Skip to content

Commit 9f10e63

Browse files
Merge pull request #178 from SciML/Projecttomls
Split project tomls
2 parents d236910 + e6b01cf commit 9f10e63

File tree

14 files changed

+98
-98
lines changed

14 files changed

+98
-98
lines changed

.github/workflows/CompatHelper.yml

Lines changed: 6 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -8,19 +8,15 @@ on:
88

99
jobs:
1010
build:
11-
runs-on: ${{ matrix.os }}
12-
strategy:
13-
matrix:
14-
julia-version: [1.2.0]
15-
julia-arch: [x86]
16-
os: [ubuntu-latest]
11+
runs-on: ubuntu-latest
1712
steps:
18-
- uses: julia-actions/setup-julia@latest
19-
with:
20-
version: ${{ matrix.julia-version }}
2113
- name: Pkg.add("CompatHelper")
2214
run: julia -e 'using Pkg; Pkg.add("CompatHelper")'
2315
- name: CompatHelper.main()
2416
env:
2517
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
26-
run: julia -e 'using CompatHelper; CompatHelper.main()'
18+
run: |
19+
julia -e '
20+
using CompatHelper
21+
dirs = filter(isdir, readdir("tutorials"; join=true))
22+
CompatHelper.main(; subdirs=["", dirs...])'

Project.toml

Lines changed: 1 addition & 84 deletions
Original file line numberDiff line numberDiff line change
@@ -4,95 +4,12 @@ authors = ["Chris Rackauckas <[email protected]>"]
44
version = "0.7.0"
55

66
[deps]
7-
AlgebraicMultigrid = "2169fc97-5a83-5252-b627-83903c6c433c"
8-
ArbNumerics = "7e558dbc-694d-5a72-987c-6f4ebed21442"
9-
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
10-
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
11-
CUDAnative = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
12-
Cairo = "159f3aea-2a34-519c-b102-8c37f9878175"
13-
CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
14-
DecFP = "55939f99-70c6-5e9b-8bb0-5071ed7d61fd"
15-
Decimals = "abce61dc-4473-55a0-ba07-351d65e31d42"
16-
DiffEqBayes = "ebbdde9d-f333-5424-9be2-dbf1e9acfb5e"
17-
DiffEqBiological = "eb300fae-53e8-50a0-950c-e21f52c2b7e0"
18-
DiffEqCallbacks = "459566f4-90b8-5000-8ac3-15dfb0a30def"
19-
DiffEqDevTools = "f3b72e0c-5b89-59e1-b016-84e28bfd966d"
20-
DiffEqNoiseProcess = "77a26b50-5914-5dd7-bc55-306e6241c503"
21-
DiffEqOperators = "9fdde737-9c7f-55bf-ade8-46b3f136cc48"
22-
DiffEqParamEstim = "1130ab10-4a5a-5621-a13d-e4788d82bd4c"
23-
DiffEqPhysics = "055956cb-9e8b-5191-98cc-73ae4a59e68a"
24-
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
25-
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
26-
DoubleFloats = "497a8b3b-efae-58df-a0af-a86822472b78"
27-
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
28-
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
297
IJulia = "7073ff75-c697-5162-941a-fcdaad2a7d2a"
308
InteractiveUtils = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
31-
Latexify = "23fbe1c1-3f47-55db-b15f-69d7ec21a316"
32-
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
33-
MCMCChains = "c7f686f2-ff18-58e9-bc7b-31028e88f75d"
34-
Measurements = "eff96d63-e80a-5855-80a2-b1b0885c5ab7"
35-
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
36-
NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56"
37-
NeuralNetDiffEq = "8faf48c0-8b73-11e9-0e63-2155955bfa4d"
38-
Optim = "429524aa-4258-5aef-a3af-852621145aeb"
39-
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
40-
ParameterizedFunctions = "65888b18-ceab-5e60-b2b9-181511a3b968"
419
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
42-
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
43-
PyPlot = "d330b81b-6aea-500a-939a-2ce795aea3ee"
44-
RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd"
45-
SparseDiffTools = "47a9eef4-7e08-11e9-0b38-333d64bd3804"
46-
SparsityDetection = "684fba80-ace3-11e9-3d08-3bc7ed6f96df"
47-
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
48-
StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd"
49-
StochasticDiffEq = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0"
50-
Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4"
51-
Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"
5210
Weave = "44d3d7a6-8a23-5bf8-98c5-b353f8df5ec9"
5311

5412
[compat]
55-
AlgebraicMultigrid = "0.2, 0.3"
56-
ArbNumerics = "1.0"
57-
BenchmarkTools = "0.4, 0.5"
58-
CUDA = "1.0"
59-
CUDAnative = "2.5, 3.0"
60-
Cairo = "0.8, 1.0"
61-
CuArrays = "1.4, 2.0"
62-
DecFP = "0.4, 1.0"
63-
Decimals = "0.4"
64-
DiffEqBayes = "2.8"
65-
DiffEqBiological = "4.0"
66-
DiffEqCallbacks = "2.9"
67-
DiffEqDevTools = "2.15"
68-
DiffEqNoiseProcess = "4.2"
69-
DiffEqOperators = "4.3"
70-
DiffEqParamEstim = "1.8"
71-
DiffEqPhysics = "3.2"
72-
DifferentialEquations = "6.8"
73-
Distributions = "0.21, 0.22, 0.23"
74-
DoubleFloats = "0.9, 1.0"
75-
Flux = "0.10"
76-
ForwardDiff = "0.10"
7713
IJulia = "1.20"
78-
Latexify = "0.12, 0.13"
79-
MCMCChains = "3.0, 4.0"
80-
Measurements = "2.1"
81-
ModelingToolkit = "0.9, 0.10, 1.0, 2.0, 3.0"
82-
NLsolve = "4.2"
83-
NeuralNetDiffEq = "1.5"
84-
Optim = "0.19, 0.20, 0.21"
85-
OrdinaryDiffEq = "5.23"
86-
ParameterizedFunctions = "4.2, 5.0"
87-
Plots = "0.27, 0.28, 0.29, 1.0"
88-
PyPlot = "2.8"
89-
RecursiveArrayTools = "1,2"
90-
SparseDiffTools = "0.10, 1.0"
91-
SparsityDetection = "0.1, 0.2, 0.3"
92-
StaticArrays = "0.10, 0.11, 0.12"
93-
StatsPlots = "0.12, 0.13, 0.14"
94-
StochasticDiffEq = "6.23"
95-
Sundials = "3.8, 4.0"
96-
Unitful = "0.17, 0.18, 1.0"
9714
Weave = "0.9, 0.10"
98-
julia = "1"
15+
julia = "1.4"

README.md

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -44,13 +44,15 @@ DiffEqTutorials.open_notebooks()
4444
- [DiffEqBiological Tutorial II: Network Properties API](http://tutorials.juliadiffeq.org/html/models/04-diffeqbio_II_networkproperties.html)
4545
- [DiffEqBiological Tutorial III: Steady-States and Bifurcations](http://tutorials.juliadiffeq.org/html/models/04b-diffeqbio_III_steadystates.html)
4646
- [Kepler Problem Orbit](http://tutorials.juliadiffeq.org/html/models/05-kepler_problem.html)
47-
- [Bayesian Inference of Pendulum Parameters](http://tutorials.juliadiffeq.org/html/models/06-pendulum_bayesian_inference.html)
4847
- [Kolmogorov Backward Equations](http://tutorials.juliadiffeq.org/html/models/08-kolmogorov_equations.html)
4948
- Advanced ODE Features
5049
- [ModelingToolkit.jl, An IR and Compiler for Scientific Models](http://tutorials.juliadiffeq.org/html/ode_extras/01-ModelingToolkit.html)
5150
- [Feagin's Order 10, 12, and 14 Methods](http://tutorials.juliadiffeq.org/html/ode_extras/02-feagin.html)
5251
- [Finding Maxima and Minima of DiffEq Solutions](http://tutorials.juliadiffeq.org/html/ode_extras/03-ode_minmax.html)
53-
- [Monte Carlo Parameter Estimation from Data](http://tutorials.juliadiffeq.org/html/ode_extras/04-monte_carlo_parameter_estim.html)
52+
53+
- Model Inference
54+
- [Bayesian Inference of Pendulum Parameters](http://tutorials.juliadiffeq.org/html/model_inference/01-pendulum_bayesian_inference.html)
55+
- [Monte Carlo Parameter Estimation from Data](http://tutorials.juliadiffeq.org/html/model_inference/02-monte_carlo_parameter_estim.html)
5456
- Type Handling
5557
- [Solving Equations with Julia-Defined Types](http://tutorials.juliadiffeq.org/html/type_handling/01-number_types.html)
5658
- [Numbers with Uncertainties](http://tutorials.juliadiffeq.org/html/type_handling/02-uncertainties.html)

src/DiffEqTutorials.jl

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,8 @@ latexfile = joinpath(@__DIR__, "..", "templates", "julia_tex.tpl")
88

99
function weave_file(folder,file,build_list=(:script,:html,:pdf,:github,:notebook); kwargs...)
1010
tmp = joinpath(repo_directory,"tutorials",folder,file)
11+
Pkg.activate(dirname(tmp))
12+
Pkg.instantiate()
1113
args = Dict{Symbol,String}(:folder=>folder,:file=>file)
1214
if :script build_list
1315
println("Building Script")

tutorials/advanced/01-beeler_reuter.jmd

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ author: Shahriar Iravanian
55

66
## Background
77

8-
[JuliaDiffEq](https://github.com/JuliaDiffEq) is a suite of optimized Julia libraries to solve ordinary differential equations (ODE). *JuliaDiffEq* provides a large number of explicit and implicit solvers suited for different types of ODE problems. It is possible to reduce a system of partial differential equations into an ODE problem by employing the [method of lines (MOL)](https://en.wikipedia.org/wiki/Method_of_lines). The essence of MOL is to discretize the spatial derivatives (by finite difference, finite volume or finite element methods) into algebraic equations and to keep the time derivatives as is. The resulting differential equations are left with only one independent variable (time) and can be solved with an ODE solver. [Solving Systems of Stochastic PDEs and using GPUs in Julia](http://www.stochasticlifestyle.com/solving-systems-stochastic-pdes-using-gpus-julia/) is a brief introduction to MOL and using GPUs to accelerate PDE solving in *JuliaDiffEq*. Here we expand on this introduction by developing an implicit/explicit (IMEX) solver for a 2D cardiac electrophysiology model and show how to use [CuArray](https://github.com/JuliaGPU/CuArrays.jl) and [CUDAnative](https://github.com/JuliaGPU/CUDAnative.jl) libraries to run the explicit part of the model on a GPU.
8+
[SciML](https://github.com/SciML) is a suite of optimized Julia libraries to solve ordinary differential equations (ODE). *SciML* provides a large number of explicit and implicit solvers suited for different types of ODE problems. It is possible to reduce a system of partial differential equations into an ODE problem by employing the [method of lines (MOL)](https://en.wikipedia.org/wiki/Method_of_lines). The essence of MOL is to discretize the spatial derivatives (by finite difference, finite volume or finite element methods) into algebraic equations and to keep the time derivatives as is. The resulting differential equations are left with only one independent variable (time) and can be solved with an ODE solver. [Solving Systems of Stochastic PDEs and using GPUs in Julia](http://www.stochasticlifestyle.com/solving-systems-stochastic-pdes-using-gpus-julia/) is a brief introduction to MOL and using GPUs to accelerate PDE solving in *JuliaDiffEq*. Here we expand on this introduction by developing an implicit/explicit (IMEX) solver for a 2D cardiac electrophysiology model and show how to use [CuArray](https://github.com/JuliaGPU/CuArrays.jl) and [CUDAnative](https://github.com/JuliaGPU/CUDAnative.jl) libraries to run the explicit part of the model on a GPU.
99

1010
Note that this tutorial does not use the [higher order IMEX methods built into DifferentialEquations.jl](https://docs.juliadiffeq.org/latest/solvers/split_ode_solve/#Implicit-Explicit-(IMEX)-ODE-1) but instead shows how to hand-split an equation when the explicit portion has an analytical solution (or approxiate), which is common in many scenarios.
1111

tutorials/advanced/Project.toml

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
[deps]
2+
AlgebraicMultigrid = "2169fc97-5a83-5252-b627-83903c6c433c"
3+
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
4+
CUDAnative = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
5+
CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
6+
DiffEqOperators = "9fdde737-9c7f-55bf-ade8-46b3f136cc48"
7+
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
8+
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
9+
ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"
10+
NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56"
11+
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
12+
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
13+
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
14+
SparseDiffTools = "47a9eef4-7e08-11e9-0b38-333d64bd3804"
15+
SparsityDetection = "684fba80-ace3-11e9-3d08-3bc7ed6f96df"
16+
Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4"
Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,8 @@
1+
[deps]
2+
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
3+
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
4+
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
5+
ParameterizedFunctions = "65888b18-ceab-5e60-b2b9-181511a3b968"
6+
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
7+
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
8+
Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4"
File renamed without changes.
File renamed without changes.
Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
[deps]
2+
BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
3+
CmdStan = "593b3428-ca2f-500c-ae53-031589ec8ddd"
4+
DiffEqBayes = "ebbdde9d-f333-5424-9be2-dbf1e9acfb5e"
5+
DiffEqParamEstim = "1130ab10-4a5a-5621-a13d-e4788d82bd4c"
6+
DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"
7+
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
8+
DynamicHMC = "bbc10e6e-7c05-544b-b16e-64fede858acb"
9+
Optim = "429524aa-4258-5aef-a3af-852621145aeb"
10+
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
11+
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
12+
RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd"
13+
StatsPlots = "f3b207a7-027a-5e70-b257-86293d7955fd"
14+
TransformVariables = "84d833dd-6860-57f9-a1a7-6da5db126cff"

0 commit comments

Comments
 (0)