|
| 1 | +from dll_stack import Stack |
| 2 | +from dll_queue import Queue |
| 3 | +from collections import deque |
| 4 | + |
| 5 | +''' |
| 6 | +import sys |
| 7 | +sys.path.append('../queue_and_stack') |
| 8 | +''' |
| 9 | + |
| 10 | + |
| 11 | +class BinarySearchTree: |
| 12 | + def __init__(self, value): |
| 13 | + self.value = value |
| 14 | + self.left = None |
| 15 | + self.right = None |
| 16 | + |
| 17 | + # Insert the given value into the tree |
| 18 | + def insert(self, value): |
| 19 | + while self: |
| 20 | + # print("self: " + str(self)) |
| 21 | + # print("value: " + str(value)) |
| 22 | + if value < self.value: |
| 23 | + if not self.left: |
| 24 | + self.left = BinarySearchTree(value) |
| 25 | + return |
| 26 | + else: |
| 27 | + self = self.left |
| 28 | + else: |
| 29 | + if not self.right: |
| 30 | + self.right = BinarySearchTree(value) |
| 31 | + return |
| 32 | + else: |
| 33 | + self = self.right |
| 34 | + |
| 35 | + def recursive_insert(self, value): |
| 36 | + if value < self.value: |
| 37 | + if self.left: |
| 38 | + self.left.insert(value) |
| 39 | + else: |
| 40 | + self.left = BinarySearchTree(value) |
| 41 | + else: |
| 42 | + if self.right: |
| 43 | + self.right.insert(value) |
| 44 | + else: |
| 45 | + self.right = BinarySearchTree(value) |
| 46 | + |
| 47 | + def contains(self, target): |
| 48 | + # Return True if the tree contains the value |
| 49 | + # False if it does not |
| 50 | + while self: |
| 51 | + # print(self.value) |
| 52 | + # print(target) |
| 53 | + if target == self.value: |
| 54 | + return True |
| 55 | + elif target < self.value: |
| 56 | + if not self.left: |
| 57 | + return False |
| 58 | + else: |
| 59 | + self = self.left |
| 60 | + else: |
| 61 | + if not self.right: |
| 62 | + return False |
| 63 | + else: |
| 64 | + self = self.right |
| 65 | + |
| 66 | + # Return the maximum value found in the tree |
| 67 | + |
| 68 | + def get_max(self): |
| 69 | + # Initially set the max value to be self. |
| 70 | + max = self.value |
| 71 | + while self.right: |
| 72 | + if self.right.value > max: |
| 73 | + max = self.right.value |
| 74 | + self = self.right |
| 75 | + return max |
| 76 | + |
| 77 | + # Call the function `cb` on the value of each node |
| 78 | + # You may use a recursive or iterative approach |
| 79 | + def for_each(self, cb): |
| 80 | + cb(self.value) |
| 81 | + if self.left and self.right: |
| 82 | + self.left.for_each(cb) |
| 83 | + self.right.for_each(cb) |
| 84 | + elif self.left: |
| 85 | + self.left.for_each(cb) |
| 86 | + elif self.right: |
| 87 | + self.right.for_each(cb) |
| 88 | + |
| 89 | + def for_each_lecture(self, cb): |
| 90 | + cb(self.value) |
| 91 | + # base case is when self has no left or right |
| 92 | + if self.left: |
| 93 | + self.left.for_each(cb) |
| 94 | + if self.right: |
| 95 | + self.right.for_each(cb) |
| 96 | + |
| 97 | + def for_each_iterative_depth_first(self, cb): |
| 98 | + stack = [] |
| 99 | + stack.append(self) |
| 100 | + while len(stack) > 0: |
| 101 | + current_node = stack.pop() |
| 102 | + # Checking the right first will result in the same order as the |
| 103 | + # recursive (lecture) version above |
| 104 | + if current_node.right: |
| 105 | + stack.append(current_node.right) |
| 106 | + if current_node.left: |
| 107 | + stack.append(current_node.left) |
| 108 | + cb(current_node.value) |
| 109 | + |
| 110 | + def for_each_iterative_breadth_first(self, cb): |
| 111 | + q = deque() |
| 112 | + q.append(self) |
| 113 | + while len(q) > 0: |
| 114 | + current_node = q.popleft() |
| 115 | + # for left to right ordering, check left first. |
| 116 | + if current_node.left: |
| 117 | + q.append(current_node.left) |
| 118 | + if current_node.right: |
| 119 | + q.append(current_node.right) |
| 120 | + cb(current_node.value) |
| 121 | + |
| 122 | + # DAY 2 Project ----------------------- |
| 123 | + |
| 124 | + # Print all the values in order from low to high |
| 125 | + # Hint: Use a recursive, depth first traversal |
| 126 | + # AKA Inorder Traversal |
| 127 | + # Recursively: |
| 128 | + # 1. Visit left subtree |
| 129 | + # 2. Visit node |
| 130 | + # 3. Visit right subtree |
| 131 | + |
| 132 | + def in_order_print(self, node): |
| 133 | + if node == None: |
| 134 | + return |
| 135 | + self.in_order_print(node.left) |
| 136 | + print(node.value) |
| 137 | + self.in_order_print(node.right) |
| 138 | + |
| 139 | + # Print the value of every node, starting with the given node, |
| 140 | + # in an iterative breadth first traversal |
| 141 | + |
| 142 | + def bft_print(self, node): |
| 143 | + q = Queue() |
| 144 | + while node is not None: |
| 145 | + print(node.value) |
| 146 | + # Stick all of the node's children in the end of the queue. |
| 147 | + if node.left: |
| 148 | + q.enqueue(node.left) |
| 149 | + if node.right: |
| 150 | + q.enqueue(node.right) |
| 151 | + if q.len() > 0: |
| 152 | + # Get the first node in the queue and continue the loop with it. |
| 153 | + node = q.dequeue() |
| 154 | + else: |
| 155 | + break |
| 156 | + return |
| 157 | + |
| 158 | + # Print the value of every node, starting with the given node, |
| 159 | + # in an iterative depth first traversal |
| 160 | + |
| 161 | + def dft_print(self, node): |
| 162 | + s = Stack() |
| 163 | + while node is not None: |
| 164 | + print(node.value) |
| 165 | + # Stick all of the node's children in the end of the stack. |
| 166 | + if node.left: |
| 167 | + s.push(node.left) |
| 168 | + if node.right: |
| 169 | + s.push(node.right) |
| 170 | + if s.len() > 0: |
| 171 | + # Get the last node in the stack and continue the loop with it. |
| 172 | + node = s.pop() |
| 173 | + else: |
| 174 | + break |
| 175 | + return |
| 176 | + |
| 177 | + # STRETCH Goals ------------------------- |
| 178 | + # Note: Research may be required |
| 179 | + |
| 180 | + # Print Pre-order recursive DFT |
| 181 | + ''' |
| 182 | + To traverse a binary tree in preorder, |
| 183 | + 1. Visit the root. |
| 184 | + 2. Traverse the left sub tree of root. |
| 185 | + 3. Traverse the right sub tree of root. |
| 186 | + ''' |
| 187 | + |
| 188 | + def pre_order_dft(self, node): |
| 189 | + if node == None: |
| 190 | + return |
| 191 | + print(node.value) |
| 192 | + self.pre_order_dft(node.left) |
| 193 | + self.pre_order_dft(node.right) |
| 194 | + |
| 195 | + ''' |
| 196 | + To traverse a binary tree in postorder traversal, |
| 197 | + 1. Traverse the left sub tree of root. |
| 198 | + 2. Traverse the right sub tree of root. |
| 199 | + 3. Visit the root. |
| 200 | + ''' |
| 201 | + # Print Post-order recursive DFT |
| 202 | + |
| 203 | + def post_order_dft(self, node): |
| 204 | + if node == None: |
| 205 | + return |
| 206 | + |
| 207 | + self.post_order_dft(node.left) |
| 208 | + self.post_order_dft(node.right) |
| 209 | + print(node.value) |
| 210 | + |
| 211 | + |
| 212 | +''' |
| 213 | +my_bst = BinarySearchTree(1) |
| 214 | +my_bst.insert(8) |
| 215 | +my_bst.insert(5) |
| 216 | +my_bst.insert(7) |
| 217 | +my_bst.insert(6) |
| 218 | +my_bst.insert(3) |
| 219 | +my_bst.insert(4) |
| 220 | +my_bst.insert(2) |
| 221 | +# my_bst.bft_print(my_bst) |
| 222 | +# my_bst.dft_print(my_bst) |
| 223 | +# my_bst.pre_order_dft(my_bst) |
| 224 | +my_bst.post_order_dft(my_bst) |
| 225 | +''' |
0 commit comments