Skip to content

Commit df86995

Browse files
committed
beginn titanic exercise
1 parent 8e1b75c commit df86995

File tree

2 files changed

+1192
-0
lines changed

2 files changed

+1192
-0
lines changed
Lines changed: 300 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,300 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"# Visualizing the Titanic Desaster"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"### Introduction:\n",
15+
"\n",
16+
"This exercise is based on the titanic Desaster dataset avaiable at [Kaggle](https://www.kaggle.com/c/titanic)\n",
17+
"\n",
18+
"\n",
19+
"### Step 1. Import the necessary libraries"
20+
]
21+
},
22+
{
23+
"cell_type": "code",
24+
"execution_count": null,
25+
"metadata": {
26+
"collapsed": false
27+
},
28+
"outputs": [],
29+
"source": []
30+
},
31+
{
32+
"cell_type": "markdown",
33+
"metadata": {},
34+
"source": [
35+
"### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv). "
36+
]
37+
},
38+
{
39+
"cell_type": "markdown",
40+
"metadata": {},
41+
"source": [
42+
"### Step 3. Assign it to a variable called "
43+
]
44+
},
45+
{
46+
"cell_type": "code",
47+
"execution_count": null,
48+
"metadata": {
49+
"collapsed": false
50+
},
51+
"outputs": [],
52+
"source": []
53+
},
54+
{
55+
"cell_type": "markdown",
56+
"metadata": {},
57+
"source": [
58+
"### Step 4. "
59+
]
60+
},
61+
{
62+
"cell_type": "code",
63+
"execution_count": null,
64+
"metadata": {
65+
"collapsed": false
66+
},
67+
"outputs": [],
68+
"source": []
69+
},
70+
{
71+
"cell_type": "markdown",
72+
"metadata": {},
73+
"source": [
74+
"### Step 5. "
75+
]
76+
},
77+
{
78+
"cell_type": "code",
79+
"execution_count": null,
80+
"metadata": {
81+
"collapsed": false
82+
},
83+
"outputs": [],
84+
"source": []
85+
},
86+
{
87+
"cell_type": "markdown",
88+
"metadata": {},
89+
"source": [
90+
"### Step 6. "
91+
]
92+
},
93+
{
94+
"cell_type": "code",
95+
"execution_count": null,
96+
"metadata": {
97+
"collapsed": true
98+
},
99+
"outputs": [],
100+
"source": []
101+
},
102+
{
103+
"cell_type": "markdown",
104+
"metadata": {},
105+
"source": [
106+
"### Step 7. "
107+
]
108+
},
109+
{
110+
"cell_type": "code",
111+
"execution_count": null,
112+
"metadata": {
113+
"collapsed": false
114+
},
115+
"outputs": [],
116+
"source": []
117+
},
118+
{
119+
"cell_type": "markdown",
120+
"metadata": {},
121+
"source": [
122+
"### Step 8. "
123+
]
124+
},
125+
{
126+
"cell_type": "code",
127+
"execution_count": null,
128+
"metadata": {
129+
"collapsed": false
130+
},
131+
"outputs": [],
132+
"source": []
133+
},
134+
{
135+
"cell_type": "markdown",
136+
"metadata": {},
137+
"source": [
138+
"### Step 9. "
139+
]
140+
},
141+
{
142+
"cell_type": "code",
143+
"execution_count": null,
144+
"metadata": {
145+
"collapsed": false
146+
},
147+
"outputs": [],
148+
"source": []
149+
},
150+
{
151+
"cell_type": "markdown",
152+
"metadata": {},
153+
"source": [
154+
"### Step 10. "
155+
]
156+
},
157+
{
158+
"cell_type": "code",
159+
"execution_count": null,
160+
"metadata": {
161+
"collapsed": false
162+
},
163+
"outputs": [],
164+
"source": []
165+
},
166+
{
167+
"cell_type": "markdown",
168+
"metadata": {},
169+
"source": [
170+
"### Step 11. "
171+
]
172+
},
173+
{
174+
"cell_type": "code",
175+
"execution_count": null,
176+
"metadata": {
177+
"collapsed": false
178+
},
179+
"outputs": [],
180+
"source": []
181+
},
182+
{
183+
"cell_type": "markdown",
184+
"metadata": {},
185+
"source": [
186+
"### Step 12. "
187+
]
188+
},
189+
{
190+
"cell_type": "code",
191+
"execution_count": null,
192+
"metadata": {
193+
"collapsed": false
194+
},
195+
"outputs": [],
196+
"source": []
197+
},
198+
{
199+
"cell_type": "markdown",
200+
"metadata": {},
201+
"source": [
202+
"### Step 13. "
203+
]
204+
},
205+
{
206+
"cell_type": "code",
207+
"execution_count": null,
208+
"metadata": {
209+
"collapsed": false
210+
},
211+
"outputs": [],
212+
"source": []
213+
},
214+
{
215+
"cell_type": "markdown",
216+
"metadata": {},
217+
"source": [
218+
"### Step 14. "
219+
]
220+
},
221+
{
222+
"cell_type": "code",
223+
"execution_count": null,
224+
"metadata": {
225+
"collapsed": true
226+
},
227+
"outputs": [],
228+
"source": []
229+
},
230+
{
231+
"cell_type": "markdown",
232+
"metadata": {},
233+
"source": [
234+
"### Step 15. "
235+
]
236+
},
237+
{
238+
"cell_type": "code",
239+
"execution_count": null,
240+
"metadata": {
241+
"collapsed": true
242+
},
243+
"outputs": [],
244+
"source": []
245+
},
246+
{
247+
"cell_type": "markdown",
248+
"metadata": {},
249+
"source": [
250+
"### Step 16. "
251+
]
252+
},
253+
{
254+
"cell_type": "code",
255+
"execution_count": null,
256+
"metadata": {
257+
"collapsed": true
258+
},
259+
"outputs": [],
260+
"source": []
261+
},
262+
{
263+
"cell_type": "markdown",
264+
"metadata": {},
265+
"source": [
266+
"### BONUS: Create your own question and answer it."
267+
]
268+
},
269+
{
270+
"cell_type": "code",
271+
"execution_count": null,
272+
"metadata": {
273+
"collapsed": true
274+
},
275+
"outputs": [],
276+
"source": []
277+
}
278+
],
279+
"metadata": {
280+
"kernelspec": {
281+
"display_name": "Python 2",
282+
"language": "python",
283+
"name": "python2"
284+
},
285+
"language_info": {
286+
"codemirror_mode": {
287+
"name": "ipython",
288+
"version": 2
289+
},
290+
"file_extension": ".py",
291+
"mimetype": "text/x-python",
292+
"name": "python",
293+
"nbconvert_exporter": "python",
294+
"pygments_lexer": "ipython2",
295+
"version": "2.7.11"
296+
}
297+
},
298+
"nbformat": 4,
299+
"nbformat_minor": 0
300+
}

0 commit comments

Comments
 (0)