|
| 1 | +////////////////////////////////////////////////////////////////////////////// |
| 2 | +// Limited Size Min Heap |
| 3 | +// KthLargest.prototype.constructor |
| 4 | +// -> Time: Omega(n) Theta(n*log(k)) O(n*log(k)) |
| 5 | +// -> Space: Theta(k) O(k) |
| 6 | +// KthLargest.prototype.add |
| 7 | +// -> Time: Omega(1) Theta(log(k)) O(log(k)) |
| 8 | +// -> Space: Theta(1) O(1) |
| 9 | +// This solution works by creating a min heap of the `k` largest values. It is |
| 10 | +// the highest performing solution when `k` is noticeably different than |
| 11 | +// `nums.length`. If `k` is close to `nums.length` you would modify the |
| 12 | +// `MinHeap` constructor to heapify the `nums` array in linear time first and |
| 13 | +// then delete the minimum number from the heap until `heap.length` is equal |
| 14 | +// to `k`. The modified constructor's time complexity becomes |
| 15 | +// Omega(max((n-k)*log(n),n)), Theta(n*log(n)), and O(n*log(n)). While its |
| 16 | +// space complexity becomes Theta(n) and O(n). |
| 17 | +////////////////////////////////////////////////////////////////////////////// |
| 18 | + |
| 19 | +class KthLargest { |
| 20 | + /** |
| 21 | + * @param {number} k |
| 22 | + * @param {number[]} nums |
| 23 | + * @constructor |
| 24 | + */ |
| 25 | + constructor(k, nums) { |
| 26 | + this.heap = new MinHeap(nums, k); |
| 27 | + } |
| 28 | + |
| 29 | + /** |
| 30 | + * @param {number} val |
| 31 | + * @return {number} |
| 32 | + */ |
| 33 | + add(val) { |
| 34 | + this.heap.add(val); |
| 35 | + return this.heap.getMin(); |
| 36 | + } |
| 37 | +} |
| 38 | + |
| 39 | +class MinHeap { |
| 40 | + /** |
| 41 | + * @param {number[]} nums |
| 42 | + * @param {number} size |
| 43 | + * @constructor |
| 44 | + */ |
| 45 | + constructor(nums, size) { |
| 46 | + this.size = size; |
| 47 | + this.length = 0; |
| 48 | + this.heap = []; |
| 49 | + for (const num of nums) { |
| 50 | + this.add(num); |
| 51 | + } |
| 52 | + } |
| 53 | + |
| 54 | + /** |
| 55 | + * @param {number} num |
| 56 | + * @return {void} |
| 57 | + */ |
| 58 | + add(num) { |
| 59 | + if (this.length < this.size) { |
| 60 | + ++this.length; |
| 61 | + this.heap.push(num); |
| 62 | + this.siftUp(this.length - 1); |
| 63 | + } else if (num > this.heap[0]) { |
| 64 | + this.heap[0] = num; |
| 65 | + this.siftDown(0); |
| 66 | + } |
| 67 | + } |
| 68 | + |
| 69 | + /** |
| 70 | + * @return {number} |
| 71 | + */ |
| 72 | + getMin() { |
| 73 | + return this.heap[0]; |
| 74 | + } |
| 75 | + |
| 76 | + /** |
| 77 | + * @param {number} i |
| 78 | + * @return {void} |
| 79 | + */ |
| 80 | + siftDown(i) { |
| 81 | + const length = this.length; |
| 82 | + const heap = this.heap; |
| 83 | + let k = i * 2 + 1; |
| 84 | + while (k < length) { |
| 85 | + if (k + 1 < length && heap[k + 1] < heap[k]) { |
| 86 | + ++k; |
| 87 | + } |
| 88 | + if (heap[i] <= heap[k]) { |
| 89 | + return; |
| 90 | + } |
| 91 | + [ heap[i], heap[k] ] = [ heap[k], heap[i] ]; |
| 92 | + i = k; |
| 93 | + k = i * 2 + 1; |
| 94 | + } |
| 95 | + } |
| 96 | + |
| 97 | + /** |
| 98 | + * @param {number} i |
| 99 | + * @return {void} |
| 100 | + */ |
| 101 | + siftUp(i) { |
| 102 | + const heap = this.heap; |
| 103 | + let p = Math.floor((i - 1) / 2); |
| 104 | + while (i > 0 && heap[i] < heap[p]) { |
| 105 | + [ heap[i], heap[p] ] = [ heap[p], heap[i] ]; |
| 106 | + i = p; |
| 107 | + p = Math.floor((i - 1) / 2); |
| 108 | + } |
| 109 | + } |
| 110 | +} |
| 111 | + |
| 112 | +/** |
| 113 | + * Your KthLargest object will be instantiated and called as such: |
| 114 | + * var obj = new KthLargest(k, nums) |
| 115 | + * var param_1 = obj.add(val) |
| 116 | + */ |
| 117 | + |
| 118 | +////////////////////////////////////////////////////////////////////////////// |
| 119 | +// Sort & Binary Search |
| 120 | +// KthLargest.prototype.constructor |
| 121 | +// -> Time: Omega(n) Theta(n*log(n)) O(n*log(n)) |
| 122 | +// -> Space: Theta(n) O(n) |
| 123 | +// KthLargest.prototype.add |
| 124 | +// -> Time: Omega(1) Theta(log(n)) O(n) |
| 125 | +// -> Space: Theta(1) O(n) |
| 126 | +// This solution works by sorting the `nums` array and using binary search to |
| 127 | +// add new numbers to the sorted array. It is slower than the limited size |
| 128 | +// minimum heap solution. |
| 129 | +////////////////////////////////////////////////////////////////////////////// |
| 130 | + |
| 131 | +class KthLargest { |
| 132 | + /** |
| 133 | + * @param {number} k |
| 134 | + * @param {number[]} nums |
| 135 | + * @constructor |
| 136 | + */ |
| 137 | + constructor(k, nums) { |
| 138 | + this.nums = nums.sort((a,b) => b - a); |
| 139 | + this.k = k; |
| 140 | + } |
| 141 | + |
| 142 | + /** |
| 143 | + * @param {number} val |
| 144 | + * @return {number} |
| 145 | + */ |
| 146 | + add(val) { |
| 147 | + const nums = this.nums; |
| 148 | + let l = 0; |
| 149 | + let r = nums.length; |
| 150 | + while (l <= r) { |
| 151 | + const m = Math.floor((l + r) / 2); |
| 152 | + if (val === nums[m]) { |
| 153 | + l = m; |
| 154 | + break; |
| 155 | + } |
| 156 | + if (val < nums[m]) { |
| 157 | + l = m + 1; |
| 158 | + } else { |
| 159 | + r = m - 1; |
| 160 | + } |
| 161 | + } |
| 162 | + nums.splice(l, 0, val); |
| 163 | + return nums[this.k - 1]; |
| 164 | + } |
| 165 | +} |
| 166 | + |
| 167 | +/** |
| 168 | + * Your KthLargest object will be instantiated and called as such: |
| 169 | + * var obj = new KthLargest(k, nums) |
| 170 | + * var param_1 = obj.add(val) |
| 171 | + */ |
0 commit comments