Skip to content

Commit 7e2c1ca

Browse files
authored
Merge pull request Azure#1063 from Azure/release_update/Release-58
update samples from Release-58 as a part of SDK release
2 parents f80512a + d096535 commit 7e2c1ca

File tree

37 files changed

+265
-282
lines changed

37 files changed

+265
-282
lines changed

configuration.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,7 @@
103103
"source": [
104104
"import azureml.core\n",
105105
"\n",
106-
"print(\"This notebook was created using version 1.9.0 of the Azure ML SDK\")\n",
106+
"print(\"This notebook was created using version 1.10.0 of the Azure ML SDK\")\n",
107107
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
108108
]
109109
},

contrib/fairness/fairlearn-azureml-mitigation.ipynb

Lines changed: 16 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,22 @@
5050
"* `joblib`\n",
5151
"* `shap`\n",
5252
"\n",
53-
"\n",
53+
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
54+
]
55+
},
56+
{
57+
"cell_type": "code",
58+
"execution_count": null,
59+
"metadata": {},
60+
"outputs": [],
61+
"source": [
62+
"# !pip install --upgrade scikit-learn>=0.22.1"
63+
]
64+
},
65+
{
66+
"cell_type": "markdown",
67+
"metadata": {},
68+
"source": [
5469
"<a id=\"LoadingData\"></a>\n",
5570
"## Loading the Data\n",
5671
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"

contrib/fairness/fairlearn-azureml-mitigation.yml

Lines changed: 0 additions & 8 deletions
This file was deleted.

contrib/fairness/upload-fairness-dashboard.ipynb

Lines changed: 16 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -52,9 +52,22 @@
5252
"* `joblib`\n",
5353
"* `shap`\n",
5454
"\n",
55-
"\n",
56-
"\n",
57-
"\n",
55+
"Fairlearn relies on features introduced in v0.22.1 of `scikit-learn`. If you have an older version already installed, please uncomment and run the following cell:"
56+
]
57+
},
58+
{
59+
"cell_type": "code",
60+
"execution_count": null,
61+
"metadata": {},
62+
"outputs": [],
63+
"source": [
64+
"# !pip install --upgrade scikit-learn>=0.22.1"
65+
]
66+
},
67+
{
68+
"cell_type": "markdown",
69+
"metadata": {},
70+
"source": [
5871
"<a id=\"LoadingData\"></a>\n",
5972
"## Loading the Data\n",
6073
"We use the well-known `adult` census dataset, which we load using `shap` (for convenience). We start with a fairly unremarkable set of imports:"

contrib/fairness/upload-fairness-dashboard.yml

Lines changed: 0 additions & 8 deletions
This file was deleted.

how-to-use-azureml/automated-machine-learning/README.md

Lines changed: 0 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -230,15 +230,6 @@ You may check the version of tensorflow and uninstall as follows
230230
2) enter `pip freeze` and look for `tensorflow` , if found, the version listed should be < 1.13
231231
3) If the listed version is a not a supported version, `pip uninstall tensorflow` in the command shell and enter y for confirmation.
232232

233-
## KeyError: 'brand' when running AutoML on local compute or Azure Databricks cluster**
234-
If a new environment was created after 10 June 2020 using SDK 1.7.0 or lower, training may fail with the above error due to an update in the py-cpuinfo package. (Environments created on or before 10 June 2020 are unaffected, as well as experiments run on remote compute as cached training images are used.) To work around this issue, either of the two following steps can be taken:
235-
236-
1) Update the SDK version to 1.8.0 or higher (this will also downgrade py-cpuinfo to 5.0.0):
237-
`pip install --upgrade azureml-sdk[automl]`
238-
239-
2) Downgrade the installed version of py-cpuinfo to 5.0.0:
240-
`pip install py-cpuinfo==5.0.0`
241-
242233
## Remote run: DsvmCompute.create fails
243234
There are several reasons why the DsvmCompute.create can fail. The reason is usually in the error message but you have to look at the end of the error message for the detailed reason. Some common reasons are:
244235
1) `Compute name is invalid, it should start with a letter, be between 2 and 16 character, and only include letters (a-zA-Z), numbers (0-9) and \'-\'.` Note that underscore is not allowed in the name.

how-to-use-azureml/automated-machine-learning/automl_env.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ dependencies:
66
- python>=3.5.2,<3.6.8
77
- nb_conda
88
- matplotlib==2.1.0
9-
- numpy>=1.16.0,<=1.16.2
9+
- numpy~=1.16.0
1010
- cython
1111
- urllib3<1.24
1212
- scipy==1.4.1

how-to-use-azureml/automated-machine-learning/automl_env_mac.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ dependencies:
77
- python>=3.5.2,<3.6.8
88
- nb_conda
99
- matplotlib==2.1.0
10-
- numpy>=1.16.0,<=1.16.2
10+
- numpy~=1.16.0
1111
- cython
1212
- urllib3<1.24
1313
- scipy==1.4.1

how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@
5757
"9. Test the ACI service.\n",
5858
"\n",
5959
"In addition this notebook showcases the following features\n",
60-
"- **Blacklisting** certain pipelines\n",
60+
"- **Blocking** certain pipelines\n",
6161
"- Specifying **target metrics** to indicate stopping criteria\n",
6262
"- Handling **missing data** in the input"
6363
]
@@ -105,7 +105,7 @@
105105
"metadata": {},
106106
"outputs": [],
107107
"source": [
108-
"print(\"This notebook was created using version 1.9.0 of the Azure ML SDK\")\n",
108+
"print(\"This notebook was created using version 1.10.0 of the Azure ML SDK\")\n",
109109
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
110110
]
111111
},
@@ -314,8 +314,8 @@
314314
"|**task**|classification or regression or forecasting|\n",
315315
"|**primary_metric**|This is the metric that you want to optimize. Classification supports the following primary metrics: <br><i>accuracy</i><br><i>AUC_weighted</i><br><i>average_precision_score_weighted</i><br><i>norm_macro_recall</i><br><i>precision_score_weighted</i>|\n",
316316
"|**iteration_timeout_minutes**|Time limit in minutes for each iteration.|\n",
317-
"|**blacklist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. <br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><br>Allowed values for **Forecasting**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><i>Arima</i><br><i>Prophet</i>|\n",
318-
"| **whitelist_models** | *List* of *strings* indicating machine learning algorithms for AutoML to use in this run. Same values listed above for **blacklist_models** allowed for **whitelist_models**.|\n",
317+
"|**blocked_models** | *List* of *strings* indicating machine learning algorithms for AutoML to avoid in this run. <br><br> Allowed values for **Classification**<br><i>LogisticRegression</i><br><i>SGD</i><br><i>MultinomialNaiveBayes</i><br><i>BernoulliNaiveBayes</i><br><i>SVM</i><br><i>LinearSVM</i><br><i>KNN</i><br><i>DecisionTree</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>GradientBoosting</i><br><i>TensorFlowDNN</i><br><i>TensorFlowLinearClassifier</i><br><br>Allowed values for **Regression**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><br>Allowed values for **Forecasting**<br><i>ElasticNet</i><br><i>GradientBoosting</i><br><i>DecisionTree</i><br><i>KNN</i><br><i>LassoLars</i><br><i>SGD</i><br><i>RandomForest</i><br><i>ExtremeRandomTrees</i><br><i>LightGBM</i><br><i>TensorFlowLinearRegressor</i><br><i>TensorFlowDNN</i><br><i>Arima</i><br><i>Prophet</i>|\n",
318+
"|**allowed_models** | *List* of *strings* indicating machine learning algorithms for AutoML to use in this run. Same values listed above for **blocked_models** allowed for **allowed_models**.|\n",
319319
"|**experiment_exit_score**| Value indicating the target for *primary_metric*. <br>Once the target is surpassed the run terminates.|\n",
320320
"|**experiment_timeout_hours**| Maximum amount of time in hours that all iterations combined can take before the experiment terminates.|\n",
321321
"|**enable_early_stopping**| Flag to enble early termination if the score is not improving in the short term.|\n",
@@ -349,7 +349,7 @@
349349
" debug_log = 'automl_errors.log',\n",
350350
" compute_target=compute_target,\n",
351351
" experiment_exit_score = 0.9984,\n",
352-
" blacklist_models = ['KNN','LinearSVM'],\n",
352+
" blocked_models = ['KNN','LinearSVM'],\n",
353353
" enable_onnx_compatible_models=True,\n",
354354
" training_data = train_data,\n",
355355
" label_column_name = label,\n",

how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@
9393
"metadata": {},
9494
"outputs": [],
9595
"source": [
96-
"print(\"This notebook was created using version 1.9.0 of the Azure ML SDK\")\n",
96+
"print(\"This notebook was created using version 1.10.0 of the Azure ML SDK\")\n",
9797
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
9898
]
9999
},

0 commit comments

Comments
 (0)