|  | 
|  | 1 | +{ | 
|  | 2 | + "cells": [ | 
|  | 3 | +  { | 
|  | 4 | +   "cell_type": "code", | 
|  | 5 | +   "execution_count": 33, | 
|  | 6 | +   "metadata": { | 
|  | 7 | +    "collapsed": false | 
|  | 8 | +   }, | 
|  | 9 | +   "outputs": [ | 
|  | 10 | +    { | 
|  | 11 | +     "data": { | 
|  | 12 | +      "text/plain": [ | 
|  | 13 | +       "([[0, 0, 1, 0, 1],\n", | 
|  | 14 | +       "  [0, 0, 0, 0, 0],\n", | 
|  | 15 | +       "  [1, 1, 0, 1, 1],\n", | 
|  | 16 | +       "  [0, 1, 0, 1, 1],\n", | 
|  | 17 | +       "  [1, 1, 0, 1, 0],\n", | 
|  | 18 | +       "  [0, 1, 1, 1, 1],\n", | 
|  | 19 | +       "  [1, 0, 1, 1, 0],\n", | 
|  | 20 | +       "  [0, 0, 0, 0, 1],\n", | 
|  | 21 | +       "  [1, 0, 1, 1, 1],\n", | 
|  | 22 | +       "  [1, 1, 0, 0, 1],\n", | 
|  | 23 | +       "  [0, 0, 0, 1, 1],\n", | 
|  | 24 | +       "  [1, 0, 0, 1, 1],\n", | 
|  | 25 | +       "  [1, 0, 1, 0, 1],\n", | 
|  | 26 | +       "  [0, 0, 1, 1, 1],\n", | 
|  | 27 | +       "  [1, 1, 1, 1, 0],\n", | 
|  | 28 | +       "  [1, 1, 0, 0, 0],\n", | 
|  | 29 | +       "  [1, 0, 0, 0, 0],\n", | 
|  | 30 | +       "  [1, 1, 1, 1, 1]],\n", | 
|  | 31 | +       " [[0],\n", | 
|  | 32 | +       "  [0],\n", | 
|  | 33 | +       "  [1],\n", | 
|  | 34 | +       "  [0],\n", | 
|  | 35 | +       "  [0],\n", | 
|  | 36 | +       "  [0],\n", | 
|  | 37 | +       "  [0],\n", | 
|  | 38 | +       "  [0],\n", | 
|  | 39 | +       "  [1],\n", | 
|  | 40 | +       "  [1],\n", | 
|  | 41 | +       "  [0],\n", | 
|  | 42 | +       "  [1],\n", | 
|  | 43 | +       "  [1],\n", | 
|  | 44 | +       "  [0],\n", | 
|  | 45 | +       "  [0],\n", | 
|  | 46 | +       "  [0],\n", | 
|  | 47 | +       "  [0],\n", | 
|  | 48 | +       "  [1]])" | 
|  | 49 | +      ] | 
|  | 50 | +     }, | 
|  | 51 | +     "execution_count": 33, | 
|  | 52 | +     "metadata": {}, | 
|  | 53 | +     "output_type": "execute_result" | 
|  | 54 | +    } | 
|  | 55 | +   ], | 
|  | 56 | +   "source": [ | 
|  | 57 | +    "import numpy as np\n", | 
|  | 58 | +    "import random\n", | 
|  | 59 | +    "from collections import Counter\n", | 
|  | 60 | +    "\n", | 
|  | 61 | +    "\n", | 
|  | 62 | +    "def create_feature_sets_and_labels(test_size = 0.2):\n", | 
|  | 63 | +    "\n", | 
|  | 64 | +    "    # 5 features\n", | 
|  | 65 | +    "    features = []\n", | 
|  | 66 | +    "    features.append([[0, 0, 0, 0, 0], [0]])\n", | 
|  | 67 | +    "    features.append([[0, 0, 0, 0, 1], [0]])\n", | 
|  | 68 | +    "    features.append([[0, 0, 0, 1, 1], [0]])\n", | 
|  | 69 | +    "    features.append([[0, 0, 1, 1, 1], [0]])\n", | 
|  | 70 | +    "    features.append([[0, 1, 1, 1, 1], [0]])\n", | 
|  | 71 | +    "    features.append([[1, 1, 1, 1, 0], [0]])\n", | 
|  | 72 | +    "    features.append([[1, 1, 1, 0, 0], [0]])\n", | 
|  | 73 | +    "    features.append([[1, 1, 0, 0, 0], [0]])\n", | 
|  | 74 | +    "    features.append([[1, 0, 0, 0, 0], [0]])\n", | 
|  | 75 | +    "    features.append([[1, 0, 0, 1, 0], [0]])\n", | 
|  | 76 | +    "    features.append([[1, 0, 1, 1, 0], [0]])\n", | 
|  | 77 | +    "    features.append([[1, 1, 0, 1, 0], [0]])\n", | 
|  | 78 | +    "    features.append([[0, 1, 0, 1, 1], [0]])\n", | 
|  | 79 | +    "    features.append([[0, 0, 1, 0, 1], [0]])\n", | 
|  | 80 | +    "    # output of [1] of positions [0,4]==1\n", | 
|  | 81 | +    "    features.append([[1, 0, 0, 0, 1], [1]])\n", | 
|  | 82 | +    "    features.append([[1, 1, 0, 0, 1], [1]])\n", | 
|  | 83 | +    "    features.append([[1, 1, 1, 0, 1], [1]])\n", | 
|  | 84 | +    "    features.append([[1, 1, 1, 1, 1], [1]])\n", | 
|  | 85 | +    "    features.append([[1, 0, 0, 1, 1], [1]])\n", | 
|  | 86 | +    "    features.append([[1, 0, 1, 1, 1], [1]])\n", | 
|  | 87 | +    "    features.append([[1, 1, 0, 1, 1], [1]])\n", | 
|  | 88 | +    "    features.append([[1, 0, 1, 0, 1], [1]])\n", | 
|  | 89 | +    "\n", | 
|  | 90 | +    "    random.shuffle(features)\n", | 
|  | 91 | +    "    features = np.array(features)\n", | 
|  | 92 | +    "\n", | 
|  | 93 | +    "    testing_size = int(test_size*len(features))\n", | 
|  | 94 | +    "\n", | 
|  | 95 | +    "    train_x = list(features[:,0][:-testing_size])\n", | 
|  | 96 | +    "    train_y = list(features[:,1][:-testing_size])\n", | 
|  | 97 | +    "    test_x = list(features[:,0][-testing_size:])\n", | 
|  | 98 | +    "    test_y = list(features[:,1][-testing_size:])\n", | 
|  | 99 | +    "\n", | 
|  | 100 | +    "    return train_x,train_y,test_x,test_y\n", | 
|  | 101 | +    "\n", | 
|  | 102 | +    "if __name__ == '__main__':\n", | 
|  | 103 | +    "    train_x,train_y,test_x,test_y = create_feature_sets_and_labels()\n", | 
|  | 104 | +    "\n", | 
|  | 105 | +    "train_x, train_y" | 
|  | 106 | +   ] | 
|  | 107 | +  }, | 
|  | 108 | +  { | 
|  | 109 | +   "cell_type": "code", | 
|  | 110 | +   "execution_count": 57, | 
|  | 111 | +   "metadata": { | 
|  | 112 | +    "collapsed": false | 
|  | 113 | +   }, | 
|  | 114 | +   "outputs": [ | 
|  | 115 | +    { | 
|  | 116 | +     "name": "stdout", | 
|  | 117 | +     "output_type": "stream", | 
|  | 118 | +     "text": [ | 
|  | 119 | +      "Epoch 3 completed out of 10 cost: 0.0\n", | 
|  | 120 | +      "Epoch 5 completed out of 10 cost: 0.0\n", | 
|  | 121 | +      "Epoch 7 completed out of 10 cost: 0.0\n", | 
|  | 122 | +      "Epoch 9 completed out of 10 cost: 0.0\n", | 
|  | 123 | +      "Accuracy: 1.0\n" | 
|  | 124 | +     ] | 
|  | 125 | +    } | 
|  | 126 | +   ], | 
|  | 127 | +   "source": [ | 
|  | 128 | +    "import tensorflow as tf\n", | 
|  | 129 | +    "import numpy as np\n", | 
|  | 130 | +    "\n", | 
|  | 131 | +    "train_x,train_y,test_x,test_y = create_feature_sets_and_labels()\n", | 
|  | 132 | +    "\n", | 
|  | 133 | +    "n_nodes_hl1 = 20\n", | 
|  | 134 | +    "n_nodes_hl2 = 20\n", | 
|  | 135 | +    "\n", | 
|  | 136 | +    "n_classes = 1\n", | 
|  | 137 | +    "hm_epochs = 10\n", | 
|  | 138 | +    "\n", | 
|  | 139 | +    "x = tf.placeholder('float')\n", | 
|  | 140 | +    "y = tf.placeholder('float')\n", | 
|  | 141 | +    "\n", | 
|  | 142 | +    "hidden_1_layer = {'f_fum':n_nodes_hl1,\n", | 
|  | 143 | +    "                  'weight':tf.Variable(tf.random_normal([len(train_x[0]), n_nodes_hl1])),\n", | 
|  | 144 | +    "                  'bias':tf.Variable(tf.random_normal([n_nodes_hl1]))}\n", | 
|  | 145 | +    "\n", | 
|  | 146 | +    "hidden_2_layer = {'f_fum':n_nodes_hl2,\n", | 
|  | 147 | +    "                  'weight':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),\n", | 
|  | 148 | +    "                  'bias':tf.Variable(tf.random_normal([n_nodes_hl2]))}\n", | 
|  | 149 | +    "\n", | 
|  | 150 | +    "output_layer = {'f_fum':None,\n", | 
|  | 151 | +    "                'weight':tf.Variable(tf.random_normal([n_nodes_hl2, n_classes])),\n", | 
|  | 152 | +    "                'bias':tf.Variable(tf.random_normal([n_classes])),}\n", | 
|  | 153 | +    "\n", | 
|  | 154 | +    "\n", | 
|  | 155 | +    "def neural_network_model(data):\n", | 
|  | 156 | +    "\n", | 
|  | 157 | +    "    l1 = tf.add(tf.matmul(data,hidden_1_layer['weight']), hidden_1_layer['bias'])\n", | 
|  | 158 | +    "    l1 = tf.sigmoid(l1)\n", | 
|  | 159 | +    "\n", | 
|  | 160 | +    "    l2 = tf.add(tf.matmul(l1,hidden_2_layer['weight']), hidden_2_layer['bias'])\n", | 
|  | 161 | +    "    l2 = tf.sigmoid(l2)\n", | 
|  | 162 | +    "\n", | 
|  | 163 | +    "    output = tf.matmul(l2,output_layer['weight']) + output_layer['bias']\n", | 
|  | 164 | +    "\n", | 
|  | 165 | +    "    return output\n", | 
|  | 166 | +    "\n", | 
|  | 167 | +    "def train_neural_network(x):\n", | 
|  | 168 | +    "    prediction = neural_network_model(x)\n", | 
|  | 169 | +    "    cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )\n", | 
|  | 170 | +    "    #optimizer = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.9, beta2=0.999).minimize(cost)\n", | 
|  | 171 | +    "    optimizer = tf.train.GradientDescentOptimizer(1).minimize(cost)\n", | 
|  | 172 | +    "\n", | 
|  | 173 | +    "    with tf.Session() as sess:\n", | 
|  | 174 | +    "        sess.run(tf.global_variables_initializer())\n", | 
|  | 175 | +    "  \n", | 
|  | 176 | +    "        for epoch in range(hm_epochs):\n", | 
|  | 177 | +    "            epoch_loss = 0\n", | 
|  | 178 | +    "            i=0\n", | 
|  | 179 | +    "            while i < len(train_x):\n", | 
|  | 180 | +    "                start = i\n", | 
|  | 181 | +    "                end = i+batch_size\n", | 
|  | 182 | +    "                batch_x = np.array(train_x[start:end])\n", | 
|  | 183 | +    "                batch_y = np.array(train_y[start:end])\n", | 
|  | 184 | +    "\n", | 
|  | 185 | +    "                _, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})\n", | 
|  | 186 | +    "                epoch_loss += c\n", | 
|  | 187 | +    "                i+=batch_size\n", | 
|  | 188 | +    "                last_cost = c\n", | 
|  | 189 | +    "\n", | 
|  | 190 | +    "            if (epoch% 2) == 0 and epoch > 1:\n", | 
|  | 191 | +    "                print('Epoch', epoch+1, 'completed out of',hm_epochs,'cost:', last_cost)\n", | 
|  | 192 | +    "\n", | 
|  | 193 | +    "        correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))\n", | 
|  | 194 | +    "        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))\n", | 
|  | 195 | +    "\n", | 
|  | 196 | +    "        print('Accuracy:',accuracy.eval({x:test_x, y:test_y}))\n", | 
|  | 197 | +    "\n", | 
|  | 198 | +    "train_neural_network(x)" | 
|  | 199 | +   ] | 
|  | 200 | +  }, | 
|  | 201 | +  { | 
|  | 202 | +   "cell_type": "code", | 
|  | 203 | +   "execution_count": null, | 
|  | 204 | +   "metadata": { | 
|  | 205 | +    "collapsed": false | 
|  | 206 | +   }, | 
|  | 207 | +   "outputs": [], | 
|  | 208 | +   "source": [] | 
|  | 209 | +  } | 
|  | 210 | + ], | 
|  | 211 | + "metadata": { | 
|  | 212 | +  "kernelspec": { | 
|  | 213 | +   "display_name": "Python 3", | 
|  | 214 | +   "language": "python", | 
|  | 215 | +   "name": "python3" | 
|  | 216 | +  }, | 
|  | 217 | +  "language_info": { | 
|  | 218 | +   "codemirror_mode": { | 
|  | 219 | +    "name": "ipython", | 
|  | 220 | +    "version": 3 | 
|  | 221 | +   }, | 
|  | 222 | +   "file_extension": ".py", | 
|  | 223 | +   "mimetype": "text/x-python", | 
|  | 224 | +   "name": "python", | 
|  | 225 | +   "nbconvert_exporter": "python", | 
|  | 226 | +   "pygments_lexer": "ipython3", | 
|  | 227 | +   "version": "3.5.2" | 
|  | 228 | +  } | 
|  | 229 | + }, | 
|  | 230 | + "nbformat": 4, | 
|  | 231 | + "nbformat_minor": 1 | 
|  | 232 | +} | 
0 commit comments