@@ -59,7 +59,7 @@ def speed():
5959 """
6060
6161 algo = ['logistic_sgd' , 'logistic_cg' , 'mlp' , 'convolutional_mlp' ,
62- 'dA' , 'SdA' , 'DBN' , 'rbm' ]
62+ 'dA' , 'SdA' , 'DBN' , 'rbm' , 'rnnrbm' ]
6363 to_exec = [True ] * len (algo )
6464# to_exec=[False]*len(algo)
6565# to_exec[-1]=True
@@ -73,9 +73,9 @@ def speed():
7373 # and an GeForce GTX 285 for the GPU.
7474
7575 expected_times_64 = numpy .asarray ([10.3 , 23.7 , 78.1 , 73.7 , 116.4 ,
76- 346.9 , 381.9 , 558.1 ])
76+ 346.9 , 381.9 , 558.1 , 186.3 ])
7777 expected_times_32 = numpy .asarray ([11.6 , 29.6 , 47.2 , 66.5 , 71 ,
78- 191.2 , 226.8 , 432.8 ])
78+ 191.2 , 226.8 , 432.8 , 176.2 ])
7979
8080 # Number with just 1 decimal are new value that are faster with
8181 # the Theano version 0.5rc2 Other number are older. They are not
@@ -95,7 +95,7 @@ def speed():
9595# 1.35324519 1.7356905 1.12937868]
9696 expected_times_gpu = numpy .asarray ([3.07663488 , 7.55523491 , 18.99226785 ,
9797 9.6 , 24.13007045 ,
98- 20.4 , 56 , 302.6 ])
98+ 20.4 , 56 , 302.6 , 315.4 ])
9999 expected_times_64 = [s for idx , s in enumerate (expected_times_64 )
100100 if to_exec [idx ]]
101101 expected_times_32 = [s for idx , s in enumerate (expected_times_32 )
@@ -133,6 +133,7 @@ def do_tests():
133133 training_epochs = 2 , batch_size = 300 )
134134 time_test (m , l , 7 , rbm .test_rbm , training_epochs = 1 , batch_size = 300 ,
135135 n_chains = 1 , n_samples = 1 , output_folder = 'tmp_rbm_plots' )
136+ time_test (m , l , 8 , rnnrbm .test_rnnrbm , num_epochs = 1 )
136137 return numpy .asarray (l )
137138
138139 #test in float64 in FAST_RUN mode on the cpu
0 commit comments