|
| 1 | +# 188. Best Time to Buy and Sell Stock IV |
| 2 | + |
| 3 | +**<font color=red>难度: Hard</font>** |
| 4 | + |
| 5 | +## 刷题内容 |
| 6 | + |
| 7 | +> 原题连接 |
| 8 | +
|
| 9 | +* https://leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/description/ |
| 10 | + |
| 11 | +> 内容描述 |
| 12 | +
|
| 13 | +``` |
| 14 | +Say you have an array for which the ith element is the price of a given stock on day i. |
| 15 | +
|
| 16 | +Design an algorithm to find the maximum profit. You may complete at most two transactions. |
| 17 | +
|
| 18 | +Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again). |
| 19 | +
|
| 20 | +Example 1: |
| 21 | +
|
| 22 | +Input: [3,3,5,0,0,3,1,4] |
| 23 | +Output: 6 |
| 24 | +Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3. |
| 25 | + Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3. |
| 26 | +Example 2: |
| 27 | +
|
| 28 | +Input: [1,2,3,4,5] |
| 29 | +Output: 4 |
| 30 | +Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4. |
| 31 | + Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are |
| 32 | + engaging multiple transactions at the same time. You must sell before buying again. |
| 33 | +Example 3: |
| 34 | +
|
| 35 | +Input: [7,6,4,3,1] |
| 36 | +Output: 0 |
| 37 | +Explanation: In this case, no transaction is done, i.e. max profit = 0. |
| 38 | +``` |
| 39 | + |
| 40 | +## 解题方案 |
| 41 | + |
| 42 | +> 思路 1 |
| 43 | +******- 时间复杂度: O(k*N^2)******- 空间复杂度: O(k*N)****** |
| 44 | + |
| 45 | +dp[k][i]代表在第i天完成第k次交易的最大profit |
| 46 | + |
| 47 | +因此状态方程为dp[k][i] = max(dp[k][i-1], prices[i]-prices[j]+dp[k-1][j-1]),其中0 < j <= i |
| 48 | + |
| 49 | +意思就是在第i天完成第k次交易的最大profit就是,在```第i-1天完成第k次交易的最大profit```与 |
| 50 | +```在j-1天完成前k-1次交易的最大profit(然后在第j天最后一次买入股票,并在第i天卖出)```两者中的最大值 |
| 51 | + |
| 52 | +另外这里还有一个trick就是当K >= len(prices)//2 的时候,实际上就跟无限次交易一样了 |
| 53 | + |
| 54 | +但是这样还是超时了 |
| 55 | + |
| 56 | +``` |
| 57 | +class Solution(object): |
| 58 | + def maxProfit(self, k, prices): |
| 59 | + """ |
| 60 | + :type k: int |
| 61 | + :type prices: List[int] |
| 62 | + :rtype: int |
| 63 | + """ |
| 64 | + K = k |
| 65 | + if K >= len(prices) // 2: |
| 66 | + return sum([max(prices[i+1]-prices[i], 0) for i in range(len(prices)-1)]) |
| 67 | + if not prices or len(prices) == 0: |
| 68 | + return 0 |
| 69 | + dp = [[0] * len(prices) for i in range(K+1)] |
| 70 | + for k in range(1, K+1): |
| 71 | + for i in range(1, len(prices)): |
| 72 | + min_ = prices[0] |
| 73 | + for j in range(1, i+1): |
| 74 | + min_ = min(min_, prices[j]-dp[k-1][j-1]) |
| 75 | + dp[k][i] = max(dp[k][i-1], prices[i]-min_) |
| 76 | + return dp[-1][-1] |
| 77 | +``` |
| 78 | + |
| 79 | + |
| 80 | +> 思路 2 |
| 81 | +******- 时间复杂度: O(k*N)******- 空间复杂度: O(k*N)****** |
| 82 | + |
| 83 | + |
| 84 | +我们可以通过多加一个min_列表来记录prices[i]-prices[j]+dp[k-1][j-1],这样不用每次都重新计算1 <= j <= i的循环 |
| 85 | + |
| 86 | +beats 61.47% |
| 87 | + |
| 88 | +```python |
| 89 | +class Solution(object): |
| 90 | + def maxProfit(self, k, prices): |
| 91 | + """ |
| 92 | + :type k: int |
| 93 | + :type prices: List[int] |
| 94 | + :rtype: int |
| 95 | + """ |
| 96 | + K = k |
| 97 | + if K >= len(prices) // 2: |
| 98 | + return sum([max(prices[i+1]-prices[i], 0) for i in range(len(prices)-1)]) |
| 99 | + if not prices or len(prices) == 0: |
| 100 | + return 0 |
| 101 | + dp, min_ = [[0] * len(prices) for i in range(K+1)], [prices[0]] * (K+1) |
| 102 | + for i in range(1, len(prices)): |
| 103 | + for k in range(1, K+1): |
| 104 | + min_[k] = min(min_[k], prices[i]-dp[k-1][i-1]) |
| 105 | + dp[k][i] = max(dp[k][i-1], prices[i]-min_[k]) |
| 106 | + return dp[-1][-1] |
| 107 | +``` |
| 108 | + |
| 109 | + |
| 110 | + |
| 111 | +> 思路 3 |
| 112 | +******- 时间复杂度: O(k*N)******- 空间复杂度: O(k)****** |
| 113 | + |
| 114 | + |
| 115 | +想想看,其实空间还可以压缩,那就是跟刚才思路1到思路2的改进思想一样,我们把dp[k][i]也全部记录下来,其中0 <= i <= len(prices), |
| 116 | + |
| 117 | +意思就是说现在的dp[k]就等于原来的min([dp[k][i] for i in range(0, len(prices)]) |
| 118 | + |
| 119 | +beats 90.54% |
| 120 | + |
| 121 | +```python |
| 122 | +class Solution(object): |
| 123 | + def maxProfit(self, k, prices): |
| 124 | + """ |
| 125 | + :type k: int |
| 126 | + :type prices: List[int] |
| 127 | + :rtype: int |
| 128 | + """ |
| 129 | + K = k |
| 130 | + if K >= len(prices) // 2: |
| 131 | + return sum([max(prices[i+1]-prices[i], 0) for i in range(len(prices)-1)]) |
| 132 | + if not prices or len(prices) == 0: |
| 133 | + return 0 |
| 134 | + dp, min_ = [0] * (K+1), [prices[0]] * (K+1) |
| 135 | + for i in range(1, len(prices)): |
| 136 | + for k in range(1, K+1): |
| 137 | + min_[k] = min(min_[k], prices[i]-dp[k-1]) |
| 138 | + dp[k] = max(dp[k], prices[i]-min_[k]) |
| 139 | + return dp[-1] |
| 140 | +``` |
| 141 | + |
| 142 | + |
| 143 | + |
| 144 | + |
| 145 | + |
| 146 | + |
| 147 | + |
| 148 | + |
| 149 | + |
| 150 | + |
| 151 | + |
| 152 | + |
| 153 | + |
| 154 | + |
| 155 | + |
| 156 | + |
| 157 | + |
| 158 | + |
| 159 | + |
| 160 | + |
| 161 | + |
| 162 | + |
| 163 | + |
0 commit comments