33
44class Metrics :
55 """
6- Class with regression metrics
6+ Methods for computing useful regression metrics
7+
78 sse: Sum of squared errors
89 sst: Total sum of squared errors (actual vs avg(actual))
910 r_squared: Regression coefficient (R^2)
@@ -48,7 +49,15 @@ def pretty_print_stats(self):
4849
4950
5051class Diagnostics_plots :
52+ """
53+ Diagnostics plots and methods
5154
55+ fitted_vs_residual: Plots fitted values vs. residuals
56+ fitted_vs_features: Plots residuals vs all feature variables in a grid
57+ histogram_resid: Plots a histogram of the residuals (can be normalized)
58+ shapiro_test: Performs Shapiro-Wilk normality test on the residuals
59+ qqplot_resid: Creates a quantile-quantile plot for residuals comparing with a normal distribution
60+ """
5261 def __init__ ():
5362 pass
5463
@@ -123,7 +132,12 @@ def qqplot_resid(self,normalized=True):
123132
124133
125134class Data_plots :
135+ """
136+ Methods for data related plots
126137
138+ pairplot: Creates pairplot of all variables and the target
139+ plot_fitted: Plots fitted values against the true output values from the data
140+ """
127141 def __init__ ():
128142 pass
129143
@@ -155,7 +169,13 @@ def plot_fitted(self,reference_line=False):
155169
156170
157171class Outliers :
172+ """
173+ Methods for plotting outliers, leverage, influence points
158174
175+ cook_distance: Computes and plots Cook's distance
176+ influence_plot: Creates the influence plot
177+ leverage_resid_plot: Plots leverage vs normalized residuals' square
178+ """
159179 def __init__ ():
160180 pass
161181
@@ -190,7 +210,11 @@ def leverage_resid_plot(self):
190210
191211
192212class Multicollinearity :
213+ """
214+ Methods for checking multicollinearity in the dataset features
193215
216+ vif:Computes variance influence factors for each feature variable
217+ """
194218 def __init__ ():
195219 pass
196220
@@ -216,7 +240,6 @@ def __repr__(self):
216240 def fit (self , X , y ):
217241 """
218242 Fit model coefficients.
219-
220243 Arguments:
221244 X: 1D or 2D numpy array
222245 y: 1D numpy array
@@ -264,7 +287,6 @@ def fit(self, X, y):
264287
265288 def predict (self , X ):
266289 """Output model prediction.
267-
268290 Arguments:
269291 X: 1D or 2D numpy array
270292 """
0 commit comments