Skip to content

Commit 1f17f1e

Browse files
committed
Update README.md
1 parent 386168b commit 1f17f1e

File tree

1 file changed

+25
-22
lines changed

1 file changed

+25
-22
lines changed

README.md

Lines changed: 25 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -14,12 +14,36 @@ This repo contains several Python tutorials for data analysis tasks.
1414
- [Scripting with Python](https://www.schrodinger.com//AcrobatFile.php?type=supportdocs&type2=&ident=404)
1515
- [**Can I use Python as a bash replacement?**](http://stackoverflow.com/questions/209470/can-i-use-python-as-a-bash-replacement)
1616

17-
##ML with Python
17+
##Machine Learning with Python
1818
- [**AWESOME Python Machine Learning Book**](https://github.com/rasbt/python-machine-learning-book)
1919
- [Table of Contents and Code Notebooks](https://github.com/rasbt/python-machine-learning-book/blob/master/README.md#table-of-contents-and-code-notebooks)
2020
- [Machine Learning with scikit learn](http://www.dataschool.io/machine-learning-with-scikit-learn/)
2121
- [Cheatsheet](http://www.analyticsvidhya.com/blog/2015/09/full-cheatsheet-machine-learning-algorithms/)
2222

23+
24+
##scikit-learn
25+
- [Wiki](https://en.wikipedia.org/wiki/Scikit-learn)
26+
- [**Introduction to machine learning with scikit-learn**](https://github.com/justmarkham/scikit-learn-videos), [**Videos!**](http://blog.kaggle.com/author/kevin-markham/)
27+
- [**A Gentle Introduction to Scikit-Learn: A Python Machine Learning Library**](http://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/)
28+
- [**PyData Seattle 2015 Scikit-learn Tutorial**](https://github.com/jakevdp/sklearn_pydata2015), [sklearn_scipy2013](https://github.com/jakevdp/sklearn_scipy2013)
29+
- [SKLEARN BENCHMARKS: A centralized repository to report scikit-learn model performance across a variety of parameter settings and data sets.](https://github.com/rhiever/sklearn-benchmarks)
30+
- [**Code example to predict prices of Airbnb vacation rentals, using scikit-learn on Spark**](https://github.com/mapr-demos/spark-sklearn-airbnb-predict)
31+
- [**ML with scikit learn**](http://amueller.github.io/sklearn_tutorial/)
32+
- [Parallel and Large Scale Machine Learning with scikit-learn](https://speakerdeck.com/ogrisel/parallel-and-large-scale-machine-learning-with-scikit-learn), [Meetup](http://datasciencelondon.org/machine-learning-python-scikit-learn-ipython-dsldn-data-science-london-kaggle/)
33+
34+
35+
##Linear Regression
36+
- [Linear Regression in Python](http://nbviewer.ipython.org/github/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb), [Blog Post](http://www.dataschool.io/linear-regression-in-python/)
37+
38+
##Logistic Regression
39+
- [Logistic Regression with scikit learn](http://www.dataschool.io/logistic-regression-in-python-using-scikit-learn/)
40+
41+
##Neural Networks
42+
- [Implementing a Neural Network from scratch](http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/), [Code](https://github.com/dennybritz/nn-from-scratch)
43+
- [Speeding up your Neural Network with Theano and the gpu](http://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/), [Code](https://github.com/dennybritz/nn-theano)
44+
- [Recurrent Neural Net Tutorial Part 1](http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/), [Part 2] (http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/), [Code](https://github.com/dennybritz/rnn-tutorial-rnnlm/)
45+
46+
2347
##Data Science with Python
2448
- [awesome-python](https://github.com/vinta/awesome-python)
2549
- [Pycon India 2015 Notes](http://www.analyticsvidhya.com/blog/2015/10/notes-impressions-experience-excitement-pycon-india-2015/)
@@ -40,16 +64,6 @@ This repo contains several Python tutorials for data analysis tasks.
4064
- [Timeseries analysis using Pandas](http://nbviewer.jupyter.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb)
4165

4266

43-
##scikit-learn
44-
- [Wiki](https://en.wikipedia.org/wiki/Scikit-learn)
45-
- [**Introduction to machine learning with scikit-learn**](https://github.com/justmarkham/scikit-learn-videos), [**Videos!**](http://blog.kaggle.com/author/kevin-markham/)
46-
- [**A Gentle Introduction to Scikit-Learn: A Python Machine Learning Library**](http://machinelearningmastery.com/a-gentle-introduction-to-scikit-learn-a-python-machine-learning-library/)
47-
- [**PyData Seattle 2015 Scikit-learn Tutorial**](https://github.com/jakevdp/sklearn_pydata2015), [sklearn_scipy2013](https://github.com/jakevdp/sklearn_scipy2013)
48-
- [SKLEARN BENCHMARKS: A centralized repository to report scikit-learn model performance across a variety of parameter settings and data sets.](https://github.com/rhiever/sklearn-benchmarks)
49-
- [**Code example to predict prices of Airbnb vacation rentals, using scikit-learn on Spark**](https://github.com/mapr-demos/spark-sklearn-airbnb-predict)
50-
- [**ML with scikit learn**](http://amueller.github.io/sklearn_tutorial/)
51-
- [Parallel and Large Scale Machine Learning with scikit-learn](https://speakerdeck.com/ogrisel/parallel-and-large-scale-machine-learning-with-scikit-learn), [Meetup](http://datasciencelondon.org/machine-learning-python-scikit-learn-ipython-dsldn-data-science-london-kaggle/)
52-
5367
##Text Mining
5468
- [**NLP with Python ORiley Book**](http://www.nltk.org/book_1ed/), [Python 3](http://www.nltk.org/book/)
5569
- [Text Analytics : Intro and Tokenization](http://a4analytics.blogspot.sg/2015/03/text-mining-post-1.html)
@@ -62,17 +76,6 @@ This repo contains several Python tutorials for data analysis tasks.
6276
- [Twitter-Sentiment-Analysis](https://github.com/ujjwalkarn/Twitter-Sentiment-Analysis)
6377

6478

65-
##Linear Regression
66-
- [Linear Regression in Python](http://nbviewer.ipython.org/github/justmarkham/DAT4/blob/master/notebooks/08_linear_regression.ipynb), [Blog Post](http://www.dataschool.io/linear-regression-in-python/)
67-
68-
##Logistic Regression
69-
- [Logistic Regression with scikit learn](http://www.dataschool.io/logistic-regression-in-python-using-scikit-learn/)
70-
71-
##Neural Networks
72-
- [Implementing a Neural Network from scratch](http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/), [Code](https://github.com/dennybritz/nn-from-scratch)
73-
- [Speeding up your Neural Network with Theano and the gpu](http://www.wildml.com/2015/09/speeding-up-your-neural-network-with-theano-and-the-gpu/), [Code](https://github.com/dennybritz/nn-theano)
74-
- [Recurrent Neural Net Tutorial Part 1](http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/), [Part 2] (http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-2-implementing-a-language-model-rnn-with-python-numpy-and-theano/), [Code](https://github.com/dennybritz/rnn-tutorial-rnnlm/)
75-
7679
##Pickle
7780
- [Python serialization - Why pickle?](http://stackoverflow.com/questions/8968884/python-serialization-why-pickle)
7881
- [**Serializing Python Objects**](http://www.diveinto.org/python3/serializing.html), [**Binary Files**](http://www.diveinto.org/python3/files.html#binary)

0 commit comments

Comments
 (0)