|
107 | 107 | }, |
108 | 108 | { |
109 | 109 | "data": { |
110 | | - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 53;\n var nbb_unformatted_code = \"df\";\n var nbb_formatted_code = \"df\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 110 | + "application/javascript": [ |
| 111 | + "\n", |
| 112 | + " setTimeout(function() {\n", |
| 113 | + " var nbb_cell_id = 53;\n", |
| 114 | + " var nbb_unformatted_code = \"df\";\n", |
| 115 | + " var nbb_formatted_code = \"df\";\n", |
| 116 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 117 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 118 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 119 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 120 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 121 | + " }\n", |
| 122 | + " break;\n", |
| 123 | + " }\n", |
| 124 | + " }\n", |
| 125 | + " }, 500);\n", |
| 126 | + " " |
| 127 | + ], |
111 | 128 | "text/plain": [ |
112 | 129 | "<IPython.core.display.Javascript object>" |
113 | 130 | ] |
|
149 | 166 | }, |
150 | 167 | { |
151 | 168 | "data": { |
152 | | - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 54;\n var nbb_unformatted_code = \"df.info()\";\n var nbb_formatted_code = \"df.info()\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 169 | + "application/javascript": [ |
| 170 | + "\n", |
| 171 | + " setTimeout(function() {\n", |
| 172 | + " var nbb_cell_id = 54;\n", |
| 173 | + " var nbb_unformatted_code = \"df.info()\";\n", |
| 174 | + " var nbb_formatted_code = \"df.info()\";\n", |
| 175 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 176 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 177 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 178 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 179 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 180 | + " }\n", |
| 181 | + " break;\n", |
| 182 | + " }\n", |
| 183 | + " }\n", |
| 184 | + " }, 500);\n", |
| 185 | + " " |
| 186 | + ], |
153 | 187 | "text/plain": [ |
154 | 188 | "<IPython.core.display.Javascript object>" |
155 | 189 | ] |
|
476 | 510 | }, |
477 | 511 | { |
478 | 512 | "data": { |
479 | | - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 10;\n var nbb_unformatted_code = \"df.rolling(3).mean()\";\n var nbb_formatted_code = \"df.rolling(3).mean()\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 513 | + "application/javascript": [ |
| 514 | + "\n", |
| 515 | + " setTimeout(function() {\n", |
| 516 | + " var nbb_cell_id = 10;\n", |
| 517 | + " var nbb_unformatted_code = \"df.rolling(3).mean()\";\n", |
| 518 | + " var nbb_formatted_code = \"df.rolling(3).mean()\";\n", |
| 519 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 520 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 521 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 522 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 523 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 524 | + " }\n", |
| 525 | + " break;\n", |
| 526 | + " }\n", |
| 527 | + " }\n", |
| 528 | + " }, 500);\n", |
| 529 | + " " |
| 530 | + ], |
480 | 531 | "text/plain": [ |
481 | 532 | "<IPython.core.display.Javascript object>" |
482 | 533 | ] |
|
565 | 616 | }, |
566 | 617 | { |
567 | 618 | "data": { |
568 | | - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 6;\n var nbb_unformatted_code = \"df['date'].dt.time\";\n var nbb_formatted_code = \"df[\\\"date\\\"].dt.time\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 619 | + "application/javascript": [ |
| 620 | + "\n", |
| 621 | + " setTimeout(function() {\n", |
| 622 | + " var nbb_cell_id = 6;\n", |
| 623 | + " var nbb_unformatted_code = \"df['date'].dt.time\";\n", |
| 624 | + " var nbb_formatted_code = \"df[\\\"date\\\"].dt.time\";\n", |
| 625 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 626 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 627 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 628 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 629 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 630 | + " }\n", |
| 631 | + " break;\n", |
| 632 | + " }\n", |
| 633 | + " }\n", |
| 634 | + " }, 500);\n", |
| 635 | + " " |
| 636 | + ], |
569 | 637 | "text/plain": [ |
570 | 638 | "<IPython.core.display.Javascript object>" |
571 | 639 | ] |
|
742 | 810 | }, |
743 | 811 | { |
744 | 812 | "data": { |
745 | | - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 28;\n var nbb_unformatted_code = \"df.loc['2019':]\";\n var nbb_formatted_code = \"df.loc[\\\"2019\\\":]\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 813 | + "application/javascript": [ |
| 814 | + "\n", |
| 815 | + " setTimeout(function() {\n", |
| 816 | + " var nbb_cell_id = 28;\n", |
| 817 | + " var nbb_unformatted_code = \"df.loc['2019':]\";\n", |
| 818 | + " var nbb_formatted_code = \"df.loc[\\\"2019\\\":]\";\n", |
| 819 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 820 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 821 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 822 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 823 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 824 | + " }\n", |
| 825 | + " break;\n", |
| 826 | + " }\n", |
| 827 | + " }\n", |
| 828 | + " }, 500);\n", |
| 829 | + " " |
| 830 | + ], |
746 | 831 | "text/plain": [ |
747 | 832 | "<IPython.core.display.Javascript object>" |
748 | 833 | ] |
|
835 | 920 | }, |
836 | 921 | { |
837 | 922 | "data": { |
838 | | - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 31;\n var nbb_unformatted_code = \"# Get dates ranging from 2021/7/20 to 2021/7/25\\nnew_index = pd.date_range('2021-07-20', '2021-07-25')\\n\\n# Conform Series to new index\\nnew_s = s.reindex(new_index, fill_value=0)\\nnew_s \";\n var nbb_formatted_code = \"# Get dates ranging from 2021/7/20 to 2021/7/25\\nnew_index = pd.date_range(\\\"2021-07-20\\\", \\\"2021-07-25\\\")\\n\\n# Conform Series to new index\\nnew_s = s.reindex(new_index, fill_value=0)\\nnew_s\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 923 | + "application/javascript": [ |
| 924 | + "\n", |
| 925 | + " setTimeout(function() {\n", |
| 926 | + " var nbb_cell_id = 31;\n", |
| 927 | + " var nbb_unformatted_code = \"# Get dates ranging from 2021/7/20 to 2021/7/25\\nnew_index = pd.date_range('2021-07-20', '2021-07-25')\\n\\n# Conform Series to new index\\nnew_s = s.reindex(new_index, fill_value=0)\\nnew_s \";\n", |
| 928 | + " var nbb_formatted_code = \"# Get dates ranging from 2021/7/20 to 2021/7/25\\nnew_index = pd.date_range(\\\"2021-07-20\\\", \\\"2021-07-25\\\")\\n\\n# Conform Series to new index\\nnew_s = s.reindex(new_index, fill_value=0)\\nnew_s\";\n", |
| 929 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 930 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 931 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 932 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 933 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 934 | + " }\n", |
| 935 | + " break;\n", |
| 936 | + " }\n", |
| 937 | + " }\n", |
| 938 | + " }, 500);\n", |
| 939 | + " " |
| 940 | + ], |
839 | 941 | "text/plain": [ |
840 | 942 | "<IPython.core.display.Javascript object>" |
841 | 943 | ] |
|
1027 | 1129 | }, |
1028 | 1130 | { |
1029 | 1131 | "data": { |
1030 | | - "application/javascript": "\n setTimeout(function() {\n var nbb_cell_id = 33;\n var nbb_unformatted_code = \"filtered_df = df[df.date <= \\\"2021-07-21\\\"]\\nfiltered_df\";\n var nbb_formatted_code = \"filtered_df = df[df.date <= \\\"2021-07-21\\\"]\\nfiltered_df\";\n var nbb_cells = Jupyter.notebook.get_cells();\n for (var i = 0; i < nbb_cells.length; ++i) {\n if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n nbb_cells[i].set_text(nbb_formatted_code);\n }\n break;\n }\n }\n }, 500);\n ", |
| 1132 | + "application/javascript": [ |
| 1133 | + "\n", |
| 1134 | + " setTimeout(function() {\n", |
| 1135 | + " var nbb_cell_id = 33;\n", |
| 1136 | + " var nbb_unformatted_code = \"filtered_df = df[df.date <= \\\"2021-07-21\\\"]\\nfiltered_df\";\n", |
| 1137 | + " var nbb_formatted_code = \"filtered_df = df[df.date <= \\\"2021-07-21\\\"]\\nfiltered_df\";\n", |
| 1138 | + " var nbb_cells = Jupyter.notebook.get_cells();\n", |
| 1139 | + " for (var i = 0; i < nbb_cells.length; ++i) {\n", |
| 1140 | + " if (nbb_cells[i].input_prompt_number == nbb_cell_id) {\n", |
| 1141 | + " if (nbb_cells[i].get_text() == nbb_unformatted_code) {\n", |
| 1142 | + " nbb_cells[i].set_text(nbb_formatted_code);\n", |
| 1143 | + " }\n", |
| 1144 | + " break;\n", |
| 1145 | + " }\n", |
| 1146 | + " }\n", |
| 1147 | + " }, 500);\n", |
| 1148 | + " " |
| 1149 | + ], |
1031 | 1150 | "text/plain": [ |
1032 | 1151 | "<IPython.core.display.Javascript object>" |
1033 | 1152 | ] |
|
1040 | 1159 | "filtered_df = df[df.date <= \"2021-07-21\"]\n", |
1041 | 1160 | "filtered_df" |
1042 | 1161 | ] |
| 1162 | + }, |
| 1163 | + { |
| 1164 | + "cell_type": "markdown", |
| 1165 | + "id": "b8fe252a", |
| 1166 | + "metadata": {}, |
| 1167 | + "source": [ |
| 1168 | + "### resample: Resample Time-Series Data" |
| 1169 | + ] |
| 1170 | + }, |
| 1171 | + { |
| 1172 | + "cell_type": "markdown", |
| 1173 | + "id": "d02e971a", |
| 1174 | + "metadata": {}, |
| 1175 | + "source": [ |
| 1176 | + "If you want to change the frequency of time-series data, use `resample`. In the code below, I use `resample` to show the records every two days instead of every day. " |
| 1177 | + ] |
| 1178 | + }, |
| 1179 | + { |
| 1180 | + "cell_type": "code", |
| 1181 | + "execution_count": 11, |
| 1182 | + "id": "7a17658f", |
| 1183 | + "metadata": { |
| 1184 | + "ExecuteTime": { |
| 1185 | + "end_time": "2022-02-10T15:31:00.856020Z", |
| 1186 | + "start_time": "2022-02-10T15:31:00.837008Z" |
| 1187 | + } |
| 1188 | + }, |
| 1189 | + "outputs": [ |
| 1190 | + { |
| 1191 | + "data": { |
| 1192 | + "text/plain": [ |
| 1193 | + "2022-02-01 1\n", |
| 1194 | + "2022-02-02 1\n", |
| 1195 | + "2022-02-03 0\n", |
| 1196 | + "2022-02-04 2\n", |
| 1197 | + "2022-02-05 4\n", |
| 1198 | + "2022-02-06 9\n", |
| 1199 | + "Freq: D, dtype: int64" |
| 1200 | + ] |
| 1201 | + }, |
| 1202 | + "execution_count": 11, |
| 1203 | + "metadata": {}, |
| 1204 | + "output_type": "execute_result" |
| 1205 | + } |
| 1206 | + ], |
| 1207 | + "source": [ |
| 1208 | + "import pandas as pd \n", |
| 1209 | + "from numpy.random import randint\n", |
| 1210 | + "\n", |
| 1211 | + "index = pd.date_range(\"2022-02-01\", \"2022-02-6\")\n", |
| 1212 | + "s = pd.Series(index=index, data=randint(0, 10, 6))\n", |
| 1213 | + "s " |
| 1214 | + ] |
| 1215 | + }, |
| 1216 | + { |
| 1217 | + "cell_type": "code", |
| 1218 | + "execution_count": 12, |
| 1219 | + "id": "97a546dc", |
| 1220 | + "metadata": { |
| 1221 | + "ExecuteTime": { |
| 1222 | + "end_time": "2022-02-10T15:31:04.676673Z", |
| 1223 | + "start_time": "2022-02-10T15:31:04.660037Z" |
| 1224 | + } |
| 1225 | + }, |
| 1226 | + "outputs": [ |
| 1227 | + { |
| 1228 | + "data": { |
| 1229 | + "text/plain": [ |
| 1230 | + "2022-02-01 2\n", |
| 1231 | + "2022-02-03 2\n", |
| 1232 | + "2022-02-05 13\n", |
| 1233 | + "Freq: 2D, dtype: int64" |
| 1234 | + ] |
| 1235 | + }, |
| 1236 | + "execution_count": 12, |
| 1237 | + "metadata": {}, |
| 1238 | + "output_type": "execute_result" |
| 1239 | + } |
| 1240 | + ], |
| 1241 | + "source": [ |
| 1242 | + "s.resample('2D').sum()" |
| 1243 | + ] |
1043 | 1244 | } |
1044 | 1245 | ], |
1045 | 1246 | "metadata": { |
1046 | 1247 | "kernelspec": { |
1047 | | - "display_name": "Python 3 (ipykernel)", |
| 1248 | + "display_name": "Python 3", |
1048 | 1249 | "language": "python", |
1049 | 1250 | "name": "python3" |
1050 | 1251 | }, |
|
0 commit comments