Skip to content

Commit d829400

Browse files
author
Philip Kirkbride
committed
remove spaces in dA page
1 parent 1867a4e commit d829400

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

doc/dA.txt

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ Denoising Autoencoders (dA)
66
.. note::
77
This section assumes the reader has already read through :doc:`logreg`
88
and :doc:`mlp`. Additionally it uses the following Theano functions
9-
and concepts : `T.tanh`_, `shared variables`_, `basic arithmetic ops`_, `T.grad`_, `Random numbers`_, `floatX`_. If you intend to run the code on GPU also read `GPU`_.
9+
and concepts: `T.tanh`_, `shared variables`_, `basic arithmetic ops`_, `T.grad`_, `Random numbers`_, `floatX`_. If you intend to run the code on GPU also read `GPU`_.
1010

1111
.. _T.tanh: http://deeplearning.net/software/theano/tutorial/examples.html?highlight=tanh
1212

@@ -126,7 +126,7 @@ signal:
126126
:pyobject: dA.get_reconstructed_input
127127

128128
And using these functions we can compute the cost and the updates of
129-
one stochastic gradient descent step :
129+
one stochastic gradient descent step:
130130

131131
.. literalinclude:: ../code/dA.py
132132
:pyobject: dA.get_cost_updates
@@ -209,7 +209,7 @@ need to do is to add a stochastic corruption step operating on the input. The in
209209
corrupted in many ways, but in this tutorial we will stick to the original
210210
corruption mechanism of randomly masking entries of the input by making
211211
them zero. The code below
212-
does just that :
212+
does just that:
213213

214214
.. literalinclude:: ../code/dA.py
215215
:pyobject: dA.get_corrupted_input
@@ -221,7 +221,7 @@ For this reason, the constructor of the ``dA`` also gets Theano variables
221221
pointing to the shared parameters. If those parameters are left to ``None``,
222222
new ones will be constructed.
223223

224-
The final denoising autoencoder class becomes :
224+
The final denoising autoencoder class becomes:
225225

226226
.. literalinclude:: ../code/dA.py
227227
:pyobject: dA
@@ -254,7 +254,7 @@ constant (weights are converted to values between 0 and 1).
254254
To plot our filters we will need the help of ``tile_raster_images`` (see
255255
:ref:`how-to-plot`) so we urge the reader to study it. Also
256256
using the help of the Python Image Library, the following lines of code will
257-
save the filters as an image :
257+
save the filters as an image:
258258

259259
.. literalinclude:: ../code/dA.py
260260
:start-after: start-snippet-4
@@ -264,20 +264,20 @@ save the filters as an image :
264264
Running the Code
265265
++++++++++++++++
266266

267-
To run the code :
267+
To run the code:
268268

269269
.. code-block:: bash
270270

271271
python dA.py
272272

273-
The resulted filters when we do not use any noise are :
273+
The resulted filters when we do not use any noise are:
274274

275275
.. figure:: images/filters_corruption_0.png
276276
:align: center
277277

278278

279279

280-
The filters for 30 percent noise :
280+
The filters for 30 percent noise:
281281

282282

283283
.. figure:: images/filters_corruption_30.png

0 commit comments

Comments
 (0)