|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "<h1 align=\"center\"> Anagrams using Python </h1>" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "## What is an Anagram?" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [ |
| 21 | + "Anagram is a word or phrase formed by rearranging the letters of a different word or phrase, typically using all the original letters exactly once." |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "markdown", |
| 26 | + "metadata": {}, |
| 27 | + "source": [ |
| 28 | + "Task: Write a program that takes in a word list and outputs a list of all the words that are anagrams of another word in the list." |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "markdown", |
| 33 | + "metadata": {}, |
| 34 | + "source": [ |
| 35 | + "While there are many different ways to solve this problem, this notebook gives a couple different approaches to solve this problem. \n", |
| 36 | + "For each of the approaches below, we first define a word list" |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 1, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [], |
| 44 | + "source": [ |
| 45 | + "word_list = ['percussion',\n", |
| 46 | + " 'supersonic',\n", |
| 47 | + " 'car',\n", |
| 48 | + " 'tree',\n", |
| 49 | + " 'boy',\n", |
| 50 | + " 'girl',\n", |
| 51 | + " 'arc']" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "markdown", |
| 56 | + "metadata": {}, |
| 57 | + "source": [ |
| 58 | + "## Approach 1: For Loop" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": 2, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "temp = word_list[0]" |
| 68 | + ] |
| 69 | + }, |
| 70 | + { |
| 71 | + "cell_type": "code", |
| 72 | + "execution_count": 3, |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [ |
| 75 | + { |
| 76 | + "data": { |
| 77 | + "text/plain": [ |
| 78 | + "['c', 'e', 'i', 'n', 'o', 'p', 'r', 's', 's', 'u']" |
| 79 | + ] |
| 80 | + }, |
| 81 | + "execution_count": 3, |
| 82 | + "metadata": {}, |
| 83 | + "output_type": "execute_result" |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "sorted(temp)" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": 4, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [ |
| 95 | + { |
| 96 | + "data": { |
| 97 | + "text/plain": [ |
| 98 | + "['percussion', 'supersonic', 'car', 'tree', 'boy', 'girl', 'arc']" |
| 99 | + ] |
| 100 | + }, |
| 101 | + "execution_count": 4, |
| 102 | + "metadata": {}, |
| 103 | + "output_type": "execute_result" |
| 104 | + } |
| 105 | + ], |
| 106 | + "source": [ |
| 107 | + "word_list" |
| 108 | + ] |
| 109 | + }, |
| 110 | + { |
| 111 | + "cell_type": "code", |
| 112 | + "execution_count": 5, |
| 113 | + "metadata": {}, |
| 114 | + "outputs": [], |
| 115 | + "source": [ |
| 116 | + "# initialize a list\n", |
| 117 | + "anagram_list = []\n", |
| 118 | + "\n", |
| 119 | + "for word_1 in word_list: \n", |
| 120 | + " for word_2 in word_list: \n", |
| 121 | + " if word_1 != word_2 and (sorted(word_1)==sorted(word_2)):\n", |
| 122 | + " anagram_list.append(word_1)" |
| 123 | + ] |
| 124 | + }, |
| 125 | + { |
| 126 | + "cell_type": "code", |
| 127 | + "execution_count": 6, |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [ |
| 130 | + { |
| 131 | + "name": "stdout", |
| 132 | + "output_type": "stream", |
| 133 | + "text": [ |
| 134 | + "['percussion', 'supersonic', 'car', 'arc']\n" |
| 135 | + ] |
| 136 | + } |
| 137 | + ], |
| 138 | + "source": [ |
| 139 | + "print(anagram_list)" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "code", |
| 144 | + "execution_count": 7, |
| 145 | + "metadata": {}, |
| 146 | + "outputs": [ |
| 147 | + { |
| 148 | + "name": "stdout", |
| 149 | + "output_type": "stream", |
| 150 | + "text": [ |
| 151 | + "['c', 'e', 'i', 'n', 'o', 'p', 'r', 's', 's', 'u']\n" |
| 152 | + ] |
| 153 | + } |
| 154 | + ], |
| 155 | + "source": [ |
| 156 | + "print(sorted('percussion'))" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "code", |
| 161 | + "execution_count": 8, |
| 162 | + "metadata": {}, |
| 163 | + "outputs": [ |
| 164 | + { |
| 165 | + "name": "stdout", |
| 166 | + "output_type": "stream", |
| 167 | + "text": [ |
| 168 | + "['c', 'e', 'i', 'n', 'o', 'p', 'r', 's', 's', 'u']\n" |
| 169 | + ] |
| 170 | + } |
| 171 | + ], |
| 172 | + "source": [ |
| 173 | + "print(sorted('supersonic'))" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "markdown", |
| 178 | + "metadata": {}, |
| 179 | + "source": [ |
| 180 | + "## Approach 2: Dictionaries" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "markdown", |
| 185 | + "metadata": {}, |
| 186 | + "source": [ |
| 187 | + "Sorting of lists in Python is O(nlogn) versus O(n) with a dictionary. If you have difficulty understanding the dictionary get method, I encourage you to see one of the following tutorials: [Python Dictionary and Dictionary Methods](https://hackernoon.com/python-basics-10-dictionaries-and-dictionary-methods-4e9efa70f5b9) or [Python Word Count](https://codeburst.io/python-basics-11-word-count-filter-out-punctuation-dictionary-manipulation-and-sorting-lists-3f6c55420855). " |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": 9, |
| 193 | + "metadata": {}, |
| 194 | + "outputs": [], |
| 195 | + "source": [ |
| 196 | + "def freq(word):\n", |
| 197 | + " freq_dict = {}\n", |
| 198 | + " for char in word:\n", |
| 199 | + " freq_dict[char] = freq_dict.get(char, 0) + 1\n", |
| 200 | + " return freq_dict " |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": 10, |
| 206 | + "metadata": {}, |
| 207 | + "outputs": [ |
| 208 | + { |
| 209 | + "name": "stdout", |
| 210 | + "output_type": "stream", |
| 211 | + "text": [ |
| 212 | + "['percussion', 'supersonic', 'car', 'arc']\n" |
| 213 | + ] |
| 214 | + } |
| 215 | + ], |
| 216 | + "source": [ |
| 217 | + "# initialize a list\n", |
| 218 | + "anagram_list = []\n", |
| 219 | + "for word_1 in word_list: \n", |
| 220 | + " for word_2 in word_list: \n", |
| 221 | + " if word_1 != word_2 and (freq(word_1) == freq(word_2)):\n", |
| 222 | + " anagram_list.append(word_1)\n", |
| 223 | + "print(anagram_list)" |
| 224 | + ] |
| 225 | + }, |
| 226 | + { |
| 227 | + "cell_type": "code", |
| 228 | + "execution_count": 11, |
| 229 | + "metadata": {}, |
| 230 | + "outputs": [ |
| 231 | + { |
| 232 | + "name": "stdout", |
| 233 | + "output_type": "stream", |
| 234 | + "text": [ |
| 235 | + "{'p': 1, 'e': 1, 'r': 1, 'c': 1, 'u': 1, 's': 2, 'i': 1, 'o': 1, 'n': 1}\n" |
| 236 | + ] |
| 237 | + } |
| 238 | + ], |
| 239 | + "source": [ |
| 240 | + "print(freq('percussion'))" |
| 241 | + ] |
| 242 | + }, |
| 243 | + { |
| 244 | + "cell_type": "code", |
| 245 | + "execution_count": 12, |
| 246 | + "metadata": {}, |
| 247 | + "outputs": [ |
| 248 | + { |
| 249 | + "name": "stdout", |
| 250 | + "output_type": "stream", |
| 251 | + "text": [ |
| 252 | + "{'s': 2, 'u': 1, 'p': 1, 'e': 1, 'r': 1, 'o': 1, 'n': 1, 'i': 1, 'c': 1}\n" |
| 253 | + ] |
| 254 | + } |
| 255 | + ], |
| 256 | + "source": [ |
| 257 | + "print(freq('supersonic'))" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": 13, |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [ |
| 265 | + { |
| 266 | + "data": { |
| 267 | + "text/plain": [ |
| 268 | + "[('c', 1),\n", |
| 269 | + " ('e', 1),\n", |
| 270 | + " ('i', 1),\n", |
| 271 | + " ('n', 1),\n", |
| 272 | + " ('o', 1),\n", |
| 273 | + " ('p', 1),\n", |
| 274 | + " ('r', 1),\n", |
| 275 | + " ('s', 2),\n", |
| 276 | + " ('u', 1)]" |
| 277 | + ] |
| 278 | + }, |
| 279 | + "execution_count": 13, |
| 280 | + "metadata": {}, |
| 281 | + "output_type": "execute_result" |
| 282 | + } |
| 283 | + ], |
| 284 | + "source": [ |
| 285 | + "sorted(list(freq('percussion').items()))" |
| 286 | + ] |
| 287 | + }, |
| 288 | + { |
| 289 | + "cell_type": "code", |
| 290 | + "execution_count": 14, |
| 291 | + "metadata": {}, |
| 292 | + "outputs": [ |
| 293 | + { |
| 294 | + "data": { |
| 295 | + "text/plain": [ |
| 296 | + "[('c', 1),\n", |
| 297 | + " ('e', 1),\n", |
| 298 | + " ('i', 1),\n", |
| 299 | + " ('n', 1),\n", |
| 300 | + " ('o', 1),\n", |
| 301 | + " ('p', 1),\n", |
| 302 | + " ('r', 1),\n", |
| 303 | + " ('s', 2),\n", |
| 304 | + " ('u', 1)]" |
| 305 | + ] |
| 306 | + }, |
| 307 | + "execution_count": 14, |
| 308 | + "metadata": {}, |
| 309 | + "output_type": "execute_result" |
| 310 | + } |
| 311 | + ], |
| 312 | + "source": [ |
| 313 | + "sorted(list(freq('supersonic').items()))" |
| 314 | + ] |
| 315 | + } |
| 316 | + ], |
| 317 | + "metadata": { |
| 318 | + "anaconda-cloud": {}, |
| 319 | + "kernelspec": { |
| 320 | + "display_name": "Python 3", |
| 321 | + "language": "python", |
| 322 | + "name": "python3" |
| 323 | + }, |
| 324 | + "language_info": { |
| 325 | + "codemirror_mode": { |
| 326 | + "name": "ipython", |
| 327 | + "version": 3 |
| 328 | + }, |
| 329 | + "file_extension": ".py", |
| 330 | + "mimetype": "text/x-python", |
| 331 | + "name": "python", |
| 332 | + "nbconvert_exporter": "python", |
| 333 | + "pygments_lexer": "ipython3", |
| 334 | + "version": "3.6.8" |
| 335 | + } |
| 336 | + }, |
| 337 | + "nbformat": 4, |
| 338 | + "nbformat_minor": 2 |
| 339 | +} |
0 commit comments