You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
|[Forecasting orange juice sales with deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-orange-juice-sales/auto-ml-forecasting-orange-juice-sales.ipynb)| Forecasting | Orange Juice Sales | remote | Azure Container Instance | Azure ML AutoML ||
24
-
25
-
|[Regression with deployment using concrete dataset](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression-concrete-strength/auto-ml-regression-concrete-strength.ipynb)| Regression | Concrete | AML Compute | Azure Container Instance | Azure ML AutoML ||
26
-
27
-
|:star:[Regression with deployment using hardware performance dataset](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression-hardware-performance/auto-ml-regression-hardware-performance.ipynb)| Regression | Concrete | AML Compute | Azure Container Instance | Azure ML AutoML ||
28
-
29
-
|[Forecasting with automated ML SQL integration](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/energy-demand/auto-ml-sql-energy-demand.ipynb)| Forecasting | NYC Energy | Local | None | Azure ML AutoML ||
30
-
31
-
|[Setup automated ML SQL integration](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/sql-server/setup/auto-ml-sql-setup.ipynb)| None | None | None | None | Azure ML AutoML ||
32
-
33
-
|[Register a model and deploy locally](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/deployment/deploy-to-local/register-model-deploy-local.ipynb)| Deployment || local | Local | None | None |
34
-
35
-
|:star:[Data drift on aks](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/monitor-models/data-drift/drift-on-aks.ipynb)| Filtering | NOAA | remote | AKS | Azure ML | Dataset, Timeseries, Drift |
36
-
37
-
|[](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/training/train-within-notebook/train-within-notebook.ipynb)| Training and deploying a model from a notebook | Diabetes | Local | Azure Container Instance | None | None |
|:star:[Filtering data using Tabular Timeseiries Dataset related API](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/tabular-timeseries-dataset-filtering.ipynb)| Filtering | NOAA | local | None | Azure ML | Dataset, Tabular Timeseries |
42
-
43
-
|:star:[Train with Datasets (Tabular and File)](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/work-with-data/datasets-tutorial/train-with-datasets.ipynb)| Filtering | Iris, Daibetes | remote | None | Azure ML | Dataset |
44
-
45
-
|[Forecasting away from training data](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/forecasting-high-frequency/automl-forecasting-function.ipynb)| forecasting | None | remote | None | Azure ML AutoML | Forecasting, Confidence Intervals |
46
-
47
-
|[Automated ML run with basic edition features.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-bank-marketing-all-features/auto-ml-classification-bank-marketing-all-features.ipynb)| Classification | Bankmarketing | AML | ACI | None | featurization, explainability, remote_run, AutomatedML |
48
-
49
-
|[Classification of credit card fraudulent transactions using Automated ML](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/classification-credit-card-fraud/auto-ml-classification-credit-card-fraud.ipynb)| Classification | creditcard | AML Compute | None | None | remote_run, AutomatedML |
50
-
51
-
|[Automated ML run with featurization and model explainability.](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/automated-machine-learning/regression-hardware-performance-explanation-and-featurization/auto-ml-regression-hardware-performance-explanation-and-featurization.ipynb)| Regression | MachineData | AML | ACI | None | featurization, explainability, remote_run, AutomatedML |
52
-
53
21
|[Use MLflow with Azure Machine Learning for training and deployment](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/track-and-monitor-experiments/using-mlflow/train-deploy-pytorch/train-and-deploy-pytorch.ipynb)| Use MLflow with Azure Machine Learning to train and deploy Pa yTorch image classifier model | MNIST | AML Compute | Azure Container Instance | PyTorch | None |
54
22
55
23
|:star:[Azure Machine Learning Pipeline with DataTranferStep](https://github.com/Azure/MachineLearningNotebooks/blob/master//how-to-use-azureml/machine-learning-pipelines/intro-to-pipelines/aml-pipelines-data-transfer.ipynb)| Demonstrates the use of DataTranferStep | Custom | ADF | None | Azure ML | None |
0 commit comments