Skip to content

Commit 6d11cdf

Browse files
authored
Merge pull request Azure#984 from Azure/release_update/Release-53
update samples from Release-53 as a part of SDK release
2 parents 12c06a4 + 11e8ed2 commit 6d11cdf

File tree

74 files changed

+1073
-701
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

74 files changed

+1073
-701
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -40,6 +40,7 @@ The [How to use Azure ML](./how-to-use-azureml) folder contains specific example
4040
- [Deployment](./how-to-use-azureml/deployment) - Examples showing how to deploy and manage machine learning models and solutions
4141
- [Azure Databricks](./how-to-use-azureml/azure-databricks) - Examples showing how to use Azure ML with Azure Databricks
4242
- [Monitor Models](./how-to-use-azureml/monitor-models) - Examples showing how to enable model monitoring services such as DataDrift
43+
- [Reinforcement Learning](./how-to-use-azureml/reinforcement-learning) - Examples showing how to train reinforcement learning agents
4344

4445
---
4546
## Documentation

configuration.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,7 @@
103103
"source": [
104104
"import azureml.core\n",
105105
"\n",
106-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
106+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
107107
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
108108
]
109109
},

how-to-use-azureml/automated-machine-learning/README.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -144,7 +144,7 @@ jupyter notebook
144144
- Dataset: forecasting for a bike-sharing
145145
- Example of training an automated ML forecasting model on multiple time-series
146146

147-
- [auto-ml-forecasting-function.ipynb](forecasting-high-frequency/auto-ml-forecasting-function.ipynb)
147+
- [auto-ml-forecasting-function.ipynb](forecasting-forecast-function/auto-ml-forecasting-function.ipynb)
148148
- Example of training an automated ML forecasting model on multiple time-series
149149

150150
- [auto-ml-forecasting-beer-remote.ipynb](forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb)

how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -105,7 +105,7 @@
105105
"metadata": {},
106106
"outputs": [],
107107
"source": [
108-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
108+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
109109
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
110110
]
111111
},

how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@
9393
"metadata": {},
9494
"outputs": [],
9595
"source": [
96-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
96+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
9797
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
9898
]
9999
},

how-to-use-azureml/automated-machine-learning/classification-text-dnn/auto-ml-classification-text-dnn.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@
9797
"metadata": {},
9898
"outputs": [],
9999
"source": [
100-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
100+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
101101
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
102102
]
103103
},

how-to-use-azureml/automated-machine-learning/continuous-retraining/auto-ml-continuous-retraining.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -88,7 +88,7 @@
8888
"metadata": {},
8989
"outputs": [],
9090
"source": [
91-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
91+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
9292
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
9393
]
9494
},

how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,7 @@
114114
"metadata": {},
115115
"outputs": [],
116116
"source": [
117-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
117+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
118118
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
119119
]
120120
},

how-to-use-azureml/automated-machine-learning/forecasting-bike-share/auto-ml-forecasting-bike-share.ipynb

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@
8787
"metadata": {},
8888
"outputs": [],
8989
"source": [
90-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
90+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
9191
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
9292
]
9393
},
@@ -510,16 +510,16 @@
510510
"metadata": {},
511511
"outputs": [],
512512
"source": [
513-
"from azureml.automl.core.shared import constants, metrics\n",
513+
"from azureml.automl.core.shared import constants\n",
514+
"from azureml.automl.runtime.shared.score import scoring\n",
514515
"from sklearn.metrics import mean_absolute_error, mean_squared_error\n",
515516
"from matplotlib import pyplot as plt\n",
516517
"\n",
517518
"# use automl metrics module\n",
518-
"scores = metrics.compute_metrics_regression(\n",
519-
" df_all['predicted'],\n",
520-
" df_all[target_column_name],\n",
521-
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
522-
" None, None, None)\n",
519+
"scores = scoring.score_regression(\n",
520+
" y_test=df_all[target_column_name],\n",
521+
" y_pred=df_all['predicted'],\n",
522+
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
523523
"\n",
524524
"print(\"[Test data scores]\\n\")\n",
525525
"for key, value in scores.items(): \n",

how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.ipynb

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@
9797
"metadata": {},
9898
"outputs": [],
9999
"source": [
100-
"print(\"This notebook was created using version 1.5.0 of the Azure ML SDK\")\n",
100+
"print(\"This notebook was created using version 1.6.0 of the Azure ML SDK\")\n",
101101
"print(\"You are currently using version\", azureml.core.VERSION, \"of the Azure ML SDK\")"
102102
]
103103
},
@@ -465,7 +465,7 @@
465465
"metadata": {},
466466
"source": [
467467
"### Forecast Function\n",
468-
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see notebook on [high frequency forecasting](https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/auto-ml-forecasting-function.ipynb)."
468+
"For forecasting, we will use the forecast function instead of the predict function. Using the predict method would result in getting predictions for EVERY horizon the forecaster can predict at. This is useful when training and evaluating the performance of the forecaster at various horizons, but the level of detail is excessive for normal use. Forecast function also can handle more complicated scenarios, see the [forecast function notebook](../forecasting-forecast-function/auto-ml-forecasting-function.ipynb)."
469469
]
470470
},
471471
{
@@ -507,15 +507,15 @@
507507
"metadata": {},
508508
"outputs": [],
509509
"source": [
510-
"from azureml.automl.core.shared import constants, metrics\n",
510+
"from azureml.automl.core.shared import constants\n",
511+
"from azureml.automl.runtime.shared.score import scoring\n",
511512
"from matplotlib import pyplot as plt\n",
512513
"\n",
513514
"# use automl metrics module\n",
514-
"scores = metrics.compute_metrics_regression(\n",
515-
" df_all['predicted'],\n",
516-
" df_all[target_column_name],\n",
517-
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
518-
" None, None, None)\n",
515+
"scores = scoring.score_regression(\n",
516+
" y_test=df_all[target_column_name],\n",
517+
" y_pred=df_all['predicted'],\n",
518+
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
519519
"\n",
520520
"print(\"[Test data scores]\\n\")\n",
521521
"for key, value in scores.items(): \n",
@@ -667,15 +667,15 @@
667667
"metadata": {},
668668
"outputs": [],
669669
"source": [
670-
"from azureml.automl.core.shared import constants, metrics\n",
670+
"from azureml.automl.core.shared import constants\n",
671+
"from azureml.automl.runtime.shared.score import scoring\n",
671672
"from matplotlib import pyplot as plt\n",
672673
"\n",
673674
"# use automl metrics module\n",
674-
"scores = metrics.compute_metrics_regression(\n",
675-
" df_all['predicted'],\n",
676-
" df_all[target_column_name],\n",
677-
" list(constants.Metric.SCALAR_REGRESSION_SET),\n",
678-
" None, None, None)\n",
675+
"scores = scoring.score_regression(\n",
676+
" y_test=df_all[target_column_name],\n",
677+
" y_pred=df_all['predicted'],\n",
678+
" metrics=list(constants.Metric.SCALAR_REGRESSION_SET))\n",
679679
"\n",
680680
"print(\"[Test data scores]\\n\")\n",
681681
"for key, value in scores.items(): \n",

0 commit comments

Comments
 (0)