diff --git a/R/pkg/vignettes/sparkr-vignettes.Rmd b/R/pkg/vignettes/sparkr-vignettes.Rmd index d4713de7806a..68a18ab57b28 100644 --- a/R/pkg/vignettes/sparkr-vignettes.Rmd +++ b/R/pkg/vignettes/sparkr-vignettes.Rmd @@ -590,6 +590,7 @@ summary(model) Predict values on training data ```{r} prediction <- predict(model, training) +head(select(prediction, "Class", "Sex", "Age", "Freq", "Survived", "prediction")) ``` #### Logistic Regression @@ -613,6 +614,7 @@ summary(model) Predict values on training data ```{r} fitted <- predict(model, training) +head(select(fitted, "Class", "Sex", "Age", "Freq", "Survived", "prediction")) ``` Multinomial logistic regression against three classes @@ -807,6 +809,7 @@ df <- createDataFrame(t) dtModel <- spark.decisionTree(df, Survived ~ ., type = "classification", maxDepth = 2) summary(dtModel) predictions <- predict(dtModel, df) +head(select(predictions, "Class", "Sex", "Age", "Freq", "Survived", "prediction")) ``` #### Gradient-Boosted Trees @@ -822,6 +825,7 @@ df <- createDataFrame(t) gbtModel <- spark.gbt(df, Survived ~ ., type = "classification", maxDepth = 2, maxIter = 2) summary(gbtModel) predictions <- predict(gbtModel, df) +head(select(predictions, "Class", "Sex", "Age", "Freq", "Survived", "prediction")) ``` #### Random Forest @@ -837,6 +841,7 @@ df <- createDataFrame(t) rfModel <- spark.randomForest(df, Survived ~ ., type = "classification", maxDepth = 2, numTrees = 2) summary(rfModel) predictions <- predict(rfModel, df) +head(select(predictions, "Class", "Sex", "Age", "Freq", "Survived", "prediction")) ``` #### Bisecting k-Means