doyJ0Y/RAMHDlTzlIvJhQ9Tye71StLtd9f2vWlO5itu7+MGCHgjgH7RG6HA3pdl/I2AU2B1ZdunySJ40Q2Ajls0UfjjJQAt8pKDnWgC0KJoovDHQwA6NE8tIuLyiWpai9OnT1NCQoI2S9prT3s2MSg5g5+jAW0HEZvp9Pnpo/TSjMVUufoq+vMvFqnMzkZE057cWWS0aXjXp2+iS9VVall3F2xPp63TDri7jXwQ8EoA/aJXRAEtIMv4GwGngMrKvg+TRfCiWwAdt2ii8MdLAFrkJQc70QSgRdFE4Y+HAHRonprRsrphw4ZRfn6+eSdhWtLbqXTKa782dhUdPX3YsZl4ZXk0ffePfPro6qHKbcf3i+PupZwHn9FtGs502n1GCkVEugb9tMY11TWOMptyy3B6nRYMrn0igH7RJ1yWF5Zl/I2Ak+VSCo0HyCJ40a2Bjls0UfjjJQAt8pKDnWgC0KJoovDHQwA69I2a0SwnLKsjMrvcrW2LTrTn0A4V+vZla+iLKwdRfL1qNW/CDefpsTlvUcf/d6uaxy4ww0mHAwkLCaBftBAuh2tZxt8IOHGIIxxNZBG86LZDxy2aKPzxEoAWecnBTjQBaFE0UfjjIQAd+kZtzJgxtHDhQp0RltURpee1oqrKSh0Xo0S9yCjdsrjthXNo5U+vUs/Gh9Tir8aeozOP3OuyD5PZoBb2cFJR4oKTAPpFTnAWmcky/kbAySIBhZpbWQQvul3QcYsmCn+8BKBFXnKwE00AWhRNFP54CECHvlHT/g5ULOfNm0fZ2dlKUrpvtidTj+ntuN77s/dH0JNf/odGXLVJtd9UU04vZVzpsg+TsmxPWTanGjhd4JQ6JyBI+kwA/aLPyCw10Pa7x44do6SkJEufFyznCDgFi7zNniuL4EVjR8ctmij88RKAFnnJwU40AWhRNFH44yEAHfpOLSsriwoLC1XDlJQU2rt3r5qW8cLsDCdnNuV7bqS3vzxCcZq9mZZHn6O/94ynzTn7dPs4MdviPatpRsFjzm7U9NTMWZTRfrCaxgUI8BBAv8hDzTobWcbfCDhZp6GQ8iyL4EU3Cjpu0UThj5cAtMhLDnaiCUCLoonCHw8B6NB3ahs3bqRevXrpDAtWFVBWZpYuT6aE2eVuzkwy3qmk0RSjZlfXLrnLuLWcqhNi6MNnjqj52gs202nxB/Np+/7NVHnhIkXXj6G01t1pZJdsSmnWVlsU1yDARQD9Ihc2y4xkGX8j4GSZhELLsSyCF90q6LhFE4U/XgLQIi852IkmAC2KJgp/PASgQx5qRNg8XM+t7PguGvua94Cb86bhw9+9SINr6qvOTldG0QO3RVOPPl1d9nBSC2ku2HK+uJh4TQ4uQcB/AugX/Wco0oMs428EnESqJoR9ySJ40U2Ejls0UfjjJQAt8pKDnWgC0KJoovDHQwA65KFmHHCqqKhwWQLG5z00rYp2F9CswqluK8+Wu7W4qhWNfTVL3Tj8+k/Lad7nDXQ2i36Mo8NTW9MjvXIwY0lHBolAEUC/GCjS5p4jy/gbASdzegj7UrIIXnRDouMWTRT+eAlAi7zkYCeaALQomij88RCADnmoER09epRuvPFGnfGiRYto5MiRujzZEtrlbuzUuqjoaMdyt+Fp46hdUgcHDufAVPbfU+iun+1XUbFZTsMHXj7xLmfwczSg7SD1Hi5AIBAE0C8GgrL5Z8gy/kbAybwmwrqkLIIX3YjouEUThT9eAtAiLznYiSYALYomCn88BKBDHmqXbXr37k0bNmxQHaSnp9OWLVvUtOwXnpa7scDUixtm0KdffEIn3+hM2+rrufW/u0bFh1PnVBS4CBAB9IsBAm3yMbKMvxFwMimIcC8mi+BFtyM6btFE4Y+XALTISw52oglAi6KJwh8PAeiQh9plm1WFq2hwlv5EtCNHjlBycjK/U4ks2UbjW3etozNrbncNOPW6RBQT6aDRtX1vU/s5SYQOr2oxAfSLFgP20b0s428EnHwURrgWl0XwotsPHbdoovDHSwBa5CUHO9EEoEXRROGPhwB0yEOtzqZp06Z06tQpNSM3N5fy8vLUNC7cE0jPa+U4Ze7MkZto26FDuoID0i9STaNoNc/diXVqAVyAgEAC6BcFwhTgSpbxNwJOAsQSDi5kEbzotkLHLZoo/PESgBZ5ycFONAFoUTRR+OMhAB3yUKuzmThxIs2bN0/NSEpKomPHjqlpXBgTYMvtekxv57hZcaoRbfronK7goA4/0cVmdafXTbrnabo/9Te6MkiAgFUE0C9aRZbPryzjbwSc+PQRdlayCF509sGqEgAAG65JREFUw6HjFk0U/ngJQIu85GAnmgC0KJoo/PEQgA55qNXZlJaWUqdOneoyaq+2bt1KXbt21eUh4UqAzXBiG4vXVNfQ0uIYahJdpRbqG9uIou74QU2zzcdfHV2AU+tUIriwkgD6RSvp+u5blvE3Ak6+ayMsLWQRvOjGQ8ctmij88RKAFnnJwU40AWhRNFH44yEAHfJQ09u0adOG9u3bp2aOHj2aFixYoKZxYUyA7eFUsnu94+bc1TF0wxWVasEhjW+gc52Pqml2gb2cdDiQsJAA+kUL4XK4lmX8jYAThzjC0UQWwYtuO3TcoonCHy8BaJGXHOxEE4AWRROFPx4C0CEPNb3NnDlzaMqUKbrMiooKio2N1eUhoSfATqob9XKGY4bTrNUJ1Dbue7XAqPM308n7dqlpdsFmOa2fsgtcdVSQsIIA+kUrqPL7lGX8jYATv0bCylIWwYtuNHTcoonCHy8BaJGXHOxEE4AWRROFPx4C0CEPNb2N9rehcqd///5UXFysJPGtIcD2b4qLiXfk/KP0dXrhrafp9yuaUu8r6zZfNwo4KS5Y4CmtdXca2SUbS+wUKPgWSgD9olCcfjvT9rFsjzy2V144fhBwCsdW5XgnWQTPgcajCTpuj3hwM4AEoMUAwsajPBKAFj3iwc0AEYAOxYCOiIhwcVRTU+OSJ2sGm820+IP5tH3/Zse+TUrQaHjaOPrtkiGUvfRnuoDTwlM3U9Ew/QwnI3ZTM2dRRvvBRreQBwLcBNAvcqOzxFCW8TcCTpbIJ/ScyiJ40S2Djls0UfjjJQAt8pKDnWgC0KJoovDHQwA65KHmatOtWzfHZuHaO1hWd5lG8Z7VNKPgMS0a9bpeZBT9v2tupJtfPE6jYivUfDMBJ7bZeERkBC0aX4SZTio5XIgggH5RBEVxPmQZfyPgJE4zIe1JFsGLbiR03KKJwh8vAWiRlxzsRBOAFkUThT8eAtAhDzVXG8YxLi5Od6NgVQFlZWbp8mRLKPs0eXvvjHcqaTTFqMXMBJyUwthMXCGBb1EE0C+KIinGjyzjbwScxOgl5L3IInjRDYWOWzRR+OMlAC3ykoOdaALQomii8MdDADrkoWZs4zzLacKECTR37lzjwpLkak+i8/TKKUX16dmYi2qRwlMdacmwUjWtXCizmpQ0+2bL87ZOO6DNwjUI+EUA/aJf+IQbyzL+RsBJuHRC06EsghfdOui4RROFP14C0CIvOdiJJgAtiiYKfzwEoEMeasY2M2bMoNzcXPVmSkoK7d27V03LeJGe14oqL1x0LH1T3t8oaNT5w7OUc+ZKpQjtONuMnuh1nuISz6p57i6Yv/f/b4+6Ebm7csgHAbME0C+aJRWYcrKMvxFwCoyebP8UWQQvuiHQcYsmCn+8BKBFXnKwE00AWhRNFP54CECHPNSMbUpLS6lTp066m+F8opLuRQ0S7DS6HtPbGdxxzbr+03Ka93kD3Y3OLVpQkxaf6fKMEpjhZEQFef4QQL/oDz3xtrKMvxFwEq+dkPQoi+BFNw46btFE4Y+XALTISw52oglAi6KJwh8PAeiQh5p7mwYNGlB5eblaYNmyZTR06FA1LdsFm+FUVVnp9bWdA07VtZuJP/lTJO3LuODVFns4eUWEAj4SQL/oIzCLi8sy/kbAyWIhhYp7WQQvuj3QcYsmCn+8BKBFXnKwE00AWhRNFP54CECHPNTc22RlZVFhYaFaYNiwYZSfn6+mZbvwtocTWw7HPo1OVdGK0rpNwxVOA/vXo6qqSt2SPOWe8o1T6hQS+BZFAP2iKJJi/Mgy/kbASYxeQt6LLIIX3VDouEUThT9eAtAiLznYiSYALYomCn88BKBDHmrubebPn09ss3Dlk5SURGxZnawfb6fUeQs4lfxlGs187xm3+NhyurTW3Wlkl2xKadbWbTncAAFfCKBf9IWW9WVlGX8j4GS9lkLiCbIIXnRjoOMWTRT+eAlAi7zkYCeaALQomij88RCADnmoubfZt28ftWnTRleAbRzONhCX6cP2b4qLiXe8cvGe1TSj4DHD11c3EL9YTWs31HMpc8WTM+nLLq3o5fV/odLD77vc12bkDH6OBrQdpM3CNQhwEUC/yIXNMiNZxt8IOFkmodByLIvgRbcKOm7RROGPlwC0yEsOdqIJQIuiicIfDwHokIeaZ5trr72W2O9F5TNv3jzKzs5WkmH7zWYzLf5gPm3fv9mxb5N29hF7aeWe86l17B4LPM1dc4mS60ezpPopfCCdlpzdoqbZhRqk0uVeTrw2dhW1S+pgcAdZIGCeAPpF86wCUVKW8TcCToFQUwg8QxbBi24KdNyiicIfLwFokZcc7EQTgBZFE4U/HgLQIQ81zzbDhw+npUuXqoUyMzNp1apVajocL5RZTO6CQVMzZ1FG+8GOV2ezn4rLVtMLbz2toqhXu0n4PQX1aVRshZrHLvr1rTbcv8ndc7CBuA4fEpwE0C9ygrPITJbxNwJOFgko1NzKInjR7YKOWzRR+OMlAC3ykoOdaALQomii8MdDADrkoebZZvHixTRq1Ci1UGJiIn377bdqOtwuzOzTFBEZQc6be5cd30X52191zIiquVRD09acp9R6sSqex/87ivaPXqimzVywWVVbpx0wUxRlQMAtAfSLbtEE5YYs428EnIIiL/s9VBbBiyaPjls0UfjjJQAt8pKDnWgC0KJoovDHQwA65KHm2ebo0aN044036grt2LGDUlNTdXnhkmAn0W3dtc5wJpL2HT3NPvpH6et0w4hc3ZK60cdz6cToZ1S/7mY1aZ/Brjfllqn7RznfQxoEzBBAv2iGUuDKyDL+RsApcJqy9ZNkEbzoRkDHLZoo/PESgBZ5ycFONAFoUTRR+OMhAB3yUPNu06JFCzp8+LBacPbs2TR58mQ1HU4X6XmtHHs2eXsnd7OPlBlSS4urKaFe3cbhPb9aQFG/Hk/R8ZXeXKv33T1DLYALEDBBAP2iCUgBLCLL+BsBpwCKys6PkkXwotsAHbdoovDHSwBa5CUHO9EEoEXRROGPhwB0yEPNu82YMWNo4cK65WD9+/en4uJi74YhVoLtx9RjejvTtTaafaTMkHr7n5E6P7d+vZxi75xMDa85ocvXJpxnPXmaRaW1wzUIeCKAftETncDfk2X8jYBT4LVlyyfKInjR8NFxiyYKf7wEoEVecrATTQBaFE0U/ngIQIc81LzbrCxcQUOyfq0WjI+Pp/Pnz6vpcLrwd4YTs6/8/kd6+1/6E+qafvM+te49xGPAyZmj8z5RzveRBgEzBNAvmqEUuDKyjL8RcAqcpmz9JFkEL7oR0HGLJgp/vASgRV5ysBNNAFoUTRT+eAhAhzzUvNtofy8qpcN1Hyc2Q6lk93rlNd1+G80+Yvq7Y2Ybijxzkd76sL7Olu3hVJb+LjVttUPdx0lbwHl206R7nqb7U3+jLYJrEOAigH6RC5tlRtr+9NixY5SUlGTZs4LpGAGnYNK30bNlEbxo5Oi4RROFP14C0CIvOdiJJgAtiiYKfzwEoEMeauZs2rRpQ/v27VMLT58+nXJyctR0uFwoezB5ex93s48cM6TKL9DaDXX7Nym+hjS+gc51Pqok3X5j7ya3aHCDgwD6RQ5oFprIMv5GwMlCEYWSa1kEL7pN0HGLJgp/vASgRV5ysBNNAFoUTRT+eAhAhzzUzNlMnDiR5s2bpxbu1asXrV/vfSaQahBCF0W7C2hW4VRynnWkvMLUzFmU0X6wktR9KzOkHn27gnpExOvuLfoxjlbfe97rDCej2VM6R0iAgA8E0C/6ACsARWUZfyPgFAAxhcIjZBG86LZAxy2aKPzxEoAWecnBTjQBaFE0UfjjIQAd8lAzZ7OqcBUNzqoLsrB9nL799luKjY015yDESrGZTos/mE/b9292nFrHZh2lte5OI7tkU0qztm7fRpkh1WbXOZp1opFLuf5317jkOWe4mz3lXA5pEDBDAP2iGUqBKyPL+BsBp8BpytZPkkXwohsBHbdoovDHSwBa5CUHO9EEoEXRROGPhwB0yEPNnM2ZM2eoSZMmusIbNmygnj176vLCMcFOr4uL0c9W8vSebIbUvx77LeWcudKlmLeAk6fZUy7OkAECJgigXzQBKYBFZBl/I+AUQFHZ+VGyCF50G6DjFk0U/ngJQIu85GAnmgC0KJoo/PEQgA55qJm3SU1NpZ07d6oGubm5lJeXp6ZxcZlA8Z7V9NHvHqbfnzOe4fSbXtl09NvPXGZPDU8bR+2SOgAjCAglgH5RKE6/ncky/kbAyW+phIcDWQQvurXQcYsmCn+8BKBFXnKwE00AWhRNFP54CECHPNTM20ybNo3YZuHKJyUlhfbu3ask8V1LYPd/dtO4hYMoc9M5GvGTa8CpX99qxx5OyrI5X2dPATII+EoA/aKvxKwtL8v4GwEna3UUMt5lEbzoBkHHLZoo/PESgBZ5ycFONAFoUTRR+OMhAB3yUDNvU1JSQunp6TqDI0eOUHJysi5P5oSyafiQ9edpaGVDFxQDe9fQpWgibAzuggYZFhFAv2gRWE63soy/EXDiFEi4mckieNHtho5bNFH44yUALfKSg51oAtCiaKLwx0MAOuSh5ptN06ZN6dSpU6oRO7kuOztbTct+kZ7XyrHJ+Oh/llNGdQMdjs9/iqYJGRccM5zYJuRbpx3Q3UcCBKwggH7RCqr8PmUZfyPgxK+RsLKURfCiGw0dt2ii8MdLAFrkJQc70QSgRdFE4Y+HAHTIQ803m+HDh9PSpUtVo/79+1NxcbGalvmCLY/rMb2dA8HTxT9Raj39CX69Tj9FV/zmaRXRptwynzYjVw1xAQI+EEC/6AOsABSVZfyNgFMAxBQKj5BF8KLbAh23aKLwx0sAWuQlBzvRBKBF0UThj4cAdMhDzTeb5cuX04MPPqgaxcfH07fffkuxsfrgilpAsgs2w6nywkV6cW0VtYiKUd9+9PFcWtOgDaX9+n41DyfSqShwYSEB9IsWwuVwLcv4GwEnDnGEo4ksghfddui4RROFP14C0CIvOdiJJgAtiiYKfzwEoEMear7ZnDlzhpo0aaIzKioqooEDB+ryZE0oezi98FalLuD06+PTaX1cG7r11/c4ltQpfJTNw5U0vkFANAH0i6KJ+udPlvE3Ak7+6SRsrGURvOgGQ8ctmij88RKAFnnJwU40AWhRNFH44yEAHfJQ892mW7dutHXrVtVw9OjRtGDBAjUt88W+E3to1MsZtLS4mhLq1VNR9PxqAZVdkUS3Dr1TF3Bq3LgJzX5gEaU0a6uWxQUIiCSAflEkTf99yTL+RsDJT62wv+5s2bKFSktL6ZNPPqEPP/xQ3UBx2LBhlJ+f79MT1qxZQ6+//jpt376dmAiTkpIoLS2NfvOb31j6FyNZBO9TY5gojI7bBCQUCQgBaDEgmPEQEwSgRROQUMRyAtCh5YgdD5gzZw5NmTJFfVhiYqJjWZ2aIflF0e4CumXEVIqLjFBJ3Pr1cvo8OoHSftNXzdNeYHmdlgauRRJAvyiSpv++ZBl/I+Dkp1YiIur+AXF25WvAaeLEicRO+HD3sfKvRrII3h1b3nx03LzkYCeaALQomij88RKAFnnJwU4kAehQJE33vo4ePUo33nijrgCb8dS1a1ddnqyJiye/prP90nWv3+HEG3Q85v/VBpzSdPnaxGtjV1G7pA7aLFyDgN8E0C/6jVCoA1nG3wg4+SkbbcCJzUZq1aoVbdiwweHVl4DTtGnTaPr06Q67jh070qRJk+imm26igwcP0gsvvEA7d+503MvNzaW8vDw/a+1qLovgXd/cvxx03P7xg7U4AtCiOJbw5B8BaNE/frAWQwA6FMPRjJc2bdrQvn371KKTJ0+m2bNnq2mZL4wCTk2/eZ+oXpPagJP7pXNd2/emOZmvyIwO724BAfSLFkD1w6Us428EnPwQCTNlgaLU1FRia9gTEhIcy+CuvfZah1ezM5K0fx1iwSa2RE97wgfrHJh/Jeh05MgRSk5O9rPmenNZBK9/a/9T6Lj9ZwgPYghAi2I4wov/BKBF/xnCg/8EoEP/GZr1oP2jKbNhf4A9duyYWfOwLnfh0CE6N+Qu3Ts2PV3mSHsKOEVFR9PWaQd0dkiAgL8E0C/6S1CsvSzjbwScxOqGtMEjszOcxowZQwsXLnTUxN00ZLZHVKdOnRxlJkyYQHP/P3vnFxvFccfxH8aHgy1VQuAHS6AiqEuSo6GFKJYoRDw4qIoQdgxUPGAhTHlAlioZiEJEiCJhN1QiQpFFmjz4oQheaqhsoUiBylUiRFVkaB3+pEK1lD4UmVY2DsgHcWx89W/xTmfPvpvZ3Zm9cPOdl5vZ/c1vdz/31dzu734709lp9MxdEbxRaNPOMHCbJgp/UQlAi1HJoZ9pAtCiaaLwF4UAdBiFWrQ+nN3EWU5y6e/v9/6Qlbe5WB87303fvv+2uPTMkzJa/s2A1375l2tofsWU2Jdb+fM7N6hyQVXuZrRBIDIBjIuR0Vnp6MrzNwJOhuUjC0c3w4kzorhfOp2mW7du5T0jP2XZxj9H8nnzv1J8DBQ1AQzcakawSIYAtJgMZxxFTQBaVDOChX0C0KF9xvIRamtraXBwUGyyNQWEOMAzUhne+QbR4E1xtv0Pa+j1iYtee23TWkpVTYh9cgUZTjIN1E0RwLhoiqQZP648fyPgZEYvwkvYDCdZaKoAlZwJZfq1Ovk8EHASX6eygoFbiQgGCRGAFhMCjcMoCUCLSkQwSIAAdJgAZOkQvFIdr1jnF54igrPzXS//feV5KpuaFBgO3v01nX7uV15bznDKTmVpnrSSHeZwEshQMUgA46JBmAZcufL8jYCTAbHILmTh6LxS19vbS42NjZ4LXqGutbVVdheonzp1ivh1Oi49PT3U0NAQ2B+nIZ83Ak76JDFw67OCpV0C0KJdvvCuTwBa1GcFS3sEfB1OTE7Q9m3b7R0Inj0CfX19VF9fH6AxMjLizW8a2OhYY/jlHwWu+JV7Z+nr1NPJwuWAU8BoutG1v4fSNfknFc+1RxsEdAj44yLbbt68OTBnsE5/2Jgl4MrzNwJOZnUTeg4nOYjUfa674E3RufPnaMf2Hd4Zd3V1UUtLi/bZs6ALlXv37ok5ojh7qqamppA59s0Q4IGbJ3nnwhO7y5O9z5jgAwQSIQAtJoIZB9EgAC1qQIKJdQLQoXXEsw5QXV1NmUxGbD9z5gw1NTWJtmuVsul771kThs+sUMcs8gWc2ra+R1vTCJK6ppckrhfjYhKU9Y8xNDREK1eu9DqUcsIHAk76mtCylCOVqlfk2CGnH3MaMhdV1pKcDcXLzfKys7pl3rx5uqbEwazFixdr28MQBEAABEAABEAABEDAXQKcSXb8/eNiRWUmwRlPfmZ+Lhm2T5WncjeXTDs7OUXLHj2mH374buCa/BXqeCMHnMpSTwKv0vGrdW0/66CF5ZWBfmiAAAiUHgHOAt27d693YQg4ld73a+2Kws7h1NHRQTyxIpd8K9T5JyunK7e3t9ORI0f8XcrPKAGnUr8ZUEKDAQiAAAiAAAiAAAiAgJIA3zNe/OyiWHWZOyxZssRrx72fjNtfefIWDDjgdP/BKG396DcB77kBp7lWqTu05rclHYwLAEEDBBwlwOPawwcPEXBy9PuPddlyhpPOHE5JZTjhlbpYX2vezkhNzYsGOxImAC0mDByHy0sAWsyLBjsSJAAdJgh75lC3b98W0zP4R+fVl1esWOE33fq88SVlWncFrlkVcOLJwttfPxnogwYImCKAcdEUSTN+8EqdGY7OeQmb4ZTUHE6qL0IOlJVySp+KQ9j9PHBfunSJOEqNSUnD0oO9SQK+FtknJoI0SRa+whKAFsMSg70NAtChDapqn8uWLSP5T07Vgjhqj8+uxeOrfw0EnDJPymj5NwPiguaawwmThQs8qFgggHHRAtQYLl15/sYcTjFEMldXWTg6cziFmZdJDk6p5nua69wKbZPPGwGnQqSC+zBwB3mgVTwC0GLx2OPIQQLQYpAHWsUhAB0Wh/vu3bvp9OnT4uBbtmyhCxcuiLZLlbABp+b6Vmp99YBLiHCtCRPAuJgwcMXhXHn+RsBJIYSwu8NmOMlCUwWo9u3bJ96N55XkTKYoy+eBgJP+t46BW58VLO0SgBbt8oV3fQLQoj4rWNojAB3aY1vI89mzZ2nXrv+/RlZVVUVjY2OFupTsvtyA08hEOT3/8G/ieuUMJwSbBBZULBLAuGgRbgTXrjx/I+AUQRyFusjC0ZnDiX356cfpdJr4Xfd8pba2lgYHB2np0qXEQSGTRT5vBJz0yWLg1mcFS7sEoEW7fOFdnwC0qM8KlvYIQIf22BbyfP/+/VkrHasWxSnk71nel+n7Ez1+a7+4hNyA09qmtbRp/SZqWd9K6ZqfCDtUQMAWAYyLtshG8+vK8zcCTtH0kbeXnOGkyljynciZS/l+lK9duyYmYuQlZjs7O/3uRj5dEbwRWJITDNwSDFSLSgBaLCp+HFwiAC1KMFAtGgHosGjoafXq1cQTiPuFV2M+duyY33TmMzfgNDReQS+N9Yvrz35dKepy5dF3GapcUCVvorm2BQzQAAENAhgXNSAlaOLK8zcCToZFJQecdDOc+EeZf5y5rFu3ji5fvkwLFy4UZ8aDw8aNG+n69eveNtOv07FTVwQvoBqqYOA2BBJuYhOAFmMjhANDBKBFQyDhJhYB6DAWvlidDx06RLwKs1/43pb/OHWpcIAoe/kvgQynQgGnG//+O/3+6id09avPaXJigspTKXph+U89ZP/41wBNjH9HqYoFVPciMqJc0pHpa8W4aJpoPH+uPH8j4BRPJ3TlyhW6c+cOVVRU0Pj4OI2OjhL/0HLZsGED7dmzR+zjbS0tLfwxqxw9epTa29u97fzD3NbWRqtWrfJ8nzx5UgSbbP1L5IrgZ4GPuQEDd0yA6G6MALRoDCUcxSQALcYEiO5GCECHRjBGctLX10f19fWBvjb+LA0c4HvQyA0aVT6Yoj9cmR84s+qRG0/b5ZOU/ecPvPqFm3+kju43A3aqxuFtx6lxzQ6VGfaDQIAAxsUAjqI3XHn+RsApptRyV+NQuctms3lN5Ffr5jLSfUVvrr6qba4IXsUh7H4M3GGJwd4WAWjRFln4DUsAWgxLDPY2CECHNqjq+6yurqbh4WHR4cSJE3Tw4EHRLrVKz5fddPz84cBlZTOT9OkXqcC2mv9cpMnymultd+nAiQ9o0483hw42+Q679vdg7icfBj61CGBc1MKUmJErz98IOMWUlCpIlOu+UMCJbXt7e72V6AYGBrxsqUWLFlFdXR01NzdTQ0NDrjtjbVcEbwzYjCMM3KaJwl9UAtBiVHLoZ5oAtGiaKPxFIQAdRqFmrk/u/TFn/fOUEaVYbg/dpL2/a5x1admpLH36WVlge99oLe2cOj+97S7VNf8isC9s4+drXqMPtn0cthvsHSaAcfH79eW78vz9PwAAAP//TqIUxQAAQABJREFU7L0LfFTVuff/TK4kAVQCKi/BG4QiIXAwgSiEt8ol1guSkuC98MpFoMS3l2CLf8DTSjiHvhLrqXBQrgeqrW0SDeKtBJRzCFZKKHLVKpW2oLEIUSEJQkLyzx7cO7Pnkpl55pnZO7N+8/norNvzrDXf9fssWA9rr+1obfsQPsoTOH78OPXt29fJ4dixY5SWlqY8k0AAnD17lrZs2eJsmpeXR0lJSYGYoQ0IiBOAFsWRwiGTALTIBAczUQLQoSjOoJ1t2rSJ8vPzTXanTp2iHj16mMqiIVNcMZt27qvy+lNWb75AvWPjTHUjPnuBjiakUM6DE43y1pZWcsQ4jLx7wlt9XHw8VS/6wL0p8iDgkwDWRZ9oLKlQZf/tQMDJEn3ZrlNVBC8NHgu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYeanI3Gv1evXtTQ0GA4Xb58Oc2dO9fIR0sid/FAam5q8vpzfvlKE6XHJZjq1p8YQz9JeJhy7r/HVO6e8RZkcm2j1b/9+AFKbgte4QMCgRDAuhgIpci1UWX/jYBT5DRl655UEbz0JGDhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQk7WZOnUqbdy40XCalZVFNTU1Rj4aEo3nG2hMyRCfP+XV1z1PLTkDTl2mUM69U33aBVKBE06BUEIbVwJYF11pWJ9WZf+NgJP1WrPFCFQRvDRsLNzSROGPSwBa5JKDnTQBaFGaKPxxCECHHGqyNtu2baNx48aZnB48eJAyMjJMZZ0909EJJ28Bp7GfrKb93S9Qzj2zQvrpo4aOp9KCZ0PyAWO1CGBdtNd8q7L/RsDJXrqzbDSqCF4aMBZuaaLwxyUALXLJwU6aALQoTRT+OASgQw41eRvtflDt75j6p7i4mJYtW6Zno+K7ozucvAWcep3aT5S8hUZ898cd3tvkD87aOZWU0TvTXzPUg4BBAOuigcIWCVX23wg42UJu1g9CFcFLk8bCLU0U/rgEoEUuOdhJE4AWpYnCH4cAdMihJm8zb948Ki0tNRxrL6XRXk4TTZ/9x/fSw6sKPX6SdsfSa2/GmMoPNF5KY87+D8VdUkZZdz1hqgsmM79gKeUPnRyMCdqCAGFdtJcIVNl/I+BkL91ZNhpVBC8NGAu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYeavM2hQ4do8ODBJseVlZU0cWL7G9pMlZ0oo93fpF/YvfnAS7Sk7FHz6M+30KtbY01lzjfUxWdSyuWrafCtvzLVuWY6ujB8weQnaULmJNfmSINAQASwLgaEKWKNVNl/I+AUMUnZuyNVBC89C1i4pYnCH5cAtMglBztpAtCiNFH44xCADjnUwmOTnZ1Ne/bsMZwXFBRQeXm5ke9MCe0004Zdz9Guw9udb6bTLu7OGXQzTRt58e17695ZQTv3VTl/UkzdeXrl3UTTz+v1+U6imG50WdpTNOCW9aa6joJMekOcbNJJ4JtDAOsih1r4bFTZfyPgFD4NdSrPqgheelKwcEsThT8uAWiRSw520gSgRWmi8MchAB1yqIXHZsWKFVRUVGQ4T0lJoX/84x/Uo0cPo6wzJCr3ldHSivk+h6qfPLrx8X7ONvEnztHLNV1M7Z33N7WVXNH/cbrmppdNdVrGW9DJNaiFO5s8kKEgCAJYF4OAFYGmquy/EXCKgJg6QxeqCF56LrBwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKohcemrq6OUlNTTc7Xrl1L06ZNM5XZOXOo9gBNX5nvd4irHi6nmc8WONt1P9lMv61JMGwaLsTQNV++58z3uf5HlJa91ajzlcCb6HyRQTmHANZFDrXw2aiy/0bAKXwa6lSeVRG89KRg4ZYmCn9cAtAilxzspAlAi9JE4Y9DADrkUAufTWFhIVVUVBgd5Obm0o4dO4y83RMdvYnOdexagEh/3K7XXxto/V+6GtW15xJpSP1uZ/7arIfo8kE1Rp2vhBbAGpI2zFc1ykEgKAJYF4PCFfbGquy/EXAKu5Q6RweqCF56NrBwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKohc9m06ZNlJ9vPiF08OBBysjICF+ngp5zFw903tnUkUvtcbj4xATnnU7aPU7XvN9Ay4+2B5w+bOxGo8623eHU9ul/YwFlj3HQ0WN/8ekS9zX5RIMKJgGsi0xwYTJTZf+NgFOYBNTZ3KoieOl5wcItTRT+uASgRS452EkTgBalicIfhwB0yKEWXptevXrRyZMnjU4WLlxIixcvNvJ2TWhvoxtTMiTg4a2Y8Vuau+Y+Grz3DC2t7W7Y7T7dm25v+oMzP2hMHv2+ZKUzrV00rp+Kwn1NBi4kwkAA62IYoIbgUpX9NwJOIYgkmkxVEbz0nGHhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQC6/NI488QsuXLzc6SUtLo2PHjhl5OycCOeGkjV8LGFUv+oA2H3iJ3ps7m+Y0tgectn2RTve2XHyscMMTlTTle/ebfrIW2EpOSDGVIQMCkgSwLkrSDN2XKvtvBJxC10pUeFBF8NKThYVbmij8cQlAi1xysJMmAC1KE4U/DgHokEMtvDY1NTU0fPhwUyeVlZU0ceJEU5kdM/7ucNLfLqdf8l03cyq17L34+Jz+eypOZtFsx3pntvaPiXTllbF6Fb5BICIEsC5GBHPAnaiy/0bAKWBJRHdDVQQvPYtYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451MJv43A4PDppbW31KLNbwf7je+nhVYWmYelBJq1QS2ufdXM30XX/aKCGuQ86867/W39iDP0k9mlnUevRZNcqpEEgIgSwLkYEc8CdqLL/RsApYElEd0NVBC89i1i4pYnCH5cAtMglBztpAtCiNFH44xCADjnUwm8zePBgOnTokKmjU6dOUY8ePUxldsgcqj1Arvcr+RvTgslP0oTMSXTy3u8SHTng0fznn06l5YnF5EhupZZDeHTOAxAKwk4A62LYEQfVgSr7bwScgpJF9DZWRfDSM4iFW5oo/HEJQItccrCTJgAtShOFPw4B6JBDLfw269ato+nTp5s66tmzJ33++eemMqsz2h1MS8oe9TkM7a6m5qYm551NOYNupqk5s2hI2jBne18BpxnHF9KmpLtp6NUt9N729rfX+ewEFSAgTADrojDQEN2psv9GwClEoUSLuSqCl54vLNzSROGPSwBa5JKDnTQBaFGaKPxxCECHHGqRsbH7Y3XeHp/zRkZ7G13WVSM8qrzd36Q1mnT8KdqRNI7uuqmVNv0GJ5w8wKEg7ASwLoYdcVAdqLL/RsApKFlEb2NVBC89g1i4pYnCH5cAtMglBztpAtCiNFH44xCADjnUImPjLeBkp8fq/F0QrlPSLwjX8/q3rxNOIz57gY7GZyLgpIPCd8QJYF2MOPIOO1Rl/42AU4cyUKdSFcFLzygWbmmi8MclAC1yycFOmgC0KE0U/jgEoEMOtcjYbNq0ifLz802dbd26lcaOHWsqsyqTu3ggNZ07T44Yh/MycO3b20d7rK560QceVb5OOPU68TZRbCr99EEHLV2c5GGHAhAINwGsi+EmHJx/VfbfCDgFp4uoba2K4KUnEAu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYda5GzcTzktX76c5s6dG7kB+Oip8XwDjSkZ4qP24tvoXANQby3cT8kJ7Y/HafaNU9reUOfl0vBep/Y7/f7bXAc9Ng8BJ5+QURE2AlgXw4aW5ViV/TcCTix5RJ+RKoKXnjks3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIccapGzmTlzJq1Zs8bo8M4776TNmzcbeSsT2gkn7UJwfx/9hJN259OGXc/RrsPbnSejXnszxqupHnDa9Ews3XVnotc2KASBcBLAuhhOusH7VmX/jYBT8NqISgtVBC89eVi4pYnCH5cAtMglBztpAtCiNFH44xCADjnUImfzwgsv0IMPtp0E+uaTkpLifFNdUpL1J3+CucPp5gF5prfZjd9xhn5wprv+s0zf/gJOmmbt8PtNg0YmqghgXbTXdKqy/0bAyV66s2w0qgheGjAWbmmi8MclAC1yycFOmgC0KE0U/jgEoEMOtcjZ1NXVUWpqqqlDu9zjdKj2AE1fab5jyjTQbzILJj9pCjZpxb98pYnS4xK8NSc94PSXLYk0ID2WtMfvjpz40Hk6aue+KqeNdmoqZ9DNNG3kXMronenVDwpBgEsA6yKXXHjsVNl/I+AUHv10Oq+qCF56YrBwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKoRdZm9OjRVF1dbXRaVFREzzzzjJG3MrH5wEvOYFJrS6vz8nD3sWjBpu0fbiE9UKTXv/q69wvGP2zsRqPO7nQ2+/GyHzsfv/P32J7Wx4TMSbprfINAyASwLoaMUNSBKvtvBJxEZdN5nakieOkZwsItTRT+uASgRS452EkTgBalicIfhwB0yKEWWZtFixZRSUmJ0WlWVhbV1NQYeasT2kmnde+sMIJD+umjqTmzaEjaMPJ215OvgNOk40/RjqRxbT/pExrxwK1eg1jefu+qh8udfXmrQxkIBEsA62KwxMLbXpX9NwJO4dVRp/GuiuClJwQLtzRR+OMSgBa55GAnTQBalCYKfxwC0CGHWmRtdu7cSbm5uaZOT506RT169DCV2SGjPf7m/jY6b2+z8xVw0h+no4R3KOeeWQH/pFFDx1NpwbMBt0dDEOiIANbFjuhEvk6V/TcCTpHXli17VEXw0vCxcEsThT8uAWiRSw520gSgRWmi8MchAB1yqEXexuEwP4JWVl5GhQWFkR8Io0dvJ5xmvNlA+S1dPbzpAae4S8oo664njHpfj+zpDfQ34el5fINAKASwLoZCT95Wlf03Ak7y2umUHlURvPTkYOGWJgp/XALQIpcc7KQJQIvSROGPQwA65FCLvM348eNJuyxc/xQXF9OyZcv0rK2/vb3N7qZ3T9OCuktM4972RTrd21LhLLss7SkacMt6U72/zFsL95tOV/lrj3oQ8EUA66IvMtaUq7L/RsDJGn3ZrldVBC8NHgu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYda5G2WLFlCCxcuNDrOyMiggwcPGnk7J7y9zc5xuok2V5vfUud6YXif639EfW6oCugOJ+30U3xiAlUv+sDOGDC2TkQA66K9JkuV/TcCTvbSnWWjUUXw0oCxcEsThT8uAWiRSw520gSgRWmi8MchAB1yqEXepjPd4+SNjvvb7LQgUfeTzfTbGnPQqdfnbW+oi+lG/W8soNT0D7258lqGO5y8YkEhkwDWRSa4MJmpsv9GwClMAupsblURvPS8YOGWJgp/XALQIpcc7KQJQIvSROGPQwA65FCzxqYz3+OkEdNOOs17cTp98cUpJ8BuJ5pMAaeGCzF0zZfvOesybxtFyT1PO9OB/G/tnErK6J0ZSFO0AQG/BLAu+kUU0Qaq7L8RcIqorOzbmSqCl54BLNzSROGPSwBa5JKDnTQBaFGaKPxxCECHHGrW2EyYMIFeffVVo/OioiJ65plnjLzdE1rA6emtS+jAR7udQ73m/QZafrT94nDXR+qy7x5KMfEXvD5S536B+PyCpZQ/dLLdfz7G14kIYF2012Spsv9GwMleurNsNKoIXhowFm5povDHJQAtcsnBTpoAtChNFP44BKBDDjVrbNzvccrKyqKamhprBhNkr5X7ymhpxXyT1R3bz9Ccxu5GWful4Z/QiAduNQWb3INM2lvpcgbdTNNGzsXJJoMgElIEsC5KkZTxo8r+GwEnGb10ei+qCF56orBwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKoWWPj7R6nxsZGSkpKsmZAAfa6//heenhVoUfrV193mMpqzyXSkPq200/JWyinoNhUp2W0e5qm5syi/pcPwNvoPOigQJIA1kVJmqH7UmX/jYBT6FqJCg+qCF56srBwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKoWWOjzVVycrKp8+rqaho1apSpzG6Z4orZtHNflcew3ANOWoNep/ZTyuWrafCtv/Jo/9bC/Qg0eVBBQTgIYF0MB1W+T1X23wg48TUSVZaqCF560rBwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKoWWeTnZ1Ne/bsMQZQUlJCCxYsMPJ2TOQuHkjNTU0eQ3MPOOl3OPW5/keUlr3V1F57hK560QemMn+ZxvMNCFD5g4R6rwSwLnrFYlmhKvtvBJwsk5i9OlZF8NLUsXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhZZzNz5kxas2aNMYCCggIqLy838nZLaEGfMSVDPIal3cn02psxpvJJx5+iHUnjqP+NBZSa/qGpTnucrrTgWVOZt4x2Mfm6d1bQrsPbnUEu3PXkjRLK/BHAuuiPUGTrVdl/I+AUWV3ZtjdVBC89AVi4pYnCH5cAtMglBztpAtCiNFH44xCADjnUrLN54YUX6MEHHzQGkJaWRseOHTPydkx4O+HkLeA04rMX6Gh8JmXeNoqSe542/ZRVD5fTkLRhpjL3jPvF5O4XjS+Y/CRNyJzkboY8CHgQwLrogcTSAlX23wg4WSoz+3SuiuCliWPhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQs87m0KFDNHjwYNMAtICTFniy60e7w6l67xbTW+eSPv2ayt4zX3be68TbRLGplPO9TNNPmV+wlPKHTjaVuWe0k03TV+a7F3vk186pxFvtPKigwJ0A1kV3ItbmVdl/I+Bkrc5s07sqgpcGjoVbmij8cQlAi1xysJMmAC1KE4U/DgHokEPNWptevXrRyZMnjUFUVlbSxIkTjbzdEu7BIO3k0cwtjZTf0tUYqvGGutjDlHP/PUb5ZZel0rJ71/oNEvm6mNxw9E0i0Efz3O2QV4sA1kV7zbcq+28EnOylO8tGo4rgpQFj4ZYmCn9cAtAilxzspAlAi9JE4Y9DADrkULPWxv3i8OXLl9PcuXOtHZSf3jcfeImWlD3qbBV/4hy9XNPFZPHzT6fS8sRiirukjLLuesJUp2X8nXLy9tieqxP98TrO5eOufpBWgwDWRXvNsyr7bwSc7KU7y0ajiuClAWPhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQs9Zm6tSptHHjRmMQRUVF9Mwzzxh5uyb2H99LD68qpBlvNphON51qiqOBX1Q5H6e7LO0pGnDLeq8/wdfjcL4uJvfqpK3wrYX78fY6X3BQ7iSAddFeQlBl/42Ak710Z9loVBG8NGAs3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIccatbaLFmyhBYuXGgMYty4cVRV1Raw6QSfH2+YS//fM38wjVQ/3aQVXpv1EF0+qMZUr2c6ehzO3wkn3QdOOOkk8N0RAayLHdGJfJ0q+28EnCKvLVv2qIrgpeFj4ZYmCn9cAtAilxzspAlAi9JE4Y9DADrkULPWpryinCYXtl+i3RneVKcT++uDhXTJB+/pWWq4EEPXnNrmPN2kFXp7Q53euKNgkbeLyXU71++Oglau7ZBWmwDWRXvNvyr7bwSc7KU7y0ajiuClAWPhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQs9bG25vqGhsbKSnJ/NY3a0fp2fvZ+i+p4eZsU8XTtfm0JEG/s6mx7Q11OaZ694yvx+HcLyZ3t9Pzqx4upyFpw/QsvkHAKwGsi16xWFaoyv4bASfLJGavjlURvDR1LNzSROGPSwBa5JKDnTQBaFGaKPxxCECHHGrW2mhzlpycbBrE7t27SbtM3M6fs7vepYa5D5qG2OvE28bpJkp4h3LumWWqd810dMJJa1e5r4yWVsx3NTGl/V08bmqMjNIEsC7aa/pV2X8j4GQv3Vk2GlUELw0YC7c0UfjjEoAWueRgJ00AWpQmCn8cAtAhh5r1Nn379iXt76T6p6y8jAoLCvWsLb8btlXR2Z/OcY6tJSaO6lsd1O/kHmOsKZevpsG3/srIuycCeRxOu5h8w67naNfh7dTc1ERakCpn0M00NWcWTja5A0XeJwGsiz7RWFKhyv4bASdL5GW/TlURvDR5LNzSROGPSwBa5JKDnTQBaFGaKPxxCECHHGrW24wePZqqq6uNgSxbtoyKi4uNvB0T9RVl9PW/P2YM7cPGbjTq7E4j3+f6H1Fa9lYj757w9ZY693Z6Xnt7XXJCip7FNwgETADrYsCoItJQlf03Ak4RkZP9O1FF8NIzgYVbmij8cQlAi1xysJMmAC1KE4U/DgHokEPNepupU6fSxo0bjYEUFRXRM888Y+TtmDizbg2d+8+lxtB2n+5Ntze1v7Fu0Jg86tan1qh3TeBxOFcaSIebANbFcBMOzr8q+28EnILTRdS2VkXw0hOIhVuaKPxxCUCLXHKwkyYALUoThT8OAeiQQ816m0WLFlFJSYkxkIKCAiovLzfydkx8Wfr/qPm3q4yhbfsine5tqTDyW39zjFa9W0yf1B8xPQ43beRcyuidabRDAgTCTQDrYrgJB+dflf03Ak7B6SJqW6sieOkJxMItTRT+uASgRS452EkTgBalicIfhwB0yKFmvc2KFStIO9Wkf3Jzc2nHjh161pbfX/xsIV149UVjbBUns2i2Y70zf1XqefpgRyJt2bKFmpqbaMwtY6hHjx5GWyRAIJIEsC5Gkrb/vlTZfyPg5F8LSrRQRfDSk4mFW5oo/HEJQItccrCTJgAtShOFPw4B6JBDzXqb8opymlw42RhI//796aOPPjLydkzU/aiIWna8aQxt/Ykx9JPYp535u25qpRfXxjgDTlpBXl4eJSUlGW2RAIFIEsC6GEna/vtSZf+NgJN/LSjRQhXBS08mFm5povDHJQAtcsnBTpoAtChNFP44BKBDDjXrbbZt20bjxo0zBpKWlkbHjh0z8nZM1M2cSi172y8Jf7o2n5YkPOEc6r/NddAP5xICTnacOAXHhHXRXpOuyv4bASd76c6y0agieGnAWLilicIflwC0yCUHO2kC0KI0UfjjEIAOOdSst6mpqaHhw4ebBtLa2mrK2y1z8t7vEh05YAzr559OpeWJF9+s96fyWBo8qAUBJ4MOElYSwLpoJX3PvlXZfyPg5Dn3SpaoInjpycXCLU0U/rgEoEUuOdhJE4AWpYnCH4cAdMihZr3Nxx9/TP369TMNpLGx0daPoZ2cMJ6o9qgx5p98Op3WJ/7AmW887HB+a3c4aR88UufEgP9ZRADrokXgfXSryv4bAScfAlCtWBXBS88rFm5povDHJQAtcsnBTpoAtChNFP44BKBDDjXrberq6ig1NdU0EO2ROu3ROrt+Pr9lBDnO1BnDm3F8IW1KupuGXt1C723vStCigQYJiwlAixZPgFv3quy/EXBym3hVs6oIXnp+sXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqjZw8bhuHgqSB9NdXU1jRo1Ss/a6vts/ZfUcHO2aUwjPnuBjsZn0syJTbTq6UucAac/vP4mOeJicMLJRAqZSBPAuhhp4h33p8r+GwGnjnWgTK0qgpeeUCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxq9rBxDzjdeeedtHnzZnsMzm0U59reoHfmvttMpb0+b7tAPKYbrVzgoNkzknDCyUQHGSsJYF20kr5n36rsvxFw8px7JUtUEbz05GLhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQs4eNe8ApIyODDh48aPngGs83UHJCimkc9RVl9PW/P2aU1Z5LpCH1u535v2xJpLSrvybHhRjj0vDRo0dTjx49jPZIgEAkCWBdjCRt/32psv9GwMm/FpRooYrgpScTC7c0UfjjEoAWueRgJ00AWpQmCn8cAtAhh5o9bNwDTtqorHpT3aHaA7TunRW06/B2am5qorj4eMoZdDNNzZlFQ9KG0Zel/4+af7vKALfti3S6t6WiLd9Io6blOm1iY+IosUsXamysd7bTfUwbOZcyemcatkiAQLgJYF0MN+Hg/Kuy/0bAKThdRG1rVQQvPYFYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451OxhY5eA0+YDL9GSskd9QplfsJT+9/JXqWVv2yN033yers2nJQlPECVvoZyCYr3Y5/eCyU/ShMxJPutRAQKSBLAuStIM3Zcq+28EnELXSlR4UEXw0pOFhVuaKPxxCUCLXHKwkyYALUoThT8OAeiQQ80eNu4BpylTptCGDRsiOjjtZNP0lfl++9y8I9X0hrriT/4vbewyg67o/zhdc9PLfu21BmvnVOKkU0Ck0ChUAlgXQyUoa6/K/hsBJ1nddFpvqgheeoKwcEsThT8uAWiRSw520gSgRWmi8MchAB1yqNnDxj3gVFZeRoUFhREdXHHFbNq5r6rDPltbWum1N2NMbSYdf4p2JI2jQWPyqFufWlOdr8yooeOptOBZX9UoBwExAlgXxVCKOFJl/42Ak4hcOr8TVQQvPVNYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451Oxh07VrV2poaDAGs3v3bsrOzjbykUjkLh7ovH+po74Sas/RS3u7mJroj9Rl3z2UYhNbTHW+MtqdTtWLPvBVjXIQECOAdVEMpYgjVfbfCDiJyKXzO1FF8NIzhYVbmij8cQlAi1xysJMmAC1KE4U/DgHokEPNHjbuJ5y0N9Rpb6qL1Ed7G92YkiF+u/vlK02UHpdgajfj+ELalHppQPc3uRq+tXC/xxvwXOuRBgEJAlgXJSjK+VBl/42Ak5xmOrUnVQQvPUlYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451Ky3qauro9TUVNNAjh07RmlpaaaycGfcTzhpj885Yhymbl993ZzXKnt9vpOuGPBkwPc3aTY44aRRwCcSBLAuRoJy4H2osv9GwClwTUR1S1UELz2JWLilicIflwC0yCUHO2kC0KI0UfjjEIAOOdSst3H9+6g+msbGRkpKStKzEfnW7nCq3rvFFGRyDzq5n3D6sLEbjTq7k/rfWECp6R96jNPdXm+AO5x0EvgONwGsi+EmHJx/1/XOisB6cKPlt0bAic8uqixVEbz0pGHhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQs97m0KFDNHjwYNNAWltbTflIZDYfeImWlD1KvoJE2hh+tvlryo5tD4Tpb6gL5P4mV794S10kZhR9aASwLtpLB6rsvxFwspfuLBuNKoKXBoyFW5oo/HEJQItccrCTJgAtShOFPw4B6JBDzXqbnTt3Um5urjGQlJQUqq+vN/KRSvh7S50WMCp+4yyNcaQYQ/rJp9NpfbfhlHPPLKPMX2J+wVLKHzrZXzPUg4AIAayLIhjFnKiy/0bASUwynduRKoKXniUs3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIccatbbbNq0ifLz842BaHc3aY+aRPrjfoeTt/5Xb75AvWPjjCrthNPhW7pRbP8So8xX4rLLUmnZvWspo3emryYoBwFxAlgXxZGG5FCV/TcCTiHJJHqMVRG89Ixh4ZYmCn9cAtAilxzspAlAi9JE4Y9DADrkULPepryinCYXtp/40d5Op72lLpKfQN5Sp51weu3NGNOwnq7Np/7LptOz799pKnfN6I/S4TE6VypIR4oA1sVIkQ6sH1X23wg4BaaHqG+liuClJxILtzRR+OMSgBa55GAnTQBalCYKfxwC0CGHmvU269ato+nTpxsD0R6v27Fjh5GPVMLfCaf4E+fo5ZoupuFUnMyiWX/7HVXuK6OlFfNNda4ZPEbnSgPpSBLAuhhJ2v77UmX/jYCTfy0o0UIVwUtPJhZuaaLwxyUALXLJwU6aALQoTRT+OASgQw41621KS0tp3rx5xkDGjRtHVVVVRj5SiY7ucNJOKY380xlaUHeJaTg//PpReqxqpPMxuUO1B2jdOyto1+Ht1NzURHHx8dSna39aMHkxDUkbZrJDBgQiRQDrYqRIB9aPKvtvBJwC00PUt1JF8NITiYVbmij8cQlAi1xysJMmAC1KE4U/DgHokEPNeptFixZRSUn7HUgFBQVUXl4e8YFpAaPpK9vvknIfgPsb6rT67CvH0JU3bGsLKj1JEzInGSZ1dXXOU1pNzU10x+13UFJS+5vtjEZIgEAECGBdjADkILpQZf+NgFMQoojmpqoIXnoOsXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhZb6OdbtJOOemfGTNm0OrVq/VsRL99PRrX2tBMr/13vGksP/90Kv13/kuU3PO0s3zVw+XGSSZo0YQKGQsJQIsWwvfStSr7bwScvEy+ikWqCF56brFwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKoWW8zc+ZMWrNmjTGQoqIieuaZZ4x8pBObD7xE/7l1KX3xxSmj68F7z9DS2u5GvuFCDF1z5jeUc/89RtmooeOptOBZZx5aNLAgYTEBaNHiCXDrXpX9NwJObhOvalYVwUvPLxZuaaLwxyUALXLJwU6aALQoTRT+OASgQw41620KCwupoqLCGMjChQtp8eLFRj6SCS3YtKTsUY8uZ7zZQPktXY1y7bLw4iva7m4a/x/kiHE4y7U7m6oXfeBMa1p87fXXKD4unvLy8vBInUEOiUgTwLoYaeId96fK/hsBp451oEytKoKXnlAs3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIccatbbjB8/nrZu3WoMZNmyZVRcXGzkI5XwdoeTdln45Ucbaf1f2oNN2nhmHF9Ih275HaWmf2ga3ooZv6Xf7F7nvDi86dx5ZzBKO/k0beRc58XipsbIgEAECGBdjADkILpQZf+NgFMQoojmpqoIXnoOsXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhZbzN69Giqrq42BrJ27VqaNm2akY9UwvmWut1/oPv+u5G+9XUclac1UeZJBz3Q1M1jCL1OvE3Z942hmPgLxgknj0ZuBfMLllL+0MlupciCQHgJYF0ML99gvauy/0bAKVhlRGl7VQQvPX1YuKWJwh+XALTIJQc7aQLQojRR+OMQgA451Ky3GTx4MB06dMgYyPPPP08PPPCAkY9UInfxQLptyxc066xngMl1DNu+SKd7u8yinIJi0k5A6Y/UubZxT+vt1s6pxEkndzjIh5UA1sWw4g3auSr7bwScgpZGdBqoInjp2cPCLU0U/rgEoEUuOdhJE4AWpYnCH4cAdMihZr1N165dqaGhwRiI9njd2LFjjXw4E9pjdOveWWE8ArfmtRbqHRvXYZfa43TvZh6ka256ucN23ipdLxb3Vo8yEJAmgHVRmmho/lTZfyPgFJpOosZaFcFLTxgWbmmi8MclAC1yycFOmgC0KE0U/jgEoEMONettHI6Ll27rIzl48CBlZGTo2bB9u18QHn/iHL1c06XD/n7+6VRanlhMN0y6geJTmjps663S9WJxb/UoAwFpAlgXpYmG5k+V/TcCTqHpJGqsVRG89IRh4ZYmCn9cAtAilxzspAlAi9JE4Y9DADrkULPWpq6ujlJTU02DOHbsGKWlpZnKpDP7j++lh1cVmtze9O5pWlB3ialMzzRciKFrTm0jim0ba/yfKefeqXpVwN/6Y3VvLdxPyQkpAduhIQiEQgDrYij05G1V2X8j4CSvnU7pURXBS08OFm5povDHJQAtcsnBTpoAtChNFP44BKBDDjVrbbS7m7Q7nFw/ra2trtmwpJ0XhO+rMvn+8WuNNMbhPRBUcTKLZjvWO9tflvYUDbjlYtrkIIAMTjgFAAlNRAlgXRTFGbIzVfbfCDiFLJXocKCK4KVnCwu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYeatTbbtm2jcePGGYNISUmh+vp6Ix+uhHZBeHNT+yNxrQ3N9Np/x/vsbsRnL9DR+Exn/aAxedStT63Pth1V4A6njuigLhwEsC6Ggyrfpyr7bwSc+BqJKktVBC89aVi4pYnCH5cAtMglBztpAtCiNFH44xCADjnUrLUpryinyYWTjUH079+fPvroIyMfjkTj+QYaUzKk/Q1z51vo1a2xHXbV69T+b+o/oZzvfcdrW/2ROa+V3xTiLXUd0UFdOAhgXQwHVb5PVfbfCDjxNRJVlqoIXnrSsHBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhZa7NixQoqKioyBpGbm0s7duww8uFKuJ5wGr/jDP3gTHefXW37Ip3ubalw1qdcvpoG3/orn207qphfsJTyh7YH1zpqizoQkCKAdVGKpIwfVfbfCDjJ6KXTe1FF8NIThYVbmij8cQlAi1xysJMmAC1KE4U/DgHokEPNWpslS5bQwoULjUHceeedtHnzZiMfroR+h5N2KunXr7VSj1jfJ5zGfrKa9nfJcQ6l/40FlJr+oTPd0Ykm1zrtMbppI+dSRu+Lj+SF6zfBLwh4I4B10RsV68pU2X8j4GSdxmzVsyqCl4aOhVuaKPxxCUCLXHKwkyYALUoThT8OAeiQQ81am0ceeYSWL19uDGLGjBm0evVqIx+uhP6Wumveb6DlR7uauqmMqac1Y5Ko257+tPXD54liun1T/wll3307xSa2mNq7Z7RgU+6wPLqJLt5Ndcftd1BSUpJ7M+RBICIEsC5GBHPAnaiy/0bAKWBJRHdDVQQvPYtYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451Ky1mTlzJq1Zs8YYRHFxMS1btszIhzNRua+MuvyfH1J2bHsw6K3WBnrqjmRnt7te3EDUdIMxhEAep9NPNq16uJyO7vmH0zYvLw8BJ4MiEpEmgHUx0sQ77k+V/TcCTh3rQJlaVQQvPaFYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451Ky1KSwspIqKi/cjaSMpKSmhBQsWRGRQ59ouJz9z322mvoqurae/XZ9CjSe704E3dprqXB+nM1W4ZbS7mm4dcCdt2bLFWYOAkxsgZCNKAOtiRHH77UyV/TcCTn6loEYDVQQvPZtYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451Ky1GT16NFVXVxuD0B6vmzt3rpEPZ2Jv0Szq++42o4u6Cxfoe3c4yBHjoL/98bv0zyNPGHVEn9CIB2511umFmenD6cBHu/Ws81srK/r2YzSg1wAEnExkkLGKANZFq8h771eV/TcCTt7nX7lSVQQvPbFYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451Ky1GTx4MB06dMgYxPPPP08PPPCAkQ9XYtPODXR90c9Ml4X/R7fTVDX64n1Nu37zO6ILg4zuA3mcTm8cFx9P8+5aTI6/JTiLxt82jpITUvRqfINARAlgXYwobr+dqbL/RsDJrxTUaKCK4KVnEwu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYeatTZ9+/Yl7e+j+qeyspImTpyoZ8Pyfaj2AC3+v+M9LgufkHueWrvHe32cbtCYPOrWpzao8Xzv+h9QWvLVhEfqgsKGxsIEsC4KAw3RnSr7bwScQhRKtJirInjp+cLCLU0U/rgEoEUuOdhJE4AWpYnCH4cAdMihZq2Nw+EwDWD37t2UnZ1tKpPKNJ5voCMnPqSfls2igW8cpQV1lxiuXS8L//Dth+iL4z826rTH6XK+9x3SLwR3qegwefVl19P9181EwKlDSqgMNwGsi+EmHJx/VfbfCDgFp4uoba2K4KUnEAu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYeadTZ1dXWUmppqGsCxY8coLS3NVBZKRjvNtO6dFbTr8HZqbmoyXN2x/QzNaexu5Ctj6mnNd1KcQaU/vfh70+N0l6U9RQNuWW+0DTShPVr3w0EldMftd+AtdYFCQztxAlgXxZGG5FCV/TcCTiHJJHqMVRG89Ixh4ZYmCn9cAtAilxzspAlAi9JE4Y9DADrkULPORru7SbvDyfXT2trqmg0pXbmvjJZWzPfq476qenqg6eJ9TVqD9V1OU8WYbnTmk950+K2Lb5fTDbXH6br2/tR0Ybhe5/7tfgpq3tBfIODkDgn5iBLAuhhR3H47U2X/jYCTXymo0UAVwUvPJhZuaaLwxyUALXLJwU6aALQoTRT+OASgQw4162y2bdtG48aNMwaQkpJC9fX1Rj6UxP7je+nhVYU+XfzylSZKj7t4qbfWSL8w3ONxOsfHlPOg9zul3INL3jpDwMkbFZRFkgDWxUjS9t+XKvtvBJz8a0GJFqoIXnoysXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhZZ1NeUU6TCycbA+jfvz999NFHRj6URHHFbNq5r8qri5i68/TKu4mmuvuyz9OXlyRSze9fbyvvY9T99EEHPb6ohfJ+kWV6JM9o0EFCv8Mp3JegdzAEVIEAYV20lwhU2X8j4GQv3Vk2GlUELw0YC7c0UfjjEoAWueRgJ00AWpQmCn8cAtAhh5p1NqWlpTRv3jxjANppp6oq70Eio1GAidzFA30GiG5697TpwvC6Cxfoe3c46PMPhtPRPea7mv6yJZHSrv6axpQMCbDn9mZ4S107C6SsI4B10Tr23npWZf+NgJO32VewTBXBS08tFm5povDHJQAtcsnBTpoAtChNFP44BKBDDjXrbLRgkxZ00j8FBQVUXl6uZ9nf2tvoOgoQ/Wzz15Qdm2T41+9v2vPK49T8VfuJq6FXt9B727s627kGsPw9SqfVPzb5F+T428VH9vLy8nBpuEEbiUgTwLoYaeId96fK/hsBp451oEytKoKXnlAs3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIccatbZFBYWUkVFhTGA4uJiWrZsmZEPJeEaIDL5Od9Cr26NNRU99K16+vTKS+nPL/3ZVL5ygYNmz7gYmOroET1Xo8suS6VfTH6O0lMH0pYtW6ipuQmXhrsCQjriBLAuRhx5hx2qsv9GwKlDGahTqYrgpWcUC7c0UfjjEoAWueRgJ00AWpQmCn8cAtAhh5p1Ntob6rQ31emftWvX0rRp0/RsSN/eAkTayaNr/9JIy49ePLWkddDYVnZ3Xgv9bU8B/fPIE+19xjVT4/5442TSodoDNH1lfnv9Nyn3005r51RSRu9M3JvjQQoFVhHAumgVee/9qrL/RsDJ+/wrV6qK4KUnFgu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYeadTZdu3alhoYGYwDV1dU0atQoIx9KwleA6L6qenqgqZvh+q3WBnrqjmTa9fwmotbrjPKZE5to1dOXGHktsfnAS7Sk7FFyDzLpjRZMfpImZE5yZqFFnQq+rSYALVo9A+b+Vdl/I+Bknndlc6oIXnqCsXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhZY+P6d1B9BMeOHaO0tDQ9G/K3HiDSHWmBojWvtVDv2Di9iOb3Pk3d296U98ufPWmUaYlNz8TSXXea32SnlWuBrHXvrKBdh7c7LyWPi4+nnEE309ScWTQkbZjWxPmBFnUS+LaaALRo9QyY+3dd+6TXPHNP1uYQcLKWv216V0Xw0sCxcEsThT8uAWiRSw520gSgRWmi8MchAB1yqFljs23bNtLeSqd/UlJSqL6+Xs+KfbsGiG6tqqM5jd0N3w0XYujK379Gj6y4nFZvijfKr0o9T3+vudTI+0pol5MnJ6R4rYYWvWJBoQUEoEULoHfQpSr7bwScOhCBSlWqCF56TrFwSxOFPy4BaJFLDnbSBKBFaaLwxyEAHXKoWWOzYsUKKioqMjrPysqimpoaIy+d+OJnC+nCqy+a3LZ260FdX/9vSh7SRNTcfurppw86aOni9rfYmYwCzECLAYJCs7ATgBbDjjioDlTZfyPgFJQsorexKoKXnkEs3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIccatbYzJs3j0pLS43Op0yZQhs2bDDy0okTIwZSTEuzyW3M6O/Q7zOepDlLWk3ltX9MpCuvNL/JztQggAy0GAAkNIkIAWgxIpgD7kSV/TcCTgFLIrobqiJ46VnEwi1NFP64BKBFLjnYSROAFqWJwh+HAHTIoWaNzfjx42nr1q1G5wsXLqTFixcbecnE+X9+RqfvyPVw2e23b9CA+3rRP04lGHV33dRKm37j/TE5o1EACWgxAEhoEhEC0GJEMAfciSr7bwScApZEdDdURfDSs4iFW5oo/HEJQItccrCTJgAtShOFPw4B6JBDzRqbvn37kvb3UP1TVl5GhQWFelb0u2FbFZ396RyTz6RfrKTDl/5vGlF4wVR+bdZD9N37LqMpw+fQ0KuGmuqCyUCLwdBC23ASgBbDSTd436rsvxFwCl4bUWmhiuClJw8LtzRR+OMSgBa55GAnTQBalCYKfxwC0CGHWuRt6urqKDU11dTxwYMHKSMjw1QmlfG4v6l/JqWs/w3dVPAX2vf+gPZuHB/TiPvvIkeMw1m2YPKTNCFzEnV0OXi7sTmlafG111+j+Lh4ysvLo6Sk0O6EMntHDgQCJ4B1MXBWkWipyv4bAadIqKkT9KGK4KWnAgu3NFH44xKAFrnkYCdNAFqUJgp/HALQIYda5G02bdpE+fn5po5bW833KJkqA8z4CgydvPe7REcOGF5WJp+myuE96M8vVbeVJRvlV/R/nK656WUjryViY+LoQtvdT3Hx8ZQz6GaamjOLhqQNM7XxloEWvVFBmRUEoEUrqPvuU5X9NwJOvjWgVI0qgpeeVCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxqkbdJT0+nI0eOmDrmBpwO1R6gde+soF2Ht1PTufMUn5jgDAxNGzmXMnpnOvv4fGQmOc6fNforuraetn/5IP3zyBNGmZa4YdINFJ/S9sY6P5/5BUspf+jkDltBix3iQWUECUCLEYQdQFeq7L8RcApADCo0UUXw0nOJhVuaKPxxCUCLXHKwkyYALUoThT8OAeiQQy3yNg7HxUfWXHvmBJw2H3iJlpQ96urGlNYCQ7dfOdrjwvC7bjxHf3z9DaLW64z2cZeUUdZd5gCUUeklsXZOpRHQ8lJN0KI3KiizggC0aAV1332qsv9GwMm3BpSqUUXw0pOKhVuaKPxxCUCLXHKwkyYALUoThT8OAeiQQy3yNhIBJ+1k0/SV5sfyXH9Ja0srxV1w0G9qelPKF58ZVY1t5WO/NYCOvFthlGmJQWPyqFufWlNZR5lRQ8dTacGzPptAiz7RoCLCBKDFCAP3050q+28EnPwIQZVqVQQvPZ9YuKWJwh+XALTIJQc7aQLQojRR+OMQgA451CJvIxFwKq6YTTv3VfkcfGzbk3GL3vyasmPNl3VXxtTTzIa2QFFjXrtt7GHKuf+e9nwAKe1Op+pFH/hsCS36RIOKCBOAFiMM3E93quy/EXDyIwRVqlURvPR8YuGWJgp/XALQIpcc7KQJQIvSROGPQwA65FCLrI02R8nJ7Rd1a71v3bqVxo4dG9RAbny8n9f22skm7S1z91XV0wNN3Uxt6i5coHv6XULv7XnHVN7n+h9RWvZWU1kgmbcW7qfkhBSvTaFFr1hQaAEBaNEC6B10qcr+GwGnDkSgUpUqgpeeUyzc0kThj0sAWuSSg500AWhRmij8cQhAhxxqkbXZuXMn5ebmmjptbGykpCTzSSRTA7dM5b4yWlox3620Pes43USbqxPaC9pStRea6fs5zbR376PUcGKmS90nNOKBW51BKpdCv0mccPKLCA1sQgDrok0m4pthqLL/RsDJXrqzbDSqCF4aMBZuaaLwxyUALXLJwU6aALQoTRT+OASgQw61yNqUlpbSvHnzjE6zsrKopqbGyPtL7D++lx5eVei72fkW+tkfzpsepdPubbp35Hk6l5hCf37pzybby9KeogG3rDeVBZLBHU6BUEIbOxDAumiHWWgfgyr7bwSc2udc6ZQqgpeeZCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxqkbUpLCykior2C7tnzJhBq1evDngQHd3dpJ1s2vB2LPWIjzX5e63/pfSf/evo77sm0T+PuL6JrpFumJRL8SltFz5989FOLjU3tef1cvdvvKXOnQjydiWAddFeM6PK/hsBJ3vpzrLRqCJ4acBYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451CJr07VrV2poaDA6ff755+mBBx4w8v4SuYsHeg0IaXc3jfzTGVpQd4mHi5/+n3+hQ8f30K7fbWmr62PUp1y+mgbf+isjn5k+nFZ/70Xy9siefjeU1njB5CdpQuYkw85bAlr0RgVlVhCAFq2g7rtPVfbfCDj51oBSNaoIXnpSsXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhFzubQoUM0ePBgU4d//etf6brrrjOV+co0nm+gMSVDfFXT+B1n6AdnunvU50+Mo7/98dv0yfu/NNVl3jaKknueNpW9+8RfnflDtQdo3TsraNfh7c4Al3byKWfQzTRt5FzK6J1psvGWgRa9UUGZFQSgRSuo++5Tlf03Ak6+NaBUjSqCl55ULNzSROGPSwBa5JKDnTQBaFGaKPxxCECHHGqRs1mxYgUVFRUZHaalpdGxY8eMfCAJXyecNNsZbzZQfktXk5suj/07jds3n3Y9v4mo1SWwlbyFRnz3xx6XhXt785wW6PL1NjpTZy4ZaNEFBpKWEoAWLcXv0bkq+28EnDymXs0CVQQvPbtYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451CJnM3XqVNq4caPR4ZQpU2jDhg1GPpCErzuc4k+co5druphctHbrQb3e/hNdV3gPHd1jvhi8/40FlJr+oam9vzfPmRr7yUCLfgChOmIEoMWIoQ6oI1X23wg4BSSH6G+kiuClZxILtzRR+OMSgBa55GAnTQBalCYKfxwC0CGHWuRs+vbtS9rfPfXP2rVradq0aXo2oG/tUbfpK/NNbbX7lWZuaTSdbmqJiaNub71LSV0vpV7DDtLJL11ON8Ueppz77zH50DL+3jznYdBBAbTYARxURZQAtBhR3H47U2X/jYCTXymo0UAVwUvPJhZuaaLwxyUALXLJwU6aALQoTRT+OASgQw61yNh8/PHH1K9fP1NnBw8epIyMDFNZIJnNB16iJWWPGk2TPv2ayt5LMvJaIvbOe+myn5XQ7j3naEThBVPdtVkP0eWDakxlWmbVw+U0JG2YRzmnAFrkUINNOAhAi+Ggyvepyv4bASe+RqLKUhXBS08aFm5povDHJQAtcsnBTpoAtChNFP44BKBDDrXI2Kxbt46mT59udNazZ0/6/PPPjXywiT3/+BP9Zvc6evfA2/TQ61/5PN30LzfX076/x7S7d3xMI+6/y5l3xDiM8kDePGc0DiABLQYACU0iQgBajAjmgDtRZf+NgFPAkojuhqoIXnoWsXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhFxmbmzJm0Zs0ao7OCggIqLy838tzE2fov6cyYGymmpdlwEXffw3Rp8U+8nm7Kvul3lHj9L1hvnjM6CCABLQYACU0iQgBajAjmgDtRZf+NgFPAkojuhqoIXnoWsXBLE4U/LgFokUsOdtIEoEVpovDHIQAdcqhFxiY9PZ2OHDlidLZs2TIqLi428txEw7YqOvvTOSbzlO01zrubJt7fQK/8sf0U01Wp5+mDHYmUlJREmla073B9oMVwkYXfYAlAi8ESC297VfbfCDiFV0edxrsqgpeeECzc0kThj0sAWuSSg500AWhRmij8cQhAhxxq4bepq6uj1NRUU0e7d++m7OxsUxknUzdzKrXs3dlu2vta6rm5yuvpppULHDR7RviCTO2DIGdAa8uWLc6ivLy8sAa3XPtFGgTcCWBddCdibV6V/TcCTtbqzDa9qyJ4aeBYuKWJwh+XALTIJQc7aQLQojRR+OMQgA451MJvU15RTpMLJxsdpaSkUH19vZEPJXFixNP2O/gAAEAASURBVEDT43SJ359P3abNIPfTTY7kVmqoiYlY4AdaDGVWYStJAFqUpBm6L1X23wg4ha6VqPCgiuClJwsLtzRR+OMSgBa55GAnTQBalCYKfxwC0CGHWvhtHnnkEVq+fLnR0bhx46iqqsrIcxPeHqfr/lo17Tt+mceb6f5troMemxeZ003a74EWubMKO2kC0KI00dD8qbL/RsApNJ1EjbUqgpeeMCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxq4bfRHp3bs2eP0VFJSQktWLDAyHMTdT8qopYdb7abf/M4nfvpJoprpsb98dQa20LJCSnt7cOYghbDCBeugyIALQaFK+yNVdl/I+AUdil1jg5UEbz0bGDhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQC6+Nt/ubqquradSoUayOtbfSJXW9lLTv+gl55DhTZ/jR3k730c0/8DjdpL+ZrunceYpPTKCcQTfTtJFzKaN3pmErnYAWpYnCH5cAtMglFx47VfbfCDiFRz+dzqsqgpeeGCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxq4bXZtGkT5efnmzppbW015f1l9h/fSxt2PUe7Dm+n5qYmiouPp5uvnEA/fO5lk2m3375Bd//r/zK9mY5aT1H2PWMoJv4COWLa31inGc4vWEr5Q9vvljI5CzEDLYYIEOZiBKBFMZQijlTZfyPgJCKXzu9EFcFLzxQWbmmi8MclAC1yycFOmgC0KE0U/jgEoEMOtfDazJs3j0pLS41OcnNzaceOHUbeX6JyXxktrZjv0Wz8jjP0gzPdjfLWbj3ob8t2eJxuuqL/43TNTebAlGHUllg7pzIsJ52gRVfKSFtJAFq0kr5n36rsvxFw8px7JUtUEbz05GLhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQC6/N6NGjSXuETv8sXLiQFi9erGc7/D5Ue4CmrzSfjtIMWlta6bU3Y0y2r/W/lH752Xba93fX8k8o++7bKTaxxdTWNTNq6HgqLXjWtUgkDS2KYIQTAQLQogBEQReq7L8RcBIUTWd2pYrgpecIC7c0UfjjEoAWueRgJ00AWpQmCn8cAtAhh1r4bLT56NWrFzU0NBidbN26lcaOHWvkO0rM/PW9dOCj3aYmjtNN9NR2ovS4BKO8sS0A9fPmRFp3psYo0xL+TjdpbbTH86oXfaAlRT/QoihOOAuBALQYArwwmKqy/0bAKQzi6YwuVRG89Nxg4ZYmCn9cAtAilxzspAlAi9JE4Y9DADrkUAufzbZt22jcuHGmDhobGykpKclU5itz4+P9PKruq6qnB5q6eZSPO/WvtI8K2ssdH9OI++9y5t3vbmpvdPG01NuPHxB/ex206EoZaSsJQItW0vfsW5X9NwJOnnOvZIkqgpeeXCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxq4bNZsmQJaY/Q6Z+srCyqqTGfQtLr3L8bzzfQmJIh5uLzLbTxD0Q9YmNN5WvPJtP8xndNZVdn/JCuvGGbqUzPaI/k6UEonHDSqeA7WglgXbTXzKqy/0bAySa6czjMb8vwNaxgL1j05ce9XBXBu//uUPNYuEMlCHspAtCiFEn4CZUAtBgqQdhLEIAOJSjK+XC/v6m4uJiWLVsWUAd1dXV0+9PDTW27nWii39a0P0qnVRZdW0+/2/sq0YVB7W1jD9OPf7GGdu6rai/zkcIdTj7AoDhqCGBdtNdUqrL/RsDJJrpDwMkmExHkMLBwBwkMzcNGAFoMG1o4DpIAtBgkMDQPCwHoMCxYWU61uUhOTjbZVlZW0sSJE01lHWXcH6kreOsMPfR1+5vpai6cpe/3y6Wje9ab3Fyb9RBVPj2fHl5VaCr3lsFb6rxRQVk0EcC6aK/ZRMDJXvMR9aPRA05FRUU0e/Zs0+/VFgf9GXft+7rrrjPVS2RUEbwEK1cfWLhdaSBtJQFo0Ur66NuVALToSgNpqwhAh1aR9+x306ZNlJ9vfsNcMPc3aW+oe2TDg9TYWO90rj0Gt+a1FuodG2d0tjL5ND1+bGdbvo9RRm2nm0ZNfdB5EfjmAy/RkrJH2+vcUvMLllL+0MlupTJZaFGGI7yETgBaDJ2hpAdV9t844SSpmhB86QGnYF4RG0J3HqaqCN7jh4dYgIU7RIAwFyMALYqhhKMQCUCLIQKEuQgB6FAEo4iTefPmUWlpqeErmOshvAWKBu89Q0tr2083aY5vOjeajtSvMPrQEv1vLKC7Cq+m0oJnneX7j++lDbueo12Ht1NzU5PzrXQ5g26maSPnUkbvTJOtZAZalKQJX6EQgBZDoSdvq8r+GwEnee2wPOoBp5KSElqwYAHLRyhGqgg+FEbebLFwe6OCMisIQItWUEef3ghAi96ooCzSBKDDSBP33d/gwYPp0KFDRoNA/66rnWyavtJ8Mko73fT0q82UHtd+f9O2s010b+P7hn9nInkL5RQUk/aYnPZZ984Kj0DT1JxZNCRtmLM+nP+DFsNJF76DIQAtBkMr/G1V2X8j4BR+LQXUgx5wwgmngHDZphEWbttMhfIDgRaVl4BtAECLtpkKpQcCHdpj+l03VPqIqquradSoUXrW53dxxWyPy77dLwtviYmjmacH0yvnNpr8DBqTR0t/+GNnWUeP0i2Y/CRNyJxkspXOQIvSROGPSwBa5JILj53r+njs2DFKS0sLT0cWe0XAyeIJ0LvXA06B/quPbif1rYrgpXjpfrBw6yTwbTUBaNHqGUD/OgFoUSeBbysJQIdW0m/v+4UXXqAHH3zQKEhJSaH6+ot3MRmFPhK5iwc6H31zrZ7xZgPlt3Q1ij4+10Q59ebTTUOv/5BeWBvrbON+QsowdEmE67JwvQtoUSeBb6sJQItWz4C5f1X23wg4mefdspwecMrIyKBz587RkSNHSPtDuXfv3jRy5EiaMmUKjR07NmzjU0Xw0gCxcEsThT8uAWiRSw520gSgRWmi8MchAB1yqMnbTJ06lTZubD99VFBQQOXl5X47ajzfQGNKhpjaOU430ebq9kfptMqF/7yNnov7RXu7uGb6fM956tm9J3k7IdXesD01auh4456n9lK5FLQoxxKeQiMALYbGT9palf03Ak7SymH60wNOHZlrf0ivWrWKevTo0VEzr3Uff/wxJSSY/5B2bfjZZ5/R8OHDnUV//etfnYEu13qkvRPQFu4dO3Y4K0ePHm28TdB7a5SCQPgIQIvhYwvPwRGAFoPjhdbhIQAdhodrsF4HDBhA2qZK/yxbtoy+//3v69kOv8cvG2Y64XTH9jM0p7H9svDGtvucrj71DlFMN8PPFf0fp36jNtONmbd4PI6nNdLugHLEOIz2WiIuPp6q5u01lUlmoEVJmvAVCgFoMRR68ra1tbXUr18/p2M8UifPFx7dCGgBJ+0U07e//W361re+RYmJifTVV1/R9u3b6dlnn6WTJ086LcaNG0dVVVVu1v6zgQS0dC9r166l7pd0p/i4eL0I3yAAAiAAAiAAAiAAAiAQEIGm5ib652f/pKKiIlP75cuXB3xPyW8+Xk1//+J9am1opp+/1UzZsUkmX2tO/gs95mg/PUX0CY2ceiddaGk2tQsk88OhJZQUlxxIU7QBARAAARECp06dounTpzt9IeAkghROOiJQV1fn8+SS9i9D+fn5tGfPHqcL7Q/ruXPnduTOoy7YgFNqaqqHDxSAAAiAAAiAAAiAAAiAQCAEXn31VVqzZo3RtGfPnrTy2ZXOfCD/qHm88e/06/f/g375SpPprXS6w2G1v6fjCQP1LF2b9RBdPqjGyAeTmDf0F/iH1mCAoS0IgEDIBBBwChkhHEgScH3Gs3///vTRRx8F5d71OLM3QzxS542K/zIcTfXPCC0iQwBajAxn9OKfALTonxFahJ8AdBh+xv56uOuuu2jr1q1GM+0k/4YNG0ibm0A/G1fMoYIXqz2ae9zdFP9nGnH3FI/H5TwM2wpcH6vT0rnD8qjk9l96aypSBi2KYIQTAQLQogBEQRd4pE4QJlzJEJgwYQJp/1qkfaSP3bkGtKR9y/x6e3rRFu4tW7Y4B5eXl4c7nOw5TUqMClpUYpo7xY+EFjvFNEX9IKFDa6dY49+rVy9qaGgwBlJWXkaFBYVGPpDEiREXTzDFuDwmd/TreBpxZrvp7qZBY/KoW5/aQFx6tMFb6jyQoCBKCWBdtNfEqrL/xqXh9tJdh6OZN28elZaWOttUV1fTqFGjOmwfTKUqgg+GSSBtsXAHQgltIkEAWowEZfQRCAFoMRBKaBNuAtBhuAl37H/nzp2Um5traqQ9PhLMi2/O7nqXGuY+aPKhZdwfpUu5fDUNvvVXHu30AtcTTVqZa37B5CdpQuYkvWlYvqHFsGCFUwYBaJEBLYwmquy/EXAKo4ikXbsGnHbv3k3Z2dliXagieDFg3zjCwi1NFP64BKBFLjnYSROAFqWJwh+HAHTIoSZns2jRIiopKTEcZmVlUU1NcPcrffGzhXTh1RcNH1ritCOe+p28eKfpxYpP6IZJEyg+pcnUzjWjvYUuZ9DNtOvwdudb7/T8tJFzKaN3pmvTsKShxbBghVMGAWiRAS2MJqrsvxFwCqOIpF3jkTppoqH7w8IdOkN4kCEALcpwhJfQCUCLoTOEh9AJQIehMwzFg/aPovrLbjQ/xcXFtGzZMr8uG883UHJCirOd9jid66N0WqH76aY+1/+I0rLb74ny1sGooeOptOBZZ5Wrf29tw1EGLYaDKnxyCECLHGrhs0HAKXxs4ZlB4OOPP6Z+/fo5LTmXhvvrUhXB++MQbD0W7mCJoX24CECL4SILv8ESgBaDJYb24SAAHYaDamA+tTcvu7/tWLs8fOzYsR4OtADQkRMf0oZdz3mcQHrs382BpA8bu9GoszsNH1elnqfet2cZeV+JcN/R5KtfvRxa1Eng22oC0KLVM2DuX5X9N044mefdktymTZto4sSJPvvW/uDWLqTW/6VI+xci7V+KJD+qCF6SmeYLC7c0UfjjEoAWueRgJ00AWpQmCn8cAtAhh5qMTXlFOU0unGw4S0lJoc8//9x4scr+43tNASaj4TcJ7Y6lvJ319IMz3U1VYz9ZTfu75BhlfyqPpc8SXqMlZY8aZe6J+QVLKX9o+1jc6yORhxYjQRl9BEIAWgyEUuTaqLL/RsApcpry2VPfvn2ddfn5+XTjjTfSNddcQ5deeil99tlntH37dnr22Wfp5MmTzjbaBYw7duzw6YtboYrguXx82WHh9kUG5ZEmAC1Gmjj680UAWvRFBuWRJAAdRpK2ua+ZM2fSmjVrjMJx48ZRVVWVM1+5r4yWVsw36lwTWqAp9ssmGvT3c7S01hxsqjiZRbMd643mMyc20aqnL3HmD9UeoHXvrPA4ITU1ZxYNSRtm2FiVgBatIo9+3QlAi+5ErM2rsv9GwMlanTl71wJOmuD8fQoKCmjVqlVBveHDn0+9XhXB679X6hsLtxRJ+AmVALQYKkHYSxGAFqVIwk8oBKDDUOiFZpuenk5HjhwxnOgn87XA0PSV+Ua5a0ILNt2/rYEeaOrmWmykR3z2Ah2Nv3jBtyO5lT7d1oWuvDLWqNcTVtzRpPft6xta9EUG5ZEmAC1GmnjH/amy/0bAqWMdRKR227Zt9O677zr/++CDD+jLL790nmjq2bMnXXHFFXTTTTfRrFmzRN9K5/7DVBG8++8ONY+FO1SCsJciAC1KkYSfUAlAi6EShL0EAehQgmLwPlzvHNWtDx48SBkZGVRcMZt27rt40kmv078H7z3jcapJr1t/Ygz9JPZpPUsrFzhoypQW43Jxo8KmCWjRphOj4LCgRXtNuir7bwSc7KU7y0ajiuClAWPhliYKf1wC0CKXHOykCUCL0kThj0MAOuRQC92mtLSU5s2bZzjS/vFUu79J++QuHkjNTU1GnWvil680UXpcgmuRM91wIYb6n3yDmuN6X6xL3kI5BcWknYiKT0ygnEE307SRcymj98XTTx4ObFAALdpgEjAEJwFo0V5CUGX/jYCTvXRn2WhUEbw0YCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxqoduMHj2aqqurDUczZsyg1atXk/ao25iSIUa5ayLp06+p7L0k1yIj/XRtPi1JeOKbfCNl3jaeknueNur1xILJT9KEzEl61lbf0KKtpkPpwUCL9pp+VfbfCDjZS3eWjUYVwUsDxsItTRT+uASgRS452EkTgBalicIfhwB0yKEWmo32VuXU1FSTk8rKSuNNzL5OON1XVe/17qZTTXE08Iu2R/BiL/rsc/2PKC17q8m/a2btnEpbnnSCFl1nCWkrCUCLVtL37FuV/TcCTp5zr2SJKoKXnlws3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIccaqHZrFu3jqZPn244SUlJcT5Ol5R08fSS1zuczrfQ77fEUHKMw7BrbHtc7qumLvTgyeW0v0vOxfL4P9OIu6eQw6WdYdCW0B6xyx2WR6UFz7oW2yINLdpiGjCINgLQor1koMr+GwEne+nOstGoInhpwFi4pYnCH5cAtMglBztpAtCiNFH44xCADjnUQrMpLCykiooKw8mdd95Jmzdvdj5Ol5yQQvuP76WHVxUa9VrC22XhvT5dSpR4u6ld5m2jvD5K59ooLj6eqhd94FpkizS0aItpwCDaCECL9pKBKvtvBJzspTvLRqOK4KUBY+GWJgp/XALQIpcc7KQJQIvSROGPQwA65FDj22i8k5OTTQ60gNMXIz5yXhSuBYO0C76v6zWAfr11hdHuZ5u/puzY9vubqr7qSfc3v2XUa4nL0p6i9G+v83m6ybXxWwv32+7tddCi6wwhbSUBaNFK+p59q7L/RsDJc+6VLFFF8NKTi4Vbmij8cQlAi1xysJMmAC1KE4U/DgHokEONb1NeUU6TCycbDhJ6xdKw2VcbeT0RGxNHPVN60z/PHCPH6SbaXG1+M939x0uoKukuvXnb/U2HKbvgPopNbGkv+yalPUbn+ogdTjh5IEIBCJgIYF004bA8o8r+GwEny6VmjwGoInhp2li4pYnCH5cAtMglBztpAtCiNFH44xCADjnU+DZTp06ljRs3Gg4uGZhIAyf3MfLuiZvePU0L6i5xL6Zen+8kiulmlA8ak0dde39qCiwZlW6JUUPHG3c4aW/F0x7js8MHWrTDLGAMGgFo0V46UGX/jYCTvXRn2WhUEbw0YCzc0kThj0sAWuSSg500AWhRmij8cQhAhxxqZptggja9evWikydPGg7Sxl9CfW40v7EutoloxJ7TdPeJJEqPM59s0gwPNF5KY87+j+FDe5RuwC3rjby/xILJT9L2D7fQrsPbTY/xTc2ZRUPShvkzD1s9tBg2tHAcJAFoMUhgYW6uyv4bAacwC6mzuFdF8NLzgYVbmij8cQlAi1xysJMmAC1KE4U/DgHokEONnBd7b9j1nEfQZtrIuZTRO9Or002bNlF+fr6pLqv4aopLjjXKEmrP0YqaOOodG2eUuSZONcW1BaJWeryVTmvj+ticq42W1h+r00436YEm9zZafn7BUsof2v7In7c24SqDFsNFFn6DJQAtBkssvO1V2X8j4BReHXUa76oIXnpCsHBLE4U/LgFokUsOdtIEoEVpovDHIQAdBk+tcl8ZLa2Y79PQV9DmkUceoeXLlxt27vc3eXsTndG4LbHm5L/QYy2/bLuvqf1ElPYoXbc+ta7NvKav7fstuv/GGbSk7FGv9a6Fa+dU+gyaubaTTkOL0kThj0sAWuSSC4+dKvtvBJzCo59O51UVwUtPDBZuaaLwxyUALXLJwU6aALQoTRT+OASgw+CoHao9QNNXmk8pefPgLWjTt29f0v4eqX/0x+m000d3/k89zWnsrleZvj9qPk9TLoylI/Xtb63TGlzR/3G65qaXTW07ymSmD6cDH+3uqImzzvWOJ7+NBRtAi4Iw4SokAtBiSPjEjVXZfyPgJC6dzulQFcFLzw4Wbmmi8MclAC1yycFOmgC0KE0U/jgEoMPgqBVXzKad+6r8GrkHbXbu3Em5ubkmu4wZvdsu+k6ipE+/prL3kkx1Wqbmwln6r/4XaE/cMDryzn+ZLgmnhHco555ZHjYdFWhvp2tuarsgystHf+ROq7LqLXbQopeJQZElBKBFS7D77FSV/TcCTj4loFaFKoKXnlUs3NJE4Y9LAFrkkoOdNAFoUZoo/HEIQIfBUctdPNBn0MbVk3vQZt68eVRaWmo06d+/P6Xe1+LMz3izgfJbuhp1WuI/up2mLaO6UvPZBPrzS5vbSlzfZNdImbeNp+Sep002esY1eKSXBfv91sL9EX97HbQY7CyhfbgIQIvhIsvzq8r+GwEnnj6izkoVwUtPHBZuaaLwxyUALXLJwU6aALQoTRT+OASgw8CpaW+jG1MyJCADLejz9uMHjKBNeno6HTlyxLDtlZNE1+X1puSvWuj3O9svDdcaLOnxFf3xxouP1+2qaAtSNeYZdlqiz/U/orTsraYyyYx7sEzSd0e+oMWO6KAukgSgxUjS9t+XKvtvBJz8a0GJFqoIXnoysXBLE4U/LgFokUsOdtIEoEVpovDHIQAdBkeNc8KppqaGhg8fbupIf5zuvqp6eqCpm1FXd+ECLZqSQX//4n06XjOOPnm/7ZJw10/yFsopKHYtEU+7Pw4o3oEPh9CiDzAojjgBaDHiyDvsUJX9NwJOHcpAnUpVBC89o1i4pYnCH5cAtMglBztpAtCiNFH44xCADoOjxrnDyeFweHQyYsG1FFPfTJurE0x1x24cS8OWP0fb/vgXGnd/X1MdxX1FWzeepiuvOU/r3llBuw5vD+jxPt2J+6Xhvh6983bhue4jnN/QYjjpwncwBKDFYGiFv60q+28EnMKvpU7RgyqCl54MLNzSROGPSwBa5JKDnTQBaFGaKPxxCECHwVHz9ZY69+DNqofLaUjaMKdzbwGnnEXX0R3bz5jeTNfY9hje0z/4Di25exkNHH2O/nHKHIza9Ews3XVnomnA2mN+R058SA+vKnSWu4/DtbE2pr9/cZSWlD3qWkyuNvMLllL+0Mmm+khloMVIkUY//ghAi/4IRbZelf03Ak6R1ZVte1NF8NITgIVbmij8cQlAi1xysJMmAC1KE4U/DgHoMHhqlfvKaGnFfJ+GCyY/SRMyJznr3S8LT4iJoTGJ8RT33UtpxfsplBzTfvppfZfTtOnWHpT6/h56ZWe96a10P33QQUsXe77JTh/E5gMveQSS9Drt23VMWtDM9YSUdmdTzqCbaWrOLCNI5mobqTS0GCnS6McfAWjRH6HI1quy/0bAKbK6sm1vqgheegKwcEsThT8uAWiRSw520gSgRWmi8MchAB1yqBHtP76XNux6znisLTYmjm7MvIWmjZxLGb0zDafup5t2Db6KrmsLOHn7TMg9T/88fhMd3bPeVD306hZ6b7v5LXamBt9kfAWS3MfkaqudkEpOSHEtsiwNLVqGHh27EYAW3YBYnFVl/42Ak8VCs0v3qghemjcWbmmi8MclAC1yycFOmgC0KE0U/jgEoEMONbONr6CNxjY5Odlo/J2kRPr1oDQj75qojKmnX2X3pgNvVLUVt9s4klvpg8ouNCDd/CY7V1tvaV9j8tbWLmXQol1mAuOAFu2lAVX23wg42Ut3lo1GFcFLA8bCLU0U/rgEoEUuOdhJE4AWpYnCH4cAdMihFpjNihUrqKioyNlYe5Ru84C+dENKnFfjScO+ph1vVxJdGGSqX7nAQbNn+H6UztS4k2egxU4+gVE0fGjRXpOpyv4bASd76c6y0agieGnAWLilicIflwC0yCUHO2kC0KI0UfjjEFBBh1ad9klPT6cjR47QdbEx9EbGVdQj3vsppbdaG+iBC0up+SvzZd0zJzbRqqcv4Uxrp7RRQYudcmIUHDS0aK9JV2X/jYCTvXRn2WhUEbw0YCzc0kThj0sAWuSSg500AWhRmij8cQhEqw7d71iK9MXY27Zto3HjxlFWXAy9OfRan1OjvZlueup1tPXIJlMb7VG6hpoYSkpS43ST9uOjVYumiUWmUxCAFu01TarsvxFwspfuLBuNKoKXBoyFW5oo/HEJQItccrCTJgAtShOFPw6BaNShvze2zS9YSvlDzaeJOOw6stEuC9eCTS9lXmN6E527zRo6T4+d+sCtuJEybxtPv1200XQBuVujqMtGoxajbpIU+UHQor0mWpX9NwJO9tKdZaNRRfDSgLFwSxOFPy4BaJFLDnbSBKBFaaLwxyEQbTrU3tQ2fWW+XxRr51SGLZizbt06mj59Ov1h4NU+72zSBvijPmfo+f3Vbak+pvFem/UQXT6ohkYNHU+lBc+a6qI5E21ajOa5ivbfBi3aa4ZV2X8j4GQv3Vk2GlUELw0YC7c0UfjjEoAWueRgJ00AWpQmCn8cAtGmw+KK2bRzn/amN89Pa9vja44Yh7MinMEc7XRTr7b/Dt9wnecgXErGnfpX2kcFLiVEl6U9RQNuWW+UvfvEX410tCeiTYvRPl/R/PugRXvNrir7bwSc7KU7y0ajiuClAWPhliYKf1wC0CKXHOykCUCL0kThj0Mg2nSYu3ggNTc1+UWh3elUvcj9UTa/Zn4bHDp0iAYPHkzfSUqkXw9K67B9rxNvE8WmtrdJeIdy7pnVnm9LrZjxW8q6aoSpLFoz0abFaJ0nFX4XtGivWVZl/42Ak710Z9loVBG8NGAs3NJE4Y9LAFrkkoOdNAFoUZoo/HEIRJMOtbfRjSkZEjCGtxbup+SElIDbB9KwsLCQKioqqCi1G/3rNZf7NHm6Np+WJDzhUv8J3TBpAsWnmINl4TyJ5dK5LZLRpEVbAMUg2ASgRTa6sBiqsv9GwCks8ul8TlURvPTMYOGWJgp/XALQIpcc7KQJQIvSROGPQyDadOh+wsn1MTpXPuE44VRTU0PDhw93dvNc31SadPmlrl2a0r1O7TflB43Jo259ak1lWiYc4/ToxCYF0aZFm2DFMBgEoEUGtDCaqLL/RsApjCLqTK5VEbz0nGDhliYKf1wC0CKXHOykCUCL0kThj0Mg2nTY0R1OrnzCcXJo/PjxtHXrVmc3uwZfRdclxrt2aaR3n+5Ntzf9wchf0f9xujrnJeN+KaPim0Q4TmK592GHfLRp0Q5MMQYeAWiRxy1cVqrsvxFwCpeCOplfVQQvPS1YuKWJwh+XALTIJQc7aQLQojRR+OMQiDYdBvqWulUPl9OQtGEcZF5tyivKaXLhZGedvwvDf/LpdFqf+ANn25TLV9PgW3/l1adWiBNOPtGgAgTCRiDa1sWwgYqQY1X23wg4RUhQdu9GFcFLzwMWbmmi8MclAC1yycFOmgC0KE0U/jgEolGHmw+8REvKHvWJY37BUsofejE45LNREBUawwEDBpD2d0TtkxUXQ28OvdanB+Oy8LZLwrPz51BsYovPtpnpw2n19170WR9NFdGoxWiaH5V+C7Ror9lWZf+NgJO9dGfZaFQRvDRgLNzSROGPSwBa5JKDnTQBaFGaKPxxCESrDrWTTuveWUG7Dm+npnPnKT4xgXIG3UzTRs6ljN6ZHFROG+1icveLxpcsWUILFy40fE7p3oVK0/sYedfEG18OoikXtACS90vCXdvqae2Uk8TYdX92/Y5WLdqVN8blmwC06JuNFTWq7L8RcLJCXTbsUxXBS6PHwi1NFP64BKBFLjnYSROAFqWJwh+HgAo61H5jUlISB4/TxjV41dzU5HzMTQ8AJZ1NoX79+pl8vzjoKhqb1H5/04HGS6mm/gZnm5/QIqLYVPJ1SbjJkZeM9OksL11YVqSCFi2Di46DIgAtBoUr7I1V2X8j4BR2KXWODlQRvPRsYOGWJgp/XALQIpcc7KQJQIvSROGPQwA67Jha5b4yWlox32ej5rcvoT3Ve4167f6mg9kDnPmYlmbnt+udTVrBtVkP0eWDapx1rv/z9UY91zZaeu2cypBOabn7s0seWrTLTGAc0KK9NKDK/hsBJ3vpzrLRqCJ4acBYuKWJwh+XALTIJQc7aQLQojRR+OMQgA59U3O9gNxbMOiTd0/R8aqvTA7+654suu3jetKDTVrlsNrf0/GEgc522hvprrnpZZONfmrJyjfsmQZkUQZatAg8uvUgAC16ILG0QJX9NwJOlsrMPp2rInhp4li4pYnCH5cAtMglBztpAtCiNFH44xCADn1T0wJA1Xu3kCPG4dGovvYsHVpTayr/Vvfe9D/f6m4KNrXf2UTU89KP6VuTCk13Sk3NmWW8LS938UDSHtnz94nWN9dBi/5mHvWRIgAtRop0YP2osv9GwCkwPUR9K1UELz2RWLilicIflwC0yCUHO2kC0KI0UfjjEIAOfVPzFQDSTju9t+ofdP7zCybjP899mPq+u81UNuKzF+hofCYNvbqF/vhGrPMuKW8Xj2tlY0qGkLeTVCaH32TeWrjf4/Jyb+06Uxm02JlmK7rHCi3aa35V2X8j4GQv3Vk2GlUELw0YC7c0UfjjEoAWueRgJ00AWpQmCn8cAtChd2odBYA+3lJLn+86azKcOesBKvlzjel0U8XJLJrtWE+O5Fb6oLILDUiPNdm4Z3wFuPR2ejAKJ5x0IvgGgfAQwLoYHq5cr6rsvxFw4iokyuxUEbz0tGHhliYKf1wC0CKXHOykCUCL0kThj0MAOvRNzVsAyNu9TQm9YqlkQA966OvuhrPGtlNQo/5ZRseT+1Pm+G9Tcs/TxtvtpgyfQ0OvGmq01RMzf30vHfhot571+Z2ZPpxWf+9Fn/WdtQJa7KwzF33jhhbtNaeq7L8RcLKX7iwbjSqClwaMhVuaKPxxCUCLXHKwkyYALUoThT8OAejQNzX3S7ybGy/QntK/exgMvPd/0aYPEqhHbPsJpvUnxtBPYp+mQWP+//bOBE6K4uz/zy67C7sLCitnRFEEDxDQeOCBES80nkQ00Rg1Xnhg/u/rK3nVV8hrBN7oG3klMd5oXmMOE8VoTIwKKm8EhYBRQAwGRYwgRg5FWK69/lNNeuzp7Znprq3e6Zn69ucj011Vz9PV3/pZO/VMVfUo6bJ75l5PyoG7UbjXGQGnrfLCCy84SEaNGuUsP/Ty4RwC7UWAfrG9SIe7jy3jbwJO4fRQ8qVsEbzphqTjNk0Uf7oE0KIuOexME0CLponiT4cAOsxOzf+WundmfCQbl23PMOgxvFr+rbG7XC5VGenqzXSVR94uPQctdNLd5XDeQg9d/ZQM7jMknRQ0oyqd6TuZd+t7vpTiv0SLxd+GpfIEaDFZLWnL+JuAU7J0V7Da2CJ404DpuE0TxZ8uAbSoSw470wTQommi+NMhgA5zU3tmyZMy+dfj5aM/b5BVMze2KnzQ2ANl5uuZ+zmpQgd2Gy17HfnbVuW9CUcPO0mmjrnPSVJ7Rh136xDnjXhBwSmvnTpn03A/Ea4hYI4A/aI5liY82TL+JuBkQi0l4MMWwZtuKjpu00Txp0sALeqSw840AbRomij+dAigw9zU1Cynb3zvZFk6vfWyuCFXHyRj/jBcxvWY1crJ6ae2tEoLSvDOVAo7w4lNw4NIkgYBcwToF82xNOHJlvE3AScTaikBH7YI3nRT0XGbJoo/XQJoUZccdqYJoEXTRPGnQwAd5qam9nF66hsPym39esjwXWvluXUbZcKqDbLbN/rIvv/3b/LQl+4NdHD2wdtkR5+OgXneRO9MJf+eUd5y3nPvzChverGfo8Vib8HSqT9aTFZb2jL+JuCULN0VrDa2CN40YDpu00Txp0sALeqSw840AbRomij+dAigw+zUFJtjduksvxy0p3TqUJ4ueGfqjXNd3xkTOLNJvZ1OHZcd3iCbelambYJO/DOVFq96Q8Y+cE5Q0Yw0/95PGZlFfIEWi7jxSqzqaDFZDWrL+JuAU7J0V7Da2CJ404DpuE0TxZ8uAbSoSw470wTQommi+NMhgA6zU7v/mm/JmD/Py14gIEcFnFY3N8h1Z+YONinTbt12kzvOeyhj43C1Z9SUx78b4HlnUtDb7bIWLrIMtFhkDVbC1UWLyWpcW8bfBJySpbuC1cYWwZsGTMdtmij+dAmgRV1y2JkmgBZNE8WfDgF0GExt7ty58tFFY+S4bp2DC/hSf9Tlc5m9X5Xsvr5RVg3tKo0NDb4S2S/9QSS1b9TDr94t89+e7fhRM6GGDxoplx41LiM4ld1jceagxeJst1KsNVpMVqvaMv4m4JQs3RWsNrYI3jRgOm7TRPGnSwAt6pLDzjQBtGiaKP50CKDD1tQ2bNggw4YNkzd65d+Dqb6pXKb1+FRePbyL84Y55e3EPc6W4UccKbc/9R/pwFO+N89lWyan3l5XU1XbupIlmIIWS7BRi/SR0GKyGs6W8TcBp2TprmC1sUXwpgHTcZsmij9dAmhRlxx2pgmgRdNE8adDAB22pnbSSSdJxdxX5NFBfTMym8srpLy5MZ22ZEtX+bdBjdJx0KZ0mnuiAkizl8+UR2fd7Sbl/CzVjcBzPrQvEy36gHBZMAJosWDoA29sy/ibgFNg89uXaIvgTbcsHbdpovjTJYAWdclhZ5oAWjRNFH86BNBhJrWpU6fK+PHj5ZY+3WTcl+rSmTM3dpdv7nhaztr+Rzm66lV5q+FAWXjqb6TL7mvSZbwnQwYeJkuWL/Am5Tz3byCes3CJZqLFEm3YInwstJisRrNl/E3AKVm6K1htbBG8acB03KaJ4k+XAFrUJYedaQJo0TRR/OkQKGUdRlmOpjj8ZdUCGbHvsQ7G+QfuKf07frHx9/c/ulh+0vH6fyLeIoOOH50ONuVbLhe2XV6asNia5XNBTEpZi0HPS1pyCaDFZLWNLeNvAk7J0l3BamOL4E0DpuM2TRR/ugTQoi457EwTQIumieJPh0Cp6XDxqjfkkfn3R95we+nSpTJ8+HCpr6+XHmVl8vaX+2fgPPzjX8j7lUNSaVtkwBEXym4D/5aRH3SRKxDlz2OGk0ipaTFIE6QVBwG0mKx2smX8TcApWborWG1sEbxpwHTcponiT5cAWtQlh51pAmjRNFH86RAoJR0+s+RJmfL4d7NiuO7MW+Qbh17YKt/dJFx9x1PHRbt0kqkDd0+XUxuD7/XZm871gCPGhAo2pY1DnrCHEwGnkFKhWDsQKKV+sR1wxX4LW8bfBJxil1Jx3MAWwZtuDTpu00Txp0sALeqSw840AbRomij+dAiUig7VzKaxD5yTF4GaSTR80Ei59KhxMrjPEGdWTU1NTdquqrxcXkltFu5dTjdj3SFyVdlPU8voRqWX0aUNDJ08MPYJGdr3YEPeitNNqWixOOlTay8BtOilUfhzW8bfBJwKr7VE1MAWwZuGTcdtmij+dAmgRV1y2JkmgBZNE8WfDoFS0eH1M66SuYtmhkKglrOp46Zzb5evHfT1DJv799hNzu7ZNSPt+tX/T14d+cecM5v8S+S8m4b78zKcpy5uHHObjB52rj/ZuutS0aJ1DVeCD4wWk9Wotoy/CTglS3cFq40tgjcNmI7bNFH86RJAi7rksDNNAC2aJoo/HQKlosMRk/aXxoaGvAjcYJMq+P6sj0X+vM2xWdvS0mopncr425YuckG/vaXXYYuccvmCR6rQzef+UPp3HyiX3Tvascn1jyp7xpCzcxWxJq9UtGhNg5Xwg6LFZDWuLeNvAk7J0l3BamOL4E0DpuM2TRR/ugTQoi457EwTQIumieJPh0Ap6FC9je64W4dIWXlZfgQ7mmXz+u3yyZLPZPJHNenZTH+pb5Qv11Zk2K9vqJBz+u8ptUPey0h3L/beYz/58OMVTqDLv1RPlXlq0eNy24wb3eKtPpnZlImkFLSY+URcFSsBtJislrNl/E3AKVm6K1htbBG8acB03KaJ4k+XAFrUJYedaQJo0TRR/OkQKBUdhp3h1KE8FVR6q17ufKdDxj5NQey+Vt1HGo77KChLvHsuqYBXTVVtYLmla5bIw6/eHfmteYHOSjyxVLRY4s1kxeOhxWQ1sy3jbwJOydJdwWpji+BNA6bjNk0Uf7oE0KIuOexME0CLponiT4dAqejQu4eTf9mb93rFC2tkztZeUlfZISeuh7bWyJNf25x11tRLExZnDTJlc5wrMJXNxqb0UtGiTW1Wqs+KFpPVsraMvwk4JUt3BauNLYI3DZiO2zRR/OkSQIu65LAzTQAtmiaKPx0CpaJDNZMo355Jq+etlxlrds07s+nFrQ1y55jM5XVetmr53JyJy7xJnBsgUCpaNIACFwUmgBYL3AC+29sy/ibg5Gt4Wy9tEbzp9qXjNk0Uf7oE0KIuOexME0CLponiT4dAKenwmSVPypTHvxuIQQWb/ue9TnJct86B+W7iiu0N8p1RImW+/ZzcfPV59LCTZOqY+7xJnBsgUEpaNIADFwUkgBYLCD/g1raMvwk4BTS+jUm2CN5029JxmyaKP10CaFGXHHamCaBF00Txp0Og1HS4eNUb8sj8+2XekpelqbnRQaKCTROXVaQ3CHc5vb+tUnbp0CLdOoqUp8puaW6RCw7fLg09Uwk5joeufkoG9xmSowRZOgRKTYs6DLBJBgG0mIx2cGthy/ibgJPb4pZ/2iJ4081Mx22aKP50CaBFXXLYmSaAFk0TxZ8OgVLW4a8XPioT77heTp61Tf5zr54ZeNQb6E5c90upa94ot3X5ngzq1yI9J98hs2o+Ss+S8u795BrzZjmXhPnPUtaieVp4jJMAWoyTbnTftoy/CThF10ZJWtgieNONR8dtmij+dAmgRV1y2JkmgBZNE8WfDoEk67Ctm2w//PDD8vi118ijg/pmoFEzmUZ+8kt5v3KIlNW0yLKnOsm+A7/YRJw3y2XgareLJGux3SBwo0QQQIuJaIZ0JWwZfxNwSje53Se2CN50K9NxmyaKP10CaFGXHHamCaBF00Txp0MgaTo0FexRwaYbL79cFh60t9SUl2WguXzVBHm6+uuy5247ZP7vu0jv3juDTYpFdXV1Rtm2Br0ynHGRk0DStJizsmSWNAG0mKzmtWX8TcApWborWG1sEbxpwHTcponiT5cAWtQlh51pAmjRNFH86RBIkg79m377l7TdfO4P5YwhZ+d9zKlTp8r48ePllj7dZNyX6jLKf/+ji+UnHa+XYf2a5bnHquWTxsXOnk/z354tDdt3SGXHKhk+aKRcetQ49mnKIBf/RZK0GP/TcockE0CLyWodW8bfBJySpbuC1cYWwZsGTMdtmij+dAmgRV1y2JkmgBZNE8WfDoGk6FDNbLrs3tF5HyHfht09evSQdevWSY+yslazm376yfHy7x2myZlHtshjD5XLrHf/mN6vKejG7NcURCW+tKRoMb4nxHOxEECLyWopW8bfBJySpbuC1cYWwZsGTMdtmij+dAmgRV1y2JkmgBZNE8WfDoGk6PD6GVfJ3EUz8z7C0cNOkqlj7gssN3HiRJk8ebKTFzS76eA1v5EvH7ufPP3LWln090Vy5fT8s6UeGPuEDO17cOD9SDRLIClaNPtUeCtGAmgxWa1my/ibgFOydFew2tgieNOA6bhNE8WfLgG0qEsOO9ME0KJpovjTIZAUHY6YtL80NjQ4j+BfSud9rorKSpkzcZk3yTm/4oorZPr06c7Mpsl96+Tsnl0zysxYd4i8f+H/ym2Tdu7RlCvA5b1/rgBXxg24aDOBpGixzQ+Cg6IngBaT1YS2jL8JOCVLdwWrjS2CNw2Yjts0UfzpEkCLuuSwM00ALZomij8dAknQodqY+/jJQ8Ub6Mn2LKrMy99bIjVVteki55xzjsyYMUNOqe4o/71fb+nToSKd5578/vpn5NvnH+BeijfAlU4MOMkW4AooSlIbCSRBi218BMxLhABaTFZD2jL+JuCULN0VrDa2CN40YDpu00Txp0sALeqSw840AbRomij+dAgkRYdhAkAq2KQ29XZnOKlA1TfGnCfz//AHuXvvnnJct86BCJ6uHCUXzpomVbVVomzUoQJc/iNbwOulCYszAlx+O67NEEiKFs08DV6KmQBaTFbr2TL+JuCULN0VrDa2CN40YDpu00Txp0sALeqSw840AbRomij+dAgkRYe5lrh5n8td4rZ182fy9fMvlLo/zZJJ+3xJasrLvMWc8/UNFfLfLeWydPR2GTLwMPnryjedZXtq1pK7fK+VkS+BGU4+IDFeJkWLMT4irouEAFpMVkPZMv4m4JQs3RWsNrYI3jRgOm7TRPGnSwAt6pLDzjQBtGiaKP50CCRFh2HfUqc28R642/5y5plnytgVS7LOanrx04Fy24mrpGOvLTpY0jZugCudwElsBJKixdgeEMdFQwAtJqupbBl/E3BKlu4KVhtbBG8aMB23aaL40yWAFnXJYWeaAFo0TRR/OgSSpMOnFj0ut824Metj3HzuD+XEAV+Va4cfIrdX7Qgsp2Y13bnhJFnw9ZlSWbtzE3J/wWxL5/zl1PVDVz8lg/sMaZWlluZ595FqVYCEyASSpMXIlcegpAigxWQ1py3jbwJOydJdwWpji+BNA6bjNk0Uf7oE0KIuOexME0CLponiT4dA0nSoZjo9/OrdMv/t2enlb8MHjZSLh1/pzGwaNWqU3LP5w8CNwdWb6G6uO0z2OfUeKQtYYheVjwpwnTHk7LRZtrpdetS4wKBU2pCTUASSpsVQlaZQSRJAi8lqVlvG3wSckqW7gtXGFsGbBkzHbZoo/nQJoEVdctiZJoAWTRPFnw6BJOvQO4tIff865ZRTZOnSpbL2kH1aPeo3V02WxUMWSr/hT2oFm9x9ndSnG+Aa2vfg9H2eWfKkTHn8u63epOfOlvIHp9KGnIQmkGQthn4ICpYEAbSYrGa0ZfxNwClZuitYbWwRvGnAdNymieJPlwBa1CWHnWkCaNE0UfzpEEiaDr1BJvd5VqxYISeffLK8++67cu1uXeQ/9+rpZjmfl6+aIEuP+7XsNvBvGelRLl6+6S1p6dAcuEwu7P5S2ZbfRamHzWWTpkWb28L2Z0eLyVKALeNvAk7J0l3BamOL4E0DpuM2TRR/ugTQoi457EwTQIumieJPh0ChdOgNLGVbqqaW0XXesasce+yxsn31apnct07O7tm11WNeeWAHWb1nY6v0sAn53kQX9Q16Ye9LuUwChdJiZi24goAIWkyWCmwZfxNwSpbuClYbWwRvGjAdt2mi+NMlgBZ1yWFnmgBaNE0UfzoEourQGyiKej9vYKlh+w6p7Fgle/TuL+9/+E6gq81rtsrKX30u+2/fKvfs31f6d6zMKNdcXiHl/Q+Ql68/R6Y+871Wy90yCue4yPcmuhGT9nf2k8rhwsnKF7jKZ297flQt2s6L54+PAFqMj62OZ1vG3wScdNRRgja2CN5009FxmyaKP10CaFGXHHamCaBF00Txp0MgjA6DAkVqn6Mom2XnewOd2gtJHe5m3yrYtHT6GmcJ3Xf37CE1AZuAV5w/Vrpe/++O3eJVb8gj8+/P2Gz8gL0OkiXLFzj5uf7JtRROBdiOnzw0l3lG3ksTFgcuy8soxEUggTBaDDQkEQKGCaBFw0Db6M6W8TcBpzYKpVTMbRG86fai4zZNFH+6BNCiLjnsTBNAi6aJ4k+HQD4duptlZ/N945jbZPSwc7NlO+n59kByg02qsAo4bfjbJml6Yr3c8KVugUvoPi+rlF63/VhqTzgp8L7eWVhB9Xc3+lbGYerPDKdAzMYT82nR+A1xCIEsBNBiFjAFSrZl/E3AqUACS9ptbRG8ae503KaJ4k+XAFrUJYedaQJo0TRR/OkQyKXDfIEi9365ZgipMmH2QHKDThXLdsjFf94mp3TfNXBWU3233tLn509IVa/e7u3zfgbNfooyQytM/VUl8i3Ny1tRywvk0qLlaHj8diaAFtsZeJ7b2TL+JuCURwi2ZNsieNPtScdtmij+dAmgRV1y2JkmgBZNE8WfDoFcOgwbaNl7j/3kV1c8m/X22WYIqSBTz/e3OHYbayrk/DfL5LSmqsBAkyrU4fTzpNMNN0t1dXXWe+XL8M5+ylfWzTcVeHP98RlMIJcWgy1IhUA8BNBiPFx1vdoy/ibgpKuQErOzRfCmm42O2zRR/OkSQIu65LAzTQAtmiaKPx0CuXSYLVAUdJ8Hxj4hQ/se3CpL+R85ZbCzVM6dxeQU2tok18/eIceX1bay8Sesb6iQ8Qd+Jr/+6Xs590dS92pLMMp/X+91vj2obj73h3LGkLO9JpxHJJBLixFdURwCbSKAFtuEz7ixLeNvAk7GpVOcDm0RvOnWoeM2TRR/ugTQoi457EwTQIumieJPh4Crw4bGBjnt1NPSARt3s2zvfke5/OdaTnb0LftJU3OjY678HfXnTXLzhl1zuXPyVKDpt5Vb5LfHlkll12qZM3FZKxsTG5q3cpolIdvSvIuHXxkYbMvihuQsBFwtquxRo0altZilOMkQiI0AWowNrZZjW8bfBJy05FF6RrYI3nTL0XGbJoo/XQJoUZccdqYJoEXTRPGnQ8DVoT/gpHwd8b19QrusqKzMCAht3fyZNP7mCWl47RV5vLJJftr9NcfXSa9skn/ZtEtOv1tSQalfba+V/x26XnbZp6MzOyoooBW0IbjXcZyzjnSW5nnrxnlrAq4WVQ4Bp9Z8SGk/Amix/ViHuZMt428CTmHUYEEZWwRvuinpuE0TxZ8uAbSoSw470wTQommi+ItKwJ0dNHfRTFEzjyo7VonaTNudsZNrD6egmU8vTVjsLHmrf3GmbL3haqc6G5qapK5DB/naodvk0BXbc85sUoGmn378qdzXvYfseWaDY6/eWtehvEIeuPIJGdxnSPoR2VcpjaJkTugTS6Ypi/5B0GKymtCW8TcBp2TprmC1sUXwpgHTcZsmij9dAmhRlxx2pgmgRdNE8ReFQL49iS48cZwc0/84GfvAOa3cBgWb3BlOW+fPk/px30rbqCBSTSpolOu4+6MNsqJ+q8xo6iBd+u8u/UbvXH7n2gTNVMoVDFN2bh2DZka5fvlMFgH6xGS1h821QYvJan1bxt8EnJKlu4LVxhbBmwZMx22aKP50CaBFXXLYmSaAFk0TxV9YAmFnB6mg05x3Zsn7H76T17Ub2PngpBFS++nH6fL5Ak7D33xfVjQ1O+X7nrSr9D64h3TouPNaJao6jPvKv6X9uSdhNzR3A2GuHZ/JJUCfmNy2sa1maDFZLW7L+JuAU7J0V7Da2CJ404DpuE0TxZ8uAbSoSw470wTQommi+AtL4IpHz5MlyxeEKq5mF015/Ls5y6olb/de/phU3vew9HjujznLupnfX/mJ/GT9JvdSBn6jh3Qb0NnZrymd+M+Th65+KmM5nbuhub9ctmt3qV+2fNKTQYA+MRntQC1E0GKyVGDL+JuAU7J0V7Da2CJ404DpuE0TxZ8uAbSoSw470wTQommi+AtLQG0G7i45y2ejZi6N3HeUE3TKZnPdmbfIvv87R/aY92I+d7KmqVHuWPEP+dnn29JlVbCpbt8u6WvvibrniINHydQx93mTJcwMJ2Wr9qUKertdhjMuEkGAPjERzUAlUgTQYrJkYMv4m4BTsnRXsNrYInjTgOm4TRPFny4BtKhLDjvTBNCiaaL4C0Mg6uwgd0mau8H4/LdnS2NDg6h0tcH4JXt8TXpPukNkzfs5b+9uCH7Lmk8zyg2+vI907lOdkea/cOvgTVd7OM1544XAGVHecu5SP28a58kkQJ+YzHaxsVZoMVmtbsv4m4BTsnRXsNrYInjTgOm4TRPFny4BtKhLDjvTBNCiaaL4C0NABZyOu3VIYKAm2wwm/5I05aOmqlbUBuGbvvNtKW/O3ORb1ePutSfK9MaxMq7yv2T15hfk1xs2y9qWlowq5prZlFEwdeGvQ9h9qPzL8fx+uU4OAfrE5LSF7TVBi8lSgC3jbwJOydJdwWpji+BNA6bjNk0Uf7qMuqmuAABAAElEQVQE0KIuOexME0CLponiLywBtaQu7OGdXbR182fS+JsnpPHvK6Vp2VKRd5e0clPfVC7/suY/5Onqr4usv0dkU/D+T2FmNrnOvXVw09Sn/017/oDZjWNuk9HDzvWacJ5gAvSJCW4cy6qGFpPV4LaMvwk4JUt3BauNLYI3DZiO2zRR/OkSQIu65LAzTQAtmiaKv7AEomwa7i5J2758uWy84IzA2Uzuff+2pYt86/P75P3KISL/uCm1EcqP3az0Z1WPDnLQ2D0DZ1ilC/lO3Dr4kp3LbEv9Lj1qXMZG40G2pCWLAH1istrD5tqgxWS1vi3jbwJOydJdwWpji+BNA6bjNk0Uf7oE0KIuOexME0CLponiLyyBsMvRlD93Sdq6874WOKPJveeLnw6U8xr/V6S8Q2o/p2+LbP+Dm5X+3HX/jnLuf4yWzds+l/c/fCf0xuVuHdKOspy4S/2yZJOccAL0iQlvIIuqhxaT1di2jL8JOCVLdwWrjS2CNw2Yjts0UfzpEkCLuuSwM00ALZomir8oBPzL0VxbtSxNHWXlZeIuSat/caZsveFqt0j6s7m8wpnxNG3NaJlSdatI4zKRj04Vaf5Huox70mN4tfQf1ScdwFq86g15ZP79MnfRTLeI8+lfFnfzuT+UM4acnVGGi9IkQJ9Ymu1ajE+FFpPVaraMvwk4JUt3BauNLYI3DZiO2zRR/OkSQIu65LAzTQAtmiaKv6gEVNDnrpdvlyXLF6RnG6mAz9D9Dpd/PfHm9JK0tccdLmWbNqTdt1RVy+9ajpE/rdxffllxmjRW9Mm5X5O7OXi24NHrf/+z/HLBw+J/Ax7L4tLIrTihT7SimYviIdFisprJlvE3Aadk6a5gtbFF8KYB03GbJoo/XQJoUZccdqYJoEXTRPGnQ8DV4dbGLTLquJOlrq4uw82mh6fL9ntuy0i7fvX/k591unxnWst6kY9Ts58CltCpAmpz8JNPOVPCBo9YFpeB2qoLV4vqoUeNGiXV1dVWPT8PmxwCaDE5baFqYsv4m4BTsnRXsNrYInjTgOm4TRPFny4BtKhLDjvTBNCiaaL40yGQS4fqrXSbjj8iY6PwBZ/3kVMbnt95q+3PpjYHvzZwCd2IESPknofuliH7DtWpFjYWEsilRQtx8MgFJIAWCwg/4Na2jL8JOAU0vo1JtgjedNvScZsmij9dAmhRlxx2pgmgRdNE7fBnegaQX4flq1ZJw+I3paxrV9n64D2tNgo/YfWDsrjjgJyzmg4aM0w6DtgoLRVlUtmxSoYPGikXD79ShvY92I5G4im1CPi1yAwnLYwYGSCAFg1ANOjClvE3ASeDoilmV7YI3nQb0XGbJoo/XQJoUZccdqYJoEXTREvXn3qr3MOv3t1qjyMTQZwMHfbuJZu+8+2MGU1eqjPWHSJXfdJbZOuPvcnp89raWvnS6TVSt2+XdJr3JNseTt4ynNtLIEOLLKmzVwgJeHK0mIBG8FTBlvE3ASdPo9t8aovgTbcxHbdpovjTJYAWdclhZ5oAWjRNtDT9PbPkSZny+HezPpx6k9yoA06VmqrarGVyZagZUzP/OEsaGhtk5A9uzFVUBv1lhaxt2fkWO39BtYRu6/APpaKmgz8r4/qhq59Kb0aekcGF9QToE62XQGIAoMXENIVTEVvG3wSckqW7gtXGFsGbBkzHbZoo/nQJoEVdctiZJoAWTRMtPX/qLXJjHzgn1INVVFZmXbqWaxme0uHzzz4nI36QPailKvD9lZ/IT9ZvalWX7t27y+233y5Ld/2zzF00s1W+P+HoYSfJ1DH3+ZO5hoDQJyKCpBBAi0lpiZ31sGX8TcApWborWG1sEbxpwHTcponiT5cAWtQlh51pAmjRNNHS83f9jKtCBXH8T65mPQ3suX/gMrygt8WtOOwA2aWlwe8m47rH6+9lXKuLAQMGyMsvvyx9+/aVEZP2l8aG3D6UjQqMzZm4TJ1yQCCDAH1iBg4uCkgALRYQfsCtbRl/E3AKaHwbk2wRvOm2peM2TRR/ugTQoi457EwTQIumiZaev7BBnDBP3tLcImXlZU5R715KD1/4Kzlx6QQnveaf+X5/w998X1Y0NWckH3LIIfKnV//PWcqnZlAdd+uQtP+Mgr4LVY+Xv7ck5xLAXDOyfO64LCEC9Ikl1JhF/ihoMVkNaMv4m4BTsnRXsNrYInjTgOm4TRPFny4BtKhLDjvTBNCiaaKl5U8FXY6fPDS2h5ry1Wflx99tkLu2nOXcI1uw6cK3V8lzW7c7ZdSm4Odfcp7sMrIivYG5ylDL5Oa/PTvrDCdvsCvbDCe1fPCR+fen/eRaIuhUhn9KjgB9Ysk1adE+EFpMVtPZMv4m4JQs3RWsNrYI3jRgOm7TRPGnSwAt6pLDzjQBtGiaaOn5UzOcGrbvCDVzyP/0ZZ83yNkLtznJr/cplw92r5KyxtQsp49b5JN3TpLBa4+VST1+KH067gwm+e3V9ZOffCZXfrjeyRozZowcN/ZoeXTOT4KKhk4L2sMp38bo3hlZoW9EwaIjQJ9YdE1WshVGi8lqWlvG3wSckqW7gtXGFsGbBkzHbZoo/nQJoEVdctiZJoAWTRMtPX+6ezipYNMj/9dB6jq0fmNcc3mFlDc35oS1oaFJ7lq9Pr1J+KxZs6T3oJ5y2b2jc9qFyfS/pW7pmiUZfr2zobz+/HbePM5LgwB9Ymm0Yyk8BVpMVivaMv4m4JQs3RWsNrYI3jRgOm7TRPGnSwAt6pLDzjQBtGiaaOn5e/3vf5Zx08/P+WD+AI26vv6PW+X4stqcdkGZpyx6X15v/GKvJrUp+Pz586Wurk50g1/e+wTNVArrN2hmlNc358VPgD6x+NuwVJ4ALSarJW0ZfxNwSpbuClYbWwRvGjAdt2mi+NMlgBZ1yWFnmgBaNE20NPz59zIKeip/kCldZkezjJlTL5ds2yWdFOZkxfYGOX3ph7K2pcUp3vekXWXEuUfJhNNvl8F9hjhpuTYw99bH3XvJ3dPJvb54+JUytO/BraqTy6+3cLa9n7xlOC9uAvSJxd1+pVR7tJis1rRl/E3AKVm6K1htbBG8acB03KaJ4k+XAFrUJYedaQJo0TTR4veXby+jrE+YCjQd+ZfNcvXazoHL6Px2asncZ83N8lljmays3ywTVm1wgk0q0PSlw+sy9oxSs5JO2O/kSBuYvzRhcfrtdTVV2WdaRd0Y3fXrfx6uS4MAfWJptGMpPAVaTFYr2jL+JuCULN0VrDa2CN40YDpu00Txp0sALeqSw840AbRommhx+1Mzm8Y+cE6kh2ipb5Rz5m/NOaNpxPIt8s7na6RHWZlsTP23IxVo8h89hlfL3if2zgg0ecuo/ZOunH5u1rfQectGnYnEDCcvPbvP6RPtbv8kPT1aTFJriNgy/ibglCzdFaw2tgjeNGA6btNE8adLAC3qksPONAG0aJpocfsLu5eR+5SVn2yXe+ZXSJ8OFW5Sq8/rl6+Wn32+8011rTJTCWpGU6+hXaVDp/KswSZlp/ZPUsfcRTPFu3zOSfT9E3WvpaDnDrpHVL++anFZBAToE4ugkSypIlpMVkPbMv4m4JQs3RWsNrYI3jRgOm7TRPGnSwAt6pLDzjQBtGiaaHH7CzvTRz2lCsh888V6uaChS+BDv/zpZrn972szNgD3FnSXzqm0svIyb1bguZq1dP/lj2e8TS6wYCrxgbFPBO7VlK28/y112crxlrpsZEonnT6xdNqy2J8ELSarBW0ZfxNwSpbuClYbWwRvGjAdt2mi+NMlgBZ1yWFnmgBaNE20eP25exkFzezxP5Uqs3bZYXL1n3eVi3v/ScqbG/1FpMfr77VKq+rRQfodXyd1+wYHqVoZ+BLU/kkv/PVZuW3Gjb6cLy6D3kL3RW72s6cWPR6L3+x3JCeJBOgTk9gqdtYJLSar3W0ZfxNwSpbuClYbWwRvGjAdt2mi+NMlgBZ1yWFnmgBaNE20uP3lm+HUtL1c1iw5Xlb/dbzI9kVyymffkkcH9W310Hd/tEFuWfOpk15bWysVezRK3xF10rlPdauyURLUkrZLjxrnmDz86t3ifwudynPfaBfFr1tWzXRy/TZs3yGVHatk+KCRzj3b4tf1z2fyCdAnJr+NbKkhWkxWS9sy/ibglCzdFaw2tgjeNGA6btNE8adLAC3qksPONAG0aJpocfsL2stIPVFDfaWsXny6/GPZN0U2viRSf4fc0muHjPtSXasHfvKTz+TKD9eLms3U86DOsvuXu4lUlbcq15YE7ywmNTMr11vodO8Tl1/d+mDXPgToE9uHM3fJTwAt5mfUniVsGX8TcGpPVSX4XrYI3nQT0HGbJoo/XQJoUZccdqYJoEXTRIvbn38voy3rdpEVr39b6j86RmT9IyJbfyz9O5TLvQP3kC/XBm8UPqB+lfQctot0G9A51N5MuYi5y/vcT29Z9lPy0uDcFAH6RFMk8dNWAmixrQTN2tsy/ibgZFY3RevNFsGbbiA6btNE8adLAC3qksPONAG0aJpo8fnzz+RRexnd/OMfyd9ev0IaV6yVsm2/lJaGN5wHu6VPt8BZTe5Tn3Zsg5RlCUS5ZfyfbjBJfbpHmE3EeWOcS4tPkwToE03SxFdbCKDFttAzb2vL+JuAk3ntFKVHWwRvunHouE0TxZ8uAbSoSw470wTaS4v+oIbp58BfNALevYoaGxpEvQFO7VU0ZMe/yLT/WCiLVl6U4fCU6o7y/X16Sf+OlRnp3osZhx8hP+3+mjfJeZOdCh65QaWMTN/FoQOOk/XbP5IVHywLPTNq3q2tNyb3ueUSApEItFefGKlSFLaSAFpMVrPbMv4m4JQs3RWsNrYI3jRgOm7TRPGnSwAt6pLDzjSBOLWYLajR1o2dTTNIir8NGzZIXV3rPZHaWj/Vxi0dmtP7HPnfxqb2Z9rw9iBZ+X97pDYC/7VI8z+cW6qlc/tWVcqlfbrKcd06Z61GS5c62fWx38nxD4wUFbwKE1xSAS5voOv8IZemNiJfI1sbt8idb9ycEXDK5U+9tS6O/ZuyPiwZJU8gzj6x5OHxgEYJoEWjONvszJbxNwGnNkulNBzYInjTrUXHbZoo/nQJoEVdctiZJhCXFp9Z8qRMefy76er6gwY3jrlNRg87N51v64kK/tz/0g/l00/XOwgUp7rduss1J94oZww5OxBLmNliKtg3bdYUWbJ8QYaPvffYz5lB1LStWbZ+2lfe/kXX1I7gC50gk3qb3CWdyuUru9bI8F1rpSY1MynX0eH086TT+PFS3bmrqDodP3loruIZeSpQpA43WOTqsKWxWe54+yYnGJVhEHChglZzJi4LyCEJAvoEXC0qD6NGjZLq6ra9WVG/JljaTgAtJksBtoy/CTglS3cFq40tgjcNmI7bNFH86RJAi7rksDNNIA4tLl71hox94Jy8VbV90+dsb4RzwXn3KPLPFlNlVH7QbDEVxPrB4zc4s4RUAMs9KioqZePqTbJ+fhf5eOnG9EwmlX/RLp3k5r16S11lB7d49s8BQ6TLpP+WjgMHZpQZMWn/rIEib8AxKFCkdPiHZ/8glak6/qnxjzLnjRcyZjll3OifF14+QfmkQUCHQBx9ok49sIEAWkyWBmwZfxNwSpbuClYbWwRvGjAdt2mi+NMlgBZ1yWFnmkAcWswXSHGfweaAgX8GmMvE/3nzuT90kryzxfxlvLPFVGDq0rvPSgdrVKCn/h/bZNWcDbLxb6nZTP9cLuf6CLM3k1u2ubxCam6YJJ3HBM9Mc9vdG1xybb2fQe3u6rChsUH2Hb4PAUsvMM7blYCrRXVTZji1K3pu5iOAFn1ACnxpy/ibgFOBhZaU29sieNO86bhNE8WfLgG0qEsOO9ME4tBirpku3voHzXTx5pfy+VfvPDy9jC7Xc9bUdJYtWzani7gzlvxvcXNni6mgzzOPPylbN+yQTR9uk43LtqdtvSeHVJTLfw3YQ76c541yKshU3v8AqTjsSOl45Vhn+ZzXj/dcBbsuu3e0Nynw3K2rN9Ovw1nv/jFjSaa3rDr3Btn8eVxDoC0E/FpkSV1baGLbFgJosS30zNvaMv4m4GReO0Xp0RbBm24cOm7TRPGnSwAt6pLDzjQB01oMu5ePOwvG1k2fj/jePpGb0g02KUP3zW/q/NN3N0tt45ek8z+6yJw5c1RSzkMtn5s6cPesZV5qqZdH92+RGf/zplT16p1RLt/+UflmbmULFAXp0L+MUAUo1Zv0Lh5+pQzte3BGvbiAgCkCQVo05Rs/EIhCAC1GoRV/WVvG3wSc4tdSUdzBFsGbbgw6btNE8adLAC3qksPONIE4tJj0GU75giamGfv9rft8nZx+x3B/cuC1G5hzMxu3NMnnq7bIZys3y8YVO2TH2iY3K++neuvcDV/qJmf3TC2tCzgWNm2V/xnWIp/vuXOT5Hm3vueUyhb4Cdo/ShlELa9s8umw0G2m6shhB4F8WrSDAk+ZBAJoMQmt8EUdbBl/E3D6os2tPrNF8KYbmY7bNFH86RJAi7rksDNNIA4tunv5qLr6AybetKC9fEw/n+tPJwji2pr+DDsLTN1X8VMzmHQCTMpeBZlO7VorZ/Soy7p8bnnjDvnRwB3y/n41GXs/vfy9JfLiO8/nXNqm9pjK9jY9df+wgaI4dKjuzwGBqATQYlRilI+LAFqMi6yeX1vG3wSc9PRRcla2CN50w9FxmyaKP10CaFGXHHamCcShxbBvqXtg7BPtsjTKv8zLHwTLFzQxzVz5C9rDSdVLHWqT740fbMm5B5NTMMs/PcrK5Bt1nVMzmfaVITWfZSm1M/nems/l91/pnA40uYXV8rX7L39ce08m10/Yzzh0GPbelIOAlwBa9NLgvJAE0GIh6be+ty3jbwJOrdveyhRbBG+6cem4TRPFny4BtKhLDjvTBOLSoj/IE1Rvd0+ebEuzgmyipqmZTbobWUe9V67y/pk+Xj5tncXk3LfjaXLmXp3kvKZVcnSXtVJTXparOrKhoUm+t+9WWXlAbWA5NftMHXMXzQzM9yaamKkWlw699eQcAmEIoMUwlCjTHgTQYntQDn8PW8bfBJzCa6KkS9oieNONSMdtmij+dAmgRV1y2JkmEKcW/cvYctU9rllG3uV9ue5vImji969mej0y/36Z//ZsaWxoEDfAdvbQb8qdN/1YZsyY4TcJda2WyY2orZJTeg6TxpaesqWxOjWT6W+yb82mvPZrmhrludot8uShnaRll8qs5dXss2t+er5Tb38h/wwx9VxzJi7zF4t0HacOI1WEwtYTQIvWSyAxANBiYprCqYgt428CTsnSXcFqY4vgTQOm4zZNFH+6BNCiLjnsTBNoDy2GXWL30NVPyeA+Q0I/on/WUJBhrg3MvYETE0ET7/2zzWBaO3+rt1jo8/126SPf7naUfKXmPSew1FxeIeXNjbIltQwvzGymp7vUy8wBFdLvhK/IQf0Ol0dn3Z313upNcqMOOFWOnzw0cA8ur6HLsK1vG2wPHXrrzTkEshFAi9nIkN7eBNBiexPPfT9bxt8EnHLrwJpcWwRvukHpuE0TxZ8uAbSoSw470wTaQ4smZxl5Z001bN8hlR2rZPigkRK0LE8FpI67dUir/YmyMXz2XxdIXV1dtuzQ6SrA9s3vnyafLPks8pvk0jcp7yVnDhwhD3V+M53kPVEBJ3WooFPQofIrjj5ROp5+lpQdc5SUNZVLdfXOt8+p8tlmX3k55grWee9pIljXHjr01plzCGQjgBazkSG9vQmgxfYmnvt+toy/CTjl1oE1ubYI3nSD0nGbJoo/XQJoUZccdqYJtIcWTQUunlr0uNw248asCNTMnNHDzs3ID7q3Oysno6DnQi2v8wZePFmBp+pv8rz582Tea/Nk0aJF8tprr0l9fX1g2VyJZZUHS0unb4rseryc1bBYpvednKt4YF5LlzrpdOFYqfj6OVLduWtgGX9itpliYQKFiuWIg0fJ1DH3+d1Gum4PHUaqEIWtJYAWrW36xD04WkxWk9gy/ibglCzdFaw2tgjeNGA6btNE8adLAC3qksPONAFXiw2NDXLaqadlzIIxcS8VzFBLs8Ie2ZZm6W7+HSZo4q2bCqCooyy16fZ1Z94i3zj0Qm+2bNiwQV555RVZuHChvPnmmzJv3jxZt25dRpnIF30eF6kanrrpbmnTtbvlZqb2Ynqp01ZZ16lFzh78Ndmrew/p9NXTpXr4EWkfbT2JaylkUL1cHaq8UaNGGddh0D1Jg0AQAbQYRIW0QhBAi4Wgnv2etoy/CThl14BVObYI3nSj0nGbJoo/XQJoUZccdqYJtIcWj75lP2nKsvTLfR4V6FHL47JtPh02cOTf/DtXoCrbTCc3XX1++u5mWf7rtU41+/btK+rvr/aRepOcVI3caZ6axSQV+we6urLxBpnc64+t8pY37pDf9Nwqr/frKNt7VTn5KjCmjqj7XzlGIf7x70Xl3s81NbXZe3vo0K0znxDIRQAt5qJDXnsSQIvtSTv/vWwZfxNwyq8FK0rYInjTjUnHbZoo/nQJoEVdctiZJtAeWlTBotWPPSVHrmqRzytb5PeHVUtZ7c49iLzP4w8WefOClsZ5893zoP2E3KV4biBJlVXn6nADKOq6/h/bZMemRvls5Wb9vZccrzv/cZbIVRwj0jX1X8eRqcSanRnNm2Tojrflmo73yZjur8uCz/vIoh295IFDO8jx21+W29bssrOc599r994sKw+o9aRknuZil1ky+pV33yzv2/aiLDvMd9f20GG+OpAPAUUALaKDpBBAi0lpiZ31sGX8TcApWborWG1sEbxpwHTcponiT5cAWtQlh51pAvm0mG1/n7D1qH9xpmyZfLOUbdqQNnmqfLNMP6V18ETN0mlKLRV7ZP79Mv/t2eIGNw7Y6yBZsnxB2t574g8iqQBS0LI8f9DEDTBt/GCLbPpwm2xctt3rVu9czWAq32dngMldIpcKLv13y0S5pOdLeX2qGUwDK3bOXPIWvm73TbJ8WGdvUsa5y2Dere9lpMdx0VY9ZKtTPh1msyMdAqYJoEXTRPGnSwAt6pKLx86W8TcBp3j0U3RebRG86Yah4zZNFH+6BNCiLjnsTBMI0qI/OKNmDWV7E5xbH38gYmtqE+36O28XeXeJWyT9qQIr151Zmb7ukHqj2o1jfpBadteUc1PwtIHnxA22uElBM5zUM/7lL3+R/33sp/L4rJ/L1vWNsmNtk2NSVV4uQ8pF/t7UImtbds56cn3l+syYvdSh/87lcU3rZWjDu5IKj0mHsnp5t3mw3Fb3n7JvzaZcrnLm/ajL5zLzmC45y7iZQYE2Ny/pn0E6THqdqV9pEkCLpdmuxfhUaDFZrWbL+JuAU7J059RGiW/atGny9NNPy5o1a5yNLvv16yfnn3++XHPNNbFsfGmL4E03Nx23aaL40yWAFnXJYWeagF+Lz//t9zmDPt43walNpf2zkVRg6prfrpNdl72Ztaq/qNwkvzqps3gDWarwZfeOzmoTNkMtLZt86p3y6quvyuzZs53/5syZE2h+0S6dZOrA3Z28DQ1N8tWlf5cVTc2BZZ3ELj903iAn5bvL3k0rZWjjX+XADm/JkE5LpX/1Stm7U0N2W42cKXUb5bUjWi+vC3IVFGgLKpfUNL8Oq6urk1pV6lXiBNBiiTdwET0eWkxWY9ky/ibglCzdOUGmyy+/POsbagYMGCDPP/+89O+f+vXT4GGL4A0ic1zRcZsmij9dAmhRlxx2pgm4Wly15QN5s/HVrEvXvPdVS9+Wf7IsMDB1+XP1Mro5+/Iv5af27p9Ly8FDpKbqi2V1YTcF99ZDnasZTk3bmuXzVVucvZd6bu4vS5cu9RdrdX1KdUd5dFDfjPS7P9ogt/wjtaSt8tCdm3t33kv2Lt8jHVjao/JDGVLztzbNWMq4YY6LKMEm5SbOPZxyVNNYlqtD5ZC31BnDiiMNAmhRAxomsRBAi7Fg1XZqy/ibgJO2RMwbqi+0w4cPl/r6eqmtrZWbbrpJRo4cKdu2bZPHHntMpk+f7tx08ODBsmDBAqMznWwRvOlWo+M2TRR/ugTQoi457EwTUFqc8vPvycwPZqQ30Fb38C5V856rvCEDDwsMTB34xqbADa+VTfros7d0f2Zm+tI9CbspuKqL2tzb3XvJuzzO9ZXv85CKcnlu2N6til320dWysuXLzmbeKrDUt9PnUvPPt8C1Kmwo4fOySqlo2pG+z5bU892a2rPprYN3LqO78MRx8uisu/Pe7YGxT8jQvgfnLZfUAvSJSW0Z++qFFu1r86Q+MVpMVsvYMv4m4JQg3R1zzDHiTtNXn0cffXRG7aZOnSrjx4930iZMmCCTJk3KyG/LhS2CbwujIFs67iAqpBWCAFosBHXuGURALYsb+8A5TpYK5nT4rEE6NKZmDVWUScX2FmnpIM55WZcqafpi26VWrio/2S6/XdgpI31DU5PUdUg58Bwdr7lRulx6uSdFRO3/dPzkoRlp7sXmNVuNvDmuf4dy2beqUr40oL/8oFOzlDc3urdIf56w+kF5cfcr0tcmTxSLP3baIrP6l8ltd8yUwX2GpN27e2a9+sqz0ty5Qio7VmXsmeW+ZS9tkDrxBgG9yxy9ZYrpnD6xmFqrtOuKFku7fYvp6dBislrLlvE3AaeE6G7hwoVy2GGHObW59tpr5a677gqs2YEHHuhM7e/evbusXbs2sIxOoi2C12GTy4aOOxcd8tqTAFpsT9rcKxcBdylbS32jfP+lRjm0Q/a9c4I2sHYCH6kA1Z3PNbV6w9q1e2+Wn2xLBVbWvJ+uQsX5Y6Xr9f/uXPv3gGrc0iQdVzbKqFe3yLodjfLsZ/W591RKe9154m4APrimSvrXVsug6irZq7qbs7dSc2pjcnUEBZpU+sFrfiNv9Pm6Og19qM3Pl1btyLqEUM1WeqGiXp4eKPLJ3jXODLJ8wSH/5utuZdyglPftffk2cndti+GTPrEYWsmOOqJFO9q5GJ4SLSarlWwZfxNwSojuJk6cKJMnT3ZqEzS7ya3mlClTRM1uUsesWbPkhBNOcLPa9GmL4NsEKcCYjjsACkkFIYAWC4Kdm/oIeGc3HTnvc7l5w66+Eq0vTzu2QcpqdwZvVK4KOF3xwpZWQZf7qzfJ746tlT/WnyrNrzyXdlR+8NFS/eP7nGV8U8beISpI1LdMpFvqvxv27CHHddu5/5MK1niXsz35yWfy23Wb5fVtO3a+Ta68l9RWb5YxHZrk9O67yrDO1VJX+cVsKhVgyhZcSlfGc7K+oUJ2q2w960kVWdPUKH8t3y7v1DbJBylE7/WqlB09OjkzvtTzH/XnTa3Y3djnc3lrcGqPqqryjM3RvTObPLePdKqCUurw7oEVyUECC9MnJrBRLK0SWrS04RP42GgxWY1iy/ibgFNCdOcup1N7N23evDlrrebOnSsjRoxw8k0uq7NF8FnBambQcWuCw8w4AbRoHCkOIxJQy7R+8PgNzqwbFTQZsmhz/v2XUvfwBpzKN+yQE5Zul3/ZlPkmtYVNW2X8oS3OUrjLlvSWy6q3ZNROBZO2pd4G1ym1zM0bVMoolONixfYG+c/3/iGX9umaDlDlKK6dpWYwXXdKKoiVChr5D7VJ99xFM52Am8pTQaeT11bJrqk1iP82MhWI26XSyRtx8CiZOuY+v7nWtX9GmPctfyYCWVqVMmREn2gIJG7aTAAtthkhDgwRQIuGQBpyY8v4m4CTIcG01U2PHj2cN9OpDcHfeuutrO42bNggu+22m5M/ZswYeeKJJ7KWjZJhi+CjMAlb9okZT0hlRSVvwQkLjHKxEOBLRCxYcRqSgDuzadPqPrJhwVq5at1auaR3t1DBnw0NTTL7001y0K610r9j602dVP5Xl/49vRTu/j12k7N7dg1Zs3iLuTOVDmjuKH06fDFLK+iuquw1wxuloWfHVtkq0HPPJb9K733VqoAnQb3Rz0QwKGgfJ89tJN9SPW/ZJJ67fWJDY4OcM2bnnmJJrCd1Kn0CrhbVk/LGxNJv7yQ/IVpMVuvYMv4m4JQA3an/+WtqapyanH766fLMM8/krFXnzp2dN9mpmU6vvPJKzrJuphJ0ruPjjz9O7yH13nvvSZ8+fXIVJ++fBFTbuW2gZqlVV2ffqwRoEIiTAFqMky6+8xGY8Ox1MnfB83LdM81yXGqvI3VEWX6Wy/+Fb6+S57ZuTxe5aJdOMnXg7unrqCdqNpQ6osyEaulSJ2W9dpcO+w+Wij33krP/fKts6rpzppKazVW+uVGemVMVWJWXWurlyf4tsnKfFJeAmU3KSM1umnzqnfK7pU/Inb+7JdCPSlRBoJP3PT1rftiM5euXOcEtVfeygLfmuenqTXUDd9s/rNtElaNPTFRzWF0ZtGh18yfq4dFioppD1qxZI/vss49TqQ8//FD69u2brAoaqg0BJ0Mg2+LGO2vpoosukkceeSSnu7CzobxOyspSm1mEPB566KH0LKqQJhSDAAQgAAFLCagZJNPeniDbNm6T//qDyJc9+zG5SNwgz8aW1CbezWUZeyO5ZYI+v7/yE/nJ+k2tsn7Tv5ccu1tXJ6iVbfNudc9/7KhKbRbeXdY1d3N87N9pubPh95ItXaWhZV1gXVVBtfTtRwN3yN9Teyupt7zddOS0dB0WfDJHZn34ZPraPRnz0ia5ZNvOpYDK/jc9t8q8QdXppXBBgR3X9sID/kX61vRzLldt+UD+9PEL8sGnf3WzpV+3A+QrvUely6QzNE9+ueLBDP/Z3Kj7frN/PG/Zy3ZP0iEAAQhAAAKlTEB9b1KrY9avXy+XXXaZ86gEnEq5xRPwbN7pdGECTnvssYcomwEDBsjy5ctDPQEBp1CYKAQBCEAAAhEJbG3cItMWTXD2Fzrwd53k9tRb1rzHy59ulofXfJYxS+mU6o4Z+yWp4JA740gtPXtt/WZnQ2/vzCavT3XeI/VDSl2X3k5y054ny6CGTfJ2ZRfnurHvRqnoulWqajZJp67rpKJ6R+BMngefaWq1FO6p8s3y0xNqpbHDF7N/xg+73flyqIJBj/71R8491D/uTCA3ofKTnTOxdnSvcu7XIbXR+HG7nykzP5gReH9ld+IeZ8thPXfuzej6cT/dL6XutYlPN0DY2NCQ0537bDcd8j85y5EJAQhAAAIQgEB0AgScojPDQpOAN+AUZl8mnRlOLKnTbJw8ZkxNzQOI7HYjgBbbDTU3CiBw0h0HS8P21Iyg31XK/5XtcDbv/unHn8qv6jvJO5ubRZr/EWAl0j+1yfdFPXeVPhXlMr9rz9RspEGyeO9mWfnyDtn9+N2lsmWtY1dWWynTvv2z1HJvkd26rZbzHz5xZ7pnOZgK7jQ1B78VLvDmqcSTXtkkV2zs4gS7VNDr1t03yVsH7wxauTZqf6WZ499wlkxf+7PLZeG7L7tZeT/dpXJvr10iv1zwsMx/e7aoQI+7Ofc3D7tUBvUYkuFH/b+slme3dGiWsqbWm4tnFNa4UP5PnXZYaMtn/3VBUS4Xp08M3cQUjJkAWowZMO5DE0CLoVG1S0GW1LULZm7iEnBnIMW1h5N7n2yf3qBXKU/py/b8uumq437hhRccczaC1KWInQkCaNEERXzoErh+xlUy540XpLmhg3TduF0+r00t467u4Fx36JgKOP3zcGfNuNd777GfvP/hO85l45Ym57OiJrU3UupQZdWhlqKpwI33zWxH37Jfq+BS0/Zy8d7LMfb9c+GJ4+TRWXdnpA5MvU2v+9bm9PK3jMzUhffeR3xv514Lqoz/Wfx26lrtgTS078EZWer/Vf9+f0vXLJGHX727VUDq4uFXtrLPcKZ5MWLS/k7gyzXP9iwqMDZn4jK3WFF90icWVXOVdGXRYkk3b1E9HFpMVnPZMv5mD6eE6C7srCXvfk9hZkOFfTxbBB+WR9hydNxhSVEubgJoMW7C+M9FQAVMxt5/TkYQKFsQI8iPG1xSee5eR157/5vZVIBr7qKZQa6ypt187g/ljCFnyzNLnpR7Zt0mn366PmtZb8b9lz8pw/YcJlt21Mvxk4d6s3Keh33LW763xbn1znmziJlh+XmDbRFvUfDi9IkFbwIq8E8CaBEpJIUAWkxKS+yshy3jbwJOCdGdesPZnDlzpLa2VjZv3py1VnPnzhX1djp1TJgwQSZNmpS1bJQMWwQfhUmYsnTcYShRpj0IoMX2oMw9chHwB07cIJIbQMpmO2TgYbJk+YKMGU2qrBtw8gdcVODnrx8vlXHTz8/mMp3uLl279KhxMrjPEPHXMV0wy4n/3v6ZQVnMnCVzYWYGLV71Rs63xbn+/QE3N133UwUIL7t3dF5z0/fNe0ODBegTDcLEVZsIoMU24cPYIAG0aBCmAVe2jL8JOBkQiwkXEydOlMmTJzuuFixYIIceemig2ylTpjiBJpX51FNPyVlnnRVYLmqiLYKPyiVfeTrufITIby8CaLG9SHOfXATcpWFRZh+poNA9l/xKHpl/f6slZW6gyPXr3QPpgL0OcgJV2epz3Zm3yBlDz5aaqlqniBvcyVben64CYQ9e+FhGsrt0MF8QLezMoELONPIH39wAn/vA/mCbm14sn/SJxdJSpV9PtFj6bVwsT4gWk9VStoy/CTglRHfemUuXX365PPjgg4E1O/DAA2Xp0qXSvXt3Wbt252aqgQUjJtoi+IhY8han486LiALtRAAtthNobpOXgNLi088+5by5zl/YH9Rw81+asDgdGFIzmNwgkcpXS+CmPP5dt2j60/Wl9oH68OMVGZtxu4GqdOHUSdjgjmsTtH9Rtrq4Nu5n2GCN6RlT7v3DfqogXK5AX1g/SSxHn5jEVrGzTmjRznZP4lOjxWS1ii3jbwJOCdKdu6xOVSloltPUqVNl/PjxTo1NLqdTDm0RvAPP4D903AZh4qpNBNBim/BhbJCA0uIfnv2DTHt7gvPmunyzgYICO251/Eu/3CCTm+9+qqVfe+/WPyNQ5ea5n2GDO2559ekNhKlrf9AqW33CzHCKuieUvy6qPiYPf6DPpO9C+KJPLAR17hlEAC0GUSGtEATQYiGoZ7+nLeNvAk7ZNdDuOQsXLpSRI0dKfX29s5fTTTfd5Fxv27ZNHnvsMZk+fbpTpwEDBsjixYtbveWmLRW2RfBtYRRkS8cdRIW0QhBAi4Wgzj2DCLha/OWKB+WDT/8aVCQjLVdwxh/gyTD0XOTyoYqpOh33gwM9FvlPgwJhUYJW8259L+9NwvoLqkte55YXcHWoMPAWWcvFUODHR4sFbgBunyaAFtMoEnFiy/ibgFMi5PZFJZ5++mm54IILnKDTF6lfnKlg0/PPPy/9+/f/ItHAmS2CN4AqwwUddwYOLgpIAC0WED63ziDganHVlg/k0b/+KCMv6CLXxtQqINOwfUf6zXVB9iotTEAmbHDHvYc/iBXHjCRTATW3znx+QcDVoUoh4PQFF87anwBabH/m3DGYAFoM5lKoVFvG3wScCqWwHPddsWKF3HPPPaKCT2vWrHFmMvXr10/OP/98ueaaa4zObHKrYYvg3ec19UnHbYokftpKAC22lSD2pgi4WmxobJCKAS1y24wbs7q+ccxtMnrYuYH5pgM8YYM7bmWCAmFhg1ZhAmDqPv4lg+69/Z9BdfGX4TqTgKtDlUrAKZMNV+1LAC22L2/ulp0AWszOphA5toy/CTgVQl0JvKctgjeNno7bNFH86RJAi7rksDNNwK/F5euXpTemVrOVKjtWyfBBIyVoY29/XUwGeMIGd1QdsgXCwgat/LOj/M/lvc63EXm2unh9cN6agF+H1dXVrQuRAoF2IIAW2wEytwhFAC2GwtRuhWwZfxNwajdJJftGtgjedCvQcZsmij9dAmhRlxx2pgnk0mLUjam9AZ5sG3Sr+ocN8LjBnWy+1BvvJpx+uwzuMyQQi3qr29gHzgnM8yZGnZGkgmEPv3q3zH97dsbb9i4efqUM7Xuw1zXnIQnk0mFIFxSDgBECaNEIRpwYIIAWDUA06MKW8TcBJ4OiKWZXtgjedBvRcZsmij9dAmhRlxx2pgmY1GK2AI8/YBQlwNPW4I4btHK5+evS1hlJUYNybj34zCRgUoeZnrmCQDQCaDEaL0rHRwAtxsdWx7Mt428CTjrqKEEbWwRvuunouE0TxZ8uAbSoSw470wRMa9Ef4PHXty0BHt3gjgqEPTL//lYzksIsE/TXn+t4CJjWYTy1xKsNBNCiDa1cHM+IFpPVTraMvwk4JUt3BauNLYI3DZiO2zRR/OkSQIu65LAzTSAOLfpnJak6q2V0SQjw6AatTHPHXyaBOHSYeQeuIBCOAFoMx4lS8RNAi/EzjnIHW8bfBJyiqKKEy9oieNNNSMdtmij+dAmgRV1y2JkmELcWCfCYbrHS9Be3DkuTGk8VBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHouE0TxZ8uAbSoSw470wTQommi+NMhgA51qGETBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHouE0TxZ8uAbSoSw470wTQommi+NMhgA51qGETBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHouE0TxZ8uAbSoSw470wTQommi+NMhgA51qGETBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHouE0TxZ8uAbSoSw470wTQommi+NMhgA51qGETBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHouE0TxZ8uAbSoSw470wTQommi+NMhgA51qGETBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHouE0TxZ8uAbSoSw470wTQommi+NMhgA51qGETBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHouE0TxZ8uAbSoSw470wTQommi+NMhgA51qGETBwG0GAdVfOoQQIs61OKzsWX8TcApPg0VlWdbBG+6Uei4TRPFny4BtKhLDjvTBNCiaaL40yGADnWoYRMHAbQYB1V86hBAizrU4rOxZfxNwCk+DRWVZ1sEb7pR6LhNE8WfLgG0qEsOO9ME0KJpovjTIYAOdahhEwcBtBgHVXzqEECLOtTis7Fl/E3AKT4NFZVnWwRvulHcjruhsUFOO/U0qa6uNn0L/EEgFAFXi6rwqFGj0GIoahSKgwBajIMqPqMScHXI3+eo5ChvmoCrReWXv8+m6eIvCgG0GIVW/GVtGX8TcIpfS0VxhxUrVsg+++zj1HXBggXSu3fvoqh3oSu5Y8cOmT17tlONkSNHSlVVVaGrxP0tJYAWLW34BD42Wkxgo1hYJXRoYaMn9JHRYkIbxsJqocVkNfrHH38shx12mFOp9957T/r375+sChqqDQEnQyCL3c3ChQvTgi/2Z6H+EIAABCAAAQhAAAIQgAAEIACBYiCgJnwceuihxVDVyHUk4BQZWWkaEHAqzXblqSAAAQhAAAIQgAAEIAABCEAguQQIOCW3baiZIQJqTe/SpUsdb3V1dSwNC8nVOxWy2Jciqmm2LAkM2fAJLFZKWkwgXqoUgQBajACLorERQIexocVxRAJoMSIwisdGAC3GhlbLsRp7bdiwwbEdPHhwye6/ygwnLXlgBIGdBGzZ7I32Tj4BtJj8NrKlhmjRlpZO9nOiw2S3j021Q4s2tXaynxUtJrt9SrV2BJxKtWV5rnYhQMfdLpi5SQgCaDEEJIq0CwG02C6YuUkeAugwDyCy240AWmw31NwoDwG0mAcQ2bEQIOAUC1ac2kKAjtuWlk7+c6LF5LeRLTVEi7a0dLKfEx0mu31sqh1atKm1k/2saDHZ7VOqtSPgVKoty3O1CwE67nbBzE1CEECLISBRpF0IoMV2wcxN8hBAh3kAkd1uBNBiu6HmRnkIoMU8gMiOhQABp1iw4tQWAnTctrR08p8TLSa/jWypIVq0paWT/ZzoMNntY1Pt0KJNrZ3sZ0WLyW6fUq0dAadSbVmeq10I0HG3C2ZuEoIAWgwBiSLtQgAttgtmbpKHADrMA4jsdiOAFtsNNTfKQwAt5gFEdiwECDjFghWnthCg47alpZP/nGgx+W1kSw3Roi0tneznRIfJbh+baocWbWrtZD8rWkx2+5Rq7Qg4lWrL8lztQoCOu10wc5MQBNBiCEgUaRcCaLFdMHOTPATQYR5AZLcbAbTYbqi5UR4CaDEPILJjIUDAKRasOIUABCAAAQhAAAIQgAAEIAABCEAAAvYSIOBkb9vz5BCAAAQgAAEIQAACEIAABCAAAQhAIBYCBJxiwYpTCEAAAhCAAAQgAAEIQAACEIAABCBgLwECTva2PU8OAQhAAAIQgAAEIAABCEAAAhCAAARiIUDAKRasOIUABCAAAQhAAAIQgAAEIAABCEAAAvYSIOBkb9vz5BCAAAQgAAEIQAACEIAABCAAAQhAIBYCBJxiwYpTCEAAAhCAAAQgAAEIQAACEIAABCBgLwECTva2PU8OAQhAAAIQgAAEIAABCEAAAhCAAARiIUDAKRasOIUABCAAAQhAAAIQgAAEIAABCEAAAvYSIOBkb9vz5BCAAAQgAAEIQAACEIAABCAAAQhAIBYCBJxiwYpTCEAAAhCAAAQgAAEIQAACEIAABCBgLwECTva2PU/eBgJbt26Vv/zlLzJv3jx57bXXZNGiRfLuu+86Hvv27SsffvhhJO9Lly6VadOmyezZsx0/3bt3l4MOOkjOP/98ufTSSyP5ojAE/ASOOeYYmTNnjj858LqlpSUwnUQIhCGwatUqpy97+umnZc2aNVJdXS39+vVz+rJrrrnGuQ7jhzIQ0CFQVlYWymzEiBHyyiuvhCpLIQj4CWzYsMHRz8KFC53vgW+++aasW7fOKXbRRRfJI4884jfJef3iiy/KvffeK/PnzxfVh6rvkcOHD5cLL7xQzjrrrJy2ZNpNwKtFpUM1LomqxYcfflguu+yyUCAfeughxiWhSFHIS4CAk5cG5xAISeCkk06SWbNmBZYeMGCALF++PDAvKDFfR3/IIYfICy+8IHV1dUHmpEEgLwECTnkRUcAAARVkuvzyy9Nfdv0uVd/4/PPPS//+/f1ZXEPACAECTkYw4iQPgVw6ixpwuuKKK2T69OlZ73jttdfKXXfdlTWfDLsJ5NKi+nv84IMP5gWUbxzidUDAyUuD87AECDiFJUU5CHgIeAfw7mwkNdOpvr7e+WUq7Awn9avWiSee6HhWv2jdeOONzq9aq1evlkcffVRmzJjh5PFrrAc+p5EJuAFSFbz0/vKqZuqpGSjeY/Dgwd5LziEQioD6pX/kyJFOH1hbWys33XSTc71t2zZ57LHH0gMqFXRavHhxK92FugmFIJCHgDv4UoP0q666Kmtp1e8R+MyKh4w8BFydqWKqT9trr73SP0KGHeQr24kTJ8rkyZPVqai/z9ddd53st99+8s4778idd94pr7/+upM3YcIEmTRpknPOPxDwEvBqUY0j9t9//7QWwwY/f/GLX8i3vvUtx636Mb13797eW2Scq37T/70xowAXEAgikFo+wQEBCEQk8JOf/KTl5z//ect7772Xtkx19GotUov6DHukvqg4NqkBWoYv1z71pdnJV37V/TggoEMgFbB0dKQ+OSAQB4FU4DzdV6WWb7a6xR133JHOTw2wWuWTAAETBNTfSvUfGjNBEx/ZCKQCQC1PPfVUy/r1650i6rugq73UID+bWUa61yYVbGrZsmVLRr66VumuX+/3zYyCXFhNIJcWU8HPUGxSs5bQWShSFNIlILqG2EEAApkEogacHn/i8XQHn+3LsfrCkZpB5ZRLzTzJvCFXEAhJwA0GEHAKCYxikQgsWLAg3Zfl+oKr+jA1eFIBdg4IxEHAHZyrQRgHBNqLgDd4FDbg5P1BMShIr+qu0l1Nq/IcEMhHQEeLBJzyUSW/rQRYUpfqyTkgYILAHnvskd7sMcySuosvvlh+9rOfObdO/UqWdY8m7/r+1B8SlgGYaCzLfLhLQFmaaVnDt9PjepeFpIJPcuihhwbeecqUKaKWhqhDTds/4YQTAsuRCAFdAu7yErVM6eabb9Z1gx0EIhFYsWKF7LPPPo5N2GVM7ndGtYz9rbfeynq/Aw88UNSLZdRyqTDfLbM6IsMKAl4thl3e6V1SxzjDCpm0+0MScGp35NywVAkMHDjQecOcWs8fZtNw98tGvvLePwRs1leq6on3udw9nNR+YTNnzoz3Zni3joAb0FR7N23evDnr88+dO1dU0FMdKvDEniRZUZGhScANOKEvTYCYaRHwDvLDBJy85fMFBfjRUatJrDVSbzlU4wt1hNGiKufdNJyAkyLCYZoAASfTRPFnLYGwASQFSG3WXFNT47A6/fTT5ZlnnsnKTW3Ge9hhhzn5119/vaT2QslalgwIBBFwAwLqF9JevXrJsmXL0hvcH3TQQXLeeefJBRdcEGRKGgTyEujRo4fzZrp8v9R7+70xY8bIE088kdc3BSAQhYAbcFJa3L59u6xZs8Yx79Onjxx11FHOAIyZdVGIUjYMAe8gP18ASflTb/QcPXq041p9p1Pf7bIdU6dOlfHjxzvZqX2j5KyzzspWlHQIiDeYqRNwUj9Mvvnmm87fdPVSJLUJuXohyJVXXunMsgMxBLQItHVNHvYQgMBOAlH2cEpNnw69Ll9tSpn6n9v5L/XHA9wQiExA7d3kaijbp9pfR+mSAwJRCKh95lxNpYLneU3V/k2qPPuJ5UVFAQ0CrhZzfSqdups9a9wCEwi0IhB13xz14hlXo2o/z1yHd79PtdcOBwRy2zVdKAAADvlJREFUEUgtu0xrK+yYQb2UyNVjtk/1t1vplgMCOgSY4ZT6P4sDAiYIuEvqwqyzjzJryTsrIN9sKBPPgY/SI6CW1KnjlFNOETWjadddd3V+/Ve/Yk2bNs1ZCqry1a9Zb7zxBr9iKRgcoQhs2LBBdtttN6dsmF9T3Zmg+WZDhbo5hSDgI9C5c2dRs+eOPfZY5/XyHTt2lI0bN8rs2bPlvvvuc361VybsZ+cDx2WbCESdVRJl1lKU2VBtegiMS4JAVC2qh1ZL6n7wgx84s+eOOPII2avfXg6Ld955R37729/KjBkznGv1TyroJOPGjUtfcwKBUAR0olTYQAACrQm4M5xSezK1zvSleN88EuZtOqn/mZ1fH9TbxjggEJVAvl/z1a9grsZSg7Wo7ilvMYGov6ZG6SctxsqjaxLI1depPO9r5vm1XhMyZq0IRO0H1ZuJ3b+52d5Q597E+30x2xuN3bJ8QsA72y7XW2O9pHL1m6pcailnWq9qplO+8l7fnENAERAwQKCUCbh/0NvyqaaahjmiDKS8rxFPrd3P6T7qkpWczshMNIG26NS11Z1yrwKlrg/15ZkDAmEIeAdaYYKVqVl0js7UEk4OCLQ3Ae9gLMyPQ+1dP+5XnAS8ugozyE/t25T+e6sG87kO72Bf2XFAIBcB79/ksEvqcvlz87xBUgKfLhU+wxIg4BSWFOWKkoA7gG7LZ9gBvDtgV4GnfIf3y8m1116bs7j6JcGtf5gBXU5nZCaagNvObfkMGyD1g/B+Adb14ffJtR0EXL1G2cNJzTThgEAhCCidupoluF6IFii9e3q/04UZ5LOHU+lpIClPFFWLYevtHYuw2iIsNcq5BNjDKfWtg6N0CSxdulSqq6udt8J5n9Kf5r32n3ft2lXq6uq85oHn7t4kqcCTLF++PLCMm+jdl0ntN5HrbU1R9nty/fNZnASUXtXh16DSS9j0/v37O/aOQYR/2CciAiyKZhAI+5Y6735P+fq9jBtwAQGDBNQbv9QeOupIzTaWQw891KB3XNlIwPuWujB72UX5extlvycb2fPMmQS8WgzzxsRM69xXYf/W5/ZCro0ECDjZ2Oo8cywE3IBTaoaTpH41zXsPt3y+ANUTM56Qc8851/GXmm0ll156aV7fFIBAVAJRvgBH9U350iZwzDHHSGqfEUnt7SCbN2/O+rBz5851NmtWBVJ718mkSZOyliUDAnERIOAUF1l7/UbdqNlbPjXLXe66666s8K644gqZPn26k5+avSLqRyUOCGQj4NVWmOBnNj9B6QScgqiQFoYAAacwlCgDgRAEorylTrm7+OKL5Wc/+5njWQWoVKAq6PjOd77jvBVC5fFlI4gQaSYIeH9FTS2pkwsuuMCEW3xYQGDixImS2tPBeVIVeDr66KMDn9qrsdS+JM4bcQILkgiBGAmcccYZ8vvf/965Q66/vTFWAdclRsA7yA87q8T90THfGzsPPPBAUbOfw/6YWWJoeZyIBLxaNBlw8s5QTi2pk5kzZ0asGcWtJuCureMTAhBoGwG1d1OqM2kJuxGp2idHlVf/ZduAT20Yrt4IocqwyW7b2gfr3ASUvlw9sq9JblbkZhLwvkUp1550rsbUxuEcECgEAe/+JmH/VheintyzuAiov5nu388wezipp1N9pWujXiQTdITtW4NsSbOTgI4Ww5Bi0/AwlCiTjQCbhmcjQzoEIhJwA07qM+yhvvCqLxxqAKa+CPsP7xeSsJuX+31wbTeBWbNm5X2FrfqC7H7xDbPxs91EefogAiNGjEhrSA2S/Id3U/rUcjp/NtcQaDOBfG/7UpveukFP1d/xxq82I8fBPwl4A5lhA05eG/USBfUDo/dQ1yrd/dsc9B3RW55zCCgCXl2F0aIKUGULeLpEvW9KVD+C86OkS4bPsARYUpfqyTkgEJWAmrI6e/Zsx6xjx46yfft2ueGGG2TdunWSCh7JtGnTnDQ3b9SoUYFL5rz75qjp0jfeeKMMHz5cVq9eLY8++qjMmDHDuUdqMCevvPJK1GpSHgLO0k2lI7VJ8+GHHy4HHXSQqI3wP/vsM5k3b57cd9998u677zqklHbnz5/PHhHoJjIB9XKDkSNHSn19vbOX00033SQnn3yybNy4UR577LH0HiRqz7rFixdrbWwfuVIYWEVALVFSx+jRo+WII46QvfbaS9TfYKVB9fda9XXqb7Q6+JvqYOAfTQJqP7p33nknbf3pp5+K2htMHUpbl1xyiaM99d1QHdn23vQuR04Fl2T8TdfLgH4DZeUHK+W2H9wmr7/+umPPnncOBv4JIODVourvPv744wwtXnXVVRnjEb8W3b0VlW5POeUUUUs4d999d+dOSoeP/eqx9FhEJabesCjjxo0LqAlJEMhOgIBTdjbkQCArgYcfflguu+yyrPn+jNQsEznhhBP8yc51Pl/qS8gLL7wQ6k15gTcg0WoC3r3CcoFI/fIvv/71r0V9ckBAh4AKoKu9v1TQKehQwabnn3+egGYQHNLaTMDdEyefIxV8f+CBB/ibmg8U+VkJeDfyzlrIk5GaBeC5yjzN9zc67J5QmV65soVAPv34Ofi1+OKLL4rakynfoV4K8uMf/zhr8DSfPfl2EyDgZHf78/SaBH7xi1/It771rdDWuQJOyonaEFLNilK/wq5Zs8b59X///feX8847j18SQlOmYBABpa3nnnvOmVWifi1Vv/ar1+aqLw99+vSRo446Ss448ww5Z8w5QeakQSASATX785577nE0t3LlSqcv69evn5x//vlyzTXXMLMpEk0KRyGgfqlXf0PVzM1ly5Y5szjdWce9evWSI488Ur797W9n3dQ+yr0oazeBtg7y/fRUsF69ie7NN990/j6rGe9qtvuFF17IyxX8sLjOINDW4OfWrVvlySefdPrN1157zfmOqMYh6ocjNetdzYpXs5evvvpqgvQZ5LmIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQoCAUxRalIUABCAAAQhAAAIQgAAEIAABCEAAAhDIS4CAU15EFIAABCAAAQhAAAIQgAAEIAABCEAAAhCIQuD/A38MCjDMMmY9AAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "execution_count": 2, - "metadata": { - "image/png": { - "width": 600 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "Image(filename=\"ekf.png\",width=600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![EKF](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Localization/extended_kalman_filter/animation.gif)\n", - "\n", - "This is a sensor fusion localization with Extended Kalman Filter(EKF).\n", - "\n", - "The blue line is true trajectory, the black line is dead reckoning\n", - "trajectory,\n", - "\n", - "the green point is positioning observation (ex. GPS), and the red line\n", - "is estimated trajectory with EKF.\n", - "\n", - "The red ellipse is estimated covariance ellipse with EKF.\n", - "\n", - "Code: [PythonRobotics/extended\\_kalman\\_filter\\.py at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter.py)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Filter design\n", - "\n", - "In this simulation, the robot has a state vector includes 4 states at time $t$.\n", - "\n", - "$$\\textbf{x}_t=[x_t, y_t, \\phi_t, v_t]$$\n", - "\n", - "x, y are a 2D x-y position, $\\phi$ is orientation, and v is velocity.\n", - "\n", - "In the code, \"xEst\" means the state vector. [code](https://github.com/AtsushiSakai/PythonRobotics/blob/916b4382de090de29f54538b356cef1c811aacce/Localization/extended_kalman_filter/extended_kalman_filter.py#L168)\n", - "\n", - "And, $P_t$ is covariace matrix of the state,\n", - "\n", - "$Q$ is covariance matrix of process noise, \n", - "\n", - "$R$ is covariance matrix of observation noise at time $t$ \n", - "\n", - " \n", - "\n", - "The robot has a speed sensor and a gyro sensor.\n", - "\n", - "So, the input vecor can be used as each time step\n", - "\n", - "$$\\textbf{u}_t=[v_t, \\omega_t]$$\n", - "\n", - "Also, the robot has a GNSS sensor, it means that the robot can observe x-y position at each time.\n", - "\n", - "$$\\textbf{z}_t=[x_t,y_t]$$\n", - "\n", - "The input and observation vector includes sensor noise.\n", - "\n", - "In the code, \"observation\" function generates the input and observation vector with noise [code](https://github.com/AtsushiSakai/PythonRobotics/blob/916b4382de090de29f54538b356cef1c811aacce/Localization/extended_kalman_filter/extended_kalman_filter.py#L34-L50)\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Motion Model\n", - "\n", - "The robot model is \n", - "\n", - "$$ \\dot{x} = vcos(\\phi)$$\n", - "\n", - "$$ \\dot{y} = vsin((\\phi)$$\n", - "\n", - "$$ \\dot{\\phi} = \\omega$$\n", - "\n", - "\n", - "So, the motion model is\n", - "\n", - "$$\\textbf{x}_{t+1} = F\\textbf{x}_t+B\\textbf{u}_t$$\n", - "\n", - "where\n", - "\n", - "$\\begin{equation*}\n", - "F=\n", - "\\begin{bmatrix}\n", - "1 & 0 & 0 & 0\\\\\n", - "0 & 1 & 0 & 0\\\\\n", - "0 & 0 & 1 & 0 \\\\\n", - "0 & 0 & 0 & 0 \\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - "B=\n", - "\\begin{bmatrix}\n", - "cos(\\phi)dt & 0\\\\\n", - "sin(\\phi)dt & 0\\\\\n", - "0 & dt\\\\\n", - "1 & 0\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$dt$ is a time interval.\n", - "\n", - "This is implemented at [code](https://github.com/AtsushiSakai/PythonRobotics/blob/916b4382de090de29f54538b356cef1c811aacce/Localization/extended_kalman_filter/extended_kalman_filter.py#L53-L67)\n", - "\n", - "Its Jacobian matrix is\n", - "\n", - "$\\begin{equation*}\n", - "J_F=\n", - "\\begin{bmatrix}\n", - "\\frac{dx}{dx}& \\frac{dx}{dy} & \\frac{dx}{d\\phi} & \\frac{dx}{dv}\\\\\n", - "\\frac{dy}{dx}& \\frac{dy}{dy} & \\frac{dy}{d\\phi} & \\frac{dy}{dv}\\\\\n", - "\\frac{d\\phi}{dx}& \\frac{d\\phi}{dy} & \\frac{d\\phi}{d\\phi} & \\frac{d\\phi}{dv}\\\\\n", - "\\frac{dv}{dx}& \\frac{dv}{dy} & \\frac{dv}{d\\phi} & \\frac{dv}{dv}\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - " =\n", - "\\begin{bmatrix}\n", - "1& 0 & -v sin(\\phi)dt & cos(\\phi)dt\\\\\n", - "0 & 1 & v cos(\\phi)dt & sin(\\phi) dt\\\\\n", - "0 & 0 & 1 & 0\\\\\n", - "0 & 0 & 0 & 1\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Observation Model\n", - "\n", - "The robot can get x-y position infomation from GPS.\n", - "\n", - "So GPS Observation model is\n", - "\n", - "$$\\textbf{z}_{t} = H\\textbf{x}_t$$\n", - "\n", - "where\n", - "\n", - "$\\begin{equation*}\n", - "B=\n", - "\\begin{bmatrix}\n", - "1 & 0 & 0& 0\\\\\n", - "0 & 1 & 0& 0\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "Its Jacobian matrix is\n", - "\n", - "$\\begin{equation*}\n", - "J_H=\n", - "\\begin{bmatrix}\n", - "\\frac{dx}{dx}& \\frac{dx}{dy} & \\frac{dx}{d\\phi} & \\frac{dx}{dv}\\\\\n", - "\\frac{dy}{dx}& \\frac{dy}{dy} & \\frac{dy}{d\\phi} & \\frac{dy}{dv}\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - " =\n", - "\\begin{bmatrix}\n", - "1& 0 & 0 & 0\\\\\n", - "0 & 1 & 0 & 0\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Extented Kalman Filter\n", - "\n", - "Localization process using Extendted Kalman Filter:EKF is\n", - "\n", - "=== Predict ===\n", - "\n", - "$x_{Pred} = Fx_t+Bu_t$\n", - "\n", - "$P_{Pred} = J_FP_t J_F^T + Q$\n", - "\n", - "=== Update ===\n", - "\n", - "$z_{Pred} = Hx_{Pred}$ \n", - "\n", - "$y = z - z_{Pred}$\n", - "\n", - "$S = J_H P_{Pred}.J_H^T + R$\n", - "\n", - "$K = P_{Pred}.J_H^T S^{-1}$\n", - "\n", - "$x_{t+1} = x_{Pred} + Ky$\n", - "\n", - "$P_{t+1} = ( I - K J_H) P_{Pred}$\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ref:\n", - "\n", - "- [PROBABILISTIC\\-ROBOTICS\\.ORG](http://www.probabilistic-robotics.org/)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Localization/histogram_filter/histogram_filter.py b/Localization/histogram_filter/histogram_filter.py index 7f453d69dd..17cfc2e14c 100644 --- a/Localization/histogram_filter/histogram_filter.py +++ b/Localization/histogram_filter/histogram_filter.py @@ -15,6 +15,7 @@ import math import matplotlib.pyplot as plt +import matplotlib as mpl import numpy as np from scipy.ndimage import gaussian_filter from scipy.stats import norm @@ -71,7 +72,7 @@ def calc_gaussian_observation_pdf(grid_map, z, iz, ix, iy, std): d = math.hypot(x - z[iz, 1], y - z[iz, 2]) # likelihood - pdf = (1.0 - norm.cdf(abs(d - z[iz, 0]), 0.0, std)) + pdf = norm.pdf(d - z[iz, 0], 0.0, std) return pdf @@ -88,7 +89,7 @@ def observation_update(grid_map, z, std): return grid_map -def calc_input(): +def calc_control_input(): v = 1.0 # [m/s] yaw_rate = 0.1 # [rad/s] u = np.array([v, yaw_rate]).reshape(2, 1) @@ -113,7 +114,8 @@ def motion_model(x, u): def draw_heat_map(data, mx, my): max_value = max([max(i_data) for i_data in data]) - plt.pcolor(mx, my, data, vmax=max_value, cmap=plt.cm.get_cmap("Blues")) + plt.grid(False) + plt.pcolor(mx, my, data, vmax=max_value, cmap=mpl.colormaps["Blues"]) plt.axis("equal") @@ -193,10 +195,11 @@ def motion_update(grid_map, u, yaw): y_shift = grid_map.dy // grid_map.xy_resolution if abs(x_shift) >= 1.0 or abs(y_shift) >= 1.0: # map should be shifted - grid_map = map_shift(grid_map, int(x_shift), int(y_shift)) + grid_map = map_shift(grid_map, int(x_shift[0]), int(y_shift[0])) grid_map.dx -= x_shift * grid_map.xy_resolution grid_map.dy -= y_shift * grid_map.xy_resolution + # Add motion noise grid_map.data = gaussian_filter(grid_map.data, sigma=MOTION_STD) return grid_map @@ -230,9 +233,9 @@ def main(): while SIM_TIME >= time: time += DT - print("Time:", time) + print(f"{time=:.1f}") - u = calc_input() + u = calc_control_input() yaw = xTrue[2, 0] # Orientation is known xTrue, z, ud = observation(xTrue, u, RF_ID) @@ -249,8 +252,9 @@ def main(): plt.plot(xTrue[0, :], xTrue[1, :], "xr") plt.plot(RF_ID[:, 0], RF_ID[:, 1], ".k") for i in range(z.shape[0]): - plt.plot([xTrue[0, :], z[i, 1]], [ - xTrue[1, :], z[i, 2]], "-k") + plt.plot([xTrue[0, 0], z[i, 1]], + [xTrue[1, 0], z[i, 2]], + "-k") plt.title("Time[s]:" + str(time)[0: 4]) plt.pause(0.1) diff --git a/Localization/particle_filter/particle_filter.ipynb b/Localization/particle_filter/particle_filter.ipynb deleted file mode 100644 index 65f1e026df..0000000000 --- a/Localization/particle_filter/particle_filter.ipynb +++ /dev/null @@ -1,72 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "collapsed": true, - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "# Particle Filter Localization\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "source": [ - "## How to calculate covariance matrix from particles\n", - "\n", - "The covariance matrix $\\Xi$ from particle information is calculated by the following equation: \n", - "\n", - "$\\Xi_{j,k}=\\frac{1}{1-\\sum^N_{i=1}(w^i)^2}\\sum^N_{i=1}w^i(x^i_j-\\mu_j)(x^i_k-\\mu_k)$\n", - "\n", - "- $\\Xi_{j,k}$ is covariance matrix element at row $i$ and column $k$.\n", - "\n", - "- $w^i$ is the weight of the $i$ th particle. \n", - "\n", - "- $x^i_j$ is the $j$ th state of the $i$ th particle. \n", - "\n", - "- $\\mu_j$ is the $j$ th mean state of particles.\n", - "\n", - "Ref:\n", - "\n", - "- [Improving the particle filter in high dimensions using conjugate artificial process noise](https://arxiv.org/pdf/1801.07000.pdf)\n" - ], - "metadata": { - "collapsed": false - } - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - }, - "pycharm": { - "stem_cell": { - "cell_type": "raw", - "source": [], - "metadata": { - "collapsed": false - } - } - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} \ No newline at end of file diff --git a/Localization/particle_filter/particle_filter.py b/Localization/particle_filter/particle_filter.py index 89a43ea600..ba54a3d12b 100644 --- a/Localization/particle_filter/particle_filter.py +++ b/Localization/particle_filter/particle_filter.py @@ -5,12 +5,16 @@ author: Atsushi Sakai (@Atsushi_twi) """ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) import math import matplotlib.pyplot as plt import numpy as np -from scipy.spatial.transform import Rotation as Rot + +from utils.angle import rot_mat_2d # Estimation parameter of PF Q = np.diag([0.2]) ** 2 # range error @@ -92,10 +96,10 @@ def calc_covariance(x_est, px, pw): calculate covariance matrix see ipynb doc """ - cov = np.zeros((3, 3)) + cov = np.zeros((4, 4)) n_particle = px.shape[1] for i in range(n_particle): - dx = (px[:, i:i + 1] - x_est)[0:3] + dx = (px[:, i:i + 1] - x_est) cov += pw[0, i] * dx @ dx.T cov *= 1.0 / (1.0 - pw @ pw.T) @@ -188,11 +192,10 @@ def plot_covariance_ellipse(x_est, p_est): # pragma: no cover x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] - angle = math.atan2(eig_vec[big_ind, 1], eig_vec[big_ind, 0]) - rot = Rot.from_euler('z', angle).as_matrix()[0:2, 0:2] - fx = rot.dot(np.array([[x, y]])) - px = np.array(fx[0, :] + x_est[0, 0]).flatten() - py = np.array(fx[1, :] + x_est[1, 0]).flatten() + angle = math.atan2(eig_vec[1, big_ind], eig_vec[0, big_ind]) + fx = rot_mat_2d(angle) @ np.array([[x, y]]) + px = np.array(fx[:, 0] + x_est[0, 0]).flatten() + py = np.array(fx[:, 1] + x_est[1, 0]).flatten() plt.plot(px, py, "--r") diff --git a/Localization/unscented_kalman_filter/unscented_kalman_filter.py b/Localization/unscented_kalman_filter/unscented_kalman_filter.py index 7bf279ced0..4af748ec71 100644 --- a/Localization/unscented_kalman_filter/unscented_kalman_filter.py +++ b/Localization/unscented_kalman_filter/unscented_kalman_filter.py @@ -6,12 +6,18 @@ """ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) + import math import matplotlib.pyplot as plt import numpy as np import scipy.linalg +from utils.angle import rot_mat_2d + # Covariance for UKF simulation Q = np.diag([ 0.1, # variance of location on x-axis @@ -63,8 +69,8 @@ def motion_model(x, u): [0, 0, 1.0, 0], [0, 0, 0, 0]]) - B = np.array([[DT * math.cos(x[2]), 0], - [DT * math.sin(x[2]), 0], + B = np.array([[DT * math.cos(x[2, 0]), 0], + [DT * math.sin(x[2, 0]), 0], [0.0, DT], [1.0, 0.0]]) @@ -180,10 +186,8 @@ def plot_covariance_ellipse(xEst, PEst): # pragma: no cover b = math.sqrt(eigval[smallind]) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] - angle = math.atan2(eigvec[bigind, 1], eigvec[bigind, 0]) - rot = np.array([[math.cos(angle), math.sin(angle)], - [-math.sin(angle), math.cos(angle)]]) - fx = rot @ np.array([x, y]) + angle = math.atan2(eigvec[1, bigind], eigvec[0, bigind]) + fx = rot_mat_2d(angle) @ np.array([x, y]) px = np.array(fx[0, :] + xEst[0, 0]).flatten() py = np.array(fx[1, :] + xEst[1, 0]).flatten() plt.plot(px, py, "--r") diff --git a/Mapping/DistanceMap/distance_map.py b/Mapping/DistanceMap/distance_map.py new file mode 100644 index 0000000000..0f96c9e8c6 --- /dev/null +++ b/Mapping/DistanceMap/distance_map.py @@ -0,0 +1,202 @@ +""" +Distance Map + +author: Wang Zheng (@Aglargil) + +Reference: + +- [Distance Map] +(https://cs.brown.edu/people/pfelzens/papers/dt-final.pdf) +""" + +import numpy as np +import matplotlib.pyplot as plt +import scipy + +INF = 1e20 +ENABLE_PLOT = True + + +def compute_sdf_scipy(obstacles): + """ + Compute the signed distance field (SDF) from a boolean field using scipy. + This function has the same functionality as compute_sdf. + However, by using scipy.ndimage.distance_transform_edt, it can compute much faster. + + Example: 500×500 map + • compute_sdf: 3 sec + • compute_sdf_scipy: 0.05 sec + + Parameters + ---------- + obstacles : array_like + A 2D boolean array where '1' represents obstacles and '0' represents free space. + + Returns + ------- + array_like + A 2D array representing the signed distance field, where positive values indicate distance + to the nearest obstacle, and negative values indicate distance to the nearest free space. + """ + # distance_transform_edt use '0' as obstacles, so we need to convert the obstacles to '0' + a = scipy.ndimage.distance_transform_edt(obstacles == 0) + b = scipy.ndimage.distance_transform_edt(obstacles == 1) + return a - b + + +def compute_udf_scipy(obstacles): + """ + Compute the unsigned distance field (UDF) from a boolean field using scipy. + This function has the same functionality as compute_udf. + However, by using scipy.ndimage.distance_transform_edt, it can compute much faster. + + Example: 500×500 map + • compute_udf: 1.5 sec + • compute_udf_scipy: 0.02 sec + + Parameters + ---------- + obstacles : array_like + A 2D boolean array where '1' represents obstacles and '0' represents free space. + + Returns + ------- + array_like + A 2D array of distances from the nearest obstacle, with the same dimensions as `bool_field`. + """ + return scipy.ndimage.distance_transform_edt(obstacles == 0) + + +def compute_sdf(obstacles): + """ + Compute the signed distance field (SDF) from a boolean field. + + Parameters + ---------- + obstacles : array_like + A 2D boolean array where '1' represents obstacles and '0' represents free space. + + Returns + ------- + array_like + A 2D array representing the signed distance field, where positive values indicate distance + to the nearest obstacle, and negative values indicate distance to the nearest free space. + """ + a = compute_udf(obstacles) + b = compute_udf(obstacles == 0) + return a - b + + +def compute_udf(obstacles): + """ + Compute the unsigned distance field (UDF) from a boolean field. + + Parameters + ---------- + obstacles : array_like + A 2D boolean array where '1' represents obstacles and '0' represents free space. + + Returns + ------- + array_like + A 2D array of distances from the nearest obstacle, with the same dimensions as `bool_field`. + """ + edt = obstacles.copy() + if not np.all(np.isin(edt, [0, 1])): + raise ValueError("Input array should only contain 0 and 1") + edt = np.where(edt == 0, INF, edt) + edt = np.where(edt == 1, 0, edt) + for row in range(len(edt)): + dt(edt[row]) + edt = edt.T + for row in range(len(edt)): + dt(edt[row]) + edt = edt.T + return np.sqrt(edt) + + +def dt(d): + """ + Compute 1D distance transform under the squared Euclidean distance + + Parameters + ---------- + d : array_like + Input array containing the distances. + + Returns: + -------- + d : array_like + The transformed array with computed distances. + """ + v = np.zeros(len(d) + 1) + z = np.zeros(len(d) + 1) + k = 0 + v[0] = 0 + z[0] = -INF + z[1] = INF + for q in range(1, len(d)): + s = ((d[q] + q * q) - (d[int(v[k])] + v[k] * v[k])) / (2 * q - 2 * v[k]) + while s <= z[k]: + k = k - 1 + s = ((d[q] + q * q) - (d[int(v[k])] + v[k] * v[k])) / (2 * q - 2 * v[k]) + k = k + 1 + v[k] = q + z[k] = s + z[k + 1] = INF + k = 0 + for q in range(len(d)): + while z[k + 1] < q: + k = k + 1 + dx = q - v[k] + d[q] = dx * dx + d[int(v[k])] + + +def main(): + obstacles = np.array( + [ + [1, 0, 0, 0, 0], + [0, 1, 1, 1, 0], + [0, 1, 1, 1, 0], + [0, 0, 1, 1, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 1, 0, 0], + [0, 0, 0, 0, 0], + [0, 0, 0, 0, 0], + ] + ) + + # Compute the signed distance field + sdf = compute_sdf(obstacles) + udf = compute_udf(obstacles) + + if ENABLE_PLOT: + _, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5)) + + obstacles_plot = ax1.imshow(obstacles, cmap="binary") + ax1.set_title("Obstacles") + ax1.set_xlabel("x") + ax1.set_ylabel("y") + plt.colorbar(obstacles_plot, ax=ax1) + + udf_plot = ax2.imshow(udf, cmap="viridis") + ax2.set_title("Unsigned Distance Field") + ax2.set_xlabel("x") + ax2.set_ylabel("y") + plt.colorbar(udf_plot, ax=ax2) + + sdf_plot = ax3.imshow(sdf, cmap="RdBu") + ax3.set_title("Signed Distance Field") + ax3.set_xlabel("x") + ax3.set_ylabel("y") + plt.colorbar(sdf_plot, ax=ax3) + + plt.tight_layout() + plt.show() + + +if __name__ == "__main__": + main() diff --git a/tests/.gitkeep b/Mapping/__init__.py similarity index 100% rename from tests/.gitkeep rename to Mapping/__init__.py diff --git a/Mapping/circle_fitting/circle_fitting.py b/Mapping/circle_fitting/circle_fitting.py index c331d56796..b5714b507c 100644 --- a/Mapping/circle_fitting/circle_fitting.py +++ b/Mapping/circle_fitting/circle_fitting.py @@ -16,12 +16,33 @@ def circle_fitting(x, y): """ - Circle Fitting with least squared - input: point x-y positions - output cxe x center position - cye y center position - re radius of circle - error: prediction error + Fits a circle to a given set of points using a least-squares approach. + + This function calculates the center (x, y) and radius of a circle that best fits + the given set of points in a two-dimensional plane. It minimizes the squared + errors between the circle and the provided points and returns the calculated + center coordinates, radius, and the fitting error. + + Raises + ------ + ValueError + If the input lists x and y do not contain the same number of elements. + + Parameters + ---------- + x : list[float] + The x-coordinates of the points. + y : list[float] + The y-coordinates of the points. + + Returns + ------- + tuple[float, float, float, float] + A tuple containing: + - The x-coordinate of the center of the fitted circle (float). + - The y-coordinate of the center of the fitted circle (float). + - The radius of the fitted circle (float). + - The fitting error as a deviation metric (float). """ sumx = sum(x) @@ -40,9 +61,9 @@ def circle_fitting(x, y): T = np.linalg.inv(F).dot(G) - cxe = float(T[0] / -2) - cye = float(T[1] / -2) - re = math.sqrt(cxe**2 + cye**2 - T[2]) + cxe = float(T[0, 0] / -2) + cye = float(T[1, 0] / -2) + re = math.sqrt(cxe**2 + cye**2 - T[2, 0]) error = sum([np.hypot(cxe - ix, cye - iy) - re for (ix, iy) in zip(x, y)]) diff --git a/Mapping/grid_map_lib/__init__.py b/Mapping/grid_map_lib/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/Mapping/grid_map_lib/grid_map_lib.py b/Mapping/grid_map_lib/grid_map_lib.py index 10651cc673..d08d8ec5ba 100644 --- a/Mapping/grid_map_lib/grid_map_lib.py +++ b/Mapping/grid_map_lib/grid_map_lib.py @@ -5,22 +5,42 @@ author: Atsushi Sakai """ - +from functools import total_ordering import matplotlib.pyplot as plt import numpy as np +@total_ordering +class FloatGrid: + + def __init__(self, init_val=0.0): + self.data = init_val + + def get_float_data(self): + return self.data + + def __eq__(self, other): + if not isinstance(other, FloatGrid): + return NotImplemented + return self.get_float_data() == other.get_float_data() + + def __lt__(self, other): + if not isinstance(other, FloatGrid): + return NotImplemented + return self.get_float_data() < other.get_float_data() + + class GridMap: """ GridMap class """ def __init__(self, width, height, resolution, - center_x, center_y, init_val=0.0): + center_x, center_y, init_val=FloatGrid(0.0)): """__init__ :param width: number of grid for width - :param height: number of grid for heigt + :param height: number of grid for height :param resolution: grid resolution [m] :param center_x: center x position [m] :param center_y: center y position [m] @@ -35,8 +55,9 @@ def __init__(self, width, height, resolution, self.left_lower_x = self.center_x - self.width / 2.0 * self.resolution self.left_lower_y = self.center_y - self.height / 2.0 * self.resolution - self.ndata = self.width * self.height - self.data = [init_val] * self.ndata + self.n_data = self.width * self.height + self.data = [init_val] * self.n_data + self.data_type = type(init_val) def get_value_from_xy_index(self, x_ind, y_ind): """get_value_from_xy_index @@ -49,7 +70,7 @@ def get_value_from_xy_index(self, x_ind, y_ind): grid_ind = self.calc_grid_index_from_xy_index(x_ind, y_ind) - if 0 <= grid_ind < self.ndata: + if 0 <= grid_ind < self.n_data: return self.data[grid_ind] else: return None @@ -101,7 +122,7 @@ def set_value_from_xy_index(self, x_ind, y_ind, val): grid_ind = int(y_ind * self.width + x_ind) - if 0 <= grid_ind < self.ndata: + if 0 <= grid_ind < self.n_data and isinstance(val, self.data_type): self.data[grid_ind] = val return True # OK else: @@ -120,8 +141,8 @@ def set_value_from_polygon(self, pol_x, pol_y, val, inside=True): # making ring polygon if (pol_x[0] != pol_x[-1]) or (pol_y[0] != pol_y[-1]): - pol_x.append(pol_x[0]) - pol_y.append(pol_y[0]) + np.append(pol_x, pol_x[0]) + np.append(pol_y, pol_y[0]) # setting value for all grid for x_ind in range(self.width): @@ -138,6 +159,27 @@ def calc_grid_index_from_xy_index(self, x_ind, y_ind): grid_ind = int(y_ind * self.width + x_ind) return grid_ind + def calc_xy_index_from_grid_index(self, grid_ind): + y_ind, x_ind = divmod(grid_ind, self.width) + return x_ind, y_ind + + def calc_grid_index_from_xy_pos(self, x_pos, y_pos): + """get_xy_index_from_xy_pos + + :param x_pos: x position [m] + :param y_pos: y position [m] + """ + x_ind = self.calc_xy_index_from_position( + x_pos, self.left_lower_x, self.width) + y_ind = self.calc_xy_index_from_position( + y_pos, self.left_lower_y, self.height) + + return self.calc_grid_index_from_xy_index(x_ind, y_ind) + + def calc_grid_central_xy_position_from_grid_index(self, grid_ind): + x_ind, y_ind = self.calc_xy_index_from_grid_index(grid_ind) + return self.calc_grid_central_xy_position_from_xy_index(x_ind, y_ind) + def calc_grid_central_xy_position_from_xy_index(self, x_ind, y_ind): x_pos = self.calc_grid_central_xy_position_from_index( x_ind, self.left_lower_x) @@ -156,45 +198,46 @@ def calc_xy_index_from_position(self, pos, lower_pos, max_index): else: return None - def check_occupied_from_xy_index(self, xind, yind, occupied_val=1.0): + def check_occupied_from_xy_index(self, x_ind, y_ind, occupied_val): - val = self.get_value_from_xy_index(xind, yind) + val = self.get_value_from_xy_index(x_ind, y_ind) if val is None or val >= occupied_val: return True else: return False - def expand_grid(self): - xinds, yinds = [], [] + def expand_grid(self, occupied_val=FloatGrid(1.0)): + x_inds, y_inds, values = [], [], [] for ix in range(self.width): for iy in range(self.height): - if self.check_occupied_from_xy_index(ix, iy): - xinds.append(ix) - yinds.append(iy) - - for (ix, iy) in zip(xinds, yinds): - self.set_value_from_xy_index(ix + 1, iy, val=1.0) - self.set_value_from_xy_index(ix, iy + 1, val=1.0) - self.set_value_from_xy_index(ix + 1, iy + 1, val=1.0) - self.set_value_from_xy_index(ix - 1, iy, val=1.0) - self.set_value_from_xy_index(ix, iy - 1, val=1.0) - self.set_value_from_xy_index(ix - 1, iy - 1, val=1.0) + if self.check_occupied_from_xy_index(ix, iy, occupied_val): + x_inds.append(ix) + y_inds.append(iy) + values.append(self.get_value_from_xy_index(ix, iy)) + + for (ix, iy, value) in zip(x_inds, y_inds, values): + self.set_value_from_xy_index(ix + 1, iy, val=value) + self.set_value_from_xy_index(ix, iy + 1, val=value) + self.set_value_from_xy_index(ix + 1, iy + 1, val=value) + self.set_value_from_xy_index(ix - 1, iy, val=value) + self.set_value_from_xy_index(ix, iy - 1, val=value) + self.set_value_from_xy_index(ix - 1, iy - 1, val=value) @staticmethod def check_inside_polygon(iox, ioy, x, y): - npoint = len(x) - 1 + n_point = len(x) - 1 inside = False - for i1 in range(npoint): - i2 = (i1 + 1) % (npoint + 1) + for i1 in range(n_point): + i2 = (i1 + 1) % (n_point + 1) if x[i1] >= x[i2]: min_x, max_x = x[i2], x[i1] else: min_x, max_x = x[i1], x[i2] - if not min_x < iox < max_x: + if not min_x <= iox < max_x: continue tmp1 = (y[i2] - y[i1]) / (x[i2] - x[i1]) @@ -211,27 +254,26 @@ def print_grid_map_info(self): print("center_y:", self.center_y) print("left_lower_x:", self.left_lower_x) print("left_lower_y:", self.left_lower_y) - print("ndata:", self.ndata) + print("n_data:", self.n_data) def plot_grid_map(self, ax=None): - - grid_data = np.reshape(np.array(self.data), (self.height, self.width)) + float_data_array = np.array([d.get_float_data() for d in self.data]) + grid_data = np.reshape(float_data_array, (self.height, self.width)) if not ax: fig, ax = plt.subplots() heat_map = ax.pcolor(grid_data, cmap="Blues", vmin=0.0, vmax=1.0) plt.axis("equal") - # plt.show() return heat_map -def test_polygon_set(): - ox = [0.0, 20.0, 50.0, 100.0, 130.0, 40.0] - oy = [0.0, -20.0, 0.0, 30.0, 60.0, 80.0] +def polygon_set_demo(): + ox = [0.0, 4.35, 20.0, 50.0, 100.0, 130.0, 40.0] + oy = [0.0, -4.15, -20.0, 0.0, 30.0, 60.0, 80.0] grid_map = GridMap(600, 290, 0.7, 60.0, 30.5) - grid_map.set_value_from_polygon(ox, oy, 1.0, inside=False) + grid_map.set_value_from_polygon(ox, oy, FloatGrid(1.0), inside=False) grid_map.plot_grid_map() @@ -239,24 +281,27 @@ def test_polygon_set(): plt.grid(True) -def test_position_set(): +def position_set_demo(): grid_map = GridMap(100, 120, 0.5, 10.0, -0.5) - grid_map.set_value_from_xy_pos(10.1, -1.1, 1.0) - grid_map.set_value_from_xy_pos(10.1, -0.1, 1.0) - grid_map.set_value_from_xy_pos(10.1, 1.1, 1.0) - grid_map.set_value_from_xy_pos(11.1, 0.1, 1.0) - grid_map.set_value_from_xy_pos(10.1, 0.1, 1.0) - grid_map.set_value_from_xy_pos(9.1, 0.1, 1.0) + grid_map.set_value_from_xy_pos(10.1, -1.1, FloatGrid(1.0)) + grid_map.set_value_from_xy_pos(10.1, -0.1, FloatGrid(1.0)) + grid_map.set_value_from_xy_pos(10.1, 1.1, FloatGrid(1.0)) + grid_map.set_value_from_xy_pos(11.1, 0.1, FloatGrid(1.0)) + grid_map.set_value_from_xy_pos(10.1, 0.1, FloatGrid(1.0)) + grid_map.set_value_from_xy_pos(9.1, 0.1, FloatGrid(1.0)) grid_map.plot_grid_map() + plt.axis("equal") + plt.grid(True) + def main(): print("start!!") - test_position_set() - test_polygon_set() + position_set_demo() + polygon_set_demo() plt.show() diff --git a/Mapping/kmeans_clustering/kmeans_clustering.py b/Mapping/kmeans_clustering/kmeans_clustering.py index e18960e990..cee01e5ad5 100644 --- a/Mapping/kmeans_clustering/kmeans_clustering.py +++ b/Mapping/kmeans_clustering/kmeans_clustering.py @@ -17,12 +17,37 @@ def kmeans_clustering(rx, ry, nc): + """ + Performs k-means clustering on the given dataset, iteratively adjusting cluster centroids + until convergence within a defined threshold or reaching the maximum number of + iterations. + + The implementation initializes clusters, calculates initial centroids, and refines the + clusters through iterative updates to optimize the cost function based on minimum + distance between datapoints and centroids. + + Arguments: + rx: List[float] + The x-coordinates of the dataset points to be clustered. + ry: List[float] + The y-coordinates of the dataset points to be clustered. + nc: int + The number of clusters to group the data into. + + Returns: + Clusters + An instance containing the final cluster assignments and centroids after + convergence. + + Raises: + None + + """ clusters = Clusters(rx, ry, nc) clusters.calc_centroid() pre_cost = float("inf") for loop in range(MAX_LOOP): - print("loop:", loop) cost = clusters.update_clusters() clusters.calc_centroid() diff --git a/Mapping/lidar_to_grid_map/animation.gif b/Mapping/lidar_to_grid_map/animation.gif deleted file mode 100644 index 210ff5817c..0000000000 Binary files a/Mapping/lidar_to_grid_map/animation.gif and /dev/null differ diff --git a/Mapping/lidar_to_grid_map/lidar_to_grid_map.py b/Mapping/lidar_to_grid_map/lidar_to_grid_map.py index 57278d4a47..ad987392f5 100644 --- a/Mapping/lidar_to_grid_map/lidar_to_grid_map.py +++ b/Mapping/lidar_to_grid_map/lidar_to_grid_map.py @@ -193,7 +193,7 @@ def generate_ray_casting_grid_map(ox, oy, xy_resolution, breshen=True): (x_w, y_w), (min_x, min_y), xy_resolution) flood_fill((center_x, center_y), occupancy_map) - occupancy_map = np.array(occupancy_map, dtype=np.float) + occupancy_map = np.array(occupancy_map, dtype=float) for (x, y) in zip(ox, oy): ix = int(round((x - min_x) / xy_resolution)) iy = int(round((y - min_y) / xy_resolution)) diff --git a/Mapping/lidar_to_grid_map/lidar_to_grid_map_tutorial.ipynb b/Mapping/lidar_to_grid_map/lidar_to_grid_map_tutorial.ipynb deleted file mode 100644 index 9e8a00f009..0000000000 --- a/Mapping/lidar_to_grid_map/lidar_to_grid_map_tutorial.ipynb +++ /dev/null @@ -1,318 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## LIDAR to 2D grid map example\n", - "\n", - "This simple tutorial shows how to read LIDAR (range) measurements from a file and convert it to occupancy grid.\n", - "\n", - "Occupancy grid maps (_Hans Moravec, A.E. Elfes: High resolution maps from wide angle sonar, Proc. IEEE Int. Conf. Robotics Autom. (1985)_) are a popular, probabilistic approach to represent the environment. The grid is basically discrete representation of the environment, which shows if a grid cell is occupied or not. Here the map is represented as a `numpy array`, and numbers close to 1 means the cell is occupied (_marked with red on the next image_), numbers close to 0 means they are free (_marked with green_). The grid has the ability to represent unknown (unobserved) areas, which are close to 0.5.\n", - "\n", - "![Example](grid_map_example.png)\n", - "\n", - "\n", - "In order to construct the grid map from the measurement we need to discretise the values. But, first let's need to `import` some necessary packages." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import math\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from math import cos, sin, radians, pi" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The measurement file contains the distances and the corresponding angles in a `csv` (comma separated values) format. Let's write the `file_read` method:" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "def file_read(f):\n", - " \"\"\"\n", - " Reading LIDAR laser beams (angles and corresponding distance data)\n", - " \"\"\"\n", - " measures = [line.split(\",\") for line in open(f)]\n", - " angles = []\n", - " distances = []\n", - " for measure in measures:\n", - " angles.append(float(measure[0]))\n", - " distances.append(float(measure[1]))\n", - " angles = np.array(angles)\n", - " distances = np.array(distances)\n", - " return angles, distances" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From the distances and the angles it is easy to determine the `x` and `y` coordinates with `sin` and `cos`. \n", - "In order to display it `matplotlib.pyplot` (`plt`) is used." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAJCCAYAAADEEWDaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzsXXd4FcXXPptOhwQIvfeidJAmAtKlCChSBGkCIgiioNIE7Kg//ewdey+gIipcwAIiqPQq0qRDKIGQds/3x5vJnZ2d3ZsCScB5n+c+gZnZ3dnd2XPmdIuZycDAwMDAQCAktydgYGBgYJC3YBiDgYGBgYENhjEYGBgYGNhgGIOBgYGBgQ2GMRgYGBgY2GAYg4GBgYGBDYYxGBgYGBjYYBiDgYGBgYENhjEYGBgYGNgQltsTyAqKFy/OlSpVyu1pZBjnzp2jAgUK5PY0sgVzD3kD5h7yBi7Xe1i3bt1xZi4RbNxlyRgqVapEa9euze1pZBjLly+ndu3a5fY0sgVzD3kD5h7yBi7Xe7Asa29GxhlVkoGBgYGBDYYxGBgYGBjYYBiDgYGBgYENhjEYGBgYGNhgGIOBgYGBgQ2GMRgYGBgY2GAYg4GBgYGBDYYxGBgYGBjYYBiDgYGBgYENhjEYGBgYGNhgGIOBgYGBgQ2GMRgYGBgY2GAYg4GBgYGBDYYxGBgYGBjYYBiDgYGBgYENhjEYGBgYGNhgGIOBgYGBgQ2GMRgYGBgY2GAYg4GBgYGBDdliDJZl9bcsa7NlWX7Lspp4jOtiWdZ2y7J2WZY1TWqvbFnWb5Zl7bQs6yPLsiKyMx8DAwMDg+wjuxLDJiK6kYhWug2wLCuUiJ4noq5EVIeIbrEsq05a92NE9DQzVyeiOCIakc35XNl47z2iSpWIQkLw9733cntGBgYGVyCyxRiYeSszbw8yrBkR7WLm3cycREQfElEvy7IsImpPRJ+mjVtARL2zM58rGu+9RzR6NNHevUTM+Dt6tGEOBgYGFx05YWMoS0T7pf8fSGuLIaJTzJyitBvo8MADROfP29vOn0e7gYGBwUVEWLABlmX9SESlNF0PMPNXGbiGpWljj3a3eYwmotFERLGxsbR8+fIMXDpvID4+PtvzvXbfPv0D27ePVuTAs7gY95DbMPeQN2DuIe8jKGNg5o7ZvMYBIiov/b8cER0kouNEVNSyrLA0qUG0u83jFSJ6hYioSZMm3K5du2xOK+ewfPlyyvZ8K1SA+kiBVaFC9s+dAVyUe8hlmHvIGzD3kPeRE6qk34moepoHUgQRDSCihczMROQjon5p44YSUUYkkP8mHnqIKH9+e1tUFNoNDAwMLiKy667ax7KsA0R0DRF9Y1nWkrT2MpZlfUtElCYNjCeiJUS0lYg+ZubNaaeYSkSTLcvaRbA5vJ6d+VzRGDSI6JVXiCpWJLIs/Bo1QruBgYHBRURQVZIXmPkLIvpC036QiLpJ//+WiL7VjNtN8FoyyAgGDQowgmnTiB5/nGjTJqJ69XJ3XgYGBlcUTOTz5Yp77yUqVIho1qzcnomBgcEVBsMYLldERxNNnkz0+edE69bl9mwMDAyuIBjGcDlj0iQwiBkzcnsmBgYGVxAMY8iLyGjqi8KFiaZOJVq8mOiXX3JyhgYGBlcwDGPIa8hs6ovx44liYxEBza7xgQYGBgYZhmEMeQ2ZTX2RPz/6VqwgWrr00s/PwMDgiodhDHkN+/Zlrp0IEkX58kTTpxupwcDAINswjCGvoUKFzLUTEUVGEs2cSfTbb0Rff31p5mVgYPCfgWEMeQ261BeRkcFTXwwdSlS1KjyU/P5LNz8DA4MrHoYx5DWoqS/CwoiKFSO66Sbv48LDiR58kGj9eqLPPsuZuRoYGFyRMIwhL2LQIKI9e7Dz/+ILosOHiV58MfhxAwYQ1akDtVJq6iWfpoGBwZUJwxjyOrp3J+rYkWj2bKKTJ73HhoYSzZ1LtG2bqexmYGCQZRjGkNdhWURPPUV0+jRURcHQpw+yrs6eTZSUdMmnZ2BgcOXBMIbLAfXrE40aRfTCC0Tbg5TYtiyiefOI/vmH6M03c2Z+BgYGVxQMY8htZDT9xZw58FaaMiX4Obt0IWrZEmqlCxcu5mwNDAz+AzCMITeRmfQXJUsiwvnrr4l++MH7vJYF99Z//yV66aVLM3cDA4MrFoYx5CYym/5i4kSiypWRbjslxfvc7doRdehA9PDDRPHxF2W6BgYG/w0YxpCbyGz6i8jIQNW21zNQBXXePKJjx4j+7/+yPkcDA4P/HAxjyE1kJf1F375Ebdogwvn0ae/zt2hB1KMHmMmpU1mfp4GBwX8KhjHkJnTpLyIivNNfWBbR008THT8ONVEwzJ0LpvDUU9mbq4GBwX8GhjHkJtT0F+HhYBQ9e3of17gx0a23Ev3vf0S7d3uPbdCAqH9/MJNjxy7e3A0MDK5YGMaQ25DTX/z0E9RDM2cGP+7hh5FH6d57g4998EEYtR9/PNvTNTAwuPJhGENeQvPmRGPGED37LNEff3iPLVMGZT0/+4xo5UrvsbVrEw0eTPTcc0QHD168+RoYGFyRMIwhr+Hhh4mKFweDCJYIb8oUonLl4L4aLNX2rFlwcc2IXcLAwOA/DcMYchIZiXIuWhT2gN9/J3r5Ze/z5c9P9OijROvWEb3zjvfYKlWIRoyATWPPnizegIGBwX8BhjHkFDIT5XzLLcioet99SLnthVtuIWrWDGODBbJNnw6mNHdu1u/DwMDgiodhDDmFzEQ5WxYS5iUmEk2a5H3ekBBIGIcOBTculytHNHYs0YIFRDt2ZG7+BgYG/xkYxpBTyGyUc/XqkAI+/JDo+++9z92yJdHNNxPNn0+0f7/32GnTEEE9e3bQKRsYGPw3YRhDTiErUc5Tp4JBjBtHlJDgff7HHoMB+r77vMfFxiLn0ocfEm3c6D3WwMDgPwnDGHIKuijnqCjvKOeoKKiU/v4bRmYvVKxIdPfdsFn89pv32ClTiAoVyli8hIGBwX8OhjHkFNQo55AQotKloQLyQseORAMHgjEEK9IzbRpRqVKwSzC7j4uOBnP48kuitWszfy8GBgZXNAxjyEnIUc4ffIAqa088Efy4p54iypcPKiUvgl+oEDKqrlpF9NFH3uecOJEoJgaeSgYGBgYSDGPILdx0E3IYzZoVXNcfGwuJYdky9wpvAsOGIT/S1KnedonChSFhLFmCVBwGBgYGaTCMITfx/PMIaBs2jCg52Xvs6NFImTF5MlFcnPu40FC4r+7bh79eGDcOqqfp070lEQMDg/8UDGPITZQoQfTii8iLFMy4HBKCMp0nTwb3PGrXjqh3b6JHHkF8gxvy5wdTWLmS6McfMz19AwODKxOGMVwqSOkvWgwY4K4C6tsX0ctz5hD99Zf3ORs0gG3g5ZdhR/DCE08gQC6YDWHkSLjMPvCAkRoMDAyIyDCGSwMl/UXUkSPu6S+IUHozJgYqpaQk73PPno0I5ttv91Y/VatGdOedRG++SfTnn+7jIiNh5/j9d6JFi4LdmYGBwX8AhjFcCmQm/QURmMLLLxOtX+8d10AEz6Nnn4XB+tlnvcfOmAHX1MmTvaWBW28FI5kxI3iWVgMDgysehjFcCmQ2/QURUa9eREOGgDEEq8XQuzdqOc+a5X3OokWholq+nOirr9zHhYWhmM+GDUSffOJ9bQMDgysehjFcCmQl/QUR0TPPEJUsSTR0KOwDbrAsqJ/8fqIJE7zPOXo0UZ06CGjzOueAAUT16iEaOiXF+5wGBgZXNAxjuBTQpb8gCl6Gs1gxoldfJdq0CTt9L1SqBHvDV18FlwaefBJpNZ57zn1cSAiuuWMH0bvvel/bwMDgioZhDJcCSvqLxJgYovBwpKAIpsPv3p3ottvgvvr7795jJ00iqlsXRmavWgxduuA3dy7RsWPu43r3JmrcGGqlYEZwAwODKxaGMVwqSOkvVn36KXbrP/yA1NjB8NRTqOk8dCjRhQvu48LDEduwf39wCePJJ8E8vNJtWxZSauzZQ/T668HnaWBgcEXCMIacwqhRSIHxwAPBs58WLUr02mtEW7fCwOyF1q1RsvOpp7xTa9SpgzrSL79MtHmz+7jOnXHOefOCp/o2MDC4ImEYQ07BsqBeKlsWAW2nT3uP79wZhuP584MHsz32GOwTt9/uraqaPZuoYEGk5/aa57x5RAcPIirbIO/gvfcQLOlWMzwjNcUNDDIAwxhyEkWLIqvqvn3YvQeLNJ4/n6h8eQS+qXERMmJiAgzESwVUvDi8jpYsIVq82H3ctdcSXX89UmoEqyNtcHHhRtzTgiajjhzR1wwPVlPcMA2DzICZL7tf48aN+XKCz+ezNzz0EDMR8+uvBz/4xx8xdtIk73F+P/O11zIXK8Z85Ij7uMRE5mrVmGvXZk5Kch/322+47rx5+nu4DJEn7uHdd5krVmS2LPx99117X/78eO7ilz9/4Bi5XfwqVsSxXv1e5w02p0uAPPEesonL9R6IaC1ngMbmOpHPyu+yZwwpKczt2+Pj3Lo1+AnGjcNHu3Kl97gtW5jDw5lvvdV73Jdf4tU/95z3uJ49mYsUYT558rL9EGTk+j0EI9BexN2y9H2WhWO9+rPDNC4Bcv09XARcrveQUcZgVEm5gdBQonfeQazDgAHenkdEsCFUqgQ31nPn3MfVro1YibffJvL53Mf17El03XUwbHul8J4zB7aQJ5/0np9BAF4qm2CpUrwi5oMFTXr1e5032JyMCuq/iYxwj7z2u+wlBoGvv8YO7c47g59k+fKMjT1/nrlKFeaaNZkvXHAf9+ef2E0GU1HdfDNzgQL88xdfBJ9jHscl3+UF230H2/VnVx0UGanvz6okcomkict1ty3jcr0HMqqkXIakt02IjXX/mO66C6/hq6+Cn3PCBIwNtigXL8a4uXO9x40YAdXTjh3uY7ZuZQ4J4X39+wefXx7HRfuY3XTy2bEDiPPmy+dJ/FNDQuzMQsbkyQGiLvdn1XYRbL5ez8IDlytRlXG53oNhDLmJzOy0LlxgbtiQOTqaef9+7/PGx8NwXKkS89mz3mP798cOcudO9zGHDjEXLMjcq5f3uYYN45SICOYDB7zH5XFclI/Z690Gkwgysi5efNFOgJU1c75UKeYhQ/Rze/99HLdli37eYWHO817q+9HgciWqMi7XezCMITeRkZ2WjO3bmQsUgFdRSor3uX/6CR/m2LHe4/79l7lQIeZOneCx5IaHH8bcli1zH7N7N6eGhga/Zh5Hpj7mrEgFGd1hR0ejvWxZJxE9cwZ98+drp5UQG+vuXPDqqzh23z59f9GizOPH6+81NNTJNLIrAbngciWqMi7Xe8gRxkBE0UT0AxHtTPtbTDPmOiL6S/pdIKLeaX1vEdE/Ul+DjFw3zzOGYDstHRYswJgHHwx+fqEy+OEH73HPPotxH37oPiYhAR/y1Vd7MqUDPXtC7bR7d/D55VFk+GPO6i46ozvoTz5B34YNzmsnJ7OXGjAhNpZ52DD9vJ9+GseeOOHsS0x0X1+JiZj/7NkZfw7MWVvnfPkSVRmX6z1klDFk1ytpGhEtZebqRLQ07f+qcdvHzA2YuQERtSei80T0vTTkHtHPzEFqW14myEra7VtvJRo8GAnsfv7Z+/zz5hHVqIFUGGfOuI8bNw5J8e66yz3SOioKXk/r16Pamwv2Dh4cyMB6pcPLU8fr3YrkiWJM4cL4/6BB9rHR0fh74oTzPGFh8Fpz81Tz+xGdroPwWCtY0Nl3/Dj+lizp7Nu/HyS9YkV7u7gfcb2KFe33k9X08gZ5HtllDL2IaEHavxcQUe8g4/sR0WJm9gjjvQKgS7ttWUT33+993AsvEFWuTDRwINHJk+7j8uUjWrCA6MAB1FlwQ2gokuwdOeJd+/mmm4hatsSYs2e1Q5JKlACjefttou3bve/jcoeXe6fu3ebPH6i8N2gQoo4rV0amXJUpECFSncj9HefL55qnymJ2Zwzx8WAsERHOvqNH8VfHGPbuxV+VMRARtW0LpvHii0iuKN/PQw9hjckQz8K4uV7WCMvm8bHMfIiIiJkPWZalWXU2DCCip5S2hyzLmklpEgcza6vJWJY1mohGExHFxsbS8uXLszXxS4qyZankpElU5bXXKPLoUUosUoQiTp+muDfeoI3VquFjcUGhe+6hhuPH04nevWnzgw+6EwEiqnLTTVTh1VdpfbVqFNesmeu4ar17U9nnn6c/6tWjszVr6q87eDA1HjeO9o4ZQ/+MGuXoj4+Pp1/atKEWL75IJ8aOpS0zZ3o8gLyJ+Ph4x7op+eOPgfdUsiTtHjmSqpQsidQTCi6ULEmr5Xd75AilRkXRjkmT6GjZsqiUl4YGhQoRbdpEf2nWaeTRo3QNEW3/9Vc6JKQHCS1DQ+nY33/TTs2xLfx+OnT4MG3X9FXbvp1io6LoF01fsbVr6Woi+vPAATqt9Jf67juqRUSrDx2iC0pfsTVrcNyFC47jqGxZahEdTeGnT1NIcnL686OtW6nm/PkUKgpD7d1LqSNG0PatW+lox47a93C54Uq4B08E0zUR0Y9EtEnz60VEp5SxcR7nKU1Ex4goXGmziCiSIHHMzIj+K8/bGBT4fL6At8nMmcEPmD8fY194wXtcQgJSW5QtyxwX5z7u1Cnm0qWZGzWCDtsNgwfDk+mff/T3wMx8//2Y2/r1QW8jr8GhF3bToY8dmzFbwbXXMl9zjf5igwa5G2HPncM5H31U31++PPNtt2m7LsTEMI8apT/uttuwFnR4911cc9s2Z9/MmbALJCY6+4TdQpdm5dw55pAQ5hkz7O1BjNKXq35exuV6D3SxbAzM3JGZ62l+XxHREcuyShMRpf096nGqm4joC2ZOls59KG2+iUT0JhG5b3svd9x+OyKX58whWrTIe+ykSSisM2mSdyrtqCiolA4fJpo82X1ckSJE//sfakm/8IL7uEcegTQzzWEqCmDKFJzvMpQYHHCzJXz7baDQEhHqXuhsBTVruqvVKlQg+vdfotRUZ1++fESRkXobAxHeq4uNwQpmY9DZF4iCq5LKltWroLZuhU2kRAln3/r1sHk0aWJvz0rNc4M8hezaGBYS0dC0fw8lIo8ak3QLEX0gN0hMxSLYJzZlcz55F5ZF9PzzMAYPHky0c6f72JAQEPxixYhuvtk7s2rTpkRTp8Jw/M037uP690cq7+nTQbB0KFeO6J57iD76iOiXX/RjihUDc/jqK6I1a9yvdznAi4CJQkvTp4P43Xijc1zNmrATCMOujPLlUTtbo5Iiy4KdIQs2hvTjdTh3jqhAAX3fsWOwPxQt6uzbu1dvXyACY6hdW3/NtWvxt3Fje7sxSl/2yC5jeJSIrrcsaycRXZ/2f7Isq4llWa+JQZZlVSKi8kS0Qjn+PcuyNhLRRiIqTkTzsjmfvI18+Yg++ww7s969vVNalyyJfErbtkFy8MLMmUT166MYkBuxEYwpKcn7fPfei+pxkya513aYOBEpvGfM8J5XXkGaIfTa9u3thtCMELBGjbDr10luwl6jkxrKl8dfN+YTHZ0liYGCGZ+9JIYSJfTHZoQx6LB2LVGpUlgvMh56CPcgQzbQG+R5ZIsxMPMJZu7AzNXT/p5Ma1/LzCOlcXuYuSwz+5Xj2zNz/TTV1GBmvryT/2fEE6NiRaIPPwTBHz4cH7obOnaENPDKK0SffOI+LjKS6K23sCucONF9XNWq2AF/8ol7PYYCBaBS+v13ovff148pVAjqpu+/J1q50v16eQFSnQKL2V6nIJiHERFRw4b4++efznNnhDHs36+fV1YlBmZ35wUviUEwBhWpqZijjjEcP46fG2NYtw7SgspsBg0i6tUL/7Ysu5trsGJDBnkDGTFE5LVfnjQ+ewQDaQ1Vjz+OMU884X3epCTm5s2R/lpjFLZh1iyc0yvh3YULzLVqMVeuDOOhDqmpzE2awJAZH8/MGmPb+fMwaLdp4x1ZndvISH6iMmXQFh3tNDD7/ahxMXq089zJycwREcz33uvsO3EC53zySf28+vRhrltX39e5M965BkmFCzPfcYf+uFq1kApFhxYtmDt2dLbv24d5vvyys2/lSvQtXuzsi4+H4XnWLP31uneHY4SMXEjxfanwnzc+G2QQwdIXq5gyhahfP0gEy5a5nzc8HFXfmBHfkJzsPvb++4kaNIChW6f3JoJ08eKLRP/84y7ah4SghvS//6IynA758kH6+OknSA55FcEMoYMGIR4kNpaoWzengdmy8Ex1EkNYGFG1anqJoVgxSB+XQmLIio3h6NHMxzBs3Yq/Oonhr7+galTtC0SQQn7+GTEQMjL7jRjkGgxjuFjIrCeGZRG98QZRrVowMHt5bFSuDFF81SrUbXZDRARUSnFxRHfe6T6uXTtEWj/xBNGWLfoxbdqAcT3+uLuxeuRIEJTp071VYjkFnSovI3YEyyJq3drd4N6wIWwMKSnOPjfPJMvCNbwYw4kT+ucWFZU1xhAf72181qmSgjGG/PkDajEZboZnIjyr06edjMF4K102MIzhYsGNAOk+KoFChYg+/xwG4b59vQv23HwzUmA88oi3hHH11TBGf/gh0aefuo974gkYKseOdSfqjz0GYugWsR0RgWI/a9fCSyk34VbzuFu34HYEIqJWrSBFHTzoPHfDhng327Y5+2rWJNq1Sy/JlS/vzhiio/HedYWX8uVzd1cNZmPQGZ8TEhDRrpMY9uzBX9363bIFGxfd9datIypd2ml4JiJakeZj0qaNvd2LSZtI6TwFwxguFnSGTCLs9r120zVrIs3E2rVEd9zhPfaZZzB+8GDsAN0wdSp2cmPHBvzXVZQsCWlg5Uq4xupQpQq8k95+mwq5+esPGYK8TTNmuHsx5QSCxSRUqEBMhHeki0lo3Rp/dVJDMAN0SgqYiory5d13w15pMbKiSkpOBqPRSQxirbipkkqU0K/dYB5JavyCwMqVWPfqpuihh6DKlJE/P5i3jqkb5pBrMIzhYkEkHKtYMeCJ0asX0YoVVP6jj7yP7dUL6pg33sA53FCgAGIMTp4kGjbMnYmEh0OldOYM8hu5jRs+HDmSpkxxd528/36ikiWp6vPP688TFobEf5s2YW65hWAxCXv30uEuXSDl3Hyzc1yDBiBSugSGNWtCvZMVz6QjR0CwVXgl0suKu6pXAj3BGNxUSZUqOdvj4yHt6BhDfDykJ50aiRmMQVUjEeE9dOkCBi17K337rbE95DEYxnAxIYKi/H78/fxzoptvpiqvvIJ/e2H2bKKuXWEbWL3afdxVV6EG87ffQoJwQ716INiffUb08cf6MSEhSLJ36hSkDB0KFyaaO5eKbtzorpq66SbEUcyapdfD5wQyYEs42bQp7vX3353jwsOJmjXTSwxhYXjuWWEMzHobTRYlBtckeiImRicxBIt61tkXhNpMxxj+/BP3pZMYtm2D44OOMRAR7d9Pp+vXD3wjgwYZ20MehGEMlxIhIURvvklnateG+kdHkARCQ4nefRfEpG9ffcSswLhxkDLuvRdpLtwwZQqI3bhxSJuhQ/36SKfx+uvu6b5HjKD4KlVwPd1ONiSEaO5cRHO//bb7fC4WdProDMQkxAmf+yVL9Odt3RreNrrAw0aN0KdKTdHRCPbLbCxDMIkhNdWdyep0/l4Sg2AMqsQg1DaZ9Uhatw5/dRKDiGvRMYbDh4n++INOqgkfTaR0noNhDNlFMKNZvny0ad48uEP27Om9C4qOhmQRF4dduJtrqmWBkMfGEg0Y4Joqm8LCoFI6d45ozBh3ldKsWfgIx4zRqz1CQ+nvceOww3OTUnr2RHqOBx8kStQmyL04cDMyE9nzG4lIb8mWkFKkCHa5bu61rVqBIP/2m7OvYUNIG8JYK8PNM0kQNh1jCCYxEOmlBrdcSYIxZMbGcPQoGL0bYxDuuCrWrkVupVKlnH0rV8IoXbWqsy+NIZ9s3tze/tBDzjxNJn13rsIwhuzAjUgpize5WDHkMUpIIOrRw7u4ztVXE736Kj6we+91HxcTg+v8/TfR+PHu42rXRmGfr75yj2QuUIDoueeINm8mevpp7ZC4xo2JbrgBH6tb/p9588D4XnvN2X+x4OULL1R5336L96HTqXfuDMIfF+fsu+Ya3IdOchIGaJ2EVqvWxZcYiLTSWVBVkpvEEBkJLzgZwVxVq1eHik2FiHhWwQyPpLZt9XNcvJioVCmKV5nNoEGw8YSE2G0PRMYonUswjCE7yEzATp060NFv2YJdvpcuftAgpLb43//ciTkRPsAZM6C+efdd93GTJoHo3Xmn3h2TCES/d2/s+HW7YiIEuyUkuGdWvf56uCjOm+ed+C87yIg+un17EMEvvnCO69wZu+6lS519RYpAtaazM9SvD3Wfm53h6FFIFDIKFECgm27OkZHoz6zEQJQ1iUGXJ0kwBp3x2c0j6exZMEGdfWHPHthTdGqklBRIal26OOdx/jw2JaNH220PJiAu12AYQ3aQWaNZx46IOl68GOU2vVxTn3gCH9jIkUhv7Ibp00GMx451z9gaGgqVUkICoqLdrvvMM9i1jR+vH1OjBlxqX3uNaMMGZ7+QGg4f9k7vLRBMTZDVgLXISFRPW7jQmfa6eXMY1L3sDKtWORl3VBQIZVYM0F6xDJmUGFxzJQWTGDIT9ZyUhNgML8NzZu0La9ZASuva1dm3ZAkYW79+9nZjlM41GMaQHWTFaDZqFIzCzz9P9H//5z4uPBzeRMWKEfXp454+ISwMBDM8nOiWW/Q2AiIQ9UceIfr6a3cDcYUKkBi++Ua/2yaCtFCkCAzWOubRti1Rp05Ejz7qbvsgCq6Gy27AWp8+2Cmru//wcEgUS5bo59+qFYisLptqw4bejEEXAOfFGNzSYnhIDK71GLwkBrcEenv24F0WKWJv37kTDFXHGLwinleuBLOrU8fZt3gxGNr11zv7Pv0Uz+Laa+3txiidazCMITvQecKEhmLX7IXHHoPaZtIkEGo3xMbC3fTAAYjWuqIvRCA+b7wB3a9XXekJEyBdTJyIc+owcSLsHBMm6Al7dDRca5cudZ/7vHnYCXu50wZTE2S0iE5ICKQTNWCta1dIDm7qpP379Tv8YIFuhw45bSxVqoBBuxmgL6bEQJQ37K1fAAAgAElEQVR5d9VjxzLnqhrMI6lcOaxNFStXYn3pJJrFi6HOLFbM3p6YiMJVvXvjGcowNaVzDYYxZAdqUFvRoiDeq1Z5q4lCQmATaNgQ9oa//nIf26IFJIvvvsNu3g29e8Mt9ckn3VNqp7nPUnIyVFRuAWsvvQRbxKxZ+vOMHYtd8pQpegmlaVO4086frzfyEgVXE2SkiM4330AnrSs+U6gQdqdffOG8z86d8VenTqpQAYTPywCtSg3h4WAObqqkkyf1NpcsSAyuqiQ3d1Vmb1WSm32BKCAJyXCLeD54EOonnRrpyBEwFJ0a6YcfsAFR1UhEgfGFChmjdA7DMIbsQg5qi4tDBbQXXvBOdkeEnd2iRdhB9ejhbhQmwqIfPhyxAgsXuo+bPx9G0qFDsbPVoWpVpMJYsgQurzq0aIFrPvOMXnUSHg4GtGMHbCY6zJ0L7yu37KzB1AQZUSN06hQoaKRDnz4gGirjrVwZHjdedoaff3YylAYN8NdNnZQVz6SL6ZVkWQGmInDuHBiMW9Szm8RQsaJT+jhzBu9cp0b66Sf81TEG8Zx1jOHTT6HKat/e2ffRR9horVhhjNI5DMMYLjYeewxEfM4comef9R5bujTUMadPwytIl1CNKOCT36QJchPt2KEfly8fPqb4eGRPdctdNHYs0XXXwU4gDJAqHnkEgVtjxuhVWN26YUc+e7aeuNWvj9QTzzyjz9ekU8NFRARsBRkpohMWBrvKokV6yeSGG7C7dlMnLV+uV9e0agXvGlVqKVoUkoEbY9i1y/msvCq5CYlBZUBuEoMY52ZjKFDA2ecWw3DqFAi9G2PQqZGEq65OYli5EtKKYJ4yFi+G6kntS0qCG3WvXvp60wsWYB2pxxmj9CWHYQwXG5ZF9PLL2K1OnOjtRkoEff5HH2FXO3Cgux0hKipQFrRPH/eyoLVrgyH9+CMkAx1CQmCTYEbGVp1KqVgx1GRYs0afv8my0H/mjLuK68EHQdwefdTZp6rhwsPBiG65xdkvrvfss05bwpAhIDC6CnclSkDnrWMMnTphbjpbQjA7g44x1KoFfbnKaL0khpgYvG81rsVNYvBiDG4pt93SYQiXZJUx+P2QfLIS8dyqldNOkJoacFNVVWA+HxiUTo20fTviTYYOdd6vMUpfchjGkBUEM3yFhSH+oH17omHDKGbVKu/zdeuGnfXChd5BbRUqgIls20Z0223udowRIxA5PX26e96lSpWg5lm6FIxMh4EDcQ/33UcROl14vXrwsnrhBb1HTo0a+LBfeEFv7JbVcG+8AXWabB8R/b/9hnvV2TMaNQIR81InbdqE3byM664DM9Kpk+rXh17bzc6waxekPBluLqtly+JvZoLcgkkMbjaGzCTQc3NV3bsX19V5Fq1dizWonuvECTxjNzfVkyfd1UgFC+o9lRYsgOFZ3QgQQWpUn4HI0moM0hcHGSnzltd+uVraMzPlCc+cYW7ShFMiIlAmMRjuvBPne/FF73FPPIFxjz/uPiYujrlSJfxOndKP8ftR7rFAAebdu/Vjtm1jjojgwx066PuPHGEuXBilHHX45x/m8HDmMWPc58qMEqblyjG3a6efZ6NGzPXr68uIPvwwnofuHvbsSX9WjnKM7doxX3WVfj6dOun7vvkG51uxwt5+9Cjan37aeUypUswjRjjbFy7EMb//bm8/cgTtzz9vb09KQvvcuc5z9eqln+/rr+MYtSzsM8+g/ehR/f39/LPzXNWroySpii+/xDE//eTsmzEDJUBPnEhv8vl8KItavDjzLbc4j0lJwVro1s3Zx8z8xx+4XrFizJaFMq1jx+Zo2VBT2tPAjswYvgoVIvr2W0qMjYWB2cv7iAjpKLp3R4CZV7nMu+8m6t+faNo0fQQvEfTh77+PnapbUJvIuRQSAruIziZRsybRtGkUu3Qp1FMqSpaEZPLNN/o5V6oEqeK114h273a/p/BwBP0tXx7wlZfnOWYMYgt00tfAgfir2yFWrAipws3OsGGD3lDfqhWup0Yzu3kmFS8O9VtmgtyyKjG4qZIyk0Bv715cp3hxe7uo6Keqkk6fRnyDm30hKgreaCoWL4Yzg7hX+Zjjx/VqJJ8PEubQoc4+Itjb8ufHehJGaZO6+6LCMIbMIrOGrxIlaP38+fC86NzZPTqZCKLzBx8Q1a0Lwr9pk36cWhbUzYB8zTXwDvroI4zXoUIFMKTly92jle+7j86XLQt3WJ2xdsIEGGUnT9an+njgAajX5szRn19g1ChEJT/5pLNv4ED06bygKlZEcNQ77+gZYJ8+RKtWUYRKgDt1wt8ffnAe07o1zqWq4kqXhiFVZQyWBSaamSA3t0R6WbExuNV7PnYMRFTtEx5J6rm2bgWzVwm5MDy72RdatHAW4Tl6FEzeTY2UPz9sDyoWLMDGpmdPZ9/Jk9gADB5sd1M2BumLCsMYMgs3A5cu02QaEkuWxG7a7wcxcquhTAQp4+uv8SH36OGefrtgQeyCk5O9y4JOnUrUoQPyJAn/dBXDh+MDnTrVqYsnIoqKop133QWmpjMkR0bC0L15sz6BXpkySKXxzjvucyAC4R89GoZkNV9TgQLwtPr4Y+w0VQhvLV1q8z59iIiouGpMbtAAO2mdnaF5czBqNztDZl1W9+3Tp+wmckoM4eG4dmZsDF4Sg1tJz8x4JLlFPJ85A6aRGTfV1FSsXV0U+9mz6XVM0hmkjDffxFq/4w57uzFIX1QYxpBZuJXwjI8PiOE61KoFsfr4cUgObikuiEBIFi3Cbq9XL/dkajVqgNiuW+deqS0kBGMKFkQwnY6BWBYyuoaHw6itUSnFNWkCj6FHHtG7y954I4jDzJlOwywRmE7+/MHjOyZMwHx0UdMiLfhbbzn7+vUDIdEZoevUIapenYoLX3uBkBAwasG0ZRQoAMbh5pm0ZYszvXjNmlBLqV5G5ctjR6+qpQRj0K2FqCjnexdzzKzEkNHKbczujGHdOjASVfX066+Yl44xLF4MpiTUb2kosnkz8mnp1EiffgoVkE6N5PdDqm3TBoWTZDz0kNMjyhikswzDGDILXQnPJ57AR9m+vfeOuEkT+G3v3AlbglvcAhF2Zu+9B6+OoUPdYxJ69kSG1TffdPcuKl0a4vmGDYhW1qFcORDjn392j7946inopXVMyLKgkjp+3Jm3iAjE6a67sOP3srWULw8G9uqrztiEunVBFF56yfk8ihTBs/jwQ2cdC8si6tOHiv75p/OcnTtjzjoJoHVreESp52vYECozVdUnPJNUxunmshoWBilJFweSL9/Fc1dVJYZz53DPqsRw5AiYl5vE4GZfCAuDKklGaiokBo2baomVKyFlduvmPN+CBQg+VM9HhOj/3bud0gJR4DoilqNiRXw3CxaYCOmsICMW6rz2y1WvJDds3cocG4vf1q22LocHw+efw1OjUyfmxETv886fDw+L++93H5OaCg+O8HDmX391Hzd5Ms71xRf6fr+fuUcP5qgo5u3b9ffw/PM4x3vv6c8xbBjmsWuXsy8ujrloUeYbbnCfIzPzn3/iGo8+6ux7/330LVni7Fu0CH0LFzr7Vq1C3zvv2NsPHUL7Qw85j/n4Y/T99pu9fdcutL/6qr190ya0q54w4tpff+28RuXKzIMHO9vLlWO+7TZ729mz7t5o+fMz3323s71sWed5tmzRv8Nly9D+/ff29pMn0f7ww87zt2rF3KKFs13c8wcf2NtTUzmhRAl4UanYvRvHzJvn7GPGGi9VSv/NPPggjt24MdBWsaLdS0n8KlbUnz8TuNK9knKdyGfllycZAzM+uNhYLN5t29KbtYtIuBHedBPc89zg9zOPHo2xb7zhPu7kSeYqVZjLlAGx0yExkblxY7j57dunH/Pvv+i/5hrbvNLvISWFuVkz5pIlcU3d8QUKMN94o/78Dz2Ee1m1yv1emOFGW7q0kwhcuMBcooTebTIpCS6Q/fs7+1JT+UJMjH5eV1/NfO21+nshYn7ySce5uHBh5nHjnHMLCYGLpowDB9jVDblxY+auXZ3t1as7XTnPnMF55s93zoeIeeZMe7vfzxwRwXzvvfb2b79lrUuqYPoHDtjbf/xRzzDOn8cmQD0/M+aiuKkyszuDZgZxtyzmvXudfbt2oW/WLGdffDxzTAw2NTIsS88YLMt5jkziSmcMRpWUUWQkm2Pt2kTLlkHNcd11ekOkwPDhUEF9/DFEY3YJVrMsVFe7/nqIwT6fflyxYjDoeZUFjYiA11NyMrw6dFHWZcogad+qVfpqbqGhUOUcP67P5FqmDOwJn3+OHDcqJkyAWmnGDP19CEyZAn39Bx/Y2yMj8ewWLnQa8cPDoYZauNBp5wgJoeOtWkEdoeruO3eGLUHNJlumDPIqqXaGkBDYH1T1U2QkxqvvvVQpqFvcPJOya2MQbpqq8fnMGdhkVFWSW3Db1q1wfihTxt4uIp4bNbK3CzWbm32heXOnd9Nnn5E/LAyOFTKYkQ7+uuv0BuMXX8TaE2VcZbzxBtRx06bZ241BOuvICPfIa78clxgyE9TGDJVCiRLY8W7f7r27mDoV53vgAe85xMUx16mD3bwkjTjw3ns438SJ7mPefhtjZs/W9/v9zL17M0dGMm/ezMyaHdJdd2Hnpdv5nzvHXL48gtJSU539Tz2F63s9F7+fuV49/NSgtr//dt89/vYbzv3aa46uv0Rg4Jdf2juWLkX7V185zzdkCKQjdQ4TJ2INqNJet26QQFRUqKBXGQ0YwFytmrO9WTPmLl3sbXFxmOdTT9nbhTpMDYjbsQPtCxbY26dNw05fnXuHDriuiv79ofJSIXb4cXH29qNH0T5njr3d72euVImPN2/uPNdPP+nnyoz1VLQopGsVSUl4tq1aOfteeskpLYjv9t13oVISAXKZDIS70iWGXCfyWfnlOGPIiq5y40YwhzJleLVObBbw+5lHjtR/8Cp278Y5q1ZlPnbMfdxdd7FW1y1jyBCI+moEr8DhwxDPmzZlTk52fghnzkB/ffXViGJVIRjUm286+86fh8qrVSt9JLPAW2/hHN995+zr0gXnUK/t9zPXqKFVDS3/4QcQmKFD7R0XLoBgqKoh5gBx2blTP7ctW+ztkyYx58vnZIitWunVVXfcwRwd7Wxv29Y5Xuj61ehqYfNQieovv6B98WJ7+y23QO2oonRp57Nhxth+/ZztHTowN2jgbH/nHdZGdK9dy0zEW++5x3nMyJFQQZ496+x77TXWRpvL11q0yNk3bRr6Spe2M4DMbvQ0MIwhD/5ynDFkVVe5cSNz8eJ8oXhxJ2GRkZLC3Lev/uNWsWoVdvKtW4Og6ZCUBMKSLx/zX3/px5w5g51quXLMx4/rx3z0EQujo/ZD+Owz1urgmUGgmzeHvUX3sb/4op5oyUhMBPHv2NHZ99VXOP7zz519c+eib88eW7PP58OuPTrayVC6ddPv3IVB+a237O3r17PWgCsYiXJtHjBAT4xnzsQ6UnfvnTvj+ck4cQLnfuYZe/tff6H900/t7V98gfZ16+ztLVsyX3edve3UKdYa/MU11fbERKyvCROc9zRwIKQslTnedx9zaCj/pEps58/DZqNjSn4/mI8uHYqQKuvWdV7ryBEQe13KjYtglL7SGYOxMWQEbjpJkSDNDfXqES1bRiFJSdCd/v23flxoKGwWHToE9OduaNECLng//+xebEeUBY2Odi8LWqgQXDuPHHHPsHrTTYjAnjWLCujSWfTpA7fbmTOd+nPhvnr4MFKRqxg+HLaa6dPd7SsREbBJ/Pij08W1e3e4geoioQcPxl+dHUg8D1GfWKBzZwT3qfdZuzYibNVAt9q1YVNQ7QxuyfQqVECaB9XNNjoa96/GOOTLl3Ebg1uRHrcEerrgNreqbW4Rz3/8gfmp9gU3N1VmBC62b08painRL7+EPUQXu7BqFd79HXc47/vbb+EyPHWqM+jv0Ufh7quLmzFR0sGREe6R1355wsYgRNT9+4Mevua116CWKV8e+nE3nDkD1U1kJPPy5d4nnTcPc3jwQfcxq1fDK6VzZ3fPJ6Hvf+45ff/Ro8wlSvCZ6tUhiajYvRs7R52XEDN2ylFRek8ToY7R7foF4uKYCxZkHjTI2TdnDmvVPMzMbdow16pl22X6fD54sERFMY8fbx+/bRvO9cILznN1785cu7azvXFjqFNkHDyI8zz7rL39//4P7YcP29uFKmTHDnv7gAFQickQifr+7//s7d9/j3Y1iZ1YIwkJgbbERL195o039PN45BG0qx5ojz2G9iNH7O2rV7PWTVVIWC+95Nxtd+6M3brOHnXLLZAmdFJn69awL6jr8t9/8Y6HDXMew4xjdBJDTEyG7Q5XusSQ60Q+K79ccVdVjVUPPMBcqBAWmeLzr8Ln80Hcj44OzhyOHQMRKlQIWSTd4PdD9NapM2S8/DLGTJ/ufp5u3cCM1q/Xj/n0U5xDNSYKCOKhix/Yswcf6cCBzr7kZOaaNaEK8HLZnTSJOTTU6WJ78CDap0xxHvPKK6zqudM/5l69oEKTVRN+P96rzr9eZG9VVW4jR+KdqucpVAi2AxkiA6mqdxfZTFUj/m23Ya3IEFlXVSb++edo//NPe/uECSCqMoQ9QrX93HMPNhGqiq1fP70KrHt3MF4Vbm6qov3wYTtR/fdftOvW5+HDMJLrHCl+/pm1ajVmPPuwMPeMwRMnOplCeDjuP4N2B8MY8uAvz8QxrFsHY3CJEp5EPH0R/fknvIoqVHBftMyQQipUwHm9mE5iIgyUERH6NMnMIFQjRrDWG0fgyBHYAmrXxo5ag8Pt2+NjU4mPmEedOpiz7vgHHtATP+aAHcOLue3ZAwagC+Dq2xc7PXlXzAxJIyLCRlTS34OQVNassR8zahSIuroDXblSz/heeAHtqjTUtKnTLrJuHcZ+9pm9Xeywv/nG3j52LN6/jMOHWSvVuEkdt9wCRwUZwgNr2TJ7e48e0NerqFTJ6Q2UksJcpAjia1Q0bYoYGBV16qSnVLcRVSF5qHNnDtiKdN/ADTfgvavrbc8eEPnbb3cewwy7XOXK2BhUqBDY6MXEOJmFh93hSmcMxsaQHTRqhFq3UVFE7doF6t66oUEDpMk+exY2BzVRnEC5coGMn9dfry9yQwQd/OefQ1/cu7fehiHiIERZUF1sRcmSqDS3bRvSVmiwc8IE+NwPG+YsmBMRgdiGffv0GVSnTYMv/6RJTntCv37IezNrlj72ggj3d9NNSEWixieMHQsf9k8/tbcXLYrSnh984Mz4esMNsOuoqbg7d8a7UTOqNmkCu41qZ3BLwa1LpueWFsMr9XZGbQyimp+aEkOXDsOtctvWrc7iPCdOYLxqX9i4Ee9BtS8cO6bPprp1K3JL9e1rb2eGvaxlS6TBkJGSgjXVqRNygsnYvBm5xO6803nP8+bh+bil237mGaJ//kG+rb17A2m73XKX/UftDoYxeCEjQW01ayIAqkwZLOJvvvE+Z8OGMKaePg3m4JYyu0YNBGPFxeG8unw6RCAs33yDBd69u772sSgLGhmJZHdqIBcRDN/TpiE76kcfObpTihRBLqb16/W5kNq0gUH5qadAOGQULIhjVq+GwVtGSAhSg+/ahQAnN9x9N+b96qv29vbt8ax0RughQ0Ac1ToR0dFI060yhg4dwDDUbKv58oE5qIFuV12F+esYw/799lxYxYvjPaiMwSv1dkZzJbkZn48e1ddhsCxsPgQSEkAsVcOzCGxTcyQJw73KGJYswRxVxvDZZ/h7443O82/Zojc6f/UVAhh1eZEefxwJ8saPt7f//Tdyht1+e4ARyzhyBIzjhhvwrmW4OZhER/83k/BlRKzIa78cUSVl1tf56FEYI8PCHGoRrdi5di186itV0htmBZYvh/6/WTMYp92wYgVE6Ouuc8+/tHQp9Ln9+unjB5KSkPemcGGHqiv9HoYMgVpHdYFkhn0kJgY++6ohMSUFbofly8M9UYbfj/urUMHdBZcZ91a2rPP+nnwS70e1kSQmYj4DBtjvgTlgDFbyWnHLlsxNmjivPWUKVFOqyqp2bWfuJ5FjSVW7Va+uV8tYljONhlCjyDp/kVrj5ZftY2fPRrtqpylVCnYQGUOHQo0iQ7i7fvihvV3YVtQAtr59sW5VuLmpXn21LQAt/T2MH4+1rZ6fGWqnihWd97R3L74xnd3h1lthzzp40NnHDFVhWJheNSWCHzNod7jSVUm5TuSz8ssRxpAVX+fTp6HztyybgdB1Ef3+O3S1lSt7M4evvgIx7tjRm3CKiObhw90Dx0RSvsce0/f/8w/m1Ly5Tdeefg8nT8Ibq149/VyEd4sm8ph9PvTpkqQJzxrV40aGMNSqAYMnToAgjB3rPGbcOPSdPm1/D/v341xqYjgRzasGEArjsWrLGTjQSWiFB47qmdO+vV7/Hh3tNFYLQiV744g5q8n77rkH9ygjNRVrRk2+2K6dM0r4gw/0jPXGG52xHX4/bB+33mpvT0kBEx4yxN6+cyfOLQVv+ny+ANO++WZ2QMSO6JIoTpwI4q5+L1u3YtOjc0RgBpO2LDgyqPD78Vzy5cO7zIDdwTCGPPjLEcaQ1aC28+eZe/bkdC8ev997Ea1ZA0JcpYp7YjvmgMG0Xz9vD54ZM9w/KmZ8BDfdhI/ohx/0Y8SO97770pts9/D11+jXZXz1+xFcFx3trCfMDLfWAgWcuzq/H0y1VCmkQNAhNRVGzKuvdjK+oUPh1qpKVSJp2xtvON9D06b46carRF24iqrPVRBwmZGcP491oqYc0e3WmUF806SadDz3HM4rP8O9e/VMd+xYEDEZIjBNjZKuXNnpISY8hlRpqGJFJ+HeulU/B2FEf/99e/ujj7JqoPf5fAFPqm+/ZQfGjoUkoTLn48exY1eZEjPmWaCAfs0Jwh8To0/8KL6tl16yt3vQAMMY8uAvVyWG8HBvAs4M8f/WWzH+rrvYt3Sp9/jffoP6pmpV77gIEXMwapS7ROD3wxuFiPmTT/Rjzp6Fi2hMjDNCV2DUKHwYP/7IzBqp57bbQExUzx5m5FcKC9NHsu7ciWeopoJmDuTL0aWVFhBZaVWmJgi6+nH7/VDhXHed8x6EqkR+5ikp8BzT+cDXqOFUG7llHq1Y0Rl1O306npnqEtq8OVKwyxBpIOS1tmcP2l5/3T721ludkqwg4LJaMyUF70Vi+MyMXEiq99KxYzj+iSfs7cL9WY0dmTUL96a69DZp4si/5PP54BZcqpTzWZw+DQavWztCZbZpk71dSGhuqelFBLiaS0rcZ0wMJDlVBeZGA2JiOCE2Nst5lnIThjFkFzobQ2QkfmXK6HXsMlJT4UdOxIc6d9bnE5KxenWAOahpj2Xcfz/mMm2a+5iEBCz0qChnLQGBHTtwvUaNnDp/Zuzaa9fGx3vkiJOoxsVh91u7tnOnyQziQ6RPlHf33fiodM+wSxdIG6dP6+d94QJSm3fubG8XqRN00kSaeujXjz6ytwviqaqv+vfHO1bPM3w45iYTELEzV1VznTrh2coQRFVVg3TtCvuUDJFrStaH//MPC+nHhhtvhCQlY8UKJwPdt0/PPOvVc6as/u47jFXdWgcOhCpRfTbNmjnrMghGpjybn7/4AgxKp/YRth91wxEfj2evq+XRuzekbp00cOECvqk6dfTf4G23YS4bNjj7BCPKoN3hcoBhDBcDugyMGzfCgFqggD5xlwy/P1BApFcvPQGVsWoV/OirVXNnDn4/fLR1uzkZR49CbRAb6y4VLFyI8wwbppdANmwAI+zaVS/1COKhy8d/7hwMlLVqOY3FcXGom3Dttc7r/v47zukV0S1qOqg6cUF41WJFaUFdu3R+97VqQfcvQ+zWVWIhpBU1cV6FCk5V0IQJ2PnK9+dWB2HwYGf2UpGHSr5HUchGzdvUubMzK6oISpRzZQmJTE5KmJwMQqcmthNR06dOBdr8fhj/VfWSyKaqvjPhFKAUbdoxfjza5aI64vy1aukzvD7zDI755Rd7e1piPtf1IlR9usJOy5ejb+pUZ9+5c5AQRVBqFuMd8hoMY7iUOHgQO7yQEGfqAw12pEkOfN117jthgV9/BXOoXh1RoTqkpMBOoNs9ytiyBTupevXsH7iMmTNxHl0RGeb04i07dYZdZqicQkL0leOEsVhnbBbBYbp0GH36QJpRo2cFTpzALk1VN5w9i2en00G3bMnxlSo5GVFaYjebCkTsrNWCONu3o/2VV+ztvXsjgluGruiNMKqq9ouJE50RyoKJrF4daHPLotq6tTMpnni+si3n3XfRJntiidTcaiR0nz5YgzIEY1JVMuK86i7/mmu02VfPVK/ulKaYA2o59f5Eau3WrZ3HdOvmLmEePYrn2r27s+/CBTChSpX0Ni2RoThNlZqOS1j8JydgGMOlRnw8pAAi7A49DMI+nw8fT2godK5eKbOZsSsqWBA7FjfmkJgIdUVIiHupTmYs7LAw7Cp1onSwsqB+P3OfPpwaFobdmYrTp/HRVq+u/8D69YNKSy31mZwMO0fVqk7vpo0b8aF5qcvuvBNzViWrceMg5ai6bpHNVY1QX7OGtbvw2rWZr7/e3iY8clSGJDyZZA8iQeRkSev0adbaUIRUKUdcizKbsipOePi8/bb9+AYNnCoWoQaRzykkLfk9iSy1MgNixi5ZtZEII6260x80CM9FVrEJ11p1U7BxI9r/9z92oHdvSJKqZC287dTSqL/+inY3R4sxY7D2VZdk5kCeLZ3xe/lyvE/VU4z5kpYLzQkYxpBdZKSQR0pKYGfRs6drOol0/fyiRSCStWoFN2D//DOYQ82a7n7ZZ89CrxsR4dQFy3j1Vcxx7Fi9yujkSRDo0qX1ZUFPnOCEkiWh4tLFUggiqHMFPHAA99Gli/PaQhWlU4kNHAipQE06J7B7N5iiqsbasIG1u/0TJzg1PNw5R78fthI1R9Jdd4HBqMyud2+noVao5GgdyzgAACAASURBVGQ1h3AtVdNXFC4MpiZDeCDJCemEMV1OSy5296q7bvXqTlXWHXfAiC5j1Chnmg3hNSRLlCInk/oMdTaW1FQQc7UI0bPP4hxqUakpUzg1NNTpPbR3L96nuhlITcUGQlewqUMHxE3ovrsNG3A+XbzDjh14t7rCP2fPQq1Xtar+vI8/7mQK+fPj28pG4Z+cgmEM2UFmg9v+7/+wCBs10u7wbYbbFStAHDKQfI9/+gm2jFq13Os4nziBD6dgQWeCNhn33ov7UN0XBdavxz22bq3NovrHM8/gHlU/dYFx4/BRrFzp7Pvf/3Dtjz929nXtiuehEoodOyBheVWiu+kmHKuqEVq1ArFUvEyOtmkDm4sqOY0fD4YtE4LFi52EmTmgs5bfh2ACshHb78e7U+dft66TCb3/PjtsF3/+yQ5Vm1BlqXmlSpdGPiwZ/fs71VudOjndc2+9FYZ2GUKNpWb4rVbNOXdRMU+dU9u2uFcZycnMpUrxsZYt2YH77sP6Uu1hixbpmaGIidEVt/L7wTSio53qSNFXuLB+wzVmDNaxLvfY+fPMV13FXKgQJxQvHmACY8dmu/BPTsEwhuwgK+Li11+DEJQv7zBaOjx6Mph8j5lBaAVzcNs9HzgAXWnx4nqxmRlE8sYbsZh1WVCZAwRKU3zF5/MF1BOqKoPZe6eVnMzcsCEImErEt2wBA9DZMEaMgDTkJl0JNZBKHITOW3Fp3SjUByqxF4nl5AR3585hV6lKGGInLxfF8fvx7IcPt49t2NDpPdWli1O/vmQJO4zSIg24HBcgvKjUWIHChZ0MqF07p06+Zk1nJbamTZ2pw0XUtfyu/v0XbWpRptmznQGBhw/rU3unMZyNqqH4wgV8C7rMtq1aOVNr+/24tzJl9B51QoLTBUuKtaFzXRXvwS1Ibtw4Fuon2zd9GamXDGPIDrJqYPrjDyzWQoVsnh/aYJjt27HgCxfW77JlrFiBHUidOu7MYccOiNXly7sT0nPnYOMoUMCdIU2axLodms/ng+qsbVscr8uGKbw8VFUJM4i4Zen7xo/HblHVXYtMmTpvIoG2bZ2E48IFEOobb7RPb8kSqFfUAK/kZOwuVXVIx45ON9DEREgXKsO4/nowAhkDBjhTR+jUOcITS645rYtZ2LKFHcZrvx/PTvXhr1PHfv9+P+YtZ6gVKcLV2hS9ejmljQ8/xLVVqbR5c2elOWHPUd/nzTczR0fjPcgQ2WHVWBDhRaU6eAgCriPuiYmQFmvXdkq+J07g2Tdr5rQJBnO/Fl5eaUzD9k1fRgZpwxiyA7cdQGxs8GP374cvfWhour+4a5Tkvn2QBKKinIY1FcuXB5iDWhxF4I8/wGhq1XI3cB88COZRpozeJTYpCW6k+fLZcv2k38P+/SCijRrpU2IIDyzdPd9xB4iYSlyOH0feqE6dnHrk8eNhQFSN1wJid6juou+5B+9AUu35fD6oCvLlc9pKhg7FHGRiItRGKqNt29bpUnnvvWBismvurFkgDvKuVuzGZeIjvH1kzyCh55eJ3+bNaJNzGiUkoE1N7VG8uD31tEjZLRNZoQJTCWy5ck7mOW4c1JWyGu7YMX2Ed4cOcJyQ32VcHCSwO+5wfg/Nm4MRqQFmPXrgPmQ7T7C8WiIIVFcyduRIrAld6vihQ9GnC9gUaWKaNUt/v7Z7KFtWTy+ErSEP2R4MY8gOdDYGy8LvmWe8C9gzg+h064bj7rnHO/JZTr4XbNH4fCBqdevqQ/+ZIV1ERUEycEu6t2EDdooNG+orYx0+jMVeuXK6jtb2IYi8QTpjc3w8dNGVKjnPfeoUAuYaN3bu2MQHrdYlOHgQ9+Nm20hNBVFp1Mj+XoRrp6S28Pl8gQIvqkukuCd51yoM2Wr6h/vuw/uSCZbINyQTHaGak1WLwrNHjhwW9ZZlY6/wYJLbhLurbKsREcpywRpdYj5hC5ClEpGfSnZcEAxEVc/Vq+dUi4kgPDmI8tgxfY4mEWOyZo19LQlpSS24I7yXVLWT2AjocnEdOwYC3rWrs09IHzo1kfDM0hULkhNLSgW20u/h3Dl9RThhkM5jtgfDGLILldO/+ipcAolApHS6TRnJyek6yaNt23qPP30aOmEi9xKbAkuXgjnUq+fOHBYuxMfZvr17UN2332L3fsMNeldbpSyoY5cngpRUQs6Mj9Cy9HYDQUBV/a9QAdSq5VQBTJmC823erL8XUa1N9czq1AkMLm2X6/P5wDyqVHEW0jl/PvAxC/j9sIv0728fK+Iz5GcibAJyXMkff6BNTk2iK5Tj9zuJaVISxsnunoJRyefTqZyEtCE/Y5H/Sg6YE0FjsiFd3NuKFYG248fR9tBD9ucweDB29PJOXwQHqqrKli2hplFzhw0bBtWkGmczZAjaZbfj1FS45latqi8zO24cnqMagOhVSOr4cWgCrr5an5V46lQnM2ZpLQ0ahLV5991OySAP2h5yhDEQUTQR/UBEO9P+FnMZl0pEf6X9FkrtlYnot7TjPyKiiIxcN9fiGFJTAz7nDRu6RxQL+P3MTz7JfsuCuOxmH2AGAVeS77nixx+xi65f311lJHy/+/RxT8ch3CR1O3/mAMF94AEnY0hIwMdUvLg+1mLyZByr5jTy+0GwCxVyHid2birTOHYMagzVcCrPpWRJSGkyRI6ctMp16fcwcyY+YFWVduONYAQyoRs6FHYJmXmePInzzp0baEtNxRxlG0p8vJO4C5dTNW6iRAm76kfYDh54INAmcgLJhm8hRcjqJbHbltuEWkwmwGPG4N7ktSZiMmRpU0hTck3p1FTMWa3F3bUrJE35nOKe0+IN0t/D8eNQL40ZYz+HqNh31132dqHn1zk/bNyI56WzYYmcWLpMBTffDBWgHCEuIGwZGhuXz+cLSLnyOpCRB20POcUYHieiaWn/nkZEj7mMi3dp/5iIBqT9+yUiGpuR615SxpARneCiRRAtY2LsAUwu2DhnDnb5lSq573qZ7cn3Jk7UF0cX+OEHMIerrnJnDsJNdMQId0Yj6t+q/vYCI0cyE/FG3eLfuhW77PbtnVLH+fPQM1eo4PRE2rlT70fu9+Nc0dHOvDcia6yb0Vx4HMkJ1pKTITGkqUDSCZIgVGqgmTCCyiVIhTpIDQCrVw8eRjJatXJ6ApUrZ1eDnT+vJya1ajklkwIF7MZiUTdB9p4SKiLZRiWC42SpZPx4qFlkXHstdvIyevZ01nKePBnvS9bpC48w+fs4eRJEVk2vIZIHpjHi9PcgynqqRuoJE6Cqk207KSnY9deq5Vxrfj+M/8WKOQMbd+3Cd6I4IjBzoKysLjL/0CFsNurV00r7fz75JJhXnz767zQhAc/sPyoxbCei0mn/Lk1E213GORgDEVlEdJyIwtL+fw0RLcnIdS8ZY8hM/ML27VioISHQA3vs8H0+Hz6k2Fh8nF7MJDU1QKxvvdU7+d7332PRX32184MQEARVl8+IGR9Zjx5Y5DqDXUICc9OmnJw/vzNYiTmgOlCNn8wgsCEh8MRR4eY6+tdfYMrqbjEuDh++Lr0BM5hjvnxOl1HhYrtrl13qadECEpeMkydBkORnJQysqq779tuxOZCJ1PjxkBpkQtGhg9NQXaKEcxfasqUzZ1NMDNQjAiK2QY5010VICw8imUn26IFNhIySJZ3xD2XKOL2zmjQBE5Ghq1uxYAE7bA6pqdgcSNlj0z3cKlVynle8RzW6XNgz1ESIzIE08Go0td+PTUGhQk7p8NAhPN+mTZ3fWGoq3lu+fPqN3J49nFikCFRjOjteaiokESJnwr3wcFw3l4zROcUYTin/j3MZl0JEa4loNRH1TmsrTkS7pDHliWhTRq57yRhDZnWCZ86gmhURXBODRT7v2QPDcViYd44jvz9AOHv29E6+t2QJdiYNGuiZg98f8L92K85z9iyOL1TIuXtjZt63jxOLFtV/CH4/PoLQUH1KDRFYJyduY8bus0YN6PvVHdnIkfpKW0IloLsOM+4zIsIeuHTgAOZ27712xiByGakqhE6dYDyXGX2TJs6dtZAuZJ29SLInz3vcOGwG5PM1auQ0kN5wgzOvULlydka3bh3LqjFmDhhjZU8vkaFU9l6rX9+eNkPYDWTj9sGDaJODIM+cAXNXK8y1aOFkeD17wuNNvlfBuKQAOJ/PFwhcU4MeZ81Cu0yQk5Nhf7rqKufuPCkJ66hmTafdQdizVMO234+5RkY67RHMgdQhOgP3+fPMDRtycoEC7gGq06ZxukQqayBiYnI9M2tGGUNYsNKflmX9SESlNF0u1ba1qMDMBy3LqkJEyyzL2khEZzTj2GMeo4loNBFRbGwsLV++PBOXzxiu3bePLE0779tHK9yud8cdVCE6miq/9hqdW7OGNs2ZQxfKlrUNiY+PT59v6KOPUt3Zsyl6+HDau2wZ/TN8uLOGLxFRmzZUZsIEqvHssxTXsiVtmjuXUtXC50REERFUbM4cqj99Op275hpaP38+pRQubB/Tty/V3raNYqdOpe3HjtGh7t0dp4m8/35qNHYscceO9McLL1CSKFIv+u+5h1rMmEHHe/SgzbNn2+YcOngwNVm5kqw+fWjta69RilR7OKRDB2r80UcUNngw/f7mm7a+omPGUIPJk2nv6NH0z4gRgVvq2pWavfcenbrtNtok1ZcOadCAWhQrRufuuIPWP/WU4x7ytWxJzV58kfbdcw/9M3Jkenvdli2pyMsv0/kWLdLfQ1jZstQyNJQOPPII7R4zJn1smbp1qcb339Pvb71F5ypXJiKiyrVqUYX336dfvv46ff5RoaHUgoh2vPEGHezdm4iICqamUhMi2vzuu3SsfXsiIiobEkLVT5+mX7/4Iv2Z1suXj6K2baO10pqqlZRERQ8epNVSWzNmOrtnD21Nayu4fTs1IaKNmzbRiSJFiIio5O+/Ux0iWrN5M52Pjyciokpr1lBFy6IVGzeihjURtd69mw5Xq0a70s5VZONGakhEG5KT6WRaW8yqVVSfiP4MDaXTaW3F1qyhq/1+Wl+kCMWJZ3f6NLX67Tfae+uttEes63PnqNXixfRvr17094oVgft67DEqnj8//RodTf60sfHx8XRyzhwqULw4rS5WjDitPSQhga55+mk63bIlbTp6FDWriajU4sVUa+dO2jR3Lh0X9abTUPbTT6n6jh204eGH6aRUkzssPp6ajRtHiTVq0Lq6dYmk5xq7ZAnVXriQdo0dSweOHEEt6DQU3riRGs6YQUfbt6etVarYjiNmqvXIIxT711/0x4wZdP7gQaKDB23zKb1oEdV86in6t2dP2tmkCb6Tt94iIqIWAwZQVFKSbTydP08X7r6bVis0I9eREe7h9qMMqpKUY94ion6UF1VJbhJD2bLBj128GKqOokUd6hGH4TYpCSI8ERKVeUkEIvle48buXkji+hER2I3qspImJkInHhJi11HLWLsWO5hmzRw5gnw+X6AsqC5p2erV2OX37+9Uq61Zg3vQFecZMgTitbpze+QRXEtVuz39tL5d4MYb8R5kV9k0t8zNqgtlz55QncjqoIMHsbubMyfQJmobyM9NeCzJ/v6JibgXOY2zyAclp5fQ6fsnT4ZNQUb9+tBhCwjXTjlyXeTBkvXxt98OpwCBuDindCAcC+Ta3iKKWX5299+P9ypLwzq7i2iTDdRnz+KeFHXVaiFtqeo5YROTJcLERKicGjd2riuv+JcxY7DW1Zof+/fj2bdu7bRVnDgBiadqVX22VjG/OXP0sUmLF2Odd+2qVwG7GaOFViIH1EuUQ6qkJ8hufH5cM6YYEUWm/bs4wQOpTtr/PyG78XlcRq6bozYGIuiNgwWgMcPP+aqr8IIffjh9sWoXkd8fIH6tW3tnXM1o8r1vvwVzaNxYX7QkPh6pkCMinOmEBb78EvPv29cmtqe75918Mz44NUqVOZCQTU1LzRwoMKR6hhw5go9brc2QkACCcNVV9g84IQGM+ppr9HYdkXFTDuRKTWWuVo3jVJvCJ59grHov11xjj2JOSoKaTbUL9O8P/bmMBg3s1dhEcZ2XXw60CaOrTHyE+kI28DZrZjdwC4OvvBYFsZI3A2rhHmGbkN1cJ02CDl1WzfTo4Yz0bt3aGdk8ZAjUIvJ76dvX6dElbA5KZP++fv3AQGU32aQkEOU2bezXeuklnEOXBVVEzKsV3cQaUO1UwiMuf35nwKTfjwSJ4eH6nGPLloHo9+7NnJrq/Kb/+gt0okEDvd0hORnP281LKYfUSznFGGKIaGkasV9KRNFp7U2I6LW0f7ckoo1EtD7t7wjp+CpEtIaIdqUxiciMXDdHvZKeeALGXSLs6nS+zjLi42FvIMLHcuaMe+QzM4xpkZHQa+vSTAiI5Hvly3sn3/vmGxD+Jk2wU1Rx4gQ8LQoW1Ed5MgcKrEiZLtPvIT4ex8fEgOjJSE2Fd4jOaHfhAo4rXdop0YjgJzXoTHiNqIxGEAtdDAUzvIMqVbLv2oS0IwebJSRg96gGz4kMmvL99eqF9SAzI0GUZWZ9220wLotxqalg6pMnB8aI3bVM0EQaCdmFt21bxLcIiLrK8n2LgjoyQ2nd2n6ccDeV33eXLk6bRunSTg8qtYiPcFOVJaX4eLxzNU11+/awIcnPLD4e+nk1G6xgIvK9eW0CNm8GoZaN88xgMPXrwz6jEmixbnSpNIRdRpeUb+9eSGC1aqUzc9s3vX8/5lmunD6bQGoq4jWE8dmLKQSza2YTOcIYcuuX43EMCQlY9EQguG7pGQTS4hc4JIS5Th1erfO7lvHLL1h40dHeeZP++COQfM+rtOiiRViATZvqmcO//8LXPCZGb3zz+yGKE6UHTtk+hB07QFB1ZUEPHcL86td39q1bh49Z9XpJTcXHX7y4nWn4/SDyJUvad9dJSSA4DRvqXQVF/ILswXL8ONJuq4Rk1CioO2RViah7IBthReEbmSmL6mFy7iKRblomEFddZfemEtHXsspRBKDJxv/One27dZHAT949iyhsmXDWrGl3fRWBbLIqUq1JLZLkyYZakftKllCEOkvOpSUkL9k9du9efboMsQmQEwampkJSqV/ffh9i3jq1YZcuWIOqpC2kMbVGyd9/4z137OhcM3/8AQbYo4eTAZ0/j3VeuLDNKy/9ezhzBhvHQoWcFQWZcT7hZTh7tnPj6aZaukSxDoYxZAYZzWfy+edQexQq5MzNo8PSpczFi2OHFKwM6K5d+KAjIrzFSDn5nhydqmLhQjCHZs301dt27oT7bLlyzhrEzCC+nTqB6Cxd6pR6hFfJ0KHOj0mkrFaJMHOgYpz64a5fD6YxcqS9XahP1Dz9YocpB3sJpKTAi6VpU9vcDl1/Pd6drENfudJJ6Jgh3bRtG/i/SLEhq6iSk0Fs5CR0gujL77t/f0iEAnv3skMSEjUtZFtEr14gOgJCRSIzlDvvdNorihWz794nT8aOXjwLEXgnx1II7yaZYAuXVHlzMWcO2mQmM2AANgOyhCYkGdmG4fczX3UVn61a1b5mRGCjvO7PncP6lCUfAZEWXN3d//MP7lPN0pqaClVl4cLOtX7mDNZK2bJOJuP3Q4JS7TqcxhiSk8GgQkP1pUOZA+7Sd92lV33GxuoZwyXKs2QYQ0aR2doLe/bAdZEIroQuLqry+DPVq3P6jsEraO3ECSzgNAOXa2xERpPvffUVmEPz5nrmsH49iEqNGnrD9qlTcK8tWpR/U9U8zAHXQl1w3N13o08t3ZmYCBVGyZLOD3HKFCdxYsbHGRlpV+2kpOAZ1KmjT+khVDMS81wnIr1lfX9qKtROsl2AGe6ZISH251K1qjOOokMHu0rm7Fmn8Xr6dBAPoYZMTna6gOrqLwwYgHcjIJiOTISGD7c7R4hUGrJht29fe9CacHuVmerMmZiTvJ7Ve2OGZCfXdDh/HmpJ2f7i94PYyoyVOZ0Jb5PzFfn9OKeq+hPqPNmYLe6vdm2cX1br+v2IfC9QwGmHEyo/nYv4kCG4b90mS0gsmnrSvmXLcM9EcADQQThK3Hab/rv/5Resa52N4RLlWTKMIaPISj6T5GSkKrAsLFK1aLyCFd99F4hovuEG9/rLzFjsYpcydKi7TePYMai1giXf+/JLjGnRQu9p8dNP2GU1aqTv/+cf5pIl+XyZMk7mkZoKQhke7izSnpiI+RUr5tyl/fUXjlH1zGfPwoZSr57dJ33/fsxRjZQW6hd1t8+MHWfx4jbffd+yZVDrNGhgZ7oiMleOfxB5jmRf9nHj8HHK+nxBUOVnV6OG3ZtIeOHIaruyZaF3FhBShExkhg2zG7dFIjjZWH7TTXbmIWIRZGbduLE9AZ6Yj2wH6t7dXlgnMRHPXK7NceIE7lWusyDsFzKzEpKNnL+JGY4LRYvyClniERKbnAblzBmoOdWkfcwBW4BaU0SsBVWK2LYNGyidmkhInRrCzz4fmHmvXlqivkswBdXTTeCNN9Dft6/eQ+mnn8BQq1fHPeVQniXDGDKK7OQz+fFHZAuNisIO1WWHn+7R8+yzINI1aninxvD7AzmZ2rXTexgx25Pv6YqSCHzxBa57zTV64v/NN+hv107vOrt6NadEREDfr/bHxQXKgqoVsXbuxOJv3dr5cYj007KnDHOA0KjpKoR0oubr8UqqJo5JK17k8/kCkoTsaikS4MlFaPx+fISyhCBUHrLOW2QolQnjzTfbP2ChDpOlgRYt7JHOQr0jByGOHWuv3SCIqJx/qnt3e+EfkTZDlgaKF7fv6O+/3y7B+P1QacjRxrqCRCJgTH52Q4aA+cvP//bbwVTktXbwINbYpEl2tWT37s7U2kINJUdQM4MxRUfDTiB/a6dOYf01bGhfZykpeM7FijnX5rZtkC7atXNKnHv34rnXrKn/XoRTxIABekng00/BQDt10qcGF8W3vGq6X6I8S4YxZBRunDkiwr0amozDh7GzIUKSN42x1/YhrFgBNUrBgu7xBALvvIN51KplS/lrg5x878EH3dVPn3+OD7NlS707nUg50KuXdoezSRDZgQOd19iwATvpVq2cEo6omDVzpr09KQk72eLFnfUlevbE+eQkhfHxiDlo0sT+MQpbh85F9sgRMO20lBw+nw/3XrCgM+VC06ZOtcldd+H5i+d15gyeoRynICKD5fsTbrvCkC5SaD/ySGBM//7YLQr4/biWnI5j0iTMVUDEU8iMqV07u4unYFRCNSIYjpyypE8feyGeAwfYYT8RRlz53ahuqhcuQBUpx6ckJMAOpybXE7r2nTsD34PIFiur3eLicLwcpS0wcSKetSqh33EHCKbqZSfeg2oPTEiA5KhLAHn+PNZloUL67//nn5kjI+H6rNtEffcdpOFWrfRq5uXLwRS8arkzgwEaiSEXGYPOxhARgZcXFQXR1MsuwIz+xx8H0ahY0Z6EjTVxDPv3wygsRFGdjlxgxQrseEqUcJw3HcnJIHRE3sn3Pv0UO8VWrfTMQYjpw4Y5iL/P5wukpFBLNjIHdpO67JZDh+KDVmsIb9yIZ923r/16e/finajivxD9ZS8vvx+7wnLl9B/q7bdDj3v4cOA9jBmDdyt7QAlvItkrSBBi2bupbVsnA2nY0F4eU2TllAl4qVJ21dHdd2MO8v2VLm03vovgMgGfD+eVvX+aNLGn1xAMXhA1UfVNrslcqxb88QWElCYHlnXvbrdL6NxURYpu2c4ldtOyuispCfeWFpOR/h4GD8Z3Jr8HkdtLLaazdSuehZqJ9bff9JUBxdrq18+5kREehqq7s98fUPnKdSsEduwAY6xenX+S05II/PwzJKUGDfTegMuWYV3Xru1ew93vD0hMISF2umRsDDnIGJj11v9Dh0CYiEAM3HbsMlatghEtLAy7lTQCrY1juHAhPXMpd+niri5ihthbtSoIiZpbRiA1FTtcIu/ke598AubQurW+SI/Y2d19t+2DSleHCX9s3QIVqbZV99yzZwOeH2o+JxHkJ6eIZg6kiZa9l1JTQQjLlrXvxoRHj5oThxnPLq1oTfp7EOmrZX300aPOBHopKSCGsi1EBKLJKdTHjweBE8/86FGMkSON27WDKk9AGERlA3zdunbbhMiXJc6rS5hXu7Y9HbkweApiKzx4hEE/KQn3ed99gWOEoV2oc1JSIAnI6iedm+rw4fD0kdUl3brh/cibHcEs0hiIz+eD7So01J7y/fhx7NR16dW7d8e1ZDtXcjKIcJkyTnfmhg3x7lS72GefBda3CrE5UF1smfGeqlWDlCFLPQJ//hlw5NBVWBR1VLzK86amgsERgWkuWGC8kjLzy7E4Br8f5RYLF8aH72FHSEdcHBY2EXSM8k5Vh5dfhuhZpYreD1rg2LGAN9Sjj+rn4fcHdPdeyfc+/hgfZZs2Tubg9weK8Eiqj/R7SEwEkYuIcMZcJCejLyrKmR573TrcZ8+e9rknJ0N6io52RsKKQCV5jsIAK3+8fj+uGxurF9979WKOjrYbPVu2dJaf7NHDSdRGjACxEsRPxC7IzE9kM127NtBWtqxdnXL77bhHAUGg5OfUtq0926hgjuL+RZEfWfIqX94uiQj7gZAahU1l/378X0gQ8vy7drVnmhUeUjIhUt1Uk5KcdbIPHcK1Vdfitm0RN5P2XH0+HwhgeHhgXsxQ0VmWM5JZpBWRGS1zIBBTdVkWak/VJXrPHqipmjZ1qjyXL8fce/Z0StwJCVgvkZHpUpXtm96+HUyoQgV9ZgKRIr9uXfeyvImJgcDYyZPtc7iIbquGMVxM7NsHg5cg9l5pKZhBbF56CYshNpb/Uhe0il9/haidP79z5ywjISGQznfUKL3BlTlQgKddO73xjBnXCQ3FR6sS09RUqAyI0l07bR/CiRMgqjEx9hKVzFj4ZctCclIjnMVuVjWUb9mCj65XLzuh/uUX1u7u+vfH7ksmKsKVU5fHKY2ZbJ84MdAmChnJ6h6xs5XThYiUziKoLDUVu0aZIIrayXLaZzW9exxHOAAAIABJREFUhCjqIiQEYZCWVRa9e8MjS0Co9gQxFpKRzJCjo+0xCyNHQm0lMG0aJATB7ARDEkzM74fNS2Yuwk1TXueqm+oPPziJr4gul3Xzwo7wxBPpTT9/8QXen3zNw4ex/lXbRHIynmO1anZivmcPxnfvbl8z/8/edYdHVaXvM5NKSCMgNfQSEIlURZp0AQGVIk1ABEEQAUUURX+66+oqq2tb26qIuiBW1BUUFEMTpaOgdBIgQEggJKROMnPP7483b75zZ+4ErLv7PDnPkwem3Dv3nnvOV9/v/bZtw/36F1GWlOAe/Fp0aq1xn0w2+yMGfT4gv5SyASXK98PRo1DONWs6MxKsWiVNtYJxneXlQa4ohdyOeT8/F05/gVGpGC52XKw2tixAAKOisLgWL76w9/DDD1q3aoUObvfdF1yQa41EFD2Cu+8OHgry+YR3qF+/4NDXJUuwQSoi33vnHYQQrr46UDmUlCAs4HJp/f77gV7PwYNQDC1aBIbBNm+GR9G/v936tixs5IiIQLprWsf+8z91KhSY+f0jR3B+fyqLgQORj/GfE8vS+sorAbnl9RQVQaiaYYvCQjxbU2AVFSEBbPaUGDMGgsC06ho2tFcbE8bK8Azj8QzpnDoVqCQnT0ZYhIO9LiigmVg2kVn+CeuhQ+19F8aMgTfKwfg1n/exY3httpQdPhyKnYMwVTPBPm0avGhWt1sWhJ8/Ffe0aQH5nFTG8U347pw5eM7+tDCkRzdj+paF5HRUlL22pbgYVnnduoFr8r77tGPIsqgI4clgyWa29jQUm9ZliiEjA+s/Ls65A9znn2OtV9RMKysLcxYS4lxn8RvDVisVw8WMX6KNDx1CCIbhmmBJJI6CAn3i2mvx/S5dKm4H6vFI74Q+fSom1nv9dQj+yy5zrlzWGtbuhcj3li7Fpu/ZM4BRVRcUIFEdFqZ3+W0MrTUs1/BwHOvvmpP10x/nnZkJ7ygpya6MvF5YdNWq2ZEiZ8/CmrvySrsgJue9iURhmMcpOU7aBhMJNncu5tBEh0yeDEVgzsWNN0IRUKksXqwDwkBjx+K+aCyQloPQTlZOE9vv8yGUYgr1e+6BIOE5iOiiJcqktpkvUMqO6rnqKnsivEsXrXv1ktfjxtlrI3idBDZYFuZ7wgT5DoEF/I7Xi/kw60pY92HyEJ07h/1kopby8nRJTIw9+Z2ejvv2Z9/Nzobx0bu33Qj76CNHYV0uxP2bP61eDQPHv2GUmTNzSiaTW2n69AAjcMO//42q9KiowBoerYWzLFifFK0hC5KSsEedkt1a/+aw1UrFcDHjl2pjrxfxzYgILFynrlLGSElJweaKiUGM80Iw1UWLcO6GDYO3stQaoYW4OIQOnBghtYbwJvmeUwc2reFduN0QIP7K4dw5rZOTtTcyMrC9pdZSLDVpUqAHdeut+My/+vnrr7Gw/but7d/vXIzEsM/LL8t7ubkQTl272r87bBjm2X8zer3wGDp3lu+zxadJDUHkjwlxpGCkpc4iMhN+Si4lUkCkpeH1Sy+V/36Add+kiZ2viPBKKkyGfZh7Yqydgoh02mb9RdOm9nPWrWv3gNq1sxeOLVgAa5WW/969OKdZ2Ddhgh2mSg4lEwgxezbuzwwfMsFu8noxpGYi7KZPh4I26TO0RmLa5bJb4+fPI1SZnGz3wDdtcu4WyBadrVsHrm2G6vyh1FojdBgSAq/Z33vPz9c5rVvjfp1Yhj/7DJ+1a+dMga818ij16mH/BuNHI7dYpcfwByuGX6uNf/oJcVelEPsPYhmUh2EOHYLbqhQ8g4r6MGzZgsRrZKRz83OOH3/EIqlSxdnq0friyPfefhsbq3fvwA106hSEakJCYGJQa0n2+bf3LC6Gm+zkpi9YgGNMAjqtJQ+xeLG8Z1lQWvHxdkQHewqYAmrPHjw/h1am+2fN0jaLW2uE4+rXF6Hn88GiNiGgubnY6CZDanKy3RIn0onPyrLg/ZiC6tJL4WVyXH21vUe0f28Fhp+okMlBRaHK+gOT4iMmRqqVPR7MBT0onw/rxKSjHjDAHnoiyR1DOj4fBKupbGbOxHmYFC8pwdoaPly+4/MhzNK5s7zn8WidmKjPmfxPaWnwnPxhqPv3Q1n4C/rZs3FPpmIpKADqrWFDOwzb50NusEqVwHW7bh3OP3hwYLKZFNrt2gWCM4qLte7XT1vB+pqQo6xDh+BK4ZtvsDbq1AnOmrB8ObyRhATIgMocw3+BxxAaGtiKMtgoLUXcNiwMqBj/Un3tl7j1eIRHKDm54iK606eFO2nWrOA5iowMCGCXC4LVKfdB8r2YmODke2+9hXP07RvAjPrtkiVYyHXrBtJtW5Ykq/3htEzstWxp37SlpZIMNC1Fnw+hurg4e3J53z4IZzM56fViDhs1sivZceMgDPzCfOtWrsRGM8MYtMpNV/6++2CpmUpo4EAgazi38+bhmVNweL24l2nT5JjevWEIcPgXlt10k93y47UQw094KlFI/oqCFdsUEkVFeM3m9gxfvfEGXqem2hWJZSGRbnpu48bBA+V9+qOwfD6sAxNWy4pwc+0z7GUKsDfe0Fop/b0JEJg8Gd6x+ay1Rg4hJsb+DLZuhfEyfbr9u1T4Zn2H1lJ3489ldOwYlF2LFoH5KJNC27/4rbQUHqlSeq9Z5Mjx8cfCahwMfv7ZZ1ibzZsH7iOtMe8LF2IfXnEF1nAlKukPVgxOOYaICGwMpQAfu1AOgWPXLggppeC6GwvOEa66YgU2ZVQUNkywRHZJidD29ugRHANdUFC+aPXttzsnr48fF/K9YGyvb76JBdivn005pKSkwLqJjwdCxP86iooQ1nEKObHJybBh9vtMTYUCuPJKu9I7eBDzcs019u+z+MlEDRGpY4Z1Dh7E7/kVPaWkpIAXyeWSuH1pKZSd6SEQ0mnSbtM7YViDqBxzHgcMsPMNzZ2L9cR7I0KIr0mZ7R+iIVLKn02VCClSRfj3gGYimVXghLdSYLKmgaEL8jMxL2BZEIhm7oDwZ8IsiRQzC+aGDYPyN5/h0KF4jzBfnw81F8nJ4KzSWp6TycektSTZTXqQ0lJQf9SubS8eo/L0L3D75huce9SowAZQnTrBI/CnnM/NxR6OiQm05M2eCs88E7inySxwxRXOxW1aY2+xG6MTbNXjgZJWCs/An7b+NxiViuFih5M2Li4GvUREBATXCy9UXJ3M4fEgROJ2Y4OVxR+D1jGkpwvX0bhxztXIHG+/DaFbr14ghwyHzycMpYMGOZ+P5HshIcEtj8WLMR/9+5cvzvJ7+OYbqe70t7YyMxE3r1kz0Boi5twfTsqksL8Fxvivae0VFiKG3ry53UMYOjTQupwyBR6GkZgvR5KEh9tDFw89hPs1PZcOHewcRBkZ9rBMURHmwaTcphCltcjkMYUMk9ZUSsxLsHcDoZ30ulhPQEgo6T+YcGdlNrmTqCj4fRK5EZ7JZ0BQAz0Urid6FCZCqUsXu9dz552YP8Kgz5yBlWyGp1JTMVcLFsh7rK5essRe+ezv2ZWWAlDRpIm9cI75CjOfd/48vMVmzexAhrNn4R03aWJfo5aFXJg5RxwlJTBEnCi0LUu8kjLCPdue/uADKIVgLMZaC+quTx/nfXn2rMiCBx64MNvCLxyViuG3GAcO4EEqBUvAv0w/2Ni8GZa5UlpPn67XO7Ul5PB6gSpxu7HAK2rAs2MHlFd4eCBzpTleegkLvG1b545S588jPq6UnR/HHIsWYXNfc43WRUX2jfD559gIPXoEWjV798KraN06cFOOHu3cFpRMleb7Ph+uMSbGjuRiAtZkxHSKRx89inky3iu/hylToGQJ4z1+HPNlKicKIpPssFs3ezx+4EA73xET16SI+PFHvCZlOYnpGHKhoGe8nM1ymGRnIpiJcPZMYA0CPQAezxwEk9P/9394hkSMTZli7wVNyg0qWVKOUJERpkp6cMuCwB08WM7Bmhlzb9x7L45jroS0JWXU2ikpKZgbl8veHU5rKcgz4/fHj8PCHzDAbv1PnYrfMVFBloUwV1hYIHcSoa8m3TmPIVDCiUKbObQ77wxs18ti0WAElZaFe6QX4ESqt38/1lF4uHM+sTKU9Acqhp9Tv/Cvf8EKDglBAtKJSsJ/FBbiuy4XErcVdWbTGtZfYiIW9DPPBA8tZWVJsd306cFpuT//HEK1Xj1njHVREQrKKGSdfu/11/H5gAF6nb8V9c47mLshQwJzH2vWQOD072//jG1BExLsHkVBARRJrVp2qz81FQKhTx/79Y0aBW/OxLzPmROIYLnjDjyzsiK88s3MUJFZPX399fbQR0YGjjWpI2hx0wKn8qCnUVBgp5vweu3J3uxsfJ8wSyas6SEwR/Doo3hNZBPx7bS6aTzQ26Igp2DnvEycaO/V0LWrvUdC//523qfJk5EUpbXKim5yKLEozwQGdOpkV5ZFRUAwDRsm79GzKfNEUlJSUPMRHW2HZOfkQHH59/++4QbMo+nRUQn6KxYqKhOppTX2X2go6mj8rXGiwZwotImiuuWWQIoYFokG4x4rLZXw0+23O0cdUlIw5zVqBPae0LqywO3n/P1qxfBLJjs7Wyzb+vWDI4D8x/r1UAwuFxRFRXHDM2eEKXXIkOD459JSoG6UgqsfjKXx+++hbKKjnfsjmwt31ixn97WsyOrMlVcGWjsMhYwfH3gslcq0afZNfvAgwnPt2tnnYvduWPHXXGM/F7HkhH1qjfuNjbXTL2dnQ+GYmPdTpyBQyqpgbV7P4MHYjLwGJktNmOrAgbCQeT1HjuA7rGSngjFhtFdcYWc77dzZTnNxySVClEdFYQqxqCip9M7I0LYcAGsOCGEuS+aWC0xWHtNT69kTQktrzElCgiTHLQsCfPJk+e3mze2oqYkTcQwF2j33QLgyVMb7N6+f4TKzonzQINx3GdptC9FXDzygbePuu7FPTIg2E9tmDik7Gwrv0kvtIcWdO2F1+1dDHz8Ow65588D4P5XfmDHB1/CIEQFC/Uf28OjWzVkpFBQI11pFhldoaMXsyZUFbn+gYvg1k/3NN7B6lYLFfSF6DK0RSpo+Hce0bBk8R6A1FtCzz2KB16tXcfvOd9+FIKlTx7nIRmuEJ9q1wyJ2aoJuku+NH++MfGLi9dprA5UDid6cWheyCM3femMSdcIE+zEMI5gUIpYFBVC1qt1ipGVoCnKSoJkIo3vuKeffsSkGJnop1H0+5C9Mob50Kb5jHnf55XZhW7++HaFz551QcJyn6dOhCHmf3brJb1gW7suMzycmSt0B6bo5fyzsYtiGc8BE5j33YN3wtxo3FjbU06fxXdJ2MJ9AhcvaDP6WzwcPjgSCloWYvVkDce+9geitTp2QZOY10CsiUkprndW1K+bERO4cPAhv2VRUwRo3jR+P3zW5qfLygDKqW9fuhRQVQVlHRwf2QNmwAZ5n9+6B6/r997Fnrrkm8LMlSwBX7dHDOXqQnY014nLZDRoOn08Mu379gierta4scPs5f79aMQSbbKWCU1GYo6QEiIkqVbCxn3qqwuPKBdLq1dj4ISFIzAULA2mNcEGzZlicf/pT8OT3Dz9gw4aFBSf5y8sT6+WuuwLPdRHke/vInDp4sH2jmM3Ojc2vtcYGGD4c8+3vYZHF1VRWloUQRFiYvWDv6FGExXr2FKvO60VStFYt2VglJVC8ZttHMnYOH25XDJaF45s3l3OynSQx7wUFONaEcz78MO6HwnDKFHgvFFxM6DL8QqVKi3DyZFivHC1b2vH/l18uVrvHY59X/4I3/4K4m2+W0JHXaw9rMf/BkOAHH+A14/C0nDnvTGQzP8JEOGPwXi+EsNnIaPNmbYaMtNYAVURHixJgOMqs1tYaobzoaHsimmvONHroNfkXpU2YEEjtblmC8vEvsjxwAN5QixaBnnlFPRXK6n2y27Z1JmxMT4ciCw8PbEKlNY65/npc0223VUyTs2ZNIPV2pcfwH/AYlEKsO1hjb/+RmoqNoRRitUE8AZtAOndOwjeXX+4c/+c4fx4bSymEI5wSyVpj0w0cqMtjoU6Fc16vUPpef73zon7hBQg9B/K9lJQUCesMGWJXaj4fwjVKBfZ/LiiAxRYVZU+s+3xQMqGh9o1/9iysxKZN7ddA3iCTW2j7dmycGTPkPWL9TahpWfJwq1kIprUIQyqtrCxsaBNpdPPNEPwMOdEC5rkY52fRHMM/zCOQrppCgsqHgrJfPzs5Xa9edo/E7ZaQi39O4cEH8byo2K69Ft6h1gJdpUfEsB893PnzIfyo5GfMgGCmgUNOJSpAVkjTGmfozaxbmTAB5+BzO3IEx5gkiAMG6JLYWPuzJazWDBft2IF7N6m/s7KgVNu2ta8/5lb8qVB4z/4hq8xMrK8aNVDrYQ62unXqqUC0Xq9eqInxH/v2QbbExNhDaRzp6UC6ud0V5xF9PsyF2w3lW1ng9gcphmA5hjlzsGAYNglGIWEOy4L1xTzCjBkBkDVHuOonn8DaDQvDJgzmcVgWFmRUFBay2RTFHF6vVBN36hRYMMTx7LNYcB07OtdoLF3qSL5Xfg/cbEOH2jdnSQkEvcsVSFR26hRi9XXr2q/r3Dl4RbVr2/MkGzbgGseNk81jWUClREXZGV1ZCUulbFlIqsbHiyWYk6N1tWrIk5ijtBQb2aw+HjcOisCf6pr3xJBKWdMZnZ1tR+5ojXtiEV1REYQjE5uMmRNJdMstdjbUESMQiuGoWlUEK/sas5nQnXfic45OnSTUQ3pyFmrecQeENuezXz9RIlrDyjXDRF27Yg3wnpOS7K1Ix47FHNMIycyEUjWZXm+/HeubBk0ZA+4hU9g7FSl6vbiXmjVFgVoW5iYszF5jwBadV19t94Q3bMA6HjTI/n5hIRBEkZH2xkRaQxnFxjr3VHjjDayzPn20LigI3NNbtmB/BmMX2L4d6z86Ovge1hp7gnnGUaOwDitRSX+QYtA6+GQXF8Pai43Fwpo9O3hpuzlyc5HAdbux0ZctC4S2+Y+sLKHR7tSp4irovXulgO6uu4KHoT76CIuvZs3g+YlPP4WAbdDA3rGMg+R7SUnlFqbtHgj7u+46+3UUFiJeGxYWWDm+ezcsqcsvt8dld+92bgvK3IWJgDl+HLHpbt3ESs7NxYZr21aU6+7deA6m5c+wi38uhsgiCmrSdzNk4vMh/GeGTObOxT3SAOjc2c4qOnEiBASFcJs2UkC3f7/9vhia4r1PnWoPNVWvLsKWtOAMdU2dCuOCo1EjoZtmDQXXVN++Uo/gT9dx5gy+SzQUlR0t7T17tM0bzM2FVW3WgrDhEuP4bKtqhuF69dK6Zk27tc1Qmxl2YQ2LWURHviqTdqWoCM+9enW7N52ejnlp1sxu9ft8QEO5XIE9HPbtC95T4fXXA4o+bfth9Woop0aNAtlhtRZ6i/r1K+65snMnDNPQUBhwJplipWL4gzyGC0306dNAcLjdiEU+91zF8UCObdtgaSkFq/Lw4Yob9WgNJUJOlKeeCp5PKCqStoQdOwa6wRw//QSh7r/A/K+zTh0oQCciMD/yvYB74Oa94Qb7vOTkCOukv0X2xRewngcPtt8jQzqmIPd6EdKqWtXOc0/UixkqYojFfO+22/BbrG7Nz9eeatXs/EZaQ0nFx0ucn/TR7dvLvDHJSg+KyoOJbxbI0UMh6obXPWGCeAX+HdSIfGFindXQ/O3ERBGunCfe09ixdkrtqCjhc2KnOfJe1asnNOVEVzHMRBgs4ZJUQFSiVF70MBnWM9lWGzSwexSsMKdiYoWyWTWckwNh3L273O+JEzAg+vWT906exP648kq7Z82GUqYFXlyM70VHB/IjMeHr3x+lop4KVFxGsafWhmJYtgxGQnJyIDrQspCLNOktgo3Fi7H/69a1Gy+VcNU/SDH83In+4QcpcmvZUhq2VDS8XgjkmBitIyP14cmTK040a41FM2QIfqd79+BCX2t4BfHxOL8/CR1HTo64pOPHO8Nkjx2DEAwNdS7s2bEDm+WSSwLj81oLCmjYMLtyyMiAtVatWqBHwlCU2TRHa+GPYrJTa1h+1asj5MFYuGVBsURGyia2LFjk0dESqsrMhGIbNKj8dAcoSExKDa0hjF0umXN6RAxP0WJmMSARO+y/QOoKVuUSxskiRBIDUjAkJQnOn/QP9O4IOWUMvlkzIbAjSorC9rrrpIYgP1/b4vS33gqhq7Wgm/gZQ1JE9dx1F9A5nOObb8azo/Ju08aO1ure3d79joqFRWnnz+N4orUsCx5hvXr2Ykkixkx00YgRuBaGC83nbYZ2mYQ2W4NaFpL75rVwMD82Y4bdUMrIAADBqacCjxkwICBvl5KSAuPI5QI6yT8fcbH0FkVFAoPv1SswhFUJV/2DFMMvmWjLQvileXNZKP7QN6eRng5LVClgri9U5MZ8wsW0Ek1Lk8Y+kyc7J5N9PiCalIJwdSLtys1FbFkpJCT9sdwHDmjdsKEujYqyIz44GIoZPtyuHFJTYf3UqRNIp0x4rIleCdYWlNW+JqTzxAkInquuEuF15AiONQurSENQFtZat2oVLHCTeltrWHphYRKyyc3F/Jv9Adq2tSeJp06FIioqwrXHx4tlzxoBviY0lkbF0KHCqcTqZhompLHgnLVpIwJ2yRJ8RgHZp4/0kSb8lMqof38JHREtxCT7vffaE88dO0qthc8H72bUKLwmUR/7aR8+rG1hJ61h3ScmijXPQkB/VtiyUFRKSgqUcHi4fY4JYzbRbazVML3Bo0fx/Dt2tBtchDv7F6qRQvvaa+0eR3Z28J4KNGAGDQoEc1iWTh0/Hp9ff32g0L9YeovUVIkuzJ/vnGeshKv+QYrh10y0x4MFGh+PhXb77RU30ykb3z/2mCikW24JXrjGcewYNptS+DdYrURpKTaBy4WEZTAK33//G8qmevVAa5nnmTYNvzdyZOBCP35c5zdsCMHrwB5bbhGPGGFXDnv2YAM3bWp3o71eeEdut90DO30aAqZRI/scEU1lhgwYQzebtZBNk8R2xcX47UsvFSoGhgb8SQQnTULcnL87dSpeM/lJYUehTGHH8wwfDouYCmfIEFjVWsN7M4XpvHmwir1esfQZO2dymlZ0p06S6PZv3NO5M9aH1iL8eT1JSdKdzp+jqU8fSSyfP29PnrPhDnMgDEnRE2PYjGuSioPC3OPBPPTsideEBTdsWC7EU1JSoMCrVpXwS34+vtOqlQj7Y8ewbnv0EOFaUgKDKCbG7lVv3AhlN3CgPUy5c6czhXZ+PpSqU08F1of4Q7O1xrlp4U+eHCjMTXqLt9/WQcfKldgbcXHBi2WXLg0uryo9hj/IY4iIsPP0VzSysqAUQkKgJJ5+usJQUUpKChYiK0dr1Lhwa1DLggVUtSo2R0UMrF9+idBGZGRwL2P/fghItxvhCv/vWJZY2FddFdAOdOPHHwv5ntOCJ3XAyJH2zfLtt7iHyy+3u9t5edis0dH2hJxTW9CiIhxfo4ZQIVsWrLWICPHePB4IloYNJbZO7P+LL+I5lJRAWbRta7fkGC5i0x7i9mmpnjyJuSMxnMeD50KLlwqHce0nnsBrzmPTpiKoGaNnbUO1akIlTTQRIdM9eoiQZVMkhlnatBH0E63t777D3ERGCpqJhW+lpfgsPl5goOSeIhEfFQFhqu3bS08Fnw9Fc2aHuFmzIJD5fXo8ZISlojO4vXbSkDC9DvIJMaRmFjaaVcFsa2uGUE+cgJfTtKm9aO74cXit/hTaZT0VtFNPBYZHhw4NVApFReUMxmljxwbuoQvRW2iNNU3lmpwc2DNdayhrtj9t1gwGiimrKnMMv4NicMoxhIVhkysFi6MiIjtz/PijhGGaN4c17SCUbYnbH36A4FUKG74iJJLW9laiQ4YET2BlZEhD8REjnKspz5+X0Nbo0c7hpw8+gFBp0sR2bSkpKTi+d28c70S+x/j4qFF25bBqFea4Wzd7E6D0dGzc+vXtiTsKTpOnaN8+PLdevURhZGTAC+rUSX6PvDzz5+O1ZSFMUqMG2jFqLQLWv3fEwIHIqTB00LkzLG8+02uugdKhQhkzBr9fWioU1qwcZoKaLJ4jRkBwaS3Cn97S5ZcLMR3zExR8/fsjmaq14PVpKTduLCgkMwTFWgo+oyFDJHTFHg2k5iaRHtdCt27CKsuwEZO1nFsSveXlYd+wR4bPhzzc5Zdjznw+/L9ZM3k+Xq8+36wZktVmbUhIiL3qmaEcs3L4yy8hUEkpojWEd+fOUCBmPisYhbbRU6G8TwUHFdb11wcaerm5Eh5yot0mvUWrVsHpLc6cEXkxYUJgQyytYRg1bSo9tktLK1FJF/v3u6CS8vMBaaxWTYSrP197sLFypbCp9u0bENIJWEQ+Hwqk4uNhyT34YMXd3Hw+WOQREUBnBGsl6vPBUg0NxX2ZXa44LAtJSJcLFqdTkvu77yAg4+PL6SDK76GoSCo3H344UBHS6xg92q4c3n0Xv3nttfZw044dEPgdO9o3Ct1106Kj8DNj0ETqmDDGm2/GHNB6375da5dLH2Xc3OuF99SypT3swJoFJuIZgmH/AIZyaNUyicu5adlSagGKivBs774br2mJ5+TAi1AKz1RrKAV2NaNQZ/7luuvkM14PBU/NmsJ9ZFZBM6xEapBmzcRbIeKIxk+3bqJ4zp2TqnytpRiP+Y5bboGHRyXCmD7RZ0wIU6lxfkwPk0qfdSE+HwR7jRoSxjt0CILeRCZlZMArvvRS+zohK6oJPyWFdmhoIGOv0VPBNujx+gMp+Nvt2uF8ZRDa8v1wsfQWW7ZAGYaHY+/77xuvF2s4NBTf8/c4fiPlUKkYfunIyYGmjo6G1p44MTB56jRKSmChVauG4267rTyMEBSumpEhlc3Nmok7H2yYrURvvDF4fuPbbxGnDw2FonBKfn3xBa41Pj6webrWuOdWrWDpv/mm/R4uRL7HMMqYMXblQJTHuHH2Yz5Kw22sAAAgAElEQVT5BAt+2DB5n21Bo6PFc7EsnDMkRJKFToVPWVlQoGa9w6RJ2hcaKq47KSFMFJRlQQC0bInjCgsxR2xck58PgUX8f14elDUbzcyeDW+LlnDXrhKGIUX22rWBhHbTp+O11lhHSgllxKhRkqvwJ80z4alz5yLkoLUI5F27oKDMHMK8eRBOHg+uMzxcGEp5HEOqV14puQjSg5DHybLghRDWa1n4fuPGeOZeL9ZPq1aifHNzta5VC/2SKRipXMwOcd27wxNhHsPng+cUGWn3CtiG1PQsLQsehVL2vtUOPRXKB40Z/xyZ1lDCTZtiro19Uh4evhC9hWVh3YeHQ6A79WY/fly8kRtvDFQuvyFktVIx/NqRmYnNFhkJoTN9emCrP6dx9iwERGgoFvff/qbXXohi48svBfE0dmzwLm1aY9M9+qi0EjUJ48xx7hwWulLYVE7nPHwY7rbLhXP6WzHnzpWHjlL9Ce98PkAFlXIm36MFO3as3Sqn5XzHHfbz0Y03ezUfPy5tQQnfzM1FmKtBA4knZ2bie+3by3WwPoCx7ZMntTcyUhA+Ph+UQOPG9msn8odhp7vuwrNkCG/CBCQM6eENHoxrsSyh4+DzvucePKfCQhxv5iyuukpyB0ya0xKPiRE478034/xai8eUlobrV0o4g8aPl4QkBd25c9L8hzUXZrtRoqV4r5MmwVAwQ2OEuNJbooHAYzm/fM0iOH7fDNeVkSpuY3jo1CnMpcmIS8vdLGzkWjIh0998g7kdMMC+vlhoZzYJ0tqxp4LWWoyYG28MXMM7d2KPJSQEdCX85r33hJwyGL1FQYHkCgYMcAadfPghjI+qVfF8nc7zG0JWKxXDbzXS02ENhIZCSdx990UhkfTeveU8SoV168LNrijZXFSETR4ejs358ssVd3HatQshBqUCWomWD1orkZFIzjl5JPn5CPvQjfanEPZ4pOvVuHGBBHrk1BkyJBDNRIF3002yeS1LyNFMy82yhIHWrKlISYGHcMMNMn+bN+N5DB8u79EDoKXt88FjSEgof15HiCuncKMgNwVOSQlyHoRvslKZ4SvWHbBSlwpo2zbMZXi4WPGE2jL0VLs2BIXWeGZ16uD/zHnQM2rUSIrRbrtN6hEYhjl6FN6KUtL+8pprRODPnAmBq7WEjnbuxFzFxUnF8p//DKMgOxuf1akj3hEVNSt5+/Wz51dGjsTc8pkPGIDQVmEhFEuzZjA6TMry8HCtJ0wQ73P0aLxHtNTevfDAhgyR57ppE57/jTfai+Ccks2sjvZPDAfpqVC+Pv3DnlpD0bHA0z+kvH27Lq5Ro2J6iwMHxOj6058C93J+voRLO3QILKwzx28IWa1UDL/1OHwYm9rlgkX30EPOHZv8x6pVOr9RI0x1z54X7gK3b5+4lVddFRyCqjWE9gMPYOMkJgYn//vhB7j0LheSjf6WkWUhaep243v+i9SyUKSnFNx8f8uH5HtXXx04J/QQxo8X5eDzIURnxtK1xuYcMABC34TVcmObJGu09EyhPmYMjuUc79mD12XIoXVffIGN3q4drsWyMMeJifYcD6GpZB7t0wdWu9crrKJkQM3MtKOV+vQB75DWQjXB/MfAgcjraC2WbW6uJHUZD2/fXgrz7rwT601rqag+diywV4N5zODBUvjGquXCQoTRTMXbt6/kL4jCoqVudqs7fhznYDgqPR1rjvmTXbtwLFFGVJamNztiBMIf6elQDIT7sllSaSlChwkJ4p1lZ2PeGzcWw6e4GM/MP9m8YQOUjD+FdrCeCjRoxo4NVAoffQQF1apVIFS8jN6iqFat4PQWy5dDqSQkOIdpd+yAF+xywasMhmgsKkLNiZNSqPQY/ksUA8ePPwqyJyEBAsoJXWCMtV99BRe7enVBVVQULrIsxL5r1MAGnDfPGUHEYbYSve02Z474/HypCu3Sxd4uk2PNGvxmbGwAzj8lJQXhiPBwhL38YXYk32vfPgDqWk7pPWGCbM7SUghXl8veUyE3F4I1Lk4sNcuStqBUfmbcmUnmM2fg+l9+uWw29oRYt07uQSnpimZQNdiuITZWirzojXBO7r4b90rPsWdPJEW1loQtuXtatRKBff/9eJ5FRdJbYetWoahgWKZfP8lNkCJDa4HEHj8u6CIKcrOPQ5s2sLq1xj2QNoMW9c6dMA6iohDS01qs54wMIMRcLvG+qMT4zNkylEnwMWOEWtvjgcDq1Ems8/XrtenNrfv8cwj7Fi1EiNOAMMkKhw3DvZusxbSyzRDV/v3Yi0lJdl6zYD0VyMNlerIcr76KYzp3thtAfvQW3/jDXLW2N9Dq2DFwjxFEEh4O78yppojjm29wP0rB4PqNIKuViuH3Htu2wbpVCm7tP/4RVPOXu87nziHMEBYGK/Cvf60YjXTmjAjzhg0Di7LMUViInIjLBUEQjEBv6VL8dnx8IIZbayzm9u11uTVX5gKX38OGDVBw1asH1n2sWBFAvlc+uBlvvlnc6qIiLPrQUHuhW1oaBHzjxqJk8vMh8BISJPl66hTCF61bS0iD9AyMvRcUIDTTqpVeu3o1NnjnznhmVKC9e+M8pvKdNw8CIjUVQrROHRHwpN6mt/Pss3i9f79Yz1Q8U6Zgrn0+UTBbt0o/6H/9C+vG5RLredQo6SXNeSstlWTriRNyDR98gHuKiJAkcmysCPzkZCEAnDsX3yspQczcDIl17y4wVVKC/Pgjzt2ypVCBezx4Njzn4cOYJ3oPhJnSUvb5cN769csNqLSxY7UtpPf999gTpBgxr8HkNeL9E4qstVBoX3KJHSYarKcC+4CYHqzWuE8qp4ED7cc40FsEAEoyMsTTnzYtsAbi1CmBqg4dGjwcXVAAL9HlgrdEL7ISlfQ/ohg41q+XOoNGjYAc8XNNAxbRgQPSb7lRI2zOivIP69fDImUeIBilNr/bpAkW0J13OnO0HDoEi0YpcMf4K6fCQkmaDRmidU6O/R4OHpTqTn+upg0bYO2Xke/ZBjflpEl2dtT27WERmYpm82YomS5d5PoOHYKQbdtWvDT2BTCZPtnhi5DMsuKvw8S/f/stjmH4h1xHZqgqPV3YdbWW3gekFUlOFpgnE7WPP47naFJKEGK6e7fUBfzznxAcJlqodm3B8c+YAcWrtXggeXmC4Dl5EhYlBTC5kP72NxgfFKheLxQBhXbPnsICy/NmZATCVHv1EupvQl9Z90Cvg4p8xgyh1i4qQtVz166ynomkole4e7f2hYQglKg1hG7btlDMFJa7duG6Bw6UdbJpE37nmmtEoJsU2iY026mngmXBWKBxYioFn08QSzfdZA+1BqG3sO2HjRthOERG2pPmHCtWQHFFRkJxBtvra9cK7f/06fZ8X6Vi+B0Vw29YKGIblgULhbwnSUlwdZ0WkTm++gpWMGP3JpmY//B44O5HRsJtf+aZ4CyseXnYsLwWpwZCHo8kgZOTAwvtLAskYaGhWrdooTf7FwOdOSMK0R/RtHMnNnqNGoHFgkSHTJ4sm/70aYQV4uPtcVuypo4eLedfsQLPb/x4eY9Vs8SyZ2djo152mVhuw4Zpb3i4PfwRGQmhrjUs4GrV7FDBCRMQy87Ohgfkdgs0ksgfJmc7dBBFMWGC9EpmXP/llyX5yyrnpk3FSu7UCaExraEs3G7MD1lss7LEGj91SpLgGzbIb7z5pngs778v77/+Os4VEyO/fe218AS0tsNUmTOhwpoxA/PEGH/Xrrhun0+otanQyJvFuo+8PCg8clP5fFp37YpGPVQCDz6IY0gLkZeHNVunjniLJ0/idZMmEiry+ZA38KfQduqpYFkQ6krB8jcTwR4P1oJS2A/mZxXQW6SkpOC8zzyDPdK0aSAJX1GR0LkkJweyvXKcPy/7tUkTeytZrSvhqhf794sUw29MX+s4LAvhGVr3bdtq/dlnOoUbxWl4vXCRL7kEi/zmmyuGxR4+LCGs9u2dcdEcbCXK5KhTqOuzzyDAo6KcaTfWrdO6Zk1dWqVKYOipuFjqMCZNsp+/jHxPx8QEtlukMJgyRTZiWhqszdq17UV3hCqajXBIDMhQjscDwRofL3FdUkSQUO34cdzDwIG4hqNHIdTIXEqOILNlJMM1TB4PHQqF5/HgGbE6VWtJZqanC+R1yxb8Vq1agjK6+mpRIIMGSYJ32DAR1EQEnT1rTzgzvJKRIcVkO3aIx7NypYTStmwRVNSmTYKuev11rLm4OKHFMGGqzGPs2oXnW62a9H2m0mF194IFWLP79iH0UrOmndacjaMI9Sw7915CkrduhadCpJbWWP8ulygXjwdeY1SUHYjhRKHt1FPBsqDM/deb1lBCZAt44gn72v/66wrpLdavWIGwklLw/v1rD/bsEaNv9uzgIePVq8VYnTPHOZdYCVf9HRXDb0xfW+HwelGw06SJ1kqhoCeY18CRkyOcNlWrImEbjKrXsgBDrF0bwumOO4IjpHJyBG6anOzcSjQ9Xdzlm24KhKweP65zmdy+777A2Cy9gN697Rvk+HGEJPzJ90wL7tZbZbP++CMs7SZNhCLDpFJmMZrPJ21BGX46dAhKqGtXCeVNmoT5KUMXHWQvC8bVeQ2s3B0xAt6YGf/t3x/zXFwsSBomSPv1w7ValuQMXngBlqpSwrs0bBjyJVpj81epgjm86y783+fD+1Wr4lxvvYXjDx6UeoADB4TcLTNTIK4HDogy2LZN8h2nTwty69w5UVa7dgkC6V//CoSp9u8PqKllSU6E+YJbbxViwfPnoUzIZsvf4vNIS0M4iJQdGRn4fo8eMJSKirA26tWTNcN7MpXzbbfhPbPanyE1k0LbqaeCZQmqZ+pUu1LIykJYze228ThprS9Mb/HTTzq/QQMc+/jj9vNaFtZAZCSU1IoVgcdrjX3JQrwWLSrmaauEq/6OiuE3pq+9qFFSovXLLwPzrBTggUH6QpePQ4eEy6VBA8R0g8Ukc3JA5udyAUJZUa7i008rbiXq9SLR6XZDMPiFgNauWiULecAAO35cawjtsDBsJrNSPCsL1rw/+Z5lCSHatGmyuTZvhoBs00Z+w+OB0gkLk6T6uXNw8822oBR+9C7OnYPH1KqV1kVFQIe1bYu5ys2FxVinDix4nw/C3eWSJK7WErJZtEhI5FjjQO6ijRtxPy1a4BlrDW+OLUMJtz1xQo758UdJpqalCUQ2O9tOiEfh/P33QvCWlSVV5CdOiJV/9KgoG8uC9c0GQXfdBWFVUiLK49gxURJvvAEPJTQUwlRr5Jfq1MHayM7GeZmnIS/W5s2Yy+rVhQVWa+RYqlSRfNi4cXh+e/ciDMPwHzv97d+P5969u6xNektm0eOKFVijJoW2U08Fy0JuRSkoF1N4Hz2KcFVkpB1S6/PJdQWjt1i2TOuqVdH0yT8SkJUlPVCuuSY4r9mKFVCIbjfuLZgBeOyYICArPYY/2GNQCsVT69ZVnAD+FWPdF19g41NBXHddxfUJWiP80q4dvt+lS8UKZfNmCDylEJ5ggtR/nDkjxWydOjlzQa1bh0UbFmar6CzPk7zyCj5r0iQQx52SAquwZk17pahJvkdef61xbsJJb7tN5v/LL+E5dekiSebsbGzmhASJ6+/eDWHSpYuEsRiK4PWSPfSee3AP332Hz5lUZjUx20iOHw+BZnosyckID1qWhLZ+/BGKJSpKqC3uvReCNTsbnlVICJQ3E7jvvSeVyP/6l1QLr1olcf7vv5fk+MqVUoS3ebMI9DNn7A19iKYpLIQgYUjqyisltNOjh4Swhg8H6EFrgameOiWJ4q1b4XGEhoqSpHLbuRPeU926cm4ip1j3QQJBoqyoXMsU9vbnnsMzYCiruFhadFKRfPttIMvujh143iaFdnY2no/ZU8EsovRvzLNnD9Z3XJy9P4pJbzF9eqDh5PFgzZTtx2/8CRi/+gpKNDwcoUCn4tSzZwXU0bq1zJf/8HiwzqKisBZHjqzMMVzM32+WY6hSBRo+IQGv27YFqsAfavYrR7lQPX8e4YXYWGyMsWOdaXc5vF64tbVq4frGjw+OSCotxeatWhX39fjjwVuRvvsuNmFEhHMr0TNnpJvckCFanzljT6Bv2oRNEBUlYRWOvXthVUdG2nMSwcj3THd/+nR7JbPbjZwAhf6hQ1CuzZtLEpKVvWyyw+Rl3boSErr1Vq3dbr2dOYnp03Hu7duFGoNwykOHIBDNNqMM7axcKU3vyY80bhxi0cXFAgF96y0R+suX4zlUqQLBUlKCeZ87V2gynntOlMFnn0k+4O23hdhv7VpJ7p49K3kWrxfnZRFchw6wVi0L6+z223GP0dH4v2UhxMG4fvfuuH+tYYU3bIjvMM+xZw+Ob9pUIKssGlu1CoI5Lk4K/nw+IN4SEzGfhYXwQJs1wxrIz9cF9epBMTFkyQQt4dinTuH5NW4sz/nYMWHiZQ4uLy+wp4JlSSMof9qVb77Bs6pTx27UpKcLvYVTK9z0dGmKNWeO1iUlsh88HihPlwsKOVgB6/Ll8N5CQhDCDCZj1qyBh6sU9guNvEpU0u+kGLQOPrkFBXDHW7fGlNSsibh5RT1af8YIQCWdPQtLuUoVLJRbbw3ejEdrbKD774dAqVIFgjVYUd2xYyKAL7sssDMVx6lT4vZ26xbIskrERViY1vXq6R3+bJQnT0JQKAWX3bSwMjOBRHG5gN7hRgtGvmdZ4sJTeGktIZIxY+S7GzdCEFx9tSgMhgwIFdy5E98htUJurtYNGugCCqtz56BsO3aEYKUQZ05g6lTcNxPZbD7DnsZjx0IY5ueLR/Lhh7jGunXhgXo8EMaE0fbsKYR0HTsKPxCFd3o6zvPSS1Ix/eyzklj+4gsR1ufOSbMfXg+L2GrUwPWfOIHv/uMf0iVu0SL5/2uvCUz1/vvh2YSFCZ1H27ZyvcytLF2Ke0xKgiA1c0UM4TBUxr3Fz0nHwvaq3BPMj7BDn8eDdRUVJcI7NxehxdhY8bSLixG2c7tRLMh1RNjp7Nl2Ab9iBfZO8+b2UOf27Xhmwegt1qyBPKha1ZbnSElJgQInEnHaNOc9mZmJsBoNT7M7oTnS08Wbb9o0MDdRqRh+R8VwoWFZWMCDB2NqwsJgWV1sf4YgIyhc9dQpWDXh4fibPTuw56s5UlMFCZGYCIsyGJ/SJ5/AulIKisesCOWwLAjTuDhsRCeM9bZtWjdrpi23G1aq6V14PAKz69PHnrQtLIQLzE1DxeHziZtvYsbNmPDMmXIdDN2YCoO5hIkT8V5pKcIakZHyrBh2Yejqyy/xmj2CWQFNL4IdxU6cgHIND7f3ByDuf/t2qeR97TX8du3a0jBnxgwIoIICKKbGjUWAhoTAyr31VliuloWQXt++mNfQUEnuu1xIwhIttXy55CFycuy1Dn37QhGb3eB4v2vWSAL7hx8kr3HggMCBN2yQ72zaJGgs9nO49looUo9HKraXLcPzjo4WyG1eHoQsczY//YQ9xAR0mfdzfPhwvGaLzg4dxIImXxY90ZIShJNCQ0W5lJZC+ZrGgGVhjfAZm+v4rbcw9x062PdXGb2FbtAgMCzq86Guxe2GJ2CGXS1L7503D8cmJIhiModl4R5q1MAcPPKIswdfUoLnGh0NRf/ww4EIpkq46u+oGH6uxj1wAEI7OlqXW9UffODcl/UCI6hi4EhLA77a7YZwuv/+wOSuOTZskAK1K64QVI3/yMtDyCIkBOGDt992zqNcqJXo+fM6o29ffN6zZyCcdtEiLOqGDe1K1OeTHMKAAYKcCka+Z8aGZ80SOmcqDBOtwlAK+XkyM6EIGzaExW1ZOHd4eLmVlk4KjvXr8XnfvrBCT56UHsSklZg9G/PGfEZODsI1JGhr3VpI61jNfvasCOTlywVFdOCAWN1ffSWomrQ0CM369XGehg1FiFarBgVJC3/pUnteYcIEYV1NTob3xyY/S5ZIovrkSUFClZYi9FW7Nu7hllsEpnr99fCKqLjDwiD4jxwRniTLwnpr0gTHMITCDnqEIW/aJPTZ1apBGJd5bbp5c1BilJbCM4iJkXAqSQKZ1zAptIkcMnm2qPR9PlEoc+fa1zjnrE8fCV350VsERAbOnRNvetQoO0ovO1uMs549nUO7p06J4urUyc7pZI516+DVKwXlG6zBTyVc9XdSDL9G4+bkIHbfuDGOa9AA4ZGKBLffuKBi4Ni/X9zJ+HgIPSfeI62xGd58ExYawy0s1vIfu3bBiuMGcWJyJBNrkFaiKV9/jfeiomAF+bu6W7bAi4mMFG59jldfhZBt08audF58MZB8z7KEzpvhAAoxUxhYFoSoaV1u2QLh3q8frO6sLMxPixZa5+Xp9StX4jk2bQrr+sABKDTi9O++G9ezfTuQLlFRUAQcd92F+zh6VArPtm4VZM9LL8ECrFYNgpsFZv/4B9YRmTaZi1i+XHik8vNhfBDx1LQpnmlqqi4PA7Gojp34yM9Upw68GyqfjRshKOPiME/duyMWb1l4RmQqrVsX1n5eHp7bHXdAYNeqJR7QvHm45/R0hH94n6dOQdlQkfnXhTAPQcK+KVNg+GzahP3AGgdWRH/3nf3ZaS2J8QcekGfOfITJost+5ffcY89dMTw5cqR4JA70FraxaxfmPjQ0MN+wfj32f2ioPnzrrYG5OUKNq1XDunriCWdD8tQpWbsNG8K7rwj4UglX/Z0Uw2+hcb1ebOSrrxbFMmNGIO2Dw7hoxcCxa5ckf2vWRGw5WIFMXh4stchI/D3wgLMy8XohiOPisAEfftg5AXb4MBAstObLrKnye9i7FxaqUhCUZlHb6dMyP7Nm2V3n1auhcOrUsXsVTuR7liUIkDlzJFzE3Alhr8XFEKYREeI10eokn87XX2MDTZqEe2A+gVxC9DxWrYLwrlED90/ElMslFt/RoxCSd92F70ZFCZVz69ZIUGoNkEC1arj/Jk2E0C45GYKvoECqixnO2bEDQpW5giuuQBLZZFFlOCs/H5916gTByBAUPRE2funcGc+9alV4H1Qy//iHndOJCfx16wQqu3w5hGZCgnR/u+YaodaeNQtzQWvfrCTPzLQ3SiKyqgwGu+vJJzGvt9yCY81kM4nrGOozKbRJaXHXXVJJzQ5u8+c757JmzBABHoTeonwsXox7qFvXXldQWirV6E2bar15c+CePn68nGZfd+niLBdKS+HJxcZiDz7wQMUEnIWF0m2x0mP4HRRDsIlVChszGO1tsLFzJxZeeDjOMXAgkoNBtP7PVgwc334rMM/ERCRjgyGNjh7FJlIKwnfxYuf8w6lT4pW0aBGIxdYaxz39NDZJQoLWy5bZ76GoSOK5HTvaE9clJYIK6dHDziK7ezcsrqgoe8EbE4NJSeL1mIlECoKiIuQSQkIkUZiVJSRqTCrSgiRVQlkC9EdanjxvSgqUS4sWOEdhoQjXDz+EIImNleY+WmOOo6MRbmDB17lzkgs5dEji8F99heRzdDTW2PTp+H9pKaz9wYMFvvrOO1Lg6PMh9Naxo/AgPfWU/EZBAYRur164RqXg1c6fDyXh9cLqnzRJwkuLF0ti+IcfhDH15ElY1LVq4biRI5G78HgEypuSIl7RY49BCIaHi2AnbxPrRyZMkNaqZ89iPbZujbnOyNDFCQlA3uTn43e6dcM8MoG9fj3O36OHGC/Mr0yeLEqBhY/33y97j7kdpezotwroLXRRkayZXr3sa/bIEenRPnFieVipfD9YFoyR2FjcQzCqmm++kf4p11wjIUqn4fXCO09MxPfbtsVe/CURD79RqRjMEcxjCAnBvzVqIDZ5sT2eOTIyYHHWro3ztGoFweJX1v6LFQPHmjWw/pQC7G/JkuBJ502bJGzUoYNjOb/WGhZyWWW2Hj/eOem9dy8sV6X06Z49AxkhP/wQIa+YmEAyvX/9C4u5Xj17DcbJkxB4brckN7UW8r3ERHsrT4YOGDvOzcV9RUYKDn3fPljorVpBSBcXYw6io/FMy+LZpVFRENz5+ZjHRo3gXX31lQi20lIIsSZNcB56FOSxYjJ44UJ4PgxvsWcBEWNVqkB5kroiJUWS5jt2INZfrx6UEY9jeIotX5s0geBUCjkZCvPCQgiLwYNx70phvulxZGfLNRJqu3s3BGm1alg7PXoIGWHVqlBg2dkQnIR5tm+PubAsGBMxMZjf225DDiI1Fee64gpY2Xl5QmNOKpJx46AkCA3u3x+cVUQXEbzA9bNvXyCFNr3AkSOlJwY9AuY+tMb1d+2K+WSXOK3t9Bb+FcapqZKvu/dee+hnyRII/NhYOzW8LtvTqanIUykFT9mpf/rp08I8kJgobLhOw7IAiSaVRqdOQiczfbrIq5AQ4bz6maNSMZgjWI7hrbcQlx0+HItXKSysRYsq7n/gP4qLcS5C16pVg/VXZv3+asWgNRbNp59KGOeyywD1c1pkPh/umRbHyJHasW91YSFivWFhuOZXXw1UOGWtRH2hoQgj+LcSTUsTi2ryZPu87dgBpRwebu+/m58v7LKzZomFZZLvURCbaJN58/A6MxOCIzZWcOMpKXiG/frBazl+HOdKSoIySUvTJdHR2GweDxSRyyUbzKjMLWdsXbgQxyYk2Kt6+/SBUPd4IBRbtcJ19e4Nz8OyJJl77pyEetLScN7nn5ekaGYmFNSYMXaeozvukByB2w2vhzH34mJYv6NHC0Jq9WqEMHr1Egv+s88QkouKwnNs3hxJ1ZwcCJf77rN7N/SWtm2TuooXXxRq7XnzsI5CQ2XeSGPx5pvifTVpgrX14Ye63HLXupw2Yx+RYcxDkP01MxPHmhTa772H3x4wAPPt9Ury+aGH5Jmkp2NPhIcL5Ql/Ixi9xeef49nGxkKBc+TmwlhiWIi1BBw+n94/ezYMj+hozJH/vmHoNj5eqskrkinbtkl0oEkThPe4t//XUElKqQSl1JdKqYNl/1Zz+E5bpdS3SqkflVI/KKVGGZ8tVkqlKqV2lf21vZjfvWjFYCKR2Izm/HkAACAASURBVEMgGCrp9GlsVnICxcQAD04itIsZlgWLZMQILOaQEK1HjtTbn3/+t6uq9vmQbGWP6CuugFBwOn9BASzeqCjE4e+7L5AHSWtY1cwrdO3qyAK55bXXxBWeONFOF1BSgnO7XNiAZlV3VpZYVbfdJmE7cgUpBdefeREn8j3LEsuSCcZjx4DmqVVL4twMfUydiu+sXYtncP31Wvt8ejetf6Je+PtffilcPj174thBgyAwTM4hel9M8r75plQLr10r/9+0ScI2mzdLrwMmf0eNksK1VasQWmjfXryRDz8UivLSUjy/uXMFyeXxwEKfPFmE786deO/mm8XCPnwYz7NLF3hqSmGNk2Zj/XqExqpXx+907iwewrhxuP+8PCiB8HCg0SZNwlpKT4egq1cPFrfPJ9f8xReBfbi//RYCcuRIABk2b8Y5+/TBbztRaH/+OZR1t25Yy16vCGyzLez+/Vgz0dGYV+6TYPQWvFaXC4aWWWS6eTMEs9sNxeOfPD54UPJo/fo5N7zavFmMxN69K45EHDkiIeAaNeBF+4e2/9dQSUqphUqp+WX/n6+UesLhOy2UUs3L/l9XKXVKKRWvRTGM+Lm/e1GK4ZdqWQr3m2+W45OT8cCcagGCjbQ0LMz4eJyjY0dpyvJbjNJSWEMNGuD8PXsGL2ZLT5dS/Fq1IDicEBWLFkFIhIYiXm0kxlJSUi7cSnT1apw/MlJopnmtZMOkkOJ44QVswvbtBQabno4YfESEeCiWJZBEJhr37sVmatRIjiWTJlk3WRT22GO4B5KyrVoFYdSiBeYwN1f4h956C5s5JATfLyjAfV19taCkLrsMLn9+Pp4xYY1VqkCJnT2L4+fPF4F++jS+V6+eFLE9/ji8puhoCFOlEKdmWCkzE8/k9tsFwVRSAqE9e7ZY+ampEHQPPQQlEhmJ5xUVhfMzwbxlCxQKC/RiYvCaIamFC6EkGVLKyMC5pkyBAA4JkWI0KoKNG3F8eLhQpA8bhte7d0MoN2yI53TunN744YeYg0aNMA9OFNrsqdCuHTyc0lIRoCxE1BqosBo1oIToZVZEb3HmjLATT5gga9zrBQowNBTrwT8E6/ViLVWponVcHOoY/I2xM2eQdyJ32bJlwQ3CM2eAvgsPxzlZZOg0/tdQSUqp/UqpOmX/r6OU2n8Rx3xvKIrfTzH8Flo2JwfColMnHBsRAZd/zZrgMX7/kZ+v98+ZI55InTpY2P7tL3/pKC6G0iJtxqBBwasrN2+W0v62bZ0ZX7OyJH7buHF5QxZbOGzLFinb928lmpEhVMYjR9ottXffhaCqU8euxFasgGBMTJRCozNnhHyP8FcTmsiE49atOLZ1awhjnw+/63IhPGBZECgul961cCGUQevWmK+MDFinbrewvHbuDCFz9iwEo9sN4ca6ABZZ0TtYtQqCMiwM5xszBuEJjwfWcFIS5ot5AAr8tDSsxVGjhE77+HEI4blzJR+xdy+E6C23CCdRSYlULNMLYpJ50SKAIS6/HJ4fPZvbb0cuoaQE5xsxAhQUSsEyv/9+3OvJk6LI9u7F+y4XlMLYsXh+GRm41ipVcP2WBcMkLg7gBl47GxcxVPvdd1p7PPpccjKOZRiQlj3pvLdvh+JLSoIyLS2VngmsW9EazyI6GgqGydyK6C22bIHQDw9HoR8/O3ZMvIAbbwwkz9u7V/bNtddK32oOnw/AkIQEPJe5c509c62x/h5/HHPldkMpsw2s/9izR6qm/8c8hhy/1+cu8P0rlFJ7lVJuLYphf1mI6WmlVMTF/O5FKYaKtGwwNsOKxq5dEBT0AJo0wSKtqHdC2UhJScHi+fxzsVYiIuCWO9Fg/5KRn4/kZLVqIpT9m+9oLRWZ9DRuuME5abZ2rSizESP0N2bcVmsgOYj7b9zY3krU50P4JTQUm9bsrvXDD4jDh4XB2uXm3LkTAismRmiencj3fD7p+7tgAY5fswabndW/hYVIPlepAisyP1/r5GRdEhMD133PHgjg/v1xPnozX3yB5xESgt84cwbz2a8f7rd+fYTuLAsKuU4dfEZr+7HHoEiVQr6ABW67d8PqHz9ewkVLlmDuW7SQ5PeaNQgR3nijUG188w0S5WPHihIoKBAhOXMm1iRDU19/jTkfPdrO5NqmDe6XVc2vv46QYFyc3NuAARDCiYkI/+Xm4tzDh2PO2Lxea+DwIyKg4Pg7L7+M/VCtmkBl6dEsXIjjSInBZC6bD7GynV4geyqUlopwfPxxWUfLlmENJSeLBxqM3oI1OuHhEKZmD5MPP8T1Vq0a2I+ktBS/GRGB7xgFouWKYdu2coCG7tEjeDGb1wtkGPN+114b/LtUCC4X7mXo0D+857ML3w0+XC7XV0qp2g4fLVBKvam1jje+e05rXS3IeeoopdYqpSZqrb8z3stQSoUrpf6plDqstf5zkOOnKqWmKqVUrVq1OixbtqzC6+48erSKPH3a8TNvVJQ6062byuzTR51r317p0NAKz2UOt8ejamzYoOqsXKmq7dyptNutznburE4NGqSyO3dWOiQk4Jj8/HwVHR1d/jrq6FFV76OPVO3Vq1VIcbE617atSh8+XJ296iqlHI7/OSM0P18lvveeSvzgAxXi8aiM/v3V0YkTVXFt+yN0ezwq8f33VcMlS5TL51Ppw4apozfdpHzGdbpKSlSDd99VDd9+W/lCQ1XarbeqE0OH2q4xbvdu1fLxx1XkqVMqffhwlTplirIiIpRSSsX+9JNq9cgjKiIrS6VOnqyOjxqllNutQvPyVKtHH1XVN29WpwYOVAfnzFFWeLiKyMpSbe67T1VNTVUHZs9Wp4YOVe6SEtXqL39Rl2zYoNImTlRpEycqpbVq8fe/q7orVqi08eNV2qRJqsbGjar1ww+rc+3bq92PPaZC8/JUhxkzlMvrVTtefFG5SktV+2nTlKdOHbXz+edVrdWrVdLTT6vD06apE8OGqQ5Tp6rQggK19Y03VMO33lL1339f7Xj+eRW7b59q9sIL6ofHHlMR2dkq6ckn1e5HH1Vnu3RRDZYuVU1efVVtffVV1ezFF1WVkyfV5rfeUleNHq1y27RRB2fOVF1uvFEdmTxZVU1NVdV27lTfvvee6nrddep0v36qJCFBNVq8WG1ZvFhdOXGiOjB7trpk/XrlLilRh2bOVB2mT1e7H31UNX7tNVWUmKgKmjRRjd58U21cvlx1u+EGdXDmTBW3Z4+KPnxYHRszRrVcuFBtWbRIdZo8WaVNnKjCcnNVnc8/V98uXaq6DRumjkyerHRIiGr6z3+qb5cuVR2nTlVnu3RRGf37q7Z3361+evBBZYWFqcv+7//U7kceUVEnTqimL7+str/0kqq/bJlK2LpVfbd0qapy4oTqcPvt6uhNN6njI0aoKyZOVEWJiWrns8+qNgsWqPhdu9S2V19V7pIS1WH6dHWuXTu1+69/VbVXr1Ytn3hCHb7+enV89myV8N13qs2CBerslVeqHx95RIVnZal2s2Ypt9erdj73nCquXVu1+stfVM1169ThadPU8dGjlVJK1V2+XDV//nmV26aN2vPoo8obHa1qbNyoWj36qCqNi1O7H31UFTRtinVeXKxaPP20qr16tcru1En9tGCB8sbFKXdRkWr2wguq7ooV6nxSktr7wAOqKDGxfF1XTU1VSU88oWL371dZ3burg3PmqJKEhPLPPRkZ6rJly1TdTz9VpfHx6vD06ep0375KuVz2Dam1Sti6VTV55RUVfeSIOp+UpI7cdpvKads2YO9GpaaqRm+9pS5Zt075IiPViWHD1PGRI5U3Lk7V/Oor1eS111REZqby1KypjkyZojL79v3Z8qFXr17btdYdL/jFi9Eewf7URYaSlFKxSqkdSqmRFZyrp1Lqs4v53V+VY7j3XrjlcXF4r0YNhEPWrbv48BDHwYOIaROuWqcOYsp+jKlBUUnZ2bCkyGnUpAnimMGa7vyckZmJ5GpEBCyrGTPssX2OkyfhubhcCKG8/HJg/uHgQX2WkL6OHQO5o/xbiZqU2+fOCad8//6CEfd6hWCtUyepiD5/HuEwpeCR+Hyw3Aj5u+MOvGfi2IlOIcpl1Cicf88ehCSSk7U+f15///jj0hbU55MQx+bNCDOEhOB38vJg2TGH0Lw57qugANZ7cjKOz86GpTl+vNBmEwkUHo7Pr7gCc8bQ065d8DKSkyWUs349zjNrFqz4evWkP/TixZifgQOlwIvoptdeQwina1d85nLZKb67dEHi9pNP5HeuvhphJnokn36K64+Lg6fVuzes9YICrOfevaWGgdDQzp2x5vPysJdCQ+EJcv6ffRbz1rIlznH6NOY3IkLrPn3QF4MU2u3b4zwZGZhbtnctKZF1w3yRZckcXHcdrtekt7jySju9xcGDmGfCgU367qQkvD9/vj3vV1KCkF1YGGSDiQ7SGs/9jTe0Jz4eoaBZs4LnBrZvRziRe3vZMmcZs3s3vER6CPffL4V+HP9LJHpKqb8pe/J5ocN3wpVSa5RScxw+o1JxKaWeUUo9fjG/+4tQSf6TWVwMd58NRZSCMJg7F+7hz0ERlZZi8w0ZIljjnj3xe4WFF4arlpYCYke20uhoLLiKKLkvdhw/jrh8aCjuc968wEWnNRYxezi3aYPwhjFSvv4a7n+tWtgQc+YExlG//BJKzu3G4mZxEl35yEgIFMbptQZcMjoaSokopNJSgagOHw4hZfIokXzP5xOFQUgkaSPY32HVKjyTQYMgkBinf/55CO4GDbBpc3OlcdC//y31B3/7m7TIfO45IZsj0+bs2ZjbI0dwb4MHY/0ohTg2aw+YZ3jiCYSEXC7JCzz3HATkNddIhW1Wli6Pu3fvjvVELiJ2i1u2DPmSG24QhcL4/s6dQvVNAyEzU4AFU6ZIwjsqCjkWXs9jjwmyafVqrOv4eCh5ViS/8QaMKaUQXkpLQxiwZ095Li4XQlwZGdhbDRtqnZWlN737LhRG/fowTMyeCps2QVCTa+jvf8c8e72SX7rlFqyRiugtPv4YRkFCgoQmfT7MZ1gYQk5+a1zv2CHIu9GjA/OAu3aV79Gc1q2Dh4FTU6XlbfXqUJROoJPdu4VoMphC0Pp/Eq5avUzoHyz7N6Hs/Y5KqdfK/n+TUqpUCSS1HJaqlPpaKbVbKbVHKfUvpVT0xfzub86umpeHDTV4MBaNUrASH3zw5xe9nTiBjdW0Kc4TH6+P33DDxecStm6F4AsLw8YaMgQL+NfCXQ8dgmXocmEDP/xwoGdiWUCFkBdq6NDypF65cmOBk8uFzf7RR/Zrq6iV6A8/IGntcmETEC3y00+w4EJCJGFoWfCeSHSWkYH32JSG5Hs+nyTLCWFkfwdWOpehjY7fcAO+P2QIBOSGDYjhh4QguVlUBLRRnTrSkyIqCkKvTx8ImawsCOOkJFx/aqpg/NkDOTUV99mtm+QfnnsO5+7dW3IKK1dCIU6ahN9v1EioxtPScF0LFsDT6txZ6wceAMstvYJ//xvHT5smnsMDD0ivCaUQF+/YEZ4Coa1r1sAaHjNGPJmNG6GMw8NhdbdogSQueZ3+8hco6Pr1ocQKC+ERsK9C794QbkeOiPJ88EEo8B49oKR27NA6J0fnNW4Mob17d2BPBY9HalyYVyoqEu/hvvuwDkx6iwcfFEu8tFSef8eOAic9dUpAEdddZy/WLC7GPIeEQLmbNQ1c07NmYV4vuUTrN97QKYTFmuPsWSjh8HAYQcGQRv4KYcECZ4XA8b8GV/1P/f1utNtaSwP23r0lgX355UhCOWGWgw2fD4nAsWO1j8qmY0ck44K5nuY4eRIL/pJLcOxll+G6fkni3Bx79kjr0OrVEcry52spKsL9xsRAQd15p95gUlhojYQyi+0GDw6cm3//G5uMlMNUAvn5EgLq0kUoMHJyhNFy/Hi5z+XLIVQaNRIWT5Lv9eiB48yip0cesbNyPv00jqG38dxzOIZtQU+cEBTOG29AoIaEQDmnpUExXHcdwhv0lChgSfk8ahQE3Z49+M6CBVKMduQIlESvXvBGw8Oh5NiwpX9/IMSIq2eR28aNEuYcOhRr8P77oRhYXfzVV1L81rgxEtTDh0OoU+Bv3Sq8TFOm4DpZwPfhhxCuzZphTqKjMfe8v3ffhRdTvTqEP72t9esFOrtihSTZX3kFhkR0tLToZOX6kiVQEv36aV9ICLxG/54KxcVCZ/H885jb3FzMnfksg9FbZGTId6dNE36xzz7DPoqMtAMetIaSZR+WiRPtkHTLwvlr1cKzmTGjnDwzgCJm4UJ4VW43vBgn1lVTIcTEXFghWJaE/Jz+/lvhqv+pv99VMZjj5ElgykkxQWH2/PN2PpULjA2ffIJjKEirVMEi3LDhwp5AURE2OV3c6tVhiQSDuF3s2LoVm565kRdeCHR3MzLKcdklsbH4jokJLylBqCUqCn8LF9q5nCpqJbp0KTZHfLzw2ft8ED4uF6xVVpxu3QohHhcn7v8778Dqb9cOMWyz+Okvf8FrWplvvqm116uzunbFxl2xAkKcbUELCyEgo6Jg4TOOvXy5FLd9/DHmIjQUyJn27aGsPB5cH8M+Q4ZI0R0V1f33QxGQMG/FChRA9ewJ6zYsTCqIWYn8zjvwSm68EYonKUnr++6DUGVoiwL+mWekuvrSS6HIZs6EgCaB3erVCDUNHw5sf1SUhI7+/GcR7t99h2fVtKkQDi5ciPUWFQXBRlbakSNxn1FRWEtFRZiXhATkjKic2B+hzCDYe889gT0ViouFhO6FF2T9tWuHe2PYJBi9xcaNCA9FRorCLioSxZScLIaF1njm8+ZhPSQmBrIF794tRZ9XXCE1EmUjJSUFa+zNNyVHGAxp9MMPgAdTITzwQMU1UcXFgB2TktvtdlYMlR7Df0gxmOPwYViB5DFxu2HtvP66c9NwY9gIt7ZuhTUTE4PzJCVBuFbUoIfHrl2Lwh2XC5tlzJiKe0FfzFi3DiEPpSDoFi8OTD7v3Kmz2X/60kulgTtHWppYesnJdniq1kiEspXok0/K+Q8dEp6a22+3W3hxcTiGiiAtDZZdaKhw869cCSXbogU8D69X6IwfewwbrE8fCOVPPtHrVq6EoImORoiLCeMZMyD4qleH9X7+PBRxzZowDi67DJv/8GE8tyFDBJZKTp6rr8Z3mOh9910I/hYtJL/wyisQXLNmIfZfpYqEXRi7J/Rz4UKEWPr0gRHRoIHW8+eDmuSdd/Ad/haF+gsvQMnMn4/QU/fuUEqsIVAKoaratSGo6AHQq+nYUbyRl1/G9deqBY9ywgQ8v8OHpY/FsWMIX8XFwUImI+4nn2CdR0TA8y6jVWHYJ2XNGntPhaIiARxwPg8fhnKKipIcgRO9hWWJYmzaVEKXu3fLXp0zx85OvHEjnotSUPamB3/+vPQwSUjAfDkkjHctXCjGGufNf/xchXDmDAwJ1iQlJ2M9LF4cmGMw6Vx+xqhUDL/n2LMHbiBJ6MLDYaUtW+bIh+KYfM7Ph0XFhHNoKKy5lSud2RnNcfgwrLDYWBzbuTN+Oxjz6oWGZWHztW+P87VsCevW2BApX38Nq5m5k0GD7HUSlgVrt149LNrbbrMrzIwMiR2brUQ9HgnzJCfLOQ8cgBJyu6U9aE6ONBS6/35cnz/5ntcrib+//hUbvVMnrSMi9I6nn4YCqFcP3z95Uoqr3nhDUEKzZkHAhIXB42Fz+7vvFobTL7/Es6tbF9Yn6arffhsKtlcvSeB+9x2UxpAhsKyTkkQp0Ysgnv8vf8FznTkTIbp27TCXNWtqfe+9CEvyvMuW6XKPgUJfKVibkZFYI926weOl58Mw0TvvIITUs6cog8WLEdqqVUtoP559VhTbffeJIvvHP4Tv6c03RUmxC2FiIpRZZqYkxMeN09rnQ66HnkpRkdT2vPIKnv2uXVBeCQmYu2D0Fnl5UuMwdCjetywoyMhIzFlZgabWGntu9mwBo5ggCNb31K2Lz1nH4j927BCKl8aNMY/+iuPnKoQDByDkCYIZMADXZkYTpk8PrM36BQnoSsXwS8fPgYVZFjbNnXdKw5yqVWHJf/ppeWjmgqikn36ClVKjBs6RmIhwhj95l/84fx4x82bNcFy9ehCGFcUtKxpMPrOquV07uNiWJfdQXAyBEBsLq2rWLPuiP38eFprbDQGzdKm9ecpbb0kr0RdekE312Wew2KOipNCIDWmUggDIz4fyIwf/6NEQLLt24bdIvuf1Cn3CE08g0diqlS6tWhUbe+dOPKcOHaBseveGdbt9u1i9n34qcfT330d8PiQEz7tRI0FuKQXkjM+HeWvXTqzjLVsgoGbOREgjIkJQSkwgP/kkPJiZM/Hcx4+Hh3LdddKlbc4cCJh588BMSkVAeCjPyepsCuJFi2C0zJsHBZCcjPuLiEBoiQpx2DDMPYnzHnsM3kpiIpRely6Y37Q0CNsrroDwi4jAdR49CiFO6OnVV0ubVX8KbbOnQkEBFJHLJSSLa9dibSUmYl8Eo7f46SfMt9sNZe3z4TnTcx0wwB7u/fprMeRuv91erf/TT1JI2aGDsxfObntKaV29uj5w++2B/Uy+/17Wa0wM8jrBFIJlwVtnV0G2knXgKdNa/2YJ6ErF8EvGr4GFeb2gmJg6FZtEKcRCp0zRO5966sJegNZQJB98gEXtcuGvf39Yl05NdTh8Pli7tGSqVIHwDLbILuZe3nxT0Eldu8LaNkdmJixZtxv3+eyzdo9l+3YJE/XrZ4feHj8uCJG+fSUBnZ4u1AQ33QTFYFnSrKRNG3galiWWe9euEAgm+V5KCgQI8xsLF2p9/LguqlULScj9+zFfbjeETkaGtAUlpUL16lDMHTpA4bAi96qrxFJ/5RVc/yWXQNDQkn//fXgbs2cjR1Cjhgjiv/9dl1v3jRtDKHfrhvvo21dqFtq3h8ERHQ1LPSxM67vv1t6ICFE8VBDkhyJ3Eb0PUm6/+y480nvugcC97jqsD+YZQkLwGZPo9GJeeknu9bXXcExICMJEHTtijtLTcf3R0XgG7HXx9tuBFNplPRVODhoEgd+3L57rokV4/suXQ9m0aoUwVTB6i3ffhWKvWVNCOF9+iVxZeDiS1DQ4zp8XfqymTe0V+vn5kuOJj8e8+e/Ts2cFNBAZibnOybEbe6ZCiI2tWCGUlMBY4t6oXh3fryhnuXu3s1JgSOlnjErF8EtGMK3MnrwXOzweWNo33SQ9o2vXxqb59tuLg54ePYqNTuqKGjVgZZkJNKexezc2MBt79OsHa/znFu/xPl56Sbyhfv1gBZvjhx9EISUl4bd4f14vku4xMdjwf/5zYG0DW4kuWoT3vF7ATt1ueEIspvviCyig+HiJOb/3Hs7btCmEvT/5nkmn8OST+ru33oIQb9gQyunZZ/HZvHkSE+/bF8KyalUoqV27IBSGD0eoRSlcd7duEEz0Gh59FN5LrVpQ7KNH41rJZLp8OYTAmDEQzsOHY33UqgVvoWpV5DpiY/H8LrlE0FK0su+8U3spnEJCIFBcLlial1yC8yUm4jwxMVIvQQVBhfH66/id8eMFYrt2rcBuO3SAV5STg/XXtq3ULMydK57Ue+9JkeKSJZIfmTMnkELb6Kmw7rPPBPXHRPGrr+L3O3eGx7ttWyC9hccjHl2XLnjeHo+EmVq1ssOjV63C9btc4qFw7X3wgSSNJ00KrFkoKkIIMz6+vAOgiTRKSUn5eQohJwfeIX+zRQuso2Aow6IiKFeGmoP9VXoMf4BiqKjTW9++EHI/B7KqtdYFBXrPQw8BgRERoctjk/fdZ6enDja8XgjFkSOlxuKqq7C5g/WD1hpW9GOPiVBv3hzXX9ExwUZhoT44fToEm1Kwsk30hWXBAmdCr39/u7dy4oTA9Fq2lEI2re2tRAcPlurstWsRGgsPF2vx8GGpZH30Uby3aROET0IChNeZMwh1kHyvtLS8efvB6dOhaGJioECysqSQ7p//lNDM/PmiBB55REI177wDZREfLzDCe+/FdbMAjMKcFOD//Ceu78YbUW8RFyf/kjyP52cfZHI3UXFR+M6cqUurVIGBERcHS7hGDcx3x44Q6P36Iadw9dVYs5dfDkUTGwvhaOYoVq6EchsyBOcKD5c5WLRI7mX1aiT+69dH3UdYmFCHU2hu2wZjpGdPWOmdO+P1d9/ZeypkZwPIQIVl1qYMGAAr/qOP4M00aCB7JD1diOxmz4blvX+/0FuTBVdrPAcWvrVsKW1ftYZXQzTe5ZcHNu7x+XBdNMgGDQrcp7t26UwWg8bGQnEH6wGflgbPj2CTnj0RpgxmqO3bh+8z6tC8ORTKSy/9JkVulYrhl4xgHkNsrBDKcUE9+CCszIuwxMvdzpwcxHSvuUYqpFu3hvBxIrLzH5mZcMeZA4iOxqbfvDm4F1JSAoFGyG1cHASEU+OeC90DseyxsdjY48bZQ0QeD8Ib8fG4vxkz7IVEK1fCElUKwpGfObQS1Vrj88GD8f0hQyD08/OFaXPYMFzT4cN4PuHh2CjnzwsVwTPPQDlQMf397wg1RURgTs6dQ+iG2HqGHd5/H3mKkBAoqSuuEOUTFgZre8IE/CYTzw88gGuMigLq5tJLERpifoHII1ZYE6JKcjyGhObPtysGvj9tGrrQ3XILFP7w4VgLSUn4f9WqUHQREdKgh7mLYcMw94MGQQDXry+exDvv4JgpUxCua94cHmvVqjiONRkffgjFXKsWQmu1a2PeU1NxvgYNEBIZPhzr48MP7T0VynqCW243npPPJx7AuHFYP070Fl9/DQVWtapQWb/+Ou4vIcFekPbvf2Nu3G7MI9FIBQVQvOHhWL/PPRfYa2H1anhHSkHh+Bex7dpVXgNUWrVqxQphyxYoz5AQ/I0dGwB5te2bZcukYK+sb4Ves8berIeGGUNQ/62Vz/+pv/9YjmH/fmjvHj0EW1y3LuCnK1faIXHGcEw+nz4Ni5FQUaUgRP7+9wszx3SlggAAIABJREFUtloWLLdJk+R627SBEKwo8fzttwhxhIbi+m+4AULvIkJbtns4cwaWcpUqwkRqFvScOQOBFBICRfTUU1IjUVAgvYkTErDB+fv79okCGzkSioFwxLAwCLh16/DeU0/hHlq1wnHZ2bKx/vQnPAuiXx56SGuPR2fSM3nmGSCsQkJgYWdmYv7i4pCY7twZSnfzZoSpGjTA3DHZSsFOGvGRI/FHiomZM6WwTykJsbz4IoTbxIm49v/7PyjRSZPwfVI+3Hkn/l24UJeHupTS+pZbIJBGjYJ31r27VBUzIU/vglBUIof4/pNPCmXJVVdBCcyfD2HMnMWSJdLT/OuvobCHDROP5uOPoVwiIiDsevaUZPPdd4sCNnsqpKfjet1u9N72eAQgcOedeF7+9BbMJbndUEA//YTnTCXfq5fU85w5I8nhyy4TBlXLwvXS6Bs/3s6npDWeOdFujRtDgZsG386dspbKPISAgk+t4d0vXy57OjYWz448YP7j0CHsIxaxNmoEJex/ff9rlBj/qb//ClTSmTPY8LTUlBILa/Fim6V8QVTS0aMQAqwVcLmw2V555cIIo9xcfI89I9gs5auvgnsz6ekQDLRA2raFJxNEsQW9h5MnRQhGRCC2bNZj/PijQBGbNUPcn0pg926Jn3bvLrmT0lJsjrAwWIkff4z3t23DOdxuCH6vV6gdYmMFBUZ8PJuwGOR7a1etkqrv556TcBFbn9aujc25axd+u0ULCMbQUBxHQb1oEeLnLVqIwH3rLVzb3LnY8KySjopCDqBFC4R3hg/H71x5JRTQoEGCZurbF4KU10xPglb1hAlQDNdei+8nJYlHxSZGDENRmRhhKB0SAiVJ618p6Q0wfDiE76WXCmJq3jx4t9HRmN+QECgMzsNLL+Eeef8Mjc2ciefFngqHD0NYhoRovWyZXr9ypYRzHn8ca9yf3iInR+DNN94IL3D9engmoaE4joniDz+EFxMaCmVLI+TwYSmaa93annjWGmEe0sQkJMBrNUEe/grhoYecK5/z8wHfJTqwYUOcy6knQ0kJrpeKiB0Gv/gi+H6tpMT4L1AMv2QUFcFlvu02iem73RB4f/sbkp4XO/btQ9I5KUmXu5WDBiHsEKz5B8f33yP+zJ4MjRsjThysSrqwEEk/UgLUrImN5W+x6Asot9RUCDO3G8pxwQJ7DcPKlRL+6tNHmvH4fPj9atWgCO6/X5Jx338vbv2ECTjf+fNSo9CzJzyrtDSpv3joIQgLWss9ewqqRCl9ql8/KAtu9uefL0fK6KlTIRCrVIHAXr0am/a660QQvvACrOxq1QTP/8ADyIV06AAhExmJ6xoxAt7AhAlQDrS2aZVzvkiMN24clFxysijTsusuF/pjxqCnRM+eWFv/z953x0dVpe+/d3pJMqmTXgm9944gSAcbCqKuqIBtrVhAsSy2XVEsYF3LumJb0UUXG6LEAlakSJHeO4QkpCcz5/fHk5f33ilJKEr4fXM+n/uZmTu3nXPPeZ63nffExorzk6XtCRMAYiNGoA/17w9tKDcXxNO6Nep31VV4LiYf/vzPf3Btr1f8JDNngjTS0mBu4zk3rAndfDPMaSYTTH6rV8uaCmvWwDdgNuPaBw+qwhYtcOwrrxjTW7AQtnIlntdiQXtVVkpywdxcCYDYv1+0h44dxfFcVoYxZLeD1J54whgxl58PzcZux/u66y5jf9UTgsdjIATDeNizB32W/QHdu6OOgSYqpdBPp09H5BQR2vJvf6s7g8H27aFJgQXI4yyNxHC6it8Paem++wTYiDBI77wTzq76hK76/Yi5v+MOiWRwOjEQPvigVulelZVBHebYbJMJkuX8+aEnwfn9GPAsfbINXWcTrVPrUQqkxlFA0dGQ/HnCX2UlgDg2Fs8zebJoF/v3SzqLnByZWV1RAUAwmwG+n3+OZ33tNYBafDyiv0pLZenSkSMhbc6dC7Bp3hwSPNvJ+X+OjZ8zR0xD06aJJD12rCwL+uCDkHAdDtiwHQ5c5+KLAS6c0XXmTIDZ9dfLTGMGdw4lnT5dZq3r9/PiQyNHAvw4uR6TCJFSY8YgNUmXLsZV8ohkLkLXrtBMPB5oTxaLnK9f9pSX60xOhkmmSRP0V14C9KmnIIV37iymrfffh0aVmQkTpMOBe/34o8wLWbsWoJeYCNNSjx54hnnzAHLNm2Muxvz5odNbvP46+nlKCvZt2QIyZtLjEOa338Z5Nhuc19yvP/5Y5iuMG2c0y5aVoe4xMQDVCROMZp7ly6VfeDx4N6GyGqxcqfYOGSKJLi+4AM8aaJKtroamNWKEhJ+PGIF9ociDS34+ghbY9Blua9QYGigx1MfstH27Wn/TTVAdOaooPh6d8oMPQs6UDio8w/eGG8QeGRWFa3z2We2dbNMmAB9LKomJkJB4KcTAsmEDnKUcZtunj1Lz5iFldX3L8uVCMl4vQIaJLD8f5geLBXV47DFR37/8UiKbxo0TzUW/lOg11wAc1q2T3FNTpuAas2fjus2aQVL9+msQUXy8UkuXqvW33irJ9w4ckKR9zz4r9v3HH5dZwvfcc2xZUPX222i7Vq3k/1mzEG1yzjkA5JQUSOJWK7SoPn3QLzp3xnl9+0LyHjwY4MURSlaraEJjx4I4O3aE5sCzr4mUOu88EEPLltK+LNn26AHJ3G4XkmQTFPs0rr4a/7N2wGYlBv558wD87dqhPUwmaHSaht9jxqB9P/kE2kB6OsA/ORm/V6yQNRW++w4StMWCfr5mDQjD41G/Pv20pLdo1Qomn/Jycfz37w8n9ptvon2jotD+SkFKZxNTt24S/bZ1q+xv0cLoOPb5oHFzpNGwYaK1KgUBrC5C4IR2NSagap64GCpoZNcutDGv1pacDIGgtojG8nIQL6+VTYR+/OCD6GeNPoYzhBiOwyFkiEp6912AAC8RardDinjxxXotE6qqqiA5s8mACGRx/fUgj3B2yqoqSLvnnisRUWedhQETKpa6oAAdsmaSW1liIiTicFEYocrSpZLtMj0dIMMk9vvvAm45ORgUvGTmAw9gcHBIZ3V18FKieXl4bl4gqEsXDNJvvgEZRUTgmuvXA6zsdrX6vvuMyfd27pSZss8+K9L3K69IdtYXXwRQxsSI6WTyZIB8VJSYrVjyv/VWWbaVM6Uy6bBjlqOOBg5Eu/TogU3TxDR09tlwoiYlCYGNHKkqPB4AnH6GL+eVYpJgP8sll+AZW7YEGcbFAdxzckBaTZuiHTIyALKsVc2eLdlEc3LQ3hwh9cgjeKd2O6K72rTBPZYsgcnK5UL/7NoVpDZ/PvpBTAwAcvlytZ21ysGD0c+2bZMJX3fdBfMfa5C9ewP0/X74hKKjoanMnIl+UV4Oc6nTiXv/4x/GZJBffCG+u06djGsw1IcQysvRH9jcmpys1KOPIjGmvvDSveedJ+Nr8GD0wXCpanw+CC+TJgkeeL0g9J9/NmogjVFJZwgxhHMIZWQEHRrSDFNZCVX6lltkhjERBtSDD0KiqU/m1Q8+gEmD86ykpwOAli0Lf/6ePYid57xHHg+0kV9/DT62JtIin81iLhcA4/ff62yiY2XRIok2ys01Rn1wjDwTFT/D+vViCuvWTRaO//ZbPLemoe1KSzH4oqMhXb7zDgCf1+GdNg3SJzu6H30U5gZOvrdhgxDUnDmQCE0mhKsOHAhwe+stXL99e5GuZ89GWwweDI0gKQnA7HRCMjeZoNXwugbs4OWwUF5rg01FNps4qIngV4qKgkTN7TBkiKqIiYEWxGTRsyeOITo2X0MNHYp+yGs3EwnRsZbA+ak4Bfrbb8v6wm3b4lx+Ts69NGSIOJtfeQXXtlggcPTogTq8/z5A3mpFsAG3dW4upPvA9BaffYb6REUhoueHH0BGJhOAuqoK5p5hw4Qo1q9HX/j8c5BbjZnNYBZasULMbVlZ0D64z/36q2gXHg+k+0BCOHgQpB+Y0C4wzc2+fSBLHsMJCSC32sLPV69Gv2QNxuVCRFVt2v8pikxqJIY/utQ2Ge688yCBrl9vzDMUrvj96CyPPGJM8Z2VBWfyokV1J8grKkInGTECg5UI9vX77w8P4j4fpL5LL5XJd506IawyYM2IxYsXA5wZxFgl/+yz+s3k9vsBFJzxsm1biVKqqkKES3w82vWqq2BG4nz4CQmQwm67DRP0iotlYhovJbptm9iiJ06EZsNgOGSIUrt3q30MsBMnQuPg5HsrV0r0yjPP4B3Y7QC8Fi0g7b70Ep7tkktAOtHRYpLhxXEuvxznjRmDQTtuHDQOIpCC1Qoy8HoBpGweY8fxwIFifmAg7NVLIs4GDgQx2O1CZs2aycQvJhOvV/5nABw6VGZlJyWBzHJyIAH36SMmMI5qYg3or3/FcyYlGaOO+JlffBHPbTIBODt1Qv/43/8QqWQ2Y9+KFcfSW2z4618hcPAaFJw88aGHcHxmptjsX3oJhO9yQWvx+UAAnKSuaVNjtt/t22FK0zS8t1mzxFRZH0JYvx4mLRa0hg0LXijL51PLH38cGiaPtQEDIJSEWqlNKVgDHn9c/I484W/u3LonnVZVCUEFbo0znxsYMYTTGCIijP9lZKg9w4ZBIgucdh+u7N0Ls8uoUZLawuMBKL39dp1pvtWhQxiwAwYIgXXsCHs+5yUKLPn5kII5lbDTiQH2zTfB5LZ/P6QpXuu6ZUsAe339JW+/LZJet26i3h85An+B1Yp2fOQRaEWHD0ucfnq6hLAuWiRLiU6bhgE2bRrq3LIlZqy++CKul5OjfnrpJQnfHDQI2gcn31u6VFI/P/kkpPDISNwrPh4SLztv77sPANyzJyT8yEiY9jRNzDj8+eOPIDbWBNhEwsCanS0aAZNBYqI4Hs8+WyLU+vVT5RxxxpFLHKXEUi0LFgycrVqhja1WWW6TfRBsOmPSmzQJ733YMLRr8+YCss8/L85mJsR77jE68Tt0ACl8/LFEe519NkhYl97iW54HQYTrr18v9R07Fv1gyxaZpDhgAPwQFRUIU3W58JwPPSSgn5+PQA27Hdudd4rZc9ky0bCY0PVjiFPajxqFurJWF5h+5uBBmLC478bGQlgJJ3gVFsL8xTmh2CLw9NN1r+dSWgon9ZVXSnLNUFtjrqQGRgy1qXZ+P2YEP/+8UhdcoCrZkUuEwXP77VCDA1dOC1VKSgBOV10ljmeLBYPm6afrzsC6ezeAjk0rrI7PmRN6DQiOqrr2WvFhNGumNk2eHNyZKyog0XNagpgYDMhw5KMvVVVIzcARVwMGSOqCjRsFcDIzEQLo90OK5MVLzj0XkmNBgYBs27bQahYuBLg6HMhHs2SJUsnJcBi+/TZMIxYLTFh5edDMIiPxThiwHn8c++PjYUqy2yFZjxyJc9kkc8MNklcpOVlmBnfvDjI/91wB0q5dUZ+4ONFQ+vQByDVtCi2CCOTM5rXBg4WAe/cWYmApnQj+DpcLoMzmkx49xJHPvofLL8ez9+sHrcLrRbufdZak1nC7YZLi+SJEMJ9lZkKb4XxLl14qBPPww3hmux2OadY6LrpIJgFyeouff4a/ymbDu3nvPfQbt1vWApk9G78jI3GMzwdnMmtY550n/T4w0uiKK6T/BRLCjBlGTZgT2nH/jY8H6ev7ud8P4Wj8eNGU+/RRa+++O3RkYGUltCX9WvLZ2Yiuq8v8euQI8EM/N8rjwb3DkUOjxtDAiEGpek+GW7xoESTHhx+GdMfRSbyQyaOPwtlUVxhrdTXAc+pUsSuzpDh9OqJ3akvRsWkTpCwGHbMZYPDaa6GXGy0uxmDlmZwWC0Dm44+Nz8qgPWYMAMVsBiiECuELLOXlIDivF/cYMUL8CV9+KZFHffqgjSorITU6nRg8TzwhjvWkJDzjjBnGDK4XXaTUunWqgEnl9ttBHh4PQHzBAkm+9957MD1pGt6L1wvymj1bHZNomzbFeePGia+DTVR8DJHY/BcuBEmxI37ECPxu3VrexdChMv+kRw88GxMDm/m6dRNi6NNH4ufbtxfQ5OR+VqtoKW3boh2jo2ViFRMg5ylijYx9DtdcAwm/Vy9xNr/4oqTQZqf/XXfh2g4HSIFDY6+9VrLidu8Ov1bN+WWJieJ0JYJPYsMGCASsOQwZAoDfvVuisnJyJKGezyfjj4/neQx1EUJBASR/FkqaNw9OaJefj2g6blePB9F6NTnCDBq034+Z8TfcIAAeF4c2Wrq09jGwaxdMdOecI2ap5GT4YD7/XExTc+cKbvBmtTb6GPRbgyGGepYgH0NxMSIYbrtNgI9V0zFjMIB4harayoYNAMazzhLpMTkZUTMff1z7XIfffkMYKzvNbDZIYu++G1KT+fH116Gqs9aSlgYpKFBj2bYNx3GURZcu0CrC2V71bfLII3LexRdDwqquhlmNieOKKwAWW7aI6adDBxDvoUMyP6BLF9Tx738HUWVlqWVPPy2+iYEDQVxZWSCZ11+X5Hv//KesE/DAA5Iri6OJOBtqt24AlaQkAJrLhXfhdoNo0tMBEIMHY6BbrWg/JloGL6tVZgInJcmEPZNJzExESnXqJMTQubOAotcrJqSkJHG0N28uGhaT1YABkMRjYvBc2dl41uRkiYJq3Rqmx5q08YoI7yYmBu3A0VXXXotzeH4HO9OnTxeCGDsW74VNa0OGqF9nzcKzaRratLQU/djpBAC/+ir6yxNPgJzsdrwHBm59pFHHjrLgzi+/yDOEIoStW0HirMH374/nZmGKAf6KK8SE2707nidgTCxevBgmsPvukyAOhwP9VrcWS8iybh1IU6/FN2sGkv3++9DCHc/L0RODflJgPUsjMTSgsuaee2rXLDhme8IETOTiF5+TA5B/773aV4BSCoPvjTdALNzxXS5I+K+9Ft6/4ffDeXvzzWKyiIiAqWDBguAojIoKRJ4MGyaTds45B4SiTydQXAyzAycfTErCQK1rCdMjRwAsbjeA8corQTaFhRg4NhvqNWMG7vHee7Lq1vXXAwgClxL99lulMjOxXvI//oGIGrsd72LhQgxQ1hDYrv3YY6iXpsG34HAAjFl6ZS3hoovwTGefDcDt3h3HsuTLfoM338S1evWSkFsO0WzeXMw+7duLJOv1ikO9xkl7jBhatBBbN5upOINn795iijjrLJBdmza4h8kkxMTrIZ97rqz9YbHInAqOwLrqKvRFr1cmA44fDwJxOiU/kKZBEtent1i/HnXSNIDoY49hedKUFGiEa9eKCW3kSEjQX38thDZ8uET4rFghBMrjyOcLJoQHHzQSwo8/inmM68fp3JVC33ruORHSIiJAeqy56sv+/Uo98wxmb/N7GTgQY6ywMHSf9vnwDNOmGZNxdu0KjW3t2ro161OUFqORGBpKmTsXi6voX2ZtYWZ+PySK2bMhUfJg1zQAydSpGFC1aQPl5YjUuP56iXLRNADGY4+Ft3VWVyOEdtIkMWvExio1ebJaPmtWsKlr+3bYobnTxsUBMPUptzm+m00XHOOvz5sfquzfL3MCrFZI+nv2QJNix2p6OmzEBQUAOU0DAb3zDhz47Kfo3VupZcskid6QIWiftDSA+D//KfMHrrlGbPLTponj8NZbAbD9++N6drsAKCeDY9LgiKDu3WVBmb59cV3OTMvPwk5ebj8GUSJIogyQNaanY8SQkoLzuG/l5Ih5MSlJzvN6RYPo1w8kFhmJ9xEZKYDO70dfF6cTRNatG74zKYwaBROL0wkSbtMG133qKWN6i/nzoQHExuJ3jRnrQJ8+EuZps8n/e/ZIIrzMTJzv9wdHGj3xBPq/nhBiYoyEUF2NUG4mQY8Hmqw+2eMvv0AjYhLt2BHaemDqmeJiEPvw4cfmKBxt0gQkGC6lRWUlNJnrrxdhz2wGicyZEz6xnr4cPQqNhgk81NbofD5DieFkmb6qCs7Tv/0NnZztkE4nJLzHHoNkE8634PdDOrr/flG/WXW9/XZI06F8GxUV6JTjx8vASUkB8Aem+fb5IHlffLHYQXv0gHNZH4q3bh1MKuy0798fg78238rOndCaLBbU+c47oR19/bXUp0cPaD0//yxmmKFDIWnqlhJdf+ONsOfa7QDP//xH7PA33iix/UOHSvTQNddgMPPsXyL4CHJzYU/u1Uvs7lYrfjudAOrUVNlHJKu3tW4ttmj9O+3YUbQ2TufBoFKTkO4YMbjdIA6e0W61QuLlgIGcHEkN0aePLJbE4ZIXXgigatkS/pK4OPgiYmPxmZGBe3M6hylTJLlj8+Z4h//+N/pxRIQ4gOPj4dBns1vnzugH8fFolxdeUD/985/i8L3wQoDrM8/g2W02RDuVlEB7vPNOiTS64w7Y/n/+Wcg3JgZ+M5bWi4shVLF5JysLhMVgf/QoBAG+Pyc5/OknY5/miaSXXy79Pz0d9frtt/DruM+bB3Jjk6jTCYHg3/+uW+uvrsZzPPSQ9Ce+Bpu2GjWG/0+Iobb5DlOmQKqpK3RNX4qKANg332x0QCckQMp7+eXao4K2bwc4cq4XllSvuAImolAx1cXFavW990ICZztnkyYYwPoFe5SCyWrWLHm2iAhIZfqV6/LzQWg8wScnB5FT4VRxpQDyl12G9oyKkpDDV18VML30UvgennoK93U4oKpv3iwmiIEDoS20bIlr3XWXLEfZrx+ey2yWtBBEsJMPGABTBEu0Y8YAlHJzoXmkpgKks7JARDxfg+cgJCXhe8+eEpPevLmsT+HxGHNrJSejjbm9Y2OVatJElTPgEOGe2dky0zY52dgnOJW41QptU9MAhGwiY62la1fcp3NngGDPnkaNaPJkXKNrVwgUbjck6/h49DvO/8SZWdkvctVVkuaifXsIMA88AFNSQgLMgEuWSL0HD4bpqbwcWkFsrITXbt9eOyHs3g0Nj4kzMKHdypWysh0RtJw5c4wmJxaibr1V+pTHI/NedMLXMWI4eBB9cPRoAe/YWJiF58+vO/Jw2zaEC190kTw7Cwl33omQ7LKyxglu9dnOKGIIpzGwFMS/mzSBdPLCCwDb+i7FuXs3HKeXXy6dmTWC66+H/TfcvIfCQgyeyy6TTmm3Q2V+4QVDio5jA4HBmGcI8yBjAObCq6txFk+WlJ98UlKSV1UBHFjdj4gASOsX/wksv/0mpp64OEiq+/eDpOx2SFf33QeA4RTbrVop9fXX6vfbbsM9oqJgU+Yw1169QCZOJ8D26acBIMnJcDSzFsFOfr7/uHECmHY7tBWTSUw3XbsCtKOjxbZ8111C5GxCiolBP+FIpIgIEAY73Pn4rCxVoScGnjOjf++5uaJF2O3i4IyIEIcvT9Bzu2XeCs+QZp8Ik8IFF6BdWrdGH42IwDvke7NzevBgSNgpKQDIBx8Uc9Ytt6Av1Njw9w0cCLs6O6jT0iBpV1fDZMNkOXgwyOSnnyS8N5AQVq6EUKNPaLdkCf4rLUVUHfsw7HaMkyVLjNrBli24Jr8jqxVC0Lx5oU2227apDTfcYAz6yMhA3/3qq9pzlxUWYmLnDTeIX4m18QkTYBoN54e77joRAsxm/D7O0kgMDaXU5mMoL8eAefxxgI0eCDwegNGMGfAp1GdJTp5B/eSTAHdWgXkt3enTYYIJFTFRVQWp6NZbxQRBBElzxgyo/4EOsn37oLazqYQltaeekiU6lcJgeOklASmbDVL4F18IAf7yCwYtD/BRo4JnnOrLTz9JOGpKCoB+wwaJvklJgfr+4YfHNJM9w4ZBImTz0YgR0J4iIwGUTzwBULLZYHpLS5O1mNlHwzZ5DvvkkFSWvrktOnYEEHk8YtZISQFYNmkivh+rVSJ7GLzS0wH2DDpE0DLS05ErSd+X4uPxzPyuLRZcm8khIUEAyG43hrA6HCDJ1q2NGsSIEZI2PioKz5udLetIW604h/0S114LLdFiQd+ZOhXX9nrR/nffDSBLTlbqgw/U+ltuQXtbLCDKo0fxrtkM2KEDTJN6QoiNhfBRWIg+8emnQmZuN0yB7KReuxYaNZNo8+Z4Pr0p5/BhWbub27JvX2hCgSYfvx9zMGbMMJpj27TBmKot/Ux1NcycM2YYzYYuF0j4yScxka4u53OjxvD/GTGoekQlcfH70blffx1mjDZtxBTFqQVuvBGTtOrjvKqoABHcey+IgYHG7QZxzJoFCTywU/r96KyPPgqzAj9DZibu/8UXweSybRsiftgsoGkwv7z0knGgrVqFQcsx+FlZkC7ZKbhnDyR+Dott0wY24XCLpufliYSenY22+/prMeF07QrQueMOLCkZHw+Nh5cSjYnBd7Y5X321mEIuv/xYGgd15ZUY1O3aSZswCTB4sWTasiUGrccjJJuSIiYklpTNZslGyoM9KwukwJIhE2liolLJycHEYDLh+PR00UA1Db95bZCYGJkhzjmUGDAZwDMzoRl06IBnb90aGllqKv6LjBQ/Q7duaAeTCQ5YJuMhQ8RkN3SocR2OCRPQb7idBwwAgK9cKQSTkYHIuh9+CE0IZWUwlbK5LCUFfTQ/H0LWm28KuXFW2sWLpX+XlUFDPfdcMaO2bInrB4ZdV1cjnHnKFCF2fuczZ6of3ngj/LjbsgUEc+GF8m41DXWfOhVahT6Cr65SXm7UCvVbo4/hzCWGeq1lEK4cOQLpaPp0ABZLhqyCjx0Lx90vv9SuwvK1/vvfYDU2KQnmpH/9K3SUxd69at3tt8OOyrM5o6Jw77feCjZVrVsHcOdwSqsVtuE33xTNp6wMBMfhoSYTyOqDDxDRUVaGEEA2dcTFQfIM9Xx+P0CIpbmWLWEie/11AcexY9WKv/9dwj/798c5HP9/4YViD2/XTkwk3buLdsBJ8nJzAY4mE4CUtQkitKvTifbhOSI8s5rbOjcX9UlJkffpdGIfA7h+8EdHgxgSEpB2OxAczGYQaVqa0TyZkyMEbLWKxhYfL07tVq1APExcXi++JyfjuPR0PDub3fr1w38REZC4W7aUlN5JSbjWY4/BkW8y4ZnefRfsd/2XAAAgAElEQVSRbpqmVHKyWnPvvfAZcBqR6Ghozd98I3NT9IRw8CA0Fdao27eHNlhRAS3x9tsl82iTJhBQ2BzD+cCuvlpMdUlJeL5ffzUKReXl6BOTJgmJW60grhdfNCxgZRjTBQUYV9dfL6u48fi86qrjS4ejFJ59/nw42zkCLhQpMOEcR2kkhgZU6kUM9V1StKoKquszz0Ai4ph3Vi0HDACJfPpp3TmVtm9HTP8ll4iEzsB6002YqFMTzXGsDiUlMA9cfbUMVIsFpPXUU5CWuLAz7/bbRUp1OkEo//2vSE2bN+OZGcS9XjjeapIQqrw82Hw1TRa5+fHH4Pr4fJAIWUrt1AlEc++9SjmdWCDm7rvhQ4iOlgiYGTNkKVFe8pRNSC4XQILzCvXpA4BJSYEEaDKBDKxW3NfhAKixKSc3F/9ZLABjNgfw5DbW4FhiDyQFBv2EBKViY5FeJXCiE28ez7Hjju2LiwPAWywAeLbfu1wiCbdocSyflIqIgOQeFYXnjYoSX83ZZ0t6i5kzcWx8vJjTWraENsYCweTJ6KdxcajHlClK7dihtl9yCdrJZpNZ6HpCeOQR9Lvff4fmzGa24cOh/ZWXg/hZqDCbQex60+SqVehD3O8iIuDEXrjQGAVXWAjgHjtWyDsyEr/ffjt0QERVlVo2Zw4m3fHqdPweR4xA/1q3rn7JJX0+aO0vvghfiZ5YbDYIMrffbhyfjRrD/xFiOFn74Y4diN2/8UaAIXdUTYMpZvJkSM8bN4bvrD4f5hbMnAlzAGsGFotSvXurLRMmQLXWZ3n1+RBtNG2apHYggv36nnsA3jxQfT5IhNddJ6GaHg/MKgsXgvCqqjCpTp/Tvl8/SIclJSCQW2+VkMwePVDvwMyz1dWoL4Ngnz5Kvfee2sc26aQkmI94lnRuLkxe+lBO1gBGjIDkb7XKJKlWrQSA27cXE43LBUKIjUW78f2josQUYDKBgNLSMPCjo/E7EOytVryDyEj8HxurlMcDYnC5cJ1AEuF3zllj2Z5tNuP9mM34PyUF1+ZFjRjUzWbU1enE83o8Ar79++Pcrl0llUWHDhJ9dfXVeLeahno/95xoY/36QUCYNUup2Fjl1zSY6ebPDyaEwkJI+Dw/QZ/QbssW9DWW5jMz4TRmf9bOndBWeKKa2Yz399ZbxgSPe/cCiHkhJBZGJk2CxhDKzLNpE3KfnX++aB7cHnffDeGlrtn9SkFj/vJLCCO8lga/u4QE9P3HHoODXO/4DoURmnbcDuhGYmhApU5iCBe5FBmJDrF6dd1mIn3hzvfgg8GdLzERnXvmTDi+w9k6y8pgC502TamuXTGY+ZlGjYIkGDhjc9MmDP7+/QXYk5Iw4BYsED9BZSVCRq+4QkDe60UE0JIlIJG9e5HOgiWoqCgMgmXLIE0+84z8l5oKW/OhQ8Y6VFQAoGqk98NdukCiZcDq1AkmDL7O2LEwMZjNAM/LLgP4ZmcLUQwaBMkwORn3dbsFdL1etHVEhHHFPK5jdDTs/QzovXsLeDOQWa0AyehonBcVBYk7KkqpiAhV5Xbj+pwrisNy9T4Jljbj4vC+bDaAiNcrUnF8vBA0R+M0aSKaU3S0zMxmE9To0WKKGzgQQBUbCzMPm80mTRKzUWIiCFofaXTOOWrt1KkS/cSEcPgwjmMHNCe027UL2uXQobimyYTn4HxdBQXQevWZhLt3R1CEPrpn40b0eZ55TgQNacqU0MvtHjmC8O1rrzUGY2RkKDVxIhZ9CuxvgcXvh+/trbdgvmV/lV5ou+aauoU2Lky8JypAqkZiaFClTmKoba4Dbw4HBujkyZBcvv++ftlZlRJ19YUXoE6zCYElst69oXbPnx/WFvrthx8ifO+aa4znp6YC4OfONc7HOHwY+y6+WMDI5YJE9OqrMmjLyjAAx4wRk0FGBp6HJ+7l5QGk+f+OHRFNdPgw5nSwJuB0ApT0M6+VAiHNnCn2+fPOgx2azXDnnw9ty2oFIE6bJuaokSNBElarREG1aiWrxGVmymQ0Dk2NjwcAsGnMZsPxDN52OwiCzQNmM9ooLk78EzYb7skL2jscSjmdqoq1CCYFXvoyOhq/ObeQvu+kp4u0abVKxBOnBSECsLNznsNreQIcESR8rxfXYWLt21fmdXBa8oQEXOemm2ByZGdz+/YwsTAhxMWBzHfsgISsd4i/+CJ8B/fdJ76Q1FREiu3YAcL/8EOY97iuubn4n5esZTPm9OkSNst9Z8YMmJr0QFxZCYK47z6QHwN4RAQEodmzYdqqOSfkmK6ogJb85JN4Nn7/RHhfAwfi+p99VreZV18qKzF+9Su46bfjMCc1EkMDKiesMWRkoEP8+9+QZAcMME6CMZkwcC+5BINr4UKZI1BX2bcP9vcpUzAQ9KaMpk3hGHzpJajwPl9wHTjy4qKLjDbttm3xrJ98Iup7eTli3G+4QcCYIzz+/nexxxYWoq7Dh4sk3aIFJNINGzCYnn1WTD4OBwDr668x0CdNEvIYNAhaim4+yDcLFuBakZG4/7hxiLHnlNUTJ0r4Yvfu4hxNTxdJuUsXgEVsrKw0lpWFzyZNAKbsl2DJl0HZ7YZGodcSWreWtB/hhAKWlO12VeVw4P42G/axUMHfLRbcIypK7PhMTtHRYiJkrYSJg/d5PPjtcAghjhsn5jLOYHvlleIov/xyaZ9evWD/ZwJITwdgc+RRXJzaPGkS+rU+od2AAQB7TsbH9Rk2DAILA/d110l/i4+HlvnDD7Lg0+LFICWePGkyIUT3qaeMkUd+P/rUs88iSomFF5MJ7376dJg+wyyQtXjxYmgMH32ESKN+/Yyzk7OykDVgzhwIOPXV+IuKkI1g9myY5zp3rt35zP2jnqWRGBpQOSU+Bn2K4dRUDKr774dazYOAt7Q0SLr33gtpfMuW+i0T+t13kKTPPdeY/z0mRh3q3h1RIosXB2sq1dWIiuIkdNyROfXzQw9h8FZX4zlqZsAeMxswGU2ZApCvqgLBvfACzmfw69QJ5oAdOyANXnedmGmaNgXJ8Ep4LK01bYpBVlQk7+HQIWgkbGe/7DLJv5SQIIujmM0gXTYlnHUW6pSYiDZnYmapjT/NZgkxZU3G4xEp1GrF+2WiqEtb5M1iwZyYcOkRQm0xMQA9JiOLBZKnxYKNn9HjwRYfj+NZg+nbF/9z9FF2tnH1OPa7JCRgHog+0uivfxUtKy4O7+fLL9V+nhjGCe0++wxmT+7HiYmw22/dCqFh+nQxVTmdeCcLFgC0S0tBHBMmiETtcGBcvPqqUVDKz0dwwuTJYtrid1ZXskqfD6bTl19W6sorVYk+6MNqBZnceiuuUZ+12/1+mMkWLMD4GDPG6Hhm4hs0CM7nN98U82SjxvB/hBiUqj0qqT7EcegQIjYefxyDrVUro3PS4wGw3XILwlJXrqx9uVC/H1FBr72m1MSJqliv1VgscLrdfDOkw8AQ0tJSaC933GGcEBQdDbMNT0bz+wHyzz0XnKLjL3+B6aqoCNd/4gmZm0AEwHruOdhwX39dAMxshqlo/ny0D5s9oqLUjosuMkZN7dkDLYZNNrxsJ0vyeqmXwZBzCGma2OY5CofNHikpeA42zTCxud2SNTaQyHnWNpNVqMgjTUNkVeD5mob72e3oF3Y7rqGXNE0mWSKTAZa1z8hI8Y3ExMhENSY5fvcDB4oZavRoADgvxXrLLaKhjB8vTuu4OBD13LnH/DRVbjf6xptvIuKJSWvgQADrjh2Q8NnHYTIhZPj119Ef8vOhWV5wgdQnOhoEP2+ehERXVkLqnz4d/YDbLTISws+zz0o/DCzFxRCCHn4YGqxeU4+LUwdZ2/3mm/BzbLhUVUHznjsXID9oUPDCO7m5IIeHHgJZ7NoV/FynYJJbIzE0oHJS8xiUOvFEfKWlsHm++CKcaN27iymBCIO4UyeorLNnQ2MIM8N68eLFkKYWLIA0d9ZZxmtlZgJYWXXWO/MOHED00NVXG7WbzEzse+cdHFNYCGC4/HIxF9hsMEM8/zwGy8aNkC55kpPZjP//9S9oLXfeKWG0qakAhfffV2rcOKTd5pQWeXky8LZuhcRpMgG4L7hAzCt9+ohPpU8fIQW+P0uerKGw30DvU4iOFtLjpSPtdvEj6NuRN7PZaHKq2XyBTmZ2WIfyU9lsuI/DYSQJPUG43dC62OlNBJu804nndrlwvH6eBmt6XbpAy2NJfcgQmWAWFwez3eOPGxPaPfig2nLllaKFxceDJJYvx+S2IUMEwDt1gkCwezcijubMAXlwG6SkIKT4iy9AAizMzJ4NcxSbqXjm/333BUfWcdm5E/3wpptQL307t2oFM+Nrr9W9jvvRowigePZZmDa7djVqeHY7zENXX436fPddcDbX2spJpsVoJIYGVE6aGGpzTk+ahMHz8ccI56zPKnBr1yJS4o47IL3onVqaBgn44osh6X36qVL79oWuQ2Ul0hY89VSwsy0iAte+7z74FzgenG27zz1nDP0jgnZxxx3QNoqKYFaaMsWoYnfuDMD59VeE106dKuBstwPU334b2/DhAjKDBqn1N98M4uD6duiAwc5hgevWSUx+dDRAKiICAN2nDwa42y0znFNTJa0EO4NtNqlTbKwMYs6QGSrElDU6vc9AL+nriUH/O9y1TCaJRNLvt1ikPvxM7G9hiZjDjvWJ/tis1rMnPnkBHzbvdOkiPob4eIQq33abMaHdAw8Ys+/26wci+OgjaLhMVJmZEDzWrEE/ffhho6bICyZxKPShQ5hAN3GiUejIzoYw9P77wY7eykoIEU8/jUi0UHOB7rkHY4rXjQ4oi7/6CoT18cd4xosuwrjRt3lsLIhsyhTU9bffatfS6yp/osag4dgzq3Tp0kX98ssvp/sx6l3y8vKof//+J36BrCyi7duD99vtRFFRRAcPGvc1bUrUooVxa9aMKDIy9PWVItq9m2jFCqLly7GtWEG0deuxQypiY8nevTtRhw5EHTtiy8khMpmM19mxg2jJEqKlS/G5ahWR30+kaURt2xL17k3Uqxc+s7KIfD6iZcuIFi0i+uILnFdVhXr06UM0aBA2p5NowQKijz4i+v573Csjg2j0aKJRo/D/vHlE775LtH8/6nreeTh3yxaif/0LbRgbS3TJJUQJCUTvvUe0Zg2R10t07bVE111HlJSE+t97L9HHHxPFxxM1aUL0009E0dFEyclEa9diX0EBtvh43DMujig/n8jlQr3Ky4k8HqKjR9EGFgvaSyn89vvxXdPwX1UVvptMOD/UqyIiLdQfJhPO5Wvqi9mMzWTCMxER2WzYiovRh44eJUpPx/vzeIiKiohatkRds7Nx3KFDRMOHS1/JzcWxy5ahDS69lOjAAbwHn49oxAi844ULidavR/v95S+0JjqaWhcUEL3zDo6PiSG66CKi8ePxTB9+SDR/Ps4hIurWjej88/E+c3Lw/hcuRH/55RfUNyqKaOBAosGDic45B++HS34+0Q8/SJ/86Sei0lL8l54u/bFXL6J27YisVmP7+XxEGzagzjVb5c8/k+3IETkmJwdjg8dHhw5Eqal4J8dbfD68h40bjdvChUTV1cHHZ2YSbdtWr0trmrZMKdWlzuMaieGPLydNDG++STR5snRmIoDPSy9hMB4+jEH0+++yrV9PtHmzEWBSU4MJo3lzorS00B24oIBo5Uqi5ctp36efUtK+fQAK7pyRkUTt2xvJolUrgDqXoiIMRCaL778HCBEBZPWDsmNHospKom+/xaBftIjot99wbGwsBv455+B+v/0Gkli4kKisDM8ybBjRyJH4vmAB0fvvow5xcUQXXkibTCbKPXwYwFNZCcDp0wd1+vxzgPO4cUQ330zUuTOe9557iPLyQBhRUQCI9HSikhKiI0dAwhs2gGgOHgTIHTmCY4uLAdRuN57R70ddGMSJjLK+1Qpy4KJpwSBfn2I2y3maJoTB97dasZWWglCVEmKqrER7VVXh/4wM9KOWLVG3pUtBpF4v0erVOHb0aAgReXnol8OGod99+ilRRQVRz55EF1yAvvDuu2gvmw2EPnYsnuGTT/Be9uzBs/TvDzIYPRrtuHAhtrw8tL3ZTNS9O4hg8GCirl1xnlK4/tKlsq1dK+3SsaP0uZ498S71paQEwoyOBOi33/D+iPDcbdrQ3sRESh42DH2xXTsQ5PEUvx8Eqwf+DRvwuWUL3gMXlwv9bOXK0Nfi91uP0kgMDaicNDEQgRzuuQeSREYG0cMPgxTC7SdC59q8OZgw1q3DIOXidoMg9GTRogU6o9NprEN5OaRs1i5WrECHLS7GtaxWkIOeLNq3l4Hj8+H8JUuELFgzcTgwwHv3loFbVUX05Zcgii++AHAQQSIcNIioXz8MjMWLQRT79wMA+vWDdOvx4L8PPwTQpaYCbBwOAM2aNaj/0KG4zmefoS59+hDdcguO/fprtPFPP4HMfD5IupmZaPfoaJBlWRnAye9H27vdABpNA1lWVtY+gE2meg/wkKUuImFtxGrFezSbiSIiiAoL5VlTUtDGKSmoo8tF1Lo10Y8/oi+kpgLA4uIA3mvWoF8lJYFoN25E/4qMJBozBu2Vl4f3TER01lm0oX17ataxI97nxx/j/kwo551H1KMHtBAmg127cG5uLgSDwYOJBgzAuy0rg9bAfWnpUghKRCCyXr1k69oV9eSyb5+RAFasQN24DWNigrWAFi2IrNb6jWmliPbuDZb8N24k2rRJtDci9MfcXIy5wC05Ge8unOWgUWNA+T9JDKFKXZpEuKIUADSQMH7/HR1PL21mZRG1aEE73W5KHzRIyMPrFanX70dH15PF8uW4B5ecHBlc/JmSgmvs3Stq/pIlRL/+KlpJixZGrcLvF6LIy4P2oWlEXbpAo0hPRx0++QQSLRGAbdgw2nL4MOUcOgTwr6oCufTti2t89hmAkUlxxQpcJyOD6K9/Jbr6aqLvvgNBrF4NICwsBNjHxkJbSEwUM9bRo5AuiXCMySRSeV3gfTJjkk1VgddgzcFiEWnU40EdrFacZzKh3d1uaFpt2wLEqqtBCGyK69wZ7XPwoADXzz8DpDt1wrvYuRPvqLoa7X/++dCivvmG/J9/TqaqKtE2Ro5Ev/3mGxDBr7/i+aOjRUs85xz0oT17pK8sXWrsK82bSz/p1Qu/2Sy3aZP0Td70/TM7W0iAt/T0sKagY2NaKRBoOPAvKZGTbDbUgQG/WTP5nppqNMuGKtdfT/T888H7r7uO6Lnnaj/3WDdoJIYGU/4wYggnQSQnQ5KLjj5+G2dpKTp1AGH41q0js17CiY4ONkm1aAGwZRvt3r3BZLFpk1wjISGYLJo2BXD9/LMRAPLzcU5cnAz87t0xMNn09MMPAAGnExpDx44AjWXLADo+H8B78GA8/5o1IBe/H+DVvDm0l+XLAaDdu0N7WLkSwHXFFSCJlSuJ7rsPdfF6AZAOhwAUg1F1NcCAgdhsxmcY/8EfUvTv32yWZ3Q6Yebx+wHYRUViBktJAaAVFoIA9+1DezVvjrqXlxO1aYPPTZvQNv374/pM1ikp8DF4PNC0vvsO98rMpJ1dulD6qFHwWXz1Fc4pLUWb9+gh5qH27aF9sCawZIn0d4cDGgoTQY8e8HOUlsL0oyeAVatEeLJa8a71mkC7dqhfbeXwYQPoH/juO/IWFqL+eu3bYgHJhJL8MzKkD5xIYQ011P5GjaGRGI4Vlg7DlYgIdEbe0tONv9PSRKqto+R99RX1z801ahe8sXmHCAOjSRMjWfAWE4NBtGqVkSxWrxbbusuFgcpmqA4dAELbtxud2uyYtFohpfbujWOVAhF88QVAhQgE1K8f7SkvpxSTCaahoiIhkLg4mBC4T7Vvj2dduRJAmZwMgFyzBiA/dCgIYs8eogcfhHQcHQ0pOyICZMKfbFpiB7xey/qji54U9A5t9nH4fELifj/6gssFEIyNBRl7PAD5detwbJMmAKfSUki8GRlol717UeeBA3EO2+mJoHkMHnysnSsWLCD7oUP4r1kzMQ916ID78Hv+8UcxUaakGAMX2rdHe+sFDzYFcdtGRwdrAS1bhu/zBQWhJf+NG9EPdG1ZlpREzrZtg8E/MzPYeV2fUlwMn8Pu3TCdhfq+d2/499zoY2gkhmMlnMYQH080dSoAa8cO2fTRS0ToUImJRrIIJJCEBCJNq70ORUUA6kDC2LjR6ETzekMTRnIyBrQ+ImrFCpHEzGYMaL1mkZ6OezCI/Pyz2GyzswEerVtDQv79d5if9u3D/02b4nrV1QCwXbvQFh064Bm3bUNdNA3X8PkAWJoGO/DBgwCRFi2g3peVET3+OPa7XABNux0SuZ4YiMKbev7IEso8xY5uhwPtFhcHQmBCi4yEJrF7N/Z5PPhut4OojxyBk5SdwDExcPJu3Yr79egBglcK72b5ctw3JoYOtGtH3vHjQQr6KLY1a3C8yQTg12sDlZUgar0moAfKzMxgf0BGRrDGfPRoePBnsuI2S08PBv5mzYiysylv6dL6jWm/H9etC/QLC4PPjY6G8Jaaiu3990Mf16gxoDQSQ02py8cQ6Ji+/344VfVksWOHkUA4+oKLw0GUnk5HIiMppl270CTicoV+vupqAVk9Yfz+u3EQ2u0YcHrCaNYM92bCYMlQr51kZIhm0bo1wG7TJtEq2IYcFUXUvTvtcrkoLTkZDvklS9Bumgagi40FcbAmkpEBwuLBa7HAPnzoECTpqChoHPv3YwBPmID7v/QSBq/FAkLhiB824ZysD+FEi96xrdcYmAiYyNxuPG9hIepVUYE+kZyM/9gU2KIF2mzjRhCi1QoAT0pCG/3wgzjje/WCszg1lSg/nw4uWEAJGzbANk8E0unZE0TQuTPaVR8eumqV2OotFqMpqEMH0fC4lJbiOfWRPrzp/QpEeKZQZp8mTdD/wpS8vDzq36sX+mNtoL9nj1E44vZPSjKCfqjvgePqRH2KutJIDA2o/GHEQFR7tNLxdiKlIDUGksWOHVS4ejV5CgvR0QP7TFxc7SarpKRg22qoENvff4cUqrfBp6UZCSMxEQNt585jobSGSJLYWAGM1FQcu3Ur0fffk1q9mjSWSNu2hWZBBPLi+RZOJwiAHepVVZCe09IAKvn5ANGEBLSF3w8N7fBhXHfkSADdvHnS9kwGp4sUAu+raeJvYNJyOtHulZXilLZYQAj79qEdkpLwrrdtA1C73WhHmw3vgDUyDhhITATp/PILzHs1AFmalkaugQNxblQUtA/WBn7/XQgsKipYC2jZEu1fXg6CDyX5795trH9SUnjw10cp6UtRUXjpftcuqty2zTiPgYvTWTfgJyaibU+kXH89xrDPh3c4eXK9Hc9EjcTQoMofSgzhSjgzk9tNdMMNADb95vXiM4z0f6wOlZUAxFDaBm96ZxwRBkFqarC2oScRDmcNFWLLW7gQ2+xsDMjSUoDTqlVwQFZU4FiHg6htW9obG0vJTZviuC1bYOJgSTQ5GdcxmaQeRJCaY2NBCiUlApb5+fjtcAAYi4qMUUjt2wOQvvpK/CenixgCi96cxc5x/SS7qCh8lpVBo4iNxTuvrkZ7ZGQA8LdswfViYuAIZufvypXyn90OLaB1axxXUUGHf/iB4nbuDNb+Av0BKSkg9VDgv3OnsS3j40ObfXJzjRM7/X5oKrWAPu3eLb4NfYmLOwbuezSNUrp1Cwb9Ewn4qG+ZOxdEoNfqGzUGKY3EUI9Sm2NaHykTWFwuI1HUbJuLiqhJz57BhOJ2Bw+EwsLQhMH7du0KnsEZFRVe48jIAEjk54cmDD0Bcohts2aog8UCAN+9m6pWriQrD3iTCeCRlQVwLyoC4HDMvMMB263ZjH1MSnFxkNYKCvA7NhZ2a7bX81wFNs3Ex+P5V6z4cxzOtRU9MZnNqAdrDJom5Gq1gqjZ3BcXB3Bls4jFgrkqCQkA0LVrZdKi1wsSiI9HfffsAUlzu5vNVJyZSREcLMARQQcPBk/22r7d2GYxMaEl/6ZNcY3yctyvNtDfuze47zHZ1ybpp6QYTEsnPKaVQn/Mz4emdOSI8XttvzkyL7A0+hhQGomhHqW2yTBbt2IgHziAARm4Be4/cECk78DidIbXPkLti4jAYN+3L7zGsXOn0QdBBOBKTg6tcSQkAJjZR6APtdVJV1VuN1mbNQOImExog507jU7MpCSAgNmMgbhtm5i2vF6A5oEDuJ/JhPowaehDQNm5y2BsseBZdWlGTksJNGvpZ1vzJDciEF5lpTEqKC4OvxmwNQ1aVmIivh86ZJxtHxkp4J+ejraqqqJd331HaWVlIICtW41AHRUVDPq5uWj7srLaQZ8ntulLRER4kw5/93rrnkMQUL75/HPqx0744wH3I0dCp7XgYjaDAGNi8A74e0xMeJNRY1QSSiMx1KOE8zFccQUmf4WaKR2uKEXffvop9W3RonYC0e8LdGJzYft8KALR/46IAMjm5wO8QxFIIFk5nUaNIy0N4OTzER09SntWrqSU0tLgEFuzGaTj8QAsCwpAMjzY3G48ExHqx23qdKI+rD3oI5BYIicKBmMObW0IRU9gLpcQg8sl2hBHwjgcIAiLBe9FT96cbiUpCef6/TC/bdoUlOLB53CQuXlzsfN7vXjfFguIJ5TUH6o/eb1GkA8F+lFR4eteUWEE70AArw3cwwlKRGjL6OjQAB8I9oH/RUSEN0X9iTOfT9AD0lgafGGw1zumhw8nev11Abbt24kmTQJYXXZZ+GtpGvlcLjhlc3Lqd/+SkvoRyPr1+NTPENUXm81IHomJcFrGx0uen4oK1KmgANfdsQN5egLivlOIcI2MDMx9cLslsVxBAQBp61ajmS0yEoO1tBSAwNK12Yz766U/TpRXWQlSYCJg4Ys/mRQCcyP9WUVPVPpoKYtFCI0nnNntEtJaXg4AyswEoLdpg/MPHcL+L7+Uezgc6Cvp6dAa3O5jDu/8DRsoobISebM++CBY2jXlj6gAACAASURBVLXZQEBpaXhPo0YFA35yMo6rrg4G94MHYYqqC9z1QlOoEhVlBO1WrY793lJQQDmdO4cGe4/nuDWQepXhw0PPfB4+/JTfqlFj+BPKadEYQpVwEgcRQM7tDrvtLSqC47aWY8jtBojqf7tc9ZvtWVpaP7MW7wvlHCQC2MbHgwDi4/EMViuRptHBvXspwe2G6Sc/H0QQSEgWC6Te6GgAj8+HYw4cMDq/mRgqK41E4nCAqPRpRRrqGNMTk8mEZy8rk+dl7Y79JYcPGyV3ts3HxMh7rqxEOx04YJwUxsXjoZLoaHI3by5An5KC9na70aZ+P8izPpI8+zbCFbe7dgk93H/R0bVGDv0hY9rvRzuXl8snbxUVROeeGxxuS9SoMTSWkyyhptNzsVoh+ZWVQUVne3INeMZy6uKSkuOXch2O2skjHMEkJUlIYeBmNoNM8vNrJ5Dt2/G9qIgSQj2byQQgiIgAALLEXFSE+hcUBEu0Tqeo/CaTkRjKy42O/4ZKCppmfI82G4CQI5OIAEZ79sicjZgYtH1hIY6prhYzHxG0Oa8XZNGiBcjC4RCAra4mKi6mii1byH3okMwoLiysvZ3sdiNoZ2TI3IW6wL6eM/sNoFxeDvNVIDDrfifyLOsw/5/Q73ABIXWV2sb1CZZTQgyapg0loqeJyExELyul/h7wv52I/k1EnYnoMBGNVUptq/lvGhFdTUQ+IrpJKfX5qXimxhKiZGSE1hg0TaThkhLMQA0IgfteLyFVVeG4khKAJ3+vbQt13N69wfuOd3AEko5+S09H3LvbTWS3046dOykjNVXi9XnyVmkp6l9UBCI4fDj0DFNuKyIMZqVCPy+blPQznhtSCaXF+P1oi0DS9/vx7sxmAH1MDDQxIgB9eTneW1ERpNlQEi0R2qMGtM1mM6RcTuUdHS0mO5cLJORygRDsdjEXhgPWI0fgEzoZYD5OYadluDqy6Y23wN+RkbX/r/8d+N+ECTIpUF8yMo7r2etTTpoYNE0zE9GzRHQOEe0iop81TftIKbVWd9jVRHREKZWrado4IvoHEY3VNK0VEY0jotYEE/AiTdOaKaX+xCxj/4fKww8HO6RDgURpKdHEiVhIxWwmslio1eHDIAu2Q9fsr/W7xQJNJC4O0mR9zlNKpFH+ZHMNb+Xl8qkf5GVl8llQAMBi4C8poYzjJR2bTQao1Ypn5Pby+/F8Fgv2BToja4s8Od1F/75NJlm/IdwzV1eDLHkRIgZvux2gnpAg7cNtpG8nTihY877srOWdICiHLBZL3UAbFVU3cNfz9w8rVlCP/v3lf7v9xCet1bfMmhV6/P4BPoZTUZNuRLRJKbWFiEjTtHeI6Fwi0hPDuUT0QM33eUQ0R9M0rWb/O0qpCiLaqmnapprrfX8KnquxBJZQDulwPofyckSE+HxEPh9F8ExQHuQ1+0N+r65umJKyvuhXNeONAS0wKoS1C/2iOqwN+HwNv66hih646/v8HIMfyi/D4BgIpA6HmJRqjjly5AglZ2efFDAbfv8ZoBxQyg8cgG/kzyyXXopULi+8YDRVvv460onUc5JbfcqpaM1UItqp+72LiLqHO0YpVa1pWiERxdXs/yHg3NRQN9E0bTIRTSYiSkxMpLy8vFPw6H9OKS4ubjjPm5qKZS5rSo9x48gRQv2vjIoi/549ZD9wgCq8Xvr9ssuoaOTI+t+nBnQ0n480vx9bzXfy+ereH/A/ncj+6moyVVWRqbqatMpK8pWUkF3TSON91dXHPg3fa87Vap7HxNcLcS/S39PvR8qNwM8AjewPmhd7fOVU+j5qfAdhAwKISNUQrjKZyKtp5DObsc9kCv6sIWn9p6ohb/11SNNI1WgoYc8J/C/U/jquE+oZ030+2vHCC/U61nD9UHUN0wahrtP87bfJFkLDL58yhX5IDQmdJ1ROBTGE6ueBvS7cMfU5FzuVeomIXiJCVFKDiPKpZ2kwUUmhyhNPBKunNhvZysqO+R0c+/dT+zlzyNyxY2ippLpanGcVFbLpf+u/6238tR13sv+dynUP9OGcrGFw0UtvrDE15HIikVIsmes3m03MbLyGtM0mS4eyKdFqJa3Gsa1ZLLRz715Kz8rCdVlj0Wtfgdup3F9VdUquU11VRRaeWKY//jQFGzgOHDilGHMqiGEXEekXTk0joj1hjtmlaZqFiDxElF/PcxvLH1lCmZeKi4NmkZorKuD8mjYtGIBPpSnFZAoGnsDvdjuceOGOY1+F3r7t89G+HTsoKTbW6HgsLT3mg6CSEoQ/hopvZ98HTwZzOnEvDsWtrhYnaUMqNhv8O5mZmFfg8Uj47b59+DxwwLjMZOD5bAritmVSrKiQgAF2QtfDX3BswNvtcDhHRIjz+WQ3m+2Py1WkK9+FE/YCTY2nmthGjJBkhfpyih3Qp4IYfiaippqmZRPRboIzeXzAMR8R0RUE38EYIvpKKaU0TfuIiN7SNG0WwfnclIh+OgXP1FiOp1x6qVETCDc5h8MTIyJg02zXLrQEWReo1/afyQSHcWEhHMj6Ldy+3buN+8KAXBJ/MZvhNI2OBlDGxIhznOtZWQmCOHoU18zPF01AKSEUjp4hCk2Qp3seA2ei3bkTq6gRyeLyvXoBaLp3B9FxiG/gFmp/OK2Io5a4fRnw2VlttdL23bspMzMT7cURa/qN56nwVtdENH2xWE4Nweg3l6v+ZMM+qj9ighsR1v0IldHg4YdP6W1OmhhqfAZ/JaLPCeGqryql1miaNoOIflFKfURErxDRGzXO5XwCeVDNcf8hOKqrieiGxoikBlBqc0oTYbB++y3R5ZcHm5aUkvh/PZDz4jb1Afy6pE6bTYCHwT09PXifwwEpq2Zm9LbffqMsjwfPsncvYvTXrg1NJB4PwitdLsyniI8XTUrvfOUJX5pmDF3VNJhRTjQ2/WSLfv2FwMIZUFeulJm0kZEIH+3XD6uwjR4tYamBhdOGhCMSJpPdu/H98GEDOWbqn1GfCoUXcvJ6ZUtIQFRbRATOCUUk9dk4Y6p+qy9ha5rMranZOvh88NedKNnwuhfHW9gBrU+9fcUVp9TxTNQ48/lPKQ3axxCqhMqzFKo4nVicJRDc6zItuVwAXj2QM5jXZ59SAuy1baFmxbrdMts2Nlak/YoKSamxc6dxHoOmAZx4zYKCAmPbeDwggaIiIYKGMo8hMRF10o9zfR4nNt3xvAx9iY5G2ouzz5ZFdOLijv8ZONy1hjDW5uVRq/j48FpJYNp2Lna7kTD0BBJqfy0L7ZBSIPUTIZniYjqyaxfFcG4n3o4ePT7/ksNhJIv6mNNWriR65RWjyfI4Um83JtFrQOWMIwYi4wJAtfWRPn2OD9w9nvCzUTlDaiDA80pYvIVKtWC3A+z1W3IyBlNNWosdK1dSBhFm3AYu4m4yIQdPbCyer6ICM8H1CxM5nbgmr3DG0VyahnrxhDl+Hh68tUnvf1Zp3RrPwOtg8zNZLKgXkygDULgoo7g45D4aMABrMHTujDY7jlLneCgvN85mr828tX9/eL9OZGT9iSQ+/rgk+LB14Iy0p3ILl5BSX+qZFqORGBpQOSOJQV/C5VgymwEudWVp9fkwiOuS8EPN6uTMpyzlhwJ/s1lSPjPo86bTGpTJRFp2NlJFc6KzkhKQ0YYNRiDMyRESKCjAtfn/yEjJPMo58l0uXI+PcTqNA/p0+xq4dOoEk9HSpUgYyBMLKyrw/LzqGrdbaiqA8+hREHS4LKddukBI6NoV96iFLE7peGDTZW3+EP3+gwfDR6vFxdVNJDX/5a1cSf0HDDg1daircL6u4mIIL6H6UT1TbzcSQwMqZzwxvPkm+a6+GpFJ4YrdDp9DZmawtL9/f/Bg1DSAUCiw128JCTh2714j6Ou/623+FguAPzcXm8eDAVNYSId+/ZXi9+0zrong8SDvTloaQPLIEVyb1342mXC9qCgQBJ/rcEDKzM+HWclslmUq+Ty/XzKTNhRi4NKmDdGYMSDF//wH9XA6xSRGhHo7HBAK9OtjZ2XhfW7aZFx/QV+SkrCOc/fuII1OnY6ty3xax4Pfj3dUXyIJsziO32wmU21mrMD9oRa0OpFykqm3G4mhAZUznhiIaO306dRq7lyYlkym2ucIxMUZwT2UtB+47i2v9hUI+hs3Anz0Nn2rFRI9g3/TphiAlZUYzGvWYHnP1atFwjWbqSQtjdw9e2J1N15TYM0aop9+Ep8Cp1d2u6GFrF4NadpiwaDUNAzAqirJ3Ll3L9qDzUcc119SIvb8P8ucVN/78HGZmUS33op38p//EP3vf7LynNUqqcuzs+HgLyrCimxc3169JGHetm1Ipa1f60Jf0tKIevSgzbGx1OTiiw1k0WBLVRX6QQBpbP/5Z8p0OoPJJNwkP6ezdn9I4P5w5tY33yS68kpjgIbVSvTaa40+hkZi+POLoQ61LRuakUH0yCOhO6nfj7QaoaT+zZuNZgqbDeDPK3gxAWRmgiTWrgX486ZfAD4hAVpAu3aQcKOiiA4doj3/+x+lbNuGc3k9gjZtYH+326HZ/PijSP1MOIcPY3EfIhBabCw0h/JySb3t8+HYwkIAKy+fyp96hy+XU6FFuFzBQQK8XCd/hip6H0N1NYjg5puxLseiRVhf+OuvcWxODo7buBHPm5ZG1LEj6rZhA4iCCD6ks89GQEJ0NJz4S5ZgbW02TQXWOTNTtIrOnUEW0dHGZ9X7u+q7uNQfXMKOaU4fX1e4L+8PF7Xm8YQmjO3bid5+2/hebTaiV19tJIZGYvjzi6EOta3rQASwvPlmDHo9AWzebHQU2u1Iq82gryeA1FRIanrwX7UKoM7SktUK6Z5JoF07SLZbt0Jy/f57pAqvWRinKjKSrH364Hhey/mbb8Q8lJaGa2ganLS8oH3z5gCrjRuhZTgcuPfRo9AakpJwLIeoVlTAD3H0qAA3x7YHrur2RxUmJHYk64teq2Athz9dLqJrr4UW4fMRvfUW0RtvoD1sNhCp2Yx3UVEBiX/QILTd4cNEeXmSBjo9Hf8NHIg+s2UL0Y8/0tHPP6fIrVulLQJJMycHvoouXUDSM2eesIT8R5VTMqaVkrUr6kMkhw+H1wYbTUmNxHA6iqEO9Q1nJQKIMuAHEkBamqygFqgBrFqFAcKFQbtdO6zg1q4dTEJbtggJfP89TEOsDbRuDTt3p05EFgvt+OILyti4kWj5clzT40HcfnIyBt3XX4OMLBZIsVFRAMRt27DP65UlP1u2BPBu3ixhkeXlkLwPHQIgl5QIGfDkOV7ZjejUEUNaGkgusDApJScbV7PjSVh6jYEJhJ/bbIbP6I47YCpavhxaxFtvQbOKiQF4axq0rIICCASDB6PNzWaQ8ldfiQbWpg3RoEG0yuuldhMnQlj48Uds338vwganH6ltPktcXPC64H9iOS1j2ucDKTY6n0OXRmL480tQHVi9D6c5aBokx5QUmQWqFMwLgQSwYYNIjE4nAIRJgDeOAvrpJ4DI0qUAHgad6GiYMHr2RBilzYb/Fy2COaOykvxWK5l69xbgWrUK/5eWggTOPhuS/m+/Ea1YgTpkZclqYnFxIKUNG2BHj4mRNN8MzjxLtqQEnxz6ardLnp5TvZCP1xs6ootnlh89CnBnc5heQufoKdYwYmJQ1+hoSXFx7rlEU6eifaursYTnG28Q/fe/aLusLMxzIAK57tqFe/Tti3Nzc0HYixZh9nV5uZDvoEHYunfHfZkoeKtthbbTiF2nbUw3Op/Dl0Zi+PNLkMbANt9wjuj0dDgzA0lAP3EsOzuYAJo0kfUBNm40agOrV4tUxNpAz54ALJMJ0umiRfjk+3ToAOBp1Yo2L11KTdavB1H4/QDzoUMBgsuXEy1ejP3Z2QDK9esB7n36QLvIy4NUnZEBbaasDBrQtm04Lj4ehMFgy1K42YzrlZUZU3tzXY5jDIbLPEkdO4ompC9eL4ipsBCEyePGZBI/hFIioXP68eho1NHrlTxS/foR3XUX0bBhOKa4GOQwdy7a3e+HFnHWWbj2woXQBPn5zj+faNgwWvH119Th8GGcs2wZzouIwHkDB+J9tWmD56ptWdj/i8QQSlv/Aya4kVLqjNs6d+6szqSyePHi0/0IJ12O1WHuXKVcLv3KBMGbphl/R0Up1bu3Utddp9Tzzyu1ZIlShYXGGxw9qtSXXyr10ENKjRihVFycnO/xKDV4sFL336/UZ58pdeSIUvv2KfXmm0pdeaVS6elybGamUhMnKvXWWzh22jSlWrWS/9u1U+ruu5V6/HGlxoxRyuHA/rQ0pXr2VCo2Fr9TUnDtESOUMpuxtWqllNOJ+rVrp1RkJL63aIFPp1PqazIpFREhz8/3N5uVsliC2+hkt+HD5bvJhPvwPdq0kXoNGKCU241nIMKnzYbv3OaRkfiMjlYqMRHfU1Pl/3bt0A+qquT97d6t1BNPKNWhg9Rz+HClZs3CO+3Z89jzlaakKDVlilLffafUwYNKffCBUtdfr1SzZlKHxESlxo+XZwvc3O4/qeeHLqd1TM+di36uaficO7fepxLSFNWJsacd5E9kaySGP78cq0NmZu0AZbEo1a2bUg8+qNSHHyq1datSfr/xYn6/Uhs2KPX660pde61S7dsDzPgaLVsqddVVSv3zn0qtXq2Uzwfi+PhjpW69Vam2beXY2FgA/AsvKLVmDY655hqlkpMFoAYMUOrJJ9Xq6dOVmjxZqZgY/Bcfr9Q55yjVsaMcO2oUyKRXLwH5Ll2UstsxEHv2lGu3bYv7axqOI1IqKUmei0mBQdhmCw90J7vZ7UoNGmQkHE2T3yNHor5ESg0bplRGBuqrJwK7XSmrVQiAPzMypM45OfhNpFRWllKzZytVUmJ8v7/9ptTUqULYkZFKTZig1LvvKvXcc+pQt264D5FSXi+I/OOPlSorU2rHDqVee02pSy8VUgq1xcX98Z2+lnKmjulGYmhA5UztRPpyrA7hJF1NCwYILkePKvXVV0o9/LARoBh4zzlHqfvuU+rTT5XKz8c5lZXQLP72N6X69hVwZQD8+9+V+uUXSJxvvAFyYAnd7VbqwguV+ve/lfrmG6XuvFNAyuWCFjB6NCRiIqWys3H/GTPwncGwXz/cz2TCPVu2FOJicvJ6hRDcblyfP3kjgmZit0u9TSZsodrzRLWJe+6p/f9bbhGwHTVKpHiTSYiNP9PTAd5OpxBp+/ZCfK1aKdW6tTpGsDNmKHX4sPG9+3x471ddJddNTVXbx47Fu337baXGjhViiohQ6uKLoe0VFECAqK2/ncZypo7pRmJoQOVM7UT6UqfGwBKc36/Upk0A6+uvhzTOkikRzC5XXqnUSy9BsqyulvPWrFHq6acBWgwWmgaJfepUpRYtUqq0FFrIU09BE+BrJyVBG/j4Y6V+/12pRx+FCYU1gcGD1e4RI3Atlt7HjgUI3X67mHu6dFFqyBCAosWi1LnnKtWnj5DFsGECpNHReD42VTH5pKbingyoLpeYmUwmkITVimOYIGojivqQhaYp1bUrnpevY7PhvnptbM4cAffRo2GuIcJxVivA2WbDM9tsSjVvjv9TUrDPYlGqf38hmC5dRLtyu0E+O3YEd6DSUmgMo0YpH7+zdu2UmjlTqc2blfrkE6UmTRKitVrxHtzu2vvbaSpn6phuJIYGVM7UTqQvBh9DKHOIyaRUp05KJSTIvshISNr33ouBHyhR7toFc9Lll4upgkip3FyYmObNwzl+v1LLlkGqb99ejmvVCmafH35Q6sAB+C8YxIkAWHfeqdRll4k20bIl7N5ffKHUJZeI/2DkSICq1Ypt/Hilzj8fABsTA9NGUhJ+5+aqY2aV1FTUvWlTeSYiAc6ICNEa7HYAXX00Aj2ZcvuGIgn9fiK0WeC1mJjY97BgAYCeCPV+8EEVpC0w2RKBHLxe3LdlS2mTc88V7a9fP5Am+1CuuAJEH6J899//gqC6d5f6DBqk1L/+Bf/RkiUg6yZNwrdPIzGcUGkkhgZUztROpC+GOugdw/qNAeHFF5VatUq0AS4FBfA73HijmGWIQCbjxin18svQBpRSqqJCqYULlbrhBgEqkwnAP3MmfBQlJTBHjBolpqaWLWFSuf9+IRGnU6kJE9Syp56Co7NvXwHCq66CGcpsBuFNnAjNw27HdtVVQjZNmgAQLRbRVpKTAbIWi/gq0tLk+kxIUVGiNbA0z+Yl1k6sVuwPBPtAIgn8X+9svvVWqQ9rJ3ycw4HrezxK/fqrPOewYZDmHQ7RnDIzcY3YWNTB6VTqrLNwzZgYMSM1aQJiZ7PckCEgVa7r6NEA+nB9acMGEH5OjryrSy6B5ldZGZ4YGk1JJ1QaiaEBlTO1E+mLoQ61Sbz6CImKCqW+/hoaQ8+eIgW7XEoNHYrIoBUrYItWCpFK77wDkmCAcjohmb76KrSCqipEG11+uYBuaiqiXF5+GdoBg2HHjko99xwiZmbPRjQMg97UqbBnM3j+9a9KTZ8u5qHx4+HEtliwj6Nt2rZVqnNnfO/RA+cmJgIoOUqEJWqOWoqLE+Bm/0MguNe2MenpQTGU1qZpAPJffzW+o8hIMWuZTDg3O1upnTvFNHjOOdC8kpLQ5nY7rsUaEWtJnTpJW7RuLT6Zvn3RXlFRuPf554PU2Qnfty80Fb8/9Hjw+0Eg110n57A5MdSWmflHdfV6lTN1TDcSQwMqZ2on0hdDHWqLTHI4AKrDhokJxWQCiE6frlRenlLl5XKtnTuVevZZhKNypEpCAiT1Dz+EVuD3A7RuvFFs0B6PUldfrdT77yv1j3+ILTwyEmaoZctgqpo69RgoFrRqBTK66CKAl8sFQnnmGYm0GToUGklqqjpmIvF4AJTjx+N7RARMH0Swsaelod4ZGQDduDgApM0mJqXISJzLgG21Yp/bLeYrJk7WAFhrCUUidnto7YJIqffeA7lyWCzfk0GfyaZ3b5Axg/uAAUpt3y5RYgkJeI6uXfF/bi6e2enE9Vl7GjRIorMuvVSpm25CvUwm/J4+XbS+Nm3U2rvvhjYQrlRUKDV/vjxrKAI8jhDNP6KcqWO6kRgaUDlTO5G+GOpQn7kMLVpACp8/H3ZjLn6/UitXIoqFJW8i2Ohvv12pb78VE9T69TAzsLRqtyPaaN48pf73P5hMmEx69UKYY3ExSOGyywBaJhOO+9e/1AE2IUVEwDfx7rtiburUCecz4LduLTbwHj1wXyJIyywxjxkDAoiPB5G4XCAuNiHp5wBwRFJEhDGElYmAHb8OB0DV6Qx2HAeCI0cNsQ/B4cA2ZIhS69bhXIsF9+ZncbmMUWGXXgqiZnt+375KFRXBBEQkpNGzJ0ghKkrq36sX2oAI5Dh6NO7ndoOQb7oJz2OxgMRnzRITVEYGCLm4OHynq00zPc3lTB3TjcTQgMqZ2on0JagOc+eGH7SB9t+qKoQt3nyzAA0D7qOPKrV2rcx12LMHAMLRQ5qm1MCBSr3yCpyZM2aIxhIXB5s6z3X46CNEzDAA33ILiKkG5Krcbpi1Fi8WAsjKgplq6lQArceDaCW3G9vtt4OYNA1kk5CA/ddeC8Br2hRk4PFAImeiiI8HMLPtnEmDwY7NOyc7r0HTQkc1bd8u5MjHxsaK0zkxUUxuf/sbpHR2oPfqhXd2xx1C2pqGCWhMpL17ow4uF9qZAX/AAGhdTBZz5sCkxHM4brhBrZ06FefzO3zgAaUOHQrudOE009NsRlLqzB3TjcTQgMqZ2on0JWQdahu4R49Csr/8crEZ2+2YQ/DSS0rt3SvXKSwUaZ0l5E6dMJN2+3aA+4gR8t/ZZ8PpXF4OifO55wTU0tNhLlq4EOYsIgDwjBnqp5dfhoTMIDlrFnwabOa44AKQFRHI6M47AaxpabB9m80wWU2ciGO6d4f/ISEBWkFUFCRh1hi4fVJSBITj4sTeT4T9sbHYdzx+h7q2v/0Njl2zGdpEVJT4bdq2lUl57DR+802QQYsW+N2tG8j21VdBmOnpODYqSkxx2dnSXmedBS2MtZ2JE8UZ37Ur+sLkyUpZLKraZoMJ73//Q+AAE+fNN+N9cwmlmbpcp92MpNSZO6YbiaEBlTO1E+lLyDpcd11oUEpPF9NJbCzIYd48kAWX8nKl/vtfmCL42JwcSPTr1iG2/e67JYw1KQnAs2kTzt+9G/8z6XTtCpD/6is4UhmEH30UkU633aZ8ViuAeOpUTI5jybZdO0i1TifAc+ZM0TzOP1/MKuedh40IgOZ2gwiYDFq2xPVTUnDviAghHdYiGNySk40RQ6xBxMUdv3OaNQe7HdeJjYUm5PNhxjFrDTznwmQCabFfICEB4P/ddyAHlv47d4ZZLy9PyIt9OZddBjK0WkEUERFoj4ceQpsRgWSmThUt5aKLlMrLU3uHDMEzuN14p999p9Rf/oLntFjwffVqvOeTSP/wR5YzdUw3EkMDKmdqJ9KX49IYzGaYFxYvNubT8fkAMpMmidSckABfxPffIyXCO+9AWicCeIwYAY2BnZXLlwM4rFaJfvn2W+RZYjD3egHuBw7AMV3j9N0zdCik6OnTYdaIigJwsXN19Gik4YiJAWg9/DCA0GRC+Gu3brjnhAky+SsrC2DcrRvq3bo1ALpJE/ElsI/E5cLx3E4xMTDp6OcsREaiTbxeEEddcx7MZjxrfLyQCv/3xRcgWJ5sx87vxERI+zabaAhMXJs3gwzatcP+Dh3we+NG1NdqhUOeCO09YgS+9+sn+wcMgKbBZsOxY2GSq5k0t33cOKV+/hkObNZcHngAEx5vvlnqMGoUSKMBljN1TDcSQwMqZ2on0peQdahPugK/HyGpd9whcfNuNyTOTz4B4K9ZA18Bz4/IzIQvYedOXMPnQ6jj2WfL+TfeCLBauFDmGSQnY0Z0URFMU3y/4cOVWrlSrXroIQHm8eMBVlYrAPG118RE1KULcgBFRACkX30V5zmduK/ZDDNJkyY4hjUUBkb+TE/H+WyfOtw1UgAAIABJREFU5+ijnBzRFtxu/Nb7Gmw21CUhQaKbQrVzRAQkea8Xn3otgyOHlEK9WGuIjBQyYD8LRyHxf0eOgAzYFNS2LX7n58s5w4bhuTIyIPU7nXjeG2/EdSIiMIv9nnvEd/Pww9AeWSB4/nkQ/QUXCFE++qhS27aBKLg/9O4NsxOHNTeAcqaO6UZiaEDlTO1E+nLcPoZt25R65BExS1gskC7fegt+geJigDGnU7BYYFb67DOJSiopQXI8Nl+kpkIDOHwYE6A4aoidnKWlIBvOY9SlC7SWzZtFsm3dGj4OlogvuQSpNpo3B4DfeSdIigj287feEsfybbdhf9++8GlEREhUDl+fP9l5npkpIbZt2gBMNQ2koc9mmpoqZjEGdq8X0r1+fyB5JCbKjGXWsuLj8Z/NBqfu1q0A59RUmfvRpw+O7dcP/zVpgutYLNDYKisBxFyPVq2g/VVWwvHOGkNaGjSkGTOkTa+6CloDEa715ZdC6l26qDXTpgl5tm6Nd75smbRdQgL8S/+PveuOq7Js/9dhgwgJIoIIrsAF7r03Ii7U3CM1tzkaltZraWWZ2qvZW2lZmWVmZWblKtFcuc09UHGiqICAbJ7798eXi+t5zjkoNhT6nevzOR949v2M+xrfa928aQwlrlEDmfL3CnV9SFRc57RNMBQhKq4fkZ4K9DGYWw1OTuIIZm3vf//DJFcKDGDMGGFmwcFKzZ2r1I0bct64OMA9zDjr1oVzlOPbOcw1KAhZ1hkZ8Bkw86lUCZBUaio0T2dnpdzdVcxTT8FK4IzlNWtwbWaa33wjcNT48dBoHRzA0CdPVvnWR3AwNP2nnsK67t2FCTo5STgnF6mrVEmEQ40aYi1UqiRhpE5OYM56IeDmBoGkD3fln5cX7l9f0psd5fqqpAsX4plyFBULWC8vPIOQECwHBeGdsLAfORLWnqaJgzkkBExZ03BeOzsIYQ4DHj4c9bHYCpk5E4LI3R3P8osvlCpbVmkmE/b7/HMJkw0Ph+W4e7dYJX5+sNxSUrAv174KDIRleK9Q13+YiuuctgmGIkTF9SPSk9Vw1YJyGapXB2zA5S2SkiAc6tbFdhcXQEnbthlLch85ggJ7rFV37459cnLAtDlUsnJlhK9mZSl1/jy0fsbJFy6EAPnxRwkV7d9fqe+/V3fZETx8OEJk2ZcRFYXKruXKQVP/9FP4HogAE40ejf/79YOD2c1NQjkjIyEkatUC3OTnh3EEB0sJciLAMtyngc/BDJS1eHd33BtHChFBOFasaFzn4iLMXA/f8fV5XUAAtHhNQ2E7FtqcGMdRW4MHY7lNG5yHGfDbb+O9aJqEl1apIhr7zz/D2vHzw3tjS2nZMmj9rq74Dlhgd+ig1NGj6nLPnriery+e9bx5EHD29lA24uPx3lnglC8PK4/fK6/38oLwYaXjIVJxndM2wVCEqLh+RHqyuIeCYCQ/P9E0d+yAo5aZYFgYNEAura0U9lu/XnB6Nzdo62fOQCCsXClwVHAwSmlnZ4MZTJ4sSV7Tp0MAXbggGny1amAkEycqZTKpdF9f+CS+/14ctUuWYEyM/f/+O6JniGARDBqE/0ePxjhcXVF0zs4ODI97FXToAEHQpAm0+5o1cQ19OY2GDcGUHRwgJO3tMYaQEKkiWrassY6UiwuYMRe0Y4ZYsaLRMihXTpzczEz5He3bh2c9YYLUhOLmQpGRWMfWD+P9tWtj+3ffyXtq1UrlWzqcvX70KK7j6gph6eGB+/7qK3mnUVFg/iVKKFWypDr1zDMYEzv927ZVatcuGZ+HByy59HS8L4YMK1UClJSTg/IZHC3m5oZkutjYf3IKGKi4zmmbYChCVFw/Ij1Z3IM1ocCa64IFUmXU3R1MZ+9eo3WQloYIIN7P3x+Ox9u3wfg//1x8C9WrA+vPyYHf4Y03RPseMQKlLzIywLA5c/itt6DRVqiAMU2cqLZ/951o/3XrwvHJjD8yEuW6GzXC/nPmSIz9Cy+A0bu4KPXOO2D8DRpgX3ZIE4m/gUNa27UDowsNBWN3cAAMxjWNGL9/7DHB51mA6qvUPv64MZopIABCgEtGsNOYLQ9/f4HznJ0BIymFEF9nZ7mWtzcsGT8/3F/z5nh2bdti3NWq4Rr79+N4TRMrKygIjFspwIDsK5o8WUJi33hDoLqAAAh59j106gQh/v77uH9HRwj3gwfF11CxIsp7cPABO8NDQnCu3FzAT0OH4tna2+N9Hjnyz04GVXzntE0wFCEqrh+RnixKYtwvjLJRIxS10+cuKAUmMnOmML7atWEFZGYColi2THDnsDBhDDk5gI+4hlHXrhLrvmGDaMt9+kCLHTFC5VsZ27crdeiQSmUn5nPPAUoKC8N9zJ6NYzjy6MsvhYG9+SbgHhcX+DM8PcGEn3gC2195BUwwPBz7tGghf1ngEOF8jo6IvGGB0Lix+FFCQ42d0ThyiDVlFpIsKPTWQZUqxgzrsDApFVK7NoQoN1GaPBnj9fKSa4wfj79PP431tWrhGlzqw89PeixoGpg6WyV83vR0SR7s10+EZM+eCFF+/HFcd8YMdXriRAggDw98I3FxEq1UoQKEwKZNEkTQvLkoFt9+KxZkaCgsGobKJk8Wy6tLF7z3hzEfihHZBEMRouL6Eemp0EX0OnWyrrEdOwZmzU7UyEgko2kahMKSJaIV160LuCc3F9t//FFw74YNgT8rhSxZhj6Cg8FM1q6Fxmxvr9S0aXBQzp+vlJOTyihdGhFIP/wABu/lBaGyebNEHm3eDGvA3h4RUbVrY8yffYbtAQGIXGIB4+sLplerFhhp06ZgeHXqwOFcuTLG5uQkYbUNGmCMTk4QEpyd3KCBFNCrVUv8Cuwr4GccGio5Au7u2Kb3WbDwrFpV9lu+HM8sLg7XYt9HzZoQVn374rrz52P90KE4d2goLJJatRAGzMRafbly4gTWNOnt0LQpIpXs7XH/e/fm+yGSatTAO2RoKjwcoclbtwqM1qMH/EdLlojjftAg7JeTA+HNPaLr1kWUmqbB4pw1S5IJmzbFN/E3h7oW1zltEwxFiIrrR6SnQpfd1pOmKbVxo2iYrq6ANU6dwvb0dFRWZadww4b5pZmVUmAmHCVUpYpSX38tgmTOHCke98YbYBj9+ql8S2P/ftRd6tgxn9Fs//ZbRDsxM7lwAXAWRx7t2QMYxNkZjKduXTDvlStx/VKlEA3DWnGLFhjD8OHKoHkPHWr8260bGGSVKqLtMj5eqZJAJLVrG+EzhoO8vY0FB1mwsEDkc5YsKZFQnp6C4Zcvj/BQpmefhQCqWBHC2N5emiWFhkpG+/Tpwrjt7SEM9D02+B78/IxC4+uv8V4qVIBz2dcXmvxXXym1ciVqVnl4IErp3XfxDD09YS1mZODdcnHAuXMRcvvii3gvrq7Ijk9JAeT46aci/Bo3hmDXNFgy774rSkz16tg3M/Pvnw/FiGyCoQhRcf2I9FQoi4GLm6WnA/ZhLb9sWZRK4OiRtDQwWGZuzZpBgLBAiIkRqMbHBxOcJ/TmzcI8e/YEc1+5EhqioyO0xcxMWAWlS4ORfPCBUjdvqtvMKIcPB+OYNk3lWzkHD2L8JUsimap+fQiF1avBlF1dkXfh5gaYjHMaXnxR+jd4eMAq8PHBPr6++OviIiGY3btj/5YtJQGvY0dpF8oRPGXLGqO4mOEztMKZ440by3lq1xYtukkT7GMyCSx25gyeYXw8GDXnEvA1584VgcAW0NNPYx23AJ00yfhhsMXm64uaV0z79kFglCwJ6JF9EFOmqN8//1zuZ9gwJEDyWCIi4DO6cEEET40a6N194YIIfz8/CJLcXECQH34oz6FVK+yvFLatWCGwVEAA/ETmEOdfmQ/FiGyCoQhRcf2I9HTfsttubnAkvvqqmP5hYdDSOIIlNRXRKRxN07q1wElKgWFNnAgG7+YG7Z6ZzeXLIiwqV4Zj+epVYR4NGsBPkJYmsfS1a8OXsH+/UkFBqJW0dCn2YQx8zBhs9/WFZh4djXM5OgK/Zgfy8uWATcqXh4BgphYQAGYcEQHhMXQomDGPYeBALDdvLt3euPsbC4t69USIRkSIf4AjnIjAODmzuV072addO8lP4A5rpUuLj6NePWjudnZwojO98IL0ifbygiCqUwfjdXAAlu/mhnfEPbD79sU5Fy82fhx6Ia4vsX75Mt6BnR0CEiZMUIpIJdaqBeb/8svSBGjPHoQac72qTz/Fd7F2rfhehg7FN7Jrl0Qq1amDd6YUFJJFiySCi5sPKYVz/fyzCKBSpXD9+Pi/Ph+KEdkEQxGi4voR6clCMOjbez72GJgdJ25FRADLZ4afnAx4gHHf9u3FT6AUtPfXXoN2aWeHKKarV7EtMxOabIkSOP/s2WDsH38MBuLignj77Gz0eeAop2eegUD66CMw18BAtf/995W6fl0ij+bPR0jtY4+Bwe/dCw3c0RHJb8zwli4FAy1RAtaEpycYbu/eYKKvvy7XtLeHwChZEs+hRAn8ZYycSEJDGzaEH8DBQXIKWrQQi6hpU4HZ2rUTIcH7OjkJTBcUJLkGrVtDCDk4yPYWLbCOa1fdugUfQrt2kjPCVkPZsrAYPvwQ62bMAOTl7w9ma2eHEGM9seO5dGljb++UFInSGjtWqU8+UTnOzjjXzp34DgIC8MznzkUPDvbFdOmC7yA1FYLMwQEM/cMPxc/AQqNHD7GI7t6FAsLfW2QkLEKmXbvkfl1dIbA45+bPzIdiRDbBUISouH5Eesq/h4IS2xwcUFb5xAk5KCkJjJyzeTt3xqRkys4G02VIqVs3YwP5LVvEGdmtG5yRFy4YaxOdOQMB9N//glGWLQtYKj1dGHCHDkrdvKn2fPKJRB6tWQPHs6srsPxjx6ChOzjAUsjTbtVbb0FAmEzAzmvXBnNiJ+306dCUGzQA8/XywnOws5PSEb16SQOdMmXAwKtWhRDhnImICAiocuXEr1KvnvgfOnaUcFS2kgIC5Fk0aybRXFzdtEkT3JujozDnH36Q58v+lshICJ2mTTGGzz7D+pkzAd3Y22OdmxvOGRYGwWceZDBkCI7z8jImneXmCmzXoYM6sHAhBI2jI6yPW7cEkurQAdbEO+/g3fB4NA3fBjusGzdGuHFaGnxM7u4435QpkieTnAyhzU78Xr0kkk0pfKtPPind8wYOhHLxIPOhmJFNMBQhKq4fkZ7y76Eg/0JAgOx8+zY6r3G5hm7doI0zaRoYFGv3jRoJJqwUtETOZq5YUQqoLVoEDdzdHZnUubmwALh8dteugAZiY8VZO2MGtMvNm+H0LFsW+PfXX4Mh1K4Nn0azZmAO334rkTXPPAPmyJo0h8B+9BEYY4sWwN4dHBDWSgTLx9ERsIeHhzDdgQNxfhYWLBAGDIBAq1lTsH7OnwgOFv9ARIT4FfTd5NhKiIiA8KpSRSAqhstat4blUaYMNGWmhASMsVMnCK6uXTH2YcMEUtq+He8gMBBCnCE0f3+s0/fVUEqeUalSxjInSgGCc3RE2PCBAxLKO2gQrIIlSyAMSpdGEMKZM3J/XbsimEDTAOv5+ED4TpoEuDEuDooAh+IuWiQZ2omJ+B65B3f//rBMmC5fhs+IQ10jIiyz8guaD8WMbIKhCFFx/Yj0lH8P96qoevMmNGhu4h4VZTThlQLmy/j344+j1AVPwKwsYNElS4KZzpwJjfDUKYEXwsOlmcuPP4JBuLgguknTELLKPZfXrsV+eZFHKZUq4dilS8FAmjUDU2jRAkx79WqBTwYPRtQMEbTKjz/G/9x9zMNDfA3TpoFR1q0LpuPqCqHC8AmROHE51DUyEoy6dm0paDdsmAjSEiWg6TLkkbe/ZjIJ1t+6tSShsTCJiIC/pHx5gZHYcTxgAO7z2jV5H6+8IvfIOD4Rwj99fTG+nTshJHr1Eqf7K6/AgmjQQHIZmEaNwj6enpaCY9s2lcXZ0dHRCBYwmQBdxcRAi+fSJxMnQmAsWIB3XKoUEh81DUJtzBgc6+eHiCduG8tJeCEhUCr4+7p1C++P+10MGwYrlOn2bSgFnGPTuLGETRc0H4oZ2QRDEaLi+hHp6b4Wg4cHmJnJBOjFHGY4e1a05DJlwMj1VTK3bTM6YGNiADW9+SaERKlS4pBMT5ds47Awae35+utS6+fMGSOE0amT+u3HHyXyJjwc1kXLlmCWq1bBWrCzw/V37MB1W7SAtePiAo3+1VdVvt+hfHlYPcwsWVBMnYrxdukC5hoeDq27dWtYMvXqgWmyY5qZMjus27WTZ8FMvXt3pfz9Va6Dg+D5XbtCeNSoIcyQt/XujTHUqCFJd7ztzTfluScl4Rzh4WCIzZtL3sQ332D/WbMAqRHhvbVti2czbx7G36uXJfPke/HwEH9RHu1esQJQmqMjIot+/hljfewxCPv0dClaGBYGCOnUKYlk6tZNBM6ePRK91bGjQIvr1omvpl07RD4x3biBd8T9qEeNkgQ+pSDoFi+WvJpq1fBudaGuxXVO2wRDEaLi+hHpKf8eCuraxkxJ72NQCpNwwgRMQDc3mPT6mPe4OHHKBgVBQ2PNj+GgqChhBEePCtOcPBlMJDFRNOYBA6BlmkceZWWpWGayffvimDZtIAhWrkRylbMztMRTp6SZTUwMsHt/fzhc7e1hFYwbB6b41VcCv3TqBBjjP//BdfjvnDn4y34JhpPYeuAyHcOGgTlWrSr5F5wj0bOnUkFBKsfFRbB8Dt2MjIQAcHMTQcI5FU8+iTF36waB3Lw5ICo9TPLaa8bxsDBduBD36ugIPL9jRzDTbdukcx0LSn3EE9OkSdhWsqSB8UZHR+P5s3/k+eehOHBNqZkzIWh++kmK8X3wARSFefOkHeoXX+A+cnIQ0uzhIZZmejoUj0WLpFPdyJFGC+bqVTwnR0fAeRMnGq2p7Gw4uDm5MCAA7zA5udjOaZtgKEJUXD8iPd3XYvD3Nx6Qmgqz3N0djGn0aMtJt3ChNKKZMQOaWmYmGKqDAxjZ6tXYX9MwyZ2dwbQ5KubIEeDqDg7YrmnwO3C3tfnzcS1mvqNHQzC1bQuhsGIFmB635oyNBZTh4QFLpEcPjH/TJlwnMBAMiwVThw7Yd/VqEQKlS0MDr1ULQqx3bzCnl17CmEaMAHMbORLPJzIS2m2zZtDunZ3Fx8Lj7tlTqSpV4Ccxh31GjADzrF8fwo57LhOJE501cGb+ep9OcjLG16kThFJIiNzXsWN4D3XrAnbz9YUQYouqbVuBjj7+2PLDYUitRIn8Inf531JWliga3bvDguN76twZ0E5cnAjJnj2x7tQpKQXeowfet1L4vvi5Va6M4AKlADtNmQIB4O4OyzItTcYYG4vnxRnozz5rDGPlQo8cFFCqlLowePCfDnV9lGQTDEWI/lWC4X5d27KzgdNz+ecePdDDWU87dgiO3LGjOAL37JEs3kGDgAkrBauDQz4jIsSpuWIFJrKfn7SAPH4cwsvNDZFHmZn5mHzsgAEQPu3bY7zLl6OJj68vtMHYWIyXwzHfflvla/ojRuCYTZvgG6lYEdokESJo6tWD0GDrYNEi2eboCB9D1aqAripWBMzE+Q9lyoizmq0BjqhiSCYqSqlq1VSmp6c4ePkvM99+/SCUmjcH46xaFczex0f6MnMo7dChxnfCznOGjGbOhMDmft1EsCw2bhSB9emn+H/KFLxHBwdEkpkTWyBubkqdO2ecDyzw7exgMVy6hHwYR0c8p0OHYD3Mmyd9M6KjYSXMnQvh5OWFd8FW0ObNkujXuzeinJQCzMQRW4GBxmOUgnU4ZIj0o54+3VgJWCn4yHr2hK/H1RUWh95PUcTJJhiKEP2rBENBFkNgIGAgLszWpIllv94bN8TBGhAgjue7d6VMQ7lywJmZ1q8H43Z2BlzAJTFYE27ZUuCBzZvBXDny6O5difl/6y21beNGMDCTCUzt+nVpjnPihBFC2bYNGmSvXvA9ECHLmff58Uc8i5o1xUn90UcYa9u2sAJ8fBBKSSTM9eWXVT7OTyRlJxjO4e5xDAWNGwfront3pcLCVIa3twgpFh4cdsp+l7FjwdTHjAGDGzwYPo0BA4DljxgBJq3PVE5JwXjbt4dmXLq0CJxt2+A3cnQElMdWxzffyDg//hj+lscek5IneuL7dHWFj8Gc9L0d9u5Fw55y5XDvn32Gffbvh1A2mWBhZmXhvXGyW1SUKA36arvu7nBgcw5HdLSEATdqZAyhVgqKDDv4PT0Bl+mflVJqz2efAebjUNcBAwod6vooySYYihD9qwSDtTwGFxfR0IKDpeIlU04OnHlcXvmFF6Tw2rZtUil01Cg4Q5UCRswYdc2a4sy+elXKK0ydKg5srnkUGorIo8REaM4mE8Ig09PVLS4c9/HHmOh16uBedu8W7XfMGEASZcuCCZ06BcFRrx72s7cHY2X/webNEC5hYVJH6fPPRQiEhEBITpuG8c2YofItCb3/YeFClY/Vs0DgPgm+vrAw6tVDT4mhQ8Gw2GLgkFpuHmQufDgBj4UU+zo+/ND4kufNw/olS1S+JcLC7+pVCIt69QDDNGyIMXBCmpsbmDsXDrTWPCdvnDlOTtaFB1e4dXFBOPGNGwLfjBsHhSAlRfwujRtDW8/OhqXj5IRop1Wr5JznzolyEBaGCCv+Jj/5RCzbvn0tk9z++EPyP7y88Dzzvtv8+XDlCp4T55h07gx/1T1CXR8l2QRDEaJ/nWDQZz1zo3pfX0AA5v14d+8W7axdO4GVkpMFJqlUyQhBHDsmDr+JEwUP3rpVCrLx5NdHHoWHg+Ffvw5YwtER+2VkCBS1dCmW27YFo/75Z8TqOzpifGlpYEaurohk6dABTO/oUcBffn6AN9gPsHgxzrt2LTTcFi1wX05OgLJYEAUFgWk0bowQzyFDwGgnTsT5OXdi6lTJnvb3B8MKDoal06iRSvP3h3YaFAS4zcFBsoLZj8CC4Y03RLt2cgKcVaoUjqtZE+PQ0927eL6tW2MfZ2fJXViwAMyaz3vuHKyzJk0A//j74z1u2IDjmjeXUih6mj1baUTYR59sxnTjhuQuzJ6N74kFXuPGAgutWgXB5OEBSEgpwIhcD6t3b7EeuFw311IaOVJgypQUCHlXV4zphRcsrAO1f798P2XKKLVggdrG/gumhAQIYH2o65o1f3tV179KNsFQhOhfIxgKynqOirIsSnbzpmi0/v6YyKxFbdgA6MlkAnSiL9v83nvQGH184OTl9fPmgWGGhEh2tD7yaOxYaI6xsdD0XV0BQ2Vm5kcsnZo6FZoiH7N8OTRObsWZkCAa+2efiVb/wQeida9ZI3kGp06BUbRuDaHI8IqbGxzEgwaBcf3yi8q3CkwmhH+WKwfcv2FDZPP27w9m37cvGGznztDOw8PB7Nq0Uap5cySH9ekDwdmtG87z5JOwup54AoJr6FAwwf794TRu2RLnqVwZ78TdXXwJ5mHFbPWsXAlGOWgQmGLJkrAaeveGkDl2DPswHLZrF4RreLj4XgYNsqo5xzAE5uxsHX7JyJD+DAMHwnpcvRrjLlNGaiNduCDW49ChUDays2GFOTnhvX79tZw3JUXKlnh7Q2Az4758Wa5ZpoyU3dDTrl35YcEZpUvjWzUXfmlpSL7kiq9VqyIk92+q6vpXySYYihD9awTD/aqqKoXJ9MEH0EwdHOA74PDU27cl6qRaNSO2Gx8vIafh4eI3SE6W/IeoKNHm9JFHCxaAAZ08CYbo6Qn/RmamJIi9/76K3rJFomDmzcO5atTAWE+fhtZPBPjmyBEwrm7dgGM7OYHxckTSW28JhLNzJ55Bo0YCDe3YAQE3Zgz8IS4u8JGwdUEkLUWnTYMGHxmJyKIOHWCdREZCI2/fHhp4mzZI0uvRA5ZJq1bYv1Mn/OrVg2VRpw4YeMWK0LYdHUXIcaLesmW4J/NqqWlpEOTNm4sl9v33YiHduAGm2qABmPDw4XgHv/5qrK3EPpNZs6x/SwxbOTnBAjMnTRNh3LQprnviBBQDe3scr2kYw3/+I8X4OMP+2DEJd+7TxxhBdOSIWCXNmhmF4759kkwZGopgA8sbUIlcrTUwEL4lc0s5OxuCk0Nwy5XDmPWh2o+AbIKhCNG/RjDcLyJp717pTta6tREq+O474Pb29mAcek1r0yZsc3KCxspa3MmTECB2dohAYe3z2DFj5JFSMPdLlwYUcvgwJipHoORVAz3Pju/nnsPE7dwZwuvXXwGNeHpCw05MBKP29YWAatoUGPPFi2A+wcGAT0qUANNhZvv992AA7dpJVNKePdBAe/WCkAkKgqZJJNDM119jHC++CCE1ZgyOeeopOHR79YLQ6dhRJT/+OARGZCSYTteusB7Gj8f4n3kGTJwtAtbq2e8xZw7uq3dvCDovL0utl+GxNWtgubVuLT6VLVuQu8E+jNRUaMV+fmC+HCb77bcSYcVQj/5bUkqElaOjtA81p9WrpbfD0aMQ5lwSpE8fYbS//YaEQwcH3HtuLt7x66/j/D4+sOaYcnMhHL298U0++6xYvZqGfbkrXkSERX5O9JYtiNBiv1XlyrBAza0MTYOFzKVNHnsM3795uZCHRDbBUIToXyMY7lUnafRoKU+gDwO8fl00/tq1jSUyMjIka7h6dWN26jffADrw8TH6H/SRR8xMtm4F1BEUhJDErCxhHosWYR+GeoYOxdgYj//gA0AVdepg0p4/L07v9euFwS9fLs7bjRvBiO3twTAqV4ZA4eikdeugbdati/ESYRv3h+7VC0yMncC//qry/R9sjZhMYMYMFdWtq1SXLuoOh6AOGgRmOWoUntGCBTiWhQ4LAhY606ZJ+Q22YNgHonfW8nsJCABOzkJi9WpYINWqYXtUFATQiRN4b87OYKDsmHZ3lz4Lzs7i9FVm84GtKEdHCFFrpO/twJ3a5s6FwlCtmjiyExIEJmzfXvJmjh4V66FvX6Nj/NYtEWYBARBo/O1mZCBk2cMD73o6EyJVAAAgAElEQVT8+Pxj8++B636xZVCtGp6nNd/Cnj14biYTnv+4cVBIHiLZBEMRon+NYBg71tJqcHKC5mxvD38BQz2aBubk5YV9Xn/daG6fOCGTadw4cTBnZ4uzsVEjYL9M5pFHSoEJu7hgQl65guNZEL3zDvb55hulTCZ1q3FjaepCJDAKY94//CBx+hMnAsMuUULqM7m5wQo5exbjGDtWGPB338FaCgkBRJYHX6nhw8HQOAFu40Y8k2HDoLEHBcF3o9fuWUC8/z4Y7OTJsAq6d1dJXGxv/HhYFwxnffedCDD+6+AA/L95c4yN+x8wHLZ8OaCQjh0tX/gHH8gzCQnBjwXJ3LkQ+F5eeEeceUwEAXX5MiyekBA8wypVILzymKDFfOBrOThYho4yXb4M4W1nB6tS0yBQfXzwfL/9Vr67pUvxrkqXxvehFN777NkQQGXK4HnpaedOCXiIiDAy7Ph4iRLz9FRq3jy1deNG4/G5ufjOuDBkWJhk8ZvTqVPw9Tg64n769zcqRf8g2QRDEaJ/g2A4PmOGdcczERiP3ol4+bL0BG7SxGiGaxoYAVfR1JeBvn7dGJ7IEEdursTOc+SRUmCo9vZgejdvQihw/Pn8+dhnyxYIpqZN1bb168FMuP8Bt4YkgtP55k1YIjVqIEKHS13HxoKJu7iA0fXti2dx5QpglNBQhN0SwfHIeQLx8WAkgwdD+Hh4IEGKNfrAQJxr2jQwCRYQ7LxlZj9zJgRf794qoXZt+BemT8e9syXEVsennwpcV68ehMjMmWBA7AT/9FNYLJGR2GYy5Wcl51NmJoRW/fpgcHxv7Hi/fFnG+fbbeK/duwsstG0bnnP37oAES5XCPSQmWp8PLAzt7AB1mUwiNJlSUyV8NK/Mibp0SeCcadMkV+HkSVE8Jk6EVagUvlOOkuvfX6KTlMKxCxbgnXPvDz3Mdvx4fuhrmr+/0bpgysmBdchtWevXR+SbNQFx9SqUIC462akTHOv/YKirTTAUIfo3CIZ07rpm/vP2lg9Z0xAD7+EBxvjOO0bM9eZNcQZ36GAskbFrl2VCk1Jg0AwLceSRUgJxtG4NQZGdLeUQ5s7FPgcPYtLVqKHU7dvq9+XLwaCqV0e+xB9/4Hpt2oDJ9OgBIXL4sAiMxYuF6b76KmANImjfjLWvWgWIwMsLPgkuW8EM9ccfIXCeeEKyqQ8cUPlWTUQEhAs7W1etwl9m5AsWQOvu31/drl8fEA/7EHgM27eDmb76Ku6vWzdYFe7uEI6M+5ctC7jl2WfBxA8fxnEzZ1q+9I8+wnFr18LR7eMjz+yJJ/C+e/QAVHTyJJhsQADGmpwsuRmzZgHuc3RUqn17tXXzZusfGZfW0P/c3IzCITdXIsfatQN8lJEhpUPathVHc0aGJAyGhorPKysLz8nBAUKI/VRMV66I1RkcjPegpw0bVCoX2GvZ0rp/JDsbPgzer0kTfEfWKDERMCV3PmzYEErBPxDqahMMRYj+DYJBu5/j+dw56SfQtq0ldvrLL8CJnZygzfNHr2lgvo6OcPbpI1SsRR5pmsT8d+sGTTAnx7JyaEyMlJ++fFmphAR1t3x5WCnnzkEwVKmCMV2/LhrrvHlg7qVKSSx+9erA1+/exb1xC8uaNWExnD0LTffFFwWm2rULJSq8vQFTEIHBhYfjGLYGdu/GGAcOBOzk62s8B5HkQQwZom41agRLgOGXdeuEeQcEwOHbty8YEsNcBw6If2PkSAjL3bux7aOPIKQDAy0dp1lZeCe1ayOwgAiWyqxZ+H/zZnlWTZrg+G3b8CwGD8a7GjQI7++nn/Krz17t0sW6VlyYqDemvN4OKiQEz18pMGJnZzwHvb+CE+9cXGBh8bUPHxarYuBAY+c5peBj4uZH/fsbFJmtv/yCd+Djg/sbOlRyLPSUmYn9ypUTRWb7dsv9lAKc+v774vQOCcH7sZYP8ifpoQoGIgonotNEFENEL1jZPpWIThDRESL6lYiCdNtyiehw3u+HwlzPJhgePhVoMQQGQut1c4OlsGSJcdJnZsJcNpnAEPWM/+5dqazapYuxLo0+8uj777FO00QDHDwYWllOjkS/vP469ouLw+Ty9oYmm5WlVLt2KFn92284T1QUIJfffoPD2s0NGmhuLjRqZ2dgwezUXbsW0SVEcEgzY1+xAj4ABwcwhvr1YaGkpOCcY8YA1rG3x7jc3KDJP/88hOT16yLQWrVCBBT3SNi/H3+/+QYhpCNGqJvNmgG/ZkuBrYoPPgDTadZMLI+DB/F36VLAYtWrA7ojgq+Dm/qwhWKOmyslltN334F5urjgeVWuDG06I0MgMIbvePzLl+Md16kDwcSd+pjRmtP9lA9z2rYN79jLCxaJUhCCFSrg2X74oTEIgvtT9OghEFJmJqwlBwdYU9zDgyktDUEATk74vhctUionR+Z0UhIgLCcnvNtXXpG8HD2lp8OC4nnUqVPBzvbsbLxfhrz8/WFpmife/Ql6aIKBiOyJ6BwRVSIiJyL6g4iqm+3Thojc8v4fS0SrdNtSH/SaNsHw8Mmqj8HFRcpZdOlidBQrBcbKtfJHjzY2dImJAYPjhC+92bxpk2XkUXa2VBWdOBH75+ZK7aXZs7FfUhK0QDc34Pmall/m+sS0adiHo4HefhtCo0EDaL2XL0tdpDlzwMhLlgSunJOD3IKKFcEM69TBvd++jX0GDoTQI4JzlPH3rVsBY7RuDSHETLZlSzhut2/Hup9+gqY7eDCeVenSsv/mzdB4x4xRN1q1Ala/fj22bdsmUNCIEWA8zPx37ADjHDFCoKdz5/DeJk5EjSU7OzjWvb0BD5lTdjbw8tBQRGw5O2OMfP05c/CMu3XDeU+fxrNq2RLMUi8MzH/h4RD+7E/QZ9Trf2XLFvxhxsRIbweu7nrrlgiB4cMlsCE3F4JeX4yP6dAhcT4PGmRpPZw5I2XC69ZV+//3P+P28+elR3i5coBDrUFBd+8C6uR77drVeh6HUtJ4ii1xT09YbO+9Z3xu1mpPFUAPUzA0IaKNuuUXiejFe+xfh4h26pZtgqEY0PEZM4wT180NWrCXFz5MvZWgjwzx9rbEcH/4AR95qVKWTeWXLMF59ZFHHB5JBAaoaZh0XDPnlVewX3o6GLCDg5Rc5nDTadPwHrZvx/l79sR5uADd6tWwWHx9wfSzsmCJODmBKegdwz/+iP+XLROLYv9+OMydncFUunYFg4iJwfYFCzBOkwkx7K6uiIr63/+w/cwZbHvlFTDZsDCBifbuxbOaMEFdb9sWAolhJoZJRo2ScNrjx1W+FRERAQuGfSNffAGnM+cFEAHKmzQJ96p3xjLxvX/9tSS9HTiAZ+jmhvd07RrCfZs1g2Dg5/4gPycnMG1za4GFfEGk7+3w3HO4fk6OlAapW9dYB+ngQcA0JhMYLUfL6Uu++/lJRJP+u161Sik/P0CrY8ZYVl/dsUPKctStC8FtjZKTkQTI/ah79zb2OzenvXslFNf8Z+6HuQc9TMHQm4g+0i0PJqLF99h/MRG9pFvOIaL9RPQ7EfUozDVtguEh04oVKsfZ2fKDbNhQauEz3b4tTLxdO2P3rpwcYcR16xrLFRcUeZSSIt3J/vtf2Zdjz19+Wc7N1+VJsn49NOLu3ZXKzVU7vv0WE75KFVgW27dj+5NPYn9uanPwICY4EfwGGRlgpHXq4DoNG2I5LQ0aW4sW0AS5gmlCAhjc1KnigI2JwX716gnEs3IlmIunpzDzzz8HY+nUSRjy6dNwIk+ZouI6dMC1ef8vv4Ql07WrJMxxf4lx46R15u3bYEIjRogP48gR+EmaN8f/+mesp5wcaOXVq+M83t4QwBcuQMBFRWE/DpXl3tR/5uftbdSG//tfwIIlSxpyISwoO1tqb3XvLslqrIR4eRmhstRUKdnSqJHRJ3bgABQTIigH5sz/zh11uVcvfDtlyuC+9YpRbi4EcPnyOEdUFN6/NUpMxDfs7o57HjgQSkJBVJAFZs0PY4UKKxgc6K+Tyco6ZXVHk2kQEdUnola61YFKqWsmk6kSEW0xmUxHlVLnrBw7iohGERH5+vrS1q1b//LAHxalpqYWq/GaU+NnniGXzEyL9RkXL9LvJ08SnTxJRESPHTpE1d54gxyTkujC6NF0+YkniM6cITpzhhzu3KHqr79OXvv2UVx4OJ2dPJm0ixeJLl4ku4wMqjZnDvn89htd7d6dYiZOJHXwIDkkJ1PYCy9QydOn6dS0aXSjVi2iLVso+L//Jf916+jioEF0oU0bouhoCn7nHfJft45ixo+nK+XKkdunn1LdCRMoo2JFOjR6NOVGR1PNV1+l3Nu36eCsWZSxfTs1GDmSVNmytL93b/KYN49qffIJXRwwgC4kJFC9MWPI0ceH9rZoQf7PPENVYmPpj/HjiRYsoFp799LpKVMoZ+5cqnHxIh0bMYLsZ82ianfu0OEGDcjljTeoanY2HQgOpkpLlpBTUBAdOHOGmu/eTVd696aM5cspmKAJVduxg1RgIF1eu5ZCiejgnTtUPTaWEr29KWXfPgomol3HjlHjzEy6EhdHRESZqal04MQJakpEZ/btI29nZ3I8c4bOJCZSfSI69sMPVD4wkNSOHXRx8GCqpRT98ckn5F+zJrn/9BMdCg+npkR0fuFCokaNqNLHH9PukyepRtWqZLdwIe0PCyMyGae1T58+VGP2bDrxzjvkOHAgPb5oER1duZJKDBxIlT76iI7MnUsOd+5QNTs7MiUm/ulvTSUk0LZvvjGsc37zTao1dSo5tW9PR996i+6Ehlo/uE8fKufgQFUWL6a7tWvT0TfeoMwyZcj1vfeoxn/+QyXCw+nC8OF0acAAIjs7okGDyKdcOQqZP58oNJTOTJlC8e3bExGRaf58Cvr8cwpasYKyfv6ZTk+dSglNmuRfKnXYMLreqRMFv/MOeQwZQknz59OZyZMprUIF7ODvT3ZLllD51asp8MsvyfTDD3Q1KoouDh5MOe7uxnG3bUuO9epR+a++onLffkt2K1fS9Y4d6eLQoZRRtqxh11ZxcdYZ7qVLtO3v5DGFkR73+lEhoSQiak9EJ4mozD3O9SkR9b7fNW0Ww0Om+zkFMzMBMZhMcEgeOGA8fv9+aDROTpbO6bg4iTx65x3ZdvUqIBCuUqoUtnGtoxdekH25XAP7EG7ehJbp6ytwFPcDWLYMy4MGwTrYvRvaZYUKgBfS0wXeWbUKloW3N6AKTZOeyBkZcBRXqgSNulkzYPGaBguncmVog1z9lB3XGzdCC/X1hWbp6Yl74uJ1cXFSHoOhobQ0aKczZqirXbtCS01NxbY334SlU64cxkoEfwJbIomJeLavvSZJaOfPw0neuDEieogQjcWRTtacorm5eB/BwRhPcDCsiNRU/F+mDJ5nYS2Dgr6pgjTfq1fxfkqUEEdzQbR+vfiouHZSaqq0Pe3WDc+FKTZWaicNHmysZ7R/v7SSHTYs/7j8OZ2bCwuMa4PpS8ozXbsmPTS8vQHdmddWYrp+HcEMzs6wOseMMfruHiRyywrRQ4SSHIjoPBFVJHE+1zDbpw7BQf242fpSROSc939pIjpLZo5raz+bYHjIdK+P8cwZqY/01FOWk+Kjj/CRly8vk5TJWuSRUjDrK1WCec2x35omzXmee06EApeAePJJaeLD7TEZl87D6q9FRGCZM4zZNzFpEibtjh0QKqVKIbdB06R/woEDcFYSgcHu2YP/Fy4UWOett8DY7ewAmXHk0M6dUsyOGWn37hBaRBBEEyfifm/cwLpFi8BkHB0hePLGe7lnT4xP08CIX3xRkt1ycuC0HjVKhNulS3BWR0bKOJcuRRw/+zvq18fvzh28i1GjrH8H3Gxo+XLJ0Xj/ffE7FFIYpPv6QhiaBzPcDyuPi8O9uLoWnBPAdPw4AgVcXKTkB3eLc3AAnKgvnpedje/Bzg5CXf+tZmRIZFm5ckr9/LPlnI6Pl0CIoCDL6CalAPFxzaSqVaW8hzW6cgXPyNER3/KkSbh/axWOi6KPAdeiCCI6k8f8Z+Stm0VE3fL+/4WIbpBZWCoRNSWio3nC5CgRjSjM9WyC4SGTNR+Dmxtw/hIlwKi4JAFTerqUmmjf3rJxC0ce+fkZE4SOHsU6Ly/RXDUNvQSIUCSOJ9PXX4PZdO2Kia1pErnEhdvOnwe2Xrs2auhfvAhNukkTHLNzJ84xYQL2HzUKDODYMWh6rq4SWtm2LbTQtDTkKHh4QLucMgXM5vp1cboePw4N1ccHDJvLX9+6he1z5ogTe8cOOIlr1UJsPRGc4WPHgtFnZmLda6+pS717Q4AohWc0dqxYAtevwwpo21ainX78Ec+kdGlot2XL4n7Yz7FsmVQ6PXsW8fglS1oPuczNxRgrV4bG27IlLAXG0u/100XPGHp7PGh0zY0b0OBdXKyH1+opPl4sgVmz5LvZvh3Pwc3NosCf2r4dIdgODrDG9JFF+/bll7y41rmzNJXS02+/SXvabt0sM8o1DUKDM6M7dLAsfa6nCxdgbXA/6ueeE18YEf6OHXvv56CjhyoYHvbPJhgePh2fMUMmcUCAlCFo08YyTDU2VoqWTZ9umTjFkUdhYdBomXbvhpDx95csVX3uwuTJMrl//RUwU7NmEgY7dy72+89/sJyeDobs6Ylew7/8glwBd3dYJenp0NwCA8Hg9+2THhFKIWzU0RH7sjN6/nyM2d4eQiojA/BAr144pkkT3FdWFgTSk0/CYctZyT//jPNER0uJ7qQkwCRRURIGumMHBEvlygIbvfWWutivHzRIpWBVDRggmvyhQ3BeBgUJrDRnjjibY2KwP8NYAQGI6b90KV/w5IfIfvqp9Q+BLYVlyyTp7V4/K9rsX54P8fF4xs7OllFt5pSRIXkuAwZIaYxr12BZEkEb10M7CQmS+WweQJGRodSLLyrNzg7Pz7xhj1I419y5uHdXV7wD834MmZmAD0uVgpUyapRlIIeezp6VnJ9CPOOCyCYYihAVe8GwYgXMf5MJTMXLSzQqc6a/aRMYpYeHER5SCsyIC+R17mzEcjdvhvVRubJEK2ma9B1++mkRCgcOgLnXrCkRI2vXYnx9+oiWx2US8sz6GC658Mkn2M4RUuvX45hGjXB/SUnIwbC3B8SjFKKESpcGk37+eUzm2FiBpTZsgHbHzJjLUKxZI7kRO3ZI74CUFDAqzjh2csKzWbYM+547h9wQLgNOpNSCBSp20CAcrxSipLp0kczqn3+W2kcZGTh3//4oY0EE5sElwo8dEzgnPR2+k5o18YyDg8E0rZGmYUwVKkhdpoKEgr29VYb1t8yHW7dw/05Oxh7hBY2Z/TVNmggDzsqSSrrNmxtLtGgaYFAOudbX9FIKeQzVquHYkSOtJ59dvCil36tXt+4buX0bY3BwgKU2Z44IL2vErUitWWSFIJtgKEJUrAWDNUyTk9L0lJuLjFuTCQzGPOROX/No3DipeaQUGKeTE0IEeXJqmoSvjh8vQuHsWcAXQUFSguDwYQiV+vXFeuDQyeefx/L+/ch87tMH5zp8GJNxyBBsZ4bMdZqiojBR4+PFn/Dmm2Donp44j1KAbYKCcP9sAZw/Lw7E1FTcb4kS0BI7dgQcoxSeU5cu4mvQd4pLS8tvzqPi47Hu3Xelp0RuLkJGmzfH9YjA9Pm+T52CX6FmTQieEiWkYiwRfCNsvfz8s9SeOnpUekWfPm39m2AIzMurYKFwDy32b5sPCQl4546OlkqINfrmG2jwgYFG+ObLLzHesmUty1WcOiVlM8aPz0+Wi46OBgOfNg2Cunz5gqGtdeukZtLgwdZ7MZw+DeiJmfxXX1n3PzxodrgZ2QRDEaJiLRgKEwWRmCjd1wYMsMSnC4o8UgoM2c4Omhxr/5oGpyoRtFre/9o1OBRLl5Ya/HFxmJTlyonJf+QIGECrVhBAd+8qFRKCdoy3b2NdvXoQMLduYfw+Pogyys2VOkIs/Lp2BRNMThY8f9cuSV7j/cLCgPFrGsbZpQvWh4TAQuIopNGjISQ4ioWti82b4evw9MRxoaGAeq5ezRcc5zj2PiMDDuzQUDAohoI48e3HH/EMHRxwrdatpcdzpUo4Nj0dAmPsWGjR7DSPi4O2z0LVnDRNoMSCfveANv7W+ZCYiLE4OFj6uazR/v2AKt3djZbGkSNwSDs4QGjqv1F935CaNZU6dsx4D7//DkiSCH41a9bD3buAVR0dATG+/76lta0UINJatVS+dWOe2FdcopIexc8mGB4i3U9D0U+oRYsstRx95JF5pAZnDXfsaOz7zJFAo0cLLJSUhAlTooREjKSngxG7uUmI7J07cOyVLSvtQceMUcpkUoe4lg/7Irgf8NNP434OHsT1W7QApJSSIk5aLttRpQquqRSYup0dfCwc8bNwIe6ZCNj+lSv4f948lB9nKIsTyr74Qgr4nT8Pq6pqVZw/MBDOYLYoPv5Y4LDUVGwrXx77PvYYNFqOalq4UGCuP/7AWB0coPGOHAnhk50NwRMQgPtu3x73xyUufH0LDqvk8Ns/waT+9vmQlAQmam9v7PFcEF25AjjMzs6oqCQlidZuTcFZvz6/GN9pvb9LKXyLzz2HcwYGQshbo5MnJTKpYUPL0G6lIDA+/hjfMBHgQA67Lk5RSQ/7ZxMMD5HupaGsWAHN3M8P+Lk5FRR5pC9F0bu3sXok5ySMHClCIT0d2r+jo5jrmiZx6fomLb17g0FwKQKuG/Tss3gPZ84gooVLYvzxByYzR3YwTMK1cKKicA+JidKredUqMExfX8A1SkkTnLg4wbOvXhVo5+BBgatOnpRub0eOCNPOzobV0qYNzunpCfiHLZPPPlNnObs3MRECzcMD+1arhrFqGiCwiRNFQH3+uTiNd+4UgbF3r/gcDh6UMtv798tzKwiiWbHCutLAfSXuQf/IfEhOBqxmb28ZaWSNUlMF/x89WgSgHhINDZXKrUzXryMznwhWl3kJkV274KPh81rr8axpeEa+vvhmJkywHuGUnIx54uKC3/TpWDd2rC0qydrPJhgeIhWkoXBtmpYtRTPXU0GRR7m50GyJEIanN6e5Kufw4SIUcnJkAusnPJfe5oqqSkkP4bfewvL164CIatdWKiNDRf/6K8br6QlYStOw7O0NiCknB1DB44+DUXAtoZdewvlat4Y2mJ0t1VXXrsV5qlSBv0EpaK/16+P/oUNx/txcRJ489pj0FHB0BMzTpw+OVwoQ1IAB2MdkwrVPnsy//zMcthsfD2FkMmHftm1xXaVwvxERuAcnJ0BCcXE4bv58qeg6Zw7+54ip27cxpmefxT36+QFGs0YFKQze3vf7ov65+ZCSAgXCzg7C8H6UmyuQJfd2YOJOe56eFo5nlZurzo4fL0UC9a1nlYJV9swzEoZr3s+BKTERc8FkgnWgb4mrp0uXpKy8hweua7MYbILhkZM+KqlcOYnBnjrVEmq4V+RRVpZo+c8+a5wEzOiHDTP2auBciIULZV+uCTRokJxjxw7pGMZ9GyIioGnlFSc7zWGvXIWTK6B++CGW8/oFqNWrsdyvH7DoW7ekcurbb2Nb585gCtnZUqBu6VJhtBw3HxAAK0YpCMlOnfB/ly7QSJUCrNGpE/Z3cQFTSU6W6zHstHq1OsX3cPWq5B8kJUkPaKVwveBg/F+rFjRcpbCdneY1a0K4KwVojAVZZCTgKRZe9vbGaB2mv+AE/UfnQ2oqhKTJJNFn96NPP4VADA42Bk1cuCBh1y+9ZFBioqOjjcX4XnzRci7s3ClzZexYqd9kTvv2yXXatRP/mTnt2YOABpuPwSYYHjnlJSFpHKrq4QGc37yBvFJwsHEhu/HjjZFHaWnS7vONN4xCgaGXwYONFgTDTdOny7p9+wBfNW0qYX03boBJcxkKpSTK5t13sXzpksrmnguaBsbr748JmZOD8XF+hqZhcppMUmZjyBDcd2Ii8F6TCb4QpcDIHR2hcTI0c/gwmAwRHI3JydBkuVNaYCCEpKZBKx03TsJS58+H34IIlhd3e/v+e3WShW5srEA/sbEQxs7OOB+3Cs3JwTMtVw7X7NsX11UKMJSrK2A8joS6elUK9+3YIeOfM8fyXf8FJ+g/Ph/u3oXQM5kgrAtD27cjqKFUKWM57vR0qeLbqVM+dJR/D6mpUtDRvBgfj2XKFIylQgVL64IpJwdZ/J6esAheeknKhevJFpVkEwyPnAoKVWWoRk9xcYh6MZmkWTvTnTuAbEwmMEk9cWjkwIFGocAZxCNGyLmuXAEzDwyUkL+cHDB7Z2epa3/8ODTvzp3FeujSReW4uMjE5VDY3buxzC03+V0NGQLGeeMGNGZHR8lpmDkT+54/L4liDLl0747xaZr0Yz59WiKP1q8XATBnjmRCz58vzukvvxT/wKpV0if6p5/UCYY+zp6FZUMEPwk78hMSxJl94YI42m/fFqjt6lXxl2zdKhbJkiUQYC4ukgnesqU4pO/3bRQS0ngo8yEtTXwBH3xQuGPOnYOvxsEBQldPS5aAYVeooNSBA5b3sHo1YMKSJa3DWNu3S++SceMKth7i4iSRrWJFlM3Qky0qySYYHjkV9iO8V+RRfDygEgcHOD31xMy4f3+jdfHVVxAi3bvL+rt3cR53d2MMOlsVPJEzMgCf+PiI7yPP0Xt2/HgsnzwJRs/lthMSoCl27ozlmBhAKJwBPWMGxhMTA0FUvrzAMNu24fpffAFm5OoqTLV3b4n4YasoIcFYroJzJL7/XnpLR0dL0tqGDZJ1vXGjOs49Bk6cgHOfCNnK7FA+flyE0C+/SPTQ1q0ShvvddxBOdnbwU2ga3h870nv3hnWYk4O8Dj7enP5MSQv1EOdDerpYqYsXF+6YpCREyRHBEtQrK3v24N07O6uT1kJ5L16UbOpBgyzDVu/eRX6LyQSmf69igFu2SAhsVJT46WxRSTbB8MipMGZrQZFHSuFjDgmBBmqu+bCG27evUShs2gSm3aKFsdb5AlgAACAASURBVPNWr164rr55yk8/4RzM4JWC74JI9ouPh0O0cWOUxNA0MHVPT8mA5cqwhw9jecQIWCDXrmEM3t4I69Rfk8Mix4yBMEhJkcY6mzZhzN7ecD4rhTBIDkPlAncXL4qf4+hRgXFOnZLks927pXjfli3qKDvo//hDhMq6dWAyLAy4xMUHH0gOxKJFEJrsjFYKsFmzZvh/4kS8p7t3pcTGr79i2cMDkNTfRA91PnC+B5H1XhPWKDtbCjZ27WrU7uPjpT/IqFGW/Zizs+HIt7NDvoi1SrW//Sa9pCdMsF6XSikEJrz+Ot5LiRLwKWVl/WmBrJRNMBQpKraC4X4Ww4cfWo88UgrwSfnyYCq//WbcxiWm+/QxCoV9+2ARhIYayyKzVcB5CEoBJilVCtYBC5Bff8VkGTNG9uvfH8zw+HG8B44mYmf25cuYeMz4YmNh3bDWz3WGOPy1Rw9YI5mZmKTe3hBuSsFRXrIktrGzmpu4+PjAsa4UHJGenljPTve7d8WCunNHLAC9ZbB9uzrC+x84AAFCBOji9Gm5Xm4uBBtXofX2xtiUAg7esiX+5zDZlBS5xg8/4Hm6u8sxLPyshVT+CXro8yEzU3xf8+YV/rjFi/F916oleQRKKZWdrWI5iKJhQ8tvXylYeVyMb84cyzafqalSGLJSpYI7vSkFyDIyEvuGhiKk2yYYbILhkVFBZuvnn0vkUUSEZaz2wYNghD4++F9P7Dvo1csYxXHmDPavUMFYtIy1aL2vISMDUTQeHhJnfvs2nKwhIVIWg2Px8zKTt61fj4lUs6YIpOHDITi4CiaXOr50CderVg0QlqbBgrC3h1WilBS8+/57qVzKfZM5YujKFWDXeqy7eXP8lIKw8PPD/1Om4PlqmvRGuHpVrJTff1d/cNmN33+XsNPFiyWKif0/1aohzFcphNk2aoT/n34a18jORhIWEayTzEwINRYGgwYhXDMzU6KuzP1Df5IeyXzIypLCeG++WfjjNmzAd+bra8hCzlcySpaE09paGfDEROkD3batlHDR07ZtEAxEeDcFWQ+ahrpb1sqQ2KAkm2B46KSPSgoKQpJWQZFHSsE68PCAtWBea4cjhXr0MAqFq1chEEqXNh6zaxc031atjNUpuVmPvoFPnz7QzhjOSkqCozo0NP/YC1xlk7HdY8dg8k+diuUrVyAkuB8BM352JrKfgMMJhwyB5p+RIbAOT9DOnSGklJJktsOHJQqJk5JatBAh0a8fIAalwOCJoM1zctqBA+owWxXbt0spDM7lKFECGLZS0DDDwvD/009jW26uQFeHDkGAOjkBS1cKvgU/P+zHiX7cMyAsTEJa/yI9svmQnQ0LkgjlQwpL+t4OX32llNLdw8mTEMJ2dnhn5k56TcOcKVEClpu1Pg2pqYDyiPD+zS1sPRVU4tzmfLYJhkdB0dHR9448UgpMxMUFDNHcvOYInW7djEw+MRHM290dmilTbCzKD1SubMwuZQuCtXalEIdOZAyrHDUKk5XLZ5w7p3IdHaW3glIYi4eHnP/pp2ERcHXXjh3BKDMzwSwrVRIYJi0N2iL7N156Ccfevg2hV6IEok+UwqQvUQKMifF/zqz29xc/RKtWIiS4+Y6mCeb/xx/qEEcWcdij3mdQpYrAWpMn45qaJlFKMTFScI+1/9atUaVUKXE0792Ley5VSiA27l3Nfpi/QI90PnAILxESKgtqlGNO8fF4N0RKvfqqitaHnaakiDUSFWW9VtLp07A8ifBdWAtFjY6GADKZ8P7Y8tWTLVzVJhiKEu1dtgyYqbXII6WAiTs44OOPjzduY5w+MtIoFNLSoDE7OhpryyQnQ1h4ekIjYzp2DNdv0UIslXPnIFRatpQIEo7K0QuPbt0QrsrmPEcGvfEGluPiINTYD8BZz6yN//KLMlgPzKw3bcJyWBgYu1ISRcSlOho0AANWSjTx7dtx/zqoSwUHSwLahAlgzPxs8/wNBxiK49IgPj5i4bRoIYKLi/3FxYk1s2YNGGGZMiKMZs0CU7l1C82UOFJJKcB3JUtinLduQQhxyO5foEc+H3JypNvaSy8VXjjoejtcb9vWWB5b0+ADs7dHkMGJE9aP5zLyNWviGzOnlBSpDPD445alZmzhqjbB8EhJH/lQpozK4fR/a0W/3n8f+7Vsaemg5CSsiAhjBEd2NqJFTKZ881wphUkbGYkJpi9jnJwMS8TXVzJxs7NRBsLTU5yDd+/CyqhSRTSuPIw+hhmopiFBzt9f9nn2WTBFznwdMQIOV7Ym+vZFnDprer17g8FmZ0spa3aOc9vM27exP1dRVUpKcycmSq4Cw08lS8JqUQpaLWcyc72ls2fRB4BIKoM+/rhYCU88gWWlJKpp+3ZAFVz2QilYSgxzcVjsN99guXlzlNRQSnwQLOD69oWwule/gEJQkZgPubmSmKbvH34/0jR5h40bWzbX2boV34W7e8EF/TZswHfs7Ax41dq1t2zB+zeZAHXyd2cLV7UJhkdGVj4+zWSC41hP+vj8Ll0szeNly/Bhh4dbaldcPpozk5k43FQfd65pYHp2dsasVA7d1OdH8PG8X0YGhERwsNrK2v2aNdiHs2Jv3gTsMnAglm/cwKTl6KabN43a8p07xiQw1uJZqLRsCctJKWG8XIxuwACpiMpJZrt3S5c2hsO6dZO+DZxNHRur9i1Zogz+lfr1peTFpEnS9pOzlrkTW5UqUpqDM50TEgB7ubuLz4N9G5cuQeiVKSNWDAsK83yUB6QiMx9yc6WZk3mJlvvQ0Vdftd7bQSlYpY0by3nN/XBK4Rvr3Fnlw6vmrW+VkoJ5RLAmd+7Eelu4qk0wPBIqjLmqaRKZNGCAZZ2YTz/Fh9uxo6WGOX26yjfj9cTWBSeiMTG+rfch7N4Nq2LQIFm3dy+Ex+jRso4F18aNeA/Z2TD1q1aVCTt9OsbK5v+rryqDk3n+fCwzA2ANns389u3hgFQKFoijI56N/lhOtgsNhfWklORyxMcjukrPyFu1ElhIF6G0lyu0sjbarp0Uz+Ms8pQUQHbcX0EpRChx/SROpOO2lBERYkFw9jX7QMaPBwNMTgYjrVAB9/sXqEjNB00T6GbSpEILh+jo6IJ7OyiF58/nbd3aenMeTYOvjq1xa5FNSgHGZEHwzDNQuGyCwSYYHjrdz8GVkyMa/7hxljHan3+Ofdu3t7QimMk/9ZRxEm7dCobaoYNRw9q1C1BM165yneRkOIK5t7FSmIg1ayJkldddugTLJy9sMzo6WhyxrHHfvg0Ih7XijAyY+cy8NQ1ChMM9lYKmFxiI8SQlYXxcU2njRpyfexH36SOQUFYW7pFhpfHjcW1Nk17LDJ/Vri1lNthfEB+vfmcH8RdfYFtUlAgl3saWS8WK4myfOROC4u5dPD+TCRaXUsbQWk0DFMdWCPti+HosNC9cUH+Witx80DRp8anvFngPyr+HK1dQb8vODoLe/NjPPoN1Wa6clF8xp0OH8I2ZTPg2rPXASE4W68Z8ftqgJJtgeCh0L4shIwOQREGOuy++wCRp29YyqoJDJXv0MDL/mBjEZ4eEGBPb4uNRUqJiRWNJ5CefxDX0bRiZYelLJD/xBCZlHhPbtn49NLMmTWTcXPfojz+wzBVW2RnOjJFLbty8CUHAkUBffYXtbOY//zyYP8ejly+PMFSlxKHNTDY8XPD8VauUwSqpWFGsIY5ESkhQuzkqi1uQDh+Oe1JKoB5OlmrfXrq2sbOcI79CQ4X565PxlEI+hZMTLA/zWlBcQPA//1F/lorkfND3Fx8zxlLZMSPDPejb1j71lCVjP3QIioyjIywxa4InNRVBBERImouJsX7hMmUKnpuFIJtgKEJUJCfCvciKjyHH2RlYN9eR0WchM61cCYbdurWlUNi4EROjZUsjtJSUBG3Jy8vYFCUnB9aDs7PR4c0MjiubKgUnrnkoKsMl7HBVSp3jEt4sUO7cgUOZy11wvH5oqEzeIUMAFXBZBIZ1uGDfgAGIDOKIqHr1EB2klHRv41IMLBiZ+QcHg6EoJdng7Oz28hJIjQvhpaSoXSyIWFBNmQL/CD8HInHmjxmD8yglPodly7D81FNwJGuaZfkOjur67jss66vHKoUqo+XLW29NWQgqsvOBK9MSGRtFWSGLe8jNFYi0bVtYonpKSIAVSoTnbC1cVSl83/cqxmcLV7UJhkdKZg6uk1OnQtO2s5N+BnpatQqYf8uWltmbe/aAeYWFGS2C7GwIGgcHo1NZKenktmSJrLtyBcysQQPRynJyAPOULi1hsllZSlWvDq2bJ+CtWyq7RAk4+pjYCctJcRySyveXmAh8naOZlAL2X7UqmEhWFiaxvhifHqL59lucjzNmuQRFZibG7egolse0adDSuRqsvT1q/OvHmZGhdrJg5DwEdsBnZ4MZEcHCUEpKbCQk4HqurpIAx/4cTijs3RvMnu/L01PuizOf+blwPwyGyx6QivR80HcXHDasQOFX4D0sX473+Pjjlgmeubl4XyYTLEXOlzGnS5cwj4gQEKHPi7CFq9oEQ5GhuDiVUqkSPngOa9TT6tVgZC1aWJYTPnUK2mjFipYNXzjb07xm/vr1mDxDh4rmnpsLR6ubm3HCMcyi7+7GTl19vsXUqUqzs4NWrRTG6e0tvgSlEFlVpoxYNJypzfDLlStGxs/F7Viz5jpMnLn63HN4Zhym26UL/CBKIYGPSJoEDRkivRI4QolLNzDzz81VOzgLmiPE+P5v38azcnYWYcPRVzz+Bg3wDJUS64IhKQ6DZf9Ev35iCbHfgSvKZmTg2XGU0wNSsZgP/MzNe4Tk0T3vQd/bwVr/hZ9+gkJRqhTCiq1RTg5yTOztAUOxcmELV7UJhiJB588rVbkyksM43FNP334LLbhZM8uaSVeugNn5+Bg7YykljIjLUTDFxgL+CAszwlEc3aMXIufOYVJERooAiYuDGc69GPicTk7qGpfVVkrgGXYIckE6ZvqahnDR2rXlPDwGFkxTpoARszAcPx7j4SS+Fi0QtsgUGChwF0Nd3PaxQwdxcF+7pgxWwYwZsNSUUr9xBVeG8tgnwn0mgoIkW5n7LDC0NHw43oVSELQeHhKmykX4uJ4Tl/HYtcs4Bo6umTIFFo95MmMhqNjMBy5YaF4WXhXiHs6dg9Xq4GC9WdC5c/i+OL+kINhq5068UwcHRNjl5NjCVQv62QTDP0j6j87PL1+zOfDee5b7rlmDD7ZJE8syAAkJ0I7d3S3LcW/aBE2oSxejNpaRAcebh4dRkBw+DM27Rw9h0poG7bdkSVRIZRoyBPvqjx8yRCkXF7WLu87dvQvLQB92OXYsmDwzPoZP9PfdoIHkJ7AWrbc4qlUTh25WlhG6SUrC+TjTmvMROLqnZk3xdeh6PCulBGZSeQ50vTXBVgoXK2zcWKwCtjy4LhD7MTgpq317KYehaYic4eishAQjnMWOc34ebHEsWKAelIrVfOBktj59DE7lQt1DUhL8MUSWvR2UwnfI5Tm6dDEGWOgpMREWHJFSbdogSs0mGGyC4aGRNTOVSKk5cyzv4YcfoDE2amQpFNLSkEHr5GTZCP3kSeDXNWtaHsdx35xpy+eqXh1CSp8ExBi5vjsXl6JgZqYUoo1MJqWef17ugRkkQz63b+O+hw+X40aNMpaa5jwD7vl8/Ljx+tz3gLdzO07W1nlsHO+ub7+pFKwk1t51HduUUrCq8hzMWznyaPZsbNM391EKobnVq8t9+PmJr4D3ZcuP6zuxZTZkCCAQ1l5btxboSymlatQQx7pSePc1ajxQYphSxWg+MLGvJioq3xos9D1kZwtkGhlpaVVrGoStoyMgI46OMydNg3Xo5GQ5P21Qkk0w/KN0D8eW4R7WrcOH3KCBZQmM7GyENppMliUBbt1CBq6Pj2UcPEMX5tASTyp9eYyrVyFcWrUSJpaTA9gnIMDo/I6IAJabkIB7SE9HeCfXNVJKtEKOFkpJgaXDUTpKCazApTf4GK699PnnWOYIqvfewzKX8+Yignx8795SviIjA9u4ZhLnQnAC3cSJsNyUQvE2IgkX3b8fy5xZPW6c1FhSCoycmXl8vDLAUAxLsYDkYoRcKI+hM35X/AzYQmOrR1eOujBUbOaDntiX0727UhkZD34P770nvUv0vR2Ydu3Cd+nqaj0aicnfv8A5WhiyCYYiRMVmItwjFC7/Hn76CVpL/frGCCOloNVw43Rz6CkzExqok5NlYbDjx6H1NG9ujAFn2GTSJOM1undHfoIeLmKfhV4YsXM4T4uPjo6W/diSyczEZNPDSmyN8Dg1DVo4Vz5VCvCZvgz1sGHQ+llQDR6M/gysTY8bJ815lAKEw7ATO6IZi+aoHy6yNmZMvm8gOjoa8B1bRTEx2Jczppl5swN92DDJc1AKY2KBx4Ji7lwsc+VXhoc4xJUd3bzMguXOHby3kSPVg1CxmQ/mxMEIXbqobXpFpbC0caPV3g75dP06FBYilFvRF5xksoWr2gTDQ6f7WQwbNgCHr1vXOh76wgvKoM0yaRri5okkiYopJQXhn2XKGBv0xMdjAtWsacx7YKbJzEwpQEylSiF+XO+DaNAAIZh5x2/dtAnL+gQ3ThjTtx5t1Aj+At6Hnbgs7K5fx0RkDV/T4FjmnASlYA2wz0ApCBVuo6lpYBCcp8C9mBlm4uxsLl0+YkQ+c4+OjoZQ5JIbN29iX+5Ix0KNtfzXXsMyw0UdO4pfQSn4SaKijOPu0kWWQ0KMQrNePUmaUwqCR5/nUQgqNvPBGuVZfrcaNvxzxQSPHwdk5OxsveZUdjasZiIUetTPCaVs4ar3+tkEwz9E9wiFOzx3Lj7m2rUtk3eUElN79GhLzJm36bF/pbBfv36IdtGH9Wka8g2cnIyY661bECD16xujREaNghZ9/LisW70a1/zkk/xVp7jAHocIahoYXUiIaPosBPRO1RdfBAzAjmkuaseQC/sfWHDcuoVldhBzcx59UT79NdiBzDAUl6hgH8yQIfkTPzo6Gg53dmpnZSkDDMXd3jiaiEt2s/XxzDN4j/z8Bg6EH4Lf2ZgxYPRsuT33HGBDHgvj7ZyZy74TTpwrBBWb+VAQLV2KopIdOhScqHYvunkT8B4RMu+t+WhWrYJfydfX2PbTFq5qEwyPhKyFwm3ejLLbtWoZm+boj2HnnHnkxU8/gfH37GkZksc1gLjnARP3bzCPeBk8GAJALyz27ZPSxExZWdB8a9SQ8WRnqzR/fwgVnohcn0jvwJ44EQKJHd2ahhyMjh1ln+7dYSHweTgbmovuMXPmTnEM0bDgYOcy51mwP4LzPF5+GffEz2vAgPzObtHR0casaKWAS3MXtoMHcS524HN0FdeG4npKXDCQ3wFbJ2yRsWDhZ8QQ3cWLxnemaRCsbA0VgorVfCiATj7/PN5R27YFt+O8F2VkANIjgnJkTcAcP47seHt7Yx0mW7iqTTA8cvr1V6VcXZHgZq008Pr1YNatW1ua1kePQrutU8dy8uzeDU00MtIoME6dggbUoYNxPfcX4CYySmF7o0bQqvQRTuzoXbdO1jFD1Ce99ewJJsswS1oanLxc24jHqbc80tIwPj1j7tMHoZ48cV9+GcKQ75kFBTt52dHOyXYvvYT9WYhNmgSoSX/+qlWVUnnfkq+vMRu7bFnATUohj4NIypYnJGB53jwss+Dg0F0WHKtXY5mtGY56ys7GM+LcCKUgBEJDZZlzQvRNle5BxXo+5FF0dDRgUTs7+AUeAErLJ01DmXOTCd8xV+DV0507+E6J0A/jz1xHRzbBUISo2E6E6GhoozVrqh2scerp99/BJGvVsoxOunEDVUX9/Ix5BkqB+ZQvj+16X0VmJqAdb28jtpqcjP2rVTM2++ES1Hq/RUoKGGfLlsKoc3KUCg5WKZUry7pz5zAhp0+XYzmySF/+eNIkQC98f9yBjZ2PubkI8RwyRI7p0EGK4ykl5bDZWT9rFpZZSxwxAsydadgw6dmgFHwVeYw4OjoakVccgqoUhAZnIefkQMPU15Ly8hIYKz3duD0zE/fHFodSeJ9t2sjyoEF4Jww/sZXBgu36dSgH7Pe4DxXb+aCj/Hv48ksIh+bNLUNRC0vffYd5VL689XBVTcM3ZGcHK3jevH/cYrAjG9nIGv32G1GXLkQVKxL9+itlP/aYcfupU9hetizRhg1Enp6yLTOTKCqK6Pp1orVriQICZFtuLtHAgUQ3bhB98w1RqVKy7ZVXiA4cIFq6lMjfX9a/+CLRlStEH39M5OyMdUlJRNOmETVrRjRokOz7zjs491tvEZlMWPf110RnztDFwYNl3aJFRA4OROPHy7FLlxJVrkzUurWMddUqoogIub8ffiAqWZKoVSssHz1KdOsWUdu2WNY0oj17iBo3lvMePUpUvjwRP8Nz53B/rq5Yjosj8vOT/e/cMT7P7GwiR0dZdnTEOiZPTxxDRGRvT+Tri3MyVa6MaxIRubgQBQdjTERETk5E9eoR/f677N+uHdGuXUTp6Vju2pXo9m2i3bux3Ls3kZ0dng0RrhcZSfTZZ8Zx/X+g/v2JVq7Es+nUiSg5+cHP0bMn0Y4d+HaaNiVat8643WTCt75xI9HFi0TPPou/SuHvqFFEX3zx99xPHtkEg41AX3xBVKECJnzZskQdOhAFBhJt2UJUpoxx3ytXiDp2BBPatAn7MymFD3XnTjCKBg2Mx772Go5ZtAgMiem334jefJNoxAhMFKbt24nee4/o6aeJmjSR9TNnglktXizM/uZNorlzIZSYMWsa0euvE1WvTjdbtMC6O3cgZPr2FQF0+jTGMHIkngER0bZtEG79+8u51q0jCg8XAfXrr/jbrh3+njoF5mAuGEJDZfncOTBrprg4oyD8K4KBCEJGLxiqVCGKiZHlsDCiI0dkuXFjCOSsLCy3bQvhvmsXljt1wjWZYZUtS9SmDdFXX+F9E+G9xccT/fgj/b+jJ56AkNy3D/MiKenBz1GnDtHevURVqxJ17060YIE8W6b27Y3fBVNaGtGMGX9u7AWQTTDYCEJh1CjRQm7cAOOZMAHaoJ4SEsAokpJgKegZHBE09eXLiV59FRNGTxs3Yv3gwbgeU1IS1lWuTPTf/8r6jAww6goVwNyZjhyBQBgzhqh2bVn/2mvQct94Q9atWUN0/DjRSy8Jw//oI6LUVKIpU2S/jz6CBTFsmKxbuZLI3R2WERGYZ1wcUbduss+WLdDA2SpizZsFQ3Y20cmT9xcM97IYcnIwNiZrgkHPjMwFQ+XKeLfM+ENDiWJjRbtt3BjPmoVFy5YQ+iz0PD1hIek12X79iM6eJTp0CMvh4bjuxx/T/0vq1QsW8MGDUKoSEh78HP7+UE569SJ65hnMEX5nTNeuWT/20qUHv949yCYYbARtIy3NuE4porffNq5LSwOsEBMDiKhOHeP2NWsA+/TrR/Tyy8Ztly4BQqpRg+iDD0TLJwKcc/Uq0YoVYMRMs2YRnTkDiKdECRnXhAmAoGbPln3Pnyd6/31oriEhsu/s2WDcLKRycmCttGxJVLcu1mVlwbrp2lWsn6wsom+/hfbm5oZ1P/wAhhkRgeXsbFgVbC0QQTCUKkX0+ONYPn0a+7FgSEsD02bBkJsLTfuvQEmPPXZ/i0HTIByIYDEQER07hr8sxPbswd+SJYkaNoTQY+raFdYQWx5RURBWX32FZQcHoiefJFq/Hu/y/yN170703XcQsO3bw6J9UHJzg/UxYwaUlfBwo5AJDLR+XEHr/yTZBIONCtY2dOtNOTmAXnbvhoXRpo1x30OHgPU3bEi0bJmR8WdlgTEzs2VGS0T05Zf4zZxJ1KiRrD94ELDQ8OGYZEwrVwJemjOHyMtL1r/8MhjmK6/IunXriP74g2j6dDB0IgivS5eIpk6V/dauBQz11FOybtMmosREgZGIIBiaN5fr7tsHy4P9C0QQDI0aiXXCWD4LhvPn8ZcFQ3w8mPaDCAYHBwg4JmtQUny87MPXYj8Dj4XHFhCAY8z9DPv2yXm7dsVfthq8vGA5rlqF8RPhXWkahOz/V4qMJPr+e6ITJ/Bd3Lz54Oews4P1u3w5INnGjaEgEcFy1s8fIizrLeq/gwrjoS5qP1tU0t9M98um1DR1LTwc67gUtJ6uXUOkTECAZc8FpaTeEYdEMl24gLDMpk2NCWtZWYjqKVvWGLWUnIwop/r1jfkSXLBOH4mjadivYsX8ZK3o6GhkPVeubDy+QwfkJejXDRiAaB4uS3DhgjKUg1AK0UUmk+R2mPdSVgrJcdycRynUNCJC8yL92PVRX05O0lNBKURq5VVxzb8HfTYyl8HgiC0O1+U6ThzC+u678mxKlkSZDqaePVHHiolrMulbpdaogbBkJo7i4ramSmF75coP1v2sGNJ972HjRmSo16wpiZF/hnbskN4OHC33EPIYbBaDje6vhbzwAvlt2ABtfMwY437p6TChExKgTeo1XyJADe++SzR5MqJZmHJziYYMgQhascKIoc+bR3T4MNH//meMWpo9GxDJ4sViAeSNj7y9iZ57TtZt3Ei0fz+grTxtu+SJE7B4Jk2S4y9cINq8Gdour0tLgxXRqxeidohEU2bNmQhQS+3auDYRNGylLB3PISFyHtbaWYtnzJifW0YGLKsHdT4TiXbP52I4ydcXUBxf22QCnMQWAxHGHBODCCsiOPpdXMTPQATfyvbtsKR42cVF4CQiQHnnzgEr//9MHTvCEX/uHKzr69f/3HmaNYNT2s8PFtrSpYBkY2NhncXGYvnvpsJIj6L2s1kM/wAVpIXkVdi80r27Zeq+piHpxmQyarxMJ04grb9pU8sG6dyu0rx20smTiKs37w528iQ0b31pbKVQQppI2lnyuJo2RVy4rhDZjTZtUJpCnyTEDWg481cplMomMpbp6NAhP8lMKYWkOCcnY/w/35PeygkKMvaiNi+mxxVKueLmjRvKkKCmFPI38p5HdHQ0v8s3dwAAIABJREFU+i00bSrbly/HMVxUcM8eS20/NBTJhExjxhjHsW2bMtRrUgrX0Sey7dqFffTd8nr1Qt4IW1tpaTjvoEGqICoW8+E+VOh7iI7GHAgJsax79CCUlISii0T4Gxhoy3w2/9kEw0MiZji9e6to874KSkn7Q64JpKeUFDA0Hx+BNJj27QOT79vXKGxyc5FVW6qUMQtU0wCdeHoazfLcXBT0CwoyJr5x3wF9hdeLF9Ha89lnZV12NorT6ZvtKIWEMj8/YXZJScb+zEqJQNK3Zuza1Sg87tzBPtycRyk0buFmP0qhexeRCDCuYPp/7X13eFVV2v3aSUho0iEgJVQFpArSLGBQUBAsIxrboAZ1hk9n1GEcP3WcYtefo4w6M36goCOCoKgRC0IIikgUpYqANKWFXkJIQtr+/bFyvKfsfc5JclOQvZ4nT+Dsc8895yZ5137f9RZ76+UuXX6uxs7IyKBhsDeye/99vsYa4Wm14LDGhkrJUFG3bpH/W11mLULMyWHh20MPRc55/HGeY33mRUX8edqJzupJZS8K/O1vGUZxd98txUn792BDmZ7h88/Zf6pLF2+xZ1lQWBgZ/FPJvZJMKMlAjY8/ZnglOZmhHnvoBqDo+Ne/AuPHA/fd51yTErjjDmaxzJwJtG4dWTt+nK5vq1bMIrKL1P/+N8W255931ka8+y6wcCFDSfaaitmzKVI/+mikrgBgNlOrVrx/Cy+8wO933RU59tFHDOXYRecjR3j82msjzzx/PkM37jTVuDjAqo2QkuKtPYxkZf0Epao2bRoJNVnhoIqEkqwUY3fK6tatEaHYuicrRbVePR6zMpOAiKiekcHvsbFM3f3448j7jxrFTDJ7OGnCBIbE3nwTBuDvyPz5DCcNHVr+1NK4OP5NuWHqGAyqBJmZ1AN69qRRthtdgDHPm29mhs7LLzuNO0AD/+abNND2VE6A2UCbNjHjwq4f/PQTtYKRI1nTYCE3l/UGPXsCv/1t5HhBAf8YevcGrr8+cnzJEqaQ3ncf498AM4emTMH+Cy5wpvVNmUICsuoUAD5vQYE3G6lZM6fRT0/n/6302m3bmIFiP8cyupYRLipiTDiohgGoGDHEx/N+3SmrJ05EUkndmUkA7/2rryLk0a8f0KCBU2cYM4bk+cUX/H/dutSY3nknknN/9tnUXk7VmgYVhgyhlnXgAMnhxx/Ld50QGYTRgCEGAyfWr6ehbNWKO8MGDZzrO3bQELRsyZxtFWncfTd3kg884Fx7/33g//6PIrHVdgKIeBhSeonmySf5S//ii06B+uWXuQN+6qlIaigQ8SrsBXTTpgFHj2LHuHGRYzt30jO45Ran0Z05E+jYMVKxXVgIfPgh0xAtD+LIERa7udNUAa/w3KBBhIx27CA5RJsYrFYbQUVuQKQOoWFD3pe7Ajo7O7IrjYujEbPXM4wYQeJxF7sdOkSvzkJqKr25VatgUIqBA0myR47wc7VSl8sCU8dgUGWwt8Po2ZPG69NPvVXPOTkMpxw/zoyL5s2d6wcPAuPGsYLzv/91Guw9exhi6NvXWZgG8Nz580kCSUmR41u2sJbh+utZkGYhO5veSHIyDZWFr77irmzSpEiWVXExMHkyMHgwjnXvHjl32jTujFNTI8f27uUfbkpKhJyWLuUfsj2MtHgxX+subKtXjwV8FtauBXr0iFzLnZEElI8Y4uL8PQZAXeRmvwdAnZlkPYuF4cP5Gqs4rn59fu4ffBBp2TBiBMnJHk664QZuGozX4ET//vwdy8khOdhblYRBFdUxGGI41eFuh1FczJCA1TDNQkkJQzxr1lBfsBtA+/qePWwNYC8+Kylh6On4cb6fFU8HaIzvvptpeRMnOq95zz00iO4K7GefpUv+5JNO7+KRRxivt4ecrJRBe/uLkhIarOHDnUb67be55g4jJSSwzYGFRYv4x2j3DjIz6WVYXo2U6h5JQOQ9peTnFUQMqpYY9gI3y6uzE8PppzuJoW1bvs5uiHr2pHdghYC6dGF4z00M1jNbsKrfN27k/+Pjmdr73nuRxnuNG7M6+o03IscMiLPP5ueZl0dysIrXwuCGG+h1JyXxdz8pif+PcsqqIYZTHap2GPn5HjGrwyuv8A//2WeBSy/1Xuexxxh6ev557orsePFFegTPPgt06+Zcu+suEsbUqU4P48MPuSt9+GFng7k9e3ida65xNuj79lu+5p57nG01nnuOfzz2xnwLFpAI7aIzwDBSjx78Ami409JoHO3XTE+noGgRXF4eK7/tRLFrFz0Nq/0EQGKIj4+I8QcPcuevIobTToscCwolxcby/twew549Eb0gNpadct0eQ1FRJHQUE8PKdbsAfdZZDM3ZdYbLLuP3tLTIsZQU4Ngx/g5YSE3lZ/DuuzBwoXdvivqFhSSH9evDv7YK6hgMMZzqCCNmvf46kt58k57F73/vPXfBAra0uOEGbwHcd99RCL7sMu/au+8Cc+bwtV27Ro7n5/N9zjzT+36PPEIR1e06P/oowxl33hk5tmIFhei77nLuuKdMoWdxxRXO5126lAbOwoYNNKT2orasrEi7AwsrV9LAuvUFwOsxdOgQ0SqsHb27s2q9es77DSIGgM/u1hiKipz9ejp18noMgFdn+O47GnmAu9LkZO5wrdBRu3Y0bHadYdgwEog9nHThhXxeE05So2dPhiWl5Oe3bl1139HPMMRwqiNIzPriC+C223C4b19ni2sLO3ZQA+je3SscnzhBsmjYkMbBvnb4MENHffo4K5YBthzesoXN7uxhp02b6DbfcUckZg7QsL33HknEHoJ57jnupCdMiBzbu5ci+PjxTuHcMmh2YrB2xNYOGYiEVNz6AuDs9WQRg+V9AOpUVcDpMWRnO5/BCu8FEYOqX5L9PQB+Zlu2RAz8GWfw83XrDCUlrBq3kJzM69hTJceOZVtui3ji4qgvzZsXIZWYGKYML1pUPqH1VED37iSH2FiSg52kqxGGGE51+IlZ27YxBJOUhHV//avTOAGMTV97LXf477wT6YBq4YEH+Is+bZp3psOkSUzvfOUV53W3b+fu/6qrnMIywPBWQoK3c+tjjzH0Yvcudu+msb/1Vqehfe017qTtZAHw3AEDnIY7LY0pm/ZBQ4sWMX5ub/edmUnx3l57sWYNX2el5EoZjhhUDfSA6BBDp0402lZjt1q1GNqzG6MBAyLPZEGnM5SUMLPLQkoKw2p2T+Lmm0kQ06bBQIOuXenZJiSQhGtAJpchhlMdOjFrzBh+FRUBH3yAInfaKsAQ0bJlNO5Wq2sLCxdy5z9xYqRNtX3t1VfpKVitry1MmkQj+o9/OI9//TXDTpMmObOl1q/ncasVt4WXXuJO204WUlLLOO88p9axcSPDQXbRed8+Pps9G0lKxtovvNBZ8OcubAO8wvP+/cxEqWpisPfvD5OZ1KQJf5Z2YujQgb8Xdp2hXz8SoZ0EhgwhGdrDSW3asDZl+nT+PAzU6NKF5FC3LslhxYpqvZ2oEIMQ4hIhxEYhxGYhxP2K9ZuFEPuFEKtKvybY1sYLITaVfo2Pxv0YlBFuMSslhUZywwYaXbfRB1h1PHkyJ6u5B/IcPMhQTdeu3oyi48cp+p5xBoVlO9LT+X4PPOBMW5WSow1btOAAEzsee4wjMu1ZR7m5nPlwxRWsSShFo9WrGY5Sic5COJ/jww/5vnZi2LqVorVdX9i1i+E0OzHohvMAXmJo0MDpsamG9ADqrCQrJASoh/VY72HBXcsA8B537XL2/B84kAK0dX0h6DUsXhwx7jExDLF98kkkqykmhh7kJ59EGu0BFKF37mQKtIEenTqRHBo0iLQ9ryZUmBiEELEAXgJwKYDuAK4TQnRXnPqWlLJP6dfU0tc2AfAXAAMBDADwFyFEY8VrDaoSf/wjQwQvvuichWBhwwb+sQ8e7DX8VrHa/v2sfnaHqR56iOQzdWpk5jFAY3rXXTTkbs1h/nwapYcfdmbrbNpEo/7b3zprKv77Xxo6O1kAaDVvHg2ovcurlLzG0KFOETgtjSmevXtHjqn0BSuDx04MP/zgHM4DqIlh925vN9qwHgPgTFl1D+upU4fXsRNDhw408m6PAfDqDHv3RmoXAJLh4cPOMMeYMQxNffZZ5FhKCu/Znok0Zgx/PkaEDkaHDvxdb9yYf3t2z60KEQ2PYQCAzVLKrVLKAgCzAFwe8rUjASyQUh6SUh4GsADAJVG4J4PyYsoUirZ33eXNIgK447/6arabmD3bKQ4DDBm88w538u4Jb5mZ9DImToz0GLLwwgvcZT//fKSVBUAv5k9/okF17/SfeILvP2mS8/znn2eo47zzIscPHULzzz/nMCE7Wa1aRUNuDyPl5XF3O3asUzBPTyd52D2ozEzeg11zsIysO1VVCP7hW3AXtwHhiMHyHlRzn+1ehLvILSGBZGcnBl1mkvVsFiwvya4zXHQRf1b2cFK/fvxZ2cNJ8fGscXn/fYboDPzRvj3Jtnlz6mxLl1b5LcQFnxKI1gB22P6/E/QA3PiVEOICAD8AuEdKuUPz2taK10IIcTuA2wEgMTERixcvrvidVxFycnJOivtttHIlev3xjzhyzjlYe/nlkLZ7zsnJweKMDHR94gkkfv891jz9NA5v3uwIS9TZtQv9J05Edt++WN2vH3c+pRAFBeh/++2Ibd4cy0ePRrFtLf7gQQz4859xdOBArK1f3/G6xE8/Rbc1a7Duz3/Gfms4PYDae/ZgwOuvY/fll2Pzhg0/Z8w0ycxErw0b8P0DD2CfbSfb+u230aWwEMv79MFx2/U7/uc/aBMbiy8TE1FUerzJsmXolZuL1UlJOGydW1KCIfPn49A552CD7bp95s+H6NwZK20FgR3mzUPb2Fgs2bv358+w69KlaNSsGTJtxnbgtm3I7toV6233c/7hw9iVnY2tpccS9u7FYAAbtmzBnsWLkZOTg83bt6MzgCUZGSguFfzbHTyIjoWF+PzTT1FSmm3Vu04dxGzYgJW26/du2hQxK1ZEjkmJcxs0wP758/FDKUmI4mKcl5CArLffxmaboH5OUhJOzJmDNbb6kR59+6LenDn46sorfybRDoMHo92bb+LLd99FYanuU7dnTwwoKsLmv/4VOaNGnRR/D36oir/p+CeeQJ9770XCRRdhzZNP4qjde61shGnB6vcFYByAqbb/3wTgBdc5TQEklP77NwAWlf77jwAesp33ZwB/CHpP03a7EvDDD2x33a0b20y7kJGREZkM9re/eV9fUCDlwIFSNmrknG1g4eGHvW2qLdx0E2cbWPMELOTlse98v37eiWB33MHXuFt6X3QRW2nb5jDIkhIpzzpLHrW3xJaS12zbVsrRo53Hb7+dE87srbxXr+b9T5vmfOY6daS85x7n68eM4bQzO4YMkXLoUOc91akj5b33Oq8HcDKchc2beey116SUpT+HyZN5zJocJyVbjAPOCXrXX88JdnbcdhtbZ9sxbBh/dnZccIH32J13ssWz/bN9+WW+79q1kWNr13rbnkvJyXPduskM+5yLkxRV9je9ezdbudet65wPUk6gCttu7wTQ1vb/NgB220+QUh6UUp4o/e8UAP3CvtagCnD4MIXEmBiGBeyhjFKctnEjM3wuuYQ6gRuPPsp4+8svM1xhx5o1wOOPM5zgrpr+4gtqApMmMTPDjn//m+mr7kZ5O3Ywq+nWW50tvdeuZcbTnXc6Q1yZmcC6dciyd1EFmIe/Y4ezdqGkhLn4I0c66xxU+sKaNQw7uTOS1qxx6guAN1U1O5uvDdMOA/CKz4C6kZ6qX5I9vNS5M/Wf7OzIsV69WNRmVUkDFKBXrmQtioXkZAr79spoVRV0jx6smLaHkwDqUuvXo8H338MgJFq1YoV0+/ZsbmlvVFiJiAYxLAfQRQjRQQgRDyAFQJr9BCGEPZA6FoBV/z0fwAghRONS0XlE6TGDyoa9cd7ppzMkNHeu03hZOHQIZ/3lL0xPfOMNp5EGaGAffZSjOt0ZSkVFNAiNG1O7sKO4mEa8TRtvJ9ajR3nNESO8rbuffprG7n5XAtzzz1M/uOMO5/EpU4B69bDPnk0EUHSuXZvdYi2sWEFR2J6NBFBf6NLFSXqqjqrZ2RRt7cSQk0MxN0xxGxBefA7TSC8/33nMuge3znD8OOtWLAwaxGwju9g8bBjDRXad4fTTqSvYdQaAZLtkCbORLFxzDVCvHlrZax8MgtGyJcmhc2durBIT+TfYvj3/jisBFSYGKWURgDtBg74ewGwp5TohxN+FENZf1++EEOuEEKsB/A7AzaWvPQTgEZBclgP4e+kxg8qEu3Fefj53pDt2eM8tbY4Xf/AgU0mt+cYWsrMp6CYlRYbh2PH886yiffFF72tffhlYvZo1C+7iuKefZmbRU085j2dl0dCPH+9Mad23j881fryzgV92Npv+XXcdiu2ic1ERn2fMGGemU1oa/+jstRdFRRQD3cSSmUnjaycL1XAeq+o3TA0DEF1isL8XEKllsKes6jKTAKcA3bgx607s9QwASfSrr5zC8rXX8vvs2ZFjp50GXHstWixaFKmONgiHFi2YtFFczM9ZSv793n575ZBDmHhTTfsyGkMFkZQkPeMBAR5349FHpQTkxt/9Tn2t8eM5M/mLL7xrmzZxxKNqXvS+fdQjkpO9azt3Mv5+ww3ea957L0dQbt7sPG6NGd2wwXnc0kW++sr5c5g/n8fnznWe37s34+t2WLOOZ892Hu/cmSMz7fjPf3jutm2RY3PnSsfoTSmlnDGDx77/PnIsI0N6Zk1b85tLZzFnZGREXmt/1jVreOytt7zXs4/dzM7msSeeiBzLyeH8YLd21LbtzyNFf8Z993HMaU5O5NiKFbzmq686z+3XzzmCVEoply7luVOnypMZ1fI3XZa/Ww1gRnsaaBF2ClR6OmsHrrsOu+0N5yzMns0WEw8+yLbZdpSUsO1EQgLwr395eyw9+CBDLC+84F3729+4S3fPbdi3j4Vr11/v3H3n5/M9Ro/2FuNNmcIdsb0TK8AwUoMGTs3jp5/owbjDSFbo5MILI8cOHOCuW1XxfNpp3rkSQOV6DDqNwf5eAO8tMdHpMdSrx3uzewwAn82dR5+czPe1JrgBTNVt00YdTlq+3Bm2GjwYx9u1MzUN5UEVTW8DTEuMUxNhpkDt2sXc/jPPZIsMVfO8O+6gSOnuXQSwgO2zz9gi2144BtBYTJ3KqunurlrIDRtoNCZOdOb8Aww55eV59Yg33yRpuArasGIFv267zXn/+fnUU6680lkzYRk2lb7Qpw/HZVpQFbYBkVYY9vfbsoVhGHvLjqysSBGahaoIJQEkAbuxBnjP7gZuAweyGHHv3six887j+9t1BiEoQs+fz8/WgqU3vfWW49ys0aPZbqQsraYNqmx6G2CI4dRE0BSowkL+UefmsljNPosAoDcwfjzPe+MNb3O9nTuZZZSczMwh92vvvJMx07/8xXtvDzzAHax7uPnBg+x/dM01zhbdUlLH6NXLqwFMmULD7+5X/8kn1B7sRW0A9YWuXZ3ZUXl5FNdV+kJsLIVX+724eyQB3owkIFLcZieQsFlJ1r/tlc/16/NadmI47TT+XN3E0Lmzd3JYr148Zp/NYZGePQupXj0ed+sMY8bwtRkZkWPt2tGTdGUn7b34Yj6D8RrKhiqa3gYYYjg1ETQF6k9/ojGcOtU7WAegF5CRwbbY9vbXAI3jb35DozVlitfTmD6dDfGeecY7T3rZMrZS+NOfvGNDJ09m6MmdKpueTmN8993O97KmxY0b59ypAwwjNW/uzHY6epSFdW5v4csvmbLpzozKzKQxtYvmu3Yx9bcsxGCHZdTtn0tYjyEmhq+zE4MQ3upngPeyc6dzslrPniRteyrp2WfTgLvDScOH0xOz90NKTqaRUoWT1q51zBoobNyYn/Prr0f6LBkEo4qmtwGGGE5d6KZAvf0200rvvNOZ329h5Uru5q+6CrjlFu/6rFlsQPfYY44GdgBoSO6/n7vIG290rsnSRnktW9LI23H0KEnoqquc8w0A3mtiInUHO2bPZuaLu41GTg6N17hxzl34/Pk0tPahPACJJy7O2cKjuJi7aFUYCXASQ2EhtYuwxFC7trMGIywxAN5hPQDfY7erNMi6F3t6qiozqU4dhtBUOoOUjgp11K7N1OJ585x1E1dfTdKyh5MApjDv38/zDcKjCqa3AYYYDOz44QeGfgYOpFfgRm4ufxGbN1frDvv3UzcYMIDf3fjLXxgSUg38mTePee9//as3dfWFF2g03d7Chg1s9jdxorMYDaC30rWrs18SwH49eXle0vvgA6bTDh7sPJ6ezuexp7Ru2EDSCUMM27eTSMISg7u4sCzE4G69Dag9BlX77Y4dSQRunWHQIGpC9pbZAwfSO7DrDABJdccOCvgWWrakaD9rlpMwRo5kcaIJJ9VIGGIwIHJzOdA9Pl7dHA/g/IX16xkOctckANzpHz3KqmT7vAKABuellxhmsjecA2h07r+frbjdmsSxY/QKLrvM25Rv8mQSgrvZ37p1DEtNmOAloJkzmUFjz6IqKqKXc9llzvs+coQ1GKowEqAmhtatnaErVUZSbi4/JzcxuKe3AZVDDKr227Gx9MbcmUkDB9LLsoeY4uPpQbl1htGj+XmnpTmPp6SwE+7Klc73u/lm6j32IjiDGgFDDAbcyf32tzSoM2YosxyaZGbSsN9zD3Dxxd5rzJvH7KCHHmI7BPf1rUE67hRUgLHm779n2wy3kP2vf7HQzZ35dPAgU2VvvNE7HW7KFF7n1792HI7LzmbIKCXFWb29dCnDXG594fPP6bKriKFxY28Lj7VrnR1VgQgx2MNqqlRVQO0xhG2JAeiJ4dgxai4WmjbluWEyk1SFbgA/k/XrnaSTmEjvyq0zXHUV79/dIuPWW/n5Tp8Og5oFQwwGNKSvv86ahZEjvev79qHr00/T6D3+uHc9O5u79h49vG0qAO7Slyxhm2x7VTLAsM7DD3NnetVVzrXjxxnSGjkyMnLSwssv87VuPSI/n72XrrzSI2A3//xzGlpVNlJ8vHeUaHo6wytuz8Ca2Gb3RlTDeQAa34QEZ0+nshBDNDQG+3sCvO9OndSZSfv3O9NTO3Uikah0BsAbTho7ll6WXddo0oQ/w7fecvZj6tiR13n1Vedxg2qHIYZTHd9+y9kLI0ao6xGkBG69FXE5OfQI7Hn/Fu67j4bnlVe8Iahjx5i62r+/N0wEUG/YuZOtL9xhn//7Pxoq930VFPB1F1/sFaPnzqWH4RadAbZi6NLFGZKSkrrD8OHetNz0dGoUdv0iO5uelZssNm3ifamIoUMHp4dSWcSg8xjs72mhc2e1xwA4vQYh1IVuffrQa1LpDABDc3akpFBvcV8nNZUi+EnehvuXBkMMpzIOH2bWSGIiQ0huXQBgpfGHH2LLHXd4Q0QA/6BffpkhJveuHmDoKCuLhtx9/UOH6IGMHs0Janbk5bFf0oUXequqZ8/mNd0FbQC9nw4dvHUHu3ej0apV9BbsBLRhAw2kO4y0Zw8JwB1GWr6cZKLqqAqET1UFKocYsrO9w3rs72mhUydmtdhrIax7V1VAr1/vJJ3YWDbVS093vl+PHkyjdIeTxo7lpsIdTrrySno6RoSuUTDEcKqipIQx+F27aGjtVb0WNmzgjOWRI7HLHeYBKKLedhtDAn//u/r1zz3HXeFAxeymJ5+ksXniCe/aK6/QOLu9BSl5zW7dvGGvTZtIVBMmeDvAzpkDIaU6jARE2kdbsAq1dMKzmwTXrqWxdBffbd2qJoa4OK+AH5YYVAVuAF9bXOzUE/w8hqIiZzuF5s2ZRaSqgJbSO4N4+HCm4trTXoWg17BggbNYrkEDbgBmz3ZmONWpw0y3d95x1kUYVCsMMZyqeOopCsbPPuvd/QIMi9xwA1NHp03zhnkAppZu3sxCOHdFppQMUdWvrzb8O3awNuHXv/busk+c4P2dey53pXYsWcLiqrvv9hr/qVNpnFX1FTNn4ljnzk7DDZAY+vVjppId6encyarGk3brFulNZGHtWrYPsYed9u2jkVYRQ8uWzvsvLmb2T0U1BsCpMzRtyvPDZCYB1BncHsOAAfz563QGVbfV/Hzv8ZQUYO9eNLKnswLcOJw4wVClQY2AIYZTCfYZDA88QEK48071uQ8/TAM8dao35AFQYHz2WXoM9uZyFt59l0NFHnnEW8UMRNphqDyN116j7vDww15Ceu45GrubbnIeLyhgdstll3nvd+tW4KuvvPMY9u1jWqu7qA2gURs2zBn+kjIiPLuha4UBhKthsGYxuKvBy5qVBISrflbVMgB8hnXrnN5Iw4YkQzcxdO3Ka7t1hqFDWffhDieNGgXUr0+tx46+ffk1dSoMagYMMZwqcM9gAFiIpNqlLV7M+P5ttzmH2FgoKKCQ3LIlW1u4kZvL+H+vXt4aA4AzC157jR6FOzW2sJAexoAB3rTYLVsoFP/mNwxB2PHBBzT0CtHZimvvcxPYRx/xs3DrC9u2Mf7uDiNt3cquqm5iOHaM50eDGCqqMQDhahlatWLMX+UxnDjhPW4J0HY9QQh6DYsWOY/HxzPMN2+eM9uobl3g8svRfMkSbyuM1FQOBVqxAgbVD0MMpwoefNAZ8wUo8Lqb1R0+zPBO587eiWsWnnqKO+T//Ec5BhRPPsnY9YsvOne6Fh54gDvK//1f79qMGTSyf/6z11uYPJnX+5//8b5uyhSGgy65xLs2axYwZAhO2AbbA2AYqU0bb8GdFQIJW9hmDedR1TAI4e0Sm5Xl7TiraqAH0PgL4fRcokEMMTH6LquAup7h4EHv+cOHk5BtvZAA0AvLyvIa+pQU1MrO9o6ovP56EpURoWsEDDGcKgjTy90qdMvKooF2t6YAWIj2yCOMF6tCMFu20Nu44QZnfyELS5Zwd/+//+utaSgqYo+lvn0pVNpx5AjWMcfOAAAgAElEQVTz3VNSvLvtH38EPv2UXow782ndOpKYW3TOz2ex29ixXgJKT+d7uPWIzEx+Ju7sLFUrDICfRZs2Tt2hoIBeh66BnooY3EV/QcSgqmVwEwOgrmXo1o2foSozCXB2WgX0OsOoUSQfdxX0iBEorF/fm53UuDEr72fMcDb3M6gWGGI4VRCml/sbb7AI6W9/8w62ASiQpqYyDj55svp699xDw/X00941KVnz0Lq1upfSW2/RUD30kNdYT51KIVeVovrqq/yemupdmzmTBmrcOOfxRYvoQbnDSFJyLTnZew+ZmQxxqdp9uIfzAOpUVat4rDKIQTWsx3qvgwcZIrKjc2eGx+zhntq12ZrE7TF0785EArfOkJTEZ3TrBs2aAUOGeHWG+HgcuOAC4L33vASQmsp7nzsXBtULQwynCoJ6uW/bxhDN+eezy6kKL75IwzB5srcNBcCipg8+oLDsDpUANAaZmSQet0ZQUsJ76dEDcE+LKypiI71hw7xZQkVFJIZLLvGSn5QkhuRk1mrYkZZGQ+fOelq3jqERdxgpL48xcJ3w3KOHl0jKWsMAqFtiuMNxMTH8KksoCWD6rx2dOvG53N6EKjMpNpabBTcxAPx8Fy/2ps+OGcPPzDVLfF9yMnWZjz92nj90KFOfTTip2mGI4VSBXy/3oiJm+QjBdhKKQrfaWVnUBkaN8ra4Bhia+f3vGX5ReQNFRQwfde/OIT9uvPMOi6geesibhjp3LkNeKm/hk09Yi6ESnZcv547YHUYqKSGBXXKJtyurFRJxZzCtWMFncBODbjjPsWMkmIoSg8pjAHjMTQx16/JnV5bqZ0CtM2zbxmewY9AgGnr3Tn/4cIrnbj3BCjW6Wmsf6dOHGwt3OCkmhuHAjAzvPRlUKQwxnEpw93IHmL5aqxYbyd1wgzccAgBS4oxnn6XR+c9/1DUN//gH/5j/+U91Z9Zp04CNG5lx5N4Bl5QAjz7KOoCrr/a+9rnnaMTcRWgARefERPXarFm8F3dx3ooV7OXjDiMBJIZOnbyfg7VTdhfq7d6tHs6zdSu/u4nB6iFUUWKIi/Pu0IXg68P0S7LfmyozCYiI6hYGDeJ7ugnAyvZy6wxdu/I9XOEkGRvL0N68eV7yuflmEoQVHjSoFhhiOFVhT1+18NprPO7G9Olo8u231A3atvWub99Ow/6rX6k7rx4/zvDSueeqBeu0NMa0H3zQ660sW0aj/Pvfez2J3bsZvrrlFq/xLC6mZnHppd5itLQ0XmvUKOfxoiLOqXaHkQDeQ4cO3pCUn/AMqD0GIbyhuKNHSWLuXlRl8RgAPmtYjyEpiQQTNjPJIkV3OKlFC77GrTNYVdDp6SzesyMlhZ6HW4No3Zo/s+nTvcRnUGUwxHCqQpW+mpvrTV/NygLuvRdHevUikagwaRK/q4b7ANQksrLUjfKkZJZTp07ekA9Ab6FRI+4k3Zg2jQQwYYJ3bckSEodqCl1aGknK3ZLi228ZEtERg05fAMpGDC1aeL2mo0e9xW1A2YlB1UivRQsSoZsY4uJIDm6PISmJYrpbZ0hMpIfpzkwCGHr74guGFO0YO5aZWAsWOI8PGcKMLXc4CaAIvXs3s8YMqgWGGE5VhE1fnTgRyM/HxkmTvDt2gLvBOXOoP6jCUAcOkBAuv9zbDA+gALliBV/vNpY//UTt4bbbvJ1PS0ooUiYne40vQNG5bl2vh7J9Owv7dGEkwFvJvXMnv3TE0Lq1N/V2yxYec3srquI2QD2kB+CuuaLEEBtLclClrKq6rAqhns0AqDutAiTT/Hzv2nnn8Z7cnkFMDHDttdSI3D2SLruM92tE6GqDIYZTFWHSV995h5lEf/sb8lQhpMJCVi937BjxGtx4/HGGEVT9kixvISnJ2+ICYCaSEHwPN9LTKZCqROfCQs6uvvxyby2GZaB0xNCrl7eFh7VDDtsKA1BnJAF6YlA10LOeRVUk6EcMbo0BCK5lsFcuA5HMJPfxQYOYZbRrl/P4BRfQ2Lt1hlq1GBr68EPvzIWUFD7Du+96X/PrX/NnZZ8NYVBlMMRwqiIoffXQIaavnn02cO+96mu88AIziSZPVs9p+PFHTn279VYWTrmRns4d5v33e3fFx45RWB43Tq1rTJnCUNCVV3rXFizg/atCU2lpFLnPOMN5PD+fArwujJSQ4K2QLixkwV9lE0NFNQZATwydO/P8Q4ecx3v2JMG4x27qCt0aNmQ6q1tnAOi17dsHfP2183i/fvyMdOGkoiJmyRlUOQwxnKrwS18FSAaHDjE7RLVjzcpid9XRo9UZQQCb4MXE8DwV/v53hmFU3VCnTWN4RZWiun8/PZlf/9qbbgowjNSokWciW+zx40yFVHkLX37JAjAdMZx9tjfbSjecp7CQISs3MRQXcwdcmcSgCiUBrCvReQyAN5xkZSa5dYY+ffg56OoZvv7am2l06aUMZ7mroIWg15CeTuKwo2tX6hBTp3q9FoNKhyGGUxm69NWYGGYoXXYZ0Lu3+rV/+hMN6fPPq9dXr2Yl9d13O8daWvjsMwrE993nNe7FxfRChgxRD/957TUaRVUYKTeXpPGrX3mu22T5cr5OF0aKjWVIxI7CQnaSLYvw/NNPfAY3Mezfz8+6sonh2DFv2KZVKxpf+ywEIFLL4Bagrcl4bp0hIYFFhioBevhw7vKXLHEeb9yYhZNunQEgMZSUMPTnRmoqU5y//NK7ZlCpMMRgQKi6r376qTp99Ysv6OL/8Y8Rw+LG/fdz166ron7kEWa5qIz7Bx+wDkDlLUjJXeS556rDUx99RE1DEUZq+uWXDD8NHux9XXo6Sei005zH16xhmElHDLGx3vvwy0gCKp8YpPTu2lu1ogF278ytBn9uj6FRI+pNbo8B4GexfLk3nXTIEBKHW2cAGE767rvIBsRCjx7sPaUKJ11zDZMOjAhd5TDEYECETV8tLuYMh7Zt1d1RAcaZP/mEr3Vn5QCsTUhPJ7G4W2MALJZLSvK2xgC4G924UU0oAMNILVt6W10UFaFpZia9IHetxNGjNHS6MBKgJwb3cB4gmBjc7UJKSvyzklShPFWBG6Ae1gPoaxnq1KFH5/YYAP/MpLw8L2nUqUNy0OkMgN5rWLLEq2fUr8+12bO9RGdQqTDEYECESV8FON959Woab1X3VSnpJbRrp26PDdBbaNZMPavh229pJH73O7VBnDKFBtTdFA+ggf/wQ+403cZ/6VLUOnZMHUb6/HMaZx0xtGqlFsD9MpJq1/Z6BjqPISeHn1u06hiA8EVugDplFaDOsGGDd3aCRZI6nWHVKqYp29GlC0lURQzXXsvvs2d711JTWSD51lveNYNKgyEGAyJM+ur+/fQChg9nDF+Ft99mTP6RR9SZSsuXs3bh3nvVxPLccwznqDqlHj7M699wgzejCqC2cOKEtqitpFYtjyANgN5L7dpqr8AqbHMX5h07xnRZHTF07Oit+7CMsnsuhK4dBlA1xKBqvw3w2YqKSA52JCUxDKirZwDYVM+NMWOAxYuZBGBHly7MUFKFkwYOZH8tE06qUhhiMCCC0lcBkkJODvshqfolFRayUK1nz0h2kxuPPkoxUuVN7NrFnWFqqtpIvvEG4/1+YaT27dWN7tLScLhvX2+hHMDQx3nneYnswAEaTBVhWH2Eypqq2qSJN/Skm94GRI8YLDKyejXZ0bkzs6XcbSt0mUlC0GCrBOj+/fkZq3SGsWOBwkImAbiRksJNg6rYLjWVJOQeBmRQaTDEYEAEpK+etmEDRd/f/547OBWmTKEhffJJZYdWrF7NlMW771aHTV56iSEdVXdWKXn9/v299QQAvZmFC2lg3KS1cSOweTMODhnifd2+fTR8qjBSUGEb4CUGKSmcl7WGAYheHQPg1Rji4ym8lyVl9Ywz+D46nWHjRm/9Q61abJ+t0hkGDwaaNGESgBvXXMPvqpDRTTfxusZrqDIYYjCIwJ2+au36S0rQZfJkhg8eflj92pwczlkYOpR56yo8+igJQWX4c3OpX1xxhXcUJsD8+LVr9d7C229TGNcVtQFqYrAMmE5fiI1lmMONtWu5M3a3Admzh8+iIobdu8tODOVpiWG/ph1+RW6Alxhq1eImQJeZBHiL1gDqDD/84BWT4+KAUaPQ9KuvvGmz7dox00wVTmrenFXs//2vV+8wqBQYYjDQY8YMhmZiY9FgwwYabdVOH6AYvW8fO7Cqwkzr1rHFxl13qTOVXn+du09ViipAb6FePbXhBxhG6tZNHdpJSwPOPhsn3K0uAIY8GjZkAZsbmZkMp6i0EGs4j1tH0GUkAeX3GMraEsN+TTv82mIAZctM6t+fz+6nM2iyk2plZzMzzY2UFH6uqpBRaipDe+4iOYNKgSEGAzVUbblff11d17BvH/DMM5yloCpIAyIaxt13e9dKSig69++vbrR37Bh3kikp3joDgL17liwhabhJaf9+FkipspEAGq9hw7yhr+JihpJUYSRrOI8Vg7dDRwxS0puo7FBS7doMG5WFGBo2ZJaYLjNp1y5vyOi000iMKmLo2ZPXU+kMI0eiRFUFDfD3JyZGHU66+GJmhplwUpXAEIOBGmHrGgCGiPLynEK1HT/8wD/2iRNpMNz4+GOec889am9j5kymLOrCSFaao8qb+PBDGmUVMfz4I/UAVRhpwwYSkooYsrJoKHXCc0wMPS07Dh1iGCRaxBAXpyYG6zq6Rnp79qhbTPhlJgHqcNLAgQwluausY2LYoXbRIu97NWzICW6qtNWWLfm6WbO8r4uNZev1+fM9o0INog9DDAZqhK1r2LKFU91uu83bmM7C448zE+cPf1CvP/cci6xUtQkAw0g9e+q9kZkz6W2oqrDT0tj3XyVYWzva8hS2AXpiaNvW21cpqOo5NladguvnMegG2fg10issBA4e9K751TIAep3h8GH2jHIjOZkag2Lt4ODBJF4VEaWk8DUrV3rXbrmFhDF9unfNIKowxGCgRpi6BoAzmmvV0ovSW7cyzfSOO7zTzwDGr9PTqT2oDOCqVayLuO02tTexaROL4lTeQn4+d5hjxqhfm57OXaqqtUZmJtNqu3RR3zNQ9lRVQE8MDRroU4DLEkoC9I30gmoZtm9nHYj7NU2a6DOTgDLrDD8nAai8hquuojekEqE7dOB1X33V66UYRBWGGAzUCFPX8O23/AP+wx/UBg+IzHj+4x/V688/z+vqpsNNmcK4+Y03qtdnzqRBtdId7cjIYPhLFUaSkkYrOVltkHWFbQB3z6ef7h3OA5SfGFRhJEDfEqM8xGC14tBlJknp7WUkRGQ2gxtdu5LQVMTQuTM9NYXOkN+qFfsjqYihSRNg5EiGHlXGPzWV96gStg2iBkMMBmq46hryExOdbbkBNspr1kw/pGf7dnZCTU319gcCWFQ1YwZjx40be9dzc7l+9dXqdSlJDOefTyPkRloaU0rdE9kAzlHYu1cdRsrOZmaMKowE6FthZGczc6asxKDrkyRl2dNVAX+NwX4vdgRlJq1dq9YSBg5UE4MQ/GwzMtQGfswYtiJxT28DGE7avl193Suv5O+CEaErFYYYDPSw1TVkzprlJIUFC1hQ9uc/61NYn3qK33UdVv/9bwqyv/+9en3OHO58daLzmjWMVavCSKXVzhg5Uj2zwdrJJid715Yv5+tVXViLijicSBdGAvTEUL++uvJa5zFYGkJZicFPY7DuxQ1dLQNAj+H4ca83AZAY1q7luhvJydQzVGGosWOZ+fXJJ+q12rXV4STLe3z3XW+mlEHUYIjBoGyYMYNexIgRFEx1IZDdu7mru/lmtV6Rnw/861/sdqoTradMYeO1889Xr8+cyXu4+mrv2ooVvAe/NNWOHb3ZQwB3qkKoxe5NmxiHL0uqKkBjrPKaAP+W20D0NIa6dUniKmJo3pyk5ZeZpNMZiosZVnTDIl1V2GfAAL6nKpzUoAEHQM2e7S2EA+iBnjihTp02iAoMMRiEh1XbYGUmFRczBVX1B/rMM9zx3n+//lr79+sL2r7/nqM2J0xQx/ml5I7y4ovVKbBpaQx1jBrlXSsqYpM3VRgJYPFVt25qYx2UkQSUrbgNKD8xSKk2nA0bcgevylrS1TIIoc9MOussrutSVgF12KdNG5K+qp4hNpbG/+OP1QSXksJQ32efedd692Y1+iuvmOlulQRDDAbhEba2Ye9eprDeeCN35W5IyRTV3r3V8X+AfZlq1QLGj1evL1vG4jtdJXRaGovlVKSxYgWNsYoYpIwIzyrohvMANKrNmqlDa+UhhqBQElC+6mdVIz1AX8tQvz5/jiqPoVkzEoqKGAB+xp9/rr7PMWOohSxd6l0bNYrvqwonAfQaVq/mz9Ig6jDEYBAeYWsbnn2W2sEDD6jPX7iQ4q6uoO3ECVZZX3EFww0qzJrFeLNqmM/27Uxz1YWRrB2sipS2bGFcXEcMa9ZwF6zSLXQZSYCeGKQM9hh0g3rs59hhtRwpS/UzQAO/bZvaC9FlJgH8rDIz1bv35GT20VJ1VB0xgvUeqirounXZH+mdd9T9ka67jj//qVPV92RQIRhiMAiPMLUNBw5QO7j2Wr128NxzrGlQzU0AKCwePKgXnYuKGH8ePVq9O7fi1n76Qs+eQIsW3jW/wjZAn5EE6Inh2DGGdlTEkJtLQ1yeUBKgDheF6Zekq34uLFRXFvfsSX0lL8+7NnAgr+lumgdEyFelM9SvT+L44AP1/aSkUGBeuNC71qgRtaU33/R6sQYVhiEGg/AIU9vw/PP61hkAM3o+/pjzGFS7boCis1XMpMLixQxX6YglLY2kpCKm/HzOrNZdOzOTBkvVWtxvOE9BAQ2qrqsq4N8OQze9DYh+KCkvLzIDwo6gzKSSEmo/bvgVujVtyqpzlc4AMJy0eTNbeLsxYgQJQBdOmjCBz/HOO+p1g3LDEINBeATMbMDhw8ALL3C621lnqa8xeTIJQTXWE6BRWrSIMWR351ILM2eyidvo0d617Gzmzuu8hWXLSA5+xDBggHqehNX1U0UMVrvy8hS3AeX3GMpDDPZ7siOolgFQ6wy9ejGs46czfPmlemd/2WX8rspOio/n79J776k9lQsuIJmZmoaowxCDQdmgm9kAcLJbdjbbZKhw4AAL3m66Sa8dTJ1Ko3zLLer1EyeAuXOpLdSp413/9FMaSz99ITaWRsWN3FwKmn5hJKB8qaqAvrgNiC4x6Ib12O9BRQxt2pC0VR5Dp078vFU6Q3w8s4R0xJCcTI9KNaCnXTsmIaiIAaBXeOwYvUw3hABuvZWZSyoyMyg3DDEYRAfZ2QwjjR3LP3QVXn6Zu3VV622ARm7aNHoCupz/+fNp8PyykZo2VRenAfRGzjlHHbpZsYIxez9iUA3nAcpPDEFDegB9Swwguh5DTAxDeCojGxtLL1DlMQD8zL79Vi0UX3ABn8EvnLR0qbq537Bh1IJ04aTx43nfr76qXjcoF6JCDEKIS4QQG4UQm4UQnsR1IcRzQohVpV8/CCGO2NaKbWtmCsfJBmuYj9WGoX9/9XkFBRzdOXKkPsw0bx61A53oDDCM1LQpcNFF3rWiIrbZHj1aaUxjjx9nm2i/MBIQyc13QzecByAx1K0bma1sR1YWd+KqAUU1KZQEkNhUHgPgn5k0cCC9ORVx1K/PdV1/o7Fj6YF+9JF3LS6OXXfnzaPn4MbppzO1dfp0fbdZgzKjwsQghIgF8BKASwF0B3CdEMKh3Ekp75FS9pFS9gHwAoC5tuU8a01KqfH/DWokVMN8nnxSXfD21ls0RrqCNoCic+vWwCWXqNePH6dHcPXVamP55ZfMYtGEkRqtWcMMIFUbDIDE0LGjOltJSho9v4ykjh3V6bdWqqpqrTKIoVYthn1UxNCwIdf8Ula3bFFnCfXsyaFMe/d61/wEaICf+TffqMNb/fqRUP3CSXl5+vXUVD6PKtxkUC5Ew2MYAGCzlHKrlLIAwCwAl/ucfx2AmVF4X4PqRtiCN6ugrXt3ZpqosH07++bceqs6dAKQFHJz/cNI8fHa92i0YgVFUtXsZ8C/sM1vOA9QvhoGoHKIAaB3ojLCQvjXMnTqRAJWGX+/2Qxt2nD37idAl5Sw2M2NmBiK0J98og5FDRnC6+vCSaNHM/3ZiNBRg+YvsExoDcCe+LwTgNIXF0IkAegAwO5T1hZCfAOgCMCTUsr3NK+9HcDtAJCYmIjFixdX/M6rCDk5OSfV/aqgeoah27dDsQeG3L4dn9nObbhqFfquXImNf/gDslQtDgC0nz4dSQAyu3fHCc1n1ePFF3Fas2ZYVlzMlFXHm0oMmDULeX36YK2qbw+As7/5Boe7d8dqhfFK2L8fg3ftwqamTbFL8f6Nv/4avQGsKi7GEfd6SQnO37wZu886C1sUrz1nyxbktmuHdYq19qtXI0kIfPbNN54QVeNvv0VvACu/+w5HS9esn0OT779HLwArvv4a2Tk53vesVQvHN2/G94r37Fu3LkrWr8dqxVqT3Fz0ArByzhwcdZFgrexsnAtg89y52Kkg77M6dUL9jAx8pbiuKCjAeQkJyHrtNeTccovnd6lp+/boeewYVr/wAg736+d5fachQ9B67lx8+cEHKFKMd+144YVoO3s2ls2diwJVO/Qo45fwN+0LKWWFvgCMAzDV9v+bALygOfdP7jUAp5d+7wjgRwCdgt6zX79+8mRCRkZGdd9ChaF8hqQkKekPOL+SkpznjR0rZbNmUubmqi9eVCRl27ZSjhypv4FDh6SsVUvKe+9Vr69fz/f+17/U63v3cv3xx9Xrc+Zw/euv1evPPMP1Awe8azt3cu2ll9SvbdRIyv/5H/Xa734nZcOG6rWPP+Z1ly37+dDPP4cFC7j2+efq1w4cKOXFF6vXrr5ayq5d1WsbN/K606er11u2lPLmm9VrTz/N1+7bp16/+GIpe/RQ/y4dPy5l7dpS3nWX+rXLl/Par7yiXt+wgetPPaVejzJO1r9pAN/IEHY9GqGknQDa2v7fBoCmGQtS4AojSSl3l37fCmAxgL5RuCeDqkCYgrfNmxkb/s1v1OmlQGSOr5/oPHcuwyZ+RW1AJC/ejYwMfvfTFxIS9BlVa9cyBNO0qXfNLyMpL48hHb/Oqrq25X4tMYJCSboOq4B/KKl9e3ouOgG6Z0//zCQA+Oor9XpyMvDdd6ilapddty4TCnRV0P368fPVhZPOPBM47zzTWC9KiAYxLAfQRQjRQQgRDxp/T3aREOJMAI0BLLMdayyESCj9dzMA5wJQlFYa1EgEFbwBLGiLi2MXVh2mTKHgO2aM/pyZM2kYdFlPH3wA9O3LecsqLFqEonr1aGBUyMzkmntWs4W1a9X1C4A/MezZw+9lbaAHVExj0A3rse7l6FF1wVl8PGsLdHUBvXqx+lmVAdSvH9NadcRQmg3WeNUq9fqYMayNsQoJ7RCCm4L0dArgKqSmAj/8oG7KZ1AmVJgYpJRFAO4EMB/AegCzpZTrhBB/F0LY00OuAzCr1J2x0A3AN0KI1QAyQI3BEMPJBL+CtyNHWJdw/fV6w5iVRaN+8816o7xnD3f8112nzuzZv58ZSbqiNgBIT8eR3r3Vu++CAubg64TnoiIaQz/hOSZGXd/gV8MA6Ke3ARUXn/08Bvu9uaFrvw3wM8jPVxNH3bokDp0AffbZQMOGTAJQwa8KGiAxlJQAb7+tXh83jhXxprFehRGVOgYp5UdSyjOklJ2klI+VHntYSplmO+evUsr7Xa/7UkrZU0rZu/S7SSv4JWHKFGa4+KWoTp/OFNIJE/TnzJlDg6DLRvroI67riOGnn4AtW3D47LPV62vW0NjpiMEazuNHDO3aqQ14EDFUpsdQXmLQtd8G/DOTAH6GX32l7tAaGwsMG4bGK1eqX3v66fQ6dMTQowdrYHThpHr1SB5z5qh7QRmEhql8Nog+rClv993HuP1336nPKynh7m7YMKBLF/31Zs6kQVI1tgOoL7RuzVCSCqUVt0d0xBCmoypQ/lRVoHqIIT+fhOZGGI/h0CH1POZu3Wjg/XSGY8c4clWF5GTU2b1bPSYUYDgpM1MfLkpJAZYsUXdyBbjByM3Vk4dBKBhiMIgu3FPeTpzg/1VFbxkZwNat/qLzjz+y8Z1OdM7Pp3g9dqw6zASw4jYxEcdVYzwBGqLTT2euvAp+w3kAf2LYvZvhK9XAIMCfGMrbEgOoePUzoA4n1a7NrrV+HgPgX88A+FdBS8kKdhWuvZbfZ89Wr59zDj0LU9NQIRhiMIguwha9AQw1NWkCXHWV/nrWzk9HDBkZDFfpwkhS0mNITtYTh1XYpltfu5YeTe3a3rUjR7i79vMYEhP1nWIry2PwG9bTtCnJxs9jAMqXmdSlC9C4sV6A7t4dBY0b6/sm9elDgtaFk7p0YbhJ5xEIQRH666/1nqpBIAwxGEQXYae8HTjAgTw33aQ2uBZmzaLR7tBBvZ6Wxl48uhGh69dTvNalqe7fTwOoCyMB/sN5tm7l9/JUPefnU/guDzFYXoSuP5CfxxATwxYUOmKwxrH66Qzbtql7FwnBvkg6j0EIHO7blx6DKq1UCIrQn37Kz0eFlBROhNMR14038jMzXkO5YYjBILoIM+UN4OjOggL/MNL69WyDrROdpSQxjBypH/pjhSx0jfOsna2OGHJyaPzLk6oKlL8dBlBxjcH+Hm741TLUq8d1P48B0O/IBw3imoo4UKr17NnDn68KY8bQC7RqT9y45hp+f+st9XqzZmzL/vrrao3FIBCGGAyiizBFb1IyjDR4sL7TKkDROSaGaYgqrFjBGL5f/UN6Or0NnceRmUn9QFff4DecB4gOMQQVuFWEGPxqGXTEAFQ8M0lK9ZxnIJIdptMZkpP5O6MLJ7VrB5x7rr/AnJrKEN/77+vPMdDCEINBdBGm6G3pUmat+HkLUpIYhg3TG9YPPiBxjBqlXrd6Kum8BYDE0Lu3l8wsWLF0P2Jo3pz5824UFk2OTDsAABqDSURBVDJU5VfDAASLz9HWGACK7X7E4FfLkJTE59XpDAMG8LsmnJTfqhUrrHU6Q+3abIQ4b56+ijklhcSkKoYDWEXdrp0JJ5UThhgMog+/ojeA3kKDBpGQgAorVnDHqgsjAQwjDRminwa3YgV3zDp9obiYImWQvlCvHg2ZCn4ZSVaH0oqGklTCdTRCSQcOqLuZAnym3bvV1dFCkCh1HkPjxmxRoROgAZL14sXqegeAXuCOHQwlqnD11fxcdOEkawrgggXOtvAGoWCIwaBqceQIC5Cuv54GV4eZM2n8dBlLO3YAK1f6VztboQodMaxfzzh4EDHohvMAFa9hAPyJoVYtdbZUEDFY4amgIjdVe20gkplkietuWJlJuh39oEH0GHTrycn8XdAVu40ezefWhZNatmTCwaxZ+vewxsNOn65eN9DCEINB1WLGDDaW8wsjlZRwJzhyJNNZVbAMRkAbDPTowXRRFYIK26T0z0g6cYIEVdnEoEJsbOQc3Xr9+hWrfgb8dYYjR4Bdu9TrgwaxSE1XyGaRtU5nSExkSCrN03YtgpQUVqXryCUpiSGladP4O2UQGoYYDKoGVjX0nXfS2OkyUgDgiy9Y2RoURjrjDIYsVDhxgtcJ0heaNInsjt3Ys4dziHXE8OOPJI8gYvDrrAqUjxiE4JqOGAD9sB4gXPUzEJyZFNRpVZe22rIlK9l1OgPAcNI33zCkpcJVVzFtN0iE/ukn//cx8MAQg0Hlw10NXVior4YG+Idep47eG8jO5k7Tz1vIzKRnogsjWecEFbYBFUtVFULvsYTJStIRAxBMDBXpl9S4Mb90HoNFDDqdoUcPCvo6YgBI2kuW6HUO6+erq4Ju0oRe5Vtv6T2CK67geaaxXplgiMGg8lGWaujCQmoQY8cyFKLCp5/yvKAwUkwMMHSoev3oUXZMDdIXgIqlqjZvrh9VevQon9EKC7lRVKR/LcA1XYEb4E8MLVqQtHS7ccA/M6lRI7Y413kMcXFske4nQCcnk7x15NGjB71Mnc4AMJy0fbv+GgkJLHh77z16fwahYIjBoPIRthoaoEE/cCA4jNSkCesgdEhPZ98cXZhm+XKGgYKIQTecB6DRrFdP7xH41TAA/u0wgMr1GOLiSA7lrWUA6EnpPAaAn+3Klfois2HDSN46nUEIhpMWLlRnRwHcHNSuHRxOKigA3nhDf46BA4YYDCofYauhAWYjNWwIXHKJ+jVFRQwtjB6t300fO8Y01CB9QYhIzr0Ka9bovQWAxNCxoz4UFYYYdGEkoOLE4KcxAMFFbp07Mz6vC/X07EmtSLc+aBDXdOJwo0ac0RCkM+Tl6c9p0IC/C7Nn61Nfe/XiJsFMdwsNQwwGlY8w1dAADcC771JU1LW4WLaMFa1+YaQlS0ggQfpCt27+xWV+w3kA/1RVgGEaP2LwG9IDVK7HAISrfi4p0dcB9OrFz2njRvX6wIH8HqQzZGayBYYKQ4cy3BYUTtq7F/jsM/05qan0br75Rn+Owc8wxGBQ+QhTDQ0AH3/M3X5QGCk+nqKjDunpJJYhQ9TrUkaEZx02b/YfzlNSwhx/HTEUF9NY1YRQkm6XHIYYgPJnJp1+Or1CP2JITia5LFmiXk9IoPc4b55eYB41iuThF05KSWFCg6mEDgVDDAZVg6BqaIBhpBYt9J1SARLDhReqW1BYSE9nL506ddTrW7ZQiKyI8Lx7N4lDRwwHDpAcKkIMRUUVJ4bCQn2X0latSF66EIyVsqrTGc48k/fgpzMMHOgvQJ93Hq+h0xkAhpOysljJrkLdusDllwPvvKMPazVsyJ5bM2fqvRODn2GIwaBmIDubu8Jx4/TawcaNHPbuF0bav59tFILCSEAwMcTE6KfGhclIAiruMfhlJYXRGAD/WoaSEn5mKrRsSaOr8xhq1WI4TucxAPyMf/yRNSEq1K3LJAI/nWHUKP4sgsJJhw5RqNYhNZW/Z7qZ0QY/wxCDQc3A++9zZxsURgL8u6kuXszvQcJz/fp6ow+QGM44Qz8roqqIoaIeg/U+KgTVMggRncwkILhv0sqVNOwqNGtG8vCrgh4xgkToF046/3xmkN1xB4mmfXt9Lc0pDkMMBjUDs2YxHu2XgpqWxrnObdvqz0lPZ6ZK//76czIzmY2kqx8A/FthACSG2Fh9xlUQMRQWUmyvCDHExVWMGKyK7CCdQecxAPyMdu5Uz4cG+POqVStYZ5AyQuoqjBkDrFrFFiQqxMcDv/oV6xXy8tTnvPkmyefECb7fTz/5F1qewjDEYFC9mDGDhv6jjxjymDlTfd7+/cCXX/qHkQASw9Ch+hBMbi5DTX5hpJwcGsMgYkhK0hvuivZJAsJ5DEEFbvb3ciPIYwCoM2zdqhd+g2Yz1KnDcZ1+xDBgAOtB/HQG6+c+b57+nJQUJi98/LF6/cEHvUSqK7Q8xWGIwaD6YLXK2LmT/8/O1u/gPvqIxskvjLR9O8MefvrCihU0pn7EEDScBwhOVc3KYmhDF4oKaocBRC+UpNMYWraM3KsOnTpxh61rlheUmQRQgF6+XC9yx8czzOOnM3Ttynvx0xmGDWPygi6cVJZCy1MchhgMqg9laZWRlsbQhzX9S4WgMZ5AZOdq5dirEJSRBIQjhiB9AQjOSoqG+KzzGBISWEEe5DEAep3h9NN5jSCd4fhx/VAdgD+zDRv0LTqsKuhFi+jRqRAXx+SFefPU55Sl0PIUhyEGg+pD2B1cfj4wfz7DCboqY4A7zhYt2GNHh8xMViu3aKE/xxrOoxsHevgwv4KIQddVFQie3gZUvvgMVLyWwRraE5SZBATrDEBw2uqJExy+o0NKCjUGlWcRttDSwBCDQTUi7A5u8WLuOP30BSlJDMnJ/uQRVNgGhBvOA1S+x1BRYqhfn59FRYihbVu+T1Bm0nff6XWIjh2ZWeRHDH36sJurHzGcfz4/L79w0pAhQJs26nBS2EJLA0MMBtWIsDu4tDTu4P0K3zZupIHz0RcS9u9nrNyPGIKG8wDBxCBlzSCGmBhqGEH9kvw6rMbFMa0zKDMpJ0c/lEeIyEQ3v3u98EKSu65Su1Yt4NJL2StLR0IxMcC111KAVmVKhSm0NDDEYFCNCLODk5LEMHKkXsgFIsKlj77Q4Pvv+Q8/Yti7l1XLYYihY0f1+pEjDHlUNzEA1BmCPIY9e/yby3XuHOwxAMEV0OvX+5PU8OEMI+rGiQIMJ+3bxyaJOqSk8HN57z39OQa+MMRgUL0I2sGtXMldfpg01fbt9cYapcRQuzbQu7f+OlasPIgYEhP18yKsHXg0xOeKEkOYRnoFBfriMiBSy6Ajj7PO4vcwOsPy5fpzLG/PLzvp0ktZP+IXTurXj78HfsVuBr4wxGBQs5GWxvDAqFH6c4qLgYwM/zRVlBJDv35Mj9QhWhlJQDAx1Knjb/iDWmIEFbgB4YgBCM5MOnaMnpQK9evz8/DzGM45h16hXzjpzDMp2PvpDI0bs7+SXxW0ENSIPv3UVDiXE4YYDGo20tIoKDZvrj9n1SqGKPzSVAsKcNrGjeGE55YtKZbqEC1i8PMWgIoXuAHRIQbrWf3CSUGZSQ0bsgWJHzEIQXJftEivIQAMJ333nV7TmDGDpACYCudywhCDQc3Fjh0MJfkVtQGR0IOfx7B6NWIKC8MRg5+3kJ/P0FY0iMGvuA2InsYQJD4D4WoZ/AToXr2ATZv07SiAiADtp2cMH84qd7+aByusqAsnPfigt6OsqXAuEwwxGNRcWO0PwugLZ50VqeRVIUxH1eJiDuexxFQVtm2jYQsihnr1/FuDR8tjqIpQUocO3M0HeQwlJfz8dBg4EDh0CHV0VdRAOJ2hSxeGnXTEYCqcKwxDDAY1DzNmMC48cSLj6N9+qz+3oIBDXgL0BWRm4kSzZsxx12HzZu40K5KqCgSnqgLB09ukjJ74nJ2t36XXr08C8yOGhATWMwR5DECoTqsN1q/Xn9OuHT0UP50BoBe5eHGkUNB9Dd21DULBEINBzYLVP8kaJ1lU5B8fzsxk+MJPXyg9L9uvzTYQXngGKk4MQR6D1VeoIi0xAL5HcbH/cJqgIjcguP12p04U0/10hu7dgfr1I2nDOiQnc0ynn34yZgyfff5875qpcK4wDDEY1CyUpX8SwJBDTAw7quqwbx+wdWswMaxZw2t166Y/Z8sW7rL9xPBoEINl8IM8huJi/5h90LAeIBwxdO7s7zHExjKc5+cxxMYCAwYEE8Pw4fQE/DzFIUPYo0kVTjIVzhWGIQaDmoWyxofT0zl7wTKAKpQOiQnlMXTpoh8JCkQykvzablQlMdjPVSEa/ZIAPvP+/erQjYWgzCQAGDQI9bZs8ZK/HVaFu5/OEBfHFOaPPlJ3bTUVzhWCIQaDmoWyxIdzcmj0Q+gLiIvDsS5d/M8LykgCglNVc3L45UcMxcU852QihrCZSfv2sXpch4EDEVNcrJ/fDNAb69UrnM5w8CCwbJn/eQZlhiEGg5qFssSHlyxhHDqEvoDevVHi11Lj+HG2YvAjhuJiZiWFSVWNRmdVIHiCG1CxYT0AieH4cRax6RC2lgEIbo0B+I/6BEj2S5d6007tGDmSn4FfFbRBuWCIwaBmoSzx4fR0VjGfe67+esXF7KsTVL+wbh1j9X7EsGsXs6CiUcMABLfDACruMYTVGAD/ZnpB7beBcJlJiYnIa9XKv9ANINnn5/t7Aw0bci73P/5hKpyjDEMMBjUPYePD6ekUIf00ge+/Z9gmTGEb4F/DEDYjCQhHDEHT24DgrCT7uSqE9RgA/3DSaadxhoWfx9C8OXtIBegM2d26BRPDBRdQrPbTGWbMYFFdUZGpcI4yDDEYnJw4eJCtMMKEkYBwxOA3nAeIPjHUJI0BCCdA+3kMAInVz2NAaRLAzp2Rka4qNGjA/kp+OoOZ4VxpMMRgcHIiI4PfwxBD06b+xhzgLvess/TDeQAaxbg4FnvpsHs3C8IaN9afEy2NIQwx1K3LnXc0iCGo/TbAUNy6dfr5zrBlh4XRGb7+Wp8JZSqcKw2GGAxOTqSnM7xxzjn+51kT2/zSS8MM5wFIDO3b+4d3srLYmsPv/arSYxCC7+OnMTRqRDIL4zHs3OnfD6lXL2oDPgSS06kTtaEgYhg+nASzZIl63VQ4VxoMMRicnFi0iHFoPyN95Ag1hqAwUpjhPEBwqioQvoYBqBpiAIKH9QhRtpTVbdv051ifoY/OIOPjgbPPDtYZBg8mYel0BlPhXGkwxGBw8mHnTuCHH4LDSNZQmLDCsx8xSFm1xGBlJVVUfLbex48YgPBFboC/ztC9O8NxAToDBg0CvvnG/97r1GHGmU5nMBXOlQZDDAYnF2bM4OB4AHjmGX0GyowZwLhx/Pett/pnqoQhhkOHaFyjRQzx8f6jSqPpMUSLGCyPwU9nqF2bKaQhKqCRlxdMIMnJwOrVrLpWwVQ4VwoMMRicPLAa7B08yP9nZanTE63zLGO4Ywdw++1osXCh+rrWcB6//kdhMpLy8zmAvqLtMIDoFbgBwRoDwIK8IGJo2pTZQlHITPrZiwtTzwCwk6pBlcEQg8HJg7AN9jTndZw6VX3dsMIz4E8Me/bwe1URQ7Q0BoD3fOSIv7AsRPjMpK1b/Sup27VjzUOQAN2/P5MM/OoZDKIOQwwGJw/CpidqzkvYt897sLiY6ZVhiaFjR/05YWoYgPDT24CqDSUBEXLTIWwtA+A/hU2IyEQ3P8TF8T1fecVUN1chDDEYnDwIm56oOe9Eixbeg2GG8wA0hq1aebNg7AhLDEFDeoDoi8/HjvnPUS5LLcOPP/qHr7Zu5ffBg/0NeUICkwj8DP6MGSQYU91cpTDEYHDyIGx6oua8rRMmeK8ZRngGwmckAf4N9ICqDyU1bEij6tcyOywx7N9PIx0frzbmM2Y4Q3s6Qz5jBvD++/y3n8E31c3VgqgQgxDiVSHEPiHEd5p1IYT4pxBisxBijRDibNvaeCHEptKv8dG4H4NfKMKmJ2rO23fRRd5rrl3LHWvQrIYtW/zDSACNamysv4gNVD0xbNjA702a6HfmX37J71df7b97/+9/+W+dMS+LDnTiRPB5prq5WhAtj2E6gEt81i8F0KX063YA/wYAIUQTAH8BMBDAAAB/EUL49BIwOOURNj0x7Hlr1zI84teILy+PrS7CeAyJif5tNYDoEcMnn/D7uHH+xvz11/lvnTGfMQOYNCnyf7/de5Axr6AO5DluqpurBVEhBinl5wAO+ZxyOYDXJZEJoJEQohWAkQAWSCkPSSkPA1gAf4IxMIgu1q7176gKRGLm0ahheOMNEsM//+lvzP/wB/77/PP15zz8cOT/fsa8oMB5zG3Mw+7ywxjzCupAnuOmurlaUFUaQ2sAO2z/31l6THfcwKDycfw4Q0TRSFWdMQNYuJBziv0M/u23R/6v273ffjsL6gDOgNAZfPcQm/Ia82ju3iuoA3nOM9XN1QIh/QaJl+VCQrQHME9K2UOx9iGAJ6SUX5T+Px3AfQCSASRIKR8tPf5nALlSymcV17gdDEMhMTGx36xZs6Jy31WBnJwc1K9fv7pvo0L4pT1Di4UL0enf/0bCoUMoaNgQm++8U6lBtFi4EF0mT0atnBzkN2+Orbff7jmvxcKFOPP//T/E2sIsxQkJ2DhpkuPcQSkpqK0Ye5mfmIjM0t/noHOsZxianAyh+NuVQuAzWwuJaLxnWZ+zxcKF6Dh1KhL27cOJFi2wdcIEx7r1DEHn1WScrH8PF1544bdSyv6BJ0opo/IFoD2A7zRrLwO4zvb/jQBaAbgOwMu683Rf/fr1kycTMjIyqvsWKoxf1DO88YaUdetKyag7v+rW5XE7wp6XlOQ8x/pKSnKeJ4T6PCFCn/PzM4R9zzDPEPY5rXOTkng/SUnqcwLwi/pdOskA4BsZwp5XVSgpDcCvS7OTBgE4KqXMAjAfwAghRONS0XlE6TEDg8pDBSuoy505EyYUE+3Ye5hQTFnCNaY30SmBaKWrzgSwDMCZQoidQohUIcRvhBC/KT3lIwBbAWwGMAXARACQUh4C8AiA5aVffy89ZmBQeaiuzJkwxrwyYu9hjLkx+AY2+JRVhoeU8rqAdQngfzRrrwJ4NRr3YWAQCu3aUfhVHS/PeY89RoHY7l3ojDlAj2P7dl7nsce8u/egc+znGgNuUAkwlc8Gpx6qM3PG7N4NTgIYYjA49VDBCmpjzA1+6YhKKMnA4KRD2DCMCdcYnIIwHoOBgYGBgQOGGAwMDAwMHDDEYGBgYGDggCEGAwMDAwMHDDEYGBgYGDhgiMHAwMDAwAFDDAYGBgYGDhhiMDAwMDBwwBCDgYGBgYEDhhgMDAwMDBwwxGBgYGBg4IAhBgMDAwMDBwwxGBgYGBg4YIjBwMDAwMABQwwGBgYGBg4YYjAwMDAwcMAQg4GBgYGBA4YYDAwMDAwcMMRgYGBgYOCAIQYDAwMDAweElLK676HMEELsB/BTdd9HGdAMwIHqvokKwjxDzYB5hpqBk/UZkqSUzYNOOimJ4WSDEOIbKWX/6r6PisA8Q82AeYaagV/CM/jBhJIMDAwMDBwwxGBgYGBg4IAhhqrB/1X3DUQB5hlqBswz1Az8Ep5BC6MxGBgYGBg4YDwGAwMDAwMHDDFUAoQQTYQQC4QQm0q/N9ac104I8akQYr0Q4nshRPuqvVM9wj5D6bkNhBC7hBAvVuU9BiHMMwgh+gghlgkh1gkh1gghrq2Oe3VDCHGJEGKjEGKzEOJ+xXqCEOKt0vWvatLvjoUQz3Bv6e/9GiFEuhAiqTru0w9Bz2A772ohhBRC/CIylQwxVA7uB5AupewCIL30/yq8DuAZKWU3AAMA7Kui+wuDsM8AAI8A+KxK7qpsCPMMuQB+LaU8C8AlAJ4XQjSqwnv0QAgRC+AlAJcC6A7gOiFEd9dpqQAOSyk7A3gOwFNVe5f+CPkMKwH0l1L2AvA2gKer9i79EfIZIIQ4DcDvAHxVtXdYeTDEUDm4HMBrpf9+DcAV7hNKf8HipJQLAEBKmSOlzK26WwxE4DMAgBCiH4BEAJ9W0X2VBYHPIKX8QUq5qfTfu0FyDiwAqmQMALBZSrlVSlkAYBb4LHbYn+1tAMOFEKIK7zEIgc8gpcyw/c5nAmhTxfcYhDA/B4Abo6cB5FflzVUmDDFUDhKllFkAUPq9heKcMwAcEULMFUKsFEI8U7pDqSkIfAYhRAyAZwH8sYrvLSzC/Bx+hhBiAIB4AFuq4N780BrADtv/d5YeU54jpSwCcBRA0yq5u3AI8wx2pAL4uFLvqOwIfAYhRF8AbaWU86ryxiobcdV9AycrhBALAbRULD0Y8hJxAM4H0BfAdgBvAbgZwCvRuL8wiMIzTATwkZRyR3VtVqPwDNZ1WgH4L4DxUsqSaNxbBaD6MN3pg2HOqU6Evj8hxI0A+gMYWql3VHb4PkPpxug58O/2FwVDDOWElPIi3ZoQYq8QopWUMqvU4Ki0g50AVkopt5a+5j0Ag1CFxBCFZxgM4HwhxEQA9QHECyFypJR+ekRUEYVngBCiAYAPATwkpcyspFstC3YCaGv7fxsAuzXn7BRCxAFoCOBQ1dxeKIR5BgghLgJJfKiU8kQV3VtYBD3DaQB6AFhcujFqCSBNCDFWSvlNld1lJcCEkioHaQDGl/57PID3FecsB9BYCGHFs5MBfF8F9xYWgc8gpbxBStlOStkewCQAr1clKYRA4DMIIeIBvAve+5wqvDc/LAfQRQjRofT+UsBnscP+bFcDWCRrVlFS4DOUhmFeBjBWSlmTEi8s+D6DlPKolLKZlLJ96d9AJvgsJzUpAACklOYryl9grDcdwKbS701Kj/cHMNV23sUA1gBYC2A6gPjqvveyPoPt/JsBvFjd913WZwBwI4BCAKtsX31qwL2PAvADqHc8WHrs76DhAYDaAOYA2AzgawAdq/uey/EMCwHstX3uadV9z2V9Bte5i8Esq2q/74p+mcpnAwMDAwMHTCjJwMDAwMABQwwGBgYGBg4YYjAwMDAwcMAQg4GBgYGBA4YYDAwMDAwcMMRgYGBgYOCAIQYDAwMDAwcMMRgYGBgYOPD/AVOh5xr3tl8iAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "ang, dist = file_read(\"lidar01.csv\")\n", - "ox = np.sin(ang) * dist\n", - "oy = np.cos(ang) * dist\n", - "plt.figure(figsize=(6,10))\n", - "plt.plot([oy, np.zeros(np.size(oy))], [ox, np.zeros(np.size(oy))], \"ro-\") # lines from 0,0 to the \n", - "plt.axis(\"equal\")\n", - "bottom, top = plt.ylim() # return the current ylim\n", - "plt.ylim((top, bottom)) # rescale y axis, to match the grid orientation\n", - "plt.grid(True)\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `lidar_to_grid_map.py` contains handy functions which can used to convert a 2D range measurement to a grid map. For example the `bresenham` gives the a straight line between two points in a grid map. Let's see how this works." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS0AAAD8CAYAAAAi9vLQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEv5JREFUeJzt3X+s3XV9x/Hni0tLnY4BVkzXVumSboEsDramsLAsiDILGuqmLlS3wcJsloDDX9OyLYhkiZps4hZRcycNuDgKohl3pFuDFUJcHPQ6foy2QWqXybWNlV+KWyztva/9cb7F03PPPed7f/Se7+fe1yP55p7P9/u5n+/nkvLO5/P+fr6fI9tERJTipEF3ICJiOhK0IqIoCVoRUZQErYgoSoJWRBQlQSsiipKgFREnjKStkg5JemKK65L095L2SXpc0q/3azNBKyJOpNuADT2uXwqsrY7NwOf7NTiroCVpg6Qnqyi5ZTZtRcTCY/tB4LkeVTYCX3LLfwCnSVrRq82TZ9oZSUPALcAlwBiwS9KI7T1T/c5SneJlvHKmt4yIPn7K//KSD2s2bbzlja/0s8+N16r77ccP7wZ+2nZq2PbwNG63Eni6rTxWnTs41S/MOGgB64F9tvcDSNpGK2pOGbSW8UrO15tmccuI6OUh75x1G88+N87DO15Xq+7Qiqd+anvdLG7XLcD2fLdwNkGrW4Q8fxbtRUQDGJhgYr5uNwasbiuvAg70+oXZ5LRqRUhJmyWNSho9wuFZ3C4i5oMxRzxe65gDI8AfVU8RLwB+ZHvKqSHMbqRVK0JW89thgFN1RraUiCjAXI20JN0BXAQslzQGfAxYAmD7C8B24DJgH/B/wB/3a3M2QWsXsFbSGuD7wBXAu2fRXkQ0gDHjc7Rlle1Nfa4buGY6bc44aNk+KulaYAcwBGy1vXum7UVEc0z0zoUP1GxGWtjeTmt4FxELhIHxhRq0ImJhWrAjrRNhx4FHjyu/5RfPHVBPIhYnA0cavA1744JWRAyWcaaHEVEQw3hzY1aCVkQcr7UivrkaF7Q6c1jJcUXMNzHe9YWXZmhc0IqIwWol4hO0IqIQrXVaCVoRUZCJjLQiohQZaUVEUYwYb/DXRyRoRcQkmR5GRDGMeMlDg+7GlBK0IuI4rcWlmR7OWL/Fpt3qRMTsJBEfEcWwxbgz0oqIgkxkpBURpWgl4psbGprbsyl0y1/lpeqIuZNEfEQUZzzrtCKiFFkRHxHFmcjTw4goReuF6QStEyoLUCPmjhFH8hpPRJTCJotLI6IkyuLSiCiHyUgrIgqTRHxEFMMomwBGRDlaXyHW3NDQ3J5FxIDky1rnXV6qjpg5kxXxEVGYJo+0mhtOI2IgbDHhk2oddUjaIOlJSfskbely/fWSdkp6XNIDklb1ai9BKyKO00rED9U6+pE0BNwCXAqcA2ySdE5Htb8BvmT7DcBNwCd6tdk3aEnaKumQpCfazp0h6T5JT1U/T+/b+4goRGuP+DpHDeuBfbb3234J2AZs7KhzDrCz+nx/l+vHqZPTug34LPCltnNbgJ22P1kN97YAH63R1sD0e6k6ifmIllYivnZOa7mk0bbysO3htvJK4Om28hhwfkcbjwHvAP4O+F3g5yW92vaz3W7YN2jZflDSWR2nNwIXVZ9vBx6g4UErIuqbxor4Z2yv63G9W/RzR/nDwGclXQU8CHwfODpVgzN9evha2wcBbB+UdOZUFSVtBjYDLOPnZni7iJgvc7wifgxY3VZeBRw47n72AeD3ACS9CniH7R9N1eAJT8TbHra9zva6JZxyom8XEXNggpNqHTXsAtZKWiNpKXAFMNJeQdJySccaux7Y2qvBmY60fiBpRTXKWgEcmmE7A5ONAyO6s+HIxNyMZ2wflXQtsAMYArba3i3pJmDU9gitVNMnJJnW9PCaXm3ONGiNAFcCn6x+3jPDdiKiYVrTw7mbhNneDmzvOHdD2+e7gbvrttc3aEm6g1YkXC5pDPgYrWB1l6Srge8B76p7w4hoviaviK/z9HDTFJfeNMd9iYgGmOaSh3mXdw8josPcTg/nWoJWREySPeIjohitp4f5CrGIKES2W46I4mR6WIDsdhrRkqeHEVGcPD2MiGLY4miCVkSUJNPDQmXjwFiMktOKiOIkaEVEMbJOKyKKk3VaC0Q2DozFwIajc7QJ4ImQoBURk2R6GBHFSE4rIorjBK2IKEkS8RFRDDs5rYgoihjP08OIKElyWhFRjLx7uIBl48BYkNzKazVVglZETJKnhxFRDCcRHxGlyfRwEcnGgbEQ5OlhRBTDTtCKiMJkyUNEFCU5rYgohhETeXq4eGW30yhRgwdaNDecRsRgVIn4OkcdkjZIelLSPklbulx/naT7JT0i6XFJl/VqL0ErIiZzzaMPSUPALcClwDnAJknndFT7K+Au2+cBVwCf69Vm36AlaXUVBfdK2i3puur8GZLuk/RU9fP0/n9CRJRgDkda64F9tvfbfgnYBmzsvB1wavX5F4ADvRqsM9I6CnzI9tnABcA1VaTcAuy0vRbYWZUjonAGJiZU6wCWSxptOzZ3NLcSeLqtPFada3cj8AeSxoDtwPt69a9vIt72QeBg9flFSXurm24ELqqq3Q48AHy0X3sR0XAG6q/Tesb2uh7XuzXUObHcBNxm+28l/Sbwj5J+1fZEtwan9fRQ0lnAecBDwGurgIbtg5LOnE5bEdFcc7hOawxY3VZexeTp39XAhtZ9/S1Jy4DlwKFuDdZOxEt6FfBV4P22fzyN39t8bOh4hMN1fy0iBmmOEvHALmCtpDWSltJKtI901Pke8CYASWcDy4AfTtVgraAlaQmtgPVl21+rTv9A0orq+gqmiIq2h22vs71uCafUuV1EDFS9JHydRLzto8C1wA5gL62nhLsl3STp8qrah4D3SnoMuAO4yp56rNd3eihJwK3AXtufbrs0AlwJfLL6eU/fvyCy22mUYQ5Xl9reTivB3n7uhrbPe4AL67ZXJ6d1IfCHwH9JOvZ/11/QClZ3Sbqa1vDuXXVvGhENZvBEwS9M2/4m3Z8AQDUPjYiFpuCgFRGLUINfPkzQaoDsdhqNk6AVEcWY3uLSeZegFRGTZBPAiChLyU8PI2LxUUZaEVGM+q/oDESCVkR0UBLxEVGYjLQioihdd7JqhgStBso3+MRAZZ1WRJQmTw8joiwNDlr5CrGIKEpGWgXIxoEx3zI9jIhymLzGExGFyUgrIkqS6WHMuazlihMqQSsiipKgFRGlkDM9jIjS5OlhRJQkI62IKEuCVkQUIzmtiChOglZElETZBDBOtLxUHYtFglZETJbpYUQUI4n4iChOglYMQr+XqpPjiiklaEVEKUSznx5mj/iIOJ5/9tJ0v6MOSRskPSlpn6QtXa7fLOnR6viOpBd6tZeRVkRMNkfTQ0lDwC3AJcAYsEvSiO09L9/K/kBb/fcB5/Vqs+9IS9IySQ9LekzSbkkfr86vkfSQpKck3Slp6Qz/rohoGtc8+lsP7LO93/ZLwDZgY4/6m4A7ejVYZ6R1GLjY9k8kLQG+KelfgQ8CN9veJukLwNXA5+v8FTEY2e006prGkoflkkbbysO2h9vKK4Gn28pjwPld7ym9HlgDfKPXDfsGLdsGflIVl1SHgYuBd1fnbwduJEErYmGoH7Sesb2ux/VuG3NN1foVwN22x3vdsFYiXtKQpEeBQ8B9wHeBF2wfraqM0Yqo3X53s6RRSaNHOFzndhExSG49Paxz1DAGrG4rrwIOTFH3CvpMDaFm0LI9bvvc6obrgbO7VZvid4dtr7O9bgmn1LldRAza3OW0dgFrqxz4UlqBaaSzkqRfAU4HvtWvwWktebD9AvAAcAFwmqRj08te0TMiCjNXSx6q2di1wA5gL3CX7d2SbpJ0eVvVTcC2Kh3VU9+clqTXAEdsvyDpFcCbgU8B9wPvpPU04Ergnv5/QkQUYQ5XxNveDmzvOHdDR/nGuu3VeXq4Ari9Wm9xEq1Iea+kPcA2SX8NPALcWvemEdFg9ad+A1Hn6eHjdFnsZXs/rfxWRCwgIrs8RERhErSikbLbaUwpQSsiipKgFRHFyM6lEVGcBK0oRXY7DWj2JoAJWhExSaaHEVGO0heXRsQilKAVpcrGgYtPVsRHRHE00dyolaAVEcdLTisiSpPpYUSUJUErIkqSkVZElCVBKyKK4bzGExEFyTqtWFCyceAi0f9LcQYmQSsiJslIKyLKkcWlEVGaJOJjQcvGgQtPglZElMMkER8RZUkiPiLKkqAVEaXI4tJYdLLbaeHsbAIYEYVpbsxK0IqIyTI9jIhyGMj0MCKK0tyYxUmD7kBENI9c76jVlrRB0pOS9knaMkWd35e0R9JuSf/Uq72MtCJikrl6eihpCLgFuAQYA3ZJGrG9p63OWuB64ELbz0s6s1ebtUdakoYkPSLp3qq8RtJDkp6SdKekpTP5oyKiYTyNo7/1wD7b+22/BGwDNnbUeS9wi+3nAWwf6tXgdEZa1wF7gVOr8qeAm21vk/QF4Grg89NoLxaJbBxYltbi0tojreWSRtvKw7aH28orgafbymPA+R1t/DKApH8HhoAbbf/bVDesNdKStAp4K/DFqizgYuDuqsrtwNvrtBURBZioecAztte1HcMdLalL650R8WRgLXARsAn4oqTTpupa3enhZ4CPvNxNeDXwgu2jVXmMVkSdRNJmSaOSRo9wuObtImKQZNc6ahgDVreVVwEHutS5x/YR2/8NPEkriHXVN2hJehtwyPa32093qdr1L7A9fCwKL+GUfreLiEGb25zWLmBtlQNfClwBjHTU+WfgjQCSltOaLu6fqsE6Oa0LgcslXQYso5XT+gxwmqSTq9FWt+gZEUWau3cPbR+VdC2wg1a+aqvt3ZJuAkZtj1TXfkfSHmAc+HPbz07VZt+gZft6Wo8jkXQR8GHb75H0FeCdtJ4GXAncM6u/LhaVJN4bbg43AbS9Hdjece6Gts8GPlgdfc1mcelHgQ9K2kcrx3XrLNqKiKaovqy1zjEI01pcavsB4IHq835aazAiYqHJdssRUZTmxqwErYiYTBPN/TqeBK2IOJ752YrMBkrQiojjiNoLRwciQSsiJkvQioiiJGhFRDGS04qI0uTpYUQUxJkeRkRBTIJWRBSmubPDBK2ImCzrtCKiLAlaEVEMG8abOz9M0IqIyTLSioiiJGhFRDEMzNEe8SdCglZEdDA4Oa2IKIVJIj4iCpOcVkQUJUErIsqRF6YjoiQGsjVNRBQlI62IKEde44mIkhicdVoRUZSsiI+IoiSnFRHFsPP0MCIKk5FWRJTDeHx80J2YUoJWRBwvW9NERHEavOThpEF3ICKaxYAnXOuoQ9IGSU9K2idpS5frV0n6oaRHq+NPerWXkVZEHM9ztwmgpCHgFuASYAzYJWnE9p6OqnfavrZOmwlaETHJHCbi1wP7bO8HkLQN2Ah0Bq3a5jVovcjzz3zdd/8PsBx4Zj7vPQsl9RXK6m9JfYUy+vv62TbwIs/v+LrvXl6z+jJJo23lYdvDbeWVwNNt5THg/C7tvEPSbwPfAT5g++kudYB5Dlq2XwMgadT2uvm890yV1Fcoq78l9RXK6+9M2d4wh82p2y06yv8C3GH7sKQ/BW4HLp6qwSTiI+JEGgNWt5VXAQfaK9h+1vbhqvgPwG/0ajBBKyJOpF3AWklrJC0FrgBG2itIWtFWvBzY26vBQSXih/tXaYyS+gpl9bekvkJ5/R0420clXQvsAIaArbZ3S7oJGLU9AvyZpMuBo8BzwFW92pQb/I5RRESnTA8joigJWhFRlHkNWv2W8w+apK2SDkl6ou3cGZLuk/RU9fP0QfbxGEmrJd0vaa+k3ZKuq843tb/LJD0s6bGqvx+vzq+R9FDV3zurZG0jSBqS9Iike6tyY/u6mMxb0Gpbzn8pcA6wSdI583X/mm4DOteobAF22l4L7KzKTXAU+JDts4ELgGuq/55N7e9h4GLbvwacC2yQdAHwKeDmqr/PA1cPsI+druP4J1lN7uuiMZ8jrZeX89t+CTi2nL8xbD9I6+lFu420FrtR/Xz7vHZqCrYP2v7P6vOLtP7nWklz+2vbP6mKS6rDtBYR3l2db0x/Ja0C3gp8sSqLhvZ1sZnPoNVtOf/Kebz/TL3W9kFoBQrgzAH3ZxJJZwHnAQ/R4P5W061HgUPAfcB3gRdsH62qNOnfxGeAjwDH3hx+Nc3t66Iyn0GrznL+mCZJrwK+Crzf9o8H3Z9ebI/bPpfWquj1wNndqs1vryaT9DbgkO1vt5/uUnXgfV2M5nNxad/l/A31A0krbB+sVu4eGnSHjpG0hFbA+rLtr1WnG9vfY2y/IOkBWrm40ySdXI1gmvJv4kLgckmXAcuAU2mNvJrY10VnPkdafZfzN9QIcGX1+UrgngH25WVVjuVWYK/tT7ddamp/XyPptOrzK4A308rD3Q+8s6rWiP7avt72Kttn0fp3+g3b76GBfV2UbM/bAVxGa+uJ7wJ/OZ/3rtm/O4CDwBFaI8OraeUydgJPVT/PGHQ/q77+Fq3pyePAo9VxWYP7+wbgkaq/TwA3VOd/CXgY2Ad8BThl0H3t6PdFwL0l9HWxHHmNJyKKkhXxEVGUBK2IKEqCVkQUJUErIoqSoBURRUnQioiiJGhFRFH+H4+m+nkliYroAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import lidar_to_grid_map as lg\n", - "map1 = np.ones((50, 50)) * 0.5\n", - "line = lg.bresenham((2, 2), (40, 30))\n", - "for l in line:\n", - " map1[l[0]][l[1]] = 1\n", - "plt.imshow(map1)\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS0AAAD8CAYAAAAi9vLQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAEwhJREFUeJzt3X+s3XV9x/Hni0tLnY4BVkzXVumSboEsDramsLAsiDILGuqmLlS3wcJsloDDX9OyLYhkiZps4hZRcycNuDgKohl3pFuDFUJcHPQ6foy2QWqXybWNlV+KWyztva/9cb7F03PPPed7f/Se7+fe1yP55p7P9/u5n+/nkvLO5/P+fr6fI9tERJTipEF3ICJiOhK0IqIoCVoRUZQErYgoSoJWRBQlQSsiipKgFREnjKStkg5JemKK65L095L2SXpc0q/3azNBKyJOpNuADT2uXwqsrY7NwOf7NTiroCVpg6Qnqyi5ZTZtRcTCY/tB4LkeVTYCX3LLfwCnSVrRq82TZ9oZSUPALcAlwBiwS9KI7T1T/c5SneJlvHKmt4yIPn7K//KSD2s2bbzlja/0s8+N16r77ccP7wZ+2nZq2PbwNG63Eni6rTxWnTs41S/MOGgB64F9tvcDSNpGK2pOGbSW8UrO15tmccuI6OUh75x1G88+N87DO15Xq+7Qiqd+anvdLG7XLcD2fLdwNkGrW4Q8fxbtRUQDGJhgYr5uNwasbiuvAg70+oXZ5LRqRUhJmyWNSho9wuFZ3C4i5oMxRzxe65gDI8AfVU8RLwB+ZHvKqSHMbqRVK0JW89thgFN1RraUiCjAXI20JN0BXAQslzQGfAxYAmD7C8B24DJgH/B/wB/3a3M2QWsXsFbSGuD7wBXAu2fRXkQ0gDHjc7Rlle1Nfa4buGY6bc44aNk+KulaYAcwBGy1vXum7UVEc0z0zoUP1GxGWtjeTmt4FxELhIHxhRq0ImJhWrAjrRNhx4FHB92FGIC3/OK5g+5CVAwcafA27I0LWhExWMaZHkZEQQzjzY1ZCVoRcbzWivjmalzQ6sxtdOa4kvtYGJK7bDIx3vWFl2ZoXNCKiMFqJeITtCKiEK11WglaEVGQiYy0IqIUGWlFRFGMGG/w10ckaEXEJJkeRkQxjHjJQ4PuxpQStCLiOK3FpZkezli/xabd6kTE7CQRHxHFsMW4M9KKiIJMZKQVEaVoJeKbGxqa27MpdMtf5aXqiLmTRHxEFGc867QiohRZER8RxZnI08OIKEXrhekErRMqC1Aj5o4RR/IaT0SUwiaLSyOiJMri0ogoh8lIKyIKk0R8RBTDKJsARkQ5Wl8h1tzQ0NyeRcSA5Mta511eqo6YOZMV8RFRmCaPtJobTiNiIGwx4ZNqHXVI2iDpSUn7JG3pcv31knZKelzSA5JW9WovQSsijtNKxA/VOvqRNATcAlwKnANsknROR7W/Ab5k+w3ATcAnerXZN2hJ2irpkKQn2s6dIek+SU9VP0/v2/uIKERrj/g6Rw3rgX2299t+CdgGbOyocw6ws/p8f5frx6mT07oN+CzwpbZzW4Cdtj9ZDfe2AB+t0dbA9HupOon5iJZWIr52Tmu5pNG28rDt4bbySuDptvIYcH5HG48B7wD+Dvhd4Oclvdr2s91u2Ddo2X5Q0lkdpzcCF1WfbwceoOFBKyLqm8aK+Gdsr+txvVv0c0f5w8BnJV0FPAh8Hzg6VYMzfXr4WtsHAWwflHTmVBUlbQY2Ayzj52Z4u4iYL3O8In4MWN1WXgUcOO5+9gHg9wAkvQp4h+0fTdXgCU/E2x62vc72uiWccqJvFxFzYIKTah017ALWSlojaSlwBTDSXkHScknHGrse2NqrwZmOtH4gaUU1yloBHJphOwOTjQMjurPhyMTcjGdsH5V0LbADGAK22t4t6SZg1PYIrVTTJySZ1vTwml5tzjRojQBXAp+sft4zw3YiomFa08O5m4TZ3g5s7zh3Q9vnu4G767bXN2hJuoNWJFwuaQz4GK1gdZekq4HvAe+qe8OIaL4mr4iv8/Rw0xSX3jTHfYmIBpjmkod5l3cPI6LD3E4P51qCVkRMkj3iI6IYraeH+QqxiChEtluOiOJkeliA7HYa0ZKnhxFRnDw9jIhi2OJoglZElCTTw0Jl48BYjJLTiojiJGhFRDGyTisiipN1WgtENg6MxcCGo3O0CeCJkKAVEZNkehgRxUhOKyKK4wStiChJEvERUQw7Oa2IKIoYz9PDiChJcloRUYy8e7iAZePAWJDcyms1VYJWREySp4cRUQwnER8Rpcn0cBHJxoGxEOTpYUQUw07QiojCZMlDRBQlOa2IKIYRE3l6uHhlt9MoUYMHWjQ3nEbEYFSJ+DpHHZI2SHpS0j5JW7pcf52k+yU9IulxSZf1ai9BKyImc82jD0lDwC3ApcA5wCZJ53RU+yvgLtvnAVcAn+vVZt+gJWl1FQX3Stot6brq/BmS7pP0VPXz9P5/QkSUYA5HWuuBfbb3234J2AZs7LwdcGr1+ReAA70arDPSOgp8yPbZwAXANVWk3ALstL0W2FmVI6JwBiYmVOsAlksabTs2dzS3Eni6rTxWnWt3I/AHksaA7cD7evWvbyLe9kHgYPX5RUl7q5tuBC6qqt0OPAB8tF97EdFwBuqv03rG9roe17s11Dmx3ATcZvtvJf0m8I+SftX2RLcGp/X0UNJZwHnAQ8Brq4CG7YOSzpxOWxHRXHO4TmsMWN1WXsXk6d/VwIbWff0tScuA5cChbg3WTsRLehXwVeD9tn88jd/bfGzoeITDdX8tIgZpjhLxwC5graQ1kpbSSrSPdNT5HvAmAElnA8uAH07VYK2gJWkJrYD1Zdtfq07/QNKK6voKpoiKtodtr7O9bgmn1LldRAxUvSR8nUS87aPAtcAOYC+tp4S7Jd0k6fKq2oeA90p6DLgDuMqeeqzXd3ooScCtwF7bn267NAJcCXyy+nlP378gsttplGEOV5fa3k4rwd5+7oa2z3uAC+u2VyendSHwh8B/STr2f9df0ApWd0m6mtbw7l11bxoRDWbwRMEvTNv+Jt2fAEA1D42IhabgoBURi1CDXz5M0GqA7HYajZOgFRHFmN7i0nmXoBURk2QTwIgoS8lPDyNi8VFGWhFRjPqv6AxEglZEdFAS8RFRmIy0IqIoXXeyaoYErQbKN/jEQGWdVkSUJk8PI6IsDQ5a+QqxiChKRloFyMaBMd8yPYyIcpi8xhMRhclIKyJKkulhzLms5YoTKkErIoqSoBURpZAzPYyI0uTpYUSUJCOtiChLglZEFCM5rYgoToJWRJRE2QQwTrS8VB2LRYJWREyW6WFEFCOJ+IgoToJWDEK/l6qT44opJWhFRClEs58eZo/4iDief/bSdL+jDkkbJD0paZ+kLV2u3yzp0er4jqQXerWXkVZETDZH00NJQ8AtwCXAGLBL0ojtPS/fyv5AW/33Aef1arPvSEvSMkkPS3pM0m5JH6/Or5H0kKSnJN0paekM/66IaBrXPPpbD+yzvd/2S8A2YGOP+puAO3o1WGekdRi42PZPJC0BvinpX4EPAjfb3ibpC8DVwOfr/BUxGNntNOqaxpKH5ZJG28rDtofbyiuBp9vKY8D5Xe8pvR5YA3yj1w37Bi3bBn5SFZdUh4GLgXdX528HbiRBK2JhqB+0nrG9rsf1bhtzTdX6FcDdtsd73bBWIl7SkKRHgUPAfcB3gRdsH62qjNGKqN1+d7OkUUmjRzhc53YRMUhuPT2sc9QwBqxuK68CDkxR9wr6TA2hZtCyPW773OqG64Gzu1Wb4neHba+zvW4Jp9S5XUQM2tzltHYBa6sc+FJagWmks5KkXwFOB77Vr8FpLXmw/QLwAHABcJqkY9PLXtEzIgozV0seqtnYtcAOYC9wl+3dkm6SdHlb1U3Atiod1VPfnJak1wBHbL8g6RXAm4FPAfcD76T1NOBK4J7+f0JEFGEOV8Tb3g5s7zh3Q0f5xrrt1Xl6uAK4vVpvcRKtSHmvpD3ANkl/DTwC3Fr3phHRYPWnfgNR5+nh43RZ7GV7P638VkQsICK7PEREYRK0opGy22lMKUErIoqSoBURxcjOpRFRnAStKEV2Ow1o9iaACVoRMUmmhxFRjtIXl0bEIpSgFaXKxoGLT1bER0RxNNHcqJWgFRHHS04rIkqT6WFElCVBKyJKkpFWRJQlQSsiiuG8xhMRBck6rVhQsnHgItH/S3EGJkErIibJSCsiypHFpRFRmiTiY0HLxoELT4JWRJTDJBEfEWVJIj4iypKgFRGlyOLSWHTq7HYaDWZnE8CIKExzY1aCVkRMlulhRJTDQKaHEVGU5sYsThp0ByKieeR6R622pA2SnpS0T9KWKer8vqQ9knZL+qde7WWkFRGTzNXTQ0lDwC3AJcAYsEvSiO09bXXWAtcDF9p+XtKZvdqsPdKSNCTpEUn3VuU1kh6S9JSkOyUtnckfFREN42kc/a0H9tneb/slYBuwsaPOe4FbbD8PYPtQrwanM9K6DtgLnFqVPwXcbHubpC8AVwOfn0Z7sUjU2TgwmqO1uLT2SGu5pNG28rDt4bbySuDptvIYcH5HG78MIOnfgSHgRtv/NtUNa420JK0C3gp8sSoLuBi4u6pyO/D2Om1FRAEmah7wjO11bcdwR0vq0npnRDwZWAtcBGwCvijptKm6Vnd6+BngIy93E14NvGD7aFUeoxVRJ5G0WdKopNEjHK55u4gYJNm1jhrGgNVt5VXAgS517rF9xPZ/A0/SCmJd9Q1akt4GHLL97fbTXap2/QtsDx+Lwks4pd/tImLQ5jantQtYW+XAlwJXACMddf4ZeCOApOW0pov7p2qwTk7rQuBySZcBy2jltD4DnCbp5Gq01S16RkSR5u7dQ9tHJV0L7KCVr9pqe7ekm4BR2yPVtd+RtAcYB/7c9rNTtdk3aNm+ntbjSCRdBHzY9nskfQV4J62nAVcC98zqr4tFJbuZNtwcbgJoezuwvePcDW2fDXywOvqazeLSjwIflLSPVo7r1lm0FRFNUX1Za51jEKa1uNT2A8AD1ef9tNZgRMRCk+2WI6IozY1ZCVoRMZkmmvt1PAlaEXE887MVmQ2UoBURxxG1F44ORIJWREyWoBURRUnQiohiJKcVEaXJ08OIKIgzPYyIgpgErYgoTHNnhwlaETFZ1mlFRFkStCKiGDaMN3d+mKAVEZNlpBURRUnQiohiGJijPeJPhAStiOhgcHJaEVEKk0R8RBQmOa2IKEqCVkSUIy9MR0RJDGRrmogoSkZaEVGOvMYTESUxOOu0IqIoWREfEUVJTisiimHn6WFEFCYjrYgoh/H4+KA7MaUErYg4XramiYjiNHjJw0mD7kBENIsBT7jWUYekDZKelLRP0pYu16+S9ENJj1bHn/RqLyOtiDie524TQElDwC3AJcAYsEvSiO09HVXvtH1tnTYTtCJikjlMxK8H9tneDyBpG7AR6Axatc1r0HqR55/5uu/+H2A58Mx83nsWSuorlNXfkvoKZfT39bNt4EWe3/F13728ZvVlkkbbysO2h9vKK4Gn28pjwPld2nmHpN8GvgN8wPbTXeoA8xy0bL8GQNKo7XXzee+ZKqmvUFZ/S+orlNffmbK9YQ6bU7dbdJT/BbjD9mFJfwrcDlw8VYNJxEfEiTQGrG4rrwIOtFew/aztw1XxH4Df6NVgglZEnEi7gLWS1khaClwBjLRXkLSirXg5sLdXg4NKxA/3r9IYJfUVyupvSX2F8vo7cLaPSroW2AEMAVtt75Z0EzBqewT4M0mXA0eB54CrerUpN/gdo4iITpkeRkRRErQioijzGrT6LecfNElbJR2S9ETbuTMk3Sfpqern6YPs4zGSVku6X9JeSbslXVedb2p/l0l6WNJjVX8/Xp1fI+mhqr93VsnaRpA0JOkRSfdW5cb2dTGZt6DVtpz/UuAcYJOkc+br/jXdBnSuUdkC7LS9FthZlZvgKPAh22cDFwDXVP89m9rfw8DFtn8NOBfYIOkC4FPAzVV/nweuHmAfO13H8U+ymtzXRWM+R1ovL+e3/RJwbDl/Y9h+kNbTi3YbaS12o/r59nnt1BRsH7T9n9XnF2n9z7WS5vbXtn9SFZdUh2ktIry7Ot+Y/kpaBbwV+GJVFg3t62Izn0Gr23L+lfN4/5l6re2D0AoUwJkD7s8kks4CzgMeosH9raZbjwKHgPuA7wIv2D5aVWnSv4nPAB8Bjr05/Gqa29dFZT6DVp3l/DFNkl4FfBV4v+0fD7o/vdget30urVXR64Gzu1Wb315NJultwCHb324/3aXqwPu6GM3n4tK+y/kb6geSVtg+WK3cPTToDh0jaQmtgPVl21+rTje2v8fYfkHSA7RycadJOrkawTTl38SFwOWSLgOWAafSGnk1sa+LznyOtPou52+oEeDK6vOVwD0D7MvLqhzLrcBe259uu9TU/r5G0mnV51cAb6aVh7sfeGdVrRH9tX297VW2z6L17/Qbtt9DA/u6KNmetwO4jNbWE98F/nI+712zf3cAB4EjtEaGV9PKZewEnqp+njHoflZ9/S1a05PHgUer47IG9/cNwCNVf58AbqjO/xLwMLAP+ApwyqD72tHvi4B7S+jrYjnyGk9EFCUr4iOiKAlaEVGUBK2IKEqCVkQUJUErIoqSoBURRUnQioii/D8VkvvGFeo2mAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "line = lg.bresenham((2, 30), (40, 30))\n", - "for l in line:\n", - " map1[l[0]][l[1]] = 1\n", - "line = lg.bresenham((2, 30), (2, 2))\n", - "for l in line:\n", - " map1[l[0]][l[1]] = 1\n", - "plt.imshow(map1)\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "To fill empty areas, a queue-based algorithm can be used that can be used on an initialized occupancy map. The center point is given: the algorithm checks for neighbour elements in each iteration, and stops expansion on obstacles and free boundaries." - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "from collections import deque\n", - "def flood_fill(cpoint, pmap):\n", - " \"\"\"\n", - " cpoint: starting point (x,y) of fill\n", - " pmap: occupancy map generated from Bresenham ray-tracing\n", - " \"\"\"\n", - " # Fill empty areas with queue method\n", - " sx, sy = pmap.shape\n", - " fringe = deque()\n", - " fringe.appendleft(cpoint)\n", - " while fringe:\n", - " n = fringe.pop()\n", - " nx, ny = n\n", - " # West\n", - " if nx > 0:\n", - " if pmap[nx - 1, ny] == 0.5:\n", - " pmap[nx - 1, ny] = 0.0\n", - " fringe.appendleft((nx - 1, ny))\n", - " # East\n", - " if nx < sx - 1:\n", - " if pmap[nx + 1, ny] == 0.5:\n", - " pmap[nx + 1, ny] = 0.0\n", - " fringe.appendleft((nx + 1, ny))\n", - " # North\n", - " if ny > 0:\n", - " if pmap[nx, ny - 1] == 0.5:\n", - " pmap[nx, ny - 1] = 0.0\n", - " fringe.appendleft((nx, ny - 1))\n", - " # South\n", - " if ny < sy - 1:\n", - " if pmap[nx, ny + 1] == 0.5:\n", - " pmap[nx, ny + 1] = 0.0\n", - " fringe.appendleft((nx, ny + 1))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This algotihm will fill the area bounded by the yellow lines starting from a center point (e.g. (10, 20)) with zeros:" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAS0AAAD8CAYAAAAi9vLQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAExpJREFUeJzt3X+sX2Vhx/H3hwsVQ1WoVVPbKmyrCY1xsDSFhSVDwFjQUP/ACboNl2bNEtlg4LTMBZXtD3VRyDICuxMCGkfBHxk3pKZjCHEuA1oHMtqG9do5uWtjxy8VjEDv/eyPc8q+vfd7v99zf/R+z9P7eSUn9z7ne+5znkvKJ8/znOc8V7aJiCjFcYNuQETETCS0IqIoCa2IKEpCKyKKktCKiKIktCKiKAmtiDhqJN0m6aCkJ6b5XJL+RtKopMcl/Ua/OhNaEXE03Q5s6PH5hcCa+tgM3NyvwjmFlqQNkp6sU3LLXOqKiGOP7e8Cz/a4ZCPwFVceAk6WtKJXncfPtjGShoCbgPcAY8AOSSO2d0/3M0NLT/Lxy5bN9pYR0cehZ59l/IUXNZc63vvuk/zMs+ONrv3+4y/tAn7ZcWrY9vAMbrcSeKqjPFafOzDdD8w6tID1wKjtfQCStlKl5rShdfyyZbz1mqvmcMuI6GX/F2+ccx3PPDvOI9vf1ujaoRV7f2l73Rxu1y1ge75bOJfQ6paQZ82hvohoAQMTTCzU7caA1R3lVcD+Xj8wlzmtRgkpabOknZJ2jr/w4hxuFxELwZhXPN7omAcjwO/XTxHPBn5qe9qhIcytp9UoIevx7TDAa962OltKRBRgvnpaku4EzgWWSxoDPg2cAGD7FmAbcBEwCvwC+IN+dc4ltHYAaySdBvwPcCnw4TnUFxEtYMz4PG1ZZfuyPp8b+NhM6px1aNk+JOkKYDswBNxme9ds64uI9pjoPRc+UHPpaWF7G1X3LiKOEQbGj9XQiohj0zHb0zoafvihWwbdhBiAX73rjwbdhKgZeKXF27C3LrQiYrCMMzyMiIIYxtubWQmtiDhStSK+vVoXWpPnNibPcb33rWcsZHPiKNm+/7FBNyGmJca7vvDSDq0LrYgYrGoiPqEVEYWo1mkltCKiIBPpaUVEKdLTioiiGDHe4j8fkdCKiCkyPIyIYhjxsocG3YxpJbQi4gjV4tIMD2dtymLT/VNfqM6C04j5lYn4iCiGLcadnlZEFGQiPa2IKEU1Ed/eaGhvy6bRbbO4yfNcmeOKmL1MxEdEccazTisiSpEV8RFRnIk8PYyIUlQvTCe0jqosQI2YP0a8ktd4IqIUNllcGhElURaXRkQ5THpaEVGYTMRHRDGMsglgRJSj+hNi7Y2G9rYsIgYkf6x1weWl6ojZM1kRHxGFaXNPq71xGhEDYYsJH9foaELSBklPShqVtKXL52+T9ICkRyU9LumiXvWlpxURR6gm4ufnNR5JQ8BNwHuAMWCHpBHbuzsu+wvgbts3S1oLbANOna7OvlEp6TZJByU90XFumaT7JO2tv54yy98pIlqn2iO+ydHAemDU9j7bLwNbgY2TrjHw+vr7NwD7e1XYpKd1O/C3wFc6zm0B7rf9ubq7twX4ZIO6BqbfS9WZmI+oVBPxjee0lkva2VEetj3cUV4JPNVRHgPOmlTHZ4B/kvTHwEnABb1u2De0bH9X0qmTTm8Ezq2/vwN4kJaHVkQ0N4MV8U/bXtfj827p50nly4DbbX9R0m8CX5X0TtsT3Sqc7ZzWW2wfALB9QNKbp22xtBnYDDB0SkaREW03zyvix4DVHeVVTB3+bQI2ANj+N0knAsuBg90qPOpPD20P215ne93Q0pOO9u0iYh5McFyjo4EdwBpJp0laAlwKjEy65sfA+QCSTgdOBP53ugpn29P6iaQVdS9rBdMkYptl48CI7mx4ZWJ++jO2D0m6AtgODAG32d4l6Xpgp+0R4Brg7yX9KdXQ8aO2Jw8hXzXb0BoBLgc+V3+9Z5b1RETLVMPD+RuE2d5GtYyh89x1Hd/vBs5pWl/f0JJ0J9Wk+3JJY8CnqcLqbkmbqLp2H2x6w4hovzaviG/y9PCyaT46f57bEhEtMMMlDwsuK+IjYpL5HR7Ot4RWREyRPeIjohjV08P8CbGIKES2W46I4mR4WIDsdhpRydPDiChOnh5GRDFscSihFRElyfCwUNk4MBajzGlFRHESWhFRjKzTiojiZJ3WMSIbB8ZiYMOhedoE8GhIaEXEFBkeRkQxMqcVEcVxQisiSpKJ+Igohp05rYgoihjP08OIKEnmtCKiGHn38BiWjQPjmORqXqutEloRMUWeHkZEMZyJ+IgoTYaHi0g2DoxjQZ4eRkQx7IRWRBQmSx4ioiiZ04qIYhgxkaeHi1d2O40StbijRXvjNCIGo56Ib3I0IWmDpCcljUraMs01vyNpt6Rdkv6hV33paUXEVPPU1ZI0BNwEvAcYA3ZIGrG9u+OaNcC1wDm2n5P05l519u1pSVot6QFJe+oUvLI+v0zSfZL21l9PmcsvFxHtMY89rfXAqO19tl8GtgIbJ13zh8BNtp+r7u2DvSpsMjw8BFxj+3TgbOBjktYCW4D7ba8B7q/LEVE4AxMTanQAyyXt7Dg2T6puJfBUR3msPtfpHcA7JP2rpIckbejVvr7DQ9sHgAP19z+XtKe+6Ubg3PqyO4AHgU/2qy8iWs5A83VaT9te1+PzbhVNHnweD6yhypNVwL9Ieqft57tVOKOJeEmnAmcCDwNvqQPtcLD1HIdGRDnsZkcDY8DqjvIqYH+Xa+6x/Yrt/wKepAqxrhqHlqSlwDeBq2z/bAY/t/lw13H8hReb/lhEDJIbHv3tANZIOk3SEuBSYGTSNf8IvBtA0nKq4eK+6SpsFFqSTqAKrK/Z/lZ9+ieSVtSfrwC6Tp7ZHra9zva6oaUnNbldRAxUs0n4JhPxtg8BVwDbgT3A3bZ3Sbpe0sX1ZduBZyTtBh4A/sz2M9PV2XdOS5KAW4E9tr/U8dEIcDnwufrrPX1/g8hup1GGeVxdansbsG3Sues6vjdwdX301WSd1jnA7wH/Iemx+tyfU4XV3ZI2AT8GPtjkhhHRcgZPFPzCtO3v0f0JAMD589uciGiHgkMrIhahFr98mNBqgex2Gq2T0IqIYsxscemCS2hFxBTZBDAiylLy08OIWHyUnlZEFKP5KzoDkdCKiEmUifiIKEx6WhFRlIlBN2B6Ca0Wyl/wiYHKOq2IKE2eHkZEWVocWvm7hxFRlPS0CpCNA2OhZXgYEeUweY0nIgqTnlZElCTDw5h3WcsVR1VCKyKKktCKiFLIGR5GRGny9DAiSpKeVkSUJaEVEcXInFZEFCehFRElUTYBjKMtL1XHYpHQioipMjyMiGJkIj4iipPQikHo91J15rhiWgmtiCiFaPfTw+wRHxFH8v+/NN3vaELSBklPShqVtKXHdZdIsqR1vepLaEXEVG549CFpCLgJuBBYC1wmaW2X614H/AnwcL86+4aWpBMlPSLpB5J2Sfpsff40SQ9L2ivpLklL+v8KEVGEeQotYD0wanuf7ZeBrcDGLtf9JfAF4Jf9Kmwyp/UScJ7tFySdAHxP0reBq4EbbG+VdAuwCbi50a8RA5HdTqOpGSx5WC5pZ0d52PZwR3kl8FRHeQw464h7SWcCq23fK+nj/W7YN7RsG3ihLp5QHwbOAz5cn78D+AwJrYhjQ/PQetp2rzmobhtzvVq7pOOAG4CPNr1hozktSUOSHgMOAvcBPwSet32ovmSMKlG7/exmSTsl7Rx/4cWm7YqIQXH19LDJ0cAYsLqjvArY31F+HfBO4EFJPwLOBkZ6TcY3Ci3b47bPqG+4Hji922XT/Oyw7XW21w0tPanJ7SJi0OZvTmsHsKaeA18CXAqMvHob+6e2l9s+1fapwEPAxbZ3dq9uhk8PbT8PPEiVhidLOjy8nJyeEVGw+VryUI/GrgC2A3uAu23vknS9pItn07a+c1qS3gS8Yvt5Sa8FLgA+DzwAXEL1NOBy4J7ZNCAiWmgeV8Tb3gZsm3TuummuPbdffU2eHq4A7qjXWxxHlZT3StoNbJX0V8CjwK0N6oqItms+9BuIJk8PHwfO7HJ+H9X8VkQcQ0R2eYiIwiS0opWy22lMK6EVEUVJaEVEMbJzaUQUJ6EVpchupwHt3gQwoRURU2R4GBHlKH1xaUQsQgmtKFU2Dlx8siI+IoqjifamVkIrIo6UOa2IKE2GhxFRloRWRJQkPa2IKEtCKyKK4bzGExEFyTqtOKZk48BFwu1NrYRWREyRnlZElCOLSyOiNJmIj2NaNg489iS0IqIcJhPxEVGWTMRHRFkSWhFRiiwujUWnyW6n0WJ2NgGMiMK0N7MSWhExVYaHEVEOAxkeRkRR2ptZHDfoBkRE+8jNjkZ1SRskPSlpVNKWLp9fLWm3pMcl3S/p7b3qS2hFxBSacKOjbz3SEHATcCGwFrhM0tpJlz0KrLP9LuAbwBd61dk4tCQNSXpU0r11+TRJD0vaK+kuSUua1hURLeYZHP2tB0Zt77P9MrAV2HjE7ewHbP+iLj4ErOpV4UzmtK4E9gCvr8ufB26wvVXSLcAm4OYZ1BeLRNeNAz+UtVttVS0ubTyptVzSzo7ysO3hjvJK4KmO8hhwVo/6NgHf7nXDRj0tSauA9wFfrssCzqPqygHcAXygSV0RUYCJhgc8bXtdxzE8qSZ1qb1rIkr6XWAd8Ne9mta0p3Uj8AngdXX5jcDztg/V5TGqRO3WkM3AZoChU05peLuIGKQZ9LT6GQNWd5RXAfun3E+6APgU8Nu2X+pVYd+elqT3Awdtf7/zdJdLu/6WtocPp/DQ0pP63S4iBm1+57R2AGvqOfAlwKXASOcFks4E/g642PbBfhU26WmdA1ws6SLgRKo5rRuBkyUdX/e2uqZnRJRo/t49tH1I0hXAdmAIuM32LknXAzttj1ANB5cCX69mnvix7Yunq7NvaNm+FrgWQNK5wMdtf0TS14FLqJ4GXA7cM5dfLhaXbpPz0SLzuAmg7W3Atknnruv4/oKZ1DeXdVqfBK6WNEo1x3XrHOqKiLao/1hrk2MQZvQaj+0HgQfr7/dRrcGIiGNNtluOiKK0N7MSWhExlSba++d4EloRcSRzeOFoKyW0IuIIwvO5uHTeJbQiYqqEVkQUJaEVEcXInFZElCZPDyOiIM7wMCIKYhJaEVGY9o4OE1oRMVXWaUVEWRJaEVEMG8bbOz5MaEXEVOlpRURREloRUQwD87RH/NGQ0IqISQzOnFZElMJkIj4iCpM5rYgoSkIrIsqRF6YjoiQGsjVNRBQlPa2IKEde44mIkhicdVoRUZSsiI+IomROKyKKYefpYUQUJj2tiCiH8fj4oBsxrYRWRBwpW9NERHFavOThuEE3ICLaxYAn3OhoQtIGSU9KGpW0pcvnr5F0V/35w5JO7VVfQisijuR6E8AmRx+ShoCbgAuBtcBlktZOumwT8JztXwNuAD7fq86EVkRM4fHxRkcD64FR2/tsvwxsBTZOumYjcEf9/TeA8yVpugoXdE7r5afGnv7RVR//b2A58PRC3nsOSmorlNXektoKZbT37XOt4Oc8t/2f/Y3lDS8/UdLOjvKw7eGO8krgqY7yGHDWpDpevcb2IUk/Bd7INP+tFzS0bL8JQNJO2+sW8t6zVVJboaz2ltRWKK+9s2V7wzxW163HNHkyrMk1r8rwMCKOpjFgdUd5FbB/umskHQ+8AXh2ugoTWhFxNO0A1kg6TdIS4FJgZNI1I8Dl9feXAN+xp1+SP6h1WsP9L2mNktoKZbW3pLZCee0duHqO6gpgOzAE3GZ7l6TrgZ22R4Bbga9KGqXqYV3aq071CLSIiNbJ8DAiipLQioiiLGho9VvOP2iSbpN0UNITHeeWSbpP0t766ymDbONhklZLekDSHkm7JF1Zn29re0+U9IikH9Tt/Wx9/rT61Y299ascSwbd1sMkDUl6VNK9dbm1bV1MFiy0Gi7nH7TbgclrVLYA99teA9xfl9vgEHCN7dOBs4GP1f8929rel4DzbP86cAawQdLZVK9s3FC39zmqVzra4kpgT0e5zW1dNBayp9VkOf9A2f4uU9eHdL5icAfwgQVt1DRsH7D97/X3P6f6n2sl7W2vbb9QF0+oDwPnUb26AS1qr6RVwPuAL9dl0dK2LjYLGVrdlvOvXMD7z9ZbbB+AKiiANw+4PVPUb8WfCTxMi9tbD7ceAw4C9wE/BJ63fai+pE3/Jm4EPgEcfiv4jbS3rYvKQobWjJbqRzOSlgLfBK6y/bNBt6cX2+O2z6BaFb0eOL3bZQvbqqkkvR84aPv7nae7XDrwti5GC7m4tMly/jb6iaQVtg9IWkHVS2gFSSdQBdbXbH+rPt3a9h5m+3lJD1LNxZ0s6fi6B9OWfxPnABdLugg4EXg9Vc+rjW1ddBayp9VkOX8bdb5icDlwzwDb8qp6juVWYI/tL3V81Nb2vknSyfX3rwUuoJqHe4Dq1Q1oSXttX2t7le1Tqf6dfsf2R2hhWxcl2wt2ABcB/0k1l/Gphbx3w/bdCRwAXqHqGW6imsu4H9hbf1026HbWbf0tquHJ48Bj9XFRi9v7LuDRur1PANfV538FeAQYBb4OvGbQbZ3U7nOBe0to62I58hpPRBQlK+IjoigJrYgoSkIrIoqS0IqIoiS0IqIoCa2IKEpCKyKK8n9ajj1llwZUMgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "flood_fill((10, 20), map1)\n", - "map_float = np.array(map1)/10.0\n", - "plt.imshow(map1)\n", - "plt.colorbar()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Let's use this flood fill on real data:" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The grid map is 150 x 100 .\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAHWCAYAAABKaZ9JAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztnX+UXWV57z/PBINBICkGSEzCJU3ntvUmWJshaL3UXIJdhILxsvwRbL1gsVm9FWurUrB2odfWtbDWWtaS4p0iBVuvAa0XUxukLZUrbUUyYFshXDoJcMmQhMivFBQdwjz3j73PuHNyzsw5c/Z+94/3+1lr1jznnD37c/acPXnzfvf7vtvcHSGEECJvhsp+A0IIIZqJGhghhBCFoAZGCCFEIaiBEUIIUQhqYIQQQhSCGhghhBCFoAZGCCEajpldb2YHzOy+WbY73cxeNLM35+FVAyOEEM3nBuCcmTYws3nAx4Hb8pIW1sCY2Tlm9qCZ7TKzK4ryCCGEmBl3/wbw1CybvQf4S+BAXt5CGpi0JbwG2Ai8ErjQzF5ZhEsIIcRgmNky4L8Cn8lzv0flubMM64Bd7v4QgJltBTYBO7Mbmdn5wPnHHXfcrw4PDxf0VurL1HM/xA9NAWBHDeGHppi3aEHJ70qIZnLvvfc+4e4nFun4KTvZv8dk7vud4Jn7gR9knhp199E+dvHHwOXu/qKZ5fa+impglgF7Mo8ngDOyG5jZFmALwI8tWsQ//sM/ADA0NMTU1NRAdR77qILz2W07eX486a0uGD6J58cPcNL71zfuOOWUswrOBccc8/8omO8xyfvsrNz3+z7/8g/cfWSAXYwAW9PGZTFwrpkdcvdbBnlfRTUwnZrAw1bVTFvXUYC1a9dqxU0hROMxjCEr4MrEgP+CuvvKVm1mNwBfHbRxgeIamAlgRebxcmBv+0atiGzVqlUMDSW/dBsamr4wNNc6j31UwTn/FQunf1etemhoqHHHKaecVXA2GTP7ArAeWGxmE8CHgZcAuHuu112yFNXA7ACGzWwl8BiwGXh7+0bu/lfAX61du/ZXp7uswKB1HvuognNy78HpiAzg+fEDHJdxNeU45ZSzCs5QDOV4jaNX3P3CPra9OC9vIQ2Mux8ys0tJxlPPA6539/uLcAkhhKgmRfVgcPftwPaZtlFEdmT9/N17mNx7EPhRLHbnmltZcuww+9eMc97QWY04TjnlrJozFIVcg6kohTUwvaCIrLdYbPeyHQDsfmoHUysVkckpZxHOEJgZ8yJqYOI5UiGEEEEptQejiOzIutPIsVUnnM6SY5OJqNsf/mQSlz03zvnDl9f2OOWUs2rOUJRxkb8sFJFVzDlbRNZi91M78Kmp2h6nnHJWzSnyp9QGRgghYsJAF/lDoYgsodPIMYDx1+5i/5pxVvGjiAyYrscev4X9z40DBIvL6va7lVPOXp1hKGgmf0VRRFYBZ6dYDGD/mvEjYrH2uvU9VFxWt9+tnHIqIisP9WAq4Ox0YR/o2GvJ1tnn6nCccspZZWcIkohMF/mDoB6MejByylkVp8gfXeQXQohQGLoGE4qYI7LsBfolr02WgQGml4Rp1S1mi8hCXfCvw+9WTjnn4gyBEddMfkVkJTn3Pzd7/NVL3em5IuOyOvxu5ZRTEVk1UEQmhBABUUQWiJgjsg1PbubMvRsBmO8Lp+vxU3ZN/376ichCxWV1+N3KKedcnCJ/FJGV5Bxk5Fi2nu31vOOyOvxu5ZSzqhFZbMOU1XgLIYQoBEVkJTnnOrkyW/eybdnHKaecdXGGQUvFBEMRmSIyOeWsijMIkc2DiedIhRBCBEURWUDnbKsmQ/4RWd4jyqr6u5VTzkGdIYjtIr8isoDOvGKxbN3PtnnEZVX93copZy0issjQREshhAiGlooJRmwRWR4jx7J1vz/X5N+tnHIO6gyB7mgZEEVkisjklLMqTpE/isiEECIgusgfiNgisvbRYnMZOZat+/25PEaUhfp9HrzlPua/YiGTew9OfweC1dnnFl1wWmXOITnrHZHFhiKygM68lujP1nP9ubnGZaF+n634sP17yLr1fWEO0WIvdVXP21icITDTTH4hhBAFoQYmELFFZHks0Z+t5xqtwdzjsrx+b+2TTtvrBcMnTY+06zb6rsg6+1y395p3dFbV8zYWp8gfRWQBnWWPIutW9xOX5fV76/a76FaXGZF1q/OOzqp63sbiDEVMF/nVeAshhCgERWQBnWVPtMxjAmaeUViLTvWda26dHmnXPuIuRJ19bsOTmzu+1+yx5RGXVfW8jcUZAtNy/eFQRNb8iKzfKKxV7152+PHlPfqul7r1/cy9G4PEZVU9b2NxhiKmpWLiOVIhhBBBUURWsDPvJfqzdV4RWT8jyuYSi7WY6fjb61WcnvtxzvV3O37KriBxWZXO2xidITCL6yK/IrKCnUXEYtk671hotrgsr1gs7zt3FlF3eq7IuKxK522MTpE/6sEU7Mz7wn62LuJ/8K3ezHmrLsulpxbqxmpF9mBC9WaqdN7G6AyDLvIHQz2Y6vVgWvXUys7HFLLXEuI4B3Hm3Zup0nkbo1PkTzxNqRBCVACbN5T716xOs+vN7ICZ3dfl9V8ys39Nv/7JzF6Vx7EqIivYWbeIrFUPDQ3NepxFxmKhjnMQZ79xWWse0MI3ra78eRujMwRm9NQgFMANwKeBz3V5/WHg9e7+tJltBEaBMwaVKiIr2NnkiKzoWCzEcebl7CUua9XHdTlfqnTexuhsMu7+DTM7dYbX/ynz8C5geR5eraYshBChMMOOKqQHs9jMxjKPR919dI77ugS4NYf3pIisaGddI7Jnt+2c9UZcRcZioY4zL2c2LpttmZns7zYbl1XpvI3RWXOecPeRQXdiZv+FpIH5z4O/JUVkhTvrGpGNjK897P1m61CxWIjjLNo5W3SWjcuqdN7G6AyCUVQPZmDM7DTgOmCjuz+Zxz4VkQkhRDCsrIv8M2JmpwBfBt7h7v+W134VkRXgLHJ5mGxdZESUveFX9jh6Xe4lz/dSh4hsriPNsnFZ3jcw66Uu+2+lSs4mY2ZfANaTXKuZAD4MvATA3T8DXAm8HPgTS5ayOZRH5KaIrABn0bFYti4zIivieEIfZ0jnbHFZ3jcw66Uu+2+lSs4glBSRufuFs7z+LuBdeXtjaLyFEEKUgCKyApxFjhzL1kVGRGMX3HNE7NXp5l9F+UMdZ0hnKy478zsbO54jed/ArJe67L+VKjlDkEy01GrKs2JmK0hmhS4BpkjGXV9tZicANwGnAo8Ab3X3pzvtQxFZ9WIcOasRP4aKy8r+W6mSMwyFzYOpJIMc6SHg/e7+08BrgHeb2SuBK4Db3X0YuD19LIQQIjLm3INx933AvrR+1sweAJYBm4D16WY3AncAl3faR5MislAjx7J1U6Kj2JzZ+DEbl+V9A7Ne6qrGVU2NyKo8D6YIcrkGk65x82rgW8DJaeODu+8zs5O6/MwWYAvAC5OTte+Ch4zFsnWToqMYne1xWZ43MOulrmpc1dyILC4GbmDM7FjgL4HfdPd/tx5vB5qukzMKsHbtWh/0fQghROUpbzXlUhiogTGzl5A0Lp939y+nTz9uZkvT3stS4MAMP9+YiCzUyLFs3bToKEZnNi7L+w6ZvdRVjasaG5FFxiCjyAz4LPCAu/9R5qVtwEXAVen3r3TbR5NGkSkik3PQOu87ZPZSVzWuamxEVtxqypVkkB7M64B3AN8xs39On/sdkoblZjO7BHgUeMtgb1EIIZqBoYisJ9z9H0h+X53Y0Ms+FJENVjc5OorR2e8dMvOIy6oaVykiawZaiyynWhGZnHk6Q8VlVY2rFJE1g3iOVAghRFC0FllOtSIyOfN09huXZe802k90VtW4qrERmSZahkMRWb1jHDnDOHuJy7J1P9FZVeOqxkZkxHWRP54jFUIIERRFZDnVisjkLMrZS1w215FmVY2rmhuRxXWRXxFZTrUiMjlDOPOOy6oaVzU5IosJ9WAGqA/ect/0xdVQKyhn6yr9L1vOMM5sb2bJscM9DwRY+KbVtepNNLUHY7rIH46692DaV8DVverlLMs5W8/muC5/F1XtTTS2B2Omi/xCCCHEoCgiG6BeMHxSx5tFVSlSkTMO52wDAZ7dtnM6zs3GZVWNq5oakWkeTEAUkcUV48gZxtlPXFbVuKqxEVlklNrACCFEbNi83m7K2AQUkQ1QKyKTs4rOfuKyvG9g1ksddUQWGYrIBqgVkclZdedscVneNzDrpY46ItNESyGEEEWgeTABqWNElp1cqYhMzqo7W3HZmd/Z2HFpmbxvYNZLrYgsHhSR9Vm3x2HZWhGZnFV1joyvBWY+b0PFZVFHZGiipRBCCDEwisj6rLOxGPwoagi1/li2bkqMI2fxzrEL7mHJscNHxGXZc7lKcVVjIzJdgwlHkyKykLFYtpZTzn7r9rhMEVnIUWQoIhNCCCEGRRFZn3W3iKxpkYqczXV2G/1YpbiquRGZ5sEEQxFZPSIVOZvlVERW5iiyuNBESyGECISR9JpiQRFZn7UiMjnr7lREVu4oMrTYZRgUkdUjUpGzWU5FZIrIQqGITAghgmGKyEKhiGywWk4551IrIisxIisJM7seOA844O6rO7xuwNXAucD3gYvd/d5BvYrI+qwVkclZd6cisignWt4AfBr4XJfXNwLD6dcZwLXp94GIofEWQoiocfdvAE/NsMkm4HOecBewyMyWDupVRNZnrYhMzro7FZGVGZFV9hrMMmBP5vFE+ty+QXaqiKzPWhGZnHV3KiIrNyIraJjyYjMbyzwedffRPn6+05vyAd+TejD91urByFl3p3owjbzI/4S7jwzw8xPAiszj5cDewd6SejA918/ect8RvZab1n+GVSeczm7bwarnTm/s/3jlbJZTPZhy58FUNCLbBlxqZltJLu4fdPeB4jHQPBghhGg8ZvYFYD1JlDYBfBh4CYC7fwbYTjJEeRfJMOV35uFVRNZj3SkWW3XC6VFEKnI2y6mIrLyIzKycWya7+4WzvO7Au/P2KiLrsZ7ce/CIiGz3ssNjjaZGKnI2y6mITBFZKOI5UiGEEEFRRNZjrYhMzqY4FZGVOIpMqymHQxFZPSIVOZvlVERWbkQWExpFJoQQwajsTP5CUETWY62ITM6mOBWRlRuRlbTYZSkoIuuxVkQmZ1OcisgUkYVCEZkQQgTEhnSRPwiKyAar5ZRzLrUishIjsshQRNZjrYhMzqY4FZGVGJGZQUTXYOI5UiGEEEFRRNZjveiC01g4NcVXd3+CJccOs3/NOKtQRCZn/ZyKyMqLyCx1xsLADYyZzQPGgMfc/TwzWwlsBU4A7gXe4e6TnX62ThFZq54pymhqpCJns5yKyMqMyOIappzHkb4XeCDz+OPAp9x9GHgauCQHhxBCiJoxUA/GzJYDvwh8DHifmRlwFvD2dJMbgY8A13b5+dpEZK36vaffjA0N4VNTHLzlPub7Qs7cu3H6O8D4Kbumj7EJkYqczXIqIitzFJlpmHIf/DHw28Bx6eOXA8+4+6H08QSwrNMPmtkWYAvAC5OTteyCt0cMre/714w3KlKRs1lORWSaaBmKOTfeZnYecMDd78k+3WFT7/Tz7j7q7iPuPrL4xBPn+jaEEKI+GDA0lP9XRRmkB/M64I1mdi7wUuB4kh7NIjM7Ku3FLAf2dttBHSOybN0tamhapCJns5yKyMqdaBnTRf45NzDu/kHggwBmth74gLv/kpl9EXgzyUiyi4CvzLCP2o0iy9aKyOSso1MRmSKyUBQxD+ZyYKuZ/T7wbeCzBTiEEKJ+mJbr7xt3vwO4I60fAtb18nN1j8iWXHYWNjTEwqmp6e8A5w+djaf183fvmR5dlvdIsybHOHIqImtqRBYTWousYGenNcwgvxitqTGOnIrImhiRGWC6ZbIQQojcaY0iiwStRVaws9My/wAbntw8cFzW5BhHTkVkisjqjyKygp3dIrJsPUhc1tQYR05FZE2MyMA0TDkUMfdg8pg30+T/ZcupHox6MPVHPZiCnQvWreDoqWS1nGe37VQPRs7SnerBlNiDMYhpLTI13kIIIQpBEVlAZ+umZa3nW/WGu4fnNFemyTGOnIrImhqR6RpMIGKIyHqpB5kr09QYR05FZM2MyAwUkQkhhBCDoYisAs5e5sq0orM719waRYwjpyKyJkZkBiT3ZYwDRWQVcPYyV6ZV7152eJTS1BhHTkVkjYzIIkNLxQghREgiugajiKwCzm6jy56/e8/076oVZVz82JXTcVkeKzL3Wzc5OorFqYisxFFkkc2DUURWYeds0VnIG5tlaznr7VREpogsFIrIhBAiJLrIHwZFZDPXrejs4C33dRxp1mmUGeRzM7NudZOjo1ic3SKy5+/ew+Teg0By7tXpb6U2EVlkKCKrgbM9ysjWRd7MrFvd1OgoFme3iCxbFxmXVfXvMwwW1TUYNd5CCBEKI/lXN++vXtRm55jZg2a2y8yu6PD6KWb2dTP7tpn9q5mdO8CRAorIauFcctlZh40ua9WdRplBPjcz61Y3OTqKxTl2wT0sOXaY/WvG2fDk5unXQ40oq+rfZ5Mxs3nANcAbgAlgh5ltc/edmc1+F7jZ3a81s1cC24FTB/EqIquxs+ibmXWrmxodxeg8c+9GRWSBR5GVNJN/HbDL3R9K38NWYBOQbWAcOD6tFwJ7B5VqFJkQQjSfZcCezOMJ4Iy2bT4C/I2ZvQd4GXD2oFJFZDV2ZidohorLmhwdxeic753XwWva30qlIrJiLvIvNrOxzONRdx/NPO4k9bbHFwI3uPsnzey1wJ+b2Wp3n3MXTxFZQ5wh47IYoqNYnIrIwkdkBfGEu4/M8PoEsCLzeDlHRmCXAOcAuPs3zeylwGLgAHMkeOMthBDRYiQ9mLy/ZmcHMGxmK81sPrAZ2Na2zaPABgAz+2ngpcB3BzlcRWQNcYaKy2KJjmJxKiILH5GVcZHf3Q+Z2aXAbcA84Hp3v9/MPgqMufs24P3An5rZb5HEZxe7e3uM1heKyBroLDouiyE6isWpiKwxEdmsuPt2kqHH2eeuzNQ7gdfl6dQoMiGECElEFyYUkTXQWWRcFkt0FItTEVkJo8giQhFZw51FxGUxREexOBWRhY3IzOJai0wRmRBChETL9YdBEVnxzrzjsliio7z21+mWCneuuTUX5/nDl+PpZ2tDQ3Oqn/fO50TZ560ismagiCwiZ15xWQzRUV776BRB7V7Wff/97NtziLG6nROKyIpDEVkg1IMJ6+x007L2usm9iTKcnS6irzrh9FyceZxD3c6DKp236sHUF/VgInKqB1ONHsy5b3w/Q0NDTJ2YfkZp3em5meo8ejAL1q3g6Kll0/tu1Xnsu1td1b+VILRm8keCLvILIURASlquvxQUkUXkVERWjYhsaGiotudQk50ifxSRReRURFaNiOy4Lp9dHc6hJjuDEVGLFtGhCiGECIkisoicvcyJaXJcVZWIbPvDn2TJscPsf258evv9z41z/vDllT+HmuwMg+kaTCgUkZXn7BaXKSIrbx5MkSO3utV1O2+LdAYhslFkisiEEEIUgiKyiJzP372Hyb0HAY0iC+UcP2UX+9dkorA146yi80TLscdvOSI2AwqNzupw3jYrIgPN5A+EIjKNIuu1jtkZ46THxkZkkaGJlkIIERJd5A+DIrKwzm6x2PhrD49xWjQtrqqrs8jorA7nbdMisphQRBaRc5CRY9m6KtFR7M48orM6nLdNisjMdA1GCCFEUUTUZVJEFpFzriPHsnWVoqPYnXlEZ3U4bxWR1ZeBGhgzWwRcB6wGHPgV4EHgJuBU4BHgre7+dKefV0SmiEzO/J39RGd1OG+bFJER2Uz+QRvvq4GvuftPAa8CHgCuAG5392Hg9vSxEEKIyJhzD8bMjgd+HrgYwN0ngUkz2wSsTze7EbgDuLzLPhSRBXQqIovD2Sk6O2/VZbU9bxsVkUW2VMwgEdmPA98F/szMXgXcA7wXONnd9wG4+z4zO6nTD5vZFmALwAuTk1F0wct2KiKL1zm1UrcIqEZERtLIRMIgjfdRwM8C17r7q4Hv0Ucc5u6j7j7i7iOLTzxxgLchhBCiigzSg5kAJtz9W+njL5E0MI+b2dK097IUONBtB4rIwjoVkcXr1C0CKhKRAZrJ3wPuvt/M9pjZT7r7g8AGYGf6dRFwVfr9KzPsQ6PIAjoVkcnZXusWASVEZBEx6DyY9wCfN7P5wEPAO0k+s5vN7BLgUeAtAzqEEKIxeDwdmMEaGHf/Z2Ckw0sbevl5RWRhnYrI8nVueHIzZ+7dCCR3rpytHj9lV+WOs/0WDq160QWnVea8bVREZkR1kV9rkUXkVESWr7PT3Spnqqt4K4Rux7CwwOisqn8rIn+0FpkQQoREF/nDoIiseGced7HM1lWNq4p0do3Cuvw+63S30Pne+b2Wfd42NiKLDEVkDXfmdRfLbF3FuKpIZ79RWLdaEVm1/1ZE/qgH03BnHv+zztZl9ybKcHb7X756MM36WxH5ox5Mw53dejB3rrmV3Zb8b3bVc6fXpjdRhnOQHszCN63m6KllAOx/+NbKHad6MGF7MI6GKQshhCgE00X+UCgiK96ZRyyWrcuOq6oUkS264DQWpv/7taGhjnX7ysZVO05FZIrIikQRWcOdec19ydaKyHqPkfY/V+0BFIrISrjIX1IHxszOIbmH1zzgOne/qsM2bwU+QpLm/Yu7v30QpyIyIYRoOGY2D7gGeAPJQsU7zGybu+/MbDMMfBB4nbs/3e1WK/2giKzhTkVkxUVkvfz+zx++HM9EZz41xVd3f6KjM7vt2OO3BDlORWSBI7LylopZB+xy94cAzGwrsIlkceIWvwpc07rFvbt3XQm/VxSRNdypiKzciKxT3e2Ysisb9xutzbVWRBY+IitpFNkyYE/m8QRwRts2/xHAzP6RJEb7iLt/bRCpIjIhhKg/i81sLPN41N1HM487NWve9vgoYBhYDywH7jSz1e7+zFzflCKyhjsVkQ3uHD9lF/vXZG7UldbnD509p8/tvaff3DEuy444CxWXKSIrYRRZMcOUn3D3Tivbt5gAVmQeLwf2dtjmLnd/AXjYzB4kaXB2MEcUkTXcqYisOGceN+tqd3Xad5FxmSKyEkaRlcMOYNjMVgKPAZuB9hFitwAXAjeY2WKSyOyhQaSKyIQQIiQlXINx90NmdilwG8n1levd/X4z+ygw5u7b0td+wcx2Ai8Cl7n7k4N4FZE13KmIrDhnHp9hNi7LRmHd4rLWtq1tBj1ORWRlRGShhQnuvh3Y3vbclZnagfelX7mgiKzhTkVk1Y7IsnW3KKybJ4/oTBFZNBFZKSgiE0KIUBi41iILgyKyYpx532QsW1c1rqprRJatu40ca1/PLM+RZorISojIIkIRWQOdRdxkLFtXMa4qw5l3RNZv/JXHSDNFZIrIikSNtxBCiEJQRNZAZ7dYbPy1h08YbNGEuKoMZ/tIrzw/z15GjuUx0kwRWTyjyMpAEVkDnUWMHMvWVYyrynbmEZf1sm3eI80UkZUQkUV0kV8RmRBCiEJQRNZAZ94jx7J1VeOqsp2hzqFeRppl47rW9t1uEaCITBFZkSgia6BTEVlzI7K5xmXdjkkRmUaRFYkmWgohRCistPvBlIIisgY6FZE1NyKba1yWXfOstR+fmuJ5/9E9qBSRBSKii/yKyBroVEQWR0Q217gsW3c7VxSRiTxQRCaEECGJpwOjiKyJzvYJlYNOrszWdYirynDmMelykHNitrjsvFWXdfzZbnFqLH8rpURkEaGIrIHOIu+AWMT+muaca1yW1/nR6fOfWtl5/4rISojI1IMJg3owxTir9D/7GJ1ln0Od3tfQ0JB6MLNsGwbTcv2hUA+mGOfwN3+C5ePHA7Bg+KTpeuyCe6LrTZThLLsHM3Lym5g6Mam3P/xJdj+1g6ufeiurTjid3U/t4D1rt05vv2DdCo6eWpbsY2hous57pegijrO2PZiI0EV+IYQIhaGILBSKyIpxah5M3BFZt4v/NjR02LIx+58bz2UV6CocZ30isrhQRNZAp+bBxB2RzVZnj6/IKKzs4+zXGQZPv+JAjbcQQohCUETWEOfzd+9hcu9BIP+bjGXrusVVZTjnOicm1HmTXTam/bxp1YsuOK2xfytlRmRJ/yWeHowisoY4i47FsnWd4qqynf1EUGWcQ5oHE34UmRPPqDVFZEIIIQpBEVlDnEWOHMvWdYurynZW/RzSRMsyRpEpIguCIjJFZE13KiKrxnFWKSKLCU20FEKIYHhU12AUkTXEWeQKytm6znGVIrIj60UXnMbC9H/wNjR0WN3Uv5WyIzKNIguEIrL8nEWvoJyt6xpXleGsekQmpyKyIlFEJoQQoXAHj6dBU0RWY2d2Ql/doqNYnFU/h+QsYxRZPAzUwJjZbwHvIhl39x3gncBSYCtwAnAv8A53n+z084rIBqtDxmLZWk5FZE10hiKmazBzbrzNbBnwG8CIu68G5gGbgY8Dn3L3YeBp4JI83qgQQtSdZKmYqdy/qsqgEdlRwAIzewE4BtgHnAW8PX39RuAjwLWdflgR2WD1hic3c+bejQDM94XT9fgpu2hR1egoFmc/65LFct5W1SnyZ84NjLs/ZmZ/CDwKPA/8DXAP8Iy7H0o3mwCWdfp5M9sCbAF4YXIyii543nXIyZXZuq5xVdnO2eKyWM7bqjrD4FDhHkfeDBKR/RiwCVgJvAJ4GbCxw6YdA0d3H3X3EXcfWXziiXN9G0IIISrKIBHZ2cDD7v5dADP7MvBzwCIzOyrtxSwH9nbbgSKywepu60hlo7O847I6x1VlO6t4DskZPiKL6SL/IA3Mo8BrzOwYkohsAzAGfB14M8lIsouAr3TbgUaRFRORZWutRVYdpyKyajtF/gxyDeZbZvYlkqHIh4BvA6PAXwNbzez30+c+m8cbFUKIJlDlUV95M9AoMnf/MPDhtqcfAtb18vOKyAars+tIPX/3HloUGZc1Ja5SRCZnex2OciIyMzsHuJpkSsl17n5Vl+3eDHwRON3dxwZxai2yhjhDxmVNiKvKcCoiq7azyZjZPOAa4A0ko3t3mNk2d9/Ztt1xJPON9dMyAAAWU0lEQVQbv5WHN3zjLYQQ0eJlTbRcB+xy94fSlVW2kowCbuf3gD8AfpDH0WotsoY4e4nLqhodxeJsTbo8b9VllTyHYnc2nGXAnszjCeCM7AZm9mpghbt/1cw+kIdUEVkDnUVPwGxCXFWmc2pl58+uSudQjM4QJEvFFHINZrGZZa+XjLr7aOaxdXk7yYtmQ8CngIvzfFPqwTTQ2W1+TFX/Zx+bc2hoqPLnUIzOcBTSoD3h7iMzvD4BrMg8bp+jeBywGrjDzACWANvM7I2DXOhXD6aBzgXrVnD0VLJCz7Pbdk73YIb5CZaPHw/A2AX3VO5/9rE41YOpprPh7ACGzWwl8BjJwsStNSNx94PA4tZjM7sD+ECtR5EJIURceCkz+d39kJldCtxGMkz5ene/38w+Coy5+7YivIrIGu7MezmZpsVVZTgVkVXT2XTcfTuwve25K7tsuz4PpyKyhjuLmB/TpLiqDKcismo6Q6GZ/EIIIQpCi10GQRFZ8c6858c0La4qw7n94U+y5NjhI+bEVPUcisUp8kcRWUTOvObHNCmuKtuZjcvqcA412RkGxz2eiEyNtxBCiEJQRBaRs1tc1s+IsqbFVWU7syPK6nAONdkZCt1wLBCKyMpzDhKXNTWuKsOpiKw6TpE/GkUmhBBBiadBU0QWqXOu65U1Oa4qw6mIrDrOEBS42GUlUUQWqVMRWTWcisiq4xT5o4hMCCGC4ZrJHwpFZOU5ZxtRdueaW6OLq8pwZiddnj98ea3OoaY5Rf4oIpOzY1y2e1n3mKipcVXZTp+aqu051ARnOHQNRgghRAEoIguEIrJqODuNKFt1wunRxVVlO+t8DjXBKfJHEZmcisgq4lREFkNE5kz5iwF95aLGWwghRCEoIpOz44iyix+7kvm+8IgRZbHEVYrI4nOGwCPrwSgik/Owupe4LIa4qgynIrIYIjJw4mlgQjbeQgghIkIRmZyH1bONKIslrirDOfb4Lex/bhwg2KTLppy3dYnIYrvIr4hMzsNqRWTVcIaKy5py3ubhFPmjiZZCCBEId9SDCYUisuo5WyPKvrr7E8kaWWvGWYUishB19s6iz/seJvceBJLPpE7nUF2dIn8UkcnZsZ4pJootrgpVn7l3Y8dbKCwsMC5r2nk7iDMMzpTHE8mpByNnx1pLxYR3zvfON4Gr6zlUN2cIHJiKaJiyejBydqxHvryWBcMnsXz8eIDpeuyCe6LoTZThVA8mhh5MXOgivxBCBMNxXeQPgyKy6joXDJ/UcU5MLHFVkfs+8zsbp5fhAabr7JI9NjR0WF3Hc6huTpE/isjk7Fi34pn2yGb/mvEo4qoi9z0yvhY48ndbZBTWrW7aeTuIMwyaaCmEEKIANA8mIIrIqutcctlZ0zHNwVvum47IsnM1xk/ZRYu6xlVlOLvFj007h+rmFPmjiEzOWev2uKz1PWRcpois3udQHZxhiCsiU+MthBCiEBSRyTlrnY10stFOE+KqkM7peHH4R7/HhW9aPR1FNvkcqoMzFJpoGQhFZPVwKiLLp+40kfK4zOfY5HOoDs4QeGTzYEI33kIIISJBEZmcs9bZEWVjj9/C/jXJTbHqHFeV4ey01tjQ0FAU51AdnGGI6yK/IjI5+6r3P6eJlorImukU+RO28RZCiMiZ8hdz/+oFMzvHzB40s11mdkWH199nZjvN7F/N7HYz+w+DHqsiMjn7qrMTLTutp9Ve5zEZs0oRWb/Hf1jdYeQYxHcOVdXZZMxsHnAN8AZgAthhZtvcfWdms28DI+7+fTP778AfAG8bxDtrA2Nm1wPnAQfcfXX63AnATcCpwCPAW939aTMz4GrgXOD7wMXufm+3fSsiq59zcu/BjkvKd6vzGmlWlYis25L6/dTHdfnsYjmHquoMgXtpNxxbB+xy94cAzGwrsAmYbmDc/euZ7e8CfnlQaS+N9w3AOW3PXQHc7u7DwO3pY4CNwHD6tQW4dtA3KIQQTWKKF3P/6oFlwJ7M44n0uW5cAtw6wGECPfRg3P0bZnZq29ObgPVpfSNwB3B5+vzn3N2Bu8xskZktdfd9nfatiKx+zk5raM1U57GMfd9RVA71bDHXIHV25BjEdw5V1VlzFpvZWObxqLuPZh5bh5/xTjsys18GRoDXD/qm5noN5uRWo+Hu+8zspPT5bq3kEQ2MmW0h6eXwwuRkFF3wJjiLjMi6rdHVi6eIuqh9KyKrpjMMhU20fMLdR2Z4fQJYkXm8HNjbvpGZnQ18CHi9u/9w0DeVd+Pdcyvp7qPuPuLuI4tPPDHntyGEECLDDmDYzFaa2XxgM7Atu4GZvRr4n8Ab3f1Ah330zVx7MI+3oi8zWwq03kxPrWQLRWT1c85018VO9Ya7h3uPqIY7R0p5xFL91t1e7/f4Z6qr8HnKGTYi85ImWrr7ITO7FLgNmAdc7+73m9lHgTF33wZ8AjgW+GIyXotH3f2Ng3jn2sBsAy4Crkq/fyXz/KXpCIUzgIPdrr+ARpHF4Ow3UutWVyUiK3JJ/Tp8nk12hqKsmfzuvh3Y3vbclZn67LydvQxT/gKwnuQi0gTwYZKG5WYzuwR4FHhLuvl2kiHKu0iGKb8z7zcshBCiHvQyiuzCLi9t6LCtA+/uVa6IrPnOfmKpThMQW8vY5xVL9Vr3E22V9buVs6YRmZbrD4MisuY7+4nINLpKzhgispgotYERQojY0GrKgVBE1nznXEZd1fE45ay/Mwge1w3HFJHJKaeccopCUA9GTjnllDMQZc2DKQv1YOSUU045RSHoIr8QQgREPZhAKCKTU045q+IMQ2n3gykFRWRyyimnnKIQFJEJIUQgHEVkwVBEJqecclbFKfJHEZmccsopZyjceXEqnh6MGm8hhBCFoIhMTjnllDMQyTWYeAYVKCKTU0455QyGM6WITAghhBgMRWRyyimnnIFwR8OUQ6GITE455ayKU+SPJloKIUQwnBfVgwmDIjI55ZSzKs4QOHH1mBSRySmnnHKKQlBEJoQQwdANx4KhiExOOeWsilPkjyIyOeWUU85QeFwTLRWRCSFEILRUTEAUkckpp5xVcYr8UUQmp5xyyhkIR8v1CyGEEAOjiExOOeWUMxRaiywcisjklFPOqjhF/mgUmRBCBEPDlIOhiExOOeWsijMEGqYcEEVkcsopZ1WcIn/Ug5FTTjnlDIaW6w+GejByyilnVZwif3SRXwghAuEOusgfCEVkcsopZ1WcYXBd5A+FIjI55ZSzKs6mY2bnAFcD84Dr3P2qttePBj4HrAWeBN7m7o8M4lREJoQQgUhumRw+IjOzecA1wBuACWCHmW1z952ZzS4Bnnb3nzCzzcDHgbcN4lVEJqeccsrZfNYBu9z9IQAz2wpsArINzCbgI2n9JeDTZmbu7nOVKiKTU0455QyFlzZMeRmwJ/N4Ajij2zbufsjMDgIvB56Yq1QRmRBCBMLxohq0xWY2lnk86u6jmcfW8e0cTi/b9IUiMjnllFPO+vOEu4/M8PoEsCLzeDmwt8s2E2Z2FLAQeGqQN6WITE455ZQzICUt178DGDazlcBjwGbg7W3bbAMuAr4JvBn4+0Guv4AiMiGEaDzpNZVLgdtIhilf7+73m9lHgTF33wZ8FvhzM9tF0nPZPKhXEZmccsopZyi8vOX63X07sL3tuSsz9Q+At+TpVEQmp5xyyikKQRGZEEIEwkGrKYdCEZmccspZFWcYChumXElmbWDM7HrgPOCAu69On/sEcD4wCewG3unuz6SvfZBkyYEXgd9w99u67VsRmZxyylkVp8ifXhrvG4Bz2p77W2C1u58G/BvwQQAzeyXJyIP/lP7Mn6Rr4AghRPQkt0x+MfevqjJrD8bdv2Fmp7Y99zeZh3eRjJmGZC2bre7+Q+DhdLjbOpJx1UegiExOOeWsilPkTx7XYH4FuCmtl5E0OC0m0ueOwMy2AFsAXpicjKILLqecclbXGQR3pqYGmrtYKwZqYMzsQ8Ah4POtpzps1vG3ma6TMwqwdu3aeH7jQohoSSKyeK75zLmBMbOLSC7+b8gsJ9DLejfZfSgik1NOOSvhFPkzpwYmvTPa5cDr3f37mZe2Af/LzP4IeAUwDNzdbT8aRSannHJWxRkKRWQZzOwLwHqS5aAngA+TjBo7GvhbMwO4y91/LV3b5maSm9gcAt7tXuEhDkIIIQqjl1FkF3Z4+rMzbP8x4GO9yBWRySmnnFVxBsHVgwmGIjI55ZSzKs4QOM7UYCvg14qgjbcQQoh40Fpkcsopp5wBCT2ooEwUkckpp5xyikJQD0ZOOeWUMxCui/zhUA9GTjnlrIpT5I9uOCaEEAGJaRSZIjI55ZRTzmBosctgKCKTU045q+IU+aOITAghAuGOVlMOhSIyOeWUsypOkT+KyOSUU045A6JrMEIIIXLHUQMTDEVkcsopZ1WcIn8Ukckpp5xyhsIdj2gejBpvIYQQhaCITE455ZQzIKEHFZSJIjI55ZRTzkDEdpE/dOMthBAiEhSRySmnnHKGwtFil6FQRCannHJWxSnyRxMthRAiGFpNORiKyOSUU86qOEX+KCKTU0455QxEcsvkeCI5RWRCCBEQXeQPhCIyOeWUsypOkT+KyOSUU045A6GJlkIIIUQOKCKTU0455QyFV2+YspmdANwEnAo8ArzV3Z9u2+ZngGuB44EXgY+5+02z7VsRmZxyyilnQKY8rK8HrgBud/erzOyK9PHlbdt8H/hv7j5uZq8A7jGz29z9mZl2HLTxFkIIUTk2ATem9Y3Am9o3cPd/c/fxtN4LHABOnG3HisjklFNOOQNR4EX+xWY2lnk86u6jPf7sye6+D8Dd95nZSTNtbGbrgPnA7tl2rIhMTjnllLP+POHuI91eNLO/A5Z0eOlD/UjMbCnw58BF7rNnferByCmnnHKGwgvrwcysdT+722tm9riZLU17L0tJ4q9O2x0P/DXwu+5+Vy9e9WDklFNOOQPheBVn8m8DLgKuSr9/pX0DM5sP/G/gc+7+xV53HLTxFkIIUTmuAt5gZuPAG9LHmNmImV2XbvNW4OeBi83sn9Ovn5ltx4rI5JRTTjkDUrV5MO7+JLChw/NjwLvS+i+Av+h334rI5JRTTjlFIWg1ZSGECIVD9eZZFociMjnllFNOUQiKyOSUU045AxHbasqKyIQQIiDVG6VcHIrI5JRTTjlFISgik1NOOeUMhUNIXdmo8RZCCFEIisjklFNOOQPhgOsifxgUkckpp5xVcYZCEZkQQggxIIrI5JRTTjlDoZn8h2Nm1wPnAQfcfXXbax8APgGc6O5PmJkBVwPnktzD+WJ3v7fbvhWRySmnnFVxivzppfG+ATin/UkzW0GytPOjmac3AsPp1xbg2sHfohBCNAMHptxz/6oqs/Zg3P0bZnZqh5c+Bfw2h9+cZhPJDWkcuMvMFrXulNZp34rI5JRTzqo4Q6GIbBbM7I3AY+7+L0kqNs0yYE/m8UT63BENjJltIenl8MLkZBRdcDnllLO6TpE/fTcwZnYM8CHgFzq93OG5jv03dx8FRgHWrl1b3T6eEELkRWQz+efSg1kFrARavZflwL1mto6kx7Iis+1yYG+3HSkik1NOOaviFPnTdwPj7t8BTmo9NrNHgJF0FNk24FIz2wqcARzsdv0l3ZdGkckpp5yVcIbBo5rJP2vjbWZfAL4J/KSZTZjZJTNsvh14CNgF/Cnw67m8SyGEELWjl1FkF87y+qmZ2oF39ypXRCannHJWxRkC1zWYcCgik1NOOaviDEWFp63kTsjGWwghRERoLTI55ZRTzoBMRXSRXxGZnHLKKacoBPVg5JRTTjkD4VpNORzqwcgpp5xVcYYipg5TyMZbCCFERCgik1NOOeUMiCKyQCgik1NOOaviFPlTagMjhBAx4U6lbxCWN4rI5JRTTjkDoogsEIrI5JRTzqo4Rf4oIhNCiIDE1J4pIpNTTjnlFIWgiExOOeWUMxSObjgmhBBCDIoiMjnllFPOQDi6BhMMRWRyyilnVZyhiGgaTNDGWwghRMUwsxPM7G/NbDz9/mMzbHu8mT1mZp/uZd+KyOSUU045Q+FQwRuOXQHc7u5XmdkV6ePLu2z7e8D/6XXHisjklFNOOeNmE7A+rW8E7qBDA2Nma4GTga8BI73sWBMthRAiEE4ll4o52d33Abj7PjM7qX0DMxsCPgm8A9jQ644rEZEB319wzDEPAIuBF4CD6SYL51jP9edCOXWcOk4dZ/WOc5iC+eETL9z24HX7Fhew65ea2Vjm8ai7j7YemNnfAUs6/NyHetz/rwPb3X2PmfX+rty99K/0lwEw1qqzz/db57GPIp06Th2njrO6xxnbF/AgsDStlwIPdtjm88CjwCPAE8C/A1fNtu+qRGR/lXOd9/7klFPOuJwxsQ24CLgq/f6V9g3c/ZdatZldDIy4+xWz7djS1qkSmNmYu/d08ajO6DibhY5T1BkzezlwM3AKSS/lLe7+lJmNAL/m7u9q2/5ikgbm0tn2XZUeTIvR2TdpBDrOZqHjFLXF3Z+kw4V7dx8D3tXh+RuAG3rZd6V6MEIIIZpD0DlGQggh4qESDYyZnWNmD5rZrnQmaSMwsxVm9nUze8DM7jez96bP97w0Q50ws3lm9m0z+2r6eKWZfSs9zpvMbH7Z73FQzGyRmX3JzP5v+rm+tomfp5n9VnrO3mdmXzCzlzbx8xTFUnoDY2bzgGuAjcArgQvN7JXlvqvcOAS8391/GngN8O702FpLMwwDt6ePm8B7gQcyjz8OfCo9zqeBS0p5V/lyNfA1d/8p4FUkx9uoz9PMlgG/QXIhdzUwD9hMMz9PUSClNzDAOmCXuz/k7pPAVpKlC2qPu+9z93vT+lmSf4yWkRzfjelmNwJvKucd5oeZLQd+EbgufWzAWcCX0k1qf5xmdjzw88BnAdx90t2foYGfJ8kAoAVmdhRwDLCPhn2eoniq0MAsA/ZkHk+kzzUKMzsVeDXwLdqWZgCOWJqhhvwx8NtAayGMlwPPuPuh9HETPtcfB74L/FkaBV5nZi+jYZ+nuz8G/CHJkNV9JDPd76F5n6comCo0MJ3WHWjU0DYzOxb4S+A33f3fy34/eWNm5wEH3P2e7NMdNq3753oU8LPAte7+auB71DwO60R6DWkTsBJ4BfAykgi7nbp/nqJgqtDATAArMo+XA3tLei+5Y2YvIWlcPu/uX06fftzMlqavLwUOlPX+cuJ1wBvN7BGSiPMskh7NojRigWZ8rhPAhLt/K338JZIGp2mf59nAw+7+XXd/Afgy8HM07/MUBVOFBmYHMJyOUJlPcjFxW8nvKRfS6xCfBR5w9z/KvNRamgG6LM1QJ9z9g+6+3N1PJfn8/j5dWuLrwJvTzZpwnPuBPWb2k+lTG4CdNOzzJInGXmNmx6TncOs4G/V5iuKpxERLMzuX5H+884Dr3f1jJb+lXDCz/wzcCXyHH12b+B2S6zBHLM1QypvMGTNbD3zA3c8zsx8n6dGcAHwb+GV3/2GZ729QzOxnSAYyzAceAt5J8h+1Rn2eZvY/gLeRjIT8NsmM7mU07PMUxVKJBkYIIUTzqEJEJoQQooGogRFCCFEIamCEEEIUghoYIYQQhaAGRgghRCGogRFCCFEIamCEEEIUghoYIYQQhfD/AdzbWJCWx3FQAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "xyreso = 0.02 # x-y grid resolution\n", - "yawreso = math.radians(3.1) # yaw angle resolution [rad]\n", - "ang, dist = file_read(\"lidar01.csv\")\n", - "ox = np.sin(ang) * dist\n", - "oy = np.cos(ang) * dist\n", - "pmap, minx, maxx, miny, maxy, xyreso = lg.generate_ray_casting_grid_map(ox, oy, xyreso, False)\n", - "xyres = np.array(pmap).shape\n", - "plt.figure(figsize=(20,8))\n", - "plt.subplot(122)\n", - "plt.imshow(pmap, cmap = \"PiYG_r\") \n", - "plt.clim(-0.4, 1.4)\n", - "plt.gca().set_xticks(np.arange(-.5, xyres[1], 1), minor = True)\n", - "plt.gca().set_yticks(np.arange(-.5, xyres[0], 1), minor = True)\n", - "plt.grid(True, which=\"minor\", color=\"w\", linewidth = .6, alpha = 0.5)\n", - "plt.colorbar()\n", - "plt.show()" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/Mapping/ndt_map/ndt_map.py b/Mapping/ndt_map/ndt_map.py new file mode 100644 index 0000000000..f4f3299662 --- /dev/null +++ b/Mapping/ndt_map/ndt_map.py @@ -0,0 +1,135 @@ +""" +Normal Distribution Transform (NDTGrid) mapping sample +""" +import matplotlib.pyplot as plt +import numpy as np +from collections import defaultdict + +from Mapping.grid_map_lib.grid_map_lib import GridMap +from utils.plot import plot_covariance_ellipse + + +class NDTMap: + """ + Normal Distribution Transform (NDT) map class + + :param ox: obstacle x position list + :param oy: obstacle y position list + :param resolution: grid resolution [m] + """ + + class NDTGrid: + """ + NDT grid + """ + + def __init__(self): + #: Number of points in the NDTGrid grid + self.n_points = 0 + #: Mean x position of points in the NDTGrid cell + self.mean_x = None + #: Mean y position of points in the NDTGrid cell + self.mean_y = None + #: Center x position of the NDT grid + self.center_grid_x = None + #: Center y position of the NDT grid + self.center_grid_y = None + #: Covariance matrix of the NDT grid + self.covariance = None + #: Eigen vectors of the NDT grid + self.eig_vec = None + #: Eigen values of the NDT grid + self.eig_values = None + + def __init__(self, ox, oy, resolution): + #: Minimum number of points in the NDT grid + self.min_n_points = 3 + #: Resolution of the NDT grid [m] + self.resolution = resolution + width = int((max(ox) - min(ox))/resolution) + 3 # rounding up + right and left margin + height = int((max(oy) - min(oy))/resolution) + 3 + center_x = np.mean(ox) + center_y = np.mean(oy) + self.ox = ox + self.oy = oy + #: NDT grid index map + self.grid_index_map = self._create_grid_index_map(ox, oy) + + #: NDT grid map. Each grid contains NDTGrid object + self._construct_grid_map(center_x, center_y, height, ox, oy, resolution, width) + + def _construct_grid_map(self, center_x, center_y, height, ox, oy, resolution, width): + self.grid_map = GridMap(width, height, resolution, center_x, center_y, self.NDTGrid()) + for grid_index, inds in self.grid_index_map.items(): + ndt = self.NDTGrid() + ndt.n_points = len(inds) + if ndt.n_points >= self.min_n_points: + ndt.mean_x = np.mean(ox[inds]) + ndt.mean_y = np.mean(oy[inds]) + ndt.center_grid_x, ndt.center_grid_y = \ + self.grid_map.calc_grid_central_xy_position_from_grid_index(grid_index) + ndt.covariance = np.cov(ox[inds], oy[inds]) + ndt.eig_values, ndt.eig_vec = np.linalg.eig(ndt.covariance) + self.grid_map.data[grid_index] = ndt + + def _create_grid_index_map(self, ox, oy): + grid_index_map = defaultdict(list) + for i in range(len(ox)): + grid_index = self.grid_map.calc_grid_index_from_xy_pos(ox[i], oy[i]) + grid_index_map[grid_index].append(i) + return grid_index_map + + +def create_dummy_observation_data(): + ox = [] + oy = [] + # left corridor + for y in range(-50, 50): + ox.append(-20.0) + oy.append(y) + # right corridor 1 + for y in range(-50, 0): + ox.append(20.0) + oy.append(y) + # right corridor 2 + for x in range(20, 50): + ox.append(x) + oy.append(0) + # right corridor 3 + for x in range(20, 50): + ox.append(x) + oy.append(x/2.0+10) + # right corridor 4 + for y in range(20, 50): + ox.append(20) + oy.append(y) + ox = np.array(ox) + oy = np.array(oy) + # Adding random noize + ox += np.random.rand(len(ox)) * 1.0 + oy += np.random.rand(len(ox)) * 1.0 + return ox, oy + + +def main(): + print(__file__ + " start!!") + + ox, oy = create_dummy_observation_data() + grid_resolution = 10.0 + ndt_map = NDTMap(ox, oy, grid_resolution) + + # plot raw observation + plt.plot(ox, oy, ".r") + + # plot grid clustering + [plt.plot(ox[inds], oy[inds], "x") for inds in ndt_map.grid_index_map.values()] + + # plot ndt grid map + [plot_covariance_ellipse(ndt.mean_x, ndt.mean_y, ndt.covariance, color="-k") for ndt in ndt_map.grid_map.data if ndt.n_points > 0] + + plt.axis("equal") + plt.show() + + +if __name__ == '__main__': + main() diff --git a/Mapping/normal_vector_estimation/normal_vector_estimation.py b/Mapping/normal_vector_estimation/normal_vector_estimation.py new file mode 100644 index 0000000000..996ba3ffee --- /dev/null +++ b/Mapping/normal_vector_estimation/normal_vector_estimation.py @@ -0,0 +1,177 @@ +import numpy as np +from matplotlib import pyplot as plt + +from utils.plot import plot_3d_vector_arrow, plot_triangle, set_equal_3d_axis + +show_animation = True + + +def calc_normal_vector(p1, p2, p3): + """Calculate normal vector of triangle + + Parameters + ---------- + p1 : np.array + 3D point + p2 : np.array + 3D point + p3 : np.array + 3D point + + Returns + ------- + normal_vector : np.array + normal vector (3,) + + """ + # calculate two vectors of triangle + v1 = p2 - p1 + v2 = p3 - p1 + + # calculate normal vector + normal_vector = np.cross(v1, v2) + + # normalize vector + normal_vector = normal_vector / np.linalg.norm(normal_vector) + + return normal_vector + + +def sample_3d_points_from_a_plane(num_samples, normal): + points_2d = np.random.normal(size=(num_samples, 2)) # 2D points on a plane + d = 0 + for i in range(len(points_2d)): + point_3d = np.append(points_2d[i], 0) + d += normal @ point_3d + d /= len(points_2d) + + points_3d = np.zeros((len(points_2d), 3)) + for i in range(len(points_2d)): + point_2d = np.append(points_2d[i], 0) + projection_length = (d - normal @ point_2d) / np.linalg.norm(normal) + points_3d[i] = point_2d + projection_length * normal + + return points_3d + + +def distance_to_plane(point, normal, origin): + dot_product = np.dot(normal, point) - np.dot(normal, origin) + if np.isclose(dot_product, 0): + return 0.0 + else: + distance = abs(dot_product) / np.linalg.norm(normal) + return distance + + +def ransac_normal_vector_estimation(points_3d, inlier_radio_th=0.7, + inlier_dist=0.1, p=0.99): + """ + RANSAC based normal vector estimation + + Parameters + ---------- + points_3d : np.array + 3D points (N, 3) + inlier_radio_th : float + Inlier ratio threshold. If inlier ratio is larger than this value, + the iteration is stopped. Default is 0.7. + inlier_dist : float + Inlier distance threshold. If distance between points and estimated + plane is smaller than this value, the point is inlier. Default is 0.1. + p : float + Probability that at least one of the sets of random samples does not + include an outlier. If this probability is near 1, the iteration + number is large. Default is 0.99. + + Returns + ------- + center_vector : np.array + Center of estimated plane. (3,) + normal_vector : np.array + Normal vector of estimated plane. (3,) + + """ + center = np.mean(points_3d, axis=0) + + max_iter = int(np.floor(np.log(1.0-p)/np.log(1.0-(1.0-inlier_radio_th)**3))) + + for ite in range(max_iter): + # Random sampling + sampled_ids = np.random.choice(points_3d.shape[0], size=3, + replace=False) + sampled_points = points_3d[sampled_ids, :] + p1 = sampled_points[0, :] + p2 = sampled_points[1, :] + p3 = sampled_points[2, :] + normal_vector = calc_normal_vector(p1, p2, p3) + + # calc inlier ratio + n_inliner = 0 + for i in range(points_3d.shape[0]): + p = points_3d[i, :] + if distance_to_plane(p, normal_vector, center) <= inlier_dist: + n_inliner += 1 + inlier_ratio = n_inliner / points_3d.shape[0] + print(f"Iter:{ite}, {inlier_ratio=}") + if inlier_ratio > inlier_radio_th: + return center, normal_vector + + return center, None + + +def main1(): + p1 = np.array([0.0, 0.0, 1.0]) + p2 = np.array([1.0, 1.0, 0.0]) + p3 = np.array([0.0, 1.0, 0.0]) + + center = np.mean([p1, p2, p3], axis=0) + normal_vector = calc_normal_vector(p1, p2, p3) + print(f"{center=}") + print(f"{normal_vector=}") + + if show_animation: + fig = plt.figure() + ax = fig.add_subplot(projection='3d') + set_equal_3d_axis(ax, [0.0, 2.5], [0.0, 2.5], [0.0, 3.0]) + plot_triangle(p1, p2, p3, ax) + ax.plot(center[0], center[1], center[2], "ro") + plot_3d_vector_arrow(ax, center, center + normal_vector) + plt.show() + + +def main2(rng=None): + true_normal = np.array([0, 1, 1]) + true_normal = true_normal / np.linalg.norm(true_normal) + num_samples = 100 + noise_scale = 0.1 + + points_3d = sample_3d_points_from_a_plane(num_samples, true_normal) + # add random noise + points_3d += np.random.normal(size=points_3d.shape, scale=noise_scale) + + print(f"{points_3d.shape=}") + + center, estimated_normal = ransac_normal_vector_estimation( + points_3d, inlier_dist=noise_scale) + + if estimated_normal is None: + print("Failed to estimate normal vector") + return + + print(f"{true_normal=}") + print(f"{estimated_normal=}") + + if show_animation: + fig = plt.figure() + ax = fig.add_subplot(projection='3d') + ax.plot(points_3d[:, 0], points_3d[:, 1], points_3d[:, 2], ".r") + plot_3d_vector_arrow(ax, center, center + true_normal) + plot_3d_vector_arrow(ax, center, center + estimated_normal) + set_equal_3d_axis(ax, [-3.0, 3.0], [-3.0, 3.0], [-3.0, 3.0]) + plt.title("RANSAC based Normal vector estimation") + plt.show() + + +if __name__ == '__main__': + # main1() + main2() diff --git a/Mapping/point_cloud_sampling/point_cloud_sampling.py b/Mapping/point_cloud_sampling/point_cloud_sampling.py new file mode 100644 index 0000000000..df7cde41c0 --- /dev/null +++ b/Mapping/point_cloud_sampling/point_cloud_sampling.py @@ -0,0 +1,168 @@ +""" +Point cloud sampling example codes. This code supports +- Voxel point sampling +- Farthest point sampling +- Poisson disk sampling + +""" +import matplotlib.pyplot as plt +import numpy as np +import numpy.typing as npt +from collections import defaultdict + +do_plot = True + + +def voxel_point_sampling(original_points: npt.NDArray, voxel_size: float): + """ + Voxel Point Sampling function. + This function sample N-dimensional points with voxel grid. + Points in a same voxel grid will be merged by mean operation for sampling. + + Parameters + ---------- + original_points : (M, N) N-dimensional points for sampling. + The number of points is M. + voxel_size : voxel grid size + + Returns + ------- + sampled points (M', N) + """ + voxel_dict = defaultdict(list) + for i in range(original_points.shape[0]): + xyz = original_points[i, :] + xyz_index = tuple(xyz // voxel_size) + voxel_dict[xyz_index].append(xyz) + points = np.vstack([np.mean(v, axis=0) for v in voxel_dict.values()]) + return points + + +def farthest_point_sampling(orig_points: npt.NDArray, + n_points: int, seed: int): + """ + Farthest point sampling function + This function sample N-dimensional points with the farthest point policy. + + Parameters + ---------- + orig_points : (M, N) N-dimensional points for sampling. + The number of points is M. + n_points : number of points for sampling + seed : random seed number + + Returns + ------- + sampled points (n_points, N) + + """ + rng = np.random.default_rng(seed) + n_orig_points = orig_points.shape[0] + first_point_id = rng.choice(range(n_orig_points)) + min_distances = np.ones(n_orig_points) * float("inf") + selected_ids = [first_point_id] + while len(selected_ids) < n_points: + base_point = orig_points[selected_ids[-1], :] + distances = np.linalg.norm(orig_points[np.newaxis, :] - base_point, + axis=2).flatten() + min_distances = np.minimum(min_distances, distances) + distances_rank = np.argsort(-min_distances) # Farthest order + for i in distances_rank: # From the farthest point + if i not in selected_ids: # if not selected yes, select it + selected_ids.append(i) + break + return orig_points[selected_ids, :] + + +def poisson_disk_sampling(orig_points: npt.NDArray, n_points: int, + min_distance: float, seed: int, MAX_ITER=1000): + """ + Poisson disk sampling function + This function sample N-dimensional points randomly until the number of + points keeping minimum distance between selected points. + + Parameters + ---------- + orig_points : (M, N) N-dimensional points for sampling. + The number of points is M. + n_points : number of points for sampling + min_distance : minimum distance between selected points. + seed : random seed number + MAX_ITER : Maximum number of iteration. Default is 1000. + + Returns + ------- + sampled points (n_points or less, N) + """ + rng = np.random.default_rng(seed) + selected_id = rng.choice(range(orig_points.shape[0])) + selected_ids = [selected_id] + loop = 0 + while len(selected_ids) < n_points and loop <= MAX_ITER: + selected_id = rng.choice(range(orig_points.shape[0])) + base_point = orig_points[selected_id, :] + distances = np.linalg.norm( + orig_points[np.newaxis, selected_ids] - base_point, + axis=2).flatten() + if min(distances) >= min_distance: + selected_ids.append(selected_id) + loop += 1 + if len(selected_ids) != n_points: + print("Could not find the specified number of points...") + + return orig_points[selected_ids, :] + + +def plot_sampled_points(original_points, sampled_points, method_name): + fig = plt.figure() + ax = fig.add_subplot(projection='3d') + ax.scatter(original_points[:, 0], original_points[:, 1], + original_points[:, 2], marker=".", label="Original points") + ax.scatter(sampled_points[:, 0], sampled_points[:, 1], + sampled_points[:, 2], marker="o", + label="Filtered points") + plt.legend() + plt.title(method_name) + plt.axis("equal") + + +def main(): + n_points = 1000 + seed = 1234 + rng = np.random.default_rng(seed) + + x = rng.normal(0.0, 10.0, n_points) + y = rng.normal(0.0, 1.0, n_points) + z = rng.normal(0.0, 10.0, n_points) + original_points = np.vstack((x, y, z)).T + print(f"{original_points.shape=}") + print("Voxel point sampling") + voxel_size = 20.0 + voxel_sampling_points = voxel_point_sampling(original_points, voxel_size) + print(f"{voxel_sampling_points.shape=}") + + print("Farthest point sampling") + n_points = 20 + farthest_sampling_points = farthest_point_sampling(original_points, + n_points, seed) + print(f"{farthest_sampling_points.shape=}") + + print("Poisson disk sampling") + n_points = 20 + min_distance = 10.0 + poisson_disk_points = poisson_disk_sampling(original_points, n_points, + min_distance, seed) + print(f"{poisson_disk_points.shape=}") + + if do_plot: + plot_sampled_points(original_points, voxel_sampling_points, + "Voxel point sampling") + plot_sampled_points(original_points, farthest_sampling_points, + "Farthest point sampling") + plot_sampled_points(original_points, poisson_disk_points, + "poisson disk sampling") + plt.show() + + +if __name__ == '__main__': + main() diff --git a/Mapping/raycasting_grid_map/raycasting_grid_map.py b/Mapping/ray_casting_grid_map/ray_casting_grid_map.py similarity index 96% rename from Mapping/raycasting_grid_map/raycasting_grid_map.py rename to Mapping/ray_casting_grid_map/ray_casting_grid_map.py index 8ce37b925b..c7e73f0630 100644 --- a/Mapping/raycasting_grid_map/raycasting_grid_map.py +++ b/Mapping/ray_casting_grid_map/ray_casting_grid_map.py @@ -48,7 +48,7 @@ def atan_zero_to_twopi(y, x): return angle -def precasting(minx, miny, xw, yw, xyreso, yawreso): +def pre_casting(minx, miny, xw, yw, xyreso, yawreso): precast = [[] for i in range(int(round((math.pi * 2.0) / yawreso)) + 1)] @@ -81,7 +81,7 @@ def generate_ray_casting_grid_map(ox, oy, xyreso, yawreso): pmap = [[0.0 for i in range(yw)] for i in range(xw)] - precast = precasting(minx, miny, xw, yw, xyreso, yawreso) + precast = pre_casting(minx, miny, xw, yw, xyreso, yawreso) for (x, y) in zip(ox, oy): diff --git a/Mapping/rectangle_fitting/__init_.py b/Mapping/rectangle_fitting/__init_.py new file mode 100644 index 0000000000..2194d4c303 --- /dev/null +++ b/Mapping/rectangle_fitting/__init_.py @@ -0,0 +1,3 @@ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent)) diff --git a/Mapping/rectangle_fitting/rectangle_fitting.py b/Mapping/rectangle_fitting/rectangle_fitting.py index ae41b3c53e..7902619666 100644 --- a/Mapping/rectangle_fitting/rectangle_fitting.py +++ b/Mapping/rectangle_fitting/rectangle_fitting.py @@ -4,7 +4,7 @@ author: Atsushi Sakai (@Atsushi_twi) -Ref: +Reference: - Efficient L-Shape Fitting for Vehicle Detection Using Laser Scanners - The Robotics Institute Carnegie Mellon University https://www.ri.cmu.edu/publications/ @@ -12,18 +12,29 @@ """ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) + import matplotlib.pyplot as plt import numpy as np import itertools from enum import Enum -from scipy.spatial.transform import Rotation as Rot -from simulator import VehicleSimulator, LidarSimulator +from utils.angle import rot_mat_2d + +from Mapping.rectangle_fitting.simulator \ + import VehicleSimulator, LidarSimulator show_animation = True class LShapeFitting: + """ + LShapeFitting class. You can use this class by initializing the class and + changing the parameters, and then calling the fitting method. + + """ class Criteria(Enum): AREA = 1 @@ -31,15 +42,35 @@ class Criteria(Enum): VARIANCE = 3 def __init__(self): - # Parameters + """ + Default parameter settings + """ + #: Fitting criteria parameter self.criteria = self.Criteria.VARIANCE - self.min_dist_of_closeness_criteria = 0.01 # [m] - self.d_theta_deg_for_search = 1.0 # [deg] - self.R0 = 3.0 # [m] range segmentation param - self.Rd = 0.001 # [m] range segmentation param + #: Minimum distance for closeness criteria parameter [m] + self.min_dist_of_closeness_criteria = 0.01 + #: Angle difference parameter [deg] + self.d_theta_deg_for_search = 1.0 + #: Range segmentation parameter [m] + self.R0 = 3.0 + #: Range segmentation parameter [m] + self.Rd = 0.001 def fitting(self, ox, oy): + """ + Fitting L-shape model to object points + + Parameters + ---------- + ox : x positions of range points from an object + oy : y positions of range points from an object + Returns + ------- + rects: Fitting rectangles + id_sets: id sets of each cluster + + """ # step1: Adaptive Range Segmentation id_sets = self._adoptive_range_segmentation(ox, oy) @@ -54,74 +85,53 @@ def fitting(self, ox, oy): @staticmethod def _calc_area_criterion(c1, c2): - c1_max = max(c1) - c2_max = max(c2) - c1_min = min(c1) - c2_min = min(c2) - + c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2) alpha = -(c1_max - c1_min) * (c2_max - c2_min) - return alpha def _calc_closeness_criterion(self, c1, c2): - c1_max = max(c1) - c2_max = max(c2) - c1_min = min(c1) - c2_min = min(c2) - - D1 = [min([np.linalg.norm(c1_max - ic1), - np.linalg.norm(ic1 - c1_min)]) for ic1 in c1] - D2 = [min([np.linalg.norm(c2_max - ic2), - np.linalg.norm(ic2 - c2_min)]) for ic2 in c2] + c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2) - beta = 0 - for i, _ in enumerate(D1): - d = max(min([D1[i], D2[i]]), self.min_dist_of_closeness_criteria) - beta += (1.0 / d) + # Vectorization + d1 = np.minimum(c1_max - c1, c1 - c1_min) + d2 = np.minimum(c2_max - c2, c2 - c2_min) + d = np.maximum(np.minimum(d1, d2), self.min_dist_of_closeness_criteria) + beta = (1.0 / d).sum() return beta @staticmethod def _calc_variance_criterion(c1, c2): + c1_max, c1_min, c2_max, c2_min = LShapeFitting._find_min_max(c1, c2) + + # Vectorization + d1 = np.minimum(c1_max - c1, c1 - c1_min) + d2 = np.minimum(c2_max - c2, c2 - c2_min) + e1 = d1[d1 < d2] + e2 = d2[d1 >= d2] + v1 = - np.var(e1) if len(e1) > 0 else 0. + v2 = - np.var(e2) if len(e2) > 0 else 0. + gamma = v1 + v2 + + return gamma + + @staticmethod + def _find_min_max(c1, c2): c1_max = max(c1) c2_max = max(c2) c1_min = min(c1) c2_min = min(c2) - - D1 = [min([np.linalg.norm(c1_max - ic1), - np.linalg.norm(ic1 - c1_min)]) for ic1 in c1] - D2 = [min([np.linalg.norm(c2_max - ic2), - np.linalg.norm(ic2 - c2_min)]) for ic2 in c2] - - E1, E2 = [], [] - for (d1, d2) in zip(D1, D2): - if d1 < d2: - E1.append(d1) - else: - E2.append(d2) - - V1 = 0.0 - if E1: - V1 = - np.var(E1) - - V2 = 0.0 - if E2: - V2 = - np.var(E2) - - gamma = V1 + V2 - - return gamma + return c1_max, c1_min, c2_max, c2_min def _rectangle_search(self, x, y): - X = np.array([x, y]).T + xy = np.array([x, y]).T d_theta = np.deg2rad(self.d_theta_deg_for_search) min_cost = (-float('inf'), None) for theta in np.arange(0.0, np.pi / 2.0 - d_theta, d_theta): - rot = Rot.from_euler('z', theta).as_matrix()[0:2, 0:2] - c = X @ rot + c = xy @ rot_mat_2d(theta) c1 = c[:, 0] c2 = c[:, 1] @@ -141,8 +151,8 @@ def _rectangle_search(self, x, y): sin_s = np.sin(min_cost[1]) cos_s = np.cos(min_cost[1]) - c1_s = X @ np.array([cos_s, sin_s]).T - c2_s = X @ np.array([-sin_s, cos_s]).T + c1_s = xy @ np.array([cos_s, sin_s]).T + c2_s = xy @ np.array([-sin_s, cos_s]).T rect = RectangleData() rect.a[0] = cos_s @@ -163,28 +173,28 @@ def _rectangle_search(self, x, y): def _adoptive_range_segmentation(self, ox, oy): # Setup initial cluster - S = [] + segment_list = [] for i, _ in enumerate(ox): - C = set() - R = self.R0 + self.Rd * np.linalg.norm([ox[i], oy[i]]) + c = set() + r = self.R0 + self.Rd * np.linalg.norm([ox[i], oy[i]]) for j, _ in enumerate(ox): d = np.hypot(ox[i] - ox[j], oy[i] - oy[j]) - if d <= R: - C.add(j) - S.append(C) + if d <= r: + c.add(j) + segment_list.append(c) # Merge cluster - while 1: + while True: no_change = True - for (c1, c2) in list(itertools.permutations(range(len(S)), 2)): - if S[c1] & S[c2]: - S[c1] = (S[c1] | S.pop(c2)) + for (c1, c2) in list(itertools.permutations(range(len(segment_list)), 2)): + if segment_list[c1] & segment_list[c2]: + segment_list[c1] = (segment_list[c1] | segment_list.pop(c2)) no_change = False break if no_change: break - return S + return segment_list class RectangleData: diff --git a/Mapping/rectangle_fitting/simulator.py b/Mapping/rectangle_fitting/simulator.py index c7c3141fa9..aa32ae1b1f 100644 --- a/Mapping/rectangle_fitting/simulator.py +++ b/Mapping/rectangle_fitting/simulator.py @@ -5,12 +5,16 @@ author: Atsushi Sakai """ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) import numpy as np import matplotlib.pyplot as plt import math import random -from scipy.spatial.transform import Rotation as Rot + +from utils.angle import rot_mat_2d class VehicleSimulator: @@ -41,8 +45,7 @@ def plot(self): plt.plot(gx, gy, "--b") def calc_global_contour(self): - rot = Rot.from_euler('z', self.yaw).as_matrix()[0:2, 0:2] - gxy = np.stack([self.vc_x, self.vc_y]).T @ rot + gxy = np.stack([self.vc_x, self.vc_y]).T @ rot_mat_2d(self.yaw) gx = gxy[:, 0] + self.x gy = gxy[:, 1] + self.y @@ -135,13 +138,3 @@ def ray_casting_filter(theta_l, range_l, angle_resolution): ry.append(range_db[i] * np.sin(t)) return rx, ry - - -def main(): - print("start!!") - - print("done!!") - - -if __name__ == '__main__': - main() diff --git a/MissionPlanning/BehaviorTree/behavior_tree.py b/MissionPlanning/BehaviorTree/behavior_tree.py new file mode 100644 index 0000000000..9ad886aafb --- /dev/null +++ b/MissionPlanning/BehaviorTree/behavior_tree.py @@ -0,0 +1,690 @@ +""" +Behavior Tree + +author: Wang Zheng (@Aglargil) + +Reference: + +- [Behavior Tree](https://en.wikipedia.org/wiki/Behavior_tree_(artificial_intelligence,_robotics_and_control)) +""" + +import time +import xml.etree.ElementTree as ET +from enum import Enum + + +class Status(Enum): + SUCCESS = "success" + FAILURE = "failure" + RUNNING = "running" + + +class NodeType(Enum): + CONTROL_NODE = "ControlNode" + ACTION_NODE = "ActionNode" + DECORATOR_NODE = "DecoratorNode" + + +class Node: + """ + Base class for all nodes in a behavior tree. + """ + + def __init__(self, name): + self.name = name + self.status = None + + def tick(self) -> Status: + """ + Tick the node. + + Returns: + Status: The status of the node. + """ + raise ValueError("Node is not implemented") + + def tick_and_set_status(self) -> Status: + """ + Tick the node and set the status. + + Returns: + Status: The status of the node. + """ + self.status = self.tick() + return self.status + + def reset(self): + """ + Reset the node. + """ + self.status = None + + def reset_children(self): + """ + Reset the children of the node. + """ + pass + + +class ControlNode(Node): + """ + Base class for all control nodes in a behavior tree. + + Control nodes manage the execution flow of their child nodes according to specific rules. + They typically have multiple children and determine which children to execute and in what order. + """ + + def __init__(self, name): + super().__init__(name) + self.children = [] + self.type = NodeType.CONTROL_NODE + + def not_set_children_raise_error(self): + if len(self.children) == 0: + raise ValueError("Children are not set") + + def reset_children(self): + for child in self.children: + child.reset() + + +class SequenceNode(ControlNode): + """ + Executes child nodes in sequence until one fails or all succeed. + + Returns: + - Returns FAILURE if any child returns FAILURE + - Returns SUCCESS when all children have succeeded + - Returns RUNNING when a child is still running or when moving to the next child + + Example: + .. code-block:: xml + + + + + + """ + + def __init__(self, name): + super().__init__(name) + self.current_child_index = 0 + + def tick(self) -> Status: + self.not_set_children_raise_error() + + if self.current_child_index >= len(self.children): + self.reset_children() + return Status.SUCCESS + status = self.children[self.current_child_index].tick_and_set_status() + if status == Status.FAILURE: + self.reset_children() + return Status.FAILURE + elif status == Status.SUCCESS: + self.current_child_index += 1 + return Status.RUNNING + elif status == Status.RUNNING: + return Status.RUNNING + else: + raise ValueError("Unknown status") + + +class SelectorNode(ControlNode): + """ + Executes child nodes in sequence until one succeeds or all fail. + + Returns: + - Returns SUCCESS if any child returns SUCCESS + - Returns FAILURE when all children have failed + - Returns RUNNING when a child is still running or when moving to the next child + + Examples: + .. code-block:: xml + + + + + + """ + + def __init__(self, name): + super().__init__(name) + self.current_child_index = 0 + + def tick(self) -> Status: + self.not_set_children_raise_error() + + if self.current_child_index >= len(self.children): + self.reset_children() + return Status.FAILURE + status = self.children[self.current_child_index].tick_and_set_status() + if status == Status.SUCCESS: + self.reset_children() + return Status.SUCCESS + elif status == Status.FAILURE: + self.current_child_index += 1 + return Status.RUNNING + elif status == Status.RUNNING: + return Status.RUNNING + else: + raise ValueError("Unknown status") + + +class WhileDoElseNode(ControlNode): + """ + Conditional execution node with three parts: condition, do, and optional else. + + Returns: + First executes the condition node (child[0]) + If condition succeeds, executes do node (child[1]) and returns RUNNING + If condition fails, executes else node (child[2]) if present and returns result of else node + If condition fails and there is no else node, returns SUCCESS + + Example: + .. code-block:: xml + + + + + + + """ + + def __init__(self, name): + super().__init__(name) + + def tick(self) -> Status: + if len(self.children) != 3 and len(self.children) != 2: + raise ValueError("WhileDoElseNode must have exactly 3 or 2 children") + + condition_node = self.children[0] + do_node = self.children[1] + else_node = self.children[2] if len(self.children) == 3 else None + + condition_status = condition_node.tick_and_set_status() + if condition_status == Status.SUCCESS: + do_node.tick_and_set_status() + return Status.RUNNING + elif condition_status == Status.FAILURE: + if else_node is not None: + else_status = else_node.tick_and_set_status() + if else_status == Status.SUCCESS: + self.reset_children() + return Status.SUCCESS + elif else_status == Status.FAILURE: + self.reset_children() + return Status.FAILURE + elif else_status == Status.RUNNING: + return Status.RUNNING + else: + raise ValueError("Unknown status") + else: + self.reset_children() + return Status.SUCCESS + else: + raise ValueError("Unknown status") + + +class ActionNode(Node): + """ + Base class for all action nodes in a behavior tree. + + Action nodes are responsible for performing specific tasks or actions. + They do not have children and are typically used to execute logic or operations. + """ + + def __init__(self, name): + super().__init__(name) + self.type = NodeType.ACTION_NODE + + +class SleepNode(ActionNode): + """ + Sleep node that sleeps for a specified duration. + + Returns: + Returns SUCCESS after the specified duration has passed + Returns RUNNING if the duration has not yet passed + + Example: + .. code-block:: xml + + + """ + + def __init__(self, name, duration): + super().__init__(name) + self.duration = duration + self.start_time = None + + def tick(self) -> Status: + if self.start_time is None: + self.start_time = time.time() + if time.time() - self.start_time > self.duration: + return Status.SUCCESS + return Status.RUNNING + + +class EchoNode(ActionNode): + """ + Echo node that prints a message to the console. + + Returns: + Returns SUCCESS after the message has been printed + + Example: + .. code-block:: xml + + + """ + + def __init__(self, name, message): + super().__init__(name) + self.message = message + + def tick(self) -> Status: + print(self.name, self.message) + return Status.SUCCESS + + +class DecoratorNode(Node): + """ + Base class for all decorator nodes in a behavior tree. + + Decorator nodes modify the behavior of their child node. + They must have a single child and can alter the status of the child node. + """ + + def __init__(self, name): + super().__init__(name) + self.type = NodeType.DECORATOR_NODE + self.child = None + + def not_set_child_raise_error(self): + if self.child is None: + raise ValueError("Child is not set") + + def reset_children(self): + self.child.reset() + + +class InverterNode(DecoratorNode): + """ + Inverter node that inverts the status of its child node. + + Returns: + - Returns SUCCESS if the child returns FAILURE + - Returns FAILURE if the child returns SUCCESS + - Returns RUNNING if the child returns RUNNING + + Examples: + .. code-block:: xml + + + + + """ + + def __init__(self, name): + super().__init__(name) + + def tick(self) -> Status: + self.not_set_child_raise_error() + status = self.child.tick_and_set_status() + return Status.SUCCESS if status == Status.FAILURE else Status.FAILURE + + +class TimeoutNode(DecoratorNode): + """ + Timeout node that fails if the child node takes too long to execute + + Returns: + - FAILURE: If the timeout duration has been exceeded + - Child's status: Otherwise, passes through the status of the child node + + Example: + .. code-block:: xml + + + + + """ + + def __init__(self, name, timeout): + super().__init__(name) + self.timeout = timeout + self.start_time = None + + def tick(self) -> Status: + self.not_set_child_raise_error() + if self.start_time is None: + self.start_time = time.time() + if time.time() - self.start_time > self.timeout: + return Status.FAILURE + print(f"{self.name} is running") + return self.child.tick_and_set_status() + + +class DelayNode(DecoratorNode): + """ + Delay node that delays the execution of its child node for a specified duration. + + Returns: + - Returns RUNNING if the duration has not yet passed + - Returns child's status after the duration has passed + + Example: + .. code-block:: xml + + + + + """ + + def __init__(self, name, delay): + super().__init__(name) + self.delay = delay + self.start_time = None + + def tick(self) -> Status: + self.not_set_child_raise_error() + if self.start_time is None: + self.start_time = time.time() + if time.time() - self.start_time > self.delay: + return self.child.tick_and_set_status() + return Status.RUNNING + + +class ForceSuccessNode(DecoratorNode): + """ + ForceSuccess node that always returns SUCCESS. + + Returns: + - Returns RUNNING if the child returns RUNNING + - Returns SUCCESS if the child returns SUCCESS or FAILURE + """ + + def __init__(self, name): + super().__init__(name) + + def tick(self) -> Status: + self.not_set_child_raise_error() + status = self.child.tick_and_set_status() + if status == Status.FAILURE: + return Status.SUCCESS + return status + + +class ForceFailureNode(DecoratorNode): + """ + ForceFailure node that always returns FAILURE. + + Returns: + - Returns RUNNING if the child returns RUNNING + - Returns FAILURE if the child returns SUCCESS or FAILURE + """ + + def __init__(self, name): + super().__init__(name) + + def tick(self) -> Status: + self.not_set_child_raise_error() + status = self.child.tick_and_set_status() + if status == Status.SUCCESS: + return Status.FAILURE + return status + + +class BehaviorTree: + """ + Behavior tree class that manages the execution of a behavior tree. + """ + + def __init__(self, root): + self.root = root + + def tick(self): + """ + Tick once on the behavior tree. + """ + self.root.tick_and_set_status() + + def reset(self): + """ + Reset the behavior tree. + """ + self.root.reset() + + def tick_while_running(self, interval=None, enable_print=True): + """ + Tick the behavior tree while it is running. + + Args: + interval (float, optional): The interval between ticks. Defaults to None. + enable_print (bool, optional): Whether to print the behavior tree. Defaults to True. + """ + while self.root.tick_and_set_status() == Status.RUNNING: + if enable_print: + self.print_tree() + if interval is not None: + time.sleep(interval) + if enable_print: + self.print_tree() + + def to_text(self, root, indent=0): + """ + Recursively convert the behavior tree to a text representation. + """ + current_text = "" + if root.status == Status.RUNNING: + # yellow + current_text = "\033[93m" + root.name + "\033[0m" + elif root.status == Status.SUCCESS: + # green + current_text = "\033[92m" + root.name + "\033[0m" + elif root.status == Status.FAILURE: + # red + current_text = "\033[91m" + root.name + "\033[0m" + else: + current_text = root.name + if root.type == NodeType.CONTROL_NODE: + current_text = " " * indent + "[" + current_text + "]\n" + for child in root.children: + current_text += self.to_text(child, indent + 2) + elif root.type == NodeType.DECORATOR_NODE: + current_text = " " * indent + "(" + current_text + ")\n" + current_text += self.to_text(root.child, indent + 2) + elif root.type == NodeType.ACTION_NODE: + current_text = " " * indent + "<" + current_text + ">\n" + return current_text + + def print_tree(self): + """ + Print the behavior tree. + + Node print format: + Action: + Decorator: (Decorator) + Control: [Control] + + Node status colors: + Yellow: RUNNING + Green: SUCCESS + Red: FAILURE + """ + text = self.to_text(self.root) + text = text.strip() + print("\033[94m" + "Behavior Tree" + "\033[0m") + print(text) + print("\033[94m" + "Behavior Tree" + "\033[0m") + + +class BehaviorTreeFactory: + """ + Factory class for creating behavior trees from XML strings. + """ + + def __init__(self): + self.node_builders = {} + # Control nodes + self.register_node_builder( + "Sequence", + lambda node: SequenceNode(node.attrib.get("name", SequenceNode.__name__)), + ) + self.register_node_builder( + "Selector", + lambda node: SelectorNode(node.attrib.get("name", SelectorNode.__name__)), + ) + self.register_node_builder( + "WhileDoElse", + lambda node: WhileDoElseNode( + node.attrib.get("name", WhileDoElseNode.__name__) + ), + ) + # Decorator nodes + self.register_node_builder( + "Inverter", + lambda node: InverterNode(node.attrib.get("name", InverterNode.__name__)), + ) + self.register_node_builder( + "Timeout", + lambda node: TimeoutNode( + node.attrib.get("name", SelectorNode.__name__), + float(node.attrib["sec"]), + ), + ) + self.register_node_builder( + "Delay", + lambda node: DelayNode( + node.attrib.get("name", DelayNode.__name__), + float(node.attrib["sec"]), + ), + ) + self.register_node_builder( + "ForceSuccess", + lambda node: ForceSuccessNode( + node.attrib.get("name", ForceSuccessNode.__name__) + ), + ) + self.register_node_builder( + "ForceFailure", + lambda node: ForceFailureNode( + node.attrib.get("name", ForceFailureNode.__name__) + ), + ) + # Action nodes + self.register_node_builder( + "Sleep", + lambda node: SleepNode( + node.attrib.get("name", SleepNode.__name__), + float(node.attrib["sec"]), + ), + ) + self.register_node_builder( + "Echo", + lambda node: EchoNode( + node.attrib.get("name", EchoNode.__name__), + node.attrib["message"], + ), + ) + + def register_node_builder(self, node_name, builder): + """ + Register a builder for a node + + Args: + node_name (str): The name of the node. + builder (function): The builder function. + + Example: + .. code-block:: python + + factory = BehaviorTreeFactory() + factory.register_node_builder( + "MyNode", + lambda node: MyNode( + node.attrib.get("name", MyNode.__name__), + node.attrib["my_param"], + ), + ) + """ + self.node_builders[node_name] = builder + + def build_node(self, node): + """ + Build a node from an XML element. + + Args: + node (Element): The XML element to build the node from. + + Returns: + BehaviorTree Node: the built node + """ + if node.tag in self.node_builders: + root = self.node_builders[node.tag](node) + if root.type == NodeType.CONTROL_NODE: + if len(node) <= 0: + raise ValueError(f"{root.name} Control node must have children") + for child in node: + root.children.append(self.build_node(child)) + elif root.type == NodeType.DECORATOR_NODE: + if len(node) != 1: + raise ValueError( + f"{root.name} Decorator node must have exactly one child" + ) + root.child = self.build_node(node[0]) + elif root.type == NodeType.ACTION_NODE: + if len(node) != 0: + raise ValueError(f"{root.name} Action node must have no children") + return root + else: + raise ValueError(f"Unknown node type: {node.tag}") + + def build_tree(self, xml_string): + """ + Build a behavior tree from an XML string. + + Args: + xml_string (str): The XML string containing the behavior tree. + + Returns: + BehaviorTree: The behavior tree. + """ + xml_tree = ET.fromstring(xml_string) + root = self.build_node(xml_tree) + return BehaviorTree(root) + + def build_tree_from_file(self, file_path): + """ + Build a behavior tree from a file. + + Args: + file_path (str): The path to the file containing the behavior tree. + + Returns: + BehaviorTree: The behavior tree. + """ + with open(file_path) as file: + xml_string = file.read() + return self.build_tree(xml_string) + + +xml_string = """ + + + + + + + + """ + + +def main(): + factory = BehaviorTreeFactory() + tree = factory.build_tree(xml_string) + tree.tick_while_running() + + +if __name__ == "__main__": + main() diff --git a/MissionPlanning/BehaviorTree/robot_behavior_case.py b/MissionPlanning/BehaviorTree/robot_behavior_case.py new file mode 100644 index 0000000000..6c39aa76b2 --- /dev/null +++ b/MissionPlanning/BehaviorTree/robot_behavior_case.py @@ -0,0 +1,247 @@ +""" +Robot Behavior Tree Case + +This file demonstrates how to use a behavior tree to control robot behavior. +""" + +from behavior_tree import ( + BehaviorTreeFactory, + Status, + ActionNode, +) +import time +import random +import os + + +class CheckBatteryNode(ActionNode): + """ + Node to check robot battery level + + If battery level is below threshold, returns FAILURE, otherwise returns SUCCESS + """ + + def __init__(self, name, threshold=20): + super().__init__(name) + self.threshold = threshold + self.battery_level = 100 # Initial battery level is 100% + + def tick(self): + # Simulate battery level decreasing + self.battery_level -= random.randint(1, 5) + print(f"Current battery level: {self.battery_level}%") + + if self.battery_level <= self.threshold: + return Status.FAILURE + return Status.SUCCESS + + +class ChargeBatteryNode(ActionNode): + """ + Node to charge the robot's battery + """ + + def __init__(self, name, charge_rate=10): + super().__init__(name) + self.charge_rate = charge_rate + self.charging_time = 0 + + def tick(self): + # Simulate charging process + if self.charging_time == 0: + print("Starting to charge...") + + self.charging_time += 1 + charge_amount = self.charge_rate * self.charging_time + + if charge_amount >= 100: + print("Charging complete! Battery level: 100%") + self.charging_time = 0 + return Status.SUCCESS + else: + print(f"Charging in progress... Battery level: {min(charge_amount, 100)}%") + return Status.RUNNING + + +class MoveToPositionNode(ActionNode): + """ + Node to move to a specified position + """ + + def __init__(self, name, position, move_duration=2): + super().__init__(name) + self.position = position + self.move_duration = move_duration + self.start_time = None + + def tick(self): + if self.start_time is None: + self.start_time = time.time() + print(f"Starting movement to position {self.position}") + + elapsed_time = time.time() - self.start_time + + if elapsed_time >= self.move_duration: + print(f"Arrived at position {self.position}") + self.start_time = None + return Status.SUCCESS + else: + print( + f"Moving to position {self.position}... {int(elapsed_time / self.move_duration * 100)}% complete" + ) + return Status.RUNNING + + +class DetectObstacleNode(ActionNode): + """ + Node to detect obstacles + """ + + def __init__(self, name, obstacle_probability=0.3): + super().__init__(name) + self.obstacle_probability = obstacle_probability + + def tick(self): + # Use random probability to simulate obstacle detection + if random.random() < self.obstacle_probability: + print("Obstacle detected!") + return Status.SUCCESS + else: + print("No obstacle detected") + return Status.FAILURE + + +class AvoidObstacleNode(ActionNode): + """ + Node to avoid obstacles + """ + + def __init__(self, name, avoid_duration=1.5): + super().__init__(name) + self.avoid_duration = avoid_duration + self.start_time = None + + def tick(self): + if self.start_time is None: + self.start_time = time.time() + print("Starting obstacle avoidance...") + + elapsed_time = time.time() - self.start_time + + if elapsed_time >= self.avoid_duration: + print("Obstacle avoidance complete") + self.start_time = None + return Status.SUCCESS + else: + print("Avoiding obstacle...") + return Status.RUNNING + + +class PerformTaskNode(ActionNode): + """ + Node to perform a specific task + """ + + def __init__(self, name, task_name, task_duration=3): + super().__init__(name) + self.task_name = task_name + self.task_duration = task_duration + self.start_time = None + + def tick(self): + if self.start_time is None: + self.start_time = time.time() + print(f"Starting task: {self.task_name}") + + elapsed_time = time.time() - self.start_time + + if elapsed_time >= self.task_duration: + print(f"Task complete: {self.task_name}") + self.start_time = None + return Status.SUCCESS + else: + print( + f"Performing task: {self.task_name}... {int(elapsed_time / self.task_duration * 100)}% complete" + ) + return Status.RUNNING + + +def create_robot_behavior_tree(): + """ + Create robot behavior tree + """ + + factory = BehaviorTreeFactory() + + # Register custom nodes + factory.register_node_builder( + "CheckBattery", + lambda node: CheckBatteryNode( + node.attrib.get("name", "CheckBattery"), + int(node.attrib.get("threshold", "20")), + ), + ) + + factory.register_node_builder( + "ChargeBattery", + lambda node: ChargeBatteryNode( + node.attrib.get("name", "ChargeBattery"), + int(node.attrib.get("charge_rate", "10")), + ), + ) + + factory.register_node_builder( + "MoveToPosition", + lambda node: MoveToPositionNode( + node.attrib.get("name", "MoveToPosition"), + node.attrib.get("position", "Unknown Position"), + float(node.attrib.get("move_duration", "2")), + ), + ) + + factory.register_node_builder( + "DetectObstacle", + lambda node: DetectObstacleNode( + node.attrib.get("name", "DetectObstacle"), + float(node.attrib.get("obstacle_probability", "0.3")), + ), + ) + + factory.register_node_builder( + "AvoidObstacle", + lambda node: AvoidObstacleNode( + node.attrib.get("name", "AvoidObstacle"), + float(node.attrib.get("avoid_duration", "1.5")), + ), + ) + + factory.register_node_builder( + "PerformTask", + lambda node: PerformTaskNode( + node.attrib.get("name", "PerformTask"), + node.attrib.get("task_name", "Unknown Task"), + float(node.attrib.get("task_duration", "3")), + ), + ) + # Read XML from file + xml_path = os.path.join(os.path.dirname(__file__), "robot_behavior_tree.xml") + return factory.build_tree_from_file(xml_path) + + +def main(): + """ + Main function: Create and run the robot behavior tree + """ + print("Creating robot behavior tree...") + tree = create_robot_behavior_tree() + + print("\nStarting robot behavior tree execution...\n") + # Run for a period of time or until completion + + tree.tick_while_running(interval=0.01) + + print("\nBehavior tree execution complete!") + + +if __name__ == "__main__": + main() diff --git a/MissionPlanning/BehaviorTree/robot_behavior_tree.xml b/MissionPlanning/BehaviorTree/robot_behavior_tree.xml new file mode 100644 index 0000000000..0bca76a3ff --- /dev/null +++ b/MissionPlanning/BehaviorTree/robot_behavior_tree.xml @@ -0,0 +1,57 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/MissionPlanning/StateMachine/robot_behavior_case.py b/MissionPlanning/StateMachine/robot_behavior_case.py new file mode 100644 index 0000000000..03ee60ae9f --- /dev/null +++ b/MissionPlanning/StateMachine/robot_behavior_case.py @@ -0,0 +1,111 @@ +""" +A case study of robot behavior using state machine + +author: Wang Zheng (@Aglargil) +""" + +from state_machine import StateMachine + + +class Robot: + def __init__(self): + self.battery = 100 + self.task_progress = 0 + + # Initialize state machine + self.machine = StateMachine("robot_sm", self) + + # Add state transition rules + self.machine.add_transition( + src_state="patrolling", + event="detect_task", + dst_state="executing_task", + guard=None, + action=None, + ) + + self.machine.add_transition( + src_state="executing_task", + event="task_complete", + dst_state="patrolling", + guard=None, + action="reset_task", + ) + + self.machine.add_transition( + src_state="executing_task", + event="low_battery", + dst_state="returning_to_base", + guard="is_battery_low", + ) + + self.machine.add_transition( + src_state="returning_to_base", + event="reach_base", + dst_state="charging", + guard=None, + action=None, + ) + + self.machine.add_transition( + src_state="charging", + event="charge_complete", + dst_state="patrolling", + guard=None, + action="battery_full", + ) + + # Set initial state + self.machine.set_current_state("patrolling") + + def is_battery_low(self): + """Battery level check condition""" + return self.battery < 30 + + def reset_task(self): + """Reset task progress""" + self.task_progress = 0 + print("[Action] Task progress has been reset") + + # Modify state entry callback naming convention (add state_ prefix) + def on_enter_executing_task(self): + print("\n------ Start Executing Task ------") + print(f"Current battery: {self.battery}%") + while self.machine.get_current_state().name == "executing_task": + self.task_progress += 10 + self.battery -= 25 + print( + f"Task progress: {self.task_progress}%, Remaining battery: {self.battery}%" + ) + + if self.task_progress >= 100: + self.machine.process("task_complete") + break + elif self.is_battery_low(): + self.machine.process("low_battery") + break + + def on_enter_returning_to_base(self): + print("\nLow battery, returning to charging station...") + self.machine.process("reach_base") + + def on_enter_charging(self): + print("\n------ Charging ------") + self.battery = 100 + print("Charging complete!") + self.machine.process("charge_complete") + + +# Keep the test section structure the same, only modify the trigger method +if __name__ == "__main__": + robot = Robot() + print(robot.machine.generate_plantuml()) + + print(f"Initial state: {robot.machine.get_current_state().name}") + print("------------") + + # Trigger task detection event + robot.machine.process("detect_task") + + print("\n------------") + print(f"Final state: {robot.machine.get_current_state().name}") diff --git a/MissionPlanning/StateMachine/state_machine.py b/MissionPlanning/StateMachine/state_machine.py new file mode 100644 index 0000000000..454759236e --- /dev/null +++ b/MissionPlanning/StateMachine/state_machine.py @@ -0,0 +1,294 @@ +""" +State Machine + +author: Wang Zheng (@Aglargil) + +Reference: + +- [State Machine] +(https://en.wikipedia.org/wiki/Finite-state_machine) +""" + +import string +from urllib.request import urlopen, Request +from base64 import b64encode +from zlib import compress +from io import BytesIO +from collections.abc import Callable +from matplotlib.image import imread +from matplotlib import pyplot as plt + + +def deflate_and_encode(plantuml_text): + """ + zlib compress the plantuml text and encode it for the plantuml server. + + Reference https://plantuml.com/en/text-encoding + """ + plantuml_alphabet = ( + string.digits + string.ascii_uppercase + string.ascii_lowercase + "-_" + ) + base64_alphabet = ( + string.ascii_uppercase + string.ascii_lowercase + string.digits + "+/" + ) + b64_to_plantuml = bytes.maketrans( + base64_alphabet.encode("utf-8"), plantuml_alphabet.encode("utf-8") + ) + zlibbed_str = compress(plantuml_text.encode("utf-8")) + compressed_string = zlibbed_str[2:-4] + return b64encode(compressed_string).translate(b64_to_plantuml).decode("utf-8") + + +class State: + def __init__(self, name, on_enter=None, on_exit=None): + self.name = name + self.on_enter = on_enter + self.on_exit = on_exit + + def enter(self): + print(f"entering <{self.name}>") + if self.on_enter: + self.on_enter() + + def exit(self): + print(f"exiting <{self.name}>") + if self.on_exit: + self.on_exit() + + +class StateMachine: + def __init__(self, name: str, model=object): + """Initialize the state machine. + + Args: + name (str): Name of the state machine. + model (object, optional): Model object used to automatically look up callback functions + for states and transitions: + State callbacks: Automatically searches for 'on_enter_' and 'on_exit_' methods. + Transition callbacks: When action or guard parameters are strings, looks up corresponding methods in the model. + + Example: + >>> class MyModel: + ... def on_enter_idle(self): + ... print("Entering idle state") + ... def on_exit_idle(self): + ... print("Exiting idle state") + ... def can_start(self): + ... return True + ... def on_start(self): + ... print("Starting operation") + >>> model = MyModel() + >>> machine = StateMachine("my_machine", model) + """ + self._name = name + self._states = {} + self._events = {} + self._transition_table = {} + self._model = model + self._state: State = None + + def _register_event(self, event: str): + self._events[event] = event + + def _get_state(self, name): + return self._states[name] + + def _get_event(self, name): + return self._events[name] + + def _has_event(self, event: str): + return event in self._events + + def add_transition( + self, + src_state: str | State, + event: str, + dst_state: str | State, + guard: str | Callable = None, + action: str | Callable = None, + ) -> None: + """Add a transition to the state machine. + + Args: + src_state (str | State): The source state where the transition begins. + Can be either a state name or a State object. + event (str): The event that triggers this transition. + dst_state (str | State): The destination state where the transition ends. + Can be either a state name or a State object. + guard (str | Callable, optional): Guard condition for the transition. + If callable: Function that returns bool. + If str: Name of a method in the model class. + If returns True: Transition proceeds. + If returns False: Transition is skipped. + action (str | Callable, optional): Action to execute during transition. + If callable: Function to execute. + If str: Name of a method in the model class. + Executed after guard passes and before entering new state. + + Example: + >>> machine.add_transition( + ... src_state="idle", + ... event="start", + ... dst_state="running", + ... guard="can_start", + ... action="on_start" + ... ) + """ + # Convert string parameters to objects if necessary + self.register_state(src_state) + self._register_event(event) + self.register_state(dst_state) + + def get_state_obj(state): + return state if isinstance(state, State) else self._get_state(state) + + def get_callable(func): + return func if callable(func) else getattr(self._model, func, None) + + src_state_obj = get_state_obj(src_state) + dst_state_obj = get_state_obj(dst_state) + + guard_func = get_callable(guard) if guard else None + action_func = get_callable(action) if action else None + self._transition_table[(src_state_obj.name, event)] = ( + dst_state_obj, + guard_func, + action_func, + ) + + def state_transition(self, src_state: State, event: str): + if (src_state.name, event) not in self._transition_table: + raise ValueError( + f"|{self._name}| invalid transition: <{src_state.name}> : [{event}]" + ) + + dst_state, guard, action = self._transition_table[(src_state.name, event)] + + def call_guard(guard): + if callable(guard): + return guard() + else: + return True + + def call_action(action): + if callable(action): + action() + + if call_guard(guard): + call_action(action) + if src_state.name != dst_state.name: + print( + f"|{self._name}| transitioning from <{src_state.name}> to <{dst_state.name}>" + ) + src_state.exit() + self._state = dst_state + dst_state.enter() + else: + print( + f"|{self._name}| skipping transition from <{src_state.name}> to <{dst_state.name}> because guard failed" + ) + + def register_state(self, state: str | State, on_enter=None, on_exit=None): + """Register a state in the state machine. + + Args: + state (str | State): The state to register. Can be either a string (state name) + or a State object. + on_enter (Callable, optional): Callback function to be executed when entering the state. + If state is a string and on_enter is None, it will look for + a method named 'on_enter_' in the model. + on_exit (Callable, optional): Callback function to be executed when exiting the state. + If state is a string and on_exit is None, it will look for + a method named 'on_exit_' in the model. + Example: + >>> machine.register_state("idle", on_enter=on_enter_idle, on_exit=on_exit_idle) + >>> machine.register_state(State("running", on_enter=on_enter_running, on_exit=on_exit_running)) + """ + if isinstance(state, str): + if on_enter is None: + on_enter = getattr(self._model, "on_enter_" + state, None) + if on_exit is None: + on_exit = getattr(self._model, "on_exit_" + state, None) + self._states[state] = State(state, on_enter, on_exit) + return + + self._states[state.name] = state + + def set_current_state(self, state: State | str): + if isinstance(state, str): + self._state = self._get_state(state) + else: + self._state = state + + def get_current_state(self): + return self._state + + def process(self, event: str) -> None: + """Process an event in the state machine. + + Args: + event: Event name. + + Example: + >>> machine.process("start") + """ + if self._state is None: + raise ValueError("State machine is not initialized") + + if self._has_event(event): + self.state_transition(self._state, event) + else: + raise ValueError(f"Invalid event: {event}") + + def generate_plantuml(self) -> str: + """Generate PlantUML state diagram representation of the state machine. + + Returns: + str: PlantUML state diagram code. + """ + if self._state is None: + raise ValueError("State machine is not initialized") + + plant_uml = ["@startuml"] + plant_uml.append("[*] --> " + self._state.name) + + # Generate transitions + for (src_state, event), ( + dst_state, + guard, + action, + ) in self._transition_table.items(): + transition = f"{src_state} --> {dst_state.name} : {event}" + + # Add guard and action if present + conditions = [] + if guard: + guard_name = guard.__name__ if callable(guard) else guard + conditions.append(f"[{guard_name}]") + if action: + action_name = action.__name__ if callable(action) else action + conditions.append(f"/ {action_name}") + + if conditions: + transition += "\\n" + " ".join(conditions) + + plant_uml.append(transition) + + plant_uml.append("@enduml") + plant_uml_text = "\n".join(plant_uml) + + try: + url = f"http://www.plantuml.com/plantuml/img/{deflate_and_encode(plant_uml_text)}" + headers = {"User-Agent": "Mozilla/5.0"} + request = Request(url, headers=headers) + + with urlopen(request) as response: + content = response.read() + + plt.imshow(imread(BytesIO(content), format="png")) + plt.axis("off") + plt.show() + except Exception as e: + print(f"Error showing PlantUML: {e}") + + return plant_uml_text diff --git a/PathPlanning/AStar/a_star.py b/PathPlanning/AStar/a_star.py index eb2672a9ce..6d20350432 100644 --- a/PathPlanning/AStar/a_star.py +++ b/PathPlanning/AStar/a_star.py @@ -71,7 +71,7 @@ def planning(self, sx, sy, gx, gy): open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(start_node)] = start_node - while 1: + while True: if len(open_set) == 0: print("Open set is empty..") break diff --git a/PathPlanning/AStar/a_star_searching_from_two_side.py b/PathPlanning/AStar/a_star_searching_from_two_side.py new file mode 100644 index 0000000000..f43cea71b4 --- /dev/null +++ b/PathPlanning/AStar/a_star_searching_from_two_side.py @@ -0,0 +1,369 @@ +""" +A* algorithm +Author: Weicent +randomly generate obstacles, start and goal point +searching path from start and end simultaneously +""" + +import numpy as np +import matplotlib.pyplot as plt +import math + +show_animation = True + + +class Node: + """node with properties of g, h, coordinate and parent node""" + + def __init__(self, G=0, H=0, coordinate=None, parent=None): + self.G = G + self.H = H + self.F = G + H + self.parent = parent + self.coordinate = coordinate + + def reset_f(self): + self.F = self.G + self.H + + +def hcost(node_coordinate, goal): + dx = abs(node_coordinate[0] - goal[0]) + dy = abs(node_coordinate[1] - goal[1]) + hcost = dx + dy + return hcost + + +def gcost(fixed_node, update_node_coordinate): + dx = abs(fixed_node.coordinate[0] - update_node_coordinate[0]) + dy = abs(fixed_node.coordinate[1] - update_node_coordinate[1]) + gc = math.hypot(dx, dy) # gc = move from fixed_node to update_node + gcost = fixed_node.G + gc # gcost = move from start point to update_node + return gcost + + +def boundary_and_obstacles(start, goal, top_vertex, bottom_vertex, obs_number): + """ + :param start: start coordinate + :param goal: goal coordinate + :param top_vertex: top right vertex coordinate of boundary + :param bottom_vertex: bottom left vertex coordinate of boundary + :param obs_number: number of obstacles generated in the map + :return: boundary_obstacle array, obstacle list + """ + # below can be merged into a rectangle boundary + ay = list(range(bottom_vertex[1], top_vertex[1])) + ax = [bottom_vertex[0]] * len(ay) + cy = ay + cx = [top_vertex[0]] * len(cy) + bx = list(range(bottom_vertex[0] + 1, top_vertex[0])) + by = [bottom_vertex[1]] * len(bx) + dx = [bottom_vertex[0]] + bx + [top_vertex[0]] + dy = [top_vertex[1]] * len(dx) + + # generate random obstacles + ob_x = np.random.randint(bottom_vertex[0] + 1, + top_vertex[0], obs_number).tolist() + ob_y = np.random.randint(bottom_vertex[1] + 1, + top_vertex[1], obs_number).tolist() + # x y coordinate in certain order for boundary + x = ax + bx + cx + dx + y = ay + by + cy + dy + obstacle = np.vstack((ob_x, ob_y)).T.tolist() + # remove start and goal coordinate in obstacle list + obstacle = [coor for coor in obstacle if coor != start and coor != goal] + obs_array = np.array(obstacle) + bound = np.vstack((x, y)).T + bound_obs = np.vstack((bound, obs_array)) + return bound_obs, obstacle + + +def find_neighbor(node, ob, closed): + # Convert obstacles to a set for faster lookup + ob_set = set(map(tuple, ob.tolist())) + neighbor_set = set() + + # Generate neighbors within the 3x3 grid around the node + for x in range(node.coordinate[0] - 1, node.coordinate[0] + 2): + for y in range(node.coordinate[1] - 1, node.coordinate[1] + 2): + coord = (x, y) + if coord not in ob_set and coord != tuple(node.coordinate): + neighbor_set.add(coord) + + # Define neighbors in cardinal and diagonal directions + top_nei = (node.coordinate[0], node.coordinate[1] + 1) + bottom_nei = (node.coordinate[0], node.coordinate[1] - 1) + left_nei = (node.coordinate[0] - 1, node.coordinate[1]) + right_nei = (node.coordinate[0] + 1, node.coordinate[1]) + lt_nei = (node.coordinate[0] - 1, node.coordinate[1] + 1) + rt_nei = (node.coordinate[0] + 1, node.coordinate[1] + 1) + lb_nei = (node.coordinate[0] - 1, node.coordinate[1] - 1) + rb_nei = (node.coordinate[0] + 1, node.coordinate[1] - 1) + + # Remove neighbors that violate diagonal motion rules + if top_nei in ob_set and left_nei in ob_set: + neighbor_set.discard(lt_nei) + if top_nei in ob_set and right_nei in ob_set: + neighbor_set.discard(rt_nei) + if bottom_nei in ob_set and left_nei in ob_set: + neighbor_set.discard(lb_nei) + if bottom_nei in ob_set and right_nei in ob_set: + neighbor_set.discard(rb_nei) + + # Filter out neighbors that are in the closed set + closed_set = set(map(tuple, closed)) + neighbor_set -= closed_set + + return list(neighbor_set) + + + +def find_node_index(coordinate, node_list): + # find node index in the node list via its coordinate + ind = 0 + for node in node_list: + if node.coordinate == coordinate: + target_node = node + ind = node_list.index(target_node) + break + return ind + + +def find_path(open_list, closed_list, goal, obstacle): + # searching for the path, update open and closed list + # obstacle = obstacle and boundary + flag = len(open_list) + for i in range(flag): + node = open_list[0] + open_coordinate_list = [node.coordinate for node in open_list] + closed_coordinate_list = [node.coordinate for node in closed_list] + temp = find_neighbor(node, obstacle, closed_coordinate_list) + for element in temp: + if element in closed_list: + continue + elif element in open_coordinate_list: + # if node in open list, update g value + ind = open_coordinate_list.index(element) + new_g = gcost(node, element) + if new_g <= open_list[ind].G: + open_list[ind].G = new_g + open_list[ind].reset_f() + open_list[ind].parent = node + else: # new coordinate, create corresponding node + ele_node = Node(coordinate=element, parent=node, + G=gcost(node, element), H=hcost(element, goal)) + open_list.append(ele_node) + open_list.remove(node) + closed_list.append(node) + open_list.sort(key=lambda x: x.F) + return open_list, closed_list + + +def node_to_coordinate(node_list): + # convert node list into coordinate list and array + coordinate_list = [node.coordinate for node in node_list] + return coordinate_list + + +def check_node_coincide(close_ls1, closed_ls2): + """ + :param close_ls1: node closed list for searching from start + :param closed_ls2: node closed list for searching from end + :return: intersect node list for above two + """ + # check if node in close_ls1 intersect with node in closed_ls2 + cl1 = node_to_coordinate(close_ls1) + cl2 = node_to_coordinate(closed_ls2) + intersect_ls = [node for node in cl1 if node in cl2] + return intersect_ls + + +def find_surrounding(coordinate, obstacle): + # find obstacles around node, help to draw the borderline + boundary: list = [] + for x in range(coordinate[0] - 1, coordinate[0] + 2): + for y in range(coordinate[1] - 1, coordinate[1] + 2): + if [x, y] in obstacle: + boundary.append([x, y]) + return boundary + + +def get_border_line(node_closed_ls, obstacle): + # if no path, find border line which confine goal or robot + border: list = [] + coordinate_closed_ls = node_to_coordinate(node_closed_ls) + for coordinate in coordinate_closed_ls: + temp = find_surrounding(coordinate, obstacle) + border = border + temp + border_ary = np.array(border) + return border_ary + + +def get_path(org_list, goal_list, coordinate): + # get path from start to end + path_org: list = [] + path_goal: list = [] + ind = find_node_index(coordinate, org_list) + node = org_list[ind] + while node != org_list[0]: + path_org.append(node.coordinate) + node = node.parent + path_org.append(org_list[0].coordinate) + ind = find_node_index(coordinate, goal_list) + node = goal_list[ind] + while node != goal_list[0]: + path_goal.append(node.coordinate) + node = node.parent + path_goal.append(goal_list[0].coordinate) + path_org.reverse() + path = path_org + path_goal + path = np.array(path) + return path + + +def random_coordinate(bottom_vertex, top_vertex): + # generate random coordinates inside maze + coordinate = [np.random.randint(bottom_vertex[0] + 1, top_vertex[0]), + np.random.randint(bottom_vertex[1] + 1, top_vertex[1])] + return coordinate + + +def draw(close_origin, close_goal, start, end, bound): + # plot the map + if not close_goal.tolist(): # ensure the close_goal not empty + # in case of the obstacle number is really large (>4500), the + # origin is very likely blocked at the first search, and then + # the program is over and the searching from goal to origin + # will not start, which remain the closed_list for goal == [] + # in order to plot the map, add the end coordinate to array + close_goal = np.array([end]) + plt.cla() + plt.gcf().set_size_inches(11, 9, forward=True) + plt.axis('equal') + plt.plot(close_origin[:, 0], close_origin[:, 1], 'oy') + plt.plot(close_goal[:, 0], close_goal[:, 1], 'og') + plt.plot(bound[:, 0], bound[:, 1], 'sk') + plt.plot(end[0], end[1], '*b', label='Goal') + plt.plot(start[0], start[1], '^b', label='Origin') + plt.legend() + plt.pause(0.0001) + + +def draw_control(org_closed, goal_closed, flag, start, end, bound, obstacle): + """ + control the plot process, evaluate if the searching finished + flag == 0 : draw the searching process and plot path + flag == 1 or 2 : start or end is blocked, draw the border line + """ + stop_loop = 0 # stop sign for the searching + org_closed_ls = node_to_coordinate(org_closed) + org_array = np.array(org_closed_ls) + goal_closed_ls = node_to_coordinate(goal_closed) + goal_array = np.array(goal_closed_ls) + path = None + if show_animation: # draw the searching process + draw(org_array, goal_array, start, end, bound) + if flag == 0: + node_intersect = check_node_coincide(org_closed, goal_closed) + if node_intersect: # a path is find + path = get_path(org_closed, goal_closed, node_intersect[0]) + stop_loop = 1 + print('Path found!') + if show_animation: # draw the path + plt.plot(path[:, 0], path[:, 1], '-r') + plt.title('Robot Arrived', size=20, loc='center') + plt.pause(0.01) + plt.show() + elif flag == 1: # start point blocked first + stop_loop = 1 + print('There is no path to the goal! Start point is blocked!') + elif flag == 2: # end point blocked first + stop_loop = 1 + print('There is no path to the goal! End point is blocked!') + if show_animation: # blocked case, draw the border line + info = 'There is no path to the goal!' \ + ' Robot&Goal are split by border' \ + ' shown in red \'x\'!' + if flag == 1: + border = get_border_line(org_closed, obstacle) + plt.plot(border[:, 0], border[:, 1], 'xr') + plt.title(info, size=14, loc='center') + plt.pause(0.01) + plt.show() + elif flag == 2: + border = get_border_line(goal_closed, obstacle) + plt.plot(border[:, 0], border[:, 1], 'xr') + plt.title(info, size=14, loc='center') + plt.pause(0.01) + plt.show() + return stop_loop, path + + +def searching_control(start, end, bound, obstacle): + """manage the searching process, start searching from two side""" + # initial origin node and end node + origin = Node(coordinate=start, H=hcost(start, end)) + goal = Node(coordinate=end, H=hcost(end, start)) + # list for searching from origin to goal + origin_open: list = [origin] + origin_close: list = [] + # list for searching from goal to origin + goal_open = [goal] + goal_close: list = [] + # initial target + target_goal = end + # flag = 0 (not blocked) 1 (start point blocked) 2 (end point blocked) + flag = 0 # init flag + path = None + while True: + # searching from start to end + origin_open, origin_close = \ + find_path(origin_open, origin_close, target_goal, bound) + if not origin_open: # no path condition + flag = 1 # origin node is blocked + draw_control(origin_close, goal_close, flag, start, end, bound, + obstacle) + break + # update target for searching from end to start + target_origin = min(origin_open, key=lambda x: x.F).coordinate + + # searching from end to start + goal_open, goal_close = \ + find_path(goal_open, goal_close, target_origin, bound) + if not goal_open: # no path condition + flag = 2 # goal is blocked + draw_control(origin_close, goal_close, flag, start, end, bound, + obstacle) + break + # update target for searching from start to end + target_goal = min(goal_open, key=lambda x: x.F).coordinate + + # continue searching, draw the process + stop_sign, path = draw_control(origin_close, goal_close, flag, start, + end, bound, obstacle) + if stop_sign: + break + return path + + +def main(obstacle_number=1500): + print(__file__ + ' start!') + + top_vertex = [60, 60] # top right vertex of boundary + bottom_vertex = [0, 0] # bottom left vertex of boundary + + # generate start and goal point randomly + start = random_coordinate(bottom_vertex, top_vertex) + end = random_coordinate(bottom_vertex, top_vertex) + + # generate boundary and obstacles + bound, obstacle = boundary_and_obstacles(start, end, top_vertex, + bottom_vertex, + obstacle_number) + + path = searching_control(start, end, bound, obstacle) + if not show_animation: + print(path) + + +if __name__ == '__main__': + main(obstacle_number=1500) diff --git a/PathPlanning/AStar/a_star_variants.py b/PathPlanning/AStar/a_star_variants.py new file mode 100644 index 0000000000..e0053ee224 --- /dev/null +++ b/PathPlanning/AStar/a_star_variants.py @@ -0,0 +1,483 @@ +""" +a star variants +author: Sarim Mehdi(muhammadsarim.mehdi@studio.unibo.it) +Source: http://theory.stanford.edu/~amitp/GameProgramming/Variations.html +""" + +import numpy as np +import matplotlib.pyplot as plt + +show_animation = True +use_beam_search = False +use_iterative_deepening = False +use_dynamic_weighting = False +use_theta_star = False +use_jump_point = False + +beam_capacity = 30 +max_theta = 5 +only_corners = False +max_corner = 5 +w, epsilon, upper_bound_depth = 1, 4, 500 + + +def draw_horizontal_line(start_x, start_y, length, o_x, o_y, o_dict): + for i in range(start_x, start_x + length): + for j in range(start_y, start_y + 2): + o_x.append(i) + o_y.append(j) + o_dict[(i, j)] = True + + +def draw_vertical_line(start_x, start_y, length, o_x, o_y, o_dict): + for i in range(start_x, start_x + 2): + for j in range(start_y, start_y + length): + o_x.append(i) + o_y.append(j) + o_dict[(i, j)] = True + + +def in_line_of_sight(obs_grid, x1, y1, x2, y2): + t = 0 + while t <= 0.5: + xt = (1 - t) * x1 + t * x2 + yt = (1 - t) * y1 + t * y2 + if obs_grid[(int(xt), int(yt))]: + return False, None + xt = (1 - t) * x2 + t * x1 + yt = (1 - t) * y2 + t * y1 + if obs_grid[(int(xt), int(yt))]: + return False, None + t += 0.001 + dist = np.linalg.norm(np.array([x1, y1] - np.array([x2, y2]))) + return True, dist + + +def key_points(o_dict): + offsets1 = [(1, 0), (0, 1), (-1, 0), (1, 0)] + offsets2 = [(1, 1), (-1, 1), (-1, -1), (1, -1)] + offsets3 = [(0, 1), (-1, 0), (0, -1), (0, -1)] + c_list = [] + for grid_point, obs_status in o_dict.items(): + if obs_status: + continue + empty_space = True + x, y = grid_point + for i in [-1, 0, 1]: + for j in [-1, 0, 1]: + if (x + i, y + j) not in o_dict.keys(): + continue + if o_dict[(x + i, y + j)]: + empty_space = False + break + if empty_space: + continue + for offset1, offset2, offset3 in zip(offsets1, offsets2, offsets3): + i1, j1 = offset1 + i2, j2 = offset2 + i3, j3 = offset3 + if ((x + i1, y + j1) not in o_dict.keys()) or \ + ((x + i2, y + j2) not in o_dict.keys()) or \ + ((x + i3, y + j3) not in o_dict.keys()): + continue + obs_count = 0 + if o_dict[(x + i1, y + j1)]: + obs_count += 1 + if o_dict[(x + i2, y + j2)]: + obs_count += 1 + if o_dict[(x + i3, y + j3)]: + obs_count += 1 + if obs_count == 3 or obs_count == 1: + c_list.append((x, y)) + if show_animation: + plt.plot(x, y, ".y") + break + if only_corners: + return c_list + + e_list = [] + for corner in c_list: + x1, y1 = corner + for other_corner in c_list: + x2, y2 = other_corner + if x1 == x2 and y1 == y2: + continue + reachable, _ = in_line_of_sight(o_dict, x1, y1, x2, y2) + if not reachable: + continue + x_m, y_m = int((x1 + x2) / 2), int((y1 + y2) / 2) + e_list.append((x_m, y_m)) + if show_animation: + plt.plot(x_m, y_m, ".y") + return c_list + e_list + + +class SearchAlgo: + def __init__(self, obs_grid, goal_x, goal_y, start_x, start_y, + limit_x, limit_y, corner_list=None): + self.start_pt = [start_x, start_y] + self.goal_pt = [goal_x, goal_y] + self.obs_grid = obs_grid + g_cost, h_cost = 0, self.get_hval(start_x, start_y, goal_x, goal_y) + f_cost = g_cost + h_cost + self.all_nodes, self.open_set = {}, [] + + if use_jump_point: + for corner in corner_list: + i, j = corner + h_c = self.get_hval(i, j, goal_x, goal_y) + self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None, + 'gcost': np.inf, 'hcost': h_c, + 'fcost': np.inf, + 'open': True, 'in_open_list': False} + self.all_nodes[tuple(self.goal_pt)] = \ + {'pos': self.goal_pt, 'pred': None, + 'gcost': np.inf, 'hcost': 0, 'fcost': np.inf, + 'open': True, 'in_open_list': True} + else: + for i in range(limit_x): + for j in range(limit_y): + h_c = self.get_hval(i, j, goal_x, goal_y) + self.all_nodes[(i, j)] = {'pos': [i, j], 'pred': None, + 'gcost': np.inf, 'hcost': h_c, + 'fcost': np.inf, + 'open': True, + 'in_open_list': False} + self.all_nodes[tuple(self.start_pt)] = \ + {'pos': self.start_pt, 'pred': None, + 'gcost': g_cost, 'hcost': h_cost, 'fcost': f_cost, + 'open': True, 'in_open_list': True} + self.open_set.append(self.all_nodes[tuple(self.start_pt)]) + + @staticmethod + def get_hval(x1, y1, x2, y2): + x, y = x1, y1 + val = 0 + while x != x2 or y != y2: + if x != x2 and y != y2: + val += 14 + else: + val += 10 + x, y = x + np.sign(x2 - x), y + np.sign(y2 - y) + return val + + def get_farthest_point(self, x, y, i, j): + i_temp, j_temp = i, j + counter = 1 + got_goal = False + while not self.obs_grid[(x + i_temp, y + j_temp)] and \ + counter < max_theta: + i_temp += i + j_temp += j + counter += 1 + if [x + i_temp, y + j_temp] == self.goal_pt: + got_goal = True + break + if (x + i_temp, y + j_temp) not in self.obs_grid.keys(): + break + return i_temp - 2*i, j_temp - 2*j, counter, got_goal + + def jump_point(self): + """Jump point: Instead of exploring all empty spaces of the + map, just explore the corners.""" + + goal_found = False + while len(self.open_set) > 0: + self.open_set = sorted(self.open_set, key=lambda x: x['fcost']) + lowest_f = self.open_set[0]['fcost'] + lowest_h = self.open_set[0]['hcost'] + lowest_g = self.open_set[0]['gcost'] + p = 0 + for p_n in self.open_set[1:]: + if p_n['fcost'] == lowest_f and \ + p_n['gcost'] < lowest_g: + lowest_g = p_n['gcost'] + p += 1 + elif p_n['fcost'] == lowest_f and \ + p_n['gcost'] == lowest_g and \ + p_n['hcost'] < lowest_h: + lowest_h = p_n['hcost'] + p += 1 + else: + break + current_node = self.all_nodes[tuple(self.open_set[p]['pos'])] + x1, y1 = current_node['pos'] + + for cand_pt, cand_node in self.all_nodes.items(): + x2, y2 = cand_pt + if x1 == x2 and y1 == y2: + continue + if np.linalg.norm(np.array([x1, y1] - + np.array([x2, y2]))) > max_corner: + continue + reachable, offset = in_line_of_sight(self.obs_grid, x1, + y1, x2, y2) + if not reachable: + continue + + if list(cand_pt) == self.goal_pt: + current_node['open'] = False + self.all_nodes[tuple(cand_pt)]['pred'] = \ + current_node['pos'] + goal_found = True + break + + g_cost = offset + current_node['gcost'] + h_cost = self.all_nodes[cand_pt]['hcost'] + f_cost = g_cost + h_cost + cand_pt = tuple(cand_pt) + if f_cost < self.all_nodes[cand_pt]['fcost']: + self.all_nodes[cand_pt]['pred'] = current_node['pos'] + self.all_nodes[cand_pt]['gcost'] = g_cost + self.all_nodes[cand_pt]['fcost'] = f_cost + if not self.all_nodes[cand_pt]['in_open_list']: + self.open_set.append(self.all_nodes[cand_pt]) + self.all_nodes[cand_pt]['in_open_list'] = True + if show_animation: + plt.plot(cand_pt[0], cand_pt[1], "r*") + + if goal_found: + break + if show_animation: + plt.pause(0.001) + if goal_found: + current_node = self.all_nodes[tuple(self.goal_pt)] + while goal_found: + if current_node['pred'] is None: + break + x = [current_node['pos'][0], current_node['pred'][0]] + y = [current_node['pos'][1], current_node['pred'][1]] + current_node = self.all_nodes[tuple(current_node['pred'])] + if show_animation: + plt.plot(x, y, "b") + plt.pause(0.001) + if goal_found: + break + + current_node['open'] = False + current_node['in_open_list'] = False + if show_animation: + plt.plot(current_node['pos'][0], current_node['pos'][1], "g*") + del self.open_set[p] + current_node['fcost'], current_node['hcost'] = np.inf, np.inf + if show_animation: + plt.title('Jump Point') + plt.show() + + def a_star(self): + """Beam search: Maintain an open list of just 30 nodes. + If more than 30 nodes, then get rid of nodes with high + f values. + Iterative deepening: At every iteration, get a cut-off + value for the f cost. This cut-off is minimum of the f + value of all nodes whose f value is higher than the + current cut-off value. Nodes with f value higher than + the current cut off value are not put in the open set. + Dynamic weighting: Multiply heuristic with the following: + (1 + epsilon - (epsilon*d)/N) where d is the current + iteration of loop and N is upper bound on number of + iterations. + Theta star: Same as A star but you don't need to move + one neighbor at a time. In fact, you can look for the + next node as far out as you can as long as there is a + clear line of sight from your current node to that node.""" + if show_animation: + if use_beam_search: + plt.title('A* with beam search') + elif use_iterative_deepening: + plt.title('A* with iterative deepening') + elif use_dynamic_weighting: + plt.title('A* with dynamic weighting') + elif use_theta_star: + plt.title('Theta*') + else: + plt.title('A*') + + goal_found = False + curr_f_thresh = np.inf + depth = 0 + no_valid_f = False + w = None + while len(self.open_set) > 0: + self.open_set = sorted(self.open_set, key=lambda x: x['fcost']) + lowest_f = self.open_set[0]['fcost'] + lowest_h = self.open_set[0]['hcost'] + lowest_g = self.open_set[0]['gcost'] + p = 0 + for p_n in self.open_set[1:]: + if p_n['fcost'] == lowest_f and \ + p_n['gcost'] < lowest_g: + lowest_g = p_n['gcost'] + p += 1 + elif p_n['fcost'] == lowest_f and \ + p_n['gcost'] == lowest_g and \ + p_n['hcost'] < lowest_h: + lowest_h = p_n['hcost'] + p += 1 + else: + break + current_node = self.all_nodes[tuple(self.open_set[p]['pos'])] + + while len(self.open_set) > beam_capacity and use_beam_search: + del self.open_set[-1] + + f_cost_list = [] + if use_dynamic_weighting: + w = (1 + epsilon - epsilon*depth/upper_bound_depth) + for i in range(-1, 2): + for j in range(-1, 2): + x, y = current_node['pos'] + if (i == 0 and j == 0) or \ + ((x + i, y + j) not in self.obs_grid.keys()): + continue + if (i, j) in [(1, 0), (0, 1), (-1, 0), (0, -1)]: + offset = 10 + else: + offset = 14 + if use_theta_star: + new_i, new_j, counter, goal_found = \ + self.get_farthest_point(x, y, i, j) + offset = offset * counter + cand_pt = [current_node['pos'][0] + new_i, + current_node['pos'][1] + new_j] + else: + cand_pt = [current_node['pos'][0] + i, + current_node['pos'][1] + j] + + if use_theta_star and goal_found: + current_node['open'] = False + cand_pt = self.goal_pt + self.all_nodes[tuple(cand_pt)]['pred'] = \ + current_node['pos'] + break + + if cand_pt == self.goal_pt: + current_node['open'] = False + self.all_nodes[tuple(cand_pt)]['pred'] = \ + current_node['pos'] + goal_found = True + break + + cand_pt = tuple(cand_pt) + no_valid_f = self.update_node_cost(cand_pt, curr_f_thresh, + current_node, + f_cost_list, no_valid_f, + offset, w) + if goal_found: + break + if show_animation: + plt.pause(0.001) + if goal_found: + current_node = self.all_nodes[tuple(self.goal_pt)] + while goal_found: + if current_node['pred'] is None: + break + if use_theta_star or use_jump_point: + x, y = [current_node['pos'][0], current_node['pred'][0]], \ + [current_node['pos'][1], current_node['pred'][1]] + if show_animation: + plt.plot(x, y, "b") + else: + if show_animation: + plt.plot(current_node['pred'][0], + current_node['pred'][1], "b*") + current_node = self.all_nodes[tuple(current_node['pred'])] + if goal_found: + break + + if use_iterative_deepening and f_cost_list: + curr_f_thresh = min(f_cost_list) + if use_iterative_deepening and not f_cost_list: + curr_f_thresh = np.inf + if use_iterative_deepening and not f_cost_list and no_valid_f: + current_node['fcost'], current_node['hcost'] = np.inf, np.inf + continue + + current_node['open'] = False + current_node['in_open_list'] = False + if show_animation: + plt.plot(current_node['pos'][0], current_node['pos'][1], "g*") + del self.open_set[p] + current_node['fcost'], current_node['hcost'] = np.inf, np.inf + depth += 1 + if show_animation: + plt.show() + + def update_node_cost(self, cand_pt, curr_f_thresh, current_node, + f_cost_list, no_valid_f, offset, w): + if not self.obs_grid[tuple(cand_pt)] and \ + self.all_nodes[cand_pt]['open']: + g_cost = offset + current_node['gcost'] + h_cost = self.all_nodes[cand_pt]['hcost'] + if use_dynamic_weighting: + h_cost = h_cost * w + f_cost = g_cost + h_cost + if f_cost < self.all_nodes[cand_pt]['fcost'] and \ + f_cost <= curr_f_thresh: + f_cost_list.append(f_cost) + self.all_nodes[cand_pt]['pred'] = \ + current_node['pos'] + self.all_nodes[cand_pt]['gcost'] = g_cost + self.all_nodes[cand_pt]['fcost'] = f_cost + if not self.all_nodes[cand_pt]['in_open_list']: + self.open_set.append(self.all_nodes[cand_pt]) + self.all_nodes[cand_pt]['in_open_list'] = True + if show_animation: + plt.plot(cand_pt[0], cand_pt[1], "r*") + if curr_f_thresh < f_cost < \ + self.all_nodes[cand_pt]['fcost']: + no_valid_f = True + return no_valid_f + + +def main(): + # set obstacle positions + obs_dict = {} + for i in range(51): + for j in range(51): + obs_dict[(i, j)] = False + o_x, o_y = [], [] + + s_x = 5.0 + s_y = 5.0 + g_x = 35.0 + g_y = 45.0 + + # draw outer border of maze + draw_vertical_line(0, 0, 50, o_x, o_y, obs_dict) + draw_vertical_line(48, 0, 50, o_x, o_y, obs_dict) + draw_horizontal_line(0, 0, 50, o_x, o_y, obs_dict) + draw_horizontal_line(0, 48, 50, o_x, o_y, obs_dict) + + # draw inner walls + all_x = [10, 10, 10, 15, 20, 20, 30, 30, 35, 30, 40, 45] + all_y = [10, 30, 45, 20, 5, 40, 10, 40, 5, 40, 10, 25] + all_len = [10, 10, 5, 10, 10, 5, 20, 10, 25, 10, 35, 15] + for x, y, l in zip(all_x, all_y, all_len): + draw_vertical_line(x, y, l, o_x, o_y, obs_dict) + + all_x[:], all_y[:], all_len[:] = [], [], [] + all_x = [35, 40, 15, 10, 45, 20, 10, 15, 25, 45, 10, 30, 10, 40] + all_y = [5, 10, 15, 20, 20, 25, 30, 35, 35, 35, 40, 40, 45, 45] + all_len = [10, 5, 10, 10, 5, 5, 10, 5, 10, 5, 10, 5, 5, 5] + for x, y, l in zip(all_x, all_y, all_len): + draw_horizontal_line(x, y, l, o_x, o_y, obs_dict) + + if show_animation: + plt.plot(o_x, o_y, ".k") + plt.plot(s_x, s_y, "og") + plt.plot(g_x, g_y, "xb") + plt.grid(True) + + if use_jump_point: + keypoint_list = key_points(obs_dict) + search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101, + keypoint_list) + search_obj.jump_point() + else: + search_obj = SearchAlgo(obs_dict, g_x, g_y, s_x, s_y, 101, 101) + search_obj.a_star() + + +if __name__ == '__main__': + main() diff --git a/PathPlanning/BSplinePath/Figure_1.png b/PathPlanning/BSplinePath/Figure_1.png deleted file mode 100644 index 539854ac29..0000000000 Binary files a/PathPlanning/BSplinePath/Figure_1.png and /dev/null differ diff --git a/PathPlanning/BSplinePath/bspline_path.py b/PathPlanning/BSplinePath/bspline_path.py index d4b24c7645..a2a396efaa 100644 --- a/PathPlanning/BSplinePath/bspline_path.py +++ b/PathPlanning/BSplinePath/bspline_path.py @@ -5,57 +5,114 @@ author: Atsushi Sakai (@Atsushi_twi) """ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) import numpy as np import matplotlib.pyplot as plt -import scipy.interpolate as scipy_interpolate +import scipy.interpolate as interpolate +from utils.plot import plot_curvature -def approximate_b_spline_path(x: list, y: list, n_path_points: int, - degree: int = 3) -> tuple: - """ - approximate points with a B-Spline path - :param x: x position list of approximated points - :param y: y position list of approximated points - :param n_path_points: number of path points - :param degree: (Optional) B Spline curve degree - :return: x and y position list of the result path +def approximate_b_spline_path(x: list, + y: list, + n_path_points: int, + degree: int = 3, + s=None, + ) -> tuple: """ - t = range(len(x)) - x_tup = scipy_interpolate.splrep(t, x, k=degree) - y_tup = scipy_interpolate.splrep(t, y, k=degree) + Approximate points with a B-Spline path + + Parameters + ---------- + x : array_like + x position list of approximated points + y : array_like + y position list of approximated points + n_path_points : int + number of path points + degree : int, optional + B Spline curve degree. Must be 2<= k <= 5. Default: 3. + s : int, optional + smoothing parameter. If this value is bigger, the path will be + smoother, but it will be less accurate. If this value is smaller, + the path will be more accurate, but it will be less smooth. + When `s` is 0, it is equivalent to the interpolation. Default is None, + in this case `s` will be `len(x)`. + + Returns + ------- + x : array + x positions of the result path + y : array + y positions of the result path + heading : array + heading of the result path + curvature : array + curvature of the result path - x_list = list(x_tup) - x_list[1] = x + [0.0, 0.0, 0.0, 0.0] - - y_list = list(y_tup) - y_list[1] = y + [0.0, 0.0, 0.0, 0.0] + """ + distances = _calc_distance_vector(x, y) - ipl_t = np.linspace(0.0, len(x) - 1, n_path_points) - rx = scipy_interpolate.splev(ipl_t, x_list) - ry = scipy_interpolate.splev(ipl_t, y_list) + spl_i_x = interpolate.UnivariateSpline(distances, x, k=degree, s=s) + spl_i_y = interpolate.UnivariateSpline(distances, y, k=degree, s=s) - return rx, ry + sampled = np.linspace(0.0, distances[-1], n_path_points) + return _evaluate_spline(sampled, spl_i_x, spl_i_y) -def interpolate_b_spline_path(x: list, y: list, n_path_points: int, +def interpolate_b_spline_path(x, y, + n_path_points: int, degree: int = 3) -> tuple: """ - interpolate points with a B-Spline path + Interpolate x-y points with a B-Spline path + + Parameters + ---------- + x : array_like + x positions of interpolated points + y : array_like + y positions of interpolated points + n_path_points : int + number of path points + degree : int, optional + B-Spline degree. Must be 2<= k <= 5. Default: 3 + + Returns + ------- + x : array + x positions of the result path + y : array + y positions of the result path + heading : array + heading of the result path + curvature : array + curvature of the result path - :param x: x positions of interpolated points - :param y: y positions of interpolated points - :param n_path_points: number of path points - :param degree: B-Spline degree - :return: x and y position list of the result path """ - ipl_t = np.linspace(0.0, len(x) - 1, len(x)) - spl_i_x = scipy_interpolate.make_interp_spline(ipl_t, x, k=degree) - spl_i_y = scipy_interpolate.make_interp_spline(ipl_t, y, k=degree) + return approximate_b_spline_path(x, y, n_path_points, degree, s=0.0) - travel = np.linspace(0.0, len(x) - 1, n_path_points) - return spl_i_x(travel), spl_i_y(travel) + +def _calc_distance_vector(x, y): + dx, dy = np.diff(x), np.diff(y) + distances = np.cumsum([np.hypot(idx, idy) for idx, idy in zip(dx, dy)]) + distances = np.concatenate(([0.0], distances)) + distances /= distances[-1] + return distances + + +def _evaluate_spline(sampled, spl_i_x, spl_i_y): + x = spl_i_x(sampled) + y = spl_i_y(sampled) + dx = spl_i_x.derivative(1)(sampled) + dy = spl_i_y.derivative(1)(sampled) + heading = np.arctan2(dy, dx) + ddx = spl_i_x.derivative(2)(sampled) + ddy = spl_i_y.derivative(2)(sampled) + curvature = (ddy * dx - ddx * dy) / np.power(dx * dx + dy * dy, 2.0 / 3.0) + return np.array(x), y, heading, curvature, def main(): @@ -63,17 +120,28 @@ def main(): # way points way_point_x = [-1.0, 3.0, 4.0, 2.0, 1.0] way_point_y = [0.0, -3.0, 1.0, 1.0, 3.0] - n_course_point = 100 # sampling number + n_course_point = 50 # sampling number - rax, ray = approximate_b_spline_path(way_point_x, way_point_y, - n_course_point) - rix, riy = interpolate_b_spline_path(way_point_x, way_point_y, - n_course_point) + plt.subplots() + rax, ray, heading, curvature = approximate_b_spline_path( + way_point_x, way_point_y, n_course_point, s=0.5) + plt.plot(rax, ray, '-r', label="Approximated B-Spline path") + plot_curvature(rax, ray, heading, curvature) - # show results + plt.title("B-Spline approximation") plt.plot(way_point_x, way_point_y, '-og', label="way points") - plt.plot(rax, ray, '-r', label="Approximated B-Spline path") + plt.grid(True) + plt.legend() + plt.axis("equal") + + plt.subplots() + rix, riy, heading, curvature = interpolate_b_spline_path( + way_point_x, way_point_y, n_course_point) plt.plot(rix, riy, '-b', label="Interpolated B-Spline path") + plot_curvature(rix, riy, heading, curvature) + + plt.title("B-Spline interpolation") + plt.plot(way_point_x, way_point_y, '-og', label="way points") plt.grid(True) plt.legend() plt.axis("equal") diff --git a/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py b/PathPlanning/BatchInformedRRTStar/batch_informed_rrt_star.py similarity index 99% rename from PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py rename to PathPlanning/BatchInformedRRTStar/batch_informed_rrt_star.py index b5eabbb39b..92c3a58761 100644 --- a/PathPlanning/BatchInformedRRTStar/batch_informed_rrtstar.py +++ b/PathPlanning/BatchInformedRRTStar/batch_informed_rrt_star.py @@ -23,7 +23,7 @@ show_animation = True -class RTree(object): +class RTree: # Class to represent the explicit tree created # while sampling through the state space @@ -132,7 +132,7 @@ def node_id_to_real_world_coord(self, nid): self.node_id_to_grid_coord(nid)) -class BITStar(object): +class BITStar: def __init__(self, start, goal, obstacleList, randArea, eta=2.0, @@ -189,7 +189,7 @@ def setup_planning(self): [(self.start[1] + self.goal[1]) / 2.0], [0]]) a1 = np.array([[(self.goal[0] - self.start[0]) / cMin], [(self.goal[1] - self.start[1]) / cMin], [0]]) - eTheta = math.atan2(a1[1], a1[0]) + eTheta = math.atan2(a1[1, 0], a1[0, 0]) # first column of identity matrix transposed id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3) M = np.dot(a1, id1_t) diff --git a/PathPlanning/BidirectionalAStar/bidirectional_a_star.py b/PathPlanning/BidirectionalAStar/bidirectional_a_star.py index ecb875f410..5387cca1ad 100644 --- a/PathPlanning/BidirectionalAStar/bidirectional_a_star.py +++ b/PathPlanning/BidirectionalAStar/bidirectional_a_star.py @@ -75,7 +75,7 @@ def planning(self, sx, sy, gx, gy): current_B = goal_node meet_point_A, meet_point_B = None, None - while 1: + while True: if len(open_set_A) == 0: print("Open set A is empty..") break diff --git a/PathPlanning/BidirectionalBreadthFirstSearch/bidirectional_breadth_first_search.py b/PathPlanning/BidirectionalBreadthFirstSearch/bidirectional_breadth_first_search.py index dd4282573e..60a8c5e170 100644 --- a/PathPlanning/BidirectionalBreadthFirstSearch/bidirectional_breadth_first_search.py +++ b/PathPlanning/BidirectionalBreadthFirstSearch/bidirectional_breadth_first_search.py @@ -76,7 +76,7 @@ def planning(self, sx, sy, gx, gy): meet_point_A, meet_point_B = None, None - while 1: + while True: if len(open_set_A) == 0: print("Open set A is empty..") break diff --git a/PathPlanning/BreadthFirstSearch/breadth_first_search.py b/PathPlanning/BreadthFirstSearch/breadth_first_search.py index 01f1a31d64..ad994732a5 100644 --- a/PathPlanning/BreadthFirstSearch/breadth_first_search.py +++ b/PathPlanning/BreadthFirstSearch/breadth_first_search.py @@ -33,16 +33,16 @@ def __init__(self, ox, oy, reso, rr): self.motion = self.get_motion_model() class Node: - def __init__(self, x, y, cost, pind, parent): + def __init__(self, x, y, cost, parent_index, parent): self.x = x # index of grid self.y = y # index of grid self.cost = cost - self.pind = pind + self.parent_index = parent_index self.parent = parent def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( - self.cost) + "," + str(self.pind) + self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ @@ -67,7 +67,7 @@ def planning(self, sx, sy, gx, gy): open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(nstart)] = nstart - while 1: + while True: if len(open_set) == 0: print("Open set is empty..") break @@ -92,7 +92,7 @@ def planning(self, sx, sy, gx, gy): if current.x == ngoal.x and current.y == ngoal.y: print("Find goal") - ngoal.pind = current.pind + ngoal.parent_index = current.parent_index ngoal.cost = current.cost break @@ -220,20 +220,20 @@ def main(): # set obstacle positions ox, oy = [], [] for i in range(-10, 60): - ox.append(i) + ox.append(float(i)) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) - oy.append(i) + oy.append(float(i)) for i in range(-10, 61): - ox.append(i) + ox.append(float(i)) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) - oy.append(i) + oy.append(float(i)) for i in range(-10, 40): ox.append(20.0) - oy.append(i) + oy.append(float(i)) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) diff --git a/PathPlanning/BugPlanning/bug.py b/PathPlanning/BugPlanning/bug.py new file mode 100644 index 0000000000..34890cb55a --- /dev/null +++ b/PathPlanning/BugPlanning/bug.py @@ -0,0 +1,333 @@ +""" +Bug Planning +author: Sarim Mehdi(muhammadsarim.mehdi@studio.unibo.it) +Source: https://web.archive.org/web/20201103052224/https://sites.google.com/site/ece452bugalgorithms/ +""" + +import numpy as np +import matplotlib.pyplot as plt + +show_animation = True + + +class BugPlanner: + def __init__(self, start_x, start_y, goal_x, goal_y, obs_x, obs_y): + self.goal_x = goal_x + self.goal_y = goal_y + self.obs_x = obs_x + self.obs_y = obs_y + self.r_x = [start_x] + self.r_y = [start_y] + self.out_x = [] + self.out_y = [] + for o_x, o_y in zip(obs_x, obs_y): + for add_x, add_y in zip([1, 0, -1, -1, -1, 0, 1, 1], + [1, 1, 1, 0, -1, -1, -1, 0]): + cand_x, cand_y = o_x+add_x, o_y+add_y + valid_point = True + for _x, _y in zip(obs_x, obs_y): + if cand_x == _x and cand_y == _y: + valid_point = False + break + if valid_point: + self.out_x.append(cand_x), self.out_y.append(cand_y) + + def mov_normal(self): + return self.r_x[-1] + np.sign(self.goal_x - self.r_x[-1]), \ + self.r_y[-1] + np.sign(self.goal_y - self.r_y[-1]) + + def mov_to_next_obs(self, visited_x, visited_y): + for add_x, add_y in zip([1, 0, -1, 0], [0, 1, 0, -1]): + c_x, c_y = self.r_x[-1] + add_x, self.r_y[-1] + add_y + for _x, _y in zip(self.out_x, self.out_y): + use_pt = True + if c_x == _x and c_y == _y: + for v_x, v_y in zip(visited_x, visited_y): + if c_x == v_x and c_y == v_y: + use_pt = False + break + if use_pt: + return c_x, c_y, False + if not use_pt: + break + return self.r_x[-1], self.r_y[-1], True + + def bug0(self): + """ + Greedy algorithm where you move towards goal + until you hit an obstacle. Then you go around it + (pick an arbitrary direction), until it is possible + for you to start moving towards goal in a greedy manner again + """ + mov_dir = 'normal' + cand_x, cand_y = -np.inf, -np.inf + if show_animation: + plt.plot(self.obs_x, self.obs_y, ".k") + plt.plot(self.r_x[-1], self.r_y[-1], "og") + plt.plot(self.goal_x, self.goal_y, "xb") + plt.plot(self.out_x, self.out_y, ".") + plt.grid(True) + plt.title('BUG 0') + + for x_ob, y_ob in zip(self.out_x, self.out_y): + if self.r_x[-1] == x_ob and self.r_y[-1] == y_ob: + mov_dir = 'obs' + break + + visited_x, visited_y = [], [] + while True: + if self.r_x[-1] == self.goal_x and \ + self.r_y[-1] == self.goal_y: + break + if mov_dir == 'normal': + cand_x, cand_y = self.mov_normal() + if mov_dir == 'obs': + cand_x, cand_y, _ = self.mov_to_next_obs(visited_x, visited_y) + if mov_dir == 'normal': + found_boundary = False + for x_ob, y_ob in zip(self.out_x, self.out_y): + if cand_x == x_ob and cand_y == y_ob: + self.r_x.append(cand_x), self.r_y.append(cand_y) + visited_x[:], visited_y[:] = [], [] + visited_x.append(cand_x), visited_y.append(cand_y) + mov_dir = 'obs' + found_boundary = True + break + if not found_boundary: + self.r_x.append(cand_x), self.r_y.append(cand_y) + elif mov_dir == 'obs': + can_go_normal = True + for x_ob, y_ob in zip(self.obs_x, self.obs_y): + if self.mov_normal()[0] == x_ob and \ + self.mov_normal()[1] == y_ob: + can_go_normal = False + break + if can_go_normal: + mov_dir = 'normal' + else: + self.r_x.append(cand_x), self.r_y.append(cand_y) + visited_x.append(cand_x), visited_y.append(cand_y) + if show_animation: + plt.plot(self.r_x, self.r_y, "-r") + plt.pause(0.001) + if show_animation: + plt.show() + + def bug1(self): + """ + Move towards goal in a greedy manner. + When you hit an obstacle, you go around it and + back to where you hit the obstacle initially. + Then, you go to the point on the obstacle that is + closest to your goal and you start moving towards + goal in a greedy manner from that new point. + """ + mov_dir = 'normal' + cand_x, cand_y = -np.inf, -np.inf + exit_x, exit_y = -np.inf, -np.inf + dist = np.inf + back_to_start = False + second_round = False + if show_animation: + plt.plot(self.obs_x, self.obs_y, ".k") + plt.plot(self.r_x[-1], self.r_y[-1], "og") + plt.plot(self.goal_x, self.goal_y, "xb") + plt.plot(self.out_x, self.out_y, ".") + plt.grid(True) + plt.title('BUG 1') + + for xob, yob in zip(self.out_x, self.out_y): + if self.r_x[-1] == xob and self.r_y[-1] == yob: + mov_dir = 'obs' + break + + visited_x, visited_y = [], [] + while True: + if self.r_x[-1] == self.goal_x and \ + self.r_y[-1] == self.goal_y: + break + if mov_dir == 'normal': + cand_x, cand_y = self.mov_normal() + if mov_dir == 'obs': + cand_x, cand_y, back_to_start = \ + self.mov_to_next_obs(visited_x, visited_y) + if mov_dir == 'normal': + found_boundary = False + for x_ob, y_ob in zip(self.out_x, self.out_y): + if cand_x == x_ob and cand_y == y_ob: + self.r_x.append(cand_x), self.r_y.append(cand_y) + visited_x[:], visited_y[:] = [], [] + visited_x.append(cand_x), visited_y.append(cand_y) + mov_dir = 'obs' + dist = np.inf + back_to_start = False + second_round = False + found_boundary = True + break + if not found_boundary: + self.r_x.append(cand_x), self.r_y.append(cand_y) + elif mov_dir == 'obs': + d = np.linalg.norm(np.array([cand_x, cand_y] - + np.array([self.goal_x, + self.goal_y]))) + if d < dist and not second_round: + exit_x, exit_y = cand_x, cand_y + dist = d + if back_to_start and not second_round: + second_round = True + del self.r_x[-len(visited_x):] + del self.r_y[-len(visited_y):] + visited_x[:], visited_y[:] = [], [] + self.r_x.append(cand_x), self.r_y.append(cand_y) + visited_x.append(cand_x), visited_y.append(cand_y) + if cand_x == exit_x and \ + cand_y == exit_y and \ + second_round: + mov_dir = 'normal' + if show_animation: + plt.plot(self.r_x, self.r_y, "-r") + plt.pause(0.001) + if show_animation: + plt.show() + + def bug2(self): + """ + Move towards goal in a greedy manner. + When you hit an obstacle, you go around it and + keep track of your distance from the goal. + If the distance from your goal was decreasing before + and now it starts increasing, that means the current + point is probably the closest point to the + goal (this may or may not be true because the algorithm + doesn't explore the entire boundary around the obstacle). + So, you depart from this point and continue towards the + goal in a greedy manner + """ + mov_dir = 'normal' + cand_x, cand_y = -np.inf, -np.inf + if show_animation: + plt.plot(self.obs_x, self.obs_y, ".k") + plt.plot(self.r_x[-1], self.r_y[-1], "og") + plt.plot(self.goal_x, self.goal_y, "xb") + plt.plot(self.out_x, self.out_y, ".") + + straight_x, straight_y = [self.r_x[-1]], [self.r_y[-1]] + hit_x, hit_y = [], [] + while True: + if straight_x[-1] == self.goal_x and \ + straight_y[-1] == self.goal_y: + break + c_x = straight_x[-1] + np.sign(self.goal_x - straight_x[-1]) + c_y = straight_y[-1] + np.sign(self.goal_y - straight_y[-1]) + for x_ob, y_ob in zip(self.out_x, self.out_y): + if c_x == x_ob and c_y == y_ob: + hit_x.append(c_x), hit_y.append(c_y) + break + straight_x.append(c_x), straight_y.append(c_y) + if show_animation: + plt.plot(straight_x, straight_y, ",") + plt.plot(hit_x, hit_y, "d") + plt.grid(True) + plt.title('BUG 2') + + for x_ob, y_ob in zip(self.out_x, self.out_y): + if self.r_x[-1] == x_ob and self.r_y[-1] == y_ob: + mov_dir = 'obs' + break + + visited_x, visited_y = [], [] + while True: + if self.r_x[-1] == self.goal_x \ + and self.r_y[-1] == self.goal_y: + break + if mov_dir == 'normal': + cand_x, cand_y = self.mov_normal() + if mov_dir == 'obs': + cand_x, cand_y, _ = self.mov_to_next_obs(visited_x, visited_y) + if mov_dir == 'normal': + found_boundary = False + for x_ob, y_ob in zip(self.out_x, self.out_y): + if cand_x == x_ob and cand_y == y_ob: + self.r_x.append(cand_x), self.r_y.append(cand_y) + visited_x[:], visited_y[:] = [], [] + visited_x.append(cand_x), visited_y.append(cand_y) + del hit_x[0] + del hit_y[0] + mov_dir = 'obs' + found_boundary = True + break + if not found_boundary: + self.r_x.append(cand_x), self.r_y.append(cand_y) + elif mov_dir == 'obs': + self.r_x.append(cand_x), self.r_y.append(cand_y) + visited_x.append(cand_x), visited_y.append(cand_y) + for i_x, i_y in zip(range(len(hit_x)), range(len(hit_y))): + if cand_x == hit_x[i_x] and cand_y == hit_y[i_y]: + del hit_x[i_x] + del hit_y[i_y] + mov_dir = 'normal' + break + if show_animation: + plt.plot(self.r_x, self.r_y, "-r") + plt.pause(0.001) + if show_animation: + plt.show() + + +def main(bug_0, bug_1, bug_2): + # set obstacle positions + o_x, o_y = [], [] + + s_x = 0.0 + s_y = 0.0 + g_x = 167.0 + g_y = 50.0 + + for i in range(20, 40): + for j in range(20, 40): + o_x.append(i) + o_y.append(j) + + for i in range(60, 100): + for j in range(40, 80): + o_x.append(i) + o_y.append(j) + + for i in range(120, 140): + for j in range(80, 100): + o_x.append(i) + o_y.append(j) + + for i in range(80, 140): + for j in range(0, 20): + o_x.append(i) + o_y.append(j) + + for i in range(0, 20): + for j in range(60, 100): + o_x.append(i) + o_y.append(j) + + for i in range(20, 40): + for j in range(80, 100): + o_x.append(i) + o_y.append(j) + + for i in range(120, 160): + for j in range(40, 60): + o_x.append(i) + o_y.append(j) + + if bug_0: + my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y) + my_Bug.bug0() + if bug_1: + my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y) + my_Bug.bug1() + if bug_2: + my_Bug = BugPlanner(s_x, s_y, g_x, g_y, o_x, o_y) + my_Bug.bug2() + + +if __name__ == '__main__': + main(bug_0=True, bug_1=False, bug_2=False) diff --git a/PathPlanning/Catmull_RomSplinePath/blending_functions.py b/PathPlanning/Catmull_RomSplinePath/blending_functions.py new file mode 100644 index 0000000000..f3ef5dd323 --- /dev/null +++ b/PathPlanning/Catmull_RomSplinePath/blending_functions.py @@ -0,0 +1,34 @@ +import numpy as np +import matplotlib.pyplot as plt + +def blending_function_1(t): + return -t + 2*t**2 - t**3 + +def blending_function_2(t): + return 2 - 5*t**2 + 3*t**3 + +def blending_function_3(t): + return t + 4*t**2 - 3*t**3 + +def blending_function_4(t): + return -t**2 + t**3 + +def plot_blending_functions(): + t = np.linspace(0, 1, 100) + + plt.plot(t, blending_function_1(t), label='b1') + plt.plot(t, blending_function_2(t), label='b2') + plt.plot(t, blending_function_3(t), label='b3') + plt.plot(t, blending_function_4(t), label='b4') + + plt.title("Catmull-Rom Blending Functions") + plt.xlabel("t") + plt.ylabel("Value") + plt.legend() + plt.grid(True) + plt.axhline(y=0, color='k', linestyle='--') + plt.axvline(x=0, color='k', linestyle='--') + plt.show() + +if __name__ == "__main__": + plot_blending_functions() \ No newline at end of file diff --git a/PathPlanning/Catmull_RomSplinePath/catmull_rom_spline_path.py b/PathPlanning/Catmull_RomSplinePath/catmull_rom_spline_path.py new file mode 100644 index 0000000000..79916330c9 --- /dev/null +++ b/PathPlanning/Catmull_RomSplinePath/catmull_rom_spline_path.py @@ -0,0 +1,86 @@ +""" +Path Planner with Catmull-Rom Spline +Author: Surabhi Gupta (@this_is_surabhi) +Source: http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdf +""" + +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) + +import numpy as np +import matplotlib.pyplot as plt + +def catmull_rom_point(t, p0, p1, p2, p3): + """ + Parameters + ---------- + t : float + Parameter value (0 <= t <= 1) (0 <= t <= 1) + p0, p1, p2, p3 : np.ndarray + Control points for the spline segment + + Returns + ------- + np.ndarray + Calculated point on the spline + """ + return 0.5 * ((2 * p1) + + (-p0 + p2) * t + + (2 * p0 - 5 * p1 + 4 * p2 - p3) * t**2 + + (-p0 + 3 * p1 - 3 * p2 + p3) * t**3) + + +def catmull_rom_spline(control_points, num_points): + """ + Parameters + ---------- + control_points : list + List of control points + num_points : int + Number of points to generate on the spline + + Returns + ------- + tuple + x and y coordinates of the spline points + """ + t_vals = np.linspace(0, 1, num_points) + spline_points = [] + + control_points = np.array(control_points) + + for i in range(len(control_points) - 1): + if i == 0: + p1, p2, p3 = control_points[i:i+3] + p0 = p1 + elif i == len(control_points) - 2: + p0, p1, p2 = control_points[i-1:i+2] + p3 = p2 + else: + p0, p1, p2, p3 = control_points[i-1:i+3] + + for t in t_vals: + point = catmull_rom_point(t, p0, p1, p2, p3) + spline_points.append(point) + + return np.array(spline_points).T + + +def main(): + print(__file__ + " start!!") + + way_points = [[-1.0, -2.0], [1.0, -1.0], [3.0, -2.0], [4.0, -1.0], [3.0, 1.0], [1.0, 2.0], [0.0, 2.0]] + n_course_point = 100 + spline_x, spline_y = catmull_rom_spline(way_points, n_course_point) + + plt.plot(spline_x,spline_y, '-r', label="Catmull-Rom Spline Path") + plt.plot(np.array(way_points).T[0], np.array(way_points).T[1], '-og', label="Way points") + plt.title("Catmull-Rom Spline Path") + plt.grid(True) + plt.legend() + plt.axis("equal") + plt.show() + +if __name__ == '__main__': + main() \ No newline at end of file diff --git a/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py b/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py index aea0080112..01ab8349a9 100644 --- a/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py +++ b/PathPlanning/ClosedLoopRRTStar/closed_loop_rrt_star_car.py @@ -5,26 +5,17 @@ author: AtsushiSakai(@Atsushi_twi) """ - -import os -import sys - import matplotlib.pyplot as plt import numpy as np -import pure_pursuit - -sys.path.append(os.path.dirname( - os.path.abspath(__file__)) + "/../ReedsSheppPath/") -sys.path.append(os.path.dirname( - os.path.abspath(__file__)) + "/../RRTStarReedsShepp/") +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -try: - import reeds_shepp_path_planning - import unicycle_model - from rrt_star_reeds_shepp import RRTStarReedsShepp -except ImportError: - raise +from ClosedLoopRRTStar import pure_pursuit +from ClosedLoopRRTStar import unicycle_model +from ReedsSheppPath import reeds_shepp_path_planning +from RRTStarReedsShepp.rrt_star_reeds_shepp import RRTStarReedsShepp show_animation = True @@ -36,11 +27,13 @@ class ClosedLoopRRTStar(RRTStarReedsShepp): def __init__(self, start, goal, obstacle_list, rand_area, max_iter=200, - connect_circle_dist=50.0 + connect_circle_dist=50.0, + robot_radius=0.0 ): super().__init__(start, goal, obstacle_list, rand_area, max_iter=max_iter, connect_circle_dist=connect_circle_dist, + robot_radius=robot_radius ) self.target_speed = 10.0 / 3.6 @@ -77,7 +70,8 @@ def search_best_feasible_path(self, path_indexs): for ind in path_indexs: path = self.generate_final_course(ind) - flag, x, y, yaw, v, t, a, d = self.check_tracking_path_is_feasible(path) + flag, x, y, yaw, v, t, a, d = self.check_tracking_path_is_feasible( + path) if flag and best_time >= t[-1]: print("feasible path is found") @@ -125,7 +119,11 @@ def check_tracking_path_is_feasible(self, path): print("path is too long") find_goal = False - if not self.collision_check_with_xy(x, y, self.obstacle_list): + tmp_node = self.Node(x, y, 0) + tmp_node.path_x = x + tmp_node.path_y = y + if not self.check_collision( + tmp_node, self.obstacle_list, self.robot_radius): print("This path is collision") find_goal = False @@ -149,19 +147,6 @@ def get_goal_indexes(self): return fgoalinds - @staticmethod - def collision_check_with_xy(x, y, obstacle_list): - - for (ox, oy, size) in obstacle_list: - for (ix, iy) in zip(x, y): - dx = ox - ix - dy = oy - iy - d = dx * dx + dy * dy - if d <= size ** 2: - return False # collision - - return True # safe - def main(gx=6.0, gy=7.0, gyaw=np.deg2rad(90.0), max_iter=100): print("Start" + __file__) @@ -186,7 +171,8 @@ def main(gx=6.0, gy=7.0, gyaw=np.deg2rad(90.0), max_iter=100): obstacle_list, [-2.0, 20.0], max_iter=max_iter) - flag, x, y, yaw, v, t, a, d = closed_loop_rrt_star.planning(animation=show_animation) + flag, x, y, yaw, v, t, a, d = closed_loop_rrt_star.planning( + animation=show_animation) if not flag: print("cannot find feasible path") diff --git a/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py b/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py index f3984f87b0..982ebeca06 100644 --- a/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py +++ b/PathPlanning/ClosedLoopRRTStar/pure_pursuit.py @@ -10,7 +10,11 @@ import matplotlib.pyplot as plt import numpy as np -import unicycle_model +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) + +from ClosedLoopRRTStar import unicycle_model Kp = 2.0 # speed propotional gain Lf = 0.5 # look-ahead distance @@ -250,7 +254,7 @@ def main(): # pragma: no cover yaw = [state.yaw] v = [state.v] t = [0.0] - target_ind = calc_target_index(state, cx, cy) + target_ind, dis = calc_target_index(state, cx, cy) while T >= time and lastIndex > target_ind: ai = PIDControl(target_speed, state.v) @@ -291,43 +295,6 @@ def main(): # pragma: no cover plt.show() -def main2(): # pragma: no cover - import pandas as pd - data = pd.read_csv("rrt_course.csv") - cx = np.array(data["x"]) - cy = np.array(data["y"]) - cyaw = np.array(data["yaw"]) - - target_speed = 10.0 / 3.6 - - goal = [cx[-1], cy[-1]] - - cx, cy, cyaw = extend_path(cx, cy, cyaw) - - speed_profile = calc_speed_profile(cx, cy, cyaw, target_speed) - - t, x, y, yaw, v, a, d, flag = closed_loop_prediction( - cx, cy, cyaw, speed_profile, goal) - - plt.subplots(1) - plt.plot(cx, cy, ".r", label="course") - plt.plot(x, y, "-b", label="trajectory") - plt.plot(goal[0], goal[1], "xg", label="goal") - plt.legend() - plt.xlabel("x[m]") - plt.ylabel("y[m]") - plt.axis("equal") - plt.grid(True) - - plt.subplots(1) - plt.plot(t, [iv * 3.6 for iv in v], "-r") - plt.xlabel("Time[s]") - plt.ylabel("Speed[km/h]") - plt.grid(True) - plt.show() - - if __name__ == '__main__': # pragma: no cover print("Pure pursuit path tracking simulation start") - # main() - main2() + main() diff --git a/PathPlanning/ClosedLoopRRTStar/unicycle_model.py b/PathPlanning/ClosedLoopRRTStar/unicycle_model.py index 5a0fd17a4e..c05f76c84e 100644 --- a/PathPlanning/ClosedLoopRRTStar/unicycle_model.py +++ b/PathPlanning/ClosedLoopRRTStar/unicycle_model.py @@ -8,6 +8,7 @@ import math import numpy as np +from utils.angle import angle_mod dt = 0.05 # [s] L = 0.9 # [m] @@ -39,7 +40,7 @@ def update(state, a, delta): def pi_2_pi(angle): - return (angle + math.pi) % (2 * math.pi) - math.pi + return angle_mod(angle) if __name__ == '__main__': # pragma: no cover diff --git a/PathPlanning/ClothoidPath/clothoid_path_planner.py b/PathPlanning/ClothoidPath/clothoid_path_planner.py new file mode 100644 index 0000000000..5e5fc6e9a3 --- /dev/null +++ b/PathPlanning/ClothoidPath/clothoid_path_planner.py @@ -0,0 +1,192 @@ +""" +Clothoid Path Planner +Author: Daniel Ingram (daniel-s-ingram) + Atsushi Sakai (AtsushiSakai) +Reference paper: Fast and accurate G1 fitting of clothoid curves +https://www.researchgate.net/publication/237062806 +""" + +from collections import namedtuple +import matplotlib.pyplot as plt +import numpy as np +import scipy.integrate as integrate +from scipy.optimize import fsolve +from math import atan2, cos, hypot, pi, sin +from matplotlib import animation + +Point = namedtuple("Point", ["x", "y"]) + +show_animation = True + + +def generate_clothoid_paths(start_point, start_yaw_list, + goal_point, goal_yaw_list, + n_path_points): + """ + Generate clothoid path list. This function generate multiple clothoid paths + from multiple orientations(yaw) at start points to multiple orientations + (yaw) at goal point. + + :param start_point: Start point of the path + :param start_yaw_list: Orientation list at start point in radian + :param goal_point: Goal point of the path + :param goal_yaw_list: Orientation list at goal point in radian + :param n_path_points: number of path points + :return: clothoid path list + """ + clothoids = [] + for start_yaw in start_yaw_list: + for goal_yaw in goal_yaw_list: + clothoid = generate_clothoid_path(start_point, start_yaw, + goal_point, goal_yaw, + n_path_points) + clothoids.append(clothoid) + return clothoids + + +def generate_clothoid_path(start_point, start_yaw, + goal_point, goal_yaw, n_path_points): + """ + Generate a clothoid path list. + + :param start_point: Start point of the path + :param start_yaw: Orientation at start point in radian + :param goal_point: Goal point of the path + :param goal_yaw: Orientation at goal point in radian + :param n_path_points: number of path points + :return: a clothoid path + """ + dx = goal_point.x - start_point.x + dy = goal_point.y - start_point.y + r = hypot(dx, dy) + + phi = atan2(dy, dx) + phi1 = normalize_angle(start_yaw - phi) + phi2 = normalize_angle(goal_yaw - phi) + delta = phi2 - phi1 + + try: + # Step1: Solve g function + A = solve_g_for_root(phi1, phi2, delta) + + # Step2: Calculate path parameters + L = compute_path_length(r, phi1, delta, A) + curvature = compute_curvature(delta, A, L) + curvature_rate = compute_curvature_rate(A, L) + except Exception as e: + print(f"Failed to generate clothoid points: {e}") + return None + + # Step3: Construct a path with Fresnel integral + points = [] + for s in np.linspace(0, L, n_path_points): + try: + x = start_point.x + s * X(curvature_rate * s ** 2, curvature * s, + start_yaw) + y = start_point.y + s * Y(curvature_rate * s ** 2, curvature * s, + start_yaw) + points.append(Point(x, y)) + except Exception as e: + print(f"Skipping failed clothoid point: {e}") + + return points + + +def X(a, b, c): + return integrate.quad(lambda t: cos((a/2)*t**2 + b*t + c), 0, 1)[0] + + +def Y(a, b, c): + return integrate.quad(lambda t: sin((a/2)*t**2 + b*t + c), 0, 1)[0] + + +def solve_g_for_root(theta1, theta2, delta): + initial_guess = 3*(theta1 + theta2) + return fsolve(lambda A: Y(2*A, delta - A, theta1), [initial_guess]) + + +def compute_path_length(r, theta1, delta, A): + return r / X(2*A, delta - A, theta1) + + +def compute_curvature(delta, A, L): + return (delta - A) / L + + +def compute_curvature_rate(A, L): + return 2 * A / (L**2) + + +def normalize_angle(angle_rad): + return (angle_rad + pi) % (2 * pi) - pi + + +def get_axes_limits(clothoids): + x_vals = [p.x for clothoid in clothoids for p in clothoid] + y_vals = [p.y for clothoid in clothoids for p in clothoid] + + x_min = min(x_vals) + x_max = max(x_vals) + y_min = min(y_vals) + y_max = max(y_vals) + + x_offset = 0.1*(x_max - x_min) + y_offset = 0.1*(y_max - y_min) + + x_min = x_min - x_offset + x_max = x_max + x_offset + y_min = y_min - y_offset + y_max = y_max + y_offset + + return x_min, x_max, y_min, y_max + + +def draw_clothoids(start, goal, num_steps, clothoidal_paths, + save_animation=False): + + fig = plt.figure(figsize=(10, 10)) + x_min, x_max, y_min, y_max = get_axes_limits(clothoidal_paths) + axes = plt.axes(xlim=(x_min, x_max), ylim=(y_min, y_max)) + + axes.plot(start.x, start.y, 'ro') + axes.plot(goal.x, goal.y, 'ro') + lines = [axes.plot([], [], 'b-')[0] for _ in range(len(clothoidal_paths))] + + def animate(i): + for line, clothoid_path in zip(lines, clothoidal_paths): + x = [p.x for p in clothoid_path[:i]] + y = [p.y for p in clothoid_path[:i]] + line.set_data(x, y) + + return lines + + anim = animation.FuncAnimation( + fig, + animate, + frames=num_steps, + interval=25, + blit=True + ) + if save_animation: + anim.save('clothoid.gif', fps=30, writer="imagemagick") + plt.show() + + +def main(): + start_point = Point(0, 0) + start_orientation_list = [0.0] + goal_point = Point(10, 0) + goal_orientation_list = np.linspace(-pi, pi, 75) + num_path_points = 100 + clothoid_paths = generate_clothoid_paths( + start_point, start_orientation_list, + goal_point, goal_orientation_list, + num_path_points) + if show_animation: + draw_clothoids(start_point, goal_point, + num_path_points, clothoid_paths, + save_animation=False) + + +if __name__ == "__main__": + main() diff --git a/PathPlanning/CubicSpline/Figure_1.png b/PathPlanning/CubicSpline/Figure_1.png deleted file mode 100644 index 13eea2122d..0000000000 Binary files a/PathPlanning/CubicSpline/Figure_1.png and /dev/null differ diff --git a/PathPlanning/CubicSpline/cubic_spline_planner.py b/PathPlanning/CubicSpline/cubic_spline_planner.py index 239ce16738..2391f67c39 100644 --- a/PathPlanning/CubicSpline/cubic_spline_planner.py +++ b/PathPlanning/CubicSpline/cubic_spline_planner.py @@ -9,87 +9,173 @@ import bisect -class Spline: +class CubicSpline1D: """ - Cubic Spline class + 1D Cubic Spline class + + Parameters + ---------- + x : list + x coordinates for data points. This x coordinates must be + sorted + in ascending order. + y : list + y coordinates for data points + + Examples + -------- + You can interpolate 1D data points. + + >>> import numpy as np + >>> import matplotlib.pyplot as plt + >>> x = np.arange(5) + >>> y = [1.7, -6, 5, 6.5, 0.0] + >>> sp = CubicSpline1D(x, y) + >>> xi = np.linspace(0.0, 5.0) + >>> yi = [sp.calc_position(x) for x in xi] + >>> plt.plot(x, y, "xb", label="Data points") + >>> plt.plot(xi, yi , "r", label="Cubic spline interpolation") + >>> plt.grid(True) + >>> plt.legend() + >>> plt.show() + + .. image:: cubic_spline_1d.png + """ def __init__(self, x, y): - self.b, self.c, self.d, self.w = [], [], [], [] + h = np.diff(x) + if np.any(h < 0): + raise ValueError("x coordinates must be sorted in ascending order") + + self.a, self.b, self.c, self.d = [], [], [], [] self.x = x self.y = y - self.nx = len(x) # dimension of x - h = np.diff(x) - # calc coefficient c + # calc coefficient a self.a = [iy for iy in y] # calc coefficient c A = self.__calc_A(h) - B = self.__calc_B(h) + B = self.__calc_B(h, self.a) self.c = np.linalg.solve(A, B) - # print(self.c1) # calc spline coefficient b and d for i in range(self.nx - 1): - self.d.append((self.c[i + 1] - self.c[i]) / (3.0 * h[i])) - tb = (self.a[i + 1] - self.a[i]) / h[i] - h[i] * \ - (self.c[i + 1] + 2.0 * self.c[i]) / 3.0 - self.b.append(tb) + d = (self.c[i + 1] - self.c[i]) / (3.0 * h[i]) + b = 1.0 / h[i] * (self.a[i + 1] - self.a[i]) \ + - h[i] / 3.0 * (2.0 * self.c[i] + self.c[i + 1]) + self.d.append(d) + self.b.append(b) - def calc(self, t): + def calc_position(self, x): """ - Calc position + Calc `y` position for given `x`. - if t is outside of the input x, return None + if `x` is outside the data point's `x` range, return None. - """ + Parameters + ---------- + x : float + x position to calculate y. - if t < self.x[0]: + Returns + ------- + y : float + y position for given x. + """ + if x < self.x[0]: return None - elif t > self.x[-1]: + elif x > self.x[-1]: return None - i = self.__search_index(t) - dx = t - self.x[i] - result = self.a[i] + self.b[i] * dx + \ + i = self.__search_index(x) + dx = x - self.x[i] + position = self.a[i] + self.b[i] * dx + \ self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0 - return result + return position - def calcd(self, t): + def calc_first_derivative(self, x): """ - Calc first derivative + Calc first derivative at given x. + + if x is outside the input x, return None + + Parameters + ---------- + x : float + x position to calculate first derivative. - if t is outside of the input x, return None + Returns + ------- + dy : float + first derivative for given x. """ - if t < self.x[0]: + if x < self.x[0]: return None - elif t > self.x[-1]: + elif x > self.x[-1]: return None - i = self.__search_index(t) - dx = t - self.x[i] - result = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0 - return result + i = self.__search_index(x) + dx = x - self.x[i] + dy = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0 + return dy - def calcdd(self, t): + def calc_second_derivative(self, x): """ - Calc second derivative + Calc second derivative at given x. + + if x is outside the input x, return None + + Parameters + ---------- + x : float + x position to calculate second derivative. + + Returns + ------- + ddy : float + second derivative for given x. """ - if t < self.x[0]: + if x < self.x[0]: return None - elif t > self.x[-1]: + elif x > self.x[-1]: return None - i = self.__search_index(t) - dx = t - self.x[i] - result = 2.0 * self.c[i] + 6.0 * self.d[i] * dx - return result + i = self.__search_index(x) + dx = x - self.x[i] + ddy = 2.0 * self.c[i] + 6.0 * self.d[i] * dx + return ddy + + def calc_third_derivative(self, x): + """ + Calc third derivative at given x. + + if x is outside the input x, return None + + Parameters + ---------- + x : float + x position to calculate third derivative. + + Returns + ------- + dddy : float + third derivative for given x. + """ + if x < self.x[0]: + return None + elif x > self.x[-1]: + return None + + i = self.__search_index(x) + dddy = 6.0 * self.d[i] + return dddy def __search_index(self, x): """ @@ -112,30 +198,82 @@ def __calc_A(self, h): A[0, 1] = 0.0 A[self.nx - 1, self.nx - 2] = 0.0 A[self.nx - 1, self.nx - 1] = 1.0 - # print(A) return A - def __calc_B(self, h): + def __calc_B(self, h, a): """ calc matrix B for spline coefficient c """ B = np.zeros(self.nx) for i in range(self.nx - 2): - B[i + 1] = 3.0 * (self.a[i + 2] - self.a[i + 1]) / \ - h[i + 1] - 3.0 * (self.a[i + 1] - self.a[i]) / h[i] + B[i + 1] = 3.0 * (a[i + 2] - a[i + 1]) / h[i + 1]\ + - 3.0 * (a[i + 1] - a[i]) / h[i] return B -class Spline2D: +class CubicSpline2D: """ - 2D Cubic Spline class - + Cubic CubicSpline2D class + + Parameters + ---------- + x : list + x coordinates for data points. + y : list + y coordinates for data points. + + Examples + -------- + You can interpolate a 2D data points. + + >>> import matplotlib.pyplot as plt + >>> x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0] + >>> y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0] + >>> ds = 0.1 # [m] distance of each interpolated points + >>> sp = CubicSpline2D(x, y) + >>> s = np.arange(0, sp.s[-1], ds) + >>> rx, ry, ryaw, rk = [], [], [], [] + >>> for i_s in s: + ... ix, iy = sp.calc_position(i_s) + ... rx.append(ix) + ... ry.append(iy) + ... ryaw.append(sp.calc_yaw(i_s)) + ... rk.append(sp.calc_curvature(i_s)) + >>> plt.subplots(1) + >>> plt.plot(x, y, "xb", label="Data points") + >>> plt.plot(rx, ry, "-r", label="Cubic spline path") + >>> plt.grid(True) + >>> plt.axis("equal") + >>> plt.xlabel("x[m]") + >>> plt.ylabel("y[m]") + >>> plt.legend() + >>> plt.show() + + .. image:: cubic_spline_2d_path.png + + >>> plt.subplots(1) + >>> plt.plot(s, [np.rad2deg(iyaw) for iyaw in ryaw], "-r", label="yaw") + >>> plt.grid(True) + >>> plt.legend() + >>> plt.xlabel("line length[m]") + >>> plt.ylabel("yaw angle[deg]") + + .. image:: cubic_spline_2d_yaw.png + + >>> plt.subplots(1) + >>> plt.plot(s, rk, "-r", label="curvature") + >>> plt.grid(True) + >>> plt.legend() + >>> plt.xlabel("line length[m]") + >>> plt.ylabel("curvature [1/m]") + + .. image:: cubic_spline_2d_curvature.png """ def __init__(self, x, y): self.s = self.__calc_s(x, y) - self.sx = Spline(self.s, x) - self.sy = Spline(self.s, y) + self.sx = CubicSpline1D(self.s, x) + self.sy = CubicSpline1D(self.s, y) def __calc_s(self, x, y): dx = np.diff(x) @@ -148,35 +286,97 @@ def __calc_s(self, x, y): def calc_position(self, s): """ calc position + + Parameters + ---------- + s : float + distance from the start point. if `s` is outside the data point's + range, return None. + + Returns + ------- + x : float + x position for given s. + y : float + y position for given s. """ - x = self.sx.calc(s) - y = self.sy.calc(s) + x = self.sx.calc_position(s) + y = self.sy.calc_position(s) return x, y def calc_curvature(self, s): """ calc curvature + + Parameters + ---------- + s : float + distance from the start point. if `s` is outside the data point's + range, return None. + + Returns + ------- + k : float + curvature for given s. """ - dx = self.sx.calcd(s) - ddx = self.sx.calcdd(s) - dy = self.sy.calcd(s) - ddy = self.sy.calcdd(s) + dx = self.sx.calc_first_derivative(s) + ddx = self.sx.calc_second_derivative(s) + dy = self.sy.calc_first_derivative(s) + ddy = self.sy.calc_second_derivative(s) k = (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2)) return k + def calc_curvature_rate(self, s): + """ + calc curvature rate + + Parameters + ---------- + s : float + distance from the start point. if `s` is outside the data point's + range, return None. + + Returns + ------- + k : float + curvature rate for given s. + """ + dx = self.sx.calc_first_derivative(s) + dy = self.sy.calc_first_derivative(s) + ddx = self.sx.calc_second_derivative(s) + ddy = self.sy.calc_second_derivative(s) + dddx = self.sx.calc_third_derivative(s) + dddy = self.sy.calc_third_derivative(s) + a = dx * ddy - dy * ddx + b = dx * dddy - dy * dddx + c = dx * ddx + dy * ddy + d = dx * dx + dy * dy + return (b * d - 3.0 * a * c) / (d * d * d) + def calc_yaw(self, s): """ calc yaw + + Parameters + ---------- + s : float + distance from the start point. if `s` is outside the data point's + range, return None. + + Returns + ------- + yaw : float + yaw angle (tangent vector) for given s. """ - dx = self.sx.calcd(s) - dy = self.sy.calcd(s) + dx = self.sx.calc_first_derivative(s) + dy = self.sy.calc_first_derivative(s) yaw = math.atan2(dy, dx) return yaw def calc_spline_course(x, y, ds=0.1): - sp = Spline2D(x, y) + sp = CubicSpline2D(x, y) s = list(np.arange(0, sp.s[-1], ds)) rx, ry, ryaw, rk = [], [], [], [] @@ -190,14 +390,30 @@ def calc_spline_course(x, y, ds=0.1): return rx, ry, ryaw, rk, s -def main(): - print("Spline 2D test") +def main_1d(): + print("CubicSpline1D test") + import matplotlib.pyplot as plt + x = np.arange(5) + y = [1.7, -6, 5, 6.5, 0.0] + sp = CubicSpline1D(x, y) + xi = np.linspace(0.0, 5.0) + + plt.plot(x, y, "xb", label="Data points") + plt.plot(xi, [sp.calc_position(x) for x in xi], "r", + label="Cubic spline interpolation") + plt.grid(True) + plt.legend() + plt.show() + + +def main_2d(): # pragma: no cover + print("CubicSpline1D 2D test") import matplotlib.pyplot as plt x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0] y = [0.7, -6, 5, 6.5, 0.0, 5.0, -2.0] - ds = 0.1 # [m] distance of each intepolated points + ds = 0.1 # [m] distance of each interpolated points - sp = Spline2D(x, y) + sp = CubicSpline2D(x, y) s = np.arange(0, sp.s[-1], ds) rx, ry, ryaw, rk = [], [], [], [] @@ -209,8 +425,8 @@ def main(): rk.append(sp.calc_curvature(i_s)) plt.subplots(1) - plt.plot(x, y, "xb", label="input") - plt.plot(rx, ry, "-r", label="spline") + plt.plot(x, y, "xb", label="Data points") + plt.plot(rx, ry, "-r", label="Cubic spline path") plt.grid(True) plt.axis("equal") plt.xlabel("x[m]") @@ -235,4 +451,5 @@ def main(): if __name__ == '__main__': - main() + # main_1d() + main_2d() diff --git a/PathPlanning/CubicSpline/spline_continuity.py b/PathPlanning/CubicSpline/spline_continuity.py new file mode 100644 index 0000000000..ea85b37f7c --- /dev/null +++ b/PathPlanning/CubicSpline/spline_continuity.py @@ -0,0 +1,55 @@ + +import numpy as np +import matplotlib.pyplot as plt +from scipy import interpolate + + +class Spline2D: + + def __init__(self, x, y, kind="cubic"): + self.s = self.__calc_s(x, y) + self.sx = interpolate.interp1d(self.s, x, kind=kind) + self.sy = interpolate.interp1d(self.s, y, kind=kind) + + def __calc_s(self, x, y): + self.ds = np.hypot(np.diff(x), np.diff(y)) + s = [0.0] + s.extend(np.cumsum(self.ds)) + return s + + def calc_position(self, s): + x = self.sx(s) + y = self.sy(s) + return x, y + + +def main(): + x = [-2.5, 0.0, 2.5, 5.0, 7.5, 3.0, -1.0] + y = [0.7, -6, -5, -3.5, 0.0, 5.0, -2.0] + ds = 0.1 # [m] distance of each interpolated points + + plt.subplots(1) + plt.plot(x, y, "xb", label="Data points") + + for (kind, label) in [("linear", "C0 (Linear spline)"), + ("quadratic", "C0 & C1 (Quadratic spline)"), + ("cubic", "C0 & C1 & C2 (Cubic spline)")]: + rx, ry = [], [] + sp = Spline2D(x, y, kind=kind) + s = np.arange(0, sp.s[-1], ds) + for i_s in s: + ix, iy = sp.calc_position(i_s) + rx.append(ix) + ry.append(iy) + plt.plot(rx, ry, "-", label=label) + + plt.grid(True) + plt.axis("equal") + plt.xlabel("x[m]") + plt.ylabel("y[m]") + plt.legend() + plt.show() + + +if __name__ == '__main__': + main() diff --git a/PathPlanning/DStar/dstar.py b/PathPlanning/DStar/dstar.py new file mode 100644 index 0000000000..b62b939f54 --- /dev/null +++ b/PathPlanning/DStar/dstar.py @@ -0,0 +1,253 @@ +""" + +D* grid planning + +author: Nirnay Roy + +See Wikipedia article (https://en.wikipedia.org/wiki/D*) + +""" +import math + + +from sys import maxsize + +import matplotlib.pyplot as plt + +show_animation = True + + +class State: + + def __init__(self, x, y): + self.x = x + self.y = y + self.parent = None + self.state = "." + self.t = "new" # tag for state + self.h = 0 + self.k = 0 + + def cost(self, state): + if self.state == "#" or state.state == "#": + return maxsize + + return math.sqrt(math.pow((self.x - state.x), 2) + + math.pow((self.y - state.y), 2)) + + def set_state(self, state): + """ + .: new + #: obstacle + e: oparent of current state + *: closed state + s: current state + """ + if state not in ["s", ".", "#", "e", "*"]: + return + self.state = state + + +class Map: + + def __init__(self, row, col): + self.row = row + self.col = col + self.map = self.init_map() + + def init_map(self): + map_list = [] + for i in range(self.row): + tmp = [] + for j in range(self.col): + tmp.append(State(i, j)) + map_list.append(tmp) + return map_list + + def get_neighbors(self, state): + state_list = [] + for i in [-1, 0, 1]: + for j in [-1, 0, 1]: + if i == 0 and j == 0: + continue + if state.x + i < 0 or state.x + i >= self.row: + continue + if state.y + j < 0 or state.y + j >= self.col: + continue + state_list.append(self.map[state.x + i][state.y + j]) + return state_list + + def set_obstacle(self, point_list): + for x, y in point_list: + if x < 0 or x >= self.row or y < 0 or y >= self.col: + continue + + self.map[x][y].set_state("#") + + +class Dstar: + def __init__(self, maps): + self.map = maps + self.open_list = set() + + def process_state(self): + x = self.min_state() + + if x is None: + return -1 + + k_old = self.get_kmin() + self.remove(x) + + if k_old < x.h: + for y in self.map.get_neighbors(x): + if y.h <= k_old and x.h > y.h + x.cost(y): + x.parent = y + x.h = y.h + x.cost(y) + if k_old == x.h: + for y in self.map.get_neighbors(x): + if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y) \ + or y.parent != x and y.h > x.h + x.cost(y): + y.parent = x + self.insert(y, x.h + x.cost(y)) + else: + for y in self.map.get_neighbors(x): + if y.t == "new" or y.parent == x and y.h != x.h + x.cost(y): + y.parent = x + self.insert(y, x.h + x.cost(y)) + else: + if y.parent != x and y.h > x.h + x.cost(y): + self.insert(x, x.h) + else: + if y.parent != x and x.h > y.h + x.cost(y) \ + and y.t == "close" and y.h > k_old: + self.insert(y, y.h) + return self.get_kmin() + + def min_state(self): + if not self.open_list: + return None + min_state = min(self.open_list, key=lambda x: x.k) + return min_state + + def get_kmin(self): + if not self.open_list: + return -1 + k_min = min([x.k for x in self.open_list]) + return k_min + + def insert(self, state, h_new): + if state.t == "new": + state.k = h_new + elif state.t == "open": + state.k = min(state.k, h_new) + elif state.t == "close": + state.k = min(state.h, h_new) + state.h = h_new + state.t = "open" + self.open_list.add(state) + + def remove(self, state): + if state.t == "open": + state.t = "close" + self.open_list.remove(state) + + def modify_cost(self, x): + if x.t == "close": + self.insert(x, x.parent.h + x.cost(x.parent)) + + def run(self, start, end): + + rx = [] + ry = [] + + self.insert(end, 0.0) + + while True: + self.process_state() + if start.t == "close": + break + + start.set_state("s") + s = start + s = s.parent + s.set_state("e") + tmp = start + + AddNewObstacle(self.map) # add new obstacle after the first search finished + + while tmp != end: + tmp.set_state("*") + rx.append(tmp.x) + ry.append(tmp.y) + if show_animation: + plt.plot(rx, ry, "-r") + plt.pause(0.01) + if tmp.parent.state == "#": + self.modify(tmp) + continue + tmp = tmp.parent + tmp.set_state("e") + + return rx, ry + + def modify(self, state): + self.modify_cost(state) + while True: + k_min = self.process_state() + if k_min >= state.h: + break + +def AddNewObstacle(map:Map): + ox, oy = [], [] + for i in range(5, 21): + ox.append(i) + oy.append(40) + map.set_obstacle([(i, j) for i, j in zip(ox, oy)]) + if show_animation: + plt.pause(0.001) + plt.plot(ox, oy, ".g") + +def main(): + m = Map(100, 100) + ox, oy = [], [] + for i in range(-10, 60): + ox.append(i) + oy.append(-10) + for i in range(-10, 60): + ox.append(60) + oy.append(i) + for i in range(-10, 61): + ox.append(i) + oy.append(60) + for i in range(-10, 61): + ox.append(-10) + oy.append(i) + for i in range(-10, 40): + ox.append(20) + oy.append(i) + for i in range(0, 40): + ox.append(40) + oy.append(60 - i) + m.set_obstacle([(i, j) for i, j in zip(ox, oy)]) + + start = [10, 10] + goal = [50, 50] + if show_animation: + plt.plot(ox, oy, ".k") + plt.plot(start[0], start[1], "og") + plt.plot(goal[0], goal[1], "xb") + plt.axis("equal") + + start = m.map[start[0]][start[1]] + end = m.map[goal[0]][goal[1]] + dstar = Dstar(m) + rx, ry = dstar.run(start, end) + + if show_animation: + plt.plot(rx, ry, "-r") + plt.show() + + +if __name__ == '__main__': + main() diff --git a/PathPlanning/DStarLite/d_star_lite.py b/PathPlanning/DStarLite/d_star_lite.py new file mode 100644 index 0000000000..1a44d84fa5 --- /dev/null +++ b/PathPlanning/DStarLite/d_star_lite.py @@ -0,0 +1,405 @@ +""" +D* Lite grid planning +author: vss2sn (28676655+vss2sn@users.noreply.github.com) +Link to papers: +D* Lite (Link: http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf) +Improved Fast Replanning for Robot Navigation in Unknown Terrain +(Link: http://www.cs.cmu.edu/~maxim/files/dlite_icra02.pdf) +Implemented maintaining similarity with the pseudocode for understanding. +Code can be significantly optimized by using a priority queue for U, etc. +Avoiding additional imports based on repository philosophy. +""" +import math +import matplotlib.pyplot as plt +import random +import numpy as np + +show_animation = True +pause_time = 0.001 +p_create_random_obstacle = 0 + + +class Node: + def __init__(self, x: int = 0, y: int = 0, cost: float = 0.0): + self.x = x + self.y = y + self.cost = cost + + +def add_coordinates(node1: Node, node2: Node): + new_node = Node() + new_node.x = node1.x + node2.x + new_node.y = node1.y + node2.y + new_node.cost = node1.cost + node2.cost + return new_node + + +def compare_coordinates(node1: Node, node2: Node): + return node1.x == node2.x and node1.y == node2.y + + +class DStarLite: + + # Please adjust the heuristic function (h) if you change the list of + # possible motions + motions = [ + Node(1, 0, 1), + Node(0, 1, 1), + Node(-1, 0, 1), + Node(0, -1, 1), + Node(1, 1, math.sqrt(2)), + Node(1, -1, math.sqrt(2)), + Node(-1, 1, math.sqrt(2)), + Node(-1, -1, math.sqrt(2)) + ] + + def __init__(self, ox: list, oy: list): + # Ensure that within the algorithm implementation all node coordinates + # are indices in the grid and extend + # from 0 to abs(_max - _min) + self.x_min_world = int(min(ox)) + self.y_min_world = int(min(oy)) + self.x_max = int(abs(max(ox) - self.x_min_world)) + self.y_max = int(abs(max(oy) - self.y_min_world)) + self.obstacles = [Node(x - self.x_min_world, y - self.y_min_world) + for x, y in zip(ox, oy)] + self.obstacles_xy = {(obstacle.x, obstacle.y) for obstacle in self.obstacles} + self.start = Node(0, 0) + self.goal = Node(0, 0) + self.U = list() # type: ignore + self.km = 0.0 + self.kold = 0.0 + self.rhs = self.create_grid(float("inf")) + self.g = self.create_grid(float("inf")) + self.detected_obstacles_xy: set[tuple[int, int]] = set() + self.xy = np.empty((0, 2)) + if show_animation: + self.detected_obstacles_for_plotting_x = list() # type: ignore + self.detected_obstacles_for_plotting_y = list() # type: ignore + self.initialized = False + + def create_grid(self, val: float): + return np.full((self.x_max, self.y_max), val) + + def is_obstacle(self, node: Node): + is_in_obstacles = (node.x, node.y) in self.obstacles_xy + is_in_detected_obstacles = (node.x, node.y) in self.detected_obstacles_xy + return is_in_obstacles or is_in_detected_obstacles + + def c(self, node1: Node, node2: Node): + if self.is_obstacle(node2): + # Attempting to move from or to an obstacle + return math.inf + new_node = Node(node1.x-node2.x, node1.y-node2.y) + detected_motion = list(filter(lambda motion: + compare_coordinates(motion, new_node), + self.motions)) + return detected_motion[0].cost + + def h(self, s: Node): + # Cannot use the 2nd euclidean norm as this might sometimes generate + # heuristics that overestimate the cost, making them inadmissible, + # due to rounding errors etc (when combined with calculate_key) + # To be admissible heuristic should + # never overestimate the cost of a move + # hence not using the line below + # return math.hypot(self.start.x - s.x, self.start.y - s.y) + + # Below is the same as 1; modify if you modify the cost of each move in + # motion + # return max(abs(self.start.x - s.x), abs(self.start.y - s.y)) + return 1 + + def calculate_key(self, s: Node): + return (min(self.g[s.x][s.y], self.rhs[s.x][s.y]) + self.h(s) + + self.km, min(self.g[s.x][s.y], self.rhs[s.x][s.y])) + + def is_valid(self, node: Node): + if 0 <= node.x < self.x_max and 0 <= node.y < self.y_max: + return True + return False + + def get_neighbours(self, u: Node): + return [add_coordinates(u, motion) for motion in self.motions + if self.is_valid(add_coordinates(u, motion))] + + def pred(self, u: Node): + # Grid, so each vertex is connected to the ones around it + return self.get_neighbours(u) + + def succ(self, u: Node): + # Grid, so each vertex is connected to the ones around it + return self.get_neighbours(u) + + def initialize(self, start: Node, goal: Node): + self.start.x = start.x - self.x_min_world + self.start.y = start.y - self.y_min_world + self.goal.x = goal.x - self.x_min_world + self.goal.y = goal.y - self.y_min_world + if not self.initialized: + self.initialized = True + print('Initializing') + self.U = list() # Would normally be a priority queue + self.km = 0.0 + self.rhs = self.create_grid(math.inf) + self.g = self.create_grid(math.inf) + self.rhs[self.goal.x][self.goal.y] = 0 + self.U.append((self.goal, self.calculate_key(self.goal))) + self.detected_obstacles_xy = set() + + def update_vertex(self, u: Node): + if not compare_coordinates(u, self.goal): + self.rhs[u.x][u.y] = min([self.c(u, sprime) + + self.g[sprime.x][sprime.y] + for sprime in self.succ(u)]) + if any([compare_coordinates(u, node) for node, key in self.U]): + self.U = [(node, key) for node, key in self.U + if not compare_coordinates(node, u)] + self.U.sort(key=lambda x: x[1]) + if self.g[u.x][u.y] != self.rhs[u.x][u.y]: + self.U.append((u, self.calculate_key(u))) + self.U.sort(key=lambda x: x[1]) + + def compare_keys(self, key_pair1: tuple[float, float], + key_pair2: tuple[float, float]): + return key_pair1[0] < key_pair2[0] or \ + (key_pair1[0] == key_pair2[0] and key_pair1[1] < key_pair2[1]) + + def compute_shortest_path(self): + self.U.sort(key=lambda x: x[1]) + has_elements = len(self.U) > 0 + start_key_not_updated = self.compare_keys( + self.U[0][1], self.calculate_key(self.start) + ) + rhs_not_equal_to_g = self.rhs[self.start.x][self.start.y] != \ + self.g[self.start.x][self.start.y] + while has_elements and start_key_not_updated or rhs_not_equal_to_g: + self.kold = self.U[0][1] + u = self.U[0][0] + self.U.pop(0) + if self.compare_keys(self.kold, self.calculate_key(u)): + self.U.append((u, self.calculate_key(u))) + self.U.sort(key=lambda x: x[1]) + elif (self.g[u.x, u.y] > self.rhs[u.x, u.y]).any(): + self.g[u.x, u.y] = self.rhs[u.x, u.y] + for s in self.pred(u): + self.update_vertex(s) + else: + self.g[u.x, u.y] = math.inf + for s in self.pred(u) + [u]: + self.update_vertex(s) + self.U.sort(key=lambda x: x[1]) + start_key_not_updated = self.compare_keys( + self.U[0][1], self.calculate_key(self.start) + ) + rhs_not_equal_to_g = self.rhs[self.start.x][self.start.y] != \ + self.g[self.start.x][self.start.y] + + def detect_changes(self): + changed_vertices = list() + if len(self.spoofed_obstacles) > 0: + for spoofed_obstacle in self.spoofed_obstacles[0]: + if compare_coordinates(spoofed_obstacle, self.start) or \ + compare_coordinates(spoofed_obstacle, self.goal): + continue + changed_vertices.append(spoofed_obstacle) + self.detected_obstacles_xy.add((spoofed_obstacle.x, spoofed_obstacle.y)) + if show_animation: + self.detected_obstacles_for_plotting_x.append( + spoofed_obstacle.x + self.x_min_world) + self.detected_obstacles_for_plotting_y.append( + spoofed_obstacle.y + self.y_min_world) + plt.plot(self.detected_obstacles_for_plotting_x, + self.detected_obstacles_for_plotting_y, ".k") + plt.pause(pause_time) + self.spoofed_obstacles.pop(0) + + # Allows random generation of obstacles + random.seed() + if random.random() > 1 - p_create_random_obstacle: + x = random.randint(0, self.x_max - 1) + y = random.randint(0, self.y_max - 1) + new_obs = Node(x, y) + if compare_coordinates(new_obs, self.start) or \ + compare_coordinates(new_obs, self.goal): + return changed_vertices + changed_vertices.append(Node(x, y)) + self.detected_obstacles_xy.add((x, y)) + if show_animation: + self.detected_obstacles_for_plotting_x.append(x + + self.x_min_world) + self.detected_obstacles_for_plotting_y.append(y + + self.y_min_world) + plt.plot(self.detected_obstacles_for_plotting_x, + self.detected_obstacles_for_plotting_y, ".k") + plt.pause(pause_time) + return changed_vertices + + def compute_current_path(self): + path = list() + current_point = Node(self.start.x, self.start.y) + while not compare_coordinates(current_point, self.goal): + path.append(current_point) + current_point = min(self.succ(current_point), + key=lambda sprime: + self.c(current_point, sprime) + + self.g[sprime.x][sprime.y]) + path.append(self.goal) + return path + + def compare_paths(self, path1: list, path2: list): + if len(path1) != len(path2): + return False + for node1, node2 in zip(path1, path2): + if not compare_coordinates(node1, node2): + return False + return True + + def display_path(self, path: list, colour: str, alpha: float = 1.0): + px = [(node.x + self.x_min_world) for node in path] + py = [(node.y + self.y_min_world) for node in path] + drawing = plt.plot(px, py, colour, alpha=alpha) + plt.pause(pause_time) + return drawing + + def main(self, start: Node, goal: Node, + spoofed_ox: list, spoofed_oy: list): + self.spoofed_obstacles = [[Node(x - self.x_min_world, + y - self.y_min_world) + for x, y in zip(rowx, rowy)] + for rowx, rowy in zip(spoofed_ox, spoofed_oy) + ] + pathx = [] + pathy = [] + self.initialize(start, goal) + last = self.start + self.compute_shortest_path() + pathx.append(self.start.x + self.x_min_world) + pathy.append(self.start.y + self.y_min_world) + + if show_animation: + current_path = self.compute_current_path() + previous_path = current_path.copy() + previous_path_image = self.display_path(previous_path, ".c", + alpha=0.3) + current_path_image = self.display_path(current_path, ".c") + + while not compare_coordinates(self.goal, self.start): + if self.g[self.start.x][self.start.y] == math.inf: + print("No path possible") + return False, pathx, pathy + self.start = min(self.succ(self.start), + key=lambda sprime: + self.c(self.start, sprime) + + self.g[sprime.x][sprime.y]) + pathx.append(self.start.x + self.x_min_world) + pathy.append(self.start.y + self.y_min_world) + if show_animation: + current_path.pop(0) + plt.plot(pathx, pathy, "-r") + plt.pause(pause_time) + changed_vertices = self.detect_changes() + if len(changed_vertices) != 0: + print("New obstacle detected") + self.km += self.h(last) + last = self.start + for u in changed_vertices: + if compare_coordinates(u, self.start): + continue + self.rhs[u.x][u.y] = math.inf + self.g[u.x][u.y] = math.inf + self.update_vertex(u) + self.compute_shortest_path() + + if show_animation: + new_path = self.compute_current_path() + if not self.compare_paths(current_path, new_path): + current_path_image[0].remove() + previous_path_image[0].remove() + previous_path = current_path.copy() + current_path = new_path.copy() + previous_path_image = self.display_path(previous_path, + ".c", + alpha=0.3) + current_path_image = self.display_path(current_path, + ".c") + plt.pause(pause_time) + print("Path found") + return True, pathx, pathy + + +def main(): + + # start and goal position + sx = 10 # [m] + sy = 10 # [m] + gx = 50 # [m] + gy = 50 # [m] + + # set obstacle positions + ox, oy = [], [] + for i in range(-10, 60): + ox.append(i) + oy.append(-10.0) + for i in range(-10, 60): + ox.append(60.0) + oy.append(i) + for i in range(-10, 61): + ox.append(i) + oy.append(60.0) + for i in range(-10, 61): + ox.append(-10.0) + oy.append(i) + for i in range(-10, 40): + ox.append(20.0) + oy.append(i) + for i in range(0, 40): + ox.append(40.0) + oy.append(60.0 - i) + + if show_animation: + plt.plot(ox, oy, ".k") + plt.plot(sx, sy, "og") + plt.plot(gx, gy, "xb") + plt.grid(True) + plt.axis("equal") + label_column = ['Start', 'Goal', 'Path taken', + 'Current computed path', 'Previous computed path', + 'Obstacles'] + columns = [plt.plot([], [], symbol, color=colour, alpha=alpha)[0] + for symbol, colour, alpha in [['o', 'g', 1], + ['x', 'b', 1], + ['-', 'r', 1], + ['.', 'c', 1], + ['.', 'c', 0.3], + ['.', 'k', 1]]] + plt.legend(columns, label_column, bbox_to_anchor=(1, 1), title="Key:", + fontsize="xx-small") + plt.plot() + plt.pause(pause_time) + + # Obstacles discovered at time = row + # time = 1, obstacles discovered at (0, 2), (9, 2), (4, 0) + # time = 2, obstacles discovered at (0, 1), (7, 7) + # ... + # when the spoofed obstacles are: + # spoofed_ox = [[0, 9, 4], [0, 7], [], [], [], [], [], [5]] + # spoofed_oy = [[2, 2, 0], [1, 7], [], [], [], [], [], [4]] + + # Reroute + # spoofed_ox = [[], [], [], [], [], [], [], [40 for _ in range(10, 21)]] + # spoofed_oy = [[], [], [], [], [], [], [], [i for i in range(10, 21)]] + + # Obstacles that demostrate large rerouting + spoofed_ox = [[], [], [], + [i for i in range(0, 21)] + [0 for _ in range(0, 20)]] + spoofed_oy = [[], [], [], + [20 for _ in range(0, 21)] + [i for i in range(0, 20)]] + + dstarlite = DStarLite(ox, oy) + dstarlite.main(Node(x=sx, y=sy), Node(x=gx, y=gy), + spoofed_ox=spoofed_ox, spoofed_oy=spoofed_oy) + + +if __name__ == "__main__": + main() diff --git a/PathPlanning/DepthFirstSearch/depth_first_search.py b/PathPlanning/DepthFirstSearch/depth_first_search.py index c8d2d5eaba..6922b8cbad 100644 --- a/PathPlanning/DepthFirstSearch/depth_first_search.py +++ b/PathPlanning/DepthFirstSearch/depth_first_search.py @@ -33,16 +33,16 @@ def __init__(self, ox, oy, reso, rr): self.motion = self.get_motion_model() class Node: - def __init__(self, x, y, cost, pind, parent): + def __init__(self, x, y, cost, parent_index, parent): self.x = x # index of grid self.y = y # index of grid self.cost = cost - self.pind = pind + self.parent_index = parent_index self.parent = parent def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( - self.cost) + "," + str(self.pind) + self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ @@ -67,7 +67,7 @@ def planning(self, sx, sy, gx, gy): open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(nstart)] = nstart - while 1: + while True: if len(open_set) == 0: print("Open set is empty..") break @@ -88,7 +88,7 @@ def planning(self, sx, sy, gx, gy): if current.x == ngoal.x and current.y == ngoal.y: print("Find goal") - ngoal.pind = current.pind + ngoal.parent_index = current.parent_index ngoal.cost = current.cost break diff --git a/PathPlanning/Dijkstra/dijkstra.py b/PathPlanning/Dijkstra/dijkstra.py index b744bc6fc7..f5a4703910 100644 --- a/PathPlanning/Dijkstra/dijkstra.py +++ b/PathPlanning/Dijkstra/dijkstra.py @@ -12,7 +12,7 @@ show_animation = True -class Dijkstra: +class DijkstraPlanner: def __init__(self, ox, oy, resolution, robot_radius): """ @@ -38,15 +38,15 @@ def __init__(self, ox, oy, resolution, robot_radius): self.motion = self.get_motion_model() class Node: - def __init__(self, x, y, cost, parent): + def __init__(self, x, y, cost, parent_index): self.x = x # index of grid self.y = y # index of grid self.cost = cost - self.parent = parent # index of previous Node + self.parent_index = parent_index # index of previous Node def __str__(self): return str(self.x) + "," + str(self.y) + "," + str( - self.cost) + "," + str(self.parent) + self.cost) + "," + str(self.parent_index) def planning(self, sx, sy, gx, gy): """ @@ -71,7 +71,7 @@ def planning(self, sx, sy, gx, gy): open_set, closed_set = dict(), dict() open_set[self.calc_index(start_node)] = start_node - while 1: + while True: c_id = min(open_set, key=lambda o: open_set[o].cost) current = open_set[c_id] @@ -88,7 +88,7 @@ def planning(self, sx, sy, gx, gy): if current.x == goal_node.x and current.y == goal_node.y: print("Find goal") - goal_node.parent = current.parent + goal_node.parent_index = current.parent_index goal_node.cost = current.cost break @@ -126,12 +126,12 @@ def calc_final_path(self, goal_node, closed_set): # generate final course rx, ry = [self.calc_position(goal_node.x, self.min_x)], [ self.calc_position(goal_node.y, self.min_y)] - parent = goal_node.parent - while parent != -1: - n = closed_set[parent] + parent_index = goal_node.parent_index + while parent_index != -1: + n = closed_set[parent_index] rx.append(self.calc_position(n.x, self.min_x)) ry.append(self.calc_position(n.y, self.min_y)) - parent = n.parent + parent_index = n.parent_index return rx, ry @@ -221,20 +221,20 @@ def main(): # set obstacle positions ox, oy = [], [] for i in range(-10, 60): - ox.append(i) + ox.append(float(i)) oy.append(-10.0) for i in range(-10, 60): ox.append(60.0) - oy.append(i) + oy.append(float(i)) for i in range(-10, 61): - ox.append(i) + ox.append(float(i)) oy.append(60.0) for i in range(-10, 61): ox.append(-10.0) - oy.append(i) + oy.append(float(i)) for i in range(-10, 40): ox.append(20.0) - oy.append(i) + oy.append(float(i)) for i in range(0, 40): ox.append(40.0) oy.append(60.0 - i) @@ -246,7 +246,7 @@ def main(): plt.grid(True) plt.axis("equal") - dijkstra = Dijkstra(ox, oy, grid_size, robot_radius) + dijkstra = DijkstraPlanner(ox, oy, grid_size, robot_radius) rx, ry = dijkstra.planning(sx, sy, gx, gy) if show_animation: # pragma: no cover diff --git a/PathPlanning/DubinsPath/dubins_path_planner.py b/PathPlanning/DubinsPath/dubins_path_planner.py new file mode 100644 index 0000000000..a7e8a100cc --- /dev/null +++ b/PathPlanning/DubinsPath/dubins_path_planner.py @@ -0,0 +1,317 @@ +""" + +Dubins path planner sample code + +author Atsushi Sakai(@Atsushi_twi) + +""" +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) + +from math import sin, cos, atan2, sqrt, acos, pi, hypot +import numpy as np +from utils.angle import angle_mod, rot_mat_2d + +show_animation = True + + +def plan_dubins_path(s_x, s_y, s_yaw, g_x, g_y, g_yaw, curvature, + step_size=0.1, selected_types=None): + """ + Plan dubins path + + Parameters + ---------- + s_x : float + x position of the start point [m] + s_y : float + y position of the start point [m] + s_yaw : float + yaw angle of the start point [rad] + g_x : float + x position of the goal point [m] + g_y : float + y position of the end point [m] + g_yaw : float + yaw angle of the end point [rad] + curvature : float + curvature for curve [1/m] + step_size : float (optional) + step size between two path points [m]. Default is 0.1 + selected_types : a list of string or None + selected path planning types. If None, all types are used for + path planning, and minimum path length result is returned. + You can select used path plannings types by a string list. + e.g.: ["RSL", "RSR"] + + Returns + ------- + x_list: array + x positions of the path + y_list: array + y positions of the path + yaw_list: array + yaw angles of the path + modes: array + mode list of the path + lengths: array + arrow_length list of the path segments. + + Examples + -------- + You can generate a dubins path. + + >>> start_x = 1.0 # [m] + >>> start_y = 1.0 # [m] + >>> start_yaw = np.deg2rad(45.0) # [rad] + >>> end_x = -3.0 # [m] + >>> end_y = -3.0 # [m] + >>> end_yaw = np.deg2rad(-45.0) # [rad] + >>> curvature = 1.0 + >>> path_x, path_y, path_yaw, mode, _ = plan_dubins_path( + start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature) + >>> plt.plot(path_x, path_y, label="final course " + "".join(mode)) + >>> plot_arrow(start_x, start_y, start_yaw) + >>> plot_arrow(end_x, end_y, end_yaw) + >>> plt.legend() + >>> plt.grid(True) + >>> plt.axis("equal") + >>> plt.show() + + .. image:: dubins_path.jpg + """ + if selected_types is None: + planning_funcs = _PATH_TYPE_MAP.values() + else: + planning_funcs = [_PATH_TYPE_MAP[ptype] for ptype in selected_types] + + # calculate local goal x, y, yaw + l_rot = rot_mat_2d(s_yaw) + le_xy = np.stack([g_x - s_x, g_y - s_y]).T @ l_rot + local_goal_x = le_xy[0] + local_goal_y = le_xy[1] + local_goal_yaw = g_yaw - s_yaw + + lp_x, lp_y, lp_yaw, modes, lengths = _dubins_path_planning_from_origin( + local_goal_x, local_goal_y, local_goal_yaw, curvature, step_size, + planning_funcs) + + # Convert a local coordinate path to the global coordinate + rot = rot_mat_2d(-s_yaw) + converted_xy = np.stack([lp_x, lp_y]).T @ rot + x_list = converted_xy[:, 0] + s_x + y_list = converted_xy[:, 1] + s_y + yaw_list = angle_mod(np.array(lp_yaw) + s_yaw) + + return x_list, y_list, yaw_list, modes, lengths + + +def _mod2pi(theta): + return angle_mod(theta, zero_2_2pi=True) + + +def _calc_trig_funcs(alpha, beta): + sin_a = sin(alpha) + sin_b = sin(beta) + cos_a = cos(alpha) + cos_b = cos(beta) + cos_ab = cos(alpha - beta) + return sin_a, sin_b, cos_a, cos_b, cos_ab + + +def _LSL(alpha, beta, d): + sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta) + mode = ["L", "S", "L"] + p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_a - sin_b)) + if p_squared < 0: # invalid configuration + return None, None, None, mode + tmp = atan2((cos_b - cos_a), d + sin_a - sin_b) + d1 = _mod2pi(-alpha + tmp) + d2 = sqrt(p_squared) + d3 = _mod2pi(beta - tmp) + return d1, d2, d3, mode + + +def _RSR(alpha, beta, d): + sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta) + mode = ["R", "S", "R"] + p_squared = 2 + d ** 2 - (2 * cos_ab) + (2 * d * (sin_b - sin_a)) + if p_squared < 0: + return None, None, None, mode + tmp = atan2((cos_a - cos_b), d - sin_a + sin_b) + d1 = _mod2pi(alpha - tmp) + d2 = sqrt(p_squared) + d3 = _mod2pi(-beta + tmp) + return d1, d2, d3, mode + + +def _LSR(alpha, beta, d): + sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta) + p_squared = -2 + d ** 2 + (2 * cos_ab) + (2 * d * (sin_a + sin_b)) + mode = ["L", "S", "R"] + if p_squared < 0: + return None, None, None, mode + d1 = sqrt(p_squared) + tmp = atan2((-cos_a - cos_b), (d + sin_a + sin_b)) - atan2(-2.0, d1) + d2 = _mod2pi(-alpha + tmp) + d3 = _mod2pi(-_mod2pi(beta) + tmp) + return d2, d1, d3, mode + + +def _RSL(alpha, beta, d): + sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta) + p_squared = d ** 2 - 2 + (2 * cos_ab) - (2 * d * (sin_a + sin_b)) + mode = ["R", "S", "L"] + if p_squared < 0: + return None, None, None, mode + d1 = sqrt(p_squared) + tmp = atan2((cos_a + cos_b), (d - sin_a - sin_b)) - atan2(2.0, d1) + d2 = _mod2pi(alpha - tmp) + d3 = _mod2pi(beta - tmp) + return d2, d1, d3, mode + + +def _RLR(alpha, beta, d): + sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta) + mode = ["R", "L", "R"] + tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (sin_a - sin_b)) / 8.0 + if abs(tmp) > 1.0: + return None, None, None, mode + d2 = _mod2pi(2 * pi - acos(tmp)) + d1 = _mod2pi(alpha - atan2(cos_a - cos_b, d - sin_a + sin_b) + d2 / 2.0) + d3 = _mod2pi(alpha - beta - d1 + d2) + return d1, d2, d3, mode + + +def _LRL(alpha, beta, d): + sin_a, sin_b, cos_a, cos_b, cos_ab = _calc_trig_funcs(alpha, beta) + mode = ["L", "R", "L"] + tmp = (6.0 - d ** 2 + 2.0 * cos_ab + 2.0 * d * (- sin_a + sin_b)) / 8.0 + if abs(tmp) > 1.0: + return None, None, None, mode + d2 = _mod2pi(2 * pi - acos(tmp)) + d1 = _mod2pi(-alpha - atan2(cos_a - cos_b, d + sin_a - sin_b) + d2 / 2.0) + d3 = _mod2pi(_mod2pi(beta) - alpha - d1 + _mod2pi(d2)) + return d1, d2, d3, mode + + +_PATH_TYPE_MAP = {"LSL": _LSL, "RSR": _RSR, "LSR": _LSR, "RSL": _RSL, + "RLR": _RLR, "LRL": _LRL, } + + +def _dubins_path_planning_from_origin(end_x, end_y, end_yaw, curvature, + step_size, planning_funcs): + dx = end_x + dy = end_y + d = hypot(dx, dy) * curvature + + theta = _mod2pi(atan2(dy, dx)) + alpha = _mod2pi(-theta) + beta = _mod2pi(end_yaw - theta) + + best_cost = float("inf") + b_d1, b_d2, b_d3, b_mode = None, None, None, None + + for planner in planning_funcs: + d1, d2, d3, mode = planner(alpha, beta, d) + if d1 is None: + continue + + cost = (abs(d1) + abs(d2) + abs(d3)) + if best_cost > cost: # Select minimum length one. + b_d1, b_d2, b_d3, b_mode, best_cost = d1, d2, d3, mode, cost + + lengths = [b_d1, b_d2, b_d3] + x_list, y_list, yaw_list = _generate_local_course(lengths, b_mode, + curvature, step_size) + + lengths = [length / curvature for length in lengths] + + return x_list, y_list, yaw_list, b_mode, lengths + + +def _interpolate(length, mode, max_curvature, origin_x, origin_y, + origin_yaw, path_x, path_y, path_yaw): + if mode == "S": + path_x.append(origin_x + length / max_curvature * cos(origin_yaw)) + path_y.append(origin_y + length / max_curvature * sin(origin_yaw)) + path_yaw.append(origin_yaw) + else: # curve + ldx = sin(length) / max_curvature + ldy = 0.0 + if mode == "L": # left turn + ldy = (1.0 - cos(length)) / max_curvature + elif mode == "R": # right turn + ldy = (1.0 - cos(length)) / -max_curvature + gdx = cos(-origin_yaw) * ldx + sin(-origin_yaw) * ldy + gdy = -sin(-origin_yaw) * ldx + cos(-origin_yaw) * ldy + path_x.append(origin_x + gdx) + path_y.append(origin_y + gdy) + + if mode == "L": # left turn + path_yaw.append(origin_yaw + length) + elif mode == "R": # right turn + path_yaw.append(origin_yaw - length) + + return path_x, path_y, path_yaw + + +def _generate_local_course(lengths, modes, max_curvature, step_size): + p_x, p_y, p_yaw = [0.0], [0.0], [0.0] + + for (mode, length) in zip(modes, lengths): + if length == 0.0: + continue + + # set origin state + origin_x, origin_y, origin_yaw = p_x[-1], p_y[-1], p_yaw[-1] + + current_length = step_size + while abs(current_length + step_size) <= abs(length): + p_x, p_y, p_yaw = _interpolate(current_length, mode, max_curvature, + origin_x, origin_y, origin_yaw, + p_x, p_y, p_yaw) + current_length += step_size + + p_x, p_y, p_yaw = _interpolate(length, mode, max_curvature, origin_x, + origin_y, origin_yaw, p_x, p_y, p_yaw) + + return p_x, p_y, p_yaw + + +def main(): + print("Dubins path planner sample start!!") + import matplotlib.pyplot as plt + from utils.plot import plot_arrow + + start_x = 1.0 # [m] + start_y = 1.0 # [m] + start_yaw = np.deg2rad(45.0) # [rad] + + end_x = -3.0 # [m] + end_y = -3.0 # [m] + end_yaw = np.deg2rad(-45.0) # [rad] + + curvature = 1.0 + + path_x, path_y, path_yaw, mode, lengths = plan_dubins_path(start_x, + start_y, + start_yaw, + end_x, + end_y, + end_yaw, + curvature) + + if show_animation: + plt.plot(path_x, path_y, label="".join(mode)) + plot_arrow(start_x, start_y, start_yaw) + plot_arrow(end_x, end_y, end_yaw) + plt.legend() + plt.grid(True) + plt.axis("equal") + plt.show() + + +if __name__ == '__main__': + main() diff --git a/PathPlanning/DubinsPath/dubins_path_planning.py b/PathPlanning/DubinsPath/dubins_path_planning.py deleted file mode 100644 index 9c13198aff..0000000000 --- a/PathPlanning/DubinsPath/dubins_path_planning.py +++ /dev/null @@ -1,346 +0,0 @@ -""" - -Dubins path planner sample code - -author Atsushi Sakai(@Atsushi_twi) - -""" -import math - -import matplotlib.pyplot as plt -import numpy as np -from scipy.spatial.transform import Rotation as Rot - -show_animation = True - - -def mod2pi(theta): - return theta - 2.0 * math.pi * math.floor(theta / 2.0 / math.pi) - - -def pi_2_pi(angle): - return (angle + math.pi) % (2 * math.pi) - math.pi - - -def left_straight_left(alpha, beta, d): - sa = math.sin(alpha) - sb = math.sin(beta) - ca = math.cos(alpha) - cb = math.cos(beta) - c_ab = math.cos(alpha - beta) - - tmp0 = d + sa - sb - - mode = ["L", "S", "L"] - p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sa - sb)) - if p_squared < 0: - return None, None, None, mode - tmp1 = math.atan2((cb - ca), tmp0) - t = mod2pi(-alpha + tmp1) - p = math.sqrt(p_squared) - q = mod2pi(beta - tmp1) - - return t, p, q, mode - - -def right_straight_right(alpha, beta, d): - sa = math.sin(alpha) - sb = math.sin(beta) - ca = math.cos(alpha) - cb = math.cos(beta) - c_ab = math.cos(alpha - beta) - - tmp0 = d - sa + sb - mode = ["R", "S", "R"] - p_squared = 2 + (d * d) - (2 * c_ab) + (2 * d * (sb - sa)) - if p_squared < 0: - return None, None, None, mode - tmp1 = math.atan2((ca - cb), tmp0) - t = mod2pi(alpha - tmp1) - p = math.sqrt(p_squared) - q = mod2pi(-beta + tmp1) - - return t, p, q, mode - - -def left_straight_right(alpha, beta, d): - sa = math.sin(alpha) - sb = math.sin(beta) - ca = math.cos(alpha) - cb = math.cos(beta) - c_ab = math.cos(alpha - beta) - - p_squared = -2 + (d * d) + (2 * c_ab) + (2 * d * (sa + sb)) - mode = ["L", "S", "R"] - if p_squared < 0: - return None, None, None, mode - p = math.sqrt(p_squared) - tmp2 = math.atan2((-ca - cb), (d + sa + sb)) - math.atan2(-2.0, p) - t = mod2pi(-alpha + tmp2) - q = mod2pi(-mod2pi(beta) + tmp2) - - return t, p, q, mode - - -def right_straight_left(alpha, beta, d): - sa = math.sin(alpha) - sb = math.sin(beta) - ca = math.cos(alpha) - cb = math.cos(beta) - c_ab = math.cos(alpha - beta) - - p_squared = (d * d) - 2 + (2 * c_ab) - (2 * d * (sa + sb)) - mode = ["R", "S", "L"] - if p_squared < 0: - return None, None, None, mode - p = math.sqrt(p_squared) - tmp2 = math.atan2((ca + cb), (d - sa - sb)) - math.atan2(2.0, p) - t = mod2pi(alpha - tmp2) - q = mod2pi(beta - tmp2) - - return t, p, q, mode - - -def right_left_right(alpha, beta, d): - sa = math.sin(alpha) - sb = math.sin(beta) - ca = math.cos(alpha) - cb = math.cos(beta) - c_ab = math.cos(alpha - beta) - - mode = ["R", "L", "R"] - tmp_rlr = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (sa - sb)) / 8.0 - if abs(tmp_rlr) > 1.0: - return None, None, None, mode - - p = mod2pi(2 * math.pi - math.acos(tmp_rlr)) - t = mod2pi(alpha - math.atan2(ca - cb, d - sa + sb) + mod2pi(p / 2.0)) - q = mod2pi(alpha - beta - t + mod2pi(p)) - return t, p, q, mode - - -def left_right_left(alpha, beta, d): - sa = math.sin(alpha) - sb = math.sin(beta) - ca = math.cos(alpha) - cb = math.cos(beta) - c_ab = math.cos(alpha - beta) - - mode = ["L", "R", "L"] - tmp_lrl = (6.0 - d * d + 2.0 * c_ab + 2.0 * d * (- sa + sb)) / 8.0 - if abs(tmp_lrl) > 1: - return None, None, None, mode - p = mod2pi(2 * math.pi - math.acos(tmp_lrl)) - t = mod2pi(-alpha - math.atan2(ca - cb, d + sa - sb) + p / 2.0) - q = mod2pi(mod2pi(beta) - alpha - t + mod2pi(p)) - - return t, p, q, mode - - -def dubins_path_planning_from_origin(end_x, end_y, end_yaw, curvature, - step_size): - dx = end_x - dy = end_y - D = math.hypot(dx, dy) - d = D * curvature - - theta = mod2pi(math.atan2(dy, dx)) - alpha = mod2pi(- theta) - beta = mod2pi(end_yaw - theta) - - planners = [left_straight_left, right_straight_right, left_straight_right, - right_straight_left, right_left_right, - left_right_left] - - best_cost = float("inf") - bt, bp, bq, best_mode = None, None, None, None - - for planner in planners: - t, p, q, mode = planner(alpha, beta, d) - if t is None: - continue - - cost = (abs(t) + abs(p) + abs(q)) - if best_cost > cost: - bt, bp, bq, best_mode = t, p, q, mode - best_cost = cost - lengths = [bt, bp, bq] - - x_list, y_list, yaw_list, directions = generate_local_course( - sum(lengths), lengths, best_mode, curvature, step_size) - - return x_list, y_list, yaw_list, best_mode, best_cost - - -def interpolate(ind, length, mode, max_curvature, origin_x, origin_y, - origin_yaw, path_x, path_y, path_yaw, directions): - if mode == "S": - path_x[ind] = origin_x + length / max_curvature * math.cos(origin_yaw) - path_y[ind] = origin_y + length / max_curvature * math.sin(origin_yaw) - path_yaw[ind] = origin_yaw - else: # curve - ldx = math.sin(length) / max_curvature - ldy = 0.0 - if mode == "L": # left turn - ldy = (1.0 - math.cos(length)) / max_curvature - elif mode == "R": # right turn - ldy = (1.0 - math.cos(length)) / -max_curvature - gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy - gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy - path_x[ind] = origin_x + gdx - path_y[ind] = origin_y + gdy - - if mode == "L": # left turn - path_yaw[ind] = origin_yaw + length - elif mode == "R": # right turn - path_yaw[ind] = origin_yaw - length - - if length > 0.0: - directions[ind] = 1 - else: - directions[ind] = -1 - - return path_x, path_y, path_yaw, directions - - -def dubins_path_planning(s_x, s_y, s_yaw, g_x, g_y, g_yaw, c, step_size=0.1): - """ - Dubins path planner - - input: - s_x x position of start point [m] - s_y y position of start point [m] - s_yaw yaw angle of start point [rad] - g_x x position of end point [m] - g_y y position of end point [m] - g_yaw yaw angle of end point [rad] - c curvature [1/m] - - """ - - g_x = g_x - s_x - g_y = g_y - s_y - - l_rot = Rot.from_euler('z', s_yaw).as_matrix()[0:2, 0:2] - le_xy = np.stack([g_x, g_y]).T @ l_rot - le_yaw = g_yaw - s_yaw - - lp_x, lp_y, lp_yaw, mode, lengths = dubins_path_planning_from_origin( - le_xy[0], le_xy[1], le_yaw, c, step_size) - - rot = Rot.from_euler('z', -s_yaw).as_matrix()[0:2, 0:2] - converted_xy = np.stack([lp_x, lp_y]).T @ rot - x_list = converted_xy[:, 0] + s_x - y_list = converted_xy[:, 1] + s_y - yaw_list = [pi_2_pi(i_yaw + s_yaw) for i_yaw in lp_yaw] - - return x_list, y_list, yaw_list, mode, lengths - - -def generate_local_course(total_length, lengths, mode, max_curvature, - step_size): - n_point = math.trunc(total_length / step_size) + len(lengths) + 4 - - path_x = [0.0 for _ in range(n_point)] - path_y = [0.0 for _ in range(n_point)] - path_yaw = [0.0 for _ in range(n_point)] - directions = [0.0 for _ in range(n_point)] - index = 1 - - if lengths[0] > 0.0: - directions[0] = 1 - else: - directions[0] = -1 - - ll = 0.0 - - for (m, l, i) in zip(mode, lengths, range(len(mode))): - if l > 0.0: - d = step_size - else: - d = -step_size - - # set origin state - origin_x, origin_y, origin_yaw = \ - path_x[index], path_y[index], path_yaw[index] - - index -= 1 - if i >= 1 and (lengths[i - 1] * lengths[i]) > 0: - pd = - d - ll - else: - pd = d - ll - - while abs(pd) <= abs(l): - index += 1 - path_x, path_y, path_yaw, directions = interpolate( - index, pd, m, max_curvature, origin_x, origin_y, origin_yaw, - path_x, path_y, path_yaw, directions) - pd += d - - ll = l - pd - d # calc remain length - - index += 1 - path_x, path_y, path_yaw, directions = interpolate( - index, l, m, max_curvature, origin_x, origin_y, origin_yaw, - path_x, path_y, path_yaw, directions) - - if len(path_x) <= 1: - return [], [], [], [] - - # remove unused data - while len(path_x) >= 1 and path_x[-1] == 0.0: - path_x.pop() - path_y.pop() - path_yaw.pop() - directions.pop() - - return path_x, path_y, path_yaw, directions - - -def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", - ec="k"): # pragma: no cover - """ - Plot arrow - """ - - if not isinstance(x, float): - for (i_x, i_y, i_yaw) in zip(x, y, yaw): - plot_arrow(i_x, i_y, i_yaw) - else: - plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), - fc=fc, ec=ec, head_width=width, head_length=width) - plt.plot(x, y) - - -def main(): - print("Dubins path planner sample start!!") - - start_x = 1.0 # [m] - start_y = 1.0 # [m] - start_yaw = np.deg2rad(45.0) # [rad] - - end_x = -3.0 # [m] - end_y = -3.0 # [m] - end_yaw = np.deg2rad(-45.0) # [rad] - - curvature = 1.0 - - path_x, path_y, path_yaw, mode, path_length = dubins_path_planning( - start_x, start_y, start_yaw, - end_x, end_y, end_yaw, curvature) - - if show_animation: - plt.plot(path_x, path_y, label="final course " + "".join(mode)) - - # plotting - plot_arrow(start_x, start_y, start_yaw) - plot_arrow(end_x, end_y, end_yaw) - - plt.legend() - plt.grid(True) - plt.axis("equal") - plt.show() - - -if __name__ == '__main__': - main() diff --git a/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py b/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py new file mode 100644 index 0000000000..9ccd18b7c2 --- /dev/null +++ b/PathPlanning/DynamicMovementPrimitives/dynamic_movement_primitives.py @@ -0,0 +1,260 @@ +""" +Author: Jonathan Schwartz (github.com/SchwartzCode) + +This code provides a simple implementation of Dynamic Movement +Primitives, which is an approach to learning curves by modelling +them as a weighted sum of gaussian distributions. This approach +can be used to dampen noise in a curve, and can also be used to +stretch a curve by adjusting its start and end points. + +More information on Dynamic Movement Primitives available at: +https://arxiv.org/abs/2102.03861 +https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2013.00138/full + +""" + + +from matplotlib import pyplot as plt +import numpy as np + + +class DMP: + + def __init__(self, training_data, data_period, K=156.25, B=25): + """ + Arguments: + training_data - input data of form [N, dim] + data_period - amount of time training data covers + K and B - spring and damper constants to define + DMP behavior + """ + + self.K = K # virtual spring constant + self.B = B # virtual damper coefficient + + self.timesteps = training_data.shape[0] + self.dt = data_period / self.timesteps + + self.weights = None # weights used to generate DMP trajectories + + self.T_orig = data_period + + self.training_data = training_data + self.find_basis_functions_weights(training_data, data_period) + + def find_basis_functions_weights(self, training_data, data_period, + num_weights=10): + """ + Arguments: + data [(steps x spacial dim) np array] - data to replicate with DMP + data_period [float] - time duration of data + """ + + if not isinstance(training_data, np.ndarray): + print("Warning: you should input training data as an np.ndarray") + elif training_data.shape[0] < training_data.shape[1]: + print("Warning: you probably need to transpose your training data") + + dt = data_period / len(training_data) + + init_state = training_data[0] + goal_state = training_data[-1] + + # means (C) and std devs (H) of gaussian basis functions + C = np.linspace(0, 1, num_weights) + H = (0.65*(1./(num_weights-1))**2) + + for dim, _ in enumerate(training_data[0]): + + dimension_data = training_data[:, dim] + + q0 = init_state[dim] + g = goal_state[dim] + + q = q0 + qd_last = 0 + + phi_vals = [] + f_vals = [] + + for i, _ in enumerate(dimension_data): + if i + 1 == len(dimension_data): + qd = 0 + else: + qd = (dimension_data[i+1] - dimension_data[i]) / dt + + phi = [np.exp(-0.5 * ((i * dt / data_period) - c)**2 / H) + for c in C] + phi = phi/np.sum(phi) + + qdd = (qd - qd_last)/dt + + f = (qdd * data_period**2 - self.K * (g - q) + self.B * qd + * data_period) / (g - q0) + + phi_vals.append(phi) + f_vals.append(f) + + qd_last = qd + q += qd * dt + + phi_vals = np.asarray(phi_vals) + f_vals = np.asarray(f_vals) + + w = np.linalg.lstsq(phi_vals, f_vals, rcond=None) + + if self.weights is None: + self.weights = np.asarray(w[0]) + else: + self.weights = np.vstack([self.weights, w[0]]) + + def recreate_trajectory(self, init_state, goal_state, T): + """ + init_state - initial state/position + goal_state - goal state/position + T - amount of time to travel q0 -> g + """ + + nrBasis = len(self.weights[0]) # number of gaussian basis functions + + # means (C) and std devs (H) of gaussian basis functions + C = np.linspace(0, 1, nrBasis) + H = (0.65*(1./(nrBasis-1))**2) + + # initialize virtual system + time = 0 + + q = init_state + dimensions = self.weights.shape[0] + qd = np.zeros(dimensions) + + positions = np.array([]) + for k in range(self.timesteps): + time = time + self.dt + + qdd = np.zeros(dimensions) + + for dim in range(dimensions): + + if time <= T: + phi = [np.exp(-0.5 * ((time / T) - c)**2 / H) for c in C] + phi = phi / np.sum(phi) + f = np.dot(phi, self.weights[dim]) + else: + f = 0 + + # simulate dynamics + qdd[dim] = (self.K*(goal_state[dim] - q[dim])/T**2 + - self.B*qd[dim]/T + + (goal_state[dim] - init_state[dim])*f/T**2) + + qd = qd + qdd * self.dt + q = q + qd * self.dt + + if positions.size == 0: + positions = q + else: + positions = np.vstack([positions, q]) + + t = np.arange(0, self.timesteps * self.dt, self.dt) + return t, positions + + @staticmethod + def dist_between(p1, p2): + return np.linalg.norm(p1 - p2) + + def view_trajectory(self, path, title=None, demo=False): + + path = np.asarray(path) + + plt.cla() + plt.plot(self.training_data[:, 0], self.training_data[:, 1], + label="Training Data") + plt.plot(path[:, 0], path[:, 1], + linewidth=2, label="DMP Approximation") + + plt.xlabel("X Position") + plt.ylabel("Y Position") + plt.legend() + + if title is not None: + plt.title(title) + + if demo: + plt.xlim([-0.5, 5]) + plt.ylim([-2, 2]) + plt.draw() + plt.pause(0.02) + else: + plt.show() + + def show_DMP_purpose(self): + """ + This function conveys the purpose of DMPs: + to capture a trajectory and be able to stretch + and squeeze it in terms of start and stop position + or time + """ + + q0_orig = self.training_data[0] + g_orig = self.training_data[-1] + T_orig = self.T_orig + + data_range = (np.amax(self.training_data[:, 0]) + - np.amin(self.training_data[:, 0])) / 4 + + q0_right = q0_orig + np.array([data_range, 0]) + q0_up = q0_orig + np.array([0, data_range/2]) + g_left = g_orig - np.array([data_range, 0]) + g_down = g_orig - np.array([0, data_range/2]) + + q0_vals = np.vstack([np.linspace(q0_orig, q0_right, 20), + np.linspace(q0_orig, q0_up, 20)]) + g_vals = np.vstack([np.linspace(g_orig, g_left, 20), + np.linspace(g_orig, g_down, 20)]) + T_vals = np.linspace(T_orig, 2*T_orig, 20) + + for new_q0_value in q0_vals: + plot_title = (f"Initial Position = [{round(new_q0_value[0], 2)}," + f" {round(new_q0_value[1], 2)}]") + + _, path = self.recreate_trajectory(new_q0_value, g_orig, T_orig) + self.view_trajectory(path, title=plot_title, demo=True) + + for new_g_value in g_vals: + plot_title = (f"Goal Position = [{round(new_g_value[0], 2)}," + f" {round(new_g_value[1], 2)}]") + + _, path = self.recreate_trajectory(q0_orig, new_g_value, T_orig) + self.view_trajectory(path, title=plot_title, demo=True) + + for new_T_value in T_vals: + plot_title = f"Period = {round(new_T_value, 2)} [sec]" + + _, path = self.recreate_trajectory(q0_orig, g_orig, new_T_value) + self.view_trajectory(path, title=plot_title, demo=True) + + +def example_DMP(): + """ + Creates a noisy trajectory, fits weights to it, and then adjusts the + trajectory by moving its start position, goal position, or period + """ + t = np.arange(0, 3*np.pi/2, 0.01) + t1 = np.arange(3*np.pi/2, 2*np.pi, 0.01)[:-1] + t2 = np.arange(0, np.pi/2, 0.01)[:-1] + t3 = np.arange(np.pi, 3*np.pi/2, 0.01) + data_x = t + 0.02*np.random.rand(t.shape[0]) + data_y = np.concatenate([np.cos(t1) + 0.1*np.random.rand(t1.shape[0]), + np.cos(t2) + 0.1*np.random.rand(t2.shape[0]), + np.sin(t3) + 0.1*np.random.rand(t3.shape[0])]) + training_data = np.vstack([data_x, data_y]).T + + period = 3*np.pi/2 + DMP_controller = DMP(training_data, period) + + DMP_controller.show_DMP_purpose() + + +if __name__ == '__main__': + example_DMP() diff --git a/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py b/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py index 0df40410ab..8664ec1745 100644 --- a/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py +++ b/PathPlanning/DynamicWindowApproach/dynamic_window_approach.py @@ -19,7 +19,6 @@ def dwa_control(x, config, goal, ob): """ Dynamic Window Approach control """ - dw = calc_dynamic_window(x, config) u, trajectory = calc_control_and_trajectory(x, dw, config, goal, ob) @@ -51,6 +50,7 @@ def __init__(self): self.to_goal_cost_gain = 0.15 self.speed_cost_gain = 1.0 self.obstacle_cost_gain = 1.0 + self.robot_stuck_flag_cons = 0.001 # constant to prevent robot stucked self.robot_type = RobotType.circle # if robot_type == RobotType.circle @@ -60,6 +60,23 @@ def __init__(self): # if robot_type == RobotType.rectangle self.robot_width = 0.5 # [m] for collision check self.robot_length = 1.2 # [m] for collision check + # obstacles [x(m) y(m), ....] + self.ob = np.array([[-1, -1], + [0, 2], + [4.0, 2.0], + [5.0, 4.0], + [5.0, 5.0], + [5.0, 6.0], + [5.0, 9.0], + [8.0, 9.0], + [7.0, 9.0], + [8.0, 10.0], + [9.0, 11.0], + [12.0, 13.0], + [12.0, 12.0], + [15.0, 15.0], + [13.0, 13.0] + ]) @property def robot_type(self): @@ -72,6 +89,9 @@ def robot_type(self, value): self._robot_type = value +config = Config() + + def motion(x, u, dt): """ motion model @@ -139,7 +159,6 @@ def calc_control_and_trajectory(x, dw, config, goal, ob): for y in np.arange(dw[2], dw[3], config.yaw_rate_resolution): trajectory = predict_trajectory(x_init, v, y, config) - # calc cost to_goal_cost = config.to_goal_cost_gain * calc_to_goal_cost(trajectory, goal) speed_cost = config.speed_cost_gain * (config.max_speed - trajectory[-1, 3]) @@ -152,13 +171,19 @@ def calc_control_and_trajectory(x, dw, config, goal, ob): min_cost = final_cost best_u = [v, y] best_trajectory = trajectory - + if abs(best_u[0]) < config.robot_stuck_flag_cons \ + and abs(x[3]) < config.robot_stuck_flag_cons: + # to ensure the robot do not get stuck in + # best v=0 m/s (in front of an obstacle) and + # best omega=0 rad/s (heading to the goal with + # angle difference of 0) + best_u[1] = -config.max_delta_yaw_rate return best_u, best_trajectory def calc_obstacle_cost(trajectory, ob, config): """ - calc obstacle cost inf: collision + calc obstacle cost inf: collision """ ox = ob[:, 0] oy = ob[:, 1] @@ -238,29 +263,12 @@ def main(gx=10.0, gy=10.0, robot_type=RobotType.circle): x = np.array([0.0, 0.0, math.pi / 8.0, 0.0, 0.0]) # goal position [x(m), y(m)] goal = np.array([gx, gy]) - # obstacles [x(m) y(m), ....] - ob = np.array([[-1, -1], - [0, 2], - [4.0, 2.0], - [5.0, 4.0], - [5.0, 5.0], - [5.0, 6.0], - [5.0, 9.0], - [8.0, 9.0], - [7.0, 9.0], - [8.0, 10.0], - [9.0, 11.0], - [12.0, 13.0], - [12.0, 12.0], - [15.0, 15.0], - [13.0, 13.0] - ]) # input [forward speed, yaw_rate] - config = Config() + config.robot_type = robot_type trajectory = np.array(x) - + ob = config.ob while True: u, predicted_trajectory = dwa_control(x, config, goal, ob) x = motion(x, u, config.dt) # simulate robot @@ -292,8 +300,7 @@ def main(gx=10.0, gy=10.0, robot_type=RobotType.circle): if show_animation: plt.plot(trajectory[:, 0], trajectory[:, 1], "-r") plt.pause(0.0001) - - plt.show() + plt.show() if __name__ == '__main__': diff --git a/PathPlanning/ElasticBands/elastic_bands.py b/PathPlanning/ElasticBands/elastic_bands.py new file mode 100644 index 0000000000..77d4e6e399 --- /dev/null +++ b/PathPlanning/ElasticBands/elastic_bands.py @@ -0,0 +1,300 @@ +""" +Elastic Bands + +author: Wang Zheng (@Aglargil) + +Reference: + +- [Elastic Bands: Connecting Path Planning and Control] +(http://www8.cs.umu.se/research/ifor/dl/Control/elastic%20bands.pdf) +""" + +import numpy as np +import sys +import pathlib +import matplotlib.pyplot as plt +from matplotlib.patches import Circle + +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) + +from Mapping.DistanceMap.distance_map import compute_sdf_scipy + +# Elastic Bands Params +MAX_BUBBLE_RADIUS = 100 +MIN_BUBBLE_RADIUS = 10 +RHO0 = 20.0 # Maximum distance for applying repulsive force +KC = 0.05 # Contraction force gain +KR = -0.1 # Repulsive force gain +LAMBDA = 0.7 # Overlap constraint factor +STEP_SIZE = 3.0 # Step size for calculating gradient + +# Visualization Params +ENABLE_PLOT = True +# ENABLE_INTERACTIVE is True allows user to add obstacles by left clicking +# and add path points by right clicking and start planning by middle clicking +ENABLE_INTERACTIVE = False +# ENABLE_SAVE_DATA is True allows saving the path and obstacles which added +# by user in interactive mode to file +ENABLE_SAVE_DATA = False +MAX_ITER = 50 + + +class Bubble: + def __init__(self, position, radius): + self.pos = np.array(position) # Bubble center coordinates [x, y] + self.radius = radius # Safety distance radius ρ(b) + if self.radius > MAX_BUBBLE_RADIUS: + self.radius = MAX_BUBBLE_RADIUS + if self.radius < MIN_BUBBLE_RADIUS: + self.radius = MIN_BUBBLE_RADIUS + + +class ElasticBands: + def __init__( + self, + initial_path, + obstacles, + rho0=RHO0, + kc=KC, + kr=KR, + lambda_=LAMBDA, + step_size=STEP_SIZE, + ): + self.distance_map = compute_sdf_scipy(obstacles) + self.bubbles = [ + Bubble(p, self.compute_rho(p)) for p in initial_path + ] # Initialize bubble chain + self.kc = kc # Contraction force gain + self.kr = kr # Repulsive force gain + self.rho0 = rho0 # Maximum distance for applying repulsive force + self.lambda_ = lambda_ # Overlap constraint factor + self.step_size = step_size # Step size for calculating gradient + self._maintain_overlap() + + def compute_rho(self, position): + """Compute the distance field value at the position""" + return self.distance_map[int(position[0]), int(position[1])] + + def contraction_force(self, i): + """Calculate internal contraction force for the i-th bubble""" + if i == 0 or i == len(self.bubbles) - 1: + return np.zeros(2) + + prev = self.bubbles[i - 1].pos + next_ = self.bubbles[i + 1].pos + current = self.bubbles[i].pos + + # f_c = kc * ( (prev-current)/|prev-current| + (next-current)/|next-current| ) + dir_prev = (prev - current) / (np.linalg.norm(prev - current) + 1e-6) + dir_next = (next_ - current) / (np.linalg.norm(next_ - current) + 1e-6) + return self.kc * (dir_prev + dir_next) + + def repulsive_force(self, i): + """Calculate external repulsive force for the i-th bubble""" + h = self.step_size # Step size + b = self.bubbles[i].pos + rho = self.bubbles[i].radius + + if rho >= self.rho0: + return np.zeros(2) + + # Finite difference approximation of the gradient ∂ρ/∂b + dx = np.array([h, 0]) + dy = np.array([0, h]) + grad_x = (self.compute_rho(b - dx) - self.compute_rho(b + dx)) / (2 * h) + grad_y = (self.compute_rho(b - dy) - self.compute_rho(b + dy)) / (2 * h) + grad = np.array([grad_x, grad_y]) + + return self.kr * (self.rho0 - rho) * grad + + def update_bubbles(self): + """Update bubble positions""" + new_bubbles = [] + for i in range(len(self.bubbles)): + if i == 0 or i == len(self.bubbles) - 1: + new_bubbles.append(self.bubbles[i]) # Fixed start and end points + continue + + f_total = self.contraction_force(i) + self.repulsive_force(i) + v = self.bubbles[i - 1].pos - self.bubbles[i + 1].pos + + # Remove tangential component + f_star = f_total - f_total * v * v / (np.linalg.norm(v) ** 2 + 1e-6) + + alpha = self.bubbles[i].radius # Adaptive step size + new_pos = self.bubbles[i].pos + alpha * f_star + new_pos = np.clip(new_pos, 0, 499) + new_radius = self.compute_rho(new_pos) + + # Update bubble and maintain overlap constraint + new_bubble = Bubble(new_pos, new_radius) + new_bubbles.append(new_bubble) + + self.bubbles = new_bubbles + self._maintain_overlap() + + def _maintain_overlap(self): + """Maintain bubble chain continuity (simplified insertion/deletion mechanism)""" + # Insert bubbles + i = 0 + while i < len(self.bubbles) - 1: + bi, bj = self.bubbles[i], self.bubbles[i + 1] + dist = np.linalg.norm(bi.pos - bj.pos) + if dist > self.lambda_ * (bi.radius + bj.radius): + new_pos = (bi.pos + bj.pos) / 2 + rho = self.compute_rho( + new_pos + ) # Calculate new radius using environment model + self.bubbles.insert(i + 1, Bubble(new_pos, rho)) + i += 2 # Skip the processed region + else: + i += 1 + + # Delete redundant bubbles + i = 1 + while i < len(self.bubbles) - 1: + prev = self.bubbles[i - 1] + next_ = self.bubbles[i + 1] + dist = np.linalg.norm(prev.pos - next_.pos) + if dist <= self.lambda_ * (prev.radius + next_.radius): + del self.bubbles[i] # Delete if redundant + else: + i += 1 + + +class ElasticBandsVisualizer: + def __init__(self): + self.obstacles = np.zeros((500, 500)) + self.obstacles_points = [] + self.path_points = [] + self.elastic_band = None + self.running = True + + if ENABLE_PLOT: + self.fig, self.ax = plt.subplots(figsize=(8, 8)) + self.fig.canvas.mpl_connect("close_event", self.on_close) + self.ax.set_xlim(0, 500) + self.ax.set_ylim(0, 500) + + if ENABLE_INTERACTIVE: + self.path_points = [] # Add a list to store path points + # Connect mouse events + self.fig.canvas.mpl_connect("button_press_event", self.on_click) + else: + self.path_points = np.load(pathlib.Path(__file__).parent / "path.npy") + self.obstacles_points = np.load( + pathlib.Path(__file__).parent / "obstacles.npy" + ) + for x, y in self.obstacles_points: + self.add_obstacle(x, y) + self.plan_path() + + self.plot_background() + + def on_close(self, event): + """Handle window close event""" + self.running = False + plt.close("all") # Close all figure windows + + def plot_background(self): + """Plot the background grid""" + if not ENABLE_PLOT or not self.running: + return + + self.ax.cla() + self.ax.set_xlim(0, 500) + self.ax.set_ylim(0, 500) + self.ax.grid(True) + + if ENABLE_INTERACTIVE: + self.ax.set_title( + "Elastic Bands Path Planning\n" + "Left click: Add obstacles\n" + "Right click: Add path points\n" + "Middle click: Start planning", + pad=20, + ) + else: + self.ax.set_title("Elastic Bands Path Planning", pad=20) + + if self.path_points: + self.ax.plot( + [p[0] for p in self.path_points], + [p[1] for p in self.path_points], + "yo", + markersize=8, + ) + + self.ax.imshow(self.obstacles.T, origin="lower", cmap="binary", alpha=0.8) + self.ax.plot([], [], color="black", label="obstacles") + if self.elastic_band is not None: + path = [b.pos.tolist() for b in self.elastic_band.bubbles] + path = np.array(path) + self.ax.plot(path[:, 0], path[:, 1], "b-", linewidth=2, label="path") + + for bubble in self.elastic_band.bubbles: + circle = Circle( + bubble.pos, bubble.radius, fill=False, color="g", alpha=0.3 + ) + self.ax.add_patch(circle) + self.ax.plot(bubble.pos[0], bubble.pos[1], "bo", markersize=10) + self.ax.plot([], [], color="green", label="bubbles") + + self.ax.legend(loc="upper right") + plt.draw() + plt.pause(0.01) + + def add_obstacle(self, x, y): + """Add an obstacle at the given coordinates""" + size = 30 # Side length of the square + half_size = size // 2 + x_start = max(0, x - half_size) + x_end = min(self.obstacles.shape[0], x + half_size) + y_start = max(0, y - half_size) + y_end = min(self.obstacles.shape[1], y + half_size) + self.obstacles[x_start:x_end, y_start:y_end] = 1 + + def on_click(self, event): + """Handle mouse click events""" + if event.inaxes != self.ax: + return + + x, y = int(event.xdata), int(event.ydata) + + if event.button == 1: # Left click to add obstacles + self.add_obstacle(x, y) + self.obstacles_points.append([x, y]) + + elif event.button == 3: # Right click to add path points + self.path_points.append([x, y]) + + elif event.button == 2: # Middle click to end path input and start planning + if len(self.path_points) >= 2: + if ENABLE_SAVE_DATA: + np.save( + pathlib.Path(__file__).parent / "path.npy", self.path_points + ) + np.save( + pathlib.Path(__file__).parent / "obstacles.npy", + self.obstacles_points, + ) + self.plan_path() + + self.plot_background() + + def plan_path(self): + """Plan the path""" + + initial_path = self.path_points + # Create an elastic band object and optimize + self.elastic_band = ElasticBands(initial_path, self.obstacles) + for _ in range(MAX_ITER): + self.elastic_band.update_bubbles() + self.path_points = [b.pos for b in self.elastic_band.bubbles] + self.plot_background() + + +if __name__ == "__main__": + _ = ElasticBandsVisualizer() + if ENABLE_PLOT: + plt.show(block=True) diff --git a/PathPlanning/ElasticBands/obstacles.npy b/PathPlanning/ElasticBands/obstacles.npy new file mode 100644 index 0000000000..af4376afcf Binary files /dev/null and b/PathPlanning/ElasticBands/obstacles.npy differ diff --git a/PathPlanning/ElasticBands/path.npy b/PathPlanning/ElasticBands/path.npy new file mode 100644 index 0000000000..be7c253d65 Binary files /dev/null and b/PathPlanning/ElasticBands/path.npy differ diff --git a/PathPlanning/Eta3SplinePath/eta3_spline_path.py b/PathPlanning/Eta3SplinePath/eta3_spline_path.py index 414f6b4534..3f685e512f 100644 --- a/PathPlanning/Eta3SplinePath/eta3_spline_path.py +++ b/PathPlanning/Eta3SplinePath/eta3_spline_path.py @@ -1,13 +1,13 @@ """ -\eta^3 polynomials planner +eta^3 polynomials planner author: Joe Dinius, Ph.D (https://jwdinius.github.io) Atsushi Sakai (@Atsushi_twi) -Ref: - -- [\eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots](https://ieeexplore.ieee.org/document/4339545/) +Reference: +- [eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots] +(https://ieeexplore.ieee.org/document/4339545/) """ @@ -15,23 +15,25 @@ import matplotlib.pyplot as plt from scipy.integrate import quad -# NOTE: *_pose is a 3-array: 0 - x coord, 1 - y coord, 2 - orientation angle \theta +# NOTE: *_pose is a 3-array: +# 0 - x coord, 1 - y coord, 2 - orientation angle \theta show_animation = True -class eta3_path(object): +class Eta3Path(object): """ - eta3_path + Eta3Path input - segments: list of `eta3_path_segment` instances definining a continuous path + segments: a list of `Eta3PathSegment` instances + defining a continuous path """ def __init__(self, segments): # ensure input has the correct form assert(isinstance(segments, list) and isinstance( - segments[0], eta3_path_segment)) + segments[0], Eta3PathSegment)) # ensure that each segment begins from the previous segment's end (continuity) for r, s in zip(segments[:-1], segments[1:]): assert(np.array_equal(r.end_pose, s.start_pose)) @@ -39,7 +41,7 @@ def __init__(self, segments): def calc_path_point(self, u): """ - eta3_path::calc_path_point + Eta3Path::calc_path_point input normalized interpolation point along path object, 0 <= u <= len(self.segments) @@ -47,7 +49,7 @@ def calc_path_point(self, u): 2d (x,y) position vector """ - assert(u >= 0 and u <= len(self.segments)) + assert(0 <= u <= len(self.segments)) if np.isclose(u, len(self.segments)): segment_idx = len(self.segments) - 1 u = 1. @@ -57,11 +59,12 @@ def calc_path_point(self, u): return self.segments[segment_idx].calc_point(u) -class eta3_path_segment(object): +class Eta3PathSegment(object): """ - eta3_path_segment - constructs an eta^3 path segment based on desired shaping, eta, and curvature vector, kappa. - If either, or both, of eta and kappa are not set during initialization, they will - default to zeros. + Eta3PathSegment - constructs an eta^3 path segment based on desired + shaping, eta, and curvature vector, kappa. If either, or both, + of eta and kappa are not set during initialization, + they will default to zeros. input start_pose - starting pose array (x, y, \theta) @@ -110,70 +113,96 @@ def __init__(self, start_pose, end_pose, eta=None, kappa=None): self.coeffs[1, 3] = 1. / 6 * eta[4] * sa + 1. / 6 * \ (eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca # quartic (u^4) - self.coeffs[0, 4] = 35. * (end_pose[0] - start_pose[0]) - (20. * eta[0] + 5 * eta[2] + 2. / 3 * eta[4]) * ca \ - + (5. * eta[0]**2 * kappa[0] + 2. / 3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa \ - - (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * cb \ - - (5. / 2 * eta[1]**2 * kappa[2] - 1. / 6 * eta[1] ** - 3 * kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb - self.coeffs[1, 4] = 35. * (end_pose[1] - start_pose[1]) - (20. * eta[0] + 5. * eta[2] + 2. / 3 * eta[4]) * sa \ - - (5. * eta[0]**2 * kappa[0] + 2. / 3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca \ - - (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * sb \ - + (5. / 2 * eta[1]**2 * kappa[2] - 1. / 6 * eta[1] ** - 3 * kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb + tmp1 = 35. * (end_pose[0] - start_pose[0]) + tmp2 = (20. * eta[0] + 5 * eta[2] + 2. / 3 * eta[4]) * ca + tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1] + + 2. * eta[0] * eta[2] * kappa[0]) * sa + tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * cb + tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * + kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb + self.coeffs[0, 4] = tmp1 - tmp2 + tmp3 - tmp4 - tmp5 + tmp1 = 35. * (end_pose[1] - start_pose[1]) + tmp2 = (20. * eta[0] + 5. * eta[2] + 2. / 3 * eta[4]) * sa + tmp3 = (5. * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * kappa[1] + + 2. * eta[0] * eta[2] * kappa[0]) * ca + tmp4 = (15. * eta[1] - 5. / 2 * eta[3] + 1. / 6 * eta[5]) * sb + tmp5 = (5. / 2 * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * + kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb + self.coeffs[1, 4] = tmp1 - tmp2 - tmp3 - tmp4 + tmp5 # quintic (u^5) - self.coeffs[0, 5] = -84. * (end_pose[0] - start_pose[0]) + (45. * eta[0] + 10. * eta[2] + eta[4]) * ca \ - - (10. * eta[0]**2 * kappa[0] + eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * sa \ - + (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * cb \ - + (7. * eta[1]**2 * kappa[2] - 1. / 2 * eta[1]**3 * - kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb - self.coeffs[1, 5] = -84. * (end_pose[1] - start_pose[1]) + (45. * eta[0] + 10. * eta[2] + eta[4]) * sa \ - + (10. * eta[0]**2 * kappa[0] + eta[0]**3 * kappa[1] + 3. * eta[0] * eta[2] * kappa[0]) * ca \ - + (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * sb \ - - (7. * eta[1]**2 * kappa[2] - 1. / 2 * eta[1]**3 * - kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb + tmp1 = -84. * (end_pose[0] - start_pose[0]) + tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * ca + tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. * + eta[0] * eta[2] * kappa[0]) * sa + tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * cb + tmp5 = + (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3] + - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb + self.coeffs[0, 5] = tmp1 + tmp2 - tmp3 + tmp4 + tmp5 + tmp1 = -84. * (end_pose[1] - start_pose[1]) + tmp2 = (45. * eta[0] + 10. * eta[2] + eta[4]) * sa + tmp3 = (10. * eta[0] ** 2 * kappa[0] + eta[0] ** 3 * kappa[1] + 3. * + eta[0] * eta[2] * kappa[0]) * ca + tmp4 = (39. * eta[1] - 7. * eta[3] + 1. / 2 * eta[5]) * sb + tmp5 = - (7. * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * kappa[3] + - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb + self.coeffs[1, 5] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 # sextic (u^6) - self.coeffs[0, 6] = 70. * (end_pose[0] - start_pose[0]) - (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * ca \ - + (15. / 2 * eta[0]**2 * kappa[0] + 2. / 3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa \ - - (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * cb \ - - (13. / 2 * eta[1]**2 * kappa[2] - 1. / 2 * eta[1] ** - 3 * kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb - self.coeffs[1, 6] = 70. * (end_pose[1] - start_pose[1]) - (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * sa \ - - (15. / 2 * eta[0]**2 * kappa[0] + 2. / 3 * eta[0]**3 * kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca \ - - (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * sb \ - + (13. / 2 * eta[1]**2 * kappa[2] - 1. / 2 * eta[1] ** - 3 * kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb + tmp1 = 70. * (end_pose[0] - start_pose[0]) + tmp2 = (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * ca + tmp3 = + (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * + kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * sa + tmp4 = (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * cb + tmp5 = - (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * + kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * sb + self.coeffs[0, 6] = tmp1 - tmp2 + tmp3 - tmp4 + tmp5 + tmp1 = 70. * (end_pose[1] - start_pose[1]) + tmp2 = - (36. * eta[0] + 15. / 2 * eta[2] + 2. / 3 * eta[4]) * sa + tmp3 = - (15. / 2 * eta[0] ** 2 * kappa[0] + 2. / 3 * eta[0] ** 3 * + kappa[1] + 2. * eta[0] * eta[2] * kappa[0]) * ca + tmp4 = - (34. * eta[1] - 13. / 2 * eta[3] + 1. / 2 * eta[5]) * sb + tmp5 = + (13. / 2 * eta[1] ** 2 * kappa[2] - 1. / 2 * eta[1] ** 3 * + kappa[3] - 3. / 2 * eta[1] * eta[3] * kappa[2]) * cb + self.coeffs[1, 6] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 # septic (u^7) - self.coeffs[0, 7] = -20. * (end_pose[0] - start_pose[0]) + (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * ca \ - - (2. * eta[0]**2 * kappa[0] + 1. / 6 * eta[0]**3 * kappa[1] + 1. / 2 * eta[0] * eta[2] * kappa[0]) * sa \ - + (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * cb \ - + (2. * eta[1]**2 * kappa[2] - 1. / 6 * eta[1]**3 * - kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb - self.coeffs[1, 7] = -20. * (end_pose[1] - start_pose[1]) + (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * sa \ - + (2. * eta[0]**2 * kappa[0] + 1. / 6 * eta[0]**3 * kappa[1] + 1. / 2 * eta[0] * eta[2] * kappa[0]) * ca \ - + (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * sb \ - - (2. * eta[1]**2 * kappa[2] - 1. / 6 * eta[1]**3 * - kappa[3] - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb - - self.s_dot = lambda u: max(np.linalg.norm(self.coeffs[:, 1:].dot(np.array( - [1, 2. * u, 3. * u**2, 4. * u**3, 5. * u**4, 6. * u**5, 7. * u**6]))), 1e-6) + tmp1 = -20. * (end_pose[0] - start_pose[0]) + tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * ca + tmp3 = - (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1] + + 1. / 2 * eta[0] * eta[2] * kappa[0]) * sa + tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * cb + tmp5 = (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3] + - 1. / 2 * eta[1] * eta[3] * kappa[2]) * sb + self.coeffs[0, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + + tmp1 = -20. * (end_pose[1] - start_pose[1]) + tmp2 = (10. * eta[0] + 2. * eta[2] + 1. / 6 * eta[4]) * sa + tmp3 = (2. * eta[0] ** 2 * kappa[0] + 1. / 6 * eta[0] ** 3 * kappa[1] + + 1. / 2 * eta[0] * eta[2] * kappa[0]) * ca + tmp4 = (10. * eta[1] - 2. * eta[3] + 1. / 6 * eta[5]) * sb + tmp5 = - (2. * eta[1] ** 2 * kappa[2] - 1. / 6 * eta[1] ** 3 * kappa[3] + - 1. / 2 * eta[1] * eta[3] * kappa[2]) * cb + self.coeffs[1, 7] = tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + self.s_dot = lambda u: max(np.linalg.norm( + self.coeffs[:, 1:].dot(np.array( + [1, 2. * u, 3. * u**2, 4. * u**3, + 5. * u**4, 6. * u**5, 7. * u**6]))), 1e-6) self.f_length = lambda ue: quad(lambda u: self.s_dot(u), 0, ue) self.segment_length = self.f_length(1)[0] def calc_point(self, u): """ - eta3_path_segment::calc_point + Eta3PathSegment::calc_point input u - parametric representation of a point along the segment, 0 <= u <= 1 returns (x,y) of point along the segment """ - assert(u >= 0 and u <= 1) + assert(0 <= u <= 1) return self.coeffs.dot(np.array([1, u, u**2, u**3, u**4, u**5, u**6, u**7])) def calc_deriv(self, u, order=1): """ - eta3_path_segment::calc_deriv + Eta3PathSegment::calc_deriv input u - parametric representation of a point along the segment, 0 <= u <= 1 @@ -181,8 +210,8 @@ def calc_deriv(self, u, order=1): (d^nx/du^n,d^ny/du^n) of point along the segment, for 0 < n <= 2 """ - assert(u >= 0 and u <= 1) - assert(order > 0 and order <= 2) + assert(0 <= u <= 1) + assert(0 < order <= 2) if order == 1: return self.coeffs[:, 1:].dot(np.array([1, 2. * u, 3. * u**2, 4. * u**3, 5. * u**4, 6. * u**5, 7. * u**6])) @@ -199,10 +228,10 @@ def test1(): # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [i, i, 0, 0, 0, 0] - path_segments.append(eta3_path_segment( + path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) - path = eta3_path(path_segments) + path = Eta3Path(path_segments) # interpolate at several points along the path ui = np.linspace(0, len(path_segments), 1001) @@ -214,8 +243,9 @@ def test1(): # plot the path plt.plot(pos[0, :], pos[1, :]) # for stopping simulation with the esc key. - plt.gcf().canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) plt.pause(1.0) if show_animation: @@ -232,10 +262,10 @@ def test2(): # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [0, 0, (i - 5) * 20, (5 - i) * 20, 0, 0] - path_segments.append(eta3_path_segment( + path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) - path = eta3_path(path_segments) + path = Eta3Path(path_segments) # interpolate at several points along the path ui = np.linspace(0, len(path_segments), 1001) @@ -261,7 +291,7 @@ def test3(): # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [4.27, 4.27, 0, 0, 0, 0] - path_segments.append(eta3_path_segment( + path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 2: line segment @@ -269,7 +299,7 @@ def test3(): end_pose = [5.5, 1.5, 0] kappa = [0, 0, 0, 0] eta = [0, 0, 0, 0, 0, 0] - path_segments.append(eta3_path_segment( + path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 3: cubic spiral @@ -277,7 +307,7 @@ def test3(): end_pose = [7.4377, 1.8235, 0.6667] kappa = [0, 0, 1, 1] eta = [1.88, 1.88, 0, 0, 0, 0] - path_segments.append(eta3_path_segment( + path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 4: generic twirl arc @@ -285,7 +315,7 @@ def test3(): end_pose = [7.8, 4.3, 1.8] kappa = [1, 1, 0.5, 0] eta = [7, 10, 10, -10, 4, 4] - path_segments.append(eta3_path_segment( + path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 5: circular arc @@ -293,11 +323,11 @@ def test3(): end_pose = [5.4581, 5.8064, 3.3416] kappa = [0.5, 0, 0.5, 0] eta = [2.98, 2.98, 0, 0, 0, 0] - path_segments.append(eta3_path_segment( + path_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # construct the whole path - path = eta3_path(path_segments) + path = Eta3Path(path_segments) # interpolate at several points along the path ui = np.linspace(0, len(path_segments), 1001) diff --git a/PathPlanning/Eta3SplineTrajectory/eta3_spline_trajectory.py b/PathPlanning/Eta3SplineTrajectory/eta3_spline_trajectory.py index 22928354a5..e72d33261e 100644 --- a/PathPlanning/Eta3SplineTrajectory/eta3_spline_trajectory.py +++ b/PathPlanning/Eta3SplineTrajectory/eta3_spline_trajectory.py @@ -1,13 +1,14 @@ """ -\eta^3 polynomials trajectory planner +eta^3 polynomials trajectory planner author: Joe Dinius, Ph.D (https://jwdinius.github.io) Atsushi Sakai (@Atsushi_twi) Refs: -- https://jwdinius.github.io/blog/2018/eta3traj -- [\eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots](https://ieeexplore.ieee.org/document/4339545/) +- https://jwdinius.github.io/blog/2018/eta3traj/ +- [eta^3-Splines for the Smooth Path Generation of Wheeled Mobile Robots] +(https://ieeexplore.ieee.org/document/4339545/) """ @@ -15,24 +16,20 @@ import matplotlib.pyplot as plt from matplotlib.collections import LineCollection import sys -import os -sys.path.append(os.path.relpath("../Eta3SplinePath")) +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -try: - from eta3_spline_path import eta3_path, eta3_path_segment -except: - raise +from Eta3SplinePath.eta3_spline_path import Eta3Path, Eta3PathSegment show_animation = True class MaxVelocityNotReached(Exception): def __init__(self, actual_vel, max_vel): - self.message = 'Actual velocity {} does not equal desired max velocity {}!'.format( - actual_vel, max_vel) + self.message = f'Actual velocity {actual_vel} does not equal desired max velocity {max_vel}!' -class eta3_trajectory(eta3_path): +class Eta3SplineTrajectory(Eta3Path): """ eta3_trajectory @@ -41,10 +38,10 @@ class eta3_trajectory(eta3_path): """ def __init__(self, segments, max_vel, v0=0.0, a0=0.0, max_accel=2.0, max_jerk=5.0): - # ensure that all inputs obey the assumptions of the model + # ensure that all inputs obey the assumptions of the model assert max_vel > 0 and v0 >= 0 and a0 >= 0 and max_accel > 0 and max_jerk > 0 \ and a0 <= max_accel and v0 <= max_vel - super(eta3_trajectory, self).__init__(segments=segments) + super(__class__, self).__init__(segments=segments) self.total_length = sum([s.segment_length for s in self.segments]) self.max_vel = float(max_vel) self.v0 = float(v0) @@ -61,19 +58,19 @@ def __init__(self, segments, max_vel, v0=0.0, a0=0.0, max_accel=2.0, max_jerk=5. self.prev_seg_id = 0 def velocity_profile(self): - ''' /~~~~~----------------~~~~~\ - / \ - / \ - / \ - / \ - (v=v0, a=a0) ~~~~~ \ - \ - \~~~~~ (vf=0, af=0) + r""" /~~~~~----------------\ + / \ + / \ + / \ + / \ + (v=v0, a=a0) ~~~~~ \ + \ + \ ~~~~~ (vf=0, af=0) pos.|pos.|neg.| cruise at |neg.| neg. |neg. max |max.|max.| max. |max.| max. |max. jerk|acc.|jerk| velocity |jerk| acc. |jerk index 0 1 2 3 (optional) 4 5 6 - ''' + """ # delta_a: accel change from initial position to end of maximal jerk section delta_a = self.max_accel - self.a0 # t_s1: time of traversal of maximal jerk section @@ -112,7 +109,6 @@ def velocity_profile(self): self.seg_lengths = np.zeros((7,)) # Section 0: max jerk up to max acceleration - index = 0 self.times[0] = t_s1 self.vels[0] = v_s1 self.seg_lengths[0] = s_s1 @@ -169,7 +165,7 @@ def velocity_profile(self): try: assert np.isclose(self.vels[index], 0) except AssertionError as e: - print('The final velocity {} is not zero'.format(self.vels[index])) + print(f'The final velocity {self.vels[index]} is not zero') raise e self.seg_lengths[index] = s_sf @@ -195,7 +191,7 @@ def f(u): def fprime(u): return self.segments[seg_id].s_dot(u) - while (ui >= 0 and ui <= 1) and abs(f(ui)) > tol: + while (0 <= ui <= 1) and abs(f(ui)) > tol: ui -= f(ui) / fprime(ui) ui = max(0, min(ui, 1)) return ui @@ -301,11 +297,11 @@ def test1(max_vel=0.5): # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [i, i, 0, 0, 0, 0] - trajectory_segments.append(eta3_path_segment( + trajectory_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) - traj = eta3_trajectory(trajectory_segments, - max_vel=max_vel, max_accel=0.5) + traj = Eta3SplineTrajectory(trajectory_segments, + max_vel=max_vel, max_accel=0.5) # interpolate at several points along the path times = np.linspace(0, traj.total_time, 101) @@ -335,11 +331,11 @@ def test2(max_vel=0.5): # NOTE: INTEGRATOR ERROR EXPLODES WHEN eta[:1] IS ZERO! # was: eta = [0, 0, (i - 5) * 20, (5 - i) * 20, 0, 0], now is: eta = [0.1, 0.1, (i - 5) * 20, (5 - i) * 20, 0, 0] - trajectory_segments.append(eta3_path_segment( + trajectory_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) - traj = eta3_trajectory(trajectory_segments, - max_vel=max_vel, max_accel=0.5) + traj = Eta3SplineTrajectory(trajectory_segments, + max_vel=max_vel, max_accel=0.5) # interpolate at several points along the path times = np.linspace(0, traj.total_time, 101) @@ -366,7 +362,7 @@ def test3(max_vel=2.0): # NOTE: The ordering on kappa is [kappa_A, kappad_A, kappa_B, kappad_B], with kappad_* being the curvature derivative kappa = [0, 0, 0, 0] eta = [4.27, 4.27, 0, 0, 0, 0] - trajectory_segments.append(eta3_path_segment( + trajectory_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 2: line segment @@ -376,7 +372,7 @@ def test3(max_vel=2.0): # NOTE: INTEGRATOR ERROR EXPLODES WHEN eta[:1] IS ZERO! # was: eta = [0, 0, 0, 0, 0, 0], now is: eta = [0.5, 0.5, 0, 0, 0, 0] - trajectory_segments.append(eta3_path_segment( + trajectory_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 3: cubic spiral @@ -384,7 +380,7 @@ def test3(max_vel=2.0): end_pose = [7.4377, 1.8235, 0.6667] kappa = [0, 0, 1, 1] eta = [1.88, 1.88, 0, 0, 0, 0] - trajectory_segments.append(eta3_path_segment( + trajectory_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 4: generic twirl arc @@ -392,7 +388,7 @@ def test3(max_vel=2.0): end_pose = [7.8, 4.3, 1.8] kappa = [1, 1, 0.5, 0] eta = [7, 10, 10, -10, 4, 4] - trajectory_segments.append(eta3_path_segment( + trajectory_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # segment 5: circular arc @@ -400,12 +396,12 @@ def test3(max_vel=2.0): end_pose = [5.4581, 5.8064, 3.3416] kappa = [0.5, 0, 0.5, 0] eta = [2.98, 2.98, 0, 0, 0, 0] - trajectory_segments.append(eta3_path_segment( + trajectory_segments.append(Eta3PathSegment( start_pose=start_pose, end_pose=end_pose, eta=eta, kappa=kappa)) # construct the whole path - traj = eta3_trajectory(trajectory_segments, - max_vel=max_vel, max_accel=0.5, max_jerk=1) + traj = Eta3SplineTrajectory(trajectory_segments, + max_vel=max_vel, max_accel=0.5, max_jerk=1) # interpolate at several points along the path times = np.linspace(0, traj.total_time, 1001) diff --git a/PathPlanning/FlowField/flowfield.py b/PathPlanning/FlowField/flowfield.py new file mode 100644 index 0000000000..e50430de3c --- /dev/null +++ b/PathPlanning/FlowField/flowfield.py @@ -0,0 +1,227 @@ +""" +flowfield pathfinding +author: Sarim Mehdi (muhammadsarim.mehdi@studio.unibo.it) +Source: https://leifnode.com/2013/12/flow-field-pathfinding/ +""" + +import numpy as np +import matplotlib.pyplot as plt + +show_animation = True + + +def draw_horizontal_line(start_x, start_y, length, o_x, o_y, o_dict, path): + for i in range(start_x, start_x + length): + for j in range(start_y, start_y + 2): + o_x.append(i) + o_y.append(j) + o_dict[(i, j)] = path + + +def draw_vertical_line(start_x, start_y, length, o_x, o_y, o_dict, path): + for i in range(start_x, start_x + 2): + for j in range(start_y, start_y + length): + o_x.append(i) + o_y.append(j) + o_dict[(i, j)] = path + + +class FlowField: + def __init__(self, obs_grid, goal_x, goal_y, start_x, start_y, + limit_x, limit_y): + self.start_pt = [start_x, start_y] + self.goal_pt = [goal_x, goal_y] + self.obs_grid = obs_grid + self.limit_x, self.limit_y = limit_x, limit_y + self.cost_field = {} + self.integration_field = {} + self.vector_field = {} + + def find_path(self): + self.create_cost_field() + self.create_integration_field() + self.assign_vectors() + self.follow_vectors() + + def create_cost_field(self): + """Assign cost to each grid which defines the energy + it would take to get there.""" + for i in range(self.limit_x): + for j in range(self.limit_y): + if self.obs_grid[(i, j)] == 'free': + self.cost_field[(i, j)] = 1 + elif self.obs_grid[(i, j)] == 'medium': + self.cost_field[(i, j)] = 7 + elif self.obs_grid[(i, j)] == 'hard': + self.cost_field[(i, j)] = 20 + elif self.obs_grid[(i, j)] == 'obs': + continue + + if [i, j] == self.goal_pt: + self.cost_field[(i, j)] = 0 + + def create_integration_field(self): + """Start from the goal node and calculate the value + of the integration field at each node. Start by + assigning a value of infinity to every node except + the goal node which is assigned a value of 0. Put the + goal node in the open list and then get its neighbors + (must not be obstacles). For each neighbor, the new + cost is equal to the cost of the current node in the + integration field (in the beginning, this will simply + be the goal node) + the cost of the neighbor in the + cost field + the extra cost (optional). The new cost + is only assigned if it is less than the previously + assigned cost of the node in the integration field and, + when that happens, the neighbor is put on the open list. + This process continues until the open list is empty.""" + for i in range(self.limit_x): + for j in range(self.limit_y): + if self.obs_grid[(i, j)] == 'obs': + continue + self.integration_field[(i, j)] = np.inf + if [i, j] == self.goal_pt: + self.integration_field[(i, j)] = 0 + + open_list = [(self.goal_pt, 0)] + while open_list: + curr_pos, curr_cost = open_list[0] + curr_x, curr_y = curr_pos + for i in range(-1, 2): + for j in range(-1, 2): + x, y = curr_x + i, curr_y + j + if self.obs_grid[(x, y)] == 'obs': + continue + if (i, j) in [(1, 0), (0, 1), (-1, 0), (0, -1)]: + e_cost = 10 + else: + e_cost = 14 + neighbor_energy = self.cost_field[(x, y)] + neighbor_old_cost = self.integration_field[(x, y)] + neighbor_new_cost = curr_cost + neighbor_energy + e_cost + if neighbor_new_cost < neighbor_old_cost: + self.integration_field[(x, y)] = neighbor_new_cost + open_list.append(([x, y], neighbor_new_cost)) + del open_list[0] + + def assign_vectors(self): + """For each node, assign a vector from itself to the node with + the lowest cost in the integration field. An agent will simply + follow this vector field to the goal""" + for i in range(self.limit_x): + for j in range(self.limit_y): + if self.obs_grid[(i, j)] == 'obs': + continue + if [i, j] == self.goal_pt: + self.vector_field[(i, j)] = (None, None) + continue + offset_list = [(i + a, j + b) + for a in range(-1, 2) + for b in range(-1, 2)] + neighbor_list = [{'loc': pt, + 'cost': self.integration_field[pt]} + for pt in offset_list + if self.obs_grid[pt] != 'obs'] + neighbor_list = sorted(neighbor_list, key=lambda x: x['cost']) + best_neighbor = neighbor_list[0]['loc'] + self.vector_field[(i, j)] = best_neighbor + + def follow_vectors(self): + curr_x, curr_y = self.start_pt + while curr_x is not None and curr_y is not None: + curr_x, curr_y = self.vector_field[(curr_x, curr_y)] + + if show_animation: + plt.plot(curr_x, curr_y, "b*") + plt.pause(0.001) + + if show_animation: + plt.show() + + +def main(): + # set obstacle positions + obs_dict = {} + for i in range(51): + for j in range(51): + obs_dict[(i, j)] = 'free' + o_x, o_y, m_x, m_y, h_x, h_y = [], [], [], [], [], [] + + s_x = 5.0 + s_y = 5.0 + g_x = 35.0 + g_y = 45.0 + + # draw outer border of maze + draw_vertical_line(0, 0, 50, o_x, o_y, obs_dict, 'obs') + draw_vertical_line(48, 0, 50, o_x, o_y, obs_dict, 'obs') + draw_horizontal_line(0, 0, 50, o_x, o_y, obs_dict, 'obs') + draw_horizontal_line(0, 48, 50, o_x, o_y, obs_dict, 'obs') + + # draw inner walls + all_x = [10, 10, 10, 15, 20, 20, 30, 30, 35, 30, 40, 45] + all_y = [10, 30, 45, 20, 5, 40, 10, 40, 5, 40, 10, 25] + all_len = [10, 10, 5, 10, 10, 5, 20, 10, 25, 10, 35, 15] + for x, y, l in zip(all_x, all_y, all_len): + draw_vertical_line(x, y, l, o_x, o_y, obs_dict, 'obs') + + all_x[:], all_y[:], all_len[:] = [], [], [] + all_x = [35, 40, 15, 10, 45, 20, 10, 15, 25, 45, 10, 30, 10, 40] + all_y = [5, 10, 15, 20, 20, 25, 30, 35, 35, 35, 40, 40, 45, 45] + all_len = [10, 5, 10, 10, 5, 5, 10, 5, 10, 5, 10, 5, 5, 5] + for x, y, l in zip(all_x, all_y, all_len): + draw_horizontal_line(x, y, l, o_x, o_y, obs_dict, 'obs') + + # Some points are assigned a slightly higher energy value in the cost + # field. For example, if an agent wishes to go to a point, it might + # encounter different kind of terrain like grass and dirt. Grass is + # assigned medium difficulty of passage (color coded as green on the + # map here). Dirt is assigned hard difficulty of passage (color coded + # as brown here). Hence, this algorithm will take into account how + # difficult it is to go through certain areas of a map when deciding + # the shortest path. + + # draw paths that have medium difficulty (in terms of going through them) + all_x[:], all_y[:], all_len[:] = [], [], [] + all_x = [10, 45] + all_y = [22, 20] + all_len = [8, 5] + for x, y, l in zip(all_x, all_y, all_len): + draw_vertical_line(x, y, l, m_x, m_y, obs_dict, 'medium') + + all_x[:], all_y[:], all_len[:] = [], [], [] + all_x = [20, 30, 42] + [47] * 5 + all_y = [35, 30, 38] + [37 + i for i in range(2)] + all_len = [5, 7, 3] + [1] * 3 + for x, y, l in zip(all_x, all_y, all_len): + draw_horizontal_line(x, y, l, m_x, m_y, obs_dict, 'medium') + + # draw paths that have hard difficulty (in terms of going through them) + all_x[:], all_y[:], all_len[:] = [], [], [] + all_x = [15, 20, 35] + all_y = [45, 20, 35] + all_len = [3, 5, 7] + for x, y, l in zip(all_x, all_y, all_len): + draw_vertical_line(x, y, l, h_x, h_y, obs_dict, 'hard') + + all_x[:], all_y[:], all_len[:] = [], [], [] + all_x = [30] + [47] * 5 + all_y = [10] + [37 + i for i in range(2)] + all_len = [5] + [1] * 3 + for x, y, l in zip(all_x, all_y, all_len): + draw_horizontal_line(x, y, l, h_x, h_y, obs_dict, 'hard') + + if show_animation: + plt.plot(o_x, o_y, "sr") + plt.plot(m_x, m_y, "sg") + plt.plot(h_x, h_y, "sy") + plt.plot(s_x, s_y, "og") + plt.plot(g_x, g_y, "o") + plt.grid(True) + + flow_obj = FlowField(obs_dict, g_x, g_y, s_x, s_y, 50, 50) + flow_obj.find_path() + + +if __name__ == '__main__': + main() diff --git a/PathPlanning/FrenetOptimalTrajectory/cartesian_frenet_converter.py b/PathPlanning/FrenetOptimalTrajectory/cartesian_frenet_converter.py new file mode 100644 index 0000000000..482712ceaf --- /dev/null +++ b/PathPlanning/FrenetOptimalTrajectory/cartesian_frenet_converter.py @@ -0,0 +1,144 @@ +""" + +A converter between Cartesian and Frenet coordinate systems + +author: Wang Zheng (@Aglargil) + +Reference: + +- [Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame] +(https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf) + +""" + +import math + + +class CartesianFrenetConverter: + """ + A class for converting states between Cartesian and Frenet coordinate systems + """ + + @ staticmethod + def cartesian_to_frenet(rs, rx, ry, rtheta, rkappa, rdkappa, x, y, v, a, theta, kappa): + """ + Convert state from Cartesian coordinate to Frenet coordinate + + Parameters + ---------- + rs: reference line s-coordinate + rx, ry: reference point coordinates + rtheta: reference point heading + rkappa: reference point curvature + rdkappa: reference point curvature rate + x, y: current position + v: velocity + a: acceleration + theta: heading angle + kappa: curvature + + Returns + ------- + s_condition: [s(t), s'(t), s''(t)] + d_condition: [d(s), d'(s), d''(s)] + """ + dx = x - rx + dy = y - ry + + cos_theta_r = math.cos(rtheta) + sin_theta_r = math.sin(rtheta) + + cross_rd_nd = cos_theta_r * dy - sin_theta_r * dx + d = math.copysign(math.hypot(dx, dy), cross_rd_nd) + + delta_theta = theta - rtheta + tan_delta_theta = math.tan(delta_theta) + cos_delta_theta = math.cos(delta_theta) + + one_minus_kappa_r_d = 1 - rkappa * d + d_dot = one_minus_kappa_r_d * tan_delta_theta + + kappa_r_d_prime = rdkappa * d + rkappa * d_dot + + d_ddot = (-kappa_r_d_prime * tan_delta_theta + + one_minus_kappa_r_d / (cos_delta_theta * cos_delta_theta) * + (kappa * one_minus_kappa_r_d / cos_delta_theta - rkappa)) + + s = rs + s_dot = v * cos_delta_theta / one_minus_kappa_r_d + + delta_theta_prime = one_minus_kappa_r_d / cos_delta_theta * kappa - rkappa + s_ddot = (a * cos_delta_theta - + s_dot * s_dot * + (d_dot * delta_theta_prime - kappa_r_d_prime)) / one_minus_kappa_r_d + + return [s, s_dot, s_ddot], [d, d_dot, d_ddot] + + @ staticmethod + def frenet_to_cartesian(rs, rx, ry, rtheta, rkappa, rdkappa, s_condition, d_condition): + """ + Convert state from Frenet coordinate to Cartesian coordinate + + Parameters + ---------- + rs: reference line s-coordinate + rx, ry: reference point coordinates + rtheta: reference point heading + rkappa: reference point curvature + rdkappa: reference point curvature rate + s_condition: [s(t), s'(t), s''(t)] + d_condition: [d(s), d'(s), d''(s)] + + Returns + ------- + x, y: position + theta: heading angle + kappa: curvature + v: velocity + a: acceleration + """ + if abs(rs - s_condition[0]) >= 1.0e-6: + raise ValueError( + "The reference point s and s_condition[0] don't match") + + cos_theta_r = math.cos(rtheta) + sin_theta_r = math.sin(rtheta) + + x = rx - sin_theta_r * d_condition[0] + y = ry + cos_theta_r * d_condition[0] + + one_minus_kappa_r_d = 1 - rkappa * d_condition[0] + + tan_delta_theta = d_condition[1] / one_minus_kappa_r_d + delta_theta = math.atan2(d_condition[1], one_minus_kappa_r_d) + cos_delta_theta = math.cos(delta_theta) + + theta = CartesianFrenetConverter.normalize_angle(delta_theta + rtheta) + + kappa_r_d_prime = rdkappa * d_condition[0] + rkappa * d_condition[1] + + kappa = (((d_condition[2] + kappa_r_d_prime * tan_delta_theta) * + cos_delta_theta * cos_delta_theta) / one_minus_kappa_r_d + rkappa) * \ + cos_delta_theta / one_minus_kappa_r_d + + d_dot = d_condition[1] * s_condition[1] + v = math.sqrt(one_minus_kappa_r_d * one_minus_kappa_r_d * + s_condition[1] * s_condition[1] + d_dot * d_dot) + + delta_theta_prime = one_minus_kappa_r_d / cos_delta_theta * kappa - rkappa + + a = (s_condition[2] * one_minus_kappa_r_d / cos_delta_theta + + s_condition[1] * s_condition[1] / cos_delta_theta * + (d_condition[1] * delta_theta_prime - kappa_r_d_prime)) + + return x, y, theta, kappa, v, a + + @ staticmethod + def normalize_angle(angle): + """ + Normalize angle to [-pi, pi] + """ + a = math.fmod(angle + math.pi, 2.0 * math.pi) + if a < 0.0: + a += 2.0 * math.pi + return a - math.pi diff --git a/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py b/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py index ad3da20835..4b82fb70fd 100644 --- a/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py +++ b/PathPlanning/FrenetOptimalTrajectory/frenet_optimal_trajectory.py @@ -4,7 +4,7 @@ author: Atsushi Sakai (@Atsushi_twi) -Ref: +Reference: - [Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame] (https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf) @@ -17,49 +17,314 @@ import numpy as np import matplotlib.pyplot as plt import copy -import math import sys -import os +import pathlib -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../QuinticPolynomialsPlanner/") -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../CubicSpline/") +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -try: - from quintic_polynomials_planner import QuinticPolynomial - import cubic_spline_planner -except ImportError: - raise +from QuinticPolynomialsPlanner.quintic_polynomials_planner import QuinticPolynomial +from CubicSpline import cubic_spline_planner -SIM_LOOP = 500 +from enum import Enum, auto +from FrenetOptimalTrajectory.cartesian_frenet_converter import ( + CartesianFrenetConverter, +) + + +class LateralMovement(Enum): + HIGH_SPEED = auto() + LOW_SPEED = auto() + + +class LongitudinalMovement(Enum): + MERGING_AND_STOPPING = auto() + VELOCITY_KEEPING = auto() + + +# Default Parameters + +LATERAL_MOVEMENT = LateralMovement.HIGH_SPEED +LONGITUDINAL_MOVEMENT = LongitudinalMovement.VELOCITY_KEEPING -# Parameter MAX_SPEED = 50.0 / 3.6 # maximum speed [m/s] -MAX_ACCEL = 2.0 # maximum acceleration [m/ss] +MAX_ACCEL = 5.0 # maximum acceleration [m/ss] MAX_CURVATURE = 1.0 # maximum curvature [1/m] -MAX_ROAD_WIDTH = 7.0 # maximum road width [m] -D_ROAD_W = 1.0 # road width sampling length [m] DT = 0.2 # time tick [s] MAX_T = 5.0 # max prediction time [m] MIN_T = 4.0 # min prediction time [m] -TARGET_SPEED = 30.0 / 3.6 # target speed [m/s] -D_T_S = 5.0 / 3.6 # target speed sampling length [m/s] N_S_SAMPLE = 1 # sampling number of target speed -ROBOT_RADIUS = 2.0 # robot radius [m] # cost weights K_J = 0.1 K_T = 0.1 +K_S_DOT = 1.0 K_D = 1.0 +K_S = 1.0 K_LAT = 1.0 K_LON = 1.0 +SIM_LOOP = 500 show_animation = True -class QuarticPolynomial: +if LATERAL_MOVEMENT == LateralMovement.LOW_SPEED: + MAX_ROAD_WIDTH = 1.0 # maximum road width [m] + D_ROAD_W = 0.2 # road width sampling length [m] + TARGET_SPEED = 3.0 / 3.6 # maximum speed [m/s] + D_T_S = 0.5 / 3.6 # target speed sampling length [m/s] + # Waypoints + WX = [0.0, 2.0, 4.0, 6.0, 8.0, 10.0] + WY = [0.0, 0.0, 1.0, 0.0, -1.0, -2.0] + OBSTACLES = np.array([[3.0, 1.0], [5.0, -0.0], [6.0, 0.5], [8.0, -1.5]]) + ROBOT_RADIUS = 0.5 # robot radius [m] + + # Initial state parameters + INITIAL_SPEED = 1.0 / 3.6 # current speed [m/s] + INITIAL_ACCEL = 0.0 # current acceleration [m/ss] + INITIAL_LAT_POSITION = 0.5 # current lateral position [m] + INITIAL_LAT_SPEED = 0.0 # current lateral speed [m/s] + INITIAL_LAT_ACCELERATION = 0.0 # current lateral acceleration [m/s] + INITIAL_COURSE_POSITION = 0.0 # current course position + + ANIMATION_AREA = 5.0 # Animation area length [m] + + STOP_S = 4.0 # Merge and stop distance [m] + D_S = 0.3 # Stop point sampling length [m] + N_STOP_S_SAMPLE = 3 # Stop point sampling number +else: + MAX_ROAD_WIDTH = 7.0 # maximum road width [m] + D_ROAD_W = 1.0 # road width sampling length [m] + TARGET_SPEED = 30.0 / 3.6 # target speed [m/s] + D_T_S = 5.0 / 3.6 # target speed sampling length [m/s] + # Waypoints + WX = [0.0, 10.0, 20.5, 35.0, 70.5] + WY = [0.0, -6.0, 5.0, 6.5, 0.0] + # Obstacle list + OBSTACLES = np.array( + [[20.0, 10.0], [30.0, 6.0], [30.0, 8.0], [35.0, 8.0], [50.0, 3.0]] + ) + ROBOT_RADIUS = 2.0 # robot radius [m] + + # Initial state parameters + INITIAL_SPEED = 10.0 / 3.6 # current speed [m/s] + INITIAL_ACCEL = 0.0 # current acceleration [m/ss] + INITIAL_LAT_POSITION = 2.0 # current lateral position [m] + INITIAL_LAT_SPEED = 0.0 # current lateral speed [m/s] + INITIAL_LAT_ACCELERATION = 0.0 # current lateral acceleration [m/s] + INITIAL_COURSE_POSITION = 0.0 # current course position + + ANIMATION_AREA = 20.0 # Animation area length [m] + STOP_S = 25.0 # Merge and stop distance [m] + D_S = 2 # Stop point sampling length [m] + N_STOP_S_SAMPLE = 4 # Stop point sampling number + + +class LateralMovementStrategy: + def calc_lateral_trajectory(self, fp, di, c_d, c_d_d, c_d_dd, Ti): + """ + Calculate the lateral trajectory + """ + raise NotImplementedError("calc_lateral_trajectory not implemented") + + def calc_cartesian_parameters(self, fp, csp): + """ + Calculate the cartesian parameters (x, y, yaw, curvature, v, a) + """ + raise NotImplementedError("calc_cartesian_parameters not implemented") + + +class HighSpeedLateralMovementStrategy(LateralMovementStrategy): + def calc_lateral_trajectory(self, fp, di, c_d, c_d_d, c_d_dd, Ti): + tp = copy.deepcopy(fp) + s0_d = fp.s_d[0] + s0_dd = fp.s_dd[0] + # d'(t) = d'(s) * s'(t) + # d''(t) = d''(s) * s'(t)^2 + d'(s) * s''(t) + lat_qp = QuinticPolynomial( + c_d, c_d_d * s0_d, c_d_dd * s0_d**2 + c_d_d * s0_dd, di, 0.0, 0.0, Ti + ) + + tp.d = [] + tp.d_d = [] + tp.d_dd = [] + tp.d_ddd = [] + + # Calculate all derivatives in a single loop to reduce iterations + for i in range(len(fp.t)): + t = fp.t[i] + s_d = fp.s_d[i] + s_dd = fp.s_dd[i] + + s_d_inv = 1.0 / (s_d + 1e-6) + 1e-6 # Avoid division by zero + s_d_inv_sq = s_d_inv * s_d_inv # Square of inverse + + d = lat_qp.calc_point(t) + d_d = lat_qp.calc_first_derivative(t) + d_dd = lat_qp.calc_second_derivative(t) + d_ddd = lat_qp.calc_third_derivative(t) + + tp.d.append(d) + # d'(s) = d'(t) / s'(t) + tp.d_d.append(d_d * s_d_inv) + # d''(s) = (d''(t) - d'(s) * s''(t)) / s'(t)^2 + tp.d_dd.append((d_dd - tp.d_d[i] * s_dd) * s_d_inv_sq) + tp.d_ddd.append(d_ddd) + + return tp + + def calc_cartesian_parameters(self, fp, csp): + # calc global positions + for i in range(len(fp.s)): + ix, iy = csp.calc_position(fp.s[i]) + if ix is None: + break + i_yaw = csp.calc_yaw(fp.s[i]) + i_kappa = csp.calc_curvature(fp.s[i]) + i_dkappa = csp.calc_curvature_rate(fp.s[i]) + s_condition = [fp.s[i], fp.s_d[i], fp.s_dd[i]] + d_condition = [ + fp.d[i], + fp.d_d[i], + fp.d_dd[i], + ] + x, y, theta, kappa, v, a = CartesianFrenetConverter.frenet_to_cartesian( + fp.s[i], ix, iy, i_yaw, i_kappa, i_dkappa, s_condition, d_condition + ) + fp.x.append(x) + fp.y.append(y) + fp.yaw.append(theta) + fp.c.append(kappa) + fp.v.append(v) + fp.a.append(a) + return fp + + +class LowSpeedLateralMovementStrategy(LateralMovementStrategy): + def calc_lateral_trajectory(self, fp, di, c_d, c_d_d, c_d_dd, Ti): + s0 = fp.s[0] + s1 = fp.s[-1] + tp = copy.deepcopy(fp) + # d = d(s), d_d = d'(s), d_dd = d''(s) + # * shift s range from [s0, s1] to [0, s1 - s0] + lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, s1 - s0) + + tp.d = [lat_qp.calc_point(s - s0) for s in fp.s] + tp.d_d = [lat_qp.calc_first_derivative(s - s0) for s in fp.s] + tp.d_dd = [lat_qp.calc_second_derivative(s - s0) for s in fp.s] + tp.d_ddd = [lat_qp.calc_third_derivative(s - s0) for s in fp.s] + return tp + + def calc_cartesian_parameters(self, fp, csp): + # calc global positions + for i in range(len(fp.s)): + ix, iy = csp.calc_position(fp.s[i]) + if ix is None: + break + i_yaw = csp.calc_yaw(fp.s[i]) + i_kappa = csp.calc_curvature(fp.s[i]) + i_dkappa = csp.calc_curvature_rate(fp.s[i]) + s_condition = [fp.s[i], fp.s_d[i], fp.s_dd[i]] + d_condition = [fp.d[i], fp.d_d[i], fp.d_dd[i]] + x, y, theta, kappa, v, a = CartesianFrenetConverter.frenet_to_cartesian( + fp.s[i], ix, iy, i_yaw, i_kappa, i_dkappa, s_condition, d_condition + ) + fp.x.append(x) + fp.y.append(y) + fp.yaw.append(theta) + fp.c.append(kappa) + fp.v.append(v) + fp.a.append(a) + return fp + + +class LongitudinalMovementStrategy: + def calc_longitudinal_trajectory(self, c_speed, c_accel, Ti, s0): + """ + Calculate the longitudinal trajectory + """ + raise NotImplementedError("calc_longitudinal_trajectory not implemented") + + def get_d_arrange(self, s0): + """ + Get the d sample range + """ + raise NotImplementedError("get_d_arrange not implemented") + + def calc_destination_cost(self, fp): + """ + Calculate the destination cost + """ + raise NotImplementedError("calc_destination_cost not implemented") + + +class VelocityKeepingLongitudinalMovementStrategy(LongitudinalMovementStrategy): + def calc_longitudinal_trajectory(self, c_speed, c_accel, Ti, s0): + fplist = [] + for tv in np.arange( + TARGET_SPEED - D_T_S * N_S_SAMPLE, TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S + ): + fp = FrenetPath() + lon_qp = QuarticPolynomial(s0, c_speed, c_accel, tv, 0.0, Ti) + fp.t = [t for t in np.arange(0.0, Ti, DT)] + fp.s = [lon_qp.calc_point(t) for t in fp.t] + fp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t] + fp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t] + fp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t] + fplist.append(fp) + return fplist + + def get_d_arrange(self, s0): + return np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W) + + def calc_destination_cost(self, fp): + ds = (TARGET_SPEED - fp.s_d[-1]) ** 2 + return K_S_DOT * ds + + +class MergingAndStoppingLongitudinalMovementStrategy(LongitudinalMovementStrategy): + def calc_longitudinal_trajectory(self, c_speed, c_accel, Ti, s0): + if s0 >= STOP_S: + return [] + fplist = [] + for s in np.arange( + STOP_S - D_S * N_STOP_S_SAMPLE, STOP_S + D_S * N_STOP_S_SAMPLE, D_S + ): + fp = FrenetPath() + lon_qp = QuinticPolynomial(s0, c_speed, c_accel, s, 0.0, 0.0, Ti) + fp.t = [t for t in np.arange(0.0, Ti, DT)] + fp.s = [lon_qp.calc_point(t) for t in fp.t] + fp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t] + fp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t] + fp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t] + fplist.append(fp) + return fplist + + def get_d_arrange(self, s0): + # Only if s0 is less than STOP_S / 3, then we sample the road width + if s0 < STOP_S / 3: + return np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W) + else: + return [0.0] + + def calc_destination_cost(self, fp): + ds = (STOP_S - fp.s[-1]) ** 2 + return K_S * ds + +LATERAL_MOVEMENT_STRATEGY: LateralMovementStrategy +LONGITUDINAL_MOVEMENT_STRATEGY: LongitudinalMovementStrategy + +if LATERAL_MOVEMENT == LateralMovement.HIGH_SPEED: + LATERAL_MOVEMENT_STRATEGY = HighSpeedLateralMovementStrategy() +else: + LATERAL_MOVEMENT_STRATEGY = LowSpeedLateralMovementStrategy() + +if LONGITUDINAL_MOVEMENT == LongitudinalMovement.VELOCITY_KEEPING: + LONGITUDINAL_MOVEMENT_STRATEGY = VelocityKeepingLongitudinalMovementStrategy() +else: + LONGITUDINAL_MOVEMENT_STRATEGY = MergingAndStoppingLongitudinalMovementStrategy() + +class QuarticPolynomial: def __init__(self, xs, vxs, axs, vxe, axe, time): # calc coefficient of quartic polynomial @@ -67,29 +332,25 @@ def __init__(self, xs, vxs, axs, vxe, axe, time): self.a1 = vxs self.a2 = axs / 2.0 - A = np.array([[3 * time ** 2, 4 * time ** 3], - [6 * time, 12 * time ** 2]]) - b = np.array([vxe - self.a1 - 2 * self.a2 * time, - axe - 2 * self.a2]) + A = np.array([[3 * time**2, 4 * time**3], [6 * time, 12 * time**2]]) + b = np.array([vxe - self.a1 - 2 * self.a2 * time, axe - 2 * self.a2]) x = np.linalg.solve(A, b) self.a3 = x[0] self.a4 = x[1] def calc_point(self, t): - xt = self.a0 + self.a1 * t + self.a2 * t ** 2 + \ - self.a3 * t ** 3 + self.a4 * t ** 4 + xt = self.a0 + self.a1 * t + self.a2 * t**2 + self.a3 * t**3 + self.a4 * t**4 return xt def calc_first_derivative(self, t): - xt = self.a1 + 2 * self.a2 * t + \ - 3 * self.a3 * t ** 2 + 4 * self.a4 * t ** 3 + xt = self.a1 + 2 * self.a2 * t + 3 * self.a3 * t**2 + 4 * self.a4 * t**3 return xt def calc_second_derivative(self, t): - xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t ** 2 + xt = 2 * self.a2 + 6 * self.a3 * t + 12 * self.a4 * t**2 return xt @@ -100,111 +361,85 @@ def calc_third_derivative(self, t): class FrenetPath: - def __init__(self): self.t = [] self.d = [] - self.d_d = [] - self.d_dd = [] - self.d_ddd = [] + self.d_d = [] # d'(s) + self.d_dd = [] # d''(s) + self.d_ddd = [] # d'''(t) in low speed / d'''(s) in high speed self.s = [] - self.s_d = [] - self.s_dd = [] - self.s_ddd = [] - self.cd = 0.0 - self.cv = 0.0 + self.s_d = [] # s'(t) + self.s_dd = [] # s''(t) + self.s_ddd = [] # s'''(t) self.cf = 0.0 self.x = [] self.y = [] self.yaw = [] + self.v = [] + self.a = [] self.ds = [] self.c = [] - -def calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0): + def pop_front(self): + self.x.pop(0) + self.y.pop(0) + self.yaw.pop(0) + self.v.pop(0) + self.a.pop(0) + self.s.pop(0) + self.s_d.pop(0) + self.s_dd.pop(0) + self.s_ddd.pop(0) + self.d.pop(0) + self.d_d.pop(0) + self.d_dd.pop(0) + self.d_ddd.pop(0) + + +def calc_frenet_paths(c_s_d, c_s_dd, c_d, c_d_d, c_d_dd, s0): frenet_paths = [] - # generate path to each offset goal - for di in np.arange(-MAX_ROAD_WIDTH, MAX_ROAD_WIDTH, D_ROAD_W): - - # Lateral motion planning - for Ti in np.arange(MIN_T, MAX_T, DT): - fp = FrenetPath() - - # lat_qp = quintic_polynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti) - lat_qp = QuinticPolynomial(c_d, c_d_d, c_d_dd, di, 0.0, 0.0, Ti) - - fp.t = [t for t in np.arange(0.0, Ti, DT)] - fp.d = [lat_qp.calc_point(t) for t in fp.t] - fp.d_d = [lat_qp.calc_first_derivative(t) for t in fp.t] - fp.d_dd = [lat_qp.calc_second_derivative(t) for t in fp.t] - fp.d_ddd = [lat_qp.calc_third_derivative(t) for t in fp.t] - - # Longitudinal motion planning (Velocity keeping) - for tv in np.arange(TARGET_SPEED - D_T_S * N_S_SAMPLE, - TARGET_SPEED + D_T_S * N_S_SAMPLE, D_T_S): - tfp = copy.deepcopy(fp) - lon_qp = QuarticPolynomial(s0, c_speed, 0.0, tv, 0.0, Ti) - - tfp.s = [lon_qp.calc_point(t) for t in fp.t] - tfp.s_d = [lon_qp.calc_first_derivative(t) for t in fp.t] - tfp.s_dd = [lon_qp.calc_second_derivative(t) for t in fp.t] - tfp.s_ddd = [lon_qp.calc_third_derivative(t) for t in fp.t] - - Jp = sum(np.power(tfp.d_ddd, 2)) # square of jerk - Js = sum(np.power(tfp.s_ddd, 2)) # square of jerk - - # square of diff from target speed - ds = (TARGET_SPEED - tfp.s_d[-1]) ** 2 - - tfp.cd = K_J * Jp + K_T * Ti + K_D * tfp.d[-1] ** 2 - tfp.cv = K_J * Js + K_T * Ti + K_D * ds - tfp.cf = K_LAT * tfp.cd + K_LON * tfp.cv - - frenet_paths.append(tfp) + for Ti in np.arange(MIN_T, MAX_T, DT): + lon_paths = LONGITUDINAL_MOVEMENT_STRATEGY.calc_longitudinal_trajectory( + c_s_d, c_s_dd, Ti, s0 + ) + + for fp in lon_paths: + for di in LONGITUDINAL_MOVEMENT_STRATEGY.get_d_arrange(s0): + tp = LATERAL_MOVEMENT_STRATEGY.calc_lateral_trajectory( + fp, di, c_d, c_d_d, c_d_dd, Ti + ) + + Jp = sum(np.power(tp.d_ddd, 2)) # square of jerk + Js = sum(np.power(tp.s_ddd, 2)) # square of jerk + + lat_cost = K_J * Jp + K_T * Ti + K_D * tp.d[-1] ** 2 + lon_cost = ( + K_J * Js + + K_T * Ti + + LONGITUDINAL_MOVEMENT_STRATEGY.calc_destination_cost(tp) + ) + tp.cf = K_LAT * lat_cost + K_LON * lon_cost + frenet_paths.append(tp) return frenet_paths def calc_global_paths(fplist, csp): - for fp in fplist: - - # calc global positions - for i in range(len(fp.s)): - ix, iy = csp.calc_position(fp.s[i]) - if ix is None: - break - i_yaw = csp.calc_yaw(fp.s[i]) - di = fp.d[i] - fx = ix + di * math.cos(i_yaw + math.pi / 2.0) - fy = iy + di * math.sin(i_yaw + math.pi / 2.0) - fp.x.append(fx) - fp.y.append(fy) - - # calc yaw and ds - for i in range(len(fp.x) - 1): - dx = fp.x[i + 1] - fp.x[i] - dy = fp.y[i + 1] - fp.y[i] - fp.yaw.append(math.atan2(dy, dx)) - fp.ds.append(math.hypot(dx, dy)) - - fp.yaw.append(fp.yaw[-1]) - fp.ds.append(fp.ds[-1]) - - # calc curvature - for i in range(len(fp.yaw) - 1): - fp.c.append((fp.yaw[i + 1] - fp.yaw[i]) / fp.ds[i]) - - return fplist + return [ + LATERAL_MOVEMENT_STRATEGY.calc_cartesian_parameters(fp, csp) for fp in fplist + ] def check_collision(fp, ob): for i in range(len(ob[:, 0])): - d = [((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2) - for (ix, iy) in zip(fp.x, fp.y)] + d = [ + ((ix - ob[i, 0]) ** 2 + (iy - ob[i, 1]) ** 2) + for (ix, iy) in zip(fp.x, fp.y) + ] - collision = any([di <= ROBOT_RADIUS ** 2 for di in d]) + collision = any([di <= ROBOT_RADIUS**2 for di in d]) if collision: return False @@ -213,42 +448,45 @@ def check_collision(fp, ob): def check_paths(fplist, ob): - ok_ind = [] + path_dict = { + "max_speed_error": [], + "max_accel_error": [], + "max_curvature_error": [], + "collision_error": [], + "ok": [], + } for i, _ in enumerate(fplist): - if any([v > MAX_SPEED for v in fplist[i].s_d]): # Max speed check - continue - elif any([abs(a) > MAX_ACCEL for a in - fplist[i].s_dd]): # Max accel check - continue - elif any([abs(c) > MAX_CURVATURE for c in - fplist[i].c]): # Max curvature check - continue + if any([v > MAX_SPEED for v in fplist[i].v]): # Max speed check + path_dict["max_speed_error"].append(fplist[i]) + elif any([abs(a) > MAX_ACCEL for a in fplist[i].a]): # Max accel check + path_dict["max_accel_error"].append(fplist[i]) + elif any([abs(c) > MAX_CURVATURE for c in fplist[i].c]): # Max curvature check + path_dict["max_curvature_error"].append(fplist[i]) elif not check_collision(fplist[i], ob): - continue - - ok_ind.append(i) + path_dict["collision_error"].append(fplist[i]) + else: + path_dict["ok"].append(fplist[i]) + return path_dict - return [fplist[i] for i in ok_ind] - -def frenet_optimal_planning(csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob): - fplist = calc_frenet_paths(c_speed, c_d, c_d_d, c_d_dd, s0) +def frenet_optimal_planning(csp, s0, c_s_d, c_s_dd, c_d, c_d_d, c_d_dd, ob): + fplist = calc_frenet_paths(c_s_d, c_s_dd, c_d, c_d_d, c_d_dd, s0) fplist = calc_global_paths(fplist, csp) - fplist = check_paths(fplist, ob) + fpdict = check_paths(fplist, ob) # find minimum cost path min_cost = float("inf") best_path = None - for fp in fplist: + for fp in fpdict["ok"]: if min_cost >= fp.cf: min_cost = fp.cf best_path = fp - return best_path + return [best_path, fpdict] def generate_target_course(x, y): - csp = cubic_spline_planner.Spline2D(x, y) + csp = cubic_spline_planner.CubicSpline2D(x, y) s = np.arange(0, csp.s[-1], 0.1) rx, ry, ryaw, rk = [], [], [], [] @@ -265,38 +503,39 @@ def generate_target_course(x, y): def main(): print(__file__ + " start!!") - # way points - wx = [0.0, 10.0, 20.5, 35.0, 70.5] - wy = [0.0, -6.0, 5.0, 6.5, 0.0] - # obstacle lists - ob = np.array([[20.0, 10.0], - [30.0, 6.0], - [30.0, 8.0], - [35.0, 8.0], - [50.0, 3.0] - ]) + tx, ty, tyaw, tc, csp = generate_target_course(WX, WY) - tx, ty, tyaw, tc, csp = generate_target_course(wx, wy) + # Initialize state using global parameters + c_s_d = INITIAL_SPEED + c_s_dd = INITIAL_ACCEL + c_d = INITIAL_LAT_POSITION + c_d_d = INITIAL_LAT_SPEED + c_d_dd = INITIAL_LAT_ACCELERATION + s0 = INITIAL_COURSE_POSITION - # initial state - c_speed = 10.0 / 3.6 # current speed [m/s] - c_d = 2.0 # current lateral position [m] - c_d_d = 0.0 # current lateral speed [m/s] - c_d_dd = 0.0 # current lateral acceleration [m/s] - s0 = 0.0 # current course position + area = ANIMATION_AREA - area = 20.0 # animation area length [m] + last_path = None for i in range(SIM_LOOP): - path = frenet_optimal_planning( - csp, s0, c_speed, c_d, c_d_d, c_d_dd, ob) + [path, fpdict] = frenet_optimal_planning( + csp, s0, c_s_d, c_s_dd, c_d, c_d_d, c_d_dd, OBSTACLES + ) + + if path is None: + path = copy.deepcopy(last_path) + path.pop_front() + if len(path.x) <= 1: + print("Finish") + break + last_path = path s0 = path.s[1] c_d = path.d[1] c_d_d = path.d_d[1] c_d_dd = path.d_dd[1] - c_speed = path.s_d[1] - + c_s_d = path.s_d[1] + c_s_dd = path.s_dd[1] if np.hypot(path.x[1] - tx[-1], path.y[1] - ty[-1]) <= 1.0: print("Goal") break @@ -305,15 +544,16 @@ def main(): plt.cla() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( - 'key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + "key_release_event", + lambda event: [exit(0) if event.key == "escape" else None], + ) plt.plot(tx, ty) - plt.plot(ob[:, 0], ob[:, 1], "xk") + plt.plot(OBSTACLES[:, 0], OBSTACLES[:, 1], "xk") plt.plot(path.x[1:], path.y[1:], "-or") plt.plot(path.x[1], path.y[1], "vc") plt.xlim(path.x[1] - area, path.x[1] + area) plt.ylim(path.y[1] - area, path.y[1] + area) - plt.title("v[km/h]:" + str(c_speed * 3.6)[0:4]) + plt.title("v[km/h]:" + str(path.v[1] * 3.6)[0:4]) plt.grid(True) plt.pause(0.0001) @@ -324,5 +564,5 @@ def main(): plt.show() -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py b/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py index 7100b0e604..b259beb870 100644 --- a/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py +++ b/PathPlanning/GreedyBestFirstSearch/greedy_best_first_search.py @@ -67,7 +67,7 @@ def planning(self, sx, sy, gx, gy): open_set, closed_set = dict(), dict() open_set[self.calc_grid_index(nstart)] = nstart - while 1: + while True: if len(open_set) == 0: print("Open set is empty..") break @@ -132,7 +132,7 @@ def calc_final_path(self, ngoal, closedset): # generate final course rx, ry = [self.calc_grid_position(ngoal.x, self.minx)], [ self.calc_grid_position(ngoal.y, self.miny)] - n = closedset[ngoal.parent_index] + n = closedset[ngoal.pind] while n is not None: rx.append(self.calc_grid_position(n.x, self.minx)) ry.append(self.calc_grid_position(n.y, self.miny)) diff --git a/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py b/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py index 09df21c4c8..10ba98cd35 100644 --- a/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py +++ b/PathPlanning/GridBasedSweepCPP/grid_based_sweep_coverage_path_planner.py @@ -5,19 +5,15 @@ """ import math -import os -import sys from enum import IntEnum - -import matplotlib.pyplot as plt import numpy as np -from scipy.spatial.transform import Rotation as Rot +import matplotlib.pyplot as plt +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) -sys.path.append(os.path.relpath("../../Mapping/grid_map_lib/")) -try: - from grid_map_lib import GridMap -except ImportError: - raise +from utils.angle import rot_mat_2d +from Mapping.grid_map_lib.grid_map_lib import GridMap, FloatGrid do_animation = True @@ -45,8 +41,7 @@ def move_target_grid(self, c_x_index, c_y_index, grid_map): n_y_index = c_y_index # found safe grid - if not grid_map.check_occupied_from_xy_index(n_x_index, n_y_index, - occupied_val=0.5): + if not self.check_occupied(n_x_index, n_y_index, grid_map): return n_x_index, n_y_index else: # occupied next_c_x_index, next_c_y_index = self.find_safe_turning_grid( @@ -55,19 +50,20 @@ def move_target_grid(self, c_x_index, c_y_index, grid_map): # moving backward next_c_x_index = -self.moving_direction + c_x_index next_c_y_index = c_y_index - if grid_map.check_occupied_from_xy_index(next_c_x_index, - next_c_y_index): + if self.check_occupied(next_c_x_index, next_c_y_index, grid_map, FloatGrid(1.0)): # moved backward, but the grid is occupied by obstacle return None, None else: # keep moving until end - while not grid_map.check_occupied_from_xy_index( - next_c_x_index + self.moving_direction, - next_c_y_index, occupied_val=0.5): + while not self.check_occupied(next_c_x_index + self.moving_direction, next_c_y_index, grid_map): next_c_x_index += self.moving_direction self.swap_moving_direction() return next_c_x_index, next_c_y_index + @staticmethod + def check_occupied(c_x_index, c_y_index, grid_map, occupied_val=FloatGrid(0.5)): + return grid_map.check_occupied_from_xy_index(c_x_index, c_y_index, occupied_val) + def find_safe_turning_grid(self, c_x_index, c_y_index, grid_map): for (d_x_ind, d_y_ind) in self.turing_window: @@ -76,17 +72,14 @@ def find_safe_turning_grid(self, c_x_index, c_y_index, grid_map): next_y_ind = d_y_ind + c_y_index # found safe grid - if not grid_map.check_occupied_from_xy_index(next_x_ind, - next_y_ind, - occupied_val=0.5): + if not self.check_occupied(next_x_ind, next_y_ind, grid_map): return next_x_ind, next_y_ind return None, None def is_search_done(self, grid_map): for ix in self.x_indexes_goal_y: - if not grid_map.check_occupied_from_xy_index(ix, self.goal_y, - occupied_val=0.5): + if not self.check_occupied(ix, self.goal_y, grid_map): return False # all lower grid is occupied @@ -146,16 +139,14 @@ def convert_grid_coordinate(ox, oy, sweep_vec, sweep_start_position): tx = [ix - sweep_start_position[0] for ix in ox] ty = [iy - sweep_start_position[1] for iy in oy] th = math.atan2(sweep_vec[1], sweep_vec[0]) - rot = Rot.from_euler('z', th).as_matrix()[0:2, 0:2] - converted_xy = np.stack([tx, ty]).T @ rot + converted_xy = np.stack([tx, ty]).T @ rot_mat_2d(th) return converted_xy[:, 0], converted_xy[:, 1] def convert_global_coordinate(x, y, sweep_vec, sweep_start_position): th = math.atan2(sweep_vec[1], sweep_vec[0]) - rot = Rot.from_euler('z', -th).as_matrix()[0:2, 0:2] - converted_xy = np.stack([x, y]).T @ rot + converted_xy = np.stack([x, y]).T @ rot_mat_2d(-th) rx = [ix + sweep_start_position[0] for ix in converted_xy[:, 0]] ry = [iy + sweep_start_position[1] for iy in converted_xy[:, 1]] return rx, ry @@ -174,7 +165,7 @@ def search_free_grid_index_at_edge_y(grid_map, from_upper=False): for iy in x_range: for ix in y_range: - if not grid_map.check_occupied_from_xy_index(ix, iy): + if not SweepSearcher.check_occupied(ix, iy, grid_map): y_index = iy x_indexes.append(ix) if y_index: @@ -191,7 +182,7 @@ def setup_grid_map(ox, oy, resolution, sweep_direction, offset_grid=10): grid_map = GridMap(width, height, resolution, center_x, center_y) grid_map.print_grid_map_info() - grid_map.set_value_from_polygon(ox, oy, 1.0, inside=False) + grid_map.set_value_from_polygon(ox, oy, FloatGrid(1.0), inside=False) grid_map.expand_grid() x_inds_goal_y = [] @@ -209,7 +200,7 @@ def setup_grid_map(ox, oy, resolution, sweep_direction, offset_grid=10): def sweep_path_search(sweep_searcher, grid_map, grid_search_animation=False): # search start grid c_x_index, c_y_index = sweep_searcher.search_start_grid(grid_map) - if not grid_map.set_value_from_xy_index(c_x_index, c_y_index, 0.5): + if not grid_map.set_value_from_xy_index(c_x_index, c_y_index, FloatGrid(0.5)): print("Cannot find start grid") return [], [] @@ -241,14 +232,12 @@ def sweep_path_search(sweep_searcher, grid_map, grid_search_animation=False): px.append(x) py.append(y) - grid_map.set_value_from_xy_index(c_x_index, c_y_index, 0.5) + grid_map.set_value_from_xy_index(c_x_index, c_y_index, FloatGrid(0.5)) if grid_search_animation: grid_map.plot_grid_map(ax=ax) plt.pause(1.0) - grid_map.plot_grid_map() - return px, py @@ -296,13 +285,13 @@ def planning_animation(ox, oy, resolution): # pragma: no cover plt.grid(True) plt.pause(0.1) - plt.cla() - plt.plot(ox, oy, "-xb") - plt.plot(px, py, "-r") - plt.axis("equal") - plt.grid(True) - plt.pause(0.1) - plt.close() + plt.cla() + plt.plot(ox, oy, "-xb") + plt.plot(px, py, "-r") + plt.axis("equal") + plt.grid(True) + plt.pause(0.1) + plt.close() def main(): # pragma: no cover @@ -323,7 +312,8 @@ def main(): # pragma: no cover resolution = 5.0 planning_animation(ox, oy, resolution) - plt.show() + if do_animation: + plt.show() print("done!!") diff --git a/PathPlanning/HybridAStar/__init__.py b/PathPlanning/HybridAStar/__init__.py index e69de29bb2..087dab646e 100644 --- a/PathPlanning/HybridAStar/__init__.py +++ b/PathPlanning/HybridAStar/__init__.py @@ -0,0 +1,4 @@ +import os +import sys + +sys.path.append(os.path.dirname(os.path.abspath(__file__))) diff --git a/PathPlanning/HybridAStar/car.py b/PathPlanning/HybridAStar/car.py index cc7529b9c7..959db74078 100644 --- a/PathPlanning/HybridAStar/car.py +++ b/PathPlanning/HybridAStar/car.py @@ -6,20 +6,26 @@ """ -from math import sqrt, cos, sin, tan, pi +import sys +import pathlib +root_dir = pathlib.Path(__file__).parent.parent.parent +sys.path.append(str(root_dir)) + +from math import cos, sin, tan, pi import matplotlib.pyplot as plt import numpy as np -from scipy.spatial.transform import Rotation as Rot -WB = 3. # rear to front wheel -W = 2. # width of car +from utils.angle import rot_mat_2d + +WB = 3.0 # rear to front wheel +W = 2.0 # width of car LF = 3.3 # distance from rear to vehicle front end LB = 1.0 # distance from rear to vehicle back end MAX_STEER = 0.6 # [rad] maximum steering angle -W_BUBBLE_DIST = (LF - LB) / 2.0 -W_BUBBLE_R = sqrt(((LF + LB) / 2.0) ** 2 + 1) +BUBBLE_DIST = (LF - LB) / 2.0 # distance from rear to center of vehicle. +BUBBLE_R = np.hypot((LF + LB) / 2.0, W / 2.0) # bubble radius # vehicle rectangle vertices VRX = [LF, LF, -LB, -LB, LF] @@ -28,10 +34,10 @@ def check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree): for i_x, i_y, i_yaw in zip(x_list, y_list, yaw_list): - cx = i_x + W_BUBBLE_DIST * cos(i_yaw) - cy = i_y + W_BUBBLE_DIST * sin(i_yaw) + cx = i_x + BUBBLE_DIST * cos(i_yaw) + cy = i_y + BUBBLE_DIST * sin(i_yaw) - ids = kd_tree.query_ball_point([cx, cy], W_BUBBLE_R) + ids = kd_tree.query_ball_point([cx, cy], BUBBLE_R) if not ids: continue @@ -45,7 +51,7 @@ def check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree): def rectangle_check(x, y, yaw, ox, oy): # transform obstacles to base link frame - rot = Rot.from_euler('z', yaw).as_matrix()[0:2, 0:2] + rot = rot_mat_2d(yaw) for iox, ioy in zip(ox, oy): tx = iox - x ty = ioy - y @@ -53,9 +59,9 @@ def rectangle_check(x, y, yaw, ox, oy): rx, ry = converted_xy[0], converted_xy[1] if not (rx > LF or rx < -LB or ry > W / 2.0 or ry < -W / 2.0): - return False # no collision + return False # collision - return True # collision + return True # no collision def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): @@ -71,7 +77,7 @@ def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): def plot_car(x, y, yaw): car_color = '-k' c, s = cos(yaw), sin(yaw) - rot = Rot.from_euler('z', -yaw).as_matrix()[0:2, 0:2] + rot = rot_mat_2d(-yaw) car_outline_x, car_outline_y = [], [] for rx, ry in zip(VRX, VRY): converted_xy = np.stack([rx, ry]).T @ rot @@ -91,7 +97,7 @@ def pi_2_pi(angle): def move(x, y, yaw, distance, steer, L=WB): x += distance * cos(yaw) y += distance * sin(yaw) - yaw += pi_2_pi(distance * tan(steer) / L) # distance/2 + yaw = pi_2_pi(yaw + distance * tan(steer) / L) # distance/2 return x, y, yaw diff --git a/PathPlanning/HybridAStar/a_star_heuristic.py b/PathPlanning/HybridAStar/dynamic_programming_heuristic.py similarity index 75% rename from PathPlanning/HybridAStar/a_star_heuristic.py rename to PathPlanning/HybridAStar/dynamic_programming_heuristic.py index 36c3342462..09bcd556a6 100644 --- a/PathPlanning/HybridAStar/a_star_heuristic.py +++ b/PathPlanning/HybridAStar/dynamic_programming_heuristic.py @@ -42,7 +42,7 @@ def calc_final_path(goal_node, closed_node_set, resolution): return rx, ry -def dp_planning(sx, sy, gx, gy, ox, oy, resolution, rr): +def calc_distance_heuristic(gx, gy, ox, oy, resolution, rr): """ gx: goal x position [m] gx: goal x position [m] @@ -52,7 +52,6 @@ def dp_planning(sx, sy, gx, gy, ox, oy, resolution, rr): rr: robot radius[m] """ - start_node = Node(round(sx / resolution), round(sy / resolution), 0.0, -1) goal_node = Node(round(gx / resolution), round(gy / resolution), 0.0, -1) ox = [iox / resolution for iox in ox] oy = [ioy / resolution for ioy in oy] @@ -66,7 +65,7 @@ def dp_planning(sx, sy, gx, gy, ox, oy, resolution, rr): open_set[calc_index(goal_node, x_w, min_x, min_y)] = goal_node priority_queue = [(0, calc_index(goal_node, x_w, min_x, min_y))] - while 1: + while True: if not priority_queue: break cost, c_id = heapq.heappop(priority_queue) @@ -115,16 +114,7 @@ def dp_planning(sx, sy, gx, gy, ox, oy, resolution, rr): priority_queue, (node.cost, calc_index(node, x_w, min_x, min_y))) - rx, ry = calc_final_path(closed_set[calc_index( - start_node, x_w, min_x, min_y)], closed_set, resolution) - - return rx, ry, closed_set - - -def calc_heuristic(n1, n2): - w = 1.0 # weight of heuristic - d = w * math.sqrt((n1.x - n2.x) ** 2 + (n1.y - n2.y) ** 2) - return d + return closed_set def verify_node(node, obstacle_map, min_x, min_y, max_x, max_y): @@ -160,7 +150,7 @@ def calc_obstacle_map(ox, oy, resolution, vr): y = iy + min_y # print(x, y) for iox, ioy in zip(ox, oy): - d = math.sqrt((iox - x) ** 2 + (ioy - y) ** 2) + d = math.hypot(iox - x, ioy - y) if d <= vr / resolution: obstacle_map[ix][iy] = True break @@ -184,54 +174,3 @@ def get_motion_model(): [1, 1, math.sqrt(2)]] return motion - - -def main(): - print(__file__ + " start!!") - - # start and goal position - sx = 10.0 # [m] - sy = 10.0 # [m] - gx = 50.0 # [m] - gy = 50.0 # [m] - grid_size = 2.0 # [m] - robot_size = 1.0 # [m] - - ox, oy = [], [] - - for i in range(60): - ox.append(i) - oy.append(0.0) - for i in range(60): - ox.append(60.0) - oy.append(i) - for i in range(61): - ox.append(i) - oy.append(60.0) - for i in range(61): - ox.append(0.0) - oy.append(i) - for i in range(40): - ox.append(20.0) - oy.append(i) - for i in range(40): - ox.append(40.0) - oy.append(60.0 - i) - - if show_animation: # pragma: no cover - plt.plot(ox, oy, ".k") - plt.plot(sx, sy, "xr") - plt.plot(gx, gy, "xb") - plt.grid(True) - plt.axis("equal") - - rx, ry, _ = dp_planning(sx, sy, gx, gy, ox, oy, grid_size, robot_size) - - if show_animation: # pragma: no cover - plt.plot(rx, ry, "-r") - plt.show() - - -if __name__ == '__main__': - show_animation = True - main() diff --git a/PathPlanning/HybridAStar/hybrid_a_star.py b/PathPlanning/HybridAStar/hybrid_a_star.py index 45d6e11b18..0fa04189c6 100644 --- a/PathPlanning/HybridAStar/hybrid_a_star.py +++ b/PathPlanning/HybridAStar/hybrid_a_star.py @@ -8,27 +8,21 @@ import heapq import math -import os -import sys - import matplotlib.pyplot as plt import numpy as np from scipy.spatial import cKDTree +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -sys.path.append(os.path.dirname(os.path.abspath(__file__)) - + "/../ReedsSheppPath") -try: - from a_star_heuristic import dp_planning - import reeds_shepp_path_planning as rs - from car import move, check_car_collision, MAX_STEER, WB, plot_car -except Exception: - raise +from dynamic_programming_heuristic import calc_distance_heuristic +from ReedsSheppPath import reeds_shepp_path_planning as rs +from car import move, check_car_collision, MAX_STEER, WB, plot_car, BUBBLE_R XY_GRID_RESOLUTION = 2.0 # [m] YAW_GRID_RESOLUTION = np.deg2rad(15.0) # [rad] MOTION_RESOLUTION = 0.1 # [m] path interpolate resolution N_STEER = 20 # number of steer command -VR = 1.0 # robot radius SB_COST = 100.0 # switch back penalty cost BACK_COST = 5.0 # backward penalty cost @@ -111,12 +105,13 @@ def calc_next_node(current, steer, direction, config, ox, oy, kd_tree): x, y, yaw = current.x_list[-1], current.y_list[-1], current.yaw_list[-1] arc_l = XY_GRID_RESOLUTION * 1.5 - x_list, y_list, yaw_list = [], [], [] + x_list, y_list, yaw_list, direction_list = [], [], [], [] for _ in np.arange(0, arc_l, MOTION_RESOLUTION): x, y, yaw = move(x, y, yaw, MOTION_RESOLUTION * direction, steer) x_list.append(x) y_list.append(y) yaw_list.append(yaw) + direction_list.append(direction == 1) if not check_car_collision(x_list, y_list, yaw_list, ox, oy, kd_tree): return None @@ -140,7 +135,7 @@ def calc_next_node(current, steer, direction, config, ox, oy, kd_tree): cost = current.cost + added_cost + arc_l node = Node(x_ind, y_ind, yaw_ind, d, x_list, - y_list, yaw_list, [d], + y_list, yaw_list, direction_list, parent_index=calc_index(current, config), cost=cost, steer=steer) @@ -274,9 +269,9 @@ def hybrid_a_star_planning(start, goal, ox, oy, xy_resolution, yaw_resolution): openList, closedList = {}, {} - _, _, h_dp = dp_planning(start_node.x_list[-1], start_node.y_list[-1], - goal_node.x_list[-1], goal_node.y_list[-1], - ox, oy, xy_resolution, VR) + h_dp = calc_distance_heuristic( + goal_node.x_list[-1], goal_node.y_list[-1], + ox, oy, xy_resolution, BUBBLE_R) pq = [] openList[calc_index(start_node, config)] = start_node @@ -287,7 +282,7 @@ def hybrid_a_star_planning(start, goal, ox, oy, xy_resolution, yaw_resolution): while True: if not openList: print("Error: Cannot find path, No open set") - return [], [], [] + return Path([], [], [], [], 0) cost, c_id = heapq.heappop(pq) if c_id in openList: @@ -317,7 +312,7 @@ def hybrid_a_star_planning(start, goal, ox, oy, xy_resolution, yaw_resolution): neighbor_index = calc_index(neighbor, config) if neighbor_index in closedList: continue - if neighbor not in openList \ + if neighbor_index not in openList \ or openList[neighbor_index].cost > neighbor.cost: heapq.heappush( pq, (calc_cost(neighbor, h_dp, config), diff --git a/PathPlanning/InformedRRTStar/informed_rrt_star.py b/PathPlanning/InformedRRTStar/informed_rrt_star.py index baf7dcce91..0483949c99 100644 --- a/PathPlanning/InformedRRTStar/informed_rrt_star.py +++ b/PathPlanning/InformedRRTStar/informed_rrt_star.py @@ -6,35 +6,39 @@ Reference: Informed RRT*: Optimal Sampling-based Path planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic -https://arxiv.org/pdf/1404.2334.pdf +https://arxiv.org/pdf/1404.2334 """ +import sys +import pathlib + +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) import copy import math import random import matplotlib.pyplot as plt -from scipy.spatial.transform import Rotation as Rot import numpy as np +from utils.angle import rot_mat_2d + show_animation = True class InformedRRTStar: - def __init__(self, start, goal, - obstacleList, randArea, - expandDis=0.5, goalSampleRate=10, maxIter=200): + def __init__(self, start, goal, obstacle_list, rand_area, expand_dis=0.5, + goal_sample_rate=10, max_iter=200): self.start = Node(start[0], start[1]) self.goal = Node(goal[0], goal[1]) - self.min_rand = randArea[0] - self.max_rand = randArea[1] - self.expand_dis = expandDis - self.goal_sample_rate = goalSampleRate - self.max_iter = maxIter - self.obstacle_list = obstacleList + self.min_rand = rand_area[0] + self.max_rand = rand_area[1] + self.expand_dis = expand_dis + self.goal_sample_rate = goal_sample_rate + self.max_iter = max_iter + self.obstacle_list = obstacle_list self.node_list = None def informed_rrt_star_search(self, animation=True): @@ -42,110 +46,109 @@ def informed_rrt_star_search(self, animation=True): self.node_list = [self.start] # max length we expect to find in our 'informed' sample space, # starts as infinite - cBest = float('inf') - solutionSet = set() + c_best = float('inf') + solution_set = set() path = None # Computing the sampling space - cMin = math.sqrt(pow(self.start.x - self.goal.x, 2) - + pow(self.start.y - self.goal.y, 2)) - xCenter = np.array([[(self.start.x + self.goal.x) / 2.0], - [(self.start.y + self.goal.y) / 2.0], [0]]) - a1 = np.array([[(self.goal.x - self.start.x) / cMin], - [(self.goal.y - self.start.y) / cMin], [0]]) - - e_theta = math.atan2(a1[1], a1[0]) + c_min = math.hypot(self.start.x - self.goal.x, + self.start.y - self.goal.y) + x_center = np.array([[(self.start.x + self.goal.x) / 2.0], + [(self.start.y + self.goal.y) / 2.0], [0]]) + a1 = np.array([[(self.goal.x - self.start.x) / c_min], + [(self.goal.y - self.start.y) / c_min], [0]]) + + e_theta = math.atan2(a1[1, 0], a1[0, 0]) # first column of identity matrix transposed id1_t = np.array([1.0, 0.0, 0.0]).reshape(1, 3) - M = a1 @ id1_t - U, S, Vh = np.linalg.svd(M, True, True) - C = np.dot(np.dot(U, np.diag( - [1.0, 1.0, np.linalg.det(U) * np.linalg.det(np.transpose(Vh))])), - Vh) + m = a1 @ id1_t + u, s, vh = np.linalg.svd(m, True, True) + c = u @ np.diag( + [1.0, 1.0, + np.linalg.det(u) * np.linalg.det(np.transpose(vh))]) @ vh for i in range(self.max_iter): - # Sample space is defined by cBest - # cMin is the minimum distance between the start point and the goal - # xCenter is the midpoint between the start and the goal - # cBest changes when a new path is found + # Sample space is defined by c_best + # c_min is the minimum distance between the start point and + # the goal x_center is the midpoint between the start and the + # goal c_best changes when a new path is found - rnd = self.informed_sample(cBest, cMin, xCenter, C) + rnd = self.informed_sample(c_best, c_min, x_center, c) n_ind = self.get_nearest_list_index(self.node_list, rnd) - nearestNode = self.node_list[n_ind] + nearest_node = self.node_list[n_ind] # steer - theta = math.atan2(rnd[1] - nearestNode.y, rnd[0] - nearestNode.x) - newNode = self.get_new_node(theta, n_ind, nearestNode) - d = self.line_cost(nearestNode, newNode) + theta = math.atan2(rnd[1] - nearest_node.y, + rnd[0] - nearest_node.x) + new_node = self.get_new_node(theta, n_ind, nearest_node) + d = self.line_cost(nearest_node, new_node) - noCollision = self.check_collision(nearestNode, theta, d) + no_collision = self.check_collision(nearest_node, theta, d) - if noCollision: - nearInds = self.find_near_nodes(newNode) - newNode = self.choose_parent(newNode, nearInds) + if no_collision: + near_inds = self.find_near_nodes(new_node) + new_node = self.choose_parent(new_node, near_inds) - self.node_list.append(newNode) - self.rewire(newNode, nearInds) + self.node_list.append(new_node) + self.rewire(new_node, near_inds) - if self.is_near_goal(newNode): - if self.check_segment_collision(newNode.x, newNode.y, + if self.is_near_goal(new_node): + if self.check_segment_collision(new_node.x, new_node.y, self.goal.x, self.goal.y): - solutionSet.add(newNode) - lastIndex = len(self.node_list) - 1 - tempPath = self.get_final_course(lastIndex) - tempPathLen = self.get_path_len(tempPath) - if tempPathLen < cBest: - path = tempPath - cBest = tempPathLen + solution_set.add(new_node) + last_index = len(self.node_list) - 1 + temp_path = self.get_final_course(last_index) + temp_path_len = self.get_path_len(temp_path) + if temp_path_len < c_best: + path = temp_path + c_best = temp_path_len if animation: - self.draw_graph(xCenter=xCenter, - cBest=cBest, cMin=cMin, + self.draw_graph(x_center=x_center, c_best=c_best, c_min=c_min, e_theta=e_theta, rnd=rnd) return path - def choose_parent(self, newNode, nearInds): - if len(nearInds) == 0: - return newNode + def choose_parent(self, new_node, near_inds): + if len(near_inds) == 0: + return new_node - dList = [] - for i in nearInds: - dx = newNode.x - self.node_list[i].x - dy = newNode.y - self.node_list[i].y + d_list = [] + for i in near_inds: + dx = new_node.x - self.node_list[i].x + dy = new_node.y - self.node_list[i].y d = math.hypot(dx, dy) theta = math.atan2(dy, dx) if self.check_collision(self.node_list[i], theta, d): - dList.append(self.node_list[i].cost + d) + d_list.append(self.node_list[i].cost + d) else: - dList.append(float('inf')) + d_list.append(float('inf')) - minCost = min(dList) - minInd = nearInds[dList.index(minCost)] + min_cost = min(d_list) + min_ind = near_inds[d_list.index(min_cost)] - if minCost == float('inf'): + if min_cost == float('inf'): print("min cost is inf") - return newNode + return new_node - newNode.cost = minCost - newNode.parent = minInd + new_node.cost = min_cost + new_node.parent = min_ind - return newNode + return new_node - def find_near_nodes(self, newNode): + def find_near_nodes(self, new_node): n_node = len(self.node_list) - r = 50.0 * math.sqrt((math.log(n_node) / n_node)) - d_list = [(node.x - newNode.x) ** 2 + (node.y - newNode.y) ** 2 - for node in self.node_list] + r = 50.0 * math.sqrt(math.log(n_node) / n_node) + d_list = [(node.x - new_node.x) ** 2 + (node.y - new_node.y) ** 2 for + node in self.node_list] near_inds = [d_list.index(i) for i in d_list if i <= r ** 2] return near_inds - def informed_sample(self, cMax, cMin, xCenter, C): - if cMax < float('inf'): - r = [cMax / 2.0, - math.sqrt(cMax ** 2 - cMin ** 2) / 2.0, - math.sqrt(cMax ** 2 - cMin ** 2) / 2.0] - L = np.diag(r) - xBall = self.sample_unit_ball() - rnd = np.dot(np.dot(C, L), xBall) + xCenter + def informed_sample(self, c_max, c_min, x_center, c): + if c_max < float('inf'): + r = [c_max / 2.0, math.sqrt(c_max ** 2 - c_min ** 2) / 2.0, + math.sqrt(c_max ** 2 - c_min ** 2) / 2.0] + rl = np.diag(r) + x_ball = self.sample_unit_ball() + rnd = np.dot(np.dot(c, rl), x_ball) + x_center rnd = [rnd[(0, 0)], rnd[(1, 0)]] else: rnd = self.sample_free_space() @@ -175,37 +178,36 @@ def sample_free_space(self): @staticmethod def get_path_len(path): - pathLen = 0 + path_len = 0 for i in range(1, len(path)): node1_x = path[i][0] node1_y = path[i][1] node2_x = path[i - 1][0] node2_y = path[i - 1][1] - pathLen += math.sqrt((node1_x - node2_x) - ** 2 + (node1_y - node2_y) ** 2) + path_len += math.hypot(node1_x - node2_x, node1_y - node2_y) - return pathLen + return path_len @staticmethod def line_cost(node1, node2): - return math.sqrt((node1.x - node2.x) ** 2 + (node1.y - node2.y) ** 2) + return math.hypot(node1.x - node2.x, node1.y - node2.y) @staticmethod def get_nearest_list_index(nodes, rnd): - dList = [(node.x - rnd[0]) ** 2 - + (node.y - rnd[1]) ** 2 for node in nodes] - minIndex = dList.index(min(dList)) - return minIndex + d_list = [(node.x - rnd[0]) ** 2 + (node.y - rnd[1]) ** 2 for node in + nodes] + min_index = d_list.index(min(d_list)) + return min_index - def get_new_node(self, theta, n_ind, nearestNode): - newNode = copy.deepcopy(nearestNode) + def get_new_node(self, theta, n_ind, nearest_node): + new_node = copy.deepcopy(nearest_node) - newNode.x += self.expand_dis * math.cos(theta) - newNode.y += self.expand_dis * math.sin(theta) + new_node.x += self.expand_dis * math.cos(theta) + new_node.y += self.expand_dis * math.sin(theta) - newNode.cost += self.expand_dis - newNode.parent = n_ind - return newNode + new_node.cost += self.expand_dis + new_node.parent = n_ind + return new_node def is_near_goal(self, node): d = self.line_cost(node, self.goal) @@ -213,22 +215,21 @@ def is_near_goal(self, node): return True return False - def rewire(self, newNode, nearInds): + def rewire(self, new_node, near_inds): n_node = len(self.node_list) - for i in nearInds: - nearNode = self.node_list[i] + for i in near_inds: + near_node = self.node_list[i] - d = math.sqrt((nearNode.x - newNode.x) ** 2 - + (nearNode.y - newNode.y) ** 2) + d = math.hypot(near_node.x - new_node.x, near_node.y - new_node.y) - s_cost = newNode.cost + d + s_cost = new_node.cost + d - if nearNode.cost > s_cost: - theta = math.atan2(newNode.y - nearNode.y, - newNode.x - nearNode.x) - if self.check_collision(nearNode, theta, d): - nearNode.parent = n_node - 1 - nearNode.cost = s_cost + if near_node.cost > s_cost: + theta = math.atan2(new_node.y - near_node.y, + new_node.x - near_node.x) + if self.check_collision(near_node, theta, d): + near_node.parent = n_node - 1 + near_node.cost = s_cost @staticmethod def distance_squared_point_to_segment(v, w, p): @@ -248,68 +249,66 @@ def distance_squared_point_to_segment(v, w, p): def check_segment_collision(self, x1, y1, x2, y2): for (ox, oy, size) in self.obstacle_list: dd = self.distance_squared_point_to_segment( - np.array([x1, y1]), - np.array([x2, y2]), - np.array([ox, oy])) + np.array([x1, y1]), np.array([x2, y2]), np.array([ox, oy])) if dd <= size ** 2: return False # collision return True - def check_collision(self, nearNode, theta, d): - tmpNode = copy.deepcopy(nearNode) - end_x = tmpNode.x + math.cos(theta) * d - end_y = tmpNode.y + math.sin(theta) * d - return self.check_segment_collision(tmpNode.x, tmpNode.y, end_x, end_y) + def check_collision(self, near_node, theta, d): + tmp_node = copy.deepcopy(near_node) + end_x = tmp_node.x + math.cos(theta) * d + end_y = tmp_node.y + math.sin(theta) * d + return self.check_segment_collision(tmp_node.x, tmp_node.y, + end_x, end_y) - def get_final_course(self, lastIndex): + def get_final_course(self, last_index): path = [[self.goal.x, self.goal.y]] - while self.node_list[lastIndex].parent is not None: - node = self.node_list[lastIndex] + while self.node_list[last_index].parent is not None: + node = self.node_list[last_index] path.append([node.x, node.y]) - lastIndex = node.parent + last_index = node.parent path.append([self.start.x, self.start.y]) return path - def draw_graph(self, xCenter=None, cBest=None, cMin=None, e_theta=None, + def draw_graph(self, x_center=None, c_best=None, c_min=None, e_theta=None, rnd=None): plt.clf() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( - 'key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + 'key_release_event', lambda event: + [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd[0], rnd[1], "^k") - if cBest != float('inf'): - self.plot_ellipse(xCenter, cBest, cMin, e_theta) + if c_best != float('inf'): + self.plot_ellipse(x_center, c_best, c_min, e_theta) for node in self.node_list: if node.parent is not None: if node.x or node.y is not None: - plt.plot([node.x, self.node_list[node.parent].x], [ - node.y, self.node_list[node.parent].y], "-g") + plt.plot([node.x, self.node_list[node.parent].x], + [node.y, self.node_list[node.parent].y], "-g") for (ox, oy, size) in self.obstacle_list: plt.plot(ox, oy, "ok", ms=30 * size) plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.goal.x, self.goal.y, "xr") - plt.axis([-2, 15, -2, 15]) + plt.axis([self.min_rand, self.max_rand, self.min_rand, self.max_rand]) plt.grid(True) plt.pause(0.01) @staticmethod - def plot_ellipse(xCenter, cBest, cMin, e_theta): # pragma: no cover + def plot_ellipse(x_center, c_best, c_min, e_theta): # pragma: no cover - a = math.sqrt(cBest ** 2 - cMin ** 2) / 2.0 - b = cBest / 2.0 + a = math.sqrt(c_best ** 2 - c_min ** 2) / 2.0 + b = c_best / 2.0 angle = math.pi / 2.0 - e_theta - cx = xCenter[0] - cy = xCenter[1] + cx = x_center[0] + cy = x_center[1] t = np.arange(0, 2 * math.pi + 0.1, 0.1) x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] - rot = Rot.from_euler('z', -angle).as_matrix()[0:2, 0:2] - fx = rot @ np.array([x, y]) + fx = rot_mat_2d(-angle) @ np.array([x, y]) px = np.array(fx[0, :] + cx).flatten() py = np.array(fx[1, :] + cy).flatten() plt.plot(cx, cy, "xc") @@ -329,18 +328,12 @@ def main(): print("Start informed rrt star planning") # create obstacles - obstacleList = [ - (5, 5, 0.5), - (9, 6, 1), - (7, 5, 1), - (1, 5, 1), - (3, 6, 1), - (7, 9, 1) - ] + obstacle_list = [(5, 5, 0.5), (9, 6, 1), (7, 5, 1), (1, 5, 1), (3, 6, 1), + (7, 9, 1)] # Set params - rrt = InformedRRTStar(start=[0, 0], goal=[5, 10], - randArea=[-2, 15], obstacleList=obstacleList) + rrt = InformedRRTStar(start=[0, 0], goal=[5, 10], rand_area=[-2, 15], + obstacle_list=obstacle_list) path = rrt.informed_rrt_star_search(animation=show_animation) print("Done!!") diff --git a/PathPlanning/LQRPlanner/LQRplanner.py b/PathPlanning/LQRPlanner/lqr_planner.py similarity index 98% rename from PathPlanning/LQRPlanner/LQRplanner.py rename to PathPlanning/LQRPlanner/lqr_planner.py index ba01526a2c..0f58f93ea3 100644 --- a/PathPlanning/LQRPlanner/LQRplanner.py +++ b/PathPlanning/LQRPlanner/lqr_planner.py @@ -47,7 +47,7 @@ def lqr_planning(self, sx, sy, gx, gy, show_animation=True): rx.append(x[0, 0] + gx) ry.append(x[1, 0] + gy) - d = math.sqrt((gx - rx[-1]) ** 2 + (gy - ry[-1]) ** 2) + d = math.hypot(gx - rx[-1], gy - ry[-1]) if d <= self.GOAL_DIST: found_path = True break diff --git a/PathPlanning/LQRRRTStar/lqr_rrt_star.py b/PathPlanning/LQRRRTStar/lqr_rrt_star.py index 177131ac96..0ed08123ea 100644 --- a/PathPlanning/LQRRRTStar/lqr_rrt_star.py +++ b/PathPlanning/LQRRRTStar/lqr_rrt_star.py @@ -7,21 +7,15 @@ """ import copy import math -import os import random -import sys - import matplotlib.pyplot as plt import numpy as np +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../LQRPlanner/") -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../RRTStar/") - -try: - from LQRplanner import LQRPlanner - from rrt_star import RRTStar -except ImportError: - raise +from LQRPlanner.lqr_planner import LQRPlanner +from RRTStar.rrt_star import RRTStar show_animation = True @@ -35,7 +29,8 @@ def __init__(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, connect_circle_dist=50.0, - step_size=0.2 + step_size=0.2, + robot_radius=0.0, ): """ Setting Parameter @@ -44,6 +39,7 @@ def __init__(self, start, goal, obstacle_list, rand_area, goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] + robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1]) @@ -58,6 +54,7 @@ def __init__(self, start, goal, obstacle_list, rand_area, self.curvature = 1.0 self.goal_xy_th = 0.5 self.step_size = step_size + self.robot_radius = robot_radius self.lqr_planner = LQRPlanner() @@ -75,7 +72,8 @@ def planning(self, animation=True, search_until_max_iter=True): nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) - if self.check_collision(new_node, self.obstacle_list): + if self.check_collision( + new_node, self.obstacle_list, self.robot_radius): near_indexes = self.find_near_nodes(new_node) new_node = self.choose_parent(new_node, near_indexes) if new_node: @@ -181,7 +179,7 @@ def sample_path(self, wx, wy, step): dx = np.diff(px) dy = np.diff(py) - clen = [math.sqrt(idx ** 2 + idy ** 2) for (idx, idy) in zip(dx, dy)] + clen = [math.hypot(idx, idy) for (idx, idy) in zip(dx, dy)] return px, py, clen diff --git a/PathPlanning/ModelPredictiveTrajectoryGenerator/lookup_table_generator.py b/PathPlanning/ModelPredictiveTrajectoryGenerator/lookup_table_generator.py new file mode 100644 index 0000000000..4c3b32f280 --- /dev/null +++ b/PathPlanning/ModelPredictiveTrajectoryGenerator/lookup_table_generator.py @@ -0,0 +1,110 @@ +""" + +Lookup Table generation for model predictive trajectory generator + +author: Atsushi Sakai + +""" +import sys +import pathlib +path_planning_dir = pathlib.Path(__file__).parent.parent +sys.path.append(str(path_planning_dir)) + +from matplotlib import pyplot as plt +import numpy as np +import math + +from ModelPredictiveTrajectoryGenerator import trajectory_generator,\ + motion_model + + +def calc_states_list(max_yaw=np.deg2rad(-30.0)): + + x = np.arange(10.0, 30.0, 5.0) + y = np.arange(0.0, 20.0, 2.0) + yaw = np.arange(-max_yaw, max_yaw, max_yaw) + + states = [] + for iyaw in yaw: + for iy in y: + for ix in x: + states.append([ix, iy, iyaw]) + print("n_state:", len(states)) + + return states + + +def search_nearest_one_from_lookup_table(tx, ty, tyaw, lookup_table): + mind = float("inf") + minid = -1 + + for (i, table) in enumerate(lookup_table): + + dx = tx - table[0] + dy = ty - table[1] + dyaw = tyaw - table[2] + d = math.sqrt(dx ** 2 + dy ** 2 + dyaw ** 2) + if d <= mind: + minid = i + mind = d + + # print(minid) + + return lookup_table[minid] + + +def save_lookup_table(file_name, table): + np.savetxt(file_name, np.array(table), + fmt='%s', delimiter=",", header="x,y,yaw,s,km,kf", comments="") + + print("lookup table file is saved as " + file_name) + + +def generate_lookup_table(): + states = calc_states_list(max_yaw=np.deg2rad(-30.0)) + k0 = 0.0 + + # x, y, yaw, s, km, kf + lookup_table = [[1.0, 0.0, 0.0, 1.0, 0.0, 0.0]] + + for state in states: + best_p = search_nearest_one_from_lookup_table( + state[0], state[1], state[2], lookup_table) + + target = motion_model.State(x=state[0], y=state[1], yaw=state[2]) + init_p = np.array( + [np.hypot(state[0], state[1]), best_p[4], best_p[5]]).reshape(3, 1) + + x, y, yaw, p = trajectory_generator.optimize_trajectory(target, + k0, init_p) + + if x is not None: + print("find good path") + lookup_table.append( + [x[-1], y[-1], yaw[-1], float(p[0, 0]), float(p[1, 0]), float(p[2, 0])]) + + print("finish lookup table generation") + + save_lookup_table("lookup_table.csv", lookup_table) + + for table in lookup_table: + x_c, y_c, yaw_c = motion_model.generate_trajectory( + table[3], table[4], table[5], k0) + plt.plot(x_c, y_c, "-r") + x_c, y_c, yaw_c = motion_model.generate_trajectory( + table[3], -table[4], -table[5], k0) + plt.plot(x_c, y_c, "-r") + + plt.grid(True) + plt.axis("equal") + plt.show() + + print("Done") + + +def main(): + generate_lookup_table() + + +if __name__ == '__main__': + main() diff --git a/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable_generator.py b/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable_generator.py deleted file mode 100644 index c57a05da57..0000000000 --- a/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable_generator.py +++ /dev/null @@ -1,114 +0,0 @@ -""" - -Lookup Table generation for model predictive trajectory generator - -author: Atsushi Sakai - -""" -from matplotlib import pyplot as plt -import numpy as np -import math -import model_predictive_trajectory_generator as planner -import motion_model -import pandas as pd - - -def calc_states_list(): - maxyaw = np.deg2rad(-30.0) - - x = np.arange(10.0, 30.0, 5.0) - y = np.arange(0.0, 20.0, 2.0) - yaw = np.arange(-maxyaw, maxyaw, maxyaw) - - states = [] - for iyaw in yaw: - for iy in y: - for ix in x: - states.append([ix, iy, iyaw]) - print("nstate:", len(states)) - - return states - - -def search_nearest_one_from_lookuptable(tx, ty, tyaw, lookuptable): - mind = float("inf") - minid = -1 - - for (i, table) in enumerate(lookuptable): - - dx = tx - table[0] - dy = ty - table[1] - dyaw = tyaw - table[2] - d = math.sqrt(dx ** 2 + dy ** 2 + dyaw ** 2) - if d <= mind: - minid = i - mind = d - - # print(minid) - - return lookuptable[minid] - - -def save_lookup_table(fname, table): - mt = np.array(table) - print(mt) - # save csv - df = pd.DataFrame() - df["x"] = mt[:, 0] - df["y"] = mt[:, 1] - df["yaw"] = mt[:, 2] - df["s"] = mt[:, 3] - df["km"] = mt[:, 4] - df["kf"] = mt[:, 5] - df.to_csv(fname, index=None) - - print("lookup table file is saved as " + fname) - - -def generate_lookup_table(): - states = calc_states_list() - k0 = 0.0 - - # x, y, yaw, s, km, kf - lookuptable = [[1.0, 0.0, 0.0, 1.0, 0.0, 0.0]] - - for state in states: - bestp = search_nearest_one_from_lookuptable( - state[0], state[1], state[2], lookuptable) - - target = motion_model.State(x=state[0], y=state[1], yaw=state[2]) - init_p = np.array( - [math.sqrt(state[0] ** 2 + state[1] ** 2), bestp[4], bestp[5]]).reshape(3, 1) - - x, y, yaw, p = planner.optimize_trajectory(target, k0, init_p) - - if x is not None: - print("find good path") - lookuptable.append( - [x[-1], y[-1], yaw[-1], float(p[0]), float(p[1]), float(p[2])]) - - print("finish lookup table generation") - - save_lookup_table("lookuptable.csv", lookuptable) - - for table in lookuptable: - xc, yc, yawc = motion_model.generate_trajectory( - table[3], table[4], table[5], k0) - plt.plot(xc, yc, "-r") - xc, yc, yawc = motion_model.generate_trajectory( - table[3], -table[4], -table[5], k0) - plt.plot(xc, yc, "-r") - - plt.grid(True) - plt.axis("equal") - plt.show() - - print("Done") - - -def main(): - generate_lookup_table() - - -if __name__ == '__main__': - main() diff --git a/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py b/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py index f6c78d3bc1..5ef6d2e23f 100644 --- a/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py +++ b/PathPlanning/ModelPredictiveTrajectoryGenerator/motion_model.py @@ -1,10 +1,11 @@ import math import numpy as np -import scipy.interpolate +from scipy.interpolate import interp1d +from utils.angle import angle_mod # motion parameter L = 1.0 # wheel base -ds = 0.1 # course distanse +ds = 0.1 # course distance v = 10.0 / 3.6 # velocity [m/s] @@ -18,11 +19,10 @@ def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): def pi_2_pi(angle): - return (angle + math.pi) % (2 * math.pi) - math.pi + return angle_mod(angle) def update(state, v, delta, dt, L): - state.v = v state.x = state.x + state.v * math.cos(state.yaw) * dt state.y = state.y + state.v * math.sin(state.yaw) * dt @@ -33,18 +33,20 @@ def update(state, v, delta, dt, L): def generate_trajectory(s, km, kf, k0): - n = s / ds time = s / v # [s] - - if isinstance(time, type(np.array([]))): time = time[0] - if isinstance(km, type(np.array([]))): km = km[0] - if isinstance(kf, type(np.array([]))): kf = kf[0] - + + if isinstance(time, type(np.array([]))): + time = time[0] + if isinstance(km, type(np.array([]))): + km = km[0] + if isinstance(kf, type(np.array([]))): + kf = kf[0] + tk = np.array([0.0, time / 2.0, time]) kk = np.array([k0, km, kf]) t = np.arange(0.0, time, time / n) - fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic") + fkp = interp1d(tk, kk, kind="quadratic") kp = [fkp(ti) for ti in t] dt = float(time / n) @@ -64,18 +66,22 @@ def generate_trajectory(s, km, kf, k0): def generate_last_state(s, km, kf, k0): - n = s / ds time = s / v # [s] - - if isinstance(time, type(np.array([]))): time = time[0] - if isinstance(km, type(np.array([]))): km = km[0] - if isinstance(kf, type(np.array([]))): kf = kf[0] - + + if isinstance(n, type(np.array([]))): + n = n[0] + if isinstance(time, type(np.array([]))): + time = time[0] + if isinstance(km, type(np.array([]))): + km = km[0] + if isinstance(kf, type(np.array([]))): + kf = kf[0] + tk = np.array([0.0, time / 2.0, time]) kk = np.array([k0, km, kf]) t = np.arange(0.0, time, time / n) - fkp = scipy.interpolate.interp1d(tk, kk, kind="quadratic") + fkp = interp1d(tk, kk, kind="quadratic") kp = [fkp(ti) for ti in t] dt = time / n diff --git a/PathPlanning/ModelPredictiveTrajectoryGenerator/model_predictive_trajectory_generator.py b/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py similarity index 89% rename from PathPlanning/ModelPredictiveTrajectoryGenerator/model_predictive_trajectory_generator.py rename to PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py index 3ba1dd9fc2..6084fc1a07 100644 --- a/PathPlanning/ModelPredictiveTrajectoryGenerator/model_predictive_trajectory_generator.py +++ b/PathPlanning/ModelPredictiveTrajectoryGenerator/trajectory_generator.py @@ -7,15 +7,18 @@ """ import math - import matplotlib.pyplot as plt import numpy as np +import sys +import pathlib +path_planning_dir = pathlib.Path(__file__).parent.parent +sys.path.append(str(path_planning_dir)) -import motion_model +import ModelPredictiveTrajectoryGenerator.motion_model as motion_model # optimization parameter max_iter = 100 -h = np.array([0.5, 0.02, 0.02]).T # parameter sampling distance +h: np.ndarray = np.array([0.5, 0.02, 0.02]).T # parameter sampling distance cost_th = 0.1 show_animation = True @@ -103,7 +106,7 @@ def show_trajectory(target, xc, yc): # pragma: no cover def optimize_trajectory(target, k0, p): for i in range(max_iter): - xc, yc, yawc = motion_model.generate_trajectory(p[0], p[1], p[2], k0) + xc, yc, yawc = motion_model.generate_trajectory(p[0, 0], p[1, 0], p[2, 0], k0) dc = np.array(calc_diff(target, xc, yc, yawc)).reshape(3, 1) cost = np.linalg.norm(dc) @@ -132,7 +135,7 @@ def optimize_trajectory(target, k0, p): return xc, yc, yawc, p -def test_optimize_trajectory(): # pragma: no cover +def optimize_trajectory_demo(): # pragma: no cover # target = motion_model.State(x=5.0, y=2.0, yaw=np.deg2rad(00.0)) target = motion_model.State(x=5.0, y=2.0, yaw=np.deg2rad(90.0)) @@ -152,7 +155,7 @@ def test_optimize_trajectory(): # pragma: no cover def main(): # pragma: no cover print(__file__ + " start!!") - test_optimize_trajectory() + optimize_trajectory_demo() if __name__ == '__main__': diff --git a/PathPlanning/PotentialFieldPlanning/potential_field_planning.py b/PathPlanning/PotentialFieldPlanning/potential_field_planning.py index 8f136b5ee3..603a9d16cf 100644 --- a/PathPlanning/PotentialFieldPlanning/potential_field_planning.py +++ b/PathPlanning/PotentialFieldPlanning/potential_field_planning.py @@ -4,7 +4,7 @@ author: Atsushi Sakai (@Atsushi_twi) -Ref: +Reference: https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf """ diff --git a/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py b/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py index 8681420e2d..8bacfd5d19 100644 --- a/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py +++ b/PathPlanning/ProbabilisticRoadMap/probabilistic_road_map.py @@ -6,11 +6,10 @@ """ -import random import math import numpy as np import matplotlib.pyplot as plt -from scipy.spatial import cKDTree +from scipy.spatial import KDTree # parameter N_SAMPLE = 500 # number of sample_points @@ -36,19 +35,35 @@ def __str__(self): str(self.cost) + "," + str(self.parent_index) -def prm_planning(sx, sy, gx, gy, ox, oy, rr): - - obstacle_kd_tree = cKDTree(np.vstack((ox, oy)).T) +def prm_planning(start_x, start_y, goal_x, goal_y, + obstacle_x_list, obstacle_y_list, robot_radius, *, rng=None): + """ + Run probabilistic road map planning + + :param start_x: start x position + :param start_y: start y position + :param goal_x: goal x position + :param goal_y: goal y position + :param obstacle_x_list: obstacle x positions + :param obstacle_y_list: obstacle y positions + :param robot_radius: robot radius + :param rng: (Optional) Random generator + :return: + """ + obstacle_kd_tree = KDTree(np.vstack((obstacle_x_list, obstacle_y_list)).T) - sample_x, sample_y = sample_points(sx, sy, gx, gy, - rr, ox, oy, obstacle_kd_tree) + sample_x, sample_y = sample_points(start_x, start_y, goal_x, goal_y, + robot_radius, + obstacle_x_list, obstacle_y_list, + obstacle_kd_tree, rng) if show_animation: plt.plot(sample_x, sample_y, ".b") - road_map = generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree) + road_map = generate_road_map(sample_x, sample_y, + robot_radius, obstacle_kd_tree) rx, ry = dijkstra_planning( - sx, sy, gx, gy, road_map, sample_x, sample_y) + start_x, start_y, goal_x, goal_y, road_map, sample_x, sample_y) return rx, ry @@ -88,13 +103,13 @@ def generate_road_map(sample_x, sample_y, rr, obstacle_kd_tree): sample_x: [m] x positions of sampled points sample_y: [m] y positions of sampled points - rr: Robot Radius[m] + robot_radius: Robot Radius[m] obstacle_kd_tree: KDTree object of obstacles """ road_map = [] n_sample = len(sample_x) - sample_kd_tree = cKDTree(np.vstack((sample_x, sample_y)).T) + sample_kd_tree = KDTree(np.vstack((sample_x, sample_y)).T) for (i, ix, iy) in zip(range(n_sample), sample_x, sample_y): @@ -122,11 +137,11 @@ def dijkstra_planning(sx, sy, gx, gy, road_map, sample_x, sample_y): """ s_x: start x position [m] s_y: start y position [m] - gx: goal x position [m] - gy: goal y position [m] - ox: x position list of Obstacles [m] - oy: y position list of Obstacles [m] - rr: robot radius [m] + goal_x: goal x position [m] + goal_y: goal y position [m] + obstacle_x_list: x position list of Obstacles [m] + obstacle_y_list: y position list of Obstacles [m] + robot_radius: robot radius [m] road_map: ??? [m] sample_x: ??? [m] sample_y: ??? [m] @@ -215,7 +230,7 @@ def plot_road_map(road_map, sample_x, sample_y): # pragma: no cover [sample_y[i], sample_y[ind]], "-k") -def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree): +def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree, rng): max_x = max(ox) max_y = max(oy) min_x = min(ox) @@ -223,9 +238,12 @@ def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree): sample_x, sample_y = [], [] + if rng is None: + rng = np.random.default_rng() + while len(sample_x) <= N_SAMPLE: - tx = (random.random() * (max_x - min_x)) + min_x - ty = (random.random() * (max_y - min_y)) + min_y + tx = (rng.random() * (max_x - min_x)) + min_x + ty = (rng.random() * (max_y - min_y)) + min_y dist, index = obstacle_kd_tree.query([tx, ty]) @@ -241,7 +259,7 @@ def sample_points(sx, sy, gx, gy, rr, ox, oy, obstacle_kd_tree): return sample_x, sample_y -def main(): +def main(rng=None): print(__file__ + " start!!") # start and goal position @@ -255,20 +273,20 @@ def main(): oy = [] for i in range(60): - ox.append(i) + ox.append(float(i)) oy.append(0.0) for i in range(60): ox.append(60.0) - oy.append(i) + oy.append(float(i)) for i in range(61): - ox.append(i) + ox.append(float(i)) oy.append(60.0) for i in range(61): ox.append(0.0) - oy.append(i) + oy.append(float(i)) for i in range(40): ox.append(20.0) - oy.append(i) + oy.append(float(i)) for i in range(40): ox.append(40.0) oy.append(60.0 - i) @@ -280,7 +298,7 @@ def main(): plt.grid(True) plt.axis("equal") - rx, ry = prm_planning(sx, sy, gx, gy, ox, oy, robot_size) + rx, ry = prm_planning(sx, sy, gx, gy, ox, oy, robot_size, rng=rng) assert rx, 'Cannot found path' diff --git a/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.ipynb b/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.ipynb deleted file mode 100644 index f094ae2c15..0000000000 --- a/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.ipynb +++ /dev/null @@ -1,143 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Quintic polynomials planner" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quintic polynomials for one dimensional robot motion\n", - "\n", - "We assume a one-dimensional robot motion $x(t)$ at time $t$ is formulated as a quintic polynomials based on time as follows:\n", - "\n", - "$x(t) = a_0+a_1t+a_2t^2+a_3t^3+a_4t^4+a_5t^5$ --(1)\n", - "\n", - "$a_0, a_1. a_2, a_3, a_4, a_5$ are parameters of the quintic polynomial.\n", - "\n", - "It is assumed that terminal states (start and end) are known as boundary conditions.\n", - "\n", - "Start position, velocity, and acceleration are $x_s, v_s, a_s$ respectively.\n", - "\n", - "End position, velocity, and acceleration are $x_e, v_e, a_e$ respectively.\n", - "\n", - "So, when time is 0.\n", - "\n", - "$x(0) = a_0 = x_s$ -- (2)\n", - "\n", - "Then, differentiating the equation (1) with t, \n", - "\n", - "$x'(t) = a_1+2a_2t+3a_3t^2+4a_4t^3+5a_5t^4$ -- (3)\n", - "\n", - "So, when time is 0,\n", - "\n", - "$x'(0) = a_1 = v_s$ -- (4)\n", - "\n", - "Then, differentiating the equation (3) with t again, \n", - "\n", - "$x''(t) = 2a_2+6a_3t+12a_4t^2$ -- (5)\n", - "\n", - "So, when time is 0,\n", - "\n", - "$x''(0) = 2a_2 = a_s$ -- (6)\n", - "\n", - "so, we can calculate $a_0$, $a_1$, $a_2$ with eq. (2), (4), (6) and boundary conditions.\n", - "\n", - "$a_3, a_4, a_5$ are still unknown in eq(1).\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We assume that the end time for a maneuver is $T$, we can get these equations from eq (1), (3), (5):\n", - "\n", - "$x(T)=a_0+a_1T+a_2T^2+a_3T^3+a_4T^4+a_5T^5=x_e$ -- (7)\n", - "\n", - "$x'(T)=a_1+2a_2T+3a_3T^2+4a_4T^3+5a_5T^4=v_e$ -- (8)\n", - "\n", - "$x''(T)=2a_2+6a_3T+12a_4T^2+20a_5T^3=a_e$ -- (9)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "From eq (7), (8), (9), we can calculate $a_3, a_4, a_5$ to solve the linear equations.\n", - "\n", - "$Ax=b$\n", - "\n", - "$\\begin{bmatrix} T^3 & T^4 & T^5 \\\\ 3T^2 & 4T^3 & 5T^4 \\\\ 6T & 12T^2 & 20T^3 \\end{bmatrix}\n", - "\\begin{bmatrix} a_3\\\\ a_4\\\\ a_5\\end{bmatrix}=\\begin{bmatrix} x_e-x_s-v_sT-0.5a_sT^2\\\\ v_e-v_s-a_sT\\\\ a_e-a_s\\end{bmatrix}$\n", - "\n", - "We can get all unknown parameters now" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Quintic polynomials for two dimensional robot motion (x-y)\n", - "\n", - "If you use two quintic polynomials along x axis and y axis, you can plan for two dimensional robot motion in x-y plane.\n", - "\n", - "$x(t) = a_0+a_1t+a_2t^2+a_3t^3+a_4t^4+a_5t^5$ --(10)\n", - "\n", - "$y(t) = b_0+b_1t+b_2t^2+b_3t^3+b_4t^4+b_5t^5$ --(11)\n", - "\n", - "It is assumed that terminal states (start and end) are known as boundary conditions.\n", - "\n", - "Start position, orientation, velocity, and acceleration are $x_s, y_s, \\theta_s, v_s, a_s$ respectively.\n", - "\n", - "End position, orientation, velocity, and acceleration are $x_e, y_e. \\theta_e, v_e, a_e$ respectively.\n", - "\n", - "Each velocity and acceleration boundary condition can be calculated with each orientation.\n", - "\n", - "$v_{xs}=v_scos(\\theta_s), v_{ys}=v_ssin(\\theta_s)$\n", - "\n", - "$v_{xe}=v_ecos(\\theta_e), v_{ye}=v_esin(\\theta_e)$\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.5" - }, - "pycharm": { - "stem_cell": { - "cell_type": "raw", - "metadata": { - "collapsed": false - }, - "source": [] - } - } - }, - "nbformat": 4, - "nbformat_minor": 1 -} diff --git a/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py b/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py index 8ba11a23d2..86f9f662da 100644 --- a/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py +++ b/PathPlanning/QuinticPolynomialsPlanner/quintic_polynomials_planner.py @@ -4,9 +4,9 @@ author: Atsushi Sakai (@Atsushi_twi) -Ref: +Reference: -- [Local Path planning And Motion Control For Agv In Positioning](http://ieeexplore.ieee.org/document/637936/) +- [Local Path planning And Motion Control For Agv In Positioning](https://ieeexplore.ieee.org/document/637936/) """ diff --git a/PathPlanning/RRT/rrt.py b/PathPlanning/RRT/rrt.py index 4acea0c10e..e6dd9b648b 100644 --- a/PathPlanning/RRT/rrt.py +++ b/PathPlanning/RRT/rrt.py @@ -32,8 +32,27 @@ def __init__(self, x, y): self.path_y = [] self.parent = None - def __init__(self, start, goal, obstacle_list, rand_area, - expand_dis=3.0, path_resolution=0.5, goal_sample_rate=5, max_iter=500): + class AreaBounds: + + def __init__(self, area): + self.xmin = float(area[0]) + self.xmax = float(area[1]) + self.ymin = float(area[2]) + self.ymax = float(area[3]) + + + def __init__(self, + start, + goal, + obstacle_list, + rand_area, + expand_dis=3.0, + path_resolution=0.5, + goal_sample_rate=5, + max_iter=500, + play_area=None, + robot_radius=0.0, + ): """ Setting Parameter @@ -41,18 +60,25 @@ def __init__(self, start, goal, obstacle_list, rand_area, goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] + play_area:stay inside this area [xmin,xmax,ymin,ymax] + robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1]) self.end = self.Node(goal[0], goal[1]) self.min_rand = rand_area[0] self.max_rand = rand_area[1] + if play_area is not None: + self.play_area = self.AreaBounds(play_area) + else: + self.play_area = None self.expand_dis = expand_dis self.path_resolution = path_resolution self.goal_sample_rate = goal_sample_rate self.max_iter = max_iter self.obstacle_list = obstacle_list self.node_list = [] + self.robot_radius = robot_radius def planning(self, animation=True): """ @@ -69,15 +95,20 @@ def planning(self, animation=True): new_node = self.steer(nearest_node, rnd_node, self.expand_dis) - if self.check_collision(new_node, self.obstacle_list): + if self.check_if_outside_play_area(new_node, self.play_area) and \ + self.check_collision( + new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: self.draw_graph(rnd_node) - if self.calc_dist_to_goal(self.node_list[-1].x, self.node_list[-1].y) <= self.expand_dis: - final_node = self.steer(self.node_list[-1], self.end, self.expand_dis) - if self.check_collision(final_node, self.obstacle_list): + if self.calc_dist_to_goal(self.node_list[-1].x, + self.node_list[-1].y) <= self.expand_dis: + final_node = self.steer(self.node_list[-1], self.end, + self.expand_dis) + if self.check_collision( + final_node, self.obstacle_list, self.robot_radius): return self.generate_final_course(len(self.node_list) - 1) if animation and i % 5: @@ -108,6 +139,8 @@ def steer(self, from_node, to_node, extend_length=float("inf")): if d <= self.path_resolution: new_node.path_x.append(to_node.x) new_node.path_y.append(to_node.y) + new_node.x = to_node.x + new_node.y = to_node.y new_node.parent = from_node @@ -130,8 +163,9 @@ def calc_dist_to_goal(self, x, y): def get_random_node(self): if random.randint(0, 100) > self.goal_sample_rate: - rnd = self.Node(random.uniform(self.min_rand, self.max_rand), - random.uniform(self.min_rand, self.max_rand)) + rnd = self.Node( + random.uniform(self.min_rand, self.max_rand), + random.uniform(self.min_rand, self.max_rand)) else: # goal point sampling rnd = self.Node(self.end.x, self.end.y) return rnd @@ -139,10 +173,13 @@ def get_random_node(self): def draw_graph(self, rnd=None): plt.clf() # for stopping simulation with the esc key. - plt.gcf().canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) if rnd is not None: plt.plot(rnd.x, rnd.y, "^k") + if self.robot_radius > 0.0: + self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r') for node in self.node_list: if node.parent: plt.plot(node.path_x, node.path_y, "-g") @@ -150,10 +187,19 @@ def draw_graph(self, rnd=None): for (ox, oy, size) in self.obstacle_list: self.plot_circle(ox, oy, size) + if self.play_area is not None: + plt.plot([self.play_area.xmin, self.play_area.xmax, + self.play_area.xmax, self.play_area.xmin, + self.play_area.xmin], + [self.play_area.ymin, self.play_area.ymin, + self.play_area.ymax, self.play_area.ymax, + self.play_area.ymin], + "-k") + plt.plot(self.start.x, self.start.y, "xr") plt.plot(self.end.x, self.end.y, "xr") plt.axis("equal") - plt.axis([-2, 15, -2, 15]) + plt.axis([self.min_rand, self.max_rand, self.min_rand, self.max_rand]) plt.grid(True) plt.pause(0.01) @@ -167,14 +213,26 @@ def plot_circle(x, y, size, color="-b"): # pragma: no cover @staticmethod def get_nearest_node_index(node_list, rnd_node): - dlist = [(node.x - rnd_node.x) ** 2 + (node.y - rnd_node.y) - ** 2 for node in node_list] + dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2 + for node in node_list] minind = dlist.index(min(dlist)) return minind @staticmethod - def check_collision(node, obstacleList): + def check_if_outside_play_area(node, play_area): + + if play_area is None: + return True # no play_area was defined, every pos should be ok + + if node.x < play_area.xmin or node.x > play_area.xmax or \ + node.y < play_area.ymin or node.y > play_area.ymax: + return False # outside - bad + else: + return True # inside - ok + + @staticmethod + def check_collision(node, obstacleList, robot_radius): if node is None: return False @@ -184,7 +242,7 @@ def check_collision(node, obstacleList): dy_list = [oy - y for y in node.path_y] d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)] - if min(d_list) <= size ** 2: + if min(d_list) <= (size+robot_radius)**2: return False # collision return True # safe @@ -202,20 +260,17 @@ def main(gx=6.0, gy=10.0): print("start " + __file__) # ====Search Path with RRT==== - obstacleList = [ - (5, 5, 1), - (3, 6, 2), - (3, 8, 2), - (3, 10, 2), - (7, 5, 2), - (9, 5, 2), - (8, 10, 1) - ] # [x, y, radius] + obstacleList = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), + (9, 5, 2), (8, 10, 1)] # [x, y, radius] # Set Initial parameters - rrt = RRT(start=[0, 0], - goal=[gx, gy], - rand_area=[-2, 15], - obstacle_list=obstacleList) + rrt = RRT( + start=[0, 0], + goal=[gx, gy], + rand_area=[-2, 15], + obstacle_list=obstacleList, + # play_area=[0, 10, 0, 14] + robot_radius=0.8 + ) path = rrt.planning(animation=show_animation) if path is None: diff --git a/PathPlanning/RRT/rrt_with_pathsmoothing.py b/PathPlanning/RRT/rrt_with_pathsmoothing.py index 9826dba072..ac68efe23f 100644 --- a/PathPlanning/RRT/rrt_with_pathsmoothing.py +++ b/PathPlanning/RRT/rrt_with_pathsmoothing.py @@ -7,18 +7,13 @@ """ import math -import os import random -import sys - import matplotlib.pyplot as plt +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent)) -sys.path.append(os.path.dirname(os.path.abspath(__file__))) - -try: - from rrt import RRT -except ImportError: - raise +from rrt import RRT show_animation = True @@ -28,7 +23,7 @@ def get_path_length(path): for i in range(len(path) - 1): dx = path[i + 1][0] - path[i][0] dy = path[i + 1][1] - path[i][1] - d = math.sqrt(dx * dx + dy * dy) + d = math.hypot(dx, dy) le += d return le @@ -41,7 +36,7 @@ def get_target_point(path, targetL): for i in range(len(path) - 1): dx = path[i + 1][0] - path[i][0] dy = path[i + 1][1] - path[i][1] - d = math.sqrt(dx * dx + dy * dy) + d = math.hypot(dx, dy) le += d if le >= targetL: ti = i - 1 @@ -56,30 +51,93 @@ def get_target_point(path, targetL): return [x, y, ti] -def line_collision_check(first, second, obstacleList): - # Line Equation - - x1 = first[0] - y1 = first[1] - x2 = second[0] - y2 = second[1] - - try: - a = y2 - y1 - b = -(x2 - x1) - c = y2 * (x2 - x1) - x2 * (y2 - y1) - except ZeroDivisionError: - return False - - for (ox, oy, size) in obstacleList: - d = abs(a * ox + b * oy + c) / (math.sqrt(a * a + b * b)) - if d <= size: - return False - - return True # OK - - -def path_smoothing(path, max_iter, obstacle_list): +def is_point_collision(x, y, obstacle_list, robot_radius): + """ + Check whether a single point collides with any obstacle. + + This function calculates the Euclidean distance between the given point (x, y) + and each obstacle center. If the distance is less than or equal to the sum of + the obstacle's radius and the robot's radius, a collision is detected. + + Args: + x (float): X-coordinate of the point to check. + y (float): Y-coordinate of the point to check. + obstacle_list (List[Tuple[float, float, float]]): List of obstacles defined as (ox, oy, radius). + robot_radius (float): Radius of the robot, used to inflate the obstacles. + + Returns: + bool: True if the point is in collision with any obstacle, False otherwise. + """ + for (ox, oy, obstacle_radius) in obstacle_list: + d = math.hypot(ox - x, oy - y) + if d <= obstacle_radius + robot_radius: + return True # Collided + return False + + +def line_collision_check(first, second, obstacle_list, robot_radius=0.0, sample_step=0.2): + """ + Check if the line segment between `first` and `second` collides with any obstacle. + Considers the robot_radius by inflating the obstacle size. + + Args: + first (List[float]): Start point of the line [x, y] + second (List[float]): End point of the line [x, y] + obstacle_list (List[Tuple[float, float, float]]): Obstacles as (x, y, radius) + robot_radius (float): Radius of robot + sample_step (float): Distance between sampling points along the segment + + Returns: + bool: True if collision-free, False otherwise + """ + x1, y1 = first[0], first[1] + x2, y2 = second[0], second[1] + + dx = x2 - x1 + dy = y2 - y1 + length = math.hypot(dx, dy) + + if length == 0: + # Degenerate case: point collision check + return not is_point_collision(x1, y1, obstacle_list, robot_radius) + + steps = int(length / sample_step) + 1 # Sampling every sample_step along the segment + + for i in range(steps + 1): + t = i / steps + x = x1 + t * dx + y = y1 + t * dy + + if is_point_collision(x, y, obstacle_list, robot_radius): + return False # Collision found + + return True # Safe + + +def path_smoothing(path, max_iter, obstacle_list, robot_radius=0.0): + """ + Smooths a given path by iteratively replacing segments with shortcut connections, + while ensuring the new segments are collision-free. + + The algorithm randomly picks two points along the original path and attempts to + connect them with a straight line. If the line does not collide with any obstacles + (considering the robot's radius), the intermediate path points between them are + replaced with the direct connection. + + Args: + path (List[List[float]]): The original path as a list of [x, y] coordinates. + max_iter (int): Number of iterations for smoothing attempts. + obstacle_list (List[Tuple[float, float, float]]): List of obstacles represented as + (x, y, radius). + robot_radius (float, optional): Radius of the robot, used to inflate obstacle size + during collision checking. Defaults to 0.0. + + Returns: + List[List[float]]: The smoothed path as a list of [x, y] coordinates. + + Example: + >>> smoothed = path_smoothing(path, 1000, obstacle_list, robot_radius=0.5) + """ le = get_path_length(path) for i in range(max_iter): @@ -99,7 +157,7 @@ def path_smoothing(path, max_iter, obstacle_list): continue # collision check - if not line_collision_check(first, second, obstacle_list): + if not line_collision_check(first, second, obstacle_list, robot_radius): continue # Create New path @@ -124,14 +182,16 @@ def main(): (3, 10, 2), (7, 5, 2), (9, 5, 2) - ] # [x,y,size] + ] # [x,y,radius] rrt = RRT(start=[0, 0], goal=[6, 10], - rand_area=[-2, 15], obstacle_list=obstacleList) + rand_area=[-2, 15], obstacle_list=obstacleList, + robot_radius=0.3) path = rrt.planning(animation=show_animation) # Path smoothing maxIter = 1000 - smoothedPath = path_smoothing(path, maxIter, obstacleList) + smoothedPath = path_smoothing(path, maxIter, obstacleList, + robot_radius=rrt.robot_radius) # Draw final path if show_animation: diff --git a/PathPlanning/RRT/rrt_with_sobol_sampler.py b/PathPlanning/RRT/rrt_with_sobol_sampler.py new file mode 100644 index 0000000000..06e0c04c68 --- /dev/null +++ b/PathPlanning/RRT/rrt_with_sobol_sampler.py @@ -0,0 +1,278 @@ +""" + +Path planning Sample Code with Randomized Rapidly-Exploring Random +Trees with sobol low discrepancy sampler(RRTSobol). +Sobol wiki https://en.wikipedia.org/wiki/Sobol_sequence + +The goal of low discrepancy samplers is to generate a sequence of points that +optimizes a criterion called dispersion. Intuitively, the idea is to place +samples to cover the exploration space in a way that makes the largest +uncovered area be as small as possible. This generalizes of the idea of grid +resolution. For a grid, the resolution may be selected by defining the step +size for each axis. As the step size is decreased, the resolution increases. +If a grid-based motion planning algorithm can increase the resolution +arbitrarily, it becomes resolution complete. Dispersion can be considered as a +powerful generalization of the notion of resolution. + +Taken from +LaValle, Steven M. Planning algorithms. Cambridge university press, 2006. + + +authors: + First implementation AtsushiSakai(@Atsushi_twi) + Sobol sampler Rafael A. +Rojas (rafaelrojasmiliani@gmail.com) + + +""" + +import math +import random +import sys +import matplotlib.pyplot as plt +import numpy as np + +from sobol import sobol_quasirand + +show_animation = True + + +class RRTSobol: + """ + Class for RRTSobol planning + """ + + class Node: + """ + RRTSobol Node + """ + + def __init__(self, x, y): + self.x = x + self.y = y + self.path_x = [] + self.path_y = [] + self.parent = None + + def __init__(self, + start, + goal, + obstacle_list, + rand_area, + expand_dis=3.0, + path_resolution=0.5, + goal_sample_rate=5, + max_iter=500, + robot_radius=0.0): + """ + Setting Parameter + + start:Start Position [x,y] + goal:Goal Position [x,y] + obstacle_list:obstacle Positions [[x,y,size],...] + randArea:Random Sampling Area [min,max] + robot_radius: robot body modeled as circle with given radius + + """ + self.start = self.Node(start[0], start[1]) + self.end = self.Node(goal[0], goal[1]) + self.min_rand = rand_area[0] + self.max_rand = rand_area[1] + self.expand_dis = expand_dis + self.path_resolution = path_resolution + self.goal_sample_rate = goal_sample_rate + self.max_iter = max_iter + self.obstacle_list = obstacle_list + self.node_list = [] + self.sobol_inter_ = 0 + self.robot_radius = robot_radius + + def planning(self, animation=True): + """ + rrt path planning + + animation: flag for animation on or off + """ + + self.node_list = [self.start] + for i in range(self.max_iter): + rnd_node = self.get_random_node() + nearest_ind = self.get_nearest_node_index(self.node_list, rnd_node) + nearest_node = self.node_list[nearest_ind] + + new_node = self.steer(nearest_node, rnd_node, self.expand_dis) + + if self.check_collision( + new_node, self.obstacle_list, self.robot_radius): + self.node_list.append(new_node) + + if animation and i % 5 == 0: + self.draw_graph(rnd_node) + + if self.calc_dist_to_goal(self.node_list[-1].x, + self.node_list[-1].y) <= self.expand_dis: + final_node = self.steer(self.node_list[-1], self.end, + self.expand_dis) + if self.check_collision( + final_node, self.obstacle_list, self.robot_radius): + return self.generate_final_course(len(self.node_list) - 1) + + if animation and i % 5: + self.draw_graph(rnd_node) + + return None # cannot find path + + def steer(self, from_node, to_node, extend_length=float("inf")): + + new_node = self.Node(from_node.x, from_node.y) + d, theta = self.calc_distance_and_angle(new_node, to_node) + + new_node.path_x = [new_node.x] + new_node.path_y = [new_node.y] + + if extend_length > d: + extend_length = d + + n_expand = math.floor(extend_length / self.path_resolution) + + for _ in range(n_expand): + new_node.x += self.path_resolution * math.cos(theta) + new_node.y += self.path_resolution * math.sin(theta) + new_node.path_x.append(new_node.x) + new_node.path_y.append(new_node.y) + + d, _ = self.calc_distance_and_angle(new_node, to_node) + if d <= self.path_resolution: + new_node.path_x.append(to_node.x) + new_node.path_y.append(to_node.y) + new_node.x = to_node.x + new_node.y = to_node.y + + new_node.parent = from_node + + return new_node + + def generate_final_course(self, goal_ind): + path = [[self.end.x, self.end.y]] + node = self.node_list[goal_ind] + while node.parent is not None: + path.append([node.x, node.y]) + node = node.parent + path.append([node.x, node.y]) + + return path + + def calc_dist_to_goal(self, x, y): + dx = x - self.end.x + dy = y - self.end.y + return math.hypot(dx, dy) + + def get_random_node(self): + if random.randint(0, 100) > self.goal_sample_rate: + rand_coordinates, n = sobol_quasirand(2, self.sobol_inter_) + + rand_coordinates = self.min_rand + \ + rand_coordinates*(self.max_rand - self.min_rand) + self.sobol_inter_ = n + rnd = self.Node(*rand_coordinates) + + else: # goal point sampling + rnd = self.Node(self.end.x, self.end.y) + return rnd + + def draw_graph(self, rnd=None): + plt.clf() + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [sys.exit(0) if event.key == 'escape' else None]) + if rnd is not None: + plt.plot(rnd.x, rnd.y, "^k") + if self.robot_radius >= 0.0: + self.plot_circle(rnd.x, rnd.y, self.robot_radius, '-r') + for node in self.node_list: + if node.parent: + plt.plot(node.path_x, node.path_y, "-g") + + for (ox, oy, size) in self.obstacle_list: + self.plot_circle(ox, oy, size) + + plt.plot(self.start.x, self.start.y, "xr") + plt.plot(self.end.x, self.end.y, "xr") + plt.axis("equal") + plt.axis([-2, 15, -2, 15]) + plt.grid(True) + plt.pause(0.01) + + @staticmethod + def plot_circle(x, y, size, color="-b"): # pragma: no cover + deg = list(range(0, 360, 5)) + deg.append(0) + xl = [x + size * math.cos(np.deg2rad(d)) for d in deg] + yl = [y + size * math.sin(np.deg2rad(d)) for d in deg] + plt.plot(xl, yl, color) + + @staticmethod + def get_nearest_node_index(node_list, rnd_node): + dlist = [(node.x - rnd_node.x)**2 + (node.y - rnd_node.y)**2 + for node in node_list] + minind = dlist.index(min(dlist)) + + return minind + + @staticmethod + def check_collision(node, obstacle_list, robot_radius): + + if node is None: + return False + + for (ox, oy, size) in obstacle_list: + dx_list = [ox - x for x in node.path_x] + dy_list = [oy - y for y in node.path_y] + d_list = [dx * dx + dy * dy for (dx, dy) in zip(dx_list, dy_list)] + + if min(d_list) <= (size+robot_radius)**2: + return False # collision + + return True # safe + + @staticmethod + def calc_distance_and_angle(from_node, to_node): + dx = to_node.x - from_node.x + dy = to_node.y - from_node.y + d = math.hypot(dx, dy) + theta = math.atan2(dy, dx) + return d, theta + + +def main(gx=6.0, gy=10.0): + print("start " + __file__) + + # ====Search Path with RRTSobol==== + obstacle_list = [(5, 5, 1), (3, 6, 2), (3, 8, 2), (3, 10, 2), (7, 5, 2), + (9, 5, 2), (8, 10, 1)] # [x, y, radius] + # Set Initial parameters + rrt = RRTSobol( + start=[0, 0], + goal=[gx, gy], + rand_area=[-2, 15], + obstacle_list=obstacle_list, + robot_radius=0.8) + path = rrt.planning(animation=show_animation) + + if path is None: + print("Cannot find path") + else: + print("found path!!") + + # Draw final path + if show_animation: + rrt.draw_graph() + plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') + plt.grid(True) + plt.pause(0.01) # Need for Mac + plt.show() + + +if __name__ == '__main__': + main() diff --git a/PathPlanning/RRT/sobol/__init__.py b/PathPlanning/RRT/sobol/__init__.py new file mode 100644 index 0000000000..c95ac8983b --- /dev/null +++ b/PathPlanning/RRT/sobol/__init__.py @@ -0,0 +1 @@ +from .sobol import i4_sobol as sobol_quasirand diff --git a/PathPlanning/RRT/sobol/sobol.py b/PathPlanning/RRT/sobol/sobol.py new file mode 100644 index 0000000000..520d686a1d --- /dev/null +++ b/PathPlanning/RRT/sobol/sobol.py @@ -0,0 +1,911 @@ +""" + Licensing: + This code is distributed under the MIT license. + + Authors: + Original FORTRAN77 version of i4_sobol by Bennett Fox. + MATLAB version by John Burkardt. + PYTHON version by Corrado Chisari + + Original Python version of is_prime by Corrado Chisari + + Original MATLAB versions of other functions by John Burkardt. + PYTHON versions by Corrado Chisari + + Original code is available at + https://people.sc.fsu.edu/~jburkardt/py_src/sobol/sobol.html + + Note: the i4 prefix means that the function takes a numeric argument or + returns a number which is interpreted inside the function as a 4 + byte integer + Note: the r4 prefix means that the function takes a numeric argument or + returns a number which is interpreted inside the function as a 4 + byte float +""" +import math +import sys +import numpy as np + +atmost = None +dim_max = None +dim_num_save = None +initialized = None +lastq = None +log_max = None +maxcol = None +poly = None +recipd = None +seed_save = None +v = None + + +def i4_bit_hi1(n): + """ + I4_BIT_HI1 returns the position of the high 1 bit base 2 in an I4. + + Discussion: + + An I4 is an integer ( kind = 4 ) value. + + Example: + + N Binary Hi 1 + ---- -------- ---- + 0 0 0 + 1 1 1 + 2 10 2 + 3 11 2 + 4 100 3 + 5 101 3 + 6 110 3 + 7 111 3 + 8 1000 4 + 9 1001 4 + 10 1010 4 + 11 1011 4 + 12 1100 4 + 13 1101 4 + 14 1110 4 + 15 1111 4 + 16 10000 5 + 17 10001 5 + 1023 1111111111 10 + 1024 10000000000 11 + 1025 10000000001 11 + + Licensing: + + This code is distributed under the GNU LGPL license. + + Modified: + + 26 October 2014 + + Author: + + John Burkardt + + Parameters: + + Input, integer N, the integer to be measured. + N should be nonnegative. If N is nonpositive, the function + will always be 0. + + Output, integer BIT, the position of the highest bit. + + """ + i = n + bit = 0 + + while True: + + if i <= 0: + break + + bit = bit + 1 + i = i // 2 + + return bit + + +def i4_bit_lo0(n): + """ + I4_BIT_LO0 returns the position of the low 0 bit base 2 in an I4. + + Discussion: + + An I4 is an integer ( kind = 4 ) value. + + Example: + + N Binary Lo 0 + ---- -------- ---- + 0 0 1 + 1 1 2 + 2 10 1 + 3 11 3 + 4 100 1 + 5 101 2 + 6 110 1 + 7 111 4 + 8 1000 1 + 9 1001 2 + 10 1010 1 + 11 1011 3 + 12 1100 1 + 13 1101 2 + 14 1110 1 + 15 1111 5 + 16 10000 1 + 17 10001 2 + 1023 1111111111 11 + 1024 10000000000 1 + 1025 10000000001 2 + + Licensing: + + This code is distributed under the GNU LGPL license. + + Modified: + + 08 February 2018 + + Author: + + John Burkardt + + Parameters: + + Input, integer N, the integer to be measured. + N should be nonnegative. + + Output, integer BIT, the position of the low 1 bit. + + """ + bit = 0 + i = n + + while True: + + bit = bit + 1 + i2 = i // 2 + + if i == 2 * i2: + break + + i = i2 + + return bit + + +def i4_sobol_generate(m, n, skip): + """ + + + I4_SOBOL_GENERATE generates a Sobol dataset. + + Licensing: + + This code is distributed under the MIT license. + + Modified: + + 22 February 2011 + + Author: + + Original MATLAB version by John Burkardt. + PYTHON version by Corrado Chisari + + Parameters: + + Input, integer M, the spatial dimension. + + Input, integer N, the number of points to generate. + + Input, integer SKIP, the number of initial points to skip. + + Output, real R(M,N), the points. + + """ + r = np.zeros((m, n)) + for j in range(1, n + 1): + seed = skip + j - 2 + [r[0:m, j - 1], seed] = i4_sobol(m, seed) + return r + + +def i4_sobol(dim_num, seed): + """ + + + I4_SOBOL generates a new quasirandom Sobol vector with each call. + + Discussion: + + The routine adapts the ideas of Antonov and Saleev. + + Licensing: + + This code is distributed under the MIT license. + + Modified: + + 22 February 2011 + + Author: + + Original FORTRAN77 version by Bennett Fox. + MATLAB version by John Burkardt. + PYTHON version by Corrado Chisari + + Reference: + + Antonov, Saleev, + USSR Computational Mathematics and Mathematical Physics, + olume 19, 19, pages 252 - 256. + + Paul Bratley, Bennett Fox, + Algorithm 659: + Implementing Sobol's Quasirandom Sequence Generator, + ACM Transactions on Mathematical Software, + Volume 14, Number 1, pages 88-100, 1988. + + Bennett Fox, + Algorithm 647: + Implementation and Relative Efficiency of Quasirandom + Sequence Generators, + ACM Transactions on Mathematical Software, + Volume 12, Number 4, pages 362-376, 1986. + + Ilya Sobol, + USSR Computational Mathematics and Mathematical Physics, + Volume 16, pages 236-242, 1977. + + Ilya Sobol, Levitan, + The Production of Points Uniformly Distributed in a Multidimensional + Cube (in Russian), + Preprint IPM Akad. Nauk SSSR, + Number 40, Moscow 1976. + + Parameters: + + Input, integer DIM_NUM, the number of spatial dimensions. + DIM_NUM must satisfy 1 <= DIM_NUM <= 40. + + Input/output, integer SEED, the "seed" for the sequence. + This is essentially the index in the sequence of the quasirandom + value to be generated. On output, SEED has been set to the + appropriate next value, usually simply SEED+1. + If SEED is less than 0 on input, it is treated as though it were 0. + An input value of 0 requests the first (0-th) element of the sequence. + + Output, real QUASI(DIM_NUM), the next quasirandom vector. + + """ + + global atmost + global dim_max + global dim_num_save + global initialized + global lastq + global log_max + global maxcol + global poly + global recipd + global seed_save + global v + + if not initialized or dim_num != dim_num_save: + initialized = 1 + dim_max = 40 + dim_num_save = -1 + log_max = 30 + seed_save = -1 + # + # Initialize (part of) V. + # + v = np.zeros((dim_max, log_max)) + v[0:40, 0] = np.transpose([ + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 + ]) + + v[2:40, 1] = np.transpose([ + 1, 3, 1, 3, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3, + 3, 1, 3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 1, 3 + ]) + + v[3:40, 2] = np.transpose([ + 7, 5, 1, 3, 3, 7, 5, 5, 7, 7, 1, 3, 3, 7, 5, 1, 1, 5, 3, 3, 1, 7, + 5, 1, 3, 3, 7, 5, 1, 1, 5, 7, 7, 5, 1, 3, 3 + ]) + + v[5:40, 3] = np.transpose([ + 1, 7, 9, 13, 11, 1, 3, 7, 9, 5, 13, 13, 11, 3, 15, 5, 3, 15, 7, 9, + 13, 9, 1, 11, 7, 5, 15, 1, 15, 11, 5, 3, 1, 7, 9 + ]) + + v[7:40, 4] = np.transpose([ + 9, 3, 27, 15, 29, 21, 23, 19, 11, 25, 7, 13, 17, 1, 25, 29, 3, 31, + 11, 5, 23, 27, 19, 21, 5, 1, 17, 13, 7, 15, 9, 31, 9 + ]) + + v[13:40, 5] = np.transpose([ + 37, 33, 7, 5, 11, 39, 63, 27, 17, 15, 23, 29, 3, 21, 13, 31, 25, 9, + 49, 33, 19, 29, 11, 19, 27, 15, 25 + ]) + + v[19:40, 6] = np.transpose([ + 13, 33, 115, 41, 79, 17, 29, 119, 75, 73, 105, 7, 59, 65, 21, 3, + 113, 61, 89, 45, 107 + ]) + + v[37:40, 7] = np.transpose([7, 23, 39]) + # + # Set POLY. + # + poly = [ + 1, 3, 7, 11, 13, 19, 25, 37, 59, 47, 61, 55, 41, 67, 97, 91, 109, + 103, 115, 131, 193, 137, 145, 143, 241, 157, 185, 167, 229, 171, + 213, 191, 253, 203, 211, 239, 247, 285, 369, 299 + ] + + atmost = 2**log_max - 1 + # + # Find the number of bits in ATMOST. + # + maxcol = i4_bit_hi1(atmost) + # + # Initialize row 1 of V. + # + v[0, 0:maxcol] = 1 + + # Things to do only if the dimension changed. + + if dim_num != dim_num_save: + # + # Check parameters. + # + if (dim_num < 1 or dim_max < dim_num): + print('I4_SOBOL - Fatal error!') + print(' The spatial dimension DIM_NUM should satisfy:') + print(f' 1 <= DIM_NUM <= {dim_max:d}') + print(f' But this input value is DIM_NUM = {dim_num:d}') + return None + + dim_num_save = dim_num + # + # Initialize the remaining rows of V. + # + for i in range(2, dim_num + 1): + # + # The bits of the integer POLY(I) gives the form of polynomial + # I. + # + # Find the degree of polynomial I from binary encoding. + # + j = poly[i - 1] + m = 0 + while True: + j = math.floor(j / 2.) + if (j <= 0): + break + m = m + 1 + # + # Expand this bit pattern to separate components of the logical + # array INCLUD. + # + j = poly[i - 1] + includ = np.zeros(m) + for k in range(m, 0, -1): + j2 = math.floor(j / 2.) + includ[k - 1] = (j != 2 * j2) + j = j2 + # + # Calculate the remaining elements of row I as explained + # in Bratley and Fox, section 2. + # + for j in range(m + 1, maxcol + 1): + newv = v[i - 1, j - m - 1] + l_var = 1 + for k in range(1, m + 1): + l_var = 2 * l_var + if (includ[k - 1]): + newv = np.bitwise_xor( + int(newv), int(l_var * v[i - 1, j - k - 1])) + v[i - 1, j - 1] = newv +# +# Multiply columns of V by appropriate power of 2. +# + l_var = 1 + for j in range(maxcol - 1, 0, -1): + l_var = 2 * l_var + v[0:dim_num, j - 1] = v[0:dim_num, j - 1] * l_var +# +# RECIPD is 1/(common denominator of the elements in V). +# + recipd = 1.0 / (2 * l_var) + lastq = np.zeros(dim_num) + + seed = int(math.floor(seed)) + + if (seed < 0): + seed = 0 + + if (seed == 0): + l_var = 1 + lastq = np.zeros(dim_num) + + elif (seed == seed_save + 1): + # + # Find the position of the right-hand zero in SEED. + # + l_var = i4_bit_lo0(seed) + + elif seed <= seed_save: + + seed_save = 0 + lastq = np.zeros(dim_num) + + for seed_temp in range(int(seed_save), int(seed)): + l_var = i4_bit_lo0(seed_temp) + for i in range(1, dim_num + 1): + lastq[i - 1] = np.bitwise_xor( + int(lastq[i - 1]), int(v[i - 1, l_var - 1])) + + l_var = i4_bit_lo0(seed) + + elif (seed_save + 1 < seed): + + for seed_temp in range(int(seed_save + 1), int(seed)): + l_var = i4_bit_lo0(seed_temp) + for i in range(1, dim_num + 1): + lastq[i - 1] = np.bitwise_xor( + int(lastq[i - 1]), int(v[i - 1, l_var - 1])) + + l_var = i4_bit_lo0(seed) +# +# Check that the user is not calling too many times! +# + if maxcol < l_var: + print('I4_SOBOL - Fatal error!') + print(' Too many calls!') + print(f' MAXCOL = {maxcol:d}\n') + print(f' L = {l_var:d}\n') + return None + + +# +# Calculate the new components of QUASI. +# + quasi = np.zeros(dim_num) + for i in range(1, dim_num + 1): + quasi[i - 1] = lastq[i - 1] * recipd + lastq[i - 1] = np.bitwise_xor( + int(lastq[i - 1]), int(v[i - 1, l_var - 1])) + + seed_save = seed + seed = seed + 1 + + return [quasi, seed] + + +def i4_uniform_ab(a, b, seed): + """ + + + I4_UNIFORM_AB returns a scaled pseudorandom I4. + + Discussion: + + The pseudorandom number will be scaled to be uniformly distributed + between A and B. + + Licensing: + + This code is distributed under the GNU LGPL license. + + Modified: + + 05 April 2013 + + Author: + + John Burkardt + + Reference: + + Paul Bratley, Bennett Fox, Linus Schrage, + A Guide to Simulation, + Second Edition, + Springer, 1987, + ISBN: 0387964673, + LC: QA76.9.C65.B73. + + Bennett Fox, + Algorithm 647: + Implementation and Relative Efficiency of Quasirandom + Sequence Generators, + ACM Transactions on Mathematical Software, + Volume 12, Number 4, December 1986, pages 362-376. + + Pierre L'Ecuyer, + Random Number Generation, + in Handbook of Simulation, + edited by Jerry Banks, + Wiley, 1998, + ISBN: 0471134031, + LC: T57.62.H37. + + Peter Lewis, Allen Goodman, James Miller, + A Pseudo-Random Number Generator for the System/360, + IBM Systems Journal, + Volume 8, Number 2, 1969, pages 136-143. + + Parameters: + + Input, integer A, B, the minimum and maximum acceptable values. + + Input, integer SEED, a seed for the random number generator. + + Output, integer C, the randomly chosen integer. + + Output, integer SEED, the updated seed. + + """ + + i4_huge = 2147483647 + + seed = int(seed) + + seed = (seed % i4_huge) + + if seed < 0: + seed = seed + i4_huge + + if seed == 0: + print('') + print('I4_UNIFORM_AB - Fatal error!') + print(' Input SEED = 0!') + sys.exit('I4_UNIFORM_AB - Fatal error!') + + k = (seed // 127773) + + seed = 167 * (seed - k * 127773) - k * 2836 + + if seed < 0: + seed = seed + i4_huge + + r = seed * 4.656612875E-10 + # + # Scale R to lie between A-0.5 and B+0.5. + # + a = round(a) + b = round(b) + + r = (1.0 - r) * (min(a, b) - 0.5) \ + + r * (max(a, b) + 0.5) + # + # Use rounding to convert R to an integer between A and B. + # + value = round(r) + + value = max(value, min(a, b)) + value = min(value, max(a, b)) + value = int(value) + + return value, seed + + +def prime_ge(n): + """ + + + PRIME_GE returns the smallest prime greater than or equal to N. + + Example: + + N PRIME_GE + + -10 2 + 1 2 + 2 2 + 3 3 + 4 5 + 5 5 + 6 7 + 7 7 + 8 11 + 9 11 + 10 11 + + Licensing: + + This code is distributed under the MIT license. + + Modified: + + 22 February 2011 + + Author: + + Original MATLAB version by John Burkardt. + PYTHON version by Corrado Chisari + + Parameters: + + Input, integer N, the number to be bounded. + + Output, integer P, the smallest prime number that is greater + than or equal to N. + + """ + p = max(math.ceil(n), 2) + while not isprime(p): + p = p + 1 + + return p + + +def isprime(n): + """ + + + IS_PRIME returns True if N is a prime number, False otherwise + + Licensing: + + This code is distributed under the MIT license. + + Modified: + + 22 February 2011 + + Author: + + Corrado Chisari + + Parameters: + + Input, integer N, the number to be checked. + + Output, boolean value, True or False + + """ + if n != int(n) or n < 1: + return False + p = 2 + while p < n: + if n % p == 0: + return False + p += 1 + + return True + + +def r4_uniform_01(seed): + """ + + + R4_UNIFORM_01 returns a unit pseudorandom R4. + + Discussion: + + This routine implements the recursion + + seed = 167 * seed mod ( 2^31 - 1 ) + r = seed / ( 2^31 - 1 ) + + The integer arithmetic never requires more than 32 bits, + including a sign bit. + + If the initial seed is 12345, then the first three computations are + + Input Output R4_UNIFORM_01 + SEED SEED + + 12345 207482415 0.096616 + 207482415 1790989824 0.833995 + 1790989824 2035175616 0.947702 + + Licensing: + + This code is distributed under the GNU LGPL license. + + Modified: + + 04 April 2013 + + Author: + + John Burkardt + + Reference: + + Paul Bratley, Bennett Fox, Linus Schrage, + A Guide to Simulation, + Second Edition, + Springer, 1987, + ISBN: 0387964673, + LC: QA76.9.C65.B73. + + Bennett Fox, + Algorithm 647: + Implementation and Relative Efficiency of Quasirandom + Sequence Generators, + ACM Transactions on Mathematical Software, + Volume 12, Number 4, December 1986, pages 362-376. + + Pierre L'Ecuyer, + Random Number Generation, + in Handbook of Simulation, + edited by Jerry Banks, + Wiley, 1998, + ISBN: 0471134031, + LC: T57.62.H37. + + Peter Lewis, Allen Goodman, James Miller, + A Pseudo-Random Number Generator for the System/360, + IBM Systems Journal, + Volume 8, Number 2, 1969, pages 136-143. + + Parameters: + + Input, integer SEED, the integer "seed" used to generate + the output random number. SEED should not be 0. + + Output, real R, a random value between 0 and 1. + + Output, integer SEED, the updated seed. This would + normally be used as the input seed on the next call. + + """ + + i4_huge = 2147483647 + + if (seed == 0): + print('') + print('R4_UNIFORM_01 - Fatal error!') + print(' Input SEED = 0!') + sys.exit('R4_UNIFORM_01 - Fatal error!') + + seed = (seed % i4_huge) + + if seed < 0: + seed = seed + i4_huge + + k = (seed // 127773) + + seed = 167 * (seed - k * 127773) - k * 2836 + + if seed < 0: + seed = seed + i4_huge + + r = seed * 4.656612875E-10 + + return r, seed + + +def r8mat_write(filename, m, n, a): + """ + + + R8MAT_WRITE writes an R8MAT to a file. + + Licensing: + + This code is distributed under the GNU LGPL license. + + Modified: + + 12 October 2014 + + Author: + + John Burkardt + + Parameters: + + Input, string FILENAME, the name of the output file. + + Input, integer M, the number of rows in A. + + Input, integer N, the number of columns in A. + + Input, real A(M,N), the matrix. + """ + + with open(filename, 'w') as output: + for i in range(0, m): + for j in range(0, n): + s = f' {a[i, j]:g}' + output.write(s) + output.write('\n') + + +def tau_sobol(dim_num): + """ + + + TAU_SOBOL defines favorable starting seeds for Sobol sequences. + + Discussion: + + For spatial dimensions 1 through 13, this routine returns + a "favorable" value TAU by which an appropriate starting point + in the Sobol sequence can be determined. + + These starting points have the form N = 2**K, where + for integration problems, it is desirable that + TAU + DIM_NUM - 1 <= K + while for optimization problems, it is desirable that + TAU < K. + + Licensing: + + This code is distributed under the MIT license. + + Modified: + + 22 February 2011 + + Author: + + Original FORTRAN77 version by Bennett Fox. + MATLAB version by John Burkardt. + PYTHON version by Corrado Chisari + + Reference: + + IA Antonov, VM Saleev, + USSR Computational Mathematics and Mathematical Physics, + Volume 19, 19, pages 252 - 256. + + Paul Bratley, Bennett Fox, + Algorithm 659: + Implementing Sobol's Quasirandom Sequence Generator, + ACM Transactions on Mathematical Software, + Volume 14, Number 1, pages 88-100, 1988. + + Bennett Fox, + Algorithm 647: + Implementation and Relative Efficiency of Quasirandom + Sequence Generators, + ACM Transactions on Mathematical Software, + Volume 12, Number 4, pages 362-376, 1986. + + Stephen Joe, Frances Kuo + Remark on Algorithm 659: + Implementing Sobol's Quasirandom Sequence Generator, + ACM Transactions on Mathematical Software, + Volume 29, Number 1, pages 49-57, March 2003. + + Ilya Sobol, + USSR Computational Mathematics and Mathematical Physics, + Volume 16, pages 236-242, 1977. + + Ilya Sobol, YL Levitan, + The Production of Points Uniformly Distributed in a Multidimensional + Cube (in Russian), + Preprint IPM Akad. Nauk SSSR, + Number 40, Moscow 1976. + + Parameters: + + Input, integer DIM_NUM, the spatial dimension. Only values + of 1 through 13 will result in useful responses. + + Output, integer TAU, the value TAU. + + """ + dim_max = 13 + + tau_table = [0, 0, 1, 3, 5, 8, 11, 15, 19, 23, 27, 31, 35] + + if 1 <= dim_num <= dim_max: + tau = tau_table[dim_num] + else: + tau = -1 + + return tau diff --git a/PathPlanning/RRTDubins/rrt_dubins.py b/PathPlanning/RRTDubins/rrt_dubins.py index 55cea0bde3..f938419f35 100644 --- a/PathPlanning/RRTDubins/rrt_dubins.py +++ b/PathPlanning/RRTDubins/rrt_dubins.py @@ -6,23 +6,17 @@ """ import copy import math -import os import random -import sys - -import matplotlib.pyplot as plt import numpy as np +import matplotlib.pyplot as plt +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) # root dir +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../DubinsPath/") -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../RRT/") - -try: - from rrt import RRT - import dubins_path_planning -except ImportError: - raise +from RRT.rrt import RRT +from DubinsPath import dubins_path_planner +from utils.plot import plot_arrow show_animation = True @@ -46,6 +40,7 @@ def __init__(self, x, y, yaw): def __init__(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, + robot_radius=0.0 ): """ Setting Parameter @@ -54,6 +49,7 @@ def __init__(self, start, goal, obstacle_list, rand_area, goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] + robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1], start[2]) @@ -67,6 +63,7 @@ def __init__(self, start, goal, obstacle_list, rand_area, self.curvature = 1.0 # for dubins path self.goal_yaw_th = np.deg2rad(1.0) self.goal_xy_th = 0.5 + self.robot_radius = robot_radius def planning(self, animation=True, search_until_max_iter=True): """ @@ -82,7 +79,8 @@ def planning(self, animation=True, search_until_max_iter=True): nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) - if self.check_collision(new_node, self.obstacle_list): + if self.check_collision( + new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) if animation and i % 5 == 0: @@ -126,16 +124,15 @@ def draw_graph(self, rnd=None): # pragma: no cover plt.pause(0.01) def plot_start_goal_arrow(self): # pragma: no cover - dubins_path_planning.plot_arrow( - self.start.x, self.start.y, self.start.yaw) - dubins_path_planning.plot_arrow( - self.end.x, self.end.y, self.end.yaw) + plot_arrow(self.start.x, self.start.y, self.start.yaw) + plot_arrow(self.end.x, self.end.y, self.end.yaw) def steer(self, from_node, to_node): - px, py, pyaw, mode, course_length = dubins_path_planning.dubins_path_planning( - from_node.x, from_node.y, from_node.yaw, - to_node.x, to_node.y, to_node.yaw, self.curvature) + px, py, pyaw, mode, course_lengths = \ + dubins_path_planner.plan_dubins_path( + from_node.x, from_node.y, from_node.yaw, + to_node.x, to_node.y, to_node.yaw, self.curvature) if len(px) <= 1: # cannot find a dubins path return None @@ -148,14 +145,14 @@ def steer(self, from_node, to_node): new_node.path_x = px new_node.path_y = py new_node.path_yaw = pyaw - new_node.cost += course_length + new_node.cost += sum([abs(c) for c in course_lengths]) new_node.parent = from_node return new_node def calc_new_cost(self, from_node, to_node): - _, _, _, _, course_length = dubins_path_planning.dubins_path_planning( + _, _, _, _, course_length = dubins_path_planner.plan_dubins_path( from_node.x, from_node.y, from_node.yaw, to_node.x, to_node.y, to_node.yaw, self.curvature) @@ -209,6 +206,7 @@ def generate_final_course(self, goal_index): def main(): + print("Start " + __file__) # ====Search Path with RRT==== obstacleList = [ diff --git a/PathPlanning/RRTStar/Figure_1.png b/PathPlanning/RRTStar/Figure_1.png deleted file mode 100644 index 72a4ebadf9..0000000000 Binary files a/PathPlanning/RRTStar/Figure_1.png and /dev/null differ diff --git a/PathPlanning/RRTStar/rrt_star.ipynb b/PathPlanning/RRTStar/rrt_star.ipynb deleted file mode 100644 index 20efa46878..0000000000 --- a/PathPlanning/RRTStar/rrt_star.ipynb +++ /dev/null @@ -1,74 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9//HXbNn3hCSEJOy7CCibCBVBVBBZXMBdtLW2Vev9KVqt2ltblbbaumFvtS51q1StgOygoqDITtgTCFnJvi+TzGQyc35/DOcwQybJTFhCMp8nDx6EyZwz58DkzPt8vptOURQFIYQQQgjhN/SdfQBCCCGEEOL8kgAohBBCCOFnJAAKIYQQQvgZCYBCCCGEEH5GAqAQQgghhJ+RACiEEEII4WckAAohhBBC+BkJgEIIIYQQfkYCoBBCCCGEn5EAKIQQQgjhZyQACiGEEEL4GQmAQgghhBB+RgKgEEIIIYSfkQAohBBCCOFnJAAKIYQQQvgZCYBCCCGEEH5GAqAQQgghhJ+RACiEEEII4WckAAohhBBC+BkJgEIIIYQQfkYCoBBCCCGEn5EAKIQQQgjhZyQACiGEEEL4GQmAQgghhBB+RgKgEEIIIYSfkQAohBBCCOFnJAAKIYQQQvgZCYBCCCGEEH5GAqAQQgghhJ+RACiEEEII4WckAAohhBBC+BkJgEIIIYQQfkYCoBBCCCGEn5EAKIQQQgjhZyQACiGEEEL4GQmAQgghhBB+RgKgEEIIIYSfkQAohBBCCOFnJAAKIYQQQvgZCYBCCCGEEH5GAqAQQgghhJ+RACiEEEII4WckAAohhBBC+BkJgEIIIYQQfkYCoBBCCCGEn5EAKIQQQgjhZyQACiGEEEL4GQmAQgghhBB+RgKgEEIIIYSfkQAohBBCCOFnJAAKIYQQQvgZCYBCCCGEEH5GAqAQQgghhJ+RACiEEEII4WckAAohhBBC+BkJgEIIIYQQfsbY2QfQlTkcDgoLCwkPD0en03X24QghhBDCC4qiUFdXR1JSEnq9f9bCJACegcLCQlJSUjr7MIQQQgjRAfn5+SQnJ3f2YXQKCYBnIDw8HIDs7GxiYmI6+WjOHZvNxoYNG7j66qsxmUydfTjnlL+cq5xn9+Mv5yrn2f10xrnW1taSkpKifY77IwmAZ0Bt9g0PDyciIqKTj+bcsdlshISEEBER4RcXIn84VznP7sdfzlXOs/vpzHP15+5b/tnwLYQQQgjhxyQACiGEEEL4GQmAQgghhBB+RgKgEEIIIYSfkQAohBBCCOFnJAAKIYQQQvgZCYBCCCGEEH5GAqAQQgghhJ+RACiEEEII4WckAAohhBBC+BkJgEIIIYQQfkYCoBBCCCGEn5EAKIQQQgjhZyQACiGEEEL4mW4bADdv3sz1119PUlISOp2O5cuXt/rc+++/H51OxyuvvHIej1AIIYQQonN02wBoNpsZOXIkS5YsafN5y5cvZ/v27SQlJZ2nIxNCCCGE6FzGzj6Ac2XGjBnMmDGjzecUFBTw4IMPsn79eq677rrzdGRCCCGEEJ2r2wbA9jgcDu68804ee+wxhg8f7tU2VqsVq9Wq/b22thYAm82GzWY7J8d5IVDPrTufo8pfzlXOs/vxl3OV8+x+OuNc/eHftT1+GwD//Oc/YzQa+fWvf+31NosXL+bZZ59t8fimTZsICQk5m4d3Qdq4cWNnH8J54y/nKufZ/fjLucp5dj/n81wbGhrO22tdqPwyAO7evZtXX32VPXv2oNPpvN7uySef5JFHHtH+XltbS0pKCldeeSWxsbHn4lAvCDabjY0bNzJ9+nRMJlNnH8455S/nKufZ/fjLucp5dj+dca5qC54/88sAuGXLFkpLS0lNTdUes9vtPProo7zyyivk5OR43C4wMJDAwMAWj5tMpm7/Awr+c57gP+cq59n9+Mu5ynl2P+fzXP3l37QtfhkA77zzTq666iq3x6655hruvPNO7rnnnk46KiGEEEKI86PbBsD6+noyMzO1v2dnZ5OWlkZMTAypqaktmmxNJhOJiYkMHjz4fB+qEEIIIcR51W0D4K5du7jyyiu1v6t99+6++27+9a9/ddJRCSGE6CrSy9OpbKxkQMwA4kPjO/twhDirum0AnDJlCoqieP381vr9CSGE8E+PbniUNcfW8O7sd7lntH92D/pX2r8oqS9hwUUL6BPVp7MPR5xF3TYACiGEEGdCh3OWCAXviwndzavbXyWtOI2EsAQWjlrY2YcjzqJuuxScEEIIcSbUacJ8aU3qTrKrskkrTkOv0zNr0KzOPhxxlkkAFEIIITzw9wrgiowVAExOnUxcSFwnH4042yQACiGEEB509QrgR/s/4qWtL3Gs4hj7ivcx7z/zeHfvu15vvzx9OQDzhsw7V4coOpH0ARRCCCE8uBAqgPtK9vHz1T/nsuTLeOO6N3za9s3db/J93vfEBsdS1lDG8vTlOBQH946+t91ty8xlbMnbAsCcIXM6dOziwiYVQCGEEMKDC6ECeLj8MHuL93Kg9IBP21maLewo2AHApNRJfJP9DQBT+0z1avtVR1fhUByMShwlo3+7KQmAQgghhAcXQgUwozwDgCFxQ3zabnfhbprsTcSHxpMamapV86b29S4ALktfBkjzb3cmAVAIIYTw4GxXAM1NZqzNVp/2l1HRsQCoBr5JqZPYUbCDBlsDPUJ6cFH8Re1uW99Uz4bjGwCYO2SuT68rug4JgEIIIYQHniqAlmYLNZYaGm2NPu1LURTCFocR9HwQ5Q3lXm93tPIoAINjfVum9Pu87wHnCF6t+bfvVC3UtmXD8Q1Y7Vb6RfdjRPwIn15XdB0SAIUQQggPPFUAn/nmGaL+HMXvNv3Op33ZHDbta5PB5NU2dsXOscpjgG8VQIfi4If8HwBnBfDr7K8BmNZ3mlfbq82/cwfP9Sowiq5JAqAQQgjhgacKoBYKfewXaLO7BEC9dwGwvKkcS7OFAEOATwMxDpcdptpSTagplIExA9l2YhvgXf8/m93GqqOrAGn+7e4kAAohhBAeeKoA6nX6Fo95oyMVwBPWEwAMih2EQW/w+rW25Dr7/01InsC2E9uwOWykRqbSL7pfu9tuzt1MtaWaHiE9mJgy0evXFF2PBEAhhBDCA48VwJOPORSHT/vqSAWwwFIAdKD/X37L/n/T+k7zqjlXbf6dPXi2T6FTdD0SAIUQQggPPFUAO9wEfLICaNAZvO5XV2B1BkBfRwCrA0AmpU7im5xTA0DaoyiKrP7hRyQACiGEEB54qgB2uAn4ZAXQ2+ZfgBMWZxOwLwEwryaPvJo8DDoDg2IHsbtwN+BdANxVuIuCugJCTaFM6+fdgBHRdUkAFEIIITzwWAHsYBNwk70J8L75F6DQWgj41gSsVv9G9xzN7qLdKCgMiRtCUnhSu9uq1b8ZA2cQZAzy+jVF1yQBUIg2vLT1JXq/0pvi2uLOPhQhxHl2VkcBn2wCDjAEePX8aks1Vc1VAAyO8z0ATk6dzNdZzulfvF3+bXmGNP/6EwmAQrRCURSe+OoJ8mry6PlyT8JfCOe5zc9hbbZ29qEJIc6DszoK2Mcm4KMVzgmgk8KSiAiM8Pp1PPX/86Y592jFUQ6XHcaoNzJz4EyvX090XRIAu4Ame5PPs86LM/fKtlewK3bt7/W2ep7Z9AxBzwcx9I2hrEhfIWFQiG7srI4CPlkB9LYJOKPSuQTcoNhBXr9GVWMVB0sPAjAwZiCHyw6jQ8eUPlPa3VZt/p3adypRQVFev6bouiQAXuB+vvLnhDwfwvv73u/sQ/Erm3I28djGxwB4bupzjOk5RrvwA6SXpzP3P3MJeSGEOUvnsProaq2PjxCie2hrFHCpuRRLs8XrfflaAVTXAPal/9/W/K0oKAyMGciB0gOAsy9gTHBMu9u6rv4h/IMEwAtcRGAEdsVOenl6Zx+K3yixlnDbstuwK3buGnkXv530W3b+fCf239l5YeoLhJpCtec6FAdfZnzJrE9mEflCJHcvu1vCoBDdRFujgL9I/4K8mjyv9+VzBbDc9wDocf1fL/r/FdUVaauFzB482+vXE12bBMALnPrDr94NinOrwdbAn3L+REVjBZf2vJR/XPcP7Y5fp9Px5OQnqf9tPXt+vofhPYa7bWtxWPhg/wfM+mQWPf7Sg4XLF7Lm2BoJg0J0UW2NAj798facjwqgOgG06/q/3kz/8mXGlwCM7zWeXhG9vH490bVJALzAqaO/1LtBce4oisIv1vyC7MZseoT0YNmCZQSbgj0+d3TP0Rz81UEaf9vIwpELW4zsq22q5f1973Pdv68j4aUE7llxj4RBIbqYtkYB+8qXCmCzo5njVccB7/sAWpot7CjYAUDvqN7kVOdg1BuZ3Htyu9tqzb+y9q9fkQB4gVPv/nKqc3zqbyJ89/K2l1l6aCkGDCy9YSkpkSntbhNkCuK9ue9hecrCv+f9m8SwxBbPqbZU86+0f7mFwbXH1koYFOICpwVAD6OAwbepYHypAGZXZWNz2AjQBZAS0f51CJyTODfZm4gPjSerKgtwVvTCAsLa3K7GUqM1F0sA9C8SAC9w8aHxRAVFoaBwrOJYZx9Ot/VV1lfaoI97e93L5NT275pd6XQ6br34VooeLSL719lc0fsKt6YilRoGZ/57JgkvJXDvinslDHYDcnPWPXma88/Tz7U3fJkIWu3z3Suol1vgbIun/n/T+rY//cvazLXYHDaGxA3xeck50bUZO/sARNt0Oh2DYwezvWA7GRUZjEgY0dmH1O1kV2Wz4PMFOBQHd118FzN1ZzYHVp/oPny78FuszVb+8N0feHX7q5htZrfn6NBRbanmvbT3eC/tPaKDopk7ZC43D7uZaf2meT1ZrDj3FEWh2lJNqbm0xe+yhjKOlB1ha/5Wbhh6Ax/f+HFnH644izxVAF2bgH3qA+jDRNBq/79egd73x1MD4OUpl/PnH/4MeNf/T0b/+i8JgF3A4LiTAVD6AZ51DbYG5v1nHpWNlYxNGstj4x/j0LZDZ2XfgcZAnp/2PM9Pe56vjn/Fr9b8imOVziquWlHQocOoN1JlqXILg/OGzOPm4Tczre80n9YOFd5ptDV6DHSl5lJKG04LeeYy7cO7LWsz16IoSof7iInOk12VzVdZXxEXEse8oadWwfBUAfS2Inc6X5qAtQqglwHQoTj4If8HAJLCkygxlxBsDGZC8oQ2t7M2W1lzbA2A23kL/yABsAtQ+wGmV3ieCqa+qZ4aS42M3vKRoij89Mufsq9kH/Gh8bw0/SVG/PNkhfUABBmDiA2OZUDMAAbFDqJPVB/iQ+OJCY4hJjiG6KBo7esQU0ibH/xX9b+Kow8dpbC2kIfXPcyy9GXYFTsKihYuQk2hGHQGqixVvJv2Lu+mvUtMcAxzB8+VMNiOZkczFQ0VLcJcUV0Re/L28PZnb1PeWK49Xt9U7/NrRARGEB8aT3xoPBGBERwoOUBBXQEAE1Mm8scpf6TUXEqVpYqqxirPf3p4rL6pnsrHKyU4dpLff/t7ntv8HHbFzqTUSW5BSA17rpM+u40C9qUPoA+DQNQAmByU7NW+D5UeotpSTagplKL6IsA5EjjQGNjmdl9nf019Uz1J4UmMSRrj1WuJ7kMCYBeg9svwVAFcfXQ1sz6ZxZikMey8b+f5PrQu7a8//pWlB5di1Bt5f+773LHsDrfvW5otFNQVUFBXwHe537W5rwBDQItQ6Prb9fHHL3+cP1z5B5anL+elrS9RaakE0JqJTToT/aL7Ud5YTkVjRYswOH/4fKb2ndqtw6CiKNRYa7QKXHtVuoqGirY/jCtbPhRgCNACnfo7NjiWsIAwgo3BBBgCMOqdl0i7w069rV5baeGb7G9osjehQ0dkUCR7i/Yy7cP2+1u1xmwzt9tZX5wbAYYAbcWfykb3N0p7TcC+8KUC6GsTsNr8e1nKZXyb8y3gXfOvuvrHnMFzOlzZFF2XBMAuwHUuwNObmNSqny8Tkp4rB0sPEhYQRkpECga9obMPp00bj2/kN1/9BoC/XPUXntv8HPm1+YSaQkk1pVKjr6G8sdzrwRlN9iaK64spri/26Th06AgzhdHkaNJey6bYtGWgYoJj6BXei9zqXCobK7UwGB0UzQ1Db+DmYTd3mTBoaba03uzq4bc3za6udOiIC4kjLiSO6OBoIgIiCDYGU1lSSe/U3tq/UbOjmSZ7E/VN9VRbqqmyVHGg5ABVlioabA0+vaaCs3+g6zFEBkUSHRRNdHC0+5+eHjv5Z7DR83RD4tyLDorWvm4RANtpAu5IH8D2KoDlDeWUN5QDkBSY5NW+1fn/JiZP5NXtrwLtDwCxO+ysyFgBwLwh0vzrjyQAdgEDYgag1+mptdZSYi5xm2okNTIVcC5L1GhrbHXeunPN2mxlxP85m0+rflN1Qa8lmVWVdWrQx8i7+DLjS37I/4GooCjW37aeoj1FzJw5E5PJhKIo7C/Zz7L0ZXyV9RWHyw5TZany+TVNehNBxiAMegMOxUFTcxMWuwUFhXpb682RlY2VLT6UAKosVbyz9x3e2fsOBp2B+NB4+kX3Y3DsYC0AtVaFPFuVJrvDTkVjy2bX1n7XNdX5/BqhplCigqIIDwwnxBhCoDEQo96IXqfHoThodjRjabbQYGug1lpLtaWasoayljuqbvlQazyFOJPBxO7C3dq+p/Sews8u+RkJYQluz4sIjLjgb36Eu+hg9wDoepPtsQLYwVHA3lYA1Zae1IhUggxBXu1brQAmhCVQY60hMjCSS3pe0uY2205so9RcSmRgJFf0ucKr1xHdiwTALiDQGEifqD5kVWWRXp7uFgCjg6IJNYVitpnJr833aeHws8n1w/1CbsoyN5mZu3QuVZYqxiaNpaiuiG9zvyU8IJx1t69jdMJoiijSnq/T6RiZOJKRiSP5/ZTfA84L+f6S/aw+tprvcr/jYMlBShtK23xdm8OGrclzRSvIGERSWBLxofFEB0cTYgqhoLaAfSX7aGxubPec7IqdovoiiuqLtI7gbTHqjcQExRBgDyClPMUtIIYGhGoVCteAZbaZqbHUUNZwqjm2vKHcpz5QAAadwdnEagom0BCohSW7w47NYaPR1ojZZtaqoWab2dk07mN21KEjKiiK6KBodFYdfRL6EBMS02YVTv0zMijSrcrzyYFPuH/V/dQ11REdFM27c96V+dK6EdcKYJO9ya053uM0MLpz2wdQ7f/n7QogeTV55NXkYdAZtMrhlD5T2r0RUZt/Zw2aJbMO+KluGwA3b97Miy++yO7duykqKmLZsmXMneu8aNtsNp5++mnWrFlDVlYWkZGRXHXVVfzpT38iKcm7kvv5NiRuCFlVWWSUZzClzxTtcZ1OR2pkKkfKj5BXk9d5AdDq/IQOMgZp/aYuNIqicO+X93Kg9AAJoc7KzYasDYSYQlhz+xrGJ4/HZmu/2dFkMHFp0qVcmnSp9pi5ycze4r1syt7ENznfcKDkABWNFV4dl6XZQlZ1FlnVWS2+Z8BAgDHAYxCMDY7l1hG3khiayLc537LtxDa3aqJJb9KqV9ZmK9XWapodzTQ7mrXAeuLECa+OsS0GnQGDzoBe7wxNiqLQ7GjW+lW5sit2aqw11Fhr2t2vFuJcApoaVNsLchGBEeh1emw2G2vWrNEqur4wN5l5aO1DvJf2HuCcX+3jGz72aoJw0XWc3lpR2Vh5KgC2MxG0L7QKYDsBUO3/Nyh2EDS3v1+1+je652jtBrC9/n+KosjqH6L7BkCz2czIkSO55557uPHGG92+19DQwJ49e3jmmWcYOXIkVVVV/M///A+zZ89m165dnXTEbRscO5g1x9Z4XBO4d1RvLQB2FrUCGB4Q3mnH0J4Xt77Ip4c+xag3MqzHMDZkbSDIGMTKW1cyKXXSGe07NCCUSamTmJQ6iWeueAaAioYKdhXuYmv+VjblbGJfyT5qrbXt7ivQEIjJYKLR1ohdsbdaBaxorGDJjiUARAZG0je6Lza7jbKGMqosVdgctnYrk2eDXbE7w56j9eeo090EGAIIMYUQGhBKREAEUUFRxAbHEhcaR0JoAknhSSRHJNM7qjcpESlEBUV1yujYtOI0bvn8FjIqMtDr9Dw9+WmeueKZC/bmRnSc2gSsQ4eCQmVjpda1pr2JoH3pA6hNBN1OE7BbBbCk/f1qA0CSL+PtPW8D7QfAQ2WHOF51nEBDINcOuLb9FxHdUre9ms2YMYMZM2Z4/F5kZCQbN250e+z1119n3Lhx5OXlkZqaej4O0SeuA0FOlxrhPN7ODIDqtBrhgRdmAFyfuZ4nv34SgEt6XsKmnE2Y9CaWLVjm1Wi5jogNieWaAddwzYBreJZnURSFE7Un2FGwgx0FO9iSt4W9RXux2N1XkbDarVjtVrfHdCd/OVpJWTXWGg6UHjgn56HX6YkKiiIiMILwgHCt+dakN2lVP4fDgc1hw9pspbG50Tk1kbWGqsYqlJO/bA4bNocNs83suZ+eBwadoUV/Rk8jrU9/LDo4ukNhTVEU3tj5Bos2LMJqt5IUnsTHN3zsVnUXXcM32d/wXtp7jEoYxaMTH231eWoTsBryXPvcntVRwF5OBO0aABtL2u8CogbAHqE9aGxuJD40nuE9hre5jdr8O73/9Au6y444t7ptAPRVTU0NOp2OqKgLc/DC4LiTcwGWt5wLUL1bPZsB8I0db/Bd7nfcNfIurul7TbvPV5uAL8QK4PHK49zy31twKA4GxQ5iR8EOjHojn9382Tm5+7U2W936ypWZyygxl1BYV0hBbQFF9UWUmcuoaKzw2EzqiRqizja9Tk+PkB4MjhvMuKRxDI4dTN/ovlqIig6KJjwwvMPNXg7FQZ21jsrGSqosVdqgFvV3VePJxywtH29sdlZAXUdF+iIiMILooGgMTQZeq36N2JDYNqfqQQe//fq3rDq6CnD2jXpvznvEhcR16NxF58qtzuWj/R9R0q+kzQDoqQlY1e4o4I6sBdxGE3CTvUlbx3dQ7CD2sc/t+y9seQGH4uCOi++gT1QfbVoicK7pC87qX3shVVb/ECABEACLxcITTzzBbbfdRkRERKvPs1qtWK2nKjO1tc7mPJvN5lXfsTPRP7I/ADnVOdQ31rtN8JkU5uy3mFude9aO48f8H/ns8GdcmngpU5OdFbK29l3V4BwZG2YKO+f/Fp58n/c9iWGJDIgZ4PZ4fVM9c5bOodpSTUJoAkcrjqLX6Xl/9vvM7D+zxbGqf3d93KE4qGyspNRcSn5NPjk1OeTX5lNYX0iJuYTyhnKqGquotdZSb6u/4Nb1jQmKYUT8CJodzWRVZ2kTxYLz3ErMJZSYS9icuxlwNkEPjBlI/+j+2u9+0f3oH92/Q1P8hBhCCAkLITnMu0ltVY22Ri00uk6irIZF9etqS7VbwFT7F9Zaa7Um96yclv0r2xIREMHxiuPM/WTuqQpkkDMUxwTFEBUU1aL6qPY77Cye3rvdkbfn2TeyLwBHK462+txXd7xKQW2BNpAOoKy+THt+YW0hAHnVedpjDvupKryt2ftrv7XZ+dmh9k31JL08HbtiJywgjB6BPVqc55IdSyiqL+KKlCvoFdqLzTmbUVAYEDOAbfnbAJiSOqXNY8qryWNP0R70Oj0z+s24IN4vnfHevRDOu7P5fQC02WzccsstOBwO/v73v7f53MWLF/Pss8+2eHzTpk2EhIScq0MEnE0QIfoQGhwNvLfiPVKDTzVTF9Y7L1JHCo+wZs0at+1ezX0Vm2LjF8m/IMzofam/uNA5n93BIwfZWOlsLj+92dzV1oqtADTWNLY4hnNNURQeSn+IE9YTPNHnCSZETdAefzHnRQ7VHCJQH0iJuQQdOh5KeYjQnFDW5KzhaP1RPiz+kHBDOBaHhTp7HfX2ehoPNmJxWLA5bNjxrkrnDR06AnWBhBhCCDWEEm4MJ8oYRYQxgjBjGGGGMEINoYQZXL42hmHAQIGlgMzGTDIbMjnWcIwym3fNqJWWSr7L+w4dOnoH9ea2hNuID4xHh45D5kMcrj9MkbVIO0+r3crBsoMcLDvYYl9GnZH4gHh6BvYkMSDR7c/4gHivVjnoKCNGepz8pQk8+Tvy1EN2xY7ZbqbeXk99c73z//Tkn2a7mbpm5/9xvb2eWlstxU3F1Nrd+2bWNtVSW9F+f01XevSn/u+MYYQbwrX/U/V3uDFc+7p3cG9CDGf/utHWz2l30t55Vtucc//k1eSxbNUyAvUtV8V44eALVDVXEWU8VQX8Me1HkoqcN9W7c3YDsDNrp3ZdO1h+6udiy5YtnAj2biBV5olMAHKP57KmwfM1clu1M8QlGhL56quvgFPnWWWroqi+CD16CvcWsmb/Gj4s/BCAZCWZLSe2OHeSDWsKW78GrypzVriHhAxh53cX1uIB5/O929Dg25yf3ZFfB0Cbzcb8+fPJzs7mm2++abP6B/Dkk0/yyCOPaH+vra0lJSWFK6+8ktjY2HN9uAwrHcauol0kDE9g5pCZ2uNDq4fydObTVNoruXbGtW5ViPl/nk+TvYn373iflAjvRy+uXruaryu/pt+AfkyfMJ2NGzcyffr0VkdSZu3Mgnzol9yPmTNnenzOubK3eC8n9p0gyBjEozc8SmSQMw38Zetf2LpvK3qdHqvDeff99xl/56ejfwo4JwR+/K3HOVp/1OfXDDAEEGwMJiwgTGtq7BHSg/iQeJIikugZ1lOrDkUFRaFr1JFzJIesjCyKi4spLCykoKDA+bWtkHx7PgaDAZPJRGJiIr169SIpKYmgnkEkD0/mkksuISYmxu0YSupL2FW0y/m70PlnWyOPFRRyLDnkWHK0xwZEDWBCvwkM7zEcPXoOlR1iQ9YGqq2nJs4L0DsHbphtZmwOG4XWQgqthS32r8M5Ir1flLNa2D+mv/PrmP70j+pPaECoz//OZ8pms7X63j1Re4KFXy7kaJ7z///OEXfy3JTnaHI0UdnYsrJYaal0W8ZN/XulpZIGWwMOHNTZ66iz14EXReBv7vjmjAcfeXuu3Ym356koCg9nPkyNtYaB4wZyUfxFLZ6TWpRKVUkVUaFRVNc43/M9Unswc5rzGvZW/VtkZWbRO6G3dl0rTiuGk5lv0qRJjEwY6dVxr1xfq8pwAAAgAElEQVSzEsph6OChzJzk+Rp5cOtByIFx/ccxfbr7dXfd8XVwyNk0fMP1NwDw4gcvAjBywEi+3fktvSN7c8/ce9psAn7l41cAWDhhITPHn99rdWs6472rtuD5M78NgGr4O3bsGJs2bfIqwAUGBhIY2PIu0mQynZc37dAeQ9lVtIvM6ky31+sT0wcdOqx2K9VN1SSEJWjfCzAE0GRvQtEpPh2j2sTswKFt19Z5NjQ776YigyLP+4fPfw7/B4DZg2cTF+7sr7Uucx3PfOscjauu4/n6jNf5xbhfOI/X1sAtX9zC0Urnh3+YKYz40HgiAyNxmB0M7T301IjUyN70juqtzdMXagptt49NYWEhq1at4tONn7Jt2zZtuhW9Xo/BYMDhcGC3e64sHjt2DIPBOa2K3W7H4XAef3JyMhMmTGD69OnMmjWL5KRkkqOTmTvM2Y9HURSyq7PZUbCDnQU72VG4g92Fu9ucSzCzOpPM6kw+P/K59lhscCyjE0djd9jJqs6ivqmeJqsz0cQExTAxZSIDYwdi0BnIqs7ieOVxMiszMdvM5NbkkluTy6bcTS1eKzEskf7R/RkQM4ABMQO0r/vH9Hf2wTuHTn/vrsxYycIVC7UpP/7vuv/jjovvaGMPbbM2W1v0cdT6N6q/Le6P94zseU5+Vs7X9aizeXOeg2IHsbNwJ9m12YzuNbrF93uG92RfyT63LjXV1mptvxNTJrImcw29o3prjxkNpz42jUaj1//WaoU9yBTE7pLdHCo9xOieo90mbD5WdQxwXutPv+7uL90PwKVJl2IymbA0W9hZ5KzgmZudzdfT+k4jIKD1QSYVDRVsyXNWCm8cfuMF9z45n+/dC+3cO0O3DYD19fVkZmZqf8/OziYtLY2YmBiSkpK46aab2LNnD6tWrcJut1Nc7GzyjImJafMHqDO1NhI4wBBAUngSBXUF5NXkuQVAtUnO12W11KkKvN2us6aBsTvs/PvgvwG4Y4TzAzyzMpNb/3urWwftF6e/yIPjHgScF8HrP7meH0/8SJAxiE9u/ESbC+tM5o3Ly8vjgw8+4IsvvmDv3r0AGAwGt6DncDi0QNfmedntLQLiiRMnWLZsGZ9/7gxro0eP5oYbbuCuu+4iNTUVnU5Hv+h+9Ivuxy0X3QI4q5yHyw5rfTq35m9tNRCq02BUNFa0qCTqdXp06Ki0VLLq2Co4BnEhcdw09CYeGPsAk1MnU9lYSWZlJpmVmRyvOu72Z2VjpbZUnqfJqqODoukf098tGKpfJ4YlnrWpYKzNVh7f+Div7XgNcI4IX3rjUgbGDjyj/QYaA0kMS3SbpF10PjUAHqs45vH7CaHOa6Vrv1Z1bW5AW1nJ9WfmbKwF/Pnhz/nrj39l0WWL3AKgOshPXf/d1Z7iPQDa83cV7qLJ3kR8aDx7i53Xm/ZmNFh1dBV2xc7FCRfTL7pfh85DdB/dNgDu2rWLK6+8Uvu72nR799138/vf/54vv/wSgFGjRrltt2nTJqZMmXLejtMX6khgdakgV6mRqVoAHNtrrPa4OuWArwMT1Ck01ItWe7RRwOd5Gphvsr+huL6Y2GDnlCt11jrmLp3rtj7rH6/8I4smLgKcA2Wu/fha0svTiQqKOuM5AB0OBxs3bmTJkiWsXr0avV7vFvBaq/J1lOv+0tLS2L9/P7/73e+YNWsWDz74IFdddZU2NQs4/x8vTriYixMu5v4x9wOwNX8rz377LBuzNrqFZE8jGkNMIdjsNo83AuUN5fxj9z/4x+5/EGpyzoN498i7uX3E7W5VEoCqxqpTobDyOJlVmVrlsKi+iCpLlbMZu7DlPJwhppBT1UKXquGAmAE+DUrJKM/glv/eQlpxGgD/b8L/Y/G0xW7VH9G9qBPjH63w3M1DDeyu07y4jgIOMTn7aLquEX021gKuanQOmnNdhk5RlLYDYJF7AFSnfxnfa7w2cr29ALg8wzn9i4z+FdCNA+CUKVPa/OH05Qf3QuFaAXRdrxKcAfDHEz+2mApGq+R5GeS07XysHKorUJzvOaU+3O/sBL1g+AJMehO3rbiNQ2WHtO//dtJvefonTwNwoOQA1358LYV1hSRHJLPu9nUMj297vqzWOBwOPv30U5566imysrIwGo0oinLWA19bXF9v7dq1rFy5kn79+vH8888zf/58tyDoamLKRFbdsopPvvyE3NhcluxaQqnZ84TRrh984AyU4QHh2Ow2t1VHzDYz64+vZ/3x9dz+xe0khiUyIXkC1w28jtE9RzO8x3DGJI1hTNKYFq9hbjKTVZXlsXKYV5NHg62BA6UHPM5zaNKb6Bvd1z0cnvyzT1Qf9OhRFIUP9n/Aw+sfxmwzExcSx/tz32fmwAuj/5M4dwbGOCu7aleP06kVQLWbCLQfADu6FrDrRNBqldF1GbpScyk11hp06JyzGbh8RFU2VpJTnQPAqERn0UINgHEhcSgoDI0bSs/wnm6vWVhXSM+wnuh0OhpsDazPXA/AvKHzOnQOonvptgGwOxoYOxAdOqot1ZSaS92aetW5AHNrct226WgF0NfgeC7mAaxvqm+zv525ycwXR74A4M6Rd7L4+8X898h/te8/MuERnpv6HADf5XzHnKVzqLHWMLzHcNbdsY7kCN+mJQFn6Nq4cSOLFi3iwIEDWshqbvZizaZzSH39nJwcbr31VhYvXsyLL77I9OnTW/33izRG8sTlT/DkT55kefpy/vbj3/jxxI8enxtqCsWhOGhsdk7N4irYEExwQDANtgYszRYUFIrqi1iWvkybb0yv0zMsbhijeo5iVMIoRiaOZFTiKOJC4ggNCGVEwghGJIxo8bpN9iZyqnO0aqFrOMyuzqbJ3sTRiqMeKzx6nZ5e4b2oa6ijep+zInxR/EW8fM3LXJZ8mff/uKLL8rYC6DrxersBsKNrAdtPTQStVgBd+76q1b++0X0JMga5TVOyt8jZxNs/uj9RQVE4FIfWlUKdhP/06p9DcXDJm5cQZAxi/R3rOVJ+hMbmRnpH9vZ64Iro3iQAdiFBxiD6RPUhuzqbjIoMjwGwRQWwo30AfdxO6wN4FpuAr/7wanYX7Wb5guXMGNhyVZcVGSsw28z0j+5PRUMFT3/ztPa9X435FS9d/RI6nY7PD3/O7V/cTpO9icmpk1lxywq3phdvFRQUcN9997F27VoMBmezozf9+c4n9XgOHTrENddcw4wZM/jnP/9Jr169Wt3GqDdy07CbuGnYTaQVp/Ha9tf4aP9Hbv/36hxpoaZQJqdOJjEskfSKdPYW7aXR3khjo3u/wgBDAM2OZq2y4lAc2tQyH/GR9rxe4b2cYTBhFKMSncFwQMwArZktwBDAoNhBHte4tjvsnKg9oQVCtwpi5XHMNjP5tflu2xwsPcj0D6cDaPNGempePteDUsT5ofbtLDWXUm2pbjHps3oNbbSdev/62gTsUBw02ZtwKA7t+Z64NQFbWjYBt9X8q/bxG93TOZDlUOkhqi3VhJpCtYmgp/Wd5rbN9hPbKTGXEBEYQd/oviz+fjEA84bM65TlFcWFRwJgFzM4brAzAJZn8JPeP9Eeby0AnnEF8ORFy+aw8fmRz9Hr9Sy4aEGL55+LCmBhXSFN9qZWP4w/2u8MEjMGzGDB5wu0u/F7R93L6zNfR6fT8caON3ho7UMoKMwbMo+Pb/hY69jtLUVReP/993nooYe0oHM+m3o7Qj2+DRs2MGTIEJYsWcJdd93V7oV/VOIo3p3zLn+Z/hfe3vM2r21/zW3iaLPN7JyOArg85XI+u/kzeob3ZFfhLm3k8eGyw+2+3/Q6PQ7FQUFdAQV1Baw5dmreslBTKBcnXMzIBGeVcFTiKEYkjGjx4WrQG+gd5Ryh7Vr9cCgOXv7xZZ78+klsDhvhhnDmDptLs9KshUTXQSlqU5qr8zUoRZxbEYERJIYlUlxfzLGKY279o+FUBVC9gQWwNFtosDUQYgrR3nNug0BOawL+Nudbpn0wjYviL+LAL1tfjtF1EIjWB9ClCVgd3Kd29XGl9f9LdO//d0nPS9iStwUdOq7oc4XbNupybzMHzkSv07Py6EoAbcCbEBIAu5jBsYNZl7muxUjg3pG9AQ8VwDPsA9jscDYtNjoauWvZXQDMHz6/xQfg2a4AKopCYZ1zrrmk8KQW3y+pL2HD8Q0AfHHkC61CdcvwW3jr+rfQoeOpr5/ihe9fAOCXY37J6zNe93kVi8rKSu68807WrFmDTqfrcn1H7XY7ZrOZhQsX8umnn/LRRx8RHd1+9TMuJI4nJj3BoomLWJ6+nFe3v9oiKP2Q/wOzl84mNjiWX4//NX+66k/0CO1BfVM9e4r2aIFwZ8FOsquz3bZ17XNl0pvoEdqDQEMgBbUFmG1mfjzxo1tztA4dg2IHOauELsHw9DBWZi5j4YqFWqCcO3guN5luYv71891GdXsalKJ+fb4GpYjzY1DsIGcArGwZANU+gKf3da1srCTEFEKwMbjF909vAlYHzKnXytacSQVQDXPq8X6ff3L93xDnpOiX9LykxY3yiowVAMwZPIctuVuobKwkNjiWy1Mvb/M4hf+QANjFqBeH09cEViuAZQ1lNNoatSrX2eoD6HrX61AcGHTuH3JtVQDf3PUm+0r2sWD4ghZ3qa2paKzQLpieptZYenCptmSSuhLKdQOv48MbPsShOLhv5X28l/Ye4BwF/NTkp3yu2hw5coSZM2eSn+9sRuxq4U+lHvf69eu55JJLWLNmDQMGDGhnKyfX5uF9xft4fcfrfLT/I7c+UxWNFfzvt//Ls989y4wBM/jN5b9hcupktwp1mbmMnYU72Vmwk20F29iav1Vbps3msGlhX4eOHiE9GBA9gLjQOGosNWRUZFBiLiGjIoOMigz+c+g/2n57hPTQwqBRb+TtPW9T1lBGoCGQV659hXsvvpe1a9e2OK/o4GjGBHs/KEX9+kwHpciI4/NvYMxANudu9tgPMDo4GpPepF1r1Mp0ZWMlyRHJ7TYBA94HQPVaqtNp/fZcK4CtBcCC2gKtAjk+eTwAW3K3uB3X6f3/0svTyajIwKQ3MWPADH636XeAc65U9XiFkHdCF9PaXIBRQVGEBYRR31RPfm2+1mfqbPUBdA2AdsWOgdMCYBsVwHXH17E8fTkXJ1zsdQBUA0F8aLwWRl19dMDZ/KteSCelTOKLBV9gbbYy//P5rDm2Br1Oz5uz3uRnl/zMq9d0tXr1am6//XasVusF39zrLbvdTn5+PmPGjOHf//63z9uPTBzJ27Pf5s9X/Zm397zN6ztep6CuQPu+Q3Gw+thqVh9bTUpECosmLmLhqIVEBEbQI7QHMwfO1EbeKopCbk0uP+b/yOeHP2dr/laKzcUoKJQ1lFHWcGqZu8jASKb2mUpSeBImg4lqS7X2AVfWUMbGrI1szDq1hJQOHf2j+7OrcBdWmxVzvZnLLZcTZ4rz6jy9GZSiVQ5dQmJWVRY2h63NQSkpESluofDSpEvbnbpDnJm2BoLodXoSwhI4Ueu+nJvaD7C9UcCK4nsFUF0TGND6JFqaLdoo39MDoLokY1xwHMPjh5NXk0d+bT569BwuPwy07P+3It1Z/ZvadyoRgRGnpn+R5l/hQgJgF6POBZhdlY212apVFHQ65zJch8sOk1udq130zlYF0LXi59p8B86LYFsVQPVi6kvH+raaf9PL092a5ob1GMbGuzZSa63lun9fx46CHQQbg/nPTf/h+sHXe/2aqo0bN2rrQnfVql9r7HY7jY2NzJs3jwceeKBDy/bFhsTym0m/4dGJj/Jlxpe8tv01vsv9zu05+bX5PLzuYRZtWMT84fN59LJHtQ7s4Hy/9onqQ5+oPtw64lbA2RH/X2n/4uMDH7OzcKf2nq2x1vBNzjdu++8T1Yd5Q+YRHhDOhqwN2vvFqDc6J78uP6x9OAI89ben6Bfdz635eGTCSFIjU32qDHszKMXTdDaZlZk02Bq0lVK+zv4agBuH3igB8BxrbyRwQuipAKhe2zwFQHXqrdPfL75WAC3NFsB5Y6N2FzhWcQwFhaigKK1ZV7W7yLke8VX9rwJO9f8bHj+cA6UHMOqNLeYyVQPfnMFz2Fu8l7yaPEJMIUzvN73NYxT+RQJgF9MzrKdW6TtedZxhPYZp31MDoGs/wLM1D+DpTcCurHYrdsVZJfNUAfTU4bk9bQXAxzY+pn2dGJbIzvt2UlRXxLUfX8vRiqPEBMew6tZVXJbi+1Qfb731Fm+88YbP23UlaqhdsmQJQ4YM4YEHHujQfox6IzcMvYEbht7A/pL9vL79dT7c/6Fb87DNYePjAx/z8YGPGRo3lMcvf5wFwxd4HIgTbArml2N/yS/H/pImexNfZX3F0oNLWZa+TKv0qnKqc7SKiSolIoVp/abRL6ofgcZAaiw17CvZx/ac7ZTbysmqyiKrKkubmgacFZjTQ+GwHsM61FTrOihlGu4VGUVRKDGXtKgcXp4i/bHONdcAePr8qeC5i8npAVAd6RtoDHQfBdyBPoBqc25r/f9OP74dhTsA54TPcCoAJoQmcIADTEie4LbOdlFdEdtPbAecTb7/2PUPAK4dcK3PA+BE9yYBsIvR6XQMiRvCrsJdZJRnuAfAiJYjgc9aH0Bd6wFQrf6BcwTn6c6oAhjmHgAVReHrLGf1RIeOQ786xNGKo8z4eAbF9cWkRqay/o71HjtSt+edd97hwQcf9Hm7ruzBBx8kODiYe++994z2c3HCxfxz9j/501V/4p297/DGjjfIq3UfkHSk/Aj3rLiHB9Y8wD2j7uHX43/tsZIGzvet2mSshsFPD33K8vTl1Fhr3J6r9tvKr83nX2n/0h4PNAQyMmEk4yPHc+2l1xIeFE55QzkHSg+QVpzG4bLDVFuq+S73O7cKplFvZFiPYS2CYWxI++uFt0an02lLxZ3JyjPCd/2j+6NDR11TXYv5U+HUwArXvoDqNcs1MDU2NxJoDGwxCtjXCqA65Yw3/f8URWFHgTMATkieAJwKgGqQPL35d+XRlSgojE0aS6+IXrL6h2iVBMAuaHDsYGcAPH0kcNTJkcAuH7xnqw+gnlN3vS0C4Mn+fyGmEI8jID2NeGtPaxXA7/O+1y58T09+mrTiNOYunUtdUx0j4kew7o51HquG7Vm9ejX33Xefz9t1Bz/72c9ISEjguuuuO+N9xYbE8vjlj/PIZY+wMmMlr+14jW9zvnV7ToOtgTd2vsEbO99gXK9xPDbxMeYMnuOxrye4h8G9RXuZ9595bhOeq+/HmOAY+kf3B5xNatXWaq16snr9asDZ7DYmaQwzB87kqclPERkUSVFdEWnFaewr2UdacRpVlir2l+xnf8l+baUZgOSI5BajkPtF92sxKMBf5FTn0CeqT2cfRrsCjYHa/KlHK462CIBqBTDAEKBd7yoanGthm/QmDDoDdsVOg62BqKAo91HAPvQBVG/CPVUAW5sCpqSphPLGckx6E6MSR1HVWKXN+6duc3oXAnX079whc8mszORg6UEMOgOzBs1q8/iE/5EA2AW1NhDE01yA57MC6Kn/n7XZqnWgPht9AF/e9jLg7JPYN7ov1350LTaHjSt6X8HyW5a3mOjVG0eOHGH+/Pk+b9edLFiwgJ07dzJ06NCzsj+j3si8ofOYN3QeB0oOaKOHXedTA9hRsIObP7uZqKAofjXmV/xizC9IiUxpsT9FUXh7z9s8vO5hGpsbiQ+N553Z76BDx6eHP2VF+goqGyu1yk1SeBKzh8wmJTyFfen7qAiqYG/xXmqsNXyd/bXWBw+c3SrG9RrHtL7TeOLyJ+gZ3pOc6hzSitNIK0ljX/E+jlcd50TtCU7UntDWXQXn0ocXJ1zstrrJRfEXtTkhcFenKAq3f3E7Sw8uZcs9W7rEtCIDYwdqAXBy78lu31MDoevNq/o+0ul0hJhCqGuq065jrY0Cbq+bjRoufRkBfLTB2W9xdM/RBBmD+DrraxQUekf2Jrcml2BjsFYZBOe1+KusrwBn/z91+pgpfaZ0aPJ70b1JAOyC2psK5nz3AWxrBLBa/dOhIyIwwuvX9xQArc1WbX63ftH9uPdLZ7PlTcNu4sN5HxJkDPJ6/6rKykpmzpyJ1WrtdgM+vKUoChaLhZkzZ7Jnzx6v5gn0xYiEEbx1/VvO5uE97/DGzjdaLFlYbanmhe9fYPH3i7mq31U8ctkjXN3/avQ6PdWWan6+8ud8dvgzAK7ufzUfzP1A++C+btB1WJutbMzayGeHP2N5+nIK6wr5YN8HAMSYYritz228MPUFIoIi2F24mx0FO9hZuJODpQcpqi9iRcYKrXICzqlDxvYay09Sf8Kjlz1K/+j+HKs8xr7ifVq18EDpAeqb6tmav5Wt+Vu1bfU6fatzFnYHOp2OsIAwFBQWf7+YVbetan+jTjYoZhAbjm/wOBDEYx9Ai/tqIK4B0G0UsC99AE9eg81NzjlL1RtiRVG0m/kWAdDsPN7T+/8lhiWSW5PL5N6TtZt8gPXH19Nkb2JAzACG9RjG/avuB5yrfwhxOgmAXZA6EjijPMOtU7MaAPNr8nEoDvQ6PQH6s1MBdG0Ctjvcp0XxZgRwdHC0T01l6vQirgFwefpybYDBscpjADw49kFeufaVDk2+qygKd955J/n5+d1mqpeOUqeIueOOO1i1atU5WekiJjiGxy5/zNk8fHQlr+94nW+y3Uf3KijatC6JYYnMGzKP1UdXk1ebh1Fv5Pmpz7No4qIW76VAYyCzBs1i1qBZWhj89NCnrMhYQaW1kiW7lrBk1xJ6hffipmE3sXDUQt68/k0szRb2Fu3VAuGOgh0crzrOscpjHKs8xr8POKfLMegMjEgYwbikcYxPHs9D4x9iUOwgsqqytFCYVpJGWnEapeZS0svTSS9PZ+nBpdoxxofGO8OgS7VwUOygLjkv2+OXP847e99h9bHV7Cvex8jEC3ttWW0gSGXLAKj2AXS9rrW1HNzpPxuuk+Y32ZvcApmr1iqAhXWF1DfVY9AZ6Bfdz20btQKoBcCTE0Cr18Gpfdybf9WK35zBcyg1l2o3JrMHz/Z4TMK/db0rj2BgzEB06KiyVFHeUE6PUOe0Ab3Ce6FDh9VupdRcSmJYYosl3bzVogLYVhNwWxXADowAtjvsFNcXA+4B8KWtL7k9b/G0xfzm8t90OKy8//77rFmzpv0n+gm73c6aNWv44IMPuPvuu8/Z6xj0BuYOmcvcIXM5WHpQGz18evNwcX0x/7fr/wDn4KK/Xv1Xfn7pz9v9/3YNg/WN9Sz+bDG5obmsPLaSgroCXt3+Kq9uf1ULgzcPu5mHJzyshcqKhgp2Fe5yC4Ul5hJnyCtO4609bwHOYHBJz0sYlzSOsb3Gcv+Y++kb1Vd77r7ifVooPFpxlFJzKRuOb9BWsAHn+t4XxV/kthbyxQkX+1Qt95aiKLy/731mDZpFXIh3cyK2ZkDMAOYPn8/Sg0v50w9/4pMbPzlLR3lutDUVjFoBdL1JbisAnr4WsBrg7YqdoroirS/26dSbafV6qTbJqi05/WP6u4VHa7OVrMYswDkAxNJs0QaEZFZmAjCt36kBIDa7jdXHnH1d5w6Zy5cZX6KgMCZpjMduFUJIAOyCgk3BpEamkluTS0ZFhhYATQYTSeFJFNQVkFeTR2JY4lnrAwhonaF96QPYkRHApeZSrYIZHxoPOKuau4qcc//p0PHunHdZOGqh9yd0moKCAh566KEuubzbuaTT6XjwwQe56qqr6NWr1zl/vYviL+LN699k8VWLeXfvu7yx840W07uAcw3iX6z+BS/9+BL/M/5/uHPknV6FpEBjIOMix/H7mb/HoXOw4fgGPjv8GSsyVngMg/OHz2dC8gSuGXAN1wy4BnB+yJ+oPeEWCHcV7qKuqY7v8753WyIvNjiWsb3GMjZpLON6jWPhqIUkhCXQYGvgYOlBt2C4r3gfZpvZ45Jz/aP7O6uELsEwJSLljCqzizYs4m/b/sbcIXP5Yv4XZ1zlfeLyJ1h6cCmfHvqUP0z5AwNjB57R/s4lNQAerzyO3WF3azFQuxK43iS7BkB1JLA6ere1UcCA2xRIp1P3r14v1Zvi1vr/7SvZR7PSTFxwHP2i+/FD/g802ZuIDoqmylJFVFAUoxNPza25OXcz1ZZqeoT04LLky1j8/WJAmn9F6yQAdlFD4oaQW5NLenm627QSqZGpWgAc12vcqUreGfYBBOedr8cA2EoF8K9b/8qr218FOjYCODEsEYPeQKm5lInvTNS+//bst88o/CmKwn333YfFYpHwdxpFUWhsbOS+++47r9XRmOAYFk1cxLAew7jtv7e1mOpFlVmZyYNrH+TRDY9y+4jbeXDcg24TTLcl0BjI9YOv5/rB12NptpwKg+ktw+DNw27m5uE3MyF5gnMFj8gUUiJTuHHYjYCzCp5RnqEFwp2FO0krTqOisYJ1metYl7lOe93UyFQtEI5NGsstF91CRGAEDsVBVlWWVllURyGfqD3B8arjHK86zhdHvtD2Ex0U7dav8Kp+V9ErwvuQfufIO3l9x+ssT1/OO3vf6dAKOa5GJo7kuoHXsfrYav7yw1/45+x/ntH+zqXUyFQCDAFY7Vbya/PdRi9HBkYSaAh0C2/eNgG79gEE91U+XCmKovURVN/bp1cAh8S6B0B1BPu4XuPQ6XTajUav8F5UWaqY0meKW5BV+7BeP+h6zDazNhhEVv8QrZEA2EUNjh3M+uPryShvORXMjyd+1AaCnM0KoNr0cXoAVPu0nF4BzKnOIb/WuY5uR0cAH688zjUfXcOJOudM/UlhSdw7+szmrNu4caPH9WGFk91uZ+3atWzcuJHp08/PygFN9iae/uZpXtz6IgAj4kfw3JXPsTZzLR/s/8BtKS5wVlreTXuXd9PeZVTiKB4e/3CrE0x7EmQMYvbg2cwePNtjGHxl+yu8sv0VkiOSuWmoszI4Pnm89jOg1+kZ2mMoQ3sM5bGxGwQAACAASURBVK6RdzmPqdnKgdIDbpXCI2VHyKvJI68mj/8e+S/grCANiRvCuF7j+Envn3Dv6Hu5adhN2rFVNFRoYVD983DZYaosVWzK2cSmnE0AfH7z51og9caoxFE8P/V5Hv/qcR5e9zBX9L7ijKt2T056ktXHVvP+vvf5/ZTf+xRIzyeD3kD/6P4cKT/C0YqjbgFQp9OREJbgNniuwdaApdmCSW8i0BCoPQatjwIGsNgtHl/fdYCIuga2WgHUpoCJc58CZnuBczLnsUljgVMDQJoczmu5a/8/RVFO9f8bMod1metosjcxMGYgQ+POzsh+0f1IAOyitIEgp08Fc9pk0GqQ8zkAtlIBBO+ngVErg9CxVUAabA2M+ecYqi3V2vcenfio1/vxxOFwsGjRIgwGg98P/GiLwWBg0aJF7N27F73+3M5zl1WVxS2f38LOwp0A/GrMr3jp6pcINgUze8hsXpj2Au+lvceSHUv43yv+l7yaPF7f8bq2XnBacRr3rLiHh9Y+xM9G/4xfjPlFiw/TtngKg58e+pQvM77kRO0JtzB487CbuXnYzW5hUBVoDGRM0hjGJI3RHquz1rG7aDc7C3ayo3AHOwp2kFeTx5HyIxwpP0JWVVaLG5rYkFim9p3qNr+btdnKkfIjbtVCbyufrh6d+ChrM9eyKWcTt39xOz/c+0Or8y964/LUy/lJ75+wOXczf/3xr/ztmr91eF/n2qDYQVoAvLr/1W7fSwxLdAuA4GzBeHrT0yRHJAN4HgWsuFcAm5o9X2ddr6Pq9Uy9KW6tCVj9eRiXNA6H4uCH/B8AyK12jqB3fX+kFaeRX5uvLff20y9/Cjibf8/FgC7RPUgA7KK8nQtQrQD6PAjEhwqgGvTCAsI8Pg4dqwAeLnOu5RoVGEW1tRq9Ts/PL/251/vx5NNPP+XAgQNntA9/YLfb2b9/P5999hkLFiw4Z6+z9OBS7l91P7XWWqKConh39rvMG+reZyk6OJpHLnuEh8c/jE6nQ6/T8+TkJ1mZsZKXt73MlrwtgLMSrYa1yamT+fX4XzOzn29rHZ8eBtdnrtf6DJ6oPcHL217m5W0vkxKRovUZHN9rfKsfsuGB4UzpM4UpfaZoj5XUl7CzcCc7C3ZqP6/tCTQGatPJnAm9Ts/7c9/n4n9czM7Cnfzhuz/wx6l/PKN9PjnpSTbnbubN3W/y1OSnzmjFlHOprYEg6khgOLWetLq8pdpNpLVRwK7NsK31AXS9AVcDYHRwNOYms9ZK4joJdJm5jKxq5wCQsUljOVR6iGpLNUGGICx2CwmhCW6rQKnVv6v7X41Bb3AbDCJEa/xzCvtuQL1bPF553O3ion6gqPOsqZW8c1oBbKUPoOsScR2pAKocDufrTUye2CJk+sLhcPDUU0+d84pWd6HX6/ntb3+r/fufTeYmMz9d8VNu/e+t1FpruTzlctLuT2sR/lwZ9AbtPahONL35ns2kP5DOQ+MeIsR4avLlLXlbuPmzm0l9LZWPiz7WphXyRZAxiDlD5vDRDR9R9lgZyxcs57YRtxEWEEZ+bT4vb3uZy965jN6v9Oa5zc95vd+EsARmDZrFs1c+y08v+anPx3WmUiJTeHPWmwC88P0LboNYTrcpe5O2rmxrrul/DaMTR9Nga+C17a+d1WM9m9QAqE4h5cp1LkC1wqfgDH5qEFRHqZ++FrDr31vrA+h6I62tBBIUrYXRuJA4t+CsNv8mByYTFRSl/R/1DO8JOKt/rkFUW/1j8Fw2ZW+i1lpLYlgi45PHezweIUACYJeVFJ5EWEAYdsVOVlWW9vj5qACqF0SVN03A3lYAX9v+GptzN2t/jwyMpNbm7DPz1OSnvD18j7766iuysrLOSaDpjhwOB1lZWXz99dftP9kH+0v2M+afY3g37V106Hh68tN8u/DbVqfPaM/guMG8NuM1Sh8r5a1Zb7n1eaporOCzks946ceXtFGcHaGGwY9v+JjSRaUsW7DMLQye3nx4oZs/fD53jbwLh+LgzmV3UmNpOejm7T1vM/WDqdy38r42JznW6XQ8OelJAF7f8brbjd+FxJupYMAl+J2cF1D901MT8OlaDYAnr78GnUHbR2RQZKvNv2roHhTqPGZ1/j/1/8F1/d/sqmz2lexDr9Nz3aDrWJa+DHDOBeivyxQK78i7o4vS6XTaBc11IIgaAMsbymmwNZyVPoBqE4ja1NGhCqCXo4Df2v2W22St6muHmcK0aTk6asmSJRiN0uvBF0ajkSVLlpy1/TkUB7d/cTvp5ekkhSfx9V1f88epfzwrkyGHBoRy36X3cehXh9h671ZuGX6L9oH7xq43SH45mcc3Pu52w9QRwaZg5g6Z6xYGHxj7wBkf//n2+ozX6RvVl5zqHB5a+1CL788bMo+Y4BgOlB7g7zv/3ua+bhh6A4NiB1FlqeLN3W+eq0M+IwNjnANecqpzWgQ11yZgNfCpN79q6PI4Cvjk9UkNha01Aav7Ut/nkUGR6HX6VkcAbyvYBsCgEOc1fkuus5uD2jri2v9Prf5NTp1MTHCM21rAQrRFAmAX5qkfYFRQlFaJy6/JP1UB9HUaGJeO4WrFT10NpCODQLypACqK0uLDWd3H3CFzz6gzc15eHqtWraK5ue3lmoS75uZmVq5cSX5+/lnZn16n57057zF3yFzS7k/jyr5XnpX9utLpdFyWchmf3PQJub/O5Y6ed5AakUplYyUvbn2RAa8NYObHM1l9dHWLVW18pYbBC30lDE8iAiP4cN6H6HV6Ptz/If85+B+378eGxPLg2AcBeGbTM5TUl7S6L4PewG8u/w0Af/vxb1iaPY+G7UyJYYmEBYRp0++c/j2VWgFUw5xavWttFDCcCoWttbRoFcCTN9Hq9dDTCGCH4tAmfB4UMoi8mjzya/PR45yGq29UX/pG/3/2zjs6qqqL4r8p6Z0ESAUSAqGHUEIAKYKI9CaiUgQV/UCKIDZQxAqiohQFREWK2JEOUqRIL6GGEloIkARII71M+f54vDtvkkmDIARmr+WSmXnlziQ5s+85Z+8TKI5XEr79V/eTkJGAq52rGUm0wgpLsBLACgxLM4FVKpVZGfhOewBBMQ7uLvcAJmQkFJoGIQfj99u/X9qlW8TixYutvX+3CbVazeLFi8vtes18m/HXgL+EgfndRBWnKjxZ9UnOjDzDqqdX0blmZ4wYWX9uPd1/7k7w7GA+3fkpiVmJd30t9yNaV2stWiv+t/Z/XL5pIvo3Mm8IW5603DTe2vJWsdca1GgQ/q7+xGfEs+jIoru36NuEsmpSsAwsm0Ery7tyy4CcLSxqFrDyufPJ5y3eW46hcka6oAn0lbQrXM+8Lp5Ly03DQetAdYfq7LoiqX9lU3wlsUvKShItM71CevHXKan827VW1yJH0t0OrH6pDyas34gVGKVRAt9pD6Dy3LL4ABqNRuF3BaXLAJ5PMQVPZZANcA0gqFKQpVNKjeXLl1t7/24Ter2e5cuXl3zgfQyNWkOPkB5sGLSBs6PPMj5iPB72HsSkxvDWlrfwn+HPkL+GsPfK3ofuy+7dtu8S7hdOak4qQ1YMEVnRyk6VGdFshDjuxyM/sufyniKvY6uxZULLCQBM3z292L7Be4WiCKAyAyhDJnwFM4CWKhEyEdxy0XK/bMEY6uHgIZmJ34rdM/fNFFlJuf+vqU9TNCqNmOdrQIpfSgK49uxaDEYDjao2ooZ7DdH/V57TP/L1+YTND+Odf965b/s7rbg9WAlgBYbwAky0TAAv3bx02z2Ayp6sEjOAuYUzgLn6XDOxSGl6AJW7ZyUBHd5keFmWXghxcXEcPnz4oftiL09ERkYSHx9/r5dRLgiuFMwXnb/gyvgr/NDzB5r6NCVXn8uSY0to+X1Lmi1oxs/H7+/ZtuUJG40NP/X9CScbJ7bFbOOLPV+I16a0n4Kfi8ncedT6UUWWzY1GI7U9a+OgdeBCygV+i/rtrq+9rKhdybISWO4BlIkcQEZ+htkxFlXABWJKUaRXjqEyefSw9yD2ZqxZqbxhlYaASQEc7hcOmAQgNzIl30slARTmzyG9OJV4irPJZ7HV2PJE8BMW13E7+PnEzxy9dpQFkQvKpVfXivsHVgJYgSE3NSdlJ5mVsCxmAMvYAyiXKqD4DKDRaDSVgBUZQOVO0U5jh4O25AkNygyg/CWjQsVrLe/M/HnNmjVWM9RywJo1a+71EsoVjjaODAsbxoHhB9j34j6eC30OO40dkfGRwoT3YUFwpWBmPiGNbXznn3eIjI8EpE2d/DxAZHwkCyItj3yLS4+jx889BFGaunNqoc3i3YLOoONQ3KESew+LygA62zqLkW8yUnNSzcqoxamA5eeKJIAFKjAe9h5mG/fanrVxsnUCYO8VSQAS7htOhi6DqBtRgERO61WuJ7KV2fnZ/H3+b0Dq/5PJYMfAjhbnZOsNev4+93eZMrMGo4FpO6cBMD5ifKkn7VhRMWAlgBUYTrZOguxZUgLfSQ+gSqUq5AVoiQBm67LFY6VHn9kUEAePUhEwMwJ4K3vYsEpDHG0dizqlVNi0aZO1/+8OodFo2LRp071exl2BSqUi3C+cH3v/yNXxV5n+2HSz0ufDgufDnqdPnT7kG/IZuHygIDx96/alay2TofbELRNJykoqdL6fqx+DQwcDUgXhxPUTrI1e+5+svd7X9Wi2oJkQTxQFefRdQQKoUqnMlMAgzQNWbmqLmgWsfK4oclUw/lZyqGTWux1aVRIRZeZlcvy6ZFQf7hvO6UzpGDc7N8Dc/mXzhc1k5WcR4BpAmHeYIIBFlX+3XNzCEz89Qdj8sFJXQ1aeXsmpxFO42bkxovnD9zfxoMP6rVjBYakPsLqb5Kd2Jz2AUNgLUPgAKkpAykyfvIMt+HxpPQAtNVBPantn3n8Ae/futY59u0Po9Xr27t17r5dx1+Hp6MnrrV+/4xm5FREqlYoFPRbg4+zD6cTTvL7xdfH87C6zsdfaA5CSk8LELRMtXmPiIxNRq9SCCH2y85P/pPVCVmHvit1V7HFy1SQ+I75QP1vBPsDk7GSztpZiVcC3MoBFlccLVmA8HDwsEsCDcQcxGA34ufjh7+rPqcxTZudZsn/pFdKLq+lXORB3ABUqeoT0sLiGhUcWAtCuertSbciNRiOf7PwEgNHhoy1mFa2o2LASwAoOQQAtZAAvp10WtgNlzQBC4WkglnwAlWPglIHxduYAKzOAIAXV/vX6l3ndSiQnJ3PlypU7uoYVEi5fvkxycvK9XoYVdxGejp4s6i0peL85+I3I4AV5BPFu23fFcd9GfsvBuIOFzq/lWYunGzwNSERp75W9bL+0vdh7Xky5yLv/vMsPh3+47XW3DmgNIOblFgUPBw8qO0rq80J9gM6FM4BK0lPULGAoOQMox1A5dnrYe5ht2uURf3L/nzzB42SmNA7zZu5N1Co17aq3Y+XplfT+pTe/n/wdgF51erHytEQGWwa0tChoSclOEQrhYY2HWVxjQWy+sJmDcQdxtHFkbMTYUp1jRcWClQBWcAgrmCTTbtLXxRe1Sk2ePo/MvEyg7D2AYMoAykFNDnJmBLAoD8AyZgDTctMKWXF4Onrece/eoUOH7uh8K8wRGRl5r5dgxV1Gp5qdGBcxDoDnVz0v7EkmtJpgNrFi1LpRFnv8JrWZhAqVeG3qzqnF3m/zhc189O9HzNgz47azhTIB3H15d4l9h0UqgZ3MiVNGXgbONqa2luJUwCIDaCw+AygIoIMHpxJN2T05gykTwAi/CHJ0OZzNMpHUJj5N8HDwYMWZFaw8s5K03DTc7NxoV71dierfX078Qq4+l4ZVGtLEp4nFYwpCzv691OQlvBy9SnWOFRULVgJYwWFJCWyjscHXxRdAkKryyABaMoIu0gMwr2xTQCxNZ2gV0KqMKy6MEydOWPv/yglqtZoTJ07c62VY8R/gk46f0LBKQ65nXuf5lc9jNBqx1dgyt9tcccy+q/v48ciPhc6tV7ke/er1AyRitPH8Rg7FFb0Re6r+U9hr7Ym6EcWh+NvbsDX2boyjjSMpOSlmpVVLEDOBk4rPAALYae3Ev2VfwIKzgMFECossAcsZwFtWVLZqWxIyEgDJvF9WWssCkBb+LTgUfwidUSdK7x1qdMBoNLLh3AZx3W61u5GRl8G2mG1A0dM/5PLvsMbDSrWp3n15N9titmGjtuG1VncmwrPi/oX1m7GCQy4Bn085b5blU46EgzvrAdTppQygJRGIJQ9AKJABtC+FB6CF/j+5L+ZOEBcXh0ajKflAK0qERqMhLi7uXi/Div8A9lp7lvVbhp3GjrVn1zLv4DwA2tdoz+BGg8Vxb256k5TslELnv9PmHcBEkIrLArrZu9G3bl8Ai4SyNLDR2AjbFEt9gDcyb7D02FJ+OPyD6ANUjpwE8x5AefOrVAFn5mdiNBotloAt9UcrIcbKGaVYejPXNHu5iU8TVCoVV9KuEJceh0aloalPU1HOlu/XMagjR68dJSEjQTzXO6Q3a8+uRW/U06BKA4IrBRe6d9T1KA7EHUCr1jKo0SCL6ysI+ec1JHQI/q7+pTrHioqHB5YA7tixgx49euDr64tKpWLFihVmrxuNRqZMmYKvry8ODg60b9+eqKioe7Ta24efqx+ONo7oDDoupl4Uz8sEUC7flEsG0AIBtOQBCGXPABbs/wPTe7gTxMXFWQ2gywkGg8FKAB8iNKjSgE8f+xSA1za+JjJrnz/+Oe727gAkZicyeevkQueGeofSK6SXeLz81PJiM3PPhT4HwLLjywrN6QVgyhT48EPLJ3/4IUyZUmwfYHRSNIP/Gsx7294rehqIQgUsxzql753BaCDfkH97JWCD+VzhG1k3xGvyRlfO/jWs2hAnWyfxPrJ12diobWgd0Fpk/4wYhd+fXP7tHVJ89q977e6lmr5z7Nox1kSvQa1Si/F+VjyYeGAJYGZmJqGhoUUOsp8+fTozZsxgzpw5HDhwAG9vbzp16kR6esVyOler1CILqAyw1Vwl8nQtU5rfeSc9gMUZQVvyAISy9wBaygCWBwG8cuWKVQFcTtDr9RVeUKM36Bm6Yij/Xvr3Xi+lQmB0i9E8XvNxsnXZPPvns+Tp86jiVIVpHaeJY74+8DVHE44WOlcpGjFi5NNdnxZ5n46BHfFz8SMlJ4U10Rb8JjUamDy5MAn88EPpeY2mWAJYv0p9QBq55uPiA0gEUNlzqMwAyiSvoOI3Kz/LYglYZABL2QMYl27aSMkEUJ4A0sKvBQajgd1XdotjIvwjcLJ1Miv/dgzsiFatFc9ZKv/m6/NZcmwJAENDh1pcW0HIvn/96/V/KNXwDxMeWALYpUsXPvroI/r27VvoNaPRyFdffcWkSZPo27cvDRo0YNGiRWRlZbFs2bJ7sNo7g6U+wOrukhWM3GdSnhlAZZArVQawBBXwryd+FUFKifIggAkJCXd8DStMqOif56Kji1h0dBFtf2xL/9/7czHlYsknPcRQq9T82OtHPB08OZxwmHf/kUjd8KbDifCPACQSNGr9qEICjqa+TekS3EU8XnpsKbE3Yy3eR6PWMCR0CAA/Hv2x8AHvvgsffACTJ6P+4AMwGlF//LFE/j74AN59l5YBLVGh4lzyOa5lXDM73d3eXfRF5+mkWJiak2omPFMSQLlqUND0OSs/y6IRdFFTkmQoW3DUKrVZz3MhAYh/BFHXoyTl762v6I6BHUnLTTMjt71Cepl5AVoSd6w/t57rmdep4lTFzMuxKJxLPsevUb8C8PYjb5d4vBUVGw/lXJeLFy+SkJDA448/Lp6zs7OjXbt27N69m5dfftniebm5ueTmmsoTaWnSrNv8/Hzy88ueYSsvBLtLfR+nbpwS6/B1koJdXJq008w35JOXl1cmVa1c/sjOy0aNWgS5vPw8cZ/U7FQAnLROZp/BzWxTj4urrWuxn8/pG6fF9AAlvB287/hzzcsrO/G1omjk5eXd09/1skJeq/z/zoGdGR42nO+PfM8fJ/9g1ZlVjAkfw1ut3qrwPmcF32t5wcvei3ld59H/z/58tvszOgV2ol31dszqPIuIHyIwGA3sjN3JoiOLGNhgoNm5b7d6m/Xn1qNChc6gY/rO6Xz5+JcW7/Ns/WeZunMq68+u50rKlcKijLfe4oOtk/nwo4/oDmgA/XvvYXjrLcjPx0njRL3K9Yi6EcWOmB2FSqL1vOoRlx7HmcQzVHOtRmxaLKeun8LdXypnV7IzVSoKlmxlpGWniZ5ogHydFPuVIhBLn392nim+udu7c+K6JKbSqDTUcq9FVk6WsNVpUrUJ2y9K1jlqlRqD0UDbgLb8fdZ8ikeXml2YvE0qv/es3ROdrrAFzfeR34vPFkPJveDT/p2GwWiga3BX6nnW+8/+1u/W725p7vkw46EkgHIWo2pV8wBTtWpVLl26VOR5U6dO5f333y/0/NatW3F0vLNpFXeCrBTJnmDvub2sW7cOgEvZ0vuISY4Rx61etxqtqvQ/8sw0yULmYORBwt3CyUiTBB/7DuxDf0bKAh67egyA61eui3sDnLlkykaeijyF4UzRfXiWynHOGme2by7eP6w0yMjIKPkgK0qNjIwMs59zRYFyikk3ulG/dn0WXl3I0YyjfL7ncxYcWMBAn4F0rNTRbAxiRcTdmNhigw2dKnViU/Imnv7taWaGzMRZ60x3r+6surEKgHFrx2F30Q5HjXksbOTciGMZUpxYcGgBzbOb427jbvE+IY4hnMk6w+Q/JtOrSq9Crzv7tgO2owHy1LA+LAwUv4/+Bn+iiOKnHT9he97W7FyHDGmM2doDa/EweBBLLH9s/YMUT5OIxV5lT44xR5R246+Zz7/++5+/zTKA+/fvJ+9UHvp8KR7m5OZY/Ps4dv2Y6bPU2XAhWcoAett4s/nvzVzIukC2LhtHtSPn953nt0vSHGWdUYed2o6kY0l8d/U7cY3ajrU5uP0gy6OWS9dJ8S5039T8VOHjGHgz0Oz1C1kX2JayjW5e3ahqJ30PJuUlseiU5AHZVtX2nvyd/5fThrKysv6ze92veCgJoIyC2TCj0Vhshuztt99m/Pjx4nFaWhoBAQE8+uijeHp63rV1lgSfBB9m/DCDG4YbdO0qpflTc1J59cyrpOtNpdjHHn+s0LzL4vBZ4mdEZ0VTv2F9iAV3d3fIhqZNm4pywtr1a+EGNKrTiK5tTCWG737/Dm7F1W4duonGa0v4dNGnkCLZzBiQiGKwV7B4L3cCZ2dnEhMTSz7QilLB2dm5XH4u/xXy8/PZtGkTnTp1wsbGxuy1EcYRrDu3jje2vMHZ5LN8c/kb/s39l88f+5xHazx6j1Z8+yjuvZYH2ua1Jfz7cM6lnGOlfiVLeyylTV4bGs5vSFxGHKn6VPY77Gf6Y9PNznOJdaHj0o6oUJFnzOOU2yk+bC/18uXocvhq31f8fup3dgzZwRjvMbyy4RX25+9nXpd55vE4OZmegySbGJ0KbA3Q/fBhDJNM04KSjyfz9+q/SbBNKPR7mnAkgdXrVpPtnE1EQARHI4/iEOBA1/am4/xi/DifaupH9qjkAYq28GYRzaSJR7f2t82bN6dTUCfsou1Iz0pHa6u1+Pdxcs9JuNX2V9m9MtduSCXqdrXa0bVrV+Yfmg/R0Kp6K7p3687YOSbj5TbV2tCzW09e+9pkxzIkfAhufm6kH03Hw96D1/q/ZiZYAZi5fyb6KD1NfZoyop/5GLdhq4ax6sYqnKo4sairRPpe3/w6OqOONgFtGN9/PP8l7vbvriXIFbyHGQ8lAfT2lno9EhIS8PHxEc9fv369UFZQCTs7O+zs7Ao9b2Nj85/90lpC/apSg3NidiLpunQqOVTCS+uFi62LWS+eUW0s0zpttdIO2qCSSJk8CUStUYvrZOqkLKG7g7vZtdPyTH9cVVyqFHvfmJsxgOS5JZeCa3jUKJfP1NbWtuSDrCg1bG1t7+nv+u2iqL/R3vV60zWkK3MPzGXK9ikcv36czss60yukF591+qxCNsHfrXjkYePBT/1+otX3rfj91O/0COnB4NDBzOoyiyd/fxKAWftn8WLTF4XoAqBDzQ60rd6WHZd2ADD30FzebvM2bvZuaLQaFh1bxPmU8/x55k+eDX2W8ZvGE3UjihNJJ0Rf243MG6hah+GVkcENR6g2Dibshg/ff1+yeXpX6k1sF9gOgMj4SHTocLBxEOto5N0IgJOJJ+lWuxsguQ8oPysfVx8zAphnNG8hyTPm4WFj6mnWarXY2NiIrLHBaLD42csbWzCJ6wCa+jXFxsaGgwlS+TfCP4L4rHgup102fX6BHTh38xyxaab+yb71+vLtoW8B6BHSAwc70/sEKZmx+NhiQJrxrFxTQkYCv52UMozjWo7DxsaGxKxEFhxeAEjjN+/V3/h/+V1aEeNYeeOBFYEUh8DAQLy9vc3SzXl5eWzfvp1Wre7cfPi/hpOtk/BqkoUgKpWqkIiirEpgoQIujQ1MARXwzRxTD2BxNjAGo0FY1ShLb7KK+U4hk30rygcP4udpq7FlbMRYzo0+x+jw0WhUGlaeWUn9b+rz2t+vkZqTeq+XeN8g3C+cKe2nAPDKule4mHKRvnX7CrGHAQOj1hUWhMiKYBUq0nLTmHtQMpRWq9S83FTquZ57cC7u9u5Czar0BMyb9DZe56VybN8BkGMDH7WDdx/FTB0c6B6It7M3+Yb8QqPq6lWuB0gKXFkQUpwVDJimfygfm6mAb71POXYVNclE2XunjJ9CAawQgOyM3Wl2zQ41Opipf2t71ibEM4QVZyRrM0vTPyLjIzl+/Th2GjueafCM2WvfHvqWfEM+Ef4RNPdrDsDsfbPJys+iiU8THq/5eKHrWfFg4oElgBkZGRw5coQjR44AkvDjyJEjxMbGolKpePXVV/nkk0/466+/OHHiBEOHDsXR0ZFnn332Hq/89iBmAicVVgLLPStlVQLLKmC58djSJBBhBF1AmgtpRgAAIABJREFUBSwbnTraOBYqTQBsj9nOY4sf49X1rwpVsfK65aEABvD397caQZcTNBoN/v4Primsp6Mns7rM4viI43QJ7kK+IZ8Ze2dQa3Yt5h6YW+Sc14cNbz/yNq0DWpOel87gvwajN+qZ03UOdhqpOrLt0jYxp1ZGx8CORPhHiN66L/d+KSZrDG08FFuNLYfiD3Ew7iBDGw8FJE9AOWb5uvpy00GKY9NCJ4jrftQOSQV8y+pJpVIVaQfjZu8mNsoyUTubfNYs7hSco2uJACp7APP1+by9+W0RB4tUASs230rBW6h3KCnZpukl4X7hoidab9TjpHEitGqoGQHsHdKbY9ePEZMag4PWwSJhk73/etfpbbYBz9PnCfI9JnwMIG3iZ+2fBcDERybe8fhNKyoOHlgCePDgQcLCwggLCwNg/PjxhIWFMXmypJp64403ePXVVxk5ciTNmjXj6tWrbNy4ERcXl+Iue99CzAS24AUo7yTLOg2kPHwA3ezcLF77YupFtlzcwoG4A+K5XL1JYV1eBNDX19c6Cq6coFar8fX1vdfLuOuoW7ku6wauY/3A9dT1qktiViIj142k8bzG/H3u73u9vHsOjVrDkj5LcLF1YdflXUzbOY0gjyAz379xf48TpAgkYqbMAl7PvM4Ph38AoLJTZfrX6w/A3ANz6RTUCV8XX5Kyk4SIQfXBBxzuIsVy45/m5JJ335WMom+hWD/AylJpOjk7Ga1aS44uh6tpV8XrBTOASj9TkMibkiBl67KZtmuaaHkpjQ2MnFH2sPfAy9FLxMAgjyAqO1Vm5+Wd4tiGzg3J0eWIUW8Aver0YsVpKfvXObhzob7uHF0Oy45LdmbDGg8ze+33qN9JyEjA18WXJ+tJZft5B+eRmpNKHa869KlreZawFQ8mHthvxvbt22M0Ggv99+OPPwJSQJoyZQrx8fHk5OSwfft2GjRocG8XfQewlAGUSZQcsG43A1jIB9BQsg9gZv6t3kB7y2q/5Oxk6ZoKcqb0FyxPAmg1gi4f6PX6h4IAyngi+AmOjTjGnC5z8HTwJOpGFE/89ATdlnUrcd7sg45Aj0C+7vo1AFO2TWH/1f1MaDWB2pUksVdcehwf7/jY7JwuwV1o6tNUZAGn754uNpf/a/Y/AH4+8TPpeekMaiiNLFN6AlYaOByAhvsvYatIxqreN89YPVLtEUCaZ1uQkDWoIsX404mnCfIIAszLwAUzgMqRbVC4BFwwKyy/t4JQZgBlAiiXpOUJIBH+EaRkpwiLGJAI4PbY7SIGV3WqSgu/FsVO/1h1ZhUpOSn4u/rzWNBjprUZjczcNxOAEc1GYKOxIUeXwxd7vgDgrdZvFTK+tuLBhvWn/YDAkhl0efcAyiKQkjKABqOBHF0OIJXVLEEmgEWRs/IigA0aNLCOgisnGAyGCr1JKg7Lji9jxekVhXq4tGotr4S/wtnRZxkXMQ6tWsu6s+to8E0DxqwfQ1JW0j1a8b3HoEaDGFB/AHqjnoHLB5JvyGde93ni9c92f2ZGrgpmAWNvxvLziZ8BKWvXoEoDsnXZLD66mOcaS6Ph1p1dJ3qEG/R6kXhXNW65sCD76SLX1di7MY42jiRnJ5vFQzBlAKNuRFkcCVfQe1CZxQTLJWAlStMDKG/EZSNtuf+vhV8Ldl+Wpn/I92jk0oiN5zeKc3vU7sGlm5c4du0YGpWG7rW7F7qXXP4d0miIiNnyfQ7EHcBOYyf6LhceXsi1zGtUc6vGsw0rZvuTFbcPKwF8QCCXgM8lnxO7UplEyYTttjOAxZWALWQAM/Myxb+9HLwsXlsmgAV7bED60i1kAnubaNq0ablcxwoJTZoUnjZQ0ZGVn8W4v8fR59c+hM0PY/mp5YUyRx4OHszoPIOokVH0DOmJ3qhn9v7Z1Jpdi1n7Zt3WqMWKDpVKxdxucwlwDeBc8jnGbRjHo4GPiuyd3qgvJAjpGdKTRlUbiUzZtJ2S8bBKpWJEM8mqZN7BedT1qku4Xzg6g06UM9UaLdFtpKxZ5V1Fe4TaaGwI9wsHCpeBZXVy1I0oka0sLgMI5uPgMvMyzUrAcqyVCVtRBNBS7A33C8doNIoRcBH+EfwbK/X/GTHi7eSNv50/f583tR30rtObladXAtC2ettCG+yraVcFYZR7KWXI2b9nGj5DZafK5Ovzmb5bsux5vdXrZupkKx4OWAngAwJ/V38ctA7kG/LFeCuZAMql1TL3ABZRApa/HI1Go9ghO9s6i/OU1jNeTpYJYEqOZBKYmpta6HwfZ59yK0VUqlTpgRYu/JcICAigUqWS5zpXNOgNel4MexEXWxeOXjtKv9/60XheY/44+UchIljbszYrn17J5sGbaVilISk5KYzdMJaGcxuyNnptkQTgQYWHgweL+yxGhYrvDn/HX6f+4vPHPxdTVTZd2MTKMyvF8SqVinfavCMen0o8JQjNoEaDcLJx4lTiKXZc2iFm1yrVwC7PSs+FH0tAoygefLTjI7N1FdUHKJdd5T44gOhkRQZQ0QMoxz8HrcliJS03zSw25RkkYic/V2QJ2ELsDa0ayvmU8yRlJ2GrsSW0aqhQAAO0r9GehLwEYUvjZONEx6COpvKvhdm/S44twWA08Ei1R8wsjK6mXeWPk38AJvHHLyd+ISY1hipOVXgh7AWL67biwYaVAN7HyMzL5Ni1Y6KcWhzUKrUoach9gH6ufubBqqwZwBJEIJn5mSLgKUvAysbpSvaWCYOcAUzLTSt0fg33GmVaZ0mIiIiwKoHvEBqNhoiIiHu9jLsCFzsXPu74MTGvxvBOm3dwtXPl+PXj9P+9P6HzQvkt6rdCRLBjUEcOv3yY+d3nU9mxMmeSztD95+50XtrZrIfrYUD7Gu15vdXrAAxfPRy9Uc+nj30qXh+1bpRQ/AL0q9ePul51xeNPdn6C0WjE1c6VgQ2lUXJzD85lQIMB2GpsOXrtKEcSJDeHRk++QqKTCs8sI4PiTRu7d7eaBCigIICx5gTQ2daZ6m6SO4JcHj2bdFa8rqw8yO4FSpFFWl6aWQm4YAawNCpgkIR5wZWCRfYvzDsMI0YzUVyHGh2ITIsUj58IfsJsHnCvEPNJKUajUZR/C4o/5h6UVOxtqrUhzCcMg9HAtF3TABgXMc7ML9GKhwdWAngfo+asmoTOC+XkjZOlOr5gH6BWrcXPxU+8XuYewBIygDLRU6vUZkFSmQGs5FA8AZSPlS0kANGcXV7o1KmTtQ/wDqHX6+nUqdO9XsZdRSWHSnzY4UNixsYwue1k3OzcOHH9BAP+GEDDuQ355cQvZgIojVrDS01f4uzos7zR6g1sNbZsurCJ0HmhjFgzghuZN+7hu/lv8WGHDwnzDiMpO4lhK4fxYpMXae4recxdTb/KtJ3TxLFqlZpJbUzTOw7GHWTLxS2ASQyy/NRy8vX5guQsOiJNq9Da2hPVUspsDbta9OzmlgEtUaHibPJZ0UMoQy4Dy6T0QsoFERvttfY4as1VtfZae/Hv9Nx0sxJwwc1xaUQgIFVsNGqNmQDkYNxBs016++rtOZx+WDzuFdKLNdFrMBgNNPFpImy+ZOy5sofopGgcbRyFqhokVfD8Q/MBGNtCmjCy6swqTt44iZudmyi9W/HwwUoA72PUrFQTkPr6SoM6nhasYBRiitvOAN4igHLgkwmgsvyrDIrXMq6JfxdlAi0TQPlayvPLSwAio3v37g9dae5uoHv3wg3nDyI8HDx4/9H3iXk1hintpuBm58bJGyd55s9naDC3AcuOLzMjgm72bnza6VNOvXKKfnX7YTAamHdoHsGzg/l89+fk6nKLuduDAVuNLT/1/Ql7rT0bz2/k6/1fM7/7fJEZm7pzKhdSLojjBzQYQHClYPH4k38/IU+fx6Kji9CoNOQb8vnh8A+ij23p8aUiftk9JRkb19l5GlUR+zp3e3dB9GRhhQxZCHIl7QqONo7ojXoupl4Ur8t9dTKZU/bGpeelW1QBl+SdV7CKI69BKQBRzkQP8gjC29mbo2lHASlj2K12t2LVvwsPS9m//vX6m/Vk/3z8ZxKzEqnmVo1edXphNBr55N9PABgVPgo3e8tWXVY8+LASwPsYcoA8n3y+hCMliAygBSsYuP0eQJ3+lhG0bANzq6dQ3lkX9KHac2WP+HdJGUAZygBZ3gTQ19eXsLAwq8HpHaBJkyZmYxMfBrjbu/Ne+/eIeTWG99u/j7u9O6cTTzNw+UDqf1OfpceWmtmABHkE8cdTf7DtuW2EeYeRlpvG65tep/439S0qjB801K1cly8elyxF3tz8Jlq1ljEtpH6zfEM+o9eNFsdq1VqzLODWmK0cijvE4YTDIr58G/ktHQM74u3sTWJWIuvPrgeg4YCxpNpD1XQDrUwT0wrZwchlYGVfHZjI18nEk9SqJGUTlUKQKk5VAJPdlXJCUUZehrkKuEB1pKifcUGxW6uAVuTockRpO8I/wsz/r0ONDuy8vJN8pOu3rd5WyjCfl6ZXFfTry8zL5NeoXwHz8q/RaBQmz680fwWtWiv8Vx20DiIjaMXDCSsBvI8R7CERwNJmAIvzAoQ7zwAWnARy4KrUr1KQzCmtEzzsC2cA9Qa92ag4MPkGFlxzeaFv375WQ+jbhEajoW/fvvd6GfcM7vbuTG43mZixMXz46Id42HtwJukMg/8aTL2v67H46GIzItiuRjsOvnSQhb0W4u3szfmU8/T5tQ8dFncQX/gPKkY0G0G3Wt3I1ecycPlAJrWZJAjVunPrhLEzwMCGA836faftmsZHj5rEHDGpMWy5uEWoihcdlcrAtg7O7Gso9ep9nBJW5FqKEoIIJfB1y1YwshJYTEAqTgV8a3MsRsHdyhqujV7LgkMLxHWV0z9A6ps8HH+YfEM+lR0rU82tmlm/YofADmb2L73r9GbDuQ3k6nOp6VFTkFgZy08tJz0vnSCPINpWbyue/zf2X44kHMFB68CLTV4EENm/l5q+RGWnypY/PCseCli/Ee9jyBnAcymlI4ByMLueeZ3LN6Wt8Z0QwLj0OLP7F/QBzNJJu1o5U1hw3WA5A3gz92ahXhmldczdIIBDhgyx9gHeJgwGA0OGDLnXy7jncLN345227xDzagwfd/iYSg6VOJt8ludWPEfdr+vy45EfzUjD0MZDOTv6LJPaTMJea8+2mG00md+E4auGk5CRcI/fzd2BSqXi+57fU8WpCsevH2fqzqnCMBpgxNoRIttvo7Hh7UfeFq+tOrMKDwcPOtfsLJ6be3Cu8ARcHb1a9FVeaymRu5rbj1FE2x2tq0nHHIo7ZCZCkQUoN7JuiNFwSgIoxsVZuHBBI+iCGUD5lDkH5vDSmpdE+bkgAWxUtZGp/OvfgpM3TpqZTncI7MDacyay3CvENP2jd53ehaoZsvhjaOhQs9dm7ZOyf4MbDaaSQyX2XN7D1pit2KhteK3la4XenxUPF6wE8D5GWXsAXexcxE5Unh1pVgIuowhEJpGyrUxBEYiccWzs3djsPGV2z1IPoJwxlNfqoHEwmwIS4BpQpnWWBtWqVaN79+5otYXnEltRNLRaLT169CAgoPx/JhUVrnauTGwzkZixMUztOBVPB0/OJZ9j2MphhMwJ4YfDP4i/NWdbZz7q8BGnXznN0w2exoiR7w5/R63ZtZi2c1qpFP4VDVWdq7Kwl0RIvtz7Ja62rmIixeW0y3y+63Nx7HOhzwnCBZIv4IePfiger41ei4utC818m6Ez6IRxtFPLPmTYgn+KnmZxpnt7f2Ty8Qt0D8Tb2Zt8Qz4H4w6K551snQh0DwTATiuJz84mm5TABeOPUtmbo8uxqAKWN8cyaZRLvk42TuI8Gc62zrjYuZgEIH4m/z+QStS5+lyxpgaVG+Dr4sua6DUA9KljXv69mHKRrTFbUaESZBngUuol0TM4uoVUfp+6cyogEcIAN+vf9MMOKwG8jyFn0uLS48wyZMVBbui9kCo1XMt+XIDZLrg0kMmjl6Pk5VeQAMq72oIWAkr1o6UMoBgDd+t6lRxNx7jYuvDPxX94efXLYsdbXhg1ahQ6na7kA60Q0Ol0jBo16l4v476Ei50Lbz3yFjGvxvDpY59S2bEyF1Iu8MKqFwiZE8J3kd8JIljdvTo/9/uZXc/vItwvnIy8DN7e8jZ1v67L71G/P3D9gV1rdWVks5EADFs1jKkdpopKwQc7PiD2ZiwgEbA3W78pzvvlxC94OnoK9a8RIwsiF/BcqERsZE9ArYMLR5tIxHHMSdN4wmt6kwBNpVKVWAbO00lVEWUG0MfFvNdVWd4vOAtY/vkqJ26AqaIh90crCaBMMJUZQGWfYsfAjmIDD5LgY1vMNm7m3qSKUxUxQUSGXBrvGNTRbMP/zYFvMBgNdAzsSIMqDTh+7Tiro1ejQsWbj7yJFVZYCeB9jEoOlUQPnVJBVxx61ZYCp71Gsi5QWgX8E/NPme7fqGojwFQSKUQAbxFKpVEqSKUV+Xilv5+MlOwUs+vIBBMk78KtMVv5NvJbM1VceeCxxx4jKCjI2gtYSqjVaoKCgujYseO9XspdwZroNbT7sR0LDy8sNPKrLHC2deaN1m9wcexFPuv0GVWcqnAx9SLDVw+n1uxaLDi0QLRftApoxZ4X9rCkzxL8XPyISY3hqT+eou2Pbc2yVA8CPnv8M+p41SEuPY6pu6aKMXD5hnxGrTNtKl4Ie0H03emNej7b9RkfPPqBeH3ewXk8WfdJbNQ2HE44zLHrxwAw9JGUsG2ibxRdBi6KAN7qoZMN6a+kXRGkTWkGDeatM7m6XPMSsEwAVUVkAG2lDKBMNAEaVmnItYxrxKTGoEJFc9/mZgSwQ2AHke0DaXqKvBnuFdLLjGwajAZBipXij6z8LBZELgAQQhzZ969//f6iXciKhxvWb8L7HEIJnFI6JXCwp/nx1VxNO8LEzMQy3dtWYwuYAmBpM4CJWdJ9HLQOFpW3Yg7wrbKvMktYw72GKH0onezLA2q1mo8//tjaC1hKGAwGPvnkkweWMC88spAdl3bw/Krn8f7cm6ErhrI9ZnuRZr4lwcnWiQmtJnBx7EW+ePwLqjpV5dLNS7y05iVqza7F/IPzydPnoVapGdRoEGdGnWFKuyk4aB3YGbuT5gua89yK57iadrWc3+m9gaONI8v6LsNGbcPyU8up4lRFiD5WR68WilYHGwfeaPWGOG/hkYVUdqwsvOySspP4N/Zfeob0BGDpsaUA1B/yOtlaqHEjn4amxB87duwQ/5b7AHdf3m32c21QRZppfT7lvIg/cqtNwXFwyuxdrj7XrAQsTwKRTaNlyKI2OQOYqzdZAbWu1lpk/+pWrsvN3JtcTpPabdQqNS0DWrLpgvTZeGg9aFi5ISvOmPr/lNgWs41LNy/hZudmVhpeemwpKTkpBLoH0q1WN84nn+eXE78AmPVdWvFw48GM7A8QhBCklH2ANT2kvkGZAKpUKmFsWtb5ujIBLGoSSFEZQHlXrRzvpkRB1bCt2lb8O7hSsHDmV4pJygtPPfUUDRs2tE4GKQEajYbQ0FD69+9f8sEVFF91/oqPO3xMcKVgMvMzWXR0Ee0XtSd4VjAfbP+AmNSY27quo40j41uO58LYC3zZ+Uu8nb2JvRnL/9b+j+BZwcw9MJdcXS5Otk681/49okdHM7jRYAAWH11M7Tm1+XD7hxbnZFc0hPmE8VEHSdn72sbXeL/9++K14auHi83ly81eFnPDc/W5fLn3S7Ms4PTd00UZeNmJZeiMOlw8fTjaWCJr/U6Z7tluazvT/b3DcNA6kJydLAzywZQBjLpeeCZwwTipFHDk6fMszgIuSAAL9gAqCWDnmp3FBJCC/n9NfZpy6sYpQTpbubciMiGSuPQ4nG2d6RDYwew+svjj6QZPi4240WgU4o/R4aPRqDVM3zUdg9FA11pdC/VsW/HwwkoA73PIhK7UBPCWcETpHehqL/UBypm50qKoDKDsjyUygAUIYGqONN+3KIPRpOwks8c5evP+GLncLXt0lSfUajWff/45er2+5IMfYuj1ej777LMHNvsHEOAWwMQ2E4keFc3OYTt5IewFXGxduJh6kfe2vUfgzEA6LOrAkqNLSt2Dq4SjjSOvRrzKhTEXmPnETHycfbicdpmR60YSPDuYr/d/TY4uB39Xfxb3Wcy+F/fRKqAVWflZTN42mZA5ISw7vqzC9we+1vI12tdoT2Z+Jl8f+Jp+dfsBcOnmJb7c8yUgfVYTWk0Q58w9OJeqTlXFsQfjDhLoEUgVpypcz7ouRqTpektZwWej7bAEG40N4X7hgHkZuI5XHdQqNUnZSUIMIVceZNsaGUoinq/Pt6gCLpQBLNADqDQDr+1Zm71XTRNACpZ/151dJx63cGvBymhpVnLXWl3NppLczLnJnyf/BMzLv/9c/IeoG1E42TgxLGwYV9Ou8uPRHwFr9s8Kczy40f0Bwe1mAK9lXhN9TXIfodybV1oUJIByn0uhDGCBErA8Is7d3t3idVdHrzZ7LM8DBmnHnG/Ix1Zja6YOLE889thjeHl5lXzgQwwvL68HfvSbDJVKRetqrfmu53fEvxbPkj5LRKZla8xWhqwYgs8XPry46kV2xu4sMyFzsHFgTIsxXBh7gdldZuPn4seVtCuMWj+KmrNqMnvfbHJ0OYT7hbNz2E5+6fcL1d2qcyXtCgOXD6TVD62EYrQiQqPWsLj3Ytzt3dl/dT/V3KqJTePkbZNFyXtk85EiVmXkZTBn/xymd5ourjNy7UjhCbg1eSsADZ5/mzwN1IrPpXYR+1tLfYAONg5i5KTcpyxnAG01tmajKZUwYhTef2CqjiitsAxGg9gcyz2AcqbQXmuPwWgQHqot/FqYKYA7Bnbkz1MSqXOycaKecz1WnpEIYMHpH79F/Ua2Lpu6XnUFyQWE8fPQxkNxt3dnxp4Z5OnzaFOtDY9Ue8Tyh2TFQwkrAbzPUVYC6OHgIYKobN8iiyzk0mxpIQigoYQewAIZwIx8iXjKJZ2CSM4ylYA1Ko1ZSVjuC6zpUbOQsq68sHnzZhITy5YNfdiQmJjIpk2b7vUy/nM42ToxqNEgtgzZQsxYaQJIoHsg6XnpfH/4e9osbEPtObX5eMfHwiaptLDX2jMqfBTnxpzj665f4+/qT1x6HGM2jCFoZhAz984kR5fDgAYDOPXKKT7u8DFONk7svbKXlt+3ZODygUI9W17I0+f9J56EAW4BzOs2D4CZ+2aK+bN5+jwhCHGxc2FcxDhxzsx9M6nqVJXqrpKQbWfsTgY0GADAgbQDJGUl4e5Tg6P1pTjTTzEyXTkVRO4DVBotg6kMLMczpRJYbl8pmNkD85KwIICKcXFZeaaMoZwBVPY7n048TXpeOk42Tvi6+BJ1I0q6htqGII8g0b7zRM0nSMhN4EzSGWzUNnSt1dVsHXL5d1jjYaIsfT75PKvPSBvs0eGjScpKEnOAJ7aZWOi9WPFww0oA73PIBPBy2uVSzxQVZeBbgURWtRWcvlESShSBFJEBlAOgpeAJ4Otism3wcPAwI4Ry6aS8BSAyDAYDEyZMsPYAlgCNRsOECRMeasFMdffqTG43mXNjzrHtuW0MbTwUJxsnziWf452t71D9q+o8vuRxlh1fViaLJXutPSObj+Tc6HPM7TaXANcA4jPiefXvVwmaFcSXe77EiJGJbSZydvRZnm/8PCpULDu+jJA5IUzeOvmOVMsyDEYDL6x6gRbfteDUjVMln3CHGNBgAIMbDcZgNPDnqT+FIfOKMyvYHrMdkPzq5IxcUnYSCyIX8H2v7wEp+/bvpX9pXLUxOqOOX09Ko8+ye3YBYPA5h4K3BKClf0tAKvHK4yvBRADlCoSSAMrtK8oxcDKUcVjO7BWcFyyj4JjMGm41RDa3mW8zIQYBaBnQkh2XTAKW/vX6s++m9HqHwA5mLTWnE0+z58oeNCoNgxoNEs9/feBrjBh5IvgJQrxCmL1/Npn5mYR5h5kZbFthBVgJ4H2PKk5VcLZ1xmA0lLopXQhBbvUB+rn6Aebj1kqDUquAFRnAHF0OBqTXiyo5X88yBWEfZx+RMVSr1CJAy2Pwyhu//fYbx48ft/YAlgC9Xs+xY8f4/fff7/VS7jnUKjXtarRjYa+FJExIYGGvhbSr3g4jRjZd2MTA5QPx/sKbl1e/zJ7Le0pdIrbT2vG/Zv/j3JhzzO8+n+pu1UnISGD8xvEEzQzii91f4Grnyve9vufgSwdpW70tObocPtzxIbVn12bRkUW3rVgGSYy1/+p+Ym/G8sjCR9hzeU/JJ90h5nSdQw33Gly6eYkgjyChqB26cig6gw53e3dejXhVHP/57s9pU70NQe5SuXbG3hkMaSRNpVlyfAkA9V54G70K6sZmU8NCkcPDwUOQPXkyB5i8AOWJR0nZSSRlSf3Jng6eAGaKXxlmGcBbPYBKIZtMKO219qhVarPfB39Xf5P/n19h/z95nq9GpeHxoMcFASyo/pWtX54IfkL4FqbnSllqgDHhY0jPTRdikIltJlpnoVtRCFYCeJ9DpVKVWQgi97YIK5hb5qB5+jwzU9OScDs2MMosY6BHoMXrygEXJNGH7J3l5eglxs7djQygwWBg0qRJD7SwoTyhVquZOHHiQ50FLAhnW2eGNh7KtqHbOD/mPJPbTqa6W3XSctP4NvJbWv3Qirpf12XazmmltnOx1djyUtOXiB4dzYIeC6jhXoNrmdeYsGkCQbOC+GzXZ4R4hrDtuW38+dSfBHkEEZ8Rz9CVQwlfEG5GIsoCL0cvdj2/ixZ+LUjOTqbj4o6ifFga3I44xdXOlaV9lqJWqVl7di0dAyWPyZjUGL7a8xUAr0a8KtSzV9OvsuToEt565C1Aih21PWujVWk5FH+IE9dP4FWjLkfrSP3GfRWJzJ6Le4p/iz5ARRlYJoWnk07j5yJtkoUQxFESglgaB6fM9goCqDURQDk7K7+HI/Gm+c+danYyTQDxjzBTALet3pZSAwuSAAAgAElEQVTtl6RMaAv/FqTlphGdJWUlZWNskLKOi48uBszFH4uPLiYtN43anrXpHNyZ+Yfmk5KTQohnSKHpIVZYAVYCWCFwp1Yw1d1MZtAFLViKw+3YwCjnWXYKKiwiSMtNMytfyYEXpN3x3bSA2bx5MxcuXLASmlLCYDBw4cIFtmzZcq+Xcl8iyCOI9x99nwtjL7BlyBYGNxqMg9aBM0lneHvL21T7qhpdfurCryd+LdXIN1uNLS82eZHoUdF83/N7At0DuZ55nTc2v0GNmTWYvms6j9d8nJMjTzL9sem42LpwKP4QbRa24anfn+Ji6sUyvwcvRy+2DNlC11pdydZl0/vX3nwX+V2J532x+wue+fMZ4QhQWsgGxbKly4G4A2Ja0aStk7iWcY1KDpUYFW4yiv5016cMbjRYKGC/2PsFTV2bArDoiDQFI72bFGuUfYCrL5rIrOgDVAhBQrxCUKvUpOakCsN8Of7IWTVLGValpYu8oVaKRuQSsFz+lT39VKjoWrOr6PkL9Q5lf9x+cawatfg9GRI6hM/3SCPzmvs0N5tOsvH8RuIz4vF08KRHSA+xTln8MTp8NHn6PL7Y8wUAbz3y1l3rp7aiYsNKACsAykwAb/UAnk48zbaYbWb9KcoxbSXhdjKAsgUMmNTHSiizf2DuuVXDrcZdtYCZM2eOdRZwGaHVapkzZ869XsZ9DbVKTYfADizus5iECQl81+M7Hqn2CAajgQ3nNvD0n0/j84UPI9eO5MDVAyVmzmw0Njwf9jxnRp3hh54/UNOjJolZiby15S1qfFWDGXtmiNLxy01fRq1S8/vJ32k0vxFL4paYqepLAydbJ1YMWMGwxsMwGA0MXz2cD7d/WOQ6zyad5e0tb/Nr1K+MWT+mTJnAKdumsOjoIjac20CYdxg3c28KtX+ePo8RayVxyPiW48U0o7PJZ1kVvYqn6j0FwPZL22ntLhG6JceWoDPoqP2iNNqs1RXwtfD25QzgofhDbLmwha4/dWXchnEitsqxSu4DlNckxzplL6CyBCwrgpX2LHIfs6wAlkmnt7M3Z5LPYDAaCHANIC49ThDIttXairm9ICl+l0UtAwqP05TFHwMbDhQxeuP5jUQnReNq58pzoc/x45EfSchIIMA1gGcbPlv4A7HCCqwEsEKgrNNA5Azg5ZuXeXTRo2YGqGXxApQHpRfyAbylaLOYAVSUgD0cSiaAypJ0Veeqd80CJjY2ljVr1lhnAZcROp2O1atXc/ly2RSvDytc7Vx5ockL/DvsX6JHRTOpzST8Xf1JzUll7sG5hH8XTsO5Dfl89+clqm9tNDYMCxvG6VGn+bHXjwRXCiYpO4mJ/0ykxswafBf5HdM7TefIy0foGNiRXH0uf17/k/rz6vNd5Hdlys7ZaGz4vuf3TGozCZDsWUauHWnxGrU8a7GkzxJUqPjm4Dd8sP2DQscUhXfavkO9yvWIz4jHYDTgZOPEyRsnxcSiv07/xa7YXVRxqsKI5iPEeVN3TuWD9tJ9DEYDsdmxVHaszLXMa2w8vxGfkKYcqymJR/pY0LMEeQRR1akqefo8Tlw/wfpz6/n7/N+iDCxnyKKTJQIoZwTlWKcUtClLwDpjYQIoZwDlEvCJGycACPEMMZv/qyz/dgzqKAhgsEcwthpbMTJzTPgYcVxSVhKrzqwCYFiYqfw7c99MAJ5v/DwONg58uutTAF5v9bogiVZYURBWAlgBUNYMoJ+rH3YaO9G/oiRlBQlYcShoA1PIB/A2MoAF+6KUptByGUW2gOn6U1dafd9KeGbdCRYvXmzt/btNqNVqFi9efK+XUeFQy7MWH3X4iJixMWwctJFnGjyDvdaeqBtRvL7pdfxn+NN9WXf+PPlnsQp/rVrLc42f49Qrp1jcezG1PWuTnJ3MpH8mUeOrGqw8s5I/+v/B8v7LqWJThWuZ1xi+ejhNv23K1otbS71elUrFRx0+4uuuX6NCxbxD83jy9yctKpwHNBjAnK5SZnjK9il8c+CbUt3D1c6VlU+vxMPeg6PXjhLqHQpIcUneYA5aPgi9QS+Rl1viiiMJRziZeJKGVRoCsCFpAwPqSZYwsiAiuWt7wHwqiGwHI3s9gskO62LqRSEukd+jnAGU+6hlKAmgspwv9wDKm2UobAIdlybF3JYBLc0EIDtiTYrfMO8wLt28BEif7ZroNRgxEmAXYNZKs+z4MvL0eTT2biwmepxJPMOGcxtQoWJU+Ch+OfELMakxVHaszAtNXsAKK4qC9RuxAkDO6F1MvVgqEYdapTYTYFzPvC7UbGXpEypYApZVZMX1AJoRwBIygI42jmIGJpiCaS3PWhiNRnZf3s2eK3vMguvtYvny5dbev9uEXq9n+fLl93oZFRYatYZONTuxrN8y4l+LZ373+UT4R6A36ll7di1P/v4kvjN8GbN+DJHxkUWWVLVqLYNDB3Ny5EmW9llKiGcIKTkpvLv1XQJnBXIk4QjVHUz9vkevHaXD4g70+bVPqTePIBky/97/d+w0dqw4vYLHlz4uslEFj3uv3XsAjFo3it+ifivV9YMrBfPrk7+iVqnZfXk3Das0RGfUiQ1jzM0YZu6diY+LDy81fUmcN3XnVKa0nwJAhj6DOl51AFh5ZiXJ2cnUfOF1ANpeAi8LhgdyGTgyPlLEVDm2yK0x0UnRGI1G8boMpYK24GQQAAeNKQYKEYitEzdzbopJR12CuwgBSLhfuMgAutq5mv18hoQOYflp6e+tlXsrs3Uovf9kzN4/G4DutbsT6BHItJ3TABgXMa6QDY0VVihhJYAVAHJGT2fQldoIVhnALqdfFlm6K2lXSn3f2+kBVPpsWZoEcjXdlAH0cvQyywjKE0SCPYJJyEjgZu5N1Co1tT1rl3rNlhAXF8fhw4cr/Eite4nIyEji4+Pv9TIqPNzt3Xmp6UvseWEPp145xZut38TH2Yfk7GRm759N02+b0nh+Y77c86XZ35ISGrWGgY0GEjUyimV9l1HXqy6pOal88O8HHEs/Jnw/Zaw4vYK6c+oyYeMEsw1acehXrx8bB2/Ezc6NnbE7abOwjUXj6/favceIZiMwYmTQ8kFsvrC5VNfvVLMTXzwuiRSirkdRyaESSdlJYjM58Z+JJGYl8kbrN9CqpOzbv7H/4uXoJXwCvzv8HXYaO/L0eSw5uoSA0DacrOaIxgi9Txe+p0wAd1/eTROfJoCJzJ1POY9GpSErP4u49Lhi56YreyzlErFZD2C+KQO44dwG8by/qz8JGQloVBrstfbiuI6BHVlyTLK0qeRQCT8XP3FehHuEOP9owlEOJxzGRm0j+vpu5twUGdAxLcaw+sxqom5E4WrnysjmI4t8D1ZYAVYCWCGgVqmFsKOsSmCA2Juxwtk+Pr30X+IyATQYDeiN+lKpgK9lXhNrlntglChoAaP8kpP9AWt51uJUolTHCXQPNAuut4M1a9ZYPbDKAWvWrLnXS3igUMerDtMem0bsuFjWPbuOp+o/ha3GlmPXjjF+43j8ZvjR+5ferDi9QmSalNCoNTzT8BmOjzjOL/1+oZ5XPXKNuVzLvIaD1gF3O9MGTGfU8cWeLwieFczcA3NLVUloW70t/w77V0yraPVDK6KuR5kdo1KpmN1lNv3r9SffkE/vX3qXumVjbIuxPBf6HAYM5OmkTaa8qczV5zJ81XAC3AJ4Pux5cc6nuz5laOhQQMpwyrFBVsBee0IadaZUA9u/Lx0T5hOGvdaepOwkYY11Oe0yWrWW9Lx0MQP4n4v/oFVrzWb+KtXASgKoHPEmQ4hAbJwEIXazc+NAnPS5hHqHcjDuoDi+Q2AH8fiJmk+w4dwGcnQ5BLkHUcO+hjhOJno9Q3qK6U4LjywkMz+TepXr0aFGBz7Z+QkAo5qPKnIWuxVWyLASwAoCIQRJLp0QRNnDcin1Em52UjCQCVppoGwe1hl1pcoAyqUUe629RdKlzADWqlRLZCTstfZidF1wpWAxmaBu5bqlXm9R2LRpk7X/7w6h0WgeytFw/wW0ai1danXh1yd/Jf61eL7u+jXNfZujM+hYeWYlfX7tg98MP8ZtGMexa8cKna9RaxjQYACRwyN5vcbr1K9cn2xdNqm5qdhp7HDUmsqASdlJjFw3ksbzGrPx/MYS19awakP2vLCHOl51uJJ2hUcWPlLId1Cj1rCkzxIeC3qMzPxMuvzUhdOJFlJwBaBSqZjXfR4t/FqQkZ8h1K5y39+KMyvYe3kvbz3yFupbX1Xrzq6jZ62eqFBhxCh6+C6kXODkjZNUf14aJdfxIrjfal3MReqvtNXYmmbm3ioGHE44LBwH5Gzg3+f/FsfLUBLmtLzCBFAZA5UZwEPxhwCo4V6DfVdM/X/y5BOQTKdla5n/NfufEIP0CuklYmiePo+lx5cCpvKv3qAX5d8x4WPYGrOV/Vf346B1YGzE2KI/eCusuAXrt2IFgTwZo6xWMCAFJNlrSym6KAnFEUCj0WgxAyj7DFrK/oG5CKRBlQYi8Hk5eplZwMhfIPK4qDvB3r17rZM/7hB6vZ69e/fe62U88KjkUImRzUeyf/h+jo84zoSWE6jqVJUbWTf4at9XhM4Lpcn8JszeN7uQol+tUtPavTWHXjzEH/3/oFHVRuTqc8nSZWGjtsFGbbKDiroRReelnem+rHuJZK2aWzV2DttJS/+WpOak0mlJJ1acXmF2jJ3WjuVPLaeZbzOSspPovLRzqdpN7LX2LB+wXJTBXWxdyDPkiZ7lp/98muru1RnSeIg459vD31LbUWoLkVW7IClhg1o8QbSvHTYG6HGGQpDLwPGZUiXkQsoFYTov9yDKRFDZPye3wQCk5VgggIoYqMwAyj3XYd5hZgKQrTGSOMfTwZMNZ6Vyr53GjuZ+zVkdLfkX9g4xTf9YG72WxKxEfJx96BwsjXRbd3YdF1Iu4GHvwaBGg0T278UmL4psphVWFAcrAawgECXglLKVgOVAKpeAyzIPWPmFoSSAeoOePH2eUBkrd7+ywk6+nxIGo8GsBBzsaTJ7ruJYhXxDPnYaOwLcAkQJ+E4JYHJyMleulL7v0YqicfnyZZKTS28kbsWdoUGVBnz2+GdcGX+F1c+spl/dftiobTiccJgxG8bg+4Uv/X7rx5roNWYZKrVKTb96/Tj88mGWP7Wcxt6NyTfkk2/IR6vWmo03W3t2LQ2+acDY9WOLNYn3dPRk85DN9AzpSY4uh36/9WPewXlmx7jYubDu2XXU9qxN7M1YOi/tXCrjeV8XX1Y8vQI7jR3peeloVBoRWy7dvMSXe75k4iMTxbr/PP0nXTyl+b+Z+ZnCQubn4z+jN+i5+lgLwFwNvGOHpLiVCeDBuIMEuktCObk6Ivf9JWYlcjj+sMUYBpLNi7wW+XNXkkU5A+hg4yDibbsa7UQ2sJpbNTEm87Ggx9h4QcrEhvuFsy1mG2m5aXg7e9PCr4W4piz+GNxosFAky9YvLzZ5kePXj4vS9YRWE4r9vK2wQoaVAFYQlNUKJtAjUJRJwLRDLcsQeZVKJUigzmCeAVSaoVqaBCIHVSUSsxJF0zSAm63pGLn8E+QRhFqlNhHAOywBHzp06I7Ot8IckZGR93oJDx20ai3da3fnj6f+IO61OGY9MYsw7zDyDfksP7WcHj/3wH+GP29ueZPYbJNITK1S06duHyJfimTFgBWEeYehM+gwYjQzNtYb9czaP4ugmUHM2jfLYr8hSCTnz6f+ZHiT4RiMBkasHcF7W98zE1dVdqrMxkEb8XXx5eSNk3Rf1l1kxIpDuF843/b4VqwHTJvXSf9MwsvRSwgfDEYDJzJP4OXgZXZ8el46f5//G79hkm9e53PgfMtdp93WdgC0CpBUtdFJ0TSo0kBcD0yb139j/2XG3hkihil7AcE8hloigFl5UgYxOTtZxN9qbtXI0eXgbu/OlXTThrR1QGsSMiU/yOfDnmf5KUn926dOH3HfhIwE1p1dB5i8/6KuR7Hl4hbUKjWvNH+FqTunAhJBlPsbrbCiJFgJYAWBsgewNAPg7bX2+LmaxqzJu8bSjKRSQi4D64w6Mx9AufyrQmVWKpaVvCVZwGjVWhH4wBRAa3nW4mbOTXHsnWYAT5w4Ye3/Kyeo1WpOnDhxr5fxUMPL0YvRLUYT+XIkR14+wriIccIQ+ct9XzLmzBhaLmzJNwe+Edk3lUpFrzq9OPTSIVY9vYqmPk0FaVKSm5u5Nxm7YSz1v6nP2ui1FlXzWrWW+d3nC/uXD3Z8wEurXzLLQFZ3r87GQRvxsPdgz5U99P+9f5GkUokhoUMYHzFerEsmT7n6XIauGCpMqgG2Jm9lYIOBgNRXLCuFP9v9GbXa9uFiZRvs9dAt2vweHg4ewvxZdilIypLaYpQl6/PJ5/F09Cz0GYE5AZSNspUEMCNfel1uabHT2Ime5hZ+Ldh2cZs4VrbBUqvUPFXvKVaeWQlgNrt32Yll6I16IvwjhPXNrH2S6KV3nd6k56Wz6swqVKh4s/WbBT9WK6woEg/tN6NOp+Odd94hMDAQBwcHgoKC+OCDD+5br7hqbtXQqrXk6nNLbeasVALLwVRv1Jv5WJUEJQG0lAF0sHFApVKRmpNKji5HlD8Kji8C8/4/F1sXERTBtJMO9ggWPUk+zj53rGSLi4tDo7HOwSwPaDQa4uJKbyRuxd1FqHcoMzrP4Mr4K6wYsIIetXugQcOh+EO8su4VfL7wYcAfA1h/dj06gw6VSkWPkB4cGH6ANc+soblvc7GZVJaFzyafpfvP3f/P3nmHR1G1ffjekt5DeiGhBAKEGjoIiDRDCL13sSCK3Vcsr4ogFj4VFYQXUQSRXgRCL1KlKC30JIQQkgBJSO/bvj+GmeymbiAQQva+Li93Z+fMnlk2Z5/zlN9DnxV9SlT9gmBQftrjUxb1X4RcJmfJmSUMWTPEYF1p5taM8DHhWCmt2BG9g8mbJxu1cf2q91f0adAHrU5rYHhtidxCZkEmw5sOB0CDBpVWJW1KPW2FXrmHbhwiozCTG88IvYKHltIVRAwDi5vYqNQozORm5Kpypfe8knLF4DPRJ1eVKxVniOuWfrhY/BxEyS5PW0+D/L9914Xe2h62HuyKFgpOGjg14NStUyTlJOFo6UgP/x4A6HQ6lkUI/Y7F4o/UvFRJNub1Dq9Lun/Dmg6jsUvjMj5ZEyZKUmsNwK+++opFixYxf/58Ll++zNdff83cuXP58ccfq3tqpaKUK6WclfuRgtFX869MOzjRAFTpVEUGINoSBSDdlnbD6nMrafFztXYtcS19w9Xd1t2gtZ0YOtaXgKmKCuDExMTH1qivaWi1WpMB+BhirjBnYOBANgzbwC/NfmFur7k0d2tOoaaQtRfXErIyBL95fszYO0MwbGQy+jfqz4nnT7B9zHY6eHeQNoj67I3ZS/OFzXk5/OVSe4i/1PYlNozYgKXSkq2RW+m1vJfkTQMh3Lp+xHqUciV/nP+Dt3a9VaEWp1KuZPXQ1TR0bljCYBy+briBF/DXc7/Sza8bAHdyBXUDrU7Lb2d/w22C0EYuJAqs7tVviF1BxI4gYueNa2nXpLVSXLfS8tOknL3ic9Y3dMszAMVWf83cmkkGYFO3ptL79qrXi0spgl7NkCZDpPBvWOMwqX97VG4Ul1MuY6W0YmQzofPJktNLyFPn0dK9Jd523qy6sAqA97u+X/YHa8JEKdRaA/DYsWMMHDiQ/v374+/vz7Bhw+jTpw///vtvxYOriUprAepVAutX/96PAVieBxCKwiLiglhaFZq+BIyfgx830m9Iz8XFUl8C5u+bf3Pm1hmj51oa8fHxpgrgKkKj0ZgKah5zHM0ceb3965ybeo7TL55mevvpOFs5k5iVyFdHv6LJgiZ0+qUT//v3f2QUZPBswLMcm3KMnWN30smnU4nr6dCx6NQi6n1fj2/+/sagGhaEEOSe8XtwtHTkWPwxui7tavB3HRIQwtKBQgHD9ye+l7xV5eFk5cTmUZslwWeRm5k32X1tN6EBoYCQziJKuBRqCiUj7McTP9Kk7zjinRTYqKBvMeUs0QN47s45KV9OLADRz10W17Tihqh+/rMYSjfIAbxnAIp6gW082kgt5vR7K3vaekrr5esdXpe6fwwJHCKdsz91v3CsyRAcLB1Qa9Us+GeBNGbu33PR6rQ82/BZWnu2Lv5RmjBRLrXWAOzatSv79u0jMlL4wzx37hxHjhwhJCSkmmdWNpWWgtHzAOrr/91PP+ASBmAxD6DYAF3E086zxLX031fUFQMh/CT+aAQ4B0jN0/PV+QZ5jPfD7du3Kz7JhNGYPs+agUwmo7Vna3549gcS30pk/fD1hDYKRSFTcDz+OFO3TcXzG0/GbBjDnpg99Krfi6PPHWX3uN1SoYQ+Oaoc3tnzDgE/BvDnlT8NvGJd63blyOQj+Nj7cCXlCp1/7cz5O+el18e1GMd3fb8DhA4fS04vqXD+TV2b8seQP0oc/3D/h7zR7g3p+eqLq/Gy8wKQ8gBj0mOITI0iuofQZ1hfFBqEQjN3G3cKNYVSVEVc50oTfy7uHc1X55eoArYxtzF4HYqMQy97YX4NnRtKreAATt8WCqrqWNXhVvYt4jLisDazpk+DPoAQtTmUJlQvi+HfzVc2E5cRh4u1C939u0vVwSbvn4n7QVnxKU8m7733HhkZGQQGBqJQKNBoNHz++eeMHj26zDEFBQUUFBQ1bc/MFHZ4KpUKlariJOcHpZ6DsFhFpkQa9X517YqqwW5n35aqgqNSolDVM26+UhWwTo2Z9t5jjZqsfMHgs1RaolKppOIPEWcL5xJzjM8o8h41d23O0jPC4mWltCJXnYuFwgIPaw/px8Pe3B5HM8cH+mwLCwsrPsmE0RQWFj6S73pVIc61Js35finrXuXICQsIIywgjFvZt1h1YRXLIpZxOeUyqy6sYtWFVfjY+TC2+VgmtJjAX+P+Yn/sfmYfns3R+KMG14rLiGPwmsF09O7Ij/1+pKW7YGQ1cmrEoQmHCF0dyqWUSzy19Ck2DNsghWhfCX6FW1m3+Prvr3kp/CUczB0MdO5Ko1/9fnzW/TM+Pvhx0T1qVcw9Npc2dm04nXWazIJMyeOWXlDU5m7u0bm8MmoybDrNgEgwV0OhEpp824SI6RF08unEn1f/lAw/0dsnFnCUR4G66DdALG5Zd2GddEy/0E4ukxOfLqx77b3aSzl/3nbeUmeQ7nW7S+P71u+LEiUqlVDhnavNpa59Xbr6dEWlUvH98XvSL62eZ/6J+RRqCuni04WOXh1r9He8Ov5Oa/LnVVXUWgNwzZo1rFixgpUrV9KsWTPOnj3LG2+8gZeXFxMnTix1zBdffMHMmTNLHP/rr7+wtn74TbfTMgSZgrNxZ9m+fXuF52epDY0ypUyJSqfi4NmD1E+uX8YoQ/JzhMVMrVMTGxkLQHxCPEdyhW4ABdkFbNm2RRJ0Fok8F8n2GMM5XogvqiAtiC6QFl0zBMPSVenKlm1bJM+gu8KdHTt2GDXPssjONl72xkTFZGdnG/Xde9yoTV1MKrrXQAKZ4z2HaOdo9qfu51DaIeKz4vnq76/46u+vaGLThJ7OPZnmOI2+Fn1Zc3sNF3MMi0GOJxyn3S/t6OHYg0nek3A0EypqP/D4gDl5c7iUc4l+K/vxlt9bdHYUPIqddJ3o5dyLval7GbtxLB/X/5jmds3LnWtzXXO6OHbhaHqRIbrr+i6m+UzjdJbgQdPP8bWWW5OrzeWPiD/o17QPHnYyPLN0PBMDOxrBlawrbN++HacsQaXgxm0h8hB9R4iq3M6q2MOdk58jeUBFL9+Ws1uk17Pzi9YcG7kNOyKENcwi1YKo1CgAfGW+HC8QvIHBmmAWnloIgH++v/T3Ne/aPOFzs+rEzh07icmN4fDNwyhQ4JniyXvRQsVvT/OeNfJvsjQe5d9pbq7xxZBPKjJdRVm5Tyi+vr7MmDGDV155RTo2e/ZsVqxYwZUrpSvjl+YB9PX15datW9SpU+ehz/nq3as0/19zbM1tufv2XaP627p96ya1W7M3tyezMJORTUfy+6DfjXrPzks78++tf/mo3kc413fmrX1vMTRwKIMaD2L85vF0r9udNUPX4PGdh8G4k1NO0sq9lcExl/9zkdooZf0nC7uvhRyfBk4NuJZ2jdCAUGZ2n0nwEqGC7/lWz/NTyE9GzbMsGjVqRGxs7ANdw0QR9erV4+rVUlosPKaoVCr27NlD7969MTMzq3hADeZ+7zVfnc/WyK0sj1jOnut7pNCnldKKwYGDmdhC2BDPOTKHg3EHS4y3UFgwo/MM3u70NpZKS/JUeUzYPIHNkZuRIWNen3m83FYoylBr1YzaOIotkVuwM7dj77i9tPYoP3ctpzCH7su7E5FU1AbPWelMkGcQh24eMjhXIVMUGWUjt2D/9vt0336RX1rD8wOFcwo/KORkwkm6LuuKk6WTpP9nJjdDpa3YK2SpsEStUxtI34QGhBIeFS59HuKGuJ1nO6LToknLT+OnZ39i2o5pgODd3BmzE3OFOf9M+YeWi1tiJjcj8Y1EHCwdiMuII2BBADp0XHzhIgGuAbwQ/gLLIpYxoukIGjk3YvaR2bR0b8nJ507W+F7n1fF3mpmZiYuLCxkZGdjb2z+S93zcqLUewNzc3BL6cAqFotyKUQsLCywsLEocNzMzeyRf2gCXAOQyOdmF2aQVpkmJy+UhyguA0K6JQkjOTTZ6vhZK4X7VOjVmyntjZEJVMIC1uTUFOmGxU8qVRUUgtm4G71GoKZSMPwuFBWmFadJrYh5hozqNiE4vym9s7tH8gT9Xc3Pzik8yYTTm5uY10pB6VH+jjwOVvVczMzPGtBzDmJZjSMhMYEXECpaeXcrVu1dZeWElKy+sxM/Bj4ktJzK13VQWn1ostTIDQadv5uGZzP93PgtCFjCi2Qg2jNzAq9tfZdGpRby++3Xu5N5hds/ZmMnMWDN8Df1W9OPgjYMMWDOAo8fex6QAACAASURBVM8dlXROS8PRzJGtY7bSelFrUvMFbcNUdSoBdQIkA1COHC1aNDqNZAR+c/wbvhszGba/w8Ar8FIoaBTC/bbzbYel0pK0/DS8bL1IzE7Ex96H6+nXDQT0S0OtVVNcIUY/B1C/UKaxa2P+ufUPFgoLYtJjpOMXUwSPaiuPVoRHC4Zjr/q9cLETxK1XXVqFDh1BtkEEuAaQXpjO6ourAXgh+AVGrBsBwIdPffhErXGP8u+0tqwH5VFri0AGDBjA559/zrZt24iNjWXTpk18++23DB48uOLB1YSF0gJfe1/g/iqBxXy+qq4CFvP/LORFxrEosioiVvmCUOUn9sgEQVYG7knA6GkDNnVtavQ8y8LDw6Pik0wYjenzfLLxtvfmva7vcfmVyxybcowX27yIvYU9NzJu8Nmhzxi9YTQanYb3u75Pd7/uBmPv5t1l1IZRBC0M4sytM/zU/ydmPT0LELyHU7ZMQaVRYam0ZPOozbTyaEVSThJ9fu/Draxb5c6rrkNd/hz1p0GRxrKIZXTwEtqliWsIIEmoHI47TN0B47hrLcMlD7rfK06WzRTE69t7twfAw074Touao3YWRdXHpWkBqnXqEsf0e5/rG4+uVoKsTBvPNlLLNx97HynNZVzzcWy6sgkoEn/W6XT8dvY3AJ5xfgaAxacWU6ApoK1XW87ePktafhqN6jRiSJOiimETJipLrTUAf/zxR4YNG8a0adNo0qQJ77zzDi+99BKzZs2q7qmVS2VbwulXAouLpxjyMIZSdQCLVQGLFcCShxDDRRRKikBfTC7KKRKbqwc4BxgcrwoD0MfHxyQEXUUoFAp8fHyqexomHgEymYyOPh3534D/cfvt26wcspLe9XsjQ8ahG4f44sgX/Jv4LyEBIbTxbGMw9lLyJdotaUf/lf15rvVz/DzgZ+QyOUvPLmXQmkHkFObgYOnAzrE7aeDUgOvp1+n3Rz8pVaUsnvJ7igXPLpCeq7Vq8jUlOxuJRRhanZblF1dyqbMgFVO8GliUgxERoz/WyqJ87rJCq8UNQ30PoD6iMH4H7w7S5tbbzlsyEnvV68W/if8iQ+jWAoLhei3tGnbmdnRy6IRKo+Knf4VUmJfbvsy3x74F4L0u76GQm9Y2E/dPrTUA7ezsmDdvHjdu3CAvL49r164xe/bsx96dLrWES7tWwZkC+gaguEsuLtlSHhV6AJVFHkBRld9CYVGifZK+BIyNmQ2RKUU9mvQ1ACPuCHk+1kprSd3/QfDy8jK1gqsi5HI5Xl5e1T0NE48YKzMrRjcfze7xu7nxxg1mPz2bhs4NyVHlsD1qO6dvncbLzkuSVBHZEb0D3+98ibgdwZqha7BSWrE9ajs9l/ckJTcFd1t3do/fjYetBxF3IghbFWYgWF8aU9tNZWLzoiK9c3fOEegcWOI8c7mwbv148kcsRwot4wZfAZleho9oAN7JFiSyUvKEyIh+bp+xKfL6/dBFrM2spfQbD1sPKb9QbNHna+8reQWf8ntK0k4VpV2GNRmGpcKSjVc2kpiViLuNO7mqXG5l38LH3odxLcYZNbfHAa1Oy7iN41gRsaK6p2JCD9MvYw2j0h5AvRBwoVrITamSVnAqvRBwMYOytMVQXwS6h38PSRhVvLaFwgIvOy+pf2Yjl0ZVktjs5eVlEoKuIjQajckArOX4OvjyYbcPiXw1ksOTDzOl9RRszW1JzEqU0jr00z+0Oi0//vMjE/6cwMttX8bJ0omTCSfp8msXrqddp75TfXaO3Ym9hT2H4w4zcv1IAwOsNBaELKCueZHEVVxWXIlzRGPrevp1bJ4NI8MSPLOhs9B6F9lMGZ18BeFrcW0SN6n6cjLl5QLqY6m0LHHMx86Hc3fOAUghbhkyrqcJn1NoQGgJ8efswmzWXRQkYcTimwX/Cl7PF4NflLx/73Z+16AHOwjG6of7PuTs7bNGzfl+0Ol093X9/+7/L3+c/4MpW6ZILfJMVD8mA7CGUVkDsL5TkdyLWIRRqCk0qi8nGBqAokFWlgdQXCxLC4foewDHNB8jCT+LRmV9p/rczLwpLdzFK4jvl6CgIFMruCpCq9USFBRU3dMw8Rggk8noWrcrS8KWcPvt2ywftJye9XoCSKFcMSIAQveMb49/i0wmw9Xalci7kXT+tTNnb5+lpUdLto7eKrWUe2HrC+V63swV5nwW8JlkdOWqcqljZajCoG+4fXdqAec7CN5J/d7AzlbOUpqJi7WLdO2KDNDSsFRalggLe9t7o9aqcbdxl/QU3WzcpBzC4UHDORInyGkNChQ0EdddXEeOKodGdRrRyacTUblRHE84jpncDHdbd66nX8fF2oXn2zxfYg77r+9nzpE5dP6lMxn5GZW+B2P4/PDnBC8O5n///s/oMb+f+505R+YAsDh0sdR9xUT1YzIAaxhiSNdYA9Dbzlsq/tCvTjN2gSjNA6jRaQw8gKKen7hoF2/hBEhJzyAsjEk5SQbXL14AEuRWNYZGcHBwlVzHhECbNm0qPslErcLG3IbxLcezb8I+rr9+nZk9ZlLPsZ4kx6JPal4qybnJmMvNuZ19m25Lu7H/+n66+XVjzbA1KGQKfjv7GzP2zij3PR3NHNk7bq/0XL/VpYhogK6+uBrF0OEADLkM+k49MQzsZCnoAoqGYGURW2LqI16zg08HLiYJuc0WCqFQztrMmui70Wh1WoI9g/Fz9AOKwr+TWk5CJpMRnixUCI9sNpKF/whagW92fNOg9ZzIF0e+AGBK6ylSQUtV8uuZX/nvX/9Fq9MabSQfiTvC81sFY/X9ru8zsVXpGrsmqgeTAVjDED16aflpUi5JeSjkCgMvoIixlcCSAahVSwnHJTyA90LA4oJf2uITmx4LCCEQdxt3slTCGDFXp6FTQy6nVG0FMICzs7OpcKGK8PX1xdnZubqnYeIxxt/Rn4+7f0z0a9EcmHiASa0mGVTIihRqhc1oVmEWfZb3Yc2FNYQ1DuPnAT8D8PXfX/N/f/9fue/V3qs9n3b/VHpe3AMnrkfZhdmkPBVMtjn4ZUDbe8GI2YdmSwag2N1DXI8qS2khYPGajZwaSetlcm4yAJ19O0vVv2Ilb3RqNIfjDiOXyRnfcjy3sm9JAtitPFtxMfki9hb2TGs3rcR7/ZPwD/uu70MpV/JO53fu6x7KY1vkNl7c+iIgGHKvtH+lghEQkxbD4DWDKdQUMqTJEGb3nF3l8zLxYJgMwBqGjbmN1PvyWqqRhSB6eYAi+jl55WHgAaR8GRix0bm48zV4v3tVwHWs66CQK6TFUSkXpCgD6lR9BbBIx44dTZXAD4hCoaBjx47VPQ0TNYCU3BRS81KFXrUDl3L7ndssHbi0hGyMiAYNozaM4tu/v2Vy68l81esrAN7d8y7Lzi4r970+6fGJVCxWWr6eaBTOPTOfiGBhIyhWA//3r//Spa5gACZmC1ah2ApO9NQZS2kh4PPJQktLUbtQjlxaN0c2G8neGMGDKRqAovRL7/q98bH34efTP6PWqeno3ZG1F9cC8Eq7V0pIbEGR929s87GSN7GqOJlwkhHrR6DRaZjQcgKf9/y8wjEZ+RkMWDWAlNwU2ni2Yfmg5SUKA01UP6Z/kRrIg0jBiIjFFhVRYRGIngdQDAs4W5X0Et3JESrtvO28yVPlSYu1uEsPcA6QkostFBb4OvgaNT9j6N27tykP8AHRaDT07t27uqdhogbw0f6PqP99fT47+BlZBVnYmtsyqdUkDkw6QPT0aD7u9jEeNiX1JN/e8zYtf2rJmx3f5O1ObwMwZcsUtl7dWu77xb4WKz0ubriJ68zRm0cpGBgK3MsDvGcrNnBqIOTl3Vu77uYKoeTKyqtYKi0NxKHN5ebEZcQhQ8aFZKEFpq25LSAYpTJkqLQqmrg0IdAlEI1Ww7JzgrE7udVkCtQFLD69GICn/Z/mZMJJLJWWvNHxjRLvfSn5EpuubEKGjPe6vFepeVdE1N0o+q/sT64ql74N+rJkwJIKi/PUWjUj14/kUvIlvOy82DJqS5kyOSaqF5MBWANp6HT/BqCYF3Mj44ZRY8vUAVSXrAIWPYCuNq4G18gqyJLO93f0N8gHFPMHGzg1IOqu0CezgXODKt0thoaGGi3nYKJsQkNDq3sKJh5z1Fo1Z26fIaswi08OfEKDHxrw/fHvJY9/A+cGzHx6JglvJ7Bvwj6eqfeMwfiI5AjMZ5szuPFgJrScgEanYcT6EVKxRGmYm5mzYpAgL6Kf56yPVqfln1au5CkhIBWaC/tRZDKZFAZ2sHCQDMZ8VUl9wfIo7gEUOyg1c2sm5TaLRmZAnQB2XtsJFIk/77++n/jMeBwtHRkYOJC1F9eSlJtEHbM6HIs/BsDzrZ+XpGL0+eqo4DEdFDiIJq5NKjXvn0/9zIHYA6W+dif7Dn1X9CUlN4Vgz2DWj1gviWyXx5s732TXtV1Ym1mzdfRWvO29KzUnE48OkwFYAxFDutFplZeCEQ0rfWHm8jDGAygacaI3z8PWcHevXwHs5+BnEOrV6DRYKCwwV5pLoqmtPKqmAljEy8uL1q1b1/h+mdVJmzZt8PR8cF1GE082SrmSY1OOsXroagKcA0jOTeaNXW/QaH4jlp5ZKhlBcpmcnvV6snfCXjJmZPBS8EsGBtQXR77gp5CfCG0USr46n9CVoZJGaGmMbTmWgY0HokNXqgwVwMIrv3OulbA2idXAsplFBqBYyGEmNzPoLGIMxd9TXDdbuLWQNsi5akF+a2CjgWyP2g4UhX/F4o8xQWOwUFjw/YnvAWhr35YDNw6Umdt3I/0GK8+vBITcvMqwL2YfL297md6/9y4h7ZJVkEXIyhCup1+ngVMDto3ZJnkwy2PByQXM/2c+AL8P/r2ESLiJx4ta2wu4JvMgIWBxka2o9ZJIWQagqLavnwMo7p6LCzjrG4A+9j6cv3Pe4PX6TvW5mnJVet7CrYVRc6sMQ4YMISIiwqQJeB8oFAqGDDG1nKptzDwwk0Nxh7A2sy76T2lt+LyU/6zMrAioE8CGERvYFrWNecfnEZcRx3NbnmPu33OZ3XM2gwMHo9aq0aHD3sKeRaGLWBS6iKd+eYqj8UfZFr2NEetHsHzQcgauHsjRm0fpt6IfR587io9t6UVdn/f8nC1Xt0jRhuLEpseS0nck/LuGoZfg06eF42IeYGaBIJNla25bYbek4vmGxYtAxNcLNILnU7+/sKe9J7mqXOo61KWNZxvS89OlgpDJrSdzLP4Yp26dwkJhQXKhUDQyrsU4PO1KbsD+7+//Q61V80y9Z2jn3a7cOesTkxYj5fWNbz6elu4tpddUGhXD1g3j9K3TuFq7snPcTqP6zu+K3sXrO18H4ItnvjC1qasBmAzAGkhlDUB/R3/psbizFavRKqJUGRitptQcQJHiC5V+wYm3vTd/XvnT4HUvO6+HUgGsz4QJE/j444+r/Lq1Aa1Wy4QJE6p7GiYeMRFJEey/vr9Kr3k55TJD1w5FLpMjR45Gp2Fok6GsHb4WmUzG4SmH2RW9i8FrBrM9ajsj1o9g1dBVhKwM4ULSBfqs6MOB8QdKvXYzt2aMbzme5eeWYyY3kzRF9dncSEMfBQQlQ6MUiHQR+vRaKi0lgfzS5GsqwlJpaSAvI7a3FEWfzeRmFGoLsTO34+wtwds2JHAIMpmM1RdWk6/OJ8gtiGDPYEZtGAVAvwb92By5GRky3un0DsGLg2nn1Y4ve32Jm40bSTlJLDmzBKic9y+7MJuBqweSmpdKO692/C/0f1J0RKfT8fzW59l9bTfWZtaEjwmXfm/K41LyJcmgnNhyYpXnIpp4OJgMwBqI6NFLykkiqyCrRN/d4liZWeFh48HtnNtSCMbYfsAVtoLT8wCKFBdlLe4BLF6A0tytOZeSixp1PgwDsG7duoSGhrJjxw7U6soLvdZWlEolISEh+PpWXVGOiZrBO53eYViTYeSqcqX/8tR50uOM/Azu5t0lLT+NzPxMsguzyVHlkK/Op1BTKHn4SkOr00qb0fWX19NjWQ++6fMNbb3a0rdhX3aO20n/lf3Zf30/ozaMYt2wdfT7ox/RqdGErg7lP27/KfW6M3vMZNX5VaUafwCrE3byYrM6tIu4y9BL8EU38J3jSzufdhyOOwxQYj0zBkulpUHYWK1TY2tuy5W7V4Ai2Zue9XqyNVIoahncRMj/E8O/k1tNJiErgQ2XNghj7uUzDg4czOlbp7mQdIGEzAS+6/sdAN8f/558dT7tvdtLItwVodVpmbBpAheSLuBh68GmkZsMNAw/2PcBy88tRyFTsH74etp7t6/wmsk5yYSuDCWzIJOn6j5lYFCaeLwx5QDWQBwsHXC1FgotjO0JHFAnwOB5pYWgi+sAluMBdLIylIEx8ADaeUu9f0UauzSWclCUMqWBx7IqefXVV03GXyVRq9W8+uqr1T0NE48QtVZNQmYCCrkCS6Uleeo8ErMSuZh8kSNxR9gauZXl55az4vwKdkTv4Hj8cS6lXCIuM467eXfJUeWg0qok408uk+Nl50Urj1b0adCHwYGDae7W3CDn79CNQ7T7uR3jNo4jLiOObn7d2Dt+L46Wjvx982/GbhrLmmFrcLV25eyds3xx/QspDUUff0d/pradChRJTOmTXZhNdA8h3CnmASZpk6Q8QGsza2ne+p1MilO8qKw0HcAWbi1KtN1s6tqUtPw0XKxd6OLbhUvJlziZcBKlXMm4FuP46Z+f0Og0tPdqL/UJfqvDW8w8OBMQWsA5WDqQkZ/Bgn+EFnHvd33faINr1sFZbLqyCXOFORtHbDQo0Jh/cj5fHv0SgJ8H/MyzAc9WeL0CdQFD1g7herrQ1m/jyI1SAYyJxx+TB7CG0sC5Acm5yUSnRhtVNNHQuaG0wwWkgouKuB8PYHEdQFEEGoQQcHHjM8A5gCspwk7Z39G/0hIMxtKrVy/q169PbGysSRbGCORyOf7+/jzzzDMVn2zisUen05FZkElCVgIJmQkkZCWQmJUoPRaP38m5Y3SrSHsLe7ztvPG29xb+b+eNl51X0XN7b9xt3Ev9m45Nj+WTA5+w/Nxy6dgf5/9g/aX1vN3pbWZ0ncGBiQfo/XtvTt86zZQtU/h9yO8MXzuc89nnmbB5AutHrC9x7Q+f+pBfz/xa5hq3zD+dETIIvgX+aRDrdC8P8CgG6gOVCQVbmVmV8HaWVowi5j/nFApzW3pG8P71D+iPnbkdi08J0i+OVo5odBpa27XmQvIFrqVdw9XalekdpgOw8N+FZBRk0NS1KWGNw4ya46bLm/j04KcALOq/SOqFDLDh0gZe2/EaALOensXk1pMrvJ5Op+PF8Bc5EncEBwsHwkeH33cnFRPVg8kArKE0dG7I8fjj960FKMoyVERlqoBF7C3sDZ7HpQvNv23NbSWPgj7utu5SK6eWHi15WMjlcj7//HNGjx790N7jSUKr1TJnzhzkclOgoKYzcPVA9sXsM3rjp5Qr8bT1NDTm9Aw98bgxlaFl4e/oz7JBy/hP5//w0V8fSbnBBZoC5hyZw+LTi5n19Cz2TdhHvz/6cTH5ItO3T+enkJ+YvHkyf179k2nbprEodJGBB8zd1p03O77J7MOzkcvkJYzZPVlnOdvYgeArGQy5DN92BvV1ITIgrmUKmaJSBqC4TuojGkNiAUgz12b8FfsXAO2926PVafk94ndACP+uurCKu3l38bbzlqRZBrkOkvrozug6A1tzW/JUeXx3XAgDv9flPaMks87fOc/4TeMBeK39awYG3uEbhxm7cSw6dEwNnsqHT31o1D1/eeRLKVy8dvjaSkvQmKh+TAZgDaXSWoDFuoFodBpUGlWFuk4GOoB6nUDEHBulXClVuonPi+/IRZV9dxt36b31z9c3IKtaAqY4I0aMYM6cOVy8eNHkBSwHhUJBUFAQw4cPr+6pmKgCCjWFkvHnaOlYodfO1dq1yj3xGfkZ2FvYlwhXNnNrxqaRmzgef5wZe2dw8MZBQOgo8vK2lwl0CeSzpz9j1sFZRKVG8dFfHzHZazJLEpaw+PRi3GzcmNVzlsE13+n8Dj/9+1Op7TK1Oi3/dqpL8JXzDL0kGICDjw+miUsTqRjNTGGGRl22AVjcqLyUdKnEOTcyBa1V0TPY3ru9JIH1UtuX2Bm9kzs5d3CzcePZhs/SbolQxdvAuQEJWQl09ulMfH48cZlxeNp68nLblwEhZzApJwk/Bz9GB1W8mb2be5eBqweSo8qhZ72e/F+fohZ7F5MuErY6jAJNAYMCBzE/ZL5R4eSNlzfywf4PAPjh2R/o06BPhWNMPH6YDMAailiZZWwOYGndQO7m3S2h2Vec0jyA+o3AizcFL6HEr9NJ6vp1HepK1XEi7jbuBhIwD6MARB+5XM7cuXPp16/fQ32fmo5Go2Hu3Lkm798Twvf9vkeGDG97b6zNrKtlDp1+6URMWgx1Heri5+iHn4Of8NjBDz9H4fGucbs4eOMgM/bO4MztMwBcSbnC81uep7NvZ0AQsV+fs54Pu37I7COzmX14Nq42rrzW4TXpvRwsHXi/6/u8u+ddAwkWkZ99U3gJ6BwPXpmQaA9dfLtIBmBp+YXlsff6XoPndazqcPrWaYNjYu6zQqYgrFGY5JEb13wcx+KPEXEnAiulFacSTwHwZoc3eXGz0H/3w6c+xMrMCrVWzdy/5wKCkVvRBl7synE9/Tr1HOuxdthaaUx8Zjz9/uhHen46nX07s3LISqOM/lOJpxi3cRwA09tPL7U3sYmagckArKFUWguwtH7AmQkGBmBmQSZH444ik8no11AwkMqSgRGRhF2Ro0Vb4sclJTdF8vjVd6ovVcXp38fDrgA2YaK206hOo2p9f51OR0JWAgWaAqJSo4hKjSr1PBkyvOy8qOtQly6+XbiYdJH0gnQA/r75NwCOFo6kFaSx6NQiprWbxk///MTrO1/HxdqFMc3HSNd6pd0rzDs+r9S+56fktzhb34ZWMTkMvgwLOgh5gEvOLClTQsbgfooZlCcTTho897bzJiIpQjI+bc1spY4ewZ7B5KpypWrgya0n8/FfgkRVU9emnLp1ipbuLbmefp00dRp17evyfJvnAVh9YTWx6bG42bgxpfWUcucI8O7ud9l3fR82ZjZsHrWZOtaCQkN6fjrP/vEs8ZnxBLoEsnX0VoNq4LJIyEwgbHUYeeo8+jXsx7d9v61wjInHF5MBWEMRDbr4zHjyVHkV/vE6WTphY2ZjkAN0Le0awV7B0vPY9FhCVobgZuPGnXeEXkmlegB1auk18XoKuQKtVouNmWHPR30JmLoOdTkZb7hQNndrLu305TJ5qZ7KqkSr1fLuu+8il8tNIeBykMvlvPPOO5w5c8bkBSyD1NRUTp06xYULF0hMTCQxMZH4+Hhu375NYWEhGo0GhUKBubk5Hh4e+Pj44OXlhZeXF0FBQQQHB+PsXLJv9uNGVd1nyrspxGfGcyPjBnEZcdxIv8GNjBvS87iMOPLV+VJBSlmIBmFKXgo/n/qZFm4tiEiKYMImQatyVNAo5DI5VmZWfNL9E14Mf7HU6/zVxolWMTkMvWcATt4s5MVVVgdQhowLSRcMjonrpmgodvbtLFX1vtT2Jf44/wdqrZq2Xm2xNbdl89XNQNGG/q1Ob/HObqHzxwddP8BCaYFWp+XLI0KV7hsd3qhwzf/t7G/MOzEPgOWDl9PcvTkgeDcHrh7IhaQLeNl5sXPszlL7txcnpzCHsNVhJGYl0tS1KauHri610tpEzcH0r1dDqWNVBwcLBzIKMohJi6GZW7Nyz5fJZPg5+hl422LTYg3OEb13YoEH6OUAalVSeED0AOoXgIiSDsU1CfUNQG877xI9PZu5NZNU8H3tfY3qNfkgrF27lvPnz1d8Yi1Hq9USERHBunXrGDlyZHVP57EgMTGR8PBw9uzZw/Hjx4mPF3pay+VyFAphA1RWp5nIyEgUCgVyuRyNRiNtPnx8fOjYsSO9e/cmNDQULy+vR3Y/ZfEo7rNHyx4lxup0OpJykgTjMOMGN9JvSI9j02OJvBtZooBMpVURkSS0iNPoNIzdOJbJmydLoWUfex+crZxLzQVc7J/Cm0C3G+CSAyk2SALLlUGHTipiE8koMFQ6EDfNMmQMbTKUbr91A4TijwUnF6DVaQlwDiAqNYoA5wDiM+NJzk3G3dyd8c2FUPHWq1u5mHwRewv7CsOux+OP81L4SwB80v0TqSuHRqth/KbxHLpxCHsLe3aM3YGfo1+F96jVaRm/aTynb53GxdqF8NHhOFg6GPHpmHicMRmANRSZTEZD54acunWK6NToCg1AgMA6gQYG4M3Mmwavi7IF+otsqSHgeztkAwmYe3nDjpaOBtfU38n72PuUCP34OfhJRqJSrmT3td0PLaFYq9Xy4Ycfmrx/RiKXy/nggw8YPnx4rfUCxsXFsXz5cjZu3MiZM4KnWqFQGBhAWq3WqO+TRqMpYTjFx8ezadMm1q9fD0Dr1q0ZMmQIEyZMoG7dulV4J+XzONynTCbD3dYdd1v3MtuaJWQm8NmBz/jlzC9oMHwPpVyJWqumUFNIdGp0hekxV2zzOe0lp02ilkFXYEkwdPLpJHnjSqsgLoviudBiBxARUf6lhXsLrqVdI+JOBBYKC8IahdF8keCZE43I6e2n88mBTwAY5TEKM4UZOp2OL458AcC0ttPKNb4SsxIZsmYIhZpCBgUO4uPuQnhZp9Px5q43WX9pPWZyMzaN3EQLd+Pabn6470NJP/DPkX9Sz6meUeNMPN7UzlX9CaGyhSDF84BuZRv2AxZDCmqtGpVGyIEpLwfQGBFoAw+gvbfBcxBCx2KY5FraNTZf2WzUvdwPe/fuJSYmxmT8GYlWqyUmJoZ9+/ZV91QeKVqtll27djFgwAD8/f359NNPOXv2rPR6VfeT1r/e2bNn+fTTT/H39ycsLIzdu3c/tO9rTbxPb3tv5j87n1+DfmVa8DQDsWa1FeNx5QAAIABJREFUVo2lQhBkdrV25ds+3zLr6VlMaT0FO/PSuyWtayK859B7++JLUUUbZGONv9IQPX4gbLzF1ptTWk+RtP8GBQ4iPCqc9Px0XK1dSc1Lxcfeh6ScJNLy02hcpzHdnARP4YHYA5xIOIGl0pI3Or5R5vvmq/MZvGYwt7Jv0cy1GcsHLZfW7bl/z+XHkz8CQkjY2O4hy84ukwSifwn7ReqdbKLmYzIAazAPWghyJ+eOwXP9Ag7RC1iRB1Cs8BV3wMXbwN1IvyE99rbzNgjFKGQK0vIMW9IFuQUZdS/3w/z581EqTU7vyqBUKpk/f351T+ORoNVqWb16NQEBAfTr14+dO3ei0+nQaDQlOj88LPTfb8eOHfTt25eAgABWr15dZYbgk3CfDkoH5vWdx7XXrjGyWVGKQr5GqN5Nzk1mwT8LmNp2KkvClrB2+NpSr7PxnnTdM9fBMQ+itEKEQl6FP436UZGhTYay8sJKACa1nMQPJ34AiozNaW2n8cNJ4djHT30sGbii9++5Vs/hbute6vvodDqmhk/lZMJJnCyd2Dxqs5SS8/u533lvr9Cf99s+3zIqaJRRcz984zAvbH0BECqRx7UYZ/yNm3jsMRmANRixYOJ+xaBTcw3zYiwUFlIun5gHWJYQNAgeQDFfRjwmtqgTuZ5+XbqOo6WjQX6hu6271AFE5GEZgHFxcYSHh5tawVUStVrN1q1buXnzZsUn11B0Oh27d++mVatWjB49mtjYWIBq/66I7x8bG8vo0aNp3bo1u3fvvm8j7Um8Tz9HP1YPW03E1Ag8bT0NXruWdo0WC1uQkptC3wZ96e7XvcT4SBe47KHATAth99Soivf1fVBi0oXe54EugRy9eVTy9CGDyymXsVBYcDfvLi7WLtzNu0tmQSYt3FswtMlQAE7fOs2emD0oZAre7fJume/z/YnvWXZuGXKZnLXD10ob/j3X9vDclucAeLvT27zZ6U2j5n0t9RqD1wxGpVUxrOkwPnv6swf5GEw8hpgMwBrMg3oAxWo6EZlMJvW0FHtY6huAokCouEPX9wCKFNcVjM8UEshdrFyQyWQG8gr1HetLFcAixuQy3g/Lly+vtXlsD4pcLmf58uUVn1gDSUhIoH///vTt25dLl4Tw3+OWIiDO5+LFi/Tt25f+/fuTkFB2lWxpPOn32dy9OfFvxTMkcIjB8VvZt/D8P08Wn1rMnJ5zSh37ZzPByyaGgdt5lZ5/eD/YmNlIm+RJLSex9KwQ/p3QYoLUy1fspvJ8m+dZ9O8iAGb2mCltuL/6+ysAxjQfU2af9L0xe3l799sAfNPnG3rV7wUIxuOQtUNQa9WMDhrN172/Nmre6fnphK4K5W7eXdp6tWXZoGVGdRwxUbMw/YvWYEQD8EbGDQo1hRWe723nbZAzU7yFG+hVAhsTAlZakZ5vaER62RlWMYqLn5edFzqdzkA/K8gtyEA+wcvOyyg5gvth48aNj90PXk1Bo9GwcePG6p5GlaLT6fjtt98IDAxk925BnqOqc96qGnF+u3fvJjAwkGXLllXoJast9wlC0cb6EUIfYX3UOjVTt01l1IZRdPLpVGLcykbC2tnnGtgWYNAz/UHxcyiqsO3boC+7ru0C4Gn/p9kWuQ0Qij/szO3IzM8kR5VDsGcwAxsPBCA+P54/rwot8t7r8l6p7xGdGs2IdSPQ6rRMajWJ1zu8DkBMWgwhf4SQXZhNz3o9WTpwqVFGnFqrZsS6EVxJuYK3nTebR22uNvFwEw8XkwFYg/Gw9cDazBqtTmuQa1cWCrlCascGpavdi4UgpYaAKRYCNrMircAwh8/bzlt6rNKoyCwQOn/4O/mXqDpu7t6cuIw46Xkz14fj/UtMTOTMmTOPLL/pSeT06dPcunWr4hNrAKmpqYSGhjJ58mRycnIee4OoOBqNhpycHCZNmkRoaChpaWmlnldb7lMfmUzG3N5z+aT7JyVeu5l5UxJj1ueCG0TXkWGpgf6RVTJ1iZS8FEAQwd95bSdanZaudbsSHhWODp2UHzih5QR+PfsrALOeniVFWzYmbUSHjoGNB5YaHckqyGLg6oGk5afRwbsDC/svRCaTkZKbQr8V/biTc4eW7i3ZNHITFkqLEuOLo9PpeG3Ha+yJ2YO1mTVbR28tsak38eRgMgBrMKIUDBgfBtYPIag0qhJGkSgFUzwEDEWGn34OoGjgiegnKN/Ovi15/Bo4NuDA9QMG59pb2BuEhB9W/l94eLhR/S1NlE94eHh1T+GBuXz5MsHBwezaJXhiauqmQJz3rl27aNOmDZcvXzZ4vbbcZ2nIZDI+7fEpX/cyLtyJDDY2FdaHoRVfvlT0Iyv6iBGQMUFjpPDvqGaj+PWMYOyl56djqbQkV5VLvjqfzr6dpS5McRlxHEwV+iK/3/X9EtcWtfkuJV/C09aTjSM3Yqm0JKcwh9CVoUSlRuHn4Mf2sduxt7A36j7mn5zPwn8XIkPGH0P+oLVn68p9ECZqFCYDsIZT2UKQJi5NpMc6dAadQaDsEDAUhX71PYCSDuA99GVg9CVffBx8OJFwwuDc4tpZD8sA3LNnjyn/7wFRKBTs2bOnuqfxQISHh9O2bVtu3rxZ47xhZaHRaLh58yZt27Zl+/btAGzbtq1W3GdFvNvlXRaELChxvDRjbW2gsKaFRIFVxdk0JSgttOphU5QPHewVTOTdSKzNrMlV5ZJVmCWttSOajeCP838Aht6/eSfmoUFDD78edPDpUOL6Mw/MZPPVzZgrzNk0chNedl6otWpGbRjFiYQTOFs5s3PcTqM9eDujd/LGLkFi5steXzIocFDlPgQTNQ7Tr2INp7IewOJhhIRMwyTrskLAUKT/p+8BLK4D6GBRJFCqLwLtbefNxeSL0nOFTEFyTrLB2IdlAB4/fvyJ+SGsLjQaDcePH6/uadw3S5cuJSwsjLy8vCfuu6DRaMjLy2Pw4MH88MMPDBky5Im/z7179xo1Zlq7aSVy37Q6bYmK4VNeEOsANiroa5ysqgGl9Q4WtQC97bylfL9hTYbx8+mfASHKopQrKVQXUqgp5Gn/pyVtvuScZH45+wsA/+n8nxLX3nBpA58dEqpyF4cupoNPB0kGJjwyHEulJVtHbyXQJdCo+V9IuiDlEU5uNZl3O5ddbWziycFkANZwJAMwzTgDUDxfpLiIdPEQsEKmkKRhRI+dGNa1UlpJ54GwC9Zv5WbgAbT34WJSkQHoZuPGuTvnDN67qWtTo+6hMqSmpkqtrEw8GDdv3iQ1tWRLrcednTt38tJLLwlFSDU0FFoR4r3t37+/Vtzn/PnzWbx4sVFjJrWaxMohKyXPnw4dKbkpKNDzBMqKNAGHXirlIveBqJAwJHAIay6uAYQ1Lio1SuqhG9YojHWX1gGC90/khxM/kKfOo6FVQ57xf8bguhF3Ipj450RA6Ak8sZXweObBmfxy5hfkMjmrh66ms29no+aZlJPEgFUDyCrMoptfNxaFLjKlzNQSTAZgDUfqBpJq3La1uBRM8ZZFxUPAMplM8gKKIWDxx8XKzKrUvsEiNzOKij687b0NvIX+jv6cu33O4Lkoh1CVnDp1qsqvWZs5ffp0dU+hUixdupRFixZV9zRMPAReffVVfv31V6POHRk0kk0jN2EmFzaoKq2qRFrIhnv7zwGRYP6A0ohmcjNpo+zn6EdWYRb1nerzV+xfgLCZliFDrVOj0Wno26Cv1GEjIz9DEoMe6j7UwBhLyU1h4OqB5Khy6FW/F3P7zAVg8anFzDw4E4CfQn5iYOBAo+Ypdg6JTY+lgVMDNo7YWGIdN/HkYjIAaziiARiTFiOFaMujnqNhD8cbGYbVw2IIWN+zJ1UC3/MA6oeA9SuJLRSGVWaiAKoMGe427gYSDE1dm0qvw8ML/164cMGU/1dFyOVyLly4UPGJjwnbtm1j6tSp1T0NEw+R559/nm3bthl17oDGA9g2ZpvULq542PaYDyTagkMBPBNT2hWMx8bMBhAiHdujhZzF/g37SzIwAL0b9CY8Uiis0vf+TfxzIpkFmfjY+dDBoSj3T6VRMWLdCGLTY6nvVJ81w9aglCvZcnULL297GYD/dvsvL7V9yag56nQ6Xtj6An/f/BsHCwfCx4RTx7pOxQNNPDGYfhlrON523pgrzFFpVSVkVkrDyszKoC9m8d68kgewFM+eaGBKIWAzKwP9weJaUaI0jaOlIwq5gtiMWOm1hk4NDYzMINeHYwAmJiaiUJReoWeicigUChITEys+8THg8uXLjBgxorqnYeIRMHLkSKOqg0EwunaP342tWclog04Om8Qw8H1WA4tkFgrqCL38e7H/+n5kyCThfTGlRqfTodVpCWscRjtvQXz6wp0LbLm6BYCuvl0Nchff3v02f8X+ha25LVtGbcHZypljN48xav0otDotz7V6jpk9Zho9xzmH57AiYgUKmYL1I9YbnS9o4smhVhuACQkJjBs3jjp16mBtbU2rVq1qXMhQIVdQ36k+YHwhiKddUQL0nWzDfsBiDqAYAgZDLUDQCwErDQ1AG3Mbg2vdyhZ04zxsPdBoNQYhYTOlmcG5D8sDmJiYaBKAriK0Wm2NMABTU1MJCQmhoKDgic2FMyGg0+nIz88nJCTEKJ1AgKf8nmL/xP0GBWsiG+4ZgAOvgKISNTTFK4vFKImoivBU3afYeFkQU9eho5NPJ/bECFX1n/UQijny1fmM2TgGHTqCXIP4OfRn6Xq/nP6FH0/+CMDvg3+nmVszrqZcZcCqAeSp8wgJCKlU7t66i+v46K+PAJgfMl/qHGKidlFrDcC0tDS6dOmCmZkZO3bs4NKlS3zzzTc4OjpWPPgxo7KVwPph4JTcFIPXiheBQJEBKBpSogfQTGFm0NnD3txQa0pMgvax9yEhK0HKIQRDDyM8vBZw8fHxT1w1ZHWh0Wge+4IanU7H+PHjnygJFBPlI0rEjBs3zmiDv513Ow5NPkQdK8OQ5yE/SLEClzzoXrG2voR+8Zu4hjpZOrEtWghP+9j7kKPKkbx/CrlgMA5vOpyWHi0BmLF3BueTzuNm48beCXsl4eZj8cekEO/MHjMZFDiIW1m36LuiL3fz7tLeuz1rh601mEN5/JPwj1RE8nqH15na1pQmUVuptQbgV199ha+vL0uXLqV9+/b4+/vzzDPP0KBBg4oHP2Y0dKpcIYh+tW1avuGuubwQcHHdPnExExFV7QFyCnMkL2IDpwbEpBUl1ShkCuLSizqAyJA9tPDD7du3H8p1ayuP++e5bNkytm/fbjL+ahkajYbt27dXqmd1C/cWHH3uKG7WbkXXUcCf95aiylQD6+dCF2gKAGjr1ZbY9FjszO04evMoIGyeW7i34EjcEeQyuRSy3Rm9k+9PfA/A0oFLJUH9lMIURmwYgUqrYkiTIXzU7SMyCzJ59o9nuZFxg4bODQkfHV4i+lIWNzNuErY6TPIaftPnG+Nv0sQTh7K6J1BdbNmyhb59+zJ8+HAOHjyIt7c306ZN44UXXihzTEFBAQUFBdLzzEwhz0OlUqFSldSBelTUcxA8epF3I42aR5BLUbg1syDTYIy5XDD2cgpzpONi5Vy+yrB1nFpjaBA6WDhIY26kFW2f/Rz8iEqJkp67WLtw+nZRNWmAcwAKneKhfIaFhfeh6mqiTAoLC6v1u14eCQkJTJ8+HZlMZgr91kJkMhmvvvoq3bt3x9vbu+IBQH2H+hyedJgOv3SQcvQ2NIXnz8DgK/BqiJAbWBnE8K8YFu7o3ZE914tE1JUy4Wd3VLNRNHRsSHxaPBM3CR65V9q+Qm//3qhUKjJzM/ny+pfcybtDkGsQS/ovIa8gj8FrBnPuzjncrN0IHxmOo7mjUX+T2YXZDFg1gNvZt2nm2ozlYcvRarRoNdWfIiPO/1GuLY/rOvYoqbUGYExMDAsXLuStt97igw8+4OTJk7z22mtYWFgwYcKEUsd88cUXzJxZMsn2r7/+wtq6+pplp2YK2mxn484apZJ/N+eu9Di7INtgTGxSLADRN6Kl4/k5guF35uwZg+ucizDU8ctJyZHGnM86Lx1PupbE6fwig89eZ8+VpCvS8zqaOkar+1eW7Ozsh3Ld2kp2dvZ9/1vpdDo0Gg0KhaLKdcZ0Oh2zZs0iNzfXZPzVUnQ6Hbm5uQwdOpSPP/64UmO/rv81L15+EYB99SDdAjyzofNNOOpn/HVkyNChw1Jmyf6Y/QDE3C6KfniYe3D69mnkyHlK8xTbtm1j9vXZJOUmUdeyLt0Lu7N9+3Z0Oh3z4uYRnReNncKO6S7TObDnAPPi5nEo7RCWckv+4/Mfrhy7whWulDUdCa1Oy5fXv+Rc5jkclA685vIaR/YdqdRn9Ch4lN2GcnNzKz7pCafWGoBarZa2bdsyZ84cAFq3bs3FixdZuHBhmQbg+++/z1tvvSU9z8zMxNfXl6effpo6daqvfL5RaiNmLppJsjqZfs/2K7UtkT4dcjvwn3mCurxapyYkJER67eapm/yW+BtObk7S8Tl35hCTF0PToKaglxfTrFkz0EsJaxvYlpDuwpiMixlwLyId+lQoi08vhnv1JsH+wURdKvII9mzek5BuRXOoSmxtbUlJSan4RBNGYWtra/B9KQ2dTkdERASnTp3i9OnTnDx5kitXrpCfX+RBtrS0JDAwkPbt29OmTRuCg4Np0aLFfRuGe/bsqXEahSaqHq1Wy+nTpzE3N6dXr8oVNlgEWDBxy0RUStjaGMZHCNXAlTIA73mfm7g14cydM/g7+HMtoyg1x8nOidt3bzOx5USm9J/Cgn8WcOrcKSwUFvw57k+pGO67E99x8NxB5Aiizr0b9mbGvhkcSjuEUq5kw4gN9K7f2+h5vb//fU5mnsRCYcGWMVsMJLkeB1QqFXv27KF3796YmRmXy/igiBG82kytNQA9PT1p2tSw80STJk3YsGFDmWMsLCywsLAocdzMzOyRfWlLo6FLQxQyBXnqPFLyU/C2Lz/84W7vjkKmQKPToEOHXCGXkpJtLQV5hAJNgXRPYjKyVmYYKtDJDD0t3vbe0pjbOUW5Yn5OfgadSorPT4fuoX1+5uYmUdOqxNzcvMx/q8zMTH7//Xd++OEHIiMjAeFvo7RQS35+PmfPnuXixYtSR4dGjRrx2muvMX78eOztjWteD8KP/owZM1AoFKbcPxMoFApmzJjBmTNnKqUBOr7VeF7b9RoZBRlsaCIYgEMuw1t9ASP3JWL4V9QYdLVxleSv3KzduHz3MnKZnE96fMKV1CvM2D8DgLm959LauzUAu6J38f7+9wF4zvs5ejfszYJTC/j2xLcA/Br2KyGNjd8wLz2zlG+OC7l+vw78lW71uhk99lHzKH9Lq/M3+3Gh1haBdOnShatXrxoci4yMxM+vEtu9xwQzhRn+jv5AydZupSGTyXCydJKeJ+UkSY/LqwIWZWBE9KViAIOm4/odRrztvQ2LQIrp8l1PN+xGUpV4eHhUfJIJoynt80xLS2P69Om4u7szffp0oqKKvLsV5dnovx4VFWVwHWNlPdauXcv58+dNxp8JQCgIiYiIYN26dZUaJ5PJWDV0FQC7GkK2GfhlQNtKKh9ZKi25kHwBOXIibkdIx7MLhXSUBk4NcLNxY8zGMRRoCggJCOHV9q8CEHU3ilEbBF2/SS0n0d+lP+sureOtXULk6YtnvmB8y/FGz+Vg7EFeCheEof/b7b+MaT6mcjdj4omm1hqAb775JsePH2fOnDlER0ezcuVKFi9ezCuvvFLdU7svKisF421X5IWLulv0g128FRyUFIIWySrIMnju4+AjPRaNOmsza9RatUG1sSgPI9LVtyvAQ8nd8vHxMQlBVxEKhQIfHx+DY+Hh4TRu3JiFCxeSn5//QH1oxbH5+fksXLiQwMDACrs8aLVaPvzwQ1O3FxMGyOVyPvjgg0prgD4b8KzQ4cgMtgcIx4ytBhZVEbxshY1wQJ0ACrRC0aCDhQO5amFT/UvYL7y39z0uJF3A3cadpQOXIpPJyCzIZODqgaTnp9PRpyM/9v2RC9kXmLx1Mjp0vNruVd7r8p7R9xKdGs2QtUNQaVWMaDaCT3t8avRYE7WDWrtqtmvXjk2bNrFq1SqCgoKYNWsW8+bNY+zYsdU9tfuisgZgfef60mN9r6HYCk5fBkbUl1JpDL052SrDAgt9o1LsSuJi7UJseqx0XC6TE3k30mCcqIM18c+JtFzUkm2RxrV2MgYvLy+TcVBFyOVyvLyEH7eMjAzGjx/PgAEDuHv3bpV73zQaDSkpKYSGhjJhwgQyMjJKPW/v3r3ExMSYxL5NGKDVaomJiWHfvn2VHvttXyHUKvYGHnoZMGJPI2qiitXEyTnJ0muiTEwz12ZkFWZJos6/DfoNNxs3tDot4zaO43LKZbztvNk4YiNXU6/yxfUvKNQUMrTJUOb1m2d0jmxaXhqhK0NJzUulvXd7fhv4W4W54SZqH7X6GxEaGsr58+fJz8/n8uXL5UrAPCo0Wk0JkWRjaOAk6BcaawA2cy0SXtbvB1xuCLiYDmBWvqEH0NnKWXoshpW97QzDvy5WLgYeRyjqAnIs/hgRdyKMFjQ1Bi8vL1NosIrQaDR4eXlx584dunbtyqpVQrjsYRlf4nVXrlxJ165dSUpKKnHO/PnzUSprbSqziXJQKpXMnz+/0uOmtp2KHDnbAyBfAQGp0PxOxeNAkMxKzUvF1tyW1HxBncFKaSVpA/5f7/9j8ubJgCDC3K9hPwA++esTtkZuxUJhwaaRm1BpVYStDiNXm0tX366sGLJCytOuCJVGxfB1w7l69yo+9j78OfJPaWNvwoQ+tdoAfNz44cQPeH7jybzj8yo9trIewDaebaTH+qLM5YWAizdPzyosMgBlyKRiEZ1OR1qeEPL1c/AzMAB97H24k1O0mjpYOOBg6UBqXqo097ZebY26B2MICgoyeYeqCK1Wi7e3N126dOHy5cuPzLDWaDRcvnyZzp07GxiBcXFxhIeHo1aryxltoraiVqvZunUrN29W3CO9OM+1fo5sCyEXEIzvDSyK4duZFfVbFzfOrdxb8f3J70nKSaKFewu+7PUlILRlm314NgA/D/iZBs4N6LeiH4nZidS1rMuGYRuwVFoa9f46nY7pO6az7/o+bMxs2Dp6q0HrTxMm9DEZgI8R5gpzknOT2Xx1c6XHigbgtbRrRuVgtfZoLT3WL8IoLQQsGYB6IWAZMgMDUH93mpqXKrV9C6gTYGAAetp5GrSPE+f9b+K/0nN9T+KDEhwcXGXXMgEff/wxsbGxj9yrqtFoiI2N5ZlnnpHCwcuXLzeF902Ui1wur1R3EJHv+wldOcTewMbmAYob31s5Qh90M7mZtHHu27AvO6N3Yqm0ZOWQlVgqLTl7+yyTNk8C4O1ObzOs6TDCVoVJoeD/1v+v1E/YGH448QP/O/U/ZMhYOXQlrTxaGT3WRO3DtHo+RoQ1DgPgRMIJbmXdqtTYek71kCEkEhfv71savg6+0mMxXw/KCAHLS3oArZRWBgagaCQCJGQlSI/9HPwMvJLFe2+K3r5/Ev4BoJ1XuwrnXhmcnZ1LFC6YuD+sra2JioqqtpC66AmcPn06ABs3bjR5d02Ui0ajYePGjZUeZ21uTTvPdmxtDCo5BCVDowqWVblMjlqnxtGiqCWmKAvT3K053x3/DhDCwM3cmpGck8yg1YPIVeXSp0EfPu/5OWM3juXozaM4WDiwdeRWXM1djZ7z9qjtvLVbqBb+uvfX0u+JCRNlYTIAHyO87Lz+n73zjquq/v/48w42iCBLligi4gYHrjKVoYg7R86vlTYkbdiy8te3UuubLSW1YVmamjNTcWu5BwIKTnCBbET2vvf+/jjew73AhQtuvc8ePYTL5yzGua/zHq+3KIC2Xtpar21N5aaiqNMnDSyTysSi4OzibPF1dQq4VFEq3rzU4q5MUSZuI5fJRVsD9fHVpORX+ia4NnLl4s1Kux31PtX0dOsJwImUE8DdF4AA3bt3N3QC3yFSqZSioqIHXk+pUChYsWIFv/32G9HR0YapHwbqJCoqitTU+j1QA3w/6HtyzITJIFB3FFB9D8wrFQyGpRKpmAkpriimTFFGaKtQXu36qlinp57nu3rEat7c+SabLmzCWGbM5rGbxdpofYhNj2XsesE+5gXfF3irx1v1vl4DTx4GAfiQMdR7KECD0sD1bQQxlQk3rMLyQvE1zWJhdRpYFIDKMtHqoKC0QEsAqoUjQHJeZQTQ2cpZq8YwKVe7Hqejo9ABrI4AdnPppte514fAwEBDpOgOUSqVd318W0ORSqXizF8DBvRh69b6PVADdHXpirWJtXY3cC0UlRchlUhRon2vcbZyJiE7ASdLJ34Z8gsSiYQ3dr7Bv9f/xcrYis1jN7P01FIWRy5GgoQ/RvxBH48+ep9nekE6g1cPJr8sn2c8nmHxoMWGvw0DemEQgA8ZQ1sLAnDPlT1aAksf6tsIYm1qDUCForKIXp0ChspGEE0bGPWNxUhmpJUmtjSyFD/W7CqWS+WigbRUIiU+u7IDWIKE1natSc5LJrUgFZlEhm/TytrEu0VoaKghUnQXeFi+h0qlkvz8/LoXGjCA4F/Z0Bmz7/V+j79ag0ICnVPBQ4c3ufrBWC6Vi5+rsx3qjMhvw37D3sKen079xPcnvxfF3onkE3yw7wNAqD18ts2zep9fSUUJw/8czvXc63jZerFh9AatchwDBmrDIAAfMtrat6WFTQtKFaXsuryrXtuKAvCWfgJQPblD84lVJpWJN5BqEUBFGTKJkEpt1riZ6G0F0Mi0cnTX5WzBV1AulVczfU4pqEwP25vbYyI34WSKEP1r69BWK5J4t3B2dsbX19fwVPyY8bAIUgMPNwqFgmPHjjVo21k9ZpFlAQduD4gaoSMKqC6NKVOUab1uJBUent/o/gZBnkEcTjzM9Ahh2MCnfT9FLpXz4t8vAvBOz3d4zf81vc9NpVK6Pb46AAAgAElEQVTxwt8vcPTGURqbNmbruK13tYHOwOOPQQA+ZEgkkgangcVO4Oy6x8GBILhqomojiKYAVNe0yCQy0dsK0Cp8Vhs/25rainMwoXr9n7edNwAnku9d/Z+aESNGGDpGDRh4QklKSiI7O7vuhVWQy+Q80+yZOruBFSoFckmlH6Xa6aBcWU5Hx47M7z+fpNwkcTLHqDajCGwRyKh1o1CoFEzoMIH5AfPrdW6fHfiMVbGrkEvlrB+1nlZNWtX7+hqCSqVi26VtrD279r4cz8C9w/CO+BCiFoBbL22tZr5cG/VNAfdxr6wzyS2unLRQ1QtQUwCqz0eKlLKKyqddzSfP1AKh4NrR0lHLAqYq3ZyFej91BPBe1P+pmTRpkqEO0ICBJ5ioqKgGbffj4B/ZeFsA9rwBznk1r6s6Kx2ExpBVI1ehUCkY9ucw0QPww6c+JHR1KIXlhQS2CGTZkGX1mtSx9uxa5vwzB4DFIYvp36J/va+rIcSkxRC4IpDQ1aFMj5hObknNE3oMPBoYBOBDSC/3Xtia2ZJdnM3hxMOAfumuFjbCeLebxTdFP6ra0LQJWHe+cnB6VS9AtQ1MmaKyCcTMyEzLFsbO3E78WG1D42btVqsY7eXeC6VKKXoA3ssIoLu7O6GhoYapEQYMPIFIpVLi4uIatK1XEy+KHRpz+LZz1nA9TaEBvg76Gh87H6ZumUpUahRNzJqwbMgyRqwdQWZRJr5OvvWu2zuRfILJf00GhNTy1M73foJVcl4yUzZPwe8HP/Ze3YuxzJjnOz1vGC/3iGP46T2EyKVyBnkNAmB5zHJCV4Xy1K9P1bmdpbElTpZOgPZ8X13YWVSKtt2XK4ukdaWASysqU76WJpZahs4OFg6A4Hqv9gf0bOzJ+Uzdd8sOjh1IyE4gpyQHU7lpvWwPGkJYWJhhaoQBA08gMpmMlJSUuhfq4LO+n1WmgfUUgEO8h/Byl5dZcGSBmKpdMXwFr2x7hcu3LtO8cXMixkdgZWJV985uk5ibyJDVQyipKGGQ1yC+DPyyAVejPwVlBczZPwevRV4sj1mOChVj243lYthFvgj8ol7nbuDhwyAAH1LUaeD91/azLX4bh5MOa/nr6aK+aWB17d4on1HiazpTwMoyUfSpi5vVqMcNpRWkVZ5Lk5Y6U8ByqZzmNs1F+xdfJ9+7OgO4JgICAmjRooWhFtCAgScMpVJ5RwLw1a6vimngp6+DfR0GDU6WTiwbsoydl3fy7p53ASEauPDEQiJTIrEzt2PHhB3iA7s+5JfmM3j1YNIL02nv0J7VI1frPR+4viiUCn6O+hmvRV58euBTiiuK6eXWi2MvHGP1yNV4NPa4J8c1cH8xvBM+pAS3DMZEZsL13OtiZGxHwo46t6tvI0inpsKooHKVxpSPKilgtTDTjACq7Q7UOFsKHcWaItXRwlEciF4VZ0tnpBKpWP93L9O/aqRSKXPnzjXUAhow8IShUCi4ceNGg7eXSCRct4HIpiBTwbALta//fdjvZBdnM3b9WFSoeNH3RaJSo9iRsAMzuRlbn9tar6YNhVLB+I3jOZN+BgcLB7Y8t+WeRd92Juyk0w+dmLplKmkFaXjaeLJh9AYOTjmIv6v/PTmmgQeDQQA+pFgaW4qFvQ7mQnp1e8L2OrdraVM/Kxh7c2HUUGZRpviazhSwRtdv1QigegqJpgBUW8ZApU+Wmrb2Qgey2AHscu8FIMDo0aNp3769YTJIHchkMoNtjoHHirS0tLoX6SD+puBfqo8p9Az/GXRz6caQ1UPILc2ll1sv7MztWH56OTKJjLWj1tZbSL235z22XNqCicyEzWM306xxs4Zeik7iMuIYsHIAA/4YQFxGHDamNnwT/A3npp9jhM8Iw/3gMcQgAB9i1Gng9MJ0AHZd3kW5ory2TfC0rd80ELUA1JwfrCsFrBkBpEpPiru1O6A96UPTJ1BVZYMebj0oV5QTnRYN3J8IIAhRwAULFjzwkWYPOwqFwuCzZ+CxoqysrO5FOvj74t8AYh1gv6vQuLj6uiZmTZjfbz7jN47n4s2LuDZyZXCrwXx++HMAloYuJbRVaL2O/UvMLyw4ugCA5cOW0921e4OvoybSCtKY+vdUOi7tyM7LOzGSGvFG9zdImJHA691fNxhLP8YYBOBDzOBWgwE4m3kWW1Nb8krzOJJ0pNZt6lsDaG9xOwJYqBEBrNoFXEMEsCqNTAQjaPWkDwkSbpXo7kTu4daDs5lnKakowdrEGq8mXnqd790gMDCQgQMHGqKAOpDJZAQHBz/o0zBg4K5yJw99BxMPAhBvB7EOYKSEIRerr9s3eR+fHfyMbfHbMJWbMqPbDN7f+z4A/33mv7zo96Lex1SpVMTmxxK2IwyAj/t8zNh2Yxt8DVUpKi/i038/peXClvwc/TNKlZJhrYfxZeCXfBX0lcFU+gnAIAAfYppaNcXfRUgVqAVSRHxE7dtYVjZjaEb1dKFXCljDBkaNpgWMVCIV0wPqpg8rEyuu3rqq87jtHNox98BcAFwbud5XOwGJRMJPP/2EmZmZIa1RBYlEgpmZGT///PODPhUDBu4qd/LAdyb9jPixLlPogOYBnM88z/xDgqHzOz3f4aP9H6FCxVS/qXz09Ef1OuZ//v4Pn1z5hAplBWPbjWVOnzkNPn9NlColy2OW47XIizn/zKGwvJAOjh0Y6TOSfVf38frO1zmefPyuHMvAw41BAD7kqNPA6vRrRELtAtDZylmst9O0dtGF2r9PUwDWZgStpkxZ+bFmQ8iNPKHQ2t7cngs3a66UNpWb4mjhKN5k6tMJd7dwcXFh0aJFhjRnFVQqFeHh4bi6umJqavqgT8eAgbuGsXHDU5nJ+cnix+o6wKDLYHk7KSKVSJnXbx5TNk8B4PlOz7PoxCJKFaUM8R7C4kGL6/WwGX4inNVnV1OuKsfHzodfhvxyVx5W913dR+cfOzNl8xRS8lOwN7enjX0bzqSfYcP5DeSV5uFp46mXj6yBRx+DAHzIGdpaEIDnsoTHzbiMOK06u6pIJBI6OHYA0C8CWFMKWF5zClhT9GnWImrWiKjrFZ2tnLmYVUOOBGhmLRQwqyeG9Gver87zvBdMnjyZkJAQQyr4NjKZjJCQECZNmgSAj4/PAz4jAwbuHk5ODXvQLCgt0Hr4jXOAS7ZgqoAQoeKFqb5TeXb9sxRXFPOMxzPsvrKbWyW36OHag9UjV1dzTaiN4zeOM2P7DADMpebsHLdTLMtpKOczzxO6KpT+v/cnJi0GE5kJVsZWZBZlci7zHFKJlKHeQ9k5YSeXXrtEoGfgHR3PwKOBQQA+5PjY+eBp46l1A6qrGzjIMwiAC1l1eBWgIwVspJ0CVtvAaIo+zfMxlVdGitRPju7W7mI0sCrtHdoTfzNeHCs3qs2oGtfdayQSCStWrMDNze2JF4FyuRw3NzdWrlwpRhr8/f0xMrq33owGDNwPZDIZrq6uDdq2pqxLxe13TvNyMJGZcDbzLIm5ibRo3IKMwgyS8pLwbuLNlue2iBkVfcgszCRgRQAqVMgkMj5r+dkdZUgyCjN4ddurtF/Snm3x25Dc/q9UUUp+WT6OFo58+NSHXJ15lXWj1lFSUcLItSPp+lNXQ3bkCcAgAB9yJBKJmAZWU1cdoK+TL4DYYVsb6ghgdnE2CqVQJK0rBawpADUbQtTri8qLxNddG7lqRQw16e3em/Xn1wNC+ljduPIgsLW1JSIiAhMTkye2HlAikWBiYkJERAQ2Njbi6507d6a8vPaucwMGHgWkUinOzs4N2nbPlT1anwddhjZZkGcs1AN2dOrIoaRDWBlbYWdhx7nMczhZOrFjwg6amDfR+zgVygp6/dKLgjLBZfq3ob/RwrxFg875es51glcE4/K1C0sil6BQCfd21e3/+jTrw5qRa0h8I5Gx7cay8PhC3L5xY+iaofx14S9i0mKIzYht0LENPDoYBOAjgDoNrGb35d3alixV8G0qCMDT6adFUaeLJmbCDUqpUopdu7p8ADUbPzQFoJWxYEiq6QFoLtf91NvNpRv7ru4DBEPoBy28fHx8WLt27QM9hwfN2rVrq6V8u3a9P9Y8BgzcaxQKRYMF4PEb2g0Rrx8T/v3FF8osTEQv045OHTmRfAIrYyu2j99e72kZY9ePFV0U3u75NqPbjK73uZ5IPsGkTZPwXOjJriu7xCwLCPfp6V2nE/dKHJvGbCK7OJvev/Sm3ZJ2fHX0K9IL03GwcOCtHm8R90qcWEpk4PFF/8IEAw+Mnm49sTW1FadqFFUUcSjxkGgUXRUvWy/MjcwpKi8iITsBbztvnfs2khlhY2rDrZJbZBZmYmdup1cEUDMFrLaA0RSASpXuaRvtHNoRlyEMZldPInnQDBo0iJ9++okXX9TfpuFx4eeffyYkJKTa6x06dKBVq1bEx8cb0kEGHmmUSiXt2jVs1rjmXPXWmTAwAZTAIv/Ke2Ivt14cSjyEkdSITWM20cmpfve1r458xYbzGwDo59GPLwK+0HtueUlFCWvPrmXh8YWcSj1V7evt7NsR1i2MMW3HcCLlBJ8d/IxN5zeJD/FyqZzQVqFM6TSFgS0H6j2SU6VScSHrAj72hlrhRxVDBPARQC6VM9h7sNZrtaWBZVKZ+PSmTxq4aiewLh9AzafJsopKAdjYVJgnrFnzp05jVKWRSSMsjC3EYwW1CKrz/MoUZQ0WIHuv7CW9IF2vtS+88ALh4eENOs6jSnh4OM8//3yNX5NIJMyYMeM+n5EBA/cGPz+/em+jVCopLC8UP595O/q3uTVctZWgRElHx44cTjoMCEbNuh7MdfHv9X95e/fbALg3cmfHhB16ZUWScpOYvXc2zl85M/mvyVriz0hqxPj24zk05RAbx2wkKS+J9kvbE7wymDVxayhVlNLBsQPfBH9D8pvJbBqziSHeQ+oUfyqVijPpZ/hw34d4h3vTZnEbnfPeDTz8GATgI0LVOsBt8dtqXS/WAabqXweo7gTW5QOopDKqpxkBVKeRNecPqzt8q9K8cXNOpZwSI4QjfUbWeX6Lji/C4zsPfoj8oc61mhSUFTBq3Sg8vvMgKjVKr22mTZtGWFgYEonkgaem7xXqawsLC2PatGm1rp04cSImJib36cwMGLg3uLm5YWtbf2NjTVFlWwSTTgsff9tdqKdrZt2M0+nCi18Gfsm49uPqtf+0/DQGrByAChVmcjMip0XWKsJUKhX7r+5n+J/DafZtM+Yfmq9luO/WyI35/edzIewC/Zr34/2979MqvBVzD87lRt4NbExtCOsaxqlpp4h5KYbXu7+Og4VDreeoUqmIy4hjzv45+HzvQ8elHZl7cC7x2fGYyk2JSYup1zUbeHgwpIAfEYI8gzCRmYhh+4s3L3Ll1hVa2NRcJKwWgDHpdf9xVu0E1pUC1kSzwUMdQVTXr5jKTbl085LO81KnOkxkJjhZ1d3htuH8BhJzE7VqEPXhx1M/cqvkFl62XnR07Kj3dgEBAQQEBDBu3DhKS0sfq7FxMpkMU1NTVq1apVdUtVGjRrz44ossWbLkofs+SCQSQ2raQJ3IZDK6d2/Y+LQtl7aIH089BeYVEO0EB5qBtYm1WPbyuv/rvNXjrXrtu0JRQdslbSmpKEGChH2T94kP41UpKCtgxekVfHv822r3VgkSBrQcwCtdXsHC2ILfT/9OhyUdxMilVCIl2DOYKZ2mMMR7CCZy/R7ozmWeY+3Ztaw9u5bzWZXDj01kJgz0GsjoNqMJbRWKlYlVva7bwMODQQA+IlgYWxDoGcjWS1vF17bHb2d6t+k1rlfXoESnRqNSqWqNZlWdB6wrBayJZgTQ0dIRgOu51wGwMbXRmRZ4qtlT/BwlTJlQzw+ujeS8ZI7eOArACJ8Rda5XU1pRyldHvwLgnV7vIJPWz+YlJCSEyMhIQkJCSEpKeujET0OQyWS4ubkRERFBy5YtiYiovZtczSeffMKff/7JzZs3USp113beL6RSKRYWFhQU1FxmYMCAJgqFgsDAhvna7b4imOnLFRAm9HrwTXdBVJUryylXljO67Wi+Cv6qXhmDvVf2MvzP4eSX5QMQHhJe44zf5JJk3tj5Br+e+VXMyKhpbNqYaX7TGOw9mP1X9/P6zte17rutmrRiSqcpTOwwEZdGLnqd14WsC6LoO5t5VnzdWGbMgJYDGN1mNIO9B4t13wYebQwC8BFiqPdQbQGYoFsAtndsj0wiI7Mok5T8lFpvAHWlgGtKSWjWA6p9qlLzhbSvo4WjzshjV+euYr1LF+cuOs9JzcbzGwGhEcbZSv8uvhVnVpCSn4KzlTMTO0zUeztNfHx8iIqKYsKECURERDyyESf1eQcHB7Ny5UpsbGzqZe9iY2PDsmXLGDJkyD08S/1RKpWEh4czefLkB30qBh4RQkNDG7Td2QxBBD17DlzzIc0C/mwHliaW5JXm8YzHM/w+7He9R1lGpUbx3p73RGEJ0MGxA690eUX8XKFUEBEfwTdHv2H/9f3V9tHNuRsvdXkJqUTKH7F/8OWRL1Eh3JesjK0Y03YMU3yn0MO1h16i9NLNS6w7u46159ZqjbwzkhoR3DKY0W1GM8R7CNam1npdY20oVUouZl2ktV3rx7bE5lHCIAAfIUJbad/E9l7ZS3F5cY0u8aZyU3zsfYjLiCM6LbpWAVi1CaRqClgqkSJDhoLKKFh5RaWAcG0kGKyqI4i25rprbTxtPckuFrqZQ7yqd55WRZ0u1qdWUI1CqeB/h/8HwFs93tI75VETNjY2bN26ld9//52wsDCKi4sfqWigTCbDzMyM8PBwJk2a1OCb7uDBg5kwYQKrV69+oNcvk8kYN24ckyZN4ttvvyUmJuaRFOUG7h9+fn40bdq03tsplAohQqeCN4QkBIu7gtzUnLzSPNo7tOevMX9hJDPi66NfM9Vvqs50aEJ2Ah/u+5A/z/4JCOLqpc4vMb79eLq7CZG/m0U3+SX6F749/q2WowIIadeJHSbydLOnOZh4kBnbZ2g1p/T16MuUTlMY4TMCC2OLOq8tITtBFH2aNXxyqZzAFoGMaTuGoa2Hig1+DaW4vJjIlEgOJx3mUOIhjt44SnZxNgmvJeBp63lH+zZw5xgE4COEk6UT3V27c+yG0IpWoijh3+v/MqDlgBrXd3LqRFxGHDFpMdXEoyZVawCrpoBBuDFoegpqikFXK1dUKhV5pXmAUBtTE3bmdhxOPCx+XrWxpSrpBekcTDwI1E8Abjy/kfjseGzNbJnWufYmB32QSCRMnjyZgIAApk6dyvbt25HJZA+1EFSfX3BwMD/++CMuLvqlgGojPDycmJgYzp8//0CuXS6X4+Pjw6JFiwAYMWIEZ86ceah/DgYeLDKZjBEj9C8d0eT//vk/AHokQbcUKJHBD10EGy63Rm5sH78dcyNzJm2axB+xf7A9YTs7J+zUigamFaTxyb+f8FPUT2LWZFz7cXza91Oxfjs6NZrvjn3HqrhV1eqcmxo35eXuLyORSlh+ejk/R/8sfs3cyJy3e77N5I6TaW7TvM7ruXLriij6NJviZBIZAS0CGN12NMNaD8PWrP7NMmoyCjM4nHiYw0nC/6dSTlW7JjO5GfHZ8QYB+BBgEICPGEO9h4oCEAQ7GF0C0NfJl5VnVtZpBVNbClgdXZFL5JRSs/m0s5Uzt0puiW7z6u2rIpfKWRq5FAALI4s6i4f/uvAXSpWSLs5daNa4Wa1r1ahUKuYfmg/Aa91ew9LYUq/t9MHFxYVt27axZ88eZs2axZkzZ5BKpQ9FXZwa9fm0bduWBQsWNLj2qSasra3Zu3cvPXv25Nq1a/dVeMlkMpo1a8aePXuwthYeMCZNmsScOXPu2zkYePRQKpXibOv6EJkSKd5H1MbPf3SADEuhxnnHhB00Nm3M0DVD2Z6wHblUzn86/kcUf7kluXx55Eu+OfaNWEozoOUA5vefTyenTpQpylgTt4Yvj3xZzaFAJpExuNVgOjh0YHP0Zv578L/VfFUbGTdiWudpfPzMx7Vex/Wc66w7t461Z9dyMuWk1jH6Ne8nij51Fqg+qH0A1WLvUOIhErITqq1ratmUXu696OUm/N/JqZPeXoMG7i0GAfiIMdR7KO/vfV/8PCI+goUDF9a4Vl8rGF1dwCpUlCnKkCJFLtH9q2JlYqVVMKxrSklaQZromq+re1mThqR/d13eRXRaNOZG5rzW7TW9t9MXiURCYGAg0dHRrFu3jtmzZ3PlyhXkcrnexq33AnXEz8PDg3nz5jFq1Cik0rvv8uTg4MCRI0fo37//fYsEymQy2rRpw549e3BwqLSscHd3JzQ0lO3btz/Q772BhxO5XE5ISAhubm712q6grIBxG8ahVClxz4GRtxtgv/MXSmv+fu5vnCydCFwRyNEbRzGTm7Fh9AYGeg2kpKKExScXM+/gPG4W3wSEyUdfBHzBMx7PkJKfwpz9cwg/Ea5l3wLCfXikz0hKFaVsOL+Bvy7+pfV1mUTGwJYDedHvRQZ6DayxOQ8Ef0C16DueXDnFRCqR0tejL6PbjmZ46+E6O451UVJRwsnkk6LgO5J0RCznUSNBQluHtqLY6+3eG4/GHoZ6v4cUgwC8zfz585k9ezYzZ87k22+/fdCno5PWdq1padOShFvCk9blW5eJvxmPVxOvamvVncBXc66SU5Kjs55DfSPIKspCpVJp1RQWVxRjIbPQKQClSJFIJCTnJYuv6fIABMQbRg/XHrVdJjeLborj4uojANVP7dP8puk1hzMhO6FBs4ilUiljxoxh1KhR7Nmzh/DwcLZu3YpUKr3vkTGlUsmgQYMICwujf//+90T4aeLg4MChQ4d47bXXWLFixT2Lgqr3O378eBYuXChG/jQJCwtjy5YtNWxt4EmnoqKCsLCwem/3+o7XRUursBMgU8He5hDrBBtHrKJ54+Y8/evTnM08S2PTxmwbtw1/F3+Wxyzn//75PxJzEwHwbuLNvP7zGOY9jCM3jjB8zXD+vvR3tWheD9cetLFvw4HrB1h6amm182lr35aXu7zM2HZjdUbqkvOSRdGndk0AQZD18ejD6DajGdlmZJ2ef5pkFmYKYu92SvdU6ikt9wcQsj3+rv6i4Ovh1uOO6wYN3D8MAhA4efIkP/74Ix06PPyzDyUSCcNaD2PB0QXiaxHxEcxsMrPaWhszG5pZN+N67nVOp52mj0efGvepvqmUKcrIL8vHytgKqUSKUqWkqLyoVgGotle5lnNNfE1zIkhViiqEdMgQb+2O0r8u/MVPp35iauepDGs9jL8v/o1CpaCDY4caxW1NHE06yr/X/8VIasRbPev25Iq/GU+7Je0Y0HIAq0euFiOf9UEqlRIUFERQUBCJiYmsWLGCjRs3EhUlpHXudq2g5v78/PwYMWIEkyZNqneU406xtrbm999/Z/To0Tz//PNkZ2ff9ets0qQJv/zyC4MGDdK5LiAggBYtWnDt2rWHKhVv4MEilUrx8PCgf//6TeVYf249y6KXIUGCeamKqbd9oL/pDt+HfE9bh7b0/KUnibmJOFs5s2P8Dq7mXKXj0o5iFsTFyoWPn/mY0W1H82fcn3iHe4sP7GrM5eYEeAaQV5LHwcSDWqINwNbMljFtxpCXnMdNi5v0b96/mvhLyU9hw7kNrD23lkOJh8TXJUh4qtlTouhTuzTUhkql4uLNixxKPCSKPrUI1sTJ0kkUe73ce+Hr5GtI5z7CPPECsKCggPHjx/PTTz/x2WefPejT0YuhrYdqC8CECGZ2ry4AAXyb+nI99zrRadE6BaC5kbk4OzizMJNGJo0wNzKnoKxAaAQxBSNJzX/k6g7bizcvAkKaIq0wrca1jhaOpBcKY9kCW2jXpq0/t56IhAh2Xd7F6VdONyj9+/nhzwGY2GGi2JmsC5VKxWvbX6NMUUZpRanOusX64O7uzgcffMAHH3xAamoqW7duZdeuXRw/fpykpCRAeGNSR+1qE0wymUyMJqqFjZubG/7+/gQFBREaGtqgzsa7TWhoKBcvXmTOnDksW7aMkpISgAZ15qrTRKamprzwwgt88skn2NjY1LqNVCpl7ty5PPfcc/U/eQOPLUqlknnz5tUrGp6Um8TULVMBwXd10okCGpdCvC3YPzuJbi7d6PVLL7KKsvCy9WJuv7m8su0VcQycjakN7/d+n0Feg1h6aikzt88UH3jVeDb2xNPWk+PJx/n74t9aX5NL5QxsOZDWdq05l3mOn6N/Fhso/M/68/EzH5NWkCaKvoPXD4r2LwC93XuLoq8uy6ySihKhOzexMp2rTllr0ta+Lb3de4uCr3nj5oZ07mPEEy8Ap0+fzqBBgwgICHhkBGAP1x40MWsi/sHuv7qfwrLCGtv/fZ18+evCX3U3gpjbcz33OplFmXjaemImNxME4G0rGF0RQLVwUhuQNjJpVK22RY2pzBQQDEyN5ZX1K0qVUhxtZyI3wUhqJPpkPdvm2VrPW01cRhx/X/wbCRLe6fVOnes3nN/Azss7MZGZEB4Sftdvak2bNmXq1KlMnSq8oWRnZxMVFUVsbCwpKSmkpqZy48YN0tLSKCsrQ6FQIJPJMDY2xsnJCVdXV5ydnXF2dqZdu3b4+fk1aJRVfUgrSNMrWlAVGxsbFi1axNy5c1m5ciXfffcdly4J0wqMjIxq9RzU/HqrVq2YMWMGEyZMoFEj/Y1mR48ezbx58zh37pyhI9gAMpmMdu3aMWrUKL23USgVTNw0kZySHCyNLSksKRDn/i70h/EdJ9L3t74UlBXgY+eDayNXRq8fDQh1gTO7zaSzc2fCT4bzzh7t+49MIsOvqR9ZRVlczrnM5ZzLWl/v4NABfxd/UgpS2Hl5p9b0EXdTd0Z1HIUECX1/68u/1/7VEn3tHdrTzLoZs5+aTQ833WU1mYWZHEk6Ikb4dKVzu7l0E8VeD9ce2JjV/gBm4NHmiRaAa9asISoqipMnT9a9GCgtLaW0tLLBIS9PsKBznQEAACAASURBVD0pLy+vl7Hu3SDUK5TfzvwmHF9Zzu6E3Qzyqp4qa2fXDhAaQWo7RztzO67nXic1L5Xy8nJR2OUV51FuWa5TAJobmVNeXk5SrhDhsjK20ikA1b5VXrZeWucSlRpFTkkOAP4u/niHe6NCRSvbVng19tLrezv/oFD7N7z1cFpYt6h1m/zSfF7f8ToAs3rMoplVM3F91X/vFlZWVvTp04dDskPccLvBL4N/QS6t35/f3TwnzetUqpR8f/J7PvjnA9aNXEewZ3CD9mlmZsbUqVN58cUXiY2N5dSpU0RFRXHixAnOnz9PaWmpOJXGxMQEHx8funXrhp+fH507d6Z9+/aiEK/vtX7++ee1pooNPDkoFArmz5+PQqHQ+4HgiyNf8O/1f5FL5RSUFfBiNLTKhhwTsHwxjEGrB1GmKMPJwokLWRc4n3UemUTGuLbjcLd2Z9npZXxx5Autfdqa2uJo6Uh8drxWBy4ID9w9XXtSVF7EgcQDnMmoNGBuZduKEK8QzGRmbDuzjW9OfKNVN+jeyB1zI3Nu5N8gNiOW2IxYBngOoIuTYKyvTucevXGUIzeOcOTGkRrTuY4WjvRw7UFP1570cutFR8eO1RpL7tf72r267+pzzCeZJ1YAJiUlMXPmTHbt2oWpqale28yfP5///ve/1V7fv38/5ub1rx+7E5rmaaf/ftj3A5L46lGs7DKh6eJcxjk2b92MkbTmVK6qQHiq3HdsH9J4KcpS4Yaz/9B+Mi0zdYuVUoiIiOD6zevi57rIKRZEXtPyplpjyNalrRM/zsvOE59wOxp11GtcWXppOmvOrwGgp7JnndssT15Ocn4yjsaOdMjrUOP63bt3V9/wDvkr4y+WpywHoEVRC7pZd7vrx6gvayPWsjBxIdH5QoT4u93fobh4d6Jojo6ODBw4kIEDBwLCG5M60qkWejnlOTQ2asyNGze4cUN37WhdqFQq/Pz8iImJMdQCPsFIpVI6depEWVmZ3qMO44vi+fjSx4Aw4WjIBVhye+DSVz3h89hwQKitU5e3dLTsiLHUmFVxq7Q8UQHsjewpUBSQXZJNdklll6wcOZ7mnhhJjLhUdInNlzaLX3M2caZLoy6YSc24UHiBhccXoqTy99hCZkG5spwyVRmJeYni65YyS3wsfIg8E8mJ0yc4X3ieC4UXyFfkV7tOd1N3Wlu0xsfCh9YWrXEydhL+Dm9C5s1M9rBHr+/XveRe3Hd1UVRUVPeixxyJ6gm10f/rr78YPnw4MlnljFiFQoFEIkEqlVJaWqr1Nag5Aujm5kZqaipNmtTdcXo3KSwrxPEbRzGM79bIjYTpCdVSmSqVCudvnblZfJNjU47h19Svxv09v+V5VsauZF7feczqMYtuy7oRkx7DljFb6OfeD/8l/sQVxAHCjVAt0nq69uSfSf9g86UNheWF+Dr51plu/nfiv1rpil6/9uJkqvCE3KJxC67kCOnkEy+coJNjpzq/FzN2zGBp1FICmgcQ8VztN/2zmWfpuqwrFcoKNo/ezMCWA7W+Xl5ezu7duwkMDMTI6O4VN/9w6gde2ynY0nz89MfM7j37ru27IZSXlzN//XyWpi8lqygLU7kp/+v/P17ye+m+1PhcvHmR9/a9x6mUU5x9+exdGSifnJxM+/btKSwsNEwHeQKRSCRYWFgQGxurt/F5QVkB3ZZ1I+FWgtAxe1XF9pVgqoBVfsZMCC1DpVFG2KZJG8qUZdWaOkxlpliZWIlWWpq0tGmJjakNZ7POas3zbdG4BaGtQrE2sebYjWPsv75fa8SmXCrX+hyEDEs3l264WLmgVClJyE4gKi2qWjrXVG5K16Zd6eEmRPi6u3S/I4Pne829uu/WRl5eHnZ2duTm5tar5ORx4omNAPbv35/Y2Fit16ZMmULr1q159913q4k/ABMTE0xMqo8VMzIyum+/tGoaGzUm2DNYrBdJyksiITeBNvZtqq3t5NSJvVf3EpcVh7+7f437c7R0BCC7JBsjIyPMjYWIZpmqDCMjI60UsGYNiq2ZLRKZREzvqpQ1v/Gayk0pqShBgoTezXuLhqk5JTmcShNa7bybeIvNJB6NPeji0qVOMZJekM7yM8sBmP3U7Fp/DiqVipm7ZlKhrGBY62EM8dE92/Zu/kx/i/lNFH/v936fOc/MeaCF1MXlxczaN4slV5cAwizSVSNW0dah7T0/9s2im3zy7ycsjlxMhbICmUTGkZQjtU6q0RcPDw8WLVrElClT7sKZGnjUUKlUhIeH4+Hhofc2b0W8RcKtBKQSKX43lPy9WhB/W9sYMWlQpfhztHCkoKyAczfPaW1vbWJNYXkhJYoSSopKxNdtTW1xaeTC5VuXtcSiR2MPhnoPxcbMhuM3jrMkckm1SRlqKpQVyJFjb2FPsaIYG1MbjGXG7L26t9paBwuHymYNt174NvXV6RP4MHM/30vv93v2w8gTKwCtrKxo166d1msWFhY0adKk2usPK0O9h2oVDG+P316jAPR18mXv1b21RuZ0zgMur70JpIl5EzIKM8TP1bV8VbE0sqSkogQ7czutUUl7r+wV61tcG7mKAnBUm1F6iaTvjn9HSUUJ/i7+POPxTK1rV55ZyYHrBzA3Mufb4Pvj9bj27Fqe//t5AGZ0m8HcfnMfqPiLTY/luQ3PiZYVM7rO4IugLzCV61cG0VDKFGUsPrmYT/79RKwRHeQ1iAVBC2ht1/quHWfy5MmsW7eOnTt3GhpCniBkMhnBwcH1mvqx9uxafo35FQDvdCXbV4JVmeD59+zwchQyYWZvhbJCdC8AoanDSGZESUUJuaW54uvGMmNcrFzIKMzQSv+6W7sztNVQmpg34WDiQcJPhItTk6pdh0SGtak1xeXFFFcUU0EFqYWCr6rmvbWNfRstOxZPG09Dd66BevPECsDHgapRk63xW2v0v/NtensiSC0CsNo8YI1xcKBbANqb22uZQN8sqW4lAIgpirb22lGmiPjKlK3mAHR9un9zS3L5/uT3gBBZq+0GmFOSw6zdswD46OmP9B4tl1WU1aAxSQBbLm5h/MbxKFVKXvR9kW8HfPvAbtIqlYqFxxfy7p53KVWU4mjhyEuOL/Fh4IcYye/dk7BKpeLvi3/z9u63xUL09g7t+SroKwI9796YOjUSiYQVK1bQuXNnkpKSDCLwCUAul+Pq6srKlSv1/vtKzE1k2hZhTnizW7BrBdgVwwlnGDYWSm//SWhG54ykRpQry1GoFCgqKn+v7M3tRceEqzlXAeFhdkirIZgZmbH/2n6+j/y+mgG0GitjK4rLi6lQVaBQKapN15BJZHg18aKfRz9CvELo4dbjoU7nGnh0MAhADf75558HfQr1wtFS6OJSm4gevH6QvNI8Gplo1zOoR8KdTjuNQqkQzZs1qToPWIwA3raB0eUD6GDhoGX8nF9WvfgYKjuANaN0KpVKjGBaGllyPkuYueRs6UxX5666LltkSeQS8krzaGPfhsHeg2td+9G+j8gozKC1XWve7PFmnfsGYUpI15+6EtY1jI+f+bjG75sudl/ezbPrnqVCWcH49uNZGrr0gYm/9IJ0/rP5P+xI2AEIDw5LBy4l8t/Ie3rcmLQY3tz5Jvuv7QeE35VP+37KC74v1Ot7WV9sbW2JiIigS5cuFBcXG+oBH2PUHeURERF1ekaqUSgVTNg4gdzSXBwKYPcKcM2Hs/YwcAIUVKnyUZvia4pBCyMLFEoFJYoS8aHZ2cqZ4BbBFJYXcjLlJEsil2iVy6gxlhlTrigXv1b1nmluZE4nx04EtQjCLNWM6SOmY2Fa3eLLgIE7xSAAH3GGtR4mCkCFSsHeK3sZ7jNca02rJq0wk5tRWF7I5VuXadWkVbX9VIsA3h4HV1cK2NnKWRRutaFOeYxqW+nNdS7znHi81vatiUyJFNfUJZaKy4v55tg3ALzb612ttHJVolKjWBy5GBDc/PWpjSkqL2Lk2pHklOSw79o+5qjmIEM/0XLg+gGGrhlKmaKMET4jWD5s+T0VPLWx7dI2pmyeQmZRJqZyUxYELuDVrq/e09m5qfmpfLD3A5afXo4KFSYyE97s8Sbv9X6v2sPJvcLHx4e1a9cyeHDtDwYGHn3Wrl2Lj4+P3us/P/Q5BxMPYl0MO1eAVzZcs4agiZB928xBs9FNHbmTS+RIpVLKFGXiA62DhQOdHDuRW5rLhawL/Hr612rHkyLV6uit2rDhYOGAv4s/g1sNpm/zvmI6t7y8nIiIiEeyls/Ao4FBAD7iDPUeyrt73hU/j4iPqCYAZVIZHRw7cDz5ONGp0TULQI15wKB/CtilkYtYlKxu9KiK+mYqk8jwsau8UasjUlApNEG/9O+vMb+SUZhBM+tmPNdO9xQIpUrJK9teQalS8ly75+jXvJ94PM2Zx5qoVCrCdoRxJv0MDhYOrH12rd7jjk4kn2DQqkEUVxQT4hXC6pGr6+33dzcoLi/mnd3vEH5SsLBo79Ce1SNX39NGj6LyIr4++jVzD8ylRCH8HoxpO4bPAz7Ho7HHHe8/vSBdbFbSh0GDBrF06VJeeumlOz62gYeTn3/+mZCQEL3Xb7m4hY/2f4RZGWxdBZ3SIc0CAiZBisaziWbkTp36rVBVgEIwu29m3YysoixSC1LZdWVXrcfUFH9SiZQWNi3o06wPQ7yH0Mutl14zyw0YuBcYBOAjjredNy1tWoqdZlsubRHNdjXxdfIVBGBaNGPajam2H3UEsKCsgJKKkmopYF0ixtnKmes5ggegmdysRgFobmROYXkhTpZOWuf114W/AEEgqqOIduZ29HTrWes1Vygr+PLIlwDM6jmrVnH2c9TPnEg+gZWxFV8FfSUed8b2GSwbsqzGOrRdN3ex8sZKpBIpa0auwaWRfpYSMWkxBK8MpqCsgH7N+7F+1PoH8vQemx7LuI3jiMsQbHtm+s/k84DP71mjh1KlZHXsambtnkVaQeUYwE5OnVjz7Jo73v+5zHPMOziPP8/+SdS0KNo7ttd72ylTphAdHc3SpUvv+DwMPFyEh4fz/PPP67X2VvEtZm6fyYrYFRhVwPq10DsJbpkKkb/LVTSYOu0LQh2gmdwMS2NLsoqyyCvNIzYjtoajVMdMbkZbh7YEewYzyGsQfk39xPGZDSGnJIcjSUc4nHiYQ0mHGOo9VO+SFgMGqmIQgI8Bw32Gi4IovTCd2IxYOjh20FrTyUnw04tJi6lxH41MGolPupmFmWIEsK4UsI2pjdi8oUvsqG+kHR07iq8VlhVyLFmYtdTMuhnXcq8BQvdvbelcgD/j/uRazjXsze153lf3G0BWURbv730fgE/7fkpTq6ZkFWXx0taXyCjMYN/VfdUEYGRKJD8l/wTAMO9hekeczmeeJ3BFIDklOfR068nmsZs5m3mWbZe2MafP/bF9UalULDqxiHd2vyM2eiwftpwBLQfUe1+RKZFEpkTycpeXa113OPEwM3fM5FTqKa3Xg1oE4e9as+WQvkSlRjH34Fw2nt8ovrY9YXu9BCDAgAED8PPzEyOBj2NNoPr3q2/fvuzfL9RcPs7XOX36dKZNm1bn+oLSAqZtncafZ/9EqVIiVcLvmyAkAYrkMGgcxNYw/VCpUiKXylEoFahQUVxRLD4M10YTsyZ0ce7CEO8hBLYIpKVtywb/7atUKtJL01kVt4pjycc4nHSYuIw4reikpbGlQQAaaDAGAfgYMNR7qCgAQUgDVxWAmp3ANUUIJRIJduZ2pBakklmUKaZH1SlgXU0g1qbWZBULaWOFsuaOS3VUMMAzQHztn2v/iCanmqnYutK/SpWSzw9/DsDr3V8XI5U18d6e98guzqajY0emd5sOwGvbXyOjMIO29m35+JmPtdbfLLrJ2I1jqVBV0M25G5subGLXlV3EvRJXa9dwQnYC/X/vT1ZRFp2bdiZiXARxGXEErwwmrzSPplZNmda57jerOyG9IJ0pm6ewPWE7IFis/DL0FxwsHOq1n1vFt/hw34csiVyCTCrjKfenakwbX711lXf2vMP6c+u1Xvdr6oe5kTm7ruxi79W9jG8/Hm8773qdw+HEw8w9OFe8FoCRPiOZ/dRsnUbmdfGf//wHZ2dnRo8eTWlp6WPVHSyTyTA1NWXVqlWoVCpmzJjBuHHjHvvrrI30gnTGbxzPvqv7KgWTCsIjYOxZKJPC8LFw1F33PqqaMFdFKpHibu1Ob7feDG89nD4efe4onVuhrCA2PZZDiYc4lHSIw4mHSc5Phiol1l62XqLn39PNnm7w8QwYMAjAx4Durt2xMbUR/dX+vvg37/V+T2tNe4f2SCVSMgozSC1IxdnKudp+7C3sBQFYmFk9BVxDBFCCBGOZMXmlwkzkmtK/UFlPM6pNZQPI1vit4scJ2UL62trEus4b2rZL24jLiMPK2IpXu76qc92RpCMsi14GwOJBi5FL5aw/t541cWuQSWQsH7ZcKxWjUCoYv3E8iXmJ2BvZcy7rHCpUTOwwsVbxl5ibSP/f+5NakEo7h3bsnLCT2IxYQv4IIb8sn6fcn6q1RvFuEBEfwZTNU8gozNBq9KhP5EGlUrHyzEpm7Z4l+jqOaTum2htaXmkecw/M5etjX2u9Qbpbu9PStiX7ru4DBOuKaZ2n0di0sd7H33t1L3MPzuWfa/8AwhvsuPbjeL/3+zX6W9aXQYMGERkZSUhIyGNjESOTyXBzcyMiIoKWLVsSERFBSEjIE3GdNXEs6RgvbHmBc5nnqn3ts33wSiQogQkjYFfL+p2DkdSINvZt6N+8PyN8RtDFucsdpXMLygo4fuM4h5MOcyjxEEdvHKWgrEBrjQwZnZ0709u9N73de9PTrWe96mANGKgNgwB8DJBJZQxvPZxfYn4B4PiN4+SU5Gi9+ZoZmdHarjXnMs8RkxZTswDU6AQWU8C1CECZREZxebHY1aZLAIKQHnZt5Cp+/vfFvwHB/qWgXLjpjfQZWWvDhEqlYv6h+QC80uUVneKiQlnBq9sEcfh8p+fp6daTjMIMXtn2CiB4BnZx7qK1zacHPmXn5Z2YyoQ6uYKyAp5yf4pvB+g2jE7NT6X/7/1JzE2kVZNW7J64m9iMWEJXhVJYXkhfj75seW4LFsb3xsKhpKKEd3a/w6ITi4CGN3qczTjLqxGvcuD6AQBa27Vmcchi+jbvK66pUFawLGoZ7+99X3zQAEG0d3HuwsHrB0nMFWaUPtvmWeb2m1tjs1FVVCoVWy9tZe7BuRxPPg4Ib7T/6fQf3u31Lp62nvW6lrrw8fEhKiqKCRMmEBERgUQieSRTperzDg4OZuXKldjY2GgNt39SrhOErtolJ5fw2YHPxGxEVd46DB8cFD5+ORTW6eH1b2FkQSenTgzzHsaQ1kPwsvW6o1KO1PxUUewdSjxETFpMNUPoRiaN6OnWk95uvfF39ic7NpvhocPvaGrFreJbRKVGcSr1FKdSTxGZEsmxF46JjX8GnlwMAvAxYWjroaIAVKJk9+XdWpYrIDSCnMs8R3RqNCFe1TvnNDuB1UajtXUBG8uMtcybK1TVUybqeZZujdzE1xKyE8TtHCwdKLglCMCq51uVA9cPcPTGUUxkJrzR4w2d6xafXMzp9NPYmNrwecDnqFQqXt32KllFWXRw7MBHfT7SWr89fjuf/PsJIFjmnMk4g1sjN9aP1t3EkVmYScCKABKyE/Bo7MHeSXuJy4hjyOohFFcUE+QZxKYxm2pNUd8JcRlxPLfhuTtq9ChRlPD+vvf57sR3VCgrMJObMafPHN7s8abWde+6vIvXIl7jUvYl8TW5VE5P157EpMeIXeBPN3ua/wX8T6/aP4VSwYbzG5h7cC5n0s8AQhf5NL9pzOo5Czdrtzr2UDfXcq4hVVWvJ7WxsWHr1q38/vvvhIWFUVxc/EhFyWQyGWZmZoSHhzNp0iSdouRxv86k3CQ++OcD1p9bX+O9R83zUbBgt/DxuwHwU5ea19mZ29HbrTej2o4iyDOowQbwIJSqXMi6IIq9w0mHuXLrSrV17tbuYjq3t3tv2tq3FS2jysvLiThb+2zzquSU5BCVGkVkSqQg+FJOcfnW5WrrTqWeqndtcGFZIaWKUoMJ9WOEQQA+JgS0CMBYakyZUojGbYvfVqMA/CP2D50TQcQIYGGmGK2rrQnEVG6qNQWkJiQIN23N2q2dCTvFj1PzhTFHFkYWokWLLtTRvymdpuBkWUPl9u39fbjvQwA+D/gcewt71sStYcP5DcilcpYPXa4lbq7lXGPCpgmoUOHr5Et0WjTGEmPWP7teZ/1cTkkOwSuDOZd5DhcrF1H8DVszjFJFKSFeIWwYveGedN2qVCrCT4Tz9u63KVWU4mDhwPKhyxnoNbBe+9h8cTNhF8LIKhciJkO9h/LdgO+00t3nM88zc8dMdl/ZrbV9F+cuJOclcyBRiBi2c2jHFwFfMLDlwDojJOWKclbFrmL+ofni2D9LY0umd53OG93fuOP0lkKpYOflnSw+uZiI+Ahe93+dPvSptk4ikTB58mQCAgKYOnUq27dvRyaTPdQCSX1+wcHB/Pjjj7i41N2d/rhdpzpi/MaFN7gec73OfY08Cz/enpb5eS/4X+/bx5DIcLd2J9gzmDHtxtDDtccdpXNLKkqITIkUxd7hxMNakXIQ7oUdnTqKYq+XW687etDJLcnVEnuRKZE1ij2A5o2b09m5M12adqGzc2f8XWp/SMsozCAmLYbo1Ghi0oV/L928xNs93+aLwC8afM4GHi4MAvAxwdzInOCWweJkjS0XtwhdbxodtXWNhNOcB1w1BSyTVDcytjC2EMd76ULtnj+wZaVA2XB+AyDcENX7H9Z6WK2WKdGp0ey8vBOpRMrbvd7WuW7W7lnkl+XTzaUbL/q9SFpBGtMjhAaQD5/6UPwegHDTfnbts2QXZ9PCpoX4fQlzDxOnp2hyOu00p9NOs+TUEqLTonGwcGDPpD2czTjLs+uepUxRxlDvofz57J939Gaii6qNHiFeIfw69Nd6NXpcuXWFGdtnsC1+GwAe1h4sHLhQa5JKVlEWc/bPYWnkUq2OQy9bLxQqhWjY7dbIjU/7fsqEDhPqNLouqShhecxyvjj8BddyrgFCB/lM/5m85v/aHUcVsoqy+CX6F5ZGLhXHcQHClJpafhQuLi5s27aNPXv2MGvWLM6cOYNUKkWprHls14NAfT5t27ZlwYIFBAbWf4Teo36dBaUFfHbgM5aeWqo1f7c2Ai7Dqg0gU8GPfrB0pDv/9XuBUW1G0dqu9R2lc28W3RSF3qGkQ0SmRFYzeDY3MsffxV+s3+vu2r3BRuhqsaeZxlXXTlfFo7EHXZy70LlpZzo37YxfUz+dzSlKlZIrt64QkxYjCL60aGLSYrQyO5qo3RoMPB4YBOBjxPDWw0UBmF2STXRqNJ2dO4tfV1vBXLl1hdySXKxNrbW216oBNKrbCNrK2IoLWRcAQSDqGnAOiObUpRWlHE46LBzPwl5sOBjddnSt16bu/B3bbiwtbFrUuGbf1X2sil2FBAmLQxYjQcLLW18muzgbXydfZj81W2v9zO2CfUkjk0biDe/N7m/ydEn1RpRLNy8RuCJQnFxiY2rD7om7OZd5jjHrx1ChrODZNs+yasQqvU2j64Nmo4eJzIQFQQuY3nW63m9ipRWlfHnkS+YenEtJRQlGUiOG2Q/jp0k/YW1uLa5ZdGIRH//zsTjpAIRJBU3MmohejTamNsx+ajZh3cLqjHIWlhXyw6kfWHBkAakFqeL+ZvWYxctdXsbKxKoh3w5AiAYdTz7O4pOLWXt2LaWKUgAamzZmSqcpvNzlZZo3aq6zYUCNRCIhMDCQ6Oho1q1bx+zZs7ly5QpyufyeTkypC3UkzMPDg3nz5jFq1Cik0totkmrjUbzOM2lneHXbqxy+cbhe++yRBH+tAWMlrG0DLis3c81nSIPOT6VScfnWZUHs3Y7w1TT9yNHCUSud28mpU4PuBXmleUSlRnHixgm2XtvKrKWzahV7aqHXxblLrWKvtKJUKAG6LfKi06I5nXa6xvGdEiR4NfHC18mXTk6dxP91ZV4MPJoYBOBjRGirUK0RRtsTtmsJQFszW9yt3UnMTeR0+ulqHbea84DFLuDbKWB1KlcTGzMbruQIdS21CUBzI3OxYeNQ4iHxSbmwTBAZpnJTgjyDdF5X/M140W7k3V7v1rimTFEmRvpe7foqnZ07s/LMSjZf3IyR1Ijfhv2mdTNeHrOcH6N+FI+fV5pHsGcwc5+Zy84dO7X2nZibSP/f+oviz8rYil0Td3E+8zzjN45HoVLwXLvn+H3473d96kdJRQnv7n6XhScWAkK6dfXI1bRz0KOK/Ta7L+9mesR0MVrbr3k/vg38lisnrmBuZI5KpWLThU28vuN1kvKSxO3M5Ga0tG1JbEasKDxn+s/k3V7vokJVq/jLLckl/EQ43x7/Vpwu49rIlXd7vcsLvi/onMKiD0XlRayKXcXik4u1otl+Tf2Y3nU6Y9uNFX9/qzYM1IZUKmXMmDGMGjWKPXv2EB4eztatW5FKpfc1ZSqTyVAqlQwaNIiwsDD69+9/R8KvKg/7dabkp/Dhvg/54/QflKnK6tyPBAmOFo70bd6XSR0nsWHNf/nij2NYlMNOT3DctIs+rfSPmpYryolJixHF3qHEQ6QXpldb52PnI4q93u69aWHTot5RxbzSPKJToytr9lJPcenmpRrXNrNuppXG9Wvqp7NOMackh9Npp7Wieucyz2nNM1ZjIjOhvWN7Ojl2wrepIPg6OHbA0tiyXtdi4NHDIAAfI+wt7Onm0k3sptx0fhMfPv2h1hpfJ18ScxOJTo2uLgBr6QKuSQA2MWvCjdwbdZ6X5hgwdYQSEKNMoV6htYqJ/x3+H0qVkkFeg6r5G6r55ug3XMi6gIOFA5/1+4yU/BRe2/4aAB8/87GWefDptNNiR7CHtQfXcq/R0rYlq0eurpbKTC9Ip/9v/bmRL1ynmdyMNiOMhAAAIABJREFU7eO3cyHrApP/moxSpWRih4n8OvTXuz7vNy4jjnEbxolTB2Z0m8EXgV/oXVuYkp/Cmzvf5M+zfwLgZOnE10FfM7bdWCoqKrjCFaJSo3h99+scu3FM3E4qkdLGrg3nMs8RmxGLVCJlcsfJfNznYy7cvMDAVQORSWQcfv5wtTe8rKIsvj32LeEnwsVUnaeNJ+/3fp+JHSfqPRkl/mY835/8nrd7vi1OYrmYdZGlkUv5NeZXcd8mMhPGthvLq11fpatz1ztK6+WV5rHx/EaMpEaMDxpPUFAQiYmJrFixgo0bNxIVFQVw12voNPfn5+fHiBEjmDRpEm5ud94IUxtSqZSgoKAHfp1mTczYmbCTfr/142DiQa3RabpoLG/Mcx2e45Vur9DOoR05qVdJiFhJ3Osv8uk/ydiWwBFXaLRlNz1aBdS6r7zSPI4mHRXF3vHk42LmQ42xzJguzl3o7VZpx1Jfzz+12NNM4+oSe+7W7vg5+WGRZ8FzfZ7D382/RrGnUqlIzk8WavU0xJ5mGYQmNqY2gshzFCJ6vk198W7ifU+yFgYefgwC8DFjpM9IUQBGpUWRVZSldePo5NSJzRc3E5NefSKIZhdw1RRwTW+sTcybcDr9NECN0T/1OCXNgmP1+DczuZkoLmsaTacmOS+Z307/Bgj2LTWRmJvIJweELt4vA7/E2sSa8RvHk1OSQxfnLrzT6x1xbU5JDiPXjqSkokScQGJpbMnmsZuxMdO2mLhVfIugFUHimD0TmQlbnttCfHY8z29+HhUqXvB9gR9Cf7ir4k+lUvH9ye+ZtWtWgxo9KpQVhJ8IZ87+OeSX5SOVSAnrGsYnfT8R0/7J+cl8fe1rDsQc0NrWy9aLpLwk4jKF7uLBrQYzr/88bhbdZPym8RxKPAQIP7/47HjR6iUlP4UFRxbww6kfxN+ZtvZtmf3UbEa3Ha1XZFSpUrLr8i4WHl8o1jlaGFnQ2bkzSyKXsOfKHnFtC5sWvNLlFaZ0mnJH5rvlinJ2Xd7FijMr2HxxMyUVJbS0bcm49uOQSCS4u7vzwQcf8MEHH5CamsrWrVvZtWsXx48fJylJiJZKpVIxmlWbYJLJZGKUTV175+bmhr+/P0FBQYSGhtK0adMGX8udcD+v86mAp4jMi+SHUz/w2e+f1WofpUlX5678OvRXWjZqwfrFc3E9nsj/s3fe8VUUaPf/3pLc9N57D0lIKCH0KjUUQRAQXMVVUUFxURbXtmvbXVfYtYFdsQVURIEAoSq9JLQUIKSS3nu//ffHeCe5yU0Iru/v9dWczyefJHPnzsytc+Z5zjlP/dt3kn+lgOAKFXFA3E/rprmDctd3TInoSf6KG4uN4lgyqjLEaUUGOFo4Ms5vnFjhG+E14pZMXc3KZi5XXOZi2UUulF/gYplQ2euqqTXAz96vRxvX1dpVcAEnJTEjaAZmZmZodBqya7ONzBmpFalihb07/O39BZL3Uxt3mOcwfO18/79MJRrA/w0MEMDfGOYPms9TRzoJz6G8QyyPXi7+bzA3XC7vaQQxVADr2uvESk1fLWBXK1fR6WaKABq+VOeFCQaDkqYSChsF557BVGImNTMyiHTH62dfR61TM8FvAuP8xplcZ+2BtbSp25jgN4F7Yu7hs9TPSMpJwlxmzucLPhfJh06vY8WuFeTV5+Fs6SweS8IdCT2ChltULcz+ajbpVenicX635Dvy6vN4eK8wUuyR2Ed4Z847Nx1ddyuoaq3ij7v/SFKOoFubHTqbLbdv6bc79kzxGVbtWyVGq4zyHsV7c94TzS+tqlY2nN7Av07/y0i07mnjSZu6TWwTj/YZzWvTXsNMasbaA2vFqBeFTMGqEat4evzTuNu4U9BQwGunXmNL6hZxe7GesTw34TnmD5rfr+emSdnE56mfsyllk5GpKNQplA8vfkjNKeEEJ0HC3LC5rI5bzYzgGT/7edfr9aSUppCQnsDXV782OoGGO4dzT8w9qLSqHkYeT09PVq5cycqVKwGoq6vj0qVLXLlyhbKyMsrKyigpKaGiogKVSoVWq0Umk2Fubo6Hhwc+Pj54eXnh5eXF4MGDGT58OE5ONze/5NTmkJSTxMKIhb9IPM7N8Es/ztCoUA6XHea9C+/xWOVjqL64eVvXAHOpOX8Z+iiz61zoOPkjbe9MoS27hrvbexKpG65mFEZ68419ER73r+WF2IVodVquVl81auca8ip7w+E/HOa2oNv6/f5qUbX0aONm1WSZJHu+dr5GbdxYz1iTeXxt6jYulV7iQM0B9ibtJb06nYzKDJPj6GQSGZGukaJOb5jHMIZ4DBmIaxnATTFAAH9jCHMOI9AhUGwB7MneY0wAfyICV6uvotQojU5yTpZOoobQQPzUOnWvI5Hcrd17JNebgiFz8EDuAXGZIfx5ZvDMXoOS69rr+ODiB0Dv1b+knCR2Xt+JTCLj3TnvUtJUwtqDawFh/m9XYrfh9AYSsxKRS+Xi9JKXJr/E/EHzjbap0qm489s7xVnFUomUbYu2UdBQwGP7HwOEduybs978Ra+m9+fs577d94l6u43TN/LYyMf6tY+athqePvK0OP3E0cKR16a9xgPDHxArsV+mfcm6Q+uoba8V72dnbodCrhANGmHOYbw69VX87Px44fgLIhE1k5rx4PAHeXbCs/jY+ZBVk8VfjvyFhPQEkfyP9xvP8xOeZ0bwjH4dc1ZNFptTNvNZ2mfi+8jazBovWy/y6/NFMuhq5cqDwx/kodiHjOQEt4rculy2pm8lISPBSFTvZu3GjKAZKOQKtHotz018rl/bc3JyYtq0aUyb1neL8VbRoengROEJknKS2JezTzxWM5lZn9Nv/qdwq4+zRdXCxxc/5oOLH5B7NhfN6VswmOghuF7C1EpLRhXpGV2kI7zsDWTduFSbGWQF2dM4LBKrSdMIjl9OoP8g3NVtUJrC6aLTxG+N50zxGfGzftPHaenESO+ReNp69kr+DGSvaxu3N7LnY+dj5MaN9Yo16divbq02at9erhAiV8SqZBeVjbWZNUM8hnRW9TyGEeUW9T8SOTWA3z4GCOBvEIsjF7PhzAZAGJ2m1WnFFqWvna84Nu5q9VWjfD6ZVIaTpRO17bVGLlADGewOe0v7Hq2T7rBT2Ikk89ur3wKdrWGAZdG9j0nbnLKZVnUrQ9yHmAwtbVe3izq/J0Y/QZRrFLO2zqJJ2cRon9GsG7NOXPfHGz/y3I/Cid3KzIomZRN3DLqjh0ZSo9Pw74J/k9KUAghVp88XfE5xYzFPHhKGrq8bs46N0zf+YuTPlNFj28JtRrrF3qDT69hyeQt/OfIX6trrAGH6iSEDEYQA7dX7VnO1+qp4P3OpOdZSa+pV9aAS9IEvTnqRkd4jeeXEK+y8vhMQqgsrhqzgr5P+SoBDAGkVaaw7tI5vr34rnvRmBM/guQnP9WsuqU6vY3/OfjalbOJgXqfZxt3aHYlEQkVLhUj8xvmOY3XcahZFLPrZsTo1bTUkVSfx6uevitIIEN4D04Om42jhyMXyiyRkJADC6/33KX8XdYf/v1DUWMT+nP0k5SZxJP+IkQbNTGrGRP+JJqf3/BrQomxh45mNfJH2BcVNxX2mAXSHQg2x5TC9wopxJVJi8ltxb9EDxhq8EkcZRZHeqEfF4XTbPHLaLZg3fyH1qnpOF53mm+sfcerwKS6VX7rpDF8QJAzDPYcz0nuk+BPoEGj0mW5RtZBakWrUxr1ec71Xste1jWuK7On1evLq8npErpQ2m85Sdbd2x1vqzdTBUxnhPYKhHkMJcQr5RTsOA/h9Y4AA/gaxYNACkQA2q5q5UHZBnM4gkUgY5jmMH2/8SGpFqhEBBEEHWNteS1NH51Vzu6bdJNkxFQ3THaFOoYBArAzBwRYyC9o0bcgkMuaGzTV5v1ZVK28nC4To6fFPm9z/a6dfI78+H29bb16Y/AIfX/qYQ3mHsJBb8Nn8z0TSW9pUyl077kKn1+Fi5UJNWw2D3Qbz+YLPjb5MdXodK/euFMkfwPtz36esuYy/HBHcx8+Mf4Z/3PaPX4z8dTd6rBm5htemvdYvl2xqRSqr9q0SDRzRbtG8N+c9sVWeV5fH2oNr2ZvdOXdZggRPG0/KWspQ6VTYmtvyl3F/IT4kno1nN7Jq3yr06JEgYXn0cl6Y9AKhzqEklyTz+P7HjUw888Pn89yE54jzjuNmaOxo5NPUT3nn/DtiRUuCBD97PypbKkWXpbWZNX+I+QOrRqxiiMeQfj6LxmhXt7Mnew8J6Qnsz90vEgKpRMpEv4lCBbM2i91Zu8X7mEnNmBkyk2WDl+Fo6fiz9nsrUGvVnC05K1b5DBNdDPCy9WJ2yGxmh85mWtC0/you55dGXWsdzx97np3Xd1LVWnXTi8Cu8GqCscVCTMv4EilDy3SY66Ar4VPJIMvfhrohYSgmTCFg9jJ8wmPx1uvJrs3m+I3jfHPuC55677leg4+7QoKEaPdoRnoJRC/OO44o1ygj40OrqpUzxWeM2riZ1ZkmyZ63rXePNm53iYZKq+rU6hkiVyrTeq1GhjqFiuYMgxPXWeEszHaeMvu/GgU3gAH0hgEC+BvEKJ9ROCgcaFA2AEIVsOt4rmEeAgG8XH4ZuuUdu1q5cp3r1LTXYCG3oEPT0cMRZ0B/2r9jfccCwnxig9i7TSNsb3LA5F6DUT+69BG17bUEOwZzZ+SdPW7PrcvlX6eEbMA3Zr5BbVutWKH7523/JNwlHBC+iBd/u5jqtmocLRypaavB0cKRXUt3GZ1U9Xo9j+9/nK1XtorL3pj5BlWtVfz1qDA67oVJL/DCpBd+EfJnMHqsP7yeDk0HbtZufDr/U5Mj+rqjSdnE347+jU0pm9DpddiY2/Dy5JdZM2oNcqmcho4GXjr2Em+nvG10cna3dqeytZKyljKB8DjNZNW0VTz1w1M8f7SzEnpn5J28OOlFIl0jOV54nNVJq0UDhgQJSwcv5dnxz/arQplZncnmlM18nva5WFU2xAKVNZeJOswIlwhWx63mnph7euRT9gdanZbjhcdJSE9gx7UdRtlm/hb+xAXGUdFawYmiE+JzIkHClMApLBu8jIURC3+WZsowX7c/74nKlkoO5B4gKTeJg7kHjQKNpRIpY3zGMDtUIH1D3If8asT6ubW5PLL3Ec6VnqNN3WaSFJmCXAtDKgTCN7YYxpSAv1GGs/A6VNlIyY/woGPkMJynziN0+lKibRxQapRcKr/El0U/curyy5wsPNljuoYpBNgHMMpnFHFecYz0Hslwz+FGMpNWVSsppSlGbdzrNddNElkvW68ebdzuWXiNHY2cKDxhVNW7WnXVZOSKucycaLdoI3NGjHuMSYJ/KxFGAxjAz8EAAfwNQiqRcsegO/g07VMAdmTu4OXbXhZvF40gJiaCdHUCW5lZ0aHpEITHJr7ze2tddMXCQQuBTvdvV/wh5g8m76PSqvjP2f8A8NS4p3o4SPV6PWv2r0GpVTIjeAYLIxYyI2EGLaoWxvuN5/FRj4vrrj+0nrMlZ7GQWVDfUY9UImX74u0EOwUbbfP5H5/nnfPviP+/POll6trreOXEKwD8fcrfe9WGbU3fypTAKf1u0VW1VnH/7vvFaRzxIfF8Ov/Tmxo99Ho9269u54mDT4iavSVRS3h9xut423kL7t/kzTzz4zNG5NzBwoFmZbNYZVsevZwlg5awds9a5nw9R1xvkv8k3pz1JkPch3Ag9wAP7X2IM8VnAGH27z0x9/D0+KdF529v0Oq0JOUksSllk9EYORcrF5QaJc2qZtrUbcilcu4YdAer41YzyX/SzyI8GZUZfJn+Jdsythm9H33tfBnmMYyGjgbOFJ+hMLNzbNhon9EsG7yMxZGL8bS9ddetSqviWMExErMSScxK5Os7vxYvdLpCp9dxoewCSTlJJOUkcb7svNHtzpbOxIfGMztkNjNDZv5qRPuZ1Zl8kf4Fh/MOk1mT2esFYHe4tAqVvTElAuGLKwWrbt1YrQSyfSypjglGPn4ivrOW4hMzHjeplPr2es4Un+Gr5A3CBWrF5R7TNbrDydKJUd6jxDZunFeckamiTd1GcmkyVyqviG3czJpMk2TP08ZTJHuGNm5XsqfX6ylrLmNv9l4jsmdqxi8In7uuWr2hHkMZ5DJoIHJlAL8aDBDA3ygWRi4UCWBmTSaVLZUiwTBMBEmrTOsxLs7F8qdxcK2dWYC9xTSUNZkeF2SABAkTAwRdmEFTZiY1Q61TI5VIuT3cdDJ/QnoCJU0leNp4smLIih6377y+kwO5BzCXmbM5fjMfXPyAH2/8iKXc0iiP7+srX4u6OsOM5I3TNzItyFjMvuH0Bv556p/i/4vcFtGsambj2Y3C7dM2mBw/p9VpeeaHZ9h4ZiOxnrGc/OPJm7ZuD+Qe4L5d91HZWnlLRo/s2mweTXpUrMSFOIXwzux3mBE8A71eT1JOEo/ue9RoVJOl3BKdXkdDh1AJnh40nVUjVvHqqVdZ8O0CcT07hR0vTXqJNaPWsDtrNw8kPsClciELTiFT8MCwB3hq3FNGc4JNoaGjgS2Xt/DO+XfEk6IECe427lS2VIpuWy9bLx6OfZgHhz/4s3RtJU0lfJXxFQkZCaLbGcBeYc9I75FodBrOlZwjMTtRvC3aLZrl0ctZGrWUQMfAW95nXXsd+3P2k5idyP6c/UYVxj1Ze0QCWN9ez6G8QyTlJrE/Z78YHm5ArGesWOWL84r7xbMjbxU6vY4zRWdIyEjgeMFx8hvyb0q6AKQ6iKzuUt0rhrC6nuvVW0rIDXehdcQQ7KfEEzprORFOHgzS6yloKOB48Wl+2PMAxwqOiSMCe4NCpiDWK5aRniORV8pZOWcloS6h4menTd3G6aLT7M3ey5niM+TU5fQ6Ns7TxlNs3xpIX9eLAa1OS3ZtNkdvHDUyZ/QWueJn72ccueIxDD97v19NFXcAAzCFAQL4G8XUwKmYy8zFL/ODeQe5d8i9AIS7hGMht6BF1UJeXR6hzqHi/cRpIN3GwZlq+xjCkXuDs5UzUomUqtYqUatjaIuM8RljsuKh1WnZcFrQLz455ske4v8WVQt/OvAnAJ4a+xQyqYz1hwVy9tq01whxCgHgWvU1Hkx8EEBsZd8Tcw9PjH7CaHsfXPhA1PcBrIlbQ8GNApH8vTHzDdaOXtvjOFtULdz9/d0kZgkkY3bo7D6NCh2aDp4+8jRvJb8FCBl5Xy366qZt1HZ1O/88+U82nNkgRJPIFDw34TnWj1uPhdyCK1VXWL1vNSeLTor3kUlkWMgtxJbrMI9hrB29lo8ufsTC7QvF9RQSBc9Pep6/jP8L269uJ+b9GK5VXwMELd4jIx5h3Zh1N62SXau+xqbkTXyR/oVYLbKUW2IuM6dR2UhFSwUgvCdXx61mXti8W66CNCmb+O7adyRkJHD0xlHx/WgmNSPOKw6FXMHF8otGFccQpxCWRCzBs9aThxc+fMs6qry6PKHKl53IycKTRuYGDxsP5oXNY17YPNxt3PnXqX+RlJPEmeIzRuvZKeyYETyD2SGzmRUy62dVHH9JqLQq9mXvY/vV7ZwtOUtJU0m/TBv27TCqVCB6Y4thdAnYmeCJuR4KyqIDkI4Zi9esOwkYOYM4mRyNTkN6ZTofZG1lf85+LpRd6HOmrwQJYc5hTPCbwCgfocIX6RqJXCpHrVazc+9OcmpzePv825wrOUduXW6f25vkP4nJAZPFNm7XC482dRsZlRkkZiWKZC+9Mr3XyJVAh0D8HfyJD4lnmOcwhrgP+a+yKAcwgP8tDBDA3ygszSy5LfA2MXrlu2vfiQRQLpUT4x5DSmkKlysuGxPALtNAxHFwmvYeLRMJEvHE3hsGuQwChCzC7jAcS3fsur6LrNosHCwceDj24R63v3L8FUqaSgh0COTp8U8ze9ts2tRtTPKfxKMjhVFwzcpmFm1fRKu6FRtzG1pULYzwGsEHcz8wuiL/KuMrHtn3iPj/yuEr0eq07KkRjA6b4zeL2+yKosYibv/qdtIq01DIFGyZv8Uoaqc7rlZdZfn3y8Vq1WNxj7Fh+oY+q4XlzeWcLzvP2gNrxUif+JB4NsVvItgpmKrWKlbtW8VnqZ8Z3c/W3JZmVTOt6lYCHQJZN2Yd32d+z4pdnZVUS7kla0etZUjjEOot6xn0ziCxYmevsOfxUY/zp1F/6vOkptVp2Zu9l7dT3ubHGz+Kyx0sHGhRtdCuaadd0469wp77ht7HIyMeEd8P/YVaq+ZA7gESMhJIzEo0qkTHuMXgaOnI1eqrnCk5Iy73sfNhadRSlg1exnDP4Wg0mpvOAjZAp9eRUpoitna7uqZBcGfPD5/PtKBp1HfUcyDnAKuTVlPSZHwhFOUaJVb5xvmO+19t+TUpm9h+dTs7r+/kYtlFqlqrbq7h00NorbF2L6oKuntPm80hJ8SJptgobCbPIGTW3YR4BRKCcIF0pvgMrx9cy7GCY2TXZpvUxBngbu3OGN8xTPCbwEjvkQzzGCbq9trV7Ry9cZT3L7xPckkyuXW5NKmaIN30tizllvg7+DPCcwSzQmYxPXi66MitaashtSKVrelbSa0UTBpZtVkmW8KG7dgr7NHqtNS01VDUWERufS7tmnaO3Hukx30GMID/SxgggL9hLI1aKhLAw/mH0eg0op5uqPtQgQCWX2ZJ1BLxPl3nAYvj4NTtPcYzyaXyXtshBkzynwQIRAswmlO8YNCCHuvr9XpePfUqIJCk7sLoa9XXeP3c6wC8Hf82n1z+hBOFJ7A2s2bL/C1IJVL0ej0PJD7A9ZrrYpXT3dqdnUt3GhGuPVl7+MP3nRrEu6PvRoqUdy++iwQJ78a/yyMjH6E7kkuSmf/1fCpbK3GzdmPX0l2M8R1j8vHr9XrePf8ufz78Zzo0HbhaufLp/E+ZEzbH5PoguKVfOf4K/zj5D7Ey42Pnw1uz3uKOQXeg1Cr554l/8vKJl1FqleL9DES3WdWMhdyC5yc8z8mik6zZv0Z8zs1l5qwZuYa/Tfwbn1z6hEdTHqX2ipAJ6GLlwpOjn2R13Oo+TRh17XV8cukT3r3wrtiykyDB3sKeho4Gsd081GMoj8Y9yrLBy3rNeeztOUsuTRZCmq98bZRZGOAQgI+dD/l1+WJAt+HYF0cuZtngZYzzG3dLMRlt6jZ+yP+B3Vm72Zu912jmq0wiY1LAJG4Pu53BboPJqMogKSeJjWc2GrVJLeWWTA2ayuyQ2cSHxv9XWYX/LWpUNWw8s5ED+QfIqMwQjWB9wUol6PUM2r0xxeBiIvmp0EVOcZQfutEjcZ9+ByETFzDcTAiML20q5evsPew5tuemRNPKzIpot2imBk5lvN944rzjxGlFbao2frjxA38+9GfOlZ4jvy5fIHu9HbuZFQEOAcR5xQlkL2g6zlbO6PV6bjTcILUilU3Jm0Sy15tu2dHCEU9bTxQyBW3qNkqbSmlRt3C95nqPdZ0snQh1Du2RozqAAfxfwwAB/A1jbtjczmBnTTvJJcliRIghELr7SLiuFUDxS1ndhkZvrOY2tPf6wuLIxej0Oo4XHgcQTwixnqYDUY/kH+Fi+UUs5ZZGRg4QiMHqfavR6DTcHn474c7hLPlWIK4bp28kyDEIgLeS3+Lba98ilUjp0HSIEzx87HzEbR29cZRF2xeJpPaOQXdgJjXjg0sfIEHCY76P8cCwB3oc39dXvua+Xfeh1CqJdotmz7I9veriqlqreCDxATGCpT9Gj5OFJ1m6Y6lo8JAgYd2Ydbww+QWszazZfnU7jx94nKrWKvE+hpF6LaoWMV+xQ9PBX4/+1ahN+tDwh3hx8ot8cvkTQjaFiNo0Lxsv1o9bz8rhK/skahmVGWxK2URCeoLYGrOQW6DX61FqlTR0NGAuM2dp1FJWx61mlPeoW9I/5dTmsDVjKwnpCUbRHs6WzoQ4hVDeUk5BQ4FIOu0Udtwx6A6WDV7GbYG33VKVrbKlkr3Ze0nMTuRw3mGjVp+dwo74kHjiQ+KxNrfmZOFJNp/fbBQcDcIoujmhc5gdOptJ/pP6FdvTF5qUTZwsPMnRgqOsGbnmpnpLED4T16qv8UXaFxzOP0xWTZbgsL/W153Ar9FYuze0AuTduFq7HLID7agfNgjLiVMJil+Of9Bg/BEqpedKzvHukfWcKDxBdl12r0YRmURGgEMA43zHER8az2if0fjb+yORSGhXt3Mo7xDP/vAsKaUp5NfnG2kru8PazJpAx0BiPWJxbXTlqYVP4WrnikqrIrM6k8sVl3nlxCtiG7e3yBUPGw8cLYSon/qOeipaKqjvqO/hMJZL5US4RBDjHiP+RLtF42XrNaDtG8BvAgME8DcMFysXhnoMFd2+iVmJnQSwl5FwXSuAfvZ+gKBfU+uN2zcWcguj6kx3yCQyYtxjuFR+yShUGjBp7ADE6t/K4St7jEfalrGN44XHsZRb8vqM11mxawXtmnamBU3jkRFCpe5U0SlRD2iI53hn9jtGI+SSS5KZs22O2I6KD4nHUm7JZ2mfIZVI2TJvCw5FDkb71uv1vHjsRXHe8NywuWxbuK3XbLaDuQdZsWuFaPTYMH0Da0au6fWkUddex4qdK9ib05nXF+oUyo4lO8RW/UN7HhLnLoNwctLoNEJG408kv2sbS48euVTOvTH38sptr/DBhQ8I3RwqVugC7AOIt41nw/IN2FjamDwujU5DYlYim1I2cazgmLjcUG00tGQDHALEubymxlr1hurWar65+g0J6QlGIc0WcgsiXCJoVDaSX59PbWmtuHxe2DyWDV5GfGh8v6cfGIjS/vz97M7aTXJJslF1ys/ej/nh8xntM5q69joO5R1iddLqHmHMkwImidl8Yc5h/xUJaFG1cKroFEdvHOVowVEull8UX79I10juH3Z/j/vo9DpOFp5ka8ZWThSeIL8+v8+2KoC5BoaXd2r3xhaDl4n0pnJ7GTcivVCPjMVl2u2ETl0Gz7RUAAAgAElEQVTMkJ/eFw0dDXx95Wv2JT/D5fLLlLeU95r952LlQoxbDLNCZjErZBYRrhHIpXLa1e3sz9nPP078QyB7Dfl9xkjZmNsQ5BBEnHccc0LniFmITcomLpZcZNvRbaz/YT1pVWm9Rq6YSc1wt3HHUm6JUqukoqUClVZFRUtFD/mKl62XQPLcfiJ67tEMchkkjsS8FSg1SrJrsylsLOw153QAA/g1YIAA/saxfPBykQDuyNzBa9NfAyDaPRqpREplayXlzeWiON1Q9atpq+lsAWvae6TrG27rDW7WbkgkEr7P/L7HbQsjFvZYllySzNGCo8ilctaNXWd0W0NHA+sOCcuen/g8u7N2c7r4NLbmtnw872MkEgmVLZUs+XaJ2ObW6DSsGrGKlbErxe1kVGYw/cvpYsVncsBkbMxt2HZlGzKJjG2LtnFH2B0kFXVqxtrV7dy3+z62X90OwJ/H/Jl/TfuXSfdmh6aDZ448w5vJbwI3N3ro9Xo2JW/iqSNPie1cC7kFG6dv5NG4RylpKmHhNwtFBzUIVUGpRGr0enRvtUklUu6KuouXJr/Eh5c+JHxzuHiyHeQyiGfGP8Od4Xdy+OBhky2s2rZaPr70Me9eeFecmyqVSFHIFGK1UYKE2aGzWR23mpnBM/vtZm1Tt7Enaw9fpn/JwbyD4uOQICHcJRytTktOXY74npVL5cwMFgKabw+/vd+ByBqdhlNFp9iVuYtvMr+hIs34hK+QKVBqlQQ5BnFnxJ0k5QqxNV1hCGOeEzaHqYFT/6swZoND9WiBQPjOl57vYb4IcQphsv9kUSup1CjZk72Hb699y9nis5Q2l940dNmjuZPsjSmBEWWg6ObxUEsh28+amiGhmE2YTMCsu/CKGoUngrbzXMk51h97jhOFJ8ipy+lxAWeApdySIMcgxvuOZ2HEQsb7j8fKzIp2dTv7svfxxrk3OF92noKGgj7Jnq25LUGOQYzyHsWc0DlMDZqKlZkV5S3lYpDy1oytpFakGgc/d+nmWplZ4WwpmM4alY00dDSg1ql76DMt5ZYMdhtsVNGLdo8Wv/duBS0qoUV8rfoamdWZXKsRfufV54npCm3Ptg20iQfwq8UAAfyNY0HEAtYfEapi+fX5lDaV4m3njZWZFeHO4WTWZJJakSoSQEMLWKvXIpMIJ/U2dRsqvbHl72YEMNpNID3fZX5ntDzKNcrkmK1/nRZCnf8Q8wex8mjA347+jcrWSsKdw5kbOpeRH48E4PWZr+Pv4I9Gp+Gu7+6ivKVcdD5P8JvAm7PeFLeRW5fLlM+niC2mUd6jsFfY8+21bzGTmvHNnd9wR8QdRuGr5c3lzP96PufLziOXynl/zvs8MLxnaxgEfeKy75b1avRoUjbx7A/PMiN4BreH305GZQYLty80ai0uCF/AlvlbMJOZ8fSRp/nP2f8YkQRDhE5vrk2pRMqCQQt4cdKLfHjxQ6LfjxardEPch/DchOdYGLEQmVRmMmQ2rSKNTSmb2JqxVbyfucwcjVaDTq+jXdOOs6UzDw5/kIdjH+53nIpWp+VYwTESMhL47tp3xiHN9v6Yy8zJq88T9VYSJEwOmMyywctYFLmo3/l4TcomDuYeJDE7kX3Z+4xaelKJ1Ig4Gwh3fn2+ODWnaxjznNA5xLjH/OwqX7u6nbMlZ8UKX0ppSo8qVaBDIJMDJjMlYAqTAyZjb2HPVxlf8crxV7hUfonqtuo+DRsyLcRUdmr3xhZDoAnJX7W1hPwId9pHDMPxttmEzVxOlJ0Ter2e4sZivs9OJGnrS1yuuExlS6XJfRrifIa6D2VW6CyWRi7Fw9aDVlUre7P3su3KNp489CQFDQW9EkYQWuzBjsGM9h4tEmszmZlA+ssvc7r4NO9ceIfL5Zd7ROgYYK+wR6aTITOTUdtei06vo03d1qMNHeQY1KOqF+wYfMvRO3XtdQLBq75GZk3nb8PFUW/HGOkaSW177a92hN8ABjBAAH/jCHEKwdfOl+KmYgD25+znwVghHmWY5zAyawTtTHxoPAAKuUJ0khpOfu2a9h4t4JtprqYGTaWho4Hs2myj5fcNva/Huteqr7Hr+i4kSHhq7FNGt10uvywGNL89621W7l2JUqtkZvBMUaf33A/PcazgGDKJDJVWha+dLzuW7BDbNyVNJUz6dJLYsh7iPgRnS2d2Z+3GXGbOjsU7mBc+z2i/qZWpLPx2ISVNJThZOvHdku+YHDC5x7Hr9Xreu/Ae6w6t69XosSl5Ey8ce4H6jnp2Xd/F9qvb2ZrROXHE29abbxd/y0jvkXya+inrDq0z0i8ZiJ9apzYy0hhgqMb9deJf+ejSR8R+GCuSjdE+o3l+wvPMDp1tksxodBp2X9vNppRNnCg8IS43EGmD2WGMzxhWx63mzsg7+916TatIIyE9gW1XtlHW3JkZ6WLpgqOlIzcaboiTQEAg5csGL2NJ1JJ+x6UUNxaLUS1Hbxw1IlmGSjAI7VNT1TMXKxdmhcxiTugcZgTP+NlhzEqNknMl58QK37mScz3y9HztfJkSOEUkfHKJnC/Sv+CDix+wZv+am2pqndqE+BWDdm9UKVh34/FaCeR6WVAZE4R03AR8Zy7Gb/gUXH8KWj5bcpb3TjzLyaKT5NXlGRmJusLKzIoQxxDG+41nadRSxvuNp03dxu7s3RzMPciHFz+koKGgz5Boe4U9IU4hjPYezdywudwWeBtavZaMqgxSK1LZm72Xv5/8O+mV6Sa3I0GCo6UjcqmcZmWzWLkXnyd153666/QGuw2+pYqtXq+noqWik+B1qeh1NQZ1h7u1OxGuEUS6RAq/XSOJcInAw8ZjQCc4gF89Bgjg7wBLo5by77P/BuCbq990EkCPYWzL2NZjIoirtSvNqmbxhNmuaUepMz5R3CxKYknUEg7nHe6xnqmxbq+dFtrSCwYtIMI1Qlyu0+tYtW8VOr2OpVFLuVxxmZTSFOwV9nx8u9D63Zm5U6zgaPVaLOQW7Lprl2gyqW6tZvJnkylrEQjIIOdBuFq7kpSbhEKmYNddu5gVMsvoeJIbk3n7i7dpVbcS7hzO3uV7xXzBrqhureb+xPtFo8eskFl8Ov9TcXpAYUMh8VvjyazJBASnYV17nUj+5FI5L0x8gWcmPMOJwhOEbw43anHJJXI0eo0R8ev+fE4LnMYz45/hk9RPGLtlrPiaTQmYwvMTn2dKwBSTJ6Kathp2VO7gsXceE/McJUiQSCTo9Doj8vLg8Af5aN5HPbZhCiVNJWzL2EZCeoI43xgEAb+HjQelzaXUtNdQ0y44yKPdolk2eBl3Db6rXxVFvV7P5YrLYlRL9/duV9LXXbZggCGMeU7oHEZ4jfhZYcwqrYqU0hSxwne25GyPwHQJEpZFL+O2gNuYHDCZFlULX6Z/yVvn3mL1vtUmc+bE++ogosZYuzfIhOS20QKyw1xojY3GeuJ0CuRuLFh6L35oSK1I5auC4xz68h+kVaRR12Eiqfmn43S3dmeo51DmhM5hSeQS7C3sSatIY82BNWy7sg2lRtnn8TpYOBDqFMpon9HMC5vHlIApNCobRUNGQkYC6w6v63XkmpnUDFuFLVqdViR4evTUtXces0wiI9wlnMGugzGvN+fOCXcyzGsYvna+/SZbOr2OosYikxU9gz7WFPzs/Yhw6SR4ka4C4fu1TG8ZwAB+DgYI4O8Ad0beKRLAE4UnUGvVmMnMxIkgqRU9ncD59fliq7Fd3S5O0jBAozV9cgXhyzzAIYA/7f+T0fIQp5AeERmFDYVsy9gGwDPjnzG6bcvlLSSXJmNrbsvDsQ8za6tA1N6c9SY+dj7k1OZw3+77jO9z+xaGew4HBO3gbZ/fJpKqQIdA3KzdOJJ/BEu5JYnLEo2mguj1ev599t/868a/0KNnWtA0tt+5HUdLxx6PsavRw1xmzoZpG1gzao0YRfPsD8+y4cwG8WRnLjM3aklOCZjCV4u+olHZyPQvp3O04Kh4m8HNq9FreiV+UomUJ0Y/QX59PlO/nCounx06m+cmPGdyNBkIFdVNKZvYlrFNrP4YSJMevWiekUlkLI5azOMjH2e0z2iT2zKgsaOR7zK/IyE9gWMFx8RjlUvleNt6U91WTau6VXwdgh2DRdIX5RbV57ZBqK6Jo9eyE3vougzPF5gmfVZSK2aFzWJu2FziQ+N7zHLtD9RaNRfKLogVvtNFp/skRCDEhRiCzVftW9WnYcO2A0aWdmr3xhSDg4niXL67OaWD/WHMGLxmLCJw7GyGSyRk1mRyrugcCae/ZP07r1DUWNTrRZq5zJxQp1Am+k9kUcQihnsOJ6s2i0vll7hYdpFPLn/ClaorJp9LCRIcLBwIcw5jjM8Y5oXPY6LfRIqbisVpGZtSNnF/4v09XicDLOQWYtyK4TlR69RGZM/d2r1HVS/CNQILuQVqtZqkpCRmh8zuNdxbo9OQV5dnRPCuVV/jes31XquWUomUYMfgHhW9QS6DsDE3bZQyhcaORppVzUbJAwMYwK8RAwTwd4A47zjsFHY0KZtQ6VScLj7N5IDJohM4ty6XJmUTdgo7oNMJbCB5pghgX+OivO280ev1RqQG4N6YnuHP/z7zbzQ6DVMDpxLnHScur2mrESd0/G3i31h/eD0qrYo5oXNYMWQFrapWFm1fRJOySSQA68euZ1n0MkDQLc78ciZXqq8Ix2TrjYeNByeKhNzAfcv3MSlgkrg/pUbJI/seEYOVHxn+CG/PfrtHq1upUfL0kadFo0ekayRfLfqKGPcYAFLLU5n71Vwxb0yCxOj5crZ05ss7vmSUzyiePvI0H1/6uMeJurubtyskSJgePB2lRinOS5YgYWHEQmaHziYxKxF7hXGOn1qrZuf1nbyd/Dani0+Ly6VI0aEzOtF72XrxxKgn+OOwP/YZBK3SqoSQ5nQhpLlrK9HL1otmZTPNqmaxxett6y0ENEcvI9Yz9qYVm9q2WpJykkjMTuRA7gEjE0H3NripipIhjHlG4AwarzRy+5zbb2kSiEan4VL5JbHCd6roVJ/aNgAnCyfRqdqobKS2vZZvrn7Tc0U9BNcZa/cGV4GsG19rNYPsEAcah0ViPWk6wfF3E+gTgrypmJTSFHaXnODYJy+TUZnR4/PZFY4WjsR6xhIfGs9E/4m0qdtIrUjlYvlF1h5cS2Z1pkldqbOlMzq9Dku5JTOCZ3Df0PsY7T2a67XXSa1IJbUilZePv0xqRWqv7WsrMyv0er0RWe7QdIjVUoVMQZRblKjVi3aPJtot+qZzsbtuK7s2u0dFr6/gaTOpGeEu4T0qeqHOof2WN7Sr28mrzyO7Npuc2hyya7PJrhP+rmytZFbILPbfvb9f2xrAAP63MEAAfweQSqTMCZ3DV1eEQOYd13YwOWAyzlbOoj4wrSKNCf4TgE4nsOELtE3T1kMD2Jf2Z5jHMK5WX+2R6XXX4LuM/q9qreLjyx8DPat/zxx5hrr2OqLdomnXtHOx/CKOFo58OO9DAB7Z9wgZVRki+ZsZPJNXpwoxMkqNknnb5pFSlgKAm5UbXrZenC05i625Lfvv3m8UDVPTVsPCbxZysugkUomUB7we4O1ZPcnfteprLP9uuRjH8mjco2ycvhFLM0vUWjUr96zki7QvOitgP7VwDa/B2lFreXnKy7x34T0WbV900wpSV0iQMMFvAkqtUpysIpPIuGvwXcR5xfHVla94IFHQRDpZOrFl/haqWqv46OJHvHfhPSNCajg+Qw6iBAmzQmbxxOgnmBo0tdcgZb1ez7mScySkJ/DN1W+MYoAM1a5GZaOo93O2dBYCmqOXMd5v/E0DmnPrcsXW7qmiU0akpGuVz1Rly0JmwbTgaWJMiyFHT61Wk3T15pNAtDotqRWpHC04yrGCY5woPNFnJh0IhM/CzIImZRMtqhbqOupMtlkt1IIb16DdG1sMbiY+PsVOcoqivNGMGon7tAWETFmIv7aN86XnOVmawsljj3K+9Hyf4c4SJKK5ZKL/RGzMbShsLORi+UU+uvQRfz70Z5PPn7u1O7FesQz3GM5wz+HEesVir7AnoypDdOI+cfAJrlZfNXnxZ3CJK7VKI0Le9XvC397fqKIX4x5DqHOoGE7fF5qVzVyvuU5mTSYZlRmcyD/Bn9/7M/kN+b06o63MrIhwiehR0QtyDOrXPjU6DQUNBQK5MxC9OuHv4sbiPmUw9e31vd7WG/R6PQ0dDSY7DgMYwP8EftcE8NVXX+X777/n+vXrWFpaMnbsWF577TXCw8P/tw+tB/R6/X8lKr47+m6RAO66vovNszcDwsSG4qZiLldcFgmgwQms1AhVHVMVwDZN7wRwZshMvr36rdEyXztfo5FzAG8nv02HpoMRXiO4LfA2cfm5knMiMXxyzJM8tOchADbFb8LL1ov3L7xPQnoCIFR/QpxC+GrRV8ikMjQ6DUu+XcKPBcJ4MgcLB7xsvThfdh57hT0H/nDAqKV5rfoac7fN5UbDDewUdmy7Yxua68atr+5GDxcrFz6d/6mY8XU47zBLdiwRNURiZe0n8hfrGcuOxTtIq0wjZFOIUQaZKVNHd4zyHkW7up0TRYJJw1xmzh+iBbf0F+lfiJpChUzBvUPuZWbwTFbsWsHXV74WT9YGAtV1XzYyGx4f/TirR6426cw2ILs2m63pW0nISBBHxoGg6zO0tg3tO1tzW+6IEAKaDQ7P3qDVaUkuTRZJn0Eraeq5MXWS7xrGPDlgcr+rN4btpVemc/TGUY4VHuN4wfGbmjAcLBwwl5rTrBIMCXUdddDRcz2fRmPt3rAKMOt2+EoZZAXaUj8kHMXEKQTGL8clIJziistcLk3hTPEuzmx+qtfJFQYoZAqGew5ngt8E7MztOJtxFomjhBNFJ9iSusXkfbxtvQWS5xnLcM/homQirTKN1IpUtl3ZxlNHnuoRfm2AXCpHgsSowmZwiYOQ4de1ohfjHsNgt8E4WDiY3F5X1LbVklmT2aOiZzCxmYKDhYOxNu+n3772vje96NDpdZQ2lZJTl9NJ9H76O78+v1cdqWG/Yc5hhDmHEeoUSphzGN623mK81obTG4hwiTAymGl0Goobi8mvzyevPs/4d10ejcpG2p5t+6+DxQcwgP7gd00Ajx8/zqOPPkpcXBwajYbnnnuOGTNmcO3aNayt+z++6n8Ser2eDy5+wP7c/excuvOWxlx1xdSgqaKbtLS5lKLGIvzs/RjmMYw92XuMdIAGAmj4Qu/QdPSYBNJd8N4ViyMXM2HLBKNlf4jpHLtW0FDAjqs72JwikNBnxj8jkluNTsOqfasAuCfmHt5Kfgu1Ts2CQQtYHr2clNIU/nSgU1toY27D7rt242jpiE6v44+7/0hidqJ4m7etN6mVqThaOHLonkOM8Boh3vdA7gGW7lhKk7KJIMcg9izbQ6hDKEnXOytG1a3VPJD4AHuyhfnAM4Nn8tmCz/Cw8aBN3caibxZxIO+AuL4EiVhZszW35cN5HxLhEsGi7Yu4VHHJaD1T2r6uGOo+VJjg8lNIsqXcknti7sHSzJKE9ASxAudk6cTDwx/G38Gfz9M+56NLnYYNUyHRY33H8sTIJ5DmSpk3aV6P1qherycpN4ms6iy+ufYNKaUp4m1mUjNszG2o76inVd1Kq7oVC7kFc8PmCgHNIfF9nrxaVa0cyT9CYlYie3P2Gk016Y7uz41cImdy4OSfFcas0+vIqMzgWMExscrXffJDd9gr7JFJZDSrmlHr1CZNAmYaYZKGQbs3thh8TQygqLCTciPCE+XIWFymziXotjuRtJWQW5rC2ZKznDy4lNy63Jvm/Pnb+xPsFEyrshVLM0tq22vJqMrgbMnZzpVqjdfvSvai3aKpaq0iuy6b1IpUNp/fTGpFaq+vQ1dTjQGG/6USKaFOoUYVvRj3GPwd/Pv8ntLr9ZS3lBuRPAPR6+v94G7tTqRrJOFO4egqdSyatIgYzxjcrd37fB/o9Xpq2mqMyJ3h75zanD4r8ZZyS0KdBXIX5hRGiFMIHjYeSCVSatpqyKvPI68+j0N5h3j3/Ls9HMPDPIaxP3e/sF5dHoWNhX2SShBmjYe7/PqKEAP47eF3TQAPHDhg9P+nn36Km5sbFy9eZOLEif9LR2WMkqYS1h1aR5u6jTfPvcmTY578WduxkFswzm+cONFhT9YeHh35qDgSrqub0qABbFUJmqc2dc8WcG9ZdJZyS8xl5lyvNZ6heXf03eLfb517S9TQDXIZZDQX+L3z75FaIRA2d2t3vqz4EmdLZ96f8z617bUs/naxUQsq4Y4EIl0j0ev1rElaI1YGLeWWeNt6c7X6Ks6Wzhy594hoetHr9WxO2czag2vR6XVM8JvA90u/x8XKxSgf71DeIVbsWkFFSwXmMnNem/Yaj496HKlEyhdpX/DI3kfEk0dXQidBwoqhK/jrxL/y9OGn+TbTuBoKfbuoI10jaVW1imP6bM1tWTZ4Ge2adj5P+1zU2wU6BPLg8AdpU7ex5fIWcYScqf1Ym1nz4PAHeWzkY4Q4hQit0Tzj1mh6ZTovHX+JA7kHjFp3XWf9qnVq6jvqkUvlzAieIQY0G/SjplDRUsHe7L3sztrNkfwjfV48dIe3rTezQwXCdythzHq9nsyaTH7I+4Gvb3zN/W/eb2QyMAVbc1skEgmtqla0eq3JiqBri7F2b0QZWHY7n2ukkO1jRfWQEMzGTcQ3filaH29Kyi9wrvQcxws+4Mpba3qNYDHAzcqNwW6DsTG3oa6jjtKmUsqay4yic7pDipQJfhN4buJzhDqHUtZcRlpFGmmVaXx8+WNxlJ7J+3Zps4uP5Sey4mzpzBCPIUZEL9I1Eiszq163p9PrKGwoNBmt0le11c/er0dFr6vj1mACmRIwxejipUnZJOrxuhO9vhy+cqmcYMdggej9RPKcrJyEUOmORrFKdzDvIO+cf+emleKuuFxxuYdTXSFTEOgYSLBjMEGOQZ2/nYIJcAjo8zntDf9th2gAv0/8rglgdzQ2Ch9sJyfT1n6lUolS2fml3dQkXOqr1WqTwbq/BDysPPjPtP+wav8qnvnhGSb4TmCo+9Cfta27B98tEsCE9AQeGvYQUc6CC/Nq1VVaO1oxl5njqBA0KAbhvalZwL3Bz86PgzkHjU4k7tbuhDqEolYLVZSuFao/j/4zWo0WLVoqWip4/ujzADw07CH+kyyYHN6a+Rb2Zvbc/s3tRuGrf5vwN2YHz0atVvO3Y3/j3QvvAkKL1NPGk6zaLFytXDmw/ABRzlHC66RV8+ThJ/ng0geAYEx5Z9Y7KOQK8XVU69Q8efBJNl8UKpQRLhF8Mf8LhrgPobyxnPnfzOdixUWjx20gWqFOoXw5/0t2Ze1i0OZBNx3V1RXBjsG0qdq4Vi0Mc3W0cGRB+ALKW8r56NJH4j5GeI7g9rDbyazJ5MVjL/a5jyjXKNaNXsedEZ35fV3fr6X1pWxM2cj2a9vFaBYDFDIFKq0KPYI2SYKEiX4TWRq1lAXhC4ymJ3R9/+v1eq5WX2Vvzl725uwVtZj9gQQJY3zGEB8Sz6zgWcS4GYcx9/Y50+v1ZNdlc6LwBMcKj3Gs8FivQcIG2JjZoENHu7odPfoemj+pTjBndNXuhZgoGtZZScgJd6V1RAz2k2bhNH4m+e0FpJSlcLzwOJf3fX5TPaGtmS2hTqFYmlnSqGykqrWK2vZaUcpg8vjNbQiwD2Co+1CGuA9BIVVwJv0MHRYdrNq3ynhqRj+g0+swk5oR4RIhZulFuwmmDA9r07l2hs9UXn0e12sFjZ5Bq9fXjGCpREqQYxARLhEMch4kkDyXCMKdw3t13KrVajo0HWRVZ3Gu4Rzpp9K50XhDqOTV5fSZ1ydBgp+9H6FOoYQ4hhDkEIS9pT0SJLSqWylsKCS3PpcDuQfIb8i/pYsUU3C2dCbIMYgghyACHQSyF+gQSJBjEF62Xn1WSA3v8a6/NToNZc1lFDUWUdhUSHFjMUWNRRQ3FVPYWEh5SznlT5T3S9v4a0T3x/z/c5+/Z0j0htyH3zn0ej3z58+nvr6ekydPmlznxRdf5KWXXuqxfNu2bVhZ3fpV260c278K/kVyYzI+Ch/+E/4fFNJbHy/UpGni3iudTtyPIj7CxdyFe67cQ4u2hdfDXifIKojs1myeynkKO5kdTdomAiwCkEgk3Gi/cdN9THKYRIe+g+TGztmu81zm8YCPYFDYVbWLz8o+A8DFzIX3It7DTCpcxb9R+AbH648TbBGMGjVFHUWMtR/L+oD1fF3xNd9UdjoqR9uP5qmAp5BKpOys3Mnn5Z8DQgXE2cyZanU1jnJHXg55GV8LXwBaNC1sLNhIWksaEiTc63UvC1wXGJ3YijuK+U/BfyjoKAAg3iWe+7zuQyFV8H3l92wt34qWntVPGTIe8H4AhVTBltIttOr6dox2hauZK0qdkiatcEFhL7NnmN0wSjtKyWnPEdeLtY0lyCqItOY0stuye9sccomcCQ4TmO82nwDLgB63d2g7SKpJ4lDtISpUxiPSTGkSQ61CmeAwgXEO43A2N+0M1ug1ZLZkktyYzPmm81Sqej8Zd4et1JZY+1hi7WIZajsUW/nNq3x6vZ4KVQVXWq6Q0ZJBenM6DZreqzwACokCHboe1WwDHNqFoGUD2RtVCrbd/A46INvdjPxgN+rCI9AMjqPczYac9lyutlwluy37pschQ4aruSsKiYIOfQfNmmbadL1raqVIsZPb4aXwIsQqBC+FF3q9nlJlKTfab1DQUUCrtv/vNwOczZwJsAzA38Iff0t/AiwC8LbwRi4xTSJUOhWlylJKOkoo7igWfiuLKVeW93qBKJfI8VJ44Wvhi4/CR/ht4YO3wlv83HeHVq+lSlVFmbLM+KejjBp1TZ/Vcwe5A14KL7wUXriZu2EptUQqkaLUKalWV1OuLKdCWUGVqkqUavwcSJHiau6Kh7kHHgoP3M3d8VB44GHugbvCHWvZragTKHUAACAASURBVEmIOrQdVKurqVb99PPT31WqKmpUNdSqa296vB9FfoSref9ncf/e0dbWxvLly2lsbMTOrvcOxm8ZAwTwJzz66KPs27ePU6dO4eNjOr/JVAXQ19eX8vJynJ17j8z4JVDTVkPsx7GUt5QLESWz3v5Z2xn64VCu1QgVpidGPsFr015jxtYZHCs8xkdzPmLFkBXk1+cz6L1B4jSIYIdgVB0qijt6F2IbkLAggcf2P2bkVEy+P5lhHsNQa9WEvRNGaYsgbH99+us8FvcYAMcLjzN963ShfRqzgs/SP8PVypXUlalcKL/A/O3zxe1FuUZxcsVJbMxt+Pjyx6zevxoQqgoe1h6UtZThbevNweUHCXMOAyCnLoc7tt9Bdl021mbWfD7/c24Pu13cpl6v58NLH7L+h/WC0cPShQ/nfsjc0Lnk1uUy9+u55Dd0GiC6Y5TXKGo7ansVzpuCp40nrepWceqHj60Po71Hc7HiIjcaBLJtLjNn4aCFOCgc2Jm1s88qh7+9P+tGr+PuwXf3aJXq9Dp2ZO7gjeQ3uFxxuUerr3v7L8o1iqWRS1kSuYQgxyCT+2vsaORg/kH25uzlQN6BPtts3THcYzjxIfHEB8cT6xnbrzDmgoYCjhce51jhMX4s+NFky7srLOQWaHVakxVSiQ7Cao21e1EmCoZNCsgJcaJxeBRWE6aiiYvlqrqUU0WnOFNyhhsNN/okJFKkuFq7YiGzoE3TRpOyqc/Wr4XcAi8bL6JcoxjqMRQfOx9qWmvIqM4grTKN7NrsXuUXvcHKzIrBroOFip5rtFjd6y3EuFnZLFbzMmsyuV57nes117nRcKNXjaK1mTXhzkK0yiCXQWJlrzfHrU6vo6y5TKze5dblCjEqdTncaLjRp07OXmGPm8yN4f7D8Xfwx9rcGplERrumndLmUvLq8shvyL+pgeZmMMwoNlTughyCxP/97PxuOg3JAL1eT3VbNUWNRRQ1FRlV7gx/d3XU9wYzqRm+dr742vniZ++Hr50v/vb+4t/9dTf/GqFWqzl8+DDTp0+/pbim/wZNTU24uLj8rgng/813yy+MNWvWkJiYyIkTJ3olfwAKhQKFomflzczM7H/8Tetp78nnCz5nRsIM3r/0PnPC54gu1FvBPTH38MyPQuTKzuydvB7/OsM8h3Gs8Bjp1emYmZnhZS/MrjRo7Tq0Heh0/btajvGIMSJ/TpZOxPnEIZFI2HF9h0j+nC2deWjEQ5iZmaHSqvjTIcHYsTBiIV9mfAnAe3PeQ4WKFbtXiNtztHAUTB/Wjnyd8bVI/iRIcLVypaylDD97P36890eCnYIBOFZwjIXfLKS+ox5fO18SlyWKekAQjB4P7nmQxCzBPDLUdii7/7gbXwdf1h5Yy6aUTb2e5B0tHPGy9SK5LNnk7abgauVKm7pNJDABDgFEu0VzpvgMO67vAMBB4cCCQQtoVAohy721eWUSGfPC5rF+3HrG+Izp0aY7W3yWl0+8zNEbR3sQj+4u2yDHIDGgebDbYJP7K2woZE/2HhKzhNFr/ZUG2JrbMjNkJnNC5zArZFa/wpiLG4vF4OUj+Ud6DRY2QCFToNFpRILUtY1nrRSClg1kb3QJOJvQ/t9wNaM0yg/t6FFIx42jzMeB0+XnOF54nMyKf6DeffO2kZWZFTKJjBZVCzp0vZJ2O4UdgQ6BDPUYSqRrJI4WjuTU5ZBakUpyWTJ7cvbcdF9dIUGCh7kHIwNGMtRzqKjVC3IMMtlyrG2r7TEN41r1tT6fZ0cLR5Ojz0w5bg3mC1MO2/6aL0IcQ/Cx88HG3AaJREK7up2ypjIuFlzkSMGRfhGnvuBt602wUzctnmMwwU7BOFs690tXp9KqKG0qFQldYUNh598//e5PS9lOYScSOn97f3xsfajNr2X+pPkEOQfhYePxs6bW/F/C/49zadd9/d7xuyaAer2eNWvWsHPnTo4dO0ZgYP+G2/9vYXrwdJ4c/SSvn3ud+3ffT/qq9FuearA4arFIAAsaCtDoNGIgtEGsbGNuI2Z6geAGlvfjrWJrbsvurN1GyxYOWohEIhGmbJz5t7j8T6P+hLW50CZ589ybXKu+houlCxlVGWj1WpYNXsacsDmM3zJeJJRSiZTti7cT7BTMvux9LP9+ubg9ZytnKlsrCXAI4OiKo+LEkY8vfcyqfavQ6DSM9B7J7rt2Gz1nh/MOc++ue0Wjxz+n/JOg6iCKGoqI+ySuV1eiBAnRbtFkVGXc1E1qgJOFE63qVlGbFuoUip+9H6eKToni/AD7ACb4T+Bq1VU+S/us1225WrnyxOgnWBm70kiLBwJJe+n4S+y8vrNHVa4r6dOjx8vGi6WDl4p5gt1PeHq9novlF8WoFkMGYn8Q6RLJnLA5zAmdw1jfsTetmJQ1l4nBy4fzDxvpPU3BXGaOWqsWH49IcPUQ0GCs3RtS2TNouc0MsoPsaRgWAWPGUD9kEJd1Jfx440fSKhNpubgNLnLL6K57kyDBxcqFcJdwhroPJdgxGK1ey5XqK6RVpPHVla/6DFY3BQcLBzFqxUD0whzDOHHkBLNnd07IMDhuRRNGF6LXl0bSw8aj04DRZfSZKcdtk7KJy+WXTRK9m5kvghyDCHUKxcPGAxtzG6QSKW3qNqpaq8ivz+dg3sGbBnD3BXOpOcFOAqELcggyInuBjoH9ig5qUjZR2GBM6AobC8VlZc1lN41yAqHi7+/gb0Ty/Oz9xGX/j73zjo+iTv/4e2a2Zlt6D6GHEjpSROzlBCn2drbTu7OcnnqW06uWn+X0PK+oh57l1MOGcHDSQUVAiiCCAUILpPdeNlvn98ewk2yyu9mQhCL7gX3tzHenbnZ3PvN5nufz2AwdDNxdLpbVLmNK+pQIWYmgT3BaE8B77rmH+fPns3jxYiwWC2VlSj6UzWbDaDw5fZieueAZ1h5ey87yndy2+DaW3rC0W9Ywg2IHkWRKUlWJhXsXqpXAO8t24pW9iIIStvIpAS2uFkxC1zktg2IG8fHuj/3G7hiv9B1eX7BetUExaU38YpIS+i2sL+SJdUpe5aS0SSw7uIwkUxJ/v/Tv3Lf8PraXtl2BX7zoRS4ceCHrjqxjzodz1B/dWGMsVS1VDIoZxBe3fEGGLQOP18Mjqx/hpc0vAYoJ9Vuz31ItShxuB4+vfVx9fUTCCOZfMZ/BtsFc8volbNzZ1jGjIwbYBlDaXMquil1dvie+83V4HKpJcFZcFjaDjW+Kv+FAjZLjNyZpDINiBrGhcAPv7Xov4HYEBM7JPIfHpz/eybC50dHIC1+/wDvfvdPJM60j6YszxnHFsCvo19CPh65+CIPe/yLY6m7li8NfqK3XfMbOXcFnxjxzyEwuHXypasbccdubCjfx+eHPWXloJdP7TafJ2cTqvNVq2DsYOlqS+EiT3gUTStvI3tQiSGnqvH5RjETB8DTsk8bROCGbA+lRfFG8gW0l26is3QxfhnWaISEJEqmWVLITs8lOyCbBnEBNS41K9jYUbOjW9jSihqy4LL+2aKOTRpNmSfMjYl7Zy8Gqg2yr30bu5lz21exTiZ4vxSAQMm2ZfhW3g2MHo5W0FDcUs6dyD3uq9jBZP5mpGVM5VHOITYWbOhG99r6WHSEgkGHLYHDsYJJMSX7h2srmSvJq81idt7rbBLg9EqIS1CpaH8nzqXkplpSQv49e2Ut5U3lI9S6c1Aa9pKefrZ9K7DKj/UleujUdvab7edsRRNCXOK0J4GuvvQbAueee6zf+9ttvc+uttx7/AwoDeo2e+VfOZ8LrE1hxcAX/2PoP7pt8X7e2ceXwK9WK2Xnb5rHyppXoJT2NzkbyavMYHDuYhKg2Atjqbg3rx+uMtDN4a0eb+axVZ2VS2iQAtW0ZwF0T71Ld7u9feT8trhZGJ41W/fTmXTaPJfuW+FUL3zT6Ju6fcj/bSrZx8fsXq2E+m95Gjb2GrLgs1t68ljRrGo2ORm5YeAOf7f8MgD+e80d+f87v1Qvm3sq93LDwBtX78O6Jd/PCxS+wJm8NZ719ll/bsfaw6CxIgsTh+q6LYUDJ53K6naqCMTx+uLL/dobH0zKmoZf0fFXwVVB1zaq3cueEO7lv8n1+hs1ur5t3vnuHv275K7srdgdVIWRkzDozlw9TDJovHHgheGHZsmVqSKmqpYplB5axeN9iVhxYEdLouz0GRA/gsqGXMXPITM7pf04nRcXXQ9dH+DYXbfYLZ39T8k3QbUuC5Jfv5iN/KQ3+uXsTSkDXIUPBKcH+fiYqxwxhT2I08kWT2Sjks6lwE/n1i+HQYuhekWwn+Hpej0kaw+DYwegkHaVNpXxf8T1f5X/F8oPdawWWbE7upOoNix/m993zVdwuyl3kZ6uSW5XbFlLt8PGUBIlBsYP8iN6A6AEIgsCRuiOqKrjswDIO1BzolGO4dP9SbvnvLSFVriRTEgNjBpJoSlSVPLvbTlVzFYfrDvPF4S/CUskCQRIk+kf3V5W7/rb+1ObVctUFVzE0YWhICyKH26Hk2wUgdvl1+RQ2FIZFPmMMMSHVuwRTwjF7tEYQwYnCaU0AT9X6lxEJI/jzxX/mnmX38MjqR3B5XeTV5PHKzFfCWv+WsbeoBPDrwq/RiBpGJY1iW8k2dpTuUAigyb+aLJzE8wxrht9yM4fORBAE9lfvV/PrtKKWB6Y+AChGzAv3LkRE8dvyyl5uGn0TmdGZXLvgWnU7E1MnMu+yeeyt2ss575yj/mCbtWbqHfWMSBjB2pvXkmxOJr8un1kfzOL7iu8xaAy8M+cdrs1WtuUz1X5w5YPY3Xbio+J5c/abnNv/XGb+ZyZf5n8Z8Lx8+YUVLcFNatvDVzzjy/sZHj+cBkeDSvy0opap6VOpslf59ebtiPHJ43l8+uPMzpqthk9lWWbt4bU8/dXTbCzc2KWp7OXDLufGUTcyY8gMP4Nml9dFcWsxL21+iaUHl7KhYENYF2iNoOGc/ucwc8hMZg6dyZDYIZ2UqJ1lO/n88OesOLSCDQUbwrbU8HVQ8cEje9B4YExZG9mbWgj9A9iwVZgF8oYlUzM2i/LRg9ia4uGriq3sq1JSCtj9ZVjHEAwGyUBWfBajEkeRaErE7XVT1FDEropdLNi7oHvb0hgYmTDST9EblTjK7ztnd9nZX72fhXsX+uXo7a/eH/RvrpN0pGhTmDRgEiMTRzIiYQSZ0Zm4PW4O1h5kT+UecipymP/9fArqC8ImZL4bGKvOysCYgSSZkzBpTW0kr6WKI3VH/M2ouwmLzsLg2MF+OXi+6Qxbhl9xg8vlYlnNMkYnjqbZ08x3Zd+phE4Nzx4leaHUSR9EQSTNkuZH6NqTvH62fmH7T0YQwamE05oAnsq4a+JdLDuwjKUHlvLQqocAOLf/uVw98uou152YOhGDxqA0Zfe0crj2MOOSx7GtZBvflX3H1SOv7pRXFg4B3Fnmr2DdOeFOZFnm5//7uTp269hbSbWk0upu5RfLlDDwuJRxbC/dToo5hSfOfYIL3r1AzedKMiWx6NpFlDaVcuabZ6r5VUaNkSZXE6OTRrPmpjUkmBLYVLiJuR/NpaK5gmRzMouvW6wqkFUtVdy+5HaViF486GLemfMOS/YtIeGFhKAqQJwhjurW6rDIny9E6dtWVlwWZU1lKvGz6W2MTBxJblWu2tatIwwaAzePvpmHznzIr3VeblUuf/jyDyzdv7TLnKhYQyyzs2bz+3N+z4CYtrxWj9fD5qLNLNm3hP/m/pf9NfshN8SGjiLZnMysobOYOWQm5w843+9iKMsyeyv3qoRv3ZF1XXre+dDRcsaLl7hmf7I3qRiiOvAdjwAH0gyUZPenfPRAdg+xsdp7kO8rc7C7v4SaLyG053NImLQmRiWNYmjcUExaEy3OFg7XHWZn+c5u5UCCUuDTUdUbHDtYVV4bHA3kVuWy9MBSP0UvrzYvKEEzaU0MTxjOgOgBmHVmZGQuG3IZcYY4Fny5AI1Fw1cFX/HattdCVo0Hgl7U0z+6P0nmJL/Ciyq7QvK+K/8OurdJFemWdL/wbHuSF2uM7ZRb6PF6KG0qZUvRFr+8u/y6fHYX76Z2T21YnzWjxhhSvUu1pIZd0RsMsixTY6+huFEx6/aZdvvm35j1BknmpB7tI4IIehsRAniKQhAE3przFqNeG6UWKty97G7O6X8OiabEkOuKgsjFgy5WydDftvytUyGIrx2czx6kKwIYY4jxU9CitFFM6zeNhXsX+o0/Mu0RAJ7f8DyHag8RZ4zj21IlN3DeZfP45YpfqrlgWlHLp9d8ioDAlH9NUR349ZIeu9vOuORxrL5pNXFRcfxn13+4fcntODwOxiaPZcl1S8iwKf5/HQs9nrvgOa4acRWXvH8J31d8H/B8DJIBl9dFdWvXVYa+UKXb60ZAYGDMQAobCtlXvQ9Qkr+TzcnsKt/F14VfB9zGkNghPHbWY1w/6no1jFrdUs3/ffV/zM+Z3+WF3KKzcMmgS/j9Ob9nVNIodbzZ2cyqQ6tYsn8J/9v3v7CqJgUEzsw4U1X5RiWOUi/OsiyTV5unhHQPrmTt4bVhF8F02o9XZmSlf9/coQGIW60RDgyJo3hUJnnDklkb18CWhj3UtOYCudADt49ovVJMkWZVfOnqHfUcqD7A1qKtbC7aHPZ2LDpLpzy97MRsNTxZ1VLFnso9fHnkS17b9pqq6HVVcTsiYQRZcVmqZUtFcwV7Kvewv3o/20q2qcu+8907bSt24dYkIhIfFY9RY0QWZGRZVuxmWqooqC9gX80+9tXsC/vcfTBIhs4VtUfn+0f375Qe0OJqobC+kO2l2wMWWRQ1FHWpcIPyW+UjdP2sHVS86Mywq3mDocXVEpDUdSR7oex98uvzIwQwgpMOEQJ4CiPRlMg7c95hxvwZgHKRuXvp3Xxy9Sdd/uD9dNxPVQL48e6PWXCNEsbqSAAlQcIre7s0ITVpTRQ1tl3MLhp4EZIo8eDKttZ1lw25jMGxgzlUc4hnNzwLgFbSIiNz29jbyKnIUXvuArwy4xWy4rMYN2+cWrGoE3U4PA7OSD2DlT9eic1g43ef/46n1z8NwJysObx/xfuYdWYcbge/+fw3av7h8Pjh/OeK//BhzodkvpwZUGEREJCQaPV0HbZsT44lQSLNkkZhQ6HagcFXiXyk7khAzzqtqOXyYZfz+PTHGZM8BlBylv6y6S+8tu01tUAkGIwaI+f2P5ffTP8N0/pNU8dLGkv4bP9nLNm3hNWHVuP0hpfjdNnQy5gxZAYXD7rYzyOuuKGYL458wcqDK1mVtypkv9ZQsLbC5KK2/L0pRWALcM08mKTl8IhU8oensClDYJWUT1FLCVANHuDYdk9iVCLDE4YTZ1Q8O6vsVeRWBldjA0EURIbGDe2k6vWz9QOU935P5R62lWzj3Z3vquHbqpaqoNtMMaeo1ipp1jQkQaKsqYxdFbvYXbGbTUWbuuwRHAgWnQWTzoSAQKu7FbvLrlg64e2kaHcsHAqGhKgEv1Bte5KXYk7xu1GotlcrreAq97Li4IpO1bNddWoBRVVPt6a3FVfYMkkzp1G2r4wrL7ySQfGDjql1Gig5peVN5Z3IXEeC1x1/yzhjHGnWNNIsaaRaUtVn3+cjgghOJkQI4CmOS4dcyn2T7uNvWxVj6E/3fsrHuz9W896C4aJBF6kEpqSphOHxwxEQKGsqo6ypTM1H8iU2d5UvWdbsn2tz98S72VW+i4KGNiuPp85/ClmWuW/FfTg8DjKsGRQ2FJJuTWdO1hwu/+hyddm7Jt7FtdnXMmHeBFUl0YganF4nU9OnsvzG5WglLdcuuJYFexTy+siZj/Dshc8iCiK5Vblc/+n1aqHHXRPv4tYxt3Lx+xcHvRj7rG/chFYdfKFLr+xFI2qIMyoWNL5zHRwzmIqWiqB9V1PNqTx05kPcMf4OLHoLDreDRXsX8fzG59lWsi2k2qoVtZyZcSaPTHuEGUMU4i/LMrvKd7Fk3xIW5y5mW+m2oOu3x0DDQK6feD2zsmYxMXWiX0HIgj0LWHlwJSsOrejSfy8gZBhS7d83d2QFdEyTb9LB3oFWDg9P5ruBUayMq2OHMx+ZfCAfQrfLDYpUcyqDYgdh1popLS/FbXSzv3o/6/LXhb2N+Kh4xiSN8VP1hscPR6/RtxVPVO5lYe5C9lYqpsmhKm77R/dXizCGxA7BqDFS3FSs5t5uKNjQ7WpYvaTHqDEiiiIuj4sWZ4vaqabR2Rh2ON4HX8FFIJI3IHqAGv53e92q992RuiOsO7KuU5FFsDZw7WHWmduqZo+qd+0raVPMKZ2871wuF8tKlzEsflhAexRZVloXFjcWh1TtypvLwybWUdqoNlJnTSPVfPS5HclLsaSEZSsTQQQnCyIE8AeA5y96ns+PfE5ORQ4Ady+9m3P7nxsy5KDX6BmfPF4lC8sPLicrPovcqly+K/tOVQB96EoBbB+q0Ut6zh94PtPfmq6OTU2fytjksSzau4hlB5YhCZKqOjx34XPcvuR2VZGb3m86z1zwDNPfns7BWqWzhiRIuL1upvebztIbltLobGTOe3PYVrINrajl9Vmvc+vYW5VCj23zeGDlA9jdduKMcfxr1r/4eM/HTH5zcsBj9+XuhQrhQBvxk5HRiTqitFHUOeooby5XlApLOgUNBeoxt4coiFw48EJ+f/bvOTPjTADe2vEWT331FPn1+SH3KwkSE1ImcP+U+7ku+zoEQcDlcbE2b62Sz7fvv1165oGi0l46+FJmDp3JBZkX8O1X3zLj7Bm0eFpYdmAZqw6tYtnBZeTVBu94EgxGJ5xR0pa7N7UIEgJc/4/ESewfGs/ewTa+THWy0lCMXWgAjhKnY3ADSbekk2HLwKgx0uJqUbzZmkooaWpnXxO4sBtQiidGJIzwU/VGJY0i1hDLodpDarh21aFVaq/bYIUtkiAxOHawn1lyoimRI7VH+PzI53xb+i3r8teFRY58EBAwaAxIooTH68Hpcao3CQ6Po8vPbUf4Ci4CFV2kW9PRiBqanE1+tijflHzjVz1b3FgcFnlKNif75911sEiJNkR3Kzxrd9nJr81nd9NuGnc3UmGvUEheU1sotqSxJKTJdHtIgkSyObkTmfMje5ZUbHpbj8LI3YFX9tLgaEDwHp/9RXD6IkIAfwAwaAzMv2I+Z7xxhuo3d9fSu5T8uRA/WneMv4NtSxUC+Mo3rzA2eSy5VbnsKN3B9EyFvPl+5Ltj4XB25tnU2evYXNyWQ/X8hc/T7GzmlyuUjh9mnVLBe/u42/n7lr+ruWnp1nTmXzmfS/9zKbvKFZ89URDxyB7O638e/7v+f+yr3sesD2ZR0lhCnDGORdcuYnrmdKpaqrhjyR2qGfVFAy/ip+N+yg0Lbwh5QQgnz8j3HuglvVr96HQ4idJEYdKZqGyp5Ej9kU7rxBpiueeMe7hvyn3ER8WzIX8DE16fwM7ynSEvoAIC2YnZ3DXxLn46/qdoJA11rXV8tPsjluxbwmf7PwtL3RkaO5S5w+YyY8gM1Yy5xdXCusPreKf4HX4979fsq97XPYsOGfrV++fujSkHbYfTadXA7kwjuUNi2dxPYGlcDYf1LShVBMdWSZBhzSDJnKTk67XWc7j2MEWNRX7pB12t37H6NsOaQV5dnqro/XP7P9lbuZcDNQeCfjb0kp6s+Kw2k+T44fSz9WNv5V6WH1zOd2XfsebQGppdzWG/txpBgyRIyILsZ3AtI4dNaHxIs6QFJXkxhhgqmiv8CN3i3MV+1bM19q6raHSSTmlH1sHzzkfy0q3pYStiHq+HiuaKoEUUvme/4+qi62KsMTYoqfNNJ5oS+6y7hizL1DvqqbHXUGOvobqlum3aHmS6pZra1lq8spc3Zr5BApHevhH0HSIE8CTG/O/noxE1XDPymi6XHZU0iucvfJ77V94PwKLcRXyQ8wE3jLoh6DpXj7yaO5feCcA3xd8wO2s2H+Z8yI6yHVw+XAnHhnOX39Gg954z7lGJHigk5Kx+Z/HY2scobChUyV+mLRONqGFLsdJGzaAxsPCahfxk8U/UBHwBAa/s5aKBF/Hf6/7LioMr+PHCH2N32xkeP5zPbviMgTEDWZO3hpsX3UxpUyk6SceT5z3Jsv3LuObTwO9dxwrUrmDQGPxUQqveqoTc3C0BPfMmp03mD+f8gUsGX0JRfRG3/PcW1uSt6TLENyR2CD8Z9xPun3w/Bq2BI3VHeHXbqyzOXcy6/HVdFuPoJT0XDLiAWVmzVDNmp8fJlqItPPXVUyzZt4Scipxu9ZPVuWFcqb/3XloA7llsFdg92Mr2AQY+T2xhXVwjLo2dY63SyLBmqLmIlc2VlDSVUNhQGFa+mq+SNzs+G7FS5NrzrmVQ3CDKmspURe/9Xe+zt2ovh2uD9/M168xKN4yjit6w+GGYdWYO1R5ie8l29lTuYX3+en+1MQQEBERBRJblTqq6W3aH3VrPoDEwIHoAQ+KGqGHaTGsmhTsLuW7mddS56vwKK1YdWkXBjjarlHBUw2hDdEj1Lsmc1KX3nY8EBSN1vrGyprKwP5MGjYFoMZrBSYNJt6UHJHgp5hQ/26OeQJZlGhwNAclaKEJXa6/tdt/m9qh31EcIYAR9iggBPEnxffn33Lb4NpweJ/ur9/Ob6b/pMgRx7+R7WX5wOSsPrQTgnqX3cF7/80ixpARcPtYYS5oljeLGYpxeJ0kmJWTcPgQczg9Ye/KnETRcMPACrvz4SnXsxYtfJLcqVy3G8Bkt3zjqRp7Z8Iy63Juz3+T5Dc+zOm810EbSZgyZwYKrF/CXzX/hN5//BoBLBl3CR1d9hEFj4KFVD6nbHhY/jBuzb+S3n/82oHrTPowbDgwaAw63Qw35RRuiqW+tD5jrZdKauG3sbTx61qPEGmN5eNXDXLfgOhqcwfPCAPrZ+vHjUT/mkWmPYNFb2F6ynf9b/38s3LuQPVV7ujzGdEs6lw+7nJlDFTNmjajhJpXPewAAIABJREFU29JveX/X+yzZv4QdpTuC9hIOhKRG/9y9CSVg6PAxcImwO03LroEm1qd5WJHUSJFNBuqPPrqHNEsaNoMNp9tJaVMpza7msMiegMDg2MF+il6aNY0WVwu5VbnsLt/N+vr1LF28lOLG4EQ01hjrZ5ScbE6muqWaA9UH2F25m40FG1m4dyHNzvAVvUCQkcMmBbHGWIbGDWVw7GBFwTtK9BJMCbS6WiloaCN0Gwo28J+6/7C/Yj+/+PMvujxGAUEtTghmkRLKYBmUgiVfyDVUvl244W5REEkyJQUsomgfojVJJpYvX+7X8i4cyLJMo7OxW2qcb7onRC5KG0WsMZY4YxyxxtjO01Gdx2OMMUiyxLJly455vxFE0BUiBPAkxYiEEdxzxj38ZfNf+N0Xv2Nf9T7+NetfITtyiILIO3PfYdRro6hqqaLOUcfPP/s5i69bHJQ83jz6Zp7dqFTkfnHkCwAO1BxAI2o6dWIIB1PSp/Dy5pfV9ZJMScwcMpML37sQt9eNUWPE7rZz3cjr1DZsAA9NfYg1h9bwae6n6piMzOys2bw39z1+/tnP1RZp9066l5cueYmDNQe54dMb1MrlW8feyqbCTfzuy98FPb5wL96+ghAf8TPrzDQ5mwJWBI5IGMFvp/+WK4ZfwT+3/ZPJb0zuUhFKMiVx9Yir+c3ZvyHaEM3avLU8svoRFuUu6rI6UhIkpvWbxuXDLmfGkBkMihnE7srdrM5bzdPrn+ab4m/CzguTPDCqwr9v7sAARY+VUbBjgIGt/TSsSWpma6qMXecCwq+QBIV4JJuTMWlNNDobqWiuQEZWCEQIggZKpfKY5DGMTlSIXpIlCWTIq81jb9Ve1uSt4e9b/95lxa2P6A2KGYTD46CsqYwD1QfIq8vjkz2f0OBoCEv57q6K3BGiIJJhzWBY/DA1VDsgegBWvRUBgcqWSjUku710Owv3LqSgvkC1QwoFg8bQSb1rT/bSrGnoJF3Adb2yl8rmSg7WHAxZRBGOpZAP0YboLosoksxJfobPweB0OrF77BypO0KjO3xCV2OvCTvdIxCMGmNQwhaK1B1rYYjLFf5NWwQRHAsE+VRth3ESoKGhAZvNRlVVFXFxcX2yj3nb5nHPsnvwyB6mZUxj0bWLOnXp6Ij/7fsfsz+crc6/O/ddbhpzU8BlD9ceZuDfBgKKxYNO0lHcWMz629Zz5cdXdtvy4/3L3+fnn/1cNSv+99x/oxE13LjwRpVQZtoyEQVR9fu7ZNAlDI8fzstbXvbb1pXDr+TlH73MtQuu5evCr5EEib9f+nfunHgnr29/3a/Q40eDfsT8nPk9uiCDUmXrU8tEQUQSpIDqmU7ScfWIq/nDOX8grzaPX636FXsq94Tcf6wxltlDFYNms87M0gNL+W+uEtbuirDFG+OZkzWHWVmzOH/A+ZQ2lbImbw2L9i5iU9GmLs2hfYhpUexXfOrepGIwdzg9L7AnWWRbpo51qU7Wp3s5FAt0MyddQCDRlIhGVPIXwz1GjahhWPwwxiSNITsxW8nTOmqNkludq+bqhcqB7B/dX+ltGz2Yovwi4tLi1Mrs4sZi6lrrekQGwoVJa2JgzECV5GVYM/xapRXWF/pVzxbWF4al1sYZ4zp536WZ0yjMKeT6S68n1ZYa8KavwdHQmdR1KKIobSoN+73RS/pOCl0g5S6QVYssyzS7mlXyFlB9aw1M7nrytzNoDJ3JmiG4Gud79FZIOVy4XC6WLVvWbaXzVMSJOFff9bu+vh6rNbTa/UNFRAE8yfHziT9nUOwgrvr4KjYWbmTKm1P47PrPGJ4wPOg6s7JmcdfEu3htm9Lr+BfLf8EFAy8g1ZLaadkBMQOI0kbR4mqhsqWSGYNnUNxYrIaBu0MAJUFCI2jUC71ZZ2bmkJlkv5YNtIWT+9n6sb5gvbL/6AGMSx7Hcxuf89vWddnX8ei0R5n+9nSO1B3BprfxydWfMC5lHJd/dLla6HFWxlnkVuXyn5z/hH2cwY7dI3tweV1ISHjwKP6HHZSgfrZ+PDrtUc7KOIsHVj3AiFdHhLwYWXQWLhl8Cb8/+/foJB2L9y3mugXXsbVka8jjERAYnzKeK4dfycyhM7HqrKw9spY3vn2DW/57S1gqkOCFYVX+uXvDA4hj9Xr4pp+Gr9Nl1qd72JIGjQYvEF4LN9/xxkXFIcsytfZavHiRkbs0sE4yJTEueRwjE0YqZFHS0OBoYH/1fnIqcvh076dhVdzGG+OVAqiWGsqayyhpLGFt3lqWeY6G0I7RO7ArCAgkmBLIis1iaNxQUq2pmHVm9cahqqVKLa74Kv+rsDpzSIJEmjUtoHrna01m1pn91nF6nBTUFnDk+yOsL1hPeUt5QOUuWJ/rQOeVZE7qROo6Ej1fjmazq7kTecutymVj4caQ4dXupCZ0hF7Sq4StO+HV403kIojgZEWEAJ4CuHDghWy6fROXfXAZebV5TH1zKguuWcCFAy8Mus6LF7/IF4e/ILc6lwZHAz9d8lM+u+GzgKrArKGz+Gj3RwBqCGZH6Y5O7eC6wtjksfxq9a/U+SfPfZKnvnqKsqYytVBker/pKvkzSAauGXlNJ/J30+ibuHrE1Zz99tk0OhsZFDOIz274jKKGIka/NprSplK0opbxKePZULihW8fYEb4wnkf2qMfo81HzQUTkR4N/xCPTHuHt797mkdWPhFSzfAbNj531GACLcxcz64NZXdq9WHQWZgyZwdxhcxmTNIZvy75l4Z6F/HnTn8MKt5kdiqLnU/emFEFMAO60L15gc7rAhgwvX2fA3niQxfAVFQEBq86Ky+tSC2Bk5JChV72kJzsxW1X0tKIWu9tOfn0+eyr3sObwmi4rbvvZ+qk3GDUtNVS0VCidK6q737WiO9CJOtKt6YyIH0GKJQWz3oxW1OL2umlwNqh+eB/t+SgsghWljerkfdee5KVaUtXvoVf2UtVSpSp16/PXc6DmAHk1eRQ2FlLeVE6Nvcb/8xjaPxyr3hqwIjbVnIpBY8CgMWDRWwLmyx0uOByQ0HXXv9Dv/ZV0KjlTCZshuBpn1Vr55qtvmDtzLjpd4DB2X8LpcarvS7W9Ovjz0elPrv6EkYkjj/txRhBBV4gQwFMEwxOGs+WOLVz+0eVsKNjAj97/Ea/MeIWfT/x5wOWjtFHMv3I+k/41CbfXzbKDy3h357vcMvaWTsveP+V+lQD6WqPtKNvBoNhB3TrGWUNn8cd1fwTaDIsfWq30KXZ73aRZ0thQ0EbYshOzeX7j837buG3sbWQnZjP3o7l4ZS/n9j+X+VfM56VNL/HiphcB6G/rT3lzuVo93BPIyKohdkcCkhCVwN1n3I3H62He9nmc++9zg27Hd773TroXQRBYtHcRM+fP7NKqZVj8MK4afhXTM6fT0NrAon2LeGDlA103sZdhYK1/7t6oCpA6RKCbtfBNmsDGDJlN6bA5HapNsrKBMGHUGP2852Rk6p3BFcgMawajEkeRbE5Gr1FyKUsbS8mtyuXdne+GrLgdEjsEq96KV/bS6GhUCcb35d+rtkB9AZ2kw6gxIghK14xWdytmnZkfDfqRapmy/NDysHJiE02Jfp0r2qt3mbZMte9tk7NJDbseqj3Ekn1LOFx3mKKGIoXYtdbQ6GjsVlpDgjZBqY61pqtKXZI5CZPWpHb1qXPUqYbvZU1lrC9YT1lTGfl1+T1S5LSilriouG6pcbHGWKK0Ud3y2HO5XOwSd/XYl89X3RsOifOR3eqW6m6ba5c3lzOSCAGM4ORDhACeQoiPimfNTWu443938P6u97lz6Z3sq97HCxe9ENDLalzKOJ694FkeXv0wAL9Y9gsuHHghadY0v+Ump01WQ6A+Q+GcihzOSD2jW8f339z/qtP3T7mfB1Y+oIZQBQQaHA3qxSzFnML20u1+6/90/E9Bhl+tUlTEO8bdwb2T72Xm/JlqoUe6NT2g315P0DHMO9w0nCvHXcmHuz/kiXVPBF1PRGRC6gRuGXMLAgKf7v2Uaz65JqRptkFj4Pz+53PZ0Muw6q18fvhz/r3z32oru6DruZRqXJ+6N7UIkgKIkIejYVM6fJ2hPHYlgacjKwwBnaDDKfurOcE86EwaE8MThpNuTceoNSohz+Yq9tfsZ9nB4NWLscZYUswpaqFNo6ORekc9jY5G9e/cF9BL+qCm306Ps5OK1eRsYsHeBX5jGlET0vsuw5qBRtRQ2lRKQX0BuZW57K/Zz4aCDRQ3Kt0nauw1NDmawrZ8CQST1kS0IVp9WHQWpSNIrUhUTBQVLRXsr95PWVMZlS2V3WolJwoiCVEJ3Q6vdpfI9SacHmfYilxv5BIKCMQYY4gzxqmkV33uMObrsx5BBCcbIgTwBMDj9bC+YD3nZJ7T7R9MvUbPu3PfJSsui9998Tv+svkvHKw5yPwr53fKCwJ4cOqDLD+4nM8Pf06Tq4nbl9zO8huX++1XEATGJY9jW6nShsyis3T7LndY/DC+K1faromCSD9rPzYVbVJDrEmmJLVdnEEyUNZU5qds/HT8TzlYc5AvjnyBgMALF72AWWdmyr+mYHfbsegsNDubj60tWRgwa83MzprNvqp97CjbwdMbghOy7MRsZg+djUbQ8MneT/jF8l+E3LZG1DAifgRnZ56Ny+ti1aFVLD+4PKSyk1bvn7s3rhR0Ha7hDgm2pyhEb1OGQvxKe5jL3JH8gXKx62frR//o/ph1ZtxeNzX2GvJq89hWui1o67n4qHil0wMCdredRkcjzc62XLHehoiIRtIgy3JAJSucrhkGjYE0S5pqudI/un9b7p21HxpRQ15tHrsrd3Og5gC5VbmsyVtDRXMFta21NDmbjjkcqhE1mHVmrHorNr0Nq96KWWdGL+nxyB7sbruiWLVUU9ZUFrxyOkC+oyiIJJoSSTYnk2JOIdmcrD588xadhWRLMkmmpBNG5Hy+gaHIXFVLFfsK9/HEW0+oZC7c3MZAMGqMXZK49s+xxliiDdF9ZiAdQQTHC5Eq4B7gWKuAF+xZwNWfXM3E1Ik8ftbjzBk2p0tD1UD4ePfH3PLfW2h1tzImaQz/u/5/ZNgyOi1X3FDMyFdHqoUDb85+k5+M+0mnbV27QOkfnGBMoNJeyY2jbuQ/34dXXDEmYQw7K3cCcM2Ia1h7eK2atxajj6HWUasu6wu5+nDb2NtYn7+eg7UHMevMzLtsHp/s+URVFM1aM02uY/+BD4VhccOIMcawo2xH0GIDgMGxgzm739kgw5L9S6iyB893A8X2YlzSOOKj4tlVsYsDNQeCqjAaD4wta6fuFUK/ANaBpeY2Ze/rDPg2BZy9fAtn1VnJsCkGzF7ZS11rHQX1BUFvCAQENbHe41VISrOzuUehxFDwfU+6o2i1R7QhmnRLOoNiBzEkdoiafxdjiFHanzUUcKD6AEfqjlDSWEJ5czm1rbU0O5u73XLNB4NkwKQzYdFbsOoUUheljUIn6XDLbpqdzdTaa6loqQiZRxkIFp1FIXGWFBKjEmmtbGVK9hTSbGl+BC8+Kv64ExaH2xFSkfORt/bjPfHcEwWRGENMWGTOp2DGGeNO2qKQSBVw3yJSBRxRAE8IihuKMWqMbCvZxhUfX8Hw+OH8+qxfc3329Wil8D/814y8hkxbJrM/nM3O8p1M/tdklly/hImpE/2WS7Om8fact7ni4ysAuHf5vVw08CI/sjgna446XedQvN2qW8L3+dpV2ZafpZf0fkUL7clfR2/B67OvZ9HeRdQ56uhn68dvp/+Wh1c/TEljibpsb5M/raAlKy6LosYicqtzgy6Xbk1nfPJ4HG4HXx75krdq3gq6rIBApi2TDFsGlS2VHKg+wBf5XwRcNqFJUfZ8uXtnlICxQyTKLcDO5KPq3tGQbn403bZiCQZJkLBJNtJj0xFFUbUHaXA2sLtyd8DlLXoLGlGD0+Ok1d2K0+NERlb+1t3rVBYSofz1QhE/ERGL3kK0IZoobZRSaOKyU9lQyQ3jbuD8AedT3lzO8gPLWXt4LSsPrUSWZfU8ugNREDFoDJi0Jsw6M2adGZPWhF6jVwtEfEpWeXO5GoIMB77+tIFUOnXekkKSKQmTzqSup15Ez+zdi6hX9lLfWh+cxAXIl6tuqQ7b9icQorRRQcOr0fpoCvcXct6U80iyJKmvRxuij+lGOoIITldEFMAeoCc+gJXNlfx1y1/5x9Z/qMpcpi2Th898mJ+M+0m37krz6/K57IPLyKnIwagx8t7l73HliCs7LXfHkjt4c8ebAJzX/zzW3rzWL9ST+udUSptK1fnRiaPZVdF14n2MIYbaVoXkTUyZ6BcSFBHVnLiO5G/mkJmsOLgCj+xhctpkJqRM4LVtryEjoxE0PcqRCoQ4QxwyMjWtwcOPcYY4EoQENCYNOVU5IbcXpYkizZqm5E7WFQQ8XtELIyv8c/eGBNh9tdE/d++bNGjppQJHq95KrDEWnaSjydFEeXN5UJVFI2owaozIKP1oj1X16gvoRB0mnUK4dJJOLRSpc/Sep58kSBg0BowaI0atEa2oRRCUdoROjxO7247dZcfhcXRbhYw2RIcmdUfn46LijonIhKOitLpbu0XifK8fq+IKSnGIJEgkmBIYmzy2kzLnyyFsT/ZCmSefLsrY6XKeEFEATxQiBLAH6A0j6AZHA6998xovbX5J9dxLNCXywJQHuGviXdgMtrC3c92C61h+cDkAz5z/DL8+69d+BK/J2UT2q9mqHcm8mfP42cSfqa8/ve5pvy4avu4XXaE9sRsRP0JtX9a+R3B7IggwNX0qm4o2AUr1cFFDUZ8VAFh1VhqdwaspTRoTmdGZilrTEtynTUDAZrChl/RBPcxsdsV+xZe7N7kIrAFSwnIS2nL3vs6A/XH0WN3TCBqiDdEYtAbsLjs19pqg56wRNYiyCCK4PK4eG2j3BgwaA1EaJTTqq8ZtdDb2mNwJCMRHxZNiTiHaEE2ru5WDNQfRa/RqhbMvdO3wOLr1XmhFbVBSl2Jpm04yJfVqqNEXnm9P1soby/ly25dY0ixU2CuobK6kuqWaOkcdAgLV9uqw27IFgiiIah/jYwnT/nj0j3nv8veOef8+nC7E6HQ5T4gQwBOFCAHsAXqzE4jdZeft797mTxv/pBI0m97GPWfcwy+n/JJEU2KX23B73Ty48kH+vvXvgNIabd5l8/xaPm0r2cbkf03GK3sxSAZyf5FLZnQmADUtNcS9cOznkWxO7tq+BMiKy1K92+ZkzWF13uoeXZgCQStoVTPnQJCQMGgNXYapNIKGKG0Udre9M+GTYWi1f+5edoAubg062NJO3duSBvU95AImrQmDxoDT4wxZsCMJEqIg4vF6QlYn9zUEBAwaAzpJp5ok2932HpM7jaghPiqeOGMcZp0ZraTF6XbS4mqh0dlIo6ORhtYG3BzbfvSSHoveQqwxlmRzMv2s/RgYM5CsuCzGJo9leMLwHhdM2F12vxw4n+9fUUMRZU1lagi51l5Lg6OBZldzyHzV4wmjxkiMMYYYQ0zn5w5jA2MGMiJhRI/3eSoQI7dXye1scjapj0Zno998+8eQ2CHcPv52v22cCufZW4gQwBODCAHsAfqiFZzL4+LDnA95dsOz7K3aCyg/sneMv4OHznyIfrZ+XW7jla2vcN+K+/DKXs7OPJuF1ywkLqrt+J5Z/wy/+fw3gKLEbfzJRvUiZnrG1C0y1j5fyygZsXtCJ4Mlm5Ipay7DIBkYnTyarcWhO2J0Fx2Vxo4Ip7+xhJIs39EQ2uRQ8vWmtgvnxgU43QOx/rl7uxPBe4ypSRpBg16jD2hd0h4+ZeZEKXmSICmhPlFSw6XHmszvg1FjJNoQjVVvxaAxICNjdylKne9ieqznKwoiJq2JGGMMyaZk0q3pDIgZwNC4oYxMGMnAmIFKC7puFE54ZS+19lq1uKGquYqSphIK6wspbSqlvKmcqpYqaltrqXfU0+Rswu6y9/h96i34cljbE7dYYywxhhiiDdFKSFzSEqWJYlTSKEVtPsY+tz1Bb5MFt9cdlJg1OgKTtlBkrtHZ2G2CfungS1l2o791UoQA9i0iBDBCAHuEvuwF7JW9LM5dzDMbnmFbiZJTpxE13DT6Jh6d9ihZ8Vkh119xcAXXfHINjc5GBscOZukNSxkaNxRQbGjOfPNMtR3ZPy79B/dMugeAqz6+ik/3fqpup31v3FDwebqFgklrotnVTKwhFkmUqGwJIJedAAhHY69+ZEKGzDr/3L0xZaDp8G2xa+Cb1DZ1b3M6VHZ24wkLOkmHx+sJSQhCFUj0JSQkRFFhsW6vu8fHYNaaMelMRGmjkEQJp8epEDtHI07vsXeVAOV7EmOIIcGUQKopFbFR5Pwx5zMsYRgZtgzSrenER8WHzLNrr8r5FLmC+gK1MriypZKalhrFv9DZ2KeVz8eKQJ+VFHMKE1ImYNQaMWqM6CU9oiiqSqzdbae+tZ4GRwP1jnp1usHRoH4uB0QPIO+Xecf9fEC5Qa5trmXJyiVMOmsSDq8jLGIWirD1pZrqK57yFQr5Hhad/9jIhJERBTBCAI87IgSwB+hLAuiDLMusPbyWZ9Y/wxdHlKpSAYErR1zJY2c9xviU8UHXzanIYdYHszhSd4QYQwyfXvMp5w04D4DC+kKy/pGF3W1HK2rZ94t9DIgZwP6q/WS90kYuwyF24cCnvCWaEqlsrjwpcs7aQ++C8aX+3nspAdIfC6z+uXs7k8DVzVr6E63WBYKEBIJy49GT4xIFkShNFAaNQc0BbXW39lolt17SK8TOkkp/W38GxQ4i05ZJujVdffg6bQC0Olr55LNPGD9tPPXOeoobiymsL6SosUg1Sa5uqaautY4GRwMtzhZaPa0n1d/mZIIoiPSP7s+h+w51uazL4+qamHVU2Fyh1be+LkoSBVG9ITyW78KT5z3JTaNvUkmeL5/1WBAhgH2LCAGMEMAe4XgQwPbYXLSZZzc8y5J9S9SxSwZdwuPTH2d6v+kBf2gqmiuY++FcNhVtQiNqmHfZPNUD8MOcD7n+0+sBFCPon21DFEQ0T2rUu/1wqnHDVaWiDdHUtdaFfb59iZSGNqJ3ZqFC/vQdhDenCDtS2tS9TelQHF5NzkmHgCpnN6ERNegkHRpBgxcvra7WXq3UNmvNpFhS1NZpGdaMTsTO7XFTba+muKGYgoYCiuqLKG0qpaK5Qq1YrXfU0+RQlJ0Tmfd4ssGoMWIz2FSj6fbTJq1JUQQ1erSSFo2gQRIl9TdFRsbj9eD0OEOGPtvP96Q/cDjwKbjH42bKZ9Ld3vKno6pn0pq4Lvs6pmZM7ZV9Rghg3yJCACMEsEc43gTQh5yKHJ7b8Bwf5HygFjmcmXEmj5/1ODOGzOhEBFvdrfxk8U/4IOcDAB4+82Geu/A5REHkyo+vZOHehQC8cNELPHTmQ4x6dRQ5laEtULqL9hXBxxsaD4wu9++b2z9AK9tyk3/u3vZUaP1h/+6q0IgatVdsX4QyYwwxpFvTybBlkGZJI84Yh0VnQRIlXB6lIMRXhV3RVKEWPTS7mnG4Hb1uCXQqwVd9btPbsOgsWA1WlbD5Cmt0kg4BgaLCIjL7ZSKKitm6R/bg8rhwepy0uFuCKnB9Hb7ujRuQcPdj1plVu6BwSJvffJD1eqLkHSsiBLBvESGAEQLYI5woAuhDXm0eL2x8gbe+e0u92x6dNJrHznqMq0dc7ZfALssyT6x7Qu1tO3fYXN6//H28spcBfx1Atb0aSZDYf+9+dlfsZvaHs3vlGE9Ezlpcs2LFcmY7o2VTh+ubR1D65PrI3qYMyIuh14yWTyb0dcjZ5+nm8+dDAI/HQ4urhWZ3M82OZlrcLTg9zl7JHzyVoJf0aku3KG2UQtq0BrSiVi2aEQURQRCQZVklbb7exA63gxZXi5/K1tc3UsfrO2vUGLskXoHGDJKBPd/t4fxp5xMdFe23rlFjPGFt7HobEQLYt4gQwAgB7BFONAH0obSxlL9s/guvbXtN9e0bFDOIR6c9ys1jbkav0avLzv9+Prctvg2nx8n4lPEsuW4J+fX5THtrGqC0Rsu5OwfNUz1vEnM8LiSCF0ZU+ufuZQVouFBrUMieL3dvaxo06Tsv90NHd/8mBsmg3kj4ClR8JOWHDpNWKVIxapViCZ2kU5RSUULkaPgRWVVNfcbZre5WpVrZ1XzCVO/ehFbUdiZi7QmbtpskTmfCpDUdc2u604UYnS7nCRECeKIQaQX3A0CKJYU/XfQnfn3Wr/nH1n/w1y1/5VDtIX722c/447o/8qupv+JnE36GWWfmhlE30D+6P3M/nMu3pd8y6V+T+N/1/+P+Kffz8uaXya3O5al1TxEfFd/tvqQd0Rfkz9IKk4vb1L3JRRAdIC98T3wb2duUDrnxIP+Au0RpRE1YBr3d/Zu0elrhFON6WlGLXqNHLyn5bC6HC7PRjCAeDUPKMm6vG6fHicvrwuF24HA7OuULNruae9TO7HhDFEQMggFblC04YdN2He7suF57H9EIIojgh4OIAtgDnCwKYEc0OZt4Y/sb/HnTnyluLAYg1hjLfZPu497J9xJrjOVw7WEu++Ay9lTuIUobxXuXv8fDqx8mrzYPEZE7xt3B6zteP7EnIsPgGv/cvewK6MjjmrRtRsub0hUrltqoE3LEvQqfibNX9va4OvdUQfvQqHD0nxevqjq6ve5TUlUTEIjSRqmKom+600PTxevaKKpbqnF6nAyKHcSA6AEqWZNkieXLl//gFaPTRRk7Xc4TIgrgiUJEAfwBwqwz88DUB7j7jLt5b9d7PL/xeQ7WHOSP6/7Ii5te5M4Jd/Lg1Af5+idfc82Ca1h1aBVXfXwVj571KH/a8Ce8eFl2cFnXO+plGJ0wscTfey8hgCf1oRj/3L3vE8FzbNGkkxoeObQn4MkEAUG10PAR1WMhrS6v67j76fn6/pq0SmgySqfk6oUiYaFeD0Tg9JK+z3PTXK6Ty4cwgq4aQEEqAAAgAElEQVThU+3dXreaYuH2utGKWgzi8TfZjuD0QoQA/oCh1+i5Y/wd3Db2NhbsWcAzG55hV/kuXtz0In/b+jduG3sbf7/077y8+WVe2/Yaz214jilpU9hcvJmixqKwumYcM2TIqPfP3RtbBtoOrh2tEmxLbSN7m9Kh3NI3h9QTtFerTkfIHFt/2FDQSTr0kh6DxtBG0tqFMi16i5qnF4yE6QQdOTtyOHfauViN1k4EzqAx/GCKBk4m+MLsHtmDx+tRp31EJ9h8OMs6XA6+qfuGpj1NSsFRiGXD2WenZXvpOMNZNliryptG38Sbl715nP9qEZxuiBDA0wCSKHFt9rVcM/Ialh9czjPrn2Fj4UbmbZ/HG9++wXUjr+ORMx/hxU0vsrl4M1adlQZnQ69e0LVuGFfm3zc3PUAL22KLv+/ejhRwngKfUpmTy9i5LyEJElpJ65dr56eitcst8/nMRRui1c4fXSlovUnMXC4X0kGJqelTT2gYzSt71fC1y+Nqm/a2TYd6LZzxVlcr31d8z55Ne/Di7Xofcs/25/Iq9jI19hoADBqDSm6Oy3fhSN/v4kThVExziODUwylwae1bvPrqq7zwwguUlpYycuRIXn75ZaZPn36iD6tPIAgCM4bMYMaQGazPX88zG55hxcEVzM+ZD8CktEl8X/49Dc6GHlfwJjUqyp4vd29iCRg68Em30Ga07AvpFtr4QVqxHA/4wrCSqPTl9Rk3GzQG9RGljVJVs/rKeoYPGE50VDTR+miiDdFqD1izzhwwlGnQGEK2UOsOfGShPclweV1UtVR1ST7CJSytToUU7d60258UBSM4PdxfsPFgSk+foOT47ao9wm2pJgkSkighCZJaVe3zoQw233G6vraexPhENJIm5LJ+rwUYD2ffJ2JZSZBwuyMkMIK+xWlNAD/66CPuv/9+Xn31VaZNm8a8efO49NJL2bNnD/369TvRh9fryK/LJ9WSilbSMj1zOsszl/Nt6bc8t+E5FuxZwNZipTewXtLz6zUOPCI8fU7n7fx2HUheeELpKofkUYoz2ufuDartvF5lVBvR+zpDCe3aT6MCQ0mQOlVddqy4NGqM7K/az6G6QyQYExgQM0C1zfC1lzLpTGovUaPWiE7SIYlSQEIVjMg4XA52N+0mxZKCjEyTs4na1loO1BzosUoULkE6rorpCSJFXcFH1LWS8qwRNepYuOO+10REKsoqyMzIVC1rerLd9uPBXhMQKG0qRa/R09/WH62kDUnCfJ6HPcHpVBwRQQR9idOaAL700kvcfvvt3HHHHQC8/PLLrFy5ktdee41nn332BB9d76LZ2Uz/v/ZHFERSLalk2jLJjM4k05bJBQMu4OJBF7P8wHKW7F+Cw6OQv6eU1sN+JPC365Txd0fDk5+3WbGYO+Sfe4GcRP++uQdjOWXUvfZhTq2kRScq3RbaX+B8fnCCoOT/Kf/bOh74jH19bbTaE6J6Rz1VLVWqf5xvvD3yavPYUrKlb0+0tG83312IgthjwiIJkqoMIUNlWSUZaRloNVrl7+b72x1VS/3mhbZxURD9xgQERFFUpyVBaZXmIzWCICifBwT1M+EbhzaFVkZWPye+PDDfw+NV5ucOm0tmdGa33rsTRYxGM/q47SuCCCLoPZy2BNDpdLJ9+3Z+/etf+41ffPHFfP311yfoqPoOpU2l6CQdTo+TooYiihqK2Fi4MeCyBsnA/53jAGSe+gLim2FXMtz9DUw4Shhu3uW/Tr1esV/5up3RcsMpXMTmkT143B5aCS+s1ZcQEdvISgeiok4fJSbq4+g6oiiqxMNHXHzkpLGxEZvV1kZg8Ccr7ZUaH8FFphPRVSG3zfsIcPtlvLK3bawdOW5vc9ORCPkeTo9T6e0b4LWOJCogTo4W1GFjWPywbhPACCKIIILu4LQlgFVVVXg8HpKSkvzGk5KSKCsrC7iOw+HA4WhzHW5oaACUO++T3YIh05JJwyMNlDeXU1hfSH59PgUNBRTUFyjT9QUUNBTQ4GhQzH9pU/58SmB77Ivzz93bmwDeH7DR8omEzwfP7XH3vinziee3JwydlDoEPzLsm/apvO0JdMfXfGPtl1VVQ990h221f7RfXxRFcspzaHY0+x0r0Dl8epSQA3jcHnbU78Cd60aSJHWdtkXlgGMdoY61I/uyLPvdAPieZVkmr07xDh2ZMJJkczJmnbnTTYX6TxBodDTikT1Y9BZ0YlsOSKDQcMfjBXC5XTS5m6hsrPRTOgMtG+42u7NssBB2T/YfaDmXy4VbdtPS2oLWow26rIBwzF1VThb4rp/H8zp6sl+zjwdOWwLoQ8cvkyzLQb/gzz77LE888USn8S+++IKoqFPLediEif6e/rhb3DS1NFHjrEHj7fxxePoc+MOXoJGVoo251ylKX7Xp+B9zBBH0JtqrlCdbAXcwdT4sHO694zipkXOiD+A4YWfol0ebR/Pk4CePz7H0MVavXn3c9tXSEsBk9jTDaUsA4+PjkSSpk9pXUVHRSRX04bHHHuPBBx9U5xsaGsjIyOC88847qTqBBILL4yKnModtJdvYWrKVb0q+YW/V3k4KgCiIZCdkkxWXxdrDa7l7ZQ0aGRwS6D2KlcvSrBN0ErTlUWlEDTpRp1an+gokojRRROmOVqv6wqKyiEtuy7PzFSU0O5tpdDaCrNwI+Dy6Ghob0EfpVQ8vn0eYL1fPI3twy8qyp4v1SwQ/XARTxMJF5DtwYhEfH8+MGTNO9GH0CC6Xi9WrV3PRRRcd104gpztOWwKo0+mYMGECq1ev5vLLL1fHV69ezZw5cwKuo9fr0ev1nca1Wu1JVY0myzL59flsKdrC1uKtbCnewrel32J32zstm2nLZFLaJCalTWJy2mTGp4wnvz6fC9+9kLtX1vDUF/C78xQl0FcAAvDsuX1oEh0CPsNhj8eDw+Og0RXATDAANKIGvaTHpDMRrY8mPiqeJHMSY8xjSDWnkmHLINmcjFVrZeeWnVzxoyuIt8R3aXni83drX8jRfrrja3217NIDS6lrrcOkNSEKot9yTo8Tl8fVZxdqAUE1bdZr9Mq0Ro9BMqg+gQaNMm3QGDBIBgxaZd4oGdFr9KrFjFFjxKA1tBVehAjRhhrzhVQ9Hg/bt23njDPOQKvRdsqD7Bja7Y2x7hxnb5yjb9rtcrNixQpmzpiJTqvrlNfZ15BlmVZ3K7WttdS11lFrV57rWuv8xmpba5XXHHXUt9arr9W31vf4MyogYDPYsOltxBhisBnantVpvY1oo2J95POo9L2m13Tu2BKoW2rA0HkvL+d0OjuRokDLaUTNSXX96QmO57X0h/Ke9QSnLQEEePDBB7npppuYOHEiU6dO5fXXX6egoIA777zzRB9at1Brr2Vr8VblUbKVLUVbqGyp7LScTW/zI3tnpJ1BsjlZfV2WZV7Z+goPr3mYh9a2+pE/UJ5HJWbz1Ec5PHnu7yn45S08uvpRFuxd0CUZFOiZr2BP4avAbXY1U9Fcwf6a/SGXv2vvXYDSjSJKE4VFbyHWGEtcVByJUYkkm5NJt6aTbE4m1hjr90g0JZ6UOTkOt4MmZxONzkZqm2tZtW4VoyeOxu6xK+OORvV1dd4VZNzZRLNLyVGTkXF4HDg8DnD2zrEaNUZF1dVbVHU34HyHcbPW7DdvEAy4LC4uHXQpOt0P23PIJbvaKqFPwOdPEASMWsUQPNWS2u31vbKXBkdDUOLom69pqeFA4QG0Vi31jnr1Nbvbjoysrptfn9/tY9BJOmIMMUQb2nwxow3R6lio12wGm1J53ktwSS7MGjMxxpgIWYmgT3BaE8Brr72W6upqnnzySUpLS8nOzmbZsmVkZp4a1Xe5VbnM/mA2B2oOdHpNK2oZmzxWJXuT0iYxJG5ISEWr1d3KA6sewO11I3nhD+cJPH2OjCiInBd9Hmtr17LuprO5ZuQ1CB4PmdGZfHj1hzQ5m3jz2zd5ev3TVLVUBdx2e/Jn0yt3462uVipbKo+ZGLYPXfUVuXR6nDg9TuocdRQ2FIa9nl7SY9FZsOqtxBhjFMXRlESqJTUgaYw1xhJjjOnVC0inY9IoCl1cVBxppjQKTAVcOODCY764eLweWlwtnYhhyPkQhLLR2ah2QLC77djd9oA3MscC6XvpmAhlsHmzznxSkvxTGaIgquQqFILZ3TjcjpDEsavXfNXm5c3llDeXH9M5WHSWbhNH37xJa4q0JYzguOK0JoAAd999N3ffffeJPoxjQro1nUO1hwAYHDtYJXqT0yYzJnkMBk33fFiMWiO3jrmV5QeXk/3qyzy48kFoKGRc0jgmGiaytnYtXxV8Bb/73m89s87ML6f8knsn38vyA8t5dsOzIZPY6x311DvqlXW1ZiamTmR00mhq7DXsLN9JXm2eqi6FQijS5/Pv04paZGTcHrdiI3KcevU6PA4cdgdV9qpuWZAYNAb1IhJrjCUhKoFkczKJpkTio+KDEkeddPzVLUmUsOgtWPS905xZlmWcHmdIAhn0tSDjLS4l0dsje/w+d70Bo8bYa4TSoreglzqHHyMIH3qNniRzEknmwDncoSDLbWboQYnj0bB1IIWyydkEQKNT+Yx252bRB42oaSOJR0PV9lo7ny37jNio2KDE0fc4Eb8BEZzaEORACQkRhIWGhgZsNhtVVVUnrAjkq/yvyE7MJtYY22vblGWZans1CS8kAPDPGf/EWGDklpxbAKh6uIq4qNDnm1ORw183/5V/7/x3J4PjYBAFkezEbG7MvpHzB5xPjb2Grwq+YmPhRvZW7qWiuaLHSp8oiJi0JiVko7dh0BowSkaaXE1UtVRRa6+l2dV8yiW2GySDqjbGGeNIMieREJVAXFQccca4TqTRorWw9cutzLlszg86vNTqaGXR0kVMPXcqDq8jfLUyxHJ9lfuqETWqungshNIgGvh207fMvGgmMaYY1Y6lPdr3JG5vTu6RPV2OH8s6vTbe/jg8bkorSomJjfFr79d+3WRzMmtuXtMnf6dAcHlcfuHo7qiQta21vdL7N0obFVb4+vwB5590HpMnwsTcd/2ur6/HarUel32ebDjtFcBTHWdnnt3r2xQEgT9//WdA6Yhx8+ibWVWyimFxw8itzmV9wXrmDpsbchvZidm8MfsNnr3wWV7f/jp/2/K3LsMqXtnLrvJd7CpXXKaTTEnMGjqLP5zzB6ZlTMPldZFTkcP2ku2sy1/Ht6Xf/n97dx7V5J3vD/z9ZF8gwSRARARRQeoKVdtbxa3Wleq009bRttarnel0jtY6nXH02plqe446dWrV0baW8Yy3vXOcen+tta3W2zJqtR13FhdUFEVUIobNELIvz++PmEcCAUESH0w+r3M4wEMIn6/B8M53xZVbV9odMP0/g3uVjjuv0oWMEGnd0jAqZRSEJiEeG/gYNEoNRAIRaqw1uFR/CRW3KmAwG1BtrYbJbvLNeesi7B477FY7jFZjh75PWiKFWqbmehv9oVEj1wQNjv43uVgeppaEhn/DaKfHCQaM7yg9YQzUMnWnQonb64bN7ZszaXVa0ejy9TJanVZY3VZYXVbf8LXLBrvbHvDm9DjhcDt80wq8Tm5xjj9Qur1uLiB0xvzz80PxT9j1tbH+K5Q9ve0hFoqhU+igU+g6/L0sy8LqsrYIh9WN1ThUeAhJvZNgdplbDZUNDt9qVqvL9/tXaa5s8+d9+Ysvu1wAJPygAEiC+ueZfwIABicO5ualjU4ZjfO153Gw4uBdA6CfTqHDslHL8PsRv8fnZz/HuiPrcMJwIuhttXItNwQIADctN7GlaAu2FG2BVChFTkoOXhj0Ap7p/wx+M9y3SMPj9aCsrgzFVcU4WnkUh64dwtnqs9x93I1/haWH9d1PWV0ZAGDXD7u428hFcqRr05GhzcDwpOHI0GYgQ5uBZFUyHB4HKhsqcb3hOkprS1FWV4arpquoaqxCjbUGZqe59dMpmvEfP8eA4eYjhbsn0uFxwGgxwmgx4jzOt/v7pEIp4mRx0Mq10Cl00Cq0uGG+gdPG05CJZOgm6+Y7Qu/28XligRhSoRQioYgbnhcyQm6rnYBephD0ILX4dzsdvB2k4/ynzzQ987fpm0QogVjge+wlQgkkIgm3ElwilHArvWVCGeRiOcQCMXdmcNNzg5ueJdz0a2CBklMleDj7YcgksqDfIxd17RcoTTEM4zvvW6JED1UP7rrL5YLmmgZTR7XdK+bxenyLZ9o5fJ2ijrxz7sm9oQBIWqi11nIr6F55+BXuek5KDvKK8nCw4mCH71MilOD5Qc9j1sBZOHz9MNYfWY/Pz34e8Ie61lbru61Agn66fmhwNHB1ODwO7C3fi73lewEAGdoMzOg/A09lPoXs7tnop+uHXwz8BXdfVY1VKK4qRuGNQhy+fhhFN4pgMBtaBAP/tjIBtTISqOQqeFkvTHYTbG5bQM9kUxq5hguEGZoMPJ35NDK0Geir6QulRAkv60WNtQaVDZWoNFfiqukqyurKcLn+Mq41XMPNxpuos9XB5rZxx8/djVKshFwkh0AguHNMmssOp7flEtx4RbxvZaTtFtxs54eZ/BweR6uT5S0uC/dYdkXNA0dboaNT18Nxn21chxc4/O/DGDNqDBghA6fHCZvbBofbAbvbDpvLxi2usTp9vUVWtxUWpwWNrsY2h8abbiHlP3KvIz3vbVGKldwwtsPtgMFsgEQogT5Gj1hJLLdFi1ah9c2Flfu2Z0pWJSO1Wyq6ybtBJVXddcumSCUUCNFN3g3d5N34LoU8YGgOYCd0hTmA4fDHfX/Eyh9XQsAIYF1mhYAV4Ntvv8XgnMHovak3BIwA9UvqoZJ2bt5Exa0KfHD8A+QV5HFDNgJGENBjlhSbhGHdh8FoNaLwRiGcnpYhRy1VIzc9F8/0fwYTek9odVFCo7MRp26e4oLh0cqjKK0pbdcfMgYMdAod1DI1WJaFyWFqdcWzX7IqmQuGXEjUZqBXXC+IhYGv6G0uGwxmAyrNlVxY9L/3XzeYDUHbH4xEKEGcLA4p6hSka9LRPaY7dAodYiQxkIqkgBc4eeokktOTUWevQ7W1GlWNVbjReAPVlmo0Ohvx8ZMfo9ZWixprDWqttaix+d7ftNxEjaUGdfY62N1d8yw5fzgSC8SAB1ApVJCL5VBKlIgR+8KGSqri9oHTKDRcb2a8Ih6JykSoZWrESGKgECseiMUZ4ZxH1XTj9FCt+G5vz3h7CRgBtx+lQqyAUqKESqLiFlTpFDokKH1bOHWP7Q6NXMPtSKCWqqGSqrrUym4+5sXxheYA8oN6AEkL/iHapzOfhlQk5c5MTFYlo3e33rhcfxmHrh3C5L6TO/VzUuNSsWbCGrw15i18evJTbDi6ARdq7+zPJxaIYTAb8LX5awDAqJRReLTHozCYDdhTtgf19noAvvk+285sw7Yz2yBgBHi0x6N4rv9zyM3IRYY2g7u/GEkMRvQcgRE9R3DX3F43SmtKUVxVjOKqYhyrPIYT10/A6g08JogFi2prdYttSeQiOXqqeiJOFgeGYdDobERVYxVqbbW43nAd1xuuY1/5voDvEQlE6N2td9BwOCplVKthw8t6UWutDRoSm35cZ6uD0+PkhnZbG3IHgPi6ePRQ9UCP2B5IVafiseTHuM/97zVyTas12Vw2LiRyQdFaE3itaYi01rS5wvs/h/wnPKwHDfYGNDgbfPsNOi2wuq3cXDqX585pLq2FiKabhQNAY2Njqz+zPfynz/iHOP2bVsvFcijFSsRKfKuhuUB5e66kVqH1za1UxkMlVXGLPOQi+QMRKv1EAhG3mXIo+DeNbh4MC28UIv9yPmwuG6QiKept9TA5TDA7zbC6fL8DDrcj6DC/l/VyvyP3OgdQLBBDJpJBIVZwLxK6yXwLq+KV8UhQJrQIjk3fq6SqsG7lREgoUQ9gJ0RiD2CttRb6tXpfMFpQigxtRsCrs1e+fQX/Xfzf+K+c/8Kq8atC+rO9rBf/V/Z/WH9kPfIv3zkTUiVRwew0c0/4sZJYzBgwAzkpObhQcwH/e/Z/ue1wmusR2wM/f+jnmJYxDaNTR/t6v9rgcrmwe/duDBk1BCW1JSi6UYTiqmKcuHECV01X29WOz575DKNTR6PCVIELtRdavAU7kcVPKVZy8w2bh8P2DvHY3XZfr2EbIbEjvYkykQxJsUkBoTDY53f7t21aX9CgaK3F4pGLO7x9kdPjhNlhRrWlGlWWKlRbqlFjq0GdtQ41lhqcLjsNVbyK65GyuCzcYg3/4oymx/zdL0JGyM2H9J+S4j/KsGkvpX8Fpz9Q6hQ66OS6OyuBb78XeAXYs2dPxPcY+Z+PHp/4OBrdjbhhvoFrDddQaa5ElbnK10NtrUGdrY5bJOHfEsjhdoR0KkQw/hOHuD0Bbw9ftxUcm78XCUTUAxhm1ANIAbBTIjEAbincgl998ytk6bNQ9OsiAIH/Of9x5h+Y9/U8jOw5Ej/N+ylsdZwxnsFfj/4V/3Pqf7hhxhhJDMQCMdfzBwCZukzMy5qHsb3G4mjlUXx25jMcvn44aM+QTCTDE72fwM/6/QxT06cGPa2grScik92EUzdPoajKFwqLqopwxngm6BYOYoEYAxIGIFufjSx9FrL0WRiSOASx0lgYzIagwfBy/eU2A4hOoQuYb+j/uK+mb4dX5TqdTmz/ZjseevQhGG3GVsNiR+by6RQ6LB+zHAseWdChWsKpo39YWNZ3qonZYYbJYUK1pRpGi5ELq7XWWt+xZQ4T10tpcVlgcVp8gdJlh8PjW+l7vwMlAwYCCHzH8Ykk3CIL/1nZMZIYLlA2DSbxinh0k3drsQVNjCQGEqGky/VUdjYsuDwu34kitjru7WbjTRjMhjsvIG5vCXXLcYt70XA/pzvIRDKoJCqIPCIka5MRJ/dtW9XeAKmWqltMM+nKKADyg/qqSYDD1w4DAGb0nxH06/5tZ45VHoPNZQvbdiADEwYib1oeVo1fhbyCPHxw/AMYzAYAvnCVqk7FdfN1nK85jz/86w8QMkJMTZ+K34/4PXJ65mBv+V58fu5zfHvxW24zYLvbjl0XdmHXBd8K34HxA/FU5lPIzcjF8KThd53/o5apMSp1FEaljuKuOT1OnKs+xw0hF9/0vb9lv8VdayotLg3Z3bORlegLhbnpuUhWJYNhGLg8LpTfKg8aDivNlVxP2aFrhwLuM14RD+Pijm3/wjAMVCIVhiQOafMJt2lvYos5ik0+dnqcqLHWPPDDXwzD+M4rFskQr4xHX03fTt2ff4sPs9PsC5V2E2psNVzIqLXVcqs2GxwNXG+Vv5ey6RYydwuULFh44PFtR+O2tnq7jmDAcKu5pUIp5CI5FBLFnYUbtxdpNO2l1Cl0iJPFIUYSg2prNRRiBfpp+yFBmYBYaSzvvyNioRgJygQkKBM69H0erwe37LcCgmPTt2pLNW5ab6LaUs31PprsJjQ6Gzu8mt//uAOAwWDo0Pf6yUXy1kNiO4MkbS4d2agHsBMisQeQZVmcNp7mJksDga/ORCIRktclw2A2YP+c/Rjba+x9qcvpcQbdRqafth8YMDhfe2cLk3hFPGYPno252XPRT9sPBysO4qvSr/D52c9xo/FG0PuPk8XhyfQnMbnPZKAMmDF9xj2/EmVZFhWmCi4A+nsMWxtC1sq1XC9hlj4L2XrfquamfygbnY0oqytrEQxLa0vRP74//j2v9ZNXggnlK27/xuGVDZXQx+jv6SSGcIm0YTQv6+UWY/hPRrllu4UaWw2qzFU4evIodD11aHA2wGQ3weQ03ZlH2WzY2+lxhnwhRnv4tzuSCWWQiX3D3kqJkuuhVEvV6CbvBo3MN49Sp9RBLVX7Tp2RxEIqkOLEv09g+qTp0MRoeA+Ud+NlvTA7zFxQrLXVthoi/S/y6mx1MNlNYR+uvhuZSNapAKmWqts1NYR6APlBAbATIjEABtP8P+esL2bhszOf4e2xb+OtMW/d11pYluW2kfni3BfcHzD/atfTxtMwWu70hg1PGo552fMwc+BMqKVqnDaexlfnv8KOcztQfLM46M9gwGBk8khMy5yG3PRc9I/vH5JhsDpbHU5WneQCYXFVMc5Wnw3aqyMVSjEocRCyErN8PYb6LAxOHIwYSUyLfw+b2waFWNGhWiItGLUmWtoJ3Ftb3V53wDF7AaHydg+lvzfL30vZ9Ji9pgszXF4XL4GSAcMt3Gg6986/T2WcLI4Lj/45k/5FO8GudZVA6XQ6sWPXDgwfPRxmt7lFWKy13g6S9mYh0lITdEuo9mDg25PQf7RdKEiF0rv2RMaIY1BRWoGc4TnQKrXcqmz/HqPhQAGQAmCnRGsA3HxiM36z+zcYnzb+vh631Jx/G5m/Ff6NOz0hVhKLx9Meh81lw74r+7j5eTKRDM889AzmZs3FuLRxEDACXG+4jl0XdmHn+Z3YV76v1e1gUlQpeDLjSUxNn4rH0x4P6bC33W1HibGkxRBysCdgBgz6avoGDCFn6bPQPbZ7h39utASjaGkn0DXa6l+Q49/qpWmwrLfX+3q3rL7Q4p9L6b+9fx6lf+/C+7ERejBSobRFSGx69F5b4TGUgbIzj6fNZWu1l5F7szcJkbff9DF6lC0s4zaXNjlMvp7ktt638rX2bsbflicznsQ3s77p9P0EQwGQAmCnRGsAPFt9FgM+HAC5SI5bS2/xPk/E4rTg05OfYv3R9dw2MgJGgMl9JyMtLg37r+zH2eqz3O1T1amYmzUXc7LmoFdcLwCA2WHGd5e+w85zO7Hz3E5YPL6tShgwAX+EZCIZHk97HLnpuchNzw3LkUpe1ovL9ZdbDCH750A2l6hMbDGE3FfTt805jV0hLNwP0dJOIPLa2nRBTtMwWW+tx8EjB6FKVeHYjWOwu+3QKrQwWoyotdb65t7dDpZd4UxvmUh2Jzx2IFDKhXKcPnEaE8ZOgEapuS89lC6PK2SLRzxeD8xO37zXu4XJels9ym2cAuAAABLRSURBVK6VQaqS+qYv3P7a9H7T8enTn4aknuYoAFIA7JRoDYAsyyLhvQTUWGtw+OXD+I/k/+C7RAC+4PRd2XdYf3Q9vr/0PXc9W5+N2YNno7S2FP8880/u7EwAGJ82HvOy5+HpzKchF8vhcrnwze5voB6oxu5Lu5GgTMDAhIHYfWE3dl/cjWsN1wJ+5oD4Ab4wmJGLET1HhPXJ2WgxthhCLq0tDTrsphArMDhxMLY/uz3o0U+RFhZaEy3tBKKnre1tp5f1+s7Uvb3gptpaHfBxsGv+BWMdJRKIIGAE3DGOHtYTtuHwYD2UAb2OzQNmsNDZxYa8W3tMWZYN2yp0CoC0CpjcA4ZhsH7SesQr4zE4cTDf5XAEjABT0qdgSvoUlBhL8Nejf8Wnpz5FUVURFj66EJuf3Iz3J72PL899ib8X/x37yvdxx8uppWrMGjgLLw16CQIIMDp1NMb3Hc/d95MZT4JlWZwxnsHui74weOjaIZRUl6CkugRrDq1BnCwOk/pMQm56LqakT7mng+HbkqBMwIQ+EzChzwTumtVlxRnjGW6/wuKbxTh18xSsLiuOVx5HvCI+pDUQ8qAQMAJuQ+5+6Neu77G6rL4w2DwoWqoDQqP/Wp2tDizYoFtBtUUilPiOdBTLIRVKIRFKIBQIuREHt9cNl9sFk9UEVsii0dnITVFxeBxwWB13PYmovTobKNVSNR6KfygktTTX1bYgijQUAMk9eWHwC3yX0KYBCQPw8bSPsXL8Smwt2oqZA2cC8PWMvTD4Bbww+AWU15fjk5OfYGvxVlw1XcXmgs3YXLAZKbIUXNRdxJzsOQFbRTAMg0GJgzAocRCW5ixFna0O35V9h90Xd2NP2R7U2eqwvWQ7tpdsBwMGjyY/yg0VZ+mzwvJkphAr8EiPR/BIj0e4ax6vBxfrLqKsrixs2/QQEokUYgVS1ClBe82D8Xg9vi1gggXF2xuSN7/m3yfS6XEG7GnaKpcvzPr3a4yT+fYEVIqVUIgVvn0fhRKIBCIuQHq8Htg99hbD500X/Pg3gu9soIyTxaF+STvaQbocCoAkoukUOiweuTjo19K6pWHF2BV4a8xb2F++H38v/ju+OPsFrtqv4g97/4Bl+5fh+UHP45OnPgn6/Rq5BrMGzcKsQbPg8XpwtPIoN1R88uZJHLl+BEeuH8Gf9v8JSbFJmNp3KnIzcvFE7ydarOYNJaFAiExdJjJ1mWH7GYQQ3/+1eKXvqL/2YFlfb16rvYtNQ6OlGjcabsDiscDLeoMeRdmWGEkM4hXxvvOtlfHI0GZwZ13rFDrEyeOgFCkhE8kgEUkAFi3Ob24aIP1fax4o1dLQHA9I7j8KgCTqCRgBxvcej/G9x2PdE+vw1v97CwWeApy4cQJiQfvmUgkFQu6c4ZXjV+J6w3V8e/Fb7L64G/+6/C8YzAZsKdqCLUVbIBFKMCZ1DDd3sLObDRNCHgwMw/iGUKWxSOuW1uZt/fPiJkyagAZ3Q8ug6J/DGOSaf3ufRmcjym+Vt6s2kUAUEBDjlfHQyX3vM3WZd641uc2DdNoIaYkCICFNdJN3wxTdFGycuhGl9aUdPpfWL1mVjFeGvoJXhr4Cu9uOA1cOcHMHL9dfRv7lfORfzsei7xYhQ5vBDRWPSh3F+6pqQkjXIRaKoZfpuY3574ZlWZgcppZBsY0FMGanGW6vG1WNVahqrGp3bWqpOiAUBoRH/7UmH8dIYmheXxdCAZCQVgxMGBiS+5GJZJjUdxIm9Z2EDZM3oLS2lBsq/vHqj9ypHuuOrEOsJBYT+kxAbnoupqZPbfeTPiGEAL5eRv9G2O0dXbC77ai11gYPis0WwFRbqlFrq4WX9XL7AJbVlbXr50iFUi4gbpi8gTtalPCDAiAh9xHDMNz8vN+N+B1MdhPyL+dj98Xd+PbitzBajNhxbgd2nNsBABjafSg3VDwsaRgEjIDnFhBCIo1MJEMPVQ/0UPVo1+29rBf1tvp2b69TY62B1WWFw+PgzhHn49QYEogCICE8UsvUeLb/s3i2/7Pwsl4UGAq4oeIThhMouFGAghsFeOfgO0hQJmBK3ynITc/FxD4ToZbR5GtCyP0nYATQKrTQKrQd2mKnaSgckjgkzFWSu6EASEgXIWAEGN5jOIb3GI4VY1egqrEKey7uwe6Lu/H9pe9htBjxyclP8MnJTyASiJCTksPNHczUZdLcGkJIl6UQK5AalxqW05PIvaEASEgXpY/RY272XMzNngunx4mfrv7EzR0srS3FD1d+wA9XfsDi/MVIi0vD1PSpyE3Pxbi0cfe8eIUQQkh0oAlFhDwAJEIJHk97HGsnrcX5BedR9loZNkzegIl9JkIilKD8Vjk+OP4Bpm6bCs27Gpy6eYrvkgkhhHRh1ANIyAOoj6YPFj66EAsfXQiL04K95Xu53kGz04yHdOE5mokQQkhkoABIyANOKVFier/pmN5vOliWxbWGa7RBKyGEkDbREDAhEYRhmHafY0oIISR6UQAkhBBCCIkyFAAJIYQQQqIMBUBCCCGEkChDAZAQQgghJMpQACSEEEIIiTJRGQCvXLmCl19+GWlpaZDL5ejTpw+WL18Op9PJd2mEEEIIIWEXlfsAnj9/Hl6vFx9//DH69u2LM2fO4Fe/+hUsFgvee+89vssjhBBCCAmrqAyAkydPxuTJk7nPe/fujdLSUnz00UcUAAkhhBAS8aIyAAZjMpmg0WjavI3D4YDD4Qj4HgCoq6sLa218c7lcsFqtqK2thVgc2SdMREtbqZ2RJ1raSu2MPHy01Ww2AwBYlr0vP68rogAI4NKlS9i4cSPWrl3b5u1Wr16Nt99+u8X1jIyMcJVGCCGEkDAxm81Qq9V8l8ELho2g+LtixYqgAa2p48ePY9iwYdznBoMBY8aMwZgxY7Bly5Y2v7d5D+CtW7eQmpqKq1evRvQvUENDA3r27Ilr165BpVLxXU5YRUtbqZ2RJ1raSu2MPHy0lWVZmM1mJCUlQSCIyvWwkdUDuGDBAsycObPN2/Tq1Yv72GAwYNy4cXjssceQl5d31/uXSqWQSqUtrqvV6oj/DwoAKpUqKtoJRE9bqZ2RJ1raSu2MPPe7rZHccdMeERUAdToddDpdu25bWVmJcePGYejQodi6dWvUvgIghBBCSPSJqADYXgaDAWPHjkVKSgree+89VFdXc1/T6/U8VkYIIYQQEn5RGQC///57lJWVoaysDMnJyQFf68iUSKlUiuXLlwcdFo4k0dJOIHraSu2MPNHSVmpn5ImmtnYlEbUIhBBCCCGE3B1NfCOEEEIIiTIUAAkhhBBCogwFQEIIIYSQKEMBkBBCCCEkylAADIErV67g5ZdfRlpaGuRyOfr06YPly5fD6XTyXVpIfPjhh0hLS4NMJsPQoUPx448/8l1SSK1evRrDhw9HbGwsEhIS8NRTT6G0tJTvssJu9erVYBgGixYt4ruUsKisrMSLL74IrVYLhUKBrKwsFBQU8F1WSLndbvzxj3/knnt69+6Nd955B16vl+/SOu3gwYOYNm0akpKSwDAMdu7cGfB1lmWxYsUKJCUlQS6XY+zYsSgpKeGp2nvXVjtdLheWLFmCQYMGQalUIikpCS+99BIMBgOPFd+7uz2mTf36178GwzBYv379fawwulAADIHz58/D6/Xi448/RklJCdatW4fNmzdj2bJlfJfWadu3b8eiRYvw5ptvoqioCKNGjcKUKVNw9epVvksLmQMHDmD+/Pk4cuQI8vPz4Xa7MXHiRFgsFr5LC5vjx48jLy8PgwcP5ruUsKivr8fIkSMhFouxZ88enD17FmvXrkVcXBzfpYXUu+++i82bN2PTpk04d+4c1qxZg7/85S/YuHEj36V1msViwZAhQ7Bp06agX1+zZg3ef/99bNq0CcePH4der8eECRNgNpvvc6Wd01Y7rVYrCgsL8ac//QmFhYXYsWMHLly4gOnTp/NQaefd7TH127lzJ44ePYqkpKT7VFmUYklYrFmzhk1LS+O7jE575JFH2FdffTXgWmZmJrt06VKeKgo/o9HIAmAPHDjAdylhYTab2fT0dDY/P58dM2YM+/rrr/NdUsgtWbKEzcnJ4buMsMvNzWXnzZsXcO3nP/85++KLL/JUUXgAYL/88kvuc6/Xy+r1evbPf/4zd81ut7NqtZrdvHkzHyWGRPN2BnPs2DEWAFtRUXGfqgqP1tp6/fp1tkePHuyZM2fY1NRUdt26dTxUFx2oBzBMTCYTNBoN32V0itPpREFBASZOnBhwfeLEiTh06BBPVYWfyWQCgAf+8WvN/PnzkZubiyeeeILvUsLm66+/xrBhw/Dcc88hISEB2dnZ+Nvf/sZ3WSGXk5ODvXv34sKFCwCAkydP4qeffsLUqVN5riy8ysvLUVVVFfDcJJVKMWbMmIh+bgJ8z08Mw0RcbzYAeL1ezJ49G4sXL8aAAQP4LifiReVJIOF26dIlbNy4EWvXruW7lE6pqamBx+NBYmJiwPXExERUVVXxVFV4sSyLN954Azk5ORg4cCDf5YTcZ599hsLCQhw/fpzvUsLq8uXL+Oijj/DGG29g2bJlOHbsGBYuXAipVIqXXnqJ7/JCZsmSJTCZTMjMzIRQKITH48HKlSsxa9YsvksLK//zT7DnpoqKCj5Kui/sdjuWLl2K559/HiqViu9yQu7dd9+FSCTCwoUL+S4lKlAAbMOKFSvw9ttvt3mb48ePY9iwYdznBoMBkydPxnPPPYdf/vKX4S7xvmAYJuBzlmVbXIsUCxYswKlTp/DTTz/xXUrIXbt2Da+//jq+//57yGQyvssJK6/Xi2HDhmHVqlUAgOzsbJSUlOCjjz6KqAC4fft2/OMf/8C2bdswYMAAFBcXY9GiRUhKSsKcOXP4Li/soum5yeVyYebMmfB6vfjwww/5LifkCgoKsGHDBhQWFkbsY9jVUABsw4IFCzBz5sw2b9OrVy/uY4PBgHHjxuGxxx5DXl5emKsLP51OB6FQ2KK3z2g0tnjlHQlee+01fP311zh48GCLM6IjQUFBAYxGI4YOHcpd83g8OHjwIDZt2gSHwwGhUMhjhaHTvXt39O/fP+DaQw89hC+++IKnisJj8eLFWLp0Kfc8NWjQIFRUVGD16tURHQD1ej0AX09g9+7dueuR+tzkcrkwY8YMlJeXY9++fRHZ+/fjjz/CaDQiJSWFu+bxePC73/0O69evx5UrV/grLkJRAGyDTqeDTqdr120rKysxbtw4DB06FFu3boVA8OBPr5RIJBg6dCjy8/Px9NNPc9fz8/Pxs5/9jMfKQotlWbz22mv48ssv8cMPPyAtLY3vksJi/PjxOH36dMC1uXPnIjMzE0uWLImY8AcAI0eObLGVz4ULF5CamspTReFhtVpbPNcIhcKI2AamLWlpadDr9cjPz0d2djYA35zlAwcO4N133+W5utDyh7+LFy9i//790Gq1fJcUFrNnz24xL3nSpEmYPXs25s6dy1NVkY0CYAgYDAaMHTsWKSkpeO+991BdXc19zf9K9UH1xhtvYPbs2Rg2bBjXs3n16lW8+uqrfJcWMvPnz8e2bdvw1VdfITY2luvxVKvVkMvlPFcXOrGxsS3mNSqVSmi12oib7/jb3/4WI0aMwKpVqzBjxgwcO3YMeXl5EdEz39S0adOwcuVKpKSkYMCAASgqKsL777+PefPm8V1apzU2NqKsrIz7vLy8HMXFxdBoNEhJScGiRYuwatUqpKenIz09HatWrYJCocDzzz/PY9Ud11Y7k5KS8Oyzz6KwsBC7du2Cx+Phnp80Gg0kEglfZd+Tuz2mzcOtWCyGXq9Hv3797nep0YHfRciRYevWrSyAoG+R4IMPPmBTU1NZiUTCPvzwwxG3PUprj93WrVv5Li3sInUbGJZl2W+++YYdOHAgK5VK2czMTDYvL4/vkkKuoaGBff3119mUlBRWJpOxvXv3Zt98803W4XDwXVqn7d+/P+j/yzlz5rAs69sKZvny5axer2elUik7evRo9vTp0/wWfQ/aamd5eXmrz0/79+/nu/QOu9tj2hxtAxNeDMuybNhTJiGEEEII6TIe/IlqhBBCCCGkQygAEkIIIYREGQqAhBBCCCFRhgIgIYQQQkiUoQBICCGEEBJlKAASQgghhEQZCoCEEEIIIVGGAiAhhBBCSJShAEgIIYQQEmUoABJCCCGERBkKgIQQQgghUYYCICGEEEJIlKEASAghhBASZSgAEkIIIYREGQqAhBBCCCFRhgIgIYQQQkiUoQBICCGEEBJlKAASQgghhEQZCoCEEEIIIVGGAiAhhBBCSJShAEgIIYQQEmUoABJCCCGERBkKgIQQQgghUYYCICGEEEJIlKEASAghhBASZSgAEkIIIYREGQqAhBBCCCFRhgIgIYQQQkiUoQBICCGEEBJlKAASQgghhEQZCoCEEEIIIVHm/wNgwQxX62yotwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 1, - "metadata": { - "image/png": { - "width": 600 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "Image(filename=\"Figure_1.png\",width=600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![gif](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/RRTstar/animation.gif)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Ref\n", - "\n", - "- [Sampling-based Algorithms for Optimal Motion Planning](https://arxiv.org/pdf/1105.1186.pdf)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/PathPlanning/RRTStar/rrt_star.py b/PathPlanning/RRTStar/rrt_star.py index 7b46029791..dcb1a066eb 100644 --- a/PathPlanning/RRTStar/rrt_star.py +++ b/PathPlanning/RRTStar/rrt_star.py @@ -7,18 +7,12 @@ """ import math -import os import sys - import matplotlib.pyplot as plt +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../RRT/") - -try: - from rrt import RRT -except ImportError: - raise +from RRT.rrt import RRT show_animation = True @@ -33,15 +27,18 @@ def __init__(self, x, y): super().__init__(x, y) self.cost = 0.0 - def __init__(self, start, goal, obstacle_list, rand_area, + def __init__(self, + start, + goal, + obstacle_list, + rand_area, expand_dis=30.0, path_resolution=1.0, goal_sample_rate=20, max_iter=300, - connect_circle_dist=50.0 - ): - super().__init__(start, goal, obstacle_list, - rand_area, expand_dis, path_resolution, goal_sample_rate, max_iter) + connect_circle_dist=50.0, + search_until_max_iter=False, + robot_radius=0.0): """ Setting Parameter @@ -51,15 +48,19 @@ def __init__(self, start, goal, obstacle_list, rand_area, randArea:Random Sampling Area [min,max] """ + super().__init__(start, goal, obstacle_list, rand_area, expand_dis, + path_resolution, goal_sample_rate, max_iter, + robot_radius=robot_radius) self.connect_circle_dist = connect_circle_dist self.goal_node = self.Node(goal[0], goal[1]) + self.search_until_max_iter = search_until_max_iter + self.node_list = [] - def planning(self, animation=True, search_until_max_iter=True): + def planning(self, animation=True): """ rrt star path planning - animation: flag for animation on or off - search_until_max_iter: search until max iteration for path improving or not + animation: flag for animation on or off . """ self.node_list = [self.start] @@ -67,32 +68,57 @@ def planning(self, animation=True, search_until_max_iter=True): print("Iter:", i, ", number of nodes:", len(self.node_list)) rnd = self.get_random_node() nearest_ind = self.get_nearest_node_index(self.node_list, rnd) - new_node = self.steer(self.node_list[nearest_ind], rnd, self.expand_dis) - - if self.check_collision(new_node, self.obstacle_list): + new_node = self.steer(self.node_list[nearest_ind], rnd, + self.expand_dis) + near_node = self.node_list[nearest_ind] + new_node.cost = near_node.cost + \ + math.hypot(new_node.x-near_node.x, + new_node.y-near_node.y) + + if self.check_collision( + new_node, self.obstacle_list, self.robot_radius): near_inds = self.find_near_nodes(new_node) - new_node = self.choose_parent(new_node, near_inds) - if new_node: + node_with_updated_parent = self.choose_parent( + new_node, near_inds) + if node_with_updated_parent: + self.rewire(node_with_updated_parent, near_inds) + self.node_list.append(node_with_updated_parent) + else: self.node_list.append(new_node) - self.rewire(new_node, near_inds) - if animation and i % 5 == 0: + if animation: self.draw_graph(rnd) - if (not search_until_max_iter) and new_node: # check reaching the goal + if ((not self.search_until_max_iter) + and new_node): # if reaches goal last_index = self.search_best_goal_node() - if last_index: + if last_index is not None: return self.generate_final_course(last_index) print("reached max iteration") last_index = self.search_best_goal_node() - if last_index: + if last_index is not None: return self.generate_final_course(last_index) return None def choose_parent(self, new_node, near_inds): + """ + Computes the cheapest point to new_node contained in the list + near_inds and set such a node as the parent of new_node. + Arguments: + -------- + new_node, Node + randomly generated node with a path from its neared point + There are not coalitions between this node and th tree. + near_inds: list + Indices of indices of the nodes what are near to new_node + + Returns. + ------ + Node, a copy of new_node + """ if not near_inds: return None @@ -101,7 +127,8 @@ def choose_parent(self, new_node, near_inds): for i in near_inds: near_node = self.node_list[i] t_node = self.steer(near_node, new_node) - if t_node and self.check_collision(t_node, self.obstacle_list): + if t_node and self.check_collision( + t_node, self.obstacle_list, self.robot_radius): costs.append(self.calc_new_cost(near_node, new_node)) else: costs.append(float("inf")) # the cost of collision node @@ -113,43 +140,83 @@ def choose_parent(self, new_node, near_inds): min_ind = near_inds[costs.index(min_cost)] new_node = self.steer(self.node_list[min_ind], new_node) - new_node.parent = self.node_list[min_ind] new_node.cost = min_cost return new_node def search_best_goal_node(self): - dist_to_goal_list = [self.calc_dist_to_goal(n.x, n.y) for n in self.node_list] - goal_inds = [dist_to_goal_list.index(i) for i in dist_to_goal_list if i <= self.expand_dis] + dist_to_goal_list = [ + self.calc_dist_to_goal(n.x, n.y) for n in self.node_list + ] + goal_inds = [ + dist_to_goal_list.index(i) for i in dist_to_goal_list + if i <= self.expand_dis + ] safe_goal_inds = [] for goal_ind in goal_inds: t_node = self.steer(self.node_list[goal_ind], self.goal_node) - if self.check_collision(t_node, self.obstacle_list): + if self.check_collision( + t_node, self.obstacle_list, self.robot_radius): safe_goal_inds.append(goal_ind) if not safe_goal_inds: return None - min_cost = min([self.node_list[i].cost for i in safe_goal_inds]) - for i in safe_goal_inds: - if self.node_list[i].cost == min_cost: + safe_goal_costs = [self.node_list[i].cost + + self.calc_dist_to_goal(self.node_list[i].x, self.node_list[i].y) + for i in safe_goal_inds] + + min_cost = min(safe_goal_costs) + for i, cost in zip(safe_goal_inds, safe_goal_costs): + if cost == min_cost: return i return None def find_near_nodes(self, new_node): + """ + 1) defines a ball centered on new_node + 2) Returns all nodes of the three that are inside this ball + Arguments: + --------- + new_node: Node + new randomly generated node, without collisions between + its nearest node + Returns: + ------- + list + List with the indices of the nodes inside the ball of + radius r + """ nnode = len(self.node_list) + 1 - r = self.connect_circle_dist * math.sqrt((math.log(nnode) / nnode)) - # if expand_dist exists, search vertices in a range no more than expand_dist - if hasattr(self, 'expand_dis'): + r = self.connect_circle_dist * math.sqrt(math.log(nnode) / nnode) + # if expand_dist exists, search vertices in a range no more than + # expand_dist + if hasattr(self, 'expand_dis'): r = min(r, self.expand_dis) - dist_list = [(node.x - new_node.x) ** 2 + - (node.y - new_node.y) ** 2 for node in self.node_list] - near_inds = [dist_list.index(i) for i in dist_list if i <= r ** 2] + dist_list = [(node.x - new_node.x)**2 + (node.y - new_node.y)**2 + for node in self.node_list] + near_inds = [dist_list.index(i) for i in dist_list if i <= r**2] return near_inds def rewire(self, new_node, near_inds): + """ + For each node in near_inds, this will check if it is cheaper to + arrive to them from new_node. + In such a case, this will re-assign the parent of the nodes in + near_inds to new_node. + Parameters: + ---------- + new_node, Node + Node randomly added which can be joined to the tree + + near_inds, list of uints + A list of indices of the self.new_node which contains + nodes within a circle of a given radius. + Remark: parent is designated in choose_parent. + + """ for i in near_inds: near_node = self.node_list[i] edge_node = self.steer(new_node, near_node) @@ -157,12 +224,16 @@ def rewire(self, new_node, near_inds): continue edge_node.cost = self.calc_new_cost(new_node, near_node) - no_collision = self.check_collision(edge_node, self.obstacle_list) + no_collision = self.check_collision( + edge_node, self.obstacle_list, self.robot_radius) improved_cost = near_node.cost > edge_node.cost if no_collision and improved_cost: + for node in self.node_list: + if node.parent == self.node_list[i]: + node.parent = edge_node self.node_list[i] = edge_node - self.propagate_cost_to_leaves(new_node) + self.propagate_cost_to_leaves(self.node_list[i]) def calc_new_cost(self, from_node, to_node): d, _ = self.calc_distance_and_angle(from_node, to_node) @@ -192,10 +263,13 @@ def main(): ] # [x,y,size(radius)] # Set Initial parameters - rrt_star = RRTStar(start=[0, 0], - goal=[6, 10], - rand_area=[-2, 15], - obstacle_list=obstacle_list) + rrt_star = RRTStar( + start=[0, 0], + goal=[6, 10], + rand_area=[-2, 15], + obstacle_list=obstacle_list, + expand_dis=1, + robot_radius=0.8) path = rrt_star.planning(animation=show_animation) if path is None: @@ -206,9 +280,8 @@ def main(): # Draw final path if show_animation: rrt_star.draw_graph() - plt.plot([x for (x, y) in path], [y for (x, y) in path], '-r') + plt.plot([x for (x, y) in path], [y for (x, y) in path], 'r--') plt.grid(True) - plt.pause(0.01) # Need for Mac plt.show() diff --git a/PathPlanning/RRTStarDubins/rrt_star_dubins.py b/PathPlanning/RRTStarDubins/rrt_star_dubins.py index 9cfd4e692a..7c52879b7c 100644 --- a/PathPlanning/RRTStarDubins/rrt_star_dubins.py +++ b/PathPlanning/RRTStarDubins/rrt_star_dubins.py @@ -4,26 +4,19 @@ author: AtsushiSakai(@Atsushi_twi) """ - import copy import math -import os import random -import sys - import matplotlib.pyplot as plt import numpy as np +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) # root dir +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../DubinsPath/") -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../RRTStar/") - -try: - import dubins_path_planning - from rrt_star import RRTStar -except ImportError: - raise +from DubinsPath import dubins_path_planner +from RRTStar.rrt_star import RRTStar +from utils.plot import plot_arrow show_animation = True @@ -46,7 +39,8 @@ def __init__(self, x, y, yaw): def __init__(self, start, goal, obstacle_list, rand_area, goal_sample_rate=10, max_iter=200, - connect_circle_dist=50.0 + connect_circle_dist=50.0, + robot_radius=0.0, ): """ Setting Parameter @@ -55,6 +49,7 @@ def __init__(self, start, goal, obstacle_list, rand_area, goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] + robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1], start[2]) @@ -69,6 +64,7 @@ def __init__(self, start, goal, obstacle_list, rand_area, self.curvature = 1.0 # for dubins path self.goal_yaw_th = np.deg2rad(1.0) self.goal_xy_th = 0.5 + self.robot_radius = robot_radius def planning(self, animation=True, search_until_max_iter=True): """ @@ -84,7 +80,8 @@ def planning(self, animation=True, search_until_max_iter=True): nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) - if self.check_collision(new_node, self.obstacle_list): + if self.check_collision( + new_node, self.obstacle_list, self.robot_radius): near_indexes = self.find_near_nodes(new_node) new_node = self.choose_parent(new_node, near_indexes) if new_node: @@ -132,16 +129,15 @@ def draw_graph(self, rnd=None): plt.pause(0.01) def plot_start_goal_arrow(self): - dubins_path_planning.plot_arrow( - self.start.x, self.start.y, self.start.yaw) - dubins_path_planning.plot_arrow( - self.end.x, self.end.y, self.end.yaw) + plot_arrow(self.start.x, self.start.y, self.start.yaw) + plot_arrow(self.end.x, self.end.y, self.end.yaw) def steer(self, from_node, to_node): - px, py, pyaw, mode, course_length = dubins_path_planning.dubins_path_planning( - from_node.x, from_node.y, from_node.yaw, - to_node.x, to_node.y, to_node.yaw, self.curvature) + px, py, pyaw, mode, course_lengths = \ + dubins_path_planner.plan_dubins_path( + from_node.x, from_node.y, from_node.yaw, + to_node.x, to_node.y, to_node.yaw, self.curvature) if len(px) <= 1: # cannot find a dubins path return None @@ -154,18 +150,20 @@ def steer(self, from_node, to_node): new_node.path_x = px new_node.path_y = py new_node.path_yaw = pyaw - new_node.cost += course_length + new_node.cost += sum([abs(c) for c in course_lengths]) new_node.parent = from_node return new_node def calc_new_cost(self, from_node, to_node): - _, _, _, _, course_length = dubins_path_planning.dubins_path_planning( + _, _, _, _, course_lengths = dubins_path_planner.plan_dubins_path( from_node.x, from_node.y, from_node.yaw, to_node.x, to_node.y, to_node.yaw, self.curvature) - return from_node.cost + course_length + cost = sum([abs(c) for c in course_lengths]) + + return from_node.cost + cost def get_random_node(self): diff --git a/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py b/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py index 6ea66dc729..c4c3e7c8a8 100644 --- a/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py +++ b/PathPlanning/RRTStarReedsShepp/rrt_star_reeds_shepp.py @@ -7,23 +7,15 @@ """ import copy import math -import os import random import sys - +import pathlib import matplotlib.pyplot as plt import numpy as np +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../ReedsSheppPath/") -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../RRTStar/") - -try: - import reeds_shepp_path_planning - from rrt_star import RRTStar -except ImportError: - raise +from ReedsSheppPath import reeds_shepp_path_planning +from RRTStar.rrt_star import RRTStar show_animation = True @@ -44,8 +36,9 @@ def __init__(self, x, y, yaw): self.path_yaw = [] def __init__(self, start, goal, obstacle_list, rand_area, - max_iter=200, - connect_circle_dist=50.0 + max_iter=200, step_size=0.2, + connect_circle_dist=50.0, + robot_radius=0.0 ): """ Setting Parameter @@ -54,6 +47,7 @@ def __init__(self, start, goal, obstacle_list, rand_area, goal:Goal Position [x,y] obstacleList:obstacle Positions [[x,y,size],...] randArea:Random Sampling Area [min,max] + robot_radius: robot body modeled as circle with given radius """ self.start = self.Node(start[0], start[1], start[2]) @@ -61,13 +55,18 @@ def __init__(self, start, goal, obstacle_list, rand_area, self.min_rand = rand_area[0] self.max_rand = rand_area[1] self.max_iter = max_iter + self.step_size = step_size self.obstacle_list = obstacle_list self.connect_circle_dist = connect_circle_dist + self.robot_radius = robot_radius self.curvature = 1.0 self.goal_yaw_th = np.deg2rad(1.0) self.goal_xy_th = 0.5 + def set_random_seed(self, seed): + random.seed(seed) + def planning(self, animation=True, search_until_max_iter=True): """ planning @@ -82,7 +81,8 @@ def planning(self, animation=True, search_until_max_iter=True): nearest_ind = self.get_nearest_node_index(self.node_list, rnd) new_node = self.steer(self.node_list[nearest_ind], rnd) - if self.check_collision(new_node, self.obstacle_list): + if self.check_collision( + new_node, self.obstacle_list, self.robot_radius): near_indexes = self.find_near_nodes(new_node) new_node = self.choose_parent(new_node, near_indexes) if new_node: @@ -117,7 +117,8 @@ def try_goal_path(self, node): if new_node is None: return - if self.check_collision(new_node, self.obstacle_list): + if self.check_collision( + new_node, self.obstacle_list, self.robot_radius): self.node_list.append(new_node) def draw_graph(self, rnd=None): @@ -150,8 +151,8 @@ def plot_start_goal_arrow(self): def steer(self, from_node, to_node): px, py, pyaw, mode, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning( - from_node.x, from_node.y, from_node.yaw, - to_node.x, to_node.y, to_node.yaw, self.curvature) + from_node.x, from_node.y, from_node.yaw, to_node.x, + to_node.y, to_node.yaw, self.curvature, self.step_size) if not px: return None @@ -172,8 +173,8 @@ def steer(self, from_node, to_node): def calc_new_cost(self, from_node, to_node): _, _, _, _, course_lengths = reeds_shepp_path_planning.reeds_shepp_path_planning( - from_node.x, from_node.y, from_node.yaw, - to_node.x, to_node.y, to_node.yaw, self.curvature) + from_node.x, from_node.y, from_node.yaw, to_node.x, + to_node.y, to_node.yaw, self.curvature, self.step_size) if not course_lengths: return float("inf") diff --git a/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py b/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py index 3bed9e2997..618d1d99ba 100644 --- a/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py +++ b/PathPlanning/ReedsSheppPath/reeds_shepp_path_planning.py @@ -3,44 +3,55 @@ Reeds Shepp path planner sample code author Atsushi Sakai(@Atsushi_twi) +co-author Videh Patel(@videh25) : Added the missing RS paths """ +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) + import math import matplotlib.pyplot as plt import numpy as np +from utils.angle import angle_mod show_animation = True class Path: + """ + Path data container + """ def __init__(self): + # course segment length (negative value is backward segment) self.lengths = [] + # course segment type char ("S": straight, "L": left, "R": right) self.ctypes = [] - self.L = 0.0 - self.x = [] - self.y = [] - self.yaw = [] - self.directions = [] + self.L = 0.0 # Total lengths of the path + self.x = [] # x positions + self.y = [] # y positions + self.yaw = [] # orientations [rad] + self.directions = [] # directions (1:forward, -1:backward) def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): - """ - Plot arrow - """ - - if not isinstance(x, float): + if isinstance(x, list): for (ix, iy, iyaw) in zip(x, y, yaw): plot_arrow(ix, iy, iyaw) else: - plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), - fc=fc, ec=ec, head_width=width, head_length=width) + plt.arrow(x, y, length * math.cos(yaw), length * math.sin(yaw), fc=fc, + ec=ec, head_width=width, head_length=width) plt.plot(x, y) +def pi_2_pi(x): + return angle_mod(x) + def mod2pi(x): - v = np.mod(x, 2.0 * math.pi) + # Be consistent with fmod in cplusplus here. + v = np.mod(x, np.copysign(2.0 * math.pi, x)) if v < -math.pi: v += 2.0 * math.pi else: @@ -48,180 +59,232 @@ def mod2pi(x): v -= 2.0 * math.pi return v - -def straight_left_straight(x, y, phi): - phi = mod2pi(phi) - if y > 0.0 and 0.0 < phi < math.pi * 0.99: - xd = - y / math.tan(phi) + x - t = xd - math.tan(phi / 2.0) - u = phi - v = math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0) - return True, t, u, v - elif y < 0.0 < phi < math.pi * 0.99: - xd = - y / math.tan(phi) + x - t = xd - math.tan(phi / 2.0) - u = phi - v = -math.sqrt((x - xd) ** 2 + y ** 2) - math.tan(phi / 2.0) - return True, t, u, v - - return False, 0.0, 0.0, 0.0 - - -def set_path(paths, lengths, ctypes): +def set_path(paths, lengths, ctypes, step_size): path = Path() path.ctypes = ctypes path.lengths = lengths + path.L = sum(np.abs(lengths)) # check same path exist - for tpath in paths: - typeissame = (tpath.ctypes == path.ctypes) - if typeissame: - if sum(tpath.lengths) - sum(path.lengths) <= 0.01: - return paths # not insert path - - path.L = sum([abs(i) for i in lengths]) - - # Base.Test.@test path.L >= 0.01 - if path.L >= 0.01: - paths.append(path) - - return paths + for i_path in paths: + type_is_same = (i_path.ctypes == path.ctypes) + length_is_close = (sum(np.abs(i_path.lengths)) - path.L) <= step_size + if type_is_same and length_is_close: + return paths # same path found, so do not insert path + # check path is long enough + if path.L <= step_size: + return paths # too short, so do not insert path -def straight_curve_straight(x, y, phi, paths): - flag, t, u, v = straight_left_straight(x, y, phi) - if flag: - paths = set_path(paths, [t, u, v], ["S", "L", "S"]) - - flag, t, u, v = straight_left_straight(x, -y, -phi) - if flag: - paths = set_path(paths, [t, u, v], ["S", "R", "S"]) - + paths.append(path) return paths def polar(x, y): - r = math.sqrt(x ** 2 + y ** 2) + r = math.hypot(x, y) theta = math.atan2(y, x) return r, theta def left_straight_left(x, y, phi): u, t = polar(x - math.sin(phi), y - 1.0 + math.cos(phi)) - if t >= 0.0: + if 0.0 <= t <= math.pi: v = mod2pi(phi - t) - if v >= 0.0: - return True, t, u, v + if 0.0 <= v <= math.pi: + return True, [t, u, v], ['L', 'S', 'L'] - return False, 0.0, 0.0, 0.0 + return False, [], [] -def left_right_left(x, y, phi): - u1, t1 = polar(x - math.sin(phi), y - 1.0 + math.cos(phi)) +def left_straight_right(x, y, phi): + u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi)) + u1 = u1 ** 2 + if u1 >= 4.0: + u = math.sqrt(u1 - 4.0) + theta = math.atan2(2.0, u) + t = mod2pi(t1 + theta) + v = mod2pi(t - phi) + + if (t >= 0.0) and (v >= 0.0): + return True, [t, u, v], ['L', 'S', 'R'] + + return False, [], [] + + +def left_x_right_x_left(x, y, phi): + zeta = x - math.sin(phi) + eeta = y - 1 + math.cos(phi) + u1, theta = polar(zeta, eeta) if u1 <= 4.0: - u = -2.0 * math.asin(0.25 * u1) - t = mod2pi(t1 + 0.5 * u + math.pi) - v = mod2pi(phi - t + u) + A = math.acos(0.25 * u1) + t = mod2pi(A + theta + math.pi/2) + u = mod2pi(math.pi - 2 * A) + v = mod2pi(phi - t - u) + return True, [t, -u, v], ['L', 'R', 'L'] - if t >= 0.0 >= u: - return True, t, u, v + return False, [], [] - return False, 0.0, 0.0, 0.0 +def left_x_right_left(x, y, phi): + zeta = x - math.sin(phi) + eeta = y - 1 + math.cos(phi) + u1, theta = polar(zeta, eeta) -def curve_curve_curve(x, y, phi, paths): - flag, t, u, v = left_right_left(x, y, phi) - if flag: - paths = set_path(paths, [t, u, v], ["L", "R", "L"]) + if u1 <= 4.0: + A = math.acos(0.25 * u1) + t = mod2pi(A + theta + math.pi/2) + u = mod2pi(math.pi - 2*A) + v = mod2pi(-phi + t + u) + return True, [t, -u, -v], ['L', 'R', 'L'] - flag, t, u, v = left_right_left(-x, y, -phi) - if flag: - paths = set_path(paths, [-t, -u, -v], ["L", "R", "L"]) + return False, [], [] - flag, t, u, v = left_right_left(x, -y, -phi) - if flag: - paths = set_path(paths, [t, u, v], ["R", "L", "R"]) - flag, t, u, v = left_right_left(-x, -y, phi) - if flag: - paths = set_path(paths, [-t, -u, -v], ["R", "L", "R"]) +def left_right_x_left(x, y, phi): + zeta = x - math.sin(phi) + eeta = y - 1 + math.cos(phi) + u1, theta = polar(zeta, eeta) - # backwards - xb = x * math.cos(phi) + y * math.sin(phi) - yb = x * math.sin(phi) - y * math.cos(phi) + if u1 <= 4.0: + u = math.acos(1 - u1**2 * 0.125) + A = math.asin(2 * math.sin(u) / u1) + t = mod2pi(-A + theta + math.pi/2) + v = mod2pi(t - u - phi) + return True, [t, u, -v], ['L', 'R', 'L'] + + return False, [], [] + + +def left_right_x_left_right(x, y, phi): + zeta = x + math.sin(phi) + eeta = y - 1 - math.cos(phi) + u1, theta = polar(zeta, eeta) + + # Solutions refering to (2 < u1 <= 4) are considered sub-optimal in paper + # Solutions do not exist for u1 > 4 + if u1 <= 2: + A = math.acos((u1 + 2) * 0.25) + t = mod2pi(theta + A + math.pi/2) + u = mod2pi(A) + v = mod2pi(phi - t + 2*u) + if ((t >= 0) and (u >= 0) and (v >= 0)): + return True, [t, u, -u, -v], ['L', 'R', 'L', 'R'] + + return False, [], [] + + +def left_x_right_left_x_right(x, y, phi): + zeta = x + math.sin(phi) + eeta = y - 1 - math.cos(phi) + u1, theta = polar(zeta, eeta) + u2 = (20 - u1**2) / 16 + + if (0 <= u2 <= 1): + u = math.acos(u2) + A = math.asin(2 * math.sin(u) / u1) + t = mod2pi(theta + A + math.pi/2) + v = mod2pi(t - phi) + if (t >= 0) and (v >= 0): + return True, [t, -u, -u, v], ['L', 'R', 'L', 'R'] - flag, t, u, v = left_right_left(xb, yb, phi) - if flag: - paths = set_path(paths, [v, u, t], ["L", "R", "L"]) + return False, [], [] - flag, t, u, v = left_right_left(-xb, yb, -phi) - if flag: - paths = set_path(paths, [-v, -u, -t], ["L", "R", "L"]) - flag, t, u, v = left_right_left(xb, -yb, -phi) - if flag: - paths = set_path(paths, [v, u, t], ["R", "L", "R"]) +def left_x_right90_straight_left(x, y, phi): + zeta = x - math.sin(phi) + eeta = y - 1 + math.cos(phi) + u1, theta = polar(zeta, eeta) - flag, t, u, v = left_right_left(-xb, -yb, phi) - if flag: - paths = set_path(paths, [-v, -u, -t], ["R", "L", "R"]) + if u1 >= 2.0: + u = math.sqrt(u1**2 - 4) - 2 + A = math.atan2(2, math.sqrt(u1**2 - 4)) + t = mod2pi(theta + A + math.pi/2) + v = mod2pi(t - phi + math.pi/2) + if (t >= 0) and (v >= 0): + return True, [t, -math.pi/2, -u, -v], ['L', 'R', 'S', 'L'] - return paths + return False, [], [] -def curve_straight_curve(x, y, phi, paths): - flag, t, u, v = left_straight_left(x, y, phi) - if flag: - paths = set_path(paths, [t, u, v], ["L", "S", "L"]) +def left_straight_right90_x_left(x, y, phi): + zeta = x - math.sin(phi) + eeta = y - 1 + math.cos(phi) + u1, theta = polar(zeta, eeta) - flag, t, u, v = left_straight_left(-x, y, -phi) - if flag: - paths = set_path(paths, [-t, -u, -v], ["L", "S", "L"]) + if u1 >= 2.0: + u = math.sqrt(u1**2 - 4) - 2 + A = math.atan2(math.sqrt(u1**2 - 4), 2) + t = mod2pi(theta - A + math.pi/2) + v = mod2pi(t - phi - math.pi/2) + if (t >= 0) and (v >= 0): + return True, [t, u, math.pi/2, -v], ['L', 'S', 'R', 'L'] - flag, t, u, v = left_straight_left(x, -y, -phi) - if flag: - paths = set_path(paths, [t, u, v], ["R", "S", "R"]) + return False, [], [] - flag, t, u, v = left_straight_left(-x, -y, phi) - if flag: - paths = set_path(paths, [-t, -u, -v], ["R", "S", "R"]) - flag, t, u, v = left_straight_right(x, y, phi) - if flag: - paths = set_path(paths, [t, u, v], ["L", "S", "R"]) +def left_x_right90_straight_right(x, y, phi): + zeta = x + math.sin(phi) + eeta = y - 1 - math.cos(phi) + u1, theta = polar(zeta, eeta) - flag, t, u, v = left_straight_right(-x, y, -phi) - if flag: - paths = set_path(paths, [-t, -u, -v], ["L", "S", "R"]) + if u1 >= 2.0: + t = mod2pi(theta + math.pi/2) + u = u1 - 2 + v = mod2pi(phi - t - math.pi/2) + if (t >= 0) and (v >= 0): + return True, [t, -math.pi/2, -u, -v], ['L', 'R', 'S', 'R'] - flag, t, u, v = left_straight_right(x, -y, -phi) - if flag: - paths = set_path(paths, [t, u, v], ["R", "S", "L"]) + return False, [], [] - flag, t, u, v = left_straight_right(-x, -y, phi) - if flag: - paths = set_path(paths, [-t, -u, -v], ["R", "S", "L"]) - return paths +def left_straight_left90_x_right(x, y, phi): + zeta = x + math.sin(phi) + eeta = y - 1 - math.cos(phi) + u1, theta = polar(zeta, eeta) + if u1 >= 2.0: + t = mod2pi(theta) + u = u1 - 2 + v = mod2pi(phi - t - math.pi/2) + if (t >= 0) and (v >= 0): + return True, [t, u, math.pi/2, -v], ['L', 'S', 'L', 'R'] + + return False, [], [] + + +def left_x_right90_straight_left90_x_right(x, y, phi): + zeta = x + math.sin(phi) + eeta = y - 1 - math.cos(phi) + u1, theta = polar(zeta, eeta) -def left_straight_right(x, y, phi): - u1, t1 = polar(x + math.sin(phi), y - 1.0 - math.cos(phi)) - u1 = u1 ** 2 if u1 >= 4.0: - u = math.sqrt(u1 - 4.0) - theta = math.atan2(2.0, u) - t = mod2pi(t1 + theta) + u = math.sqrt(u1**2 - 4) - 4 + A = math.atan2(2, math.sqrt(u1**2 - 4)) + t = mod2pi(theta + A + math.pi/2) v = mod2pi(t - phi) + if (t >= 0) and (v >= 0): + return True, [t, -math.pi/2, -u, -math.pi/2, v], ['L', 'R', 'S', 'L', 'R'] + + return False, [], [] - if t >= 0.0 and v >= 0.0: - return True, t, u, v - return False, 0.0, 0.0, 0.0 +def timeflip(travel_distances): + return [-x for x in travel_distances] -def generate_path(q0, q1, max_curvature): +def reflect(steering_directions): + def switch_dir(dirn): + if dirn == 'L': + return 'R' + elif dirn == 'R': + return 'L' + else: + return 'S' + return[switch_dir(dirn) for dirn in steering_directions] + + +def generate_path(q0, q1, max_curvature, step_size): dx = q1[0] - q0[0] dy = q1[1] - q0[1] dth = q1[2] - q0[2] @@ -229,117 +292,131 @@ def generate_path(q0, q1, max_curvature): s = math.sin(q0[2]) x = (c * dx + s * dy) * max_curvature y = (-s * dx + c * dy) * max_curvature + step_size *= max_curvature paths = [] - paths = straight_curve_straight(x, y, dth, paths) - paths = curve_straight_curve(x, y, dth, paths) - paths = curve_curve_curve(x, y, dth, paths) + path_functions = [left_straight_left, left_straight_right, # CSC + left_x_right_x_left, left_x_right_left, left_right_x_left, # CCC + left_right_x_left_right, left_x_right_left_x_right, # CCCC + left_x_right90_straight_left, left_x_right90_straight_right, # CCSC + left_straight_right90_x_left, left_straight_left90_x_right, # CSCC + left_x_right90_straight_left90_x_right] # CCSCC + + for path_func in path_functions: + flag, travel_distances, steering_dirns = path_func(x, y, dth) + if flag: + for distance in travel_distances: + if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size): + print("Step size too large for Reeds-Shepp paths.") + return [] + paths = set_path(paths, travel_distances, steering_dirns, step_size) + + flag, travel_distances, steering_dirns = path_func(-x, y, -dth) + if flag: + for distance in travel_distances: + if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size): + print("Step size too large for Reeds-Shepp paths.") + return [] + travel_distances = timeflip(travel_distances) + paths = set_path(paths, travel_distances, steering_dirns, step_size) + + flag, travel_distances, steering_dirns = path_func(x, -y, -dth) + if flag: + for distance in travel_distances: + if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size): + print("Step size too large for Reeds-Shepp paths.") + return [] + steering_dirns = reflect(steering_dirns) + paths = set_path(paths, travel_distances, steering_dirns, step_size) + + flag, travel_distances, steering_dirns = path_func(-x, -y, dth) + if flag: + for distance in travel_distances: + if (0.1*sum([abs(d) for d in travel_distances]) < abs(distance) < step_size): + print("Step size too large for Reeds-Shepp paths.") + return [] + travel_distances = timeflip(travel_distances) + steering_dirns = reflect(steering_dirns) + paths = set_path(paths, travel_distances, steering_dirns, step_size) return paths -def interpolate(ind, length, mode, max_curvature, origin_x, origin_y, origin_yaw, path_x, path_y, path_yaw, directions): - if mode == "S": - path_x[ind] = origin_x + length / max_curvature * math.cos(origin_yaw) - path_y[ind] = origin_y + length / max_curvature * math.sin(origin_yaw) - path_yaw[ind] = origin_yaw - else: # curve - ldx = math.sin(length) / max_curvature - ldy = 0.0 - if mode == "L": # left turn - ldy = (1.0 - math.cos(length)) / max_curvature - elif mode == "R": # right turn - ldy = (1.0 - math.cos(length)) / -max_curvature - gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy - gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy - path_x[ind] = origin_x + gdx - path_y[ind] = origin_y + gdy - - if mode == "L": # left turn - path_yaw[ind] = origin_yaw + length - elif mode == "R": # right turn - path_yaw[ind] = origin_yaw - length - - if length > 0.0: - directions[ind] = 1 - else: - directions[ind] = -1 +def calc_interpolate_dists_list(lengths, step_size): + interpolate_dists_list = [] + for length in lengths: + d_dist = step_size if length >= 0.0 else -step_size + interp_dists = np.arange(0.0, length, d_dist) + interp_dists = np.append(interp_dists, length) + interpolate_dists_list.append(interp_dists) - return path_x, path_y, path_yaw, directions + return interpolate_dists_list -def generate_local_course(total_length, lengths, mode, max_curvature, step_size): - n_point = math.trunc(total_length / step_size) + len(lengths) + 4 +def generate_local_course(lengths, modes, max_curvature, step_size): + interpolate_dists_list = calc_interpolate_dists_list(lengths, step_size * max_curvature) - px = [0.0 for _ in range(n_point)] - py = [0.0 for _ in range(n_point)] - pyaw = [0.0 for _ in range(n_point)] - directions = [0.0 for _ in range(n_point)] - ind = 1 + origin_x, origin_y, origin_yaw = 0.0, 0.0, 0.0 - if lengths[0] > 0.0: - directions[0] = 1 - else: - directions[0] = -1 + xs, ys, yaws, directions = [], [], [], [] + for (interp_dists, mode, length) in zip(interpolate_dists_list, modes, + lengths): - ll = 0.0 + for dist in interp_dists: + x, y, yaw, direction = interpolate(dist, length, mode, + max_curvature, origin_x, + origin_y, origin_yaw) + xs.append(x) + ys.append(y) + yaws.append(yaw) + directions.append(direction) + origin_x = xs[-1] + origin_y = ys[-1] + origin_yaw = yaws[-1] - for (m, l, i) in zip(mode, lengths, range(len(mode))): - if l > 0.0: - d = step_size - else: - d = -step_size + return xs, ys, yaws, directions - # set origin state - ox, oy, oyaw = px[ind], py[ind], pyaw[ind] - - ind -= 1 - if i >= 1 and (lengths[i - 1] * lengths[i]) > 0: - pd = - d - ll - else: - pd = d - ll - - while abs(pd) <= abs(l): - ind += 1 - px, py, pyaw, directions = interpolate( - ind, pd, m, max_curvature, ox, oy, oyaw, px, py, pyaw, directions) - pd += d - - ll = l - pd - d # calc remain length - - ind += 1 - px, py, pyaw, directions = interpolate( - ind, l, m, max_curvature, ox, oy, oyaw, px, py, pyaw, directions) - - # remove unused data - while px[-1] == 0.0: - px.pop() - py.pop() - pyaw.pop() - directions.pop() - - return px, py, pyaw, directions +def interpolate(dist, length, mode, max_curvature, origin_x, origin_y, + origin_yaw): + if mode == "S": + x = origin_x + dist / max_curvature * math.cos(origin_yaw) + y = origin_y + dist / max_curvature * math.sin(origin_yaw) + yaw = origin_yaw + else: # curve + ldx = math.sin(dist) / max_curvature + ldy = 0.0 + yaw = None + if mode == "L": # left turn + ldy = (1.0 - math.cos(dist)) / max_curvature + yaw = origin_yaw + dist + elif mode == "R": # right turn + ldy = (1.0 - math.cos(dist)) / -max_curvature + yaw = origin_yaw - dist + gdx = math.cos(-origin_yaw) * ldx + math.sin(-origin_yaw) * ldy + gdy = -math.sin(-origin_yaw) * ldx + math.cos(-origin_yaw) * ldy + x = origin_x + gdx + y = origin_y + gdy -def pi_2_pi(angle): - return (angle + math.pi) % (2 * math.pi) - math.pi + return x, y, yaw, 1 if length > 0.0 else -1 def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size): q0 = [sx, sy, syaw] q1 = [gx, gy, gyaw] - paths = generate_path(q0, q1, maxc) + paths = generate_path(q0, q1, maxc, step_size) for path in paths: - x, y, yaw, directions = generate_local_course( - path.L, path.lengths, path.ctypes, maxc, step_size * maxc) + xs, ys, yaws, directions = generate_local_course(path.lengths, + path.ctypes, maxc, + step_size) # convert global coordinate - path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) - * iy + q0[0] for (ix, iy) in zip(x, y)] - path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) - * iy + q0[1] for (ix, iy) in zip(x, y)] - path.yaw = [pi_2_pi(iyaw + q0[2]) for iyaw in yaw] + path.x = [math.cos(-q0[2]) * ix + math.sin(-q0[2]) * iy + q0[0] for + (ix, iy) in zip(xs, ys)] + path.y = [-math.sin(-q0[2]) * ix + math.cos(-q0[2]) * iy + q0[1] for + (ix, iy) in zip(xs, ys)] + path.yaw = [pi_2_pi(yaw + q0[2]) for yaw in yaws] path.directions = directions path.lengths = [length / maxc for length in path.lengths] path.L = path.L / maxc @@ -347,53 +424,45 @@ def calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size): return paths -def reeds_shepp_path_planning(sx, sy, syaw, - gx, gy, gyaw, maxc, step_size=0.2): +def reeds_shepp_path_planning(sx, sy, syaw, gx, gy, gyaw, maxc, step_size=0.2): paths = calc_paths(sx, sy, syaw, gx, gy, gyaw, maxc, step_size) - if not paths: - return None, None, None, None, None + return None, None, None, None, None # could not generate any path - minL = float("Inf") - best_path_index = -1 - for i, _ in enumerate(paths): - if paths[i].L <= minL: - minL = paths[i].L - best_path_index = i + # search minimum cost path + best_path_index = paths.index(min(paths, key=lambda p: abs(p.L))) + b_path = paths[best_path_index] - bpath = paths[best_path_index] - - return bpath.x, bpath.y, bpath.yaw, bpath.ctypes, bpath.lengths + return b_path.x, b_path.y, b_path.yaw, b_path.ctypes, b_path.lengths def main(): print("Reeds Shepp path planner sample start!!") - # start_x = -1.0 # [m] - # start_y = -4.0 # [m] - # start_yaw = np.deg2rad(-20.0) # [rad] - # - # end_x = 5.0 # [m] - # end_y = 5.0 # [m] - # end_yaw = np.deg2rad(25.0) # [rad] + start_x = -1.0 # [m] + start_y = -4.0 # [m] + start_yaw = np.deg2rad(-20.0) # [rad] - start_x = 0.0 # [m] - start_y = 0.0 # [m] - start_yaw = np.deg2rad(0.0) # [rad] + end_x = 5.0 # [m] + end_y = 5.0 # [m] + end_yaw = np.deg2rad(25.0) # [rad] - end_x = 0.0 # [m] - end_y = 0.0 # [m] - end_yaw = np.deg2rad(0.0) # [rad] + curvature = 0.1 + step_size = 0.05 - curvature = 1.0 - step_size = 0.1 + xs, ys, yaws, modes, lengths = reeds_shepp_path_planning(start_x, start_y, + start_yaw, end_x, + end_y, end_yaw, + curvature, + step_size) - px, py, pyaw, mode, clen = reeds_shepp_path_planning( - start_x, start_y, start_yaw, end_x, end_y, end_yaw, curvature, step_size) + if not xs: + assert False, "No path" if show_animation: # pragma: no cover plt.cla() - plt.plot(px, py, label="final course " + str(mode)) + plt.plot(xs, ys, label="final course " + str(modes)) + print(f"{lengths=}") # plotting plot_arrow(start_x, start_y, start_yaw) @@ -404,9 +473,6 @@ def main(): plt.axis("equal") plt.show() - if not px: - assert False, "No path" - if __name__ == '__main__': main() diff --git a/PathPlanning/SpiralSpanningTreeCPP/map/test.png b/PathPlanning/SpiralSpanningTreeCPP/map/test.png new file mode 100644 index 0000000000..4abca0bf30 Binary files /dev/null and b/PathPlanning/SpiralSpanningTreeCPP/map/test.png differ diff --git a/PathPlanning/SpiralSpanningTreeCPP/map/test_2.png b/PathPlanning/SpiralSpanningTreeCPP/map/test_2.png new file mode 100644 index 0000000000..0d27fa9f95 Binary files /dev/null and b/PathPlanning/SpiralSpanningTreeCPP/map/test_2.png differ diff --git a/PathPlanning/SpiralSpanningTreeCPP/map/test_3.png b/PathPlanning/SpiralSpanningTreeCPP/map/test_3.png new file mode 100644 index 0000000000..1a50b87ccf Binary files /dev/null and b/PathPlanning/SpiralSpanningTreeCPP/map/test_3.png differ diff --git a/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py b/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py new file mode 100644 index 0000000000..a8c513e6b1 --- /dev/null +++ b/PathPlanning/SpiralSpanningTreeCPP/spiral_spanning_tree_coverage_path_planner.py @@ -0,0 +1,313 @@ +""" +Spiral Spanning Tree Coverage Path Planner + +author: Todd Tang +paper: Spiral-STC: An On-Line Coverage Algorithm of Grid Environments + by a Mobile Robot - Gabriely et.al. +link: https://ieeexplore.ieee.org/abstract/document/1013479 +""" + +import os +import sys +import math + +import numpy as np +import matplotlib.pyplot as plt + +do_animation = True + + +class SpiralSpanningTreeCoveragePlanner: + def __init__(self, occ_map): + self.origin_map_height = occ_map.shape[0] + self.origin_map_width = occ_map.shape[1] + + # original map resolution must be even + if self.origin_map_height % 2 == 1 or self.origin_map_width % 2 == 1: + sys.exit('original map width/height must be even \ + in grayscale .png format') + + self.occ_map = occ_map + self.merged_map_height = self.origin_map_height // 2 + self.merged_map_width = self.origin_map_width // 2 + + self.edge = [] + + def plan(self, start): + """plan + + performing Spiral Spanning Tree Coverage path planning + + :param start: the start node of Spiral Spanning Tree Coverage + """ + + visit_times = np.zeros( + (self.merged_map_height, self.merged_map_width), dtype=int) + visit_times[start[0]][start[1]] = 1 + + # generate route by + # recusively call perform_spanning_tree_coverage() from start node + route = [] + self.perform_spanning_tree_coverage(start, visit_times, route) + + path = [] + # generate path from route + for idx in range(len(route)-1): + dp = abs(route[idx][0] - route[idx+1][0]) + \ + abs(route[idx][1] - route[idx+1][1]) + if dp == 0: + # special handle for round-trip path + path.append(self.get_round_trip_path(route[idx-1], route[idx])) + elif dp == 1: + path.append(self.move(route[idx], route[idx+1])) + elif dp == 2: + # special handle for non-adjacent route nodes + mid_node = self.get_intermediate_node(route[idx], route[idx+1]) + path.append(self.move(route[idx], mid_node)) + path.append(self.move(mid_node, route[idx+1])) + else: + sys.exit('adjacent path node distance larger than 2') + + return self.edge, route, path + + def perform_spanning_tree_coverage(self, current_node, visit_times, route): + """perform_spanning_tree_coverage + + recursive function for function + + :param current_node: current node + """ + + def is_valid_node(i, j): + is_i_valid_bounded = 0 <= i < self.merged_map_height + is_j_valid_bounded = 0 <= j < self.merged_map_width + if is_i_valid_bounded and is_j_valid_bounded: + # free only when the 4 sub-cells are all free + return bool( + self.occ_map[2*i][2*j] + and self.occ_map[2*i+1][2*j] + and self.occ_map[2*i][2*j+1] + and self.occ_map[2*i+1][2*j+1]) + + return False + + # counter-clockwise neighbor finding order + order = [[1, 0], [0, 1], [-1, 0], [0, -1]] + + found = False + route.append(current_node) + for inc in order: + ni, nj = current_node[0] + inc[0], current_node[1] + inc[1] + if is_valid_node(ni, nj) and visit_times[ni][nj] == 0: + neighbor_node = (ni, nj) + self.edge.append((current_node, neighbor_node)) + found = True + visit_times[ni][nj] += 1 + self.perform_spanning_tree_coverage( + neighbor_node, visit_times, route) + + # backtrace route from node with neighbors all visited + # to first node with unvisited neighbor + if not found: + has_node_with_unvisited_ngb = False + for node in reversed(route): + # drop nodes that have been visited twice + if visit_times[node[0]][node[1]] == 2: + continue + + visit_times[node[0]][node[1]] += 1 + route.append(node) + + for inc in order: + ni, nj = node[0] + inc[0], node[1] + inc[1] + if is_valid_node(ni, nj) and visit_times[ni][nj] == 0: + has_node_with_unvisited_ngb = True + break + + if has_node_with_unvisited_ngb: + break + + return route + + def move(self, p, q): + direction = self.get_vector_direction(p, q) + # move east + if direction == 'E': + p = self.get_sub_node(p, 'SE') + q = self.get_sub_node(q, 'SW') + # move west + elif direction == 'W': + p = self.get_sub_node(p, 'NW') + q = self.get_sub_node(q, 'NE') + # move south + elif direction == 'S': + p = self.get_sub_node(p, 'SW') + q = self.get_sub_node(q, 'NW') + # move north + elif direction == 'N': + p = self.get_sub_node(p, 'NE') + q = self.get_sub_node(q, 'SE') + else: + sys.exit('move direction error...') + return [p, q] + + def get_round_trip_path(self, last, pivot): + direction = self.get_vector_direction(last, pivot) + if direction == 'E': + return [self.get_sub_node(pivot, 'SE'), + self.get_sub_node(pivot, 'NE')] + elif direction == 'S': + return [self.get_sub_node(pivot, 'SW'), + self.get_sub_node(pivot, 'SE')] + elif direction == 'W': + return [self.get_sub_node(pivot, 'NW'), + self.get_sub_node(pivot, 'SW')] + elif direction == 'N': + return [self.get_sub_node(pivot, 'NE'), + self.get_sub_node(pivot, 'NW')] + else: + sys.exit('get_round_trip_path: last->pivot direction error.') + + def get_vector_direction(self, p, q): + # east + if p[0] == q[0] and p[1] < q[1]: + return 'E' + # west + elif p[0] == q[0] and p[1] > q[1]: + return 'W' + # south + elif p[0] < q[0] and p[1] == q[1]: + return 'S' + # north + elif p[0] > q[0] and p[1] == q[1]: + return 'N' + else: + sys.exit('get_vector_direction: Only E/W/S/N direction supported.') + + def get_sub_node(self, node, direction): + if direction == 'SE': + return [2*node[0]+1, 2*node[1]+1] + elif direction == 'SW': + return [2*node[0]+1, 2*node[1]] + elif direction == 'NE': + return [2*node[0], 2*node[1]+1] + elif direction == 'NW': + return [2*node[0], 2*node[1]] + else: + sys.exit('get_sub_node: sub-node direction error.') + + def get_interpolated_path(self, p, q): + # direction p->q: southwest / northeast + if (p[0] < q[0]) ^ (p[1] < q[1]): + ipx = [p[0], p[0], q[0]] + ipy = [p[1], q[1], q[1]] + # direction p->q: southeast / northwest + else: + ipx = [p[0], q[0], q[0]] + ipy = [p[1], p[1], q[1]] + return ipx, ipy + + def get_intermediate_node(self, p, q): + p_ngb, q_ngb = set(), set() + + for m, n in self.edge: + if m == p: + p_ngb.add(n) + if n == p: + p_ngb.add(m) + if m == q: + q_ngb.add(n) + if n == q: + q_ngb.add(m) + + itsc = p_ngb.intersection(q_ngb) + if len(itsc) == 0: + sys.exit('get_intermediate_node: \ + no intermediate node between', p, q) + elif len(itsc) == 1: + return list(itsc)[0] + else: + sys.exit('get_intermediate_node: \ + more than 1 intermediate node between', p, q) + + def visualize_path(self, edge, path, start): + def coord_transform(p): + return [2*p[1] + 0.5, 2*p[0] + 0.5] + + if do_animation: + last = path[0][0] + trajectory = [[last[1]], [last[0]]] + for p, q in path: + distance = math.hypot(p[0]-last[0], p[1]-last[1]) + if distance <= 1.0: + trajectory[0].append(p[1]) + trajectory[1].append(p[0]) + else: + ipx, ipy = self.get_interpolated_path(last, p) + trajectory[0].extend(ipy) + trajectory[1].extend(ipx) + + last = q + + trajectory[0].append(last[1]) + trajectory[1].append(last[0]) + + for idx, state in enumerate(np.transpose(trajectory)): + plt.cla() + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) + + # draw spanning tree + plt.imshow(self.occ_map, 'gray') + for p, q in edge: + p = coord_transform(p) + q = coord_transform(q) + plt.plot([p[0], q[0]], [p[1], q[1]], '-oc') + sx, sy = coord_transform(start) + plt.plot([sx], [sy], 'pr', markersize=10) + + # draw move path + plt.plot(trajectory[0][:idx+1], trajectory[1][:idx+1], '-k') + plt.plot(state[0], state[1], 'or') + plt.axis('equal') + plt.grid(True) + plt.pause(0.01) + + else: + # draw spanning tree + plt.imshow(self.occ_map, 'gray') + for p, q in edge: + p = coord_transform(p) + q = coord_transform(q) + plt.plot([p[0], q[0]], [p[1], q[1]], '-oc') + sx, sy = coord_transform(start) + plt.plot([sx], [sy], 'pr', markersize=10) + + # draw move path + last = path[0][0] + for p, q in path: + distance = math.hypot(p[0]-last[0], p[1]-last[1]) + if distance == 1.0: + plt.plot([last[1], p[1]], [last[0], p[0]], '-k') + else: + ipx, ipy = self.get_interpolated_path(last, p) + plt.plot(ipy, ipx, '-k') + plt.arrow(p[1], p[0], q[1]-p[1], q[0]-p[0], head_width=0.2) + last = q + + plt.show() + + +def main(): + dir_path = os.path.dirname(os.path.realpath(__file__)) + img = plt.imread(os.path.join(dir_path, 'map', 'test_2.png')) + STC_planner = SpiralSpanningTreeCoveragePlanner(img) + start = (10, 0) + edge, route, path = STC_planner.plan(start) + STC_planner.visualize_path(edge, path, start) + + +if __name__ == "__main__": + main() diff --git a/PathPlanning/StateLatticePlanner/lookup_table.csv b/PathPlanning/StateLatticePlanner/lookup_table.csv new file mode 100644 index 0000000000..2c48a11a18 --- /dev/null +++ b/PathPlanning/StateLatticePlanner/lookup_table.csv @@ -0,0 +1,82 @@ +x,y,yaw,s,km,kf +1.0,0.0,0.0,1.0,0.0,0.0 +9.975352133559392,0.0482183513545736,0.5660837104214496,10.00000000000002,0.0015736624607596847,0.31729782170754367 +15.021899857204536,0.023109001221800096,0.541061424167431,15.128443053611093,0.0006480950273134919,0.20847475849103875 +20.062147834064536,0.0406648159648112,0.5374967866814861,20.205553097986094,0.000452860235044122,0.15502921850050788 +24.924468605496358,-0.04047324014767662,0.5146575311501209,25.16775431470035,6.940620839146646e-05,0.12259452810198132 +9.971782095506931,1.9821448683146543,0.5206511572266477,10.287478424823748,0.05861430948618236,0.07036494964262185 +15.00170010872385,2.0003864283110473,0.5236741185892617,15.245993376540827,0.02657730439557895,0.09933479864250763 +19.991716537639487,1.9940629519465154,0.5226444441451559,20.277923997037238,0.015108540596275507,0.09478988637993524 +24.946447973869596,2.0815930190993206,0.5306354765686239,25.20115925294013,0.010036251429787917,0.08505936469481987 +10.033694822745312,3.9724800521928056,0.5349578864544497,11.087694168363686,0.10279429366023954,-0.12501011715795404 +15.010712586144749,4.0046776414868095,0.5234972445048012,15.729582155835587,0.05010930398580602,-0.0008557723200034717 +19.9175798257299,4.053680042954521,0.5265397234296523,20.52466275843717,0.029584390559990882,0.035276591227371874 +24.98769016158626,3.991699950598091,0.5229000018897194,25.543297770996556,0.018800715817231053,0.04750751098144048 +10.018665105170687,6.004814533505462,0.5183921334245007,12.249438857228967,0.13207408248643182,-0.2742892277307502 +14.988626131330372,5.991226410357179,0.5248160422552801,16.53593823576699,0.06924423592936522,-0.08634227857486092 +20.014420271646646,6.006767110727591,0.5233060851224174,21.23271362632659,0.041402041787912916,-0.01770377839603589 +24.998338724667267,5.997352722087869,0.5235621854299422,26.009046544833613,0.027285850882345728,0.011507045054418165 +10.040118020822444,8.017131894913126,0.5076867575242261,13.8061261785273,0.14561700178565884,-0.3527538468214878 +14.96397914886416,7.974972375534203,0.5303378183744862,17.667338175004062,0.08318912494381935,-0.15372672981944802 +20.045725182938817,8.023486945646207,0.5201839069343577,22.126364299043573,0.05173969669894265,-0.06557547083017647 +25.004687466358227,8.00036398460779,0.5234938146870878,26.740089158520917,0.034867425244601645,-0.02199309906456302 +10.065138949829214,10.03244363616002,0.49375882493214895,15.701940360254637,0.14847998727328912,-0.39355037236614626 +15.05373212031198,10.026401491912143,0.5111826366036252,19.105461052226858,0.09205576730549936,-0.20458802229704312 +19.965550451103926,9.977668905006206,0.5278605653376056,23.14082140870299,0.06010674632014157,-0.10340577652521214 +25.04062496016141,9.956781577401756,0.5252395961316738,27.641194908523495,0.04115083532669924,-0.05054407239730677 +9.980172344087242,11.981944953180841,0.5354924711458446,17.764377273124804,0.14616069587267325,-0.40115138946106776 +15.031707905116134,12.011530784459552,0.5157261778129998,20.745000892047745,0.0970285785481706,-0.2379719980195133 +20.05384921212195,12.02621662711961,0.5153884987125119,24.513013940487117,0.06601543941341544,-0.13666530932375262 +25.04326204059146,12.019946808479768,0.5198699857547844,28.74306622689766,0.04671545692054678,-0.07827401225777673 +10.005005976167096,13.993516346269931,0.5249997047973469,20.063732124124442,0.14007166951362482,-0.39994549637994103 +15.013469777117386,13.998572375088138,0.5211760827701193,22.591299061495683,0.0989196134377572,-0.25909446951756165 +19.980150236409695,13.98233838451409,0.5278966095736082,25.971685915503254,0.07029833263412807,-0.15993299513197096 +25.009669110020404,14.000751236643762,0.5227555344229664,29.949071374991423,0.05106114063333748,-0.09952052168406796 +9.996712859814979,15.986637217372996,0.5301458018536311,22.47478825250167,0.1329741433122606,-0.38823042580907063 +15.02373126750475,16.00384009060484,0.5182833077580984,24.557463511123004,0.0989491582793761,-0.26836010532851323 +20.023756339113735,16.004847752803656,0.5197401980953318,27.669260302891157,0.07275720314277462,-0.178811991371391 +25.015003771679122,16.002919774604504,0.5219791758565742,31.36524983655211,0.05429827198598215,-0.11766440355003502 +10.078596822781892,18.025309925487992,0.49768408992179225,25.02580432036455,0.1252233187334947,-0.3747545825918585 +15.001968473293188,17.988033772017467,0.5262415135796346,26.67625473617623,0.09746306394892065,-0.27167606206451594 +20.026047062413117,18.00445752595148,0.5193568548054093,29.442158339897595,0.07417227896231118,-0.19015828496001386 +24.984711558393403,17.982744830235063,0.5266809346220684,32.855828700083094,0.05675308229799072,-0.13090299334069386 +9.999999973554228,8.906672256498078e-05,-0.00024912926939091307,9.993250237275609,1.9794429093204823e-06,-0.00016167063578544257 +14.999999988951053,0.00030609885737583985,-9.259737492950393e-05,14.939586274030715,4.066161982234725e-06,-5.3230908443270726e-05 +19.999999963637627,0.0008196433029304879,-0.00010277758318455454,19.985770355960977,6.0902800817987275e-06,-5.581407356116362e-05 +24.999999906323,0.001558015443394581,-0.0001252423879458675,24.925430653319882,7.508303551937611e-06,-5.98269885073166e-05 +9.93201732790474,1.9700581591656137,-0.006606314895513332,10.1625049701131,0.05795554613825405,-0.23594780459354886 +15.017121844754504,2.000131018972639,-0.001958259181754851,15.130494387563031,0.026367577418638183,-0.10529363184139814 +19.962697589600058,2.0003823634817484,0.0021983556339688626,20.055058569558643,0.014972854970102445,-0.0592998512022201 +24.990093248087035,2.0008914594513647,0.0003319006512292333,25.020899019312747,0.009609456446194334,-0.03808543941908436 +9.942924437331126,3.9434423219621073,-0.047789349898090805,10.916318098481405,0.10417074854184473,-0.42509733550937057 +14.976393375378994,3.9987876606083557,0.004653465622298736,15.69826778341493,0.04981535482126709,-0.20027162173052074 +19.954160472557877,4.000101578371634,0.0053292950039418585,20.459066225465484,0.02905576509783228,-0.11479451096219842 +25.06247590490118,3.9997579161047643,-0.00486183691237807,25.40723367563786,0.01874893916371208,-0.07533000027879669 +9.974854017566281,5.998183884411291,0.01394025812352817,12.27808815775426,0.13163310345287574,-0.5111693653344966 +14.99829771854157,5.999020207860274,0.0007330116466723879,16.57520987140955,0.06880393034208837,-0.27508456151767885 +19.98389776689381,5.999506195067484,0.002770060727207646,21.17690590277397,0.04131547230609369,-0.1652252863196287 +25.022089217041394,5.998166050230614,-0.002551136444779001,25.974625009044832,0.02718132258204399,-0.10978755041013998 +9.940106683734614,7.99448983539684,0.03735909486314526,13.864600506318645,0.14554135993596395,-0.5498471044599721 +15.015405965817797,7.996301502316838,-0.004430455799697253,17.779484729664652,0.08234534796805798,-0.3300198333333338 +19.965919061860355,7.998456498324741,0.00732927315681664,22.0665101267907,0.05178054118886435,-0.20507088323830897 +24.97580637673196,7.998036396987909,0.0034859866489540536,26.699711792661176,0.03478260921646504,-0.13959734880932403 +10.003237328881212,9.994037173180942,-0.002542633641336778,15.800576175296408,0.1482242831571022,-0.5606578442626601 +14.95848212484301,9.995827033229693,0.016804720248816185,19.19635868417634,0.09159937492256161,-0.3610497877526804 +20.018365340632464,9.997789133099982,-0.003880405312526758,23.259977677838524,0.05967179836565363,-0.23873172503708404 +25.034844162753302,9.996613275552045,-0.005490232481425661,27.647073656497884,0.04122997694830456,-0.16548182742762063 +10.041413516307436,11.988808245039152,-0.015743247245750158,18.0174427655263,0.14424296158815444,-0.5545987939832356 +15.0710608536628,11.993636485613393,-0.025235844052727163,20.92474299071291,0.0960774359909814,-0.38199459745149106 +20.061838597733104,11.995243972143648,-0.015325438311212025,24.63090823780847,0.06556771814265559,-0.2626353022718591 +24.90813949494271,11.995929681233529,0.01760171116909426,28.6986397040137,0.046810556161518815,-0.1847353186190147 +10.005191819464756,13.97797567430312,0.018961636911005275,20.358534835690133,0.13825179056925302,-0.5307789523538471 +14.978392340358946,13.991362718235834,0.012411272386128935,22.755419658274054,0.0984622955030996,-0.38447788120958937 +20.015767113356507,13.992558840024987,-0.002205036951612893,26.18420998778461,0.06961025144239422,-0.2786494668163888 +25.01318440442437,13.994258255793202,-0.0016239998449329995,30.09124393513656,0.05071043613803722,-0.20387658283659768 +10.038844117562423,15.966797017942504,0.016384527088525225,22.88736140380268,0.13044436631301143,-0.5070826347325453 +14.91898245890566,15.984279670640529,0.03784081306841358,24.796728185207627,0.09830913950807817,-0.38207974071854045 +19.999487117727806,15.99041117221354,0.0034823225688951354,27.881676426972927,0.07220430103629995,-0.2873083396987492 +25.056418472201756,15.995103453935709,-0.011257522827095023,31.50238694595278,0.05406499488342877,-0.21526296035737832 +10.076107447676621,17.952889979512353,0.017798231103724138,25.454959881832874,0.1231232463335769,-0.47600174850950705 +15.032725028551983,17.978015286760307,0.0020752804670070013,27.089888269358894,0.09590219542773218,-0.3801465515462427 +20.03544756240551,17.98685790169768,-0.005300968094156033,29.75070206477736,0.07340450527104486,-0.29182757725382324 +24.960019173190652,17.98909417109214,0.011594018486178026,33.0995680641525,0.05634561447882407,-0.22402297280749597 diff --git a/PathPlanning/StateLatticePlanner/lookuptable.csv b/PathPlanning/StateLatticePlanner/lookuptable.csv deleted file mode 100644 index 85eff9b932..0000000000 --- a/PathPlanning/StateLatticePlanner/lookuptable.csv +++ /dev/null @@ -1,25 +0,0 @@ -x,y,yaw,s,km,kf -1.0,0.0,0.0,1.0,0.0,0.0 -0.9734888894493215,-0.009758406565994977,0.5358080146312756,0.9922329557399788,-0.10222538550473198,3.0262632253145982 -10.980728996433243,-0.0003093605787364978,0.522622783944529,11.000391678142623,0.00010296091030877934,0.2731556687244648 -16.020309241920156,0.0001292339008200291,0.5243399938698222,16.100019813021202,0.00013263212395994706,0.18999138959173634 -20.963495745193626,-0.00033031017429944326,0.5226120033275024,21.10082901143343,0.00011687467551566884,0.14550546012583987 -6.032553475650599,2.008504211720188,0.5050517859971599,6.400329805864408,0.1520002249689879,-0.13105940607691127 -10.977487445230075,2.0078696810700034,0.5263634407901872,11.201040572298973,0.04895863722280565,0.08356555007223682 -15.994057699325753,2.025659106131227,0.5303858891065698,16.200300421483128,0.0235708657178127,0.10002225103921249 -20.977228843605943,2.0281289825388513,0.5300376140865567,21.20043308669372,0.013795675421657671,0.09331700188063087 -25.95453914157977,1.9926432818499131,0.5226203078411618,26.200880299840527,0.00888830054451281,0.0830622000626594 -0.9999999999999999,0.0,0.0,1.0,0.0,0.0 -5.999999999670752,5.231312388722274e-05,1.4636120911014667e-05,5.996117185283419,4.483756968024291e-06,-3.4422519205046243e-06 -10.999749470720566,-0.011978787043239986,0.022694802592583763,10.99783855994015,-0.00024209503125174496,0.01370491008661795 -15.999885224357776,-0.018937230084507616,0.011565580878015763,15.99839381389597,-0.0002086399372890716,0.005267247862667496 -20.999882688881286,-0.030304200126461317,0.009117836885732596,20.99783120184498,-0.00020013159571184735,0.0034529188783636866 -25.999911270030413,-0.025754431694664327,0.0074809531598503615,25.99674782258235,-0.0001111138115390646,0.0021946603965658368 -10.952178818975062,1.993067260835455,0.0045572480669707136,11.17961498195845,0.04836813285436623,-0.19328716251760758 -16.028306009258,2.0086286208315407,0.009306594796759554,16.122411866381054,0.02330689045417979,-0.08877002085985948 -20.971603115419715,1.9864158336174966,0.007016819403167119,21.093006725076872,0.013439123130720928,-0.05238318300611623 -25.997019676818372,1.9818581321430093,0.007020172975955249,26.074021794586585,0.00876496148602802,-0.03362579291686346 -16.017903482982604,4.009490840390534,-5.293114796312698e-05,16.600937712976638,0.044543450568614244,-0.17444651314466567 -20.98845988414163,3.956600199823583,-0.01050744134070728,21.40149119463485,0.02622674388276059,-0.10625681152519345 -25.979448381017914,3.9968223055054977,-0.00012819253386682928,26.30504721211744,0.017467093413146118,-0.06914750106424669 -25.96268055563514,5.9821266846168,4.931311239565056e-05,26.801388563459287,0.025426008913226557,-0.10047663078001536 diff --git a/PathPlanning/StateLatticePlanner/state_lattice_planner.py b/PathPlanning/StateLatticePlanner/state_lattice_planner.py index c2819eb250..554cd0f3b7 100644 --- a/PathPlanning/StateLatticePlanner/state_lattice_planner.py +++ b/PathPlanning/StateLatticePlanner/state_lattice_planner.py @@ -4,11 +4,16 @@ author: Atsushi Sakai (@Atsushi_twi) -- lookuptable.csv is generated with this script: https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning/ModelPredictiveTrajectoryGenerator/lookuptable_generator.py +- plookuptable.csv is generated with this script: +https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathPlanning +/ModelPredictiveTrajectoryGenerator/lookup_table_generator.py -Ref: +Reference: -- State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.8210&rep=rep1&type=pdf +- State Space Sampling of Feasible Motions for High-Performance Mobile Robot +Navigation in Complex Environments +https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf +&doi=e2256b5b24137f89e473f01df288cb3aa72e56a0 """ import sys @@ -16,33 +21,27 @@ from matplotlib import pyplot as plt import numpy as np import math -import pandas as pd +import pathlib -sys.path.append(os.path.dirname(os.path.abspath(__file__)) - + "/../ModelPredictiveTrajectoryGenerator/") +sys.path.append(str(pathlib.Path(__file__).parent.parent)) +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +import ModelPredictiveTrajectoryGenerator.trajectory_generator as planner +import ModelPredictiveTrajectoryGenerator.motion_model as motion_model -try: - import model_predictive_trajectory_generator as planner - import motion_model -except: - raise - - -table_path = os.path.dirname(os.path.abspath(__file__)) + "/lookuptable.csv" +TABLE_PATH = os.path.dirname(os.path.abspath(__file__)) + "/lookup_table.csv" show_animation = True -def search_nearest_one_from_lookuptable(tx, ty, tyaw, lookup_table): +def search_nearest_one_from_lookup_table(t_x, t_y, t_yaw, lookup_table): mind = float("inf") minid = -1 for (i, table) in enumerate(lookup_table): - - dx = tx - table[0] - dy = ty - table[1] - dyaw = tyaw - table[2] + dx = t_x - table[0] + dy = t_y - table[1] + dyaw = t_yaw - table[2] d = math.sqrt(dx ** 2 + dy ** 2 + dyaw ** 2) if d <= mind: minid = i @@ -51,31 +50,29 @@ def search_nearest_one_from_lookuptable(tx, ty, tyaw, lookup_table): return lookup_table[minid] -def get_lookup_table(): - data = pd.read_csv(table_path) - - return np.array(data) +def get_lookup_table(table_path): + return np.loadtxt(table_path, delimiter=',', skiprows=1) def generate_path(target_states, k0): # x, y, yaw, s, km, kf - lookup_table = get_lookup_table() + lookup_table = get_lookup_table(TABLE_PATH) result = [] for state in target_states: - bestp = search_nearest_one_from_lookuptable( + bestp = search_nearest_one_from_lookup_table( state[0], state[1], state[2], lookup_table) target = motion_model.State(x=state[0], y=state[1], yaw=state[2]) init_p = np.array( - [math.sqrt(state[0] ** 2 + state[1] ** 2), bestp[4], bestp[5]]).reshape(3, 1) + [np.hypot(state[0], state[1]), bestp[4], bestp[5]]).reshape(3, 1) x, y, yaw, p = planner.optimize_trajectory(target, k0, init_p) if x is not None: print("find good path") result.append( - [x[-1], y[-1], yaw[-1], float(p[0]), float(p[1]), float(p[2])]) + [x[-1], y[-1], yaw[-1], float(p[0, 0]), float(p[1, 0]), float(p[2, 0])]) print("finish path generation") return result @@ -83,18 +80,28 @@ def generate_path(target_states, k0): def calc_uniform_polar_states(nxy, nh, d, a_min, a_max, p_min, p_max): """ - calc uniform state - :param nxy: number of position sampling - :param nh: number of heading sampleing - :param d: distance of terminal state - :param a_min: position sampling min angle - :param a_max: position sampling max angle - :param p_min: heading sampling min angle - :param p_max: heading sampling max angle - :return: states list - """ + Parameters + ---------- + nxy : + number of position sampling + nh : + number of heading sampleing + d : + distance of terminal state + a_min : + position sampling min angle + a_max : + position sampling max angle + p_min : + heading sampling min angle + p_max : + heading sampling max angle + + Returns + ------- + """ angle_samples = [i / (nxy - 1) for i in range(nxy)] states = sample_states(angle_samples, a_min, a_max, d, p_max, p_min, nh) @@ -156,8 +163,8 @@ def calc_lane_states(l_center, l_heading, l_width, v_width, d, nxy): :param nxy: sampling number :return: state list """ - xc = math.cos(l_heading) * d + math.sin(l_heading) * l_center - yc = math.sin(l_heading) * d + math.cos(l_heading) * l_center + xc = d + yc = l_center states = [] for i in range(nxy): @@ -301,7 +308,7 @@ def lane_state_sampling_test1(): k0 = 0.0 l_center = 10.0 - l_heading = np.deg2rad(90.0) + l_heading = np.deg2rad(0.0) l_width = 3.0 v_width = 1.0 d = 10 @@ -309,12 +316,15 @@ def lane_state_sampling_test1(): states = calc_lane_states(l_center, l_heading, l_width, v_width, d, nxy) result = generate_path(states, k0) + if show_animation: + plt.close("all") + for table in result: - xc, yc, yawc = motion_model.generate_trajectory( + x_c, y_c, yaw_c = motion_model.generate_trajectory( table[3], table[4], table[5], k0) if show_animation: - plt.plot(xc, yc, "-r") + plt.plot(x_c, y_c, "-r") if show_animation: plt.grid(True) @@ -323,6 +333,7 @@ def lane_state_sampling_test1(): def main(): + planner.show_animation = show_animation uniform_terminal_state_sampling_test1() uniform_terminal_state_sampling_test2() biased_terminal_state_sampling_test1() diff --git a/PathPlanning/TimeBasedPathPlanning/BaseClasses.py b/PathPlanning/TimeBasedPathPlanning/BaseClasses.py new file mode 100644 index 0000000000..745cde45fb --- /dev/null +++ b/PathPlanning/TimeBasedPathPlanning/BaseClasses.py @@ -0,0 +1,49 @@ +from abc import ABC, abstractmethod +from dataclasses import dataclass +from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import ( + Grid, + Position, +) +from PathPlanning.TimeBasedPathPlanning.Node import NodePath +import random +import numpy.random as numpy_random + +# Seed randomness for reproducibility +RANDOM_SEED = 50 +random.seed(RANDOM_SEED) +numpy_random.seed(RANDOM_SEED) + +class SingleAgentPlanner(ABC): + """ + Base class for single agent planners + """ + + @staticmethod + @abstractmethod + def plan(grid: Grid, start: Position, goal: Position, verbose: bool = False) -> NodePath: + pass + +@dataclass +class StartAndGoal: + # Index of this agent + index: int + # Start position of the robot + start: Position + # Goal position of the robot + goal: Position + + def distance_start_to_goal(self) -> float: + return pow(self.goal.x - self.start.x, 2) + pow(self.goal.y - self.start.y, 2) + +class MultiAgentPlanner(ABC): + """ + Base class for multi-agent planners + """ + + @staticmethod + @abstractmethod + def plan(grid: Grid, start_and_goal_positions: list[StartAndGoal], single_agent_planner_class: SingleAgentPlanner, verbose: bool = False) -> tuple[list[StartAndGoal], list[NodePath]]: + """ + Plan for all agents. Returned paths are in order corresponding to the returned list of `StartAndGoal` objects + """ + pass \ No newline at end of file diff --git a/PathPlanning/TimeBasedPathPlanning/GridWithDynamicObstacles.py b/PathPlanning/TimeBasedPathPlanning/GridWithDynamicObstacles.py new file mode 100644 index 0000000000..ccc2989001 --- /dev/null +++ b/PathPlanning/TimeBasedPathPlanning/GridWithDynamicObstacles.py @@ -0,0 +1,370 @@ +""" +This file implements a grid with a 3d reservation matrix with dimensions for x, y, and time. There +is also infrastructure to generate dynamic obstacles that move around the grid. The obstacles' paths +are stored in the reservation matrix on creation. +""" +import numpy as np +import matplotlib.pyplot as plt +from enum import Enum +from dataclasses import dataclass +from PathPlanning.TimeBasedPathPlanning.Node import NodePath, Position + +@dataclass +class Interval: + start_time: int + end_time: int + +class ObstacleArrangement(Enum): + # Random obstacle positions and movements + RANDOM = 0 + # Obstacles start in a line in y at center of grid and move side-to-side in x + ARRANGEMENT1 = 1 + # Static obstacle arrangement + NARROW_CORRIDOR = 2 + +""" +Generates a 2d numpy array with lists for elements. +""" +def empty_2d_array_of_lists(x: int, y: int) -> np.ndarray: + arr = np.empty((x, y), dtype=object) + # assign each element individually - np.full creates references to the same list + arr[:] = [[[] for _ in range(y)] for _ in range(x)] + return arr + +class Grid: + # Set in constructor + grid_size: np.ndarray + reservation_matrix: np.ndarray + obstacle_paths: list[list[Position]] = [] + # Obstacles will never occupy these points. Useful to avoid impossible scenarios + obstacle_avoid_points: list[Position] = [] + + # Number of time steps in the simulation + time_limit: int + + # Logging control + verbose = False + + def __init__( + self, + grid_size: np.ndarray, + num_obstacles: int = 40, + obstacle_avoid_points: list[Position] = [], + obstacle_arrangement: ObstacleArrangement = ObstacleArrangement.RANDOM, + time_limit: int = 100, + ): + self.obstacle_avoid_points = obstacle_avoid_points + self.time_limit = time_limit + self.grid_size = grid_size + self.reservation_matrix = np.zeros((grid_size[0], grid_size[1], self.time_limit)) + + if num_obstacles > self.grid_size[0] * self.grid_size[1]: + raise Exception("Number of obstacles is greater than grid size!") + + if obstacle_arrangement == ObstacleArrangement.RANDOM: + self.obstacle_paths = self.generate_dynamic_obstacles(num_obstacles) + elif obstacle_arrangement == ObstacleArrangement.ARRANGEMENT1: + self.obstacle_paths = self.obstacle_arrangement_1(num_obstacles) + elif obstacle_arrangement == ObstacleArrangement.NARROW_CORRIDOR: + self.obstacle_paths = self.generate_narrow_corridor_obstacles(num_obstacles) + + for i, path in enumerate(self.obstacle_paths): + obs_idx = i + 1 # avoid using 0 - that indicates free space in the grid + for t, position in enumerate(path): + # Reserve old & new position at this time step + if t > 0: + self.reservation_matrix[path[t - 1].x, path[t - 1].y, t] = obs_idx + self.reservation_matrix[position.x, position.y, t] = obs_idx + + """ + Generate dynamic obstacles that move around the grid. Initial positions and movements are random + """ + def generate_dynamic_obstacles(self, obs_count: int) -> list[list[Position]]: + obstacle_paths = [] + for _ in range(0, obs_count): + # Sample until a free starting space is found + initial_position = self.sample_random_position() + while not self.valid_obstacle_position(initial_position, 0): + initial_position = self.sample_random_position() + + positions = [initial_position] + if self.verbose: + print("Obstacle initial position: ", initial_position) + + # Encourage obstacles to mostly stay in place - too much movement leads to chaotic planning scenarios + # that are not fun to watch + weights = [0.05, 0.05, 0.05, 0.05, 0.8] + diffs = [ + Position(0, 1), + Position(0, -1), + Position(1, 0), + Position(-1, 0), + Position(0, 0), + ] + + for t in range(1, self.time_limit - 1): + sampled_indices = np.random.choice( + len(diffs), size=5, replace=False, p=weights + ) + rand_diffs = [diffs[i] for i in sampled_indices] + + valid_position = None + for diff in rand_diffs: + new_position = positions[-1] + diff + + if not self.valid_obstacle_position(new_position, t): + continue + + valid_position = new_position + break + + # Impossible situation for obstacle - stay in place + # -> this can happen if the oaths of other obstacles this one + if valid_position is None: + valid_position = positions[-1] + + positions.append(valid_position) + + obstacle_paths.append(positions) + + return obstacle_paths + + """ + Generate a line of obstacles in y at the center of the grid that move side-to-side in x + Bottom half start moving right, top half start moving left. If `obs_count` is less than the length of + the grid, only the first `obs_count` obstacles will be generated. + """ + def obstacle_arrangement_1(self, obs_count: int) -> list[list[Position]]: + obstacle_paths = [] + half_grid_x = self.grid_size[0] // 2 + half_grid_y = self.grid_size[1] // 2 + + for y_idx in range(0, min(obs_count, self.grid_size[1])): + moving_right = y_idx < half_grid_y + position = Position(half_grid_x, y_idx) + path = [position] + + for t in range(1, self.time_limit - 1): + # sit in place every other time step + if t % 2 == 0: + path.append(position) + continue + + # first check if we should switch direction (at edge of grid) + if (moving_right and position.x == self.grid_size[0] - 1) or ( + not moving_right and position.x == 0 + ): + moving_right = not moving_right + # step in direction + position = Position( + position.x + (1 if moving_right else -1), position.y + ) + path.append(position) + + obstacle_paths.append(path) + + return obstacle_paths + + def generate_narrow_corridor_obstacles(self, obs_count: int) -> list[list[Position]]: + obstacle_paths = [] + + for y in range(0, self.grid_size[1]): + if y > obs_count: + break + + if y == self.grid_size[1] // 2: + # Skip the middle row + continue + + obstacle_path = [] + x = self.grid_size[0] // 2 # middle of the grid + for t in range(0, self.time_limit - 1): + obstacle_path.append(Position(x, y)) + + obstacle_paths.append(obstacle_path) + + return obstacle_paths + + """ + Check if the given position is valid at time t + + input: + position (Position): (x, y) position + t (int): time step + + output: + bool: True if position/time combination is valid, False otherwise + """ + def valid_position(self, position: Position, t: int) -> bool: + # Check if position is in grid + if not self.inside_grid_bounds(position): + return False + + # Check if position is not occupied at time t + return self.reservation_matrix[position.x, position.y, t] == 0 + + """ + Returns True if the given position is valid at time t and is not in the set of obstacle_avoid_points + """ + def valid_obstacle_position(self, position: Position, t: int) -> bool: + return ( + self.valid_position(position, t) + and position not in self.obstacle_avoid_points + ) + + """ + Returns True if the given position is within the grid's boundaries + """ + def inside_grid_bounds(self, position: Position) -> bool: + return ( + position.x >= 0 + and position.x < self.grid_size[0] + and position.y >= 0 + and position.y < self.grid_size[1] + ) + + """ + Sample a random position that is within the grid's boundaries + + output: + Position: (x, y) position + """ + def sample_random_position(self) -> Position: + return Position( + np.random.randint(0, self.grid_size[0]), + np.random.randint(0, self.grid_size[1]), + ) + + """ + Returns a tuple of (x_positions, y_positions) of the obstacles at time t + """ + def get_obstacle_positions_at_time(self, t: int) -> tuple[list[int], list[int]]: + x_positions = [] + y_positions = [] + for obs_path in self.obstacle_paths: + x_positions.append(obs_path[t].x) + y_positions.append(obs_path[t].y) + return (x_positions, y_positions) + + """ + Returns safe intervals for each cell. + """ + def get_safe_intervals(self) -> np.ndarray: + intervals = empty_2d_array_of_lists(self.grid_size[0], self.grid_size[1]) + for x in range(intervals.shape[0]): + for y in range(intervals.shape[1]): + intervals[x, y] = self.get_safe_intervals_at_cell(Position(x, y)) + + return intervals + + """ + Generate the safe intervals for a given cell. The intervals will be in order of start time. + ex: Interval (2, 3) will be before Interval (4, 5) + """ + def get_safe_intervals_at_cell(self, cell: Position) -> list[Interval]: + vals = self.reservation_matrix[cell.x, cell.y, :] + # Find where the array is zero + zero_mask = (vals == 0) + + # Identify transitions between zero and nonzero elements + diff = np.diff(zero_mask.astype(int)) + + # Start indices: where zeros begin (1 after a nonzero) + start_indices = np.where(diff == 1)[0] + 1 + + # End indices: where zeros stop (just before a nonzero) + end_indices = np.where(diff == -1)[0] + + # Handle edge cases if the array starts or ends with zeros + if zero_mask[0]: # If the first element is zero, add index 0 to start_indices + start_indices = np.insert(start_indices, 0, 0) + if zero_mask[-1]: # If the last element is zero, add the last index to end_indices + end_indices = np.append(end_indices, len(vals) - 1) + + # Create pairs of (first zero, last zero) + intervals = [Interval(int(start), int(end)) for start, end in zip(start_indices, end_indices)] + + # Remove intervals where a cell is only free for one time step. Those intervals not provide enough time to + # move into and out of the cell each take 1 time step, and the cell is considered occupied during + # both the time step when it is entering the cell, and the time step when it is leaving the cell. + intervals = [interval for interval in intervals if interval.start_time != interval.end_time] + return intervals + + """ + Reserve an agent's path in the grid. Raises an exception if the agent's index is 0, or if a position is + already reserved by a different agent. + """ + def reserve_path(self, node_path: NodePath, agent_index: int): + if agent_index == 0: + raise Exception("Agent index cannot be 0") + + for i, node in enumerate(node_path.path): + reservation_finish_time = node.time + 1 + if i < len(node_path.path) - 1: + reservation_finish_time = node_path.path[i + 1].time + + self.reserve_position(node.position, agent_index, Interval(node.time, reservation_finish_time)) + + """ + Reserve a position for the provided agent during the provided time interval. + Raises an exception if the agent's index is 0, or if the position is already reserved by a different agent during the interval. + """ + def reserve_position(self, position: Position, agent_index: int, interval: Interval): + if agent_index == 0: + raise Exception("Agent index cannot be 0") + + for t in range(interval.start_time, interval.end_time + 1): + current_reserver = self.reservation_matrix[position.x, position.y, t] + if current_reserver not in [0, agent_index]: + raise Exception( + f"Agent {agent_index} tried to reserve a position already reserved by another agent: {position} at time {t}, reserved by {current_reserver}" + ) + self.reservation_matrix[position.x, position.y, t] = agent_index + + """ + Clears the initial reservation for an agent by clearing reservations at its start position with its index for + from time 0 to the time limit. + """ + def clear_initial_reservation(self, position: Position, agent_index: int): + for t in range(self.time_limit): + if self.reservation_matrix[position.x, position.y, t] == agent_index: + self.reservation_matrix[position.x, position.y, t] = 0 + +show_animation = True + +def main(): + grid = Grid( + np.array([11, 11]), + num_obstacles=10, + obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1, + ) + + if not show_animation: + return + + fig = plt.figure(figsize=(8, 7)) + ax = fig.add_subplot( + autoscale_on=False, + xlim=(0, grid.grid_size[0] - 1), + ylim=(0, grid.grid_size[1] - 1), + ) + ax.set_aspect("equal") + ax.grid() + ax.set_xticks(np.arange(0, 11, 1)) + ax.set_yticks(np.arange(0, 11, 1)) + (obs_points,) = ax.plot([], [], "ro", ms=15) + + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + "key_release_event", lambda event: [exit(0) if event.key == "escape" else None] + ) + + for i in range(0, grid.time_limit - 1): + obs_positions = grid.get_obstacle_positions_at_time(i) + obs_points.set_data(obs_positions[0], obs_positions[1]) + plt.pause(0.2) + plt.show() + + +if __name__ == "__main__": + main() diff --git a/PathPlanning/TimeBasedPathPlanning/Node.py b/PathPlanning/TimeBasedPathPlanning/Node.py new file mode 100644 index 0000000000..728eebb676 --- /dev/null +++ b/PathPlanning/TimeBasedPathPlanning/Node.py @@ -0,0 +1,99 @@ +from dataclasses import dataclass +from functools import total_ordering +import numpy as np +from typing import Sequence + +@dataclass(order=True) +class Position: + x: int + y: int + + def as_ndarray(self) -> np.ndarray: + return np.array([self.x, self.y]) + + def __add__(self, other): + if isinstance(other, Position): + return Position(self.x + other.x, self.y + other.y) + raise NotImplementedError( + f"Addition not supported for Position and {type(other)}" + ) + + def __sub__(self, other): + if isinstance(other, Position): + return Position(self.x - other.x, self.y - other.y) + raise NotImplementedError( + f"Subtraction not supported for Position and {type(other)}" + ) + + def __hash__(self): + return hash((self.x, self.y)) + +@dataclass() +# Note: Total_ordering is used instead of adding `order=True` to the @dataclass decorator because +# this class needs to override the __lt__ and __eq__ methods to ignore parent_index. Parent +# index is just used to track the path found by the algorithm, and has no effect on the quality +# of a node. +@total_ordering +class Node: + position: Position + time: int + heuristic: int + parent_index: int + + """ + This is what is used to drive node expansion. The node with the lowest value is expanded next. + This comparison prioritizes the node with the lowest cost-to-come (self.time) + cost-to-go (self.heuristic) + """ + def __lt__(self, other: object): + if not isinstance(other, Node): + return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}") + return (self.time + self.heuristic) < (other.time + other.heuristic) + + """ + Note: cost and heuristic are not included in eq or hash, since they will always be the same + for a given (position, time) pair. Including either cost or heuristic would be redundant. + """ + def __eq__(self, other: object): + if not isinstance(other, Node): + return NotImplementedError(f"Cannot compare Node with object of type: {type(other)}") + return self.position == other.position and self.time == other.time + + def __hash__(self): + return hash((self.position, self.time)) + +class NodePath: + path: Sequence[Node] + positions_at_time: dict[int, Position] + # Number of nodes expanded while finding this path + expanded_node_count: int + + def __init__(self, path: Sequence[Node], expanded_node_count: int): + self.path = path + self.expanded_node_count = expanded_node_count + + self.positions_at_time = {} + for i, node in enumerate(path): + reservation_finish_time = node.time + 1 + if i < len(path) - 1: + reservation_finish_time = path[i + 1].time + + for t in range(node.time, reservation_finish_time): + self.positions_at_time[t] = node.position + + """ + Get the position of the path at a given time + """ + def get_position(self, time: int) -> Position | None: + return self.positions_at_time.get(time) + + """ + Time stamp of the last node in the path + """ + def goal_reached_time(self) -> int: + return self.path[-1].time + + def __repr__(self): + repr_string = "" + for i, node in enumerate(self.path): + repr_string += f"{i}: {node}\n" + return repr_string \ No newline at end of file diff --git a/PathPlanning/TimeBasedPathPlanning/Plotting.py b/PathPlanning/TimeBasedPathPlanning/Plotting.py new file mode 100644 index 0000000000..7cd1f615d8 --- /dev/null +++ b/PathPlanning/TimeBasedPathPlanning/Plotting.py @@ -0,0 +1,135 @@ +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.backend_bases import KeyEvent +from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import ( + Grid, + Position, +) +from PathPlanning.TimeBasedPathPlanning.BaseClasses import StartAndGoal +from PathPlanning.TimeBasedPathPlanning.Node import NodePath + +''' +Plot a single agent path. +''' +def PlotNodePath(grid: Grid, start: Position, goal: Position, path: NodePath): + fig = plt.figure(figsize=(10, 7)) + ax = fig.add_subplot( + autoscale_on=False, + xlim=(0, grid.grid_size[0] - 1), + ylim=(0, grid.grid_size[1] - 1), + ) + ax.set_aspect("equal") + ax.grid() + ax.set_xticks(np.arange(0, grid.grid_size[0], 1)) + ax.set_yticks(np.arange(0, grid.grid_size[1], 1)) + + (start_and_goal,) = ax.plot([], [], "mD", ms=15, label="Start and Goal") + start_and_goal.set_data([start.x, goal.x], [start.y, goal.y]) + (obs_points,) = ax.plot([], [], "ro", ms=15, label="Obstacles") + (path_points,) = ax.plot([], [], "bo", ms=10, label="Path Found") + ax.legend(bbox_to_anchor=(1.05, 1)) + + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + "key_release_event", + lambda event: [exit(0) if event.key == "escape" else None] + if isinstance(event, KeyEvent) else None + ) + + for i in range(0, path.goal_reached_time()): + obs_positions = grid.get_obstacle_positions_at_time(i) + obs_points.set_data(obs_positions[0], obs_positions[1]) + path_position = path.get_position(i) + if not path_position: + raise Exception(f"Path position not found for time {i}.") + + path_points.set_data([path_position.x], [path_position.y]) + plt.pause(0.2) + plt.show() + +''' +Plot a series of agent paths. +''' +def PlotNodePaths(grid: Grid, start_and_goals: list[StartAndGoal], paths: list[NodePath]): + fig = plt.figure(figsize=(10, 7)) + + ax = fig.add_subplot( + autoscale_on=False, + xlim=(0, grid.grid_size[0] - 1), + ylim=(0, grid.grid_size[1] - 1), + ) + ax.set_aspect("equal") + ax.grid() + ax.set_xticks(np.arange(0, grid.grid_size[0], 1)) + ax.set_yticks(np.arange(0, grid.grid_size[1], 1)) + + # Plot start and goal positions for each agent + colors = [] # generated randomly in loop + markers = ['D', 's', '^', 'o', 'p'] # Different markers for visual distinction + + # Create plots for start and goal positions + start_and_goal_plots = [] + for i, path in enumerate(paths): + marker_idx = i % len(markers) + agent_id = start_and_goals[i].index + start = start_and_goals[i].start + goal = start_and_goals[i].goal + + color = np.random.rand(3,) + colors.append(color) + sg_plot, = ax.plot([], [], markers[marker_idx], c=color, ms=15, + label=f"Agent {agent_id} Start/Goal") + sg_plot.set_data([start.x, goal.x], [start.y, goal.y]) + start_and_goal_plots.append(sg_plot) + + # Plot for obstacles + (obs_points,) = ax.plot([], [], "ro", ms=15, label="Obstacles") + + # Create plots for each agent's path + path_plots = [] + for i, path in enumerate(paths): + agent_id = start_and_goals[i].index + path_plot, = ax.plot([], [], "o", c=colors[i], ms=10, + label=f"Agent {agent_id} Path") + path_plots.append(path_plot) + + ax.legend(bbox_to_anchor=(1.05, 1)) + + # For stopping simulation with the esc key + plt.gcf().canvas.mpl_connect( + "key_release_event", + lambda event: [exit(0) if event.key == "escape" else None] + if isinstance(event, KeyEvent) else None + ) + + # Find the maximum time across all paths + max_time = max(path.goal_reached_time() for path in paths) + + # Animation loop + for i in range(0, max_time + 1): + # Update obstacle positions + obs_positions = grid.get_obstacle_positions_at_time(i) + obs_points.set_data(obs_positions[0], obs_positions[1]) + + # Update each agent's position + for (j, path) in enumerate(paths): + path_positions = [] + if i <= path.goal_reached_time(): + res = path.get_position(i) + if not res: + print(path) + print(i) + path_position = path.get_position(i) + if not path_position: + raise Exception(f"Path position not found for time {i}.") + + # Verify position is valid + assert not path_position in obs_positions + assert not path_position in path_positions + path_positions.append(path_position) + + path_plots[j].set_data([path_position.x], [path_position.y]) + + plt.pause(0.2) + + plt.show() \ No newline at end of file diff --git a/PathPlanning/TimeBasedPathPlanning/PriorityBasedPlanner.py b/PathPlanning/TimeBasedPathPlanning/PriorityBasedPlanner.py new file mode 100644 index 0000000000..2573965cf6 --- /dev/null +++ b/PathPlanning/TimeBasedPathPlanning/PriorityBasedPlanner.py @@ -0,0 +1,95 @@ +""" +Priority Based Planner for multi agent path planning. +The planner generates an order to plan in, and generates plans for the robots in that order. Each planned +path is reserved in the grid, and all future plans must avoid that path. + +Algorithm outlined in section III of this paper: https://pure.tudelft.nl/ws/portalfiles/portal/67074672/07138650.pdf +""" + +import numpy as np +from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import ( + Grid, + Interval, + ObstacleArrangement, + Position, +) +from PathPlanning.TimeBasedPathPlanning.BaseClasses import MultiAgentPlanner, StartAndGoal +from PathPlanning.TimeBasedPathPlanning.Node import NodePath +from PathPlanning.TimeBasedPathPlanning.BaseClasses import SingleAgentPlanner +from PathPlanning.TimeBasedPathPlanning.SafeInterval import SafeIntervalPathPlanner +from PathPlanning.TimeBasedPathPlanning.Plotting import PlotNodePaths +import time + +class PriorityBasedPlanner(MultiAgentPlanner): + + @staticmethod + def plan(grid: Grid, start_and_goals: list[StartAndGoal], single_agent_planner_class: SingleAgentPlanner, verbose: bool = False) -> tuple[list[StartAndGoal], list[NodePath]]: + """ + Generate a path from the start to the goal for each agent in the `start_and_goals` list. + Returns the re-ordered StartAndGoal combinations, and a list of path plans. The order of the plans + corresponds to the order of the `start_and_goals` list. + """ + print(f"Using single-agent planner: {single_agent_planner_class}") + + # Reserve initial positions + for start_and_goal in start_and_goals: + grid.reserve_position(start_and_goal.start, start_and_goal.index, Interval(0, 10)) + + # Plan in descending order of distance from start to goal + start_and_goals = sorted(start_and_goals, + key=lambda item: item.distance_start_to_goal(), + reverse=True) + + paths = [] + for start_and_goal in start_and_goals: + if verbose: + print(f"\nPlanning for agent: {start_and_goal}" ) + + grid.clear_initial_reservation(start_and_goal.start, start_and_goal.index) + path = single_agent_planner_class.plan(grid, start_and_goal.start, start_and_goal.goal, verbose) + + if path is None: + print(f"Failed to find path for {start_and_goal}") + return [] + + agent_index = start_and_goal.index + grid.reserve_path(path, agent_index) + paths.append(path) + + return (start_and_goals, paths) + +verbose = False +show_animation = True +def main(): + grid_side_length = 21 + + start_and_goals = [StartAndGoal(i, Position(1, i), Position(19, 19-i)) for i in range(1, 16)] + obstacle_avoid_points = [pos for item in start_and_goals for pos in (item.start, item.goal)] + + grid = Grid( + np.array([grid_side_length, grid_side_length]), + num_obstacles=250, + obstacle_avoid_points=obstacle_avoid_points, + # obstacle_arrangement=ObstacleArrangement.NARROW_CORRIDOR, + obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1, + # obstacle_arrangement=ObstacleArrangement.RANDOM, + ) + + start_time = time.time() + start_and_goals, paths = PriorityBasedPlanner.plan(grid, start_and_goals, SafeIntervalPathPlanner, verbose) + + runtime = time.time() - start_time + print(f"\nPlanning took: {runtime:.5f} seconds") + + if verbose: + print(f"Paths:") + for path in paths: + print(f"{path}\n") + + if not show_animation: + return + + PlotNodePaths(grid, start_and_goals, paths) + +if __name__ == "__main__": + main() \ No newline at end of file diff --git a/PathPlanning/TimeBasedPathPlanning/SafeInterval.py b/PathPlanning/TimeBasedPathPlanning/SafeInterval.py new file mode 100644 index 0000000000..446847ac6d --- /dev/null +++ b/PathPlanning/TimeBasedPathPlanning/SafeInterval.py @@ -0,0 +1,212 @@ +""" +Safe interval path planner + This script implements a safe-interval path planner for a 2d grid with dynamic obstacles. It is faster than + SpaceTime A* because it reduces the number of redundant node expansions by pre-computing regions of adjacent + time steps that are safe ("safe intervals") at each position. This allows the algorithm to skip expanding nodes + that are in intervals that have already been visited earlier. + + Reference: https://www.cs.cmu.edu/~maxim/files/sipp_icra11.pdf +""" + +import numpy as np +from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import ( + Grid, + Interval, + ObstacleArrangement, + Position, + empty_2d_array_of_lists, +) +from PathPlanning.TimeBasedPathPlanning.BaseClasses import SingleAgentPlanner +from PathPlanning.TimeBasedPathPlanning.Node import Node, NodePath +from PathPlanning.TimeBasedPathPlanning.Plotting import PlotNodePath + +import heapq +from dataclasses import dataclass +from functools import total_ordering +import time + +@dataclass() +# Note: Total_ordering is used instead of adding `order=True` to the @dataclass decorator because +# this class needs to override the __lt__ and __eq__ methods to ignore parent_index. The Parent +# index and interval member variables are just used to track the path found by the algorithm, +# and has no effect on the quality of a node. +@total_ordering +class SIPPNode(Node): + interval: Interval + +@dataclass +class EntryTimeAndInterval: + entry_time: int + interval: Interval + +class SafeIntervalPathPlanner(SingleAgentPlanner): + + """ + Generate a plan given the loaded problem statement. Raises an exception if it fails to find a path. + Arguments: + verbose (bool): set to True to print debug information + """ + @staticmethod + def plan(grid: Grid, start: Position, goal: Position, verbose: bool = False) -> NodePath: + + safe_intervals = grid.get_safe_intervals() + + open_set: list[SIPPNode] = [] + first_node_interval = safe_intervals[start.x, start.y][0] + heapq.heappush( + open_set, SIPPNode(start, 0, SafeIntervalPathPlanner.calculate_heuristic(start, goal), -1, first_node_interval) + ) + + expanded_list: list[SIPPNode] = [] + visited_intervals = empty_2d_array_of_lists(grid.grid_size[0], grid.grid_size[1]) + while open_set: + expanded_node: SIPPNode = heapq.heappop(open_set) + if verbose: + print("Expanded node:", expanded_node) + + if expanded_node.time + 1 >= grid.time_limit: + if verbose: + print(f"\tSkipping node that is past time limit: {expanded_node}") + continue + + if expanded_node.position == goal: + if verbose: + print(f"Found path to goal after {len(expanded_list)} expansions") + + path = [] + path_walker: SIPPNode = expanded_node + while True: + path.append(path_walker) + if path_walker.parent_index == -1: + break + path_walker = expanded_list[path_walker.parent_index] + + # reverse path so it goes start -> goal + path.reverse() + return NodePath(path, len(expanded_list)) + + expanded_idx = len(expanded_list) + expanded_list.append(expanded_node) + entry_time_and_node = EntryTimeAndInterval(expanded_node.time, expanded_node.interval) + add_entry_to_visited_intervals_array(entry_time_and_node, visited_intervals, expanded_node) + + for child in SafeIntervalPathPlanner.generate_successors(grid, goal, expanded_node, expanded_idx, safe_intervals, visited_intervals): + heapq.heappush(open_set, child) + + raise Exception("No path found") + + """ + Generate list of possible successors of the provided `parent_node` that are worth expanding + """ + @staticmethod + def generate_successors( + grid: Grid, goal: Position, parent_node: SIPPNode, parent_node_idx: int, intervals: np.ndarray, visited_intervals: np.ndarray + ) -> list[SIPPNode]: + new_nodes = [] + diffs = [ + Position(0, 0), + Position(1, 0), + Position(-1, 0), + Position(0, 1), + Position(0, -1), + ] + for diff in diffs: + new_pos = parent_node.position + diff + if not grid.inside_grid_bounds(new_pos): + continue + + current_interval = parent_node.interval + + new_cell_intervals: list[Interval] = intervals[new_pos.x, new_pos.y] + for interval in new_cell_intervals: + # if interval starts after current ends, break + # assumption: intervals are sorted by start time, so all future intervals will hit this condition as well + if interval.start_time > current_interval.end_time: + break + + # if interval ends before current starts, skip + if interval.end_time < current_interval.start_time: + continue + + # if we have already expanded a node in this interval with a <= starting time, skip + better_node_expanded = False + for visited in visited_intervals[new_pos.x, new_pos.y]: + if interval == visited.interval and visited.entry_time <= parent_node.time + 1: + better_node_expanded = True + break + if better_node_expanded: + continue + + # We know there is a node worth expanding. Generate successor at the earliest possible time the + # new interval can be entered + for possible_t in range(max(parent_node.time + 1, interval.start_time), min(current_interval.end_time, interval.end_time)): + if grid.valid_position(new_pos, possible_t): + new_nodes.append(SIPPNode( + new_pos, + # entry is max of interval start and parent node time + 1 (get there as soon as possible) + max(interval.start_time, parent_node.time + 1), + SafeIntervalPathPlanner.calculate_heuristic(new_pos, goal), + parent_node_idx, + interval, + )) + # break because all t's after this will make nodes with a higher cost, the same heuristic, and are in the same interval + break + + return new_nodes + + """ + Calculate the heuristic for a given position - Manhattan distance to the goal + """ + @staticmethod + def calculate_heuristic(position: Position, goal: Position) -> int: + diff = goal - position + return abs(diff.x) + abs(diff.y) + + +""" +Adds a new entry to the visited intervals array. If the entry is already present, the entry time is updated if the new +entry time is better. Otherwise, the entry is added to `visited_intervals` at the position of `expanded_node`. +""" +def add_entry_to_visited_intervals_array(entry_time_and_interval: EntryTimeAndInterval, visited_intervals: np.ndarray, expanded_node: SIPPNode): + # if entry is present, update entry time if better + for existing_entry_and_interval in visited_intervals[expanded_node.position.x, expanded_node.position.y]: + if existing_entry_and_interval.interval == entry_time_and_interval.interval: + existing_entry_and_interval.entry_time = min(existing_entry_and_interval.entry_time, entry_time_and_interval.entry_time) + + # Otherwise, append + visited_intervals[expanded_node.position.x, expanded_node.position.y].append(entry_time_and_interval) + + +show_animation = True +verbose = False + +def main(): + start = Position(1, 18) + goal = Position(19, 19) + grid_side_length = 21 + + start_time = time.time() + + grid = Grid( + np.array([grid_side_length, grid_side_length]), + num_obstacles=250, + obstacle_avoid_points=[start, goal], + obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1, + # obstacle_arrangement=ObstacleArrangement.RANDOM, + ) + + path = SafeIntervalPathPlanner.plan(grid, start, goal, verbose) + runtime = time.time() - start_time + print(f"Planning took: {runtime:.5f} seconds") + + if verbose: + print(f"Path: {path}") + + if not show_animation: + return + + PlotNodePath(grid, start, goal, path) + + +if __name__ == "__main__": + main() diff --git a/PathPlanning/TimeBasedPathPlanning/SpaceTimeAStar.py b/PathPlanning/TimeBasedPathPlanning/SpaceTimeAStar.py new file mode 100644 index 0000000000..b85569f5dc --- /dev/null +++ b/PathPlanning/TimeBasedPathPlanning/SpaceTimeAStar.py @@ -0,0 +1,139 @@ +""" +Space-time A* Algorithm + This script demonstrates the Space-time A* algorithm for path planning in a grid world with moving obstacles. + This algorithm is different from normal 2D A* in one key way - the cost (often notated as g(n)) is + the number of time steps it took to get to a given node, instead of the number of cells it has + traversed. This ensures the path is time-optimal, while respecting any dynamic obstacles in the environment. + + Reference: https://www.davidsilver.uk/wp-content/uploads/2020/03/coop-path-AIWisdom.pdf +""" + +import numpy as np +from PathPlanning.TimeBasedPathPlanning.GridWithDynamicObstacles import ( + Grid, + ObstacleArrangement, + Position, +) +from PathPlanning.TimeBasedPathPlanning.Node import Node, NodePath +import heapq +from collections.abc import Generator +import time +from PathPlanning.TimeBasedPathPlanning.BaseClasses import SingleAgentPlanner +from PathPlanning.TimeBasedPathPlanning.Plotting import PlotNodePath + +class SpaceTimeAStar(SingleAgentPlanner): + + @staticmethod + def plan(grid: Grid, start: Position, goal: Position, verbose: bool = False) -> NodePath: + open_set: list[Node] = [] + heapq.heappush( + open_set, Node(start, 0, SpaceTimeAStar.calculate_heuristic(start, goal), -1) + ) + + expanded_list: list[Node] = [] + expanded_set: set[Node] = set() + while open_set: + expanded_node: Node = heapq.heappop(open_set) + if verbose: + print("Expanded node:", expanded_node) + + if expanded_node.time + 1 >= grid.time_limit: + if verbose: + print(f"\tSkipping node that is past time limit: {expanded_node}") + continue + + if expanded_node.position == goal: + if verbose: + print(f"Found path to goal after {len(expanded_list)} expansions") + + path = [] + path_walker: Node = expanded_node + while True: + path.append(path_walker) + if path_walker.parent_index == -1: + break + path_walker = expanded_list[path_walker.parent_index] + + # reverse path so it goes start -> goal + path.reverse() + return NodePath(path, len(expanded_set)) + + expanded_idx = len(expanded_list) + expanded_list.append(expanded_node) + expanded_set.add(expanded_node) + + for child in SpaceTimeAStar.generate_successors(grid, goal, expanded_node, expanded_idx, verbose, expanded_set): + heapq.heappush(open_set, child) + + raise Exception("No path found") + + """ + Generate possible successors of the provided `parent_node` + """ + @staticmethod + def generate_successors( + grid: Grid, goal: Position, parent_node: Node, parent_node_idx: int, verbose: bool, expanded_set: set[Node] + ) -> Generator[Node, None, None]: + diffs = [ + Position(0, 0), + Position(1, 0), + Position(-1, 0), + Position(0, 1), + Position(0, -1), + ] + for diff in diffs: + new_pos = parent_node.position + diff + new_node = Node( + new_pos, + parent_node.time + 1, + SpaceTimeAStar.calculate_heuristic(new_pos, goal), + parent_node_idx, + ) + + if new_node in expanded_set: + continue + + # Check if the new node is valid for the next 2 time steps - one step to enter, and another to leave + if all([grid.valid_position(new_pos, parent_node.time + dt) for dt in [1, 2]]): + if verbose: + print("\tNew successor node: ", new_node) + yield new_node + + @staticmethod + def calculate_heuristic(position: Position, goal: Position) -> int: + diff = goal - position + return abs(diff.x) + abs(diff.y) + + +show_animation = True +verbose = False + +def main(): + start = Position(1, 5) + goal = Position(19, 19) + grid_side_length = 21 + + start_time = time.time() + + grid = Grid( + np.array([grid_side_length, grid_side_length]), + num_obstacles=40, + obstacle_avoid_points=[start, goal], + obstacle_arrangement=ObstacleArrangement.ARRANGEMENT1, + ) + + path = SpaceTimeAStar.plan(grid, start, goal, verbose) + + runtime = time.time() - start_time + print(f"Planning took: {runtime:.5f} seconds") + + if verbose: + print(f"Path: {path}") + + if not show_animation: + return + + PlotNodePath(grid, start, goal, path) + +if __name__ == "__main__": + main() diff --git a/PathPlanning/TimeBasedPathPlanning/__init__.py b/PathPlanning/TimeBasedPathPlanning/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/PathPlanning/VisibilityRoadMap/geometry.py b/PathPlanning/VisibilityRoadMap/geometry.py index c4d73837c9..b15cdb8a43 100644 --- a/PathPlanning/VisibilityRoadMap/geometry.py +++ b/PathPlanning/VisibilityRoadMap/geometry.py @@ -1,4 +1,5 @@ class Geometry: + class Point: def __init__(self, x, y): self.x = x @@ -40,4 +41,4 @@ def orientation(p, q, r): if (o4 == 0) and on_segment(p2, q1, q2): return True - return False \ No newline at end of file + return False diff --git a/PathPlanning/VisibilityRoadMap/visibility_road_map.py b/PathPlanning/VisibilityRoadMap/visibility_road_map.py index a677804440..5f7ffadd16 100644 --- a/PathPlanning/VisibilityRoadMap/visibility_road_map.py +++ b/PathPlanning/VisibilityRoadMap/visibility_road_map.py @@ -6,31 +6,29 @@ """ -import os import sys import math import numpy as np import matplotlib.pyplot as plt +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) -from PathPlanning.VisibilityRoadMap.geometry import Geometry - -sys.path.append(os.path.dirname(os.path.abspath(__file__)) + - "/../VoronoiRoadMap/") -from dijkstra_search import DijkstraSearch +from VisibilityRoadMap.geometry import Geometry +from VoronoiRoadMap.dijkstra_search import DijkstraSearch show_animation = True class VisibilityRoadMap: - def __init__(self, robot_radius, do_plot=False): - self.robot_radius = robot_radius + def __init__(self, expand_distance, do_plot=False): + self.expand_distance = expand_distance self.do_plot = do_plot def planning(self, start_x, start_y, goal_x, goal_y, obstacles): - nodes = self.generate_graph_node(start_x, start_y, goal_x, goal_y, - obstacles) + nodes = self.generate_visibility_nodes(start_x, start_y, + goal_x, goal_y, obstacles) road_map_info = self.generate_road_map_info(nodes, obstacles) @@ -48,7 +46,8 @@ def planning(self, start_x, start_y, goal_x, goal_y, obstacles): return rx, ry - def generate_graph_node(self, start_x, start_y, goal_x, goal_y, obstacles): + def generate_visibility_nodes(self, start_x, start_y, goal_x, goal_y, + obstacles): # add start and goal as nodes nodes = [DijkstraSearch.Node(start_x, start_y), @@ -63,8 +62,9 @@ def generate_graph_node(self, start_x, start_y, goal_x, goal_y, obstacles): for (vx, vy) in zip(cvx_list, cvy_list): nodes.append(DijkstraSearch.Node(vx, vy)) - for node in nodes: - plt.plot(node.x, node.y, "xr") + if self.do_plot: + for node in nodes: + plt.plot(node.x, node.y, "xr") return nodes @@ -129,8 +129,8 @@ def calc_offset_xy(self, px, py, x, y, nx, ny): offset_vec = math.atan2(math.sin(p_vec) + math.sin(n_vec), math.cos(p_vec) + math.cos( n_vec)) + math.pi / 2.0 - offset_x = x + self.robot_radius * math.cos(offset_vec) - offset_y = y + self.robot_radius * math.sin(offset_vec) + offset_x = x + self.expand_distance * math.cos(offset_vec) + offset_y = y + self.expand_distance * math.sin(offset_vec) return offset_x, offset_y @staticmethod @@ -184,7 +184,7 @@ def main(): sx, sy = 10.0, 10.0 # [m] gx, gy = 50.0, 50.0 # [m] - robot_radius = 5.0 # [m] + expand_distance = 5.0 # [m] obstacles = [ ObstaclePolygon( @@ -209,8 +209,8 @@ def main(): plt.axis("equal") plt.pause(1.0) - rx, ry = VisibilityRoadMap(robot_radius, do_plot=show_animation).planning( - sx, sy, gx, gy, obstacles) + rx, ry = VisibilityRoadMap(expand_distance, do_plot=show_animation)\ + .planning(sx, sy, gx, gy, obstacles) if show_animation: # pragma: no cover plt.plot(rx, ry, "-r") diff --git a/PathPlanning/VoronoiRoadMap/__init__.py b/PathPlanning/VoronoiRoadMap/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/PathPlanning/VoronoiRoadMap/dijkstra_search.py b/PathPlanning/VoronoiRoadMap/dijkstra_search.py index aef07ebbaf..503ccc342e 100644 --- a/PathPlanning/VoronoiRoadMap/dijkstra_search.py +++ b/PathPlanning/VoronoiRoadMap/dijkstra_search.py @@ -136,5 +136,5 @@ def is_same_node_with_xy(node_x, node_y, node_b): @staticmethod def is_same_node(node_a, node_b): dist = np.hypot(node_a.x - node_b.x, - node_b.y - node_b.y) + node_a.y - node_b.y) return dist <= 0.1 diff --git a/PathPlanning/VoronoiRoadMap/voronoi_road_map.py b/PathPlanning/VoronoiRoadMap/voronoi_road_map.py index d184230fd5..a27e1b6928 100644 --- a/PathPlanning/VoronoiRoadMap/voronoi_road_map.py +++ b/PathPlanning/VoronoiRoadMap/voronoi_road_map.py @@ -9,8 +9,12 @@ import math import numpy as np import matplotlib.pyplot as plt -from dijkstra_search import DijkstraSearch from scipy.spatial import cKDTree, Voronoi +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent)) + +from VoronoiRoadMap.dijkstra_search import DijkstraSearch show_animation = True @@ -142,20 +146,20 @@ def main(): oy = [] for i in range(60): - ox.append(i) + ox.append(float(i)) oy.append(0.0) for i in range(60): ox.append(60.0) - oy.append(i) + oy.append(float(i)) for i in range(61): - ox.append(i) + ox.append(float(i)) oy.append(60.0) for i in range(61): ox.append(0.0) - oy.append(i) + oy.append(float(i)) for i in range(40): ox.append(20.0) - oy.append(i) + oy.append(float(i)) for i in range(40): ox.append(40.0) oy.append(60.0 - i) diff --git a/PathPlanning/WavefrontCPP/map/test.png b/PathPlanning/WavefrontCPP/map/test.png new file mode 100644 index 0000000000..4abca0bf30 Binary files /dev/null and b/PathPlanning/WavefrontCPP/map/test.png differ diff --git a/PathPlanning/WavefrontCPP/map/test_2.png b/PathPlanning/WavefrontCPP/map/test_2.png new file mode 100644 index 0000000000..0d27fa9f95 Binary files /dev/null and b/PathPlanning/WavefrontCPP/map/test_2.png differ diff --git a/PathPlanning/WavefrontCPP/map/test_3.png b/PathPlanning/WavefrontCPP/map/test_3.png new file mode 100644 index 0000000000..1a50b87ccf Binary files /dev/null and b/PathPlanning/WavefrontCPP/map/test_3.png differ diff --git a/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py b/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py new file mode 100644 index 0000000000..c5a139454b --- /dev/null +++ b/PathPlanning/WavefrontCPP/wavefront_coverage_path_planner.py @@ -0,0 +1,218 @@ +""" +Distance/Path Transform Wavefront Coverage Path Planner + +author: Todd Tang +paper: Planning paths of complete coverage of an unstructured environment + by a mobile robot - Zelinsky et.al. +link: https://pinkwink.kr/attachment/cfile3.uf@1354654A4E8945BD13FE77.pdf +""" + +import os +import sys + +import matplotlib.pyplot as plt +import numpy as np +from scipy import ndimage + +do_animation = True + + +def transform( + grid_map, src, distance_type='chessboard', + transform_type='path', alpha=0.01 +): + """transform + + calculating transform of transform_type from src + in given distance_type + + :param grid_map: 2d binary map + :param src: distance transform source + :param distance_type: type of distance used + :param transform_type: type of transform used + :param alpha: weight of Obstacle Transform used when using path_transform + """ + + n_rows, n_cols = grid_map.shape + + if n_rows == 0 or n_cols == 0: + sys.exit('Empty grid_map.') + + inc_order = [[0, 1], [1, 1], [1, 0], [1, -1], + [0, -1], [-1, -1], [-1, 0], [-1, 1]] + if distance_type == 'chessboard': + cost = [1, 1, 1, 1, 1, 1, 1, 1] + elif distance_type == 'eculidean': + cost = [1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2), 1, np.sqrt(2)] + else: + sys.exit('Unsupported distance type.') + + transform_matrix = float('inf') * np.ones_like(grid_map, dtype=float) + transform_matrix[src[0], src[1]] = 0 + if transform_type == 'distance': + eT = np.zeros_like(grid_map) + elif transform_type == 'path': + eT = ndimage.distance_transform_cdt(1 - grid_map, distance_type) + else: + sys.exit('Unsupported transform type.') + + # set obstacle transform_matrix value to infinity + for i in range(n_rows): + for j in range(n_cols): + if grid_map[i][j] == 1.0: + transform_matrix[i][j] = float('inf') + is_visited = np.zeros_like(transform_matrix, dtype=bool) + is_visited[src[0], src[1]] = True + traversal_queue = [src] + calculated = set([(src[0] - 1) * n_cols + src[1]]) + + def is_valid_neighbor(g_i, g_j): + return 0 <= g_i < n_rows and 0 <= g_j < n_cols \ + and not grid_map[g_i][g_j] + + while traversal_queue: + i, j = traversal_queue.pop(0) + for k, inc in enumerate(inc_order): + ni = i + inc[0] + nj = j + inc[1] + if is_valid_neighbor(ni, nj): + is_visited[i][j] = True + + # update transform_matrix + transform_matrix[i][j] = min( + transform_matrix[i][j], + transform_matrix[ni][nj] + cost[k] + alpha * eT[ni][nj]) + + if not is_visited[ni][nj] \ + and ((ni - 1) * n_cols + nj) not in calculated: + traversal_queue.append((ni, nj)) + calculated.add((ni - 1) * n_cols + nj) + + return transform_matrix + + +def get_search_order_increment(start, goal): + if start[0] >= goal[0] and start[1] >= goal[1]: + order = [[1, 0], [0, 1], [-1, 0], [0, -1], + [1, 1], [1, -1], [-1, 1], [-1, -1]] + elif start[0] <= goal[0] and start[1] >= goal[1]: + order = [[-1, 0], [0, 1], [1, 0], [0, -1], + [-1, 1], [-1, -1], [1, 1], [1, -1]] + elif start[0] >= goal[0] and start[1] <= goal[1]: + order = [[1, 0], [0, -1], [-1, 0], [0, 1], + [1, -1], [-1, -1], [1, 1], [-1, 1]] + elif start[0] <= goal[0] and start[1] <= goal[1]: + order = [[-1, 0], [0, -1], [0, 1], [1, 0], + [-1, -1], [-1, 1], [1, -1], [1, 1]] + else: + sys.exit('get_search_order_increment: cannot determine \ + start=>goal increment order') + return order + + +def wavefront(transform_matrix, start, goal): + """wavefront + + performing wavefront coverage path planning + + :param transform_matrix: the transform matrix + :param start: start point of planning + :param goal: goal point of planning + """ + + path = [] + n_rows, n_cols = transform_matrix.shape + + def is_valid_neighbor(g_i, g_j): + is_i_valid_bounded = 0 <= g_i < n_rows + is_j_valid_bounded = 0 <= g_j < n_cols + if is_i_valid_bounded and is_j_valid_bounded: + return not is_visited[g_i][g_j] and \ + transform_matrix[g_i][g_j] != float('inf') + return False + + inc_order = get_search_order_increment(start, goal) + + current_node = start + is_visited = np.zeros_like(transform_matrix, dtype=bool) + + while current_node != goal: + i, j = current_node + path.append((i, j)) + is_visited[i][j] = True + + max_T = float('-inf') + i_max = (-1, -1) + i_last = 0 + for i_last in range(len(path)): + current_node = path[-1 - i_last] # get latest node in path + for ci, cj in inc_order: + ni, nj = current_node[0] + ci, current_node[1] + cj + if is_valid_neighbor(ni, nj) and \ + transform_matrix[ni][nj] > max_T: + i_max = (ni, nj) + max_T = transform_matrix[ni][nj] + + if i_max != (-1, -1): + break + + if i_max == (-1, -1): + break + else: + current_node = i_max + if i_last != 0: + print('backtracing to', current_node) + path.append(goal) + + return path + + +def visualize_path(grid_map, start, goal, path): # pragma: no cover + oy, ox = start + gy, gx = goal + px, py = np.transpose(np.flipud(np.fliplr(path))) + + if not do_animation: + plt.imshow(grid_map, cmap='Greys') + plt.plot(ox, oy, "-xy") + plt.plot(px, py, "-r") + plt.plot(gx, gy, "-pg") + plt.show() + else: + for ipx, ipy in zip(px, py): + plt.cla() + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) + plt.imshow(grid_map, cmap='Greys') + plt.plot(ox, oy, "-xb") + plt.plot(px, py, "-r") + plt.plot(gx, gy, "-pg") + plt.plot(ipx, ipy, "or") + plt.axis("equal") + plt.grid(True) + plt.pause(0.1) + + +def main(): + dir_path = os.path.dirname(os.path.realpath(__file__)) + img = plt.imread(os.path.join(dir_path, 'map', 'test.png')) + img = 1 - img # revert pixel values + + start = (43, 0) + goal = (0, 0) + + # distance transform wavefront + DT = transform(img, goal, transform_type='distance') + DT_path = wavefront(DT, start, goal) + visualize_path(img, start, goal, DT_path) + + # path transform wavefront + PT = transform(img, goal, transform_type='path', alpha=0.01) + PT_path = wavefront(PT, start, goal) + visualize_path(img, start, goal, PT_path) + + +if __name__ == "__main__": + main() diff --git a/PathTracking/__init__.py b/PathTracking/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/PathTracking/cgmres_nmpc/Figure_1.png b/PathTracking/cgmres_nmpc/Figure_1.png deleted file mode 100644 index c15112dcac..0000000000 Binary files a/PathTracking/cgmres_nmpc/Figure_1.png and /dev/null differ diff --git a/PathTracking/cgmres_nmpc/Figure_2.png b/PathTracking/cgmres_nmpc/Figure_2.png deleted file mode 100644 index 99ebc493d0..0000000000 Binary files a/PathTracking/cgmres_nmpc/Figure_2.png and /dev/null differ diff --git a/PathTracking/cgmres_nmpc/Figure_3.png b/PathTracking/cgmres_nmpc/Figure_3.png deleted file mode 100644 index 4c7d020734..0000000000 Binary files a/PathTracking/cgmres_nmpc/Figure_3.png and /dev/null differ diff --git a/PathTracking/cgmres_nmpc/Figure_4.png b/PathTracking/cgmres_nmpc/Figure_4.png deleted file mode 100644 index 1c0406a8e9..0000000000 Binary files a/PathTracking/cgmres_nmpc/Figure_4.png and /dev/null differ diff --git a/PathTracking/cgmres_nmpc/cgmres_nmpc.ipynb b/PathTracking/cgmres_nmpc/cgmres_nmpc.ipynb deleted file mode 100644 index 04fa940a8f..0000000000 --- a/PathTracking/cgmres_nmpc/cgmres_nmpc.ipynb +++ /dev/null @@ -1,208 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Nonlinear Model Predictive Control with C-GMRES" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xt8j/X/x/HnZzObySaWoZY5n+VUTh0cvubQ4dsJfZV++qKDUkjfqG9sUqqvM6mob5NIR/UNsSFKiBxDVpLEDHPYMOaz7fr9cbVldmDb59rncD3ut9tudl27rs/n9XlFnt7X9b7eDsMwDAEAAMA2/NxdAAAAAEoXARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJsp4+4CvFlWVpYSExNVoUIFORwOd5cDAAAug2EYOnXqlKpXry4/P3uOhREASyAxMVERERHuLgMAABTDH3/8oWuuucbdZbgFAbAEKlSoIMn8DRQSElLk851Op+Li4hQVFaWAgABXl2db9NU69NYa9NUa9NU63t7b1NRURURE5Pw9bkcEwBLIvuwbEhJS7AAYHByskJAQr/wD5Knoq3XorTXoqzXoq3V8pbd2vn3Lnhe+AQAAbIwACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA241MBcObMmapZs6aCgoLUqlUrffvttwUeGxsbK4fDkefr3LlzpVgxAABA6fOZAPjhhx9q6NChev7557VlyxbddNNN6tGjh/bv31/gOSEhITp06FCur6CgoFKsGgAAoPT5TACcNGmSBgwYoIEDB6phw4aaMmWKIiIi9MYbbxR4jsPhUNWqVXN9AQAA+Loy7i7AFc6fP69NmzZp5MiRufZHRUVp7dq1BZ53+vRp1ahRQ5mZmWrevLlefPFFtWjRosDj09PTlZ6enrOdmpoqSXI6nXI6nUWuO/uc4pyLgtFX69Bba9BXa9BX63h7b721blfyiQCYnJyszMxMhYeH59ofHh6upKSkfM9p0KCBYmNj1bRpU6Wmpmrq1Knq0KGDtm3bprp16+Z7zvjx4xUTE5Nnf1xcnIKDg4tdf3x8fLHPRcHoq3XorTXoqzXoq3W8tbdpaWnuLsHtHIZhGO4uoqQSExN19dVXa+3atWrXrl3O/pdeeklz587V7t27L/kaWVlZatmypW6++WZNmzYt32PyGwGMiIhQcnKyQkJCily30+lUfHy8unbtqoCAgCKfj/zRV+vQW2vQV2vQV+t4e29TU1MVFhamlJSUYv397Qt8YgQwLCxM/v7+eUb7jhw5kmdUsCB+fn66/vrr9csvvxR4TGBgoAIDA/PsDwgIKNEfgJKej/zRV+vQW2vQV2vQV+t4a2+9sWZX84lJIGXLllWrVq3yDEXHx8erffv2l/UahmFo69atqlatmhUlAgAAeAyfGAGUpOHDh6tfv35q3bq12rVrp1mzZmn//v169NFHJUkPPvigrr76ao0fP16SFBMTo7Zt26pu3bpKTU3VtGnTtHXrVr3++uvu/BgAAACW85kA2KdPHx07dkxjx47VoUOH1KRJEy1ZskQ1atSQJO3fv19+fn8NeJ48eVIPP/ywkpKSFBoaqhYtWuibb77RDTfc4K6PAAAAUCp8JgBK0uDBgzV48OB8f7Zq1apc25MnT9bkyZNLoSoAAADP4hP3AAIAAODyEQABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABshgAIAABgMwRAAAAAmyEAAgAA2AwBEAAAwGYIgAAAADZDAAQAALAZAiAAAIDNEAABAABspoy7CwAAAJ7BMAwdPXpUkhQcHCyHw5HvcU6nU+fOndOZM2cUEBBgWT2F1YCSIQACAABJ0tGjRxUeHu7uMnK0b99ea9asIQRagEvAAADAI61du1ZpaWnuLsMnMQIIAAAkmZdcsx0+fFjly5eXJJ05c6bQkcG9e/eqSpUqRX6/S70urEMABAAAkpTrUmv58uVzAuCF9u7dq7Jly2rx4sV65JFHJElXXXVVvscWxd69e1W+fHmdOXNGtWrVKtFr4dIIgAAA4LLlF85ccY8eoa90+dQ9gDNnzlTNmjUVFBSkVq1a6dtvvy30+E8//VSNGjVSYGCgGjVqpIULF5ZSpQAAeI/g4GB16NAhZ7tVNT+teDBYrar5qUOHDrkuHZfkdVF6fCYAfvjhhxo6dKief/55bdmyRTfddJN69Oih/fv353v8unXr1KdPH/Xr10/btm1Tv3791Lt3b33//felXDkAAJ7N4XDo22+/1enTp3X69Gl9N/MJda5ZRt/NHKJvv/222COAF79u9tfhw4dd/AlwMZ8JgJMmTdKAAQM0cOBANWzYUFOmTFFERITeeOONfI+fMmWKunbtqlGjRqlBgwYaNWqUunTpoilTppRy5QAAeD5Hyh8qn/Kzyqf8orI/L5Iklf35SzkObZMSt0gn8x9wueTrOhw59xte+AVr+cQ9gOfPn9emTZs0cuTIXPujoqK0du3afM9Zt26dhg0blmtft27dCg2A6enpSk9Pz9lOTU2VZD4Q0+l0Frnu7HOKcy4KRl+tQ2+tQV+tQV+L7sJeXfx3W8CUphcc+eeIX9oxadYtf53zfLLldbj69e3KJwJgcnKyMjMz80wlDw8PV1JSUr7nJCUlFel4SRo/frxiYmLy7I+Liyv2/Q+SFB8fX+xzUTD6ah16aw36ag36evnOnTuX8/2yZcsUFBSUs31NjUfV4vdZ8lOWHDIkKefXLPlpS42HdWDJEsvrcAWeLegjATDbxfcgGIZR6H0JRT1+1KhRGj58eM52amqqIiIiFBUVpZCQkCLX63Q6FR8fr65du1q6lI7d0Ffr0Ftr0Fdr0NeiO3PmTM733bp1u+hSbE9lHuolv/92yXNe5j/j1azadWpWKnWUXPYVPDvziQAYFhYmf3//PKN3R44cKfABk1WrVi3S8ZIUGBiowMDAPPsDAgJK9D+Xkp6P/NFX69Bba9BXa9DXy3dhn/LtWxkzNhhyyCEj59eAMmWk7GOzsqTffzePjYiwpo4S4veDj0wCKVu2rFq1apVnmD8+Pl7t27fP95x27drlOT4uLq7A4wEAsC3DkHHypNL2JimrTKiyzlbQ2a/OK+ugU8apLKlBS8nhML/8/aVataRrr5UWL76MlzZ05syZPF+wlk+MAErS8OHD1a9fP7Vu3Vrt2rXTrFmztH//fj366KOSpAcffFBXX321xo8fL0l66qmndPPNN+vVV1/V3//+d33xxRdavny51qxZ486PAQBA6Tt1SvrtN2n37r/29e8vHTkiJSbKOHhQN549q7WSyvpL5zP/PGaD1NFfWpmZMy0kt0ss82YYhm688cYCJ2zCOj4TAPv06aNjx45p7NixOnTokJo0aaIlS5aoRo0akqT9+/fLz++vAc/27dtrwYIF+ve//60XXnhBtWvX1ocffqg2bdq46yMAAGANw5AOHzYD3u7d0p490r59Zujbt086fjzvOZ98kvNtmqTsiJYT/v60KlNK69JF5a+7TmrUSGrc2Pz1Mu6NT0tLI/y5ic8EQEkaPHiwBg8enO/PVq1alWffvffeq3vvvdfiqgAAKCVZWdLevdKPP/4V9rK/LjXxoXJl8569rVvN7fHjpZo1perVpYoVpWbmFI/81gI2Pv9cuuKKEpXOWsCly6cCIAAAtpGWZga9bdvM0LZtm7R9u3T6dP7H+/lJkZFSgwZS3bpmuKtZ09wXGWmO2J05kxPkzvzzn9Kfs28vvCcvv3B29OjRYq0GcqnXhXUIgAAAeLrMTGnnTmn9evPr++/NUb2srLzHBgb+dRm2QQOpfn3z1zp1pCI8T6+wp2JcjPDmfQiAAAB4mpMnpW+/ldauNQPfxo3m6NzFqlSRmjc3v667zvy1Xr2cx7UUVXBwsDp06KDvvvuuhB/ANdq3b1+ihRZQMAIgAADuduKEGfhWr5ZWrZK2bDEnblyoQgXphhukNm2ktm2l1q2latVcWobD4dC33357yZUynE6nli1bpm7duln6TL3g4OBiXVrGpREAAQAobefPS2vWSEuXSsuXm/fwXRz46tWTbrpJatfODH0NG5rP2LOYw+G45MobTqdTQUFBKl++PA9V9lIEQAAASsO+fdJXX5mhb8WKvJd069eXOnaUbrnF/Kpe3R1VwiYIgAAAWCEry7x/b+FC6csvpYSE3D8PD5e6d5eioqROnVx+ORcoDAEQAABXOX/evIdv4ULp88+lC9ec9/eX2rc3Q1+PHuakDT+fWJEVXogACABASZw/b17W/fhjadEicwZvtpAQ6bbbpDvvlLp2NR+oDHgAAiAAAEWVlWXO2p03z1wy7cSJv35WpYoZ+O66S+rcWSpb1n11AgUgAAIAcDkMw1xtY/586YMPpAMH/vpZtWpSnz7SPfeYs3ZLYbYuUBIEQAAACnP8uPT++9Lbb5tLr2ULDTUD3/33m7N2CX3wIgRAAAAulpUlff21GfoWLpTS0839gYHmPX19+0o9exZpaTXAkxAAAQDIduiQ9N//Su+8I/3221/7mzeXBg40g9+VV7qvPsBFCIAAAHszDHPN3RkzzAkdGRnm/pAQ8/LuwIFSy5burRFwMQIgAMCezp41J3PMmGGuvZutQwfp4Yele++VgoPdVx9gIQIgAMBeDhwwQ9/bb0vHjpn7goLMy7tPPCG1aOHe+oBSQAAEANjDjh3ShAnmY1ycTnNfjRrS4MHSgAFS5crurQ8oRQRAAIDvMgw5Vq+WJk+Wliz5a//NN0vDhkm3387jW2BLBEAAgO/JzJTj00918+jRKvPLL+Y+h8N8bt8zz0g33ODe+gA3IwACAHxHZqb04YfSuHEq89NPulKSERQkx0MPScOHS3XquLtCwCMQAAEA3i8jw5zRO26c9PPPkiSjYkUldOum2pMmKaB6dTcXCHgWP3cXAABAsWVkSHPmSA0bSg8+aIa/SpWkceOUsWePEv7xD+mqq9xdJeBxGAEEAHifzExzNm90tLR3r7mvcmVpxAjp8celChX+mukLIA8CIADAexiG9OWX0nPPSTt3mvuuusqc2PHYY9IVV7i3PsBLEAABAN5h9Wpp1Chp3Tpz+8orpWefNR/eXL68e2sDvAwBEADg2bZsMUf8li41t4ODpaFDzVG/ihXdWxvgpQiAAADPtG+fOeK3YIG5XaaMuUbvv/8tVavm1tIAb0cABAB4ltRUafx4c/WO9HTzAc59+0oxMVLt2u6uDvAJBEAAgGfIzJTeeUd64QXpyBFzX+fO0sSJUvPm7q0N8DEEQACA+8XHS08/Lf34o7ldr540YYJ0223mCCAAl+JB0AAA90lIMENeVJQZ/q68Upoyxfz+9tsJf4BFfCIAnjhxQv369VNoaKhCQ0PVr18/nTx5stBzOnbsKIfDkevrvvvuK6WKAcDmTp+WRo6UmjaVFi82J3g89ZS0Z4/5a9my7q4Q8Gk+cQm4b9++OnDggJb++YiAhx9+WP369dOXX35Z6HmDBg3S2LFjc7bLlStnaZ0AYHuGIX3yiTR8uHTggLmvZ09p0iSpfn331gbYiNcHwJ9++klLly7V+vXr1aZNG0nS7Nmz1a5dOyUkJKh+If9DCQ4OVtWqVUurVACwt59+koYMkVasMLdr1pSmTjUv9QIoVV5/CXjdunUKDQ3NCX+S1LZtW4WGhmrt2rWFnjtv3jyFhYWpcePGGjFihE6dOmV1uQBgP6dPmyt2NGtmhr/AQHMN3507CX+Am3j9CGBSUpKqVKmSZ3+VKlWUlJRU4Hn333+/atasqapVq2rHjh0aNWqUtm3bpvj4+ALPSU9PV3p6es52amqqJMnpdMpZjEXHs88pzrkoGH21Dr21hs/21TDk+PRT+T/zjBwHD0qSsm69VZkTJ0q1apnHWPiZfbavHsDbe+utdbuSxwbA6OhoxcTEFHrMxo0bJUmOfGaJGYaR7/5sgwYNyvm+SZMmqlu3rlq3bq3NmzerZcuW+Z4zfvz4fGuKi4tTcHBwobUWprDQieKjr9aht9bwpb6WO3pUzd56S1V/+EGSdCY8XD8OGqTDrVtLu3ebX6XEl/rqaby1t2lpae4uwe0chmEY7i4iP8nJyUpOTi70mMjISM2fP1/Dhw/PM+u3YsWKmjx5sh566KHLej/DMBQYGKi5c+eqT58++R6T3whgRESEkpOTFRISclnvcyGn06n4+Hh17dpVAQEBRT4f+aOv1qG31vCpvmZmyu/11+U3ZowcZ87IKFtWWc88o6xnn5WCgkq1FJ/qq4fx9t6mpqYqLCxMKSkpxfr72xd47AhgWFiYwsLCLnlcu3btlJKSog0bNuiGG26QJH3//fdKSUlR+/btL/v9du7cKafTqWqFrC8ZGBiowMDAPPsDAgJK9AegpOcjf/TVOvTWGl7f1y1bzLV6/xz10003yfHWW/Jv2FD+bizL6/vqwby1t95Ys6t5/SSQhg0bqnv37ho0aJDWr1+v9evXa9CgQbrttttyZgAfPHhQDRo00IYNGyRJv/76q8aOHasffvhB+/bt05IlS9SrVy+1aNFCHTp0cOfHAQDvc+aM9Mwz0vXXm+EvNFSaNUtatUpq2NDd1QHIh9cHQMmczdu0aVNFRUUpKipKzZo109y5c3N+7nQ6lZCQkHPNv2zZslqxYoW6deum+vXr68knn1RUVJSWL18uf393/jsVALzM0qVSkybmsm2ZmVLv3ubjXgYNkvx84q8YwCd57CXgoqhUqZLef//9An8eGRmpC291jIiI0OrVq0ujNADwTceOmSt2zJtnbkdESDNnmsu6AfB4/PMMAFA0n30mNW5shj8/P2nYMGnXLsIf4EV8YgQQAFAKjh41V/L48ENzu1Ej6b//lS54ED8A78AIIADg0j7+2Bz1+/BDyd9feu45afNmwh/gpRgBBAAU7PBh6fHHpU8/NbebNJFiY6VWrdxaFoCSYQQQAJCXYUgffGCO+n36qVSmjDR6tLRpE+EP8AGMAAIAcjtyRHrkEenzz83t664zR/2aN3drWQBchxFAAMBfvvjCvMz7+edSQIAUEyNt3Ej4A3wMI4AAACk11XyuX2ysud20qTR3rjn6B8DnMAIIAHa3apXUrJkZ/hwO6dlnzVE/wh/gsxgBBAC7OnfOfJzL5Mnmds2a0nvvSTfe6N66AFiOAAgAdrR5s9Svn7mCh2Su3TtxolShgnvrAlAquAQMAHaSkSGNG2c+wHnXLik8XFq0SJo1i/AH2AgjgABgFz//LD34oPT99+b2PfdIb74phYW5ty4ApY4RQADwdYYhzZxpPsrl+++l0FBzhu/HHxP+AJtiBBAAfNmRI9I//yktXmxud+kivfuuFBHh3roAuBUjgADgq5YuNR/vsnixFBgoTZkixcUR/gAwAggAPufcOWnkSGnqVHO7cWNzXd+mTd1bFwCPwQggAPiSHTukG274K/wNGWI+1JnwB+ACBEAA8AWGIc2YIbVuLf34o1Slinnpd9o0qVw5d1cHwMNwCRgAvN3hw+ZEjyVLzO0ePcyJHuHh7q0LgMdiBBAAvNmSJeZEjyVLzIke06aZI3+EPwCFYAQQALzRuXPSv/4lTZ9ubjdpYk70aNLEvXUB8AqMAAKAt/nxR+n66/8Kf08+aU70IPwBuEwEQADwFoZhXuK9/npztm+VKual36lTpaAgd1cHwItwCRgAvMHhw9JDD0lffWVu9+xpTvSoUsW9dQHwSowAAoCnW7zYfI7fV1+ZI30zZkiLFhH+ABQbI4AA4KnOnjUnesyYYW43bWpO9Gjc2L11AfB6jAACgCfavt281y87/A0dKm3YQPgD4BIEQADwJFlZ5qSOG26Qdu40n+f31VfS5MlM9ADgMlwCBgBPcfiwNGiQtHSpuX3bbdI773CvHwCXYwQQADxA+A8/qEzLlmb4CwqSXn9d+t//CH8ALMEIIAC407lz8hsxQm1ff93cbtZMmj+fe/0AWMonRgBfeukltW/fXsHBwapYseJlnWMYhqKjo1W9enWVK1dOHTt21M6dOy2uFAAusGOHdP318v8z/GUOGSJ9/z3hD4DlfCIAnj9/Xr169dJjjz122ee89tprmjRpkmbMmKGNGzeqatWq6tq1q06dOmVhpQAgc0WPGTOk1q2lHTtkVKmidaNHK2viRCZ6ACgVPhEAY2JiNGzYMDVt2vSyjjcMQ1OmTNHzzz+vu+++W02aNNGcOXOUlpam+fPnW1wtAFs7ckS6/XZpyBApPV3q0UMZmzbpSMuW7q4MgI34RAAsqt9++01JSUmKiorK2RcYGKhbbrlFa9eudWNlAHzasmXmPX6LF0uBgea6vosXm496AYBSZMtJIElJSZKk8Iv+pxseHq7ff/+9wPPS09OVnp6es52amipJcjqdcjqdRa4j+5zinIuC0Vfr0NtiSk+X3/PPy3/aNEmS0aiRMubONVf2yMigrxahr9bx9t56a92u5LEBMDo6WjExMYUes3HjRrVu3brY7+FwOHJtG4aRZ9+Fxo8fn29NcXFxCg4OLnYd8fHxxT4XBaOv1qG3l6/CH3+o1cSJCt23T5K0t2dP7fy//1PWH39If/yR61j6ag36ah1v7W1aWpq7S3A7jw2ATzzxhO67775Cj4mMjCzWa1etWlWSORJYrVq1nP1HjhzJMyp4oVGjRmn48OE526mpqYqIiFBUVJRCQkKKXIfT6VR8fLy6du2qgICAIp+P/NFX69DbIjAM+c2aJb9nnpHj3DkZYWHKnD1bEbfeqoiLDqWv1qCv1vH23mZfwbMzjw2AYWFhCgsLs+S1a9asqapVqyo+Pl4tWrSQZM4kXr16tV599dUCzwsMDFRgYGCe/QEBASX6A1DS85E/+modensJycnSgAHmg5wlKSpKjjlzVObPf3wWhL5ag75ax1t76401u5pPTALZv3+/tm7dqv379yszM1Nbt27V1q1bdfr06ZxjGjRooIULF0oyL/0OHTpUL7/8shYuXKgdO3aof//+Cg4OVt++fd31MQD4guXLzYke//ufVLasNGmSuZbvJcIfAJQmjx0BLIrRo0drzpw5OdvZo3pff/21OnbsKElKSEhQSkpKzjH/+te/dPbsWQ0ePFgnTpxQmzZtFBcXpwoVKpRq7QB8xPnz0vPPSxMmmNsNG5orejRv7t66ACAfPhEAY2NjFRsbW+gxhmHk2nY4HIqOjlZ0dLR1hQGwh927pb59pS1bzO1HH5UmTpRKMDkMAKzkE5eAAcAtDEOaPVtq2dIMf5UrSwsXSm+8QfgD4NF8YgQQAErd0aPSoEHSF1+Y2126SO+9J1Wv7t66AOAyMAIIAEW1ZIn5EOcvvpACAqTXXpPi4gh/ALxGiUcAK1WqVKTjHQ6HNm/erBo1apT0rQGgdKWlSc88I82caW43biy9/z4TPQB4nRIHwJMnT2rKlCkKDQ295LGGYWjw4MHKzMws6dsCQOn64QfpgQekhARz+6mnpPHjpXLl3FsXABSDS+4BvO+++1SlSpXLOnbIkCGueEsAKB2ZmdIrr0jR0VJGhnmZNzZW6trV3ZUBQLGVOABmZWUV6fhTp06V9C0BoHT89pvUr5/03Xfm9r33Sm+9JRXx1hcA8DRMAgGAixmGOcrXrJkZ/ipUkObMkT76iPAHwCe4/DEwBw8e1HfffacjR47kGR188sknXf12AOBax45JDz8sffaZuX3jjdLcuVJkpFvLAgBXcmkAfPfdd/Xoo4+qbNmyqly5shwOR87PHA4HARCAZ1u2THroIenQIalMGenFF81Zv/7+7q4MAFzKpQFw9OjRGj16tEaNGiU/P64uA/ASZ89Kzz4rTZ9ubjdoIM2bZ67wAQA+yKUpLS0tTffddx/hD4D32LxZat36r/D3xBPSpk2EPwA+zaVJbcCAAfr4449d+ZIAYA2nUxo7VmrTRtq1S6paVfrqKzMIso4vAB/n0kvA48eP12233aalS5eqadOmCggIyPXzSZMmufLtAKB4du2S/u//zIc7S1KvXubqHmFh7q0LAEqJSwPgyy+/rGXLlql+/fqSlGcSCAC4VVaWNGWK9NxzUnq6dOWV0uuvS/fdJ/H/KAA24tIAOGnSJP33v/9V//79XfmyAFByv/0m9e8vffONud29u/TOO+bKHgBgMy69BzAwMFAdOnRw5UsCQMkYhjR7tvlQ52++kcqXN1fzWLKE8AfAtlwaAJ966ilNz55JBwDulpgo3Xqr+WDn06elm2+Wtm83t7nkC8DGXHoJeMOGDVq5cqUWLVqkxo0b55kE8ln2k/UBwEqGIS1YID3+uHTihBQYKL38sjR0qMRjqgDAtQGwYsWKuvvuu135kgBQNMnJ0uDBUvYjqVq1kt57T2rUyL11AYAHcflScADgNosWSQMHSocPm0u5/fvf5ozfi65GAIDduTQAAoBbnDghDRsmzZljbjdqZI4uufXZAAAgAElEQVT6tWrl3roAwEOV+GaYli1b6sSJE5d9/I033qiDBw+W9G0BwLRokdS4sRn+HA7p6afNpdwIfwBQoBKPAG7dulXbtm1TpUqVLvv49PT0kr4tALs7ftyc1DF3rrldr5707rtS+/burQsAvIBLLgF36dJFhmFc1rGsCAKgxP73P+mRR6SkJHNW79NPSzExUrly7q4MALxCiQPgb7/9VuRzrrnmmpK+LQA7On5cevJJad48c7tBA3PUr21b99YFAF6mxAGwRo0arqgDAAr3+efSo4+aM3z9/KQRI8xRv6Agd1cGAF6HWcAAPNuxY9KQIdIHH5jbDRuao35t2ri3LgDwYjwSH4DnWrjQfKTLBx+Yo34jR0qbNxP+AKCEGAEE4HmSk81RvwULzO1GjaTYWOn6691aFgD4CkYAAXgOw5A++cQMfAsWSP7+5koemzcT/gDAhVwaAPv3769vvvnGlS8JwC4SE6W775Z69ZKOHpWaNJHWr5deekkKDHR3dQDgU1waAE+dOqWoqCjVrVtXL7/8cqmt+PHSSy+pffv2Cg4OVsWKFS/rnP79+8vhcOT6asujJIDSZxjS22+bo36ff26u4fvCC9IPP0itW7u7OgDwSS4NgJ9++qkOHjyoJ554Qh9//LEiIyPVo0cPffLJJ3I6na58q1zOnz+vXr166bHHHivSed27d9ehQ4dyvpYsWWJRhQDytWeP1KWLNGiQlJJiXubdtEkaO5ZRPwCwkMvvAaxcubKeeuopbdmyRRs2bFCdOnXUr18/Va9eXcOGDdMvv/zi6rdUTEyMhg0bpqZNmxbpvMDAQFWtWjXn63KXswNQQhkZ0oQJUrNm0tdfmyt4TJworVtn7gMAWMqySSCHDh1SXFyc4uLi5O/vr549e2rnzp1q1KiRJk+ebNXbFsmqVatUpUoV1atXT4MGDdKRI0fcXRLg+7Zvl9q1k555Rjp7VurcWfrxR2n4cHPSBwDAci59DIzT6dT//vc/vfvuu4qLi1OzZs00bNgw3X///apQoYIkacGCBXrsscc0bNgwV751kfXo0UO9evVSjRo19Ntvv+mFF15Q586dtWnTJgUWcOkpPT1d6enpOdupqamSzM9dnEvc2edYeXncjuirdUrU2/R0+b38svz+8x85MjJkhIYq87XXZPTvLzkcko3/e/F71hr01Tre3ltvrduVHIZhGK56sbCwMGVlZekf//iHBg0apObNm+c55sSJE2rZsuUl1xCOjo5WTExMocds3LhRrS+4STw2NlZDhw7VyZMni1z7oUOHVKNGDS1YsEB33313kWqaP3++goODi/yegF1U+uknNX/9dVU4cECSlNi2rbY//LDSue0CgBukpaWpb9++SklJUUhIiLvLcQuXBsC5c+eqV69eCnLB2pzJyclKTk4u9JjIyMhc71WSAChJdevW1cCBA/Xss8/m+/P8RgAjIiKUnJxcrN9ATqdT8fHx6tq1qwICAopVM/Kir9Ypcm9PnZLfCy/I74035DAMGeHhypw6VUYB/8iyK37PWoO+Wsfbe5uamqqwsDBbB0CXXgLu16+fy14rLCxMYWFhLnu9Szl27Jj++OMPVatWrcBjAgMD8708HBAQUKI/ACU9H/mjr9a5rN5+9ZX0yCPSH3+Y2//8pxwTJqjMlVdaX6CX4vesNeirdby1t95Ys6v5xEog+/fv19atW7V//35lZmZq69at2rp1q06fPp1zTIMGDbRw4UJJ0unTpzVixAitW7dO+/bt06pVq3T77bcrLCxMd911l7s+BuAbjhyR7r9f6tnTDH81a0rx8dI770iEPwDwCD6xFvDo0aM1Z86cnO0WLVpIkr7++mt17NhRkpSQkKCUlBRJkr+/v3788Ue99957OnnypKpVq6ZOnTrpww8/zJmsAqCIDEN6911pxAjpxAlzYsfQodKLL0rly7u7OgDABXwiAMbGxio2NrbQYy681bFcuXJatmyZxVUBNpKQYF7uXb3a3G7eXJo1i/V7AcBD+cQlYABukp4uxcSYD29evVoKDpb+8x9p40bCHwB4MJ8YAQTgBt98Y4767d5tbvfoIc2cKUVGurUsAMClEQABFEnAqVPyf+QR834/SQoPl6ZOlXr3Nu/7AwB4PAIggMtjGHJ88IE6P/mk/P6cUKWHH5ZeeYXZvQDgZQiAAC5t715p8GCVWbZMZSQZDRvKMWuWdOON7q4MAFAMTAIBUDCnU3r1ValJE2nZMhmBgfqpb19lbNxI+AMAL8YIIID8bdggDRokbd9ubnfqpIzp0/Xznj2qU7ase2sDAJQII4AAcktJkZ54Qmrb1gx/lSqZEz5WrJDq1XN3dQAAF2AEEIDJMKQPPpCGD5cOHzb39esnTZwoXXWVe2sDALgUARCAuZLH44+bo3ySOdI3c6bUpYt76wIAWIJLwICdnT0rjR5truSxYoUUFGSu3bt9O+EPAHwYI4CAXX31lXmv39695naPHtKMGVKtWu6tCwBgOUYAAbs5cEC6916pZ08z/F19tfTJJ9LixYQ/ALAJAiBgFxkZ0qRJUsOG0qefSv7+5oSPn36S7rmHZdwAwEa4BAzYwbp10qOP/vVMv3btpDffNO/9AwDYDiOAgC87ftxcr7d9+7+e6Td7trRmDeEPAGyMEUDAFxmGNGeO9MwzUnKyue+hh8xl3XimHwDYHgEQ8DU7dkiPPWaO8klS48bm5V7W7gUA/IlLwICvOHVKGjFCatHCDH/BwdJrr0lbthD+AAC5MAIIeDvDkBYsMMNfYqK57+9/l6ZNk6691r21AQA8EgEQ8GY7d5oPc161ytyuXdsMfj17urUsAIBn4xIw4I2yL/c2b26Gv+wl3HbsIPwBAC6JEUDAm2Rf7n36aenQIXPfnXdKkydLkZFuLQ0A4D0IgIC32LlTevxxafVqc7t2bWn6dHMNXwAAioBLwICnS001R/yuu84Mf+XK/XW5l/AHACgGRgABT2UY0vz55sOcsy/33nWXebm3Rg331gYA8GoEQMAT7dhhXu795htzu04d83Jv9+7urQsA4BO4BAx4ktRUafhwc3bvN9+Yl3vHjTMDIeEPAOAijAACniD7cu+IEVJSkrmPy70AAIsQAAF3+/FH82HOXO4FAJQSLgED7nLihPTkk+bavdmXe196icu9AADLMQIIlLbMTOmdd6TnnpOOHTP33X23ebmXtXsBAKXA60cA9+3bpwEDBqhmzZoqV66cateurTFjxuj8+fOFnpeenq4hQ4YoLCxM5cuX1x133KEDBw6UUtWwre++k66/XnrkETP8NWokLV8uffop4Q8AUGq8PgDu3r1bWVlZeuutt7Rz505NnjxZb775pp577rlCzxs6dKgWLlyoBQsWaM2aNTp9+rRuu+02ZWZmllLlsJWDB6UHHpBuvFHaskUKDZWmTpW2bpW6dHF3dQAAm/H6S8Ddu3dX9wvul6pVq5YSEhL0xhtvaMKECfmek5KSonfeeUdz587V3/72N0nS+++/r4iICC1fvlzdunUrldphA+np5qXdceOkM2ckh0MaONC81++qq9xdHQDAprx+BDA/KSkpqlSpUoE/37Rpk5xOp6KionL2Va9eXU2aNNHatWtLo0T4OsOQFi2SGjeWRo0yw1+7dtLGjdKsWYQ/AIBbef0I4MV+/fVXTZ8+XRMnTizwmKSkJJUtW1ZXXnllrv3h4eFKyn4GWz7S09OVnp6es52amipJcjqdcjqdRa41+5zinIuCub2vCQnyf+YZ+S1dKkkyqlVT5ssvy+jb1xwB9OL/3m7vrY+ir9agr9bx9t56a92u5LEBMDo6WjExMYUes3HjRrVu3TpnOzExUd27d1evXr00cODAIr+nYRhyOBwF/nz8+PH51hQXF6fg4OAiv1+2+Pj4Yp+LgpV2X8ukpaneRx+p9qJF8svIUFaZMvr1jjv0c69eyihXTvrqq1Ktx0r8nrUGfbUGfbWOt/Y2LS3N3SW4ncMwDMPdReQnOTlZycnJhR4TGRmpoKAgSWb469Spk9q0aaPY2Fj5+RV8dXvlypXq0qWLjh8/nmsU8LrrrtOdd95ZYPDMbwQwIiJCycnJCgkJKcrHk2T+CyQ+Pl5du3ZVQEBAkc9H/kq9r1lZcsybJ//nn5fjzxHkrJ49lfmf/0h161r//qWI37PWoK/WoK/W8fbepqamKiwsTCkpKcX6+9sXeOwIYFhYmMLCwi7r2IMHD6pTp05q1aqV3n333ULDnyS1atVKAQEBio+PV+/evSVJhw4d0o4dO/Taa68VeF5gYKACAwPz7A8ICCjRH4CSno/8lUpff/hBGjJEWr/e3K5TR5oyRX633uqbN9j+id+z1qCv1qCv1vHW3npjza7m9X9HJSYmqmPHjoqIiNCECRN09OhRJSUl5bqX7+DBg2rQoIE2bNggSQoNDdWAAQP09NNPa8WKFdqyZYseeOABNW3aNGdWMFCoI0fM2bw33GCGvyuukF591VzF49Zb3V0dAACF8tgRwMsVFxenPXv2aM+ePbrmmmty/Sz76rbT6VRCQkKua/6TJ09WmTJl1Lt3b509e1ZdunRRbGys/P39S7V+eBmnU3r9dSk6WkpJMff16ye98opUvbpbSwMA4HJ5fQDs37+/+vfvX+gxkZGRuvhWx6CgIE2fPl3Tp0+3sDr4lK++koYPl3bvNrdbtpSmT5fat3dvXQAAFJHXXwIGLPfTT1LPnubX7t1SWJg0e7a0YQPhDwDglQiAQEGOH5eeekpq2tQc/QsIkJ5+Wtqzx7z/j9sFAABeyusvAQMul5EhvfmmNGaMGQIl6Y47pAkTfO6xLgAAeyIAAheKi5OGDZN27TK3mzQx1/JldjgAwIdwCRiQpIQE6fbbpW7dzPBXubI0c6a0ZQvhDwDgcxgBhL2dOCG9+KI5mzcjQypTxnyw8wsvSBetFQ0AgK8gAMKeMjLMmbwvvCAdO2buu/VWaeJEqX5999YGAIDFCICwn+XLzfv8duwwtxs1kiZNMi//AgBgA9wDCPv45Rfp73+XunY1w1+lStKMGdK2bYQ/AICtMAII35eSYt7nN22auZSbv7/0+OPmY14qVXJ3dQAAlDoCIHxXRob0zjvS6NHS0aPmvu7dzcu9DRu6tzYAANyIS8CwxLlz5/TNN98oIyOj9N/cMFRl0yaVadVKeuwxM/w1aCAtWWKu6EH4AwDYHAEQLpeamqpOnTrplltu0V133aX09PTSe/Pt2+V/661q9+KLcvz0k/k8v2nTpO3bpR49Sq8OAAA8GAEQLpWamqpu3bpp/fr1kqRFixbp3nvvtT4EJiVJgwZJLVrIb/lyZZYpo8zhw811e4cMMdfxBQAAkgiAcKELw9+VV16padOmKSgoyNoQmJZmTvCoU0d6+20pK0tZ99yjlTNmKOuVV6SKFV3/ngAAeDkCIFzi4vC3fPlyDRkyRIsWLbImBGZlSe+9J9WrZ07yOHNGatNGWrNGmR98oLSqVV3zPgAA+CACIEosv/DXsmVLSVKXLl1cHwJXr5auv176v/+TDh6UatSQPvhAWrdO6tDBBZ8IAADfRgBEiVwY/vz8/PT4448rJSVFv//+e84xLguBP/8s3Xmn1LGjtHmzFBIivfKKtHu3dN99ksPhug8GAIAPIwCi2C6e8JGVlaVx48apc+fOioyM1Jdffplz7MUhsHv37po3b55WrVql9evX67fffpNhGPm/0bFj0lNPSY0bS198YT7IefBgc4LHs89KQUGl8XEBAPAZPAgaxXJh+KtQoYJOnTolSbrlllu0efNmnTp1Svv27ct1TnYIvPXWW7Vq1SqtWrUqz+vmCoHp6eZSbePGSSdPmvtuvVX6z394lh8AACXACCCK7OJ7/qZOnSpJioyM1KpVq9S8eXNJUnh4eJ5zu3Tpovfffz9nu3z58jnfV8yesWsY0scfS40aSSNGmOGvWTMpPl5atIjwBwBACREAUST5TfjIDm7Zge/w4cO5ti9Wt27dnO/PnDmjq666SpI0btw4c4JH27ZS797S3r1S1armcm6bN0t/+5uVHw0AANvgEjAuW0GzfTds2CBJCggI0M8//6xDhw5JkqoW8CiW7IBYq1YtJSYm6uif6/RGxMZKP/xgHlS+vDn6N2KEdMUV1n4wAABshhFAXJbCHvVy8s/789asWaP69evn3A9Y0AhgUlKSJKl69er6+M03c/ZP+OEHpfv5mev37tkjRUcT/gAAsAABEJdUWPiTpLvvvltRUVGqU6eOKlSoIElq3769QkND8329Y8eOSTID4+39++fs/1bS2EGDpJkzzUu/AADAElwCRqEuFf4kqV69elq2bFnOdlpamsqVKydHfs/lO39eXY8cUTN/f+3JzFTaRT++5rrrLPgUAADgQowAokCXE/7yExwcnDf8GYb00UdSo0Zq8sor2paZqTP162vCBSOAI0eO1KOPPuriTwEAAC7GCCDyVdzwl6/Vq6V//Uv6c7KIwsOlmBjNOHdOI4YOlWSGv5dffjn/UUMAAOBSjAAij9TUVEVFRWn9+vUKDQ0tfvjbuVO6/XZz6bYNG8yZvdHR0p49muF0agjhDwAAtyAAIpfs8Pf9999LklJSUlS/fv2ivcjvv0sPPWQ+vHnRInPptscek379VRozRjNiYzVkyBBJhD8AANyBAIgcF4e/bHfccYfS0i6erpGPI0fMNXvr1ZNiY6WsLOmuu8yRwJkzpfBwzZgxg/AHAICbEQAhKW/48/Pz02OPPaYrrrhCK1euVJ8+fQo+OSVFGj1aqlVLmjZNOn9e6txZWr9e+uwz6c8RRMIfAACegQCInAkfF4a/OXPmaPLkyWrVqpUkad26dcrMzMx94tmz0sSJZvB78UXpzBmpdWtzzd4VK6Q2bXIOJfwBAOA5vD4A7tu3TwMGDFDNmjVVrlw51a5dW2PGjNH58+cLPa9jx45yOBy5vu67775SqtpzXDjbN1vv3r3Vq1cv3XvvvVq9erWCgoL06qwP9MA7G7X9wEkpI0OaPVuqW9dcqu34calBA+mTT8zJHhet2Uv4AwDAs3j9Y2B2796trKwsvfXWW6pTp4527NihQYMG6cyZM5owYUKh5w4aNEhjx47N2S5XrpzV5XqUix/10qdPH7355ptasGCBtm/frl27dikoKEiLFi3St2eqat3effrsw1Vq9ta/pF9+MV/k2mvNmb39+kll8v52IvwBAOB5vD4Adu/eXd27d8/ZrlWrlhISEvTGG29cMgAGBwerqk2XHDtw4IA6duyoX3/9Nddz/sLDwxUTE6Ndu3Yp+KprNO2t/yq8fit9+dZ3kqQv953RvalZMhq01pUD++uaJwZKgYH5vgfhDwAAz+T1ATA/KSkpqlSp0iWPmzdvnt5//32Fh4erR48eGjNmTM5atvlJT09Xenp6znZqaqokyel0yul0FrnO7HOKc25JHDhwQLVq1crZXrp0qZo2bSqn06nnn39e5cqV07x585Tac7xe/P689P13chiG5HDoeHCobus/1TzxqPSLn5+UT/0zZ87U0D+f8/fMM88oJiZGGRkZpfL53NVXO6C31qCv1qCv1vH23npr3a7kMAzDcHcRrvTrr7+qZcuWmjhxogYOHFjgcbNnz1bNmjVVtWpV7dixQ6NGjVKdOnUUHx9f4DnR0dGKiYnJs3/+/PkKDg52Sf2lYdu2bRozZkzOdmxsrCpWrJjrmEq7dum31T9pbNN7lOGf998Jfg5DjU9vlt/+Tbr//vsVeMEo4OLFizV79mxJ0j333KMHHniAkT8AgMdIS0tT3759lZKSopCQEHeX4xYeGwALClsX2rhxo1q3bp2znZiYqFtuuUW33HKL3n777SK936ZNm9S6dWtt2rSpwFUv8hsBjIiIUHJycrF+AzmdTsXHx6tr164KCAgo8vkl8dVXX+nvf/+7JKlRo0aKi4tTlSpV5Fi/Xn5jx8pv+XJJ0o7w2n+N+F0gSps1+9XRkqTOnTvrs88+U3BwcJ6Rv3HjxpV6+HNnX30dvbUGfbUGfbWOt/c2NTVVYWFhtg6AHnsJ+IknnrjkrNzIyMic7xMTE9WpUye1a9dOs2bNKvL7tWzZUgEBAfrll18KDICBgYG5RrqyBQQElOgPQEnPL4477rhDCQkJ6tSpk3bt2qVuN9+slZGRqrJyZb7HOyQZkhwOyTCkObFzJElBQUFauXKlKlasqFdeeUUjR46U5Bn3/Lmjr3ZBb61BX61BX63jrb31xppdzWMDYFhYmMLCwi7r2IMHD6pTp05q1aqV3n33Xfn5Ff3pNjt37pTT6VS1atWKfK63qlevnr5+/XV1+sc/tHPvXnXeu1crJVW54JjKlSroqiA/VQuroD6tIzTx83U6ctqpzLSTmjp1qlq0aKGbb75Zkjwq/AEAgIJ5bAC8XImJierYsaOuvfZaTZgwQUePHs35WfYM34MHD6pLly567733dMMNN+jXX3/VvHnz1LNnT4WFhWnXrl16+umn1aJFC3Xo0MFdH6V0bd8uxcSo3mef6WtJnSTtlNTZ4dBKwzBD4J13qtrs2VpT8UqV9ffT/PnzteXVByT/Mpo6aaIef/xxPfTQQ7lelvAHAIDn8/oAGBcXpz179mjPnj265pprcv0s+/ZGp9OphISEnPVsy5YtqxUrVmjq1Kk6ffq0IiIidOutt2rMmDHy9/cv9c9Qqn74QRo3TvriC3Pb4VC9GjX0tWGo0++/a6dhqLO/v1ZOmKAqTz0lORzKvuhdJvs5f5kZOnfunB566CHNnTs356UJfwAAeAevD4D9+/dX//79Cz0mMjJSF851iYiI0OrVqy2uzMN8950Z/JYuzb2/YkVp3z7Vk/S1n586lSunnWfOqPPbb2tl376qUuWvC8J9+vTR7t27FR0drWeffTbXyxD+AADwHl6/FBwKYRjmmrydOkk33pg3/EnSiRNS2bLSwIGq99NP+nrzZlWvXl07d+5U586ddeTIkVyHjxkzRtHR0bn2Ef4AAPAuBEBfZBjS4sVS+/bmuryrVuV/XI0a0pgx0r595tq+9eqZE0O+/rrQEFi5cuWc7wl/AAB4HwKgL8nIkD76SGrZUrrtNmn9+rzHlC9vrtu7YoW0d6+5ju9FM58LC4Es7wYAgPfz+nsAISktTXr3XSkmRrpgFnQOf3+pe3fp/vulO+4wQ+AlZIfATp065YTAf/zjH/r3v/8tifAHAIA3IwB6s6NHpcmTpfHj8/95u3Zm6OvdW7rqqiK//MUhkPAHAIBvIAB6o19+kXr1krZty/uziAhp0CCpb1+pdu0Sv9WFITAxMZHwBwCADyAAegvDkN5/X3rwwfx//uST5s9atjTXa3OhevXqafv27fr555/Vtm1bwh8AAF6OAOjpzp6V+vc3J3dcrEYNc/Zu587mfX4Wqly5stq1a2fpewAAgNJBAPRUO3ZI118vnTuX92cvvCCNHCkFB5d+XQAAwOsRAD3RmjXSTTfl3b9+vdSmTenXAwAAfArPAfREp0//9X337lJKinkPIOEPAAC4ACOAnqh7d+n8eSkgwN2VAAAAH8QIoKci/AEAAIsQAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACbIQACAADYDAEQAADAZgiAAAAANkMABAAAsBkCIAAAgM0QAAEAAGyGAAgAAGAzBEAAAACb8YkAeMcdd+jaa69VUFCQqlWrpn79+ikxMbHQc9LT0zVkyBCFhYWpfPnyuuOOO3TgwIFSqhgAAMB9fCIAdurUSR999JESEhL06aef6tdff9W9995b6DlDhw7VwoULtWDBAq1Zs0anT5/WbbfdpszMzFKqGgAAwD3KuLsAVxg2bFjO9zVq1NDIkSN15513yul0KiAgIM/xKSkpeueddzR37lz97W9/kyS9//77ioiI0PLly9WtW7dSqx0AAKC0+UQAvNDx48c1b948tW/fPt/wJ0mbNm2S0+lUVFRUzr7q1aurSZMmWrt2bYEBMD09Xenp6TnbqampkiSn0ymn01nkWrPPKc65KBh9tQ69tQZ9tQZ9tY6399Zb63YlnwmAzz77rGbMmKG0tDS1bdtWixYtKvDYpKQklS1bVldeeWWu/eHh4UpKSirwvPHjxysmJibP/ri4OAUHBxe79vj4+GKfi4LRV+vQW2vQV2vQV+t4a2/T0tLcXYLbOQzDMNxdRH6io6PzDVsX2rhxo1q3bi1JSk5O1vHjx/X7778rJiZGoaGhWrRokRwOR57z5s+fr4ceeijXaJ4kde3aVbVr19abb76Z7/vlNwIYERGh5ORkhYSEFPUjyul0Kj4+Xl27di1wtBJFR1+tQ2+tQV+tQV+t4+29TU1NVVhYmFJSUor197cv8NgRwCeeeEL33XdfocdERkbmfB8WFqawsDDVq1dPDRs2VEREhNavX6927drlOa9q1ao6f/68Tpw4kWsU8MiRI2rfvn2B7xcYGKjAwMA8+wMCAkr0B6Ck5yN/9NU69NYa9NUa9NU63tpbb6zZ1Tw2AGYHuuLIHtS8eIQvW6tWrRQQEKD4+Hj17t1bknTo0CHt2LFDr732WvEKBgAA8BJe/xiYDRs2aMaMGdq6dat+//13ff311+rbt69q166dM/p38OBBNWjQQBs2bJAkhYaGasCAAXr66ae1YsUKbdmyRQ888ICaNm2aMysYAADAV3nsCODlKleunD777DONGTNGZ86cUbVq1dS9e3ctWLAg53Kt0+lUQkJCrps+J0+erDJlyqh37946e/asunTpotjYWPn7+7vrowAAAJQKrw+ATZs21cqVKws9JjIyUhfPdQkKCtL06dM1ffp0K8sDAADwOF5/CRgAAABFQwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMAaY764EAAAnLSURBVBAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJshAAIAANgMARAAAMBmCIAAAAA2QwAEAACwGQIgAACAzRAAAQAAbIYACAAAYDMEQAAAAJsp4+4CvJlhGJKk1NTUYp3vdDqVlpam1NRUBQQEuLI0W6Ov1qG31qCv1qCv1vH23mb/vZ3997gdEQBL4NSpU5KkiIgIN1cCAACK6tSpUwoNDXV3GW7hMOwcf0soKytLiYmJqlChghwOR5HPT01NVUREhP744w+FhIRYUKE90Vfr0Ftr0Fdr0FfreHtvDcPQqVOnVL16dfn52fNuOEYAS8DPz0/XXHNNiV8nJCTEK/8AeTr6ah16aw36ag36ah1v7q1dR/6y2TP2AgAA2BgBEAAAwGb8o6Ojo91dhJ35+/urY8eOKlOGq/GuRF+tQ2+tQV+tQV+tQ2+9G5NAAAAAbIZLwAAAADZDAAQAALAZAiAAAMD/t3evIU2+DRjAr+mrTpMyZ0xjnrBQsWKlIEoH96FlfagFiYEZkgpLAg+gpYZmpBUJiUJakBkiOMOgggKttIPHCoUIilRs5Kw8oEGBy8P74e3vi397/2+bW8/27PrBPjy3envt5mFce7z36GBYAImIiIgcDAugjQgKCoJEIlnyOHXqlNCxRGVmZgZKpRISiQT9/f1Cx7F7+/fvR0BAAKRSKfz8/JCcnAyDwSB0LLs2PDyM1NRUBAcHw93dHSEhISguLobRaBQ6miiUlpYiNjYWHh4e8PLyEjqO3bpy5QqCg4MhlUoRGRmJZ8+eCR2JzMACaEPOnj2L0dHRxcfp06eFjiQqeXl5WL9+vdAxREOlUqGpqQnv3r1Dc3MzBgcHcejQIaFj2bW3b99ifn4eV69exZs3b3D58mXU1NSgoKBA6GiiYDQakZCQgOPHjwsdxW7pdDpkZWWhsLAQfX192LFjB/bu3Qu9Xi90NDIRbwNjI4KCgpCVlYWsrCyho4jSgwcPkJOTg+bmZkRERKCvrw9KpVLoWKJy9+5daDQazMzMwMXFReg4onHp0iVUV1djaGhI6CiiUVdXh6ysLExNTQkdxe5ER0dj27ZtqK6uXhwLDw+HRqPB+fPnBUxGpuIVQBty8eJFyGQyKJVKlJaW8s8+FvL582ekp6ejvr4eHh4eQscRpcnJSTQ0NCA2Npblz8Kmp6fh7e0tdAwiGI1GvHr1Cmq1esm4Wq1GZ2enQKnIXCyANiIzMxONjY1oa2vDiRMnUFFRgYyMDKFj2b2FhQWkpKRAq9UiKipK6Diic/LkSaxatQoymQx6vR537twROpKoDA4OoqqqClqtVugoRBgfH8fc3BzkcvmScblcjk+fPgmUiszFAmhFZ86cWfbBjr8/Xr58CQDIzs7Grl27sGXLFqSlpaGmpgbXr1/HxMSEwM/CNv3u2lZVVeHr16/Iz88XOrJdMOWcBYDc3Fz09fWhpaUFzs7OOHr0KLirZDlT1xUADAYD4uPjkZCQgLS0NIGS2z5z1pZWRiKRLDleWFhYNka2j3sArWh8fBzj4+P/+D1BQUGQSqXLxkdGRqBQKNDd3Y3o6GhrRbRbv7u2hw8fxr1795a8OM3NzcHZ2RlJSUm4efOmtaPalZWcsx8/foS/vz86OzsRExNjrYh2ydR1NRgMUKlUiI6ORl1dHZyc+F79fzHnnOUeQPMYjUZ4eHjg1q1bOHjw4OJ4ZmYm+vv78eTJEwHTkan4H5ytyMfHBz4+Pmb9bF9fHwDAz8/PkpFE43fXtrKyEufOnVs8NhgM2LNnD3Q6HYv1L6zknP3rveTMzIwlI4mCKes6MjIClUqFyMhI3Lhxg+Xv/1jJOUumcXV1RWRkJFpbW5cUwNbWVhw4cEDAZGQOFkAb0NXVhe7ubqhUKqxZswYvXrxAdnb24n3WyHx/Xz9PT08AQEhICBQKhRCRRKG3txe9vb3Yvn071q5di6GhIRQVFSEkJIRX/1bAYDAgLi4OAQEBKC8vx9jY2OLXfH19BUwmDnq9HpOTk9Dr9Zibm1u8H+iGDRsWXxvon+Xk5CA5ORlRUVGIiYnBtWvXoNfruU/VDrEA2gA3NzfodDqUlJRgZmYGgYGBSE9PR15entDRiH7J3d0dt2/fRnFxMb59+wY/Pz/Ex8ejsbERbm5uQsezWy0tLRgYGMDAwMCyNyjcrbNyRUVFS7Z9bN26FQDQ1taGuLg4gVLZl8TERExMTCzet3bTpk24f/8+AgMDhY5GJuIeQCIiIiIHw80lRERERA6GBZCIiIjIwbAAEhERETkYFkAiIiIiB8MCSERERORgWACJiIiIHAwLIBEREZGDYQEkIiIicjAsgETk8IaHhyGRSCCRSKBUKlc8319zeXl5WSAdEZHlsQASEf308OFDPHr0aMXzjI6OoqKiwgKJiIisgwWQiOgnmUwGmUy24nl8fX2xZs0aCyQiIrIOFkAiEpWxsTH4+vqirKxscaynpweurq5oaWkxaa6UlBRoNBqUlZVBLpfDy8sLJSUlmJ2dRW5uLry9vaFQKFBbW2vpp0FEZFX/EjoAEZElrVu3DrW1tdBoNFCr1QgLC8ORI0eQkZEBtVpt8nyPHz+GQqHA06dP0dHRgdTUVHR1dWHnzp3o6emBTqeDVqvF7t274e/vb4VnRERkebwCSESis2/fPqSnpyMpKQlarRZSqRQXLlwway5vb29UVlYiNDQUx44dQ2hoKL5//46CggJs3LgR+fn5cHV1RUdHh4WfBRGR9bAAEpEolZeXY3Z2Fk1NTWhoaIBUKjVrnoiICDg5/felUi6XY/PmzYvHzs7OkMlk+PLly4ozExH9KSyARCRKQ0NDMBgMmJ+fx4cPH8yex8XFZcmxRCL55dj8/LzZv4OI6E/jHkAiEh2j0YikpCQkJiYiLCwMqampeP36NeRyudDRiIhsAq8AEpHoFBYWYnp6GpWVlcjLy0N4eDhSU1OFjkVEZDNYAIlIVNrb21FRUYH6+nqsXr0aTk5OqK+vx/Pnz1FdXS10PCIim8A/ARORqMTFxeHHjx9LxgICAjA1NWXyXHV1dcvG2tvbl40NDw+bPDcRkZBYAImIfoqNjYVSqURnZ+eK5vH09MTs7KzZnzwmIrI2FkAicngKhQLv378HALi5ua14vv7+fgD/uUUMEZEtkiwsLCwIHYKIiIiI/hx+CISIiIjIwbAAEhERETkYFkAiIiIiB8MCSERERORgWACJiIiIHAwLIBEREZGDYQEkIiIicjAsgEREREQO5t9NnGnekpDzWAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": { - "image/png": { - "width": 600 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "Image(filename=\"Figure_4.png\",width=600)" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9PvDnzJJJJplM9oTJzr7vCAgIWIhsIi5c64KlLhUXrqilSq0WqL24VMXKBXGpvV38QStKbUUkWgEpIDHsWwKB7AnZM5NMZjIz5/z+mGQgGwRIMjPnPO/XK53M95w58/mQpPP4PZsgSZIEIiIiIlIMlbcLICIiIqKexQBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAMgEREREQKwwBIREREpDAabxfgz0RRRHFxMQwGAwRB8HY5RERE1AmSJMFiscBkMkGlUuZcmOID4Pr16/H666+jpKQEQ4YMwdq1azFlypROvba4uBiJiYndXCERERF1h4KCAiQkJHi7DK9QdADcvHkzli1bhvXr12PSpEnYuHEjZs+ejZMnTyIpKemKrzcYDADcv0ChoaFdWpvD4cCOHTuQlpYGrVbbpdv2RexX3tivvCmtX0B5PcutX7PZjMTERM/nuBIpOgC++eabeOihh/Dwww8DANauXYuvvvoKGzZswJo1a674+ubdvqGhod0SAPV6PUJDQ2Xxx3Yl7Ffe2G/nNTpF1NudsDpcsDtcsDlE2J0u2J0i7E4RNkfT902PnudOES5RhFOU4HJJcIoSnKIIlyjB6ZLcj2Lzowin6+JzUZIgSYAE9yMASE3/I7m/a1ru3nXWvLx5XVESUVtjwOZNp6ASBM+XIKDdR9Ulz4VLnrc31vY1AtQqtHgflQCoVR0vU6nc37dcdnG8eZkgCFALAlStttF6mSAIkEQXChqDcbLCCa3W/f4q4ZL1LtnOlZY193ilZc3/Nt4g179hJR++pdgA2NjYiMzMTDz//PMtxtPS0rB3714vVUVE/szpElHb4EC5uQHnLcC/s8pRZxdR0+BAjbURFpsTdXYn6u0XH+vtLvf3je7nDpfk7TaukYC8ulpvF9HD1Fh/6ocefcdLw7InKDaFQ7VKaD8kq+AJl5eud+my5tDtCdKtgjAgobJchX9WH4JGrW4Vki8J2W0C9KUBvOn9O1gGwB1y0RR2m56PSQ7HmOSIHv13VgLFBsCKigq4XC7Exsa2GI+NjUVpaWm7r7Hb7bDb7Z7nZrMZgPu/jBwOR5fW17y9rt6ur2K/8ubP/TY0ulBeZ0dFXSPKLXZU1NlRXtfofrS4H6vqG1HT4A51F2mA44eu+X21agGBWjUCNSroNCoEaNTQaVQI1Lqf6zRq6C75PkAjQKtWQaNyf5iqVULT9+2NCdCqm8YEAarmD1+4Z0Sa50SaJ0eaZ0maP5Cb12j+kHa6XDh8+DBGjBwBtUoDUbo4qyhK7jlEUXLPHrqXNc0oNn3fvE6L562Wi6J7HZfoXuZq3pYIz/tduq7YtE7zNtyvk+BqtX7z+KXru0T3e7s8tTbPlF58rdMlwWyxIDg45OI6zTWIreq5pE5XU2+Xzrw2j3VG8zYBCXBd86/XNVLheHV5T78p/nt6Hww3de2uWn/8/6KuptgA2Kz19K8kSR1OCa9ZswarVq1qM75jxw7o9fpuqS89Pb1btuur2K+8+Vq/LgmobQSq7UC1XUB1Y9PjJc9trqvfRRSklqDXAHoNEKy5+H2QBtCpJQSqAZ0a0Kncj4Fqyf1cDc8ytQAA1/AhJTZ9dQGp1ePlDIsAxPzDbd66+fxKddeU1Dk9elJn18x6XtzF7v7xNT8X23vsYJ3W4+4A3vr1Qpt1xVbrXm67HdbW7jKh5fhlXi9eeuhB82PT8rqibGzbltUl/87NrFZrl27PHyk2AEZFRUGtVreZ7SsrK2szK9hsxYoVeOaZZzzPmw8iTUtL65ZjANPT0zFz5kxZHW/REfYrb97st9EporC6AblVVuRVWpFbWY+8ygbkVdajuNbm+eC5nECtClEhOkSHBLgfDU2PTWMRwQEI02thDNIiNFADSXTx5ytzSutZbv0278FTMsUGwICAAIwZMwbp6em4/fbbPePp6em47bbb2n2NTqeDTqdrM67VarvtD6I7t+2L2K+8dWe/1kYnzlyoQ/YFS9NXHc5X1KOopgGuy6Q8rVpAL2MQTGGBiA/TIz4sEKawIM9XnDEQwQHqqzpYvHn3En++8qe0nuXSrxx6uF6KDYAA8Mwzz2DRokUYO3YsJk6ciPfeew/5+flYsmSJt0sjog6IooTcynocLzYjq9SMrFJ36CuotnZ4HJU+QI2UyGCkROmbHoORGhWMpAg9okN0nmPgiIiUQtEB8O6770ZlZSVWr16NkpISDB06FNu2bUNycrK3SyMiXAx7x4pqcbyoFseKanGiyAxLi5MtLooK0WFAXAj6xxrQP9aA3k1BL9qgU/TlHoiIWlN0AASAxx9/HI8//ri3yyAiAGabAwfzqpHZ9HWssLbdsKfTqDCoVygGm0IxoCns9Y8NQWRI20M0iIioLcUHQCLyDkmSUFDVgB/yqjyBL+uCpc1uXJ1GhcGmUAyLN2JovBHD4o3oFxMCjVqZ9+8kIuoKDIBE1GNKzTZk5F3A3pxK7MupRFFNQ5t1kiP1GJMcjrHJERiVFMawR0TUDRgAiajb1FgbsS+nEt+dKcPXR9Uo27e7xXKtWsDQeCPGJodjTHI4RieHI8YQ6KVqiYiUgwGQiLqMJEk4UWzGzqwyfJtVjkP51ZdcZ89966dh8UZM7BOFG/tEYlxKBIICevQSwUREBAZAIrpOZpsD/zlTgW+zyrAzqxxlFnuL5f1jQzAhNQIB1efx2J0zEBnaPXfNISKizmMAJKKrVlprw46TpfjqRCm+P1cF5yUXWtYHqDGpbxSmD4jB9IHR6GUMgsPhwLZt5xAaxIuvEhH5AgZAIuqU3Ip6fHWiFNtPlOJQfk2LZb2jg92Bb0AMxqWGQ6fhbl0iIl/GAEhEHcq+YMEXR0vw1YlSnC61tFg2JjkctwyJRdrgOKREBXupQiIiuhYMgETUQkGVFZ8fKcY/jxS3CH1qlYCJvSNxy9A4pA2ORWwoz9YlIvJXDIBEhDKLDV8cLcHnR4pb7N7VqgVM7R+N2UN74UeDYhCmD/BilURE1FUYAIkUqt7uxJfHS7H1UBH25lR4LtciCMCNfSIxf4QJs4b0glHPEzeIiOSGAZBIQURRwoHcKnySWYhtx0pgbXR5lo1MDMP8ESbMG94LMdy9S0QkawyARApQUGXFpweLsOVgIfKrrJ7x1Khg3Dk6HvNHxCMpktfnIyJSCgZAIpmyOVzYdqwEf/+hEPvOVXrGQ3QazBveC3eNScCY5HAIguDFKomIyBsYAIlk5mxZHT7+Ph9bDhaitsEB4OJxfXeNScCsIb14+zUiIoVjACSSAbvTha9OXMBf9+fh+/NVnvH4sCDcPS4Rd4yOR0I4d/ESEZEbAyCRH8urrMfHB/Lx9x8KUVXfCABQCcDNA2Nx34Qk3NQvGmoVd/ESEVFLDIBEfkYUJew+U46P/pOLXdnlnvG40EDcPS4Rd49LhCksyIsVEhGRr2MAJPIT9XYnPj1YiI/25uJceT0A97F9N/WLxn3jk3DzwBho1CovV0lERP6AAZDIxxVUWfGnfbnYlFEAi80JwH0m73+NTcRPbkxGciTvw0tERFeHAZDIR2XmVeH93eex42Sp5y4dKZF6LL4xBXeNTUSIjn++RER0bfgJQuRDRFHCt1lleHdXDjJyqz3jk/tG4cHJKZjWPwYqntRBRETXiQGQyAc4XCI+P1yMjbtzkH2hDgCgVQu4Y1QCHpqSiv6xBi9XSEREcsIASORF9XYntnxfiA+/O4fiWhsA9/F9941PwoOTUxHLe/ISEVE3YAAk8oI6uxPpRQJWvvkdqq3uu3VEhejw4OQU3Dc+GcYgrZcrJCIiOWMAJOpBFpsDf9qXh/d3n0NNgxqAAymRevzspj64Y3Q8ArW8RRsREXU/nwiAX3/9NWbMmNHuso0bN+LRRx/t4YqIupbF5sD/7c3F+9+d99yfNyZQwi/mDcftoxN5tw4iIupRPnHV2Llz5+LZZ59FY2OjZ6y8vBy33norVqxY4cXKiK6PxebAO9+cweRXv8XvdmSjtsGB3tHBeOOuYVgx0oXbRvRi+CMioh7nEzOAu3fvxqJFi/D111/j448/Rm5uLh588EEMHjwYR44c8XZ5RFfN5nDhL/vz8L/fnvUc49c3JgRLb+6LecNNEF1ObCs65OUqiYhIqXwiAI4fPx6HDh3CkiVLMGbMGIiiiJdffhnLly+HIHB2hPyH0yXi00NFWJue7Tmrt3d0MJbN6I+5wy7O9okub1ZJRERK5xMBEACysrKQkZGBhIQEFBcX4/Tp07BarQgO5m2uyPdJkoSvTlzA73Zk4WyZ+zp+vYyBWDajH+4cncB79BIRkU/xiU+lV155BRMnTsTMmTNx/PhxZGRk4NChQxg+fDj27dvn7fKILmtvTgUWrN+LJX/JxNmyOoTptXhhziB8+/NpuHtcEsMfERH5HJ+YAXz77bexdetWzJ49GwAwZMgQHDhwAL/85S8xbdo02O12L1dI1NbZsjr89ouT+DarHAAQpFXj4SmpeOSm3ggN5HX8iIjId/lEADx27BiioqJajGm1Wrz++uuYN2+el6oial+NtRFrvz6DP+/Pg0uUoFEJuG98Ep68uR+iDTpvl0dERHRFPhEAW4e/S02dOrUHKyHqmMMl4q/78/DW12c81/KbMSgWL8wdhNQoHqtKRET+wycCIJGv+zarDC//6yRyyusBAANiDXhx3mBM7tfxf7wQERH5KgZAoss4W2bBy1+cws6m4/wiggPwbFp/3D02kSd3EBGR32IAJGpH6+P8tGoBi29MwZM394MxiCd4EBGRf2MAJLpEe8f5zRwci1/O4XF+REQkHwyARE1aH+c3MM59nN+kvjzOj4iI5IUBkBSvo+P8fjwuyXPrNiIiIjlhACTFau84v59OSsWTN/flhZyJiEjWGABJcTo6zu+FOYOQwuP8iIhIARgASVF4nB8REREDIClE6+P8IoMD8GzaANw9LpHH+RERkeIwAJKsVdU34u2vs/GX7/N5nB8REVETBkCSpUaniD/ty8XvvzkDs80JgMf5ERERNWMAJFmRJAlfnbiAV748hdxKKwBgcK9Q/GreINzYh8f5ERERAQyAJCPHi2rx8hcnsf9cFQAg2qDD8rQBuHNMAo/zIyIiugQDIPm9MrMNr3+VhU8OFkKSAJ1GhUem9MaSaX0QouOvOBERUWv8dCS/ZbY5sHFXDv6wJxcNDhcA4LaRJvxi1kDEhwV5uToiIiLfxQBIfsfmcOFP+3KxfmcOaqzuCzmPTgrDr+YNxuikcO8WR0RE5AcYAMlvOF0ithwsxNqvz6Ck1gYA6BcTguW3DMDMwbEQBB7nR0RE1BkMgOTzXKKEfx0txu+/OeO5g4fJGIhlM/vjztE8wYOIiOhqMQCSz3K6RHx+pBjr/n0W5yrcwS9Mr8WT0/vi/gnJCNSqvVwhERGRf2IAJJ/jcIn47FAR/vfbs8hrupafMUiLhyen4ieTUngHDyIiouvEAEg+w+oE3t9zHn/eX+A5xi8iOAAPT0nFAxNTeEkXIiKiLsJPVB9kc7hgb3R6u4wek19pxQff5WBTphqN4hkAQFSIDj+7KRX3jU9GMIMfERFRl+Inqw/66kQpnt9yFANCVRCSSjFjSC/oA+T1o2p0ikg/eQGbMvKx52wFJAkABPSPCcHDN/XG/BEmHuNHRETUTeSVKmRi/7lKNDhEHK5U4b83H0WQ9gSmD4zGnGG9cPPAGL8Ng5Ik4USxGf84XIQtB4tQVd/oWXZTv0gM0ZTh6XsmIiAgwItVEhERyZ9/JgmZ+5/bh+G/Rsdj3ed7kdUQjMLqBmw7Voptx0oRqFXh5oExfhMGJUnCyRIzvjhagi+OlXhO6gCA2FAdFo5JxH+NTUSvUC22bdvGa/kRERH1AN9ODwolCAKGxodifrKI2bMnI6usAV8cK8EXx4pRUNUyDE4f4A6D0wfG+MxJErUNDvznbAV2Z5djV3a554QOAJ6a7xydgGkDoqFRqwAADofDW+USEREpjm8kBi9ISUlBXl5ei7HnnnsOr7zyipcqap8gCBiWYMSwBCOemzUAx4vM+OJYCbYdK0F+lRVfHi/Fl8dLoVYJGGoKxbiUCIxLjcCoxDBEG3TdPqMmSRIKqhpwqKAaB/OqcaigBieKzXCJkmcdncYd+uYOd89a8qQOIiIi71L0J/Hq1avxyCOPeJ6HhIR4sZorax0GTxSb8a+jJfjyuHvX6pHCWhwprMUHe84DcF9CZUCsAQN7GZAaFYz4sCCYwoIQHx4Eg07T6XAoihIq6uwoqbWhpNaGwmorzlyow5kyC86U1cFia3vGct+YENzULxpTB0RjfGoET+ggIiLyIYoOgAaDAXFxcd4u45q4dxMbMTTeiOdnD0RRTQMyzlfhQG4VMs5XIae8DlX1jdh3rhL7zlW2eb1GJSA0SAtDoAaGQA3UKhVUAtAcCa2NLlhsTtQ3OmGxOVvM6LWmVQsYbDJidFIYRieFY0xyOExhQd3UOREREV0vRQfAV199Fb/5zW+QmJiIhQsXYvny5Zc9A9Vut8Nut3uem81mAO7j17r6GLbm7XV2uzHBGswdGoO5Q2MAuK8leLasHqcvWJB9oQ6F1Q0orm1AcY0N1VYHnKKEqvrGFmfiXo5KAKINOsSFBqKXMRB9ooPRLyYEfaODkRIVDJ1G1W79nXW1/fo79itv7Ff+lNaz3PqVSx/XQ5AkqeOpHRl76623MHr0aISHh+PAgQNYsWIFbrvtNnzwwQcdvmblypVYtWpVm/GPP/4Yer2+O8vtUo0u9103rC7A5gQaXAKaJ/iafxl0KkCnlhCoBgLVgCEAUPMEXSIikgGr1Yp7770XtbW1CA0N9XY5XiGrANhRQLtURkYGxo4d22Z8y5YtuOuuu1BRUYHIyMh2X9veDGBiYiIqKiq6/BfI4XAgPT0dM2fOhFYr/3vfsl95Y7/yprR+AeX1LLd+zWYzoqKiFB0AZbUL+Mknn8SPf/zjy66TkpLS7viECRMAAGfPnu0wAOp0Ouh0Os/z5uzc0NDQ5X8QDocDVqsVDQ0NcDrlf1s49itv7FfelNYvoLye5dZvQ0MDgIuf40okqwAYFRWFqKioa3rtoUOHAAC9evXq9GssFgsAIDEx8Zrek4iIiLzHYrHAaDR6uwyvkNUu4M7at28f9u/fj+nTp8NoNCIjIwNPP/00xo4di3/84x+d3o4oiiguLobBYOjy6+01714uKChQxPQ0+5U39itvSusXUF7PcutXkiRYLBaYTCaoVKorv0CGZDUD2Fk6nQ6bN2/GqlWrYLfbkZycjEceeQS/+MUvrmo7KpUKCQkJ3VSlW2hoqCz+2DqL/cob+5U3pfULKK9nOfWr1Jm/ZooMgKNHj8b+/fu9XQYRERGRVyhz3pOIiIhIwdQrV65c6e0iqH1qtRrTpk2DRqOMiVr2K2/sV96U1i+gvJ6V1q/cKfIkECIiIiIl4y5gIiIiIoVhACQiIiJSGAZAIiIiIoVhACQiIiJSGAZAH7R+/XqkpqYiMDAQY8aMwXfffeftkrrEmjVrMG7cOBgMBsTExGDBggXIyspqsY7dbsfSpUsRFRWF4OBgzJ8/H4WFhV6quGutWbMGgiBg2bJlnjG59VtUVIT7778fkZGR0Ov1GDlyJDIzMz3LJUnCypUrYTKZEBQUhGnTpuHEiRNerPjaOZ1O/OpXv0JqaiqCgoLQu3dvrF69GqIoetbx9353796NW2+9FSaTCYIgYOvWrS2Wd6a/6upqLFq0CEajEUajEYsWLUJNTU1PttFpl+vX4XDgueeew7BhwxAcHAyTyYQHHngAxcXFLbYhl35be/TRRyEIAtauXdti3J/6pZYYAH3M5s2bsWzZMrzwwgs4dOgQpkyZgtmzZyM/P9/bpV23Xbt24YknnsD+/fuRnp4Op9OJtLQ01NfXe9ZZtmwZPvvsM2zatAl79uxBXV0d5s2bB5fL5cXKr19GRgbee+89DB8+vMW4nPqtrq7GpEmToNVq8eWXX+LkyZN44403EBYW5lnntddew5tvvol169YhIyMDcXFxmDlzpue+2v7k1Vdfxbvvvot169bh1KlTeO211/D666/jnXfe8azj7/3W19djxIgRWLduXbvLO9Pfvffei8OHD2P79u3Yvn07Dh8+jEWLFvVUC1flcv1arVYcPHgQL774Ig4ePIhPP/0U2dnZmD9/fov15NLvpbZu3Yrvv/8eJpOpzTJ/6pdakcin3HDDDdKSJUtajA0cOFB6/vnnvVRR9ykrK5MASLt27ZIkSZJqamokrVYrbdq0ybNOUVGRpFKppO3bt3urzOtmsVikfv36Senp6dLUqVOlp556SpIk+fX73HPPSZMnT+5wuSiKUlxcnPTKK694xmw2m2Q0GqV33323J0rsUnPnzpUefPDBFmN33HGHdP/990uSJL9+AUifffaZ53ln+jt58qQEQNq/f79nnX379kkApNOnT/dc8degdb/tOXDggARAysvLkyRJnv0WFhZK8fHx0vHjx6Xk5GTprbfe8izz535JkhQ/A+hLu1sbGxuRmZmJtLS0FuNpaWnYu3evl6rqPrW1tQCAiIgIAEBmZiYcDkeL/k0mE4YOHerX/T/xxBOYO3cuZsyY0WJcbv1+/vnnGDt2LBYuXIiYmBiMGjUK77//vmf5+fPnUVpa2qJfnU6HqVOn+mW/kydPxjfffIPs7GwAwJEjR7Bnzx7MmTMHgPz6ba0z/e3btw9GoxHjx4/3rDNhwgQYjUZZ/BvU1tZCEATPLLfc+hVFEYsWLcLy5csxZMiQNsvl1q/SKPpy3s27W9evX49JkyZh48aNmD17Nk6ePImkpKQrvl4URRQXF8NgMEAQhOuup6SkBC6XCyEhITCbzZ5xo9GIoqKiFmP+TpIkLF26FBMmTEBSUhLMZjPOnTsHrVYLtVrdotfIyEjk5+f7Zf+ffPIJMjIysHPnTpjNZjidTtjtdln2m5OTg/Xr1+PJJ5/Eli1bkJmZiaVLl0IURdxzzz3IyckBAOj1+ha9hYeHo6CgwO/6feyxx1BWVoYBAwZArVbD5XLhpZdewty5c2E2m2XXL+DeDdpcd2f6y83NRWRkZJteIyMjkZub6/P/Bpf225rNZsPy5cuxcOFCAJBlv2+88QYAYPHixTCbzRBFETabzbOOP/crSRIsFgtMJhNUKmXOhSn6TiDjx4/H6NGjsWHDBs/YoEGDsGDBAqxZs+aKry8sLERiYmJ3lkhERETdpKCgAAkJCd4uwysUOwPYvLv1+eefbzF+NbtbDQYDAPcvUGhoaJfW53A4sGPHDqSlpUGr1Xbptn0R+5U39itvSusXUF7PcuvXbDYjMTHR8zmuRIoNgBUVFXC5XIiNjW0xHhsbi9LS0nZfY7fbYbfbPc+bz3QLCgpCUFBQl9an0Wig1+sRFBQkiz+2K2G/8ibXfiVJgigBTpcIpyh5vuxOF2xqPSpsgNohQWxaT5Qkz2skz3M0Lb/0+9bLmt+r/WWX1tNxrZd836qH9sdbvb6DjUkAXC4XTtQHA9m1UKvV7b7/pUfJCB0sENof9owLnVi35aaFK2xX6GAcbZ60fm+X04nz9mAcKLRCo1G38z5t3xtX8d6dqbPFpttZv6OeOvp39PTazrpOpxPloh5nqxzQaKQrvt+VauuovvbWjQjWIjJE1/7Gr5HD4Wh6v+s/fMtfKTYANmv9w5ckqcNfiDVr1mDVqlVtxnfs2AG9Xt8t9aWnp3fLdn0V+5W37urXKQJ2F2BzAfam7+0uwf28+UsEnKIAh+he3yE1PYqXPErCJd8DLhEQ4X50ARCbHyXAJQGidLkPDw1wcH+39Oub1MDZU94uooepgdNHvV1ED9IAxzKvvFoXm5XgwuzErj1azWq1dun2/JFiA2BUVBTUanWb2b6ysrI2s4LNVqxYgWeeecbzvHkKOS0trVt2Aaenp2PmzJmymjHpCPuVt6vpV5IkmG1OXDDbcMFsR5nFjpoGB2qsDlRbHaixNrZ83uBAo1O87DZ7mloQIECEVqOBWiVAEACVAKiE5u+FVt+7/2NUdclzoOVzQRCgUrWzDVx5Bsy9tUvH0cH45WeG3N+2ncGRRBGVlZWIioqC0FTfpTqefbx0vP2VJM+6V56p7Ghm82rWbW/b7dUmSRJqas0wGkMhCEK7vbQY6+C9W8+mtl1Xam/Vy8zWtvPeHazb3rY7qk2UAJutAYGBLfd2Xenn08GPtd31O6pt+JB+mDM5FV3Jl09Q6SmKDYABAQEYM2YM0tPTcfvtt3vG09PTcdttt7X7Gp1OB52u7TS0Vqvttg/x7ty2L2K/8uY+61mDCxYb8iqtyK+0Iq+qHgVVDSg125pCnw02x7UFOp1GhRCdBsHNXwFqBOs0CNFpEBSgRqBWBZ1GDZ2m6VGruvi9RtX03P19gEYFrVqARqWCWiVAq3Y/alQCNE0edEF5AAAgAElEQVTj7kehzXKn04lt27ZhzpxbFPHzdTgcTf2OVUS/wKU9T1REzxf7vUkW/cqhh+ul2AAIAM888wwWLVqEsWPHYuLEiXjvvfeQn5+PJUuWeLs0Ir/ndInIq7Iiq9SCk0U12J2lwu/P/geF1Q2wd2LGLkyvRawhEDGhOkQEByBcH4AwvRbh+gCEBwcgvOl7Y5AWoYFa6HVqaNXKvJwDEdHVUnQAvPvuu1FZWYnVq1ejpKQEQ4cOxbZt25CcnOzt0oj8iihKOFteh8P5NThUUINjRTXIvlDXatesCoD7tn9qlYCE8CAkReiRHKlHUoQevYxBiDMGekJfoLb9kwmIiOj6KToAAsDjjz+Oxx9/3NtlEPkVu9OFQ/k12JtTiR9yq3C0sBZ1dmeb9YK0avSPDUG/mBA4K/Mxf9o49I0xwhQWCA1n64iIvEbxAZCIrkwUJRwvrsV3ZyqwL6cSGblVbXbj6gPUGBZvxMikMIxMCMNgUygSw/VQqYSm44fyMKVvFI+9ISLyAQyARNQum8OFvTkVSD9Zhm9OXUCZxd5iebRBhxv7RGJ8aiRGJYWhX0wIZ/WIiPwEAyARedgcLuzMKsfnR4rw7elyNDhcnmXBAWpM7heFSX2jcGOfSPSJDlH0RVSJiPwZAyCRwrlECftyKvGPw0XYfqIUFtvFY/lMxkDMGByLGYNiMb53BHQanphBRCQHDIBEClVaa8PffijA5owCFNU0eMZ7GQMxf4QJt44wYYgplLN8REQyxABIpCCiKGFXdjn++n0+/n36guc+ssYgLeYN74X5I0wYlxIBlYqhj4hIzhgAiRSgodGFTw4W4g97zuN8Rb1n/IbUCNx7QxJmDY3jdfeIiBSEAZBIxsotdvxpXy7+sj8P1VYHACA0UIOFYxNxzw1J6BsT4t0CiYjIKxgAiWSotNaGDTvP4v9lFHjuxpEYEYSHJqVi4dhEBOv4p09EpGT8FCCSkZLaBmzYmYNNBwrQ6HIHv1FJYXhkSm/cMiQOah7bR0REYAAkkoUysw3rvj3bIvjdkBKBZTP7YWLvSJ7JS0RELTAAEvmxOrsT7+0+h/d3n/NctPmG1Agsm8HgR0REHWMAJPJDDpeITRkFePvrbFTUNQJw7+pdfssA3NgnysvVERGRr2MAJPIjkiTh61NlWLPtFM41Xc4lJVKP52YNxKyhcZzxIyKiTmEAJPIT58rrsOqfJ7EruxwAEBkcgKdm9MM9NyRBq1Z5uToiIvInDIBEPq7e7sS6b8/ig+/OweGSoFULeHhKbzw+rQ8MgVpvl0dERH6IAZDIR0mShH8dLcFvvziFUrMNADBtQDRemjcYvaN5AWciIrp2DIBEPuhceR1e+Ow49p2rBOC+iPOv5w3BjwbF8Dg/IiK6bgyARD6k0Sli464cvPPtWTQ6Reg0KjwxvS9+dlNv3quXiIi6DAMgkY/IzKvGik+PIvtCHQBgav9ovLxgKBIj9F6ujIiI5IYBkMjLLDYHXtuehb98nwdJcp/d+9KtgzF/hIm7e4mIqFswABJ5UfrJMqz+4rTnJI+7xiTghTmDEB4c4OXKiIhIzhgAibygsr4RH2WrcHjfYQBAcqQea24fhhv78i4eRETU/RgAiXrYl8dK8MLWY6iqV0GtEvCzm3rjqR/140keRETUYxgAiXpIdX0jXvr8BP55pBgA0CtIwvqfTMColEgvV0ZERErDAEjUA3acKMUvPzuOijo7VALw6JRU9LWfwdD4UG+XRkRECsQASNSNaqyNWPXPk/jsUBEAoG9MCN5YOAKD44KxbdsZL1dHRERKxQBI1E2+OXUBKz49hjKLe9bvZzf1wbIZ7mP9HA6Ht8sjIiIFU3m7AABYvHgxdu/e7e0yiLpEbYMDz/7tCB76vx9QZrGjd3QwPnnsRjw/eyBP9CAiIp/gEzOAFosFaWlpSExMxE9/+lP85Cc/QXx8vLfLIrpq32aVYcWWYyg12yAIwMOTU/Fs2gAGPyIi8ik+MQO4ZcsWFBUV4cknn8Tf//53pKSkYPbs2fjkk0+4q4z8gtnmwHOfHMVPP8pAqdmG1Khg/P3RiXhh7mCGPyIi8jk+EQABIDIyEk899RQOHTqEAwcOoG/fvli0aBFMJhOefvppnDnDA+bJN313phyz3tqNzT8UQBCAByelYtt/T8HYlAhvl0ZERNQunwmAzUpKSrBjxw7s2LEDarUac+bMwYkTJzB48GC89dZb3i6PyKPO7sSKT49h0YcHUFxrQ1KEHpsemYCXbh2MoADO+hERke/yiWMAHQ4HPv/8c3z00UfYsWMHhg8fjqeffhr33XcfDAYDAGDTpk147LHH8PTTT3u5WiLgP2cr8ItPjqKopgEA8JOJyXhu9kDoA3ziT4qIiOiyfOLTqlevXhBFEffccw8OHDiAkSNHtlnnlltuQVhYmBeqI7qo3u7EK1+exp/35wEAEsKD8Npdw3FjH97Dl4iI/IdPBMC33noLCxcuRGBgYIfrhIeH4/z58z1YFVFL+89VYvknR1BQ5Z71u39CElbMHoRgnU/8GREREXWaT3xyLVq0yNslEHXI2ujEa9uz8Me9uQCA+LAgvHrncEzux1k/IiLyTz4RAIl81Q+5Vfj5348gt9IKALjnhkT8cs4gGAK1Xq6MiIjo2jEAErXD5nDhjR1Z+GDPeUgSEBcaiFfvGo6p/aO9XRoREdF1YwAkauVgfjV+/vcjOFdeDwC4a0wCXpw3GMYgzvoREZE8MAASNbE5XFj79Rm8tzsHogTEGHRYc8cw/GhQrLdLIyIi6lIMgEQAjhbW4Nm/HcGZsjoAwO2j4vHrWwcjTB/g5cqIiIi6HgMgKVqjU8Q7/z6D9Ttz4BIlRIUE4Le3D8MtQ+K8XRoREVG3YQAkxTpcUINffHIE2Rfcs363jjBh1fwhiAjmrB8REcmbz90LuCfk5ubioYceQmpqKoKCgtCnTx/8+te/RmNjo7dLox5gbXTi5X+dxB3r/4PsC3WIDA7A+vtG4517RjH8ERGRIihyBvD06dMQRREbN25E3759cfz4cTzyyCOor6/H7373O2+XR91o79kKPP/pMeRXua/rd/uoeLw0bzDCGfyIiEhBFBkAZ82ahVmzZnme9+7dG1lZWdiwYQMDoEzVNjiwZtspbMooAACYjIH47e3DMH1gjJcrIyIi6nmKDIDtqa2tRUREhLfLoG6w40QpfrX1OMosdgDAognJ+MWsAbybBxERKRYDIICcnBy88847eOONNy67nt1uh91u9zw3m80AAIfDAYfD0aU1NW+vq7frq7qj3wtmG367LQtfnrgAAEiJ1ON/FgzBuJTwLn+vq8Wfr7yxX/lTWs9y61cufVwPQZIkydtFdJWVK1di1apVl10nIyMDY8eO9TwvLi7G1KlTMXXqVHzwwQfXtP2PP/4Yer3+2oqmLidKwJ5SAf8qUMHuEqCChJtNEm5JEBGg9nZ1RETkbVarFffeey9qa2sRGhrq7XK8QlYBsKKiAhUVFZddJyUlBYGBgQDc4W/69OkYP348/vjHP0KluvxJ0e3NACYmJqKioqLLf4EcDgfS09Mxc+ZMaLXy31XZVf0eK6rFS5+fwvFi9+zs8IRQrL51MIaYfOsPnD9feWO/8qe0nuXWr9lsRlRUlKIDoKx2AUdFRSEqKqpT6xYVFWH69OkYM2YMPvrooyuGPwDQ6XTQ6XRtxrVabbf9QXTntn3RtfZb2+DAGzuy8Of9eZAkwBCowXOzBuKeG5KgVgndUGnX4M9X3tiv/CmtZ7n0K4cerpesAmBnFRcXY9q0aUhKSsLvfvc7lJeXe5bFxfEOEP5EFCVsPVyE/9l2GhV17tnZ20fF45dzBiHa0DasExERkUID4I4dO3D27FmcPXsWCQkJLZbJaI+47B3Mr8bqf57E4YIaAEDvqGC8vGAobuzbuVlgIiIipVJkAFy8eDEWL17s7TLoGpXUNuDVL09j6+FiAEBwgBpP3NwXD01OhU7DszyIiIiuRJEBkPxTnd2JD747h427zqHB4YIgAHeNTsDyWwYgJjTQ2+URERH5DQZA8nk2hwt//T4f6789i8p69/2axyaH49e3DsGwBKOXqyMiIvI/DIDks5wuEVsOFuLtr8+guNYGAEiNCsazaf0xd1gvCILvnt1LRETkyxgAyefYnS58erAIG3flILfSCgDoZQzEUz/qhzvHJECrvvIle4iIiKhjDIDkM+wu4MP/5OKjvXm4YHZf0iVcr8UT0/vi/gnJCNTyBA8iIqKuwADoo5wu0dsl9JjzFfX4097z2JSpRoMrGwAQFxqIR27qjXtuSIQ+gL+mREREXYmfrD7oWGEtlvzlB8yIFjBbptcltDtd+PZ0Of76fR6+O9N8+z4BKZF6PD6tLxaMikeAhrt6iYiIugMDoA96d3cOimps+L8aNU58mIEnb+6Hm/pFQ+XDtzTrDFGU8P35KvzjcBG2HSuB2eYEAAgCMLVfFAaoLuCZeyZBpwvwcqVERETyxgDog95YOAJ9ovTYsPMsfsirweKPMpASqcctQ+Pwo4GxGJ5g9Jvj4ersTuw5U45/ny7Dv0+Xe27XBgCxoTosGBWP+8cnI86gxbZt2/w+5BIREfkDBkAfFKhVY+n0PoioyUKurjc+OViM3EorNu5yXwRZoxIw2BSKkYlhGNwrFAPiDOgfa0Cwzvs/TrPNgcy8avyQW4WM3Gocyq+Gw3VxN7ZBp8HsYXFYMCoe41MjoW4KfA6Hw1slExERKY73EwN1KFwH3DdnIH4+axC+PV2G9JMXsDenAhV1jThaWIujhbUt1k+K0DeFwRAkRwQjMUKPpEg94kIDPUGrqzQ0ulBUY8XZsnpklVqQdcGM0yUWnK+sR+vDFlMi9bh5YCxuHhiDcanhvF0bERGRlzEA+oEQnQa3jjDh1hEmSJKEwuoGHCqowdGCGpwutSDrggXlFjvyq6zIr7Ii/eSFFq/XqgWYwoIQHaJDRHAAIkN0iAwOgCFQA51GBZ1WDZ1GBa1aBZcoweES4Wx6tNicqLE2orbBgWqrAxfMNhRWN6Cq6Y4c7UmJ1GNsSgTGpYTjhtRIpEYFd/c/EREREV0FBkA/IwgCEiP0SIzQY/4Ik2e8ss6OrAsWZJVacLasDvlVVhRUWVFY3QCHS0JepRV5TRdV7ioGnQZJkXoMjAvFwDgDBvYyYGBcKKINui59HyIiIupaDIAyERmiw40hOtzYJ6rFuEuUUFLbgKLqBlTWN7q/6uyoqm9End0Ju1OE3SHC7nSh0SlCoxagUamgbXoMDdIgTB8AY5AWxiAtYgw6JITrER8eBGOQ1kvdEhER0fVgAJQ5tUpAQrgeCeF6b5dCREREPoIB8DpITWc7mM3mLt+2w+GA1WqF2WyGViv/mTb2K2/sV96U1i+gvJ7l1m/z57Yk05stdAYD4HWwWCwAgMTERC9XQkRERFfLYrHAaDR6uwyvECQlx9/rJIoiiouLYTAYIAhde5kVs9mMxMREFBQUIDQ0tEu37YvYr7yxX3lTWr+A8nqWW7+SJMFiscBkMkGlUuZtRzkDeB1UKhUSEhK69T1CQ0Nl8cfWWexX3tivvCmtX0B5PcupX6XO/DVTZuwlIiIiUjAGQCIiIiKFUa9cuXKlt4ug9qnVakybNg0ajTL21LNfeWO/8qa0fgHl9ay0fuWOJ4EQERERKQx3ARMREREpDAMgERERkcIwABIREREpDAMgERERkcIwAPqg9evXIzU1FYGBgRgzZgy+++47b5fUJdasWYNx48bBYDAgJiYGCxYsQFZWVot17HY7li5diqioKAQHB2P+/PkoLCz0UsVda82aNRAEAcuWLfOMya3foqIi3H///YiMjIRer8fIkSORmZnpWS5JElauXAmTyYSgoCBMmzYNJ06c8GLF187pdOJXv/oVUlNTERQUhN69e2P16tUQRdGzjr/3u3v3btx6660wmUwQBAFbt25tsbwz/VVXV2PRokUwGo0wGo1YtGgRampqerKNTrtcvw6HA8899xyGDRuG4OBgmEwmPPDAAyguLm6xDbn029qjjz4KQRCwdu3aFuP+1C+1xADoYzZv3oxly5bhhRdewKFDhzBlyhTMnj0b+fn53i7tuu3atQtPPPEE9u/fj/T0dDidTqSlpaG+vt6zzrJly/DZZ59h06ZN2LNnD+rq6jBv3jy4XC4vVn79MjIy8N5772H48OEtxuXUb3V1NSZNmgStVosvv/wSJ0+exBtvvIGwsDDPOq+99hrefPNNrFu3DhkZGYiLi8PMmTM999X2J6+++ireffddrFu3DqdOncJrr72G119/He+8845nHX/vt76+HiNGjMC6devaXd6Z/u69914cPnwY27dvx/bt23H48GEsWrSop1q4Kpfr12q14uDBg3jxxRdx8OBBfPrpp8jOzsb8+fNbrCeXfi+1detWfP/99zCZTG2W+VO/1IpEPuWGG26QlixZ0mJs4MCB0vPPP++lirpPWVmZBEDatWuXJEmSVFNTI2m1WmnTpk2edYqKiiSVSiVt377dW2VeN4vFIvXr109KT0+Xpk6dKj311FOSJMmv3+eee06aPHlyh8tFUZTi4uKkV155xTNms9kko9Eovfvuuz1RYpeaO3eu9OCDD7YYu+OOO6T7779fkiT59QtA+uyzzzzPO9PfyZMnJQDS/v37Pevs27dPAiCdPn2654q/Bq37bc+BAwckAFJeXp4kSfLst7CwUIqPj5eOHz8uJScnS2+99ZZnmT/3S5LEGUAf0tjYiMzMTKSlpbUYT0tLw969e71UVfepra0FAERERAAAMjMz4XA4WvRvMpkwdOhQv+7/iSeewNy5czFjxowW43Lr9/PPP8fYsWOxcOFCxMTEYNSoUXj//fc9y8+fP4/S0tIW/ep0OkydOtUv+508eTK++eYbZGdnAwCOHDmCPXv2YM6cOQDk129rnelv3759MBqNGD9+vGedCRMmwGg0yuLfoLa2FoIgeGa55davKIpYtGgRli9fjiFDhrRZLrd+lYaX874OoiiiuLgYBoMBgiBc9/ZKSkrgcrkQEhICs9nsGTcajSgqKmox5u8kScLSpUsxYcIEJCUlwWw249y5c9BqtVCr1S16jYyMRH5+vl/2/8knnyAjIwM7d+6E2WyG0+mE3W6XZb85OTlYv349nnzySWzZsgWZmZlYunQpRFHEPffcg5ycHACAXq9v0Vt4eDgKCgr8rt/HHnsMZWVlGDBgANRqNVwuF1566SXMnTsXZrNZdv0C7t2gzXV3pr/c3FxERka26TUyMhK5ubk+/29wab+t2Ww2LF++HAsXLgQAWfb7xhtvAAAWL14Ms9kMURRhs9k86/hzv5IkwWKxwGQyQaVS5lwY7wRyHQoLC5GYmOjtMoiIiOgaFBQUICEhwdtleAVnAK+DwWAA4P4FCg0N7dJtOxwO7NixA2lpadBqtV26bV/EfuWN/cqb0voFlNez3Po1m81ITEz0fI4rEQPgdWje7RsaGtrlAbCxsRG6QD1CQ0Nl8cd2JQ6HA3o9+5Ur9itvSusXUF7Pcu23Kw7f8ld+s+P7aq6NN23aNAiC0OZr7ty5nnUWL17cZvmECRN6opUr+v03ZzDiN99gW6Hf/HiIiIjIj/jFDGDztfHWr1+PSZMmYePGjZg9ezZOnjyJpKSkNut/+umnaGxs9DyvrKzEiBEjPAfrNps1axY++ugjz/OAgIDua+Iq6DQqNDhEVNu9XQkRERHJkV9MMb355pt46KGH8PDDD2PQoEFYu3YtEhMTsWHDhnbXj4iIQFxcnOcrPT0der2+TQDU6XQt1mu+HIm3mcKCAAA1duVOTRMREVH38fkA2BXXxvvwww/x4x//GMHBwS3Gd+7ciZiYGPTv3x+PPPIIysrKuqzu69EcAKsbr7AiERER0TXw+V3AFRUVcLlciI2NbTEeGxuL0tLSK77+wIEDOH78OD788MMW47Nnz8bChQuRnJyM8+fP48UXX8TNN9+MzMxM6HS6drdlt9tht1/cL9t8jSOHwwGHw3G1rXUoOtj9Y6mxAza7MlJg879fV/47+jL2K2/sV/6U1rPc+pVLH9fD568DWFxcjPj4eOzduxcTJ070jP/2t7/Fn//8Z5w+ffqyr3/00Uexd+9eHDt27LLrlZSUIDk5GZs2bcIdd9zR7jorV67EqlWr2ox//PHH0Ov1neimc0QJeHa/GiIErBrtRFj7eZSIiIiugdVqxb333ova2touv4qHv/D5GcCoqCio1eo2s31lZWVtZgVbs1qt2LRpE1avXn3F9+nVqxeSk5Nx5syZDtdZsWIFnnnmGc/z5usIpaWldfkv0OundqO41oZ+I27AuN5RXbptX+RwOJCeno6ZM2fK6hIDHWG/8sZ+5U9pPcutX1++S0lP8fkAGBAQgDFjxiA9PR233367Zzw9PR233XbbZV/7t7/9DXa7Hffff/8V36eyshIFBQXo1atXh+vodLp2dw9rtdou/4MwhQWiuNaGsnqnLP7YOqs7/i19GfuVN/Yrf0rrWS79yqGH6+XzJ4EAwDPPPIMPPvgAf/jDH3Dq1Ck8/fTTyM/Px5IlSwAADzzwAFasWNHmdR9++CEWLFiAyMjIFuN1dXX4+c9/jn379iE3Nxc7d+7ErbfeiqioqBYh05tMRveJIMW1DV6uhIiIiOTG52cAAeDuu+9GZWUlVq9ejZKSEgwdOhTbtm1DcnIyACA/P7/NzZyzs7OxZ88e7Nixo8321Go1jh07hj/96U+oqalBr169MH36dGzevNlnbgtjCgsEAJTU2LxcCREREcmNXwRAAHj88cfx+OOPt7ts586dbcb69++Pjs5vCQoKwldffdWV5XW5OKM7ABbXMgASERFR1/KLXcBKZGoKgCUMgERERNTFGAB9FAMgERERdRcGQB/VfAxgtdUBa6PTy9UQERGRnDAA+ihDoBaBavcxjMU8EYSIiIi6EAOgDwsLcD8W1/BSMERERNR1/OYsYCUK10kobRBQwmsByp7d6UKN1YFqayOsjS6oBAFqQUBIoAYxBh2CdfxTJSKirsNPFR8W3nTTkSLuApYNUZSQU16HjPOV2HZOhc0f/YDzldYrnuwTotOgT0wIBvcKxchEI6b0i4YpLKiHqiYiIrlhAPRh4QHNxwByBtBfSZKEnPJ67Moux+7schzMq4bF3nxSjwpAlWddlQCE6QOgD1BDkgBRklDb4IC10YU6uxNHCmpwpKAG/++Ae/2+MSG4ZUgs7hidgD7RIT3eGxER+S8GQB/WPAPIAOhfLDYH9uZUYld2OXZllaOo1c8vSKvGsPhQhDRW4pYJw9A31ojUqGCEBWmhUglttldnd6KkpgFZFyw4UWzG9+cqcbigBmfL6nC2rA7/+20ORiSGYfGNyZg33AStmof2EhHR5TEA+jDOAPoHSZJwrqIe/z5Vhn+fLkNGbhWc4sW70ASoVbghNQJT+0djYp9IDIwzQBJd2LZtG+aMir/iTclDdBr0izWgX6wB84abAAC1Vgd2nSnHPw4VYWd2OY4U1ODpzTV4bXsWHpqcivsnJCNQq+7WvomIyH8xAPowzwxgrQ2SJEEQ2s4OkXfYnS4cOF+Fb06V4dusMuRVWlssT40KxtT+0ZjaPxrje0dAH9DyT80huq7r/Y16LeaPMGH+CBMq6uzYnFGAj/6Ti5JaG17+4hQ++O48np7ZD3eOToCGM4JERNQKA6APMwYAggA0OkVU1jciKkTn7ZIUS5IkZF+ow96cCvznbCX25VSgvvFiiNOqBYxPjcTNA2Nw88AYpEQF91htUSE6PDG9Lx6ekorPDhbhnX+fRVFNA57bcgwffHcev1kwFBN6R/ZYPURE5PsYAH2YRgXEhOhwwWJHcU0DA2APEkUJ5yrqkJFbjb057sBXUdfYYp1ogw7TB0Tj5oGxmNwvCiFevlSLTqPGj29IwoJR8fjL/jys+/YszpTV4cfv7cedoxPwyzkDEcnfISIiAgOgz+sVFugJgMMTwrxdjmxV1tlxuKCmxZfF1vIWfIFaFcalRGBin0hM7huFoSZjuydteFugVo2Hp/TGwjGJeO2r0/j4QD62HCzEN6cvYNX8IbhtZLy3SyQiIi9jAPRxJmMgDhfU8lqAXcTmcOFsWR2ySi3IvmDB6abH9q7DF6hVYXh8GCb2icSNfSIxMikMOo3/nFhh1Gvx29uH4c4xCXjhs+M4VWLGU5sOI/3kBby8YCjC9AHeLpGIiLyk2wLgCy+8gGnTpmHSpEnQ6/XXvb3169fj9ddfR0lJCYYMGYK1a9diypQp7a77xz/+ET/96U/bjDc0NCAwMPCatuktvYzuekt4JvBVcYkScivrkV16MeRllVqQW1mPS07QbaFPdDBGJoZjVFIYRiaGYUCcQRaXVBmdFI5/PjkJ//ttDn7/7zP419ESZORW4fW7RuCm/tHeLo+IiLyg2wJgZmYm3nnnHdjtdowePRrTpk3D1KlTMXnyZISEXN1Fazdv3oxly5Zh/fr1mDRpEjZu3IjZs2fj5MmTSEpKavc1oaGhyMrKajF2afi7lm16Q3MALObt4NolSRLKLHacLrUgq9Tc9GjB2bI62J1iu68J02sxINaAAXFNX7EG9I8zIDTw8pdj8WcatQpPzeiHaQOi8fTfDuNceT0e+MMBPDatD56d2Z9nChMRKUy3BcDt27fD5XLhwIED2LVrF3bu3In169ejoaEBo0ePxv79+zu9rTfffBMPPfQQHn74YQDA2rVr8dVXX2HDhg1Ys2ZNu68RBAFxcXFduk1vMBndt/viLmDA4RJxusSC48W1yCq14HRT4KuxOtpdP0irRv/YEPRvFfaiDTrFXlJnRGIYvlg6Bf+z7RT+vD8PG3bmIDOvGu/cMwqxoYFX3gAREclCtx4DqFarMXHiRERERCA8PBwGgwFbt25FTk5Op7fR2NiIzI+K4gcAACAASURBVMxMPP/88y3G09LSsHfv3g5fV1dXh+TkZLhcLowcORK/+c1vMGrUqOvapjeYwppmABW4C7i4pgE/5FXjcH4NDhdU40Sxud1ZPZXgvu7ewLhQT9AbGGdAYrjeJ0/S8LagADV+s2AoxveOwPNbjuHA+SrMefs7vP3jUZjcL8rb5RERUQ/otgC4YcMG7Nq1C7t27YLL5cKUKVMwdepUvPjiixg+fHint1NRUQGXy4XY2NgW47GxsSgtLW33NQMHDsQf//hHDBs2DGazGW+//TYmTZqEI0eOoF+/fte0TQCw2+2w2+2e52azGQDgcDjgcLQ/C3WtmrcXHew+6aDcYkddgx06jTx31TkcDtQ5gH8eKcKBvFrsy6lCXpW1zXqhgRoMjQ/FoDgD+seGYECsAX2ig9u964XL5YTr+q633G2af75d/XtzNW4ZFI0Bj43H0k1HcbrUgkV/+B7PzuiHn01J6fIZUl/otyexX/lTWs9y61cufVyPbguATzzxBKKjo/Hss89iyZIlCA0Nva7ttf5AutydMSZMmIAJEyZ4nk+aNAmjR4/GO++8g9///vfXtE0AWLNmDVatWtVmfMeOHV1yokt7MvbsglZQwyEJ2Pz5dkTJbC9dhQ04WiXgaJUKuRY1pB9OeJYJkJAQDKQYJCSHuL+iA50QBBsglgElQF4JkOfF+q9Xenq6t0vAQ0nAp6IK+8pU+F36GXxzMAv39BGh64YTnn2h357Efv9/e/cdHlWd9n/8faZkkkkvpAwJSZBOaAJKFXAlAipiWwUMllVWEVdEXXXdgjyPuuqztlV0cdfy25WyruCiIhKVplIDoXdSSCchyaROppzfH0kGUoBgyiQz9+u6ciVzzne+575Thg/nzDnH/Xlaz+7Sb2Vl0x0MnqbdAuCqVavYvHkzK1as4I9//CNDhgxh4sSJTJw4kfHjx7f4RJCwsDC0Wm2TPXMFBQVN9uBdiEajYeTIkRw/frxVcz777LMsXLjQ+dhsNhMTE0NiYmKrA25jVquV5ORkEhMn89aJHZwqrKDXkKsZc0XXv6NDnrmaz/fk8MW+PI4VlDdY1zvclzFXhDK6ZwhXxQXj76YnZtT/fCdPnnzJewF3hBnA8p2nWfzlEfYUaajSB/LurKFEB/u0yfydrd/2Jv26P0/r2d36rT+C58naLQDOmDGDGTNmAFBaWsqWLVv4z3/+w80334yiKA0OpV6Ml5cXw4cPJzk5mVtuucW5PDk5mZtvvrlFc6iqSmpqKoMGDWrVnAaDAYOh6Z0U9Hp9u/1B6PV6YkONnCqsILu0psv+4VVb7Xx7OJ9Pd2Wx5fgZ56VYtBqFUT1DuK5fN5ScA8y+ZWyX7fHnaM/fncs1Z0xP+puCePhfKRzJK+PW97bxzuwrGXNF270vsDP12xGkX/fnaT27S7/u0ENrtetJIGfPnnWeAbxx40YOHDhAaGgoEyZMuKx5Fi5cSFJSEiNGjGD06NEsXbqUzMxMHnroIQDmzJlD9+7dnWfvPv/884waNYrevXtjNpt56623SE1N5Z133mnxnJ1JbKgvcIaMsxWuLuWyqKrK/uxSPt2VxZq9OZRWnXvPxVVxIdw+PJrEgREEGb2wWq2sXXvAhdUKgJFxIayZP45f/zOF/dmlJP1jB7+/oT/3jmn79wUKIYRwnXYLgIMHD+bQoUOEhIRwzTXX8OCDDzJx4kQSEhIue64777yToqIiFi9eTG5uLgkJCaxdu5bY2FgAMjMz0WjOnRxRUlLC3LlzycvLIzAwkGHDhrF582auuuqqFs/ZmfQIqX1/4elmTorojArLLXy+J5tPd2VxNL/MuTwq0Jvbrozm9uHRxIX5urBCcTGmIB8+fWg0z67az+o92Tz/xSEO55r5nxkJXepOKEIIIS6s3QLg3Llzf3bga868efOYN29es+s2btzY4PHrr7/O66+/3qo5O5P6AJhR1HkDoMVm5/vDBXy2O4uNR89gqzvG66XTcP3ASO4YHs3YXmFo5bIsXYK3XstrvxzCgKgAXvr6MP/elcXJMxW8e/eVhPu72ZlIQgjhgdotAM6fP7+9pvY4saG1ATCzqPKSZyp3JLtDJSWjmC/25jQ5xDskJog7hkdz02ATgUZ5r0VXpCgKD17Tkz6R/sxftpuUjGJufvtHliaNYFB0oKvLE0II0Qrt+h7ArKws1qxZQ2ZmJjU1NQ3Wvfbaa+25abcSU7cHsMxi42xFDaF+TU9E6QiqqpJVXEVKRjFbjhfy/ZF8is+7C0dkgDczhnXntiu70zvC3yU1irY3oU83/vvIWB74f7s4daaC29/7iVduH8zNQ7u7ujQhhBA/U7sFwO+++47p06cTHx/P0aNHSUhIID09HVVVufLKK9trs27JW6+lR4iRzLOVHM0rY0yv1gVAVVU5W1FDYXkNZytqqLLasDvAoao4HCoOFaqsdsqrrZRbbGSXVJNeWMGJM+WcKWt49naQUc+1/cK5ZVh3xlwhh3jdVc9ufnz+yFgeW76HDUfP8NiKVI7klfFkYl/5mQshRBfUbgHw2Wef5YknnmDx4sX4+/vz2WefER4ezuzZs5kyZUp7bdZt9Yv0J/NsJYfzyhjT6/Ivy5FeWMH6Q3lsOV7IoRwzRRU1l35SM3QahYHdA7kqLphr+0UwMi4YndY9704iGgrw1vP3e0by6jdHeW/TSd7deJKjeWW8eddQt71eoxBCuKt2C4CHDx9m+fLltRvR6aiqqsLPz4/Fixdz88038/DDD7fXpt1S/6gA1h/K53Buyy9eqaoq3x0u4B8/pLH1VFGDdYoCwUYvgo16fA06NIqCRqHus4K3lxZ/gw4/g46IQG/iQo3EhvoyICoAHy85E9RTaTUKz0ztR79If57+bB/fHyngliU/8f6cEcTLmd1CCNFltFsA9PX1dV7s2WQycfLkSQYOHAjU3t9XXJ7+UbV3GmlpANyXVcL/fHmInenFAGgUGHNFGL/oH86wHsH0jfCXICd+thnDuhMf5svcf+7iREE5N7/9A+/MvpLxvbu5ujQhhBAt0G4BcNSoUfz4448MGDCAG264gSeeeIL9+/ezatWqBvfpFS0zoC4AHs8vp9pqx1vffHiz2R289d1x/rrhBKoK3noN94yOY86YOLoHtc1tvYSA2jO9v5g/jl//K4U9mSXc88EOfjetP78aF99pzlQXQgjRvHYLgK+99hrl5bX3eV20aBHl5eWsXLmSXr16tegafaKhmBAfwv0NFJRZ2J1Z3OztuXJLq3hseSo70s8CcPNQE09P6YdJgp9oJ+EB3ix/cBS///wA/0nJ4n+/OsyRvDJeuEUuGi2EEJ1ZuwXAxYsXc//99wNgNBpZsmRJe23KIyiKwtheYazek83mY4VNAuB3h/N58tO9FFda8TPoeOGWBLlMh+gQ3notr94+mH6R/ry49jD/Scni5Jly/nb3cMID5KLRQgjRGbXb6ZtlZWUkJibSu3dvXnzxRXJyctprUx7j2n7hAPw3NRt73Z02qq12Fn9xiF99vIviSisJ3QP48tFxEv5Eh1IUhQfG9+Sj+64iwFvHnswSpr/9I3tPl7i6NCGEEM1otwD42WefkZ2dzfz58/n000+JjY1l6tSpfPrpp1it1ktPIJqYPCCCYKOe3NJq3vzuON8fyeemv/7ABz+mAXDf2Dg+e3iM3GdXuMw1fbrx3/nj6BXuR565ml/+bSsrdmSiqqqrSxNCCHGedr2AW2hoKI899hh79uxhx44d9OrVizlz5mAymXj88cc5fvx4e27e7XjrtSyc3AeAt747zv0f7eJ4QTlhfgb+cc8I/nTTQHnflXC5+DBfVs8bwy/6hWOxOXhm1X6e+uwAFrurKxNCCFGvQ67gm5uby/r161m/fj1arZZp06Zx8OBBBgwYICeEXKa7R8Xy1PV9CfMz0M3fwP1j41n/+DX8on+Eq0sTwsnfW8/7c0bw2ym1dwr5795c/m+flqN5Za4uTQghBO14EojVamXNmjV8+OGHrF+/nsGDB/P4448ze/Zs/P1r7xO7YsUKHn74YR5//PH2KsPtKIrCI5N68cikXq4uRYiL0mgU5k3sxci4EOYv202+2cJtf9vO89MHcufIGLlUjBBCuFC7BcCoqCgcDgczZ85kx44dDB06tMmY66+/nqCgoPYqQQjRCYyMC2HNvNHc+973HC6BZ1btZ/PxM7wwYxDBvl6uLk8IITxSux0Cfv3118nJyeGdd95pNvwBBAcHk5aW1qL5lixZQnx8PN7e3gwfPpwtW7ZccOz777/P+PHjCQ4OJjg4mOuuu44dO3Y0GHPvvfeiKEqDD7lAtRDtI8TXi7n9HDw5uTc6jcLa/XkkvrGZDUcLXF2aEEJ4pHYLgElJSXh7t801wFauXMmCBQt47rnn2LNnD+PHj2fq1KlkZmY2O37jxo3MnDmTDRs2sHXrVnr06EFiYiLZ2dkNxk2ZMoXc3Fznx9q1a9ukXiFEUxoFfn1NPKvnjaVXuB9nyizc9+FOfrd6PxUWm6vLE0IIj9IhJ4G01muvvcavfvUrHnjgAfr3788bb7xBTEwM7777brPjP/nkE+bNm8fQoUPp168f77//Pg6Hg++++67BOIPBQGRkpPMjJCSkI9oRwqMNig7ky0fHcf/YeACWbc9k2ltb+Omk3CNcCCE6Sru9B7Ct1NTUkJKSwjPPPNNgeWJiIj/99FOL5qisrMRqtTYJeBs3biQ8PJygoCAmTJjACy+8QHh4+AXnsVgsWCwW52Oz2QzUnvDS1tc2rJ/PU66ZKP26t8b9aoFnp/RmYp8Qnl51kIyiSma9v51bh5l4Zkofgo1d+72Bnv7z9QSe1rO79esufbSGonbyK7Tm5OTQvXt3fvzxR8aMGeNc/uKLL/Lxxx9z9OjRS87xyCOP8M0333DgwAHnYemVK1fi5+dHbGwsaWlp/OEPf8Bms5GSkoLBYGh2nkWLFvH88883Wb5s2TKMRuPP7FAIz1Zlgy8zNfyYr6Ci4KtTuSXOwYgwFTlRWAjRHiorK5k1axalpaUEBAS4uhyX6PR7AOs1vmSEqqotuozEK6+8wvLly9m4cWOD9yTeeeedzq8TEhIYMWIEsbGxfPXVV9x6663NzvXss8+ycOFC52Oz2UxMTAyJiYlt/gtktVpJTk5m8uTJ6PX6Np27M5J+3dul+r0N2JNZwu//e4hjBeX864SWE/Zgfje1H/2j/Du+4FaSn6/787Se3a3f+iN4nqzTB8CwsDC0Wi15eXkNlhcUFBARcfGLH//f//0fL774It9++y2DBw++6NioqChiY2MvencSg8HQ7N5BvV7fbn8Q7Tl3ZyT9ureL9XvVFd348jfjeX/LKd767jjb0oq5+d2t3DUyhoWT+9LNv/k9852Z/Hzdn6f17C79ukMPrdXpTwLx8vJi+PDhJCcnN1ienJzc4JBwY6+++ir/8z//w7p16xgxYsQlt1NUVMTp06eJiopqdc1CiJ/HS6fhkUm9+HbhBG4YHIWqwvIdp5n0fxt5Z8MJOVtYCCHaSKcPgAALFy7k73//Ox988AGHDx/m8ccfJzMzk4ceegiAOXPm8OyzzzrHv/LKK/z+97/ngw8+IC4ujry8PPLy8igvLwegvLycJ598kq1bt5Kens7GjRu56aabCAsL45ZbbnFJj0KIc2JCjLwz60o+fWg0g6MDKbfYePWbo1zzygb+vuUU1Va5sbAQQrRGpz8EDLXv1ysqKmLx4sXk5uaSkJDA2rVriY2NBSAzMxON5lyWXbJkCTU1Ndx+++0N5vnTn/7EokWL0Gq17N+/n//3//4fJSUlREVFMWnSJFauXOm8TZ0QwvVGxoXw+byxfJ6azRvfHifzbCX/+9Vh/rb5FPMmXsGdI2MwenWJlzEhhOhUuswr57x585g3b16z6zZu3NjgcXp6+kXn8vHx4ZtvvmmjyoQQ7UmjUbj1ymhuGmJi1e4s3vruBNklVTz/xSHe/O44d18dy5wxsYT7t82F54UQwhN0iUPAQgih12q4c2QPNjw5kRduSSA21EhJpZW3N5xg3J838NSne9mXVUInv7KVEEJ0Cl1mD6AQQkDtiSKzr47lrpE9SD6Ux9LNp9idWcKnKVl8mpLFgKgAZl4Vw83DuhPgLWf6CSFEcyQACiG6JK1GYUpCFFMSokjJOMvHP2Ww7kAeh3LN/OG/B3lh7WEmD4jkxsFRTOjTDW+91tUlCyFEpyEBUAjR5Q2PDWF4bAjFFTWs2pPNih2ZHC8o54u9OXyxNwc/g47JAyKYNiiKsb1C5cQRIYTHk1dBIYTbCPb14lfj4rl/bBx7s0r5cm8OX+3PJbe0mtV7slm9JxsvrYare4YwoU83JvYN54puvi26q5AQQrgTCYBCCLejKApDY4IYGhPE76b1Z8/pYr7Ym8u3h/PJKq5iy/FCthwv5H+/Oky4v4GR8SFcFRfCiLhg+kUGoNVIIBRCuDcJgEIIt6bRKM5DxH+6aQAnz1Sw8WgBm46dYfupsxSUWfhqXy5f7csFwN+gY4ApgIGmQAaaAhhgCqBXuB96rVw0QQjhPiQACiE8hqIo9Ar3o1e4Hw+M70m11U7q6RJ2pZ9lR3oxuzOKKbPY2J52lu1pZ53P89JqiAszEh/mS3yYHz3DfInv5kuPECNhfgbZYyiE6HIkAAohPJa3XsuonqGM6hkKgM3u4HhBOQdzzBzMKeVgjpnDOWbKLDaO5ZdzLL8cyG8wh06jEBHgTVSgN5GB3piCfAg16sgsUPA5eoZuAT6E+HoRZPQiwFsn7zcUQnQKEgCFEKKOTquhf1QA/aMCuH14NAAOh0p2SRWnCitIO1NOWmEFpworOHWmgtzSKmx167NLqhrNpuWTk3sazq9R8PfWYfTS4WfQYTRoaz97afE16PD10uHjpUWvVfDSatHrFLy0Grx0GvRaDV5aDXqdBi+tgl6rQaMoKApoFKXuo/aQd/3XSv2yuvXOsecdzVaoDaT1ubQ+np7LqRdarzgf22w2Cqsh42wlXjp9o+c3nO/8ANx4WxeqhUusP7+W5uZzfmo8bwuee6E+bDYHNgdY7Q7QOC5diwR/0clIABRCiIvQaBRiQozEhBiZ0Kdbg3U2u4Mz5RZyS6vJLakmt7SK3NJqCsxVHM/IQecbRHGlleLKGipr7Ngcat1jq4u6aU86/mfPD64uooPpeGL7tz/72S0Nss7xNFlwsYeXfP7565s+t2lgtdm0PLf7+9qxl9z2hbfVovHnff3rCT2Ze80VTeoRrSMBUAghfiadVkNUoA9RgT7Q49xyq9XK2rVZTJs2Cr2+do9YtdVOcWUNZdU2Kiw2Kix2KmpsVNbYKLfYqbTULq+2OaixOaixO7DaHFjttV/X2NTar+uWWe0OVMChqjgcdZ9VFYda+7WqnrfMAWrdOnvdulq1X9Q/rl9cfzu9c4+bX17/hQMVm82GTqtr/nmNttPcHI3HXKoWd9C410s35+rmFbDbOnyrlTX2Dt+mJ5AAKIQQHcBbr60Li66upO3VBt61TJt2vTPwdhRnQGxpiD0vRDXOWxcKrM3NabNa+WZ9MomTJ6OrO+zd0hDbbD1NntOotkbhr+n6xr1cfPzF52r6XJvNxsaNG5k4cSJana7R+kbjLzF/4xGX6iXE16v5wkWrSAAUQgjRZTkPmzY5Ytm+77mzasGogwAffYeHXlewWq1084HYUKNH9OsJJAC2Qv3/esxmc5vPbbVaqaysxGw2e8Qfm/Tr3qRf9+Zp/YLn9exu/db/u91476UnkQDYCmVlZQDExMS4uBIhhBBCXK6ysjICA93wfRktoKieHH9byeFwkJOTg7+/f5uf4m82m4mJieH06dMEBAS06dydkfTr3qRf9+Zp/YLn9exu/aqqSllZGSaTCY3GM+/yI3sAW0Gj0RAdHd2u2wgICHCLP7aWkn7dm/Tr3jytX/C8nt2pX0/d81fPM2OvEEIIIYQHkwAohBBCCOFhtIsWLVrk6iJE87RaLRMnTkSn84wj9dKve5N+3Zun9Que17On9evu5CQQIYQQQggPI4eAhRBCCCE8jARAIYQQQggPIwFQCCGEEMLDSAAUQgghhPAwEgA7oSVLlhAfH4+3tzfDhw9ny5Ytri6pTbz00kuMHDkSf39/wsPDmTFjBkePHm0wxmKx8OijjxIWFoavry/Tp08nKyvLRRW3rZdeeglFUViwYIFzmbv1m52dzd13301oaChGo5GhQ4eSkpLiXK+qKosWLcJkMuHj48PEiRM5ePCgCyv++Ww2G7///e+Jj4/Hx8eHnj17snjxYhwOh3NMV+938+bN3HTTTZhMJhRF4fPPP2+wviX9FRcXk5SURGBgIIGBgSQlJVFSUtKRbbTYxfq1Wq08/fTTDBo0CF9fX0wmE3PmzCEnJ6fBHO7Sb2O//vWvURSFN954o8HyrtSvaEgCYCezcuVKFixYwHPPPceePXsYP348U6dOJTMz09WltdqmTZt45JFH2LZtG8nJydhsNhITE6moqHCOWbBgAatXr2bFihX88MMPlJeXc+ONN2K3211Yeevt3LmTpUuXMnjw4AbL3anf4uJixo4di16v5+uvv+bQoUP85S9/ISgoyDnmlVde4bXXXuPtt99m586dREZGMnnyZOd9tbuSl19+mffee4+3336bw4cP88orr/Dqq6/y17/+1Tmmq/dbUVHBkCFDePvtt5td35L+Zs2aRWpqKuvWrWPdunWkpqaSlJTUUS1clov1W1lZye7du/nDH/7A7t27WbVqFceOHWP69OkNxrlLv+f7/PPP2b59OyaTqcm6rtSvaEQVncpVV12lPvTQQw2W9evXT33mmWdcVFH7KSgoUAF106ZNqqqqaklJiarX69UVK1Y4x2RnZ6sajUZdt26dq8pstbKyMrV3795qcnKyOmHCBPWxxx5TVdX9+n366afVcePGXXC9w+FQIyMj1T//+c/OZdXV1WpgYKD63nvvdUSJbeqGG25Q77///gbLbr31VvXuu+9WVdX9+gXU1atXOx+3pL9Dhw6pgLpt2zbnmK1bt6qAeuTIkY4r/mdo3G9zduzYoQJqRkaGqqru2W9WVpbavXt39cCBA2psbKz6+uuvO9d15X6FqsoewE6kpqaGlJQUEhMTGyxPTEzkp59+clFV7ae0tBSAkJAQAFJSUrBarQ36N5lMJCQkdOn+H3nkEW644Qauu+66Bsvdrd81a9YwYsQI7rjjDsLDwxk2bBjvv/++c31aWhp5eXkN+jUYDEyYMKFL9jtu3Di+++47jh07BsDevXv54YcfmDZtGuB+/TbWkv62bt1KYGAgV199tXPMqFGjCAwMdIvvQWlpKYqiOPdyu1u/DoeDpKQknnrqKQYOHNhkvbv162nkct6t4HA4yMnJwd/fH0VRWj1fbm4udrsdPz8/zGazc3lgYCDZ2dkNlnV1qqry6KOPMmrUKHr06IHZbObUqVPo9Xq0Wm2DXkNDQ8nMzOyS/f/nP/9h586dbNy4EbPZjM1mw2KxuGW/J0+eZMmSJcyfP5/PPvuMlJQUHn30URwOBzNnzuTkyZMAGI3GBr0FBwdz+vTpLtfvww8/TEFBAX379kWr1WK32/njH//IDTfcgNlsdrt+ofYwaH3dLekvPT2d0NDQJr2GhoaSnp7e6b8H5/fbWHV1NU899RR33HEHgFv2+5e//AWAe++9F7PZjMPhoLq62jmmK/erqiplZWWYTCY0Gs/cFyZ3AmmFrKwsYmJiXF2GEEIIIX6G06dPEx0d7eoyXEL2ALaCv78/UPsLFBAQ0KZzW61W1q9fT2JiInq9vk3n7oykX/cm/bo3T+sXPK9nd+vXbDYTExPj/HfcE0kAbIX6w74BAQHtEgCNRiMBAQFu8cd2Ke3dr6qqnK2oIaekmsJyC2fKLZRWWqmxO7DYHFjtDjQKeOu0GPQafPRagn29CPMzEOZnoJu/gUCftqtLfr7uTfp1f57Ws7v22xZv3+qqJAAKt6OqKmmFFezKKGZPZgnH88s4caackkprq+YN9NETF2qkR6gvcaFG+kT4M9AUQFyoLxqN576ICCGE6HokAAq3UGGxseV4Id8ezmfj0QIKy2uajFEU6HbeHr1gox6DTouXToNeq8GhqlhsDixWO5U1ds5W1Dj3FpZV2yitsrI3q5S9WaUN5jV6aekX6c9AUyBXxgYxIjaE6GAfj/6fpRBCiM5NAqDoshwOla2nivj3rtOsO5CHxXbuDgwGnYYh0UFcGRvMAFMAvbr5ER/mi4+X9mdtq7LGRubZSjKKKskoqiCtsILDuWUcyTNTWWNnd2YJuzNL+Oe2DAAiAgyMiAthRGwwY3uF0TvcTwKhEEKITkMCoOhyqmrsrNiZyQc/pnH6bJVzeWyokev6R/CL/uGMiA3BS9d2p/YbvXT0iwygX2TD93raHSppheUczDGzP6uUXRnFHMguJd9s4at9uXy1LxeoDYTjenXjmj5hjO0VRqDBMy87IIQQonOQACi6jHKLjY9+TOODH9M5W1F7iNffoGP6UBN3joxhUPfADt/LptUo9Ar3p1e4PzcP7Q7UBtS9WSWkZBSz7VQRO9LOkm+28NnuLD7bXXuf3wFR/kRrNERnlTIsNlTeQyiEEKJDSQAUnZ7dofLprtP83/pjFJZbAIgJ8eHX11zBbVdG/+zDuu3Fx0vLqJ6hjOoZyiOTelFttZOSUczm42fYcqyQQ7lmDuWWcQgN6/+2nYgAA7/oH8HkARGM7hmKt75z9SOEEML9SAAUndq+rBKe/mw/h3NrrygfG2rk8ev6cOPgKHTarnEY1VuvZWyv2kO/z06FM2UWNh7J45MN+zheriffbGHZ9kyWbc/E6KXlmt7dmDookl/0j8DPIH+iQggh2p786yI6pWqrnde/Pcb7m0/hUCHAW8dj1/UhaVRsm763zxW6+RuYMdSEV04qv0icxK7MkplRNAAAIABJREFUUpIP5fPt4XzyzRbWHcxj3cE8DDoNE/t244bBJn7RLxxfCYNCCCHaiEf/i7J582ZeffVVUlJSyM3NZfXq1cyYMcPVZXm84/llPLJsN8fyywG4aYiJRTcNINTP4OLK2l5tyAtnYt9w/ndGAgeyzaw7mMva/XmkFVbwzcF8vjmYj0GnYVLfcKYNjpIwKIQQotU8+l+RiooKhgwZwn333cdtt93m6nIEsGpPNou+OEKV1U43fwMv3jKIyQMiXF1Wh1AUhUHRgQyKDuTJxL4czi3jq/05fLUvl/SiygZ7Bq/tF870ISYm9QuX9wwKIYS4bB4dAKdOncrUqVNdXYYAbHYH/z6l4cetBwEY3zuM1345lG7+7rfXryUURWGAKYABpgCeTOzLoVwza/fnOsPg1wfy+PpAHv4GHVMSIpkxrDujeoailbOJhRBCtIBHB0DROZirrcz71x5+zNegKLDwuj48MqmXXBqljqIoDDQFMtBUu2fwYI6ZL/bl8EVqDjml1XyaksWnKVl08zdw02ATM4aZXHJJHCGEEF2HBMDLYLFYsFgszsdmc+2ZqVarFau1dfeZbax+vraet7PJN1dz70cpnDhTgZdG5S93DGJKggm73Ybd7urq2k9rfr59w430va4XC6+9gpTMEtbsy2XdgXzOlFn44Mc0PvgxjbhQIzcNjuSmwVHEh/m2dfmXzVN+n+tJv+7P03p2t37dpY/WUFRVVV1dRGegKMolTwJZtGgRzz//fJPly5Ytw2g0tmd5bqm0Bv56UMuZaoVAvcqD/ezE+Lm6qq7J5oAjJQophQr7ixWsjnN7/2J8VYaHObgyTCXQy4VFCiFEJ1FZWcmsWbMoLS0lICDg0k9wQxIA67QkADa3BzAmJobCwsI2/wWyWq0kJyczefJk9Hp9m87dGeSZq0n6YBfpRZV0D/LmozlDObTzB7ftt7H2/PlWWGx8e7iAL/bl8cPJIuyO2j9xRYHR8SHcODiK6weEE+DTcd9nd/99bkz6dX+e1rO79Ws2mwkLC/PoACiHgC+DwWDAYGh6UoJer2+3P4j2nNtV8kqrmfNhSl3482HF3FFE+us5hHv2ezHt0W+QXs/tI2O5fWQsheUW1u7P5b+pOaRkFPPTqbP8dOosi744zIS+3Zg+xMR1/SM67G4q8vN1b57WL3hez+7Srzv00FoeHQDLy8s5ceKE83FaWhqpqamEhITQo0cPF1bmvvJKq7lr6dYG4S8mxCjvx2gnYX4G5oyOY87oOE6freS/qdms2ZvDsfxykg/lk3woH6OXlskDIpg+xMT43t26/IW2hRBCXJpHB8Bdu3YxadIk5+OFCxcCcM899/DRRx+5qCr3lVtaxcyl20gvqiQ62IflD9aGP9ExYkKMzL+2N/Ov7c2RPDNrUnNYszeHrOIq/puaw39Tcwgy6pmaEMlNQ0xcHS+XlRFCCHfl0QFw4sSJyFsgO4aEv86lX2QA/aYE8NT1fdlzuoQ1qTl8uS+XwnILy3ecZvmO04T7G7hxsInpQ00MiZbLygghhDvx6AAoOkZuaRV3Ld1GRl34WzF3FNHBEv46A0VRuLJHMFf2COYPNw5g26ki1qTm8PWBXArOu6xMbKiRm+rCYJ8If1eXLYQQopUkAIp2dX74iwmp3fMn4a9z0moUxvYKY2yvMBbPGMjmY4Ws2ZvDt4fyySiq5O0NJ3h7wwn6RPgxNSGKqYMi6RvhL3sGhRCiC5IAKNpNTkkVM9+X8NcVGXS1J4ZMHhBBZY2N5EP5fLE3h03HznAsv5xj+cd587vjxIf5MiUhkmkJUSR0D5AwKIQQXYQEQNEuGoe/FXNH0z3Ix9VliZ/B6KXj5qHduXlod0orrXx7OJ+vD+Sy+XghaYUVvLvxJO9uPEl0sA9TBkYydVAUw2KC5FZ+QgjRiUkAFG0up6T2sG/mWQl/7ibQqOe24dHcNjyacouN748UsO5ALhuOnCGruIq//5DG339IIyLAwJSBkVw3IIKr40ORKCiEEJ2LBEDRprJLas/2zTxbSY8QI8vnjpLw56b8DDqmDzExfYiJqho7m44V8PWBPL47XEC+2cLHWzP4eGsGfgYd43qFEmpRGFVRQ0SQXIBVCCFcTQKgaDONw9+KuaMwSfjzCD5eWqYkRDElIQqLzc6PJwr55kA+3x0poLDcwrqD+YCW5S9v5MoewfyifwTX9Q+nV7ifvG9QCCFcQAKgaBPZJVXctXQrp89WSfjzcAadlmv7RXBtvwgcDpV92aWsP5DLf3eeJLtSYVdGMbsyinl53RF6hBiZ1Lcb1/Tpxqieofga5CVJCCE6grzailY7P/zFhhpZ/qCEP1FLo1EYGhPEwEhf+tYcY+iYSWw+cZZvDxew9WQRmWcrnYeK9VqF4bHBjO/djQl9ujEgKkBOJBFCiHYiAVC0SlZxJTPf3ybhT7SIKciHpNFxJI2Oo8Ji44cThWw5fobNxwrJPFvJtlNn2XbqLK9+c5RQXy/G9Q5jfO9ujO0VSlSg/F4JIURbkQAofrbG4W/F3FHyj7RoMV+DjusHRnL9wEgA0gsrasPg8UK2niyiqKLGeY9igNhQI6PiQxl1RQhXx4fKfzSEEKIVJACKnyWruJK7lm4jq1jCn2gbcWG+xIX5kjQ6DqvdwZ7MEjYfO8OW42fYn11KRlElGUWVrNx1GoAeIUZG9QxhVM9Qru4ZKmebCyHEZZAAKC7b6bO1e/6yiquIC6291IuEP9GW9FoNV8WHcFV8CE9e3xdztZWU9GK2nSpi26ki9meXknm2ksyzlfx7VxYAUYHeXBkbXHdv4yAGmgLx0mlc3IkQQnROEgDFZWkc/lbMHU1koLeryxJuLsBbz6R+4UzqFw5AWbWVXRn1gfAsB7JLyS2t5qt9uXy1LxcAL52GQd0DGR5bGwiH9QgmIkB+V4UQAiQAistw+mztYd/sEgl/wrX8vfVM6hvOpL61gbCyxsbe06Xszixmd0YxuzOLKa60kpJRTEpGsfN53fwNDOoeSEL3QBJMAQyKDiQywFuuRSiE8DidIgDed9993H333Vx77bXyQtxJnR/+4sN8Wf7gKAl/otMweukYfUUoo68IBUBVVdKLKp1hcHdmCUfzzJwps/D9kQK+P1LgfG6or1dtIOweQIIpkL6R/sSG+qKVS9AIIdxYpwiARUVF3HDDDYSGhnLXXXeRlJTE0KFDXV2WqCPhT3Q1iqIQH+ZLfJgvtw2PBqCqxs6hXDMHc0rZn1XK/uxSjheUU1RRw6ZjZ9h07Izz+Qadhl7hfvSN8KdPpL/zsylQ9hYKIdxDpwiAa9asoaSkhH//+98sW7aMN954g759+3L33Xcza9Ys4uLiXF2ix5LwJ9yFj5eW4bHBDI8Ndi6rtto5klfGgexSDmSXcijXzLH8MqqtDg7mmDmYY24wh79BR68IP3qG+dGzm68zZMaF+uLjpe3oloQQ4mfrFAEQICgoiLlz5zJ37lyysrJYvnw5H3zwAX/84x+x2WyuLs8jnR/+eob5snzuKHkTvXAr3notQ2OCGBoT5FzmcKicLq7kaF4Zx/LLOFL3+dSZCsosNvZklrAns6TJXKZAb+LrQmGPYB8KzirE55YRF+5PgLe+I9sSQohL6jQBsJ7VamXXrl1s376d9PR0IiIiXF2SR8osqj3bV8Kf8DQajUJsqC+xob4k1l2kGqDG5iCtsIJj+WWkF1aQVlhBWlEFp85UUFplJae0mpzSan48UVT3DC1/P7oVgEAfPdHBPnUfRudnU5A3kQHeBBu95LZ3QogO1WkC4IYNG1i2bBmfffYZdrudW2+9lS+++IJrr722Xbe7ZMkSXn31VXJzcxk4cCBvvPEG48ePb9dtdnYS/oRoykunoW+kP30j/ZusK66o4VR9KCws51RBOQfT8yjHi7MVVkqraj8aH1Kup9cqhPt7ExFgIDLQu+5rbyIDDUT4exMe4E2orxeBPnoJikKINtEpAmB0dDRFRUVcf/31/O1vf+Omm27C27v9A8fKlStZsGABS5YsYezYsfztb39j6tSpHDp0iB49erT79jujzKJK7lq6lZzSanqG+bJi7ijCJfwJcVHBvl4M9/Vyvr/QarWydm0206ZNosahkF1SRVZxJVnFVXUftV9nF1dRVFGD1a6SXVJFdknVRbej1SgEG70I9fUixNeLED8vwny9CPE1EOJXuzzYWBsUA3x0BPro8fXSSWgUQjTRKQLgH//4R+644w6Cg4MvPbgNvfbaa/zqV7/igQceAOCNN97gm2++4d133+Wll17q0Fo6gwbhr5svKx6U8CdEa/kadPSJ8KdPRNM9h1B7aPlMuYW80moKzNXkmavJN1vO+7qaArOFMosNu0OlsNxCYbmlxdvXKLXXTQzw0RHgra8Nh+c99vfWY/TSYjRo8fXS4eNV+9lo0GKs/9pLi9FLh7deI2dBC+EmOkUAnDt3bodvs6amhpSUFJ555pkGyxMTE/npp5+afY7FYsFiOffCazbXHs6xWq1YrdY2ra9+vrae90IyzlaS9MEuckur6Rlm5J/3jSDYR9th2+/ofl1N+nVvl9OvAoT76gj39QOT3wXHWWwOiitrKCqv4WxlDWcrrJytqKG4otHjyhrM1TZKq6xY7SoOFechaLj4HsZL1qqA0UuLt06LQafBoNPgpdPgpVWoLNOyMn8nBr0WQ916r7oxBp0GL60GvU6DXqOg1SroNBp0GgWtRjn3WdvcsvO+1mjQahSUulo0dWFUoygoSu33UlP3hUZpNE6pDcMKSqPn1vamAqp6rldVVVGdX4OK6lyvUvuzLaiC43ml6HS6ujGNnuscrzZaf94yFRx14x11gxxq7c+tfoxDrf/c3LL655ybRz1vnUPFuez8eUA99xz1XM3NL1Ox2ewcy1Y49f1xFI3WuQ31vHk4r0aHeuE6zl+Gc2z9dhv26lBhysAIpgxs2/MBPOW16GI6RQB0hcLCQux2e5OTTCIiIsjLy2v2OS+99BLPP/98k+Xr16/HaDS2S53JycntMu/5Cqvhrwe1lNQoRPio3BtrZteW79p9u83piH47E+nXvbVnv3ogou4DPRBU93EeqwMqbVBlgyo7VNmU2sf2umU2hWoHWOxQYweLA2rsSt3nuuUOqHHUpiRVhQqLnQqLvZmKFE6WFTez3J3pIHW7q4voQFrITOvwrdqLs3FkqJceeBkqKyvbdL6uyGMDYL3GhzNUVb3gIY5nn32WhQsXOh+bzWZiYmJITEwkICCgTeuyWq0kJyczefJk9Pr2u4RExtlK7v7HTkpqLPQM8+Vf94+gm7+h3bZ3IR3Vb2ch/bo3d+vX7lCpstqpqrFTUWPDYnVgsZ37qLLUsHN3Kn0HJGBXFWrsdevqxtU/rrHZsTvAZndgc6jYHep5n88tsztUrPbz1zsaLHPuSYIme6rq99I592Jxbu+U2mi5WrcXqv4Vv/6lv/7fAOX8ZXXLz//XwW63odfpQTk3tn7Eubnqn39uL2X9NpTz9lRq6ibQNNh7WT+m4TKNpna+2ufUrjt/j6fSzDwa5dy6+j2lGuXcNs4ta7i3VKOAolFQHQ5yc3KIie6OVqtpMk997fXLLlRHfT/nP9/5fVBo8D2pf/6Q6MAGl2pqC/VH8DyZxwbAsLAwtFptk719BQUFF7z0jMFgwGBoGo70en27vci359zphRUkfbCLPLOFK7rVnu0b7u/a9/y1Z7+dkfTr3tylXz3gbYALvUvbarVizdjDtOExbtFvS9Se6LOWadOu94iea/vNYtq0QW7Rrzv00FoaVxfgKl5eXgwfPrzJIZrk5GTGjBnjoqo6TnphBTPf30ZuaTW9wv06RfgTQgghRMfw2D2AAAsXLiQpKYkRI0YwevRoli5dSmZmJg899JCrS2tX6YUV3LV0G3nm2vC37MGrJfwJIYQQHsSjA+Cdd95JUVERixcvJjc3l4SEBNauXUtsbKyrS2s3jcPf8gdHueQ9f0IIIYRwHY8OgADz5s1j3rx5ri6jQ6QVVjCzLvz1DvdjmYQ/IYQQwiN57HsAPY2EPyGEEELU8/g9gJ4grbCCu5ZuJd9skfAnhBBCCAmA7q5x+Fs+dxRhfhL+hBBCCE8mAdCNnTpTzsz3t5FvttAnonbPn4Q/IYQQQkgAdFOnzpRz19JtFJRZ6BvhzycPXi3hTwghhBCAnATiliT8CSGEEOJiJAC6mZONwt8yCX9CCCGEaEQCoBs5eaacmY3CX6iEPyGEEEI0IgHQTZwf/vpFSvgTQgghxIXJSSBuoP6w75m68PfJAxL+hBBCCHFhsgewiztRIOFPCCGEEJdH9gB2YScKaq/zd8Z52HcUIb5eri5LCCGEEJ2cBMAuqn7PX2G5hD8hhBBCXB4JgF3QiYIy7lq6ncJyC/2jAvjkgasl/AkhhBCixeQ9gF2MhD8hhBBCtJbsAexCjueXMfP9c+Fv2QNXEyzhTwghhBCXSfYAdhHnh78BEv6EEEII0QqyB7ALqA1/2ygsr2FA3WFfCX9CCCGE+LkkAHZyxwvKmfPhLgrLaxhoCuBfv5LwJ4QQQojW8dhDwC+88AJjxozBaDQSFBTk6nKaVVQN936U4gx/sudPCCGEEG3BYwNgTU0Nd9xxBw8//LCrS2mWqqr884SWgjILfSNq7/ARZJTwJ4QQQojW89hDwM8//zwAH330kWsLuYA1e3NJK1Mwemn54L6REv6EEEII0WY8dg9gZ3amzMILXx8F4KFr4uke5OPiioQQQgjhTjx2D+DPYbFYsFgszsdmsxkAq9WK1Wpts+08v+YAxZVWuhtV5lzdvU3n7qzqe/SEXkH6dXfSr/vztJ7drV936aM1FFVVVVcX0VYWLVrkPLR7ITt37mTEiBHOxx999BELFiygpKTkZ8+/bNkyjEbj5Rd8AQVV8O9TGm6Jc9Ddt82mFUIIIQRQWVnJrFmzKC0tJSAgwNXluIRbBcDCwkIKCwsvOiYuLg5vb2/n48sJgM3tAYyJiaGwsLDNf4GsVivJyclMnjwZvV7fpnN3RtKve5N+3Zun9Que17O79Ws2mwkLC/PoAOhWh4DDwsIICwtrt/kNBgMGg8H5uD47V1VVtfkfhNVqpbKykqqqKmw2W5vO3RlJv+5N+nVvntYveF7P7tZvVVUVcO7fcU/kVgHwcmRmZnL27FkyMzOx2+2kpqYC0KtXL/z8/Fo0R1lZGQAxMTHtVqcQQggh2kdZWRmBgYGuLsMl3OoQ8OW49957+fjjj5ss37BhAxMnTmzRHA6Hg5ycHPz9/VEUpU3rqz+8fPr0aY/YPS39ujfp1715Wr/geT27W7+qqlJWVobJZEKj8cwLonjsHsCPPvqo1dcA1Gg0REdHt01BFxAQEOAWf2wtJf26N+nXvXlav+B5PbtTv56656+eZ8ZeIYQQQggPJgFQCCGEEMLDaBctWrTI1UWI5mm1WiZOnIhO5xlH6qVf9yb9ujdP6xc8r2dP69fdeexJIEIIIYQQnkoOAQshhBBCeBgJgEIIIYQQHkYCoBBCCCGEh5EAKIQQQgjhYSQAdkJLliwhPj4eb29vhg8fzpYtW1xdUpt46aWXGDlyJP7+/oSHhzNjxgyOHj3aYIzFYuHRRx8lLCwMX19fpk+fTlZWlosqblsvvfQSiqKwYMEC5zJ36zc7O5u7776b0NBQjEYjQ4cOJSUlxbleVVUWLVqEyWTCx8eHiRMncvDgQRdW/PPZbDZ+//vfEx8fj4+PDz179mTx4sU4HA7nmK7e7+bNm7npppswmUwoisLnn3/eYH1L+isuLiYpKYnAwEACAwNJSkqipKSkI9tosYv1a7Vaefrppxk0aBC+vr6YTCbmzJlDTk5Ogzncpd/Gfv3rX6MoCm+88UaD5V2pX9GQBMBOZuXKlSxYsIDnnnuOPXv2MH78eKZOnUpmZqarS2u1TZs28cgjj7Bt2zaSk5Ox2WwkJiZSUVHhHLNgwQJWr17NihUr+OGHHygvL+fGG2/Ebre7sPLW27lzJ0uXLmXw4MENlrtTv8XFxYwdOxa9Xs/XX3/NoUOH+Mtf/kJQUJBzzCuvvMJrr73G22+/zc6dO4mMjGTy5MnO+2p3JS+//DLvvfceb7/9NocPH+aVV17h1Vdf5a9//atzTFfvt6KigiFDhvD22283u74l/c2aNYvU1FTWrVvHunXrSE1NJSkpqaNauCwX67eyspLdu3fzhz/8gd27d7Nq1SqOHTvG9OnTG4xzl37P9/nnn7N9+3ZMJlOTdV2pX9GIKjqVq666Sn3ooYcaLOvXr5/6zDPPuKii9lNQUKAC6qZNm1RVVdWSkhJVr9erK1ascI7Jzs5WNRqNum7dOleV2WplZWVq79691eTkZHXChAnqY489pqqq+/X79NNPq+PGjbvgeofDoUZGRqp//vOfncuqq6vVwMBA9b333uuIEtvUDTfcoN5///0Nlt16663q3Xffraqq+/ULqKtXr3Y+bkl/hw4dUgF127ZtzjFbt25VAfXIkSMdV/zP0Ljf5uzYsUMF1IyMDFVV3bPfrKwstXv37uqBAwfU2NhY9fXXX3eu68r9ClWVPYCdSE1NDSkpKSQmJjZYnpiYyE8//eSiqtpPaWkpACEhIQCkpKRgtVob9G8ymUhISOjS/T/yyCPccMMNXHfddQ2Wu1u/a9asYcSIEdxxxx2Eh4czbNgw3n//fef6tLQ08vLyGvRrMBiYMGFCl+x33LhxfPfddxw7dgyAvXv38sMPPzBt2jTA/fptrCX9bd26lcDAQK6++mrnmFGjRhEYGOgW34PS0lIURXHu5Xa3fh0OB0lJSTz11FMMHDiwyXp369fTyOW8O5HCwkLsdjsRERENlkdERJCXl+eiqtqHqqosXLiQcePGkZCQAEBeXh5eXl4EBwc3GNuV+1+xYgW7d+9m586dTda5W7+nTp3i3XffZeHChfzud79jx44d/OY3v8FgMDBnzhxnT839fmdkZLii5FZ5+umnKS0tpV+/fmi1Wux2Oy+88AIzZ84EcLt+G2tJf3l5eYSHhzd5bnh4eJf8HT9fdXU1zzzzDLNmzSIgIABwv35ffvlldDodv/nNb5pd7279ehoJgJ2QoigNHquq2mRZVzd//nz27dvHDz/8cMmxXbX/06dP89hjj7F+/Xq8vb1b/Lyu2q/D4WDEiBG8+OKLAAwbNoyDBw/y7rvvMmfOHOc4d/n9XrlyJf/6179YtmwZAwcOJDU1lQULFmAymbjnnnuc49yl3wu5VH/N9drVvwdWq5W77roLh8PBkiVLGqxzl35TUlJ488032b1790Vrd5d+PZEcAu5EwsLC0Gq1Tf7nVFBQ0OR/2V3Zo48+ypo1a9iwYQPR0dHO5ZGRkdTU1FBcXNxgfFftPyUlhYKCAoYPH45Op0On07Fp0ybeeustdDodERERbtVvVFQUAwYMaLCsf//+zhOYIiMjAdzm9/upp57imWee4a677mLQoEEkJSXx+OOP89JLLwHu129jLekvMjKS/Pz8Js89c+ZMl/0eWK1WfvnLX5KWlkZycrJz7x+4V79btmyhoKCAHj16OF+/MjIyeOKJJ4iLiwPcq19PJAGwE/Hy8mL48OEkJyc3WJ6cnMyYMWNcVFXbUVWV+fPns2rVKr7//nvi4+MbrB8+fDh6vb5B/7m5uRw4cKBL9v+LX/yC/fv3k5qa6vwYMWIEs2fPdn7tTv2OHTu2yWV9jh07RmxsLADx8fFERkY26LempoZNmzZ1yX4rKyvRaBq+hGq1WudlYNyt38Za0t/o0aMpLS1lx44dzjHbt2+ntLS0S34P6sPf8ePH+fbbbwkNDW2w3p36TUpKYt++fQ1ev0wmE0899RTffPMN4F79eiQXnXwiLmDFihWqXq9X//GPf6iHDh1SFyxYoPr6+qrp6emuLq3VHn74YTUwMFDduHGjmpub6/yorKx0jnnooYfU6Oho9dtvv1V3796tXnvtteqQIUNUm83mwsrbzvlnAauqe/W7Y8cOVafTqS+88IJ6/Phx9ZNPPlGNRqP6r3/9yznmz3/+sxoYGKiuWrVK3b9/vzpz5kw1KipKNZvNLqz857nnnnvU7t27q19++aWalpamrlq1Sg0LC1N/+9vfOsd09X7LysrUPXv2qHv27FEB9bXXXlP37NnjPOu1Jf1NmTJFHTx4sLp161Z169at6qBBg9Qbb7zRVS1d1MX6tVqt6vTp09Xo6Gg1NTW1wWuYxWJxzuEu/Tan8VnAqtq1+hUNSQDshN555x01NjZW9fLyUq+88krnZVK6OqDZjw8//NA5pqqqSp0/f74aEhKi+vj4qDfeeKOamZnpuqLbWOMA6G79fvHFF2pCQoJqMBjUfv36qUuXLm2w3uFwqH/605/UyMhI1WAwqNdcc426f/9+F1XbOmazWX3sscfUHj16qN7e3mrPnj3V5557rkEY6Or9btiwodm/2XvuuUdV1Zb1V1RUpM6ePVv19/dX/f391dmzZ6vFxcUu6ObSLtZvWlraBV/DNmzY4JzDXfptTnMBsCv1KxpSVFVVO2JPoxBCCCGE6BzkPYBCCCGEEB5GAqAQQgghhIeRACiEEEII4WEkAAohhBBCeBgJgEIIIYQQHkYCoBBCCCGEh5EAKIQQQgjhYSQACiGEEEJ4GAmAQgi3sHHjRhRFoaSkpMO3rSgKiqIQFBTUovH1tSqKwowZM9q5OiGEaEoCoBCiy5k4cSILFixosGzMmDHk5uYSGBjokpo+/PBDjh071qKx9bX+8pe/bOeqhBCieRIAhRBuwcvLi8jISBRFccn2g4KCCA8Pb9HY+lp9fHzauSohhGieBEAhRJdy7733smnTJt58803nYdT09PQmh4A/+ugjgoKC+PLLL+nbty9Go5Hbb7+diooKPv74Y+Li4ggODubRRx/Fbrc756+pqeG3v/0t3bt3x9fXl6uvvpqNGzcZpwtmAAADTElEQVRedp179+5l0qRJ+Pv7ExAQwPDhw9m1a1dbfRuEEKJVdK4uQAghLsebb77JsWPHSEhIYPHixQB069aN9PT0JmMrKyt56623WLFiBWVlZdx6663ceuutBAUFsXbtWk6dOsVtt93GuHHjuPPOOwG47777SE9PZ8WKFZhMJlavXs2UKVPYv38/vXv3bnGds2fPZtiwYbz77rtotVpSU1PR6/Vt8j0QQojWkgAohOhSAgMD8fLywmg0EhkZedGxVquVd999lyuuuAKA22+/nX/+85/k5+fj5+fHgAEDmDRpEhs2bODOO+/k5MmTLF++nKysLEwmEwBPPvkk69at48MPP+TFF19scZ2ZmZk89dRT9OvXD+CywqMQQrQ3CYBCCLdlNBqd4Q8gIiKCuLg4/Pz8GiwrKCgAYPfu3aiqSp8+fRrMY7FYCA0NvaxtL1y4kAceeIB//vOfXHfdddxxxx0NahFCCFeSACiEcFuND7kqitLsMofDAYDD4UCr1ZKSkoJWq20w7vzQ2BKLFi1i1qxZfPXVV3z99df86U9/YsWKFdxyyy0/oxMhhGhbEgCFEF2Ol5dXgxM32sqwYcOw2+0UFBQwfvz4Vs/Xp08f+vTpw+OPP87MmTP58MMPJQAKIToFOQtYCNHlxMXFsX37dtLT0yksLHTuwWutPn36MHv2bObMmcOqVatIS0tj586dvPzyy6xdu7bF81RVVTF//nw2btxIRkYGP/74Izt37qR///5tUqcQQrSWBEAhRJfz5JNPotVqGTBgAN26dSMzM7PN5v7www+ZM2cOTzzxBH379mX69Ols376dmJiYFs+h1WopKipizpw59OnTh1/+8pdMnTqV559/vs3qFEKI1lBUVVVdXYQQQnRliqKwevXqy76t27333ktJSQmff/55O1UmhBDNkz2AQgjRBmbOnEl0dHSLxm7ZsgU/Pz8++eSTdq5KCCGaJ3sAhRCilU6cOAHUHvqNj4+/5Piqqiqys7OB2rOLL3U9QyGEaGsSAIUQQgghPIwcAhZCCCGE8DASAIUQQgghPIwEQCGEEEIIDyMBUAghhBDCw0gAFEIIIYTwMBIAhRBCCCE8jARAIYQQQggPIwFQCCGEEMLD/H+H/FFDqE50QgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": { - "image/png": { - "width": 600 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "Image(filename=\"Figure_1.png\",width=600)" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8FGW6Pvyrqtd0ku6QhCQkBIggKIuIgDsCjkQBF/SMOjKiuLwzKDKCI0c4bohHcQVUxGX8OaMeHfGoqHOGQaIDCAKCYVF2BELIZjaS7qTT3dVV9f7RS9JZ2NKherm+H9uqeuqp6vvOQt95ahNUVVVBRERERHFD1DoAIiIiIjqzWAASERERxRkWgERERERxhgUgERERUZxhAUhEREQUZ1gAEhEREcUZFoBEREREcYYFIBEREVGcYQFIREREFGdYABIRERHFGRaARERERHGGBSARERFRnGEBSERERBRnWAASERERxRkWgERERERxhgUgERERUZxhAUhEREQUZ1gAEhEREcUZFoBEREREcYYFIBEREVGcYQFIREREFGdYABIRERHFGRaARERERHGGBSARERFRnGEBSERERBRnWAASERERxRkWgERERERxhgUgERERUZxhAUhEREQUZ1gAEhEREcUZFoBEREREcYYFIBEREVGcYQFIREREFGdYABIRERHFGRaARERERHGGBSARERFRnGEBSERERBRnWAASERERxRkWgERERERxhgUgERERUZxhAUhEREQUZ1gAEhEREcUZFoBEREREcYYFIBEREVGcYQFIREREFGdYABIRERHFGRaARERERHGGBSARERFRnGEBSERERBRnWAASERERxRkWgERERERxhgUgERERUZxhAUhEREQUZ1gAEhEREcWZuC4AFyxYgJEjRyI5ORkZGRmYNGkS9u3bp3VYRERERF0qrgvAtWvXYvr06di0aRMKCgrg9XqRn5+PxsZGrUMjIiIi6jKCqqqq1kFEiqqqKmRkZGDt2rW44oorTthfURSUlZUhOTkZgiCcgQiJiIios1RVhcPhQHZ2NkQxPsfC9FoHEEnq6+sBAKmpqSfVv6ysDLm5uV0ZEhEREXWRo0ePomfPnlqHoQkWgH6qquKhhx7C5ZdfjsGDB7fbx+12w+12h2wDAIcPH0ZycnJY45EkCatXr8bYsWNhMBjCuu9IxHxjG/ONffGWM/ONbg6HA3l5eWH/7I4mPATsN336dPzzn//E+vXrO/xrYN68eXjqqafatH/00UewWCxhjedIA7CqRMQNvRVkJIR110RERHHN6XRi8uTJqK+vh9Vq1TocTbAABDBjxgx88cUX+O6775CXl9dhv9YjgHa7Hbm5uaiurg77D9DZj68CAAzITMT/PXBZWPcdiSRJQkFBAcaNGxcTf12eCPONbfGWLxB/OTPf6Ga325Genh7XBWBcHwJWVRUzZszA8uXLsWbNmuMWfwBgMplgMpnatBsMhi77hTh6zBUTv2wnqyu/lpGI+ca2eMsXiL+cmW90ioUcOiuuC8Dp06fjo48+wpdffonk5GRUVFQAAGw2GxISIuO4q07k1cVEREQUXvF57bPfG2+8gfr6eowZMwY9evQIvpYtW6Z1aEF6FoBEREQUZnE9AhgNpz+yACQiIqJwi+sRwGig1/FbREREROHF6iLC6TgASERERGHGAjDCRf5BaiIiIoo2LAAjnMIKkIiIiMKMBWCEU6LgQhUiIiKKLiwAI5zHq2gdAhEREcUYFoARqOXtaewur4aREBERUSxiARiBJLm5AJQVFTJPBCQiIqIwYgEYgSQ59LBvndOjUSREREQUi1gARiCvHDri5+J5gERERBRGLAAjkKfVCKBbkjWKhIiIiGIRC8AI5FVaFYAcASQiIqIwYgEYgSRv6CFg3gqGiIiIwokFYAT6aHNxyDJHAImIiCicWABGoNK6ppBlt5fnABIREVH4sACMQFecnR6y7JY4AkhEREThwwIwAv3HBT1xz2W9g8utrwomIiIi6gwWgBFIFAXMuWYAzrH5Cj8eAiYiIqJwYgEYwfT+746Lh4CJiIgojFgARjCzzjdtcHm1DYSIiIhiCgvACJbgLwAdLknbQIiIiCimsACMYCa9b+pwcwSQiIiIwocFYARL0PmeCOLgIWAiIiIKI73WAXRWU1MTJCn0EKnVatUomvAKnANY38RDwERERBQ+UVkAOp1O/Od//ic++eQT1NTUtFkvy7Fx25RUk2+66WANdhytC1knCP4phJDlE63vsL3VduhwvdBu/xPG0WI7URCQnmSEXscBaCIiIi1EZQE4e/ZsrF69GkuXLsUdd9yB119/HaWlpXjrrbfw3HPPaR1e2GRb/IeA3V7c8Pr3GkcTXkadiInn9cAT1w5Et0Sj1uEQERHFlagsAP/xj3/g/fffx5gxY3D33Xdj1KhR6NevH3r37o0PP/wQv//977UOMSxSTMDM3/TDZ9tKobRzK0BV9RWIanDZP/W3NC+HrkeH6zvYX6t2nOx2HbyPrKjwyAqWbyvFztJ6LPvjJUg2tho6JCIioi4TlQVgbW0t8vLyAPjO96utrQUAXH755bjvvvu0DC3spo85CzPHDdA6jLBSFBXbS+pw//9sxYHKBkz962a8P3W41mERERHFjag8Ceuss85CUVERAGDgwIH45JNPAPhGBlNSUjSMjE6GKAq4oFc3/M+9F6KbxYCfSuox639/gqyeeFsiIiLqvKgsAO+66y7s2LEDADB37lwsXboUJpMJs2bNwuzZszWOjk5Wv4xkvHPnSJj0Ilbvq8Znh8Xg4WQiIiLqOlF5CHjWrFnB+bFjx2Lv3r348ccf0bdvXwwdOlTDyOhUDe/dDa/87nzc9+FWfP+riLfXFeGB3/TXOiwiIqKYFpUjgK316tULN910U5vib8iQITh69KhGUdHJumZwD/zXeN95ji8VHMCX20s1joiIiCi2xUQB2JGioqI2N4mmyDT1kt4Y3cN3qfPs//0Jmw61vb8jERERhUdMF4AUXSb1VnD1wAx4ZAV/eP9HHPjVoXVIREREMYkFIEUMUQBe+u0QXNArBXaXF1P/ugWVdpfWYREREcUcFoAUUcwGHd65cyT6pFlQWteEu9/bgka3V+uwiIiIYgoLQIo4qYlG/O2uC5GaaMTOUjse+GgrvHI7j0IhIiKi08ICkCJSn/RE/L87R8BsELF6XxXmfP4zFIX3CCQiIgqHqLwP4Pz584+7/oknngAAvPXWW8jMzDwTIVEXGNarG1753TDc9z+F+LSwBHpRwLM3DoEo8rnBREREnRGVBeDy5ctDliVJwuHDh6HX69G3b99gATh58mQtwqMwunpQFhbdej5mLduOj7cchSAAz0xiEUhERNQZUVkAbtu2rU2b3W7H1KlTceONN2oQEXWlG87PgaoCD32yHX/ffBSCIOC/bxjMIpCIiOg0xcw5gFarFfPnz8fjjz+udSjUBSYNy8HLtwyFIAAf/VCMh/93ByReGEJERHRaYqYABIC6ujrU19drHQZ1kRuH9cSiW86HThTw+bZSTPugEE0eWeuwiIiIok5UHgJ+9dVXQ5ZVVUV5eTk++OADXHPNNRpFRWfCpGE5SDbrcf+HW/Ht3krc8e4PeOfOkbAlGLQOjYiIKGpEZQG4aNGikGVRFNG9e3fceeedmDt3rkZR0Znym3Mz8cE9F+Ge97ZgS9Ex3PLmRrxz5wjkplq0Do2IiCgqRGUBePjwYa1DII1dmJeKZX+4BHf+dTP2/erApNe/x1tThmNEn1StQyMiIop4MXUOIMWXgdlWfDn9MgzsYUVNoweT//IDPiss0TosIiKiiMcCkKJadkoCPr3vElwzKAseWcGf/3cH5v9jNzxeXiFMRETUERaAFPUsRj2W/v4CPDC2HwDg3e8P45a3NqK0rknjyIiIiCITC0CKCaIo4OGrB+DtKcNhNeux/WgdJr66Dv/e+6vWoREREUUcFoAUU/IHZeGffxqFoT1tqHNKuPtvP+KxL35Go9urdWhEREQRgwUgxZzcVAs+mXYJ7rqsDwDgfzYVY8Kr67ClqFbbwIiIiCIEC0CKSSa9Dk9eNwgf3nsRsm1mHKlx4pa3NmL+P3ajgaOBREQU5+K+AFy6dCny8vJgNpsxfPhwrFu3TuuQKIwu65eOlbOuwG+H94Sq+i4QuerltVjxczlUVdU6PCIiIk3EdQG4bNkyzJw5E48++ii2bduGUaNGYfz48SguLtY6NAojq9mAl24eir/dNRK9Ui2osLtw/4dbMfWvW/BLpUPr8IiIiM64qHwSSLgsXLgQ99xzD+69914AwOLFi/H111/jjTfewIIFCzSOjsJtzIAMrJqVhqVrDuLNNQexdn8V1i2qwi0jcjFrXH9kWs1ah0hEcSxwVEJVAbV1m7/dN9/cr3nbtuva20ew70n2D+zX65Vg9wDVDW7o9QoEwdfun0AINIS0BZab1wVmhbZNwX20WAVBAPSiCKM+rserukTcFoAejweFhYWYM2dOSHt+fj42bNjQ7jZutxtutzu4bLfbAQCSJEGSpLDGF9hfuPcbqc5UvjoAM8bk4drBGXhx1QEU7KnEx1uO4ovtpbjrkt6467Le6GYxdmkMAL+/sS7e8gXa5qyqKiRZhdurwOOV4fYqrV4yPF4VkqzAK6vwKgok/9Qrq5AUFV5Zgayo/nbfslfxb6OoLdb59yGrkPzzshI6L6sqFEWFogKyokJR1eC0bRtC1suKv1AKFk2+wkiWdXhkyzeA0LIAQ5vTS05YjEUNPR4vXHvG3/VPY/tixpV9w7rPePrd7IigxumJUGVlZcjJycH333+PSy+9NNj+7LPP4r333sO+ffvabDNv3jw89dRTbdo/+ugjWCyWLo2XusYhO/DlER2KGnx/cxpFFZdlqhibrcDW9XUg0RmnqIBHATyyb+r2Tz2KEGzzyIA72EcI6e+RAa8KSArgVQTfNLjcPPWqgBoylkN0eq7pKWN8bnhLFafTicmTJ6O+vh5WqzWs+44WcTsCGNBy2Brw/XXWui1g7ty5eOihh4LLdrsdubm5yM/PD/sPkCRJKCgowLhx42AwGMK670ikZb7TVRUFeyqxZPUh7KlwYHW5gPWVOtw0LAd3XJyL/pnJYX9Pfn9jW7jzVVUVTZKMBreMBpcXDe7Wr5Nrd3p8I3FaMOpFmPQijDrf1KT3HdYz6ETodQL0ouCbFwX/cot5nQhDi3aDToBO9PfRCf51ofM6MXReJwgQRQTnBUGATgREQWixPrAOoW1i28OTsteL9evXY9Soy4Pf43YPh3ZwqFRoZx3aXSe02U/z7jte1952aJVD6HYdrPPPtPcz3XL8qOUIaHNbi/Wt+oX0PUE/nSiE/RBw4AhePIvbAjA9PR06nQ4VFRUh7ZWVlcjMzGx3G5PJBJPJ1KbdYDB02YdaV+47EmmV78ShPTHhvBys2V+F1//9C348cgzLfizBsh9LcGFeKqZc3BtXD8oK+z9C/P7Gtpb5qqoKl6SgvklCXZMH9U4J9U1tX3Ut2u1NEur8U68S3hEQQQAsBh0SjHokGEVYDHokGHWw+F9mQ2De327QIcHoe5n1OpgM/mLOoINJL0IHBVs2bcBvxoyGxWyEySDCpNcFiz5RjK3RQEmSsMcM9Olujduf6WgWCzl0VtwWgEajEcOHD0dBQQFuvPHGYHtBQQFuuOEGDSMjrQiCgLEDMjB2QAY2H67FX78/jFW7f8Xmw7XYfLgW6UlGXHteNiYNy8HQnrYOR4opfrgkGVUON2oaPahpcKO6wY3qBg+q7E34ab+IZb/+iFqnhJpGX8HnkTs3+iYKQJJJj2SzAUkmPZLM+uA02dRi3mzwLbdYn2TSBws6i9FXmIXzZ1iSJJT9DJzVPZEfrkRRIG4LQAB46KGHMGXKFIwYMQKXXHIJ3n77bRQXF2PatGlah0YauzAvFRfmpaKi3oWPNhfj75uLUeVw428bivC3DUXIS0/E9UOzcfWgLJzbI5nFYIxQFBV1TRJqGtyoanCjpiFQ2HlQ0+ibVrdob/TIx9mbCNS0ffqMThRgSzAgJcEAa4LBN2/xTdt7pViMsCUYYE3QI8Gg488aEYVFXBeAt956K2pqajB//nyUl5dj8ODBWLFiBXr37q11aBQhsmxmPDSuP2Zc2Q/rf6nGF9tKsWrXrzhc3YhXvj2AV749gGybGb85NxO/OTcDF+WlIcGo0zpsasElyc1FWztFXHC50YPaRg/kUzzUatSLSE80Ij3ZhLREI9KSTOiWoEfV0YO4fMRQZNgsSE00IsXiK+YSjSziiEh7cV0AAsD999+P+++/X+swKMIZdGLw8HCj24tVuyuw4ucKrDtQhbJ6Fz7YdAQfbDoCo07E+bkpuPisVFzcNw0X9OoGs4EFYTgpior6JqndYq7KP61pbG4/nUf/pVgMwWKue5IJaUlGpCX6pulJJqQn+dalJxmRZNK3KegkScKKFb9gwvnZPBxKRBEp7gtAolOVaNLjxmE9ceOwnnBJMjYcrEbB7kqs2VeJ8noXNhfVYnNRLV799y/QiwIGZCXjvJ42nNczBUNybOifmcybY7TikmTUtijaAufStSzmAsu1jZ5TviDCqBODxVugmEtPNiLdX9QFirn0JBO6WYy86SwRxTwWgESdYDbocOU5mbjynEyoqoojNU5sPFSDTYdqsPFgDSodbuwqs2NXmR1/33wUgO8csN6pCUiURewxHED/LCv6pCeiZ0oC0pNMMXG1ZJNHRk2jr5irbfSg0u7EhjIBO7/ej7omL2obPb4LJxrdqG3wnOBcuvbZEgy+os5fzLU3QpfmPzSb3M4oHRFRPGMBSBQmgiCgT3oi+qQn4rYLe0FVVZTVu/BzSR12lNTj55J6/FRSB7vLi0PVTgAifv7ucMg+jDoRPVLMyElJQA9bgr+wMSI10eSf+s4lSzTpkWjUw2wI75WcAOCVFTglGU0e38vpkeH0eGF3BW5N4g3eoqS+SWrTXtvoQZPUXkGnA44Udfi+Bp0QHJkLFHPdQ0bs/AVdkgmpiRylIyLqDBaARF1EEATkpCQgJyUB1wzuAcB3L7hf7W7sLa/DP9ZshrF7bxyqduJorRMVdhc8soIjNU4cqXGe5HsAiUY9Ek2+23v4bo4rBKeifyoIAhRFDT4+yzf1PWZLVnz3p3N6vHBJSqdvVRIQOOyammhEN4sBTXVVGHJ2H3S3JgSLWd96X0FnNXOUjojoTGEBSHQGCYKALJsZaZY01O9TMWHCwOBFApKsoKLehbK6JpTWNaG83uU/hBq4z5zvcGp9kxQcYVNVBJ/yALiP886nThQAi1EPs0GHRJMOVrMheDsSW4IBVrPvNiaBW5lYzb72VH9x1/LiCN9FESswYcI5vCiCiCgCsAAkihAGnYjcVAtyU0/8XGlFUeGUZDjdXjR6ZDS6vWiS5JAH38uKAq/c/DD74OigzveIq8BIoU4UYDa0fPKDbz7cNwomIqLIwQKQKAqJouB7woOJv8JERHTq+OnRCYEHXXfFQ6UlSYLT6YTdbo+LQ2bMN7Yx39gXbzkz3+gW+NwOfI7HIxaAneBwOAAAubm5GkdCREREp8rhcMBms2kdhiYENZ7L305SFAVlZWVITg7/s2Dtdjtyc3Nx9OhRWK3WsO47EjHf2MZ8Y1+85cx8o5uqqnA4HMjOzoYoxuctpTgC2AmiKKJnz55d+h5WqzUmftlOFvONbcw39sVbzsw3esXryF9AfJa9RERERHGMBSARERFRnNHNmzdvntZBUPt0Oh3GjBkDvT4+jtQz39jGfGNfvOXMfCma8SIQIiIiojjDQ8BEREREcYYFIBEREVGcYQFIREREFGdYABIRERHFGRaAEWjp0qXIy8uD2WzG8OHDsW7dOq1DCosFCxZg5MiRSE5ORkZGBiZNmoR9+/aF9HG73ZgxYwbS09ORmJiI66+/HiUlJRpFHF4LFiyAIAiYOXNmsC3W8i0tLcXtt9+OtLQ0WCwWnH/++SgsLAyuV1UV8+bNQ3Z2NhISEjBmzBjs2rVLw4g7x+v14rHHHkNeXh4SEhJw1llnYf78+VAUJdgnmnP+7rvvcN111yE7OxuCIOCLL74IWX8yuR07dgxTpkyBzWaDzWbDlClTUFdXdybTOGnHy1eSJDzyyCMYMmQIEhMTkZ2djTvuuANlZWUh+4iVfFv74x//CEEQsHjx4pD2aMqXQrEAjDDLli3DzJkz8eijj2Lbtm0YNWoUxo8fj+LiYq1D67S1a9di+vTp2LRpEwoKCuD1epGfn4/GxsZgn5kzZ2L58uX4+OOPsX79ejQ0NODaa6+FLMsaRt55W7Zswdtvv43zzjsvpD2W8j127Bguu+wyGAwG/Otf/8Lu3bvx8ssvIyUlJdjnhRdewMKFC7FkyRJs2bIFWVlZGDduXPC52tHm+eefx5tvvoklS5Zgz549eOGFF/Diiy/itddeC/aJ5pwbGxsxdOhQLFmypN31J5Pb5MmTsX37dqxcuRIrV67E9u3bMWXKlDOVwik5Xr5OpxNbt27F448/jq1bt+Lzzz/H/v37cf3114f0i5V8W/riiy/www8/IDs7u826aMqXWlEpolx44YXqtGnTQtrOOeccdc6cORpF1HUqKytVAOratWtVVVXVuro61WAwqB9//HGwT2lpqSqKorpy5Uqtwuw0h8Ohnn322WpBQYE6evRo9cEHH1RVNfbyfeSRR9TLL7+8w/WKoqhZWVnqc889F2xzuVyqzWZT33zzzTMRYthNnDhRvfvuu0PabrrpJvX2229XVTW2cgagLl++PLh8Mrnt3r1bBaBu2rQp2Gfjxo0qAHXv3r1nLvjT0Drf9mzevFkFoB45ckRV1djMt6SkRM3JyVF37typ9u7dW120aFFwXTTnS6rKEcAI4vF4UFhYiPz8/JD2/Px8bNiwQaOouk59fT0AIDU1FQBQWFgISZJC8s/OzsbgwYOjOv/p06dj4sSJuOqqq0LaYy3fr776CiNGjMDNN9+MjIwMDBs2DH/5y1+C6w8fPoyKioqQfE0mE0aPHh2V+QLA5Zdfjm+//Rb79+8HAOzYsQPr16/HhAkTAMRmzgEnk9vGjRths9lw0UUXBftcfPHFsNlsUZ8/4Ps3TBCE4Ch3rOWrKAqmTJmC2bNnY9CgQW3Wx1q+8Ya38+4ERVFQVlaG5ORkCILQ6f2Vl5dDlmUkJSXBbrcH2202G0pLS0Paop2qqpgxYwYuvvhi9OrVC3a7HYcOHYLBYIBOpwvJNS0tDcXFxVGZ/6effootW7ZgzZo1sNvt8Hq9cLvdMZnvwYMHsXTpUjzwwAP47LPPUFhYiBkzZkBRFNx22204ePAgAMBisYTk1q1bNxw9ejTq8gWA++67D5WVlRgwYAB0Oh1kWcYTTzyBiRMnwm63x1zOTqczGPPJ5FZUVIS0tLQ2eaalpaGoqCji82+Zb2sulwuzZ8/GzTffDAAxme/LL78MAJg6dSrsdjsURYHL5Qr2ieZ8VVWFw+FAdnY2RDE+x8L4JJBOKCkpQW5urtZhEBER0Wk4evQoevbsqXUYmuAIYCckJycD8P0AWa3WsO5bkiSsWrUK+fn5MBgMYd13JGK+sY35xr54y5n5Rje73Y7c3Nzg53g8YgHYCYHDvlartUsKQKdowa8uEQPTwrvvSCRJEiwWC6xWa0z843IizDe2xVu+QPzlzHxjQzhO34pW8XngOwooiopntukw4bUNWL23El5ZOfFGRERERCeBBWCEqnV6oMD3l8ldf9uCO/+6GYrC0zWJiIio81gARqiKenfI8ve/1GDfr5F/41giIiKKfCwAI1RJXRMA4LyeVvTtnggAqG+StAyJiIiIYgQLwAi13z/ad3ZGEixG37U6To9Xy5CIiIgoRrAAjFAlx3wjgHlpibAYdQAApyf6ng9LREREkYcFYISqbfQd7k1NNDYXgG4WgERERNR5LAAj0JaiWqw9UA0ASE00wGLyHQJu5CFgIiIiCgMWgBFonb/4A3wjgIk8BExERERhFBFPAmlsbMTatWtRXFwMj8cTsu5Pf/qTRlFpp5ul+S7rqYlGJJt9y7wKmIiIiMJB8wJw27ZtmDBhApxOJxobG5Gamorq6mpYLBZkZGTEZQGYYNAF51MtRqQlGQEANQ2ejjYhIiIiOmmaHwKeNWsWrrvuOtTW1iIhIQGbNm3CkSNHMHz4cLz00ktah6eJls/7SDLpkJ5oAgDUNrrb34CIiIjoFGheAG7fvh1//vOfodPpoNPp4Ha7kZubixdeeAH/9V//pXV4muidZgnOC4KA1ET/CGAjRwCJiIio8zQvAA0GAwTB98zbzMxMFBcXAwBsNltwPt5cclYaHp94Dh4Y6LvoI8V/TqCd5wASERFRGGh+DuCwYcPw448/on///hg7diyeeOIJVFdX44MPPsCQIUO0Dk8TgiDgjot7YUXtTgCANcFfALp4GxgiIiLqPM1HAJ999ln06NEDAPD0008jLS0N9913HyorK/H2229rHF1ksJqbRwBVVT1BbyIiIqLj03wEcMSIEcH57t27Y8WKFRpGE5msCb5vk1dR0STJwWcDExEREZ0OzUcA6cQSDDroRd95kvYmHgYmIiKiztF8KGnYsGHBi0BaEgQBZrMZ/fr1w9SpUzF27FgNoosMgiDAmmBAbaMHdpeELJtZ65CIiIgoimk+AnjNNdfg0KFDSExMxNixYzFmzBgkJSXh4MGDGDlyJMrLy3HVVVfhyy+/1DpUTVnNvlqdTwMhIiKiztK8AKyursaf//xnrFu3Di+//DIWLlyI7777Dg8//DAaGxuxatUqPPbYY3j66adPuK+lS5ciLy8PZrMZw4cPx7p16zrs+7e//Q2CILR5uVyucKYXNsErgVkAEhERUSdpXgB+8sknuO2229q0/+53v8Mnn3wCALjtttuwb9++4+5n2bJlmDlzJh599FFs27YNo0aNwvjx4497L0Gr1Yry8vKQl9kcmYdXg1cCu1gAEhERUedoXgCazWZs2LChTfuGDRuCxZiiKDCZTMfdz8KFC3HPPffg3nvvxbnnnovFixcjNzcXb7zxRofbCIKArKyskFekClwJzItAiIiL9LNFAAAgAElEQVSIqLM0vwhkxowZmDZtGgoLCzFy5EgIgoDNmzfjnXfeCT4K7uuvv8awYcM63IfH40FhYSHmzJkT0p6fn99ucRnQ0NCA3r17Q5ZlnH/++Xj66aeP+z5utxtud/PzeO12OwBAkiRIUnhH5gL7C0yTjDoAwLFGd9jfKxK0zjfWMd/YFm/5AvGXM/ONbrGSR2cIagTcWfjDDz/EkiVLgod5BwwYgBkzZmDy5MkAgKampuBVwe0pKytDTk4Ovv/+e1x66aXB9meffRbvvfdeu4ePN23ahF9++QVDhgyB3W7HK6+8ghUrVmDHjh04++yz232fefPm4amnnmrT/tFHH8FisbSzRfh8WSTi3+UixvZQMKmP0qXvRUREFMucTicmT56M+vp6WK1WrcPRREQUgJ0VKAA3bNiASy65JNj+zDPP4IMPPsDevXtPuA9FUXDBBRfgiiuuwKuvvtpun/ZGAHNzc1FdXR32HyBJklBQUIBx48bBYDBg6ZpDWPTtL7h5eA6enTQorO8VCVrnG+uYb2yLt3yB+MuZ+UY3u92O9PT0uC4ANT8EDAB1dXX49NNPcejQITz88MNITU3F1q1bkZmZiZycnBNun56eDp1Oh4qKipD2yspKZGZmnlQMoihi5MiROHDgQId9TCZTu+ciGgyGLvuFCOy7W5LvfRvcckz88nWkK7+WkYj5xrZ4yxeIv5yZb3SKhRw6S/OLQH766Sf0798fzz//PF588UXU1dUBAJYvX465c+ee1D6MRiOGDx+OgoKCkPaCgoKQQ8LHo6oqtm/fHnwucaThVcBEREQULpoXgA899BCmTp2KAwcOhJzjN378eHz33XentJ933nkH7777Lvbs2YNZs2ahuLgY06ZNAwDccccdIQXlU089ha+//hqHDh3C9u3bcc8992D79u3B/pGGVwETERFRuGh+CHjLli1466232rTn5OS0OaR7PLfeeitqamowf/58lJeXY/DgwVixYgV69+4NACguLoYoNte7dXV1+MMf/oCKigrYbDYMGzYM3333HS688MLOJ9UFOAJIRERE4aJ5AWg2m4O3U2lp37596N69+ynt6/7778f999/f7ro1a9aELC9atAiLFi06pf1riU8CISIionDR/BDwDTfcgPnz5wfvySMIAoqLizFnzhz8x3/8h8bRRY7mEUAvYuDCbSIiItKQ5gXgSy+9hKqqKmRkZKCpqQmjR49Gv379kJycjGeeeUbr8CKGzT8CKCsqnB5Z42iIiIgomml+CNhqtWL9+vX497//ja1btwbvx3fVVVdpHVpEMRtEGHQCJFmF3SUh0aT5t46IiIiiVMRUEVdeeSWuvPJKrcOIWIIgwGo2oKbRA3uTFz1sWkdERERE0SoiCsDNmzdjzZo1qKyshKKEPuZs4cKFGkUVeawJ/gKQVwITERFRJ2heAD777LN47LHHMGDAAGRmZkIQhOC6lvMEWM2BewGyACQiIqLTp3kB+Morr+Ddd9/F1KlTtQ4l4gVvBcMRQCIiIuoEza8CFkURl112mdZhRIXgrWD4NBAiIiLqBM0LwFmzZuH111/XOoyo0Pw4OI4AEhER0enT/BDwww8/jIkTJ6Jv374YOHAgDAZDyPrPP/9co8giDx8HR0REROGgeQE4Y8YMrF69GmPHjkVaWhov/DiOwDmA9RwBJCIiok7QvAB8//338dlnn2HixIlahxLxmq8C5jmAREREdPo0PwcwNTUVffv21TqMqMCrgImIiCgcNC8A582bhyeffBJOp1PrUCIezwEkIiKicND8EPCrr76KgwcPIjMzE3369GlzEcjWrVs1iizyNF8FzEPAREREdPo0LwAnTZqkdQhRgyOAREREFA6aF4BPPvmk1iFEjeA5gE0SVFXlFdNERER0WjQvAAMKCwuxZ88eCIKAgQMHYtiwYVqHFHECI4CKCjR6ZCSZIubbR0RERFFE8wqisrISv/vd77BmzRqkpKRAVVXU19dj7Nix+Pjjj9G9e3etQ4wYZoMIg06AJKuwN0ksAImIiOi0aH4V8IwZM2C327Fr1y7U1tbi2LFj2LlzJ+x2O/70pz9pHV5EEQQhOArIm0ETERHR6dJ8CGnlypX45ptvcO655wbbBg4ciNdffx35+fkaRhaZUiwG1DR6cMzp0ToUIiIiilKajwAqitLm1i8AYDAYoCiKBhFFtvQkEwCguoEFIBEREZ0ezQvAK6+8Eg8++CDKysqCbaWlpZg1axZ+85vfaBhZZOqe7CsAqxxujSMhIiKiaKV5AbhkyRI4HA706dMHffv2Rb9+/ZCXlweHw4HXXntN6/AiTvMIIAtAIiIiOj2anwOYm5uLrVu3oqCgAHv37oWqqhg4cCCuuuoqrUOLSIERwGqOABIREdFp0rwADBg3bhzGjRvX4fohQ4ZgxYoVyM3NPYNRRZ7u/hHAKo4AEhER0WnS/BDwySoqKoIk8dYngRHASjsLQCIiIjo9UVMAkk+PFDMAoKy+SeNIiIiIKFpFzCFgOjk9u1kAAHVOCQ6XhGRz21vohJvDJeH7X6pReOQYDlQ2oNLuhssrQycISDTp0cNmRpbNjJyUBPTLSMI5WVZkWk18VjEREVGEiqkCcOnSpXjxxRdRXl6OQYMGYfHixRg1alSH/T/77DM8/vjjOHjwIPr27YtnnnkGN9544xmM+NQlmfToZjHgmFPC0domDMzuugJwX4UDS9f8gpU7K+D2dnxPxu1H27bZEgwYkJmMAVnJ6J+VjAGZyeifmYQUi7HL4iUiIqKTEzMF4LJlyzBz5kwsXboUl112Gd566y2MHz8eu3fvRq9evdr037hxI2699VY8/fTTuPHGG7F8+XLccsstWL9+PS666CINMjh5uakWHHPWo+SYEwOzrWHff22jB//9f7uxfHspVNXXdlZ6Ii7pm4bBOTZkWc1IMOqgKCrsLgkV9S6U210oqW3Cvl8dOFzdiPomCZuLarG5qDZk3xnJJl9R6C8I+3ZPQm6qBSkmno1ARER0psRMAbhw4ULcc889uPfeewEAixcvxtdff4033ngDCxYsaNN/8eLFGDduHObOnQsAmDt3LtauXYvFixfj73//+xmN/VTlplrwU0k9imoaw77v1XsrMfvTHcEnjUwYkoVpo/tiSI7tpA/puiQZB6sasK/CgX0VDuz/1YH9vzagtK4JlQ43Kh1urDtQHbKNQScgxaDDJ5WFyLIlIC3JiNRE3yst0QhrggEJBh0STXpYjDokGHWwGHTQ68JTOCqKCklR4JVVeOXmeUlW4FVUeGUFkqzCq/insgJZUSG1WtfeNgCQZNbDatYj2WxAkkmPJKMAiQ+6ISIijWheAM6fP/+465944gkAwFtvvYXMzMx2+3g8HhQWFmLOnDkh7fn5+diwYUO722zcuBGzZs0Kabv66quxePHikw1dMwMyk/FPlGNvhSNs+1RVFe9+X4T//uduqCrQPzMJL/x2KM7PTTnlfZkNOgzKtmFQti2k3eGScKCyAfsrfAXh/l8dKKppRHm9C5KsokoWUHWw5pTey6ATIAoCdKIAnSBAFAXoRd9UJwhQoUJRfQWerKqQFRWqCsj+ZdXfpqinnGYY6PHMz6uRafWdQ9k71YK89ETkdU/CWemJyE5JgE7keZSkPUlW4PTIcEkyPF4Fkv+PG0lW4JEVSF4FTR4Ju44JMOyuhAzB30eBR1YhBbfxL/u3abnslRXf76rq+x1VVNX/8v37pATbAssqFMXfHyfRp8U+W/66C0Dwj9vAb1vgb13B39L6b19BEABVhd2uw1tFGyEIQofbCC0WArsRBd8+BACiIACCvw0CRNE3FUL6+OZ9/xwI/mXfti37BfqE7rf5fQT/dkKrNtEfX/Ny6D4FAYCi4GCxiP3f/gKdThe6T7TYr9Ai/hZ9Al+3lvkE+iAYdzv7AzAw29rm84Q6T/MCcPny5SHLkiTh8OHD0Ov16Nu3b7AAnDx5cof7qK6uhizLbQrEzMxMVFRUtLtNRUXFKfUHALfbDbe7+fYrdrs9GHO4b1ET2F97+z27u+9CkD1l9rC8r1dW8N8r9uHDzb6T+W4d0ROPTzwHJr0Y1rzMOmBIjyQM6ZEU0i7JCkprG/DlN98jq98gHHN6ccwpobbRg1qnB7WNEhwuL5okGU6PjCZJhuyv2HwjbF1Tven8xaReJ8AgitDrAssiDP52vSjCoPO1ddRXVVU0umU43F44XL5cjjkluL0KjjklHHNK7RbzJr2I/plJODcrGef2SMa5Wb5zKpNMmv/anrLj/TzHIi3z9cqK/2et1cstodHd/DvU5JHhDExbtrWYb5J8r8BI9onpgL3buzS/yCKg1Bm+P8Qjn4hVpYfO+Lv+aWxf9Pd/7oVLvPxbdDyaf5Js27atTZvdbsfUqVNP+YKM1ocoVVU97mHLU+2/YMECPPXUU23aV61aBYslvD+cAQUFBW3aalwAoMf+X+346v9WQN+Jo6AuL/C3AyL21IkQoOL63gou0Rfh21VFp7/T03S2DUDVTiQD6AUAFv8rPbSfqgKyCrhlQFIABfD/5e9/+fsERvWCfy2jedq6TdfqFVgfNsltc3B6gXoJqPcIqHMDVS4BlU2+aZULcHsV/Fxqx8+l9pBt080qchNV9ExUkZsI9ExUkdj1F4OHRXs/z7GsM/l6FaDRCzRIQKNXQKMXaJQCbb5lpxdo8gpokn2/y00y4FG6btRYgAq9COgFQBeYCoBebP7d8c2rwT46wddP32JeFzLv69v6d1JoOcWJ17U3bbe/oAZH4tTg/4Dm1hbrWkyb+7Xt03rdyfRRWiwH4gjMq+rx29ts37J/y2V/g9KqvXl7IWTbltu0bu8ojpD5Ey23Wgc1NLaWX4+Wy8eO7seKFfsQTk6nM6z7i0aaF4DtsVqtmD9/Pq699lpMmTLlhP3T09Oh0+najN5VVlZ2eNg4KyvrlPoDvvMEH3rooeCy3W5Hbm4u8vPzYbWG92IMSZJQUFCAcePGwWAI/XRXVRWv71+LmkYPegy+BCP7dDut9yivd+EPH2zF3roGmA0iFv72PIwbmBGO8E/Z8fKNRYF8J01oP19ZUVFc68TeCgf2lDuwp8L3+tXuRrVLQLVLwLYWR8tzUswYlG3FoB5WDMpOxuBsK9L8T42JBPH6/W2Zr0uSUelwo7rBg0qHG7WNHhxzSqhzevwjwf5powfHmnyjdZ2RYBBhNRuQZNYj2X8OaqJR7zt/1qhDgkEXOt9qub0+xuP8tcnvcWyLtXwDR/DiWUQWgABQV1eH+vr6k+prNBoxfPhwFBQUhIwaFhQU4IYbbmh3m0suuQQFBQUh5wGuWrUKl156aYfvYzKZYDK1/VA1GAxd9gvR0b4v7puGf/5Ujs1H6nDp2adetO04Wof/7/0fUelwo3uyCf/vzhE4r+epn+8Xbl35tYxEHeVrANC/hxH9e6Tg+mHN7TUNbuwqs2NXmR07S+uxs6weR2qcKK1zobTOhVW7K4N9s6xmDM6xYnCODYOzbRjS04aMZG3vzxhr319VVVHnlFDV4Eal3Y1KhwtVDjcq6puwY7+Ijyq2o6rBgyqHGw6X95T3rxMFdLMY0M1i9L0SDUhNNAaXUywGWBMM/gLPAKvZN59k1sMQpgukTlWsfY9PhPlGp1jIobM0LwBfffXVkGVVVVFeXo4PPvgA11xzzUnv56GHHsKUKVMwYsQIXHLJJXj77bdRXFyMadOmAQDuuOMO5OTkBK8IfvDBB3HFFVfg+eefxw033IAvv/wS33zzDdavXx++5LrQqH7p+OdP5Vi5swIzr+p/Stt+taMMs/93B9xeBQMyk/HuXSORk5LQRZFSOKUlmXBF/+64on/3YFt9k4RdZfXYVWrHzrJ6/Fxaj8PVjaiwu1Bhd+GbPc1FYXqSCYNzrBiS47tIZ3COFTkpCbxpdyuSrKDK4UaV/6p139TVYt6NKrsLVQ3u45wfJwI1x0JaTHoRGVYTuieZkJ5k8hVzicZgkde8bESqxYhksx4iLwQioi6geQG4aNGikGVRFNG9e3fceeedwVu0nIxbb70VNTU1mD9/PsrLyzF48GCsWLECvXv3BgAUFxdDFJv/Ir700kvx8ccf47HHHsPjjz+Ovn37YtmyZRF/D8CAawZn4fEvd2JvhQM7S+sxOOfEV0i5JBkvfb0P76w/DAC46twMLP7dsKi8qICa2RIMuLRvOi7t23yyZIPbiz3ldvxc4hsl3FVqx4FKB6ob3Fizrwpr9lUF+yab9Mjrnui7ArnFq096Iqxn4EkzZ0rL0bpAcVflcAeXA6N3VQ43jjlP7QTxFIsBGckmdE82ISPZjLREA6qPHsQVF56PHimJvnarCckmPYttIooImn/yHz58OGz7uv/++3H//fe3u27NmjVt2n7729/it7/9bdje/0xKsRhxzeAe+MeOMrzy7QG8PWX4cT9YCo/U4tHlO4NXm/7xirPwn9ecw9uMxKgkkx4j+6RiZJ/UYFuTR8aeCjt2lfpGCXeW2rH/Vwccbi9+KqnHTyVtT7mwmvXITklAD5sZPVIS0MPqm2Ykm4L3aUxNNMJs0J3J9KCqKlySgromD441Bs6f859T5796vM5/Xl1to+8QbPVxR+va0osCugeLOhO6J5uD88Fiz2pGepIRJn1o/pIkYcWKXzDhvB481EREEUnzApBO3wNj++FfP5ejYPeveH/jEdx5aZ82fXaX2fHG2oP4x44yAEB6khHP3XQerhrY8cUuFJsSjDpc0KsbLujVfNGQ2yvjSI0Th6sbfa8q3/RQdSOqG9ywu7ywVzhOeM9Ji1GHbv5DlglGHRKNvht2J5p8y0YROFIkYufX+2HQ6yD679koCr6rEQP3gQvcW863rKLR40WjW0aD24tG/6vB7UWjp/lWQKcqxWJA9yRTsLgLzPsOzfqKvPQk32FYHn4loljFAjCKDchKxkP5/fHCyn148qtd2HiwBqMHdIdeFHC4uhHfHajCTv8tRAQBuGV4LmZfMwDpEXR1KGnLpNf5H8uX3GZdg9uL8romlNW7Qqbl9S5UN7hR0+jBsUYPvIoKp0eG09N0gncTsbq8KKzxBy6SSPGfM5fiP5cuJdGA1OCFE8bgyF1aO6N1RETxiAVglJt2RV80eWS89u9fsHJXBVbuCr21jU4UMH5wFu4b05d3UqdTkmTS4+zMZJzdTnEYoKoq7C4vjvkPuza6vf5i0D/133i40e3BLwcPoU+fPEAQg09kkBXVf8NtEQa97ybaBp3vRtoGnYAEox5JJt+IYpJJj0T/yzevQxLPqSMiOi0sAKOcKAr4c/4AXHteNj7bWoJ9FQ4oqopsWwKG9+mG35yTEVH3g6PYIggCbAkG2BIM6IPEDvsFz4kbP4DnxBERRQAWgDFiQFYy/mvCuVqHQURERFGABWAnqP5n1XTFHcUlSYLT6YTdbo+LERPmG9uYb+yLt5yZb3QLfG4HPsfjEQvATnA4fFdG5ubmahwJERERnSqHwwGbLT7PjxfUeC5/O0lRFJSVlSE5OTnsJ6IHnjN89OjRsD9nOBIx39jGfGNfvOXMfKObqqpwOBzIzs4OeUhEPOEIYCeIooiePXt26XtYrdaY+GU7Wcw3tjHf2BdvOTPf6BWvI38B8Vn2EhEREcUxFoBEREREcUY3b968eVoHQe3T6XQYM2YM9Pr4OFLPfGMb84198ZYz86VoxotAiIiIiOIMDwETERERxRkWgERERERxhgUgERERUZxhAUhEREQUZ1gARqClS5ciLy8PZrMZw4cPx7p167QOKSwWLFiAkSNHIjk5GRkZGZg0aRL27dsX0sftdmPGjBlIT09HYmIirr/+epSUlGgUcXgtWLAAgiBg5syZwbZYy7e0tBS333470tLSYLFYcP7556OwsDC4XlVVzJs3D9nZ2UhISMCYMWOwa9cuDSPuHK/Xi8ceewx5eXlISEjAWWedhfnz50NRlGCfaM75u+++w3XXXYfs7GwIgoAvvvgiZP3J5Hbs2DFMmTIFNpsNNpsNU6ZMQV1d3ZlM46QdL19JkvDII49gyJAhSExMRHZ2Nu644w6UlZWF7CNW8m3tj3/8IwRBwOLFi0PaoylfCsUCMMIsW7YMM2fOxKOPPopt27Zh1KhRGD9+PIqLi7UOrdPWrl2L6dOnY9OmTSgoKIDX60V+fj4aGxuDfWbOnInly5fj448/xvr169HQ0IBrr70WsixrGHnnbdmyBW+//TbOO++8kPZYyvfYsWO47LLLYDAY8K9//Qu7d+/Gyy+/jJSUlGCfF154AQsXLsSSJUuwZcsWZGVlYdy4ccHnakeb559/Hm+++SaWLFmCPXv24IUXXsCLL76I1157LdgnmnNubGzE0KFDsWTJknbXn0xukydPxvbt27Fy5UqsXLkS27dvx5QpU85UCqfkePk6nU5s3boVjz/+OLZu3YrPP/8c+/fvx/XXXx/SL1bybemLL77ADz/8gOzs7DbroilfakWliHLhhReq06ZNC2k755xz1Dlz5mgUUdeprKxUAahr165VVVVV6+rqVIPBoH788cfBPqWlpaooiurKlSu1CrPTHA6HevbZZ6sFBQXq6NGj1QcffFBV1djL95FHHlEvv/zyDtcriqJmZWWpzz33XLDN5XKpNptNffPNN89EiGE3ceJE9e677w5pu+mmm9Tbb79dVdXYyhmAunz58uDyyeS2e/duFYC6adOmYJ+NGzeqANS9e/eeueBPQ+t827N582YVgHrkyBFVVWMz35KSEjUnJ0fduXOn2rt3b3XRokXBddGcL6kqRwAjiMfjQWFhIfLz80Pa8/PzsWHDBo2i6jr19fUAgNTUVABAYWEhJEkKyT87OxuDBw+O6vynT5+OiRMn4qqrrgppj7V8v/rqK4wYMQI333wzMjIyMGzYMPzlL38Jrj98+DAqKipC8jWZTBg9enRU5gsAl19+Ob799lvs378fALBjxw6sX78eEyZMABCbOQecTG4bN26EzWbDRRddFOxz8cUXw2azRX3+gO/fMEEQgqPcsZavoiiYMmUKZs+ejUGDBrVZH2v5xhvezrsTFEVBWVkZkpOTIQhCp/dXXl4OWZaRlJQEu90ebLfZbCgtLQ1pi3aqqmLGjBm4+OKL0atXL9jtdhw6dAgGgwE6nS4k17S0NBQXF0dl/p9++im2bNmCNWvWwG63w+v1wu12x2S+Bw8exNKlS/HAAw/gs88+Q2FhIWbMmAFFUXDbbbfh4MGDAACLxRKSW7du3XD06NGoyxcA7rvvPlRWVmLAgAHQ6XSQZRlPPPEEJk6cCLvdHnM5O53OYMwnk1tRURHS0tLa5JmWloaioqKIz79lvq25XC7Mnj0bN998MwDEZL4vv/wyAGDq1Kmw2+1QFAUulyvYJ5rzVVUVDocD2dnZEMX4HAvjk0A6oaSkBLm5uVqHQURERKfh6NGj6Nmzp9ZhaIIjgJ2QnJwMwPcDZLVaw7pvSZKwatUq5Ofnw2AwhHXfkYj5xjbmG/viLWfmG93sdjtyc3ODn+Px6IwUgEePHsWTTz6Jd99990y83RkTOOxrtVq7pAC0WCywWq0x8ct2Isw3tjHf2BdvOTPf2BCO07ei1RkpAGtra/Hee+/FXAFIkcUrKyg51oSimkaUHGtCTYMHNY1u1DR4UNvogVOS4ZZkNEkymjwyPLKCjk6AMOgEGHQijHrRN9WJMOhFmHQiDHoBRv86o14Hk9433zz1tZlatbXso4OKIw5gb4UDFrOxzbZGnQhRjK5/mFRVhaICXkWBrKghL5dHwjE3UHKsCYLogVdRoagqvLJ/qqiQFQWyErq9oqqQFbSYb56GrvdvowKKokIO9PXPN7chZHu55fqQvmjTpsK3rar6pmi1rKrwveDbrrZWh3eP/gAIAtRW/drdHv7t/V9HFWrw57O9n9OWZ++oIe2BNrVNW8u+ofts2zd0n23fK2Sf/gVJ0uGxbf9uswO1Vb/W+49WXq8Ocwu/1TqMM0arfKeP7YfpY/ud8feNdWEpAL/66qvjrj906FA43oYoSFZU/FRSh23FdfippA4/ldajuMYJrxJNHyt6LNy5scO1Bp0QLByNOhE6UYAgADpRgCj45wXfvCgKEAWEzOv8fdorMALzwcIFCBYpgcIjsI2iBAq05pfXX1x5WxRb8gm/9npga2zc1PzkCEBDvdZBnGECIHu1DuIMEuDxRN89O0+fNvlKsnLiTnTKwlIATpo0CYL/r9yOxPMwK4WHS5Lx9a4KfLOnEt/tr0J9k9Smj0kvok9aInJTLeiebERaoglpSUakJhphMeqRYNAhwSjCbPCNtLX3c6mqvgLT41XgkZXgVApMZQVur7/d2zzv9sptl2UFbkkJTt2yArd/JLK+oRGiwdS8TasRSUlWIclewN2VX9UzQycKgKrAqNdBJ/qKWb3oK1b1ogBdy5cQuiwKze2iiHbamrfxzaNNm77lNsF5hGwviq33iRb79G0Df5EtABBFQICvyBYEX9EtwDeVZRnbtm3FiOHDYdDrIfi3C9leCGzbvF1wPwIAf1tA4Ge15U9syx9fwb+mvX9qT9QvMC+02HtzW3v7adtP9nqxdu1ajB49OuQQodBm2+PHGi0kr4Q1q9dgzNgxMOhj55BoR7TM12qO/a+vFsJSAPbo0QOvv/46Jk2a1O767du3Y/jw4eF4K4pDv1Q68P/WF+H/dpTB4W4eXbAlGDCidzcMzU3BeT1tGJCVjMxkc1QcOpUkCStWrMCECWOCH5aqqkKSVX+xGFo8erxKi0OgvtE5peW8/7ChEnKo1LdPIVBooFXR4S9EhNYFSaDNP6/XCb6irVVhpm81L4rtFHX+bbxerz/fq2Pq/KGOSJIE+YiKq87NiIt8AV/OexKAvPTEuMhZkiSkmYHcbhbmS1EpLAXg8OHDsXXr1g4LwBONDhK152BVA15etQ//2lkRHCTZ+l4AACAASURBVBnr2S0BN5yfjSvPycDQninQ62Ln/k2CIMCoF2DUi0gy8QJ9IiLqOmH5lJk9e3bI81xb69evH1avXh2Ot4ob636pxgs7dOg11I5hfdK0DueMckkyXv32AP6y7hAk2Vf55Q/MxNTL+uDivLSoGOEjIiKKZGEpAEeNGnXc9YmJiRg9enRwuaSkJK7vvn0y7n5vKwAB936wFYWPj9M6nDPmSK0TDy77CbvKfHeQHzugO+aMPxcDsuL3Xk1EREThpslxpoEDB2L79u0466yztHj7qGJ3tb3QIVYdsgOPvbEJDpcX3SwGLLjpPFw9KJMXEBEREYWZJgUgzwek1jYeqsEbe3TwKF5c0CsFr//+AvSwJWgdFhERUUzimeYRLnAOXCzb/6sD93+0Ax5FwBVnp+GtKSORYNRpHRYREVHM4kl4UcDpid0bqzo9Xvzh/R/R4Paib7KKpZOHsfgjIiLqYiwAo8Chqo6vsI52z/1rL4pqnOhhM+OeATJMev5IEhERdTVNPm15Uv+pidVTJneV1eP9jUcAAM9OGoRE3luUiIjojNCkAORFIKdGjtGv1+JvDgAArhuajcv7xde9DomIiLSkyUUgu3fvRnZ2thZvHZVkJfYKwJ9L6lGw+1eIAjDzqrO1DoeIiCiuhHUEcOzYsbjyyis7fAXk5uZCpwv/if5Lly5FXl4ezGYzhg8fjnXr1h23/2effYaBAwfCZDJh4MCBWL58edhjCgclBkcAXy7YBwCYNCwHfbsnaRwNERFRfAlrAXj++edj6NChwdfAgQPh8XiwdetWDBkyJJxv1cayZcswc+ZMPProo9i2bRtGjRqF8ePHo7i4uN3+GzduxK233oopU6Zgx44dmDJlCm655Rb88MMPXRrnyXjt2wMhyzuO1mkUSdf4Ylsp1uyrgl4U8KcrOfpHRER0poX1EPCiRYvabZ83bx4aGhrC+VZtLFy4EPfccw/uvfdeAMDixYvx9ddf44033sCCBQva9F+8eDHGjRuHuXPnAgDmzp2LtWvXYvHixfj73//epbGeSOtz/v77n3tw76joe2qKJCtwemRUOdyotLuw/1cH1v9Sg2/2/AoA+OPos9AnPVHjKImIiOLPGTkH8Pbbb8eFF16Il156qUv27/F4UFhYiDlz5oS05+fnY8OGDe1us3HjRsyaNSuk7eqrr8bixYs7fB+32w232x1cttt9z6uVJAmSFL5HtimK0qbtrr/6RiYFCAhcRC3Ad0W1qqpQ4btaWIXqnwJQfYePW67z/xfcRlGbL8pRW60L2V+beV8H3z5UeGUVLq8ClyTD41Xg8irHPXfx9xfmYsaYs4Jft9bTWMd8Y1u85QvEX87MN7rFSh6dcUYKwI0bN8JsNnfZ/qurqyHLMjIzM0PaMzMzUVFR0e42FRUVp9QfABYsWICnnnqqTfuqVatgsVhOI/L2/VIiAAg9R3L1vuqw7f//b+/e46Iq8z+Af84MM9yCQSFFFJGsMC+pYZm3vJRsXjI1zVQgjXbXNIUsVv2ZZnZBbSVLFtt2f9pVcbdV89eaRoUWqalcLDU1EQURJU0B5TbMPL8/cAYGUEEOnJkzn/frxQvOc555zvcLA359nnNpaW5aAYMe8HMTCPQU6OUr0E6bjR3bs+v0TU5OViBC5TBfdXO2fAHny5n5OqaSkhKlQ1CcrAXg+PHjbbaFEMjPz8eBAwewaNEiOQ9Vr9r3FxRC3PCeg43tv2DBAsydO9e6XVRUhMDAQISFhcHb2/sWo67r1M6T2JZ7wqbtjce7VsdpjbdqVs4yK1g1Iwig1rZGklDVLFnbLLOH1a+p3tZI1a+HZNuv5utQY2wXrQQ3Fy3cdBq4umjhqtNYt910N7/gx2g0Ijk5GcOHD4dOp/4bAjJfdXO2fAHny5n5OjbLCp4zk7UANBgMNtsajQYhISFYunQpwsLC5DyUDT8/P2i12jqzdwUFBXVm+Sz8/f0b1R8AXF1d4erqWqddp9PJ+gvh4mJbMN1xuyem9guWbXx7Jvf30t4xX3VztnwB58uZ+TomNeTQVLIWgOvWrZNzuAbT6/UIDQ1FcnIyxo0bZ21PTk7G448/Xu9r+vXrh+TkZJvzAL/66iv079+/2eO9mdqTkHotH49GRERE8lHkRtDNYe7cuYiIiECfPn3Qr18/vP/++8jJycGMGTMAAJGRkWjfvr31iuDo6Gg89NBDWL58OR5//HF8/vnn+Prrr5GamqpkGgCqLvSoSccCkIiIiGSkmgJw0qRJuHjxIpYuXYr8/Hx0794d27ZtQ1BQEAAgJycHGk11IdW/f38kJSXh5ZdfxqJFi9C5c2ds3LgRffv2VSoFK02tGcDXxnZXJhAiIiJSJdUUgAAwc+ZMzJw5s959O3furNM2YcIETJgwoZmjarzaS8C9An2UCYSIiIhUiWuLdqj2EjARERGRnGQtAOubZaPGu8GdaIiIiIiaTNYC8NFHH0Xnzp3x+uuvIzc3V86hncqN7kVIRERE1FSyFoBnz55FdHQ0Nm3ahODgYPzhD3/Av/71L1RUVMh5GNVj+UdERETNSdYCsHXr1pgzZw7S09Nx4MABhISEYNasWWjXrh3mzJmDgwcPynk41ap9FTARERGRnJrtIpBevXph/vz5mDVrFq5evYq1a9ciNDQUgwYNwuHDh5vrsKrAJWAiIiJqTrIXgEajEZ999hlGjhyJoKAg7NixAwkJCTh//jyys7MRGBiIiRMnyn1YVWH9R0RERM1J1vsAzp49Gxs2bAAAhIeHY8WKFejevfomxp6enli2bBk6deok52FVhzOARERE1JxkLQCPHDmC1atX44knnoBer6+3T0BAAFJSUuQ8rOqw/CMiIqLmJGsB+M0339z8gC4uGDx4sJyHVZ2aE4ArJ/RQLhAiIiJSJdkfBZeXl4cffvgBBQUFMJvNNvvmzJkj9+FUSVOjAgxs7a5gJERERKRGshaA69atw4wZM6DX6+Hr62tzLpskSSwAG6jmErCG5wMSERGRzGQtABcvXozFixdjwYIF0Gj4mOFbVbPm07IAJCIiIpnJWqWVlJTgqaeeYvHXRLYzpwoGQkRERKoka6UWFRWFf//733IO6ZS4BExERETNSdYl4Li4OIwePRrbt29Hjx49oNPpbPbHx8fLeTjVqjkDyMfCERERkdxkLQDffPNN7NixAyEhIQBqL2WykmmomkWfhhUgERERyUzWAjA+Ph5r167FtGnT5BzW6dSslbkETERERHKT9RxAV1dXDBgwQM4hnZIELgETERFR85G1AIyOjsbq1avlHNIpSVwCJiIiomYk6xLwvn378O233+KLL75At27d6lwEsmnTJjkPp1q8CISIiIiak6wFoI+PD8aPHy/nkE6Jt4EhIiKi5iT7o+Co6TQ2M4AsAImIiEhefGSHHbK9Cli5OIiIiEidZJ0BvHjxIhYvXoyUlBQUFBTAbDbb7P/999/lPJxqcQmYiIiImpOsBWB4eDiysrIQFRWFtm3b8ubPt4gXgRAREVFzkrUATE1NRWpqKnr27CnnsE6NRTQRERHJTdZzALt06YLS0lI5h3RKQgjr11pOARIREZHMZC0AExMTsXDhQuzatQsXL15EUVGRzQc1Hus/IiIikpvs9wEsLCzEsGHDbNqFEJAkCSaTSc7DqZao8TWXgImIiEhushaAU6dOhV6vx/r163kRSBPUWAHmDCARERHJTtYC8NChQ8jIyEBISIicwzodUWMOUMsimoiIiGQm6zmAffr0QW5urpxDOqWaM4CcRSUiIiK5yToDOHv2bERHRyM2NhY9evSATqez2X/vvffKeTjVqnkOIJeAiYiISG6yFoCTJk0CADzzzDPWNkmSeBFII9W8DQyfBEJERERyk3UJODs7u87HyZMnrZ+bw6lTpxAVFYXg4GC4u7ujc+fOeOWVV1BRUXHD1w0ZMgSSJNl8PPXUU80SY1NoOAVIREREMpN1BjAoKEjO4Rrk6NGjMJvN+Pvf/44777wThw4dwh//+EdcvXoVf/3rX2/42j/+8Y9YunSpddvd3b25wyUiIiJSnKwF4EcffXTD/ZGRkXIeDgDw6KOP4tFHH7Vu33HHHTh27BjWrFlz0wLQw8MD/v7+ssfUVDUvAiEiIiKSm6wFYHR0tM220WhESUkJ9Ho9PDw8mqUArE9hYSFat259036ffvopPvnkE7Rt2xYjRozAK6+8Ai8vrxaI8MbMrACJiIioGclaAF66dKlO26+//ornnnsOsbGxch7qurKysrB69WqsXLnyhv2mTp2K4OBg+Pv749ChQ1iwYAEOHjyI5OTk676mvLwc5eXl1m3L4+2MRiOMRqM8CQA2F8vIOa49s+TJfNWJ+aqfs+XMfB2bWvJoCkmI5p9uOnDgAMLDw3H06NEGv2bJkiV49dVXb9hn//796NOnj3X77NmzGDx4MAYPHox//vOfjYoxLS0Nffr0QVpaGu67775GxbR+/Xp4eHg06ng3su83CZ+e0AIA3ulXKdu4REREBJSUlGDKlCkoLCyEt7e30uEookUKwIyMDAwePNg6Y9YQFy5cwIULF27Yp1OnTnBzcwNQVfwNHToUffv2xQcffACNpnEXOAsh4Orqio8//th6O5va6psBDAwMxIULF2R9A23KyMO8TYcBAEcWD61zP0U1MhqNSE5OxvDhw5mvCjFf9XO2nJmvYysqKoKfn59TF4CyLgFv3brVZlsIgfz8fCQkJGDAgAGNGsvPzw9+fn4N6puXl4ehQ4ciNDQU69ata3TxBwCHDx+G0WhEu3btrtvH1dUVrq6uddp1Op2svxAajbbZxrZ3zFfdmK/6OVvOzNcxqSGHppK1ABw7dqzNtiRJuP322zFs2LCbnpN3q86ePYshQ4agY8eO+Otf/4rffvvNus9yhW9eXh4efvhhfPTRR3jggQeQlZWFTz/9FCNHjoSfnx+OHDmCF198Eb179250odoceAkIERERNSdZC0Cz2SzncA3y1Vdf4cSJEzhx4gQ6dOhgs8+yum00GnHs2DGUlJQAAPR6Pb755hu88847uHLlCgIDAzFq1Ci88sor0Gq1dY7R4lgBEhERUTOStQBUwrRp0zBt2rQb9unUqZPN49UCAwOxa9euZo7s1glWgERERNSMmlwAzp07t8F94+Pjm3o4p8DbABIREVFzanIBmJGRYbOdlpYGk8mEkJAQAMDx48eh1WoRGhra1EM5DdZ/RERE1JyaXACmpKRYv46Pj4eXlxc+/PBDtGrVCkDVzaGnT5+OQYMGNfVQTuPhLm0AAO3cWQoSERGR/Bp/v5QbWLlyJeLi4qzFHwC0atUKr7/+erNdBaxGbbzdkL5wKGJ7mm7emYiIiKiRZC0Ai4qKcP78+TrtBQUFKC4ulvNQquflpoNWUjoKIiIiUiNZrwIeN24cpk+fjpUrV+LBBx8EAOzduxexsbEYP368nIeyC5YrixvzhJOGMhqNKCkpQVFRkVPcsJL5qhvzVT9ny5n5OjbLv9st8DA0uyXro+BKSkrw0ksvYe3atdYHLbu4uCAqKgpvvfUWPD095TqUXThz5gwCAwOVDoOIiIhuQW5ubp17CDuLZnkW8NWrV5GVlQUhBO68807VFX4WZrMZZ8+ehZeXFyRJ3vVay3OGc3NzneI5hcxX3Ziv+jlbzszXsQkhUFxcjICAgFt6fKwaNMuNoD09PXHvvfc2x9B2RaPRNPv/HLy9vVXxy9ZQzFfdmK/6OVvOzNdxGQwGpUNQlHOWvUREREROjAUgERERkZPRLlmyZInSQVD9tFothgwZAhcXh39kc4MwX3VjvurnbDkzX3JkzXIRCBERERHZLy4BExERETkZFoBEREREToYFIBEREZGTYQFIRERE5GRYANqhxMREBAcHw83NDaGhofj++++VDkkWcXFxuP/+++Hl5YU2bdpg7NixOHbsmE2f8vJyzJ49G35+fvD09MSYMWNw5swZhSKWV1xcHCRJQkxMjLVNbfnm5eUhPDwcvr6+8PDwQK9evZCWlmbdL4TAkiVLEBAQAHd3dwwZMgSHDx9WMOKmqaysxMsvv4zg4GC4u7vjjjvuwNKlS2E2m619HDnn7777Do899hgCAgIgSRK2bNlis78huV26dAkREREwGAwwGAyIiIjA5cuXWzKNBrtRvkajEfPmzUOPHj3g6emJgIAAREZG4uzZszZjqCXf2v785z9DkiSsWrXKpt2R8iVbLADtzMaNGxETE4OFCxciIyMDgwYNwogRI5CTk6N0aE22a9cuzJo1C3v37kVycjIqKysRFhaGq1evWvvExMRg8+bNSEpKQmpqKq5cuYLRo0fDZDIpGHnT7d+/H++//36dJ+SoKd9Lly5hwIAB0Ol0+PLLL3HkyBGsXLkSPj4+1j4rVqxAfHw8EhISsH//fvj7+2P48OEoLi5WMPJbt3z5crz33ntISEjAL7/8ghUrVuCtt97C6tWrrX0cOeerV6+iZ8+eSEhIqHd/Q3KbMmUKMjMzsX37dmzfvh2ZmZmIiIhoqRQa5Ub5lpSUID09HYsWLUJ6ejo2bdqE48ePY8yYMTb91JJvTVu2bMGPP/6IgICAOvscKV+qRZBdeeCBB8SMGTNs2rp06SLmz5+vUETNp6CgQAAQu3btEkIIcfnyZaHT6URSUpK1T15entBoNGL79u1KhdlkxcXF4q677hLJycli8ODBIjo6WgihvnznzZsnBg4ceN39ZrNZ+Pv7i2XLllnbysrKhMFgEO+9915LhCi7UaNGiWeeecambfz48SI8PFwIoa6cAYjNmzdbtxuS25EjRwQAsXfvXmufPXv2CADi6NGjLRf8Laidb3327dsnAIjTp08LIdSZ75kzZ0T79u3FoUOHRFBQkHj77bet+xw5XxKCM4B2pKKiAmlpaQgLC7NpDwsLw+7duxWKqvkUFhYCAFq3bg0ASEtLg9FotMk/ICAA3bt3d+j8Z82ahVGjRuGRRx6xaVdbvlu3bkWfPn0wceJEtGnTBr1798Y//vEP6/7s7GycO3fOJl9XV1cMHjzYIfMFgIEDB+Kbb77B8ePHAQAHDx5EamoqRo4cCUCdOVs0JLc9e/bAYDCgb9++1j4PPvggDAaDw+cPVP0NkyTJOsuttnzNZjMiIiIQGxuLbt261dmvtnydDW/n3QRmsxlnz56Fl5cXJElq8nj5+fkwmUy47bbbUFRUZG03GAzIy8uzaXN0QgjMnj0bDz74IDp27IiioiKcPHkSOp0OWq3WJldfX1/k5OQ4ZP6fffYZ9u/fj507d6KoqAiVlZUoLy9XZb5ZWVlITEzE888/j//85z9IS0vD7NmzYTabMXnyZGRlZQEAPDw8bHJr1aoVcnNzHS5fAHjuuedQUFCAkJAQaLVamEwmLF68GKNGjUJRUZHqci4pKbHG3JDcTp06BV9f3zp5+vr64tSpU3aff818aysrK0NsbCwmTpwIAKrMd+XKlQCAadOmoaioCGazGWVlZdY+jpyvEALFxcUICAiARuOcc2F8EkgTnDlzBoGBgUqHQURERLcgNzcXHTp0UDoMRSg2A1haWoq0tDS0bt0aXbt2tdlXVlaGf/3rX4iMjFQouobx8vICUPUG8vb2lnVso9GIr776CmFhYdDpdLKObY+Yr7oxX/VztpyZr2MrKipCYGCg9d9xZ6RIAXj8+HGEhYUhJycHkiRh0KBB2LBhA9q1aweg6ryK6dOn230BaFn29fb2bpYC0MPDA97e3nV+2U4UXMF/f8qHp6sWPdob0MXfGwaP6/9CCiFQZjSjqMyI4jIjCksrUVxmRFHZtc+llSgzmqCRJGg1gEYjQStJ0Gok6LQauGgl6DRVn120Gug0VfvMQsAsAJNZXPtawGwGTEJACAGTGTXaq/qar004i2tfi2tfm0wmHL3kiYL0C9BoNNZ2AQE556hlWKmHhKYPYjKbcOJ3T5xL+w1arfaWx9Fe+1loJenazw3QajXXfn6ARpLgopWu/WwluGiqv9Zc27a+tsa+qjbUGrtqf73tmlqvuzaO5XfkRu/nGxE13i+iRpu5xnvDLKo/mwUAUf2+E7DdX/OzqNXPOm7NdmH7XjVfe29XtdUcqzoms6jKN7vcEwfyy6HRVNYYu3oc63Z9sUHUP76w/T0y14q5Tmw1vofNzWQy48SF25C7rwBarfqX1Jhvy+nX2Rf9O/s1y9hynL7lqBQpAC33Ujpw4AAuX76MuXPnYsCAAdi5cyc6duyoREgO49i5YoxJSEV5pdmm3ddTj9aeerjrtTCZBUxmgfJKM4pKjSgqM8JocoSVfi2Qc0LpIFqQFsjNUjqIZiVJsBaIwqRF7P6vrZWcpYCrWdhVf61EtHLTAkczlA6ihWnwVd5JpYNoQcy3JWg1UrMVgM5MkQJw9+7d+Prrr+Hn5wc/Pz9s3boVs2bNwqBBg5CSkgJPT08lwnIICSknUF5pRufbPdH59ttwKK8QZwvLcPFqBS5erbjhazUS4O2ug5ebC7xcdfB2d4GXW9W2u05bNWtwbTbPJKqKyEqTgNFkRqX52meTQKXZDJNZXJsNkqCRYJ09qvqAdfbHMiOkkaq2NRIgoWobUtVsmiQBQpiRd+YMOgYGXvvfZVW7RpJnxg2oKjiaPIZMhYnJbEZOTg46dux4yycgixozrpai3yQETKaqz2azQKXl52n52ixs+9d4ndn62XZW19LHMttbs+/Nvh9CAJWWKSlIQK3/uLQEjYTq954kWd9/1m3J8v6sbgcs+2F9XwOofi+j+jWWsa19JAmSJFBUWIRWPgZoNBqbsSXUPWbNcarHrv4dsO1jOX7171HNsTUa2zyvdWmQpsyGmMxmnD51CkGdOkEr80n1Qgi7m6lpznztkZL59gz0uXknajRFCsDS0lK4uNge+m9/+xs0Gg0GDx6M9evXKxGW3TOZBb755TwAYOWTvdDr2i9FcZkRub+X4nJpRY2lXAmuLlp4u7vA4K6Dl5sOnnqt3f0RtTAajdi2LQcjR3ZTxfklN1OV7ymMHNnVofMVomYBCet/Hsxm2/byigp8m5KCYUOHQqfTWZfiLcWQ9V1Zo+C3tFvesxKql/BrFl02RRSkOgWTEqp+vtswcuSDDv3zbYyqnE9i5MguTpEz8yVHp0gB2KVLFxw4cAD33HOPTfvq1ashhKhzZ3WqkvXbFZRUmOChrzr3z8LLTYeuAfyFpJYnXTvH8GZ/SIxGLVq7AgE+7vzHg4jIDigybz1u3Dhs2LCh3n0JCQmYPHlyi5247EgO5lY9X7F7ewO0GvucySMiIiL7p0gBuGDBAmzbtu26+xMTE20epn7mzBmbbWeV9VvVM3O7tpP3imMiIiJyLg5x5mrXrl1x6tQppcNQXH5hKQAgwMdN4UiIiIjIkTlEAcjl4Cr5hWUAAH+Du8KREBERkSNziAKQqlhnAA2cASQiIqJbxwLQQZjNAueuzQC28+EMIBEREd06FoAO4veSChhNApIEtPFyVTocIiIicmAOUQDa682LW9LlEiMAwNtNB50TPHeSiIiImo9DVBK8CAQoLK16zJuPB2+iS0RERE2jyJNAGuvIkSMICAhQOgxFWWYAfdxZABIREVHTKFoADh069IbLu99++y0AIDAwsKVCsluWAtDgoVc4EiIiInJ0ihaAvXr1stk2Go3IzMzEoUOH8PTTTysUlX26VHJtCZgzgERERNREihaAb7/9dr3tS5YswZUrV1o4GvtWWHptCZjnABIREVET2eVFIOHh4Vi7dq3SYShm4/4cTPrHPnx7tnp5nOcAEhERkVzssgDcs2cP3Nyc92kX5wrLkZ5zGb+V1SgAS3kOIBEREclD0SXg8ePH22wLIZCfn48DBw5g0aJFCkWlPL1LVV1eaa5uu1JWVQB6uTrEhdtERERkxxStJgwGg822RqNBSEgIli5dirCwMIWiUp5OWzXzZykAf79agZRjvwEAPFy1SoVFREREKqFoAbhu3TolD2+3XC0zgNfuf/2njw5Y93noWQASERFR09jlOYDOrvYS8IHTl6z7PPRcAiYiIqKmUVUBmJiYiODgYLi5uSE0NBTff//9dft+8MEHkCSpzkdZWVkLRlw/fa0ZwJo4A0hERERNpZoCcOPGjYiJicHChQuRkZGBQYMGYcSIEcjJybnua7y9vZGfn2/zYQ9XH+u1VUWeyVz3KSmcASQiIqKmUk0BGB8fj6ioKDz77LO45557sGrVKgQGBmLNmjXXfY0kSfD397f5sAecASQiIqLmpOh00s6dOzFkyJAmj1NRUYG0tDTMnz/fpj0sLAy7d+++7uuuXLmCoKAgmEwm9OrVC6+99hp69+593f7l5eUoLy+3bhcVFQGoeoSd0WhsYhbVtKg6+a/SjDrj6jVC1mPZC0tOasytPsxX3ZwtX8D5cma+jk0teTSFJISoZ56pZbi5uaF9+/aYPn06nn76aQQGBt7SOGfPnkX79u3xww8/oH///tb2N998Ex9++CGOHTtW5zV79+7FiRMn0KNHDxQVFeGdd97Btm3bcPDgQdx11131HmfJkiV49dVX67SvX78eHh4etxR7fX4tlJBwRIu27gL/08uE6D3VdfrKvpVwUc28LRERUcsrKSnBlClTUFhYCG9vb6XDUYSiBeDvv/+OTz75BB988AF++uknPPzww4iKisLYsWOh1zf8iReWAnD37t3o16+ftf2NN97Axx9/jKNHj950DLPZjPvuuw8PPfQQ3n333Xr71DcDGBgYiAsXLsj6BsrIuYwn/7EPvq4C388bhq5LU6z7fn1NnfdHNBqNSE5OxvDhw6HTqf9xd8xX3ZwtX8D5cma+jq2oqAh+fn5OXQAqugTcunVrzJkzB3PmzEFmZibWrl2LWbNm4bnnnsPUqVMRFRWFnj173nQcPz8/aLVanDt3zqa9oKAAbdu2bVAsGo0G999/P3799dfr9nF1fVo/zAAAGBdJREFUdYWrq2uddp1OJ+svhIdbVfFbKVBnXDX84t2I3N9Le8d81c3Z8gWcL2fm65jUkENT2c1iYq9evTB//nzMmjULV69exdq1axEaGopBgwbh8OHDN3ytXq9HaGgokpOTbdqTk5NtloRvRAiBzMxMtGvX7pZzkEt9j4IjIiIikoviBaDRaMRnn32GkSNHIigoCDt27EBCQgLOnz+P7OxsBAYGYuLEiTcdZ+7cufjnP/+JtWvX4pdffsELL7yAnJwczJgxAwAQGRmJBQsWWPu/+uqr2LFjB06ePInMzExERUUhMzPT2l9Jeu31rwImIiIiaipFl4Bnz56NDRs2AADCw8OxYsUKdO/e3brf09MTy5YtQ6dOnW461qRJk3Dx4kUsXboU+fn56N69O7Zt24agoCAAQE5ODjSa6nr38uXL+NOf/oRz587BYDCgd+/e+O677/DAAw/Im+QtqD0DqJEAM4tBIiIikomiBeCRI0ewevVqPPHEE9e96CMgIAApKSn17qtt5syZmDlzZr37du7cabP99ttv4+23325UvC3FUgCahAQhBMK6+mP74XP446BghSMjIiIiNVC0APzmm29u2sfFxQWDBw9ugWjsh05bPVNZYRIQqJr+6+TnqVRIREREpCKKP1csLy8PP/zwAwoKCmA22171MGfOHIWiUpZrjRv9VVSarcu/Gqnuo+GIiIiIGkvRAnDdunWYMWMG9Ho9fH19IdUocCRJctoCUG8zA2iG5VaNGtZ/REREJANFC8DFixdj8eLFWLBggc0FGs5Oo5HgopFQaRY2M4ASZwCJiIhIBopWXSUlJXjqqadY/NXDciFIhckMs3UGkAUgERERNZ2ilVdUVBT+/e9/KxmC3bIsAxttzgFUMCAiIiJSDUWXgOPi4jB69Ghs374dPXr0qPNolvj4eIUiU55lBrC8suY5gKwAiYiIqOkULQDffPNN7NixAyEhIQBQ5yIQZ+ZaowC0LAE7+beEiIiIZKJoARgfH4+1a9di2rRpSoZhl9x1WgBAmdEEwYtAiIiISEaKngPo6uqKAQMGKBmC3XLTVf1oyiprXgSiZERERESkFooWgNHR0Vi9erWSIdgtN8sMYIWJN4ImIiIiWSm6BLxv3z58++23+OKLL9CtW7c6F4Fs2rRJociUVz0DaOKNoImIiEhWihaAPj4+GD9+vJIh2C1Xl6oZwFIjbwRNRERE8lL8UXBUP8tFIOVGE28ETURERLLiIzjslHUJ2MgbQRMREZG8FJ0BvHjxIhYvXoyUlBQUFBTAbDbb7P/9998Vikx5bja3geEMIBEREclH0QIwPDwcWVlZiIqKQtu2bXmOWw313QaG3x4iIiKSg6IFYGpqKlJTU9GzZ08lw7BLbi7VM4CWiVEWyERERCQHRc8B7NKlC0pLS5UMwW656S3nAJp4I2giIiKSlaIFYGJiIhYuXIhdu3bh4sWLKCoqsvlwZtUzgNXnRfIcQCIiIpKD4vcBLCwsxLBhw2zahRCQJAkmk0mhyJRnOQewtMYMIOs/IiIikoOiBeDUqVOh1+uxfv16XgRSi+Uq4PJKMx8FR0RERLJStAA8dOgQMjIyEBISomQYdsnN+iQQ3giaiIiI5KXoOYB9+vRBbm6ukiHYLb1LVbFnNJkheCNoIiIikpGiM4CzZ89GdHQ0YmNj0aNHD+h0Opv99957r0KRKU+nrarNjZWixjmArACJiIio6RQtACdNmgQAeOaZZ6xtkiTxIhAALtqqYq/SbOZtYIiIiEhWihaA2dnZSh7eruk012YATYIXgRAREZGsFC0Ag4KClDy8XbMuAZvM1sKP9R8RERHJQdEC8KOPPrrh/sjIyBaKxP5ULwELa5ulKCQiIiJqCkULwOjoaJtto9GIkpIS6PV6eHh4OHcBeO2Ev0qTQOW1hwG7X7s3IBEREVFTKDqldOnSJZuPK1eu4NixYxg4cCA2bNigZGiK07lULwGXGqsuhnHXswAkIiKiprO7NcW77roLy5YtqzM76Gx012YAS40mmK4tA1tuDk1ERETUFHZXAAKAVqvF2bNnlQ5DUS7XzvercQog3PR2+eMiIiIiB6PoOYBbt2612RZCID8/HwkJCRgwYIBCUdkHndb2kl+NBOh5EQgRERHJQNECcOzYsTbbkiTh9ttvx7Bhw7By5UqForIPLhrbYs9Np+WTQIiIiEgWihaA5mtXt1JdtWcA3XgFMBEREcmEa4p2qvY9/3w99QpFQkRERGrT4jOAc+fObXDf+Pj4Ro2dmJiIt956C/n5+ejWrRtWrVqFQYMGXbf/f/7zHyxatAhZWVno3Lkz3njjDYwbN65Rx2wuWo0EF0mgUlTNBAb5eigcEREREalFixeAGRkZNttpaWkwmUwICQkBABw/fhxarRahoaGNGnfjxo2IiYlBYmIiBgwYgL///e8YMWIEjhw5go4dO9bpv2fPHkyaNAmvvfYaxo0bh82bN+PJJ59Eamoq+vbte+sJykivASqrbgGIO9t4KRsMERERqUaLLwGnpKRYPx577DEMGTIEZ86cQXp6OtLT05Gbm4uhQ4di1KhRjRo3Pj4eUVFRePbZZ3HPPfdg1apVCAwMxJo1a+rtv2rVKgwfPhwLFixAly5dsGDBAjz88MNYtWqVHGnKorN39T1gHuvZTsFIiIiISE0UPQdw5cqViIuLQ6tWraxtrVq1wuuvv96oq4ArKiqQlpaGsLAwm/awsDDs3r273tfs2bOnTv8//OEP1+2vhNEdzegdaMC7k3ujW4BB6XCIiIhIJRS9CrioqAjnz59Ht27dbNoLCgpQXFzc4HEuXLgAk8mEtm3b2rS3bdsW586dq/c1586da1R/ACgvL0d5eblN/EDVM4yNRmOD420Io9EIfw/g08fvg06nk318e2PJT+15WjBfdXO2fAHny5n5Oja15NEUihaA48aNw/Tp07Fy5Uo8+OCDAIC9e/ciNjYW48ePb/R4te+TJ4S44b3zGts/Li4Or776ap32LVu2wMOjeS7S+Pzzz5tlXHvFfNWN+aqfs+XMfB1TSUkJgKp/952VogXge++9h5deegnh4eHWatzFxQVRUVF46623GjyOn58ftFptndm7goKCOrN8Fv7+/o3qDwALFiywuYo5Ly8PXbt2xbPPPtvgWImIiMg+FBcXw2BwzlOsJGEH5e/Vq1eRlZUFIQTuvPNOeHp6NnqMvn37IjQ0FImJida2rl274vHHH0dcXFyd/pMmTUJxcTG2bdtmbRsxYgR8fHywYcOGBh3TbDbj7Nmz8PLykv0pHUVFRQgMDERubi68vb1lHdseMV91Y77q52w5M1/HJoRAcXExAgICoNE45y2RFZ0BtPD09MS9997bpDHmzp2LiIgI9OnTB/369cP777+PnJwczJgxAwAQGRmJ9u3bW4vB6OhoPPTQQ1i+fDkef/xxfP755/j666+Rmpra4GNqNBp06NChSXHfjLe3typ+2RqK+aob81U/Z8uZ+TouZ535s7CLAlAOkyZNwsWLF7F06VLk5+eje/fu2LZtG4KCggAAOTk5NlV+//79kZSUhJdffhmLFi1C586dsXHjRru5ByARERFRc1FNAQgAM2fOxMyZM+vdt3PnzjptEyZMwIQJE5o5KiIiIiL7ol2yZMkSpYOg+mm1WgwZMgQuLqqq06+L+aob81U/Z8uZ+ZIjs4uLQIiIiIio5TjnpS9ERERETowFIBEREZGTYQFIRERE5GRYABIRERE5GRaAdigxMRHBwcFwc3NDaGgovv/+e6VDkkVcXBzuv/9+eHl5oU2bNhg7diyOHTtm06e8vByzZ8+Gn58fPD09MWbMGJw5c0ahiOUVFxcHSZIQExNjbVNbvnl5eQgPD4evry88PDzQq1cvpKWlWfcLIbBkyRIEBATA3d0dQ4YMweHDhxWMuGkqKyvx8ssvIzg4GO7u7rjjjjuwdOlSmM1max9Hzvm7777DY489hoCAAEiShC1bttjsb0huly5dQkREBAwGAwwGAyIiInD58uWWTKPBbpSv0WjEvHnz0KNHD3h6eiIgIACRkZE4e/aszRhqybe2P//5z5AkCatWrbJpd6R8yRYLQDuzceNGxMTEYOHChcjIyMCgQYMwYsQI5OTkKB1ak+3atQuzZs3C3r17kZycjMrKSoSFheHq1avWPjExMdi8eTOSkpKQmpqKK1euYPTo0TCZTApG3nT79+/H+++/X+eJN2rK99KlSxgwYAB0Oh2+/PJLHDlyBCtXroSPj4+1z4oVKxAfH4+EhATs378f/v7+GD58OIqLixWM/NYtX74c7733HhISEvDLL79gxYoVeOutt7B69WprH0fO+erVq+jZsycSEhLq3d+Q3KZMmYLMzExs374d27dvR2ZmJiIiIloqhUa5Ub4lJSVIT0/HokWLkJ6ejk2bNuH48eMYM2aMTT+15FvTli1b8OOPPyIgIKDOPkfKl2oRZFceeOABMWPGDJu2Ll26iPnz5ysUUfMpKCgQAMSuXbuEEEJcvnxZ6HQ6kZSUZO2Tl5cnNBqN2L59u1JhNllxcbG46667RHJyshg8eLCIjo4WQqgv33nz5omBAwded7/ZbBb+/v5i2bJl1raysjJhMBjEe++91xIhym7UqFHimWeesWkbP368CA8PF0KoK2cAYvPmzdbthuR25MgRAUDs3bvX2mfPnj0CgDh69GjLBX8Laudbn3379gkA4vTp00IIdeZ75swZ0b59e3Ho0CERFBQk3n77bes+R86XhOAMoB2pqKhAWloawsLCbNrDwsKwe/duhaJqPoWFhQCA1q1bAwDS0tJgNBpt8g8ICED37t0dOv9Zs2Zh1KhReOSRR2za1Zbv1q1b0adPH0ycOBFt2rRB79698Y9//MO6Pzs7G+fOnbPJ19XVFYMHD3bIfAFg4MCB+Oabb3D8+HEAwMGDB5GamoqRI0cCUGfOFg3Jbc+ePTAYDDaP2HzwwQdhMBgcPn+g6m+YJEnWWW615Ws2mxEREYHY2Fh069atzn615etseDtvO3LhwgWYTCa0bdvWpr1t27Y4d+6cQlE1DyEE5s6di4EDB6J79+4AgHPnzkGv16NVq1Y2fR05/6SkJKSnp2P//v119qkt35MnT2LNmjWYO3cu/ud//gf79u3DnDlz4OrqisjISGtO9b2/T58+rUTITTZv3jwUFhaiS5cu0Gq1MJlMeOONNzB58mQAUGXOFg3J7dy5c2jTpk2d17Zp08Yh3+M1lZWVYf78+ZgyZQq8vb0BqC/f5cuXw8XFBXPmzKl3v9rydTYsAO2QJEk220KIOm2O7vnnn8dPP/2E1NTUm/Z11Pxzc3MRHR2Nr776Cm5ubg1+naPmazab0adPH7z55psAgN69e+Pw4cNYs2YNIiMjrf3U9P7euHEjPvnkE6xfvx7dunVDZmYmYmJiEBAQgKefftraT00513az3OrL09HzNxqNeOqpp2A2m5GYmGizTy35pqWl4Z133kF6evoNY1dLvs6IS8B2xM/PD1qtts7/nAoKCur8L9uRzZ49G1u3bkVKSgo6dOhgbff390dFRQUuXbpk099R809LS0NBQQFCQ0Ph4uICFxcX7Nq1C++++y5cXFzQtm1bVeXbrl07dO3a1abtnnvusV7A5O/vDwCqen/HxsZi/vz5eOqpp9CjRw9ERETghRdeQFxcHAB15mzRkNz8/f1x/vz5Oq/97bffHDZ/o9GIJ598EtnZ2UhOTrbO/gHqyvf7779HQUEBOnbsaP37dfr0abz44ovo1KkTAHXl64xYANoRvV6P0NBQJCcn27QnJyejf//+CkUlHyEEnn/+eWzatAnffvstgoODbfaHhoZCp9PZ5J+fn49Dhw45ZP4PP/wwfv75Z2RmZlo/+vTpg6lTp1q/VlO+AwYMqHNbn+PHjyMoKAgAEBwcDH9/f5t8KyoqsGvXLofMF6i6MlSjsf0zqtVqrbeBUWPOFg3JrV+/figsLMS+ffusfX788UcUFhY6ZP6W4u/XX3/F119/DV9fX5v9aso3IiICP/30k83fr4CAAMTGxmLHjh0A1JWvU1Lo4hO6jqSkJKHT6cT//u//iiNHjoiYmBjh6ekpTp06pXRoTfbcc88Jg8Egdu7cKfLz860fJSUl1j4zZswQHTp0EF9//bVIT08Xw4YNEz179hSVlZUKRi6fmlcBC6GufPft2ydcXFzEG2+8IX799Vfx6aefCg8PD/HJJ59Y+yxbtkwYDAaxadMm8fPPP4vJkyeLdu3aiaKiIgUjv3VPP/20aN++vfjiiy9Edna22LRpk/Dz8xN/+ctfrH0cOefi4mKRkZEhMjIyBAARHx8vMjIyrFe9NiS3Rx99VNx7771iz549Ys+ePaJHjx5i9OjRSqV0QzfK12g0ijFjxogOHTqIzMxMm79h5eXl1jHUkm99al8FLIRj5Uu2WADaob/97W8iKChI6PV6cd9991lvk+LoANT7sW7dOmuf0tJS8fzzz4vWrVsLd3d3MXr0aJGTk6Nc0DKrXQCqLd//+7//E927dxeurq6iS5cu4v3337fZbzabxSuvvCL8/f2Fq6ureOihh8TPP/+sULRNV1RUJKKjo0XHjh2Fm5ubuOOOO8TChQttCgJHzjklJaXe39mnn35aCNGw3C5evCimTp0qvLy8hJeXl5g6daq4dOmSAtnc3I3yzc7Ovu7fsJSUFOsYasm3PvUVgI6UL9mShBCiJWYaiYiIiMg+8BxAIiIiIifDApCIiIjIybAAJCIiInIyLACJiIiInAwLQCIiIiInwwKQiIiIyMmwACQiIiJyMiwAiYiIiJwMC0AiUoWdO3dCkiRcvny5xY8tSRIkSYKPj0+D+ltilSQJY8eObeboiIjqYgFIRA5nyJAhiImJsWnr378/8vPzYTAYFIlp3bp1OH78eIP6WmJ98sknmzkqIqL6sQAkIlXQ6/Xw9/eHJEmKHN/Hxwdt2rRpUF9LrO7u7s0cFRFR/VgAEpFDmTZtGnbt2oV33nnHuox66tSpOkvAH3zwAXx8fPDFF18gJCQEHh4emDBhAq5evYoPP/wQnTp1QqtWrTB79myYTCbr+BUVFfjLX/6C9u3bw9PTE3379sXOnTsbHefBgwcxdOhQeHl5wdvbG6GhoThw4IBc3wYioiZxUToAIqLGeOedd3D8+HF0794dS5cuBQDcfvvtOHXqVJ2+JSUlePfdd5GUlITi4mKMHz8e48ePh4+PD7Zt24aTJ0/iiSeewMCBAzFp0iQAwPTp03Hq1CkkJSUhICAAmzdvxqOPPoqff/4Zd911V4PjnDp1Knr37o01a9ZAq9UiMzMTOp1Olu8BEVFTsQAkIodiMBig1+vh4eEBf3//G/Y1Go1Ys2YNOnfuDACYMGECPv74Y5w/fx633XYbunbtiqFDhyIlJQWTJk1CVlYWNmzYgDNnziAgIAAA8NJLL2H79u1Yt24d3nzzzQbHmZOTg9jYWHTp0gUAGlU8EhE1NxaARKRaHh4e1uIPANq2bYtOnTrhtttus2krKCgAAKSnp0MIgbvvvttmnPLycvj6+jbq2HPnzsWzzz6Ljz/+GI888ggmTpxoEwsRkZJYABKRatVecpUkqd42s9kMADCbzdBqtUhLS4NWq7XpV7NobIglS5ZgypQp+O9//4svv/wSr7zyCpKSkjBu3LhbyISISF4sAInI4ej1epsLN+TSu3dvmEwmFBQUYNCgQU0e7+6778bdd9+NF154AZMnT8a6detYABKRXeBVwETkcDp16oQff/wRp06dwoULF6wzeE119913Y+rUqYiMjMSmTZuQnZ2N/fv3Y/ny5di2bVuDxyktLcXzzz+PnTt34vTp0/jhhx+wf/9+3HPPPbLESUTUVCwAicjhvPTSS9BqtejatStuv/125OTkyDb2unXrEBkZiRdffBEhISEYM2YMfvzxRwQGBjZ4DK1Wi4sXLyIyMhJ33303nnzySYwYMQKvvvqqbHESETWFJIQQSgdBROTIJEnC5s2bG/1Yt2nTpuHy5cvYsmVLM0VGRFQ/zgASEclg8uTJ6NChQ4P6fv/997jtttvw6aefNnNURET14wwgEVETnThxAkDV0m9wcPBN+5eWliIvLw9A1dXFN7ufIRGR3FgAEhERETkZLgETERERORkWgEREREROhgUgERERkZNhAUhERETkZFgAEhERETkZFoBEREREToYFIBEREZGTYQFIRERE5GT+H4MRGFd53qHCAAAAAElFTkSuQmCC\n", - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": { - "image/png": { - "width": 600 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "Image(filename=\"Figure_2.png\",width=600)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XtYVOX+N/73AMMgOOCBAEcRsdzbA2oKbc9pB9lpaoddWRr4dPpmaor0MzG3v7TvLtLK3DvDtHrahzJtP2lZTypjKepXDQPxhGa7UEBAPCCDoDDM3M8fOCMjoChrWKf367q4grUWaz4fOfTmvte6l0EIIUBEREREuuEjdwFERERE1LoYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYAImIiIh0xk/uAtTM6XSiqKgIZrMZBoNB7nKIiIioGYQQqKiogMVigY+PPsfCGABboKioCJGRkXKXQURERDehoKAAXbp0kbsMWTAAtoDZbAZQ9w0UHBws6bntdjvS09MRHx8Po9Eo6bmViP1qG/vVPr31zH7VzWazITIy0v3/cT1iAGwB17RvcHCwVwJgYGAggoODNfHDdj3sV9vYr/bprWf2qw16vnxLnxPfKldVU4t/7T6Or3NOwukUcpdDREREKsMRQJURQmDaZ9nY9vNpAMCe384i9eF+MldFREREasIRQJXZduy0O/wBwOeZBdiSe0rGioiIiEhtGABV5qt9JwEA/2toNzw/sjsA4O30nzkVTERERM3GAKgiTqfA1qOlAIDx/Tth2sjbYDb54WhJBTYfLpG5OiIiIlILBkAV+e1MJWyXahFg9EG/Lu0QEmjEU8O6AQA+yPhV3uKIiIhINRgAVWRffhkAoF/ndjD61n3pEod2g9HXgP2F5Th0slzO8oiIiEglGABV5GhJBQAgpnOIe1toWxPi+0QAAD7PzJelLiIiIlIXBkAV+e30BQDArWFBHtsn/6ErAODrnCJcsjtavS4iIiJSFwZAFck7UwkAiA71DICDu3dEp5AAXKiuxbafS+UojYiIiFSEAVAlamqdKCi7CAC49Za2Hvt8fAwY398CAPhmf3Gr10ZERETqwgCoEiXll+BwCpj8fBBmNjXYP+FyANxy5BQuVNe2dnlERESkIgyAKlFiuwQAiAgJaPTh1X0swYgODUJ1rZNPBiEiIqJrYgBUCVcADA8OaHS/wVB/Grio1eoiIiIi9WEAVIlT5ZdHAJsIgABwf99OAIAd/znDaWAiIiJqEgOgSpyqNwXclN+Ft0W3joGoqXVi+7HTrVUaERERqQwDoEq4poAbuwHExWAwuBeF5rOBiYiIqCkMgCpRVlUDoO7JH9fyxz7hAIAfjpaiptbp9bqIiIhIfRgAVeJ8lR0AEBJovOZxAyLbI7StCRWXarHnt7OtURoRERGpDAOgSrgCYLs21w6APj4GjO5dNwqYnstpYCIiImqIAVAlyi9eDoCB/tc91jUNnH74FJxO4dW6iIiISH0YAFXA7nC6l3Vpf50pYAAYcmtHtDX5obSiGvsLz3u7PCIiIlIZBkAVcE3/GgyAOeD6AdDk54u7eoYBADYf5lNBiIiIyBMDoAqUX6y7Azg4wAhfn4aPgWvMlWngEgjBaWAiIiK6ggFQBdw3gDRj+tdl5O9ugb+vD347U4lfT1/wVmlERESkQgyAKuC6ASS4GdO/LuYAI4bd1hEAp4GJiIjIEwOgCrhuAGlr8ruhz3M9FSSdTwUhIiKiehgAVcAVAINuMADe2yscBgOwv7AcxeUXvVEaERERqRADoApUXg6A5oAbC4C3mE2I7doeAGDN5TQwERER1WEAVIEL1Q4AQJDJ94Y/94+Xp4E3cxqYiIiILmMAVIHKm5wCBoD4y8vB7PntHM5X1UhaFxEREakTA6AKXLh0+SYQ/xsPgFEdg9AzwgyHU+CHo6VSl0ZEREQqxACoAhdqLgfAG7wG0CWe08BERERUDwOgCrRkChgA4nvXTQNnHDuNizUOyeoiIiIiddJUACwrK8M///lPucuQnHsK+CYDYB9LMDq3a4NLdid2/HJaytKIiIhIhTQVAPPz8/HUU0/JXYbkbnYhaBeDweC+GSSdy8EQERHp3s0lCpnYbLZr7q+oqGilSlpXZU3LpoCBuuVgPvmf4/j+yCnUOpzw89VU9iciIqIboKoA2K5dOxgMhib3CyGuuV+tKi+vA3izI4AAEBfVHh2C/HGusgaZx89h6K2hUpVHREREKqOqAGg2mzF//nwMGjSo0f2//PILnn/++Vauyvtc1wDezELQLn6+PrinZxj+nVWIjQdLGACJiIh0TFUBcODAgQCAkSNHNrq/Xbt2EEK0ZkleV1PrRI3DCQAwm4wtOtf4/hb8O6sQ3xwowp/H9YLJ7+YDJREREamXqi4EmzRpEgICAprcHxERgVdffbUVK/I+1/V/QMtGAAFg2G2hiAgOwPkqO344wkWhiYiI9EpVAfC5557DzJkzm9wfHh6uvQB4+fo/k59Pi2/c8PUx4MEBnQEAX2YXtrg2IiIiUidVBcAb1bdvXxQUFMhdRou4loAx3+RTQK72SGxdANz282mcuVAtyTmJiIhIXTQdAI8fPw673d7k/tTUVNxxxx0wm80ICwvDgw8+iJ9//rkVK7y+lj4F5Gq3hZnRP7Idap0CX+cUSXJOIiIiUhdNB8DrycjIwPTp07Fnzx5YrVbU1tYiPj4elZWVcpfmVnn50W1B/tLdr/PIwMvTwFmcBiYiItIjVd0FLLVNmzZ5fPzJJ58gLCwMWVlZuPPOO2WqylNLHwPXmPH9Lfjvb48gt9iG3CIbeluCJTs3ERERKZ+uA+DVysvLAQAdOnRodH91dTWqq69cN+d6Mondbr/mVPPNcJ3PdrHu9QL9fSR7jSCjAXf9PhSbc0vx75/y8cqY30ty3pZw9Sb1v6NSsV9t01u/gP56Zr/qppU+WsIgtLZwXj1msxn79+9H9+7dr3usEAIPPPAAysrKsGPHjkaPWbhwIRYtWtRg++rVqxEYGNjiehuzrdiA9cd9MbCjE1N+55TsvIfOGfDhz75oaxR4baADfDIcERHpRVVVFSZNmoTy8nIEB+tzFowjgJfNmDEDBw4cwM6dO5s8Zt68eUhOTnZ/bLPZEBkZifj4eMm/gex2O6xWK7p0uw04noce0ZEYO7aPZOcf7XDiy7cycK7SjqAed+Du398i2blvhqvf0aNHw2hs2YLXasB+tU1v/QL665n9qptrBk/PVBkAq6qqmjXitnLlSoSHh1/3uBdffBEbNmzA9u3b0aVLlyaPM5lMMJlMDbYbjUav/UBU2etG/YLb+Ev6GkYj8ODtXfC//ycPX+8vxh9jLJKduyW8+W+pROxX2/TWL6C/ntmvOmmhh5ZS5cRfu3btMHToULzyyivYvHlzk3ftTpo0CUFBQU2eRwiBGTNmYN26dfjhhx8QHR3trZJvmvsuYAlvAnH50+U1AbfkluJ8VY3k5yciIiJlUmUAzMjIwIQJE5CdnY1HH30U7du3x+DBg5GSkoKNGzc2+zzTp0/Hp59+itWrV8NsNqOkpAQlJSW4ePGiF6u/Ma51AKW8C9iljyUEPSPMqHE48c2BYsnPT0RERMqkygA4ZMgQpKSkYNOmTSgrK8P27dvRs2dPvPPOOxg3blyzz7NixQqUl5dj1KhR6NSpk/tt7dq1Xqz+xrgeBeeNEUAAeCS2bsr7//yk7iemEBERUfOp8hpAADh69Ci2bduGjIwMbNu2DXa7HePHj8fIkSObfQ413AB9wYsjgADw4IDOeHPjUewvLMfREht6RujzbigiIiI9UWUAjIiIgN1ux913341Ro0bhlVdeQd++feUuyyuq3NcA+nrl/KFtTbi3Vzg2HS7BF3sL8f+P7+2V1yEiIiLlUOUUcEREBC5cuID8/Hzk5+ejsLAQFy5ckLssr7horwuAbYzey+qP3VE3Dbx+XyFqaqVba5CIiIiUSZUBMCcnB6dOncL8+fNRW1uLBQsW4JZbbsGgQYOQkpIid3mSuuQKgP7eGQEEgDt73ILwYBPKquzYcuSU116HiIiIlEGVARCoWwpmwoQJmD9/Pl555RU89thjyM7OxltvvSV3aZK6MgLovQDo5+vjvhnkC94MQkREpHmqDIDr16/HrFmz0L9/f4SFheGFF15AZWUl3n33XRw4cEDu8iR16fJC0N4MgADwaGwkAGD7sdMoLlfOMjhEREQkPVXeBPL888/jzjvvxHPPPYdRo0YhJiZG7pK8QogrI4AB/t7N6t1CgzAougN+zDuHL7MKMePuHl59PSIiIpKPKgNgaWmp3CW0ilpRFwIB748AAsBjcZH4Me8cvvipENNG3QYfH4PXX5OIiIhanyqngOu7ePEibDabx5tWXF4BBgAQ0AoBcGzfTjCb/JB/rgq7fj3r9dcjIiIieagyAFZWVmLGjBkICwtD27Zt0b59e483rbh8+R+MvgYYfb3/pWrj74s/Xb4ZZNWO37z+ekRERCQPVQbAl19+GT/88APS0tJgMpnw0UcfYdGiRbBYLPjnP/8pd3mSqbkcAFtj9M/lmeHR8DHU3QySW6Sd0VQiIiK6QpUB8JtvvkFaWhoeeeQR+Pn5YcSIEfjzn/+MN954A5999pnc5UnGFQBb4/o/l8gOgbi/nwUAsGr7r632ukRERNR6VBkAz507h+joaABAcHAwzp07BwAYPnw4tm/fLmdpknJNAXtzEejGPH9ndwDANweKUVhW1aqvTURERN6nygDYvXt3HD9+HADQu3dvfPHFFwDqRgbbtWsnY2XSqnHW3YXbmiOAABDTOQTDbwuFwynwv3ceb9XXJiIiIu9TZQB86qmnsH//fgDAvHnz3NcCzp49G3PmzJG5OulcXgKwVa8BdPmvy6OAa/bm43xVTau/PhEREXmP6gKg3W7Hhg0bcN999wEA7rrrLhw9ehSff/45srOzMWvWLJkrlI4c1wC6jOgRil6dglFV48Cne060+usTERGR96guABqNRhw6dAgGw5VFirt27YqHH34Y/fv3l7Ey6dXIdA0gABgMBkwdWTcK+Pddx3HJ7rjOZxAREZFaqC4AAkBiYiI+/vhjucvwOruMI4BA3cLQndu1wZkLNViXfVKWGoiIiEh6qnwUXE1NDT766CNYrVbExcUhKCjIY//SpUtlqkxaNTJeAwgARl8fPDM8Gq99m4sPd/yGiXdEwpePhyMiIlI9VQbAQ4cOYeDAgQCAY8eOeeyrPzWsdlemgOUbqJ14RyT++v0vyDtTCWtuCe6L6SRbLURERCQNVQbArVu3yl1Cq7DLtAxMfUEmPyQOicJ7P/wH72/9FX/sE6GpkE1ERKRHqrwGUC/kvAu4vv81tBvaGH1x8GQ5fjhaKmstRERE1HIMgArmvgZQhruA6+vY1oTEoVEAgGVbfoEQQtZ6iIiIqGUYABVM7ruA6/uvEd3do4DfHSyRuxwiIiJqAQZABVPKFDBQNwroejrIG98d4bqAREREKsYAqGByLgTdmKkjb4UlJAAnz1/Eyozf5C6HiIiIbhIDoIK57gKWax3Aq7Xx98W8sb0AACsy/oOT5y/KXBERERHdDAZABXPdBKKEKWCXcf064Q/RHXDJ7sSbG4/KXQ4RERHdBAZABbMrbAoYqFto+9XxvWEwAN/sL0Jm3jm5SyIiIqIbxACoYEq6CaS+PpYQPH5HVwDAwg2H4XByWRgiIiI1YQBUMFcAVMo1gPX9f/G/gznAD7nFNqzdWyB3OURERHQDGAAVzLXSipKmgF06tjVh9r2/AwC8ufEISm2XZK6IiIiImosBUKFqHU7YhfzPAr6WxCFR6Ns5BLZLtZj/1SE+IYSIiEglGAAVqrLmykLL5gA/GStpmp+vD5Y80g9GXwOsuafwz90n5C6JiIiImoEBUKEqLtUCAAKMPjD6KvfL1KtTMFLG1K0N+Pr/PYIDhedlroiIiIiuR7nJQucuVNcFwLYmZY7+1ff0sG6I7x2OGocT01dno/yiXe6SiIiI6BoYABXKNQJoVkEANBgMeOuR/ujSvg0Kzl1EypcHeD0gERGRgjEAKpR7BFCh1/9dLSTQiOWTBsLoa8DGQyX4+67jcpdERERETWAAVCg1jQC63B7ZDvMuXw/4l/97BD8cPSVzRURERNQYBkCFco0ABqkoAALAU8O64ZHYLnA4BaZ/tg9ZJ/ioOCIiIqVhAFQo9wigSqaAXQwGA1If7os7f3cLLtodSPw4kyGQiIhIYRgAFcjpFHjb+gsAddwFfDWjrw9WPhmLobd2RGVNXQj86ThDIBERkVIwACrQjv+ccb+vxgAI1D2+7uMpd2DYbXUhcMr/zsRehkAiIiJF0H0ATEtLQ3R0NAICAhAbG4sdO3bIXRIu2ZX/FJDmaOPvi48Sr4TAJz/6EeuyC+Uui4iISPd0HQDXrl2LpKQkzJ8/H/v27cOIESMwZswY5Ofny1qXw3llDb3YqHYyVtJyrhB4T88wVNc6kfzFfizccNgj5BIREVHr0nUAXLp0KZ555hk8++yz6NWrF5YtW4bIyEisWLFC1rps9Z6kMSBS3QEQqAuBHybGYebdtwEA/r7rOMa/txN7fjsLp5MLRhMREbU29c4vtlBNTQ2ysrKQkpLisT0+Ph67du1q9HOqq6tRXV3t/thmswEA7HY77HbpHn92vqruNWJDnZKeV24v3tUdMRYzXvnqMH4pvYDHV+2B0deAMLMJJj8f1Fz0xScFe+Dn6wODwQAfA2BA3Z3FBgNgQN1/fS6/j3rvGy4fqxZOIXC61Adfn8uGj0FNld8c9qt9TfVs0Gj/TqcTpaU+2HAuGz4+2h9LkbPf+/tG4P6+EZKeU0v/b71Zug2AZ86cgcPhQHh4uMf28PBwlJSUNPo5qampWLRoUYPt6enpCAwMlKy2ffk+AHwQ6AtYrVbJzqsUs3sC3+b7IOuMATUO4OT5S5f3GFBYaZO1ttblA5Sduf5hmsF+tU9vPbPf1uBbUQxDgbSzRVVVVZKeT410GwBdrv7rVAjR5F+s8+bNQ3Jysvtjm82GyMhIxMfHIzg4WLKaoosrMKKwDKd/PYTRo0fDaDRKdm6leAxArcOJUxXVOF1RjcpLNdiTmYXe/foDBh8IAQjUjSq43hfu9wWcAqh73PCV99U00OBwOJCbm4vevXvD19dX7nK8jv3eOLU9TtvhcODIkVz06qWdr7FA01+Eun6PoFevXprp91rk7DfGEoy+nUMkPadrBk/PdBsAQ0ND4evr22C0r7S0tMGooIvJZILJZGqw3Wg0ShrS+nXtgF6dzPju9CHJz60kRiPQLcCEbrfUDceX/yIwpq9Fs/3WZ7fb8d3Zwxg7KIr9apDe+gUu93zuMMYO1kfPdf3mYuzgbuxXhbTQQ0tp/8KFJvj7+yM2NrbBFKvVasXQoUNlqoqIiIjI+3Q7AggAycnJSEhIQFxcHIYMGYJVq1YhPz8fU6dObdbni8tzNN4YSrbb7aiqqoLNZtPFXyrsV9vYr/bprWf2q26u/28LtV1rISFdB8CJEyfi7NmzeO2111BcXIyYmBh89913iIqKatbnV1RUAAAiIyO9WSYRERF5QUVFBUJCpL2+UC0MQs/xt4WcTieKiopgNpslX+rAdYNJQUGBpDeYKBX71Tb2q31665n9qpsQAhUVFbBYLLpYxqcxuh4BbCkfHx906dLFq68RHBysiR+25mK/2sZ+tU9vPbNf9dLryJ+LPmMvERERkY4xABIRERHpjO/ChQsXyl0ENc7X1xejRo2Cn58+ZurZr7axX+3TW8/sl9SMN4EQERER6QyngImIiIh0hgGQiIiISGcYAImIiIh0hgGQiIiISGcYABUoLS0N0dHRCAgIQGxsLHbs2CF3SZJITU3FHXfcAbPZjLCwMDz44IP4+eefPY6prq7Giy++iNDQUAQFBWHChAkoLCyUqWJppaamwmAwICkpyb1Na/2ePHkSTz75JDp27IjAwEDcfvvtyMrKcu8XQmDhwoWwWCxo06YNRo0ahcOHD8tYccvU1tbiz3/+M6Kjo9GmTRt0794dr732GpxOp/sYNfe8fft2jB8/HhaLBQaDAV999ZXH/ub0VlZWhoSEBISEhCAkJAQJCQk4f/58a7bRbNfq1263Y+7cuejbty+CgoJgsViQmJiIoqIij3Nopd+rPf/88zAYDFi2bJnHdjX1S54YABVm7dq1SEpKwvz587Fv3z6MGDECY8aMQX5+vtyltVhGRgamT5+OPXv2wGq1ora2FvHx8aisrHQfk5SUhPXr12PNmjXYuXMnLly4gHHjxsHhcMhYecvt3bsXq1atQr9+/Ty2a6nfsrIyDBs2DEajERs3bkRubi7eeecdtGvXzn3MkiVLsHTpUixfvhx79+5FREQERo8e7X6uttosXrwYH3zwAZYvX44jR45gyZIleOutt/Dee++5j1Fzz5WVlejfvz+WL1/e6P7m9DZp0iTk5ORg06ZN2LRpE3JycpCQkNBaLdyQa/VbVVWF7OxsLFiwANnZ2Vi3bh2OHTuGCRMmeBynlX7r++qrr/Djjz/CYrE02KemfukqghTlD3/4g5g6darHtp49e4qUlBSZKvKe0tJSAUBkZGQIIYQ4f/68MBqNYs2aNe5jTp48KXx8fMSmTZvkKrPFKioqRI8ePYTVahUjR44Us2bNEkJor9+5c+eK4cOHN7nf6XSKiIgI8eabb7q3Xbp0SYSEhIgPPvigNUqU3P333y+efvppj20PP/ywePLJJ4UQ2uoZgFi/fr374+b0lpubKwCIPXv2uI/ZvXu3ACCOHj3aesXfhKv7bUxmZqYAIE6cOCGE0Ga/hYWFonPnzuLQoUMiKipKvPvuu+59au6XhOAIoILU1NQgKysL8fHxHtvj4+Oxa9cumarynvLycgBAhw4dAABZWVmw2+0e/VssFsTExKi6/+nTp+P+++/Hvffe67Fda/1u2LABcXFxePTRRxEWFoYBAwbgww8/dO/Py8tDSUmJR78mkwkjR45UZb8AMHz4cHz//fc4duwYAGD//v3YuXMnxo4dC0CbPbs0p7fdu3cjJCQEgwYNch8zePBghISEqL5/oO53mMFgcI9ya61fp9OJhIQEzJkzB3369GmwX2v96g2X81aQM2fOwOFwIDw83GN7eHg4SkpKZKrKO4QQSE5OxvDhwxETEwMAKCkpgb+/P9q3b+9xrJr7X7NmDbKzs7F3794G+7TW72+//YYVK1YgOTkZr7zyCjIzMzFz5kyYTCYkJia6e2rs+/vEiRNylNxic+fORXl5OXr27AlfX184HA68/vrreOKJJwBAkz27NKe3kpIShIWFNfjcsLAwVX6P13fp0iWkpKRg0qRJCA4OBqC9fhcvXgw/Pz/MnDmz0f1a61dvGAAVyGAweHwshGiwTe1mzJiBAwcOYOfOndc9Vq39FxQUYNasWUhPT0dAQECzP0+t/TqdTsTFxeGNN94AAAwYMACHDx/GihUrkJiY6D5OS9/fa9euxaefforVq1ejT58+yMnJQVJSEiwWC6ZMmeI+Tks9X+16vTXWp9r7t9vtePzxx+F0OpGWluaxTyv9ZmVl4a9//Suys7OvWbtW+tUjTgErSGhoKHx9fRv85VRaWtrgr2w1e/HFF7FhwwZs3boVXbp0cW+PiIhATU0NysrKPI5Xa/9ZWVkoLS1FbGws/Pz84Ofnh4yMDPztb3+Dn58fwsPDNdVvp06d0Lt3b49tvXr1ct/AFBERAQCa+v6eM2cOUlJS8Pjjj6Nv375ISEjA7NmzkZqaCkCbPbs0p7eIiAicOnWqweeePn1atf3b7XY89thjyMvLg9VqdY/+Adrqd8eOHSgtLUXXrl3dv79OnDiBl156Cd26dQOgrX71iAFQQfz9/REbGwur1eqx3Wq1YujQoTJVJR0hBGbMmIF169bhhx9+QHR0tMf+2NhYGI1Gj/6Li4tx6NAhVfZ/zz334ODBg8jJyXG/xcXFYfLkye73tdTvsGHDGizrc+zYMURFRQEAoqOjERER4dFvTU0NMjIyVNkvUHdnqI+P569RX19f9zIwWuzZpTm9DRkyBOXl5cjMzHQf8+OPP6K8vFyV/bvC3y+//IItW7agY8eOHvu11G9CQgIOHDjg8fvLYrFgzpw52Lx5MwBt9atLMt18Qk1Ys2aNMBqN4uOPPxa5ubkiKSlJBAUFiePHj8tdWou98MILIiQkRGzbtk0UFxe736qqqtzHTJ06VXTp0kVs2bJFZGdni7vvvlv0799f1NbWyli5dOrfBSyEtvrNzMwUfn5+4vXXXxe//PKL+Oyzz0RgYKD49NNP3ce8+eabIiQkRKxbt04cPHhQPPHEE6JTp07CZrPJWPnNmzJliujcubP49ttvRV5enli3bp0IDQ0VL7/8svsYNfdcUVEh9u3bJ/bt2ycAiKVLl4p9+/a573ptTm/33Xef6Nevn9i9e7fYvXu36Nu3rxg3bpxcLV3Ttfq12+1iwoQJokuXLiInJ8fjd1h1dbX7HFrptzFX3wUshLr6JU8MgAr0/vvvi6ioKOHv7y8GDhzoXiZF7QA0+vbJJ5+4j7l48aKYMWOG6NChg2jTpo0hjn55AAAgAElEQVQYN26cyM/Pl69oiV0dALXW7zfffCNiYmKEyWQSPXv2FKtWrfLY73Q6xauvvioiIiKEyWQSd955pzh48KBM1baczWYTs2bNEl27dhUBAQGie/fuYv78+R6BQM09b926tdGf2SlTpgghmtfb2bNnxeTJk4XZbBZms1lMnjxZlJWVydDN9V2r37y8vCZ/h23dutV9Dq3025jGAqCa+iVPBiGEaI2RRi1yOp0oKiqC2WzmBa9EREQqIYRARUUFLBZLg8s49IJ3AbdAUVERIiMj5S6DiIiIbkJBQYHHzYh6wgDYAmazGUDdN1D9O8GkYLfbkZ6ejvj4eBiNRknPrUTsV9vYr/bprWf2q242mw2RkZHu/4/rEQNgC7imfYODg70SAAMDAxEcHKyJH7brYb/axn61T289s19t0PPlW/qc+FYRp1OAl2kSERGRlBgAFcwhgAlpuzH5ox/lLoWIiIg0hFPAClZYCfx86gJw6gKcTgEfH/0OVRMREZF0OAKoYNWOK4HPwWlgIiIikggDoIJVO66873AyABIREZE0GAAVrH4ArGUAJCIiIokwACpYtfPK+w4HAyARERFJgwFQwepf9lfrdDZ9IBEREdENYABUCV4DSERERFLRVABMS0tDdHQ0AgICEBsbix07djR57IcffogRI0agffv2aN++Pe69915kZma2YrXXVz/y8RpAIiIikopmAuDatWuRlJSE+fPnY9++fRgxYgTGjBmD/Pz8Ro/ftm0bnnjiCWzduhW7d+9G165dER8fj5MnT7Zy5U2rPwXMEUAiIiKSimYC4NKlS/HMM8/g2WefRa9evbBs2TJERkZixYoVjR7/2WefYdq0abj99tvRs2dPfPjhh3A6nfj+++9bufKmcQSQiIiIvEETAbCmpgZZWVmIj4/32B4fH49du3Y16xxVVVWw2+3o0KGDN0q8KfUjn4M3gRAREZFENPEouDNnzsDhcCA8PNxje3h4OEpKSpp1jpSUFHTu3Bn33ntvk8dUV1ejurra/bHNZgMA2O122O32m6i8aXa73WMK+GK19K+hJK7etNxjfexX2/TWL6C/ntmvummlj5bQRAB0MRg8n5UrhGiwrTFLlizB559/jm3btiEgIKDJ41JTU7Fo0aIG29PT0xEYGHjjBV+HwJXaM7bvwG9tJX8JxbFarXKX0KrYr7bprV9Afz2zX3WqqqqSuwTZaSIAhoaGwtfXt8FoX2lpaYNRwau9/fbbeOONN7Blyxb069fvmsfOmzcPycnJ7o9tNhsiIyMRHx+P4ODgm2+gEXa7HVv+vsX98eChw9C/S4ikr6EkdrsdVqsVo0ePhtFolLscr2O/2qa3fgH99cx+1c01g6dnmgiA/v7+iI2NhdVqxUMPPeTebrVa8cADDzT5eW+99Rb+8pe/YPPmzYiLi7vu65hMJphMpgbbjUajV34g6l8DaPDx0cQP3fV4699SqdivtumtX0B/PbNfddJCDy2liQAIAMnJyUhISEBcXByGDBmCVatWIT8/H1OnTgUAJCYmonPnzkhNTQVQN+27YMECrF69Gt26dXOPHrZt2xZt2ypjrtXjSSB8FBwRERFJRDMBcOLEiTh79ixee+01FBcXIyYmBt999x2ioqIAAPn5+fDxuXLTc1paGmpqavDII494nOfVV1/FwoULW7P0JnneBcwASERERNLQTAAEgGnTpmHatGmN7tu2bZvHx8ePH/d+QS3k9HgWMAMgERERSUMT6wBqVf27gGu5DiARERFJhAFQwTwfBSdfHURERKQtDIAKxmsAiYiIyBsYABWs/gigUzAAEhERkTQYABWMI4BERETkDQyACsYRQCIiIvIGBkAFq3/fBwMgERERSYUBUME8p4BlK4OIiIg0hgFQwTymgHkNIBEREUmEAVDBPEYAOQVMREREEmEAVDDPhaAZAImIiEgaDIAKVj/y8SYQIiIikgoDoIJxBJCIiIi8gQFQwbgQNBEREXmD7AHQ6Wx8fROn04n8/PxWrkZZ6mc+zgATERGRVGQLgDabDY899hiCgoIQHh6OV199FQ6Hw73/9OnTiI6Olqs8ReBdwEREROQNfnK98IIFC7B//37861//wvnz5/GXv/wFWVlZWLduHfz9/QEAQuehh1PARERE5A2yjQB+9dVXWLlyJR555BE8++yzyMrKwpkzZzB+/HhUV1cDAAwGg1zlKQIXgiYiIiJvkC0AnjlzBlFRUe6PO3bsCKvVioqKCowdOxZVVVVylaYYnAImIiIib5AtAEZGRuLIkSMe28xmM9LT03Hx4kU89NBDMlWmHBwBJCIiIm+QLQDGx8fjk08+abC9bdu22Lx5MwICAmSoSlk4AkhERETeINtNIIsWLUJRUVGj+8xmM7Zs2YKsrKxWrkpZPBeClq8OIiIi0hbZRgDbt2+PPn36NLm/bdu2GDlypPvjvn37oqCgoDVKU4z6mY+PgiMiIiKpyL4QdHMdP34cdrtd7jJaFa8BJCIiIm9QTQDUI14DSERERN7AAKhg9SMfRwCJiIhIKgyACuZxEwhHAImIiEgiDIAK5vkoONnKICIiIo1hAFQw3gRCRERE3iB7AGzuI99WrlyJ8PBwL1ejLPUH/TgFTERERFKRbSFol3bt2iEuLg6jRo3CyJEjMXz4cAQFBTU4btKkSTJUJy+OABIREZE3yD4CmJGRgQkTJiA7OxuPPvoo2rdvj8GDByMlJQUbN26UuzxZcRkYIiIi8gbZA+CQIUOQkpKCTZs2oaysDNu3b0fPnj3xzjvvYNy4cXKXJyshDO73OQBIREREUpE9AALA0aNH8cEHH+DJJ5/EQw89hG+//Rbjx4/H0qVLb+g8aWlpiI6ORkBAAGJjY7Fjx44mjz18+DD+9Kc/oVu3bjAYDFi2bFlL25Ac1wEkIiIib5D9GsCIiAjY7XbcfffdGDVqFF555RX07dv3hs+zdu1aJCUlIS0tDcOGDcPKlSsxZswY5ObmomvXrg2Or6qqQvfu3fHoo49i9uzZUrQiOc9lYBgAiYiISBqyjwBGRETgwoULyM/PR35+PgoLC3HhwoUbPs/SpUvxzDPP4Nlnn0WvXr2wbNkyREZGYsWKFY0ef8cdd+Ctt97C448/DpPJ1NI2vMLJhaCJiIjIC2QPgDk5OTh16hTmz5+P2tpaLFiwALfccgsGDRqElJSUZp2jpqYGWVlZiI+P99geHx+PXbt2eaPsVsG7gImIiMgbZJ8CBuqWgpkwYQKGDx+OYcOG4euvv8bq1avx008/4c0337zu5585cwYOh6PBOoHh4eEoKSmRrM7q6mpUV1e7P7bZbAAAu90Ou90u2eu4zlk/8tU6nJK/hpK4etNyj/WxX23TW7+A/npmv+qmlT5aQvYAuH79emzbtg3btm3D4cOH0bFjR4wYMQLvvvsu7rrrrhs6l8Fg8PhYCNFgW0ukpqZi0aJFDbanp6cjMDBQstdxEfB1v3+qtBTfffed5K+hNFarVe4SWhX71Ta99Qvor2f2q07NfQiFlskeAJ9//nnceeedeO655zBq1CjExMTc8DlCQ0Ph6+vbYLSvtLRU0qeHzJs3D8nJye6PbTYbIiMjER8fj+DgYMleB6j762TJ/h/cH3foGIqxY+MkfQ0lsdvtsFqtGD16NIxGo9zleB371Ta99Qvor2f2q26uGTw9kz0AlpaWtvgc/v7+iI2NhdVqxUMPPeTebrVa8cADD7T4/C4mk6nRG0aMRqNXfiCcV72vhR+66/HWv6VSsV9t01u/gP56Zr/qpIUeWkr2AFjfxYsXG8zLN3dkLTk5GQkJCYiLi8OQIUOwatUq5OfnY+rUqQCAxMREdO7cGampqQDqbhzJzc11v3/y5Enk5OSgbdu2uO222yTs6uZ53ATCe0CIiIhIIrIHwMrKSsydOxdffPEFzp4922C/w+Fo1nkmTpyIs2fP4rXXXkNxcTFiYmLw3XffISoqCgCQn58PH58rNz0XFRVhwIAB7o/ffvttvP322xg5ciS2bdvWsqYkwoWgiYiIyBtkD4Avv/wytm7dirS0NCQmJuL999/HyZMnsXLlymbdAVzftGnTMG3atEb3XR3qunXrBqHwtfUE1wEkIiIiL5A9AH7zzTf45z//iVGjRuHpp5/GiBEjcNtttyEqKgqfffYZJk+eLHeJsuEIIBEREXmD7AtBnzt3DtHR0QDqrvc7d+4cAGD48OHYvn27nKXJjiOARERE5A2yB8Du3bvj+PHjAIDevXvjiy++AFA3MtiuXTsZK5Of57OAZSuDiIiINEb2APjUU09h//79AOrW2UtLS4PJZMLs2bMxZ84cmauTF6eAiYiIyBtkvQbQbrdjw4YNWLlyJQDgrrvuwtGjR/HTTz/h1ltvRf/+/eUsT3ZOTgETERGRF8gaAI1GIw4dOuTxuLauXbuia9euMlalHBwBJCIiIm+QfQo4MTERH3/8sdxlKJLnQtAMgERERCQN2ZeBqampwUcffQSr1Yq4uDgEBQV57F+6dKlMlcnP4yYQBkAiIiKSiOwB8NChQxg4cCAA4NixYx776k8N65HHCCDvAiYiIiKJyB4At27dKncJiuW5DAxHAImIiEgasl8DSE3jQtBERETkDQyACsa7gImIiMgbGAAVrP5lfxwBJCIiIqkwACqYxxQwRwCJiIhIIgyACsYpYCIiIvIGBkAF81wIWr46iIiISFsYABWMC0ETERGRNzAAKpjnQtAMgERERCQNBkCFEkLAiStPQuEIIBEREUmFAVChahyegU+IulBIRERE1FIMgApVbXc02MalYIiIiEgKDIAKVV3rbLCN08BEREQkBQZAhbpU23AE0NkwExIRERHdMAZAhbpkr0t7bYxXvkTbfi6VqxwiIiLSEAZAhaq+HAAD/f3c2174LFuucoiIiEhDGAAVyjUFHOjvK3MlREREpDUMgAp1yT0CyABIRERE0mIAVKjyi3YAgDnA7zpHEhEREd0YBkCFKiy7CACIbN9G5kqIiIhIaxgAFaqgrAoAENk+UOZKiIiISGsYABWq4FzdCGAXjgASERGRxBgAFSrfNQXcgQGQiIiIpMUAqEB2hxPF5ZcANLwGsNbBx4EQERFRy2jqFtO0tDS89dZbKC4uRp8+fbBs2TKMGDGiyeO//PJLLFiwAL/++ituvfVWvP7663jooYdaseLGFZ+/BIdTwGgQuKWtyWPfn1bswn0xnRBk8oWh3vamnhLsPsZgaLhNRoarinA4HDh0yoDyvQXw9fXu0jet8Ujl672Ew+HA4RIDyjJb2G8rNCPFK7j6Pfdjvte/vkrg/vpqsd+rf3gvk+x7WgY38zvR4XDgUIkB5xXYbxNfohZpzd/RV+vXuR36dglp1dfUA80EwLVr1yIpKQlpaWkYNmwYVq5ciTFjxiA3Nxddu3ZtcPzu3bsxceJE/Pd//zceeughrF+/Ho899hh27tyJQYMGydDBFVn55wAA4YGAj4/nT/L+wnLsLyyXo6xW4IsvfjsidxGtyBf/ztNXv/8n76jcRbQivfUL6PF7Wm/9yvE7OuneHgyAXmAQojXGQ7xv0KBBGDhwIFasWOHe1qtXLzz44INITU1tcPzEiRNhs9mwceNG97b77rsP7du3x+eff96s17TZbAgJCUF5eTmCg4Nb3sRlKV8ewJq9BbjX4sSKF+5DjwXpAIBnh0cjyOSHgrIqXLI7IITnX3qGq/6OFZfHbup/hV3vC4gGx7cW0ciYktMpUFJSgoiIiAah1xtao/dr/RXudDrr9duyKzG88dd+g9do4b+X0+lEcUkxOkV0anG/StHY97GL0ylQUlyMiE6dWuX7uTm8/Zteyu9pNfxfySmu9GtojR9CCd3Mv68QQrZ+x/W3YEJ/i6Tn9Nb/v9VEEyOANTU1yMrKQkpKisf2+Ph47Nq1q9HP2b17N2bPnu2x7Y9//COWLVvW5OtUV1ejurra/bHNZgMA2O122O32my2/gYXjeuLBfmE4nP2jx3l7hgfhgdul/SFQCrvdDqu1CKNH94HRaJS7HK/TZ78nMXp0b/arUfr8nma/rfn6Sj6fGmkiAJ45cwYOhwPh4eEe28PDw1FSUtLo55SUlNzQ8QCQmpqKRYsWNdienp6OwEDp1+sLDQCsViseiDLgV5sBPoU5+K4oR/LXURKr1Sp3Ca2K/Wqb3voF9Ncz+1WnqqoquUuQnSYCoMvVw9JCiGsOVd/o8fPmzUNycrL7Y5vNhsjISMTHx0s+hFz315YVo0ePxljd/HVZ169+/ppmv1qlt34B/fXMftXNNYOnZ5oIgKGhofD19W0weldaWtpglM8lIiLiho4HAJPJBJPJ1GC70Wj02g+EN8+tROxX29iv9umtZ/arTlrooaU0cTW2v78/YmNjGwxNW61WDB06tNHPGTJkSIPj09PTmzyeiIiISCs0MQIIAMnJyUhISEBcXByGDBmCVatWIT8/H1OnTgUAJCYmonPnzu47gmfNmoU777wTixcvxgMPPICvv/4aW7Zswc6dO5v9mq4bqL0xlGy321FVVQWbzaaLv1TYr7axX+3TW8/sV91c/9/WyEIoN0doyPvvvy+ioqKEv7+/GDhwoMjIyHDvGzlypJgyZYrH8f/+97/F73//e2E0GkXPnj3Fl19+eUOvV1BQIFC3Ti7f+MY3vvGNb3xT2VtBQYEU8UOVNLMOoBycTieKiopgNpslXxfJdYNJQUGBLtYoYr/axn61T289s191E0KgoqICFotFM2uT3ijNTAHLwcfHB126dPHqawQHB2vih6252K+2sV/t01vP7Fe9QkL0/XQRfcZeIiIiIh1jACQiIiLSGd+FCxculLsIapyvry9GjRoFPz99zNSzX21jv9qnt57ZL6kZbwIhIiIi0hlOARMRERHpDAMgERERkc4wABIRERHpDAOgAqWlpSE6OhoBAQGIjY3Fjh075C5JEqmpqbjjjjtgNpsRFhaGBx98ED///LPHMdXV1XjxxRcRGhqKoKAgTJgwAYWFhTJVLK3U1FQYDAYkJSW5t2mt35MnT+LJJ59Ex44dERgYiNtvvx1ZWVnu/UIILFy4EBaLBW3atMGoUaNw+PBhGStumdraWvz5z39GdHQ02rRpg+7du+O1116D0+l0H6Pmnrdv347x48fDYrHAYDDgq6++8tjfnN7KysqQkJCAkJAQhISEICEhAefPn2/NNprtWv3a7XbMnTsXffv2RVBQECwWCxITE1FUVORxDq30e7Xnn38eBoMBy5Yt89iupn7JEwOgwqxduxZJSUmYP38+9u3bhxEjRmDMmDHIz8+Xu7QWy8jIwPTp07Fnzx5YrVbU1tYiPj4elZWV7mOSkpKwfv16rFmzBjt37sSFCxcwbtw4OBwOGStvub1792LVqlXo16+fx3Yt9VtWVoZhw4bBaDRi48aNyM3NxTvvvIN27dq5j1myZAmWLl2K5cuXY+/evYiIiMDo0aNRUVEhY+U3b/Hixfjggw+wfPlyHDlyBEuWLMFbb72F9957z32MmnuurKxE//79sXz58kb3N6e3SZMmIScnB5s2bcKmTZuQk5ODhISE1mrhhlyr36qqKmRnZ2PBggXIzs7GunXrcOzYMUyYMMHjOK30W99XX32FH3/8ERaLpcE+NfVLV5HvKXTUmD/84Q9i6tSpHtt69uwpUlJSZKrIe0pLSwUA9zObz58/L4xGo1izZo37mJMnTwofHx+xadMmucpssYqKCtGjRw9htVrFyJEjxaxZs4QQ2ut37ty5Yvjw4U3udzqdIiIiQrz55pvubZcuXRIhISHigw8+aI0SJXf//feLp59+2mPbww8/LJ588kkhhLZ6BiDWr1/v/rg5veXm5goAYs+ePe5jdu/eLQCIo0ePtl7xN+HqfhuTmZkpAIgTJ04IIbTZb2FhoejcubM4dOiQiIqKEu+++657n5r7JSE4AqggNTU1yMrKQnx8vMf2+Ph47Nq1S6aqvKe8vBwA0KFDBwBAVlYW7Ha7R/8WiwUxMTGq7n/69Om4//77ce+993ps11q/GzZsQFxcHB599FGEhYVhwIAB+PDDD9378/LyUFJS4tGvyWTCyJEjVdkvAAwfPhzff/89jh07BgDYv38/du7cibFjxwLQZs8uzelt9+7dCAkJwaBBg9zHDB48GCEhIarvH6j7HWYwGNyj3Frr1+l0IiEhAXPmzEGfPn0a7Ndav3rD1RwV5MyZM3A4HAgPD/fYHh4ejpKSEpmq8g4hBJKTkzF8+HDExMQAAEpKSuDv74/27dt7HKvm/tesWYPs7Gzs3bu3wT6t9fvbb79hxYoVSE5OxiuvvILMzEzMnDkTJpMJiYmJ7p4a+/4+ceKEHCW32Ny5c1FeXo6ePXvC19cXDocDr7/+Op544gkA0GTPLs3praSkBGFhYQ0+NywsTJXf4/VdunQJKSkpmDRpkvvZuFrrd/HixfDz88PMmTMb3a+1fvWGAVCBDAaDx8dCiAbb1G7GjBk4cOAAdu7ced1j1dp/QUEBZs2ahfT0dAQEBDT789Tar9PpRFxcHN544w0AwIABA3D48GGsWLECiYmJ7uO09P29du1afPrpp1i9ejX69OmDnJwcJCUlwWKxYMqUKe7jtNTz1a7XW2N9qr1/u92Oxx9/HE6nE2lpaR77tNJvVlYW/vrXvyI7O/uatWulXz3iFLCChIaGwtfXt8FfTqWlpQ3+ylazF198ERs2bMDWrVvRpUsX9/aIiAjU1NSgrKzM43i19p+VlYXS0lLExsbCz88Pfn5+yMjIwN/+9jf4+fkhPDxcU/126tQJvXv39tjWq1cv9w1MERERAKCp7+85c+YgJSUFjz/+OPr27YuEhATMnj0bqampALTZs0tzeouIiMCpU6cafO7p06dV27/dbsdjjz2GvLw8WK1W9+gfoK1+d+zYgdLSUnTt2tX9++vEiRN46aWX0K1bNwDa6lePGAAVxN/fH7GxsbBarR7brVYrhg4dKlNV0hFCYMaMGVi3bh1++OEHREdHe+yPjY2F0Wj06L+4uBiHDh1SZf/33HMPDh48iJycHPdbXFwcJk+e7H5fS/0OGzaswbI+x44dQ1RUFAAgOjoaERERHv3W1NQgIyNDlf0CdXeG+vh4/hr19fV1LwOjxZ5dmtPbkCFDUF5ejszMTPcxP/74I8rLy1XZvyv8/fLLL9iyZQs6duzosV9L/SYkJODAgQMev78sFgvmzJmDzZs3A9BWv7ok080n1IQ1a9YIo9EoPv74Y5GbmyuSkpJEUFCQOH78uNyltdgLL7wgQkJCxLZt20RxcbH7raqqyn3M1KlTRZcuXcSWLVtEdna2uPvuu0X//v1FbW2tjJVLp/5dwEJoq9/MzEzh5+cnXn/9dfHLL7+Izz77TAQGBopPP/3Ufcybb74pQkJCxLp168TBgwfFE088ITp16iRsNpuMld+8KVOmiM6dO4tvv/1W5OXliXXr1onQ0FDx8ssvu49Rc88VFRVi3759Yt++fQKAWLp0qdi3b5/7rtfm9HbfffeJfv36id27d4vdu3eLvn37inHjxsnV0jVdq1+73S4mTJggunTpInJycjx+h1VXV7vPoZV+G3P1XcBCqKtf8sQAqEDvv/++iIqKEv7+/mLgwIHuZVLUDkCjb5988on7mIsXL4oZM2aIDh06iDZt2ohx48aJ/Px8+YqW2NUBUGv9fvPNNyImJkaYTCbRs2dPsWrVKo/9TqdTvPrqqyIiIkKYTCZx5513ioMHD8pUbcvZbDYxa9Ys0bVrVxEQECC6d+8u5s+f7xEI1Nzz1q1bG/2ZnTJlihCieb2dPXtWTJ48WZjNZmE2m8XkyZNFWVmZDN1c37X6zcvLa/J32NatW93n0Eq/jWksAKqpX/JkEEKI1hhp1CKn04mioiKYzWZe8EpERKQSQghUVFTAYrE0uIxDL3gXcAsUFRUhMjJS7jKIiIjoJhQUFHjcjKgnDIAtYDabAdR9A9W/E0wKdrsd6enpiI+Ph9FolPTcSsR+tY39ap/eema/6maz2RAZGen+/7geMQC2gGvaNzg42CsBMDAwEMHBwZr4Ybse9qtt7Ff79NYz+9UGPV++pc+JbyIiIiIdYwBUICEEPtl1AkfP6/cvEyIiIvIeTgEr0M7/nMEbG38G4ItkuYshIiIizeEIoAIVll2UuwQiIiLSMAZAIiIiIp1hAFQgXvlHRERE3sQASERERKQzigmAtbW1+Mc//oGSkhK5SyEiIiLSNMUEQD8/P7zwwguorq6WuxTZ6XhdSiIiImoFigmAADBo0CDk5OTIXYbsDLwKkIiIiLxIUesATps2DcnJySgoKEBsbCyCgoI89vfr10+myoiIiIi0Q1EBcOLEiQCAmTNnurcZDAYIIWAwGOBwOOQqjYiIiEgzFBUA8/Ly5C5BGTgDTERERF6kqAAYFRUldwlEREREmqeoAAgAv/76K5YtW4YjR47AYDCgV69emDVrFm699Va5SyMiIiLSBEXdBbx582b07t0bmZmZ6NevH2JiYvDjjz+iT58+sFqtcpdHREREpAmKGgFMSUnB7Nmz8eabbzbYPnfuXIwePVqmyloXLwEkIiIib1LUCOCRI0fwzDPPNNj+9NNPIzc3V4aK5GHgStBERETkRYoKgLfcckujC0Hn5OQgLCxMhoqIiIiItEdRU8DPPfcc/uu//gu//fYbhg4dCoPBgJ07d2Lx4sV46aWX5C6PiIiISBMUFQAXLFgAs9mMd955B/PmzQMAWCwWLFy40GNxaK3jBDARERF5k2ICoBAC+fn5mDp1KmbPno2KigoAgNlslrkyIiIiIm1RzDWAQgj06NEDhYWFAOqCH8MfERERkfQUEwB9fHzQo0cPnD17Vu5SiIiIiDRNMQEQAJYsWYI5c+bg0KFDLT7X9u3bMX78eFgsFhgMBnz11Vce+4UQWLhwISwWC9q0aeiuAsEAACAASURBVINRo0bh8OHDLX5dKXAVGCIiIvImRQXAJ598EpmZmejfvz/atGmDDh06eLzdiMrKSvTv3x/Lly9vdP+SJUuwdOlSLF++HHv37kVERARGjx7tvvaQiIiISKsUcxMIACxbtkyyc40ZMwZjxoxpdJ8QAsuWLcP8+fPx8MMPAwD+8Y9/IDw8HKtXr8bzzz8vWR0tJYSQuwQiIiLSGMUEwNraWgDAH//4R0RERHj1tfLy8lBSUoL4+Hj3NpPJhJEjR2LXrl1NBsDq6mpUV1e7P7bZbAAAu90Ou90uWX1Oh8P9fo3drosng7j+/aT8d1Qy9qtteusX0F/P7FfdtNJHSygmAPr5+eGFF17AkSNHvP5aJSUlAIDw8HCP7eHh4Thx4kSTn5eamopFixY12J6eno7AwEDJ6tt/2gDAt+7c1i3w1X7+c7NarXKX0KrYr7bprV9Afz2zX3WqqqqSuwTZKSYAAsCgQYOwb98+REVFtcrrXT2yJoS45mjbvHnzkJyc7P7YZrMhMjIS8fHxCA4Olqwu+/5i/Os/BwEA99xzDwIDTJKdW6nsdjusVitGjx4No9Eodzlex361TW/9Avrrmf2qm2sGT88UFQCnTZuGl156CYWFhYiNjUVQUJDH/n79+knyOq4p5pKSEnTq1Mm9vbS0tMGoYH0mkwkmU8MwZjQaJf2B8PP1vfK+n7TnVjqp/y2Vjv1qm976BfTXM/tVJy300FKKCoATJ04EAI/HvhkMBvfInKPetXEtER0djYiICFitVgwYMAAAUFNTg4yMDCxevFiS15AKbwEhIiIiqSkqAObl5Ul2rgsXLuA///mPx7lzcnLQoUMHdO3aFUlJSXjjjTfQo0cP9OjRA2+88QYCAwMxadIkyWq4WfVnoXkXMBEREUlNUQFQymv/fvrpJ9x1113uj13X7k2ZMgV///vf8fLLL+PixYuYNm0aysrKMGjQIKSnpyvu8XPMf0RERCQ1RS0EDQD/+te/MGzYMFgsFvcducuWLcPXX399Q+cZNWoUhBAN3v7+978DqJtaXrhwIYqLi3Hp0iVkZGQgJiZG6nZaTHASmIiIiCSmqAC4YsUKJCcnY+zYsTh//rz7mr927dpJuki0mnAEkIiIiKSmqAD43nvv4cMPP8T8+fPhW+9O2Li4OBw8eFDGylpX/aVonAyAREREJDFFBcC8vDz3Xbn1mUwmVFZWylCREjABEhERkbQUFQCjo6ORk5PTYPvGjRvRu3dvGSqSH6eAiYiISGqKugt4zpw5mD59Oi5dugQhBDIzM/H5558jNTUVH330kdzlyYL5j4iIiKSmqAD41FNPoba2Fi+//DKqqqowadIkdO7cGX/961/x+OOPy11eq6n/MDonhwCJiIhIYooKgADw3HPP4bnnnsOZM2fgdDoRFhYmd0myYv4jIiIiqSkuALqEhobKXYIiMP8RERGR1BR1EwjV8Qh9HAIkIiIiiTEAKhzXASQiIiKpMQAqkKg36sf8R0RERFJjAFQ4wSlgIiIikpjsN4H87W9/a/axM2fO9GIlylE/83EKmIiIiKQmewB89913m3WcwWDQTwDkxC8RERF5kewBMC8vT+4SFKf+CCCngImIiEhqvAZQgTwCoHxlEBERkUbJPgJ4tcLCQmzYsAH5+fmoqanx2Ld06VKZqmpd9UMfHwVHREREUlNUAPz+++8xYcIEREdH4+eff0ZMTAyOHz8OIQQGDhwod3mtxmMZGOY/IiIikpiipoDnzZuHl156CYcOHUJAQAC+/PJLFBQUYOTIkXj00UflLk8WzH9EREQkNUUFwCNHjmDKlCkAAD8/P1y8eBFt27bFa6+9hsWLF8tcXesRTX5ARERE1HKKCoBBQUGorq4GAFgsFvz666/ufWfOnJGrrNbnsQ4gEyARERFJS1HXAA4ePBj/8z//g969e+P+++/HSy+9hIMHD2LdunUYPHiw3OW1mvrrADL/EdH/a+/Oo6K8zjCAPx+zwSAMiAqOC+KCG5gatMYtmjR6YtwSa1QkYGo8qTlxQeOWpj1BTxVNUrdaTU1T22bDU496bGpMsFWirSuIe4KNIGIEggLDOuvtHzgThkGDYYbZnt8548zc78697zuyvNxvGSIiZ/OoAnDjxo2orq4GAKSlpaG6uhq7d+9G7969W3zBaF/Ay8AQERGRK3lUAdizZ0/bY7Vaje3bt7sxGvdpXPSdvH4H/bRhbouFiIiIfI9HHQPYWHV1NXQ6nd3NXzReAUz79Cv3BUJEREQ+yaMKwPz8fEycOBHBwcHQaDQIDw9HeHg4wsLCEB4e7tS50tLSIEmS3S0qKsqpc/xY/CxgIiIiciWP2gWclJQEAPjzn/+MyMhISJLk0vkGDhyIw4cP257LZDKXztdSPPGDiIiIXMmjCsALFy4gOzsbffv2bZP55HK5x6z6EREREbUVj9oFPHToUNy8ebPN5rt27Rq0Wi1iYmIwa9YsXL9+vc3mfpDGC4AhgR5VoxMREZEP8Kjq4k9/+hPmz5+PW7duIS4uDgqFwm77oEGDnDbXsGHD8Le//Q2xsbEoKSnBb3/7W4wYMQKXL19GREREs6/R6/W2C1UDsJ2YYjQaYTQanRab2WSyPX68d3unju2prDn6Q64A8/V1/pYv4H85M1/v5it5tIYkhOcccXby5EnMnj0bBQUFtjZJkiCEgCRJMJvNLpu7pqYGvXr1wooVK7B06dJm+6SlpWH16tUO7R9//DHUarXTYjlWLGFPfsPxiD9pb8Ev+lqcNjYREZG/q62txezZs1FZWYnQ0FB3h+MWHrUCOHfuXAwePBiffPJJm5wE0lhwcDDi4+Nx7dq1+/Z5/fXX7YpDnU6Hbt26Yfz48U79ArpzshDIb7j8S3iHjnjmmQSnje2pjEYjMjMzMW7cOIeVX1/EfH2bv+UL+F/OzNe7+dOl5e7HowrAGzdu4MCBA+jdu3ebz63X63H16lWMHj36vn1UKhVUKpVDu0KhcOo3REDA94dmGi3wiW+2lnL2e+npmK9v87d8Af/Lmfl6J1/IobU86iSQJ598EufPn2+TuZYtW4asrCzk5+fj1KlTmD59OnQ6HebMmdMm8z9I433yBhN3/xIREZFzedQK4OTJk7FkyRJcvHgR8fHxDhX6lClTnDZXUVEREhMTUVZWho4dO+Kxxx7DyZMnER0d7bQ5fqzGR2UazCwAiYiIyLk8qgCcP38+AGDNmjUO25x9EkhGRobTxnK2xiuAeiMLQCIiInIujyoALRYWO01xBZCIiIiczaOOAaQGja/Mw2MAiYiIyNncvgK4detWvPzyywgMDMTWrVsf2HfRokVtFJXn4AogEREROZvbC8BNmzYhKSkJgYGB2LRp0337SZLkNwWg3UkgXAEkIiIiJ3N7AZifn9/sY38mGp0GwhVAIiIicjaPOgZwzZo1qK2tdWivq6tr9sxgX8UVQCIiInIljyoAV69ejerqaof22traZj+D11c1vgyM0SzgQR/XTERERD7AowpAIUSzn/97/vx5tG/f3g0RuUfTeo+7gYmIiMiZ3H4MIACEh4dDkiRIkoTY2Fi7ItBsNqO6utp2kWh/IGBfARpMFqjkMjdFQ0RERL7GIwrAzZs3QwiBuXPnYvXq1dBoNLZtSqUSPXr0wPDhw90YYdtyWAHkcYBERETkRB5RAM6ZMwcAEBMTgxEjRjh8BrC/07MAJCIiIifyiALQasyYMTCbzdizZw+uXr0KSZLQv39/TJ06FXK5R4XaprgCSERERM7kUVXVpUuXMHXqVBQXF6Nv374AgLy8PHTs2BEHDhxAfHy8myNsG03P+uVJIERERORMHnUW8Lx58zBw4EAUFRUhJycHOTk5uHnzJgYNGoSXX37Z3eG1GR4DSERERK7kUSuA58+fx9mzZxEeHm5rCw8Px9q1azF06FA3Rta2ml71j8cAEhERkTN51Apg3759UVJS4tBeWlqK3r17uyEi9+AKIBEREbmSRxWA69atw6JFi7Bnzx4UFRWhqKgIe/bsQWpqKjZs2ACdTme7+TKH6wDyGEAiIiJyIo/aBTxp0iQAwIwZM2wXg7aeEDF58mTbc0mSYDab3RNkG+AKIBEREbmSRxWAR44ccXcIHkEeIEEpD7AVfiwAiYiIyJk8qgAcM2aMu0PwCAt/1gfzH++Bye8cwleVATD48GonERERtT2PKgABoKKiAu+//77tQtADBgzA3Llz7T4ezl/I7x2hqTdyBZCIiIicx6NOAjl79ix69eqFTZs24e7duygrK8PGjRvRq1cv5OTkuDu8NqeSNdxX603uDYSIiIh8iketAC5ZsgRTpkzBe++9Z/voN5PJhHnz5iE1NRVffvmlmyNsW+p7BaCuzujeQIiIiMineFQBePbsWbviDwDkcjlWrFiBIUOGuDEy9wi89zbo6rkCSERERM7jUQVgaGgoCgsL0a9fP7v2mzdvIiQkxE1RuU+QrOF6MLp6560ACiGgN1lQbzSj3mhBndGMeqO54d5gRo3BjFqDCdV6E2r1ZtQYTKg1mFGjb7ivN5qhlAcgSCFDoEIGtVKG9sFKdGinQkS7hvsu4UEIDVQ4LWYiIiJyLo8qAGfOnImXXnoJ77zzDkaMGAFJknD8+HEsX74ciYmJ7g6vzanv/e8U3qnF7jOFCJAktA9WIjpCjfbBKtToTSjW1eN2ZT1uV9ThdmU9vqvS24q2OkNDAVdvMKPeZEGdwYx6k9nhOoOuEK5WoHtEMKLbqxEdoUb39mr07tQOfSJD0E7lUV92REREfsejfhO/8847kCQJKSkpMJkadnsqFAq88sorWL9+vUvm3L59O95++23cvn0bAwcOxObNmzF69GiXzPWwOgY2VGpnb5Tj7I1yp48vD5AQpJBBpZAhSBmAQLkMwSo5glUyqJVyBCutz+VQK2UIVsqhUjRcn9C6glitN+FujQF3avQoqzLgu2o97tYYUF5rRHltBc7frHCYt2t4EGIjQ9Ansh1iOzXcR4ernJ4fERERNc+jCkClUoktW7YgPT0d33zzDYQQ6N27N9RqtUvm2717N1JTU7F9+3aMHDkSf/zjHzFhwgRcuXIF3bt3d8mcD0MbDLsLQj/aPQx6kwUFZTWoMZihkgegU6gKnTVB0GoCEaUJQmSoqqFoUzYUbUFKGYIU39+rFN/vvlXIXHMSeLXehMI7tSi8W4Mbd2pReLcWBXdqcK2kGqVVehSV16GovA7//qrU9hpJAtorZdh/NwexUaG2wrCzJgjtg5WQBUguiZWIiMgfeVQBaKVWqxEfH+/yeTZu3IiXXnoJ8+bNAwBs3rwZn3/+OXbs2IH09HSXz/9D1HLgD4mP4GR+BV5+vCciQwMBNBzHZxHw2KKonUqOAdpQDNCGOmyrqDUgr6QaX5dU4VpJFfJKqvC/0mqUVRtwRy/hyNdlOPJ1md1rAiQgop0KHdup0DFEBU2QAqFBcoQEKhAS2HAfGihHaKACwSo5lPIAKGUBUCnu3csDoJQHQH6v4BWN9oE33hsuRMM2s6Xh/bW+z2YhYLEICAFYhGh0u/fcAoe2hnG+bxcC98ZteGwwmXDxrgTV1VIoFHJIEiBBAiQgQJIgoaEotj7Gve0BEiBJ0r3+9o8DbI8b7q2sjxu32+azPW7ct7n2e233Gc9uHmvMjeYxmoyoNAClVXoo5GZbPvbxff/axnNAcoxFajR20xisbc32b9yZiMiPSUK0xRFhnsdgMECtVuPvf/87nnvuOVv74sWLkZubi6ysrB8cQ6fTQaPRoLKyEqGhjsVOaxiNRhw8eBDPPPMMFArfP6GipKIGHx44jIiecbh+pw55JVX45rsalFXr2+SYRfI/dkU0mik6gWYLZVuB27RwbbRdCAGjwQCVSmW3DXAsUhsXpZL0kHM2EyMa92/l+/MwhBDQ6XQIDQ215fyj525l9K2t81vyciEEKioqERamcfzDwgf/0BDCgsqKSmjCNJCktr2EcOLQbpj1U+fulXPl729v4ZErgG2hrKwMZrMZkZGRdu2RkZEoLi5u9jV6vR56vd72XKfTAWgo1oxG516rzzqes8f1VCFKCb01wLhHO9sVvCazBeW1RnxXrUdZtQHfVemhqzehqt6IqnrTvccNZy3r6o2o0ZthMFlgMFtgMFmgv/f4YYtI6+qbdcUtwPb8+8fWPrIAyaG/rLnXBjR6Lex/WVoEICDurUI2rEyKe6uF1naLAGDtA9hWJBuaG+6tK5cNPRv+saYurH0B27jWx7hPe3P9Hzzm9+12Y4qGXyCQJLv+7mSL1yEQZwUmodpkcNJY3kICaqrcHUQbklBYo3N3EG1IAqrbPt8xvSNc9jvWn/ltAWjV9C83IcR9dxOlp6dj9erVDu1ffPGFy45TzMzMdMm4nuqH8g26d7OV7YH3bg9gLZ7MjX6vN97t2FhAo5WftuH8k3u8kV3xiO8fNG0TosnzJn2bKy4b9222vUnbA8cQ9uXhA+NqLqcmfR+Ua9P57PtKLR7jR2nlAK15ubsX/N393pGjduVf4+DBr506Zm1trVPH80Z+WwB26NABMpnMYbWvtLTUYVXQ6vXXX8fSpUttz3U6Hbp164bx48e7ZBdwZmYmxo0b5xe7gJmvb2O+vs/fcma+3s26B8+f+W0BqFQqkZCQgMzMTLtjADMzMzF16tRmX6NSqaBSOV6uRKFQuOwbwpVjeyLm69uYr+/zt5yZr3fyhRxay28LQABYunQpkpOTMWTIEAwfPhw7d+5EYWEh5s+f36LXW49zcsVfEkajEbW1tdDpdH7xhcp8fRvz9X3+ljPz9W7W39t+eh4sAD8vAGfOnIk7d+5gzZo1uH37NuLi4nDw4EFER0e36PVVVQ0HO3fr1s2VYRIREZELVFVVQaPRuDsMt/Dby8A4g8ViwbfffouQkBCnX1/MenzhzZs3/eIUdebr25iv7/O3nJmvdxNCoKqqClqtFgEBbXtZG0/h1yuArRUQEICuXbu6dI7Q0FCf+GZrKebr25iv7/O3nJmv9/LXlT8r/yx7iYiIiPwYC0AiIiIiPyNLS0tLc3cQ1DyZTIaxY8dCLvePPfXM17cxX9/nbzkzX/JmPAmEiIiIyM9wFzARERGRn2EBSERERORnWAASERER+RkWgERERER+hgWgB9q+fTtiYmIQGBiIhIQEHDt2zN0hOUV6ejqGDh2KkJAQdOrUCc8++yy+/vpruz56vR4LFy5Ehw4dEBwcjClTpqCoqMhNETtXeno6JElCamqqrc3X8r116xZeeOEFREREQK1W4yc/+Qmys7Nt24UQSEtLg1arRVBQEMaOHYvLly+7MeLWMZlM+PWvf42YmBgEBQWhZ8+eWLNmDSwWi62PN+f85ZdfYvLkydBqtZAkCfv377fb3pLcysvLkZycDI1GA41Gg+TkZFRUVLRlGi32oHyNRiNWrlyJ+Ph4BAcHQ6vVIiUlBd9++63dGL6Sb1O//OUvIUkSNm/ebNfuTfmSPRaAHmb37t1ITU3FG2+8gXPnzmH06NGYMGECCgsL3R1aq2VlZeHVV1/FyZMnkZmZCZPJhPHjx6OmpsbWJzU1Ffv27UNGRgaOHz+O6upqTJo0CWaz2Y2Rt96ZM2ewc+dODBo0yK7dl/ItLy/HyJEjoVAo8Nlnn+HKlSv43e9+h7CwMFuft956Cxs3bsS2bdtw5swZREVFYdy4cbbP1fY2GzZswLvvvott27bh6tWreOutt/D222/j97//va2PN+dcU1ODRx55BNu2bWt2e0tymz17NnJzc3Ho0CEcOnQIubm5SE5ObqsUHsqD8q2trUVOTg5+85vfICcnB3v37kVeXh6mTJli189X8m1s//79OHXqFLRarcM2b8qXmhDkUX7605+K+fPn27X169dPrFq1yk0RuU5paakAILKysoQQQlRUVAiFQiEyMjJsfW7duiUCAgLEoUOH3BVmq1VVVYk+ffqIzMxMMWbMGLF48WIhhO/lu3LlSjFq1Kj7brdYLCIqKkqsX7/e1lZfXy80Go1499132yJEp5s4caKYO3euXdu0adPECy+8IITwrZwBiH379tmetyS3K1euCADi5MmTtj4nTpwQAMRXX33VdsH/CE3zbc7p06cFAHHjxg0hhG/mW1RUJLp06SIuXbokoqOjxaZNm2zbvDlfEoIrgB7EYDAgOzsb48ePt2sfP348/vvf/7opKteprKwEALRv3x4AkJ2dDaPRaJe/VqtFXFycV+f/6quvYuLEiXjqqafs2n0t3wMHDmDIkCF4/vnn0alTJwwePBjvvfeebXt+fj6Ki4vt8lWpVBgzZoxX5gsAo0aNwr/+9S/k5eUBAM6fP4/jx4/jmWeeAeCbOVu1JLcTJ05Ao9Fg2LBhtj6PPfYYNBqN1+cPNPwMkyTJtsrta/laLBYkJydj+fLlGDhwoMN2X8vX3/By3h6krKwMZrMZkZGRdu2RkZEoLi52U1SuIYTA0qVLMWrUKMTFxQEAiouLoVQqER4ebtfXm/PPyMhATk4Ozpw547DN1/K9fv06duzYgaVLl+JXv/oVTp8+jUWLFkGlUiElJcWWU3Nf3zdu3HBHyK22cuVKVFZWol+/fpDJZDCbzVi7di0SExMBwCdztmpJbsXFxejUqZPDazt16uSVX+ON1dfXY9WqVZg9ezZCQ0MB+F6+GzZsgFwux6JFi5rd7mv5+hsWgB5IkiS750IIhzZvt2DBAly4cAHHjx//wb7emv/NmzexePFifPHFFwgMDGzx67w1X4vFgiFDhmDdunUAgMGDB+Py5cvYsWMHUlJSbP186et79+7d+PDDD/Hxxx9j4MCByM3NRWpqKrRaLebMmWPr50s5N/VDuTWXp7fnbzQaMWvWLFgsFmzfvt1um6/km52djS1btiAnJ+eBsftKvv6Iu4A9SIcOHSCTyRz+ciotLXX4K9ubLVy4EAcOHMCRI0fQtWtXW3tUVBQMBgPKy8vt+ntr/tnZ2SgtLUVCQgLkcjnkcjmysrKwdetWyOVyREZG+lS+nTt3xoABA+za+vfvbzuBKSoqCgB86ut7+fLlWLVqFWbNmoX4+HgkJydjyZIlSE9PB+CbOVu1JLeoqCiUlJQ4vPa7777z2vyNRiNmzJiB/Px8ZGZm2lb/AN/K99ixYygtLUX37t1tP79u3LiB1157DT169ADgW/n6IxaAHkSpVCIhIQGZmZl27ZmZmRgxYoSbonIeIQQWLFiAvXv34t///jdiYmLstickJEChUNjlf/v2bVy6dMkr8//Zz36GixcvIjc313YbMmQIkpKSbI99Kd+RI0c6XNYnLy8P0dHRAICYmBhERUXZ5WswGJCVleWV+QINZ4YGBNj/GJXJZLbLwPhizlYtyW348OGorKzE6dOnbX1OnTqFyspKr8zfWvxdu3YNhw8fRkREhN12X8o3OTkZFy5csPv5pdVqsXz5cnz++ecAfCtfv+Smk0/oPjIyMoRCoRDvv/++uHLlikhNTRXBwcGioKDA3aG12iuvvCI0Go04evSouH37tu1WW1tr6zN//nzRtWtXcfjwYZGTkyOefPJJ8cgjjwiTyeTGyJ2n8VnAQvhWvqdPnxZyuVysXbtWXLt2TXz00UdCrVaLDz/80NZn/fr1QqPRiL1794qLFy+KxMRE0blzZ6HT6dwY+Y83Z84c0aVLF/Hpp5+K/Px8sXfvXtGhQwexYsUKWx9vzrmqqkqcO3dOnDt3TgAQGzduFOfOnbOd9dqS3J5++mkxaNAgceLECXHixAkRHx8vJk2a5K6UHuhB+RqNRjFlyhTRtWtXkZuba/czTK/X28bwlXyb0/QsYCG8K1+yxwLQA/3hD38Q0dHRQqlUikcffdR2mRRvB6DZ265du2x96urqxIIFC0T79u1FUFCQmDRpkigsLHRf0E7WtAD0tXz/8Y9/iLi4OKFSqUS/fv3Ezp077bZbLBbx5ptviqioKKFSqcTjjz8uLl686KZoW0+n04nFixeL7t27i8DAQNGzZ0/xxhtv2BUE3pzzkSNHmv2enTNnjhCiZbnduXNHJCUliZCQEBESEiKSkpJEeXm5G7L5YQ/KNz8//74/w44cOWIbw1fybU5zBaA35Uv2JCGEaIuVRiIiIiLyDDwGkIiIiMjPsAAkIiIi8jMsAImIiIj8DAtAIiIiIj/DApCIiIjIz7AAJCIiIvIzLACJiIiI/AwLQCIiIiI/wwKQiHzC0aNHIUkSKioq2nxuSZIgSRLCwsJa1N8aqyRJePbZZ10cHRGRIxaAROR1xo4di9TUVLu2ESNG4Pbt29BoNG6JadeuXcjLy2tRX2usM2bMcHFURETNYwFIRD5BqVQiKioKkiS5Zf6wsDB06tSpRX2tsQYFBbk4KiKi5rEAJCKv8uKLLyIrKwtbtmyx7UYtKChw2AX8l7/8BWFhYfj000/Rt29fqNVqTJ8+HTU1NfjrX/+KHj16IDw8HAsXLoTZbLaNbzAYsGLFCnTp0gXBwcEYNmwYjh49+tBxnj9/Hk888QRCQkIQGhqKhIQEnD171llvAxFRq8jdHQAR0cPYsmUL8vLyEBcXhzVr1gAAOnbsiIKCAoe+tbW12Lp1KzIyMlBVVYVp06Zh2rRpCAsLw8GDB3H9+nX8/Oc/x6hRozBz5kwAwC9+8QsUFBQgIyMDWq0W+/btw9NPP42LFy+iT58+LY4zKSkJgwcPxo4dOyCTyZCbmwuFQuGU94CIqLVYABKRV9FoNFAqlVCr1YiKinpgX6PRiB07dqBXr14AgOnTp+ODDz5ASUkJ2rVrhwEDBuCJJ57AkSNHMHPmTHzzzTf45JNPUFRUBK1WCwBYtmwZDh06hF27dmHdunUtjrOwsBDLly9Hv379AOChikciIldjAUhEPkutVtuKPwCIjIxEjx490K5dO7u20tJSAEBOTg6EEIiNjbUbR6/XIyIi4qHmXrp0KebN0lrWRwAAAe9JREFUm4cPPvgATz31FJ5//nm7WIiI3IkFIBH5rKa7XCVJarbNYrEAACwWC2QyGbKzsyGTyez6NS4aWyItLQ2zZ8/GP//5T3z22Wd48803kZGRgeeee+5HZEJE5FwsAInI6yiVSrsTN5xl8ODBMJvNKC0txejRo1s9XmxsLGJjY7FkyRIkJiZi165dLACJyCPwLGAi8jo9evTAqVOnUFBQgLKyMtsKXmvFxsYiKSkJKSkp2Lt3L/Lz83HmzBls2LABBw8ebPE4dXV1WLBgAY4ePYobN27gP//5D86cOYP+/fs7JU4iotZiAUhEXmfZsmWQyWQYMGAAOnbsiMLCQqeNvWvXLqSkpOC1115D3759MWXKFJw6dQrdunVr8RgymQx37txBSkoKYmNjMWPGDEyYMAGrV692WpxERK0hCSGEu4MgIvJmkiRh3759D/2xbi+++CIqKiqwf/9+F0VGRNQ8rgASETlBYmIiunbt2qK+x44dQ7t27fDRRx+5OCoiouZxBZCIqJX+97//AWjY9RsTE/OD/evq6nDr1i0ADWcX/9D1DImInI0FIBEREZGf4S5gIiIiIj/DApCIiIjIz7AAJCIiIvIzLACJiIiI/AwLQCIiIiI/wwKQiIiIyM+wACQiIiLyMywAiYiIiPzM/wGbM5AJ7GNxJgAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 7, - "metadata": { - "image/png": { - "width": 600 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "Image(filename=\"Figure_3.png\",width=600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "![gif](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathTracking/cgmres_nmpc/animation.gif)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Mathematical Formulation\n", - "\n", - "Motion model is\n", - "\n", - "$$\\dot{x}=vcos\\theta$$\n", - "\n", - "$$\\dot{y}=vsin\\theta$$\n", - "\n", - "$$\\dot{\\theta}=\\frac{v}{WB}sin(u_{\\delta})$$ (tan is not good for optimization)\n", - "\n", - "$$\\dot{v}=u_a$$\n", - "\n", - "Cost function is \n", - "\n", - "$$J=\\frac{1}{2}(u_a^2+u_{\\delta}^2)-\\phi_a d_a-\\phi_\\delta d_\\delta$$\n", - "\n", - "Input constraints are\n", - "\n", - "$$|u_a| \\leq u_{a,max}$$\n", - "\n", - "$$|u_\\delta| \\leq u_{\\delta,max}$$\n", - "\n", - "So, Hamiltonian is\n", - "\n", - "$$J=\\frac{1}{2}(u_a^2+u_{\\delta}^2)-\\phi_a d_a-\\phi_\\delta d_\\delta\\\\ +\\lambda_1vcos\\theta+\\lambda_2vsin\\theta+\\lambda_3\\frac{v}{WB}sin(u_{\\delta})+\\lambda_4u_a\\\\ \n", - "+\\rho_1(u_a^2+d_a^2+u_{a,max}^2)+\\rho_2(u_\\delta^2+d_\\delta^2+u_{\\delta,max}^2)$$\n", - "\n", - "Partial differential equations of the Hamiltonian are:\n", - "\n", - "$\\begin{equation*}\n", - "\\frac{\\partial H}{\\partial \\bf{x}}=\\\\ \n", - "\\begin{bmatrix}\n", - "\\frac{\\partial H}{\\partial x}= 0&\\\\\n", - "\\frac{\\partial H}{\\partial y}= 0&\\\\\n", - "\\frac{\\partial H}{\\partial \\theta}= -\\lambda_1vsin\\theta+\\lambda_2vcos\\theta&\\\\\n", - "\\frac{\\partial H}{\\partial v}=-\\lambda_1cos\\theta+\\lambda_2sin\\theta+\\lambda_3\\frac{1}{WB}sin(u_{\\delta})&\\\\\n", - "\\end{bmatrix}\n", - "\\\\\n", - "\\end{equation*}$\n", - "\n", - "\n", - "$\\begin{equation*}\n", - "\\frac{\\partial H}{\\partial \\bf{u}}=\\\\ \n", - "\\begin{bmatrix}\n", - "\\frac{\\partial H}{\\partial u_a}= u_a+\\lambda_4+2\\rho_1u_a&\\\\\n", - "\\frac{\\partial H}{\\partial u_\\delta}= u_\\delta+\\lambda_3\\frac{v}{WB}cos(u_{\\delta})+2\\rho_2u_\\delta&\\\\\n", - "\\frac{\\partial H}{\\partial d_a}= -\\phi_a+2\\rho_1d_a&\\\\\n", - "\\frac{\\partial H}{\\partial d_\\delta}=-\\phi_\\delta+2\\rho_2d_\\delta&\\\\\n", - "\\end{bmatrix}\n", - "\\\\\n", - "\\end{equation*}$" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Ref\n", - "\n", - "- [Shunichi09/nonlinear\\_control: Implementing the nonlinear model predictive control, sliding mode control](https://github.com/Shunichi09/nonlinear_control)\n", - "\n", - "- [非線形モデル予測制御におけるCGMRES法をpythonで実装する \\- Qiita](https://qiita.com/MENDY/items/4108190a579395053924)" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.8" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/PathTracking/cgmres_nmpc/cgmres_nmpc.py b/PathTracking/cgmres_nmpc/cgmres_nmpc.py index bb5699b888..ee40e73504 100644 --- a/PathTracking/cgmres_nmpc/cgmres_nmpc.py +++ b/PathTracking/cgmres_nmpc/cgmres_nmpc.py @@ -4,9 +4,9 @@ author Atsushi Sakai (@Atsushi_twi) -Ref: +Reference: Shunichi09/nonlinear_control: Implementing the nonlinear model predictive -control, sliding mode control https://github.com/Shunichi09/nonlinear_control +control, sliding mode control https://github.com/Shunichi09/PythonLinearNonlinearControl """ diff --git a/PathTracking/lqr_speed_steer_control/lqr_speed_steer_control.py b/PathTracking/lqr_speed_steer_control/lqr_speed_steer_control.py index bd2e54bf91..5831d02d30 100644 --- a/PathTracking/lqr_speed_steer_control/lqr_speed_steer_control.py +++ b/PathTracking/lqr_speed_steer_control/lqr_speed_steer_control.py @@ -7,17 +7,14 @@ """ import math import sys - import matplotlib.pyplot as plt import numpy as np import scipy.linalg as la +import pathlib -sys.path.append("../../PathPlanning/CubicSpline/") - -try: - import cubic_spline_planner -except ImportError: - raise +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +from utils.angle import angle_mod +from PathPlanning.CubicSpline import cubic_spline_planner # === Parameters ===== @@ -56,7 +53,7 @@ def update(state, a, delta): def pi_2_pi(angle): - return (angle + math.pi) % (2 * math.pi) - math.pi + return angle_mod(angle) def solve_dare(A, B, Q, R): @@ -225,8 +222,9 @@ def do_simulation(cx, cy, cyaw, ck, speed_profile, goal): if target_ind % 1 == 0 and show_animation: plt.cla() # for stopping simulation with the esc key. - plt.gcf().canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) plt.plot(cx, cy, "-r", label="course") plt.plot(x, y, "ob", label="trajectory") plt.plot(cx[target_ind], cy[target_ind], "xg", label="target") @@ -294,6 +292,13 @@ def main(): plt.xlabel("x[m]") plt.ylabel("y[m]") plt.legend() + plt.subplots(1) + + plt.plot(t, np.array(v)*3.6, label="speed") + plt.grid(True) + plt.xlabel("Time [sec]") + plt.ylabel("Speed [m/s]") + plt.legend() plt.subplots(1) plt.plot(s, [np.rad2deg(iyaw) for iyaw in cyaw], "-r", label="yaw") diff --git a/PathTracking/lqr_steer_control/lqr_steer_control.py b/PathTracking/lqr_steer_control/lqr_steer_control.py index 6f01e5a840..3c066917ff 100644 --- a/PathTracking/lqr_steer_control/lqr_steer_control.py +++ b/PathTracking/lqr_steer_control/lqr_steer_control.py @@ -10,13 +10,11 @@ import math import numpy as np import sys -sys.path.append("../../PathPlanning/CubicSpline/") - -try: - import cubic_spline_planner -except: - raise +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +from utils.angle import angle_mod +from PathPlanning.CubicSpline import cubic_spline_planner Kp = 1.0 # speed proportional gain @@ -26,7 +24,7 @@ # parameters dt = 0.1 # time tick[s] -L = 0.5 # Wheel base of the vehicle [m] +L = 0.5 # Wheelbase of the vehicle [m] max_steer = np.deg2rad(45.0) # maximum steering angle[rad] show_animation = True @@ -57,14 +55,14 @@ def update(state, a, delta): return state -def PIDControl(target, current): +def pid_control(target, current): a = Kp * (target - current) return a def pi_2_pi(angle): - return (angle + math.pi) % (2 * math.pi) - math.pi + return angle_mod(angle) def solve_DARE(A, B, Q, R): @@ -72,10 +70,11 @@ def solve_DARE(A, B, Q, R): solve a discrete time_Algebraic Riccati equation (DARE) """ X = Q - maxiter = 150 + Xn = Q + max_iter = 150 eps = 0.01 - for i in range(maxiter): + for i in range(max_iter): Xn = A.T @ X @ A - A.T @ X @ B @ \ la.inv(R + B.T @ X @ B) @ B.T @ X @ A + Q if (abs(Xn - X)).max() < eps: @@ -180,7 +179,7 @@ def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal): dl, target_ind, e, e_th = lqr_steering_control( state, cx, cy, cyaw, ck, e, e_th) - ai = PIDControl(speed_profile[target_ind], state.v) + ai = pid_control(speed_profile[target_ind], state.v) state = update(state, ai, dl) if abs(state.v) <= stop_speed: @@ -204,8 +203,9 @@ def closed_loop_prediction(cx, cy, cyaw, ck, speed_profile, goal): if target_ind % 1 == 0 and show_animation: plt.cla() # for stopping simulation with the esc key. - plt.gcf().canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) plt.plot(cx, cy, "-r", label="course") plt.plot(x, y, "ob", label="trajectory") plt.plot(cx[target_ind], cy[target_ind], "xg", label="target") diff --git a/PathTracking/model_predictive_speed_and_steer_control/Model_predictive_speed_and_steering_control.ipynb b/PathTracking/model_predictive_speed_and_steer_control/Model_predictive_speed_and_steering_control.ipynb deleted file mode 100644 index 6e3fe45be3..0000000000 --- a/PathTracking/model_predictive_speed_and_steer_control/Model_predictive_speed_and_steering_control.ipynb +++ /dev/null @@ -1,333 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Model predictive speed and steering control\n", - "\n", - "![Model predictive speed and steering control](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathTracking/model_predictive_speed_and_steer_control/animation.gif?raw=true)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "code:\n", - "\n", - "[PythonRobotics/model\\_predictive\\_speed\\_and\\_steer\\_control\\.py at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/model_predictive_speed_and_steer_control/model_predictive_speed_and_steer_control.py)\n", - "\n", - "This is a path tracking simulation using model predictive control (MPC).\n", - "\n", - "The MPC controller controls vehicle speed and steering base on linealized model.\n", - "\n", - "This code uses cvxpy as an optimization modeling tool.\n", - "\n", - "- [Welcome to CVXPY 1\\.0 — CVXPY 1\\.0\\.6 documentation](http://www.cvxpy.org/)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MPC modeling\n", - "\n", - "State vector is:\n", - "\n", - "$$ z = [x, y, v,\\phi]$$\n", - "\n", - "x: x-position, y:y-position, v:velocity, φ: yaw angle\n", - "\n", - "Input vector is:\n", - "\n", - "$$ u = [a, \\delta]$$\n", - "\n", - "a: accellation, δ: steering angle\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The MPC cotroller minimize this cost function for path tracking:\n", - "\n", - "$$min\\ Q_f(z_{T,ref}-z_{T})^2+Q\\Sigma({z_{t,ref}-z_{t}})^2+R\\Sigma{u_t}^2+R_d\\Sigma({u_{t+1}-u_{t}})^2$$\n", - "\n", - "z_ref come from target path and speed." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "subject to:\n", - "\n", - "- Linearlied vehicle model\n", - "\n", - "$$z_{t+1}=Az_t+Bu+C$$\n", - "\n", - "- Maximum steering speed\n", - "\n", - "$$|u_{t+1}-u_{t}| math.pi): - angle = angle - 2.0 * math.pi - - while(angle < -math.pi): - angle = angle + 2.0 * math.pi - - return angle + return angle_mod(angle) def get_linear_model_matrix(v, phi, delta): @@ -175,9 +169,9 @@ def update_state(state, a, delta): state.yaw = state.yaw + state.v / WB * math.tan(delta) * DT state.v = state.v + a * DT - if state. v > MAX_SPEED: + if state.v > MAX_SPEED: state.v = MAX_SPEED - elif state. v < MIN_SPEED: + elif state.v < MIN_SPEED: state.v = MIN_SPEED return state @@ -228,8 +222,9 @@ def predict_motion(x0, oa, od, xref): def iterative_linear_mpc_control(xref, x0, dref, oa, od): """ - MPC contorl with updating operational point iteraitvely + MPC control with updating operational point iteratively """ + ox, oy, oyaw, ov = None, None, None, None if oa is None or od is None: oa = [0.0] * T @@ -272,7 +267,7 @@ def linear_mpc_control(xref, xbar, x0, dref): A, B, C = get_linear_model_matrix( xbar[2, t], xbar[3, t], dref[0, t]) - constraints += [x[:, t + 1] == A * x[:, t] + B * u[:, t] + C] + constraints += [x[:, t + 1] == A @ x[:, t] + B @ u[:, t] + C] if t < (T - 1): cost += cvxpy.quad_form(u[:, t + 1] - u[:, t], Rd) @@ -288,7 +283,7 @@ def linear_mpc_control(xref, xbar, x0, dref): constraints += [cvxpy.abs(u[1, :]) <= MAX_STEER] prob = cvxpy.Problem(cvxpy.Minimize(cost), constraints) - prob.solve(solver=cvxpy.ECOS, verbose=False) + prob.solve(solver=cvxpy.CLARABEL, verbose=False) if prob.status == cvxpy.OPTIMAL or prob.status == cvxpy.OPTIMAL_INACCURATE: ox = get_nparray_from_matrix(x.value[0, :]) @@ -409,10 +404,11 @@ def do_simulation(cx, cy, cyaw, ck, sp, dl, initial_state): oa, odelta, ox, oy, oyaw, ov = iterative_linear_mpc_control( xref, x0, dref, oa, odelta) + di, ai = 0.0, 0.0 if odelta is not None: di, ai = odelta[0], oa[0] + state = update_state(state, ai, di) - state = update_state(state, ai, di) time = time + DT x.append(state.x) @@ -551,6 +547,7 @@ def get_switch_back_course(dl): def main(): print(__file__ + " start!!") + start = time.time() dl = 1.0 # course tick # cx, cy, cyaw, ck = get_straight_course(dl) @@ -566,6 +563,9 @@ def main(): t, x, y, yaw, v, d, a = do_simulation( cx, cy, cyaw, ck, sp, dl, initial_state) + elapsed_time = time.time() - start + print(f"calc time:{elapsed_time:.6f} [sec]") + if show_animation: # pragma: no cover plt.close("all") plt.subplots() @@ -588,6 +588,7 @@ def main(): def main2(): print(__file__ + " start!!") + start = time.time() dl = 1.0 # course tick cx, cy, cyaw, ck = get_straight_course3(dl) @@ -599,6 +600,9 @@ def main2(): t, x, y, yaw, v, d, a = do_simulation( cx, cy, cyaw, ck, sp, dl, initial_state) + elapsed_time = time.time() - start + print(f"calc time:{elapsed_time:.6f} [sec]") + if show_animation: # pragma: no cover plt.close("all") plt.subplots() diff --git a/PathTracking/move_to_pose/__init__.py b/PathTracking/move_to_pose/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/PathTracking/move_to_pose/move_to_pose.py b/PathTracking/move_to_pose/move_to_pose.py index 2ae0090dda..faf1264953 100644 --- a/PathTracking/move_to_pose/move_to_pose.py +++ b/PathTracking/move_to_pose/move_to_pose.py @@ -3,7 +3,9 @@ Move to specified pose Author: Daniel Ingram (daniel-s-ingram) - Atsushi Sakai(@Atsushi_twi) + Atsushi Sakai (@Atsushi_twi) + Seied Muhammad Yazdian (@Muhammad-Yazdian) + Wang Zheng (@Aglargil) P. I. Corke, "Robotics, Vision & Control", Springer 2017, ISBN 978-3-319-54413-7 @@ -11,26 +13,100 @@ import matplotlib.pyplot as plt import numpy as np +import sys +import pathlib + +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +from utils.angle import angle_mod from random import random + +class PathFinderController: + """ + Constructs an instantiate of the PathFinderController for navigating a + 3-DOF wheeled robot on a 2D plane + + Parameters + ---------- + Kp_rho : The linear velocity gain to translate the robot along a line + towards the goal + Kp_alpha : The angular velocity gain to rotate the robot towards the goal + Kp_beta : The offset angular velocity gain accounting for smooth merging to + the goal angle (i.e., it helps the robot heading to be parallel + to the target angle.) + """ + + def __init__(self, Kp_rho, Kp_alpha, Kp_beta): + self.Kp_rho = Kp_rho + self.Kp_alpha = Kp_alpha + self.Kp_beta = Kp_beta + + def calc_control_command(self, x_diff, y_diff, theta, theta_goal): + """ + Returns the control command for the linear and angular velocities as + well as the distance to goal + + Parameters + ---------- + x_diff : The position of target with respect to current robot position + in x direction + y_diff : The position of target with respect to current robot position + in y direction + theta : The current heading angle of robot with respect to x axis + theta_goal: The target angle of robot with respect to x axis + + Returns + ------- + rho : The distance between the robot and the goal position + v : Command linear velocity + w : Command angular velocity + """ + + # Description of local variables: + # - alpha is the angle to the goal relative to the heading of the robot + # - beta is the angle between the robot's position and the goal + # position plus the goal angle + # - Kp_rho*rho and Kp_alpha*alpha drive the robot along a line towards + # the goal + # - Kp_beta*beta rotates the line so that it is parallel to the goal + # angle + # + # Note: + # we restrict alpha and beta (angle differences) to the range + # [-pi, pi] to prevent unstable behavior e.g. difference going + # from 0 rad to 2*pi rad with slight turn + + # The velocity v always has a constant sign which depends on the initial value of α. + rho = np.hypot(x_diff, y_diff) + v = self.Kp_rho * rho + + alpha = angle_mod(np.arctan2(y_diff, x_diff) - theta) + beta = angle_mod(theta_goal - theta - alpha) + if alpha > np.pi / 2 or alpha < -np.pi / 2: + # recalculate alpha to make alpha in the range of [-pi/2, pi/2] + alpha = angle_mod(np.arctan2(-y_diff, -x_diff) - theta) + beta = angle_mod(theta_goal - theta - alpha) + w = self.Kp_alpha * alpha - self.Kp_beta * beta + v = -v + else: + w = self.Kp_alpha * alpha - self.Kp_beta * beta + + return rho, v, w + + # simulation parameters -Kp_rho = 9 -Kp_alpha = 15 -Kp_beta = -3 +controller = PathFinderController(9, 15, 3) dt = 0.01 +MAX_SIM_TIME = 5 # seconds, robot will stop moving when time exceeds this value + +# Robot specifications +MAX_LINEAR_SPEED = 15 +MAX_ANGULAR_SPEED = 7 show_animation = True def move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal): - """ - rho is the distance between the robot and the goal position - alpha is the angle to the goal relative to the heading of the robot - beta is the angle between the robot's position and the goal position plus the goal angle - - Kp_rho*rho and Kp_alpha*alpha drive the robot along a line towards the goal - Kp_beta*beta rotates the line so that it is parallel to the goal angle - """ x = x_start y = y_start theta = theta_start @@ -38,30 +114,28 @@ def move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal): x_diff = x_goal - x y_diff = y_goal - y - x_traj, y_traj = [], [] + x_traj, y_traj, v_traj, w_traj = [x], [y], [0], [0] rho = np.hypot(x_diff, y_diff) - while rho > 0.001: + t = 0 + while rho > 0.001 and t < MAX_SIM_TIME: + t += dt x_traj.append(x) y_traj.append(y) x_diff = x_goal - x y_diff = y_goal - y - # Restrict alpha and beta (angle differences) to the range - # [-pi, pi] to prevent unstable behavior e.g. difference going - # from 0 rad to 2*pi rad with slight turn + rho, v, w = controller.calc_control_command(x_diff, y_diff, theta, theta_goal) - rho = np.hypot(x_diff, y_diff) - alpha = (np.arctan2(y_diff, x_diff) - - theta + np.pi) % (2 * np.pi) - np.pi - beta = (theta_goal - theta - alpha + np.pi) % (2 * np.pi) - np.pi + if abs(v) > MAX_LINEAR_SPEED: + v = np.sign(v) * MAX_LINEAR_SPEED - v = Kp_rho * rho - w = Kp_alpha * alpha + Kp_beta * beta + if abs(w) > MAX_ANGULAR_SPEED: + w = np.sign(w) * MAX_ANGULAR_SPEED - if alpha > np.pi / 2 or alpha < -np.pi / 2: - v = -v + v_traj.append(v) + w_traj.append(w) theta = theta + w * dt x = x + v * np.cos(theta) * dt @@ -69,12 +143,26 @@ def move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal): if show_animation: # pragma: no cover plt.cla() - plt.arrow(x_start, y_start, np.cos(theta_start), - np.sin(theta_start), color='r', width=0.1) - plt.arrow(x_goal, y_goal, np.cos(theta_goal), - np.sin(theta_goal), color='g', width=0.1) + plt.arrow( + x_start, + y_start, + np.cos(theta_start), + np.sin(theta_start), + color="r", + width=0.1, + ) + plt.arrow( + x_goal, + y_goal, + np.cos(theta_goal), + np.sin(theta_goal), + color="g", + width=0.1, + ) plot_vehicle(x, y, theta, x_traj, y_traj) + return x_traj, y_traj, v_traj, w_traj + def plot_vehicle(x, y, theta, x_traj, y_traj): # pragma: no cover # Corners of triangular vehicle when pointing to the right (0 radians) @@ -87,15 +175,16 @@ def plot_vehicle(x, y, theta, x_traj, y_traj): # pragma: no cover p2 = np.matmul(T, p2_i) p3 = np.matmul(T, p3_i) - plt.plot([p1[0], p2[0]], [p1[1], p2[1]], 'k-') - plt.plot([p2[0], p3[0]], [p2[1], p3[1]], 'k-') - plt.plot([p3[0], p1[0]], [p3[1], p1[1]], 'k-') + plt.plot([p1[0], p2[0]], [p1[1], p2[1]], "k-") + plt.plot([p2[0], p3[0]], [p2[1], p3[1]], "k-") + plt.plot([p3[0], p1[0]], [p3[1], p1[1]], "k-") - plt.plot(x_traj, y_traj, 'b--') + plt.plot(x_traj, y_traj, "b--") # for stopping simulation with the esc key. - plt.gcf().canvas.mpl_connect('key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) + plt.gcf().canvas.mpl_connect( + "key_release_event", lambda event: [exit(0) if event.key == "escape" else None] + ) plt.xlim(0, 20) plt.ylim(0, 20) @@ -104,28 +193,31 @@ def plot_vehicle(x, y, theta, x_traj, y_traj): # pragma: no cover def transformation_matrix(x, y, theta): - return np.array([ - [np.cos(theta), -np.sin(theta), x], - [np.sin(theta), np.cos(theta), y], - [0, 0, 1] - ]) + return np.array( + [ + [np.cos(theta), -np.sin(theta), x], + [np.sin(theta), np.cos(theta), y], + [0, 0, 1], + ] + ) def main(): - for i in range(5): - x_start = 20 * random() - y_start = 20 * random() - theta_start = 2 * np.pi * random() - np.pi + x_start = 20.0 * random() + y_start = 20.0 * random() + theta_start: float = 2 * np.pi * random() - np.pi x_goal = 20 * random() y_goal = 20 * random() theta_goal = 2 * np.pi * random() - np.pi - print("Initial x: %.2f m\nInitial y: %.2f m\nInitial theta: %.2f rad\n" % - (x_start, y_start, theta_start)) - print("Goal x: %.2f m\nGoal y: %.2f m\nGoal theta: %.2f rad\n" % - (x_goal, y_goal, theta_goal)) + print( + f"Initial x: {round(x_start, 2)} m\nInitial y: {round(y_start, 2)} m\nInitial theta: {round(theta_start, 2)} rad\n" + ) + print( + f"Goal x: {round(x_goal, 2)} m\nGoal y: {round(y_goal, 2)} m\nGoal theta: {round(theta_goal, 2)} rad\n" + ) move_to_pose(x_start, y_start, theta_start, x_goal, y_goal, theta_goal) -if __name__ == '__main__': +if __name__ == "__main__": main() diff --git a/PathTracking/move_to_pose/move_to_pose_robot.py b/PathTracking/move_to_pose/move_to_pose_robot.py new file mode 100644 index 0000000000..fe9f0d06b3 --- /dev/null +++ b/PathTracking/move_to_pose/move_to_pose_robot.py @@ -0,0 +1,240 @@ +""" + +Move to specified pose (with Robot class) + +Author: Daniel Ingram (daniel-s-ingram) + Atsushi Sakai (@Atsushi_twi) + Seied Muhammad Yazdian (@Muhammad-Yazdian) + +P.I. Corke, "Robotics, Vision & Control", Springer 2017, ISBN 978-3-319-54413-7 + +""" + +import matplotlib.pyplot as plt +import numpy as np +import copy +from move_to_pose import PathFinderController + +# Simulation parameters +TIME_DURATION = 1000 +TIME_STEP = 0.01 +AT_TARGET_ACCEPTANCE_THRESHOLD = 0.01 +SHOW_ANIMATION = True +PLOT_WINDOW_SIZE_X = 20 +PLOT_WINDOW_SIZE_Y = 20 +PLOT_FONT_SIZE = 8 + +simulation_running = True +all_robots_are_at_target = False + + +class Pose: + """2D pose""" + + def __init__(self, x, y, theta): + self.x = x + self.y = y + self.theta = theta + + +class Robot: + """ + Constructs an instantiate of the 3-DOF wheeled Robot navigating on a + 2D plane + + Parameters + ---------- + name : (string) + The name of the robot + color : (string) + The color of the robot + max_linear_speed : (float) + The maximum linear speed that the robot can go + max_angular_speed : (float) + The maximum angular speed that the robot can rotate about its vertical + axis + path_finder_controller : (PathFinderController) + A configurable controller to finds the path and calculates command + linear and angular velocities. + """ + + def __init__(self, name, color, max_linear_speed, max_angular_speed, + path_finder_controller): + self.name = name + self.color = color + self.MAX_LINEAR_SPEED = max_linear_speed + self.MAX_ANGULAR_SPEED = max_angular_speed + self.path_finder_controller = path_finder_controller + self.x_traj = [] + self.y_traj = [] + self.pose = Pose(0, 0, 0) + self.pose_start = Pose(0, 0, 0) + self.pose_target = Pose(0, 0, 0) + self.is_at_target = False + + def set_start_target_poses(self, pose_start, pose_target): + """ + Sets the start and target positions of the robot + + Parameters + ---------- + pose_start : (Pose) + Start position of the robot (see the Pose class) + pose_target : (Pose) + Target position of the robot (see the Pose class) + """ + self.pose_start = copy.copy(pose_start) + self.pose_target = pose_target + self.pose = pose_start + + def move(self, dt): + """ + Moves the robot for one time step increment + + Parameters + ---------- + dt : (float) + time step + """ + self.x_traj.append(self.pose.x) + self.y_traj.append(self.pose.y) + + rho, linear_velocity, angular_velocity = \ + self.path_finder_controller.calc_control_command( + self.pose_target.x - self.pose.x, + self.pose_target.y - self.pose.y, + self.pose.theta, self.pose_target.theta) + + if rho < AT_TARGET_ACCEPTANCE_THRESHOLD: + self.is_at_target = True + + if abs(linear_velocity) > self.MAX_LINEAR_SPEED: + linear_velocity = (np.sign(linear_velocity) + * self.MAX_LINEAR_SPEED) + + if abs(angular_velocity) > self.MAX_ANGULAR_SPEED: + angular_velocity = (np.sign(angular_velocity) + * self.MAX_ANGULAR_SPEED) + + self.pose.theta = self.pose.theta + angular_velocity * dt + self.pose.x = self.pose.x + linear_velocity * \ + np.cos(self.pose.theta) * dt + self.pose.y = self.pose.y + linear_velocity * \ + np.sin(self.pose.theta) * dt + + +def run_simulation(robots): + """Simulates all robots simultaneously""" + global all_robots_are_at_target + global simulation_running + + robot_names = [] + for instance in robots: + robot_names.append(instance.name) + + time = 0 + while simulation_running and time < TIME_DURATION: + time += TIME_STEP + robots_are_at_target = [] + + for instance in robots: + if not instance.is_at_target: + instance.move(TIME_STEP) + robots_are_at_target.append(instance.is_at_target) + + if all(robots_are_at_target): + simulation_running = False + + if SHOW_ANIMATION: + plt.cla() + plt.xlim(0, PLOT_WINDOW_SIZE_X) + plt.ylim(0, PLOT_WINDOW_SIZE_Y) + + # for stopping simulation with the esc key. + plt.gcf().canvas.mpl_connect( + 'key_release_event', + lambda event: [exit(0) if event.key == 'escape' else None]) + + plt.text(0.3, PLOT_WINDOW_SIZE_Y - 1, + 'Time: {:.2f}'.format(time), + fontsize=PLOT_FONT_SIZE) + + plt.text(0.3, PLOT_WINDOW_SIZE_Y - 2, + 'Reached target: {} = '.format(robot_names) + + str(robots_are_at_target), + fontsize=PLOT_FONT_SIZE) + + for instance in robots: + plt.arrow(instance.pose_start.x, + instance.pose_start.y, + np.cos(instance.pose_start.theta), + np.sin(instance.pose_start.theta), + color='r', + width=0.1) + plt.arrow(instance.pose_target.x, + instance.pose_target.y, + np.cos(instance.pose_target.theta), + np.sin(instance.pose_target.theta), + color='g', + width=0.1) + plot_vehicle(instance.pose.x, + instance.pose.y, + instance.pose.theta, + instance.x_traj, + instance.y_traj, instance.color) + + plt.pause(TIME_STEP) + + +def plot_vehicle(x, y, theta, x_traj, y_traj, color): + # Corners of triangular vehicle when pointing to the right (0 radians) + p1_i = np.array([0.5, 0, 1]).T + p2_i = np.array([-0.5, 0.25, 1]).T + p3_i = np.array([-0.5, -0.25, 1]).T + + T = transformation_matrix(x, y, theta) + p1 = T @ p1_i + p2 = T @ p2_i + p3 = T @ p3_i + + plt.plot([p1[0], p2[0]], [p1[1], p2[1]], color+'-') + plt.plot([p2[0], p3[0]], [p2[1], p3[1]], color+'-') + plt.plot([p3[0], p1[0]], [p3[1], p1[1]], color+'-') + + plt.plot(x_traj, y_traj, color+'--') + + +def transformation_matrix(x, y, theta): + return np.array([ + [np.cos(theta), -np.sin(theta), x], + [np.sin(theta), np.cos(theta), y], + [0, 0, 1] + ]) + + +def main(): + pose_target = Pose(15, 15, -1) + + pose_start_1 = Pose(5, 2, 0) + pose_start_2 = Pose(5, 2, 0) + pose_start_3 = Pose(5, 2, 0) + + controller_1 = PathFinderController(5, 8, 2) + controller_2 = PathFinderController(5, 16, 4) + controller_3 = PathFinderController(10, 25, 6) + + robot_1 = Robot("Yellow Robot", "y", 12, 5, controller_1) + robot_2 = Robot("Black Robot", "k", 16, 5, controller_2) + robot_3 = Robot("Blue Robot", "b", 20, 5, controller_3) + + robot_1.set_start_target_poses(pose_start_1, pose_target) + robot_2.set_start_target_poses(pose_start_2, pose_target) + robot_3.set_start_target_poses(pose_start_3, pose_target) + + robots: list[Robot] = [robot_1, robot_2, robot_3] + + run_simulation(robots) + + +if __name__ == '__main__': + main() diff --git a/PathTracking/pure_pursuit/pure_pursuit.py b/PathTracking/pure_pursuit/pure_pursuit.py index ff995033a9..48453927ab 100644 --- a/PathTracking/pure_pursuit/pure_pursuit.py +++ b/PathTracking/pure_pursuit/pure_pursuit.py @@ -10,6 +10,11 @@ import math import matplotlib.pyplot as plt +import sys +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +from utils.angle import angle_mod + # Parameters k = 0.1 # look forward gain Lfc = 2.0 # [m] look-ahead distance @@ -17,26 +22,37 @@ dt = 0.1 # [s] time tick WB = 2.9 # [m] wheel base of vehicle -show_animation = True +# Vehicle parameters +LENGTH = WB + 1.0 # Vehicle length +WIDTH = 2.0 # Vehicle width +WHEEL_LEN = 0.6 # Wheel length +WHEEL_WIDTH = 0.2 # Wheel width +MAX_STEER = math.pi / 4 # Maximum steering angle [rad] -class State: - def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): +show_animation = True +pause_simulation = False # Flag for pause simulation +is_reverse_mode = False # Flag for reverse driving mode + +class State: + def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0, is_reverse=False): self.x = x self.y = y self.yaw = yaw self.v = v - self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw)) - self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw)) + self.direction = -1 if is_reverse else 1 # Direction based on reverse flag + self.rear_x = self.x - self.direction * ((WB / 2) * math.cos(self.yaw)) + self.rear_y = self.y - self.direction * ((WB / 2) * math.sin(self.yaw)) def update(self, a, delta): self.x += self.v * math.cos(self.yaw) * dt self.y += self.v * math.sin(self.yaw) * dt - self.yaw += self.v / WB * math.tan(delta) * dt + self.yaw += self.direction * self.v / WB * math.tan(delta) * dt + self.yaw = angle_mod(self.yaw) self.v += a * dt - self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw)) - self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw)) + self.rear_x = self.x - self.direction * ((WB / 2) * math.cos(self.yaw)) + self.rear_y = self.y - self.direction * ((WB / 2) * math.sin(self.yaw)) def calc_distance(self, point_x, point_y): dx = self.rear_x - point_x @@ -51,6 +67,7 @@ def __init__(self): self.y = [] self.yaw = [] self.v = [] + self.direction = [] self.t = [] def append(self, t, state): @@ -58,6 +75,7 @@ def append(self, t, state): self.y.append(state.y) self.yaw.append(state.yaw) self.v.append(state.v) + self.direction.append(state.direction) self.t.append(t) @@ -117,14 +135,18 @@ def pure_pursuit_steer_control(state, trajectory, pind): if ind < len(trajectory.cx): tx = trajectory.cx[ind] ty = trajectory.cy[ind] - else: # toward goal + else: tx = trajectory.cx[-1] ty = trajectory.cy[-1] ind = len(trajectory.cx) - 1 alpha = math.atan2(ty - state.rear_y, tx - state.rear_x) - state.yaw - delta = math.atan2(2.0 * WB * math.sin(alpha) / Lf, 1.0) + # Reverse steering angle when reversing + delta = state.direction * math.atan2(2.0 * WB * math.sin(alpha) / Lf, 1.0) + + # Limit steering angle to max value + delta = np.clip(delta, -MAX_STEER, MAX_STEER) return delta, ind @@ -142,10 +164,111 @@ def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"): fc=fc, ec=ec, head_width=width, head_length=width) plt.plot(x, y) +def plot_vehicle(x, y, yaw, steer=0.0, color='blue', is_reverse=False): + """ + Plot vehicle model with four wheels + Args: + x, y: Vehicle center position + yaw: Vehicle heading angle + steer: Steering angle + color: Vehicle color + is_reverse: Flag for reverse mode + """ + # Adjust heading angle in reverse mode + if is_reverse: + yaw = angle_mod(yaw + math.pi) # Rotate heading by 180 degrees + steer = -steer # Reverse steering direction + + def plot_wheel(x, y, yaw, steer=0.0, color=color): + """Plot single wheel""" + wheel = np.array([ + [-WHEEL_LEN/2, WHEEL_WIDTH/2], + [WHEEL_LEN/2, WHEEL_WIDTH/2], + [WHEEL_LEN/2, -WHEEL_WIDTH/2], + [-WHEEL_LEN/2, -WHEEL_WIDTH/2], + [-WHEEL_LEN/2, WHEEL_WIDTH/2] + ]) + + # Rotate wheel if steering + if steer != 0: + c, s = np.cos(steer), np.sin(steer) + rot_steer = np.array([[c, -s], [s, c]]) + wheel = wheel @ rot_steer.T + + # Apply vehicle heading rotation + c, s = np.cos(yaw), np.sin(yaw) + rot_yaw = np.array([[c, -s], [s, c]]) + wheel = wheel @ rot_yaw.T + + # Translate to position + wheel[:, 0] += x + wheel[:, 1] += y + + # Plot wheel with color + plt.plot(wheel[:, 0], wheel[:, 1], color=color) + + # Calculate vehicle body corners + corners = np.array([ + [-LENGTH/2, WIDTH/2], + [LENGTH/2, WIDTH/2], + [LENGTH/2, -WIDTH/2], + [-LENGTH/2, -WIDTH/2], + [-LENGTH/2, WIDTH/2] + ]) + + # Rotation matrix + c, s = np.cos(yaw), np.sin(yaw) + Rot = np.array([[c, -s], [s, c]]) + + # Rotate and translate vehicle body + rotated = corners @ Rot.T + rotated[:, 0] += x + rotated[:, 1] += y + + # Plot vehicle body + plt.plot(rotated[:, 0], rotated[:, 1], color=color) + + # Plot wheels (darker color for front wheels) + front_color = 'darkblue' + rear_color = color + + # Plot four wheels + # Front left + plot_wheel(x + LENGTH/4 * c - WIDTH/2 * s, + y + LENGTH/4 * s + WIDTH/2 * c, + yaw, steer, front_color) + # Front right + plot_wheel(x + LENGTH/4 * c + WIDTH/2 * s, + y + LENGTH/4 * s - WIDTH/2 * c, + yaw, steer, front_color) + # Rear left + plot_wheel(x - LENGTH/4 * c - WIDTH/2 * s, + y - LENGTH/4 * s + WIDTH/2 * c, + yaw, color=rear_color) + # Rear right + plot_wheel(x - LENGTH/4 * c + WIDTH/2 * s, + y - LENGTH/4 * s - WIDTH/2 * c, + yaw, color=rear_color) + + # Add direction arrow + arrow_length = LENGTH/3 + plt.arrow(x, y, + -arrow_length * math.cos(yaw) if is_reverse else arrow_length * math.cos(yaw), + -arrow_length * math.sin(yaw) if is_reverse else arrow_length * math.sin(yaw), + head_width=WIDTH/4, head_length=WIDTH/4, + fc='r', ec='r', alpha=0.5) + +# Keyboard event handler +def on_key(event): + global pause_simulation + if event.key == ' ': # Space key + pause_simulation = not pause_simulation + elif event.key == 'escape': + exit(0) def main(): # target course - cx = np.arange(0, 50, 0.5) + cx = -1 * np.arange(0, 50, 0.5) if is_reverse_mode else np.arange(0, 50, 0.5) cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx] target_speed = 10.0 / 3.6 # [m/s] @@ -153,7 +276,7 @@ def main(): T = 100.0 # max simulation time # initial state - state = State(x=-0.0, y=-3.0, yaw=0.0, v=0.0) + state = State(x=-0.0, y=-3.0, yaw=math.pi if is_reverse_mode else 0.0, v=0.0, is_reverse=is_reverse_mode) lastIndex = len(cx) - 1 time = 0.0 @@ -173,22 +296,33 @@ def main(): time += dt states.append(time, state) - if show_animation: # pragma: no cover plt.cla() # for stopping simulation with the esc key. - plt.gcf().canvas.mpl_connect( - 'key_release_event', - lambda event: [exit(0) if event.key == 'escape' else None]) - plot_arrow(state.x, state.y, state.yaw) + plt.gcf().canvas.mpl_connect('key_release_event', on_key) + # Pass is_reverse parameter + plot_vehicle(state.x, state.y, state.yaw, di, is_reverse=is_reverse_mode) plt.plot(cx, cy, "-r", label="course") plt.plot(states.x, states.y, "-b", label="trajectory") plt.plot(cx[target_ind], cy[target_ind], "xg", label="target") plt.axis("equal") plt.grid(True) plt.title("Speed[km/h]:" + str(state.v * 3.6)[:4]) + plt.legend() # Add legend display + + # Add pause state display + if pause_simulation: + plt.text(0.02, 0.95, 'PAUSED', transform=plt.gca().transAxes, + bbox=dict(facecolor='red', alpha=0.5)) + plt.pause(0.001) + # Handle pause state + while pause_simulation: + plt.pause(0.1) # Reduce CPU usage + if not plt.get_fignums(): # Check if window is closed + exit(0) + # Test assert lastIndex >= target_ind, "Cannot goal" diff --git a/PathTracking/rear_wheel_feedback/Figure_2.png b/PathTracking/rear_wheel_feedback/Figure_2.png deleted file mode 100644 index 66c99b1de8..0000000000 Binary files a/PathTracking/rear_wheel_feedback/Figure_2.png and /dev/null differ diff --git a/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py b/PathTracking/rear_wheel_feedback_control/rear_wheel_feedback_control.py similarity index 94% rename from PathTracking/rear_wheel_feedback/rear_wheel_feedback.py rename to PathTracking/rear_wheel_feedback_control/rear_wheel_feedback_control.py index 52b4a11a0b..fd04fb6d17 100644 --- a/PathTracking/rear_wheel_feedback/rear_wheel_feedback.py +++ b/PathTracking/rear_wheel_feedback_control/rear_wheel_feedback_control.py @@ -8,11 +8,15 @@ import matplotlib.pyplot as plt import math import numpy as np - +import sys +import pathlib from scipy import interpolate from scipy import optimize -Kp = 1.0 # speed propotional gain +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +from utils.angle import angle_mod + +Kp = 1.0 # speed proportional gain # steering control parameter KTH = 1.0 KE = 0.5 @@ -51,21 +55,21 @@ def __init__(self, x, y): self.ddY = self.Y.derivative(2) self.length = s[-1] - + def calc_yaw(self, s): dx, dy = self.dX(s), self.dY(s) return np.arctan2(dy, dx) - + def calc_curvature(self, s): dx, dy = self.dX(s), self.dY(s) ddx, ddy = self.ddX(s), self.ddY(s) return (ddy * dx - ddx * dy) / ((dx ** 2 + dy ** 2)**(3 / 2)) - + def __find_nearest_point(self, s0, x, y): def calc_distance(_s, *args): _x, _y= self.X(_s), self.Y(_s) return (_x - args[0])**2 + (_y - args[1])**2 - + def calc_distance_jacobian(_s, *args): _x, _y = self.X(_s), self.Y(_s) _dx, _dy = self.dX(_s), self.dY(_s) @@ -76,7 +80,7 @@ def calc_distance_jacobian(_s, *args): def calc_track_error(self, x, y, s0): ret = self.__find_nearest_point(s0, x, y) - + s = ret[0][0] e = ret[1] @@ -96,13 +100,7 @@ def pid_control(target, current): return a def pi_2_pi(angle): - while(angle > math.pi): - angle = angle - 2.0 * math.pi - - while(angle < -math.pi): - angle = angle + 2.0 * math.pi - - return angle + return angle_mod(angle) def rear_wheel_feedback_control(state, e, k, yaw_ref): v = state.v @@ -170,7 +168,7 @@ def simulate(path_ref, goal): plt.plot(path_ref.X(s0), path_ref.Y(s0), "xg", label="target") plt.axis("equal") plt.grid(True) - plt.title("speed[km/h]:{:.2f}, target s-param:{:.2f}".format(round(state.v * 3.6, 2), s0)) + plt.title(f"speed[km/h]:{round(state.v * 3.6, 2):.2f}, target s-param:{s0:.2f}") plt.pause(0.0001) return t, x, y, yaw, v, goal_flag @@ -184,7 +182,7 @@ def calc_target_speed(state, yaw_ref): if switch: state.direction *= -1 return 0.0 - + if state.direction != 1: return -target_speed diff --git a/PathTracking/stanley_controller/stanley_controller.py b/PathTracking/stanley_control/stanley_control.py similarity index 94% rename from PathTracking/stanley_controller/stanley_controller.py rename to PathTracking/stanley_control/stanley_control.py index 2af3989fcc..01c2ec0229 100644 --- a/PathTracking/stanley_controller/stanley_controller.py +++ b/PathTracking/stanley_control/stanley_control.py @@ -4,7 +4,7 @@ author: Atsushi Sakai (@Atsushi_twi) -Ref: +Reference: - [Stanley: The robot that won the DARPA grand challenge](http://isl.ecst.csuchico.edu/DOCS/darpa2005/DARPA%202005%20Stanley.pdf) - [Autonomous Automobile Path Tracking](https://www.ri.cmu.edu/pub_files/2009/2/Automatic_Steering_Methods_for_Autonomous_Automobile_Path_Tracking.pdf) @@ -12,13 +12,11 @@ import numpy as np import matplotlib.pyplot as plt import sys -sys.path.append("../../PathPlanning/CubicSpline/") - -try: - import cubic_spline_planner -except: - raise +import pathlib +sys.path.append(str(pathlib.Path(__file__).parent.parent.parent)) +from utils.angle import angle_mod +from PathPlanning.CubicSpline import cubic_spline_planner k = 0.5 # control gain Kp = 1.0 # speed proportional gain @@ -29,7 +27,7 @@ show_animation = True -class State(object): +class State: """ Class representing the state of a vehicle. @@ -41,7 +39,7 @@ class State(object): def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0): """Instantiate the object.""" - super(State, self).__init__() + super().__init__() self.x = x self.y = y self.yaw = yaw @@ -109,13 +107,7 @@ def normalize_angle(angle): :param angle: (float) :return: (float) Angle in radian in [-pi, pi] """ - while angle > np.pi: - angle -= 2.0 * np.pi - - while angle < -np.pi: - angle += 2.0 * np.pi - - return angle + return angle_mod(angle) def calc_target_index(state, cx, cy): diff --git a/README.md b/README.md index 4a64f53642..d1b801f219 100644 --- a/README.md +++ b/README.md @@ -3,15 +3,10 @@ # PythonRobotics ![GitHub_Action_Linux_CI](https://github.com/AtsushiSakai/PythonRobotics/workflows/Linux_CI/badge.svg) ![GitHub_Action_MacOS_CI](https://github.com/AtsushiSakai/PythonRobotics/workflows/MacOS_CI/badge.svg) -[![Build Status](https://travis-ci.org/AtsushiSakai/PythonRobotics.svg?branch=master)](https://travis-ci.org/AtsushiSakai/PythonRobotics) -[![Documentation Status](https://readthedocs.org/projects/pythonrobotics/badge/?version=latest)](https://pythonrobotics.readthedocs.io/en/latest/?badge=latest) +![GitHub_Action_Windows_CI](https://github.com/AtsushiSakai/PythonRobotics/workflows/Windows_CI/badge.svg) [![Build status](https://ci.appveyor.com/api/projects/status/sb279kxuv1be391g?svg=true)](https://ci.appveyor.com/project/AtsushiSakai/pythonrobotics) -[![Coverage Status](https://coveralls.io/repos/github/AtsushiSakai/PythonRobotics/badge.svg?branch=master)](https://coveralls.io/github/AtsushiSakai/PythonRobotics?branch=master) -[![Language grade: Python](https://img.shields.io/lgtm/grade/python/g/AtsushiSakai/PythonRobotics.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/AtsushiSakai/PythonRobotics/context:python) -[![CodeFactor](https://www.codefactor.io/repository/github/atsushisakai/pythonrobotics/badge/master)](https://www.codefactor.io/repository/github/atsushisakai/pythonrobotics/overview/master) -[![tokei](https://tokei.rs/b1/github/AtsushiSakai/PythonRobotics)](https://github.com/AtsushiSakai/PythonRobotics) -Python codes for robotics algorithm. +Python codes and [textbook](https://atsushisakai.github.io/PythonRobotics/index.html) for robotics algorithm. # Table of Contents @@ -37,6 +32,8 @@ Python codes for robotics algorithm. * [Grid based search](#grid-based-search) * [Dijkstra algorithm](#dijkstra-algorithm) * [A* algorithm](#a-algorithm) + * [D* algorithm](#d-algorithm) + * [D* Lite algorithm](#d-lite-algorithm) * [Potential Field algorithm](#potential-field-algorithm) * [Grid based coverage path planning](#grid-based-coverage-path-planning) * [State Lattice Planning](#state-lattice-planning) @@ -71,11 +68,14 @@ Python codes for robotics algorithm. * [Contribution](#contribution) * [Citing](#citing) * [Support](#support) + * [Sponsors](#sponsors) + * [JetBrains](#JetBrains) + * [1Password](#1password) * [Authors](#authors) -# What is this? +# What is PythonRobotics? -This is a Python code collection of robotics algorithms, especially for autonomous navigation. +PythonRobotics is a Python code collection and a [textbook](https://atsushisakai.github.io/PythonRobotics/index.html) of robotics algorithms. Features: @@ -85,32 +85,52 @@ Features: 3. Minimum dependency. -See this paper for more details: +See this documentation -- [\[1808\.10703\] PythonRobotics: a Python code collection of robotics algorithms](https://arxiv.org/abs/1808.10703) ([BibTeX](https://github.com/AtsushiSakai/PythonRoboticsPaper/blob/master/python_robotics.bib)) +- [Getting Started — PythonRobotics documentation](https://atsushisakai.github.io/PythonRobotics/modules/0_getting_started/1_what_is_python_robotics.html) + +or this Youtube video: +- [PythonRobotics project audio overview](https://www.youtube.com/watch?v=uMeRnNoJAfU) -# Requirements +or this paper for more details: -- Python 3.8.x +- [\[1808\.10703\] PythonRobotics: a Python code collection of robotics algorithms](https://arxiv.org/abs/1808.10703) ([BibTeX](https://github.com/AtsushiSakai/PythonRoboticsPaper/blob/master/python_robotics.bib)) -- numpy -- scipy +# Requirements to run the code -- matplotlib +For running each sample code: -- pandas +- [Python 3.13.x](https://www.python.org/) + +- [NumPy](https://numpy.org/) + +- [SciPy](https://scipy.org/) + +- [Matplotlib](https://matplotlib.org/) + +- [cvxpy](https://www.cvxpy.org/) -- [cvxpy](https://www.cvxpy.org/index.html) +For development: + +- [pytest](https://pytest.org/) (for unit tests) + +- [pytest-xdist](https://pypi.org/project/pytest-xdist/) (for parallel unit tests) + +- [mypy](https://mypy-lang.org/) (for type check) + +- [sphinx](https://www.sphinx-doc.org/) (for document generation) + +- [pycodestyle](https://pypi.org/project/pycodestyle/) (for code style check) -# Documentation +# Documentation (Textbook) This README only shows some examples of this project. If you are interested in other examples or mathematical backgrounds of each algorithm, -You can check the full documentation online: [https://pythonrobotics.readthedocs.io/](https://pythonrobotics.readthedocs.io/) +You can check the full documentation (textbook) online: [Welcome to PythonRobotics’s documentation\! — PythonRobotics documentation](https://atsushisakai.github.io/PythonRobotics/index.html) All animation gifs are stored here: [AtsushiSakai/PythonRoboticsGifs: Animation gifs of PythonRobotics](https://github.com/AtsushiSakai/PythonRoboticsGifs) @@ -118,12 +138,24 @@ All animation gifs are stored here: [AtsushiSakai/PythonRoboticsGifs: Animation 1. Clone this repo. -> git clone https://github.com/AtsushiSakai/PythonRobotics.git + ```terminal + git clone https://github.com/AtsushiSakai/PythonRobotics.git + ``` -2. Install the required libraries. You can use environment.yml with conda command. +2. Install the required libraries. -> conda env create -f environment.yml +- using conda : + + ```terminal + conda env create -f requirements/environment.yml + ``` + +- using pip : + + ```terminal + pip install -r requirements/requirements.txt + ``` 3. Execute python script in each directory. @@ -136,7 +168,9 @@ All animation gifs are stored here: [AtsushiSakai/PythonRoboticsGifs: Animation EKF pic -Documentation: [Notebook](https://github.com/AtsushiSakai/PythonRobotics/blob/master/Localization/extended_kalman_filter/extended_kalman_filter_localization.ipynb) +Reference + +- [documentation](https://atsushisakai.github.io/PythonRobotics/modules/2_localization/extended_kalman_filter_localization_files/extended_kalman_filter_localization.html) ## Particle filter localization @@ -146,13 +180,13 @@ This is a sensor fusion localization with Particle Filter(PF). The blue line is true trajectory, the black line is dead reckoning trajectory, -and the red line is estimated trajectory with PF. +and the red line is an estimated trajectory with PF. It is assumed that the robot can measure a distance from landmarks (RFID). -This measurements are used for PF localization. +These measurements are used for PF localization. -Ref: +Reference - [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/) @@ -173,7 +207,7 @@ The filter integrates speed input and range observations from RFID for localizat Initial position is not needed. -Ref: +Reference - [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/) @@ -195,7 +229,7 @@ This is a 2D ray casting grid mapping example. This example shows how to convert a 2D range measurement to a grid map. -![2](Mapping/lidar_to_grid_map/animation.gif) +![2](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Mapping/lidar_to_grid_map/animation.gif) ## k-means object clustering @@ -218,11 +252,11 @@ Simultaneous Localization and Mapping(SLAM) examples This is a 2D ICP matching example with singular value decomposition. -It can calculate a rotation matrix and a translation vector between points to points. +It can calculate a rotation matrix, and a translation vector between points and points. ![3](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/SLAM/iterative_closest_point/animation.gif) -Ref: +Reference - [Introduction to Mobile Robotics: Iterative Closest Point Algorithm](https://cs.gmu.edu/~kosecka/cs685/cs685-icp.pdf) @@ -241,7 +275,7 @@ Black points are landmarks, blue crosses are estimated landmark positions by Fas ![3](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/SLAM/FastSLAM1/animation.gif) -Ref: +Reference - [PROBABILISTIC ROBOTICS](http://www.probabilistic-robotics.org/) @@ -263,7 +297,7 @@ This is a 2D navigation sample code with Dynamic Window Approach. ### Dijkstra algorithm -This is a 2D grid based shortest path planning with Dijkstra's algorithm. +This is a 2D grid based the shortest path planning with Dijkstra's algorithm. ![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/Dijkstra/animation.gif) @@ -271,7 +305,7 @@ In the animation, cyan points are searched nodes. ### A\* algorithm -This is a 2D grid based shortest path planning with A star algorithm. +This is a 2D grid based the shortest path planning with A star algorithm. ![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/AStar/animation.gif) @@ -279,6 +313,31 @@ In the animation, cyan points are searched nodes. Its heuristic is 2D Euclid distance. +### D\* algorithm + +This is a 2D grid based the shortest path planning with D star algorithm. + +![figure at master · nirnayroy/intelligentrobotics](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/DStar/animation.gif) + +The animation shows a robot finding its path avoiding an obstacle using the D* search algorithm. + +Reference + +- [D* Algorithm Wikipedia](https://en.wikipedia.org/wiki/D*) + +### D\* Lite algorithm + +This algorithm finds the shortest path between two points while rerouting when obstacles are discovered. It has been implemented here for a 2D grid. + +![D* Lite](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/DStarLite/animation.gif) + +The animation shows a robot finding its path and rerouting to avoid obstacles as they are discovered using the D* Lite search algorithm. + +Refs: + +- [D* Lite](http://idm-lab.org/bib/abstracts/papers/aaai02b.pdf) +- [Improved Fast Replanning for Robot Navigation in Unknown Terrain](http://www.cs.cmu.edu/~maxim/files/dlite_icra02.pdf) + ### Potential Field algorithm This is a 2D grid based path planning with Potential Field algorithm. @@ -287,7 +346,7 @@ This is a 2D grid based path planning with Potential Field algorithm. In the animation, the blue heat map shows potential value on each grid. -Ref: +Reference - [Robotic Motion Planning:Potential Functions](https://www.cs.cmu.edu/~motionplanning/lecture/Chap4-Potential-Field_howie.pdf) @@ -303,11 +362,11 @@ This script is a path planning code with state lattice planning. This code uses the model predictive trajectory generator to solve boundary problem. -Ref: +Reference -- [Optimal rough terrain trajectory generation for wheeled mobile robots](http://journals.sagepub.com/doi/pdf/10.1177/0278364906075328) +- [Optimal rough terrain trajectory generation for wheeled mobile robots](https://journals.sagepub.com/doi/pdf/10.1177/0278364906075328) -- [State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments](http://www.frc.ri.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf) +- [State Space Sampling of Feasible Motions for High-Performance Mobile Robot Navigation in Complex Environments](https://www.cs.cmu.edu/~alonzo/pubs/papers/JFR_08_SS_Sampling.pdf) ### Biased polar sampling @@ -331,7 +390,7 @@ Cyan crosses means searched points with Dijkstra method, The red line is the final path of PRM. -Ref: +Reference - [Probabilistic roadmap \- Wikipedia](https://en.wikipedia.org/wiki/Probabilistic_roadmap) @@ -347,15 +406,15 @@ This is a path planning code with RRT\* Black circles are obstacles, green line is a searched tree, red crosses are start and goal positions. -Ref: +Reference - [Incremental Sampling-based Algorithms for Optimal Motion Planning](https://arxiv.org/abs/1005.0416) -- [Sampling-based Algorithms for Optimal Motion Planning](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.419.5503&rep=rep1&type=pdf) +- [Sampling-based Algorithms for Optimal Motion Planning](https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=bddbc99f97173430aa49a0ada53ab5bade5902fa) ### RRT\* with reeds-shepp path -![Robotics/animation.gif at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/RRTStarReedsShepp/animation.gif)) +![Robotics/animation.gif at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/RRTStarReedsShepp/animation.gif) Path planning for a car robot with RRT\* and reeds shepp path planner. @@ -365,11 +424,11 @@ This is a path planning simulation with LQR-RRT\*. A double integrator motion model is used for LQR local planner. -![LQRRRT](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/LQRRRTStar/animation.gif) +![LQR_RRT](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/LQRRRTStar/animation.gif) -Ref: +Reference -- [LQR\-RRT\*: Optimal Sampling\-Based Motion Planning with Automatically Derived Extension Heuristics](http://lis.csail.mit.edu/pubs/perez-icra12.pdf) +- [LQR\-RRT\*: Optimal Sampling\-Based Motion Planning with Automatically Derived Extension Heuristics](https://lis.csail.mit.edu/pubs/perez-icra12.pdf) - [MahanFathi/LQR\-RRTstar: LQR\-RRT\* method is used for random motion planning of a simple pendulum in its phase plot](https://github.com/MahanFathi/LQR-RRTstar) @@ -380,11 +439,11 @@ Motion planning with quintic polynomials. ![2](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/QuinticPolynomialsPlanner/animation.gif) -It can calculate 2D path, velocity, and acceleration profile based on quintic polynomials. +It can calculate a 2D path, velocity, and acceleration profile based on quintic polynomials. -Ref: +Reference -- [Local Path Planning And Motion Control For Agv In Positioning](http://ieeexplore.ieee.org/document/637936/) +- [Local Path Planning And Motion Control For Agv In Positioning](https://ieeexplore.ieee.org/document/637936/) ## Reeds Shepp planning @@ -392,7 +451,7 @@ A sample code with Reeds Shepp path planning. ![RSPlanning](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathPlanning/ReedsSheppPath/animation.gif?raw=true) -Ref: +Reference - [15.3.2 Reeds\-Shepp Curves](http://planning.cs.uiuc.edu/node822.html) @@ -416,9 +475,9 @@ This is optimal trajectory generation in a Frenet Frame. The cyan line is the target course and black crosses are obstacles. -The red line is predicted path. +The red line is the predicted path. -Ref: +Reference - [Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame](https://www.researchgate.net/profile/Moritz_Werling/publication/224156269_Optimal_Trajectory_Generation_for_Dynamic_Street_Scenarios_in_a_Frenet_Frame/links/54f749df0cf210398e9277af.pdf) @@ -431,9 +490,9 @@ Ref: This is a simulation of moving to a pose control -![2](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathTracking/move_to_pose/animation.gif) +![2](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Control/move_to_pose/animation.gif) -Ref: +Reference - [P. I. Corke, "Robotics, Vision and Control" \| SpringerLink p102](https://link.springer.com/book/10.1007/978-3-642-20144-8) @@ -444,7 +503,7 @@ Path tracking simulation with Stanley steering control and PID speed control. ![2](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathTracking/stanley_controller/animation.gif) -Ref: +Reference - [Stanley: The robot that won the DARPA grand challenge](http://robots.stanford.edu/papers/thrun.stanley05.pdf) @@ -458,7 +517,7 @@ Path tracking simulation with rear wheel feedback steering control and PID speed ![PythonRobotics/figure_1.png at master · AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathTracking/rear_wheel_feedback/animation.gif) -Ref: +Reference - [A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles](https://arxiv.org/abs/1604.07446) @@ -469,9 +528,9 @@ Path tracking simulation with LQR speed and steering control. ![3](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathTracking/lqr_speed_steer_control/animation.gif) -Ref: +Reference -- [Towards fully autonomous driving: Systems and algorithms \- IEEE Conference Publication](http://ieeexplore.ieee.org/document/5940562/) +- [Towards fully autonomous driving: Systems and algorithms \- IEEE Conference Publication](https://ieeexplore.ieee.org/document/5940562/) ## Model predictive speed and steering control @@ -480,9 +539,9 @@ Path tracking simulation with iterative linear model predictive speed and steeri MPC pic -Ref: +Reference -- [notebook](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/model_predictive_speed_and_steer_control/Model_predictive_speed_and_steering_control.ipynb) +- [documentation](https://atsushisakai.github.io/PythonRobotics/modules/6_path_tracking/model_predictive_speed_and_steering_control/model_predictive_speed_and_steering_control.html) - [Real\-time Model Predictive Control \(MPC\), ACADO, Python \| Work\-is\-Playing](http://grauonline.de/wordpress/?page_id=3244) @@ -492,9 +551,9 @@ A motion planning and path tracking simulation with NMPC of C-GMRES ![3](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/PathTracking/cgmres_nmpc/animation.gif) -Ref: +Reference -- [notebook](https://github.com/AtsushiSakai/PythonRobotics/blob/master/PathTracking/cgmres_nmpc/cgmres_nmpc.ipynb) +- [documentation](https://atsushisakai.github.io/PythonRobotics/modules/6_path_tracking/cgmres_nmpc/cgmres_nmpc.html) # Arm Navigation @@ -503,9 +562,9 @@ Ref: N joint arm to a point control simulation. -This is a interactive simulation. +This is an interactive simulation. -You can set the goal position of the end effector with left-click on the ploting area. +You can set the goal position of the end effector with left-click on the plotting area. ![3](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/ArmNavigation/n_joint_arm_to_point_control/animation.gif) @@ -532,17 +591,17 @@ This is a 3d trajectory generation simulation for a rocket powered landing. ![3](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/AerialNavigation/rocket_powered_landing/animation.gif) -Ref: +Reference -- [notebook](https://github.com/AtsushiSakai/PythonRobotics/blob/master/AerialNavigation/rocket_powered_landing/rocket_powered_landing.ipynb) +- [documentation](https://atsushisakai.github.io/PythonRobotics/modules/8_aerial_navigation/rocket_powered_landing/rocket_powered_landing.html) # Bipedal ## bipedal planner with inverted pendulum -This is a bipedal planner for modifying footsteps with inverted pendulum. +This is a bipedal planner for modifying footsteps for an inverted pendulum. -You can set the footsteps and the planner will modify those automatically. +You can set the footsteps, and the planner will modify those automatically. ![3](https://github.com/AtsushiSakai/PythonRoboticsGifs/raw/master/Bipedal/bipedal_planner/animation.gif) @@ -556,13 +615,13 @@ If this project helps your robotics project, please let me know with creating an Your robot's video, which is using PythonRobotics, is very welcome!! -This is a list of other user's comment and references:[users\_comments](https://github.com/AtsushiSakai/PythonRobotics/blob/master/users_comments.md) +This is a list of user's comment and references:[users\_comments](https://github.com/AtsushiSakai/PythonRobotics/blob/master/users_comments.md) # Contribution -Any contribution is welcome!! +Any contribution is welcome!! -If your PR is merged multiple times, I will add your account to the author list. +Please check this document:[How To Contribute — PythonRobotics documentation](https://atsushisakai.github.io/PythonRobotics/modules/0_getting_started/3_how_to_contribute.html) # Citing @@ -570,7 +629,7 @@ If you use this project's code for your academic work, we encourage you to cite If you use this project's code in industry, we'd love to hear from you as well; feel free to reach out to the developers directly. -# Support +# Supporting this project If you or your company would like to support this project, please consider: @@ -578,28 +637,22 @@ If you or your company would like to support this project, please consider: - [Become a backer or sponsor on Patreon](https://www.patreon.com/myenigma) -- [One-time donation via PayPal](https://www.paypal.me/myenigmapay/) +- [One-time donation via PayPal](https://www.paypal.com/paypalme/myenigmapay/) -# Authors - -- [Atsushi Sakai](https://github.com/AtsushiSakai/) - -- [Daniel Ingram](https://github.com/daniel-s-ingram) +If you would like to support us in some other way, please contact with creating an issue. -- [Joe Dinius](https://github.com/jwdinius) +## Sponsors -- [Karan Chawla](https://github.com/karanchawla) +### [JetBrains](https://www.jetbrains.com/) -- [Antonin RAFFIN](https://github.com/araffin) +They are providing a free license of their IDEs for this OSS development. -- [Alexis Paques](https://github.com/AlexisTM) +### [1Password](https://github.com/1Password/for-open-source) -- [Ryohei Sasaki](https://github.com/rsasaki0109) +They are providing a free license of their 1Password team license for this OSS project. -- [Göktuğ Karakaşlı](https://github.com/goktug97) -- [Guillaume Jacquenot](https://github.com/Gjacquenot) - -- [Erwin Lejeune](https://github.com/guilyx) +# Authors +- [Contributors to AtsushiSakai/PythonRobotics](https://github.com/AtsushiSakai/PythonRobotics/graphs/contributors) diff --git a/SECURITY.md b/SECURITY.md new file mode 100644 index 0000000000..53dcafa450 --- /dev/null +++ b/SECURITY.md @@ -0,0 +1,13 @@ +# Security Policy + +## Supported Versions + +In this project, we are only support latest code. + +| Version | Supported | +| ------- | ------------------ | +| latest | :white_check_mark: | + +## Reporting a Vulnerability + +If you find any security related problem, let us know by creating an issue about it. diff --git a/SLAM/EKFSLAM/ekf_slam.ipynb b/SLAM/EKFSLAM/ekf_slam.ipynb deleted file mode 100644 index a64c145ad4..0000000000 --- a/SLAM/EKFSLAM/ekf_slam.ipynb +++ /dev/null @@ -1,1581 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# EKF SLAM" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABIwAAANoCAYAAACiJHG1AAAMSGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdYU8kWnltSSWiBCEgJvYlSpEsJoUUQkCrYCEkgocSQEETsLssquHYRAXVFV0VcdC2ArBW7sgj2/lAWlZV1sWBD5U0KrOt+773vne+be/+cOec/JXPvnQFAp4YnleaiugDkSQpk8REhrCmpaSxSN0AAHegDHcDk8eVSdlxcNIAyfP+7vLkBraFcdVFy/XP+v4qeQCjnA4DEQZwhkPPzID4IAF7Cl8oKACD6QL317AKpEk+D2EAGE4RYqsRZalyixBlqXKmySYznQLwHADKNx5NlAaDdDPWsQn4W5NG+BbGrRCCWAKBDhjiQL+IJII6EeExe3iwlhnbAIeMLnqy/cWaMcPJ4WSNYXYtKyKFiuTSXN+f/bMf/lrxcxXAMOzhoIllkvLJm2LdbObOilJgGcZ8kIyYWYn2I34kFKnuIUapIEZmktkdN+XIO7BlgQuwq4IVGQWwKcbgkNyZao8/IFIdzIYYrBC0SF3ATNb5LhfKwBA1njWxWfOwwzpRx2BrfBp5MFVdpf1qRk8TW8N8SCbnD/K+LRYkp6pwxaqE4OQZibYiZ8pyEKLUNZlMs4sQM28gU8cr8bSD2E0oiQtT82IxMWXi8xl6WJx+uF1sqEnNjNLiqQJQYqeHZw+ep8jeCuFkoYScN8wjlU6KHaxEIQ8PUtWMdQkmSpl6sS1oQEq/xfSnNjdPY41RhboRSbwWxqbwwQeOLBxbABanmx2OkBXGJ6jzxjGzexDh1PngRiAYcEApYQAFHBpgFsoG4va+pD/5Sz4QDHpCBLCAELhrNsEeKakYCrwmgGPwBkRDIR/xCVLNCUAj1n0a06qsLyFTNFqo8csBjiPNAFMiFvxUqL8lItGTwG9SI/xGdD3PNhUM5908dG2qiNRrFMC9LZ9iSGEYMJUYSw4mOuAkeiPvj0fAaDIc77oP7Dmf7lz3hMaGT8IhwndBFuD1TvET2VT0sMAl0wQjhmpozvqwZt4OsnngIHgD5ITfOxE2ACz4eRmLjQTC2J9RyNJkrq/+a+281fNF1jR3FlYJSRlGCKQ5fe2o7aXuOsCh7+mWH1LlmjPSVMzLzdXzOF50WwHvU15bYUuwAdg47iV3AjmBNgIUdx5qxNuyoEo+sot9Uq2g4WrwqnxzII/5HPJ4mprKTctd6117Xj+q5AmGR8v0IOLOkc2TiLFEBiw3f/EIWV8IfO4bl7urmC4DyO6J+Tb1iqr4PCPPiX7r8EwD4lkFl1l86njUAhx8DwHjzl876JXw8VgFwtIOvkBWqdbjyQgBU+HUyAMbAHFgDB1iPO/AC/iAYhIGJIBYkglQwA3ZZBNezDMwG88BiUArKwSqwHlSBLWAb2AV+AvtBEzgCToKz4BLoANfBXbh6esAz0A/egEEEQUgIHWEgxogFYos4I+6IDxKIhCHRSDySiqQjWYgEUSDzkG+QcmQNUoVsReqQn5HDyEnkAtKJ3EYeIr3IS+QDiqE01AA1Q+3QcagPykaj0ER0OpqF5qPFaAm6Aq1Ea9E9aCN6Er2EXke70GfoAAYwLYyJWWIumA/GwWKxNCwTk2ELsDKsAqvFGrAW+D9fxbqwPuw9TsQZOAt3gSs4Ek/C+Xg+vgBfjlfhu/BG/DR+FX+I9+OfCXSCKcGZ4EfgEqYQsgizCaWECsIOwiHCGfg09RDeEIlEJtGe6A2fxlRiNnEucTlxE3Ev8QSxk9hNHCCRSMYkZ1IAKZbEIxWQSkkbSXtIx0lXSD2kd2QtsgXZnRxOTiNLyEvIFeTd5GPkK+Qn5EGKLsWW4keJpQgocygrKdspLZTLlB7KIFWPak8NoCZSs6mLqZXUBuoZ6j3qKy0tLSstX63JWmKtRVqVWvu0zms91HpP06c50Ti0aTQFbQVtJ+0E7TbtFZ1Ot6MH09PoBfQV9Dr6KfoD+jtthvZYba62QHuhdrV2o/YV7ec6FB1bHbbODJ1inQqdAzqXdfp0Kbp2uhxdnu4C3Wrdw7o3dQf0GHpuerF6eXrL9XbrXdB7qk/St9MP0xfol+hv0z+l383AGNYMDoPP+IaxnXGG0WNANLA34BpkG5Qb/GTQbtBvqG843jDZsMiw2vCoYRcTY9oxucxc5krmfuYN5odRZqPYo4Sjlo1qGHVl1Fuj0UbBRkKjMqO9RteNPhizjMOMc4xXGzcZ3zfBTZxMJpvMNtlscsakb7TBaP/R/NFlo/ePvmOKmjqZxpvONd1m2mY6YGZuFmEmNdtodsqsz5xpHmyebb7O/Jh5rwXDItBCbLHO4rjF7yxDFpuVy6pknWb1W5paRloqLLdatlsOWtlbJVktsdprdd+aau1jnWm9zrrVut/GwmaSzTybeps7thRbH1uR7Qbbc7Zv7eztUuy+s2uye2pvZM+1L7avt7/nQHcIcsh3qHW45kh09HHMcdzk2OGEOnk6iZyqnS47o85ezmLnTc6dYwhjfMdIxtSOuelCc2G7FLrUuzwcyxwbPXbJ2Kaxz8fZjEsbt3rcuXGfXT1dc123u95103eb6LbErcXtpbuTO9+92v2aB90j3GOhR7PHi/HO44XjN4+/5cnwnOT5nWer5ycvby+ZV4NXr7eNd7p3jfdNHwOfOJ/lPud9Cb4hvgt9j/i+9/PyK/Db7/env4t/jv9u/6cT7CcIJ2yf0B1gFcAL2BrQFcgKTA/8IbAryDKIF1Qb9CjYOlgQvCP4CduRnc3ew34e4hoiCzkU8pbjx5nPORGKhUaEloW2h+mHJYVVhT0ItwrPCq8P74/wjJgbcSKSEBkVuTryJteMy+fWcfsnek+cP/F0FC0qIaoq6lG0U7QsumUSOmnipLWT7sXYxkhimmJBLDd2bez9OPu4/LhfJhMnx02unvw43i1+Xvy5BEbCzITdCW8SQxJXJt5NckhSJLUm6yRPS65LfpsSmrImpWvKuCnzp1xKNUkVpzankdKS03akDUwNm7p+as80z2ml025Mt59eNP3CDJMZuTOOztSZyZt5IJ2QnpK+O/0jL5ZXyxvI4GbUZPTzOfwN/GeCYME6Qa8wQLhG+CQzIHNN5tOsgKy1Wb2iIFGFqE/MEVeJX2RHZm/JfpsTm7MzZyg3JXdvHjkvPe+wRF+SIzk9y3xW0axOqbO0VNqV75e/Pr9fFiXbIUfk0+XNBQZww96mcFB8q3hYGFhYXfhudvLsA0V6RZKitjlOc5bNeVIcXvzjXHwuf27rPMt5i+c9nM+ev3UBsiBjQetC64UlC3sWRSzatZi6OGfxr0tcl6xZ8vqblG9aSsxKFpV0fxvxbX2pdqms9OZ3/t9tWYovFS9tX+axbOOyz2WCsovlruUV5R+X85df/N7t+8rvh1Zkrmhf6bVy8yriKsmqG6uDVu9ao7emeE332klrG9ex1pWte71+5voLFeMrtmygblBs6KqMrmzeaLNx1caPVaKq69Uh1XtrTGuW1bzdJNh0ZXPw5oYtZlvKt3z4QfzDra0RWxtr7WorthG3FW57vD15+7kffX6s22Gyo3zHp52SnV274nedrvOuq9ttuntlPVqvqO/dM21Px0+hPzU3uDRs3cvcW74P7FPs+/3n9J9v7I/a33rA50DDQduDNYcYh8oakcY5jf1Noqau5tTmzsMTD7e2+Lcc+mXsLzuPWB6pPmp4dOUx6rGSY0PHi48PnJCe6DuZdbK7dWbr3VNTTl07Pfl0+5moM+fPhp89dY597vj5gPNHLvhdOHzR52LTJa9LjW2ebYd+9fz1ULtXe+Nl78vNHb4dLZ0TOo9dCbpy8mro1bPXuNcuXY+53nkj6catm9Nudt0S3Hp6O/f2izuFdwbvLrpHuFd2X/d+xQPTB7X/cvzX3i6vrqMPQx+2PUp4dLeb3/3sN/lvH3tKHtMfVzyxeFL31P3pkd7w3o7fp/7e80z6bLCv9A+9P2qeOzw/+Gfwn239U/p7XsheDL1c/sr41c7X41+3DsQNPHiT92bwbdk743e73vu8P/ch5cOTwdkfSR8rPzl+avkc9fneUN7QkJQn46m2AhgcaGYmAC93AkBPhXuHDgCoU9XnPJUg6rOpCoH/hNVnQZV4AbAzGICkRQBEwz3KZjhsIabBu3KrnhgMUA+PkaEReaaHu5qLBk88hHdDQ6/MACC1APBJNjQ0uGlo6NN2mOxtAE7kq8+XSiHCs8EPRkrUdlMXfC3/Bt/Mfk3hn2jmAAAACXBIWXMAABYlAAAWJQFJUiTwAAABnmlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj4xMTY0PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjg3MjwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgqYwCqRAAAAHGlET1QAAAACAAAAAAAAAbQAAAAoAAABtAAAAbQAAP4D405cAwAAQABJREFUeAHsnQecE0UDxV9ylePg6L0rNpogKCBNRRFFQQQ7WBEVQVBRERBUUClir4AUlWoDUUEFRRBQmh9SRGkiIL1zHNfyzSzesZt22c0kt0ne/n7HZWp2/vPI3rxMcbjEBV4kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8B8BBw0jaoEESIAESIAESIAESIAESIAESIAESIAESEBPgIaRngZfkwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJgIYRRUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkbUAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgIEADSMDDgZIgARIgARIgARIgARIgARIgARIgARIgARoGFEDJEACJEACJEACJEACJEACJEACJEACJEACBgI0jAw4GCABEiABEiABEiABEiABEiABEiABEiABEqBhRA2QAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkYCNAwMuBggARIgARIgARIgARIgARIgARIgARIgARIgIYRNUACJEACJEACJEACJEACJEACJEACJEACJGAgQMPIgIMBEiABEiABEiABEiABEiABEiABEiABEiABGkYh0kBmZib++usvrfaSJUsiPj4+RO/EakmABEiABEiABEiABEiABEiABEggdglkZ2fj0KFDGoDatWsjMTExdmEobDkNI4Uw9VWtW7cOdevW1UfxNQmQAAmQAAmQAAmQAAmQAAmQAAmQQAgJrF27FnXq1AnhO8RO1TSMQtTXNIxCBJbVkgAJkAAJkAAJkAAJkAAJkAAJkIAPAjSMfICxEE3DyAK0QIrs2rULlStX1rKuXLkSVapUCaQY85CAVwIZGRlYvny5ltakSRMkJyd7zcdIEgiEAPUUCCXmCYQAtRQIJeYJlAD1FCgp5guEAPUUCCXmCZQA9RQoqcLLt2/fvvwVPjt37kSlSpUK72ai6J1pGIWoM/fu3Yvy5ctrtf/999+oVq1aiN6J1cYCgVOnTmHJkiVaU5s3b46kpKRYaDbbGCIC1FOIwMZgtdRSDHZ6CJtMPYUQbgxWTT3FYKeHsMnUUwjhKqpaP/7es2cPypUrp6jm2K6GhlGI+l8vWBpGIYIcQ9XyIRVDnR2GplJPYYAcI29BLcVIR4epmdRTmEDHyNtQTzHS0WFqJvUUJtBBvI1+/E3DKAiQbkVpGLkBURXUC5aGkSqqsVsPH1Kx2/ehaDn1FAqqsVkntRSb/R6qVlNPoSIbm/VST7HZ76FqNfUUKrLq6tWPv2kYqeNKw0gdS0NNesHSMDKgYcACAT6kLEBjEZ8EqCefaJhgkgC1ZBIYs/slQD35xcNEkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgCNRXwSoJ58omGCSQLUkklgzO6XAPXkFw8TTRKgnkwCY3a/BKgnv3hskagff9MwUtclNIzUsTTUpBcsDSMDGgYsEOBDygI0FvFJgHryiYYJJglQSyaBMbtfAtSTXzxMNEmAejIJjNn9EqCe/OKxRaJ+/E3DSF2X0DBSx9JQk16wNIwMaBiwQIAPKQvQWMQnAerJJxommCRALZkExux+CVBPfvEw0SQB6skkMGb3S4B68ovHFon68TcNI3VdQsNIHUtDTXrB0jAyoGHAAgE+pCxAYxGfBKgnn2iYYJIAtWQSGLP7JUA9+cXDRJMEqCeTwJjdLwHqyS8eWyTqx980jNR1CQ0jdSwNNekFS8PIgIYBCwT4kLIAjUV8EqCefKJhgkkC1JJJYMzulwD15BcPE00SoJ5MAmN2vwSoJ794bJGoH3/TMFLXJTSM1LE01KQXLA0jAxoGLBDgQ8oCNBbxSYB68omGCSYJUEsmgTG7XwLUk188TDRJgHoyCYzZ/RKgnvzisUWifvxNw0hdl9AwUsfSUJNesDSMDGgYsECADykL0FjEJwHqyScaJpgkQC2ZBMbsfglQT37xMNEkAerJJDBm90uAevKLxxaJ+vE3DSN1XULDSB1LQ016wdIwMqBhwAIBPqQsQGMRnwSoJ59omGCSALVkEhiz+yVAPfnFw0STBKgnk8CY3S8B6skvHlsk6sffNIzUdQkNI3UsDTXpBUvDyICGAQsE+JCyAI1FfBKgnnyiYYJJAtSSSWDM7pcA9eQXDxNNEqCeTAJjdr8EqCe/eGyRqB9/0zBS1yU0jNSxNNSkFywNIwMaBiwQ4EPKAjQW8UmAevKJhgkmCVBLJoExu18C1JNfPEw0SYB6MgmM2f0SoJ784rFFon78TcNIXZfQMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCcB6sknGiaYJEAtmQTG7H4JUE9+8TDRJAHqySQwZvdLgHryi8cWifrxNw0jdV1Cw0gdS0NNesHSMDKgYcACAT6kLEBjEZ8EqCefaJhgkgC1ZBIYs/slQD35xcNEkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgCNRXwSoJ58omGCSQLUkklgzO6XAPXkFw8TTRKgnkwCY3a/BKgnv3hskagff9MwUtclNIzUsTTUpBcsDSMDGgYsEOBDygI0FvFJgHryiYYJJglQSyaBMbtfAtSTXzxMNEmAejIJjNn9EqCe/OKxRaJ+/E3DSF2X0DBSx9JQk16wNIwMaBiwQIAPKQvQWMQnAerJJxommCRALZkExux+CVBPfvEw0SQB6skkMGb3S4B68ovHFon68TcNI3VdQsNIHUtDTXrB0jAyoGHAAgE+pCxAYxGfBKgnn2iYYJIAtWQSGLP7JUA9+cXDRJMEqCeTwJjdLwHqyS8eWyTqx980jNR1CQ0jdSwNNekFS8PIgIYBCwT4kLIAjUV8EqCefKJhgkkC1JJJYMzulwD15BcPE00SoJ5MAmN2vwSoJ794bJGoH3/TMFLXJTSM1LE01KQXLA0jAxoGLBDgQ8oCNBbxSYB68omGCSYJUEsmgTG7XwLUk188TDRJgHoyCYzZ/RKgnvzisUWifvxNw0hdl9AwUsfSUJNesDSMDGgYsECADykL0FjEJwHqyScaJpgkQC2ZBMbsfglQT37xMNEkAerJJDBm90uAevKLxxaJ+vE3DSN1XULDSB1LQ016wdIwMqBhwAIBPqQsQGMRnwSoJ59omGCSALVkEhiz+yVAPfnFw0STBKgnk8CY3S8B6skvHlsk6sffNIzUdQkNI3UsDTXpBUvDyICGAQsE+JCyAI1FfBKgnnyiYYJJAtSSSWDM7pcA9eQXDxNNEqCeTAJjdr8EqCe/eGyRqB9/0zBS1yU0jNSxNNSkFywNIwMaBiwQ4EPKAjQW8UmAevKJhgkmCVBLJoExu18C1JNfPEw0SYB6MgmM2f0SoJ784rFFon78TcNIXZfQMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCcB6sknGiaYJEAtmQTG7H4JUE9+8TDRJAHqySQwZvdLgHryi8cWifrxNw0jdV1Cw0gdS0NNesHSMDKgYcACAT6kLEBjEZ8EqCefaJhgkgC1ZBIYs/slQD35xcNEkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgCNRXwSoJ58omGCSQLUkklgzO6XAPXkFw8TTRKgnkwCY3a/BKgnv3hskagff9MwUtclNIzUsTTUpBcsDSMDGgYsEOBDygI0FvFJgHryicYWCS6XC7KPMjIycPLkSe33mjW/49Chg7jwwgsh0/U/8qZlODc31yM+Pj4e3n4SExORnJyMpKQk7bfM43A4TLefWjKNjAX8EKCe/MBhkmkC1JNpZCzghwD15AeOTZL0428aRuo6hYaROpaGmvSCpWFkQMOABQJ8SFmAxiI+CVBPPtEoT5BGztGjR7F//37s27dP+5k/fz5ee+21/Pdq1aqVZgzlpaenp2vGT36GMLxwOp0oWrQoSpQogdTUVBQrVkz7LePyfmSa/ElLS8v/kabTli1bkJKSgjat26BCxQqaCRWGW+ZbRCEBfjZFYacWYpOop0KEH4VvTT3Zv1P1428aRur6i4aROpaGmvSCpWFkQMOABQJ8SFmAxiI+CVBPPtEEnJCZmYmDBw9qBpA0g+RnvvzjZPfu3drPjh07sH37dmzevBnZ2dkB1xsNGaXZVKNGDVSuXBmVKlVCuXLltJ+yZcuiTJkyKF26NEqWLImE+AQUK15MM8tkXl4kwM8makAlAepJJU3WRT3ZXwP68TcNI3X9RcNIHUtDTXrB0jAyoGHAAgE+pCxAYxGfBKgnn2gMCXJm0Lat27Bl6xZs3bpV+1mxYgWWLl1qyMeAWgLt27fHkCFD0KRJE8iZT7xihwA/m2Knr8PRUuopHJRj5z2oJ/v3tX78TcNIXX/RMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCcB6ukMGvkHxbJlv4j9e4ADBw5g48aN2LBhA1auXImdO3eeyWijV6VKldKMFLnnkDRU5O+4uLj813lx8pblTCj5I/dDkv0uZzvJvY4i7XrwwQfx+uuva/sxRdq9834DJ8DPpsBZMWfBBKinghkxR+AEqKfAWRVWTv34m4aRul6gYaSOpaEmvWBpGBnQMGCBAB9SFqCxiE8CsaonuYH0M888g9GjR/tkE8qEChUqoGbNmli/fj2OHDmivZWcTdOtWzdtiVbx4sW1fYPkfkByb6AiRYpov+VraQipuqRhlJWVlb+xtjSTtJ+T4vepMxtt6zfdPn78uLYX0+HDhyF/Dh06lL8vk1x6d+LEibAYUZKVnPkl91l6ov8TqN+gviosrMcGBGL1s8kG6KPyFqinqOzWQmsU9VRo6AN+Y/34m4ZRwNgKzEjDqEBE1jLoBUvDyBpDljpDgA+pMyz4KngCsaInaWL8/vvvWL58OUaNGoV//vkneHheajjvvPNQrVo1VKlSBdIUkj9y357y5ctre/bIvXvkrKCEhAQvpSM7Kk9L0oRq0KCBZhzJvZ3kbC39Rt/yDze5v9OuXbsgl/WpvFq3bo2XXnoJjRo1gjz9jVfkEsjTk2xB8+bNuYF65HalLe6cerJFN0TNTVBP9u9K/fibhpG6/qJhpI6loSa9YGkYGdAwYIEAH1IWoLGITwLRqic58+SXX37BokWLsHDhQixevDjoWS9yZk/Dhg1Rt25d1KpVC9WrV9fMIXn6mYyXJ4ZZOY7eZ+dEWIJVLcly8jm5bds2jBw5EnPmzAm65XImVpcuXXD11VdDmkjSwOMVWQSs6imyWsm7DRcB6ilcpGPjfagn+/ezfvxNw0hdf9EwUsfSUJNesDSMDGgYsECADykL0FjEJ4Fo0ZM8fn7VqlWaMTRv3jzNJJJGjtWrTp06uOaaa3DOOefg7LPPRs0aNVG5SmXum+MHaCi0JGeGTZ8+Hffee6+fdy446cILL0SnTp1wxRVXaBtoJyUlFVyIOQqVQCj0VKgN4psXKgHqqVDxR92bU0/271L9+JuGkbr+omGkjqWhJr1gaRgZ0DBggQAfUhagsYhPApGqJ7nvzpo1azSDaP78+fj666+Rk5Pjs52BJNx66614/vnntdlDsTxTKBBW3vKEQ0vSBJRL2X777Td8+umnmDBhgrdb8Rsn94W67bbb0KHDdWjTprU2M8xvASYWCoFw6KlQGsY3LRQC1FOhYI/aN6We7N+1+vE3DSN1/UXDSB1LQ016wdIwMqBhwAIBPqQsQGMRnwQiRU9yXxx5atnPP/8MaRDNnj0bclaRmSs+Ph5t27ZFy5YttVkmchlZmTJlzFTBvH4IFJaW5Kbb0ujbtGkT5J5JS5cuDXj5oTxFTs48kj9SGxUrVvTTQiaFk0Bh6SmcbeR7hY8A9RQ+1rHwTtST/XtZP/6mYaSuv2gYqWNpqEkvWBpGBjQMWCDAh5QFaCzik4Bd9SRnksjPyyVLluCHH37ArFmzsG/fPp/t8JYg97GRRsDll1+uGUQXXHABN0L2BkpRnF20JE+dk7r57rvv8Mknn5ja4LxNmza48cYb0a5dO20pImeaKRKHhWrsoicLt84iNiRAPdmwUyL4lqgn+3eefvxNw0hdf9EwUsfSUJNesDSMDGgYsECADykL0FjEJwE76Uke175s2TIsWLAAn3/+Of744w+f9+0tQW5KLfcdkvvUtGjRAvXq1aNB5A1UiOLspKW8JubNTPvxxx+1ZYty6aKMC+SS+1idXrrWQdMSzaNAqKnLY0c9qWsdawo3Aeop3MSj+/2oJ/v3r378TcNIXX/RMFLH0lCTXrA0jAxoGLBAgA8pC9BYxCeBwtSTHLhLU0ieYvbNN9/gq6++CngwLxskB/DyBCw5G0QaRPIodbk/Da/CIVCYWgq0xYcPH9b09uWXX+Ljjz9GRkZGQEXPPfdc3HHHHbjuuus080guZeMVWgKRoKfQEmDtKglQTyppsi7qyf4a0I+/aRip6y/bGUbr16/XvmmWxyGvXLlSW56QmJionVojlxjcfvvt2lHGgSKQ9UycOFH7Y1EaN/JIZDnYuOuuu7TBRqD1mM2nFywNI7P0mN+dAB9S7kQYDoZAuPUk9x168cUXMWzYMEu3LU0hOYtI7kN0ySWXcMNiSxRDUyjcWgq2FdIskvsdSaNSmke7d+8OqMratWujW7duuP7661G/fn3NuAyoIDOZIhBpejLVOGYOOwHqKezIo/oNqSf7d69+/E3DSF1/2cow6tixo7apaUHN69evH0aMGIGEhASfWeW32AMGDMDIkSN95nnyySfxwgsvIBTfGuoFS8PIZxcwIUACfEgFCIrZAiIg9bRo0SItb/PmzUMyQ0duRJy3D9GHH34Y0H3lZapVqxbk86B16zZo1qwpypUrl5fE3zYjEMmfTfKEvdWrV2Pu3LmYNm0a1q1bFxDdunXr4t5779X2yqpRo0ZAZZgpMAKRrKfAWshc4SRAPYWTdvS/F/Vk/z7Wj79pGKnrL1sZRhdeeCH+97//accbyxlATZs2RaVKlbRjk1etWoXhw4drJ6LI5j/88MN44403fJIYPXo0+vfvr6XLDS2feOIJVKtWDdu3b9dMJLm3gbxkvscee0x7rfIfvWBpGKkkG5t18SEVm/0eqlZLM0eeDJWZmYlixYppsyxULOvasWOHtumw3Itozpw5kJtYB3JJ8/+GG27A1Vdfrc0iOuussziDIxBwNsgTLZ9NUqt//fWXtkxSzjxavnx5QHTlzOfu3bujQ4cOKF26dEBlmMk3gWjRk+8WMiWcBKincNKO/veinuzfx/rxNw0jdf1lK8NI/tEll5xdeeWVXmf9yH0I5Mam0jyS14oVK3DRRRd50JAGjRxwyG8P5ZG5cuCSlJSUn09OSZd7Enz//feQG6Zu3boVVatWzU9X8UIvWBpGKojGdh18SMV2/6tuvRwQy71Z8q4ZM2aga9euecGAf8tBttyP6Ntvv4WsQ55SFegljSpp1ssBd+PGjVGkSJFAizKfjQhE42eT1PXmzZu1ZWtTpkzBr7/+WiBxOVP5pptuwq233qr93aHCgC3wTaMwQzTqKQq7KWKaRD1FTFdFxI1ST/bvJv34m4aRuv6ylWEUSLPkRqlyxpC8hg4diiFDhmiv9f8MHjw4f68MOWNJ7jfgfq1ZswYNGjTQomX+5557zj1LUGG9YGkYBYWShQUBPqQog0AJrN71GxpWutBvdvkZKj9L8y5p2oz+8OUCy8n8eSaRNOInT56MtWvX5lUT8G9pMskNhXlFPoFY+GzKM48++uijgGYeSbPonnvu0QykZs2aIT4+PvI7OkwtiAU9hQkl30YQoJ4oA5UEqCeVNENTl378TcNIHeOIM4xOnjyZv9+G/IbcfW8MOZg5++yzsWXLFjRp0sTvN4MyXc5Skvn//PNPpUsg9IKlYaROsLFaEx9Ssdrz5tr9+rI38ciSZ/F+qxfRo/F9Xgtv2LABF1xwgTGtfSLQtjheaz4EfZo+bEwTIfm5unHjRm22pjSJfv/9d4883iKKFi2af8pUq1attOVv3vIxLnIJxNJnU55Z+tlnn2HcuHHYtm1bgR1XuXJl9OjRAzfeeCPq1Kmj9O+MAt88AjPEkp4isHsi7papp4jrMlvfMPVk6+7Rbk4//qZhpK6/Is4wOnr0aP4JOXKfowkTJhho7Ny5E1WqVNHinn76aW3fI0MGXUCmy5N75CX33pB/2Km69IKlYaSKauzWw4dU7PZ9oC2XM4saTbsyP7s0jbbP+lvbzDc/UryQ+xfJn/zrP7MoL1xxdhKK7iyiHXV/1VVXQZ4OJY353377LS+L39/yc1Sa+fJUM7kPnTzlklf0EojVzyZ5sMYvv/yCmTNnaubRsWPHCuxkuU+jnHnUuXNnpX9vFPjGEZQhVvUUQV0UUbdKPUVUd9n+Zqkn23cR9ONvGkbq+iviDKP58+dr+wNIBPKkNLmZtf7SL1mbOHEi7rzzTn2y4bVMv/vuu7W4n376Sdts1ZAhiIBesDSMggDJohoBPqQohEAIjF0xDvf/NCA/q/OndOTOSs8Pe7xwM4vw/VHgm0yPbAVF1KtXT9u7RW5aLZf6huLkyYLugemFQ4CfTYDcF1GeCDh16lTI/cGkmVTQJTd5l3+fyD0bud/RGVrU0xkWfBU8AeopeIas4QwB6ukMC7u+0o+/aRip66WIMozkH2Ht27fXNliVCNavX4/zzz/fQGP69Om45ZZbtLh58+ZBfkPu65IbtbZr105Llkfq3nzzzb6yesRLQfq79u3bB3n0rrzkySuqN9X2995Miz4C8iG1cuVKrWFyo3f9Ju7R11q2KBgC41dPQK8lg89U4csE0ptF8jCzmYeAX3LOlCvglfx8k4cUyM9kuR+Rw+EooAST7UZA+hrHjrlw7IQD6SdcSM8Qv4W/mH7ShRPpDvGD/J+MUw5kC3lkZwFZ2UCOKJslXp88lYtde48IkwQoUyoNCfFOcZgEIH6J3y7EOR1aWPwSe/lAfHYBRYu4kJwsfwNFxG/tR8QVSXYgRcSlpgJpxV0oXtyBpAiboHbo0CHMnTtXM4/k3xgFXXLZ5n333aftd9SwYcOYN1v5rCtIMUw3Q4B6MkOLeQsiQD0VRKjw06VJVL16de1GaBip64+IMozk8jM5nVteck+A999/34PE+PHjtT++ZMLixYtx6aWXeuTJi5DpLVu21IIffPBB/myjvHR/v80Mjj755BOUKlXKX3VMIwESIAFlBL7c/RVe+XfSmfrcTaM8syhdjPJ/OwF8eQoIYGKRNL6lyd68eXPtgWzmc/DMzfBVKAlkZTtw+HAiDh5OwiH5czQRR4/Haz8l9+1B/Z3L0ejoT6jlWINjuWlYgVZYntgYiUIAlbL/RcXcfxHnysZnRTviixKt4BSvq5/ajXNO7UCtrB3YE18Gs4s3Q7ZTOD9BXPXSN6HHkWlIcp0S73Ut5hW/BMJ19KgxDjkoFpeNtKQsFE8Wv1OyUSwlC6XSMrWfkmmnUFK8LiF+UotmaeaURyWFFCG/WFq0aBG+/vpr7TTWgm6jWrVq2gmucr+vsmXLFpSd6SRAAiRAAiRAAjoCcsuFLl26aDE0jHRggnwZMYaR3Jxa7oeRk5OjzdaR+2l4M2HeeustPPzw6U1b5f4CF198sU9E8qjcSy4Rf6SKS5Z76KGHfOZ1TzAzUKJh5E6PYRIggVAT8GkaSbOojpjGsVQYRUvFVBHhGfm75J5EcqmZNIlq1KjBmUT+YIUh7fiJOOzdXwR79xXBngNJOCBMoX1HkrD3qPg5mYQTuQn5d5GYcxIdjv2CK9N/QEvHN6gcvyc/LdAXOS4xQ8ghp6CduQ7mFMM4Zz98ndoK2xPK4kh8Kmqd2oVTjgTsTCyLXIfvU8EuOLkFzxx8Be0SZ5+pULzanlUZH8f3xFepLYSJlIWU3FMomnsSieL1huTq2JRcVeRyoGLmXgza/w4uxk9IcqQjHlmnfxzCLBLm0l5XVfye1AIbyzXCrrPPRbGKcShbOgPlymSgdKkMJCYY22K4iRAF5GbZW7du1ZatzZ49W8zqKni/I/n/Te4D1rixMPO4D1iIeobVkgAJkAAJRBMBGkah6c2IMIzkkbbyaFq5zEv+4bRkyRLIZTnernDNMOKSNG/0GRcqApwGGyqy0V2vYXmaXG0mZxMtE7OJtvh3ieTnrJzFedttt6FRo0Y0icIpk/37cWr+YmR/PR/Y+Q/+LtUUE2r3x4ZdCdgoVkIfEzOICrqkKfPQoY/QKW4yijrFurEwXlJZ+7JLY1duTexCNfwdVxMzircXZlK8MIpeFUbRFxCr1UxfB3NSsS+3Ms5N2Giq7N7skvg79zyI81XFHKokbCx6CZbU7YzyNVJRvYoLtWu5UKuGA1Urn14yZ6pyC5kzMzMh90ycMmWKtiF9QfsdlS9fHg888IC2ZL5WrVoW3jGyivBZF1n9Zfe7pZ7s3kORdX/Uk/37i0vSQtNHtjeM5Klncnr2li1btLX933//PS677DKfNMK1h5HPG/gvQb/pFje9LogW0wsiIB9S0iiVl/zmmXsYFUSM6XkERs99Gf3ffBpYINacncyL9f37qaeewoABA8T+McV9Z2KKeQJilgl+Ww189gmw+S+gbDlklq+O3aXr4Z9DqXD8uhKV//wa1V3rPOpeldkE11aYjIy4FI+0vIi43Czccng+7j45Hhcl/poXzd9eCBzPTcTXObfgmKO4mGDnFDOipAnnRErRZGTUPh+Oixugcr1SOKumAzWrO5BwZtKWl9qsR+0X5qCccSSX18sZ0QVdHTp0EEvue4hloVeJPaDE5k9RePFZF4WdWohNop4KEX4UvjX1ZP9O1Y+/uSRNXX/Z2jCSM4quuOIK/P7779o33J9//gU6drzeb+t5SppfPEyMUAJ8SEVoxxXSbcslMMuXL8fYsWMh92craBaD/jb79euHMWPG6KP4OhgChw/BNWsWciaMQ/y+rcHUhH+yK+GP3IZYldAYvxRpgJOOJDTK2IBLT/2MZnHfomScmEFWwJUeXwqH6l2DjItboVjWAaRtWIqEbWvhSCsBR6Uqwlg0LhXLry5BGBTZwnR0+Z+dlp8/kBeJos6yYmrPzs2B5A5rHsl6dW4L/JrcFGvOuRrn1UtFgwscqHO+A+ee7UARsapT1SX/v27YsEGbcfTuu+9qs6n91S2X4/fu3VvbdL527dr+skZcGp91Eddltr5h6snW3RNxN0c92b/LaBiFpo9saxgdPnxY2zcj71s3eVStXB5R0CVnJFWpIv7oFdfTTz+N4cOH+ywi01988UUtfceOHZB7dai69ILlDCNVVGO3Hj6kYrfvzbRcfu68/PLLmDlzZsGb7MpZE1metZcoUQLyWxnum+LJJtCY/ftd2DlrBYrOmIga/8xCvNseQIHWoyxfo5bAFeLE0JatgFpned1cOv+95EyoBWI53I5/gIqVIB6o4qcqUKzY6XLrxQyose8CPy8QR6gdzi9m6oU0n3r0Be68SxyVJo5EE3sS4uPJwLefi+PXhCgdYtFavNhrK0m4MjnZYmac+54/YkZQB3Ea6hVXivJFtT2TjmfE4/CBbLiWr0KRFT+g9J5lYk8jNebWpqyzcFm5WTgeLxiIS85HOlecY9HkXAcurANcWNeJC85zaCe/aRmC+EcuWVuwYIFm9Mr/xwVdchP6+++/XzutsIhKF6ugNw5ROp91IQIbo9VSTzHa8SFqNvUUIrAKq9WPvznDSB1YWxpGx48fx/XXX69tECmbKqdry/00ArnkN3Vnn322toStSZMmkBtb+7rkhtjyW3iZ/88//1S6T4desDSMfPUA4wMlwIdUoKRiM58cYMrZmAFd54vBeAsxED+nCFodqY+1b/8GuUmg/vrxxx/RunVrfRRf6wnIM+S3bQNWLEfusiXIWfQjXBknsKTCffj+aAPcKvbqqZO4Vl/C1Gu5ZCrVKWbzBHOlpAHd7gduuhmoUDGYmnyXzc7GqX934Xehv8ziabhInEqaJI6Vh4jDrp3An2K/oVlTxAl8GafriBcnq2lG0d2nDSj3miVXaVjFxZ1JkeFdor61vwvjSKyplEuxLryw4DZlCeNJml5is2ns3IHMoxnIWrwMKWu+1QyfM28Q2Cu5F9J78Y8jQ8zqSs1NFxtyn0BR1+kZXZlis+8cRyKc5Soio+3lOL9pSTSs70D5cg7xd0Vg9XvLJb/ImjZtGl5//XX8849oi59Lnqr25JNPolu3bihXrpyfnPZO4rPO3v0TaXdHPUVaj9n7fqkne/ePvDv9+JuGkbr+sp1hlJGRga5du2LOnDlaK+XSCLlEwsw1ePBgDBs2TCvyv//9D/Xr1/covmbNGjRo0ECLl/mfe+45jzzBROgFS8MoGJIsKwnwIUUdeCOwbNky7UAAb2mGOHloVSUxct0uBt/ylLS2xfOTnz+/H+Y8O9uwhwqXpeXjMb44cADZL46A67svkJBd8PIvY+HToW1Z1THbeQuSXSdxQe7vaBz/E5KdOdjjrIl/z+uAnCsuR6krG4rTQOMQ/4GYyfPFDGF8bDptpHir0D3uwkvFzJ17gcsuR8g239G9Z4GfTUePAvPmii2ChFF55VUQm2PpShfCS2n0ffkFsHu3OCFQGFTi5NWsU7lispT4veNfpO3+FYkQs5osXlniVLmFWe3xcdFbsbJCc7Son4BLGgJNGztR+yyHhsFs1VnC/JIm7oQJEzQDSX4x5uuKE2abPCm2Z8+eOP/8831ls218gXqy7Z3zxuxIgHqyY69E7j1RT/bvO/34m4aRuv6ylWEk/yjq3r279geRbKI0caSZY/aSBo08TUTu29G2bVvNfNJvEiz/w8vNI+UG2vKPK7mhdrVq1cy+jd/8esHSMPKLiokBEOBDKgBIMZTlqBiEDx06FK+88or/VpcXJtFlyehzdU98PvhTbZaCnK15/h118OiK06a6rOCNps/ifxNWY9y4ccKoqKqd4NSiRQv/dcdIqpyosmZtLlYuOITO49qijHOv6ZZnChNhblYXTC95OzLrN0Tjeg7UE3vhSAOhRuVcJAjDSKwB9F2vWKYkHlTAxj+A1SuBJQvF12hiBk+WmLmTVga49AqgWXPg4qanl5D5rkl5StR9NgkDCZuEQbfge+DNF4LidTQnGetymmCtsyFWJ9fD4tIt0LxRUbRu6kDTJqLvq5mfgbRLzLaaMWOGNutoq5w95ee64YYb0KdPH+3gEKc07CLgijo9RQDzaL5F6imaezf8baOews/c7Dvqx980jMzS853fVoaRXIcvN2mVV5cuXfL3F/J1+wni6JLq1at7TR49ejT69++vpbVp00abqi1Noe3bt2PEiBHat3UyUeZ77LHHvNYRTKResDSMgiHJspIAH1LUgSSQnp6OSZMmYdCgQR7LyDwIPSj2Wzk7Ce+3ehE9Gt8HuS/cDz/8gE6dOkHukzLgs4F45d9J+cXea/kiyu4orZ1CKfcxitVLTjr5a7MLP/+SiwVLXZi/LgeNj63Fs0efR6PE5aaw7HVVwtqLHkZO5444p3GaOLrd2gwTn28qzQ398i2fGUOXENWfTZs3A0/0Bf5YpQTgwZxiuD9lIuYXb6zVV06srmt/kQMtL3Gg2cUOVKogDN4ArxzR9z/99BPGjx8Pucejv6thw4a49957cffddyMlJcVf1kJPi2o9FTrd2LsB6in2+jyULaaeQklXTd368TcNIzVMZS22MowcJhf7y+nW69ev90pDzi6Sx0OPGjXKa7qMfOKJJzRTKhTfvOkFS8PIZxcwIUACfEgFCCpKs8nZl3JWgTzuvqC9THCL2J+oSVGNRJ5Z5I4lT09f7v7KYBr5yu9ePtrCh48Ai5fmYvF3R7D75804kZmF6lm70DZjPprHzUPxODGTx8R1qkp9JDzaF04xw7WwDR0Tt20pa56WZOHmzZtDP5vXUoV2KySXfy35+fSm3H+LWV5yk+5UYcbK3yni/5mYuZOdfgondhxB0T/mIz6AjbY3ZJ6Pu0q9hz+LGL/wqiMmi13X0oHLxc+F9ZwBryjcJpbZydmBcsN7uay/oEuePFu3bt2CshVKetTrqVCoxu6bUk+x2/ehaDn1FAqqauvUj79pGKljG7WGUR6iRYsWYeLEidqMIjnQksst5Iwj+U1bKJdc6AVLwyivN/jbKgE+pKySi+xycq8SuaG1nC25evVqv415d8Z7eOCfgfl5/Jk/ej1tKLIRvZYMzi+36pbv0LCS2FQ4ii/pAWzeKtguzMX+mT+j4V8zUM+5DFXi/w2o1XuyS2HIBbNQrVV1tKy2BxdmrUKxMmJD5woVTm/GXEaM/GPk0mspKg0jM/14XJzmNncuXFMnw1HArKQTuQm4P3kyvk4TSwm9XEXigOsbOnBVKzEDqbkDZcsUPPtIziKcOnUqRo4cKfZk3+alVmOUPPSjcePTs52MKYUXop4Kj300vjP1FI29Wnhtop4Kj32g76wff9MwCpRawflsZRgVfLuRk0MvWBpGkdNvdr1TPqTs2jOhu69169bh6aefxuzZs32+Sa9evbSZknl7sL2+7E08suTZ/GVovgq662ny7x/i/p8G4LXmQ9Cn6cO+ikV0vNwG6NeVufjuJxe++CkXTXb8iEfTR+GCRHFMvIkr25mEnEmzkdTInjM0TDRFSVZ3LUXdDCOrlOSm2uuFtuTpbj98J06M+82jJrH6Ea/kDsSq5Lo45kzBsbgUbEiqilNxYpag29VIeJGdLnegfVsnzqrpf+8jueT0m2/mYsyYl7Vla25VGYLnnXceVq1ahSJFPN/TkDFMAeopTKBj5G2opxjp6DA1k3oKE+gg3kY//qZhFARIt6I0jNyAqArqBUvDSBXV2K2HD6nY6ft///1XWyr7xhtv+Gy0PDp74MCBOPfccz3yrN71W4EzhLzpKZByHm9m8whxvgEWL8vFl9+6MGOZCyezXbj90Dz0zRiFsxPExsZmrurnidPl2gN3dIc4t9xMyajO601LUd1gK42TO6f36gn8PK/A0jlig/S1WQ0xM+lWfFDyWpyMO728VF/wbLHF2M1tHbj6cifqiM3Tfa3mlzMUf/31VzRt2lRf3OvrKVOmaCfUxsfLIxUL76KeCo99NL4z9RSNvVp4baKeCo99oO+sH3/TMAqUWsH5aBgVzMhSDr1gaRhZQshCOgJ8SOlgROnL48eP4+2339ZOhpQzBLxd7dq108wkuYltMFc06+mk2MJF7kc0W5hEM39xQZyYrl0lsw5j2t4HcXHiksDQxYslZq3aAZeLfYgubUmTyAe1aNaSjyZbi5b/p8eIPRU/fDvg8idz4/B99g3IcBRBcdcRpOIoEpAJB1zaj/z376QG2HJbX7S9JhUX1ve9qfqrr76Kfv36+X3vBg0a4IUXXsDVV18ttmYqnFPVqCe/XcREkwSoJ5PAmN0vAerJLx5bJOrH3zSM1HUJDSN1LA016QVLw8iAhgELBPiQsgAtQopkZ2dj+vTp2tIyeWS2t6tOnTraiY7SMDJ7OIC3+qJNT3Im0Y+LczFrngufrThjEuW1/aITG/DR0TtQIX5/XpTh98nUKkh4uA/iLxJ7Nx04ABQvDtQRS84KebaF4SZtGog2LYUcs9xA6y0xe/CdEcreaklma1xbeRLKJTvQ7UoHbrjGiQvO8z7zSJ6odscdd/h9b7nP4/Dhw9GsWTMlnzd+38wtkXpyA8JgUASop6DwsbAbAerJDYgNg/rxNw0jdR1Ew0gdS0NNesHSMDKgYcACAT6kLECLgCJyucjDDz8Mufmst6tUqVKaUXT77bcjMTHRWxZLcdGgJ3EQJlb+lotPvnThQ7Ev0Ulxwry3664Dc/BSTm8kOf6baqTL5KpyNhx9nwSuEjOJCvl4et1tRdTLaNBSoQBf9BMwYRywTSyNPHkcyDgBZArnU8wesnI95XgF75XpnF/03JJi9eQ1DnRs70TVKp4bZq9Zs0b77JEHg/i6unbtimHDhuGcc87xlUV5PPWkHGlMV0g9xXT3K2889aQcqfIK9eNvGkbq8NIwUsfSUJNesDSMDGgYsECADykL0Gxc5ICYxfLss8/C1z5FccK8GDJEbEDdpw/S0tKUtySS9bRlmwuff5WLiV+7sEOMsd2vKqd249Yj32onlzVwLkHl+D3uWYA0cYrZ8y8Dl12uHYvumYExgRKIZC0F2saw5csQ6ylXCPN42sdiytwc4R2ZM49WZTbB50ldMS2tLfYnlM6/7WZVgds6OHHNVQ6UKmk0j1asWKEtg50rTnfzdskZjY8//rh2UmPZsmW9ZVEaRz0pxRnzlVFPMS8BpQCoJ6U4Q1KZfvxNw0gdYhpG6lgaatILloaRAQ0DFgjwIWUBmg2L5IppMfLYazmrSB6B7e3q0aMHBg0ahLyTz7zlCTYu0vR0SKD6cm4OPpztwgrvq/bQ8MRGjD48EI0Svc/WymdWv5lYEvQ+IGZv8QqeQKRpKfgWh6mG/WL55NfCNNr0F8QRZkCxYuJHLJWUMw2FieMS6Q4/y9oWZF6N+8u9iAMJZ3QudyXq1NCB7jc60KKZM39Sndwc+4cffsCAAQO0TbK9tTAlJQUjRozAvffeG9IT1agnb/QZZ5UA9WSVHMt5I0A9eaNirzj9+JuGkbq+oWGkjqWhJr1gaRgZ0DBggQAfUhag2azIunXrtBlDCxYs8Hpnbdu21QZkjRo18pquMjIS9CSXnK1YnYsPP3FhqjjhLCdvsoUY3HY4+jPuOT4ZtRzrsRhX4X9J9fFc9qNIdvpYl5YH7zZxUtWTT3NvojweCn5HgpYUNNOeVTwtllPO+sjnvW3KOhtXlPsMR+M9ZymWFx5Uz+sc6NrRiSqVT886kob2rFmztP3UNm3yfopgrVq1MGbMGFx33XUh2RibevLZnUywQIB6sgCNRXwSoJ58orFNgn78TcNIXbfQMFLH0lCTXrA0jAxoGLBAgA8pC9BsUuTo0aMYNWqUtoms/Cbf/SpTpgzefPNN7UjrcJ1MZGc9HTokNq6ek4t3P3Vhk24SlsOVi/sOzkafzJdQJf5fd4z+w844YLjYaPj6jv7zMdU0ATtryXRjIq1AjjBI3xa6nvAWcCrd692vy6yLKyvMwMm4ol7TZeSVYouiu7o40baNU5vAlCGWxn3wwQeacXTihJd1n6KM3Bh75MiRaNKkic96rSRQT1aosYwvAtSTLzKMt0KAerJCLbxl9ONvGkbq2NMwUsfSUJNesDSMDGgYsECADykL0Aq5iDSHvvzyS2352T///OP1bvr27avtHyI3tw7nZTc9ydlEv67MxeSZLsz4VcwmcoPR7sgyPHdiMM5J+NMtxUcwWQyO214P1KgJlCghXl8FhGH/FR93E9XRdtNSVMP21bisLGDpEjHb6DNg7iceuQ47yuJQZioSHSexPbc2Fse3wYKiTXEwrhjixf+2RFe29lM6LhtNr6mEG+4pr22UvV8sexs9erRmeMvZR96uu+++G0OeGYLqNap7SzYdRz2ZRsYCfghQT37gMMk0AerJNLKwF9CPv2kYqcNPw0gdS0NNesHSMDKgYcACAT6kLEArxCL//vsvpBk0Y8YMr3dx8cUX46233kLjxo29poc60i56kpMXPheziV6bmmuYTZTX/gtObsGIg8+hReIPeVEF/77pXuDpwUBCQsF5mSNoAnbRUtANiZYKduwAbuoAHNlnqUXSFhrjGozf2/bA/bc50OxiJzZv/ksztqdPn+61TrlJ//PPP49HHnkEcq+jYC7qKRh6LOtOgHpyJ8JwMASop2DohaesfvxNw0gdcxpG6lgaatILloaRAQ0DFgjwIWUBWiEUkbOKpEkkN64+duyYxx0kJyfj9ddfx1133SX8jMIzNApbT//scOGLsbuAT2ajeuZGfJ1yNaaXbJvPKzHnJF7dMwI3J0yA3Kg3oEtsBIxnxMlnN90cUHZmUkOgsLWkphVRVsv27UCX9sAJ3ZpOk018M6c/BlfohdolHOh9qxOdrnXgf7/9jMcee8znxthyfyN58mP79u3FvtzG09gCfXvqKVBSzBcIAeopEErMEygB6ilQUoWXTz/+pmGkrh9oGKljaahJL1gaRgY0DFggwIeUBWhhLrJr1y7tG/ZPPvFcEiJv5Z577sGwYcNQsWLFMN+Z59sVhp7k9k2/rMjF8lGL0WT1W7g4cbHBDLo74UN8UaIV6qRvxoeH70XNhK2eNy5jqp8njKFhwCVNgYULgVHidao4QeopMauoYeg3DPd+U7EbWxhail3aJlq+eTNwy3VA+hEThYxZx2c/jCfL90WOMwFFhHPbo504Ya2rOKlw+aeacbRz505jgf9CXbt21YzxChUqeE33F0k9+aPDNLMEqCezxJjfHwHqyR8de6Tpx980jNT1CQ0jdSwNNekFS8PIgIYBCwT4kLIALUxF5KwiaRLJ46a9zSqqXbs23n//fW2T2DDdUoFvE049ZWYCs7/JxUfjD6DnhqFon/iFz/ublfQQrj31nravikem1JLAgOfExtWdII5n8khmROEQCKeWCqeFEfyuhw8BixYBOdlAitjXS7q2y38BfvwO+FdnyIrZQLnCvnW63HcPA7Zk1UT/1JexoPhF+SBubOTAfbekY9HCdzFw4EBkyT2U3K4SYu+wyZMno0OHDqZmG1FPbiAZDIoA9RQUPhZ2I0A9uQGxYVA//qZhpK6DaBipY2moSS9YGkYGNAxYIMCHlAVoYShy8OBBPProo5g0aZLXd3vyyScxaNAgpKamek0vrMhw6EnuTzTtsxyMnXQUN+2cgntdryAt7qT5JjvjgQf7A3eLvYmKiLPAedmKQDi0ZKsGR8vNSJNHLhsT+w9pv2W7PhWzI595xGsLx2b3wRMVHxVpZ5aataoJ3HbtDrHX9kBMnTrFa7mePXtixIgRSEtL85ruHkk9uRNhOBgC1FMw9FjWnQD15E7EfmH9+JuGkbr+oWGkjqWhJr1gaRgZ0DBggQAfUhaghbjIggUL0L17d3hblnHuuedqx1I3b948xHdhrfpQ6ungIRcmThEziqYfwsN73sctzveR4vScgRDQnZ9VVxwbPg6oUjWg7MwUfgKh1FL4W8N3xBefAwN7CxBiNpLbtSKzKXahGlYkNsbYUtchI+70BtfnlXShXaOFmPLhw/jrr41upYCaNWviww8/xKWXXuqR5h5BPbkTYTgYAtRTMPRY1p0A9eROxH5h/fibhpG6/qFhpI6loSa9YGkYGdAwYIEAH1IWoIWoSHp6OoYOHaodNe3tLeSsosGDB6NoUbEExKZXKPS0c5cL70/OxdvzXLj+0I8YldELpeKOeyWQ6RQzhQaOQGI5ceR97+5e8+DW+4EnBgCJid7TGWsLAqHQki0aFss3sX6dWP75OLBpjU8Kx3MT8WnuPXitZDdsTa6i5SsTfxzV457F/G9f9VpOfi4OGDBATBT0PVOQevKKjpEWCVBPFsGxmFcC1JNXLLaK1I+/aRip6xoaRupYGmrSC5aGkQENAxYI8CFlAVoIiqxevVqbVbR27VqP2qtWrap9i966dWuPNLtFqNTTtr9deG1sLiYvdiExJx1v7BmOLgkf+Wyyq+0NcAwRexGVKnU6z2Kxx8rE8cDvK06Hz75A7K77INDmMp91MME+BFRqyT6t4p0gNxf4QMzue+VZvzBELizOvAI/J7TCiuR6WJhaH46jPyL9r7uRnr7Ho2zDhg21Jbz16tXzSJMR1JNXLIy0SIB6sgiOxbwSoJ68YrFVpH78TcNIXdfQMFLH0lCTXrA0jAxoGLBAgA8pC9AUFpGbur722mt44oknxL6xnks15IbXo0aNQsmSYmPmCLhU6Gn7DhdefS8Xkxa5xIa5wJVHf8UrJ3qjcvxuDwIuse+J4+obgfsfAsRyPV7RQ0CFlqKHRpS1RH7W3ShOWtu4OuCG7c4ug15F38f3ydWR8edjyDzgubeRU2xa/8orr+Chhx5CfLzYo0x3UU86GHwZNAHqKWiErEBHgHrSwbDpS/34m4aRuk6iYaSOpaEmvWBpGBnQMGCBAB9SFqApKrJp0ybtBLSffvrJo0a5kevEiRPRsWNHUycBeVQU5ohg9LRjp5hR9H4uPlh42igqmn0cr+590fesojYdxPKWwWIfotPLVsLcVL5diAkEo6UQ3xqrV0Hgjz+Am9sD2eK4wwCvHJcDozAEI8rehfTdM5H5Vw+xJVK6R+m2bdti3NhxqF6jen4a9ZSPgi8UEKCeFEBkFfkEqKd8FLZ9oR9/0zBS1000jNSxNNSkFywNIwMaBiwQ4HykPnUAAEAASURBVEPKArQgi8iZRFOmTME999yDTHk2vNt13XXX4Z133kHlypXdUuwfNK0n0f7DEz/Hvg++EjMG9uAEiuMY0nBc/G7unIey8Yc9Gx0v9h567hXg+o5nTmHyzMWYCCdgWksR3t6YvP09YmnZmv8B54vlotL43bkTYodr8TMWyMzwieT7zGvQvfwoHM86iONrHxCe0XceeVNSUrTPWWm6y4t68kDEiCAIUE9BwGNRDwLUkwcS20Xox980jNR1Dw0jdSwNNekFS8PIgIYBCwT4kLIALYgiR48eRb9+/bSTztyrkUsopFEkjSS5tCISLzN6OrRsI7J79kDZ7M2BN7VeU+Dl1yHctMDLMGdEEjCjpYhsIG/aN4GTJ4HvhQm0cjmwVMzA3LHJI++hnKKYl9sVqxLrY+6Rjfh9h9wTSS5iNV59+/bF8OHDERcXhyVLlmiJ8pTJpKQkY0aGSMAEAX4+mYDFrAUSoJ4KRFToGfTjbxpG6rqDhpE6loaa9IKlYWRAw4AFAnxIWYBmsYjc2PrWW2/Fxo2ex0PLAcyECRNwzjnnWKzdHsUC0dOJ47lY3WsiLl7+DBIdnvs2eW2JnFU08EWgy00QbprXLIyMLgKBaCm6WszWeCUgN8ke+x7w+jCvyXmRM062R4+dK3E087e8qPzfjRs31kz6/fv3a3E0jPLR8IVFAvx8sgiOxbwSoJ68YrFVpH78TcNIXdfQMFLH0lCTXrA0jAxoGLBAgA8pC9BMFskVA553330XvXv3FgcEeX4DPmzYMPTv31+c8i5MkQi//OlJ7O+NmZ9modqQnmgRPy/wljZrCwwbAVSoEHgZ5ox4Av60FPGNYwPME1gqZgc9fBeQccJn2Z3Z5fHgofr4ct8kjzzy81V+zl5++eW49NJLOcPIgxAjzBDg55MZWsxbEAHqqSBChZ+uH3/TMFLXHzSM1LE01KQXLA0jAxoGLBDgQ8oCNBNF5DfaDz74ID755BOPUpUqVcL06dPRokULj7RIjfCmJ3kg0qJPdqLM4IdwQdx/R9y7NfDPrHOx45I7cUlLJ4q6jgNi6Z52XSrYNGvOvYrceMVC0JuWYqHdbKMfArv/Bfr1FvseLfWZSVryo090xlPbJ4uTJ//7HNHlvvbaazFp0iSULl1aF8uXJGCOAD+fzPFibv8EqCf/fOyQqh9/0zBS1yM0jNSxNNSkFywNIwMaBiwQ4EPKArQAi/z888+4+eabxT6uYiNXt6tz587arKOyZcu6pUR20F1P6/5IxLMjMzBq+TU4J+FPj8bJwd2SGo/g3HH9ULZigkc6I2KXgLuWuOdM7GrB0HLpQG8WexotXCiMo9XAD18BOWL6otu18lQ9DN29H3NOrHRLAerWrYsZM2bg/PPP90hjBAkEQoCfT4FQYp5ACVBPgZIqvHz68TcNI3X9QMNIHUtDTXrB0jAyoGHAAgE+pCxAK6BIdnY2Xn75ZTz11FMeOeVm1m+88QYeeOCBiN3Y2qNRuog8PR04lIjf5ldF6g/z8EDuSJSI8zz6Whbb+8RYlLvzGl0NfEkCpwnkaUmGuOcMVeGTgDTkH+sD/L7Ma5afT5TB0J1r8X22cTmwXKImZ3h26tTJazlGkoA/Avx88keHaWYJUE9miYU/v378TcNIHX8aRupYGmrSC5aGkQENAxYI8CFlAZqfIvL/pzzl7KuvxLfeblft2rUxbdo0NGrUyC0leoJHj2Tg857TUWflLDRK/AW+tqfOhQPOPgOBng9GT+PZEqUE+NmkFGd0VxbAxthzDmegx78Hsdttn/0BA57G0KFDomIPuejuZHu1jp9P9uqPSL8b6sn+Pagff9MwUtdfNIzUsTTUpBcsDSMDGgYsEOBDygI0H0V++eUX3HjjjV6XoEkTacyYMUhLS/NROrKj5SqRBT/mYO8jL+PWnNf8Nsb1+mQ4mjUDUlL85mNibBPgZ1Ns97+l1i//FejbEzi812vxg9kuDNm5H2+eMC5ha37pVfjs08koX76813KMJAF3Avx8cifCcDAEqKdg6IWnrH78TcNIHXMaRupYGmrSC5aGkQENAxYI8CFlAZpbEXny2XvvvYeHH37Y4xS0hIQE7Tjn22+/HQ6Hw61kdAQ3b3Hh6RE5uHTh2+gTJ04z83G50srC8dr7QJOLfeRgNAmcIcDPpjMs+MoEgcxM4NOZwKsvAscPeS247HgGeu04hFW5Z6YbJSZXxLxvPkebNpd4LcNIEtAT4OeTngZfB0uAegqWYOjL68ffNIzU8aZhpI6loSa9YGkYGdAwYIEAH1IWoOmKHBWnefXq1QsfffSRLvb0yzp16mDmzJlRu7HqyZNiTPZeDkZ/4cJTe8ahv/N5DwYZSILzmpuReFNn4KKLIDZu8sjDCBLwRoCfTd6oMC5gAhkZwPSp4kNqOJApPqzcrkwxLXLsviN4dH86hMX03+XEY/3HY+RLd4qPqug0+PNayt/BEeDnU3D8WNpIgHoy8rBjSD/+pmGkrodoGKljaahJL1gaRgY0DFggwIeUBWj/FVm/fj26dOmCDRs2eFRy55134vXXX0fx4sU90qIhYuHiXDz8Yi72HT2Jgfs+QO+4kR7N2nXnMFTqezvE5iAeaYwggYII8LOpIEJMD4jA/v3A4AHAT197zb4zMxtP7jiAjzNy8tPPqf8k5s56DjVr8LMrHwpfGAjw88mAg4EgCVBPQQIMQ3H9+JuGkTrgNIzUsTTUpBcsDSMDGgYsEOBDyjw0l/hmWh7J3K1bN2RlGffCkKegvf322+jRo0dUnoK2d58Lg0fkYvGS3XjqwFjc4JyEVOeZ7+fzaG7seh9qiM1keRR6HhH+NkuAn01miTG/TwLiMzvz23lwDeiDpFMnvGb7/mg6xuw5igyxSq1yvBMbEi7DbS9MR++eJSFWFvMiAQMBfj4ZcDAQJAHqKUiAYSiuH3/TMFIHnIaROpaGmvSCpWFkQMOABQJ8SJmDdlKswxowYABee81zY+eqVavi008/RZMmTcxVGgG55SFEU2bm4gmxBO2OfbMwJPtxFHUazbK8Zmy64U78c8WVPAo9Dwh/WyLAzyZL2FjIBwGpp2ULFqDm7M9RddHXEH+k+sh5OjpHpD+xMxELms7Hey/UxMUXcTmtX2AxlsjPpxjr8BA3l3oKMWAF1evH3zSMFAD9rwoaRupYGmrSC5aGkQENAxYI8CEVOLS/t/2NW2+7FUuXLvUodN1112H8+PEoW7asR1qkR2z804VHnsvB5q0HMHbvk2iT+J3PJmX3G4JFZ9XW0ps3b84ZRj5JMaEgAvxsKogQ080Q0Ovp0grlkfjcM8Aaz89yfZ2nhGnU4s8TWF/3K/Tt0gwD+sUhtag+B1/HKgG9nvisi1UVqGs39aSOZahq0o+/aRipo0zDSB1LQ016wdIwMqBhwAIBPqQCgzZv3jx07doVx44d8yjwwgsvoH///oiPj/dIi+QIudrurXE5eH56Lrod+BpDsx5Hibh0jybJ7+kdLdsD9z+IU3XqYsmSJVoe/hHtgYoRJgjws8kELGYtkICHnuTeanO+BJ59Ajjp+bmeV+G6k5losPUg4mpPQu2zb8E7g51o2YyzjfL4xOpvDz0lJcUqCrZbAQHqSQHEEFehH3/TMFIHm4aROpaGmvSCpWFkQMOABQJ8SPmHlpOTgxEjRmDgwIEeGdPS0vDJJ5+gbdu2HmmRHrFhows9B2Wj3OaVeP7YYJyfuN57kzreAfTuC1SsqKVTT94xMdY8AWrJPDOW8E3Ap57ESZeYMB74aCyQfsRrBa/uOYx+B9IRX2kQUs8ehHvbxOOZx+LEoQZeszMyBgj41FMMtJ1NVE+AelLPVHWN+vE3DSN1dGkYqWNpqEkvWBpGBjQMWCDAh5RvaHI2Uc+ePTF1qjia2e269NJLMWXKFFSrVs0tJbKDclbRtJGbUXTSe7jUMRfl4w94b1BKGjD6baB1G0M69WTAwUAQBKilIOCxqAeBAvUk9zQ6chhISERux3Zw/rs1v45cuDBp/1H03nsCJ9O6oljd91GuaCreedqJK1pztlE+qBh6UaCeYogFmxo8AeopeIahrkE//qZhpI42DSN1LA016QVLw8iAhgELBPiQ8g5N/t/q3LkzVq1a5ZHh0UcfxfDhw5GcnOyRFskRf4i9ioY+/i/e/bO116Vn+W27/Hrg+ReAEiXzo/JeUE95JPg7WALUUrAEWV5PwJSe1q+D66Z2Hhtj78rMxiPbD+BTNERqw88Ql1wRtzd1YNiAOJQQHjqv2CFgSk+xg4UttUiAerIILozF9ONvGkbqwNMwUsfSUJNesDSMDGgYsECADylPaL/++iuuvfZa7N+/35CYIM5W/vjjj9GlSxc4HA5DWiQH5Kyit8fn4Llpufhm5224OPH0HkQebapUCxj0PNCqtdi0yHv7qScPaoywSIBasgiOxbwSMK2nd94C3hTGuNslZxu9vPswnjhcVphGXyM+9VyUE98djB/iRAvubeRGK3qDpvUUvSjYMgUEqCcFEENchX78TcNIHWwaRupYGmrSC5aGkQENAxYI8CFlhPbNN9/g+uuvR3Z2tiGhatWq+PLLL9GgQQNDfEQHxBKMXQv/xNeDfkHCvr9RO3c9mif+5NEkV8nycDzyFND5RiAuziNdH0E96WnwdTAEqKVg6LGsOwHTepJL1CZ+AIx5FsjNca8O68Vm2KP3pGP62d8gsWRzLf2Raxx4qk+cmH3qkZ0RUUbAtJ6irP1sjloC1JNanqGoTT/+pmGkjjANI3UsDTXpBUvDyICGAQsE+JA6A23SpEm46667zkT896p169aYNm0aKlSo4JEWqRGuLVtw5I4HUOLIOp9NyHXEwTl1DlC3ns8ZRe6FqSd3IgxbJUAtWSXHct4IWNbT9u3AgMeB3372Vi0+O3QC3Yu/j4QKnbX080sBH7wUh/PO8T4L02sljIw4Apb1FHEt5Q2HgwD1FA7Kwb2HfvxNwyg4lvrSNIz0NBS+1guWhpFCsDFaFR9S4svj3FyMGjUKTz0lZtG4Xffffz9effVVFClSxC0lcoPpn4hlFEMeQCI8vzXPa5X4bh2OD2cDjS7KiwroN/UUECZmCoAAtRQAJGYJmEBQehLPCHwwHq5XhsKbDbTyRAY6uZ7C8ZrixEiRQ87DfOEuB+7rLkx37okdcB9FUsag9BRJDeW9hoUA9RQWzEG9iX78TcMoKJSGwjSMDDjUBfSCpWGkjmus1hTrDym59Kx///6aKeSugSFDhuCZZ54Rf/BHyV/8YrOiPb2Hofyice5N9Qw/Mhi4/wHP+AJiYl1PBeBhsgkC1JIJWMxaIAElevplGXKf7Avnvn883u/vzCxcdfRm7D1vtPCMTi/dbV1L7A/3QhwqVfBmM3lUwYgIIqBETxHUXt5qaAlQT6Hlq6J2/fibhpEKoqfroGGkjqWhJr1gaRgZ0DBggUAsP6TS09Nx3333YerUqR7k3nvvPfTo0SNqNrfO/Gc3DnS+FxXTf/No66GcothVsT3OvaYa4quIZXf16p9ehuaRs+CIWNZTwXSYwwwBaskMLeYtiIAyPYnZRrmzZyFnYG8kiA2w9ddOcYra1fta4J/6k+Bwnt7IKFV4RxOfceKK1lHyxYO+wTH8WpmeYpghm36GAPV0hoVdX+nH3zSM1PUSDSN1LA016QVLw8iAhgELBGL1IXXw4EHcfPPN+P777w3U5GyiTz/9FJ06dTLER3Jg3+yfkfTkXSjuTPdoxuzc7ij5zhC0bKNml9ZY1ZMHWEYETYBaChohK9ARUK6njRuRftM1SMnO0L0LsCcrB9fuPA+bGn4OR3yx/LR+1zowoG8cxGGbvKKAgHI9RQETNsE6AerJOrtwldSPv2kYqaNOw0gdS0NNesHSMDKgYcACgVh8SMn/Q+3bt8eqVasMxFJSUjB37ly0bNnSEB+xAfFN+NZH30T170bA/bvtUy4nptR6HddP7oTSpdQtl4hFPUWsPmx+49SSzTsowm4vJHravw/Hr2uL1KP7DTSO5uTi8V2lML3uAjgTS+enNakstkIaGYcqldV95uZXzhdhJRASPYW1BXwzOxGgnuzUG97vRT/+pmHknZGVWBpGVqgFUEYvWBpGAQBjFr8EYu0htXPnTrRr1w7r1hlPB5MnoH377beoV0+cCBYFV9bOvdjZtS9qHFno0Zp/sqtgzUOTcU2fc8WSO4/koCJiTU9BwWJhvwSoJb94mGiSQMj0dPgQ0ju1R4qXfY2Wn8jGt4n98UWpztiUXE2746JiidoHA5246nJ3G99kg5i9UAmETE+F2iq+eWERoJ4Ki3zg76sff9MwCpxbQTlpGBVEyGK6XrA0jCxCZLF8ArH0kNq2bRuuvPJKbNq0Kb/98kWdOnXw1VdfoXr16ob4iAuITa3x00JkfDQTyb/O8Xr7Sx3XoNzUMTir3pmlEl4zWoyMJT1ZRMRiARKglgIExWwBEQipno4dQ8ZNHZG8faPPe/lfZkNMTL4PH5W8CtnORPRp78DAfnFITPRZhAk2JhBSPdm43by10BCgnkLDVWWt+vE3DSN1ZGkYqWNpqEkvWBpGBjQMWCAQKw+pv/76C5dddhnkDCP91aRJE8yZMwflypXTR0fea7E0AvfcAWxe6/Xec1wOfFP7WVwx9R4USVE8rUj3jrGiJ12T+TJEBKilEIGN0WpDridxiEJ6v95IWTzXL+Hd2WVwd7FJWJZaF40rAZPHxKEiT1Hzy8yOiSHXkx0bzXsKGQHqKWRolVWsH3/TMFKGFTSM1LE01KQXLA0jAxoGLBCIhYeUXH4mzaJ9+4SportatWqFzz//HKVKldLFRuBLsVeRq9utcPy22OvN78sugfUPTEarvhcpX4Lm/oaxoCf3NjMcGgLUUmi4xmqtYdGTy4VjU6fA8Xx/pDp9G/Mnc+Nwb/LH+CatGUqITbCnv+TExRdxiVokaTMseookILzXoAhQT0HhC0th/fibhpE65DSM1LE01KQXLA0jAxoGLBCI9oeU3Nj68ssvx5EjRwx0rrrqKsycORPFixc3xEdi4NRbY5H09lCPW88VMUtc16HipGE4q0kZj/RQRES7nkLBjHV6J0AteefCWGsEwqmno+Jghfc6dkCNbX/gsuIpKBMvNi5yu7LFrM8xGIzRZW5HjjMZo3s4cNdtcSE39d1ug0GLBMKpJ4u3yGIRRIB6sn9n6cffNIzU9RcNI3UsDTXpBUvDyICGAQsEovkhtXTpUs0sysgwHnvcsWNHfPzxxyhatKgFYvYqsvO7tSj/yNWId7jyb2xPdimMSXgGOW2vxNDhJZAaxmZGs57yAfNFWAhQS2HBHDNvEm49nTx5Evfccw9mTJuGu1Pi0btcGhqkJHnwljNAByW/jBkl26JbMwdGDIlDkWSPbIywGYFw68lmzeftKCZAPSkGGoLq9ONvGkbqANMwUsfSUJNesDSMDGgYsEAgWh9SP/74I+Qsoiy5EbTuuuWWWzBhwgQkJ0f+X+SLvjuOGg9fgarxO/JbKGcVdS3yBW7ofxFuv8kZ9m+ro1VP+YD5ImwEqKWwoY6JNyoMPcnnT58+ffDuu+8iXlD+vFIaOpTw7uC/4Hoeo8p1RwOxnd5Hr8ShSmXfS9piosNs3sjC0JPNkfD2giBAPQUBL0xF9eNvGkbqoNMwUsfSUJNesDSMDGgYsEAgGh9Sc+fORYcOHZCTk2MgIr/tfeedd8SpNJF9LI3YsgiTXtuLhm/fhwsTVxraOMHxOBp83BeNGhTOYCMa9WQAzEDYCFBLYUMdE29UWHrKFR/YTz75JEaPHg35qTyuXFHcUybNK/MPsnvhsQr9USzBgWnDnWh+Cfc18grKBpGFpScbNJ23EAIC1FMIoCquUj/+pmGkDi4NI3UsDTXpBUvDyICGAQsEou0h9cUXX+DGG2+E/CNdf/Xq1Quvvvoq4uPl97yRe504AXx857fosrYPSsUdMzTkL1dDFJ//BcpXLLw2RpueDIAZCCsBaimsuKP+zQpTT/J5NGjQILz44osa57bxTjxbqQSap3rOdP0yswvurvgSXM4EvNHLidu60jSyozgLU0925MF7Co4A9RQcv3CU1o+/aRipI07DSB1LQ016wdIwMqBhwAKBaHpIffjhh+jevbsHhf79++Oll16C0xnZf3jv2XgIf3Z5Bi1zP/NoYwYS4ZyzGIk1K3ukhTMimvQUTm58L08C1JInE8ZYJ1DYepKm0dChQ/H888/nN+Klksl4sqLnKZ1LMluhc4X3cSquCB65xoHBj8UhznPf7Px6+CL8BApbT+FvMd8xlASop1DSVVO3fvxNw0gNU1kLDSN1LA016QVLw8iAhgELBKLlIeVweF+CJf9AHzx4cGSbRbv/xcGR45AydyySHcZldrLLTySURYrYxNtRp44FBagtEi16UkuFtVkhQC1ZocYyvgjYQU8ulwvDhg3DM888k3+bfVMTMapqaXFwgfEZtijzcnSsNB4uhxPXio/2d0fGh/UAg/wb5AuvBOygJ683xsiIJEA92b/b9ONvGkbq+ouGkTqWhpr0gqVhZEDDgAUC0fCQ8mUWjRw5Eo8//rjY+Nn4h7gFTIVTZMsW4L23kTtnGpw4cwqa/mYO1bkGJceOBtK874mhzxuO19Ggp3Bw4nsUTIBaKpgRcwROwC56kqbRiBEjMGDAgPybvzUpDuNrlkMRp/FZ9U5OPzxdoa+Wr04ZYMYbcahU0ZgnvxK+CCsBu+gprI3mm4WMAPUUMrTKKtaPv2kYKcPKGUbqUBpr0guWhpGRDUPmCUT6Q0ruCfH00097NPzNN9/EQw89FLlm0RefwzWot/wg9WibjDieWwSZA19FqduvFfM57TOAiHQ9eYXNyEIhQC0VCvaofVM76UmaRvKkzszMzHzeVyY4MaNWWZRwW3v2fnYfPFPuIW15WilxXsOnL8fhwnr2+czPb0CMvbCTnmIMfVQ2l3qyf7fqx980jNT1F2cYqWNpqEkvWBpGBjQMWCAQyQ+pKVOm4Pbbb/dodZz4gzs7O9sjPmIiNm6E68YrvJpFOS4Hfi16E+p98jRSq4uvnG12RbKebIYy5m+HWop5CSgFYDc9SdPIfV+96xOd+PSs8h7L0zLF5/6KrFb4PrEd5qRdjqHPVsY1V0b2nnxKO7cQKrObngoBAd9SIQHqSSHMEFWlH3/TMFIHmYaROpaGmvSCpWFkQMOABQKR+pCaOXMmbrrpJq8tln+IR+y1fz9yO7WD89BuQxMycuMwI/de7L7+XvR7oQoSEgzJtglEqp5sA5A3kk+AWspHwRcKCNhRT95Mo2fSkvBs5dI+WyzP/xyTOwilB92Pu2/nTtg+QYU4wY56CnGTWX0ICVBPIYSrqGr9+JuGkSKoohoaRupYGmrSC5aGkQENAxYIROJDSi436927t0drX3nlFfTte3q/B4/ESIg4eRLZnTsifvs6w93+mHkl7io3GgPvL4n7usfZaQWa4T5lIBL15NEIRtiCALVki26Impuwq57k6WndunWDnDGbd71RJgUPlUsTe9d5X3omTaPOyV/gkm6N8GSfODFTKa8kf4eLgF31FK72833UEqCe1PIMRW368TcNI3WEaRipY2moSS9YGkYGNAxYIBBpDylfG1i//fbbePDBBy0QsE+RI2PGI238mdNz5J39nlkfV1X6DJOGJOGqy+0/Kog0Pdmn93kn7gSoJXciDAdDwM56kqbRI488AvllSN51aZwTI6uUQrPUJK/Lk//JroTG5RbglpYpGP1snG1nnea1J9p+21lP0cY6FtpDPdm/l/XjbxpG6vqLhpE6loaa9IKlYWRAw4AFApH0kEpNTcWJEyc8Wvnqq69qf2x7JERQxJYFW1Crd0vDHe/PThPHKi/EO2+UQf263r9pNhSwQSCS9GQDXLwFPwSoJT9wmGSagN31JPfd69mzJz744AND2xpUroTvxYmfpZcsguOHLw1pE7MfRL+KT+Hq84Fxo+NRtKghmYEQErC7nkLYdFYdAgLUUwigKq5SP/6mYaQOLg0jdSwNNekFS8PIgIYBCwQi5SHVrl07fPvttx4tvO+++/D+++9H7mlookWbxi5AlTF3IdmZY2jf60VG4IYvbkfVKpFhFsmbjxQ9GUAzYEsC1JItuyVibyoS9CRPTbvzzjsxbdo0A+c6dergh/nzUbZ3T2Dd8vy0k2Jvu5pl1mknqF1UEZj+VhxKl4qc50V+QyLwRSToKQKxxuwtU0/273r9+JuGkbr+omGkjqWhJr1gaRgZ0DBggUAkPKTkcrNevXp5bZ2cyu9rmZrXAjaLXPPKfFww9k5xKo5xo+6juSnI/no5StUsYbM79n87kaAn/y1gql0IUEt26YnouI9I0VNGRgZuvvlmzJ492wC+efPmmDd2LFJvugrQHezQJ+4dfFjqGi1vzeLA7HfiUKUyTSMDvBAEIkVPIWg6qwwBAeopBFAVV6kff9MwUgeXhpE6loaa9IKlYWRAw4AFAnZ/SB0+fBglS5b02rKcnByPY4m9ZrRp5M/Pz8clUz3Nop04GyVnTEBKnVo2vXPft2V3Pfm+c6bYjQC1ZLceiez7iSQ9yaXX119/PRYsWGCA3qFDB8wqLTbDXv5Dfrw8FOGGyuPywxWKAF+/K2YeVadplA8lBC8iSU8haD6rVEyAelIMNATV6cffNIzUAaZhpI6loSa9YGkYGdAwYIGAnR9Scnr+jTfeiDlz5ni0TN53YmKiR3ykRMwftACtPuuOBLeZRb+WuBUXzh2OxGJJkdIUw33aWU+GG2XA9gSoJdt3UUTdYKTp6eDBg2jbti1Wr15t4PzBFZfh7n83GuK+yuyMIaUfxebkqlp8KfFo/FosTzu3Nk0jAyiFgUjTk8Kms6oQEKCeQgBVcZX68TcNI3VwaRipY2moSS9YGkYGNAxYIGDXh5RLTLnv06eP4dSYvOYdOnQIJUpE1lItbQnBpr+AjRuxcsbfqL/iJQ+zaFXF7ppZ5Iy3/2loeX3h/tuuenK/T4btT4Basn8fRdIdRqKedu3ahRYtWmDr1q35qNPEq30XVEJCfsyZFyszL0a/ki/i95SzUSwe+Oq1ONSrQ9PoDCF1ryJRT+paz5pUE6CeVBNVX59+/E3DSB1fGkbqWBpq0guWhpEBDQMWCNj1IfXaa6+hb9++hhbJGUU7duxA2bJlDfEREXjvHeD1YT5vdUOt7jhv1nA4nJFrFsnG2VVPPsEzwbYEqCXbdk1E3lik6mnTpk1o1qwZ9u/fn899cvlUdCstNizych3NSUa7tLn4o0hNJInHyZyXnWjcMLKfK16aWehRkaqnQgfHG/BKgHryisVWkfrxNw0jdV1Dw0gdS0NNesHSMDKgYcACATs+pGbNmoVOnToZWlOsWDGsWLEC55xzjiE+IgLr1sElNir19T3vX+d1R+2ZwyE2ZIqI5vi7STvqyd/9Ms2+BKgl+/ZNJN5ZJOtJLktr2rQp5DJtecknxfCSyXi8cjnE52Zrcfp/dmaXR+syc3EgoZSYyQp8+oITLZtF/vNF38bCfh3Jeipsdnx/TwLUkycTu8Xox980jNT1Dg0jdSwNNekFS8PIgIYBCwTs9pCSppD8NjU7+8wfwU5hpCxcuFCbmm+hiYVbRLTD1fFqOLZt8HofWy7ohlrTX4gKs0g20G568gqdkRFBgFqKiG6KmJuMdD3JDbDlnkZyuXbedW5KESzp9RBKfTMTcDOO1mbWwxUVZiIzrgjihGk0fYgTV7ShaZTHLtjfka6nYNvP8moJUE9qeYaiNv34m4aROsI0jNSxNNSkFywNIwMaBiwQsNNDatu2bWjSpIlh6r1s0tSpU3HLLbdYaF3hF8kdPx7OMc8YbmRdZl1sFyehVejSBg2H3xg1ZpFspJ30ZIDOQMQRoJYirstsfcPRoKdx48ahR48eBs61a9fG0u++Q+nePYHNvxvSlmS2xv/ZOw84KWr2j//u9mhHP/od0hGk995EOkjvKB2R3jsqSEdQuoDSFBCU3os0eZFeleorTQR9QURA4H/1P1nY3OTq7G5md2bnmc9HNk8mySTf/LzMPJNJGmdbggj/JLApZ9aOV5xG1clpJEBy0fAFPbnYdMqmAwHSkw5QJRepfv4mh5E8uOQwksdSKEktWHIYCWjIcIGAUQYptpB19erV8dNP4g3vpEmTMHr0aBda5v0skbduI7xBFSRFBK/ML2H5UTHbLiwflRSN6vnejbtR9MSBU8C0BEhLpu06Q1bcF/TEZhcNHz4cM2bMEBjXrl0bW1csR7K2yqfcD34Xzu0ObYx2wbMR5edvdxqtm+CPGlV9b+wRGu0Bwxf05AFMdAmNBEhPGkF5MZn6+ZscRvI6ghxG8lgKJakFSw4jAQ0ZLhAwwiDF1mVgaxbt3LlTaEG3bt2wePFiZWkf893cRr34P/yvQn1kCYve/jhSaV2zwG3oM6046tQ0X5uEzonHMIKe4qkaRZuMAGnJZB1m8Or6ip7YeNmqVSts2bJFIN6rVy/MHz4Mfi3qAS+eCue+DeuInsEfK3F+9s/TNkz0R7XKvjkGCQ3X0fAVPemIiIp2ggDpyQlYXkqqfv4mh5G8TiCHkTyWQklqwZLDSEBDhgsEvD1IRUZGol+/fliwYIFQe7ZWA7shTpEihRBvBoMtMXGu3miUvLNCqO6a8G7I+uU4n3676209CcDJMDUB0pKpu89wlfclPT169AhVq1bFzz//LHBmu4v2r/UW0K4REP5ygWxHglVh3TAw6wiE+ydDgLKm0QZaCNuBxqVfX9KTSwAok1QCpCepOHUpTP38TQ4jeYjJYSSPpVCSWrDkMBLQkOECAW8PUp9++imGDBki1LxgwYL4z3/+gwwZMgjxZjCYs2j7+9vQ6D/KehKq49ewvLi7cBeq1gxUxfpe0Nt68j2i1m0Racm6fa9Hy31NT9evX0fp0qXBnEfqY9q0aRj+5ptAl+ZAFJvXGn1cDSuAN7NsxHNbSrvTaPNUf1QqTzONoglpD/manrS3nFLqQYD0pAdVuWWqn7/JYSSPLTmM5LEUSlILlhxGAhoyXCDgzUFq48aNaN5cualVHWnTpgXbKS1fvnyqWHMEmbNo+cQbaLP6TQT6h/FKP4+04fy4A6jQJi+P89WAN/Xkq0yt2i7SklV7Xp92+6Kejhw5gmrVqoHN1FUf3bt3xxcd2gN93lWio3dVY2nG+n2C+Rlb25OzmUZbp/ujQllyGtmBOPGPL+rJieZTUskESE+SgepQnPr5mxxG8gCTw0geS6EktWDJYSSgIcMFAt4apC5cuIAyZcogLCzascLWKjp8+DAqVarkQku8nOX//g97Ru5H5V29kFLlLGK1+qndAhQd28TLFfTM5b2lJ8+0jq7iSQKkJU/S9v1r+aqeVq5ciXffZY4h8fjnn3+Q5vAhYPj74gnF6hXwJdakq6UsaeSHpIrTaPccG0oUVQJ0aCbgq3rSDIASSiVAepKKU5fC1M/f5DCSh5gcRvJYCiWpBUsOIwENGS4Q8MYgxXZEY84iNqVefaxduxatW79886mON3z45k2gYeU4q/lb8Q54bfX0OM/5YqQ39OSLHKlNAGmJVCCTgK/qie2cFtfGEGzm0cGDB+E3dRKw8vNYKPeENkLb4Ln23dNS2YB9i2x4PR85jWKBiifCV/UUT3MpWmcCpCedAUsoXv38TQ4jCUBfFUEOI3kshZLUgiWHkYCGDBcIeHqQYlPnO3bsiFWrVgm1nThxIsaMGSPEGd5gjqIN64Aln8VZ1cep8yHNwd1A8uRxnvfFSE/ryRcZUpteEiAtkRJkEvBlPb148SLODSLYZ99Ny5YF6pRXUIqfpjG2n0R+gMlZutsxZ0oGfL/EhhzZyWlkB5LIP76sp0SaTqd1IEB60gGq5CLVz9/kMJIHlxxG8lgKJakFSw4jAQ0ZLhDw9CC1ZMkSsPUV1EfLli2xZs0a2GzKa06zHGu/ASYMU+7BY9+EsyY8D0iHFJu3Ablym6VFUurpaT1JqTQVYkgCpCVDdotpK+Xrevr999+RPXt2oX9SpkyJixcvIueVy8BHynj15KFwPizKD3VT7sbZlAXs8TlSKU6jZTZkykROIwFUHIav6ymOJlOUjgRITzrClVS0+vmbHEaSoCrFkMNIHkuhJLVgyWEkoCHDBQKeHKTYukWlSpVCREQEr2muXLlw+vRpBAUF8ThDB5iD6ItFwOwJCVfz+FUglXL3bbHDk3qyGFrLNZe0ZLku17XBVtDT3r17UadOHYFjzZo1sWvXLiRhsTu2A6P7KoHoFx3Xw3KjeuateBqQ2p6vkLI56falAUiX1m7SP/EQsIKe4mk6RetAgPSkA1TJRaqfv8lhJA8uOYzksRRKUguWHEYCGjJcIOCpQerx48eoUKECLl9W3nS+OvyUBTePHj2K8uXZdHmTHJ/NBL78NM7K3gzLiXtl3kHFpV0t9RmaGoan9KS+JoV9kwBpyTf71VutsoqeRo0ahalTpwqYp0yZgpEjR76Mm618Qr14hnD+v2H50CjjGvyZNJM9voIyUWn94gAEBgrJyFARsIqeVE2moI4ESE86wpVUtPr5mxxGkqAqxZDDSB5LoSS1YMlhJKAhwwUCnhik2KKc7733Hr788kuhhrNmzcKAAQOEOEMbJ08AnZvFquI3YV2wOF17VGr8OiaOCWAbz1j28ISeLAvXYg0nLVmsw3VurlX09Pz5c1SvXh0nT54UiB45cuTlDqRsZ9IWjYBffxbO3wvPhGbp1uFqilz2+DrKV2or5wUgiX1qkpCUDIWAVfREne0ZAqQnz3B25yrq529yGLlDUsxLDiORhzRLLVhyGEnDatmCPDFIsQWu33nnHYFxkyZNsH79enOtW/RuW+DMYaEd4zAVszO1Q5syflgw3absViOctpzhCT1ZDqpFG0xasmjH69RsK+np2rVrKFKkCMKYc+jVkSNHDpw9e/bl59+/3QZaNYy1ptGjiEB0D/wa+9KUsefqVNkPn020WfoliINfzF8r6Slm28mWT4D0JJ+p7BLVz9/kMJJHlxxG8lgKJakFSw4jAQ0ZLhDQe5Bin6AVL15cuHHNmjUrzp8/j8yZM7tQYy9l+Vl5G9umrnDxKVEfY3rmTqj9+ss3sUmTCqctaeitJ0tCtWijSUsW7Xidmm01PX311Vfo1KmTQJO9uGHx7HNw3LsHvNMS+OOmkIYZW0JbYUjmUXiQJAM+bO2HQb1NtCFFrNboE2E1PelDkUp1ECA9OUgY91f9/E0OI3n9RA4jeSyFktSCJYeRgIYMFwjoOUg9e/YMlStXxrlz54SaHTp0CNWqVRPijG5EFc8Nv/BQoZoZM/wXJbMnwaYvAqBsRkOHQkBPPRFgaxEgLVmrv/VurdX0xD4F79ixI1auXCmgZXaHDh1exj36G+iizP69Jo7R7OTTyKQYmHQx1qd/E4sH+qNVU4tPnxUo0lgXAweZbhKw2t8nN3F5Jbv6+ZscRvK6gBxG8lgKJakFSw4jAQ0ZLhDQc5Bi6xPNmTNHqJWw+KZwxrhG1Nat8Bv5vlDBI6E1MKjwCuxWtiBOn97CixYJVOgmOgYOMt0goOffJjeqRVlNSsCKenr48CFKly6Nmzdv8l5Lnjw5rly+gpy5cr6MU9Y8Qp+ewPF9PI0jwJxGeTNeQLgtBTZN8UfViuQ0crCxop4cbadf+QRIT/KZyi5R/fxNDiN5dMlhJI+lUJJasOQwEtCQ4QIBvQap7du3o1EjZWFN1VG3bl1sVZwvScy0iubePYgc2BX+qm2II5U2tU+7EzO+K4rsIeQsUnUxzTBSw6CwWwT0+tvkVqUos2kJWFVPbCfSSpUqCf1Wu3Zt7NixAwEBAS/jI5VR7ds1wLQPgNAXQtp3k67CtrRVkEzxFR1caEPB12nMY4CsqidBHGRII0B6koZSt4LUz9/kMJKHmRxG8lgKJakFSw4jAQ0ZLhDQY5C6e/cuChcujEePHvEaBQUF4cKFCwgJCeFxhg/s+x6R/TsLziJW5yl+k9Dgm04oXpRunGP2oR56inkNsq1BgLRkjX72VCutrKfx48dj3LhxAurZs2ejf//+QhyUGUl4pxVw6wqPXxH+PgZmG2W3MydXnEbLbciWlcY+K+uJi4MC0giQnqSh1K0g9fM3OYzkYSaHkTyWQklqwZLDSEBDhgsEZA9SkcqbymbNmmHLli1CbXbu3Il69eoJcYY2Dh5EZJ93YjmLloX3Rsjno1CnJk3Nj6v/ZOsprmtQnDUIkJas0c+eaqWV9fTixQv7uoEnT57kuP2VLT3ZSxz2ckc4Fn0OzJnIo/6OSIliGY/jaUBqe1zhjMDuFbRun5X1xMVBAWkESE/SUOpWkPr5mxxG8jCTw0geS6EktWDJYSSgIcMFArIHqYULF6JXr15CTQYOHIjPPvtMiDO08ccfiKxTEf4R4iLXq8O64tmYcejeiXaMia//ZOspvutQvO8TIC35fh97soVW19OlS5dQrFgxREREcOwVK1YE24RC+Ez86lWgeU2ehgVWhPdUZhmN5nFNi/thyWc2KD4nyx5W15NlO16nhpOedAIrsVj18zc5jOSBJYeRPJZCSWrBksNIQEOGCwRkDlJx3ZCyt5fHjx9XdhEzyTZiys4yEZ07wXZKXAD0m7Au+LnjOEwcE6BsSewCaItkkakniyCjZsZDgLQUDxiKdokA6QmYN28e+vXrJ/BjG1PEjENfZZOHA1t5uogoPzQM3I7jqaJnI41p6Yehfa378oT0xOVBAQkESE8SIOpchPr5mxxG8mCTw0geS6EktWDJYSSgIcMFArIGqefKTitVqlTBmTNneC3YlPfTp0+jRIkSPM7ogcgVy+E/fYxQza2hLbG21gwsn5tEWSRUOEVGDAKy9BSjWDItSIC0ZMFO17HJpCfYZxfVqlULB5VPrh0HW/j68uXLyJcvnyMKUNYhRN0KQGT0bKT/RWRAuQz78U+SdDzd1yP90aieNacZkZ64DCgggQDpSQJEnYtQP3+Tw0gebHIYyWMplKQWLDmMBDRkuEBA1iA1YcIEfPjhh0IN2Gdo7HM00xzKTXRUnw5QTyD6X3h6dH3jP1i7Kp0yS8o0LfFaRWXpyWsNoAsbhgBpyTBd4RMVIT297MYrV67Y1y1i6w06jjp16oCtM8he8vBj/lxgwVRussCOsBboEPwpjwtQBsv9820oWkg9avLTPh0gPfl093q8caQnjyN3+oLq529yGDmNL94M5DCKF417J9SCJYeReywpt5ytYdmsojJlyiBK+ZzLcbAb0O3bt0dv2+s4YdRfZd2GiBZ1YIsKF2rYJ8VKjNpcA9lDrHdDLIDQaNBNj0ZQlCxRAqSlRBFRAicIkJ6iYc2cORNDhw6NjlBCy5YtQ+fOnaPj2FpHndoDZ/8THaeEOiZZia3pqvK4LCmAw1/ZkCmTtcZI0hOXAAUkECA9SYCocxHq529yGMmDTQ4jeSyFktSCJYeRgIYMFwi4O0ix3VfYwpnnzp3jV0+aNCmuXb2GnLly8jhDBx7cR3j9Wgh49kCo5syosaiyoifKl1W9dRVSkBGTgLt6ilke2dYlQFqybt/r0XLSUzTV0NBQ+7it/oQ8MDAQ165dQ0hISHTCv/4CapUHQp/zuGdIhVqptuFyitw8rnx2YPOSACRLxqN8PkB68vku9mgDSU8exe3SxdTP3+QwcglhnJnIYRQnFvcj1YIlh5H7PK1egruD1OTJkzFmjLjmT6w3lUaG/PgxIlo2ge33a0ItN4W1xePx09GxnXUX9RSAaDTc1ZPGy1AyCxAgLVmgkz3YRNKTCJs5i0qXLi1EtmrVCmvXrlU2dlDNFtqyGRjVW0j3OCotaqfeimspol8Kdanqh5kf2yyzKQTpSZAEGW4SID25CdAD2dXP3+QwkgecHEbyWAolqQVLDiMBDRkuEHBnkLp48aJ9m171Wgj169fHtm3bxLUQXKiXR7IoC3VHdWgNv6vRC3Wz654KLY91bVZjyoTklrn5lcXbHT3JqgOV4xsESEu+0Y9GaQXpKXZPsHUH2fqD6mP9+vVo3rx5dBT71Py9rsCPe6LjlNBfEelRJ902XE+uTC96dSzs7482za0xI5f05Oh1+pVBgPQkg6K+Zaifv8lhJI81OYzksRRKUguWHEYCGjJcIODqIBUeHo6aNWvi8OHD/KrsU7SrylpAuXLl4nGGDvTpCRzcJlTxVthrGFlyO1Z8nQFKc+hwkoCrenLyMpTcAgRISxboZA82kfQUG/a///5rn2XExm3HERQUBLYwdqZMmRxRwLNnQGdlPaOLJ6PjlNCf4RlRN2grbiULtsezRbAPKItgF7HAItikJ0EKZLhJgPTkJkAPZFc/f5PDSB5wchjJYymUpBYsOYwENGS4QMDVQWrRokV4//33hSt+/vnnseKEBEYyflE+QWv6plCjP8OD0DF4J1Z+F4JMGVVT8oVUZCREwFU9JVQmnbMmAdKSNftdr1aTnuImy176VKtWTTjZrVs3fPHFF+KnaU+fKitetwWunhXS3gnPhnKZ9+G57eU2otmVn8OrA5AurZDM5wzSk891qVcbRHryKn5NF1c/f5PDSBMyTYnIYaQJk/OJ1IIlh5Hz/CiHSMCVQerWzVt4vcDrYAtnOo6qVati//79ptkV7enEz5DqmxmO6uNxRHI0SrcL877Mh2JFyFnEwTgZcEVPTl6CkluEAGnJIh3toWaSnuIHPWDAAMyZM0dIsHfvXtSqVUuIw9MnQPtWwK8/CfGzIkdhfJboF0gNCgFfzwtQPk0XkvmUQXryqe70emNIT17vgkQroH7+JodRorg0JyCHkWZUziVUC5YcRs6xo9SxCTg7SLH1itj6Bps3Kwthvjr8lbvCCxcuoHDhwo4oQ/+GhUbhr+IVkNX/Dq/nkvC+SPrxCLzbxofvcHlr9Qs4qyf9akIlm50AacnsPWis+pOe4u+PR48e2cfvu3fv8kQFChQAWxib7Z4mHMpGEWjfArhxiUf/G5UC+TOc5rOM2Ilx7fwwoKfvbhpBeuLdTwEJBEhPEiDqXIT6+ZscRvJgk8NIHkuhJLVgyWEkoCHDBQLODlLffvst2rRpI1xp0qRJGD16tBBnZOOr/ifQcV8zoYozyu/EkCXFaJFrgYrzhrN6cv4KlMMqBEhLVulpz7ST9JQw5+3bt6NRo0ZComnTpmH48OFCnN349b9A4+pC/MKAsRiVvocQt2WyP6pW8s2XMKQnoavJcJMA6clNgB7Irn7+JoeRPODkMJLHUihJLVhyGAloyHCBgDOD1P379/H666+DvY10HGxW0cmTJ5EiRQpHlKF/9238C0VG1kCWgIe8nn9GZEGq06eRMiV9isahuBhwRk8uXoKyWYQAackiHe2hZpKeEgYdpeyG1rp1a6xbt44ntNls9o0s8ubNy+N4oF8vYP8WbkbYUuCtFNtxPkV02jQBwInVNmTJ7HtjK+mJdz0FJBAgPUmAqHMR6udvchjJg00OI3kshZLUgiWHkYCGDBcIODNI9ejRA19++aVwlSNHjqBSpUpCnFGN3878ib/bdkexJGeEKj7oOB4ZR3QX4shwjYAzenLtCpTLKgRIS1bpac+0k/SUOOebN28if/78YLugOo4mTZpg48aN4gLY7OS1a0CzNx3J7L8v/FOhl+1zbEpXVbFfOolqKP6jdYsDoPiefOogPflUd3q9MaQnr3dBohVQP3+TwyhRXJoTkMNIMyrnEqoFSw4j59hR6tgEtA5SbAHMOnXqCAUMHjwYM2fOFOKMaoTv3IMXQ3ojld9zoYoPslVGxt3fwOfuZoVWes7QqifP1YiuZFYCpCWz9pwx60160tYvn376KYYMGSIk3rlzJ+rVqyfE2Y3B/YHd62PFXwotjE9SjuSOowkd/NC3h295jEhPsbqdItwgQHpyA56Hsqqfv8lhJA86OYzksRRKUguWHEYCGjJcIKBlkHqsLHJZvHhxsLePjiMkJAQXL15E2rQG3ztXWaQbE8YD34ozo1g7HvsFIc0Ph4CgIEez6NdNAlr05OYlKLtFCJCWLNLRHmom6Ukb6BcvXqBMmTL28d2Rgy2Afe7cOSRPntwR9fL32TOg67vAT8fE+FfWN2Fd0Dt4HNgqRntn21Cq+MtZR3EmNlkk6clkHWbw6pKeDN5BSvXUz9/kMJLXX+QwksdSKEktWHIYCWjIcIGAlkFq5MiRYItfqo8dO3agfv366ijjhZmzaMxIYMuqWHX7KzIjUq1di2TFCsY6RxGuE9CiJ9dLp5xWIkBaslJv699W0pN2xt9//z1q164tZJgzZw769esnxNmN58qs3fe7AaeUly9xHKVTH8H15NmRPSVw5JsApEkTRyITRpGeTNhpBq4y6cnAnfOqaurnb3IYyesvchjJYymUpBYsOYwENGS4QCCxQer8+fMoUaKEUPK7776LFStWxF7TQEjlZSMBZ9HusGbIt24S8hYz+OwoLyN05fKJ6cmVMimPNQmQlqzZ73q1mvSknSxbALtly5bYsGEDz8RmF924cQNZs2blcTzAxttdO4AZk4E/b/FoFtgQ1h7dgqfY41qX8cPCT2w+sRsp6UnoZjLcJEB6chOgB7Krn7/JYSQPODmM5LEUSlILlhxGAhoyXCCQ0CAVERGBmjVr4ocffuAlp06dWlnr8lrcN408lZcDoaHA8MHKHPiNQkVCo/wwwjYPZca+jQ5tfGs9BaGhXjQS0pMXq0WXNiEB0pIJO83AVSY9Odc5v/zyCwoWLIhI5gx6dfTp0wfz5s1zmLF/lXsGNKoF3FYWxFYdPQOW4Nv0SrxyLOzvjzbN2Udq5j5IT+buP6PVnvRktB6JXR/18zc5jGLzcTWGHEaukkskn1qw5DBKBBadTpRAQoPU119/jY4dOwplLFu2DJ07dxbiDGU8fQL0VKbHnzsiVIs5i7olWwn/qlWxXFlLwc93llIQ2ultIyE9ebtudH1zESAtmau/jF5b0pPzPfTBBx9g4sSJQsbTp0+jVKlSQpxg3LkDNKgCRITx6McRyVE5/SHcSZYVSZSx99gyG/LkMvcgTHri3UsBCQRITxIg6lyE+vmbHEbyYJPDSB5LoSS1YMlhJKAhwwUC8Q1SDx48QL58+fDPP//wUitXroyDBw8iICCAxxkqcP8+0KktcOuKUC2Hs+h45io4vsaG9OnNfaMqNM5gRnx6Mlg1qTomIEBaMkEnmaiKpCfnO+vRo0fInz8/2P2A46hRowb27dsHf/8EZglt2QyM6u3IYv89G1oGtYK/RaSfDWVDgB0rApR7CSGJqQzSk6m6y/CVJT0Zvoto0WuduogcRjqBJYeRTmAtWmx8g1T//v0xd+5cgcqZM2dQsmRJIc4wBnur2bYx8PefQpX+jUyCLilWY2+actg+zR+VyidwkyvkJMMVAvHpyZWyKI+1CZCWrN3/sltPenKNaFwzjdetW4cWLVrEX6CyBhKGDQJ2fiekmRb1EaZm7mqPm9DBD317mPfTcNKT0LVkuEmA9OQmQA9kVz9/0wwjecDJYSSPpVCSWrA0w0hAQ4YLBOIapE6ePIly5coJpQ0ePBgzZ84U4gxldHkHOHFAqNJfEWnQKvU6nE1ZAMOa+GH0IPPenAoNM7ARl54MXF2qmoEJkJYM3DkmrBrpybVOCw8PR5Uqyuzc48d5Aa+99houXbqEVKlS8bhYgX//VT5NexN48Ds/9Xt4VhTJdkyx/cBG48OLbHijgDln/JKeeLdSQAIB0pMEiDoXoX7+JoeRPNjkMJLHUihJLVhyGAloyHCBQMxBik0zZ5+eMaeR48iYMSOuXr2KoKAgR5TxfovnAcL/T6hXiTRHcStZMIpnVta/XhWAJEmE02ToQCCmnpIlS6bDVahIKxAgLVmhlz3XRtKT66yULuyTAABAAElEQVSPHj2KSpUqCQV88sknGDp0qBAXyzh7FninkRBdPeX3uBCY3x5XOCOwf3UAkiYVkpjCID2ZoptMU0nSk/G7Sv38TQ4jef1FDiN5LIWS1IIlh5GAhgwXCMQcpL766iu89957QkmrV69Gu3bthDhDGYozC81rClXqlmQFNqSrYX+LeWSxDQVeN+dbTKFRJjBi6okcRiboNINWkbRk0I4xabVIT+51XJcuXbB8+XJeSFLFy3P79m1kyZKFx8UKsE/Tqiuzlf+6y08tC++NwdlGcHtEUz+MHGi+2b+kJ96FFJBAgPQkAaLORaifv8lhJA82OYzksRRKUguWHEYCGjJcIKAepPLkyYNChQrh2bNnvKSaNWti7969CS9wyVN7KTBkALBrHb/4w4hUKJD5LML9k8Ls6yTwRpkkoNYTeyNNDiOTdJwBq0laMmCnmLhKpCf3Ou/WzVvIkzcPIiMjeUFDhgzBjBkzuB1nYNpk4Kv5winmNBqSdRii/PyVj9OA72fZUKqEuV7qkJ6ELiXDTQKkJzcBeiC7+vmbHEbygJPDSB5LoSS1YMlhJKAhwwUC6kGKLW65bNkyXoqfsvf8hQsXUKRIER5nuMDlS0DL2kK1Po0cjQlZeqJ0NsWP9LW5d2IRGmYCQ60nchiZoMMMXEXSkoE7x4RVIz2532kffPABJk6cyAti9whXrlzB66+/zuNiBS5dBFrViRX9Q+hbaJt1Lp7bUiJ3GuDI2gCkSBErmWEjSE+G7RpTVoz0ZPxuUz9/k8NIXn+Rw0geS6EktWDJYSSgIcMFAo5B6qeffsKAAcpMHdUxevRoTJo0SRVjsCB709m6KXD5NK/YM2VXtAIZzuJ5ktQ4tsSGfHnM9daSN8SkAYeeWPXJYWTSTjRItUlLBukIH6kG6cn9jnz48CFy5cqFJ0+e8MLY5+rss/UEj8+VGUbzlJlGMY7/huXFW5k34nFAWgx52w9jh5jn0zTSU4zOJNMtAqQnt/B5JLP6+ZscRvKQk8NIHkuhJLVgyWEkoCHDBQJskDp06BB69eqF69ev8xKCg4Nx+fJlpEmjvPoz6rFtKzDifaF2MyLHYlKWHpjayQ89u5jn5lNohIkNuukxcecZrOqkJYN1iMmrQ3qS04Hz589H3759hcJ+/PFHVKxYUYiLZWzeBIzpB0RFf9LG0qwP64DuwZPtn6YdWmBD0ULmeMlDeorVwxThBgHSkxvwPJRV/fxNDiN50MlhJI+lUJJasOQwEtCQ4QIBNkixmUSffvqpkHvdunVo0aKFEGcog23Z+6aymOa/j3i1boeFoFTWQyiTIwm2rwiAjfxFnI2nAnTT4ynSvn8d0pLv97EnW0h6kkP7+fPnKFy4MG7cuMELrFatGg4cOJD4Wods17TubYEXT3leNis4R6bLiPBPgqKZgH3Krmlm2NGU9MS7kAISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQEOGCwTu3LmDvHnzIjQ0lOeuXbs2du3alfjNH8/hhcC4D4DvlgoX7phkJXamr4rjy2zIk8scbymFBviAQTc9PtCJBmkCackgHeEj1SA9yetI9kKpVatWQoE7duxA/fr1hbg4DWVnNdQXZyM5Zgaz9FOU2cHvm2B2MOkpzt6lSBcJkJ5cBOfBbOrnb3IYyQNPDiN5LIWS1IIlh5GAhgwXCPTr1w/z5s0TcrKFrosWLSrEGcrYsxsY1FWo0qHQWmgasgQT3/FDn+40tUiA40GDbno8CNvHL0Va8vEO9nDzSE/ygEdERKBy5co4fvw4L7RUqVI4ceKEMrNXw/jbqglw6RTPywL9bAuxMqg+ApR3PSeX25Arp7Ff+pCehO4jw00CpCc3AXogu/r5mxxG8oCTw0geS6EktWDJYSSgIcNJAufOnUPJkiWFXEOHDsUnn3wixBnKuPMb0LA6EP5/vFrPI22okvYHJA/JjoNrzDGdnVfexwJ00+NjHerF5pCWvAjfBy9NepLbqfv27UOtWrWEQjds2IBmzZoJcXEamzYq6xmJ6yD9E5ECb2Q6bd81rUZeZW2jLwKUWc5x5jZEJOnJEN3gM5UgPRm/K9XP3+QwktdfhnMYsd0d2E5Q7CGZvQXZv38//vjjD3uLBw8ejJkzZyba+k2bNmkbDJWSNm7ciKZNlR2cJB9qwZLDSDJcCxUXqewwVrNmTfuC145mp0uXDr/++iuCgoIcUcb6DQsDWjQCfv1ZqNcQ/7lYmqEx9s+xoWQxY7+VFCrugwbd9Phgp3qpSaQlL4H30cuSnuR2bFRUlN1hxO6lHccbb7yB8+fPK2sQJXFExf2r5MXYUcCmr4XzcyOG48Osfexxiwb4o3Uz43qMSE9C15HhJgHSk5sAPZBd/fxNDiN5wA3nMPLzi/9BkhxG8jqeSjIHgbVr16JtW2XxSdWxZMkSdO0qfuqlOu394HZlV7Th4q5om8LaokvwNPSu5YdJYzVMhfd+K3y6BnTT49Pd69HGkZY8g5t9XuQ4NH1O5Ehssl/Sk/wOO3LkCKpUqSIUvHr1arRr106Ii9NgTqNunYDj+/hptgB2yfTH8L+kGZFSGc7Pf2dDhqD47915Ri8ESE9egO7DlyQ9Gb9zyWGkTx8Z2mFUsGBBlChRAmvWrLG33hWHERsoM2fOHC+9LFmyIHXq1PGed/WEWrA0w8hVitbO9/jxY7z++utgHnLHwf6fOHXqFFKmTOmIMt7vsMHAjrW8XnfCs6F05gNIG5gCp9cFKP+/8VMU8BIBuunxEngfvCxpyf1OPXtX+ew4uES8BT179gxZs2bFkydP7PcrbNZ1YGAgEssXb4EGPkF6kt85bJZR48aNsW3bNl547ty5cfnyZSRLlozHxRtQZjSjcTXh9NbQlugY8nLGf9dqfpj5sTFfBJGehG4jw00CpCc3AXogu/r5m2YYyQNuOIfR7Nmz7U4itpgv++Tm7t27CAkJsbfYFYfR77//juDgYHnENJakFiw5jDRCo2QCgQkTJuDDDz8U4ubPn49u3bppu8kTcnrIYG/BKxUHnv7NLzgOUzE7Uzt8M9Yf9WoZd+o6r7AFAnTTY4FO9lATSUvugZ5zbB4G/Dgei6tNQY8y3eMs7Ntvv0WbNm34OWY/yv0P3vthFGZX+gj9K4jrzPCEJgyQnvTpNPaiqWzZskLhy5cvR6dOyuwhLQf7NG3jV0LKZsk34mDqUvY4o35qTnoSuowMNwmQntwE6IHs6udvchjJA244h1HMppHDKCYRsq1A4NbNW8ibLy/UnyE0bNgQQ4YMQaVKlYzrMDp4EOjTQeii8ql+QMHyubB8tg0JfHEq5CFDXwJ006MvXyuVTlpyvbfZDKFSa2rzAuJzGrF17A4cOMDT5X2vAH4t8Be3z7Tdm+AMJZ7QBAHSk36dxJyOzNnoOPLkyWOfZZQ0aVJHVPy/fysvgWqWAUJf8DS/hOVHhWy7EelnQ4kswPerA5Td1/hpQwRIT4boBp+pBOnJ+F1JDiN9+ogcRvpwhVqwNMNIJ8g+XGyXLl3A3v45DrY45cqVK5EpUyZDO4yi3usKvyO7HdXG+dCSqJ19E86ttiE4mzHXOOCVtVCAbnos1Nk6N5W05B7gL059aZ8p5CglptOIfTZUqFAhx2mgvvJwXysNt2Om5ydMGiA96ddxce24yhxIrVq10nbRb1YBE4cLaWdGjsHELO/Z4+b19keH1saaRUx6ErqLDDcJkJ7cBOiB7Ornb5phJA84OYzksRRKUguWHEYCGjISIXDs2DFUrFhRSDV58mRUqFDBHmfYGUbKuhqRb5WG+nZxuP9sZO/XDP3fM9hrR4Gu9Qy66bFen+vVYtKS+2RjOo3SnvJHppMvnUJs51j2n/2I4SxSp2Pn2QYJ7FNmMx+kJ317r1mzZmA7CTsOtvzD2bNnlZlBGsZo9sl547rAzcuO7AiP8kP11PtxKUUepFKKOL/OhqD0xnk5RHriXUUBCQRITxIg6lyE+vmbHEbyYPu8w4gNjuytym+//YaMGTOiePHiqFu3Ljp06JDgYtjuIlYLlhxG7tK0Tv7IyEhUq1YNbLF2x/Haa6/ZNcy2wWWHUR1G4ZOnImDVXEe18a+yk8pbuX7GwY2pkDw5j6aAAQjQTY8BOsFHqkBaktOR849+jr5HVWvWff8Y2BkaXXgMZxFinldSss0QHjx4oPy9Ne8fXNJTdJfrETp69Kj9HkJd9tatW9GoUSN1VPzhn38C2tRXziu7p706vgnrgt7B4+xWjxp+mD5Og/PJkVnnX9KTzoAtVjzpyfgdrn7+JoeRvP7yeYdRfKjYN9tfffWVsJBkfGnjimeCTOi4f/8+ihQpYk/yyy+/gD3000EEEiPA3vyxt8Tqg32K9vbbb+P06dP26NKlSxtuDSO/iz8j4N3GwuwidhOZdt5YvFXdOG8b1VytHGY3PUbWk5X7xmxtJy3J6bGff/4ZZT6sBLwV/bkZdwppcBaxWvgpi8SdPHmS33vIqZlnSyE96cub7ZjG1kPcv38/v1C5cuVwUFl/0N9fPT+Yn44VCPhkKmzfLObxf4RnxBvZTin2y7F+z8wIFHt5+8vTeCtAevIWed+8LunJ+P3KnEQ5c+a0V5QcRvL6y2cdRmx3qfbt26NMmTLIli2bnRibZbR582YsWrQIbNBkx9q1a9G6dWt72Jl/2I2Z1mPdunX2Hd+0pqd01iQQGhqKzp07g22Z7DjeeOMNzJkzR9t0cUcmD//6KfUuNXYE0jy7z68cpkxT75lzK94Z9ogWuuZUKEAEiAARiJ8Am0U65OAYRFYLjE70PBJIoXqQj2NmEUscGBiISZMm2WdRR2emEBGITeDMmTMYOnSocOKTTz4Bexml5Uip7F5cbrK4llGDFNtwNFVRe/b8aZ5gyoBzigNKS2mUhggQASIgjwD7hLtly5b2AslhJI+rTzqMnj59ap+aHZ9T59ChQ6hVqxbCw8PtN1m3b99GhgwZnKIaX9lxFUIOo7ioUFxMAlu2bMGsWbOEaGYXK1ZMiDOakf+blch+ZJdQLbYQZtYPSyM46zMhngwiQASIABGInwC7we29dSD+Lq2sFxPziMdZVKBAAYwbNw5ZsihbVdFBBBIhwD5979u3L65cucJTsuUaPv30U/ssNR4ZX0B54VphRF+kePYPT/F/Uf5YGjkAC9K3xZ1kWTGs4RVULBP9EoknpAARIAJEQEcC5DDSB65POoy0oFqwYAH69OljT8rCvXr10pKNp6FP0jgKCkgg8M8//4DNJuKLmyplsvW3Vq9ebb+BM+o0WP+1a5Bk2miBwM+hRbGx20YMH0SvFwUwBjKMqicDIaKqaCRAWtIIyolk//77LzIseQOwKbOLHAebaTT21eLXjjjlt2vXrmCzQ9j6Rb5wkJ4804u7du1C06ZNhYsdOHAg1oYbQgKVETBjGmyrF6liooM/hlbHxNemYs2mLMrn89Hx3giRnrxB3XevSXoyft/SJ2n69JFlHUbswZwtgs0+TWvTpg3WrFkjlbB60S1a9FoqWp8srHz58jhx4oTQtkuXLtmdSCySDVI//vij/bxhFr2+fAlRrepA+SPC6x2qfIrWKugAVu3Oj1S+8fzC2+ZLAUPqyZcAW6gtpCX5nR1z1zR+hThmGLG1Z6pXr86TmD1AevJMD7JZRuwTNLYpjONo3rw51q9f7zAT/v3jHtC0DvAkthOTZTwcWhOXxyzHe529uwA26SnhbqSzzhEgPTnHyxup1c/f9EmavB6wrMOIIQwJCcFd5Vts9rDOtjKXeagFSw4jmWR9ryy2jlbMha7ZdPG5c6N3HDPcIKU4sPB2beD3X4UOmRI1HnkmdkWb5jS7SABjMMNwejIYH6qOdgKkJe2stKSM5SxKZA2jQYMG2T8l0lK2GdKQnjzXS8w55Fjrw3FV9pka+8RR06HMjMZc5TP6NV8om6ZFvzhiedknarmzXsfF9QFIn177mp+arutEItKTE7AoaaIESE+JIvJ6AvXzNzmM5HWHpR1G2bNnx++//04OI3l6opJcIBDXelh37tyxOzQdxRlukPpCmYo+62NH9ey/bFe0OYU/wuHvkiAgQDhFhsEIGE5PBuND1dFOgLSknVViKWM5ixwzihLYJS1dunRgN8Vs51dfOEhPnutFttFG/vz5wdbxdByDBw/GzJkzHaa23+vXgakTgSO7hfSvpz2Ntm9nwsejvDfLiPQkdAkZbhIgPbkJ0APZyWGkD2TLOoz+/vtv+0LX7JM0tksam+Uh81ALlmYYySTrW2WxrW3feuutWI1y7OLnOGG4QaqRMrvoxiVH9XAptDCqBm/BuolJ8WZVml3EwRg0YDg9GZQTVStxAqSlxBlpSRGvs+hV5iTNUyOssmpBGIczSTnvS5+lkZ60qEVemvnz59sXwHaUGKC87bl37559yQZHnKZf5RM3FH1NSNowxVYcS1UMJ5fbkCeXd2YZkZ6ELiHDTQKkJzcBeiC7+vmbZhjJA25Zh9Hnn3+O3r1720myAdMRloVWLVhyGMmi6nvlpEiRAi9evBAaxrZWjrkzmqEGqWfPEFX2dfghegp6y2TrEV6iDDYuCVAW6RaaQ4YBCRhKTwbkQ1XSToC0pJ1VfCljOotqPCqOgxP28eQVK1a0v9Ta9eduvPfDKB6PV04jX/osjfQU3b2eCLGXp1mzZgWbbeQ42G5pTFNOHzUrAX/e4tk+xHTMzdQGjYv5YcUc78wyIj3x7qCABAKkJwkQdS5C/fxNDiN5sH3OYcTWJHr8+DEKFiwYL6VDhw6hdu3aCAsLQ/LkycEcOpkzZ443vSsn1IIlh5ErBH0/z7Vr1+JcKyDm7CJGwlCD1KmTQKfo3VXClYWus2W8iv0LA1G0EHmLzKBcQ+nJDMCojvESIC3Fi0bTiZjOosXVpuCNFwXRvn17/Pbbb+jRowdmzZqFwMBAe3kx0wcej8TufptRpUoVTdczeiLSk+d7aNSoUZg6dSq/MHMg3bhxw35/zCO1BLq+Cxzfz1Mqc44wO3IUPs7SE/vnBKCk4jjy9EF68jRx374e6cn4/at+/iaHkbz+MpzD6OzZs3YHjqOJbDezbt262c1GjRrxsON8zG1BT506hbJly6J+/fpo0qQJChUqZP/0jKVnN1+bNm3CokWL7LujsTi2bXm7du1YUOqhFiw5jKSi9ZnCmK6XLl0qtIc5O1OnTi3EMcNIg9TjmYuQZmn0+kUXQ4vg8xY7MG+qd94gxoJFEYkSMJKeEq0sJTA0AdKS691z9u45lFqjfN776mDOoh5lututR48egW1zzu5xYq5zF9NpdKbtXpQMLuEoxtS/pCfPd991ZQ2ivHnzChdmOwezHYSdOuYrG3UsiHY8OfKO8ZuByxVaYf0Xnp+BTHpy9AL9yiBAepJBUd8y1M/f5DCSx9pwDqMhQ4Y4teNHzNkYDodRYojY27ply5bZ1y9KLK0r59WCJYeRKwR9O8/FixdRpEgRoZELFixAr169hDiHYZhBSlmn4M+SNZEl/BdH1bAqvAeq7/8I2UM8//aQV4ICThEwjJ6cqjUlNiIB0pJ7vTLn2DwM+HE81M4iLSU6nEazK32E/hX6asliijSkJ+90U4cOHewvUB1XZy9e2e7B/v5OrEn4/DnQuwdw4oCjGPvv0dCqaBCyEjum+6NiOSfKE0pxzSA9ucaNcsVNgPQUNxcjxaqfv8lhJK9nfM5h9ExZX4UtJHzy5EkcP37cPluJ7QDBPj/Lli0bypUrZ19kmC10HRQUJI9kjJLUgiWHUQw4ZMZ6Y8ymgP/666/8s4OYiIwySN3f+iMyjWwlVG9t9VVos6CGEEeGsQkYRU/GpkS100KAtKSFUsJp2EwjV2YIuZov4dp49yzpyTv8jx49ikqVlDWIVMcPP/yAqlWrqmI0BNni15/OAJbN5okfRqRG3qw/o3x2YOfXnp1lRHri3UABCQRITxIg6lyE+vmbHEbyYBvOYSSvad4tSS1Ychh5ty+MdvXOnTtjxYoVQrWWLFmCrl27CnFqwyiD1KVK76HQP9t51a6H5UHaHw8hQ0bPvjXkFaCASwSMoieXKk+ZDEWAtGSo7jB9ZUhP3ulCNlufrYP1448/8gq4vIPwnd+AuhV4OSyQP90ZPEiSAes/9kfNap67XyA9Cd1AhpsESE9uAvRAdvXzNzmM5AEnh5E8lkJJasGSw0hAY3kj5noUDMhzZSo3W4A9vsMIg9T/Vu9B5kldhCruKzMNb614R4gjw/gEjKAn41OiGmohQFrSQonSaCVAetJKSn66DRs2oEWLFkLBbHOO/PnzC3GJGmyWUYk8QEQYT9otyQpsSFcDRTMBB9cGKJ+68VO6BkhPuuK1XOGkJ+N3ufr5mxxG8vqLHEbyWAolqQVLDiMBjaUNtvB6jhw5YjGIuRZXzAReH6T+/BPPlC1zA/GCV+1pZFKE7zmPdK+l4XEUMAcBr+vJHJiolhoIkJY0QKIkmgmQnjSjkp4wNDQU+fLls28Q4yic7aA2efJkh6n9t11L4MJRnn5vaEO0Dllgt1eN9keDOp7xGJGeeBdQQAIB0pMEiDoXoX7+JoeRPNjkMJLHUihJLVhyGAloLG2MGzcO48ePFxg8ffoUKVOmFOJiGl4dpI4qU9S7i+sWsfrtqT4fdRY0jVlVsk1AwKt6MgEfqqJ2AqQl7awoZeIESE+JM9IzxezZszFw4EB+CbZBzB9//BHn7q08UVyBb9cC4wfzM+FRfiiQ/iweJkmPfOmAY+sDYPPAxqqkJ94FFJBAgPQkAaLORaifv8lhJA82OYzksRRKUguWHEYCGssaT548sS+8/u+//3IGU6dOxYgRI7gdX8Brg9SZ08C7jWNVa094M1Q4ORdp0tDOaLHgmCDCa3oyARuqonMESEvO8aLUCRMgPSXMR++z7N6VbRATyT4re3UsX74cnTp1cpjafp8+ASoWBiIjePopUR9jeuaX5awc5Y+GdfWfZUR64vgpIIEA6UkCRJ2LUD9/k8NIHmxyGMljKZSkFiw5jAQ0ljXYwtbdu3fn7Wfb1d69exdZsmThcfEFvDZItVdmFp2PXgST1e9eeCZs63sIPfqlja+6FG9wAl7Tk8G5UPWcJ0Bacp4Z5YifAOkpfjaeOtOrVy8sXLiQX65EiRI4ffq0su6Qkw6e4UOA7Wt4OdfDcqN08AHF9kPhjMAP3+q/lhHpieOngAQCpCcJEHUuQv38TQ4jebDJYSSPpVCSWrDkMBLQWNKIiIhA4cKFcfXqVd7+3r17Y/78+dxOKOCVQeqnC0Db+rGq1T71VizeVwqpEv6KLlY+ijAOAa/oyTjNp5pIJEBakgiTigLpyfsiOHXqFMqWLStU5MiRI6hUqZIQl6hx+hTQsYmQrGGKrfgxVTF73Lpx/nirhpNOKKG0xA3SU+KMKIV2AqQn7ay8lVL9/E0OI3m9QA4jeSyFktSCJYeRgMaSxq5du1C/vuh8uXDhAooWLaqJh8cHqd9uA/Uqxqpb4bQn0KdbVvTu5oHFB2JdnSJkEfC4nmRVnMoxHAHSkuG6xNQVIj15v/vYJhyVK1fG0aPRi1Z37twZy5Ytc65ySjmoqdxH/O83nm9zaBt0Dplut0tnA/auDoCfjl+2k544egpIIEB6kgBR5yLUz9/kMJIHmxxG8lgKJakFSw4jAY0ljSZNmmDLli287cx5tGPHDm4nFvDoIPXLNaDpm7GqNDlqAuZl64irmwKUBTBjnaYIExHwqJ5MxIWq6jwB0pLzzChH/ARIT/Gz8eSZtWvXom3btvySfopXh+3yGhISwuM0Bb78AvhsnJB0kP98LM/QyB63dYo/qlTUb5YR6UlAT4abBEhPbgL0QHb18zc5jOQBJ4eRPJZCSWrBksNIQGM549dff7VvVatuOJtxVLduXXVUgmGPDlLjPgC+WyrU53FEchTIdBaDW6fEsH40u0iAY0LDo3oyIR+qsnYCpCXtrChl4gRIT4kz8kSKZ8+e2Z1Djx494pebNm0ahg8fzm1NgQf3geollaTKbKNXB1tOe7D/AqzI0BBVcwGbl+k3y4j05KBOvzIIkJ5kUNS3DPXzNzmM5LEmh5E8lkJJasGSw0hAYznj448/xkcffcTbnSNHDvz3v/9FkiRJeFxiAY8OUo1qAzcuCVWaHzEU47L1w5X1NmQI0nH+uHBVMvQi4FE96dUIKtcQBEhLhugGn6kE6ck4XTl+/HiMGzeOVyhr1qxg97NJkyblcZoCH4wGNqwQkjKnUX/bIqwKqoe9n/mjTEl9ZhmRngTsZLhJgPTkJkAPZFc/f5PDSB5wchjJYymUpBYsOYwENJYyXrx4gddeew0PHjzg7Z4xYwaGDFF2D3Hi8NggpdQXZfIpLwOj3wayauZMfwGdGqbDx6NodpET3WbYpB7Tk2EJUMVkESAtySJJ5TACpCfj6ODWzVvIlTuXUKHdu3ejTp06QlyiRlgYMGaksGMayxMa5YfyaY6gQIkQrFkYkGgxriQgPblCjfLER4D0FB8Z48Srn7/JYSSvX8hhJI+lUJJasOQwEtBYyti0aROaNWvG2+zqOgAeG6TOngXeebm2gKPSpVMfwc3k2XFhtQ0hwTS7yMHFzL8e05OZIVHdNREgLWnCRIk0EiA9aQTloWRNmzbF5s2b+dU6dOiAlStXcltzgL2EmqEsdr18jpBl4KtP0459YUOB/PLvL0hPAm4y3CRAenIToAeyq5+/yWEkDzg5jOSxFEpSC5YcRgIaSxlscWu2XpHjaN++PVatWuUwNf96bJD6fD4wbzKv19WwAqgQvAedq/jhs4k0u4iDMXnAY3oyOSeqfuIESEuJM6IU2gmQnrSz8kRK5ixiTiPH4e/vj3v37iFz5syOKO2/zGlUuypw7wbP43AYdavuhxnj5d9jkJ44agpIIEB6kgBR5yLUz9/kMJIHmxxG8lgKJakFSw4jAY1ljGvXrqFAgQJCe/ft24eaNWsKcVoMjw1S7VoCF6K30l0e3guDso3EqaU25M0j/+2flrZTGvkEPKYn+VWnEg1GgLRksA4xeXVIT8bqwOfPnyNLlix48uQJr9jChQvRs2dPbjsVqFsduPNfnqWfbSFWBtWHTbm9uPydDZkyyr3PID1x1BSQQID0JAGizkWon7/JYSQPNjmM5LEUSlILlhxGAhrLGB988AEmTpzI25snTx4wJ5LN5vxbNI8MUsqNYVTZ1+EXxZajfHl0TLIS/tWrYfls5+vsKIN+jUfAI3oyXrOpRjoQIC3pANXCRZKejNf5I0eOBNshzXGUKFECZ86cAfvE3umjZiXgz1s824PwtBgUuADb0lbBB638MLiP3HsN0hNHTQEJBEhPEiDqXIT6+ZscRvJgk8NIHkuhJLVgyWEkoLGEwQaV4OBgPHz4kLd31qxZGDBgALedCXhkkPrxCNCjNa9WuLIg5WsZLmHTZ6lQvow+O5jwi1HAowQ8oiePtogu5i0CpCVvkffN65KejNevF85fQPESxYWKnT59GqVKlRLiNBmdOwAnD8ZKOsh/PjZkaYQr2wKQInms0y5HkJ5cRkcZ4yBAeooDisGi1M/f5DCS1znkMJLHUihJLVhyGAloLGHs2LEDDRs25G1lb+Lu3r0Lti2tK4fug1SkMquocV3gxiVevXOhpdG/xAYc+jZAeZPIoyngAwR015MPMKImaCNAWtLGiVJpI0B60sbJk6milLWHypUrh1OnTvHLsp1e2Y6vTh9XrgDt31a2w3smZL0Rlgulgg9hQT9/tGsh7wUV6UnATIabBEhPbgL0QHb18zc5jOQBJ4eRPJZCSWrBksNIQGMJo23btli7di1va+vWrQWbn9AY0H2Q2rAO+ECc/TQ/YiiyTR+A5o3l3bxpbC4l05mA7nrSuf5UvHEIkJaM0xe+UBPSkzF78csvv0SPHj145QIDA3H//n2wX6ePB/eBkcOAo3uFrMXSHEOyLNlwfEMAlLW1pRykJykYqZBXBEhPxpeC+vmbHEby+oscRvJYCiWpBUsOIwGNzxt//PGH/XM09lbOcWzbtk2YceSI1/qr6yDFZhexnUv+uMmr8zQyKepnOYrvd2dFsmQ8mgI+QkBXPfkII2qGNgKkJW2cKJU2AqQnbZw8nerBgwf2xa8j2f3Cq2P9+vVo3ry5w3Tul5VTrhDwPHox7Q/8pmNexjbYMMEfb1aV4zEiPTnXLZQ6YQKkp4T5GOGs+vmbHEbyeoQcRvJYCiWpBUsOIwGNzxsLFixAnz59eDuDgoLsn6Mlc8PzousgFcfsol4BX6JgrzoY8L7cBSg5FAp4lYCuevJqy+jiniZAWvI0cd++HunJuP3bpUsXLF++nFewWbNm2LBhA7edDgwbDOyInol9PLQy6oWsRn3Fj7R6QYDTxcWVgfQUFxWKc5UA6clVcp7Lp37+JoeRPO7kMJLHUihJLVhyGAlofNpgs4pKliyJ8+fP83aOHj0akyZN4rYrAd0Gqf8cBt5vB6hmQ10Lex2Vgvfg8roA6VvcutJ2yiOfgG56kl9VKtHgBEhLBu8gk1WP9GTcDtuzZw/q1lXWOlQd9+7dc3ltRuzdAwzswktjc5dKKJ+l/ZYsG86vtCFHdvcXTyQ9cbwUkECA9CQBos5FqJ+/yWEkDzY5jOSxFEpSC5YcRgIanzbOnTtndxipG3nhwgUULVpUHeV0WJdBSrnRQ4MqQOgLoT79bAuRpEkDfDqBZhcJYHzI0EVPPsSHmqKdAGlJOytKmTgB0lPijLyVIjQ0FNmyZRN2f124cCF69uzpWpWU3WRRXplOFBZ9D/JXRBoMTPE5CneqipED3b8HIT251jWUK24CpKe4uRgpVv38TQ4jeT1DDiN5LIWS1IIlh5GAxqeNcePGYfz48byNZcuWxfHjx5Vdxtx7UyZ9kAoPB9oqaw9cPs3rygJrwjqjV/A4HFamgxcp5F6dhYLJMBQB6XoyVOuoMp4kQFryJG3fvxbpydh9PGrUKEydOpVXku2eduzYMdfvcT4YDWxYwctzBCYHzMCQE+3cXkOR9OQgSr8yCJCeZFDUtwz18zc5jOSxJoeRPJZCSWrBksNIQOOzBlsMMnfu3Lh9+zZv49y5c9G3b19uuxqQPkjNmQUs+kSozs7QpmgfPAulg/2wd3WAcgMonCbDhwhI15MPsaGmOEeAtOQcL0qdMAHSU8J8vH32zJkzKF26tFCNS5cu4Y033hDiNBt//QU0ehN4rPyqjkcRgfjh06to3MC9xa9JTyqoFHSbAOnJbYS6F6B+/iaHkTzc5DCSx1IoSS1YchgJaHzWOHHiBMqXLy+07+aNm8iZK6cQ54ohdZBStsLFmyWFdYt+Cw9Gucz78MIWiEUD/NG6mXs3aa60kfJ4joBUPXmu2nQlAxIgLRmwU0xcJdKTsTuPvRgrVqwYLl68yCs6YcIEjB07lttOB5jTaKCyUcgZZU3FVwfbqbVtuV+wbYV7i1+TnhxE6VcGAdKTDIr6lqF+/iaHkTzW5DCSx1IoSS1YchgJaHzWYItbT5kyhbevevXqOHjwILfdCUgdpOYqs4sWRs8uCovyQ4OUO3AqZSGkUPxE/90WgMBAd2pLeY1OQKqejN5Yqp+uBEhLuuK1XOGkJ+N3+axZszBo0CBe0Rw5cuD69euw2dxYcyjGfcnJ0IqoE7IGx76woUB+16c7k554N1FAAgHSkwSIOhehfv4mh5E82OQwksdSKEktWHIYCWh80ghX1gTKnj072B8nx7F48WL06NHDYbr1K22QUhatRKViwPMnvD7fhnVEz+AJdrtPbT9MHOPGTR8vlQJGJiBNT0ZuJNXNIwRISx7BbJmLkJ6M39W3bt5Crty5hIoePnwYVaoom2i4enTtCBzfx3N/Gd4Pw7INhbv3JKQnjpQCEgiQniRA1LkI9fM3OYzkwSaHkTyWQklqwZLDSEDjk8aRI0di3SzduXMHISEhUtorbZDavAkYrUz9Vh2VUx3ApRR57DFHF9tQ8HXX3+apiqWggQlI05OB20hV8wwB0pJnOFvlKqQnc/R0nTp1sHfvXl7ZwYMHY+bMmdx2OtCuJXDhKM+2JLwvhmYbhmTKrOcb2wOQIgU/5VSA9OQULkqcCAHSUyKADHBa/fxNDiN5HUIOI3kshZLUgiWHkYDGJ42hQ4cKN0t169bFrl27pLVV2iDV9V3lLd5+Xq+joVXRIGSl3S6r+Lb2rHJvvQBeMAUMTUCangzdSqqcJwiQljxB2TrXID2Zo69XrFiBzp0788oGBQXh3r17SJo0KY9zKvDJNGD5HJ7lQXhaFMh6FpF+NqwY7u/y4tekJ46UAhIIkJ4kQNS5CPXzNzmM5MEmh5E8lkJJasGSw0hA43NGqPKZV7Zs2fDw4UPetmXLlgk3U/yEiwFpg1T5IsDTv3kt+toWYVVQPbv9xSB/tGxCi11zOD4ckKYnH2ZETdNGgLSkjROl0kaA9KSNk7dTqe9xHXVhazaytRtdOpQ1kPB2VSFrf9vn+DqoAWrlB777wrWXWaQnASkZbhIgPbkJ0APZ1X+byGEkDzg5jOSxFEpSC5YcRgIanzN++OGHWDdJsv9ISRmknijrFlUoKPCvkOoQrqbIZV/s+lc3pn0LhZJheAJS9GT4VlIFPUGAtOQJyta5BunJPH3duHFjbN26lVd44MCB+Oyzz7jtdKDF28CVMzxbqLIhR5dkq7EjbSVc/MaG4GzOfy5PeuI4KSCBAOlJAkSdi1A/f8t+FtO56oYunhxGOnWPWrDkMNIJskGKHTVqFKZOncpr07BhQ2zbto3bMgJSBqmfLgBt6/PqhCs3Y1ky/VeZ8h2AHjX8MH0cLXbN4fh4QIqefJwRNU8bAdKSNk6UShsB0pM2TkZItXLlSrz7rvKZ+6sjXbp09o0/XP4sbbvifBr+vqM4+++zyACUSn8MfbtkRt8ezt+jkJ4EnGS4SYD05CZAD2RXP3+Tw0gecHIYyWMplKQWLDmMBDQ+ZURGRiJv3ry4efMmb9eXX36Jbt26cVtGQMog9b2yQOWAzrw6v4UHo1i2l4tM7vnUH2VL0edoHI6PB6ToyccZUfO0ESAtaeNEqbQRID1p42SEVPfv30eWLFkQFRXFq7N//368+eab3HYqwMoZMRTYvkbI9knkB/gmf3ec2hQAfydvU0hPAkoy3CRAenIToAeyq5+/yWEkDzg5jOSxFEpSC5YcRgIanzIuXLiA4sWLC21izqOcOXMKce4aUgaptd8AHys3Y6+Os6FlUDNkPbKnBM5vdf5GzFEO/ZqPgBQ9ma/ZVGMdCJCWdIBq4SJJT+bq/KZNm2Lz5s280v369cOcOdGLV/MTWgPKSzj0fg84vJPnOBZaBfVDVuH7z/xRuqRzHiPSE8dIAQkESE8SIOpchPr5mxxG8mCTw0geS6EktWDJYSSg8SljxowZGDZsGG9T2bJlceLECW7LCkgZpObPBRZEfzr3fWgDtAr5HB+29sOg3s5P9ZbVNirH8wSk6Mnz1aYrGpAAacmAnWLiKpGezNV5q1evRocOHXilU6dODTbzKFmyZDzO6cDBA0Cfd3g2tpZR/qDzaFMrndOfzpOeOEYKSCBAepIAUeci1M/f5DCSB5scRvJYCiWpBUsOIwGNTxnly5cXHETTp08XHEiyGitlkBr/IfDtEl6lNWGd0St4PM59ZUPOHM4vJskLooDpCEjRk+laTRXWgwBpSQ+q1i2T9GSuvv/rr7+QKVMm4bO077//Hm+99ZbrDXn69OUGHapP3eZFDMPE4L64sSMAKZJrL5r0pJ0VpUycAOkpcUbeTqF+/iaHkbzeIIeRPJZCSWrBksNIQOMzxu3bt2N9enb+3HkUK15MehulDFLtWgIXXq5ZxCo4N2I4dpXrg+1fubZdrfRGUoEeIyBFTx6rLV3IyARIS0buHfPVjfRkvj5r3rw5Nm7cyCvep08fzJs3j9suBYYPEdYyehyRHAUyncWyj1KhXi3tn6WRnlyiT5niIUB6igeMgaLVz9/kMJLXMeQwksdSKEktWHIYCWh8xli2bBm6du3K25MjRw7cuHFDWZRR+80Mz5xIwO1B6pjiKOqmOIxUR7ckK1Drg5po10J+fVWXoaABCbitJwO2iarkHQKkJe9w99Wrkp7M17Nr1qxBu3bteMXZbmnsHjhJkiQ8zunA9evA21WFbFOixuNmgy5YNEP7J/SkJwEhGW4SID25CdAD2dXP3+QwkgecHEbyWAolqQVLDiMBjc8YTZo0wZYtW3h7Ro4ciSlTpnBbZsCtQeqff4C6VYAnD3mV7G/rsvyEK1sDkTYNj6aARQi4pSeLMKJmaiNAWtLGiVJpI0B60sbJSKkePHhg/yxNXacjR46gUqVK6ijnwz2V3Wb/s4vn+zG0Oppk/wo3twUgpbJZh5aD9KSFEqXRSoD0pJWU99Kpn7/JYSSvH8hhJI+lUJJasOQwEtD4hPHo0SNkyJABkWxHj1fHoUOHUK1aNYcp9dflQYqtATCoH7A3ero4q9hHmIZbtdph+Wztb+qkNogK8yoBl/Xk1VrTxY1IgLRkxF4xb51IT+bsu3r16mH37t288mPHjsWECRO47VKgbQvgp2M867dhHdEzeAK+GuGPt+trmxlNeuL4KCCBAOlJAkSdi1A/f5PDSB5schjJYymUpBYsOYwEND5hbN26FY0bN+ZtCQwMxN9//42kSZPyOJkBlwepvXuAgV2EqhwJrYFGIcuxfLgNTRpou+kSCiDD9ARc1pPpW04NkE2AtCSbqLXLIz2Zs/8XL16Mnj178srnyZMHv/zyi+uf6D9/DpTJr5SnvPR6dXRO8jU2p6uGxsX8sGKOtpddpCcHPfqVQYD0JIOivmWon7/JYSSPNTmM5LEUSlILlhxGAhqfMPr374+5c5Vt6l8dXbp0wdKlSx2m9F+XBil2w/VWBeCfB7w+7FO0skFH8FeyjLixNQCpU/FTFLAQAZf0ZCE+1FTtBEhL2llRysQJkJ4SZ2TEFDdv3kTu3LmFqv38888oXLiwEKfZUD5zQ/XiQvICaU/jf0kzgrmKft0SoOlzetKTgJAMNwmQntwE6IHs6udvchjJA04OI3kshZLUgiWHkYDG9Ab7DC0kJAR//PEHbwtb9LFNmzbclh1waZCaMwtY9IlQlb62RVgVVA9NivvR52gCGWsZLunJWoiotRoJkJY0gqJkmgiQnjRhMmSi0qVL48yZM7xuM2fOxODBg7ntVCAiAiiWU8kSPcOoZuAenE1ZwF7Ml4P90aJx4jOkSU9OUafEiRAgPSUCyACn1c/f5DCS1yHkMJLHUihJLVhyGAloTG/89NNPKFasmNCOu3fvIlu2bEKcTMPpQUqpD+qUV+61otdYOhpaFQ1CvlaqpUznHu6PxvQ5mswuMlVZTuvJVK2jynqSAGnJk7R9/1qkJ/P28fTp0zFixAjegPLly+PYseg1iPgJrYGKyn3W4794ascnaSyibkFgzcIAfi6+AOkpPjIU7woB0pMr1DybR/38TQ4jeezJYSSPpVCSWrDkMBLQmN6YPXs2Bg4cyNtRrlw5HD9+nNt6BJwepEYrN22bV/KqhEf5oWrqA7iSIjdsfqDP0TgZawac1pM1MVGrNRAgLWmAREk0EyA9aUZluIQXzl9A8RLiZ2Ru3f82awhcO8fbOTVqHKZlfrkmI5tbdEP5LC1NGn46zgDpKU4sFOkiAdKTi+A8mE39/E0OI3ngyWEkj6VQklqwbg2YQqlkGIFAnTp1sHfvXl6VyZMnY9SoUdzWI+DUIHXrFtCgslKN6KncK8Lfx8BsL+vYVPkcbRntjqZHN5mmTKf0ZJpWUUW9QYC05A3qvntN0pN5+5Z9rs/WMbp9+zZvxJIlS9C1a1duOxXo/R5waLuQZXVYVwzMOgJh/sk17ZZGehLwkeEmAdKTmwA9kF39/E0OI3nAyWEkj6VQklqw5DAS0JjaYDuhZciQAVFsu/pXB5tyzaZe63k4NUgNGQDsWser8ywyAEWCTuPvJOnscfQ5Gkdj2YBTerIsJWq4FgKkJS2UKI1WAqQnraSMmY69PJs6dSqvXKNGjcB2lXXpmDwBWLUwVtYpUR9jeuZOaFvWD59/kvBuaaSnWPgowg0CpCc34Hkoq/r5mxxG8qCTw0geS6EktWDJYSSgMbXBbnwaN27M25AyZUo8fPgQSZMm5XF6BDQPUkpdULWoUIUFEYMxJqviRFIONo37JtsdLbXdpH8sSkCznizKh5qtnQBpSTsrSpk4AdJT4oyMnOLw4cOoVq0ar6Kfnx8eKDueBQUF8TjNgfPK52jtlc/SYhyHQ2uiccgyJFNuaG7vClDuv2IkUJmkJxUMCrpNgPTkNkLdC1A/f5PDSB5uchjJYymUpBYsOYwENKY2+vXrh3nz5vE2dOnSBUuXLuW2XgHNg9TpU0DHJrwaYYqLKE/6C3ga8NJDVCs/8N0XiS8UyQuggE8S0Kwnn2w9NUomAdKSTJpUFunJ3BoIDQ1FxowZ8eTJE96QTZs2o0mT6Bdt/ISWwJnTwLti3uthuVE6+KA995Yp/qhakb0Ki/sgPcXNhWJdI0B6co2bJ3Opn7/JYSSPPDmM5LEUSlILlhxGAhrTGuz7/ODgYLA/QI5jzZo1aNOmjcPU7VfzILXve6B/J16P3yOyo0jWI9z+7D0/dG6f8BRunpgCPktAs558lgA1TBYB0pIsklQOI0B6Mr8OunfvDrZ2kePo3bs35s+f7zCd/z17FninEc8XqmzikT/oPB4HpEWf2n6YOCb+exrSE8dGAQkESE8SIOpchPr5mxxG8mCTw0geS6EktWDJYSSgMa3x888/o2hR8XOvu8r29dmyZdO9TZoHqfXK2kUfvvz8jFXqp9BiqBYSvX7A+ZU25MiubJNGh6UJaNaTpSlR47UQIC1poURptBIgPWklZdx03333HVq3bs0rmClTJty7dw82W/yOHZ44rsCjv4HKRYQz34Z1RM/gCciSAri0PQD+8UwyIj0J2MhwkwDpyU2AHsiufv4mh5E84OQwksdSKEktWHIYCWhMayxcuBC9evXi9S9btixOnDjBbT0DmgepLxcDn43nVXF8688iCipLCBzdQJ+jcTgWDmjWk4UZUdO1ESAtaeNEqbQRID1p42TkVOr7X0c9zyqzhEqUKOEwnf8d2BfYu5Hni1RCNVLuw0+B+XB4gQ1FCsX9Ioz0xJFRQAIB0pMEiDoXof77Qw4jebDJYSSPpVCSWrDkMBLQmNZo0aIFNmzYwOs/btw4fPTRR9zWM6B5kJqgOIvWKE6jV8f6sA7oHjzZbo1s5ocRA1x8w+cokH59goBmPflEa6kRehIgLelJ13plk558o8+rVKmCI0eiP4f/9NNPMWjQINcbx5YCqK3sRhsRxstYF/YOegRPwkdt/DCwV9z3NqQnjosCEgiQniRA1LkI9fM3OYzkwSaHkTyWQklqwZLDSEBjSuPFixdIkyYNwsKib1b279+PN9980yPt0TxI9eoB/LCD12luxHB8mLWP3d43y4ZSJeJ+C8czUMASBDTryRI0qJHuECAtuUOP8sYkQHqKScSc9ieffILhw4fzyteoUQMHDhzgtkuB+XOBBVN51v+L8sfrQefwRq602LUy7tnTpCeOiwISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQGNK4+jRo6hUqRKvu7/ywfw///yDVKlS8Tg9A5oHqcb1gF9/4lXZHtoc74R8hjTKvdT13QHKGgL8FAUsTECznizMiJqujQBpSRsnSqWNAOlJGyejpzp16hTYZ/vq48GDB8iQIYM6yrmwkh81lM/aoqJ4vmlRH2Fa5q64vjkA6dLyaB4gPXEUFJBAgPQkAaLORaifv8lhJA82OYzksRRKUguWHEYCGlMaM2bMwLBhw3jd69Wrh507d3Jb74DmQapYLmHKNqtX+ky30KmyH2ZNIm+R3v1klvI168ksDaJ6eo0Aaclr6H3ywqQn3+jW8PBwZMyY0f5izdGiXbt2oW7dug7Ttd+hA4Gd3/G8V0ILomLIbqwa448GtWOvfE164qgoIIEA6UkCRJ2LUD9/k8NIHmxyGMljKZSkFiw5jAQ0pjTefvttbNu2jdedOZCGDBnCbb0DmgepwiGxqsIcRsuH+6NJg9g3U7ESU4QlCGjWkyVoUCPdIUBacoce5Y1JgPQUk4h57XfeeQerVq3iDWBrPrK1H906Tp8COjYRiiiR5ijq1A3B9HGxX4qRngRUZLhJgPTkJkAPZFc/f5PDSB5wchjJYymUpBYsOYwENKYz2ADBPj1jb8wcB1vMUf2JmiNer1/Ng1QMh9HJ0IqoE7IG176zIVMmWr9Ir/4xW7ma9WS2hlF9PU6AtORx5D59QdKT73Tv4sWL0bNnT96gqlWr4ocffuC2S4GICKBcIeDFU559IiZiVY53cWlHAPxi3OaQnjgmCkggQHqSAFHnItTP3+QwkgebHEbyWAolqQVLDiMBjemMmN/is/WLHj9+jJQpU3qsLZoGKfZdf+WSwD/3eb2mRo3DtkJd8J91cS8IyRNSwFIENOnJUkSosa4SIC25So7yxUWA9BQXFXPGnT9/HiVKKGsOvTr8FG/Oo0eP7BuIOOJc+h0zEtj0Nc96JLQGGoWswMmlNuTLI3qMSE8cEwUkECA9SYCocxHq529yGMmDTQ4jeSyFktSCJYeRgMZ0xvz589G3b19eb7YzGtshzZOHpkHqwnmgXQOhWpVSHUSD1nkwdkjsqdpCQjIsRUCTnixFhBrrKgHSkqvkKF9cBEhPcVExZxzbVZbNzg4NDeUNYDulsR3T3Dq+3wsM6MyLeBFpw2uZrmB6z2To0kG81yE9cUwUkECA9CQBos5FqJ+/yWEkDzY5jOSxFEpSC5YcRgIa0xlt27bF2rVreb0nTJiAsWPHctsTAU2D1OgRwOaVvDq3wl5DieDD2DLZhqqVaP0iDoYC0KQn4kQENBAgLWmAREk0EyA9aUZlioTNmzfHxo0beV2nTp2KESOUexV3DmWGNyq+IZTQMtl6JK1QBqsXiLOpSU8CJjLcJEB6chOgB7Krn7/JYSQPODmM5LEUSlILlhxGAhpTGRHK9/Jp06bFv//+y+u9d+9e1KpVi9ueCCQ6SD1VvuevWBiIjF5naXrUh5ieuRtuK9/1BwZ6opZ0DbMQSFRPZmkI1dPrBEhLXu8Cn6oA6cmnuhOzZ8/GwIHKzmavDrZLGtstze3jrcrAHzd5MQP9F2B1xob4fU8AkiTh0fRyJBoFhSQQoL9PEiDqXIT6+ZscRvJgk8NIHkuhJLVgyWEkoDGVcfHiRRQpUkSo88OHD5E+fXohTm8j0UFqy2ZgVG9ejfAoP7yR/jSKFMyAjUvEN248EQUsSyBRPVmWDDXcWQKkJWeJUfqECJCeEqJjvnPHjx9HhQoVeMVtNpt9DchAd99ilS0EPPuHl9s+6RrsTFsRB+baUKJo9DpGpCeOiAISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQGMqY/ny5ejSpQuvc9myZXHixAlueyqQ6CC1cAEwdxKvzqnQ8qgd8i0mveuH3t3Eb/p5IgpYlkCierIsGWq4swRIS84So/QJESA9JUTHfOeeP3+O1KlTg83WdhxHjx4VnEiOeM2/bMfa4jmF5NVS7sNPgfkwtZMfenaJvuchPQmYyHCTAOnJTYAeyK5+/iaHkTzg5DCSx1IoSS1YchgJaExldO/eHUuWLOF1HjlyJKZMmcJtTwUSHaQ2bwJG9+HVuRmWEyWDf8D+OTaULBb9to0noIClCSSqJ0vTocY7Q4C05AwtSpsYAdJTYoTMd75evXrYvXs3r/isWbMwYMAAbjsd+PNPoGYpIVvO9BfwOCAtGipf5q+cHz2rmvQkYCLDTQKkJzcBeiC7+vmbw0SPIAAAPatJREFUHEbygJPDSB5LoSS1YMlhJKAxjRGlbFOfPXt23L17l9d5y5YtePvtt7ntqUCig9TPPwFt6vHqRCifpGXP9Atuf59C+J6fJ6CApQkkqidL06HGO0OAtOQMLUqbGAHSU2KEzHd+2rRpYC/bHEezZs2wYcMGh+n876+/Ao2rCfkyZ7iKMP/kSKHs7/Hb3gAoX77ZD9KTgIkMNwmQntwE6IHs6udvchjJA04OI3kshZLUgiWHkYDGNMZvv/2GHDlyCPW9c+cOQkJChDhPGIkOUmzR6/IFhKoMKnQQn32XX4gjgwgwAonqiTARAY0ESEsaQVEyTQRIT5owmSrRoUOHUKNGDV7npEmT4smTJ2C/Lh3KZ24ow+5tonj2MX4zsCBjK7v9n89tKPzGy5nVpCeOiAISCJCeJEDUuQj18zc5jOTBJoeRPJZCSWrBksNIQGMaY9u2bcJsotdeew2sL/38PP+JV6KDlLI4N1rXEdgubf8juo4Rv/MXEpBhWQKJ6smyZKjhzhIgLTlLjNInRID0lBAdc557/Pgx0qVLBzZr23GcPXsWJUqUcJjO/9Z/E7h9Tcg3N2I4PszaBzO7+6HrOy+nGJGeBERkuEmA9OQmQA9kVz9/k8NIHnByGMljKZSkFiw5jAQ0pjHGjRuH8ePH8/qyxa+XLl3KbU8GEhukIiZOgu0bZeHrV8dv4cG4uewYqlaKXvzRcY5+iUBieiJCREArAdKSVlKUTgsB0pMWSuZLU61aNRw+fJhXnK0N2bVrV247HfhgNLBhhZAtUrGKpTmOcuWzYekschgJcMiQQoD+PknBqGsh6udvchjJQ00OI3kshZLUgiWHkYDGNEadOnWwd+9eXt/PP/8c77//Prc9GUhskHpWuwEC757nVVoQMRTvnhqE1Kl4FAWIACeQmJ54QgoQgUQIkJYSAUSnnSJAenIKl2kSjxkzBpMnT+b17dGjBxYvXsxtpwNXrwItawOR0buvsTJmR47EzJBeuLknAP7KekakJ6fJUoYECJCeEoBjkFPq529yGMnrFHIYyWMplKQWLDmMBDSmMEJDQ5EyZUqEs+1bXx3Hjh1D+fLlHaZHfxMcpCIjEV40FwIQfeM0NvhbTNxb2aN1pIuZh0CCejJPM6imBiBAWjJAJ/hQFUhPPtSZqqZs2rQJbLFrx5E7d278qixe7dYn/rdvA/UrOoq0/94Lz4TCWU/g9FdJkDunHzmMBDpkuEuA/j65S1D//Ornb3IYyeNNDiN5LIWS1IIlh5GAxhTGhfMXULxEcV5XdlPDFmlkTiRvHAkOUr8pN031xJumma3OYci4TN6oKl3TBAQS1JMJ6k9VNA4B0pJx+sIXakJ68oVejN2GWzdvIVfuXMKJe/fuIWvWrEKc08aVy0CLWkK2moF7MGD8G2jSwJ8cRgIZMtwlQH+f3CWof3718zc5jOTxJoeRPJZCSWrBksNIQGMKY8WKFejcuTOva8WKFfHjjz9y29OBhAapqH374Ne/I6/Sw4hUOD73MurXVuZj00EE4iCQkJ7iSE5RRCBeAqSleNHQCRcIkJ5cgGaCLGzB6yxZsuD+/fu8trt27ULdunW57VKALaRduSTwT3S53QOWI6R9TYwfYSOHkUtQKVN8BOjvU3xkjBOvfv4mh5G8fiGHkTyWQklqwZLDSEBjCqNv376YP38+r+uwYcMwffp0bns6EO8gpXyOFlG+OGzPHvIqHQ+tjOyH1iIk2O//2TsPOCmKLIx/m8hJksBKkAwiLpIXkYyIoIAEEyISlCBZgqQjI0FyzklBgoKBHCW7SkbJiMrpoQgqaeNNjU5t1+7OTPdMs9MzfH2/c+pVvaqt/tejp+ub7iqZxwQJaAk4jSetE9MkoIMAY0kHJLroJsB40o3K7xxfe+01rFixQvZ7xIgRGDRokLQ9TrR4ATgdJasPwTgcLtcKm5aHUjCSVJgwgwCvT2ZQvL9taOffFIzMY03ByDyWSkvagKVgpKDxC6NcuXI4evSo7OuqVavQsmVLaad2wumX1LgxwJLpSndWJryNVqcG29YGULJpkIAk4DSepAcTJKCPAGNJHyd66SPAeNLHyR+9xI9w4sc4x9GgQQNs3LjRYXr+2a0zsH29rD8zrheG5O2Oq5tDkZBwTz4dHhkZibRp00o/JkjAKAFen4wSS31/7fybgpF5/CkYmcdSaUkbsBSMFDSWN/7++29kzpxZ6efp06dRqlQpJS81DadfUhVtfbr9p9KVWUXmo9OGZ5U8GiSgJeA0nrROTJOADgKMJR2Q6KKbAONJNyq/czxw4ACEaOM4wsLCIO630qRJ48jy7HP0CGDFbFl3bcyraJ9vNPbMCEHxotEUjCQZJrwlwOuTtwTvf33t/JuCkXm8KRiZx1JpSRuwFIwUNJY3vvnmG1SoUEH2MzQ0FLdu3fL+pka2aDyR4peU7XU0PJ5faexyTEGs77YT3bvyVzQFDA2FQIrxpHjQIAF9BBhL+jjRSx8BxpM+Tv7oJcShLFmy2J76sa079O9x7NgxlC1b1mF69jl9KjDrfVl3Z/QzaBY+F9M6BaNFkxgKRpIME94S4PXJW4L3v752/k3ByDzeFIzMY6m0pA1YCkYKGssbSRe8rlGjBnbt2uXTfqf4JWXbtQ1VSir9Kp31a0wfmwe1n+aC1woYGgqBFONJ8aBBAvoIMJb0caKXPgKMJ32c/NWrfPny+Pbbb2X3TVkf8p1OwI4Nss0VMe3QNd8QvPFUEMYOjqVgJMkw4S0BXp+8JXj/62vn3xSMzONNwcg8lkpL2oClYKSgsbzRq1cvTJo0SfbTlBsa2ZpniRS/pK5eBepVVBrMk/17nFiXCblycQEjBQwNhUCK8aR40CABfQQYS/o40UsfAcaTPk7+6lWmTBmcOnVK6b72iSOlQK8hdkm78T/p/V7QRMzK2RzFsgFfrYqjYCTJMOEtAV6fvCV4/+tr598UjMzjTcHIPJZKS9qApWCkoLG8Ua1aNXmDITq7fPlyvPrqqz7td4pfUj/8ADRMXA9AdLBB7oPYtFN9Tc2nHecftySBFOPJkj1lp6xOgLFk9RHyr/4xnvxrvIz29qGHHsKNGzeUavG21+uDPN2lIzYWeKKg0t7ZmOKonG8Lgmz/u/BpHI4e2W8v56LXCiYaHhDg9ckDaKlcRTv/pmBkHnwKRuaxVFrSBiwFIwWNpQ3xZZAhQwaIGxjHIXZLe+KJJxymTz5T/JKKicHdiJJIh7uyT5/lHYjG22w7hvAgARcEUownF/4sIgFnBBhLzsgw3xMCjCdPqPlPnWnTpqFbt25Kh8UramJnWo8OsR5Sg5rAT+eV6s3TrsX2LBWwbVIs/rxxwF5GwUhBRMMDArw+eQAtlato598UjMyDT8HIPJZKS9qApWCkoLG0IR6VFo9MOw7xq5dYqFGISL48nH1JHS3XHhHRidvSnitgewx74xRfdpV/2w8IOIsnP+g6u2gxAowliw2In3eH8eTnA+im+7dv30bGjBkVr9q1a2P79u1KniHjzBngxbpAQuIPffNiu6Fv3t6Y0SUOeXPyCSNDPOnslACvT07RWKZAO/+mYGTesFAwMo+l0pI2YCkYKWgsbaxfvx5NmjSRfRS/emkXaJQFqZxw9iW1s2Rn1ApZL3vzY+TbyD9vsLSZIIGUCDiLp5R8mUcCrggwllzRYZlRAowno8T8zz+l18+8Xsdo7Chg2UwJIyq6MuqFf4wu9eNRp+o+ez6fMJJ4mPCQAK9PHoJLxWra+TcFI/PAUzAyj6XSkjZgKRgpaCxtTJw4EX369JF9bNu2LRYuXChtXyVS+pL6w7YMwP8q1UaJMNuva/8ev3f9ADk6tXKY/CSBFAmkFE8pOjKTBNwQYCy5AcRiQwQYT4Zw+aXzfRGM9u0FOibe+9yND0F47nOo9mgQerahYOSXgWLBTvP6ZMFBSdIl7fybglESOF6YFIy8gOeqqjZgKRi5ImWtsg4dOmD+/PmyU2PHjkW/fv2k7atESl9SX0fFoezrhZA2KPEx7PjF6xFcsYKvusm/6ycEUoonP+k6u2kxAowliw2In3eH8eTnA6ij+ykJRl4tfC3+5s2bQGRp5a9XzrQHP2UqgGUD99oW1bYVR0Yibdq0ig8NEjBCgNcnI7R846udf1MwMm8MKBiZx1JpSRuwFIwUNJY2KleujMOHD8s+rl27Fs2aNZO2rxIpfUl9OvtHNJlWRe3SnuNAjhxqHi0SSEIgpXhK4kKTBHQRYCzpwkQnnQQYTzpB+bGbWPRaLH6tPU6ePInHHntMm2Us/ddfQJWSSp3HsxzCT2nzYG7Xw8iZ4x4FI4UODU8I8PrkCbXUraOdf1MwMo89BSPzWCotaQOWgpGCxrJGXFwc0qVLh1ixTeu/x5EjRxAREeEwffaZ0pfUxpZL8eypAbJPd2z7paU/adspxNPtaWVLTAQ6gZTiKdDPmed3fwgwlu4P1we1VcZT4I/8999/j1KlSikn2r17d0yePFnJM2RcvAg0rq5UyZnjPOKCwzC42SmUe/w6BSOFDg1PCPD65Am11K2jnX9TMDKPPQUj81gqLWkDloKRgsayxpUrV1CwYEGlfzdu3EDWrFmVPF8Yyb6k0qTBfx+rhrxBP8juXC74Agp9mbjooyxgggSSEEgWT3xMPwkhmnoJMJb0kqKfHgKMJz2U/NsnOjo62athw4YNw5AhQzw/sYMHgHbNZf3rcZlQJM8pu92mymW88MyPFIwkHSY8JcDrk6fkUq+edv5Nwcg87hSMzGOptKQNWApGChrLGrt370bNmjVl//LkyYP//ve/0vZlIumXVNjxEwh+4wWlSyf7fIIybSspeTRIICUCSeOJ6zqkRIl5eggwlvRQoo9eAownvaT82y/pOkaFCxfGhQsXPD+pDbbdYgd0lvXPxJRAlXxb7Hbdwr+ic+uzFIwkHSY8JcDrk6fkUq+edv5Nwcg87hSMzGOptKQNWApGChrLGkuXLkWbNm1k/5599ll8+eWX0vZlIumX1L1Zy5Bl3lDZpUsxhZBx717kzm1b2ZEHCbghkDSeKBi5AcZipwQYS07RsMADAownD6D5YZWkglGDBg2wceNGz89k/lxg0jBZ/6vo2ng+fJHdLpH1T4zpcYyCkaTDhKcEeH3ylFzq1dPOvykYmcedgpF5LJWWtAFLwUhBY1lj5MiRGDx4sOzfO++8g6lTp0rbl4mkX1K/jv0QBT4eJLt0KOZpVDrzEZcvkkSYcEUgaTxRMHJFi2WuCDCWXNFhmVECjCejxPzT/6233sLcuTaR59+jS5cumD59usM0/jnSJhZ9lNjempjX0CHfKHs76YJisGLwQVSrxl3SjINlDS0BXp+0NKyZ1s6/KRiZN0YUjMxjqbSkDVgKRgoayxrt27fHggULZP8mTpyIXr16SduXiaRfUieGfo4Kn3WTXbqQ8DiKnN4kbSZIwBWBpPFEwcgVLZa5IsBYckWHZUYJMJ6MEvNP/+XLl6N169ay814/0d31bWDnZ7K9GXF9MCjPO9Je2vsA6tevlGztJOnABAnoIMDrkw5IPnbRzr8pGJk3GBSMzGOptKQNWApGChrLGrVq1cKuXbtk/z7++GO0aNFC2r5MJP2SOtN0OMr+sFh26begR5Dz5CFpM0ECrggkjScKRq5oscwVAcaSKzosM0qA8WSUmH/6J10zskCBAhD3yh4fnTsCu7+Q1ZfEdUKPPP2l/X7rY2jzWhkKRpIIE54Q4PXJE2qpW0c7/6ZgZB57CkbmsVRa0gYsBSMFjWWN3Llz49q1a7J/+/fvR9WqVaXty0SyL6knCyvduR2UGRlOfq/k0SABZwSSxRN3SXOGivluCDCW3ABisSECjCdDuPzWWSxwXbRoUaX/d+7cQbp06ZQ83UaSV9LibRVbp/kIX2YV93BB6PnMWfTrVYSCkW6gdEyJAK9PKVGxVp52/k3ByLyxoWBkHkulJW3AUjBS0FjS+Pvvv5E5c2alb1Yat6RfUnHlSiJDULTsb2xQKEJPevHrnGyJiQeBQNJ44hNGD8Ko359zZCzdH64PaquMpwdj5O/evYv06dMrJ3v+/HkUKVJEydNtbLa9kt+rXTL3qOgqeDbvUrxY/ldMGRtOwSgZIWYYIcDrkxFavvHVzr8pGJk3BhSMzGOptKQNWCsJD0onaUgC586dQ/HixaUtEuKLIU2aNEqerwzlSypdeqRt/6LSlUs9luDRDnWVPBok4IyAEk+RXAjUGSfmuyfAWHLPiB76CTCe9LPyd8+CBQviypUr8jTEkgA1atSQtqFEbCzwsu2+6HRUsmrDMRqHI57B2oUPUTBKRocZRgjw+mSElm98tfNvCkbmjQEFI/NYKi1pA5aCkYLGkoa4URFrGDmOwoULQzwybZXD8SUVbPtVrkaf9sm69cem7/FQfvUJqWROzCCBfwk44kmYkRSMGBdeEGAseQGPVZMRYDwlQxKwGQ0bNsTGjRvl+S1dulRZCFsW6E3cvAk0bwRcvajUOBj9FN4uNgeHPrH92MbXrxU2NIwR4PXJGC9feGvn3xSMzBsBCkbmsVRa0gYsBSMFjSUN03fsMPksHV9Sub79BmUWTlJa/zMuHTKfPo+g4CAlnwYJOCPgiCdRTsHIGSXm6yHAWNJDiT56CTCe9JLyf79u3bph2rRp8kRGjBiBQYMGSdujxK1b/4hGV87K6tEJQSiV8wROb81AwUhSYcITArw+eUItdeto598UjMxjT8HIPJZKS9qApWCkoLGkMXr0aAwcOFD2rWvXrsqNjCzwUcLxJVVy4Vzk/XaP0ovlmQfhtYOdlDwaJOCKgCOehA8FI1ekWOaOAGPJHSGWGyHAeDJCy799J0+ejJ49e8qTaNu2LRYuXChtjxO2NSlRuYRSvVbGrVizsTBy5PBwUW2lNRoPKgFen6w/8tr5NwUj88aLgpF5LJWWtAFLwUhBY0mjY8eOmDdvnuzbhAkT0Lt3b2n7OmH/ktq7F9V6dUSa2LuyO5/EvIwvGr2P+R+EyDwmSMAdAd70uCPEcr0EGEt6SdFPDwHGkx5KgeGzbt06vPhi4nqM1apVw17bfY7Xx9WrQL2KSjMls0Zh7YLseKxUWiWfBgkYIcDrkxFavvHVzr8pGJk3BhSMzGOptKQNWApGChpLGvXq1cO2bdtk31auXIlWrVpJ29cJ8SV1bM0aVBrdV+nKk5n34YVm+TG0LwUjBQwNlwR40+MSDwsNEGAsGYBFV7cEGE9uEQWMw6FDh1ClShV5Prly5YK4d/b62L0L6PyqbEa8tl8wz/dYPTQedWtRMJJgmDBMgNcnw8hSvYJ2/k3ByDz8FIzMY6m0pA1YCkYKGksaxYoVg9jS1XF4tVuHoxETP8WX1Mlly1B+0lDZ6u34UIQ/fAET2gWhXWsKRhIME24J8KbHLSI66CTAWNIJim66CDCedGEKCKfLly/j0UcfVc7lzp07SJfOy9fG5s0BJg+X7UZFV0G98FWY8lYcXn+ZgpEEw4RhArw+GUaW6hW0828KRubhp2BkHkulJW3AUjBS0FjOiI+PR1hYGMSn4zh9+jRKlSrlMH3+Kb6kTnz0ISqMVxeEfCjXD1jxXjAa1g/2eR/ZAf8hwJse/xkrq/eUsWT1EfKv/jGe/Gu8vOnt7du3kTFjRqUJU+6X/zMYWJ24FtLqmNfRMd8I9H0hDgN6UjBSgNMwRIDXJ0O4fOKsnX9TMDJvCCgYmcdSaUkbsKZ8ASqt0zCTwPXr120LIeZQmhTjJx6PtsohvqQujxmNEqvnK10SgtH2KSF48gnukKaAoeGSAG96XOJhoQECjCUDsOjqlgDjyS2igHIQ917iHsxxHD58GBUrqusPOcp0f06dDMwZL923RTdEi/BZeLlSHGaOo2AkwTBhmACvT4aRpXoF7fybgpF5+CkYmcdSaUkbsBSMFDSWM86cOYOSJUvKfgUHByM6OhohIdZ5zUt8Sd1o2xoPH9sn+ykSD+W8jFOrQpEvDwUjBQwNlwR40+MSDwsNEGAsGYBFV7cEGE9uEQWUg9il88CBA/Kc1q9fj+eff17aHiXWrQEGd5dVv4suhcjwTaiaPwFfLguT+UyQgFECvD4ZJZb6/tr5NwUj8/hTMDKPpdKSNmApGCloLGeIXTmqV68u+1WoUCFcunRJ2lZIiC+pv1s2QY7zx5XuZLc9YfS/baEIDVWyaZCASwK86XGJh4UGCDCWDMCiq1sCjCe3iALK4ZVXXsFHH30kz2n27Nl46623pO1R4tBB4M3E3df+WfT6DB7JmIATX1Aw8ogpK9kJ8Ppk/UDQzr8pGJk3XhSMzGOptKQNWApGChrLGWvXrkXz5s1lv2rWrImdO3dK2woJ8SUVW6sqMt78VXZnRlwfTHv0HXy/kWqRhMKELgK86dGFiU46CDCWdECii24CjCfdqALCsV+/fhg3bpw8l8GDB2P48MQFq2WBkcSPV4AGVZUa+R46hZiwjPjfjjAE8YFshQ0N/QR4fdLPylee2vk3BSPzRoGCkXkslZa0AUvBSEFjOWPmzJno0qWL7Ffr1q2xdOlSaVshce/2HYRVLIZgJMjuNEn3Ke6WKodNyykYSShM6CLAmx5dmOikgwBjSQckuugmwHjSjSogHKdMmYIePXrIc2nbti0WLkxcsFoWGEnExAARhZQaNTNuw7EMxfDjF6HIpK6zrfjRIAFXBHh9ckXHGmXa+TcFI/PGhIKReSyVlrQBS8FIQWM5Y8iQIRgxYoTsl/jFa+zYsdK2QiL64kWkaZz42pzoU+Fsx1C9/ENYMtU6ay1ZgRX74J4Ab3rcM6KHPgKMJX2c6KWPAONJH6dA8Vq9ejVatmwpT6dWrVrYsWOHtD1OVC0L/Pm7rN4jeCaW5HgOR5eFoGB+PmIkwTBhiACvT4Zw+cRZO/+mYGTeEFAwMo+l0pI2YCkYKWgsZ3To0AHz5yfuPjZ58mR07564YKIVOhy9dQvS9Ggru3IzLj0K5fkO7WsEY/wwCkYSDBO6CPCmRxcmOukgwFjSAYkuugkwnnSjCgjHpGtI5s+fH1eu2F4p8/awrfmIU1/LVm7Hh+L19Kvw3qLK3FVWUmHCKAFen4wSS31/7fybgpF5/CkYmcdSaUkbsBSMFDSWM5599lls2rRJ9mvlypVo1aqVtK2QiB07CqHLZsquREVXQb3wVejfNAj9ulMwkmCY0EWANz26MNFJBwHGkg5IdNFNgPGkG1VAOJ4/fx7FihVTzkXsUhsW5uXi1NOnArPeV9q9lxCMqKF7Ua1VQSWfBgnoJcDrk15SvvPTzr8pGJk3DhSMzGOptKQNWApGChrLGRERETh27Jjs19atW1G3bl1pWyER/1xdBF/+TnZlalw/DM3TGRPaBaFdawpGEgwTugjwpkcXJjrpIMBY0gGJLroJMJ50owoIxz///BNZs2ZVzkWISEWKFFHyDBs20QmdOwAHtilVj9UciidmdFTyaJCAXgK8Pukl5Ts/7fybgpF540DByDyWSkvagKVgpKCxnJEjRw5cv35d9isqKgrly5eXts8TN28CkaWVbogFr3dnLoeFfYLRtFGwUkaDBNwR4E2PO0Is10uAsaSXFP30EGA86aEUOD4JCQkIDlbvYV5++WV8+OGH3p+kbfHrv54oi8xBf8q2dlebgBpzX5Y2EyRghACvT0Zo+cZXO/+mYGTeGFAwMo+l0pI2YCkYKWgsZcTGxiZ79PnChQsoXLiwdfq507YAZNfWsj934kOQP9cZxAWHYcPoYFSPVG+2pCMTJOCEAG96nIBhtmECjCXDyFjBBQHGkws4AVoUlMI+90JI8vq4dQuoVFxpZm69jeg42bYgNg8S8IAAr08eQEvlKtr5NwUj8+BTMDKPpdKSNmApGCloLGX8/vvvyJkzp9InkZc9e3Ylz6fGujXA4MRFuM/FFEOlfP88Zv3VzBCUKc0dP3w6Pn74x3nT44eDZtEuM5YsOjB+2i3Gk58OnBfdvm+C0bffAK2flz2LSQhCn4bnMGVCepnHBAkYIcDrkxFavvHVzr8pGJk3BhSMzGOptKQNWApGChpLGeJpoqJFiyp9Ek8dhYRYaF2grw8DbzSVfRQLN+bNdQEJQcE49VEI8uWlYCThMKGLAG96dGGikw4CjCUdkOiimwDjSTeqgHFMKhjVq1cPW7Zs8f78li4G3h8o2/kuuhRG1tuEFTNDZR4TJGCEAK9PRmj5xlc7/6ZgZN4YUDAyj6XSkjZgKRgpaCxliPWKKlasKPuUK1cuiLGz1HHjD6BaGaVLlTPtwdn0BfHjF6HIlFEpokECbgnwpsctIjroJMBY0gmKbroIMJ50YQoop44dO2LevHnynAYNGoQRI0ZI2+NEnx7AxtWy+uqY17G4ygh8sZSCkYTChCECvD4ZwuUTZ+38m4KReUNAwcg8lkpL2oClYKSgsZQhdkSrX7++7JPYMe3IkSPStkoioWJpBN22LX797/F26AKseqguft8Ralsw0pHLTxLQR4A3Pfo40cs9AcaSe0b00E+A8aSfVaB4TpgwAe+++648nU6dOmHmzJnS9jhROxL49QdZfWDQBOwo3gIH1lEwklCYMESA1ydDuHzirJ1/UzAybwgoGJnHUmlJG7AUjBQ0ljJWrVqFl156SfapQYMG2Lhxo7Stkoh//WUEf7NHdmdpbEf0DR+IX2yCEQ8SMEqANz1GidHfGQHGkjMyzPeEAOPJE2r+XWfx4sVo27atPIlmzZph7dq10vYo8fffQOUSStW6GTbhxxylcGYT75sUMDR0E+D1STcqnzlq598UjMwbBgpG5rFUWtIGLAUjBY2ljFmzZqFz586yT23atIG4ebHaETttCkJnj5Pd+m9sLtQs9DXObA6TeUyQgF4CvOnRS4p+7ggwltwRYrkRAownI7QCw3fDhg144YUX5MlERkZi37590vYoEfU10KaJrCoWvM6b85xtfcow/LqTgpEEw4QhArw+GcLlE2ft/JuCkXlDQMHIPJZKS9qApWCkoLGUMWrUKIj35R1H7969IR6PttoRfeok0rR8RulWh7ybMW+buraR4kCDBJwQ4E2PEzDMNkyAsWQYGSu4IMB4cgEnQIuEOPTUU0/JsytQoADEfbNXx+KFwPjBsolb8WF45OHzdvvatlCEUjOSbJjQT4DXJ/2sfOWpnX9TMDJvFCgYmcdSaUkbsBSMFDSWMnr27InJkyfLPo0ZMwb9+/eXtlUS9+7exb2K5ZEl/obs0pqMvdH8cC9pM0ECegnwpkcvKfq5I8BYckeI5UYIMJ6M0AoM3++++w6lS5eWJxNsW5gxJibGtj6jFws0Tv4AmDdRtikSOXOcR1xwGC6tD0W2rEoRDRLQRYDXJ12YfOqknX9TMDJvKCgYmcdSaUkbsBSMFDSWMl577TWsWLFC9mnOnDkQO3ZY7RBfUjcrVkfuuJ9l184FV0KxE59ImwkS0EuANz16SdHPHQHGkjtCLDdCgPFkhFZg+P7yyy/ImzevcjI3b95ElixZlDxDxulTQIvEDU1E3RoZt+F4hmI4sSIEj4QHGWqOziQgCPD6ZP040M6/KRiZN14UjMxjqbSkDVgKRgoaSxnPPPMMtmzZIvv08ccfo0WLFtK2SkJ8SX1X6y1E3Nwqu3Q2zVMofmSVtJkgAb0EeNOjlxT93BFgLLkjxHIjBBhPRmgFhq8Y83Tp0iknc/nSZRQsVFDJM2w8XgCIj5PVGqX/DPsylUXUwhAUKUzBSIJhQjcBXp90o/KZo3b+TcHIvGGgYGQeS6UlbcBSMFLQWMooX748vv32W9mnzZs3o3599VcpWejDhPiS+qFKcxSPTuzr9gLvos7GHj7sFf+0vxLgTY+/jpz1+s1Yst6Y+HOPGE/+PHqe9z1Tpky4deuWbEDcl5UrV07aHiWqlgX+/F1W7RoyByuyN8C+2SEoXZKCkQTDhG4CvD7pRuUzR+38m4KRecNAwcg8lkpL2oClYKSgsZRRsGBBXLlyRfZp//79qFq1qrStkhBfUndtN09Zg27KLq2qtACtFjWQNhMkoJcAb3r0kqKfOwKMJXeEWG6EAOPJCK3A8S1TpgxOnbK9RvbvsW3bNtSpU8dhevb55uvAoe2y7mfRzfF6+ETsnBaCiMcpGEkwTOgmwOuTblQ+c9TOvykYmTcMlhOMrl+/jhMnTuDo0aM4fPgwduzYAfF+szh69eqFiRPVRezcodi7d699m/Tdu3fbd10QAkGNGjXwxhtvKLsyuGvHaLk2YCkYGaWXev5p06ZFdHS0/IMi9sSNi9WOe7Z/F2mrP650a/ZzO/H2uOJKHg0S0EOANz16KNFHDwHGkh5K9NFLgPGkl1Rg+Yknu7duTXzlftWqVWjZsqV3J/mx7ZX9YYkbg9yMS49Ceb7DpgkhqFzBiwW1vesVa/sxAV6frD942vk3BSPzxstyglFQkHPV34hgFB8fjwEDBmDcuHFOafXr1w+jR4/2bicGJ61rA5aCkRNIPs4WQpEQjLTH5cu29+ZtoqLVjugLF5Dm+aeVbk1o/T369M+s5NEgAT0EeNOjhxJ99BBgLOmhRB+9BBhPekkFll/r1q2xfPlyeVIzZ85Ep06dpO1R4vw54IWaStUcOS/i07FhqF6VgpEChoYkcOTqUZTLFyFtbUJcn7766it7VmRkJDJkyCCLXdWTTkzcdwLa+TcFI/NwW1owKlmyJCIiIrBy5Ur7GRsRjCZMmIB3333XXq9mzZro27cvChQoYH/9SIhIu3btspcJv969e9vTZv5HG7AUjMwka15b4mm2HDlyKA3+/vvvyJ49u5JnBePetWtIW1P9Apv7ymF0HBhuhe6xD35GgJMyPxswC3eXsWThwfHDrjGe/HDQTOiyuL+fNGmSbGnUqFF47733pO1R4uQJoFXia/t34kOQ7+GLWPOfYNSpScHII6YBXmnqwenovn8Y5j49Bh0qtE92tmLeIHb0Ez84Z86c2f4GjBCN5kXNR8c9AzAlcii6VemarB4zUo+Adv5Nwcg87pYTjKZMmWIXiR5//HH7xP3q1asID/9nUqxXMBICTZEiRRAXF4e6devi888/V54kuXv3Lho3bgzxjnRISAguXbqE/Pnzm0fV1pI2YCkYmYrWtMbEuBQqVEhpT9yspkmTRsmzgnHPFrPBTxZFWFCC7M6qFzei1XDboo48SMAgAU7KDAKju1MCjCWnaFjgAQHGkwfQAqDK0KFDMXz4cHkm4g0B8QaAV8eB/UD7xF1vr8VmQ/G8x7BiYDAa1qNg5BXbAKwsnhB6cmU9eWYpiUYrVqzAa6+9Jn3Ezso3Hr1pF4scmd++tNXpE0oOH37ePwLa+TcFI/M4W04wSnpqnghGgwcPxsiRI+1NHTt2DGXLJp9UHz9+HE888YTdR/hrv6iS9sETWxuwFIw8IXj/64gFFrXrFQmhSNysWvEQ/forogJyBl+X3dv03DI0GFdb2kyQgF4CnJTpJUU/dwQYS+4IsdwIAcaTEVqB46t9K0CcVdeuXTFt2jTvTnDrFqBHW9nGpZhCeDLfbizsE4ymjSgYSTBMSAKOJ4UcGUlFI/HGilgT13EU6VgCF0r87jCdPpkkHZi47wS0828KRubhDjjBKCEhAUWLFsXFixdRsWJF+8LZznCJ8qioKLv/2bNn4Wr9JGdtOMvXBiwFI2eUfJt/8OBBZUc08ZSZdsc03/ZO/espCUb/y1YeufdtUB1pkYAOApyU6YBEF10EGEu6MNFJJwHGk05QAeY2e/ZsZc2iNm3a2Des8eo0160BBneXTRyPjkCN8PWY9U4wXnqRgpEEw4RCwJlo9N1336F06dKJvs/a3kaom0XaScUlWcBEqhLQzr8pGJmHPuAEo59//hmPPPKInZB4/1m8B+3sEOVjxoyxF//000/y1Tdn/kbytQFLwcgIudTz3bx5Mxo0SHy/PVu2bPjjjz9SrwMG/pK4ib4TURbZgv9Wax29DISFqXm0SMANAU7K3ABisW4CjCXdqOiogwDjSQekAHRZtmwZXn/9dXlmTZo0wSeffCJtjxKTJgLzP5BV90bXQuPwxRSMJBEmnBF4dmQjbMpwSBZnjQpGyOZYiDWM7EcSsUiU5/o6UTx66aWXMGLECFmfidQjoJ1/UzAyj3vACUbiUUHxyKA4Fi9eDPErhbNDlLdt+8/jqnv27EH16tWduRrO1wYsBSPD+FKlQo8ePSDWzNIe4gk1Kx7iJnp3xf6oH/ex2r1R04EmTdU8WiTghgAnZW4AsVg3AcaSblR01EGA8aQDUgC6CHGoWbNm8sxq166N7du3S9ujxIuNge+/lVVnxvXGwDzdKBhJIkykRECscys2xLldI1Z5ggjb/gQ2RgNJxCKZr2ksY8aM+O2335AuXTpNLpOpQUA7/6ZgZB7xgBOMVq1aBaHsikM8QVK/fn2ntLZs2YJnnnnGXi52YmvVqpVT36QFIiBdHddsu1o51sc5d+6c6Ytqu/rbLNNHIKULufiisOIhbqK7tLyEZT82VLoXH14EMRts7+kHBSn5NEjAFQERT998843dpXz58sqmAK7qsYwEkhJgLCUlQtsbAownb+j5b12xCU2jRo3kCZQrVw4HDhyQtuGEbRerNFVLwTbJkVVbpf0YW7JUxtS349CSv7NJLkyoBE6ePGlf0sT+A3JScehOPJBe8zqjQ0RSm7AvcfL111/LeWCSYpr3kYAQiQoWLGj/CxSMzAMdcILRggUL0L79P1sh7t27F9WqVXNKS5Q7nipauHChfNrIaQVNgZH1jtasWWPJrdo1p/NAJlu3bg3xCqP22LFjh9a0VPo/0x/HY+cPY2ZsB6Vfx97ui+tlyip5NEiABEiABEiABEjAHwgcOXIEvXv3ll0tUKCA/S0BmWEwEWTbJblmd/UNgw6hi7DmodroUvsc6lT/xWCLdH+QCIgNkwYOHIjbt28nf6LIAcKJWJQhQwb7ciiOjZUc7vxMHQLitcHmzZvb/xgFI/OYB5xgNGPGDPvuCgLRoUOHUKlSJae0Dh8+jMqVK9vLRb3OnTs79U1aQMEoKRH/sxctWgTx3rzjEIulz50712Fa7nP4jDI4ei0bov5bG0XCLsr+/ZG/BI72GyxtJkiABEiABEiABEjAXwiICXrPnj1ld8PDw5X7M1lgIFFuzDBk+/mcrLEluhFahc+gYCSJMOGKgBAb/vOf/+DMmTPAyOzqk0XiSaNB/65npGmkRIkS9joPP/ywJpfJ1CRAwej+0A44wSi1njDiK2n3JyBTs9VJkyZhwIAB8k926dIFEyfaFkm04CEe02/a7h6+vfYQul1biWHop/Ty3mbb4ny5cil5NEjAGQG+9uGMDPONEmAsGSVGf1cEGE+u6ARu2f79+yHWLXIchQsXxunTpx2mR5/Btl3Swkb2lXWvx2VGkTwnMa1THFo0kdlMkIBTArdu3ULDsY1xKM/Z5D5JnjB68803MX78eIj1i3j4jgBfSbs/7ANOMEqtNYzcDYd20S0ueu2Olm/KxQ56gwYNkn/83Xffxbhx46RtpYS4iW70+k1E/foQZl8dilZhS9Tu7TkO2yp9ah4tEnBCQMSTuEEXR2RkJNcwcsKJ2e4JMJbcM6KHfgKMJ/2sAsnz4MGDqFq1qjylQoUK4dKlS9L2KLHc9gT5mP6y6q+x2VEy7xHM7haMVs0069BIDyZIQCUwL2o+Ou5J/GEZLtYw2rVrF2rUqKE2QCvVCWjn33wlzTz8AScYcZc084Ij0FsaMmSIsu2leF955MiRljxtcRP98itX0eH4BNsGDZ+qfaxUC1i0XM2jRQIuCHBS5gIOiwwRYCwZwkVnNwQYT24ABWixdokIcYr58+fHlStXvDvbV1sCR/fJNtbFvIJ2+cZQMJJEmHBFIJlY5HiiKOlC2P/mi1cqP/jgA1dNsiwVCFAwuj+QA04wEosYP/LII3Za7733nn3hMWfoRPmYMWPsxT/99BPEO9NmHdqA5RNGZlE1t53+/fvj/fffl40OHz4cgwdbcy2ge7Z3qX+v2Rj5gtVFuu2dX7AGqJL4y5w8ISZIwAkBTsqcgGG2YQKMJcPIWMEFAcaTCzgBXLRv3z489dRT8gyLFSuGs2dTeA1IerhJxMQAEY/anBKk45thS/FJthoUjCQRJpwRcCoWOSqkIBplO5AB4omWNGnSOLz46QMC2vk3nzAybwACTjAS2yCKxYsvXrxo3xZR/Grh7BALYottD4W/+GIyspC1szYd+dqApWDkoGKtT/FrwOTJk2WnhHjUt2/i++6ywAKJ2HFjEbpkWvKedLE9Ktu5a/J85pCACwKclLmAwyJDBBhLhnDR2Q0BxpMbQAFaLHaorVOnjjy7iIgIiJ3TPD7u3AEqFFWq18y4DccyFMOid4PR5Dm+kqbAoSEJuBOLxC5oYjfuWT8tQky1tLIebE8a7eq3ha+lJRLxSUo7/6ZgZN4QBJxgJNCIp0QcrxaJnRfKlk2+5fjx48fh2PJQ+IunS8w8tAFLwchMsua1JXbFmzVrlmxQiEfdu3eXtpUScX17I+SLlbJLf8alw/7Gc9FgfOINlixkggTcEOCkzA0gFusmwFjSjYqOOggwnnRACkCXjRs3omHDhvLMxNp64qkjr46nngT++FU20SN4JpbkeA4rBgajYT0KRhIME5JAUrGo5o0nsGvEdlkudtYWPzbnzp3b/tpkrTH18dNjf8nyWjcisGP4VmkzkfoEtPNvCkbm8Q9IwUgINGKHhfj4eNStWxeff/65sqiruCFp1KgRtm3bhpCQEPvTSAUKFDCPqq0lbcBSMDIVrWmNtWvXDgsXLpTtzZw5E506dZK2lRKxE8cjdGHi01Bbo5/DyZ6z0LNziJW6yb74CQFOyvxkoPygm4wlPxgkP+oi48mPBsvErn766ado2rSpbFHcu2/d6uXE++32wFcbZZsLYruiT953sWZYMOrUoGAkwTBhJ3Dk6lE8ubKepDH36TEodbckXnnlFfz444/o0KEDxo4dC/EggjiEqBkXF4c6w+rj4MNnZL1vX9qKcvkipM1E6hLQzr8pGJnH3nKCkXgEVQgsjuP69esQE3txCJHHkXaUN2nSxJFUPidMmACx65U4atasiX79+kGIQmIRPfHqkVjNXhzCr3fv3va0mf/RBiwFIzPJmtfWG2+8gSVLlsgG58yZg44dO0rbSomYD5cjbFQ/2aUT0WWxodPnGNiLgpGEwoRuApyU6UZFRzcEGEtuALHYEAHGkyFcAeOs3eFYnFTjxo2xYcMG785v+hRgVuLOt/ujn8Zz4cvw2ZhgPFWVgpF3cAOz9tSD09F9/zAIsahDBZvgaDtu3LiBnTt3Qsw3o6Ojk+0wKx5O6LykK+b8sRpTIoeiWxUuE+HL6NDOvykYmTcSlhOMhHhjZJV5sWZRSof4BywWNR4/fnxKxfY8sV6NWPQ6ONj8Lw5twFIwcjoEPi3wJ8Eoevs2pOnWRvK6FpsNU9scx4j3KBhJKEzoJsBJmW5UdHRDgLHkBhCLDRFgPBnCFTDO4sc7cU/mOFq2bAkhInl1LJgPfDBUNnE6+jFUC/8SWz4IRsUnzb/vl3+ICb8mIJ40cvaEkKvrk6t6fg3EzzqvnX9TMDJv8AJWMHIg+uqrr7B48WL7E0XikUKxVad44qht27bKjgwOf7M+tQFLwcgsqua2I2JAxIbjmD17Nt566y2HaanP6JMnkabVM7JP8bZU/yYXMG5UOpnHBAnoJeDqpkdvG/QjAUGAscQ4MJMA48lMmv7T1ty5c5X7rzZt2ij3Zx6dSX/bWwaffSirbohuiTbh47F7egjKlgmS+UyQgF4CvD7pJeU7P+38m4KReeNgOcHIvFPzbUvagKVg5NuxcPbX33zzTSxatEgWiwWw3377bWlbKXHv2jWkram+Ez3o6UMYOesRK3WTffETArzp8ZOB8oNuMpb8YJD8qIuMJz8aLBO7OnXqVGXTEfHjnfgRz6ujzStA1G7ZxJiEYRiX+w0cnBuCEsUpGEkwTOgmwOuTblQ+c9TOvykYmTcMFIzMY6m0pA1YCkYKGssY/rTo9b27dxFUvhjSQDxb9M8x5onPMeDDcg6TnySgmwBvenSjoqMbAowlN4BYbIgA48kQroBxFstHiGUiHEe3bt0wZYptDSJvjsb1gYunZAt9gqdiQY4X8M3iEBQuRMFIgmFCNwFen3Sj8pmjdv5Nwci8YaBgZB5LpSVtwFIwUtBYxmjfvj0WLFgg+zNjxgx07txZ2lZKiC+p6PJPIHNC4vad44quRN/11a3UTfbFTwjwpsdPBsoPuslY8oNB8qMuMp78aLBM7OqIESMwZMgQ2aIQj8QGNV4dTz0J/PGrbKJt2DJ8mu1pnPwwBOH5KBhJMEzoJsDrk25UPnPUzr8pGJk3DBSMzGOptKQNWApGChrLGGKLzPnzbYsi/ntMnz4dXbp0cZiW+hRfUrcqVUX22MSbn0l556DntkaW6ic74x8EeNPjH+PkD71kLPnDKPlPHxlP/jNWZvZ04MCBGD16tGxSiEfDhg2TtkeJsoWAuBhZtUfwTCzJ8Rx+2BCKLFlkNhMkoJsAr0+6UfnMUTv/pmBk3jBQMDKPpdKSNmApGCloLGN07NgR8+bNk/2ZNm0auna15naY4kvqt8hnEH73nOxvVHRVVHjxUaBdB6BYcZnPBAm4I8CbHneEWK6XAGNJLyn66SHAeNJDKfB8ku6QLMSjAQMGeHei1Wyv7N/4n2wjKroK6oWvwm/bQxHCDWYlFyb0E+D1ST8rX3lq598UjMwbBQpG5rFUWtIGLAUjBY1lDLGootiZw3GIRRffeecdh2mpz5jPNuBS7w9QPCxRMJIdDLI9Wj3BJnw1eFZmMUECrgjwpscVHZYZIcBYMkKLvu4IMJ7cEQrMcrHhyJw5c+TJTZo0CT169JC2R4khA4G1i5WqZXMcx/E9OZQ8GiSglwCvT3pJ+c5PO/+mYGTeOFAwMo+l0pI2YCkYKWgsYyS9QRELLIqFFi13nDuLhKa1cTm6AMJDryBNUELyLgrR6JMdfNIoORnmpECANz0pQGGWRwQYSx5hYyUnBBhPTsAEeHbLli2xevVqeZZiB9s33nhD2h4lNm0EereXVaMTglC5wDkc2ZRe5jFBAkYI8PpkhJZvfLXzbwpG5o0BBSPzWCotaQOWgpGCxjJGp06dlG1bJ0+erGzrapmO9n8X+OxD9915/lVgzDj3fvR44AnwpueBDwHTADCWTEPJhmwEGE8PZhjUqVMHO3bYfvT691i3bh2aNm3qMD37fN+2JtLSGbLu17bX+HtFrMRXq0NlHhMkYIQAr09GaPnGVzv/pmBk3hhQMDKPpdKSNmApGCloLGOIHdFmzZol+2NJwSg+HoiwrVMUFyv76TQRYrsJOnoJCA526sICEhAEeNPDODCLAGPJLJJsRxBgPD2YcVC2bFmcOHFCnvy2bdsgRCSvjkb1gEunZRNT4vtjR5VOWL+IgpGEwoQhArw+GcLlE2ft/JuCkXlDQMHIPJZKS9qApWCkoLGM4ReC0Z07QIWi+plFnQfS83Fr/cAeTE/e9DyY434/zpqxdD+oPrhtMp4ezLHPkycPxOTOcRw+fBgVK1Z0mMY/Y2JsP7YVUuq9kmYlwqpHYslUrnitgKGhmwCvT7pR+cxRO/+mYGTeMFAwMo+l0pI2YCkYKWgsY3Tp0gUzZ86U/TFlkUXZmkkJPmFkEkg2oyXAmx4tDaa9IcBY8oYe6yYlwHhKSiTw7XjbfU5YWBjEp+P4/vvvUaJECYdp/DMuDihbQKnXLN06FGhQAZNHUTBSwNDQTYDXJ92ofOaonX9TMDJvGCgYmcdSaUkbsBSMFDSWMa5evYq//voLQbYFo8X/s2fPjhw5LLh7BtcwskzMBEpHeNMTKCPp+/NgLPl+DAKpB4ynQBpNfedy69YtZMqUSXH++eefkS9fPiXPkJHCE0Z1M2xCtealMawfBSNDLOksCfD6JFFYNqGdf1MwMm+YKBiZx1JpSRuwFIwUNDSMEvh3lzTbP1bnNblLmnM2LElGgDc9yZAww0MCjCUPwbFaigQYTyliCejMX375BXnz5lXOUfyYl1REUhzcGZcvA89VU7zyZT+NgW0yoUt7CkYKGBq6CfD6pBuVzxy1828KRuYNAwUj81gqLWkDloKRgoaGBwRiPtuAkP6dEYwURCMhFk2YBzR41oOWWeVBJMCbngdx1O/POTOW7g/XB7VVxtODN/Jnz55VXj8TT3zHxsba9u/wYgOPPbuBTq9ImNfjMqNInpOY2yMYLZp40a5skYkHkQCvT9Yfde38m4KReeNFwcg8lkpL2oClYKSgoeEBAfEldXzVKuTf/AUePnEQQWLXNLEr2nOtgDfbA8WKe9AqqzyoBHjT86COvPnnzVgyn+mD3CLj6cEb/aioKGWB61y5ckHcQ3t1LFsCjH1PNnE0ujxqha/DuhHBqFWdgpEEw4QhArw+GcLlE2ft/JuCkXlDQMHIPJZKS9qApWCkoKHhAQHlS6pKFaQVbaS1/debX+A86AerBAYBJZ4iI22hZI+owDg5nkWqEmAspSrugP9jjKeAH+JkJ7hjxw7UqVNH5pcpUwYnTpyQtkeJgf2BT5fJqutiXkG7fGOwZ2YIHi9teyqbBwl4QIDXJw+gpXIV7fybgpF58CkYmcdSaUkbsBSMFDQ0PCDALykPoLGKUwKMJ6doWGCQAGPJIDC6uyTAeHKJJyALP/30UzRt2lSeW61atSBEJK+OF2yv6J8/LpsYlTACE3K/jlMrQ5AvDwUjCYYJQwR4fTKEyyfO2vk3BSPzhoCCkXkslZa0AUvBSEFDwwMC/JLyABqrOCXAeHKKhgUGCTCWDAKju0sCjCeXeAKycPHixWjbtq08t+bNm2P16tXSNpyIjgaeLAxoNgppkXYNtmWpiF82h9ofzjbcJiuQgI0Ar0/WDwPt/JuCkXnjRcHIPJZKS9qApWCkoKHhAQF+SXkAjVWcEmA8OUXDAoMEGEsGgdHdJQHGk0s8AVk4ZcoU9OjRQ55bhw4dMHfuXGkbTvx2DagRoVQrlO0YYtJlxc/bw5R8GiRghACvT0Zo+cZXO/+mYGTeGPwfAAD//3Kx8Q0AAEAASURBVOydebxVU//HP3do1kiDRAOZCikZmmhQkSJpJKHkUU9KoQnhVyqSMoSopEEpkUIpScgjQ1EeKUOiHhRSSu74O/tyd2vdc/a+Z62z9r7nnP05fzhrre9a373Xe31ed7U+ztknJTf0Al/GCfz888+oWrVqXt7vvvsOJ5xwgvFrMGFwCPz1119Yv3593oSbNGmCEiVKBGfynKlxAtSTcaSBTUgtBXbpPZk49eQJ1rhOetddd2Hs2LH2PY4YMQLjx4+368qFH74H2p0vDat89DbUqlgcHy4tJrWzQgIqBPj3SYVW0fQVz98//fQTqlSpUjQ3kmRXTaFh5M2KioKlYeQN4yBl5SYVpNX2fq7Uk/eMg3IFaikoK+3PPKknfzjH01X69++Pp59+2r6lhx9+GEOGDLHryoWvvwI6XSgNq1h5By6sk4uXZxaX2lkhARUC/PukQqto+ornbxpG5taAhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuepAxedtllePXVV+25zZ07F1dffbVdVy58/jnQra097HBOGo6t+g36NM3BlHE0jGwwLCgT4N8nZWS+DxDP3zSMzOGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonKYMNGjTAp59+as9t5cqVaNv2iOFjB6ItfPIx0LuT1LviMTsw+qoc3DaIX+eXwLCiRIB/n5RwFUln8fxNw8jcEtAwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxZOUwXLlyuHAgQP23D7++GM0bNjQrisX1r8H3NhNGjYwbTqa3d0GPa+iYSSBYUWJAP8+KeEqks7i+ZuGkbkloGFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKJ+mCf/75J0qXLi3Na8eOHahZs6bUplQJjUeHptKQadlDUX/Gv9GiKQ0jCQwrSgT490kJV5F0Fs/fNIzMLQENI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJF9y1axdq1KghzeuPP/5AmTJlpDalivXjz/XlnMNSH8W/XuqAuifRMFJiyc4SAf59knDEZUU8f9MwMrdENIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJF3QenaR9Qyj/Ffx4sVx+PBhpKSk5Depv+/dC1x4ljTugqPWYuXqE1CuLA0jCQwrSgT490kJV5F0Fs/fNIzMLQENI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJF3zzzTfRpk0be1716tXDli1b7LpWYe1aYOCRX1k7mFMMp1Xbgu0riqFECRpGWkw5KI8A/z7FvxDE8zcNI3PrRcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT9IFFy5ciB49etjzateuHVasWGHXtQq3DgLeWGIP/SCjKQad9hTeWVSahpFNhQUdAvz7pEPN3zHi+ZuGkTn2NIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJF1wwIABeOKJJ+x51a9fH5s3b7bryoUPNwDXdZaGTc0Zgbcad8HCp4+mYSSRYUWVAP8+qRLzv794/qZhZI4/DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SReM9KyiXOuh1TqvzMzQr6O1BnZ9bY/en10SZx79AS5r8jseGluDhpFNhgUdAvz7pEPN3zHi+ZuGkTn2NIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJF2woGHUvHlzrFu3Tm+eLywE7h0qjR2dMgnTjumK2ztsxbBb6tIwkuiwokqAf59UifnfXzx/0zAyx5+GkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56kC9atWxdfffWVPa/ly5ejQ4cOdl2pMGwwsGKxPWRXVjWcUe195KakYvL1n6BXj7NoGNl0WNAhwL9POtT8HSOev2kYmWNPw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVPUgUzMjJQsmRJiF9B++KLL3DqqafqzXPObGDCKHtsTqjUsNz7+K5Edcwfvh6tWp1Hw8imw4IOAf590qHm7xjx/E3DyBx7GkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654kir49ddf46STTpLmdPDgQZQuXVpqi7ryxwGg6ZlAVoY9ZFLOnXis+rWYdecGNGnShIaRTYYFHQL8+6RDzd8x4vmbhpE59jSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8SRVcM2aNWjdOvSQ6n9etWrVwrfffptf1Xu/4Vrggzftsc9m3YxZ9f+Fe/69mYaRTYUFXQL8+6RLzr9x4vmbhpE57jSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8SRVcMaMGejXr589p06dOmHp0qV2XbmQE/oSWuPQ19kOH7SHDk19DD83aYS+Pb6mYWRTYUGXAP8+6ZLzb5x4/qZhZI47DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SRUcOXIkJkyYYM/p9ttvxwMPPGDXlQvbtgGdW0rD6pXfgMva/IH2LXfTMJLIsKJDgH+fdKj5O0Y8f9MwMseehpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuepAp26dIFS5Yssef01FNPoX///nZduTDnudBDr0faw77Pqo4zj30f93XbjPqn7aNhZJNhQZcA/z7pkvNvnHj+pmFkjjsNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJFTz55JOxfft2e05vvPEGLr74YruuXGjdFPhxhz1sUWZv9K8+Fs8O/Q/Klc2kYWSTYUGXAP8+6ZLzb5x4/qZhZI47DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SRM8fPgwSpUqJc1nW+grZXXr1pXaoq789RfQsI7UfWlGd9xWZyKmj3g3r52/kibhYUWDAP8+aUDzeYh4/qZhZA4+DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8SRP873//i3r16tnzSUlJwaFDh1CyZEm7TamQnf33A6//OmQP+zHrGNza8kP07/5eXhsNIxsNC5oE+PdJE5yPw8TzNw0jc+BpGJljKWUSBUvDSELDigYBblIa0DjEkQD15IiGAUUC1JIiMHZ3JUA9ueJJmuBLL72EK6+80p7P2WefjU8++cSuaxX69QHeX20P/TW7LJ648VM0abg+r42GkY2GBU0C/PukCc7HYeL5m4aROfA0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPEkTXDs2LG466677PnceOONmD59ul3XKtz/f8C8J+2h72VchJ8nz0SFo2gY2VBYiIkA/z7FhM+XweL5m4aROeQ0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPEkTbBr165YvHixPZ9HHnkEgwYNsus6hewO7ZG2Y7M9dHLOKLRb0g8//0jDyIbCQkwE+PcpJny+DBbP3zSMzCGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonKYK5ubmoUaMGdu/ebc9n9erVaN26tV1XLhw8iNxzT0EKcu2h3Ustwcy3G2DDBhpGNhQWYiLAv08x4fNlsHj+pmFkDjkNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxJEfzll19wzDHHSHPZuXMnjj/+eKlNqfKf94G+V9lDMnNTcEX9L7FkTjrWr6dhZINhISYC/PsUEz5fBovnbxpG5pDTMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csWTFEHLwGnatKk9l9KlS+PAgQNITU2125QKoU8s4cbrQw+8XmUP+zSjIRb2eRljbs+iYWRTYSFWAvz7FCtB78eL528aRuZ40zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFkxTBmTNnom/fvvZc2rVrhxUrVth15cKboV9GuyX0C2nCa2rOCNSYOBCXtcukYSRwYTE2Avz7FBs/P0aL528aRuaI0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFkxTBIUOGYOrUqfZchg8fjgkTJth1pUJODnDRecAvR56HtDerPM6svB7rniuP44/LoGGkBJSd3Qjw75MbnfiIiedvGkbm1oSGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56kCDZu3BgfffSRPZd58+ahV69edl2p8O03wGXNpSED06bjxWPaYffqdGRm/kXDSKLDSiwE+PcpFnr+jBXP3zSMzDGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15Ion4YN//PEHypYtK81j8+bNqF+/vtQWdWX5MmD4v+zuP2UdjVOP/Rit66Zg8dPpoJ5sNCwYIEA9GYDocQrx/E3DyBxsGkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654Ej64YcMGnHde6Ctk/7zS09Nx8OBBFC9ePL9J7X3KZODph+wxazLao8txT2FUlxTcPiiNhpFNhgUTBPj3yQRFb3OI528aRuZY0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk/DBp59+Gv3797fn0apVK7z55pt2Xbnwf/cCC6bbwxZkXoebq9+LxfekovVFqTSMbDIsmCDAv08mKHqbQzx/0zAyx5qGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56ED950002YPv2IwTN69GiMHTtWf14jbgeWzbfHz8waiGHH3oEvF6WhSuUUGkY2GRZMEODfJxMUvc0hnr9pGJljTcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT8IHTzvtNGzdutWex4svvogrr7zSrisXbrgW+ODIJ5Qey74dT9T5Nz5/LT0vFfWkTJQDXAhQTy5w4iQknr9pGJlbFBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueBI6+Ouvv+Loo4+W5rB9+3acdNJJUlvUlV9+AS48C8jNtYcMTX0M2R07Yer9aXlt1JONhgUDBKgnAxA9TiGev2kYmYNNw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVPQgffeecdtGjRwp5D6dKlsX//fqSl/W3u2IFoC7NmAJPutnv/mZOGE4/ZjClDy6Jb59S8durJxsOCAQLUkwGIHqcQz980jMzBpmFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKJ6GDDz/8MIYOHWrPoWPHjnjllVfsulLB+lRR66bAT9/Zw17K7Ikbqk/AxtlpqFUzJa+derLxsGCAAPVkAKLHKcTzNw0jc7BpGJljKWUSBUvDSELDigYBblIa0DjEkQD15IiGAUUC1JIiMHZ3JUA9ueJJ6GCnTp2wbNkyew4TJ07EHXfcYdeVCtu2AZ1bSkPuwQTMr9ETX65IR8rffhEfei0RYiVWAvz7FCtB78eL528aRuZ40zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk7BBa13Lli2LzMxMew7r1q1D8+bN7bpS4ZOPgd6dpCFLM7rjjSsfxOMTj3zFjXqSELESIwHqKUaAPgwXz980jMwBp2FkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKJ2GDH330ERo3bmzff2pqat7zi8qUKWO3KRV+/DH0lbRG0pBZWQNQctxI9Lzq7+cXWUHqSULESowEqKcYAfowXDx/0zAyB5yGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56EDT766KO45ZZb7Ptv1aoV3nzzTbuuXLh3DPDCM/awrNwUnFvuXSyaXxMn1vnn+2ihKPVkI2LBAAHqyQBEj1OI528aRuZg0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk7DBLl26YMmSJfb9jx07FqNHj7brSoUffgDanw9YD77+57Ug8zqMrHkvvl6ZjtCHl+wX9WSjYMEAAerJAESPU4jnbxpG5mDTMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csWTkMGMjIy85xdZ7/mvNWvWoGVL+aHV+bFC3yc9AMyaanf7KzcVZ1XYgJZNq+CJB488v8jqQD3ZmFgwQIB6MgDR4xTi+ZuGkTnYNIzMsZQyiYKlYSShYUWDADcpDWgc4kiAenJEw4AiAWpJERi7uxKgnlzxJGRw06ZNOPvss+17Twn9hNm+fftQrlw5u02pcFNf4N0V9pB5mX3x7+p34+lbU3HV5cLHi0I9qCcbEwsGCFBPBiB6nEI8f9MwMgebhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuehAw++eSTuPnmm+17t34ZzfqFNO1Xvz7A+6vt4eNz78UDVa7DFwvTUK3qkecXWR2oJxsTCwYIUE8GIHqcQjx/0zAyB5uGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56EDPbs2RMLFiyw7/2ee+7BmDGhh1brvHJygCZnAQd+tUePTpmEt07uivVL0u22/AL1lE+C7yYIUE8mKHqbQzx/0zAyx5qGkTmWUiZRsDSMJDSsaBDgJqUBjUMcCVBPjmgYUCRALSkCY3dXAtSTK56EC2ZlZaFChQo4ePCgfe8rV65E27Zt7bpSYfNnQI9LpCHnHbUOHbvVwp3D5OcXWZ2oJwkVKzESoJ5iBOjDcPH8TcPIHHAaRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrngSLrhlyxacccYZ0n3/8ssvqFSpktQWdeWhB4GZU+zuX2fWwTnV38Ky8alodoH8/CKrE/Vko2LBAAHqyQBEj1OI528aRuZg0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFk3DBZ555BjfeeKN93+eeey4++OADu65UyM0FWl0A/Py9PWxa9lCMOXYwvn89HSVL2s12gXqyUbBggAD1ZACixynE8zcNI3OwaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniSbhgjx49sHDhQvu+R48ejbFjx9p1pcK2bUDnltKQ1qVXoso5p+L5J8KfX2R1pJ4kXKzESIB6ihGgD8PF8zcNI3PAaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniSaigtZblypVDRkaGfd+rVq1CmzZt7LpS4b57gIVP20P+l1UZpx/7IR7ql4obrgl/fpHVkXqycbFggAD1ZACixynE8zcNI3OwaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniSajg+vXr0bRpU/ueU1NTsW/fPpQtW9Zui7pw6BBwQT0g64j59Hj2bbiz2iBsei4NNU9IiZiKeoqIhY2aBKgnTXA+DhPP3zSMzIGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonoYITJkzAyJEj7Xtu3749Xn/9dbuuVFi7Fhh4tT0kOzcFZ1TYgArVqmD9kshfR7M6U082MhYMEKCeDED0OIV4/qZhZA42DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8CRVs0aIF3nnnHfuep0yZgsGDB9t1pcKc54AJR8ynjRnnoNVxL2L0VSm47d+Rv45m5aeelCizcyEEqKdCAMVBWDx/0zAytyA0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPEkTHDv3r2oXLmydL8bN25EgwYNpLaoKw+MB2Y/ZndflnEVrj3uIax7PA1n1Iv8dTSrM/VkI2PBAAHqyQBEj1OI528aRuZg0zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFkzDBV155BZdffrl9vxUqVMCePXuQnu789TG7c6TC4IHA6pftyFPZgzG51lB88Vo6Qo9GcnxRT45oGNAgQD1pQPN5iHj+pmFkDj4NI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzwJE7z11lthfQUt/9W3b18888wz+VW199xcoFM74JvP7XF34wHk9OqBsaOdv45mdaaebGQsGCBAPRmA6HEK8fxNw8gcbBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueBIimBsyeGrVqoWdO3fa9zt//nz07NnTrisVnp8HjL1DGnJdsTno+8RFaH6By8eLQiOoJwkbKzESoJ5iBOjDcPH8TcPIHHAaRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrngSIrh9+3acfPLJ0r1a5tHxxx8vtUVVCT33CL07AtanjP557c8uiQbVPsXWN45C8eL5rZHfqafIXNiqR4B60uPm5yjx/E3DyBx5GkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654EiI4c+ZMWF9By3/Vr18fn332GVJSnB9Ond9Xes/MBC46F9j3s9TcL/1ZlGjfCo9PdP86mjWIepLQsRIjAeopRoA+DBfP3zSMzAGnYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonIYJdu3bF4sWL7XsdNWoUxo0bZ9ejLqx/D7ixm9R9WvZQjK42GIvvSUXri9y/jmYNpJ4kfKzESIB6ihGgD8PF8zcNI3PAaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniifvg/v37UbFiReTk5Nj3unr1arRu3dquR1WwvoJ2/TXAh2vt7t9m1kKjY99CyfRUfBv6dbQSJeyQY4F6ckTDgAYB6kkDms9DxPM3DSNz8GkYmWMpZRIFS8NIQsOKBgFuUhrQOMSRAPXkiIYBRQLUkiIwdnclQD254on74LJly9CpUyf7PouHHjK0b98+lCpVym6LqrAk9AmluwZLXSfnjML/Vb0JN7RIwUP3Ff51NGsw9SQhZCVGAtRTjAB9GC6ev2kYmQNOw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVP3Af/9a9/4amnnrLv87rrrsOsWbPsetSFlhcAPx/5lbW9WeXRqPI72J9eHq+MTy3019Hyr0M95ZPguwkC1JMJit7mEM/fNIzMsaZhZI6llEkULA0jCQ0rGgS4SWlA4xBHAtSTIxoGFAlQS4rA2N2VAPXkiieugxkZGahUqRIOHjxo36f1LKMuXbrY9agLF50H7PnB7j476yYMOXYUyhcDtoe+jlYs9B7Ni3qKhhL7REuAeoqWVNH1E8/fNIzMrQMNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxxHVy7di1atmxp36P1q2h79+7NM5HsxmgLD4wHZj9m9/5fVmWcXu1DDLg4FePujO7raNZg6slGyIIBAtSTAYgepxDP3zSMzMGmYWSOpZRJFCwNIwkNKxoEuElpQOMQRwLUkyMaBhQJUEuKwNjdlQD15IonroNDhw7Fww8/bN9jx44d8corr9h1pcLWrUAX+UHZp5b/CM89WhXnNir819Hyr0U95ZPguwkC1JMJit7mEM/fNIzMsaZhZI6llEkULA0jCQ0rGgS4SWlA4xBHAtSTIxoGFAlQS4rA2N2VAPXkiidug9bX0Y499lj8+uuv9j0+99xz6N27t11XKny6CejVQRrStNqneGfVMUiN3i/iJ4wkgqzESoB/n2Il6P148fxNw8gcbxpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueOI2uG7dOlx44YXS/cVyWMt5/HGkTrvfzrct82QsGbAaI4ZE/3U0azD1ZCNkwQAB6skARI9TiOfvWP4GeXybCZeehpFHSyYKloaRR5ADlJabVIAW24epUk8+QA7IJailgCy0T9OknnwCbfgyw4YNw+TJk+2sHTp0wPLly+26amF/284ot2uDPWxm1kBc+PpInFgnxW6LpkA9RUOJfaIlQD1FS6ro+onnbxpG5taBhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueuAxmZmaievXqeQ+4zr/BZ599Fn369Mmvqr1v3IicazoiFbn2uPtqPI+7V7aw69EWqKdoSbFfNASop2goFW0f8fxNw8jcWtAwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxROXwXfffRfNmzeX7k37oBZ62HVO90uRmvWXnS8jNwUv3/kluvUqY7dFW6CeoiXFftEQoJ6ioVS0fcTzt/bfoaKdQlxenYaRR8siCpaGkUeQA5SWm1SAFtuHqVJPPkAOyCWopYAstE/TpJ58Am3wMrfffjsmTZpkZ7zkkkvw2muv2fWoC9nZwMUh4+mn76Qhs7MHovOGUShXTmqOqkI9RYWJnaIkQD1FCaoIu4nnbxpG5haChpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueuAtmZWXlfR1tz5499r3NmjUL1113nV2PurD+PeDGblL3NRntsbTzNEx9oITUHm2FeoqWFPtFQ4B6ioZS0fYRz980jMytBQ0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPHEXfO+999CsWTPpvv73v/+hWrVqUltUlaG3ACtftLt+lXkSLqj2Ol6aWBLNLki121UK1JMKLfYtjAD1VBihoo+L528aRubWg4aROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnrgLDh8+HA888IB9X+3atcOKFSvsetSFAweAJvWAnNDX0v55jcFEvHBCD3z+ajpS9fwiUE/5NPluggD1ZIKitznE8zcNI3OsaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbniiaug9XW0GjVqwDqU5b9mzpyJ66+/Pr8a/fvroWce3Xaj3d960HXdSp/i1qsrYMjNaXa7aoF6UiXG/m4EqCc3OvERE8/fNIzMrQkNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzxxFXz77bdx0UUXSfe0e/duHHvssVJbVJXHHwWmTbC7rs9ogY7HzcHnC9NQrWqK3a5aoJ5UibG/GwHqyY1OfMTE8zcNI3NrQsPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT1wFb775Zjz55JP2PbVv3x6vv/66XY+6kJOD3MsuRsp3W+0hizJ7Y0WHcZjxsP6ni6xk1JONlAUDBKgnAxA9TiGev2kYmYNNw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVP3AT379+PypUrIyMjw76nBQsWoHv37nY96sKaN4FB10rdb05/Br2nt0OT8zQfXvRPNupJwspKjASopxgB+jBcPH/TMDIHnIaROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnrgJvvDCC5I5VKxYMezduxflypVTu8fQp4vQoTWwc5s97tvMWuh+6lv4z8vFtR92nZ+MesonwXcTBKgnExS9zSGev2kYmWNNw8gcSymTKFgaRhIaVjQIcJPSgMYhjgSoJ0c0DCgSoJYUgbG7KwHqyRVP3AQ7duyI5cuX2/fTv39/PPXUU3Y96sJ/3gf6XiV1H5g2HY3uaI8bront62hWUupJQstKjASopxgB+jBcPH/TMDIHnIaROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnrgI7ty5EzVr1pTu5a233gp7ALbUwakyfiww9wk7+nVmHZxffQ2+eqUYyit+WMlOIhSoJwEGizEToJ5iRuh5AvH8TcPIHG4aRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrnjiIjh+/HiMGjXKvpdq1arBMpGsr6WpvnJbNUXKTzvsYQ/njMSubjdj0r2xf7rISko92WhZMECAejIA0eMU4vmbhpE52DSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8RR50Fof69NF1kEs/2UZSCNGjMivRv/+1Xbg8ouk/m1Kr8CU2fVR//QUqV23Qj3pkuO4SASop0hU4qtNPH/TMDK3NjSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8RR5cOnSV3DFFZdL96H7b9zc24ci5bWFdq69WeXR74JP8fKz6p9UspMUKFBPBYCwGhMB6ikmfL4MFs/fNIzMIadhZI6llEkUrO5mKiVkJdAEuEkFevmNT556Mo40sAmppcAuvScTp548wWos6aWXXorXX3/dzte9e3csWLDArkdd+O475F4a+joacu0hU3NGoP4TA9H6olS7LdYC9RQrQY4XCVBPIo34LIvnbxpG5taIhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueIg1u27YNp5xyinQPq1atQps2baS2Qiu5IZOo77XAB2vsrody0nF5rU+w8tWjkWrOL+IzjGzCLJggwL9PJih6m0M8f9MwMseahpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyueIg1ee+21mDNnjn0PderUwZdffon09HS7LarC2reAgddIXZ/KHoyj7rsNV3cz6BaFrkA9SZhZiZEA9RQjQB+Gi+dvGkbmgNMwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxVNkwT179qBKlSrS9adMmYLBgwdLbYVWQg/NxsXNgF92211/zqqIi6q/j49fK4tSpexmIwXqyQhGJvmHAPUU/1IQz980jMytFw0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPEUWHDp0KB5++GHp+lqHsSmTgacfkvIMSnsSNftfitv+nSa1m6hQTyYoMkc+Aeopn0T8vovnb62/UfE7tSK9MxpGHuEXBUvDyCPIAUrLTSpAi+3DVKknHyAH5BLUUkAW2qdpUk8+gVa4jLUmlStXxoEDB6RRudaziFRe27cBnVsBwriPMs5D++MW4otF6aFrpKhki6ov9RQVJnaKkgD1FCWoIuwmnr9pGJlbCBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueIokaP0KWs+ePaVrb9q0CWeddZbUVmjl5huBda9J3Zoe9RbOb3ciHrrP/KeLrAtRTxJuVmIkQD3FCNCH4eL5m4aROeA0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCeXPH4HszOzkaDBg2wZcsW+9rdunXDwoUL7XrUhfrHhz5dlCN1P+aYr7FhdgnUqWX+00XWhagnCTcrMRKgnmIE6MNw8fxNw8gccBpG5lhKmUTB0jCS0LCiQYCblAY0DnEkQD05omFAkQC1pAiM3V0JUE+ueHwPLl++HB07dpSu+8EHH+Dcc8+V2qKq1DsurNvjZy/CwLlNwtpNNVBPpkgyj0WAeop/HYjnbxpG5taLhpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyseX4M5OTlo1qwZ3n//ffu6bdu2xYoVK5CSoviJoF27gLbhJtM3T32AOs1q2PlNF6gn00SDnY96iv/1F8/fNIzMrRcNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBKgnVzy+BteuXYuWLVtK11yzZk1Ym9TBoZI9fgLS5j4qRWfWfRI3vCx/eknqYKBCPRmAyBQ2AerJRhG3BfH8TcPI3DLRMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csXjW9D6BbRLL70079NE+Rc977zzsH79eqSmpuY3Rff+55/IaFwfxXMP2/1nZ/0LDZfciTPqKX5Syc4QXYF6io4Te0VHgHqKjlNR9hLP3zSMzK0EDSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSoJ1c8vgWt5xSdf/750vWWLl2KTp06SW3RVLLnzEXahOF2V+ux18Mavo+H55xgt3lVoJ68IhvMvNRT/K+7eP6mYWRuvWgYmWMpZRIFS8NIQsOKBgFuUhrQOMSRAPXkiIYBRQLUkiIwdnclQD254vEteMUVV8AyiPJfp512Gj777DOkp6fnN0X3fuAA/mrSCCVyDtr938poh3IvPINGZyt+UsnOEH2BeoqeFXsWToB6KpxRUfcQz980jMytBg0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPL4EP/roIzRu3Fi61oIFC9C9e3epLZpK1v+NQ/qCaVLXe056GWNebhx6cLbU7EmFevIEa2CTUk/xv/Ti+ZuGkbn1omFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKx5dg165dsXjxYvtadevWxZYtW1C8eHG7LarCd98h59KmSEWu3X1VRgccvegpNGzgg1sUuir1ZKNnwQAB6skARI9TiOdvGkbmYNMwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHpyxeN5cNOmTTj77LOl68ybNw+9evWS2qKpZIybiOLzH7G7ZuSmYETj9Zg82/tnF+VflHrKJ8F3EwSoJxMUvc0hnr9pGJljTcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVj+dByxh6/vnn7evUrl0bW7duVf90UehX1g40aISyWT/ZuWZlDcB5S0fh9FP9+XSRdWHqycbPggEC1JMBiB6nEM/fNIzMwaZhZI6llEkULA0jCQ0rGgS4SWlA4xBHAtSTIxoGFAlQS4rA2N2VAPXkisfTYKRnF82ePRvXXnut8nUP/GcLyvZtJ427//zVGDXjNKnN6wr15DXhYOWnnuJ/vcXzNw0jc+uVtIZRSpRP07N+CeKll14yR/SfTKJgaRgZxxu4hNykArfknk6YevIUb6CSU0uBWm7PJ0s9eY7Y8QKR/t38559/omTJko5jIgYOHwYanSiFdmSegOwV7+HEOt7/Mpp4YepJpMFyrASop1gJej9ePH/TMDLHm4YRDSNzamImzwhwk/IMbSATU0+BXHZPJk0teYI1sEmpp6JZ+rFjx+Kuu+6SLm79Kpr162iqr4Pjp6DM3AelYW+dMAwtXx8qtflRoZ78oByca1BP8b/WNIy8WaOkN4zuvPNO9OnTx5FeqVKlcNxxxznGdQOiYPkJI12KHJdPgJtUPgm+myBAPZmgyBwWAWqJOjBJgHoySTP6XJE+XfTDDz+o//s49OmiQ43ORGkclC7+01NvoWqzk6U2PyrUkx+Ug3MN6in+11o8f/MTRubWK+kNo6lTp+KWW24xRyzKTKJgaRhFCY3dHAlwk3JEw4AGAepJAxqHRCRALUXEwkZNAtSTJrgYhn388cc455xzwjLkhh5crfr636OLcOyTQ6RhP5Q6BzU+Wiq1+VWhnvwiHYzrUE/xv87i+ZuGkbn1omFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKx3jQMoU6dOiA119/Xcq9Y8cO1KxZU2orrJKbk4v/ndEC1fGN3fW37KOA97eiYkX/fhnNvnioQD2JNFiOlQD1FCtB78eL528aRuZ40zAyx1LKJAqWhpGEhhUNAtykNKBxiCMB6skRDQOKBKglRWDs7kqAenLFYzy4bt06XHjhhVLekSNH4v7775faoqlsu28BTl44TOr6eueFuGRsM6nNzwr15Cft5L8W9RT/ayyev2kYmVsvGkbmWEqZRMHSMJLQsKJBgJuUBjQOcSRAPTmiYUCRALWkCIzdXQlQT654jAZzcnLQsmVLWKZR/qtevXrYuHEjihUrlt8U1XvWp1uQ3fNSlEjJtvt/n10LVTa9ixIli+bTRdaNUE/2crBggAD1ZACixynE8zcNI3Owk94wOu+882B95Pazzz7L2wBPPPHEvA2yZ8+eaNy4sTmSBTKJgqVhVAAOq8oEuEkpI+MAFwLUkwschpQIUEtKuNi5EALUUyGADIaXLl2KK0K/FCy+rLZOnTqJTe7l73cCUycj9/VFKGgLfdhvARrf2tx9vMdR6sljwAFLTz3F/4KL528aRubWK+kNIzdUffv2xZQpU3DUUaHvWCu+LEG6vfbs2YP69evnddm+fTuOP/54t+6MkYArAWuTsh5Mab0aNWqEEiVKuPZnkATcCFBPbnQYUyFALanQYt/CCFBPhREyEz8c+jWzhg0b4ptvjjxvyPofrGvWrEFaWlpUF0n55GMU698DKTlHPlWUP3BFyX648N1RSE3Nbymad+qpaLgn61Wpp/hfWcskyn/+Gg0jc+uVtIZRmTJlcP311+Oiiy6C9ami0qVL49dff8V//vMfPPDAA/jxxx/zKFr/d2XRokVIT09XohrpJ0idEixevBiVKlVyCrOdBEiABEiABEiABEiABHwhsGTJEjz22GPStaz/gXrmmWdKbW6Vsybdj0o7/hvW5bOMBvjotjtR++TDYTE2kAAJkICXBKyz/lVXXZV3CRpG5kgnrWF04MABlC1bNiIpS0xdunTB2rVr8+LPPfccevfuHbGvUyMNIycybCcBEiABEiABEiABEohHAvv27UOPHj2QkZFh316LFi0wZswYRPtv25TMTDQf2hdpuTl2jj9yiuMZDMN7DS7DgP7f2u0skAAJkIBfBGgYeUM6aQ2jwnDt2rULtWrVQlZWFho0aJD3kL/CxohxfiVNpMGy1wT4MVivCQcrP/UUrPX2crbUkpd0g5ebevJ+zUeNGoXJkyfbF7JMIus5n3Xr1rXbCiukbP4MxfvIzz86tfxH+KXEMfhgVg6OO7awDP7EqSd/OAflKtRT/K80v5LmzRoF1jCycFqfKpo7d24eWcsAqly5sjHK4kO3+NBrY1gDm8japNavX583/yZNmvAZRoFVgpmJU09mODILf4WIGjBLgH+bzPIsmG3btm049dRT834MJj82fPhwTJgwIb8a3fuc2cCEUXbf7Zl1cW711bivVwoG9Y/uGUj2YA8L1JOHcAOYmnqK/0UXz9/8Spq59Qq0YWRtkCNHjsyjuWXLFlg/J2rqJQqWhpEpqsHNw00quGvvxcypJy+oBjMntRTMdfdq1tSTV2SRZxJZX0V74YUX7ItYz/u0/o169NFH223RFDLuHYviLzxhd12WcRXGnPYQ3l+UHvofWnZzkReopyJfgqS6Aeop/pdTPH/TMDK3XoE2jCZOnIgRI0bk0aRhZE5UzGSeADcp80yDnJF6CvLqm507tWSWZ9CzUU/eKeCdd96B9awi8WU9+HrgwIFiU+Hl0POLfm94Hsrn/GT3nZ31L9SeORotmhbxz6LZd/R3gXoqAITVmAhQTzHh82UwDSNvMAfaMLr22msxZ86cPLKmXUhRsPyEkTfiDVJWblJBWm3v50o9ec84KFegloKy0v7Mk3ryhrP1vM6mTZtiw4YN9gVOOukkbN68GSVLlrTboin8/NBzqDLz70/n5/efdvocDFjUKr8aN+/UU9wsRVLcCPUU/8sonr9Nn+3jf/be3WFgDSProde1a9dGZuj/lJx11lnYtGmTUcqiYGkYGUUbyGTcpAK57J5NmnryDG3gElNLgVtyTydMPXmD99lnn8X1118vJX/55aW4/PJOUlthlZx9v+Nwk4YonXLY7rolswEqrV2G6tXj69NF1g1ST/YysWCAAPVkAKLHKcTzNw0jc7CT0jBau3YtmjdvjrS0yA/es35yr0uXLrD6Wa9Zs2bhuuuuyyub+o8oWBpGpqgGNw83qeCuvRczp568oBrMnNRSMNfdq1lTT+bJ7t27F9aniX7//Xc7ecuWLbF69WqkpqqZPF/1GYuTPjry7CIr4ZKur+LKexrYueOpQD3F02ok/r1QT/G/huL5m4aRufVKSsPo9NNPz/u/CtZXzho3bowax9VAiZIl8Ntvv+H999/HpEmTsHv37jyKHTt2xOLFi1G8eHFzVEOZRMHSMDKKNpDJuEkFctk9mzT15BnawCWmlgK35J5OmHoyj/fWW2/FlClTpMSfbvoUZ551ptRWWOW3tZtQfmAHiBbT2tzOaLLpsdC/oQsbXTRx6qlouCfrVamn+F9Z8fxNw8jceiWtYfTFF18USql///555lHZsmUL7avaQRQsDSNVeuxfkAA3qYJEWI+FAPUUCz2OFQlQSyINlmMlQD3FSlAev3HjRjRs2FBqHDZsWN6/faXGQiq5X3+NPzu1RWkc+SqaNWTTuHfQ4Io6hYwuujD1VHTsk/HK1FP8r6p4/qZhZG69ktIw+uijj/Cf//wn79NEW7duhfW8IusjuRUrVsQpp5yCCy+8EN27dVf+vysq2EXB0jBSIce+kQhwk4pEhW26BKgnXXIcV5AAtVSQCOuxEKCeYqEnj83Ozob11TPr19HyX5UqVcL27dthvUf9Cj0w+1CzFih94DtpyIdV+6DxmvultnirUE/xtiKJfT/UU/yvn3j+pmFkbr2S0jAyh0c/kyhYGkb6HDnybwLcpKgEkwSoJ5M0g52LWgr2+puePfVkjui8efNwzTXXSAmfe+459O7dW2orrHJoyWsofdeNUrf1WW1Q7/0ZKF8pXWqPtwr1FG8rktj3Qz3F//qJ528aRubWi4aROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnqiD1o+7WJ+otz5dn/9q0qQJ1q1b5/iDMPn9pPfcXPx4dhtUy9xqN2/NOBXfT12Giy8tbbfFa4F6iteVScz7op7if93E8zcNI3PrRcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT9RB61NEc+fOlfpbj2to1KiR1FZY5ctZ7+GUSd2kbk+eOhs3LW6DlBSpOS4r1FNcLkvC3hT1FP9LJ56/aRiZWy8aRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCVBPrniiCk6ePBnWg63F16BBg/DII4+ITe7l0CeL/nplJf4aMQjlUg/Zfb/LqomSb7+LqtXE30qzw3FXoJ7ibkkS+oaop/hfPvH8TcPI3HrRMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csVTaNB60HV6evhzhax/k1auXLnQ8XkdfvkFGDMaeGtZWP8PO0xF4weuCmuP1wbqKV5XJjHvi3qK/3UTz980jMytFw0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPIUGZ8yYgX79+kn9ateujW+++UZqc6wcOAB0bAPs+SGsyw7UwwmfLEdqieJhsXhtoJ7idWUS876op/hfN/H8TcPI3HrRMDLHUsokCpaGkYSGFQ0C3KQ0oHGIIwHqyRENA4oEqCVFYOzuSoB6csXjGty9ezfq1q2LQ4eOfIXMGvD777+jXLlyrmPt4KNTgCcftKv5hdVZnXD60vtR/dSK+U0J8U49JcQyJcxNUk/xv1Ti+ZuGkbn1omFkjqWUSRQsDSMJDSsaBLhJaUDjEEcC1JMjGgYUCVBLisDY3ZUA9eSKxzGYG3rmkPWg63nz5kl93n33XTRt2lRqc6yEcuCi84C9u+wuWbkpGFTsabS6tx26XpEYzy2ybz5UoJ5EGizHSoB6ipWg9+PF8zcNI3O8aRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2dyVAPbnicQyuWLECl1xyiRQfNWoUxo0bJ7W5VrZvA65oKXXpXuIFlGh6PmY/kpYQv4om3XyoQj0VJMJ6LASop1jo+TNWPH/TMDLHnIaROZZSJlGwNIwkNKxoEOAmpQGNQxwJUE+OaBhQJEAtKQJjd1cC1JMrnojB/fv344wzzsDOnTvteK1atfDZZ5+hbNmydlthhYOPzkCZJ++2u+3Kqoomx3+Ajxako/IxKXZ7IhWop0Rarfi/V+op/tdIPH/TMDK3XjSMzLGUMomCpWEkoWFFgwA3KQ1oHOJIgHpyRMOAIgFqSREYu7sSoJ5c8UQMjhw5EhMmTJBi1ieO2rVrJ7W5VXJygG0Ne+DUzHfsbgsyr0P5x/8Pl1yceF9Fy58E9ZRPgu8mCFBPJih6m0M8f9MwMseahpE5llImUbA0jCQ0rGgQ4CalAY1DHAlQT45oGFAkQC0pAmN3VwLUkyuesODHH3+Mc845R2rv06cPZs2aFfoKWfSfCpr/9G+46uEzUDwl9Byjf14zzpqNvvNDv5iWwC/qKYEXLw5vnXqKw0UpcEvi+ZuGUQE4MVRpGMUAz22oKFgaRm6kGIuGADepaCixT7QEqKdoSbFfYQSopcIIMa5CgHqKnpbF6oILLsDGjRvtQWXKlMFXX32FatWq2W2FFb7YkoGDnXvhnOLv212zQw+7PvjmVpQ79ii7LREL1FMirlr83jP1FL9rk39n4vmbhlE+ldjfaRjFzjBiBlGwNIwiImKjAgFuUgqw2LVQAtRToYjYIUoC1FKUoNgtKgLUU1SY8jpNnDgRI0aMkAY8++yzsD5hFO3r0MFcvHP+CLTLmSsN+bV+B1RaOF1qS8QK9ZSIqxa/90w9xe/a5N+ZeP6mYZRPJfZ3GkaxM4yYQRQsDaOIiNioQICblAIsdi2UAPV5a4vvAABAAElEQVRUKCJ2iJIAtRQlKHaLigD1FBUmfP755zjzzDORYz186J+X9cyi1157Damp0T9z6NXLZ6DDV0cedG2l+iO1Eo5aswaoXDk/dcK+U08Ju3RxeePUU1wui3RT4vmbhpGEJqYKDaOY8DkPFgVLw8iZEyPREeAmFR0n9oqOAPUUHSf2KpwAtVQ4I/aIngD1VDirzMxMtGzZEu+9957duVixYti6dSvq1KljtxVW2DBxDc55rjdEeykjNw2pL6xEev3TChueEHHqKSGWKWFuknqK/6USz980jMytFw0jcyylTKJgaRhJaFjRIMBNSgMahzgSoJ4c0TCgSIBaUgTG7q4EqCdXPHnBRx99FLfccovU8fHHH8eAAQOkNrfKro0/okKv81EmNVPq9us9s1Gpa2I/6FqcEPUk0mA5VgLUU6wEvR8vnr9pGJnjTcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysB6skVT94DrU877TRkZWXZHVu0aIE333wT6enpdptbIeOvXGw+5wY0ynlD6ra9/d2o+9BNUluiV6inRF/B+Lp/6im+1iPS3YjnbxpGkQjptdEw0uNW6ChRsDSMCsXFDoUQ4CZVCCCGlQhQT0q42NmFALXkAochZQLUkzOy7OxsXHLJJVi1apXdyXpe0ZYtW2CZSNG+Fly/Aj029JW6bz6mC85YOxVISZHaE71CPSX6CsbX/VNP8bUeke5GPH/TMIpESK+NhpEet0JHiYKlYVQoLnYohAA3qUIAMaxEgHpSwsXOLgSoJRc4DCkToJ6ckc2YMQP9+vWTOkyaNAnDhg2T2twq6x75BGdPuwpl0/6yu+3LKYeS6z5Aycrl7LZkKVBPybKS8TEP6ik+1sHtLsTzNw0jN1JqMRpGaryi7i0KloZR1NjY0YEANykHMGzWIkA9aWHjoAgEqKUIUNikTYB6iozO+ndkrVq1pGDjxo3x7rvvonjx4lK7U+X7eW+jyrhrUCLlyC+rWX1/Gj4TVa9t5zQsodupp4Revri7eeop7pYk7IbE8zcNozA82g00jLTRuQ8UBUvDyJ0Vo4UT4CZVOCP2iJ4A9RQ9K/Z0J0AtufNhVI0A9RTOy/oqWsHnE6WEvjq2ceNGnHXWWeEDIrT8sWk7SvVqibSUXCn608mXoeqSJ5Puq2j5k6Se8knw3QQB6skERW9ziOdvGkbmWNMwMsdSyiQKloaRhIYVDQLcpDSgcYgjAerJEQ0DigSoJUVg7O5KgHoKx9OyZUusXbtWCtx77724++67pTanSk7oA0X/O7M1jsvdKnX5qlJ7nLR6GlCihNSeTBXqKZlWs+jnQj0V/RoUdgfi+ZuGUWG0oo/TMIqelVJPUbA0jJTQsXMEAtykIkBhkzYB6kkbHQcWIEAtFQDCakwEqCcZ37fffos6derIjaHawYMHUbp06bD2sIY//8TnvSag3rZnwkKZH+9EsZJpYe3J1EA9JdNqFv1cqKeiX4PC7kA8f9MwKoxW9HEaRtGzUuopCpaGkRI6do5AgJtUBChs0iZAPWmj48ACBKilAkBYjYkA9XQEX1ZWFtq1a4c1a9YcaQyVevTogeeff15qi1j54Xsc6todpfd/FxY+3LonSj4yKaw92Rqop2Rb0aKdD/VUtPyjubp4/qZhFA2x6PrQMIqOk3IvUbA0jJTxcUABAtykCgBhNSYC1FNM+DhYIEAtCTBYjJkA9XQE4dSpUzFkyJAjDaFSt27dsHDhQqktYuWXX5DZsT2K/b47LLy/bkuUmxt6btFRR4XFkq2Bekq2FS3a+VBPRcs/mquL528aRtEQi64PDaPoOCn3EgVLw0gZHwcUIMBNqgAQVmMiQD3FhI+DBQLUkgCDxZgJUE9/I9y8eTMaNGiAHOsBRP+8zj33XKxbty70yKFCnjl06BCyu16JtB2b84fmvR/OScPGVuNxwWO9kvYh19KEQxXqqSAR1mMhQD3FQs+fseL5m4aROeY0jMyxlDKJgqVhJKFhRYMANykNaBziSIB6ckTDgCIBakkRGLu7EqCegD9Dzx1q2rRp3q+g5cNKS0uDZSKddtpp+U2R3zMzkXPj9Uj98C0pvj2zLl5oPROjptVB6AfWAvOingKz1L5MlHryBXNMFxHP3zSMYkIpDaZhJOEwVxEFS8PIHNegZuImFdSV92be1JM3XIOYlVoK4qp7N2fqCRg9ejTuv/9+CfLjjz+OAQMGSG1SZf9+4LlZwIuhZxv9/L0U+iHrWNxxxmuYObcKSpaUQklfoZ6Sfol9nSD15CturYuJ528aRloIIw6iYRQRS+yNomBpGMXOM+gZuEkFXQFm5089meUZ5GzUUpBX3/zcg64n6wHXrVu3lsC2b98ey5cvh/Upo4iv0KeKcGkrYPc3YeHfssugT7WVmLGoFipXDtBHi/4hEXQ9hQmCDTERoJ5iwufLYPH8TcPIHHIaRuZYSplEwdIwktCwokGAm5QGNA5xJEA9OaJhQJEAtaQIjN1dCQRZT9a/G88880xYh5z8V+nSpfHFF1/ghBNOyG8Kf1+7Fhh4dVj7n6FnFvU4ahnGzT4T9U8PnllkAQmynsIEwYaYCVBPMSP0PIF4/qZhZA43DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSCqifr4dZdu3bFkiVLJD4vvvgirrzySqktrDJ6BPDyHKl5R2ZNDCr7KG4efzYubZsqxYJUCaqegrTGfs6VevKTtt61xPM3DSM9hpFG0TCKRMVAmyhYGkYGgAY8BTepgAvA8PSpJ8NAA5yOWgrw4nsw9aDq6Yknngh7RtG//vUvTJs2LfSQapdPB4WMppzG9ZB6OPQMo39eyzO6oPdxD+GurqkYOtDha2z5nZP8Pah6SvJlLbLpUU9Fhj7qC4vnbxpGUWMrtCMNo0IR6XUQBUvDSI8hRx0hwE3qCAuWYidAPcXOkBn+JkAtUQkmCQRRT+vXr0ezZs2Qm5trozzllFOwYcMGlCtXzm6LVMhYtRbFh8hfRzu77Ho0alID0yelITW4Hy7KwxVEPUXSCdvMEKCezHD0Mot4/qZhZI40DSNzLKVMomBpGEloWNEgwE1KAxqHOBKgnhzRMKBIgFpSBMburgSCpqddu3bh7LPPxp49e2wuqSGXxzKLGjVqZLdFKuS8uAQ5d92C9JQjRtNXmSdhQOM3sfSZdJQqFWlUsNqCpqdgra7/s6We/GeuekXx/E3DSJWec38aRs5sYoqIgqVhFBNKDg4R4CZFGZgkQD2ZpBnsXNRSsNff9OyDpKfDhw/D+gW0t99+W8I4ffp03HjjjVKbVMnORu4DE5Ayd5rUbFWmlxiDLqtvxNGVXL7GFjYqeRuCpKfkXcX4mRn1FD9r4XQn4vmbhpETJfV2GkbqzKIaIQqWhlFUyNjJhQA3KRc4DCkToJ6UkXGAAwFqyQEMm7UIBEVP1tfPhg0bhocfflji1L9/fzz55JPuzy2K8JBrK8n7Wa1w7GszUevEYlLOIFeCoqcgr7Gfc6ee/KStdy3x/E3DSI9hpFE0jCJRMdAmCpaGkQGgAU/BTSrgAjA8ferJMNAAp6OWArz4Hkw9KHp6/vnn0atXL4lg48aNsXbtWpQuXVpqlyrbtgGdW0pNVmV29kCc+fwdoa+3pYfFgtwQFD0FeY39nDv15CdtvWuJ528aRnoMI42iYRSJioE2UbA0jAwADXgKblIBF4Dh6VNPhoEGOB21FODF92DqQdDThx9+iAsuuADZoa+W5b/Kly+PTZs2oVatWvlNEd9/GPoQaqycbMcyclMwMu0RtJt6Bdq2CvgTrm0qRwpB0NOR2bLkNQHqyWvCsecXz980jGLnmZ+BhlE+CcPvomBpGBmGG8B03KQCuOgeTpl68hBuwFJTSwFbcI+nm+x62rFjB6xPEu3du1ciuWrVKrRp00ZqK1jZOWUJqk2/BcWFh1w/kzUIaXffjuuvTivYnfUQgWTXExfZXwLUk7+8da4mnr9pGOkQjDyGhlFkLjG3ioKlYRQzzsAn4CYVeAkYBUA9GcUZ6GTUUqCX3/jkk1lP+/btQ4sWLbB582aJ24MPPojbbrtNapMqWVn47Y5xqLhyutRsVWZeugLXP3BG6JlHYSE2hAgks564wP4ToJ78Z656RfH8TcNIlZ5zfxpGzmxiioiCpWEUE0oODhHgJkUZmCRAPZmkGexc1FKw19/07JNVTxkZGejSpQuWL18uIevbty+sX0VLTXX4Otlvv+HwDTei5Lb3pXFW5ZOje6DB2odCY8NCbPiHQLLqiQtcNASop6LhrnJV8fxNw0iFnHtfGkbufLSjomBpGGlj5MB/CHCTohRMEqCeTNIMdi5qKdjrb3r2yagn6xfRBg8ejEcffVTC1apVqzwDqVSpUlK7XfnuO2T3ugpp+3bbTfmFNccMQIs3RiC9BL+Kls8k0nsy6inSPNnmDwHqyR/OsVxFPH/TMIqFpDyWhpHMw1hNFCwNI2NYA5uIm1Rgl96TiVNPnmANZFJqKZDL7tmkk1FPU6dOxZAhQyRmp5xyCt59910cc8wxUrtd2bgROTd0Q2rGIbvJKvyVm4pZJzyGG165HMWLSyFWIhBIRj1FmCabfCJAPfkEOobLiOdvGkYxgCwwlIZRASCmqqJgaRiZohrcPNykgrv2XsycevKCajBzUkvBXHevZp1senr55ZfRuXNnCZf1i2jWL6XVrVtXas+r5OQAc2Yj98G7kZIbKguvH7OOwcST52HcwvooXVoIsOhIINn05DhRBnwhQD35gjmmi4jnbxpGMaGUBtMwknCYq4iCpWFkjmtQM3GTCurKezNv6skbrkHMSi0FcdW9m3My6entt9+G9bWzHMsE+udlPavIam/WrFl+k/x++1DgtYVyW6j234x6GH3qHMyaWxUVyoeF2eBAIJn05DBFNvtIgHryEbbmpcTzNw0jTYgRhtEwigDFRJMoWBpGJogGOwc3qWCvv+nZU0+miQY3H7UU3LX3YubJoqdPP/0U559/Pg4fPixhmj9/Pnr27Cm12ZUffgDanWdX8wtrMy7GqJMew8vPlUGVyvw5tHwu0bwni56imSv7eE+AevKecaxXEM/fNIxipXlkPA2jIyyMlkTB0jAyijaQybhJBXLZPZs09eQZ2sAlppYCt+SeTjgZ9PT111/jggsuwJ49eyRWEyZMwPDhw6U2u7JvH3I6XozUX+UHXE/PugWP1R6C12YUR43jaBbZvKIsJIOeopwqu/lAgHryAXKMlxDP3zSMYoQpDKdhJMAwWRQFS8PIJNlg5uImFcx192rW1JNXZIOXl1oK3pp7OeNE19OPP/6I5s2b46uvvpIwDR06FJMmTUJKSgHTJ/QLalj6MnLuG47Uvw5KY7ZmnIrOJ63EG0+n4fgaBcZJPVlxIpDoenKaF9uLhgD1VDTcVa4qnr9pGKmQc+9Lw8idj3ZUFCwNI22MHPgPAW5SlIJJAtSTSZrBzkUtBXv9Tc8+kfW0L/QpobZt2+Y90Frk0rt3b8ycORPp6eli89/lO0cCLz0X3h5qubfk47ju5ctR83iaRREBRdGYyHqKYnrs4jMB6sln4BqXE8/fNIw0ADoMoWHkACbWZlGwNIxipcnx3KSoAZMEqCeTNIOdi1oK9vqbnn2i6mn//v244oor8NZbb0lILrnkEixZsgQlS5aU2vMqu0NfP7u4cVj7wZxieLzk/ei+tCdqnkCzKAyQQkOi6klhiuzqIwHqyUfYmpcSz980jDQhRhhGwygCFBNNomBpGJkgGuwc3KSCvf6mZ089mSYa3HzUUnDX3ouZJ6KeDhw4gCuvvBKrV6+WkJx77rlYtWoVypUrJ7XnVUIPw86+/FKk/fClFFuZ0Qnja4zBrGeronZNmkUSHI1KIupJY5oc4hMB6skn0DFcRjx/0zCKAWSBoTSMCgAxVRUFS8PIFNXg5uEmFdy192Lm1JMXVIOZk1oK5rp7NetE09Mff/yBLl264I033pCQnHLKKXj77bdRtWpVqT2vEnrOUdb1fZC+c4sUO5STjrNO+Born0pDnVo0iyQ4mpVE05PmNDnMJwLUk0+gY7iMeP6mYRQDyAJDaRgVAGKqKgqWhpEpqsHNw00quGvvxcypJy+oBjMntRTMdfdq1omkp71796Jy5cphKOrUqYO1a9fi+OOPD4th4yfI6Xc1Ug/vl2KWWTSg4ku4a97ZOLE2zSIJTgyVRNJTDNPkUJ8IUE8+gY7hMuL5m4ZRDCALDKVhVACIqaooWBpGpqgGNw83qeCuvRczp568oBrMnNRSMNfdq1knip6+//57nHDCCWEYateunfcco5o1a4bF8NqryL3jJoT+4S3F9meXxK2VF+Pu+Q34gGuJTOyVRNFT7DNlBj8IUE9+UI7tGuL5m4ZRbCzF0TSMRBoGy6JgaRgZBBvQVNykArrwHk2bevIIbADTUksBXHQPp5wIerJ+Da1ixYoRKXz77beoVatWeOzXX5FzYUOk5mRKsR2ZJ2BUzTl4aM6JOLYaP1kkwTFQSQQ9GZgmU/hEgHryCXQMlxHP3zSMYgBZYCgNowJATFVFwdIwMkU1uHm4SQV37b2YOfXkBdVg5qSWgrnuXs063vX0a8j4OfrooyNOf8uWLahXr17E2LcvfIDa914pxaxPFvU69WM8O6M8jjmaZpEEx1Al3vVkaJpM4xMB6skn0DFcRjx/0zCKAWSBoTSMCgAxVRUFS8PIFNXg5uEmFdy192Lm1JMXVIOZk1oK5rp7Net41pP177rLLrsMH374Ydj0x48fjxEjRoS1IycH3901A8e/fA9SC0QXlxmGNquGokL5AgFWjRGIZz0ZmyQT+UaAevINtfaFxPM3DSNtjGEDaRiFITHTIAqWhpEZpkHOwk0qyKtvfu7Uk3mmQc1ILQV15b2Zd7zqadeuXWjfvj2sTxEVfE2ZMgWDBw8u2Azs34+feg5B1R0rw2OhlsN3P46S3a+IGGOjGQLxqiczs2MWvwlQT34TV7+eeP6mYaTOz2kEDSMnMjG2i4KlYRQjTA4HNymKwCQB6skkzWDnopaCvf6mZx+Pevpux3doc3EbfPXVV9J0K1WqhE8//RQ1atSQ2q1K7n//iz969UbZzB/DYlm5Kci9bgiK3TYUSC34uaOw7myIgUA86imG6XBoEROgnop4AaK4vHj+pmEUBbAou9AwihKUajdRsDSMVOmxf0EC3KQKEmE9FgLUUyz0OFYkQC2JNFiOlUC86Wn79u1o3bo1rF9FE1/nnHMOXn31VVSpUkVszivnLH0FOaMGIB3yr6HlhKIfVO2Hc+YMQLHjqoaNY4N5AvGmJ/MzZEY/CVBPftLWu5Z4/qZhpMcw0igaRpGoGGgTBUvDyADQgKfgJhVwARiePvVkGGiA01FLAV58D6YeT3ratGkT2rZtiz179kgzbd68OV5++WVYnzAq+Mqc+zyKjb+tYDN+zT4Kb146C10mNeGHisLoeNcQT3rybpbM7BcB6skv0vrXEc/fNIz0ORYcScOoIBFDdVGwNIwMQQ1wGm5SAV58D6ZOPXkANaApqaWALrxH044XPa1duxbt2rVDRkaGNFPLQFq0aBHKlSsntVuVP5+YhVKP3RnWvjHjHHxz+1Po0r9aWIwN3hKIFz15O0tm94sA9eQXaf3riOdvGkb6HAuOpGFUkIihuihYGkaGoAY4DTepAC++B1OnnjyAGtCU1FJAF96jaceDnhYvXozu3buHfuDM+hLZkdfll1+O+fPno3Tp0kca/yn9dv80VJw3Lqx9bvZNqPLIiNAnlYqHxdjgPYF40JP3s+QV/CJAPflFWv864vmbhpE+x4IjaRgVJGKoLgqWhpEhqAFOw00qwIvvwdSpJw+gBjQltRTQhfdo2kWpp9zcXEybNg3//ve/w2bXp08fPPnkkyhZsmRYbOeYGThh8d1h7dMwCufOvRnnnM0HW4fB8amhKPXk0xR5GR8JUE8+wta8lHj+pmGkCTHCMBpGEaCYaBIFS8PIBNFg5+AmFez1Nz176sk00eDmo5aCu/ZezLyo9GR9mmjMmDEYO3Zs2LRuv/12jB8/HmlpaX/HrE8ePfQAsOo1YNfXYf2thseK/R/avXg96p6YEjHORn8IFJWe/Jkdr+I3AerJb+Lq1xPP3zSM1Pk5jaBh5EQmxnZRsDSMYoTJ4eAmRRGYJEA9maQZ7FzUUrDX3/Tsi0JP1nOKrE8VPf3002HTmTx5MoYMGYKUFMH4mT8XGDc8rG9+wzNHT8TlS65G5WOEMflBvvtKoCj05OsEeTFfCVBPvuLWuph4/qZhpIUw4iAaRhGxxN4oCpaGUew8g56Bm1TQFWB2/tSTWZ5BzkYtBXn1zc/dbz0dOHAAvXv3xtKlS6XJWAbRnDlzcPXVV0vtoQcbIeei0C+d/fK93P5PbWnt0CeLFt8Q+upaxDAbfSbgt558nh4v5zMB6sln4BqXE8/fNIw0ADoMoWHkACbWZlGwNIxipcnx3KSoAZMEqCeTNIOdi1oK9vqbnr2ferL+nda5c2esX79emkaxYsWwbNmyvF9JkwLZ2Tg4YBjKvLtIas6vfHjmHWg0bzBS+ciifCRF/u6nnop8srwBzwlQT54jjvkC4vmbhlHMOO0ENIxsFGYLomBpGJllG8Rs3KSCuOrezZl68o5t0DJTS0FbcW/n65eevv32W1xyySX48ssvpQlVqFABb7zxBho3biy1448/8GuPm1Dp27Vye6i2J6sC9nS6Hac/0Aeh766FxdlQdAT80lPRzZBX9pMA9eQnbb1riedvGkZ6DCONomEUiYqBNlGwNIwMAA14Cm5SAReA4elTT4aBBjgdtRTgxfdg6n7o6bNPP0Pbdm1hHSbEV61atbBy5UqcfPLJYjNyfvwJv13WA0f/uU1qtyoTiz2IdnN6osEZNIrC4MRBgx96ioNp8hZ8IkA9+QQ6hsuI528aRjGALDCUhlEBIKaqomBpGJmiGtw83KSCu/ZezJx68oJqMHNSS8Fcd69m7bWe3n77bbRv3x6HDx+WptCwYcO8r6FVr15daj/0yRfIvKYryqf8JrVblT05VZC5/F1UP7FMWIwN8UHAaz3Fxyx5F34RoJ78Iq1/HfH8TcNIn2PBkTSMChIxVBcFS8PIENQAp+EmFeDF92Dq1JMHUAOakloK6MJ7NG0v9bRgwQL07Nkz7M7btm0LK1axYkUptvuFdah4T2+USsmS2q3K52U74MTZo1DylFphMTbEDwEv9RQ/s+Sd+EWAevKLtP51xPM3DSN9jgVH0jAqSMRQXRQsDSNDUAOchptUgBffg6lTTx5ADWhKaimgC+/RtL3QU25uLipVqoR9+/aF3bX1K2hPP/00SpUqJcU23/Mi6i26BQWfX/1tZi1sHLIAnW8+no8rkojFZ8ULPcXnTHlXfhCgnvygHNs1xPM3DaPYWIqjaRiJNAyWRcHSMDIINqCpuEkFdOE9mjb15BHYAKallgK46B5O2bSerK+e9evXD/PmzQu766FDh2LixIlIT0+3Y3/9BbxxwyJ03DTEbssvbMo6H7kzZuLsZuXzm/ge5wRM6ynOp8vb85gA9eQxYAPpxfM3DSMDQP9JQcPIHEspkyhYGkYSGlY0CHCT0oDGIY4EqCdHNAwoEqCWFIGxuysBk3qy/h1mfQVtzZo1YdccN24cRo4cGfqU0JGHVX+3MxcvXf0Shvw6KKz/u8W74uTlD6DKccXDYmyIXwIm9RS/s+Sd+UWAevKLtP51xPM3DSN9jgVH0jAqSMRQXRQsDSNDUAOchptUgBffg6lTTx5ADWhKaimgC+/RtE3p6bPPPsPll1+OHTt2hN1py5Ytw0yk5StyMGbsz1j/a2OUSMmRxrxTawjOW3Ibipc4Yi5JHViJWwKm9BS3E+SN+UqAevIVt9bFxPM3DSMthBEH0TCKiCX2RlGwNIxi5xn0DNykgq4As/OnnszyDHI2ainIq29+7ib09Morr6Br167IyMiQbjAtLQ0rVqxAmzZt7Hbrx9LGTMzG9Ldy8czuUehSTP7q2rYWd+DkabeADyyykSVUwYSeEmrCvFlPCVBPnuI1klw8f9MwMoI0LwkNI3MspUyiYGkYSWhY0SDATUoDGoc4EqCeHNEwoEiAWlIExu6uBGLRU05ODh588EGMGDEi7BoNGjTAkiVLULt2bTv29be56HN7Nnb+uB8Tf56MnsVm2TGr8EeTLjhq+lSaRRKVxKrEoqfEminv1g8C1JMflGO7hnj+pmEUG0txNA0jkYbBsihYGkYGwQY0FTepgC68R9OmnjwCG8C01FIAF93DKevq6Y8//sDNN9+MuXPnht1dt27d8n4JrVy5cnmxkK+E+YtyMPSJbPTduwTDs+5EhbRDYeOwcAVQ/4zwdrYkDAFdPSXMBHmjvhKgnnzFrXUx8fxNw0gLYcRBNIwiYom9URQsDaPYeQY9AzepoCvA7PypJ7M8g5yNWgry6pufu46evv/+e1x11VXYsGFD2A3dc889uPPOO2F9Hc167dmTi8FjsvHrhs8x6ffhqF98c9iYvIbzWgEznuOniyLTSZhWHT0lzOR4o74ToJ58R658QfH8TcNIGZ/jABpGjmhiC4iCpWEUG0uOBrhJUQUmCVBPJmkGOxe1FOz1Nz17VT198MEH6NixY8gI2iPdSnp6OubPn5/3LKP8wBtrcjBo7GHc88P9YV8/y++D1HRg8Gigz/VAsWJ2MwuJSUBVT4k5S961XwSoJ79I619HPH/TMNLnWHAkDaOCRAzVRcHSMDIENcBpuEkFePE9mDr15AHUgKaklgK68B5NO1o95ebm5hlC1157LaxnF4mv6tWrY9myZWjYsGFe8x8H/36w9Stv7sXin/vhrOKfiN2PlNtcAYy8C6hW7UgbSwlNIFo9JfQkefO+EaCefEOtfSHx/E3DSBtj2EAaRmFIzDSIgqVhZIZpkLNwkwry6pufO/VknmlQM1JLQV15b+YdjZ4OHTqEUaNGYerU0AOpC7yaN2+OBQsWwDKNrNcnm3Jx/Z3ZOPqnLzF/fy9US99bYESoWr0OMPZB4Lzzw2NsSWgC0egpoSfIm/eVAPXkK26ti4nnbxpGWggjDqJhFBFL7I2iYGkYxc4z6Bm4SQVdAWbnTz2Z5RnkbNRSkFff/NwL09M333yDnj17RnxeUb9+/fJMpNKlS+PPP4EHH8vGI8szMWDvixiZMxKlUrOlG85NS0fK0DHA1b359TOJTPJUCtNT8syUM/GDAPXkB+XYriGev2kYxcZSHE3DSKRhsCwKloaRQbABTcVNKqAL79G0qSePwAYwLbUUwEX3cMpuelq69BX06tUT1ieMCr6mTJmCQYMGITU1FR98mIOb781G852v4/a/7kON9P8V7I7cStWQMmsBcFLdsBgbkoeAm56SZ5aciV8EqCe/SOtfRzx/0zDS51hwJA2jgkQM1UXB0jAyBDXAabhJBXjxPZg69eQB1ICmpJYCuvAeTTuSniyDaPTo0bBMoYKvChUq4IUXXsDFF18M61lFkyf+jgovzEb33GdQNf2Xgt3/rp8R+urZk88AFSpGjrM1aQhE0lPSTI4T8Z0A9eQ7cuULiudvGkbK+BwH0DByRBNbQBQsDaPYWHI0fyWNGjBLgP/oMcszyNmopSCvvvm5F9TTjh07Qp8q6oVPPgl/UPWFF16IOXPm4Pjjj8e693Jw95hfMHtnR9Qs9r3zjXW5DrjrHn4FzZlQUkUK6qlEiRJJNT9Oxl8C1JO/vHWuJp6/aRjpEIw8hoZRZC4xt4qCpWEUM87AJ+AmFXgJGAVAPRnFGehk1FKgl9/45PP1ZP0K2s6dO9G/f39kZmaGXWfkyJEYM2YM/jxcAvdNysYLbx3AvJ8G48Liq8P65jWc1ggYEfoFtHMaR46zNSkJ5OvJmlyTJk1Awygpl9m3SVFPvqHWvpB4/qZhpI0xbCANozAkZhpEwdIwMsM0yFm4SQV59c3PnXoyzzSoGamloK68N/O29PTGG2/g8ccfx8qVK8MuYn0F7fnnn0fbtu3x0rJsvH/fKnTaPx8XFFuDYim5Yf1zTzgZKSNCD7ZucSGQkhIWZ0NyE+Dfp+ReX79nRz35TVz9euL5m4aROj+nETSMnMjE2C4KloZRjDA5HNykKAKTBKgnkzSDnYtaCvb6m579hg0b0LlzZ+zevTsstfWcolmzZuHgn9Ux4c6fcN3Hd6BF8TfD+tkNI8aHfgHtGoSehG03sRAsAvz7FKz19nq21JPXhGPPL56/aRjFzjM/Aw2jfBKG30XB0jAyDDeA6bhJBXDRPZwy9eQh3IClppYCtuAeTTcnJwfTp0/HwIEDYZULvsaPH48B19yIdfetR8raVbgwbRmOSs0o2C2vnhv6JFHKU6FfQGvaLGKcjcEhwL9PwVlrP2ZKPflBObZriOdvGkaxsRRH0zASaRgsi4KlYWQQbEBTcZMK6MJ7NG3qySOwAUxLLQVw0Q1P+ZdffsHNN9+MRYsWhWWuXr06ljw+DSe8sA5VNi1EWoSvneUPyk1JRUqzdsC/hwD16+c38z3ABPj3KcCL78HUqScPoBpOKZ6/aRiZg0vDyBxLKZMoWBpGEhpWNAhwk9KAxiGOBKgnRzQMKBKglhSBsbtEYP369ejRowe+/z78l816XXYZHjr9XFRaNh3FU8I/dZSfKKNERRS/ZxzQug1Qpkx+M99JgF/npwaMEuB+ZxSnJ8nE8zcNI3OIaRiZYyllEgVLw0hCw4oGAW5SGtA4xJEA9eSIhgFFAtSSIjB2zyOQlZWFyZMnY/jw4WFE0kNfKZvbpj067N6Bo3J/D4uLDTntuiF1zD1A+fJiM8skkEeAf58oBJMEqCeTNL3JJZ6/aRiZY0zDyBxLKZMoWBpGEhpWNAhwk9KAxiGOBKgnRzQMKBKglhSBsTt27dqFvn37RvwVtHp1amPxUTVwatbXEUn9lZuKL0u0QY2b2qNS54uAqlUj9mMjCVgE+PeJOjBJgHoySfP/27sbODmKOv/jv90km80jeSCQB5KIgEYIhAQBCY8qIurxEAVBAQUPRREJj3ryB+/vA4giCCpyFx59OA45hID4F44TEkIQggiJ4elAEJAQSUxIICGEZOdf1TBD1e5U7VRNzaZ3+jO+4m53VddOv+vL9PZve3oaM5Z5/k3BKJ0xBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLBCty9VCrJr3/9azn22GNlzZo1loR+I9kX9j5YPvaPcfJBudlq0wsbSy3ym5bPyWbnzZT9Dh4p6iIkHgh0K8DrU7dEdAgQIE8BWJuoq3n+TcEo3SRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCsoN2XL18uo0aN6rL3JwzsJ18fO0wmtvXr0lZeMe+N/eWZY74hh5+xjQwYUF7LVwS6F+D1qXsjetQuQJ5qt9pUPc3zbwpG6WaBglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgBeuuryq66aab5BOf+ESXPd+9T6vMf9eW6pPPql8utK6jj1yzy3/IwT/YS8aOrt6ny6CsQMAQ4PXJwODbugXIU92EDR/APP+mYJSOm4JROktrJDOwFIwsGhYiBDhIRaCxiVOAPDlpaAgUIEuBYAXqrj/57LTTTpMbbrih6l7fO3GS7DFoddU2vfIvx/9Ytjn14852GhDoToDXp+6EaA8RIE8hWpumr3n+TcEo3RxQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCsAN03btwoV199tXz5y1+W9evXd9ljfbHQ+WMPkM9utthq61BLL23cUtYOHy9rZuwp75o5U/r372/1YQGBEAFen0K06NudAHnqTmjTt5vn3xSM0s0HBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLBmrz7Y489Jl/60pdk7ty5XfZ0S1Uo+vrIcXL85n1kUOsGq33ZxuFywwnz5YjP9peFC/+QtU2fPp2CkaXEQqgAr0+hYvT3CZAnn04+2szzbwpG6eaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgTdr9hRdekK222qrL3uk7D32irY8cN2qE7D+0TdpaSl366BWvnP1vMuRTB/Ex6FV1WBkrwOtTrBzbVRMgT9VU8rXOPP+mYJRubigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCNZk3fXbz/r27Wvt1aTWFpnYp0UOGNJfjhgxRMa12e1m55K64XXLyWeLfP4EEfU9eTJ1+L5eAfJUryDbmwLkydTI5/fm+TcFo3RzRMEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAsCbprj/97Ne//rUcfvjhlT3aThWKZk8cKdsPaKusc32jrzNq+diRIiefKurSpEo38lSh4JsEAuQpASJDVATIU4Uit9+Y598UjNJNEwWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwXp5d10ouuuuu+Tb3/62zJkzx9qb60cPkcPVFUW+R0dLq7Qe+AmRL31FZJttunQlT11IWFGHAHmqA49NuwiQpy4kuVthnn9TMEo3PRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBOul3Ts6OuT3v/+9fOc735G7777b2ouBaunEIW1ywfjNrfXmwtqR75IBJ/yztPzTQSKbbWY2Wd+TJ4uDhToFyFOdgGxuCZAniyOXC+b5NwWjdFNEwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUCwXtZdF4ruuOMO+da3viX33nuv9ey3VvccOm+LwXLQsEEyqE+r1VZeWLbnsTJq5qdFtt8+u0dReb3rK3lyybA+RoA8xaixjUuAPLlk8rPePP+mYJRuXigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCNZLuutC0W233Sbf/OY3ZcGCBV2e9W6qQPS7bUbJiL59urTpFW+0bSb9FiwU6devartrJXlyybA+RoA8xaixjUuAPLlk8rPePP+mYJRuXigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCJbz7uvXr5dbbrlFzjvvPHnooYe6PFt9HdG3hrXLqaOHy0B1k+uqj83UW9MuniWy2+5Vm30ryZNPh7ZQAfIUKkZ/nwB58unko808/6ZglG5OKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIltPuq1evluuuu06+973vydNPP93lWb5Dvf3s2KFt8umRw2S79q5XFWWferbnh0WO+ozIXnuL9Onap8ugVVaQpyoorIoWIE/RdGxYRYA8VUHJ2Srz/JuCUbrJoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgWM66P/vXZ+WKK6+Qiy66SNauXVt5dvv1bZVTRg2WUf36yDBV/Jk0oJ+0iuOKovHbiVz+c5HxEyrbx35DnmLl2K6aAHmqpsK6WAHyFCvXc9uZ598UjNK5UzBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQLAfdS6WS3H///XLppZfKL3/5S+sZjVI1oUu2GCJHjBzsLhCZWxx2nMiZ/yIyeLC5Nvp78hRNx4ZVBMhTFRRWRQuQp2i6HtvQPP+mYJSOnYJROktrJDOwFIwsGhYiBDhIRaCxiVOAPDlpaAgUIEuBYJuwu74/0a233ppdTTR//nzrmQxRSyeqt5z9y5jh2RVFVmO1hYmTRM6/SGSnKdVao9eRp2g6NqwiQJ6qoLAqWoA8RdP12Ibm+TcFo3TsFIzSWVojmYGlYGTRsBAhwEEqAo1NnALkyUlDQ6AAWQoE2wTdV6xYIb/4xS/kggsukI1LXpD3t/WRif37yLi2vjJGveXsPe39/W85Kz/nvv1FDvy4yEGHiEzfU6RV3wI77YM8pfUs+mjkqegJSLv/5CmtZyNGM8+/KRilE6ZglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIFgPdn/88cfliiuukJt//CM5e1h/2W/oAJnYFvYx97LFeJEPfOTNG1nvuZdIW1tD94A8NZS3cIOTp8JNeUN3mDw1lDfJ4Ob5NwWjJKTZIBSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBGtw9zVr1mRvO5s1a5bceeed8pVB/eRbW42o7W1m5nP7wMEi/+cbIqPHmGsb/j15ajhxoX4AeSrUdDd8Z8lTw4nr/gHm+TcFo7o5KwNQMKpQpP3GDCwFo7S2RRyNg1QRZ71x+0yeGmdbtJHJ0qafcX0T68WLF2dvO/vxjy+VdevWyifVW85O3XIzed/g9tqfYIt6i9mUPUROOkVkj+m1b5ewJ3lKiMlQQp4IQUoB8pRSszFjmeffFIzSGVMwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpECxh99WrV8stt9wiP7n03+T+++bL7n1a5aND+smnRwyVbdvdbz17raOPLO/3Hhm43QQZvtM4aR2/lSoU7Syyw2SR9oACU8J9KQ9FnsoSfE0hQJ5SKDJGWYA8lSXy+9U8/6ZglG6eKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIVmd37T1nzhz5zZW/kNH/c5NMau8j7+zfpv717fZtZ/PlIFl+zFdkr8+9S0Zu4S4o1fkU69qcPNXFx8adBMhTJxAW6xIgT3Xx9cjG5vk3BaN05BSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBIvo/sYbb8iCBQvUW85+Lb+/epZ8bTORo0YOlQGtLTWN9mrrcFlx+iUy/rMflJbaNqlp3EZ0Ik+NUC3umOSpuHPfiD0nT41QTTumef5NwSidLQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwWrs/tprr8k998yXa6+9Va79z19Ix+sr5NwR7XLSFsNlYI2ForWbbS3tp8yU1oMP2uRvNatxt7nnTK1Q9KtJgNenmpjoVKMAeaoRahN2M8+/KRilmwgKRuksrZHMwFIwsmhYiBDgIBWBxiZOAfLkpKEhUIAsBYJ5uut7Ev33HXPkyqtulgdv/6Xs22ejTB/cJtMG9ZddBrbLYHWPou4e6/pvIf32P0D6HKo+5ex96gbWrd1v092YPdlOnnpSu/l/Fnlq/jnuyT0kTz2pHfezzPNvCkZxhtW2omBUTSXBOjOwFIwSgBZ8CA5SBQ9A4t0nT4lBCzwcWapv8vXvB9f+5+1y7/X/T05ZNle2H9AmrdIio/q1Zl99o28siSwa/DEZsO/uMnH/bWXADtuIjBsnuX/fmWenyJMHh6ZgAfIUTMYGHgHy5MHJSZN5/k3BKN2kUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkMrFQqyWX/dq18+cSjrQ3/e6th8qGhA611roUO1fDStE/JiP87U9q2Ge/q1ivXk6deOW25fdLkKbdT0yufGHnK/7SZ598UjNLNFwWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJa6B3vqqeVy+pnfkYWLnpBnn74t22CYuvn0x/r3kd3V282mDuwvew0Z0P1AqkfHdjtL67nfF9lhh5r697ZO5Km3zVi+ny95yvf89LZnR57yP2Pm+TcFo3TzVYiC0YsvvihXX3213HTTTfLoo4/KoEGDZMqUKXLkkUfKUUcdJe3t7elE3xrJDCwFo+S8hRuQg1ThpryhO0yeGspbqMHJkj3d6gIi+fPiFer3jfvlhd/cIu945jey+4A1WVGoXd1PaOkbG6Sf+qiy8W197Q2rLHWot6atHz9F+u+zh7RM20VkpykiY8b06recVdlNaxV5sjhYqFOAPNUJyOaWAHmyOHK5YJ5/UzBKN0VNXzCaM2eOzJgxQ15++eWqatOmTZPZs2fL+PFpL+s2A0vBqCo9KwMEOEgFYNG1WwHy1C0RHWoUKHqW1IeZyfw/LJPZtyyQ126/SfZaebvs1L5W3t3eVtNNqp3MV/1aZOepIv37O7s0Y0PR89SMc7op94k8bUr95vvZ5Cn/c2qef1MwSjdfTV0wevzxx2Xq1Kmybt06GTJkiHz/+9+X6XtMl3Wvr8uuNjr//PMzSV00mjdvngwcWNv9A2rhNwNLwagWMfr4BDhI+XRoCxUgT6Fi9HcJFClLujj0+P9ulD/d9pAsv/13svSpP8vKFX9SVxC9KAcPGyzjarhqyOVYWT9yrMi31FvO9nt/ZVWRvilSnoo0r5tqX8nTppJvzp9LnvI/r+b5NwWjdPPV1AWjQw45RG655Rbp06eP/OnBP6mruXey5K688ko5/vjjs3WXXHKJnHzyyVZ7PQtmYCkY1SPJtlqAgxQ5SClAnlJqFnusZsySflvZypdL8r9PluTJec/IP26/TYY+eads1/GwbN++Rkb27ZNu0t+j3mq2+55vXk20444iW45u6recdQfXjHnqbp9pb5wAeWqcbRFHJk/5n3Xz/JuCUbr5atqC0eLFi2VH/cuXepx11lly7rnndlHr6OiQPfbYQxYsWCCbb7656Hsd9e3b/X0FugxUZYUZWApGVYBYFSTAQSqIi87dCJCnboBorlmgN2dJ/Qogf3+pJM8+8Zo8/chKuft/18rCPy6Q7R48Vg4dPlD2VTeirrc49FJpoKydvI+M/dTB0jZxK5EXl4g8/7yIvlzpIx8TmTSpZusidOzNeSrC/PS2fSRPvW3G8v18yVO+50c/O/P8m4JRuvlq2oLRhRdeKGeccUYmtWjRokrxqDPdrFmz5IQTTshWz58/X6ZPn965S9SyGVgKRlGEbGQIcJAyMPi2bgHyVDchA7wlkPcsbdggsvTvJXnq6dfkkUeXqreUvSRPP/U32eGxufLR9XfLLu3LZEgf9ZFliR7LWgbJmg/MkPEfP1D6TJ4ssvmoRCMXY5i856kYs9A8e0memmcu87An5CkPs+B/Dub5NwUjv1VIa9MWjMpvR9OfiLZq1arsbWnVYBYtXCRTdlafPKIeF198scycObNat+B1ZmApGAXzsUEnAQ5SnUBYrEuAPNXFx8aGwKbM0uuvb5Rn/rpKnn5mhTz77Ar5yzNL5cc/PE7Wr1+RPcOW1qEi/XaQAW88IZNkpWzTr1UOGNouHx8+WEbU+baytR0l2aA+xWxoq8j6gcOk72FHSeshM0Tera4YUp+CxiNOYFPmKe4Zs1WeBchTnmen9z038pT/OTPPvykYpZuvpi0YjRs3TpYsWSL77LOPzJ071ym2evVq2WyzzbL2L37xi3LZZZc5+4Y0mIGlYBQiR99qAhykqqmwLlaAPMXKsV1nAStL732v9FcfNiG77tq5m3O5QxVe1qx5XZb/41VZseJVWbbsFXnp76tlxdKVsuqll2WZWvfcilfU13+o9mWyYuVLsnrVi/LGa3+TUsdLalx1wyHjod9UfmhbHzlo+ADZbVC7jO3XV4b2UVWdOh6vbOyQv7zRR14eN0kGv39vmXDQx2SU+rCMllY17saNov4iVcfobGoKWHlSV3z3L9inxJkWfF+/AHmq35AR3hYgT29b5PU78/ybglG6WWrKgtH69esrv2Qcc8wx8vOf/9wrNnjwYPUL6xo58MAD5Xe/+523b7lRB9L3WLZsmUzWl6Orx5NPPinjx4/3dacNAa+APkg9+OCDWZ9ddtmlkm/vRjQi4BAgTw4YVgcLHP7pS+UB9aESHapwck3rIvnw4JXy76vGyLdatpYOVczZqNZ3dGxUX9fJG+vXysYNa2TDG69KaaP617FS/bz12c/sp/7/W8Pb5ZiRQ6t+2thadcOhVzeq4pL6qv+1qP9t3b+fPLluvTy4dp1s3dZPJqjl8eqTytrqvMJHP++HVBFr9fs+KFt85rMyfs+9pH97e7ANG4QL8NoUbsYWbgHy5LahJVyAPIWb9fQWukg0ceLE7MdSMEqn35QFo5UrV8qIESMypRNPPFEuvfRSr9iECRPUPSifz+5fpO9jVMujJeAX0htuuKHyfGoZmz4IIIAAAgj0BoEZR16srgS6Rb4zrF3+z9g3j7v6eb+qrspZ9Nrroq/OWb6hQ5Zt2Ki+6jdxtUi7On4OaG2R4X1bZYS6Oke/Pexd7W2yZb+evVLniQ1t8seJ28urO0+Wd6hi0zYrlsuGLcfIP6bsLOuHqrez8UAAAQQQQACBXiOwYsUKOeyww7LnS8Eo3bQ1ZcFIB2T0aPXRtOpxyimnyA9/+EOv2CT1KSVPPPGETJkyRR5++GFv33IjBaOyBF8RQAABBIoq8PFP/Vh2XH6zzHn3ltKqikF5fqxv7SuvD9tCVk6eKi/us5+sHT0mz0+X54YAAggggAACAQIUjAKwAro2ZcGoJ64w4i1pASmja90CXAZbNyEDGALkycDg27oEtnnP5+SFZ66Vc9UVRv8ydnhuikYd2+woHR/6iHTsPFXUX5CkNGoLkQED6tpXNm68AK9NjTcu0k8gT0Wa7cbvK3lqvHG9P4G3pNUrWH37piwY9cQ9jKpzvr3WvOkWN71+24Xv4gT0Qeree+/NNp7OjUDjENmqIkCeKhR8U6fAWefcJHff87C0qhtAH9y6Uk584QYZ2GLfiDrkR3RM3l1az/y6yJixIm1tb95UWt1jUNa8qt7npv7p7/U9BM/7mmpX9xUav63IO7dT/9TXie9489871Ndhw0J+LH1zIsBrU04mokmeBnlqkonMyW6Qp5xMhOdpmOffvCXNAxXY1JQFI20wZswYWbp0KZ+SFhgIuudTgINUPueltz4r8tRbZy5/z7tLltQNqWX+PaI+0kzktbWiPtJM1EefqSLP39W65SJ91e2t9Q2k+6t/w4aLjBj51j/1/XbvEtlBfVhEwD0C8yfCM6pHoEue+JS0ejgLvy15KnwEkgKQp6ScDRmMglFDWKVpC0aHHHKI3HLLLTJo0CBZtWqV+tTb6jfTXLRwkUzZeUqme/HFF8vMmTOTSJuB5QqjJKSFHoSDVKGnP/nOk6fkpIUdkCwVduobsuPkqSGshR2UPBV26huy4+SpIaxJBzXPv7nCKB1t0xaMLrzwQjnjjDMyqUWLFsmOO+5YVW3WrFlywgknZG36E9L0231SPMzAUjBKIVrsMThIFXv+U+89eUotWtzxyFJx574Re06eGqFa3DHJU3HnvhF7Tp4aoZp2TPP8m4JROtumLRgtXry4UiQ666yz5Nxzz+2i1qEund9jjz1kwYIFsvnmm8uLL74offv27dIvZoUZWApGMYJsYwpwkDI1+L5eAfJUryDblwXIUlmCrykEyFMKRcYoC5CnsgRfUwiQpxSKjR3DPP+mYJTOumkLRpqo/LY0/Xa0Pz34J9lpyk6W3JVXXinHH398tu6SSy6Rk08+2WqvZ8EMLAWjeiTZVgtwkCIHKQXIU0rNYo9Floo9/6n3njylFi32eOSp2POfeu/JU2rR9OOZ598UjNL5NnXB6PHHH5epU6fKunXrZMiQIXLBBRdkVxTp/+Bvuukm+e53v5tJTps2TebNmycDBw5MJmsGloJRMtbCDsRBqrBT35AdJ08NYS3koGSpkNPesJ0mTw2jLeTA5KmQ096wnSZPDaNNNrB5/k3BKBlr8970ukw0Z84cmTFjhrz88svlVdZXXSyaPXu2jB8/3lpf74IZWApG9WqyPQcpMpBSgDyl1Cz2WGSp2POfeu/JU2rRYo9Hnoo9/6n3njylFk0/nnn+TcEonW9TX2FUZtL3JrrqqqvkxhtvFH3Vkb6SaOedd5YjjjhCjj76aPUJYfddowAAMFRJREFUv+rjfRM/zMBSMEqMW8DhOEgVcNIbuMvkqYG4BRuaLBVswhu8u+SpwcAFG548FWzCG7y75KnBwAmGN8+/KRglAH1riEIUjNJx1T6SGVgKRrW70bO6AAep6i6sjRMgT3FubNVVgCx1NWFNvAB5irdjy64C5KmrCWviBchTvF1PbWmef1MwSqdOwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUAwunsFyJOXh8ZAAfIUCEZ3rwB58vLkotE8/6ZglG5KKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIRnevAHny8tAYKECeAsHo7hUgT16eXDSa598UjNJNCQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aAwXIUyAY3b0C5MnLk4tG8/ybglG6KaFglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIBjdvQLkyctDY6AAeQoEo7tXgDx5eXLRaJ5/UzBKNyUUjNJZWiOZgaVgZNGwECHAQSoCjU2cAuTJSUNDoABZCgSju1eAPHl5aAwUIE+BYHT3CpAnL08uGs3zbwpG6aaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42BAuQpEIzuXgHy5OXJRaN5/k3BKN2UUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQjO5eAfLk5aExUIA8BYLR3StAnrw8uWg0z78pGKWbEgpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0BgqQp0AwunsFyJOXJxeN5vk3BaN0U0LBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxkAB8hQIRnevAHny8uSi0Tz/pmCUbkooGKWztEYyA0vByKJhIUKAg1QEGps4BciTk4aGQAGyFAhGd68AefLy0BgoQJ4CwejuFSBPXp5cNJrn3xSM0k0JBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLB6O4VIE9eHhoDBchTIBjdvQLkycuTi0bz/JuCUbopoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjoAB5CgSju1eAPHl5ctFonn9TMEo3JRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBKO7V4A8eXloDBQgT4FgdPcKkCcvTy4azfNvCkbppoSCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjYEC5CkQjO5eAfLk5clFo3n+TcEo3ZRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTloTFQgDwFgtHdK0CevDy5aDTPvykYpZsSCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDQGCpCnQDC6ewXIk5cnF43m+TcFo3RTQsEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAMLp7BciTl4fGQAHyFAhGd68AefLy5KLRPP+mYJRuSigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCEZ3rwB58vLQGChAngLB6O4VIE9enlw0muffFIzSTQkFo3SW1khmYCkYWTQsRAhwkIpAYxOnAHly0tAQKECWAsHo7hUgT14eGgMFyFMgGN29AuTJy5OLRvP8m4JRuimhYJTO0hrJDCwFI4uGhQgBDlIRaGziFCBPThoaAgXIUiAY3b0C5MnLQ2OgAHkKBKO7V4A8eXly0Wief1MwSjclFIzSWVojmYGlYGTRsBAhwEEqAo1NnALkyUlDQ6AAWQoEo7tXgDx5eWgMFCBPgWB09wqQJy9PLhrN828KRummhIJROktrJDOwFIwsGhYiBDhIRaCxiVOAPDlpaAgUIEuBYHT3CpAnLw+NgQLkKRCM7l4B8uTlyUWjef5NwSjdlFAwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpEIzuXgHy5OWhMVCAPAWC0d0rQJ68PLloNM+/KRilmxIKRuksrZHMwFIwsmhYiBDgIBWBxiZOAfLkpKEhUIAsBYLR3StAnrw8NAYKkKdAMLp7BciTlycXjeb5NwWjdFNCwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUAwunsFyJOXh8ZAAfIUCEZ3rwB58vLkotE8/6ZglG5KKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIRnevAHny8tAYKECeAsHo7hUgT16eXDSa598UjNJNCQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aAwXIUyAY3b0C5MnLk4tG8/ybglG6KaFglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIBjdvQLkyctDY6AAeQoEo7tXgDx5eXLRaJ5/UzBKNyUUjNJZWiOZgaVgZNGwECHAQSoCjU2cAuTJSUNDoABZCgSju1eAPHl5aAwUIE+BYHT3CpAnL08uGs3zbwpG6aaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42BAuQpEIzuXgHy5OXJRaN5/k3BKN2UUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQjO5eAfLk5aExUIA8BYLR3StAnrw8uWg0z78pGKWbEgpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0BgqQp0AwunsFyJOXJxeN5vk3BaN0U0LBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxkAB8hQIRnevAHny8uSi0Tz/pmCUbkooGKWztEYyA0vByKJhIUKAg1QEGps4BciTk4aGQAGyFAhGd68AefLy0BgoQJ4CwejuFSBPXp5cNJrn3xSM0k0JBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLB6O4VIE9eHhoDBchTIBjdvQLkycuTi0bz/JuCUbopoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjoAB5CgSju1eAPHl5ctFonn9TMEo3JRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBKO7V4A8eXloDBQgT4FgdPcKkCcvTy4azfNvCkbppoSCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjYEC5CkQjO5eAfLk5clFo3n+TcEo3ZRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTloTFQgDwFgtHdK0CevDy5aDTPvykYpZsSCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDQ6BB5a8rBMHbtzl1adp3nz5mXrp0+fLgMHDrT6uLazOrGAwFsCvD7lPwrm+TcFo3TzRcEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAMLp7BciTl4fGKgI/uu8nMvPeb8qsfb4rn3/v8VaPFStWyJgxY2T9+vUyZMgQWbp0aaVodPkfr5Av3P11uWT6v8rJ7zvJ2o4FBKoJ8PpUTSVf68zzbwpG6eaGglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42dBPQVQtOu+1Blbeei0X/8x3/I0UcfXWm//vrr5fDDD5dysajc8Kcj76h6hVK5na8IaAFen/KfA/P8m4JRuvmiYJTO0hrJDCwFI4uGhQgBDlIRaGziFCBPThoaAgXIUiAY3b0C5MnLQ2MVgc7FH7NotN9++8ncuXMrW33gAx+QI7/3qezKovJKs395HV8RqCbA61M1lXytM8+/KRilmxsKRuksrZHMwFIwsmhYiBDgIBWBxiZOAfLkpKEhUIAsBYLR3StAnrw8NDoEqhWN9hq0p2y//fb2Fh9pE9l/aGUdxaIKBd/UIMDrUw1Im7iLef5NwSjdZFAwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpEIzuXgHy5OWh0SFwzjnnyI//MktWvbej0qPf/NfljRtfqSxLp2LRZn9slVEPvFk8OvLII+Xb3/722335DoEqArw+VUHJ2Srz/JuCUbrJoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjFYF169bJyJEjZe3atdK5KCT/s1rkd+vd698ab9CgQbJ8+XJpb2+v8hNYhcCbArw+5T8J5vk3BaN080XBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxioCixcvlp122klKpdKbrZ2uJJLX1FVHA1rf3rJcRHp7jbS0tMiiRYtk8uTJxlq+RcAW4PXJ9sjjknn+TcEo3QxRMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTlodEhcPfdd8uMGTNkxYoVb/boXDQqb1elWDRixAiZPXu27L333uVefEWgqgCvT1VZcrXSPP+mYJRuaigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCEZ3rwB58vLQ6BF47rnn5JOf/KTcf//9b/b6zgj7yiJ9pdHZbxWU3hpn9913l+uvv14mTJjgGZkmBN4U4PUp/0kwz78pGKWbLwpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0diOg72N0yimnyOV/+5n1aWiVzYwrjD7/+c/LxRdfLAMHDqw08w0CPgFen3w6+Wgzz78pGKWbEwpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw01iBw+nVnykVLrnm7p+MeRnPmzJF999337X58h0A3Arw+dQOUg2bz/JuCUboJoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjNwKX//EK+cLdX3+7V/mKos73NFLrT530Zbnooove7st3CHQjwOtTN0A5aDbPvykYpZsQCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDR6BJzFovI2nYpGfee/Lmv+c7m0tbWVe/AVAa8Ar09enlw0muffFIzSTQkFo3SW1khmYCkYWTQsRAhwkIpAYxOnAHly0tAQKECWAsHo7hUgT14eGh0CvmKRvkfR8ccfL7/85S9lxe6vWvc2Om3csXLhERc4RmU1ArYAr0+2Rx6XzPNvCkbpZoiCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjVUEfMUi/Slop556qmyxxRYyfvx4Ofroo+X+EQ9ZRaNZ+3xXPv/e46uMzCoEbAFen2yPPC6Z598UjNLNEAWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aOwk8tORhmXbdhyprz9jqc/KrM/5Tnn/+edGfgnb++efLwoULs/bp06fLxo0bZebMmXLFCz+3ikZ/OvIOmTp258o4fINANQFen6qp5Gudef5NwSjd3FAwSmdpjWQGloKRRcNChAAHqQg0NnEKkCcnDQ2BAmQpEIzuXgHy5OWhsYrAj+77icy895tSvlLo5ZdflrvuuksOPfRQWb9+vdx7773ZVrpg1L9/f+no6JCbb75Znt38eTn1gW/LJdP/VU5+30lVRmYVArYAr0+2Rx6XzPNvCkbpZoiCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjQ4BfaVRtSuEusuTazvHj2F1wQW6y1PBeXKx++b5NwWjdFNCwSidpTWSGVgKRhYNCxECHKQi0NjEKUCenDQ0BAqQpUAwunsFyJOXh8ZAAfIUCEZ3rwB58vLkotE8/6ZglG5KKBils7RGMgNLwciiYSFCgINUBBqbOAXIk5OGhkABshQIRnevAHny8tAYKECeAsHo7hUgT16eXDSa598UjNJNCQWjdJbWSGZgKRhZNCxECHCQikBjE6cAeXLS0BAoQJYCwejuFSBPXh4aAwXIUyAY3b0C5MnLk4tG8/ybglG6KaFglM7SGskMLAUji4aFCAEOUhFobOIUIE9OGhoCBchSIBjdvQLkyctDY6AAeQoEo7tXgDx5eXLRaJ5/UzBKNyUUjNJZWiOZgaVgZNGwECHAQSoCjU2cAuTJSUNDoABZCgSju1eAPHl5aAwUIE+BYHT3CpAnL08uGs3zbwpG6aaEglE6S2skM7AUjCwaFiIEOEhFoLGJU4A8OWloCBQgS4FgdPcKkCcvD42BAuQpEIzuXgHy5OXJRaN5/k3BKN2UUDBKZ2mNZAaWgpFFw0KEAAepCDQ2cQqQJycNDYECZCkQjO5eAfLk5aExUIA8BYLR3StAnrw8uWg0z78pGKWbEgpG6SytkczAUjCyaFiIEOAgFYHGJk4B8uSkoSFQgCwFgtHdK0CevDw0BgqQp0AwunsFyJOXJxeN5vk3BaN0U0LBKJ2lNZIZWApGFg0LEQIcpCLQ2MQpQJ6cNDQECpClQDC6ewXIk5eHxkAB8hQIRnevAHny8uSi0Tz/pmCUbkooGKWztEYyA0vByKJhIUKAg1QEGps4BciTk4aGQAGyFAhGd68AefLy0BgoQJ4CwejuFSBPXp5cNJrn3xSM0k0JBaN0ltZIZmApGFk0LEQIcJCKQGMTpwB5ctLQEChAlgLB6O4VIE9eHhoDBchTIBjdvQLkycuTi0bz/JuCUbopoWCUztIayQwsBSOLhoUIAQ5SEWhs4hQgT04aGgIFyFIgGN29AuTJy0NjoAB5CgSju1eAPHl5ctFonn9TMEo3JRSM0llaI5mBpWBk0bAQIcBBKgKNTZwC5MlJQ0OgAFkKBKO7V4A8eXloDBQgT4FgdPcKkCcvTy4azfNvCkbppoSCUTpLayQzsBSMLBoWIgQ4SEWgsYlTgDw5aWgIFCBLgWB09wqQJy8PjYEC5CkQjO5eAfLk5clFo3n+TcEo3ZRQMEpnaY1kBpaCkUXDQoQAB6kINDZxCpAnJw0NgQJkKRCM7l4B8uTloTFQgDwFgtHdK0CevDy5aDTPvykYpZsSCkbpLK2RzMBSMLJoWIgQ4CAVgcYmTgHy5KShIVCALAWC0d0rQJ68PDQGCpCnQDC6ewXIk5cnF43m+TcFo3RTQsEonaU1khlYCkYWDQsRAhykItDYxClAnpw0NAQKkKVAMLp7BciTl4fGQAHyFAhGd68AefLy5KLRPP+mYJRuSigYpbO0RjIDS8HIomEhQoCDVAQamzgFyJOThoZAAbIUCEZ3rwB58vLQGChAngLB6O4VIE9enlw0muffFIzSTQkFo3SW1khmYCkYWTQsRAhwkIpAYxOnAHly0tAQKECWAsHo7hUgT14eGgMFyFMgGN29AuTJy5OLRvP8m4JRuimhYJTO0hrJDCwFI4uGhQgBDlIRaGziFCBPThoaAgXIUiAY3b0C5MnLQ2OgAHkKBKO7V4A8eXly0Wief1MwSjclFIzSWVojmYGlYGTRsBAhwEEqAo1NnALkyUlDQ6AAWQoEo7tXgDx5eWgMFCBPgWB09wqQJy9PLhrN828KRummhIJROktrpCVLlsi4ceOydQ8++KBstdVWVjsLCIQIrFu3Th544IFsk1133VXa29tDNqcvApYAebI4WKhDgCzVgcemXQTIUxcSVtQhQJ7qwGPTLgLkqQtJ7lYsW7ZMJk+enD2vF154QcaOHZu759gbnxAFowbN2iOPPFIJbIN+BMMigAACCCCAAAIIIIAAAggggIAhsHjxYtlhhx2MNXwbK0DBKFaum+3mzp0r++23Xze9aEYAAQQQQAABBBBAAAEEEEAAgVQCFIxSSYpQMEpnaY30/PPPy4QJE7J1Cx9eKKPHjLbaWUAgRMC8xFK/AI4aNSpkc/oiYAmQJ4uDhToEyFIdeGzaRYA8dSFhRR0C5KkOPDbtIkCeupDkbsWGDRtk5cqV2fPabrvtpK2tLXfPsTc+IQpGDZo1brrVINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwatD08KLSINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwatD08KLSINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwatD08KLSINiCDkueCjrxDdpt8tQg2AIOS5YKOOkN3GXy1EDcAg5Nngo46Q3cZfLUQFyGzrUABaMGTQ8vKg2CLeiw5KmgE9+g3SZPDYIt4LBkqYCT3sBdJk8NxC3g0OSpgJPewF0mTw3EZehcC1AwyvX08OQQQAABBBBAAAEEEEAAAQQQQACBnhegYNTz5vxEBBBAAAEEEEAAAQQQQAABBBBAINcCFIxyPT08OQQQQAABBBBAAAEEEEAAAQQQQKDnBSgY9bw5PxEBBBBAAAEEEEAAAQQQQAABBBDItQAFo1xPD08OAQQQQAABBBBAAAEEEEAAAQQQ6HkBCkY9b85PRAABBBBAAAEEEEAAAQQQQAABBHItQMEo19PDk0MAAQQQQAABBBBAAAEEEEAAAQR6XoCCUc+b8xMRQAABBBBAAAEEEEAAAQQQQACBXAtQMMr19PDkEEAAAQQQQAABBBBAAAEEEEAAgZ4XoGDU8+b8RAQQQAABBBBAAAEEEEAAAQQQQCDXAhSMcj09PDkEEEAAAQQQQAABBBBAAAEEEECg5wUoGDXAfO3atfLYY4/JwoUL5YEHHpB58+bJI488kv2k97znPfLoo492+1OXLFki48aN67af7nDaaafJhRdeWFNfOvU+gRR5Mvf6qaeekquuukpuvfVWeeKJJ2TzzTeXXXbZRY466ig57LDDpE+fPmZ3vi+YwIwZM2T27Nk17XWpVKqpH52aU+DFF1+Uq6++Wm666absuDZo0CCZMmWKHHnkkdnrSXt7e3PuOHuVTKClpaWmsQ499NAsZzV1plNTCqxYsUL+/Oc/y8MPPywLFiyQO++8U5YuXZrta8zvwffcc49cc801MnfuXHn22Wdl4sSJsu+++8qxxx4re+21V1MaslNvC6TIk/5dSf/OVMtDHyf16xgPBHqlgPqFn0diAfXioc+iqv5TBaOaftoLL7xQdftq46oDZU1j0ql3CqTIU3nPr7/++lK/fv2c2TrggANKK1euLHfnawEF1C80znx0fv0pIA+7/JbAXXfdVRo2bJgzK9OmTSs999xzeCHgFej8muJa1q9LPIot4MqGXh/ye/DGjRtLX/3qV52vXXq8r33tayXdj0fzCqTIkyoCeXNk/gzdlwcCvVWAK4zUf82pH+Zf6Lfcckt5//vfL7/97W/llVdekZgrjH7605/Khz70IefTHDp0qGyxxRbOdhp6t0CKPGkBfaXbfvvtJx0dHTJhwgQ599xzZeedd5ZVq1bJz372M7n88sszqIMOOii7wqS1tbV3w/HsowTKedt///3lsssu846x7bbbettpbE6Bxx9/XKZOnSrr1q2TIUOGyPe//32Zvsd0Wff6uuwqkPPPPz/bcVU0yl53Bg4c2JwQ7FXdAuUrjM4++2z57Gc/6xxvwIABNV917RyEhl4tUM6K3olJkyZlv79cd9112T6FXGH0gx/8QM4888xsO/07kSoeZb8TqQJ39lo2Z86crE33O/3007Pv+b/mE0iRJ/MKo/nz53vPxfT5oD5e8kCgVwr01kpXnp/3r371q5IqEFl/XdVXFqmAlGKuMKIqnefZbvxzS5GnN954o7TjjjtmGdRXBTz//PNdnvg555xT+UsJmevCU5gV5SuM+It+YaY8eEcPPvjg7LVCvX21tPDhhV22v+KKKyqvJZdcckmXdlYgUBbQvxfpf+SkLMJXl8DFF19cUsWc0j/+8Y+si3klfq1XGP31r38t6dctnTn1R5GSKnpbP+61117L1ut23Y+rJC2eplpIkSfzCiOdRx4INKuANOuO5W2/KBjlbUZ69/MJzdNtt91WOYH793//96o7r39RGjVqVNZv9913r9qHlc0vQMGo+ee4nj1U9xCpvJacddZZVYfSb+XYbbfdsn7qHmklXbDmgUA1AQpG1VRYV4tATMFIXclWef1S9xmt+mP0+nIu9R/SeBRDICZPFIyKkQ32Ut2wFISeEQg9wTdfuLjao2fmqDf9lNA8nXTSSZVfgJYvX+7cVX0CWP5FSf8ljkfxBCgYFW/OQ/ZYvU2j8hqxaNEi56a6MF1+LVGX6jv70VBsgXJGuMKo2DmI2Xvz9+RarjBSb8cvvfOd78xel3bddVfvj3zve9+b9VNvuy7p7Xg0v0BonrQIBaPmzwV7+KYABaMeSkLoCb75wkXBqIcmqRf9mNA8vfvd785++dG/BPke+q2U5V/gb7zxRl9X2ppUgIJRk05sot0qvx1NfSJaacOGDc5R9VvVyq8l+tJ/HghUEyhnhIJRNR3W+QTM35NrKRj97W9/q7wmua6OLP+8r3/965W+ejsezS8QmictQsGo+XPBHr4pQMGoh5IQeoJvvnCpm2aX1EcVl9ra2rJPpdFvF9IHu0cffbSHnj0/Jm8CIXlas2ZN5Refz33uc95deeyxxyp91Y1rvX1pbE6BcsFI3Ri9pD81b8SIEdlrj/5L63HHHVeaPftm3mLUnFNf016NHTs2e43YZ599vP3VzfQrryVf/OIXvX1pLK5AuWCkf6/Rb2Nsb28vqRvDltQHMpROPfXUkvr49OLisOdeAfP35FoKRvr+R+W8XXPNNd6xr7766krfu+++29uXxuYQCM2T3muzYKQ/0Xjrrbcu9e3btzR69OjShz/84dJFF11U+vvf/94cQOxFoQUoGPXQ9Iec4OunZL5wlQ9w1b7qwtHrr7/eQ3vBj8mLQEiennnmmcovPt/4xje8u7By5cpK3y9/+cvevjQ2p0C5YFTt9aa8Tp/cPf30080JwF45BfSxppyBY445xtmv3KCvQtL9DzzwwPIqviJgCZTz5Pv6z//8zyX1KbPWdiwgYP6eXEvBSH2iWuX16/bbb/cC6vZyJvV2PJpfIDRPWsQsGJXz0vmr/mM/GWr+/DT7HrboHVTh5tFgge23317U1RuiTvRFXRnU7U9bsmSJqKuK5Nhjj5W99tpbtn7HO6Stf5ssW7ZM9Ed+XnDBBaJ+gcrG+cpXviI/+tGPuh2TDs0jEJKnRx55RCZPnpztvP746/LHyVbTUCeEov7CmzXpjzhWf4Wr1o11TSzwiU98QtSnw8hHP/rR7PVKfaqeqKvUZPHixXLppZeK+ot/tvfqCiS5//77Rf0lrYk12DVTQBWURV1xlq068cQTszyY7Z2/1xlRn8go06dPF/2RwzwQ6CygioqirlwU/fHm22yzjQwcOFBWrFgh9913X/YR50uXLs02UYVs+a//+i9Rf73vPATLBRXQvyePGzcu23tVMJILL7zQK3HllVfK8ccfn/W55557ZM8993T21+1777131n7VVVdlGXV2pqEpBELzpHd69uzZov4QK5/+9KdF3fJBxowZk1no497NN98s6l5++sKMbJ36xGP55Cc/mX3P/yHQ6wSavSKWl/0LuSJEP+f169eX9KdWuR7PPvtsadKkSZW/gNx1112urqxvQoGQPD344IOVnHR3LxH96UbqRSz7d/jhhzehHLvUncDq1audXfSnXem/5JYzon75dvalofkE1Ml7Ze5POeWUbnewfO80/ZZqHghUE/C93uiPT1eFpErmfv7zn1cbgnUFFQi9IuQnP/lJJUvqjx1eNd1ePs6pP5R4+9LYHAKhedJ7ra989N0UXb8NUr9FTWdJFcNLvg+daQ5F9qJZBQr7lrTygaCeryE3ow45wa81bGYhQFWta92Mfg0QqCdH5W0blSd1ZUjlFx91hZF379etW1fpq64w8valcdMJlDNTz9eQvJl7qm90XP4EGf3zeX++qdPc36srPyqvD+oKo253dvz48Vl/dYVRt33pgEA1AX3D4fIJl76vEQ8EygKhJ/hXXHFF5fVLXUFUHqbq13nz5lX6qiuMqvZhZXMJhOap1r3XBcfy72o//elPa92MfgjkSoCC0VtXU5T/Yw75GnLC1YiCkU6SvpeIfs76PbL66hAem0YgJDeuvo3KE/cw2jSZaORPdWUoZH1I3jrvi/mL96233tq5meUmFeAeRk06sTnfraOPPrpywvXSSy/l/Nny9HpKIPQEn3sY9dTM9M6fE5qnWvdSXynZ0tKSvYYdccQRtW5GPwRyJVDYexj99a9/VedW9T0233xzGTx4cE2DhNxzpqYB3+qkPn0me4+sXtTv+x8+fHjI5vRNJJDnPK1du1b0fSL0Q31Kmuj38bsejz/+eHbfGt2uPiVNvva1r7m6sn4TCvR03jrvqvrUGNl3332z1ap4JOqmtJ27sNykAvoeDfq+MupT0mTu3LnOvVRvNZLNNtssa9fHqcsuu8zZlwYEfAL6WKQ+5jzrou+ltsMOO/i601YQgdB7zujXK32vLP3Q92fU92l0PXS7vreWfujjXfl+Rq7+rO/9AqF5Ctljfa8tPb76I392f7aQbemLQC4EclW+auIn06grjPTHFasgZf/02wV4FEMgNE/le4notxL5Hr/97W8rebrxxht9XWkrsID+mOHy646+2ohHcQQOPvjgbO71J6Dptye6HgsfXljJSHf3TnONwXoEtIAqGFWypN9izQMBLRB6RYh+e2P5uKU/Ydj3UAXKSl+9HY/mFwjNU4iIKhhledLvCuGBQG8UKOxb0np6skJP8Gt9fnvssUf2IsRb0moVa45+oXk66aSTKr/8+G66p3+JKv9Cpa5iaQ4s9iK5gLpKrZKT3/zmN8nHZ8D8CvzgBz+ozP2iRYucT1R9Okyln/qENGc/GhDoTuCYY46pZIl7pnWnVZz20BN8fXPid77znVmWdt11Vy+Ubte/C2277bbemxp7B6GxVwmE5qnWndN/zC+/JY37zdaqRr+8CVAw6qEZCT3Br+VpPfTQQ5VfovhEq1rEmqdPaJ5uu+22Slb0iVy1h/5UvlGjRmX9+CtINSHWaQF9Vcluu+1WyZP+5CwexRH485//XJl711/p9f30yhlRb90u6U/X44FAjIC+uqNfv35Z5vi0vRjB5t0m5gT/7LPPrrx+LVy4sCqOXl/+w9k555xTtQ8rm08gJk+1KOgbXZfzxCfu1SJGnzwKUDDqoVkJPcH//e9/7/2rxnPPPVeaNGlS5UXojjvu6KE94cfkQSA0T/qEbccdd8zyMmzYsNLzzz/fZTf0L0blg1o9N0TuMjAreo3AggULSr6PudY5Ou200yo5OfbYY3vNvvFE0wmU35bWp0+fkn7rWeeHeVP0Sy65pHMzywhkAnfddZf3bY36ZrHqnjOV15urr74aOQQqAjEn+PrK6dbW1ixT+++/f0l/Mqz50Mt6vf5dSL++Pfvss2Yz3zexQGiedP/HHnvMKzJnzpxKwbu9vZ1PlfVq0ZhngcLe9FodDBr2UCfjoj7y3hr/S1/6Unaj0NGjR3e5+ae+md7IkSOt/uryRVEfISuf+tSnZOrUqaK3U287k2XLlon6JUsuuOACeeWVV7Jt9Niqgm1tz0LzCKTIk9ZQHxOb3fBRXZYtEyZMkPPOO0/UX2xF35z2Zz/7mcyaNStDO+igg2T27NmifqlqHkT2pCaB008/XS6//HJRhaDsJp/q8v3sxv76xunqypLsdeb+++/PxlIfmS5/+MMfRN/MkUexBPTN8fVxSZ1cyZAhQ7LjkXp7tKhPURNVbJbvfve7Gci0adOy152BAwcWC4i9rUlAfxiIzsxnPvMZUW8Bkq3GbSX92/vLypUrs9cW9fbH7EaxejB9XLrhhhuy34NqGpxOTSegrqoXVcCp7Jf+oJfyBy780z/9U+X7codDDz20/K31VefqzDPPzNbpm2DrD/fQvxOpP8TK9773PVEn+Vmb7qePiTyaU6DePP3xj3/MXrc+8pGPyCGHHCL69ax8Lqd/b9e/R6sr+vWFGRngtddem53TNacme9X0AnmuZvXW56avzlDBqfnfAw880GVXa91eX16rP+qYR/MKpMhTWef666+v/LWjWsYOOOCAkvplvdydrwUTMK8eqpaP8ro999yz9Je//KVgOuyuKaCvDtFXK5Yz0fmrKhaV9JWwPBBwCZSvlO2cnc7LX/jCF7xXPrrGZ31zCdR6fCrnx7X3+i2zqmDkfO3S23/1q18t6X48mleg3jzpc7dy1nxf1R9MSr/61a+aF5I9K4QAVxip/8pTP3RVecaMGTUPq150RH16ldVf/4VDX6V03333yZNPPim6Wr1q1SpR94MQ9dai7EqRI444QtQN+aztWGg+gRR5MlWeeuopUTctFvWJaPLEE0/IiBEjsr+SHHXUUXLYYYeJugzb7M73BRJ45plnso8Q1lcRqfs4iLp/SPYX/gEDBoi+2kgVirK/pKlL9rkCrUC5cO3qiy++KFdddZWoT1QUfdWRvpJIXxmrj01HH320qEvwXZuyHgHRf6HXv+PoKxV1ftRbPER9KIMMHz5c1Cd7yr777itHfPII2WnKTmghkF3tc9FFF9Usoc7ivH31VdfXXHNNdkWR/h1bXzWrrzg67rjjZK+99vJuS2PvF9BXj9WTJ33l9Z133in6HE7/zqSvftNXqam37suYMWNE3cdPPvjBD4q60XX2e3bvF2MPiixAwajIs8++I4AAAggggAACCCCAAAIIIIAAAlUEKBhVQWEVAggggAACCCCAAAIIIIAAAgggUGQBCkZFnn32HQEEEEAAAQQQQAABBBBAAAEEEKgiQMGoCgqrEEAAAQQQQAABBBBAAAEEEEAAgSILUDAq8uyz7wgggAACCCCAAAIIIIAAAggggEAVAQpGVVBYhQACCCCAAAIIIIAAAggggAACCBRZgIJRkWeffUcAAQQQQAABBBBAAAEEEEAAAQSqCFAwqoLCKgQQQAABBBBAAAEEEEAAAQQQQKDIAhSMijz77DsCCCCAAAIIIIAAAggggAACCCBQRYCCURUUViGAAAIIIIAAAggggAACCCCAAAJFFqBgVOTZZ98RQAABBBBAAAEEEEAAAQQQQACBKgIUjKqgsAoBBBBAAAEEEEAAAQQQQAABBBAosgAFoyLPPvuOAAIIIIAAAggggAACCCCAAAIIVBGgYFQFhVUIIIAAAggggAACCCCAAAIIIIBAkQUoGBV59tl3BBBAAAEEEEAAAQQQQAABBBBAoIoABaMqKKxCAAEEEEAAAQQQQAABBBBAAAEEiixAwajIs8++I4AAAggggAACCCCAAAIIIIAAAlUEKBhVQWEVAggggAACCCCAAAIIIIAAAgggUGQBCkZFnn32HQEEEEAAAQQQQAABBBBAAAEEEKgiQMGoCgqrEEAAAQQQQAABBBBAAAEEEEAAgSILUDAq8uyz7wgggAACCCCAAAIIIIAAAggggEAVAQpGVVBYhQACCCCAAAIIIIAAAggggAACCBRZgIJRkWeffUcAAQQQQAABBBBAAAEEEEAAAQSqCFAwqoLCKgQQQAABBBBAAAEEEEAAAQQQQKDIAhSMijz77DsCCCCAAAIIIIAAAggggAACCCBQRYCCURUUViGAAAIIIIAAAggggAACCCCAAAJFFqBgVOTZZ98RQAABBBBAAAEEEEAAAQQQQACBKgIUjKqgsAoBBBBAAAEEEEAAAQQQQAABBBAosgAFoyLPPvuOAAIIIIAAAggggAACCCCAAAIIVBGgYFQFhVUIIIAAAggggAACCCCAAAIIIIBAkQUoGBV59tl3BBBAAAEEEEAAAQQQQAABBBBAoIoABaMqKKxCAAEEEEAAAQQQQAABBBBAAAEEiixAwajIs8++I4AAAggggAACCCCAAAIIIIAAAlUEKBhVQWEVAggggAACCCCAAAIIIIAAAgggUGQBCkZFnn32HQEEEEAAAQQQQAABBBBAAAEEEKgiQMGoCgqrEEAAAQQQQAABBBBAAAEEEEAAgSIL/H8oVzrPrACkCwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 11, - "metadata": { - "image/png": { - "width": 600 - } - }, - "output_type": "execute_result" - } - ], - "source": [ - "from IPython.display import Image\n", - "Image(filename=\"animation.png\",width=600)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Simulation\n", - "\n", - "This is a simulation of EKF SLAM. \n", - "\n", - "- Black stars: landmarks\n", - "- Green crosses: estimates of landmark positions\n", - "- Black line: dead reckoning \n", - "- Blue line: ground truth\n", - "- Red line: EKF SLAM position estimation" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Introduction\n", - "\n", - "EKF SLAM models the SLAM problem in a single EKF where the modeled state is both the pose $(x, y, \\theta)$ and \n", - "an array of landmarks $[(x_1, y_1), (x_2, x_y), ... , (x_n, y_n)]$ for $n$ landmarks. The covariance between each of the positions and landmarks are also tracked. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\\begin{equation}\n", - "X = \\begin{bmatrix} x \\\\ y \\\\ \\theta \\\\ x_1 \\\\ y_1 \\\\ x_2 \\\\ y_2 \\\\ \\dots \\\\ x_n \\\\ y_n \\end{bmatrix}\n", - "\\end{equation}\n", - "\n", - "\\begin{equation}\n", - "P = \\begin{bmatrix} \n", - "\\sigma_{xx} & \\sigma_{xy} & \\sigma_{x\\theta} & \\sigma_{xx_1} & \\sigma_{xy_1} & \\sigma_{xx_2} & \\sigma_{xy_2} & \\dots & \\sigma_{xx_n} & \\sigma_{xy_n} \\\\\n", - "\\sigma_{yx} & \\sigma_{yy} & \\sigma_{y\\theta} & \\sigma_{yx_1} & \\sigma_{yy_1} & \\sigma_{yx_2} & \\sigma_{yy_2} & \\dots & \\sigma_{yx_n} & \\sigma_{yy_n} \\\\\n", - " & & & & \\vdots & & & & & \\\\\n", - "\\sigma_{x_nx} & \\sigma_{x_ny} & \\sigma_{x_n\\theta} & \\sigma_{x_nx_1} & \\sigma_{x_ny_1} & \\sigma_{x_nx_2} & \\sigma_{x_ny_2} & \\dots & \\sigma_{x_nx_n} & \\sigma_{x_ny_n}\n", - "\\end{bmatrix}\n", - "\\end{equation}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "A single estimate of the pose is tracked over time, while the confidence in the pose is tracked by the \n", - "covariance matrix $P$. $P$ is a symmetric square matrix whith each element in the matrix corresponding to the \n", - "covariance between two parts of the system. For example, $\\sigma_{xy}$ represents the covariance between the \n", - "belief of $x$ and $y$ and is equal to $\\sigma_{yx}$. \n", - "\n", - "The state can be represented more concisely as follows. " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\\begin{equation}\n", - "X = \\begin{bmatrix} x \\\\ m \\end{bmatrix}\n", - "\\end{equation}\n", - "\\begin{equation}\n", - "P = \\begin{bmatrix} \n", - "\\Sigma_{xx} & \\Sigma_{xm}\\\\\n", - "\\Sigma_{mx} & \\Sigma_{mm}\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation}" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Here the state simplifies to a combination of pose ($x$) and map ($m$). The covariance matrix becomes easier to \n", - "understand and simply reads as the uncertainty of the robots pose ($\\Sigma_{xx}$), the uncertainty of the \n", - "map ($\\Sigma_{mm}$), and the uncertainty of the robots pose with respect to the map and vice versa \n", - "($\\Sigma_{xm}$, $\\Sigma_{mx}$).\n", - "\n", - "Take care to note the difference between $X$ (state) and $x$ (pose). " - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [], - "source": [ - "\"\"\"\n", - "Extended Kalman Filter SLAM example\n", - "original author: Atsushi Sakai (@Atsushi_twi)\n", - "notebook author: Andrew Tu (drewtu2)\n", - "\"\"\"\n", - "\n", - "import math\n", - "import numpy as np\n", - "%matplotlib notebook\n", - "import matplotlib.pyplot as plt\n", - "\n", - "\n", - "# EKF state covariance\n", - "Cx = np.diag([0.5, 0.5, np.deg2rad(30.0)])**2 # Change in covariance\n", - "\n", - "# Simulation parameter\n", - "Qsim = np.diag([0.2, np.deg2rad(1.0)])**2 # Sensor Noise\n", - "Rsim = np.diag([1.0, np.deg2rad(10.0)])**2 # Process Noise\n", - "\n", - "DT = 0.1 # time tick [s]\n", - "SIM_TIME = 50.0 # simulation time [s]\n", - "MAX_RANGE = 20.0 # maximum observation range\n", - "M_DIST_TH = 2.0 # Threshold of Mahalanobis distance for data association.\n", - "STATE_SIZE = 3 # State size [x,y,yaw]\n", - "LM_SIZE = 2 # LM state size [x,y]\n", - "\n", - "show_animation = True" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Algorithm Walkthrough\n", - "\n", - "At each time step, the following is done. \n", - "- predict the new state using the control functions\n", - "- update the belief in landmark positions based on the estimated state and measurements" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "def ekf_slam(xEst, PEst, u, z):\n", - " \"\"\"\n", - " Performs an iteration of EKF SLAM from the available information. \n", - " \n", - " :param xEst: the belief in last position\n", - " :param PEst: the uncertainty in last position\n", - " :param u: the control function applied to the last position \n", - " :param z: measurements at this step\n", - " :returns: the next estimated position and associated covariance\n", - " \"\"\"\n", - " S = STATE_SIZE\n", - "\n", - " # Predict\n", - " xEst, PEst, G, Fx = predict(xEst, PEst, u)\n", - " initP = np.eye(2)\n", - "\n", - " # Update\n", - " xEst, PEst = update(xEst, PEst, u, z, initP)\n", - "\n", - " return xEst, PEst\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 1- Predict\n", - "**Predict State update:** The following equations describe the predicted motion model of the robot in case we provide only the control $(v,w)$, which are the linear and angular velocity repsectively. \n", - "\n", - "$\\begin{equation*}\n", - "F=\n", - "\\begin{bmatrix}\n", - "1 & 0 & 0 \\\\\n", - "0 & 1 & 0 \\\\\n", - "0 & 0 & 1 \n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - "B=\n", - "\\begin{bmatrix}\n", - "\\Delta t cos(\\theta) & 0\\\\\n", - "\\Delta t sin(\\theta) & 0\\\\\n", - "0 & \\Delta t\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - "U=\n", - "\\begin{bmatrix}\n", - "v_t\\\\\n", - "w_t\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - "X = FX + BU \n", - "\\end{equation*}$\n", - "\n", - "\n", - "$\\begin{equation*}\n", - "\\begin{bmatrix}\n", - "x_{t+1} \\\\\n", - "y_{t+1} \\\\\n", - "\\theta_{t+1}\n", - "\\end{bmatrix}=\n", - "\\begin{bmatrix}\n", - "1 & 0 & 0 \\\\\n", - "0 & 1 & 0 \\\\\n", - "0 & 0 & 1 \n", - "\\end{bmatrix}\\begin{bmatrix}\n", - "x_{t} \\\\\n", - "y_{t} \\\\\n", - "\\theta_{t}\n", - "\\end{bmatrix}+\n", - "\\begin{bmatrix}\n", - "\\Delta t cos(\\theta) & 0\\\\\n", - "\\Delta t sin(\\theta) & 0\\\\\n", - "0 & \\Delta t\n", - "\\end{bmatrix}\n", - "\\begin{bmatrix}\n", - "v_{t} + \\sigma_v\\\\\n", - "w_{t} + \\sigma_w\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "Notice that while $U$ is only defined by $v_t$ and $w_t$, in the actual calcuations, a $+\\sigma_v$ and \n", - "$+\\sigma_w$ appear. These values represent the error bewteen the given control inputs and the actual control \n", - "inputs. \n", - "\n", - "As a result, the simulation is set up as the following. $R$ represents the process noise which is added to the \n", - "control inputs to simulate noise experienced in the real world. A set of truth values are computed from the raw \n", - "control values while the values dead reckoning values incorporate the error into the estimation. \n", - "\n", - "$\\begin{equation*}\n", - "R=\n", - "\\begin{bmatrix}\n", - "\\sigma_v\\\\\n", - "\\sigma_w\\\\\n", - "\\end{bmatrix}\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - "X_{true} = FX + B(U)\n", - "\\end{equation*}$\n", - "\n", - "$\\begin{equation*}\n", - "X_{DR} = FX + B(U + R)\n", - "\\end{equation*}$\n", - "\n", - "The implementation of the motion model prediciton code is shown in `motion_model`. The `observation` function \n", - "shows how the simulation uses (or doesn't use) the process noise `Rsim` to the find the ground truth and dead reckoning estimtates of the pose.\n", - "\n", - "**Predict covariance:** Add the state covariance to the the current uncertainty of the EKF. At each time step, the uncertainty in the system grows by the covariance of the pose, $Cx$. \n", - "\n", - "$\n", - "P = G^TPG + Cx\n", - "$\n", - "\n", - "Notice this uncertainty is only growing with respect to the pose, not the landmarks. " - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "def predict(xEst, PEst, u):\n", - " \"\"\"\n", - " Performs the prediction step of EKF SLAM\n", - " \n", - " :param xEst: nx1 state vector\n", - " :param PEst: nxn covariacne matrix\n", - " :param u: 2x1 control vector\n", - " :returns: predicted state vector, predicted covariance, jacobian of control vector, transition fx\n", - " \"\"\"\n", - " S = STATE_SIZE\n", - " G, Fx = jacob_motion(xEst[0:S], u)\n", - " xEst[0:S] = motion_model(xEst[0:S], u)\n", - " # Fx is an an identity matrix of size (STATE_SIZE)\n", - " # sigma = G*sigma*G.T + Noise\n", - " PEst[0:S, 0:S] = G.T @ PEst[0:S, 0:S] @ G + Fx.T @ Cx @ Fx\n", - " return xEst, PEst, G, Fx" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def motion_model(x, u):\n", - " \"\"\"\n", - " Computes the motion model based on current state and input function. \n", - " \n", - " :param x: 3x1 pose estimation\n", - " :param u: 2x1 control input [v; w]\n", - " :returns: the resutling state after the control function is applied\n", - " \"\"\"\n", - " F = np.array([[1.0, 0, 0],\n", - " [0, 1.0, 0],\n", - " [0, 0, 1.0]])\n", - "\n", - " B = np.array([[DT * math.cos(x[2, 0]), 0],\n", - " [DT * math.sin(x[2, 0]), 0],\n", - " [0.0, DT]])\n", - "\n", - " x = (F @ x) + (B @ u)\n", - " return x" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## 2 - Update\n", - "In the update phase, the observations of nearby landmarks are used to correct the location estimate. \n", - "\n", - "For every landmark observed, it is associated to a particular landmark in the known map. If no landmark exists \n", - "in the position surrounding the landmark, it is taken as a NEW landmark. The distance threshold for how far a \n", - "landmark must be from the next known landmark before its considered to be a new landmark is set by `M_DIST_TH`.\n", - "\n", - "With an observation associated to the appropriate landmark, the **innovation** can be calculated. Innovation \n", - "($y$) is the difference between the observation and the observation that *should* have been made if the \n", - "observation were made from the pose predicted in the predict stage.\n", - "\n", - "$\n", - "y = z_t - h(X)\n", - "$\n", - "\n", - "With the innovation calculated, the question becomes which to trust more - the observations or the predictions? \n", - "To determine this, we calculate the Kalman Gain - a percent of how much of the innovation to add to the \n", - "prediction based on the uncertainty in the predict step and the update step. \n", - "\n", - "$\n", - "K = \\bar{P_t}H_t^T(H_t\\bar{P_t}H_t^T + Q_t)^{-1}\n", - "$\n", - "In these equations, $H$ is the jacobian of the measurement function. The multiplications by $H^T$ and $H$ \n", - "represent the application of the delta to the measurement covariance. \n", - "Intuitively, this equation is applying the following from the single variate Kalman equation but in the \n", - "multivariate form, i.e. finding the ratio of the uncertianty of the process compared the measurment. \n", - "\n", - "$\n", - "K = \\frac{\\bar{P_t}}{\\bar{P_t} + Q_t}\n", - "$\n", - "\n", - "If $Q_t << \\bar{P_t}$, (i.e. the measurement covariance is low relative to the current estimate), then the \n", - "Kalman gain will be $~1$. This results in adding all of the innovation to the estimate -- and therefore \n", - "completely believing the measurement. \n", - "\n", - "However, if $Q_t >> \\bar{P_t}$ then the Kalman gain will go to 0, signaling a high trust in the process \n", - "and little trust in the measurement.\n", - "\n", - "The update is captured in the following. \n", - "\n", - "$\n", - "xUpdate = xEst + (K * y)\n", - "$\n", - "\n", - "Of course, the covariance must also be updated as well to account for the changing uncertainty. \n", - "\n", - "$\n", - "P_{t} = (I-K_tH_t)\\bar{P_t}\n", - "$" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [], - "source": [ - "def update(xEst, PEst, u, z, initP):\n", - " \"\"\"\n", - " Performs the update step of EKF SLAM\n", - " \n", - " :param xEst: nx1 the predicted pose of the system and the pose of the landmarks\n", - " :param PEst: nxn the predicted covariance\n", - " :param u: 2x1 the control function \n", - " :param z: the measurements read at new position\n", - " :param initP: 2x2 an identity matrix acting as the initial covariance\n", - " :returns: the updated state and covariance for the system\n", - " \"\"\"\n", - " for iz in range(len(z[:, 0])): # for each observation\n", - " minid = search_correspond_LM_ID(xEst, PEst, z[iz, 0:2]) # associate to a known landmark\n", - "\n", - " nLM = calc_n_LM(xEst) # number of landmarks we currently know about\n", - " \n", - " if minid == nLM: # Landmark is a NEW landmark\n", - " print(\"New LM\")\n", - " # Extend state and covariance matrix\n", - " xAug = np.vstack((xEst, calc_LM_Pos(xEst, z[iz, :])))\n", - " PAug = np.vstack((np.hstack((PEst, np.zeros((len(xEst), LM_SIZE)))),\n", - " np.hstack((np.zeros((LM_SIZE, len(xEst))), initP))))\n", - " xEst = xAug\n", - " PEst = PAug\n", - " \n", - " lm = get_LM_Pos_from_state(xEst, minid)\n", - " y, S, H = calc_innovation(lm, xEst, PEst, z[iz, 0:2], minid)\n", - "\n", - " K = (PEst @ H.T) @ np.linalg.inv(S) # Calculate Kalman Gain\n", - " xEst = xEst + (K @ y)\n", - " PEst = (np.eye(len(xEst)) - (K @ H)) @ PEst\n", - " \n", - " xEst[2] = pi_2_pi(xEst[2])\n", - " return xEst, PEst\n" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "def calc_innovation(lm, xEst, PEst, z, LMid):\n", - " \"\"\"\n", - " Calculates the innovation based on expected position and landmark position\n", - " \n", - " :param lm: landmark position\n", - " :param xEst: estimated position/state\n", - " :param PEst: estimated covariance\n", - " :param z: read measurements\n", - " :param LMid: landmark id\n", - " :returns: returns the innovation y, and the jacobian H, and S, used to calculate the Kalman Gain\n", - " \"\"\"\n", - " delta = lm - xEst[0:2]\n", - " q = (delta.T @ delta)[0, 0]\n", - " zangle = math.atan2(delta[1, 0], delta[0, 0]) - xEst[2, 0]\n", - " zp = np.array([[math.sqrt(q), pi_2_pi(zangle)]])\n", - " # zp is the expected measurement based on xEst and the expected landmark position\n", - " \n", - " y = (z - zp).T # y = innovation\n", - " y[1] = pi_2_pi(y[1])\n", - " \n", - " H = jacobH(q, delta, xEst, LMid + 1)\n", - " S = H @ PEst @ H.T + Cx[0:2, 0:2]\n", - "\n", - " return y, S, H\n", - "\n", - "def jacobH(q, delta, x, i):\n", - " \"\"\"\n", - " Calculates the jacobian of the measurement function\n", - " \n", - " :param q: the range from the system pose to the landmark\n", - " :param delta: the difference between a landmark position and the estimated system position\n", - " :param x: the state, including the estimated system position\n", - " :param i: landmark id + 1\n", - " :returns: the jacobian H\n", - " \"\"\"\n", - " sq = math.sqrt(q)\n", - " G = np.array([[-sq * delta[0, 0], - sq * delta[1, 0], 0, sq * delta[0, 0], sq * delta[1, 0]],\n", - " [delta[1, 0], - delta[0, 0], - q, - delta[1, 0], delta[0, 0]]])\n", - "\n", - " G = G / q\n", - " nLM = calc_n_LM(x)\n", - " F1 = np.hstack((np.eye(3), np.zeros((3, 2 * nLM))))\n", - " F2 = np.hstack((np.zeros((2, 3)), np.zeros((2, 2 * (i - 1))),\n", - " np.eye(2), np.zeros((2, 2 * nLM - 2 * i))))\n", - "\n", - " F = np.vstack((F1, F2))\n", - "\n", - " H = G @ F\n", - "\n", - " return H" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Observation Step\n", - "The observation step described here is outside the main EKF SLAM process and is primarily used as a method of\n", - "driving the simulation. The observations funciton is in charge of calcualting how the poses of the robots change \n", - "and accumulate error over time, and the theoretical measuremnts that are expected as a result of each \n", - "measurement. \n", - "\n", - "Observations are based on the TRUE position of the robot. Error in dead reckoning and control functions are \n", - "passed along here as well. " - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [], - "source": [ - "def observation(xTrue, xd, u, RFID):\n", - " \"\"\"\n", - " :param xTrue: the true pose of the system\n", - " :param xd: the current noisy estimate of the system\n", - " :param u: the current control input\n", - " :param RFID: the true position of the landmarks\n", - " \n", - " :returns: Computes the true position, observations, dead reckoning (noisy) position, \n", - " and noisy control function\n", - " \"\"\"\n", - " xTrue = motion_model(xTrue, u)\n", - "\n", - " # add noise to gps x-y\n", - " z = np.zeros((0, 3))\n", - "\n", - " for i in range(len(RFID[:, 0])): # Test all beacons, only add the ones we can see (within MAX_RANGE)\n", - "\n", - " dx = RFID[i, 0] - xTrue[0, 0]\n", - " dy = RFID[i, 1] - xTrue[1, 0]\n", - " d = math.sqrt(dx**2 + dy**2)\n", - " angle = pi_2_pi(math.atan2(dy, dx) - xTrue[2, 0])\n", - " if d <= MAX_RANGE:\n", - " dn = d + np.random.randn() * Qsim[0, 0] # add noise\n", - " anglen = angle + np.random.randn() * Qsim[1, 1] # add noise\n", - " zi = np.array([dn, anglen, i])\n", - " z = np.vstack((z, zi))\n", - "\n", - " # add noise to input\n", - " ud = np.array([[\n", - " u[0, 0] + np.random.randn() * Rsim[0, 0],\n", - " u[1, 0] + np.random.randn() * Rsim[1, 1]]]).T\n", - "\n", - " xd = motion_model(xd, ud)\n", - " return xTrue, z, xd, ud" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [], - "source": [ - "def calc_n_LM(x):\n", - " \"\"\"\n", - " Calculates the number of landmarks currently tracked in the state\n", - " :param x: the state\n", - " :returns: the number of landmarks n\n", - " \"\"\"\n", - " n = int((len(x) - STATE_SIZE) / LM_SIZE)\n", - " return n\n", - "\n", - "\n", - "def jacob_motion(x, u):\n", - " \"\"\"\n", - " Calculates the jacobian of motion model. \n", - " \n", - " :param x: The state, including the estimated position of the system\n", - " :param u: The control function\n", - " :returns: G: Jacobian\n", - " Fx: STATE_SIZE x (STATE_SIZE + 2 * num_landmarks) matrix where the left side is an identity matrix\n", - " \"\"\"\n", - " \n", - " # [eye(3) [0 x y; 0 x y; 0 x y]]\n", - " Fx = np.hstack((np.eye(STATE_SIZE), np.zeros(\n", - " (STATE_SIZE, LM_SIZE * calc_n_LM(x)))))\n", - "\n", - " jF = np.array([[0.0, 0.0, -DT * u[0] * math.sin(x[2, 0])],\n", - " [0.0, 0.0, DT * u[0] * math.cos(x[2, 0])],\n", - " [0.0, 0.0, 0.0]])\n", - "\n", - " G = np.eye(STATE_SIZE) + Fx.T @ jF @ Fx\n", - " if calc_n_LM(x) > 0:\n", - " print(Fx.shape)\n", - " return G, Fx,\n", - "\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "def calc_LM_Pos(x, z):\n", - " \"\"\"\n", - " Calcualtes the pose in the world coordinate frame of a landmark at the given measurement. \n", - "\n", - " :param x: [x; y; theta]\n", - " :param z: [range; bearing]\n", - " :returns: [x; y] for given measurement\n", - " \"\"\"\n", - " zp = np.zeros((2, 1))\n", - "\n", - " zp[0, 0] = x[0, 0] + z[0] * math.cos(x[2, 0] + z[1])\n", - " zp[1, 0] = x[1, 0] + z[0] * math.sin(x[2, 0] + z[1])\n", - " #zp[0, 0] = x[0, 0] + z[0, 0] * math.cos(x[2, 0] + z[0, 1])\n", - " #zp[1, 0] = x[1, 0] + z[0, 0] * math.sin(x[2, 0] + z[0, 1])\n", - "\n", - " return zp\n", - "\n", - "\n", - "def get_LM_Pos_from_state(x, ind):\n", - " \"\"\"\n", - " Returns the position of a given landmark\n", - " \n", - " :param x: The state containing all landmark positions\n", - " :param ind: landmark id\n", - " :returns: The position of the landmark\n", - " \"\"\"\n", - " lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :]\n", - "\n", - " return lm\n", - "\n", - "\n", - "def search_correspond_LM_ID(xAug, PAug, zi):\n", - " \"\"\"\n", - " Landmark association with Mahalanobis distance.\n", - " \n", - " If this landmark is at least M_DIST_TH units away from all known landmarks, \n", - " it is a NEW landmark.\n", - " \n", - " :param xAug: The estimated state\n", - " :param PAug: The estimated covariance\n", - " :param zi: the read measurements of specific landmark\n", - " :returns: landmark id\n", - " \"\"\"\n", - "\n", - " nLM = calc_n_LM(xAug)\n", - "\n", - " mdist = []\n", - "\n", - " for i in range(nLM):\n", - " lm = get_LM_Pos_from_state(xAug, i)\n", - " y, S, H = calc_innovation(lm, xAug, PAug, zi, i)\n", - " mdist.append(y.T @ np.linalg.inv(S) @ y)\n", - "\n", - " mdist.append(M_DIST_TH) # new landmark\n", - "\n", - " minid = mdist.index(min(mdist))\n", - "\n", - " return minid\n", - "\n", - "def calc_input():\n", - " v = 1.0 # [m/s]\n", - " yawrate = 0.1 # [rad/s]\n", - " u = np.array([[v, yawrate]]).T\n", - " return u\n", - "\n", - "def pi_2_pi(angle):\n", - " return (angle + math.pi) % (2 * math.pi) - math.pi" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "def main():\n", - " print(\" start!!\")\n", - "\n", - " time = 0.0\n", - "\n", - " # RFID positions [x, y]\n", - " RFID = np.array([[10.0, -2.0],\n", - " [15.0, 10.0],\n", - " [3.0, 15.0],\n", - " [-5.0, 20.0]])\n", - "\n", - " # State Vector [x y yaw v]'\n", - " xEst = np.zeros((STATE_SIZE, 1))\n", - " xTrue = np.zeros((STATE_SIZE, 1))\n", - " PEst = np.eye(STATE_SIZE)\n", - "\n", - " xDR = np.zeros((STATE_SIZE, 1)) # Dead reckoning\n", - "\n", - " # history\n", - " hxEst = xEst\n", - " hxTrue = xTrue\n", - " hxDR = xTrue\n", - "\n", - " while SIM_TIME >= time:\n", - " time += DT\n", - " u = calc_input()\n", - "\n", - " xTrue, z, xDR, ud = observation(xTrue, xDR, u, RFID)\n", - "\n", - " xEst, PEst = ekf_slam(xEst, PEst, ud, z)\n", - "\n", - " x_state = xEst[0:STATE_SIZE]\n", - "\n", - " # store data history\n", - " hxEst = np.hstack((hxEst, x_state))\n", - " hxDR = np.hstack((hxDR, xDR))\n", - " hxTrue = np.hstack((hxTrue, xTrue))\n", - "\n", - " if show_animation: # pragma: no cover\n", - " plt.cla()\n", - "\n", - " plt.plot(RFID[:, 0], RFID[:, 1], \"*k\")\n", - " plt.plot(xEst[0], xEst[1], \".r\")\n", - "\n", - " # plot landmark\n", - " for i in range(calc_n_LM(xEst)):\n", - " plt.plot(xEst[STATE_SIZE + i * 2],\n", - " xEst[STATE_SIZE + i * 2 + 1], \"xg\")\n", - "\n", - " plt.plot(hxTrue[0, :],\n", - " hxTrue[1, :], \"-b\")\n", - " plt.plot(hxDR[0, :],\n", - " hxDR[1, :], \"-k\")\n", - " plt.plot(hxEst[0, :],\n", - " hxEst[1, :], \"-r\")\n", - " plt.axis(\"equal\")\n", - " plt.grid(True)\n", - " plt.pause(0.001)" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " start!!\n", - "New LM\n", - "New LM\n", - "New LM\n" - ] - }, - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "window.mpl = {};\n", - "\n", - "\n", - "mpl.get_websocket_type = function() {\n", - " if (typeof(WebSocket) !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof(MozWebSocket) !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert('Your browser does not have WebSocket support.' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.');\n", - " };\n", - "}\n", - "\n", - "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = (this.ws.binaryType != undefined);\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById(\"mpl-warnings\");\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent = (\n", - " \"This browser does not support binary websocket messages. \" +\n", - " \"Performance may be slow.\");\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = $('
');\n", - " this._root_extra_style(this.root)\n", - " this.root.attr('style', 'display: inline-block');\n", - "\n", - " $(parent_element).append(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", - " fig.send_message(\"send_image_mode\", {});\n", - " if (mpl.ratio != 1) {\n", - " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", - " }\n", - " fig.send_message(\"refresh\", {});\n", - " }\n", - "\n", - " this.imageObj.onload = function() {\n", - " if (fig.image_mode == 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function() {\n", - " fig.ws.close();\n", - " }\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "}\n", - "\n", - "mpl.figure.prototype._init_header = function() {\n", - " var titlebar = $(\n", - " '
');\n", - " var titletext = $(\n", - " '
');\n", - " titlebar.append(titletext)\n", - " this.root.append(titlebar);\n", - " this.header = titletext[0];\n", - "}\n", - "\n", - "\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "\n", - "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", - "\n", - "}\n", - "\n", - "mpl.figure.prototype._init_canvas = function() {\n", - " var fig = this;\n", - "\n", - " var canvas_div = $('
');\n", - "\n", - " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", - "\n", - " function canvas_keyboard_event(event) {\n", - " return fig.key_event(event, event['data']);\n", - " }\n", - "\n", - " canvas_div.keydown('key_press', canvas_keyboard_event);\n", - " canvas_div.keyup('key_release', canvas_keyboard_event);\n", - " this.canvas_div = canvas_div\n", - " this._canvas_extra_style(canvas_div)\n", - " this.root.append(canvas_div);\n", - "\n", - " var canvas = $('');\n", - " canvas.addClass('mpl-canvas');\n", - " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", - "\n", - " this.canvas = canvas[0];\n", - " this.context = canvas[0].getContext(\"2d\");\n", - "\n", - " var backingStore = this.context.backingStorePixelRatio ||\n", - "\tthis.context.webkitBackingStorePixelRatio ||\n", - "\tthis.context.mozBackingStorePixelRatio ||\n", - "\tthis.context.msBackingStorePixelRatio ||\n", - "\tthis.context.oBackingStorePixelRatio ||\n", - "\tthis.context.backingStorePixelRatio || 1;\n", - "\n", - " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband = $('');\n", - " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", - "\n", - " var pass_mouse_events = true;\n", - "\n", - " canvas_div.resizable({\n", - " start: function(event, ui) {\n", - " pass_mouse_events = false;\n", - " },\n", - " resize: function(event, ui) {\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " stop: function(event, ui) {\n", - " pass_mouse_events = true;\n", - " fig.request_resize(ui.size.width, ui.size.height);\n", - " },\n", - " });\n", - "\n", - " function mouse_event_fn(event) {\n", - " if (pass_mouse_events)\n", - " return fig.mouse_event(event, event['data']);\n", - " }\n", - "\n", - " rubberband.mousedown('button_press', mouse_event_fn);\n", - " rubberband.mouseup('button_release', mouse_event_fn);\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband.mousemove('motion_notify', mouse_event_fn);\n", - "\n", - " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", - " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", - "\n", - " canvas_div.on(\"wheel\", function (event) {\n", - " event = event.originalEvent;\n", - " event['data'] = 'scroll'\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " mouse_event_fn(event);\n", - " });\n", - "\n", - " canvas_div.append(canvas);\n", - " canvas_div.append(rubberband);\n", - "\n", - " this.rubberband = rubberband;\n", - " this.rubberband_canvas = rubberband[0];\n", - " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", - " this.rubberband_context.strokeStyle = \"#000000\";\n", - "\n", - " this._resize_canvas = function(width, height) {\n", - " // Keep the size of the canvas, canvas container, and rubber band\n", - " // canvas in synch.\n", - " canvas_div.css('width', width)\n", - " canvas_div.css('height', height)\n", - "\n", - " canvas.attr('width', width * mpl.ratio);\n", - " canvas.attr('height', height * mpl.ratio);\n", - " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", - "\n", - " rubberband.attr('width', width);\n", - " rubberband.attr('height', height);\n", - " }\n", - "\n", - " // Set the figure to an initial 600x600px, this will subsequently be updated\n", - " // upon first draw.\n", - " this._resize_canvas(600, 600);\n", - "\n", - " // Disable right mouse context menu.\n", - " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", - " return false;\n", - " });\n", - "\n", - " function set_focus () {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "}\n", - "\n", - "mpl.figure.prototype._init_toolbar = function() {\n", - " var fig = this;\n", - "\n", - " var nav_element = $('
')\n", - " nav_element.attr('style', 'width: 100%');\n", - " this.root.append(nav_element);\n", - "\n", - " // Define a callback function for later on.\n", - " function toolbar_event(event) {\n", - " return fig.toolbar_button_onclick(event['data']);\n", - " }\n", - " function toolbar_mouse_event(event) {\n", - " return fig.toolbar_button_onmouseover(event['data']);\n", - " }\n", - "\n", - " for(var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " // put a spacer in here.\n", - " continue;\n", - " }\n", - " var button = $('