Skip to content

Commit 85962ee

Browse files
author
Philip Kirkbride
committed
spaces on lstm page
1 parent ec4855a commit 85962ee

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed

doc/lstm.txt

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -75,10 +75,10 @@ previous state, as needed.
7575
.. figure:: images/lstm_memorycell.png
7676
:align: center
7777

78-
**Figure 1** : Illustration of an LSTM memory cell.
78+
**Figure 1**: Illustration of an LSTM memory cell.
7979

8080
The equations below describe how a layer of memory cells is updated at every
81-
timestep :math:`t`. In these equations :
81+
timestep :math:`t`. In these equations:
8282

8383
* :math:`x_t` is the input to the memory cell layer at time :math:`t`
8484
* :math:`W_i`, :math:`W_f`, :math:`W_c`, :math:`W_o`, :math:`U_i`,
@@ -89,7 +89,7 @@ timestep :math:`t`. In these equations :
8989

9090
First, we compute the values for :math:`i_t`, the input gate, and
9191
:math:`\widetilde{C_t}` the candidate value for the states of the memory
92-
cells at time :math:`t` :
92+
cells at time :math:`t`:
9393

9494
.. math::
9595
:label: 1
@@ -102,7 +102,7 @@ cells at time :math:`t` :
102102
\widetilde{C_t} = tanh(W_c x_t + U_c h_{t-1} + b_c)
103103

104104
Second, we compute the value for :math:`f_t`, the activation of the memory
105-
cells' forget gates at time :math:`t` :
105+
cells' forget gates at time :math:`t`:
106106

107107
.. math::
108108
:label: 3
@@ -111,15 +111,15 @@ cells' forget gates at time :math:`t` :
111111

112112
Given the value of the input gate activation :math:`i_t`, the forget gate
113113
activation :math:`f_t` and the candidate state value :math:`\widetilde{C_t}`,
114-
we can compute :math:`C_t` the memory cells' new state at time :math:`t` :
114+
we can compute :math:`C_t` the memory cells' new state at time :math:`t`:
115115

116116
.. math::
117117
:label: 4
118118

119119
C_t = i_t * \widetilde{C_t} + f_t * C_{t-1}
120120

121121
With the new state of the memory cells, we can compute the value of their
122-
output gates and, subsequently, their outputs :
122+
output gates and, subsequently, their outputs:
123123

124124
.. math::
125125
:label: 5
@@ -139,7 +139,7 @@ In this variant, the activation of a cell’s output gate does not depend on the
139139
memory cell’s state :math:`C_t`. This allows us to perform part of the
140140
computation more efficiently (see the implementation note, below, for
141141
details). This means that, in the variant we have implemented, there is no
142-
matrix :math:`V_o` and equation :eq:`5` is replaced by equation :eq:`5-alt` :
142+
matrix :math:`V_o` and equation :eq:`5` is replaced by equation :eq:`5-alt`:
143143

144144
.. math::
145145
:label: 5-alt
@@ -170,7 +170,7 @@ concatenating the four matrices :math:`W_*` into a single weight matrix
170170
:math:`W` and performing the same concatenation on the weight matrices
171171
:math:`U_*` to produce the matrix :math:`U` and the bias vectors :math:`b_*`
172172
to produce the vector :math:`b`. Then, the pre-nonlinearity activations can
173-
be computed with :
173+
be computed with:
174174

175175
.. math::
176176

@@ -187,11 +187,11 @@ Code - Citations - Contact
187187
Code
188188
====
189189

190-
The LSTM implementation can be found in the two following files :
190+
The LSTM implementation can be found in the two following files:
191191

192-
* `lstm.py <http://deeplearning.net/tutorial/code/lstm.py>`_ : Main script. Defines and train the model.
192+
* `lstm.py <http://deeplearning.net/tutorial/code/lstm.py>`_: Main script. Defines and train the model.
193193

194-
* `imdb.py <http://deeplearning.net/tutorial/code/imdb.py>`_ : Secondary script. Handles the loading and preprocessing of the IMDB dataset.
194+
* `imdb.py <http://deeplearning.net/tutorial/code/imdb.py>`_: Secondary script. Handles the loading and preprocessing of the IMDB dataset.
195195

196196
After downloading both scripts and putting both in the same folder, the user
197197
can run the code by calling:
@@ -202,7 +202,7 @@ can run the code by calling:
202202

203203
The script will automatically download the data and decompress it.
204204

205-
**Note** : The provided code supports the Stochastic Gradient Descent (SGD),
205+
**Note**: The provided code supports the Stochastic Gradient Descent (SGD),
206206
AdaDelta and RMSProp optimization methods. You are advised to use AdaDelta or
207207
RMSProp because SGD appears to performs poorly on this task with this
208208
particular model.

0 commit comments

Comments
 (0)