From 38fd013646236a1ecad6955f1286d8d5730390a3 Mon Sep 17 00:00:00 2001 From: jindongwang Date: Fri, 22 Dec 2017 17:00:11 +0800 Subject: [PATCH 01/16] add: book for CNN --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 61d8956..11a7225 100644 --- a/README.md +++ b/README.md @@ -13,6 +13,7 @@ - [机器学习算法Python实现](https://github.com/lawlite19/MachineLearning_Python) - 另外,对于一些基础的数学知识,你看[深度学习(花书)中文版](https://github.com/exacity/deeplearningbook-chinese)就够了。这本书同时也是**深度学习**经典之书。 +- 来自南京大学周志华小组的博士生写的一本小而精的[解析卷积神经网络—深度学习实践手册](http://lamda.nju.edu.cn/weixs/book/CNN_book.html) - - - From 4a9fb5aa239c11ee3ab1a5ba68e1d0908e72da64 Mon Sep 17 00:00:00 2001 From: jindongwang Date: Mon, 25 Dec 2017 17:18:35 +0800 Subject: [PATCH 02/16] add: courses from Hung-yi Lee --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 11a7225..beb3a20 100644 --- a/README.md +++ b/README.md @@ -8,6 +8,7 @@ - 使用Python语言,根据[《机器学习实战》](https://pan.baidu.com/s/1gfzV7PL)快速上手写程序 - 参照Youtube机器学习红人Siraj Raval的视频+代码可以帮助你更好地进入状态! - [原Youtube地址需要梯子](https://www.youtube.com/watch?v=xRJCOz3AfYY&list=PL2-dafEMk2A7mu0bSksCGMJEmeddU_H4D) | [百度网盘](https://pan.baidu.com/s/1jICGJFg) +- 来自国立台湾大学李宏毅老师的机器学习和深度学习中文课程,强烈推荐:[课程](http://speech.ee.ntu.edu.tw/~tlkagk/courses.html) - 最后,你可能想真正实战一下。那么,请到注明的机器学习竞赛平台Kaggle上做一下这些基础入门的[题目](https://www.kaggle.com/competitions?sortBy=deadline&group=all&page=1&pageSize=20&segment=gettingStarted)吧!(Kaggle上对于每个问题你都可以看到别人的代码,方便你更加快速地学习)  [Kaggle介绍及入门解读](https://zhuanlan.zhihu.com/p/25686876) [可以用来练手的数据集](https://www.kaggle.com/annavictoria/ml-friendly-public-datasets/notebook) - 想看别人怎么写代码?[机器学习经典教材《PRML》所有代码实现](https://github.com/ctgk/PRML) - [机器学习算法Python实现](https://github.com/lawlite19/MachineLearning_Python) From 34d9ba3d7ddcdf7d52d220e4bb76bd3bf1dd8284 Mon Sep 17 00:00:00 2001 From: jindongwang Date: Fri, 23 Mar 2018 16:32:25 +0800 Subject: [PATCH 03/16] add: seglearn for time series data processing --- README.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/README.md b/README.md index beb3a20..f28966c 100644 --- a/README.md +++ b/README.md @@ -18,6 +18,9 @@ - - - + +[一个简洁明了的时间序列处理(分窗、特征提取、分类)库:Seglearn](https://dmbee.github.io/seglearn/index.html) + [计算机视觉这一年:这是最全的一份CV技术报告](https://zhuanlan.zhihu.com/p/31430602) [深度学习(花书)中文版](https://github.com/exacity/deeplearningbook-chinese) From c60f8a81fc4cc564ad5e7920f1a2f0f6245a2f96 Mon Sep 17 00:00:00 2001 From: Nativeatom Date: Mon, 16 Apr 2018 19:21:17 +0800 Subject: [PATCH 04/16] Update contributors.md --- contributors.md | 1 + 1 file changed, 1 insertion(+) diff --git a/contributors.md b/contributors.md index 84c4849..280fd6b 100644 --- a/contributors.md +++ b/contributors.md @@ -8,6 +8,7 @@ | [Jiapeng Zhang](https://www.zhihu.com/people/jiapengzhang) | 三本大学生 | | [Zhigang He](https://github.com/Hochikong) | 暨南大学 | | [Wenhan Wu](https://github.com/wwh2259253) | 三本菜鸡 | +| [Nativeatom](https://github.com/Nativeatom)| 南京大学 | From f72871ddf012eb064728f4c6c089f3b302416c4d Mon Sep 17 00:00:00 2001 From: Jindong Wang Date: Tue, 24 Apr 2018 14:40:18 +0800 Subject: [PATCH 05/16] =?UTF-8?q?fix:=20libsvm=E4=BD=9C=E8=80=85?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- notes/MLMaterials.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/notes/MLMaterials.md b/notes/MLMaterials.md index 1f00176..77b20d1 100644 --- a/notes/MLMaterials.md +++ b/notes/MLMaterials.md @@ -24,7 +24,7 @@ #### 1.3. 工具 * 第三方库 机器学习有很多开源库可以直接拿来用,github是个不错的获取代码的网站,比较著名的有: - * [libsvm](https://github.com/cjlin1/libsvm),作者是林轩田,是svm的标准库。 +    * [libsvm](https://github.com/cjlin1/libsvm),作者是林智仁,是svm的标准库。 * [scikit-learn](http://scikit-learn.org),scikit包是python中著名的处理数据的包,其中内置了几乎所有流行的机器学习算法,配合python简洁的语法操作,使用起来很方便。 * [pandas](http://www.cnblogs.com/chaosimple/p/4153083.html),python的一个包,其中对表的处理比较出色,我只是试用过。 * [pylearn2](https://github.com/lisa-lab/pylearn2),这个我没有接触过,不过在github上排名很靠前,应该不错。 From fef161a7827c3ac56902bbd8e15b12464d152d3e Mon Sep 17 00:00:00 2001 From: KKDeng <747836668@qq.com> Date: Thu, 3 May 2018 14:17:35 +0800 Subject: [PATCH 06/16] Update survey_readme.md --- notes/survey_readme.md | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/notes/survey_readme.md b/notes/survey_readme.md index 4bfdc1b..11ba88d 100644 --- a/notes/survey_readme.md +++ b/notes/survey_readme.md @@ -10,7 +10,11 @@ - [半监督学习Semi-supervised learning literature survey_Zhu_2005.pdf](https://mega.nz/#!gKYVFTrI!sLkVspn3uVwVHWVhv3XUObmFBIVRdlhbHuqQXzuht_4) - [稀疏子空间聚类Sparse Subspace Clustering_Elhamifar_Vidal_2013.pdf](https://mega.nz/#!0eAC2ajD!xWZhO9Pvh7qJwpHKkyYLnqKbLye9coSX0fd6WuyiIs4) - [聚类算法Survey of Clustering Algorithms_Xu_WunschII_2005.pdf](https://mega.nz/#!dKJAjAqJ!BwiVi3KGDaGXIWGlIiOo9cenHcTmtRyAxNW6WgKFQgE) +- [特征选择综述] +--------1.A Survey on semi-supervised feature selection methods:(https://www.sciencedirect.com/science/article/pii/S0031320316303545/pdfft?md5=d1bf45954749294df583e4fa6a41cf75&pid=1-s2.0-S0031320316303545-main.pdf) +--------2.Feature selection in machine learning A new perspective:(http://xueshu.baidu.com/s?wd=paperuri%3A%28de29f951f2d943159b8b49636ae4c6e8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0925231218302911&ie=utf-8&sc_us=4397142208242775010) +--------3.Feature Selection: A Data Perspective:(http://www.public.asu.edu/~jundongl/paper/CSUR17.pdf) - [深度学习各种综述](https://mega.nz/#F!NaxA0ADS!QIxYDA6A760jfPbFbElCYA) - 最著名的综述:深度学习三巨头在2015年Nature上的[Deep learning](https://mega.nz/#!ZL4VFTiK!hcpVDDd9MtsFlBZHp-KaETk0bOAdcBaq_ioci75NrK8) - 比较完整的综述:[Deep learning in neural networks - an overview](https://mega.nz/#!lLJj3Rwb!t6yO7hDDYZHYj1UDFX17gAjQkZ77mmXhQKa0aayDhJg) - - 此外,还有一些中英文的综述,都在上面目录里。 \ No newline at end of file + - 此外,还有一些中英文的综述,都在上面目录里。 From 779bba0ca9bfdf15aedf19b40132ac509da573a5 Mon Sep 17 00:00:00 2001 From: KKDeng <747836668@qq.com> Date: Thu, 3 May 2018 14:24:27 +0800 Subject: [PATCH 07/16] Update survey_readme.md --- notes/survey_readme.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/notes/survey_readme.md b/notes/survey_readme.md index 11ba88d..bf17e93 100644 --- a/notes/survey_readme.md +++ b/notes/survey_readme.md @@ -11,9 +11,9 @@ - [稀疏子空间聚类Sparse Subspace Clustering_Elhamifar_Vidal_2013.pdf](https://mega.nz/#!0eAC2ajD!xWZhO9Pvh7qJwpHKkyYLnqKbLye9coSX0fd6WuyiIs4) - [聚类算法Survey of Clustering Algorithms_Xu_WunschII_2005.pdf](https://mega.nz/#!dKJAjAqJ!BwiVi3KGDaGXIWGlIiOo9cenHcTmtRyAxNW6WgKFQgE) - [特征选择综述] ---------1.A Survey on semi-supervised feature selection methods:(https://www.sciencedirect.com/science/article/pii/S0031320316303545/pdfft?md5=d1bf45954749294df583e4fa6a41cf75&pid=1-s2.0-S0031320316303545-main.pdf) ---------2.Feature selection in machine learning A new perspective:(http://xueshu.baidu.com/s?wd=paperuri%3A%28de29f951f2d943159b8b49636ae4c6e8%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0925231218302911&ie=utf-8&sc_us=4397142208242775010) ---------3.Feature Selection: A Data Perspective:(http://www.public.asu.edu/~jundongl/paper/CSUR17.pdf) +--------1.A Survey on semi-supervised feature selection methods +--------2.Feature selection in machine learning A new perspective +--------3.Feature Selection: A Data Perspective - [深度学习各种综述](https://mega.nz/#F!NaxA0ADS!QIxYDA6A760jfPbFbElCYA) - 最著名的综述:深度学习三巨头在2015年Nature上的[Deep learning](https://mega.nz/#!ZL4VFTiK!hcpVDDd9MtsFlBZHp-KaETk0bOAdcBaq_ioci75NrK8) - 比较完整的综述:[Deep learning in neural networks - an overview](https://mega.nz/#!lLJj3Rwb!t6yO7hDDYZHYj1UDFX17gAjQkZ77mmXhQKa0aayDhJg) From 53089cd1e26614154219632f7da6d611785aeaab Mon Sep 17 00:00:00 2001 From: Jindong Wang Date: Sat, 23 Jun 2018 20:17:27 +0800 Subject: [PATCH 08/16] add: Andrew ng --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index f28966c..506439a 100644 --- a/README.md +++ b/README.md @@ -6,6 +6,7 @@ - 周志华的[《机器学习》](https://pan.baidu.com/s/1hscnaQC)作为通读教材,不用深入,大概了解机器学习来龙去脉 - 李航的[《统计学习方法》](https://pan.baidu.com/s/1dF2b4jf)作为经典的深入案例,仔细研究几个算法的来龙去脉 - 使用Python语言,根据[《机器学习实战》](https://pan.baidu.com/s/1gfzV7PL)快速上手写程序 +- 吴恩达的最新深度学习课程资源:https://www.jiqizhixin.com/articles/2018-06-21-6 - 参照Youtube机器学习红人Siraj Raval的视频+代码可以帮助你更好地进入状态! - [原Youtube地址需要梯子](https://www.youtube.com/watch?v=xRJCOz3AfYY&list=PL2-dafEMk2A7mu0bSksCGMJEmeddU_H4D) | [百度网盘](https://pan.baidu.com/s/1jICGJFg) - 来自国立台湾大学李宏毅老师的机器学习和深度学习中文课程,强烈推荐:[课程](http://speech.ee.ntu.edu.tw/~tlkagk/courses.html) From 8089b7c0ea3c27999b7eb2e08f8e87e87741612d Mon Sep 17 00:00:00 2001 From: Jindong Wang Date: Sat, 10 Nov 2018 16:24:15 +0800 Subject: [PATCH 09/16] add: machine learning yearning --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 506439a..7ab9a44 100644 --- a/README.md +++ b/README.md @@ -13,6 +13,7 @@ - 最后,你可能想真正实战一下。那么,请到注明的机器学习竞赛平台Kaggle上做一下这些基础入门的[题目](https://www.kaggle.com/competitions?sortBy=deadline&group=all&page=1&pageSize=20&segment=gettingStarted)吧!(Kaggle上对于每个问题你都可以看到别人的代码,方便你更加快速地学习)  [Kaggle介绍及入门解读](https://zhuanlan.zhihu.com/p/25686876) [可以用来练手的数据集](https://www.kaggle.com/annavictoria/ml-friendly-public-datasets/notebook) - 想看别人怎么写代码?[机器学习经典教材《PRML》所有代码实现](https://github.com/ctgk/PRML) - [机器学习算法Python实现](https://github.com/lawlite19/MachineLearning_Python) +- [吴恩达新书:Machine Learning Yearning中文版](https://pan.baidu.com/s/10kosKx6rDguS4tPejY-fRw) - 另外,对于一些基础的数学知识,你看[深度学习(花书)中文版](https://github.com/exacity/deeplearningbook-chinese)就够了。这本书同时也是**深度学习**经典之书。 - 来自南京大学周志华小组的博士生写的一本小而精的[解析卷积神经网络—深度学习实践手册](http://lamda.nju.edu.cn/weixs/book/CNN_book.html) From 8ab2a37d435d2bd3dede43f523dcff536f7cd2b4 Mon Sep 17 00:00:00 2001 From: Jindong Wang Date: Sat, 10 Nov 2018 16:28:52 +0800 Subject: [PATCH 10/16] format --- README.md | 19 +++++++++++++++---- 1 file changed, 15 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 7ab9a44..8374c7d 100644 --- a/README.md +++ b/README.md @@ -3,21 +3,32 @@ **致力于分享最新最全面的机器学习资料,欢迎你成为贡献者!** *快速开始学习:* -- 周志华的[《机器学习》](https://pan.baidu.com/s/1hscnaQC)作为通读教材,不用深入,大概了解机器学习来龙去脉 -- 李航的[《统计学习方法》](https://pan.baidu.com/s/1dF2b4jf)作为经典的深入案例,仔细研究几个算法的来龙去脉 +- 周志华的[《机器学习》](https://pan.baidu.com/s/1hscnaQC)作为通读教材,不用深入,从宏观上了解机器学习 + +- 李航的[《统计学习方法》](https://pan.baidu.com/s/1dF2b4jf)作为经典的深入案例,仔细研究几个算法的来龙去脉 | [书中的代码实现](https://github.com/WenDesi/lihang_book_algorithm) + - 使用Python语言,根据[《机器学习实战》](https://pan.baidu.com/s/1gfzV7PL)快速上手写程序 + - 吴恩达的最新深度学习课程资源:https://www.jiqizhixin.com/articles/2018-06-21-6 + - 参照Youtube机器学习红人Siraj Raval的视频+代码可以帮助你更好地进入状态! - [原Youtube地址需要梯子](https://www.youtube.com/watch?v=xRJCOz3AfYY&list=PL2-dafEMk2A7mu0bSksCGMJEmeddU_H4D) | [百度网盘](https://pan.baidu.com/s/1jICGJFg) + - 来自国立台湾大学李宏毅老师的机器学习和深度学习中文课程,强烈推荐:[课程](http://speech.ee.ntu.edu.tw/~tlkagk/courses.html) + - 最后,你可能想真正实战一下。那么,请到注明的机器学习竞赛平台Kaggle上做一下这些基础入门的[题目](https://www.kaggle.com/competitions?sortBy=deadline&group=all&page=1&pageSize=20&segment=gettingStarted)吧!(Kaggle上对于每个问题你都可以看到别人的代码,方便你更加快速地学习)  [Kaggle介绍及入门解读](https://zhuanlan.zhihu.com/p/25686876) [可以用来练手的数据集](https://www.kaggle.com/annavictoria/ml-friendly-public-datasets/notebook) + +其他有用的资料: + - 想看别人怎么写代码?[机器学习经典教材《PRML》所有代码实现](https://github.com/ctgk/PRML) + - [机器学习算法Python实现](https://github.com/lawlite19/MachineLearning_Python) + - [吴恩达新书:Machine Learning Yearning中文版](https://pan.baidu.com/s/10kosKx6rDguS4tPejY-fRw) - 另外,对于一些基础的数学知识,你看[深度学习(花书)中文版](https://github.com/exacity/deeplearningbook-chinese)就够了。这本书同时也是**深度学习**经典之书。 -- 来自南京大学周志华小组的博士生写的一本小而精的[解析卷积神经网络—深度学习实践手册](http://lamda.nju.edu.cn/weixs/book/CNN_book.html) +- 来自南京大学周志华小组的博士生写的一本小而精的[解析卷积神经网络—深度学习实践手册](http://lamda.nju.edu.cn/weixs/book/CNN_book.html) - - - @@ -40,8 +51,8 @@ [Learning Machine Learning? Six articles you don’t want to miss](http://www.ibmbigdatahub.com/blog/learning-machine-learning-six-articles-you-don-t-want-miss) [Getting started with machine learning documented by github](https://github.com/collections/machine-learning) -- - - +- - - ## 预备知识 Prerequisite From a85e94df2bde7d5a50fda3a9a8b8fc3012498005 Mon Sep 17 00:00:00 2001 From: Jindong Wang Date: Sat, 10 Nov 2018 16:36:15 +0800 Subject: [PATCH 11/16] Update README.md --- README.md | 61 ++++++++++++++++++++++++------------------------------- 1 file changed, 26 insertions(+), 35 deletions(-) diff --git a/README.md b/README.md index 8374c7d..9593f74 100644 --- a/README.md +++ b/README.md @@ -54,7 +54,32 @@ - - - -## 预备知识 Prerequisite + +## 研究领域资源细分 + +- ### [深度学习 Deep learning](https://github.com/ChristosChristofidis/awesome-deep-learning) + +- ### [强化学习 Reinforcement learning](https://github.com/aikorea/awesome-rl) + +- ### [迁移学习 Transfer learning](https://jindongwang.github.io/transferlearning/) + +- ### [分布式学习系统 Distributed learning system](https://github.com/theanalyst/awesome-distributed-systems) + +- ### [计算机视觉/机器视觉 Computer vision / machine vision](https://github.com/jbhuang0604/awesome-computer-vision) + +- ### [自然语言处理 Natural language procesing](https://github.com/Nativeatom/NaturalLanguageProcessing) + +- ### 语音识别 Speech recognition + +- ### [生物信息学 Bioinfomatics](https://github.com/danielecook/Awesome-Bioinformatics) + +- ### [行为识别 Activity recognition](https://github.com/jindongwang/activityrecognition) + +- ### [多智能体 Multi-Agent](http://ddl.escience.cn/f/ILKI) + +- - - + +## 开始学习:预备知识 Prerequisite - [学习知识与路线图](https://metacademy.org/) @@ -105,38 +130,6 @@ - - - -## 理论 Theory - -- ### 深度学习 Deep learning - -- ### [强化学习 Reinforcement learning](https://github.com/allmachinelearning/ReinforcementLearning) - -- ### [迁移学习 Transfer learning](https://jindongwang.github.io/transferlearning/) - -- ### [分布式学习系统 Distributed learning system](https://github.com/allmachinelearning/Deep-Learning-System-Design) - -- - - - - -## 应用 Applications - -- ### 计算机视觉/机器视觉 Computer vision / machine vision - -- ### [自然语言处理 Natural language procesing](https://github.com/Nativeatom/NaturalLanguageProcessing) - -- ### 语音识别 Speech recognition - -- ### 生物信息学 Bioinfomatics - -- ### 医疗 Medical - -- ### [行为识别 Activity recognition](https://github.com/jindongwang/activityrecognition) - -- ### [人工智能(多智能体) Artificial Intelligence(Multi-Agent)](http://ddl.escience.cn/f/ILKI) - -- - - - - ## 文档 notes - [综述文章汇总](https://github.com/allmachinelearning/MachineLearning/blob/master/notes/survey_readme.md) @@ -379,8 +372,6 @@ #### [贡献者 Contributors](https://github.com/allmachinelearning/MachineLearning/blob/master/contributors.md) -> ***[文章版权声明]这个仓库是我开源到Github上的,可以遵守相关的开源协议进行使用。这个仓库中包含有很多研究者的论文、硕博士论文等,都来源于在网上的下载,仅作为学术研究使用。我对其中一些文章都写了自己的浅见,希望能很好地帮助理解。这些文章的版权属于相应的出版社。如果作者或出版社有异议,请联系我进行删除(本来应该只放文章链接的,但是由于时间关系来不及)。一切都是为了更好地学术!*** - From f480b7f1234552f1ef9f09617fac7ae77e532405 Mon Sep 17 00:00:00 2001 From: Jindong Wang Date: Sat, 10 Nov 2018 16:39:19 +0800 Subject: [PATCH 12/16] Update README.md --- README.md | 2 -- 1 file changed, 2 deletions(-) diff --git a/README.md b/README.md index 9593f74..4bcddda 100644 --- a/README.md +++ b/README.md @@ -69,8 +69,6 @@ - ### [自然语言处理 Natural language procesing](https://github.com/Nativeatom/NaturalLanguageProcessing) -- ### 语音识别 Speech recognition - - ### [生物信息学 Bioinfomatics](https://github.com/danielecook/Awesome-Bioinformatics) - ### [行为识别 Activity recognition](https://github.com/jindongwang/activityrecognition) From e88c9bfe305a889efbae8ad6950813d7c4d9dc24 Mon Sep 17 00:00:00 2001 From: XiaoDong_Wang Date: Fri, 15 Mar 2019 10:22:42 +0800 Subject: [PATCH 13/16] add the websit of cs229 Chinese translation --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 4bcddda..007cdd6 100644 --- a/README.md +++ b/README.md @@ -165,7 +165,7 @@ - [Neural Networks for Machine Learning](https://www.coursera.org/learn/neural-networks), Coursera上的著名课程,由Geoffrey Hinton教授主讲。 -- [Stanford CS 229](http://cs229.stanford.edu/materials.html), Andrew Ng机器学习课无阉割版,Notes比较详细 +- [Stanford CS 229](http://cs229.stanford.edu/materials.html), Andrew Ng机器学习课无阉割版,Notes比较详细,可以对照学习[CS229课程讲义的中文翻译](https://github.com/Kivy-CN/Stanford-CS-229-CN)。 - [CMU 10-702 Statistical Machine Learning](http://www.stat.cmu.edu/~larry/=sml/), 讲师是Larry Wasserman,应该是统计系开的机器学习,非常数学化,第一节课就提到了RKHS(Reproducing Kernel Hilbert Space),建议数学出身的同学看或者是学过实变函数泛函分析的人看一看 From d4125c220a3e0e77523b625499d5fd64cb173392 Mon Sep 17 00:00:00 2001 From: jindongwang Date: Thu, 4 Apr 2019 11:21:06 +0800 Subject: [PATCH 14/16] add: machine learning book --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 007cdd6..9b286e8 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,8 @@ *快速开始学习:* - 周志华的[《机器学习》](https://pan.baidu.com/s/1hscnaQC)作为通读教材,不用深入,从宏观上了解机器学习 +- 《机器学习》西瓜书公式推导解析:https://datawhalechina.github.io/pumpkin-book/ + - 李航的[《统计学习方法》](https://pan.baidu.com/s/1dF2b4jf)作为经典的深入案例,仔细研究几个算法的来龙去脉 | [书中的代码实现](https://github.com/WenDesi/lihang_book_algorithm) - 使用Python语言,根据[《机器学习实战》](https://pan.baidu.com/s/1gfzV7PL)快速上手写程序 From 86b3e7b0477fc4d07358d53703d0af4eb76ca2bd Mon Sep 17 00:00:00 2001 From: jindongwang Date: Tue, 9 Apr 2019 09:51:54 +0800 Subject: [PATCH 15/16] add: a new book --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 9b286e8..d068f9d 100644 --- a/README.md +++ b/README.md @@ -7,6 +7,8 @@ - 《机器学习》西瓜书公式推导解析:https://datawhalechina.github.io/pumpkin-book/ +- 最新的[《神经网络与深度学习》](https://mp.weixin.qq.com/s?__biz=MzIwOTc2MTUyMg==&mid=2247488439&idx=1&sn=df51b67ac2a42fe1a8417a7e4d308b8b&chksm=976fb62aa0183f3c8cfbfcf2c1613aa3a168f782bc5b439aa2a5db9574a33f678a081a1d24a5&mpshare=1&scene=1&srcid=0409hgaWjfxz2LzGtniTpAKh&key=12a4c5f4665589b6914fa6a60a7fe4bd6a4fc4855ac8967b945678646a60c26482467697a46b85e85c7a6a7d564aac41d6c0312307a7f95ba299d3b3cf8433f9a159f999d9484534452672dbdd9fd270&ascene=1&uin=NjMzMjQzMTYw&devicetype=Windows+10&version=62060739&lang=zh_CN&pass_ticket=CIhr0hAvTnkZIvwFNRQ2%2BWhir8OVCkCt9tarvfIPS5SWtyyQKMLGOBt%2BItSffrll) + - 李航的[《统计学习方法》](https://pan.baidu.com/s/1dF2b4jf)作为经典的深入案例,仔细研究几个算法的来龙去脉 | [书中的代码实现](https://github.com/WenDesi/lihang_book_algorithm) - 使用Python语言,根据[《机器学习实战》](https://pan.baidu.com/s/1gfzV7PL)快速上手写程序 From 53958f9fd779e8c6920735a28cae6c12c4c145bb Mon Sep 17 00:00:00 2001 From: Jindong Wang Date: Tue, 16 Nov 2021 05:56:11 +0000 Subject: [PATCH 16/16] upd: contents --- README.md | 16 +++++++--------- 1 file changed, 7 insertions(+), 9 deletions(-) diff --git a/README.md b/README.md index d068f9d..bb8de8f 100644 --- a/README.md +++ b/README.md @@ -3,24 +3,22 @@ **致力于分享最新最全面的机器学习资料,欢迎你成为贡献者!** *快速开始学习:* -- 周志华的[《机器学习》](https://pan.baidu.com/s/1hscnaQC)作为通读教材,不用深入,从宏观上了解机器学习 -- 《机器学习》西瓜书公式推导解析:https://datawhalechina.github.io/pumpkin-book/ +- 周志华的[《机器学习》](https://pan.baidu.com/s/1hscnaQC)作为通读教材,不用深入,从宏观上了解机器学习 + - 《机器学习》西瓜书公式推导解析:https://datawhalechina.github.io/pumpkin-book/ - 最新的[《神经网络与深度学习》](https://mp.weixin.qq.com/s?__biz=MzIwOTc2MTUyMg==&mid=2247488439&idx=1&sn=df51b67ac2a42fe1a8417a7e4d308b8b&chksm=976fb62aa0183f3c8cfbfcf2c1613aa3a168f782bc5b439aa2a5db9574a33f678a081a1d24a5&mpshare=1&scene=1&srcid=0409hgaWjfxz2LzGtniTpAKh&key=12a4c5f4665589b6914fa6a60a7fe4bd6a4fc4855ac8967b945678646a60c26482467697a46b85e85c7a6a7d564aac41d6c0312307a7f95ba299d3b3cf8433f9a159f999d9484534452672dbdd9fd270&ascene=1&uin=NjMzMjQzMTYw&devicetype=Windows+10&version=62060739&lang=zh_CN&pass_ticket=CIhr0hAvTnkZIvwFNRQ2%2BWhir8OVCkCt9tarvfIPS5SWtyyQKMLGOBt%2BItSffrll) - 李航的[《统计学习方法》](https://pan.baidu.com/s/1dF2b4jf)作为经典的深入案例,仔细研究几个算法的来龙去脉 | [书中的代码实现](https://github.com/WenDesi/lihang_book_algorithm) - 使用Python语言,根据[《机器学习实战》](https://pan.baidu.com/s/1gfzV7PL)快速上手写程序 - -- 吴恩达的最新深度学习课程资源:https://www.jiqizhixin.com/articles/2018-06-21-6 - -- 参照Youtube机器学习红人Siraj Raval的视频+代码可以帮助你更好地进入状态! - - [原Youtube地址需要梯子](https://www.youtube.com/watch?v=xRJCOz3AfYY&list=PL2-dafEMk2A7mu0bSksCGMJEmeddU_H4D) | [百度网盘](https://pan.baidu.com/s/1jICGJFg) - 来自国立台湾大学李宏毅老师的机器学习和深度学习中文课程,强烈推荐:[课程](http://speech.ee.ntu.edu.tw/~tlkagk/courses.html) -- 最后,你可能想真正实战一下。那么,请到注明的机器学习竞赛平台Kaggle上做一下这些基础入门的[题目](https://www.kaggle.com/competitions?sortBy=deadline&group=all&page=1&pageSize=20&segment=gettingStarted)吧!(Kaggle上对于每个问题你都可以看到别人的代码,方便你更加快速地学习)  [Kaggle介绍及入门解读](https://zhuanlan.zhihu.com/p/25686876) [可以用来练手的数据集](https://www.kaggle.com/annavictoria/ml-friendly-public-datasets/notebook) +- 《迁移学习导论》助你快速入门迁移学习! [书的主页](http://jd92.wang/tlbook) + - 迁移学习统一代码库:[Domain adaptation](https://github.com/jindongwang/transferlearning/tree/master/code/DeepDA) | [Domain generalization](https://github.com/jindongwang/transferlearning/tree/master/code/DeepDG) | [更多代码](https://github.com/jindongwang/transferlearning) + +- 最后,你可能想真正实战一下。那么,请到著名的机器学习竞赛平台Kaggle上做一下这些基础入门的[题目](https://www.kaggle.com/competitions?sortBy=deadline&group=all&page=1&pageSize=20&segment=gettingStarted)吧!(Kaggle上对于每个问题你都可以看到别人的代码,方便你更加快速地学习)  [Kaggle介绍及入门解读](https://zhuanlan.zhihu.com/p/25686876) [可以用来练手的数据集](https://www.kaggle.com/annavictoria/ml-friendly-public-datasets/notebook) 其他有用的资料: @@ -65,7 +63,7 @@ - ### [强化学习 Reinforcement learning](https://github.com/aikorea/awesome-rl) -- ### [迁移学习 Transfer learning](https://jindongwang.github.io/transferlearning/) +- ### [迁移学习 Transfer learning](https://github.com/jindongwang/transferlearning) - ### [分布式学习系统 Distributed learning system](https://github.com/theanalyst/awesome-distributed-systems)