diff --git a/core/src/test/scala/org/apache/spark/util/random/XORShiftRandomSuite.scala b/core/src/test/scala/org/apache/spark/util/random/XORShiftRandomSuite.scala
index 6ca484ccd0c0..d26667bf720c 100644
--- a/core/src/test/scala/org/apache/spark/util/random/XORShiftRandomSuite.scala
+++ b/core/src/test/scala/org/apache/spark/util/random/XORShiftRandomSuite.scala
@@ -28,7 +28,7 @@ import scala.language.reflectiveCalls
class XORShiftRandomSuite extends SparkFunSuite with Matchers {
- def fixture: Object {val seed: Long; val hundMil: Int; val xorRand: XORShiftRandom} = new {
+ private def fixture = new {
val seed = 1L
val xorRand = new XORShiftRandom(seed)
val hundMil = 1e8.toInt
diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeRunner.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeRunner.scala
index b0613632c994..3381941673db 100644
--- a/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeRunner.scala
+++ b/examples/src/main/scala/org/apache/spark/examples/mllib/DecisionTreeRunner.scala
@@ -22,7 +22,6 @@ import scala.language.reflectiveCalls
import scopt.OptionParser
import org.apache.spark.{SparkConf, SparkContext}
-import org.apache.spark.SparkContext._
import org.apache.spark.mllib.evaluation.MulticlassMetrics
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.regression.LabeledPoint
@@ -354,7 +353,11 @@ object DecisionTreeRunner {
/**
* Calculates the mean squared error for regression.
+ *
+ * This is just for demo purpose. In general, don't copy this code because it is NOT efficient
+ * due to the use of structural types, which leads to one reflection call per record.
*/
+ // scalastyle:off structural.type
private[mllib] def meanSquaredError(
model: { def predict(features: Vector): Double },
data: RDD[LabeledPoint]): Double = {
@@ -363,4 +366,5 @@ object DecisionTreeRunner {
err * err
}.mean()
}
+ // scalastyle:on structural.type
}
diff --git a/graphx/src/main/scala/org/apache/spark/graphx/EdgeRDD.scala b/graphx/src/main/scala/org/apache/spark/graphx/EdgeRDD.scala
index cc70b396a8dd..4611a3ace219 100644
--- a/graphx/src/main/scala/org/apache/spark/graphx/EdgeRDD.scala
+++ b/graphx/src/main/scala/org/apache/spark/graphx/EdgeRDD.scala
@@ -41,14 +41,16 @@ abstract class EdgeRDD[ED](
@transient sc: SparkContext,
@transient deps: Seq[Dependency[_]]) extends RDD[Edge[ED]](sc, deps) {
+ // scalastyle:off structural.type
private[graphx] def partitionsRDD: RDD[(PartitionID, EdgePartition[ED, VD])] forSome { type VD }
+ // scalastyle:on structural.type
override protected def getPartitions: Array[Partition] = partitionsRDD.partitions
override def compute(part: Partition, context: TaskContext): Iterator[Edge[ED]] = {
val p = firstParent[(PartitionID, EdgePartition[ED, _])].iterator(part, context)
if (p.hasNext) {
- p.next._2.iterator.map(_.copy())
+ p.next()._2.iterator.map(_.copy())
} else {
Iterator.empty
}
diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/OneVsRest.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/OneVsRest.scala
index b8c7f3c5bc3b..7b726da38807 100644
--- a/mllib/src/main/scala/org/apache/spark/ml/classification/OneVsRest.scala
+++ b/mllib/src/main/scala/org/apache/spark/ml/classification/OneVsRest.scala
@@ -37,11 +37,13 @@ import org.apache.spark.storage.StorageLevel
*/
private[ml] trait OneVsRestParams extends PredictorParams {
+ // scalastyle:off structural.type
type ClassifierType = Classifier[F, E, M] forSome {
type F
type M <: ClassificationModel[F, M]
type E <: Classifier[F, E, M]
}
+ // scalastyle:on structural.type
/**
* param for the base binary classifier that we reduce multiclass classification into.
diff --git a/scalastyle-config.xml b/scalastyle-config.xml
index a0098169a024..e700f551a98e 100644
--- a/scalastyle-config.xml
+++ b/scalastyle-config.xml
@@ -114,6 +114,9 @@
+
+
+