diff --git a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala index 576584c62797..88909a9fb953 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/ann/Layer.scala @@ -26,6 +26,7 @@ import org.apache.spark.mllib.linalg.{Vector => OldVector, Vectors => OldVectors import org.apache.spark.mllib.linalg.VectorImplicits._ import org.apache.spark.mllib.optimization._ import org.apache.spark.rdd.RDD +import org.apache.spark.storage.StorageLevel import org.apache.spark.util.random.XORShiftRandom /** @@ -810,9 +811,13 @@ private[ml] class FeedForwardTrainer( getWeights } // TODO: deprecate standard optimizer because it needs Vector - val newWeights = optimizer.optimize(dataStacker.stack(data).map { v => + val trainData = dataStacker.stack(data).map { v => (v._1, OldVectors.fromML(v._2)) - }, w) + } + val handlePersistence = trainData.getStorageLevel == StorageLevel.NONE + if (handlePersistence) trainData.persist(StorageLevel.MEMORY_AND_DISK) + val newWeights = optimizer.optimize(trainData, w) + if (handlePersistence) trainData.unpersist() topology.model(newWeights) }