Skip to content

Commit 5ea663d

Browse files
authored
Update README.md
1 parent 90b1fe2 commit 5ea663d

File tree

1 file changed

+10
-2
lines changed

1 file changed

+10
-2
lines changed

README.md

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ Jupyter notebooks covering a wide range of functions and operations on the topic
2626

2727
* Polynomial regression with how to use ***scikit-learn pipeline feature*** ([check the article I wrote on *Towards Data Science*](https://towardsdatascience.com/machine-learning-with-python-easy-and-robust-method-to-fit-nonlinear-data-19e8a1ddbd49))
2828
* Decision trees and Random Forest regression (showing how the Random Forest works as a robust/regularized meta-estimator rejecting overfitting)
29-
29+
-----
3030
### Classification
3131
* Logistic regression/classification
3232
<img src="https://qph.fs.quoracdn.net/main-qimg-914b29e777e78b44b67246b66a4d6d71"/>
@@ -37,6 +37,8 @@ Jupyter notebooks covering a wide range of functions and operations on the topic
3737
<img src="https://docs.opencv.org/2.4/_images/optimal-hyperplane.png"/>
3838
* Naive Bayes classification
3939

40+
---
41+
4042
### Clustering
4143
<img src="https://i.ytimg.com/vi/IJt62uaZR-M/maxresdefault.jpg" width="450" height="300"/>
4244

@@ -47,14 +49,20 @@ Jupyter notebooks covering a wide range of functions and operations on the topic
4749
* Hierarchical clustering with Dendograms showing how to choose optimal number of clusters
4850
<img src="https://www.researchgate.net/profile/Carsten_Walther/publication/273456906/figure/fig3/AS:294866065084419@1447312956501/Example-of-hierarchical-clustering-clusters-are-consecutively-merged-with-the-most.png" width="700" height="400"/>
4951

52+
---
53+
5054
### Dimensionality reduction
5155
* Principal component analysis
5256

5357
<img src="https://i.ytimg.com/vi/QP43Iy-QQWY/maxresdefault.jpg" width="450" height="300"/>
5458

59+
---
60+
5561
### Deep Learning/Neural Network
5662
* Demo notebook to illustrate the superiority of deep neural network for complex nonlinear function approximation task.
57-
* Step-by-step building of 1-hidden-layer and 2-hidden-layer dense network using basic TensorFlow methods
63+
* Step-by-step building of 1-hidden-layer and 2-hidden-layer dense network using basic TensorFlow methods
64+
65+
---
5866

5967
## Random data generation using symbolic expressions
6068
* How to use [Sympy package](https://www.sympy.org/en/index.html) to generate random datasets using symbolic mathematical expressions. Here is my article on Medium on this topic: [Random regression and classification problem generation with symbolic expression](https://towardsdatascience.com/random-regression-and-classification-problem-generation-with-symbolic-expression-a4e190e37b8d)

0 commit comments

Comments
 (0)