diff --git a/docs/mllib-clustering.md b/docs/mllib-clustering.md index f5aa15b7d9b7..b695453616aa 100644 --- a/docs/mllib-clustering.md +++ b/docs/mllib-clustering.md @@ -204,19 +204,20 @@ calling `.rdd()` on your `JavaRDD` object. A self-contained application example that is equivalent to the provided example in Scala is given below: {% highlight java %} -import org.apache.spark.api.java.*; -import org.apache.spark.api.java.function.Function; -import org.apache.spark.mllib.clustering.GaussianMixture; -import org.apache.spark.mllib.clustering.GaussianMixtureModel; -import org.apache.spark.mllib.linalg.Vector; -import org.apache.spark.mllib.linalg.Vectors; -import org.apache.spark.SparkConf; - -public class GaussianMixtureExample { - public static void main(String[] args) { - SparkConf conf = new SparkConf().setAppName("GaussianMixture Example"); - JavaSparkContext sc = new JavaSparkContext(conf); + import org.apache.spark.api.java.*; + import org.apache.spark.api.java.function.Function; + import org.apache.spark.mllib.clustering.GaussianMixture; + import org.apache.spark.mllib.clustering.GaussianMixtureModel; + import org.apache.spark.mllib.linalg.Vector; + import org.apache.spark.mllib.linalg.Vectors; + import org.apache.spark.SparkConf; + + public class GaussianMixtureExample { + public static void main(String[] args) { + SparkConf conf = new SparkConf().setAppName("GaussianMixture Example"); + JavaSparkContext sc = new JavaSparkContext(conf); + // Load and parse data String path = "data/mllib/gmm_data.txt"; JavaRDD data = sc.textFile(path); @@ -232,10 +233,10 @@ public class GaussianMixtureExample { } ); parsedData.cache(); - + // Cluster the data into two classes using GaussianMixture GaussianMixtureModel gmm = new GaussianMixture().setK(2).run(parsedData.rdd()); - + // Save and load GaussianMixtureModel gmm.save(sc, "myGMMModel") GaussianMixtureModel sameModel = GaussianMixtureModel.load(sc, "myGMMModel") @@ -243,9 +244,9 @@ public class GaussianMixtureExample { for(int j=0; j