Skip to content

Commit c07023e

Browse files
authored
Merge pull request ujjwalkarn#7 from ReadmeCritic/master
Update README URLs based on HTTP redirects
2 parents 300551a + 563088b commit c07023e

File tree

1 file changed

+18
-18
lines changed

1 file changed

+18
-18
lines changed

README.md

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -119,7 +119,7 @@
119119
- [Alex Minnaar's Blog](http://alexminnaar.com/) - A blog about Machine Learning and Software Engineering
120120
- [Statistically Significant](http://andland.github.io/) - Andrew Landgraf's Data Science Blog
121121
- [Simply Statistics](http://simplystatistics.org/) - A blog by three biostatistics professors
122-
- [Yanir Seroussi's Blog](http://yanirseroussi.com/) - A blog about Data Science and beyond
122+
- [Yanir Seroussi's Blog](https://yanirseroussi.com/) - A blog about Data Science and beyond
123123
- [fastML](http://fastml.com/) - Machine learning made easy
124124
- [Trevor Stephens Blog](http://trevorstephens.com/) - Trevor Stephens Personal Page
125125
- [no free hunch | kaggle](http://blog.kaggle.com/) - The Kaggle Blog about all things Data Science
@@ -142,7 +142,7 @@
142142

143143
<a name="kaggle" />
144144
##Kaggle Competitions WriteUp
145-
- [How to almost win Kaggle Competitions](http://yanirseroussi.com/2014/08/24/how-to-almost-win-kaggle-competitions/)
145+
- [How to almost win Kaggle Competitions](https://yanirseroussi.com/2014/08/24/how-to-almost-win-kaggle-competitions/)
146146
- [Convolution Neural Networks for EEG detection](http://blog.kaggle.com/2015/10/05/grasp-and-lift-eeg-detection-winners-interview-3rd-place-team-hedj/)
147147
- [Facebook Recruiting III Explained](http://alexminnaar.com/tag/kaggle-competitions.html)
148148
- [Predicting CTR with Online ML](http://mlwave.com/predicting-click-through-rates-with-online-machine-learning/)
@@ -172,10 +172,10 @@
172172
- [Applying and Interpreting Linear Regression](http://www.dataschool.io/applying-and-interpreting-linear-regression/)
173173
- [What does having constant variance in a linear regression model mean?](http://stats.stackexchange.com/questions/52089/what-does-having-constant-variance-in-a-linear-regression-model-mean/52107?stw=2#52107)
174174
- [Difference between linear regression on y with x and x with y](http://stats.stackexchange.com/questions/22718/what-is-the-difference-between-linear-regression-on-y-with-x-and-x-with-y?lq=1)
175-
- [Is linear regression valid when the dependant variable is not normally distributed?](http://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed)
175+
- [Is linear regression valid when the dependant variable is not normally distributed?](https://www.researchgate.net/post/Is_linear_regression_valid_when_the_outcome_dependant_variable_not_normally_distributed)
176176
- Multicollinearity and VIF
177177
- [Dummy Variable Trap | Multicollinearity](https://en.wikipedia.org/wiki/Multicollinearity)
178-
- [Dealing with multicollinearity using VIFs](http://jonlefcheck.net/2012/12/28/dealing-with-multicollinearity-using-variance-inflation-factors/)
178+
- [Dealing with multicollinearity using VIFs](https://jonlefcheck.net/2012/12/28/dealing-with-multicollinearity-using-variance-inflation-factors/)
179179

180180
- [Residual Analysis](#residuals-)
181181
- [Interpreting plot.lm() in R](http://stats.stackexchange.com/questions/58141/interpreting-plot-lm)
@@ -239,8 +239,8 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
239239
- [A curated list of awesome Deep Learning tutorials, projects and communities](https://github.com/ChristosChristofidis/awesome-deep-learning)
240240
- [Lots of Deep Learning Resources](http://deeplearning4j.org/documentation.html)
241241
- [Interesting Deep Learning and NLP Projects (Stanford)](http://cs224d.stanford.edu/reports.html), [Website](http://cs224d.stanford.edu/)
242-
- [Core Concepts of Deep Learning](http://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/)
243-
- [Understanding Natural Language with Deep Neural Networks Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
242+
- [Core Concepts of Deep Learning](https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-core-concepts/)
243+
- [Understanding Natural Language with Deep Neural Networks Using Torch](https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
244244
- [Stanford Deep Learning Tutorial](http://ufldl.stanford.edu/tutorial/)
245245
- [Deep Learning FAQs on Quora](https://www.quora.com/topic/Deep-Learning/faq)
246246
- [Google+ Deep Learning Page](https://plus.google.com/communities/112866381580457264725)
@@ -256,7 +256,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
256256
- [Awesome Deep Learning Reading List](http://deeplearning.net/reading-list/)
257257
- [Deep Learning Comprehensive Website](http://deeplearning.net/), [Software](http://deeplearning.net/software_links/)
258258
- [deeplearning Tutorials](http://deeplearning4j.org/)
259-
- [AWESOME! Deep Learning Tutorial](http://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks)
259+
- [AWESOME! Deep Learning Tutorial](https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks)
260260
- [Deep Learning Basics](http://alexminnaar.com/deep-learning-basics-neural-networks-backpropagation-and-stochastic-gradient-descent.html)
261261
- [Stanford Tutorials](http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/)
262262
- [Train, Validation & Test in Artificial Neural Networks](http://stackoverflow.com/questions/2976452/whats-is-the-difference-between-train-validation-and-test-set-in-neural-networ)
@@ -266,8 +266,8 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
266266
- [Neural Networks and Deep Learning Online Book](http://neuralnetworksanddeeplearning.com/)
267267

268268
- Neural Machine Translation
269-
- [Introduction to Neural Machine Translation with GPUs (part 1)](http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/), [Part 2](http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/), [Part 3](http://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
270-
- [Deep Speech: Accurate Speech Recognition with GPU-Accelerated Deep Learning](http://devblogs.nvidia.com/parallelforall/deep-speech-accurate-speech-recognition-gpu-accelerated-deep-learning/)
269+
- [Introduction to Neural Machine Translation with GPUs (part 1)](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-with-gpus/), [Part 2](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-2/), [Part 3](https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/)
270+
- [Deep Speech: Accurate Speech Recognition with GPU-Accelerated Deep Learning](https://devblogs.nvidia.com/parallelforall/deep-speech-accurate-speech-recognition-gpu-accelerated-deep-learning/)
271271

272272
<a name="frame" />
273273
- Deep Learning Frameworks
@@ -288,7 +288,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
288288
- [RBM using Theano](http://deeplearning.net/tutorial/rbm.html#rbm)
289289
- [DBNs using Theano](http://deeplearning.net/tutorial/DBN.html#dbn)
290290
- [All Codes](https://github.com/lisa-lab/DeepLearningTutorials)
291-
- [Deep Learning Implementation Tutorials - Keras and Lasagne](http://github.com/vict0rsch/deep_learning/)
291+
- [Deep Learning Implementation Tutorials - Keras and Lasagne](https://github.com/vict0rsch/deep_learning/)
292292

293293
- [Torch](http://torch.ch/)
294294
- [Torch ML Tutorial](http://code.madbits.com/wiki/doku.php), [Code](https://github.com/torch/tutorials)
@@ -301,7 +301,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
301301
- [Understanding Natural Language with Deep Neural Networks Using Torch](http://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/)
302302

303303
- Caffe
304-
- [Deep Learning for Computer Vision with Caffe and cuDNN](http://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-caffe-cudnn/)
304+
- [Deep Learning for Computer Vision with Caffe and cuDNN](https://devblogs.nvidia.com/parallelforall/deep-learning-computer-vision-caffe-cudnn/)
305305

306306
- TensorFlow
307307
- [Website](http://tensorflow.org/)
@@ -335,7 +335,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
335335
- [An application of RNN](http://hackaday.com/2015/10/15/73-computer-scientists-created-a-neural-net-and-you-wont-believe-what-happened-next/)
336336
- [Optimizing RNN Performance](http://svail.github.io/)
337337
- [Simple RNN](http://outlace.com/Simple-Recurrent-Neural-Network/)
338-
- [Auto-Generating Clickbait with RNN](http://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/)
338+
- [Auto-Generating Clickbait with RNN](https://larseidnes.com/2015/10/13/auto-generating-clickbait-with-recurrent-neural-networks/)
339339
- [Sequence Learning using RNN (Slides)](http://www.slideshare.net/indicods/general-sequence-learning-with-recurrent-neural-networks-for-next-ml)
340340
- [Machine Translation using RNN (Paper)](http://emnlp2014.org/papers/pdf/EMNLP2014179.pdf)
341341
- [Music generation using RNNs (Keras)](https://github.com/MattVitelli/GRUV)
@@ -412,15 +412,15 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
412412
- [Original LDA Paper](https://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf)
413413
- [alpha and beta in LDA](http://datascience.stackexchange.com/questions/199/what-does-the-alpha-and-beta-hyperparameters-contribute-to-in-latent-dirichlet-a)
414414
- [Intuitive explanation of the Dirichlet distribution](https://www.quora.com/What-is-an-intuitive-explanation-of-the-Dirichlet-distribution)
415-
- [Topic modeling made just simple enough](http://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/)
415+
- [Topic modeling made just simple enough](https://tedunderwood.com/2012/04/07/topic-modeling-made-just-simple-enough/)
416416
- [Online LDA](http://alexminnaar.com/online-latent-dirichlet-allocation-the-best-option-for-topic-modeling-with-large-data-sets.html), [Online LDA with Spark](http://alexminnaar.com/distributed-online-latent-dirichlet-allocation-with-apache-spark.html)
417417
- [LDA in Scala](http://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-i-the-theory.html), [Part 2](http://alexminnaar.com/latent-dirichlet-allocation-in-scala-part-ii-the-code.html)
418418
- [Segmentation of Twitter Timelines via Topic Modeling](http://alexperrier.github.io/jekyll/update/2015/09/16/segmentation_twitter_timelines_lda_vs_lsa.html)
419419
- [Topic Modeling of Twitter Followers](http://alexperrier.github.io/jekyll/update/2015/09/04/topic-modeling-of-twitter-followers.html)
420420

421421
<a name="word2vec" />
422422
- word2vec
423-
- [Google word2vec](https://code.google.com/p/word2vec/)
423+
- [Google word2vec](https://code.google.com/archive/p/word2vec)
424424
- [Bag of Words Model Wiki](https://en.wikipedia.org/wiki/Bag-of-words_model)
425425
- [A closer look at Skip Gram Modeling](http://homepages.inf.ed.ac.uk/ballison/pdf/lrec_skipgrams.pdf)
426426
- [Skip Gram Model Tutorial](http://alexminnaar.com/word2vec-tutorial-part-i-the-skip-gram-model.html), [CBoW Model](http://alexminnaar.com/word2vec-tutorial-part-ii-the-continuous-bag-of-words-model.html)
@@ -496,7 +496,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
496496
- [What is entropy and information gain in the context of building decision trees?](http://stackoverflow.com/questions/1859554/what-is-entropy-and-information-gain)
497497
- [Slides Related to Decision Trees](http://www.slideshare.net/pierluca.lanzi/machine-learning-and-data-mining-11-decision-trees)
498498
- [How do decision tree learning algorithms deal with missing values?](http://stats.stackexchange.com/questions/96025/how-do-decision-tree-learning-algorithms-deal-with-missing-values-under-the-hoo)
499-
- [Using Surrogates to Improve Datasets with Missing Values](http://www.salford-systems.com/videos/tutorials/tips-and-tricks/using-surrogates-to-improve-datasets-with-missing-values)
499+
- [Using Surrogates to Improve Datasets with Missing Values](https://www.salford-systems.com/videos/tutorials/tips-and-tricks/using-surrogates-to-improve-datasets-with-missing-values)
500500
- [Good Article](https://www.mindtools.com/dectree.html)
501501
- [Are decision trees almost always binary trees?](http://stats.stackexchange.com/questions/12187/are-decision-trees-almost-always-binary-trees)
502502
- [Pruning Decision Trees](https://en.wikipedia.org/wiki/Pruning_(decision_trees)), [Grafting of Decision Trees](https://en.wikipedia.org/wiki/Grafting_(decision_trees))
@@ -534,7 +534,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
534534
- [Measures of variable importance in random forests](http://stats.stackexchange.com/questions/12605/measures-of-variable-importance-in-random-forests)
535535
- [Compare R-squared from two different Random Forest models](http://stats.stackexchange.com/questions/13869/compare-r-squared-from-two-different-random-forest-models)
536536
- [OOB Estimate Explained | RF vs LDA](https://stat.ethz.ch/education/semesters/ss2012/ams/slides/v10.2.pdf)
537-
- [Evaluating Random Forests for Survival Analysis Using Prediction Error Curve](http://www.jstatsoft.org/article/view/v050i11)
537+
- [Evaluating Random Forests for Survival Analysis Using Prediction Error Curve](https://www.jstatsoft.org/index.php/jss/article/view/v050i11)
538538
- [Why doesn't Random Forest handle missing values in predictors?](http://stats.stackexchange.com/questions/98953/why-doesnt-random-forest-handle-missing-values-in-predictors)
539539
- [How to build random forests in R with missing (NA) values?](http://stackoverflow.com/questions/8370455/how-to-build-random-forests-in-r-with-missing-na-values)
540540
- [FAQs about Random Forest](http://stats.stackexchange.com/questions/tagged/random-forest), [More FAQs](http://stackoverflow.com/questions/tagged/random-forest)
@@ -584,7 +584,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
584584
##Stacking Models
585585
- [Stacking, Blending and Stacked Generalization](http://www.chioka.in/stacking-blending-and-stacked-generalization/)
586586
- [Stacked Generalization (Stacking)](http://machine-learning.martinsewell.com/ensembles/stacking/)
587-
- [Stacked Generalization: when does it work?](http://www.ijcai.org/Past%20Proceedings/IJCAI-97-VOL2/PDF/011.pdf)
587+
- [Stacked Generalization: when does it work?](http://www.ijcai.org/Proceedings/97-2/011.pdf)
588588
- [Stacked Generalization Paper](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1533&rep=rep1&type=pdf)
589589

590590
<a name="vc" />
@@ -603,7 +603,7 @@ Performance Evaluation](http://www.jmlr.org/papers/volume11/cawley10a/cawley10a.
603603
- [Should all Machine Learning be Bayesian?](http://videolectures.net/bark08_ghahramani_samlbb/)
604604
- [Tutorial on Bayesian Optimisation for Machine Learning](http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf)
605605
- [Bayesian Reasoning and Deep Learning](http://blog.shakirm.com/2015/10/bayesian-reasoning-and-deep-learning/), [Slides](http://blog.shakirm.com/wp-content/uploads/2015/10/Bayes_Deep.pdf)
606-
- [Bayesian Statistics Made Simple](http://greenteapress.com/thinkbayes/)
606+
- [Bayesian Statistics Made Simple](http://greenteapress.com/wp/think-bayes/)
607607
- [Kalman & Bayesian Filters in Python](https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python)
608608
- [Markov Chain Wikipedia Page](https://en.wikipedia.org/wiki/Markov_chain)
609609

0 commit comments

Comments
 (0)