@@ -413,13 +413,13 @@ A ranking system usually deals with a set of $M$ users
413413
414414$$ U = \left\{u_0, u_1, ..., u_{M-1}\right\} $$
415415
416- Each user ($u_i$) having a set of $N $ ground truth relevant documents
416+ Each user ($u_i$) having a set of $N_i $ ground truth relevant documents
417417
418- $$ D_i = \left\{d_0, d_1, ..., d_{N -1}\right\} $$
418+ $$ D_i = \left\{d_0, d_1, ..., d_{N_i -1}\right\} $$
419419
420- And a list of $Q $ recommended documents, in order of decreasing relevance
420+ And a list of $Q_i $ recommended documents, in order of decreasing relevance
421421
422- $$ R_i = \left[r_0, r_1, ..., r_{Q -1}\right] $$
422+ $$ R_i = \left[r_0, r_1, ..., r_{Q_i -1}\right] $$
423423
424424The goal of the ranking system is to produce the most relevant set of documents for each user. The relevance of the
425425sets and the effectiveness of the algorithms can be measured using the metrics listed below.
@@ -439,7 +439,7 @@ $$rel_D(r) = \begin{cases}1 & \text{if $r \in D$}, \\ 0 & \text{otherwise}.\end{
439439 Precision at k
440440 </td>
441441 <td>
442- $p(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{k} \sum_{j=0}^{\text{min}(\left|R_i\right| , k) - 1} rel_{D_i}(R_i(j))}$
442+ $p(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{k} \sum_{j=0}^{\text{min}(Q_i , k) - 1} rel_{D_i}(R_i(j))}$
443443 </td>
444444 <td>
445445 <a href="https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Precision_at_K">Precision at k</a> is a measure of
@@ -450,7 +450,7 @@ $$rel_D(r) = \begin{cases}1 & \text{if $r \in D$}, \\ 0 & \text{otherwise}.\end{
450450 <tr>
451451 <td>Mean Average Precision</td>
452452 <td>
453- $MAP=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{\left|D_i\right| } \sum_{j=0}^{\left|R_i\right| -1} \frac{rel_{D_i}(R_i(j))}{j + 1}}$
453+ $MAP=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{N_i } \sum_{j=0}^{Q_i -1} \frac{rel_{D_i}(R_i(j))}{j + 1}}$
454454 </td>
455455 <td>
456456 <a href="https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision">MAP</a> is a measure of how
@@ -462,10 +462,10 @@ $$rel_D(r) = \begin{cases}1 & \text{if $r \in D$}, \\ 0 & \text{otherwise}.\end{
462462 <td>Normalized Discounted Cumulative Gain</td>
463463 <td>
464464 $NDCG(k)=\frac{1}{M} \sum_{i=0}^{M-1} {\frac{1}{IDCG(D_i, k)}\sum_{j=0}^{n-1}
465- \frac{rel_{D_i}(R_i(j))}{\text{log}_2 (j+2)}} \\
465+ \frac{rel_{D_i}(R_i(j))}{\text{log}(j+2)}} \\
466466 \text{Where} \\
467- \hspace{5 mm} n = \text{min}\left(\text{max}\left(|R_i|,|D_i| \right),k\right) \\
468- \hspace{5 mm} IDCG(D, k) = \sum_{j=0}^{\text{min}(\left|D\right|, k) - 1} \frac{1}{\text{log}_2 (j+2)}$
467+ \hspace{5 mm} n = \text{min}\left(\text{max}\left(Q_i, N_i \right),k\right) \\
468+ \hspace{5 mm} IDCG(D, k) = \sum_{j=0}^{\text{min}(\left|D\right|, k) - 1} \frac{1}{\text{log}(j+2)}$
469469 </td>
470470 <td>
471471 <a href="https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG">NDCG at k</a> is a
0 commit comments