Skip to content

Commit 076b206

Browse files
authored
Update readme.md
1 parent 34eec6a commit 076b206

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

training/readme.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -2,19 +2,19 @@
22
These notebook tutorials cover the various scenarios for training machine learning and deep learning models with Azure Machine Learning.
33

44
## Sample notebooks
5-
- [01.train-hyperparameter-tune-deploy-with-pytorch](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/01.train-hyperparameter-tune-deploy-with-pytorch)
5+
- [01.train-hyperparameter-tune-deploy-with-pytorch](./01.train-hyperparameter-tune-deploy-with-pytorch/01.train-hyperparameter-tune-deploy-with-pytorch.ipynb)
66
Train, hyperparameter tune, and deploy a PyTorch image classification model that distinguishes bees vs. ants using transfer learning. Azure ML concepts covered:
77
- Create a remote compute target (Batch AI cluster)
88
- Upload training data using `Datastore`
99
- Run a single-node `PyTorch` training job
1010
- Hyperparameter tune model with HyperDrive
1111
- Find and register the best model
1212
- Deploy model to ACI
13-
- [02.distributed-pytorch-with-horovod](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/02.distributed-pytorch-with-horovod)
13+
- [02.distributed-pytorch-with-horovod](./02.distributed-pytorch-with-horovod/02.distributed-pytorch-with-horovod.ipynb)
1414
Train a PyTorch model on the MNIST dataset using distributed training with Horovod. Azure ML concepts covered:
1515
- Create a remote compute target (Batch AI cluster)
1616
- Run a two-node distributed `PyTorch` training job using Horovod
17-
- [03.train-hyperparameter-tun-deploy-with-tensorflow](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/03.train-hyperparameter-tune-deploy-with-tensorflow)
17+
- [03.train-hyperparameter-tun-deploy-with-tensorflow](./03.train-hyperparameter-tune-deploy-with-tensorflow/03.train-hyperparameter-tune-deploy-with-tensorflow.ipynb)
1818
Train, hyperparameter tune, and deploy a TensorFlow model on the MNIST dataset. Azure ML concepts covered:
1919
- Create a remote compute target (Batch AI cluster)
2020
- Upload training data using `Datastore`
@@ -24,29 +24,29 @@ Train, hyperparameter tune, and deploy a TensorFlow model on the MNIST dataset.
2424
- Hyperparameter tune model with HyperDrive
2525
- Find and register the best model
2626
- Deploy model to ACI
27-
- [04.distributed-tensorflow-with-horovod](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/04.distributed-tensorflow-with-horovod)
27+
- [04.distributed-tensorflow-with-horovod](./04.distributed-tensorflow-with-horovod/04.distributed-tensorflow-with-horovod.ipynb)
2828
Train a TensorFlow word2vec model using distributed training with Horovod. Azure ML concepts covered:
2929
- Create a remote compute target (Batch AI cluster)
3030
- Upload training data using `Datastore`
3131
- Run a two-node distributed `TensorFlow` training job using Horovod
32-
- [05.distributed-tensorflow-with-parameter-server](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/05.distributed-tensorflow-with-parameter-server)
32+
- [05.distributed-tensorflow-with-parameter-server](./05.distributed-tensorflow-with-parameter-server/05.distributed-tensorflow-with-parameter-server.ipynb)
3333
Train a TensorFlow model on the MNIST dataset using native distributed TensorFlow (parameter server). Azure ML concepts covered:
3434
- Create a remote compute target (Batch AI cluster)
3535
- Run a two workers, one parameter server distributed `TensorFlow` training job
36-
- [06.distributed-cntk-with-custom-docker](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/06.distributed-cntk-with-custom-docker)
36+
- [06.distributed-cntk-with-custom-docker](./06.distributed-cntk-with-custom-docker/06.distributed-cntk-with-custom-docker.ipynb)
3737
Train a CNTK model on the MNIST dataset using the Azure ML base `Estimator` with custom Docker image and distributed training. Azure ML concepts covered:
3838
- Create a remote compute target (Batch AI cluster)
3939
- Upload training data using `Datastore`
4040
- Run a base `Estimator` training job using a custom Docker image from Docker Hub
4141
- Distributed CNTK two-node training job via MPI using base `Estimator`
4242

43-
- [07.tensorboard](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/07.tensorboard)
43+
- [07.tensorboard](./07.tensorboard/07.tensorboard.ipynb)
4444
Train a TensorFlow MNIST model locally, on a DSVM, and on Batch AI and view the logs live on TensorBoard. Azure ML concepts covered:
4545
- Run the training job locally with Azure ML and run TensorBoard locally. Start (and stop) an Azure ML `TensorBoard` object to stream and view the logs
4646
- Run the training job on a remote DSVM and stream the logs to TensorBoard
4747
- Run the training job on a remote Batch AI cluster and stream the logs to TensorBoard
4848
- Start a `Tensorboard` instance that displays the logs from all three above runs in one
49-
- [08.export-run-history-to-tensorboard](https://github.com/Azure/MachineLearningNotebooks/tree/master/training/08.export-run-history-to-tensorboard)
49+
- [08.export-run-history-to-tensorboard](./08.export-run-history-to-tensorboard/08.export-run-history-to-tensorboard.ipynb)
5050
- Start an Azure ML `Experiment` and log metrics to `Run` history
5151
- Export the `Run` history logs to TensorBoard logs
5252
- View the logs in TensorBoard

0 commit comments

Comments
 (0)