From f1b5c9017ed90e18e9c62c1c37af39f01f9eefc7 Mon Sep 17 00:00:00 2001 From: "Oriol (ZBook)" Date: Tue, 18 Jul 2023 14:43:45 +0200 Subject: [PATCH] prepare patch release --- .gitignore | 1 + CHANGELOG.md | 8 +++---- arviz/__init__.py | 2 +- doc/source/user_guide/Numba.ipynb | 36 +++++++++++++++---------------- 4 files changed, 23 insertions(+), 24 deletions(-) diff --git a/.gitignore b/.gitignore index f0a963594b..6f6403424a 100644 --- a/.gitignore +++ b/.gitignore @@ -26,6 +26,7 @@ var/ .installed.cfg *.egg .ipynb_checkpoints +.virtual_documents # PyInstaller # Usually these files are written by a python script from a template diff --git a/CHANGELOG.md b/CHANGELOG.md index 55db12eb4f..f2751f66e1 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,14 +1,12 @@ # Change Log -## v0.x.x Unreleased - -### New features +## v0.16.1 (2023 Jul 18) ### Maintenance and fixes - -### Deprecation +- Fix Numba deprecation errors and incorrect nopython usage ([2268](https://github.com/arviz-devs/arviz/pull/2268)) ### Documentation +- Rerun Numba notebook ## v0.16.0 (2023 Jul 13) diff --git a/arviz/__init__.py b/arviz/__init__.py index 75c7360ad0..0a758be01d 100644 --- a/arviz/__init__.py +++ b/arviz/__init__.py @@ -1,6 +1,6 @@ # pylint: disable=wildcard-import,invalid-name,wrong-import-position """ArviZ is a library for exploratory analysis of Bayesian models.""" -__version__ = "0.17.0.dev0" +__version__ = "0.16.1" import logging import os diff --git a/doc/source/user_guide/Numba.ipynb b/doc/source/user_guide/Numba.ipynb index 92a04965bf..d8ced1cda9 100644 --- a/doc/source/user_guide/Numba.ipynb +++ b/doc/source/user_guide/Numba.ipynb @@ -71,7 +71,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "2.61 s ± 569 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + "140 ms ± 2.59 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], @@ -105,7 +105,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "1.54 ms ± 383 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + "1.03 ms ± 44.3 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], @@ -117,7 +117,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "That is almost 300 times faster!! Let's compare this to NumPy" + "That is almost 150 times faster!! Let's compare this to NumPy" ] }, { @@ -129,7 +129,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "8.68 ms ± 435 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" + "1.79 ms ± 124 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], @@ -154,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -171,7 +171,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -180,7 +180,7 @@ "False" ] }, - "execution_count": 17, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -192,14 +192,14 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "182 ms ± 66.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + "57.8 ms ± 1.02 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], @@ -209,14 +209,14 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "10.4 ms ± 2.97 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" + "462 µs ± 16.8 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)\n" ] } ], @@ -226,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -235,7 +235,7 @@ "True" ] }, - "execution_count": 20, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -247,14 +247,14 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "19.9 ms ± 1.37 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + "7.18 ms ± 359 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], @@ -264,14 +264,14 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "3.97 ms ± 574 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" + "359 µs ± 62.7 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], @@ -310,7 +310,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.10.12" } }, "nbformat": 4,