Skip to content

Commit 6f867c6

Browse files
StephanieLarocquenotoraptor
authored andcommitted
added requirements for lasagne, datasetloaders and simple ITK
1 parent 5b05fab commit 6f867c6

File tree

3 files changed

+28
-3
lines changed

3 files changed

+28
-3
lines changed

doc/cnn_1D_segm.txt

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -150,6 +150,13 @@ The FCN implementation can be found in the following file:
150150
* `fcn1D.py <../code/cnn_1D_segm/fcn1D.py>`_ : Main script. Defines the model.
151151
* `train_fcn1D.py <../code/cnn_1D_segm/train_fcn1D.py>`_ : Training loop
152152

153+
Change the *dataset_loaders/config.ini* file and add the right path for the dataset:
154+
155+
[cortical_layers]
156+
157+
shared_path = /data/lisa/exp/vazquezd/datasets/cortical_layers/
158+
159+
153160
First define a *bn+relu+conv* block that returns the name of the last layer of
154161
the block. Since the implementation uses a dictionary variable *net* that keeps
155162
the layer's name as key and the actual layer object as variable, the name of the

doc/fcn_2D_segm.txt

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -174,8 +174,14 @@ The FCN-8 implementation can be found in the following file:
174174
* `[GitHub Repo] <https://github.com/fvisin/dataset_loaders>`_ Francesco Visin, Adriana Romero - Dataset loaders: a python library to load and preprocess datasets. 2017
175175

176176

177-
TODO : import model_helpers, dataset_loader, metrics
178-
TODO : remove /Tmp/romerosa path and make them relative path
177+
The user must install `Lasagne <http://lasagne.readthedocs.io/en/latest/user/installation.html>`_ ,
178+
and clone the GitHub repo `Dataset Loaders <https://github.com/fvisin/dataset_loaders>`_.
179+
180+
Change the *dataset_loaders/config.ini* file and add the right path for the dataset:
181+
182+
[polyps912]
183+
184+
shared_path = /data/lisa/exp/vazquezd/datasets/polyps_split7/
179185

180186
We used Lasagne layers, as you can see in the code below.
181187

doc/unet.txt

Lines changed: 13 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,8 +106,20 @@ The U-Net implementation can be found in the following GitHub repo:
106106

107107
* `train_unet.py <../code/unet/train_unet.py>`_ : Training loop.
108108

109-
The user can now build a U-Net with a specified number of input channels and number of classes.
110109

110+
The user must install `Lasagne <http://lasagne.readthedocs.io/en/latest/user/installation.html>`_ ,
111+
`SimpleITK <http://www.simpleitk.org/SimpleITK/resources/software.html>`_ and
112+
clone the GitHub repo `Dataset Loaders <https://github.com/fvisin/dataset_loaders>`_.
113+
114+
Change the *dataset_loaders/config.ini* file to set the right path for the dataset:
115+
116+
[isbi_em_stacks]
117+
118+
119+
shared_path = /path/to/DeepLearningTutorials/data/isbi_challenge_em_stacks
120+
121+
122+
The user can now build a U-Net with a specified number of input channels and number of classes.
111123
First include the Lasagne layers needed to define the U-Net architecture :
112124

113125
.. literalinclude:: ../code/unet/Unet_lasagne_recipes.py

0 commit comments

Comments
 (0)