|
| 1 | +from __future__ import print_function |
| 2 | +import argparse |
| 3 | +import os |
| 4 | +import random |
| 5 | +import numpy as np |
| 6 | +import torch |
| 7 | +import torch.nn as nn |
| 8 | +import torch.nn.parallel |
| 9 | +import torch.backends.cudnn as cudnn |
| 10 | +import torch.optim as optim |
| 11 | +import torch.utils.data |
| 12 | +import torchvision.datasets as dset |
| 13 | +import torchvision.transforms as transforms |
| 14 | +import torchvision.utils as vutils |
| 15 | +from torch.autograd import Variable |
| 16 | +from datasets import PartDataset |
| 17 | +from pointnet import PointNetCls |
| 18 | +import torch.nn.functional as F |
| 19 | +import matplotlib.pyplot as plt |
| 20 | + |
| 21 | + |
| 22 | +#showpoints(np.random.randn(2500,3), c1 = np.random.uniform(0,1,size = (2500))) |
| 23 | + |
| 24 | +parser = argparse.ArgumentParser() |
| 25 | + |
| 26 | +parser.add_argument('--model', type=str, default = '', help='model path') |
| 27 | + |
| 28 | + |
| 29 | +opt = parser.parse_args() |
| 30 | +print (opt) |
| 31 | + |
| 32 | +test_dataset = PartDataset(root = 'shapenetcore_partanno_segmentation_benchmark_v0' , train = False, classification = True) |
| 33 | + |
| 34 | +testdataloader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle = False) |
| 35 | + |
| 36 | + |
| 37 | +classifier = PointNetCls(k = len(test_dataset.classes)) |
| 38 | +classifier.cuda() |
| 39 | +classifier.load_state_dict(torch.load(opt.model)) |
| 40 | +classifier.eval() |
| 41 | + |
| 42 | +for i, data in enumerate(testdataloader, 0): |
| 43 | + points, target = data |
| 44 | + points, target = Variable(points), Variable(target[:,0]) |
| 45 | + points = points.transpose(2,1) |
| 46 | + points, target = points.cuda(), target.cuda() |
| 47 | + pred, _ = classifier(points) |
| 48 | + loss = F.nll_loss(pred, target) |
| 49 | + pred_choice = pred.data.max(1)[1] |
| 50 | + correct = pred_choice.eq(target.data).cpu().sum() |
| 51 | + print('i:%d loss: %f accuracy: %f' %(i, loss.data[0], correct/float(32))) |
0 commit comments