|
| 1 | +# Copyright (c) Microsoft. All rights reserved. |
| 2 | +# Licensed under the MIT license. |
| 3 | + |
| 4 | +from sklearn.datasets import load_diabetes |
| 5 | +from sklearn.linear_model import Ridge |
| 6 | +from sklearn.metrics import mean_squared_error |
| 7 | +from sklearn.model_selection import train_test_split |
| 8 | +from azureml.core.run import Run |
| 9 | +from sklearn.externals import joblib |
| 10 | +import os |
| 11 | +import numpy as np |
| 12 | + |
| 13 | +os.makedirs('./outputs', exist_ok=True) |
| 14 | + |
| 15 | +X, y = load_diabetes(return_X_y=True) |
| 16 | + |
| 17 | +run = Run.get_submitted_run() |
| 18 | + |
| 19 | +X_train, X_test, y_train, y_test = train_test_split(X, y, |
| 20 | + test_size=0.2, |
| 21 | + random_state=0) |
| 22 | +data = {"train": {"X": X_train, "y": y_train}, |
| 23 | + "test": {"X": X_test, "y": y_test}} |
| 24 | + |
| 25 | +# list of numbers from 0.0 to 1.0 with a 0.05 interval |
| 26 | +alphas = np.arange(0.0, 1.0, 0.05) |
| 27 | + |
| 28 | +for alpha in alphas: |
| 29 | + # Use Ridge algorithm to create a regression model |
| 30 | + reg = Ridge(alpha=alpha) |
| 31 | + reg.fit(data["train"]["X"], data["train"]["y"]) |
| 32 | + |
| 33 | + preds = reg.predict(data["test"]["X"]) |
| 34 | + mse = mean_squared_error(preds, data["test"]["y"]) |
| 35 | + run.log('alpha', alpha) |
| 36 | + run.log('mse', mse) |
| 37 | + |
| 38 | + model_file_name = 'ridge_{0:.2f}.pkl'.format(alpha) |
| 39 | + # save model in the outputs folder so it automatically get uploaded |
| 40 | + with open(model_file_name, "wb") as file: |
| 41 | + joblib.dump(value=reg, filename=os.path.join('./outputs/', |
| 42 | + model_file_name)) |
| 43 | + |
| 44 | + print('alpha is {0:.2f}, and mse is {1:0.2f}'.format(alpha, mse)) |
0 commit comments