|
| 1 | +from __future__ import absolute_import |
| 2 | +from __future__ import division |
| 3 | +from __future__ import print_function |
| 4 | + |
| 5 | +import argparse |
| 6 | +import os |
| 7 | +import pprint |
| 8 | + |
| 9 | +import torch |
| 10 | +import torch.nn.parallel |
| 11 | +import torch.backends.cudnn as cudnn |
| 12 | +import torch.optim |
| 13 | +import torch.utils.data |
| 14 | +import torch.utils.data.distributed |
| 15 | +import torchvision.transforms as transforms |
| 16 | + |
| 17 | +import _init_paths |
| 18 | +from config import cfg |
| 19 | +from config import update_config |
| 20 | +from core.loss import JointsMSELoss |
| 21 | +from core.function import validate |
| 22 | +from utils.utils import create_logger |
| 23 | + |
| 24 | +import dataset |
| 25 | +import models |
| 26 | + |
| 27 | +def parse_args(): |
| 28 | + parser = argparse.ArgumentParser(description="Run and visualize keypoints network for image or video.") |
| 29 | + # general |
| 30 | + parser.add_argument("--cfg", |
| 31 | + help="Configuration file name", |
| 32 | + required=True, |
| 33 | + type=str) |
| 34 | + |
| 35 | + parser.add_argument("opts", |
| 36 | + help="Modify config options using the command-line", |
| 37 | + default=None, |
| 38 | + nargs=argparse.REMAINDER) |
| 39 | + |
| 40 | + parser.add_argument("--modelDir", |
| 41 | + help="model directory", |
| 42 | + type=str, |
| 43 | + default="") |
| 44 | + parser.add_argument("--logDir", |
| 45 | + help="log directory", |
| 46 | + type=str, |
| 47 | + default="") |
| 48 | + parser.add_argument("--dataDir", |
| 49 | + help="data directory", |
| 50 | + type=str, |
| 51 | + default="") |
| 52 | + parser.add_argument("--prevModelDir", |
| 53 | + help="prev Model directory", |
| 54 | + type=str, |
| 55 | + default="") |
| 56 | + parser.add_argument("--visualize", |
| 57 | + help="Visualize the results", |
| 58 | + type=bool, |
| 59 | + default=False) |
| 60 | + parser.add_argument("--input", |
| 61 | + help="Input image file", |
| 62 | + type=str, |
| 63 | + default="") |
| 64 | + parser.add_argument("--video", |
| 65 | + help="Input video file", |
| 66 | + type=str, |
| 67 | + default="") |
| 68 | + |
| 69 | + args = parser.parse_args() |
| 70 | + return args |
| 71 | + |
| 72 | +def main(): |
| 73 | + args = parse_args() |
| 74 | + update_config(cfg, args) |
| 75 | + |
| 76 | + # Create a logger |
| 77 | + logger, final_output_dir, tb_log_dir = create_logger( |
| 78 | + cfg, args.cfg, 'valid') |
| 79 | + logger.info(pprint.pformat(args)) |
| 80 | + logger.info(cfg) |
| 81 | + |
| 82 | + # cudnn related setting |
| 83 | + cudnn.benchmark = cfg.CUDNN.BENCHMARK |
| 84 | + torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC |
| 85 | + torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED |
| 86 | + |
| 87 | + # Configure model |
| 88 | + model = eval('models.'+cfg.MODEL.NAME+'.get_pose_net')( |
| 89 | + cfg, is_train=False |
| 90 | + ) |
| 91 | + |
| 92 | + if cfg.TEST.MODEL_FILE: |
| 93 | + logger.info('=> loading model from {}'.format(cfg.TEST.MODEL_FILE)) |
| 94 | + model.load_state_dict(torch.load(cfg.TEST.MODEL_FILE), strict=False) |
| 95 | + else: |
| 96 | + model_state_file = os.path.join( |
| 97 | + final_output_dir, 'final_state.pth' |
| 98 | + ) |
| 99 | + logger.info('=> loading model from {}'.format(model_state_file)) |
| 100 | + model.load_state_dict(torch.load(model_state_file)) |
| 101 | + |
| 102 | + model = torch.nn.DataParallel(model, device_ids=cfg.GPUS).cuda() |
| 103 | + |
| 104 | + # define loss function (criterion) and optimizer |
| 105 | + criterion = JointsMSELoss( |
| 106 | + use_target_weight=cfg.LOSS.USE_TARGET_WEIGHT |
| 107 | + ).cuda() |
| 108 | + |
| 109 | + # Data loading code |
| 110 | + normalize = transforms.Normalize( |
| 111 | + mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] |
| 112 | + ) |
| 113 | + |
| 114 | + # Load data |
| 115 | + if args.input != "": |
| 116 | + with open(args.input, "r") as image: |
| 117 | + # TODO: Write a way to handle single images |
| 118 | + # TODO: Handle visualization |
| 119 | + pass |
| 120 | + elif args.video: |
| 121 | + # TODO: Write a way to handle videos image by image |
| 122 | + # TODO: Handle visualization |
| 123 | + pass |
| 124 | + else: |
| 125 | + # Original dataset way |
| 126 | + valid_dataset = eval('dataset.'+cfg.DATASET.DATASET)( |
| 127 | + cfg, cfg.DATASET.ROOT, cfg.DATASET.TEST_SET, False, |
| 128 | + transforms.Compose([ |
| 129 | + transforms.ToTensor(), |
| 130 | + normalize, |
| 131 | + ]) |
| 132 | + ) |
| 133 | + |
| 134 | + valid_loader = torch.utils.data.DataLoader( |
| 135 | + valid_dataset, |
| 136 | + batch_size=cfg.TEST.BATCH_SIZE_PER_GPU*len(cfg.GPUS), |
| 137 | + shuffle=False, |
| 138 | + num_workers=cfg.WORKERS, |
| 139 | + pin_memory=True |
| 140 | + ) |
| 141 | + |
| 142 | + # evaluate on validation set |
| 143 | + validate(cfg, valid_loader, valid_dataset, model, criterion, |
| 144 | + final_output_dir, tb_log_dir) |
| 145 | + |
| 146 | +if __name__ == '__main__': |
| 147 | + main() |
0 commit comments