@@ -103,7 +103,7 @@ The user can now build a U-Net with a specified number of input channels and num
103103
104104First include the Lasagne layers needed to define the U-Net architecture :
105105
106- .. literalinclude:: ../code/Unet_lasagne_recipes.py
106+ .. literalinclude:: ../code/unet/ Unet_lasagne_recipes.py
107107 :start-after: start-snippet-1
108108 :end-before: end-snippet-1
109109
@@ -113,25 +113,25 @@ This is needed to be able to concatenate the feature maps from the contracting t
113113
114114First the contracting path :
115115
116- .. literalinclude:: ../code/Unet_lasagne_recipes.py
116+ .. literalinclude:: ../code/unet/ Unet_lasagne_recipes.py
117117 :start-after: start-snippet-downsampling
118118 :end-before: end-snippet-downsampling
119119
120120And then the bottleneck :
121121
122- .. literalinclude:: ../code/Unet_lasagne_recipes.py
122+ .. literalinclude:: ../code/unet/ Unet_lasagne_recipes.py
123123 :start-after: start-snippet-bottleneck
124124 :end-before: end-snippet-bottleneck
125125
126126Followed by the expanding path :
127127
128- .. literalinclude:: ../code/Unet_lasagne_recipes.py
128+ .. literalinclude:: ../code/unet/ Unet_lasagne_recipes.py
129129 :start-after: start-snippet-upsampling
130130 :end-before: end-snippet-upsampling
131131
132132And finally the output path (to obtain *number of classes* feature maps):
133133
134- .. literalinclude:: ../code/Unet_lasagne_recipes.py
134+ .. literalinclude:: ../code/unet/ Unet_lasagne_recipes.py
135135 :start-after: start-snippet-output
136136 :end-before: end-snippet-output
137137
0 commit comments