|
19 | 19 | }, |
20 | 20 | { |
21 | 21 | "cell_type": "code", |
22 | | - "execution_count": 25, |
| 22 | + "execution_count": 1, |
23 | 23 | "metadata": { |
24 | 24 | "collapsed": false |
25 | 25 | }, |
|
45 | 45 | }, |
46 | 46 | { |
47 | 47 | "cell_type": "code", |
48 | | - "execution_count": 3, |
| 48 | + "execution_count": 2, |
49 | 49 | "metadata": { |
50 | 50 | "collapsed": false |
51 | 51 | }, |
|
65 | 65 | }, |
66 | 66 | { |
67 | 67 | "cell_type": "code", |
68 | | - "execution_count": 4, |
| 68 | + "execution_count": 3, |
69 | 69 | "metadata": { |
70 | 70 | "collapsed": false, |
71 | 71 | "scrolled": false |
|
197 | 197 | "9 [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... $9.25 " |
198 | 198 | ] |
199 | 199 | }, |
200 | | - "execution_count": 4, |
| 200 | + "execution_count": 3, |
201 | 201 | "metadata": {}, |
202 | 202 | "output_type": "execute_result" |
203 | 203 | } |
204 | 204 | ], |
205 | 205 | "source": [ |
206 | | - "chipo.head(10)\n", |
207 | | - "# chipo['choice_description'][4]" |
| 206 | + "chipo.head(10)" |
208 | 207 | ] |
209 | 208 | }, |
210 | 209 | { |
|
214 | 213 | "### Step 5. What is the number of observations in the dataset?" |
215 | 214 | ] |
216 | 215 | }, |
| 216 | + { |
| 217 | + "cell_type": "code", |
| 218 | + "execution_count": 4, |
| 219 | + "metadata": { |
| 220 | + "collapsed": false |
| 221 | + }, |
| 222 | + "outputs": [ |
| 223 | + { |
| 224 | + "data": { |
| 225 | + "text/plain": [ |
| 226 | + "4622" |
| 227 | + ] |
| 228 | + }, |
| 229 | + "execution_count": 4, |
| 230 | + "metadata": {}, |
| 231 | + "output_type": "execute_result" |
| 232 | + } |
| 233 | + ], |
| 234 | + "source": [ |
| 235 | + "# Solution 1\n", |
| 236 | + "\n", |
| 237 | + "chipo.shape[0] # entries <= 4622 observations" |
| 238 | + ] |
| 239 | + }, |
217 | 240 | { |
218 | 241 | "cell_type": "code", |
219 | 242 | "execution_count": 5, |
|
236 | 259 | "dtypes: int64(2), object(3)\n", |
237 | 260 | "memory usage: 180.6+ KB\n" |
238 | 261 | ] |
239 | | - }, |
240 | | - { |
241 | | - "data": { |
242 | | - "text/plain": [ |
243 | | - "4622" |
244 | | - ] |
245 | | - }, |
246 | | - "execution_count": 5, |
247 | | - "metadata": {}, |
248 | | - "output_type": "execute_result" |
249 | 262 | } |
250 | 263 | ], |
251 | 264 | "source": [ |
252 | | - "chipo.info()#\n", |
253 | | - "\n", |
254 | | - "# OR\n", |
| 265 | + "# Solution 2\n", |
255 | 266 | "\n", |
256 | | - "chipo.shape[0]\n", |
257 | | - "# 4622 observations" |
| 267 | + "chipo.info() # entries <= 4622 observations" |
258 | 268 | ] |
259 | 269 | }, |
260 | 270 | { |
|
350 | 360 | "cell_type": "markdown", |
351 | 361 | "metadata": {}, |
352 | 362 | "source": [ |
353 | | - "### Step 9. Which was the most ordered item? " |
| 363 | + "### Step 9. Which was the most-ordered item? " |
354 | 364 | ] |
355 | 365 | }, |
356 | 366 | { |
357 | 367 | "cell_type": "code", |
358 | | - "execution_count": 41, |
| 368 | + "execution_count": 9, |
359 | 369 | "metadata": { |
360 | 370 | "collapsed": false |
361 | 371 | }, |
|
393 | 403 | "Chicken Bowl 713926 761" |
394 | 404 | ] |
395 | 405 | }, |
396 | | - "execution_count": 41, |
| 406 | + "execution_count": 9, |
397 | 407 | "metadata": {}, |
398 | 408 | "output_type": "execute_result" |
399 | 409 | } |
|
409 | 419 | "cell_type": "markdown", |
410 | 420 | "metadata": {}, |
411 | 421 | "source": [ |
412 | | - "### Step 10. How many items were ordered?" |
| 422 | + "### Step 10. For the most-ordered item, how many items were ordered?" |
413 | 423 | ] |
414 | 424 | }, |
415 | 425 | { |
416 | 426 | "cell_type": "code", |
417 | | - "execution_count": 21, |
| 427 | + "execution_count": 10, |
418 | 428 | "metadata": { |
419 | 429 | "collapsed": false |
420 | 430 | }, |
|
452 | 462 | "Chicken Bowl 713926 761" |
453 | 463 | ] |
454 | 464 | }, |
455 | | - "execution_count": 21, |
| 465 | + "execution_count": 10, |
456 | 466 | "metadata": {}, |
457 | 467 | "output_type": "execute_result" |
458 | 468 | } |
|
473 | 483 | }, |
474 | 484 | { |
475 | 485 | "cell_type": "code", |
476 | | - "execution_count": 23, |
| 486 | + "execution_count": 11, |
477 | 487 | "metadata": { |
478 | 488 | "collapsed": false |
479 | 489 | }, |
|
511 | 521 | "[Diet Coke] 123455 159" |
512 | 522 | ] |
513 | 523 | }, |
514 | | - "execution_count": 23, |
| 524 | + "execution_count": 11, |
515 | 525 | "metadata": {}, |
516 | 526 | "output_type": "execute_result" |
517 | 527 | } |
|
532 | 542 | }, |
533 | 543 | { |
534 | 544 | "cell_type": "code", |
535 | | - "execution_count": 42, |
| 545 | + "execution_count": 12, |
536 | 546 | "metadata": { |
537 | 547 | "collapsed": false |
538 | 548 | }, |
|
543 | 553 | "4972" |
544 | 554 | ] |
545 | 555 | }, |
546 | | - "execution_count": 42, |
| 556 | + "execution_count": 12, |
547 | 557 | "metadata": {}, |
548 | 558 | "output_type": "execute_result" |
549 | 559 | } |
|
560 | 570 | "### Step 13. Turn the item price into a float" |
561 | 571 | ] |
562 | 572 | }, |
| 573 | + { |
| 574 | + "cell_type": "markdown", |
| 575 | + "metadata": {}, |
| 576 | + "source": [ |
| 577 | + "#### Step 13.a. Check the item price type" |
| 578 | + ] |
| 579 | + }, |
563 | 580 | { |
564 | 581 | "cell_type": "code", |
565 | | - "execution_count": 43, |
| 582 | + "execution_count": 13, |
| 583 | + "metadata": { |
| 584 | + "collapsed": false |
| 585 | + }, |
| 586 | + "outputs": [ |
| 587 | + { |
| 588 | + "data": { |
| 589 | + "text/plain": [ |
| 590 | + "dtype('O')" |
| 591 | + ] |
| 592 | + }, |
| 593 | + "execution_count": 13, |
| 594 | + "metadata": {}, |
| 595 | + "output_type": "execute_result" |
| 596 | + } |
| 597 | + ], |
| 598 | + "source": [ |
| 599 | + "chipo.item_price.dtype" |
| 600 | + ] |
| 601 | + }, |
| 602 | + { |
| 603 | + "cell_type": "markdown", |
| 604 | + "metadata": {}, |
| 605 | + "source": [ |
| 606 | + "#### Step 13.b. Create a lambda function and change the type of item price" |
| 607 | + ] |
| 608 | + }, |
| 609 | + { |
| 610 | + "cell_type": "code", |
| 611 | + "execution_count": 14, |
566 | 612 | "metadata": { |
567 | 613 | "collapsed": true |
568 | 614 | }, |
|
572 | 618 | "chipo.item_price = chipo.item_price.apply(dollarizer)" |
573 | 619 | ] |
574 | 620 | }, |
| 621 | + { |
| 622 | + "cell_type": "markdown", |
| 623 | + "metadata": {}, |
| 624 | + "source": [ |
| 625 | + "#### Step 13.c. Check the item price type" |
| 626 | + ] |
| 627 | + }, |
| 628 | + { |
| 629 | + "cell_type": "code", |
| 630 | + "execution_count": 15, |
| 631 | + "metadata": { |
| 632 | + "collapsed": false |
| 633 | + }, |
| 634 | + "outputs": [ |
| 635 | + { |
| 636 | + "data": { |
| 637 | + "text/plain": [ |
| 638 | + "dtype('float64')" |
| 639 | + ] |
| 640 | + }, |
| 641 | + "execution_count": 15, |
| 642 | + "metadata": {}, |
| 643 | + "output_type": "execute_result" |
| 644 | + } |
| 645 | + ], |
| 646 | + "source": [ |
| 647 | + "chipo.item_price.dtype" |
| 648 | + ] |
| 649 | + }, |
575 | 650 | { |
576 | 651 | "cell_type": "markdown", |
577 | 652 | "metadata": {}, |
|
581 | 656 | }, |
582 | 657 | { |
583 | 658 | "cell_type": "code", |
584 | | - "execution_count": 47, |
| 659 | + "execution_count": 16, |
585 | 660 | "metadata": { |
586 | 661 | "collapsed": false |
587 | 662 | }, |
|
609 | 684 | }, |
610 | 685 | { |
611 | 686 | "cell_type": "code", |
612 | | - "execution_count": 130, |
| 687 | + "execution_count": 17, |
613 | 688 | "metadata": { |
614 | 689 | "collapsed": false |
615 | 690 | }, |
|
620 | 695 | "1834" |
621 | 696 | ] |
622 | 697 | }, |
623 | | - "execution_count": 130, |
| 698 | + "execution_count": 17, |
624 | 699 | "metadata": {}, |
625 | 700 | "output_type": "execute_result" |
626 | 701 | } |
|
638 | 713 | }, |
639 | 714 | { |
640 | 715 | "cell_type": "code", |
641 | | - "execution_count": 140, |
| 716 | + "execution_count": 18, |
642 | 717 | "metadata": { |
643 | 718 | "collapsed": false |
644 | 719 | }, |
645 | 720 | "outputs": [ |
646 | 721 | { |
647 | 722 | "data": { |
648 | 723 | "text/plain": [ |
649 | | - "21.394231" |
| 724 | + "18.81142857142869" |
650 | 725 | ] |
651 | 726 | }, |
652 | | - "execution_count": 4, |
| 727 | + "execution_count": 18, |
653 | 728 | "metadata": {}, |
654 | 729 | "output_type": "execute_result" |
655 | 730 | } |
656 | 731 | ], |
657 | 732 | "source": [ |
658 | | - "chipo['revenue'] = chipo['quantity']* chipo['item_price']\n", |
659 | | - "order_grouped = chipo.groupby(by=['order_id']).sum()\n", |
660 | | - "order_grouped.mean()['revenue']\n", |
661 | | - "\n", |
| 733 | + "# Solution 1\n", |
662 | 734 | "\n", |
663 | | - "# Or \n", |
| 735 | + "chipo['revenue'] = chipo['quantity'] * chipo['item_price']\n", |
| 736 | + "order_grouped = chipo.groupby(by=['order_id']).sum()\n", |
| 737 | + "order_grouped.mean()['item_price']" |
| 738 | + ] |
| 739 | + }, |
| 740 | + { |
| 741 | + "cell_type": "code", |
| 742 | + "execution_count": 19, |
| 743 | + "metadata": { |
| 744 | + "collapsed": false |
| 745 | + }, |
| 746 | + "outputs": [ |
| 747 | + { |
| 748 | + "data": { |
| 749 | + "text/plain": [ |
| 750 | + "18.81142857142869" |
| 751 | + ] |
| 752 | + }, |
| 753 | + "execution_count": 19, |
| 754 | + "metadata": {}, |
| 755 | + "output_type": "execute_result" |
| 756 | + } |
| 757 | + ], |
| 758 | + "source": [ |
| 759 | + "# Solution 2\n", |
664 | 760 | "\n", |
665 | | - "#chipo.groupby(by=['order_id']).sum().mean()['item_price']" |
| 761 | + "chipo.groupby(by=['order_id']).sum().mean()['item_price']" |
666 | 762 | ] |
667 | 763 | }, |
668 | 764 | { |
|
674 | 770 | }, |
675 | 771 | { |
676 | 772 | "cell_type": "code", |
677 | | - "execution_count": 148, |
| 773 | + "execution_count": 20, |
678 | 774 | "metadata": { |
679 | 775 | "collapsed": false |
680 | 776 | }, |
|
685 | 781 | "50" |
686 | 782 | ] |
687 | 783 | }, |
688 | | - "execution_count": 148, |
| 784 | + "execution_count": 20, |
689 | 785 | "metadata": {}, |
690 | 786 | "output_type": "execute_result" |
691 | 787 | } |
|
701 | 797 | "display_name": "Python [default]", |
702 | 798 | "language": "python", |
703 | 799 | "name": "python2" |
| 800 | + }, |
| 801 | + "language_info": { |
| 802 | + "codemirror_mode": { |
| 803 | + "name": "ipython", |
| 804 | + "version": 2 |
| 805 | + }, |
| 806 | + "file_extension": ".py", |
| 807 | + "mimetype": "text/x-python", |
| 808 | + "name": "python", |
| 809 | + "nbconvert_exporter": "python", |
| 810 | + "pygments_lexer": "ipython2", |
| 811 | + "version": "2.7.12" |
704 | 812 | } |
705 | 813 | }, |
706 | 814 | "nbformat": 4, |
|
0 commit comments