You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: automl/README.md
+22-13Lines changed: 22 additions & 13 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -2,19 +2,21 @@
2
2
1.[Automated ML Introduction](#introduction)
3
3
1.[Running samples in Azure Notebooks](#jupyter)
4
4
1.[Running samples in a Local Conda environment](#localconda)
5
-
1.[Auto ML SDK Sample Notebooks](#samples)
5
+
1.[Automated ML SDK Sample Notebooks](#samples)
6
6
1.[Documentation](#documentation)
7
7
1.[Running using python command](#pythoncommand)
8
8
1.[Troubleshooting](#troubleshooting)
9
9
10
-
# Automated ML introduction <aname="introduction"></a>
10
+
<aname="introduction"></a>
11
+
# Automated ML introduction
11
12
Automated machine learning (automated ML) builds high quality machine learning models for you by automating model and hyperparameter selection. Bring a labelled dataset that you want to build a model for, automated ML will give you a high quality machine learning model that you can use for predictions.
12
13
13
14
If you are new to Data Science, automated ML will help you get jumpstarted by simplifying machine learning model building. It abstracts you from needing to perform model selection, hyperparameter selection and in one step creates a high quality trained model for you to use.
14
15
15
16
If you are an experienced data scientist, automated ML will help increase your productivity by intelligently performing the model and hyperparameter selection for your training and generates high quality models much quicker than manually specifying several combinations of the parameters and running training jobs. automated ML provides visibility and access to all the training jobs and the performance characteristics of the models to help you further tune the pipeline if you desire.
16
17
17
-
## Running samples in Azure Notebooks - Jupyter based notebooks in the Azure cloud <aname="jupyter"></a>
18
+
<aname="jupyter"></a>
19
+
## Running samples in Azure Notebooks - Jupyter based notebooks in the Azure cloud
## Automated ML Settings <aname="automlsettings"></a>
170
+
<aname="automlsettings"></a>
171
+
## Automated ML Settings
167
172
|Property|Description|Default|
168
173
|-|-|-|
169
174
|**primary_metric**|This is the metric that you want to optimize.<br><br> Classification supports the following primary metrics <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>balanced_accuracy</i><br><i>average_precision_score_weighted</i><br><i>precision_score_weighted</i><br><br> Regression supports the following primary metrics <br><i>spearman_correlation</i><br><i>normalized_root_mean_squared_error</i><br><i>r2_score</i><br><i>normalized_mean_absolute_error</i><br><i>normalized_root_mean_squared_log_error</i>| Classification: accuracy <br><br> Regression: spearman_correlation
@@ -177,7 +182,8 @@ automl_setup_linux.sh
177
182
|**exit_score**|*double* value indicating the target for *primary_metric*. <br> Once the target is surpassed the run terminates|None|
178
183
|**blacklist_algos**|*Array* of *strings* indicating pipelines to ignore for Auto ML.<br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGDClassifierWrapper</i><br><i>NBWrapper</i><br><i>BernoulliNB</i><br><i>SVCWrapper</i><br><i>LinearSVMWrapper</i><br><i>KNeighborsClassifier</i><br><i>DecisionTreeClassifier</i><br><i>RandomForestClassifier</i><br><i>ExtraTreesClassifier</i><br><i>gradient boosting</i><br><i>LightGBMClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoostingRegressor</i><br><i>DecisionTreeRegressor</i><br><i>KNeighborsRegressor</i><br><i>LassoLars</i><br><i>SGDRegressor</i><br><i>RandomForestRegressor</i><br><i>ExtraTreesRegressor</i>|None|
Use *n_cross_validations* setting to specify the number of cross validations. The training data set will be randomly split into *n_cross_validations* folds of equal size. During each cross validation round, one of the folds will be used for validation of the model trained on the remaining folds. This process repeats for *n_cross_validations* rounds until each fold is used once as validation set. Finally, the average scores accross all *n_cross_validations* rounds will be reported, and the corresponding model will be retrained on the whole training data set.
183
189
@@ -187,7 +193,8 @@ Use *validation_size* to specify the percentage of the training data set that sh
187
193
### Custom train and validation set
188
194
You can specify seperate train and validation set either through the get_data() or directly to the fit method.
189
195
190
-
## get_data() syntax <aname="getdata"></a>
196
+
<aname="getdata"></a>
197
+
## get_data() syntax
191
198
The *get_data()* function can be used to return a dictionary with these values:
@@ -203,7 +210,8 @@ The *get_data()* function can be used to return a dictionary with these values:
203
210
|columns|Array of strings|data_train||*Optional* Whitelist of columns to use for features|
204
211
|cv_splits_indices|Array of integers|data_train||*Optional* List of indexes to split the data for cross validation|
205
212
206
-
# Running using python command <aname="pythoncommand"></a>
213
+
<aname="pythoncommand"></a>
214
+
# Running using python command
207
215
Jupyter notebook provides a File / Download as / Python (.py) option for saving the notebook as a Python file.
208
216
You can then run this file using the python command.
209
217
However, on Windows the file needs to be modified before it can be run.
@@ -213,7 +221,8 @@ The following condition must be added to the main code in the file:
213
221
214
222
The main code of the file must be indented so that it is under this condition.
215
223
216
-
# Troubleshooting <aname="troubleshooting"></a>
224
+
<aname="troubleshooting"></a>
225
+
# Troubleshooting
217
226
## Iterations fail and the log contains "MemoryError"
218
227
This can be caused by insufficient memory on the DSVM. Automated ML loads all training data into memory. So, the available memory should be more than the training data size.
219
228
If you are using a remote DSVM, memory is needed for each concurrent iteration. The concurrent_iterations setting specifies the maximum concurrent iterations. For example, if the training data size is 8Gb and concurrent_iterations is set to 10, the minimum memory required is at least 80Gb.
0 commit comments