Skip to content

Commit d89fd0d

Browse files
committed
address comment
1 parent 2003599 commit d89fd0d

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

docs/mllib-evaluation-metrics.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -413,13 +413,13 @@ A ranking system usually deals with a set of $M$ users
413413

414414
$$U = \left\{u_0, u_1, ..., u_{M-1}\right\}$$
415415

416-
Each user ($u_i$) having a set of $N$ ground truth relevant documents
416+
Each user ($u_i$) having a set of $N_i$ ground truth relevant documents
417417

418-
$$D_i = \left\{d_0, d_1, ..., d_{N-1}\right\}$$
418+
$$D_i = \left\{d_0, d_1, ..., d_{N_i-1}\right\}$$
419419

420-
And a list of $Q$ recommended documents, in order of decreasing relevance
420+
And a list of $Q_i$ recommended documents, in order of decreasing relevance
421421

422-
$$R_i = \left[r_0, r_1, ..., r_{Q-1}\right]$$
422+
$$R_i = \left[r_0, r_1, ..., r_{Q_i-1}\right]$$
423423

424424
The goal of the ranking system is to produce the most relevant set of documents for each user. The relevance of the
425425
sets and the effectiveness of the algorithms can be measured using the metrics listed below.
@@ -439,7 +439,7 @@ $$rel_D(r) = \begin{cases}1 & \text{if $r \in D$}, \\ 0 & \text{otherwise}.\end{
439439
Precision at k
440440
</td>
441441
<td>
442-
$p(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{k} \sum_{j=0}^{\text{min}(\left|R_i\right|, k) - 1} rel_{D_i}(R_i(j))}$
442+
$p(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{k} \sum_{j=0}^{\text{min}(Q_i, k) - 1} rel_{D_i}(R_i(j))}$
443443
</td>
444444
<td>
445445
<a href="https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Precision_at_K">Precision at k</a> is a measure of
@@ -450,7 +450,7 @@ $$rel_D(r) = \begin{cases}1 & \text{if $r \in D$}, \\ 0 & \text{otherwise}.\end{
450450
<tr>
451451
<td>Mean Average Precision</td>
452452
<td>
453-
$MAP=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{\left|D_i\right|} \sum_{j=0}^{\left|R_i\right|-1} \frac{rel_{D_i}(R_i(j))}{j + 1}}$
453+
$MAP=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{N_i} \sum_{j=0}^{Q_i-1} \frac{rel_{D_i}(R_i(j))}{j + 1}}$
454454
</td>
455455
<td>
456456
<a href="https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision">MAP</a> is a measure of how
@@ -462,10 +462,10 @@ $$rel_D(r) = \begin{cases}1 & \text{if $r \in D$}, \\ 0 & \text{otherwise}.\end{
462462
<td>Normalized Discounted Cumulative Gain</td>
463463
<td>
464464
$NDCG(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{IDCG(D_i, k)}\sum_{j=0}^{n-1}
465-
\frac{rel_{D_i}(R_i(j))}{\text{log}_2(j+2)}} \\
465+
\frac{rel_{D_i}(R_i(j))}{\text{log}(j+2)}} \\
466466
\text{Where} \\
467-
\hspace{5 mm} n = \text{min}\left(\text{max}\left(|R_i|,|D_i|\right),k\right) \\
468-
\hspace{5 mm} IDCG(D, k) = \sum_{j=0}^{\text{min}(\left|D\right|, k) - 1} \frac{1}{\text{log}_2(j+2)}$
467+
\hspace{5 mm} n = \text{min}\left(\text{max}\left(Q_i, N_i\right),k\right) \\
468+
\hspace{5 mm} IDCG(D, k) = \sum_{j=0}^{\text{min}(\left|D\right|, k) - 1} \frac{1}{\text{log}(j+2)}$
469469
</td>
470470
<td>
471471
<a href="https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG">NDCG at k</a> is a

0 commit comments

Comments
 (0)