@@ -373,7 +373,7 @@ def Deeplabv3(weights='pascal_voc', input_tensor=None, input_shape=(512, 512, 3)
373373 b4 = BatchNormalization (name = 'image_pooling_BN' , epsilon = 1e-5 )(b4 )
374374 b4 = Activation ('elu' )(b4 )
375375 # upsample. have to use compat because of the option align_corners
376- size_before = K . int_shape ( x )
376+ size_before = x . shape
377377
378378 b4 = Lambda (lambda x : tf .image .resize_with_pad (x , target_height = size_before [1 ], target_width = size_before [2 ]))(b4 )
379379 # b4 = UpSampling2D(size=(size_before[1],size_before[2]),interpolation='bilinear')(b4)
@@ -435,8 +435,7 @@ def Deeplabv3(weights='pascal_voc', input_tensor=None, input_shape=(512, 512, 3)
435435 # size_in = K.int_shape(x)
436436 # size_out = K.int_shape(img_input)
437437 # x = UpSampling2D(size=(size_out[1] // size_in[1], size_out[2] // size_in[2]), interpolation='bilinear')(x)
438- size_before3 = K .int_shape (img_input )
439- x = Lambda (lambda xx : tf .image .resize_with_pad (xx , target_height = size_before3 [1 ], target_width = size_before3 [2 ]))(x )
438+ x = Lambda (lambda xx : tf .image .resize_with_pad (xx , target_height = img_input .shape [1 ], target_width = img_input .shape [2 ]))(x )
440439 # Ensure that the model takes into account
441440 # any potential predecessors of `input_tensor`.
442441 if input_tensor is not None :
0 commit comments