Skip to content

Commit c520bd1

Browse files
authored
Merge pull request Azure#884 from Azure/release_update/Release-43
update samples from Release-43 as a part of SDK release
2 parents b95a65e + d3f1212 commit c520bd1

File tree

16 files changed

+35
-88
lines changed

16 files changed

+35
-88
lines changed

how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.yml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,6 @@ dependencies:
55
- azureml-train-automl
66
- azureml-widgets
77
- matplotlib
8-
- interpret
98
- onnxruntime==1.0.0
109
- azureml-explain-model
1110
- azureml-contrib-interpret

how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb

Lines changed: 13 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -122,35 +122,22 @@
122122
"metadata": {},
123123
"outputs": [],
124124
"source": [
125-
"from azureml.core.compute import AmlCompute\n",
126-
"from azureml.core.compute import ComputeTarget\n",
125+
"from azureml.core.compute import ComputeTarget, AmlCompute\n",
126+
"from azureml.core.compute_target import ComputeTargetException\n",
127127
"\n",
128-
"# Choose a name for your AmlCompute cluster.\n",
129-
"amlcompute_cluster_name = \"cpu-cluster-1\"\n",
128+
"# Choose a name for your CPU cluster\n",
129+
"cpu_cluster_name = \"cpu-cluster-1\"\n",
130130
"\n",
131-
"found = False\n",
132-
"# Check if this compute target already exists in the workspace.\n",
133-
"cts = ws.compute_targets\n",
134-
"if amlcompute_cluster_name in cts and cts[amlcompute_cluster_name].type == 'cpu-cluster-1':\n",
135-
" found = True\n",
136-
" print('Found existing compute target.')\n",
137-
" compute_target = cts[amlcompute_cluster_name]\n",
138-
" \n",
139-
"if not found:\n",
140-
" print('Creating a new compute target...')\n",
141-
" provisioning_config = AmlCompute.provisioning_configuration(vm_size = \"STANDARD_DS12_V2\", # for GPU, use \"STANDARD_NC6\"\n",
142-
" #vm_priority = 'lowpriority', # optional\n",
143-
" max_nodes = 6)\n",
131+
"# Verify that cluster does not exist already\n",
132+
"try:\n",
133+
" compute_target = ComputeTarget(workspace=ws, name=cpu_cluster_name)\n",
134+
" print('Found existing cluster, use it.')\n",
135+
"except ComputeTargetException:\n",
136+
" compute_config = AmlCompute.provisioning_configuration(vm_size='STANDARD_DS12_V2',\n",
137+
" max_nodes=6)\n",
138+
" compute_target = ComputeTarget.create(ws, cpu_cluster_name, compute_config)\n",
144139
"\n",
145-
" # Create the cluster.\n",
146-
" compute_target = ComputeTarget.create(ws, amlcompute_cluster_name, provisioning_config)\n",
147-
" \n",
148-
"print('Checking cluster status...')\n",
149-
"# Can poll for a minimum number of nodes and for a specific timeout.\n",
150-
"# If no min_node_count is provided, it will use the scale settings for the cluster.\n",
151-
"compute_target.wait_for_completion(show_output = True, min_node_count = None, timeout_in_minutes = 20)\n",
152-
"\n",
153-
"# For a more detailed view of current AmlCompute status, use get_status()."
140+
"compute_target.wait_for_completion(show_output=True)"
154141
]
155142
},
156143
{

how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.yml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,5 +5,4 @@ dependencies:
55
- azureml-train-automl
66
- azureml-widgets
77
- matplotlib
8-
- interpret
98
- azureml-explain-model

how-to-use-azureml/automated-machine-learning/forecasting-beer-remote/auto-ml-forecasting-beer-remote.yml

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,9 @@
11
name: auto-ml-forecasting-beer-remote
22
dependencies:
3-
- fbprophet==0.5
4-
- numpy==1.16.2
53
- py-xgboost<=0.90
64
- pip:
75
- azureml-sdk
6+
- numpy==1.16.2
87
- azureml-train-automl
98
- azureml-widgets
109
- matplotlib
Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,9 @@
11
name: auto-ml-forecasting-bike-share
22
dependencies:
3-
- fbprophet==0.5
4-
- numpy==1.16.2
53
- py-xgboost<=0.90
64
- pip:
75
- azureml-sdk
6+
- numpy==1.16.2
87
- azureml-train-automl
98
- azureml-widgets
109
- matplotlib

how-to-use-azureml/automated-machine-learning/forecasting-energy-demand/auto-ml-forecasting-energy-demand.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,9 @@ name: auto-ml-forecasting-energy-demand
22
dependencies:
33
- pip:
44
- azureml-sdk
5+
- numpy==1.16.2
56
- azureml-train-automl
67
- azureml-widgets
78
- matplotlib
8-
- interpret
99
- azureml-explain-model
1010
- azureml-contrib-interpret
Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,9 @@
11
name: auto-ml-forecasting-function
22
dependencies:
3-
- fbprophet==0.5
4-
- numpy==1.16.2
53
- py-xgboost<=0.90
64
- pip:
75
- azureml-sdk
6+
- numpy==1.16.2
87
- azureml-train-automl
98
- azureml-widgets
109
- matplotlib

how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.yml

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,9 @@
11
name: auto-ml-forecasting-orange-juice-sales
22
dependencies:
3-
- fbprophet==0.5
4-
- numpy==1.16.2
53
- py-xgboost<=0.90
64
- pip:
75
- azureml-sdk
6+
- numpy==1.16.2
87
- pandas==0.23.4
98
- azureml-train-automl
109
- azureml-widgets

how-to-use-azureml/automated-machine-learning/local-run-classification-credit-card-fraud/auto-ml-classification-credit-card-fraud-local.ipynb

Lines changed: 8 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -49,8 +49,8 @@
4949
"2. Configure AutoML using `AutoMLConfig`.\n",
5050
"3. Train the model.\n",
5151
"4. Explore the results.\n",
52-
"5. Visualization model's feature importance in widget\n",
53-
"6. Explore any model's explanation\n",
52+
"5. Visualization model's feature importance in azure portal\n",
53+
"6. Explore any model's explanation and explore feature importance in azure portal\n",
5454
"7. Test the fitted model."
5555
]
5656
},
@@ -272,7 +272,7 @@
272272
"Retrieve the explanation from the best_run which includes explanations for engineered features and raw features.\n",
273273
"\n",
274274
"#### Download engineered feature importance from artifact store\n",
275-
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run."
275+
"You can use ExplanationClient to download the engineered feature explanations from the artifact store of the best_run. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
276276
]
277277
},
278278
{
@@ -283,7 +283,8 @@
283283
"source": [
284284
"client = ExplanationClient.from_run(best_run)\n",
285285
"engineered_explanations = client.download_model_explanation(raw=False)\n",
286-
"print(engineered_explanations.get_feature_importance_dict())"
286+
"print(engineered_explanations.get_feature_importance_dict())\n",
287+
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + best_run.get_portal_url())"
287288
]
288289
},
289290
{
@@ -376,7 +377,7 @@
376377
"metadata": {},
377378
"source": [
378379
"#### Use Mimic Explainer for computing and visualizing engineered feature importance\n",
379-
"The explain() method in MimicWrapper can be called with the transformed test samples to get the feature importance for the generated engineered features."
380+
"The explain() method in MimicWrapper can be called with the transformed test samples to get the feature importance for the generated engineered features. You can also use azure portal url to view the dash board visualization of the feature importance values of the engineered features."
380381
]
381382
},
382383
{
@@ -386,7 +387,8 @@
386387
"outputs": [],
387388
"source": [
388389
"engineered_explanations = explainer.explain(['local', 'global'], eval_dataset=automl_explainer_setup_obj.X_test_transform)\n",
389-
"print(engineered_explanations.get_feature_importance_dict())\n"
390+
"print(engineered_explanations.get_feature_importance_dict())\n",
391+
"print(\"You can visualize the engineered explanations under the 'Explanations (preview)' tab in the AutoML run at:-\\n\" + automl_run.get_portal_url())"
390392
]
391393
},
392394
{

how-to-use-azureml/automated-machine-learning/local-run-classification-credit-card-fraud/auto-ml-classification-credit-card-fraud-local.yml

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,5 +5,4 @@ dependencies:
55
- azureml-train-automl
66
- azureml-widgets
77
- matplotlib
8-
- interpret
98
- azureml-explain-model

0 commit comments

Comments
 (0)